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Institut für Theoretische Physik,

HIT K32.3,
Wolfgang-Pauli-Strasse 27
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Abstract

In this paper we demonstrate a recursive method for obtaining the moments of the gener-
alized hyperbolic distribution. The method is readily programmable for numerical evaluation
of moments. For low order moments we also give an alternative derivation of the moments
of the generalized hyperbolic distribution. The expressions given for these moments may be
used to obtain moments for special cases such as the hyperbolic and normal inverse Gaussian
distributions. Moments for limiting cases such as the skew hyperbolic t and variance gamma
distributions can be found using the same approach.

Keywords: Generalized hyperbolic distribution; hyperbolic distribution; kurtosis; moments; nor-
mal inverse Gaussian distribution; skewed-t distribution; skewness; Student-t distribution.
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1 Introduction

The generalized hyperbolic distribution was introduced in Barndorff-Nielsen (1977) and has
been discussed by many authors since, particularly in connection with applications in finance.
Some examples are Barndorff-Nielsen (1979), Barndorff-Nielsen and Blæsild (1981), Eberlein
and Keller (1995), Prause (1999), Bibby and Sørensen (2003), Menćıa and Sentana (2004) and
McNeil et al. (2005).

The first four moments and skewness and kurtosis of the generalized hyperbolic (GH) distribution
were given by Barndorff-Nielsen and Blæsild (1981). The expressions are complicated and the
reference rather difficult to obtain.

In this paper we establish a recursive method to determine the moments of the GH distribution of
any order about the location parameter µ of the distribution. Then moments about any location,
including raw moments and central moments can be obtained using well-known methods. This
approach is easily implemented in software to enable the numeric evaluation of moments of any
order about any location. An implementation is available in the R package HyperbolicDist (see
Scott (2009)).

The approach of the present paper is very straightforward and produces moments of any order
in comparison to the expressions given in Barndorff-Nielsen and Blæsild (1981), which require
great care if errors are to avoided.

The GH distribution includes many interesting distributions as special and limiting cases in-
cluding the normal inverse Gaussian (NIG) distribution, the hyperbolic distribution, the normal
distribution, the skew hyperbolic-t (SHT), and the variance gamma (VG) distribution. A com-
prehensive examination of limiting distributions is given by Eberlein and von Hammerstein
(2003). A discussion of special and limiting cases of the GH distribution may also be found in
Chapter 9 of Paolella (2007).

The SHT and VG arise for special values of the parameters of the generalized hyperbolic dis-
tribution and we show that the recursive method may be used to obtain moments of any order
about any location for these distributions. Moments of the skew hyperbolic-t up to order 4 were
previously considered in Aas and Hobæk Haff (2006), and for the variance gamma in Seneta
(2004). Implementations of the moment calculations for the SHT and VG may be found in the
R packages SkewHyperbolic (Scott and Grimson (2009)) and VarianceGamma (Scott and Dong
(2009)) respectively.

Recently, Barndorff-Nielsen and Stelzer (2005) developed expressions for the moments (and
absolute moments) of the GH distribution as the sum of an infinite series of the moments of the
symmetric GH distribution. They used these expressions to obtain expressions for the moments
(and absolute moments) of the GH distribution as the sum of infinite series involving gamma
functions and Bessel functions. Although we do not obtain expressions for the absolute moments,
our approach yields expressions for the moments of a GH distribution which require only finite
sums of terms which involve Bessel functions.

2 The Generalized Hyperbolic Distribution

Definition 2.1 The generalized hyperbolic (GH) distribution is given by
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gh(x|λ, α, β, δ, µ) = a(λ, α, β, δ, µ)
[
δ2 + (x− µ)2

](λ− 1
2
)/2

×Kλ−1/2(α
√
δ2 + (x− µ)2) exp [β(x− µ)]

with a(λ, α, β, δ, µ) = (α2 − β2)λ/2/
[√

2παλ−1/2δλKλ

(
δ
√
α2 − β2

)]
,

(1)

where Kλ is the modified Bessel function of the third kind and x ∈ R. The domain of variation
of the parameters is µ, α ∈ R, and

δ ≥ 0, |β| < α if λ > 0 ,

δ > 0, |β| < α if λ = 0 ,

δ > 0, |β| ≤ α if λ < 0 .

(2)

If X has the distribution given in equation (1), we write X ∼ gh(λ, α, β, δ, µ).

Different parameterizations have been proposed in the literature. The one above we will call the
1st parameterization or (α, β) parameterization. A useful discussion is given in Prause (1999)
where three further parameterizations are presented:

2nd or (ζ, ρ) parameterization : ζ = δ
√
α2 − β2 , ρ = β/α ,

3rd or (ξ, χ) parameterization : ξ = (1 + ζ)−1/2 , χ = ξρ ,

4th or (α, β) parameterization : α = αδ , β = βδ .

(3)

Note, that for symmetric distributions β = β = ρ = χ = 0 holds.

Results are often most easily expressed in terms of parameters from these alternative param-
eterizations. We use values such as ζ without comment when considering the distribution
gh(λ, α, β, δ, µ). The assumption is that ζ = δ

√
α2 − β2.

Frequently, the most useful representation of the GH distribution is as a variance-mean mixture
of the generalized inverse Gaussian (GIG) distribution.

Definition 2.2 The generalized inverse Gaussian (GIG) distribution is given by

gig(x|λ, χ, ψ) = a(λ, χ, ψ)× xλ−1 exp [− (χ/x+ ψx) /2]

with a(λ, χ, ψ) = (ψ/χ)λ/2
[
2Kλ

(√
χψ
)]−1

,

(4)

where Kλ is the modified Bessel function of the third kind and x > 0. The domain of variation
of the parameters is
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λ ∈ R if χ > 0 and ψ > 0, (5)

λ > 0, ψ > 0 if χ = 0 , (6)

λ < 0, χ > 0 if ψ = 0 . (7)

If X has the distribution given in equation (4), we write X ∼ gig(λ, χ, ψ).

From Paolella (2007), we note that the case (5) is the normal or non-boundary case of the GIG.
When the parameters satisfy (6), the GIG distribution becomes a gamma with shape parameter
λ and rate parameter ψ/2. When the parameters satisfy (7), the GIG distribution becomes an
inverse gamma with shape parameter −λ and scale parameter χ/2.

The representation we will use to obtain our results can now be stated. If

W ∼ gig(λ, δ2, α2 − β2) and X|W ∼ N(µ+ βW,W ) (8)

then X ∼ gh(λ, α, β, δ, µ). For this result, which is originally due to Barndorff-Nielsen, see
Paolella (2007), or Bibby and Sørensen (2003). Suppose Z ∼ N(0, 1) independently of W ∼
gig(λ, δ2, α2 − β2), then (8) implies that

µ+ βW +
√
WZ ∼ gh(λ, α, β, δ, µ) , (9)

which expression is commonly used to simulate from the GH distribution.

We will need the moments of the GIG distribution, including the boundary cases where it reduces
to the gamma or inverse gamma. From Paolella (2007) we have that if X ∼ gig(λ, χ, ψ) then
provided χ > 0 and ψ > 0,

E(Xk) = (χ/ψ)(λ+k)/2Kλ+k(
√
χψ))/Kλ(

√
χψ)) . (10)

When χ = 0 and λ > 0, X has a gamma distribution, and the moments are

E(Xk) = (2/ψ)kΓ(λ+ k)/Γ(λ) . (11)

When ψ = 0 and λ < 0, X has an inverse gamma distribution, and the moments are

E(Xk) = (χ/2)kΓ(−λ− k)/Γ(−λ) , (12)

provided −λ > k.

3 Moments of the Generalized Hyperbolic

Denote the k-th moment about µ by

Mk = E(X − µ)k . (13)

Then the mixture representation of the GH distribution leads to the following result for Mk.

Theorem 3.1 Suppose X ∼ gh(λ, α, β, δ, µ). Then

Mk =
k∑

`=b(k+1)/2c

k!
(k − `)!(2`− k)!2k−`

β2`−kE(W `) (14)

where W ∼ gig(λ, δ2, α2 − β2).
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Proof From (8), if Z ∼ N(0, 1) independently of W ∼ gig(λ, δ2, α2 − β2), then

Mk = = E[(X − µ)k]
= E[(βW +

√
WZ)k]

=
k∑
i=0

(
k

i

)
βk−iE(Zi)E(W k−(i/2))

=
bk/2c∑
j=0

(
k

2j

)
βk−2j (2j)!

2jj!
E(W k−j)

=
bk/2c∑
j=0

k!
j!(k − 2j)!2j

βk−2jE(W k−j)

=
k∑

b`=(k+1)/2c

k!
(k − `)!(2`− k)!2k−`

β2`−kE(W k) ,

where we have used the well-known result for the moments of the standard normal distribution,
that

E(Zi) =

{
0 i odd
i![2i/2(i/2)!]−1 i even .

The moments of the mixing distribution W can be found from the moments of the GIG distri-
bution, equation (10).

Lemma 3.2 Suppose X ∼ gh(λ, α, β, δ, µ). Then for W as in Theorem 3.1

E(W k) = (δ2/ζ)λ+kKλ+k(ζ)/Kλ(ζ) (15)

provided χ > 0 and ψ > 0.

Proof The mixing distribution W is GIG with χ = δ2 and ψ = α2 − β2. The result follows
from substitution of these values in (10), noting that ζ = δ

√
α2 − β2.

Combining the result of Lemma 3.2 with Theorem 3.1 gives us the following result.

Corollary 3.1 Under the conditions of Theorem 3.1,

Mk =
k∑

`=b(k+1)/2c

k!
(k − `)!(2`− k)!2k−`

β2`−k(δ2/ζ)λ+kKλ+k(ζ)/Kλ(ζ) (16)

provided χ > 0 and ψ > 0.

If β = 0 the generalized hyperbolic distribution is symmetric and the moments take a particularly
simple form. Note that the mean is just µ in this case and the moments about µ are the usual
central moments.

Corollary 3.2 Suppose X ∼ gh(λ, α, 0, δ, µ). Then for any integer k > 0, Mk is the k-th central
moment, and Mk = 0 for k odd, while

Mk = ak,k/2(δ2/ζ)λ+k/2Kλ+k/2(ζ)/Kλ(ζ)

= k![2k/2(k/2)!]−1(δ2/ζ)λ+k/2Kλ+k/2(ζ)/Kλ(ζ)

for k even.
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Corollary 3.1 gives an expression for the moments about µ of any order for the GH distribution.
For implementation, it is useful to have a recursive method of obtaining the coefficients in the
summation which appears in (14) and (16). Define the coefficients ak,` for ` = 1, 2, . . . , k and
k = 1, 2, . . . by

ak,` =

0 ` < b(k + 1)/2

k![(k − `)!(2`− k)!2k−`]−1 b(k + 1)/2c ≤ ` ≤ k.
(17)

For convenience, define m(k) = b(k + 1)/2c.
Theorem 3.3 The coefficients ak,` may be determined recursively as a1,1 = 1 and

ak,` = ak−1,`−1 + (2`− k + 1)ak−1,` . (18)

Proof The result is true for k = 1. We show it is true for all k by induction.

Assume the result is true for k − 1.

For k even and ` = m(k) = k/2, the recurrence relation (18) gives

ak,m(k) = (2m(k)− k + 1)ak−1,m(k)

= (2k/2− k + 1)ak−1,k/2

=
(k − 1)!

(k − 1− k/2)!(k − (k − 1))!2k−1−k/2

=
2(k − k/2)(k − 1)!
(k − k/2)!1!2k−k/2

=
k!

(k −m(k))!0!2k−m(k)

=
k!

(k −m(k))!(2m(k)− k)!2k−m(k)

as required.

For any other values of k and ` we have

ak,` = ak−1,`−1 + (2`− k + 1)ak−1,`

=
(k − 1)!

(k − 1− `+ 1)!(2(`− 1)− (k − 1))!2k−`
+

(2`− k + 1)(k − 1)!
(k − 1− `)!(2`− (k − 1))!2k−1−`

=
k!

(k − `)!(2(`− k)!2k−`

[
2`− k
k

+
2(k − `)

k

]
=

k!
(k − `)!(2`− k)!2k−`

which is again of the required form, completing the proof.

Note: It is of course possible to obtain the moments about µ using the expression given in
Corollary 3.1, rather than using the recursive calculation of the coefficients. The recursion is
very stable numerically however and avoids the possibility of intermediate expression swell which
can occur for the factorials present in equation (16).
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The coefficients ak,` for k = 1, 2, 3, 4 are

a1,1 = 1
a2,1 = 1, a2,2 = 1
a3,1 = 0, a3,2 = 3, a3,3 = 1
a4,1 = 0, a4,2 = 3, a4,3 = 6, a4,4 = 1.

so the first four moments around µ are

M1 = (δ2/ζ)βKλ+1(ζ)/Kλ(ζ) ,

M2 =
[
(δ2/ζ)Kλ+1(ζ) + (δ2/ζ)2β2Kλ+2(ζ)

]
/Kλ(ζ) ,

M3 =
[
3(δ2/ζ)2βKλ+2(ζ) + (δ2/ζ)3β3Kλ+3(ζ)

]
/Kλ(ζ) ,

M4 =
[
3(δ2/ζ)2Kλ+2(ζ) + 6(δ2/ζ)3β2Kλ+3(ζ) + (δ2/ζ)4β4Kλ+4(ζ)

]
/Kλ(ζ) .

(19)

We have seen that calculation of moments about µ is mathematically convenient for the GH
distribution. Typically though, moments about zero (raw moments) or about the mean (central
moments) are required. Changing the point about which the moments are calculated is straight-
forward however involving a simple application of the binomial theorem. This is well-known in
the case of interchanging between raw and central moments, but the same approach works more
generally.

Lemma 3.4 For any constants a and b, and any positive integer k,

E
[
(X − b)k

]
=

k∑
i=0

(
k

i

)
(a− b)k−iE

[
(X − a)i

]
(20)

Proof

E
[
(X − b)k

]
= E

[
(X − a− b+ a)k

]
= E

[
k∑
i=0

(
k

i

)
(a− b)k−i(X − a)i

]

=
k∑
i=0

(
k

i

)
(a− b)k−iE

[
(X − a)i

]
.

To calculate the k-th moment of the GH distribution about any real a for any integer k, the
procedure is straightforward. Calculate the coefficients ak,` for all ` for that value of k using
the recursion (18) and then the moments around µ up to the k-th using (16). Finally use
(20) to obtain the k-th moment about a from the moments around µ. This procedure has
been programmed by the authors in R and is included in the package HyperbolicDist (see
Scott (2009)) available on CRAN. Numerical comparisons were carried out for moments up
to the 50th with the use of numerical integration to determine the moments and showed good
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agreement. In the package HyperbolicDist, the function momRecursion calculates the coefficients
ak,`, gigMom calculates moments for the GIG distribution, and ghypMom uses these functions and
momChangeAbout to calculate moments of any order about any location for the GH distribution.

The procedure described above can be compared to the results given in Section 3 of Barndorff-
Nielsen and Stelzer (2005). In the present paper no expressions are obtained for absolute mo-
ments, but our methods are much more convenient in determining moments than those given
by Barndorff-Nielsen and Steltzer.

4 Low Order Moments

Interest in moments commonly is focused on low order moments, up to order four, and the
skewness and kurtosis. It is useful to define Rλ,i(ζ) for i a positive integer according to

Rλ,i(ζ) = Kλ+i(ζ)/Kλ(ζ) . (21)

Besides leading to compact expressions, the use of this ratio of Bessel functions has compu-
tational advantages. When the argument ζ is large, the Bessel function Kλ(ζ) becomes very
small and underflow can result. One solution (implemented in the R function besselK) is to
use an exponentially scaled version of Kλ(ζ), which means calculating eζKλ(ζ) instead of the
Bessel function itself. If the exponentially scaled Bessel function is calculated for the both the
numerator and denominator when calculating Rλ,i(ζ) then an accurate value of the ratio Rλ,i(ζ)
can be obtained. In the package HyperbolicDist, the function besselRatio implements this
approach allowing accurate computation even for very large values of ζ.

Denote the central moments by Mk = E[(X − EX)k] for k = 2, 3, . . . . Using the results of the
previous section we can obtain expressions for the mean, M2, M3, and M4. We have

EX = µ+
βδ√
α2 − β2

Rλ,1(ζ) = µ+ βδ2ζ−1Rλ,1(ζ) , (22)

M2 = Var(X) = δ4β2ζ−2
[
Rλ,2(ζ)−R2

λ,1(ζ)
]

+ δ2ζ−1Rλ,1(ζ) , (23)

M3 = δ6β3ζ−3
[
Rλ,3(ζ)− 3Rλ,2(ζ)Rλ,1(ζ) + 2R3

λ,1(ζ)
]

+ 3δ4βζ−2
[
Rλ,2(ζ)−R2

λ,1(ζ)
]
, (24)

and

M4 = δ8β4ζ−4
[
Rλ,4(ζ)− 4Rλ,3(ζ)Rλ,1(ζ) + 6Rλ,2(ζ)R2

λ,1(ζ)− 3R3
λ,1(ζ)

]
+6δ6β2ζ−3

[
Rλ,3(ζ)− 2Rλ,2(ζ)Rλ,1(ζ) +R3

λ,1(ζ)
]
. (25)

The expressions for the mean and variance of the GH distribution are given in Prause (1999)
or Bibby and Sørensen (2003). Expressions for the third and fourth moments were also given
in Barndorff-Nielsen and Blæsild (1981). These expressions are sufficiently complicated that to
our knowledge no authors have subsequently reproduced them in a paper.
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5 Related Distributions

A number of special and limiting cases of the GH distribution have been investigated in the
literature. Special cases are the hyperbolic and normal inverse Gaussian distributions. Limiting
cases of interest are the skew hyperbolic-t and the variance gamma.

The hyperbolic distribution is the particular case of λ = 1. There appear to be no simplifications
in the moment results for this case: simply set λ = 1 in the results for the GH distribution.

5.1 The Normal Inverse Gaussian Distribution

Definition 5.1 The normal inverse Gaussian (NIG) distribution is given by

nig(x|α, β, δ, µ) = a(α, β, δ, µ)
[
δ2 + (x− µ)2

]−1/2

×K1

(
α
√
δ2 + (x− µ)2

)
exp [β(x− µ)]

with a(α, β, δ, µ) = π−1δα exp(δ
√
α2 − β2) .

(26)

The domain of variation of the parameters is µ ∈ R, δ > 0 and 0 ≤ |β| < α.

The NIG is the special case of the GH distribution when λ = −1/2. The density function given
as (26) is readily obtained from the density (1) via the well-known properties of the modified
Bessel function (see Barndorff-Nielsen and Blæsild (1981) for example):

K1/2(x) = 2−1/2√πx−1/2 exp(−x) and K−λ(x) = Kλ(x).

The cumulant generating function of the NIG was given by Rydberg (1997). Simple expressions
were given for the first four cumulants, the skewness and the kurtosis. These results reappear
in later works—see Barndorff-Nielsen (1998), Barndorff-Nielsen and Prause (2001), Bibby and
Sørensen (2003) and Barndorff-Nielsen et al. (2004). The results of Section 3 specialized to
the case λ = −1/2 enable the moments to be found by a different route using the well-known
simplification of the modified Bessel function when the index is of the form n + 1/2 with n an
integer:

Kn+1/2(x) = 2−1/2√πx−1/2e−x

(
1 +

n∑
i=1

(n+ i)!
i!(n− i)!

2−ix−i
)
. (27)

See for example Jørgensen (1982), p.170. Note also that the term outside the brackets on the
right hand side of this equality is actually K1/2(x).

For the NIG, there is no apparent simplification in the expression for the moments over what
is given in Section 3, but equation (27) enables the Bessel function values required to be easily
calculated.

Expressions for the first four moments about µ can be obtained but are somewhat complicated.
We have

M1 = δ2βζ−1 , (28)

M2 = β2δ4(ζ−2 + ζ−3) + δ2ζ−1 , (29)
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M3 = 3δ4β(ζ−1 + ζ−3) + δ6β3(ζ−2 + 3ζ−4 + 3ζ−5) , (30)

and

M4 = 3δ4(ζ−2 + ζ−3) + 6δ6β2(ζ−3 + 3ζ−4 + 3ζ−5) + δ8β4(ζ−4 + 6ζ−5 + 15ζ−6 + 15ζ−7) . (31)

After some algebra it can be shown that

E(X) = µ+ δ2βζ−1 , (32)

Var(X) = δ4α2ζ−3 , (33)

M3 = 3δ6α2βζ−5 , (34)

and
M4 = 3δ8α2(α2 + β2)ζ−7 . (35)

These results agree with those given by Rydberg (1997) and other authors.

5.2 The Skew Hyperbolic t Distribution

The skew hyperbolic t (SHT) distribution is a limiting case of the GH distribution obtained
when λ = −ν/2 and α → |β|. It is of interest in financial applications but has had less
investigation than the hyperbolic and NIG. The SHT is almost as analytically tractable as the
NIG distribution, and it allows for very heavy tails and substantial skewness. The special case of
the symmetric Student-t distribution is mentioned by Prause (1999) as a limit of the generalized
hyperbolic with a reference to an unpublished report of Blæsild. Other references are Barndorff-
Nielsen and Shephard (2001), Jones and Faddy (2003), Menćıa and Sentana (2004), Demarta
and McNeil (2005), Aas and Hobæk Haff (2005), and Aas and Hobæk Haff (2006). The most
extensive discussion is in the last-mentioned paper. A number of proposals have been presented
for generalizing the Student-t distribution to produce a skewed distribution and we could just
call the SHT the skewed Student-t distribution. The name we have chosen to use reflects that
this is the form of a skewed Student-t distribution which arises from the generalized hyperbolic
distribution. Note that other names are used by different authors. Aas and Hobæk Haff (2006)
use the name generalized hyperbolic skew Student’s t-distribution. Paolella (2007) calls the
distribution the asymmetric hyperbolic t.

To evaluate the moments we use a well-known result (see for example Abramowitz and Stegun
(1972)) concerning the limiting behaviour of the Bessel function near zero:

Kν(x) ∼ Γ(ν)2ν−1x−ν for x→ 0, ν > 0 . (36)

Note also that Kν(x) = K−ν(x).

Definition 5.2 The skew hyperbolic t (SHT) distribution is given by

sht(x|ν, β, δ, µ) =
δν |β|(ν+1)/2K(ν+1)/2

(
β
√
δ2 + (x− µ)2

)
exp[β(x− µ)]

2(ν−1)/2Γ(ν/2)
√
π
[√

δ2 + (x− µ)2
](ν+1)/2

. (37)

The domain of variation of the parameters is µ ∈ R, δ > 0, β ∈ R, and ν > 0. If X has the
distribution given in equation (37), we write X ∼ sht(ν, β, δ, µ).
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The SHT has a representation as a mean-variance mixture just as the GH does. From Paolella
(2007), if W is inverse gamma with shape parameter ν/2 and scale parameter δ2/2 then

µ+ βW +
√
WZ ∼ sht(ν, β, δ, µ) . (38)

Note that the inverse gamma is actually a limiting case or boundary case of the GIG, namely
that W is inverse gamma with shape parameter ν/2 and scale parameter δ2/2 is the same as
W ∼ gig(−ν/2, δ2, 0) (see Paolella (2007)).

Because of the representation of the SHT as a mean-variance mixture, the same arguments used
to obtain the moments of the GH distribution can be carried through for the SHT, with the
moments of the GIG being replaced by the moments of the inverse gamma. From (12) we see
that if W is inverse gamma with shape parameter ν/2 and scale parameter δ2/2

E(W k) = (δ2/2)kΓ(ν/2− k)/Γ(ν/2)

provided ν > 2k. Then for this boundary case (16) becomes

Mk =
k∑

`=m(k)

ak,`δ
2`β2`−kΓ(ν/2− `)

Γ(ν/2)2`
(39)

provided ν > 2k.

This approach has been implemented in the package SkewHyperbolic available from CRAN, see
Scott and Grimson (2009). The function to calculate moments of the SHT distribution is called
skewhypMom.

For the first four moments about µ we see that

M1 =
δ2β

ν − 2
, when ν > 2 , (40)

M2 =
δ4β2

(ν − 2)(ν − 4)
+

δ2

ν − 2
, when ν > 4 , (41)

M3 =
δ6β3

(ν − 2)(ν − 4)(ν − 6)
+

3δ4β
(ν − 2)(ν − 4)

, when ν > 6 , (42)

and

M4 =
δ8β4

(ν − 2)(ν − 4)(ν − 6)(ν − 8)
+

6δ6β2

(ν − 2)(ν − 4)(ν − 6)
+

3δ4

(ν − 2)(ν − 4)
, (43)

when ν > 8 .

The mean of the SHT is then

E(X) = µ+
δ2β

(ν − 2)
, when ν > 2 , (44)

which allows us to calculate the central moments using

Mk =
k∑
i=0

(
k

i

)(
− δ2β

(ν − 2)

)k−i
Mi , when ν > 2k . (45)

12



The second, third and fourth central moments are respectively

M2 =
2δ4β2

(ν − 2)2(ν − 4)
+

δ2

ν − 2
, when ν > 4 , (46)

M3 =
16δ6β3

(ν − 2)3(ν − 4)(ν − 6)
+

6δ4β
(ν − 2)2(ν − 4)

, (47)

when ν > 6 ,

and

M4 =
12δ8β4(ν + 10)

(ν − 2)4(ν − 4)(ν − 6)(nu− 8)
+

12δ6β2(ν + 2)
(ν − 2)3(ν − 4)(ν − 6)

+
3δ4

(ν − 2)(ν − 4)
, (48)

when ν > 8 ,

The ordinary central Student-t distribution is a further specialization of the SHT to the case
where β → 0 and δ =

√
ν, see Aas and Hobæk Haff (2005). Then the moments around µ are

moments around 0 and are the central moments as well.

From the expression above for the moments around µ for the SHT, we see that Mk = 0 for k
odd, while for k even,

Mk =
k!

2k/2(k/2)!
νk/2

(ν/2− 1)(ν/2− 2) . . . (ν/2− k/2)
, when ν > 2k . (49)

A straightforward induction argument can be used to show this is expression is the same as

νk/2
Γ((k + 1)/2)Γ((ν − k)/2)

Γ(1/2)Γ(ν/2)
when ν > 2k , (50)

which is the form in which the moments of the t distribution are given in Kendall and Stuart
(1969), p.375.

5.3 The Variance Gamma Distribution

The variance gamma distribution is another limiting case of the the GH distribution which arises
when δ = 0. The variance-gamma distribution was introduced by Madan and Seneta in Madan
and Seneta (1990), but had actually appeared much earlier in a different guise, as the Bessel
function distribution, see McKay (1932). It has been examined in detail recently in yet another
guise as the generalized asymmetric Laplace distribution in Kotz et al. (2001).

Definition 5.3 The variance gamma (VG) distribution is given by

vg(x|c, σ, θ, ν) = α(c, σ, θ, ν) exp
[
θ(x− c)/σ2

]
|x− c|1/ν−1/2 K1/ν−1/2

(
σ−2|x− c|

√
2σ2/ν + θ2

)
with α(θ, ν, σ, c) = 2

[√
2σ2/ν + θ2

]1/2−1/ν
/
[
σ
√

2πν1/νΓ(1/ν)
]
,

(51)

the domain of the parameters being

ν > 0, σ > 0, −∞ < θ <∞, and −∞ < c <∞. (52)

If X has the distribution given in equation (51), we write X ∼ vg(c, σ, θ, ν).
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Paolella (2007) shows the VG distribution is a limiting case of the GH when δ = 0. The
parameters of the VG and the GH distribution are related by µ = c, α =

(√
2σ2/ν + θ2

)
/σ2,

β = θ/σ2, and λ = 1/ν.

The VG has a representation as a mean-variance mixture. From Paolella (2007), if W is gamma
with shape parameter λ and rate parameter (α2 − β2)/2 then

µ+ βW +
√
WZ ∼ vg(c, σ, θ, ν) . (53)

Because of this representation we can obtain moments of the VG distribution by the argument
used for the GH distribution, with the moments of the GIG being replaced by the moments of
the gamma distribution. From equation (11) we see that if W is gamma with shape parameter
λ and rate parameter (α2 − β2)/2,

E(Xk) =
[
2/(α2 − β2)

]k Γ(λ+ k)/Γ(λ) ,

and then (16) becomes

Mk =
k∑

`=m(k)

ak,`2`β2`−k Γ(λ+ `)
Γ(λ)(α2 − β2)`

. (54)

The first four central moments plus the skewness and kurtosis were obtained in Seneta (2004).
These can be obtained using the recursive method. For example the first two moments around
c are

M1 = θ, (55)

and

M2 = σ2 + θ2(ν + 1). (56)

The central moments are then found from

Mk =
k∑
i=0

(
k

i

)
(−θ)k−i Mi .

This gives E(X) = c+θ, and Var(X) = σ2 +νθ2. The first four central moments were previously
given by Seneta (2004).
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Statistics, 32(4):617–637, 2005.

O. E. Barndorff-Nielsen, P. Blæsild, and J. Schmiegel. A parsimonious and universal description
of turbulent velocity increments. European Physical Journal B, 41:345–363, 2004.

B. O. Bibby and M. Sørensen. Hyperbolic processes in finance. In S. T. Rachev, editor, Handbook
of Heavy Tailed Distributions in Finance, pages 211–248. Elsevier Science B. V., 2003.

S. Demarta and A. J. McNeil. The t-copula and related copulas. International Statistical Review,
73(1):111–129, 2005.

E. Eberlein and E. A. von Hammerstein. Generalized hyperbolic and inverse Gaussian dis-
tributions: Limiting cases and approximation of processes. FDM Preprint 80, April 2003.
University of Freiburg.

Ernst Eberlein and Ulrich Keller. Hyperbolic distributions in finance. Bernoulli, 1(3):281–299,
Sep. 1995.

M. C. Jones and M. J. Faddy. A skew extension of the t distribution, with applications. J. Royal
Statist. Soc. B, 65:159–174, 2003.

B. Jørgensen. Statistical properties of the generalized inverse Gaussian distribution, volume 9 of
Lecture Notes in Statistics. Springer, Heidelberg, 1982.

M. G. Kendall and A. Stuart. The Advanced Theory of Statistics, volume 1. Charles Griffin &
Company, London, 3 edition, 1969. 439 p.

Samuel Kotz, Tomasz J. Kozubowski, and Krzystof Podgórski. The Laplace Distribution and
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