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Abstract 

 

There has been an increased number of papers in the literature in recent years, applying several methods 

and techniques for exchange - rate prediction. This paper focuses on the Greek drachma using daily 

observations of the drachma rates against four major currencies, namely the U.S. Dollar (USD), the 

Deutsche Mark (DM), the French Franc (FF) and the British Pound (GBP) for a period of 11 years, 

aiming at forecasting their short-term course by applying local approximation methods based on both 

chaotic analysis and neural networks.  

  

 

1. Introduction  

Predictability issues with special reference to stock and foreign-exchange markets seem 

to attract increasing interest during the last few years. Concentration on forecasting 

developments related to exchange rates, in particular, is not only justified by the risk-

versus-return tradeoff, but, in addition, by the fact that the exchange rate is often used as 

policy instrument for tackling macroeconomic targets, like price stability or balance-of-

payments equilibrium. But even in cases in which the exchange-rate is allowed to 

fluctuate in the international markets within margins that vary considerably depending 

on the case, the fact remains that the various central banks retain the power to intervene 

both in the domestic and international markets, manipulating the exchange-rate of their 

respective currencies whenever the need arises. Such interventions are usually of drastic 

nature, taking place either by foreign-exchange-reserves manipulation or by resorting to 

interest rate policy, thus increasing the noise level which characterizes the behavior of 

the time series involved. This issue  introduces a considerable degree of difficulty when 

it comes to forecasting, although, as Taylor (1995) points out, empirical evidence on the 

link between official intervention and exchange-rate expectations is rather unclear.  
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The fact remains, however, that the relevant literature is full of cases in which 

forecasting the exchange-rate of various currencies yields results which are either poor 

(Marsh and Power, 1996; Pollock and Wilkie, 1996; West and Cho, 1995), or difficult 

to interpret (Kim and Mo, 1995; Lewis, 1989). Some authors even conclude that there is 

no such thing as best forecasting technique and the method chosen must depend on the 

time horizon selected or the objectives of the policy-maker (Verrier, 1989). There are, 

in addition, cases in which high persistence but no long range cycles have been reported 

(Peters, 1994), something that leads to the conclusion that currencies are true Hurst 

processes with infinite memory. On the other hand, long term dependence, supporting 

that cycles do exist in exchange rates, has been found by other researchers (Booth et. 

al., 1982, Cheung, 1993; Karytinos at. al., 1999). Despite various attempts to settle such 

controversies (Pesaran and Potter, 1992), it is still not clear whether the source of the 

dispute is, the differences with respect to sample size, noise level, pre-filtering 

processes etc. of the various data sets employed, or the variety of tests that have been 

used, or even a combination of these factors.  

 

But the major problem associated with exchange-rate predictability has been indicated 

by Meese and Rogoff (1983) and refers to the failure of the structural models to 

outforecast the random walk model, due, among other things, to difficulties in modeling 

expectations of the explanatory variables. The matter has attracted increasing attention 

in the literature since then by authors like Leventakis (1987), De Grauwe et. al. (1993), 

Frankel (1993), Baxter (1994) and Pilbeam (1995). Although all sources agree on the 

empirical failure of  models to forecast exchange-rate movements, none of them is able 

to provide a satisfactory explanation concerning the reasons why this is so. Most of 
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them, however, seem to agree on the possibility that expectations are much more 

complicated than what modern exchange-rate theories have specified (see e.g. Pilbeam, 

1995), primarily because the rapid flow of information as well as the shift in the 

demand and supply pattern bring about significant influence on the market movements 

(Mehta, 1995). Thus several authors seem to conclude that even the forward rate, which 

is considered very efficient when used to improve forecasting performance,  can 

sometimes fail in contributing towards this direction (e.g. Levich, 1989).    

 

Turning to the case of the Greek drachma, attempts to  forecast its exchange rates versus  

major currencies are rather scarce. Karfakis (1991) has concentrated on the 

drachma/USD exchange rate, while Koutmos and Theodosiou (1994) and Diamandides 

and Kouretas (1996), have explored the predictability of the drachma rates with respect 

to a number of European currencies, the USD and the Japanese yen. In all these cases, 

however, the analysis is conducted in the context of exchange-rate models, with all the 

drawbacks that such a choice might entail.     

 

In face of the limited success of empirical literature to interpret exchange-rate 

movements researchers have resorted, quoting Taylor (1995), to the use of “recently 

developed sophisticated time-series techniques”.  Indeed, one such technique is that 

which relies on tracing chaotic behavior in the exchange-rates series examined, as well 

as that of artificial neural networks. These, being data-driven approaches, have been 

considered preferable to traditional, model-driven approaches used for forecasting 

purposes, on the grounds of our earlier evaluation in the context of the literature cited. 

In fact, exchange-rate literature has been recently enriched by an increasing number of 

studies which resort to using neural network algorithms which lead to better results 
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concerning exchange-rate forecasting compared to “conventional methods” (e.g. Mehta, 

1995; Steurer, 1995;  Refenes and Zaidi, 1995).    

 

This paper uses both chaos theory and neural networks to predict the exchange rate of 

four major currencies against the Greek Drachma, namely the U.S. Dollar (USD), the 

Deutsche Mark (DM), the French Franc (FF) and the British Pound (GBP). Our primary 

goal is to investigate the extent to which the time series involved exhibit chaotic 

behavior, a prerequisite for applying the well known Farmer’s algorithm for prediction. 

The results obtained on the basis of the application of Farmer’s algorithm will, at a 

second round, be compared to the predictions obtained using another approach, namely 

the emerging technology of artificial neural networks. Taking into account that so far 

the results of research in this area have not established a general structural character of 

currency markets, this analysis is expected to be useful for comparison purposes as 

well. The results of both techniques are then compared focusing on the best prediction 

performance. 

 

1.1 Methodology and Data 

Our time series consist of daily exchange rates of the four currencies already mentioned 

against the Greek drachma. The rates are those determined during the daily “fixing” 

sessions in the Bank of Greece. The data cover an 11-year period, from the 1st of 

January 1985 to the 31st of December 1995, consisting of 2660 daily observations, a 

population which is considered relatively small compared to that used in similar cases 

in the natural sciences, but large enough compared to other studies in Economics and 

Finance, in several of which the number of observations barely reaches 2000. The 

sample series have been transformed to the first differences of their natural logarithms 
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in order to remove the trend. During the neural networks implementation, we used the 

logarithmic data, so that results are directly comparable to those obtained using 

Farmer’s algorithm. We also tested the predicting ability of neural networks when 

incorporating the actual spot rates, since this option offers the advantage of not being 

affected by the presence of trends or discontinuities in the series involved. Mehta 

(1995), however, suggests avoidance of using the actual spot rates both because of the 

non-stationary and quite random nature of this series and because of the daily 

infinitecimal changes involved, something which reduces the learning ability of neural 

networks. Taking these suggestions into account we have tackled this last problem by 

rescaling our series in the range [0,1] in order to use the sigmoid activation function. 

Our experiments showed that non-stationarity or randomness that can be observed 

mainly by visual inspection did not affect learning and that forecasting results obtained 

were highly satisfactory.  

 

A final remark concerns the high jumps observed in the first 2 years (1985 and 1986) of 

the series, immediately affected by the drachma devaluation. These samples were 

excluded from the data library used in both Farmer and neural networks experiments, 

characterized as outliers that correspond to significant level of noise. Other such spikes 

observed scattered through the data series (e.g. 1992, 1993, 1995) were not removed 

because they are low intensity and duration periods. Extensive simulations with both 

methods showed that the course of forecasting was not affected by their presence. 

 

The structure of this paper is as follows: Section 2 describes the leading role of the 

exchange-rate policy in the context of an overview of the macroeconomic policies 

followed during the last two decades. Section 3 includes a statistical and a non-linear 
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analysis of the logarithmic data. Section 4 describes the methods and results of local 

approximation forecasting on our data. The application of neural networks takes place 

in section 5, while section 6 is devoted to a discussion on the economic interpretation of 

the results. Finally, our conclusions are presented in section 7.  

 

2. The Greek Environment 

The exchange rate has been used as a major policy instrument in Greece since March 

1975, when the drachma ceased to be pegged to the US dollar in terms of a fixed 

exchange rate. The reasoning behind the extensive use of exchange-rate policy by the 

authorities was based on its effectiveness thanks to its speed, flexibility and politically 

costless action. This policy aimed at guaranteeing an acceptable level of price 

competitiveness of Greek goods and services in the international markets and reducing the 

balance of payments deficit. Since 1975 and until the early 90’s, however, the drachma 

had been following a depreciating trend which, in parallel to the implementation of an 

expansive monetary policy, has contributed to preserving high inflation rates (Bank of 

Greece, 1984, p.31). In fact, for the time period under review, this policy has provided 

for a devaluation in 1985 which resulted to the drachma depreciating by 16.3% in 1985, 

and 23.1% in 1986. This is shown by sharp peaks in Figures 1(b), 2(b), 3(b) and 4(b), 

which, it is reminded, indicate the devaluation by just a daily sharp peak, since the 

figures used are percentage changes of exchange rates rather than the currency rates 

themselves. The beginning of the 90’s, however, introduces a dramatic policy change 

with the authorities realizing the extent of the failure of this accommodating exchange 

rate policy (Bank of Greece, 1986; Brissimis and Leventakis, 1989; Karadeloglou et. al., 

1998; Zombanakis, 1997). More specifically, this policy option proved to be rather 

unfortunate, since high production costs resulted to a considerable erosion of the degree of 
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competitiveness of the Greek products in the international markets. The underlying 

increased import penetration of the Greek economy due to the inability to resort to 

structural changes in its production structure, is a supply-side problem, touching upon 

issues like the application of the Marshall-Lerner condition and the existence of an 

inverse J-curve effect characterizing the Greek economy (Karadeloglou, 1990). Thus, 

the exchange rate policy during the mid-90’s changes to becoming “the hard - drachma 

policy”, in the sense that the rate of depreciation does not fully accommodate the 

inflationary gap between Greece and its trading partners. Additional intervention 

measures have also been imposed in order to improve productivity, curtail production 

costs, adjust the supply side to changes in demand, and face the impact of seasonal or 

irregular factors on the drachma exchange rate. Concerning the drachma rates, the 

depreciation versus the ECU declined to 4.1% for 1995 and 0.6% in 1996, acting as an 

anti-inflationary policy instrument (Karadeloglou et. al., 1998) in anticipation of the 

drachma participation with the ERM (Bank of Greece, 1995). This policy has proven to 

be more than successful since, its drastic anti-inflationary impact was accompanied by a 

significant interest-rate reduction representing a relief for the budget deficit and a decrease 

of the capital cost of the business sector. Thanks, also, to the “hard-drachma”, increases in 

servicing the foreign-currency denominated public debt have been avoided, the foreign-

exchange risk has been restricted, while the cost of the imported raw materials for Greek 

export firms, the products of most of which bear a high import component, has been held 

constant. Finally, the anti - inflationary effect of the “hard - drachma” policy has added to 

the effort of attaining the price - stability target, a requirement for the country’s EMU 

membership (Bank of Greece, 1994, 1997).1

                                            
1 The recent change in the exchange-rate policy culminating with the drachma devaluation seems to 
contradict this reasoning. This is a very interesting issue, which however is beyond the scope and the 
time profile of the present paper. 
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As this policy undoubtedly provided for increased degree of discipline for the drachma 

fluctuations versus the ECU participant currencies, it is natural to expect that the 

predictability of the drachma/USD rate is reduced compared to that of the drachma rates 

vis-à-vis the rest three currencies, due to the absence of any sort of relationship or 

correspondence in terms of policy targeting between the drachma and the USD. 

 

3. Statistical and Non-Linear Analysis 

3.1 Statistical Description of the Data 

The basic statistical properties and the logarithmic time series plots of the four data 

series involved are listed in Table 1 and Figures 1(b), 2(b), 3(b) and 4(b). All series 

have been characterized by strong skewness and kurtosis, while three out of four have 

indicated absence of any significant autocorrelation, with the exception of the 

DM/GRD, which has displayed  first order autocorrelation and for which an AR(1) 

specification  has been employed. In general the statistical properties of all series are 

rather similar in terms of distributional features something which is, to a large extent, 

explained by the significance which the authorities have attributed to the drachma 

exchange-rate versus major currencies as a policy instrument during the period under 

consideration. It must be borne in mind that the data depicted in the graphs are first 

differences of the logarithms of the original data, which makes it, in fact, percentage 

changes. The interpretation of these diagrams, therefore, requires particular attention. In 

Figures 1(b), 2(b), 3(b) and 4(b), for example, a devaluation  will appear as a sharp peak 

corresponding to just one daily observation, with the subsequent daily data dropping 

again to pre-devaluation levels. 
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3.2 Correlation and Generalized Dimensions 

A number of measures of complex time series have been developed based on concepts 

of non-linear dynamics. These include correlation dimension (Grassberger and 

Procaccia, 1983; Tsonis, 1992) of the time series from the analyzed system, aiming at 

distinguishing between chaoticity and randomness. The correlation dimension gives a 

statistical measure of the geometry for the reconstructed attractor. In deterministic 

chaotic systems the correlation dimension is frequently (but not always!) a fractional 

number and is independent of the embedding dimension m, when m is large enough 

(Schuster, 1988; Theiler, 1986). This work is not intended to provide for a complete 

chaotic analysis of the series under study. Instead, we employ the dimension test, the 

most popular among methods for revealing evidences of chaos, in order to use Farmer’s 

algorithm, a technique which is proven to have very good results in predicting chaotic, 

noise-free signals. 

 

The procedure to calculate the correlation dimension requires constructing  time-

delayed copies of the matrix:  

 

   ak=[ X(tk), X(tk+ô), Χ(tk+2τ),...,Χ(tk+(m-1)τ)]   (1) 

 

If the underlying state space of a system has d dimensions then the embedding space 

needs to have 2d+1 dimensions to capture completely the dynamics of the system 

(Takens, 1981). In practice we compute the correlation dimension using various 

embedding dimensions m. The correlation dimension can be calculated from the 

correlation integral Cm(r) given by 
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C (r) =
2

N N
H(r-|a am 2 k j

k, j 1

N

−
−

=
∑ |)   , ak≠aj  (2) 

where r is the radius of the located hyperspheres, |ak-aj| is the Euclidean distance 

between the vectors ak and aj , N is the total number of elements of the signal and H is 

the Heaviside function. The Heaviside function is equal to 1 if  r ≥ |ak-aj| and is equal to 

0 if r < |ak-aj|. The correlation dimension d(m) is expected to scale as a power of r, that 

is 

           (3) 0r ,r(r)C d(m)
m →∝

where d(m), the correlation dimension of embedding dimension m, can be estimated by 

the slope of log(Cm(r)) versus log(r), i.e. 

    d(m)
lnC (r)

ln(r)r

m≡
→

lim
0

∂
∂

    (4) 

We work as follows : the plot of the slope of ln(r)/(r)lnC m ∂∂ versus ln(r), for r values 

between 0.5 and 2, is constructed for each m. Correlation dimension d can then be 

estimated directly from the slope versus ln(r) (Bountis at. al., 1993). 

 

We expect d to vary with m until m reaches the level of 2d+1. Once this occurs, if the 

system under study is not a random one, d saturates to a value called dsat and becomes 

independent of m. Thus, dsat gives a fair estimate of the correlation dimension of our 

system. For a truly random system d will constantly increase according to m because the 

system will tend to fill all the available space for each m. 
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We calculated the correlation dimension for the four raw data series with the embedding 

dimension ranging from m=2 to m=20 and τ=1 and the results were the following: DM 

and FF showed a saturating dimension of approximately 6 and 8 respectively, while 

USD and BP had their dimensions rising higher, at approximately 12 and 14 

respectively, without showing any evidence of clear saturation (Figure 5). We also 

tested DM using τ=2 (recalling the AR(1) correlation), but our results remained 

practically the same. This result tends to show that the behavior of the drachma rates 

versus the DM and FF is more disciplined, a fact which is absolutely justified by the 

ERM membership of these two currencies, as well as by the orientation of the Greek 

exchange-rate policy that uses the ECU as a guideline, in which the share of both 

currencies together amounts to  more than 50% .  

 

Pre-filtered with AR(1), the  DM series did not show any significant change in the 

resulted dimension either. These results suggest that two of our series, DM and FF, can 

be explained by determinism, however, a simple low-dimensional attractor is highly 

unlikely. USD and GBP on the other hand seem to be more consistent with a random 

explanation. Their dimension keeps rising almost like m which is a strong symptom of a 

random behavior. Yet, we must be very cautious with the interpretation of these results 

because of the small length in data series, which can lead to either an upward bias in the 

case of chaotic data or to a downward bias in the case of random data (Ramsey and 

Yuan, 1989;1990). Thus, we cannot rule out the possibility of a deterministic part in 

USD and GBP signals, which may be perfectly covered by noise. We decided, 

therefore, to apply Farmer’s algorithm to all four series, although only two of them (out 

of four series) favored a (more) clear chaotic behavior, aiming at tracing  further 

indications regarding the diversification of the structure of our series. Direct comparison 
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of the predictive performance will then be feasible, confirming the deterministic or 

stochastic explanation given above. 

 

4. Local Approximation Forecasting - Farmer’s Algorithm 

There has been a considerable number of papers in the literature, particularly during the 

recent past, applying the methods and techniques of non-linear dynamics to forecasting 

financial time series. Since the level of dimensionality (correlation dimension) provides 

evidence that at least two of the series exhibit chaotic behavior, while the rest two are 

either deterministic with a substantial amount of noise or just random, we use chaotic 

dynamics and more specifically, Farmer’s algorithm,  to predict the future course of our 

time series. 

 

According to this algorithm (Farmer and Sidorowich, 1987) predictions are made using 

a local approximation approach  as follows : first we embed our series in an m-

dimensional space, where m is suggested to be at minimum greater or equal to the 

attractor’s dimension d, and produce the x-vectors shown in equation (1). To predict 

x(t+T) we find the k nearest neighbours of x(t) that minimize the Euclidean metric ||.|| , 

let these be x(t’). From this point on, we have a variety of ways to construct the local 

approximator. We can  take k=1 (zero-order approximation) and xpred(t,T)=x(t’+T), or 

let k vary, usually starting with k>m+1 for better results and then fit linear or higher-

order polynomials to the pairs (x(t’),x(t’+T)). 

 

The accuracy of predictions is tested using the Normalized Root Mean Square Error 

(NRMSE): 
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[ ]
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=

−
=
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where, 

  [ ]RMSE(n) x (i)-x (i)pred act=
=
∑1

1

2

n i

n
   (6) 

 

If NRMSE=0 then predictions are perfect; NRMSE=1 indicates that prediction is no 

better than taking xpred equal to the x-mean. We also test prediction with the correlation 

coefficient r between the actual and predicted series. 

 

As earlier stated, the application of Farmer’s algorithm to all four series aims at 

distinguishing between the somewhat clear chaotic structure of the DM and FF series on 

one hand, and the ambiguous behavior of the USD and the GBP on another. In fact in 

the case in which the latter are truly random signals, then this method is expected to 

result to a poor predictive performance. We run our tests with a rolling library, τ=1, 

embedding dimensions m=6,8,..20 and neighbors k=1,3,5,8,10; we also calculated k=15 

and k=17 for the USD and GBP series respectively, to be consistent with Farmer’s 

recommendation for k>d+1. Tables 2-11 present an analytic report of the resulting 

predictions for all series, including the pre-filtered DM one, summarized as exhibiting 

low predictability, independently of the embedding dimension or number of nearest 

neighbors used.  

The results are summarized as follows: 

USD/GRD 

The e error ranged over 1 in nearly all experiments. The best performance was achieved 

with k=10 and m=18, which is almost equal to that produced of a simple mean 
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forecaster. Correlation coefficient results showed an approximately 28% follow-up of 

the original series, for the same k and m values. 

GBP/GRD 

All simulations on the British Pound series exhibited worse results than the USD case. 

The e error proved an inferior predictive performance compared to the mean forecaster, 

as in all cases it stayed over 1. Correlation coefficient on the other hand resulted a better 

predictive ability than e, following the jumps of the original series with a rather low 

value of 28%, which cannot be regarded as a satisfactory forecasting performance. Best 

performance was observed with k=5 and m=12. 

FF/GRD 

The results on the French Franc series show an improved forecasting ability compared 

to the former two cases, which is justified by a relatively good e error and a mediocre 

correlation coefficient. The former is slightly better than the simple mean, while the 

latter indicates a 31% correlation between actual and predicted values. Best results were 

obtained with k=8 and m=10. 

DM/GRD 

Similar predictive behavior was observed for both the returns and the AR(1) pre-filtered 

returns of the DM series. A relatively good e error compared to the mean forecaster and 

a correlation coefficient of 30%. The only difference was that the original return series 

performed best with k=5 and m=16, while the residuals with k=8 and same m. 

 

According to Farmer, we  would expect better performance for a number of nearest 

neighbors above the corresponding correlation dimension. This was confirmed only for 

the FF and DM series. The fact that these currencies performed better than USD and 

GBP and behaved consistently with a deterministic explanation, provide for a further 
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confirmation on the results regarding our systems’ structure produced in the previous 

section. 

 

In order to present a complete analytical framework, we repeated our calculations for 

the same values of embedding dimension and nearest neighbors as before, but for 

various library lengths, with more or less similar results. As a last attempt we tried 

using an augmented or a standard library instead of a rolling one and once again our 

results remained practically unchanged.  

 

Following the orbit of the reconstructed attractor for each of the four data series we 

found a number of false nearest neighbours, that is pseudo-neighbours, that belong to 

another orbit than the one followed by the initial point selected, using the well-known 

false neighbours test. The number of false neighbours was found to be for USD 273, for 

GBP 374, for DM 32 and for FF 56. After removing these  from each series we repeated 

our calculations and found that the r coefficient for USD and GBP was just over  0.1 , 

while for DM  it outperformed all previous results reaching 0.32. In the case of FF, it  

stayed at the level of 0.26. The e error was not found to be improved for all currencies 

involved. 

 

Based on the above results our conclusions lead to rejecting the use of the specific 

prediction algorithm for these four systems. Predictions made were limited to a success 

level lower than 35%, which is most unsatisfactory. All series (including the pre-filtered 

DM/GRD series) exhibited low predictions in every embedding dimension and any 

neighbor number. Thus, Farmer’s algorithm does not seem to be the most suitable 
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predicting method for experimental data. This was more or less an expected result 

mostly due to the high level of noise imposed on these systems.  

 

5. Neural Networks Methodology 

5.1 Neural Networks 

This section is devoted to introducing and analyzing the technique of artificial neural 

networks which belongs to a class of data driven approaches, as opposed to model 

driven approaches. Certain general-purpose algorithms address the process of 

constructing such a machine, based on available data. The problem is then reduced to 

the computation of the weights of a feedforward network to accomplish a desired input-

output mapping and can be viewed as a high dimensional, non-linear system 

identification problem. In a feedforward network, the units can be partitioned into 

layers, with links from each unit in the kth layer being directed to each unit in the (k+1)th  

layer. Inputs from the environment enter the first layer and outputs from the network are 

manifested at the last layer. An m-d-1 architecture, shown in Figure 6, refers to a 

network with m inputs, d nodes in the hidden layer and one node in the output layer. 

 

We use such m-d-1 networks to learn and then predict the behavior of our time-series. 

The hidden and output layers realize non-linear functions of the form:   

      (     (7) exp( ))1
1

1+ − +
=
∑ −wi xii

m
Θ

where wi’s denote real valued weights of edges incident on a node, Θ denotes the 

adjustable threshold for that node and m denotes the number of inputs to a node from 
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the previous layer. The well known Back Propagation (Rumelhart and McLelland, 

1986) we used as a training algorithm. 

 

5.2 System Design 

From the given time series x={x(t): 1≤t≤N} we obtain two sets: a training set  

xtrain={x(t): 1≤ t≤T}, and a test set xtest={x(t):(T+1)≤t≤N}, where N is the length of the 

data record. The network is asked to predict the next value in the time sequence, thus 

we have one output neuron. The number of inputs m is one of the most difficult 

forecasting investigation aspects and it is examined during the simulations conducted. 

The problem of the pattern selection strategy for neural networks training, the type of 

which can be random and deterministic, has been presented comparatively in (Cachin, 

1994). Simulation results show that convergence time and learning accuracy can be 

improved using only deterministic type strategies, which is in fact what we do in our 

experiments.  

 

5.3 System Implementation, Training and Testing 

The system described previously was implemented using a neural network 

implementation tool, Cortex-Pro Neural Networks Development System (Unistat, 

1994). As stated above, the momentum Error Back-Propagation was used to train the 

networks minimizing the Mean Squared Error, having the learning rate equal to 0.2 and 

the momentum term equal to 0.9. The initial values of the connection weights were 

randomly selected in the interval [-1,1] using a uniform distribution. All simulations 

“run” for 400 iterations during the learning phase (epochs), with the training samples 

length set to 1200 and the testing ones to 300. Our predicting horizon is one sample 

value ahead. This is due to the peculiarities present in our systems, mostly because of 

 18 



the high level of noise imposed, a fact that allows only for short-term forecasting 

attempts.  

 

The different networks implemented were trained using two transformed data sets, the 

logarithmic set, used also in Farmer’s algorithm, to make possible a direct comparison 

between the two methods and the raw price data, i.e. the actual (fixed) exchange of the 

four currencies versus the Greek drachma (Figures 1(a), 2(a), 3(a) and 4(a)). The latter 

did not undergo a de-trend procedure for two reasons: First because neural networks 

belong to a class of mapping techniques that do not require such preprocessing and 

second to investigate whether trend is a significant part of the information needed by a 

network to generalize. As already mentioned, every data set used as input was first 

rescaled to the range [0,1] which is required when using the sigmoid function (eq. 7). 

The number of inputs was chosen to cover from a two days available information to 

approximately one month (20 samples), after numerous simulations that showed that 

when the past history fed into the networks was constituted with over one month’s daily 

values the performance was worsen. The number of hidden neurons was also chosen 

empirically. Because of the heuristic nature of this methodology we conducted our 

experiments by trial and error, aiming at reaching convergence in time and performance 

in logical bounds. The reported results were the best achieved. 

 

5.4 Simulation Results 

Tables 12 through 15 present those network architectures that performed best according 

to the NRMSE and Correlation Coefficient error measures when using both the 

logarithmic and the raw price data sets, for each of our four currency series. The above 
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errors were measured over the testing (out-of-sample) phase, that is, a set of data 

excluded from the learning process.  

 

The general conclusion we can derive is that the logarithmic returns exhibit poor 

predictive behavior for all currencies involved, while untransformed raw prices show a 

remarkably high and stable level of success. FF and DM produced more successful 

predictions than USD and GBP, confirming the deterministic nature of their structure. 

Figures 7 to 10 present graphically the results of the neural network architecture that 

performed best in each raw price series. 

Analytically: 

USD/GRD 

The return series proved a mediocre forecasting success, with correlation coefficient 

reaching its highest value at approximately 26% and NRMSE slightly better than the 

simple mean. The same results were observed when Farmer’s algorithm was employed, 

thus none of the two methods seem to excel. The raw price input on the contrary 

provided very good results, with almost 98% correlation between actual and predicted 

series and a very low NRMSE of nearly 0.4 . 

GBP/GRD 

Identical with the Dollar, the GBP returns resulted a mediocre forecasting success, also 

similar to the one obtained with Farmer’s algorithm, with a slight inferiority regarding 

the correlation coefficient, which stays below 24%. The same picture is observed 

regarding raw prices: very high level of correlation, over 98% and a quite low NRMSE 

of nearly 0.6 . 

FF/GRD 
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Slightly better compared to the previous two cases is the performance of the FF 

logarithmic series: correlation of 35% and NRMSE lower that the mean forecaster. No 

significant diversification from Farmer’s performance though, which leads to conclude 

a “draw” for the two methods. Following the stability of raw-price results, the networks 

achieved high correlation, over 99%, and low NRMSE 0.6 . 

DM/GRD 

The results reported for the DM series also follow the general setting established by the 

previous cases: mediocre performance for the returns (both the simple and the AR(1)-

residuals), identical to Farmer’s NRMSE, but with a slightly lower correlation, and a 

very successful forecasting behavior for the actual, untransformed prices, that reaches 

over 99% correlation and 0.6 NRMSE. 

 

6. Evaluation of results 

In cases in which the input is in logarithmic form, both methods, that is Farmer’s 

algorithm and neural networks, do not yield satisfactory results being, therefore, not 

suitable for prediction purposes. The clear superiority of neural networks over Farmer’s 

algorithm as a prediction tool is realised when it comes to using the actual, 

untransformed rates. The presence of trend, which renders the predictive performance of 

Farmer’s algorithm ineffective, seems to help the networks to embody all the available 

information regarding the structure of all four currency series and thus produce highly 

successful results. From an economist’s point of view, there should be no preference 

favouring any particular sort of input type, provided that the prediction obtained is 

successful. Any explanation, therefore, concerning the preponderance of the raw price 

data over the first differences of their logarithmic transformations must take place in the 

context of a rather technical reasoning: Indeed, it appears that the latter, when taken on 
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a daily basis, yields both positive and negative observations the mean value of which 

centers around zero, something which does not allow the network to detect and learn a 

particular pattern of behavior. The raw price data, on the contrary, help the network to 

learn and generalize more efficiently, especially when it comes to short-term 

forecasting, since they reveal not only the trend of the rate itself, but possibly, in 

addition, the short-term expectations of the market. It is reminded at this point that 

failing to incorporate the complexity of such expectations has been considered as one of 

the major reasons why satisfactory exchange rate predictions are sometimes difficult to 

achieve (Pilbeam, 1995).    

 

Turning to the interpretation of the results obtained, these have been, to a considerable 

extend, anticipated and lead to plausible conclusions as regards the degree of 

determinism and predictability of the behavior of the drachma exchange-rate 

fluctuations versus the four currencies involved. 

 

Prediction seems to be more successful in the case of the DM and the FF drachma rates, 

while that obtained in the case of the GBP and the USD rates appears to be slightly 

inferior. This difference in forecasting performance is attributed to the nature of the 

exchange-rate policy followed by the authorities during the period under consideration 

and which has already been analyzed earlier in this paper. More specifically, targeting 

the drachma rates with reference to the ECU in which the drachma as well as all other 

currencies involved in this analysis participate, with the exception of the USD, leads to 

expecting the corresponding drachma rates against the ECU - participant currencies to 

be more easily predictable. It has been argued in the literature, in fact,  that ECU 

participation seems to be an asset in exchange-rate prediction (Six, 1989), particularly 
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in cases like the rates of the DM and the FF which represent more than 50% of the total 

ECU participation. In addition, the hard-drachma policy used as an anti-inflationary 

device, provided for very low fluctuations for the rates of these three currencies versus 

the Greek drachma, something which adds an element of discipline in the behavior of 

these series, thus making their future course more predictable.  

 

The increased predictability thanks to these low exchange-rate fluctuations has been 

reinforced, particularly for the DM and the FF rates by their ERM participation for the 

period under review.  The bands within which the rates of the two currencies have been 

allowed to fluctuate in the international markets contributed to their disciplined 

behavior and, consequently, to the increased predictability associated with it.  

 

The case of the GBP results seems to reinforce our line of argument: The GBP has 

always been an ECU participant, whereas its ERM membership has been suspended on  

the 16th of September, 1992. Predictions associated with the drachma rates versus the 

GBP, therefore, are expected to be inferior compared to the DM and FF rates for the 

same sample period, to the extent that its short ERM membership may count. Indeed the 

prediction results obtained on the basis of the algorithms employed are very much in 

accordance with the line of argument stated above. 

 

Irrespective of the prediction performance regarding the drachma rates versus the 

various currencies involved in this paper, one must point out that all four time series are 

expected to be noise-polluted due to exogenous disturbances of two categories: Those 

resulting form corrective measures taken by the authorities in order to offset possible 

undesired exchange rate developments and those resulting from certain irregular factors, 
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not necessarily of economic nature. Typical cases of the latter include the 1987 stock 

market collapse, the German political and economic reunification in 1990 and the ERM 

wider bands in 1993. Similar factors introducing noise on the drachma side may be 

taken to be the 1985 devaluation, the prolonged pre-election period between 1989 and 

1990 and the complete liberalization of capital movements in 1994. 

 

It becomes obvious, therefore, that time series composed of empirical observations like 

daily exchange rates are difficult to interpret and forecast and that minimizing the 

presence of noise in such cases is a tedious task. The main problem arises because, as 

earlier stated, these rates are to a significant extend affected by the interference of the 

authorities in the framework of a predetermined exchange-rate policy. It has already 

been pointed out in the introduction of this paper that Taylor (1995), in a 

comprehensive survey on the issue of exchange rates, indicates the existence of 

evidence concerning a link between official intervention and exchange-rate 

predictability. What remains to be seen in this paper is the sort of link that exists when it 

comes to the specific case of the Greek drachma versus the four currencies involved and 

the extent to which the impact of the authorities’ interference is favorable or adverse. 

An additional complication is introduced due to the choice of the particular sample 

period, in the course of which  both the logic and the extent of the government 

intervention vary considerably. Thus, the beginning of the period under consideration is 

characterized by generous depreciation rates, including a drachma devaluation, while 

the beginning of the 90’s introduces the “non-accommodating” exchange-rate policy.  

 

These complications suggest that future research should be undertaking focusing on the 

rates of the major currencies as these are determined in the international markets and in 
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the case of which the presence of noise is expected to be weaker. Once a successful 

forecast for such rates has been realized, these rates may be used to derive drachma 

cross-rates, on the basis of a preannounced government policy. This tactical move is 

expected to avoid a considerable degree of noise and yield more reliable results. 

 

 

7. Conclusions  

This paper has focused on examining the degree of predictability of the Greek drachma 

exchange rates with respect to four major currencies, using methods and techniques of 

non-linear dynamics and neural networks and has resulted to the following main 

conclusions: 

 

1. The FF/GRD and DM/GRD time series exhibit chaotic behavior, with attractor 

dimensions of approximately 8 and 6 respectively, while the  USD/GRD and GBP/GRD 

time series exhibit a more random behavior. Given these chaotic characteristics, 

Farmer’s algorithm has been applied to test the prediction of all four series involved, 

plus that of the pre-filtered DM/GRD. This exercise resulted in indicating that all time 

series exhibit low predictions in every embedding dimension and any neighbour 

number, with the level of the performed predictions being as low as about 30%, which 

is obviously not satisfactory. Thus Farmer’s algorithm does not seem to be the most 

suitable predicting method, for such experimental data, with high level of noise. 

 

2. Simulations in the context of neural network methodology involving first differences 

of logarithmic values were equally unsatisfactory to those obtained using Farmer’s 

algorithm. On the contrary, positive and highly accurate simulation results have been 
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derived using as input the actual, untransformed exchange-rate figures. The networks 

have been very successful in learning all exchange-rate series involved and thereby in 

making accurate predictions.  

 

3. The nature of the Greek economic policy which involves the determination of 

drachma rates with reference to the ECU in which the DM, the FF and the GBP occupy 

an overwhelmingly large percentage of the total currency participation, contributes to 

the predictability of the exchange rates of these currencies versus the drachma. The 

USD/GRD rates, on the contrary, seem to be tougher to predict, due to the absence of  

any such link between the two currencies in terms of economic policy planning. 

 

4.  An additional element of discipline that concerns particularly the DM and the FF 

and, to a much lesser extent, the GBP is related to the ERM membership of these 

currencies. Indeed, restricting the fluctuations of these currencies in the international 

markets within the ERM bands provides for increased discipline in the behavior of their 

exchange-rates. This element of discipline adds to the predictability of the rates of these 

currencies versus the drachma due to the reason analyzed in point 3 above. 

 

5. A final point concerning the conclusions of this paper relates to the contribution of 

government interference in the drachma rates prediction.  More specifically, targeting 

the exchange-rate policy with reference to the ECU in which the DM, the FF and the 

GBP participate, the former two being, in addition, full ERM members for the period 

under review, adds to the predictability of the exchange-rates of these currencies versus 

the drachma. It seems, therefore, that, in what concerns drachma exchange rates against 

these currencies, the effectiveness of official intervention regarding the predictability of 
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these rates is not as unclear as it has been claimed in the literature.    
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LEGENDS FOR FIGURES 

 

Figure 1: USD/GRD time series plots: (a) Daily fixed-rates, (b) Daily returns 

Figure 2: GBP/GRD time series plots: (a) Daily fixed-rates, (b) Daily returns 

Figure 3: DM/GRD time series plots: (a) Daily fixed-rates, (b) Daily returns 

Figure 4: FF/GRD time series plots: (a) Daily fixed-rates, (b) Daily returns 

Figure 5: Correlation dimension estimates versus embedding dimension for the 

USD/GRD, USD/GRD, DM/GRD and FF/GRD series of returns. 

Figure 6: The m-input, d-hidden nodes and 1-output MLP neural network architecture. 

Figure 7: Actual values versus neural network predictions of the USD/GRD fixed rates 

series using a 6-5-1 MLP architecture. 

Figure 8: Actual values versus neural network predictions of the GBP/GRD fixed rates 

series using a 2-5-1 MLP architecture. 

Figure 9: Actual values versus neural network predictions of the FF/GRD fixed rates 

series using a 2-3-1 MLP architecture. 

Figure 10: Actual values versus neural network predictions of the DM/GRD fixed rates 

series using a 2-5-1 MLP architecture. 
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FF/GRD fixing rates 1985-1995
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