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Abstract

This paper addresses how neural networks learn to play one-shot normal form games through

experience in an environment of randomly generated game payoffs and randomly selected oppo-

nents. This agent based computational approach allows the modeling of learning all strategic types

of normal form games, irregardless of the number of pure and mixed strategy Nash equilibria that

they exhibit. This is a more realistic model of learning than the oft used models in the game theory

learning literature which are usually restricted either to repeated games against the same opponent

(or games with different payoffs but belonging to the same strategic class). The neural network

agents were found to approximate human behavior in experimental one-shot games very well as

the Spearman correlation coefficients between their behavior and that of human subjects ranged

from 0.49 to 0.8857 across numerous experimental studies. Also, they exhibited the endogenous

emergence of heuristics that have been found effective in describing human behavior in one-shot

games. The notion of bounded rationality is explored by varying the topologies of the neural net-

works, which indirectly affects their ability to act as universal approximators of any function. The

neural networks’ behavior was assessed across various dimensions such as convergence to Nash

equilibria, equilibrium selection and adherence to principles of iterated dominance.

KEYWORDS: Behavioral game theory; Learning; Global games; Neural networks; Agent-based

computational economics; Simulations; Complex adaptive systems; Artificial intelligence

.

1. INTRODUCTION

There are two main criticisms that can be levied against the main research directions of the game theory

learning literature. Firstly, that most research involves repeated games against the same opponent and sec-

ondly that fixed learning rules are often employed which are ad hoc specifications of the researcher. These

tactics are primarily ones of convenience, as studying learning in the same game ignores the complications

of transfer of learning across different yet similar games, and assuming that a player is facing the same op-

ponent greatly simplifies learning dynamics. Many learning rules cannot be applied to a series of one-shot

games because they are specifically formulated to explain behavior only when repeated instances of the same

game are given to subjects. For example, reinforcement learning and fictitious play assign values over time

to players’ actions, however this approach only makes sense if the payoffs of the game do not change over

1This is the one of three papers towards a PhD degree, conferred by the University of Sydney in May 2008.
2University of Sydney
3The author would like to thank Kunal Sengupta for constructive input and thesis supervision. This research was made possible

by funding provided by the Government Department of Education, Science and Training (Australian Government), the College of
Humanities and Social Sciences and the Faculty of Economics and Business at the University of Sydney.
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time. Otherwise, the actions will be qualitatively different and will not be able to be updated according to a

unique, time-stationary equation.

The previous paper in this thesis loosened to a certain degree the assumption of repeatedly playing a single

game against the same player by examining learning of repeated games across three different computer algo-

rithms, leading to insights regarding the separation of game-specific and opponent-specific learning which is

otherwise obfuscated. This paper now proceeds to fully abandon the assumptions of repeated game play with

the same opponent in an effort to examine learning over a wide variety of games, with very different strategic

structures and randomly rematched antagonists.

Learning in an environment with random rematching of players and random draws of games from a strate-

gically diverse set of games is closely linked to the experimental literature on one-shot games. This is exactly

the kind of learning experience that a subject would have faced prior to participating in an experiment and

will likely draw upon when deciding how to play a game never seen before. The experimental literature on

one-shot games is primarily concerned with uncovering the decision rules used by subjects when faced with

a game for the first time. The standard approach in this field is for researchers to postulate what they regard

to be reasonable rules and check for evidence of their use by human subjects. This approach does not re-

ally study any type of learning mechanism as it simply assumes people come into the experiment with some

experience and then play each game once. It must be conceded that this is an inherent limitation of the exper-

imental process for it is not possible, at least within ethical bounds, to access the knowledge and experience

human subjects bring with them to an experiment. The rules that researchers detect in one-shot game experi-

ments have been learned by subjects prior to entering the laboratory over a long period of time from everyday

encounters in their lives, where they have faced very different games and opponents. This limitation of the

experimental method is what has essentially restricted progress in explaining the formation of observed rules

and therefore what little research has been done in this field has been theoretical.

Several standard learning theories have been modified to be amenable to stochastic analysis allowing for

some results to be deduced regarding convergence to Nash equilibria and other behavior. As will be discussed

in Section 2, these theoretical approaches require quite restrictive simplifying assumptions in order to make

the analysis tractable.

This paper contends that simulations of neural network agents4 in an agent-based computational economics

4Despite their widespread use in the field of psychology and cognitive neuroscience as models of the human mind, their use as models
of economic agents has been fairly limited. Notable exceptions to this include Cho and Sargent (1996) who strongly support the use of
NNs as models of behavior. They use perceptrons, or simple NNs, as a way of modeling bounded rational behavior in repeated situations,
such as a repeated prisoner’s dilemma. They show that even the simplest NN, a single perceptron, is capable of implementing trigger
strategies in a repeated prisoner’s dilemma game and of supporting all subgame perfect payoffs. They also prove that only a slightly
more complicated network is capable of supporting all equilibrium payoffs in a general 2× 2 game. Sargent (1993) models economic
agents as simple NNs and looks at the resulting macroeconomic dynamics of an economy populated by such agents. Most applications
of NNs in economics, business and finance have been in the field of forecasting and prediction, such as exchange rates (Kuan and Liu,
1995), stock price movements (Leung et al., 2000), inflation forecasting (Nakamura, 2005) and bankruptcy (Yang et al., 1999). For a
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model are the ideal way to circumvent many of the problems related to the non-tractability of theoretical

models, thereby effectively complementing such research. The universal approximation theorem (Hornik,

1991; Cybenko, 1989; Funahashi, 1989) states that given enough neurons a single layer neural network (NN)

is a universal function approximator i.e. it will be able to approximate any function, with any desired level

of accuracy5. Hence, using a NN model evades the problem of knowing and specifying the exact functional

form of the learning rules employed by humans. On the contrary, the final functional form arises through the

learning of the NN and the adjusting of its parameters - this can be thought of as a type of “learning to learn”.

This is in stark contrast to the existing literature where specific functional forms are posited by the researcher

and then tested e.g. fictitious play, reinforcement learning, EWA. Hence, using a NN to model learning can

be thought of as a kind of endogenous general to specific approach, since specific rules are not burned into

the model but rather evolve endogenously starting from a very general model and guided by a very basic

principle of adjusting its parameters according to myopic best response to the previous outcome.

There are many advantages to such an approach. Firstly, such a setup will provide a learning model of

one-shot play rather than simply positing various heuristics6 to explain ex post the observed one-shot play

of humans. Secondly, the learning rules that will arise in the NNs can be used to deduce the plausibility

and appropriateness of the rules often postulated by researchers in the one-shot game literature and perhaps

propose new rules.

The literature has employed very different specific learning rules according to the type of game being

played. The main reason for this is that either the models used can by definition only be applied to specific

games, or perhaps the same rules do not perform well on different games. That learning models perform well

in some cases and not others simply implies that the true underlying laws governing behavior have not been

discovered, only rough approximations to behavior which is why different models need to be postulated.

A solution to this problem is to use a learning model that maps the payoffs of a game directly to proba-

bilities of playing actions. Standard statistical models with prespecified functional forms can map payoffs to

actions however there are important reasons to prefer NNs instead of standard models, as will be defended in

Section 3.1.

The stratagem of this paper is to present in Section 2 the relevant theoretical literature in regards to the

reasoning behind the choice of neural networks as representatives of learning agents in simulations. Also,

the theoretical literature on learning in global games will be reviewed with emphasis on how simulations can

complement the theoretical models by simulating more realistic models that are too complex to be analyzed

collection of papers on neural networks applications the reader is referred to Smith and Gupta (2002).
5This result however is conditional on the ability to reach the global minimum, which is dependent on the complexity of the error

surface and the training rule used to obtain the weights of the NN.
6A detailed description of the most commonly used statistics is given in Section 5.7.

3



theoretically. An in-depth discussion of the paper by Sgroi and Zizzo (2002) is carried out, followed by

specific proposals to expanding this model. An informal introduction to neural networks and the methodology

and specification of the simulations follows in Section 3.3. A brief discussion of the results obtained for 2×2

games is followed by an in depth analysis for 3× 3 games in Sections 4 and 5. Specific issues that will

be broached include the convergence (or lack thereof) to Nash equilibria, play of dominated and iterated

dominated strategies, payoff comparisons of different NN topologies, equilibrium selection in relation to

risk- and payoff-dominant equilibria, inference of simple heuristics that have endogenously emerged as a

result of learning and a discussion of the dynamic behavior of the NNs during the training process. All the

while, comparisons of NN behavior on the above dimensions will be made to human subject experiments

of one-shot games in an effort to ascertain whether NNs are a plausible learning model for general normal

form games. Finally, Section 7 discusses the various conclusions and avenues for future research. Appendices

include technical discussions of neural networks and the backpropagation algorithm, and results from other

simulations not discussed in the main text.

2. LITERATURE REVIEW

2.1. Learning in global games

The past few years have seen the emergence of some theoretical work into generalizing learning rules so

that they are applicable to a wider range of games. However, this literature is limited as a consequence of the

methodology of attempting to derive analytical and mathematical proofs of the properties of these learning

systems. There are three problematic assumptions which are used to make the models tractable to analytics.

The first simplification is to use an exogenously postulated similarity measure with the intent of basing

a decision on a newly presented game on past experience with similar games. This case-based approach to

learning games is adopted in Steiner and Stewart (2006).

A second means of simplifying analysis, followed by Germano (2007) reverts to postulating rules, which

by construct, can prescribe play for any arbitrary 3× 3 game and subjects these rules to evolutionary selec-

tion, where the probability of each rule being used depends on it past performance. One of the main results

he finds is that any rules which do not survive iterated elimination of dominated strategies in the average

game will tend to disappear in the long run. However, as is acknowledged, the approach is hindered by the

necessity of the researcher to postulate the set of learning rules that will be part of the initial population to

be subjected to evolution. An experimental paper by Stahl and Haruvy (2004) has subjects play a sequence

of 30 different symmetric 3× 3 games under the assumption they are learning to use a set of exogenously

postulated rules, which are essentially best response rules of varying depth. They find that over time the depth

of best response increases and that most subjects are implicitly assuming that other players are also increasing
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in sophistication.

Finally, a third approach restricts analysis to games which may have different payoffs but common strategic

forms. LiCalzi (1995) similarly discusses fictitious play learning in classes of games that are predetermined to

be strategically similar and specifically states that although it would be interesting to examine how similarity

and learning could be modeled in games with different strategic forms, the technical difficulties involved with

proving theorems analytically is daunting.

Katz (1996) in her Ph.D. thesis discusses the importance of allowing similarity measures to be modeled as

a learning process just as beliefs are. A general extension of learning in 2×2 normal form games is presented

where from a theoretical aspect each game is preceded by a stage where the player chooses how to partition

past games according to a similarity measure. She discusses some of the general implications in repeated

games of partitioning the game set but does not provide or analyze specific models of similarity learning.

All of the above research is forced to use at least one of the three simplifying assumptions in order to

attain proofs regarding the convergence properties of these learning models. Ideally, none of these three as-

sumptions should be employed however the general consensus is that this is extremely difficult to accomplish

for analytical proofs. The solution to this problem is to change methodology and turn instead to the use of

simulations, which will be able to answer and provide insight into more complex and realistic models of

learning a broad class of games. The paper discussed below in detail is an example of such a methodology,

whose analysis however is restricted only to games with a unique PSNE. However, proposed modifications

to this line of research will allow for learning of any type of n×n game, thereby achieving the research goals

without the use of these three unrealistic simplifying assumptions.

2.2. Strategy learning in 3×3 games by NNs (Sgroi and Zizzo, 2002)

The closest line of research to this paper is Sgroi and Zizzo (2002), and an abridged published version of

the paper (Sgroi and Zizzo, 2007), henceforth collectively referred to as S&Z. In their research, they used a

set of 3× 3 games whose payoffs were randomly sampled from a uniform distribution with the restriction

that the games had only one pure strategy NE. A single NN was released into a general population of Nash

equilibrium players and was randomly rematched to play against them. Hence, after each round of play

the NN would attempt to learn the Nash equilibrium of each game by altering its weights according to a

backpropagation rule, which is a standard NN learning rule. The goal was to determine how successful the

NN would be in identifying the NE strategy in games it had never seen before. Ideally, after presentation of

many different games the NN will have learned how to generalize from these games and therefore will be

able to pick out the NE strategy with better than random performance.

The main findings of this paper are the following.
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1. The trained NN was able to select the Nash equilibrium action in games it had never encountered

before at a rate of 60%-80% of the time. The difference in these rates is attributed to the definition of

a correct response by the neural network. If the neural network’s response has to be within 0.05 of the

ideal response, then the PSNE is chosen roughly 60% of the time, whereas if the loosest criterion is

employed so that the NNs’ response has to be within 0.5 of the ideal response then a robust upper limit

of 80% is achieved.

2. The responses of the trained NN could be approximated quite well by simple heuristics or bounded

rational rules that emerged endogenously due to the learning process of the NN. The heuristic which

best described the behavior of the trained NN was the L2 heuristic which simply best responds to the

assumption that one’s opponent uses the L1 heuristic. This heuristic assumes that one’s opponent will

play each action with equal probability and then best responds to this. The L2 heuristic can predict the

chosen action of the NN 85% of the time.

3. If the trained NNs are presented with games with multiple NE they tend to exhibit focal points in

the sense that different networks tend to converge to the same equilibria. This occurs even if they are

trained on a different set of games, albeit with the same game sampling scheme. From these results

they infer that the NNs must have learned to detect strategic features of the games they faced which led

them to the same solution in games with multiple PSNE.

3. METHODOLOGY

3.1. In defense of the use of NNs as computational learning agents

This section presents the rationale behind the choice of NNs, which are quite complex models of cognition

and intelligence, over other candidates to model human learning and behavior in strategic games.

Imposition of minimal prior assumptions including no exogenously imposed concept of similarity of games

This argument refers to the fact that the researcher need specify a minimal amount of functional form or

structure for NNs compared to the usual learning rules posited in the literature. An obvious approach for a set

of very different games is to postulate a learning process for each possible game in this set. This is only feasi-

ble however if there is a small number of games in this set, a significant restriction especially given that there

could exist a very large, or even infinite, number of games. A better approach is to break games down into a

much smaller number of classes by using a similarity measure to group games together - this is essentially a

case-based reasoning model (CBR), see Gilboa and Schmeidler (1995) and Leake (1996). Different learning

rules could then be applied to each group or class of games. These rules could have the same functional form

but their own unique set of updatable parameters or could even have completely different functional forms.
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Either way, the important concept to bear in mind is that the learning model for each similarity group will be

independent of all the other groups. This approach is problematic because the researcher is forced to define a

similarity measure with which to group the games, rather than allow these classes or similarity measures to

be learned endogenously.

A more biologically realistic implementation of learning

The use of neural networks is an important step towards biological plausibility of learning processes be-

cause it utilizes a distributed knowledge topology as does the human brain. Although specific information

on how the connections between the neurons in the brain are adapted is only now beginning to emerge, the

relative simplicity of the backpropagation algorithm compared to other algorithms used in the NN literature

and its popularity make it a desirable choice. Other more powerful algorithms exist however their use of

second-order information seems highly biologically implausible, whereas the simple first-order gradient de-

scent technique used in backpropagation is highly plausible, even though the specific calculations employed

in the algorithm may not be exactly the same as those in the human mind. The use of the backpropagation

learning algorithm as approximating real neuronal adaptation in the human mind is defended by Robinson

(2000), Zipser and Andersen (1988), Mazzoni et al. (1991), Kettner et al. (1993), Lehky and Sejnowski (1988)

and Dror and Gallogly (1999).

The nesting of many other types of models as special cases of NNs

Special topologies of NNs exhibit simple analogues to standard statistical models whilst still allowing for

a dynamic learning procedure rather than an instantaneous closed form solution. For example, by varying

the topology of a NN it is possible to emulate the following standard econometric models: logistic regres-

sion (Hosmer and Lemeshow, 1989), multivariate multiple-linear regression (Myers, 1986) and polynomial

regression (Pao, 1989)7.

Minimal memory requirements

Assuming that the history of play will at some point become quite large the issue of memory storage,

access and search becomes important. NNs are an extremely desirable solution to this predicament as they

essentially automatically perform information compression. The only parameters which need updating in NNs

are the weights and biases which will consist of much fewer bits of information than perfect storage of the

information from all games played. Therefore, the parameters of the NNs embody the complete past history

of games played albeit in an imperfect manner. A desirable property of NNs is that the amount of memory

7For a more general discussion of the similarities between statistical models and NNs the reader is referred to Sarle (1994).
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or information storage is independent of the size of experience or past history. The problem of accessing and

searching through a large database of prior memories is solved since no searching is necessary.

3.2. Proposed modifications to Sgroi and Zizzo (2002)

1. In S&Z, the NNs were pitted against other agents that played the NE every single time. This setup

is a type of supervised learning where the NN is told at the end of each game what the NE strategy

was and by implication what the correct answer or desired output was. This however only tests the

computational ability of NNs to learn the NE when explicitly being trained for this purpose. A more

realistic setup is to use an Agent-based Computational Economics8 (ACE) approach to this problem,

where a population of NN agents are learning to play a set of games concurrently with zero initial

experience, based on their local interactions with each other (with no knowledge of a NE assumed or

imposed on any of the agents). Even if a NN does have the capability to learn the NE when trained

by presenting it with the correct result every time, this does not necessarily imply that a population of

NNs learning simultaneously from each other will identify the NE without an external teacher directing

their learning.

2. The desired output in S&Z for the NN was the unique PSNE action. This paper follows a different tack

where each NN will observe its opponent’s realized action and will assume that myopic best response

conditional on its opponent’s realized action is the desired output. Hence, if a NN’s opponent is not

playing according to the NE then it has no incentive to play the NE either, but instead must figure out

a strategy that best responds to its opponent’s strategy. This is a much looser and realistic assumption

as it does not require the existence of an “external teacher” to tell the NNs what the correct NE action

is. If Nash equilibria are learned in such a setup it will be due to procedural rationality arising from

the interactions of the agents and their attempts to better respond to their environment. An important

observation is that the desired output of a specific game in this case depends on other agents’ actions

which are changing over time due to learning, whereas in Sgroi and Zizzo (2002) the desired output

will always be the NE solution. This formulation of desired output now allows the training of NNs on

all possible games without restriction to games with a unique PSNE. This restriction was necessary in

S&Z due to their setup where NNs where given the “correct” answer, implying that there cannot be

8Multi-agent modeling and its application to economics, coined as Agent-based Computational Economics (ACE), is an interdisci-
plinary field at the borders of evolutionary economics, cognitive science and computer science. Waldrop (1992) attributes the following
definition of a CAS to John H. Holland - “A Complex Adaptive System (CAS) is a dynamic network of many agents (which may repre-
sent cells, species, individuals, firms, nations) acting in parallel, constantly acting and reacting to what the other agents are doing. The
control of a CAS tends to be highly dispersed and decentralized. If there is to be any coherent behavior in the system, it has to arise from
competition and cooperation among the agents themselves. The overall behavior of the system is the result of a huge number of decisions
made every moment by many individual agents”. For an introduction to the literature the reader is referred to (Tesfatsion, 2002) and
(Tesfatsion and Judd, 2006).
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more than one such answer or that this answer cannot be changing over time for a given game.

3. The output of the NNs in S&Z was not designed to be interpretable as a probability distribution over

a NN’s action space. This immediately precludes the use of these networks for games with a unique

MSNE, and does not adhere to the experimental evidence that humans employ stochastic rather than

deterministic decision rules. The topology of this paper’s proposed NNs is such that they directly output

a probability of playing each action by using a logistic or Boltzmann distribution in the output layer

neurons, thereby providing the necessary framework for learning general normal form games. Hence,

the trained NNs will be able to provide insight into equilibrium selection in games with multiple PSNE,

such as coordination games, or games with a unique mixed strategy Nash equilibrium.

4. An attempt to extract rules from the NN will be made to infer what the networks have learned. NN

output will be regressed on the heuristics that human subjects have been found to depend on in the

experimental literature of one-shot games, as a means of determining whether they are similar. Finally,

NN output will be directly compared to the behavior of human subjects in many experimental studies

of 3×3 one-shot games.

5. Another variation implemented in this paper is the use of online or incremental learning instead of batch

learning that was used in S&Z. With online learning, NN parameters are updated after the presentation

of each observation, consisting of the input and desired output of one game, whereas with batch learning

they are updated after one pass of the whole set of observations. For example, with batch training

all the observations in the training set would be fed to the NNs and then the parameters would be

updated based on the errors from all of these observations together. The networks will be repeatedly

presented the whole set of observations with updating occurring at the end of each presentation, and

the process continuing until a prespecified stopping point. With online learning, weights are adjusted

after the presentation of each observation, which is clearly more ecologically valid or realistic than

adjusting weights after the whole set of observations. Most of the available learning algorithms in the

literature can be used for batch training with only a much smaller subset available for online learning.

This occurs because many algorithms adapt their own parameters after the presentation of inputs. It is

possible to do this with batch training where learning occurs after the exact same set of observations has

been presented, but in online learning it would not make sense to compare results from the previous

observations as they are completely different from the current observation. The three advantages of

online learning (also referred to as stochastic learning or noisy learning in the NN literature) according

to LeCun et al. (1998) are the following. Stochastic learning leads to faster convergence, better solutions

in the sense of avoiding local minima and is better suited to tracking changes in the environment if it is

non-stationary. Stochastic learning obliges gradient descent to be applied in a noisy fashion so that it is
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more likely to avoid becoming stuck in bad local minima as it will tend to explore a larger area of the

error surface than batch learning. Tracking changes over time is very important to this application as the

correct output in each case depends on the behavior of other NNs which are learning simultaneously,

implying that their behavior will be changing over time (i.e. that the correct outputs for given games

are non-stationary over time).

3.3. An informal introduction to neural networks

A brief introduction to neural networks follows with Figure 1 providing a graphical display of the structure

of a NN, whilst a technical treatment of NNs is reserved for Appendix A.1.

A NN consists of layers of interconnected simple processing units called neurons, whose functioning is

based on that of real biological neurons. Each neuron receives a range of inputs which are summed according

to weight parameters, upon which it then performs a non-linear mapping or transformation and finally outputs

the resulting value.

There exist three distinct types of layers of neurons. The first, or input layer, receives input from the envi-

ronment (defined as anything outside the NN structure), the hidden layer(s) internally process this information

and have no contact whatsoever with the environment, and finally the output layer submits the output of the

network to the environment. In this application, the input from the environment is simply the payoff matrix

of the normal form game being played and the number of neurons in this layer corresponds to the sum of the

sizes of the payoff spaces of the two players. Thus, for 2×2 games the number of input neurons will be eight,

and for 3×3 games the number of input neurons will be eighteen. The output layer must convey information

about the decision made by the NN regarding the probability distribution over its own actions and therefore

the number of neurons in this layer is equal to the size of the action set of each player i.e. two for 2×2 games

and three for 3×3 games.

The number of hidden layers and the number of neurons in each layer can be chosen by the researcher

according to different criteria, thereby altering the level of sophistication or bounded rationality of the NN9.

For the rest of the analysis, the number of neurons, ν , in each of l hidden layers of a NN, will always be the

same, therefore ψi{ν , l} denotes the complete topology of the ith NN agent10.

The neurons in a standard feedforward NN are interconnected in the following way. Each neuron is con-

nected to all the neurons in the previous layer (if such a layer exists) and all the neurons in the following layer

(if such a layer exists), with neurons in the same layer not connected to each other. The input to a neuron is
9It is possible to simply connect the input layer to the output layer without any hidden layers intervening, resulting in a structure that

is similar to a generalized linear model with the link function determined by the kind of non-linearity implemented in the output layer
neurons.

10The number of neurons in the input and output layers are left out of this shorthand notation for simplicity as they can be inferred
by the types of games being playing.
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FIGURE 1.— Graphical representation of the structure and topology of feedforward neural networks
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simply a weighted average of all the outputs of the neurons in the previous layer. These connection weights

are what allow the NN to learn as they are constantly being adapted based on the performance of the NN.

As regards a NN’s behavior in the game it is playing, information flows from the input layer to the hidden

layers and finally to the output layer. However, as regards the learning mechanism of the NN and how it

adapts its behavior, this process implicitly uses a backward flowing system, as exemplified by its name, the

backpropagation rule. After making a decision the NN compares the values of the neurons at the output layer

to the desired values and makes adjustments to all the connection weights in such a way that would reduce

the error of the NN for that particular observation. The backpropagation learning rule uses the chain rule to

assign the contribution of each neuron to the observed error, from which it is then possible to extract the

necessary information regarding how to change each connection weight in order to reduce the overall error.

Hence, each connection weight is changed according to a gradient descent method with the intent that the

network successively approaches a state where the error function attains a global minimum.

The NN agents are assumed to consider the myopic best response to their opponent’s action to be the

desired response for each game. This approach is what is referred to as ex-post rational by Selten (1998).

According to this principle, an economic agent will move or modify his action in the direction of ex-post

best response to the temporally prior outcome. A popular example is that of an archer aiming at a target,

whereby he observes whether his previous shot was to the left or right of the target and then adjusts his aim
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in the opposite direction. The principle of ex-post rationality replaces the Bayesian learning approach of ex-

ante rationality, with a much simpler heuristic that is computationally more tractable as it does not require

sophisticated dynamic optimization.

3.4. Specifications of NN simulations

In agent-based simulations, the dynamics and steady state properties can be affected by the values of model

parameters. More specifically for this application, the number of agents in the population could affect the re-

sults of the simulations. This could be substantial when comparing a simulation with only two agents playing

repeatedly with each other versus a simulation with more than two players. The existence of a population of

only two players could facilitate the emergence of social conventions or focal points in coordination games

compared to larger populations.

Another parameter that affects simulations is obviously the nature of the agents themselves and whether

the population of NNs is homogeneous or heterogeneous. This research provides an obvious way of allowing

for heterogeneous agents and modeling bounded rationality. Altering the network topology, specifically the

number of layers and neurons per layer, affects the non-linear capabilities and sophistication of the neural

networks. The non-linear capability of the agents is an increasing function of the number of neurons in each

layer, holding the number of hidden layers constant, and also an increasing function of the number of hidden

layers for a given number of neurons in each layer. The combined effect of simultaneously varying ν and l in

opposite directions will depend on the nature of the data and application as there is no steadfast rule relating

the relative effects of such changes.

A common quandary researchers face in empirical applications of NNs is the selection of the network

topology i.e. the number of layers and number of neurons to use. Walczak and Cerpa (1999) discuss the

effects of variations in the topology and suggest heuristic principles in determining these parameters for

practitioners. Increasing the number of layers leads to an increase in the closeness of fit as the NN is able to

better deal with higher order or more complex problems. However there is a tradeoff for this better fit since

this usually leads to worse generalization capability as the network output becomes less smooth and more

prone to fitting noise. Increasing the number of neurons can lead to overfitting and loss of generalization

whereas too small a number cannot provide enough flexibility for the network to learn and model a non-

linear relationship.

In light of the above results and in particular the comparisons that must be made between different treat-

ments, a number of different simulations must be examined. All the neural networks employed in the simu-

lations will be fully connected feedforward networks incorporating hyperbolic tangent sigmoid transfer (or

tansig) functions in the hidden layers and softmax neurons in the output layer. Readers not familiar with neu-
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ral networks are referred to Appendix A.1 for a detailed discussion. Different simulations will be denoted by

Ψ, where a subscript denotes whether the simulation is comprised of heterogeneous or homogeneous agents

and a superscript denotes the size of the player’s action space. All simulations with homogeneous agents,

denoted by the subscript hom, employ NNs with three layers and 50 neurons in each layer i.e. ψ{50,3}. In all

the heterogeneous agent simulations, denoted by the subscript het, the ten different NNs employed are listed

below in order of decreasing bounded rationality or increasing sophistication:

ψ1{∅,∅},ψ2{5,1},ψ3{5,2},ψ4{5,3},ψ5{20,1},ψ6{20,2},ψ7{20,3},ψ8{50,1},ψ9{50,2},ψ10{50,3}

The following list specifies all the simulations that will be discussed in the main body of this paper:

Ψ2
hom = [ψ1{50,3}, ...,ψ10{50,3}]

Ψ2
het = [ψ1{∅,∅},ψ2{5,1},ψ3{5,2},ψ4{5,3},ψ5{20,1},ψ6{20,2},ψ7{20,3},

ψ8{50,1},ψ9{50,2},ψ10{50,3}]

Ψ3
hom = [ψ1{50,3}, ...,ψ10{50,3}]

Ψ3
het = [ψ1{∅,∅},ψ2{5,1},ψ3{5,2},ψ4{5,3},ψ5{20,1},ψ6{20,2},ψ7{20,3},

ψ8{50,1},ψ9{50,2},ψ10{50,3}]

These simulations can be segregated into three treatments: one treatment varies the size of the action space,

another specifies whether NNs in a population are homogeneous or heterogeneous, and a third treatment,

nested within the previous treatment, which varies the topology of the neural networks. The most simple

agents simulated, ψ{∅,∅}, are essentially equivalent to a logit model as the lack of a hidden layer means

that the inputs to the output layer neurons are simply a weighted average of payoffs which are then subjected

to a softmax or logistic transformation. The most sophisticated NN included, ψ{50,3}, is the same as the

ones used in the homogeneous treatment allowing for comparisons as to how the same sophisticated NN may

behave differently when in the presence of a different population of opponents.

3.5. Simulation details

Each simulation documented in Section 3.4 will be implemented in Matlab (2007) for a total of one million

generations, and for each generation all the NN agents in the population will be randomly paired with one

another to play a randomly sampled game. Games were created by sampling the 2n2 payoffs of n×n games

from a uniform distribution on [-1,1]11 thereby automatically ruling out games with weakly dominated ac-

11This normalization is the most conducive to NN learning when neurons use the tansig function as each input has the same influence,
and inputs to the neurons have zero mean and are restricted to be on the support of the tansig function where the derivative is significantly
different from zero. This helps avoid the problem of saturation which occurs when the output values of a neuron are close to 1 or -1 and
leads to significantly slower learning. The reader is referred to LeCun et al. (1998) for a more detailed discussion of these issues.
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TABLE I
GENERALIZED 3×3 GAME

Player 2

Left Center Right

Pl
ay

er
1 Up x11,x′11 x12,x′12 x13,x′13

Middle x21,x′21 x22,x′22 x23,x′23
Down x31,x′31 x32,x′32 x33,x′33

tions. The generalized form of such a 3×3 game is given in Table I.

Each network’s parameters were randomly initialized according to the Nguyen and Widrow (1990) layer

initialization function, which allows for faster learning and convergence. The standard back-propagation rule

was used for adjustment of the NN weights, a detailed explanation of which can be found in Appendix A.2.

After observing the opponent’s choice for that game the NNs will assume that the desired output is the myopic

best response.

The robustness of the simulations to different initial weights of the neural networks and different learning

rates in the backpropagation algorithm is detailed in Appendix B. The conclusion of these analyses is that

the results are very robust to changing these specifications and therefore it is sufficient to perform only one

complete run of each simulation12. Also, Appendix E.1 examines the effects of changing the game payoff

sampling scheme on NN behavior and finds that the results are qualitatively robust.

4. ANALYSIS AND RESULTS OF 2×2 GAMES

This section briefly highlights the most important results from performing simulations of NN agents in

general 2×2 games, with further results and detailed analyses relegated to Appendix D.

4.1. Convergence to PSNE

The top graph of Figure 2 plots the probability that a pair of networks will jointly play the PSNE of a game

according to the number of players that have a dominant action. The middle graph segments the probability

of PSNE behavior according to the number of PSNE of each game played.

In the cases of one or two players having a dominant action the networks are converging to playing a PSNE

with near certainty. Note that in both of these cases there necessarily exists a unique PSNE for all such games.

The case where no players have a dominant action is not included in this graph but these games must exhibit

either zero PSNE or two PSNE, the latter is shown in the middle graph and the former requires specialized

analysis that follows in Section 5.8 since it has only a MSNE.

12This is a fortunate result as the computational resources required to complete many runs of this simulation are forbidding given
current technology.
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FIGURE 2.— Behavior of the Ψ2
hom simulation during training
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After one million generations the NNs perform exceptionally well in games with a unique PSNE, so that

the Nash equilibrium prescription is jointly played by both networks almost 96% of the time13, much higher

than the random play baseline of 25%. Performance falls in games with two PSNE to roughly 75%, which is

reasonable as the existence of two PSNE creates a coordination problem so that in many cases each network

may go for a different equilibrium leading to a disequilibrium result. However, performance is still much

higher than the random baseline prediction of 50%. As expected, convergence is faster for cases where both

players have dominated strategies.

The question of convergence to a long-run stochastic steady state14 can also be answered by observing the

evolution of mean payoffs to players over generations as convergence would imply steady mean payoffs. The

bottom graph in Figure 2 simply plots mean payoffs to all players versus the number of generations. The

figure presents the mean payoffs of all ten players, averaged over a moving window of 10,000 generations

to eliminate fluctuations and elucidate the underlying trend. The derivative of average payoffs over time

with respect to the number of generations elapsed is positive but the second derivative is negative as the

rate of learning appears to significantly slow down quite early in the training simulation. In particular, after

the first 10,000 generations payoffs are already higher than 0.2, with the rate of increase tapering off and

stabilizing, with the exception of random fluctuations which are to be expected due to the stochastic nature of

the simulation. The plateau in payoffs is further evidence that the system has converged to or is in the close

neighborhood of the stochastic steady state of this system.

4.2. Equilibrium selection for 2×2 games in Ψ2
hom

To assist in the examination of equilibrium selection in 2× 2 games with two PSNE a test data set of

1,000 generations was constructed. The main intention of this analysis is to ascertain whether risk15 or payoff

dominant equilibria are more likely to be played by the NNs. Table II compiles the probability of playing

different types of PSNE. In particular, the probability of playing an equilibrium that is payoff dominant

p(PD), risk dominant p(RD), payoff dominant but not risk dominant p(PD& ∼ RD), risk dominant but

not payoff dominant p(RD& ∼ PD), both payoff and risk dominant p(PD&RD). Finally, the last column

restricts analysis to games with distinct RD and PD equilibria, and calculates the ratio of the probability of

playing the RD equilibrium to the probability of either the PD or RD equilibrium being played, abbreviated

to RD : PD+RD.

Experimental research on the behavior of subjects playing coordination games finds that risk dominant

13Note, that these results refer to joint play of the PSNE, therefore assuming independence each player is choosing the unique PSNE
action with a probability of roughly

√
0.96 = 0.98.

14Due to the stochastic nature of the NNs’ choices and the stochastic sampling of games there is no absorbing steady state.
15Readers interested in the method of computation of risk dominant equilibria are referred to Appendix C.2.
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TABLE II
EQUILIBRIUM SELECTION BEHAVIOR OF NNS IN 2×2 GAMES

p(PD) p(PD) p(RD) p(PD& ∼ RD) p(RD&∼ PD)
0.5286 0.5286 0.6869 0.0826 0.6663

p(PD&RD) p(PD&RD) p(∼ PD& ∼ RD) RD : PD+RD
0.7259 0.7259 0.1055 0.8407

equilibria are preferred. For example, Cooper et al. (1994) find that in a one-shot symmetric coordination

game with two Pareto rankable pure strategy Nash equilibria, the Pareto inferior equilibrium is by far the

most probable outcome. Repeated presentations with random rematching did not significantly affect these

results as 97% of outcomes in the coordination games were still the Pareto inferior equilibrium. Cabrales

et al. (2000) perform an experimental test on equilibrium selection in 2× 2 games and they find that risk

dominance is a good predictor of actual play, improving as the degree of asymmetry in payoffs between the

two players increases. These results are corroborated by Straub (1995) who concludes that risk dominance

is a better predictor of play than payoff dominance and that a necessary but not sufficient condition for

coordination failure is the existence of a payoff dominated risk dominant equilibrium.

The results from the experimental literature are clearly replicated by the NNs which are converging to

playing the risk dominant equilibrium, as the probability of playing the risk dominant equilibrium given that

the other equilibrium is Pareto dominant, RD : PD + RD, is 0.8407. This is supported by the low value of

p(PD& ∼ RD), 0.0826, for selecting a payoff dominant equilibrium that it is not also risk dominant.

4.3. Compliance with dominance principles

The NNs have endogenously learned to play their dominant actions with a probability of 0.988, and to

perform one-level iterated dominance, equivalent in this case to best responding to an opponent’s dominant

action, with a probability of 0.9736. This last result is particularly remarkable as it involves higher level

reasoning or beliefs about an opponent’s likely course of action.

5. ANALYSIS AND RESULTS OF 3×3 GAMES

5.1. Homogeneity of trained NNs in Ψ3
hom

This section examines whether the NNs within a homogeneous agent simulation behave similarly or

whether they have evolved to play differently, so that various types of players emerge in the population.

Table III gives the Spearman cross-correlations of each NN’s probabilistic response to a test set of 1,000

games. The average value is simply the average Spearman correlation coefficient for each possible pairing

of two different NNs, the minimum and maximum values of the smallest and largest coefficients of any pair
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TABLE III
SPEARMAN CROSS-CORRELATIONS OF INDIVIDUAL NN OUTPUT IN Ψ3

hom

No. of PSNE

ρ Any 0 1 2 3

Average 0.9352 0.8084 0.9409 0.9242 0.8982
Minimum 0.9188 0.738 0.9198 0.8892 0.7915
Maximum 0.9541 0.8928 0.9591 0.95 0.9814

are also presented. It is clear that the NNs behave quite similarly in general as the correlations are high and

the minimum and maximum values quite close implying stability of the correlation coefficient. This result is

evidence that there exists little if any systematic between-subjects heterogeneity since that would imply that

each NN would play each game differently.

5.2. Statistical behavior of NNs during training

This section deals with the general dynamic behavior and characteristics of the neural networks’ responses

during the learning phase of two 3× 3 game simulations, one with homogeneous agents and the other with

heterogeneous agents. Figures 3 and 4 include three graphs showing different aspects of the networks’ be-

havior. The top graph breaks down behavior according to the number of players with a dominant strategy and

the middle graph plots behavior and its dependence on the number of PSNE each game exhibits. The lower

graph plots mean payoffs to all players against the number of elapsed generations.

5.2.1. Behavior of Ψ3
hom during training

From Figure 3 it is clear that the time series of the variables do not level off during the one million gen-

erations and still have significant positive first derivatives with respect to the number of elapsed generations.

There is rapid learning initially whose rate of change over time tapers off leading to a roughly linear learning

rate. The probability of joint PSNE play is quite similar for games with one, two or three PSNE, however

this does not mean that the NNs exhibited the same amount of learning for each type of game because the

appropriate baseline is the occurrence of joint PSNE play under random or uniformly distributed choice. Ac-

cording to random choice, for games with one, two and three PSNE the expectations of joint PSNE play are

0.11, 0.22 and 0.33 respectively implying that the networks found it easier to coordinate and play the PSNE

the fewer the number of PSNE in the game. A conspicuous result from the graph is the variability around the

underlying trend in the probability of PSNE play for games with three PSNE, which is much greater than the

variability for games with fewer PSNE. Interestingly, periods of cooperation are often punctuated by short

periods exhibiting a complete breakdown of cooperation so that the probability of playing one of the PSNE

falls to the level expected from random behavior, 0.33.

18



FIGURE 3.— Behavior of the Ψ3
hom simulation during training
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FIGURE 4.— Behavior of the Ψ3
het simulation during training
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From the bottom figure it is clear that payoffs increase sharply the first few thousand generations and after

100,000 generations payoffs are increasing at a roughly linear rate over generations. The fact that payoffs

are still increasing after one million generations verifies that the simulation has not yet reached a stochastic

steady state16.

5.2.2. Behavior of Ψ3
het during training

The same variables as in the homogeneous case are plotted in Figure 4 and qualitatively the same results

apply. The major difference however is that in all cases performance is lower in the heterogeneous simulation

as the probability of PSNE play is lower in all cases, as are the average payoffs. This is a direct result of the

lower level of average sophistication of the NNs in the heterogeneous population.

5.3. Convergence to Pure Strategy Nash Equilibrium play

5.3.1. Convergence by number of PSNE

For the NNs facing 3× 3 games performance drops compared to simulations of 2× 2 games, the result

of the increased computational complexities associated with the greater choice of possible actions. From

Table IV, after one million generations, the networks jointly play a unique PSNE roughly 62% of the time

which translates into a marginal probability of playing a PSNE action of roughly
√

0.62 = 0.787. In contrast,

Rey Biel (2004) found that in 3×3 games with a unique PSNE subjects played their PSNE action 79.625% of

the time. Performance in games with two PSNE is considerably higher than the random baseline of 22.22%,

whereas in games with three PSNE the networks jointly played one of the PSNE roughly 52% of the time,

again appreciably higher than the random baseline of 33.33%. It is apparent that in moving to games with

three actions instead of two, the complexity has increased appreciably so that the networks’ behavior may be

better described by heuristics rather than the NE prescription. More detailed analyses of the NNs’ behavior

in the case of multiple PSNE are given in Section 5.5.

The results for a heterogeneous agent simulation are provided in Table V. There is a clear positive rela-

tionship between the level of sophistication and the probability of joint PSNE play for all types of games. It

should also be noted that comparing the results for ψ10{50,3} in the heterogeneous simulation to the results

for the homogeneous simulation, where all agents are ψ{50,3}, the performance of this type of network is

16From the evidence at hand it seems that the simulations need to be run a significantly larger number of generations to achieve
convergence. Current computational impediments to performing this simulation restricted the total number of generations that could be
run both due to memory constraints and computational time required. It should be noted that evidence presented later in this paper will
indicate that human behavior is approximated well with less than the one million generations performed in this analysis and therefore is
adequate for the current purposes of this paper. Given the trends in increases in computational power and memory storage a simulation
with enough generations to achieve convergence should be possible in the near future. Such a simulation would allow the examination
of whether NNs can learn to converge to playing the PSNE in 3×3 games with arbitrarily small precision and will be performed by the
author when it is computationally feasible.

21



TABLE IV
PROBABILITY OF JOINT NE PLAY IN Ψ3

hom ACCORDING TO NUMBER OF PSNE

Number of PSNE 1 2 3

Probability of joint NE play 0.6198 0.5762 0.5248

TABLE V
PROBABILITY OF JOINT NE PLAY IN Ψ3

het ACCORDING TO NUMBER OF PSNE

No. of PSNE

NN agents 1 2 3

ψ1{∅,∅} 0.317 0.3552 0.3924
ψ2{5,1} 0.3447 0.3854 0.4217
ψ3{5,2} 0.354 0.4003 0.407
ψ4{5,3} 0.349 0.3825 0.4242
ψ5{20,1} 0.3907 0.4017 0.4176
ψ6{20,2} 0.4288 0.4323 0.4286
ψ7{20,3} 0.4251 0.4285 0.4458
ψ8{50,1} 0.4125 0.4026 0.4286
ψ9{50,2} 0.4379 0.4474 0.4458
ψ10{50,3} 0.4387 0.4579 0.4337

worse in the former simulation. This is not unreasonable as in the heterogeneous simulation ψ{50,3} plays

other networks of less sophistication who are not as adept at learning PSNE and therefore ψ{50,3} has a

smaller incentive to play and learn PSNE than in the homogeneous simulation.

5.3.2. Convergence by number of players with dominated actions

Investigating PSNE convergence by categorizing games according to the number of players that have a

dominated action leads to the results in Tables VI and VII. The probability of observing joint PSNE play is

strictly increasing in the number of players with dominant actions. This is intuitive because if both players

have a dominant action then all that is required of them to achieve the PSNE is to play their dominant action.

However, if only one player has a dominant action then in order for the PSNE to materialize one of the players

must perform an iterated dominance calculation, which is clearly more complicated.

Examining the effects of sophistication in the heterogeneous simulation, it is clear from Table VII that the

more sophisticated a NN the higher than probability of PSNE play for any given number of players with a

dominant action. As before the performance of ψ10{50,3} is worse in the heterogeneous simulation compared

to ψ{50,3} in the homogeneous simulation.

TABLE VI
PROBABILITY OF JOINT PSNE PLAY IN Ψ3

hom ACCORDING TO NO. OF PLAYERS WITH DOMINANT ACTIONS

No. of players with a dominant action 0 1 2

Probability of joint NE play 0.4448 0.573 0.7044
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TABLE VII
PROBABILITY OF JOINT PSNE PLAY IN Ψ3

het ACCORDING TO NO. OF PLAYERS WITH DOMINANT ACTIONS

No. of players with a dominant action

NN agents 0 1 2

ψ1{∅,∅} 0.2403 0.301 0.4085
ψ2{5,1} 0.257 0.3471 0.4048
ψ3{5,2} 0.2685 0.3317 0.4305
ψ4{5,3} 0.2626 0.3358 0.4235
ψ5{20,1} 0.2854 0.3759 0.5
ψ6{20,2} 0.3115 0.4035 0.5254
ψ7{20,3} 0.3084 0.4144 0.5031
ψ8{50,1} 0.299 0.3874 0.519
ψ9{50,2} 0.3241 0.4145 0.5188
ψ10{50,3} 0.3179 0.4486 0.5393

5.4. Dominance analyses

This section examines how compliant the NNs are to dominance and iterated dominance principles and

compares their behavior to experimental results. In particular, Stahl and Wilson (1995) performed an exper-

iment where subjects played various 3× 3 symmetric games with strictly and weakly dominated strategies.

They found that only 4.86% of subjects’ choices were strictly dominated and 5.42% of choices were either

weakly or strictly dominated. Costa-Gomes et al. (2001) find that subjects played their dominant strategies

almost 90% of the time in games with the following action structures: 2× 2, 2× 3 and 2× 4. Of particular

interest are their results on the relationship between NE play and the levels of iterated dominance required

for a player to identify his/her equilibrium decision. As expected, compliance with NE behavior drops as the

number of levels of iterated dominance increases, starting out at 89.2% for one level, falling to 65.5% for two

levels and 15.3% for three levels of iterated dominance. Another study by Schotter et al. (1994) confirmed

that subjects are much less likely to play a strongly dominated strategy than a weakly dominated strategy.

Mookherjee and Sopher (1997) corroborate these results, finding that weakly dominated strategies are played

only 2% to 8% of the time.

5.4.1. Analysis of Ψ3
hom simulation

An analysis of the networks’ behavior in games where dominance principles guide considerations of ra-

tionality follows. The computational requirements of adhering to own dominance are clearly less complex

than those of iterated dominance. The former requires a player to determine only which of his own actions is

dominant, whereas the latter makes the same requirement over an opponent’s actions but then also requires a

calculation of a best response.

Table VIII compiles the adherence to dominance principles for the homogeneous simulation. Given that
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TABLE VIII
PROBABILITY OF NN COMPLIANCE IN Ψ3

hom WITH DOMINANCE AND ITERATED DOMINANCE PRINCIPLES

Dominance It. dominance

Probability of compliance 0.9256 0.8209

TABLE IX
PROBABILITY OF NN COMPLIANCE WITH DOMINANCE AND ITERATED DOMINANCE PRINCIPLES IN Ψ3

het

NN agent Probability dominant play Probability best responding to opponent

ψ1{∅,∅} 0.8804 0.4637
ψ2{5,1} 0.8828 0.521
ψ3{5,2} 0.8893 0.5311
ψ4{5,3} 0.8722 0.5315
ψ5{20,1} 0.9168 0.6504
ψ6{20,2} 0.9317 0.7198
ψ7{20,3} 0.9422 0.7356
ψ8{50,1} 0.9271 0.6828
ψ9{50,2} 0.9413 0.7513
ψ10{50,3} 0.9574 0.7719

the NNs were not predisposed or preprogrammed in any way to follow dominance principles the results

are impressive. The probability of complying with dominance, 0.9256 is extremely high. Although iterated

dominance is violated more often than simple dominance, the NNs are still quite competent, adhering to this

principle with a probability of 0.8209.

5.4.2. Analysis of Ψ3
het simulation

The most reasonable hypothesis regarding the dominance behavior of the bounded rational networks is

that the NNs are more likely to comply with dominance and iterated dominance theoretical prescriptions the

more sophisticated they are. The rationale is that these prescriptions are essentially a discontinuous function

of payoffs, and discontinuities in general require a large number of continuous functions, hence neurons,

to be approximated well. This hypothesis is upheld by the results given in Table IX where sophistication

clearly increases the probability of adhering to dominance and iterated dominance principles. The probability

of playing a dominant action increases from a minimum value of roughly 0.88 for ψ1{∅,∅} to almost 0.96

for the most sophisticated network, ψ10{50,3}, and even more impressive is the respective increase in the

probability of complying with iterated dominance which rises from 0.4637 to 0.7719.

5.5. Equilibrium selection

In 3× 3 games the possible multiplicity of PSNE leads to a question of equilibrium selection in games

with two or three PSNE. Equilibrium selection is an important issue in the field and has inspired a number of

theoretical refinements to NE and experimental studies. In Cooper et al. (1990) a number of hypotheses are
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TABLE X
EQUILIBRIUM SELECTION BEHAVIOR OF NNS IN Ψ3

hom

Probability of playing types of equilibria

No. of PSNE p(PD) p(RD) p(PD& ∼ RD) p(RD&∼ PD)

2 0.3527 0.4236 0.1809 0.4111
3 0.2282 0.295 0.1389 0.2841

Probability of playing types of equilibria

No. of PSNE p(PD&RD) p(∼ PD& ∼ RD) RD : PD+RD

2 0.4511 0.0696 0.6577
3 0.3649 0.0868 0.6428

tested regarding play in 3× 3 coordination games with Pareto rankable equilibria. They discovered that the

hypothesis that play will generally fall into one of the Nash equilibria of the game was valid. However, the

hypothesis that play will converge to the Pareto dominant equilibrium was refuted as subjects often locked

into the Pareto inferior equilibrium. Even more interesting is the result that the Nash equilibrium that was

played could be influenced by the magnitude of payoffs resulting from an opponent’s strictly dominated

action, implying that players at some point must have been placing a positive probability on the play of a

dominated action by their opponents. Haruvy and Stahl (2004) find that for a set of 3× 3 games only 8.4%

of the time did the payoff dominant equilibrium predict actual experimental behavior, whereas the prediction

accuracy of the risk dominant equilibrium was 62.4%.

Two test sets of 1,000 generations each were created which differed only as to the number of PSNE of

the games included: one test set consisted only of games with two PSNE and the other only of games with

three PSNE. The trained neural networks were then presented with these test sets and their behavior was

documented with the intent to examine whether the experimental evidence in favor of risk dominant equilibria

is upheld.

5.5.1. Equilibrium selection for 3×3 games in Ψ3
hom

Table X provides the probability of playing different types of equilibria17. In games with two PSNE, a

RD equilibrium is roughly 1.2 times more likely to be achieved than a PD equilibrium. The most likely

equilibrium to be achieved, with a probability of 0.4511, is one that is both payoff and risk dominant. The

RD : PD + RD value of 0.6577 supports the conclusion that risk dominance is more important than payoff

dominance in equilibrium selection in games with two PSNE.

Turning to games with three PSNE the results are not qualitatively different from games with two PSNE.

17Computing the payoff dominant equilibria is trivial for 2× 2 and 3× 3 games, as is the calculation of risk dominant equilibria in
2× 2 games. However, the calculation of risk dominant equilibria for 3× 3 games is more involved and the required computations are
specified in Appendix C.2.
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Again the most likely equilibrium is one that is both payoff and risk dominant, but if risk dominance and

payoff dominance elect different PSNE, risk dominance is still significantly more likely. An overall trend

is that the probabilities of playing all types of equilibria are significantly less in games with three PSNE

compared to two PSNE. The obvious explanation of this is that the addition of another PSNE makes it even

more difficult for players to coordinate as there are now three instead of only two possible actions which

support an equilibrium.

In conclusion, the results are in line with the experimental findings of risk dominant equilibria being more

likely than payoff dominant equilibria, although quantitatively the preference is not as strong as in the exper-

imental studies.

5.5.2. Equilibrium selection for 3×3 games in Ψ3
het

The statistics in Table XI are the probabilities of attaining the equilibria specified in the columns given

that one of the players of the game is the one specified in the rows. For example, the intersection of the first

row and first column gives the probability of jointly attaining a PD equilibrium when one of the two players

is ψ1{∅,∅}. It is apparent that the level of sophistication of a bounded rational agent impacts equilibrium

selection in games with two PSNE moderately, and only minimally in games with three PSNE. In games

with two PSNE, as sophistication increases the probability of playing a risk dominant equilibrium increases

in general, as documented by the increases in p(RD), p(RD&∼ PD) and the increase in RD : PD+RD.

5.6. Payoffs analysis

This section assesses the variations in payoff performance of NN agents trained in homogeneous and

heterogeneous simulations of 3×3 games.

5.6.1. Analysis of individual NNs in the Ψ3
hom simulation

The average payoffs to the NNs are given in Table XII. The highest average payoffs occurred for games

with a single PSNE, followed by games with two and three PSNE and finally games with a unique MSNE.

5.6.2. Analysis of individual NNs in the Ψ3
het simulation

A hypothesis that more sophisticated networks would be capable of achieving higher payoffs is supported

in simulations of a test set of 3× 3 games, as communicated by Table XIII. The lowest average payoff

accomplished is 0.1459 by ψ1{∅,∅} whereas the highest payoffs, roughly 0.21, are attributed to the networks

with 50 neurons in each layer, ψ8, ψ9 and ψ10. There does not appear to be any significant variation in payoffs

across networks for games with zero PSNE, contrasting sharply with the large variation in payoffs for games
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TABLE XII
COMPARISON OF MEAN PAYOFFS OF NNS IN Ψ3

hom GROUPED BY NO. OF PSNE

No. of PSNE

0 1 2 3

Payoffs 0.0928 0.3291 0.2429 0.1522

TABLE XIII
INDIVIDUAL NN MEAN PAYOFFS IN Ψ3

het

No. of PSNE

NN agents 0 1 2 3 Any

ψ1{∅,∅} 0.1077 0.1681 0.1239 0.0971 0.1459
ψ2{5,1} 0.1004 0.1904 0.1471 0.103 0.1618
ψ3{5,2} 0.0882 0.1881 0.1514 0.0976 0.1586
ψ4{5,3} 0.0849 0.1988 0.1391 0.1072 0.1618

ψ5{20,1} 0.1169 0.2371 0.1761 0.11 0.1981
ψ6{20,2} 0.1045 0.2447 0.1663 0.1097 0.1973
ψ7{20,3} 0.1394 0.254 0.1577 0.0949 0.2098
ψ8{50,1} 0.1273 0.2643 0.1599 0.1048 0.2136
ψ9{50,2} 0.0985 0.2616 0.1724 0.107 0.2081
ψ10{50,3} 0.112 0.2526 0.1752 0.1159 0.2059

with a single PSNE. The rate of increase in payoffs with sophistication is smaller for games with two PSNE,

compared to games with a unique PSNE. The payoffs for games with three PSNE do not vary systematically

with the level of sophistication, with the simpler networks achieving roughly the same results as much more

sophisticated NNs18.

Finally, an interesting comparison can be made between the payoffs of ψ10{50,3} and the payoffs of net-

works of the same topology in the homogeneous population of NNs. The conclusion is that a sophisticated

NN earns higher payoffs for games that have at least one PSNE, when playing against a population of other

sophisticated NNs compared to playing against a population of less sophisticated agents. Hence, a sophisti-

cated agent if given the choice would prefer to play against other agents of similar sophistication, instead of

a population of less sophisticated agents.

This analysis, however does not allow for detailed examination of payoff variations according to the so-

phistication of both opponents in a game. The proposed solution is to perform spatial regression on the payoff

data by implementing an ordinal distance measure based on the relative sophistication of the NNs. It is as-

sumed that sophistication rankings follow the numbering i in the shorthand symbol for NNs ψi, so that the

sophistication of ψi is Si = i. The payoffs from all possible pairings of NN agents, are used as the observations

of the dependent variable in equation 1 where π j
i is the average payoff to NN i whenever it encountered NN

18The payoffs for games with three PSNE were calculated as the average of the last 500,000 generations of the training schedule
because of the large variability in behavior in these games as was pointed out in Section 5.2, rendering the test set results problematic in
drawing conclusions about relative performance.
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j.

(1) π j
i = α +βas((Si +S j)/2)+βrs(Si−S j)+βabs(abs(Si−S j))+ ε j

i

Three independent variables are used based on the levels of sophistication of the NNs in each game match-

ing. The variable (Si + S j)/2 is the average sophistication of the pair of NNs, with an estimated coefficient

denoted by βas. The variable Si− S j, is simply a measure of the difference in sophistication, or relative so-

phistication, between the two agents and its coefficient is βrs. Finally, the variable abs(Si−S j) is an absolute

measure of the similarity of the two neural networks and its associated coefficient is βabs.

This model allows the testing of three hypotheses. The first hypothesis is that the higher the average intelli-

gence of two opponents, the higher payoffs are i.e. βas > 0. The second hypothesis, that the more sophisticated

a network is relative to its opponent the higher its payoffs, implies that β̂rs > 0. The third hypothesis is that

payoffs are higher the more similar two networks are in terms of sophistication, implying βabs < 0. Such a

hypothesis could be reasonable in games where there exist more than one PSNE and coordinating becomes

an important issue. It may be easier for two agents to coordinate if they are of a comparable level of sophis-

tication since their behavior will likely be similar. This model is run separately on each subset of the games,

as defined by the number of PSNE, and the results are exhibited in Table XIV.

The data used for games with zero, one and two PSNE was a test set during which there was no NN learn-

ing, but because of the high variability of behavior in games with three PSNE, the last 500,000 generations

of the training set were used instead to estimate this equation. For games with zero, one and two PSNE, all

estimated coefficients have the same sign, βas > 0, βrs > 0 and βabs < 0 but the latter is only significantly less

than zero in games with zero PSNE. For games with three PSNE increasing average sophistication still has a

statistically significant positive effect on payoffs, but now βrs < 0 and βabs > 0. Hence, the more dissimilar

opponents are the higher the payoffs, and the higher the relative sophistication of an agent the lower payoffs

are.

Examining the incentives a player has to behave more sophisticated (if possible) it is easy to show that

for all games with less than three PSNE, dπ j
i /dSi > 0 i.e. players have an incentive to become even more

sophisticated, assuming their opponent’s behavior does not change. Note, that this conclusion holds regardless

of whether the player under examination is initially less or more sophisticated than his opponent. Turning to

whether agents playing games with less than three PSNE would prefer to play against sophisticated opponents

it can be shown that if Si > S j then dπ j
i /dS j > 0 but if Si < S j then dπ j

i /dS j < 0, which means that players

benefit if the sophistication of their opponent increases only as long as they are still more sophisticated than
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TABLE XIV
DEPENDENCE OF PAYOFFS ON THE DIFFERENCE IN SOPHISTICATION OF NN OPPONENTS IN Ψ3

het

# of PSNE Variable Coef. Bias Boostrap s.e. lower95% upper95%

0 (Si +S j)/2 0.0106 0.0000 0.0019 0.0070 0.0145
Si−S j 0.0030 0.0000 0.0008 0.0013 0.0046

abs(Si−S j) -0.0044 0.0000 0.0016 -0.0077 -0.0012
constant 0.1416 -0.0001 0.0111 0.1221 0.1664

Wald χ2(2) 44.0000
p(χ2(2)) > 0 0.0000

R2 0.3426

1 (Si +S j)/2 0.0080 0.0000 0.0012 0.0057 0.0106
Si−S j 0.0041 0.0000 0.0006 0.0030 0.0053

abs(Si−S j) -0.0006 0.0000 0.0011 -0.0027 0.0016
constant 0.1484 0.0002 0.0089 0.1303 0.1647

Wald χ2(2) 103.5000
p(χ2(2)) > 0 0.0000

R2 0.5218

2 (Si +S j)/2 0.0061 0.0001 0.0027 0.0007 0.0115
Si−S j 0.0034 0.0000 0.0010 0.0016 0.0058

abs(Si−S j) -0.0018 0.0001 0.0022 -0.0059 0.0029
constant 0.1479 -0.0009 0.0161 0.1156 0.1782

Wald χ2(2) 18.1300
p(χ2(2)) > 0 0.0004

R2 0.1820

3 (Si +S j)/2 0.0043 0.0000 0.0011 0.0024 0.0065
Si−S j -0.0011 0.0000 0.0005 -0.0023 -0.0002

abs(Si−S j) 0.0022 0.0000 0.0011 0.0001 0.0043
constant 0.0775 0.0000 0.0076 0.0626 0.0917

Wald χ2(2) 29.27
p(χ2(2)) > 0 0

R2 0.197

30



their opponent.

In games with three PSNE, dπ j
i /dSi > 0 if Si > S j but dπ j

i /dSi < 0 if Si < S j, whereas dπ j
i /dS j > 0 for

all values of Si and S j implying that agents always benefit when their opponent increases in sophistication.

5.7. Rule extraction and heuristics

Many cite the main drawback of NNs to be the fact that they are black boxes, in the sense that one cannot be

sure exactly what calculations are going on inside. This is a direct consequence of the fact that NNs encode

information in a distributed structure making it hard to extract any simple, comprehensible understanding

of how NNs come to the conclusions they do. As a response to this, researchers have studied how simple

rules can be extracted from a NN19. The breadth of research for NNs performing regression or function

approximation is more limited than for networks that are performing classification problems. This is partly

due to the fact that it is harder to come up with a simple set of rules for a regression problem due to the

continuity of the networks’ output in contrast to classification problems where the output is usually a small

set of classes.

There is an inherent trade off when extracting rules from NNs between accuracy and comprehensibility.

Accuracy is a measure of how good the fit of the extracted rules is compared to the actual NN output. How-

ever, comprehensibility dictates that rules be as simple and as few as possible which necessarily leads to a

detrimental effect on the fit of the extracted rules. The actual form of the model will be dictated more by

our demand that it be a simple and easily interpretable model which can examine whether specific salient

strategies have been discovered by the NN. Hence, in this particular application it is prudent to place more

weight on comprehensibility, given that a satisfactory level of accuracy is ensured.

A direct comparison between NN and human behavior can be performed by implementing the heuristics

that subjects have been found to use in experimental research. Also, since in this paper our interest lies in

whether the NN has learned game strategies such as avoiding to play dominated strategies and performing

basic iterated dominance, a regression model will be built incorporating these elements as well as the standard

heuristics in the experimental literature.

Many experimental studies provide statistical evidence of the use of particular heuristics specified by the

researcher. Hence, for the sake of comparison it is desirable to decompose the NN behavior in terms of the

heuristics commonly employed in these studies. Stahl and Wilson (1995) proposed to model the heterogeneity

of players by limiting their degree of sophistication to three levels. They defined Level-0 players as agents

whose play was a simple uniform distribution over pure actions. Higher level players were defined as best

responding to the assumption that their opponent was one level below them in sophistication e.g. a Level-1
19An excellent survey and taxonomy of rule extraction methods is presented in Huysmans et al. (2006).
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player best responded to a Level-0 player. Subsequent studies such as Costa-Gomes et al. (2001) also used

similar types and added some other types to their analysis. The relationship between the heuristics employed

in this paper and these previous papers is clarified below:

The heuristics are the following (henceforth referred to as the heuristic variables):

Minimax This heuristic, first expounded by von Neumann, states that players will try to minimize the maxi-

mum loss that an opponent can force them to suffer. This heuristic is the same as pessimistic or maximin

in Costa-Gomes et al. (2001).

Best response to minimax This heuristic best responds to the assumption that an opponent is playing ac-

cording to minimax. This heuristic was not included in previous studies to the best of the author’s

knowledge.

Maximax A player following this heuristic will play the action which includes the highest possible own

payoff. This heuristic is also referred to as optimistic in Costa-Gomes et al. (2001).

Best response to maximax This heuristic best responds to an opponent following the maximax heuristic.

This heuristic was not included in previous studies to the best of the author’s knowledge.

L1 This heuristic states that a player will best respond to a uniform prior distribution over his opponent’s

actions. Also referred to as naive in Costa-Gomes et al. (2001).

L2 This heuristic best responds to an opponent that plays according to the L1 heuristic. The same heuristic

exists in Costa-Gomes et al. (2001).

L3 This heuristic best responds to an opponent that plays according to the L2 heuristic. This heuristic is an

extension to the types in Stahl and Wilson (1995) and Costa-Gomes et al. (2001), where analysis is

limited to Level-2 types.

L4 This heuristic best responds to an opponent that plays according to the L3 heuristic. This heuristic is

another extension of the types in Stahl and Wilson (1995) and Costa-Gomes et al. (2001).

On the basis of widespread experimental evidence of conformance to dominance and iterated dominance

this paper will include dominance variables concurrently with these heuristic variables in models approxi-

mating NN behavior.

Regarding the classification of experimental subjects according to the type of heuristic that best describes

their behavior, Stahl and Wilson (1995) estimated the frequencies of types using a mixture model and found

that 17.5% were L0 types, 20.7% were L1, 2.1% were L2 and 43.1% were wordly Nash types, who assume

that all other players are either L0, L1, L2 or Nash equilibrium players and best responds to prior beliefs

about the frequency of each of these types20. The importance of Ln heuristics in explaining behavior is

also corroborated by the seminal study of Costa-Gomes et al. (2001) which also collected data on subjects’

20This type of player will therefore behave quite often as L1, L2, L3 as these are the best responses to L0, L1, L2.
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TABLE XV
LOGIT REGRESSION OF NN OUTPUT IN THE Ψ3

hom SIMULATION

Coef. Std. Err. t-stat. p-value lower95% upper95%

βminimax -0.005 0.009 -0.510 0.609 -0.022 0.013
βbr−minimax 0.071 0.008 9.170 0.000 0.056 0.087

βmaximax 0.073 0.008 8.950 0.000 0.057 0.089
βbr−maximax 0.084 0.008 10.860 0.000 0.069 0.100

βL1 0.217 0.009 23.320 0.000 0.199 0.235
βL2 0.460 0.008 55.390 0.000 0.443 0.476
βL3 0.322 0.009 36.780 0.000 0.305 0.340
βL4 0.260 0.009 29.640 0.000 0.243 0.278

βit.dom. 0.244 0.023 10.650 0.000 0.199 0.289
βdominated -0.512 0.017 -30.510 0.000 -0.545 -0.479

LR χ2(8) 39797.56
Pseudo−R2 0.1811

attention to payoff information, thereby allowing for greater power and precision in classifying subjects into

types based on their information search patterns. Using both decision and search information, the two most

important heuristics were by far L1 and L2, whose frequencies of occurrence in the subject pool were 44.8%

and 44.1% respectively.

5.7.1. Learned heuristics of networks in the Ψ3
hom simulation

Conditional logit regressions on the whole dataset incorporating all of these heuristics are exhibited in

Table XV. Also included as independent variables are dummies that denote whether an action is dominated

by at least one other action in a player’s action set, denoted by dominated. The variable, it.dom., captures

the possibility of the networks performing one-level of iterated dominance in games that are solvable by such

a strategy i.e. for 3× 3 games this requires the existence of a dominant action, not just a dominated action.

Alternatively, it is defined as playing the best response to an opponent’s dominant strategy, which guarantees

the existence of a definitive unique best response. These independent variables (henceforth referred to as the

dominance variables) do not make prescriptions in all types of 3× 3 games for the following reason. Since

a dominated action cannot support a Nash equilibrium the variable dominated is not defined in games with

three PSNE. For the same reason, the it.dom. variable can only support a single PSNE.

The heuristics L3 and L4 have been omitted from the analysis of games with three PSNE, because the

solutions to L1 and L3 are necessarily the same in this case, as are the solutions to L2 and L4. The intuitive

reasoning for this result is the following. Let the set of games with three PSNE be partitioned into two sets

based on the L1 responses of both players. In the first case, assume that the L1 solutions of both players lead to

a PSNE implying that they are best responses to each other. By definition the L2 solution for each player will

be the best response to the opponent’s L1 solution. But a best response to a PSNE is the PSNE action itself

33



TABLE XVI
Ln HEURISTICS IN GAMES WITH THREE PSNE

L1, L3 L2, L4
l c r

L1, L3 u - NE -
L2, L4 m NE - -

d - - NE

and therefore L2 and by induction all higher order Ln heuristics will prescribe the same action as L1. In the

second case, assume that the L1 solutions of the two players do not lead to a PSNE, however it is necessarily

true that each player’s action lies in the support of a PSNE. An example is given in Table XVI where the pure

strategy Nash equilibrium outcomes are denoted by NE. Let the L1 actions for both players be (u, l) leading

to a non-NE outcome. The L2 heuristic prescription is now (m,c), L3 again prescribes (u, l) and L4 returns

to (m,c). The intuition behind this is that since neither of the L1 actions are in the support of the NE at (d,r),

then higher order Ln heuristics which are best responses to the L1 actions cannot possibly prescribe actions d

and r. Hence, all higher order Ln heuristics must oscillate between the remaining two actions of each player,

so that for all odd values of n, Ln will prescribe the same action, and likewise for all even values of n.

All the independent variables in the regressions are dummy variables and therefore the magnitude of the

estimated coefficients can be used for direct cross-variable comparisons of the magnitude of estimated coeffi-

cients and their economic significance. Table XVII documents the results of conditional logit regressions on

parts of the dataset as distinguished by the number of PSNE in the games. In all the models, the L2 heuris-

tic is always the most significant factor affecting the network’s behavior as it causes the largest increase in

probability of playing the associated action. The minimax heuristic is not statistically significant at the 5%

level in the full dataset of games. In games with three PSNE only the maximax, naive and L2 heuristics are

statistically significant. Shifting attention to the dominance variables, dominated actions are always played

much less often as the coefficient is negative and large in magnitude (roughly of the same order as that of the

L2 heuristic). This result comfirms previous observations that the NNs have endogenously learned to avoid

playing dominated strategies. Even more interesting is the result for best responding to an opponent’s dom-

inant strategy. The large and statistically significant values of βit.dom. imply that the networks have learned

this more complicated behavior as well. The fit as measured by McFadden’s Pseudo−R2 is much lower in

the models explaining games with either zero or three PSNE, compared to those with one or two PSNE.

As an alternative means of assessing how well these heuristics explain the behavior of the NNs, Table

XVIII provides statistics on the percentage of the NN’s actions correctly predicted by a single heuristic.

The results confirm the main conclusion from the above conditional logit regressions as the L2 heuristic is

superior at predicting the NNs’ responses on the whole set of games. The next best heuristics are L3 and
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TABLE XVII
LOGIT REGRESSION OF NN OUTPUT GROUPED BY THE NO. OF PSNE OF GAMES

No. of PSNE Coef. Std. Err. t-stat. p-value lower95% upper95%

PSNE = 0 βminimax 0.000 0.017 -0.010 0.996 -0.034 0.034
βbr−minimax 0.037 0.015 2.480 0.013 0.008 0.067

βmaximax 0.059 0.016 3.740 0.000 0.028 0.089
βbr−maximax 0.039 0.015 2.620 0.009 0.010 0.069

βL1 0.304 0.029 10.600 0.000 0.248 0.360
βL2 0.618 0.028 21.980 0.000 0.563 0.673
βL3 0.274 0.028 9.860 0.000 0.220 0.328
βL4 0.327 0.028 11.570 0.000 0.271 0.382

βdominated -0.433 0.042 -10.400 0.000 -0.515 -0.351

LR χ2(7) 3828.56
Pseudo−R2 0.0808

PSNE = 1 βminimax -0.015 0.013 -1.180 0.239 -0.040 0.010
βbr−minimax 0.066 0.011 5.830 0.000 0.044 0.088

βmaximax 0.049 0.012 4.130 0.000 0.026 0.072
βbr−maximax 0.086 0.011 7.660 0.000 0.064 0.109

βL1 0.199 0.014 14.600 0.000 0.173 0.226
βL2 0.384 0.015 25.320 0.000 0.354 0.414
βL3 0.302 0.020 15.160 0.000 0.263 0.342
βL4 0.507 0.021 24.260 0.000 0.466 0.548

βit.dom. 0.130 0.024 5.410 0.000 0.083 0.177
βdominated -0.398 0.022 -17.950 0.000 -0.442 -0.355

LR χ2(8) 31178.90
Pseudo−R2 0.2441

PSNE = 2 βminimax 0.006 0.019 0.330 0.740 -0.030 0.043
βbr−minimax 0.084 0.016 5.220 0.000 0.053 0.116

βmaximax 0.113 0.017 6.710 0.000 0.080 0.146
βbr−maximax 0.101 0.016 6.280 0.000 0.070 0.133

βL1 -0.054 0.031 -1.730 0.084 -0.114 0.007
βL2 0.165 0.095 1.740 0.081 -0.021 0.351
βL3 0.451 0.029 15.380 0.000 0.394 0.509
βL4 0.319 0.095 3.350 0.001 0.132 0.506

βdominated -0.879 0.039 -22.280 0.000 -0.956 -0.802

LR χ2(7) 5531.11
Pseudo−R2 0.1295

PSNE = 3 βminimax 0.082 0.085 0.970 0.331 -0.084 0.248
βbr−minimax 0.104 0.073 1.420 0.155 -0.039 0.247

βmaximax 0.071 0.075 0.950 0.341 -0.075 0.217
βbr−maximax 0.079 0.073 1.080 0.282 -0.065 0.222

βL1 0.218 0.085 2.580 0.010 0.052 0.383
βL2 0.377 0.070 5.370 0.000 0.239 0.515

LR χ2(6) 46.16
Pseudo−R2 0.0248
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TABLE XVIII
PERCENTAGE OF NN ACTIONS CORRECTLY PREDICTED BY HEURISTICS IN Ψ3

hom

Heuristics

# PSNE minimax br−minimax maximax br−maximax L1 L2 L3 L4

Any 49.8 53 53.5 52.7 58.2 72.8 70.4 68.2
0 35 39.8 39.2 39.9 40.2 56 37.6 22.9
1 56.8 60.3 60.5 59.9 66.1 83.2 85.9 87.6
2 45.8 46.8 49.4 46.2 55.4 61.6 61.7 61.9
3 33.7 28.2 31.7 33.3 37.6 42.5 37.6 42.4

L4 followed by L1 with the rest of the heuristics performing significantly worse. It is interesting that we

have found evidence of heuristics not only incorporating own payoffs, such as minimax, maximax and L1 but

also heuristics involving best responses to opponents’ heuristics and therefore opponents’ payoffs. The most

difficult games for prediction are those with three PSNE and then those with zero PSNE, agreeing with the

conclusion from the conditional logit regressions. The most notable observation from the data on specific

games is that the L3 and L4 heuristics outperform L2 in games with a single PSNE.

5.7.2. Evolution of heuristic learning during training

The previous analysis focused on the final trained behavior of the NNs after one million generations, but

there is also the issue of how the networks behaved during the training and learning process. Indeed, there is

no reason to believe that human behavior is best approximated by the final networks, but rather may be better

explained by some level of experience corresponding to less than a million generations. Table XIX catalogs

the results from a series of conditional logit regressions estimated at different points during the training

process (data on all games regardless of number and type of NE was employed). The first column denotes

the subset of generations over which each regression was estimated, with the subsets created cumulatively

so that each value in this column gives the upper bound of the subset, the lower bound being defined by the

upper bound of the immediately preceding subset. For example, for the row with value 22, the sample used

was from the 2,000th to the 22,000th generations.

The first observation is that the Pseudo−R2 increases over time so that the chosen heuristics fit the NN

behavior better as learning progresses. The heuristics minimax, br−minimax and maximax do not change

significantly or achieve prominence during learning. Throughout the training the coefficients βdominated and

βit.dom. increase in magnitude with the former however always more economically significant than the latter.

An interesting result concerns the behavior of the coefficients βL1 and βL2 during training. Initially the

L1 heuristic explains behavior much better than the L2 heuristic, this continues to hold until roughly the

100,000th generation at which time the L2 heuristic overtakes the L1 heuristic in importance. The L2 heuristic

continues to increase in relative importance until the end of the training period where it is undeniably the most
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important heuristic. This behavior is reasonable since as the population comes to play the L1 heuristic more

often the networks in their attempt to best respond to their opponents will begin to learn to best respond to

this behavior. Regarding the plausibility of NNs as models of human learning, the importance of the L1 and

L2 heuristics in explaining NN behavior is encouraging, since as discussed above these two heuristics are

also the best predictors of human behavior in experiments. The simulations also give a possible explanation

of the heterogeneity of human behavior. Use of the L1 heuristic may be more predominant in individuals with

less experience, with human behavior evolving to the L2 heuristic with more experience21.

Since the NNs try to best respond to the behavior of their opponents, a reasonable hypothesis is that the

incidence of Ln play, for any integer n, will be subject to the following life-cycle. As incidence of Ln− 1

play increases this will eventually lead to an increase in the use of Ln, as a best response to Ln− 1. As

Ln play becomes adopted the use of the Ln− 1 heuristic should start declining as it will become relatively

unprofitable. This evolutionary life-cycle hypothesis of the heuristics is upheld by the data in Table XIX.

The L1 heuristic is initially increasing until the point in time when the best response to it, L2, reaches a

critical mass and thereafter is decreasing. The L3 and L4 heuristics are initially not important in explaining

NN behavior, but as the heuristic one hierarchical step lower than them becomes prevalent they begin to

become more important. For the duration of this training session the Ln heuristics where n≥ 2, do not reach

the point where their use starts declining, however a reasonable conjecture is that given enough training

generations they would also fall prey to this life-cycle hypothesis. It should be noted, that the L1 heuristic

entered its declining phase very quickly, namely after 42,000 generations whilst the rest of the Ln heuristics

did not enter the declining phase during these 1,000,000 generations. Hence, these higher-order heuristics

appear to have a longer life-cycle than less complicated heuristics. This is a reasonable conjecture because

learning higher order statistics should be increasingly hard for the neural networks and therefore the rate of

learning will probably slow down, thereby affording more time to the heuristics before they become obsolete

from the emergence of more sophisticated heuristics. The apparent positive correlation between heuristic

sophistication and the length of its life-cycle provides a practical limit to the rationality of real agents, who

have a finite history of experience.

The above results pooled the networks’ behavior into one equation independent of the type of game that was

played. The same model is now applied to subsets of the games based on the number of PSNE of games. This

allows for the possibility that the NNs have learned to classify games according to a similarity measure that

arose endogenously, and therefore behave similarly for games in the same class (i.e. with the same strategic

properties) but differently for games in different classes. In Table XX which provides the data for games

21A more rigorous test of this hypothesis would involve running simulations with birth and death of NN agents so that inexperienced
individuals are suddenly thrown into a population of more experienced agents.
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with no PSNE, the pattern is similar to the general results discussed above. Initially, the L1 heuristic better

explains the data but as the networks gain experience, the L2 heuristic becomes more important in explaining

behavior. Also, actions that are dominated are played significantly less often. In contrast to the results from

the analysis for all games, the L2 heuristic clearly retains its status as the most important heuristic till the end

of the training, as its estimated coefficient is almost double that of the next most important heuristic. Also, in

this case the L1 heuristic is more important than the L3 heuristic throughout the training.

Shifting focus to games with a unique PSNE, whose results are documented in Table XXI, the rank ordering

of importance of the heuristics changes appreciably. Initially, at the early stages of training L1 is again the

most important variable, only to be surpassed in due time by the L2 heuristic. All the while βL3 is increasing

over time, overtaking βL1 in magnitude between 600,000 and 700,000 generations, but never surpassing βL2

in magnitude. The most striking difference compared to previous results is that the L4 heuristic achieves

much greater prominence, overtaking even the L2 heuristic after roughly 800,000-900,000 generations. The

fit of the models as measured by the Pseudo−R2 is also much higher than for the other subsets of games

investigated.

Table XXII reveals another importance difference in NN behavior when the games played have two PSNE.

Although as usual the L1 heuristic is initially an important variable, by the end of the training βL1 is ap-

proximately equal to zero. The largest in magnitude coefficient is βL3 by the end of the training period, with

βL2 and βL4 following. The most striking result for this subgroup of games is the variability in the estimated

coefficient throughout the NN training. Table XXIII also attests to significant variability in the regressions

for games with three PSNE.

The divergence of the parameter estimates of these models for games with different numbers of PSNE

is strong evidence that the NNs have learnt to classify games according to their strategic properties. This is

impressive as the networks were not preprogrammed with any measure of similarity of games, but nonetheless

a fairly sophisticated similarity measure has arisen endogenously from experience.

5.7.3. Heuristics of bounded rational NNs

The repercussions of varying the sophistication of the topologies of the NNs on their reasoning and be-

havior is examined in Table XXIV. An evident trend exists for more sophisticated networks to use higher

order Ln heuristics, such as L3 and L4, and also to conform more to the prescriptions of dominance and iter-

ated dominance. L1 is the most important heuristic as gauged by the magnitude of the estimated coefficients,

for the networks ψ1{∅,∅}, ψ2{5,1}, ψ3{5,2} and ψ4{5,3} i.e. the four simplest networks. The L2 heuris-

tic then comes to dominate the behavior of the remaining networks, with the L1 and L3 heuristics trailing

next in importance for the most sophisticated networks. The finding that for the most sophisticated networks
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0.047
0.178

0.013
0.238

0.508
0.137

-0.240
-

-0.476
0.074

102
0.064

0.010
0.177

0.022
0.226

0.206
0.231

0.096
-

-0.361
0.077

122
0.020

0.073
0.088

0.011
0.264

0.448
0.178

-0.118
-

-0.544
0.080

142
0.028

0.005
0.167

0.046
0.178

0.715
0.264

-0.361
-

-0.348
0.079

162
0.053

0.045
0.176

0.036
0.112

0.229
0.203

0.163
-

-0.441
0.074

182
0.049

0.075
0.083

0.062
0.125

0.174
0.238

0.194
-

-0.568
0.082

202
-0.011

0.062
0.050

0.048
0.250

0.601
0.268

-0.182
-

-0.490
0.096

300
-0.001

0.108
0.113

0.069
0.200

0.245
0.226

0.209
-

-0.611
0.106

400
-0.001

0.038
0.186

0.079
0.008

0.104
0.345

0.304
-

-0.734
0.103

500
-0.089

0.078
0.038

0.048
0.129

0.497
0.349

-0.072
-

-0.795
0.107

600
0.027

0.136
0.051

0.130
0.126

0.399
0.270

0.050
-

-0.710
0.112

700
-0.012

0.020
0.133

0.023
0.014

0.025
0.426

0.456
-

-0.957
0.127

800
0.025

0.047
0.132

0.107
-0.018

0.039
0.336

0.385
-

-0.871
0.108

900
-0.027

0.111
0.089

0.085
0.049

0.365
0.376

0.109
-

-0.930
0.130

1000
-0.054

0.052
0.058

0.107
0.040

0.260
0.490

0.197
-

-0.942
0.135
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TABLE XXIV
LOGIT REGRESSION OF NN OUTPUT IN THE Ψ3

het SIMULATION

NN agents

ψ1{∅,∅} ψ2{5,1} ψ3{5,2} ψ4{5,3} ψ5{20,1}
βminimax 0.190 0.093 0.117 0.077 0.003

βbr−minimax 0.039 0.028 0.030 -0.004 0.058
βmaximax 0.121 0.119 0.116 0.134 0.069

βbr−maximax 0.059 0.033 -0.012 0.058 0.073
βL1 0.432 0.341 0.336 0.352 0.361
βL2 0.031 0.228 0.219 0.221 0.407
βL3 -0.007 0.038 0.136 0.019 0.131
βL4 0.041 0.023 0.021 0.047 0.075

βit.dom. -0.073 0.074 -0.001 0.098 0.143
βdominated -0.388 -0.479 -0.396 -0.493 -0.391

Pseudo−R2 0.079 0.082 0.081 0.084 0.114

NN agents

ψ6{20,2} ψ7{20,3} ψ8{50,1} ψ9{50,2} ψ10{50,3}
βminimax 0.006 0.013 0.007 -0.040 -0.014

βbr−minimax 0.172 0.083 0.045 0.078 0.080
βmaximax 0.078 0.094 0.078 0.071 0.064

βbr−maximax 0.075 0.075 0.042 0.118 0.070
βL1 0.234 0.229 0.337 0.271 0.219
βL2 0.462 0.524 0.483 0.533 0.502
βL3 0.150 0.141 0.052 0.204 0.235
βL4 0.113 0.104 0.087 0.094 0.099

βit.dom. 0.148 0.209 0.176 0.138 0.224
βdominated -0.450 -0.573 -0.451 -0.509 -0.564

Pseudo−R2 0.134 0.147 0.118 0.154 0.149

the βminimax, βbr−minimax, βmaximax and βbr−maximax coefficients are of much smaller magnitude compared to

the estimated coefficients of the other heuristics also deserves mention. However, in the simple linear NN

ψ1{∅,∅}, both βminimax and βmaximax are the most economically significant variables after L1. The fit of the

models tends to increase with the sophistication of the agents as exemplified by the pseudo−R2 statistics

provided in the table.

Another avenue for investigating the heuristics which fit the networks’ behavior best is a simple tabulation

of the percentage of the NNs’ chosen actions that are correctly predicted by each heuristic. Table XXV gives

the results for all games and for sets of games broken down by number of PSNE. For all possible types of

games the most successful predictions are given by the L2 heuristic, however it should be noted that the

success rate is not much higher than that for all the other Ln heuristics. In games with no PSNE, or mixed

strategy games, L1 and L2 make the correct predictions 51-52% of the time, significantly outperforming all

other heuristics. Shifting attention to games with a single PSNE reveals that the L2, L3 and L4 heuristics

all predict with an almost equal success rate of 70-71%, outperforming all other heuristics. The L3 heuristic
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TABLE XXV
PERCENTAGE OF NN ACTIONS CORRECTLY PREDICTED BY HEURISTICS INΨ3

het

Heuristics

# PSNE minimax br−minimax maximax br−maximax L1 L2 L3 L4

Any 50.2 49.4 52 49 60.7 63.0 57.4 56.9
0 41.3 39.5 43 39.5 51.4 51.6 23.3 22.7
1 55.8 55.7 57.7 55.4 66.2 70.9 70.3 71
2 44 42.7 45.8 41.5 55.4 53.4 57.6 53.4
3 30.4 21.3 25.7 25.6 37.3 35.1 37.3 35.1

performs best in the games with two PSNE although the other Ln heuristics are not far behind. Finally, in

games with three PSNE all the Ln heuristics have an accuracy of 35-37%, significantly above that of the other

heuristics.

5.8. Mixed strategy Nash equilibrium behavior of networks

The behavior of the NNs in the various simulations when facing games with a unique MSNE is examined

below22. One measure of whether the networks have learned to play according to the MSNE prescription to

some degree is to calculate a Spearman rank correlation between the responses of the NNs and the MSNE

solutions to each game. A non-parametric Spearman correlation test, ρ , was chosen as the probability of play

is not normally distributed and it is bound between zero and one, thereby invalidating the assumptions of the

standard correlation coefficient. These results are based on test datasets and not on the training dataset.

5.8.1. Analysis of NN behavior in games with a unique MSNE in Ψ3
hom

A Spearman correlation coefficient calculated between the NNs’ output and the PSNE prescription, ρ ,

gives a high value of 0.6236. However, this calculation includes actions that are played with zero probability

in a MSNE and as a consequence must include dominated actions. Hence, it is very likely that the neural

networks will assign a very low probability to such an action as a consequence of the NNs ability to learn

to avoid playing dominated actions. Not excluding such actions may lead to an overestimation of the degree

with which the NNs have learned the MSNE. The Spearman correlation for actions in the support of the

MSNE, ρs, falls to a value of 0.3926, which however is still significant.

Another approach is to model the responses of the NNs by conditional logit regressions (McFadden et al.,

1973) using three different sets of independent variables. In model 1, only heuristics are included as regres-

sors, in model 2 only the MSNE solution is used and finally model 3 nests both of the previous models by

incorporating all of the heuristics and the MSNE solution simultaneously. The results of regressing these

22Calculating the MSNE for 2×2 games simply involves solving two simultaneous equations but becomes much more complicated
for 3×3 games. A detailed discussion of the method employed to calculate the MSNE in these games is given in Appendix C.1.
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TABLE XXVI
MODELING OF NN BEHAVIOR IN GAMES WITH A UNIQUE MSNE AND NO PSNE

Coefficient Std err. t-stat. p-value lower95% upper95%

Model 1 βminimax -0.020 0.017 -1.180 0.239 -0.054 0.013
βbr−minimax 0.032 0.015 2.170 0.030 0.003 0.062

βmaximax 0.067 0.016 4.290 0.000 0.036 0.098
βbr−maximax 0.033 0.015 2.210 0.027 0.004 0.062

βnaive 0.287 0.026 10.890 0.000 0.236 0.339
βL2 0.591 0.025 23.160 0.000 0.541 0.641
βL3 0.242 0.025 9.570 0.000 0.192 0.291
βL4 0.291 0.026 11.290 0.000 0.240 0.341

βdominated -0.461 0.043 -10.840 0.000 -0.545 -0.378

Pseudo−R2 0.0712

Model 2 βmsne 0.990 0.022 44.150 0.000 0.946 1.034

Pseudo−R2 0.0416

Model 3 βminimax -0.029 0.017 -1.700 0.088 -0.063 0.004
βbr−minimax 0.034 0.015 2.300 0.021 0.005 0.064

βmaximax 0.070 0.016 4.460 0.000 0.039 0.101
βbr−maximax 0.036 0.015 2.400 0.016 0.007 0.065

βnaive 0.252 0.027 9.470 0.000 0.200 0.305
βL2 0.491 0.027 17.890 0.000 0.437 0.545
βL3 0.209 0.026 8.190 0.000 0.159 0.259
βL4 0.264 0.026 10.190 0.000 0.214 0.315

βdominated -0.407 0.043 -9.480 0.000 -0.491 -0.323
βmsne 0.298 0.030 9.940 0.000 0.239 0.357

Pseudo−R2 0.0733

models are shown in Table XXVI. The measure of fit used is the Pseudo−R2 proposed by McFadden et al.

(1973) which is simply 1− ll( f ull model)/ll(constant onlymodel), where ll denotes the log-likelihood. Typ-

ically, values of this measure of fit are much lower than those of standard R2, and Louviere et al. (2000) and

Hensher and Johnson (1981) argue that values between 0.2 and 0.4 represent a good fit.

In model 1 where the dependent variable is explained only by standard heuristics, it is the L2 heuristic

which stands out as the most important determinant with most of the other heuristics following at an appre-

ciable distance. The Pseudo−R2 value of 0.0712 declares that although the fit is appreciable there is still

much variance to be explained. Model 2 is a much more parsimonious model as it has only one regressor

compared to the heuristics used in model 1. The R2 is lower than that of model 1 however it uses only the

MSNE solution to explain behavior. Model 3 utilizes all the regressors from models 1 and 2 and as expected

provides the best fit out of the three with a Pseudo−R2 of 0.0733 although only marginally so compared to

model 1. The most important heuristic is still L2, the coefficient on the MSNE solution is much smaller than

in model 2 but still important in explaining behavior.

A density plot of actual neural network behavior, in terms of the probability of playing each action in the
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FIGURE 5.— Density plot of MSNE and NN output for 3×3 games in Ψ10,3,r
3×50
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TABLE XXVII
CORRELATION OF INDIVIDUAL NNS’ OUTPUT AND THE MSNE PRESCRIPTION IN Ψ3

het

NN agents

Correlation ψ1{∅,∅} ψ2{5,1} ψ3{5,2} ψ4{5,3} ψ5{20,1}
ρ 0.3983 0.4602 0.466 0.4684 0.555
ρs 0.0847 0.1843 0.1865 0.1895 0.3129

NN agents

Correlation ψ6{20,2} ψ7{20,3} ψ8{50,1} ψ9{50,2} ψ10{50,3}
ρ 0.5976 0.5874 0.5558 0.6103 0.6189
ρs 0.3813 0.3576 0.3245 0.4002 0.3919

support of the MSNE, versus the MSNE prescribed probabilities from a test data set of 3× 3 games with

unique MSNE is presented in Figure 5. The level of shading respresents the frequency of combinations of

these points, so that lighter shades represent a higher concentration of datapoints in that area. The density

plot displays a roughly linear relationship throughout all values of the MSNE prescription, albeit with a large

degree of dispersion around the 45◦ line from the origin. This confirms the statistically and economically

significant βmsne estimates from the conditional logit regressions.

5.8.2. Analysis of NN behavior in games with a unique MSNE in Ψ3
het

An analysis of the Spearman correlations between types of NNs in the Ψ3
het simulation follows. The first

row in Table XXVII compiles the Spearman correlation coefficient, ρ , for each type of NN including all

possible actions, even those not in the support of the MSNE solution. The second row calculates the Spearman

correlation only for actions in the support of the MSNE, denoted by ρs. It is clear from the table that including

these observations does lead to an overestimation of the NNs’ MSNE behavior as ρs is much smaller than ρ

for all types of NNs.

By far, the smallest value of ρs was exhibited by the simplest network, ψ1{∅,∅}, with a value of only

0.0847, indicating that play was driven mostly by other considerations. Another observation is that ρs is

positively related to the number of neurons in each layer, but not correlated with the actual number of layers.

Increasing the number of neurons per layer from 5 to 20 leads to an abrupt increase in the correlation, whereas

increasing it from 20 to 50 leads to a very small increase only. The correlation for ψ10{50,3} is very close to

that of the networks in the homogeneous simulation, which share the same topology. Hence, playing against

other less sophisticated NNs in the heterogeneous simulation does not seem to significantly affect MSNE

behavior.
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6. COMPARISON OF NN BEHAVIOR TO HUMAN SUBJECT EXPERIMENTAL STUDIES

The previous section documented the behavior of the simulated NNs and compared it to some empirical

facts from various experiments, such as PSNE play, equilibrium selection, and found a high degree of similar-

ity. This section will go further by using five experimental studies where human subjects were presented with

a variety of one-shot games. Data from these studies provide the probability distribution over actions for each

game that was played by a population of subjects. Likewise, it is possible to attain the probability distribution

data from the simulated NNs and then compare the results to identify how well the NNs fit the behavior of

human subjects. The measure of fit that will be used is the Spearman correlation of experimentally observed

probabilities of actions and the simulated probabilities of actions from the NNs.

There are two important issues that need to be addressed before this comparison can be made. Firstly, the

NNs were trained on games that were necessarily bound between -1 and 1, and therefore a mechanism is

required that translates payoffs from the experimental games to payoffs that are admissible to the NNs. The

most intuitive way of achieving this without affecting the ranking of payoffs is simply to scale or normalize a

game’s payoffs so that its maximum payoff is equal to one. A more complicated approach might try to trans-

late the game payoffs to the equivalent payoffs in real currency to the subjects, thereby keeping information

about the relative magnitude of incentives for different games and experiments. However, this is extremely

complicated and although it would preserve the relative payoffs there would still be an issue of how to cali-

brate the absolute payoffs. As a solution, all statistics will be run for different payoff scaling factors. Firstly,

all games will be normalized so that the absolute value of the largest in magnitude payoff is equal to one.

Then a set of these games, scaled by values between zero and one inclusive in steps of 0.1, will be created

and the Spearman correlation coefficient will be estimated for each of these scaled games.

A more important issue that needs to be addressed is what level of NN experience accurately reflects the

experience brought by subjects to experiments. There is no reason to believe that any arbitrary number of

generations or the limiting behavior of the NNs is appropriate. Hence, the number of generations of experi-

ence is a variable that needs to be estimated. The way that this is accomplished is by estimating all statistics

for different levels of experience and then observing at which level the best fit is achieved. This is especially

important because the proportion of different types of games that arises with the random sampling scheme

will not coincide with the proportions that have occurred in subjects’ lives. Hence, a different number of

generations may be necessary for each type of game to correct for this.

Essentially, two unknown parameters must be estimated or fitted, the scaling parameter for payoffs and the

number of elapsed generations. The data was drawn from Ivanov (2006), Stahl and Wilson (1995), Binmore

et al. (2001), Rey Biel (2004) and Tang (2001) which utilize a variety of 3×3 games with different properties.
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TABLE XXVIII
NN BEHAVIOR COMPARED TO HUMAN EXPERIMENTAL STUDIES

Unique PSNE MSNE 3 PSNE

Biel Ivanov S&W Binmore Tang S&W Binmore S&W

ρ 0.74 0.8165 0.58 0.8857 0.5121 0.49 0.7762 0.55
Generation 100,000 1,000,000 10,000 10,000 1,000 5,000 800,000 90,000
Scale factor 1 1 0.2 1 1 0.2 1 0.1

Rey Biel (2004) presented ten games to subjects, all of which exhibited a unique PSNE but differed in regards

to how many, if any, levels of iterated dominance were necessary to solve the games. Ivanov (2006) also

presents subjects with ten games with a unique PSNE, only three of which are dominance solvable. Binmore

et al. (2001) investigates the MSNE behavior of subjects by presenting them with seven different zero-sum

games, only three of which are 3×3 and will be used here. Tang (2001) uses three games which all exhibit

the same MSNE, with one of the games also exhibiting two other equilibria where only one player is mixing.

Stahl and Wilson (1995), in contrast to the previous studies use a set of symmetric 3× 3 games with much

greater variety than the previous studies. Out of the twelve games used three had a unique MSNE, five had a

unique PSNE (three strict and two weak dominance solvable games) and the remaining four exhibited three

PSNE.

The results are given in Table XXVIII, which identifies the results from each study grouped by the number

and type of NE. Apart from the estimated Spearman correlation coefficients, the table also provides the

number of elapsed generations and the scale factor that maximize the value of ρ . Overall, the Spearman

correlations are high, the lowest value equal to 0.49 for games with a unique MSNE and the maximum value

equal to 0.8857 for games with a unique PSNE. The NNs best described the average behavior of games

with a unique PSNE, followed by games with a unique MSNE and finally games with three PSNE. The

correlation coefficient of 0.55 for games with three PSNE is impressive given that these games create the

biggest coordination problems and therefore are quite challenging to describe. In conclusion, the analysis

is very encouraging regarding the similarity of behavior between experimental subjects and simulated NN

agents.

7. CONCLUSION

This paper presented a single model for describing behavior and learning in the whole class of n× n

randomly generated normal form games, regardless of how many PSNE the games exhibited or any other

considerations. More importantly, this was achieved without reverting to a case-based approach and exoge-

nously imposed measures of the similarity of games, as is usual done in the existing theoretical literature.

The results of the neural network simulations in terms of how well they fit experimental human behavior
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were very encouraging. A high degree of correlation was found between the observed behavior of subjects

in five different studies of one-shot games and the predicted behavior of the trained neural networks. The

Spearman correlation coefficients ranged from 0.49 to 0.8857 which is particularly impressive given that the

neural networks had never seen these games before and that these studies covered a wide variety of strategic

games with different types and numbers of Nash equilibria.

In particular, there was an endogenous emergence in the NNs of behavior based on heuristics, such as

L1 and L2, that have been found to explain humans’ experimental behavior well. What is striking is that

the neural networks were not predisposed or guided to learn these principles, they emerged from the simple

property of myopic ex-post best response coupled with a backpropagation learning algorithm. The estimated

coefficients of regressions performing rule extraction from the trained NNs showed significant differences

when estimated separately for each type of game, as defined by the number of Nash equilibria in a game. The

implication of this is that the NNs have indirectly learned to differentiate the games based on some similarity

or classification measure that has arisen endogenously during the simulations.

The ability of the neural networks to learn principles of dominance and iterated dominance, with less

success in the latter case also conforms to experimental results. Near convergence to the PSNE in games with

a unique PSNE was observed in the simulation involving 2× 2 games, with significant movement towards

the PSNE in 3× 3 games. A more definitive answer as to whether these NNs would converge in the 3× 3

game simulations would require many more simulations as learning slows down appreciably in this case. The

fact that the speed of learning slows down rapidly in 3×3 games is an important result as an agent may not

be alive long enough to reach convergence and therefore this slowdown in the speed of learning may lead

to a practical upper bound to agents’ cognitive abilities. Such a problem might be especially important for

humans as the number of games they will play in a lifetime or before they participate in an experiment is

certainly constrained.

The NNs have also shown a preference towards playing risk dominant equilibria over payoff dominant

equilibria, which is especially acute in the 2× 2 game simulations, again in accordance with documented

human behavior. In games with a unique mixed strategy Nash equilibrium, the neural networks’ behavior

was found to be positively correlated with the mixed strategy Nash equilibrium prescription although there

were deviations as is also the case with human experimental data.

The learning literature in repeated coordination games commonly uses the principle of insufficient reason to

assume uniform behavior or beliefs as the initial conditions to the learning algorithms they employ. However,

equilibrium selection is dependent on initial play at time zero since the starting point can put play in basins of

attraction of different Nash equilibria. One of the advantages of the trained NNs is that they can provide better

estimates of the initial behavior of experimental subjects, which may lead to very different results regarding
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equilibrium selection because of path dependence.

Finally, an analysis of the relationship between payoffs and the relative sophistication of two players found

that for games with less than three PSNE an increase in sophistication of an agent always leads to higher

payoffs. Interestingly, as long as an agent remains more sophisticated than his opponent, increasing the so-

phistication of the opponent is beneficial, whereas in the opposite case it is detrimental. Hence, if sophisticated

agents could choose which opponents to play against they would generally have an incentive to pick agents

that are only slightly less sophisticated than themselves.

The possible directions for future research are many. Although this chapter has only explored the appli-

cation of NNs for one-shot games, the above setup is sufficient to analyze repeated games as well. There is

no restriction to providing the NNs with repeated games with exactly the same payoffs and analyzing their

behavior, and if desired, including dependence on past behavior can be easily accomplished by adding lagged

variables to the input layer.

Numerous other extensions can be implemented involving the setup of the population and the evolutionary

processes governing it. This chapter has implicitly assumed the simultaneous birth of these agents into a

population pool in which they participate equally. These agents however never died and no new births of

agents occurred after the initial period. A more interesting case would be to allow for the birth and death of

said agents at any time during the simulation. The birth and death rates could be a simple independent Markov

chain process or could depend endogenously on other variables. For example, the probability of death in any

generation could be a decreasing function of the payoffs the agent has received thus far. Allowing for this

would make the networks even more realistic and would also probably allow the evolution or learning of a

prospect theory type of utility curve. This would occur for example if survival is a step function of payoffs

so that losses from negative payoffs would be more disadvantageous than gains of the same magnitude as

they would bring agents closer to the survival cutoff value. Also, the birth of an agent into a population of

experienced agents would also be worthwhile investigating. An interesting question would be whether this

would help the agent to learn faster than entering a population of agents with no prior experience, or whether

the more experienced networks would be able to consistently outsmart these younger agents on the basis of

their experience.

Another avenue is to introduce social networking between agents. Network formation could be modeled

by having agents which have accumulated more payoffs, or are wealthier, to interact more often with agents

of greater wealth. This would cause groups to emerge whose pattern of play may be different and would

also allow examinations of the emergence of inequality in the population. For example, the richer agents may

become more risk seeking as they repeatedly encounter other rich agents for whom there is little risk of falling

below the critical survival level. Another interesting extension is allowing agents to choose their opponents,
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for example they may seek to interact with the agents that have in the past history of play given the highest

payoffs to a player e.g. agents that have cooperated instead of defected in past Prisoner’s dilemma games.

The main goal of this paper was to determine whether NNs were appropriate models of generalized human

learning, in contrast to another possible application which is to specifically design NNs that outperform other

types of agents in simulations of this type. This is another subfield of the ACE literature that involves de-

signing intelligent agents. Since maximizing the performance of the NNs was not part of the research agenda

of this paper, a relatively simple NN was chosen to model agents, and a relatively simple standard training

algorithm for the NNs was implemented. Future research could focus more on maximizing the performance

of NNs when placed in such simulations or competitions. Other NN topologies could be considered instead of

the multilayer feedforward network presented here. For example, networks with explicit memory capabilities,

instead of the implicit memory capabilities of feedforward networks could be implemented. Other approaches

could be the use of Support Vector Machines (SVM), or recurrent neural networks which would be particu-

larly useful for repeated games. When designing such agents, important considerations are the performance

of the agent, the speed of learning and its flexibility to adapt. This is of paramount importance if the agent

is to be competing in an environment where other agents are also learning i.e. a non-stationary environment.

In this respect replacing the backpropagation algorithm with more complex training algorithms, in particular

ones that incorporate second-order information, could yield good results.
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A. TECHNICAL PRESENTATION OF NEURAL NETWORKS

A.1. Detailed formulation of feedforward neural networks

Figure 6 is a detailed technical diagram of the topology of a feedforward neural network. The first layer is

the input layer and each input neuron is denoted by pr where r = 1, ...,R. Each pr is the payoff for a specific

player from a specific cell for each game that will be played. For example, in a two player game with two

actions for each player the value of R would be eight. The second layer consists of S neurons, each of which

is connected to all the input neurons, resulting in a total of R · S connections between the first and second

layers. Each connection is associated with a weight, w2,1
s,r , with s,r denoting a connection from the rth neuron

to the sth neuron and where the superscript 2,1 represents that these weights are between the first and second

layers of the NN. The activation of each neuron in the second layer, i2s , is the summation of the product of the

inputs and their corresponding weights plus a constant or bias, b2
s . For example, for each of S neurons in the

second or hidden layer:

(2) i2s = b2
s +

R

∑
r=1

w2,1
r,s · pr

These inputs are now passed through a non-linear function, often called the squashing function, f1, in this

particular case the hyperbolic tangent sigmoid transfer (or tansig) function, f1(is) = 2 ·(1+e−2i2s )−1−1 which

maps values from −∞ to +∞ to the interval (−1,1). The resulting outputs, as, are passed to the the final or

output layer which is comprised of T neurons. Each neuron will output the probability of each available

action being played, hence T is equal to the number of actions available to each player. Again each neuron in

the output layer is connected to every neuron in the second layer with connection weights, w3,2
s,t . The input to

each t neuron is the summation of product of the outputs, as, and the corresponding weights, w3,2
s,t plus a bias

b3
t :

(3) i3t = b3
t +

S

∑
s=1

w3,2
s,t ·as

These inputs are transformed by the function, f2, resulting in the final outputs of the NN, yt . In order for

these outputs to be interpretable as probabilities of playing each action they must sum to one i.e. ∑T
t=1 yt = 1.

This is achieved by using a softmax function where yt = f2(i3t ) = ei3t

∑T
t=1 ei3t

. In the case of two action games,

the number of output neurons, T , is equal to two, so that the resulting values of these two neurons are the

probabilities of playing each action.
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A.2. NN backpropagation algorithm

Knowledge is stored in NNs by the weights and biases of all the neurons, which is why it is referred to as

distributed knowledge since it is not localized in any specific region of the NN structure. Hence, learning in

a NN is accomplished through the updating of the weights and biases after presentation of each set of inputs,

in this case each game’s payoff matrix. In supervised learning, for each set of inputs, P = {p1, ..., pR}, there

exists a set of ideal outputs, Z = {z1, ...,zT }.

The question now arises as to what the agent shall regard as the ideal or correct output, since in contrast to

Sgroi and Zizzo (2002) there is no external teacher to provide this. Selten (1998), one of the key proponents

of bounded rather than perfect rationality of agents, puts forth a qualitative theory called learning direction

theory. Although not a fully fledged theory it is more of a general qualitative principle of learning from which

more specific quantitative learning models can be fashioned. Selten (1998) argues that a general conclusion

that can be drawn from the experimental literature is that the general principle guiding learning is ex-post

rationality. This implies that an economic agent will move or modify his action in the direction of ex-post

best response to the immediately prior outcome. Implementations of learning direction theory include an

application to the Winner’s Curse in Selten et al. (2005), an explanation of how people learn to allocate

resources in Rieskamp et al. (2003), modeling behavior in guessing games Nagel (1995) and an application

to auction theory in Ockenfels and Selten (2005).

In the spirit of ex-post rationality the ideal output will be defined as the hypothetical best response of the

NN after observing the action chosen by its opponent. Hence, exactly one zt will be equal to one and the rest

will be equal to zero for each set of inputs. Define the mean square error, E, of the network, to be:

(4) E =
1
2
·

T

∑
t=1

(zt − yt)2

The most common learning algorithm used in training NNs is the backpropagation algorithm which uses a

gradient descent technique. After the presentation of each set of inputs the weights are changed according to

the following equation:

(5) (w·,·
·,· =−η ∂E

∂w·,·
·,·

This is a gradient descent technique as the updating of the weights depends on the negative of the gradient

of the error function and on its magnitude, where η is a constant referred to as the step size (or learning rate)

that governs the magnitude of the change in the weights. Hence, weights will be changed in the direction
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which reduces the error, E, and the magnitude of the change will also be related to the sensitivity of the error

function to small changes in the weight. The necessary algebra to derive ∂E/∂w for both output layer and

hidden layer neurons is presented below.

In more detail, for weights in the output layer, using the chain rule leads to the following derivation:

(6)
∂E

∂w3,2
s,t

=
∂E
∂yt

∂yt

∂ i3t

∂ i3t
∂w3,2

s,t

However, from equation 3 it is clear that:

(7)
∂ i3t

∂w3,2
s,t

= as

and from equation 4:

(8)
∂E
∂yt

= (yt − zt)

Substituting these equations into equation 6 results in:

(9)
∂E

∂w3,2
s,t

= (yt − zt)as f
′
2(i

3
t )

The necessary calculations for weights in hidden layers is more involved as the desired output of such

neurons is not immediately available as is the case for output layer neurons. Using the chain rule, the analog

to equation 6 for a hidden layer neuron is:

(10)
∂E

∂w2,1
s,r

=
T

∑
t=1

∂E
∂yt

∂yt

∂as

∂as

∂w2,1
s,r

This equation now has a summation of terms over t since hidden layer weights can affect the error of the NN

through all the output layer neurons due to the propagation of the effect of w2,1
s,r through the interconnections

between the sth neuron and all T neurons in the output layer. The derivative of the output of the sth neuron
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with respect to the weight under investigation is given by:

(11)
∂a2

s

∂w2,1
s,r

= pr f
′
1(i

2
s )

The derivative of the error function w.r.t. the output of each final layer neuron, ∂E/∂yt , is still given by

equation 8. Finally, the derivatives of the output of each final layer neuron w.r.t. the output of each hidden

layer neuron are given by:

(12)
∂yt

∂w2,1
s,r

= w3,2
t,s f

′
2(i

3
t )

In conclusion, substituting equations 11, 8 and 12 into equation 10 leads to the following equation, which

is well defined as both f1 and f2 are differentiable functions:

(13)
∂E

∂w2,1
s,r

= pr f
′
1(i

2
t )

T

∑
t=1

(yt − zt)w3,2
t,s f

′
2(i

3
t )

B. ROBUSTNESS OF SIMULATIONS

The behavior of the agents in the simulations is a function of the number of layers and neurons, of the

initial starting weights and of the learning rule (including the learning parameter rate). The number of layers

and neurons are hypothesized to influence the behavior of the networks especially through their effects on the

complexity and bounded rationality of the networks.

However, the implicit assumption is that differences in initial weights and learning rates (within reason-

able values) have no significant effect on NN learning. The reference to “reasonable” learning rates is made

because with extreme learning rates (near zero or one) the NN will not learn at all. However, there is a range

of suitable parameter values where learning is viable and for this range the end results should be very similar.

Since there is no a priori reason to select specific initial weights or learning rates it is necessary to check for

the robustness of results with respect to variations in these parameters.

A common observation in standard uses of NNs such as forecasting is that the effect of the initial weights is

significant and may not necessarily wear off with more learning i.e. there exists a form of history dependence.

In particular, because the learning algorithms employed in NNs are susceptible to converging on a local

minimum rather than a global minimum certain initial values for weights may lead to significantly worse

61



behavior. However, there is an important difference between the usual forecasting applications of NNs and

the application employed in this paper. In standard forecasting applications, the NN is presented with a fixed

input and desired output vector so that if a learning algorithm becomes stuck at a local minimum it will

remain there. However, in this application neither the input nor the desired output are fixed. The former

varies because of the random sampling of each game’s payoffs and the latter because the decision rule of an

agent’s opponent is stochastic. Hence, even if the backpropagation learning procedure happens to be led to an

undesirable region of the error surface, given enough generations the weights will always escape this region

due to the stochastic nature of the system. Hence, in this application initial weights may affect the speed of

convergence to a steady state, but given a large enough number of rounds they should not affect convergence

to the global minimum.

B.1. Robustness to initial weights

The initial weights for the NNs throughout this paper are determined using the Nguyen and Widrow (1990)

technique. The dependence of the trained network responses on initial weights will be tested by running ten

simulations where the networks are randomly initialized with different weights and examining the correla-

tion of the respective network outputs after training. All ten simulations were run for 100,000 generations

with exactly the same training data sets and the resulting trained NNs, all of topology ψ{50,3}, were then

presented with the same test data set. Finally, the outputs of all the networks in a simulation were averaged to

give the representative behavior of that particular simulation. It is these averaged outputs that the Spearman

correlation coefficients were calculated on. In every possible pairing of simulations, the Spearman correla-

tion coefficient was always greater than 0.99, a very strong indication that initial weights do not significantly

influence the long-run learning of a population of neural networks.

Another measure of the dependence of NN behavior on initial weights is to calculate the Mean Absolute

Difference (MAD) between average simulation outputs. The network averaged MAD, calculated on all pos-

sible combinations of simulations, was found to be only 0.0222. This is extremely strong evidence that the

simulations do not exhibit long run dependence on the initial starting parameters of the NNs.

B.2. Robustness to learning rate parameters

The learning rate often utilized in the literature for online learning is equal to a value of 0.01, although

this is not a steadfast rule as it depends on the application. Robustness of the learning results of trained NNs

will be examined by varying the learning rate from a minimum value of 0.0025 to a maximum value of

0.05, and then analyzing the similarity in NN outputs across the learning rates. This will be accomplished
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by computing the pairwise Spearman correlation coefficients between the outputs of the trained NNs. Once

again, the Spearman correlation coefficient was always found to be greater than 0.99 implying that the value

of the learning rate parameter was not an influential factor on NN learning.

The network averaged MAD for this case is 0.0324, which again is very reassuring concerning the limited

impact of the learning rate on the learned behavior of the NNs. This also implies that the impact of changing

the learning rate on the average speed of agents’ learning is minimal. These results are reassuring as to

the robustness of the approach employed in this paper. NN practitioners may be surprised by such strong

robustness, however it is a consequence of the subtleties of this application, namely the stochastic nature of

the learning process due to the online learning procedure, the random sampling of games and the stochastic

decision rule employed.

B.3. Experimentation with other more sophisticated algorithms

The main results of this paper are based on the use of the backpropagation algorithm on the pretence

that it is more biologically reasonable than other more complex algorithms used in the neural networks field.

Preliminary investigation of simulations with other algorithms do not reveal a dependence of the results on the

learning algorithm used. The driving factor seems to be the basic assumption of learning by adapting internal

weights according to myopic best response. The exact mechanics and calculations of weight adjustments in

order to better respond do not seem to have any significant effect apart from changing the speed of learning

(and even the difference in speed of learning was not particularly acute). Also, the learning process and the

types of heuristics discovered by the neural networks still remain the same.

The results of trial runs from other techniques such as backpropagation with momentum, backpropagation

with variable step size (Sarkar, 1995), or very sophisticated algorithms that employ second-order techniques,

such as conjugate gradient methods, support the conjecture that the driving force of the results of the simula-

tions is the myopic best response assumption, instead of the exact method of updating the NNs’ weights.

C. DETAILS ON THE COMPUTATION OF GAME PROPERTIES

C.1. Computing the mixed strategy equilibria of 3×3 games

Contrary to the trivial calculations involved in computing the mixed strategy of a 2× 2 game, namely

solving a system of two simultaneous equations in two variables, the calculation of such equilibria in games

with more than two actions is more involved. The main complication arises because in two action games it is

necessarily true that a mixed strategy equilibrium will entail non-zero probabilities for both actions i.e. there

exists an interior solution. When there exist more than two actions, then it is possible for a mixed strategy

equilibrium to include corner solutions where some actions may not be played at all. For example, in games
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with three actions, only one action may have a zero probability of play, as the support of a MSNE requires at

least two actions.

Let p,q denote mixed strategies for the row and column player respectively with m and n actions each. Then

p ∈ ∆m = {p ∈ Rm : p≥ 0, pT e = 1} , and likewise q ∈ ∆n = {q ∈ Rn : q≥ 0,qT e = 1}, where e is a column

vector whose dimension is dictated by the context. Let the payoff matrices of the game be A,B ∈Rm×n where

A are the payoffs to the row player and B for the column player. Hence, the expected payoffs to the row and

column players are pT Aq and pT Bq respectively. A mixed strategy equilibrium (p∗,q∗) is given by:

pT
∗ Aq∗ ≥ pT Aq∗

pT
∗ Bq∗ ≥ pT

∗ Bq

∀p,q(14)

The trick to solving this is to reformulate this problem in an equivalent manner that can be solved as a

linear complementarity problem. Lemke and Howson (1964) showed that the above problem has a dual linear

complementarity problem and also provided an algorithm to solve it. Namely, they show that equation 14 can

be represented by the following optimization problem. Let e be a column vector and E a square matrix whose

dimensions are determined by the context.

k ∈ R : (kE−BT ) > 0

k ∈ R : (kE−A) > 0

(kE−BT )q ≥ e

(kE−A)q ≥ e

qT [(kE−BT )p− e] = 0

pT [(kE−A)q− e] = 0

p,q ≥ 0

p∗ =
p

pT e

q∗ =
q

qT e
(15)

Since all games have payoffs bounded between -1 and 1, setting k = 1 is sufficient to comply with the first

two inequalities. Lemke and Howson (1964) provide an algorithm to solve this type of optimization problem.

This algorithm was implemented to calculate the MSNE for games which had no PSNE.
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TABLE XXIX
GENERALIZED COORDINATION GAME

Player 2

Left Right

Pl
ay

er
1 Up A,a B,b

Down C,c D,d

C.2. Computing the risk dominant equilibria in games

A significant topic for coordination games is equilibrium selection as Nash equilibrium theory is silent

about which equilibrium will be played. Many theoretical refinements have been proposed such as subgame

perfection or trembling hand. Harsanyi and Selten (1988) propose a solution concept, termed risk dominance,

where players are more likely to play the equilibrium which poses the least risk for the two players. In 2×2

games, they define a risk dominant equilibrium by comparing the Nash products of equilibria, which are

simply the product of the losses arising for each player from unilateral deviation from the equilibrium. For

example, in a generalized coordination game as in Table XXIX (Up, Left) would risk dominate (Down, Right)

if (A−C)(a−b) > (D−B)(d− c).

Although the risk dominance concept yields a simple method of determining the risk dominant equilibrium

for 2×2 games, this is not the case for games with a larger action space. The following procedure taken from

Haruvy and Stahl (2004) for determining the risk dominant equilibrium in 3× 3 games, encompasses the

simple Nash product solution for 2×2 games. They justify a Bayesian approach where each player’s second-

order beliefs (i.e. beliefs about what an opponent’s beliefs are) are uniformly distributed. For example, for

n actions, player 1 would expect player 2’s beliefs about his own play to be uniformly distributed on an

n-dimensional simplex, likewise for player 2.

1. For a game with n-actions, let ANE be the set of actions which can lead to a Nash equilibrium and let

∇(ANE) be the simplex on ANE .

2. For each player, i, and each action in ANE , j, calculate p j
i (rd) as the proportion of ∇(ANE) where action

j is a best response given the assumption that an opponent’s beliefs are uniformly distributed.

3. Finally, the risk dominant action for player−i will be the action− j which maximizes expected payoffs

assuming that the opponent plays according to p j
i (rd) for all j.

Given that all probabilities must sum to one, this problem can be expressed in terms of the probability triplet

(x,y,1-x-y). Hence, step 2 amounts to the triple integration:
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p j
i (rd) =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0
Idzdydx(16)

I =






1 if action j is player i’s best response to an

opponent’s mixed strategy (x,y,1-x-y)

0 otherwise

The previous attempts to explain coordination failures hinged on deductive principles, however another

strain of research exists that relies on inductive principles. In particular, equilibrium selection is seen as a

result of specific dynamic learning processes employed by players. An experimental comparison of these two

strands of theoretical research is provided by Haruvy and Stahl (2004) who find that an inductive explanation

performs better than deductive explanations, with the latter failing miserably in some games. The drawback of

inductive explanations is that they may not always provide an answer as they do not necessarily converge. The

approach of this paper is necessarily inductive as equilibria will be selected as a result of learning processes.

D. FURTHER ANALYSES OF Ψ2
HET AND Ψ2

HOM SIMULATIONS

D.1. An alternative technique of examining convergence to a steady state in Ψ2
hom

Verification that agent learning has settled down to a steady state result can also be determined by ex-

amining whether the distribution of network responses has settled down. Figure 7 graphs the evolution of

the distribution of NN outputs of 2× 2 games in Ψ2
hom i.e. the probability of playing an action, throughout

training. The probabilities are placed into ten bins so that the y-axis is the percentage of responses which fall

into each particular bin23. It is reasonable to expect that NN behavior will differ markedly depending on the

number of NE of the training set games. Hence, three separate graphs are provided the first for games with

only a MSNE, the second for games with a unique PSNE, and the third for games with two PSNE and one

MSNE. The starting observations should be approximately uniformly distributed with subsequent learning

altering this.

For games with a single MSNE, the probability distribution of network responses appears to stabilize much

earlier than the end of the training run as is exhibited by the constant height of the shaded regions. As the NNs

learn they are increasingly avoiding playing actions with extreme probabilities close to zero or one and tend

to give responses around the midpoint probability of 0.5. This is reasonable as by definition MSNE require

agents to mix amongst actions rather than play a single action with probability one.

23In the case of equiprobable play, the height of each bin would be the same.
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As regards games with a unique PSNE the probability distribution of the networks responses settles down

quite quickly to a stable distribution where almost all responses are very close to zero or one, corresponding

to the networks playing an action with near certainty.

In games with two PSNE the results are more complex. There is an initial phase, roughly the first 100,000

generations, where the probability of extreme responses increases with a corresponding decrease in proba-

bilities of returning less extreme decisions. Thereafter there seems to be a roughly constant probability of

responses in all bins except the extreme ones. However, even towards the end of the simulations there seems

to be variability in the probabilities of extreme responses which however can be explained by the coordination

problems exhibited by games with two PSNE. If by chance the networks start coordinating on one of the two

PSNE equilibria then their responses will increase in favor of one action at the expense of the other. However

the stochastic nature of decisions, or actions actually taken, means that there will always be tension between

the two PSNE and therefore there will be oscillations between the two caused by the stochastic nature of the

decisions rules and the random sampling of game payoffs.

D.2. Payoff analysis of NNs in the Ψ2
het simulation

Research into bounded rationality has shown that more sophisticated players need not necessarily perform

better when pitted against less sophisticated players. A natural question to ask is whether NNs with more

complex topologies outperform simpler NNs. Table XXX breaks down the payoffs of each NN topology/agent

according to the number of PSNE in each game. All network topologies yield an expected payoff of zero for

games with unique MSNE, but payoffs are significantly different from zero for games with one and two

PSNE. As far as games with a unique PSNE are concerned the linear network, ψ1{∅,∅}, performs much

worse than the rest of the non-linear topologies. When it comes to games with two PSNE however there

is no clear relationship between sophistication and performance. There exist three non-linear topologies,

ψ6{20,2}, ψ8{50,1} and ψ9{50,2} that have amassed less payoffs than the linear network, however the best

documented performance of 0.1471 for ψ4{5,3} is much higher than that of ψ1{∅,∅}, 0.1066.

D.3. Further analysis of Ψ2
het simulation

As networks in this simulation are less sophisticated in complexity compared to Ψ2
hom, it is reasonable to

assume that they will be more likely to err and play a dominated strategy, or not perform iterated dominance

calculations. This is confirmed, as the average probability of playing a dominant action is equal to 0.9644

and the probability of performing iterated dominance is equal to 0.9147, both of which are less than in Ψ2
hom,

but are still quite impressive. Breaking down these results into types will lead to additional information about
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FIGURE 7.— Distribution of NNs’ output during training in Ψ2
hom
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TABLE XXX
INDIVIDUAL NN MEAN PAYOFFS IN Ψ2

het

No. of PSNE

NN agents 0 1 2 Any

ψ1{∅,∅} 0.0506 0.2122 0.1066 0.1782
ψ2{5,1} -0.0086 0.2859 0.1099 0.227
ψ3{5,2} 0.0049 0.2949 0.1315 0.2378
ψ4{5,3} 0.0097 0.3037 0.1471 0.2462
ψ5{20,1} 0.0126 0.2997 0.1214 0.2413
ψ6{20,2} -0.0232 0.3166 0.0887 0.2472
ψ7{20,3} -0.0136 0.3262 0.1093 0.2564
ψ8{50,1} -0.0005 0.302 0.1031 0.2386
ψ9{50,2} 0.0005 0.3185 0.0923 0.2503
ψ10{50,3} -0.006 0.3148 0.1295 0.2514

TABLE XXXI
PROBABILITY OF NN COMPLIANCE WITH DOMINANCE AND ITERATED DOMINANCE PRINCIPLES IN Ψ2

het

NN agent Probability dominant play Probability best responding to opponent

ψ1{∅,∅} 0.8461 0.6797
ψ2{5,1} 0.9533 0.8687
ψ3{5,2} 0.9653 0.919
ψ4{5,3} 0.9699 0.9254

ψ5{20,1} 0.982 0.9559
ψ6{20,2} 0.9911 0.9587
ψ7{20,3} 0.9892 0.9558
ψ8{50,1} 0.9796 0.9519
ψ9{50,2} 0.9864 0.9642
ψ10{50,3} 0.9856 0.964

how performance is related to the number of neurons and layers, especially for the case of the linear network

with no hidden layers. Table XXXI logs the probability that each network will adhere to the concepts of

dominance and iterated dominance. The results for the linear NNs are strikingly different from the rest as

they tend to violate dominance principles much more often than more complex players. There is a clear

positive relationship between complexity and adherence of the networks to the principles of dominance and

iterated dominance, although the largest increase occurs moving from the linear model to the simplest single

hidden layer NN, ψ2{5,1}.

Turning now to further analysis of behavior in games with a unique MSNE, a breakdown of the correlation

between the MSNE prescription and NN output by type of network is interesting as it relates the level of

bounded rationality to MSNE behavior. Table XXXII provides the Spearman correlation for each of the ten

different network topologies involved in this simulation. The lowest correlation, essentially zero, is attributed

to ψ1{∅,∅} probably because it is the most bounded network, only capable of linear associations between its

inputs and outputs. The result from the Ψ2
hom simulation that the ψ1{50,3} network exhibited low correlation
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TABLE XXXII
CORRELATION OF INDIVIDUAL NNS’ OUTPUT AND THE MSNE PRESCRIPTION IN Ψ2

het

NN agents

Correlation ψ1{∅,∅} ψ2{5,1} ψ3{5,2} ψ4{5,3} ψ5{20,1}
ρs -0.0023 0.6548 0.4869 0.4747 0.6252

NN agents

Correlation ψ6{20,2} ψ7{20,3} ψ8{50,1} ψ9{50,2} ψ10{50,3}
ρs 0.4629 0.2799 0.4938 0.3415 0.2508

between actual behavior and the MSNE prescription, is also found in this simulation for the one network with

the ψ{50,3} topology, where the Spearman correlation is only 0.25. A surprising result is that, excluding the

linear network, the correlation with the MSNE prescription decreases as the number of layers and/or number

of neurons increases.

D.4. Further analysis of MSNE behavior in Ψ2
hom

Examining the evolution of the correlation coefficient during training (calculated per 50,000 generations)

reveals interesting behavior. Although not evident from Figure 8, the correlation coefficient starts off at ap-

proximately zero as outputs are initially random and quickly increases to a maximum of roughly 0.56 between

50,000 and 100,000 generations. From this point onwards the correlation coefficient begins falling as the num-

ber of generations increases. The lowest point occurs at the end of the training set where the correlation is

fluctuating between 0.15 and 0.2.

Figure 9 plots three dimensions, the x- and y-axes are broken down into 100 bins each and the color of the

graph denotes how many observations fell into these combinations of bins24. It is clear from the graph that the

relationship is non-linear as the relationship is flat for MSNE values of between roughly 0.2 and 0.8, but at the

endpoints there is a positive relationship from which it can be concluded that the networks are affected by the

MSNE prescription only when they are close to zero or one. Snapshots of this density plot during the training

phase reveal that initially there is a roughly linear relationship over all values of the MSNE probability which

however changes over time and is finally described by Figure 9 at the end of the training period.

24If there were a perfect positive linear relationship we would expect to see a white diagonal line surrounded by a black area.

70



FIGURE 8.— Spearman rank correlation over generations for all networks in Ψ2
hom
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FIGURE 9.— Density plot of MSNE and actual network probabilities for 2×2 games
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The reason why networks appear to be learning the MSNE in the first 100,000 generations and subse-

quently seem to change behavior so that it actually moves away from MSNE play is puzzling. One possible

explanation is that because games with unique mixed strategy equilibria are under-represented in the training

data set, games with unique PSNE may be interfering with learning the MSNE. This hypothesis is rejected

however as balancing the training data does not affect the correlation significantly as can be seen in Table

XXXVIII. Other possible hypotheses include effects that arise because of the number of agents. This indeed

seems to play a role as the correlation for the Ψ2
hom simulation is 0.1821 which however increases to 0.3106

if the same simulation is performed with only two players in the population.

E. RESULTS OF OTHER SIMULATIONS

This section discusses the main results of variations of the simulations discussed in the main text. Such

variations in the simulations include using only simple linear NNs, changing the size of the population and

changing the game payoff sampling mechanism.

Regarding the game payoff sampling mechanism, if the payoffs of games are randomly sampled from a

bounded uniform distribution, then there is no control over the frequency of types of games appearing from
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such a sampling scheme. For example, it is easy to show that the sampling distribution of 2×2 games with

zero, one and two PSNE is 1
8 , 3

4 and 1
8 respectively. During the training of the neural networks the sample

proportion of different types of games may affect the speed and degree of learning. Also, it is possible that

a high occurrence of one type of game may interfere with the learning of other types of games since more

adjustments in the neural network parameters will be made for the most common type. Ideally, the proportion

of games in the training dataset should be equal to that found in the environment so as to maximize the

ecological validity of the simulation, however in practice this is difficult to ascertain. A robustness check by

varying the sampling scheme can be performed to examine whether behavior is significantly affected by this.

A balanced dataset shall be created where each type of game, as delineated by the number of PSNE, shall be

sampled equally often. Results of simulations on this balanced dataset are provided in the Appendices.

To differentiate between the different simulations now that additional parameters are being varied it is

necessary to amend the symbolism, Ψ, of the NN simulations. To accommodate for the possibility that the

population may be comprised of only two NNs instead of ten NNs, a second superscript will be added denot-

ing the number of agents. Also, to accommodate for the use of a balanced dataset instead of a uniform random

sampling scheme, the letter b will also be added to the superscript for the former and the letter r for the latter.

Finally, to symbolize the sole use of linear neural networks without any hidden layers a second subscript will

be used ∅, referring to the fact that there are no hidden layers. For example, Ψ3,2,b
hom,∅ refers to a neural network

trained on 3×3 games and a balanced dataset, comprised of two homogeneous NNs of topology ψ{∅,∅}.

Detailed results and comparisons of the following list of simulations are presented below.

Ψ2,2,r
hom = [ψ1{50,3},ψ2{50,3}]

Ψ2,10,b
hom,∅ = [ψ1{∅,∅}, ...,ψ10{∅,∅}]

Ψ2,2,b
hom,∅ = [ψ1{∅,∅},ψ2{∅,∅}]

Ψ2,10,b
hom = [ψ1{50,3}, ...,ψ10{50,3}]

Various comparisons of interest can be made using these simulations. Firstly, Ψ2,10,b
hom can be compared to

Ψ2,10,r
hom in an effort to examine whether balancing the training data set leads to significant changes in NN

behavior. The two simulations incorporating only linear NNs can be used to ascertain whether they would be

good candidates for modeling human behavior or whether more sophisticated NNs are needed. Also, the two

simulations, Ψ2,10,b
hom,∅ and Ψ2,2,b

hom,∅ differ only in the number of agents in the simulation, in the second case there

are only two agents allowing the examination of whether conventions can arise more easily when there are

only two agents playing repeatedly against each other instead of ten randomly rematched agents. The same

comparison can also be performed with more sophisticated NN agents by comparing simulations Ψ2,2,r
hom and

Ψ2,10,r
hom . The following tables will be referred to in the coming sections.
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TABLE XXXIII
COMPARISON OF COMPLIANCE WITH DOMINANCE AND ITERATED DOMINANCE PRINCIPLES

Simulations

Ψ2,10,r
hom Ψ2,2,r

hom Ψ2,10,b
hom,∅ Ψ2,2,b

hom,∅ Ψ2,10,b
hom

dominance 0.988 0.9713 0.7203 0.7195 0.9748
iterated dominance 0.9736 0.9331 0.6092 0.6099 0.951

TABLE XXXIV
COMPARISON OF PROBABILITY OF JOINT NE PLAY ACCORDING TO NUMBER OF PSNE

Simulations

No. of PSNE Ψ2,10,r
hom Ψ2,2,r

hom Ψ2,10,b
hom,∅ Ψ2,2,b

hom,∅ Ψ2,10,b
hom

1 0.9585 0.8949 0.4079 0.4106 0.91.94
2 0.7519 0.7728 0.4985 0.5045 0.7779

TABLE XXXV
COMPARISON OF THE PROBABILITY OF JOINT PSNE PLAY ACCORDING TO NO. OF PLAYERS WITH DOMINANT ACTIONS

Simulations

No. of players with a dominant action Ψ2,10,r
hom Ψ2,2,r

hom Ψ2,10,b
hom,∅ Ψ2,2,b

hom,∅ Ψ2,10,b
hom

1 95.01% 87.42% 35.75% 35.03% 89.94%
2 97.54% 93.77% 50.71% 52.81% 95.88%

TABLE XXXVII
COMPARISON OF MEAN PAYOFFS OF SIMULATIONS GROUPED BY NO. OF PSNE

Simulations

Number of PSNE Ψ2,10,r
hom Ψ2,2,r

hom Ψ2,10,b
hom,∅ Ψ2,2,b

hom,∅ Ψ2,10,b
hom

0 0.0032 0.0159 0.0425 0.0573 0.0005
1 0.3251 0.313 0.1248 0.1314 0.3111
2 0.2352 0.2505 0.0372 0.0366 0.257

All 0.2732 0.2678 0.0682 0.0753 0.1895

TABLE XXXVIII
CORRELATION OF NNS’ OUTPUT AND THE MSNE PRESCRIPTION IN VARIOUS SIMULATIONS

Simulations

Correlation Ψ2,10,r
hom Ψ2,2,r

hom Ψ2,10,b
hom,∅ Ψ2,2,b

hom,∅ Ψ2,10,b
hom

ρspearman 0.1821 0.3106 -0.0067 0.0216 0.1667

E.1. Does balancing the training data significantly affect NN behavior?

As regards the NNs’ behavior in terms of obeying dominance principles, running the same simulation with

balanced data instead of random data does not lead to any significant changes, as can be seen in Table XXXIII.
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The probabilities are virtually identical for both simulations with however a slight decline in compliance for

the balanced simulation.

In terms of the probability of jointly playing a PSNE again the differences are not very large after balancing

the training dataset as exemplified by Table XXXIV. The results are again quite similar in Table XXXV which

looks at PSNE play broken down by the number of players with a dominant action. The balanced simulation

shows roughly 5% less probability of joint NE play in games where only one player has a dominant action

for NNs trained with balanced datasets.

Equilibrium selection behavior does not vary much between the Ψ2,10,b
hom and Ψ2,10,r

hom simulations. From Table

XXXVI it is evident that the largest differences in behavior occur for p(PD| ∼ RD) and for RD : PD + RD,

showing an increased bias towards risk dominant equilibria for the NNs in simulation Ψ2,10,r
hom .

When examining the average payoffs for each type of game, as defined by the number of PSNE, the

differences are again minimal as can be seen in Table XXXVII. The mean payoffs to all games are different

simply because of the different composition of the datasets i.e. it consists of a smaller proportion of games

with a single PSNE which are the ones leading to the highest payoffs. The correlation of the NNs’ behavior

to the MSNE prescription is also very similar, see Table XXXVIII.

Concluding, changing the proportion of types of games in the training dataset has not led to any significant

changes in the final behavior of the NNs and by implication the learning process during training.

E.2. Is there a significant change in behavior when simulations consist only of two agents?

The two simulations that must be compared to examine this question are the Ψ2,2,r
hom and Ψ2,10,r

hom simulations.

The hypothesis is that when playing against the same opponent it should be easier for agents to coordinate on

the same PSNE when games have two PSNE.

As far as complying to dominance principles, there is no significant difference in Table XXXIII between

the agents of the two simulations, although in the Ψ2,2,r
hom simulation there is slightly less compliance. Joint

play of PSNE is again similar with the biggest difference occurring in games with a unique PSNE, where joint

PSNE play falls from 95.85% in Ψ2,10,r
hom to 89.49% in Ψ2,2,r

hom . Differences are more pronounced when PSNE

play is examined through the prism of the number of players with a dominant action. The Ψ2,2,r
hom simulation

performs worse in both cases, the largest difference occurs in the case where only one player has a dominant

action, falling from 95.01% to 87.42%.

Finally, the data in Table XXXVI does not support the hypothesis that the number of agents in the simula-

tion significantly affects the probability of attaining a risk dominant equilibrium relative to a payoff dominant

equilibrium.
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E.3. Are simple linear neural networks (equivalent to logit regression models) good candidates for

modeling human behavior?

The behavior of linear neural networks in simulations Ψ2,10,b
hom,∅ and Ψ2,2,b

hom,∅ in terms of playing dominant

actions when they exist is roughly 72%. This performance is much worse than human subjects in the exper-

imental studies reviewed in Section 5.4, which find adherence rates of 90% and above. This is the first piece

of evidence that such networks may be too simplistic to model human behavior adequately.

The next inadequacy of linear networks can be traced to the results regarding convergence to PSNE equi-

libria, especially in games with two PSNE. The probability of these networks playing either of the two PSNE

is roughly 50% which is equal to that expected by chance since there are 4 possible joint outcomes in a 2×2

game. Although humans do have trouble coordinating in such games, experimental evidence finds that they

do better than chance. Regarding equilibrium selection, the linear networks show hardly any preference for

risk dominant equilibria as RD : PD+RD is roughly equal to 0.56.

Overall, linear networks did not model human subjects well on a number of dimensions as they exhibited

less sophisticated behavior than is observed in human experiments.
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