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Abstract 

 
The condition for stationary increments, not scaling, 
detemines long time pair autocorrelations. An incorrect 
assumption of stationary increments generates spurious 
stylized facts, fat tails and a Hurst exponent Hs=1/2, when 
the increments are nonstationary, as they are in FX markets. 
The nonstationarity arises from systematic uneveness in 
noise traders’ behavior. Spurious results arise 
mathematically from using a log increment with a ‘sliding 
window’. We explain why a hard to beat market demands 
martingale dynamics , and martingales with nonlinear 
variance generate nonstationary increments. The 
nonstationarity is exhibited directly for Euro/Dollar FX 
data. We observe that the Hurst exponent Hs generated by 
the using the sliding window technique on a time series 
plays the same role as does Mandelbrot’s Joseph exponent. 
Finally, Mandelbrot originally assumed that the ‘badly 



behaved second moment of cotton returns is due to fat tails, 
but that nonconvergent behavior is instead direct evidence 
for nonstationary increments. Summarizing, the evidence for 
scaling and fat tails as the basis for econophysics and 
financial economics is provided neither by FX markets nor 
by cotton price data. 
 
 
1. Introduction 
 
The finance and physics literature contains many papers 
claiming scaling via Hurst exponents on the one hand, and 
fat tailed distributions on the other. We can identify the 
‘central dogma of econophysics’ as the expectations of Hurst 
exponent scaling, fat tailed distributions, and exponent 
universality. The question what are the underlying market 
dynamics has remained controversial. Some data analyses 
have indicated Levy models, others have suggested diffusive 
behavior. A martingale is a less restrictive class of diffusive 
model than a Markov process. The latter admits no memory, 
the former does. 
 
The inference of Markov dynamics from empirical data 
would seem to be a reasonable first approximation because 
normal financial markets have finite variance and are very 
hard to beat. A Markovian market would be imposssible to 
beat. Finance markets appear to be Markovian to lowest 
order, but may contain exploitable memory at higher order. 
We define below precisely what we mean by ‘lowest order’ 
and why this suggests a martingale in log returns. 
 
This paper is based on our new theoretical analysis [1] which 
was originally motivated by our recent foreign exchange 
(FX) data analysis [2]. The ‘central dogma of econophysics’, 
Hurst exponent scaling, universality, and fat tails is not 
exhibited by FX markets when the nonstaionarity of the 



increments is accounted for. Correspondingly, we illustrate 
explicitly why most existing data analysis claiming fat tails 
and scaling are wrong.  
 
The analysis of this paper can be understood as a tale told by 
two different variables: First, there is what we define [1,2] as 
the log return 
 
    

! 

x(t) = ln p(t)/p
c
(t) (1) 

 
where p(t) is the price of a stock, bond, or foreign exchange 
at time t, and pc(t) can be understood as ‘value’ [3], the most 
probable price, the price that locates the peak of the 1-point 
returns density f1(x,t) at time t. Then, there is what most 
other theorists (beginning with Osborne) mean by log 
return, 
 
    

! 

x(t,T) = x(t +T)"x(t) = ln p(t +T)/p(t),   (2) 
 
but which is clearly an increment of the log return. We will 
explain that the log return x(t) is always a ‘good’ variable, 
both in theory and data analysis, and then we will explain 
why the use of the log increment x(t,T) in data analysis leads 
to spurious stylized facts, to spurious scaling with exponent 
Hs=1/2 and spurious fat tails in a wrongly extracted 1-point 
returns density fs, where the subscript “s” denotes ‘sliding 
window’. The two variables yield identical results iff. a data 
set or model generates stationary increments x(t,T)=x(T). We 
will show that the 1-point returns density f1(x,t) correctly 
extracted from FX market time series gives evidence neither 
for scaling with H over a time scale of a day, nor for fat tails. 
We speculate that stock prices, in contrast, may perhaps 
exhibit fat tails (but not Hurst exponent scaling) over the 
same time scale (there is no evidence for universality, and in 
far from equilibrium dynamics there is no reason to expect 
universality either). 



Drift-free Markov, and more generally martingale processes 
generate uncorrelated increments that are generally 
nonstationary: <x(t,T)x(t,-T)>=0 where x(t,-T)=x(t)-x(t-T). If 
the mean square fluctuation <x2(t,T)> depends on the 
starting time t then the increments are nonstationary. In FX 
(and in most other) data analyses stationary increments have 
been implicitly assumed by the use of a technique called a 
“sliding window”. A ‘sliding window’ is used to build 
histograms by reading a time series while varying t in x(t,T) 
with T fixed, and in the presence of nonstationary 
increments this method cannot generate f1(x,t). Instead, the 
method at best generates a spurious density fs(z,t,T) that we 
will define precisely below. The sliding window technique 
would be legitimate, would yield f1(z,T) independent of 
starting time t iff. the increments were stationary, iff. 
z=x(t,T)=x(T) independent of the starting time t. But the 
increments in finance data are not stationary [2], and there is 
no ergodicity in a nonstationary (i.e., far from statistical 
equilibrium) time series, so that the sliding window method 
produces ‘significant artifacts’, spurious stylized facts. We 
emphaize that FX markets are a nonstationary stochastic 
process with nonstationary increments. All assumptions of 
stationarity fail miserably whe it comes to market data. 
 
Another conclusion is that scaling doesn’t matter anyway, 
scaling gives us no information whatsoever about either the 
underlying market dynamics or memory. The purpose of this 
paper is to explain all of these assertions, and to indicate 
how correctly to analyze random time series without 
generating spurious stylized facts. Our method and 
conclusions are not restricted to finance data but have 
application to the analysis of stocastically generated time 
series, whether in physics, economics, biology, or elsewhere. 
We offer a completely new viewpoint in the theory of 
stochastic processes and in data analysis.   
 



 
2. Hurst exponent scaling 
 
We define selfsimilarity of a stochastic process starting with 
the mathematicians’ standpoint [4,5] and then show that 
their definition is equivalent to our definition [6,7] in terms 
of densities so long as the moments of the 1-point density 
are finite. 
 
A stochastic process x(t) is said be selfsimilar with scaling 
exponent H, 0<H<1,  if [4,5] 
 
    

! 

x(t) = t
H

x(1),   (3) 
 
where by equality we mean equality ‘in distribution’. Note 
first that scaling trajectories necessarily pass through the 
‘filter’ x(0)=0, trajectories with x(0)≠0 cannot possibly scale. 
Second, a method designed by Hurst to detect trends was 
originally used to define a different scaling exponent that 
Mandelbrot and Taqqu labeled the Joseph exponent J  [8]. 
However, the notation “H” was used by Mandelbrot and 
van Ness [5] to describe fractional Brownian motion (fBm), a 
selfsimilar process that does produce the trends of the Hurst-
Mandelbrot ‘Joseph Effect’ via long time pair correlations 
arising from stationarity of the increments. Mandelbrot and 
Taqqu distinguished H from J on the basis of Hurst’s (highly 
nontransparent) R/S analysis, and noted that while H=J for 
fBm, for processes without long time increment 
autocorrelations, like Levy processes and drift free Markov 
processes, H≠J=1/2. Embrechts [4] denotes the selfsimilarity 
exponent by H, but stops short of writing H(urst). Because of 
the vast confusion in the  scientific literature, wherein H≠1/2 
is too often but wrongly thought to imply long time pair 
correlations, we will call the selfsimilarity exponent H “the 
Hurst exponent” and explain that selfsimilarity, taken alone, 
does not and cannot generate long time pair autocorrelations 



like those of fBm. We will introduce a second scaling 
exponent, the ‘sliding window Hurst exponent’ Hs, and will 
see that Hs plays essentially the same role as does the Joseph 
exponent: H≠Hs=1/2 whenever there is selfsimilarity 
without long time pair correlations, but H=Hs≠1/2 in the 
presence of long time pair correlations combined with 
selfsimilarity. The essential requirement for long time pair 
correlations will be seen to be stationarity of the increments 
with variance nonlinear in t, not selfsimilarity. 
Selfsimilarity and stationarity of the increments are confused 
together into an unhealthy and misleading soup too often in 
the literature (see. e.g., the definition of the Hurst exponent 
in Wikipedia, 
http://en.wikipedia.org/wiki/Hurst_exponent, where the 
note added Oct., 2007, is ours). Next, we define selfsimilarity 
in terms of probability densities, which explains what is 
meant by asserting that x(t)=tHx(1) ‘in distribution’. 
 
The 1-point density f1(x,t) reflects the statistics collected from 
many different runs of the time evolution of x(t) from a 
specified initial condition x(to), where x(0)=0 is required for 
scaling, but cannot describe correlations or the lack of same. 
Given a dynamical variable A(x,t),the absolute (as opposed 
to conditional) average of A is 
 

  

! 

A(t) = A(x,t)f
1
(x,t)dx

"#

#

$
.  (4) 

 
From (1), the moments of x must obey 
 

 
  

! 

x
n(t) = t

nH

x
n(1) = c

n
t
nH (5) 

 
Combining this with  
 

   

! 

xn (t) = xnf
1
(x,t)dx"  (6) 



 
we obtain [2] 
 
    

! 

f
1
(x,t) = t"HF(u),  (7) 

 
where the scaling variable is u=x/tH [6].  
 
In contrast, conditional averages <A(x,t)>cond require the 2-
point density 
 
   

! 

f
2
(x,t +T;y,t) = p

2
(x,t +T y,t)f

1
(y,t),  (8) 

 
or, more to the point, the 2-point transition density 
(conditional probability density) p2(x,t+T:y,t) [1].  
 
If the absolute average of x(t) vanishes, then the variance is 
simply 
 

  

! 

"
2

= x
2(t) = x

2(1) t2H .  (9) 
 
This explains what is meant by Hurst exponent scaling, and 
also specifies what’s meant by asserting that eqn. (1) holds 
‘in distribution’. The vanishing of the absolute average of x 
does not mean that there’s no conditional trend: in fractional 
Brownian motion (fBm), e.g., where <x(t)>=0 by 
construction, the conditional average of x does not vanish 
and depends on t [7], reflecting either a trend or anti-trend. 
In a Markov process, scaling requires that the drift rate 
depends at worst on t (is independent of x) and has been 
subtracted, that by “x” we really mean the detrended 
variable x(t)-∫R(s)ds. Markov processes with x-independent 
drift can be detrended over a definite time scale, but any 
attempt to detrend fBm is an illusion because the ‘trend’ is 
due to long time autocorrelations, not to an additive drift 
term [1] that can be removed. The attempt to detrend a time 



series implicitly assumes an underlying martingale plus 
drift, and fBm is by construction not a martingale plus drift. 
 
Hurst exponent scaling is confined to 1-point densities and 
simple averages, and 1-point densities cannot be used to identify 
the underlying stochastic dynamics [1,9,10]. Even if scaling 
holds at the 1-point level as in fBm, the 2-point density (the 
transition density p2) and the pair correlations <x(t+T)x(t)> 
do not scale, and it’s the transition density p2 that’s required 
to give a minimal description of the underlying dynamics1. 
In particular, scaling, taken alone, implies neither the presence nor 
absence of autocorrelations in increments/displacements taken over 
nonoverlapping time intervals. That is, scaling has nothing 
whatsoever to say about whether a market is effectively 
efficient (hard to beat), or is easily beatable, in contrast to 
what one of us incorrectly assumed earlier [3,11]. 
 
The financial economics literature is filled with wrong claims 
and wrong assumptions about financial time series. These 
misconceptions are systematically and hopelessly 
propagated whenever a researcher uses the standard 
statistical methods of econometrics. In Fama [12], e.g., the 
claim is made that returns are uncorrelated, <x(t+T)x(t)>=0. 
More recently, in Lux and Heitger [13] the statement is made 
that prices are random (by ‘random’ we understand 
‘uncorrelated’) but returns are not random. The correct 
statements, explained below, are that both prices and returns 
are always correlated, <p(t+T)p(t)>≠0, <x(t+T)x(t)>≠0, but 
increments in returns approximately vanish after a trading 
time of 10 minutes: <x(t,T)x(t,-T)>≈0 for T≥10 min. of trading 
[2]. The latter is basically the effectively efficient market 
hypothesis: one cannot make money systematically by 
trading on either simple averages or pair correlations [1]. 
Note that an assumption of stationary increments, the 
                                         

1 For a Gaussian process, pair correlations and p2 provide a complete description. But for nonGaussian processes like 
FX markets all of the transition densities pn, n=2,3,… are required to pin down the dynamics. In practice, we usually do 
not know any more about the dynamics than can be extracted from pair correlations. 



confusion of x(t,T) with x(T), would lead one wrongly to 
assert that returns are uncorrelated. 
 
 
4. Stationary vs. nonstationary increments 
 
Stationary processes are often confused with stationary 
increments in the literature (see [6] for a discussion). 
Stationary increments are implicitly assumed in data 
analyses and simulations whenever a sliding window 
method is used to extract histograms, and the sliding 
window method is most commonly found in the literature 
[15,16,17,18]. We define stationary and nonstationary 
increments and exhibit their implications for the question of 
long time autocorrelations, or complete lack of 
autocorrelations. We show that the question of stationary 
increments, not scaling, is central for the existence of long 
time correlations. 
 
By increments, we mean displacements x(t,T)=x(t+T)-x(t). 
Stationary increments of a nonstationary process x(t) are 
defined by [4] 
 
    

! 

x(t + T) " x(t) = x(T),  (10) 
 
and by nonstationary increments [1,7,14] we mean that the 
difference 
 
    

! 

x(t + T) " x(t) # x(T)  (11) 
 
depends on both (t,T), not on T alone. The implications of 
this distinction for data analysis, and for understanding 
Hurst exponents, are central. In the nonstationary case the 
density of increments z=x(t,T) must be obtained from the 
two-point density f2(x(t),x(t+T);t,t+T) and depends on 
starting time t, 



 
   

! 

f
s
(z,t,T) = dxdyf

2
(y,t +T;x,t)"(z# y + x)$ ,  (12) 

 
where the subscript s here denotes ‘sliding window’, 
whereas for stationary increments this 1-point density is 
independent of t, fs(x,t,T)=fs(z,T). In the latter case, the 
density fs is not spurious and sliding windows can be used 
to extract correct histograms reflecting f1(z,T) from a single 
long time series. 
 
The efficient market hypothesis (EMH) [15] is sometimes 
interpreted to mean that the market is impossible to beat, 
that there are no correlations at all (no systematically 
repeated price/returns patterns) that can be exploited for 
profit. A Markov market satisfies the condition of an 
impossible to beat market. Because real markets are very 
hard (if not necessarily impossible) to beat, models that 
generate no autocorrelations in increments are a good zeroth 
order approximation to real markets [1]. In such models, the 
autocorrelations in increments  x(t,T) and x(t,-T) vanish 
 

  

! 

(x(t
1
) " x(t

1
" T

1
))(x(t

2
+ T

2
) " x(t

2
)) = 0, (13) 

   
 
if there is no time interval overlap, 
 
    

! 

[t
1
" T

1
, t

1
]#[t

2
, t

2
+ T

2
] = $,  (14) 

 
where Φ denotes the empty set on the line. This is a much 
weaker and more pregnant condition than would be 
asserting that the increments are statistically independent. 
Condition (14) is in fact a martingale condition in weak 
disguise. Eqn. (14) means that nothing that happened in an 
earlier time interval can be used to predict systematically the 
returns in a later time interval at the level of (simple averages 



and) pair correlations. That is, the market is ‘effectively 
efficient’ in the sense that simple averages and pair 
correlations look Markovian, unlike fBm there is no memory 
in pair correlations to be exploited. This may not rule out 
higher order correlations that might be used for technical 
trading. I.e., a Markovian market is ‘efficient’ in the strictest 
sense, is impossible to beat, whereas a martingale market 
looks Markovian to lowest order (at the level of simple 
averages and pair correlations), but might be systematically 
beatable at some higher level of insight. This defines 
precisely what we mean by “lowest order”. 
 
Consider a stochastic process x(t) where the increments are 
uncorrelated. From this condition we easily obtain the 
autocorrelation function for returns x(t) 
 

  

! 

x(t)x(s) = (x(t) " x(s))x(s) + x
2(s) = x

2(s) > 0,  (15) 
 
since x(s)-x(to)=x(s), so that <x(s)x(t)>=<x2(s)>=σ2 is simply 
the variance in x. This is a martingale condition, 
 
    

! 

x(t +T)
cond

= x(t),   (16) 
 
or 
 
    

! 

dyyp
2" (y,t +T x,t) = x . (17) 

 
The result has a nice interpretation: since <x(t,T)x(s)>=0 for 
s≤t<t+T, future ‘gains’ x(t,T) are uncorrelated with all past 
returns. 
 
We next obtain another central result. Combining 
 



  

! 

(x(t + T) " x(t))2
= + (x2(t + T) + x

2(t) "2 x(t + T)x(t)  
(18) 
 
with (14), we get 
 
 

  

! 

(x(t + T) " x(t))2
= x

2(t + T) " x
2(t)   (19) 

 
which depends on both t and T, excepting the rare case 
where the variance <x2(t)> is linear in t. Martingale 
increments are uncorrelated and are generally 
nonstationary. I.e., we must expect nonstationary 
increments in effectively efficient markets.  The variance 
<x2(t)> of a real FX market is not linear in t, it has instead 
very complicated variation with time. 
 
Consider next the class of all stochastic processes with 
stationary increments, x(t,T)=x(T) ‘in distribution’. Here, we 
begin with 
 

  

! 

"2 x(t + T)x(t) = (x(t + T) " x(t))2
" (x2(t + T) " x

2(t) , 
 (20) 
 
and then using (8) on the right hand side of (18) we obtain 
 

  

! 

"2 x(t + T)x(t) = (x2(T) " (x2(t + T) " x
2(t)  (21) 

 
which differs from (13). The increment autocorrelation 
function is 
 

  

! 

2 (x(t)"x(t"T))(x(t+T)"x(t)) = x2 (2T) "2 x2 (T)  (22) 
 
which vanishes iff. the variance <(x2(t)> is linear in t. 
Stationary increments are typically strongly correlated. 



E.g., if scaling (1) holds then we obtain the prediction of 
infinitely long time autocorrelations 
 

  

! 

(x(t)" x(t " T))(x(t + T)" x(t)) = x
2(T) (22H"1 "1). 

(23) 
 
characteristic of fBm [5,7]. This autocorrelation vanishes iff. 
H=1/2, otherwise the autocorrelations are strong for all time 
scales T. Such fluctuations violate the EMH, especially if H 
cannot be approximated as H≈1/2. Note that scaling is not 
the essential point, is in fact irrelevant: stationarity of the 
increments, reflected in the t-independent pair correlations (21), is 
the central requirement for long time increment autocorrelations. 
 
Summarizing, the Hurst exponent H tells us nothing 
whatsoever about autocorrelations in increments, tells us 
nothing whatsover about the underlying dynamics apart 
from scaling itself, and tells us nothing whatsoever about the 
effficiency or lack of same of a market. In the next two 
sections we will sharpen the distinction by exhibiting both 
scaling Markov processes and fBm where H≠1/2.  
 
 
Scaling Ito Processes  
 
An Ito process is generated locally by the stochastic 
diffferential equation (sde)  
 
 

  

! 

dx = R(x, t) + D(x,t)dB(t)    (24) 
 
where B(t) is the Wiener process. A Wiener process is an 
uncorrelated Gaussian process scaling with H=1/2, so that 
the increments are stationary and (from Ito’s theorem) 
dB2=dt=<dB2>. Iff. R(x,t)=R(t) is independent of x can we 



detrend all trajectories once and for all by replacing x(t) by 
x(t)-∫R(s)ds. With this substitution, the Ito process is a 
martingale. The absolute average gives <x(t)>=0 and there is 
no trend. Finite memory may be present but we will not 
write the possible memory explicitly. Instead,  
 
The variance can be calculated from the stochastic integral of 
(24) as 
 

  

! 

"2
= ds

0

t

# dxf
1
(x,s)D(x,s)

$%

%

# ,   (25)    
 
where x(0)=0, so that scaling of the density and the variance 
imply that the diffusion coefficient scales as well [6]: 
 

  

! 

D(x,t) = t2H"1D(u),u = x/tH .  (26) 
 

Note that scaling of D does not imply scaling of the 
transition density p2(x,t+T;xo,t). 
 
We can also write the mean square fluctuation about an 
arbitrary point x(t) globally as 
 

  

! 

(x(t +T)"x(t)
2

= ds
t

t +T

# dxf
1
(x,s)D(x,s)

"$

$

# = x2 (1) ((t +T)2H " t2H ) 
(27)    
 
and locally for t>>T as  
 

    

! 

(x(t +T)"x(t)
2

# t2H"1 D(u)T .  (28) 
 
Both the global and local mean square fluctuations are useful 
in FX data analysis. In particular, in () the mean square 
fluctuation scales with T with Hs=1/2. 
 



An Ito stochastic process may have finite memory. By ‘finite 
memory’ we mean a ‘filtration’ (xn-1,xn-2,…,x1) that every 
trajectory must pass through. An example with n=2 is given 
in [16].  
 
Ito processes are 1-1 with Fokker-Planck pdes [16] so we 
work with the drift free Fokker-Planck pde 
  

    

! 

"p
2

"t
=

1

2

"
2

"x2
(Dp

2
)
,  (29) 

 
where scaling may occur at best only for f1(x,t)=p2(x,t:0,0,). 
 
Model 1-point densities that scale with H are easily 
calculated [6,17,18]. With 
 
 

  

! 

f
1
(x,t) = t"HF(u);u = x/tH

  (30) 
 
 
and 
 

  

! 

D(x,t) = t2H"1D(u),u = x/tH   (31) 
 
 
the Fokker-Planck pde (32) yields 
 

  

! 

2H(uF(u) " ) + (D(u)F(u) " " ) = 0     (32) 
 
which we integrate to obtain 
 

  

! 

F(u) =
C

D(u)
e"2H udu/D(u)#   (33) 

 
 



For H≠1/2 all of these processes generate nonstationary 
increments. 
 
If 
 

  

! 

D(u) = (1+ u)/2H  (34) 
 
Then we  get the exponential density 
 

  

! 

F(u) = Ce
" u ,  (35) 

 
where C is the normalization constant. For FX data a 2-sided 
exponential density is needed and is easily derived. 
 
 
10. FX market facts vs. spurious stylized facts 
 
We begin with ‘the observed stylized facts’ as understood by 
Holmes [29]: (i) asset prices are persistent and have, or are 
close to having, a unit root and are thus (close to) 
nonstationary; (ii) asset returns are fairly unpredictable, and 
typically have little or no autocorrelations; (iii) asset returns 
have fat tails and exhibit volatility clustering and long 
memory. Autocorrelations of squared returns and absolute 
returns are significantly positive, even at high-order lags, 
and decay slowly; (iv) Trading volume is persistent and 
there is positive cross-correlation between volatility and 
volume. These statements reflect a fairly standard set of 
expectations. Next, we contrast those expected stylized facts 
with the hard results of our recent FX data analysis [2]. Our 
analysis is based on 6 years of Euro/dollar exchange rates 
taken at 1 min. intervals. 
 
The intended meaning of point (i) above is unclear because 
‘pesistence’ is not defined, and a hard to beat market (an 
approximately efficient market) cannot exhibit persistence of 



the sort described by fBm. Furthermore, increment 
autocorrelations in FX market returns will vanish after about 
10 min. of trading. Worse, a simple coordinate 
transformation x(t)=lnp(t) cannot erase persistence, 
whatever persistence might be. (ii) Both prices and returns 
have positive autocorrelation, <x(t+T)x(t)>=<x2(t)> > 0, and 
autocorrelations in increments are approximately zero after 
20 min. of trading, <x(t,T)x(t,-T)>≈0. It would appear that 
x(t,T) has been confused with x(T). (iii) We find no evidence 
for fat tails, and no evidence for Hurst exponent scaling on 
the time scale of a day. Because of nonstationarity of the 
increments, a 7 yr. FX time series is far too short (the 
histograms have too much scatter due to too few points) to 
indicate what may happen on larger time scales. Although 
we do not present the proof here, volatility clustering does 
not indicate ‘long memory’ but is explained as a purely 
Markovian phenomenon for variable diffusion processes, 
stochastic processes with diffusion coefficients D(x,t) where 
the (x,t) dependence is inherently nonseparable [20]. About 
point (iv) above, we offer no comment in this paper. 
 
Our main point is: the data analyses usedto arrive at the expected 
stylized facts have all used a technique called ‘sliding windows’ 
[2]. The aim of this section is to explain that sliding windows 
produce spurious, results because FX data are nonstationary 
processes with nonstationary increments. Only one previous 
FX data analysis [21] that we are aware of showed that 
sliding windows lead to a spurious Hurst exponent Hs=1/2, 
and correctly identified the cause as nonstationarity of the 
increments. We explain that result theoretically below, and 
in addition have shown theoretically how sliding windows 
generate spurious fat tails [22] as well. 
 
Here’s what’s meant by the sliding window method: one 
treats the increment z=x(t,T) as if it would be independet of 
time of day t, and attempts to construct histograms f1(z,T) for 



increments at differentlag times T by reading a time series of 
returns x(t).  There, one starts at initial time t and forms a 
window at time t+T. One assumes that the increment 
z=x(T,t)=x(t+T)-x(t) generates a 1-point density that is 
independent of t by sliding the window along the entire 
length of the time series, increasing t by one unit at a time 
while holding T fixed. For a long time series, one of at least 
tmax≈several years in length, this method is expected to 
produce good statistics because it picks up a lot of data 
points. But the histograms generated from varying t in the 
increments x(t,T) yield f1(z,T) independently of t iff. the 
increments are stationary, otherwise the assumption is 
false. And the assumption is false: first, fig, 1 shows that the 
increments are uncorrelated after about 10 min. Second, fig. 
2 shows that the mean square fluctuation <x2(t,T)> with T 
fixed at 10 min. depends very strongly on t throughtout the 
course of a trading day. This means simply that the traders’ 
noisy behavior is not independent of time of day. Our 
conclusion is that FX data, taken at 10 min. (or longer) intervals 
are described by a martingale with nonstationary increments in log 
returns. 
 
To illustrate how spurious stylized facts are generated by 
using a sliding window in data analysis, we apply that 
method to a time series with uncorrelated nonstationary 
increments, one with no fat tails and with a Hurst exponent 
H=.35, namely, a time series generated by the exponential 
density (16) with H=.35 (figure 1a) and linear diffusion (41). 
The process is Markovian. Fig. 1a was generated by taking 
5,000,000 independent runs of the Ito process, each starting 
from x(0)=0 for T=10, 100, and 1000. The sliding window 
result is shown as figure 1b. In this case, the sliding 
windows appear to yield a scale free density Fs(us), 
us=xs(T)/THs, from an empirical average over t that one 
cannot formulate theoretically, because for a nonstationary 
process there is no ergodic theorem. Not only are fat tails 



generated artificially, but we get a spurious Hurst exponent 
HS=1/2 as well. This is the method that has  been usedto 
generate stylized fact’ in nearly all existing finance data 
analyses.  
 
Next, we describe our study of a six year time series of Euro-
Dollar exchange rates from Olsen & Associates [2]. The 
increments x(t,T)=x(t+T)-x(t)=lm(p(t+T)/p(t)) are 
nonstationary, as is shown by the root mean square fluctuation in 
increments plotted against t in figure 2a, where T=10 min. to 
insure that there are no autocorrelations in increments (Fig. 
3). Second, note that the returns data do not scale with a 
Hurst exponent H or even with several different Hurst 
exponents over the course of a trading day (we define a 
trading day in a 24 hour market by resetting the clock at the 
same time each morning). Fig. 2b shows that the same 
stochastic process is repeated on different days of the week, 
so that we can assume a single, definite intraday stochastic 
process x(t) in intraday returns. In fig. 1a  we see that scaling 
is observed at best within four disjoint time intervals during 
the day, and even then with four different Hurst exponents 
(H<1/2 in three of the intervals, H>1/2 in the other). That is, 
the intraday stochastic process x(t) generally does not scale and 
will exhibit a complicated time dependence in the variance <x2(t)>.  
 
Within the three windows where a data collapse F(u)=tHf(x,t) 
is weakly but inadequately indicated, we see that the scaling 
function F(u) has no fat tails, is instead approximately 
exponential (figure 4a). If we apply the method of sliding 
windows to the finance time series within the interval I 
shown in fig. 2a, then we get figure 4b, which has artificially 
generated fat tails and also a  spurious Hurst exponent 
HS=1/2, just as with our numerical simulation using time 
series generated via the exponential density  to generate a 
Markov time series (fig. 2a,b). This shows how sliding 
windows can generate artificial fat tails and spurious Hurst 



exponents of 1/2 in data analysis. That is, the use of sliding 
windows generates ‘spurious stylized facts’ when the 
increments are nonstationary. This observation has far 
reaching consequences for the analysis of random time 
series, whether in  physics, economics/finance, and biology. 
 
 
Using the short time approximation T<<t, where t ranges 
from opening to closing time over a day, we obtain from (27) 
the mean square fluctuation  
 
   

! 

x2 (t,T) " D(x,t)T = t2H#1 D(u)T  . (36).  
 
 
With uncorrelated nonstationary increments, in a scaling 
region we have more generally from (34) that 
 
  

! 

x2 (t,T) = (x(t +T)"x(t))2
= x2 (1) [(t +T)2H

" t2H )]  (37) 
 
independent of the details of the diffusion coefficient D(x,t). 
In most existing data analyses we generally have T/t<<1 
when sliding windows are applied to the increments x(T,t), 
yielding 
 
   

! 

x2 (t,T) " x2 (1) 2Ht2H#1T .  (38) 
 
Sliding windows then average empirically over t, 
 
    

! 

x2 (t,T)
S
" x2 (1) 2H t2H#1

S
T  (39) 

 
yielding <x2(t,T)>S≈T2Hs with 2HS=1. Sliding window Hurst 
exponents HS=1/2  have been reported several times in the 
literature [34], but without any correct explanation how they 
arise from models where increments are uncorrelated with 



H≠1/2. That HS=1/2 is a consequence of using sliding 
windows was first reported by Galluccio et al [21] in 1997 in 
a paper that we did not appreciate at all until we 
rediscovered the implications of nonstationary increments 
for ourselves.  In 1996 there was no theory available as 
guide.  
 
Our exponent sliding window Hs plays the same role for 
scaling martingales and fBm as does the Joseph exponent J: 
when there is scaling with H≠1/2 and with no increment 
autocorrelations then H≠Hs=1/2, whereas for stationary 
increments with nonlinear variance that scales with H then 
H=Hs. One need not use R/S analysis [8] to look for long 
time correlations, one need only check the mean square 
fluctuation <x2(t,T)> for lack of t-dependence, for stationary 
increments. 
 
Finally, consider figure 2  in Mandelbrot [23], where fat tails 
with infinite variance were deduced for cotton returns. He 
plots what he calls a 2nd moment, but which is analogous to 
the mean square fluctuation in our fig. 2a and is simply our 
eqn. (38) above. Mandelbrot observes that quantity is ‘badly 
behaved’, doesn’t ‘converge’, and assumes without proof 
that the cause is Levy-like fat tails (in a Levy density the 
variance is strictly infinite). He then set the 2nd moment 
equal to infinity, assuming that the time series is stationary so 
that his sliding window time average (our eqn. (38)) should 
make sense. But markets are nonstationary, are very far from 
statistical equilibrium, and in that case an ergodicity 
assumption about the empirical time average in eqn. (38) 
fails, the mean square fluctuation in (38) will not ‘converge’ 
but will fluctuate eradically if the increments are 
nonstationary. The ‘bad behavior’ observed by Mandelbrot 
has nothing to do with fat tails and is instead direct 
evidence for nonstationarity of the increments. His figure 2 
is nothing more or less than the uneveness exhibited by 



noise traders like our fig. 2a. We have produced evidence 
(fig. 2b) that FX traders reproduce (at least before reading 
and being influenced by this paper) the same dynamics day 
after day, so the natural time scale for that analysis is one 
day. For cotton returns, the natural time scale for a correct 
data analysis is probably one year, with nonstationarity of 
increments reflecting unevenness of trading during the 
course of a year. Such seasonal variations cannot be 
smoothed out without masking the essence of the 
underlying market dynamics. It would be of interest to 
check cotton market returns for uncorrelated increments (to 
check for a martingale), where the diffusion coefficient (as 
explained above) would then describe the uneveness in the 
volatility of trading (the nonstationarity of the increments) 
over the time scale of a year. But a reliable cotton market 
analysis is made extremely difficult than FX because cotton 
price statistics are much more sparse, and will yield far more 
scatter in histograms than do FX market statistics where we 
cannot even get good enough daily returns histograms from 
6 years of trading taken at 10 min. intervals. We would 
expect agricultural commodities in general to exhibit 
nonstationary increments. 
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Figure Captions 
 
 

 
 
 
Fig. 1. Normalized autocorrelations in increments               
AT(t1,t2)=<x(t1,T)x(t2,T)>/(<x2(t1)><x2(t2)>)1/2 for two 
nonoverlapping time intervals [t1,t1+T], [t2,t2+T] decay 
rapidly toward zero for T≥10 min. of trading.  



 
 
 

 
 
Fig. 2(a). The root mean square fluctuation <x2(t,T)>1/2  of the 
daily Euro-Dollar exchange rate is plotted against time of 
day t, with T=10 min. to insure that autocorrelations in 
increments have died out (fig. 3).  
 
 
 



 
 
 

 
 
 
Fig. 2(b) We observe that the same intraday stochastic 
process occurs during each trading day. Both of the plots (a) 
and (b) would be flat were the increments x(t,T) stationary. 
Instead, the rms fluctuation of x(t,T) varies by a factor of 3 
each day as t is varied, exhibiting strongly nonstationary 
increments. In (a) that we find scaling with H at best in the 



four disjoint colored regions, and with different values of H 
in each region. 
 
 

 
 
Fig. 3(a). The scaling function F(u) is calculated from a 
simulated time series generated via the exponential model, 
D(u)=1+abs(u)  with H=.35. 5,000,000 independent runs of 
the exponential stochastic process were used.  
 



 
 
Fig. 3(b) The ‘sliding window scaling function’ FS(us), 
us=xs(T)/THs was calculated for the same simulated data. 
Note that FS has fat tails whereas F does not, and that HS=1/2 
aprears contradicting the fact that H=.35 was used to 
generate the time series. That is, sliding windows produce 
two significantly spurious results. 
 



 
 
Fig. 4(a). Our scaling analysis uses the small window I 
shown in fig. 4a. We plot the scaling function F(u) for H=.35 
with 10 min. ≤ T ≤ 160 min. Note that F(u) is slightly 
asymmetric and is approximately exponential, showing that 
the variance is finite.  



 
 
Fig. 4(b) The ‘sliding interval scaling function’ Fs(us), 
us=xs(T)/THs, is constructed empirically from the same 
interval I for T=10, 20, and 40 min. Note that fat tails have 
been generated spuriously by the sliding windows, and that 
a spurious Hurst exponent Hs=1/2 has been generated as 
well, just as in the simulation data shown as fig. 3a,b. 
 
 
 


