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1. Introduction

The long lasting debate on macroeconomics abousdheces of business cycles
has been built upon successive disagreements sod@ine consensus. The Keynesian
tradition, opposed to the classical view of maetring markets and external shocks
over fundamentals, stresses the presence of dikeiguin the economic system. Firms
and households, instead of choosing optimally,nofiee rules of thumb when deciding
about price adjustments, how much to invest, howistribute consumption over time
or how to allocate time between work and leisure.

This paper analyzes a two dimensional macroeconanudel that combines
classical and Keynesian features. The model isrdigand purely deterministic. The
main structure of the model is based on Halleggttal. (2007) (hereafter HGDH), who
present a problem designated as NEDyM (nhon-eqihibrdynamic model). Our aim,
as the one in HGDH, is to obtain a long-term outeowhere, depending on the
particular economic scenario that is furnished lgpvan array of parameter values, we
can have both a fixed-point balanced growth outcdasein the neoclassical growth
model) and endogenous fluctuations generated bydhdinear nature of the relation
between endogenous variables (as in a Keynesiagudigbrium setup).

According to HGDH, a NEDyM is a growth model buipon a standard Solow
(1956) model, but where multiple inefficienciessariin the several markets that are
considered. In this analysis, agents do not haviegeforesight and markets do not
clear, and the main reason pointed out for su¢hddnertia that the economic system
undergoes. Inertia implies a delay on the adjustrbetween production and demand,
on one hand, and, on the other hand, a suboptinvasiment process. Investment
decisions are linked with short-run profits andséhenay give signs that differ from the
reality attached to the long-term optimal scenaFRarthermore, the labor market is
subject to relevant inefficiencies, which are ttates into a Phillips curve that relates
nominal wages with labor supply. Consumer decisiares not optimal, instead they
depend on the available stock of real balancesanthe Solow’s constant rate of
savings.

The HGDH model is, therefore, a large collectidnkeynesian relations built
upon a minimal classical growth structure; thissists just on a production function
that fully employs available inputs and on a conmeral capital accumulation
difference equation. The authors are able to finouée to chaotic motion and, thus, for

different parameter values, it is analytically pbksto observe a fixed-point stable
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equilibrium or cycles of any periodicity and contglg a-periodic cycles. Such a co-
existence can be interpreted under the idea tloatcértain arrays of parameters,
classical economics dominate, while for othersitiegtia factors become sufficiently
relevant in order to generate endogenous busiryesssc

By modelling simultaneously the dynamics of the dpmarket, the labor market,
the behavior of firms with investment as a functioiprofits and the behavior of
households as a function of real balances, thelgmoproposed by HGDH becomes an
8-dimensional system with 8 endogenous variablesp(ognostic variables, as the
authors refer to them). Additionally, 11 other wadtes (diagnostic variables) are
modelled as functions of the endogenous state blasaWith such a high dimension,
the problem cannot be analyzed in general termly, thmough numerical particular
examples one may infer about the behavior of tl@@my. Thus, what the authors gain
in terms of completeness they evidently lose intvdoacerns tractability.

Here, the main distinction relatively to the anaysf HGDH, is that our model is
more compact (it is just a two-dimensional modallpwing for the general analysis of
local dynamics, as well as for the investigationtioé long-term global asymptotic
behavior of the assumed endogenous variables.

The features we maintain in this version of the NEDare, on one hand, the
neoclassical production function and the capitabawlation process that is present in
any growth optimization problem and, on the othandy the most relevant Keynesian
features; basically, we assume, as in the HGDH makat an element of inertia is
present in the goods market: production and denzsiadnot always adjusted to one
another, and thus a market disequilibrium persistime. This implies the need to
assume a goods inventory variable, which plays rmldmental role in the obtained
results.

Differently from the HGDH model, investment and samption decisions are not
explicitly modelled; instead, consumption is givjeist as a constant share of income
(the good old constant marginal propensity to coresus taken into account), while
investment is obtained by default as the secondpooent of demand; to the value of
demand one arrives after analytically presentingfioss concerning aggregate demand
and aggregate supply. Aggregate demand is modebkedtly as in HGDH, while
aggregate supply is a textbook Phillips curve definn terms of inflation rate and
output gap. The analysis of the labor market islewgd, by assuming that a fixed
amount of labor is in every moment available todoice.
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The framework that arises from the previous assumgtis a two dimensional
deterministic system with physical capital (pertwfilabor) and goods inventory (per
unit of labor) as endogenous variables. Relativelyhis model, one can address both
local and global dynamics. Local analysis allowsgderceiving that bifurcation points
are eventually crossed, a necessary requiremergntounter long-term nonlinear
motion. The global analysis, although less geneaafirms the generation of areas of
endogenous cycles, that occur with a flip bifurmatiAs in the HGDH problem, areas
of fixed point stability can be interpreted as es@nting the balanced growth path that
is characteristic of classical growth models, whidgions where complex behavior is
evidenced are the ones where the Keynesian featfitee model (inertia, production-
demand lack of alignment, constant propensity tosame, Phillips curve relation)
become dominant. The main additional contributioat the present paper achieves is
that it is able to obtain such a set of resultshaut departing from a simple two-
equation model, the dimension in which most ofdlassical models are explored (e.qg.,
the Ramsey capital-consumption model).

The remainder of the paper is organized as follo8&ction 2 highlights the
relevance of business cycles as the main poinbofraversy between macroeconomic
schools; this motivates the development of the ro8ection 3 presents the basic
structure of the NEDyM. Section 4 characterizeslatynamics. In section 5, specific
functional forms for the neoclassical productiondtion are proposed in order to obtain
additional, more concrete, results. Section 6 eeglglobal dynamics for a reasonable
calibration of parameter values. Finally, sectioooicludes. Proofs of propositions are

left to a final appendix.

2. General Overview of the Literature: Classical ad

Keynesian Macroeconomics

Since its birth, macroeconomic theory has evol\edugh the systematic debate
among Keynesians and classics. In a brilliant syriankiw (2006) describes the
several stages of this debate. The early stagelsenhar clear disagreement in the way
aggregate phenomena were understood; later on, smmsensus was pursued. In order
to better motivate the model we develop in the pépdeynesian model built upon a
neoclassical growth structure), we begin by brieflyiewing this debate.

Early Keynesian theorists, as Hicks (1937), Moaigli(1944) and Samuelson and

Solow (1960) have presented the fundamental steiaifl the Keynesian economic
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analysis; macro relations are driven by a set ségliilibrium equations that cannot be
understood just by looking at the behavior of aerage or a representative agent.
Under this view, macroeconomics is a reality onoits, i.e., the established relations
(e.g., IS, LM and Phillips curves) are understoaty avhen the economy as a whole is
considered. Prices do not adjust automatically,ketardo not clear instantaneously;
incomplete information, coordination failures anthey inefficiencies give rise to
relations between variables that depart from thpealing economic notions of
equilibrium and efficiency. This view of the regliéasily leads to the conclusion that
business cycles are intrinsic to the economic perdmce of countries or regions. Early
endogenous cycles’ models built under the inspinatif Keynesian economics include
Kalecki (1937), Harrod (1939), Kaldor (1940) ando@win (1951).

Modern (neo)classical macroeconomics has emengeché the beginning of the
second half of the twentieth century. The influahivork of Arrow and Debreu (1954)
on the general equilibrium theory has influencedwhole new generation of
economists, who gained access to the tools thawedl to question the macroeconomic
science as it was born (as a Keynesian scienceéyn{2ption, market clearing and an
overall idea of the invisible hand working at thggeegate level took over the
mainstream economic thought. Lucas (1976) and Staiaed Wallace (1975) caused
serious damage to Keynesian economics by pointsgnability to deal with policy
analysis; at the heart of this critique is thearadl expectations revolution. The impact
of the classical macroeconomics was such thatditllecas (1980) to announce the
death of Keynesian economics.

As the Keynesian paradigm fell in disgrace in th€ye1980s, a new paradigm
became necessary to replace the previous view doouthe economy behaves in the
short-run. If cycles do exist, but macro relatishsuld not be modelled as the result of
market inefficiencies because these are not cobipaiiith the optimizing behavior of
well informed and rational agents, how can we fadeasonable explanation for
observed economic fluctuations?

To this central question, Kydland and Prescott 2298nd Long and Plosser
(1983) have answered with the theory of real bissireycles (RBC). The RBC theory
is clearly classical in its nature; prices adjustoanatically, markets always clear and
the basic problem consists on a representativeehols intertemporal optimization
problem, where the utility withdrawn from consungptiand leisure is maximized
under an infinite horizon, given some rate of tipreference. Cycles are triggered by

stochastic disturbances on technology or publieesjiures, and these induce optimal
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reallocations of the representative agent’s tinteveen work and leisure. Fluctuations
are, thus, the result of the changes in the amotiavailable labor force that occur
without the need of departing from market efficignc

On their side, classical macroeconomists have awed the argument that
Keynesian functional relations are established m a&d-hoc way (no micro
fundamentals are addressed); this is the argunseat by Friedman (1957) and Phelps
(1968) to cause the first important damage on tlegn€sian paradigm, when they
criticized the empirical plausibility of the Keynas consumption function and of the
Phillips curve. Against classicals is the empiritzadk of reasonability of the market
clearing hypothesis, for instance in what concehaslabor market. Thus, Keynesian
economics have reawakened in the mid 1980s, witlwitrk of Calvo (1983), Mankiw
(1985) and Akerlof and Yellen (1985), among othérkis new work was a first
approach in the direction of a consensus; whilentaming at the core of the analysis
the idea that prices adjust sluggishly, now ecostsnbegan the quest for micro
explanations for such stickiness. Here we find rienu costs and efficiency wages
theories, among others in which markets are madledenon competitive entities.

While most of the contemporaneous macroeconomictimees to rely on
optimization and the representative agent behatherreferred consensus has evolved
as well. The two visions of aggregate fluctuatiblase nowadays almost merged by
leaving behind the most unappealing features anihtiegrating their strong points. A
sign of this merger on thought is that while onedl the new paradigm ‘the new
neoclassical synthesis’ [Goodfriend and King (1993thers attribute to the same set of
notions the designation of ‘a new Keynesian persgeEdClarida et. al. (1999)]. The
new synthesis model is nothing more than a dynayareral equilibrium model with
nominal rigidities, and this brings us back to wtreg birth of macroeconomics was all
about: to explain how labor, monetary and goodsketarinteract in a world where
market clearing is absent at the aggregate level.

The previous appointments about the macroeconodeaibate allow us to clearly
realize that the main point of controversy in tietd relates to the sources of business
cycles. The modern approaches to the study of aglcinotion are of various types.
Monetary policy analysis has been an importandfiier the advancement of this
debate. A simple aggregative model, involving aaigit IS equation and a Phillips
curve derived from microeconomic principles, isapd benchmark framework in the
analysis of many macro policy related questions [tiodel is thoroughly developed in
Woodford (2003)].
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Other strand of literature that pursued compatibitetween the two viewpoints
is known as the endogenous business cycles (EB&atlire. This explores general
equilibrium models to which it is possible to attasome kind of market inefficiency
capable of producing nonlinear relations amongaldes, that in analytical terms
translate in deterministic time series fluctuatitimst are perpetuated in the long-term.

The origins of this approach can be traced badWledio (1979), Stutzer (1980),
Benhabib and Day (1981), Day (1982), Grandmont $).9Boldrin and Montrucchio
(1986) and Deneckere and Pelikan (1986). The nmceapt had to do with the idea of
competitive chaos; that is, using the benchmarkropation problem (intertemporal or
with overlapping generations) and introducing saiight changes to the conventional
presentation (e.g., by changing the shape of tlelyation function), endogenous
cycles were generated. These cycles correspondest, ah the times, to chaotic time
series, i.e., time series exhibiting sensitive déigace on initial conditions.

The notion of competitive chaos has been furtherelibped by a group of
mathematical economists, who claim that nonlinesritan be found in conventional
dynamic classical models without the need of carsig any kind of inefficiency. In
Nishimuraet. al.(1994) and Nishimura and Yano (1994, 1995), amdhgrs, extreme
conditions under which the competitive growth scEnaan generate long term
nonlinear motion are addressed (e.g., unrealistibaih intertemporal discount rates).

The literature on EBC has gained an important nesath with the model by
Christiano and Harrison (1999), who proved the texise of chaos in a standard
deterministic RBC model with production externabti This line of research, where a
utility maximization control problem is taken ind@count (and where consumption and
leisure are the arguments of the utility functidmgs been further developed by Schmitt-
Grohé (2000), Guo and Lansing (2002), Goenka andsBo (2004), Coury and Wen
(2005) and others. A similar strand of literatusdhie one that investigates the presence
of bifurcation points and nonlinearities in ovepam generations growth models,
which are also subject to production technologhesasng increasing returns. This work
is associated with the following references: Cdiavet. al. (1998), Aloiet. al.(2000),
Cazavillan and Pintus (2004) and Lloyd-Bragaal. (2007), among others.

The models in the EBC literature are simple genegalilibrium models, which
assume that the individual firm faces a positivéemal effect from production in
society; thus, the representative firm faces areeing returns technology. This simple
idea is capable of producing endogenous cyclesit bedives unanswered many of the

questions raised by Keynesian macroeconomics. CGth#rors search for additional
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features capable of introducing nonlinear dynarmcsimple optimization models; one
alternative to the benchmark model consists in diwa from the idea of a
representative agent. This is done in Goeree amdnites (2000) and Onozakt. al.
(2000, 2003), who develop macro heterogeneous sgeotlels. Other hypothesis has
to do with learning mechanisms; Cellarier (200§laees the optimal planner problem
by a constant gain learning mechanism that gerseeestdogenous fluctuations.

Closer to a Keynesian setup is the analysis of Bbsal. (2006). These authors
develop a model where endogenous fluctuationshereesult of the way firms behave.
In accordance with what empirical evidence shomgstment decisions are lumpy and
constrained by the financial structure of firms;rewver, firms are boundedly rational
when forming expectations about future events. faldal ingredients of Keynesian
nature are added by Hallega¢te al. (2007), who introduce the term NEDyM, and mix
classical and Keynesian features in a way we egglather in the next sections.

3. The NEDyM: Basic Structure

Consider an economy populated by a large numbenoaseholds and firms.
Households consume, in each time monie@tl,..., a constant share of the available
income,c=b A; variablescIR. andy:[JR. represent real per capita consumption and
real per capita income, respectively. We assume @heonstant amount of labor is
available to produce (and, to simplify, that thisincides with total population);
normalizing this quantity to unity, there is a aodence between per capita values, per
labor unit values and level values. We will, inteangeably, use any of these terms.
Parametebl](0,1) respects to a constant marginal propensitgposumption.

Output or income is generated by a neoclassicalymtion function of the type
yi=f(k;), with k[[JR, physical capital per unit of labor. In sectionpayticular results are
derived for two specific functional forms of theopuction function. For now, we just
postulate that this is a neoclassical productioction, by assuming that:

a) fis a continuous and differentiable functidrii(C?) and it exhibits positive and
diminishing marginal returng> 0, f’< 0.

b) Inada conditions are satisfielt(ihg f'=+oo; lim f'=0.

— 0o

The accumulation of capital is driven by a processmvestment. Letting:[JR+
represent investment per labor unit a®¥ a capital depreciation rate, the process of

capital accumulation is given by equation (1).
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k., —k, =1, -0k, ko given. (1)

Essential to the characterization of the capitaliawilation process is the rule that
establishes the evolution of investment over tiliteés will emerge from the assumption
that the goods market does not clear, i.e., thdisaquilibrium between output and
demand persists over time. Here, we follow closelsDH, who explain the
misalignment betweel; and demandd{=c+i;) through the introduction of a goods
inventory variableh[OR (this variable, as all the others, is definegeér capita terms).

The dynamics of the goods inventory is determingdHhe difference between
production and demand and, therefore, it can asdfgtiepositive and negative values.
In the case of a positive inventoriz>0, there is a selling lag, i.e., temporary
overproduction exists, which can be the result,ifstance, of the time needed to sell
the goods. A negative inventory<O, indicates the presence of underproduction or a
delivery lag, and can be interpreted as the tingriired for the consumer to get the
goods she ordered.

Selling and delivery lags may be interpreted asranal fact of economic activity,
but additionally they can be thought as the restilthe presence of inertia that turns
difficult to change the productive capacity thatiséx in a given moment. An
equilibrium situation will be the one in whidn=0, a scenario that characterizes a
competitive market. In the developed model, equuilm will not necessarily exist in
the long-term, i.e., the system may converge toteamdy state where despite the
coincidence between output and demand, there tieragsic under or overproduction.

As stated, changes in the aggregate level of iovierst are the result of the
difference between output and demand; this is aggekin equation (2),

h.,—h =y, —d,, ho given. (2)

Equation (2) just states that when output is aldsmand, inventories rise; they
will fall in the opposite circumstance.

To complete the model, we need an aggregate dewrnahcin aggregate supply
relations. The aggregate demand equation is sirtoldhe one in HGDH, that is, we

assume that price changes are determined by this goeentory per unit of demand:
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Py — P, = —6?[-2'— [p, , po given, &>0. (3)
t

The interpretation of expression (3) is straighwfard: for a positive inventory
there is a delay in the selling of production, megrihat market power is on the side of
the consumers, who force pricggl{R.) to decrease. If, otherwise, the goods inventory

is a negative amount, then the lag is on delivergking sellers to concentrate market

power, and therefore producers can trigger a nsprices. Definingr, EM,

P
7R, as the inflation rate, equation (3) is reveritias,

m =0kt @

On the supply side, we consider a trivial Phillipgrve defined in terms of

inflation and output gap,
T = ALK (5)

In equation (5), the output gap/ 'R, is the difference between the logarithm of

effective output and the logarithm of potentialmut(or, similarly, the logarithm of the
ratio between effective and potential outpw)=Iny, —Iny" . Potential outputy’, will

be assumed as the long-run value of output undémalty conditions (it will be
interpreted, in sections 5 and 6, as the steady stdue of income that is derived from
a standard neoclassical optimization problem witteriemporal consumption utility
maximization). Parametet]1(0,1) describes a measure of price flexibilitythé value
of A is close to zero, prices are sticky or sluggishdjust. At the light of the literature
on new Keynesian monetary policy analysis [e.g.,0dford (2003)], equation (5)
corresponds to a new Keynesian Phillips curve unimey extreme simplifying
assumptions: random disturbances upon supply aenalrecall that we are concerned
with fluctuations produced under conditions of fdkterminism) and it is implicitly
assumed that agents expect prices not to groweiriuture (expectations about future

inflation do not impact over the contemporaneofigtion value).
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Combining equations (4) and (5), the following eegwion for demand is

obtained:
g =90 N (6)
A Iny -Iny

Positive levels of demand require one of the twlo¥ang scenarios:

i) The goods inventory is positive and the effecteaeel of output is smaller than
the potential level,

ii) The goods inventory is negative and the effediavel of output is larger than
the potential level.

Thus, we are stating that periods of recessionr(eéfas the time periods in which
the output gap is negative) are periods of tempavaerproduction: producers want to
sell the generated goods, but demand is too losover such requirement; in this way,
excess supply is characteristic of periods of rgoes Periods of expansion, in which
the output gap is positive, are periods of undetpction or negative goods inventory:
people want to buy more, but the selling capac#tyconstrained, what originates
delivery lags or, on other words, an excess demand.

Note, in equation (6), that parameté&andA are closely linked, that is, it is their
ratio that determines the value of demand, and thasimpact of one of them is
precisely symmetric to the impact of the other. Rathrises with a higher sensitivity of
prices to inventory changeé1) and with a lower degree of price flexibilityt ().

Observe that market clearing exists wher0D andx=0, and therefore the demand
equilibrium level cannot be withdrawn from equati@). In the hypothetical market
clearing situation, because the goods inventoigorsstant and equal to zero, dynamic
relation (2) states that demand is equal to thelle¥ income (which coincides with
output). Therefore, equation (6) is a disequilibrivelation, that allows to know the
value of aggregate demand when effective and patemitput differ (and, thus, a non
zero inventory value holds). Consequently, by disfaing a coincidence between the
growth of the price level in the aggregate demamehdon (4) and the aggregate supply
equation (5) we are not stating an equilibrium c¢tow on the contrary, we are
presenting a relation that measures the excessndeonaxcess supply in the market.

Note that the Walrasian equilibrium requires nac@rchange ;7 = 3 since in

this circumstance inventories are zero and potlesutich effective output are identical. A

positive price change is found for a positive otitgap and deflation will exist in



A Two-Dimensional NEDyM 12

scenarios of negative output gap. These remarksjustethe interpretation of the

Phillips equation in (5). A more realistic approasbuld require adding a constant
positive level of inflation to the right hand sidéthe Phillips curve. In this way, a zero
output gap would not mean zero inflation, and weld¢dave a recession (negative
output gap) without having necessarily a scenafrigefiation. We omit this parameter,

since it would add no new relevant information &nalould just introduce an additional

innocuous element to the structure of the model.

We are now in conditions of stating the dynamidopem,

Definition 1. The NEDyM. The two-dimensional growth system, that

combines Keynesian and classical features, is ceathby equations (1) and (2). In
equation (2), output originates on a neoclassiaadyction function and demand can be
obtained through the combination of equations @) &) that describe aggregate
market conditions. Investment, in equation (1),gigen by the difference between
demand, in equation (6), and consumption, whicldeéned as a constant share of

income.

Relatively to the problem in the definition, noteotthings:

i) The described dynamical system is not only a égoations system, it also has
only two endogenous variables: capital and the gawogentory;

i) As referred in the introduction, there is a cleafexistence between Keynesian
and classical elements. The first relate to theoshaf the consumption function, the
lack of equilibrium between output and demand amel ¢donsideration of a Phillips
curve; the second are present in the shape ofrttigtion function and on how capital

accumulation is modelled.

4. Results on Local Stability

The low dimensionality of the model allows for abtag some generic local

dynamic results. We begin by characterizing thadtestate. This is defined as follows,

Definition 2. Steady stateA steady state or balanced growth path is a set

{R,ﬁ, y,d, ,E,i_} of constant values, which can be determined byosimy conditions

T
k =k, =k, andh =h_, =h to equations (1) and (2).
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By applying definition 2, it is straightforward &orive to the following outcome,

Proposition 1. The steady state exists, it is unique and it sratterized by

the group of relations that follows: iy = d ; ii) k) =1—5b i) 77=A0n (f(k)j
- y

x.‘

iv)ﬁ:—e[ﬂn(f;/k)jl]f(k) V) T=b0F(K); i) T = L-b) OF (k).

Proof: see appendix.

The steady state relations deserve some commadnsts:niote that independently
of the long-term value of inventories, productiordalemand assume identical values;
second, the average product of capital is constatiie steady state and it is as much
higher as the larger are the values of the depreciaate and of the marginal
propensity to consume; third, prices rise in thegloun if a positive output gap persists
and decline otherwise; fourth, the goods invenisrypot only negative for a positive
output gap, but it is also as more negative asldiger is the value of the effective
output (a symmetric result can be established)),fibecause demand and income are
identical in the long-run, investment can be exgedsin the form of income times a
constant marginal propensity to save (i.e., in libeg-run, households’ savings are
integrally used by firms in their investment pragc

To study local dynamics, one needs to linearize 9yem in the vicinity of

{k,h}. The linearized system is
e
:I_JEEkt_E:I . ) 1-0- (b+ ij (k) —;G%
_ |, with J = 1 P (7)
(1+ijf'(E) 1+—G]_'—
X A X

with x =In(y/y’).

An important result regarding local stability isspented in proposition 2.

Proposition 2. The existence of a negative output gap is a napgessndition

for local asymptotic stability.
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Proof: see appendix.

In the chosen terminology, the expression ‘locghgstotic stability’ refers to any
circumstance in which there is a coincidence betvibe stable eigenspace and the state
space of the system. In other words, the termde@ated to the case in which the two
eigenvalues of the Jacobian matrix in (7) lie iesithe unit circle. This result is
independent of how the convergence to the steady tikes place: monotonically (if
the two eigenvalues are real and positive), througbroper oscillations (if the two
eigenvalues are real and they are not both pokitivéhrough a spiral movement with
decreasing amplitude in time (if the eigenvalues ar pair of complex values).

Proposition 3 makes the distinction between nodeilgty and focus stability.

Proposition 3. Assume thatx<O0. If a stable fixed-point exists, this

corresponds to a stable node if the following ctindiis satisfied:

a3 533 o 39
_1+5+[b+ j[lf (k)+[l—g—1E€b+ ij (k)}2

If the above inequality is of opposite sign, itdm@es a necessary condition for the

equilibrium point to be a stable focus (i.e., foetconvergence to the stable equilibrium

to occur in spiral).

Proof: see appendix.

Two remarks about proposition 3: first, we reempeshat the presented
condition is a necessary condition for the fixeanpto be a stable node (we have not
yet imposed additional conditions that ensure thesgnce of asymptotic stability).
Second, the expression in the proposition was ptedein such a way that it can be
solved for the ratiddA. Relatively to this quotient, the necessary stalolde condition
will be the area above some parabola.

Sufficient conditions for local asymptotic stabjlare the ones in proposition 4.

Proposition 4. Local asymptotic stability holds if, besidgs< 0, the following

inequalities are satisfied,
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i 10)[Ee4 L)er @) >o;
i) [2-6+@-b)or ()] =E Fra-20 (b |0 (K)>0;
X X

i) [1—5+(1—b)Df'(E)]D;—Bg—d—(b+%jl]f'(lz)<0.

Proof: see appendix.

Compiling the results in propositions 2 to 4, thabdity result is the following:
the fixed point is a stable node if all the disgldyconditions in propositions 2 to 4 are
satisfied; the fixed point is a stable focus if thequality in proposition 3 is of opposite
sign and the other referred conditions hold.

In what concerns the value of the ra#bi, proposition 4 has the following

corollary,

Corollary of proposition 4. Consider againX <0. Stability requires the
ratio between the price-inventory sensitivity paeden and the price stickiness

parameter to be bounded from below and from above:

5+[b+)_1(ij'(E) 4—25+2[€b+)_1(ij'(I2)

A | 1-6+(-b)OrF (k) 2-3+(1-b)F' (k)
Evidently, the lower bound will be zero if the fiivalue of the set is negative.
Proof: see appendix.

Regarding the absence of stability,

Proposition 5. In the caseX <0, two additional local dynamic results are

obtainable, besides asymptotic stability,

4—25+2[€b+)_1(ij'(lz)

- Saddle-path stability, under > - -
A 2-0+(1-b)F'(k)

5+(b+}j[}f'(l2)
Instability, under— < X — [X
A 1-6+(1-b)F (k)
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Proof: see appendix.

The transition of regions of asymptotic stability saddle-path stability or
instability implies that bifurcation points are ssed. The point in which asymptotic
stability gives place to saddle-path stability esponds to a flip bifurcation point. In
this case, one of the eigenvalues assumes the vBlwehile the other remains inside
the unit circle. A Neimark-Sacker bifurcation ocgun the transition between the
stability area and the area in which the eigenwalre complex with modulus higher
than one. Note that, according to proposition 5tfer corollary of proposition 4), the
unique required condition for any of the bifurcasdo occur is that the specified border
values ofd A must be higher than zero.

Let us turn to the case in which the output gapoisitive. In this case, one of the
eigenvalues of is always higher than 1 and, therefore, asymptiability is absent.
Proposition 6 states the possible local dynamicltes

Proposition 6. Let X >0. Saddle-path stability holds for a value@# inside
the set presented in the corollary of propositionFér values ofdA outside the set,

instability prevails.

Proof: see appendix.

The instability result may correspond to two diffiet time trajectories, depending
on the stability condition that is violated. E+Tr(J)+ Det(J) <0, along with

1-Tr(J) + Det(J) <0, then one of the eigenvalues is higher than 1thedther lower

than -1, and they are both real values. In thise,céise trajectories will oscillate
improperly as the system departs from the fixed#pdiVhen the determinant of the
Jacobian matrix is above unity, the divergence gssds determined by the existence of
an unstable focus fixed-point.

A better understanding of the previous set of tesig achieved through a
graphical illustration of the stability possibiés. Figure 1 is a diagram that relates the
values of the trace and the determinant.

* Figure 1 »
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In figure 1, we draw the three bifurcation linebg tarea inside the inverted
triangle formed by these three lines is the arestaifility. The two bold lines represent
the two cases in proposition 2: the one in whigjngsotic stability is possible (to the
left of the bifurcation linel-Tr(J)+ Det(J) = § and the one in which asymptotic

stability is not admissible (to the right of thisfuscation line). In the first case,
asymptotic stability can give place to a saddldrpasult, if the flip bifurcation line is
crossed; instability also arises for values of paeters such that the determinant of the
Jacobian matrix becomes a value higher than 1. Whhe condition
1-Tr(J) + Det(J) >0 is no longer verified, saddle-path stability hols long as the

other two stability conditions hold. Otherwise,aifiy of such conditions fails to hold,
asymptotic instability will prevail according to whwas established in proposition 6.

The stability case is straightforward to charazeefrom a dynamic analysis point
of view. Independently of the initial state of thgstem Ko,ho), if this is in the vicinity
of the steady state, then both variables will cogedo the long-term steady state. Such
result is coincident with the neoclassical growtlicome of a balanced growth path:
given the decreasing returns to capital, the econoonverges to a constant long term
value of capital and output (and, consequently,staont levels of consumption and
investment). The main difference relatively to theoclassical model is that this
outcome is achieved for a level of output belowdpémal (this is an intuitive result if
we recall that we have introduced a series of inefcies in our formulation) and for a
steady state goods inventory that is above zenmgsof the produced output is never
sold, which is also a reflection of our model’sffi@encies).

From the point of view of local analysis, the sitaa of saddle-path stability
delivers some interesting results. Thus, let upsse thaty > y* and that the condition

in the corollary of proposition 4 holds.

Proposition 7. If the system is saddle-path stable, the saddiedtory is

ﬁ:_(l ijmf';i)[( k) 8)

with & the eigenvalue af inside the unit circle.

ht_

Proof: see appendix.



A Two-Dimensional NEDyM 18

If X >0, the stable trajectory in (8) is negatively slopetkaning that if the
convergence to the steady state is done througsettidle trajectory, then as the amount
of capital rises, the goods inventory declinesv(oe-versa).

The steady state may be disturbed by changes infating parameter values. For
instance, if the prices become more sluggish (féalls), we know from proposition 1
that the steady state stock of capital remains amgéd, while the goods inventory
becomes smaller. From (8), the slope of the stasjectory decreases in absolute value,
that is, the trajectory becomes flatter. Therefarieen prices become stickier, this will
reduce the long-term level of inventories (thathe considered case are positive) and
the impact over the convergence to the steady istatech that for a given change in the
stock of capital, the change in the goods inventeily be less pronounced. Figure 2

illustrates the case.
*** Eigure 2 ***
5. Specific Production Functions

To better understand the dynamics of the two dinoaas NEDyM model, we
now adopt two explicit functional forms for the grection function. We also consider a
specific value for the potential output. Potentakput is defined as the steady state
level of output that can be derived from an optincaintrol problem of utility

maximization. We present this problem as

Maxz B U(c,)subject tck,,, —k, = f(k,)-c, -k, k, given 9)

t=0

with £(0,1) the discount factor.

Taking a simple logarithmic utility functionlJ(c,) =Inc,, the computation of
first order conditions of this Ramsey problem leadsthe well known equation of
motion for consumptiore,,, = ,8[(1—5+ f'(kt))Ett. The evaluation of this equation in
the steady state will give us the optimal long-tezonstant value of capital, which

obeys tof'(k’) =1/ 8- (1-J ) Potential output is, then, defined gs= f(k" . )
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5.1 Cobb-Douglas Production Function

The first case we consider takes a Cobb-Douglasdyoton function:

f(k,) = ALk”. ParameteA>0 is a technological index, angJ(0,1) is the output-

capital elasticity. With this production functiomhe potential output is explicitly

al(l-a)
presentable ag” = A" o .
1/3-(1-9)

Now, the steady state results can all be givemmastibns of the assumed array of
parameters. Recall from proposition 1 that, insteady state, income and demand are
identical, what allows for presenting the steadyatest stock of capital as

E:((l—b)DA

1/(1-a)
5 j . The long-term capital stock rises with the levielechnology and

with the output-capital elasticity and it falls #® marginal propensity to consume and
the depreciation rate increase.

Consumption and investment are, respectively, givernby
= _ 1/(1-a) 1-Db 7 - 1/(1-a) -al(1-a) :
C=Db[A v andi = [(1—b) DA] s . Both consumption and

investment steady state levels benefit from a bétighnology level and from a lower
rate of capital depreciation. The impact of the progity to consume over steady state
investment is also unequivocal (a higlhedamages the long-term capacity to invest),
but it is not so straightforward in terms of longrrh consumption; computing the
derivative of the steady state consumption levelrgter tob, one gets a positive value
for b<1-a; hence, we conclude that the marginal propensityonsume benefits long-
run consumption only if this constant is lower thiha output-labor elasticity. A higher
b means that too many resources are withdrawn frenptoductive process in order to
guarantee that consumption rises with an increasiage of consumption.
In  what concerns goods inventories, the steady e stabecomes

_ al(l-a) _ M
h=-239 mveo Eﬁl—bj Eﬂn((l L/ A~ 5))) Finally, we can look
1-a o ald

WY

at the steady state inflation rater = ald Eﬂn((l_b) E(llﬂ_(l_d))j. As in the

l1-a ald
general case, the most meaningful result regarthisgsteady state value is the fact that
prices rise with a positive output gap and decbtigeerwise. Relatively to the last two
steady state results, it is not straightforwardp&wceive the impact of some of the
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parameters over those results. Note, as an illimtrahe role of the discount factor: the
more intensely future is discounted (low@rthe higher is inflation (if this is positive)
or the lower is deflation (for a negative priceejissimilarly, a higher discount rate
lowers the goods inventory level (if it is positivié becomes closer to zero; if it is
negative, it falls even more).

Concerning the sign of the output gap, we havddi@wing result,

Proposition 8. A positive steady state output gap requires

< A-P)IB+sla-a)
@-pyp+o

Proof: see appendix.

According to the stability results in section 4e thign of the output gap is of
fundamental importance. Asymptotic stability regsia negative output gap and, thus,
for constant values gf, 0 and a, stability is found for a relatively high value tfe
marginal propensity to consume.

To address local dynamics, we should note thatherspecific technology under

appreciation, the steady state marginal produatapital is f'(k) :a—[i. Replacing

this, and the several steady state values, in thpopitions of section 4, we would
obtain conditions for the characterization of lostlbility. Since this exercise does not
add much information to the precedent generic teswle just remark that the relation
in figure 1 between the trace and the determinantairix J is, with the Cobb-Douglas

technology,

OB ML-a)?

Det(J) =Tr(J) -1-
20 [I]n[(l_b) W B- (1—5») (10)

ald

A negative output gap will allow (10) to cross stability area.
The exploration of a numerical example conductsntwe tractable results. The
calibration in table 1 is considered.
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Parameter Value Source
A 1 Cellarier (2006)
a 1/3 Hallegateet. al.(2007)
o 0.067 Guo and Lansing (2002)
B 0.962 Guo and Lansing (2002)
b 0.7;0.9 .

Table 1 — Calibration in the Cobb-Douglas case.

We let the ratiodA be any positive value, that is, we elect thisoras the
bifurcation parameter. With the above values, wamate steady states for the various

variables. First note that the potential outputyis=1.7691 The steady state level of

capital comesk = 9.4748 for b=0.7 andk =1.8234 for b=0.9. To these capital levels,
it corresponds the following output valueg= 2.116 (b=0.7) andy =1.2217 (b=0.9).
We confirm that the lower propensity to consume liegpa positive output gap (and,
thus, the impossibility of asymptotic stability) hike the larger propensity to consume
leads to a negative output gap.

The other steady state values a®=14812 (b=0.7), ¢ =1.0995 (b=0.9)
(observe that the second steady state level oluoopison is lower than the first, despite
the fact that in the second case the propensitpnsume is higher); = 0.6348(b=0.7),

i =0.1222 (b=0.9). The inflation rate comeg = 0.1791[1 (0=0.7), 77 =-0.3702(A
(b=0.9); as we should expect, inflation exists whea thutput gap is positive, and

deflation arises for a negative output gap. Finallgncerning inventories, we get
h= —0.37895% (b=0.7), h = 0.4523% (b=0.9).

To address local dynamics, it is possible to pretiesm Jacobian matrices of the

system, considering each one of the propensitiesitseume. These matrices are:

b=09) —

04651 - 5.5847% 1.3352 2.701%

J =07y =

; J
¢
04902 1+ 5.5847% -0.3799 1- 2.701B§

The computation of the eigenvalues of the aboveioestis straightforward:

2
£, =0.7325+ 2.7924@/? +05 #31.189[@%) - 4.976@/? +0.2861 (b=0.7);

! b needs to be higher than 0.7907 to exist a rediaability (proposition 8); therefore, we considen
values that produce two different outcomes.
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2
£, =11676- 1.3505% +05 #7.2954[@%) - 2.2937B§ +0.1124 (b=0.9).

Asymptotic stability requires both eigenvalues &itbside the unit circle. For the
first set of eigenvalues this does not happen. @ribe eigenvalues is always above 1
for positive values of the rati@A. The other eigenvalue lies above minus one for any
positive value o044, and below 1 for &4 below 1,007.6. Since it does not make much
sense to assume such a huge difference betweevalines of the demand function
parameter and the price flexibility / stickinessgmeter, we can guarantee that for
b=0.7 saddle-path stability is found (one of the pigdues inside and the other one
outside the unit circle).

On the other cas®=0.9, one of the eigenvalues is always inside theaircle,
while the other eigenvalue lies inside the unitleiras long a$#1<0.8843. When the
ratio reaches this value, a flip bifurcation occ(ire eigenvalue assumes the value -1).
When the ratio is above 0.8843, then local dynararescharacterized by saddle-path
stability. This result is confirmed with the glokatalysis of the following section. For
the assumed parameterization, the Neimark-Sackachtion does not occur under any
positive value ofdA. We can state an additional result by recovermga@sition 3. The

fixed-point is a stable node for values @ of 41  obeying

2
7.2954[€§j - 2.2937[—% +0.1124> 0, that is, ford A<0.0674[10.253% 41<0.8843.

Any other value of the ratio in which there is agyatic stability corresponds to a
stable focus equilibrium.

Let us return to the cade=0.7 in order to obtain the expression of the stable
trajectory in the saddle-path case. Recalling eguaf8), that gives us the saddle-

6445 0.4902 )
- , with
K K =

trajectory, one has in the present cabe= —0.3789[%+4'

6 2
k =0.2675+ 2'7923%6{ +05 E{/31.189[€;j - 4.976% +0.2861. Note that «<O

means that the slope of the stable trajectory sitipe, being negative in the symmetric
case. Sincex>0, 08/, under the imposed conditions and calibratiorg #table
trajectory is negatively sloped; as the stock dfitedh rises towards equilibrium, the

goods inventory falls.
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5.2 CES Production Function

In this section, we consider an alternative neaatas production function (as the
Cobb-Douglas function, it exhibits positive and dimehing marginal returns and the
Inada conditions hold). This is a constant elastioit substitution (CES) production

function, and we present it as in Barro and Salaitin (1995),
f(k) = Adladmik)” + 1-a) @-m* " (11)

In production function (11)A>0 is again the technology index, andag 1, 0<m<1,
Y(-0,1){0}. The elasticity of substitution between cabiand labor is 1/(15). The
CES function has, as limit cases, other shapesaolugtion functions. Wheg/- 0, the
elasticity of substitution approaches 1, and thagpction function approaches a Cobb-
Douglas form. Whenyg=1, the production function becomes linear (thestetay of
substitution is infinite). Finally, wheny- -, we approach a Leontief production
function with a fixed-proportions technology (thHasgicity of substitution is zero).

The CES production function is more demanding to dedd analytically. In the
appendix (A10), we compute the potential outpudeBned earlier. The outcome is

y = AD(l_ 3) 1-m” [z with z = (MJW(H/) _
z-alm” ’ INFAT 2

The proposed model implies, as a generic result,iththe steady state income
and demand are equal, and therefore it is oncen afyaightforward to obtain the long-

term stock of capital from the capital accumulatiequation. This is given by

(1-=a)" 01-m)

ocba)

parameterg\, b and d over the steady state capital stock is qualititittee same as in

k= 7, - Observe that, as we should expect, the impact of

the Cobb-Douglas case. The steady state level of pubut is

o fa-ayme-mra)”t (s Y
y=A o aln? j ,Wlthw_(—(l_b)mj.

Steady state values of consumption and investmem, a@espectively,

¢ =pafg &= L-m” mjw andi = (L-b) DA[E(l_a) [ - m)* UWJW.

w-aln’ w-aln’
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The steady state goods inventory and inflation eagedependent on the output
gap and, as discussed in the general case, wevelibat a positive output gap implies

a negative inventory level and a positive inflatrate.

Proposition 9. With a CES technology, the necessary conditionstability

X <0 implies the following constraint on b,

I A-6 . . aln’
T , with 9 =— Ty y-¢) V2N
YA ZY-1-a) " {l-m) [{z-alm”)

Proof: see appendix.

Proposition 9 shows that, similarly to the Cobb-Blas technology case, a lower
bound is imposed on the marginal propensity to gomsin order to asymptotic stability
to be feasible.

An example illustrates the CES case. The values mainpetersA, d and g are the
ones considered in the Cobb-Douglas example, andakeea=0.4 andm=0.7. The
elasticity of substitution between capital and kal® 0.9 (a value near the Cobb-
Douglas case); this elasticity of substitution nee#maty=-1/9. Once again, the ratio
a1 is left to be the bifurcation parameter. To choasealue forb, we first look at
proposition 9 under this particular example. Foe gelected array of parameters,
z=1.146, andy'=1.077. It is also true tha#9=1.3942. Computation implies the
following necessary stability conditioh>0.0074.

Thus, in the case in appreciation, the steady statieut gap is negative for all
values of the propensity to consume, except extyernosv values, which from an
empirical plausibility point of view are negligibl@his is a significant departure from
the Cobb-Douglas case. Despite the chosen elgsttisubstitution in the CES case
being close to the one in the Cobb-Douglas scend® value of the propensity to
consume required to find stability can be signiiitya different. Because in the present
case any reasonable propensity to consume implleagaterm state where output is
below potential, we select a reasonable valub;fthis isb=0.7.

With the selected array of parameters, one compuwtels1812 andy = 0.597.
We confirm that the output gap is negative, meativa we should encounter an area

of stability for a given interval of values éfA. Additionally, a flip bifurcation will be

identified.
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The Jacobian matrix is, for the system under apatiea (this is directly

computed from (7), withf (k) =0.0787),
10113 1.6949E€
J= A
-0.0547 1—1.6949@/?

The eigenvalues of the Jacobian matrix are:

2
£, =10057- 0'8474%6{ + 05 R/Z.S?Z?[égj - 0.3325% +0.0001

One of the eigenvalues is inside the unit circtedd<21,005, that is, it lies inside
the unit circle for any reasonable parameterizafidre other eigenvalue lies inside the
unit circle for @1<1.213. WhendA=1.213, the system crosses a flip bifurcation and,

consequently, the possibility of endogenous flumtums arises. The stable fixed-point

2
respects to a stable node equilibrium wt%ﬂZ?[égj - 0.3325@/? +0.0001>0, i.e.,

for 0.0003% dA<0.1154. A stable focus will mean that<&A4<0.0003 or
0.1154 44<1.213.

In the case of saddle-path stabilifA>1.213), one may compute the expression
of the stable trajectory. As an illustration, assuthat 8=1.5; for this value, the
eigenvalue above -1 5=0.9557 (the other is,=-1.4866). Recovering the stable arm in
(8), this comesh, —h = —0.2782[ﬁkt - R). In this example, assuming that the stable path
is followed, a one point increase in the stock apital occurs simultaneously with a
0.2782 points decrease in the goods inventoryhasonvergence to the steady-state
eventually takes place.

In an overall evaluation, and despite the diffeeefi@und about the constraint
bounding parametdrin order to separate the cases of positive andtivegsteady state
output gap, we find similar results when compatimg dynamics of the model when to
its structure underlie two different production leologies. In both cases, stability
requireséd A to be lower than a bifurcation point, that oncessed leads to saddle-path

stability.
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6. Comparing Global Dynamic Results

In this section, we resort to the numerical exammee as presented earlier to
make a graphical evaluation of global dynamics. Ivel that, for both types of
production functions, the flip bifurcation givesapé to a period doubling route to
chaos, such that one may identify the presencaadgenous cycles for certain arrays
of parameter values.

The graphical analysis includes the presentatioa bffurcation diagram, long-
term attractors, time series of the most relevaariables and the computation of
Lyapunov characteristic exponents (LCEs). LCEs areefl accepted measure of
sensitive dependence on initial conditions, a feathat constitutes one of the main
properties of chaotic systerhaVe begin by analyzing the Cobb-Douglas case, under
the parameterization in table 1.

Relevant global dynamic results only exist fo¥r0.7907, the case in which the
condition1-Tr(J) + Det(J) > Ois satisfied. Thus, we work with=0.9. Recall that for

this propensity to consume, local dynamics hastpdino stability unde@A1<0.8843
and saddle-path stability otherwise. Figure 3 aigplthe bifurcation diagram of

variablek; as we change the value of the ra#d.?

*** Figure 3 ***

The bifurcation diagram furnishes a visual confiioratof the existence of a
stability area to the left of the bifurcation poifthe steady state value of the capital
variable that one has computed in sectiork; 1.8234, is obtained) and, once the
bifurcation takes place, it is possible to obsehat cycles of growing periodicity arise
as the value of the ratiélA rises. Chaotic motion is found for values of thadio
slightly above one. This means that endogenousulaegycles are present for a value
of the price coefficient in the demand relatiorgistly above the value of the price
stickiness parameter. The presence of chaos i@ with the presentation of LCEs

in figure 4.

2 See Alligood, Sauer and Yorke (1997), Lorenz {)Q® Medio and Lines (2001) for detailed analysis
of chaotic systems and respective applicationsomemics.

% This figure, and all the following, are drawn wpitDMC software (interactive Dynamical Model
Calculator). This is a free software program avddaat www.dss.uniud.it/nonlinearand copyright of
Marji Lines and Alfredo Medio.
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*** Figure 4 ***

In a two-dimensional system, two LCEs can be coetpulf one of them is a
positive value, then there is exponential divergeotcnearby orbits, that is, time series
are sensitive to their initial values (a small elifnce in the initial values means, for a
chaotic system, completely different trajectorigeraime). Thus, an LCE above zero is
synonymous of the presence of chaotic motion. Weede that the contents of figure 4
confirm, in fact, the information furnished by figu3. In particular, one of the LCEs
assumes a positive value for most of the inte@:&ll(1;1.06).

Figure 5 presents the long-run attractor of theati@h between the two
endogenous variables, for a value@t under which chaotic motion existd4=1.05).
Note that, although we have chosen to work withdage in which the output gap is
negative and inventories are positive, since thihé case that allows for stability and
for a bifurcation that generates endogenous cyelespbserve in the figure that the
goods inventory can assume negative values, asblat fluctuates in a region
bounded above by 2.3 and below by -0.3 (approxiyaterhus, although the
inventories are, on average, around 1.3, fluctaatiwill imply that the goods inventory
can fall below zero, even in the circumstance @neoinsidering of a negative output
gap. Another curious and relevant feature in fighinie the negatively sloped shape of
the attractor. This seems to make sense if oneghhmkt more capital directly leads to
increased output, and with more output the higheslso the value of the output gap
(recall that the potential output is modelled aastant); therefore, the information in
the figure is in accordance with the inverse relatone has established between the

output gap and the goods inventory.

* Figure 5 **

Figures 6 and 7 display the long term time seties first 10,000 observations are
excluded) of the physical capital and goods inventariables for the same value of the
ratio 4 A that allowed for drawing the previous attractoowN one directly observes the
presence of endogenous fluctuations, that we hateepreted earlier as the result of a
prevalence of the Keynesian features of the moud#gtively to the neoclassical
properties, which in turn dominate in the balangesivth case, found for lower values

of the quotien@ A.
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*** Figures 6 and 7 ***

One final figure is presented for the Cobb-Douglase. This calls the attention
for the need of selecting initial values of the egehous variables that allow for
convergence to the long-run state (being this adfgoint, any periodic point or a
chaotic attracting set). As we see in the basinatfaction of figure 8, not all
combinations of initial values are feasible. If astarts from a point in the dark area

(outside the basin of attraction), the systemglxgtrges to infinity.

i Figure 8 *r*

Relatively to the CES case, the qualitative resaifts not significantly different
from the ones just obtained for the case with abEldbuglas production function. To
save in space, we just present the bifurcationrdiagsimilar to the one in figure 3, and
the attractor, which has also a same shape anehmdigure 5.

To present the bifurcation diagram in figure 9, aketthe same set of parameters
used in the local dynamics example. In this, asptipstability was guaranteed under
@1<1.213. Then, a flip bifurcation occurs and, locafigddle-path stability sets in. The
figure confirms these results, and it reveals #lab in this case, the flip bifurcation
originates a process of cyclical motion with ingieg periodicity and where a region of

chaos is observable.

*** Figure 9 ***

Comparing figures 3 and 9, one realizes that diffees are eminently
quantitative; for the selected parameter values sthady state stock of capital is larger
in the CES case, and, also in this case, the flijpdation occurs for a higher value of
the ratiod 1.

Observing figure 9, we see that, for instance,dde=1.5 there is chaotic motion.
Figure 10 presents, for this value, the long-tettraetor (once again, the first 10,000
observations are withdrawn). As one would expé,dimilarities with the attractor in
figure 5 exist. What one has said about negatiheegafor the goods inventory and for

the negative relation that is established in timg{term, applies to the CES case as well.

*** Figure 10 **
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It is possible to conclude that the type of thedpiion function does not change
the main dynamic properties of the model undewoaajlanalysis point of view, because

both production functions are neoclassical in reatur

7. Conclusions

Keynesian economics can be characterized as thgsenaf non equilibrium
situations in aggregate market relations. Followiagent literature on the theme, we
have developed a NEDyM with only two dynamic equaijoone respecting to capital
accumulation and the other to the adjustment opuwuand demand over the goods
inventory. Behind this reduced form there is addateoclassical (market clearing) and
Keynesian (non equilibrium) assumptions.

We were able to address patterns of growth andeatize that, by combining
neoclassical growth features with Keynesian diddgiim elements, a multitude of
long-term results can be found, ranging from batangrowth stability to cycles of any
periodicity and completely a-periodic cycles. Whitke classical components pull in the
direction of the stable outcome, the several ingdficies that were introduced led to the
possibility of endogenous business cycles. The nammantage of this approach
relatively to other models in the area is that tised low dimensionality allowed for
finding some relevant generic results, namely cornog local analysis.

A meaningful result concerns the idea that stabisitpossible only for a negative
output gap. This is intuitive if one takes in comsation the set of inefficiencies that
were considered; the benchmark case is the nemahgsowth model (the potential
output is the steady state level of output computbdn assessing an optimal control
utility maximization problem), thus, by introducimgpn equilibrium components to the
model, it seems obvious that the balanced growtth phat one can find must
correspond to a long-run output level below theimat one. Furthermore, the
assumptions of the model imply that along with aatwe output gap, goods
inventories are positive, i.e., in each time mom@md, in this case, in every time
moment of the long-run outcome) there are goodsateproduced but not sold. Thus,
periods of recession (negative output gap) areoderdf overproduction (demand is
below the level of available goods). This is alsorduitive result.

The most relevant conclusion is that the non equilib features that are attached

to the neoclassical growth model are such that tinéypduce nonlinear relations
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between variables, which are capable of generampgenous cycles for admissible
parameter values. This may be used as an argumejustiy the relevance of
Keynesian economics, under which no external sh@cknecessary to trigger

fluctuations.
Appendix

Al — Proof of proposition 1.

Just apply the conditions mentioned in definitiorto2arrive to the group of
relations in the proposition. The uniqueness of dteady state is guaranteed by the
concave shape of the neoclassical production fomctivhich makes the average
product of capital (which is a decreasing functiorall of its domain) to intersect the

constant value/(1-b) in a single poirm

A2 — Proof of proposition 2.

The trace and the determinant of matrix (7) are, respectively,

TrQ)=2-5- (b+—j[lf (k)+_g1

Det(J) :1—5—(b+%jmf '(E)+(1—5)Ggaf—+gu1—b)af—mf'(i)
X A X A X

From the above expressions, one withdraws a relabetween trace and

determinant,
Det(J) = Tr(J) —1+§ da-b) o (k) - o] .
X
One of the necessary conditions for asymptoticilgtais 1-Tr(J) + Det(J) >0.
. " . . .6 e E—]l
This condition will require expressml}— Eﬁ(l—b)Df (k)—d] I to correspond to a
X

positive value. Note that the expression may be sgmed as

—qu_b)tﬁf(k) f(k)}[-l)_lz. This is positive if y>y Df(k)>f(k) or

y<y Df'(l?)<%. This set of conditions can be restricted by raugllthe

neoclassical nature of the production function.tHis function, marginal returns are
positive but diminishing. This means that introdgcadditional capital implies getting

progressively smaller increments on output. Theegftite marginal product of capital
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will be lower than the average product of capitad &ny admissible value of this

variable. Thus, by stating that' (k) < f(Rk) , We restrict the possibility of asymptotic

stability to the case in which the steady statguiutevel is below the corresponding

potential level

A3 — Proof of proposition 3.

The parabolaDet(J) = (Tr(J)/2)* defines the case in which the two eigenvalues
of J are identical and equal fBr(J)/2. Above this parabolaet(J) > (Tr(J)/2)’] the

eigenvalues are complex, and belowief(J) < (Tr(J)/2)°] they are two real values.

Assuming that asymptotic stability prevails, thetlnequality defines the condition

under which a stable node exists. Applying thisditton to the specific Jacobian

matrix in (7) and resorting to the trace and deteamt expressions computed in the
proof of proposition 2, we get the expression is gropositiom

A4 — Proof of proposition 4.

The two eigenvalues dflie inside the unit circle if the following thre®nditions
are simultaneously satisfied: 1-Tr(J)+ Det(J) > ;0 1+Tr(J)+ Det(J) >0;
1-Det(J) >0. The first condition was applied to arrive to tlesult in proposition 2.

The other two correspond, respectively, to condgigrand ii) in the propositidh

A5 — Proof of the corollary of proposition 4.

The expressions in proposition 4 establish two bewmd the ratiod A; thus, we
just have to rearrange the expressions in the grtopo to get the boundaries of the set
in the corollary. The main issue resides in idemiywhich one is the lower bound and

which one is the upper bound. To reach this resaliserve that condition

0< f'(k) < f(Ek) holds and that the steady state average producapfal is the one

derived in proposition 1. The above condition implikat the terms that multiply A
in the two conditions of proposition 4 are negatradues (keep in mind that the output
gap is negative); thus, when solving the inequediin the proposition in order @4,
the first one gives a value of the ratio below smombination of parameters, while the
second gives a value of the ratio above some abbination of parameters. If the

first quantity is higher than the second, asymptstability is guaranteed for any value
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of 4 inside the presented set. In the opposite cagmmstic stability is absent from

the possible steady state resllts

A6 — Proof of proposition 5.
The conditions in the proposition are the ones tingly that one of the

eigenvalues becomes lower than -1+{r(J)+Det(J)< ) @nd that the two

eigenvalues become a pair of complex conjugatesgali Det(J) < 0, respectivel

A7 — Proof of proposition 6.

In the case where a positive output gap existsgition 1-Tr(J) + Det(J) > 0 is
violated (see proof of proposition 2) and, therefame of the eigenvalues bfs higher
than 1. Thus, at best we will have a one stable miioa. This stable dimension exists
if the other two stability conditions hold € Tr(J) + Det(J) > @nd1-Det(J) > 0. In
our specific system, these are the conditions #flatv reaching the interval in the
corollary of proposition 4, according to the prawfsuch proposition. If saddle-path
stability does not hold, no eigenvalue with modulosver than 1 is determined,
implying instability or divergence relatively todHixed-point, independently of initial
conditionda

A8 — Proof of proposition 7.
Assume that matrid in (7) has, as eigenvalugs,| <1 and|e,| >1. In this case, a

unique stable trajectory exists and this is givgnelpressionh, —ﬁ:&[ﬂkt —R),
1

with p; and p, the elements of an eigenvector associated withThe eigenvector
P= [p1 pz]T may be determined resorting to one of the line$. faking the second
line in consideration, the following relation apgdi

(1+%j[}f'(lz) [p1+[1—51+§ _j [p, =0. Choosing p:=1, the eigenvector is
X X

(1+ }j Of* (k)

P=|1 _X—H . FromP, we withdraw the elements necessary to present the
1-g+- T
A X

slope of the stable arm, as displayed in the piitipo#
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A9 — Proof of proposition 8.

@-b)[{/B-Q1-9))
ald

The steady state output gap fszla Eﬂn( j This is a
-a

positive value if the expression inside the lodemitis higher than 1; by rearranging this
condition, one arrives to the inequality in thepwsitiors

Al1l0 - Derivation of the potential output in the CES

case.

The potential output was defined as the steady stdtee of output for an optimal

growth problem with a logarithmic utility functiolhus, after computing first-order
conditions, one arrives to the standard steadg sedation f'(k') =1/ 8- (1-9 )

The marginal product of capital is, in the steady atest

f'(k") = Aant’ E[brrf” +(1-a)[{1-m)¥ [k*_(,,](l—w)/w. The relation between the

potential output and the steady state capital sidakven by the production function:

y :A[ﬁaEQmEk*)‘/’+(1—a) - m)"’]w, which can be rewritten in order t&’,

o (y /A - @a-a)m-m?
- alm?

Uy
} . Replacing this value ok” in the marginal

product expression, the steady state condition some

alm?
y 1AY - (@-a)m-m)”

)1y
Aant Eﬁam‘” +(l-a)[1-m)” D( } =1/8-(@1-9).

Solving this last equation in order to the potdniiével of output one obtains

B v PN =)
y :Az(l a) {1-m) &,withzs[ll’g @ 5)) |
z—alm’ AlAm”

All — Proof of proposition 9.

This proof is just a matter of analytical calculatioThe steady state negative

output  gap condition, y<y’, writes in the CES case as

B _ w 1y _ _ w
A L-atd-m mj <pdtzA-M7 Iz Solving in order to

w-alin’ z-alm”

S alin” (&’
7¢ - (1_ a)l—t// [(1_ m)t//ECi—t//) mz_ aﬁnt//)t//

. To simplify notation, denote the right
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hand side of the previous inequality By Thus, given the definition ofy it comes

I A-0 =
I IA
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Figure 1 — Characterization of local dynamics. Trae-determinant diagram.
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Figure 2 — Saddle-path trajectory. The effect of stkier prices.



A Two-Dimensional NEDyM

2,75 1
2,50 1
2,25 1

2,00 1

1,75
= 1,50 1
1,25 1
1,00
075
0.50 1

0.25 1

0,00 - - - - - - -
0,80 0,88 0.0 0,95 1,00 1,08 1,10

tdivl

Figure 3 — Bifurcation diagram [Cobb-Douglas techntogy] (k;, 8 A).
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Figure 4 — Lyapunov characteristic exponents [Coblouglas technology] (0.788A<1.06).
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