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Abstract
Many disasters are foreshadowed by insu¢ cient preventative care. In this paper,

we argue that there is a true problem of prevention, in that insu¢ cient care is often
the result of rational calculations on the part of agents. We identify three factors that
lead to dubious e¤orts in care. First, when objective risks of a disaster are poorly
understood, positive experiences may lead to an underestimation of these risks and a
corresponding underinvestment in prevention. Second, redundancies designed for safety
may lead agents to take substandard care. Finally, elected o¢ cials have an incentive
to underinvest in prevention for some disasters, especially those that are relatively
unlikely.
Keywords: Prevention, Accidents, Volunteer�s Dilemma, Learning, Career Concerns.
Journal of Economic Literature Classi�cation Numbers: D81, D82, D83

A remarkable number of disasters and near-disasters, from the nuclear mishap at Three
Mile Island,1 to the Union Carbide plant tragedy in Bhopal,2 to the Challenger disaster,3 to
Hurricane Katrina4 have been preceded by a woefully inadequate level of preventative care,
making these adverse events not so much manifestations of poor luck, as all but inevitable
occurrences. Indeed, the phrase �an accident waiting to happen� has become somewhat
of a cliche in post-event reporting. In this paper, we argue that there is a true problem of
prevention, in that many accidents are waiting to happen as the result of rational calculations
on the part of agents. We identify three factors that lead to dubious e¤orts in care.

1. When objective risks of a disaster are poorly understood, positive experiences may
lead to an underestimation of these risks and a corresponding underinvestment in
prevention.

�We thank Martín Besfamille, Federico Echenique, Ennio Staccetti and Federico Weinschelbaum for their
comments. Benoît acknowleges the support of the C.V. Starr Center at NYU.

1In March 1979, there was a partial meltdown of the reactor core of the Three Mile Island Unit 2 nuclear
power plant.

2In December 1984, methal isocyanate gas was released at the Union Carbide chemical plant in Bhopal,
India, resulting in thousands of deaths and hundreds of thousands of injuries.

3The American space shuttle Challenger exploded shortly after takeo¤ on January 28, 1986.
4Hurricane Katrina struck southeast Louisiana on August 29th. Considerable damage was caused, in-

cluding the �ooding of 80% of New Orleans.
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2. Redundancies, designed for safety, may lead agents to take substandard care.

3. Elected o¢ cials have an incentive to underinvest in prevention for certain disasters �
in particular, for those that are relatively unlikely.

Some or all of these factors may be present in any given situation. Rather than present
a grand model which incorporates all three elements, we present three related models. This
permits us to focus sharply on the di¤erent e¤ects.
Much of the writing on accidents comes from sociologists and psychologists. In particular,

Vaughan (1996) has written an in-depth study of the Challenger accident in which she faults
the �culture�of organizations, in general, and of NASA, in particular; Perrow (1999) has
written about the danger of tightly coupled complex systems, such as Three Mile Island;
Reason (1990) has examined the types of errors made by humans, and their causes. We will
return to this literature, and to the relevant economics literature, at various points in the
paper.

1 Good News Can Be Bad

The world is a risky place, but how risky is a matter of some choice. Safeguards and
redundancies can be built into nuclear power plants, planes can be extensively tested and
regularly inspected, space shuttle �ights can be cancelled if weather conditions are poor. Just
how much e¤ort and expense should be put into preventative care? Among other things,
this depends upon the inherent riskiness of the activity involved. But how are the relevant
probabilities to be determined?
Scienti�c and engineering considerations yield a priori probability estimates, which must

then be updated in the light of experience. Some industries, such as the airline industry, have
a long track record with both successes and failures, so that there is a good understanding of
the pertinent probabilities � even when new engines and airplanes are developed, there is a
good understanding of the ways in which these need to be tested. Other enterprises, such as
nuclear power plants and the space shuttle, involve relatively new technologies with limited
experience. These spare histories make it very di¢ cult to estimate the risks involved. In
particular, unbroken strings of success make it di¢ cult to assess the probability of a failure.
As an example, the space shuttle Challenger had been preceded by twenty-four successful
shuttle launches without a failure, and estimates of a catastrophic failure ranged from 1 in
100 to 1 in 100,000 (Feynman (1988))5. Similarly, prior to the incident at Three Mile Island
there had not been a single accident at a commercial nuclear power plant, and the risks were
poorly understood.
Abstractly speaking, any reasonable updating process has the feature that the more time

that passes without an adverse incident, the lower the probability that is attached to one.
This increasing optimism will lead to a declining investment in precautionary care (under
reasonable conditions), and, eventually, to dangerously little care. In this respect, good news
can be bad. Investigations into the meltdown at Three Mile Island and the space shuttle
Challenger accident show that such optimistic underinvestment is precisely what took place.
With regard to the former, the Kemeny Commission (1979) concluded that:

5It should be noted, however, that the (management) estimate of 1 in 100; 000 is a little hard to rationalize.
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�After many years of operation of nuclear power plants, with no evidence that
any member of the general public has been hurt, the belief that nuclear power
plants are su¢ ciently safe grew into a conviction. One must recognize this to
understand why many key steps that could have prevented the accident at Three
Mile Island were not taken. (p.9).�

With regard to the latter, as part of the investigating commission, Feynman (1988)6

wrote:

We have also found that certi�cation criteria used in �ight readiness reviews often
develop a gradually decreasing strictness. The argument that the same risk was
�own before without failure is often accepted as an argument for the safety of
accepting it again. (p.220)

The Challenger �ight is an excellent example: there are several references to
previous �ights; the acceptance and success of these �ights are taken as evidence
of safety. (p223)

The slow shift toward a decreasing safety factor can be seen in many [areas].
(p230)

Vaughan (1996) has termed this steady decline in standards the �normalization of de-
viance.�We now proceed to a formal model of this phenomenon. To �x our ideas, consider
a machine consisting of a single part that may become defective and fail in any period with
some �xed unknown probability. In each period, prior to running the machine the part can
be tested and, if found defective, costlessly repaired. The test itself, however, is costly and
imperfect � at higher costs the test is more likely to detect a defect. We can think of a
defective part as an event, which turns into an accident if and only if it is not detected.
With this story in mind, consider the following simple model.
In each period t = 0; 1; 2:::, nature chooses y 2 fe; ng (an event occurs or no event occurs)

according to some probability Pr (y = e) = �̂ 2 (0; 1). The parameter �̂ is unknown, and a
decision maker has a belief about �̂ given by a probability distribution p over [0; 1] : For each
belief p, the subjective probability of an event is denoted

bp = Z �dp (�) :

An event may or may not turn into an accident. An accident causes a loss ofD (in present
value terms); the payo¤ in any single period in which there is no accident is normalized to
zero. In each period, the agent can invest in preventative care, which reduces the likelihood
of an event turning into an accident. Speci�cally, the subjective probability of an accident
is given by � (bp; �) : R+ ! [0; bp], which is continuous and weakly decreasing for all bp. For an

6Feynman�s appendix to the commission�s report is reprinted in Feynman (1988).
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investment c in preventative care, we have7:

Probability Outcome
� (bp; c) event and accidentbp� � (bp; c) event, but no accident
1� bp no event, no accident

The agent discounts at a rate � 2 (0; 1). Given a prior p, let pn and pe denote the
(Bayesian) posterior beliefs after no event has happened and after an event has happened,
respectively. Starting from a belief p, the Bellman equation for this problem is

v (p) = max
c
f� (bp; c) [�D + �v (pe)] + [bp� � (bp; c)] �v (pe) + (1� bp) �v (pn)� cg

= max
c
f�� (bp; c)D + bp�v (pe) + (1� bp) �v (pn)� cg

In each period, the decision maker�s problem is two-fold: to �rst determine an updated
belief p in light of the previous period�s experience, and to then choose the optimal c.
The following proposition shows that, quite naturally, the subjective probability that an

event will occur falls following no event.

Proposition 1 For any density p with support [0; 1], the probability of an event under beliefs

pn is strictly smaller than under beliefs p: That is, bpn � 1R
0

�pn (�) d� <
1R
0

�p (�) d� = bp:
Proof. All proofs are in the appendix.
Thus, a string of periods with no events leads to a reduced belief in the probability of an

event.8

Although the Kemeny commission and Feynman appear to take it for granted that in-
creasing optimism leads to declining care, it is easy to think of scenarios in which the reverse
is true. Nonetheless, the next proposition supplies plausible conditions under which their
intuition is correct.

Proposition 2 Suppose that � is twice continuously di¤erentiable, with �22 > 0 and �12 < 0.
Then, for each p̂, the optimal c, c (p̂), is unique. Furthermore, c (p̂n) < c (p̂) ; for all p̂;
whenever c (p̂) > 0.

Propositions 1 and 2 together imply that a string of successes will lead to declining levels
of care. This decline corresponds to the �normalization of deviance� noted by Vaughan.
However, despite the pejorative term �deviance�, the question remains as to whether or
not this decline in the level of care is proper; after all, it is the result of Bayesian updat-
ing. Absent an objective measure of the probability of an accident, the question cannot

7The formulation below captures many possibilities. For instance, the probabilities of an event with an
accident and of an event without an accident could be of the form p̂f (c) and p̂ (1� f (c)), respectively, so
that � (bp; c) = p̂f (c).

8Any reasonable updating procedure, not just Bayesian updating, will have the feature that a string of
n�s leads to an increasing belief in the likelihood of an n, so that the conclusion of Proposition 1 is quite
general.
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be de�nitevely answered. Nonetheless, it is clear that both the Kemmeney Commision and
Feynman considered that a) at the time of the accident, agents were taking too little care,
while b) initially they were taking the correct (or at least a reasonable) amount of care.
To understand this attitude, let us think of those who set the care standards to be, col-

lectively, the principal, and those who actually take the care to be, collectively, the agent.
We then have a principal-agent problem.9 In a standard principal-agent problem, the �prob-
lem�arises from the fact that the principal and agent have di¤erent motivations. Here, we
focus on a di¤erent problem, namely one that arises from a discrepancy in the beliefs of the
principal and the agent. We call this type of problem a belief-based agency problem.10

The basic idea in the present context is the following. The principal is an expert who
conveys her information/beliefs to the agent, but (inevitably) does so imperfectly. While the
principal may be able to convey her mean belief fairly accurately, she is unable to convey
the breadth and depth of the information on which this belief is based. As a result the agent
reacts more to additional information, such as good experience, than the principal deems
optimal.
Formally, suppose the principal and agent seek to maximize f�� (bp; c)D + bp�v (pe) +

(1� bp) �v (pn) � cg and f�� (bq; c)D + bq�v (qe) + (1� bq) �v (qn)� cg, respectively, where p̂,
pe, and pn are derived from the principal�s belief p, while q̂, qe, and qn are derived from the
agent�s belief q. Both p and q are assumed to be represented by Beta distributions.11 The
Beta assumption is fairly unrestrictive, as any smooth unimodal density on [0; 1] can be well
approximated by a Beta density (Lee (1989)). Statisticians often posit a Beta distribution
when studying the updating of Bernoulli priors.
First suppose that the distributions of the principal and the agent have the same mean,

but that the agent�s distribution has a larger variance. Then, initially, the principal and the
agent agree upon the optimal amount of care. However, as we show below, following any
sequence of non-events, the agent is always more optimistic than the principal, and, hence,
invests too little in care. In fact, we establish a more general result. To understand this
result, �rst note that given two Beta distributions B (a; b) and B (d; e) with the same mean,
it can be shown that B (a; b) has a larger variance than B (d; e) if and only if a < d and
b < e: We generalize this condition and say that the beliefs of an agent with prior B (a; b)
are more disperse than those of a principal with prior B (d; e) if a < d and b < e (thus, we
have removed the requirement of equal means).
If the agent�s beliefs are more disperse than the principal�s, then initially the agent may

be either more or less optimistic, in terms of mean belief, than the principal. In either case,
as the following proposition indicates, following enough good news, the agent will be more
optimistic than the principal (and underinvest relative to the principal�s optimum).12

9Of course, implicit in the problem is the presumption that the principal cannot simply take the care
herself, and cannot adequately monitor the agent�s actions.
10Many public health campaigns surrounding lifestyle choices (such as the use of condoms, the decision

to smoke, dietary choices) fall into this category: The government seeks to change behaviour by informing
citizens of the risks involved, but typically �nds that individuals�beliefs concerning these risks can only be
in�uenced, not dictated.
11The Beta distribution B (�+ 1; � + 1) has a density on [0; 1] given by f (x) =

x� (1� x)� =
R
u� (1� u)� du, and a mean of �+1

�+�+2 . Moreover, after an observation of an event, a
prior B (�+ 1; � + 1) is updated to B (�+ 1; � + 2) and after a non event it becomes B (�+ 2; � + 1) :
12Loosely speaking, the agent learns more from the positive signals than the principal does. The problem
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Let pnt (resp., qnt) be the (Bayesian) posterior of p (resp., q) following t observations
of n; and recall that bpnt (resp., q̂nt) is the estimated probability of an event based on the
distribution pnt (resp., qnt).

Proposition 3 Suppose the beliefs of the agent, q, are distributed according to B (a; b) and
the beliefs of the principal, p, are distributed according to B (d; e) : If the beliefs of the agent
are more disperse than those of the principal, then, for all

t > max

�
bd� ae
e� b ; 0

�
� T �

we have bqnt < bpnt. If �22 > 0, �12 < 0, and c (pnt) > 0; then, c (qnt) < c (pnt) for all t � T �:
When the potential damage from an accident is very large, the optimal number of acci-

dents is close to zero. For this reason, nuclear reactors are built so that a string of successes
is the norm. Unfortunately, our results indicate that this success is to some extent self-
defeating.
The Kemeny Commission was well aware of the danger of �overupdating�on the part of

power plant operators. In its report it states:

The Commission is convinced that this attitude [namely, the inference that nu-
clear plants are safe based on their positive record] must be changed to one that
says nuclear power is by its very nature potentially dangerous, and, therefore, one
must continually question whether the safeguards already in place are su¢ cient
to prevent major accidents (emphasis added). (p9)

In e¤ect, the commission is imploring nuclear operators to ignore favorable experience
pointing to the safety of nuclear plants. Some of Feynman�s recommendations can similarly
be interpreted as exhortations to downplay the signi�cance of experience. However, it is
di¢ cult, if not impossible, to prevent agents from engaging in their own updating. Moreover,
at least two factors exacerbate this di¢ culty. The �rst one is the presence of idiosyncratic
di¤erences. Consider airplane pilots. It is only natural, though perhaps unfortunate, for
a particular pilot without an adverse incident to think of himself or herself as particularly
skilled, and to be correspondingly less wary than overall probabilities would recommend.
Similarly, operators at nuclear power plants may well feel that general experience at plants
does not account for the speci�c conditions at their speci�c plants. The second one is the
phenomenon that, as the availability heuristic teaches, when estimating probabilities people
place undue weight on factors that they can readily recall, chief among these being their own
experience.13

Proposition 3 a¤ords another interpretation. Airplanes are well understood, not only
because of their long experience, but also because they are built �bottom up.�In contrast
with conventional aircraft, the space shuttle was built with a �top down�approach (Feynman

of which priors are subject to more learning has not, as far as we know, been studied in general.
13Naturally, our results suggest a line of research into the optimal incentive schemes for belief-based agency

problems. We do not pursue such an investigation in the present paper, where we merely elucidate the nature
of the problem.
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(1988)), making it di¢ cult to obtain a tight estimate of the safety of its novel technology.
Let the priors p correspond to well-established and time-tested technologies, and the priors
q correspond to new or inovative technologies for which less is known. With that reading,
Proposition 3 tells us that innovative technologies are especially susceptible to good news
being bad.
We turn now to some related literature.
Our model points to the interaction between learning and investment. As is well un-

derstood, for static problems it does not matter whether agents know the probability of an
accident, or whether they merely have a distribution of probabilities. When the problem of
prevention is repeated over time, however, learning and care-taking interact in non-trivial
ways. Gollier (2002) has studied how the curvature (and higher derivatives) of the utility
function of the decision maker a¤ect the optimal initial level of care taken when the proba-
bility of the accident is unknown. In contrast, our main concern is the study of the evolution
of beliefs and how this evolution a¤ects investment over time.
One of the main features of our model, that strings of successes lead to lower care,

is reminiscent of the search literature when the distribution that generates wage o¤ers is
unknown. This literature has shown that as time goes by, a worker who keeps receiving bad
o¤ers becomes more pessimistic about his prospects of �nding a decent paying job. He then
reduces his reservation wage. The �rst papers to analyze the decline in reservation wages
were, under di¤erent assumptions, Rothschild (1974) and Burdett and Vishwanath (1984).
Dubra (2004) studies the consequences of this decline on the welfare of the decision-maker.

2 Complex Systems

A lifeguard must continually scan a pool, or a beach, for signs of swimmers in distress.
Unfortunately, even highly trained lifeguards may fail to maintain the necessary vigilance.14

The model of Section 1 suggests that lifeguards who face few emergencies will be especially
prone to lapses in vigilance. This �nding is consistent with experimental work in psychology
which shows that subjects engaged in vigilance tasks perform relatively poorly when the
signal rate is low.15

While the meandering mind of a lifeguard may prove lethal, the danger posed pales in
comparison to the potential harm from a nuclear or chemical plant. For this reason, these
plants are designed so that the complacency of a single individual is not su¢ cient for a
disaster to ensue. Consider the following description of an incident at a Union Carbide plant
in Institute, West Virginia (Perrow (1999)):

�[Dangerous] Aldicarb oxime... was transferred to a standby tank that was being
pressed into service because of some other problems. Unfortunately, the operators
did not know that this tank had a heating blanket and that it was set to come
on as soon as it received product. Also unfortunately, they were not examining

14A 2001 Je¤ Ellis & Associates study conducted at 500 swimming pools found that only 9% of lifeguards
spotted a submerged mannequin within 10 seconds (considered crucial), and only 43% within 30 seconds.
15These vigilance tasks typically last no more than two hours, so that these experiments are not, of course,

full blown tests of our theory. See Davies and Parasuraman (1981) for a survey.
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the appropriate temperature gauges because they thought there was no need to,
and there may have been problems with these anyway because of the nature of
the product in the tank. A couple of warning systems failed to activate, and the
tank blew... . A few other failures took place...�(p. 358)

Note the number of elements that fell into place to produce this accident: a standby tank
was being used and there was a heating blanket and it was set to come on and the operators
did not check the temperature gauges and warning systems failed and the tank blew and
... still other things happened. Even with all these failures, there was no loss of life, partly
because weather conditions were propitious.
Certainly, the large number of factors that must align in order to produce an accident at

a chemical plant contributes to its safety.16 More generally, consider a system with numerous
safety features, all of which must fail for a disaster to result. If the features might fail with
given independent probabilities, then the more features, the safer the system. With fully
automated features, the logic is unassailable. If humans are involved, however, features that
are ostensibly independent may manifest a �strategic dependence,�resulting in an ambiguous
relationship between reliability and the number of features.
Returning to the Union Carbide case described above, the mere failure of the operators

to check the temperature gauges was a long way from producing an accident. But why
did the operators fail to check the gauges?17 The immediate reason given is that �they
thought there was no need to,�but why did they feel no need to follow such an elementary
safety precaution? In this section we suggest that at least part of the reason was that the
operators knew that even with this lapse, an accident was unlikely, precisely because so
many factors had to go awry in order to produce one. That is, the very redundancy features
which enhanced the safety of the plant also reduced the incentive of agents to take care, thus
limiting the degree of safety that could be achieved.
We turn now to a formal model of this phenomenon.
A disaster may occur. The disaster will happen if and only if each of n+1 features fail �

an automated feature plus n features under the control of n di¤erent people. The probability
that the automated feature fails is pa, while the probability that person i�s feature fails is
p (ci), i = 1; :::; n, where ci 2 S = [0;M ] is the care that i puts in, p0 (c) < 0, and p00 (c) � 0.
Person i�s utility function is

�pa�nj=1p (cj)D � ci,
where D > 0 re�ects the loss of utility from a disaster.18

16Perrow (1999), however, emphasizes the dynamic danger of tightly coupled complex systems, such as
chemical plants. When things start to go wrong in these systems, it is di¢ cult for workers to understand
exactly where the problem lies and how to remedy it on the �y. Thus, whereas we will take a static view in
our modelling, Perrow is concerned with dynamic di¢ culties. Nonetheless, Perrow concedes that the number
of failures that must take place for an accident to occur, per se, provides a crucial measure of safety.
17Similar lapses in care have been noted at numeous other accident sites, including Three Mile Island.
18Note that, viewed as a principal-agent problem, we are assuming that the agents fully internalize the cost

of a disaster, as in the belief-agency problem of Section 1. Under an alternate interpretation, the principal
has chosen a payment function with large rewards for agents when no disaster occurs. Macdonald and Marx
(2001) give (unrelated) reasons why a principal might choose such a payment function.
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If each person were an automaton simply putting in a designated amount of e¤ort �c, then
the probability of a disaster would be pap (�c)

n. Trivially then, increasing the number n of
manned features would reduce the probability of an accident, as would better automation in
the form of a lower pa.
Of course, people are not automata; rather, they choose their e¤orts purposefully. This

fact has several consequences. Consider the game in which care levels are chosen simulta-
neously. Proposition 4 below indicates that as the number of people increases, each person
takes less care in the unique symmetric equilibrium. Similarly, when the automatic feature
improves, each person takes less care. An estimation of the safety of the system that neglects
this strategic slackening will badly miss the mark.
While these reductions in individual care raise the probability of a disaster, increases

in the number of people and improvements in automation, in and of themselves, lower this
probability; the net e¤ect is ambiguous. Importantly, under reasonable conditions, increasing
the number of people or improving the automated performance may be counterproductive.
The following proposition summarizes these �ndings.

Proposition 4 The above game has a unique symmetric equilibrium. Let C (pa; n) be the
level of care and P (pa; n) be the probability of an accident, in this equilibrium. Then,

i) C is decreasing in n
ii) C is increasing in pa
iii) P may be increasing or decreasing in its arguments.
In particular, suppose the equilibrium is interior
(i.e., �p (0)n�1 p0 (0) > 1

Dpa
> �p (M)n�1 p0 (M)), and consider n0 > n and p0a > pa.

If p
p0 is strictly increasing, then P (pa; n

0) > P (pa; n) and P (p0a; n) < P (pa; n);
if p

p0 is strictly decreasing, then P (pa; n
0) < P (pa; n) and P (p0a; n) > P (pa; n).

Psychologists have long noted that people working in groups tend to expend less e¤ort
than people working as individuals, with larger groups exhibiting more �social loa�ng.�19

This �nding corresponds to i) above. They have also observed that the introduction of au-
tomatic devices leads to a decrease in human performance, which corresponds to ii) above.20

Skitka et al. (2000) put subjects in simulated cockpits with imperfect automated monitor-
ing aids. They then compared the performance of one-person crews with the performance
of two-person crews. Although one might naively expect two-person crews to be almost
twice as likely to detect system irregularities as one-person crews, they found essentially no
di¤erence in detection rates, which is consistent with iii) (albeit in a relatively neutral way).
The following examples illustrate some interesting features of Proposition 4. In the �rst

example, the optimal number of care-takers is an intermediate value.
19Pschologists� explanations for social loa�ng include arousal reduction, decreased evaluation potential,

and a matching of anticipated decreased e¤ort on the part of others (see Karau and Williams (1993) for a
review).
20Psychologists�explanations include automation bias, and automation induced complacency. Consistent

with ii), Skitka et. al (1993) �nd that experimental subjects are less reliable at detecting errors when aided
by an automatic system. On the other hand, Parasuraman et al. (1993) conduct an experiment in which
they �nd that the variability in the reliability of an automated system, but not the absolute value of this
reliability, a¤ect performance, a �nding which is not consitent with ii) (although the interpretation of this
�nding is confounded by the fact that subjects were not given the reliability parameters).
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Example 1 S = [0; 1] ; paD = 40; p (c) = 1� 5
4
c+ 1

2
c2. For any n, the symmetric equilibrium

cn solves �psD
�
1� 5

4
cn +

1
2
c2n
�n�1 �

cn � 5
4

�
= 1. The accident minimizing number of people

is given by
argmin

n
P (pa; n) = 5

In the second example, technological considerations restrict pa to the interval
�
1
2
; 1
�
. The

probability of an accident P (pa; n) is minimized by choosing the least reliable automation
within this set.

Example 2 S = [0; 1] ; D > 2; p (c) = (1� c)b ; 1 � b < n+1
n
; pa 2

�
1
2
; 1
�
. For any pa, the

symmetric equilibrium is c = 1� (bDps)
1

1�bn :

argmin
pa2[ 12 ;1]

P (pa; n) = 1

Example 3 Our model is formally a generalization of the Volunteer�s Dilemma (Samuelson
(1984) and Diekmann (1985)). In this dilemma, an event can be prevented if and only if at
least one of n people takes a costly action. Each individual�s payo¤ is given by:

Someone Else Acts No One Else Acts
Takes Action �1 �1
No Action 0 �D

In the symmetric mixed strategy equilibrium of this game, the probability of an event is
monotonically increasing in n. This result can be viewed as a special case of Example 2. To
see this, set b = 1; pa = 1. Then, a mixed strategy (q; 1� q) in the Volunteer�s Dilemma
corresponds to a pure strategy c = q in Example 2. Since the equilibrium is interior, and
p
p0 = c�1 is an increasing function, (iii) yields the Dilemma result that P is increasing in n.
Since Darley and Latané (1968) introduced the concept of �di¤usion of responsibility� into
the psychology literature, this type of prediction has been tested often, with varying results
(see Goeree, Holt and Moore (2005) and the references therein).

Our results are also reminiscent of the �voluntary provision of public goods�literature.
It has long been known that the provision of public goods is subject to a free rider problem,
and since Olson (1965) it has been argued that the severity of the problem increases with
the number of individuals in society. Since then, several authors have produced examples
where the ratio between the optimal amount of a public good and the equilibrium amount
of a voluntary provision game increases with the number of players. The only result giving
general su¢ cient conditions for this e¤ect is in Gaube (2001). As in Gaube, we give su¢ cient
conditions for the problem of underprovision to be exacerbated as n increases, but in addition
we give su¢ cient conditions for the converse result to hold: we provide su¢ cient conditions
under which the amount of the public good provided is increasing in n. In several other
respects, our model is not comparable to this literature. In particular, in voluntary provision
models, the public good is generally assumed to be the sum of the contributions ci, whereas
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in our model it is (1� pa�ni=1p (ci)), and the benchmarks used to evaluate the problems are
di¤erent.21

For a complex system requiring supervision, we may expect that, on the one hand,
even a supervisor putting in a minimal amount of e¤ort might detect an anomaly, while on
the other hand, even a supervisor putting in a maximal amount might miss an anomaly.
Formally, this translates to 0 < p (M) < p (0) < 1. Since p (0) < 1, the accident-minimizing
number of people is then in�nity. In practice, however, the �optimal�number of people will
be less than in�nity, for both technological reasons and economic reasons. As this section
emphasizes, there may well be a non-monotonic relationship between the number of people
and the probability of an accident, so that the optimal number of people is not necessarily
the �constrained largest.�At the same time, since p (M) > 0, the optimal number of people
is unlikely to be one, in contrast with the Volunteer�s Dilemma.

3 Elected O¢ cials

As of this writing, governments throughout the world face the question of how best to deal
with the menace of Aviary �u. While experts weigh in with divergent opinions on the danger
posed, and by implication the appropriate government action, there is an additional aspect to
the problem. In deciding how much to invest in precautionary care, elected o¢ cials subject
to reelection must consider how their actions will be interpreted by the electorate. In this
section, we show that this added concern may cause them to misinvest, even when they have
a very good understanding of the threats facing the public. In particular, o¢ cials have an
incentive to underinvest in prevention for potential disasters with relatively low probabilities
of occurrence.
Consider the following model. In any period an adverse event may occur with probability

pi, where i = l or h, and 0 � pl < ph � 1. The prior probability that pi = ph is p. An
incumbent o¢ cial, who may or may not be competent, must invest in preventive care. The
o¢ cial has been elected from a pool of (quali�ed) candidates, and the electorate initially
believes that he, as well as any future candidate, is competent with probability 0 < q < 1.
At the same time, an o¢ cial believes that he himself is competent with probability 0 < Q � 1.
These probabilities are assumed to be common knowledge. Note that if q 6= Q the beliefs
of the o¢ cial and the public are inconsistent;22 this causes no modeling problems and,
when Q > q captures the oft-seen case of o¢ cials con�dent in their own abilities. Whether
competent or incompetent, the o¢ cial receives a private signal s 2 fh; lg. If he is competent,
then s = i; otherwise s = h with probability p. With this signalling structure, an o¢ cial�s
signal is uninformative about his own competence, and an incompetent o¢ cial�s signal is

21Cornes (1993) analyzes the case in which the public good is produced via a Constant Elasticity of
Substitution production function in which inputs are individual contributions. This case covers the standard
case, plus other interesting cases. He does not analyze, however, the e¤ect of increasing the number of
individuals.
22An alternate �consistent� model would have the o¢ cials receive private signals regarding their com-

petence, starting from a common prior. Similar results would obtain. We prefer the model in the text
for several reasons, one of which is that it obviates the need for mixed strategies. The reader who prefers
consistent models can restrict his or her attention to the case q = Q.
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uninformative about the true probability of a disaster.23

An o¢ cial is initially elected for � periods and may be re-elected exactly once. Each
period, he chooses a level of care. The optimal level of care in period t depends upon a priori
information, whether or not there have been disasters in periods before t, and the o¢ cial�s
signal s. The only piece of information that is private is the o¢ cial�s signal, and so we can
simplify by boiling the o¢ cial�s action down to a declaration of his signal. A strategy for the
o¢ cial is a function � : fh; lg ! [0; 1], which maps his signal into a probability with which
he announces that h was observed.
In each period, in addition to investment into disaster preparation, the o¢ cial makes

numerous invisible decisions which are more likely to be correct if the o¢ cial is competent
than incompetent. The public wants competent o¢ cials in place, and rationally updates its
belief about an incumbent o¢ cial based upon his strategy, his declaration, and the realized
pattern of disasters during his initial � year term. A newly elected o¢ cial will be competent
with probability q. Therefore, the public will re-elect a �rst term o¢ cial if its belief that he
is competent is greater than q, and will not re-elect him if its belief is less than q. If its belief
is exactly q, the o¢ cial is re-elected with a 50% probability. The o¢ cial cares only about
being re-elected (this extreme assumption highlights the problems that arise). Therefore,
the o¢ cial chooses his declaration to increase the probability that the public�s faith in him
will increase.24

The e¢ cient outcome is for the o¢ cial to always truthfully report his signal (and make
the concomitant investment in care). Unfortunately, under many conditions this will not be
equilibrium behavior.
Suppose that the o¢ cial is certain that he is competent (i.e., Q = 1), and hence is certain

that his signal correctly re�ects the true probability of a disaster (i.e., Pr (pi = ps j s) = 1).
As intuition suggests, this condition maximizes the o¢ cial�s incentive to tell the truth (see
Proposition 8 below). Indeed, if his term were arbitrarily long, he would then truthfully
reveal any signal, since, by the law of large numbers, the realization of disasters during his
term would then almost surely conform to his signal,25 and the public�s con�dence in his
competence would increase. The o¢ cial�s term is not arbitrarily long, however. Suppose
that this term is, on the contrary, relatively short and that the probability of a disaster is,
at worst, quite small (i.e., ph << 1). Then, regardless of his signal, the o¢ cial ascribes less
than a 50% chance to the occurrence of even one event during his initial term. If no event
occurs, the public�s posterior belief that pi = ph will fall (albeit slightly). Suppose the o¢ cial
receives the signal h. He will not want to reveal this signal, since future happenings will
more than likely reduce the electorate�s belief that pi = ph, contravening the signal h, and
reducing the electorate�s belief in his competence if his signal is public. Thus, under these
conditions, there is no e¢ cient equilibrium.

23That is, p(competentj s) = Pr(sjc) Pr(c)
Pr(sjc) Pr(c)+Pr(sji) Pr(i) = Q, and for an incompetent o¢ cial p (pi = ph j s) =

p.
24In a more complex model, the o¢ cial also makes other public decisions that in�uence the public�s

perception of him. If these decisions do not have much in�uence, our results are una¤ected, although the
model becomes more cumbersome. If these other decisions can have a large impact on the public�s beliefs,
then the e¤ects we identify are still present, but may be counterbalanced in some instances.
25More precisely, the o¢ cial would believe that the realizations would conform to his signal, and this belief

is all that matters.
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What are the conditions for the existence of an e¢ cient equilibrium? Again consider
an o¢ cial who receives the signal h. He is willing to reveal this signal if he expects this
revelation to increase the electorate�s con�dence in him, that is to say, if he believes that
subsequent developments are likely to be indicative of ph. The greater the number of events
NE that occur during his term, the more likely that pi = ph. There is a threshold f so that
the belief that pi = ph will increase if and only if the average number of events, NE� , is above
this threshold. The o¢ cial will reveal h if Pr

�
NE
�
� f j h

�
� 1

2
, where

Pr

�
NE
�
� f j h

�
= Pr (pi = ph j h) Pr

�
NE
�
� f j ph

�
+ Pr (pi = pl j h) Pr

�
NE
�
� f j pl

�
Similar reasoning applies to the revelation of the signal l, as the Proposition 5 below shows.
Recall that an o¢ cial�s strategy � gives the probability with which he declares �h�. An

equilibrium is e¢ cient if � (l) 2 f0; 1g and � (l) = 1 � � (h). An equilibrium is babbling
if � (l) = � (h).

Proposition 5 Fix any generic pl and ph; and any p; q;Q and � . A babbling equilibrium
always exists. All equilibria are babbling if

Pr (pi = ph j h) Pr
�
NE
�
� f j ph

�
+ Pr (pi = pl j h) Pr

�
NE
�
� f j pl

�
<

1

2
(1)

or Pr (pi = ph j l) Pr
�
NE
�
� f j ph

�
+ Pr (pi = pl j l) Pr

�
NE
�
� f j pl

�
<

1

2
(2)

where

f =
log
�
1�ph
1�pl

�
log
�
pl
ph

�
+ log

�
1�ph
1�pl

� .
If both the above inequalities are violated there are e¢ cient equilibria, and if they are violated
strictly there are only e¢ cient and babbling equilibria.

Proposition 5 is a bit technical, but it serves as the basis for the remaining, more applied,
propositions. The next result indicates that all equilibria are babbling when only relatively
small probability events or only relatively large probability events are involved.

Proposition 6 Fix Q � 1 and � � 1. For low enough ph, all equilibria are babbling; for
large enough pl, all equilibria are babbling.

When terms are long, e¢ cient equilibria exist if and only if the signals are reliable
enough.26

26When � is very large, it is as if the true state of the world is revealed. In this respect, our model is a
generalization of Ottaviani and Prat (2006). However, they have a continuous signaling structure so in that
respect, their model is a generalization of ours for � large.
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Proposition 7 Fix any generic pl and ph and any p; q;Q: There exists a �� such that for all
� > �� , an e¢ cient equilibrium exists only if Pr (pi = ph j h) � 1=2 � Pr (pi = ph j l). If in
addition the inequalities are strict, there is a �� such that for all � > �� the only non-babbling
equilibria are e¢ cient.

The more con�dent the o¢ cial, the more likely that an e¢ cient equilibrium exists.

Proposition 8 Suppose that for a given pl; ph; p; q; Q; � there is an e¢ cient equilibrium.
Then, for all Q0 > Q there is also an e¢ cient equilibrium for pl; ph; p; q; Q0; � .

The menace posed by Aviary �u is best viewed as a potentiality which will or will not
be realized once, rather than an event which may or may not occur in successive periods
with i.i.d probabilities. We can capture this in our model by setting the o¢ cial�s term � to
1. Then, pi is the probability of an outbreak during the o¢ cial�s initial term. The following
result says that there is then no e¢ cient equilibrium when the probability of an outbreak is
always less than 1

2
, or always greater than 1

2
.

Proposition 9 When � = 1, all equilibria are babbling if ph < 1
2
or pl > 1

2
.

The formal modelling heretofore describes an electorate that understands equilibrium
behaviour perfectly. In a plausible alternative the electorate (naively) interprets the o¢ cial�s
declaration. Moreover, while our o¢ cials make explicit announcements of their signals,
in practice governments often implicitly indicate their beliefs by their investments. The
following proposition indicates that under these conditions, inadequate preventative care
will be taken for small probability disasters.

Proposition 10 Suppose the public (naively) assumes that the o¢ cial always invests opti-
mally in relation to his signal. Then, if ph is small enough the o¢ cial underinvests when he
receives the signal h. In particular, if � = 1 and ph < 1

2
then, regardless of his signal, the

o¢ cial invests as if he received the signal l.

Suppose that � = 1, qL = 0, qh < 1
2
, and Q � 1. Then the o¢ cial�s incentive is to not

invest in any preventive care, regardless of the potential damage D. While this conclusion
may seem extreme, it provides a plausible account for much government behaviour. For
example, consider preparations for a hurricane. The (average member of the) public is likely
to take direct note of these preparations only if a hurricane strikes. Absent a hurricane, the
expenditure incurred is indirectly noted in that greater expenditure leaves less money over for
other items. It was well-recognized before the Category 5 hurricane Katrina struck, that the
levees in New Orleans would be inadequate to withstand a strong hurricane. Furthermore,
most experts believed that the chance of such a hurricane was high enough to warrant
investing in better levees. Indeed, a review by the Army Corps of Engineers later found
that the Corps had �designed the system to protect New Orleans against a relatively low-
strength hurricane. . . and did not respond to warnings over the years from the National
Oceanographic and Atmospheric Administration that a stronger hurricane should have been
the standard.� (as reported in the New York Times (2006)). At the same time, however, the
historical record showed that the probability of a Category 5 hurricane was only 2.4% during
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a four year period and 4.7% during an 8 year period.27 Thus, the government�s failure to
prepare adequately can be understood as a rational bet that developments would increase
the public�s con�dence in it, inadequate preparations notwithstanding. At the same time,
given the magnitude of the potential (and actual) damage, the bet was a poor one from an
expected value perspective.28

For some potential disasters there will be e¢ cient equilibria, for others only babbling
equilibria. When there are only babbling equilibria, the public could be better o¤committing
to re-electing o¢ cials, regardless of their perceived competence, since o¢ cials would then
have no incentive to hide their signals. With the right discount rates, these commitments
could arise as part of an equilibrium.29 However, these equilibria disappear if we assume
that o¢ cials must pay even a small cost to obtain their signals, as they have no incentive to
acquire signals if guaranteed re-election.
The model in this section investigates ine¢ ciencies that arise from the interaction between

disaster prevention and career concerns on the part of elected o¢ cials. In the seminal
Holmstrom (1982, reprinted 1999), a manager whose talent is being judged, fails to optimize
over project choice, either because he is risk averse or because a �lemons-type� problem
arises, neither of which is the case here. Another di¤erence with our model, is that the
talents of Holmstrom�s managers a¤ect the relevant probabilities, whereas our o¢ cials only
evaluate probabilities. Scharfstein and Stein (1990) study the ine¢ ciency that arises when
managers observe the same signals about the likelihood of success of projects. In their model,
managers tend to herd on the choice of projects, so that the market will not be able to update
on their ability. The model is similar to ours in that the skill of the o¢ cial-manager is at
evaluating the likelihood of success, and that they also consider a career concerns model.
The mechanism whereby the ine¢ ciency arises is di¤erent, however. Ottaviani and Sorensen
(2004) consider a model in which experts only care about their reputation for competence,
and �nd that they will not truthfully reveal their signals. In their model, the true state of the
world is eventually known, whereas in our setting only an update of the state obtains. For
this reason, prior probabilities play a much stronger role in their model than ours. Dasgupta
and Prat (2004) show that �nancial traders with reputational concerns may ignore their
private information, leading to information cascades.30

27The return period for Category 5 hurricanes in the New Orleans area is 165, meaning to say that they
return, on average, every 165 years, or that 100/165 have occurred in the last 100 years. If this is the result
of independent Bernoulli trials, the most likely probability of a hurricane in a given year is approximately
3/500, and the chances that no hurricane will occur in 4 and 8 year periods are the �gures given in the text.
28Damage that may occur in the future, such as the potential harm from global warming or decaying

infrastructure, may lead governments to underinvest due to a lack of concern for future generations, or an
inappropriate discount rate. This should not be confused with the present phenomenon; here, the current
population is su¤ering (in expectation).
29Thus e¢ cency could be obtained with respect to the o¢ cials�strategies, but not also with respect to

only re-electing relatively competent o¢ cials.
30Other models of career concerns include Celentani and Caruana (2001), where managers get to know

their types, and Dewatriapont, Jewitt and Tirole (1999) where e¤ort has a cost.
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4 Conclusion

Though an ounce of prevention may be worth a pound of cure, that ounce is often missing.
Inadequate care can be the result of miscalculations and other errors. Thus, many analyses
of the Challenger disaster have emphasized the increasing pressure to launch brought about
by the commercialization of the Space Shuttle. We have shown that imprevention can also
be the result of a rational calculus.

5 Appendix

For the proof of Proposition 1, we proceed with a series of simple Lemmas concerning the
evolution of beliefs. Although versions of the following lemma are well known (see Wolfstetter
(1999) Chapter 4) we will use the strict inequalities in this version of our Lemma.

Lemma 1 If two densities p0 and p are such that p0=p is strictly increasing on their support
[0; 1], then, for all x 2 (0; 1) ; their cumulative distribution functions are such that P 0 (x) <
P (x) :

Proof. Let x be such that p0 (x) = p (x) : Then, for all x 2 (0; x) we have p0 (x) < p (x)
and so P 0 (x) < P (x) : For x > x; P 0 (x) � P (x) is increasing in x, since the derivative is
strictly positive, and therefore is strictly less than P 0 (1)� P (1) = 0:

Lemma 2 For all densities p with support [0; 1] ; the posterior pn of p is such that Pn (� � x) >
P (� � x).

Proof. By Bayes�Rule, the density of the posterior Pn is

pn (�) =
Pr (n j �) Pr (�)

Pr (n)
=

(1� �) p (�)
1R
0

(1� z) p (z) dz

so that the likelihood ratio of p and pn is

p (�)

pn (�)
=

1R
0

zp (z) dz

1� �

which is strictly increasing in �; so that by Lemma 0, Pn (� � x) > P (� � x) :
Proof of Proposition 1. Since � is a strictly increasing function, and, by Lemma 2,

p strictly dominates p j n, the result follows.
Proof of Proposition 2. To establish uniqueness, �x any p: Suppose that c0 and c are

optimal for p, with c0 > c � 0: Given our assumptions about di¤erentiability, c0 must satisfy
the �rst order condition ��2 (bp; c0)D = 1; but then �22 > 0 implies that ��2 (bp; c)D > 1, so
that c can�t also be optimal.
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If c (bpn) = 0 we are done, so suppose that c (bpn) > 0. From the �rst order conditions,
��2 (bp; c (bp))D = 1 = ��2 (bpn; c (bpn))D. Since bpn < bp , �12 < 0, and �22 > 0, we have that
c (bpn) < c (bp).
Proof of Proposition 3. We �rst show that for all t > T � we have bqnt < bpnt. Notice

that after t draws of n; the posteriors of the agent and the principal are B (a+ t; b) and
B (d+ t; e) respectively. Then, bqnt and bpnt are just the means of the posteriors, and hence

bqnt < bpnt , b

a+ b+ t
<

e

d+ e+ t
, t >

bd� ae
e� b :

Fix any t > T �: If c (bqnt) = 0 we are done, so suppose that c (bqnt) > 0. From the �rst order
conditions, ��2 (bpnt ; c (bpnt))D = 1 = ��2 (bqnt ; c (bqnt))D. Since bqnt < bpnt , �12 < 0, and
�22 > 0, we have that c (bqnt) < c (bpnt) :
Proof of Proposition 4. First note that the players�strategy spaces are compact and

convex, their utility functions are continuous and concave, and the game is symmetric, so
the game has at least one symmetric equilibrium. We now show that there is exactly one
symmetric equilibrium.
Suppose that c = 0 is a symmetric equilibrium. Then

�pap (0)n�1 p0 (0)D � 1 � 0

We have

d

dx

�
�pap (x)n�1 p0 (x)D � 1

�
=

�pa (n� 1) p (x)n�2 p0 (x) p0 (x)D � pap (x)n�1 p00 (x)D < 0, (3)

so that
�pap (x)n�1 p0 (x)D � 1 < 0 8x 6= 0

and there can be no other symmetric equilibrium. Similarly if c = M , there are no other
symmetric equilibria. Therefore, if there is a corner symmetric equilibrium, it is the unique
symmetric equilibrium.
If c = c is an interior symmetric equilibrium then

�pap (c)n�1 p0 (c)D = 1,

and, since inequality (3) still holds, there is no other interior symmetric equilibrium.
Proof of i) Suppose that N > n. If C (pa; n) := c is interior, then �pap (c)n�1 p0 (c)D = 1.

Therefore, �pap (c)N�1 p0 (c)D < 1, and inequality (3) implies that C (pa; N) < C (pa; n). If
C (pa; n) = 0, then�pap (0)n�1 p0 (0)D � 1 and�pap (0)N�1 p0 (0)D < 1, so that C (pa; N) =
0: Finally, if C (pa; n) =M , then necessarily C (pa; N) � C (pa; n).
Proof of ii). Suppose that qa > pa. If C (pa; n) := c is interior, then �pap (c)n�1 p0 (c)D =

1. We have, �qap (c)N�1 p0 (c)D > 1, and inequality (3) implies that C (qa; n) > C (pa; n).
If C (pa; n) = M , then �pap (0)n�1 p0 (0)D � 1 and �qap (0)N�1 p0 (0)D > 1, so that
C (qa; n) = 0: Finally, if C (pa; n) = 0, then necessarily C (qa; n) � C (pa; n).
Proof of iii). Suppose �p (0)n�1 p0 (0) > 1

Dpa
> �p (M)n�1 p0 (M) holds. Then, the �rst

order condition at c = 0 (when all are playing 0) is

�pap (0)n�1 p0 (0)D � 1 > 0
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so that 0 is not a symmetric equilibrium. Similarly, at M; the �rst order condition is
�papn�1 (M) p0 (M)D � 1 < 0; so that c =M for all players is not an equilibrim.
Fix any n0 > n and let C (pa; n) := c and C (pa; n0) := c0. We now show that P (pa; n0) >

P (pa; n) whenever p=p0 is strictly increasing. From the proof of i), c0 < c. Since c is interior,
p (�) =p0 (�) strictly increasing implies

P (pa; n) = �
p (c)

Dp0 (c)
< � p (c0)

Dp0 (c0)
� P (pa; n0) :

The proof for p(c0)
p0(c0) >

p(c)
p0(c) follows similarly.

Now suppose that p0a > pa and let c
0 > c be the corresponding equilibrium e¤orts. An

identical argument establishes the desideratum.
We now turn to the proofs of the Propositions in Section 3
An event E is a sequence fdsg�1 for ds 2 fy; ng for all s; let NE be the number of disasters

in event E: For each �xed � ; and px; x = h; l; the probability of E given px is

Pr (E j px) = pNEx (1� px)��NE (4)

so that
Pr (E j ph)
Pr (E j pl)

=

�
ph
pl

�NE �1� ph
1� pl

���NE
:

Then, for (Lebesgue) almost every combination of ph and pl; the ratio above is di¤er-
ent from 1 for all E (all NE � �). Let S� � [0; 1]2 be the set of ph and pl such that
Pr (E j ph) =Pr (E j pl) 6= 1 for all E: The genericity in the statement of the propositions in
this section refers to all ph and pl in S� :
From equation (4) we know that

Pr (E j pl)
Pr (E j ph)

� 1, NE � �
log
�
1�ph
1�pl

�
log
�
pl
ph

�
+ log

�
1�ph
1�pl

� � �f (ph; pl) : (5)

Then, since for all E; Pr (E j pl) 6= Pr (E j ph) (that is, (ph; pl) 2 S� ) we have that

Pr (NE � �f (ph; pl) j ph) = 1� Pr (NE � �f (ph; pl) j ph) (6)

and similarly,

Pr (NE � �f (ph; pl) j pl) = 1� Pr (NE � �f (ph; pl) j pl) (7)

Proof of Proposition 5. Existence of Babbling Equilibria. If the public believes
that � (l) = � (h) = x; then it will not update for any announcement or event E;and
� (l) = � (h) = x is a best response. This holds for any parameters
All non babbling equilibria are e¢ cient, when (1) and (2) are violated strictly.

Fix any proposed equilibrium strategy with � (l) 6= � (h) : The public�s strategy, given � (l)
and � (h) is to rehire if the probability of the individual being competent given the strategies,
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the announcement a = h; l and the event E;is larger than q: The probability of the individual
being competent given a = h is

P (c j �; a = h;E) =
P (a = h;E j c; �) q

P (h;E j c; �) q + P (h;E j i; �) (1� q)

=
1

1 +

�
(p�(h)+�(l)(1�p))P(Ejph)

P(Ejpl)
p

1�p+p�(h)+�(l)(1�p)
�
(1�q)�

�(h)
P(Ejph)
P(Ejpl)

p
1�p+�(l)

�
q

This is greater than q i¤

(p� (h) + � (l) (1� p)) P (Ejph)
P (Ejpl)

p
1�p + p� (h) + � (l) (1� p)

� (h) P (Ejph)
P (Ejpl)

p
1�p + � (l)

� 1,

(� (h)� � (l))
�
P (E j ph)
P (E j pl)

� 1
�
� 0: (8)

The probability of being competent if the individual announces a = l is

P (c j �; a = l; E) = 1

1 +

�
(p(1��(h))+(1��(l))(1�p))P(Ejph)

P(Ejpl)
p

1�p+p(1��(h))+(1��(l))(1�p)
�
(1�q)�

(1��(h))P(Ejph)
P(Ejpl)

p
1�p+1��(l)

�
q

which is greater than q i¤

(� (h)� � (l))
�
P (E j ph)
P (E j pl)

� 1
�
� 0 (9)

Assume that � (h) > � (l) (the opposite case is treated similarly). We will show that � (h) =
1, by contradiction. Assume that 1 is strictly violated, and that � (h) < 1: For � (h) < 1 to
be optimal it must be that, given the signal h, reporting l yields a utility weakly larger than
reporting h. That is, from inequalities 9 and 8, it must be that

Pr

�
(� (h)� � (l))

�
P (E j ph)
P (E j pl)

� 1
�
� 0 j h

�
� Pr

�
(� (h)� � (l))

�
P (E j ph)
P (E j pl)

� 1
�
� 0 j h

�
,

Pr

�
P (E j ph)
P (E j pl)

� 1 j h
�

� Pr

�
P (E j ph)
P (E j pl)

� 1 j h
�

Since (pl; ph) 2 S� ; (i.e. for generic ph and pl) Pr
�
P (Ejph)
P (Ejpl) � 1 j h

�
= 1�Pr

�
P (Ejph)
P (Ejpl) � 1 j h

�
,

the last inequality becomes

1

2
� Pr

�
P (E j ph)
P (E j pl)

� 1 j h
�

= Pr

 �
ph
pl

�NE �1� ph
1� pl

���NE
� 1 j h

!
= Pr (NE � �f (ph; pl) j h) >

1

2
(since 1 is strictly violated),
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A contradiction.
We now show that a contradiction obtains if we assume that 2 is strictly violated and

� (l) > 0: For � (l) > 0 to be optimal, after observing l the utility of reporting h must be at
least as large as the utility of reporting l: According to equations 9 and 8 this happens i¤

Pr

�
(� (h)� � (l))

�
P (E j ph)
P (E j pl)

� 1
�
� 0 j l

�
� Pr

�
(� (h)� � (l))

�
P (E j ph)
P (E j pl)

� 1
�
� 0 j l

�
,

1

2
� Pr

�
P (E j ph)
P (E j pl)

� 1 j l
�
,

1

2
� Pr

 �
ph
pl

�NE �1� ph
1� pl

���NE
� 1 j l

!
= Pr (NE � �f (ph; pl) j l) >

1

2
(1 strictly violated)

We conclude that 1 = � (h) and � (l) = 0; as was to be shown.
Existence of an e¢ cient equilibrium if equations (1) and (2) are violated

weakly. We now show that 1 = � (h) and � (l) = 0; is part of an equilibrium. We must
establish two facts. First, having observed h, the o¢ cial is better o¤ declaring h than
declaring l, assuming either declaration would be believed. This is true, according to the
calculations following equations 9 and 8, i¤

Pr

�
P (E j ph)
P (E j pl)

� 1 j h
�

� Pr

�
P (E j ph)
P (E j pl)

� 1 j h
�
,

Pr (NE � �f (ph; pl) j h) � 1

2

which holds since equation (1) is violated. Similarly, after observing l, announcing l is better
than announcing h i¤

Pr

�
P (E j ph)
P (E j pl)

� 1 j l
�

� Pr

�
P (E j ph)
P (E j pl)

� 1 j l
�
,

Pr (NE � �f (ph; pl) j l) � 1

2

which is satis�ed because (2) is violated.
If equations (1) or (2) hold, the only equilibria are babbling. Suppose that

Pr (NE � �f (ph; pl) j h) < 1=2 and that there is an equilibrium with � (h) > � (l) � 0: From
equation 8 we know that P (c j �; a = h;E) � q i¤

(� (h)� � (l))
�
P (E j ph)
P (E j pl)

� 1
�
� 0, P (E j ph)

P (E j pl)
� 1

and that P (c j �; a = l; E) � q i¤

(� (h)� � (l))
�
P (E j ph)
P (E j pl)

� 1
�
� 0, P (E j ph)

P (E j pl)
� 1
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If the proposed strategies are an equilibrium, then announcing h after observing h must be
weakly better than announcing l; which happens i¤

Pr

�
P (E j ph)
P (E j pl)

� 1 j h
�

� Pr

�
P (E j ph)
P (E j pl)

� 1 j h
�

(10)

= 1� Pr
�
P (E j ph)
P (E j pl)

� 1 j h
�
,

Pr

�
P (E j ph)
P (E j pl)

� 1 j h
�

� 1

2
, Pr (NE � �f (ph; pl) j h) �

1

2

but the opposite is true, so � (h) > � (l) cannot be an equilibrium.
Similarly, assume there is an equilibrium with � (h) < � (l). In this case, 1 � � (h) >

1� � (l) � 0; which means that announcing l after observing h must be weakly better than
announcing h; which happens i¤

Pr

�
(� (h)� � (l))

�
P (E j ph)
P (E j pl)

� 1
�
� 0 j h

�
� Pr

�
(� (h)� � (l))

�
P (E j ph)
P (E j pl)

� 1
�
� 0 j h

�
,

Pr

�
P (E j ph)
P (E j pl)

� 1 j h
�

� Pr

�
P (E j ph)
P (E j pl)

� 1 j h
�
,

Pr (NE � �f (ph; pl) j h) = Pr

�
P (E j ph)
P (E j pl)

� 1 j h
�
� 1

2

which does not hold. The only alternative is � (h) = � (l).
Proof of Proposition 6. Suppose there is a non babbling equilibrium, and assume

without loss of generality that � (h) > � (h) : From the proof of Proposition 5, the part that
shows that if equations (1) or (2) hold the only equilibria are babbling, we know that it must
be the case that (see equation 10)

Pr

�
P (E j ph)
P (E j pl)

� 1 j h
�

� Pr

�
P (E j ph)
P (E j pl)

� 1 j h
�
)

Pr

�
P (E j ph)
P (E j pl)

� 1 j h
�

� Pr (E : NE = 0 j h),

Pr (NE � �f j h) � Pr (E : NE = 0 j h) (11)

Notice that for ph > pl su¢ ciently close to 0

Pr (NE = 0 j ph) = (1� ph)� and Pr (NE = 0 j pl) = (1� pl)�

are close to 1; and since �f (ph; pl) > 0; Pr (NE � �f j ph) and Pr (NE � �f j pl) become arbi-
trarily close to 0: Then, given Pr (NE � �f j h) = Pr (ph j h) Pr (NE � �f j ph)+Pr (pl j h) Pr (NE � �f j pl) '
0 and Pr (E : NE = 0 j h) = Pr (ph j h) Pr (NE = 0 j ph) + Pr (pl j h) Pr (NE = 0 j pl) ' 1;
equation 11 becomes

0 ' Pr (NE � �f j h) � Pr (E : NE = 0 j h) ' 1;

a contradiction:
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Proof of Proposition 7. Assume �rst that there is a �� such that for all � > �� , an
e¢ cient equilibrium exists. Assume that contrary to what we want to prove Pr (pi = ph j h) <
1=2 (the case of Pr (pi = ph j l) < 1=2 is treated similarly). We will now show that condition
1 of Propostion 5 is satis�ed (for large enough �) so that no e¢ cient equilibria exist. Rewrite
condition 1 as

Pr (pi = ph j h) Pr
�
NE
�
� f j ph

�
+ [1� Pr (pi = ph j h)] Pr

�
NE
�
� f j pl

�
<

1

2
,

Pr

�
NE
�
� f j pl

�
+ Pr (pi = ph j h)

�
Pr

�
NE
�
� f j ph

�
� Pr

�
NE
�
� f j pl

��
<

1

2
:(12)

By the Law of Large numbers, and ph > f > pl; one can pick a large � > �� and make
Pr (NE � �f j pl) arbitrarily close to 0 and Pr (NE � �f j ph) arbitrarily close to 1; so that
the left hand side in equation 12 is arbitrarily close to Pr (pi = ph j h) : Since Pr (pi = ph j h) <
1=2; equation 1 of Proposition 5 is satis�ed and for such a � , no e¢ cient equilibrium exists.
Assume now that Pr (pi = ph j h) > 1=2 > Pr (pi = ph j l) to show that all non-babbling

equilibria are e¢ cient. Again, by the Law of Large numbers, since ph > f for large enough
� Pr (NE � �f (ph; pl) j ph) ' 1 and Pr (NE � �f (ph; pl) j pl) ' 0; so that condition 1 of
Proposition 5 is violated strictly. A similar argument applies to condition 2, using f > pl.

Proof of Proposition 8. As Q increases from Q0 to Q; we see that since

Pr (pi = ph j h) =
Pr (h j ph) Pr (ph)

Pr (h j ph) Pr (ph) + Pr (h j pl) Pr (pl)
(13)

=
(Q+ p (1�Q)) p

(Q+ p (1�Q)) p+ p (1�Q) (1� p) = Q+ p (1�Q) > p

Pr (pi = ph j l) = p (1�Q) < p (14)

Pr (pi = ph j h) increases and and Pr (pi = ph j l) decreases. If an e¢ cient equilibrium exists
for Q0; this means that both Pr (NE � �f (ph; pl) j h) � 1=2 and Pr (NE � �f (ph; pl) j l) �
1=2; in which case equations (1) and (2) tells us that inequalities are maintained for Q.
Proof of Proposition 9. Suppose there is a non babbling equilibrium, and assume

without loss of generality that � (h) > � (h) : As in the proof of Proposition 6, it must be
the case that (see equation 11),

Pr (NE � f j h) � Pr (E : NE = 0 j h)

Notice that for 1=2 > ph > pl

Pr (NE = 0 j ph) = 1� ph > 1=2 and Pr (NE = 0 j pl) > 1=2

and since f (ph; pl) > 0; Pr (NE � f j ph) = Pr (NE = 1 j ph) = ph < 1=2 and Pr (NE � f j pl) =
pl < 1=2: Then, given Pr (NE � f j h) = Pr (ph j h) ph+Pr (pl j h) pl < 1=2 and Pr (E : NE = 0 j h) =
Pr (ph j h) (1� ph) + Pr (pl j h) Pr (1� pl) > 1=2; we get

1

2
> Pr (NE � f j h) � Pr (E : NE = 0 j h) >

1

2
;
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a contradiction:
Proof of Proposition 10. When the o¢ cial observes h; from the proof of Proposition

5 we know that he will declare h i¤

Pr

�
P (E j ph)
P (E j pl)

� 1 j h
�

� Pr

�
P (E j ph)
P (E j pl)

� 1 j h
�
= 1� Pr

�
P (E j ph)
P (E j pl)

� 1 j h
�
,

Pr

�
P (E j ph)
P (E j pl)

� 1 j h
�

� 1

2
, Pr (NE � �f (ph; pl) j h) �

1

2
:

But we know that for small ph Pr (NE � �f (ph; pl) j h) is close to 0, violating condition 1:
For � = 1 and ph < 1

2
equation 1 is violated, and by the proof of Propostion 5 we know that

means that the o¢ cial does not want to announce h when he is supposed to, because with
probability larger than 1=2 he will not be reelected. Hence, he announces l; which gets him
reelected with the complementary probability.
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