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1. Introduction 
 
The aim of this article is to discuss both empirical and 

complexity/computational limitations in dynamics, especially 

limitations that have implications for economics. In order to make 

my essay more useful for economists, I begin by emphasizing the 

grounding of mathematical laws of nature in the four basic space-

time invariance principles: translations, rotations, time 

translations, and Galilean transformations. Given the laws of 

dynamics, predictions mathematically take the form of continuous 

trajectories. I describe how physicists have started with 

continuum ideas and then have made finite precision predictions 

for chaotic dynamical systems in order to compare theory with 

the results of measurement, which are of very limited precision. I 

point out that the idea of solvability does not distinguish 

integrable from nonintegrable (chaotic or complex) dynamics, and 

locate where computational limitations begin to become 

interesting in the digitalization of a nonlinear dynamical system 

for computation. I also demonstrate the danger of existence proofs 



of equilibrium in the absence of dynamics1. In other words, I 

follow the sequence from empirical data through inferred 

dynamics and limitations on finding solutions, to the appearance 

of ideas of complexity in empirical data and dynamics.  

 

But this essay is not restricted to deterministic dynamics. Using 

stochastic dynamics, which is generally required empirically by 

markets, a new empirically based model of financial market 

dynamics is my central contribution. Here, we do not force-fit a 

preconceived model to the data, rather, we deduce the 

quantitative form of the noise from the market data. This is 

unusual, and as a consequence the volatility enters in a natural 

way, as is demanded by data. The new model leads us to the idea 

of market instability, and a prescription for falsifiability of the 

idea of the famous Invisible Hand. Finally, I ask where complexity 

enters market dynamics, and then suggest a new analogy from 

cell biology for inventions and market growth. Along the way, I 

offer an observation about ‚emergence‘. 

 

My choice of the sequence of themes described above is 

encouraged by my overlap of interest with key topics that have 

also been discussed by Kumaraswamy Velupillai: the 

unreasonable effectiveness of mathematics in physics and the 

unreasonable ineffectiveness of mathematics in economics 

(Velupillai, 2003, 2005), the question of the right way to digitize a 

dynamical system for computation (Velupillai, 2003, 2004), 

                                                
1 Without stating extra conditions, both stable and unstable equilibria may be either 



falsifiability (Velupillai, 2003), and the appearance of 

computational complexity in nonlinear dynamics (Velupillai, 

2000). These are all central questions for economic theory.  

 

 

2. Symmetry Principles are the Basis of Mathematical Law 
 
Data collection and analysis are central to physics. Data collection 

in the attempt to describe the motion of bodies began with the 

ancient astronomers, who used epicycles to describe planetary 

orbits. Epicycles are not necessarily wrong, because they don‘t 

define a specific dynamical model: in modern terms, epicycles are 

truncations of Fourier series expansions of orbits (Hoyle, 1973).  

 

Physics, the mathematical description of empirically discovered 

laws of nature, began with Archimedes‘ discovery of the 

conditions for static equilibrium. Galileo and Kepler revived the 

Archimedian tradition in the seventeenth century and provided 

the empirical discoveries from which Newton was able to 

formulate nature’s dynamics mathematically in a very general 

way (Barbour, 1989). Newtonian predictions have been verified 

with high decimal precision at macroscopic length and time scales 

where, on the one hand, light speed doesn’t matter, and on the 

other where quantum phase coherence has been destroyed.  

 

Why can we discover strict mathematical laws of inanimate 

nature, and why haven’t we discovered corresponding time-

                                                                                                                                       
computable or noncomputable. 



invariant mathematical laws of socio-economic behavior? Wigner 

(1967) posed and answered both these questions in his beautiful 

essays on symmetry and invariance, where he identifies the basis 

of the seemingly unreasonable effectiveness of mathematics in 

physics.  

 

Following Galileo and Kepler, scientists have discovered 

mathematical laws obeyed by nature via repeatable, identical 

experiments (physics, chemistry, genetics) and observations 

(astronomy). The foundation for the invariance of experimental 

results performed at different locations and times and in different 

states of motion lies in the symmetry principles that form the 

basis of Newtonian mechanics: mathematical laws of nature are 

invariant under translations, rotations, time translations, and 

transformations among Galilean/inertial frames.  

 

Newton’s Second Law describes a classical mechanical system  

 

 

(1) 
where p=(p1,…,pf) = mdX/dt is the momentum vector, m is a 

body’s mass, X is its position, and F is the force. If the force F 

transforms like a Cartesian vector, F‘=RF, then Newton’s law is 

covariant under Galilean transformations, spatial translations and 

rotations, and time translations. When F=0 then we have Galilean 

  

dp
dt

= F



invariance of solutions p(t), which is the mathematical basis for 

repeatable, identical experiments. In this case X is a coordinate in 

n dimensional configuration space, and the earth is approximately 

an inertial frame for experiments performed on a time scale much 

less than a day (McCauley, 1997a). 

 

Globally integrable dynamical systems, like Keplerian orbits, 

reflect the basic space-time invariance principles through the 

standard conservation laws taught in every introductory physics 

text: conservation of momentum, angular momentum, and 

energy. Without the four underlying symmetry principles, 

empirical observations would generally depend on absolute time, 

absolute position and orientation, and absolute velocity. In a 

hypothetical universe without local invariance principles, even if 

there were underlying mathematical laws of motion we would be 

unable to extract them from observational data. E.g., Galileo first 

inferred special cases of Newton’s First and Second Laws and the 

local law of gravity from very simple trajectories. A local law is a 

solution that holds for short enough space-time intervals, like the 

integrated form of Newton’s First Law (p=constant, where p is 

momentum). A global solution, like a Keplerian orbit, holds over 

an unbounded space-time region. Differential equations 

describing both continuous symmetries (generators of Lie groups) 

and dynamics (eqn. (1), e.g.) are examples of local laws of motion. 

The universal applicability of the local law (1) lies in its grounding 

in the four space-time invariance principles. Global solutions of 

local laws of motion, if they appear at all in observed data, are 



solutions that hold approximately for very long times. Strictly 

seen, in mathematics, global solutions would hold for all possible 

times, past and future. But what about holism, which is advocated 

in some quarters today? 

 

No mathematical law of motion can be deduced from empirical 

data unless a large part of the world can be neglected, to zeroth 

order, so that the most dominant features of nature can be studied 

in isolation and the rest can be described via interaction forces, 

perhaps only perturbatively. This is ‚reductionism‘, the division of 

the world into ‚dynamical system plus initial conditions‘ and 

‚environment, where the initial conditions are effectively ‚lawless‘ 

(Wigner, 1967). The idea of holism is an illusion: if every part of 

the world were strongly coupled to every other part of the world, 

then we could discover little or nothing systematic about the 

world.  

 

Aside from the known laws of physics, there are also models of 

motion that are not necessarily obeyed by any observed 

phenomena e.g., the neo-classical economic model or a complex 

adaptable model of Darwinism. Whatever the origin, empirical or 

postulated, every mathematical model that can be written down is 

a form of reductionism (the renormalization group method in 

statistical physics, valid at order-disorder transitions, reduces 

phenomena at a critical point approximately to symmetry and 

dimension). Quantum theory, the law of nature at very small 

length scales explains chemistry via atoms and molecules. Cell 



biology attempts to reduce observed phenomena to very large, 

complicated molecules, to genes and DNA, proteins, and cells. 

Proponents of self-organized criticality try to reduce the 

important features of nature to the equivalent of sand grains and 

sand piles via the hope for an underlying universality principle. 

Network enthusiasts likewise hope to reduce many interesting 

phenomena to nodes and links (Barabasi, 2002). The weakness in 

the latter two programs is that there are no known universality 

principles for driven-dissipative systems far from thermal 

equilibrium, except at the transition to chaos.  

 

The isolation of cause and effect, the standard method used by an 

auto mechanic or radio repairman to repair a defective system, is 

basically the method of science. There is no escape from 

reductionism of one form or another. Given a successful model, 

meaning one that correctly describes a particular set of data and 

predicts new phenomena, one can then try perturbatively to take 

into account previously neglected interactions, but one cannot 

imagine taking into account everything. Falsifiabilty via empirical 

data is a scientific necessity. The idea of falsifiability is not a new 

idea. Karl Popper simply put into words what hard science since 

Galileo has practiced. In physics, a new model will not be 

accepted if it only describes phenomena that are already 

understood: a new model must also make empirically falsifiable 

new predictions. For example, Newtonian mechanics was used to 

predict the existence of a ‚new‘ planet before Neptune was 

discovered. 



  

I will return to Wigner’s theme in parts 5 and 6 below. First, some 

results from nonlinear dynamics and a way to compare dynamics 

predictions with real data, e.g. with time series obtained from 

experiment or observation, in order to focus more toward our 

eventual discussion of computability limitations.  

 
 
3. Solvable Deterministic Dynamics 
 

Since p=mdX/dt where X=(X1, …, Xf) is position and m is mass, 

we can rewrite Newton’s laws as a flow in a 2f dimensional phase 

space, 

 

 (2) 

 

where phase space is a flat inner product space so that the n=2f 

axes labeled by (x
1
,...,x

n
) can be regarded as Cartesian and V(x) is 

an n-component time-independent velocity field in phase space. 

E.g., for a one degree of freedom Newtonian system dp/dt=F we 

have a two dimensional phase space where x1=X, x2=p, with 

dx1/dt=p=V1 and dx2/dt=F=V2.  

 

Flows that preserve the Cartesian volume element dΩ = dx
1
...dx

n
 

are defined by ∇⋅ V = 0 (conservative flows) while driven 

dissipative-flows correspond to ∇⋅ V ≠ 0, where ∇ denotes the 

Cartesian gradient in n dimensions. The expectation of stable 

  
dx
dt

= V(x)



equilibria in a neo-classical or any other supply-demand model 

would require a driven-dissipative system, e.g.  

 

The condition for a phase flow is that for any initial condition xo 

the solution xi(t) = U(t)xio has no finite time singularities, 

singularities of flows at finite times are not permitted on the real 

axis in the complex time plane. The time evolution operator U(t) 

then exists and defines a one parameter transformation group for 

all real finite times t, with the inverse operator given by U-1(t) = 

U(-t), so that one can in principle integrate backward in time, xoi = 

U(-t)xi(t) as well as forward, for both conservative and for driven-

dissipative flows. That the time evolution operator U(t) has an 

inverse means that there is no diffusion; the variable x behaves 

deterministically, not stochastically. In part 7 we will relax this 

restriction to include stochastic dynamics. 

 

In deterministic dynamics, one should distinguish between the 

ideas of solvable and integrable vs. nonintegrable. The later 

category includes chaotic and complex motions, and is where 

interesting computability limitations enter in a natural way. Any 

flow, even a chaotic or complex one, has a unique, well-defined 

solution (is solvable) so long as the velocity field V(x) satisfies a 

Lipshitz condition with respect to the n variables xi. If, in 

addition, the velocity field V(x) is analytic in those variables then 

the power series locally defining the time evolution operator 

U(t)=etL, 

 
 xi(t ) = xio + t (Lxi )o + t2 (L 2xi )o /2 + . . .. .    (3) 

 



The infinitesimal generator is L = V ⋅ ∇, and (3) has a nonvanishing 

radius of convergence, so that the solution of (2) can in principle 

be defined by power series combined with analytic continuation 

for all finite times (Poincaré, 1993). The radius of convergence of 

(3) is typically small and unknown. Unless one can determine the 

singularities of (2) in the complex time plane, one does not know 

when and where to continue analytically. Therefore, in practice, 

we cannot expect to solve nonintegrable dynamical systems more 

than locally, for only very short time intervals. This is a restriction 

on predictability that precedes any computability limitations that 

follow from our next considerations. 

 

An error-free way to digitize (2) for computation (McCauley 1987, 

1993)  is to use algorithms for computable numbers for all initial 

conditions and control parameters in the local solution (3). If the 

dynamical system is chaotic or complex, then one cannot compute 

very far into the future by using fixed precision. The precision of 

the computation must be increased systematically after a typically 

small number of time steps according to the demands made by 

the largest Liapunov exponent of (3). This is easy to understand: 

the same is required in order to compute solutions y(t) of dy/dt=y 

for large times, where the solution exhibits unbounded motion 

with a positive Liapunov exponent. This equation provides us 

with the simplest example of exponential instability of nearby 

orbits, the butterfly effect. If one computes the solution y(t) mod 1 

at equally spaced discrete times, then the motion is bounded (lies 

on a circle) and one obtains a Bernoulli shift, the simplest chaotic 



dynamical system. So avoiding making a mistake while 

calculating •2 is an example of beating the butterfly effect. 

 

If one only uses a limited precision method, like floating point 

arithmetic, then the only known test for numerical accuracy of the 

solution is to integrate (2) forward in time, and then integrate 

backward again in order to try to recover the initial condition to 

within at least one decimal place. If you cannot recover a single 

digit of the assumed initial condition, then you have integrated 

illegally too far forward in time. Below, we will discuss a method 

of predicting chaotic trajectories with controlled precision that 

does not require integration forward in time. The emphasis there 

is on the use of finite precision, with systematically increasing 

precision, which reflects computability. 

 

A chaotic or complex system is always locally integrable but 

cannot be globally integrable. Integrable and nonintegrable 

systems are defined and discussed in  a simple but incomplete 

way in McCauley (1997a). Arbitrary velocity fields V(x) generally 

define nonintegrable systems, and deterministic chaos typically 

occurs. Galileo’s parabolic orbits are examples of local 

integrability of a Newtonian system. Kepler‘s planetary orbits are 

examples of global integrability for a two-body problem. But a  

Kepler orbit assumes that the solar system consists only of the sun 

and a single planet. Over extremely long times, there is evidence 

that the Newtonian dynamics of interacting planets in the solar 

system is nonintegrable and chaotic (Sussman and Wisdom, 1992). 



The Newtonian three-body problem is chaotic for arbitrary initial 

conditions.  

 

 4. Computing Chaotic Dynamics with Controlled Precision 

 
Measurement always means finite precision, and generally with at 

best few decimal place accuracy. E.g., market prices are specified 

only to within a few decimal places ($101.32. e.g.). In physics we 

are more concerned with making limited precision predictions 

correctly than with the more stringent requirement of 

computability. However, the phase space of chaotic systems is 

characterized by dense sets of unstable periodic and unstable 

quasiperiodic orbits, which are nontrivial to compute to within 

any controlled degree of decimal accuracy over long times.  

 

Rather than study local power series solutions of differential 

equations digitized for computation, it is theoretically more 

convenient to study a corresponding discrete map, like a 

stroboscopic map or a Poincaré map. Such maps are always 

invertible because flows defined by ordinary differential 

equations are perfectly time reversible. Examples of iterated maps 

derived from differential equations and physical systems are 

given in McCauley (1987, 1997a). 

 

The main ideas about maps can be most easily described by using 

a one-dimensional chaotic map of the unit interval, xn=f(xn-1), 

which necessarily has a multi-valued inverse and therefore cannot 



occur rigorously as a Poincaré map of a phase flow. To begin, 

discretize the map for computation in some integer base µ of 

arithmetic (expand the initial condition and all control parameters 

in base µ). In this case, if we choose µ •eλ where λ is the map’s 

positive Liapunov exponent for the class of initial conditions 

considered, then the meaning of λ is that we have to increase the 

precision of a forward time iteration at the rate of about one digit 

per iteration of the map in order to compute without making any 

error. Here, as in the digitization of a system of differential 

equations for computation, we meet the idea of the initial 

condition as program encoded in base µ, and the digitized 

dynamical system (the map) as computer. Most chaotic dynamical 

systems perform only trivial computations like ‚read and shift‘, 

add, multiplicaty, and combinations thereof. If one iterates such a 

system forward in discrete time n without increasing the precision 

at each time step, then one soon makes an error that ruins the 

computation. This is the most fundamental limitation on 

predicting the future for a chaotic map on a computer. In nature, 

we know the initial data to only within a few digits, and this leads 

to a similar limitation in collecting observational data. A positive 

Liapunov exponents is the condition for ‘mixing’, which is the 

condition for the applicability of the methods of statistical 

physics. Mixing also occurs in fluid turbulence, doe to an unstable 

cascade of eddies. 

 

A positive Liapunov exponent reflects local orbital instability. 

Deterministic chaos means local orbital instability combined with 



global (Poincaré) recurrence of initial conditions. We can calculate 

both the unstable periodic and quasiperiodic orbits that 

characterize chaotic systems by iterating the map backward in 

time, where the Liapunov exponent contracts rather than expands 

intervals (errors). By iterating the unit interval, the phase space of 

a one dimensional map, backward in time n, the multi-valuedness 

of the map’s inverse generates a tree that provides us with both 

the symbolic dynamics and the generating partition of the map 

(Cvitanovic et al, 1988; Cvitanovic et al’, 2003; Feigenbaum, 1988; 

McCauley, 1993, 1997a). The generating partition, a hierarchy of 

sets of intervals or length scales, is peculiar to the map, but the 

symbol sequences are universal for an entire class of topologically 

related maps: the symbol sequences are invariant under 

continuous transformations of the map. The unstable periodic 

orbits are organized on the tree. Here, we generally do not need 

the more refined idea of computability because the tree provides 

us with a hierarchy of finite precision descriptions of the fractal 

attractor or repeller, and one can compare these finite precision 

descriptions with empirical observations, if observational data are 

accurate enough. The latter condition is nontrivial to satisfy. 

 

Kepler’s neutrally stable orbits of period one were used by 

Newton to discover the inverse square law of gravity. Prior to 

that, the neutrally stable parabolic trajectories discovered by 

Galileo reflected local versions of Newton’s First and Second 

Laws of Motion (Heisenberg (1930), discovered systematically 

that he needed noncommuting operators in order to describe 



atomic spectral data). In the eighties, unstable periodic orbits 

extracted from time series near the transition to fluid turbulence 

were used to try to discover an underlying map that generates the 

transition to soft turbulence. That effort makes sense because 

there are well-defined universality classes of dynamical systems 

at the transition to chaos via period doubling, a bifurcation 

sequence described asymptotically by the renormalization group 

method. The effort to discover the universality class of maps from 

empirical data met serious nonuniqueness problems because of 

the very limited precision of the data (Chhabra et al, 1988): to 

determine the generating partition unambiguously, one needs 

very high precision in the data. This is a main point that I will 

return to in parts 7 and 9 below. 

 

To what extent can the empirically observed time series of a 

particular market be used to infer the underlying dynamics? This 

question is of central importance for economics, where market 

dynamics have not yet been deduced empirically beyond finance 

theory. This latter asertion may well raise the ire of many 

economists, and so I will explain it in part 7 below. 

 

5. Local versus Global Expectations in Dynamics 

Symmetry not only plays the key role in forming the basis for the 

discovery of laws of motion from empirical data, it also plays a 

central role when one searches for solutions of dynamical 

equations. A globally integrable dynamical system in n 

dimensions has simple solutions that are globally valid, because 



the system has n global conservation laws that restrict the motion 

to rectilinear motion via a coordinate transformation based on 

those conservation laws. Global conservation laws reflect global 

symmetries in the n dimensional phase space. 

 

If we discuss deterministic market models 

 

 

(4) 

 
then p = (p1,…pn) is the price, and the vector field ε(p) =          

D(p)-S(p) is the excess demand. This does not approximate a 

mathematical rule for a market unless supply S and demand D are 

deduced empirically from that market. Typically, as in neo-

classical theory, the functions S(p) and D(p) are merely modeled 

without paying attention to what real markets are doing. For two 

outstanding exceptions, see Osborne (1977) and Maslov (2000).  

 

Before going further, let me emphasize that there is only one 

definition of equilibrium that is dynamically correct: dp/dt=0, or 

excess demand vanishes. Contrary to confusion rampant in the 

economics and finance literature (see, e.g., McAdam and Hallett, 

2000), a limit cycle is not an equilibrium, nor is a strange attractor. 

Neither a Wiener nor lognormal stochastic process is defines 

equilibrium. More than seven diferent misuses of the term 

“equilibrium” are identified in McCauley (2004). Dynamic 

equilibria are defined by the vanishing of excess demand vanishes 

  

dp
dt

= ε(p)



at one mor more points p*, ε(p*)=0. In statistical equilibrium all 

averages of moments of the price p vanish, d<pn>/dt=0 for all 

values of n, which is the same as saying that the price distribution 

is time independent (stationary), or that the Gibbs entropy of the 

distribution is constant. We can achieve clarity of thought in 

finance and economics taking care to be precise in our 

mathematical definitions. Or, as an early Pope is reputed to have 

said, “One should tell the truth even if it causes a scandal” 

(Casanova, 1997). 

 

In deterministic market modeling, we should expect no global 

conservation law other than the ‚Walras law‘ that defines the 

budget constraint and confines the motion to a sphere in phase 

space. The budget constraint reflects the symmetry of the price 

sphere in phase space (price space), but motion on the  n-1 

dimensional price sphere is typically nonintegrable. Arrow (1958) 

discovered interesting but humanly unattainable conditions for 

the mathematical ‘existence’ of an equilibrium point (perfect 

foresight combined with total conformity: all agents have the 

same expectations into the infinite future), but equilibrium points 

on the price sphere are unstable for the typical case of 

nonintegrability.  

 

We know from nonlinear dynamics and general relativity that 

global integrability of local laws of motion (differential equations, 

iterated maps) is the rare exception. For global integrability of a 

dynamical system (2) in an n dimensional phase space, there must 



be enough symmetry that there are n-1 time independent global 

conservation laws that restrict the motion of the n-dimensional 

phase flow to trajectories that are topologically equivalent to 

rectilinear line motion at constant speed. Typically, in dynamics, 

one must almost always settle for local integrability. This means, 

as I have emphasized above, that, even if we would know a correct 

deterministic dynamics describing a market, then we could not hope 

in practice to calculate solutions that would be correct over large 

time intervals.  

 

In mainstream economics, the neo-classical equilibrium model is 

taught as if it would be useful for understanding markets 

(Mankiw, 2000; Varian, 1992), but market equilibrium is not an 

empirically established fact, and the stability of the theoretically 

predicted equilibrium is anyway unknown (Kirman, 1988). For 

the model to be useful, it would be necessary that real markets 

could be described perturbatively by starting with the neo-

classical model as a zeroth order approximation. Nothing of the 

sort has been achieved, or likely will ever be achieved. Still, the 

model has been used by the IMF, the World Bank, the E.U. and 

the U.S. Treasury as the theoretical basis for imposing extreme 

free market financial requirements on nations in the drive toward 

globalization via deregulation and privatization (Stiglitz, 2002). 

Here, an equilibrium point that cannot even be shown to be 

mathematically stable is deduced from a falsified model 

(McCauley, 2004) and is assumed to apply worldwide over 

significant time scales.  



 

In reality, globalization via deregulation and privatization is a 

completely uncontrolled experiment whose outcome cannot be 

known in advance. The empirical evidence from The Third World 

is against the idea that globally uniform local rules and 

requirements yield either locally stable results or approximately 

uniform economic growth (see Stiglitz, 2002, for many qualitative 

examples of market instability). Certainly, there is no empirical 

evidence, or theoretical evidence from nonlinear or stochastic 

dynamics, to support such an idea. Furthermore, the example of 

biology tells us that, for survival, it is redundance and error 

correction ability, not efficiency, that matters.  

 

Three results about the neo-classical model beyond Arrow‘s seem 

to me to be remarkable. Sonnenschein (1973) showed that there is 

no theoretical basis via aggregation or averaging for a neo-

classical macroeconomic supply-demand model: either any curve 

or no curve at all may follow from aggregation. Contrast this with 

classical equilibrium statistical physics, which predicts 

thermodynamics uniquely via averaging. Radner (1968) has made 

the very interesting speculation that liquidity, the demand for 

money and financial markets, arises from computational 

limitations and other forms of uncertainty, although Radner 

apparently did not have in mind either a Turing machine or a 

clear idea of what he meant by his phrase ‚computational 

capacity‘ while writing his paper. Apparently unaware of 

Radner’s speculation, Bak et al (1999) tried but failed to show how 



money might emerge from the addition of noise to optimizing 

behavior. Osborne (1977) showed that the neo-classical supply-

demand model is falsified both microeconomically and 

macroeconomically. I regard Osborne, also the father of the 

lognormal price model in financial markets (Cootner, 1964), as the 

first econophysicist. 

 

The neo-classical equilibrium model is a zero entropy (or perfect 

knowledge) model. Real markets reflect inherently finite entropy 

effects like production, consumption, and decision-making. Even 

without the observations made by Osborne, the neo-classical 

model is falsified unless one can find empirical evidence from at 

least one real market for stability and equilibrium. So instead of 

arguing that ‘the neo-classical model is ideal‘ and the data are 

‘hard to describe’ (no physicist will give any weight to such an 

argument), we must ask what the unmassaged market data can 

teach us. Or, more poetically, let us ask not what we can do for 

the data (give it a massage, or attack it with a specific model in 

mind, e.g.), let us ask instead what the data can teach us. It must 

be emphasized that the approach of the physicist is not at all the 

method of the econometrician (Granger, 1999): instead of having 

limited, preconceived models in mind, we deduce the stochastic 

model from the data (see McAdam and Hallet (2000) for a good 

example an attempt to force preconceived notions on the data). I 

illustrate this program in part 7, where I will argue that real 

market data are not at all hard to fit accurately by using 

dynamical models. To the contrary, market data are too easy to fit: 



lack of uniqueness in empirically based modeling is the real 

problem that we face. Even if we would restrict our 

considerations to agent based trading models, we will not be able 

to escape the nonuniqueness. 

 

  

6. Can Economic Dynamics Emerge from Market Data? 

 
Given enough symmetry principles obeyed by prices, we should 

in principle be able to discover mathematical laws obeyed by 

markets. We will discuss two recently discovered invariance 

principles for markets below. But there is a fundamental 

difference between economic motions, like price changes (or GNP 

growth), and laws of nature. 

 

Unlike natural law, acting on human expectations creates all of 

economic behavior. Without actions determined by our brains, 

wishes, and actions, markets and prices would not exist. Nature, 

e.g., stars, planets, DNA, and atoms are not invented and 

manipulated in that way. Mathematical laws of nature are beyond 

human invention, intervention, and convention. Without human 

agreement and/or regulation, in contrast, markets and prices do 

not even exist. Given that human decisions and actions create 

markets and money, to what extent can we hope to discover an 

approximately correct dynamics of markets? And bear in mind 

that nonuniqueness due to limited precision in data analysis can 

lead us not to a single model, but to some (non universality) class 

of models. 



 

 Consider a distribution of markets for a single asset, like gold or 

globalized autos (Ford, Toyota, GM, VW, or BMW, e.g.) on the 

face of the earth. The price g(p,t) or returns density 

f(x,X,t)=g(p,X,t)dp/dx depends not just on price p (or returns x) 

but on location X as well. By return, I mean the logarithmic return 

x=lnp(t)/po where po is some initial or reference price and g is a 

conditional probability density, a ‘Green function’ in the language 

of physics. Therefore, the ‚no-arbitrage‘ principle is equivalent to 

the assumption of rotational invariance (McCauley, 2004) of the 

price density (or translational invariance in a tangent plane 

containing two separate nearby markets, like Berlin and 

Frabkfort). The absence of arbitrage is a purely geometric 

statement that guarantees nothing other than that the probability 

distribution of the asset is independent of position X. In 

particular, ‚no-arbitrage‘ has nothing to do whatsoever with 

market equilibrium. Market equilibrium is equivalent to time 

translational invariance of the price distribution: in equilibrium, 

g(p,t) is independent of t.  

 

There is also a weak form of ‚Galilean invariance‘ in markets. 

Consider a returns density f(x,t) for a single market in a single 

asset, like a stock (or, if you prefer, like housing in a particular 

region). By starting with the empirical histograms for that market, 

we can deduce a model of the returns distribution for vanishing 

expected return R = <x> =0 (Gunaratne and McCauley, 2002). If 

‚Galilean invariance‘ holds, then the density for a finite return R is 

given by replacing x by x-R∆t in the density f(x,t). In finance 

theory, because of nontrivial volatility D(x,t) in the stochastic 



differential equation describing the market, Galilean invariance is 

‚broken‘ by the assumption of a riskfree hedge whenever the local 

volatility is x-dependent, as is the case with the empirical finance 

distribution (McCauley, 2004). No other invariance principles are 

known for markets. From this standpoint, we should not think of 

dx/dt=0 (or dp/dt=0) only as market equilibrium, but rather 

more generally as a weak analog of Galilean invariance. The 

analog is weak because „x“ is logarithmic return instead of the 

position X of a particle in space-time. 

 

For relatively slow markets like cars and housing, where trades 

occur on a time scale of days or longer instead of seconds, one can 

always use discrete time dynamics instead of the continuous time 

version, which is at best a mathematical convenience. Stochastic 

rather than deterministic dynamics are indicated, because there is 

no evidence for local integrability in market statistics at the 

shortest times (on the order of a second for heavily traded 

financial markets, e.g.). 

 

Given this incompleteness, the absence of enough symmetry 

principles to pin down dynamical laws in economics, what can 

we do? The answer is the same as if there would be enough 

invariance principles to pin down real mathematical laws: we can 

study the available data for a specific market and try to extract a 

dynamical model that reproduces that data. In this case, we know 

in advance that we are modeling data for a particular market in a 

particular era, and that any model is expected to fail at some 

unknown time in the future. It should eventually fail as a result of 

a ‚surprise‘. Surprises are the essence of complexity and are 



discussed in part 9 below. Therefore, it’s essential that the model 

has few enough empirically known parameters to be falsifiable, 

otherwise one cannot know when the market has shifted in a 

complex/fundamental way. Such is the failure of the complicated, 

unenlightening, many-parameter models used by global banks 

(Bass, 1991).  

 

I have indicated above how such a discovery program has been 

carried out empirically where deterministic chaotic dynamics 

apply. In part 9, I will discuss the  challenge that we would face in 

trying to analyze time series reflecting deterministic complex 

dynamics, even if the underlying dynamical model would be 

simple. In part 7, we describe how to model financial markets 

empirically correctly using stochastic dynamics, and also will 

describe the difficulty in trying to extend the same program to 

nonfinancial markets.  

 

Financial markets differ from other markets mainly in that many 

trades are made very frequently, even on a time scale of seconds, 

so that very good data are available for the falsifiability of few-

parameter models. For houses or cars, e.g., the time scale for a 

large number of trades is much greater so that the data are much 

more sparse. Such markets are far less liquid and vary much more 

from one locale to another. This is main difference between 

financial and most nonfinancial markets. Because of the 

abundance of adequate and reliable data, financial markets 

provide the best testing ground for both new and old ideas. 

Financial markets exhibit the interesting characteristics of 

economic systems in general: growth and ‚the business cycle‘(see 



Goodwin (1993) for a discussion of these characteristics). When 

we speak of the ‚business cycle‘, a field where both stochastic 

(Cootner, 1964) and nonequilibrium nonlinear deterministic 

models were considered rather early (Velupillai, 1998), we no 

longer expect to discover any periodicity. We now understand it 

instead as volatility, or ‚fat tails‘, combined with lack of 

stationarity in the market distribution (the market distribution is 

simply the set of histogbrams obtained from real market data). 

Stationarity is another name for time invariance. Nonstationarity 

means that market entropy increases without limit. The nontrivial 

local volatility required to generate fat tails in the absence of 

stationarity is introduced in part 7. Market entropy is defined in 

part 8, where market instability is illustrated and discussed.  

 

My answer to the title of this section is that nonfinancial market 

histrograms obtained from time series should be studied and 

modeled empirically in the spirit of financial markets, as is 

described in the next section. 

 

 
7. Empirically Based Models of Financial Markets 

 
In a stochastic description of markets the excess demand ε(p,t) is 

modeled by drift plus noise  

 

 (5) 

 

  

dp
dt

= ε(p) = rp + p d(p, t)
dB
dt



where dB is a Wiener process, so that dB/dt is white noise, and 

d(p,t)p2 is the price diffusion coefficient. But we can more 

systematically write (5) as a stochastic differential equation 

 

 (6) 

 

and use Ito calculus. The stochastic differential equation for the 

returns variable x=lnp(t)/po is given by Ito calculus as 

 

(7) 

where the returns diffusion coefficient is D(x,t)=d(p,t). We can 

understand the returns diffusion coefficient D(x,t)=d(p,t) as the 

local  volatility (McCauley, 2004), where the global (or globally 

averaged) volatility is σ2 =<(x-<x>) = ∆t, the mean square 

fluctuation in the return x. 

 

The first quantitative description of stock market returns was 

proposed by the physicist turned finance theorist M.F.M. Osborne 

(Cootner, 1964), who plotted price histograms based on Wall St. 

Journal data in order to try to deduce the empirical distribution of 

stock prices. He inferred that asset returns do a random walk, so 

that prices are distributed lognormally. The lognormal price 

distribution is generated by the stochastic differential equation 

 

  dp = rpdt + p d(p,t)dB

  dx = (r − D(x, t) / 2)dt + D(x, t)dB



 (8) 

with variable price diffusion coefficient d(p)p2=(σpp)2. The 

corresponding returns distribution is Gaussian and is generated 

by 

  

 (9) 

where the returns diffusion is constant. One can invent various 

agent-based trading models that generate Gaussian or other sorts 

of returns. This is only part of the nonuniqueness that is faced in 

modeling empirical data. 

 

Osborne‘s stochastic model is Markovian, so that the Hurst 

exponent H in σ2 =<(x-<x>) = ∆t2H is H=1/2. We know from data 

analysis that H=O(1/2) (Mantegna and Stanley, 2000), but 

whether H=.4, .5, or .6 is impossible to distinguish empirically. 

The choice H=1/2 yields models obeying the ‚efficient market 

hypothesis‘, which means simply that the market is very hard to 

beat: for H=1/2 there are no long time correlations in the market. 

A Hurst exponent H•1/2 implies fractional Brownian motion and 

yields long-time correlations that could, in principle, be exploited 

for profit. The stochastic integral that generates fractional 

Brownian motion is defined and discussed in McCauley (2004). 

 

The Black-Scholes (1973) model of option pricing assumes 

Osborne’s Gaussian returns model, but without having referenced 

Osborne. The Black-Scholes model is based on only two 

  dp = rpdt + σ ppdB

  dx = (r − σp
2 / 2)dt + σ p

2dB



empirically measureable parameters, σ and r, and so is falsifiable. 

In fact, the model has been falsified: the empirical density of 

returns has fat tails f(x,t)•x-µ (fig. 1) for large returns x (Dacorogna 

et al, 2001), where µ is  a nonuniversal scaling exponent that 

varies from market to market.  

 

We do not know if the Gaussian returns model was ever accurate 

historically, because the data before the era of computerization are 

too sparse for a reliable test. Traders ca. 1990 claimed that the 

model no longer priced options correctly after 1987 (traders had 

once used Texas Instrument hand calculators with B-S 

programmed in, to price options on the trading floor). Whether 

there was a fundamental market shift to fat tails after 1987 (a 

surprise characteristic of complexity), or whether trading 

behavior changed, we simply do not know. 

 

To a first approximation, financial data since at least 1990, for 

small to moderate returns, are also not approximately Gaussian 

but are instead exponentially distributed (fig. 2). The exponential 

distribution is generated by a Markovian model with nontrivial 

local volatility (diffusion coefficient D(x,t)) 

 

(10) 

 

 

where b and b' are constants, ν, γ are proportional to 1/•∆t, and δ 

depends on ∆t and defines the peak of the returns density. When 

  
D(x, t) =

b2 (1 + ν(x − δ),x > δ
′ b 2 (1 − γ (x − δ), x < δ

   
   
   

      



‘Galilean invariance’ holds then δ=R∆t. This local volatility yields 

a Brownian–like average (or global) volatility σ2 • ∆t at long times. 

The exponential model prices options correctly without the need 

for fudge-factors like ‚implied volatility‘ that characterize 

financial engineering based on a Gaussian returns model. Fat tails 

in returns are generated by including in (10) a term quadratic in 

(x-δ)/•t, as is shown in fig. 3. So financial data can be reproduced 

falsifiably by a simple stochastic model. 

 

In a stochastic model, dB(t) is a Wiener process, but •D(x,t)dB(t) is 

not a Wiener process if the diffusion coefficient D depends on x 

(noise terms where D depends on t alone, and not on x, are 

equivalent to Wiener processes by a time transformation). This is 

the main point, that the formk of the diffusion coefficient D(x,t), 

that defines the noise term •D(x,t)dB(t) in dynamics, should be 

deduced empirically. The alternative would be to assume a 

dynamical model that tries to impose a preconceived diffusion 

coefficient on the data. Our program is to respect the noise and 

therfore first to discover the form of the empirical distribution. 

Then, we determine the time dependence of the distribution’s 

parameters from the data, and use that information to deduce a 

dynamical model: plugging the empirical distribution into a 

stochastic equation allows one to solve the ‘inverse problem’ to 

find the diffusion coefficient that generates the observed 

distribution (McCauley, 2004). This is analogous to the way that 

Newton deduced the inverse square law of gravity from Kepler’s 

orbits. The method of the economist, in contrast, is typically to 

assume a stochastic model and then try to aextract a best fit of 

parameter values for that model from the data. That is, a 



postulated model is used in an attempt to force fit to the data. 

E.g., the Real Business Cycle (RBC) model assumes a particular 

form for the noise term. In contrast with RBC, we deduce the form 

of the noise term from the data. This is physically significant: the 

noise term reflects what the ‘noise traders’ are doing. The noise 

term that would describe a stochastic model of the GNP would 

reflect the nature of the noise in the economy. 

 

Had we restricted ourselves to the assumptions made in Granger 

(1999) or Granger and Newbold (1974, 1986) or to any method 

recommended in the economics literature, then we could not even 

have come close to the dynamics discovery presented in this 

section. The same can be said about the method proposed by 

Crutchfield (1994), which we discuss in part 9. The dynamics of 

the exponential model described above is completely new: aside 

from the Levy distribution, neither physics, finance, nor 

economics has previously yielded a nonstationarity dynamical 

model of volatility/fat tails without assuming stochastic volatility. 

But the volatility of the data requires that the diffusion coefficient 

depends on both ‘position’ x and time t. Now for another 

important aspect. 

 

There is nonuniqueness in the choice of time dependence of γ, ν 

that can be used to fit finance market data. Given the 

nonuniqueness faced in extracting chaotic dynamics from data, 

this is not a surprise. In applying the new model to option pricing, 

we found (McCauley, 2004) that we have the unwarranted luck 

that the nonuniqueness doesn’t matter on time scales much less 

than a hundred years. Normally, one should not expect such luck. 



 

The main aim of economic theory in our era should be to match 

the success of the empirical description of financial markets for at 

least one nonfinancial market. Toward that end, ideas of stability 

and equilibrium in economics should either be verified 

empirically or else completely abandoned as guiding theoretical 

principles. This takes us to the interesting idea of the falsifiability 

of Adam Smith’s Invisible Hand. 

 

 

8. Searching for Adam Smith’s Stabilizing Invisible Hand 

 

Adam Smith’s Invisible Hand is an idea of price changes near a 

stable equilibrium, that supply in a free market should rise to 

meet demand and tend to equilibrate. Stable markets could 

exhibit only small fluctuations about equilibrium, or at least near 

a steady state. Smith‘s idea can be described mathematically as a 

stationary process in stochastic dynamics, one where the Gibbs 

entropy of the market 

 

  

(11) 

becomes asymptotically constant as t increases. Both the average 

return and global/average volatility of a stationary process are 

constants. That is, stable markets are both stationary and 

nonvolatile, but lack of volatility does not imply either 

equilibrium or stability in a model. Neither of these conditions is 

satisfied by financial markets, which instead are both 

  S(t) = − f(x, t ) ln f(x, t)dx   S(t) = − f(x, t ) ln f(x, t)dx 



nonstationary and volatile. Neither the (nonvolatile) Osborne-

Black-Scholes lognormal model nor the (volatile) exponential 

model describes a stationary process. Instead, both of these 

models describe unstable dynamics with ever increasing market 

entropy (McCauley, 2004). Financial markets cannot be 

understood by using equilibrium ideas. 

 

If we could locate equilibrium in a real market then we could 

define ‘value’ meaningfully. ‘Value’ would simply be the 

equilibrium price. The lack of equilibrum in market data means 

that value does not exist as an unambiguous idea, only price 

exists uniquely (to within arbitrage). Therefore, assertions that an 

asset is either undervalued or overvalued are subjective, but 

wishful thinking acted on collectively can lead to big price 

swings, as in the phenomenon of ‘momentum investing’ and the 

stock market bubble of the last decade. This psychological 

condition, the inability to know ‘value’, likely contributes to both 

nonstationarity and fat tails. One can imagine noise traders 

changing their minds frequently, and so trading frequently 

because they’re very uncertain of the ‘value’ of a financial holding 

like a stock or bond. This proposition might be tested via an agent 

based trading model. An interesting exercise would be to 

introduce a trading model where equilibrium ‘exists’ 

mathematically but is in some sense noncomputable (could be 

simply NP-complete, not necessarily Turing (1936) 

noncomputable) and see what would be the effect on the agents’ 

behavior. The liquidity bath term •D(x,t)dB(t) in (7), which is not 

a Wiener process when D(x,t) depends on x (even though dB(t) is 

always Wiener), approximates the effect of these ‘noise traders’. In 



the language of statistical physics, equations (6) and (7) provide 

us with an analog of a mean field approximation to a complex 

system of interacting agents. Real agents have PC’s or Macs, high 

computational capability, but generally can’t do any worthwhile 

calculations when trading because they can’t distinguish 

knowledge from noise, and can only make guesses about future 

prices. I know this from experience. I’m an amateur trader, and so 

is my wife. Trading done by professionals in markets is the closest 

we can come to an analog of performing experiments in physics.  

 

Above, we have assumed that financial markets can be treated 

statistically independently of other markets. This is not strictly 

true but reflects the approximation whereby global finance drives 

other markets. For correlated assets, the Gibbs entropy requires 

the density of returns of those assets, and that density doesn’t 

decouple into statistically independent factors. However, a 

diagonalization of correlation matrix of the Capital Asset Pricing 

Model leads to eigenvectors representing sectors (Plerou et al, 

1999), and suggests that we might try to study different sectors 

approximately statistically independently. 

 

Adam Smith’s Invisible Hand is a falsifiable proposition: one need 

only test a set of price or returns data for a given market for 

asymptotic stationarity, or at least for lack of growth and lack of 

volatility (McCauley, 2004). The problem that one faces is that 

typical nonfinancial markets have such sparse data that reliable 

testing is difficult or even impossible (too easy to fit by completely 

wrong models), but that is no ground for teaching the falsified 

and completely unrealistic neo-classical model. Instead, 



empirically based models should be taught. Such models will 

likely be computable, even if the dynamical behavior described 

would be undecideable. Because of nonuniqueness in extracting 

models from data, e.g., I expect that GNP data should be 

relatively easy to fit by using nonstationary, volatile models. To 

date, there is no convincing evidence from empirical data that any 

known market is asymptotically stationary, and market volatility 

is rather common. Instead, the known price and return 

distributions spread without limit as time increases. 

 

Existence proofs of equilibrium in the absence of dynamics are 

common in the study of economic models. I now give an example 

that shows the danger inherent in an existence proof of 

equilibrium in the absence of dynamics that would show how 

such equilibrium could be attained.  

 

Consider Osborne’s model of lognormal market prices (8) where 

d(p,t)=σp

2=constant. If we would take r<0, negative expected 

return, then the drift term would provide us with an example of a 

restoring force, an example of the Invisible Hand (McCauley, 

2004). Does the Invisible Hand pull the market toward 

equilibrium? The corresponding Fokker-Planck equation 

describing the price distribution is 

 

 

(12) 
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and, indeed, has a very simple equilibrium solution g(p). 

However, the time dependent solution of (12), the lognormal 

density g(p,t), spreads without limit as t increases and never 

reaches statistical equilibrium. In particular, the second moment 

<p2> increases without limit. The reason that equilibrium is not 

approached is that the spectrum of the Fokker-Planck operator 

defined by (12) is continuous, not discrete. Imposing finite limits 

on p, price controls, would yield a discrete spectrum so that 

statistical equilibrium would then follow asymptotically. 

 

Suppose we would try to approximate the lognormal model (12) 

by making the uncontrolled approximation p2•<p2> in the price 

diffusion coefficient σp
2p2. The second moment <p2> is time-

dependent, but if we systematically define a new time variable t‘ 

via integration, then we obtain the equivalent stochastic 

differential equation 

 

(13) 

where, because c is constant and r<0, the uncontrolled 

approximation (13) describes a stationary process, the 

Smoluchowski-Ornstein-Uhlenbeck process. In this case, the time-

dependent density g(p,t) approaches an equilibrium Gaussian 

density geq(p) as t goes to infinity, whereas the correct density 

described by (12) is nonstationary. Were financial markets 

described by a stochastic process like (13), then The Invisible 

Hand (negative returns combined with d(p) = constant) would 

always push the market toward statistical equilibrium. The model 

(13) describes real data in physics (where p is the speed of a 

  dp = rpdt' +cdB



colloidal particle in Brownian motion a heat bath), but not at all in 

finance. 

 

Again, the challenge put to economists and econophysicists is to 

find at least one market where there is empirical evidence for the 

stabilizing Invisible Hand. By this, I do not mean assuming a 

stationary process and then force-fitting it to the data, an illegal 

proceedure that is often done in finance. I mean: deduce the form 

of the noise term from the data, and show that the variance does 

not spread as time increases, at the very least. Nonstationary 

methods have been used to analyze economic data, but 

nonstationarity alone is not enough, assuming a time dependent 

local volatility is not enough: fat tails, or ‘volatility’, cannot be 

correctly described by such an assumption. In general, the data 

will imply a diffusion coefficient that depends not merely on time 

but on returns as well (such models have not been studied in 

physics either!). This is the lesson of our finance model described 

above, a lesson that is not reflected by any known data analysis in 

economics to date. 

 
Financial markets, including option pricing, have been accurately 

described by very simple stochastic dynamics, so where‘s the 

complexity? The question of complexity is a question of 

computational limitations or intractability. The highest degree of 

computational complexity is that of a Turing machine (Feynman, 

1996; Velupillai, 2000). 

 



We expect that markets are not merely stochastic but are also in 

some yet to be defined sense complex. Can the empirically 

observed time series of a complex system be used to infer the 

underlying dynamics? I return next to deterministic dynamics, 

leaving it to others to combine the ideas of stochasticity and 

complexity in an empirically useful or at least theoretically 

satisfying way. My excuse is that 

 

“… the human brain is a rather limited intellectual tool, better 

suited to hunting rabbits than doing mathematics, …” 

David Ruelle (2004) 

 

In what follows, I assume that all functions are Turing 

computable and that computable numbers are used as control 

parameters and initial conditions. I want to avoid the trivial 

noncomputability of the measure one set of numbers that can be 

defined to ‚exist‘ in the continuum, but cannot be generated 

algorithmically. 

 

 

9. Complexity in Physics, Biology, and Economics 

 

I consider here only two ideas of maximal computational 

complexity. Other ideas of complexity are the Chomsky hierarchy 

of languages, NP-completeness, and a bewildering zoo of finer 

degrees of computational intractability 

(http://www.complexityzoo.com/). To date, we have no 

physically or biologically motivated definitions of complexity, in 



spite of the fact that cell biology provides us with numerous 

examples of complexity. Our everyday computers are an example 

of complexity and can be described mathematically as Newtonian 

electro-mechanical machines. 

 

First, consider algorithmic complexity. This is the notion that the 

dynamics consists in simply writing down a sequence, starting 

from some initial condition, and that there is no algorithm that 

compresses the rule for generating the sequence. The continued 

fraction expansion of x(x+2)=1 to generate •2-1 is not 

algorithmically complex, e.g. A nontrivial example of algorithmic 

complexity is perhaps given by the rules for generating scalefree 

networks (Barabasi, 2002): starting from an already present node, 

one links to another node where the new node is drawn from a 

certain probability distribution. So far, these ideas have not been 

well enough developed to use them to describe money transfers 

on networks in any empirically correct way. The digit expansions 

of rational numbers are not examples of algorithmically complex 

patterns, because every rational is described by a very short 

algorithm: divide an integer P by another integer Q. 

 

A cautionary note: the shortest algorithm that generates the 

statistics or pattern is not necessarily the one that explains the real 

time evolution of the phenomena. An example is the use of 

selfaffine fractals to generate pictures of mountain landscapes. In 

that case, the simple dynamics used to generate the art (Barnsley, 

1988) gives us no insight into the physics/geology of mountain 

formation. Maybe algorithmic complexity comes closest to 



describing our nonhabitual/nonrecurring decisions in everyday 

life.   

 

This leads us to a second, extremely interesting way to generate 

maximal complexity (Moore, 1990, 1991). Low dimensional 

iterated maps that are equivalent to Turing machines provide 

examples. These dynamical systems have no attractors, no 

symbolic dynamics/no generating partition, and so exhibit no 

scaling laws that would inform us of behavior at smaller length 

scales in terms of observed dynamics at larger length scales. 

Instead, ‚surprises‘, new unforeseen behavior, are possible at all 

length scales. By length scales, I think here of the hierarchy of 

coarsegrainings defined by the generating partition in a chaotic 

system, where one looks in finer and finer detail at the dynamics, 

increasing the precision of the microscope, so to speak. Without 

symbolic dynamics and the corresponding generating partition, it 

is not clear how or even if a Turing-equivalent dynamical system 

could be extracted from time series. The output of Moore’s maps 

must already be included as a subset of binary expansions of 

numbers, so how can we understand and distinguish that class of 

nonperiodic digital patterns, number theoretically? 

 

Mutations of viruses and bacteria to new forms provide an 

example of the surprises characteristic of complexity. In markets, 

the complexity may appear in two ways: first, the expected return 

r can change suddenly due to market psychology, or liquidity can 

dry up in a crash. On a longer time scale, the entire market 

distribution may change its form due to factors/surprises beyond 

our horizon of expectations. In this respect, it would be of interest 



to know if financial returns statistics exhibited fat tails before 

1987.  

 

In everyday life, surprises are regarded as something ‘external’, 

arising from factors not taken into account in our attempt to 

forecast a sequence of events. In Moore’s iterated maps, the 

surprises arise internally from the system’s dynamics. That every 

highly complicated computer program has bugs may be an 

example of the surprises of complexity: you can only discover the 

bugs by running the program. In order to imagine how Moore’s 

surprises could enter into our finance market model, we must 

consider the entire system composed of fluctuating asset price 

(described to zeroth order by (6)) and the liquidity bath, which 

finance theory assumes to remain unchanged. The analogy of the 

liquidity bath with the heat bath for a Brownian particle is 

described in McCauley (2004). In a financial market, the 

appearance of a surprises may cause the liquidity bath to dry up 

suddenly, as in a market crash. In that case, (6) and (7) do not 

apply: a liquidity drought is not a Wiener, exponential, or any 

other continuous time stochastic process, it is more approximately 

the complete absence of the noise traders. In order to try to 

describe surprises mathematically, one could try to model the 

interacting system of agents trying to set prices, avoiding 

assuming the liquidity bath/Brownian motion approximation 

explicitly. But then one likely faces the computational complexity 

of a neural net equivalent to a Turing machine. Siegelman (1995) 

has suggested the equivalence of Moore’s maps with neural nets. 

In any case, we are not used to the idea that surprises are 



generated within the system, especially for low-dimensional 

deterministic dynamics. 

 

Continuing with Moore’s maps, for a deterministic dynamical 

system with universal computational capability a classification 

into topologic universality classes is impossible. Given an 

algorithm for the computation of an initial condition to as many 

digits as computer time allows, nothing can be said in advance 

about the future either statistically or otherwise  because the future is 

computationally undecideable. This maximum degree of 

computational complexity occurs in low dimensional nonintegrable 

conservative Newtonian dynamics. In particular, billiard ball 

dynamics exhibit positive Liapunov exponents and provide us 

with an example of a chaotic system that is mixing (Cvitanovic et 

al’, 2003). But billiard balls can also be used to compute reversibly 

and universally (Fredkin and Toffoli, 1982). Such a method of 

computation would be impractical because the positive Liapunov 

exponents magnify errors in initial conditions of the billiard balls, 

messing up the computation. 

 

Molecular biology is apparently largely about complexity at the 

cellular and molecular (DNA-protein) level. E.g., the thick, 

impressive, and heavy text by Alberts et al (2002) is an 

encyclopedia of cell biology, but displays no equations. Again, 

with no equations as an aid, Weinberg (1999) describes the 5-6 

independent mutations required to produce a metastasizing 

tumor. All these impressive biological phenomena may remind us 

more of the results of a complicated computer program than of a 

dynamical system, and have all been discovered reductively by 



standard isolation of cause and effect in controlled, repeatable 

experiments. We might learn something about complexity 

‚physically‘ were we able to introduce some useful equations into 

Alberts et al. The Nobel Prize winning physicist-turned-

biophysicist Ivar Giæver (1999) has remarked on the difference 

between biology and physics texts: “Either they are right or we 

are right, and if we are right then we should put some equations 

in that text.”  

 

Many economists and econophysicists would like to use 

biological analogies in economics, but the stumbling block is the 

complete absence of a dynamical systems description of biological 

evolution. Instead of simple equations, we have simple objects 

(genes) that behave like symbols in a complicated computer 

program. Complex adaptable mathematical models 

notwithstanding, there exists no mathematical description of 

evolution that is empirically correct at the macroscopic or 

microscopic level. Schrödinger (1944), following the track initiated 

by Mendel2 that eventually led to the identification of the 

molecular structure of DNA and the genetic code, explained quite 

clearly why evolution can only be understood mutation by 

mutation at the molecular  level of genes. Mendelism provides us 

with a falsifiable example of Darwinism, at the cellular level, the 

only precise definition of biological evolution, there being no 

falsifiable model of Darwinism at the macroscopic level. That is, 

we can understand how a cell mutates to a new form, but we do 

not have a picture of how a fish evolves into a bird. That is not to 
                                                
2 It may be of some interest that Mendel was trained in the Galilean method: he studied and 
taught physics in Vienna. He did not get an academic position, and so retrested to Brnn and 
studied peas. 



say that it hasn’t happened, only that we don‘t have a model that 

helps us to imagine the details, which must be grounded in 

complicated cellular interactions that are not yet understood. 

Weinberg (1999) suggests that our lack of understanding of 

cellular networks also limits our understanding of cancer, where 

studying cellular interactions empirically will be required in order 

to understand how certain genes are turned on or off. 

 

The terms ‘emergence’ and ‘self-organization’ are not precisely 

defined, they mean different things to different people. I 

shamelessly confess that I have never understood what people 

have in mind, other than symmetry-breaking and pattern 

formation at a bifurcation in dynamics, when they claim that a 

system ‘self organizes’3. Some researchers who study complex 

models mathematically expect to discover new, ‚emergent‘ 

dynamics for complex systems, but so far no one has produced an 

empirically relevant or even theoretically clear example. See Lee 

(2004) for a readable account of some of the usual ideas of self-

organization and emergence. Crutchfield and Young (1990), 

Crutchfield4 (1994) and others have emphasized the interesting 

idea of nontrivial computational capability appearing/emerging 

in a dynamical system due to bifurcations. This doesn’t present us 

with any new dynamics, it’s simply about computational 

                                                
3 Hermann Haken (1983), at the Landau-Ginzburg level of nonequilibrium statistical physics, 
provided examples of bifurcations to pattern formation via symmetry breaking. All 
subsequent writers have used ‘self-organized’ as if the term would be self-explanatory, even 
when there is no apparent symmetry breaking. Is a deterministic or noisy stable equilibrium 
point or limit cycle (or other invariant set without escape) an example of self-organization? If 
so, then maybe we don’t need the fancy phrase. According to Julian Palmore (1964): if you 
can’t define your terms precisely then you don’t know what you’re talking about. 
 
4 My essay is completely contrary to the postmodernist philosophical outlook expressed, especially in 
part I, of Crutchfield’s 1994 paper.  



capability appearing within already existing dynamics at a 

bifurcation to chaos or beyond. Crutchfield assumes a generating 

partition and symbolic dynamics, but Moore has shown that we 

have to give up that idea for dynamics with Turing-equivalent 

complexity. Another weakness in Crutchfield is the restriction of 

noise to stationary processes. That won’t work for market data, or 

for realistic market models either. There is, in my opinion, another 

weakness in that program: if we would apply that proposed 

method of discovery to Galilean and Keplerian orbits, then we 

would discover only trivial automata reflecting orbits of period 

zero and one. Newton did considerably better, and we’ve done 

better in finance theory, so there must be more to the story. One 

can argue: the scheme wasn’t invented to discover equations of 

motion, it was invented as an attempt to botanize complexity. In 

that case, can the program be applied to teach us something new 

and unexpected about empirical data? Why doesn’t someone try 

to apply it to market data? Crutchfield’s scheme is in any case far 

more specific than whaat proposed by Mirowski (2002) proposed 

in a similar vein. 

 

Given the prevailing confusion over ‘emergence’, I seize the 

opportunity to offer an observation to try to clarify at least one 

point: whatever length and time scales one studies, one first needs 

to discover approximately invariant objects before one can hope to 

discover any possible new dynamics5. The ‘emergent dynamics’, if 

such dynamics can be discovered, will be the dynamics of those 

objects. Now, what many complexity theorists hope and expect is 
                                                
5 E.g., a cluster, like suburbanization in a city (Lee, 2004), is not an example of an 
approximately invariant object, because the cluster changes on significantly on the length and 
time scale that we want to study it. 



that new dynamical laws beyond physics will somehow emerge 

statistically-observationally at larger length and time scales, laws 

that cannot be derived systematically from phenomena at smaller 

length scales. A good example is that many Darwinists would like 

to be able to ignore physics and chemistry altogether and try to 

understand biological evolution macroscopically, independently 

of the mass of details of genetics, which have emerged from 

controlled experiments and data analysis.  

 

Continuing with my seized opportunity, consider the case of cell 

biology, where the emergent invariant objects are genes. Genes 

constitute a four-letter alphabet used to make three letter words. 

From the perspective of quantum physics, genes and the genetic 

code are a clear example of emergent phenomena. With the 

genetic code, we arrive at the basis for computational complexity 

in biology. Both DNA and RNA are known to have nontrivial 

computational capability (Adelman, 1994; Bennett, 1982; Lipton, 

1989). One can think of the genes as ‚emergent‘ objects on long, 

helical molecules, DNA and RNA. But just because genes and the 

code of life have emerged on a long one dimensional tape, we do 

not yet know any corresponding new dynamical equations that 

describe genetics, cell biology, or cancer. So far, one can only use 

quantum or classical mechanics, or chemical kinetics, in various 

different approximations to try to calculate some aspects of cell 

biology.  

 

My main conclusion is that ‘emergence‘ does not guarantee the 

appearance of new laws of motion. Apparently, invariant objects can 

emerge without the existence of any simple new dynamics to 



describe those objects. Genes obey simple rules and form four 

letter words but that, taken alone, doesn’t tell us much about the 

consequences of genetics, which reflect the most important 

possible example in nature of computational complexity: the 

evolution from molecules to cells and human life.  

 

At a more fundamental level, genes obey the laws of quantum 

mechanics in a heat bath, with nontrivial intermolecular 

interactions. I emphasize that Schrödinger has already explained 

why we should not expect to discover statistically based laws that 

would evolution at the macroscale. So I am not enthusiastic about 

the expectation that new ‚emergent‘ laws of motion will be 

discovered by playing around with nonempirically inspired 

computer models like ‚complex adaptable systems‘. I think that 

we can only have hope of some success in economics, as in 

chemistry, cell biology and finance, by following the traditional 

Galilean path and sticking close to the data. E.g., we can thank 

inventive reductionist methods for the known ways of controlling 

or retarding cancer, once it develops. At the same time, it would 

certainly be interesting to have a falsifiable complex adaptable 

model, if that is possible.  

 

Thinking of examples of emergence in physics, the Newtonian 

level, mass and charge are invariant. The same objects are 

invariant in quantum theory, which obeys exactly the same local 

space-time invariance principles as does the Newtonian 

mechanics, and gives rise to the same global conservation laws6. 
                                                
6 Integrable systems, like the hydrogen atom, whether classical or quantum can be solved by 
direct use of the conservation laws (this is the method of every text). In a nonintegrable 
system like the helium atom, a three body problem (and chaotic), that is impossible. 



We do not yet understand how Newtonian mechanics ‚emerges‘ 

from quantum mechanics in a self-consistent mathematical way. 

Similarly, we do not understand why genes should behave like 

elements of a classical computer, while the DNA molecule 

requires quantum mechanics for its formation and description. 

The famous quantum measurement problem is unsolved, so we 

do not understand mathematically within quantum theory how 

quantum phase coherence is destroyed. Quantum phase coherence 

must be destroyed in order that a Newtonian description, or 

classical statistical mechanics, becomes valid as a mathematical 

limit as Planck’s constant vanishes. One can make arguments 

about the destruction of phase coherence via external noise in the 

heat bath defined by the environment, but this path only begs the 

question. However, this incompleteness in understanding does 

not reduce our confidence in either classical or quantum 

mechanics, because all known observations of the motions of 

masses and charges are described correctly to within reasonable 

or high decimal precision at the length scales where each theory 

applies. One point of mesoscopic physics is to study the no man’s 

land between the quantum and classical limits. 

 

 

I end this essay by suggesting a simpleminded biological analogy. 

The creation of new markets depends on new inventions and their 

exploitation for profit. Mathematical invention has been described 

psychologically by Hadamard (1945). Conventional ideas of 

psychology completely fail to describe the solitary mental act of 

invention, whether in mathematical discovery, or as in the 
                                                                                                                                       
 



invention of the gasoline engine or the digital computer. Every 

breakthrough that leads to a new invention is a ‚surprise‘, 

something emerging from within the system (the system includes 

human brains and human actions) that was not foreseen. A 

completely new product is based on an invention. The creation of 

a successful new market, based on a new product, is partly 

analogous to an epidemic: the disease spreads seemingly 

uncontrollably at first, and then eventually meets limited or 

negative growth. The simplest mathematical model of creation 

that I can think of would be described by the growth of a ‚tree‘, 

where new branches (inventions or breakthroughs) appear 

suddenly without warning. This is not like a search tree in a 

known computer program.  Growth of any kind is a form of 

instability, and mathematical trees reflecting instability do appear 

in nature, in the turbulent eddy cascade e.g., but in that case the 

element of ‚surprise‘ is missing.  

 

Summarizing, I've discussed the Galilean method in physics and 

finance and have suggested that it be applied in economics. 

Computability of a model is certainly necessary, but empirically 

motivated models are necessary beforehand if mathematics is to 

be made effective in general economics, as it has become in the 

specific area of finance. Empirically based models will likely be 

computable in the Turing sense. Market time series and 

histograms are, of course, of limited value in predicting the 

future: they reflect in coarse fashion how we've been behaving 

economically. The future in socio-economic phenomena is to some 

unknown degree undecidable and can't be known in advance, 

even statistically. Using market statistics as a basis for prediction 



assumes that tomorrow will be statistically like yesterday. If 

we’ve modeled carefully, as in finance, then this assumption may 

not get us into hot water so long as there are no surprises. 

Insurance companies make money by assuming that the future 

will be like the past statistically, and lose money when it isn’t. 

 

Of course, one can also make nonempirically based mathematical 

or even nonmathematical models, and assert that if we assume 

this and that, then we expect that such and such will happen. That 

sort of modeling activity is not necessarily completely vacuous, 

because new socio-economic expectations can be made into reality 

by acting strongly enough on wishes or expectations: a model can 

be enforced or legislated, e.g. Both communism (implemented via 

bloody dictatorships) and globalization via deregulation and 

privatization (implemented via legislation, big financial transfers, 

and supragovernmental7 edict) provide examples. In any case, 

models based on real market statistics are useful for confronting 

the pie in the sky claims of ideologues and other true believers 

with the coarse face of reality. Instability and surprises are good 

examples of market reality in our era. 
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