Abstract

The focus of this thesis is on the synthesis and characterization of coordination polymers containing fluorinated carboxylates. A total of eleven new compounds, based on the anions of 2,4,6-trifluorobenzoic acid (HtfB), 2-fluorotrimesic acid (H₃mfBTC) and 2,4,6-trifluorotrimesic acid (H₃pfBTC) are presented.

Five of these compounds contain the tfB⁻ anion as a structural building block. These are ${}^1_{\infty}[\text{Li}(\text{tfB})_{3/3}(\text{H}_2\text{O})_{1/1}]$ (P2₁, Z=2, **1**), ${}^2_{\infty}[\text{Cs}(\text{tfB})_{2/2}(\text{HtfB})_{3/3}]$ (P2₁/c, Z=4, **2**), ${}^1_{\infty}[\text{Ag}(\text{tfB})_{2/2}(\text{H}_2\text{O})_{2/2}]$ (C2/c, Z=8, **3**), ${}^1_{\infty}[\text{Cu}(\text{tfB})_{2/1}(\text{H}_2\text{O})_{4/2}]$ (P1̄, Z=1, **4**) and ${}^0_{\infty}[\text{Cu}(\text{tfB})_{4/2}(\text{MeOH})_{1/1}]$ (P2₁/c, Z=4, **5**).

Compounds 1 to 4 are coordination polymers that form strands (1, 3, 4) or corrugated layers (2). In 1 and 2 the metal cations are bridged via the 2,4,6-trifluorobenzoate ligand, whereas in 3 and 4 the bridging results from coordinating water molecules. In addition, in 4 and 5 dimeric Ag₂- or Cu₂-units with short metal-metal distances are found. In 4 the dimers are additionally bridged via coordinating water molecules, while 5 forms the "paddlewheel" structural motif.

Furthermore, the synthesis of the mono-potassium salts of 2-fluorotrimesic acid $\binom{3}{\infty}[K(H_2mfBTC)_{6/6}]$, **6**) and 2,4,6-trifluorobenzene-1,3,5-tricarboxylic acid $\binom{3}{\infty}[K(H_2pfBTC)_{6/6}]$, **8**) succeeded for the first time. The products were synthesized as phase-pure compounds and structurally characterized by single-crystal structure determination. Crystal structures of compounds containing the mfBTC³⁻ and pfBTC³⁻ anion have not been reported in the literature up to now. The crystal structures of these two compounds are related and crystallize in the acentric space groups Pc (**6**, Z=2) and Cc (**8**, Z=4). The comparison of the thermal behavior shows, contrary to expectations, that **6** exhibits a higher thermal stability than **8**.

Moreover, with ${}^3_\infty[Cu_{14}(mfBTC)_8(Py)_{12}(H_2O)_4(OH)_4]$ (P2₁/c, Z=1, 7) a second compound containing the mfBTC³⁻ anion as a linker is described. In 7 dimeric and pentameric Cu units are bridged via the mfBTC³⁻ anion to form layers, which are in turn linked by a further mfBTC³⁻ anion resulting in a three dimensional network.

Compound **8** served as starting material for three other compounds that contain the pfBTC³-anion, namely $_{\infty}^{3}[K_{5}H(pfBTC)_{2}(H_{2}O)_{4}]$ (P $\bar{1}$, Z=2, **9**), $_{\infty}^{1}[Sc(pfBTC)_{3/3}(H_{2}O)_{3/1}] \cdot 4H_{2}O$ (P $\bar{1}$, Z=2, **10**) and $_{\infty}^{2}[Cu_{3}(pfBTC)_{2}(Py)_{4}(H_{2}O)_{4}]$ (P $\bar{1}$, Z=2, **11**). These compounds crystallize as pure phases and were also characterized by x-ray single crystal structure analysis.