Spherical affine cones for maximal reductive subgroups in exceptional cases

Inaugural-Dissertation

zur
Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

vorgelegt von

Bruno Niemann

aus Münster

Hundt Druck, Köln

2013

Berichterstatter: Prof. Dr. Littelmann
Prof. Dr. Marinescu
Tag der Disputation: 22. Januar 2013

Kurzzusammenfassung

Für eine komplexe, einfach zusammenhängende einfache algebraische Gruppe G von exzeptionellem Typ und eine maximale parabolische Untergruppe $P \subset G$ klassifizieren wir alle Tripel (G, P, H), so dass $H \subset G$ eine maximal-reduktive Untergruppe ist, die sphärisch auf G / P operiert.
Weiter bestimmen wir die branching rules $\operatorname{res}_{H}^{G}\left(V_{k \omega_{i}}^{*}\right)$, wobei $k \in \mathbb{N}$ und ω_{i} das Fundamentalgewicht ist, das zu P assoziiert ist und bestimmen die kombinatorischen Invarianten der sphärischen affinen Kegel über G / P.

Abstract

Given a complex simply connected simple algebraic group G of exceptional type and a maximal parabolic subgroup $P \subset G$, we classify all triples (G, P, H) such that $H \subset G$ is a maximal reductive subgroup acting spherically on G / P. In addition we derive branching rules for $\operatorname{res}_{H}^{G}\left(V_{k \omega_{i}}^{*}\right), k \in \mathbb{N}$, where ω_{i} is the fundamental weight associated to P and find the combinatorial invariants for the spherical affine cones over G / P.

Danksagungen

Ich möchte mich herzlich bei Prof. Dr. Peter Littelmann für die Betreuung und die Vergabe dieses schönen Themas bedanken und dafür, dass er mir diese Arbeit ermöglicht hat. Mein weiterer herzlicher Dank gilt Dr. Stéphanie CupitFoutou, die diese Arbeit mitbetreut hat.

Danken möchte ich für zahlreiche hilfreiche Diskussionen auch Dr. Guido Pezzini, Dr. Inka Klostermann und Dr. Ghislain Fourier.

Außerdem danke ich meiner Familie und besonders meiner Frau Julia, die mich beim Schreiben dieser Arbeit liebevoll begleitet hat.

Contents

1 Introduction 1
2 Spherical varieties 4
1 Basic definitions and properties of spherical varieties 4
1.1 Basic invariants and different characterizations of sphericity 4
1.2 Local structure of a spherical variety 6
1.3 G-invariant valuations and classification of simple embed- 8
2 Classification of embeddings for a spherical homogeneous space 9
2.1 Classification of simple embeddings 9
2.2 Classification of spherical embeddings 11
3 Classification of spherical homogeneous spaces 11
3.1 Wonderful varieties and spherical roots 11
3.2 Homogeneous spherical data and spherical systems 14
3 Classification of spherical affine cones and branching rules 17
1 Main results and outline of proof 17
2 The maximal reductive subgroups of the exceptional groups 21
3 The exceptional group of type G_{2} 23
$4 \quad$ The exceptional group of type F_{4} 24
$5 \quad$ The exceptional group of type E_{6} 29
$6 \quad$ The exceptional group of type E_{7} 36
$7 \quad$ The exceptional group of type E_{8} 42
4 The Luna-Vust invariants for the spherical affine cones 43
1 The colored cones of the spherical affine cones 43
1.1 Overview of the colored cones for the spherical affine cones 43
1.2 Colors and $H \times \mathbb{C}^{*}$-invariant prime divisors of the spher- ical affine cones 45
2 Homogeneous spherical data for the spherical affine cones 47
2.1 Overview of the homogeneous spherical data 47
2.2 The invariants $S^{p}(\hat{Y})$ and $\Delta^{a}(\hat{Y})$ 51
2.3 Determination of spherical roots 53

1 Introduction

Given a reductive algebraic group G, a reductive subgroup H and some irreducible G-module V, then V is also a H-module in a natural way. An obvious problem is to find branching rules that describe the decomposition of the H module V into irreducible components.

In general it is not easy to calculate these decompositions. Thus it is nice to have simple combinatorial rules that describe the decomposition. A famous example is the Littlewood-Richardson rule for decomposition of tensor products. Further examples are known branching rules for the cases where $G \supset H$ is given by $G L_{n}(\mathbb{C}) \supset G L_{n-1}(\mathbb{C})$ or $S p_{n}(\mathbb{C}) \supset S p_{n-1}(\mathbb{C})$.

In this thesis we study this problem in the situation where G is a complex simply connected simple algebraic group of exceptional type. The subgroup structure of these groups has been studied in great detail and we want to consider maximal reductive subgroups of G. The maximal closed connected subgroups are listed in Theorem 1 of Sei91]. These groups are either semisimple or parabolic. So the maximal reductive subgroups are easily obtained by adding the Levi factors of the maximal parabolic groups which are maximal reductive in G to the list of maximal semisimple subgroups. The modules V that we consider are those having a multiple of a fundamental weight as highest weight.

We approach the problem by working with spherical varieties, which are defined to be G-varieties that contain an open orbit of a Borel B of G. We consider the flag variety G / P where P is a maximal parabolic subgroup of G. Of special interest to us are the flag varieties of that form, that are H-spherical. The property of being spherical can also be described in a representation-theoretic way. Namely a normal affine G-variety is spherical if and only if its coordinate ring is a multiplicity-free G-module VK78. Let \widehat{Y} denote the affine cone over G / P. Then due to the multiplicity-freeness of spherical varieties the flag variety is H-spherical if and only if all restrictions of the homogeneous components of the coordinate ring of \widehat{Y} to H are multiplicity-free. These homogeneous components are exactly the irreducible submodules of the coordinate ring $\mathbb{C}[\widehat{Y}]$ and they are of shape $\left(V_{k \omega_{i}}\right)^{*}$. In the case of sphericity we can derive branching rules for these modules.

Spherical varieties also form a class of varieties that is interesting in its own. Their origin lies in the study of homogeneous spaces which are important objects from different points of view. For example we can realize representations of linear algebraic groups in spaces of sections of homogeneous spaces.
Normal G-equivariant compactifications of homogeneous spaces and more generally their normal G-equivariant embeddings (i.e. normal G-varieties that
contain G / H as an open orbit) were studied by Luna and Vust in LV83 for an algebraically closed ground field of characteristic 0 . One important invariant of such an embedding is given by its complexity which is defined to be the codimension of a generic B-orbit. So in this sense spherical varieties are the simplest embeddings for homogeneous spaces.

For the spherical varieties the theory of Luna and Vust is very well developed. Following their work the classification of spherical varieties was completed recently and can be carried out completely in combinatorial terms. The main invariants for this classification are the B-invariant but not G-invariant prime divisors of X and the G-invariant valuations of the function field $\mathbb{C}(X)$. This classification is divided into two steps. The first step is to classify all embeddings of a given spherical homogeneous space G / H. This is achieved by attaching a collection of convex polyhedral cones (called colored cones) to the variety. The second step is to classify G / H among all spherical homogeneous spaces G / H for a given connected reductive group G. This classification is done combinatorially by attaching to G / H a 5 -tuple of invariants which is called its homogeneous spherical datum. Hence the classification of the spherical affine cones naturally leads to the determination of their combinatorial invariants.

The main results of this thesis are the following: For complex simply connected simple algebraic groups G of exceptional type we classify triples (G, P, H) where P is a maximal parabolic subgroup and H a maximal reductive subgroup of G, such that the H-varieties G / P are spherical. Furthermore we derive branching rules for the simple G-submodules of the coordinate ring of the affine cones in the spherical cases. The results are summarized in Table 3.1. A flag variety G / P is H-spherical if and only if the branching rules for the corresponding modules V are given in the table.

Further we find the spherical affine cones and its open orbits in the classification of spherical varieties by calculating their combinatorial invariants. These results are summarized in Table 4.1 and Table 4.2 ,

This thesis is organized as follows. In the second chapter we recall the basic definitions and properties of spherical varieties. We also explain how they are classified by colored cones and homogeneous spherical data.
In the third chapter we carry out the classification of the triples (G, P, H) such that H acts spherically on G / P.

Finally Chapter 4 is devoted to the computation of the colored cones and homogeneous spherical data of the spherical affine cones that were classified in Chapter 3 .

Notation

We work over the field of complex numbers. G always denotes a simply connected simple algebraic group. Within G we choose a Borel subgroup B, a maximal torus T and thereby define a set $S=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ of simple roots which are labeled according to Bourbaki-notation. The system of roots of G is denoted by Φ, the system of positive roots of G is denoted by Φ^{+}and $\left(a_{1}, \ldots, a_{r}\right)$
stands for the root $\alpha=\sum_{i=1}^{r} a_{i} \alpha_{i}$ and the support $\operatorname{supp}(\alpha)$ of α is the set of simple roots such that $a_{i} \neq 0$. Further X_{α} denotes a non-trivial element of the root space associated to α and U_{α} denotes the root group. Let $X(T)$ be the set of weights related to T and $X(T)^{+}$the set of dominant weights. The irreducible G-module of highest weight $\lambda \in X(T)^{+}$is denoted by V_{λ}. The fundamental weights of G are $\omega_{1}, \ldots, \omega_{r}$ and $\omega_{1}^{*}, \ldots, \omega_{r}^{*}$ are the fundamental weights such that $\left(V_{\omega_{i}}\right)^{*}=V_{\omega_{i}^{*}}$, where $\left(V_{\omega_{i}}\right)^{*}$ is the dual of $V_{\omega_{i}}$. If we write $k \omega_{i}$, then $k \in \mathbb{N}$.

Let H denote a reductive subgroup of G with root system Φ_{H} and analogous to G we use the notation $\left(b_{1}, \ldots, b_{s}\right)_{H}:=\sum_{i=1}^{s} b_{i} \beta_{i}$ where $S_{H}=\left\{\beta_{1}, \ldots, \beta_{s}\right\}$ is a set of simple roots of Φ_{H} given by the Borel subgroup $B_{H}=B \cap H$. The fundamental weights of H are denoted by $\lambda_{1}, \ldots, \lambda_{s}$, if H is semisimple. When H is a Levi subgroup, $\lambda_{1}, \ldots, \lambda_{s}$ denote the fundamental weights of the semisimple part of H.

2 Spherical varieties

We will now present some basic definitions on spherical varieties and explain how they are classified in terms of the Luna-Vust theory.

The spherical varieties can be classified combinatorially by attaching certain invariants to them. In general the classification of spherical is subdivided into two parts. On the one hand we want to find all spherical varieties that contain a given spherical open G-orbit. The second step is to find a classification for all spherical G-orbits of a given connected reductive group.

1 Basic definitions and properties of spherical varieties

We start by recalling some basic definitions and properties of spherical varieties that lead to the introduction of the combinatorial objects that are used for their classification. There are various surveys on spherical varieties and in this section we follow Kno91 and Pez10.

We will work over the field of complex numbers although many of the following results hold for any algebraically closed field.

1.1 Basic invariants and different characterizations of sphericity

Definition 2.1: A G-variety X is called spherical if X is normal and contains an open B-orbit.

If x is a point of the open B-orbit of X then we can consider the orbit $G x$ which is also open in X. If we denote the stabilizer of x in G by H then $G x$ is isomorphic to the homogeneous space G / H. The variety X is called an embedding of the homogeneous space G / H.

Further we say $H \subset G$ is a spherical subgroup if G / H is a spherical G-variety.
As for any G-variety we can define the B-semiinvariant rational functions

$$
\mathbb{C}(X)^{(B)}=\left\{f \in \mathbb{C}(X) \backslash\{0\} \mid b . f=\chi_{f}(b) f, \forall b \in B\right\}
$$

where χ_{f} denotes a character of B (i.e. a morphism $\chi_{f}: B \rightarrow \mathbb{C}^{*}$ of algebraic groups) corresponding to f.
We denote the weight lattice of B by $X(B)$ and consider the morphism φ : $\mathbb{C}(X)^{(B)} \rightarrow X(B)$ sending each function in $\mathbb{C}(X)^{(B)}$ to its B-weight.

Definition 2.2:

i) The image of φ is denoted by $\Lambda(X)$. It is a free abelian group, called the weight lattice of X.
ii) The rank of $\Lambda(X)$ is defined to be the rank of X, denoted by $\operatorname{rk}(X)$.
iii) We denote the dominant weights by $X^{+}(B)$. Then $\Lambda^{+}(X)=X^{+}(B) \cap$ $\Lambda(X)$ is called the weight monoid of X.
iv) We denote the \mathbb{Q}-vector space $\operatorname{Hom}(\Lambda(X), \mathbb{Q})$ by $N(X)$. If $x \in N(X), \mu \in$ $\Lambda(X)$, we write $\langle x, \mu\rangle$ for $x(\mu)$.

All these objects that were just defined are G-birational invariants of X and depend only on the open G-orbit of X.

A first characterizing property of spherical varieties can be given by their number of B-orbits.
Theorem 2.3 (Kno95, Cor. 2.6]): Let X be a spherical G-variety. Then B has finitely many orbits on X.

Proof: If $Y \subset X$ is a B-stable closed subvariety then Y is also spherical by the previous theorem.

Suppose that there are infinitely many B-orbits on X and take $Z \subset X$ minimal with the property that it has an infinite number of B-orbits. Since Y is also spherical there is a dense orbit $B . y \subset Y$. So an irreducible component of $Y \backslash B$.x must have an infinite number of B-orbits, contradicting the minimality of Y.

There is also an important connection to representation theory due to Vinberg and Kimelfeld VK78. We say that a G-module M is multiplicity-free if for every dominant weight λ, the multiplicity of the highest weight module $V(\lambda)$ in M is at most 1 .
Theorem 2.4 ([Bri97, Thm. 2.1]): Let X be a normal quasi-projective G-variety. Then the following properties are equivalent:
i) X is spherical.
ii) For any G-line bundle \mathscr{L} on X, the G-module $H^{0}(X, \mathscr{L})$ is multiplicityfree.

If X is quasi-affine ii) can be replaced by
ii') $\mathbb{C}[X]$ is multiplicity-free.
Furthermore sphericity is indicated by the field of B-invariant rational functions due to a result by Rosenlicht [Ros63].
Theorem 2.5: Let X be a normal quasi-projective G-variety. Then the following properties are equivalent:
i) X is spherical.
ii) The rational B-invariant functions are constant, i.e. $\mathbb{C}(X)^{B}=\mathbb{C}$.

1.2 Local structure of a spherical variety

For any normal G-variety there is the Brion-Luna-Vust Local Structure Theorem BLV86 describing an open neighborhood of a P-orbit where P is a certain parabolic subgroup of G.

Now we want to analyze the local structure in the case that the variety is spherical.
Definition 2.6: Let X be a spherical G-variety and $Y \subset X$ a G-orbit. We define the following set:

$$
X_{Y, G}:=\{x \in X \mid \overline{G x} \supset Y\}
$$

Proposition 2.7: The set $X_{Y, G}$ is G-stable and open in X. The orbit Y is its only closed orbit.

Proof: Suppose $x \in X_{Y, G}$. Then $\overline{G x} \supset Y$. If $y=g x$ with $g \in G$, then $\overline{G y}=\overline{G x} \supset Y$.

To prove that $X_{Y, G}$ is open in X observe that if $x \in X \backslash X_{Y, G}$ then $\overline{G x} \subset$ $X \backslash X_{Y, G}$. And since there are only finitely many G-orbits, $X \backslash X_{Y, G}$ is closed.

Finally if $G x$ is a closed orbit of $X_{Y, B}$ then we have $G x=\overline{G x} \supset Y$, hence $Y=G x$.

Definition 2.8: A spherical G-variety is called simple if it contains a unique closed G-orbit.
The preceding proposition shows that any spherical G-variety can be covered by open simple spherical G-varieties. That means that the classification of spherical varieties can be settled in two steps. First we classify simple embeddings and then study how to patch these varieties together. So the simple embeddings will be the starting point for the combinatorial classification of embeddings for a given spherical homogeneous space.

Consider now the set

$$
X_{Y, B}:=\{x \in X \mid \overline{B x} \supset Y\} .
$$

It is a subset of $X_{Y, G}$.
Denote the B-stable prime divisors of X by $\mathcal{D}(X)$ and let P be the subgroup of G that stabilizes $X_{Y, B}$, i.e.

$$
P=\left\{g \in G \mid g X_{Y, B}=X_{Y, B}\right\} .
$$

Since we have $B \subset P, P$ is a parabolic subgroup of G.

For later use we also define the set

$$
\Delta(X):=\{D \in \mathcal{D}(X) \mid D \text { is } B \text {-stable but not } G \text {-stable }\} .
$$

The elements of $\Delta(X)$ are called colors of X and will play an important role in the classification of spherical varieties. Note that the notion of colors is birationally invariant if we identify the colors of X with the closures of the colors of G / H in X and therefore we regard $\Delta(X)$ as a subset of $\Delta(G / H)$.
Theorem 2.9 ([Bri97] Prop. 2.2, Thm. 2.3]): With the previous notation we have:
i) The set $X_{Y, B}$ is B-stable affine and open in X and $X_{Y, B} \cap Y \neq \varnothing$ is the open B-orbit of Y.
ii) The complement of $X_{Y, B}$ in X is the union of the B-stable prime divisors that do not contain Y.

$$
X_{Y, B}=X \backslash \bigcup_{\substack{D \in \mathcal{D}(X) \\ D \not \supset Y}} D .
$$

iii) There exists a Levi-subgroup $L \subset P$ and a closed subvariety $S \subset X_{Y, B}$ which is L-stable, affine and L-spherical such that the morphism

$$
\begin{aligned}
P^{u} \times S & \rightarrow X_{Y, B} \\
(g, s) & \mapsto g . s
\end{aligned}
$$

is a P-equivariant isomorphism. Here, the action of P on $P^{u} \times S$ is given by $p .(g, s)=\left(v l g l^{-1}, l s\right)$ if $p=v l$ with $v \in P^{u}$ and $l \in L$.
We want to illustrate the local structure with an example.
Example. Consider $G=\mathrm{SL}_{2}$ with its natural action on \mathbb{C}^{2}. This action has two orbits: $\mathcal{O}=\left\{(x, y) \in \mathbb{C}^{2} \mid(x, y) \neq(0,0)\right\}$ and $Y=\{(0,0)\}$ which is the unique closed orbit. The Borel consisting of upper triangular matrices has three orbits: $\mathcal{O}_{1}^{B}=\left\{(x, y) \in \mathbb{C}^{2} \mid y \neq 0\right\}, \mathcal{O}_{2}^{B}=\left\{(x, y) \in \mathbb{C}^{2} \mid x \neq 0, y=0\right\}$ and Y.
The open B-orbit is \mathcal{O}_{1}^{B} and if we denote the unipotent upper triangular matrices by U, the open G-orbit can be identified with G / U which is equivariantly isomorphic to $\mathbb{C}^{2} \backslash\{(0,0)\}$.
In this case we have $X_{Y, B}=\left\{(x, y) \in \mathbb{C}^{2} \mid y \neq 0\right\}$. The stabilizer of $X_{Y, B}$ is B with Levi-decomposition $U \cdot T$ where T is the maximal torus of G consisting of diagonal matrices. In this case we can choose $S:=\left\{(0, y) \in \mathbb{C}^{2} \mid y \neq 0\right\}$ and get an isomorphism

$$
\begin{aligned}
U \times S & \rightarrow \\
\left(\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right),\binom{0}{y}\right) & \mapsto
\end{aligned} \begin{gathered}
\binom{a y}{y}
\end{gathered}
$$

The variety S is affine, T-stable and T-spherical.

1.3 G-invariant valuations and classification of simple embeddings

Let X be an embedding of a spherical homogeneous space G / H. Then we have a G-equivariant map $G / H \rightarrow X$ identifying G / H with the open orbit of X. This map induces an isomorphism between the fields of rational functions $\mathbb{C}(G / H)$ and $\mathbb{C}(X)$.
Definition 2.10: A discrete valuation of $\mathbb{C}(X)$ is a map $\nu: \mathbb{C}(X)^{*} \rightarrow \mathbb{Q}$ satisfying the following properties:
i) $\nu\left(f_{1} \cdot f_{2}\right)=\nu\left(f_{1}\right)+\nu\left(f_{2}\right)$ for any $f_{1}, f_{2} \in \mathbb{C}(X)^{*}$.
ii) $\nu\left(f_{1}+f_{2}\right) \geq \min \left\{\nu\left(f_{1}\right), \nu\left(f_{2}\right)\right\}$ for any $f_{1}, f_{2} \in \mathbb{C}(X)^{*}$ such that $f_{1}+f_{2} \neq$ 0 .
iii) $\nu\left(\mathbb{C}^{*}\right)=\{0\}$
iv) The image of ν is a discrete subgroup of \mathbb{Q}.

A discrete valuation is called G-invariant if $\nu(f)=\nu(g f)$ for any $g \in G$ and $f \in \mathbb{C}(X)^{*}$. The set of G-invariant valuations is denoted by $\mathcal{V}(X)$.

Let D be a prime divisor of X. We denote the corresponding discrete valuation of $\mathbb{C}(X)$ by ν_{D}.

Now let $\lambda \in \Lambda(X)$ and let $f_{\lambda} \in \mathbb{C}(X)^{(B)}$ be of weight λ. Since $\mathbb{C}(X)^{B}=\mathbb{C}$, the function f_{λ} is uniquely determined up to multiplication by a scalar. So we can define a map

$$
\begin{aligned}
\rho:\{\text { discrete valuations }\} & \rightarrow N(X) \\
\nu & \mapsto\left(\lambda \mapsto \nu\left(f_{\lambda}\right)\right)
\end{aligned}
$$

We will also regard ρ as a map from the set of prime divisors to $N(X)$ by setting $\rho(D)=\rho\left(\nu_{D}\right)$.

In general, ρ is not an injective map. But if we restrict ρ to elements of $\mathcal{V}(X)$, it becomes injective. So, a G-invariant discrete valuation depends only on its values on B-semiinvariant functions of $\mathbb{C}(X)$ and we can identify $\mathcal{V}(X)$ with a subset of $N(X)$.
Theorem 2.11 ([LV83, Prop. 7.4]): Let X be a spherical G-variety. Then the restricted map

$$
\rho_{\mid \mathcal{V}(X)}: \mathcal{V}(X) \rightarrow N(X)
$$

is injective.
This identification encodes one interesting property of the open G-orbit G / H of X by the following proposition which is due to Pauer.
Proposition 2.12 ([Kno91, Cor. 6.2]): The G-orbit G / H of a spherical G-variety X contains a maximal unipotent subgroup U of G if and only if $\mathcal{V}(X)=N(X)$.
Definition 2.13: A spherical G-variety with the property given in the preceding proposition are is called horospherical.

2 Classification of embeddings for a spherical homogeneous space

2.1 Classification of simple embeddings

At this point we can turn to the classification of simple embeddings.
Definition 2.14: Let X be a simple spherical G-variety. Define

$$
\Delta_{Y}(X):=\{D \in \Delta(X) \mid D \supset Y\}
$$

and

$$
\mathcal{V}_{X}:=\{D \in \mathcal{D}(X) \mid D \text { is } G \text {-invariant }\} .
$$

Proposition 2.15 ([Bri97, Prop. 3.2.1]):
i) Let X be a simple spherical G-variety with closed G-orbit Y. Then $f \in$ $\mathbb{C}\left[X_{Y, B}\right]$ if and only if f is regular on the open G-orbit and $v_{D}(f) \geq 0$ for all $D \in \Delta_{Y}(X) \cup \mathcal{V}_{X}$.
ii) A simple embedding is uniquely determined by the pair $\left(\Delta_{Y}(X), \mathcal{V}_{X}\right)$.

Proof: Since X is simple we have $X=X_{Y, G}$ and we know that $X \backslash X_{Y, B}$ is the union of those B-stable divisors that do not contain Y and hence are not G stable. $X_{Y, B}$ contains the open B-orbit $B x_{0}$ and $X_{Y, B}$ is the union of B-stable prime divisors that contain Y. Such a divisor is either a color or G-stable. Since $X_{Y, B}$ is normal a rational function f is regular if and only if it is regular on $B x_{0}$ and does not have a pole along the prime divisors.
If there is another embedding X^{\prime} that defines the same sets then $\mathbb{C}\left[X_{Y, B}\right]$ and $\mathbb{C}\left[X_{Y, B}^{\prime}\right]$ are the same subrings of $\mathbb{C}(X)$. So there is a G-equivariant rational map $\varphi: X \rightarrow X^{\prime}$ and its restriction to $X_{Y, B}$ is an isomorphism. Since $X=G X_{Y, B}$ and $X^{\prime}=G X_{Y, B}^{\prime}$ the map φ is an isomorphism.

We want to classify simple varieties by cones in $N(X)$ satisfying some properties. We fix some definitions concerning cones.

Definition 2.16:

i) A cone in a \mathbb{Q}-vector space V is a subset which is stable under multiplication by elements in $\mathbb{Q} \geq 0$ and addition.
ii) A cone C is called strictly convex if it does not contain a linear subspace, i. e. $C \cap(-C)=\{0\}$.
iii) A cone C is polyhedral if $C=\mathbb{Q} \geq 0 v_{1}+\ldots+\mathbb{Q} \geq 0 v_{n}$ for some vectors $v_{i} \in V$.
iv) The dual cone C^{\vee} is the set

$$
C^{\vee}=\left\{f \in V^{*} \mid f(v) \geq 0 \text { for all } v \in C\right\},
$$

where V^{*} denotes the dual vector space of V.
v) A face of a cone C is a subset $F \subset C$ of the form

$$
F=\{v \in C \mid f(v)=0\} \text { for some } f \in C^{\vee} .
$$

vi) The relative interior C° of a cone C is the complement of all proper faces.
vii) An extremal ray of a cone C is a face of dimension 1 .

By Theorem 2.11, we can identify ν_{X} with a subset of $N(X)$. Furthermore the colors of X can be identified with colors of G / H. So both sets have a description in terms of G / H.

We can associate a cone to a simple spherical G-variety X as follows.
Definition 2.17: Let X be a simple spherical G-variety. We define $\mathcal{C}(X) \subset$ $N(X)$ to be the cone generated by \mathcal{V}_{X} and $\rho\left(\Delta_{Y}(X)\right)$. The pair $\left(\mathcal{C}(X), \Delta_{Y}(X)\right)$ is called the colored cone of X.
Proposition 2.18 ([Bri97, Prop. 3.2.2]): A simple embedding X is uniquely determined by its colored cone.

Proof: The half-lines $\mathbb{Q}_{+} \nu$ where $\nu \in \mathcal{V}_{X}$ are exactly the extremal rays of $\mathcal{C}(X)$ that do not contain an element of $\rho\left(\Delta_{Y}(X)\right.$) Kno91, Lemma 2.4]. So \mathcal{V}_{X} can be recovered from $\mathcal{C}(X)$.

The pair $\left(\mathbb{C}(X), \Delta_{Y}(X)\right)$ turns out to be a colored cone also in the sense of the following combinatorial definition.
Definition 2.19: A colored cone in $N(G / H)$ is a pair (\mathcal{C}, Δ) where $\mathcal{C} \subset N(G / H)$ and $\Delta \subset \Delta(G / H)$ such that
i) \mathcal{C} is a strictly polyhedral cone generated by $\rho(\Delta)$ and a finite number of elements in $\mathcal{V}(G / H)$,
ii) the relative interior \mathcal{C}° intersects $\mathcal{V}(G / H)$,
iii) $0 \notin \rho(\Delta)$.

Theorem 2.20 ([LV83] Prop. 8.10]): The map $X \mapsto\left(\mathcal{C}(X), \Delta_{Y}(X)\right)$ defines a bijection between isomorphism classes of simple embeddings of G / H and colored cones in $N(G / H)$.
Furthermore the colored cones also encode the inclusion of orbits if we look at their faces.
Definition 2.21: A face of a colored cone (\mathfrak{C}, Δ) is a colored cone ($\mathcal{C}^{\prime}, \Delta^{\prime}$) where \mathcal{C}^{\prime} is a face of \mathcal{C}, and $\Delta^{\prime}=\Delta \cap \rho^{-1}\left(\mathcal{C}^{\prime}\right)$.
Let X be a (not necessarily simple) embedding of G / H and let Y be a G-orbit. Then we define the colored cone of the simple embedding $X_{Y, G}$ by $\left(\mathcal{C}\left(X_{Y, G}\right), \Delta_{Y}\left(X_{Y, G}\right)\right)$.

Proposition 2.22 ([Bri97, Prop. 3.4]): The map $Z \mapsto\left(\mathcal{C}\left(X_{Z, G}\right), \Delta_{Z}\left(X_{Z, G}\right)\right)$ is a bijection between the set of orbits $Z \subset X$ that contain Y in their closure and faces of $\left(\mathcal{C}\left(X_{Y, G}\right), \Delta_{Y}\left(X_{Y, G}\right)\right)$.

Theorem 2.20 settles the problem of classifying simple spherical varieties. These include affine spherical varieties for example.
Lemma 2.23: Every affine spherical G-variety is simple.
Proof: Let X be an affine spherical G-variety. Any G-invariant regular function is constant on the open G-orbit and thus on X. Hence we have $\mathbb{C}[X / / G]=$ $\mathbb{C}[X]^{G}=\mathbb{C}$, so $X / / G$ is a point and it follows that there is a unique closed orbit.

2.2 Classification of spherical embeddings

As a spherical variety is the union of simple spherical varieties, they are classified by a collection of colored cones.
Definition 2.24: A colored fan \mathcal{F} in $N(G / H)$ is a collection of colored cones such that
i) every face of $\mathcal{C} \in \mathcal{F}$ is an element of \mathcal{F},
ii) if $\mathcal{C}_{1}, \mathcal{C}_{2}$ are two elements of \mathcal{F}, then $\mathcal{C}_{1}^{\circ} \cap \mathcal{C}_{2}^{\circ}=\varnothing$, i. e. the relative interiors of the colored cones in \mathcal{F} do not intersect.

For an embedding X of a spherical homogeneous space G / H we define its colored fan by

$$
\mathcal{F}(X)=\left\{\left(\mathcal{C}\left(X_{Y, G}\right), \Delta_{Y}\left(X_{Y, G}\right)\right) \text { where } Y \text { runs through all } G \text {-orbits of } X\right\}
$$

Theorem 2.25 ([Kno91, Thm. 3.3]): Let G / H be a spherical homogeneous space. Then there is a bijection between the morphism classes of embeddings and colored fans in $N(G / H)$ given by $X \mapsto \mathcal{F}(X)$.
Under this isomorphism the open orbit corresponds to the colored cone given by $(0, \varnothing)$ which is a face of any colored cone in $\mathcal{F}(X)$.

3 Classification of spherical homogeneous spaces

3.1 Wonderful varieties and spherical roots

Now we have a classification for the embeddings of a spherical homogeneous space G / H. For a full classification of spherical varieties it remains to classify spherical subgroups of a given group G. In order to do so we take a closer look at $\mathcal{V}(X)$.

Theorem 2.26 ([Bri97, Thm. 4.1], Kno96, Cor. 7.1]): Let X be a spherical G variety. The valuation cone $\mathcal{V}(X)$ is a polyhedral convex cone which can be described by

$$
\mathcal{V}(X)=\left\{x \in N(X) \mid\left\langle x, \sigma_{i}\right\rangle \leq 0, i=1, \ldots, n\right\}
$$

where σ_{i} are primitive elements in $\Lambda(X)$ that are linearly independent.
The elements σ_{i} are called spherical roots of X and can also be defined using the language of wonderful varieties.

Note that the horospherical varieties are exactly those where the set of spherical roots is empty.
Definition 2.27: Let X be a G-variety. The variety is called wonderful (of rank r) if it fulfills the following properties:
i) X is smooth and complete.
ii) X contains an open orbit X° whose complement is the union of r smooth G-invariant divisors D_{1}, \ldots, D_{r} which have normal crossings and nonempty intersection.
iii) For $x, y \in X$ we have

$$
\left\{i \mid x \in D_{i}\right\}=\left\{j \mid y \in D_{j}\right\} \Leftrightarrow G x=G y .
$$

If X is wonderful of rank 1 , then let z be its unique point fixed by B^{-}(the opposite Borel). Then z is an element of the closed orbit Z of X. Consider the space $\mathrm{T}_{z} X / \mathrm{T}_{z} Z$ which is a vector space of dimension 1 . It is also a T-module and its weight σ is defined to be the spherical root of X.

Now if X is an arbitrary spherical G-variety with open orbit G / H, we can consider the set of wonderful subvarieties of rank 1 of any embedding of G / H and the union of the corresponding spherical roots. Then this set equals the set of the σ_{i} above (cp. Lun01). We denote the set of spherical roots of X by Σ_{X}. It is a subset of $\Sigma(G)$ which denotes the union of spherical roots of any wonderful G-variety of rank 1 . These varieties were classified by Ahiezer Ahi83. In particular $\Sigma(G)$ is finite. Namely for a simply connected reductive group (not necessarily simple) $\sigma \in \Sigma(G)$ if and only if it is a spherical root of a simple factor of G or of a product of two simple factors according to the first column of Table 2.1 Tim11, p. 192].

Table 2.1: Spherical roots of G

G		$\Sigma(G)$
A_{l}	$\alpha_{i}+\ldots+\alpha_{j}\left(A_{j-i+1}, i \leq j \leq l\right)$	$2 \alpha_{i}\left(A_{1}\right)$
	$\alpha_{i}+\alpha_{j}\left(A_{1} \times A_{1}, i \leq j-2\right)$	$\frac{1}{2}\left(\alpha_{1}+\alpha_{3}\right)\left(A_{1} \times A_{1}, l=3\right)$
	$\alpha_{i-1}+2 \alpha_{i}+\alpha_{i+1}\left(A_{3}, 1<i<l\right)$	$\frac{1}{2}\left(\alpha_{1}+2 \alpha_{2}+\alpha_{3}\right)\left(A_{3}, l=3\right)$

Table 2.1: Spherical roots of G

G	$\Sigma(G)$
B_{l}	$\begin{array}{ll} \hline \alpha_{i}+\ldots+\alpha_{j}\left(A_{j-i+1}, i \leq j<l\right) & \alpha_{l}\left(A_{1}\right) \quad 2 \alpha_{i}\left(A_{1}\right) \\ \alpha_{i}+\alpha_{j}\left(A_{1} \times A_{1}, i \leq j-2\right) & \frac{1}{2}\left(\alpha_{1}+\alpha_{3}\right)\left(A_{1} \times A_{1}, l=3,4\right) \\ \alpha_{i-1}+2 \alpha_{i}+\alpha_{i+1}\left(A_{3}, 1<i<l-1\right) & \frac{1}{2}\left(\alpha_{1}+2 \alpha_{2}+\alpha_{3}\right)\left(A_{3}, l=4\right) \\ \alpha_{i}+\ldots+\alpha_{l}\left(B_{l-i+1}, i<l\right) & 2\left(\alpha_{i}+\ldots+\alpha_{l}\right)\left(B_{l-i+1}, i<l\right) \\ \alpha_{l-2}+2 \alpha_{l-1}+3 \alpha_{l}\left(B_{3}\right) & \frac{1}{2}\left(\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}\right)\left(B_{3}, l=3\right) \\ \hline \end{array}$
C_{l}	$\begin{array}{ll} \hline \alpha_{i}+\ldots+\alpha_{j}\left(A_{j-i+1}, i \leq j<l\right) & \alpha_{l}\left(A_{1}\right) \quad 2 \alpha_{i}\left(A_{1}\right) \\ \alpha_{i}+\alpha_{j}\left(A_{1} \times A_{1}, i \leq j-2\right) & \alpha_{i-1}+2 \alpha_{i}+\alpha_{i+1}\left(A_{3}, 1<i<l-1\right) \\ \alpha_{i}+\sum_{k=i+1}^{l-1} 2 \alpha_{k}+\alpha_{l}\left(C_{l+i+1}, i<l\right) & 2\left(\alpha_{l-1}+\alpha_{l}\right)\left(C_{2}\right) \\ \hline \end{array}$
D_{l}	$\begin{array}{lll} \alpha_{i_{1}}+\ldots+\alpha_{i_{k}}\left(A_{k}, k \geq 1\right) & 2 \alpha_{i}\left(A_{1}\right) & \alpha_{i}+\alpha_{j}\left(A_{1}\right) \\ \alpha_{i_{1}}+2 \alpha_{i_{2}}+\alpha_{i_{3}}\left(A_{3}\right) & \frac{1}{2}\left(\alpha_{i_{1}}+2 \alpha_{i_{2}}+\alpha_{i_{3}}\right)\left(A_{3}, l=\right. \\ \sum_{k=i}^{l-2} 2 \alpha_{k}+\alpha_{l-1}+\alpha_{l}\left(D_{l-i+1}, i<l-1\right) & \\ \sum_{k=i}^{l-2} \alpha_{k}+\frac{1}{2}\left(\alpha_{l-1}+\alpha_{l}\right)\left(D_{l-i+1}, i<l-1\right) & \\ \frac{1}{2}\left(\alpha_{1}+\alpha_{3}\right)\left(A_{1} \times A_{1}, l=4\right) & \frac{1}{2}\left(\alpha_{1}+\alpha_{4}\right)\left(A_{1} \times A_{1}, l=4\right) \\ \hline \end{array}$
E_{l}	$\begin{aligned} & \alpha_{i_{1}}+\ldots+\alpha_{i_{k}}\left(A_{k}, k \geq 1\right) \quad 2 \alpha_{i}\left(A_{1}\right) \quad \alpha_{i}+\alpha_{j}\left(A_{1} \times A_{1}\right) \\ & 2 \alpha_{i_{1}}+\ldots+2 \alpha_{i_{k-2}}+\alpha_{i_{k-1}}+\alpha_{i_{k}}\left(D_{k}, k \geq 3\right) \\ & \hline \end{aligned}$
F_{4}	$\begin{array}{ll} \alpha_{i}\left(A_{1}\right) \quad 2 \alpha_{i}\left(A_{1}\right) & \alpha_{i}+\alpha_{j}\left(A_{1} \times A_{1}, i \leq j-2\right) \\ \alpha_{i}+\alpha_{i+1}\left(A_{2}, i \neq 2\right) & \alpha_{2}+\alpha_{3}\left(B_{2}\right) \\ 2\left(\alpha_{2}+\alpha_{3}\right)\left(B_{2}\right) & \alpha_{1}+\alpha_{2}+\alpha_{3}\left(B_{3}\right) \\ 2\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)\left(B_{3}\right) & \alpha_{1}+2 \alpha_{2}+3 \alpha_{3}\left(B_{3}\right) \\ \alpha_{2}+2 \alpha_{3}+\alpha_{4}\left(C_{3}\right) & \alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4}\left(F_{4}\right) \end{array}$
G_{2}	$\alpha_{i}\left(A_{1}\right), \quad 2 \alpha_{i}\left(A_{1}\right), \quad \alpha_{1}+\alpha_{2}\left(G_{2}\right), \quad 2 \alpha_{1}+\alpha_{2}\left(G_{2}\right), \quad 4 \alpha_{1}+2 \alpha_{2}\left(G_{2}\right)$
$X_{l} \times Y_{m}$	$\alpha_{i}+\alpha_{j}^{\prime}\left(A_{1} \times A_{1}\right), \quad \frac{1}{2}\left(\alpha_{l}+\alpha_{m}^{\prime}\right)\left(A_{1} \times A_{1}, X=Y=C, l, m \geq 1\right)$

The name 'spherical roots' stems from the fact that they form a root system (called little root system) and $\mathcal{V}(X)$ is the negative Weyl chamber of its Weyl group [Bri90, Cor. 3.5].

In case that X is a quasi-affine variety there is a close connection between the spherical roots and the regular functions $\mathbb{C}[X]$ Kno96. If we consider its decomposition as a G-module $\mathbb{C}[X]=\bigoplus_{\lambda \in \Lambda^{+}(X)} \mathbb{C}[X]_{\lambda}$, then in general this does not define a graduation. The spherical roots are given by the deviation of the multiplication in $\mathbb{C}[X]$ from a graduation.
Theorem 2.28 ([Kno96, Thm. 1.3]): Let X be a quasi-affine spherical G-variety and $\mathbb{C}[X]$ the regular functions on X. Let $m: \mathbb{C}[X] \otimes \mathbb{C}[X] \rightarrow \mathbb{C}[X]$ be the G equivariant morphism induced by the multiplication in $\mathbb{C}[X]$.

Then the saturation of the submonoid $\left\langle\lambda+\mu-\nu \in \Lambda(X): m_{\nu}^{\lambda, \mu} \neq 0\right\rangle$ (where $m_{\nu}^{\lambda, \mu}$ is the morphism $\left.\mathbb{C}[X]_{\lambda} \otimes \mathbb{C}[X]_{\mu} \rightarrow \mathbb{C}[X]_{\nu}\right)$ is free and the generators are a basis of Σ_{X}.

3.2 Homogeneous spherical data and spherical systems

Similar to the classification of embeddings, there is a classification of spherical homogeneous spaces by associating some combinatorial invariants to them. This classification goes back to Luna's work Lun01.

Before stating the bijection we need some more terminology concerning colors and simple roots.

We say that a color D is moved by a simple root α of G if the minimal parabolic associated to α (which we denote by P_{α}) is not contained in the stabilizer of D, i. e. there exist $x \in D$ and $g \in P_{\alpha}$ such that $g . x \notin D$.

For any simple root α, let $\Delta(\alpha)$ denote the set of colors that are moved by α and let $S^{p}(X)$ be the set of simple roots that do not move any color. Then the following cases can occur.
Lemma 2.29 ([Lun97, §3.2, §3.4]): For any simple root α we have $|\Delta(\alpha)| \leq 2$ and exactly one of the cases below occurs.
i) $\Delta(\alpha)=\varnothing$, i. e. $\alpha \in S^{p}(X)$.
ii) $\Delta(\alpha)=\left\{D^{+}, D^{-}\right\}$. In this case $\alpha \in \Sigma(X)$ and we have

$$
\rho\left(D^{+}\right)+\rho\left(D^{-}\right)=\alpha^{\vee}{ }_{\mid \Lambda(X)} .
$$

iii) $\Delta(\alpha)=\{D\}$ and $2 \alpha \in \Sigma(X)$. In this case we have

$$
\rho(D)=\frac{1}{2} \alpha^{\vee}{ }_{\mid \Lambda(X)} .
$$

iv) $\Delta(\alpha)=\{D\}$ and $2 \alpha \notin \Sigma(X)$. In this case we have

$$
\rho(D)=\alpha^{\vee}{ }_{\mid \Lambda(X)} .
$$

According to the above lemma we can write the set of simple roots as the disjoint union of four subsets by setting

$$
\begin{aligned}
& -S^{a}:=\{\alpha \in S \mid \alpha \in \Sigma(X)\}, \\
& -S^{2 a}:=\{\alpha \in S \mid 2 \alpha \in \Sigma(X)\}, \\
& -S^{b}:=S \backslash\left\{S^{a} \cup S^{2 a} \cup S^{p}\right\},
\end{aligned}
$$

where S^{p} is short for $S^{p}(X)$. We say that a simple root is of type $a, 2 a, b$ or p if it is an element of the corresponding set.

A similar partition of the set of colors can be achieved by the following lemma.
Lemma 2.30 ([Lun01, Prop. 3.2]): Every color is moved by a unique simple root with the following two exceptions:
a) $\alpha, \beta \in S^{a}(X)$ with $|\Delta(\alpha) \cup \Delta(\beta)|=3$.
b) α, β are orthogonal simple roots with $\alpha+\beta \in \Sigma(X)$ or $\frac{1}{2}(\alpha+\beta) \in \Sigma(X)$. In this case we have $\Delta(\alpha)=\Delta(\beta)$ and $\alpha, \beta \in S^{b}$.

Note that if a color is moved by two different simple roots, then these roots are of the same type. So we define the type of a color by the type of the simple root(s) moving it and we denote the corresponding sets by $\Delta^{a}(X), \Delta^{2 a}(X)$ and $\Delta^{b}(X)$ respectively.

The preceding two lemmas show that the colors of types $2 a$ and b as well as their images in $N(X)$ can be recovered from the colors of type a and the set $S^{p}(X)$. Thus only these are needed for the combinatorial classification.
It turns out that $\left(\Lambda(X), S^{p}(X), \Sigma(X), \Delta^{a}(X)\right)$ forms a homogeneous spherical datum in the sense of the following definition due to Luna (cp. Tim11):
Definition 2.31: A collection $\left(\Lambda, S^{p}, \Sigma, \Delta^{a}\right)$ where Λ is a sublattice of $X(T)$, $S^{p} \subset S, \Sigma \subset \Sigma(G) \cap \Lambda$ is a set of linearly independent set of indivisible vectors in Λ and Δ^{a} is a set together with a map $\rho: \Delta^{a} \rightarrow \Lambda^{*}$ satisfying the following axioms is called a homogeneous spherical datum for G.
(A1) $\langle\rho(D), \sigma\rangle \leq 1, \forall D \in \Delta^{a}, \sigma \in \Sigma$ and equality holds if and only if $\sigma=$ $\alpha \in \Sigma \cap S$ and $D=D_{\alpha}^{ \pm}$where $D_{\alpha}^{+}, D_{\alpha}^{-} \in \Delta^{a}$ are two distinct elements depending on α.
(A2) $\rho\left(D_{\alpha}^{+}\right)+\rho\left(D_{\alpha}^{-}\right)=\alpha^{\vee}$ on Λ for any $\alpha \in \Sigma \cap S$.
(A3) $\Delta^{a}=\left\{D_{\alpha}^{ \pm} \mid \alpha \in \Sigma \cap S\right\}$
($\Sigma 1$) If $\alpha \in \frac{1}{2} \Sigma \cap S$, then $\left\langle\alpha^{\vee}, \Lambda\right\rangle \subset 2 \mathbb{Z}$ and $\left\langle\alpha^{\vee}, \Sigma \backslash\{2 \alpha\}\right\rangle \leq 0$.
($\Sigma 2$) If $\alpha, \beta \in S$ are two orthogonal roots and $\alpha+\beta \in \Sigma \cup 2 \Sigma$, then $\alpha^{\vee}=\beta^{\vee}$ on Λ.
(S) $\left\langle\alpha^{\vee}, \Lambda\right\rangle=0, \forall \alpha \in S^{p}$ and the pair $\left(\sigma, S^{p}\right)$ comes from a wonderful variety of rank 1 for any $\sigma \in \Sigma$.

A spherical system is a homogeneous spherical datum where $\Lambda=\mathbb{Z} \Sigma$ and thus it is represented by a triple ($S^{p}, \Sigma, \Delta^{a}$).
As already stated, wonderful varieties of rank 1 were classified. They are uniquely determined by their spherical root σ and the set $S^{p}(X)$. So, condition (S) means that there exists a wonderful variety X of rank 1 with spherical root σ and $S^{p}(X)=S^{p}$. This condition is equivalent to having the inclusions

$$
S^{p p}(\sigma) \subset S^{p} \subset S^{p}(\sigma)
$$

where $S^{p}(\sigma)$ denotes the set of simple roots that are orthogonal to σ and $S^{p p}(\sigma)$ is the set of simple roots

$$
\begin{aligned}
& -S^{p}(\sigma) \cap \operatorname{supp}(\sigma) \backslash \alpha_{r} \text { if } \sigma=\alpha_{1}+\ldots+\alpha_{r} \text { has support of type } B_{r}, \\
& -S^{p}(\sigma) \cap \operatorname{supp}(\sigma) \backslash \alpha_{1} \text { if } \sigma=\alpha_{1}+\ldots+\alpha_{r} \text { has support of type } C_{r},
\end{aligned}
$$

- $S^{p} \cap \operatorname{supp}(\sigma)$ in all other cases
(cp. BL11]). Here, we say $\alpha_{1}+\ldots+\alpha_{r}$ has support of type B_{r} (resp. C_{r}), if the underlying Dynkin diagram of a_{1}, \ldots, a_{r} is of type B_{r} (resp. C_{r}).
Recently the classification of spherical varieties was completed by the following theorem.
Theorem 2.32: For any connected reductive group G we have the bijections:

$$
\begin{aligned}
& \left\{\begin{array}{c}
\text { spherical homogeneous } \\
G \text {-spaces }
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { homogeneous spherical } \\
\text { data for } G
\end{array}\right\} \\
& \{\text { wonderful } G \text {-varieties }\} \longleftrightarrow\{\text { spherical systems for } G\}
\end{aligned}
$$

This theorem takes it origin in the work of Luna and his paper Lun01. Luna also showed that the first bijection follows from the second one and that it suffices to consider groups of adjoint type.
Luna completed the proof for groups having semisimple factors of type A and conjectured that the bijection holds for any connected reductive group (also known as the Luna conjecture).
The uniqueness part, i.e. that any wonderful variety is uniquely determined by its spherical system, was proven by Losev in Los09].
First the conjecture was proven to hold in some special cases. For example it was shown by Bravi and Pezzini that the conjecture holds for groups with simple factors of type A and C or A and D in [Pez03] and BP05].
Now there are two independent proofs of the whole conjecture. One is also by Bravi and Pezzini who reduced the problem to a subclass of so called primitive spherical systems and showed that any such system is geometrically realizable, i. e. is the spherical system of a wonderful variety (see [BP11a and BP11b).

A second independent proof which takes another approach was achieved by Cupit-Foutou in [CF09.

3 Classification of spherical affine cones and branching rules

From now on G is a complex simply connected simple algebraic groups of ex－ ceptional type．

1 Main results and outline of proof

Now we summarize the results and give an outline of the proof．In this chapter we derive the branching rules stated in the following table．Further we show that if $\operatorname{res}_{H}^{G}\left(V_{k \omega_{i}}\right)$ is given in the table，then $G / P_{\omega_{i}^{*}}$ is a spherical H－variety． Conversely，if a maximal reductive subgroup $H \subset G$ does not appear in the table，then the varieties $G / P_{\omega_{i}}$ are not H－spherical．
Note that for the subgroups $D_{5} \times \mathbb{C}^{*} \subset E_{6}$ and $E_{6} \times \mathbb{C}^{*} \subset E_{7}$ the weight of the \mathbb{C}^{*}－action depends on the embedding of \mathbb{C}^{*} ．The embedding that we chose is given in the corresponding sections．

Table 3.1

G	H	ω	$\operatorname{res}_{H}^{G}\left(V_{\omega}\right)$	
G_{2}	A_{2}	$k \omega_{1}$ $k \omega_{2}$	$\underset{\substack{a_{1}+a_{2} \leq k}}{{\underset{a ⿱ 十 口}{1}+}^{+}+a_{2}+a_{3}=k}$	$\begin{aligned} & V_{a_{1} \lambda_{1}+a_{2} \lambda_{2}} \\ & V_{\left(a_{1}+a_{3}\right) \lambda_{1}+\left(a_{2}+a_{3}\right) \lambda_{2}} \end{aligned}$
F_{4}	B_{4}	$k \omega_{1}$ $k \omega_{2}$ $k \omega_{3}$ $k \omega_{4}$	$\stackrel{\substack{a_{1}+a_{2}=k \\ a_{1}+\ldots+a_{5}=k}}{\bigoplus_{\substack{a_{1} \\ a_{1}+\ldots+a_{5}=k \\ a_{1}+a_{2} \leq k}}}$	$\begin{aligned} & V_{a_{1} \lambda_{2}+a_{2} \lambda_{4}} \\ & V_{\left(a_{1}+a_{2}\right) \lambda_{1}+\left(a_{3}+a_{4}\right) \lambda_{2}+\left(a_{1}+a_{5}\right) \lambda_{3}+\left(a_{2}+a_{4}\right) \lambda_{4}} \\ & V_{\left(a_{1}+a_{5}\right) \lambda_{1}+a_{2} \lambda_{2}+a_{3} \lambda_{3}+\left(a_{4}+a_{5}\right) \lambda_{4}} \\ & V_{a_{1} \lambda_{1}+a_{2} \lambda_{4}} \end{aligned}$
E_{6}	$A_{5} \times A_{1}$	$k \omega_{1}$ $k \omega_{6}$	$\underset{\substack{a_{1}+2 a_{2}+a_{3}=k \\ a_{1}+2 a_{2}+a_{3}=k}}{\infty}$	$\begin{aligned} & V_{a_{1} \lambda_{1}+a_{2} \lambda_{2}+a_{3} \lambda_{4}} \otimes V_{a_{1} \lambda_{6}} \\ & V_{a_{1} \lambda_{2}+a_{2} \lambda_{4}+a_{3} \lambda_{5}} \otimes V_{a_{3} \lambda_{6}} \end{aligned}$
	F_{4}	$k \omega_{1}$ $k \omega_{2}$	$\underset{a_{1} \leq k}{\oplus}$	$\begin{aligned} & V_{a_{1} \lambda_{4}} \\ & V_{a_{1} \lambda_{1}+a_{2} \lambda_{4}} \end{aligned}$

Table 3.1

G	H	ω	$\operatorname{res}_{H}^{G}\left(V_{\omega}\right)$	
		$k \omega_{3}$ $k \omega_{5}$ $k \omega_{6}$	$\begin{gathered} \bigoplus_{a_{1}+a_{2}+a_{3}=k} \\ \bigoplus_{a_{1}+a_{2}+a_{3}=k} \\ a_{1} \leq k \end{gathered}$	$\begin{aligned} & V_{a_{1} \lambda_{1}+a_{2} \lambda_{3}+a_{3} \lambda_{4}} \\ & V_{a_{1} \lambda_{1}+a_{2} \lambda_{3}+a_{3} \lambda_{4}} \\ & V_{a_{1} \lambda_{4}} \end{aligned}$
	C_{4}	$k \omega_{1}$ $k \omega_{6}$	$\bigoplus_{a_{1}+2 a_{2}+2 a_{3}=k} \bigoplus_{a_{1}+2 a_{2}+2 a_{3}=k}$	$\begin{aligned} & V_{a_{1} \lambda_{2}+a_{2} \lambda_{4}} \\ & V_{a_{1} \lambda_{2}+a_{2} \lambda_{4}} \end{aligned}$
	$D_{5} \times \mathbb{C}^{*}$	$k \omega_{1}$ $k \omega_{2}$ $k \omega_{3}$ $k \omega_{5}$ $k \omega_{6}$		
E_{7}	A_{7}	${ }^{k} \omega_{7}$		$V_{a_{2} \lambda_{2}+a_{3} \lambda_{4}+a_{4} \lambda_{6}}$
	$E_{6} \times \mathbb{C}^{*}$	$k \omega_{1}$ $k \omega_{2}$ ${ }^{k} \omega_{7}$		$\begin{aligned} & V_{a_{1} \lambda_{1}+a_{2} \lambda_{2}+a_{3} \lambda_{6}} \otimes V_{2 a_{1}-2 a_{3}} \\ & V_{a_{1} \lambda_{1}+\left(a_{2}+a_{7}\right) \lambda_{2}+a_{3} \lambda_{3}+a_{4} \lambda_{4}+a_{5} \lambda_{5}+a_{6} \lambda_{6}} \otimes \\ & \quad V_{-a_{1}+3 a_{2}+a_{3}-a_{5}+a_{6}-3 a_{7}} \\ & V_{a_{1} \lambda_{1}+a_{2} \lambda_{6}} \otimes V_{-a_{1}+a_{2}+3 a_{3}-3 a_{4}} \end{aligned}$
	$D_{6} \times A_{1}$	${ }^{*} \omega_{7}$	$\bigoplus_{a_{1}+2 a_{2}+a_{3}=k}$	$V_{a_{1} \lambda_{1}+a_{2} \lambda_{2}+a_{3} \lambda_{6}} \otimes V_{a_{1} \lambda_{7}}$

To obtain the previous table we shall adapt the proof of Proposition 4.4 in [FL10 by Feigin and Littelmann. But first we introduce some additional notation.
Let $P_{i} \supset B$ denote the maximal parabolic subgroup of G associated to the fundamental weight ω_{i}. We shall consider the natural action of H on the projective varieties $Y=G / P_{i}$. The affine cone over Y is denoted by \widehat{Y} and the stabilizer of $\overline{1} \in G / P_{i}$ is denoted by $H_{\overline{1}}$. The group $H_{\overline{1}}$ is a parabolic subgroup of H. Its opposite parabolic subgroup in H is denoted by Q. Furthermore let Q^{u} be its unipotent radical and let L be the Levi-subgroup $H_{\overline{1}} \cap Q$ with Borel subgroup B_{L} defined by the simple roots of H that appear in L. If we consider the orbit $O=H . \overline{1} \simeq H / H_{\overline{1}}$ with normal bundle \mathcal{N} having fiber N at $\overline{1}$ then N has the structure of an L-module since $L \subset H_{\overline{1}}$.

If no confusion can arise we write P instead of P_{i} from now on.

The proof is divided into two parts. First we determine in which cases Y is a spherical H-variety. This part of the proof is conducted in four steps.

Step 1: The Borel subgroup B_{H} is a subgroup of P, it is contained in the stabilizer $H_{\overline{1}}$ of $\overline{1} \in Y$. Thus $H_{\overline{1}}$ is a parabolic subgroup of H and we can apply the Brion-Luna-Vust Local Structure Theorem [BLV86 to get the following proposition. This theorem sates that there exists a locally closed affine subvariety $Z \subset Y$ such that $\overline{1} \in Z, Z$ is stable under the action of $L, Q^{u} . Z$ is open in Y and the canonical map $Q^{u} \times Z \rightarrow Q^{u} . Z$ is an isomorphism of varieties.

We have the following proposition.
Proposition 3.1: The variety Y is H-spherical if and only if Z is a spherical L-variety.

Proof: Assume Z is spherical, i.e. a Borel subgroup of L has a dense orbit in Z. Let B_{L} be the Borel subgroup $B_{H} \cap L \subset L$ and let B_{L}^{-}be the opposite Borel subgroup. Then $B_{H}^{-}=Q^{u} B_{L}^{-}$is a Borel subgroup of H. Let $z \in Z$ be an element such that $B_{L}^{-} \cdot z$ is dense in Z. Since $Q^{u} . Z$ is dense in Y, so is $B_{H}^{-} \cdot z=Q^{u}\left(B_{L}^{-} \cdot z\right)$. Hence Y is a spherical H-variety.

If on the other hand Y is H-spherical, then $B_{H}^{-} \cdot y=Q^{u}\left(B_{L}^{-}\right) \cdot y$ is open in Y for some $y \in Y$. Since $Q^{u} . Z$ is open in Y we can assume that $y \in Z$. Now if $Q^{u}\left(B_{L}^{-} \cdot y\right)$ is dense in Y it follows that $B_{L}^{-} \cdot y$ is dense in Z.

Step 2:

Lemma 3.2: As an L-module the fiber N is isomorphic to $T_{\overline{1}} Z$.
Proof: We have

$$
T_{\overline{1}}\left(Q^{u} \times Z\right)=T_{\overline{1}} Y
$$

since $Q^{u} . Z$ is dense in Y. Furthermore we have

$$
T_{\overline{1}}\left(Q^{u} \times Z\right)=\operatorname{Lie} Q^{u} \oplus T_{\overline{1}} Z
$$

and since $T_{\overline{1}} Y=T_{\overline{1}}\left(H / H_{y}\right) \oplus N$ it follows

$$
T_{\overline{1}}\left(H / H_{y}\right) \oplus N=\operatorname{Lie} Q^{u} \oplus T_{\overline{1}} Z
$$

Now $T_{\overline{1}}\left(H / H_{y}\right) \simeq \operatorname{Lie} H / \operatorname{Lie} H_{y} \simeq \operatorname{Lie} Q^{u}$ since Q is the parabolic subgroup opposite to H_{y} and so it follows that $N \simeq T_{\overline{1}} Z$ (as L-module).

Step 3:
Proposition 3.3: The action of L on Z is spherical if and only if the action of L on N is spherical.

Proof: Suppose that the action of L on Z is spherical. Then $\mathbb{C}[Z]^{L}=\mathbb{C}$. And then by a corollary of Luna's Slice Theorem ([Slo89, Kor. 5.4]) we get that the action of L on Z is isomorphic to the L-module N.

If on the other hand N is L-spherical than $\mathbb{C}[N]^{L}=\mathbb{C}$ and by Luna's Slice Theorem ($\left[\right.$ Slo89, §4]) we get that also $\mathbb{C}[Z]^{L}=\mathbb{C}$ and then we can apply the same arguments to get that N and Z are isomorphic as L-varieties (cp. Lit94, 2.2]).

Step 4: It remains to compute N and to check in which cases it is a spherical L-module. Note that we have

$$
N \simeq\left(\operatorname{Lie} G / \operatorname{Lie} P_{i}\right) /\left(\operatorname{Lie} H / \operatorname{Lie} H_{\overline{1}}\right)
$$

So if $\Phi_{H} \subset \Phi$, then we can describe N as the root spaces that occur in $T_{\overline{1}} Y=$ Lie $G /$ Lie P_{i} but not in $T_{\overline{1}}\left(H / H_{\overline{1}}\right)$. These are all the root spaces $\mathbb{C} X_{\alpha}$ such that α is negative and $\mathbb{C} X_{\alpha} \not \subset \operatorname{Lie} P_{i}$ as well as $\mathbb{C} X_{\alpha} \not \subset$ Lie H.

The second part is to compute the restrictions of the G-modules $V_{k \omega_{i}^{*}}$ to H. It is well-known ([VP72, Thm. 2]) that

$$
\mathbb{C}[\widehat{Y}]=\bigoplus_{k \geq 0} V_{k \omega_{i}^{*}}
$$

where $V_{k \omega_{i}^{*}}$ corresponds to the homogeneous functions of degree k on \widehat{Y}. In order to derive branching rules for $V_{k \omega_{i}^{*}}$ we need to determine the U_{H}-invariants of $V_{k \omega_{i}^{*}}$, where U_{H} is the unipotent radical of B_{H}.

Because \widehat{Y} is a spherical $\left(H \times \mathbb{C}^{*}\right)$-variety and because $U_{H}=U_{H \times \mathbb{C}^{*}}$, we know from Lemma 1 in [it94 that the ring $\mathbb{C}[\widehat{Y}]^{U_{H}}$ is a polynomial ring with some set of generators f_{j} of degree $d_{j}, 1 \leq j \leq s$, where s is the number of generators. Thus we have the following branching rules in this situation.

Theorem 3.4: Let η_{j} denote the weight of f_{j} with respect to H and suppose G / P_{i} is a spherical H-variety. Then we get

$$
\operatorname{res}_{H}^{G}\left(V_{k \omega_{i}^{*}}\right)=\bigoplus_{a_{1} d_{1}+\ldots+a_{s} d_{s}=k} V_{a_{1} \eta_{1}+\ldots+a_{s} \eta_{s}}
$$

We need to compute the number of generators, i. e. the dimension of $\mathbb{C}[\widehat{Y}]^{U_{H}}$. Let U_{L} be the unipotent radical of $B_{L}=B \cap L$.

Proposition 3.5: We have

$$
\operatorname{dim} \mathbb{C}[\widehat{Y}]^{U_{H}}=\operatorname{dim} N-\operatorname{dim}\left(\text { generic } U_{L} \text {-orbit }\right)+1
$$

Proof: We know that $\operatorname{dim} \mathbb{C}[\widehat{Y}]^{U_{H}}=\operatorname{trdeg} \mathbb{C}(\widehat{Y})^{U_{H}}$ and by a theorem of Rosenlicht we know that trdeg $\mathbb{C}(\widehat{Y})^{U_{H}}=\operatorname{dim} \widehat{Y}-\operatorname{dim}$ (generic $U_{H^{-}}$orbit) (paragraph II.4.3.E in [Kra84, p. 143]).

So the proposition is an immediate corollary of the following lemma.

Lemma 3.6: Let Y, N, U_{L} and U_{H} be defined as above. Let O_{1} be a generic U_{H}-orbit in Y and O_{2} be a generic U_{L}-orbit in N. Then

$$
\operatorname{dim} Y-\operatorname{dim} O_{1}=\operatorname{dim} N-\operatorname{dim} O_{2}
$$

Proof: Let $O \subset Y$ be the open subset of X such that $\operatorname{dim} U_{H} . x$ is maximal for all $x \in O$ (i. e. $U_{H} . x$ is a generic orbit). We have $O \cap Q^{u} . Z \neq \emptyset$, because $Q^{u} . Z$ is open and dense in Y.

Let $x=q z$ be an element in $O \cap Q^{u} . Z$. We know that $U_{H}=U_{L} \cdot Q^{u}=Q^{u} . U_{L}$. So we have $U_{H} \cdot x=U_{H} \cdot(q z)=U_{L} Q^{u}(q z)=U_{L} Q^{u} . z=U_{H} . z$ and we can assume that $U_{H} \cdot x$ is a generic U_{H}-orbit in Y with $x \in Z$.

Suppose y is an element of the stabilizer $\left(U_{H}\right)_{x}$ of x. Then we have $y=q . u$ for some $q \in Q^{u}, u \in U_{L}$. So it follows from the Local Structure Theorem that $q=\mathrm{id}$ and $u x=x$. Thus we get $\left(U_{H}\right)_{x}=\left(U_{L}\right)_{x}$.

With $\operatorname{dim} Y=\operatorname{dim} Z+\operatorname{dim} Q^{u}$ (Local Structure Theorem) we get

$$
\begin{aligned}
\operatorname{dim} Y-\operatorname{dim} U_{H} \cdot x & =\operatorname{dim} Q^{u}+\operatorname{dim} Z-\operatorname{dim} U_{H} \cdot z \\
& =\operatorname{dim} Z-\left(\operatorname{dim} U_{H} \cdot x-\operatorname{dim} Q^{u}\right) \\
& =\operatorname{dim} Z-\left(\operatorname{dim} U_{H}-\operatorname{dim}\left(U_{H}\right)_{x}-\operatorname{dim} Q^{u}\right) \\
& =\operatorname{dim} Z-\left(\operatorname{dim} U_{H}-\operatorname{dim} Q^{u}-\operatorname{dim}\left(U_{L}\right)_{x}\right) \\
& =\operatorname{dim} Z-\left(\operatorname{dim} U_{L}-\operatorname{dim}\left(U_{L}\right)_{x}\right) \\
& =\operatorname{dim} Z-\operatorname{dim} U_{L} \cdot x
\end{aligned}
$$

2 The maximal reductive subgroups of the exceptional groups

We want to list all maximal reductive subgroups of the exceptional algebraic groups. G. Seitz listed all maximal closed connected subgroups in arbitrary characteristics. We recall his results for the case that the ground field is \mathbb{C} ([Sei91, Thm. 1).
Theorem 3.7: Let G be a simple algebraic group of exceptional type and let X be maximal among the proper closed connected subgroups of G. Then either X contains a maximal torus of G or X is semisimple and the pair (G, X) is given below. Moreover, maximal subgroups of each type exist and are unique up to conjugacy in $\operatorname{Aut}(G)$.

G	X simple	X not simple
G_{2}	A_{1}	
F_{4}	A_{1}	$A_{1} \times G_{2}$
E_{6}	$A_{2}, G_{2}, F_{4}, C_{4}$	$A_{2} \times G_{2}$
E_{7}	A_{1}, A_{2}	$A_{1} \times A_{1}, A_{1} \times G_{2}, A_{1} \times F_{4}, G_{2} \times C_{3}$
E_{8}	A_{1}, B_{2}	$A_{1} \times A_{2}, G_{2} \times F_{4}$

Since the maximal subgroups that do not contain a maximal torus are semisimple they are also maximal reductive subgroups of G.
It remains to identify the maximal reductive subgroups that are contained in a maximal subgroup of maximal rank. These groups fall in two categories. Some are the maximal parabolic subgroups of G and the others are so called subsystem subgroups. There is an algorithm (cp. paragraph no. 17 of Dyn57] or [BdS49]) that determines these subgroups: Start with the Dynkin diagram of G and adjoin the smallest root δ to obtain the extended Dynkin diagram. By removing a node from the extended diagram you arrive at the Dynkin diagram of a subgroup of G. By Theorem 5.5 and the subsequent remark in Dyn57 these groups are maximal. Since they are semisimple they are also maximal reductive.

To complete the list we need to consider the maximal parabolic subgroups of G. Any reductive subgroup of a parabolic can be assumed to be a subgroup of its Levi factor by Theorem 1 in [LS96. By considering the Dynkin diagrams it is transparent that the Levi subgroups need not be maximal reductive but can be subgroups of a subsystem subgroup. A simple case by case check shows that there are only two Levi groups, that are maximal reductive.
Summarizing this we have the following maximal reductive subgroups containing a maximal torus.

G	subsystem subgroups	Levi subgroups
G_{2}	$A_{2}, A_{1} \times A_{1}$	
F_{4}	$A_{1} \times C_{3}, A_{2} \times A_{2}, A_{3} \times A_{1}, B_{4}$	
E_{6}	$A_{5} \times A_{1}, A_{2} \times A_{2} \times A_{2}$	$D_{5} \times \mathbb{C}^{*}$
E_{7}	$D_{6} \times A_{1}, A_{5} \times A_{2}, A_{3} \times A_{3} \times A_{1}, A_{7}$	$E_{6} \times \mathbb{C}^{*}$
E_{8}	$A_{1} \times E_{7}, A_{2} \times E_{6}, A_{3} \times D_{5}, A_{4} \times A_{4}$	
	$A_{5} \times A_{2} \times A_{1}, A_{7} \times A_{1}, D_{8}, A_{8}$	

3 The exceptional group of type G_{2}

In this and each of the following sections let \mathfrak{b} be the Lie algebra of B_{L} and \mathfrak{u} the Lie algebra of U_{L} according to the case under consideration.

Now we consider the simply connected simple algebraic group G of type G_{2}. The long roots of its root system form a subsystem of type A_{2} and we consider the subsystem subgroup H obtained in this way. The simple roots of H are given by

$$
(1,0)_{A_{2}}=(3,1) \text { and }(0,1)_{A_{2}}=(0,1)
$$

Using the same methods as before we can prove:
Theorem 3.8: The varieties G / P_{1} and G / P_{2} are H-spherical.
Proof:
$\underline{\text { Case } G / P_{1}}$: We compute

$$
L=\left\langle T, U_{ \pm(0,1)}\right\rangle
$$

and

$$
N=\mathbb{C} X_{-(1,0)_{G_{2}}} \oplus \mathbb{C} X_{-(1,1)_{G_{2}}} \oplus \mathbb{C} X_{-(2,1)_{G_{2}}}
$$

If we define $X:=X_{-(1,1)}+X_{-(2,1)}$ we have $[\mathfrak{b}, X]=N$, which shows that N is L-spherical. It follows that G / P_{1} is a spherical H-variety.
$\underline{\text { Case } G / P_{2} \text { : In this case we can compute that } L=T \text { and }}$

$$
N=\mathbb{C} X_{-(1,1)} \oplus \mathbb{C} X_{-(2,1)}
$$

The module N consists of two linearly independent root spaces and since T is 2 -dimensional N is obviously L-spherical. That implies that G / P_{2} is a spherical H-variety.

Theorem 3.9: Let G be of type G_{2} and H of type A_{2}. Then we have the following branching rules:

$$
\begin{aligned}
\text { i) } \quad \operatorname{res}_{H}^{G}\left(V_{k \omega_{1}}\right) & =\bigoplus_{a_{1}+a_{2} \leq k} V_{a_{1} \lambda_{1}+a_{2} \lambda_{2}}, \\
\text { ii) } \quad \operatorname{res}_{H}^{G}\left(V_{k \omega_{2}}\right) & =\bigoplus_{a_{1}+a_{2}+a_{3}=k} V_{\left(a_{1}+a_{3}\right) \lambda_{1}+\left(a_{2}+a_{3}\right) \lambda_{2}} .
\end{aligned}
$$

Remark. In G_{2} the fundamental weights are self-dual.
Proof: i) We use "LiE" to compute the restriction of $V_{\omega_{1}}$ and get

$$
\operatorname{res}_{H}^{G}\left(V_{\omega_{1}}\right)=\mathbb{C} \oplus V_{\lambda_{1}} \oplus V_{\lambda_{2}} .
$$

Let f_{0}, f_{1}, f_{2} be highest weight vectors of these representations. We need to show that $\mathbb{C}[\widehat{Y}]^{U_{H}}$ is generated by these elements, i. e. we need to show that the dimension of $\mathbb{C}[\widehat{Y}]^{U_{H}}$ is 3 .

By considering $X_{-(1,0)} \in N$ we immediately see that the U_{L}-orbit of this element is of codimension 2. Thus $\operatorname{dim} \mathbb{C}[\widehat{Y}]^{U_{H}}=3$ and since we have already found three algebraically independent elements the branching rules follow immediately.
ii) We use "LiE" to compute

$$
\operatorname{res}_{H}^{G}\left(V_{\omega_{2}}\right)=V_{\lambda_{1}} \oplus V_{\lambda_{2}} \oplus V_{\lambda_{1}+\lambda_{2}}
$$

Let f_{1}, f_{2}, f_{3} be highest weight vectors of these modules. We know that L is the maximal torus in this case and so U_{L} is just the identity. A generic orbit in N is of dimension 0 . And since N is 2-dimensional, its codimension is 2 . That means a generic U_{H}-orbit has codimension 3 in \widehat{Y} and that is also the dimension of $\mathbb{C}[\widehat{Y}]^{U_{H}}$. We have already found three linearly independent elements which form a generating set. The branching rules follow immediately.

Proposition 3.10: The varieties G / P_{i} are not spherical H-varieties if H is any other maximal reductive subgroup of G_{2}.

Proof: We have the following maximal reductive subgroups besides $A_{2}: A_{1} \times A_{1}$ and A_{1}. If we compute the dimensions of a Borel subgroup in each case and the dimensions of G / P_{i} we obtain:

	G / P_{1}	G / P_{2}
dim	5	5

and

H	$A_{1} \times A_{1}$	A_{1}
$\operatorname{dim} B_{H}$	4	2

So $\operatorname{dim} B_{H}<\operatorname{dim} G / P_{i}, i=1,2$ for these subgroups.

4 The exceptional group of type F_{4}

In this section let G be the group of type F_{4}.
Let H be the subgroup of type B_{4} in G. This is a subsystem subgroup so from the Dynkin diagram of F_{4} we pass on to the extended Dynkin diagram by adding the smallest root δ to the system of simple roots.

By removing the simple root α_{4} we obtain a root-subsystem of type B_{4} and thus we find the corresponding subgroup $H \subset G$.
Explicitly we can choose the roots

$$
\begin{array}{ll}
(1,0,0,0)_{B_{4}}=(0,1,2,2), & (0,1,0,0)_{B_{4}}=(1,0,0,0), \\
(0,0,1,0)_{B_{4}}=(0,1,0,0), & (0,0,0,1)_{B_{4}}=(0,0,1,0),
\end{array}
$$

which form a set of simple roots of a root subsystem of type B_{4} in F_{4}.
We have the following theorem:
Theorem 3.11: The varieties $G / P_{i}, i=1, \ldots, 4$, are spherical H-varieties.
Proof: We need to check that N is a spherical L-module in each case. Case G / P_{1} : In this case we have

$$
\begin{gathered}
L=\left\langle T, U_{ \pm(0,1,2,2)}, U_{ \pm(0,1,0,0)}, U_{ \pm(0,0,1,0)},\right. \\
\left.U_{ \pm(0,1,1,0)}, U_{ \pm(0,1,2,0)}\right\rangle
\end{gathered}
$$

and

$$
N=\mathbb{C} X_{-(1,2,3,1)} \oplus \mathbb{C} X_{-(1,2,2,1)} \oplus \mathbb{C} X_{-(1,1,2,1)} \oplus \mathbb{C} X_{-(1,1,1,1)} .
$$

The Borel subgroup B_{L} of L obviously contains the maximal torus T of G. Since N consists of four root spaces with linearly independent roots and T is 4 -dimensional we know that there is a dense B_{L}-orbit in N. Hence N is L-spherical and that implies that G / P_{1} is H-spherical.
Case G / P_{2} : Here we have

$$
L=\left\langle T, U_{ \pm(1,0,0,0)}, U_{ \pm(0,0,1,0)}\right\rangle .
$$

We compute N in the same way as in the previous case and get

$$
\begin{aligned}
N= & \mathbb{C} X_{-(0,1,1,1)} \oplus \mathbb{C} X_{-(0,1,2,1)} \oplus \mathbb{C} X_{-(1,1,1,1)} \oplus \mathbb{C} X_{-(1,1,2,1)} \oplus \\
& \mathbb{C} X_{-(1,2,2,1)} \oplus \mathbb{C} X_{-(1,2,3,1)} .
\end{aligned}
$$

We check the sphericity on the level of Lie algebras. Consider the element

$$
X:=X_{-(1,1,2,1)}+X_{-(0,1,2,1)}+X_{-(1,1,1,1)}+X_{-(1,2,3,1)}
$$

in N. Then $[\mathfrak{b}, X]=N$. That means that N is a spherical L-variety and therefore G / P_{2} is a spherical H-variety.
Case G / P_{3} : We get

$$
\begin{aligned}
N= & \mathbb{C} X_{-(0,0,1,1)} \oplus \mathbb{C} X_{-(0,1,1,1)} \oplus \mathbb{C} X_{-(0,1,2,1)} \oplus \\
& \mathbb{C} X_{-(1,1,1,1)} \oplus \mathbb{C} X_{-(1,1,2,1)} \oplus \mathbb{C} X_{-(1,2,2,1)} \oplus \\
& \mathbb{C} X_{-(1,2,3,1)} .
\end{aligned}
$$

If we consider

$$
X:=X_{-(1,2,3,1)}+X_{-(1,2,2,1)}+X_{-(1,1,1,1)}+X_{-(0,1,2,1)} \in N
$$

we have that $[\mathfrak{b}, X]=N$, i. e. N is a spherical L-variety and that means that G / P_{3} is a spherical H-variety.
$\underline{\text { Case } G / P_{4}}$: In this case we have

$$
\begin{array}{r}
L=\left\langle T, U_{ \pm(1,0,0,0)}, U_{ \pm(0,1,0,0)}, U_{ \pm(0,0,1,0)},\right. \\
U_{ \pm(1,1,0,0)}, U_{ \pm(0,1,1,0)}, U_{ \pm(1,1,1,0)}, \\
\left.U_{ \pm(0,1,2,0)}, U_{ \pm(1,1,2,0)}, U_{ \pm(1,2,2,0)}\right\rangle
\end{array}
$$

and

$$
\begin{aligned}
& N=\mathbb{C} X_{-(0,0,0,1)} \oplus \mathbb{C} X_{-(0,0,1,1)} \oplus \mathbb{C} X_{-(0,1,1,1)} \oplus \\
& \mathbb{C} X_{-(0,1,2,1)} \oplus \mathbb{C} X_{-(1,1,1,1)} \oplus \mathbb{C} X_{-(1,1,2,1)} \oplus \\
& \mathbb{C} X_{-(1,2,2,1)} \oplus \mathbb{C} X_{-(1,2,3,1)} .
\end{aligned}
$$

The module N has the following structure.

We have $L=\mathbb{C}^{*} \times S O_{7}$ and N is an irreducible L-module of dimension 8. There exists only one such module which is the Spin_{7}-module. That N is a spherical L-module was proven by Victor Kac Kac80, Thm. 3, p. 208]. It follows that G / P_{4} is a spherical H-module.

The spherical cases imply the following branching rules.
Theorem 3.12: Let G be of type F_{4} and H of type B_{4}. Then we have the
following branching rules:

$$
\begin{aligned}
\text { i) } \quad \operatorname{res}_{H}^{G}\left(V_{k \omega_{1}}\right) & =\bigoplus_{a_{1}+a_{2}=k} V_{a_{1} \lambda_{2}+a_{2} \lambda_{4}}, \\
\text { ii) } \quad \operatorname{res}_{H}^{G}\left(V_{k \omega_{2}}\right) & =\bigoplus_{a_{1}+\ldots+a_{5}=k} V_{\left(a_{1}+a_{2}\right) \lambda_{1}+\left(a_{3}+a_{4}\right) \lambda_{2}+\left(a_{1}+a_{5}\right) \lambda_{3}+\left(a_{2}+a_{4}\right) \lambda_{4}}, \\
\text { iii) } \quad \operatorname{res}_{H}^{G}\left(V_{k \omega_{3}}\right) & =\bigoplus_{a_{1}+\ldots+a_{5}=k} V_{\left(a_{1}+a_{5}\right) \lambda_{1}+a_{2} \lambda_{2}+a_{3} \lambda_{3}+\left(a_{4}+a_{5}\right) \lambda_{4}}, \\
\text { iv) } \quad \operatorname{res}_{H}^{G}\left(V_{k \omega_{4}}\right) & =\bigoplus_{a_{1}+a_{2} \leq k} V_{a_{1} \lambda_{1}+a_{2} \lambda_{4}} .
\end{aligned}
$$

Remark. In F_{4} the fundamental weights are self-dual.
Proof:
i): Standard computations yield

$$
\operatorname{res}_{H}^{G}\left(V_{\omega_{1}}\right)=V_{\lambda_{2}} \oplus V_{\lambda_{4}} .
$$

Let now $f_{1}, f_{2} \in V_{\omega_{1}}$ be highest weight vectors of $V_{\lambda_{2}}$ and $V_{\lambda_{4}}$ respectively. We will show that $\mathbb{C}[\widehat{Y}]^{U_{H}}$ is generated by these degree 1 elements. We know that $\mathbb{C}[\widehat{Y}]^{U_{H}}$ is a polynomial ring. The grading and weights of f_{1} and f_{2} imply that they are algebraically independent. To rule out the possibility that there are generators of degree two or higher we need to show that the Krull dimension of $\mathbb{C}[\widehat{Y}]^{U_{H}}$ is 2 .

Thus we need to find a generic U_{L}-orbit in N and compute its codimension. Since we have found 2 algebraically independent elements in $\mathbb{C}[\widehat{Y}]^{U_{H}}$, we already know that the codimension must be at least 2 .

Consider the Lie algebra \mathfrak{l} of L. From above we know that the Lie algebra \mathfrak{u} of U_{L}, is

$$
\mathfrak{u}=\mathbb{C} X_{(0,1,2,2)} \oplus \mathbb{C} X_{(0,1,0,0)} \oplus \mathbb{C} X_{(0,0,1,0)} \oplus \mathbb{C} X_{(0,1,1,0)} \oplus \mathbb{C} X_{(0,1,2,0)}
$$

Define $X:=X_{-(1,2,3,1)} \in N$. Then

$$
\begin{array}{ll}
{\left[X_{(0,1,2,2)}, X\right]=0,} & {\left[X_{(0,1,0,0)}, X\right]=0} \\
{\left[X_{(0,0,1,0)}, X\right]=X_{-(1,2,2,1)},} & {\left[X_{(0,1,1,0)}, X\right]=X_{-(1,1,2,1)}} \\
{\left[X_{(0,1,2,0)}, X\right]=X_{-(1,1,1,1)},} &
\end{array}
$$

which shows that the orbit of X is of dimension 3. Thus a generic orbit has dimension at least 3 with codimension at most 1. By Proposition 3.5 we know that in this case $\operatorname{dim} \mathbb{C}[\widehat{Y}]^{U_{H}} \leq 2$. But since we have found two generators the dimension is exactly 2 and the restriction rules follow.
ii): In this case we need to find generators of $\mathbb{C}[\widehat{Y}]^{U_{H}}$. One can use the software "LiE" to compute

$$
\operatorname{res}_{H}^{G}\left(V_{\omega_{2}}\right)=V_{\lambda_{1}+\lambda_{3}} \oplus V_{\lambda_{1}+\lambda_{4}} \oplus V_{\lambda_{2}} \oplus V_{\lambda_{2}+\lambda_{4}} \oplus V_{\lambda_{3}} .
$$

Let f_{1}, \ldots, f_{5} be highest weight vectors of these irreducible modules.
Consider $X:=X_{-(1,1,2,1)}+X_{-(1,2,3,1)} \in N$ and let \mathfrak{u} be the Lie-algebra of U_{L} the unipotent radical of B_{L}. The stabilizer of this element is just 0 , which means that the dimension of a generic U_{L}-orbit is 2 with codimension 4. This implies that the codimension of a generic U_{H}-orbit in \widehat{Y} is 5 . Thus $\mathbb{C}[\widehat{Y}]^{U_{H}}$ is generated by its degree 1 elements and the assertion follows.
iii): We need to find generators of $\mathbb{C}[\widehat{Y}]^{U_{H}}$. One can use "LiE" to compute

$$
\operatorname{res}_{H}^{G}\left(V_{\omega_{3}}\right)=V_{\lambda_{1}} \oplus V_{\lambda_{2}} \oplus V_{\lambda_{3}} \oplus V_{\lambda_{4}} \oplus V_{\lambda_{1}+\lambda_{4}} .
$$

Let f_{1}, \ldots, f_{5} be highest weight vectors of these irreducible modules.
Consider $X:=X_{-(1,1,1,1)}+X_{-(1,2,2,1)} \in N$ and take an element $u \in \mathfrak{u}$ with $u=a X_{(1,0,0,0)}+b X_{(0,1,0,0)}+c X_{(1,1,0,0)}$. Then

$$
\begin{aligned}
& & {[u, X]=0 } \\
\Rightarrow & & =a X_{-(0,1,1,1)}+b X_{-(1,1,2,1)}+c\left(X_{-(0,1,2,1)}+X_{-(0,0,1,1)}\right) \\
\Rightarrow & & a=b=c=0 \Rightarrow u=0
\end{aligned}
$$

and hence a generic U_{L}-orbit has dimension 3 with codimension 4. That means that $\mathbb{C}[\widehat{Y}]^{U_{H}}$ is of dimension 5 and generated by the elements f_{i}.
iv): In this case we need to find generators of $\mathbb{C}[\widehat{Y}]^{U_{H}}$. We use "LiE" to compute

$$
\operatorname{res}_{H}^{G}\left(V_{\omega_{4}}\right)=\mathbb{C} \oplus V_{\lambda_{1}} \oplus V_{\lambda_{4}} .
$$

Let f_{1}, \ldots, f_{3} be highest weight vectors of these irreducible modules.
Consider $X:=X_{-(1,2,3,1)}$. We know that for

$$
X_{(1,0,0,0)}, X_{(0,1,0,0)}, X_{(1,1,0,0)} \in \mathfrak{u}
$$

we have

$$
\left[X_{(1,0,0,0)}, X\right]=\left[X_{(0,1,0,0)}, X\right]=\left[X_{(1,1,0,0)}, X\right]=0
$$

and

$$
\begin{array}{ll}
{\left[X_{(0,0,1,0)}, X\right]=X_{-(1,2,2,1)},} & {\left[X_{(0,1,1,0)}, X\right]=X_{-(1,1,2,1)},} \\
{\left[X_{(0,1,2,0)}, X\right]=X_{-(1,1,1,1)},} & {\left[X_{(1,1,1,0)}, X\right]=X_{-(0,1,2,1)},} \\
{\left[X_{(1,1,2,0)}, X\right]=X_{-(0,1,1,1)},} & {\left[X_{(1,2,2,0)}, X\right]=X_{-(0,0,1,1)}}
\end{array}
$$

and thus the generic stabilizer is at most of dimension 3 . The generic orbit is at least of dimension 6 and thus its codimension is at most 2 . This means that a generic U_{H}-orbit in \widehat{Y} is of dimension less or equal to 3 .

Since we have found 3 algebraically independent elements the dimension of $\mathbb{C}[\widehat{Y}]^{U_{H}}$ is exactly 3 and this finishes the proof.

Proposition 3.13: The varieties G / P_{i} are not spherical H-varieties if H is any other maximal reductive subgroup of F_{4}.

Proof: We have the following maximal reductive subgroups besides B_{4} : $A_{1} \times C_{3}$, $A_{2} \times A_{2}, A_{3} \times A_{1}, A_{1} \times G_{2}$ and A_{1}. If we compute the dimensions of a Borel subgroup in each case and the dimensions of G / P_{i} we obtain:

	G / P_{1}	G / P_{2}	G / P_{3}	G / P_{4}		
dim	15	20	20	15		
H	$A_{1} \times C_{3}$	$A_{2} \times A_{2}$	$A_{3} \times A_{1}$	$A_{1} \times G_{2}$	A_{1}	
$\operatorname{dim} B_{H}$	14	10	11	10	2	

So we have $\operatorname{dim} B_{H}<\operatorname{dim} G / P_{i}$ for $i=1, \ldots, 4$ in each case.

5 The exceptional group of type E_{6}

Now we turn to the group of type E_{6}. First we calculate the dimensions of the Borel subgroups of the maximal reductive subgroups as well as the dimensions of G / P_{i} for $i=1, \ldots, 6$.

H	$A_{5} \times A_{1}$	$A_{2} \times A_{2} \times A_{2}$	$D_{5} \times \mathbb{C}^{*}$	$A_{2} \times G_{2}$	G_{2}	A_{2}	F_{4}	C_{4}
$\operatorname{dim} B_{H}$	22	15	26	13	8	5	28	20

and

	G / P_{1}	G / P_{2}	G / P_{3}	G / P_{4}	G / P_{5}	G / P_{6}
dim	16	21	25	29	25	16

Thus we get the following proposition.
Proposition 3.14: Let G be the simply connected simple algebraic group of type E_{6} and let H be a maximal reductive subgroup of type $A_{2} \times A_{2} \times A_{2}, A_{2} \times G_{2}$, G_{2} or A_{2}.
Then G / P_{i} is not H-spherical for $i=1, \ldots, 6$.
Proof: In these cases we have $\operatorname{dim} B_{H}<\operatorname{dim} G / P_{i}$ for $i=1, \ldots, 6$.

Now we consider the remaining groups and first we start with the subsystem subgroup of type $A_{5} \times A_{1}$.
Theorem 3.15: Let G be the simply connected simple algebraic group of type E_{6} and let H be the maximal reductive subgroup of type $A_{5} \times A_{1}$. Then G / P_{1} and G / P_{6} are spherical H-varieties. The varieties $G / P_{2}, \ldots, G / P_{5}$ are not H spherical.

Proof: The dimension of a Borel subgroup of a group of type $A_{5} \times A_{1}$ is 22 . Since we have $\operatorname{dim} G / P_{3}=25, \operatorname{dim} G / P_{4}=29, \operatorname{dim} G / P_{5}=25$ these varieties cannot be spherical.

We know that $\omega_{2}^{*}=\omega_{2}$ in type E_{6}. Now if G / P_{2} was a spherical H-variety, $\operatorname{res}_{H}^{G}\left(V_{k \omega_{2}}\right)$ would be multiplicity-free for all $k \in \mathbb{N}$ by what has been said above. But with "LiE" we compute

$$
\operatorname{res}_{H}^{G}\left(V_{4 \omega_{2}}\right)=\ldots \oplus 2\left(V_{2 \lambda_{3}} \otimes V_{3 \lambda_{6}}\right) \oplus \ldots
$$

which means that there are multiplicities in this case.
To prove that G / P_{1} and G / P_{6} are spherical H-varieties we proceed as in the cases above. We will show how H is embedded in G. For doing so we consider the extended Dynkin diagram of type E_{6} again by adding the smallest root δ to the simple roots. Now omitting the root α_{2} we obtain the embedding of $A_{5} \times A_{1}$ in E_{6}.

Explicitly we choose the following set of simple roots:

$$
\begin{array}{ll}
(1,0,0,0,0,0)_{A_{5} \times A_{1}}=(1,0,0,0,0,0) & (0,1,0,0,0,0)_{A_{5} \times A_{1}}=(0,0,1,0,0,0) \\
(0,0,1,0,0,0)_{A_{5} \times A_{1}}=(0,0,0,1,0,0) & (0,0,0,1,0,0)_{A_{5} \times A_{1}}=(0,0,0,0,1,0) \\
(0,0,0,0,1,0)_{A_{5} \times A_{1}}=(0,0,0,0,0,1) & (0,0,0,0,0,1)_{A_{5} \times A_{1}}=(1,2,2,3,2,1)
\end{array}
$$

Case G / P_{1} : We compute

$$
\begin{aligned}
L=\langle & T, U_{ \pm(0,0,1,0,0,0)}, U_{ \pm(0,0,0,1,0,0)}, U_{ \pm(0,0,0,0,1,0)}, U_{ \pm(0,0,0,0,0,1)} \\
& U_{ \pm(0,0,1,1,0,0)}, U_{ \pm(0,0,0,1,1,0)}, U_{ \pm(0,0,0,0,1,1)} \\
& \left.U_{ \pm(0,0,1,1,1,0)}, U_{ \pm(0,0,0,1,1,1)}, U_{ \pm(0,0,1,1,1,1)}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
N= & \mathbb{C} X_{-(1,1,1,1,0,0)} \oplus \mathbb{C} X_{-(1,1,1,1,1,0)} \oplus \mathbb{C} X_{-(1,1,1,2,1,0)} \oplus \\
& \mathbb{C} X_{-(1,1,1,1,1,1)} \oplus \mathbb{C} X_{-(1,1,2,2,1,0)} \oplus \mathbb{C} X_{-(1,1,1,2,1,1)} \oplus \\
& \mathbb{C} X_{-(1,1,2,2,1,1)} \oplus \mathbb{C} X_{-(1,1,1,2,2,1)} \oplus \mathbb{C} X_{-(1,1,2,2,2,1)} \oplus \\
& \mathbb{C} X_{-(1,1,2,3,2,1)} .
\end{aligned}
$$

Now let $X:=X_{-(1,1,2,3,2,1)}+X_{-(1,1,1,1,1,1)}$. We have

$$
[\mathfrak{h}, X]=\left\langle X_{-(1,1,2,3,2,1)}, X_{-(1,1,1,1,1,1)}\right\rangle,
$$

since the roots are linearly independent. Next we compute

$$
\begin{array}{ll}
{\left[X_{(0,0,0,1,0,0)}, X\right]=X_{-(1,1,2,2,2,1)}} & {\left[X_{(0,0,0,1,1,0)}, X\right]=X_{-(1,1,2,2,1,1)}} \\
{\left[X_{(0,0,1,1,0)}, X\right]=X_{-(1,1,1,2,1)}} & {\left[X_{(0,0,1,1,1,0}, X\right]=X_{-(1,1,1,2,1)}} \\
{\left[X_{(0,0,0,1,1,1)}, X\right]=X_{-(1,1,2,2,1,0)}} & {\left[X_{(0,0,1,1,1,1)}, X\right]=X_{-(1,1,1,2,1,0)}} \\
{\left[X_{(0,0,0,0,0,1)}, X\right]=X_{-(1,1,1,1,1,0)}} & {\left[X_{(0,0,0,0,1,1)}, X\right]=X_{-(1,1,1,1,0,0)}}
\end{array}
$$

and these computations show that we have ten linearly independent vectors in $[\mathfrak{b}, X] \Rightarrow[\mathfrak{b}, X]=N \Rightarrow N$ is a spherical L-module. Hence G / P_{1} is a spherical H-variety.

Case G / P_{6} : The H-sphericity of G / P_{6} is an immediate corollary of the following theorem which states that $\mathbb{C}[\widehat{Y}]$ is multiplicity free.

Theorem 3.16: Let G be the simply connected simple algebraic group of type E_{6} and let $H \subset G$ be the maximal reductive subgroup of type $A_{5} \times A_{1}$.

Then we have the following branching rules:

$$
\begin{aligned}
\text { i) } & \operatorname{res}_{H}^{G}\left(V_{k \omega_{6}}\right) \\
\text { ii) } \quad \operatorname{res}_{H}^{G}\left(V_{k \omega_{1}}\right) & =\bigoplus_{a_{1}+2 a_{2}+a_{3}=k} V_{a_{1} \lambda_{1}+a_{2} \lambda_{2}+a_{3} \lambda_{4}=k} V_{a_{1} \lambda_{2}+a_{2} \lambda_{4}+a_{3} \lambda_{5}} \otimes V_{a_{1} \lambda_{6}},
\end{aligned}
$$

Remark. In E_{6} we have $\omega_{1}^{*}=\omega_{6}, \omega_{2}^{*}=\omega_{2}, \omega_{3}^{*}=\omega_{5}$ and $\omega_{4}^{*}=\omega_{4}$.
Proof: ii) With "LiE" we compute

$$
\begin{aligned}
\operatorname{res}_{H}^{G}\left(V_{\omega_{6}}\right) & =\left(V_{\lambda_{2}} \otimes \mathbb{C}\right) \oplus\left(V_{\lambda_{5}} \otimes V_{\lambda_{6}}\right), \\
\operatorname{res}_{H}^{G}\left(V_{2 \omega_{6}}\right) & =\left(V_{2 \lambda_{2}} \otimes \mathbb{C}\right) \oplus\left(V_{\lambda_{2}+\lambda_{5}} \otimes V_{\lambda_{6}}\right) \oplus\left(V_{2 \lambda_{5}} \otimes V_{2 \lambda_{6}}\right) \oplus\left(V_{\lambda_{4}} \otimes \mathbb{C}\right) .
\end{aligned}
$$

There are at least two generators of degree 1 and of weights $\left(\lambda_{2}, 0\right)$ and $\left(\lambda_{5}, \lambda_{6}\right)$ and one generator of degree 2 and of weight $\left(\lambda_{4}, 0\right)$ for $\mathbb{C}[\widehat{Y}]^{U_{H}}$ with $Y=G / P_{1}$. In the proof of the previous theorem we have found an element $X \in N$ with a U_{L}-orbit of codimension 2. So it follows that $\operatorname{dim} \mathbb{C}[\widehat{Y}]^{U_{H}}=3$ and the branching rules follow immediately.
i) Theses branching rules follow directly from ii) by noting that $\lambda_{1}^{*}=\lambda_{5}$, $\lambda_{2}^{*}=\lambda_{4}$ and $\lambda_{6}^{*}=\lambda_{6}$.

Theorem 3.17: Let G be the simply connected simple algebraic group of type E_{6} and let H be the maximal reductive subgroup of type F_{4}. Then $G / P_{i}, i \neq 4$, are spherical H-varieties. The variety G / P_{4} is not H-spherical.

Proof: If we have the Dynkin diagrams

and

of E_{6} and F_{4}, then we have an embedding of the simple Lie-algebra F_{4} in E_{6} by choosing the following root vectors

$$
\begin{array}{ll}
X_{x}:=X_{(0,1,0,0,0,0)}, & X_{z}:=\frac{1}{\sqrt{2}}\left(X_{(0,0,1,0,0,0)}+X_{(0,0,0,0,1,0)}\right) \\
X_{y}:=X_{(0,0,0,1,0,0)}, & X_{u}:=\frac{1}{\sqrt{2}}\left(X_{(1,0,0,0,0,0)}+X_{(0,0,0,0,0,1)}\right)
\end{array}
$$

(Dyn57, p. 258, Table 24] with different numbering of the Dynkin diagrams). Now we consider the associated algebraic subgroup of E_{6}.
Case G / P_{1} : We compute

$$
N=\mathbb{C} X_{-(1,1,1,2,2,1)} .
$$

So N is obviously L-spherical and thus G / P_{1} is H-spherical.
Case G / P_{6} : The H-sphericity of $Y=G / P_{6}$ is an immediate corollary of the following theorem which states that $\mathbb{C}[\widehat{Y}]$ is multiplicity free.

Case G / P_{2} : In this case we get

$$
\begin{aligned}
N= & \mathbb{C} X_{-(0,1,0,1,1,0)} \oplus \mathbb{C} X_{-(0,1,0,1,1,1)} \oplus \mathbb{C} X_{-(0,1,1,1,1,1)} \oplus \\
& \mathbb{C} X_{-(0,1,1,2,1,1)} \oplus \mathbb{C} X_{-(0,1,1,2,2,1)} \oplus \mathbb{C} X_{-(1,1,1,2,2,1)_{E_{6}}} .
\end{aligned}
$$

If we define $X:=X_{-(1,1,1,2,2,1)}$ then we have:

$$
\begin{array}{ll}
{\left[X_{(0,0,0,1)_{F_{4}}}, X\right]=X_{-(0,1,1,2,2,1)},} & {\left[X_{(0,0,1,1)_{F_{4}}}, X\right]=X_{-(0,1,1,2,1,1)},} \\
{\left[X_{(0,1,1,1)_{F_{4}}}, X\right]=X_{-(0,1,1,1,1,1)},} & {\left[X_{(0,1,2,1)_{F_{4}}}, X\right]=X_{-(0,1,0,1,1,1)},} \\
{\left[X_{(0,1,2,2)_{F_{4}}}, X\right]=X_{-(0,1,0,1,1,0)} .}
\end{array}
$$

With $[\mathfrak{h}, X]=\mathbb{C} X$ we get $[\mathfrak{b}, X]=N$ and it follows that N is a spherical L-module.
Case G / P_{3} : In this case we get

$$
\begin{aligned}
N= & \mathbb{C} X_{-(0,0,1,1,1,1)} \oplus \mathbb{C} X_{-(0,1,1,1,1,1)} \oplus \mathbb{C} X_{-(0,1,1,2,1,1)} \oplus \\
& \mathbb{C} X_{-(0,1,1,2,2,1)} \oplus \mathbb{C} X_{-(1,1,1,2,2,1)} .
\end{aligned}
$$

Set $X:=X_{-(1,1,1,2,2,1)}+X_{-(0,1,1,2,1,1)}$. Then we have

$$
[\mathfrak{h}, X]=\mathbb{C} X_{-(1,1,1,2,2,1)} \oplus \mathbb{C} X_{-(0,1,1,2,1,1)},
$$

since the roots of the root vectors defining X are linearly independent. Furthermore we have

$$
\begin{aligned}
& {\left[X_{(0,0,0,1)_{F_{4}}}, X\right]=X_{-(0,1,1,2,2,1)}, \quad\left[X_{(1,0,0,0)_{F_{4}}}, X\right]=X_{-(0,1,1,1,1,1)},} \\
& {\left[X_{(1,1,0,0)_{F_{4}}}, X\right]=X_{-(0,0,1,1,1,1)} .}
\end{aligned}
$$

So $[\mathfrak{b}, X]=N \Rightarrow N$ is a spherical L-module and this implies that G / P_{3} is H-spherical.
Case G / P_{5} : The H-sphericity of $Y=G / P_{5}$ is an immediate corollary of the following theorem which states that $\mathbb{C}[\widehat{Y}]$ is multiplicity free.

We can derive branching rules in the cases where G / P_{i} is a spherical H variety.
Theorem 3.18: Let G be the simple simply connected algebraic group of type E_{6} and H be the subgroup of type F_{4}.

Then we have the branching rules:

$$
\begin{aligned}
& \text { i) } \operatorname{res}_{H}^{G}\left(V_{k \omega_{1}}\right)=\bigoplus_{a_{1} \leq k} V_{a_{1} \lambda_{4}}, \\
& \text { ii) } \operatorname{res}_{H}^{G}\left(V_{k \omega_{2}}\right)=\bigoplus_{a_{1} \lambda_{1}+a_{2} \lambda_{4},}, \\
& \text { iii) } \operatorname{res}_{H}^{G}\left(V_{k \omega_{3}}\right)=\bigoplus_{a_{1}+a_{2}=k} V_{a_{1} \lambda_{1}+a_{2} \lambda_{3}+a_{3} \lambda_{4},}, \\
& \text { iv) } \operatorname{res}_{H}^{G}\left(V_{k \omega_{5}}\right)=\bigoplus_{a_{2}+a_{3}=k} V_{a_{1} \lambda_{1}+a_{2} \lambda_{3}+a_{3} \lambda_{4},}^{a_{1}+a_{2}+a_{3}=k} \\
& \text { v) } \operatorname{res}_{H}^{G}\left(V_{k \omega_{6}}\right)=\bigoplus_{a_{1} \leq k} V_{a_{1} \lambda_{4}} .
\end{aligned}
$$

Proof: ve In this case we work with $Y=G / P_{1}$. With "LiE" we compute

$$
\operatorname{res}_{H}^{G}\left(V_{\omega_{6}}\right)=\mathbb{C} \oplus V_{\lambda_{4}} .
$$

Since N is 1-dimensional in this case, each U_{L}-orbit is 0 -dimensional with codimension 1. So $\operatorname{dim} \mathbb{C}[\widehat{Y}]^{U_{H}}=2$ and $\mathbb{C}[\widehat{Y}]^{U_{H}}$ is generated by its degree1 -elements. The branching rules follow.
i) Theses branching rules follow directly from v) by noting that $\omega_{1}=\omega_{6}^{*}$ and $\lambda_{i}^{*}=\lambda_{i}$.
ii) In this case we work with $Y=G / P_{2}$. With "LiE" we compute

$$
\operatorname{res}_{H}^{G}\left(V_{\omega_{2}}\right)=V_{\lambda_{1}} \oplus V_{\lambda_{4}},
$$

so there are two generators of degree 1 . The module N is of dimension 6 and we have seen that $X_{-(1,1,1,2,2,1)} \in N$ is an element such that $U_{L} \cdot X$ is of dimension 5. So $\operatorname{dim} \mathbb{C}[\widehat{Y}]^{U_{H}} \leq 2$ and hence $\mathbb{C}[\widehat{Y}]^{U_{H}}$ is generated by its degree-1-elements. The branching rules follow immediately.
iv) In this case we work with G / P_{3}. With "LiE" we compute

$$
\operatorname{res}_{H}^{G}\left(V_{\omega_{5}}\right)=V_{\lambda_{1}} \oplus V_{\lambda_{3}} \oplus V_{\lambda_{4}},
$$

so again there are 3 generators of degree 1 . The module N is of dimension 5 and $X_{-(1,1,1,2,2,1)_{E_{6}}}+X_{-(0,1,1,2,1,1)_{E_{6}}}$ is an element of N with a 3-dimensional U_{L}-orbit (cp. proof of previous theorem). So $\operatorname{dim} \mathbb{C}[\widehat{Y}]^{U_{H}} \leq 3$. It follows that $\mathbb{C}[\widehat{Y}]^{U_{H}}$ is generated by its degree-1-elements and so the branching rules follow.
iii) These branching rules follow directly from v) by noting that $\omega_{3}=\omega_{5}^{*}$ and $\lambda_{i}^{*}=\lambda_{i}$.
Theorem 3.19: Let G be the simply connected simple algebraic group of type E_{6} and let H be the maximal reductive subgroup of type C_{4}. Then G / P_{1} and G / P_{6} are spherical H-varieties. The varieties $G / P_{2}, \ldots, G / P_{5}$ are not H-spherical.

Proof: That $G / P_{2}, \ldots, G / P_{5}$ are not H-spherical follows by dimension reasons. For the other two cases we consider the Dynkin diagrams

and

of E_{6} and C_{4} respectively. Then the simple Lie-algebra of type C_{4} is embedded into the simple Lie-algebra of type E_{6} by choosing the following root vectors:

$$
\begin{aligned}
& X_{x}:=\frac{1}{\sqrt{2}}\left(X_{(0,1,1,1,0,0)}+X_{(0,1,0,1,1,0)}\right), \quad X_{y}:=\frac{1}{\sqrt{2}}\left(X_{(1,0,0,0,0,0)}+X_{(0,0,0,0,0,1)}\right) \\
& X_{z}:=\frac{1}{\sqrt{2}}\left(X_{(0,0,1,0,0,0)}+X_{-(0,0,0,0,1,0)}\right), X_{u}:=X_{(0,0,0,1,0,0)}
\end{aligned}
$$

(cp. Dyn57, p. 258, Table 24]). Now we consider the associated subgroup H of G.
Case G / P_{1} : We compute

$$
\begin{aligned}
N= & \mathbb{C} X_{-(1,1,1,1,1,1)} \oplus \mathbb{C} X_{-(1,1,1,2,1,1)} \oplus \mathbb{C} X_{-(1,1,2,2,1,1)} \oplus \\
& \mathbb{C} X_{-(1,1,2,2,2,1)} \oplus \mathbb{C} X_{-(1,1,2,3,2,1)} .
\end{aligned}
$$

We define $X:=X_{-(1,1,2,3,2,1)}+X_{-(1,1,1,1,1,1)}$. Then we have

$$
[\mathfrak{h}, X]=\mathbb{C} X_{-(1,1,2,3,2,1)} \oplus \mathbb{C} X_{-(1,1,1,1,1,1)} .
$$

Further we get

$$
\begin{aligned}
& {\left[X_{(0,0,0,1)_{C_{4}}}, X\right]=X_{-(1,1,2,2,2,1)}, \quad\left[X_{(0,0,1,1) C_{C_{4}}}, X\right]=X_{-(1,1,2,2,1,1)}} \\
& {\left[X_{(0,0,2,1)_{C_{4}}}, X\right]=X_{-(1,1,1,2,1,1)} .}
\end{aligned}
$$

This implies that $[\mathfrak{b}, X]$ contains five linearly independent vectors of $N \Rightarrow$ $[\mathfrak{b}, X]=N$. Hence N is L-spherical.
Case G / P_{6} : The H-sphericity of $Y=G / P_{6}$ is an immediate corollary of the following theorem which states that $\mathbb{C}[\hat{Y}]$ is multiplicity free.

From the spherical cases we can derive the following branching rules:
Theorem 3.20: Let G be the simply connected simple algebraic group of type E_{6} and H be the subgroup of type C_{4}.

Then we have the following branching rules:

$$
\begin{aligned}
\text { i) } \operatorname{res}_{H}^{G}\left(V_{k \omega_{1}}\right) & =\bigoplus_{a_{1}+2 a_{2}+2 a_{3}=k} V_{a_{1} \lambda_{2}+a_{2} \lambda_{4}}, \\
\text { ii) } \operatorname{res}_{H}^{G}\left(V_{k \omega_{6}}\right) & =\bigoplus_{a_{1}+2 a_{2}+2 a_{3}=k} V_{a_{1} \lambda_{2}+a_{2} \lambda_{4}} .
\end{aligned}
$$

Proof:
ii) Here we are in the case $Y=G / P_{1}$. With "LiE" we compute

$$
\operatorname{res}_{H}^{G}\left(V_{\omega_{6}}\right)=V_{\lambda_{2}} \quad \text { and } \quad \operatorname{res}_{H}^{G}\left(V_{2 \omega_{6}}\right)=\mathbb{C} \oplus V_{2 \lambda_{2}} \oplus V_{\lambda_{4}} .
$$

So there is one generator of degree 1 and two of degree 2 in $\mathbb{C}[\widehat{Y}]^{U_{H}}$. From the calculations in the proof of the previous theorem we know that $X_{-(1,1,2,3,2,1)}+$ $X_{-(1,1,1,1,1,1)}$ is an element of N whose U_{L}-orbit is of codimension 2. Hence $\operatorname{dim} \mathbb{C}[\hat{Y}]^{U_{H}} \leq 3$. But since we have already found three generators we know that $\operatorname{dim} \mathbb{C}[\widehat{Y}]^{U_{H}}=3$. The branching rules follow immediately.
i) Theses branching rules follow directly from ii) by noting that $\omega_{1}=\omega_{6}^{*}$, $\lambda_{2}^{*}=\lambda_{2}$ and $\lambda_{4}^{*}=\lambda_{4}$.

Next we consider the Levi subgroup H of G that is obtained by omitting the simple root α_{1}. From the Dynkin diagram of E_{6} we see that H is the group $D_{5} \times \mathbb{C}^{*}$.

Theorem 3.21: Let G be the simply connected simple algebraic group of type E_{6} and let H be the Levi subgroup $D_{5} \times \mathbb{C}^{*}$.
Then G / P_{i} is a spherical H-variety for $i \neq 4$. The variety G / P_{4} is not H spherical.

Proof: This is proven in [Lit94.
Theorem 3.22: Let G be the simply connected simple algebraic groups of type E_{6} let $H \subset G$ be the Levi subgroup $D_{5} \times \mathbb{C}^{*}$. Then we have the following
branching rules.

$$
\begin{aligned}
& \text { i) } \operatorname{res}_{H}^{G}\left(V_{k \omega_{1}}\right)=\bigoplus_{a_{1}+a_{2}+a_{3}=k} V_{a_{1} \lambda_{1}+a_{2} \lambda_{5}} \otimes V_{-2 a_{1}+a_{2}+4 a_{3}} \text {, } \\
& \text { ii) } \operatorname{res}_{H}^{G}\left(V_{k \omega_{2}}\right)=\bigoplus_{a_{1}+a_{2}+a_{3}+a_{4}=k} V_{a_{1} \lambda_{2}+a_{2} \lambda_{4}+a_{3} \lambda_{5}} \otimes V_{3 a_{2}-3 a_{3}} \text {, } \\
& \text { iii) } \operatorname{res}_{H}^{G}\left(V_{k \omega_{3}}\right)=\bigoplus_{a_{1}+\ldots+a_{6}=k} \quad \begin{array}{c}
V_{\left(a_{1}+a_{6}\right) \lambda_{1}+a_{2} \lambda_{2}+a_{3} \lambda_{3}+a_{4} \lambda_{4}+\left(a_{5}+a_{6}\right) \lambda_{5}} \otimes \\
V_{2 a_{1}-4 a_{2}+2 a_{3}-a_{4}+5 a_{5}-a_{6}}
\end{array} \text {, } \\
& \text { iv) } \operatorname{res}_{H}^{G}\left(V_{k \omega_{5}}\right)=\bigoplus_{a_{1}+\ldots+a_{6}=k} \quad \begin{array}{c}
V_{\left(a_{1}+a_{6}\right) \lambda_{1}+a_{2} \lambda_{2}+a_{3} \lambda_{3}+\left(a_{4}+a_{6}\right) \lambda_{4}+a_{5} \lambda_{5}} \otimes, \\
V_{-2 a_{1}+4 a_{2}-2 a_{3}-5 a_{4}+a_{5}+a_{6}}
\end{array} \text {, } \\
& \text { v) } \operatorname{res}_{H}^{G}\left(V_{k \omega_{6}}\right)=\bigoplus_{a_{1}+a_{2}+a_{3}=k} \quad V_{a_{1} \lambda_{1}+a_{2} \lambda_{4}} \otimes V_{2 a_{1}-a_{2}-4 a_{3}} .
\end{aligned}
$$

Proof: From paragraph 1.4 in Lit94 we get the following branching rules.
i) $\operatorname{res}_{H}^{G}\left(V_{k \omega_{1}}\right)=$

$$
\bigoplus_{a_{1}+a_{2}+a_{3}=k}
$$

$V_{\left(a_{3}-a_{1}-a_{2}\right) \omega_{1}+a_{2} \omega_{3}+a_{1} \omega_{6}}$,
ii) $\operatorname{res}_{H}^{G}\left(V_{k \omega_{2}}\right)=\bigoplus_{a_{1}+a_{2}+a_{3}+a_{4}=k} V_{-\left(a_{1}+2 a_{2}\right) \omega_{1}+a_{3} \omega_{2}+a_{2} \omega_{3}+a_{1} \omega_{5}}$,
iii) $\operatorname{res}_{H}^{G}\left(V_{k \omega_{3}}\right)=\bigoplus_{a_{1}+\ldots+a_{6}=k} \quad \begin{gathered}V_{-\left(2 a_{2}+a_{3}+a_{5}+2 a_{6}\right) \omega_{1}+a_{5} \omega_{2}+\left(a_{4}+a_{6}\right) \omega_{3}}^{+a_{3} \omega_{4}+a_{2} \omega_{5}+\left(a_{1}+a_{6}\right) \omega_{6}},\end{gathered}$
iv) $\operatorname{res}_{H}^{G}\left(V_{k \omega_{5}}\right)=\bigoplus_{a_{1}+\ldots+a_{6}=k} \begin{gathered}V_{-\left(a_{1}+2 a_{3}+a_{4}+2 a_{5}+a_{6}\right) \omega_{1}+\left(a_{5}+a_{6}\right) \omega_{2}+a_{4} \omega_{3}}^{+a_{3} \omega_{4}+a_{2} \omega_{5}+\left(a_{1}+a_{6}\right) \omega_{6}}, ~\end{gathered}$
v) $\operatorname{res}_{H}^{G}\left(V_{k \omega_{6}}\right)=\bigoplus_{a_{1}+a_{2}+a_{3}=k} \quad V_{-\left(a_{2}+a_{3}\right) \omega_{1}+a_{2} \omega_{2}+a_{1} \omega_{6}}$.

We fix the embedding of \mathbb{C}^{*} by the coweight $3 \omega_{1}^{\vee}=4 \alpha_{1}^{\vee}+3 \alpha_{2}^{\vee}+5 \alpha_{3}^{\vee}+6 \alpha_{4}^{\vee}+$ $4 \alpha_{5}^{\vee}+2 \alpha_{6}^{\vee}$. Then the fundamental weights are

$$
\begin{array}{ll}
\lambda_{1}=\omega_{6}-\frac{1}{2} \omega_{1}, & \lambda_{2}=\omega_{5}-\omega_{1} \\
\lambda_{3}=\omega_{4}-\frac{3}{2} \omega_{1}, & \lambda_{4}=\omega_{2}-\frac{3}{4} \omega_{1} \\
\lambda_{5}=\omega_{3}-\frac{5}{4} \omega_{1}, & \lambda_{6}=\frac{1}{4} \omega_{1} .
\end{array}
$$

Thus we get the branching rules in the theorem.

6 The exceptional group of type E_{7}

Let G be of type E_{7} with the following Dynkin Diagram.

For this group there are only a few cases of sphericity as we will see. As we did in the last section we start by calculating the dimensions of the Borel subgroups of the maximal reductive subgroups as well as the dimensions of G / P_{i} for $i=1, \ldots, 7$.

We have

$$
\begin{array}{c|ccccccc}
& G / P_{1} & G / P_{2} & G / P_{3} & G / P_{4} & G / P_{5} & G / P_{6} & G / P_{7} \\
\hline \operatorname{dim} & 33 & 42 & 47 & 53 & 50 & 42 & 27
\end{array}
$$

For the Borel subgroups B_{H} we have:

H	A_{7}	$E_{6} \times \mathbb{C}^{*}$	$A_{3} \times A_{3} \times A_{1}$	$A_{5} \times A_{2}$	$D_{6} \times A_{1}$	$A_{1} \times A_{1}$
$\operatorname{dim} B_{H}$	35	43	20	25	38	4
H	$A_{1} \times G_{2}$	$G_{2} \times C_{3}$	$A_{1} \times F_{4}$	A_{1}	A_{2}	
$\operatorname{dim} B_{H}$	10	20	30	2	5	

So we can rule out a lot of cases by dimension comparison.
Proposition 3.23: Let G be the simply connected simple algebraic group of type E_{7}. If H is a maximal reductive subgroup of type $A_{3} \times A_{3} \times A_{1}, A_{5} \times A_{2}$, $A_{1} \times A_{1}, A_{1} \times G_{2}, G_{2} \times C_{3}, A_{1}$ or A_{2}, then G / P_{i} is not a spherical H-variety for $i=1, \ldots, 7$.

Proof: In these cases we have $\operatorname{dim} B_{H}<\operatorname{dim} G / P_{i}$ for $i=1, \ldots, 7$.
Now we turn to the remaining subgroups and start with the subgroup of type A_{7}. This is a subsystem subgroup so we add the smallest root δ to the simple roots and consider the extended Dynkin diagram.

By omitting the simple root α_{2} we obtain the embedding of the root system A_{7} into E_{7}. Explicitly we get

$$
\begin{aligned}
& (1,0,0,0,0,0,0)_{A_{7}}=(1,0,0,0,0,0,0),(0,1,0,0,0,0,0)_{A_{7}}=(0,0,1,0,0,0,0), \\
& (0,0,1,0,0,0,0)_{A_{7}}=(0,0,0,1,0,0,0),(0,0,0,1,0,0,0)_{A_{7}}=(0,0,0,0,1,0,0), \\
& (0,0,0,0,1,0,0)_{A_{7}}=(0,0,0,0,0,1,0),(0,0,0,0,0,1,0)_{A_{7}}=(0,0,0,0,0,0,1), \\
& (0,0,0,0,0,0,1)_{A_{7}}=(1,2,2,3,2,1,0) .
\end{aligned}
$$

Now we consider the corresponding subsystem subgroup H.

Theorem 3.24: Let G be the simply connected simple algebraic group of type E_{7} and H the maximal reductive subgroup of type A_{7}. Then G / P_{7} is a spherical H-variety whereas G / P_{i} is not H-spherical for $i \neq 7$.

Proof: By dimension comparison G / P_{i} can only be spherical for $i=1$ or $i=7$. We know that for E_{7} we have $\omega_{i}^{*}=\omega_{i}$. And with LiE we compute

$$
\operatorname{res}_{H}^{G}\left(V_{4 \omega_{1}}\right)=\ldots \oplus 2 V_{\lambda_{4}} \oplus \ldots
$$

This shows that we have multiplicities in this case and G / P_{1} is not a spherical H-variety.

For G / P_{7} we use the same methods as above. We compute

$$
\begin{aligned}
N= & \mathbb{C} X_{-(0,1,0,1,1,1,1)} \oplus \mathbb{C} X_{-(0,1,1,1,1,1,1)} \oplus \mathbb{C} X_{-(1,1,1,1,1,1,1)} \oplus \\
& \mathbb{C} X_{-(0,1,1,2,1,1,1)} \oplus \mathbb{C} X_{-(1,1,1,2,1,1,1)} \oplus \mathbb{C} X_{-(0,1,1,2,2,1,1)} \oplus \\
& \mathbb{C} X_{-(1,1,2,2,1,1,1)} \oplus \mathbb{C} X_{-(1,1,1,2,2,1,1)} \oplus \mathbb{C} X_{-(0,1,1,2,2,2,1)} \oplus \\
& \mathbb{C} X_{-(1,1,2,2,2,1,1)} \oplus \mathbb{C} X_{-(1,1,1,2,2,2,1)} \oplus \mathbb{C} X_{-(1,1,2,3,2,1,1)} \oplus \\
& \mathbb{C} X_{-(1,1,2,2,2,2,1)} \oplus \mathbb{C} X_{-(1,1,2,3,2,2,1)} \oplus \mathbb{C} X_{-(1,1,2,3,3,2,1)}
\end{aligned}
$$

Define $X:=X_{-(1,1,2,3,3,2,1)}+X_{-(1,1,2,2,1,1,1)}+X_{-(0,1,0,1,1,1,1)}$. The roots of the root-vectors in X are linearly independent. Thus we get that

$$
[\mathfrak{h}, X]:=\left\langle X_{-(1,1,2,3,3,2,1)_{E_{7}}}, X_{-(1,1,2,2,1,1,1)_{E_{7}}}, X_{-(0,1,0,1,1,1,1)_{E_{7}}}\right\rangle
$$

and further

$$
\begin{array}{ll}
{\left[X_{(0,0,1,0,0,0,0)}, X\right]=X_{-(1,1,1,2,1,1,1)},} & {\left[X_{(0,0,0,0,1,0,0)}, X\right]=X_{-(1,1,2,3,2,2,1)}} \\
{\left[X_{(1,0,1,0,0,0,0)}, X\right]=X_{-(0,1,1,2,1,1,1)},} & {\left[X_{(0,0,1,1,0,0,0)}, X\right]=X_{-(1,1,1,1,1,1,1)}} \\
{\left[X_{(0,0,0,1,1,0,0)}, X\right]=X_{-(1,1,2,2,2,2,1)},} & {\left[X_{(0,0,0,0,1,1,0)}, X\right]=X_{-(1,1,2,3,2,1,1)}} \\
{\left[X_{(1,0,1,1,0,0,0)}, X\right]=X_{-(0,1,1,1,1,1,1)},} & {\left[X_{(0,0,1,1,1,0,0)}, X\right]=X_{-(1,1,1,2,2,2,1)}} \\
{\left[X_{(0,0,0,1,1,1,0)}, X\right]=X_{-(1,1,2,2,2,1,1)},} & {\left[X_{(1,0,1,1,1,0,0)}, X\right]=X_{-(0,1,1,2,2,2,1)}} \\
{\left[X_{(0,0,1,1,1,1,0)}, X\right]=X_{-(1,1,1,2,2,1,1)},} & {\left[X_{(1,0,1,1,1,1,0)}, X\right]=X_{-(0,1,1,2,2,1,1)}}
\end{array}
$$

This shows that $\operatorname{dim}[\mathfrak{b}, X]=15=\operatorname{dim} N \Rightarrow[\mathfrak{b}, X]=N \Rightarrow N$ is a spherical L-module. And thus G / P_{7} is a spherical H-variety.

Since G / P_{7} is a spherical H-variety we can derive branching rules for $V_{k \omega_{7}^{*}}=$ $V_{k \omega_{7}}$.
Theorem 3.25: Let G be the simply connected simple algebraic group of type E_{7} and H the maximal reductive subgroup of type A_{7}. Then

$$
\operatorname{res}_{H}^{G}\left(V_{k \omega_{7}}\right)=\bigoplus_{2 a_{1}+a_{2}+2 a_{3}+a_{4}=k} V_{a_{2} \lambda_{2}+a_{3} \lambda_{4}+a_{4} \lambda_{6}}
$$

Proof: With "LiE" we compute

$$
\operatorname{res}_{H}^{G}\left(V_{\omega_{7}}\right)=V_{\lambda_{2}} \oplus V_{\lambda_{6}} .
$$

So there are two generators of degree 1 of weight λ_{2} and λ_{6}. Further we have

$$
\operatorname{res}_{H}^{G}\left(V_{2 \omega_{7}}\right)=\mathbb{C} \oplus V_{2 \lambda_{2}} \oplus V_{2 \lambda_{6}} \oplus V_{\lambda_{2}+\lambda_{6}} \oplus V_{\lambda_{4}},
$$

which shows that there are 2 generators of degree 2 which are of weight 0 and λ_{4}. This shows that $\operatorname{dim} \mathbb{C}[\widehat{Y}]^{U_{H}} \geq 4$.
In the proof of the previous theorem we have found an $X \in N$ such that $U_{L} \cdot X$ is of codimension 3. It follows that $\operatorname{dim} \mathbb{C}[\widehat{Y}]^{U_{H}}=4$ and we have found four generators. The branching rules follow immediately.

Next we will consider the Levi subgroup $E_{6} \times \mathbb{C}^{*}$, which is obtained by omitting the simple root α_{7} in the Dynkin diagram.
Theorem 3.26: Let G be the simply connected simple algebraic group of type E_{7} and $H \subset G$ the Levi subgroup of type $E_{6} \times \mathbb{C}^{*}$. Then G / P_{1} and G / P_{7} are spherical H-varieties whereas $G / P_{i}, i=2, \ldots, 6$ are not spherical H-varieties.

Proof: This was proven in [Lit94].
We get the following branching rules from the spherical cases.
Theorem 3.27: Let G be the simply connected simple algebraic group of type E_{7} and H the Levi subgroup of type $E_{6} \times \mathbb{C}^{*}$. Then we have the following branching rules.

$$
\text { i) } \operatorname{res}_{H}^{G}\left(V_{k \omega_{1}}\right)=\bigoplus_{a_{1}+a_{2}+a_{3}+a_{4}=k} \quad \begin{aligned}
& V_{a_{1} \lambda_{1}+a_{2} \lambda_{2}+a_{3} \lambda_{6}} \otimes V_{2 a_{1}-2 a_{3}}, \\
& \text { ii) } \operatorname{res}_{H}^{G}\left(V_{k \omega_{2}}\right)=\bigoplus_{\substack{a_{1}+a_{2}+a_{3}+2 a_{4}+\\
a_{5}+a_{6}+a_{7}=k}}^{V_{a_{1} \lambda_{1}+\left(a_{2}+a_{7}\right) \lambda_{2}+a_{3} \lambda_{3}+a_{4} \lambda_{4}+a_{5} \lambda_{5}+a_{6} \lambda_{6}} \otimes} \begin{array}{l}
V_{-a_{1}+3 a_{2}+a_{3}-a_{5}+a_{6}-3 a_{7}},
\end{array},
\end{aligned}
$$

$$
\text { iii) } \operatorname{res}_{H}^{G}\left(V_{k \omega_{7}}\right)=\bigoplus_{a_{1}+a_{2}+a_{3}+a_{4}=k} V_{a_{1} \lambda_{1}+a_{2} \lambda_{6}} \otimes V_{-a_{1}+a_{2}+3 a_{3}-3 a_{4}} .
$$

Proof: From paragraph 1.4 in Lit94 we get the following branching rules.
i) $\operatorname{res}_{H}^{G}\left(V_{k \omega_{1}}\right)=\bigoplus_{a_{1}+a_{2}+a_{3}+a_{4}=k} V_{a_{1} \omega_{1}+a_{2} \omega_{2}+a_{3} \omega_{6}-\left(a_{2}+2 a_{3}\right) \omega_{7}}$,
ii) $\operatorname{res}_{H}^{G}\left(V_{k \omega_{2}}\right)=\bigoplus_{\substack{a_{1}+a_{2}+a_{3}+2 a_{4}+\\ a_{5}+a_{6}+a_{7}=k}} \quad V_{a_{1} \omega_{1}+\left(a_{2}+a_{7}\right) \omega_{2}+a_{3} \omega_{3}+a_{4} \omega_{4}+a_{5} \omega_{5}+a_{6} \omega_{6}}^{-\left(a_{1}+a_{3}+2 a_{4}+2 a_{5}+a_{6}+2 a_{7}\right) \omega_{7}}$,
iii) $\operatorname{res}_{H}^{G}\left(V_{k \omega_{7}}\right)=\bigoplus_{a_{1}+a_{2}+a_{3}+a_{4}=k} V_{a_{1} \omega_{1}+a_{2} \omega_{6}+\left(a_{3}-a_{1}-a_{2}-a_{4}\right) \omega_{7}}$.

We fix the embedding of \mathbb{C}^{*} by the coweight $2 \omega_{7}^{\vee}=2 \alpha_{1}^{\vee}+3 \alpha_{2}^{\vee}+4 \alpha_{3}^{\vee}+6 \alpha_{4}^{\vee}+$ $5 \alpha_{5}^{\vee}+4 \alpha_{6}^{\vee}+3 \alpha_{7}^{\vee}$. Then the fundamental weights are

$$
\begin{array}{ll}
\lambda_{1}=\omega_{1}-\frac{2}{3} \omega_{7}, & \lambda_{2}=\omega_{2}-\omega_{7} \\
\lambda_{3}=\omega_{3}-\frac{4}{3} \omega_{7}, & \lambda_{4}=\omega_{4}-2 \omega_{7} \\
\lambda_{5}=\omega_{5}-\frac{5}{3} \omega_{7}, & \lambda_{6}=\omega_{6}-\frac{4}{3} \omega_{7} \\
\lambda_{7}=\frac{1}{3} \omega_{7} . &
\end{array}
$$

Thus we get the branching rules in the theorem.
Now we will turn to the subgroup of E_{7} of type $D_{6} \times A_{1}$. We will consider the extended Dynkin diagram of E_{7} again by adding the smallest root δ to the simple roots.

If we omit the simple root α_{6} we have a sub-diagram of type $D_{6} \times A_{1}$ and consider the the corresponding subsystem subgroup. Explicitly we can choose the following simple roots:

$$
\begin{aligned}
& (1,0,0,0,0,0,0)_{H}=(0,1,1,2,2,2,1),(0,1,0,0,0,0,0)_{H}=(1,0,0,0,0,0,0), \\
& (0,0,1,0,0,0,0)_{H}=(0,0,1,0,0,0,0),(0,0,0,1,0,0,0)_{H}=(0,0,0,1,0,0,0), \\
& (0,0,0,0,1,0,0)_{H}=(0,1,0,0,0,0,0),(0,0,0,0,0,1,0)_{H}=(0,0,0,0,1,0,0), \\
& (0,0,0,0,0,0,1)_{H}=(0,0,0,0,0,0,1)
\end{aligned}
$$

Theorem 3.28: Let G be the simply connected simple algebraic group of type E_{7}. If H is the subgroup of type $D_{6} \times A_{1}$ then G / P_{7} is a spherical H-variety and G / P_{i} is not a spherical H-variety for $i=1, \ldots, 6$.

Proof: Dimension comparison shows that $G / P_{2}, \ldots, G / P_{6}$ are not H-spherical. For G / P_{1} we can compute the restriction of $V_{k \omega_{1}}$ (note that $\omega_{i}^{*}=\omega_{i}$ for E_{7}) with LiE and get

$$
\operatorname{res}_{H}^{G}\left(V_{4 \omega_{1}}\right)=\ldots \oplus 2\left(V_{2 \lambda_{6}} \otimes V_{2 \lambda_{7}}\right) \oplus \ldots .
$$

Thus there are multiplicities in this case and we know that the H-variety G / P_{1} is not H-spherical.

Case G / P_{7} : We compute

$$
N=\mathbb{C} X_{-(0,0,0,0,0,1,1)} \oplus \mathbb{C} X_{-(0,0,0,0,1,1,1)} \oplus \mathbb{C} X_{-(0,0,0,1,1,1,1)} \oplus
$$

$$
\begin{aligned}
& \mathbb{C} X_{-(0,1,0,1,1,1,1)} \oplus \mathbb{C} X_{-(0,0,1,1,1,1,1)} \oplus \mathbb{C} X_{-(1,0,1,1,1,1,1)} \oplus \\
& \mathbb{C} X_{-(0,1,1,1,1,1,1)} \oplus \mathbb{C} X_{-(1,1,1,1,1,1,1)} \oplus \mathbb{C} X_{-(0,1,1,2,1,1,1)} \oplus \\
& \mathbb{C} X_{-(1,1,1,2,1,1,1)} \oplus \mathbb{C} X_{-(0,1,1,2,2,1,1)} \oplus \mathbb{C} X_{-(1,1,2,2,1,1,1)} \oplus \\
& \mathbb{C} X_{-(1,1,1,2,2,1,1)} \oplus \mathbb{C} X_{-(1,1,2,2,2,1,1)} \oplus \mathbb{C} X_{-(1,1,2,3,2,1,1)} \oplus \\
& \mathbb{C} X_{-(1,2,2,3,2,1,1)} .
\end{aligned}
$$

Now define $X:=X_{-(1,2,2,3,2,1,1)}+X_{-(1,0,1,1,1,1,1)}$. The roots of these two root vectors are linearly independent and we have

$$
[\mathfrak{h}, X]=\left\langle X_{-(1,2,2,3,2,1,1)}, X_{-(1,0,1,1,1,1,1)}\right\rangle
$$

Further we have

$$
\begin{aligned}
& {\left[X_{(1,0,0,0,0,0,0)}, X\right]=X_{-(0,0,1,1,1,1,1)},\left[X_{(0,1,0,0,0,0,0)}, X\right]=X_{-(1,1,2,3,2,1,1)},} \\
& {\left[X_{(1,0,1,0,0,0)}, X\right]=X_{-(0,0,0,1,1,1)},\left[X_{(0,1,0,1,0,0,0)}, X\right]=X_{-(1,1,2,2,2,1,1)},} \\
& {\left[X_{(1,0,1,1,0,0,0)}, X\right]=X_{-(0,0,0,0,1,1,1)},\left[X_{(0,1,1,1,0,0,0)}, X\right]=X_{-(1,1,1,2,2,1,1)},} \\
& {\left[X_{(0,1,0,1,1,0,0)}, X\right]=X_{-(1,1,2,2,1,1,1)},\left[X_{(1,1,1,0,0,0)}, X\right]=X_{-(0,1,1,2,2,1,1)},} \\
& {\left[X_{(1,0,1,1,1,0)}, X\right]=X_{-(0,0,0,0,1,1)},\left[X_{(0,1,1,1,1,0,0)}, X\right]=X_{-(1,1,1,2,1,1,1)},} \\
& {\left[X_{(1,1,1,1,1,0,0)}, X\right]=X_{-(0,1,1,2,1,1,1)},\left[X_{(0,1,1,2,1,0,0)}, X\right]=X_{-(1,1,1,1,1,1,1)},} \\
& {\left[X_{(1,1,1,2,1,0,0)}, X\right]=X_{-(0,1,1,1,1,1,1)},\left[X_{(1,1,2,2,1,0,0)}, X\right]=X_{-(0,1,0,1,1,1,1)} .}
\end{aligned}
$$

So we have $\operatorname{dim}[\mathfrak{b}, X]=16=\operatorname{dim} N$. This implies that N is a spherical L-module and thus G / P_{7} is a spherical H-variety.

From the sphericity of G / P_{7} we can derive branching rules for $V_{k \omega_{7}^{*}}=V_{k \omega_{7}}$.
Theorem 3.29: Let G be the simply connected simple algebraic group of type E_{7} and let H be a maximal reductive subgroup of type $D_{6} \times A_{1}$. Then

$$
\operatorname{res}_{H}^{G}\left(V_{k \omega_{7}}\right)=\bigoplus_{a_{1}+2 a_{2}+a_{3}=k} V_{a_{1} \lambda_{1}+a_{2} \lambda_{2}+a_{3} \lambda_{6}} \otimes V_{a_{1} \lambda_{7}} .
$$

Proof: With "LiE" we compute

$$
\operatorname{res}_{H}^{G}\left(V_{\omega_{7}}\right)=\left(V_{\lambda_{1}} \otimes V_{\lambda_{7}}\right) \oplus\left(V_{\lambda_{6}} \otimes \mathbb{C}\right) .
$$

So there are two generators of degree 1 with weights $\left(\lambda_{1}, \lambda_{7}\right)$ and $\left(\lambda_{6}, 0\right)$. Further we have

$$
\operatorname{res}_{H}^{G}\left(V_{2 \omega_{7}}\right)=\left(V_{2 \lambda_{1}} \otimes V_{2 \lambda_{7}}\right) \oplus\left(V_{\lambda_{1}+\lambda_{6}} \otimes V_{\lambda_{7}}\right) \oplus\left(V_{2 \lambda_{6}} \otimes \mathbb{C}\right) \oplus\left(V_{\lambda_{2}} \otimes \mathbb{C}\right) .
$$

Thus there is a further generator of degree 2 and weight λ_{2} and therefore we know that $\operatorname{dim} \mathbb{C}[\widehat{Y}]^{U_{H}} \geq 3$.

In the proof of the previous theorem we have seen that there is an $X \in N$ such that $\operatorname{dim} U_{H} \cdot X$ is of codimension 2. It follows that $\operatorname{dim} \mathbb{C}[\widehat{Y}]^{U_{H}}=3$. The branching rules follow.

The last maximal reductive subgroup of G where a sphericity of G / P_{i} can occur is the group H of type $A_{1} \times F_{4}$. From the table with dimensions of G / P_{i} we know that only G / P_{7} can be a spherical H-variety. But with LiE we compute

$$
\operatorname{res}_{H}^{G}\left(V_{4 \omega_{7}}\right)=\ldots \oplus 2\left(V_{4 \lambda_{1}} \otimes V_{\lambda_{5}}\right) \oplus \ldots
$$

and thus there are multiplicities in this case. We have shown:
Theorem 3.30: Let G be the simply connected simple group of type E_{7} and H the maximal subgroup of type $A_{1} \times F_{4}$.

Then $G / P_{i}(i=1, \ldots, 7)$ is not a spherical variety.

7 The exceptional group of type E_{8}

We start our computations again by calculating the dimensions of the Borel subgroups of the maximal reductive subgroups and the dimensions of G / P_{i} for $i=1, \ldots, 8$.

H	$E_{7} \times A_{1}$	$E_{6} \times A_{2}$	$A_{3} \times D_{5}$	$A_{4} \times A_{4}$	$A_{5} \times A_{2} \times A_{1}$
$\operatorname{dim} B_{H}$	72	47	34	28	27

H	$A_{7} \times A_{1}$	D_{8}	A_{8}	$G_{2} \times F_{4}$	$A_{2} \times A_{1}$	C_{2}	A_{1}
$\operatorname{dim} B_{H}$	37	72	44	36	6	6	2

The dimensions of the varieties $G / P_{i}(i=1, \ldots, 8)$ are:

	G / P_{1}	G / P_{2}	G / P_{3}	G / P_{4}	G / P_{5}	G / P_{6}	G / P_{7}	G / P_{8}
dim	78	92	98	106	104	97	83	57

By dimension comparison there are only two possibilities of sphericity. If we take the maximal reductive subgroup H_{1} of type $E_{7} \times A_{1}$ or the maximal reductive subgroup H_{2} of type D_{8}, then the variety G / P_{8} can be spherical for H_{1} or H_{2}. But we can compute the following restrictions by using LiE

$$
\begin{aligned}
& \operatorname{res}_{H_{1}}^{G}\left(V_{5 \omega_{8}}\right)=\ldots \oplus 2\left(V_{1 \lambda_{1}+2 \lambda_{7}} \otimes V_{2 \lambda_{8}}\right) \oplus \ldots, \\
& \operatorname{res}_{H_{2}}^{G}\left(V_{4 \omega_{8}}\right)=\ldots \oplus 2 V_{\lambda_{8}} \oplus \ldots,
\end{aligned}
$$

which show that there are multiplicities in these cases. So there are no spherical cases for G. We have shown:
Theorem 3.31: Let G be the simply connected simple algebraic groups of type E_{8}.
Let H be one of its maximal reductive subgroups.
Then $G / P_{i}(i=1, \ldots, 8)$ is not a spherical variety.
This concludes the classification of the triples (G, P, H).

4 The Luna-Vust invariants for the spherical affine cones

We will now compute the combinatorial invariants that are attached to the spherical affine cones which were classified in the last chapter.

1 The colored cones of the spherical affine cones

Recall that all affine spherical varieties are simple and are thus classified by colored cones.

1.1 Overview of the colored cones for the spherical affine cones

The colored cones ($\left(\mathcal{C}(\widehat{Y}), \Delta_{Z}(\widehat{Y})\right)$ of the spherical affine cones are of simple nature. If D is any color we know that it is given by a non constant homogeneous function. So in particular $0 \in D$. That means that $\Delta_{Z}(\widehat{Y})$ is the set of all colors. And $\mathcal{C}(\widehat{Y})$ is the cone generated by the set of $\rho(D)$ where D runs through all B-stable divisors of \widehat{Y}. In the following we denote colors by D_{i} whereas $D_{j}^{H \times \mathbb{C}^{*}}$ denotes a $H \times \mathbb{C}^{*}$-stable divisor.
We summarize the colored cones in the following table. In the first two columns we give the groups that we consider, in the third one the spherical affine cone and in the fourth columns we list the elements $\rho\left(D_{i}\right)$ and $\rho\left(D_{j}^{H \times \mathbb{C}^{*}}\right)$. So the pair $\left(\mathcal{C}\left(\widehat{Y}_{i}\right), \Delta_{Z}\left(\widehat{Y}_{i}\right)\right)$ can easily be recovered. $\mathcal{C}\left(\widehat{Y}_{i}\right)$ is the cone generated by $\rho\left(D_{i}\right)$ and $\rho\left(D_{j}^{H \times \mathbb{C}^{*}}\right)$ and $\Delta_{Z}\left(\widehat{Y}_{i}\right)$ is the set consiting of the elements $\rho\left(D_{i}\right)$.
We define γ to be the dual basis element to $(0,1)$ in $X\left(B \times \mathbb{C}^{*}\right)$, i. e. γ is defined by $\gamma\left(\lambda_{i}, 0\right)=0$ and $\gamma(0,1)=1$.

Table 4.1: Colored cones

G	H	\widehat{Y}_{i}	$\rho\left(D_{i}^{\left(H \times \mathbb{C}^{*}\right)}\right)$
G_{2}	A_{2}	\widehat{Y}_{1}	$\rho\left(D_{1}\right)=\beta_{1}^{\vee}$, $\rho\left(D^{\left.H \times \mathbb{C}^{*}\right)}\right)=-\beta_{1}^{\vee}-\beta_{2}^{\vee}+\gamma$
			\widehat{Y}_{2}
		$\rho\left(D_{1}\right)=\beta_{2}^{\vee}$, $\rho\left(D_{3}\right)=\beta_{1}^{\vee}+\gamma, \quad \rho\left(D_{2}\right)=-\beta_{1}^{\vee}+\gamma$,	

Table 4.1: Colored cones

G	H	\widehat{Y}_{i}	$\rho\left(D_{i}^{\left(H \times \mathbb{C}^{*}\right)}\right)$
F_{4}	B_{4}	\widehat{Y}_{1}	$\rho\left(D_{1}\right)=\beta_{2}^{\vee}, \quad \rho\left(D_{2}\right)=\beta_{4}^{\vee}$
		\widehat{Y}_{2}	$\begin{aligned} & \rho\left(D_{1}\right)=\beta_{1}^{\vee}+\beta_{2}^{\vee}+\beta_{3}^{\vee}-\gamma, \\ & \rho\left(D_{2}\right)=-\beta_{2}^{\vee}-\beta_{3}^{\vee}+\gamma, \\ & \rho\left(D_{3}\right)=-\beta_{3}^{\vee}-\beta_{4}^{\vee}+\gamma, \\ & \rho\left(D_{4}\right)=\beta_{2}^{\vee}+\beta_{3}^{\vee}+\beta_{4}^{\vee}-\gamma, \\ & \rho\left(D_{5}\right)=-\beta_{1}-\beta_{2}^{\vee}+\gamma \end{aligned}$
		\widehat{Y}_{3}	$\begin{array}{ll} \rho\left(D_{1}\right)=-\beta_{2}^{\vee}-\beta_{3}^{\vee}-\beta_{4}^{\vee}+\gamma, & \rho\left(D_{2}\right)=\beta_{2}^{\vee}, \\ \rho\left(D_{4}\right)=-\beta_{1}^{\vee}-\beta_{2}^{\vee}-\beta_{3}^{\vee}+\gamma, & \rho\left(D_{3}\right)=\beta_{3}^{\vee}, \\ \rho\left(D_{5}\right)=\beta_{1}^{\vee}+\beta_{2}^{\vee}+\beta_{3}^{\vee}+\beta_{4}^{\vee}-\gamma & \\ \hline \end{array}$
		\widehat{Y}_{4}	$\begin{array}{ll} \rho\left(D_{1}\right)=\beta_{1}^{\vee}, & \rho\left(D_{2}\right)=\beta_{4}^{\vee}, \\ \rho\left(D^{H \times \mathbb{C}^{*}}\right)=-\beta_{1}^{\vee}-\beta_{4}^{\vee}+\gamma & \end{array}$
E_{6}	$A_{5} \times A_{1}$	\widehat{Y}_{1}	$\rho\left(D_{1}\right)=\beta_{1}^{\vee}, \quad \rho\left(D_{2}\right)=\beta_{2}^{\vee}, \quad \rho\left(D_{3}\right)=\beta_{4}^{\vee}$
		\widehat{Y}_{6}	$\rho\left(D_{1}\right)=\beta_{2}^{\vee}, \quad \rho\left(D_{2}\right)=\beta_{4}^{\vee}, \quad \rho\left(D_{3}\right)=\beta_{5}^{\vee}$
	F_{4}	$\widehat{Y}_{1}, \widehat{Y}_{6}$	$\rho(D)=\beta_{1}^{\vee}, \quad \rho\left(D^{H \times \mathbb{C}^{*}}\right)=-\beta_{1}^{\vee}+\gamma$
		\widehat{Y}_{2}	$\rho\left(D_{1}\right)=\beta_{1}^{\vee}, \quad \rho\left(D_{2}\right)=\beta_{4}^{\vee}$
		$\widehat{Y}_{3}, \widehat{Y}_{5}$	$\rho\left(D_{1}\right)=\beta_{1}^{\vee}, \quad \rho\left(D_{2}\right)=\beta_{3}^{\vee}, \quad \rho\left(D_{3}\right)=\beta_{4}^{\vee}$
	C_{4}	$\widehat{Y}_{1}, \widehat{Y}_{6}$	$\begin{aligned} & \rho\left(D_{1}\right)=\beta_{2}^{\vee}, \quad \rho\left(D_{2}\right)=\beta_{4}^{\vee}, \\ & \rho\left(D^{H \times \mathbb{C}^{*}}\right)=-\frac{1}{2} \beta_{2}^{\vee}+\beta_{4}^{\vee}+\frac{1}{2} \gamma \end{aligned}$
	$D_{5} \times \mathbb{C}^{*}$	\widehat{Y}_{1}	$\begin{aligned} & \rho\left(D_{1}\right)=\beta_{1}^{\vee}, \quad \rho\left(D_{2}\right)=\beta_{4}^{\vee}, \\ & \rho\left(D^{H \times \mathbb{C}^{*}}\right)=-\beta_{1}^{\vee}-\beta_{4}^{\vee}+\gamma \end{aligned}$
		\widehat{Y}_{2}	$\begin{array}{ll} \rho\left(D_{1}\right)=\beta_{2}^{\vee}, & \rho\left(D_{2}\right)=\beta_{4}^{\vee}, \\ \rho\left(D_{3}\right)=\beta_{5}^{\vee}, & \rho\left(D^{H \times \mathbb{C}^{*}}\right)=-\beta_{2}^{\vee}-\beta_{4}^{\vee}-\beta_{5}^{\vee}+\gamma \end{array}$
		\widehat{Y}_{3}	$\begin{aligned} & \rho\left(D_{1}\right)=\frac{3}{4} \beta_{1}^{\vee}+\frac{1}{2} \beta_{2}^{\vee}-\frac{1}{4} \beta_{3}^{\vee}-\frac{5}{8} \beta_{4}^{\vee}+\frac{1}{8} \beta_{5}^{\vee}-\frac{1}{8} \gamma^{\prime}, \\ & \rho\left(D_{2}\right)=\beta_{2}^{\vee}, \quad \rho\left(D_{3}\right)=\beta_{3}^{\vee}, \\ & \rho\left(D_{4}\right)=-\frac{1}{4} \beta_{1}^{\vee}+\frac{1}{2} \beta_{2}^{\vee}-\frac{1}{4} \beta_{3}^{\vee}+\frac{3}{8} \beta_{4}^{\vee}+\frac{1}{8} \beta_{5}^{\vee}-\frac{1}{8} \gamma^{\prime}, \\ & \rho\left(D_{5}\right)=\beta_{5}^{\vee}, \\ & \rho\left(D_{6}\right)=\frac{1}{4} \beta_{1}^{\vee}-\frac{1}{2} \beta_{2}^{\vee}+\frac{1}{4} \beta_{3}^{\vee},+\frac{5}{8} \beta_{4}^{\vee}-\frac{1}{8} \beta_{5}^{\vee}+\frac{1}{8} \gamma^{\prime} \end{aligned}$

Table 4.1: Colored cones

G	H	\widehat{Y}_{i}	$\rho\left(D_{i}^{\left(H \times \mathbb{C}^{*}\right)}\right)$
		\widehat{Y}_{5}	$\begin{aligned} & \rho\left(D_{1}\right)=\frac{3}{4} \beta_{1}^{\vee}+\frac{1}{2} \beta_{2}^{\vee}-\frac{1}{4} \beta_{3}^{\vee}+\frac{1}{8} \beta_{4}^{\vee}-\frac{5}{8} \beta_{5}^{\vee}+\frac{1}{8} \gamma^{\prime}, \\ & \rho\left(D_{2}\right)=\beta_{2}^{\vee}, \quad \rho\left(D_{3}\right)=\beta_{3}^{\vee}, \quad \rho\left(D_{4}\right)=\beta_{4}^{\vee}, \\ & \rho\left(D_{5}\right)=-\frac{1}{4} \beta_{1}^{\vee}+\frac{1}{2} \beta_{2}^{\vee}-\frac{1}{4} \beta_{3}^{\vee}+\frac{1}{8} \beta_{4}^{\vee}+\frac{3}{8} \beta_{5}^{\vee}+\frac{1}{8} \gamma^{\prime}, \\ & \rho\left(D_{6}\right)=\frac{1}{4} \beta_{1}^{\vee}-\frac{1}{2} \beta_{2}^{\vee}+\frac{1}{4} \beta_{3}^{\vee}-\frac{1}{8} \beta_{4}^{\vee}+\frac{5}{8} \beta_{5}^{\vee}-\frac{1}{8} \gamma^{\prime} \end{aligned}$
		\widehat{Y}_{6}	$\begin{aligned} & \rho\left(D_{1}\right)=\beta_{1}^{\vee}, \quad \rho\left(D_{2}\right)=\beta_{5}^{\vee}, \\ & \rho\left(D^{H \times \mathbb{C}^{*}}\right)=-\beta_{1}^{\vee}-\beta_{5}^{\vee}+\gamma \end{aligned}$
E_{7}	A_{7}	\widehat{Y}_{7}	$\begin{aligned} & \rho\left(D_{1}\right)=\beta_{2}^{\vee}, \quad \rho\left(D_{2}\right)=\beta_{4}^{\vee}, \quad \rho\left(D_{3}\right)=\beta_{6}^{\vee}, \\ & \rho\left(D^{H \times \mathbb{C}^{*}}\right)=-\frac{1}{2} \beta_{2}^{\vee}-\frac{1}{2} \beta_{4}^{\vee}-\frac{1}{2} \beta_{6}^{\vee}+\frac{1}{2} \gamma \end{aligned}$
	$E_{6} \times \mathbb{C}^{*}$	\widehat{Y}_{1}	$\begin{aligned} & \rho\left(D_{1}\right)=\beta_{1}^{\vee}, \quad \rho\left(D_{2}\right)=\beta_{2}^{\vee}, \quad \rho\left(D_{3}\right)=\beta_{6}^{\vee}, \\ & \rho\left(D^{H \times \mathbb{C}^{*}}\right)=-\beta_{1}^{\vee}-\beta_{2}^{\vee}-\beta_{6}^{\vee}+\gamma \end{aligned}$
		\widehat{Y}_{2}	$\begin{aligned} & \rho\left(D_{1}\right)=\beta_{1}^{\vee}, \\ & \rho\left(D_{2}\right)=\frac{1}{6} \beta^{\vee}+\frac{1}{2} \beta_{2}^{\vee}-\frac{1}{6} \beta_{3}^{\vee}+\frac{1}{6} \beta_{5}^{\vee}-\frac{1}{6} \beta_{6}^{\vee}+\frac{1}{6} \gamma^{\prime}, \\ & \rho\left(D_{3}\right)=-\frac{1}{6} \beta^{\vee}+\frac{1}{2} \beta_{2}^{\vee}+\frac{1}{6} \beta_{3}^{\vee}-\frac{1}{6} \beta_{5}^{\vee}+\frac{1}{6} \beta_{6}^{\vee}-\frac{1}{6} \gamma^{\prime}, \\ & \rho\left(D_{4}\right)=\beta_{3}^{\vee}, \quad \rho\left(D_{5}\right)=\beta_{4}^{\vee}, \quad \rho\left(D_{6}\right)=\beta_{5}^{\vee}, \\ & \rho\left(D_{7}\right)=\beta_{6}^{\vee} \end{aligned}$
		\widehat{Y}_{7}	$\begin{array}{ll} \rho\left(D_{1}\right)=\beta_{1}^{\vee}, & \rho\left(D_{1}^{H \times \mathbb{C}^{*}}\right)=-\frac{1}{3} \beta_{1}-\frac{2}{3} \beta_{6}^{\vee}+\frac{1}{6} \gamma^{\prime}+\frac{1}{2} \gamma, \\ \rho\left(D_{2}\right)=\beta_{6}^{\vee}, & \rho\left(D_{2}^{H \times \mathbb{C}^{*}}\right)=-\frac{2}{3} \beta_{1}-\frac{1}{3} \beta_{6}^{\vee}-\frac{1}{6} \gamma^{\prime}+\frac{1}{2} \gamma \\ \hline \end{array}$
	$D_{6} \times A_{1}$	\widehat{Y}_{7}	$\rho\left(D_{1}\right)=\beta_{1}^{\vee}, \quad \rho\left(D_{2}\right)=\beta_{2}^{\vee}, \quad \rho\left(D_{3}\right)=\beta_{6}^{\vee}$

1.2 Colors and $H \times \mathbb{C}^{*}$-invariant prime divisors of the spherical affine cones

We will now explain how we achieved the results on the colored cones.
Lemma 4.1: The generators of $\mathbb{C}[\widehat{Y}]^{U_{H}}$ that are B-semiinvariant but not $H \times$ \mathbb{C}^{*}-semiinvariant define pairwise distinct colors and every color is defined in this way.

Proof: We know that \widehat{Y} is factorial [VP72, Thm. 4]. So any divisor is given by an equation. Let $D=Z(f)$ be a B-stable prime divisor, where $Z(f)$ is our notation for the zero set of f. Consider the special open set \widehat{Y}_{f}. The function f is regular and invertible on \widehat{Y}_{f} which is an affine B-variety.

In this situation we have $(b . f)(x)=\chi(b) f(x)$ for all $b \in B, x \in \widehat{Y}_{f}$ for some character χ of B (cp. KKV89, §1]) which means that f is B-semiinvariant on \widehat{Y}_{f} and thus on \widehat{Y}. Since D is a prime divisor f is a generator of $\mathbb{C}[\widehat{Y}]^{U_{H}}$.

We can apply the same argument to show that if D is $H \times \mathbb{C}^{*}$-invariant then f is $H \times \mathbb{C}^{*}$-semiinvariant, i. e. the weight of the semisimple part of $H \times \mathbb{C}^{*}$ is trivial.
Conversely a generator with the properties as stated in the theorem defines a B-stable but not $H \times \mathbb{C}^{*}$-stable prime divisor i. e. a color.
It remains to show that they are pairwise distinct. Suppose f_{1} and f_{2} are two generators that define the same color. Then we can consider $f=\frac{f_{1}}{f_{2}}$. The function f is regular, B_{H}-semiinvariant, and invertible. We consider the action of the commutator H^{\prime} and as above we get that $(h . f)(x)=\chi(h) f(x)$ ($h \in H^{\prime}, x \in \widehat{Y}$) where χ is a character of H. But then $h . f=f$ since H^{\prime} has no non-trivial characters. In particular b.f $=f$ for any b in the Borel of H^{\prime}. So it follows that f_{1} and f_{2} have the same weight with regard to H^{\prime}. Hence if there are no generators of the same H^{\prime}-weight we are done.
The only exception is the case where G is of type E_{7} and H of type $E_{6} \times \mathbb{C}^{*}$. If we consider the spherical variety $\widehat{G / P_{2}}$ then we have a generator g_{1} of weight $\left(\lambda_{2}, 3,1\right)$ and another generators g_{2} of weight $\left(\lambda_{2},-3,1\right)$.
We can rewrite these weights in terms of the fundamental weights of G and get $\left(\lambda_{2}, 3\right)=\omega_{2}$ and $\left(\lambda_{2},-3\right)=\omega_{2}-2 \omega_{7}$. We regard \widehat{Y} as a subvariety of $V_{\omega_{2}}$ as described before and chosse a basis consiting of root vectors together with its dual basis. The generators are given by restricting the corresponding dual basis elements to \widehat{Y}.
Now we can consider a lowest weight vector $v_{-\omega_{2}} \in \widehat{Y}$ and get that $g_{1}\left(v_{-\omega_{2}}\right) \neq$ 0 whereas $g_{2}\left(v_{-\omega_{2}}\right)=0$. Hence the colors that are defined by these generators are distinct.

Next as an example we will compute the elements $\rho\left(D_{i}^{\left(H \times \mathbb{C}^{*}\right)}\right)$ for the spherical $H \times \mathbb{C}^{*}$-variety $\widehat{Y_{1}}$ where G is of type G_{2} and H of type A_{2}.

In this case the generators of $\Lambda(\widehat{Y})$ were given by functions with weights $\nu_{1}=(0,1), \nu_{2}=\left(\lambda_{1}, 1\right)$ and $\nu_{3}=\left(\lambda_{2}, 1\right)$. By the lemma the function of weight $(0,1)$ corresponds to a $H \times \mathbb{C}^{*}$-invariant prime divisor $D^{H \times \mathbb{C}^{*}}$ whereas the other two functions define colors D_{1} and D_{2}.
By definition of $\rho(D)$ we have

$$
\begin{aligned}
\rho\left(D_{1}\right)\left(\lambda_{1}, 1\right) & =1 & \rho\left(D_{2}\right)\left(\lambda_{1}, 1\right) & =0 \\
\rho\left(D_{1}\right)\left(\lambda_{2}, 1\right) & =0 & \rho\left(D_{2}\right)\left(\lambda_{2}, 1\right) & =1 \\
\rho\left(D_{1}\right)(0,1) & =0 & \rho\left(D_{2}\right)(0,1) & =0
\end{aligned}
$$

Solving these systems of equations we get:

$$
\rho\left(D_{1}\right)=\beta_{1}^{\vee}, \quad \rho\left(D_{2}\right)=\beta_{2}^{\vee}, \quad \text { and } \quad \rho\left(D^{H \times \mathbb{C}^{*}}\right)=-\beta_{1}^{\vee}-\beta_{2}^{\vee}+\gamma .
$$

We compute the remaining cases by solving the equations $\rho\left(D_{i}^{\left(H \times \mathbb{C}^{*}\right)}\right)\left(\nu_{j}\right)=$ $\delta_{i j}$ and get the results that are presented in Table 4.1.

2 Homogeneous spherical data for the spherical affine cones

Now that we have computed the colored cones for the affine spherical varieties it remains to find the invariants that classify the open orbit of these varieties.

2.1 Overview of the homogeneous spherical data

We present the spherical homogeneous data in the following table.
Since $\mathbb{C}(X)^{(B)}=\mathrm{Quot} \mathbb{C}[X]^{(B)}$ the weight lattice for a spherical affine cone is the lattice generated by the weights of the generators that were calculated before. For example if we consider the case again where G is of type G_{2} and H of type A_{2}, then for $\widehat{Y_{1}}$ we get

$$
\Lambda(\widehat{Y})=\mathbb{Z}\left(\lambda_{1}, 0\right)+\mathbb{Z}\left(\lambda_{2}, 0\right)+\mathbb{Z}(0,1)
$$

The other cases are obtained in the same way and the weight lattices are given in Table 4.2.

In the subsequent subsections we will explain how we obtained the remaining invariants.

Table 4.2: Homogeneous spherical data

G	H	\widehat{Y}_{i}	$\left(\Lambda, S^{p}, \Sigma, \Delta^{a}\right)$	
G_{2}	A_{2}	\widehat{Y}_{1}	Λ	$\mathbb{Z}\left(\lambda_{1}, 1\right) \oplus \mathbb{Z}\left(\lambda_{2}, 1\right) \oplus \mathbb{Z}(0,1)$
			S^{p}	\varnothing
			Σ	$\sigma=\beta_{1}+\beta_{2}$
			Δ^{a}	\varnothing
		\widehat{Y}_{2}	Λ	$\mathbb{Z}\left(\lambda_{1}, 1\right) \oplus \mathbb{Z}\left(\lambda_{2}, 1\right) \oplus \mathbb{Z}\left(\lambda_{1}+\lambda_{2}, 1\right)$
			S^{p}	\varnothing
			Σ	$\sigma_{1}=\beta_{1} \quad \sigma_{2}=\beta_{2}$
			Δ^{a}	$\begin{array}{ll} \rho\left(D_{1}\right)=-\beta_{2}^{\vee}+\gamma, & \rho\left(D_{2}\right)=-\beta_{1}^{\vee}+\gamma, \\ \rho\left(D_{3}\right)=\beta_{1}^{\vee}+\beta_{2}^{\vee}-\gamma & \end{array}$
F_{4}	B_{4}	\widehat{Y}_{1}	Λ	$\mathbb{Z}\left(\lambda_{2}, 1\right) \oplus \mathbb{Z}\left(\lambda_{4}, 1\right)$
			S^{p}	$\left\{\beta_{1}, \beta_{3}\right\}$
			Σ	$\sigma=\frac{1}{2}\left(\beta_{1}+2 \beta_{2}+\beta_{3}\right)$
			Δ^{a}	\varnothing

Table 4.2: Homogeneous spherical data

G	H	\widehat{Y}_{i}	$\left(\Lambda, S^{p}, \Sigma, \Delta^{a}\right)$	
		\widehat{Y}_{2}	Λ	$\mathbb{Z}\left(\lambda_{1}, 0\right) \oplus \mathbb{Z}\left(\lambda_{2}, 0\right) \oplus \mathbb{Z}\left(\lambda_{3}, 0\right) \oplus \mathbb{Z}\left(\lambda_{4}, 0\right) \oplus \mathbb{Z}(0,1)$
			S^{p}	\varnothing
			Σ	$\begin{array}{cccc}\sigma_{1}=\beta_{1} & \sigma_{2}=\beta_{2} & \sigma_{3}=\beta_{3} & \sigma_{4}=\beta_{4}\end{array}$
			Δ^{a}	$\begin{aligned} & \rho\left(D_{1}\right)=\beta_{1}^{\vee}+\beta_{2}^{\vee}+\beta_{3}^{\vee}-\gamma, \\ & \rho\left(D_{2}\right)=-\beta_{2}^{\vee}-\beta_{3}^{\vee}+\gamma, \\ & \rho\left(D_{3}\right)=-\beta_{3}^{\vee}-\beta_{4}^{\vee}+\gamma, \\ & \rho\left(D_{4}\right)=\beta_{2}^{\vee}+\beta_{3}^{\vee}+\beta_{4}^{\vee}-\gamma, \\ & \rho\left(D_{5}\right)=-\beta_{1}^{\vee}-\beta_{2}^{\vee}+\gamma \end{aligned}$
		\widehat{Y}_{3}	Λ	$\mathbb{Z}\left(\lambda_{1}, 0\right) \oplus \mathbb{Z}\left(\lambda_{2}, 0\right) \oplus \mathbb{Z}\left(\lambda_{3}, 0\right) \oplus \mathbb{Z}\left(\lambda_{4}, 0\right) \oplus \mathbb{Z}(0,1)$
			S^{p}	\varnothing
			Σ	$\begin{array}{cccc}\sigma_{1}=\beta_{1} & \sigma_{2}=\beta_{4} & \sigma_{3}=\beta_{2}+\beta_{3} & \sigma_{4}=\beta_{3}+\beta_{4}\end{array}$
			Δ^{a}	$\begin{aligned} & \rho\left(D_{1}\right)=-\beta_{2}^{\vee}-\beta_{3}^{\vee}-\beta_{4}^{\vee}+\gamma, \\ & \rho\left(D_{4}\right)=-\beta_{1}^{\vee}-\beta_{2}^{\vee}-\beta_{3}^{\vee}+\gamma, \\ & \rho\left(D_{5}\right)=\beta_{1}^{\vee}+\beta_{2}^{\vee}+\beta_{3}^{\vee}+\beta_{4}^{\vee}-\gamma \end{aligned}$
		\widehat{Y}_{4}	Λ	$\mathbb{Z}\left(\lambda_{1}, 1\right) \oplus \mathbb{Z}\left(\lambda_{4}, 1\right) \oplus \mathbb{Z}(0,1)$
			S^{p}	$\left\{\beta_{2}, \beta_{3}\right\}$
			Σ	$\begin{aligned} \sigma_{1} & =\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4} \\ \sigma_{2} & =\beta_{2}+2 \beta_{3}+3 \beta_{4} \end{aligned}$
			Δ^{a}	\varnothing
E_{6}	$A_{5} \times A_{1}$	$\widehat{Y_{1}}$	Λ	$\mathbb{Z}\left(\lambda_{2}, 0,1\right) \oplus \mathbb{Z}\left(\lambda_{4}, 0,2\right) \oplus \mathbb{Z}\left(\lambda_{5}, \lambda_{6}, 1\right)$
			S^{p}	$\left\{\beta_{1}, \beta_{3}\right\}$
			Σ	$\sigma_{1}=\beta_{1}+2 \beta_{2}+\beta_{3} \quad \sigma_{2}=\beta_{5}+\beta_{6}$
			Δ^{a}	\varnothing
		\widehat{Y}_{6}	Λ	$\mathbb{Z}\left(\lambda_{1}, \lambda_{6}, 1\right) \oplus \mathbb{Z}\left(\lambda_{2}, 0,2\right) \oplus \mathbb{Z}\left(\lambda_{4}, 0,1\right)$
			S^{p}	$\left\{\beta_{3}, \beta_{5}\right\}$
			Σ	$\sigma_{1}=\beta_{3}+2 \beta_{4}+\beta_{5} \quad \sigma_{2}=\beta_{1}+\beta_{6}$
			Δ^{a}	\varnothing
	F_{4}	$\widehat{Y}_{1}, \widehat{Y}_{6}$	Λ	$\mathbb{Z}\left(\lambda_{4}, 1\right) \oplus \mathbb{Z}(0,1)$
			S^{p}	$\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}$
			Σ	$\sigma=\beta_{1}+2 \beta_{2}+3 \beta_{3}+2 \beta_{4}$
			Δ^{a}	\varnothing
		\widehat{Y}_{2}	Λ	$\mathbb{Z}\left(\lambda_{1}, 1\right) \oplus \mathbb{Z}\left(\lambda_{4}, 1\right)$
			S^{p}	$\left\{\beta_{2}, \beta_{3}\right\}$

Table 4.2: Homogeneous spherical data

Table 4.2: Homogeneous spherical data

G	H	\widehat{Y}_{i}	$\left(\Lambda, S^{p}, \Sigma, \Delta^{a}\right)$	
			S^{p}	$\left\{\beta_{2}, \beta_{3}, \beta_{4}\right\}$
			Σ	$\sigma=\beta_{2}+2 \beta_{3}+\beta_{4}+2 \beta_{5}$
			Δ^{a}	\varnothing
E_{7}	A_{7}	\widehat{Y}_{7}	Λ	$\mathbb{Z}\left(\lambda_{2}, 1\right) \oplus \mathbb{Z}\left(\lambda_{4}, 2\right) \oplus \mathbb{Z}\left(\lambda_{6}, 1\right) \oplus \mathbb{Z}(0,2)$
			S^{p}	$\left\{\beta_{1}, \beta_{3}, \beta_{5}, \beta_{7}\right\}$
			Σ	$\begin{aligned} & \sigma_{1}=\beta_{1}+2 \beta_{2}+\beta_{3} \quad \sigma_{2}=\beta_{3}+2 \beta_{4}+\beta_{5} \\ & \sigma_{3}=\beta_{5}+2 \beta_{6}+\beta_{7} \\ & \end{aligned}$
			Δ^{a}	\varnothing
	$E_{6} \times \mathbb{C}^{*}$	\widehat{Y}_{1}	Λ	$\mathbb{Z}\left(\lambda_{1}, 2,1\right) \oplus \mathbb{Z}\left(\lambda_{2}, 0,1\right) \oplus \mathbb{Z}\left(\lambda_{6},-2,1\right) \oplus \mathbb{Z}(0,0,1)$
			S^{p}	$\left\{\beta_{3}, \beta_{4}, \beta_{5}\right\}$
			Σ	$\begin{aligned} & \sigma_{1}=2 \beta_{2}+\beta_{3}+2 \beta_{4}+\beta_{5} \\ & \sigma_{2}=\beta_{1}+\beta_{3}+\beta_{4}+\beta_{5}+\beta_{6} \end{aligned}$
			Δ^{a}	\varnothing
		\widehat{Y}_{2}	Λ	$\begin{aligned} & \mathbb{Z}\left(\lambda_{1},-1,1\right) \oplus \mathbb{Z}\left(\lambda_{2}, 3,1\right) \oplus \mathbb{Z}\left(\lambda_{2},-3,1\right) \oplus \mathbb{Z}\left(\lambda_{3}, 1,1\right) \\ & \oplus \mathbb{Z}\left(\lambda_{4}, 0,2\right) \oplus \mathbb{Z}\left(\lambda_{5},-1,1\right) \oplus \mathbb{Z}\left(\lambda_{6}, 1,1\right) \end{aligned}$
			S^{p}	\varnothing
			Σ	$\begin{aligned} & \sigma_{1}=\beta_{2} \quad \sigma_{2}=\beta_{1}+\beta_{3} \quad \sigma_{3}=\beta_{3}+\beta_{4} \\ & \sigma_{4}=\beta_{4}+\beta_{5} \quad \sigma_{5}=\beta_{5}+\beta_{6} \end{aligned}$
			Δ^{a}	$\begin{aligned} & \rho\left(D_{2}\right)=\frac{1}{6} \beta^{\vee}+\frac{1}{2} \beta_{2}^{\vee}-\frac{1}{6} \beta_{3}^{\vee}+\frac{1}{6} \beta_{5}^{\vee}-\frac{1}{6} \beta_{6}^{\vee}+\frac{1}{6} \gamma^{\prime}, \\ & \rho\left(D_{3}\right)=-\frac{1}{6} \beta^{\vee}+\frac{1}{2} \beta_{2}^{\vee}+\frac{1}{6} \beta_{3}^{\vee}-\frac{1}{6} \beta_{5}^{\vee}+\frac{1}{6} \beta_{6}^{\vee}-\frac{1}{6} \gamma^{\prime}, \end{aligned}$
		\widehat{Y}_{7}	Λ	$\mathbb{Z}\left(\lambda_{1},-1,1\right) \oplus \mathbb{Z}\left(\lambda_{6}, 1,1\right) \oplus \mathbb{Z}(0,3,1)+\mathbb{Z}(0,-3,1)$
			S^{p}	$\left\{\beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}\right\}$
			Σ	$\begin{aligned} & \sigma_{1}=2 \beta_{1}+\beta_{2}+2 \beta_{3}+2 \beta_{4}+\beta_{5} \\ & \sigma_{2}=\beta_{2}+\beta_{3}+2 \beta_{4}+2 \beta_{5}+2 \beta_{6} \end{aligned}$
			Δ^{a}	\varnothing
	$D_{6} \times A_{1}$	\widehat{Y}_{7}	Λ	$\mathbb{Z}\left(\lambda_{1}, \lambda_{7}, 1\right) \oplus \mathbb{Z}\left(\lambda_{2}, 0,2\right) \oplus \mathbb{Z}\left(\lambda_{6}, 0,1\right)$
			S^{p}	$\left\{\beta_{3}, \beta_{4}, \beta_{5}\right\}$
			Σ	$\sigma=\beta_{1}+\beta_{7}$
			Δ^{a}	\varnothing

2.2 The invariants $S^{p}(\widehat{Y})$ and $\Delta^{a}(\widehat{Y})$

To find the invariants $S^{p}(\widehat{Y})$ and $\Delta^{a}(\widehat{Y})$ we need to compute the sets $\Delta\left(\beta_{i}\right)$, i. e. we need to determine which colors are moved by the simple roots of H. Since the colors are given by generators of $\mathbb{C}\left[\widehat{Y}_{i}\right]^{U_{H}}$ having a non-trivial weight for the semisimple part of $H \times \mathbb{C}^{*}$ the color which is generated by such a generator f is moved exactly by the simple roots β_{i} such that the fundamental weight λ_{i} appears in the weight of f.

In the case of the maximal reductive subgroup H of type A_{2} in G of type G_{2} let \widehat{Y} be the spherical affine cone $\widehat{G / P_{1}}$.

Here we have the colors given by generators of weight

$$
\nu_{1}=\left(\lambda_{1}, 1\right) \quad \text { and } \quad \nu_{2}=\left(\lambda_{2}, 1\right) .
$$

So the first color is moved by β_{1} and the second one by β_{2}. Hence

$$
\Delta\left(\beta_{1}\right)=\left\{D_{1}\right\} \quad \text { and } \quad \Delta\left(\beta_{2}\right)=\left\{D_{2}\right\} .
$$

That means we have $S^{p}(\widehat{Y})=\varnothing$ as well as $\Delta^{a}(\widehat{Y})=\varnothing$.
We compute the remaining cases in the same manner to achieve the following table which allows us to immediately acquire the invariants under consideration in this subsection. A color D_{i} in the table is defined by the i-th generator of $\Lambda(\widehat{Y})$ given in Table 4.2

Table 4.3: The sets $\Delta\left(\beta_{i}\right)$

G	H	\widehat{Y}_{i}	$\Delta\left(\beta_{i}\right)$		
G_{2}	A_{2}	\widehat{Y}_{1}	$\Delta\left(\beta_{1}\right)=\left\{D_{1}\right\}$,	$\Delta\left(\beta_{2}\right)=\left\{D_{2}\right\}$	
		\widehat{Y}_{2}	$\Delta\left(\beta_{1}\right)=\left\{D_{1}, D_{3}\right\}$,	$\Delta\left(\beta_{2}\right)=\left\{D_{2}, D_{3}\right\}$	
F_{4}	B_{4}	\widehat{Y}_{1}	$\begin{aligned} & \Delta\left(\beta_{1}\right)=\varnothing, \\ & \Delta\left(\beta_{3}\right)=\varnothing, \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{2}\right)=\left\{D_{1}\right\}, \\ & \Delta\left(\beta_{4}\right)=\left\{D_{2}\right\} \end{aligned}$	
		\widehat{Y}_{2}	$\begin{aligned} & \Delta\left(\beta_{1}\right)=\left\{D_{1}, D_{2}\right\}, \\ & \Delta\left(\beta_{3}\right)=\left\{D_{1}, D_{5}\right\}, \end{aligned}$	$\begin{aligned} \Delta\left(\beta_{2}\right) & =\left\{D_{3}, D_{4}\right\}, \\ \Delta\left(\beta_{4}\right) & =\left\{D_{2}, D_{4}\right\} \end{aligned}$	
		\widehat{Y}_{3}	$\begin{aligned} & \Delta\left(\beta_{1}\right)=\left\{D_{1}, D_{5}\right\}, \\ & \Delta\left(\beta_{3}\right)=\left\{D_{3}\right\}, \end{aligned}$	$\begin{aligned} \Delta\left(\beta_{2}\right) & =\left\{D_{2}\right\}, \\ \Delta\left(\beta_{4}\right) & =\left\{D_{4}, D_{5}\right\} \end{aligned}$	
		\widehat{Y}_{4}	$\begin{aligned} & \Delta\left(\beta_{1}\right)=\left\{D_{1}\right\}, \\ & \Delta\left(\beta_{3}\right)=\varnothing, \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{2}\right)=\varnothing, \\ & \Delta\left(\beta_{4}\right)=\left\{D_{2}\right\} \end{aligned}$	
E_{6}	$A_{5} \times A_{1}$	\widehat{Y}_{1}	$\begin{aligned} & \Delta\left(\beta_{1}\right)=\varnothing, \\ & \Delta\left(\beta_{4}\right)=\left\{D_{2}\right\}, \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{2}\right)=\left\{D_{1}\right\}, \\ & \Delta\left(\beta_{5}\right)=\left\{D_{3}\right\}, \end{aligned}$	$\begin{aligned} \Delta\left(\beta_{3}\right) & =\varnothing \\ \Delta\left(\beta_{6}\right) & =\left\{D_{3}\right\} \end{aligned}$
		\widehat{Y}_{6}	$\begin{aligned} & \Delta\left(\beta_{1}\right)=\left\{D_{1}\right\}, \\ & \Delta\left(\beta_{4}\right)=\left\{D_{3}\right\}, \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{2}\right)=\left\{D_{2}\right\}, \\ & \Delta\left(\beta_{5}\right)=\varnothing, \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{3}\right)=\varnothing, \\ & \Delta\left(\beta_{6}\right)=\left\{D_{1}\right\} \end{aligned}$

Table 4.3: The sets $\Delta\left(\beta_{i}\right)$

G	H	\widehat{Y}_{i}		$\Delta\left(\beta_{i}\right)$	
	F_{4}	$\widehat{Y}_{1}, \widehat{Y}_{6}$	$\begin{aligned} & \Delta\left(\beta_{1}\right)=\varnothing \\ & \Delta\left(\beta_{3}\right)=\varnothing \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{2}\right)=\varnothing \\ & \Delta\left(\beta_{4}\right)=\left\{D_{1}\right\} \end{aligned}$	
		\widehat{Y}_{2}	$\begin{aligned} & \Delta\left(\beta_{1}\right)=\left\{D_{1}\right\}, \\ & \Delta\left(\beta_{3}\right)=\varnothing \end{aligned}$	$\begin{aligned} \Delta\left(\beta_{2}\right) & =\varnothing \\ \Delta\left(\beta_{4}\right) & =\left\{D_{2}\right\} \end{aligned}$	
		$\widehat{Y}_{3}, \widehat{Y}_{5}$	$\begin{aligned} & \Delta\left(\beta_{1}\right)=\left\{D_{1}\right\}, \\ & \Delta\left(\beta_{3}\right)=\left\{D_{2}\right\}, \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{2}\right)=\varnothing \\ & \Delta\left(\beta_{4}\right)=\left\{D_{3}\right\} \end{aligned}$	
	C_{4}	$\widehat{Y}_{1}, \widehat{Y}_{6}$	$\begin{aligned} & \Delta\left(\beta_{1}\right)=\varnothing \\ & \Delta\left(\beta_{3}\right)=\varnothing \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{2}\right)=\left\{D_{1}\right\} \\ & \Delta\left(\beta_{4}\right)=\left\{D_{2}\right\} \end{aligned}$	
	$D_{5} \times \mathbb{C}^{*}$	\widehat{Y}_{1}	$\begin{aligned} & \Delta\left(\beta_{1}\right)=\left\{D_{1}\right\}, \\ & \Delta\left(\beta_{4}\right)=\left\{D_{2}\right\}, \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{2}\right)=\varnothing, \\ & \Delta\left(\beta_{5}\right)=\varnothing \end{aligned}$	$\Delta\left(\beta_{3}\right)=\varnothing,$
		\widehat{Y}_{2}	$\begin{aligned} & \Delta\left(\beta_{1}\right)=\varnothing \\ & \Delta\left(\beta_{4}\right)=\left\{D_{2}\right\} \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{2}\right)=\left\{D_{1}\right\}, \\ & \Delta\left(\beta_{5}\right)=\left\{D_{3}\right\} \end{aligned}$	$\Delta\left(\beta_{3}\right)=\varnothing$
		\widehat{Y}_{3}	$\begin{aligned} & \Delta\left(\beta_{1}\right)=\left\{D_{1}, D_{6}\right\}, \\ & \Delta\left(\beta_{4}\right)=\left\{D_{4}, D_{6}\right\}, \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{2}\right)=\left\{D_{2}\right\}, \\ & \Delta\left(\beta_{5}\right)=\left\{D_{5}\right\} \end{aligned}$	$\Delta\left(\beta_{3}\right)=\left\{D_{3}\right\},$
		\widehat{Y}_{5}	$\begin{aligned} & \Delta\left(\beta_{1}\right)=\left\{D_{1}, D_{6}\right\}, \\ & \Delta\left(\beta_{4}\right)=\left\{D_{4}\right\}, \end{aligned}$	$\begin{aligned} \Delta\left(\beta_{2}\right) & =\left\{D_{2}\right\}, \\ \Delta\left(\beta_{5}\right) & =\left\{D_{5}, D_{6}\right\} \end{aligned}$	$\Delta\left(\beta_{3}\right)=\left\{D_{3}\right\},$
		\widehat{Y}_{6}	$\begin{aligned} & \Delta\left(\beta_{1}\right)=\left\{D_{1}\right\}, \\ & \Delta\left(\beta_{4}\right)=\varnothing, \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{2}\right)=\varnothing \\ & \Delta\left(\beta_{5}\right)=\left\{D_{2}\right\} \end{aligned}$	$\Delta\left(\beta_{3}\right)=\varnothing$
E_{7}	A_{7}	\widehat{Y}_{7}	$\begin{aligned} & \Delta\left(\beta_{1}\right)=\varnothing \\ & \Delta\left(\beta_{4}\right)=\left\{D_{2}\right\} \\ & \Delta\left(\beta_{7}\right)=\varnothing \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{2}\right)=\left\{D_{1}\right\}, \\ & \Delta\left(\beta_{5}\right)=\varnothing, \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{3}\right)=\varnothing \\ & \Delta\left(\beta_{6}\right)=\left\{D_{3}\right\}, \end{aligned}$
	$E_{6} \times \mathbb{C}^{*}$	\widehat{Y}_{1}	$\begin{aligned} & \Delta\left(\beta_{1}\right)=\left\{D_{1}\right\}, \\ & \Delta\left(\beta_{4}\right)=\varnothing, \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{2}\right)=\left\{D_{2}\right\}, \\ & \Delta\left(\beta_{5}\right)=\varnothing, \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{3}\right)=\varnothing \\ & \Delta\left(\beta_{6}\right)=\left\{D_{3}\right\} \end{aligned}$
		\widehat{Y}_{2}	$\begin{aligned} & \Delta\left(\beta_{1}\right)=\left\{D_{1}\right\}, \\ & \Delta\left(\beta_{4}\right)=\left\{D_{5}\right\}, \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{2}\right)=\left\{D_{2}, D_{3}\right\}, \\ & \Delta\left(\beta_{5}\right)=\left\{D_{6}\right\}, \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{3}\right)=\left\{D_{4}\right\} \\ & \Delta\left(\beta_{6}\right)=\left\{D_{7}\right\} \end{aligned}$
		\widehat{Y}_{7}	$\begin{aligned} & \Delta\left(\beta_{1}\right)=\left\{D_{1}\right\}, \\ & \Delta\left(\beta_{4}\right)=\varnothing \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{2}\right)=\varnothing, \\ & \Delta\left(\beta_{5}\right)=\varnothing, \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{3}\right)=\varnothing \\ & \Delta\left(\beta_{6}\right)=\left\{D_{2}\right\} \end{aligned}$
	$D_{6} \times A_{1}$	\widehat{Y}_{7}	$\begin{aligned} \Delta\left(\beta_{1}\right) & =\left\{D_{1}\right\}, \\ \Delta\left(\beta_{4}\right) & =\varnothing, \\ \Delta\left(\beta_{7}\right) & =\left\{D_{1}\right\} \end{aligned}$	$\begin{aligned} & \Delta\left(\beta_{2}\right)=\left\{D_{2}\right\}, \\ & \Delta\left(\beta_{5}\right)=\varnothing, \end{aligned}$	$\begin{aligned} \Delta\left(\beta_{3}\right) & =\varnothing \\ \Delta\left(\beta_{6}\right) & =\left\{D_{3}\right\} \end{aligned}$

2.3 Determination of spherical roots

Computing the spherical roots is more involved and we will do it mostly case-by-case.

2.3.1 Spherical roots with support of type A_{1}

By Lemma 2.29, the spherical roots with support of type A_{1} are determined by the shape of $\Delta\left(\beta_{i}\right)$. A simple root β_{i} is a spherical root iff $\left|\Delta\left(\beta_{i}\right)\right|=2$ and $2 \beta_{i}$ is a spherical root iff $\Delta\left(\beta_{i}\right)=\{D\}$ with $\rho(D)=\frac{1}{2} \beta_{i}^{\vee}$. Thus Table 4.3 and the results from section 1.2 verify that the spherical roots of support A_{1} are the ones given in Table 4.2

2.3.2 Spherical roots with support different from type A_{1}

We are now going to determine the spherical roots of other type. This is conducted in two steps. First we determine a list of candidates for the spherical roots and then show that these are indeed spherical roots.

Step 1: Determination of candidates for spherical roots
From the axioms of a homogeneous spherical datum we know that the spherical roots $\Sigma(\widehat{Y})$ is a subset of $\Sigma(H) \cap \Lambda(\widehat{Y})$ consisting of linearly independent and indivisible vectors. The sets $\Sigma(H)$ and $\Lambda(\widehat{Y})$ are given in Table 2.1 and Table 4.1 and we can list the indivisible vectors in $\Sigma(H) \cap \Lambda(\widehat{Y})$. Note that if β is an element in $\Sigma(H)$ then this defines a possible spherical root if $(\beta, 0)$ is an element of $\Lambda(\widehat{Y})$ since we regard it as a weight of $H \times \mathbb{C}^{*}$.

We can reduce the list of candidates further by making use of the fact that they need to fulfill the axioms of a spherical homogeneous datum.
Example. We consider the case $F_{4} \supset B_{4}$ and $\widehat{Y}=\widehat{G / P_{3}}$. Here $\Delta\left(\beta_{1}\right)$ and $\Delta\left(\beta_{4}\right)$ are of cardinality 2 , so we know that β_{1} and β_{4} are spherical roots. Since $\Delta\left(\beta_{2}\right)=\left\{D_{2}\right\}$ and $\Delta\left(\beta_{3}\right)=\left\{D_{3}\right\}$ are of cardinality one with $\rho\left(D_{2}\right)=\beta_{2}^{\vee}$ and $\rho\left(D_{3}\right)=\beta_{3}^{\vee}$, there are no other spherical roots with support of type A_{1}.

Among the indivisible elements in $\Sigma(H) \cap \Lambda(\widehat{Y})$ with different support are the elements $\sigma_{1}=\beta_{1}+\beta_{2}=\lambda_{1}+\lambda_{2}-\lambda_{3}$ and $\sigma_{2}=\left(\beta_{1}+\beta_{2}+\beta_{3}\right)=\lambda_{1}-\lambda_{3}-2 \lambda_{4}$.

For the element σ_{1} we consider the axiom (A1) of spherical homogeneous data. We have three colors of type a one of which is $\rho\left(D_{5}\right)=\beta_{1}^{\vee}+\beta_{2}^{\vee}+\beta_{3}^{\vee}+\beta_{4}^{\vee}-\gamma$. So we have $\left\langle\rho\left(D_{5}\right), \sigma_{1}\right\rangle=1$ and hence σ_{1} is not a spherical root.

For the element σ_{2} we have $S^{p}\left(\sigma_{2}\right)=\left\{\beta_{2}\right\}$ and $S^{p p}=\left\{\beta_{2}\right\}$. But since $S^{p}(\widehat{Y})=\varnothing$ we have $S^{p p}\left(\sigma_{2}\right) \not \subset S^{p}(\widehat{Y})$ and hence condition (S) of spherical homogeneous data is not fulfilled. It follows that σ_{2} cannot be a spherical root.

Step 2: Proving that all candidates are indeed spherical roots
Now we will verify the following proposition. In the following when we speak of a candidate for a spherical root, we always mean an element that was determined in step 1.

Proposition 4.2: Let \widehat{Y} be one of the spherical affine cones. All candidates for spherical roots are spherical roots.

Proof: First we cover the cases where there is exactly one possible spherical root, i. e. one candidate and no spherical root with support of type A_{1}.
Proposition 4.3: If G / P is horospherical, then G / P is not simple.
Proof: Suppose G / P is a horospherical H-variety. Then $Y=\overline{H .[v]}$ for some $[v] \in G / P$ and for the stabilizer we have $H_{[v]} \supset U$, where U is a maximal unipotent subgroup of H. Recall that as an H-module we have the decomposition $V_{\omega_{i}}=V_{\eta_{1}} \oplus \ldots \oplus V_{\eta_{s}}$ according to our classification. Then $[v]=\left[v_{i_{1}}+\ldots+v_{i_{j}}\right]$ where the $v_{i_{k}}$ are highest weight vectors of the H-module $V_{\omega_{i}}$, so $v_{i_{k}}=v_{\eta_{i_{k}}}$.
Lemma 4.4: In this situation $j>1$.
Proof: Suppose $j=1$. Then $\exists \eta_{i_{j}}$ such that $Y=\overline{H .\left[v_{\eta_{i_{j}}}\right]}=H .\left[v_{\eta_{i_{j}}}\right]$ by the Borel's Fixed Point Theorem. It follows that $H .\left[v_{\omega_{i}}\right]=G .\left[v_{\omega_{i}}\right]$. But if $\operatorname{rank} G=$ rank H, then we can consider the positive root $\alpha=\alpha_{1}+\ldots+\alpha_{n}$ which is not a root of H. Hence if $u \in U_{\alpha}$, then $u\left[v_{\omega_{i}}\right] \notin H .\left[v_{\omega_{i}}\right]$.

For the cases where the rank of G and H differs, we employ a dimension argument. Easy calculation lead to the following dimensions.
$\underline{G \text { of type } E_{6}, H \text { of type } F_{4}}$:

	ω_{1}	ω_{2}	ω_{3}	ω_{5}	ω_{6}
$\operatorname{dim} G / P_{\omega_{i}}$	16	21	25	25	16
$\operatorname{dim} H / H_{\left[v_{\omega_{i}}\right]}$	15	15	20	20	15

\underline{G} of type E_{6}, H of type C_{4} :

	ω_{1}	ω_{6}
$\operatorname{dim} G / P_{\omega_{i}}$	16	16
$\operatorname{dim} H / H_{\left[\omega_{\omega_{i}}\right]}$	11	11

So $H .\left[v_{\omega_{i}}\right] \neq G .\left[v_{\omega_{i}}\right]$ which is a contradiction. Hence $j \neq 1$ which proves the lemma.
\square (Lemma 4.4)
Consider the set $M=\left\{\eta_{i_{1}}, \ldots, \eta_{i_{j}}\right\}$ and its convex hull $\operatorname{Conv}(M) \subseteq X(T) \otimes_{\mathbb{Z}}$ \mathbb{R}.

Denote the set of one-parameter-subgroups by $Y(T)$ and let $\langle\cdot, \cdot\rangle$ be the natural pairing $X(T) \times Y(T) \rightarrow \mathbb{Z}$.
Since $|M| \geq 2$ we can find two extremal points of the convex hull. Thus we find two elements $\eta_{r}, \eta_{s} \in M$ and $\mu_{1}, \mu_{2} \in Y(T)$ such that $\left\langle\eta_{r}, \mu_{1}\right\rangle=$ $\min \left\{\left\langle\eta_{i_{j}}, \mu_{1}\right\rangle\right\}$ and $\left\langle\eta_{i_{j}}, \mu_{1}\right\rangle>\left\langle\eta_{r}, \mu_{1}\right\rangle$ for all $i_{j} \neq r$ and the analogous for $\left\langle\eta_{s}, \mu_{2}\right\rangle$.

Now consider $[v]=\left[v_{i_{1}}+\ldots+v_{i_{k}}\right]$ again. Without loss of generality assume that $r=i_{1}, s=i_{2}$ i. e. $\eta_{i_{1}}$ and $\eta_{i_{2}}$ are extremal points.

We have $\mu_{1}(s) .[v] \in H .[v]$.

$$
\begin{aligned}
\mu_{1}(s) \cdot[v]= & {\left[\eta_{i_{1}}\left(\mu_{1}(s)\right) v_{\eta_{i_{1}}}+\ldots+\eta_{i_{j}}\left(\mu_{1}(s)\right) v_{\eta_{i_{j}}}\right] } \\
= & {[\overbrace{\left.s \mu_{1}, \eta_{\left.i_{1}\right\rangle}\right\rangle-\left\langle\mu_{1}, \eta_{\left.i_{1}\right\rangle}\right\rangle}^{=0} v_{\eta_{i_{1}}}+\overbrace{\left.s \mu_{1}, \eta_{i_{2}}\right\rangle-\left\langle\mu_{1}, \eta_{i_{1}}\right\rangle}^{>0} v_{\eta_{i_{2}}}+\ldots} \\
& +\overbrace{s^{\left\langle\mu_{1}, \eta_{i_{j}}\right\rangle-\left\langle\mu_{1}, \eta_{\left.i_{1}\right\rangle}\right\rangle}}^{>0}
\end{aligned}
$$

It follows $\lim _{s \rightarrow 0} \frac{1}{\eta_{i_{1}}\left(\mu_{1}(s)\right)} \mu_{1}(s) \cdot[v]=\left[v_{\eta_{i_{1}}}\right] \in \overline{H \cdot[v]}=Y$. And by the same argument also $\left[v_{\eta_{i_{2}}}\right] \in Y$. But then there are two closed orbits by Borel's Fixed Point Theorem. Hence Y is not simple.
\square (Prop. 4.3)
We can now use this results to find the spherical roots for the following cases $\widehat{Y_{1}}$ for G of type F_{4} and H of type B_{4} as well as $\widehat{Y_{1}}, \widehat{Y_{2}}$ and $\widehat{Y_{6}}$ for G of type E_{6} and H of type $D_{5} \times \mathbb{C}^{*}$. In these cases there is only one possible spherical root, namely the one that is listed in Table 4.2 .

Now suppose that for one of the cases which were just stated \widehat{Y}_{i} was a horospherical $H \times \mathbb{C}^{*}$-variety, i. e. $\Sigma_{\widehat{Y}}=\varnothing$. Then $\overline{H \times \mathbb{C}^{*} . v}=\widehat{Y}$ where the stabilizer of v contained a maximal unipotent subgroup. But then also $\overline{H .[v]}=Y$ where the stabilizer of $[v]$ in H also contained a maximal unipotent subgroup. Hence to prove that the possible spherical root is indeed a spherical root it remains to show that for all cases in question we have that Y is simple as an H-variety.

Since the closed H-orbits of $\mathbb{P}\left(V_{\omega_{i}}\right)$ are exactly the H-orbits G. $\left[v_{\eta_{i}}\right]$ where η_{i} is a highest weight of $V_{\omega_{i}}$ considered as an H-module, it remains to show that $v_{\omega_{i}}$ is the only such element.
Proposition 4.5: Let $H \subset G$ be a maximal reductive subgroup of G such that $\operatorname{rank} G=\operatorname{rank} H$.

A highest weight vector $v_{\eta_{j}} \in G . v_{\omega_{i}}$ if and only if $\eta_{j} \in W \omega_{i}$, where W is the Weyl group of G.

Proof: By the Bruhat decomposition of G we know that

$$
G \cdot\left[v_{\omega_{i}}\right]=\bigcup_{w \in W} U\left[v_{w\left(\omega_{i}\right)}\right] .
$$

So an element of Y is of the form $u \cdot v_{w\left(\omega_{i}\right)}=v_{w\left(\omega_{i}\right)}+v^{\prime}$ where v^{\prime} is sum of vectors having higher weights. But then, if $v^{\prime} \neq 0$ than it cannot be a weight vector. So a highest weight vector $v_{\eta_{j}} \in G . v_{\omega_{i}}$ for H is of the form $v_{w\left(\omega_{i}\right)}$.
If on the other hand $\eta_{j} \in W \cdot \omega_{i}$ than $v_{w\left(\omega_{i}\right)} \in G \cdot v_{\omega_{i}}$ is a weight vector having weight η_{j}. Since the weight space is 1 -dimensional it must be a highest weight vector.
\square (Prop. 4.5)

1) G of type E_{6}, H of type B_{4} :

Case $\widehat{G / P_{1}}$: For the case under consideration we have $\mathbb{P}\left(V_{\omega_{1}}\right)=\mathbb{P}\left(V_{\lambda_{2}} \oplus V_{\lambda_{4}}\right)$.
 that $\omega_{3}-\omega_{4}$ is not an element of the W-orbit of ω_{1}. So $H \cdot\left[v_{\omega_{1}}\right]=H \cdot\left[v_{\lambda_{2}}\right]$ is the only closed orbit and thus Y is not simple. It follows that the only possible spherical root is indeed a spherical root.
2) G of type E_{6}, H of type F_{4} :

Cases $\widehat{G / P_{1}}, \widehat{G / P_{2}}, \widehat{G / P_{6}}$: Again there is only one possibility for the spherical roots which is given in Table 4.2
Proposition 4.6: If G is of type E_{6} and H of type F_{4}, then the spherical H varieties of the form G / P are simple.

Proof: As we have seen elements of $G .\left[v_{\omega_{i}}\right]$ are of the form $\left[v_{w\left(\omega_{i}\right)}+v^{\prime}\right]$ where v^{\prime} is a sum of weight vectors that have higher weights than $w\left(\omega_{i}\right)$.

The simple root vectors of the Lie algebra of H are the following.

$$
\begin{array}{ll}
X_{\beta_{1}}=X_{\alpha_{2}} & X_{\beta_{2}}=X_{\alpha_{4}} \\
X_{\beta_{3}}=\frac{1}{\sqrt{2}}\left(X_{\alpha_{3}}+X_{\alpha_{5}}\right) & X_{\beta_{4}}=\frac{1}{\sqrt{2}}\left(X_{\alpha_{1}}+X_{\alpha_{6}}\right)
\end{array}
$$

Now suppose that $v_{w\left(\omega_{i}\right)}+v^{\prime}$ is a highest weight vector for H. Then $X_{\beta_{i}} \cdot\left(v_{w\left(\omega_{i}\right)}+\right.$ $\left.v^{\prime}\right)=0$ for $i=1, \ldots, 4$.
$X_{\beta_{1}} \cdot\left(v_{w\left(\omega_{i}\right)}+v^{\prime}\right)=0$ implies $X_{\alpha_{2}} \cdot v_{w\left(\omega_{i}\right)}=0$. Since otherwise we know that $X_{\beta_{1}} \cdot v_{w\left(\omega_{i}\right)}=X_{\alpha_{2}} \cdot v_{w\left(\omega_{i}\right)}$ is a weight vector of weight $w\left(\omega_{i}\right)+\alpha_{2}$. But this vector cannot cancel with a summand of $X_{\alpha_{2}} . v^{\prime}$ since they all have higher weights and hence we would have $X_{\beta_{1}} \cdot\left(v_{w\left(\omega_{i}\right)}+v^{\prime}\right) \neq 0$.
$X_{\beta_{2}} \cdot\left(v_{w\left(\omega_{i}\right)}+v^{\prime}\right)=0$ implies $X_{\alpha_{4}} \cdot v_{w\left(\omega_{i}\right)}=0$ by the same argument.
$X_{\beta_{3}} \cdot\left(v_{w\left(\omega_{i}\right)}+v^{\prime}\right)=0$ implies $X_{\alpha_{3}} \cdot v_{w\left(\omega_{i}\right)}=0$ and $X_{\alpha_{5}} \cdot v_{w\left(\omega_{i}\right)}=0$. This is the case, if this was not the case so for example $X_{\alpha_{3}} \cdot v_{w\left(\omega_{i}\right)} \neq 0$, then this vector would have weight $w\left(\omega_{i}\right)+\alpha_{3}$ could not cancel with any other summand of $\left(X_{\alpha_{3}}+X_{\alpha_{5}}\right) \cdot\left(v_{w\left(\omega_{i}\right)}+v^{\prime}\right)$ since they all have different weights.
$X_{\beta_{4}} \cdot\left(v_{w\left(\omega_{i}\right)}+v^{\prime}\right)=0$ implies $X_{\alpha_{1}} \cdot v_{w\left(\omega_{i}\right)}=0$ and $X_{\alpha_{6}} \cdot v_{w\left(\omega_{i}\right)}=0$ by the same argument.

It follows that $X_{\alpha_{i}} \cdot v_{w\left(\omega_{i}\right)}=0$ for $i=1, \ldots, 6$. So $v_{w\left(\omega_{i}\right)}$ is the highest weight for G and we have $w\left(\omega_{i}\right)=\omega_{i}$. So it follows $v^{\prime}=0$ and $v_{w\left(\omega_{i}\right)}+v^{\prime}=v_{\omega_{i}}$. Hence we have shown that there is a unique highest H-weight in the orbit $G \cdot\left[v_{\omega_{i}}\right]$ and thus there is only one closed H-orbit in G / P which means that these varieties are simple.

So, the only candidates are indeed spherical roots. For the other cases with one possible spherical root, this argument cannot be applied since they turn out not to be simple.

The proof of the proposition for the remaining cases is conducted case-bycase. Every case relies on Theorem 2.28 . First we cover cases where there are generators of degree 2 in $\mathbb{C}[\widehat{Y}]^{U_{H}}$.

In the following we write $V_{\nu_{1}} \cdot V_{\nu_{2}} \subset \mathbb{C}[\widehat{Y}]$ for the module that is generated by elements of the form $f g \in \mathbb{C}[\widehat{Y}]$, where $f \in V_{\nu_{1}}$ and $g \in V_{\nu_{2}}$.
3) G of type E_{6}, H of type C_{4} :

Case $\widehat{G / P_{1}}$: There are two candidates

$$
\begin{array}{ll}
& \sigma_{1}=\left(2 \lambda_{2}-\lambda_{4}, 0\right) \\
\text { and } & \sigma_{2}=\left(-2 \lambda_{2}+2 \lambda_{4}, 0\right) .
\end{array}
$$

Further we have

$$
\begin{aligned}
\operatorname{res}_{H \times \mathbb{C}^{*}}^{G}\left(V_{\omega_{1}^{*}}\right) & =\operatorname{res}_{H \times \mathbb{C}^{*}}^{G}\left(V_{\omega_{6}}\right)=V_{\left(\lambda_{2}, 1\right)} \\
\text { and } \quad \operatorname{res}_{H \times \mathbb{C}^{*}}^{G}\left(V_{2 \omega_{1}^{*}}\right) & =\operatorname{res}_{H \times \mathbb{C}^{*}}^{G}\left(V_{2 \omega_{6}}\right)=V_{\left(2 \lambda_{2}, 2\right)} \oplus V_{\left(\lambda_{4}, 2\right)} \oplus V_{(0,2)} .
\end{aligned}
$$

If we consider $\mathbb{C}[\widehat{Y}]$ as a G-module we know that $V_{\omega_{6}} \cdot V_{\omega_{6}}=V_{2 \omega_{6}}$ ([VP72]). So it follows

$$
V_{\left(\lambda_{2}, 1\right)} \cdot V_{\left(\lambda_{2}, 1\right)}=V_{\left(2 \lambda_{2}, 2\right)} \oplus V_{\left(\lambda_{4}, 2\right)} \oplus V_{(0,2)}
$$

Thus $\left(2 \lambda_{2}, 0\right)=\left(2 \lambda_{2}, 2\right)-(0,2)$ is an element of $\left\langle\Sigma_{\widehat{Y}}\right\rangle_{\mathbb{N}}$. But then σ_{1} and σ_{2} must be spherical roots.
Case $\widehat{G / P_{6}}$: For this case the proof is exactly the same, one just interchanges ω_{1} and ω_{6}.
4) G of type E_{7}, H of type A_{7} :

Case $\widehat{G / P_{7}}$: There are three candidates

$$
\sigma_{1}=\left(2 \lambda_{2}-\lambda_{4}, 0\right), \quad \sigma_{2}=\left(-\lambda_{2}+2 \lambda_{4}-\lambda_{6}, 0\right), \quad \sigma_{3}=\left(-\lambda_{4}+2 \lambda_{6}, 0\right)
$$

for spherical roots. We have

$$
\begin{aligned}
\operatorname{res}_{H \times \mathbb{C}^{*}}^{G}\left(V_{\omega_{7}^{*}}\right) & =V_{\left(\lambda_{2}, 1\right)} \oplus V_{\left(\lambda_{6}, 1\right)} \\
\text { and } \quad \operatorname{res}_{H \times \mathbb{C}^{*}}^{G}\left(V_{2 \omega_{7}^{*}}\right) & \supseteq V_{(0,2)} .
\end{aligned}
$$

Again if considering $\mathbb{C}[\widehat{Y}]$ as a G-module we have $V_{\omega_{7}^{*}} \cdot V_{\omega_{7}^{*}}=V_{2 \omega_{7}^{*}}$. It follows that $V_{(0,2)}$ is an irreducible component of $V_{\left(\lambda_{2}, 1\right)} \cdot V_{\left(\lambda_{2}, 1\right)}, V_{\left(\lambda_{2}, 1\right)} \cdot V_{\left(\lambda_{6}, 1\right)}$ or $V_{\left(\lambda_{6}, 1\right)}$. $V_{\left(\lambda_{6}, 1\right)}$. And thus $\left(2 \lambda_{2}, 0\right),\left(2 \lambda_{6}, 0\right)$ or $\left(\lambda_{1}+\lambda_{6}, 0\right)$ is an element of $\left\langle\Sigma_{\widehat{Y}}\right\rangle_{\mathbb{N}}$. But only $\lambda_{1}+\lambda_{6}=\sigma_{1}+\sigma_{2}+\sigma_{3}$ can be written as a linear combination of the possible spherical roots with non-negative coefficients. This the proposition follows in this case.
5) G of type E_{7}, H of type $D_{6} \times A_{1}$:

Case $\widehat{G / P_{7}}$: The only candidate for a spherical root is

$$
\sigma=\left(2 \lambda_{1}-\lambda_{2}, 2 \lambda_{7}, 0\right)
$$

We have

$$
\begin{array}{r}
\operatorname{res}_{H \times \mathbb{C}^{*}}^{G}\left(V_{\omega_{7}^{*}}\right)=V_{\left(\lambda_{1}, \lambda_{7}, 1\right)} \oplus V_{\left(\lambda_{6}, 0,1\right)} \\
\operatorname{res}_{H \times \mathbb{C}^{*}}^{G}\left(V_{2 \omega_{7}^{*}}\right) \supset V_{\left(\lambda_{2}, 0,2\right)}
\end{array}
$$

Since as G-modules we know that $V_{\omega_{7}^{*}} \cdot V_{\omega_{7}^{*}}=V_{2 \omega_{7}^{*}}$ which implies that $V_{\left(\lambda_{2}, 0,2\right)}$ is an irreducible component of one of the products of irreducible components in $V_{\omega_{7}^{*}}$. Thus

$$
\left(2 \lambda_{1}-\lambda_{2}, 2 \lambda_{7}, 0\right) \text { or }\left(2 \lambda_{6}-\lambda_{2}, 0,0\right) \text { or }\left(\lambda_{1}+\lambda_{6}-\lambda_{2}, \lambda_{7}, 0\right)
$$

is an element of $\left\langle\Sigma_{\widehat{Y}}\right\rangle_{\mathbb{N}}$. Since there is only one possible spherical root, the first case holds and σ is indeed a spherical root.

Now we turn to the remaining cases. The strategy for finding the spherical roots in these cases is as follows. Let \widehat{Y} be one of the spherical affine cones and let $\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}$ be the union of spherical roots with support of type A_{1} and further candidates for spherical roots. Let σ_{j} be one fixed element of this set. We consider a suitable product $V_{\mu_{1}} \cdot V_{\mu_{2}} \subset \mathbb{C}[\widehat{Y}]$. By suitable we mean, that there exists a $\nu \in \Lambda(\widehat{Y})^{+}$, such that $\mu_{1}+\mu_{2}-\nu=\sum_{i=1}^{s} n_{i} \sigma_{i}$ where $n_{i} \in \mathbb{N}$ with $n_{j}>0$.

Next we prove $V_{\nu} \subset V_{\mu_{1}} \cdot V_{\mu_{2}}$ by calculating the dimension of the weight space $\left(V_{\mu_{1}} \cdot V_{\mu_{2}}\right)_{\nu}$ yielding that σ_{j} is a spherical root thanks to Thm. 2.28.

We will illustrate our strategy for finding the spherical roots by computing a few cases in detail.
6) G of type G_{2}, H of type A_{2} :

Case $\widehat{G / P_{1}}$: The only candidate for a spherical root is $\sigma=\left(\lambda_{1}+\lambda_{2}, 0\right)$.
We need to show that the candidate σ is indeed a spherical root. The restrictions to $H \times \mathbb{C}^{*}$ of the simple components $V_{\omega_{1}^{*}}$ and $V_{\omega_{2}^{*}}$ are

$$
\begin{gathered}
\operatorname{res}_{H \times \mathbb{C}^{*}}^{G}\left(V_{\omega_{1}^{*}}\right)=V_{\left(\lambda_{1}, 1\right)} \oplus V_{\left(\lambda_{2}, 1\right)} \oplus V_{(0,1)} \\
\operatorname{res}_{H \times \mathbb{C}^{*}}^{G}\left(V_{2 \omega_{1}^{*}}\right)=V_{(0,2)} \oplus V_{\left(\lambda_{1}, 2\right)} \oplus V_{\left(\lambda_{2}, 2\right)} \oplus V_{\left(\lambda_{1}+\lambda_{2}, 2\right)} \\
\\
\oplus V_{\left(2 \lambda_{1}, 2\right)} \oplus V_{\left(2 \lambda_{2}, 2\right)}
\end{gathered}
$$

If

$$
V_{\left(\lambda_{1}, 1\right)} \cdot V_{\left(\lambda_{2}, 1\right)} \supset V_{(0,2)}
$$

then $\left(\lambda_{1}, 1\right)+\left(\lambda_{2}, 1\right)-(0,2)=\left(\lambda_{1}+\lambda_{2}, 0\right)$ is an element of $\left\langle\Sigma_{\widehat{Y}}\right\rangle_{\mathbb{N}}$ and thus σ is a spherical root.

We have that

$$
V_{\left(\lambda_{1}, 1\right)} \cdot V_{\left(\lambda_{2}, 1\right)} \subset\left(V_{\left(\lambda_{1}, 1\right)} \otimes V_{\left(\lambda_{2}, 1\right)}\right) \cap \mathbb{C}[\widehat{Y}]
$$

and the right hand side equals $V_{\left(\lambda_{1}+\lambda_{2}, 2\right)} \oplus V_{(0,2)}$. The module $V_{\left(\lambda_{1}+\lambda_{2}, 2\right)}$ must be a simple component of the product and we need to prove that $V_{(0,2)}$ is a simple component as well.

We have $\operatorname{dim}\left(V_{\lambda_{1}+\lambda_{2}, 2}\right)_{(0,2)}=2$. Thus it suffices to show that weight space of the weight $(0,2)$ in $V_{\left(\lambda_{1}, 1\right)} \cdot V_{\left(\lambda_{2}, 1\right)}$ is of dimension 3.

Just as we did before we consider the affine cone \widehat{Y} embedded in the simple module $V_{\omega_{1}}$. We indicate its structure below. The weight spaces are all 1 -dimensional and we choose a weight vector v_{ω} for each one. The weights with respect to H are given in parenthesis. The weight vectors with upper index A form the H-representation $V_{\lambda_{1}}$, the ones indexed with B form the H representation $V_{\lambda_{2}}$ and the weight vector with index C the trivial representation.

If v_{μ} is a weight vector of V_{λ} having weight μ we denote the dual basis element by v_{μ}^{*} which is a weight vector of $V_{\lambda^{*}}$ of weight $-\mu$. Restricting these functions to \widehat{Y} we get regular functions on the affine cone.

We use these to construct functions of weight $(0,2)$ in $V_{\left(\lambda_{1}, 1\right)} \cdot V_{\left(\lambda_{2}, 1\right)}$. We set

$$
\begin{aligned}
& f_{1}:=\left(v_{-\lambda_{1}}^{B}\right)^{*} \cdot\left(v_{\lambda_{1}}^{A}\right)^{*} \\
& f_{2}:=\left(v_{\lambda_{1}-\lambda_{2}}^{B}\right)^{*} \cdot\left(v_{-\lambda_{1}+\lambda_{2}}^{A}\right)^{*} \\
& f_{3}:=\left(v_{\lambda_{2}}^{B}\right)^{*} \cdot\left(v_{-\lambda_{2}}^{A}\right)^{*}
\end{aligned}
$$

The first factor of each f_{i} is an element of $V_{\lambda_{1}, 1} \subset \mathbb{C}[\widehat{Y}]$, the second one of $V_{\lambda_{2}, 1} \subset \mathbb{C}[\widehat{Y}]$. It remains to prove that they are linearly independent. So let $f=a_{1} f_{1}+a_{2} f_{2}+a_{3} f_{3}=0$. We choose suitable elements in \widehat{Y} to show that all three coefficients are 0 .

First note that all weights except 0 are in the W-orbit of ω_{1} where W denotes the Weyl group of G_{2}. We set

$$
v_{1}^{1}=v_{\lambda_{1}-\lambda_{2}}^{B} \in G \cdot v_{\omega_{1}} .
$$

Then we apply an element $u \in U_{-\alpha_{1}}$ and get

$$
v_{2}^{1}=u \cdot v_{1}=v_{\lambda_{1}-\lambda_{2}}^{B}+c_{1} v_{0}^{C}+v_{-\lambda_{1}+\lambda_{2}}^{A}
$$

with non-zero coefficients c_{1}, c_{2}. We have $f_{1}\left(v_{2}^{1}\right)=f_{3}\left(v_{2}^{1}\right)=0$ and $f_{1}\left(v_{2}^{1}\right) \neq 0$. Thus it follows that $a_{2}=0$ and $f=a_{1} f_{1}+a_{3} f_{3}$.

Next we set

$$
v_{1}^{2}=v_{\lambda_{2}}^{B} \in G \cdot v_{\omega_{1}}
$$

and apply an element $u \in U_{-\left(\alpha_{1}+\alpha_{2}\right)}$ to get

$$
v_{2}^{2}=v_{\lambda_{2}}^{B}+c_{1} v_{0}^{C}+c_{2} v_{-\lambda_{2}}^{A}
$$

with non-zero coefficients c_{1}, c_{2}. Now $f_{1}\left(v_{2}^{2}\right)=0$ and $f_{3}\left(v_{2}^{2}\right) \neq 0$. Hence we have $f=a_{1} f_{1}=0$. But since $\mathbb{C}[\hat{Y}]$ is a UFD and f_{1} is the product of two non-zero elements in $\mathbb{C}[\widehat{Y}]$ it follows that also $a_{1}=0$.

This concludes the proof that σ is a spherical root.
7) G of type F_{4}, H of type B_{4} :

Case $\widehat{G / P_{4}}$: We compute this case as a second example. The candidates in this case are

$$
\begin{array}{ll}
& \sigma_{1}=\left(\lambda_{1}, 0\right) \\
\text { and } & \sigma_{2}=\left(-\lambda_{1}+2 \lambda_{4}, 0\right) .
\end{array}
$$

Rechall that

$$
\begin{aligned}
\operatorname{res}_{H \times \mathbb{C}^{*}}^{G}\left(V_{\omega_{4}^{*}}\right)= & V_{(0,1)} \oplus V_{\left(\lambda_{1}, 1\right)} \oplus V_{\left(\lambda_{4}, 1\right)} \\
\operatorname{res}_{H \times \mathbb{C}^{*}}^{G}\left(V_{\left.2 \omega_{4}^{*}\right)}\right)= & V_{(0,2)} \oplus V_{\left(\lambda_{1}, 2\right)} \oplus V_{\left(\lambda_{4}, 2\right)} \oplus V_{\left(2 \lambda_{1}, 2\right)} \\
& \oplus V_{\left(2 \lambda_{4}, 2\right)} \oplus V_{\left(\lambda_{1}+\lambda_{4}, 2\right)}
\end{aligned}
$$

In the following we compute

$$
V_{\left(\lambda_{4}, 1\right)} \cdot V_{\left(\lambda_{4}, 1\right)}=V_{\left(2 \lambda_{4}, 2\right)} \oplus V_{\left(\lambda_{4}, 2\right)} \oplus V_{(0,2)} .
$$

Then $\left(2 \lambda_{4}, 0\right)=\sigma_{1}+\sigma_{2} \in\left\langle\Sigma_{\widehat{Y}}\right\rangle_{\mathbb{N}}$ and thus σ_{1} and σ_{2} are spherical roots.
Since $S^{2}\left(V_{\left(\lambda_{4}, 1\right)}\right)=V_{\left(2 \lambda_{4}, 2\right)} \oplus V_{\left(\lambda_{4}, 2\right.} \oplus V_{(0,1)}$, we know that only these irreducible components can occur. We have $\operatorname{dim}\left(V_{\left(2 \lambda_{4}, 2\right)}\right)_{(0,2)}=6, \operatorname{dim}\left(V_{\left(\lambda_{4}, 2\right)}\right)_{(0,2)}=1$. Thus we need to show that the weight space of $(0,2)$ in $V_{\left(\lambda_{4}, 1\right)} \cdot V_{\left(\lambda_{4}, 1\right)}=8$.
We condsider the usual embedding of \widehat{Y} in $V_{\omega_{4}}$ whose structure we indicate below. All weight spaces are one dimensional except that of weight 0 , which is of dimension 2. The weight spaces that belong to $V_{\left(\lambda_{4}\right)}$ are indexed by a circle.

Now we considerfollowing functions in $V_{\left(\lambda_{4}, 1\right)} \cdot V_{\left(\lambda_{4}, 1\right)} \subset \mathbb{C}[\widehat{Y}]$.

$$
\begin{aligned}
& f_{1}=\left(v_{\omega_{3}-\omega_{4}}\right)^{*}\left(v_{-\omega_{3}+\omega_{4}}\right)^{*} \\
& f_{2}=\left(v_{\omega_{2}-\omega_{3}}\right)^{*}\left(v_{-\omega_{2}+\omega_{3}}\right)^{*} \\
& f_{3}=\left(v_{\omega_{1}-\omega_{2}+\omega_{3}}\right)^{*}\left(v_{-\omega_{1}+\omega_{2}-\omega_{3}}\right)^{*} \\
& \vdots \\
& f_{8}=\left(v_{-\omega_{3}+2 \omega_{4}}\right)^{*}\left(v_{\omega_{3}-2 \omega_{4}}\right)^{*}
\end{aligned}
$$

and set $f=\sum_{i=1}^{8} a_{i} f_{i}=0$.

Note that all weights of $V_{\lambda_{4}}$ are elements of the Weyl group orbit of ω_{4}. We set

$$
v_{1}^{1}=v_{\omega_{3}-2 \omega_{4}} \in G \cdot v_{\omega_{4}}
$$

Applying an element $u \in U_{\alpha_{4}}$ yields

$$
v_{2}^{1}=v_{1}^{1}+c_{1} v_{0}+c_{2} v_{-\omega_{3}+2 \omega_{4}}
$$

where v_{0} is some weight vector of weight 0 . We have $f_{i}\left(v_{2}^{1}\right)=0$ for $i \neq 8$. Hence $a_{8}=0$.

Next we set

$$
v_{1}^{2}=v_{\omega_{2}-\omega_{3}-\omega_{4}} \in G \cdot v_{\omega_{4}}
$$

and apply $u \in U_{\alpha_{3}+\alpha_{4}}$, yielding

$$
v_{2}^{2}=v_{1}^{2}+c_{1} v_{0}+c_{2} v_{-\omega_{2}+\omega_{3}+\omega_{4} .}
$$

Here $f_{i}\left(v_{2}^{2}\right)=0$ for $i \neq 7$, hence $a_{7}=0$. We proceed this way and successively compute that $a_{1}=\ldots=a_{8}=0$. It follows that $\left(V_{\left(\lambda_{4}, 1\right)} \cdot V_{\left(\lambda_{4}, 1\right)}\right)_{(0,2)}$ is of dimension 8.

For the remaining cases we will state which product one needs to consider to obatain that a given candidate is a spherical root. For each case we used the same strategy as we did in the two example cases above.
Case $\widehat{G / P_{3}}$: In this case there are two candidates

$$
\begin{aligned}
& \sigma_{3}
\end{aligned}=\left(-\lambda_{1}+\lambda_{2}+\lambda_{3}-2 \lambda_{4}, 0\right),
$$

To prove that these two elements are spherical roots we consider the products $V_{\left(\lambda_{2}, 1\right)} \cdot V_{\left(\lambda_{3}, 1\right)}$ and $V_{\left(\lambda_{1}+\lambda_{4}, 1\right)} \cdot V_{\left(\lambda_{3}, 1\right)}$. One shows that the first of these two products contains a simple module $V_{\left(\lambda_{1}+\lambda_{2}+\lambda_{4}, 2\right)}$ and the second one a simple module $V_{\left(\lambda_{1}+2 \lambda_{4}, 2\right)}$. So $\sigma_{3}=\left(\lambda_{2}+\lambda_{3}, 2\right)-\left(\lambda_{1}+2 \lambda_{4}, 2\right)$ and $\sigma_{4}=\left(\lambda_{1}+\lambda_{3}+\right.$ $\left.\lambda_{4}, 2\right)-\left(\lambda_{1}+\lambda_{2}+\lambda_{4}, 2\right)$ are spherical roots.
8) G of type E_{6}, H of type $A_{5} \times A_{1}$:

Case $\widehat{G / P_{1}}$: The candidates in this case are $\sigma_{1}=\left(-\lambda_{4}+2 \lambda_{5}, 2 \lambda_{6}, 0\right)$ and $\sigma_{2}=$ $\left.\overline{\left(2 \lambda_{2}-\lambda_{4}, 0\right.}, 0\right)$.

Here we compute the products

$$
\begin{aligned}
V_{\left(\lambda_{2}, 0,1\right)} \cdot V_{\left(\lambda_{2}, 0,1\right)} & =V_{\left(2 \lambda_{2}, 0,2\right)} \oplus V_{\left(\lambda_{4}, 0,2\right)} \\
V_{\left(\lambda_{5}, \lambda_{6}, 1\right)} \cdot V_{\left(\lambda_{5}, \lambda_{6}, 1\right)} & =V_{\left(2 \lambda_{5}, 2 \lambda_{6}, 2\right)} \oplus V_{\left(\lambda_{4}, 0,2\right)}
\end{aligned}
$$

It follows that $\sigma_{1}=\left(2 \lambda_{5}, 2 \lambda_{6}, 2\right)-\left(\lambda_{4}, 0,2\right)$ and $\sigma_{2}=\left(2 \lambda_{2}, 0,2\right)-\left(\lambda_{4}, 0,2\right)$ are spherical roots.

Case $\widehat{G / P_{6}}$: This case is almost identical to the previous one. The candidates $\left.\overline{\text { are } \sigma_{1}=(2} \lambda_{1}-\lambda_{2}, 2 \lambda_{6}, 0\right), \sigma_{2}=\left(-\lambda_{2}+\lambda_{4}, 0,0\right)$. We compute

$$
\begin{aligned}
V_{\left(\lambda_{1}, \lambda_{6}, 1\right)} \cdot V_{\left(\lambda_{1}, \lambda_{6}, 1\right)} & =V_{\left(2 \lambda_{1}, 2 \lambda_{6}, 2\right)} \oplus V_{\left(\lambda_{2}, 0,2\right)} \\
V_{\left(\lambda_{4}, 0,1\right)} \cdot V_{\left(\lambda_{4}, 0,1\right)} & =V_{\left(2 \lambda_{4}, 0,2\right)} \oplus V_{\left(\lambda_{2}, 0,2\right)} .
\end{aligned}
$$

Hence $\sigma_{1}=\left(2 \lambda_{1}, 2 \lambda_{6}, 2\right)-\left(\lambda_{2}, 0,2\right)$ and $\sigma_{2}=\left(2 \lambda_{4}, 0,2\right)-\left(\lambda_{2}, 0,2\right)$ are spherical roots.
9) G of type E_{6}, H of type F_{4} :

Cases $\widehat{G / P_{3}}$ and $\widehat{G / P_{5}}$: The candidates in this case are $\sigma_{1}=\left(\lambda_{1}-\lambda_{4}, 0\right)$ and $\sigma_{2}=\left(-\lambda_{1}+\lambda_{3}, 0\right)$.

We compute

$$
\begin{array}{ll}
& V_{\left(\lambda_{1}, 1\right)} \cdot V_{\left(\lambda_{3}, 1\right)} \supset V_{\left(\lambda_{3}+\lambda_{4}, 2\right)} \\
\text { and } \quad & V_{\left(\lambda_{3}, 1\right)} \cdot V_{\left(\lambda_{3}, 1\right)} \supset V_{\left(\lambda_{1}+\lambda_{3}, 2\right)} .
\end{array}
$$

Hence $\sigma_{1}=\left(\lambda_{1}+\lambda_{3}, 2\right)-\left(\lambda_{3}+\lambda_{4}, 2\right)$ and $\sigma_{2}=\left(2 \lambda_{3}, 2\right)-\left(\lambda_{1}+\lambda_{3}, 2\right)$ are spherical roots.
10) G of type E_{6}, H of type $D_{5} \times \mathbb{C}^{*}$:
$\frac{\text { Case }}{\text { that }} \widehat{G / P_{1}}$: The only candidate in this case is $\sigma=\left(-\lambda_{1}+2 \lambda_{4}, 0,0\right)$. We compute

$$
V_{\left(\lambda_{4},-1,1\right)} \cdot V_{\left(\lambda_{4},-1,1\right)} \supset V_{\left(\lambda_{1},-2,2\right)}
$$

Hence $\sigma=\left(2 \lambda_{4},-2,2\right)-\left(\lambda_{1},-2,2\right)$ is a spherical root.
Case $\widehat{G / P_{2}}$: The candidates in this case are $\sigma_{1}=\left(-\lambda_{2},+\lambda_{4}+\lambda_{5}, 0,0\right)$ and $\left.\overline{\sigma_{2}=\left(2 \lambda_{2}\right.}-\lambda_{4}-\lambda_{5}, 0,0\right)$.

We compute

$$
\begin{array}{ll}
& V_{\left(\lambda_{4}, 3,1\right)} \cdot V_{\left(\lambda_{5},-3,1\right)} \supset V_{\left(\lambda_{2}, 0,2\right)} \\
\text { and } & V_{\left(\lambda_{2}, 0,1\right)} \cdot V_{\left(\lambda_{2}, 0,1\right)} \supset V_{\left(\lambda_{4}+\lambda_{5}, 0,2\right)}
\end{array}
$$

It follows that $\sigma_{1}=\left(\lambda_{4}+\lambda_{5}, 0,2\right)-\left(\lambda_{2}, 0,2\right)$ and $\sigma_{2}=\left(2 \lambda_{2}-\lambda_{4}-\lambda_{5}, 0,0\right)$ are spherical roots.
Case $\widehat{G / P_{3}}$: The candidates in this case are $\sigma_{3}=\left(-\lambda_{1}+\lambda_{2}+\lambda_{3}-\lambda_{4}-\lambda_{5}, 0,0\right)$ and $\sigma_{4}=\left(-\lambda_{2}+\lambda_{3}-\lambda_{4}+\lambda_{5}, 0,0\right)$.

We compute

$$
V_{\left(\lambda_{3},-2,1\right)} \cdot V_{\left(\lambda_{3},-2,1\right)} \supset V_{\left(\lambda_{1}+2 \lambda_{4},-4,2\right)}
$$

Hence $\sigma_{3}+\sigma_{4}=\left(2 \lambda_{3},-4,2\right)-\left(\lambda_{1}+2 \lambda_{4},-4,2\right) \in\left\langle\Sigma_{\widehat{Y}}\right\rangle_{\mathbb{N}}$ which implies that σ_{3} and σ_{4} are spherical roots.
Case $\widehat{G / P_{5}}$: The candidates in this case are $\sigma_{3}=\left(-\lambda_{1}+\lambda_{2}+\lambda_{3}-\lambda_{4}-\lambda_{5}, 0,0\right)$ and $\sigma_{4}=\left(-\lambda_{2}+\lambda_{3}+\lambda_{4}-\lambda_{5}, 0,0\right)$.

We compute

$$
V_{\left(\lambda_{3}, 2,1\right)} \cdot V_{\left(\lambda_{3}, 2,1\right)} \supset V_{\left(\lambda_{1}+2 \lambda_{5}, 4,2\right)} .
$$

Hence $\sigma_{3}+\sigma_{4}=\left(2 \lambda_{3}, 4,2\right)-\left(\lambda_{1}+2 \lambda_{5}, 4,2\right) \in\left\langle\Sigma_{\widehat{Y}}\right\rangle_{\mathbb{N}}$ which implies that σ_{3} and σ_{4} are spherical roots.

Case $\widehat{G / P_{6}}$: The only candidate in this case is $\sigma=\left(-\lambda_{1}+2 \lambda_{5}, 0,0\right)$.
We compute

$$
V_{\left(\lambda_{5}, 1,1\right)} \cdot V_{\left(\lambda_{5}, 1,1\right)} \supset V_{\left(\lambda_{1}, 2,2\right)} .
$$

Hence $\sigma=\left(2 \lambda_{5}, 2,2\right)-\left(\lambda_{1}, 2,2\right)$ is a spherical root.
11) G of type E_{7}, H of type $E_{6} \times \mathbb{C}^{*}$:

Case $\widehat{G / P_{1}}$: The candidates in this case are $\sigma_{1}=\left(-\lambda_{1}+2 \lambda_{2}-\lambda_{6}, 0,0\right)$ and $\overline{\sigma_{2}=\left(\lambda_{1}-\lambda_{2}+\lambda_{6}, 0,0\right) .}$
Here we compute

$$
\begin{array}{ll}
& V_{\left(\lambda_{2}, 0,1\right)} \cdot V_{\left(\lambda_{2}, 0,1\right)} \supset V_{\left(\lambda_{1}+\lambda_{6}, 0,2\right)} \\
\text { and } & V_{\left(\lambda_{1}, 2,1\right)} \cdot V_{\left(\lambda_{6},-2,1\right)} \supset V_{\left(\lambda_{2}, 0,2\right)}
\end{array}
$$

It follows that $\sigma_{1}=\left(2 \lambda_{2}, 0,2\right)-\left(\lambda_{1}+\lambda_{6}, 0,2\right)$ and $\sigma_{2}=\left(\lambda_{1}+\lambda_{6}, 0,2\right)$ are spherical roots.
Case $\widehat{G / P_{2}}$: The candidates in this case are

$$
\begin{aligned}
\sigma_{2} & =\left(\lambda_{1}+\lambda_{3}-\lambda_{4}, 0,0\right), \\
\sigma_{3} & =\left(-\lambda_{1}-\lambda_{2}+\lambda_{3}+\lambda_{4}-\lambda_{5}, 0,0\right), \\
\sigma_{4} & =\left(-\lambda_{2}-\lambda_{3}+\lambda_{4}+\lambda_{5}-\lambda_{6}, 0,0\right) \\
\sigma_{5} & =\left(-\lambda_{4}+\lambda_{5}+\lambda_{6}, 0,0\right) .
\end{aligned}
$$

To show that these are spherical roots we compute

$$
\begin{array}{ll}
& V_{\left(\lambda_{2}, 3,1\right)} \cdot V_{\left(\lambda_{2},-3,1\right)} \supset V_{\left(\lambda_{1}+\lambda_{6}, 0,2\right)}, \\
& V_{\left(\lambda_{3}, 1,1\right)} \cdot V_{\left(\lambda_{3}, 1,1\right)} \supset V_{\left(\lambda_{2}+\lambda_{5}, 2,2\right)}, \\
\text { and } \quad & V_{\left(\lambda_{5},-1,1\right)} \cdot V_{\left(\lambda_{5},-1,1\right)} \supset V_{\left(\lambda_{2}+\lambda_{3},-2,2\right)} .
\end{array}
$$

It follows that $2 \sigma_{1}+\sigma_{3}+\sigma_{4}=\left(2 \lambda_{2}, 0,2\right)-\left(\lambda_{1}+\lambda_{6}, 0,2\right) \in\left\langle\Sigma_{\widehat{Y}}\right\rangle_{\mathbb{N}}$, hence σ_{3} and σ_{4} are spherical roots.
Further $\sigma_{2}+\sigma_{3}=\left(2 \lambda_{3}, 2,2\right)-\left(\lambda_{2}+\lambda_{5}, 2,2\right) \in\left\langle\Sigma_{\widehat{Y}}\right\rangle_{\mathbb{N}}$, hence σ_{2} is a spherical root.
Lastly $\sigma_{4}+\sigma_{5}=\left(2 \lambda_{5},-2,2\right)-\left(\lambda_{2}+\lambda_{3},-2,2\right)$, hence $\sigma_{4}+\sigma_{5} \in\left\langle\Sigma_{\widehat{Y}}\right\rangle_{\mathbb{N}}$. So also σ_{5} is a spherical root.
Case $\widehat{G / P_{7}}$: The candidates in this case are $\sigma_{1}=\left(2 \lambda_{1}-\lambda_{6}, 0,0\right)$ and $\sigma_{2}=$ $\left.\overline{\left(-\lambda_{1}+2 \lambda_{6}\right.}, 0,0\right)$.

We compute

$$
\begin{aligned}
& V_{\left(\lambda_{1},-1,1\right)} \cdot V_{\left(\lambda_{1},-1,1\right)} \supset V_{\left(\lambda_{6},-2,2\right)} \\
\text { and } & V_{\left(\lambda_{6}, 1,1\right)} \cdot V_{\left(\lambda_{6}, 1,1\right)} \supset V_{\left(\lambda_{1}, 2,2\right)} .
\end{aligned}
$$

It follows that $\sigma_{1}=\left(2 \lambda_{1},-2,2\right)-\left(\lambda_{6},-2,2\right)$ and $\sigma_{2}=\left(2 \lambda_{6}, 2,2\right)-\left(\lambda_{1}, 2,2\right)$ are spherical roots.
This concludes the proof of Proposition 4.2

Bibliography

[Ahi83] Dmitry Ahiezer, Equivariant completions of homogeneous algebraic varieties by homogeneous divisors, Ann. Global Anal. Geom. 1 (1983), no. 1, 49-78.
[BdS49] A. Borel and J. de Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949), 200-221.
[BL11] Paolo Bravi and Domingo Luna, An introduction to wonderful varieties with many examples of type F_{4}, J. of Algebra 329 (2011), 4-51.
[BLV86] Michel Brion, Domingo Luna, and Thierry Vust, Espace homogènes sphériques, Inventiones Mathematicae 84 (1986), no. 3, 617-632.
[BP05] Paolo Bravi and Guido Pezzini, Wonderful varieties of type D, Represent. Theory 9 (2005), 578-637.
[BP11a] , A constructive approach to the classification of wonderful varieties, arxiv:1103.0380, 2011.
[BP11b] \qquad , Primitive wonderful varieties, arXiv:1106.3187, 2011.
[Bri90] Michel Brion, Vers une généralisation des espaces symétriques, J. of Algebra 1 (1990), 115-143.
[Bri97] _ Variétés sphériques, available at http://www-fourier.ujfgrenoble.fr/~mbrion/spheriques.pdf, 1997, Notes de la session de la S.M.F. "Opérations hamiltoniennes et opérations de groupes algébriques".
[CF09] Stéphanie Cupit-Foutou, Wonderful varieties: A geometrical realization, 2009, arXiv:0907.2852v3.
[Dyn57] Eugene B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, American Mathematical Society Translations, Series 26 (1957), 111-244.
[FL10] Evgeny Feigin and Peter Littelmann, Zhu's algebra and the C_{2}-algebra in the symplectic and the orthogonal case, Journal of Physics A: Mathematical and Theoretical 43 (2010), no. 13, 18 pp.
[Kac80] Victor G. Kac, Some remarks on nilpotent orbits, Journal of Algebra 64 (1980), 190-213.
[KKV89] Friedrich Knop, Hanspeter Kraft, and Thierry Vust, The Picard group of a G-variety, Algebraische Transformationsgruppen und Invariantentheorie (Hanspeter Kraft, Peter Slodowy, and Tonny A. Springer, eds.), DMV Seminar, vol. 13, Birkhäuser, 1989, 77-87.
[Kno91] Friedrich Knop, The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups, December 1989 (Mandras), Manoj Prakashan, 1991, pp. 225-249.
[Kno95] , On the set of orbits for a Borel subgroup, Comment. Math. Helv. 70 (1995), no. 2, 285-309.
[Kno96] , Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. soc. 9 (1996), no. 1, 153-174.
[Kra84] Hanspeter Kraft, Geometrische Methoden in der Invariantentheorie, Friedr. Vieweg \& Sohn Braunschweig/Wiesbaden, 1984.
[Lit94] Peter Littelmann, On spherical double cones, Journal of Algebra 166 (1994), 142-157.
[Los09] Ivan Losev, Uniqueness property for spherical homogeneous spaces, Duke Math. J. 147 (2009), no. 2, 315-343.
[LS96] Martin W. Liebeck and Gary M. Seitz, Reductive subgroups of exceptional algebraic groups, vol. 121, Memoirs of the American Math. Soc., no. 580, American Mathematical Society, 1996.
[Lun97] Domingo Luna, Grosses cellules pour les variétés sphériques, Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser, vol. 9, Cambridge Univ. Press, 1997, pp. 267-280.
[Lun01] _, Variétés sphériques de type A, Publ. Math. Inst. Hautes Études Sci. 94 (2001), 161-226.
[LV83] Domingo Luna and Thierry Vust, Plongements d'espaces homogènes, Comment. Math. Helv. 58 (1983), 186-245.
[Pez03] Guido Pezzini, Wonderful varieties of type C, Ph.D. thesis, Università di Roma "La Sapienza", 2003.
[Pez10] , Lectures on spherical and wonderful varieties, Les cours du C.I.R.M. 1 (2010), no. 1: Actions hamiltoniennes : invariants et classification, 33-53.
[Ros63] Maxwell Rosenlicht, A remark on quotient spaces, An. Acad. Brasil. Ci. 35 (1963), 487-489.
[Sei91] Gary M. Seitz, Maximal subgroups of exceptional algebraic groups, vol. 90, Memoirs of the American Math. Soc., no. 441, American Mathematical Society, 1991.
[Slo89] Peter Slodowy, Der Scheibensatz für algebraische Transformationsgruppen, Algebraische Transformationsgruppen und Invariantentheorie (Hanspeter Kraft, Peter Slodowy, and Tonny A. Springer, eds.), DMV Seminar, vol. 13, Birkhäuser, 1989, pp. 89-113.
[Tim11] Dmitry A. Timashev, Homogeneous spaces and equivariant embeddings, Springer, 2011.
[VK78] Èrnest Vinberg and Boris Kimelfeld, Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups, Functional Analysis and Its Applications 12 (1978), no. 3, 168-174.
[VP72] Èrnest Vinberg and V. L. Popov, On a class of quasihomogeneous affine varieties, Math. USSR Izv. 6 (1972), 743-758.

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie abgesehen von unten angegebenen Teilpublikationen - noch nicht veröffentlicht worden ist, sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werden.

Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Herrn Prof. Dr. Peter Littelmann betreut worden.

Teilpublikationen:
B. Niemann, Spherical affine cones in exceptional cases and related branching rules, arXiv:1111.3823

