
Multi-Period Credit Default Prediction -

A Survival Analysis Approach

Inauguraldissertation

zur

Erlangung des Doktorgrades

der

Wirtschafts- und Sozialwissenschaftlichen Fakultät

der

Universität zu Köln
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Chapter 1

Introduction

In recent years, the subprime crisis and the euro-zone crisis have highlighted

the importance of credit risk assessments. In both cases, misperceptions

of credit risk have arguably led to a severe financial and economic crisis.

Not least due to these recent experiences, the development of methods to

measure credit risk accurately is of considerable economic importance. This

thesis contributes to the corresponding academic literature by dealing with

the problem to estimate credit default probabilities under a flexible multi-

period prediction horizon. Among other things, credit default probabilities

often serve as the basis for credit rating assignments. Obligors are commonly

classified on the basis of their default probabilities while sometimes the re-

covery rate - the estimated portion of the debt that the lender will recover

if a default event occurs - is taken into account as well.1 Consequently, the

methods presented in this work are also helpful for accurate rating assign-

ments.

Default probabilities and ratings have several important applications in the

financial industry. Obvious applications concern the decisions whether and

to which conditions (loan pricing, required collateral, maturity) an obligor

might borrow from a lender. Further applications include loan loss reserve

1For instance, Standard & Poor’s ratings are based only on the likelihood of default

whereas Moody’s classifies obligors according to expected losses which incorporates the

recovery rate as well.

1



2 1. INTRODUCTION

analysis, portfolio monitoring, internal capital allocation, profitability analy-

sis and frequency of loan review (Basel Committee on Banking Supervision,

2000).2 In the investment community, restrictions on investments below a

certain rating grade are commonplace and rating distributions are usually re-

ported to investors (Cantor et al., 2007). From the regulatory side, the Basel

II Accord (and its successor named Basel III) have contributed to a consider-

ably increased interest in default probability estimation. Within the so-called

Internal Ratings-Based approach, banks assign one-year default probabilities

to their internal rating grades which are then plugged into the regulatory

formula for the capital requirements of a bank (Basel Committee on Bank-

ing Supervision, 2006, Part 2, Ch. III). Due to the novel regulatory intiative

for insurance companies called Solvency II, default risk is likely to play an

increasingly important role for insurance companies as well. Under Solvency

II, regulatory capital requirements for insurers will be based, among other

factors, on the default risks that arise from their investments and reinsur-

ance treaties (Committee of European Insurance and Occupational Pensions

Supervisors, 2009).

What distinguishes this work from the major part of the related literature

is the multi-period prediction horizon that will be considered throughout.

There is an obvious point for a multi-period approach since most loans have

a maturity of multiple periods so that the lender faces a multi-period risk

which should be adequately modeled. For instance, only 11.99% of loans of

German banks at the end of 2011 are classified as short-term whereas the

rest is classified as medium- and long-term lending (Deutsche Bundesbank,

2012, S. 30∗). Numerous other examples like the standard 5-year maturity

of Credit Default Swaps are possible. The popularity of single-period models

seems thus not to be based on economic reasoning. Rather, it is arguably

a convenient simplification that has become common practice. It is indeed

true that predicting over multiple periods entails certain challenges that do

not arise within a single-period view. Among the main contributions of this

work to the literature is to show that there are relatively simple solutions to

2The calculation of expected returns can be seen as one kind of profitability or perfor-

mance analysis. See Altman (1989) and section 4.4.
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these challenges available.

From a regulatory point of view, the fact that under Basel II one-year de-

fault probabilities are the inputs to the formula for the capital requirements

of banks might have contributed to the prevalent one-year (and often one-

period) view. However, even within Basel II regulators state that ”banks are

expected to use a longer time horizon [than one year] in assigning ratings”

(Basel Committee on Banking Supervision, 2006, § 414). Similarly, within

the Standardised Approach of Basel II regulators assign risk weights to ex-

ternally rated obligors based on the rating-grade specific three-year cumula-

tive default rate (Basel Committee on Banking Supervision, 2006, Annex 2).

More recently, plans have been developed by the International Accounting

Standards Board and the Basel Committee on Banking Supervision to base

loss provisions upon the expected loss over the whole life of the credit portfo-

lio (Basel Committee on Banking Supervision, 2009). This would necessitate

the estimation of multi-year default probabilities. More forward-looking pro-

visions based on expected loss are part of regulatory efforts to reduce the

procyclicality of capital requirements. Since multi-period predictions are less

volatile and less sensitive to the business cycle than short-term predictions

a multi-period approach would generally contribute to the reduction of pro-

cyclicality.

The methodological approach used throughout this thesis is survival analysis.

The central variable within the survival analysis framework is the lifetime or

time until default of an obligor. These lifetimes are often right-censored, i.e.

one does not observe the end of each lifetime. As we will illustrate in detail

in the upcoming chapters, the censoring problem gets more important as the

prediction horizon grows. It is thus no coincidence that we select a survival

analysis approach - where censoring is easily taken into account - for our

multi-period prediction problem. Alternative approaches that only consider

binary variables for default events neglect the timing of default events on

the one hand and censored data on the other hand and thus do not use

all relevant information. Further, survival analysis methods are naturally

suitable for a flexible prediction horizon and thereby allow the estimation of

a complete term structure of default probabilities. Such term structures are
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not directly available in a simplified binary choice framework. The benefits

from a complete term structure of default predictions are closely connected

to the advantages of multi-period predictions just mentioned above. Banasik

et al. (1999) give an extensive discussion in this respect and mention, among

other things, the opportunities to conduct sophisticated analyses with respect

to the profitability and the appropriate maturity of loans.

It is important to distinguish the topics of this work from other areas of credit

risk research. First, we do not deal with the dependence of default events

which is an important constituent of credit portfolio models. However, the

results of this thesis are insofar relevant for credit portfolio models as default

probabilities are usually important inputs to these models. Second, we do

not cover the area of mathematical finance that uses risk-neutral probabil-

ity measures to valuate and hedge credit-risk sensitive financial instruments.

The models used in this strand of the literature share many similiarities

(including the adoption of survival analysis methods) with the models con-

sidered in this work. A major difference is, however, that models based on

the theory of risk-neutral valuation are calibrated to market prices whereas

we use actual default events for the purpose of estimation. Note that models

solely based on market data are only able to deliver so-called risk-neutral

default probabilities which refer to the theoretical construct of a risk-neutral

world. In contrast, this work is about real-world default probabilities. Fi-

nally, we do not aim at the development of models for the migration of

obligors over rating grades. Although the analysis of rating migrations will

affect our analysis at certain stages our focus is clearly on the transition to

the default state.3 Nevertheless, many of the ideas presented in this paper

have a natural extension in the prediction of general rating transitions so

that we see considerable potential for further research in this respect.

The thesis is structured as follows. In the next chapter, we deal with the

question how predictive accuracy should be measured. We will divide the

analysis into two parts, namely discriminatory power - concerning the rank-

ing of obligors according to their default risk - and calibration, which is about

3We will discuss at the beginning of chapter 4 under which circumstances rating mi-

gration models can be helpful for default probability estimation.
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the level of default probabilities. In the part about discrimination, we con-

tribute twofold to the existing literature. First, we introduce a measure from

biostatistics called Harrell’s C to the credit risk area and propose a modified

version for limited prediction horizons. Second, we derive methods to conduct

statistical inference for Harrell’s C (and other measures) under a sampling

scheme that involves overlapping lifetimes. With respect to calibration, we

present a new validation technique which we name circular rolling-window

validation and discuss, among other things, how this technique can be ap-

plied to analyze the shrinkage effect. In the empirical part of chapter 2, one

main finding is that traditional measures of discriminative power tend to

overstate the long-run predictive ability of rating systems.

After having developed methods for the evaluation of default prediction mod-

els in chapter 2, we deal with default predictions themselves in chapter 3.

More precisely, we analyze the situation that a panel dataset with time-

varying covariates is at hand. This situation is rather common and simpler

situations with cross-sectional data are obvious special cases. The main con-

tribution in this chapter is the development of a new approach that allows

multi-period predictions without the need to specify and estimate a model

that predicts the covariates as it was proposed in the related literature. An

application of our methods to a dataset of North American public firms shows

that it delivers high out-of-sample predictive accuracy both in absolute terms

and relative to other studies that use similar datasets.

In the final chapter of this thesis, we consider the situation that - differ-

ently to chapter 3 - a ranking of the obligors according to their default risk

is already given in the form of ratings but that default probabilities need

to be assigned to rating grades. This situation often occurs in practice, for

instance if ratings stem from an external institution or if the rating system

is at least partly based on qualitative elements. With respect to the two

dimensions introduced in chapter 2, chapter 4 is solely about calibration.

The specific problem that is analyzed in detail in chapter 4 is the situation

where the sample size and/or the true default probabilities are small. Then,

there is a high probability to underestimate the true default probability by

standard methods. An important case that suffers from this problem is the



6 1. INTRODUCTION

estimation of default probabilities for sovereign bonds. As a potential solu-

tion, we present an empirical Bayes estimator that allows more conservative

and potentially also more precise estimation of default probabilities under

realistic scenarios. The latter is shown by a novel kind of simulation study

where we evaluate both the standard estimator and the empirical Bayes esti-

mator. One important economic finding of our simulation study is that Basel

II capital requirements of banks for their sovereign exposure tend to be un-

derestimated considerably by standard methods as opposed to our empirical

Bayes approach.



Chapter 2

Measuring predictive accuracy

For any prediction problem an essential part of the analysis is to measure

the accuracy of the predictions. Usually, and this work is no exception in

this respect, the predictions are aimed to be as precise as possible out-of-

sample, i.e. we are analyzing ex ante predictions, which must be reflected by

the evaluation method. We will distinguish between two dimensions of pre-

dictive accuracy, discrimination and calibration, thereby following common

practice for credit default predictions (Basel Committee on Banking Super-

vision, 2005b). Discrimination here refers to the accuracy of the ranking of

obligors according to their default risk while calibration concerns the accu-

racy of the levels of default probabilities. For instance, a model has high

discriminatory power if the obligors with the highest estimated default prob-

abilities actually default but may at the same time be badly calibrated if the

default probabilities are much different from the observed default rates. On

the other hand, a prediction that assigns the same default probability to each

obligor may be well calibrated if this default probability is close to the true

underlying average default probability but has virtually no discriminatory

power. It is also possible to measure the overall accuracy of default proba-

bility estimates, i.e. a combination of discriminatory power and calibration

accuracy. However, the distinction between discrimination and calibration is

useful since it corresponds to the two common parts of the modeling process.

First, the focus is to develop a model with high discriminatory power. Then,

7



8 2. MEASURING PREDICTIVE ACCURACY

the model is checked with respect to its calibration and can eventually be

re-calibrated without the need to specify a new model. In contrast, it is not

possible to improve the discriminatory power of a model afterwards.

The chapter is structured as follows. In section 2.1, we will deal with the

evaluation of discriminatory power which is followed by a discussion of cali-

bration in section 2.2. Section 2.3 will be about validation techniques which

concerns the different ways how out-of-sample predictions can be made. We

will then turn to the problem of statistical inference for measures of predictive

accuracy in section 2.4. Finally, we will empirically illustrate the presented

methods in section 2.5. The contents of this chapter stem largely from Orth

(2012).

2.1 Discriminatory power

As far as discriminatory power is concerned, only the ordinal part of a de-

fault probability estimate is evaluated. More precisely, we can think of de-

fault probabilities to lead to a risk ranking of obligors which corresponds to

the usual practice of assigning ratings to obligors. In this section, we will

refer to the default predictions as ratings to reflect the fact that only ordi-

nal predictions and no actual default probabilities are needed for measuring

discriminatory power.

The following section covers the most common approaches but is not meant

to be exhaustive. A more complete list including measures motivated from

information theory can be found in Basel Committee on Banking Supervision

(2005b). Further measures, especially some that are not based on a separa-

tion of discrimination and calibration like the Brier score (Brier, 1950) are

documented and applied to credit default data in Krämer & Güttler (2008).

2.1.1 Accuracy Ratio and related measures

To measure discriminatory power, the approach most popular among banks,

rating agencies and academics is based either on the Cumulative Accuracy
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Figure 2.1: Cumulative Accuracy Profile

Profile (CAP) and its summary statistic, the Accuracy Ratio (AR), or the

Receiver Operating Characteristic (ROC) curve and its summary index, the

area under the ROC curve (AUROC).1 Let us start with the explanation of

the CAP which is exemplified by Figure 2.1. The CAP plots the share of

defaulting obligors (ordinate) that is included in the p · 100% worst rated

obligors (abscissa). For instance, the point (0.5, 0.9) in the graph means that

the worse rated half of the obligors account for 90% of all default events in

the sample. A perfect rating system would assign the worst ratings exactly

to those who default (5% in our example), a situation which is visualized by

the upper curve in Figure 2.1. On the contrary, a naive rating system where

all obligors have the same rating corresponds to the main diagonal in the

graph.2 Thus, the better the predictive power of the rating system the closer

is the realized CAP to the perfect CAP which motivates the Accuracy Ratio,

AR = A/(A+B), as a summary statistic with A being the area between the

1Sometimes, the Accuracy Ratio is also referred to as the Gini coefficient.
2Note that the CAP curve is monotonically increasing but neither necessarily concave

nor above the main diagonal.
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CAP and the main diagonal and B being the grey shaded area. Obviously,

the CAP is closely related to the well-known Lorenz curve and is in fact

sometimes simply referred to as Lorenz curve or, alternatively, power curve.3

In some studies (Shumway, 2001; Roszbach, 2004), instead of the Accuracy

Ratio some point of the CAP is simply chosen as the measure of predictive

accuracy, for instance, the share of defaulters included in the lowest rated

decile.

We now turn to the ROC curve which is similar but not identical to the CAP.

For the ROC curve, the empirical cumulative distribution functions of the

ratings of the defaulting and the non-defaulting obligors (FD
n (x), FND

n (x)) are

plotted against each other. An example for a ROC curve is given in Figure

2.2. For instance, the point (0.2, 0.8) in the graph has the interpretation

that there is a rating where 20% of the non-defaulting obligors and 80% of

the defaulting obligors had that or a lower rating. The perfect ROC curve

would be constant at the level one since in this case there is a rating where

none of the non-defaulting obligors but all of the defaulting obligors have

this or a worse rating. The AUROC is then simply the grey shaded area

in Figure 2.2 which is obviously the greater the closer the ROC curve is

to the perfect ROC curve. We can interpret each point of the ROC curve

as representing a potential cut-off rating meaning that, for instance, a bank

would only lend to obligors being rated better than the cut-off rating. Due to

such an interpretation, the ordinate of the ROC curve is sometimes labeled

as the hit rate, i.e. the share of the defaulting obligors that did not receive

a loan, whereas the abscissa is called the false alarm rate, i.e. the share of

non-defaulting obligors that did not get a loan.4

Interestingly, the maximum horizontal distance of the ROC curve to the

main diagonal equals the classic Kolmogorov-Smirnov statistic for the one-

3One may argue that the CAP is more closely related to a concentration curve than to

a Lorenz curve.
4A specific cut-off also leads to the construction of a so-called confusion matrix which

contains the hit rate and the false alarm rate on the main diagonal. See Thomas et al.

(2002, Ch. 7.2) for details. In another terminology, the terms sensitivity and specificity

are used where sensitivity equals the hit rate and 1−specificity corresponds to the false

alarm rate.
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Figure 2.2: ROC curve

F (x)n

D

F  (x)n

ND

sided test that the rating distribution of the defaulting firms is stochastically

larger than the rating distribution of the non-defaulting firms.5 In a few

studies, the Kolmogorov-Smirnov statistic is used instead of the AUROC as

a measure of discriminatory power.

Besides their graphical derivations, there is a simple algebraic method to

calculate the Accuracy Ratio and AUROC that provides a good intuition

about what both indices measure. We will first focus on the Accuracy Ratio

and then provide the link to the AUROC. Denote the rating (high values

indicate low risk) of the ith defaulting obligor and the jth non-defaulting

obligor by XD
i and XND

j , respectively. The number of defaulting and non-

defaulting obligors in the sample are referred to as n1 and n2. Define

cij =





1 if XD
i < XND

j ,

−1 if XD
i > XND

j ,

0 if XD
i = XND

j .

(2.1)

5To be specific, H0 : FD(x) ≤ FND(x) for all x against H1: not H0. Other variants of

the Kolmogorov-Smirnov test exist (Mosler, 1995).
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Then, the Accuracy Ratio is given by

AR =
1

n1n2

n1∑

i=1

n2∑

j=1

cij . (2.2)

We will call cij the concordance score of the pair of the ith defaulting and

the jth non-defaulting obligor. Concordance is given if the rating of the

defaulting obligor was worse than the rating of the non-defaulting obligor,

while we have discordance in the opposite case. The case of identical ratings is

captured by a concordance score of zero. The concordance score is evaluated

for every pair of a defaulting and a non-defaulting obligor and then averaged

over all pairs. It can be shown that the AUROC can also be calculated

using Formulas (2.1) and (2.2) by simply replacing the concordance scores of

1,0 and −1 by 1,1
2

and 0. Consequently, the following simple linear relation

between the two measures holds (Engelmann et al., 2003):

AR = 2 · AUROC − 1 (2.3)

Obviously, the Accuracy Ratio and AUROC contain the same information

and are only scaled differently. Note that the Accuracy Ratio and AUROC

are closely related to the Mann-Whitney statistic (Mann & Whitney, 1947)

for the test that the rating distributions of defaulters and non-defaulters are

equal against the alternative of first-order stochastic dominance.6 From now

on, we will concentrate on the Accuracy Ratio but of course all arguments

apply to the AUROC as well.

Formula (2.2) shows that the Accuracy Ratio is the fraction of pairs where

the rating was concordant with the outcome minus the fraction of discordant

pairs. In line with this interpretation, the corresponding population value is

P (XD
i < XND

j ) − P (XD
i > XND

j ) , (2.4)

for a randomly selected pair i, j of the population (DeLong et al., 1988).

The Accuracy Ratio is a special case of a more generally defined measure

of predictive accuracy called Somers’ D (Somers, 1962). The connection is

6The Mann-Whitney statistic for our case is simply the number of pairs where XD
i <

XND
j plus half of the number of tied pairs.
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important in our context since the index which will be introduced in the

next section, Harrell’s C, is also based on Somers’ D. Consider predicting a

variable Y with a predictor X. The sample size is denoted by n. For ease of

exposition, sort the values of Y in ascending order so that Yi ≤ Yj for i < j.7

Let

cij =





1 if Xi < Xj , Yi < Yj ,

−1 if Xi > Xj , Yi < Yj ,

0 else .

(2.5)

Then Somers’ D is defined as follows:

DXY =
1

nu

n∑

i=1

∑

j>i

cij (2.6)

nu =
n∑

i=1

∑

j>i

1[Yi 6=Yj ] (2.7)

The denominator of DXY (the number of usable pairs nu) excludes any ties

in Y since in these cases it is not possible to assess a ”correct” or ”incorrect”

order of the predictors. In contrast, ties on X represent a case of mediocre

prediction and are subsumed under ”else”. The Accuracy Ratio is simply the

special case with Y being a binary variable (coded as 0 in the case of default

and 1 otherwise).

Interestingly, there is a close relation between Somers’ D and the well-known

dependence measure Kendall’s τ which will be important for the purpose of

statistical inference in section 2.4. There are different versions of Kendall’s

τ , especially τa and τb (Kendall & Gibbons, 1990, Ch. 3), which all count

the number of concordant pairs minus the number of discordant pairs in the

numerator as does Somers’ D. For τa, the denominator is just the number of

all pairs, n(n − 1), so that Somers’ D can be expressed as

DXY =
τa,XY

τa,Y Y

, (2.8)

where τa,Y Y is just the fraction of pairs not tied on Y so that τa,Y Y = nu/n(n−

1). Formula (2.8) will be helpful in section 2.4. With respect to τb, where

7It does not matter how ties on Y are ordered since pairs with equal values of Y are

not ”usable” for Somers’ D. See Equation (2.7).
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there is a symmetric adjustment in the denominator for ties, it can be shown

that DXY DY X = τ 2
b (Somers, 1962).

For the Accuracy Ratio, we have seen that we need to classify the obligors into

defaulters and non-defaulters to construct the corresponding binary variable

Y . However, this means that any information about the timing of default

events and certain censored observations are disregarded. How this loss of

information can be avoided will be the topic of the next section.

2.1.2 Harrell’s C

Consider first the following motivating example. At time t, two firms have

ratings AA and B, respectively. When the prediction horizon is five years

and the AA rated firm defaults prior to t + 1, while the B rated firm is

censored at t + 4,8 this pair is dropped for the calculation of the Accuracy

Ratio although for this pair ratings and outcomes are clearly discordant. In

fact, the firm that was rated B at time t has to be dropped completely in

the case of the Accuracy Ratio since it can not be classified in either the

defaulting or the non-defaulting group. In contrast, we will see that Harrell’s

C (Harrell et al., 1996) uses every observation. In the example given above

the corresponding pair would - in line with intuition - receive a concordance

score of −1 (with the analogous meaning as above).

We will now give the formal definition of Harrell’s C and then discuss the

various individual cases. Again, Xi is the rating (high values correspond to

low risk) of obligor i, i = 1, . . . , n. After being rated Xi, obligor i is observed

not to default for a time denoted by Yi. We will refer to Yi as the observed

lifetime of obligor i. If the observation is then ended by a default event, the

censoring indicator variable Ci is set to zero. If obligor i is no longer observed

due to right censoring, the value of Ci is one. Again, it is convenient to sort

the lifetimes in ascending order so that Yi ≤ Yj for i < j. As a natural

extension of Somers’ D to censored data, we then define the concordance

8This means that the B firm does not default until period t + 4, but is no longer

observed thereafter.
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score as9

cij =





1 if Xi < Xj , Yi < Yj , Ci = 0 ,

−1 if Xi > Xj , Yi < Yj , Ci = 0 ,

0 else .

(2.9)

Then Harrell’s C is given by:

C =
1

nu

n∑

i=1

∑

j>i

cij (2.10)

nu =
n∑

i=1

∑

j>i

1[Yi 6=Yj , Ci=0] (2.11)

nu is the number of usable pairs. In words, a pair of observations is usable if

(a) the obligors’ observed lifetimes are not equal and (b) the obligor with the

shorter observed lifetime experiences a default event, i.e. the lifetime is not

censored. These conditions ensure that for every usable pair one obligor has

indeed ”outlived” the other obligor thereby enabling a sensible comparison of

both. Given a usable pair, we can distinguish two cases. The first one consists

of two obligors, both defaulting but after different time spans. Concordance

is achieved if the rating of the obligor with the earlier default event was

worse than the rating of the obligor defaulting later, while discordance is

given in the opposite case and a concordance score of zero is assigned in

the case of equal ratings. In the second case, one obligor defaults after a

certain time span and the other obligor’s lifetime is censored at a later point

in time. For concordance, we require that the defaulting obligor was lower

rated. Accordingly, we assign a concordance score of −1 in the opposite case

and a score of zero for equal ratings.

Since Harrell’s C is based on Somers’s D it can also be written as a ratio

of censored versions of Kendall’s τ : C = τa,XY,cens/τa,Y Y,cens, where τa,XY,cens

and τa,Y Y,cens are the estimators proposed by Oakes (2008) for censored data.

Again, the relation is useful in the context of statistical inference as we will

see in section 2.4.

9Harrell et al. (1996) actually normalize the measure between zero and one by assigning

concordance scores of 1, 1
2 and 0 instead of 1,0 and -1 as we do. We stick to the latter

version to ensure comparibility with the Accuracy Ratio.
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Similar to Pencina & D’Agostino (2004) we define the population value of

Harrell’s C as

P (Xi < Xj|Yi < Yj, Ci = 0) − P (Xi > Xj|Yi < Yj, Ci = 0) , (2.12)

for two randomly selected individuals i and j from the population. That is,

given a pair is found to be usable, Harrell’s C estimates the probability of

concordance minus the probability of discordance.

A potential source of criticism may be the fact that Harrell’s C does not

cover a specific prediction horizon since only the sample length provides a

limit. This may not be suitable in credit risk applications since the maturity

of most credits is limited and risk managers usually have a certain planning

horizon. For this reason, we propose the following modification of Harrell’s

C. Denote the maximum prediction horizon that is of practical interest as

H. Let

cij =





1 if Xi < Xj , Yi < Yj , Ci = 0 , Yi < H ,

−1 if Xi > Xj , Yi < Yj , Ci = 0 , Yi < H ,

0 else .

(2.13)

The adjusted index is then calculated analogously to before:

Cadj =
1

nu

n∑

i=1

∑

j>i

cij (2.14)

nu =
n∑

i=1

∑

j>i

1[Yi 6=Yj , Ci=0 , Yi<H] (2.15)

The rationale of the adjustment is simple. Everything what happens after

H is ignored. For instance, with H equal to 3 years, pairs of observations

that do not include a default within the first 3 years are now not usable.

This corresponds to the fact that we now require for a usable pair that the

shorter observed lifetime is ended by a default event that occurs before H.

The modification is easy to implement by simply conducting an artificial

censoring at H for lifetimes that last longer than H. To be specific, values

of Y equal to or larger than H are set to H and their censoring indicator is

set to one.
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While the number of unusable pairs grows with this adjustment it is impor-

tant to note that still no observations have been completely removed. Thus,

the amount of information – as measured by the number of usable pairs –

included in Cadj is still distinctively higher than in the case of the Accuracy

Ratio. We can distinguish two kind of pairs that are used for Cadj but not

for the Accuracy Ratio. The first type covers obligors defaulting at different

points in time before H. The second type refers to cases with one obligor

defaulting at a certain point in time and another obligor whose lifetime is

censored at a later point in time but before H. Harrell’s C (in both its origi-

nal and its adjusted version) has thus the advantages of using (a) the timing

of the default events and (b) more information from censored observations.

In contrast to the Accuracy Ratio, for a reasonable use of Harrell’s C one

has to assume that the (conditional) survival functions of two obligors do not

cross (before H). With respect to ratings, this means that there should be

no difference in the ranking of obligors in terms of short-term and long-term

ratings, respectively. If this was the case, the ordering of the obligors ac-

cording to their default risk would change over time and thus the assessment

of concordance of ratings and lifetimes would have to reflect these changes.

Extensions of Harrell’s C that are capable of crossing survival functions seem

to be possible but are not covered in this work. Note that for the models

we propose in chapter 3 the assumption of non-crossing survival functions is

implied by the model structure.

The interpretation of Cadj is still in line with Harrell’s C and the Accu-

racy Ratio. All these measures are bounded between −1 and 1 and yield

the proportion of concordant pairs minus the proportion of discordant pairs

among all usable pairs.10 Further, Harrell’s C has been implemented in var-

ious software packages. For instance, it is available in STATA through the

user-written somersd program by Roger B. Newson and in R it is part of the

Hmisc package (function rcorr.cens).

10If a naive rating system that assigns the same rating to each obligor is considered as

the lower bound, the measures are bounded between 0 and 1.
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2.2 Calibration

To analyze calibration, we need estimated default probabilities instead of

only ordinal predictions like ratings which were sufficient in the context of

discrimination. Let Y ∗ be the possibly unobserved lifetime or time until

default of an obligor so that Y = Y ∗ if the lifetime is not censored and

Y ≤ Y ∗ otherwise. Further, let PDH = P (Y ∗ ≤ H|P̂DH) be the probability

to default within a time horizon H conditional on some estimate P̂DH .11

We define predictions to be perfectly calibrated if PDH = P̂DH . We will

investigate two ways to analyze departures from perfect calibration. The

first is based on grouping the obligors into buckets based on their estimated

default probabilities while the second approach is based on a calibration

model. Due to their different statistical nature, we call these two approaches

nonparametric and parametric calibration analysis, respectively.

2.2.1 Nonparametric calibration analysis

Since out-of-sample predictive accuracy is our central objective, any calibra-

tion analysis should be based on a validation sample which was not used

in estimating the model that generated the default probabilities. For the

moment, assume that such a validation sample exists. We will analyze dif-

ferent validation schemes in detail in section 2.3. To generate out-of-sample

predictions, the model fitted to the training sample is applied to the valida-

tion sample. In the nonparametric calibration approach, the resulting out-

of-sample default probabilities are grouped into J (approximately) equally

sized buckets where the first bucket consists of the lowest default probability

estimates and so on. A suitable procedure is then to compare the average

out-of-sample default probability estimate in each bucket, P̂D
OS

H,j, with an

estimate of the default probability in the validation sample, P̂D
V S

H,j. In the

11The conditioning on P̂DH is necessary since unconditionally all obligors have the

same default probability. Note also that the higher the discriminatory power of a model

the more are the conditional default probablities apart from the unconditional default

probability.
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Figure 2.3: Calibration plot
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Hypothetical estimated out-of-sample default probability predictions (solid line) and ob-

served default rates (dashed line) in a validation sample

simplest case, P̂D
V S

H,j is simply the observed default frequency in the vali-

dation sample for the members of bucket j. However, in the presence of

censored data, default frequencies are not directly available and one should

use a suitable survival analysis extension like the life-table or the Kaplan-

Meier estimator (see chapter 4.1) instead.

A suitable way to visualize how the out-of-sample predictions fit to the ob-

served default behaviour in the validation sample is a so-called calibration

plot which plots P̂D
OS

H,j and P̂D
V S

H,j against the bucket numbers. Figure 2.3

gives a hypothetical but typical example for such a plot.

The main observation is that the line connecting the out-of-sample default

probabilities is steeper than the line connecting the default rates observed in

the validation sample. This phenomenon is called shrinkage or regression to
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the mean (Copas, 1983; Harrell, 2001) and is based on the fact that the fit

of a model to new data is usually worse than the fit to the training sample.

Note that the steeper the line of the observed default rates in a calibration

plot the higher is the discriminatory power of the model. In this sense,

the shrinkage effect corresponds to the fact that discriminatory power is

usually lower out-of-sample than in-sample. Shrinkage is closely related to

the notion of overfitting and is, everything else equal, more pronounced if

the (effective) size of the estimation sample is small and if the number of

parameters is high.12 It indicates that (unadjusted) out-of-sample predictions

tend to be too ”extreme” and that properly adjusted predictions would be

an improvement. Thus, the shrinkage effect is an important argument to

recalibrate a model.

Besides the shrinkage effect, a calibration plot can also indicate that the

functional form of a default prediction model is inappropriate. For instance,

if the line connecting the out-of-sample default probabilities would be concave

as opposed to the obviously convex line connecting the default rates, this

would point to a misspecification of the default probability model.

Of course, it is desirable to analyze if the departures of P̂D
V S

H,j from P̂D
OS

H,j

are statistically significant. If P̂D
V S

H,j is asymptotically normally distributed

and a consistent variance estimator is at hand, we can use the fact that under

the joint null hypothesis that P̂D
OS

H,j = PDH,j, j = 1, . . . , J ,

Q =
J∑

j=1

(
P̂D

V S

H,j − P̂D
OS

H,j

)2

V̂ (P̂D
V S

H,j)

asy.
∼ χ2

J . (2.16)

Note that we have to assume independence of P̂D
V S

H,j and P̂D
V S

H,j′ for j 6=

j′. The test statistic Q has an intuitive interpretation as a measure of fit

between P̂D
OS

H,j and P̂D
V S

H,j as it sums up the squares of their standardized

differences. It can thus be interpreted as a measure of calibration accuracy.

In particular, it is much more sensible to use Q than any unstandardized

12For instance, the effective sample size of a dataset that exhibits dependencies is smaller

than an independent sample of the same size.
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measure like
∑J

j=1

(
P̂D

V S

H,j − P̂D
OS

H,j

)2
or
∑J

j=1

∣∣P̂D
V S

H,j − P̂D
OS

H,j

∣∣ since these

will be dominated by the accuracy in estimating the default probability in

the highest-risk buckets.13

In the case that a simple default frequency is used for P̂D
V S

H,j the test from

Equation (2.16) is very similar to the Hosmer-Lemeshow goodness-of-fit test

(Hosmer & Lemeshow, 1980) for logistic regression models with the only dif-

ference being that the denominator is there equal to P̂D
OS

H,j(1 − P̂D
OS

H,j)/nj

(with nj as the number of observations in bucket j). Given the different

standardization, the Hosmer-Lemeshow test is also referred to as a Score test

whereas our test can be interpreted as a Wald test. The Hosmer-Lemeshow

test is quite popular among regulators for validating default probability esti-

mates of banks (Basel Committee on Banking Supervision, 2005b). However,

it is not straightforwardly extended to the survival data setting which we fo-

cus on.14

In a survival analysis context, P̂D
V S

H,j can be estimated by the aforemen-

tioned life-table estimators.15 The life-table estimator and an estimator for

its variance are presented in sections 4.2 and 4.A, respectively. It remains

the question how to choose the number of buckets J . As an extreme case,

if J = 1, one merely tests what is sometimes called global calibration (as

opposed to local calibration). Analyzing global calibration does not reveal

anything about possible shrinkage effects but can nonetheless be useful. From

a methodological point of view, the case J = 1 has the advantage that the

sometimes questionable assumption of independence between the different

groups is no longer necessary. Moreover, the smaller J , the better the asymp-

totic approximation of both the variance estimator for P̂D
V S

H,j and of the χ2
J

distribution will be. However, as J decreases our test loses its ability to de-

tect patterns of miscalibration that are hidden by the aggregation into a few

13Such unstandardized measures are commonly used in the evaluation of probability

predictions from time series. See, for instance, Diebold & Rudebusch (1989) for details.
14To see this, note that the sample size in bucket j is not so easily defined in a survival

analysis context because usually not every obligor will be observed until H because of

censoring.
15Alternatively, one may fit a parametric survival distribution to the lifetimes of each

bucket in the validation sample instead. This is done, for instance, by Dwyer et al. (2004).
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buckets.

Testing for potential miscalibration and improving calibration are closely

connected tasks. An obvious way to correct for the shrinkage effect and

possible problems with the functional form is to use the default rate in each

bucket, P̂D
V S

H,j, as a recalibrated default probability estimate. Sometimes,

the evolution of the default rates over the buckets is additionally smoothed

by a nonparametric or parametric regression (Hartmann-Wendels et al., 2010,

Ch. I1.2.6).

2.2.2 Parametric calibration analysis

As an alternative to the nonparametric analysis presented above a model-

based approach to calibration is also possible. Our main concern here is

to account for the shrinkage effect. There are estimators available like the

Lasso (Tibshirani, 1996) or Penalized Maximum Likelihood (Harrell et al.,

1996, Ch. 9.10) that directly incorporate shrinkage in the estimation pro-

cess. Instead, we consider the simpler solution to use a calibration model

for evaluating and potentially revising the original, i.e. unshrunk, default

probability estimates (Van Houwelingen & Le Cessie, 1990; Medema et al.,

2009). In a calibration model, the outcomes in the validation sample are

regressed on the predictions made with the parameter estimates from the

training sample.16 Besides simplicity, such an approach has the advantage

that calibration can be treated separately from the task to derive a model

with high discriminatory power. This is because using a calibration model to

recalibrate the original estimates will not change the ranking of the default

predictions. In contrast, using the Lasso or Penalized Maximum Likelihood

will usually introduce at least some change in the ranking.

Consider as an example a Logit calibration model. Using the log odds trans-

16This principle was already proposed by Mincer & Zarnowitz (1969) in a time series

context.
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formation for the out-of-sample default probabilities the model is given by

P (Y ∗
i ≤ H|P̂D

OS

i ) =

(
1 + exp

[
−γ0 − γ1 log

(
P̂D

OS

i

1 − P̂D
OS

i

)])−1

.

(2.17)

If the out-of-sample default probabilities were derived from a Logit model as

well (which must not necessarily be the case)17 log
( dPD

OS

i

1−dPD
OS

i

)
is equal to the

linear predictor β̂′xi where β̂ is the estimated parameter from the training

sample and xi refers to the vector of predictor variables of observation i in the

validation sample. Note that the right-hand side of Equation (2.17) simplifies

to P̂D
OS

i if γ0 = 0 and γ1 = 1. Thus, a natural way to test calibration is

to estimate the model given by Equation (2.17) with the observations of the

validation sample and to check if the estimates γ̂0 and γ̂1 differ significantly

from 0 and 1, respectively. Given the shrinkage effect, we will usually expect

γ̂1 < 1 and γ̂0 > 0 which would mean that less extreme predictions give a

better fit in the validation sample. As a measure of calibration accuracy, we

can use, for instance, the Wald statistic from testing the joint null hypothesis

that (γ0, γ1) = (0, 1).

The Logit model is just one simple example for a calibration model. It suffers

from the fact that it is not able to take the timing of default events and

censored data appropriately into account. If the lifetimes censored before

H are simply omitted, the Logit model systematically ignores ”positive”

information, i.e. information about obligors not defaulting for a certain time,

and default probability estimates are thus upward biased. Hazard models,

which will be introduced in chapter 3, do not suffer from this drawback and

can also be used as calibration models. A detailed presentation of these kinds

of calibration models together with an application will be given in section

3.3.4.

As in the nonparametric approach, a parametric calibration analysis directly

offers an opportunity to recalibrate and thus to possibly improve the model.

17The most natural approach is, of course, to use the same model structure (Logit

in this case) for estimating the original model and for calibration. However, sometimes

the calibration analysis is conducted from ”outsiders” (regulators, for instance) so that a

different approach may be used.
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In the Logit example, estimates of γ0 and γ1 can be simply plugged into

Equation (2.17) to get recalibrated default probability estimates. We see

thus that measuring and optimizing calibration can be seen as more or less

the same thing. This is an important difference to the measurement of dis-

criminatory power where a potential correction for low power is not directly

available. Of course, a recalibration is only sensible if the parameters of

the calibration model (γ0, γ1) are estimated reliably which in turn heavily

depends on the validation scheme. Consequently, we will analyze different

validation techniques in detail in the following section.

2.3 Validation techniques

In the preceding sections, we have taken the existence of a training and a

validation sample as given. It turns out, however, that the precise validation

scheme is an issue that deserves more attention. If the training sample and

the validation sample are indeed separate samples the scheme is typically

referred to as a sample split. The drawback of a sample split is that either the

model fitted to the training sample is estimated inefficiently (if the validation

sample is a large part of the whole sample) or that the validation exercise

suffers from limited data (if the validation sample is small).

A solution to this problem is the use of cross-validation where each obser-

vation is used for model estimation and validation. For instance, if we use

classical leave-one-out cross-validation to estimate a calibration model (Van

Houwelingen & Le Cessie, 1990), we estimate the model without the ith ob-

servation to imitate an out-of-sample prediction for the default probability

of observation i, P̂D
OS

i , i = 1, . . . , n. Then, the calibration model is fitted

to the whole sample using only P̂D
OS

i or its linear part (see above) as pre-

dictors. Similarly, with respect to nonparametric calibration, buckets can

be built according to P̂D
OS

i , and the whole sample can be used to estimate

the default probability for each bucket and to compare it with the bucket

averages of P̂D
OS

i .

Leave-one-out cross-validation requires the estimation of n + 1 models and
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is thus computationally quite intensive. The computational burden can be

considerably decreased by using K-fold cross-validation where the sample

is split into K approximately equally sized parts and in each step one of

these subsamples is held out to simulate the corresponding out-of-sample

predictions.

An important assumption underlying ordinary cross-validation is the inde-

pendence of the observations.18 In many credit risk applications, including

our empirical study in chapter 3, this assumption will not be met. For the

case of stationary dependent data, Burman et al. (1994) introduced block

cross-validation. Within this approach, for the prediction of the observa-

tion in some period t one estimates the model omitting the observations

t − B, . . . , t, . . . , t + B. B is selected such that approximate independence

between the training and the validation sample is achieved. Importantly, the

rationale is here to simulate predictions for an observation of a ”process that

has the same distribution as [the original process] but is independent of it”

(Burman et al., 1994, p. 351). This is arguably not the most relevant situ-

ation at least with respect to credit default predictions. Rather, in practice

one usually uses the information up to some period t to make predictions for

the subsequent periods of the same process. Note that this may well mean

that there is some dependence between the training sample (which includes

all observations up to period t) and the outcomes in periods t + 1, . . ..

An alternative approach that takes the latter argument into account is the

application of recursive or rolling-window estimation schemes. Within the

recursive approach, one estimates the model with all the information available

up to period t to make out-of-sample predictions for the upcoming periods

and then increases t step-by-step to generate a series of predictions. The

size of the estimation window thus increases by one period in each step. In

contrast, under a rolling-window approach the size of the estimation window

is fixed and in each step one period is added in the end and one period is

omitted in the beginning. The recursive approach is also known as forward

validation (Hjorth, 1982) or prequential analysis (Dawid, 1984). In the credit

18While being generally invalid, Burman & Nolan (1992) show that in certain cases

ordinary cross-validation can still be saved even when the data exhibit dependencies.
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risk context, Stein (2004) argues in favor of the recursive scheme that it is

closest to the actual application of default prediction models in practice.

As a tool to analyze possible shrinkage effects, recursive and rolling-window

validation schemes have important drawbacks which are similar (albeit less

pronounced) to the problems of a sample split. On the one hand, when

one starts building validation samples at an early point in time, the first

models are estimated on a rather small dataset. This will usually result in an

overestimation of the shrinkage effect since the amount of shrinkage decreases

with the sample size. On the other hand, when the validation period starts

late, only a rather small amount of data can be used for validation purposes.

If the validation samples are used to estimate shrinkage parameters, this will

result in inefficient estimation.

To overcome the problems of both block cross-validation and recursive or

rolling-window validation we propose a new kind of validation scheme which

we call circular rolling-window (CRW) validation. The precise procedure is

as follows:

1. Choose a block length B so that it is reasonable to assume that obser-

vations in period t and period t + B are approximately independent.

Choose B such that B ≥ H, where H denotes the prediction horizon.

2. For calendar period t, estimate the model after omitting all information

from periods t+1, . . . , t+B. This includes a possible adjustment of the

lifetimes and censoring indicators for the observations in period t and

before as these may contain information about the omitted periods.

3. Use the model estimated in step 2 to make out-of-sample predictions

from period t (with a horizon of H).

4. Let t run from the first period to period T where T is the last calendar

period in the sample.

The CRW method differs from block cross-validation only in the fact that

one omits a block only on the right-hand side (the future) and not on both

sides of period t (for reasons that were discussed above). It is also very
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closely related to a recursive or rolling-window estimation scheme. The dif-

ferences are here that for the CRW approach the periods t+B +1, . . . , T are

additionally attached to each training sample (thereby motivating the name

”circular”) and that the validation period already starts with the first period,

i.e. there are more validation periods. An application of the CRW procedure

to calibration analyses is straightforward. The CRW method produces out-

of-sample default probabilities for each observation in the sample which can

be used for a nonparametric or parametric calibration analysis as described

in the preceding sections. We will apply the CRW approach in section 3.3.4,

which also involves some further discussion from a practical point of view.

Of course, the CRW scheme is also an interesting option for the evaluation

of out-of-sample discriminatory power. However, it is more important in

the context of calibration for two reasons. First, compared to the recursive

scheme, the size of the training samples is much closer to the full sample size,

which is important as too small samples would lead to an overestimation of

the shrinkage effect. Such kind of systematic bias is usually not present in

the context of discrimination. Second, a calibration analysis amounts not

only to test predictive accuracy but also to potentially recalibrate the model.

Since the final estimates may thus depend on the validation exercise, it is

important to validate as efficiently as possible. This is achieved by the CRW

method as every period in the sample is used as a validation period.

Finally, it is important to note that methods like block cross-validation were

originally designed for time series data. Typical credit default datasets, in-

cluding the ones that are used in this work, have a panel structure so that the

question of transferability arises. More precisely, while block cross-validation

or CRW validation clearly simulate predictions for new periods, predictions

for new obligors are of interest as well. In many relevant datasets, however,

such predictions for new obligors are automatically done by these methods

since new obligors enter the dataset over time so that a prediction for a new

period will usually also involve predictions for new obligors. This is also likely

to be the relevant case in practice where in a new period some obligors are

already known to a lender and some additional obligors appear. Thus, as it is

closely related to the actual prediction processes in practice, the application

of CRW to panel data seems to be appropriate.
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2.4 Statistical inference

Measures of predictive accuracy are, of course, subject to sampling variabil-

ity. Analyzing this variation is useful not least for confidence intervals and

hypothesis tests. For instance, it is often interesting to test if one model

has significantly more predictive accuracy than another model. We structure

our analysis of statistical inference into two parts. In section 2.4.1 we cover

single-cohort statistical inference which can be thought of as the standard

case where the sample is assumed to consist of independent observations.19

For single-cohort settings, suitable methods are already available in the lit-

erature and we will present these methods briefly in section 2.4.1 to provide

an appropriate background. In section 2.4.2, we will then derive methods for

the multiple-cohort case, where the analysis is complicated by strong depen-

dencies in the data. With multiple cohorts the dataset has a panel structure.

We will explain the multiple-cohort sampling scheme in detail below and we

will argue that it uses the maximum amount of information that is contained

in the data.

The main part of our work in this section concerns the Accuracy Ratio and

(adjusted) Harrell’s C. However, the results from section 2.4.2 generalize

to any asymptotically normal index of predictive accuracy and, as far as

bootstrap methods are concerned, the requirement of asymptotic normality

might even be not necessary. Since our measures of calibration accuracy are

test statistics we have already discussed statistical inference in their context

so that there is nothing to add in the standard single-cohort case. At the

end of section 2.4.2, we will give some remarks on measures of calibration in

a multiple-cohort setting.

19The assumption of independence (within a single cohort) is standard in the literature

so far but may not be fulfilled in the presence of common market shocks or clustering

within industry sectors. If dependence is sizeable and ignored, one has to be aware that

standard errors are likely to be too low.
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2.4.1 Single-cohort statistical inference

As we have seen in section 2.1, both the Accuracy Ratio and (adjusted)

Harrell’s C can be represented as ratios of Kendall’s τa coefficients. Using

the same notation as in section 2.1 we can apply the following representation:

τa,XY =
2

n(n − 1)

n∑

i=1

n∑

j=1

cij , (2.18)

where cij = c((Xi, Yi, Ci), (Xj, Yj, Cj)) for Harrell’s C and cij =

c((Xi, Yi), (Xj, Yj)) for the Accuracy Ratio are the functions that assign the

concordance score to its (vector-valued) arguments. Given (2.18) and the

fact that the function c(·) is invariant to permutation of its arguments it fol-

lows that τa,XY is a so-called U -statistic. Note that the same holds for τa,Y Y ,

the denominator in the corresponding representation of the Accuracy Ratio

and Harrell’s C, where c(·) is simply a function that is equal to one if the

pair is usable and zero otherwise. U -statistics have been shown to be asymp-

totically normally distributed (Hoeffding, 1948). Further, the corresponding

asymptotic covariance matrix can be consistently estimated by the jackknife

method (Arvesen, 1969), which we will now briefly explain. The jackknife is

based on leaving out the ith observation, i = 1, . . . , n, and calculating the

corresponding statistic with the remaining n− 1 observations. For our case,

denote this statistic by τa,XY,−i. Then the jackknife pseudo-values are defined

as

τ̃a,XY,i = τa,XY + (n − 1)(τa,XY − τa,XY,−i) . (2.19)

Tukey (1958) introduced these pseudo-values and argued that they could

be treated as approximately independently and identically distributed ran-

dom variables. We now assume that we have d competing predictors,

X(1), . . . , X(d), and define the vector τa,d = (τa,Y Y , τa,X(1)Y , . . . , τa,X(d)Y )′ (and

analogously τ̃a,d,i for the vector of pseudo-values). The jackknife covariance

matrix is then given by

Ĉovjack(τa,d) =
1

n(n − 1)

n∑

i=1

(τ̃a,d,i − τa,d)(τ̃a,d,i − τa,d)
′ . (2.20)

The jackknife - similar to other resampling methods - can be computationally

quite intensive. However, for our case Newson (2006b) has developed an al-
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gorithm that allows computation of the jackknife covariance matrix in a time

of order n log(n). In our empirical analysis we have found the computational

effort of the jackknife to be relatively low and to be considerably less than

for the bootstrap.

Since we are ultimately interested in inference for the Accuracy Ratio and

Harrell’s C and not for τa one more step is needed. Since both indices have a

representation as a ratio of τa coefficients they are asymptotically normal as

well and we can apply the multivariate Delta method to obtain an appropriate

covariance matrix (Newson, 2006a). Denote the d indices referring to our d

predictors as I(1), . . . , I(d). The application of the multivariate Delta method

then yields the following result:

Ĉov(I(1), . . . , I(d)) = ΓĈovjack(τa,d)Γ
′ , (2.21)

Γi1 =
∂I(i)

∂τa,Y Y

= −
τa,X(i)Y

(τa,Y Y )2
, (2.22)

Γij (j>1) =
∂I(i)

∂τa,X(j−1)Y

=





1
τa,Y Y

if i = j − 1 ,

0 otherwise .
(2.23)

For the Accuracy Ratio, there also exist closed-form formulas for the covari-

ance matrix (Bamber, 1975; DeLong et al., 1988). In the empirical analysis,

we use the jackknife approach, however, to enhance comparibility of the Ac-

curacy Ratio and Harrell’s C.

2.4.2 Multiple-cohort statistical inference

To the best of our knowledge, there is no study so far that deals with the

problem of statistical inference in a multiple cohort setting (as defined be-

low) and takes into account the dependence structure of such datasets. The

multiple cohort case is relevant because it allows to extract the maximum

amount of information out of the dataset. To see this, let us first clarify what

is meant by a multiple cohort sampling scheme.20

20Sometimes the term ”static pool” instead of ”cohort” is used.
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A cohort consists of all obligors that have a rating at a given point in time t.21

For the members of the cohort, the rating at t and the lifetimes beginning

at t (together with the censoring indicators) are recorded. As an example,

consider a firm that was rated, say, BB at the beginning of 2009 and defaulted

in October 2010. The firm thus enters the cohort that was built at the start

of 2009 with its BB rating and a lifetime of 21 months (and a censoring

indicator of 0). Now assume that in the beginning of 2010 the same firm was

rated CCC. In the cohort built at the start of 2010 the same firm is included

again with its CCC rating and a lifetime of 9 months (and again a censoring

indicator of 0). The reason why the same firm is included in both cohorts

is that we want to evaluate both the performance of the BB rating in the

beginning of 2009 and of the CCC rating in the beginning of 2010. Note also

that the firm would be included in the cohort of 2010 even if the rating would

not have changed. Obviously, if we build an aggregate or pooled cohort out of

all the individual cohorts the pooled observations are dependent because we

have a panel dataset of partially overlapping lifetimes. In our example, the

overlapping period consists of the 9 months in 2010. The overlapping sample

problem gets more pronounced if we build cohorts at a higher frequency and

if we have longer lifetimes.22 For instance, in the empirical section we will

build cohorts on a monthly basis to use as much information as possible at the

same time leading to even larger overlappings than in our example.23 Due to

the strong dependencies in the pooled cohort methods for statistical inference

designed for approximately independent samples as the ones mentioned in

section 2.4.1 are not directly applicable in our setting. While dependence

does not introduce any bias to the indices themselves standard errors that

ignore dependencies are usually downward biased so that confidence intervals

and hypothesis tests are not reliable.

Returning to a more general setup, let us assume that there is a sequence

21Since we refer to measures of discriminatory power in the following, we refer to our

default predictions as ratings. Of course, the cohort terminology generalizes to default

probabilities as predictions.
22If we censor our lifetimes at the prediction horizon, the amount of overlapping increases

with the prediction horizon.
23Moody’s is also building cohorts each month in its calculation of Accuracy Ratios

(Cantor & Mann, 2003).
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of points in time t, t = 1, . . . , T, and a cohort is built at each t with It

denoting the chosen index of predictive accuracy (e.g., the Accuracy Ratio

or Harrell’s C) for the cohort built at time t. Given a prediction horizon

H, this would correspond to a sample length of T + H.24 As a first issue,

one has to decide how to combine the indices It, t = 1, . . . , T, to one single

measure of predictive accuracy. Cantor & Mann (2003) propose either using

some type of weighted mean of It or simply calculating the index for the

pooled cohort. As weighting schemes, the authors consider equal weights,

the number of observations and the number of defaults while finally using

the second alternative in their empirical part. We first analyze the weighted

mean approach. Consider the following general weighted mean:

I =
T∑

t=1

wtIt (2.24)

The weights are normalized to sum up to one. Due to the ”overlapping

lifetimes problem” sketched above we expect strong autocorrelation of the

time series It.
25 We assume that Corr(It, It+j) = ρj depends only on j but

not on t (assumption 1). This assumption seems reasonable since the main

source of dependence between It and It+j is the overlapping fraction of the

underlying lifetimes which is equal to max(0, 1 − j/H), regardless of t. In

contrast, the variance of It, denoted by σ2
t , is allowed to vary with t so that

we do not assume stationarity. Further, we assume that the correlation of

the indices vanishes if the time between the cohort building dates is equal

to or larger than the prediction horizon, i.e. ρj = 0 for j ≥ H (assumption

2). In these cases, overlapping lifetimes do not occur anymore. Under these

assumptions, the variance of I can be expressed as

V (I) =
T∑

t=1

w2
t σ

2
t + 2

H−1∑

j=1

ρj

T−j∑

t=1

wtσtwt+jσt+j . (2.25)

For the derivation of this formula, we have also used the additional as-

sumption that the weights are deterministic. Strictly speaking, from the

24Since we do not build cohorts in periods T +1, . . . , T +H and consider only measures

with a limited prediction horizon we avoid any boundary problems.
25This is confirmed by the empirical analysis in section 2.5 with empirical first-order

autocorrelations ranging from 0.539 to 0.946.
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three types of weights mentioned above, only equal weights are deterministic.

However, we have conducted bootstrap experiments with fixed and varying

weights that show that this source of variation is negligible. Estimators for

σt are available for every t by the procedures presented in section 2.4.1. For

ρj, a natural choice are the empirical autocorrelations, which are consistent

estimators of the true autocorrelations and do not require the construction

of a time series model. The formula used in the empirical section is

ρ̂j = max

(
0,

1/(T − j)
∑T−j

t=1 (It − I)(It+j − I)

1/T
∑T

t=1(It − I)2

)
(2.26)

which cancels out the effect of occasionally occurring negative autocorrelation

estimates. I refers to the simple mean of the time series of indices.

We now turn to the sampling distribution of I. For both the Accuracy Ratio

and Harrell’s C, asymptotic normality of It follows from the arguments given

in section 2.4.1. We then assume that the weighted average I converges to

some value µ(I) as the cohort sizes and the number of periods approach

infinity (assumption 3). This excludes any trending behaviour. Under these

assumptions, we can apply Slutsky’s theorem and the Central Limit Theorem

for M -dependent random variables26 to derive the following formula, which

can be used for confidence intervals and hypothesis tests:

I − µ(I)√
V̂ (I)

d
→ N(0, 1) (2.27)

Note that the asymptotics of Formula (2.27) require both the cohort sizes

and the number of cohorts approaching infinity. As was already indicated

above, Formulas (2.25) and (2.27) are applicable not only for the Accuracy

Ratio and Harrell’s C but for any asymptotically normal index where an

estimator for σt is available. In order to perform hypothesis tests regarding

26Our time series of indices is M -dependent in the sense that we assume that indices

separated by more than M periods are assumed to be independent, i.e. in our case M =

H − 1. Since independence implies uncorrelatedness but not vice versa this assumption is

stronger than assumption 2 – which suffices for the variance formula – and might thus be

referred to as assumption 2∗. For details about this kind of Central Limit Theorem see,

for instance, Shumway & Stoffer (2006), appendix A.
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the difference in the predictive accuracy of two different rating systems, say

A and B, we only have to substitute It by (It,(A) − It,(B)), σ2
t by σ2

t,(A−B) =

σ2
t,(A) − 2 ·Cov(It,(A), It,(B)) + σ2

t,(B) and ρt by ρt,(A−B), the autocorrelation of

the time series (It,(A) − It,(B)). The necessary covariances, Cov(It,(A), It,(B)),

can be computed with the methods of section 2.4.1. Asymptotic normality

of (It,(A) − It,(B)) follows from the joint asymptotic normality of It,(A) and

It,(B).

Alternatively, resampling methods can be used for inference. They are an

especially important alternative for datasets with just a few number of co-

horts where it is not possible to estimate the autocorrelations for the time

series of indices reliably. Jackknife and bootstrap approaches can be applied

to both the weighted average and the pooled version of the indices. Clearly,

the resampling procedures have to take the dependence structure of the data

into account as well. If we interpret all the observations of an individual

obligor as one cluster and assume independence between clusters, i.e. be-

tween different obligors, we can apply the cluster versions of the jackknife

and the bootstrap which we will briefly outline in the following.27

For the bootstrap, this amounts to resampling with replacement from the

set of obligors instead of the set of all observations which contains several

observations per obligor.28 The indices are calculated for each bootstrap

sample and are used for inference in the usual way. More precisely, if I∗
b

denotes the index for the bth bootstrap sample and if we draw B bootstrap

replications, the bootstrap estimate of the standard error of I is

σ̂(I) =

(
1

B − 1

B∑

b=1

(I∗
b − I

∗
)2

)1/2

, I
∗

=
1

B

B∑

b=1

I∗
b . (2.28)

Bootstrap confidence intervals can be obtained by simply looking at the

corresponding percentiles of the bootstrap distribution (Efron & Tibshirani,

27A more detailed discussion is given in Field & Welsh (2007) and Cameron et al. (2008)

for the cluster bootstrap and in Wolter (2007, Ch. 4.6) for the cluster jackknife. Besides

clustering, another non-standard feature of our data is the censoring of the lifetimes. Efron

(1981) shows that the bootstrap works well even when the data are censored.
28Hanson & Schuermann (2006) and Cantor et al. (2008) use this kind of bootstrap to

calculate confidence intervals for default probabilities.
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1993, Ch. 13.3).

With respect to bootstrap hypothesis tests, we are especially interested in

testing H0 : ∆µ(I) = µ(I(A)) − µ(I(B)) = 0 (again for two rating systems

A and B) against the two-sided alternative. To do so, we would ideally

generate bootstrap samples under the null distribution in order to estimate

P ∗
H0

(|∆I∗| ≥ |∆I|) (where the probability refers to the bootstrap distribu-

tion under the null hypothesis) giving the p value of the test. Under the

nonparametric bootstrap approach which we consider here the bootstrap

null distribution is usually approximated by the translation approach (Efron

& Tibshirani, 1993, Ch. 13.3), i.e. the empirical distribution is used to draw

bootstrap samples and ∆I∗ is centered. This leads to P ∗(|∆I∗−∆I| ≥ |∆I|)

as an approximation for the bootstrap p value. This quantity may then be

estimated by (Davison & Hinkley, 1997, Ch. 4.4)

p =
1 + #(|∆I∗ − ∆I| ≥ |∆I|)

1 + B
, (2.29)

which is the formula that we will use in all the empirical parts of this work.

The extension of the jackknife to clustered data is also rather straightfor-

ward. Formulas (2.19)-(2.23) can be directly applied to the pooled index

where the subscript i, i = 1, . . . , n, refers to an individual cluster (obligor).29

Instead of using the subsamples where a single observation is omitted now

the entire cluster of observations (all the observations of one obligor) has to

be removed for the calculation of jackknife pseudo-values to account for the

dependencies within clusters. The pooled indices are ratios of U statistics

and therefore the jackknife can be applied along the lines of the single-cohort

case. In contrast, the weighted average indices are weighted averages of de-

pendent ratios of U statistics and the Delta method can only be applied if

we estimate the autocorrelations of the time series of U statistics. This is

a major drawback since we wanted to avoid estimating autocorrelations in

the context of resampling methods. Of course, the jackknife can be directly

29In Formula (2.18), the double sum is then over all observations of the panel their

number being
∑n

i=1 Ti (Ti denoting the number of observations of obligor i.)
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applied to the weighted average index,30 but since this is not a U statistic

the validity of the jackknife is not clear in this case. In the upcoming em-

pirical illustration, we will therefore use the jackknife and the bootstrap for

the pooled indices whereas we use the asymptotic Formulas (2.25)-(2.27) and

the bootstrap for the weighted average indices. For the jackknife, as opposed

to the bootstrap, we exploit the asymptotic normality of our indices for the

purpose of confidence intervals and hypothesis tests.

We close this section with some remarks on measures of calibration. In

section 2.2, we have introduced a χ2 test statistic (Equation (2.16)) and the

test statistic of a test for perfect calibration in a calibration model (Equation

(2.17)) as measures of calibration accuracy. Both measures are not intended

to be calculated as a weighted average over different cohorts (although this

is possible as well). Rather, similarly to the pooled Accuracy Ratio and

Harrell’s C, they are based on the pooled dataset. Again, this means that the

dependencies arising from overlapping lifetimes have to be taken into account.

The cluster bootstrap is one option to do so and can be applied as explained

just above. For the χ2 statistic from Equation (2.16), the bootstrap can be

avoided by using a cluster-robust estimator for the variance of the default

rates in the validation sample (P̂D
V S

H,j). If the life-table or the Kaplan-Meier

estimator is used to calculate default rates, such a cluster-robust variance

estimator exists. It will be presented in detail in section 4.A. Some further

discussion about statistical inference for measures of calibration is given in

the context of our empirical calibration analysis in section 3.3.4.

2.5 Empirical illustration

For our empirical illustration in this section, we restrict ourselves to measures

of discriminatory power. Calibration will be treated in chapter 3 since it

requires a model for the default probability which will then be introduced.

In the following, we will deal with the evaluation of credit ratings which - as

30For each subsample with the ith obligor omitted, i = 1, . . . , n, the weighted average

index is calculated and Formulas (2.19) and (2.20) are used with the weighted average

index replacing Kendall’s τ .
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they are pure ordinal predictions - suffices as far as discriminatory power is

concerned.

Our dataset consists of monthly Standard & Poor’s (S&P) long term issuer

credit ratings for North American public firms provided by Compustat. Long

term ratings are particularly suitable in our context since the benefits from

Harrell’s C compared to the Accuracy Ratio get most visible in the evaluation

of long term predictions. Note that the ratings used here do not refer to

any specific security but rather are assessments of the overall solvability of

a firm. Since S&P rating assignments are done ”in real time” and are not

adjusted ”ex post”, they are naturally out-of-sample predictions. We consider

prediction horizons from six months up to five years which is the maximum

time horizon of S&P’s long term ratings (Standard & Poor’s, 2010). After

excluding missing observations we have 512 685 firm-months of 5151 firms

in the period from December 1985 to June 2009, including 609 defaults.

Cohort building is performed on a monthly basis starting in December 1985

until June 2004. Thus, our time series of indices consists of 223 periods.

Figure 2.4 shows the rating distribution of our sample on the left-hand side.

To investigate the censoring scheme in our data, Figure 2.4 also shows on the

right-hand side the rating distribution of the observations censored within

five years. Clearly, lower rated firms have higher censoring rates so that the

subsample of firms which were not censored within the first five years tends

to contain primarily highly rated and defaulting firms. Recall that the five-

year Accuracy Ratio (in contrast to Harrell’s C) uses only this uncensored

subsample which obviously has to some degree different characteristics than

the whole sample. Apart from this finding, the censoring problem leads to a

substantial loss of information as 30.99% of all observations are omitted for

the five-year Accuracy Ratio.

We can see the consequences of these problems among other things in Table

2.1 which gives Accuracy Ratios and adjusted Harrell’s C’s together with

their standard errors and 95% confidence intervals. Looking at the levels

of the indices, we see that for both the weighted average and the pooled

versions the Accuracy Ratio declines distinctively less with the prediction

horizon than Harrell’s C. In particular the five-year Accuracy Ratio is almost
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Figure 2.4: Rating distribution of the full and censored sample
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as high as the three-year Accuracy Ratio. This is most likely due to the

aforementioned fact that, as the prediction horizon grows, the subsample

relevant for the Accuracy Ratio tends to consist of ”very good” and ”very

bad” firms making discrimination obviously easier. We can interpret this

finding as a missing data problem. The subsample used for the Accuracy

Ratio is the part of the sample without missing data (the complete cases in

missing data terminology) and is – as Figure 2.4 shows – very likely not a

random subsample of the whole sample. In such cases, a bias typically arises

(Little & Rubin, 2002, Ch. 3.2). In our application, the Accuracy Ratios at

long horizons are evidently upward biased and indicate a prognostic power

of the rating system that is not really existent. Thus, investors and risk

managers relying on the Accuracy Ratio are endangered to be too optimistic

about the long-run predictive accuracy of ratings.

While Harrell’s C declines more as the prediction horizon increases it is also

lower than the Accuracy Ratio for short horizons where the missing data

problem is rather unimportant. This can be explained by the fact that Har-

rell’s C is more demanding in the sense that a perfect Harrell’s C requires

the correct prediction of the temporal order of defaults and not only the

correct prediction of which firms will default within a certain time horizon.
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Table 2.1: Indices of predictive accuracy, their standard errors and 95%

confidence intervals

Panel A: Weighted average indices (number of firms per cohort as weights)

Adjusted Harrell’s C Accuracy Ratio

Prediction horizon (months) 6 12 36 60 6 12 36 60

Index .8686 .8340 .7475 .7168 .8725 .8422 .7768 .7679

Formulas (2.25)-(2.27)

Standard error .0087 .0114 .0133 .0144 .0086 .0112 .0130 .0163

CI lower bound .8515 .8116 .7214 .6886 .8557 .8202 .7514 .7360

CI upper bound .8856 .8563 .7736 .7450 .8893 .8643 .8022 .7999

Cluster bootstrap

Standard error .0105 .0116 .0175 .0204 .0103 .0114 .0173 .0204

CI lower bound .8436 .8074 .7111 .6715 .8477 .8165 .7406 .7237

CI upper bound .8831 .8512 .7790 .7509 .8869 .8594 .8077 .8025

Panel B: Pooled indices

Adjusted Harrell’s C Accuracy Ratio

Prediction horizon (months) 6 12 36 60 6 12 36 60

Index .8562 .8116 .7368 .7135 .8599 .8200 .7682 .7660

Cluster jackknife

Standard error .0106 .0115 .0141 .0155 .0106 .0114 .0141 .0157

CI lower bound .8354 .7891 .7091 .6831 .8391 .7977 .7406 .7353

CI upper bound .8769 .8340 .7645 .7440 .8806 .8424 .7959 .7967

Cluster bootstrap

Standard error .0111 .0114 .0144 .0152 .0107 .0113 .0140 .0157

CI lower bound .8340 .7886 .7077 .6837 .8386 .7971 .7397 .7332

CI upper bound .8773 .8325 .7640 .7424 .8798 .8413 .7958 .7985

The number of bootstrap replications is 1000. Bootstrap confidence intervals are calculated via the per-

centile method. Jackknife confidence intervals are calculated using jackknife standard errors and assuming

normality.

Further, we see that the weighted average measures are generally higher than

the pooled measures. This does not surprise as the weighted average indices

aggregate measures for predictions made at certain points in time and do not

compare ratings from different points of the business cycle as in the pooled

cohort approach.

We now turn to the analysis of standard errors and confidence intervals.

Regarding the weighted average indices, the asymptotic formulas derived in

section 2.4.2 tend to be more liberal than the bootstrap which is a common
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finding in such comparisons (Horowitz, 2001). While the suggested finite-

sample bias of the asymptotic formulas seems to be moderate, the computa-

tional effort of the bootstrap might be worthwhile for more precise inference.

For the pooled indices, the differences between the cluster jackknife and the

cluster bootstrap are very small. Since the jackknife is computationally more

efficient in this situation, we recommend its use for the pooled indices. Fi-

nally, looking at the standard errors and the length of the confidence intervals

over time, it is obvious that the uncertainty about rating accuracy grows with

the prediction horizon. Note that for a single cohort, the standard errors do

not rise with the prediction horizon. However, for the aggregate indices they

do, since the overlapping lifetimes problem is more pronounced in this case

leading to higher dependencies in the data for longer horizons.

In section 2.4.2, we have argued that inference based on multiple cohorts in-

cluding overlapping lifetimes extracts the maximum amount of information

out of the dataset. From a statistical point of view, this leads to smaller

standard errors, narrower confidence intervals and more powerful tests. We

now demonstrate these improvements by example. The following test is mo-

tivated by the observation that the information that a firm reached its rating

by a downgrade may be useful in predicting future defaults (Lando & Skode-

berg, 2002; Guettler & Raupach, 2010). Thus, we created a rating scale

that includes new additional grades for downgraded firms. For instance, we

classify a firm that reached a BBB+ rating by a downgrade between the

BBB+ firms that did not reach their rating by a downgrade and the firms

which are one grade lower, in this case BBB. The null hypothesis of the

test presented in Table 2.2 is that this augmented rating scale has the same

predictive power as the original rating scale which is tested against the two-

sided alternative. We use Harrell’s C in the weighted average version as our

measure of predictive accuracy. On the one hand, in the first four columns

of Table 2.2, we perform the test using again monthly cohort building. On

the other hand, we do the same test using only cohorts where the time be-

tween the cohort building dates is H − 1 months (H being the prediction
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Table 2.2: Tests for significant differences in adjusted Harrell’s C

Overlapping lifetimes included Overlapping lifetimes excluded

Pred. horizon
(months) 6 12 36 60 6 12 36 60

Cadj .8686 .8340 .7475 .7168 .8678 .8318 .7466 .6780

Cadj+ .8695 .8350 .7482 .7173 .8686 .8322 .7467 .6781

Difference 9.92e-4 1.05e-3 7.52e-4 5.59e-4 8.24e-4 4.14e-4 1.04e-4 9.82e-5

Form. (2.25)-(2.27)

St.err. diff. 1.71e-4 1.79e-4 1.29e-4 1.27e-4 3.39e-4 2.38e-4 2.54e-4 2.91e-4

p value 6.06e-9 4.09e-9 5.64e-9 1.06e-5 .0152 .0808 .6834 .7355

Cluster bootstrap

St.err. diff. 1.81e-4 1.83e-4 1.12e-4 7.87e-05 4.03e-4 2.59e-4 2.73e-4 3.20e-4

p value .001 .001 .001 .001 .038 .100 .668 .752

The columns under ”Overlapping lifetimes included” refer to monthly cohort building. ”Overlapping

lifetimes excluded” columns use only data from cohorts which are separated by H − 1 months where H

is the prediction horizon. Cadj refers to adjusted Harrell’s C in the weighted average version for the S&P

fine-grained rating scale as in Table 2.1. Cadj+ augments the rating scale by an additional grade for

firms who reached their rating grade by a downgrade. The equality of the population indices is tested

against the two-sided alternative. The number of bootstrap replications is B = 999. Bootstrap p values

are calculated according to Formula (2.29).

horizon) so that no overlapping lifetimes occur.31 The latter case refers to

inference which avoids to deal with the dependence induced by the overlap-

ping lifetimes problem. We apply both the asymptotic formulas as described

in section 2.4.2 and the cluster bootstrap to perform the tests. In the case

of no overlapping lifetimes, Formula (2.25) (more precisely its extension to

differences) reduces to its elementary part that does not include the terms

which involve autocorrelations.

The results show that we can reject the null hypothesis at any horizon and

at any conventional significance level if we include overlapping lifetimes. We

conclude that the consideration of the downgrade effect indeed yields in-

cremental predictive accuracy. However, such a conclusion is hardly possi-

ble without the use of overlapping lifetimes. In this case, we observe only

marginally significant improvements at short horizons and no significant dif-

31For instance, for five-year Harrell’s C, we use the cohorts build in June of 2004, 1999,

1994 and 1989.
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ferences for longer horizons. One reason for this caused by chance is that

the point estimates for the difference of the indices are lower throughout all

horizons. The other and systematic reason is that the standard errors of

the differences are considerably higher reflecting the higher variability that

is caused by the reduction of the dataset. The results of the asymptotic

formulas and the cluster bootstrap are quite similar. The test decisions are

essentially the same for both approaches while the bootstrap again tends to

be somewhat more conservative. To conclude, we see that there are realis-

tic examples where the greater power of tests based on overlapping lifetimes

results in different decisions.



Chapter 3

Default prediction with

time-varying covariates

In this chapter, we deal with the common situation that the dataset has a

panel structure and consists of the default histories for a set of obligors to-

gether with time-varying covariates. Of course, the cases of cross-sectional

datasets or time-constant covariates are then just special cases. A typical

example for time-varying covariates is given by firms, where balance sheet

variables are updated over time. In the area of consumer credit, time-varying

covariates are often gathered as well although sometimes only the data re-

ported at the time of credit application are used in practice (Crook & Bellotti,

2010). For sovereign obligors, the covariates, typically macroeconomic and

fiscal variables, are also time-varying, although default prediction models are

not as common in this area as for other types of obligors due to sparse default

data.

As was explained in the introduction, we will use a survival analysis approach

for our default prediction problem. Over the past 15 years hazard models

have emerged to become the state of the art in the credit risk literature.1

Hazard models are formulated in terms of the hazard rate which is defined

1Early contributions in this respect are Lee & Urrutia (1996) and Banasik et al. (1999).

43
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in continuous-time as

λc(y) = lim
∆y→0

P (y ≤ Y ∗ < y + ∆y |Y ∗ ≥ y)

∆y
, (3.1)

where Y ∗ denotes again the possibly unobservable lifetime or the time until

default of an obligor.2 In discrete-time, the hazard rate is defined to be

λd(y) = P (Y ∗ = y|Y ∗ ≥ y) . (3.2)

In both cases, the hazard rate is a measure of instantaneous default risk

which may be linked to a set of covariates to arrive at a hazard regression

model. Interestingly, standard discrete-time hazard models can be shown

to be equivalent to panel data models with a binary dependent variable

(Sueyoshi, 1995; Jenkins, 1995).3 Before the introduction of hazard models

to the credit risk literature, most studies considered a simple cross-sectional

setting with a binary dependent variable representing default.4 In such a

framework, only a small part of the information is used since i) only one

cross-section of the panel data set is utilized and ii) the exact default times

as well as iii) the information from censored lifetimes are not incorporated

into the analysis.

In recent years, it has become a standard approach in the literature to es-

timate a discrete-time hazard model with yearly data directly yielding one-

year default probabilities (Shumway, 2001; Chava & Jarrow, 2004; Hillegeist

et al., 2004; Beaver et al., 2005; Hamerle et al., 2006; Cheng et al., 2010).

While such a framework has the aforementioned benefits compared to cross-

sectional analyses it still suffers from the fact that default predictions for

time horizons of more than one year are not directly available since the fu-

ture evolution of the covariates is unknown. Further, these models still do

not use all information if data are available at shorter time intervals, say

quarterly or monthly. Therefore, even for one-year horizons, models that

allow for multi-period predictions are useful.

2As in chapter 2 the observed lifetime is denoted by Y . If the lifetime is uncensored it

holds that Y ∗ = Y and Y ∗ ≥ Y otherwise.
3Intuitively, a discretely measured lifetime is the result of a sequence of binary variables

which are the default indicators for a sequence of periods.
4Methods used in such a context include discriminant analysis (Altman, 1968) and

cross-sectional logistic regression (Ohlson, 1980).
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The models considered in this chapter are sometimes referred to as reduced-

form models as opposed to structural models. Structural models are based

on some theory why an obligor defaults. For instance, in the popular struc-

tural model of Merton (1974),5 the assets of a firm are assumed to follow

a certain stochastic process and a default occurs if the asset values drop

below the face value of the firm’s debt. The main drawback of this and

other structural models is that they require very strong assumptions, espe-

cially about the functioning of capital markets. Most likely because of this

reason, recent studies that compared structural and reduced-form models in

terms of their predictive accuracy concluded that appropriate reduced-form

approaches yield superior predictions (Bharath & Shumway, 2008; Campbell

et al., 2008).

In this chapter, we analyze and develop reduced-form approaches that allow

for multi-period predictions in a panel data framework. In the next section,

we will present approaches in the literature that overcome the problem of

unknown future covariates by developing a model to forecast these covariates.

Then, we will introduce a new alternative approach that delivers multi-period

predictions within a parsimonious setting that does not need a covariate

forecasting model. In section 3.3, we apply our estimators to a large sample

of North American public firms, evaluate their predictive accuracy and show

how the original estimates can be eventually recalibrated. The contents of

the upcoming sections stem to a large extent from Orth (2011b).

3.1 Approaches with covariate forecasting

models

We first introduce the study of Duffie et al. (2007). In an application to U.S.

public firms, the authors use the following specification for the continuous-

5Further developments of Merton’s model have led to the approach from Moody’s KMV

(Crosbie & Bohn, 2003) which has received considerable attention in the financial industry.
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time hazard rate of firm i in period t, given a covariate vector xit:
6

λc(t|xit) = exp(β′xit) (3.3)

The model is a proportional hazard model with a constant baseline hazard

and time-varying covariates. The authors use four covariates (taken from

balance sheet and market data) which are modelled with Gaussian panel

vector autoregressions, partly assuming independence among the covariates.

Using this forecast model, the probability to default within a time horizon

H can be calculated as follows:

P (Y ∗
it ≤ H|xit) = 1 − E

[
exp

(
−

∫ t+H

t

λc(t + s|xi,t+s) ds

)]
, (3.4)

Y ∗
it denotes the lifetime of firm i starting at t and the expectation is with

respect to the path of the vector of covariates from time t to t + H. Duffie

et al. (2007) state that they evaluate this expression by numerical methods.

To enable a better understanding of the necessary calculations let us do

some rearrangements of Formula (3.4). Since the covariates are observed

at discrete points in time the hazard rates are piecewise constant and the

default probability can be rewritten as

P (Y ∗
it ≤ H|xit) = 1 − E

[
exp

(
−

H∑

s=1

exp(β′xi,t+s)

)]
(3.5)

= 1 − E

[
H∏

s=1

exp (− exp(β′xi,t+s))

]
(3.6)

It is clear from above that the model for the covariate processes and the

necessary numerical calculations get more and more involved as the number

of covariates rises. Duffie et al. (2007) use only four covariates which is a

relatively low number compared to other studies. An interesting approach to

overcome this dimensionality problem is given in the study of Hamerle et al.

(2007). In an application to German firms from the manufacturing industry,

they choose a discrete-time hazard model of the following form:

λd(t|xit) = Φ(β′xit + εt) (3.7)

6In the following, we disregard the fact that Duffie et al. (2007) consider not only the

exit of a firm due to default but also other exits like, for instance, mergers. We do so to

make comparisons with other approaches easier.
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Φ(·) is the cumulative distribution function of the standard normal distribu-

tion and εt is a normally distributed random variable that represents common

unobserved shocks. To simplify covariate forecasting, Hamerle et al. (2007)

partition the covariate vector in a firm-specific part, β′
1xit,1, and a macroe-

conomic part, β′
2xit,2, (β′xit = β′

1xit,1 + β′
2xit,2), which may be interpreted as

a credit score and a macroeconomic default risk index, respectively. Instead

of modeling all covariates, Hamerle et al. (2007) only specify a model for the

credit score and the macroeconomic index thereby reducing the complexity of

the problem considerably. To be specific, Hamerle et al. (2007) use univariate

autoregressive panel and time series models assuming independence between

β′
1xit,1 and β′

2xit,2. Similarly to Duffie et al. (2007), the default probability

for a time horizon H is calculated by taking the expectation over the possible

paths of the covariate processes:

P (Y ∗
it ≤ H|xit) = 1 − E

[
H∏

s=1

(
1 − λd(t + s|xi,t+s)

)
]

(3.8)

Hamerle et al. (2007) approximate this expression by performing Monte Carlo

simulations of their covariate processes.

Approaches that involve covariate forecasting models have some drawbacks

that make it worthwile to look for alternatives. First, there is a considerable

additional burden in model building, programming and computing time. To

see this, note that panel vector autoregressions like the one used by Duffie

et al. (2007) are usually not implemented in statistical software packages.

Further, the evaluation of the expectations in Equations (3.4) and (3.8) re-

quires multidimensional numerical integration which is often computationally

demanding. Second, and maybe more importantly, there are purely statisti-

cal disadvantages since the econometrician is left with the choice between a

large covariate forecasting model containing many parameters – which may

lead to low out-of-sample predictive power – and quite restrictive assump-

tions to reduce dimensionality. As examples for the latter note that the

model of Duffie et al. (2007) contains only four covariates and that in the

approach of Hamerle et al. (2007) equal credit scores lead to equal credit

score forecasts regardless of the composition of the covariate vector. More

generally, since any errors in the forecasting model for the covariates will
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impact the overall model’s ability to predict defaults an additional source of

model and parameter uncertainty arises.

3.2 An alternative approach

3.2.1 The models

As a background to the subsequently presented approach we briefly address

the study of Campbell et al. (2008) which also deals with North American

public firms. In their work, the authors estimate discrete-time hazard mod-

els (using a Logit specification) lagging their time-varying covariates by s

months, s = 6, 12, 24, 36:

λd(t + s|xit) = [1 + exp(−β′
sxit)]

−1
(3.9)

The authors point out that this approach can be extended by letting s run

from 1 to H (H denoting the prediction horizon) meaning a stepwise increase

of the lag index in the hazard regressions. Then, multi-period default proba-

bilities can be calculated in closed form since the hazard rate in period t + s

is directly given as a function of the covariates in period t:

P (Y ∗
it ≤ H|xit) = 1 −

H∏

s=1

(
1 − λd(t + s|xit)

)
(3.10)

However, estimation gets a bit cumbersome since one has to estimate H dif-

ferent parameter vectors which also increases the numbers of parameters sub-

stantially and thereby raises questions about out-of-sample predictive power.

While Campbell et al. (2008) do not perform and validate such an extended

approach,7 it nevertheless provides an interesting means to overcome the bur-

den to specify a covariate forecasting model. Therefore, we will consider this

approach in the empirical analysis. Before we do so, we will now introduce

a framework that does not need a covariate forecasting model as well and

thereby involves the estimation of just one parameter vector.

7In a very recent study, Duan et al. (2012) employ such kind of sequential lagging

procedure using a complementary log-log instead of a Logit specification.



3.2. AN ALTERNATIVE APPROACH 49

Let us first introduce the basic notation. We observe obligor i, i = 1, . . . , n,

for Ti periods thereby recording his default history and a vector of time-

varying covariates xit. Importantly, we define Yit to be the observed lifetime

of obligor i starting in period t, for each period t, t = ti1, . . . , ti1 + Ti − 1,

so that we have Ti partially overlapping lifetimes for each obligor. In real

datasets we will not observe the end of every lifetime, so that we have to

define additionally the corresponding censoring indicator variable Cit which

is zero in the case of no censoring, i.e. the lifetime ends with a default event,

and one for censored lifetimes. Further, Y ∗
it again denotes the uncensored

and sometimes unobservable lifetime, i.e. Yit = Y ∗
it if Cit = 0 and Yit ≤ Y ∗

it

if Cit = 1. We will specify our models in terms of the continuous-time

hazard rate. We choose the continuous-time specification since it is more

common in the survival analysis literature and gives us a greater variety of

models to choose from. Additionally, software packages usually offer more

implementations for continuous-time hazard models.8

The idea behind the models we propose is as follows. Given the information,

i.e. the covariates, available at some point in time t, we want to predict the

probability to default within a time horizon of H. A simple solution is to

specify the hazard rate at point in time t + s as a function of the covariates

in period t, xit, and the ”forecast time” s. To do so we define, in contrast to

all of the aforementioned studies, our hazard rate in terms of the lifetimes

starting at the variable point in time t:9

λc(s|xit) = lim
∆s→0

P (s ≤ Y ∗
it < s + ∆s|Y ∗

it ≥ s, xit)

∆s
(3.11)

We may call λc(s|xit) the time-t conditional hazard rate at time t + s or the

time-s ahead hazard rate given the information available at t. Under this

definition, we can use, for instance, the proportional hazard (PH) framework

to specify our model. Then,

λc(s|xit) = λ0(s) exp(β′xit) . (3.12)

8Standard discrete-time hazard models can be estimated by routines for binary panel

models. However, this is not possible for our kind of models since we deal with a panel of

lifetimes and not with a panel of binary variables.
9The studies cited before consider only one lifetime per obligor which is implicitly

defined to start at the beginning of the observation period.
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λ0(s) is called the baseline hazard and captures the variation of the hazard

rate over the forecast time which may also be interpreted as a kind of duration

dependence. The model given by Equation (3.12) is essentially an ordinary

hazard model. The innovative part is simply the specification of the hazard

rate in terms of the forecast time s (instead of the calendar time t) which

allows us to use ordinary hazard models to express the evolution of default

risk over the forecast time. Note the difference to the usual PH specification

as, for instance, used in Duffie et al. (2007). There, the hazard rate in period

t + s is a function of the covariates in period t + s leaving those models with

the problem that the covariates are not known in t + s.10 Further, notice

that the forecast time s is the analogon to the lag length in the approach of

Campbell et al. (2008) outlined in the beginning of this section. There, the

hazard rate freely fluctuates for different s due to the repeated estimation

of the model. In contrast, we impose a structure on the evolution of the

hazard rate over the forecast time by integrating s as an argument into the

functional form of the model.

Importantly, the default probabilities are easily calculated in closed form:

P (Y ∗
it ≤ H|xit) = 1 − exp

(
−

∫ H

0

λc(s|xit) ds

)
(3.13)

For instance, if we choose the PH model we have

P (Y ∗
it ≤ H|xit) = 1 − exp

(
− exp(β′xit)Λ0(H)

)
, (3.14)

where Λ0(H) =
∫ H

0
λ0(s)ds is the so-called cumulative baseline hazard.

Within our approach we neither claim that only xit (and not xi,t+s) is rel-

evant for the hazard rate in period t + s nor do we think that the vector

of covariates is not forecastable to some degree. Rather, we argue that the

analysis can be simplified by tailoring the model directly for its purpose,

namely to deliver multi-period predictions.11 As we will see in the empirical

section, this simplicity does not come at the cost of low predictive accuracy.

10Under our definition of the hazard rate, the model of Duffie et al. (2007) would read

as λc(0|xit) = exp(β′xit).
11Our approach has some similarities with an idea from the time series literature called

direct multi-step estimation. See Clements & Hendry (1998, Ch. 11) for details.



3.2. AN ALTERNATIVE APPROACH 51

PH models have received great popularity not least because it is possible

to estimate β without specifying the baseline hazard. This approach, de-

veloped by Cox (1972), can be followed by a nonparametric estimation of

the baseline hazard and is thus often called semiparametric. Alternatively,

one may use a fully parametric PH model like, for instance, the Weibull

model for which λ0(s) = γsγ−1 with parameter γ. In any case, the PH

model in our version implies that the hazard ratios for two obligors i and j,

λc(s|xit)/λ
c(s|xjt), are constant with respect to the forecast time s. There is

evidence in the literature that this assumption is not realistic at least in the

area of corporate credit. Fons (1994) finds that marginal default rates (which

are estimates of dicrete-time hazard rates) tend to rise with forecast time for

low-risk investment-grade firms whereas marginal default rates tend to de-

crease for high-risk speculative-grade firms. The empirical evidence given in

Figure 3.1 creates a similar picture. There, we have plotted nonparametric

estimates of the hazard ratios for firms having CCC-C and A ratings on the

left hand side and firms having B and BBB ratings on the right hand side.12

Obviously, hazard ratios are declining and are not constant over the forecast

time.

An intuitive interpretation for this phenomenon is that the importance of

the information in period t decays with the forecast time s. Fortunately,

there is a class of hazard models that covers the case of converging hazard

rates. Proportional odds (PO) models generally imply that the hazard ratios

converge monotonically towards one (Bennett, 1983) where the convergence

is with respect to the forecast time s in our setting. In PO models the survival

odds and not the hazard rates of two firms are constant multiples of each

other:

P (Y ∗
it ≤ H|xit)

1 − P (Yit ≤ H|xit)
∝

P (Yjt ≤ H|xit)

1 − P (Yjt ≤ H|xit)
(3.15)

The most common PO specification is the log-logistic model where the condi-

12For these calculations, we have used the dataset which will be introduced in section

3.3. The hazard rates which underlie the hazard ratios are calculated by the nonparametric

life-table estimator which will be presented in section 4.1. Consequently, the finding of

declining hazard ratios is not caused by any parametric assumptions.
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Figure 3.1: Hazard ratios for different rating grades
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Hazard ratios for firms having CCC-C and A ratings on the left hand side and firms

having B and BBB ratings on the right hand side. Calculations are based on monthly

discrete-time hazard rates estimated by the life-table method presented in section 4.1.

The firms included in these calculations are North American public firms (see section

3.3).

tional distribution of Yit is assumed to be log-logistic.13 Then, in our frame-

work the hazard rate is given by

λc(s|xit) =
α exp(β′xit)

αsα−1

1 + [exp(β′xit)s]α
. (3.16)

α is a shape parameter whereas exp(β′xit) determines the scale of the dis-

tribution with exp(−β′xit) being the median lifetime. The cumulative dis-

tribution function evaluated at H (yielding the default probabilities) under

this model is

P (Yit ≤ H|xit) = 1 −
(
1 + [exp(β′xit)H]

α)−1
. (3.17)

Note that the log-logistic model belongs to the class of accelerated failure

time models which have the interpretation that lifetimes are stretched or

contracted by some constant acceleration factor. While the model is fully

parametric, there also exist semiparametric specifications for the PO model.

For instance, Royston & Parmar (2002) use cubic splines thereby achieving

13Very similar to the log-logistic distribution is, of course, the log-normal distribution

which, however, does not have the proportional odds property.
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similar flexibility for the trajectory of the hazard function as in the Cox

model. In our empirical analysis, we also experimented with this approach.

However, this did not lead to improved predictive accuracy.14 Thus, we do

not document it further here.

3.2.2 Estimation

For the models we propose, the observed lifetimes starting at t, Yit, are

simply connected to the covariates in period t, xit. Clearly, the multiple

lifetimes of an individual obligor are not conditionally independent, i.e. Yit

is not conditionally independent from Yit∗ , t 6= t∗. To see this, note that

for instance Yit already covers the lifetime Yi,t+1 plus one additional period

so that we have a sample of partially overlapping lifetimes. The reason why

Yi,t+1 is included although it is completely covered by Yit is that the covariates

vary from period t to t + 1 and provide additional information. For the

purpose of point estimation, it is possible to ignore the dependencies due

to our overlapping sample and still to consistently estimate the parameters.

This is a result from multivariate survival analysis (Lawless, 2003, Ch. 11)

where the asymptotics only require that the lifetimes of different obligors are

conditionally independent and that the number of obligors (n) approaches

infinity. No assumptions are made about the dependence structure within the

lifetimes of an individual obligor. With respect to the censoring mechanism,

we need the assumption that censoring events are conditionally independent

from default events.15 Our pseudo log likelihood function is

log L =
n∑

i=1

ti1+Ti−1∑

t=ti1

(1 − Cit) · log(λc(Yit|xit)) + log(S(Yit|xit)) , (3.18)

14The reason for this is arguably the fact that we measure predictive accuracy primarily

in terms of an accurate risk ordering of the obligors which is usually invariant to changes

in the shape of the hazard function.
15For instance, if, conditionally on the covariates, smaller firms would have higher default

risk and earlier censoring times, this would only be a violation of our assumption if firm

size is not included as a covariate. More formally, we require that the distribution of Y ∗

it ,

conditionally on xit, is not changed if one additionally conditions on Cit. See Wooldridge

(2002, Ch. 20.3.2) and Lawless (2003, Ch. 2.2.2) for further discussion.
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where S(·) = 1−F (·) is the so-called survival function referring to the cumu-

lative distribution function F (·) of Y ∗
it . In many applications the assumption

of conditional independence of the lifetimes of different obligors may at best

be approximately true because of common shocks which jointly affect the

obligors over the forecast time and which are not reflected in the covariates at

the start of the lifetime. However, results on Maximum Likelihood estimation

under multi-way clustering show that an additional clustering (dependence)

within the time dimension does not lead to inconsistency of our estimator

(Cameron et al., 2011).16 The question remains whether an approach that

explicitly models the different sources of dependencies would be favorable.

While such an approach is theoretically more efficient, efficiency gains are of-

ten found to be small (Joe, 1997, Ch. 10.1.2) and the computational burden

may rise considerably. Further, misspecified dependence models can lead to

inconsistent estimates so that our ”independence working” approach is more

robust in this sense (He & Lawless, 2003; Sullivan Pepe & Anderson, 1994).

Nevertheless, we partly investigated this issue empirically by introducing

dummy variables for each year which should capture common shocks to a

large extent. We found – similar to Campbell et al. (2008) – no important

effects on our results. Finally, the high out-of-sample predictive power of our

models (the central objective of our analysis) which will be reported in the

upcoming section provides further support for our approach.

For the estimation of the log-logistic model, we simply substitute the defini-

tions of the hazard rate and the survival function as given in the preceding

section into Equation (3.18). For the semiparametric Cox model, the likeli-

hood of Equation (3.18) is not applicable. Instead, the approach is as follows.

Suppose that we have r distinct values of uncensored lifetimes in our sample,

Y(1), . . . , Y(r) and, for the moment, assume that there are no ties, i.e. there

is only one lifetime ending at Y(j). Further, denote by R(Y(j)) the set of

observations with a lifetime of at least Y(j) (those ”at risk” at Y(j)). Then,

following Cox (1972, p. 191), the probability that the particular failure at

16The asymptotics in this case, however, require that the time dimension approaches

infinity as well. In our empirical analysis the sample length is 352 months.
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Y(j) is as observed, conditional on the composition of the risk set, is

λc(Y(j)|x(j))∑
l∈R(Y(j))

λc(Y(j)|xl)
=

exp(β′x(j))∑
l∈R(Y(j))

exp(β′xl)
. (3.19)

Note that we use the single index l to abbreviate the notation although we are

still in a panel data setting so that l ∈ {1, . . . ,
∑n

i=1 Ti}. Taking logarithms

the expression gives the log likelihood contribution

β′x(j) − log
( ∑

l∈R(Y(j))

exp(β′xl)
)

. (3.20)

Now, we allow for ties and denote their number by d(j), i.e. d(j) =∑n
i=1

∑ti1+Ti−1
t=ti1

1[Yit=Y(j),Cit=0]. Under the Breslow approximation (Breslow,

1974), we simply sum up the log likelihood contributions of all observations

ending at Y(j) and then take the sum over all r distinct failure times to arrive

at our pseudo log partial likelihood:

log Lp =
r∑

j=1

β′z(j) − d(j) log
( ∑

l∈R(Y(j))

exp(β′xl)
)

(3.21)

Here, z(j) is the sum of the covariate vectors of all observations that ended

with a default at Y(j), i.e. z(j) =
∑n

i=1

∑ti1+Ti−1
t=ti1

1[Yit=Y(j),Cit=0]xit. Within the

Breslow approach, the original partial likelihood, developed by Cox (1972)

for the case without ties, is simply left unchanged meaning that there is no

adjustment to the risk set in the presence of tied lifetimes.17

Maximizing the likelihood (3.21) gives an estimate of β which suffices to

determine the relative risk of different obligors. If default probabilities are

desired as well, an estimate of the baseline survivor function is needed. From

(3.14) it follows that for the PH model the default probabilities are given by

P (Y ∗
it ≤ H|xit) = 1 − S0(H)exp(β′xit) , (3.22)

17Besides the Breslow approximation, there also exist other methods to handle ties,

especially Efron’s approximation (Efron, 1977). In our empirical analysis, we used both

methods and found that Spearman’s rank correlation coefficient for the predictions derived

from both approaches is equal to 0.99999991 in our final model. Therefore, all of our

reported results are based on the computationally faster Breslow approximation.
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where S0(H) = exp(−
∫ H

0
λ0(s)ds) is the baseline survivor function.

Kalbfleisch & Prentice (1973) propose to specify the baseline survivor func-

tion as S0(Y(k)) =
∏k

j=1 αj at the observed failure times and being constant

in between. αj, j = 1, . . . , r are parameters to be estimated with 1 − αj be-

ing interpretable as a discrete-time hazard rate for firms with xit = 0. Using

this specification and the estimate of β already obtained, the log likelihood

function can be written as

log L =
r∑

j=1

( ∑

i,t:Yit=Y(j),Cit=0

log
(
1 − α

exp(bβ′xit)
j

)
+

∑

i,t:Yit>Y(j)

log
(
α

exp(bβ′xit)
j

))

(3.23)

The first sum of the term in brackets is over all observations which ended

with a default at Y(j) while the second sum is over those observations which

were at risk before the jth period but did not default in that period.18 See

Kalbfleisch & Prentice (2002, Ch. 4.3) for a detailed derivation of this like-

lihood. Obviously, each αj can be estimated separately. The estimator is a

nonparametric Maximum Likelihood estimator and can be interpreted as a

generalization of the Kaplan-Meier estimator (Kaplan & Meier, 1958) since

it reduces to the latter if no covariates are included.19

We now turn to the issue of finding appropriate covariance matrices for our

estimators. While we can consistently estimate our models under the working

independence approach, the dependencies due to overlapping lifetimes must

not be ignored for covariance matrix estimation. In particular, unadjusted

standard errors would be much too low. Instead, if we view all the lifetimes

of an individual obligor as one cluster, we can apply cluster-robust covariance

matrix estimation. Let V̂H =
(
−∂2 log L

∂β∂β′
|bβ

)−1

be the conventional covariance

matrix estimator based on the Hessian of the log likelihood function. Further,

denote by si(β̂) the contribution of obligor i to the score vector.20 Then, the

18In constrast, R(Y(j)) was defined to be the entire risk set also including those obser-

vations that ended with a default in the jth period.
19See section 4.1 for more details about the Kaplan-Meier estimator.
20si(β̂) =

∑ti1+Ti−1
t=ti1

sit(β̂) =
∑ti1+Ti−1

t=ti1
∂ log Lit/∂β|bβ

, where (see (3.18)) log Lit =

(1−Cit) · log(λc(Yit|xit)) + log(S(Yit|xit)) for fully parametric models like the log-logistic

model.
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cluster-robust covariance matrix estimator is

V̂ (β̂) = V̂H

(
n∑

i=1

si(β̂)si(β̂)′

)
V̂H . (3.24)

Again, the estimator is consistent for n → ∞. While the calculation of

score contributions is straightforward for fully parametric models like the log-

logistic model, the score contributions are not immediately available for the

Cox model. However, cluster-robust covariance matrix estimation is possible

for the Cox model as well as was shown by Wei et al. (1989). The basis

of the calculations is an additive decomposition of the partial log likelihood

function, ∂ log Lp/∂β|bβ =
∑n

i=1

∑ti1+Ti−1
t=ti1

Wit(β̂), where

Wit(β̂) = (1 − Cit)(xit − xit) − exp(β̂′xit)
∑

k:Yk≤Yit

(1 − Ck)(xit − xk)∑
l∈R(Yk) exp(β̂′xl)

(3.25)

with

xit =

∑
l∈R(Yit)

exp(β̂′xl)xl
∑

l∈R(Yit)
exp(β̂′xl)

(3.26)

and xk analogously defined. The Wit terms are sometimes called score resid-

uals (Therneau et al., 1990) and are uncorrelated across different clusters

which is not true for other decompositions (Therneau & Grambsch, 2000,

Ch. 4.5). A consistent cluster-robust covariance matrix is given by

V̂ (β̂) = V̂H

(
n∑

i=1

Wi(β̂)Wi(β̂)′

)
V̂H , Wi(β̂) =

ti1+Ti−1∑

t=ti1

Wit(β̂) . (3.27)

The implementation of our models is easy. If for every observation of the

panel dataset the lifetime Yit and the corresponding censoring indicator Cit

is calculated, standard survival analysis routines for time-constant covariates

can be employed.21 An option for cluster-robust standard errors is also avail-

able in many software packages. There is a final point to note about the

21Although we have time-varying covariates, the covariates can be regarded as pseudo-

constant over the forecast time since we explicitly decide not to update the information

on the covariates. Doing so would result in the problem of unknown covariates as far as

forecasting is concerned. Nevertheless, the full panel of covariates is used in the estimation

process since they are linked to a panel of lifetimes.
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definition of the lifetimes Yit. Given that we usually assume a limited predic-

tion horizon, H, it may be sensible to conduct (again) an artificial censoring

of the lifetimes at H thereby omitting possibly irrelevant information about

what happened after H. For instance, with H equal to 60 months, we would

set - along the lines of chapter 2 - a value of 60 to all lifetimes larger than 60

together with a change in the censoring indicator if the lifetime ended with

a default event before. Empirical tests show that while the differences are

rather small it is indeed preferable to conduct such an additional censoring.

3.2.3 Extensions to mixture models

The models presented above are relatively simple so that extensions are eas-

ily possible. One such extension is the specification of mixture models which

have received considerable popularity in the survival analysis literature. Fol-

lowing Mosler (2003), reasons for mixture models would be especially (a)

unobserved heterogeneity among obligors possibly caused by unobservable

covariates and (b) the possibility to specify flexible parametric models by

using mixtures. Clearly, it is reasonable to assume in credit risk applications

that unobserved heterogeneity is present even after conditioning on a set of

covariates. Further, flexible parametric models may also be helpful. A pop-

ular way to incorporate unobserved heterogeneity is to specify an additional

random variable V (often referred to as frailty) that enters the hazard rate

multiplicatively, which in our setting gives

λc
SS(s|vit, xit) = vitλ

c(s|xit) . (3.28)

We use the index SS in Equation (3.28) to clarify that the hazard rate should

be interpreted as a so-called subject-specific hazard rate, i.e. conditional on

the unobservable vit. In contrast, if we integrate out the frailty variable Vit

we arrive at the so-called population-averaged or marginal model,

λc
PA(s|xit) = −

S ′
PA(s|xit)

SPA(s|xit)
, (3.29)

SPA(s|xit) =

∫ ∞

0

exp

(
−

∫ s

0

λc
SS(u|xit)du

)
dG(v) . (3.30)
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G(·) denotes the cumulative distribution function of Vit. Importantly, the

subject-specific and the population-averaged model have different interpre-

tations. While the subject-specific model has the aforementioned conditional

interpretation, ”the marginal survival function under heterogeneity is the

expected survival function of a randomly drawn individual from a heteroge-

neous population.” (Xue & Brookmeyer, 1997, p. 1987). With respect to

our application, these marginal survival functions yield the default probabil-

ities and their accurate estimation is the central objective of our analysis.

Therefore, as opposed to other applications, we have no direct interest in a

subject-specific model. The question remains if it is preferable to start with

a subject-specific model and to integrate out the frailty variable afterwards

or if one should only specify a population-averaged model. Investigating this

issue, Xue & Brookmeyer (1997) show in a discrete-time framework that it

suffices to specify an appropriate population-averaged model in the way that

it yields the same results as estimating the subject-specific model and in-

tegrating out the frailty variable afterwards.22 In our application, it might

be easier to specify an appropriate population-averaged model since, for in-

stance, the empirical findings about declining hazard ratios that led us to the

proportional odds model related to the default behaviour of the ”population

average” of possibly heterogeneous firms in certain rating categories. Never-

theless, mixture models may still be interesting for the purpose of credit de-

fault prediction due to their ability to provide flexible survival distributions.

For instance, in the classical case that E[Vit] = 1 for identifiability and that

V [Vit] = θ is the only free parameter of G(·), the population-averaged hazard

function contains one additional parameter (θ) and is thus more flexible than

comparable approaches without frailty.

It follows from the discussion given above that it is largely an empirical ques-

tion if a mixture model leads to more predictive accuracy. In the credit risk

literature, unobserved heterogeneity across firms is so far very rarely incor-

22Similarly, Nicoletti & Rondinelli (2010) show in a Monte Carlo study that when unob-

served heterogeneity is neglected in a discrete-time survival model there is no major bias

as far as the marginal survival probabilities are concerned.
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porated into the analysis.23 Exceptions are the studies of De Leonardis &

Rocci (2008) and Crook et al. (2011) where the results are mixed as the first

study finds improvements in predictive accuracy whereas the second study

does not. In our empirical analysis, we also experimented with adding a

Gamma distributed multiplicative frailty term to the log-logistic model. We

considered the cases that the frailty variable is allowed to vary across all

firm-months and the special case of a firm-specific constant (shared) frailty,

i.e. Vit = Vi. While the predictive accuracy in the first case was compara-

ble to not modeling heterogeneity,24 the predictive accuracy was somewhat

lower under the second specification. Given these findings and the additional

computational burden caused by mixture models, there seem to be no major

benefits from the mixture approach in our application. Thus, the results that

we will present in the upcoming section are based only on models without

frailty.

3.3 Empirical analysis

3.3.1 Data description and model specification

To construct our dataset for the empirical analysis, we have merged three

different datasets all of them referring to North American public firms. First,

we collect monthly Standard & Poor’s (S&P) rating and default data from

Compustat. The dataset contains three types of ratings: Long term issuer

credit ratings, short term issuer credit ratings and subordinated debt ratings

with most data of the first type. We define default in our study to be a

23Frailty specifications have received some popularity for modeling the dependence of

default events. In these models, Vit = Vt, so that the heterogeneity across periods is ad-

dressed only. In Duffie et al. (2009) and Koopman et al. (2008) Vt follows an autoregressive

process and can be interpreted as an unobservable common risk factor.
24Especially, the ranking of the firms according to their default risk changed very little

as Spearman’s rank correlation coefficient for the predictions from the log-logistic model

with and without frailty was equal to 0.9987.
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default rating (D or SD) by S&P in any of the three rating types.25 Conse-

quently, a firm is defined not to be in the default status in a given period if it

does not have a default rating of any type and has a non-default rating of at

least one type. We then merge the default histories with quarterly balance

sheet data from Compustat and monthly stock market data from Compustat

and the Center for Research in Security Prices (CRSP). The balance sheet

variables are taken to be constant over the months between financial state-

ments so that the final dataset has monthly time intervals. Since there are on

average two months between the end of the corresponding fiscal period and

the reporting date we lag the balance sheet variables by two months so that

the values of the variables should have been indeed available in each month.

Further, following common practice we exclude financial firms (Standard In-

dustrial Classification (SIC) codes 6000-6799) since these are assumed to be

structurally different. In a study concerning a very similar dataset as ours,

Chava & Jarrow (2004) find that predictive accuracy is higher when financial

firms are omitted from the sample.

In the data preparation process, we had to deal with both missing data and

outliers. With respect to missing data, we imputed missing values for some

variables based on regressions on their leads and lags.26 The main criterion

was that the goodness-of-fit of such regressions is very high. For instance,

the variable total assets can be very accurately predicted from past and fu-

ture values whereas returns are known to be hard to predict. Consequently,

we used imputations only for ”stable” variables like total assets and did not

impute any values for variables like returns or net income.27 Using such im-

putations will usually result in more efficient estimation. However, standard

errors can be expected to be too low due to the reduced variability of imputed

values (Harrell, 2001, Ch. 3.6). Since the share of missing values is rather

low (no variable of our final model is missing in more than 10% of all cases)

25If a firm defaults on all its securities it receives a D (Default) rating while it is rated

SD (Selective Default) if the default event applies only to selected securities.
26This method is often called single conditional mean imputation (Harrell, 2001, Ch.

3).
27The variables where imputations were used are total assets, cash and short-term in-

vestments, market value, interest expenses, retained earnings and total liabilities. The

cases where missing variables remained had to be dropped from the subsequent analysis.
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and since our focus is on prediction rather than on inference, efficiency gains

should be more important.

To eliminate the effect of outliers, we winsorized all variables at the 5th and

95th percentile. An inspection of the data showed that implausible values

(”wrong signs”) occasionally occur pointing to a need for winsorization. We

further fitted our models to the data before and after winsorization and

observed a remarkably better goodness-of-fit for the winsorized dataset. By

winsorizing the data we follow the related literature where the use of this

procedure is very common. The final dataset consists of 339 222 firm-months

from 3575 firms in the period from December 1980 until March 2010. We

observe 498 different default events, but note that our definition of Yit leads

to 18 914 partially overlapping lifetimes in our sample that end with a default

event.

For the selection of our covariates, we used the experience from studies based

on similar datasets (Shumway, 2001; Chava & Jarrow, 2004; Duffie et al.,

2007; Campbell et al., 2008; Löffler & Maurer, 2011) to choose candidate

variables. Table 3.1 is a list of the covariates considered together with de-

scriptive statistics. The final specification of our models was derived by a

backward selection approach that entailed the sequential reduction of the

model containing all candidate variables.28 As the main criteria in the model

selection process we used the Wald statistics and the associated p values

of the covariates since we have to be careful with likelihood ratio tests and

information criteria in a pseudo likelihood setting. The liquidity variable

(CATA) as well as retained earnings (RETA) were found to be insignificant

(with p values larger than 0.5) so that we did not include them in the final

model although the signs of the coefficients were as theoretically expected.

Interest coverage (NII) was found to be significant but is strongly correlated

with profitability (NITA). Due to this finding and the fact that the share of

missing values was considerably higher for NII (16.6% vs. 3%) we dropped

NII. For the covariates of the final model, all correlations are below 0.5 (see

28When deciding between forward and backward selection one must weigh up potential

biases arising from starting with a very simple model against potential data mining prob-

lems when a very large model is the starting point (Greene, 2008, Ch. 7.2.4). Since the set

of candidate variables is moderate in our analysis, we decided to use backward selection.
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Table 3.1: Summary statistics for covariates

Name Description Mean St.dev. Min Max

Selected for final model

NITA Net income over previous year / Total assets .007 .020 -.155 .079

TLTA Total liabilities / Total assets .636 .168 .115 1

GRO Dummy for extreme growth of total assets .5 .5 0 1

RET Excess one-year log stock return over S&P 500 -.029 .367 -1.317 1.220

VOLA St. dev. of monthly log returns in previous year .110 .063 .039 .298

SIZE Log(market value / S&P 500 total market value) -8.99 1.72 -13.27 -6.34

Not selected for final model

CATA Cash and short-term investments / Total assets .071 .085 .001 .344

RETA Retained earnings / Total assets .134 .255 -.582 .537

NII Net income / Interest expenses over previous year 2.797 5.513 -3.993 25.295

Table 3.2: Correlations of covariates

NITA TLTA GRO RET VOLA SIZE

NITA 1.000

TLTA -0.343 1.000

GRO -0.221 0.107 1.000

RET 0.255 -0.103 -0.061 1.000

VOLA -0.438 0.201 0.261 -0.266 1.000

SIZE 0.380 -0.278 -0.171 0.280 -0.431 1.000

Table 3.2) so that multicollinearity should not pose a problem. Further, we

looked for possible non-monotone effects of the variables on the hazard rate

by grouping the covariates into quartiles and including the corresponding

dummy variables into our model. We found strongly non-monotone effects

for growth of total assets. Both high and low (highly negative) growth rates

are associated with higher default risk. Therefore, our final model contains a

dummy variable which is one if annual growth of total assets is in the upper

or lower quartile and zero otherwise. The other covariates are quite standard

and are used in this way or very similarly in the aforementioned studies.



64 3. DEFAULT PREDICTION WITH TIME-VARYING COVARIATES

3.3.2 Estimation results

We now turn to our estimation results. Table 3.3 shows the parameter esti-

mates for the Cox model and the log-logistic model.29 The results refer to

lifetimes which have been (additionally) censored at 60 months as described

at the end of section 3.2.2. All coefficients have the expected sign and are

highly significant. Higher profitability (NITA), higher stock market returns

(RET) and larger firm sizes (SIZE) are associated with lower default risk.

On the opposite side, higher debt levels (TLTA), extreme growth (GRO)

and more volatile returns (VOLA) correspond to higher hazard rates. As

we estimate the Cox model with the partial likelihood approach, we do not

estimate parameters for the baseline hazard (and thus no intercept) here.

The results from the Cox model and the log-logistic model turn out to be

quite similar. The goodness-of-fit can not be directly compared due to the

different estimation procedures but if we compare the log likelihood values

of the log-logistic and the Weibull model (-68249.16 vs. -69558.03) we find

that the PO approach has a better fit than the PH approach.

Since the absolute parameter values are hard to interpret in nonlinear mod-

els we calculated the marginal effects of the covariates in Table 3.4. The

marginal effects are evaluated at the means of the covariates and refer to

the ceteris paribus effect of a one-unit increase of a covariate on the 5-year

default probability. For instance, in the log-logistic model increasing prof-

itability (NITA) by 1% is estimated to lower the 5-year default probability

by 0.2782% and a 10% increase in leverage (TLTA) is estimated to raise the

5-year default probability by 0.945%. The results for the log-logistic model

and the Cox model are relatively close to each other while the marginal effects

are somewhat lower for the Cox model.

While the better goodness-of-fit of the log-logistic model gives us first evi-

dence on its appropriateness we will now do some further analyses. Figure

3.2 shows on the left hand side the course of the median firm’s hazard rate

29Using the Weibull instead of the Cox model makes almost no difference. The coeffi-

cients are very close and Spearman’s rank correlation for the predictions from the Weibull

and the Cox model is as high as 0.99999883.
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Table 3.3: Results from hazard regressions

Cox model (PH) Log-logistic model (PO)

Coef. Std. error Coef. Std. error

NITA -5.598 (1.358) -6.804 (1.271)

TLTA 2.426 (0.296) 2.311 (0.254)

GRO 0.212 (0.054) 0.184 (0.053)

RET -0.826 (0.056) -0.813 (0.053)

VOLA 6.142 (0.526) 6.062 (0.461)

SIZE -0.374 (0.031) -0.336 (0.027)

const. -11.992 (0.278)

α 1.255 (0.023)

firm-months 339 222 339 222

log L -214084.69 -68249.16

Wald χ2 2351.88 2415.62

Table 3.4: Marginal effects on 5-year default probability

Log-logistic model (PO) Cox model (PH)

NITA -0.2782 -0.1971

TLTA 0.0945 0.0854

GRO 0.0075 0.0075

RET -0.0332 -0.0291

VOLA 0.2478 0.2161

SIZE -0.0137 -0.0132

over the forecast time according to the log-logistic model.30 The hazard rate

is monotonically increasing in the first 60 months which makes sense since

the median firm is not supposed to be close to default in the beginning.31

The right-hand side of Figure 3.2 provides some support to our conjecture

30The median firm refers to the median of the predictions from the log-logistic model,

i.e. it refers to the observation where 50% of all firm-months are estimated to be less risky.
31Note that the log-logistic model implies, given that the shape parameter α is larger

than 1, that the hazard rate rises until (α−1)1/α

exp(β′xit)
and decreases thereafter (Kalbfleisch &

Prentice, 2002, Ch. 2.2.6).
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Figure 3.2: Hazard rate curves
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The plot shows the continuous-time hazard rate of the median firm according to the

log-logistic model (left hand side) and the nonparametrically estimated discrete-time

hazard rate of a BBB firm (right hand side) plotted against forecast time (in months).

Continuous-time and discrete-time hazard rates are comparable if hazard rates are small

and periods are short since λd(s) = 1 − exp
(
−
∫ s

s−1
λc(u)du

)
= 1 − exp(−λ

c
(s)) ≈ λ

c
(s).

that the hazard curve of the log-logistic model is a realistic one. We see that

the hazard curve of a BBB rated firm,32 estimated completely nonparametri-

cally with the life-table estimator (see section 4.1), exhibits a similar pattern

and does not seem to have any important characteristics that are smoothed

away by the parametric structure of the log-logistic model.

Our primary motivation to estimate the log-logistic model was its property

of declining hazard ratios. To study this aspect we plotted in Figure 3.3 the

evolution of the hazard ratios of selected pairs of firms over the forecast time.

The left hand side shows the hazard ratios for the upper and lower quartile

firm while the right hand side refers to the upper and lower decile firm.33

The decline of the hazard ratios is evident but happens at a moderate pace

in our model. This does not surprise as we do not expect that the hazard

rates of high-risk and low-risk firms approach each other very quickly. By

comparing both curves we further see that more extreme hazard ratios decline

more quickly. Note that in the Cox model, the hazard ratios for the same

32In our sample, the median S&P rating is BBB.
33The quantiles are defined analogously to the median firm.
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Figure 3.3: Evolution of hazard ratios
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Hazard ratios of the upper and lower quartile firm (left-hand side) and upper and lower

decile firm (right-hand side) derived from the log-logistic model. The abscissa represents

forecast time (s) in months.

quantiles are constant at 5.30 and 24.28, respectively.

3.3.3 Evaluation of discriminatory power

While the analysis of hazard curves and hazard ratios provides relevant in-

sights we will now evaluate the predictive power of our models which is the

central criterion in our context. We will first focus on the ability of our

models to provide an accurate rank order of the firms according to their de-

fault risk. The second dimension of predictive accuracy, calibration, will be

investigated subsequently in section 3.3.4. To measure predictive accuracy,

we will use the Accuracy Ratio and Harrell’s C, which were both presented

in detail in chapter 2. We use our measures in basically the same way as

in section 2.5. For a given sample calendar month t, we calculate the Ac-

curacy Ratio and Harrell’s C for the predictions made in period t (and the

corresponding lifetimes starting at t). We do this in monthly steps for a

range of values for t and then take a weighted average of our indices with

the number of firms observed in each period as weights. We measure both

in-sample and, more importantly, out-of-sample predictive power. In the in-

sample part, t is ranging from December 1985 to March 2005 which covers
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all periods where the indices can be calculated.34 In the out-of-sample part,

t is ranging from December 1995 to March 2005. There, each month the

models are re-estimated using only the information available until period t, a

procedure known as a recursive estimation scheme (see section 2.3). We start

in December 1995 to ensure that we estimate our models with at least 10

years of data (twice the maximum prediction horizon). Stein (2004) calls the

recursive approach alternatively a walk-forward approach and argues that

it is closest to the practical use of default prediction models. While other

studies often use only a single sample split our recursive scheme removes the

problem that the results may not be robust to a different choice of the split

period.

Besides the Cox model and the log-logistic model we consider as competi-

tors the stepwise lagging procedure (SLP) as outlined in the beginning of

section 3.2.1 (using a logit specification for the discrete-time hazard rate as

in Campbell et al., 2008) and S&P long term issuer credit ratings. As pre-

diction horizons we choose one, three and five years. The results are shown

in Table 3.5. We observe high predictive accuracy for all our models. While

comparisons with other studies have to be taken with care, note that Duffie

et al. (2007) report out-of-sample Accuracy Ratios of 87% (one year) and

70% (five years) using a similar dataset thereby achieving less accuracy than

our models.35 Our finding is supported by a recent study by Duan et al.

(2012) where the authors use their dataset to estimate both a version of the

SLP approach (with a complementary log-log-specification) and the model

of Duffie et al. (2007). In line with our findings, Duan et al. (2012) find lower

predictive accuracy for the approach of Duffie et al. (2007).

Comparing our different specifications, we see that the log-logistic model

performs best in every category. The Cox model is second-best in the out-

of-sample part and similar to the SLP procedure in-sample. This difference

34Prior to December 1985 the dataset is relatively sparse and does not contain a lifetime

that ends with a default event. After March 2005, there are less than 5 years left in our

sample so that the 5-year Accuracy Ratio, which requires some firms surviving the whole

5 years, can not be calculated anymore.
35Duffie et al. (2007) use a covariate forecasting approach as described in section 3.1

and state that their model is an improvement over available alternatives.
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Table 3.5: Model performance statistics

Panel A: In-sample predictive accuracy

Harrell’s C Accuracy Ratio

Prediction horizon (months) 12 36 60 12 36 60

log-logistic .9011 .8071 .7593 .9086 .8283 .7931

Cox .9003 .8061 .7580 .9077 .8274 .7917

SLP .9004 .8065 .7571 .9078 .8279 .7910

S&P .8264 .7616 .7284 .8353 .7929 .7784

Panel B: Out-of-sample predictive accuracy

Harrell’s C Accuracy Ratio

Prediction horizon (months) 12 36 60 12 36 60

log-logistic .8862 .7672 .7104 .8939 .7864 .7436

Cox .8840 .7628 .7059 .8917 .7819 .7389

SLP .8829 .7586 .6993 .8906 .7785 .7338

S&P .8149 .7338 .6943 .8234 .7625 .7417

is most likely due to the fact that the SLP approach is more highly param-

eterized and thus suffers more from out-of-sample instability than the other

models.36 S&P ratings throughout have the lowest predictive power with the

exception of the out-of-sample five-year Accuracy Ratio. The gains from our

models as compared to S&P are highest for the shorter horizons. This is

similar to findings in related studies (Löffler, 2007; Hilscher & Wilson, 2009)

and is also in line with the common perception that rating agencies are not

making the most efficient use of short-term relevant information.37

36Note that even in-sample the SLP approach suffers from quite implausible develop-

ments over the different lag lenghts. For instance, the marginal effect of net income (NITA)

is -.00295 in the model with covariates lagged by 34 months, more than halves to be -.00123

at lag 36 only to decrease to -.00408 for lag 39. The marginal effects are evaluated again

at the means of the covariates.
37The finding that rating agencies may react relatively slowly to new information can be

explained by the objective of rating stability which is - besides rating accuracy - explicitly

stated at least by Moody’s (Cantor & Mann, 2003).



70 3. DEFAULT PREDICTION WITH TIME-VARYING COVARIATES

Table 3.6: Bootstrap hypothesis tests for out-of-sample predictive accuracy

Prediction horizon of 12 months

Harrell’s C Accuracy Ratio

log-l. Cox SLP S&P log-l. Cox SLP S&P

log-l. . .002 .002 .001 . .001 .001 .001

Cox . .009 .001 . .008 .001

SLP . .001 . .001

S&P . .

Prediction horizon of 36 months

Harrell’s C Accuracy Ratio

log-l. Cox SLP S&P log-l. Cox SLP S&P

log-l. . .001 .001 .012 . .001 .001 .068

Cox . .009 .022 . .029 .135

SLP . .056 . .217

S&P . .

Prediction horizon of 60 months

Harrell’s C Accuracy Ratio

log-l. Cox SLP S&P log-l. Cox SLP S&P

log-l. . .001 .001 .223 . .001 .001 .871

Cox . .001 .383 . .009 .816

SLP . .700 . .575

S&P . .

The table contains p values for the null hypothesis that the population values of the indices (Accuracy

Ratio or Harrell’s C) for two predictors are equal which is tested against the two-sided alternative. The

test refers to the results of Table 3.5, Panel B. The number of bootstrap replications is B = 999. Bootstrap

p values are calculated by Formula (2.29).

We now go on to analyze if the differences in out-of-sample predictive power

between our competing predictors are statistically significant. We choose the

cluster bootstrap as described in section 2.4 for this purpose, i.e. we resample

from the set of firms instead of the set of firm-months again interpreting all

observations of a firm as one cluster. By resampling from our out-of-sample

predictors and the associated lifetimes we can perform bootstrap hypothesis

tests for the null that two models have the same predictive power.

The results of Table 3.6 show that the log-logistic model is a significant im-

provement over all alternatives with the exception of S&P ratings at the
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five-year time horizon.38 Further, the SLP approach performs significantly

worse than the more parsimonious Cox and log-logistic models. This result

holds regardless of the prediction horizon and the accuracy measure used.

Our findings give rise to the following two main interpretations. On the one

hand, we see that it pays off to choose a parsimonious model with relatively

few parameters. This is of course a common finding especially in the fore-

casting literature. On the other hand, we observe that it is worthwhile to

thoroughly analyze the structure imposed by the functional form. Here, the

more realistic assumption of converging hazard rates of the log-logistic model

as opposed to the constant hazard ratio assumption of the Cox model leads

to a significantly higher predictive accuracy.

Before we turn to the calibration of our models, we will briefly investigate the

impact of the prediction horizon on out-of-sample predictive accuracy. Since

we argue that multi-period models are useful there should be a non-negligible

difference in the long-run predictive accuracy between models that have a

long-run horizon and models that have a shorter horizon. We tested this

issue by calculating Harrell’s C and the Accuracy Ratio with a prediction

horizon of three and five years (thereby measuring long-run accuracy) for

the Cox model and the log-logistic model under i) a corresponding three-

or five-year prediction horizon and ii) under a shorter prediction horizon of

one year.39 Table 3.7 shows that we can clearly reject the null hypothesis

that models with a short-term horizon do their job as well as models with

a long-term horizon in terms of long-run predictive accuracy. We observe

differences of about one percentage point in three-year accuracy if a one-year

model is used instead of a three-year model and differences of up to about

1.6% for a one-year vs. a five-year model. Bootstrap tests, conducted as

in the calculations for Table 3.6, reveal that the differences are statistically

38The reason that the improvements of our models to S&P ratings are sometimes not

statistically significant although the differences in the indices are higher than between

our models is that the S&P predictions are less correlated with the predictions from our

models than the predictions from our different models are with each other.
39The specific horizon for estimating the models is accounted for by censoring the life-

times artficially after H months, with H being the prediction horizon. Note that our

models do not imply a change in the risk ordering of firms with varying prediction horizon

so that this kind of additional censoring is the only source of differences.
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Table 3.7: Sensitivity of model performance to the prediction horizon

Cox model Log-logistic model

Harrell’s C Accuracy Ratio Harrell’s C Accuracy Ratio

H = 12 .7535 .7706 .7577 .7750

H = 36 .7628 .7819 .7672 .7864

p value .006 .001 .004 .001

H = 12 .6939 .7227 .6984 .7274

H = 60 .7059 .7389 .7104 .7436

p value .003 .001 .001 .001

The upper half of the table refers to the three-year versions of Harrell’s C and the Accuracy

Ratio whereas the bottom half contains five-year indices. p values refer to differences in

the indices for models estimated with different prediction horizons H (in months), i.e.

H = 12 vs. H = 36 and H = 12 vs. H = 60, and were calculated using the bootstrap

analogously to Table 3.6.

significant at any conventional significance level. An important question

is whether the differences are economically significant as well. A deeper

investigation of this issue is beyond the scope of this work since it would

require a complete model for the loan market including assumptions about

how credit decisions are made and so on. However, we note that in such

an extended framework Blöchlinger & Leippold (2006) find that relatively

small Accuracy Ratio differences of the order we find here may already have

a sizeable economic impact in a competitive environment. The main reason

for the findings of Blöchlinger & Leippold (2006) is adverse selection: If, for

instance, Bank A lends to certain obligors in contrast to Bank B because it

has omitted a certain important risk factor in its rating model, Bank A will

attract a high share of the obligors that are exposed to this disregarded risk

factor and is thus likely to realize relatively large unexpected losses.
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3.3.4 Calibration analysis

As was pointed out in section 2.2, a model with high discriminative power

may be improved with respect to its calibration because of the shrinkage

effect and also because of possible questionable restrictions induced by its

parametric structure. Although our sample is relatively large, which indi-

cates that at least the shrinkage effect should not be too pronounced, we will

now investigate the calibration of our best model, the log-logistic specifica-

tion. As in section 2.2 we will divide our analysis into a nonparametric and

a parametric calibration analysis. We will use the circular rolling-window

(CRW) validation scheme which was introduced in section 2.3. The reason

for switching from the recursive estimation scheme applied in section 3.3.3 to

the CRW scheme is that the CRW method is particularly helpful for calibra-

tion analyses (see section 2.3). As the block length for the CRW approach

we choose B = H. For H = 60, this should be enough since dependencies in-

duced by common shocks like recessions should have largely been disappeared

after five years. For H = 36 or H = 12 we found almost no sensitivity of the

results if B was increased to 60 so that we uniformly selected the forecast

horizon to be the block length.

We start with the nonparametric calibration analysis. The first step is to

generate the out-of-sample default probabilities (P̂D
OS

) for each sample pe-

riod except the last one (where no predictions can be evaluated) by using

the CRW method which amounts to estimating the model 351 times. The

observations were then grouped into buckets according to the deciles of the

distribution of the out-of-sample default probabilities. For each bucket, we

applied the nonparametric life-table estimator (see section 4.1) giving P̂D
V S

which can then be compared to the average out-of-sample default probability
(
P̂D

OS)
in each bucket. The results are displayed in Table 3.8.

We observe some discrepancies between P̂D
OS

and P̂D
V S

which can be

attributed to different reasons. First, we see some general differences in

the evolution of the default probabilities over the deciles. For instance, the

model-based default probabilities (P̂D
OS

) are smaller in the 8th decile for

all horizons and are then increasing more sharply than their nonparametric
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Table 3.8: Nonparametric calibration analysis of log-logistic model

Prediction horizon of 60 months

Decile 1 2 3 4 5 6 7 8 9 10

P̂D
OS

0.43 0.78 1.14 1.58 2.18 3.11 4.68 7.76 15.70 50.05

P̂D
V S

0.54 0.67 0.85 1.16 1.61 2.95 5.52 9.80 16.33 38.75

σ̂(P̂D
V S

) 0.21 0.19 0.16 0.19 0.24 0.33 0.51 0.73 1.02 1.83

Q = 63.002 , p = 9.76e − 10

Prediction horizon of 36 months

Decile 1 2 3 4 5 6 7 8 9 10

P̂D
OS

0.20 0.36 0.52 0.73 1.02 1.47 2.26 3.85 8.29 36.31

P̂D
V S

0.28 0.29 0.32 0.43 0.59 1.27 2.45 5.22 10.33 30.32

σ̂(P̂D
V S

) 0.10 0.08 0.08 0.09 0.10 0.17 0.25 0.42 0.65 1.38

Q = 80.160 , p = 4.67e − 13

Prediction horizon of 12 months

Decile 1 2 3 4 5 6 7 8 9 10

P̂D
OS

0.02 0.04 0.06 0.09 0.13 0.19 0.31 0.58 1.46 14.68

P̂D
V S

0.01 0.03 0.04 0.06 0.06 0.13 0.16 0.61 1.59 14.30

σ̂(P̂D
V S

) 0.01 0.01 0.02 0.03 0.02 0.04 0.03 0.09 0.15 0.61

Q = 37.636 , p = 4.39e − 05

P̂D
OS

is calculated by building buckets according to the sorted out-of-sample default

probabilities generated by the CRW method and then taking the average of the out-of-

sample default probabilities for each bucket. P̂D
V S

is based on the same buckets but

applies the life-table estimator to the observations of each bucket. σ̂(P̂D
V S

) are standard

errors for P̂D
V S

calculated by the cluster-robust extension to the Greenwood formula

(see section 4.A). Q gives the test statistics for the null hypothesis of correct calibration

of P̂D
OS

(see section 2.2.1), with p being the associated p value. Numbers (except test

statistics and p values) are in percentage points.

counterparts in the 9th and 10th decile. Similarly, P̂D
OS

grows at a faster

pace in the first three deciles than P̂D
V S

. In contrast, we observe the oppo-
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site behaviour in the middle part of the deciles. Most likely, these differences

are based on the fact that P̂D
OS

is derived from the log-logistic model and

is thus based on a specific functional form which restricts the evolution of

the default probabilities over the deciles. In contrast, no such restrictions

appear in the nonparametric approach used to calculate P̂D
V S

.

Another reason for the differences between P̂D
OS

and P̂D
V S

is the existence

of the shrinkage effect. Looking at the most extreme deciles we see that

the unshrunk estimates (P̂D
OS

) tend to be too extreme as expected from

theory. An exception is the first decile at the 1-year horizon. To understand

this finding note that with few default events the life-table estimator has a

tendency to underestimate the true default probability (see chapter 4). As

the log-logistic model does not only use the default events in one particular

decile the difficulties arising from few default events are less pronounced.

Of course, it is of interest to analyze the departures of P̂D
V S

from P̂D
OS

with

respect to their statistical significance. The standard errors of P̂D
V S

reveal

that there are even individual deciles where the differences are statistically

significant. Using the χ2 test introduced in section 2.2.1, which aggregates

the standardized differences over the deciles, we see by looking at the test

statistics (denoted by Q) and their p values that we can clearly reject the

null hypothesis of correct calibration for all horizons.40

While Table 3.8 provides some evidence for the shrinkage effect its overall

amount is quite hard to disentangle as we also see other effects that cause

differences between P̂D
OS

and P̂D
V S

. The upcoming parametric calibration

analysis will shed some more light on the size of the shrinkage effect. We will

use two different calibration models. The first is a straightforward extension

of the Logit example given in section 2.2 using the log-logistic specification

40As we introduced the test in section 2.2.1 we have mentioned that one has to assume

independence of P̂D
V S

for different buckets. Here, this assumption is likely not to be

literally true as the same obligor may in some cases enter different buckets. As the as-

sumption underlying the χ2
10 null distribution is thus not perfectly met, one may use the

cluster bootstrap to approximate the true null distribution. However, in our case the test

results are very clear-cut so that this does not seem to be necessary.
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instead:

S(s|β̂′
txit, α̂) =

(
1 +

[
exp(γ0 + γ1β̂

′
txit)s

]bα
)−1

(3.31)

β̂t is the parameter estimate from the corresponding training sample which

means in the case of the CRW procedure that β̂t was estimated from the

subsample involving the information from periods 1, . . . , t, t + B + 1, . . . , T

(T being the number of sample periods). α̂ is the estimate of the shape pa-

rameter from the full sample and is fixed for the CRW estimations and in the

calibration model. The reason for doing so is that we want the linear pre-

dictors, β̂′
txit, to be comparable for different t since they are pooled together

for the estimation of the calibration model. If α̂ would vary with t as well,

ordering according to the linear predictors would not be exactly the same as

ordering according to the corresponding default probabilities. Thus, we have

chosen to fix α̂ although the results are similar if α̂ is allowed to fluctuate.

The log-logistic calibration model can simply be fitted by doing a log-logistic

regression with the whole sample on β̂′
txit with a restricted shape parameter.

If the model is correctly calibrated γ0 and γ1 should not be significantly dif-

ferent from zero and one, respectively. It should be noted that unlike in the

Logit case of section 2.2 this calibration regression does only make sense if

the original model is also log-logistic. However, any hazard model containing

a linear part can be calibrated analogously.

An alternative calibration model (Van Houwelingen, 2000) is given by

Λ(s|β̂′
txit, α̂t) = γ0Λ̂t(s|xit)

γ1 . (3.32)

The idea of the model is based on the fact that if Λ(·) is the true cumulative

hazard of a lifetime Y ∗ it holds that Λ(Y ∗) ∼ Exp(1).41 Now, note that the

cumulative hazard of a Weibull distribution can be written as Λ(y) = γ0y
γ1

which reduces to the cumulative hazard of an Exp(1) distributed random

variable if γ0 = γ1 = 1. This means we can fit a Weibull model to the

transformed lifetimes, Λ̂t(Yit|xit), to check calibration. The better the cali-

bration the closer the values of γ̂0 and γ̂1 will be to one. However, in the

presence of the shrinkage effect, we expect both γ̂0 and γ̂1 to be below one.

41This can be easily seen as P (Λ(Y ∗) ≤ y) = 1 − S(Λ−1(y)) = 1 − exp(−Λ(Λ−1(y))) =

1 − exp(−y).
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Table 3.9: Parametric calibration analysis of log-logistic model

Panel A: Log-logistic calibration model

γ̂0 σ̂(γ̂0) γ̂1 σ̂(γ̂1) W p value

H = 12 0.0682 (0.0175) 0.9830 (0.0038) 25.112 3.52e-06

H = 36 0.1876 (0.0428) 0.9634 (0.0078) 22.197 1.51e-05

H = 60 0.2599 (0.0619) 0.9574 (0.0100) 18.126 1.16e-04

Panel B: Weibull calibration model

γ̂0 σ̂(γ̂0) γ̂1 σ̂(γ̂1) W p value

H = 12 0.9210 (0.0107) 0.9750 (0.0034) 56.817 4.60e-13

H = 36 0.8467 (0.0186) 0.9449 (0.0068) 72.620 2.22e-16

H = 60 0.7860 (0.0279) 0.9262 (0.0097) 62.619 2.53e-14

Standard errors in parentheses are calculated via the cluster bootstrap using 100 repli-

cations. W denotes the Wald statistics (using bootstrap standard errors) for the joint

tests that (γ0, γ1) = (0, 1) (log-logistic calibration model) and (γ0, γ1) = (1, 1) (Weibull

calibration model), respectively. The p values to the Wald statistics are based on a χ2

distribution with 2 degrees of freedom. H is the prediction horizon in months.

Note that Λ̂t(·) is the cumulative hazard from the log-logistic model esti-

mated again by using the information from periods 1, . . . , t, t+B + 1, . . . , T ,

i.e. Λ̂t(Yit|xit) = log(1 + [exp(β̂′
txit)Yit]

cαt). The Weibull calibration model

has the advantage over the log-logistic calibration model that we do not

have to fix the shape parameter. Further, the Weibull calibration model is

completely general, i.e. it can be used regardless of the specification of the

original model. It follows that it may detect misspecification more generally.

To see this note that in our first approach the log-logistic model is imposed

for the original estimation and the calibration. This is a valid approach to de-

tect shrinkage effects but it will not reveal any problems with the log-logistic

specification.

The results from applying both calibration models to our data are given in

Table 3.9. For all horizons and for both calibration models, the estimates

reveal that shrunk estimates give a better fit out-of-sample. The size of the

shrinkage effect increases with the prediction horizon. This makes sense since
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the shrinkage effect typically grows as predictability decreases.42 To explore

the statistical significance of our results we utilized again the cluster boot-

strap as explained in section 2.4. Since each bootstrap replication involves a

new application of the CRW method, i.e. estimating the model 351 times,

we restricted ourselves to 100 replications. As the results are very clear the

limited number of bootstrap replications should not pose a problem. The

standard errors and the results from the Wald tests for the hypotheses that

(γ0, γ1) = (0, 1) (log-logistic calibration model) and (γ0, γ1) = (1, 1) (Weibull

calibration model), respectively, show that our findings are statistically sig-

nificant. The statistical evidence is strongest for the Weibull model. We

conclude that despite our relatively large sample the shrinkage effect is non-

negligible and that the original estimates can be improved by a recalibration.

In the parametric approach, such a recalibration can be done by simply plug-

ging the estimates of γ0 and γ1 into the calibration models. The recalibrated

default probabilities are then given by 1 −
(
1 + [exp(γ̂0 + γ̂1β̂

′xit)H]bα)−1
for

the log-logistic calibration model and by 1−exp(−γ̂0Λ̂(H)bγ1) for the Weibull

calibration model.43

As an alternative to a parametric recalibration, we can use the life-table es-

timates from Table 3.8 as recalibrated default probability estimates. This is

simply done by mapping default probabilities to the appropriate bucket of

out-of-sample default probabilities, P̂D
OS

, and using the corresponding life-

table estimate from Table 3.8 as a revised default probability. Given that

Table 3.8 reveals certain problematic restrictions of the log-logistic model

regarding the evolution of the default probabilities over the deciles, we rec-

ommend the nonparametric recalibration for deriving the final default prob-

ability estimates.

42In linear models, Copas (1983) showed that the shrinkage effect is more pronounced

as the error variance increases, ceteris paribus. A high error variance can be interpreted

as low predictability.
43We have dropped the index t from β̂t and Λ̂t(·) since we consider now the recalibration

of the model estimated with the full sample.



Chapter 4

Default prediction with given

rating grades

In this chapter, we deal with the problem of assigning default probabilities to

given rating grades. On the one hand, ratings may result from a statistical

model like the one presented in chapter 3. In this case, computing default

probabilities for rating grades (or buckets) can be sensible as a part of the

calibration process but is not absolutely necessary since default probabilities

can also be directly derived from the model. However, in many practical

situations ratings are at least partly the result from qualitative assessments

of creditworthiness (Grunert et al., 2005; Treacy & Carey, 2000; Standard

& Poor’s, 2009). For instance, a bank will usually judge the management

quality of a firm it lends to and this judgement will often influence the firm’s

rating in a non-statistical way. Especially when default data are sparse the

relative importance of models for ratings is reduced due to the relatively

low prognostic power of model-based predictions (Standard & Poor’s, 2007).

In this work, we will not deal with possible non-statistical elements of the

rating process. However, we have to recognize that ratings will often not be

based simply on a default probability model and that thus the assignment of

default probabilities to given rating grades is a relevant situation encountered

in practice.

With respect to the two dimensions of discrimination and calibration this

79
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chapter is solely about calibration since our analysis is conditional on the

rank order of the default predictions as given by the rating system. While

we have already dealt with calibration in the preceding chapters we will now

extend our coverage of the issue of calibration in several ways. First, we

will introduce what we will call the standard estimator in the next section.

This is the estimator which was already applied in the nonparametric calibra-

tion analysis of section 3.3.4 and which is among the most commonly applied

methods to assign default probabilities for given rating grades. The standard

estimator will serve as a benchmark for alternative methods. We will then

focus on the problems that arise when sample sizes and/or default probabil-

ities are rather small resulting in only few, if any, default events for a given

sample. Such samples - sometimes labeled low-default portfolios - are not

only interesting from a theoretical perspective but are also highly relevant in

practice since for many important classes of obligors a very limited default

history exists, especially in the higher rating grades. Important examples for

such sparse datasets are samples of sovereigns and financial institutions.

Standard approaches applied to low-default portfolios have serious draw-

backs. Besides the obvious effect that estimation uncertainty is high the

skewness of the sampling distribution leads to a high probability of underes-

timating the true default probability. For example, given small true default

probabilities and small sample sizes, it is quite likely not to observe any de-

fault event in a particular sample leading to a default probability estimate of

zero under standard approaches. More generally, Kurbat & Korablev (2002)

show in a simple binomial framework that the likelihood of underestimating

the true default probability rises as i) the true default probability decreases,

ii) the sample size decreases and iii) the correlation of default events in-

creases.1 Given these properties, it would be desirable to improve upon

the standard estimator by applying a more efficient and more conservative

estimator in small samples. The latter is especially important since a con-

servative approach may be a general guideline for prudent risk management

and is also demanded from the regulatory side (Basel Committee on Banking

1Our simulation study in section 4.5 supports these findings in an extended framework

and provides numerical evidence on the probability to underestimate the true default

probability under various scenarios.
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Supervision, 2006, §416,451).

The problem of low-default portfolios has already received some attention in

the literature. One approach is to employ the idea of confidence intervals

and to use an appropriate upper confidence bound as a conservative default

probability estimator (Pluto & Tasche, 2006; Benjamin et al., 2006). How-

ever, the aforementioned studies consider a fixed one-year prediction horizon

and do not use potentially available within-year information. We will deal

with these approaches and possible generalizations to our more flexible multi-

period setup in section 4.2. Then, in section 4.3, we will deal with Bayesian

approaches to default probability estimation. For single-period predictions,

Bayesian methods using priors specified by expert eliciation (Kiefer, 2009)

and non-informative priors (Tasche, 2011) have been proposed in the liter-

ature. The main contributions of this chapter are the introduction of an

empirical Bayes estimator for multi -period predictions (section 4.3), the ap-

plication of this estimator to a comprehensive sovereign bond dataset (section

4.4) and its evaluation by means of a novel kind of simulation study (sec-

tion 4.5). In the application and simulation sections, we also consider the

standard approach and compare it to the empirical Bayes estimator. The

analysis of this chapter is based to a large extent on Orth (2011a).

We do not consider models for rating migrations although these could also be

used for default probability estimation. For instance, the use of Markovian

rating migration models is quite standard and has the benefit that it usually

removes default probability estimates of zero if the time intervals are chosen

small enough (Lando & Skodeberg, 2002). However, there is strong evidence

against the Markovian assumption as migration probabilities have been found

to depend on the direction of the prior rating action for corporates (Lando

& Skodeberg, 2002) and for sovereigns as well (Fuertes & Kalotychou, 2007).

In particular, downgrades are more often followed by subsequent downgrades

than implied by a Markovian model so that default probabilities derived

from Markovian migration models tend to be downward biased (Hanson &
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Schuermann, 2006).2 More sophisticated models like Hidden Markov Models

(Christensen et al., 2004) have been proposed in the literature but come at the

cost of considerably more complexity not least in terms of a higher number of

parameters. In small samples, such an augmented parameterization is likely

to cause instability, i.e. high variance of the parameter estimates and is thus

rather not suitable in our context.

4.1 The standard estimator

The estimator that we will present in this section is the approach used by

the major rating agencies in their calculation of cumulative default rates

(Hamilton & Cantor, 2006).3 Cumulative default rates are estimates of de-

fault probabilities that are constructed by marginal default rates (see below).

Let us first introduce the notation. All the obligors that have the rating r at

time t, t = 1, . . . , T , form a cohort. We denote by N r
t,1 the number of obligors

that comprise the cohort at its beginning (t) and we denote by N r
t,s those

members of the cohort that are still at risk before period t + s. Being at risk

means that an obligor has not defaulted or is not censored in the first s − 1

periods after the cohort building date t. Out of the N r
t,s obligors entering

period t + s, let Dr
t,s be the number of those that default in period t + s and

let Lr
t,s be the number of those which are lost, i.e. which are censored, in

period t + s. Further, let λr
s be the discrete-time hazard rate which is the

probability that an obligor rated r at a certain point in time will default s

periods later conditional on surviving the first s − 1 periods.4 If we define

Y ∗
it to be the discretely measured lifetime (the time until default) of obligor i

2Since the cited empirical evidence concerns certain agency ratings it is of course possi-

ble that for any other (internal) rating system a Markovian approach is appropriate. Still,

one has to be aware that any violation of the Markovian assumption can lead to seriously

biased estimates.
3It is also largely equal to the approach of Altman (1989). However, in that study

the analysis is restricted to the cumulative default rates of newly issued bonds so that no

overlapping lifetimes occur.
4In the notation of chapter 3, the discrete-time hazard rate would be written as λd(s|r).

We skip the index d for discrete and use λr
s instead to save space in the following deriva-

tions.
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that starts in period t and define Rit to be the corresponding rating, we can

write this probability formally as

λr
s = P (Y ∗

it = s|Y ∗
it > s − 1, Rit = r) . (4.1)

Under our notation, the standard approach for the marginal default rate,

which is an estimator for the discrete-time hazard rate, is

λ̂r
s =

∑T
t=1 Dr

t,s∑T
t=1 N r

t,s − Lr
t,s/2

. (4.2)

Usually the main interest is on the estimation of default probabilities which

we will denote by PDr
s and define as

PDr
s = P (Y ∗

it ≤ s|Rit = r) . (4.3)

Cumulative default rates, i.e. estimators for the default probabilities, are

easily constructed from the marginal default rates:

P̂D
r

s = 1 −

s∏

j=1

(1 − λ̂r
j) (4.4)

Let us briefly interpret what the estimator actually does. The estimator

starts with the calculation of marginal default rates by taking a weighted av-

erage of the marginal default rates of individual cohorts,
Dr

t,s

Nr
t,s−Lr

t,s/2
. The

weights are easily seen to be the adjusted number of obligors at risk,

N r
t,s − Lr

t,s/2, since
PT

t=1 Dr
t,sPT

t=1 Nr
t,s−Lr

t,s/2
=
∑T

t=1

Dr
t,s

Nr
t,s−Lr

t,s/2

Nr
t,s−Lr

t,s/2
PT

t=1 Nr
t,s−Lr

t,s/2
. While

it would also be possible to take a weighted average of the cumulative de-

fault rates of individual cohorts, averaging marginal default rates results in

more efficient estimation as was already shown by Cutler & Ederer (1958).

Further, notice the adjustment in the denominator of Formula (4.2) which

involves the subtraction of half of the censored observations. This correc-

tion is based on the assumption that censored obligors have still survived on

average half of the corresponding period. Finally, the estimator calculates

cumulative default rates from the marginal default rates (Equation (4.4)).

The presented estimator is also known as the life-table or actuarial estimator

and is approximately equal to the widely-used Kaplan-Meier or Product-

Limit estimator (Kaplan & Meier, 1958) as the period length becomes small.
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The difference between the two estimators is that the life-table estimator is

constructed for a setup where the data are interval-censored, i.e. the default

and censoring times are observed to lie in a certain interval (or period) with

the exact times being unknown. In contrast, the Product-Limit estimator as-

sumes a continuous-time setting where the exact times are observed. Then,

the withdrawal adjustment in the denominator of Equation (4.2) becomes

unnecessary. As the period length decreases, the number of censored ob-

servations per interval decreases and the life-table estimator approaches the

Product-Limit estimator. In this work, we will use the life-table estimator

with monthly intervals making the difference to the Product-Limit estimator

very small. Consequently, there are only minor differences in the theoretical

properties of the Product-Limit estimator and the life-table estimator in our

case.

With respect to the censoring scheme, we require for the consistency of the

Product-Limit estimator5 that censoring is noninformative, i.e. that default

and censoring events at time s are independent, conditionally on the history

of the default and censoring processes at time s (Lawless, 2003, Ch. 2.2.2).

As we have seen in section 2.5, this assumption is very doubtful in certain

applications if one applies the estimator to the overall sample since worse

rated firms tend to default earlier and have earlier censoring times as well.

However, if one partitions the sample based on rating grades and applies the

estimator for each subsample the assumption becomes much more realistic.

For large US corporates, the question of informative censoring is analyzed

in detail by Hamilton & Cantor (2006). In particular, they analyze whether

censoring rates are higher after rating downgrades which may indicate higher

subsequent default risk. The authors do not find such an effect and conclude

their analysis that there is no evidence against the noninformative censoring

assumption if the sample is split according to rating grades.

The Product-Limit estimator has been shown to be a nonparametric Maxi-

5As was shown by Breslow & Crowley (1974), the life-table estimator is generally

inconsistent unless one assumes a very specific structure of the distribution of the censoring

times (see Theorem 1 of Breslow & Crowley (1974)). However, as was shown in the same

study, the asymptotic bias becomes very small if the number of intervals is sufficiently

large.
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mum Likelihood estimator (Johansen, 1978) but note that in our setting we

rather have a pseudo Maximum Likelihood estimator since our observations

are not independent. To see this, notice that the same obligor enters a new

cohort every period and that default events are used several times in the esti-

mation process. For instance, consider an obligor which is rated A in period

t, stays A rated in period t + 1 and subsequently defaults in period t + 2.

The same default event enters the calculation of λ̂A
1 and λ̂A

2 . Put another

way, our estimator is the classical life-table estimator applied to a pooled

sample of partially overlapping lifetimes, Yiti1 , Yi,ti1+1, . . . , i = 1, . . . , n, (ti1

being the first calendar period where obligor i is observed) which clearly leads

to dependencies. As the simulation study in section 4.5 will confirm, these

dependencies (and additional dependencies through common shocks) do not

introduce any relevant bias to the estimator (see Table 4.4, Panel B). Fur-

ther, consistency under rather mild assumptions for the dependence structure

has been established as well (Ying & Wei, 1994). Nevertheless, an estimator

that incorporates the apparent dependencies, for instance a full Maximum

Likelihood approach, might be more efficient. Nonparametric multivariate

extensions to the Product-Limit estimator exist and have been compared by

Kang & Koehler (1997) to the ”independence-working” approach that we

present here. They find that efficiency losses are minimal and do not off-

set the additional computational burden required for the more complicated

multivariate estimators.

What remains to be specified for an empirical analysis is the period length.

Rating agencies differ in this respect. While Moody’s has switched to building

cohorts on a monthly basis since 2005 (Hamilton & Cantor, 2006), Standard

& Poor’s uses cohorts of obligors built at the end of every calendar year

(Standard & Poor’s, 2011a). In our application, we will use monthly cohorts

and accordingly construct our default probability estimates using monthly

hazard rates in order to use as much sample information as possible. Since

more than one rating change per month for the same obligor occurs only very

rarely, almost no information is lost under a monthly periodicity.
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4.2 Confidence bound approaches

An obvious approach to conservative default probability estimation is the use

of confidence intervals which has been proposed by Pluto & Tasche (2006) and

Benjamin et al. (2006). In these studies, a one-period view is employed, i.e.

only λr
1 = PDr

1 is estimated (and no adjustment for censoring is made). Note

that in this case dependencies through overlapping lifetimes do not occur.

However, there may still be dependencies due to common shocks. Pluto &

Tasche (2006) consider both the case that defaults are independent and the

dependent case in a simple single-factor model. Under independence, defaults

are binomially distributed, Dr
t,1 ∼ Bin(N r

t,1, λ
r
1), so that confidence interval

calculation is straightforward. Using one-sided Clopper-Pearson intervals,

the corresponding conservative default probability estimator is given as a

quantile of a beta distribution:

P̂D
r

1,γ = QX(1 − γ) , X ∼ beta(Dr
t,1 + 1, N r

t,1 − Dr
t,1) (4.5)

γ is the significance level of the corresponding one-sided test from which the

Clopper-Pearson interval is derived. Clopper-pearson intervals guarantee a

coverage probability of at least 1 − γ but often the coverage is considerably

larger so that they are sometimes seen as overly conservative (Brown et al.,

2001). However, other approaches are based on asymptotic approximations

and deliver degenerate or overly optimistic intervals if no default event is

observed, something which is particularly problematic for our situation.

Pluto & Tasche (2006) and Benjamin et al. (2006) consider different choices

for γ but we note here that γ = 0.5 seems to be particularly interesting.

For γ = 0.5, P̂D
r

1,0.5 approaches the standard estimator most quickly as the

sample size increases since the underlying binomial distribution approaches

a normal distribution. This property ensures a smooth transition to the

standard estimator which is likely to be preferred in large samples. Further,

P̂D
r

1,0.5 has the nice intuitive interpretation that it does not underestimate

the true default probability in at least 50% of all cases under repeated sam-

pling.

Dependence through common shocks will arise in many situations in prac-

tice and its existence will typically widen confidence intervals. Pluto &
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Tasche (2006) show how to calculate confidence bounds when dependence

comes from a single unobserved factor that exhibits exponentially decay-

ing autocorrelation over the sample period.6 Although the model is rela-

tively simple, the calculation of confidence bounds gets quite involved and

requires T -dimensional integration for T sample periods. Against this back-

ground, it is quite clear that a potential extension of the confidence bound

approach to multi-period predictions which additionally needs to account

for dependencies caused by overlapping lifetimes is very challenging espe-

cially since asymptotic theory is likely to be of little help for our small sam-

ple problem. A heuristic solution would be to construct confidence inter-

vals for λr
1, . . . , λ

r
s and to construct a conservative estimate for PDr

s from

the conservative marginal default rates in the usual way. It turns out,

however, that such an approach is overly conservative and depends heav-

ily on the periodicity of the data. Consider, for instance, a very simple

case where we assume independence, N r
t,1 = 100, Dr

t,1 = Lr
t,1 = 0 and the

periodicity is one year. Then, P̂D
r

1 year,0.5 = .0069. If alternatively the

data are exactly the same but the periodicity is monthly the estimator is

P̂D
r

1 year,0.5 = 1 − (1 − λ̂r
1,0.5)

12 = 1 − (1 − .0069)12 = .0798. Of course, this

discrepancy is not sensible.

We have seen in the preceding chapters that the cluster bootstrap is a valu-

able method for inference under dependence structures involving overlapping

lifetimes. In fact, the cluster bootstrap has been used by Cantor et al. (2008)

to calculate confidence intervals for cumulative default rates (in a large sam-

ple application). Similarly, an analytical estimator for the variance of the

standard estimator under clustered data exists (Williams, 1995) and was ap-

plied in section 3.3.4. We present this variance estimator in appendix 4.A.

However, both the cluster bootstrap and the analytical approach break down

when no default events are observed at all. In the case of the bootstrap, the

problem is that no bootstrap sample will contain any default. Analogously,

the analytical formula will give an implausible variance estimate of zero under

no defaults. Taken together, all approaches relying on confidence intervals

6The model used by Pluto & Tasche (2006) is the one underlying the Basel II capital

formula extended to multiple periods.
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presented in the literature suffer from major disadvantages especially if no

or few default events are observed and multi-period predictions are desired.

How we can still find conservative (and also quite precise) default probability

estimators is the topic of the next section.

4.3 An empirical Bayes approach

Bayesian parameter estimation is a potentially very useful approach espe-

cially in the case of small samples. The reason for this is that in small sam-

ples the data provide only little information about the parameter of interest

so that the incorporation of prior information can be particularly helpful. To

use such prior information, a Bayesian data analyst specifies a prior distri-

bution for the parameters of interest. This can be done by different means.

Possibilities that have been proposed in the context of default probability

estimation include the specification of the prior by means of expert elicita-

tion (Kiefer, 2009) and the use of uninformed priors (Tasche, 2011). While

expert eliciation is potentially useful, there are also important caveats: The

elicitation process requires experts that are well-trained in thinking about

probabilities; it is relatively time-consuming; and the subjectivity of the ap-

proach may also be critized, not least by regulators, especially with respect

to possible incentive problems that arise when the expert has benefits from

being liberal with his prior guess.

Non-informative priors, in contrast, suffer from the major disadvantage that

possible efficiency gains from the introduction of prior information are non-

existent. In many cases, point estimates based on non-informative priors will

even not be different from their corresponding sampling theory counterparts.

Note, however, that this is generally not true for the Bayesian estimation of

probabilities. For instance, Tasche (2011) proposes as one possibility the use

of a uniform prior for the default probability leading to default probability

estimates which are shrunk towards the prior mean, 0.5.7 This approach

7It should be noted that there is no consensus that the uniform prior is non-informative

in this situation. For example, an alternative would be to use Jeffrey’s prior (Jeffreys,

1946). Also see Berger (1980, Ch. 3.2.2).
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succeeds in giving non-zero estimates even when no default event is observed.

However, besides not providing relevant efficiency improvements, there are

some difficulties with non-informative priors as far as multi-period default

probabilities are concerned. Recall that the default probability is not the

parameter estimated in the first place but we rather need a prior for the

discrete-time hazard rates from which multi-period default probabilities are

constructed. For instance, a uniform prior for a monthly discrete-time hazard

rate results in much more conservative estimates than a uniform prior for a

one-year hazard rate.8

In this chapter, we will alternatively propose a data-driven way to specify the

prior distribution by using an empirical Bayes (EB) approach.9 To enable the

estimation of the prior distribution, further datasets besides the original sam-

ple are needed. For instance, in our empirical analysis regarding sovereigns,

we will further use data on firms to estimate the prior distribution. In many

practical situations, such auxiliary datasets will be available. For example, a

bank will typically have a variety of different portfolios and the information

from all these portfolios can be used within the EB approach to estimate the

default probabilities for each particular portfolio. Similarly, default histories

referring to external ratings can be used as a prior for default probability

estimation based on internal data. The combination of different datasets is

- without any explicit proposal - also mentioned from the regulatory side as

one tool for default probability estimation in the case of low-default portfolios

(Basel Committee on Banking Supervision, 2005c).

We will now formally introduce our EB estimator and subsequently give some

further discussion. Like in the case of the standard estimator, we will start

with the estimation of discrete-time hazard rates which are then used to

construct cumulative default rates. Suppose that we have G different groups

or portfolios (corresponding to the different datasets at hand) where G ≥ 2.

We make the parametric assumption that for each group g, g = 1, . . . , G, the

8This resembles very much the problems of constructing a conservative default proba-

bility estimate from conservative estimates for the hazard rate. See section 4.1.
9For an introduction to EB methods we recommend Casella (1985) and Carlin & Louis

(2008).
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hazard rates are a priori beta distributed,

λr
s,g ∼ beta(αr

s, β
r
s) . (4.6)

Note that each group has the same prior parameters. Further, we assume

that the conditional distribution of the number of defaults in period s is

binomial,

Dr
s,g|λ

r
s,g ∼ Bin(Ñ r

s,g, λ
r
s,g) , (4.7)

where we have now, to simplify notation, skipped the index t to indicate

aggregation over the cohort building dates, i.e. Dr
s,g =

∑T
t=1 Dr

t,s,g and

Ñ r
s,g =

∑T
t=1(N

r
t,s,g − Lr

t,s,g/2). The presented framework is known as the

beta-binomial model and is quite common for the Bayesian analysis of pro-

portions. The beta distribution is a pretty flexible distribution for parameters

bounded in the interval [0,1] and has also been suggested by Kiefer (2009).10

The crucial part of the binomial assumption is the conditional independence

of default events. Note that although we aggregate over different cohort

building dates we do not use the same default event more than once (and

thus do not have dependence caused by overlapping lifetimes) for fixed s.

However, we disregard the dependence of default events induced by common

shocks to keep the analysis as simple as sensibly possible. In our simulation

study of section 4.5, we will show that the estimator works well even for data

generating processes that involve dependencies through common shocks.

The next step is now to estimate the prior parameters. We do so by using

the Method of Moments hereby essentially following the analysis of Kleinman

(1973).11 For convenience, we reparameterize the beta distribution setting

µr
s = αr

s/(α
r
s + βr

s) to be the prior mean of λr
s,g and τ r

s = 1/(1 + αr
s + βr

s) to

be a measure of prior precision.12 We estimate µr
s as a weighted average of

10Kiefer (2010) shows how the beta distribution can be generalized for even more flex-

ibility. Note that prior distributions with more parameters will increase the minimum

number of groups.
11A more recent study that deals with the estimation of beta-binomial parameters is

from Tamura & Young (1987). There, a stabilized estimator is introduced that should be

more robust to small changes in the data. We also experimented with this approach but

did not find it useful in our application.
12In terms of µr

s and τ r
s the prior variance is given by τ r

s µr
s(1 − µr

s).
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the group-specific standard marginal default rates:

µ̂r
s =

G∑

g=1

wr
s,g

Dr
s,g

Ñ r
s,g

=
G∑

g=1

wr
s,gλ̂

r
s,g (4.8)

The formula we use to estimate τ r
s is

τ̂ r
s =

G−1
G

∑G
g=1 wr

s,g(λ̂
r
s,g − µ̂r

s)
2 − µ̂r

s(1 − µ̂r
s)
(∑G

g=1 wr
s,g(1 − wr

s,g)/Ñ
r
s,g

)

µ̂r
s(1 − µ̂r

s)
(∑G

g=1(1 − 1/Ñ r
s,g)w

r
s,g(1 − wr

s,g)
) .

(4.9)

See Kleinman (1973) for a detailed derivation. Natural choices for the weights

are equal weights, i.e. wr
s,g = 1/G, or the number of observations for each

group so that wr
s,g = Ñ r

s,g/
∑G

g=1 Ñ r
s,g. Kleinman (1973) shows that the opti-

mal weights depend on the true parameters and proposes to use one iteration

to refine the estimates, namely to set

wr
s,g =

Ñ r
s,g

1 + τ̂ r
s (Ñ r

s,g − 1)

/ G∑

j=1

Ñ r
s,j

1 + τ̂ r
s (Ñ r

s,j − 1)
, (4.10)

using a preliminary estimate of τ r
s to get improved weights which are subse-

quently employed to re-estimate the prior parameters. In our implementa-

tion, we used this one-time iteration step with starting weights wr
s,g = 1/G.

Note that we also experimented with an omission of the iteration step and

found no large sensitivity of the results in this respect. Since there is no

guarantee that τ̂ r
s will be in the interval (0, 1) which is necessary for a proper

prior the estimates of τ̂ r
s should be truncated at zero and one, respectively.

With the estimated prior parameters at hand, we can apply the Bayesian

theorem to arrive at the posterior distribution of our parameters. Since the

beta distribution is the conjugate prior for the binomial distribution, the

posterior distribution of λr
s,g is beta as well. The mean of the posterior

distribution minimizes the Bayes risk under quadratic loss functions and is

the standard choice for a Bayesian point estimator. In our case, the posterior

mean, i.e. our EB estimator for λr
s,g, can be written as

λ̂r
s,g,EB =

1 − τ̂ r
s

1 + τ̂ r
s (Ñ r

s,g − 1)
µ̂r

s +
τ̂ r
s Ñ r

s,g

1 + τ̂ r
s (Ñ r

s,g − 1)
λ̂r

s,g . (4.11)
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The EB estimator is obviously a weighted average of the prior mean (which

itself is a weighted average of the group-specific standard estimates) and the

standard marginal default rate for group g. The estimator can be interpreted

as a shrinkage estimator since it shrinks the standard estimates, λ̂r
s,g, towards

the prior means which are equal for all groups. Note also that the weighting

scheme is such that there is a smooth transition to the standard estimator

if Ñ r
s,g grows. Thus, the amount of shrinkage will, in line with intuition,

decline as the sample size of a specific group increases. We provide R code

for Formulas (4.8)-(4.11) in appendix 4.C.

Like in section 4.1, our estimate for the default probability is constructed

from the marginal default rates,

P̂D
r

s,g,EB = 1 −
s∏

j=1

(1 − λ̂r
j,g,EB) (4.12)

It is worth mentioning that our estimator minimizes the Bayes risk with re-

spect to the marginal default rates instead of the cumulative default rates.

Doing the latter would actually be preferable but would considerably in-

crease the complexity of the problem in our setting since we would have

to deal with the dependencies due to overlapping lifetimes. Note, however,

that our estimator can be interpreted as minimizing the Bayes risk for the

default probability under a working independence assumption. In this case,

our estimator is equal to the one derived by Hjort (1990) for the discrete-time

case except for the fact that Hjort (1990) does not consider empirical Bayes

estimation. Our estimator may thus be seen as the corresponding exten-

sion. Similarly, we extend the (empirical Bayesian) beta-binomial framework

- originally developed for binary data - to survival data.

Although derived from Bayesian theory, EB methods have been shown to be

an improvement over standard Maximum Likelihood methods in many appli-

cations even by frequentist measures such as Mean Squared Error (Casella,

1985). Usually EB methods lead to a lower variance as compared to their

Maximum Likelihood counterparts at the cost of introducing or magnifying

some (finite-sample) bias. Consider for instance our application where we

will combine sovereign and corporate datasets. The more the true default

probabilities for both groups are apart the larger will be the bias introduced
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by the EB approach. However, if the differences are rather small the effect

of variance reduction will prevail and lead to smaller Mean Squared Errors.

Especially in small samples, where the variance of the standard estimator is

high, the potential gains from variance reduction can be substantial. In our

simulation study in section 4.5, we will illustrate this bias-variance trade-off

under realistic scenarios. Moreover, if conservativeness is by itself desirable,

as it is stated at least by regulators with respect to default probability esti-

mation, a moderate upward bias induced by EB methods may even be seen

as a benefit rather than a weakness.

In appendix 4.B, we show that our EB estimator is consistent for Ñ r
s,g →

∞, g = 1, . . . , G. Consistency is not trivial since we consider fixed G so that

the prior parameter estimates µ̂r
s and τ̂ r

s do not generally converge to their

population counterparts. Further, the consistency of the EB estimator is an

important difference to the simple weighted average, µ̂r
s, which is generally

not consistent.13 Practically, this means that if one would consider only µ̂r
s

and λ̂r
s,g (the standard estimator) one would have to make ad hoc decisions

up to which sample size different portfolios should be pooled. The smooth

transition of the EB estimator to the standard estimator makes such decisions

unnecessary.

4.4 Application to sovereign bonds

Sovereign bonds provide possibly the most important application for our

methods since they are among the most important asset classes and sovereign

defaults are rare events. In this section, we use the complete rating and

default histories of sovereigns with public ratings from Standard & Poor’s

(S&P) in the period from January 1975 until April 2011.14 The data are

from Standard & Poor’s (2011b) and consist of 130 sovereigns observed over

a total of 23014 country-months. The dataset may thus appear not that

small but the sample size per rating class is of course considerably lower

13Instead, µ̂r
s converges to a weighted average of the group-specific probability limits.

See appendix 4.B, where these probability limits are denoted by λ1 and λ2, respectively.
14S&P also rates a few sovereigns on a confidential basis. See Standard & Poor’s (2011a).
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Figure 4.1: Rating distribution of S&P rated sovereign bonds, 1975-2011
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and, importantly, we observe only 15 default events. More precisely, these

default events are foreign-currency selective defaults.15 Accordingly, we will

use foreign-currency issuer credit ratings in our analysis since these have

longer rating histories and are probably in most cases more relevant to in-

vestors than local-currency ratings. Figure 4.1 shows the rating distribution

in our sample.

Apart from the data concerning sovereigns, we further utilize S&P rating and

default histories of North American public firms from Compustat covering

the period from January 1981 until April 2011. The corresponding ratings

used here are S&P’s long term issuer credit ratings which are on the same

scale and have the same definition as their sovereign counterparts. The latter

can be seen as a justification of our Bayesian assumption that there is no

difference between sovereigns and firms a priori. This second dataset is large

(5355 firms, 563809 firm-months, 755 defaults) and will be used for the EB

approach as explained in the previous section.

15A selective default means that a sovereign entity defaults only on a part of its bonds.
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Table 4.1 shows cumulative default rates for sovereigns and corporates using

the EB and the standard estimator, respectively. To start with Panel B,

which gives the standard estimator for sovereigns, we see that we get default

probability estimates of zero throughout all time horizons for the three high-

est grades and under a one-year horizon even for BBB rated sovereigns. This

is clearly an unpleasant feature since such estimates are anticonservative and

also not in line with market perceptions given that credit default swaps are

traded even for highly rated sovereigns. In contrast, the EB estimator man-

ages to remove most of the zeros with the exception of the AAA category

where we do not have any corporate default in our sample as well. Due to the

relatively small size of the sovereign sample the EB estimator is dominated

by the standard estimator for corporates as can be seen by comparing Panel

A and Panel D. However, this closeness is varying. For instance, in the case

of sovereigns rated B, where we have relatively much information in the sense

that we have some defaults and not too few sovereigns rated B, we observe

that the sovereign estimates are less close to the corporate estimates as they

are for other grades. Overall, we see that the sovereign default probability

estimates are more conservative under the EB approach while the increase

in conservativeness seems to be at a reasonable degree.

The EB estimator for corporates is of less interest but reported in Panel

C for completeness. As expected from theory, EB estimator and standard

estimator are very close to each other due to the large sample size. Further,

it is interesting to see that for grades AAA-BBB the EB cumulative default

rates are the same for sovereigns and corporates. This corresponds to the fact

that in these cases the EB estimator equals the pooled estimator (µ̂ in the

terminology of section 4.3) which is also in line with expectations as in these

categories there are very few, if any, default events and a possible variance

reduction from pooling dominates the weighting scheme in Formula (4.11).

We now go on to analyze the economic impact of our different estimators.

The two applications we have chosen are the estimation of expected returns

and the calculation of economic capital. With respect to the former, we

consider sovereign bond investments with a maturity of up to 10 years. For

these bonds, we consider a simple hold-to-maturity strategy and calculate
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Table 4.1: Cumulative default rates (1-10 years)

Panel A: Empirical Bayes estimator for sovereigns

1 2 3 4 5 6 7 8 9 10

AAA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AA 0.00 0.01 0.05 0.08 0.08 0.09 0.12 0.13 0.17 0.22

A 0.06 0.16 0.33 0.50 0.65 0.79 0.92 1.08 1.26 1.42

BBB 0.20 0.57 1.07 1.65 2.24 2.81 3.40 3.95 4.60 5.34

BB 0.76 2.42 4.24 5.70 7.56 9.40 11.27 13.04 14.74 15.95

B 3.88 7.64 11.43 15.80 19.58 23.07 26.01 28.66 31.04 33.21

CCC-C24.38 33.66 39.87 43.89 48.02 52.72 66.77 82.27 82.46 82.88

Panel B: Standard estimator for sovereigns

1 2 3 4 5 6 7 8 9 10

AAA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BBB 0.00 0.66 1.60 2.62 3.71 4.85 5.27 5.27 5.27 5.27

BB 0.56 1.88 3.06 3.66 5.10 6.75 8.74 10.29 11.23 11.43

B 2.60 5.16 7.59 11.01 13.12 15.48 18.30 22.17 25.44 29.02

CCC-C32.27 44.50 51.56 55.76 63.45 72.19 83.85 91.92 91.92 91.92

Panel C: Empirical Bayes estimator for corporates

1 2 3 4 5 6 7 8 9 10

AAA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AA 0.00 0.01 0.05 0.08 0.08 0.09 0.12 0.13 0.17 0.22

A 0.06 0.16 0.33 0.50 0.65 0.79 0.92 1.08 1.26 1.42

BBB 0.20 0.57 1.07 1.65 2.24 2.81 3.40 3.95 4.60 5.34

BB 0.76 2.42 4.24 6.05 7.90 9.74 11.59 13.36 15.06 16.59

B 4.40 9.85 14.72 18.96 22.59 25.95 28.78 31.33 33.63 35.71

CCC-C24.35 33.52 39.74 43.77 47.91 51.17 53.45 54.13 54.61 55.70

Panel D: Standard estimator for corporates

1 2 3 4 5 6 7 8 9 10

AAA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AA 0.00 0.01 0.05 0.08 0.09 0.10 0.13 0.14 0.18 0.24

A 0.06 0.16 0.33 0.51 0.67 0.81 0.95 1.11 1.29 1.45

BBB 0.20 0.57 1.06 1.63 2.20 2.76 3.36 3.92 4.59 5.36

BB 0.77 2.45 4.29 6.15 8.02 9.86 11.72 13.50 15.24 16.89

B 4.47 9.96 14.91 19.21 22.98 26.38 29.22 31.70 33.96 35.97

CCC-C24.20 33.31 39.49 43.52 47.48 50.60 52.89 53.58 54.07 55.17

Numbers are in percentage points.
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expected returns by replacing contractual cash flows with their expected

values and computing the corresponding yield-to-maturity.16 Besides a term

structure of default probabilities, this requires an assumption for the recovery

rate, i.e. the proportion of the face value of the bond that is recovered

if default occurs. For our calculations, we assume a recovery rate of 0.55

which is the middle of the interval [0.5, 0.6] reported in Standard & Poor’s

(2011c) as the estimated historical average sovereign recovery rate. Our

choice for the recovery rate also coincides with the loss given default (=

1− recovery rate) assumption of 0.45 which is prescribed in the foundation

Internal Ratings Based (IRB) approach of Basel II (Basel Committee on

Banking Supervision, 2006, §287). For the results shown in Table 4.2, we

have selected one US Dollar denominated bond for each rating grade with

the exception of the CCC-C grades since no sovereign had such a rating

on May 2, 2011 (our hypothetical bond purchase date). By comparing the

maximum return, i.e. the return that an investor will receive if no default

occurs, with the expected returns we can see which part of the maximum

return an investor can expect to lose on average by taking the risk of the

corresponding bond investment. Under each estimator, the results are in

line with the basic risk-return paradigm in the sense that expected returns

monotonically rise as ratings worsen. Further, with the exception of the BBB

class, the reward for risk is estimated to be lower under the EB approach

which, of course, directly follows from its relative conservatism.

Our second application is to use our one-year default probability estimates as

inputs to the Basel II capital formula (Basel Committee on Banking Super-

vision, 2006, §272).17 Besides the default probability, the formula requires as

an input an estimate of the loss given default which we again set to 0.45. The

correlations which are also part of the formula are defined by the regulators

16By choosing a hold-to-maturity scenario we do not need a model for the bond price

process or for rating transitions since these do not affect expected returns in this case.
17For an explanation of the theoretical underpinning of the Basel II capital formula see

Basel Committee on Banking Supervision (2005a). Under the new regulatory initiative

called Basel III the capital formula is not intended to be changed in its structure. However,

the capital requirements are likely to be scaled up. See Basel Committee on Banking

Supervision (2010) for details.
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Table 4.2: Expected returns for selected USD denominated sovereign bonds

Expected returns

Country Rating Maturity Max. return Standard estimator Empirical Bayes

USA AAA 2/2021 3.363 3.363 3.363

Qatar AA 1/2020 4.584 4.584 4.576

Poland A 7/2019 4.750 4.750 4.687

Lithuania BBB 3/2021 5.580 5.312 5.335

Egypt BB 4/2020 6.557 5.962 5.766

Argentina B 6/2017 8.783 7.332 6.982

Sovereign bond data are from Boerse Frankfurt. Expected returns are calculated under

the assumption of a bond purchase on May 2, 2011, and a hold-to-maturity strategy.

Table 4.3: Basel II capital requirements

ST SE EB EB∗ % of MP

AAA 0.00 0.00 0.00 0.00 46.6

AA 0.00 0.00 0.00 0.77 35.7

A 1.60 0.00 1.69 1.69 8.4

BBB 4.00 0.00 3.48 3.48 5.8

BB 8.00 5.88 6.66 6.66 2.8

B 8.00 9.87 11.06 11.06 0.7

CCC-C 12.00 19.85 19.67 19.67 0.0

MP 0.65 0.23 0.61 0.88

Numbers in percentage points. ST: Basel II Standardised Approach; SE: Standard esti-

mator; EB: Empirical Bayes estimator; EB∗: Empirical Bayes estimator with one-year AA

default probability calculated by scaling down the associated three-year default probabil-

ity. MP refers to an approximate market portfolio (see the text for details).

as a function of the default probability. Further, under the advanced IRB

approach there are potential maturity adjustments if the effective maturity

differs from 2.5 years. To facilitate comparisons, we assume the standard

maturity of 2.5 years. Table 4.3 shows the results for the capital require-

ments. The numbers can be interpreted as the capital which banks must
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hold for a corresponding investment of 100 currency units. The first col-

umn contains the capital requirements under the standardised approach of

Basel II where banks do not estimate default probabilities themselves and use

instead fixed ratings-based risk weightings (Basel Committee on Banking Su-

pervision, 2006, §53). The corresponding capital requirements are intended

to be conservative in order to give banks an incentive to intensify their own

risk analysis and to move eventually to the IRB approach. Comparing the

first with the second column, we see that indeed under an IRB approach

that uses our standard estimator the capital requirements are considerably

lower than under the standardised approach. However, the capital ratios

under the standard estimator seem to be very liberal since no capital at all

is needed for BBB or better rated sovereigns including, for instance, South

Africa and Peru at the end of our sample period.18 In contrast, the EB

estimates are more conservative while not implying unrealistically high lev-

els of capital as is seen by their closeness to the standardised approach. In

the column of Table 4.3 which is labelled by EB∗, we have kept the origi-

nal EB estimates with the exception of the AA category. To get a non-zero

estimate for this class, we used a proposal from Basel Committee on Bank-

ing Supervision (2005c) to scale down multi-year default probabilities in the

case of sparse data. Specifically, we used the non-zero AA three-year default

probability estimated under the EB approach to calculate the one-year de-

fault probability under the assumption of constant marginal default rates,

i.e. P̂D
AA,∗

1 = 1 − (1 − P̂D
AA

3 )1/3 = 0.015%. At first sight, the new AA

capital ratio of 0.77% seems to be negligibly small. However, matters change

if we analyze the impact on the capital requirements of a bank which holds

an approximate market portfolio. The composition of the market portfolio

is given in the last column of Table 4.3 and is calculated from data of the

Bank for International Settlements on the total amounts of outstanding debt

18Portugal and Ireland would be examples from the Euro area which are rated BBB at

the end of our sample period. Note, however, that the EU capital requirements directives

which refer to the implementation of the Basel II rules introduced a general zero capital

charge for member states’ sovereign bonds - against the intention of the Basel Committee

for Banking Supervision (Hannoun, 2011). The soundness of this exemption can be seen

very critical, of course.
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in government securities.19 Holding the market portfolio, a bank would in-

crease its capital requirement to 0.88% from 0.61% under the unadjusted EB

approach and from 0.23% under the standard estimator. These differences

are of course substantial and show the high sensitivity of capital ratios to de-

fault probability estimates. Moreover, it is obvious that the standard default

probability estimator is far from being conservative in this respect.

4.5 Simulation study

While we have seen that EB estimators have nice theoretical properties and

give reasonable results in our empirical application it is clearly of interest to

study the performance of the EB estimator and the standard estimator in

more detail.20 Out-of-sample tests are no appropriate option in our case since

our small sample size would not allow us to draw meaningful conclusions.

Instead, we will evaluate our estimators by means of a simulation study.

The specification of our data generating process is as follows. With respect

to the sample size, we stick to the data used in the previous section. More

precisely, we drop all observations from our datasets with the exception of the

observations where a firm or sovereign first entered the dataset. For instance,

the United States enter our dataset in January 1975 with a AAA rating which

remains constant until the end of our sample. For our simulation, we keep

only the rating in January 1975 whereas the subsequent ratings are now filled

19The data are available under http://bis.org/statistics/secstats.htm. We aggregated

the outstanding amounts of international and domestic debt securities per government

(Tables 12D and 16A) as of December 2010. The corresponding S&P ratings for the same

date were used to compute aggregate amounts of debt per rating class. Note that no

government was rated CCC or lower at this point in time so that the CCC-C category

estimates do not influence the market portfolio calculations.
20Even for the standard estimator, a comprehensive evaluation of its properties in the

presence of overlapping lifetimes does not exist in the literature so far, to the best of our

knowledge.
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up in the simulation process.21 We choose a Markovian rating migration

model (again on a monthly basis) to simulate rating transitions. While we

have argued that the Markovian model has serious drawbacks for default

probability estimation it should nevertheless be suitable for our simulations

since none of our estimators relies on the Markovian assumption. We tested

several structures for the data-generating migration matrix and found the

following one to lead to a realistic migration behavior as well as reasonable

levels of pseudo-true default probabilities:22

AAA AA A BBB BB B CCC − C D/SD

AAA 1 − 7
4
m m m/2 m/4 0 0 0 0

AA m 1 − 11
4

m m m/2 m/4 0 0 0

A m/2 m 1 − 13
4

m m m/2 m/4 0 0

BBB m/4 m/2 m 1 − 7
2
m m m/2 m/4 0

BB 0 m/4 m/2 m 1 − 7
2
m m m/2 m/4

B 0 0 m/4 m/2 m 1 − 13
4

m m m/2

CCC − C 0 0 0 m 2m 4m 1 − 15m 8m

D/SD 0 0 0 0 0 0 0 1

The entry in the ith row of the jth column is the probability to migrate from

class i to class j over the next month. m is a parameter that refers to the

basic migration rate into the neighboring classes and has to be specified. We

choose m = 0.003 for sovereigns. Probabilities for migrations over more than

one class are assumed to halve with each step giving migration probabilities

of m/2 and m/4. Migrations over more than three classes within one month

seem quite unrealistic so that we set the corresponding migration probabil-

ities to zero. While the migration rates for the upper six categories follow

the same pattern it was necessary to introduce higher migration rates for

the CCC-C category to account for the high CCC-C default rates observed

empirically. The main diagonale of the migration matrix is simply specified

in the way that the rows sum up to one. Based on the empirical finding that

21In our corporate sample, we have firms that are not observed for some periods and

then return at a later point in time. To account for these censoring events, we keep the

first rating of these firms after their return for our simulations and treat them as if they

were new firms.
22Default probabilities are taken from the exponentiated migration matrix. If M denotes

the migration matrix, the last column of MH contains the default probabilities. Their

values are presented below together with the simulation results.
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firms have higher migration rates (resulting in higher default probabilities)

we simply rescale the migration matrix for corporates by multiplying m with

some constant k. In our simulations, we will consider k = 1, 1.25, 1.5, 1.75.

At first sight it might seem more appropriate to simply choose a migration

matrix based on historical migration rates for the data-generating process.

However, we have chosen not to do so because of two reasons. First, for rea-

sons which we have discussed in the introduction, the implied pseudo-true

default probabilities would be at an unrealistically low level. For instance, in

this case we would have implied pseudo-true default probabilities of 0.06%

for BB rated sovereigns at a one-year horizon and 0.13% for BBB rated

sovereigns at a five-year horizon. These default probabilities are consider-

ably lower than our standard estimates which - as will be confirmed by our

simulations - already have a tendency to underestimate true default proba-

bilities in small samples. Second, we want to investigate different scenarios

for the difference between sovereigns and firms (specified by different choices

for k) which is more straightforward within our setting.

Sovereign and corporate default and migration rates are very likely to be

affected by common shocks like, for instance, recessions. We account for this

kind of dependence by applying a CreditMetricsTM -type approach (Gupton

et al., 1997). The procedure involves simulating observations from a multi-

variate normal distribution and mapping these realizations to rating changes.

Consider for example a AAA rated sovereign which has a probability to re-

main AAA over the next month of 1 − 7
4
· 0.003 = .99475 and a probability

to migrate to AA of 0.003. If the corresponding realization of the normal

distribution is smaller than Φ−1(.99475) ≈ 2.5589 the rating for the next

month is set to AAA again. If instead the realization is in the interval

[Φ−1(.99475), Φ−1(.99775)] ≈ [2.5589, 2.8408] the sovereign migrates to AA,

and so on. The correlations of the corresponding multivariate normal dis-

tribution have the same meaning as the so-called asset correlations that are

part of the IRB formula in the Basel II framework.23 There, the asset corre-

23Asset correlations are meant to be the correlations between the asset values of obligors.

The underlying theory is that once these asset values cross a certain lower threshold, a

default event occurs.
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Table 4.4: Evaluation of the standard estimator

Panel A: Pseudo-true PDs (%) Panel B: Relative bias

1 year 3 years 5 years 10 years 1 year 3 years 5 years 10 years

AAA 4.7e-4 0.014 0.061 0.414 -0.213 0.044 0.083 0.058

AA 0.005 0.067 0.223 1.069 0.085 0.059 0.032 0.018

A 0.018 0.203 0.609 2.414 0.070 0.022 0.011 0.003

BBB 0.132 0.981 2.245 6.101 0.005 0.016 0.007 -0.001

BB 1.082 3.905 6.958 14.124 0.001 -0.005 -0.006 -0.008

B 2.122 7.355 12.615 23.544 0.007 0.004 0.001 -0.010

CCC-C 22.786 44.379 52.797 60.227 0.038 0.014 -0.004 -0.019

Panel C: Relative RMSE Panel D: % P̂D < PD

1 year 3 years 5 years 10 years 1 year 3 years 5 years 10 years

AAA 15.393 5.722 3.680 2.105 99.62 94.98 88.48 74.02

AA 7.271 3.529 2.525 1.693 97.06 87.98 80.08 68.32

A 3.685 1.871 1.440 1.123 89.68 71.64 63.90 59.30

BBB 1.358 0.914 0.801 0.719 61.74 56.62 56.56 56.50

BB 0.561 0.498 0.479 0.478 53.52 53.74 53.70 54.30

B 0.453 0.415 0.407 0.428 53.22 52.44 53.14 52.72

CCC-C 0.378 0.355 0.352 0.356 49.50 50.24 50.54 51.52

Relative bias and Relative Root Mean Squared Error (RMSE) are calculated as (P̂D −

PD)/PD and RMSE/PD, respectively. % P̂D < PD is the percentage of simulations

for which the estimated default probability was below the pseudo-true default probability.

The number of simulations is 5000.

lations are specified as a function of the one-year default probability (Basel

Committee on Banking Supervision, 2006, §272). We adopt this approach to

specifiy the correlations of our multivariate normal distribution.

For the sake of illustration, we will from now on concentrate on prediction

horizons of 1, 3, 5 and 10 years. All upcoming results are based on 5000

simulations. We start the presentation of our simulation results with the

evaluation of the standard estimator which is given in Table 4.4. Panel A of

Table 4.4 shows the pseudo-true default probabilities implied by our data-

generating process which are of similar magnitude as our empirical estimates
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but, importantly, are not zero even for the highest rating grades. In Panel B

we see the estimated bias of the standard estimator relative to the pseudo-

true values. While we know that the standard estimator has only minimal

asymptotic bias24 (see section 4.1) it is interesting to see that there is also

no significant bias (with the exception of the CCC-C category) in small sam-

ples.25

The accuracy of the standard estimator as measured by the Root Mean

Squared Error (RMSE) relative to the pseudo-true default probabilities is

shown in Panel C of Table 4.4. It is clearly visible that estimation uncer-

tainty rises in relative terms as the pseudo-true values decline. Therefore,

especially in these cases there should be potential to improve upon the stan-

dard estimator. Finally, in Panel D we report the proportions of the simula-

tions where the pseudo-true default probability has been underestimated by

the standard estimator. The fact that we observe values well above 50% is

caused by the highly skewed sampling distribution of the standard estimator

in small samples and especially under small true default probabilities. Note

that this feature can also be interpreted as a kind of bias called median bias.

Following Birnbaum (1963), the median bias of a default probability estima-

tor is given as P (P̂D > PD|PD)− P (P̂D < PD|PD), and the estimator is

called median-unbiased if the median bias is equal to zero. Under this con-

cept, although being approximately mean-unbiased, the standard estimator

is clearly downward median-biased which is an obvious drawback at least if

conservativeness is among the criteria to evaluate an estimator.

We now turn to the evaluation of the EB estimator. Table 4.5 shows its

precision as measured by the ratio of the RMSEs of the EB and the standard

estimator so that values smaller than 1 indicate a superior performance of

the EB estimator. We report results for three scenarios, k = 1.25 in Panel

24Serious asymptotic biases can occur if the assumptions regarding the censoring scheme

(see section 4.1) are not met. In our simulation study, censoring times are fixed so that

the assumption of noninformative censoring is fulfilled.
25We explored the significance of the bias by using Monte Carlo standard errors. At a

confidence level of γ = 0.05, the bias was only significant for the CCC-C default probabil-

ities at horizons of 1, 3 and 10 years. The special role of the CCC-C category is not too

surprising given that it has the smallest sample size.
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Table 4.5: Precision of the empirical Bayes estimator

Panel A: k = 1.25

Pseudo-true PD ratio RMSE ratio

1 year 3 years 5 years 10 years 1 year 3 years 5 years 10 years

AAA 1.94 1.90 1.86 1.79 0.841 0.737 0.708 0.735

AA 1.65 1.68 1.67 1.61 0.814 0.656 0.608 0.642

A 1.61 1.62 1.58 1.50 0.650 0.584 0.621 0.648

BBB 1.52 1.45 1.40 1.34 0.555 0.597 0.611 0.605

BB 1.29 1.29 1.27 1.23 0.627 0.672 0.662 0.616

B 1.29 1.27 1.24 1.18 0.688 0.705 0.666 0.560

CCC-C 1.18 1.09 1.05 1.03 0.559 0.480 0.487 0.580

Panel B: k = 1.5

Pseudo-true PD ratio RMSE ratio

1 year 3 years 5 years 10 years 1 year 3 years 5 years 10 years

AAA 3.32 3.19 3.07 2.83 0.848 0.819 0.881 1.056

AA 2.49 2.57 2.52 2.34 0.830 0.746 0.819 0.955

A 2.39 2.38 2.27 2.04 0.696 0.884 0.965 0.980

BBB 2.13 1.94 1.83 1.67 0.826 0.930 0.946 0.883

BB 1.60 1.59 1.53 1.43 0.944 1.005 0.964 0.845

B 1.58 1.54 1.47 1.34 1.082 1.081 0.975 0.732

CCC-C 1.34 1.16 1.09 1.06 0.798 0.543 0.509 0.574

Panel C: k = 1.75

Pseudo-true PD ratio RMSE ratio

1 year 3 years 5 years 10 years 1 year 3 years 5 years 10 years

AAA 5.22 4.92 4.67 4.13 1.023 1.190 1.318 1.532

AA 3.54 3.67 3.54 3.17 0.818 0.975 1.178 1.327

A 3.33 3.28 3.07 2.63 0.829 1.225 1.344 1.314

BBB 2.81 2.46 2.27 2.01 1.178 1.302 1.274 1.181

BB 1.91 1.88 1.79 1.62 1.284 1.330 1.258 1.050

B 1.88 1.80 1.68 1.48 1.374 1.359 1.220 0.896

CCC-C 1.48 1.21 1.12 1.09 1.006 0.611 0.555 0.604

The pseudo-true PD ratio is calculated as PD(corporate)/PD(sovereign) and the RMSE

ratio is defined as RMSE(EB)/RMSE(standard estimator). The number of simulations

is 5000.
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A, k = 1.5 in Panel B and k = 1.75 in Panel C. To provide insight into the

relative level of default probabilities implied by these specifications we show

in the left parts of Table 4.5 the ratio of the pseudo-true default probabilities

of corporates and sovereigns. For instance, the BBB one-year default proba-

bility is 52% higher for corporates than for sovereigns under k = 1.25. Still,

in this case the RMSE of the EB estimator is 44.5% lower than the RMSE

of the standard estimator. Overall, we observe an improvement by using the

EB estimator in all cases for k = 1.25, in all cases with a few exceptions

at k = 1.5 and even in some cases for k = 1.75. The relative strength of

the EB estimator increases i) as the sample size decreases (as can be seen

by the large improvements for the CCC-C category), ii) as the pseudo-true

default probabilities decrease (see the robust EB performance with respect

to the AAA and AA one-year default probabilities) and iii) as the distance

between the corporate and the sovereign pseudo-true default probabilities

decreases (Panel C up to Panel A). Case i) is expected from theory and fur-

ther confirmed by additional simulations which we do not report here. In

these simulations, we randomly dropped half of our sample from the simula-

tions which is still likely to be a practically realistic sample size. Under this

reduced sample the relative EB performance is even better. For instance,

under k = 1.5, the RMSE ratio of the A one-year default probability then

decreases from 0.696 to 0.520.

We see that, depending on the true data generating process, the EB estimator

may or may not be more precise than the standard estimator. More clearly,

we can ascribe the EB estimator to be more conservative which can be seen

from the results in Table 4.6. To evaluate the conservativeness of the EB

estimator, we have chosen the scenarios k = 1 and k = 1.25. For larger values

of k the conservativeness of the EB estimator will obviously further rise. But

even for k = 1, the relative frequency of underestimating the pseudo-true

default probability is considerably lower than for the standard estimator

which was given in Table 4.4. Since no bias is introduced in the case of

k = 1 the reason for this finding is just the less skewed sampling distribution

of the EB estimator, an effect similar to the effect of an increasing sample

size. In the case of k = 1.25, an additional upward bias is present so that

underestimation of the pseudo-true default probability happens only in less
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Table 4.6: Conservativeness of the empirical Bayes estimator

% P̂D < PD for k = 1 % P̂D < PD for k = 1.25

1 year 3 years 5 years 10 years 1 year 3 years 5 years 10 years

AAA 95.6 73.5 60.4 52.5 91.2 54.9 38.3 28.7

AA 64.7 53.9 49.3 46.1 50.2 27.6 20.2 16.1

A 53.2 46.3 47.3 46.9 27.3 13.3 11.6 13.0

BBB 47.3 51.5 53.6 53.2 10.0 12.9 19.0 21.9

BB 53.3 53.7 53.7 53.6 19.5 19.5 21.4 25.7

B 54.3 54.8 53.8 53.7 16.5 16.8 18.8 24.4

CCC-C 53.2 50.7 46.9 40.6 12.8 23.3 30.5 31.3

% P̂D < PD is again the percentage of simulations for which the estimated default

probability was below the pseudo-true default probability. The number of simulations is

5000.

than 50% of all cases with a few exceptions for very small pseudo-true default

probabilities where the skewness effect still dominates.

The analysis of our estimators on a portfolio basis provides further insights.

We again stick to our approximate market portfolio (see section 4.4) and

consider the estimation of expected losses and capital requirements again

assuming a recovery rate of 0.55. As was already mentioned in chapter 1, the

estimation of expected losses over the whole life of the portfolio to calculate

loan loss reserves may gain importance due to recent regulatory efforts (Basel

Committee on Banking Supervision, 2009). Differently to the expected return

calculations in section 4.4, since we now do not refer to any specific bond, we

do not consider any coupon payments instead assuming only one hypothetical

cash flow at the end of the prediction horizon. Panel A of Table 4.7 shows

the performance of our estimators in predicting expected losses over various

time horizons. Interestingly, the standard estimator now improves relative

to the EB estimator. The RMSE of the EB estimator is now lower than

that of the standard estimator only for the scenario with k = 1.25, whereas

the RMSE is now higher for k = 1.5. This is because, when estimating

expected losses for a portfolio, there is a variance reducing effect as compared

to estimating expected losses for a single obligor. More specifically, note
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that σ(
∑

i wiÊLi) ≤
∑

i wiσ(ÊLi), i.e. the standard error of the weighted

average of expected loss estimators is lower than the weighted average of their

standard errors. This effect works here since the estimated portfolio-wide

expected losses are weighted averages of the estimated rating-specific losses.

On the other hand, Bias(
∑

i wiÊLi) =
∑

i wiBias(ÊLi), so that no such

reduction effect holds for the bias of the estimators. Since the EB estimators

benefits hinge on its ability to reduce variance at the cost of some bias, the EB

estimators merits diminish somewhat in this case. As far as conservativeness

is concerned, the standard estimator is still liberal, underestimating pseudo-

true expected losses in more than 50% of all simulations. In contrast, the

EB estimator tends to overestimate pseudo-true expected losses.

Similarly to section 4.4, we also analyze our estimators with respect to im-

plied Basel II capital requirements. More precisely, we investigate how good

our estimators perform in estimating pseudo-true economic capital which we

define as the capital requirements which follow from our pseudo-true default

probabilities and, again, the IRB formula. The results of Panel B of Table 4.7

are astonishing. Now, the standard estimator has a large downward bias as

pseudo-true economic capital is underestimated by 45% on average.26 This

finding can be explained by the concavity of the IRB formula. Denote by K(·)

the function that calculates economic capital using the default probability as

an argument. Then, by a simple second-order Taylor series expansion:

E[K(P̂D) − K(PD)] ≈ K ′(PD)E[P̂D − PD] +
1

2
K ′′(PD)E[(P̂D − PD)2]

≈
1

2
K ′′(PD) · V [P̂D] < 0 (4.13)

The equation holds for an approximately unbiased estimator. Since the IRB

function is concave we have K ′′(PD) < 0 which results in a downward bi-

ased estimate for economic capital under an unbiased estimate for the de-

fault probability.27 The bias is proportional to the variance of the estimator,

V [P̂D], and may thus only be negligible if estimation uncertainty is low.

26The bias of the standard estimator in our expected loss calculations is, in contrast,

negligibly small.
27This type of bias has already been explored by Kiefer & Larson (2003). In that study,

the authors also calculate the second derivative of the IRB economic capital function.
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Table 4.7: Portfolio evaluation of estimators

Panel A: Estimation of expected losses for the market portfolio

Relative RMSE % ÊL < EL

Pseudo-true SE EB EB SE EB EB

EL (%) (k=1.25) (k=1.5) (k=1.25) (k=1.5)

1 year 0.06 0.49 0.45 0.66 55.9 12.5 4.2

3 years 0.26 0.54 0.52 0.78 58.6 10.7 2.0

5 years 0.57 0.57 0.54 0.84 59.3 11.1 1.7

10 years 1.69 0.60 0.59 0.92 57.6 12.4 2.3

Panel B: Estimation of capital requirements for the market portfolio

Relative Bias Relative RMSE % ÊC < EC

Pseudo-true SE EB EB SE EB EB SE EB EB

EC (%) (k=1.25) (k=1.5) (k=1.25) (k=1.5) (k=1.25) (k=1.5)

0.79 -0.45 -0.01 0.16 0.57 0.32 0.36 94.6 57.8 32.4

The composition of the market portfolio is given in Table 4.3. Relative RMSE is defined

as RMSE/Pseudo-true EL and RMSE/Pseudo-true EC, respectively, where EL means

expected losses and EC means economic capital. % ÊL < EL and % ÊC < EC are

the relative frequencies of simulations where pseudo-true EL/EC was underestimated.

Relative bias is the estimated bias divided by pseudo-true EC. SE is the abbreviation for

the standard estimator whereas EB refers to the empirical Bayes estimator. The number

of simulations is 5000.

However, the results of Table 4.7 show that the opposite case is true and

that the bias is substantial under a realistic scenario. In contrast, the up-

ward bias of the EB estimator now compensates this effect and leads to nearly

unbiased estimation for k = 1.25 and only slightly upward biased estimation

for k = 1.5. Further, the precision of the EB estimator is now higher than

for the standard estimator, even for k = 1.5. On top of that, the standard

estimator now underestimates pseudo-true economic capital at an extremely

high rate of 94.6% whereas the same figures are 57.8% and 32.4% for the

EB estimator. Evidently, the EB estimator is more appropriate for economic
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capital calculations in our scenario.
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4.A Variance of the standard estimator

In this appendix, we derive a consistent variance formula for the life-table

estimator (the standard estimator) under overlapping lifetimes. We allow for

arbitrary dependence of the lifetimes of an individual obligor but we assume

independence between obligors. The following derivations are based on the

article of Williams (1995) which itself utilizes a general method of Woodruff

(1971).28 Williams (1995) provides formulas for the Kaplan-Meier estimator

and indicates how the formulas can be extended to the life-table estimator

which is what we do below. The estimator under consideration is (see section

4.1)

P̂D
r

s = 1 −

s∏

j=1

(
1 −

∑T
t=1 Dr

t,j∑T
t=1 N r

t,j − Lr
t,j/2

)
.

From now on, we will omit the index r (indicating the rating grade) for conve-

nience. Defining Ñt,j = Nt,j−Lt,j/2, a first-order Taylor series approximation

for the variance of P̂Ds is given by

V (P̂Ds) ≈ E

[( s∑

j=1

T∑

t=1

∂P̂Ds

∂Dt,j

(Dt,j −E[Dt,j])+
∂P̂Ds

∂Ñt,j

(Ñt,j −E[Ñt,j])

)2]
,

where the partial derivatives are evaluated at expected values. As we will see

we can use this Taylor approximation without expanding the squared sum

into the corresponding variances and covariances. First, define

di,t,j =





1 if the lifetime of obligor i starting in period t ends in period t + j ,

0 otherwise ,

ni,t,j =





1 if the lifetime of obligor i starting in period t is at risk in period t + j ,

0 otherwise ,

li,t,j =





1 if the lifetime of obligor i starting in period t is censored in period t + j ,

0 otherwise .

28An alternative to the variance estimator by Williams (1995) is given by Kang &

Koehler (1997). In that study, however, it is assumed that the lifetimes within one cluster

(of one obligor) are exchangeable. This assumption is unrealistic under the overlapping

structure that we deal with in our application.
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Further, let ñi,t,j = ni,t,j − li,t,j/2. Then, Dt,j =
∑n

i=1 di,t,j and Ñt,j =∑n
i=1 ñi,t,j, where (by a slight abuse of notation) n denotes the total number of

obligors. Using the fact that ∂P̂Ds/∂Dt,j = ∂P̂Ds/∂di,t,j and ∂P̂Ds/∂Ñt,j =

∂P̂Ds/∂ñi,t,j and rearranging, the Taylor approximation gets

V (P̂Ds) ≈

E

[( s∑

j=1

T∑

t=1

∂P̂Ds

∂di,t,j

( n∑

i=1

di,t,j − E
[ n∑

i=1

di,t,j

])

+
∂P̂Ds

∂ñi,t,j

( n∑

i=1

ñi,t,j − E
[ n∑

i=1

ñi,t,j

]))2]

= E

[( n∑

i=1

T∑

t=1

s∑

j=1

∂P̂Ds

∂di,t,j

di,t,j+
∂P̂Ds

∂ñi,t,j

ñi,t,j−E
[∂P̂Ds

∂di,t,j

di,t,j+
∂P̂Ds

∂ñi,t,j

ñi,t,j

])2]
.

Defining Uit =
∑s

j=1
∂ dPDs

∂di,t,j
di,t,j + ∂ dPDs

∂eni,t,j
ñi,t,j, which are the linearized values in

the terminology of Woodruff (1971), we see that the Taylor approximation

amounts to finding the variance of
∑n

i=1

∑T
t=1 Uit. Under our assumptions

regarding the dependencies, we can use the so-called between-cluster variance

estimator

V̂
( n∑

i=1

T∑

t=1

Uit

)
= V̂

( n∑

i=1

Ui·

)
=

n

n − 1

n∑

i=1

(Ui· − U i·)
2 ,

where Ui· =
∑T

t=1 Uit. The between-cluster variance estimator is consistent

as the number of clusters (obligors) approaches infinity. We now calculate

the linearized values. To simplify notation, let Dj· =
∑T

t=1 Dtj and Ñj· =∑T
t=1 Ñtj so that λ̂k = Dj·/Ñj·. The partial derivatives are then

∂P̂Ds

∂di,t,j

= −
∏

k 6=j

(1 − λ̂k)
(
−

1

Ñj·

)
=

1 − P̂Ds

(1 − λ̂j)Ñj·

=
1 − P̂Ds

Ñj· − Dj·

,

∂P̂Ds

∂ñi,t,j

= −
∏

k 6=j

(1 − λ̂k)
Dj·

Ñ2
j·

= −
(1 − P̂Ds)λ̂j

(1 − λ̂j)Ñj·

= −
(1 − P̂Ds)λ̂j

Ñj· − Dj·

.

Since an evaluation of the partial derivatives at expected values is not feasible,

we have used the appropriate sample counterparts. Using our results for the
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partial derivatives we have

Uit =
s∑

j=1

1 − P̂Ds

Ñj· − Dj·

di,t,j −
(1 − P̂Ds)λ̂j

Ñj· − Dj·

ñi,t,j = (1 − P̂Ds)
s∑

j=1

di,t,j − λ̂jñi,t,j

Ñj· − Dj·

,

Ui· =
T∑

t=1

(1 − P̂Ds)
s∑

j=1

di,t,j − λ̂jñi,t,j

Ñj· − Dj·

= (1 − P̂Ds)
s∑

j=1

di,·,j − λ̂jñi,·,j

Ñj· − Dj·

,

U i· =
1

n

n∑

i=1

(1 − P̂Ds)
s∑

j=1

di,·,j − λ̂jñi,·,j

Ñj· − Dj·

=
1 − P̂Ds

n

s∑

j=1

Dj· − λ̂jÑj·

Ñj· − Dj·

= 0 ,

where di,·,j =
∑T

t=1 di,t,j and ñi,·,j =
∑T

t=1 ñi,t,j. The result for U i· follows

from λ̂k = Dj·/Ñj·. Plugging our results for the linearized values into the

between-cluster variance formula we get

V̂ (P̂Ds) =
n

n − 1

n∑

i=1

(
(1 − P̂Ds)

s∑

j=1

di,·,j − λ̂jñi,·,j

Ñj· − Dj·

)2

=
n

n − 1
(1 − P̂Ds)

2

n∑

i=1

( s∑

j=1

di,·,j − λ̂jñi,·,j

Ñj· − Dj·

)2

.

For the special case that we only observe one lifetime for each obligor (thus

assuming an independent sample) one can show that our variance formula

reduces to the well-known Greenwood formula (Greenwood, 1926) except for

the factor n/(n − 1).

4.B Consistency of the empirical Bayes esti-

mator

In the following, we prove the consistency of the empirical Bayes (EB) esti-

mator which was introduced in section (4.3). We show the consistency of the

estimator for the discrete-time hazard rate λr
s given by Equation (4.11) with

the number of groups G fixed, Ñ r
s,g → ∞ and Ñ r

s,g/
∑G

j=1 Ñ r
s,j → cr

s,g, where

cr
s,g ∈ (0, 1). The consistency of the corresponding estimator for PDr

s (Equa-

tion (4.12)) then directly follows from Slutsky’s theorem. For convenience,

we drop the indices r and s in the following.
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From Equation (4.11),

λ̂g,EB =
1 − τ̂

1 + τ̂(Ñg − 1)
µ̂ +

τ̂ Ñg

1 + τ̂(Ñg − 1)
λ̂g .

We assume consistency of the standard estimator,29 i.e. λ̂g → λg, so that

it suffices to show that τ̂ converges to a non-zero constant. From Equation

(4.9), the estimator for τ is

τ̂ =

G−1
G

∑G
g=1 wg(λ̂g − µ̂)2 − µ̂(1 − µ̂)

(∑G
g=1 wg(1 − wg)/Ñg

)

µ̂(1 − µ̂)
(∑G

g=1(1 − 1/Ñg)wg(1 − wg)
) .

We consider first the case that wg = 1/G. Since

plim

(
G∑

g=1

1

G
(λ̂g − µ̂)2

)
=

1

G

G∑

g=1

(λg − λ1)
2 , λ1 ≡

1

G

G∑

g=1

λg ,

plim

(
G∑

g=1

1

G

(
1 −

1

G

)
1

Ñg

)
= 0 ,

plim

(
G∑

g=1

(
1 −

1

Ñg

)
1

G

(
1 −

1

G

))
=

G − 1

G
,

we have

plim(τ̂) =
G−1

G
1
G

∑G
g=1(λg − λ1)

2

λ1(1 − λ1)
G−1

G

=
1

G

∑G
g=1(λg − λ1)

2

λ1(1 − λ1)
≡ cτ1 .

The probability limit exists if λ1 6= 0. If λ1 = 0, given our truncation of

τ̂ in the interval [0, 1], the EB estimator still exists and is consistent since

µ̂ = λ̂g = 0. Further, plim(τ̂) is not equal to zero except if λg1 = λg2 ∀ g1, g2 ∈

{1, . . . , G}. Under this exception, plim(λ̂g,EB) = plim(µ̂). However, since

then for all g λ̂g has the same probability limit, this case does not lead to

inconsistency as well.

29As was discussed in section 4.1, the standard estimator is only consistent under quite

strong assumptions. However, the asymptotic bias is very small if the periodicity is as

small as it is in our application. If one is not willing to assume consistency, the proof only

shows that the EB estimator has the same probability limit as the standard estimator.
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We now consider wg = Ñg/
∑G

j=1 Ñj. Then,

plim

(
G∑

g=1

Ñg∑G
j=1 Ñj

(λ̂g − µ̂)2

)
=

G∑

g=1

cg(λg − λ2)
2 , λ2 ≡

G∑

g=1

cgλg ,

plim

(
G∑

g=1

Ñg∑G
j=1 Ñj

(
1 −

Ñg∑G
j=1 Ñj

)
1

Ñg

)
= 0 ,

plim

(
G∑

g=1

(
1 −

1

Ñg

)
Ñg∑G
j=1 Ñj

(
1 −

Ñg∑G
j=1 Ñj

))
=

G∑

g=1

cg(1 − cg) ,

so that

plim(τ̂) =
G−1

G

∑G
g=1 cg(λg − λ2)

2

λ2(1 − λ2)
∑G

g=1 cg(1 − cg)
≡ cτ2 .

For the same reasons as before, consistency can be established even if λ2 = 0

or λg = λ2 ∀ g ∈ {1, . . . , G}.

Finally, we consider the situation that the weights are refined by a one-time

iteration (see Equation (4.10)):

wg =
Ñg

1 + τ̂(Ñg − 1)

/ G∑

j=1

Ñj

1 + τ̂(Ñj − 1)

Since

plim

(
Ñg

1 + τ̂(Ñg − 1)

)
= plim

(
1

1
eNg

+ τ̂(1 − 1
eNg

)

)
= plim(τ̂)−1

we have plim(wg) = 1/G and thus plim(τ̂) = cτ1 if the iteration step is

performed.
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4.C R code for the empirical Bayes estimator

The following code refers to Formulas (4.8)-(4.11). It returns the empirical

Bayes estimator for the discrete-time hazard rate.

eb <- function(w,lambda,n,iter) {

# w: Vector of weights; sum(w) should be 1

# lambda: Vector of standard hazard rate estimators

# n: Vector of numbers at risk

# iter: TRUE or FALSE, referring to iteration step

G <- length(w)

# G is the number of groups/portfolios

mu <- sum(w*lambda)

SS <- (G-1)/G*sum(w*(lambda-mu)^2)

tau <- (SS-mu*(1-mu)*sum(w*(1-w)/n))/(mu*(1-mu)*sum((1-1/n)*w*(1-w)))

tau <- ifelse(tau < 0,0,ifelse(tau > 1,1,tau))

if (iter==TRUE) {

w <- n/(1+tau*(n-1))/sum(n/(1+tau*(n-1)))

mu <- sum(w*lambda)

SS <- (G-1)/G*sum(w*(lambda-mu)^2)

tau <- (SS-mu*(1-mu)*sum(w*(1-w)/n))/(mu*(1-mu)*sum((1-1/n)*w*(1-w)))

tau <- ifelse(tau < 0,0,ifelse(tau > 1,1,tau))

}

B <- (1-tau)/(1+tau*(n-1))

B <- ifelse(B<0,0,ifelse(B>1,1,B))

lambda.eb <- B*mu + (1-B)*lambda

if (sum(lambda)==0) lambda.eb <- lambda

return(lambda.eb)

}

# Example:

eb(c(1/2,1/2),c(0.04,0),c(1000,100),iter=TRUE)

0.03875106 0.01130409
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