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In Economics, cynicism is a proof of maturity.

(Conventional Wisdom)

Cynicism is an excellent talent. It allows to look into the future.

(Universal Truth)
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0. INTRODUCTION

This work is titled Essays in Equilibrium Finance. Topics described by the term
Finance deal with issues that are broadly related to the valuation of assets. An
equilibrium-perspective is one which not only looks at an individual agent and his
specific optimization problem, but includes the feedback effects generated by the in-
teractions with other agents. Both words together describe a common denominator
of the three chapters contained in the dissertation at hand, but there is more. The
chapters are connected by a deeper link that I will lay down in this introduction.

The first chapter, Open-Loop Equilibria and Perfect Competition in Option Exercise
Games, a joint work with Professor Kerry Back published in the Review of Financial
Studies (Back and Paulsen (2009)), is concerned with the optimal exercise and valu-
ation of growth options within a partial equilibrium setting. A finite number of firms
have to decide about their production capacities. When a firm invests and expands
its capacities by a marginal unit, it receives the marginal cash flow generated by that
unit in exchange. The price at which firms sell decreases with total production in
the market but also fluctuates with a common stochastic factor. So does the value of
the marginal cash-flow. It might rise in which case a firm might want to invest more
or it might decrease so that the firm regrets having invested at all and would like to
disinvest. However, investment is irreversible in the model; a firm cannot undo past
investments and regain its cost.

It is well known (e.g. see Dixit and Pindyck (1994)) that irreversibility creates an
option-like feature. Analogously to exercising an American call option by paying the
strike and receiving the price of the underlying stock in exchange, the firm pays the
investment cost and receives the present value of the marginal cash flow generated by
that unit. It is usually not optimal for a monopolistic firm to exercise its investment
option when its option is ’at the money’, i.e when the present value of the marginal
cash flow net of investment cost is zero. If the firm invests, it gets as much as it loses.
If it waits with its decision a bit longer, however, the net present value exceeds zero
with some chance while not investing still yields a non-negative return should the
value go down. Delaying the investment decision therefore yields a strictly positive
expected return at the point where the net present value is zero just as for an Amer-
ican call option.

This is why it was argued (e.g. see Dixit and Pindyck (1994)) that there is an ad-
ditional opportunity cost of investing which has to be accounted for. An investing
firm not only pays the direct investment cost but also scraps the option to invest the
same unit at a later time. Proper accounting considers the value of this option and
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investment is not undertaken until its return, i.e. the value of the marginal cash flow,
outweighs both: the direct cost of investment and the indirect cost in form of giving
up the option of waiting to invest. As the option value usually rises in volatility,
investment tends to be increasingly delayed when volatility rises.

But what if there is more than one firm competing for market shares? If demand in-
creases and one firm delays its investment leaving its investment option on the table
for a while, another firm might jump in, invest and thereby ’steal’ the option. If a
firm invests, on the other hand, it might even deter its competitors from investing
themselves. This consideration suggests that there is in incentive to invest early for
two reasons: To preempt other firms’ investment and to preempt other firms’ pre-
emption. Intuition proofs right. Competing firms invest earlier in equilibrium. With
the number of firms going to infinity, the value of the option of waiting to invest
approaches zero. In the limit, investment is undertaken as soon as its net present
value reaches zero.

These results are not new. In fact they already appear in Grenadier (2002). However,
it turned out that, in this reference, the formulation of the strategies and the proof
of an equilibrium contained substantial errors. Our contribution is to lay down these
defects and provide a rigorous proof for the statement that the strategies - properly
reinterpreted - form an open-loop equilibrium. As open loop strategies lack subgame
perfectness, we further show that perfect competition forms a subgame perfect equi-
librium already for two firms. So even though the investment game is Cournot in
nature - the strategic variables are capacities - it leads to a Bertrand like outcome.
This is due to the extreme incentive for preemption. Firms preemptively invest to
avoid other firms preemptions. My own contribution, in particular, lies in reinterpret-
ing the strategies, providing the rigorous proof as well as giving a counter-examples
to Grenadier (2002).

Though, with perfect competition, firms invest when the net present value is zero,
this does not imply that increased volatility does not lead to delayed investment. On
the contrary, delaying investment when volatility increases is welfare maximizing (in
the sense of maximizing consumer surplus net of investment cost) and thus efficient.
This is quite intuitive noting that a profit maximizing firm is analogous to a welfare
maximizing central planner.

With perfect competition, efficiency is maintained in the market equilibrium. With
increasing volatility, the threshold price which triggers investment into additional
capacities increases as well. The equilibrium price process plays an important role
thereby (see also Leahy (1993)), an insight that can be made intuitive by the follow-
ing reasoning: Prices in equilibrium follow a geometric Brownian motion reflected at
some threshold. If prices rise too much, they reach the threshold at which investment
has a zero net present value and investment pushes the price down again. If volatility
increases, so does the probability in which prices are low. But at the threshold, the
average price must be such that firms make zero profits so that lower prices have to
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be compensated for by some upside. The upside occurs in form of a higher thresh-
old at which prices are reflected, i.e. in form of delayed investment. Thereby the
price dynamics - more precisely the higher reflection threshold and the increase of the
probability of low prices - reconciles investment delays with zero profits for firms in
the partial equilibrium setup.

Also in general equilibrium, the central planner’s problem is a ’monopolistic’ one.
The planner maximizes utility over all admissible investment paths just as a firm
maximizes profits. As it is usually optimal for a monopolistic firm to utilize the
option premium waiting to invest by delaying investment when volatility rises, it is
natural to hypothesize that it also is for a welfare maximizing central planner. But
how would a delay reconcile with perfect competition and zero profits for firms?

The answer from above is peculiar to a partial equilibrium setting in which prices can
be set into relation to prices of alternative goods. In a general equilibrium setting
with a single representative consumption good, however, there are no relative prices
whose dynamics can comprise an option premium. Hence, the argument cannot be
extended from partial to general equilibrium. So how can an option premium of wait-
ing to invest materialize in general equilibrium, then?

This question is addressed in the second chapter, Optimal Timing of Aggregate In-
vestment and the Yield Curve, within a stylized general equilibrium model with ir-
reversible investment. It turns out that the argument given above is not precisely
correct. While it is true that with a single consumption good there are no relative
prices within a particular instant of time, i.e. there are no intra-period prices, prices
can still be related on their intertemporal dimension. It are precisely the dynamics
of intertemporal prices, i.e. interest rates and future prices, that reconcile investment
delays with zero profits in the context of the model. Longer term interest rates and
futures on wages contain the expected growth-effect of optimally exercised growth
options, rendering current investment opportunities unprofitable whenever a delay is
efficient. In this sense, the term-structure of future prices reflects the option premium
of waiting and leads to optimal delay in investment.

Interestingly, this mechanism is similar to what Keynes termed the ’speculative mo-
tive’ for money demand and liquidity preference. First note that for liquidity pref-
erence to play an economic role, physical capital cannot be perfectly liquid. For if
there is perfect liquidity on the asset-supply side, demand for liquidity is always sat-
isfied. So to even give a meaning to the term, it is a prerequisite to capture the fact
that physical capital is less liquid than money or short term assets, i.e. that it is
a long term matter. In Chapter 2 this is done by assuming that that investment is
irreversible1.

1 Keynes bears testimony to the importance of illiquid physical capital: It is by reason of the
existence of durable equipment that the economic future is linked to the present. It is, therefore,
consonant with, and agreeable to, our broad principles of thought, that the expectation of the future
should affect the present through the demand price for durable equipment. (Keynes, 1936, page 145)
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In Keynes’ General Theory, the interesting component2 of liquidity preference, the
interest rate elastic component, stems out of the speculative motive. Keynes defines
the speculative motive as ’the object of securing profit from knowing better than
the market what the future will bring forth (Keynes (1936, page 170) )’, for exam-
ple an ‘individual, who believes that future rates of interest will be above the rates
assumed by the market, has a reason for keeping actual liquid cash’ (Keynes (1936,
page 170)). In other words, speculative money demand is due to speculation on higher
long term interest rates and lower bond prices. This fits to the intuition which drives
the argument in Chapter 2. Here, investors speculate on better future investment
opportunities which is why they demand short term rather than long term assets,
should long term yields be too low compared to rates that can be rationally expected
for the future. Thereby, short term rates can drop below zero although the marginal
product of capital is strictly positive. But while Keynes speculative motive is due
to believes which deviate from market expectations and therefore based on either a
market inefficiency or on heterogeneous expectations, the model in Chapter 2 relies
on a no-arbitrage condition as connection between the long rate an short rate dynam-
ics. It is based on rational expectations and therefore consistent with neo-classical
thinking.

Thinking about Keynes’ theory and the speculative motive in particular, naturally
leads to questions linked to liquidity preference. Can the model rationalize a liquid-
ity trap? What exactly is a liquidity trap? Is monetary policy really powerless when
short term rates are near or below zero, or are there remedies? Regrettably, these
questions are far too ambitious to be answered based on the model of Chapter 2.
More elementary questions have to be answered first. It is the believe of the author
that while introducing a role for money in an ad hoc way (e.g. by postulating a
cash-in advance-constraint or putting money in the utility function) allows to pro-
duce numbers, but does not contribute to a meaningful monetary analysis as long as
the role that money plays in the real world is not cleared. So what exactly is money
(what is liquidity)?

The third and last chapter, ’Why Fiat Money is a Safe Asset’, attempts to make one
first step towards answering this question. It asks: Why do people exchange real
goods against a piece of paper that neither provides intrinsic utility nor (unlike in
Keynes times) constitutes a claim on a real good such as gold? Why is money a safe
asset whose value people (can) rely upon?. In the model presented in Chapter 3, a
slightly extended version published in Economics Letters (Paulsen (2012)), money is
’safe’: Fiat money has strictly positive value in the unique trembling hand equilibrium.
This holds as each bank note is both: a witness for the existence of some agent in
the economy with debt, backed by collateral, and the only matter that allows the
debtor to settle her debt. Debtors fear to lose the collateral and compete with each
other for not defaulting, i.e. they compete for money. This creates money demand

2 Without interest rate elasticity of money demand Keynes theory would collapse to the ’classic’
quantity theory.
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and thereby ensures positive money value. As not only a single but all debtors in the
economy demand money, idiosyncratic shocks to solvency wash out. This makes fiat
money a safe asset.
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1. OPEN-LOOP EQUILIBRIA AND PERFECT COMPETITION
IN OPTION EXERCISE GAMES

Abstract

The investment boundaries defined by Grenadier (2002) for an oligopoly investment
game determine equilibria in open loop strategies. As closed loop strategies, they are
not equilibria, because any firm by investing sooner can preempt the investments of
other firms and expropriate the growth options. The perfectly competitive outcome
is produced by closed loop strategies that are mutually best responses. In this equi-
librium, the option to delay investment has zero value, and the simple NPV rule is
followed by all firms.

JEL classification: C73, D43, D92, G31, L13

Keywords:
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1.1 Introduction

This paper analyzes oligopoly investment under uncertainty, assuming capital invest-
ment is irreversible and capital stocks are instantaneously adjustable upward at a
fixed price of capital. This oligopoly model is analyzed by Baldursson (1998) and
Grenadier (2002). A similar model is analyzed by Leahy (1993) and Baldursson
and Karatzas (1996) under the assumption of perfect competition and by Abel and
Eberly (1996) and Merhi and Zervos (2005) under the assumption of monopoly. The
investment policies described by all of these authors are singular, meaning that the
investment rate is zero almost everywhere and undefined when investment occurs.
The oligopoly model has important implications for the value of the option to delay
investment – and hence the cost of ignoring this option and using the simple NPV
rule for project choice – and may also be useful for understanding the dynamics of
risk and return in equilibrium (see Novy-Marx (2007)).

The equilibrium concept in Baldursson (1998) is Nash, and strategies are stochastic
processes adapted to the exogenous process that influences demand. This is an “open
loop” concept, in the sense that there is no feedback from the investment of any firm
to the investment of any other firm. It appears that Grenadier presents an equilib-
rium in closed loop strategies, but this is misleading. We show that his equilibrium
is also open loop.

The distinction between open loop and closed loop (or feedback) strategies is well
understood in the context of deterministic oligopoly investment games. See Fersht-
man and Muller (1984), Reynolds (1987), Tirole (1988), or Fudenberg and Tirole
(1992). Equilibria in open loop strategies are unattractive because they fail subgame
or Markov perfection. Open loop strategies are commitments to invest, depending on
the history of demand in the stochastic context, regardless of the investments of other
firms, even though there is no device in the game to make such commitments credible.
For example, in an open loop equilibrium, if one firm deviates to invest more than
the equilibrium strategy specifies, driving the price down, other firms ignore this and
continue to invest as they would have. This is inconsistent with subgame perfection.1

There are difficulties in even defining the game in closed loop form. To do so
would seem to require an extension of Simon and Stinchcombe’s (Simon and Stinch-
combe, 1989) analysis of deterministic continuous-time games with finite action sets to
stochastic continuous-time games with continuum action sets. However, it is possible
to show that the closed loop “trigger strategies” of Grenadier (2002) are not mutually
best responses. By investing earlier, any firm can preempt the investments of other
firms. To do so reduces the aggregate value of growth options but allows the preempt-
ing firm to expropriate growth options. We show that this tradeoff favors preemption.

Trigger strategies employing the perfectly competitive trigger (i.e., following the sim-

1 More precisely, it is inconsistent with subgame perfection if each firm observes the output price
and hence has at least partial information about other firms’ outputs.
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ple NPV rule) are mutually best responses. If one firm’s strategy is to invest enough
to ensure that aggregate industry capital equals the capital stock of a perfectly com-
petitive industry, then any other firm might as well employ the same strategy. This is
an extreme form of Reynolds’s (Reynolds, 1987) observation in a deterministic model
with quadratic adjustment costs that closed loop equilibria involve higher steady-
state capital stocks than open loop equilibria, because “the preemptive or strategic
element of investment behavior in the feedback Nash equilibrium influences the long
run market outcome.”

Perfect competition is of course also the outcome of Bertrand competition, so one
might conjecture that playing the perfectly competitive trigger is implicitly compe-
tition in prices. We believe that this is the wrong interpretation. The game is one
of competition in quantities (capital stocks). However, modeling time as continuous
means that firms can instantaneously respond to others’ investment choices. The
basic assumption of the model is that arbitrarily large investments can be made in-
stantaneously with no adjustment cost other than the fixed price of capital. Thus, at
each instant in time, the game can be viewed as one of Stackelberg competition, in
which each firm chooses its investment with all other firms instantaneously following.
Naturally, each firm aspires to be the Stackelberg leader. A stable point, perhaps the
only stable point, of this joint Stackelberg leadership is perfect competition.

The first author would like to note that his prior sole-authored working paper on this
topic was excessively critical of Grenadier’s concept of a myopic firm. That concept
is indeed useful — to derive an open loop equilibrium. We prove that conditions sim-
ilar to those in Grenadier’s Proposition 3 are sufficient conditions for an open loop
equilibrium.

The proof of open loop equilibrium is in Section 2. Section 3 discusses the difficulties
with defining the game in closed loop form, the fact that the trigger strategies of
Grenadier (2002) are not best responses to each other, and the fact that playing the
perfectly competitive triggers are mutually best responses. Section 4 briefly concludes.

1.2 Open Loop Equilibrium

There are n firms in the industry. There is a constant required rate of return r.
The capital stock of firm i at date t is denoted by Qit, and we set Q−it =

∑
j 6=iQjt.

The cost of a unit of capital is normalized to 1. Capital does not depreciate, and
investment is irreversible.
Consider a filtered probability space (Ω, (Ft)t≥0,P) and a one-dimensional standard
Brownian motion B on the probability space. Let X be a solution of a stochastic
differential equation

dXt = µ(Xt) dt+ σ(Xt) dBt . (1.1)

Assume σ(Xt) 6= 0 for all t almost surely. Define the running maximum

X∗t = max
0≤s≤t

Xs .
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Assume that the operating cash flow rate of firm i at date t depends on Xt, Qit and
Q−it. Denote it by π(Xt, Qit, Q−it). Assume that π is twice continuously differentiable
in (x, qi, q−i), increasing in x, and concave in qi.
Denote marginal operating cash flow by

ζ(x, qi, q−i) =
∂

∂qi
π(x, qi, q−i) .

Assume ζq−i ≥ ζqi and ζq−i(x, 0, q−i) ≤ 0, where the subscripts denote partial deriva-
tives. Though it is not required, we could take

π(x, qi, q−i) = P (x, qi + q−i)qi − C(qi)

for some functions P and C. In that case, Pq ≤ 0 and C ′′ ≥ 0 imply ζq−i ≥ ζqi .
Assume further that ζ is increasing in x and that the integrability constraint

E
∫ ∞

0

e−rt sup
a≤q−i≤b

|ζ(Xt, qi, q−i)|dt <∞ . (1.2)

is satisfied for each fixed triple (qi, a, b).
2

Denote the initial capital stock of firm i by qi0. The set of admissible open loop
strategies of firm i is

A(qi0) = {(Qit)t≥0 | nondecreasing, left-continuous, Ft-adapted, Qi0 ≥ qi0} . (1.3)

If each firm j 6= i plays an open loop strategy, then the stochastic process Q−i is
an exogenous Ft-adapted process from the point of view of firm i. Firm i chooses
Qi ∈ A(qi0) to maximize

Π(Qi, Q−i) = E
∫ ∞

0

e−rt [π(Xt, Qit, Q−it) dt− dQit] . (1.4)

An open loop equilibrium — i.e., a Nash equilibrium in open loop strategies — is an
n-tuple (Q∗1, . . . , Q

∗
n) of admissible strategies such that, for each i,

Q∗i ∈ argmaxQi∈A(qi0) Π(Qi, Q
∗
−i) . (1.5)

The function m described in the proposition below should be interpreted as a marginal
value function (marginal with respect to qi). It is also the value function of the optimal
stopping problem (1.9) defined below. The hypotheses of the proposition are similar
to those in Grenadier’s Proposition 3, though Grenadier’s assumptions regard the
functions

(x, q) 7→ m(x, q, (n− 1)q) and q 7→ X(q, (n− 1)q) ,

i.e., the values ofm andX along a ray in the (qi, q−i) domain, whereas our assumptions
concern m and X on their entire domains. The conclusion differs regarding the nature
of equilibrium — open loop instead of closed loop. The proposition is proven in
Appendix 1.5.

2 The integrability constraint is used to deduce convergence of expectations in the proof of Propo-
sition 1. It can be replaced by ζ ≥ 0, using the monotone convergence theorem in the proof.
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Proposition 1.2.1. Suppose there exist functions m(x, qi, q−i) and X(qi, q−i) satis-
fying the following conditions:

1. X(qi, q−i) is differentiable in q−i and continuous in qi.

2. X(qi, q−i) and X(qi, (n− 1)qi) are increasing in qi.

3. m is bounded from below for each fixed pair (qi, q−i), twice continuously differ-
entiable with respect to x, and once continuously differentiable with respect to
(qi, q−i).

4. m is monotonically increasing in x for x ≤ X(qi, q−i).

5. m solves the PDE

µmx +
1

2
σ2mxx − rm+ ζ = 0 (1.6)

on the region x < X(qi, q−i).

6. m(X(qi, q−i), qi, q−i) = 1 (value matching).

7. mx(X(qi, q−i), qi, q−i) = 0 (smooth pasting).

Then the following are true:

(A) Myopic Optimality. If Qjt = qj0 for all j 6= i and all t ≥ 0, then

Qit = inf {qi ≥ qi0 | X∗t ≤ X(qi, q−i0)} (1.7)

maximizes (1.4) over Qi ∈ A(qi0).

(B) Symmetric Open Loop Equilibrium. Suppose qi0 = qj0 for all i and j. Then
(Q∗1, . . . , Q

∗
n) is an open loop equilibrium, where, for each i,

Q∗it = inf {qi ≥ qi0 | X∗t ≤ X(qi, (n− 1)qi)} . (1.8)

Assumptions 3–7 ensure that the function m fulfills the criteria of a Hamilton-Jacobi-
Bellman verification theorem for the optimal stopping problem

min
τ

E
[∫ τ

0

e−rtζ(Xt, qi, q−i)dt+ e−rτ
]
. (1.9)

More precisely, m is the value function of this stopping problem, and the hitting time
of the boundary X(qi, q−i) is an optimal stopping rule. The optimal stopping problem
can be interpreted as the problem of a firm to optimally install a unit of capital un-
der the myopic assumption that rival firms will never do so and that no further unit
can be installed. In the formulation (1.9), the firm minimizes the opportunity cost
(the foregone marginal cash flow) of not investing plus the discounted cost of investing.

The smooth pasting condition deserves a comment. Heuristically it can be derived by
the envelope theorem. Namely, letM(x, y) be the expected value in (1.9) whenX0 = x
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and the stopping time is the first hitting time of y. By the value matching condition,
M(y, y) = 1, so differentiating this with respect to y yields Mx(y, y) + My(y, y) = 0.
However, if y∗ is optimal, then My(·, y∗) should equal zero. So Mx(y

∗, y∗) = 0 at the
optimal boundary y∗.

There is a large literature on the connection between singular stochastic control prob-
lems and optimal stopping problems, starting with Karatzas and Shreve (1984). The
equivalence between the control problem and the stopping problems here is the same
as in Theorem 1 of Bank (2006). What is new about our proof, as far as we know,
is the solution of the stopping problems in the presence of the exogenous singular
process Q−i.

Now we apply Proposition 1.2.1 to the linear model studied by Baldursson and
Karatzas (1996) and the constant elasticity example considered by Grenadier (2002).
Grenadier and Baldursson present the value of X(qi, q−i) when q−i = (n− 1)qi. The
entire function X(qi, q−i) is presented below.

Constant Elasticity

Assume π(x, qi, q−i) = P (x, qi + q−i)qi with P (x, q) = xq−1/γ. Assume γ > 1. Assume
X is a geometric Brownian motion with parameters µ and σ; i.e., µ(x) = µx and
σ(x) = σx with a slight abuse of notation. Assume r > µ and β > γ, where

β =
−
(
µ− 1

2
σ2
)

+
√(

µ− 1
2
σ2
)2

+ 2rσ2

σ2
. (1.10)

These restrictions on the parameters imply that the model satisfies our assumptions
regarding π. We have

ζ(x, qi, q−i) =

(
1− qi

γ(qi + q−i)

)
x(qi + q−i)

−1/γ .

Proposition 1.2.2. In the constant elasticity model, there is a unique pair (m,X)
satisfying the conditions of Proposition 1,3 and

X(qi, q−i) =
β

β − 1

(
γ

γ − qi/(qi + q−i)

)
(r − µ)(qi + q−i)

1
γ , (1.11a)

m(x, qi, q−i) =
ζ(x, qi, q−i)

r − µ
− ζ(X(qi, q−i), qi, q−i)

(r − µ)β

(
x

X(qi, q−i)

)β
. (1.11b)

Proof. The general solution to the PDE (1.6) is

m(x, qi, q−i) =
ζ(x, qi, q−i)

r − µ
+ Axβ +Bxβ

′

with β given by (1.10), and β′ = 1− β − 2µ/σ2 < 0. Assumptions 3 and 4 imply m
is bounded in x on the interval (0, X(qi, q−i)), so B = 0. Solving conditions 6 and 7
in the unknowns A and X(qi, q−i) yields (1.11).

3 Uniqueness of m is on the domain {(x, qi, q−i) | x ≤ X(qi, q−i)}.
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Linear Demand

Assume π(x, qi, q−i) = P (x, qi+q−i)qi−cqi, with P (x, q) = x−bq, for constants b and c.
Assume X is a geometric Brownian motion with parameters µ and σ. Assume β > 2,
where β is defined in (1.10). Then the model satisfies our assumptions regarding π.
We have ζ(x, qi, q−i) = x− 2bqi − bq−i − c.

Proposition 1.2.3. In the linear model, there is a unique pair (m,X) satisfying the
conditions of Proposition 1.2.1, and

X(qi, q−i) =
β

β − 1

(
r − µ
r

)
(c+ r + 2bqi + bq−i) , (1.12a)

m(x, qi, q−i) =
−2bqi − bq−i − c

r
+

x

r − µ
− xβ

(r − µ)βX(qi, q−i)β−1
. (1.12b)

Proof. The general solution to the PDE (1.6) is:

m(x, qi, q−i) =
ζ(x, qi, q−i)

r
+ Axβ +Bxβ

′

with β as given in (1.10) and β′ = 1− β− 2µ/σ2 < 0. For the same reasons as in the
constant elasticity case, B = 0. Solving the smooth pasting and the value matching
condition for A and X yields (1.12).

1.3 Closed Loop Strategies and Best Responses

First, we admit we do not know how to define this game in closed loop form. There are
substantial complications in doing so. If the capital stock processes were absolutely
continuous instead of singular, one would view the investment rate zit = dQit/dt as
the decision variable of firm i at date t. If each zit were required to depend on the
history of (X,Q1, . . . , Qn) prior to t in a sufficiently regular way, then the capital
stock processes

Qit = qi0 +

∫ t

0

zit dt

would be well defined. With singular controls, one could view the action of firm i at
any date t as being the Lebesgue-Stieltjes differential dQit of its capital stock process
Qi; however, these differentials are meaningful only in integrated form. An alternate
view is that the action of firm i at date t is its total capital Qit, chosen subject to the
constraint that capital is irreversible: Qit ≥ sups<tQis. However, this suffers from
the general problem with continuous-time games that what seem to be well-defined
strategies may not produce well-defined outcomes (see Simon and Stinchcombe, 1989).
For example, the formula Qit = sups<tQis seems to specify Qit as a function of the
history of play prior to t; yet, every nondecreasing left-continuous process Qi satis-
fies the formula. Likewise, the formulas Qit = lims↑tQjs and Qjt = lims↑tQis seem
to define each firm’s capital stock at time t as a function of the other firm’s prior
investments, but these formulas are satisfied by every left-continuous Qi = Qj. Thus,
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formulas such as these — and one could give an arbitrary number of similar examples
— are very far from uniquely specifying how the game is to be played. In order to
define the game, some rules must be constructed to allow one to map such formulas,
or whatever strategies are allowed, into unique outcomes. Simon and Stinchcombe
(1989) accomplish this for deterministic games with finite action sets. Generalizing
their work to the present context, and then finding equilibria, would seem to be sub-
stantial tasks.

Though we do not know how to define strategies in general, there are some com-
binations of decision rules that clearly produce well-defined outcomes. Grenadier’s
Proposition 1 states: “Each firm’s investment strategy is characterized by increas-
ing output incrementally whenever X(t) rises to the trigger function X̄(qi, Q−i).”

4

Though Grenadier’s statement is not a precise description of a strategy, it seems
reasonable to take its meaning to be

Qit = inf

{
qi ≥ qi0

∣∣∣∣ sup
0≤s≤t

[Xs −X(qi, Q−is)] ≤ 0

}
. (1.13)

Given a stochastic process Q−i, this defines Qi as the smallest nondecreasing pro-
cess such that Xt ≤ X(Qit, Q−it) for all t. Note that Qit is allowed to depend on
the contemporaneous Q−it. This seems reasonable for all t > 0 if we restrict to
left-continuous paths.5 Decision rules of the form (1.13) do not necessarily produce
well-defined outcomes. For example, in a two-firm game, if both firms play (1.13)
for X(qi, q−i) = qi + q−i, then the division of output between the two firms is not
defined. However, if all firms play (1.13) for the open loop equilibrium investment
boundaries in the constant elasticity and linear examples — i.e., for X defined in
(1.11a) or (1.12a) — then the capital paths of all firms are well defined. In fact, the
strategies (1.13) with the open loop equilibrium investment boundaries produce the
open loop equilibrium capital processes.

If all firms play (1.13) for an increasing X(·) and the paths are well defined, then any
firm can preempt the investments of other firms by investing aggressively itself. The
following proposition shows that the open loop equilibrium boundary in the linear
model does not define a closed loop equilibrium, because preemption is a profitable
deviation (the strategies (1.14) and (1.15b) are the strategies asserted by Grenadier
to constitute an equilibrium in the linear model).

Proposition 1.3.1. Suppose X is a geometric Brownian motion with drift µ and
volatility σ. Assume π(x, qi, q−i) = (X − b(qi + q−i) − c)qi for constants b > 0 and
c ≥ 0. Assume qi0 = qj0 for all i and j, and define q0 =

∑n
i=1 qi0. Assume β > 2,

4 X̄(qi, Q−i) equals the myopic trigger X(qi, Q−i) from Proposition 1.2.1 (see Grenadier’s Propo-
sition 2).

5 If X0 > X(qi0, q−i0), then (1.13) implies a jump at time 0. It allows this jump to depend on
simultaneous jumps of other firms. This seems unreasonable, but one could view it as a reduced
form for nearly instantaneous reactions. Simon and Stinchcombe (1989) discuss this issue.
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where β is defined in (1.10). Assume for all j 6= i that

Qjt = inf

{
qj ≥ qj0

∣∣∣∣ sup
0≤s≤t

[
Xs −

β

β − 1

(
r − µ
r

)
(c+ r + 2bqj + bQ−js)

]
≤ 0

}
.

(1.14)
Define

τ = inf

{
t ≥ 0

∣∣∣∣ X∗t ≥ β

β − 1

(
r − µ
r

)(
c+ r +

(n+ 1)bq0

n

)}
.

There exists α > 1 such that the open loop strategy

Qα
it =

{
qi0 for t ≤ τ ,

inf
{
qi ≥ αqi0 | X∗t ≤

β
β−1

(
r−µ
r

) (
c+ r + n+α

α
bqi
)}

for t > τ ,
(1.15a)

produces higher expected discounted cash flows for firm i than does the closed loop
strategy

Qit = inf

{
qi ≥ qi0

∣∣∣∣ sup
0≤s≤t

[
Xs −

β

β − 1

(
r − µ
r

)
(c+ r + 2bqi + bQ−is)

]
≤ 0

}
.

(1.15b)

Proof. The unique n–tuple (Q1, . . . , Qn) of stochastic processes satisfying (1.14) and
(1.15b) is the open loop equilibrium (Q∗1, . . . , Q

∗
n) defined in Proposition 1 and Propo-

sition 1.2.3. Let α ≥ 1. The unique n–tuple (Q1, . . . , Qn) of stochastic processes
satisfying (1.14) and (1.15a) is (Qα

1 , . . . , Q
α
n), where Qα

i is defined in (1.15a) and

(∀ j 6= i) Qα
jt =

{
qj0 for t ≤ τ ,

Qα
it/α for t > τ .

(1.16)

To see this, note that the equality of the Qj for j 6= i implies Q−jt = (n−2)Qjt+Qα
it.

Making this substitution in (1.14), we have

Qjt = max

{
qj0, sup

0≤s≤t

1

nb

[
β − 1

β

(
r

r − µ

)
Xs − c− r − bQα

is

]}
. (17a)

Moreover, (1.15a) implies, for t > τ ,

Qα
it = αmax

{
qi0,

1

(n+ α)b

[
β − 1

β

(
r

r − µ

)
X∗t − c− r

]}
. (17b)

Substituting (17b) in (17a) yields (1.16).
Note that, for α = 1, Qα

j = Q∗j for all j = 1, . . . , n. Define F (α) = Π(Qα
i , Q

α
−i),

where Π(·) is the expected discounted cash flow defined in (1.4). The claim is that
F (α) > F (1) for some α > 1. We show in Appendix B that the right-hand derivative
of F at α = 1 is positive. Thus, F (α) > F (1) for all sufficiently small α > 1.
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The preemption strategy (1.15a) involves a limited amount of preemption: jumping
to a market share of α/(n + α − 1) and maintaining that market share forever. For
some parameter values in the linear model, expropriating all of the growth options is
a profitable deviation from (1.15b). To explain what it means to expropriate all of the
growth options, consider the constant elasticity example and the boundary (1.11a).
Note that

qi
qi + q−i

→ 0 ⇒ X(qi, q−i)→
β

β − 1
(r − µ)(qi + q−i)

1
γ . (1.18)

The limit of X(qi, q−i) displayed in (1.18) is the perfectly competitive investment
boundary defined by Leahy (1993). It is the boundary at which a firm with infinites-
imal market share would invest. Thus, if some firm j plays (1.13), i.e.,

Qjt = inf

{
qj ≥ qj0

∣∣∣∣ sup
0≤s≤t

[Xs −X(qj, Q−js)] ≤ 0

}
, (1.19)

then the behavior of firm j will approach that of a perfectly competitive firm as its
market share decreases. If firm i invests sufficiently aggressively that it deters the
investments of other firms, then the market shares of other firms will gradually de-
cline toward zero, and their behavior under the decision rule (1.19) with boundary
(1.11a) will approach that of perfect competition. Thus, aggregate output and price
will approach the perfectly competitive output and price, and the value of industry
growth options will eventually be destroyed. In exchange for this diminution of in-
dustry growth options, the preempting firm can expropriate all growth options to
itself. We have calculated, though it is not presented here, that expropriating all of
the growth options is a profitable deviation from (1.15b) in the linear model for some
parameter values. Paulsen (2006) shows that preempting for a finite period of time
is a profitable deviation in the constant elasticity model for some parameter values.

The perfectly competitive boundary is immune to preemption. Suppose, in the con-
stant elasticity example, that each firm plays

Qit = inf

{
qi ≥ qi0

∣∣∣∣ sup
0≤s≤t

[
Xs −

β

β − 1
(r − µ)(qi +Q−is)

1
γ

]
≤ 0

}
. (1.20)

Given symmetric initial conditions and initial industry capital q0, equation (1.20)
holds for each i whenever the Qi are nondecreasing processes such that industry
capital Qt =

∑n
i=1Qit satisfies

Qt = inf

{
q ≥ q0 | X∗t ≤

β

β − 1
(r − µ)q

1
γ

}
.

Thus, (1.20) suffers from the problem discussed in the first paragraph of this section:
It does not produce well-defined individual firm capital processes. However, it does
produce well-defined individual firm values, which is the key requirement for choosing
among strategies. Because industry growth options have zero value when investing
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at the perfectly competitive boundary, it does not matter how growth is distributed
among the firms. Moreover, if all other firms play (1.20), then it is optimal for each
individual firm to play (1.20), because the price process is unaffected by an individ-
ual firm playing (1.20) when other firms also play (1.20), and the investments from
playing (1.20) are zero NPV when the price process is taken as given. The only sub-
optimal decision a firm could make when other firms play (1.20) is to invest before
the perfectly competitive boundary is reached, and this does not occur when a firm
plays (1.20). Thus, the strategies (1.20) are mutually best responses.

Though the strategies (1.20) are choices of quantities, not prices, the outcome is
like Bertrand in that the “economic value added” of each firm is zero. Related to
this is another feature the equilibrium shares with Bertrand: the strategies are weakly
dominated. Investing zero at all times is as valuable as making zero NPV investments,
and it is superior to playing (1.20) if other firms play investment strategies that are
less aggressive than (1.20).

1.4 Conclusion

Open loop equilibria have an extreme Cournot nature: Each firm optimizes taking
the entire output process of each other firm as given. They fail subgame perfection,
because if a firm invests aggressively the game will reach a node from which the given
output processes of other firms will not be part of a Nash equilibrium starting from
that node. The closed loop strategies (1.13) have the potential to form subgame per-
fect equilibria, because each firm reacts to the investments of others. These strategies
have a Stackelberg flavor, because all firms react to the investments of any firm like
Stackelberg followers, and hence each firm is like a Stackelberg leader. A stable point
of this joint Stackelberg leadership is perfect competition.

The closed loop strategies (1.13) employing the myopic (open loop equilibrium)
boundary do not form an equilibrium, because any firm by investing more can cause
other firms to invest less, like a Stackelberg leader, and hence expropriate some of the
growth options. We proved that this preemptive investment is a profitable deviation
in the linear model. Paulsen (2006) shows the same for the constant elasticity model,
for some parameter values.

It is an open question whether the perfectly competitive boundary is the unique
boundary such that closed loop strategies of the form (1.13) are impervious to pre-
emption. If so, the perfectly competitive boundary would be the unique boundary
such that the strategies (1.13) could constitute an equilibrium.

It seems likely that there would be other closed-loop equilibria, if the strategy spaces
and mapping from strategy n–tuples to outcomes could be specified. There should
be equilibria in punishment strategies, in which firms invest less than the perfectly
competitive amount and threaten to punish any firm that deviates. These strategies
are not of the form: invest when Xt = X(Qit, Q−it) for an increasing function X, be-
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cause strategies of this form prescribe less investment when competitors invest more
and hence do not allow for punishment.
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Appendix

1.5 Proof of Proposition 1.2.1

Define

m̄(x, qi, q−i) =

{
m(x, qi, q−i) if x ≤ X(qi, q−i) ,

1 otherwise .
(1.5.1)

Lemma 1.5.1. m̄q−i(x, qi, q−i) = 0 for x ≥ X(qi, q−i).

Proof. By the value-matching condition, we have

m̄(X(qi, q−i), qi, q−i) = 1 .

Differentiating this equation with respect to q−i yields

m̄x(X(qi, q−i), qi, q−i)Xq−i(qi, q−i) + m̄q−i(X(qi, q−i), qi, q−i) = 0 .

As the first term vanishes by the smooth-pasting condition, we get

m̄q−i(X(qi, q−i), qi, q−i) = 0 .

This proves the claim for x = X(qi, q−i). For x > X(qi, q−i), m̄(x, qi, z) = 1 for z in a neighborhood
of q−i by definition of m̄. Hence, differentiation yields the result.

Lemma 1.5.2. We have (for all x 6= X(qi, q−i))

−rm̄+ µm̄x +
1

2
σ2m̄xx ≥ −ζ

with equality for x < X(qi, q−i).

Proof. For x < X(qi, q−i) equality holds by Assumption 5 of Proposition 1.2.1. Assumptions 4 and 7
imply that mxx ≤ 0 for x = X(qi, q−i). Therefore

−rm+ µmx ≥ −ζ

at x = X(qi, q−i). Using the smooth pasting condition we get

−rm̄ = −rm ≥ −ζ

at x = X(qi, q−i). Note that ζ increases in x while m̄ remains constant, so

−rm̄+ µm̄x +
1

2
σ2m̄xx = −rm̄+ 0 + 0 ≥ −ζ

for x > X(qi, q−i).

Consider the myopic problem indexed by y = qi0 and z = q−i0:

max
Qi∈A(y)

E
∫ ∞

0

e−rt (π(Xt, Qit, z) dt− dQit) . (1.5.2)

Related to this problem is the following optimal stopping problem: Choose a stopping time τ to
maximize

E
[∫ ∞

τ

e−rtζ(Xt, y, z) dt− e−rτ
]

= E
[∫ ∞

τ

e−rt (ζ(Xt, y, z)− r) dt
]
. (1.5.3)
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To interpret the optimal stopping problem, notice that a small investment ε at time τ increases
expected discounted revenues by approximately

ε · E
∫ ∞
τ

e−rtζ(Xt, y, z) dt

and has expected discounted cost equal to ε · E [e−rτ ]. The optimal stopping time is therefore
the optimal time to make a investment of size ε ≈ 0. Subtracting E

[∫∞
0
e−rtζ(Xt, y, z) dt

]
and

multiplying by (−1) converts the problem of maximizing (1.5.3) to the following equivalent problem:

min
τ

E
[∫ τ

0

e−rtζ(Xt, y, z) dt+ e−rτ
]
. (1.5.4)

This can be interpreted as minimizing the opportunity cost of a unit of capital.
We also consider the equilibrium problem indexed by y = qi0 and z = q−i0. In this problem, we
assume the aggregate capital of firms j 6= i is

Lzt = inf

{
q ≥ z | max

0≤s≤t
Xs ≤ X(q/(n− 1), q)

}
. (1.5.5)

The optimization problem for firm i that we study is:

max
Qi∈A(y)

E
∫ ∞

0

e−rt (π(Xt, Qit, Lzt) dt− dQit) . (1.5.6)

The related optimal stopping problem is: Choose a stopping time τ to maximize

E
[∫ ∞

τ

e−rtζ(Xt, y, Lzt) dt− e−rτ
]

= E
[∫ ∞

τ

e−rt (ζ(Xt, y, Lzt)− r) dt
]
, (1.5.7)

which is equivalent to:

min
τ

E
[∫ τ

0

e−rtζ(Xt, y, Lzt) dt+ e−rτ
]
. (1.5.8)

For any y and z, define
τyz = inf{t | Xt > X(y, z)} . (1.5.9)

Lemma 1.5.3. τyz solves the myopic stopping problem (1.5.4).

Proof. By an approximation argument as in Øksendal (2002) (see Theorem 10.4.1), we can assume
that m̄ is twice continuously differentiable with respect to x. Let τ be an arbitrary stopping time.
Applying Itô’s rule to e−r(t∧τ)m̄(Xt∧τ , y, z) yields:

e−r(t∧τ)m̄(Xt∧τ , y, z) = m̄(X0, y, z) +

∫ t∧τ

0

e−rsm̄xσ dBs

+

∫ t∧τ

0

e−rs(−rm̄+ µm̄x +
1

2
σ2m̄xx) ds . (1.5.10)

Applying Lemma 1.5.2 to (1.5.10), we get

e−r(t∧τ)m̄(Xt∧τ , y, z) ≥ m̄(X0, y, z) +

∫ t∧τ

0

e−rsm̄xσ dBs

−
∫ t∧τ

0

e−rsζs ds ,

with equality for τ ≤ τyz. We cannot directly take expectations on both sides as we do not know
whether the stochastic integral is a martingale or just a local martingale. So let τk ≤ k be a localizing
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sequence for the stochastic integral. That is, τk ↑ ∞ and the stopped integrals are martingales.
Taking expectations on both sides and using Doob’s optional sampling theorem yields, for each k,

E
[
e−r(τk∧τ)m̄(Xτk∧τ , y, z)

]
≥ m̄(X0, y, z)− E

[∫ τk∧τ

0

e−rsζs ds

]
.

Observe that m̄ is bounded from above by 1 and bounded from below by Assumption 3 in Proposition
1.2.1, whereas the integrals involving ζ are uniformly integrable by the integrability assumption (1.2).
Taking the limit k →∞ we get

m̄(X0, y, z) ≤ lim
k→∞

E
[
e−r(τk∧τ)m̄(Xτk∧τ , y, z)

]
+ lim
k→∞

E
[∫ τk∧τ

0

e−rsζs ds

]
= E

[
e−rτm̄(Xτ , y, z)

]
+ E

[∫ τ

0

e−rsζs ds

]
,

or

m̄(X0, y, z) ≤ E
[∫ τ

0

e−rsζs ds

]
+ E

[
e−rτm̄(Xτ , y, z)

]
≤ E

[∫ τ

0

e−rsζs ds

]
+ E

[
e−rτ

]
,

with equality for τ = τyz.

Lemma 1.5.4. If y = z/(n− 1), then τyz solves the equilibrium stopping problem (1.5.8).

Proof. We proceed as in the proof of Lemma 1.5.3 with the difference that now dLzt 6= 0. Let τ be
an arbitrary stopping time. Applying Itô’s rule to e−r(t∧τ)m̄(Xt∧τ , y, Lz,t∧τ ) yields:

e−r(t∧τ)m̄(Xt∧τ , y, Lt∧τ,z) = m̄(X0, y, z) +

∫ t∧τ

0

e−rsm̄xσ dBs

+

∫ t∧τ

0

e−rs(−rm̄+ µm̄x +
1

2
σ2m̄xx) ds+

∫ t∧τ

0

e−rsm̄q−i dLzs . (1.5.11)

Note that L increases only when Xt = X(Lzt/(n− 1), Lzt). We have Lzt/(n− 1) ≥ z/(n− 1) = y.
By monotonicity of X, it follows that L increases only when Xt ≥ X(y, Lzt). In this case, Lemma 1
implies

m̄q−i(Xt, y, Lzt) dLzt = 0 . (1.5.12)

Applying (1.5.12) and Lemma 2 to (1.5.10), we get

e−r(t∧τ)m̄(Xt∧τ , y, Lz,t∧τ ) ≥ m̄(X0, y, z) +

∫ t∧τ

0

e−rsm̄xσ dBs

−
∫ t∧τ

0

e−rsζs ds ,

with equality for τ ≤ τyz. As in the proof of Lemma 1.5.3 we take a localizing sequence τk ≤ k.
Taking expectations on both sides yields, for each k:

E
[
e−r(τk∧τ)m̄(Xτk∧τ , y, Lz,τk∧τ )

]
≥ m̄(X0, y, z)− E

[∫ τk∧τ

0

e−rsζs ds

]
.

Observe that m̄ is bounded from above by 1 and ζ(Xs, y, Lzs) ≤ ζ(Xs, 0, Lzs) ≤ ζ(Xs, 0, z) which is
integrable by assumption (1.2). So applying Fatou’s lemma yields:

m̄(X0, y, z) ≤ lim sup
k→∞

E
[
e−r(τk∧τ)m̄(Xτk∧τ , y, Lz,τk∧τ )

]
+ lim sup

k→∞
E
[∫ τk∧τ

0

e−rsζs ds

]
≤ E

[
e−rτm̄(Xτ , y, Lzτ )

]
+ E

[∫ τ

0

e−rsζs ds

]
; (1.5.13)
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i.e.,

m̄(X0, y, z) ≤ E
[∫ τ

0

e−rsζs ds

]
+ E

[
e−rτm̄(Xτ , y, Lzτ )

]
≤ E

[∫ τ

0

e−rsζs ds

]
+ E

[
e−rτ

]
.

Note that Lzt = z for t ≤ τyz when z = (n − 1)y, so for τ = τyz the value m̄ is also bounded from
below by Assumption 3 in Proposition 1.2.1. Using this and the integrability assumption (1.2) the
right-hand side in (1.5.13) converges in L1 and we get equality for τ = τyz.

The next lemma shows, for a firm with capital stock y, that it is optimal to wait at least until Xt

hits X(y, (n− 1)y), even if other smaller firms invest earlier.

Lemma 1.5.5. Suppose y > z/(n− 1). For any stopping time τ ,

E
[∫ τ

0

e−rtζ(Xt, y, Lzt) dt+ e−rτ
]
≥ E

[∫ τ̂

0

e−rtζ(Xt, y, Lzt) dt+ e−rτ̂

]
,

where τ̂ = τ ∨ τy,(n−1)y.

Proof. For k = 1, 2, . . . , define the following convex combinations of y and z/(n− 1):

yk = y

[
1−

(
n− 1

n

)k−1
]

+
z

n− 1

(
n− 1

n

)k−1

.

Define zk = (n− 1)yk. Note z1 = z. Set τ0 = 0 and τk = τyk,zk for k ≥ 1. Note that τk ↑ τy,(n−1)y.
We will first show, for k ≥ 1,

τk−1 ≤ t ≤ τk ⇒ ζ(Xt, yk, zk) ≥ ζ(Xt, y, Lzt) . (1.5.14)

In the case k = 1, (1.5.14) follows from the fact that Lzt = z1 = z for t ≤ τ1 and the fact that y1 < y
and ζ is decreasing in its second argument.
For k > 1, consider any t ∈ [τk−1, τk]. Note that yk = y + zk−1 − zk ≤ y + Lzt − zk. Hence
ζ(Xt, yk, zk) ≥ ζ(Xt, y + Lzt − zk, zk). Moreover,

ζ(Xt, y + Lzt − zk, zk)− ζ(Xt, y, Lzt)

=

∫ zk−Lzt

0

[
ζq−i(Xt, y − u, Lzt + u)− ζqi(Xt, y − u, Lzt + u)

]
du ≥ 0 ,

the inequality following from ζq−i ≥ ζqi and the fact that zk ≥ Lzt for t ≤ τk. Thus, (1.5.14) holds
for all k.
For k ≥ 0, define τ̂k = τ ∨ τk. Note that τ̂k ↑ τ̂ . Using (1.5.14) and the optimality of τk in the
myopic problem starting from (yk, zk) (see Lemma 1.5.3), we obtain

0 ≥ E

[
1{τ̂k−1<τk}

(∫ τk

τ̂k−1

e−rtζ(Xt, yk, zk) dt+ e−rτk − e−rτ̂k−1

)]

≥ E

[
1{τ̂k−1<τk}

(∫ τk

τ̂k−1

e−rtζ(Xt, y, Lzt) dt+ e−rτk − e−rτ̂k−1

)]

= E

[∫ τ̂k

τ̂k−1

e−rtζ(Xt, y, Lzt) dt+ e−rτ̂k − e−rτ̂k−1

]
. (1.5.15)
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The equality (1.5.15) follows from the fact that {τ̂k−1 < τk} = {τ̂k−1 < τ̂k} and the fact that τk = τ̂k
on this event. When we add the right-hand sides of (1.5.15) from k = 1 to k = ` for any `, we obtain

0 ≥ E

[∫ τ̂`

τ

e−rtζ(Xt, y, Lzt) dt+ e−rτ̂` − e−rτ
]
,

or

E
[∫ τ

0

e−rtζ(Xt, y, Lzt) dt+ e−rτ
]
≥ E

[∫ τ̂`

0

e−rtζ(Xt, y, Lzt) dt+ e−rτ̂`

]
.

The claim now follows by taking the limit `→∞, using the fact that the set{∫ τ̂`

0

e−rtζ(Xt, y, Lzt) dt

∣∣∣∣∣ ` ∈ N

}

of random variables is uniformly integrable due to the integrability assumption (1.2).

Lemma 1.5.6. If y ≥ z/(n− 1), then τy,(n−1)y solves the equilibrium stopping problem (1.5.8).

Proof. For convenience, denote τy,(n−1)y by τ∗. For y = z/(n−1) the statement follows from Lemma
1.5.4. Suppose y > z/(n−1). By virtue of the previous lemma, we can restrict the search for optimal
stopping times to those times τ satisfying τ ≥ τ∗. For such a stopping time, the value achieved in
(1.5.8) is

E
[∫ τ

0

e−rtζ(Xt, y, Lzt) dt+ e−rτ
]

= E

[∫ τ∗

0

e−rtζ(Xt, y, Lzt) dt+ e−rτ
∗

]

+ e−rτ
∗
E
[∫ τ

τ∗
e−r(t−τ

∗)ζ(Xt, y, Lzt) dt+ e−r(τ−τ
∗)

]
. (1.5.16)

Thus, minimizing (1.5.8) is equivalent to minimizing

E
[∫ τ

τ∗
e−r(t−τ

∗)ζ(Xt, y, Lzt) dt+ e−r(τ−τ
∗)
∣∣ Fτ∗] . (1.5.17)

Recall that τ∗ = inf{t|Xt > X(y, (n− 1)y)}. Thus,

Xτ∗ = X(y, (n− 1)y) = max
0≤s≤τ∗

Xs .

This implies that
Lzτ∗ = inf {q ≥ z | Xτ∗ ≤ X(q/(n− 1), q)} = (n− 1)y .

Minimizing (1.5.17) is therefore equivalent to minimizing (1.5.8) given z = (n−1)y, and the solution
of this is τy,(n−1)y; i.e., the minimum value of (1.5.17) is attained at τ = τ∗.

The following lemma completes the proof of the symmetric open loop equilibrium. If all firms j 6= i
choose the processes Q∗j defined in (1.8), then Q−i = Lz defined in (1.5.5), where z = q−i0. For
convenience, set τy = τy,(n−1)y. Note that Q∗i defined in (1.8) and τy satisfy

τy = inf{t ≥ 0 | Q∗it ≥ y} , (1.5.18)

for y > qi0, meaning that τy is the investment time of unit number y for the capital process Q∗i .

Lemma 1.5.7. Assume qi0 = qj0 for all i and j and Q∗j is given by (1.8) for j 6= i. Then Q∗i defined
in (1.8) maximizes (1.4) on A(qi0).
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Proof. Let ξ ∈ A be an arbitrary admissible control. We can assume that E
∫∞

0
e−rt dξt < ∞ as

otherwise the firm value would be −∞. Integrating by parts and applying the monotone convergence
theorem shows that this implies E

∫∞
0
e−rtξt dt <∞, which implies further that E [limt→∞ e−rtξt] =

0. For y ≥ qi0, define
τ ξy = inf{t ≥ 0|ξt ≥ y} ,

the investment time of unit number y. Then

E
[∫ ∞

0

e−rt(π(Xt, ξt, Lzt) dt− dξt)

]
= E

[∫ ∞
0

e−rt(π(Xt, ξt, Lzt)− r(ξt − qi0)) dt− lim
t→∞

e−rtξt

]
= E

[∫ ∞
0

(
e−rtπ(Xt, qi0, Lzt) +

∫ ξt

qi0

e−rt(πqi(Xt, y, Lzt)− r) dy

)
dt

]

= E

[∫ ∞
0

e−rtπ(Xt, qi0, Lzt) dt+

∫ ∞
qi0

∫ ∞
τξy

e−rt(πqi(Xt, y, Lzt)− r) dt dy

]
,

where we integrated by parts to obtain the first equality and changed the order of integration to
obtain the third. Recalling the definition ζ = πqi , and applying Fubini and the optimality of τy for
y > qi0, we get

E
[∫ ∞

0

e−rt(π(Xt, ξt, Lzt) dt− dξt)

]
− E

[∫ ∞
0

e−rtπ(Xt, qi0, Lzt) dt

]
=

∫ ∞
qi0

E

[∫ ∞
τξy

e−rt(ζ(Xt, y, Lzt)− r) dt

]
dy

≤
∫ ∞
qi0

E

[∫ ∞
τy

e−rt(ζ(Xt, y, Lzt)− r) dt

]
dy

with equality if τ ξy = τy (equivalently, if ξ = Q∗i ).

To prove the myopic optimality, note that the investment times

τyq−i0 = inf{t | Xt > X(y, q−i0)} = inf{t ≥ 0 | Qit ≥ y} (1.5.19)

of the myopic strategy Qi are optimal stopping times for the myopic stopping problems (see Lemma
1.5.3 ). The same proof as for Lemma 1.5.7 shows that Qi is an optimal investment strategy when
the rival firms hold their capital stocks constant.

1.6 Proof of Proposition 4

Set Pαt = Xt − b
∑n
j=1Q

α
jt. We have

F (α) = E
∫

[0,τ)

e−rt[(Pαt − c)Qαit − dQαit] + E
∫

[τ,∞)

e−rt[(Pαt − c)Qαit − dQαit] .

The first term is independent of α. We want to take the derivative of the second term with respect
to α. For t ≥ τ , we have

Qαit = inf{qi ≥ αqi0 | X∗t ≤ A+Bqi} ,
where

A =
β

β − 1

(
r − µ
r

)
(c+ r) ,

B =
β

β − 1

(
r − µ
r

)(
n+ α

α

)
b .
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Also, for t > τ ,
Pαt − c = Xt − C −DQαit ,

where

C = c ,

D =

(
n+ α− 1

α

)
b .

We show below that

E
∫

[τ,∞)

e−r(t−τ)((Pαt − c)Qαit dt− dQαit) = −(α− 1)qi0 + αqi0

(
Xτ

r − µ
− C +Dαqi0

r

)
+
Xτ

B

[
(rB − 2rD + 2µD)(A+Bαqi0)

r(r − µ)(β − 2)B
+

2AD −BC − rB
r(β − 1)B

](
A+Bαqi0

Xτ

)1−β

. (1.6.1)

The right-hand derivative of this with respect to α at α = 1 (computed using Mathematica and
Maple) is

(n− 1)
[
(n+ 1)2β(β − 1)b2q2

i0 + 2(n+ 1)(r + c)βbqi0 + 2(r + c)2
]

(n+ 1)3(β − 1)(β − 2)rb
> 0 .

It remains to verify (1.6.1). Define

Lt = log

(
A+BQit
A+Bqi0

)
,

Zt = log

(
A+Bqi0

Xt

)
,

Yt = log

(
A+BQit

Xt

)
.

Note that Z is a Brownian motion with drift, and dZt = −
(
µ− 1

2σ
2
)
dt− σ dBt. We have

A+BQit = max(A+Bqi0, X
∗
t ) .

It follows that

Lt = max

(
0, max

0≤s≤t
−Zs

)
.

Hence, Yt = Lt+Zt is a Brownian motion (with drift) reflected at zero — see, e.g., Harrison (1985).
Moreover, L increases only when Y = 0, and Ys is a sufficient statistic for the Fs–conditional
distribution of the increment Lt − Ls for any t > s. Note that Lt − Zt = 2Lt − Yt. Also,

E
∫ ∞

0

e−rte−(Zt−Z0) dt =
1

r − µ
.

We have

Xt = X0e
−(Zt−Z0) ,

Qit =
A+BQi0

B
eLt−L0 − A

B
, L0 = 0 ,

XtQit =
X0(A+BQi0)

B
e(Lt−Zt)−(L0−Z0) − AX0

B
e−(Zt−Z0) ,

Q2
it =

A2

B2
− 2A(A+BQi0)

B2
eLt−L0 +

(
A+BQi0

B

)2

e2(Lt−L0) ,

dQit =
A+BQi0

B
eLt−L0 dLt .
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We will calculate the following below:

h1(y) = E
[∫ ∞

s

e−r(t−s)+Lt−Ls dt | Ys = y

]
,

h2(y) = E
[∫ ∞

s

e−r(t−s)+(2Lt−Yt)−(2Ls−Ys) dt | Ys = y

]
,

h3(y) = E
[∫ ∞

s

e−r(t−s)+2Lt−2Ls dt | Ys = y

]
,

h4(y) = E
[∫ ∞

s

e−r(t−s)+Lt−Ls dLt | Ys = y

]
.

In terms of these functions,

E
∫ ∞

0

e−rtQit dt =
A+BQi0

B
h1(Y0)− A

rB
,

E
∫ ∞

0

e−rtXtQit dt =
X0(A+BQi0)

B
h2(Y0)− AX0

(r − µ)B
,

E
∫ ∞

0

e−rtQ2
it dt =

A2

rB2
− 2A(A+BQi0)

B2
h1(Y0) +

(
A+BQi0

B

)2

h3(Y0) ,

E
∫ ∞

0

e−rt dQit =
A+BQi0

B
h4(Y0) .

It is shown below that

h1(y) =
1

r
+

1

r(β − 1)
e−βy , (1.6.2a)

h2(y) =
1

r − µ
+

1

(r − µ)(β − 2)
e(1−β)y , (1.6.2b)

h3(y) =
1

r
+

2

r(β − 2)
e−βy , (1.6.2c)

h4(y) =
1

β − 1
e−βy . (1.6.2d)

Straightforward algebra then yields (1.6.1).
To calculate h1–h4, use the fact that each of the following is a martingale, and hence the ds and
dLs terms of its differential vanish:∫ s

0

e−rt+Lt dt+ e−rs+Lsh1(Ys) ,∫ s

0

e−rt+2Lt−Yt dt+ e−rs+2Ls−Ysh2(Ys) ,∫ s

0

e−rt+2Lt dt+ e−rs+2Lsh3(Ys) ,∫ s

0

e−rt+Lt dLt + e−rs+Lsh4(Ys) .

We have

dY = −
(
µ− 1

2
σ2

)
dt− σ dB + dL ,
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so the ds terms vanishing implies

1− rh1 −
(
µ− 1

2
σ2

)
h′1 +

1

2
σ2h′′1 = 0 , (1.6.3a)

1− (r − µ)h2 −
(
µ+

1

2
σ2

)
h′2 +

1

2
σ2h′′2 = 0 , (1.6.3b)

1− rh3 −
(
µ− 1

2
σ2

)
h′3 +

1

2
σ2h′′3 = 0 , (1.6.3c)

−rh4 −
(
µ− 1

2
σ2

)
h′4 +

1

2
σ2h′′4 = 0 . (1.6.3d)

Equating the coefficients of dL to zero at y = 0 yields the boundary conditions:

h1(0) + h′1(0) = 0 ,

h2(0) + h′2(0) = 0 ,

2h3(0) + h′3(0) = 0 ,

1 + h4(0) + h′4(0) = 0 .

Boundary conditions at y = ∞ are obtained by noting that Lt − Ls ↓ 0 pointwise as y = Ys ↑ ∞
and using the dominated convergence theorem. This yields

lim
y→∞

h1(y) =
1

r
,

lim
y→∞

h2(y) =
1

r − µ
,

lim
y→∞

h3(y) =
1

r
,

lim
y→∞

h4(y) = 0 .

The general solutions of the differential equations (1.6.3) subject to the boundary conditions at
infinity are

h1(y) =
1

r
+A1e

−βy ,

h2(y) =
1

r − µ
+A2e

(1−β)y ,

h3(y) =
1

r
+A3e

−βy ,

h4(y) = A4e
−βy .

for constants Ai. Imposing the boundary conditions at zero yields (1.6.2).
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2. OPTIMAL TIMING OF AGGREGATE INVESTMENT AND
THE YIELD CURVE

Abstract

How does the optimal exercise timing of growth options reconcile with a perfect
competition environment in which any delay in investment will be exploited by com-
petitors? To answer this question, I solve a stylized general equilibrium model with
irreversible investment in closed form. Current investment opportunities compete
with future ones and waiting for better information has an option value in the sense
that increased volatility indeed leads to a delay in investment. The delay reconciles
with zero profits for firms via anticipated increases in future prices. Longer term inter-
est rates and futures on wages already contain the expected growth-effect of optimally
exercised growth options, rendering current investment opportunities unprofitable. In
this sense, the term-structure of future prices reflects the option premium of waiting
and leads to optimal delay in investment.

JEL classification: D92, E22, E44, G12
Keywords: Irreversible Investment, Term Structure, Option Premium, Capital Accumulation, Gen-
eral Equilibrium
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2.1 Introduction

The most important confusion concerning the meaning and significance of
the marginal efficiency of capital has ensued on the failure to see that it depends
on the prospective yield of capital, and not merely on its current yield. This can
be best illustrated by pointing out the effect on the marginal efficiency of capital
of an expectation of changes in the prospective cost of production [...]. The
output from equipment produced to-day will have to compete, in the course of its
life, with the output from equipment produced subsequently, perhaps at a lower
labor cost, perhaps by an improved technique [...] In so far as such developments
are foreseen as probable, or even as possible, the marginal efficiency of capital
produced to-day is appropriately diminished (J.M. Keynes in Keynes (1936, p.
141))

The purpose of this article is to study a model which captures the fact that invest-
ment is a long term concern: current investment opportunities compete with future
ones and the future plays an important role in determining the marginal efficiency of
capital. So the gain from learning more about it and about alternative investment op-
portunities might be higher than the current yield of capital, that is the opportunity
cost of not investing. Thus it might be optimal to delay investment and wait for more
and better information even at the opportunity cost of high current yields, i.e. it may
be optimal to utilize the so called option value of waiting to invest. I ask i) whether
this can be the case in general equilibrium and ii), if so, how does the delay materialize
in a market economy with perfect competition in which, if nothing else changes, any
delay in investment and unused profit opportunity would be exploited by competitors.

To this end, I solve a stylized general equilibrium model with irreversible investment
in closed form. The model is essentially a simple real-business-cycle (RBC) model
or stochastic Ramsey model with three deviations. First, investment is assumed to
be irreversible; once investment costs are paid, they cannot be be regained by disin-
vesting if economic conditions turn out to be unprofitable. This makes investment a
long-term concern and the decision to invest or not invest becomes dependent on the
‘prospective yield of capital’ rather than its ‘current yield’. Second, the stochastics do
not enter total factor productivity (TFP) but investment cost. TFP affects new and
old invest in the same way. Hence, with stochastic TFP, there would be no distinc-
tion in the productivity of already installed capital and marginal capital. If volatility
increases, then the probability of bad states with low consumption and binding irre-
versibility constraint does so too. This leads to an incentive to hedge against these
states by investing more instead of less. In a very simple stochastic Ramsey model
with log utility and linear technology investment occurs no later than with reversible
investment as shown in Paulsen (2009). With stochastic investment cost, however,
only productivity per fixed unit of investment cost is stochastic. This captures the
idea of stochastic marginal productivity (‘marginal efficiency of capital’) rather than
stochastic average productivity. Third, I assume the investment cost to be in form of
labor input instead of units of the consumption good. This is equivalent to say that
the consumption good and the capital good are produced by two distinct production
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functions, whereat the one for the capital good is linear and labor is the only input.
This assumption is made for two reasons. First, without stochastic TFP, output is
temporarily fixed. If output had to be split between consumption and investment,
both could not co-move as in typical business cycles. Second, the assumption avoids
a complementarity of investment today and investment tomorrow. Namely with only
one production function, investment increases output and therefore lowers the cost of
future investment in terms of foregone marginal utility from consumption. This ad-
ditional benefit can decrease the option value of waiting to invest (see Paulsen (2009)
for the case of a very simple model). Last but not least, the assumption makes the
model analytically tractable.

It turns out that uncertainty about the future indeed leads to a delay in aggregate
investment. If a delay becomes optimal, longer term future prices will rise. This is
because a delay will only be optimal if future investment opportunities are expected
to be more profitable than todays. Long term futures, i.e. interest rates at which
banks are willing to lend and future prices on labor, anticipate the optimally exer-
cised growth options and incorporate their potential growth effect, rendering currently
available investment opportunities unprofitable. In this sense, long term factor prices
comprise an option value of delayed investment.

This story suits to a statement by board members of Wells Fargo in January 2010
in which they say that the current spread between longer and shorter term interest
rates - though high - is not sufficient for Wells Fargo. For lending out they would
demand an even higher long term rate which compensates for the risk of increasing
long rates:

... actually this as [sic!] the classic short-term view of the business or long-
term view of the business. 400 basis points or something like that, which we
make in the carry trade today, is very attractive. But we think it’s the wrong
decision long-term because we think the bias is for higher rates, not for lower
rates, and we’re willing to wait for that to happen. We think that’s the better
trade. (John Stumpf, CEO Wells Fargo & Company, January 20, 2010)1

...we are effectively giving up 400 basis points today for possibly a year or
so, maybe plus or minus, to avoid the potential risk of a larger number of basis
points for 30 years. So the last thing we want to do is get stuck with securities
at these low levels of interest rates. (Howard Atkins, CFO Wells Fargo &
Company, January 20, 2010 )2

The remaining part of the paper is structured as follows. Section 2 reviews the
related literature. Section 3 takes a viewpoint from the perspective of Keynes’ General
Theory. Section 4 presents the formal model. Section 5 solves for an equilibrium.
Section 6 solves for investment dynamics, long term interest rates and stock prices in
closed form and analyzes option premia. Finally, section 7 concludes.

1 Wells Fargo & Company Q4 2009 Earnings Call Transcript January 20, 2010
2 Loc. cit.
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2.2 Related Literature

Classical general equilibrium models like the Arrow-Debreu model (Arrow and Debreu
(1954)) or the Radner model (Radner (1972)) assume exogenous asset endowments
and do not allow accumulation of capital. In standard general equilibrium models
with capital accumulation, e.g. Cox, Ingersoll and Ross Cox et al. (1985a,b) con-
sumer’s (or firms in the place of consumers) can invest into a production technology
with stochastic return but they are free to disinvest and consume the capital stock
whenever they want; investment is reversible.

The irreversible investment literature, on the other hand, mainly focuses on monopo-
listic firms (e.g. Dixit and Pindyck (1994); Pindyck (1988); Riedel and Su (2011)) and
partial equilibrium analysis (e.g. Back and Paulsen (2009); Baldursson and Karatzas
(1996); Leahy (1993)). Only few papers deal with irreversibility in a general equilib-
rium context. Sargent (1979) proves existence of a solution in a discrete time model
and then provides numerical computations of investment rates. Olson (1989) also
shows existence of a solution in a discrete time context and proves some stationarity
properties of the investment process.

In Coleman (1997) ans Jamet (2004) multisector models without aggregate uncer-
tainty are considered. Though there are some non-trivial effects due to sector specific
uncertainty, effects on aggregates remain small. Coleman (1997) numerically com-
putes a two sector model with a regime change. Depending on the state of nature,
sector one or sector two is more productive. When the regime switches, investment
is shifted from one sector to the other so that aggregate investment remains basically
constant. However, as both sectors may be differently developed and thus experience
different marginal returns of capital, there are some effects on the interest rate. A
productivity shift from a more developed sector to a less developed one leads to an in-
crease in the interest rate that decays with investment into this sector. Additionally,
Coleman finds that because of a desire to smooth consumption, with irreversible in-
vestment a rise in uncertainty concerning the future return to capital tends to lead to
more current investment and a lower real interest rate. In Jamet (2004), uncertainty
is concentrated on and independent between infinitely many intermediate sectors.
Hence, aggregate uncertainty vanishes by the law of large numbers leading to deter-
ministic wealth and a constant interest rate.

Chiarolla and Haussmann (2009) show existence of an equilibrium in a general equi-
librium environment with irreversible investments. In their else very general model,
they assume that firms do not maximize shareholder value but net present value (i.e.
expected profits are computed with respect to the physical measure rather than the
risk adjusted one).

There are some papers that deal numerically with investment irreversibilities in a gen-
eral equilibrium setting. Veracierto (2002) numerically analyzes a RBC model with
irreversibility constraints on a plant level. He finds that aggregate fluctuations are ba-
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sically the same under fully flexible or completely irreversible investment. Bloom et al.
(2009) study the impact of uncertainty in a calibrated dynamic stochastic equilibrium
model with idiosyncratic risks, fixed cost and a partial irreversibility constraint. They
find ”that increases in uncertainty lead to large drops in economic activity. This oc-
curs because a rise in uncertainty makes firms cautious, leading them to pause hiring
and investment. It also reduces the reallocation of capital and labor across firms,
leading to large falls in productivity growth.” In all these articles, it is the produc-
tivity parameter on which uncertainty enters the economy. In this article, however,
productivity is deterministic and it are investment cost that vary stochastically. Or,
equivalently, it is stochastic marginal productivity that fluctuates.

Bilbiee Ghironi and Melitz (Bilbiie et al., 2007) construct a model with focus on
endogenous product variety. Besides stochastic productivity shocks their model also
contains stochastic entry cost, but they assume the irreversibility constraint to be
never binding in order to simplify their analysis.

The paper most closely related to the one at hand is Leahy (1993). It studies the
effects of investment irreversibilities in a perfectly competitive setting. The author
finds that critical prices that trigger investment are the same for a firm facing perfect
competition and for an infinitesimal small monopolistic firm. The equilibrium price
process is a geometric Brownian motion reflected at some threshold. That is, if prices
rise too much, they reach the threshold at which investment has a zero net present
value and investment into additional capacities pushes the price down. If volatility
increases, so does the probability in which prices are low. But as the average price
must be such that firms make zero profits, lower prices have to be compensated for by
some upside. This occurs in form of a higher threshold at which prices are reflected,
i.e. in form of delayed investment. In particular, increased uncertainty leads to de-
layed investment (in the sense of a higher price trigger), which is also efficient from a
welfare perspective. Both, investment delay and zero profits for firms reconcile via the
price dynamics, which - in this sense - absorb the option premium of waiting to invest.

However, the mere existence of time varying intra-period prices makes the set-up
a partial equilibrium one. In general equilibrium with a single representative con-
sumption good, there are no such intra-period prices and the argument cannot be
sustained. (Besides wages, which indeed will play an important role as long as la-
bor enters the production function). Instead of intra-period prices, however, it are
inter-period prices, namely interest rates whose dynamics reconcile zero profits with a
delay in investment. Just as in the partial equilibrium setting of Leahy (1993), where
prices are expected to be lower in the future when delay becomes optimal, in the
general equilibrium set-up of this article, inter-temporal prices (e.g. interest rates)
are expected to rise in such a situation.

From the technical viewpoint, this article is closely related to the paper ”On Irre-
versible Investment” by Riedel and Su (2011). They explicitly solve the irreversible
investment problem of a monopolistic firm with Cobb Douglas production function
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Fig. 2.1: The reversible case

and general multiplicative stochastic demand modeled by an exponential Lévy pro-
cess. The equilibrium problem of the article at hand in central planner’s form turns
out to be equivalent to such a monopolistic firm’s problem but with stochastic in-
vestment cost instead of stochastic demand. Beside this difference, all methods are
contained in Riedel-Su so that I do not provide anything novel from the mathematical
point of view; I rely on the methods exposed in Riedel and Su (2011) to solve the
central planner’s problem.

I remark that Hugonnier, Morellec and Sundaresan author a working paper titled
‘Irreversible Investment in General Equilibrium’ (Hugonnier et al. (2005)). However,
in their model, the agent consumes the capital stock3. Irreversibility enters through
another feature, namely the opportunity of a once and for all transformation of the
capital stock, which is completely different to the setting in this article.

2.3 A Keynesian perspective

Though the model at hand is neoclassical, it shares essential features described by
Keynes in his ’General Theory’ (Keynes, 1936). Similar to Keynes’ liquidity prefer-
ence schedule, it highlights a trade-off between liquid short term assets and illiquid
long term investment opportunities. Indeed, liquidity preference is a kind of finan-
cial dual to technological liquidity (e.g. investment reversibility). In equilibrium,
net-financial investment equals physical investment so that (net-)financial liquidity is
constrained by technological liquidity. In the extreme case of reversible investment,
there is no need and no role for liquidity preference. Any demand could be easily
fulfilled by the capital stock; illiquidity does not exist. If, however, investment is
irreversible, then liquidity preference affects investment behavior and, vice versa, any
preference over potential timings of investment can be interpreted as preference over
asset portfolios with different maturities and therefore as a liquidity preference. Ex-
actly as the investors face a trade-off between between investing today and investing
tomorrow that potentially involves an option value of waiting to invest, bond traders
face a trade-off of when to perform maturity transformation, of when to buy long
term bonds. This may involve an option value of waiting for lower bond prices in
the future similar to what Keynes described as the speculative motive for liquidity
preference.

3 capital stock =wealth in their terminology
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Although irreversibility of investment is key for Keynes General Theory, modern
standard macroeconomic models as the real business cycle model or New Keynesian
models (text-book models) usually assume investment to be reversible; if investment
turns out to be bad tomorrow, it is possible to disinvest and regain its cost. This
reversibility assumption implies that capital is not afflicted with long term risks.
To invest or not is only a short term consideration: As soon as the current marginal
product of capital exceeds the short term interest rate, investment becomes profitable.
In equilibrium, the marginal return on capital must equal the short term interest rate
and the capital stock instantaneously adjusts to fluctuations in the former. In other
words, capital demand is infinitely elastic to the short rate which equilibrates savings
and investments, schematically illustrated in Figure 2.1. In particular, the short
rate is always positive whenever there exist investment opportunities with positive
marginal return. Thus, with reversible investment, an increase in uncertainty in
the economy via lowering the interest rate by people’s precautionary savings motive
leads to a higher capital stock and higher investments. So whenever uncertainty
increases (and there is no negative productivity shock) one should observe increased
investment activity, not less. Keynes criticizes the reversibility assumption which is
implicit when the marginal efficiency of capital is thought of being tied to current
profits. It would destroy the link between the future (and the expectations thereof)
with today’s investment:

The mistake of regarding the marginal efficiency of capital primarily
in terms of the current yield of capital equipment, which would be correct
only in the static state where there is no changing future to influence
the present, has had the result of breaking the theoretical link between
to-day and to-morrow. Even the rate of interest is, virtually, a current
phenomenon; and if we reduce the marginal efficiency of capital to the
same status, we cut ourselves off from taking any direct account of the
influence of the future in our analysis of the existing equilibrium. The
fact that the assumptions of the static state often underlie present-day
economic theory, imports into it a large element of unreality. (Keynes,
1936, page 145)

According to Keynes, it are durable equipments that connect the future to the present.

It is by reason of the existence of durable equipment that the eco-
nomic future is linked to the present. It is, therefore, consonant with,
and agreeable to, our broad principles of thought, that the expectation of
the future should affect the present through the demand price for durable
equipment. (Keynes, 1936, page 145)

If the marginal efficiency of capital depends on its prospective yield rather than its
current yield, investment demand becomes tied to the long term interest rate. Sav-
ings, on the other hand, might be motivated by short term rather than long term
considerations, for instance as a precautionary measure to hedge against a decline in
economic activity, i.e. savings might be in the form of short term assets, e.g. money,
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earning a low or even zero interest rate. To link savings and investment, one therefore
has to think about the link between the short term and the long term interest rate,
i.e. about maturity transformation.

At this point comes Keynes’ main contribution4, the introduction of the liquidity
schedule, into play. The liquidity preference schedule describes the demand for money
for a given level of output and long term interest rate. It can therefore be interpreted
as short cut formulation of a financial market in the form of a postulated relationship
between the interest rate on money savings (zero) and long term rates, i.e. as an
ad-hoc model of maturity transformation.

Because of liquidity preference, investment demand, which depends on the long rate,
is only indirectly linked to saving demand. Both might vary independently if the link-
age, i.e. if liquidity preference, changes. In Keynes words: ”the scale of investment
fluctuate[s] for reasons quite distinct (a) from those which determine the propensity of
the individual to save out of a given income” (Keynes, 1937, page 218). The interest
rate on money is fixed to zero and therefore cannot adjust to fluctuations in liquidity
preference. Hence, according to Keynes General Theory, there might be excess savings
in the form of money holdings, which vanish in equilibrium by a reduction of output Y .

The model at hand is similar in the following sense. In line with Keynes argument
about durable equipments, I assume investment to be irreversible which immediately
implies that investment becomes a long term concern. Investors have to take the
whole future into consideration and capital installed today has to compete with fu-
ture investments which might be into different and more profitable technologies. For
this reason, the long term interest rate becomes the appropriate reference value for
investment demand. On the other hand, savings today and savings tomorrow only
differ by the short term return. Hence, saving demand refers to the short rate and
savings are without loss of generality in the form of short term assets. Short term
assets resemble money in Keynes theory5.

Taken both parts together, investment demand is sensitive to the long rate while
saving demand reacts to the short rate. This is illustrated in Figure 2.2. But both,
the short rate and the long rate, cannot vary freely. In equilibrium they are linked by
a no arbitrage condition resembling Keynes liquidity preference schedule: The long
rate must equal a weighted average of future short rates. Note that this is not a
level-to-level-correspondence; the long rate is not solely determined by the short rate
itself but its dynamics !

This connection is a form of rigidity. Namely changes in the level of the short rate do
not change the long rate as long as the dynamics are not sufficiently affected and if

4 see also Harrod (1946)
5 The principle difference to Keynes is that the return on short term assets can vary and equilibrate

saving and investment demand at any given level of output Y , while money In Keynes world bears
a fixed interest of zero. However, equilibrium might necessitate a negative short rate.
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Fig. 2.2: The irreversible case

the dynamics change, the levels do not necessarily change. It differs from wage and
price rigidities in the sense that it is not an ad hoc market imperfection, but a ”neo
classical rigidity”

Similarly, in Keynes theory a lower long term interest rate leads to higher money
demand. There, the interest elasticity of money demand is due to the speculative
motive ’the object of securing profit from knowing better than the market what the
future will bring forth’ (Keynes, 1936, page 170) ,for example an ‘individual, who
believes that future rates of interest will be above the rates assumed by the market,
has a reason for keeping actual liquid cash’ (Keynes, 1936, page 170). In other words,
speculative money demand is due to speculation on higher long term interest rates
and lower bond prices. This fits to the intuition which drives the argument in this
article. Here, investors speculate on better future investment opportunities which is
why they would demand short term rather than long term assets if long term yields
were too low compared to rates that can be rationally expected for the future. But
while Keynes speculative motive is due to believes which deviate from market ex-
pectations and therefore based on either a market inefficiency or on heterogeneous
expectations, this model relies on a no-arbitrage condition as connection between the
long rate an short rate dynamics. It is based on rational expectations and therefore
consistent with neo-classical thinking.

Of course, an excess demand for short term assets cannot persist in equilibrium; spec-
ulative demand must vanish. Long term and short term interest rates in equilibrium
are such that first there is no demand for short term assets and second there does
not exist an arbitrage opportunity. This leads to a spread between the long and
the short rate. In equilibrium, today’s long term interest rate already contains ex-
pected future yields which might lift them to a level too high for current investment
opportunities to be profitable. Equilibrium short rates, on the other hand, might
turn negative due to a shrinking economy as consequence of the lack of investment
even though the marginal product of capital is strictly positive. A situation which is
usually interpreted as liquidity trap.

2.4 Model

Let (Ω, (Ft)t≥0,P) be a filtered probability space. The model economy consists of
firms and households which I describe in the following sections.
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2.4.1 Firms

Operating Profits

A firm receives the operating cash flow

πt(lt)
∆
= Al1−αt − wtlt

per unit of capital. Here lt is the amount of labor hired by the firm at the wage rate
wt. The constant and deterministic number A ∈ R describes the productivity. As
this return is homogeneous in the firm’s capital stock, each (arbitrarily small) unit of
capital can be thought of as a firm of its own and it is not necessary to keep track of
the firms’ sizes. In particular, there is no distinction between investment of additional
capital units and entry of new firms.

Entry Cost

Before earning profits, a firm incurs stochastic investment (entry) cost in form of
γt units of labor. This might be justified by thinking of two separate production
functions. One for the consumption good and one for capital, where the latter is
approximated by a linear one6.

Once entry cost are paid, productivity is deterministic and constant over time. This
differs from many macroeconomic models, for instance the standard real business cy-
cle models and variants thereof, which assume stochastic levels of productivity At. In
these models, a productivity shock affects the whole capital stock equally. Stochas-
tic entry cost, however, imply that only for new installable capital output per unit
cost is stochastic. They model stochastic marginal productivity rather than average
productivity and therefore capture the ‘fickle and highly unstable marginal efficiency
of capital’ (Keynes, 1936, p. 204). Note that stochastic cost require irreversibility of
investment as otherwise one could take advantage of increasing cost.

Remark 2.4.1. Note that kt denotes capital measured in efficiency units as each unit
is associated with a fixed productivity A. Hence, γt are not the unit cost of physical
capital and cannot be identified by a time series of investment good prices which have a
rather low volatility. Justiniano et al. (2010) estimate the volatility of the investment
specific technology shock to be 6 % per quarter.

I model entry cost by an exponential Lévy process. Later, I will restrict to a geometric
Brownian motion:

Assumption 2.4.2. Entry cost are given by an exponential Lévy process

γt
∆
= exp(Yt)

where Yt is a Lévy process, i.e. a process with stationary and independent increments.

6 Two separated production functions exclude that capacities built up to increase consumption
today are used for investments tomorrow. Separate production functions avoid this complementarity
between today’s and tomorrow’s investment.
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1. (geometric Brownian motion) Let dγt = µγtdt+ σγtdBt be given by a Brow-
nian motion. In this case, the return per investable unit, i.e marginal pro-
ductivity, fluctuates continuously.

2. (exponential Poisson process) Let Yt = −Nt be the negative of a Poisson
process. Then cost will decrease stochastically. A decrease in cost might
be interpreted as a decrease in uncertainty about which products will be
useful and thus a reduction in false and useless investments or simply as
technological progress.

Profit Maximization and Present Value

Once entry cost are paid, firms are indistinguishable. By profit maximization, they
receive the operating revenue.

πt = max
lt

(
Al1−αt − wtlt

)︸ ︷︷ ︸
=πt(l)

= αA
1
α

(
1− α
wt

) 1−α
α

per capital unit. Capital depreciates at the constant rate δ. Let dρt be the dividend
stream of the money market7.
With this notation, an investor computes a firm’s present value at time t as

st
∆
= EQ

[∫ ∞
t

e−
∫ u
t dρre−δ(u−t)πudu | Ft

]
under some risk-neutral pricing measure Q (equivalent martingale measure). Let It be
the measure of firms that have entered the market up to time t, i.e. the cumulative
investment (entry) process. As capital depreciates, the aggregate capital stock kt
evolves according to

dkt = −δktdt+ dIt

Entry Cost Financed by Issuing Stocks

Firms finance the entry cost by issuing stocks. Let st be the market price of a stock
for a firm with one unit of capital. As new firms can be generated by the cost of γtwt,
that is the amount of labor employed in capital production times the price of labor
(the wage rate), free entry requires st ≤ γtwt in equilibrium. Firms do not enter the
market when they expect negative profits, i.e. st = γtwt whenever dIt > 0. Together,
we have

(γtwt − st) dIt = 0

7 If ρt was absolutely continuous, one could write dρt = rtdt where rt is the short rate. However,
as it turns out, ρt will become singular.
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as a measure on Ω× R+, i.e. for P-almost-all fixed ω as a measure on R+.

Remark 2.4.3. I would prefer firms to be financed by long term bonds, but as firms
with different entry time face different entry cost, this would introduce heterogeneity
into firms cash flows. To avoid this, I assume firms to issue stocks but allow house-
holds to finance stocks by long term bonds. Investment behavior is thus ’outsourced’
to the household sector. However, as the model is frictionless, this assumption does
not change equilibrium outcomes.

2.4.2 Households

Felicity

The infinitely lived representative agent receives utility from consumption and disu-
tility from working.

u(c, l)
∆
=

c1−θ

1− θ
− βl

= u(c)− βl

with a slight abuse of notation.

Asset Market Participation

In addition to labor income, a household receives income from ownership of firms
and savings in the money market. Denote by φst the amount invested in the money
market8 and by φet the numbers of stocks, where one stock is a claim on a firm with
one unit of capital installed9. Let st be the price of a stock. Then the households
budget constraint is:

ctdt+ stdφ
e
t + dφst ≤ wtdLt + φetπtdt+ φstdρt − δstφetdt

Here Lt denotes cumulative labor. That is total expenditures for consumption (ctdt),
new stocks (stdφ

e
t ) and new bonds dφst cannot exceed income. Income is the sum

of labor income (wtdLt), dividend payments (φetπtdt), interest income (φstdρt) minus
depreciating equity (−δstφetdt).
Assume that the portfolio processes φst and φet are adapted to the filtration, i.e.
households have to trade on the basis of current information. Two further, technical
conditions are needed. First, assume the portfolio processes to be of finite variation.
This avoids the definition of a self-financing portfolio10. Second, we have to exclude
doubling-strategies and Ponzi games. For this, define the value of the portfolio (φe, φs)
or the consumers wealth by

8 The money market is a security with dividend payments dρt such that the security’s price is
constant at 1.

9 Note that by this convention, the number of outstanding stocks issued by a single firm depreciates
with its capital stock.

10 The assumption can be made without loss of generality as any infinite variation portfolio-strategy
can be be approximated by finite variation processes.



2. Optimal Timing of Aggregate Investment and the Yield Curve 41

W
(φe,φs)
t

∆
= φetst + φst

and the gains from this portfolio as

dG
(φe,φs)
t

∆
= e−ρtφet (dst − δstdt) + e−ρtφetπtdt+ e−ρtφstdρt − e−ρtW

(φe,φs)
t dρt

= e−ρtφet (dst − δstdt) + e−ρtφetπtdt− e−ρtφetstdρt

Note that the gain process cumulates gains from changing stock prices (net of de-
preciation), dividends,interest income and borrowing cost discounted by the interest
process. To exclude Ponzi-schemes, assume that only limited losses are allowed, i.e.
assume that there exists a uniformly integrable process, which might well depend on
the initial portfolio, which bounds the gain process from below. Formally:

∃Xt ∈ L1(R,Q) uniformly (in t) integrable, such that Gt ≥ −Xt Q− a.s. (2.4.1)

In addition, assume non-negative terminal wealth

lim inf
t→∞

e−ρtW
(φe,φs)
t ≥ 0 Q− a.s. (2.4.2)

Households Problem

The households problem is

Definition 2.4.4. Given an initial portfolio (φs0−, φ
e
0−) and processes wt, ρt, st, πt, the

households problem (HP) is

max
ct,Lt,φet ,φ

s
t

E
[∫ ∞

0

e−ρt
(
c1−θ
t

1− θ
dt− βdLt

)]
s.t. ctdt+ stdφ

e
t + dφst ≤ wtdLt + φetπtdt+ φstdρt − δstφetdt (2.4.3)

Lt is non-decreasing

φet , φ
s
t ∈ A

∆
= {φt | adapted, of finite variation and s.t. (2.4.1) and (2.4.2) }

where ρ without a time subscript is the household’s discount factor, while ρt denotes
cumulative interest payments as introduced in the preceding section.

2.5 Solution

In this section, I first define an equilibrium. Then the associated central planner’s
problem is formulated and solved. Finally, the solution to the latter is used to derive
an equilibrium for the market economy.
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2.5.1 Equilibrium

An equilibrium is

Definition 2.5.1. An equilibrium for the initial capital k0− is a tuple, consisting of
a consumption process ct, labor process Lt, a wage process wt, a pricing measure Q,
an interest process ρt, a capital process kt and portfolio processes φet and φst such that

1. (The stock market clears)
kt = φet

2. (Investment is irreversible) kt solves

dkt = −δktdt+ dIt

for some non-decreasing right-continuous process It

3. (The bond market clears) ρt is predictable and

φst = 0

4. (Labor market clears) Given the wage wt

dLt = kt arg max
l
πt(l)dt+ γtdIt

5. (The investment market clears)

st
∆
= EQ

[∫ ∞
t

e−
∫ s
t dρre−δ(s−t)πsds | Ft

]
≤ γtwt P⊗ dt-a.s.

where πs = max
l
πs(l) and

(γtwt − st)dIt = 0 as a measure on Ω× R+

6. (Households maximize utility) Given wt, ρt, st and πt and the initial portfolio
(φs0−, φ

e
0−) = (0, k0−), the processes ct, Lt, φ

s
t , φ

e
t solve (HP).

Thus, an equilibrium demands that the whole capital stock is held as equity by house-
holds (1.), the capital stock depreciates with rate δ and grows with the investment
process It (2.). In equilibrium all bonds net out to zero (3.). Condition (4.) requires
that total labor is given by the sum of labor employed in existing firms and in the
investment process. (5.) is a no-arbitrage/ free entry condition. It states that the
stock price can never exceed the price at which new firms can be created (γtwt) and
both are equal whenever new firms enter the market. In addition all processes must
be such that households maximize utility (6.) .

2.5.2 Central Planner’s Version

I now combine the firms and the households problem into one single central planner’s
problem. For this, let the economy wide production function be F (l, k) = Akαl1−α.
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Central Planner’s Version I

Definition 2.5.2. The central planner’s problem is

(CP I) max
lt,It

E
[∫ ∞

0

e−ρt (u(ct, lt)dt− βγtdIt)
]

s.t. ct ≤ F (lt, kt)

dkt = −δktdt+ dIt

It is non-decreasing, right-continuous, adapted

Central Planner’s Version II

I now simplify the planner’s problem to a standard singular control problem. At first,
since lt can be chosen flexibly, let

V (k)
∆
= max

l
u(Akαl1−α, l)

i.e.

V (k) =
ψ

αθ̄ν
kαθ̄ν

with θ̄ = 1− θ and

ν =
1

α + θ(1− α)
, φ =

(
1− α
β

)ν
, ψ = αθ̄ν

(
1

θ̄
φ(1−α)θ̄ − βφ

)
Aθ̄ν

The problem simplifies to

Definition 2.5.3. The reformulated central planner’s problem is

(CP II) max
It

E
[∫ ∞

0

e−ρt (V (kt)dt− βγtdIt)
]

(2.5.1)

s.t. dkt = −δktdt+ dIt (2.5.2)

It is non-decreasing, right-continuous, adapted

This is now an irreversible investment problem in standard form which can be solved
by standard singular control methods (see Back and Paulsen (2009)) or by the Riedel-
Su method (Riedel and Su (2011) ). I proceed by the Riedel-Su method. For this,
I first derive first order conditions in a heuristic way and then show that they are
sufficient.

FONC

Note that from investing one marginal unit at time s, the central planner receives the
marginal utility

Ms
∆
= E

[∫ ∞
s

e−(ρ+δ)(t−s)Vk(k
∗
t )dt

∣∣∣∣Fs] (2.5.3)



2. Optimal Timing of Aggregate Investment and the Yield Curve 44

As he is free to do so at cost βγs, the first order necessary conditions for optimality
(FONC) are

Ms ≤ βγs P⊗ ds-almost surely (2.5.4)

with equality whenever dIt > 0, i.e. more precisely

(βγs −Ms) dIs = 0 as a measure on Ω× R+ (2.5.5)

I now show that the thus heuristically derived FONCs are sufficient (and omit to
verify that these conditions are indeed necessary for an optimum).

FONC are Also Sufficient

By the concavity of the functional It 7→ E
[∫∞

0
e−ρt (V (kt)dt− βγtdIt)

]
, the necessary

conditions are also sufficient as the following theorem shows:

Theorem 2.5.4. Let I∗t be an investment process such that with

k∗t
∆
=

∫ t

0

e−δ(t−s)dI∗s + e−δtk∗0− (2.5.6)

the FONC (2.5.4) and (2.5.5) are fulfilled for M defined by (2.5.3). Then I∗t is
optimal for (CP II)

The proof is in the appendix.

Simplification of FONC

Hence, we are interested in a process I∗t fulfilling the FONC. I will now rewrite the
FONC as a backward equation which simplifies the problem as will become clear
below.

Lemma 2.5.5. Let lt be a stochastic process, such that

E

 ∞∫
s

e−(ρ+δ)tVk(e
−δt max

s≤τ≤t
lτe

δτ )dt

∣∣∣∣∣∣ Fs
 = e−(ρ+δ)sβγs P⊗ ds− a.s. (2.5.7)

Then the process k∗t
∆
= e−δt max

[
max
τ≤t

lτe
δτ , k0−

]
is an optimal capital stock, i.e. dI∗t

∆
=

dk∗t + δk∗t dt solves the FONC (2.5.4) and (2.5.5) and thus the maximization problem
(CP II).

The result is easy to interpret. The optimal investment process is the minimal process
that keeps capital kt above the process lt, i.e. such that kt ≥ lt for all t. Here, lt
can be interpreted as the capital stock that would be optimal if the irreversibility
constraint were not binding in the current instant. If lt ≥ kt it indeed does not bind,
investment occurs and capital is held above lt. If, however, lt < kt the planner would
like to disinvest but cannot due to the irreversibility constraint. Capital depreciates
until lt ≥ kt and it is invested again. The proof is in the appendix.
By the Lemma, we are interested in a solution to the backward equation (2.5.7).
Finding such a solution turns out to be surprisingly simple.
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Solution

Theorem 2.5.6. Let lt = κγ
− 1
θν

t with κ =
(

ψ
β(ρ+δ(1−θν))

) 1
θν E

[
eGτ
] 1
θν , where τ is

an independent from Gt
∆
= min

s≤t
(Ys − Y0 − θνδs) exponentially distributed random-

variable with parameter ρ + δ(1 − θν). Then lt fulfills (2.5.7). In particular k∗t
∆
=

e−δt max

[
max
τ≤t

lτe
δτ , k0−

]
is an optimal capital stock, i.e. dI∗t

∆
= dk∗t + δk∗t dt solves

(CP II).

The proof is given in the appendix.

Remark 2.5.7. Note that the base capacity lt is identical to the the base capacity l̃t
without depreciation if we substitute ρ̃

∆
= ρ+ δ(1− θν) and Ỹt

∆
= Yt − θνδt.

Later I will assume that γt is a geometric Brownian motion. In this case, Remark
2.5.7 helps to explicitly compute κ.

Explicit Solution in Case of Geometric Brownian Motion

Theorem 2.5.8. Let dγt = µγtdt+ σγtdBt be a geometric Brownian motion.

1. If δ = 0, then

E
[
eGτ
]

= 1− σ2

µ+ 1
2
σ2 +

√
2ρσ2 + (µ− 1

2
σ2)2

2. For δ 6= 0

E
[
eGτ
]

= 1− σ2

µ− θνδ + 1
2
σ2 +

√
2(ρ+ δ(1− θν))σ2 + (µ− 1

2
σ2 − θνδ)2

The proof is in the appendix

2.5.3 Market Equilibrium

Definition of Equilibrium Processes

In the last subsection, I computed the social planner solution I∗t to the problem
at hand. In this section, I extend this solution to an equilibrium for the mar-
ket economy as defined in Definition 2.5.1 in the usual way. That is, I construct
c∗t , L

∗
t , w

∗
t ,Q∗, ρ∗t , φe∗t , φs∗t such that with k∗t given by (2.5.6) conditions 1) to 6) of Def-

inition 2.5.1 are fulfilled.

For this, let l∗t as be utility maximizing amount of labor per capital unit, i.e.

l∗t
∆
= arg max

l
u(F (l, k∗t ), l)/k

∗
t (2.5.8)
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In particular, output and consumption is given by

c∗t
∆
= F (k∗t l

∗
t , k
∗
t ) = Ak∗t (l

∗
t )

1−α

Cumulative labor is then the integral over labor used for the production of consump-
tion good and investment up to time t.

dL∗t
∆
= k∗t l

∗
t dt+ γtdI

∗
t (2.5.9)

Total amount of equity must be given by the capital stock, i.e.

φe∗t
∆
= k∗t

and bonds net out to zero
φs∗t

∆
= 0

Define wages as the rate of substitution between leisure and consumption

w∗t
∆
=

β

uc(c∗t )
(2.5.10)

Let interest payments ρ∗t be a predictable process such that

eρ
∗
t e−ρtuc(c

∗
t )

is a local martingale, i.e. in case of γt being a geometric Brownian motion then

dρ∗t
∆
= −d log

(
e−ρtuc(c

∗
t )
)

= (ρ− αθνδ) dt+ αθν
1

k∗t
dI∗t (2.5.11)

as the right hand side is continuous and therefore predictable. If, however, γt contains
jumps, this process would no longer be feasible. In this case the jumps have to be
replaced by its compensator11.

Define the pricing Q∗ measure by

dQ∗ ∆
= e

∫ s
0 dρ

∗
ue−ρs

uc(c
∗
s)

uc(c∗t )
· dP on Fs

Note that lim
s→∞

e
∫ s
0 dρ

∗
ue−ρs uc(c

∗
s ,l
∗
s)

uc(c∗t ,l
∗
t )

exists due to the supermartingale convergence (e.g.

see Kallenberg (2001)) theorem and therefore the definition extends to F∞ =
⋃
Ft.

In particular

s∗t = EQ∗
[∫ ∞

t

e−(ρ∗s−ρ∗t )−δ(s−t)πs(l
∗
s)ds

∣∣∣∣Ft]
= E

[∫ ∞
t

e−(ρ+δ)(s−t)uc(c
∗
s, l
∗
s)

uc(c∗t , l
∗
t )
πs (l∗s) ds

∣∣∣∣Ft]
11 Applying Lévy’s decomposition theorem and writing

γt = exp(at+ σBt +

∫
[0,t]×R

z (N(dz, dt)− ν(dz)dt)) (2.5.12)

for some Brownian motion Bt, Poisson measure N with compensator ν and a, σ ∈ R, one can obtain
an explicit formula.
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Thus Defined Processes are Equilibrium

I now show that the thus defined processes form an equilibrium. Conditions 1), 2)
and 3) are fulfilled by definition of the processes.
It remains to show 4), 5) and 6)

Theorem 2.5.9. Let the components of the central planner’s value function be finite:

E
[∫ ∞

0

e−ρtV (k∗t )dt

]
+ E

[∫ ∞
0

e−ρtβγtdIt

]
<∞ (2.5.13)

Then conditions 4),5), 6) of definition 2.5.1 are fulfilled. That is the labor market
clears, the investment market clears and households maximize utility.

The proof is in the appendix.

Remark 2.5.10. Note that the interest process dρt consists of two components. An
absolutely continuous component which might be negative if depreciation is high and
discounting is low and an increasing component related to investment. If investment
is singular (e.g. if γt is a diffusion) also the latter component is singular. Singular
money market returns might be interpreted as ’fees’ and ’premia’ payed on debt and
money holdings. Alternatively, in an economy with money, singular real returns might
be caused by singular movements in the price level.

2.6 Analysis in Case of Geometric Brownian Motion

From now on, assume that γt is given by a geometric Brownian motion.

Assumption 2.6.1. Entry cost are given by a geometric Brownian motion

dγt
∆
= µγtdt+ σγtdBt (2.6.1)

Note that the optimal capital stock is decreasing in volatility σ for fixed entry cost,
but increasing in the long run due to increasing probability of low entry cost.

Theorem 2.6.2 (Optimal Capital Stock). Let ρ+ δ(1− θν) > 0. Then k∗t = κγ
− 1
θν

t ,
the capital stock that was optimal if the irreversibility constraint were currently non-
binding, is decreasing in σ (for fixed γt).

Proof. By Theorem 2.5.6

κ =

(
ψ

β (ρ+ δ(1− θν))

) 1
θν

E
[
eGτ
] 1
θν

where τ is an independent from Gt
∆
= min

s≤t
Ys − Y0 − θνδs exponentially distributed

random-variable with parameter ρ + δ(1 − θν). Hence σ affects κ only via E
[
eGτ
]
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which is decreasing in σ. Namely let σ2 < σ̃2. Set σ̂2 ∆
= σ̃2 − σ2. We can write

Y σ̃
t = (µ− 1

2
σ̃2)t+ σ̃B̃t

= (µ− 1

2
σ2)t+ σBt︸ ︷︷ ︸
=Y σt

+σ̂B̂t −
1

2
σ̂2t

= Y σ
t + σ̂B̂t −

1

2
σ̂2t

where B̂ and B are independent Brownian motions and B̃ =
(
σB + σ̂B̂

)
/σ̃ is a

Brownian Motion. With this, we get

E
[
eG̃τ
]

= E
[
min
s≤τ

eY
σ̃
s −δθνs

]
= E

[
min
s≤τ

eY
σ
s −δθνs+σ̂B̂s− 1

2
σ̂2s

]
< E

[
eY

σ
τσ
−δθντσ+σ̂B̂τσ− 1

2
σ̂2τσ
]

where τσ is the minimizer of Y σ
s − δθνs under the constraint τσ ≤ τ , i.e.

Y σ
τσ − δθντσ = min

s≤τ
(Y σ

s − δθνs)

The inequality is strict, as the r.v. exceeds 1 with non-zero probability whereas the
minimum on the left hand side is bounded by 1 ( for s = 0). As Y σ and B̂ are
independent and τσ is measurable with respect to σ(Y σ), we get

E
[
eY

σ
τσ
−δθντσ+σ̂B̂τσ− 1

2
σ̂2τσ
]

= E
[
E
[
eY

σ
τσ
−δθντσ+σ̂B̂τσ− 1

2
σ̂2τσ
∣∣∣τσ]]

= E
[
E
[
eY

σ
τσ
−δθντσ

∣∣τσ]E [eσ̂B̂τσ− 1
2
σ̂2τσ
∣∣∣τσ]]

= E
[
E
[
eY

σ
τσ
−δθντσ

∣∣τσ] · 1]
= E

[
eY

σ
τσ
−δθντσ

]
= E

[
eGτ
]

In particular there is a delay in investment even though from the central planner’s
perspective the fundamentals, namely productivity and cost, remain constant. What
changes with the volatility are the fundamental’s dynamics. This delay is due to the
optimal exercise strategy of growth options and the option premium of waiting to
invest. If cost fluctuate, there is a gain in waiting and speculating on even lower cost.
This is the content of the next section. But before, I analyze the impact of volatility
on the long run behavior of the capital stock.
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Theorem 2.6.3. The long run dynamics of the capital stock k∗t fulfill

1. ) Let δθν − µ+ 1
2
σ2 ≥ 0 then

lim
t→∞

1

t
log k∗t =

1

2θν
σ2 − 1

θν
µ Pa.s.

2. ) Let δθν − µ+ 1
2
σ2 + σ2

2θν
≥ 0 then

lim
t→∞

1

t
logE [k∗t ] =

1

θν

(
1

2
σ2 − µ

)
+

σ2

2θ2ν2

In particular the long run growth of the capital stock is a.s. (and in expectation)
increasing in volatility σ.

Hence, the long run capital stock increases in volatility. The intuition is that the
more volatile entry cost are, the more probable are low entry cost which will lead to
growth while the set on which entry cost explode has vanishing probability.

2.6.1 Option Premia

In this subsection, I show that the delay in investment is due to an increase in the
option premium of waiting to invest. I assume δ = 0 for two reasons. First, for
simplicity and second it allows to give a precise definition of the option premium.

Definition of Option Premium and Connection to Optimal Stopping

Definition 2.6.4. Let τy be the time of investment of the y-th capital unit, i.e. τy
∆
=

inf{t > 0|k∗t ≥ y}. The option premium is the expected discounted difference between
the flow of marginal utility generated by the y-th unit of capital and its cost at τy.

OPt(y, γt)
∆
= E

[∫ ∞
τy

e−ρ(s−t)Vk(y)ds− e−ρ(τy−t)βγτy

∣∣∣∣∣Ft
]

To motivate this definition note that - interchanging the order of integration - we can
write the value of the social planner as

E
[∫ ∞

0

e−ρt (V (k∗t )dt− βγtdk∗t )
]

= E
[∫ ∞

0

e−ρt
(∫ k∗t

0

Vk(y)dydt− βγtdk∗t
)]

= E

[∫ ∞
k∗0−

(∫ ∞
τy

e−ρtVk(y)dt− e−ρτyβγτy

)
dy

]
+

∫ k∗0−

0

∫ ∞
0

e−ρtVk(y)dtdy

=

∫ k∗0−

0

∫ ∞
0

e−ρtVk(y)dtdy︸ ︷︷ ︸
installed capital

+

∫ ∞
k∗0−

E

[∫ ∞
τy

e−ρtVk(y)dt− e−ρτyβγτy

]
dy︸ ︷︷ ︸

growth options
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where τy is the installment time of capital unit y, i.e. τy
∆
= inf{t | k∗t ≥ y}. That is

the central planner’s is the sum of the utility flow stemming from already installed
capital and the value of all growth options. Note that as k∗ maximizes the value
function, τy is an optimal stopping time for

max
τ

E
[∫ ∞

τ

e−ρtVk(y)dt− e−ρτyβγτy
]

(2.6.2)

for dy-almost all y, P-a.s. For if it were not, replacing τy with optimal stopping times
would lead to a higher utility12. Hence, the optimal investment process maximizes
the flow of utility generated by the y-th unit net of disutility due to installment cost.
The value of the stopping problem is exactly OPt(y, γt). It is the value one obtains
by not-stopping now, i.e. the continuation value and can therefore be interpreted as
an opportunity cost to exercising the option. Consequently, it is optimal to exercise
the option when the return in form of the stream of marginal utility outweighs both,
the direct exercise cost and the opportunity cost due the scrapped opportunity to
exercise later. I.e. when∫ ∞

t

e−ρ(s−t)Vk(y)ds ≥ βγt +OPt(y, γt) (2.6.3)

in which case (2.6.3) holds with equality by the definition of the option premium.
Note that the left hand side is deterministic and does not depend on volatility σ.
Neither does the current value γt. Hence any delay must be due to an increase in the
option premium (rather than a decrease in marginal utility). The Option premium
can be explicitly computed.

Theorem 2.6.5. Let R(y) =
∫∞

0
e−ρsVk(y)ds be the present value of the flow of

marginal utility obtained from capital unit y. Then:

1.

OP (γ) =

(
γ

γ∗

)η
R(y)

1− η
, γ∗ =

R(y)η

β(η − 1)
(2.6.4)

with η being the negative root of

µη +
1

2
σ2η (η − 1)− ρ = 0 (2.6.5)

In particular OP > 0

2. The option premium is increasing in uncertainty:

∂OP

∂σ2
> 0

12 Note that replacing the installment times τy with optimal stopping times for (2.6.2) is feasible
as the optimal stopping times are increasing in y due to the concavity of V . This fact is proven in
the appendix.
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3. Even for µ = µ̃ + σ2, i.e. if marginal productivity 1/γt is a martingale and
µ increases in σ, the optimal capital stock is decreasing in σ as long as µ =
µ̃+ σ2 ≥ −ρ

Proof. As the installment times of unit y are optimal stopping times for (2.6.2), it
holds

OP (γ) = max
τ

E
[
e−ρτ (R(y)− βγτ ) | γ0 = γ

]
Hence, OP solves

µγOP ′ +
1

2
σ2γ2OP ′′ − ρOP = 0 (Euler Equation)

OP (γ∗) = R(y)− βγ∗ (Value Matching)

OP ′(γ∗) = −β (Smooth Pasting)

Trying a solution of the form OP (γ) = cγη one arrives at 1). For 2) and 3) differentiate
(2.6.5) with respect to σ2. This yields ∂η

∂σ2 > 0. Differentiating (2.6.4) with respect
to η yields

∂OP

∂η
=

(
γ
γ∗

)η
γ∗β (ln(γ)− ln(γ∗))

−η
≥ 0

as γ ≥ γ∗. Hence also ∂OP
∂σ2 = ∂OP

∂η
∂η
∂σ2 ≥ 0

Reconciled with Zero Profits via Rise in Long Rate and Wages

The question at hand is how the delay is realized in the market interpretation of
the economy. In a market equilibrium, firms must make zero profits, i.e. it holds
st ≤ γtwt. Thus, there can only be a delay in investment if the fundamentals as seen by
the market change. Investment which has been profitable must become unprofitable
and this can only be due to a change in fundamentals. Note that a firm’s profit
evaluation contains three further parameters, Q∗, w∗ and ρ∗ which are influenced by
σ. These are ’market fundamentals’ which are artificial from the standpoint of the
social planner. Indeed, this section shows that it are increases in the longer term
interest rates and an increase in expected future wages (future prices on labor) which
render current investment opportunities unprofitable when volatility increases.
To see this, write the stock price as

s∗t = EQ∗
[∫ ∞

t

e−(ρ∗s−ρ∗t )e−δ(s−t)π∗sds

∣∣∣∣Ft]
= EQ∗

[∫ ∞
t

e−(ρ∗s−ρ∗t )e−δ(s−t) max
l

(
Al1−α − w∗s l

)
ds

∣∣∣∣Ft]
= EQ∗

[∫ ∞
t

e−(ρ∗s−ρ∗t )e−δ(s−t) (w∗s)
α−1
α πds

∣∣∣∣Ft] (2.6.6)

with π = αA
1
α (1− α)

1−α
α . Hence
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s∗t = π

∫ ∞
t

e−δ(s−t)EQ∗
[
e−(ρ∗s−ρ∗t ) (w∗s)

α−1
α

∣∣∣Ft] ds
= π

∫ ∞
t

e−δ(s−t)Bt,sŵ
α
t,sds (2.6.7)

where
Bt,s

∆
= EQ∗ [e−(ρ∗s−ρ∗t )

∣∣Ft]
is the time-t price of a zero coupon bond with maturity t− s and

ŵαt,s
∆
= B−1

t,s EQ∗
[
e−(ρ∗s−ρ∗t )w∗

1− 1
α

s

∣∣∣Ft]
is the price of a future contract on w∗

− 1
α

s units of labor each sold at the spot price w∗s .

Equation (2.6.7) expresses s∗t as an index of bond prices and futures on wages. The
index is a metric of the term structure of future prices. As the stock price decreases
in volatility due to Theorem 2.6.2 in combination with investment market clearing
(see Definition 2.5.1, number 5.) also the index decreases. So the term structure must
change and interest rates and futures on wages measured by the metric of the index
have to increase. We record this observation in a theorem

Theorem 2.6.6. At the investment trigger γ = γ∗ the entity

s∗t = π

∫ ∞
t

e−δ(s−t)Bt,sŵ
α
t,sds

is decreasing in volatility σ.

Proof. We have to show that the stock pürice s∗t decreases in volatility σ. To see
this suppose σ0 < σ1 and assume we are at the investment trigger for σ = σ0, i.e.
γt = γ∗(σ0) and st(σ0) = γ∗(σ0)w∗t . As k∗t (σ) is decreasing in volatility by Theorem
2.6.2 so is γ∗(σ). In particular st(σ0) = γ∗(σ0)w∗t > γ∗(σ1)w∗t ≥ st(σ1) where the last
inequality is due to the equilibrium condition (Definition 2.5.1, number 5).

Note that with lt being the long rate (i.e. the fixed coupon payed by a perpetual
bond with price 1) at time t by definition

l−1
t =

∫ ∞
t

Bt,sds (2.6.8)

Hence for α = 1 and δ = 0 the index coincides (up to scaling by π) with the inverse
long rate. That is for parameters close to these, longer term interest rates increase.
Both, the long rate and the stock price can be computed in closed form. This is done
in the following theorems.
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Theorem 2.6.7. The inverse long rate

l−1(k∗t , γt) = EQ∗
[∫ ∞

t

e−(ρ∗s−ρ∗t ) · 1ds
∣∣∣∣Ft] (2.6.9)

is explicitly given by

l−1(k, γ) =
1

ρ− αθνδ

(
1− α

α− c

(
k

κγ−
1
θν

)cθν)
for k ≥ κγ−

1
θν (2.6.10)

where c is the smallest root13 of

(c− α)θνδ − cµ+ ρ+
1

2
σ2(c− c2) = 0 (2.6.11)

with υ = θν.

Proof. The proof is in the appendix.

Note that the inverse long rate, i.e the price of a perpetual bond, consists of two
components. It is the sum of the inverse short rate in times without investment
1/(ρ−αθνδ) and a negative ’growth component’ reflecting the impact of future capital
expansions. The latter depends on volatility σ, but the sign of the relation ship
depends on the parameters and arguments.

Theorem 2.6.8. Let

s∗t = EQ∗
[∫ ∞

t

e−(ρ∗s−ρ∗t )−δ(s−t)π∗sds

∣∣∣∣Ft]
= uc(c

∗
t )
−1EP

[∫ ∞
t

e−(ρ+δ)(s−t)uc(c
∗
s)π
∗
sds

∣∣∣∣Ft]
be the stock price. The stock price in labor units s∗t/w

∗
t is explicitly given by

s∗t
w∗t

= πβ−
1
α
A−

θ
α
νφ−(1−α) θ

α

ρ+ δ − δθν

(
1− 1

1− C

(
k

κγ−
1
θν

)Cθν)
k−θν for k ≥ κγ−

1
θν

(2.6.12)
where C is the negative root14 of

θν(C − 1)δ − Cµ+ ρ+ δ +
1

2
σ2(C − C2) = 0 (2.6.13)

Proof. The proof is in the appendix.

Just as the inverse long rate, the price consists of two components. The net present
value of the current cash flow and the negative influence of future capital expansions
which increase wages and therefore decrease profits.

13 i.e. c
∆
=
−2µ+σ2+2δθν−

√
8(ρ−αδθν)σ2+(2µ−σ2−2δθν)2

2σ2

14 i.e. C
∆
=
−2µ+σ2+2δυ−

√
8(ρ+δ−δθν)σ2+(2µ−σ2−2δυ)2

2σ2
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Fig. 2.3: Long term interest rate and term spread are increasing in volatility: Parameter
values: β = A = K = 1, α = 1/3, θ = 2, ρ = 0.02, µ = 0, δ = 0.07, γ = 4.35
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Fig. 2.4: The critical investment cost and stock prices in labor units decrease in volatility
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Fig. 2.5: Tobin’s Q is decreasing in volatility and cost. Tobin’s Q is defined as the ratio
of the market price relative to the reproduction price of stocks. In this case this
ratio is
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Figure 2.3 shows the long term interest rate in dependence of the volatility σ for the
parameter values: β = A = K = 1, α = 1/3, θ = 2, ρ = 0.02, µ = 0, δ = 0.07,
γ = 4.35. Here, γ is chosen such that with σ = 0, the economy is in the steady state.
As can be seen, the long rate is increasing in volatility. The higher the volatility, the
higher the probability of future capital increases at lower cost. This capital expansion
is anticipated by an increase in the long term interest rate which renders current
investment opportunities unprofitable even though neither productivity nor cost of
investment (’fundamentals’) have changed. With σ not the fundamentals itself but
their dynamics change. As current investment opportunities have to compete with
future ones that are superior in expectation they become unprofitable.
With positive volatility, investment stops and the short term interest rate falls to
the level determined by the discount rate ρ and capital depreciation δ. With higher
volatility early investment becomes less and less probable so that yields become low
for longer maturities.
The lower graph in figure 2.4 shows the investment trigger, that is the critical cost
which makes investment optimal, relative to the trigger value with σ = 0. With
increasing σ the trigger decreases, that is lower and lower cost are demanded for
investment to be undertaken. The graph above shows how the stock price (measured
in labor units) varies with volatility. Tobin’s Q (figure 2.6.1, the ratio of the market
price relative to the reproduction price of stocks, falls in γ and in σ. The first is
not surprising. If reproduction cost increase, the ratio falls even though the market
price (see figure 2.4) rises. If volatility rises, so does the probability of cheap future
competition so that the market price and thus Tobin’s Q fall.

2.7 Conclusion

I solved a general equilibrium model with irreversible capital accumulation. The
model is such that a delay in investment is optimal if entry cost fluctuate. This is due
to the option value of investing later at lower cost. While in the partial equilibrium
setting of Leahy (1993) it are the dynamics of intra-period prices that reconcile a
delay with zero profits, in the general equilibrium model of this article this role is
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absorbed by the dynamics of inter-period prices. That is, in a market setting, the
delay occurs via an increase in longer term future prices which anticipate better future
investment opportunities, rendering current projects unprofitable. In this sense, the
long term rates and futures on labor comprise an option value of waiting to invest.
This is similar to Keynes speculative motive which lifts the long term rate at which
investors are willing to lend due to speculation on higher future rates. Depending
on the parameter values, the speculative demand (in the sense of a lack of long term
asset supply) might drive the equilibrium short rate below zero and - if zero is a lower
bound - the economy out of equilibrium.
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Appendix

Proof of Theorem 2.5.4: Let It be an arbitrary investment process and k0− = k∗0−. Define

kt
∆
=

∫ t

0

e−δ(t−s)dIs + e−δtk0−

We have to show that

E
[∫ ∞

0

e−ρt (V (kt)dt− βγtdIt)
]
− E

[∫ ∞
0

e−ρt (V (k∗t )dt− βγtdI∗t )

]
≤ 0

By the concavity of V , we have

V (kt)− V (k∗t ) ≤ Vk(k∗t )(kt − k∗t ) (2.7.1)

Hence

E
[∫ ∞

0

e−ρt (V (kt)dt− βγtdIt)
]
− E

[∫ ∞
0

e−ρt (V (k∗t )dt− βγtdI∗t )

]
= E

[∫ ∞
0

e−ρt (V (kt)− V (k∗t )) dt−
∫ ∞

0

e−ρsβγs (dIs − dI∗s )

]
≤ E

[∫ ∞
0

e−ρtVk(k∗t )(kt − k∗t )dt−
∫ ∞

0

e−ρsβγs (dIs − dI∗s )

]
Now,

E
[∫ ∞

0

e−ρtVk(k∗t )(kt − k∗t )dt−
∫ ∞

0

e−ρsβγs (dIs − dI∗s )

]
= E

[∫ ∞
0

e−ρtVk(k∗t )

∫ t

0

e−δ(t−s) (dIs − dI∗s ) dt−
∫ ∞

0

e−ρsβγs (dIs − dI∗s )

]
= E

[∫ ∞
0

e−ρs
∫ ∞
s

e−(ρ+δ)(t−s)Vk(k∗t )dt (dIs − dI∗s )−
∫ ∞

0

e−ρsβγs (dIs − dI∗s )

]
where we switched the order of integration. By optional projection (see (Kallenberg, 2001, Corollary
19.19)) we can write this as

= E
[∫ ∞

0

e−ρs
(
E
[∫ ∞

s

e−(ρ+δ)(t−s)Vk(k∗t )dt

∣∣∣∣Fs]− βγs) (dIs − dI∗s )

]
= E

[∫ ∞
0

e−ρs (Ms − βγs) (dIs − dI∗s )

]
But Ms − βγs ≤ 0 and (Ms − βγs) dI∗s = 0 P-a.s. by the FONC. Hence

E
[∫ ∞

0

e−ρs (Ms − βγs) (dIs − dI∗s )

]
≤ 0 (2.7.2)

which finishes the proof.

Proof of Lemma 2.5.5: Note that

e−(ρ+δ)sMs = E

 ∞∫
s

e−(ρ+δ)tVk(k∗t )dt

∣∣∣∣∣∣ Fs
 ≤ E

 ∞∫
s

e−(ρ+δ)tVk(e−δt max
τ≤t

lτe
δτ )dt

∣∣∣∣∣∣ Fs


≤ E

 ∞∫
s

e−(ρ+δ)tVk(e−δt max
s≤τ≤t

lτe
δτ )dt

∣∣∣∣∣∣ Fs
 = e−(ρ+δ)sβγs
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where we had made use of the fact that Vkk ≤ 0. Note that this equation holds with equality
whenever dI∗s > 0 as in this case a new maximum is attained at s and l∗s = max

τ≤s
lτe

δτ = k∗t .

Multiplying both sides with e(ρ+δ)s yields the result.

Proof of Theorem 2.5.6: Recall Vk(k) = ψk−θν and γt = exp(Yt) where Yt is a Lévy process. We
try a base capital stock of the form lt = κγ−λt for some κ, λ ∈ R. For such a capital stock

e−(ρ+δ)sβ
!
= γ−1

s E

 ∞∫
t=s

e−(ρ+δ)tVk(e−δt max
s≤τ≤t

lτe
δτ )dt

∣∣∣∣∣∣ Fs


= e−YsE

 ∞∫
s

e−(ρ+δ)tψ

(
e−δt max

s≤τ≤t
lτe

δτ

)−θν
dt

∣∣∣∣∣∣ Fs


= ψκ−θνE

 ∞∫
s

e−(ρ+δ)t min
s≤τ≤t

eθνλYτ−Ys−θνδ(τ−t)dt

∣∣∣∣∣∣ Fs


= ψκ−θνe−(ρ+δ)sE

 ∞∫
s

e−(ρ+δ)(t−s) min
s≤τ≤t

eYτ−Ys−θνδ(τ−t)dt

∣∣∣∣∣∣ Fs


where we had chosen λ
∆
= (θν)−1. As Yτ − Ys are stationary and independent from Fs by the Lévy

property, we have

E

 ∞∫
s

e−(ρ+δ)(t−s) min
s≤τ≤t

eYτ−Ys−θνδ(τ−t)dt

∣∣∣∣∣∣ Fs
 (2.7.3)

= E

 ∞∫
0

e−(ρ+δ)t min
0≤τ≤t

eYτ−Y0−θνδ(τ−t)dt

 (2.7.4)

= E

 ∞∫
0

e−(ρ+δ(1−θν))t min
0≤τ≤t

eGτ dt

 (2.7.5)

= E

 ∞∫
0

e−(ρ+δ(1−θν))teGtdt

 (2.7.6)

where Gt
∆
= Yt − Y0 − θνδt is also a Lévy process and

Gt
∆
= min

s≤t
Gs

With this, we can solve for κ and get

κθν = β−1ψE

 ∞∫
0

e−(ρ+δ(1−θν))teGtdt


We can write this

κθν = β−1ψ
1

ρ+ δ(1− θν)
E

 ∞∫
0

(ρ+ δ(1− θν)) e−(ρ+δ(1−θν))teGtdt


= β−1ψ

1

ρ+ δ(1− θν)
E
[
eGτ

]
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where τ is an exponentially distributed random variable with parameter ρ+ δ(1− θν) independent
from Gt.

Proof of Lemma 2.5.8: By Remark 2.5.7 it is sufficient to show 1. Let Yt = (µ− 1
2σ

2)t+ σBt such
that γt = exp(Yt). Let

Y t
∆
= min

s≤t
Ys (2.7.7)

Note that P [Y t ≤ y] = P [Ty ≤ t] where Ty is the first passage time of y. With this notation:

E
[
eY t
]

=

∫ 1

0

P
[
eY t > x

]
dx

=

∫ 0

−∞
eyP [Y t > y] dy

=

∫ 0

−∞
ey (1− P [Ty ≤ t]) dy

= 1−
∫ 0

−∞
eyP [Ty ≤ t] dy (2.7.8)

With this, one computes:

E
[
eY τ

]
= E

[
E
[
eY τ

∣∣τ]]
=

∫ ∞
0

ρe−ρtE
[
eY t
]
dt

=

∫ ∞
0

ρe−ρt
(

1−
∫ 0

−∞
eyP [Ty ≤ t] dy

)
dt by equation (2.7.8)

= 1−
∫ 0

−∞
ey
∫ ∞

0

ρe−ρtP [Ty ≤ t] dtdy

= 1−
∫ 0

−∞
eyE

[
e−ρTy

]
dy (by integration by parts) (2.7.9)

Equation (2.7.9) reduces the problem to the computation of E
[
e−ρTy

]
, the moment generating

function of Ty, which can be done by applying a standard trick. Note that

Mt
∆
= eθYt−at, a = a(θ) = θ(µ− 1

2
σ2) +

1

2
θ2σ2 (2.7.10)

is a martingale by the choice of a. Hence, by the optional stopping Lemma (e.g. see Karatzas and
Shreve (1998)), we have

E
[
MTy

]
= E

[
lim
n→∞

MTy∧n

]
= lim

n→∞
E
[
MTy∧n

]
(by dominated convergence for y, θ <≤ 0)

= 1 (by optional stopping)

Therefore

1 = E
[
MTy

]
= E

[
eθy−aTy

]
⇔ E

[
e−aTy

]
= e−θy (2.7.11)

Take θ as the negative root of a = (θ) = ρ (for the positive one, the integrals do not converge), i.e

θ = −
(
µ

σ2
− 1

2

)
−

√(
µ

σ2
− 1

2

)2

+
2ρ

σ2
(2.7.12)
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Using (2.7.11) in (2.7.9), we get

E
[
eY τ

]
= 1−

∫ 0

−∞
eyE

[
e−ρTy

]
dy

= 1−
∫ 0

−∞
e(1−θ)ydy

= 1− 1

1− θ

= 1− 1√(
µ
σ2 − 1

2

)2
+ 2ρ

σ2 + µ
σ2 + 1

2

(2.7.13)

which can be simplified to the formula given in the main body.

Proof of Theorem 2.5.9: 4.) Let l = arg max
l′

u(F (l′, k∗), l′)/k∗. Hence

Fl(lk
∗, k∗) =

β

uc(F (lk∗, k∗))
= w∗

As F is homogeneous of degree one:

Fl(l, 1) = Fl(lk
∗, k∗) = w∗

so that l = arg max
l

(F (l, 1)− wl) = arg max
l
π(l).

5.) Notice that π(l∗) = F (l∗, 1) − w∗l∗ = F (l∗, 1) − Fl(l∗, 1)l∗ = Fk(l∗, 1) = Fk(l∗k∗, k∗) as w∗ =
β

uc(c∗)
= Fl(l

∗, 1) and F (l, k) = Fll + Fkk. In particular

s∗t = EQ∗
[∫ ∞

t

e−
∫ s
t
dρ∗ue−δ(s−t)πs (l∗s) ds

∣∣∣∣Ft]
= E

[∫ ∞
t

e−(ρ+δ)(s−t)uc(c
∗
s)

uc(c∗t )
πs (l∗s) ds

∣∣∣∣Ft]
=

1

uc(c∗t )
E
[∫ ∞

t

e−(ρ+δ)(s−t)uc(F (l∗sk
∗
s , k
∗
s))Fk(l∗sk

∗
s , k
∗
s)ds

∣∣∣∣Ft]
=

1

uc(c∗t )
E
[∫ ∞

t

e−(ρ+δ)(s−t)Vk(k∗t )ds

∣∣∣∣Ft]
≤ βγt

uc(c∗t )
= w∗t γt

with equality whenever dI∗t > 0 by the FONC.

6.) First note that the budget constraint (2.4.3) is fulfilled with equality. That is

c∗t dt+ s∗t dφ
e∗
t + dφs∗t = w∗t dL

∗
t + φe∗t π

∗
t dt+ φs∗t dρ

∗
t − δs∗tφe∗t dt

Further
dG∗t = e−ρ

∗
t k∗t (ds∗t − δs∗t dt+ π∗t dt− s∗t dρ∗t ) (2.7.14)

Hence, integrating the ds∗t term by parts
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G∗t = G∗0 + e−ρ
∗
sk∗ss

∗
s |t0 −

∫ t

0

e−ρ
∗
ss∗sdk

∗
s +

∫ t

0

e−ρsk∗s (π∗sds− δs∗sds) (I. by parts)

= G∗0 −
∫ t

0

e−ρ
∗
ss∗sdI

∗
s +

∫ t

0

(∫ t

s

e−ρ
∗
ue−δ(u−s)π∗udu+ e−ρ

∗
t e−δ(t−s)s∗t

)
dI∗s (by (2.5.6))

+k∗0−

∫ t

0

e−ρ
∗
ue−δuπ∗udu

= EQ∗ [G∗∞ | Ft]

where the latter equality obtains as all terms converge by monotone convergence to random variables
that lie in L1(Q∗) by the boundedness assumption on the planner’s value function 2.5.13 and by the
fact that s∗t = EQ∗ [∫∞

t
e−(ρ∗s−ρ

∗
t )−δ(s−t)π∗sds

]
In particular, G∗t is uniformly integrable so that φe,∗

and φs,∗ are admissible. Further,

E [G∗∞] = E [G∗∞ | F0] = G∗0 = e−ρ0s∗0k
∗
0− (2.7.15)

which we need later.
Now let ct, Lt, φ

e
t , ψ

e
t be an alternative admissible household’s choice for fixed (w∗, s∗, π∗, ρ∗,Q∗). It

is to show

E
[∫ ∞

0

e−ρt (u(ct)dt− βdLt))
]
− E

[∫ ∞
0

e−ρt (u(c∗t )dt− βdL∗t ))
]
≤ 0

By concavity of u we have u(c)− u(c∗) ≤ uc(c∗)(c− c∗). In particular

E
[∫ ∞

0

e−ρtu(ct)dt

]
− E

[∫ ∞
0

e−ρtu(c∗t )dt

]
≤ E

[∫ ∞
0

e−ρtuc(c
∗
t )(ct − c∗t )dt

]
(2.7.16)

By the budget constraint:

ctdt ≤ −s∗t dφet − dφst + w∗t dLt + φetπ
∗
t dt+ φstdρ

∗
t − δs∗tφetdt (2.7.17)

Using (2.7.17) and w∗t = β/uc(c
∗
t ) yields cancellation of the dL term:

E
[∫ ∞

0

e−ρt (uc(c
∗
t )ctdt− βdLt)

]
≤ uc(c∗0)EQ∗

[∫ ∞
0

e−ρ
∗
t (−s∗t dφet + φetπ

∗
t dt− φetδs∗t dt− dφst + φstdρ

∗
t )

]
(2.7.18)

with equality for φe,∗, φs,∗, L∗.
By integration by parts, we get

EQ∗
[∫ ∞

0

e−ρ
∗
t (−s∗t dφet + φetπ

∗
t dt− φetδs∗t dt− dφst + φstdρ

∗
t )

]
= EQ∗

[
−e−ρ

∗
t φets

∗
t − φst

∣∣∣∣∞0 +

∫ ∞
0

e−ρ
∗
t (φetπ

∗
t dt+ φet (ds∗t − δs∗t dt)− φess∗t dρ∗t )

]
= W

(φe,φs)
0− − EQ∗

[
lim
t→∞

e−ρ
∗
tW

(φe,φs)
t

]
+ EQ∗

[∫ ∞
0

φete
δtdNt,

]
by (2.4.2) (2.7.19)

where

Nt
∆
=

∫ t

0

e−ρ
∗
s−δsπ∗sds+ e−ρ

∗
t−δts∗t
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is a Q∗-martingales as

s∗t = EQ∗
[∫ ∞

t

e−
∫ s
t
dρ∗u−δ(s−t)π∗sds

∣∣∣∣Ft]
Note that

φete
δtdNt = dG

(φe,φs)
t

so that due to admissibility (2.4.1), we can apply Fatou’s Lemma and get

EQ∗
[∫ ∞

0

φete
δtdNt

]
≤ 0 (2.7.20)

so that (2.7.19) is smaller than zero:

EQ∗
[∫ ∞

0

e−ρ
∗
t (−s∗t dφet + φetπ

∗
t dt− φetδs∗t dt− dφst + φstdρ

∗
t )

]
≤ 0 (2.7.21)

By (2.7.15) we get for φe,∗, φs,∗, L∗

EQ∗
[∫ ∞

0

φe,∗t eδtdNt

]
= EQ∗

[∫ ∞
0

dG
(φe,∗,φs,∗)
t

]
= 0 (2.7.22)

Further,

EQ∗
[

lim
t→∞

e−ρ
∗
tW

(φe,∗,φs,∗)
t

]
= 0 (2.7.23)

as W
(φe,∗,φs,∗)
t is bounded by the continuation value of the planner’s value function which is finite

by (2.5.13). Inserting both, (2.7.22) and (2.7.23) into (2.7.19) implies

EQ∗
[∫ ∞

0

e−ρ
∗
t
(
−s∗t dφ

e,∗
t + φe,∗t π∗t dt− φ

e,∗
t δs∗t dt− dφ

s,∗
t + φs,∗t dρ∗t

)]
= 0 (2.7.24)

In particular, combining (2.7.16),(2.7.18), and (2.7.21) and (2.7.24) yields

E
[∫ ∞

0

e−ρt (u(ct)dt− βdLt))
]
− E

[∫ ∞
0

e−ρt (u(c∗t )dt− βdL∗t ))
]

≤ uc(c∗0)−1
(
W

(φe,φs)
0− −W (φe∗,φs∗)

0−

)
≤ 0

as was to show.

Proof of Theorem 2.6.3. First, as k∗t = e−δt max

[
κmax
s≤t

eδsγ
− 1
θν

s , k0−

]
it holds for k∗t ≥ k0−

1

t
log k∗t

=
1

t
log κ− δ +

1

t
max
s≤t

(
δs− 1

θν

(
µ− 1

2
σ2

)
s− 1

θν
σBs

)
≤ 1

t
log κ+

1

θν

(
1

2
σ2 − µ

)
−min

s≤t

1

t

1

θν
σBs

In particular lim
t→∞

1
t log k∗t ≤ 1

θν
1
2σ

2 − 1
θνµ by the strong law of large numbers. On the other hand,

1

t
log κ− δ +

1

t
max
s≤t

(
δs− 1

θν

(
µ− 1

2
σ2

)
s− 1

θν
σBt

)
≥ 1

t
log κ− 1

θν

(
µ− 1

2
σ2

)
− 1

t

1

θν
σBs



2. Optimal Timing of Aggregate Investment and the Yield Curve 63

which implies lim
t→∞

1
t log k∗t ≥ 1

θν
1
2σ

2 − 1
θνµ. This is 1). Second,

1

t
logE [k∗t ]

=
1

t
log κ− δ +

1

t
logE

[
e

max
s≤t

(δs− 1
θν (µ− 1

2σ
2)s− 1

θν σBs)
]

≤ 1

t
log κ− δ +

1

t
logE

[∥∥∥∥emax
s≤t

(δs− 1
θν (µ− 1

2σ
2)s− 1

θν σBs)
∥∥∥∥p]

1
p

for p > 1 by Jensen’s inequality

≤ 1

t
log κ− δ +

1

t
log

p

p− 1
E
[∥∥∥eδt− 1

θν (µ− 1
2σ

2)t− 1
θν σBt

∥∥∥p] 1
p

by Doob’s inequality

=
1

t
log κ− δ +

1

t
log

p

p− 1
+ δ − 1

θν

(
µ− 1

2
σ2

)
+

pσ2

2θ2ν2

In particular, letting t → ∞ and p → 1 one gets lim
t→∞

1
t logE [k∗t ] ≤ − 1

θν

(
µ− 1

2σ
2
)

+ σ2

2θ2ν2 . To get

the reverse inequality note that

1

t
logE [k∗t ]

≥ 1

t
log κ− δ +

1

t
logE

[
eδt−

1
θν (µ− 1

2σ
2)t− 1

θν σBt
]

=
1

t
log κ− δ +

1

t

(
δt− 1

θν

(
µ− 1

2
σ2

)
t+

σ2

2θ2ν2
t

)
=

1

t
log κ− 1

θν

(
µ− 1

2
σ2

)
+

σ2

2θ2ν2

Lemma 2.7.1. Let τy be optimal for (2.6.2). Then almost surely for arbitrary y′ > y holds τy′ ≥ τy.

In particular τy is invertible in the sense that with It
∆
= sup{y ∈ Q | τy ≤ t}, holds τy = inf{t ∈ Q |

It ≥ y}.
Proof. Suppose not. Then there exists a set A ∈ F with P[A] > 0 such that there exists y′ > y with
τy′ < τy on A. Without loss of generality we can assume A ∈ Fτy′ ∩ Fτy for otherwise we could

choose A
∆
= {τy′ < τy} which belongs to Fτy′ ∩ Fτy . Define

τ̂y
∆
= τy′1A + τy1AC

which then is also a stopping time. As will be shown, τ̂y will be strictly better than τy for y, a
contradiction. Namely

E

[∫ ∞
τ̂y

Vk(y)dt− e−ρτ̂yβγτ̂y

]
− E

[∫ ∞
τy

Vk(y)dt− e−ρτyβγτy

]

= E

[∫ τy

τ̂y

Vk(y)dt− e−ρτ̂yβγτ̂y + e−ρτyβγτy ;A

]

= E

[∫ τy

τy′

Vk(y)dt− e−ρτy′βγτy′ + e−ρτyβγτy ;A

]

> E

[∫ τy

τy′

Vk(y′)dt− e−ρτy′βγτy′ + e−ρτyβγτy ;A

]

= E

[∫ ∞
τy′

Vk(y′)dt− e−ρτy′βγτy′

]
− E

[∫ ∞
τy

Vk(y′)dt− e−ρτyβγτy

]
≥ 0
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Here the strict inequality is due to the strict concavity of V and τy > τ ′y on A. The last inequality
holds as τy′ is optimal for y′. Hence τy is not optimal.

Proof of Theorem 2.6.7. Guess that L(k, γ)
∆
= l−1uc(F (k)) = EP [∫∞

0
e−ρtuc(F (k∗t ))dt

]
is of the

form
L(k, γ) = a1k

b1 + a2k
b2γc (2.7.25)

for some real numbers a1, a2, b1, b2, c ∈ R. L(k, γ) solves

uc(F (k∗t ))− δk∗tLk + µγtLγ +
1

2
σ2γ2

tLγγ − ρL+ LkdI
∗
t = 0 (2.7.26)

As
uc(F (k)) = A−θνφ−(1−α)θk−ανθ

this implies

b1 = −ανθ

a1 =
A−θνφ−(1−α)θ

ρ− αδθν

and c is the smaller root of

b2δ − cµ+ ρ+
1

2
σ2(c− c2) = 0 (2.7.27)

When γ reaches the investment trigger
(
κ
k

)υ
, where υ = θν, the capital stock increases. Hence

0 = Lk(k,
(κ
k

)υ
) = a1b1k

b1−1 + a2b2k
b2−1

(κ
k

)cυ
which implies

b1 − 1 = b2 − 1− υc
a1b1 + a2b2κ

cυ = 0

Or

b2 = b1 + υc (2.7.28)

a2 = − a1b1
b2κcυ

(2.7.29)

Solving (2.7.27) and (2.7.28) for b2 and c yields the given expression for c. Altogether, L solves
(2.7.26) and, as c < 0, lim

γ→∞
L(k, γ) < ∞ A verification theorem shows that L chosen this way is

indeed equal to l−1(k, γ)uc(F (k)) (see e.g. Kallenberg (2001, Theorem 19.6)). Hence, inserting all
coefficients:

l−1(k, γ) = uc(F (k))−1
(
a1k

b1 + a2k
b2γc

)
=

1

ρ− αθνδ

(
1− α

α− c

(
k

κγ−
1
θν

)cθν)

Proof of Theorem 2.6.8. We have

s∗t
w∗t

= πβ−
1
αEP

[∫ ∞
t

e−(ρ+δ)(s−t)uc(c
∗
s)

1
α ds

∣∣∣∣Ft]
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by (2.6.6) so it amounts to compute the expected value. However, in the proof of Theorem 2.6.7
a similar expectation was computed. Indeed, if one substitutes ρ + δ for ρ and θ/α for θ, both

expectations are identical. Note that we do not change the investment trigger κγ
−1
υ as the investment

process still depends on the original θ.
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3. WHY FIAT MONEY IS A SAFE ASSET

Abstract

This paper presents a model in which (1) fiat money has strictly positive value in
the unique trembling hand equilibrium. This holds as each bank note is both: (a) a
witness for the existence of some agent in the economy with debt, backed by collat-
eral, and (b) the only matter that allows the debtor to settle her debt. The fear to
lose the collateral creates future money demand by the debtor and thereby ensures
positive money value. (2) Money is a safe asset as not only a single but all debtors
in the economy demand money so that idiosyncratic shocks to solvency wash out.
By this mechanism, fiat money is essentially equivalent to large securitized pools of
debt which (3) can implement the pooling allocation even if pooling itself is infeasible.

JEL classification: E40, E50

Keywords: Fiat Money, Securitization, Safe Asset, Collateral
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3.1 Introduction

Money lies at the core of economics. Nowadays, in the western world all currencies
are fiat money regimes. A Dollar bill is a piece of paper that does neither provide
intrinsic utility nor is it a claim that can be converted at the central bank to gold or
other real goods. But why then does anybody accept a Dollar bill as a medium of
exchange? More precisely, I ask: (1) Is the value of fiat money bounded away from
zero and if so (2) why? (3) Is the value stable in the sense that it survives backward
induction and rational expectation arguments? (4) Is money a safe asset in the sense
that the money value is attached with little risk and (5) if so why? Finally, (6) can
the existence of money implement allocations which could not be reached without it?

I stress that I do not deal with the question of why people invest in a non-interest-
bearing asset, and I only touch the question of why people trade in an asset which
would be redundant in a perfectly frictionless world with question (6). A tiny amount
of friction or transaction cost will solve these questions. Even more, compared to the
question of why people can reasonably rely on the value of a piece of paper called
money, provided they want to do so (for whatever reason), these question are of lower
order importance. Note that (a) also short term credit bears only little interest if at
all and (b) one could easily think of interest bearing checking accounts and one would
not assume anything fundamental to change. Indeed, some checking accounts pay
interests. If, however, people would not accept money as a medium of exchange, the
world would presumably look radically different. I therefore concentrate on questions
(1) to (6) posed above.

However elementary these questions are, surprisingly no adequate answer seems to
exist. Several models are set up to explain why fiat money has value, most of which
can be grouped into two categories. First, there are those that rely on an infinite
horizon argument in the sense that money has value today because it is expected to
have value tomorrow which is justified because it is expected to have value the day
after tomorrow and so on. To this category belong

1. Samuelson’s OLG model (Samuelson, 1958)

2. Every explanation relying on trust or social agreement

3. Search theoretic models (e.g. the Kiyotaki-Wright models (Kiyotaki and Wright,
1989, 1993))

The second category of models consists of those which rely on some exogenous factor,
e.g. models in which

1. money value (prices) is assumed to be exogenous (e.g. Grandmont and Younes
(1972)).

2. an exogenous agency such as the government forces agents to demand money,
e.g. in order to pay taxes (c.t. Lerner (1947))
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According to the author’s opinion, with exception of the Lerner model, neither kind
of models is convincing when it comes to justifying a positive money value. Infinite
horizon models essentially build upon bubble-like arguments as in these models the
transaction value of money differs from its fundamental value - zero - and this dif-
ference is only sustained if there always exists another person or another time point
at which money can be expected to have value. As in a Ponzi Scheme, the potato is
only passed on. Accordingly, none of these arguments survives in a setting with only
finitely many time points (agents) and in all these models there also exists a non-
monetary equilibrium in which money has zero value, the fundamental or non-bubble
solution. For instance in the Kiyotaki-Wright model (Kiyotaki and Wright, 1989),
no monetary equilibrium would exist were time to be finite. However, I believe that
a good explanation for positive money value shall not hinge upon the infiniteness
assumption. Exogenous factors, on the other hand, tend to be artificial and their
exogeneity has to be justified.

To the best of my knowledge there is only one series of models by Dubey, Geanakoplos
(e.g. Dubey and Geanakoplos (1992)) and, at an earlier stage, Shubik and Wilson
(Shubik and Wilson, 1977) that does not match to these two categories. In Dubey
and Geanakoplos (1992) multiple commodities and endowments lead to an incentive
to trade. Before trade starts, a (central) bank lends out units of paper which are in-
trinsically useless. The paper has to be returned to the bank after the trading period.
If not, there is a default for which the agent will be punished in form of disutility.
The default punishment creates money demand at the time after trade even in the
absence of follow-up periods. However, for money to enter the equilibrium, there
must be some mechanism why agents demand money in the first place. In Dubey and
Geanakoplos (1992) this is done by additionally imposing a cash-in-advance (CIA)
constraint. Also in this model, zero money value is a possible equilibrium outcome.

The model of the article at hand is similar except for two essential differences. First,
agents demand money in first place not for transactional reasons, but because of its
store of value function. Technically, this is realized by considering two periods and
agents with different time preferences. This has three advantages. First, it allows to
get rid of the ad hoc CIA constraint1. Second, the introduction of a second period
separates money creation (borrowing) from money annihilation (redemption) which
allows to show that money necessarily has value once it has entered the world (e.g.
in t = 0.5). Third, it stresses the asset role of money and allows to draw an analogy
to a securitized pool of debt. Namely, as money is demanded not only by a single

1 Note that a two-period setting in which money serves as only asset is similar to a CIA constraint
but at the same time different in essential aspects. In both settings, trade, be it in different goods or
in the same good at different time points, is restricted to be conducted by the use of money. Within
a two-period setting, however, there is the potential risk that money loses value in the second period
and the holder of the money bill goes away empty-handed. Further, in a two-period setting, the
infeasibility of direct intertemporal trades (i.e. of credit) can be justified by informational frictions.
For instance, it might be impossible to specify the quality of a good on paper and therefore to write
a credit contract while it will be possible to observe the quality as soon as one touches and perhaps
even tests the good. Arguments like these cannot be used to justify a CIA constraint.
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debtor but by all debtors in the economy, idiosyncratic shocks to debtors solvency
wash out, leading to a securitization effect making money a safe asset. This result
hinges upon the asset role of money.

Second, instead of modeling the default punishment in form of an ad-hoc disutility,
the agent is forbidden to consume in case she defaults. So agents with debt demand
money in order to repay, because if they do not, they lose their endowments and
cannot consume. By doing so, future endowments can be interpreted as collateral
backing debt and agents redeem their debt (if they have sufficient endowments) be-
cause they do not want to lose the collateral. This interpretation, namely the fear to
lose collateral as incentive to repay debt and therefore for money demand, is easier
established than if the repayment stems from an incentive to avoid some abstract
disutility. It is motivated by the fact that in the real world every income above a
minimum level is seized if debt is not redeemed and technologies that generate en-
dowments (capital) often can be used as collateral.

Note that the model resembles reality in the sense that most central banks, be it the
European Central Bank (ECB), the Bank of England (BoE) or the Bank of Japan
(BoJ)2 do not simply print money, they lend it out. Money only enters the world
in form of a credit that has to be repaid with interests on top of it. If repayment
does not occur, there is a default and the debtors collateral is seized. A fact which is
not captured by any model in which money exists without a corresponding liability
(’helicopter money’). The model at hand shows that these ingredients are sufficient
to ensure positive money value. The debtor’s collateral - or rather the debtor’s disin-
centive to lose the collateral - indirectly ’backs’ fiat money even though a dollar bill
itself does not constitute a direct claim on the collateral.

Of course, the argument is not orthogonal to the models belonging to the categories
described above. First, the value of money relies on the assumption that there is
an institution that enforces the default punishment. This is similar to the viewpoint
that it is the obligation to pay taxes which establishes money demand. Second, the
securitization effect only holds if a large number of agents take on debts in form of
paper money. Hence, also in this model, at least for the second result, a form of social
coordination is necessary.

2 Though the Federal Reserve System (FED) does not primarily lend money to financial inter-
mediaries (it buys treasuries), it fits into the framework. Buying treasuries is roughly the same as
directly lending to the state, so the initial debtor is the government and the only way it can redeem
her debt is by collecting taxes. Hence, there is no difference whether one regards money demand as
stemming out of the governments obligation and capacity to repay debts or as stemming out of her
capability to collect taxes. In this sense, the Lerner explanation might be seen as the US version of
the model at hand.
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3.2 The Model

There is a unit mass of consumers i ∈ [0, 1], living for two time periods t ∈ {0, 1}.
Half of the agents are early consumers and half of them are late consumers in the
sense of a higher or lower discount rate. To be more precise, let δ ∈ (0, 1) and

δi
∆
=

{
δ if i ≤ 1

2

1 else
(3.2.1)

so that all agents i ≤ 1/2 are early consumers. Endowments in t = 0 are ei,0 = 1
units of a single perishable consumption good for each agent i.
At t = 1, each consumer receives an exogenous endowment of αei,1. Here, α : Ω →
(0, ω̄] is an aggregate shock and ei,1 : Ω → (0, ω̄] is an idiosyncratic shock3. Assume
E [αei,1] ≤ 1 to avoid dealing with a corner solution.

I assume that all shocks are independent and all idiosyncratic shocks are identically
distributed. Denote the distribution function of ei,1 by F . Assume that F is abso-
lutely continuous with density f .

Ex ante (period 0) utility is the simple discounted present value of consumption, i.e.

Ui = ci,0 + δiE [ci,1] (3.2.2)

In addition, in t = 0, there is a (central) bank lending out M ∈ R+ units of paper.
Note that paper does not appear in the consumers utility function; it is intrinsically
useless. I interpret M as (fiat) money. If a consumer borrows d units of money at
rate R, her debt in t = 1 is Rd. She is free to choose the amount of money π she
repays to the bank. However, if the consumer does not repay her debt, she will not
be able to consume in t = 1. This could be because there is a legal system in the
background enforcing repayment or because endowments serve as collateral for debt.
This acts like but is different to a punishment for defaulting in form of disutility as
assumed in Dubey and Geanakoplos (1992). Let d̄ ∈ R+ be an exogenously (i.e. by
the (central) bank) given upper borrowing constraint.

Consumers can make money deposits, also denoted by d, paying the return r. The
notation is so that d > 0 denotes deposits and d < 0 debt. In general, for money
to have positive value, r < R. In that case, more money has to be returned than
there exists in the economy. Hence not everybody can repay its debt and some agents
will default. This creates competition among the debtors for being not one of the
defaulters which, in turn, results in a positive money value. Note that for r = 1
money does not bear any interest.

As the central bank’s choice variables r, R, d̄ (M will be determined endogenously)
are predetermined in period 0, I treat the central bank as exogenous and do not

3 Note that by assumption P[αtei,t ≤ 0] = 0. This is made for a technical reason to avoid having
to give a meaning to a trade of ’nothing’ against ’nothing’.
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specify her preferences. She might, for instance, want to establish a certain price
level, inflation or nominal interest rate. In equilibrium she will make zero profits (no
more money than she lent out will be returned), so it is also possible to regard her
as merged with a perfectly competitive banking sector. See the fourth section for a
detailed description.

Accordingly, the consumers’ choice variables are elements of the space

S ∆
= {(d(u, r, R,M, p0), π(d, e1, α, p1, r, R,M)) ∈ R2 | s.t. d ≥ −d̄, π ≥ 0} (3.2.3)

where I dropped the index i for notational simplicity. Here, d = d+ − d− are de-
posits (=purchased bonds if d > 0 and promises to repay −Rd if d < 0) and
π ∈ R+ are repayments in t = 1. The choices may depend on (ui, r, R,M, p0) and
(di, ei,1, α, p1, r, R,M) resp. where ui are i.i.d. random variables allowing mixed strate-
gies and pt is the price level in t. This also pins down the information structure.

Consumption in period t is then determined by the budget constraints and the default
constraint. That is
Budget constraint at t = 0:

c0 + d/p0 = e0, c0 ≥ 0 (3.2.4)

Budget constraint at t = 1:

c1 + π/p1 = αe1 + d+r/p1 if π ≥ Rd− , c1 ≥ 0 (3.2.5)

Default constraint:
c1 = 0 if π < Rd− (3.2.6)

Consumers maximize utility (3.2.2) subject to the constraints (3.2.4),(3.2.5) and
(3.2.6):

max
(di,πi)∈S

E [ci,0 + δici,1] s.t. (3.2.7)

ci,0 + di/p0 = ei,0

ci,1 + πi/p1 = αei,1 + d+
i r/p1 if πi ≥ Rd−i

ci,1 = 0 else

Note that given the preferences and allocations, the first best solution (if E [αe1,i] =
ei,0 = 1) would be to let the early consumers consume all endowments in t = 0 and the
late consumers all endowments in t = 1. A credit market (potentially combined with
redistribution to achieve equal weights) could implement this allocation but might be
- and in this model is - infeasible, e.g. because the consumption good is ex-ante not
contractible. This could be because the quality of the good cannot be specified on
paper or simply because it is not known which goods are available in the future. The
opportunity to borrow money, i.e. of a different and intrinsically useless commodity,
will serve in parts as a substitute for a credit market in the consumption good.
An equilibrium for this economy is
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Definition 3.2.1. An equilibrium is a tuple E = (di, πi, r, R, pt, d̄,M), t ∈ {0, 1}, i ∈
[0, 1], where r, R, d̄,M ∈ R, (di, πi) ∈ S and pt are random variables revealed in t
such that

1. (di, πi) ∈ S maximizes consumers utility

2.
∫
d−i di = M (money market clearing: M is lent out)

3.
∫
d+
i di = M (lent out money serves as deposit)

4.
∫
πidi ≤ rM a.s. (money market clearing in t = 1 )

5.
∫
ci,tdi ≤

∫
αtei,tdi a.s. for t ∈ {0, 1} (goods market clearing)

I explicitly allow p = ∞ for a non-monetary equilibrium, but for r < R this will not
be an equilibrium outcome.

In order to proceed by backward induction, I define an t = 1-equilibrium:

Definition 3.2.2. Given the information at t = 1, i.e. r, R, d̄ and the distribution of
debt levels and endowments di, ei,t, (i ∈ [0, 1]) a t = 1-equilibrium is a tuple (ci,1, πi, p1)
such that

1. consumers maximize utility subject to the budget and default constraint, i.e.

ci,1 = max{ci,1 | (ci,1, πi) fulfill (3.2.5) and (3.2.6) } ∀i ∈ [0, 1]

2.
∫
πidi ≤ rM (money market clearing in t = 1 )

3.
∫
ci,1di ≤

∫
αei,1di (goods market clearing)

So far monetary policy is not specified. Under monetary policy I understand any re-
striction imposed on the parameters r, R,M, d̄, p0, p1. As will be seen, an equilibrium
imposes three restrictions (money market equilibrium in t = 0, 1 and saving (deposit)
market equilibrium), so three further constraints can be imposed by monetary policy.
Here, I assume that monetary policy determines r, R, and d̄. Money supply M and
prices will then become an equilibrium outcome.

3.3 Solution

I first show that the second period price level is finite (money has positive value)
and only depends on the realization of the aggregate shock α (money is safe) in any
equilibrium. I then show existence of an equilibrium and that there is a one to one
map between monetary equilibria and equilibria with debt pools.
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p1

rM

RM

Money

Money Demand Α=1.2

Money Demand Α=1

RM

Money Supply H rM L

Fig. 3.1: Money Demand and Supply

3.3.1 The monetary equilibrium

I proceed by backward induction. Assume the economy is in period t = 1 and there
already is some distribution of debt/deposits di, i ∈ [0, 1] and uncertainty about
second period endowments αei,1 is revealed. Clearly, optimal repayment is4

πi = min{αei,1p1, Rd
−
i } (3.3.1)

As a consequence, the price level p1 is finite and money always has positive value if
there is at least one defaulter, which is the case if and only if r < R.

Theorem 3.3.1. Given r, R, di, ei,1, (i ∈ [0, 1]), suppose that r < R and M
∆
=∫

d−i di =
∫
d+
i di > 0. Then p1 <∞ in any t = 1-equilibrium.

Proof. Suppose on the contrary p1 = ∞. Then, by (3.3.1), πi = Rd−i for all i with
ei,1 > 0 and, as P[ei,1 ≤ 0] = 0, for almost all i. In particular∫

πidi = R

∫
d−i di = RM > rM

A contradiction to the definition of an equilibrium.

Money has positive value as, due to r < R, some agents necessarily default and lose
their collateral. This creates competition for not being among the defaulters, which,
in turn, ensures a positive money value in t = 1. The argument is illustrated in
Figure 3.1. Money demand is increasing in the price level p1. This is as for low prices

4 Here, I assume that repayment is as much as possible in case of default. Zero payments were an
alternative possibility that lead to the same level of utility for the defaulting agents, but this would
imply that some resources are wasted. Hence for an equilibrium to exist, incentives for intertemporal
trade would have to outweigh the deadweight loss of defaults.
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debtors default and only demand the money equivalent of their endowments which
is zero in the extreme case of p1 = 0. On the other hand, for large prices, debtors
demand RM , the whole amount owed to the bank as in this case they can repay all
debts outstanding and avoid the seizure of their consumption goods. If r = R nobody
is forced to default, and a continuum of equilibria emerges. Prices were indetermined
and p1 = ∞ would be a possible equilibrium outcome. However, money is scarce in
the sense that only rM < RM units are available. This drives down the price for
consumption goods (i.e. drives up the price of money) to a level at which money
demand is reduced by a sufficient amount of defaulters to match money supply. If
aggregate endowments are high (e.g. the dashed alpha = 1.2 line), debtors have more
resources to compete with and the price level is low as can be seen in the figure.

Given finiteness of p1, it is easy to derive a t = 1-equilibrium.

Theorem 3.3.2. Given r, R, di, ei,1,(i ∈ [0, 1]) suppose that r < R and M
∆
=
∫
d−i di =∫

d+
i di > 0. Then there exists a unique t = 1-equilibrium. In particular, p1 is uniquely

determined by

rM =

∫
πidi (3.3.2)

Proof. By the definition of an equilibrium∫
πidi ≤ rM

Suppose ∫
πidi < rM (3.3.3)

This is excluded by Walras law. Namely, as consumers maximize utility, it holds
ci,1 + πi/p1 = αei,1 + rd+

i /p1. Integration over agents i ∈ [0, 1] yields∫
ci,1di+

1

p1

∫
πidi =

∫
αei,1di+

r

p1

∫
d+
i di

=

∫
αei,1di+

r

p1

M

Hence, (3.3.3) would imply ∫
ci,1di >

∫
αei,1di

which is a contradiction to goods-market-clearing. So the condition has to hold with
equality. As πi = min{αei,1p1, Rd

−
i } is monotonic in p1 (and not for all i, πi = Rd−i

as this would conflict with money market clearing ( see Theorem 3.3.1) and F is
absolutely continuous), there exists a unique p1 that solves (3.3.2). Then πi as in
(3.3.1) and ci,1 = αei,1 − πi/p1 together with p1 form a t = 1 equilibrium.
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Note that the price level p1 only depends on the realization of the aggregate shock α
due to the law of large numbers (LLN). To see this note that, applying LLN∫

πidi = E
[∫

πidi | α
]

=

∫
[0,1]

∫
(0,ω̄]

min{αep1, Rd
−
i }dF (e)di (3.3.4)

This is exactly the securitization effect which makes money a safe asset.

Corollary 3.3.3. In particular, due to the law of large numbers, p1 only depends
on the initial debt levels di and the aggregate shock α but not on the realization of
the idiosyncratic endowment shocks ei,1. Further, p1 is anti-proportional to α, i.e.
p1(α) = p̄1/α with p̄1 = p1(α = 1)

Having established finiteness of the price level p1 and a t = 1 equilibrium, it is easy
to go one (time-) step back and derive a full equilibrium. In t = 0, each deposit, each
Dollar note, is a witness for some debt and therefore for some future money demand
which, in turn, guarantees purchasing power. Due to idiosyncratic risk, individual
collateral might turn out to be worthless, but - as will be shown below - money is
demanded by the whole pool of debtors leading to a securitization effect. This is
what makes money a safe asset. For a full equilibrium p0 and di i ∈ [0, 1] have to be
determined.

Theorem 3.3.4. There are two types of equilibria in t = 0. Namely, given monetary
policy (r, R, d̄) with r < R
1) there are equilibria in which M = 0 and therefore di = 0 for all i. One of in which
p0 = p1 =∞ (a.s.).
2) there is an (up to the distribution of d+

i ) unique equilibrium for which M > 0. In
this equilibrium M = 1

2
d̄. Prices p1 are uniquely determined by Theorem 3.3.2 and

by p0 = 1/E [r/p1]. Further, di = −d̄ for i ≤ 1/2 and di ≥ 0 arbitrary for i ≥ 1/2 as
long as

∫
(1/2,1]

didi = 1
2
d̄ and di ≤ p0, e.g. di = d̄ for i > 1/2.

The proof is in the appendix.

The result with finite second period prices p1 only holds true if r < R. Intuitively r
R

is the ratio of debt served and total debt outstanding. If r
R
↑ 1 less and less agents

default. Competition among debtors reduces and prices rise. Nonetheless, prices are
bounded as long as second period endowments are bounded from below. This can be
inferred from Figure 3.1. If money supply rM (the blue line) increases towards RM ,
prices rise but stay bounded as maximum money demand RM is already achieved at
a finite price level. The following Corollary makes the argument formal.

Corollary 3.3.5. Moreover, if ω = essinf αei,1 > 0, then p1 is (independent of r)
bounded away from infinity as long as r < R in the monetary equilibrium.

p1 ≤
Rd̄

ω
(3.3.5)
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The proof is in the appendix.

As is stated in Theorem 3.3.4 there are two types of equilibria, one of in which M = 0
and agents do not make use of money. However, once money has entered the world,
the unique equilibrium is the monetary one in which prices are finite (see Theorem
3.3.2). I now argue that the non-monetary equilibrium is implausible. Two ways to
do so come into my mind.

First, one could abandon the assumption that agents are infinitesimally small. The
problem with the setup so far is that if one agent deviates from the M = 0 equilibrium
by taking debt d̄, the amount of money entering the world is infinitesimally small and
does not change equilibrium entities. In particular, prices could stay at infinity. One
way to avoid this would be to have a large but finite population of agents. The draw-
back would be more tedious algebra. Another way would be to alter the equilibrium
definition in a way that it deals with infinitesimal small entities (e.g. by switching to
a counting measure when only finitely many agents hold debt/deposits). This would
require a more technical definition that had to be justified.

I therefore follow a different argument by showing that the M = 0 equilibrium is
instable in a precisely defined sense. For this, I show that the monetary equilibrium
is the unique trembling hand equilibrium. Let

Sε ∆
= {(d(u, r, R,M, p0), π(d, e1, α, p1, r, R,M)) ∈ R2 |

s.t. d ≥ −d̄, π ≥ 0 and P [d ≤ −ε] ≥ ε} (3.3.6)

be the space of mixed strategies in which the probability that an agent borrows more
than ε units of money is at least ε.

Definition 3.3.6. An equilibrium E is a trembling hand (or stable) equilibrium, if
there exists a series of equilibria Eε where the strategies for the players i ≤ 1

2
are

restricted to lie in Sε so that Eε → E for ε→ 0 (point wise)

Here, I do not allow trembling in repayments π for simplicity and I do not force
trembling into d ≥ 0 as well as late consumers i ≥ 1/2 to tremble at all in order to
illustrate that the money value does not depend on forcing agents to accept money
- not even with a vanishing probability. Hence there is a slight deviation from the
original definition of a trembling hand perfect equilibrium (see e.g. (Mas-Colell et al.,
1995)) which makes the definition at hand less restrictive.

Theorem 3.3.7. Given r, R and d̄, the second case in Theorem 3.3.4 describes the
unique5 trembling hand equilibrium. Even more, every equilibrium Eε out of the con-
verging sequence already coincides with the final equilibrium (up to the distribution
d+
i of deposits among late consumers)

5 Uniqueness refers to p0, p1,M, d−i but not to the distribution of d+
i among late consumers



3. Why Fiat Money is a Safe Asset 80

Proof. Clearly, the second case in Theorem 3.3.4 fulfills Definition 3.3.6. To show
uniqueness, let Eε = (di, πi, r, R, pt, d̄,M) be an equilibrium within the converging
sequence of a trembling hand equilibrium. As M =

∫
d−−di ≥ ε2/2 > 0 by the

law of large numbers, it holds p1 < ∞ by Theorem 3.3.1. But then necessarily
p0 = 1/E [r/p1] = p̄1/(rE [α]) <∞, as otherwise late consumers would either borrow
money up to their limit and buy goods, driving up p0 or sell endowments against
money, driving down p0. But for the early consumers more debt is always better than
less debt, so they borrow up to their limit d̄ (see Lemma 3.6 in the Appendix for
details). This also determines π via (3.3.1).

The preceding Theorem illustrates that when money is created (and be it only by an
infinitesimally small amount), then money will necessarily have positive value.

3.3.2 Equilibrium Allocations

Equilibrium allocations are influenced by monetary policy. More precisely, they are
parameterized by the ratio r

R
, the ratio of debt paid back to total debt outstanding.

Corollary 3.3.8. Let r < R. The allocation of consumption goods across time and
states in the monetary equilibrium only depends on the ratio r

R
. In particular, d̄ only

affects price levels but not the real allocation.

The proof is contained in the appendix.

3.3.3 Pools of Debt

I now compute equilibria with pools of debt and show that there is a one to one map
to monetary equilibria. The point is that the equilibrium conditions turn out to be
the same.

A pool is a real asset with the parameters d̄p, Rp where d̄p is the maximum debt
and Rp is the interest rate to be paid on this debt. In t = 1, the pool collects all
outstanding debts, resp. all endowments,

πpi = min{αei,1, Rpdp−i } (3.3.7)

and distributes them to the depositors who then earn an interest of

rp
∆
=

∫
πpi di∫
d+p
i di

(3.3.8)

per unit of deposit. Note that in this case, unlike in the monetary equilibrium from
the preceding section, the return on deposits depends on the aggregate shock while -
in the absence of default - the debt service does not. To establish an exact equivalence
also in the case with aggregate shock, I therefore slightly change the definition of a
pool and allow the interest rate Rp to depend on the aggregate shock α.
The consumers problem is
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max
dpi≥−d̄p

ei,0 − dpi + δiE
[
max{0, ei,1 −Rpdp−i + rpdp+i }

]
(3.3.9)

A pool-equilibrium is:

Definition 3.3.9. A pool-equilibrium is a tuple (rp, Rp, d̄p, dpi ) where dpi is a distribu-
tion of debt/deposits such that (3.3.8) holds, dpi solves (3.3.9) and deposits net out to
zero. ∫

dpi di = 0

Theorem 3.3.10 (Equivalence of monetary and pool-equilibria). For any monetary
equilibrium (i.e. in which p < ∞ which is the case if and only if there almost surely
exists a default), there exists a pool-equilibrium with rp < Rp in which agents consume
the same bundles and, vice versa, for any non-trivial (i.e. dp 6≡ 0) pool-equilibrium
in which rp < Rp and Rp is proportional to the aggregate shock α, there exists a
monetary equilibrium in which agents consume the same bundles.

Proof. With Rp = Rp0/p1, d̄p = d̄/p0, rp = p0/p1r and dpi = di/p0 the choice sets,
choices and outcomes in the pool setting are the same as in the monetary setting.
For the other direction suppose (rp, Rp, d̄p, dpi ) is a pool-equilibrium. Let p0 and p1 be
arbitrary, R = p1R

p/p0, di = p0d
p
i , r = rpp1/p0, d̄ = p0d̄

p and M =
∫
d+
i di.

While the real allocations in monetary equilibria are parametrized by the ratio r
R

,
the ratio of debt repaid to total debt outstanding, in other words credit quality,
pool-equilibria are parametrized by d̄p, the debt limit in real terms.

3.4 Extension

Instead of modeling only the central bank lending out (up to) M units of money and
setting the interest rates r, R and the debt limit d̄, it is possible to extend the model
to a competitive banking system which endogenously determines R and d̄ given the
inputs r and M from the central bank and absorbs all losses. Here, I only give a
sketchy analysis as this shall not be a major focus of the paper.

Let there be continuum j ∈ [0, 1] of banks of measure 1 that play a Bertrand like
game to attract borrowers. Before t = 0, say in t = 0−, each bank j decides about
their lending policy, i.e. the rates Rj and borrowing limit d̄j they want to offer to
consumers. Banks refinance through the central bank which allows each bank to
borrow up to 2M units of money per (unit of) borrower they attract. The factor
scaling is chosen to keep 2 units of money per early consumer. Banks borrow from
the central bank and pass the money on to their clients. Banks have to redeem the
money in t = 1 without interest. Banks choose (Rj, dj) to maximize profits

Πj =

(
E
[
min{e1αp1, Rjdj}

p0

p1

]
− dj

)
×B
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Here, the first term is the expected difference between (inflation adjusted) money
units redeemed and the money lent out per borrower. The second term, B =
meas(borrowers), denotes the measure of borrowers a bank attracts. One can write

Πj = (ρ(dj, Rj)− 1) dj ×B (3.4.1)

where

ρ(dj, Rj)
∆
=

E
[
min{e1αp1, Rjdj}p0p1

]
dj

(3.4.2)

is the expected real interest rate paid by an agent who approaches a bank with pol-
icy (dj, Rj). In t = 0 agents observe the banks’ credit policies, approach a bank
of their choice6 to borrow and or/set deposits, trade and consume. Let, for sim-
plicity, the interest rate on deposits be set to r = 1 by the central bank. As before,
agents observe endowments in t = 1, trade, redeem their debt or default and consume.

I now informally derive an equilibrium for this setting. As all debtors have an incentive
to take as much debt as possible, debt limits d̄j and interest rates Rj have to be equal
across banks, say to (d̄, R) in equilibrium. Define M = d̄/2 as the measure of total
debt. In an efficient solution no early consumer would be allowed to consume in t = 1,
hence all debtors will have to default. This, together with the equilibrium condition
(3.3.2), implies

1

2
d̄ =

∫
[0,1]

min{αei,1p1, Rdi}di =

∫
[0,1/2]

αei,1p1di =
1

2
αE [e1] p1 (3.4.3)

the last equality being due to the law of large numbers, which pins down p1 as

p1 =
d̄

αE [e1]
(3.4.4)

Every debtor defaults iff Rd̄ ≥ ess sup p1αe1 = ess sup d̄e1/E [e1] . This gives a lower
bound for R (so the assertion that every bank has to set the same interest rate Rj

was not correct. Rj just has to lie over a certain threshold, higher interest rate do
not matter as the agent defaults anyway). Now any debt limit d̄ ≤ 2M could be
an equilibrium. Note, however, that the price level is maximal for d̄ = 2M so that
the money value is bounded from below for all equilibria. Also, d̄ = 2M is the only
stable equilibrium in the sense that if banks earn a however small amount of profits,
they want to lend out the maximum amount. The following Theorem records the
preceding arguments. A detailed proof can be found in the appendix.

Theorem 3.4.1. Let d̄ ≤ 2M be arbitrary. Define R∗
∆
= ess sup e1/E [e1]. Then

1. Any collection (d̄, Rj) with Rj ≥ R∗ arbitrary for j ∈ [0, 1] and the remaining
values as in Theorem 3.3.4 for the monetary policy (1, R∗, d̄) is an equilibrium.

6 If a bank faces more customers than it can serve, randomly chosen customers will have to
approach other banks, possibly one of second choice. But this does not happen in equilibrium where
every bank will choose the same credit policy.
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2. Vice versa, any equilibrium is of the form above, i.e. (d̄, Rj) with Rj ≥ R∗ for
any bank j that attracts some customers.

3.5 Money has Pooling Property even if Pooling is Infeasible

Note that for a pooling contract, the repayment obligation (3.3.7) has to be specified
ex ante in period t = 0 in terms of the consumption good, while for the monetary equi-
librium the repayment is an ex post equilibrium outcome in t = 1. This is interesting
as it allows for a monetary equilibrium to implement a pool-equilibrium even in situa-
tions where the pooling equilibrium is infeasible. Think, for instance, of a situation in
which contracts such as (3.3.7) cannot be written. Such a restriction might be due to:

Uncontractable Quality: Suppose that endowments are of different quality and one
good with quality q provides the same utility as q goods with quality 1, so that the
consumer is indifferent between quantity and quality. Suppose further that quality
cannot be contracted, but can be observed an instant before purchase, i.e. in period
t = 1 all qualities are known. For instance, it might be difficult to specify the quality
of a car in advance, but a short drive will reveal how valuable it is. In this case it is
impossible to write future contracts about the delivery of x units of a certain fixed
quality in t = 1 as delivery might occur with goods of vanishing quality. In this case,

writing the pooling contract πpi
∆
= min{αei,1, Rpdp−i } where dp−i is quality weighted

quantity would be infeasible. Therefore, no equilibrium with debt pools exists. With
money, however, there is an equilibrium outcome leading to the same results as if
pooling was possible. In this sense, money is a device to pool debt even in cases in
which debt pools are not available. The same holds for:

Different products: Suppose that in t = 1 there are different goods than in t = 0 and
it is unknown which type of products will be available. In this case, it would not be
possible to write future contracts unless it is possible to specify all future scenarios.
Money, however, would still work as a pooling device. In this sense, money is a way
to overcome incompleteness of credit markets.

This result also sheds some light on the question why in former times gold was the
preferred medium of exchange. Gold has the property that its quality can be easily
described and verified. There is no difficulty in writing contracts in terms of gold.

3.6 Conclusion

This article was motivated by a series of questions that can now be answered condi-
tional on the model being a sufficient close approximation to the real world.

(1) Is the value of fiat money bounded away from zero and if so (2) why?
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The answer is yes. Money is a witness for monetary debt which is backed by col-
lateral. The fear to lose the collateral creates money demand and ensures positive
money value.

(3) Is the value stable in the sense that it survives backward induction and rational
expectation arguments?

Yes. The last periods money value is unique and positive. The equilibrium is derived
by backward induction. Even more: It is the unique trembling hand equilibrium.

(4) Is money a safe asset in the sense that the money value is attached with little risk
and (5) if so why?

Yes. As money is not only demanded by a single but by all debtors, idiosyncratic
shocks to solvency wash out and only aggregate uncertainty remains equivalently to
a large securitized pool of debt.

(6) Can the existence of money implement allocations that were not reachable with-
out it?

Yes. Scenarios in which money implements the debt pooling equilibrium while ex ante
pooling contracts are infeasible, e.g. if quality is not contractible, are imaginable and
can be easily incorporated in the model at hand.
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Appendix

Proof of Theorem 3.3.4. 1) Clearly, p1 = p0 = ∞ implies that no one has an incentive to take on
debt or make deposits. Hence, di = 0 for all i and thereby M = 0 is an equilibrium. However, also
other prices might support M = 0 equilibrium outcome. For this, note that in any equilibrium the
real interest rate, if well defined (i.e. with finite prices)), received on deposits has to equal 1 to make
late consumers maximize utility, i.e. E [rp0/p1] = 1. However, early consumers with debt d then
have to pay an expected real interest rate of

ρ(d) = E
[
min{e1αp1

d
,R}p0

p1

]
which is decreasing in d but might still be more than 1/δ for d = d̄ if p1 is low in relation to R. In
this case di = 0 would be optimal and market clearing is trivially fulfilled.
2) First, I show that the equilibrium described in the theorem is indeed an equilibrium. To see

this, note that E
[
r p0p1

]
= 1, i.e. the expected real interest paid on deposits is one. This makes late

consumers indifferent between the level of deposits. That early consumers are maximizing utility
is a consequence of the next lemma, which also shows that di = d̄ has to hold for i ≤ 0.5 in every
equilibrium. It remains to show that an appropriate distribution of di ≥ 0 i ∈ (0.5, 1] exists, i.e.
one in which

∫
d+
i di = d̄/2 and di ≤ p0, the latter condition excluding negative consumption. Such

a distribution exists, e.g. di = d̄. To see this, note that

r

2p1
d̄ =

rM

p1

=
1

p1

∫
πidi

≤
∫

[0,1/2]

αei,1di

In particular, by the law of large numbers over ei,1 and application of expectations

d̄r
1

p1
≤ E [e1α | α] and hence

d̄rE
[

1

p1

]
≤ E [E [e1α | α]] ≤ 1 by assumption on period 1 endowments

Therefore,

d̄
1

p0
= d̄rE

[
1

p1

]
≤ 1 (3.6.1)

which had to be shown.
It has just been shown that given r,R, d̄, M = 1

2 d̄, di = −d̄ for i ≤ 0.5 and di = d̄ for i > 0.5, πi
defined by (3.3.1), p1 defined by Theorem 3.3.4, i.e. by

∫
min{αei,1p1, Rd̄}di = rM , together with

p0 = 1/(E [r/p1]) forms an equilibrium. During the argument only the distribution of d+ exhibited
some degrees of freedom. So the equilibrium above is - up the distribution of d+ - the only one for
which M > 0.

Lemma A.1 Let p1 be the price in a t = 1-equilibrium with M > 0 and p0 = 1/E [r/p1]. Let

ρ(d)
∆
=

E
[
min{e1αp1, Rd}p0p1

]
d

(3.6.2)

be the real interest rate to be paid by an agent with debt d. Then, first, ρ(d) is decreasing in the
debt level d and, second, ρ(d̄) ≤ 1. In particular, di = −d̄ for all i ∈ [0, 1/2] in equilibrium.
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Proof. To see (1), write ρ(d)
∆
= E

[
min{ e1αp1d , R}p0p1

]
. For (2), note that f(d)

∆
= E

[
min{eαp1, Rd}p0p1

]
is concave and f(0) = 0. Hence, for all d−i ≤ d̄

f(d−i ) ≥
(

1− d−i
d̄

)
f(0) +

d−i
d̄
f(d̄) =

d−i
d̄
f(d̄)

Integration over i yields ∫
f(d−i )di ≥ f(d̄)

d̄

∫
d−i di (3.6.3)

However, by the definition of an equilibrium and (3.3.1)

r

∫
d−i di =

∫
min{αei,1p1, Rd

−
i }di

Hence,

E
[
p0

p1
r

∫
d−i di

]
= E

[
p0

p1

∫
min{αei,1p1, Rd

−
i }di

]
=

∫
f(d−i )di

≥ f(d̄)

d̄

∫
d−i di by (3.6.3) (3.6.4)

Dividing through
∫
d−i di and using that late consumers are unrestricted and have to be indifferent

between their level of deposits, (i.e. 1 = E
[
rp0
p1

]
) leads to

1 = E
[
rp0

p1

]
≥ f(d̄)

d̄
= ρ(d̄) (3.6.5)

This proves the second claim.
Now Let U(d) be the utility of a debtor with initial debt d. It has to be shown that for d < d̄ holds
U(d) < U(d̄) (debtors borrow up to their limit). To see this, note that

U(d) = e0 +
d

p0
+ δE

[
max{0, αe1 −

Rd

p1
}
]

= e0 +
d

p0
+ δ

(
E [αe1]− E

[
min{αe1p1, Rd}

1

p1

])
= e0 +

d

p0
+ δ

(
E [αe1]− ρ(d)d

p0

)
= e0 +

d

p0
(1− δρ(d)) + δE [αe1] (3.6.6)

which takes a maximum for the debt level d = d̄ by the properties of ρ(d) just shown and the
assumption δ < 1.

Proof of Corollary 3.3.5. To understand the price bound on p1, note that as long as r < R there
has to be at least one defaulter. That is αei,1p1 < Rd̄ for at least one ei,1. Equivalently

p1 <
Rd̄

αei,1

Maximizing over all possible outcomes αei,1 yields the result
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Proof of Corollary 3.3.8. By Theorem 3.3.4 holds di = d̄ for all i ≤ 1/2. Combining this with (3.3.2)
implies that p1 is determined as the unique solution to

1

2
rd̄ = rM =

∫
[0,1/2]

min{αei,1p1, Rd̄}di (3.6.7)

⇔ 1

2
d̄ = M =

∫
[0,1/2]

min{αei,1
p1

r
,
Rd̄

r
}di (3.6.8)

Now assume that d̄ and r vary with r/R held constant. It is to show that real allocations do not
change. From (3.6.8) can be inferred that p1 is proportional to rd̄, p0 = 1/E [r/p1] is proportional

to d̄ and real debt services min{αe1,
Rd̄
p1
} do not alter. In particular, the real allocation does not

change. Vice versa, let R/r vary. Then as long as not everybody defaults, i.e. as long as as long as
Rd̄ < p1 ess supαe1, the entity p1/r and therefore the real allocation has to change.

Proof of Theorem 3.4.1. For 1), the only thing to show is that banks maximize profits, all other
things already being proven with Theorem 3.3.4. First note that

d̄ρ(d̄, R∗) = E
[
min{e1αp1, R

∗d̄}p0

p1

]
= E

[
min{e1p̄1, R

∗d̄}p0

p1

]
= E

[
min{e1p̄1, R

∗d̄}
]
E
[
p0

p1

]
= E

[
min{e1αp1, R

∗d̄}
]
· 1

= 2

∫
[1/2]

πidi (law of large numbers)

= d̄

so that ρ(d̄, R∗) = 1. Suppose now that one bank deviates from (d̄, R∗) and sets a menu (dj , Rj).
Clearly, lowering credit quality dj > d̄ only produces more defaults but not more revenues even for
Rj > R∗ by the fact that ρ is decreasing in dj (see Lemma A.1) but not increasing in Rj for R ≥ R∗
(definition of R∗). Neither can it be improving to only set a lower interest rate dj = d̄, Rj < R∗. So
suppose, dj < d̄. Let ρ(d) be the real interest rate to be paid by an agent with debt d as in Lemma
A.1. As ρ(d̄) ≤ 1 and early consumers utility is strictly increasing in the debt level (see also (3.6.6)),
the bank has to set Rj such that ρ(dj , Rj) < 1, which would lead to negative profits by (3.4.1).
(2) It is enough to show that Rj < R∗ cannot occur in equilibrium (if bank j were to attract some
customers) as in this case an argument as in the proof of (1) shows that dj = d̄ is constant among all
banks. So suppose there exists a bank attracting borrowers with policy Rj < R∗. As banks cannot
make any profits (note that average monetary profits have to be zero as banks owe all money that
exists in the economy to the central bank. So by pure profit maximization, without even referring to
competition, banks cannot make profits.) it has to hold ρ(dj , Rj) = 1. But for given ρ, consumers
prefer strictly more to less debt ( see (3.6.6) in the proof of Lemma A.1), so dj = d̄ has to be constant
among all banks ( that attract customers) in equilibrium. But then, if Rj < R∗, not every early
consumer defaults in the second period (by definition of R∗). Hence, lowering credit quality dj > d̄
and choosing Rj such that ρ(dj , Rj) = 1 + ε would be a profitable deviation for some small ε > 0 in
which a bank would make positive profits.
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