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Zusammenfassung
Im Fokus dieser Arbeit stehen zwei Teilgebiete der Statistik, die Change-Point-Analyse und
die Analyse funktionaler Daten, sowie die Schnittmenge dieser Gebiete, die sich mit der
Aufdeckung von Strukturbrüchen in funktionalen stochastischen Modellen befasst. Die be-
handelten Fragestellungen aus der (skalaren) Change-Point-Analyse resultieren aus Kritik
an bereits entwickelten Verfahren, denen mangelnde Stabilität bezüglich des Eintrittszeit-
punktes eines Strukturbruchs vorgeworfen wurde. Als mögliche Antwort auf diese Kri-
tik werden im Rahmen eines linearen Modells sequentielle Verfahren vorgestellt, die auf
der sogenannten Page CUSUM basieren. Um die gewünschten Eigenschaften dieser Ver-
fahren auch theoretisch zu belegen, wird die asymptotische Verteilung der Verzögerung
beim Erkennen eines Strukturbruchs hergeleitet.
Der Begriff Analyse funktionaler Daten steht stellvertretend für den Teilbereich der Statis-
tik, der Funktionen (in der Regel auf einem kompakten Intervall) als Datenpunkte be-
trachtet. Beispiele hierfür sind Temperaturkurven oder der Verlauf eines Aktienkurses an
einem Handelstag. Um Statistik auf solchen funktionalen Stichproben betreiben zu können,
stellen Techniken zur Dimensionsreduktion ein unerlässliches Hilfsmittel dar. Die in dieser
Arbeit präsentierten Verfahren basieren auf der sogenannten Hauptkomponentenanalyse
und verdeutlichen wie diese zur Konstruktion von Zweistichproben-, sowie von Change-
Point-Tests verwendet werden können. Insbesondere wird das Problem der angemessenen
Wahl der Dimension des Bildraumes der im Rahmen der Hauptkomponentenanalyse ver-
wendeten Projektion in die Konstruktion der Testverfahren einbezogen.

Abstract
This thesis is focussed on two areas of statistics, change-point analysis and functional data
analysis, and the intersection of these two areas, i.e., the detection of structural breaks in
functional stochastic models. The considered problems from (scalar) change-point analysis
result from criticism of already existing sequential change-point procedures. The subject
of this criticism was a lack of stability of these procedures regarding the time of occurrence
of a change. As a possible solution to this criticism sequential methods are presented in
this thesis in the framework of a linear regression model on the basis of the so-called Page
CUSUM. To prove the desired properties of these procedures theoretically the asymptotic
distribution of the delay time in the detection of structural breaks is derived in the special
case of a location model.
The notion functional data analysis represents an area of statistics that considers func-
tions (in general defined on a compact interval) as data points. Examples for such data
are temperature curves or the path of a stock price on one trading day. To derive sta-
tistical procedures for this class of data dimension reduction techniques play a key role.
The methods presented in this thesis are based on one of those techniques, the functional
principal component analysis. They illustrate the construction of two-sample tests as well
as change-point tests exploiting the properties of these functional principal components.
In particular the problem of an adequate choice of the dimension of the space to project
on in order to reduce the dimension is addressed and included in the construction of the
respective testing procedures.
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Introduction 1

Introduction
Technical advances and developments in computer sciences do not only influence and
change our personal life in many aspects, they also change the infrastructure of scientific
research. In all scientific disciplines an immensely increasing amount of data is collected,
stored and made publically available through data bases that organize this vast amount of
information. But not only the number and size of data sets is growing. The density and
frequency of collected data and the diversity of these data sets is increasing as well.
For statistics this has various ramifications. One could even say that these developments
change the face of modern statistics and bring with them new challenges for statistical
research. Along with these challenges for statistics come such challenges for probability
theory. The changing nature of data causes the development of novel stochastic models
which open new fields to probability theory. In these models the need for statistical meth-
ods to investigate the data implies the need for adequate probability theoretical results
which build the basis for the construction of these statistical methods.
In the sequel of this introduction we want to go more into detail how these ramifications
influence the fields of change-point analysis and functional data analysis which form the
scope of this thesis and thereby give a motivation for the results presented here. Since the
references to specific literature can be found in the articles in the main part of this thesis
we will restrict ourselves to references on more general and mainly introductory literature.
In particular we would like to highlight some PhD theses which provide thorough reviews
of certain important aspects of the areas of research relevant to this work.

Change-point analysis

The aim of change-point analysis is the detection of structural changes in stochastic models
in general. Besides the situation where a data set is examined a posteriori and it should be
determined statistically whether a change in the stochastic model underlying these data
occurred, it is often of interest to monitor data on-line and decide with every new obser-
vation whether a change occurred.
The roots of this field go back to the work of W.A. Shewhart (starting in the 1920s) and
E.S. Page (starting in the 1950) and were motivated by problems arising in quality con-
trol. Based on their results a wide theory with applications in most sciences developed.
Differences in the respective problem settings lead to several lines of research that differ in
the criteria underlying the construction of a decision rule. While the average run length
(ARL) is a popular criterion in one of these lines of research another approach focusses
on controlling the type one error and designs the testing procedure in a Neyman-Pearson
fashion. In this thesis the latter approach will be used as a starting point. For an overview
of these two lines of research and a comparison of the two approaches we refer to Koubková
(2006).
With regard to the increasing sizes of data sets asymptotic statistical methods gain im-
portance in many fields of applications. As implied by the title of this thesis all methods
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presented here are of asymptotic nature. The monograph of Csörgő and Horváth (1997) is
an indispensable reference in this context.
Many change-point procedures are built on invariance principles that allow to approximate
the behavior of the partial sum of random varialbles Xi, i = 1, 2, . . ., i.e.,

Sn =
n∑
i=1

Xi, for n = 1, 2, . . . (1)

by a Wiener process. For an overview of results on independent, identically distributed
random variables we refer to Aue (2003). But especially in the development of statistical
procedures for dependent random variables such invariance principles play a key role. Ex-
amples for invariance principles for different dependence concepts are provided in Schmitz
(2011), Wu (2007) or Berkes et al. (2011) just to name a few.
The statistics or detectors (which is the term used in sequential change-point analysis)
given as a partial sum of (usually centered) random variables like (1) are called cumulative
sum (CUSUM) statistics or detectors. In a sequential setup these procedures work well in
so-called “early change scenarios” but perform weaker the later a change occurs. Since all
observations of the monitoring period are used to calculate the cumulative sum it is intu-
itively clear that all observations before the change “disturb” the detection because they do
not contribute to the drift that causes a reaction of the detector. From a theoretical point
of view this is confirmed by results on the asymptotic distribution of the corresponding
stopping times which could be given only under such early change scenarios (cf., e.g., Aue
and Horváth (2004), Aue et al. (2009b) and Černíková et al. (2011)). This property has
been the subject of critcism and alternative approaches like weighted cumulative sum or
moving sum detectors have been proposed (cf. Kühn (2007)).
However the expression “CUSUM” was first introduced in the context of the work of E.S.
Page (cf. Page (1954)) for a detector of the type

Tn = Sn − min
0≤i≤n

Si, with S0 = 0 and Sj defined in (1) for j ≥ 1. (2)

The idea behind this approach is to take out a part of the observations that is not likely to
contribute to the drift introduced by the change and therefore achieve a higher “robustness”
regarding the time of change. This idea initiated the work on this thesis and finally led to
the results that can be found in the first two articles of the main section.
To highlight the wide applicability of the described methodology we conclude this section
on change-point analysis by a list of some of the most famous fields of application.

Example 1. Quality control: As mentioned before one of the first applications of sequen-
tial or on-line change-point procedures was quality control where from the results of the
production process it should be determined whether the production facility is still working
correctly.
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Example 2. Climate changes: The influence of industrialization and environmental pol-
lution on our climate is not only discussed in the scientific society but can as well be found
in the media almost permanently. The need for statistical methods to investigate a possible
change is therefore fairly obvious.

Example 3. Success of environmental/health protection measures: After the introduction
of measures to protect the environment and the health of people like the prohibition of certain
vehicles in centers of large cities it is of interest to investigate if and when a consequence
of these measures in terms of an improvement of, e.g., air pollution levels can be detected.

Example 4. Changes in the parameters of economic/econometric models induced by a
shock in the market: Not only the recent developments at the stock markets worldwide and
their influence on politics and the citizens of many countries have shown that prizes of
assets and risks derived from stochastic models have to be handled with care when shocks
occur in the market. In particular for models which are supposed to include and transfer
possible changes in their input to their output it is often not obvious whether these models
remain valid after such a shock.

Example 5. Medicine: Change-point methods can be applied to monitor the health con-
ditions of a patient. In this case an alarm system is needed that calls the attention of
the medical staff in case of an unusual behaviour of some indicator for the critical health
condition.

Functional data analysis

The field of functional data analysis is probably one of the fields of statistics that gained
most importance with regard to the aforementioned technical developments and the result-
ing capability to store high-dimensional data sets. While before many data sets had to be
reduced to key figures (e.g., daily, monthly ore yearly averages) because of the restrictions
in the storage of data, nowadays storage is a minor issue. The challenge in statistics is
therefore to develop powerful tools to analyze these high-dimensional data sets and exploit
as much information inherent in the data as possible.
The term “functional data” can be described quite easily from a mathematical point of
view. In the scope of this thesis (we can and will assume without loss of generality that)
functional data are realizations of a random element in L2[0, 1], the space of measurable,
real-valued, square integrable functions on the interval [0, 1], equipped with the Borel σ-
algebra. Yet from this definition it is not quite obvious where to find such data in practical
applications and to see why this type of data gained importance in recent years. So to
demonstrate the practical meaning of the term “functional data” we go back to some of the
examples given above. Temperature measurements (cf. Example 2) or air pollution levels
(cf. Example 3) are good examples for data that are obviously suitable to be modelled as
functional data, i.e., to be viewed as a curve (e.g., on a daily basis). The same holds true
for prices of assets which are traded in a high frequency at the market (cf. Example 4).
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Pictures of continuous paths of stock market indices or the prizes of stocks can be seen on
the news and in newspapers every day. But these are just some examples of a variety of
applications. Besides those applications where the random process driving the data can
obviously be modelled as such a function there exist many applications where the high
dimension and nature of the data justifies the modelling as functional objects. For more
examples of both types of applications we refer to the introductory parts of Horváth and
Kokoszka (2012), Ramsay and Silverman (2005) and Ramsay et al. (2009).
From these applications it is evident that many statistical problems from the univariate or
multivariate setting like, e.g., the change-point problem or the related two-sample problem
that can be found in this thesis transfer to the functional setting. One concrete example
where this is quite obvious is the problem of determining statistically whether there exists
a difference in the mean of certain subsets of a data set that transfers to the problem of
determining whether there exists a difference in the mean function of such subsets of the
corresponding functional data set.
Since the space L2[0, 1] is of infinite dimension most statistical approaches are based on
dimension reduction techniques to derive statistical methodology in a finite dimensional
subspace and make use of existing multivariate results from statistics as well as probability
theory. The dimension reduction technique that probably plays the most important role
is the functional principal component analysis. The idea of this technique is to project the
data onto a subspace that is spanned by those functions of a certain basis that explain a
major part of the variation of the data with the intention to capture the most important
information for the statistical analysis. The results presented in this thesis also focus on
functional principal components and show the construction of statistical methods using a
fixed number of principal components as well as methods where the number may depend
on the sample size. In particular the latter is of interest since the choice of the number of
functional principal components was often carried out based on data-driven rules of thumb
and was often criticized in this respect.

To conclude this introduction we will now give brief summaries of the articles of this the-
sis with the intent to connect the contents of the single articles with the motivational
introduction given above.
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Summaries of the articles included in this thesis

The thesis consists of four articles where the first two are not concerned with functional
data but the development of procedures based on Page’s CUSUM and the derivation of
their asymptotic properties. The last two articles then consist of results on functional data
illustrating the impact of functional principal component techniques on the development
of statistical methods in this area.

Page’s sequential procedure for change-point detection in time series regression
By Stefan Fremdt

In this article sequential open-end procedures to detect an abrupt change in the regression
parameters of a linear model are presented. The assumptions of the model allow for
certain time series dependencies for both regressors and error terms. The construction of
the detectors is based on the idea of Page (1954) yet the design of the testing procedure
as first crossing time of this detector and a given boundary function is novel. Besides
a procedure that is built directly from the regression residuals further procedures are
presented that are built from the squares of the regression residuals and allow for weaker
assumptions on the change. To establish a stopping rule critical values are derived from
the asymptotic distribution of these detectors under the null hypothesis of no change in
the model parameters. The asymptotics are always with regard to the length of a training
period prior to the beginning of the monitoring. This training period is assumed to have
constant model parameters and the data from this period are used to estimate the necessary
parameters. The proofs of the asymptotic behaviour of these procedures under the null
hypothesis rely heavily on an invariance principle with certain rates for the error terms of
the model. To show the validity of the proposed procedures the asymptotic consistency
under the alternative is proven. In the empirical part of the article a simulation study
underlines the properties of the constructed procedures. Finally a data set of portfolio
theoretical background is used to show the applicability of the results. In this application a
change in the model parameters in the context of the so-called “subprime-crisis” is detected.

Asymptotic distribution of the delay time in Page’s sequential procedure
By Stefan Fremdt

While criteria like the average run length only provide a key figure to assess and compare
change-point procedures, results on the asymptotic distribution of the stopping time of a
change-point procedure provide far more information. In the present article the asymp-
totic distribution of the delay time of the procedure (built from the model residuals) from
the previous article is derived in the special case of the so-called location model. Depend-
ing on the change-point different limit distributions are obtained which can be used as a
benchmark to compare this procedure to other detection procedures. The presented results
extend similar results for related change-point procedures in different aspects and theoret-
ically confirm the desired properties described above. A simulation study illustrates the
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convergence empirically and provides information about the speed of convergence for the
different limit distributions.

Testing the equality of covariance operators in functional samples
By Stefan Fremdt, Lajos Horváth, Piotr Kokoszka and Josef G. Steinebach

Besides the mean function the covariance structure of functional data represents one of
the most interesting subjects to be investigated statistically. The main result of this article
is a two-sample test for the equality of the covariance operator. Like already mentioned
this test is based on the functional principal component analysis. In this case the analysis
is carried out for the asymptotic empirical covariance operator of the overall sample. After
the construction of a suitable test statistic a multivariate central limit theorem yields a
chi square distribution as limit distribution under the null hypothesis. Again a simulation
study illustrates the finite sample behaviour of the procedure. In a data example the test is
applied to egg-laying trajectories of a certain fruit fly species where it is of interest whether
the egg-laying behaviour of this species depends on the life span of the fly.

Functional data analysis with increasing number of projections
By Stefan Fremdt, Lajos Horváth, Piotr Kokoszka and Josef G. Steinebach

In functional data analysis many methods are based on the projection of the data in the
direction of a certain number of functional principal components. Yet the choice of this
number was mostly left to the practitioner. Data-driven rules of thumb were suggested
but the need to develop procedures that handle this problem on a solid theoretical basis
is apparent. In this article a uniform normal approximation for the partial sum process of
the projections is presented that can be used as a starting point for the construction of a
variety of statistical procedures. Exemplary change-point procedures to test the constancy
of the mean function in a given sample and a two-sample test for the equality of the mean
functions are developed. These change-point procedures are constructed on the basis of
a limit theorem for a two-parameter process derived from the aforementioned partial sum
process that is proven in the scope of the article. In the empirical part the performance of
the presented procedures is investigated in a simulation study. Here the focus is directed
on a change-point procedure that uses the convergence of the two-parameter process in
its full force. Finally this change-point test is applied to a data set of yearly temperature
curves from a weather station in Melbourne, Australia.

Some remarks on the organization of the dissertation:

Since the dissertation is of cumulative form and hence a collection of articles, the main
part of the thesis consists of these articles. They will be given in the order the work on the
respective project was initiated. Thus the order is not intended to assess the contribution of
those results. After the articles a discussion of the combined results of the articles concludes
the dissertation and gives an outlook on prospective research and new challenges arising
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from the obtained results. The references given in an article can be found at the end of this
article. The supplementary references used outside the articles (i.e., in this introduction
and the concluding discussion) can be found at the end of the thesis.
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PAGE’S SEQUENTIAL PROCEDURE FOR CHANGE-POINT
DETECTION IN TIME SERIES REGRESSION

By Stefan Fremdt ‡

‡University of Cologne

Abstract

Cumulative sum (CUSUM) procedures have been applied for the sequential detection
of structural breaks in stochastic models in a variety of different settings. Yet their
performance depends strongly on the time of change and is best under early-change
scenarios. For later changes their finite sample behaviour is rather questionable. We
therefore propose modified CUSUM procedures for the detection of abrupt changes
in the regression parameter of multiple time series regression models that show a
higher stability regarding the time of change than ordinary CUSUM procedures. The
asymptotic distributions of the test statistics and the consistency of the procedures
are provided. In a simulation study it is shown that the proposed procedures behave
well in finite samples. Finally the procedures are applied to a set of capital asset
pricing data related to the Fama-French extension of the capital asset pricing model.

Keywords: CUSUM, Linear model, Change-point, Sequential test, Asymptotic distri-
bution, Invariance principle, CAPM, Fama-French model.

AMS subject classification: Primary 62J05; secondary 62L99

1 Introduction
The recent worldwide economical developments have shown again that shocks in financial
markets can lead to mispricing of assets and risks due to structural changes in the under-
lying valuation models. As a consequence, there is a need to reliably monitor the validity
of these models. Many of the widely used approaches to pricing of assets are based on re-
gression models describing the linear relationship between the asset price and factors that
explain a major part of its variation. Examples for these approaches include the famous
and still widely applied capital asset pricing model (CAPM) of Sharpe (1964) and Lintner
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(1965) and its extension proposed by Fama and French (1993) which will be investigated
in Section 4. In contrast to the one-factor CAPM this multifactor extension of Fama and
French (1993) uses two factors in addition to the market excess returns to explain a higher
proportion of the variation of the asset price.
In the literature the change-point problem for linear models has been discussed extensively.
While most of the contributions are made from an a-posteriori point of view (we refer to,
e.g., Bai (1997), Perron (2006) and Csörgő and Horváth (1997)), recently the sequen-
tial or on-line change-point detection has received more and more attention. Antoch and
Jarušková (2002) give a bibliographical overview of the field of on-line statistical process
control. The basis for this work is given in the articles of Chu et al. (1996), Horváth et al.
(2004) and Aue et al. (2006b) who suggest cumulative sum (CUSUM) procedures in differ-
ent stochastic models. CUSUM procedures work best for relatively early changes but show
a slower reaction the later the change occurs. Aue et al. (2009) provided the asymptotic
normality of the suitably normalized stopping time of the CUSUM procedure in a similar
setting as will be considered in this work but only in a relatively small range after the start
of the monitoring. The procedures that will be developed here found on an idea of Page
(1954) and should give a higher stability towards the time of change. Other approaches
that tackle this task are so called moving sum (MOSUM) procedures that were studied
by, e.g., Aue et al. (2008) and Chu et al. (1995). Their drawback is a strong dependence
on the choice of the parameters, in particular the right choice of the window size by the
statistician.
For the applicability to financial problem settings we want to explicitly allow certain de-
pendencies, i.e. we will include many of the commonly applied time series models for the
error terms as well as for the regressors in our setting. Other contributions assuming
dependencies are given by, e.g., Schmitz and Steinebach (2010) who considered strongly
mixing error terms in a linear model or Hušková et al. (2007) who studied autoregressive
time series in a closed-end setting.
The paper is organized as follows. In Section 2 the linear model and the underlying as-
sumptions are introduced. Section 3 contains the definition of the detectors and stopping
times as well as the results about the asymptotic distribution under the null hypothesis
and the asymptotic consistency of the procedures. In Section 4 we will present a sim-
ulation study and the results of an application of the procedures to the aforementioned
Fama-French model. We conclude the paper with the proofs of Section 3 in Section 5.
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2 Model description and assumptions
Consider the linear model:

yi = xTi βi + εi, 1 ≤ i <∞, (2.1)

where xi is a p× 1 random vector and βi ∈ Rp.
We assume that for the first m observations the so-called “noncontamination assumption”
(cf. Chu et al. (1996)) holds, i.e.

βi = β0, 1 ≤ i ≤ m. (2.2)

As mentioned before the constancy of the regression parameters βi in time should be tested
which leads to the null hypothesis

H0 : βi = β0, i = m+ 1,m+ 2, . . . .

We consider alternatives of one abrupt change in the regression parameter at an unknown
change-point, i.e.

HA : there is k∗ ≥ 1 such that βi = β0, m < i < m+ k∗

and βi = β∗, i = m+ k∗,m+ k∗ + 1, . . . with ∆ = β∗ − β0 6= 0.

The detection procedures will consist of stopping times τ(m) (to be defined in detail in
Section 3 of this article) chosen in such a way that under the null hypothesis:

lim
m→∞

P (τ(m) <∞) = α, 0 < α < 1 (2.3)

and under the alternative
lim
m→∞

P (τ(m) <∞) = 1. (2.4)

We assume the following conditions on the regressors and the error terms

{xi} be a stationary sequence. (A.1)

xTi = (1, x2i, . . . , xpi), 1 ≤ i <∞, (A.2)

There exist a p-dimensional vector d = (d1, . . . , dp)
T and constants K > 0, ν > 2 such that

E

∣∣∣∣∣
k∑
i=1

(xi,j − dj)

∣∣∣∣∣
ν

≤ K kν/2, 1 ≤ j ≤ p. (A.3)
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{εi, 1 ≤ i <∞} and {xi, 1 ≤ i <∞} are independent. (A.4)

For every m there are a constant σ > 0 and independent Wiener processes (A.5)

{W1,m(t) : t ≥ 0} and {W0,m(t) : t ≥ 0} such that

sup
1≤k<∞

1

kξ

∣∣∣∣∣
m+k∑
i=m+1

εi − σW1,m(k)

∣∣∣∣∣ = OP (1) (m→∞) (2.5)

and
m∑
`=1

ε` − σW2,m(m) = OP
(
mξ
)

(m→∞), (2.6)

with some ξ < 1/2.

The above stated assumptions on the regressors and error terms are satisfied for a variety
of important stochastic models. For examples we refer to Aue et al. (2009) who showed
that (A.1) and (A.3) are satisfied for, e.g., i.i.d. sequences, linear processes or augmented
GARCH sequences. The latter were introduced by Duan (1997) and include most of
the conditionally heteroskedastic models used in practice. For a collection of examples
belonging to this class we suggest the papers of Aue et al. (2006a) and Carrasco and Chen
(2002). Concerning the error terms Aue et al. (2006b) provided the proof of (A.5) again for
augmented GARCH sequences under appropriate assumptions, Aue and Horváth (2004)
give further examples, besides the i.i.d. case, including martingale difference sequences and
stationary mixing sequences.
All procedures treated in this work are based on the behaviour of the residuals of the model

ε̂i = yi − xTi β̂m, i = 1, 2, . . . ,

where β̂m denotes the OLSE for β from the data (y1,x1), . . . , (ym,xm), i.e.

β̂m =

( ∑
1≤i≤m

xix
T
i

)−1 ∑
1≤j≤m

xjyj.

In the sequel we will by σ̂m denote a weakly consistent estimator for the parameter σ from
Assumption (A.5). The estimation of this parameter will be discussed later in detail.
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3 Sequential testing procedures and asymptotic

results
Many sequential detection procedures in the literature are constructed as first passage
times of a so called detector over a certain boundary function. For example Horváth et al.
(2004) proposed as a detector the (ordinary) CUSUM of the residuals, i.e.

Q̂(m, k) =
∑

m<i≤m+k

ε̂i, k = 1, 2, . . . , and Q̂(m, 0) = 0,

and as a boundary function

hα,γ(m, k) = c g(m, k) = cm1/2

(
1 +

k

m

)(
k

k +m

)γ
, (3.7)

with

0 ≤ γ < 1/2 (3.8)

and c = c(α, γ) such that (2.3) holds. The first procedure we want to introduce goes back
to an idea of Page (1954) and we define the detector

Q̂P (m, k) = max
0≤i≤k

∣∣∣Q̂(m, k)− Q̂(m, i)
∣∣∣ = max

{
Q̂u
P (m, k), Q̂d

P (m, k)
}
, (3.9)

where

Q̂u
P (m, k) = Q̂(m, k)− min

0≤i≤k
Q̂(m, i) and

Q̂d
P (m, k) = max

0≤i≤k
Q̂(m, i)− Q̂(m, k).

The corresponding stopping time is then given by

τPage
α,γ (m) = inf

{
k ≥ 1 : Q̂P (m, k) > hα,γ(m, k)

}
where inf ∅ =∞ and the constant c = c(α, γ) in the definition of hα,γ can be derived from
Theorem 3.1 below.

Theorem 3.1. Assume that (2.2), (A.1) – (A.5) and (3.8) hold. Then under the null
hypothesis we have, for c ∈ R and a Wiener process {W (t) : t ≥ 0},

lim
m→∞

P

(
1

σ̂m
sup

1≤k<∞

Q̂P (m, k)

g(m, k)
≤ c

)
= P

(
sup

0<t<1
sup

0≤s≤t

1

tγ

∣∣∣∣W (t)− 1− t
1− s

W (s)

∣∣∣∣ ≤ c

)
.
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Page (1954) proposed a detector of the type Q̂u
P (m, k) for one-sided change-in-the-mean

alternatives, in the case of a linear model this detector is appropriate for alternatives with
∆Td > 0, where the vector d was introduced in (A.3). The corresponding asymptotic
result under the null hypothesis for these one-sided detectors is given in Theorem 3.2.

Theorem 3.2. Assume that (2.2), (A.1) – (A.5) and (3.8) hold. Then under the null
hypothesis we have, for c ∈ R and a Wiener process {W (t) : t ≥ 0},

lim
m→∞

P

(
1

σ̂m
sup

1≤k<∞

Q̂u
P (m, k)

g(m, k)
≤ c

)

= lim
m→∞

P

(
1

σ̂m
sup

1≤k<∞

Q̂d
P (m, k)

g(m, k)
≤ c

)

= P

(
sup

0<t<1

1

tγ

(
W (t)− inf

0≤s≤t

1− t
1− s

W (s)

)
≤ c

)
.

From this result again the critical value c(α, γ) can be derived for the two one-sided de-
tectors. We will denote this critical value by c1 = c1(α, γ) and for the two-sided detector
by c2 = c2(α, γ). Under the alternative hypothesis the detectors diverge as the following
theorem shows.

Theorem 3.3. Assume that (2.2), (A.1) – (A.5) and (3.8) hold.

a) Then under HA and if dT∆ > 0 we have

1

σ̂m
sup

1≤k<∞

Q̂u
P (m, k)

g(m, k)

P−→∞ as m→∞,

b) Then under HA and if dT∆ < 0 we have

1

σ̂m
sup

1≤k<∞

Q̂d
P (m, k)

g(m, k)

P−→∞ as m→∞,

c) Then under HA and if dT∆ 6= 0 we have

1

σ̂m
sup

1≤k<∞

Q̂P (m, k)

g(m, k)

P−→∞ as m→∞.
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Theorem 3.3 gives a sufficient condition that guarantees (2.4). In Section 4 tables with
simulated critical values for selected values of α and γ can be found for the functionals

sup
0<t<1

1

tγ

(
W (t)− inf

0≤s≤t

1− t
1− s

W (s)

)
and sup

0<t<1
sup

0≤s≤t

1

tγ

∣∣∣∣W (t)− 1− t
1− s

W (s)

∣∣∣∣ .
The additional assumptions on the amount of change (i.e. dT∆ ≷ 0 resp. dT∆ 6= 0) for
the above developed procedures that guarantee their consistency are quite restrictive. Yet
under additional assumptions on the error terms we can modify the presented procedures
which allows to drop these assumptions on the amount of change. In this context we
want to refer to the work of Hušková and Koubková (2005) who with the same intention
developed monitoring procedures based on quadratic forms of weighted cumulative sums.
We define the detectors based on the sum of squares of the residuals

SP (m, k) = max
0≤i≤k

|SR(m, k)− SR(m, i)| and SuP (m, k) = max
0≤i≤k

(SR(m, k)− SR(m, i)) ,

where

SR(m, k) =
m+k∑
i=m+1

ε̂2
i −

k

m

m∑
`=1

ε̂2
` , k = 1, 2, . . . .

Aue et al. (2006b) showed a similar result based on the squared prediction errors using the
additional assumptions

Eε2
i = σ2, 0 < κ = Eε4

i <∞ (i ≥ 1), (3.10)

η2 = Var(ε2
0) + 2

∞∑
i=1

Cov(ε2
0, ε

2
i ) > 0. (3.11)

Furthermore they assumed that for every m there exist independent Wiener processes

{W3,m(t) : t ≥ 0} and {W4,m(t) : t ≥ 0}

such that

sup
1≤k<∞

1

kζ

∣∣∣∣∣
m+k∑
i=m+1

(ε2
i − σ2)− ηW3,m(k)

∣∣∣∣∣ = OP (1) (m→∞) (3.12)

and
m∑
i=1

(ε2
i − σ2)− ηW4,m(m) = OP

(
mζ
)

(m→∞) (3.13)
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with some ζ < 1/2 and η from (3.11). Combining the techniques of Aue et al. (2006b) and
from the proof of Theorem 3.1 it is obvious that similar asymptotic results hold for these
procedures:

Theorem 3.4. Assume that (2.2), (A.1) – (A.4), (3.8) and (3.10) – (3.13) hold. Then
under the null hypothesis we have, for a real number c and a Wiener process {W (t) : t ≥ 0},

lim
m→∞

P

(
1

η
sup

1≤k<∞

|SR(m, k)|
g(m, k)

≤ c

)
= P

(
sup

0<t<1

|W (t)|
tγ

≤ c

)
and

lim
m→∞

P

(
1

η
sup

1≤k<∞

SP (m, k)

g(m, k)
≤ c

)
= P

(
sup

0<t<1
sup

0≤s≤t

1

tγ

∣∣∣∣W (t)− 1− t
1− s

W (s)

∣∣∣∣ ≤ c

)
.

The parameter η in the statement of Theorem 3.4 can be replaced by a weakly consistent
estimator η̂m. Aue et al. (2006b) pointed out that the Bartlett estimator η̂2

B,m for η2 under
the conditions of Theorem 3.4 satisfies η̂2

B,m
P−→ η2 and can therefore be applied in the

general setting of this section. The same arguments hold for the estimation of σ. However
it should be noted that the quality of the estimators affects the finite sample behaviour of
the procedures. This will be discussed in Section 4.
Under the alternative hypothesis without additional assumptions on the amount of the
change we again have the desired divergence.

Theorem 3.5. Assume that (2.2), (A.1) – (A.4), (3.8) and (3.10) – (3.13) hold. Then
under HA we have

1

η̂m
sup

1≤k<∞

|SR(m, k)|
g(m, k)

P−→∞ as m→∞

and

1

η̂m
sup

1≤k<∞

SP (m, k)

g(m, k)

P−→∞ as m→∞.

Analogous results to those of Theorems 3.4 (with the corresponding limit distributions
from Theorem 3.2) and 3.5 hold for the detectors SuP (and SR). However as we will see in
Section 4 these show a poorer finite sample behaviour than the detectors SP and |SR|.
One drawback of the detectors SP , |SR|, SuP and SR is that the assumption on the existence
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of a constant σ is crucial to the testing procedure. It can be seen easily that, due to its
construction, the procedure is also sensitive towards changes in σ, i.e. in case of constant βi
but a change in σ(= σi) the testing procedure would decide that there has been a change
in the βi with probability one. This sensitivity exists as well for the further introduced
procedures, although in a weaker sense, i.e. in the derivation of the critical values which
is also strongly dependent on the assumption of a constant σ. But since in general practi-
tioners are concerned with the validity of their underlying model, the detection of a switch
in the regime, including βi as well as σ, is of great interest to them.

4 Simulations and application to asset pricing

data

In this section the results of a simulation study are presented that was performed to confirm
the theoretical results from Section 3. Furthermore it should show that the proposed
monitoring procedures have the desired properties. With regard to the application to
the Fama-French model and its financial context the carried out simulations will focus on
GARCH regressors. We will first consider the asymptotic results from Section 3 and provide
the empirical sizes under the null hypothesis. A comparison of the detection properties
of the different procedures in finite samples concludes the simulation study and highlights
the advantages of the newly developed sequential tests. The last part of this section will
then contain the results of an application of our monitoring procedures to a data set made
publically available by Kenneth R. French on his website (cf. French (2011)).
To establish (2.3) for the suggested procedures it is necessary to determine the critical
values from the definition of hα,γ in (3.7) using the statements of Theorems 3.1, 3.2 and
3.4. The critical values c1(γ, α) and c2(γ, α) for the functionals

sup
0<t<1

1

tγ

(
W (t)− inf

0≤s≤t

1− t
1− s

W (s)

)
and sup

0<t<1
sup

0≤s≤t

1

tγ

∣∣∣∣W (t)− 1− t
1− s

W (s)

∣∣∣∣ ,
for selected values of α and γ, can be found in Table 1 and Table 2, respectively. These were
simulated with 100,000 replications of an approximation of a Wiener process generated on
a grid of 100,000 points. Horváth et al. (2004) provided the simulated critical values for
the functional sup0<t<1 |W (t)|/tγ. For γ = 0 we calculated these critical values numerically
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using the series representation

P

(
sup

0<t<1
|W (t)| ≤ c

)
=

4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
−π2(2k + 1)2/8c2

)
,

from, e.g., Csörgő and Révész (1981), Theorem 1.5.1, to find:

α 0.010 0.025 0.050 0.100 0.250
c(0, α) 2.8070 2.4977 2.2414 1.9600 1.5341

4.1 Simulation results

The simulations were performed for a selection of the above mentioned models satisfying
our assumptions (cf. Aue et al. (2009), Aue and Horváth (2004)), but since all gave similar
results, we only present the results for our model (2.1) with p = 2, x2,i according to a
GARCH(1,1) model and independent normally distributed errors εi with σ2 = 0.5 (in this
specification σ = η to achieve a better comparability of the procedures based on ordinary
and squared residuals under the alternative). We followed Aue et al. (2009) and chose the
specification of the GARCH(1,1) model as

x2,i = d2 + σ̄izi, with σ̄ given as solution of σ̄2
i = ω̄ + ᾱz2

i−1 + β̄σ̄2
i−1,

where {zi} are iid standard normally distributed and (ω̄, ᾱ, β̄) = (0.5, 0.2, 0.3). From the
decomposition (5.24) in the proof of Theorem 3.3 and a similar decomposition for the
procedure based on the squared residuals we find that for this model the drift in case of
a change is determined by dT∆ for the ordinary residuals and for the squared residuals
(asymptotically) via ∆2

2 +(dT∆)2. For the simulations we chose d2 = 1. Due to the uncor-
related error terms in this model the OLSE for the parameter σ from Assumption (A.5),

i.e.,
√
σ̂2
m =

(
1

m−p
∑m

i=1

(
ε̂i − 1

m

∑m
`=1 ε̂`

)2
)1/2

, and the corresponding estimator for η can
be utilized. As mentioned above in the general setting of this paper the Bartlett estimator
is a consistent estimator in the case of correlated error terms. However simulations have
shown that due to a slower convergence of the estimator, size distortions can be observed
under the null hypothesis. Consequently larger training samples are needed to achieve
satisfying results.
The length of the training period m was chosen as m = 100, 200, 500 and 1000, the
number of replications as 5000. For the tuning parameter γ the values were set to
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α

γ 0.010 0.025 0.050 0.100 0.250

0.00 2.5955 2.2564 1.9897 1.6924 1.2474
0.15 2.6632 2.3341 2.0757 1.7915 1.3671
0.25 2.7372 2.4206 2.1686 1.8992 1.4887
0.35 2.8691 2.5684 2.3273 2.0757 1.6817
0.45 3.1712 2.9224 2.6976 2.4592 2.0932
0.49 3.5385 3.2791 3.0640 2.8225 2.4391

Table 1: Critical values c1 = c1(γ, α) simulated on a grid of 100,000 points with 100,000
replications.

α

γ 0.010 0.025 0.050 0.100 0.250

0.00 2.8262 2.5188 2.2599 1.9914 1.5918
0.15 2.8925 2.5925 2.3416 2.0803 1.6976
0.25 2.9638 2.6707 2.4296 2.1758 1.8063
0.35 3.0857 2.8041 2.5758 2.3339 1.9839
0.45 3.3817 3.1259 2.9241 2.7002 2.3685
0.49 3.7357 3.4903 3.2848 3.0603 2.7178

Table 2: Critical values c2 = c2(γ, α) simulated on a grid of 100,000 points with 100,000
replications.
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γ = 0 γ = 0.25 γ = 0.49

m α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

Q̂P 100 0.0298 0.0698 0.0390 0.0802 0.0168 0.0334
200 0.0294 0.0646 0.0364 0.0760 0.0194 0.0382
500 0.0286 0.0682 0.0368 0.0812 0.0248 0.0470

1000 0.0300 0.0704 0.0408 0.0842 0.0272 0.0554

Q̂u
P 100 0.0354 0.0770 0.0438 0.0818 0.0166 0.0364

200 0.0338 0.0720 0.0418 0.0806 0.0194 0.0382
500 0.0342 0.0752 0.0430 0.0880 0.0256 0.0466

1000 0.0350 0.0766 0.0432 0.0852 0.0256 0.0510

Table 3: Empirical sizes of the Page CUSUM procedures for 5000 replications with a
monitoring horizon of N = 5m.

γ = 0.00, 0.25, 0.49.
Table 3 shows the empirical sizes of the testing procedures based on the detectors Q̂P and
Q̂u
P under the null hypothesis with β0 = (1, 1)T taking N = 5m observations after the

end of the training period. It can be seen that for all parameter combinations the sizes
remain conservative for short as well as long training periods. A similar behaviour was
observed for the procedures based on the ordinary CUSUM and the corresponding results
are therefore ommitted here.
The conservative nature of the empirical sizes from Table 3 cannot be found for the pro-
cedures based on the squared residuals. In Table 4 the corresponding empirical sizes are
displayed which show a reasonable behaviour for small values of γ. With increasing γ the
size of the training period has to increase as well to find satisfactory results. This can again
be explained by the estimation error for the parameter η and the higher sensitivity of the
boundary functions at the beginning of the monitoring for larger values of γ. For γ close
to 1/2 the empirical sizes exceed the significance levels even for the larger sample sizes.
This effect of a slower convergence should be taken into account by practitioners choosing
the value of γ and an adaptation of the procedure to include the variation of the estimator
for small samples may be considered. The detectors ŜP and |ŜR| show a nicer behaviour
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γ = 0 γ = 0.25 γ = 0.49

m α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

ŜP 100 0.0890 0.1358 0.1072 0.1624 0.1130 0.1408
200 0.0598 0.0976 0.0718 0.1210 0.0912 0.1190
500 0.0416 0.0804 0.0548 0.0998 0.0826 0.1152

1000 0.0392 0.0794 0.0520 0.0958 0.0856 0.1178

|ŜR| 100 0.0826 0.1246 0.1014 0.1504 0.1122 0.1408
200 0.0550 0.0888 0.0676 0.1118 0.0898 0.1176
500 0.0396 0.0756 0.0526 0.0916 0.0784 0.1112

1000 0.0358 0.0748 0.0488 0.0908 0.0788 0.1152

ŜuP 100 0.1292 0.1932 0.1570 0.2172 0.1404 0.1836
200 0.0898 0.1516 0.1142 0.1814 0.1174 0.1560
500 0.0676 0.1222 0.0852 0.1416 0.1124 0.1514

1000 0.0604 0.1094 0.0760 0.1326 0.1116 0.1578

ŜR 100 0.1196 0.1832 0.1452 0.2082 0.1410 0.1812
200 0.0812 0.1426 0.1066 0.1702 0.1162 0.1574
500 0.0636 0.1178 0.0792 0.1334 0.1100 0.1492

1000 0.0566 0.1016 0.0708 0.1222 0.1074 0.1520

Table 4: Empirical sizes of the procedures based on the squared residuals for 5000 replica-
tions with a monitoring horizon of N = 5m.
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for small samples compared to ŜuP and ŜR (which once more is due to the estimation error
mentioned above). On the other hand we will see later that these procedures provide better
behaviour regarding the speed of detection.
To investigate the behaviour of the proposed procedures under the alternative hypothesis
extensive simulations were performed for a collection of different parameter settings. We
will therefore again only give a selection of the obtained results. Since we are interested
mainly in the comparison of the speed of detection of the Page CUSUM procedures with
the ordinary CUSUM procedures we will comment only briefly on the power properties of
the proposed procedures. The question whether a change is detected by these procedures
in this open-end setting is not as interesting with regard to the comparison of ordinary and
Page CUSUM. To explain this we again refer to the construction of the procedures. Since
the drift induced by a change is similar for both types of procedures and the boundary
functions only differ by a constant with an infinite monitoring horizon the power will as
well be similar for both types of procedures. The results of our simulations confirm this
and in this matter we refer to the literature on ordinary CUSUM procedures. We will
therefore continue with the comparison of the speed of detection.
Changes occurring at k∗ = 1,m, 5m were considered and the monitoring was terminated at
the latest after N = k∗ + 2000 observations (which guarantees the detection of the change
in all cases). The model setting under the null hypothesis described above was used and
with regard to Theorems 3.3 and 3.5 we chose two types of changes, ∆1 = (0, 0.5)T and
∆2 = (−0.8, 0.8)T , and will denote the corresponding alternative hypothesis by H1 and
H2. With the specification of H1 the above mentioned drift terms for ordinary and squared
residuals are equal and a better comparability of these procedures is achieved. H2 was cho-
sen to satisfy dT∆ = 0 and therefore shows that the procedures based on squared residuals
perform well in this case while the procedures based on ordinary residuals are not able to
detect the change. However the differences in the performance and applicability of the test-
ing procedures based on ordinary residuals and those based on squared residuals should
also be discussed briefly. We want to make clear that the performance strongly depends
on the amount of change. For example due to their construction it can be seen from the
respective drift terms that the procedures based on quadratic residuals show a slower reac-
tion under slight changes with dT∆ 6= 0 than the procedures based on ordinary residuals
whereas under larger changes for the same reason the opposite is true. In addition the
influence of the parameters σ and η on the drift has to be taken into account. Depending
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on the application in practice a combination of the two procedures may be considered to
balance the advantages and disadvantages of the two types of procedures.

We now want to illustrate that the procedures based on the Page CUSUM show a higher
stability regarding the time of change than those based on the ordinary CUSUM. Addition-
ally the influence of the tuning parameter γ on the speed of detection should be examined.
Figures 1 and 2 show density estimations of the delay times (excluding false alarms) under
the alternative H1 for α = 0.1. In Figure 1 a training period of lengthm = 200 was used, in
Figure 2 the length was set to m = 1000. The rows correspond from top to bottom to very
early (k∗ = 1), intermediate (k∗ = m) and late (k∗ = 5m) changes. The left columns show
the density estimates for Q̂P (red) and |Q̂| (blue), the right columns show the estimates for
ŜP (red) and |ŜR| (blue), in both columns for the different values of γ. Tables containing
the five number summaries of the data used for the density estimation can be found in the
appendix.
The density estimates show clearly that for a change immediately after the end of the train-
ing period, as could be expected, there is only a slight difference between the procedures
based on Page’s CUSUM and those based on the ordinary CUSUM. In this case a choice
of γ close to 1/2 delivers the best results. For intermediate changes it is already obvious
that the Page CUSUM procedures show a better behaviour than the ordinary CUSUM
procedures for both ordinary and squared residuals. This effect is getting stronger the
later the change happens as can be seen in the bottom rows. For intermediate changes a
choice of γ = 0.25 gave the best results, for late changes γ = 0 is the appropriate choice.
This observation which reflects the intention of the parameter γ has already been discussed
in, e.g., Horváth et al. (2004).
As mentioned before the procedures based on ordinary residuals are not applicable under
the alternative H2. We will therefore only present the density estimates for the procedures
based on squared residuals which can be found in Figure 3. The obtained results are similar
to the results under H1 regarding the comparison of Page and ordinary cumulative sums
for all sample sizes. Therefore we only present these for m = 1000 and γ = 0 (where a rea-
sonable behaviour under the null hypothesis for all detectors was observed). The density
estimates show that the detectors ŜR and ŜuP detect changes faster than |ŜR| and ŜP but
due to the slower convergence to the asymptotic distribution under the null hypothesis (cf.
Table 4) their application on the basis of smaller training periods is not recommended.
As a conclusion of this small simulation study we find that the proposed procedures in
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Figure 1: Estimated density plots for the delay times under H1 for m = 100 and
γ = 0.00, 0.25, 0.49. Black lines represent Page CUSUM procedures, gray lines ordinary
CUSUM procedures. The left column shows the densities of Q̂P and |Q̂|, the right col-
umn of ŜP and |ŜR|. The rows from top to bottom represent early (k∗ = 1), intermediate
(k∗ = m) and late (k∗ = 5m) changes.
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Figure 2: Estimated density plots for the delay times under H1 for m = 1000 and
γ = 0.00, 0.25, 0.49. Black lines represent Page CUSUM procedures, gray lines ordinary
CUSUM procedures. The left column shows the densities of Q̂P and |Q̂|, the right col-
umn of ŜP and |ŜR|. The rows from top to bottom represent early (k∗ = 1), intermediate
(k∗ = m) and late (k∗ = 5m) changes.
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Figure 3: Estimated density plots for the delay times under H2 for m = 1000 and γ = 0.00

for the procedures based on squared residuals. Black lines represent Page CUSUM proce-
dures, gray lines ordinary CUSUM procedures. Solid lines correspond to the procedures
ŜP and |ŜR|, dashed lines correspond to ŜuP and ŜR. The columns from left to right again
represent early (k∗ = 1), intermediate (k∗ = m) and late (k∗ = 5m) changes.

early-change scenarios show a similar behaviour to ordinary CUSUM procedures, yet their
advantage lies in the behaviour in scenarios that include a later change. In this case the
Page CUSUM procedures detect changes faster and therefore overall show a higher stability
regarding the time of change. The procedures based on squared residuals need stronger mo-
ment assumptions but they work in contrast to the procedures based on ordinary residuals
even under orthogonal changes. The Page CUSUM shows for these a similar behaviour and
can therefore be recommended. Nevertheless the procedures based on ordinary residuals
in general detect small, non-orthogonal changes faster and can therefore still be of great
use in practice.

4.2 Data application: The Fama-French asset pricing model

In this subsection we first want to describe briefly the asset pricing model of Fama and
French (1993) that by the introduction of additional factors to the capital asset pricing
model of Sharpe (1964) and Lintner (1965) is trying to explain a higher proportion of the
variation in the prices of asset portfolios. We will then apply the monitoring procedures
introduced in Section 3 to a data set consisting of daily data for 25 asset portfolios con-
sidered by Fama and French (1993) and the corresponding factors in the context of the
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economic crisis from the years 2007 and 2008. This analysis is not intended to give new
insights in the economic context of asset pricing nor should it assess the model itself (for
this we refer to, e.g., Fama and French (1996), Kothari et al. (1995) or MacKinlay (1995)),
it should rather make aware that in times of great disturbance at the markets one should
handle with care the data derived by models of this type. In the context of testing asset
pricing models for the constancy of their parameters we want to refer, e.g., to Garcia and
Ghysels (1998) or Aue et al. (2011).
Fama and French (1993) investigated the influence of risk factors besides the market ex-
cess return on an empirical basis to explain the cross-section of average returns. As a
consequence they formulated the three-factor model for the excess return of a portfolio i
via

Ri −Rf = αi + bi(RM −Rf ) + siSMB + hiHML + εi, (4.14)

where Rf is the one month Treasury bill rate, RM is the return on the market (calculated
as the value-weight return on all NYSE, AMEX and NASDAQ stocks), SMB and HML are
the so called size and book-to-market factors. For a complete description of the derivation
of these factors and how they are calculated we refer to Fama and French (1993), Fama
and French (1996) and the website of Kenneth R. French (cf. French (2011)) where the
underlying data set can also be found. The data were monitored for the time period
January 15, 2004, to June 30, 2011. As responses of this regression model we will consider
25 portfolios formed according to a categorization by size and book-to-market; for the
construction of these portfolios we again refer to Fama and French (1996). Fama and
French (1993) claim that the excess returns of these portfolios over the market are well
explained by (4.14). For our concerns the categorization underlying the construction is not
of importance, we will consequently denote the portfolios by Portfolio 1 – 25. In Figure 4
the time series plots of the responses R1−Rf as well as of the regressors RM−Rf , SMB and
HML for the period January 15, 2004, to January 4, 2010, can be seen, showing obviously
conditionally heteroskedastic patterns. The stopping times of detectors Q̂P , |Q̂|, ŜP , |ŜR|,
ŜuP and ŜR are displayed in Table 5 using for the training period a length of m = 700 (i.e.
until October 24, 2006, which is a relatively stable period at the markets), α = 0.1 and
γ = 0.25. In all but five cases a change is detected, the times of detection considering all
detectors lie between August 2007 and March 2009 and thus in the time of the crisis, in
many cases the changes are even detected quite early in the crisis. Regarding the strong
reaction of the detectors based on squared residuals one should keep in mind the sensitivity
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of these procedures towards changes in the model parameter σ which cannot be ruled out
in this context and should be examined separately. To compare the procedures based on
the ordinary CUSUM with those based on the Page CUSUM the same effects that were
found in the simulations are evident in the results for this data set. The Page procedures
(especially the detectors built from the squared residuals) in general detect a change earlier
than the ordinary CUSUM detectors, in none of the cases an ordinary CUSUM detector
reacted earlier than the corresponding Page detector.

5 Proofs

5.1 Proof of Theorem 3.1

Because of the similarity of the arguments in the proofs of Theorems 3.1 and 3.2 we only
provide the proof of Theorem 3.1. The proof is based on a stepwise approximation of the
detector Q̂P (m, k) from (3.9) via

QP (m, k) = max
0≤i≤k

|Q(m, k)−Q(m, i)| , where (5.15)

Q(m, k) =
∑

m<i≤m+k

εi − kεm, k = 1, 2, . . . , and εm =
1

m

m∑
`=1

ε`,

in the first step and for every m via the following functional of independent Wiener pro-
cesses {W1,m(t) : t ≥ 0} and {W0,m(t) : t ≥ 0} in the second step:

WP (m, k) = max
0≤i≤k

∣∣∣∣W1,m(k)−W1,m(i)− k − i
m

W0,m(m)

∣∣∣∣ . (5.16)

If not stated otherwise the asymptotics in the proofs are always assuming m→∞.

Lemma 5.1. If the conditions of Theorem 3.1 are satisfied then

sup
1≤k<∞

1

g(m, k)

∣∣∣Q̂P (m, k)−QP (m, k)
∣∣∣ = oP (1),

where QP was defined in (5.15).

Proof: We have ∣∣∣∣max
0≤i≤k

∣∣∣Q̂(m, k)− Q̂(m, i)
∣∣∣− max

0≤i≤k
|Q(m, k)−Q(m, i)|

∣∣∣∣
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Figure 4: Time series plot of the excess returns of Portfolio 1 (upper left panel), market
excess return (upper right panel), size factor (lower left panel) and book-to-market factor
(lower right panel) for the time period January 15, 2004 to January 4, 2010.
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Portf.
No. Q̂P |Q̂| ŜP |ŜR| ŜuP ŜR

1 07/10/2008 07/10/2008 28/07/2008 18/09/2008 24/03/2008 15/09/2008
2 06/10/2008 07/10/2008 14/02/2008 01/04/2008 11/01/2008 18/03/2008
3 06/10/2008 07/10/2008 26/11/2007 27/12/2007 07/11/2007 06/12/2007
4 07/10/2008 07/10/2008 06/03/2008 24/03/2008 15/01/2008 11/03/2008
5 04/1/2008 15/01/2008 14/12/2007 11/01/2008 28/11/2007 27/12/2007

6 30/06/2011 30/06/2011 18/09/2008 07/10/2008 17/09/2008 03/10/2008
7 30/06/2011 30/06/2011 11/03/2008 16/09/2008 01/02/2008 29/07/2008
8 19/11/2008 19/11/2008 27/12/2007 11/03/2008 11/12/2007 18/03/2008
9 19/11/2008 19/11/2008 23/01/2008 08/07/2008 04/01/2008 18/03/2008
10 27/10/2008 27/10/2008 17/01/2008 18/03/2008 21/12/2007 11/03/2008

11 24/10/2008 19/11/2008 15/01/2008 29/02/2008 04/01/2008 31/01/2008
12 19/11/2008 20/11/2008 29/02/2008 01/04/2008 31/01/2008 18/03/2008
13 20/11/2008 05/03/2009 08/01/2008 10/03/2008 11/12/2007 05/02/2008
14 09/10/2008 27/10/2008 11/03/2008 09/09/2008 29/02/2008 16/04/2008
15 27/10/2008 19/11/2008 22/07/2008 24/07/2008 16/07/2008 22/07/2008

16 24/10/2008 20/11/2008 04/02/2008 11/03/2008 17/01/2008 14/02/2008
17 07/10/2008 09/10/2008 17/01/2008 29/02/2008 04/01/2008 01/02/2008
18 15/07/2008 24/07/2008 29/08/2007 13/11/2007 17/08/2007 12/11/2007
19 06/10/2008 07/10/2008 12/11/2007 28/11/2007 18/09/2007 19/11/2007
20 10/03/2008 27/06/2008 17/12/2007 28/01/2008 26/11/2007 17/01/2008

21 09/10/2008 09/10/2008 28/08/2007 01/11/2007 15/08/2007 18/09/2007
22 20/11/2008 30/06/2011 09/08/2007 31/08/2007 09/08/2007 28/08/2007
23 06/10/2008 06/10/2008 14/08/2007 29/08/2007 09/08/2007 17/08/2007
24 17/09/2008 07/10/2008 06/08/2007 09/08/2007 03/08/2007 09/08/2007
25 10/10/2008 27/10/2008 07/11/2007 26/11/2007 18/09/2007 13/11/2007

Table 5: Stopping times of the procedures for the 25 Fama-French Portfolios explained by
their three-factor model (Dates given as dd/mm/yyyy).
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≤
∣∣∣Q̂(m, k)−Q(m, k)

∣∣∣+ max
0≤i≤k

∣∣∣Q̂(m, i)−Q(m, i)
∣∣∣ .

Now because g(m, k) increases monotonically in k

sup
1≤k<∞

1

g(m, k)

∣∣∣Q̂P (m, k)−QP (m, k)
∣∣∣

≤ sup
1≤k<∞

1

g(m, k)

∣∣∣Q̂(m, k)−Q(m, k)
∣∣∣+ sup

1≤k<∞

1

g(m, k)
max
0≤i≤k

∣∣∣Q̂(m, i)−Q(m, i)
∣∣∣

≤ sup
1≤k<∞

1

g(m, k)

∣∣∣Q̂(m, k)−Q(m, k)
∣∣∣+ sup

1≤k<∞
max
0≤i≤k

1

g(m, i)

∣∣∣Q̂(m, i)−Q(m, i)
∣∣∣

=2 sup
1≤k<∞

1

g(m, k)

∣∣∣Q̂(m, k)−Q(m, k)
∣∣∣ .

It is therefore sufficient to show

sup
1≤k<∞

1

g(m, k)

∣∣∣Q̂(m, k)−Q(m, k)
∣∣∣ = oP (1).

Using the identities

Q̂(m, k) =
m+k∑
i=m+1

εi −
m+k∑
i=m+1

xTi (β̂m − β0)

and

0 =
m∑
`=1

ε̂` =
m∑
`=1

ε` −
m∑
i=1

xTi (β̂m − β0), (5.17)

with d from (A.3) we get

∣∣∣Q̂(m, k)−Q(m, k)
∣∣∣ =

∣∣∣∣∣
(
k

m

m∑
i=1

(xi − d)T −
m+k∑
i=m+1

(xi − d)T

)
(β̂m − β0)

∣∣∣∣∣ .
In (5.17) the first equality follows from the definition of ε̂i and (A.2).
We consider first the term

∑m
i=1(xi−d). By Markov’s inequality and (A.3) it is clear that

we can find ρ < 1/2 such that ∣∣∣∣∣
m∑
i=1

(xi − d)

∣∣∣∣∣ = OP (mρ) . (5.18)
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The same arguments used to show (5.18) and the Borel-Cantelli Lemma combined with
the stationarity of the regressors yield for the term

∑m+k
i=m+1(xi−d) that there exists δ > 0

such that ∣∣∣∣∣
m+k∑
i=m+1

(xi − d)

∣∣∣∣∣ = O
(
k1−δ) a.s., as k →∞, uniformly in m. (5.19)

The
√
m-consistency of β̂m together with

lim
m→∞

sup
1≤k<∞

kmρ−1 + k1−δ
√
mg(m, k)

= 0

as well as (5.18) and (5.19) conclude the proof of Lemma 5.1. �

Lemma 5.2. If the conditions of Theorem 3.1 are satisfied then for each m there are two
independent Wiener processes {W1,m(t) : t ≥ 0}, {W0,m(t) : t ≥ 0} such that

sup
1≤k<∞

1

g(m, k)
|QP (m, k)− σWP (m, k)| = oP (1),

where QP and WP were defined in (5.15) and (5.16), respectively.

Proof: Similar estimations as in the proof of Lemma 5.1 give us

|QP (m, k)− σWP (m, k)|

≤ max
0≤i≤k

∣∣∣∣∣
∣∣∣∣∣

m+k∑
j=m+i+1

εj − (k − i)εm

∣∣∣∣∣− σ
∣∣∣∣W1,m(k)−W1,m(i)− k − i

m
W0,m(m)

∣∣∣∣
∣∣∣∣∣

≤

∣∣∣∣∣
m+k∑
j=m+1

εj − σW1,m(k)

∣∣∣∣∣+ max
0≤i≤k

∣∣∣∣∣
m+i∑

j=m+1

εj − σW1,m(i)

∣∣∣∣∣+
k

m

∣∣∣∣∣
m∑
`=1

ε` − σW0,m(m)

∣∣∣∣∣
and hence with assumption (A.5)

sup
1≤k<∞

1

g(m, k)
|QP (m, k)− σWP (m, k)|

≤ sup
1≤k<∞

1

g(m, k)

∣∣∣∣∣
m+k∑
j=m+1

εj − σW1,m(k)

∣∣∣∣∣
+ sup

1≤k<∞

1

g(m, k)
max
0≤i≤k

∣∣∣∣∣
m+i∑

j=m+1

εj − σW1,m(i)

∣∣∣∣∣
+ sup

1≤k<∞

1

g(m, k)

k

m

∣∣∣∣∣
m∑
`=1

ε` − σW0,m(m)

∣∣∣∣∣
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= OP (1) sup
1≤k<∞

kξ

g(m, k)
+OP (1) sup

1≤k<∞

kmξ−1

g(m, k)

= oP (1),

where the last equality was shown in the proof of Lemma 3 of Aue et al. (2006b). �

Proof of Theorem 3.1

The distribution of {(W1,m(t),W0,m(t)) : t ≥ 0} does not depend on m and therefore the
index can be omitted, i.e. we write {(W1(t),W0(t)) : t ≥ 0} instead. Due to the scaling
property of the Wiener process we have

sup
1≤k<∞

WP (m, k)

g(m, k)
D
= sup

1≤k<∞
max
0≤i≤k

|W1 (k/m)−W1 (i/m)− ((k − i)/m)W0(1)|
(1 + k/m) (k/(k +m))γ

and define

RP (m, k) = max
0≤i≤k

|W1 (k/m)−W1 (i/m)− ((k − i)/m)W0(1)|
(1 + k/m) (k/(k +m))γ

.

Furthermore we define

u(t) = (1 + t) (t/(1 + t))γ

and the following functionals of the Wiener processes W0 and W1

RP (t) =
1

u(t)
sup

0≤s≤t
|W1 (t)−W1 (s)− (t− s)W0(1)|

RP (m, t) =
1

u(t/m)
sup

0≤s≤t
|W1 (t/m)−W1 (s/m)− ((s− t)/m)W0(1)| ,

R̃P (m, dte) =
1

u(dte/m)
sup

0≤s≤dte
|W1 (dte/m)−W1 (dse/m)− ((dte − dse)/m)W0(1)| .

We note that
sup

1≤k<∞
RP (m, k) = sup

0<t<∞
R̃P (m, dte).

The next step is to show:

sup
1≤k<∞

RP (m, k)
(m→∞)−→ sup

0<t<∞
RP (t) a.s.. (5.20)

We divide the proof of (5.20) into two steps and show
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(i) For any T > 0:

max
1≤k≤mT

RP (m, k)
(m→∞)−→ sup

0<t≤T
RP (t) a.s.

and

(ii) For almost every ω ∈ Ω there exists a positive integer T = T (ω) such that

sup
mT≤k<∞

RP (m, k)
(m→∞)−→ sup

T≤t<∞
RP (t).

The first claim follows directly because of the a.s. continuity of RP (t) on [0, T ] (with
RP (0) = 0). For the second claim we get for any T > 0

sup
mT≤t<∞

∣∣∣R̃P (m, dte)−RP (m, t)
∣∣∣

≤ sup
mT≤t<∞

∣∣∣∣W1 (dte/m)

u(dte/m)
− W1 (t/m)

u(t/m)

∣∣∣∣+ sup
mT≤t<∞

sup
0≤s≤t

∣∣∣∣W1 (dse/m)

u(dte/m)
− W1 (s/m)

u(t/m)

∣∣∣∣
+ sup

mT≤t<∞
sup

0≤s≤t

∣∣∣∣ t− su(t/m)
− dte − dse
u(dte/m)

∣∣∣∣ |W0 (1)|
m

≤ 2 sup
mT≤t<∞

sup
0≤s≤t

∣∣∣∣W1 (dse/m)

u(dte/m)
− W1 (s/m)

u(t/m)

∣∣∣∣+ sup
mT≤t<∞

sup
0≤s≤t

∣∣∣∣ t− su(t/m)
− dte − dse
u(dte/m)

∣∣∣∣ |W0 (1)|
m

= 2A1 + A2.

For A1 we have for any T > 0

sup
mT≤t<∞

sup
0≤s≤t

∣∣∣∣W1 (dse/m)−W1 (s/m)

u(dte/m)
− W1 (s/m)

u(t/m)
+
W1 (s/m)

u(dte/m)

∣∣∣∣
≤ sup

mT≤t<∞
sup

0≤s≤t

∣∣∣∣W1 (dse/m)−W1 (s/m)

u(dte/m)

∣∣∣∣
+ sup

mT≤t<∞
sup

0≤s≤t
|W1 (s/m)|

∣∣∣∣ 1

u(dte/m)
− 1

u(t/m)

∣∣∣∣
= sup

mT≤t<∞
sup

0≤s≤t
A3(t, s) + sup

mT≤t<∞
sup

0≤s≤t
A4(t, s).

By Theorem 1.2.1 of Csörgő and Révész (1981) for all ε > 0 there exists T (ω) > 0

independent of m such that

sup
mT≤t<∞

sup
0≤s≤t

sup
0≤r≤1

|W1 ((s+ r)/m)−W1 (s/m)|
u(t/m)

< ε a.s..
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Consequently for almost every ω ∈ Ω there exists T1(ω) > 0 providing

sup
mT1≤t<∞

sup
0≤s≤t

A3(t, s)

≤ sup
mT1≤t<∞

sup
0≤s≤t

|W1 (dse/m)−W1 (s/m)|
u(t/m)

≤ sup
mT1≤t<∞

sup
0≤s≤t

sup
0≤r≤1

∣∣W1

(
s+r
m

)
−W1 (s/m)

∣∣
u(t/m)

<
ε

8
.

For A4 with Theorem 1.3.1* of Csörgő and Révész (1981) we get similarly that for almost
every ω ∈ Ω there exists T2(ω) > 0 (again independent of m) such that

sup
mT2≤t<∞

sup
0≤s≤t

A4 ≤ sup
mT2≤t<∞

sup
0≤s≤t

∣∣∣∣W1 (s/m)

u(t/m)

∣∣∣∣ < ε

8
.

For A2 we find that for any T > 0:

sup
mT≤t<∞

sup
0≤s≤t

∣∣∣∣ dte − dseu(dte/m)
− t− s
u(t/m)

∣∣∣∣ |W0 (1)|
m

≤ sup
mT≤t<∞

sup
0≤s≤t

∣∣∣∣dte − t− (dse − s)
u(dte/m)

+ (t− s)
(

1

u(dte/m)
− 1

u(t/m)

)∣∣∣∣ |W0 (1)|
m

≤ sup
mT≤t<∞

1

m

|W0 (1)|
u(dte/m)

+ sup
mT≤t<∞

t

m

∣∣∣∣ 1

u(t/m)
− 1

u(dte/m)

∣∣∣∣ |W0 (1)|

=A5.

From (3.8) and because
(mu(dte/m))−1 ≤ (mu(t/m))−1 , (5.21)

we have∣∣∣∣ t/m

u(t/m)
− t/m

u(dte/m)

∣∣∣∣ ≤ ( t

t+m

)1−γ

− t

(t+m+ 1) ((t+ 1)/(t+m+ 1))γ

≤ 1−
(

t+m

t+m+ 1

)1−γ (
t

t+ 1

)γ
. (5.22)

This follows since the right-hand sides of (5.21) and (5.22) are both monotonically decreas-
ing in t. Now we find

A5 ≤
|W0 (1)|

m(1 + T ) (T/(T + 1))γ
+

[
1−

(
T + 1

T + 1 + 1/m

)1−γ (
T

T + 1/m

)γ]
|W0 (1)|
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≤ |W0 (1)|

{
(1 + T )γ−1T γ +

[
1−

(
T + 1

T + 2

)1−γ (
T

T + 1

)γ]}
.

Therefore for almost every ω ∈ Ω there exists T3(ω) > 0 and independent of m such that:

sup
mT3≤t<∞

sup
0≤s≤t

∣∣∣∣ t− su(t/m)
− dte − dse
u(dte/m)

∣∣∣∣ |W0 (1)|
m

<
ε

2
.

Finally we have for almost every ω ∈ Ω and with T := max(T1, T2, T3) that∣∣∣∣ sup
mT≤k<∞

RP (m, k)− sup
T≤t<∞

RP (t)

∣∣∣∣ < ε,

since it is clear that supmT≤t<∞RP (m, t) = supT≤t<∞RP (t) for every m. Putting these
together we get

sup
1≤k<∞

RP (m, k)
(m→∞)−→ sup

0<t<∞
RP (t) a.s.

and thus

sup
1≤k<∞

1

g(m, k)
max
0≤i≤k

∣∣∣∣W1,m(k)−W1,m(i)− k − i
m

W0,m(m)

∣∣∣∣ D−→ sup
0<t<∞

RP (t).

By computing the covariance functions it can be shown that

{W1 (t)− tW0 (1) , 0 ≤ t <∞} D= {(1 + t)W (t/(1 + t)) , 0 ≤ t <∞} ,

where {W (t), 0 ≤ t <∞} is a Wiener process (cf. Horváth et al. (2004)). We conclude

sup
0<t<∞

RP (t)
D
= sup

0<t<∞
sup

0≤s≤t

|(1 + t)W (t/(1 + t))− (1 + s)W (s/(1 + s))|
(1 + t) (t/(1 + t))γ

= sup
0<t<∞

sup
0≤s≤t

|W (t/(1 + t))− ((1 + s)/(1 + t))W (s/(1 + s))|
(t/(1 + t))γ

= sup
0<t<1

sup
0≤s≤t

1

tγ
|W (t)− ((1− t)/(1− s))W (s)|.

The weak consistency of the estimator σ̂m completes the proof. �

5.2 Proof of Theorem 3.3

We only prove part a) of Theorem 3.3, parts b) and c) then follow immediately. Since

min
0≤i≤k

m+i∑
j=m+1

ε̂j ≤ 0,
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we have

Q̂(m, k) =
m+k∑
i=m+1

ε̂i ≤
m+k∑
i=m+1

ε̂i − min
0≤i≤k

m+i∑
j=m+1

ε̂j = Q̂u
P (m, k).

Consequently it is sufficient to show that under HA and dT∆ > 0 we have

1

σ̂m
sup

1≤k<∞

Q̂(m, k)

g(m, k)

P−→∞. (5.23)

To show this we expand Q̂(m, k) for k ≥ k∗ to

Q̂(m, k) =
m+k∑
i=m+1

εi +

(
m+k∑
i=m+1

xi

)T

(β0 − β̂m) +

(
m+k∑

i=m+k∗

(xi − d)

)T

∆ + (k − k∗ + 1)dT∆.

(5.24)
From the proof of Theorem 3.1 we get

sup
1≤k<∞

1

g(m, k)

∣∣∣∣∣∣
m+k∑
i=m+1

εi +

(
m+k∑
i=m+1

xi

)T

(β0 − β̂m)

∣∣∣∣∣∣ = OP (1).

Now because of (5.19) from the proof of Lemma 5.1 we obtain(
m+k∑

i=m+k∗

(xi − d)

)T

∆ = o(k − k∗) as k →∞, a.s., uniformly in m.

As a consequence the drift term sup
1≤k<∞

(k − k∗ + 1)dT∆/g(m, k) is the dominating term

and it is clearly diverging as m→∞. �
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k∗ = 1 m = 200 m = 1000

γ = 0.00 min 1stQ med 3rdQ max min 1stQ med 3rdQ max

Q̂P 15 39 48 60 159 48 84 96 110 191
|Q̂| 14 39 48 60 159 48 84 95 109 189

Q̂u
P 11 31 39 49 142 38 70 80 92 179

Q̂u 11 31 39 49 143 38 68 79 91 177

ŜP 3 32 46 68 558 22 76 96 120 256
|ŜR| 3 32 47 69 558 22 75 96 120 263

ŜuP 3 25 38 56 449 11 62 80 102 251
ŜR 3 25 38 57 451 11 61 80 101 251

γ = 0.25 min 1stQ med 3rdQ max min 1stQ med 3rdQ max

Q̂P 4 20 28 38 144 12 35 44 56 146
|Q̂| 4 20 28 39 144 11 34 44 55 148

Q̂u
P 4 16 22 31 108 9 28 37 47 135

Q̂u 3 15 22 31 107 8 27 36 46 135

ŜP 1 14 26 44 558 1 28 44 64 216
|ŜR| 1 15 27 46 558 1 29 44 64 217

ŜuP 1 11 21 37 451 1 22 36 54 202
ŜR 1 11 22 38 451 1 22 35 53 196

γ = 0.49 min 1stQ med 3rdQ max min 1stQ med 3rdQ max

Q̂P 1 9 17 29 148 1 9 16 26 135
|Q̂| 1 9 17 28 148 1 9 16 26 133

Q̂u
P 1 8 14 24 137 1 8 13 22 124

Q̂u 1 7 14 24 144 1 7 13 22 117

ŜP 1 6 15 33 1888 1 6 14 30 211
|ŜR| 1 6 16 35 1460 1 6 15 32 200

ŜuP 1 5 13 29 1269 1 5 12 27 197
ŜR 1 5 13 30 838 1 5 13 28 190

Table 6: Five number summary under H1 with an early-change k∗ = 1 for α = 0.1.
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k∗ = m m = 200 m = 1000

γ = 0.00 min 1stQ med 3rdQ max min 1stQ med 3rdQ max

Q̂P 1 59 79 101 289 4 126 159 189 318
|Q̂| 1 66 95 131 443 9 143 193 248 476

Q̂u
P 1 45 63 82 261 1 98 129 157 263

Q̂u 2 51 78 110 450 1 113 160 214 558

ŜP 1 46 75 112 2200 2 114 156 200 467
|ŜR| 1 53 90 141 2200 6 130 188 258 767

ŜuP 1 36 60 91 1593 1 90 127 165 403
ŜR 1 41 74 117 1595 1 103 157 222 650

γ = 0.25 min 1stQ med 3rdQ max min 1stQ med 3rdQ max

Q̂P 2 54 73 96 289 3 113 145 175 305
|Q̂| 1 61 89 124 423 2 129 177 231 451

Q̂u
P 1 43 62 80 290 1 93 124 150 256

Q̂u 1 49 75 108 464 1 107 153 206 556

ŜP 1 43 71 107 2200 3 104 143 186 436
|ŜR| 1 49 85 136 2200 3 118 175 242 731

ŜuP 1 36 60 91 1644 1 87 122 159 380
ŜR 1 41 73 117 1726 1 99 151 215 648

γ = 0.49 min 1stQ med 3rdQ max min 1stQ med 3rdQ max

Q̂P 3 77 103 133 490 14 153 189 223 386
|Q̂| 2 81 115 160 658 15 162 214 273 526

Q̂u
P 2 67 91 119 430 6 136 170 202 342

Q̂u 1 71 103 144 569 7 144 196 254 631

ŜP 2 63 100 155 2200 1 140 187 237 641
|ŜR| 1 67 111 181 2200 5 151 212 288 890

ŜuP 1 55 90 138 2200 2 125 169 217 522
ŜR 1 59 100 163 2200 3 135 194 267 826

Table 7: Five number summary under H1 with k∗ = m for α = 0.1.
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k∗ = 5m m = 200 m = 1000

γ = 0.00 min 1stQ med 3rdQ max min 1stQ med 3rdQ max

Q̂P 2 182 256 313 550 11 382 506 581 785
|Q̂| 2 191 293 412 933 6 404 577 777 1436

Q̂u
P 3 152 212 259 489 5 319 425 490 666

Q̂u 2 158 252 366 1199 2 340 503 700 1826

ŜP 2 150 234 331 3000 6 352 492 601 1074
|ŜR| 1 158 263 418 3000 1 369 566 777 1817

ŜuP 1 126 198 278 1634 13 296 414 511 1027
ŜR 1 133 225 366 3000 5 311 491 696 1938

γ = 0.25 min 1stQ med 3rdQ max min 1stQ med 3rdQ max

Q̂P 7 199 276 335 608 8 411 537 613 826
|Q̂| 3 205 310 432 1035 8 427 601 801 1471

Q̂u
P 2 172 236 288 604 2 357 466 533 713

Q̂u 2 176 273 391 1248 9 372 536 737 1857

ŜP 3 166 255 361 3000 11 384 523 638 1228
|ŜR| 1 172 280 443 3000 15 395 593 808 1895

ŜuP 2 142 221 311 3000 15 333 456 555 1123
ŜR 3 149 247 395 3000 3 343 527 733 1977

γ = 0.49 min 1stQ med 3rdQ max min 1stQ med 3rdQ max

Q̂P 1 326 430 526 1089 34 638 785 876 1203
|Q̂| 23 315 450 610 1577 17 622 819 1049 1898

Q̂u
P 12 292 386 469 977 30 578 715 802 1085

Q̂u 13 278 402 553 1679 19 558 746 975 7000

ŜP 11 268 399 574 3000 36 595 766 912 1584
|ŜR| 3 256 407 641 3000 22 580 808 1059 7000

ŜuP 1 239 356 508 3000 6 537 700 833 1468
ŜR 6 226 363 575 3000 3 516 736 977 7000

Table 8: Five number summary under H1 with k∗ = 5m for α = 0.1.
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min 1stQ med 3rdQ max

k∗ = 1 ŜP 10 58 75 94 235
|ŜR| 10 58 75 94 235

ŜuP 8 48 63 80 178
ŜR 8 47 62 79 178

k∗ = m ŜP 2 86 119 155 353
|ŜR| 2 98 144 196 537

ŜuP 1 68 98 129 293
ŜR 1 78 121 169 493

k∗ = 5m ŜP 4 271 376 461 823
|ŜR| 4 287 435 590 1345

ŜuP 7 228 317 392 676
ŜR 6 243 380 532 1526

Table 9: Five number summary under H2 for α = 0.1, γ = 0.00 and m = 1000.
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ASYMPTOTIC DISTRIBUTION OF THE DELAY TIME IN
PAGE’S SEQUENTIAL PROCEDURE
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Abstract

In this paper the asymptotic distribution of the stopping time in Page’s sequential
CUSUM procedure is presented. Page’s CUSUM is introduced as a detector for
changes in the mean of observations satisfying a weak invariance principle. The main
result on the stopping time derived from this procedure extends a series of results on
the asymptotic normality of stopping times of CUSUM-type procedures. In contrast
to the result presented here, the asymptotic normality in these papers holds only in
limited range of possible change locations and change sizes. The theoretical results
are then illustrated by a small simulation study.

Keywords: CUSUM, Delay time, Asymptotic distribution, Location model, Change-
point, Sequential test, Invariance principle.

AMS subject classification: Primary 62L99; secondary 62G20

1 Introduction
In sequential change-point analysis a comparison between different types of detection pro-
cedures in many cases is based on their average delay times. Even optimality criteria that
were introduced for these procedures are referring to the expected value of the delay time.
Until now however only few contributions were made regarding the asymptotic distribu-
tion of the stopping times, providing more information about the behaviour of the stopping
times than results on the average behaviour. Concerning the aforementioned optimality
criteria for Page’s CUSUM we refer to the work of Lorden (1971). The monograph of Bas-
seville and Nikiforov (1993) gives an extensive overview of the contributions made since
the introduction of the CUSUM procedure by Page (1954).
In a time series regression model Fremdt (2012) proposed as a stopping time the first-
passage time of Page’s CUSUM of the residuals over a boundary function introduced by
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Horváth et al. (2004). Based on this procedure we will consider changes in the mean in the
so-called location model which, as a special case, is included in the time series regression
model of Fremdt (2012) and investigate the limit distribution of the corresponding stopping
time. Ordinary CUSUM procedures are defined as the partial sum of, e.g., the residuals
from the beginning of the monitoring to the present. These procedures have been studied
in the literature extensively, we refer to, e.g., Horváth et al. (2004), Horvath et al. (2007)
or Aue et al. (2006b). Results on the asymptotic distribution, in particular the asymp-
totic normality, of this ordinary CUSUM procedure were given for the location model by
Aue (2003) and Aue and Horváth (2004), an extension to a linear regression model was
then provided by Aue et al. (2009). To prove these results on the asymptotic normality of
the ordinary CUSUM detector strong conditions on the time of change as well as on the
magnitude of the change had to be imposed. In this context we also want to mention the
work of Hušková and Koubková (2005), who introduced monitoring procedures based on
quadratic forms of weighted cumulative sums, and Černíková et al. (2011), who showed the
asymptotic normality of the corresponding stopping time under assumptions on the time
of change similar to those used in Aue and Horváth (2004) and Aue et al. (2009).
Building on the work of Aue and Horváth (2004), we will derive the asymptotic distribu-
tion of the Page CUSUM procedure while relaxing the strong conditions on the time and
magnitude of the change and show hereby that it is more robust to the location and the size
of the change than ordinary CUSUM procedures. The corresponding limit distributions
are novel in this context and provide a classification of the behaviour of the stopping time
according to the specifications of the change.
The paper is organized as follows. In Section 2 we will introduce our model settings and
assumptions and formulate our main result, Section 3 then contains the results of a small
simulation study. We will conclude this work with the proof of our main result from Section
2 in Section 4.

2 Asymptotic distribution of the stopping times

Aue and Horváth (2004) investigated in a sequential setup the asymptotic normality of
the CUSUM stopping time in the case of the so-called location model with the alternative
hypothesis of a change in the mean for relatively early changes. They used the “noncon-
tamination assumption” introduced by Chu et al. (1996) which is standard for these types
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of problems. This assumption guarantees the constancy of the model in an initial training
period of length m. If not stated otherwise the asymptotics considered in this paper are
always with respect to m → ∞ (which is therefore omitted). The characterization of a
change-point k∗ as “relatively early” is then also with respect to the length of this training
period. A formulation of this in mathematical terms will follow later on. In this work
we will derive the asymptotic distribution of the stopping time based on Page’s CUSUM
detector in this location model which is given via

Xi =

µ+ εi, i = 1, . . . ,m+ k∗ − 1,

µ+ εi + ∆m, i = m+ k∗,m+ k∗ + 1, . . . ,
(2.1)

where µ and ∆m are real numbers and 1 ≤ k∗ <∞ denotes the unknown time of change.
We will restrict ourselves to the case ∆m ≥ 0 and only formulate the statements for the
hypotheses

H0 : ∆m = 0 and HA : ∆m > 0. (2.2)

The respective statements for the alternatives ∆m < 0 and ∆m 6= 0 follow analogously
using the corresponding detectors given in Fremdt (2012).
Following Aue and Horváth (2004) we assume that the error terms {εi}i∈1,2,... satisfy As-
sumptions∣∣∣∣∣

m∑
i=1

εi

∣∣∣∣∣ = OP
(√

m
)
, (A1)

There is a sequence of Wiener processes {Wm(t) : t ≥ 0}m≥1 and a positive constant σ

such that

sup
1
m
≤t<∞

1

(mt)1/ν

∣∣∣∣∣
m+mt∑
i=m+1

εi − σWm(mt)

∣∣∣∣∣ = OP (1) with some ν > 2. (A2)

Furthermore we need the following assumptions on ∆m and k∗:

there exists a θ > 0 such that k∗ = bθmβc with 0 ≤ β < 1 (A3)
√
m∆m −→∞, (A4)

∆m = O (1) . (A5)

Examples for sequences of random variables satisfying Assumptions (A1) and (A2) are
given in Aue and Horváth (2004), besides i.i.d. sequences including martingale difference
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sequences and certain stationary mixing sequences. Aue et al. (2006b) showed that the
class of augmented GARCH processes which were introduced by Duan (1997) and include
most of the conditionally heteroskedastic time series models applied to describe financial
time series also satisfies Assumptions (A1) and (A2). A selection of GARCH models that
are included in this class can be found in Aue et al. (2006a). For the location model Aue
and Horváth (2004) defined the CUSUM detector of the (centered) Xi

Q(m, k) =
m+k∑
i=m+1

Xi −
k

m

m∑
i=1

Xi,

and as a corresponding stopping time

τm = min{k ≥ 1 : Q(m, k) ≥ c̃g(m, k)}, (2.3)

where

g(m, k) =
√
m (1 + k/m) (k/(k +m))γ for γ ∈ [0, 1/2) (2.4)

and c̃ = c̃(α, γ) is a critical constant derived from the asymptotic distribution of the
detector under the null hypothesis. They showed that for the stopping time τm under the
more restrictive local change assumption ∆m → 0 and for early change alternatives, i.e.,

k∗ = O
(
mβ
)

with some 0 ≤ β <

( 1
2
− γ

1− γ

)2

,

one can find (deterministic) sequences am and bm such that (τm−am)/bm is asymptotically
normal.
Our aim is now to show a similar result for the Page CUSUM detector under the as-
sumptions stated above, including in particular fixed change alternatives, and extend it to
changes up to an order of mβ with β arbitraryly close to 1 (see Assumption (A3)). We
define the detector based on Page’s CUSUM for the one-sided hypotheses as

S(m, k) = Q(m, k)− min
0≤i≤k

Q(m, i)

and the corresponding stopping time with g from (2.4) as

τPage
m = min{k ≥ 1 : S(m, k) ≥ cg(m, k)},
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where for a given confidence level α ∈ (0, 1) according to Fremdt (2012) the critical value
c = c(α, γ) can be derived from choosing zα such that

lim
m→∞

P

(
1

σ̂m
sup

1≤k<∞

S(m, k)

g(m, k)
> zα

)
= P

(
sup

0<t<1

1

tγ

[
W (t)− inf

0≤s≤t

(
1− t
1− s

W (s)

)]
> zα

)
= α.

A table containing simulated versions of the critical values c(α, γ) for a selection of values
for γ and α can be found in Fremdt (2012). From Assumption (A3) we have a given order
of the change-point k∗ in terms of m depending on the exponent β. As we will see later
on the asymptotic distribution of the stopping times depends crucially on the decay of the
sequence ∆m, which is implicitly allowed via Assumptions (A4) and (A5). This dependence
can be expressed in terms of the asymptotic behaviour of the quantities ∆mm

γ−1/2k∗1−γ

and due to Assumption (A3) consequently ∆mm
β(1−γ)−1/2+γ. We distinguish the following

three cases:

mβ(1−γ)−1/2+γ∆m −→ 0, (I)

mβ(1−γ)−1/2+γ∆m −→ c̃1 ∈ (0,∞), (II)

mβ(1−γ)−1/2+γ∆m −→∞. (III)

Remark 2.1. a) We note that independently of the asymptotic behaviour of ∆m (only
assuming (A4) and (A5)) we have (I) for

0 ≤ β <
1
2
− γ

1− γ
. (Ia)

Therefore under (Ia) without additional knowledge of the exact time and amount of
change using the following results one can, e.g., derive confidence intervals for the
stopping times.

b) Under (II) because of (A3)

∆mm
γ−1/2k∗1−γ −→ θ1−γ c̃1 = c1 ∈ (0,∞). (2.5)

To state our main result we first introduce the distribution function Ψ depending on the
given case (I), (II) or (III). Under (II) denote by d1 the unique solution of

d1 = 1− c

c1

d1−γ
1 . (2.6)
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For all real x let

Ψ(x) =



Φ(x), under (I),

P

(
sup

d1<t<1
W (t) ≤ x

)
, under(II),

P

(
sup

0<t<1
W (t) ≤ x

)
=

0, x < 0,

2Φ(x)− 1, x ≥ 0,
, under (III),

where Φ(x) denotes the standard normal distribution function.

Theorem 2.2. Let {Xn}n≥1 be a sequence of random variables according to (2.1) such that
(A1) – (A5) are satisfied and let γ ∈ [0, 1/2). Then for all real x under HA

lim
m→∞

P

(
τPage
m − am
bm

≤ x

)
= 1−Ψ(−x) = Ψ(x) (2.7)

where am is the unique solution of

am =

(
cm1/2−γ

∆m

+
k∗

aγm

) 1
1−γ

and

bm = σ
√
am∆−1

m

(
1− γ

(
1− k∗

am

))−1

.

3 A small simulation study
In this section we want to present the results of a small simulation study to illustrate the
theoretical result from Section 2. The simulations were carried out for various types of
sequences {εi}i=1,2,... all leading to similar results. We will therefore only present results
for µ = 0 using a GARCH(1,1) sequence

εi = σizi, σi = ω + αz2
i−1 + βσ2

i−1, (3.8)

where {zi}i=1,2,... are i.i.d. standard normally distributed and the parameters were specified
as

ω = 0.5, α = 0.2 and β = 0.3, (3.9)
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which implies (unconditional) unit variance. For all presented results a fixed change alter-
native with ∆m = 1 was considered which implies that the behaviour of mβ(1−γ)−1/2+γ∆m

and hereby the determination of the corresponding case (I) – (III) depends only on the
exponent which will be denoted by η. The cases hence correspond to η S 0. In all pre-
sented figures the density of the limit distribution is plotted as a solid line and denoted by
Ψ(I),Ψ

(II)
d1

and Ψ(III), resp..
Figures 1–3 show the estimated density plots for constant changes, i.e., β = 0 in (A3),
choosing k∗ = θ = 1, 100 and 200. These belong to case (I) for all values of γ and therefore
have the standard normal distribution as a limit. For k∗ = 1 a fast and clear convergence
against the standard normal can be found for γ = 0.00 and γ = 0.25. For γ = 0.45 a devia-
tion is visible that can be explained by a slower convergence due to the transition from case
(I) to case (II) (and (III)) in η = 0 and thus for β = 1/11. E.g., for m = 100,000 we have
m1/11 = 2.848, a fast convergence against the standard normal can consequently hardly be
expected. The influence of the parameter θ from Assumption (A3) which leads to a bias
in the limiting behaviour is shown in Figures 2 and 3. While for γ = 0.00 the convergence
against the standard normal distribution can be seen nicely, for the larger values of γ it is
not obvious. The explanation for this is again the influence of γ on η, e.g., we have for m =

100,000 that k∗1 = 200m0 and k∗2 = m0.460206 are two possible alternatives with different
limit distributions for larger values of γ. The parameter θ was used in earlier works to
justify the assumption of early changes, the results from Figures 1–3 show however that
this argument has to be handled with caution.
Figure 4 shows the density plots for k∗ = bm0.45c which implies η < 0 for γ = 0.00 and
η > 0 for γ = 0.25 and γ = 0.45. For γ = 0.00 again the convergence against the standard
normal distribution is obvious, for γ = 0.25 and γ = 0.45 the convergence away from the
standard normal distribution towards Ψ(III) is also clearly visible. Finally Figure 5 treats
the cases (II) and (III) for all values of γ. The plots in the left column show case (II), i.e.,
under our model specification we have η = 0, corresponding to β taking values β = 1/2, 1/3

and 1/11, respectively. The limiting densities show the dependence on d1 and therefore
implicitly on γ. The model setting implies c1 = 1, consequently d1 takes the values:

γ 0.00 0.25 0.45
d1(γ) 0.3714 0.1887 0.1051

In case (III) we considered a change k∗ = bm0.75c and we find that according to the
theoretical results only little influence of γ can be seen and the convergence against the
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Figure 1: Estimated density plots for the standardized stopping times τPage
m for a

GARCH(1,1) sequence according to (3.8) and (3.9) for k∗ = 1. The figures from top
to bottom correspond to the tuning parameter γ = 0.00, 0.25 and 0.45.
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Figure 2: Estimated density plots for the standardized stopping times τPage
m for a

GARCH(1,1) sequence according to (3.8) and (3.9) for k∗ = 100. The figures from top to
bottom correspond to the tuning parameter γ = 0.00, 0.25 and 0.45.
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Figure 3: Estimated density plots for the standardized stopping times τPage
m for a

GARCH(1,1) sequence according to (3.8) and (3.9) for k∗ = 200. The figures from top to
bottom correspond to the tuning parameter γ = 0.00, 0.25 and 0.45.
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Figure 4: Estimated density plots for the standardized stopping times τPage
m for a

GARCH(1,1) sequence according to (3.8) and (3.9). The change-point was set to k∗ =

bm0.45c, the figures from top to bottom correspond to the tuning parameter γ = 0.00, 0.25

and 0.45 .
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limit distribution Ψ(III) is again obvious.

4 Proof of Theorem 2.2
To prove Theorem 2.2, we adopt the method of Aue and Horváth (2004) or Černíková
et al. (2011), that is finding a sequence N = N(m,x) such that:

P (τPage
m > N) = P

(
max

1≤k≤N

S(m, k)

c g(m, k)
≤ 1

)
−→ Ψ(x) for all real x. (4.10)

As can be seen in the proofs this sequence can be chosen as

N = N(m,x) =

(
cm1/2−γ

∆m

+
k∗

aγm
− σx a

1/2−γ
m (1− γ)

∆m(1− γ(1− k∗

am
))

)1/(1−γ)

. (4.11)

Before we start with the proof of Theorem 2.2 we give some facts that will be useful in the
proofs:

Remark 4.1. It is obvious that Q(m, k) can be rewritten as

Q(m, k) =
m+k∑
i=m+1

εi −
k

m

m∑
i=1

εi + ∆m(k − k∗ + 1)I{k≥k∗} for k = 1, 2, . . . , (4.12)

and consequently with εm = 1
m

∑m
`=1 ε` we have

S(m, k) ≤

∣∣∣∣∣
m+k∑
i=m+1

εi

∣∣∣∣∣+ k |εm|+
∣∣∆m(k − k∗ + 1)I{k≥k∗}

∣∣+

∣∣∣∣min
0≤i≤k

Q(m, i)

∣∣∣∣ (4.13)

and∣∣∣∣min
0≤i≤k

Q(m, i)

∣∣∣∣
g(m, k)

≤ max
0≤i≤k

∣∣∣∣∣ m+i∑
j=m+1

εj

∣∣∣∣∣
g(m, i)

+ max
0≤i≤k

i |εm|
g(m, i)

+ max
0≤i≤k

∣∣∆m(i− k∗ + 1)I{i≥k∗}
∣∣

g(m, i)
. (4.14)

Proposition 4.2. Introducing the notation rm ≈ sm for rm = sm(1 + o(1)) we get under
the assumptions of Theorem 2.2 that

am ≈



(
cm1/2−γ

∆m

) 1
1−γ

, under (I),

d2 k
∗, under (II) with d2 =

(
c
c1

+ dγ1

) 1
1−γ and

k∗, under (III).
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Figure 5: Estimated density plots for the standardized stopping times τPage
m for a

GARCH(1,1) sequence according to (3.8) and (3.9). The rows from top to bottom corre-
spond to the tuning parameter γ = 0.00, 0.25 and 0.45, the left column corresponds to case
(II) with ∆m = 1 and β = (1/2 − γ)/(1 − γ), the right column to k∗ = bm0.75c and thus
case (III) for all values of γ.



58 Asymptotic distribution of the delay time in Page’s procedure

Proof: From the definition of am it follows obviously that this definition is equivalent to

am =
cm1/2−γ

∆m

aγm + k∗ (4.15)

which yields am ≥ k∗ and thus k∗

am
≤ 1. Now under (I) the assertion follows directly by

am =
cm1/2−γ

∆m

aγm

(
1 +

∆mk
∗1−γ

cm1/2−γ

(
k∗

am

)γ)
=

(
cm1/2−γ

∆m

) 1
1−γ

(1 + o (1)).

Under (II) we have lim
m→∞

k∗/am = d1 (cf. Lemma 4.3 a) (iv)) and with (2.5) consequently

am = k∗
(
c∆−1

m m1/2−γk∗γ−1 +

(
k∗

am

)γ) 1
1−γ

≈ k∗
(
c

c1

+ dγ1

) 1
1−γ

= d2k
∗

Finally under (III) we have from the definition of am

am
k∗

=

((
k∗

am

)γ
+ c∆−1

m m1/2−γk∗γ−1

) 1
1−γ

= O (1) ,

leading to

a1−γ
m =

k∗

aγm

(
1 +

cm1/2−γ

∆mk∗
1−γ

(am
k∗

)γ)
=
k∗

aγm
(1 + o (1)) ,

and thus concluding the proof. �

Lemma 4.3. Let γ ∈ [0, 1/2) and let (A3) – (A5) be satisfied. Then

a) (i) am/m −→ 0,

(ii)
√
am∆m −→∞,

(iii) k∗/m −→ 0,

(iv) k∗/am −→


0, under (I),

d1 ∈ (0, 1), under (II) and

1, under (III).

b) N/am −→ 1 and consequently the statements of part a) still hold after substitution of
am by N .
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c) Furthermore

lim
m→∞

1

σ

(
N

m

)γ−1/2(
c− ∆m

m1/2−γ

(
N1−γ − k∗

Nγ

))
= x for all real x. (4.16)

Proof: a) Part (iii) follows directly from Assumption (A1).
(i) Under (I) with Proposition 4.2 and Assumption (A4)

am
m
≈
(

c√
m∆m

) 1
1−γ

−→ 0,

under (II) and (III) we get the result again with Proposition 4.2 and part (iii) of this
Lemma from

am
m
≈

d2k
∗/m, under (II) and

k∗/m under (III).

(ii) Because am ≥
(
c∆−1

m m1/2−γ) 1
1−γ we have by Assumption (A4)

√
am∆m ≥

((
c∆−1

m m1/2−γ)∆2(1−γ)
m

) 1
2(1−γ) = c

1
2(1−γ)

(√
m∆m

) 1/2−γ
1−γ −→∞

(iv) Under (I) and (III) the result follows directly from Proposition 4.2 and its proof, under
(II) consider

am
k∗

=
cm1/2−γ

∆mk∗
1−γ

(am
k∗

)γ
+ 1 =

c

c1

(am
k∗

)γ
+ 1 + o (1) .

Now it can easily be seen that because of the definition of am the term am/k
∗ solving the

equation above converges towards a real number d−1
1 ∈ (1,∞) and hence k∗/am −→ d1 ∈

(0,∞). Hence we find d1 as the solution of

d1 = lim
m→∞

k∗/am = 1− lim
m→∞

c∆−1
m m1/2−γk∗γ−1 (k∗/am)1−γ = 1− (c/c1) d1−γ

1 .

b) It is enough to consider

N1−γ

a1−γ
m

= 1− σx a
1/2−γ
m (1− γ)

a1−γ
m ∆m (1− γ (1− k∗/am))

= 1− σx 1− γ
√
am∆m (1− γ (1− k∗/am))

.

But aside from Lemma 4.3 a) (ii) giving us
√
am∆m −→∞ we have

1− γ (1− k∗/am) −→


1− γ > 0, under (I) and (I),

1− γ(1− d1) > 0, under (II),

1, under (III),
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which yields the desired result.
c) To ease the notation we first introduce

uγ(s, t) =
1− γ

1− γ (1− s/t)
. (4.17)

By inserting the definition of N in N1−γ, from (4.11), we get

(N/m)γ−1/2 (c−∆mm
γ−1/2

(
N1−γ − k∗/Nγ

))
=

∆mk
∗

√
N

(
1−

(
N1−γ/a1−γ

m

) γ
1−γ
)

+ σx (am/N)1/2−γ uγ(k
∗, am)

=
∆mk

∗
√
N

(
1

γ
1−γ −

(
1 +

N1−γ − a1−γ
m

a1−γ
m

) γ
1−γ
)

+ σx (am/N)1/2−γ uγ(k
∗, am)

=A1,

so by the mean value theorem we can find ξm between 1 and (N/am)1−γ (which satisfies
ξm → 1 because of part b)) such that

A1 =σx (am/N)1/2−γ uγ(k
∗, am) +

∆mk
∗

√
Na1−γ

m

(
σx
a

1/2−γ
m

∆m

uγ(k
∗, am)

)
γ

1− γ
ξ

2γ−1
1−γ
m

=σx (am/N)1/2−γ uγ(k
∗, am)

(
1 +

γ

1− γ
k∗

am

aγm
Nγ

ξ
2γ−1
1−γ
m

)
=σx

(am
N

)1/2−γ
(

1 +
γ

1− γ
k∗

am

aγm
Nγ

ξ
2γ−1
1−γ
m

)(
1− γ

1− γ
k∗

am

)−1

−→ σx,

which completes the proof of Lemma 4.3. �

To prove Theorem 2.2 we formulate a set of lemmas containing stepwise approximations
of the detector that finally give us the desired asymptotics. For these first steps we follow
again the outline of the proofs in Aue and Horváth (2004). The first step of the proof
is to show that the observations before the change-point do not have an impact on the
asymptotics under the alternative.

Lemma 4.4. Let γ ∈ [0, 1/2). If (A1) – (A5) hold, then(
N

m

)γ−1/2(
max

1≤k<k∗
S(m, k)

g(m, k)
− ∆m(N − k∗)√

m (N/m)γ

)
P−→ −∞.
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Proof: First we note that g(m, k) = m1/2−γ (1 + k/m)1−γ kγ ≥ m1/2−γkγ. Because the
indicator function in (4.12) equals zero for 1 ≤ k < k∗ and because of (4.13) it is enough
to consider(

N

m

)γ−1/2

max
1≤k<k∗

1

g(m, k)

∣∣∣∣∣
m+k∑
i=m+1

εi

∣∣∣∣∣+

(
N

m

)γ−1/2

max
1≤k<k∗

k |εm|
g(m, k)

+

(
N

m

)γ−1/2

max
1≤k<k∗

1

g(m, k)

∣∣∣∣min
0≤i≤k

Q(m, i)

∣∣∣∣+

(
N

m

)γ−1/2
∆m(N − k∗)√
m (N/m)γ

= A2 + A3 + A4 + A5

We will first show that all but the deterministic term A5 are stochastically bounded and
therefore they do not contribute to the asymptotics. Then it is sufficient to show the
divergence of A5 to prove the lemma. We begin with the term A2 and replace the partial
sum of the error terms by a Wiener process and have with Lemma 4.3 a)(iv) and b)(

N

m

)γ−1/2

max
1≤k<k∗

1

g(m, k)

∣∣∣∣∣
m+k∑
i=m+1

εi − σWm(k)

∣∣∣∣∣ = OP (1) max
1≤k<k∗

k1/ν

N1/2−γkγ

= OP
(

(k∗/N)1/2−γ
)

= OP (1).

We note that(
N

m

)γ−1/2

max
1≤k<k∗

Wm(k)

g(m, k)
≤ sup

0<t≤k∗

Wm(t)√
N (t/N)γ

D
= sup

0<t≤k∗/N

W (t)

tγ
= OP (1),

where the equality in distribution comes from the scaling property of the Wiener process.
For A3 Lemma 4.3 a) (iii), (iv) and Assumption (A1) yield(

N

m

)γ−1/2

max
1≤k<k∗

k |εm|
g(m, k)

≤ k∗1−γ

mN1/2−γ

∣∣∣∣∣
m∑
`=1

ε`

∣∣∣∣∣ = OP
(

(k∗/N)1/2−γ (k∗/m)1/2
)

= oP (1).

For A4 it follows by (4.14) that

max
1≤k<k∗

1

g(m, k)

∣∣∣∣min
0≤i≤k

Q(m, i)

∣∣∣∣ ≤ max
1≤k<k∗

1

g(m, k)

∣∣∣∣∣
m+k∑
j=m+1

εj

∣∣∣∣∣+ max
1≤k<k∗

k |εm|
g(m, k)

= OP (1).

Thus we only have to consider the deterministic term

A5 =

(
N

m

)γ−1/2
∆m(N − k∗)√
m (N/m)γ

=
∆m

N1/2−γ

(
N1−γ − k∗

Nγ

)
= ∆m

√
N

(
1− k∗

N

)
.
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It is obvious that the right hand side under (I) and (II) tends to infinity. Under (III) we
have with uγ from (4.17) that

∆m

N1/2−γ

(
N1−γ − k∗

Nγ

)
=

∆m

N1/2−γ

(
cm1/2−γ

∆m

− σxa
1/2−γ
m

∆m

uγ(k
∗, N) +

k∗

Nγ

((
N

am

)γ
− 1

))

= c
(m
N

)1/2−γ
− σx

(am
N

)1/2−γ
uγ(k

∗, N) +
∆mk

∗
√
N

((
N

am

)γ
− 1

)
.

From Lemma 4.3 a) (i) it follows directly that the first term diverges, i.e., c (m/N)1/2−γ −→
∞, for the second term by Lemma 4.3 a) (iv) and b) it is clear that this term is bounded.
The third term can be treated analogously to the proof of Lemma 4.3 c) applying the mean
value theorem:

∆mk
∗

√
N

((
1 +

N1−γ − a1−γ
m

a1−γ
m

)γ/(1−γ)

− 1

)

=
∆mk

∗
√
Na1−γ

m

(
−σxa

1/2−γ
m

∆m

uγ(k
∗, N)

)
γ

1− γ
ξ(2γ−1)/(1−γ)
m

=− σxuγ(k∗, N)
k∗√
Nam

ξ(2γ−1)/(1−γ)
m

=O (1) .

This gives us the desired result. �

The next step is an approximation of our detector by functionals of a sequence of Wiener
processes. To ease the notation we define

WD(m, j) = σWm(j) + (j − k∗ + 1)∆mI{j≥k∗} (4.18)

and

WS(m, k) = WD(m, k)− min
0≤i≤k

WD(m, i). (4.19)

Lemma 4.5. Let γ ∈ [0, 1/2) and Assumptions (A1) – (A5) hold. Then(
N

m

)γ−1/2

max
k∗≤k≤N

1

g(m, k)
|S(m, k)−WS(m, k)| = oP (1).
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Proof: The deterministic terms cancel out thus using

max
k∗≤k≤N

1

g(m, k)

∣∣∣∣min
0≤i≤k

WD(m, i)− min
0≤i≤k

Q(m, i)

∣∣∣∣
≤ max

k∗≤k≤N

1

g(m, k)
max
0≤i≤k

∣∣∣∣∣σWm(i)−

(
m+i∑

j=m+1

εj −
i

m

m∑
`=1

ε`

)∣∣∣∣∣
≤ max

1≤k≤N

1

g(m, k)

(∣∣∣∣∣
m+k∑
j=m+1

εj − σWm(k)

∣∣∣∣∣+
k

m

∣∣∣∣∣
m∑
`=1

ε`

∣∣∣∣∣
)

it is sufficient to consider(
N

m

)γ−1/2

max
1≤k≤N

1

g(m, k)

∣∣∣∣∣
m+k∑
j=m+1

εj − σWm(k)

∣∣∣∣∣ = A6,

for which with Assumption (A2) and because y1/ν−γ is monotone we have

A6 =OP (1) max
1≤k≤N

k1/ν

√
N (k/N)γ

= OP (1)Nγ−1/2 max
{

1, N1/ν−γ}
=OP (1) max

{
Nγ−1/2, N1/ν−1/2

}
= OP (1)o (1)

=oP (1),

and (
N

m

)γ−1/2

max
1≤k≤N

k

m

∣∣∣∣∣
m∑
`=1

ε`

∣∣∣∣∣
/

g(m, k) ≤
(
N

m

)γ−1/2
1

m

∣∣∣∣∣
m∑
`=1

ε`

∣∣∣∣∣ max
1≤k≤N

k1−γ

m1/2−γ

=

√
N

m
OP
(√

m
)

= OP
(√

N/m
)

= oP (1).

�

The boundary function g(m, k) can be replaced by an asymptotically equivalent function
that simplifies the coming calculations.

Lemma 4.6. Let γ ∈ [0, 1/2) and Assumptions (A1) – (A5) hold and define

h(m, k) =

∣∣∣∣ 1

g(m, k)
− 1√

m (k/m)γ

∣∣∣∣ .
Then (

N

m

)γ−1/2

max
k∗≤k≤N

|WS(m, k)|h(m, k) = oP (1).
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Proof: Aue and Horváth (2004) showed that(
N

m

)γ−1/2

max
k∗≤k≤N

σ |Wm(k)|h(m, k) = oP (1).

For the deterministic term (k − k∗ + 1)∆m we get(
N

m

)γ−1/2

max
k∗≤k≤N

∆m(k − k∗ + 1)h(m, k)

=
∆m

N1/2−γ max
k∗≤k≤N

k − k∗ + 1

kγ

(
11−γ −

(
m

k +m

)1−γ
)

=
∆m

N1/2−γ max
k∗≤k≤N

k1−γ

(
11−γ −

(
m

k +m

)1−γ
)

=A7.

By application of the mean value theorem for every k∗ ≤ k ≤ N we can find a real number
ξm,k satisfying m/(m+ k) < ξm,k < 1 such that

A7 =
∆m

N1/2−γ max
k∗≤k≤N

k − k∗ + 1

kγ
k

k +m
(1− γ)ξ−γm,k.

Because ξ−γm,k ≤ (m/(m+ k))−γ and (k − k∗ + 1) (k/(k +m))1−γ is strictly increasing in k
we have

A7 ≤
∆m

N1/2−γmγ
max

k∗≤k≤N
(k − k∗ + 1)

(
k

k +m

)
=

∆m

N1/2−γ (N − k∗ + 1)

(
N

N +m

)1−γ

≤∆m

√
N(N − k∗ + 1)

m

=
∆m

√
N(N − k∗)
m

+
∆m

√
N

m
.

Here the last term clearly tends to 0 and for the first term we get by Lemma 4.3 b) and
from (4.15)

∆m

√
N(N − k∗)
m

≈
∆m
√
am(am − k∗)
m

=
∆m
√
am

m

cm1/2−γaγm
∆m

= c
(am
m

)1/2+γ

= o(1),
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where the last equality comes from Lemma 4.3 a) (i). For the minimum term the claim
follows with the same arguments and this is completing the proof. �

Before we can state the next lemma we again have to introduce some notation. For δ ∈
(0, 1) we define

Nδ = (1− δ)N, N = N − k∗ − 1 and N δ = (1− δ)N.

Lemma 4.7. Let γ ∈ [0, 1/2) and (A1) – (A5) hold. Then for every δ ∈ (0, 1)

a) lim
m→∞

P

(
max

k∗≤k≤N
WS(m,k)√
m(k/m)γ

= max
Nδ≤k≤N

WS(m,k)√
m(k/m)γ

)
= 1,

b) lim
m→∞

P

(
max

k∗≤j≤N

σWm(j)+∆mj√
N

= max
Nδ≤j≤N

σWm(j)+∆mj√
N

)
= 1.

Proof: a) We note (cf. Aue and Horváth (2004)) that

max
k∗≤k≤N

|W (k)|√
m (k/m)γ

= OP

((
N

m

)1/2−γ
)

= oP

(
∆mN

1−γ

m1/2−γ

)
. (4.20)

Now it can be seen easily that this result also holds true for the extended range 0 ≤ k ≤ N .
Then

P

(
max

k∗≤k≤N

WS(m, k)√
m (k/m)γ

> max
Nδ≤k≤N

WS(m, k)√
m (k/m)γ

)

= P

bNδc⋃
k=k∗

N⋂
`=Nδ

{
k−γWS(m, k) > `−γWS(m, `)

}
≤ P

bNδc⋃
k=k∗

{
k−γWS(m, k) > N−γWS(m,N)

} .

We can rewrite

k−γWS(m, k) > N−γWS(m,N)

as

(k/N)−γ
(
WD(m, k)− min

0≤i≤k
WD(m, i)

)
− σWm(N) + min

0≤i≤N
WD(m, i) > ∆m(N − k∗ + 1),

(4.21)
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where the term on the right can be replaced by ∆mN to get an upper bound for the
probability of (4.21). Because for k ∈ [k∗, Nδ)(

k

N

)−γ
min

0≤i≤k

(
σWm(i) + (i− k∗ + 1)∆mI{i≥k∗}

)
≥ min

0≤i≤k

σWm(i)

(i/N)γ
≥ − max

0≤i≤N

σ(−Wm(i))

(i/N)γ
,

it follows that

P

bNδc⋃
k=k∗

{
k−γWS(m, k) > N−γWS(m,N)

}

≤ P

(
max

k∗≤k<Nδ

(
σWm(k)

(k/N)γ ∆mN

)
+ max

k∗≤k<Nδ

(
k − k∗ + 1

(k/N)γ N

)

+ max
0≤i≤N

(
σ(−Wm(i))

∆mN (i/N)γ

)
− σWm(N)

∆mN
> 1

)
.

Now (4.20) yields

max
k∗≤k<Nδ

σWm(k)

(k/N)γ ∆mN
= oP (1),

max
0≤i≤N

σWm(i)

∆mN (i/N)γ
= oP (1),

σ
Wm(N)

∆mN
= oP (1).

Thus with

max
k∗≤k<Nδ

k − k∗ + 1

(k/N)γ N
≤ Nδ − k∗ + 1

(Nδ/N)γ N
= (1− δ)1−γ − k∗

(1− δ)γN
+

1

(1− δ)γN
< 1,

for large enough m, we have

P

(
max

k∗≤k<Nδ

(
σWm(k)

(k/N)γ ∆mN

)
+ max

k∗≤k<Nδ

(
k − k∗ + 1

(k/N)γ N

)

+ max
0≤i≤N

(
σ(−Wm(i))

∆mN (i/N)γ

)
− σWm(N)

∆mN
> 1

)
−→ 0.

b) Similarly we get

P

(
max

k∗≤j≤N

σWm(j) + ∆mj√
N

> max
Nδ≤j≤N

σWm(j) + ∆mj√
N

)
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≤ P

bNδc⋃
j=k∗

{
σWm(j) + ∆mj > σWm(N) + ∆mN

}
≤ P

(
max

k∗≤j<Nδ

σWm(j)

∆mN
+ max

k∗≤j<Nδ

j

N
− σWm(N)√

N

1

∆m

√
N
> 1

)
.

We first consider the term ∆m

√
N = ∆m

√
N
√

1− (k∗ + 1) /N . Under (I) and (II) it is
obvious that ∆m

√
N −→∞, under (III) with Lemma 4.3 b) and (4.15)

∆m

√
N ≈ ∆m

√
am − k∗ − 1 = ∆m

√
cm1/2−γ

∆m

aγm − 1 =

√
c∆mm1/2

(am
m

)γ
−∆2

m.

Because of Assumption (A3) it is enough to consider

∆mm
1/2 (am/m)γ ≈ ∆mm

1/2−γ+γβ = ∆mm
β(1−γ)−1/2+γm2(γβ+1/2−γ)−β,

but since 2(γβ + 1/2 − γ) − β ≥ 0 under γ < 1/2 is equivalent to β ≤ 1 we have
∆m

√
N −→∞. This together with N−1/2

Wm(N) = OP (1) gives us

Wm(N)√
N

1

∆m

√
N

= oP (1).

The rest of the proof follows analogously to part a) of this proof. �

Lemma 4.8. Let γ ∈ [0, 1/2). If (A1) – (A5) are satisfied, then

P

(
max

k∗≤k≤N

WS(m, k)√
m (k/m)γ

≤ c

)
−→ Ψ(x) for all real x.

Proof: Application of Lemma 4.7 a) and then letting δ ↓ 0 yields

lim
m→∞

P

(
max

k∗≤k≤N

WS(m, k)√
m (k/m)γ

≤ c

)
= lim

m→∞
P

(
max

Nδ≤k≤N

WS(m, k)√
m (k/m)γ

≤ c

)
= lim

m→∞
P

(
1√
N

(
WD(m,N)− min

0≤i≤N
WD(m, i)

)
≤ c

(
N

m

)γ−1/2
)
. (4.22)

But by replacing N − i with j and denoting Ñ = N − k∗ + 1 we get

1√
N

(
WD(m,N)− min

0≤i≤N
WD(m, i)

)
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= max
0≤i≤N

1√
N

(
σ(Wm(N)−Wm(i)) + ∆m

(
Ñ − (i− k∗ + 1)I{i≥k∗}

))
= max

0≤j≤N

1√
N

(
σ(Wm(N)−Wm(N − j)) + ∆m

(
Ñ − (Ñ − j)I{N−k∗≥j}

))
= max

{
max

0≤j≤N−k∗
1√
N

(σ(Wm(N)−Wm(N − j)) + ∆mj) ,

max
N−k∗<j≤N

1√
N

(
σ(Wm(N)−Wm(N − j)) + ∆mÑ

)}
.

Because of the time reversibility of the Wiener process (cf. Borodin and Salminen (2002))
we can find a sequence of Wiener processes {W1,m(t), t ≥ 0}m=1,2,... such that

max

{
max

0≤j≤N−k∗
1√
N

(σ(Wm(N)−Wm(N − j)) + ∆mj) ,

max
N−k∗<j≤N

1√
N

(
σ(Wm(N)−Wm(N − j)) + ∆mÑ

)}
D
= max

{
max

0≤j≤N−k∗
1√
N

(σW1,m(j) + ∆mj) ,

max
N−k∗<j≤N

1√
N

(
σW1,m(j) + ∆mÑ

)}
.

Applying Lemma 4.7 b) and again letting δ ↓ 0 we see that the first term in the outer
maximum is taking its maximum arbitrarily close to N −k∗ and hence can be omitted and
we can proceed with (4.22) to have

lim
m→∞

P

(
1√
N

(
WD(m,N)− min

0≤i≤N
WD(m, i)

)
≤ c

(
N

m

)γ−1/2
)

= lim
m→∞

P

(
max

N−k∗≤j≤N

1√
N

(
σW1,m(j) + ∆mÑ

)
≤ c

(
N

m

)γ−1/2
)

=A8

Due to the scaling property of theWiener process again we can find a sequence {W2,m(t), t ≥
0}m=1,2,... of Wiener processes such that

A8 = lim
m→∞

P

(
max

1− k∗
N
≤ j
N
≤1
W2,m(j/N) ≤ 1

σ

(
N

m

)γ−1/2(
c− ∆m(N − k∗)

m1/2−γNγ

))
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=Ψ(x),

where the last equation follows from Lemma 4.3 a) (iv), c) and Slutsky’s Lemma. �

Proof of Theorem 2.2:

The major part of the proof is just a combination of the preceding lemmas. With uγ from
(4.17) the rest follows along the lines of the proof of Theorem 1.1 of Aue and Horváth
(2004):

Ψ(x) = 1−Ψ(−x)

= 1− lim
m→∞

P
(
τPage
m > N(m,−x)

)
= lim

m→∞
P
(
τPage
m ≤ N(m,−x)

)
= lim

m→∞
P
((
τPage
m

)1−γ ≤ (N(m,−x))1−γ
)

= lim
m→∞

P

((
τPage
m

)1−γ − a1−γ
m ≤ σx

a
1/2−γ
m

∆m

uγ(k
∗, am)

)

= lim
m→∞

P

((
τPage
m

)1−γ − a1−γ
m ≤ σx

a
1/2−γ
m

∆m

uγ(k
∗, am)

)

= lim
m→∞

P

 aγm
1− γ

(
τPage
m

)1−γ − a1−γ
m

bm
≤ σx

√
am

∆m

(
1− γ

(
1− k∗

am

))b−1
m


= lim

m→∞
P

(
τPage
m − am
bm

≤ x

)
,

where the last equation follows because with the same arguments as in Aue and Horváth
(2004) it can be shown that

τPage
m − am
bm

and
aγm

1− γ

(
τPage
m

)1−γ − a1−γ
m

bm

have the same limit distribution. �
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TESTING THE EQUALITY OF COVARIANCE OPERATORS
IN FUNCTIONAL SAMPLES

By Stefan Fremdt ‡, Lajos Horváth †, Piotr Kokoszka § and Josef G. Steinebach ‡

‡University of Cologne, †University of Utah and §Colorado State University

Abstract

We propose a nonparametric test for the equality of the covariance structures in
two functional samples. The test statistic has a chi-square asymptotic distribution
with a known number of degrees of freedom, which depends on the level of dimension
reduction needed to represent the data. Detailed analysis of the asymptotic properties
is developed. Finite sample performance is examined by a simulation study and an
application to egg–laying curves of fruit flies.

Keywords: Asymptotic distribution, Covariance operator, Functional data, Quadratic
forms, Two sample problem.

AMS subject classification: Primary 62G10; secondary 62G20, 62H15

1 Introduction
The last decade has seen increasing interest in methods of functional data analysis which
offer novel and effective tools for dealing with problems where curves can naturally be
viewed as data objects. The books by Ramsay and Silverman (2005) and Ramsay et al.
(2009) offer comprehensive introductions to the subject, the collection Ferraty and Romain
(2011) reviews some recent developments focusing on advances in the relevant theory,
while the monographs of Bosq (2000), Ferraty and Vieu (2006) and Horváth and Kokoszka
(2012) develop the field in several important directions. Despite the emergence of many
alternative ways of looking at functional data, and many dimension reduction approaches,
the functional principal components (FPC’s) still remain the most important starting point
for many functional data analysis procedures, Reiss and Ogden (2007), Gervini (2008), Yao
and Müller (2010), Gabrys et al. (2010) are just a handful of illustrative references. The
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FPC’s are the eigenfunctions of the covariance operator. This paper focuses on testing
if the covariance operators of two functional samples are equal. By the Karhunen-Loève
expansion, this is equivalent to testing if both samples have the same set of FPC’s. Benko
et al. (2009) developed bootstrap procedures for testing the equality of specific FPC’s.
Panaretos et al. (2010) proposed a test of the type we consider, but assuming that the
curves have a Gaussian distribution. The main result of Panaretos et al. (2010) follows as
a corollary of our more general approach (Theorem 3.2). A generalization to non-Gaussian
data was discussed in Panaretos et al. (2010) and Panaretos et al. (2011). For some recent
work confer also Boente et al. (2011) who studied a related approach together with a
corresponding bootstrap procedure.

Despite their importance, two sample problems for functional data received relatively little
attention. In addition to the work of Benko et al. (2009) and Panaretos et al. (2010),
the relevant references are Horváth et al. (2009) and Horváth et al. (2012) who focus,
respectively, on the regression kernels in functional linear models and the mean of functional
data exhibiting temporal dependence. For a recent contribution see also Gaines et al.
(2011), who use a likelihood ratio-type approach for testing the equality of two covariance
operators. Clearly, if some population parameters of two functional samples are different,
estimating them using the pooled sample may lead to spurious conclusions. Due to the
importance of the FPC’s, a relatively simple and nonparametric procedure for testing the
equality of the covariance operators is called for.

The remainder of this paper is organized as follows. Section 2 sets out the notation and
definitions. The construction of the test statistic and its asymptotic properties are devel-
oped in Section 3. Section 4 reports the results of a simulation study and illustrates the
procedure by application to egg-laying curves of Mediterranean fruit flies. The proofs of
the asymptotic results of Section 3 are given in Section 5.

2 Preliminaries

Let X1, X2, . . . , XN be independent, identically distributed random variables with val-
ues in L2[0, 1], the Hilbert space of square-integrable R-valued functions on [0, 1], and
set EXi(t) = µ(t) and cov(Xi(t), Xi(s)) = C(t, s). We assume that another sample
X∗1 , X

∗
2 , . . . X

∗
M is also available and let µ∗(t) = EX∗i (t) and C∗(t, s) = cov(X∗i (t), X∗i (s))
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for t, s ∈ [0, 1]. We wish to test the null hypothesis

H0 : C = C∗

against the alternative HA that H0 does not hold.
A crucial assumption considering the asymptotics of our test procedure will be that

ΘN,M =
N

M +N
→ Θ ∈ (0, 1) as N,M →∞. (1)

For the construction of our test procedure we will use an estimate of the asymptotic pooled
covariance operator R of the two given samples (cf. (4)) which is defined by the kernel

R(t, s) = ΘC(t, s) + (1−Θ)C∗(t, s).

In the case of samples {Xi} and {X∗j } of Gaussian random functions, the latter approach
has successfully been applied by Panaretos et al. (2010) to construct an asymptotic test
for checking the equality of two covariance operators (see also Panaretos et al. (2011)).
Denote by (λ1, ϕ1), (λ2, ϕ2), . . . the eigenvalue/eigenfunction pairs of R, which are defined
by

λkϕk(t) = Rϕk(t) =

∫ 1

0

R(t, s)ϕk(s)ds, t ∈ [0, 1], 1 ≤ k <∞ . (2)

Throughout this paper we assume

λ1 > λ2 > . . . > λp > λp+1, (3)

i.e. there exist at least p distinct (positive) eigenvalues. Under assumption (3), we can
uniquely (up to signs) choose ϕ1, . . . , ϕp satisfying (2), if we require ‖ϕi‖ = 1, where ‖ · ‖
always denotes the L2-norm, e.g., for x ∈ L2 ([0, 1]),

‖x‖ =

(∫ 1

0

x2(t) dt

)1/2

.

Thus, under (3), {ϕi, 1 ≤ i ≤ p} is an orthonormal system that can be extended to an
orthonormal basis {ϕi, 1 ≤ i <∞}.
If H0 holds, then (λi, ϕi), 1 ≤ i < ∞, are also the eigenvalues/eigenfunctions of the
covariance operators C of the first and C∗ of the second sample. To construct a test
statistic which converges under H0, we can therefore pool the two samples, as explained in
Section 3.
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3 The test and the asymptotic results
Along the lines of Panaretos et al. (2010), our procedure is also based on projecting the
observations onto a suitably chosen finite-dimensional space. To define this space, introduce
the empirical pooled covariance operator R̂N,M defined by the kernel

R̂N,M(t, s) =
1

N +M

{
N∑
k=1

(Xk(t)−XN(t))(Xk(s)−XN(s)) (4)

+
M∑
k=1

(X∗k(t)−X∗M(t))(X∗k(s)−X∗M(s))

}
,

where

XN(t) =
1

N

N∑
k=1

Xk(t) and X
∗
M(t) =

1

M

M∑
k=1

X∗k(t)

are the sample mean functions. Let (λ̂i, ϕ̂i) denote the eigenvalues/eigenfunctions of R̂N,M ,
i.e.

λ̂iϕ̂i(t) = R̂N,M ϕ̂i(t) =

1∫
0

R̂N,M(t, s)ϕ̂i(s)ds, t ∈ [0, 1], 1 ≤ i ≤ N +M,

with λ̂1 ≥ λ̂2 ≥ . . . . We can and will assume that the ϕ̂i form an orthonormal system.
We consider the projections

âk(i) = 〈Xk −XN , ϕ̂i〉 =

1∫
0

(Xk(t)−XN(t))ϕ̂i(t)dt (5)

and

â∗k(j) = 〈X∗k −X
∗
M , ϕ̂j〉 =

1∫
0

(
X∗k(t)−X∗M(t)

)
ϕ̂j(t)dt, (6)

where 〈·, ·〉 denotes the inner product of two elements of the Hilbert space L2[0, 1]. To test
H0, we compare the matrices ∆̂N and ∆̂∗M with entries

∆̂N(i, j) =
1

N

N∑
k=1

âk(i)âk(j), 1 ≤ i, j ≤ p,

and

∆̂∗M(i, j) =
1

M

M∑
k=1

â∗k(i)â
∗
k(j), 1 ≤ i, j ≤ p.
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We note that ∆̂N(i, j) − ∆̂∗M(i, j) is the projection of ĈN(t, s) − Ĉ∗M(t, s) in the direction
of ϕ̂i(t)ϕ̂j(s), where

ĈN(t, s) =
1

N

N∑
k=1

(
Xk(t)−XN(t)

) (
Xk(s)−XN(s)

)
and

Ĉ∗M(t, s) =
1

M

M∑
k=1

(
X∗k(t)−X∗M(t)

)(
X∗k(s)−X∗M(s)

)
are the empirical covariances of the two samples.
We create the vector ξ̂N,M from the columns below the diagonal of ∆̂N − ∆̂∗M as follows:

ξ̂N,M = vech
(

∆̂N − ∆̂∗M

)
=


∆̂N(1, 1)− ∆̂∗M(1, 1)

∆̂N(2, 1)− ∆̂∗M(2, 1)
...

∆̂N(p, p)− ∆̂∗M(p, p)

 . (7)

For the properties of the vech operator we refer to Abadir and Magnus (2005).
Next we estimate the asymptotic covariance matrix of (MN/(N +M))1/2ξ̂N,M . Note that,
in general, this estimate differs from the one which was used in the Gaussian case (cf.
Panaretos et al. (2010) and Theorem 3.2 below). Let

L̂N,M(k, k′) = (1−ΘN,M)

{
1

N

N∑
`=1

â`(i)â`(j)â`(i
′)â`(j

′)−
〈
ĈN ϕ̂i, ϕ̂j

〉〈
ĈN ϕ̂i′ , ϕ̂j′

〉}

+ ΘN,M

{
1

M

M∑
`=1

â∗`(i)â
∗
`(j)â

∗
`(i
′)â∗`(j

′)−
〈
Ĉ∗M ϕ̂i, ϕ̂j

〉〈
Ĉ∗M ϕ̂i′ , ϕ̂j′

〉}
,

where i, j, i′, j′ depend on k, k′ (see below), and ĈN (Ĉ∗M) is interpreted as an operator with
ĈN defined as

ĈN ϕ̂i =

∫ 1

0

ĈN(t, s)ϕ̂i(s)ds.

(An analogous definition holds for Ĉ∗M .) From this definition it follows that

〈
ĈN ϕ̂i, ϕ̂j

〉
=

1

N

N∑
l=1

â`(i)â`(j).

There are other ways to estimate the asymptotic covariance matrix. We note that one can
use L̂∗N,M(k, k′) instead of L̂N,M(k, k′), where L̂∗N,M(k, k′) is defined like L̂N,M(k, k′), but
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〈
ĈN ϕ̂i, ϕ̂j

〉
and

〈
Ĉ∗M ϕ̂i, ϕ̂j

〉
are replaced with 0 if i 6= j and λ̂i if i = j. In the same spirit,〈

ĈN ϕ̂i′ , ϕ̂j′
〉
and

〈
Ĉ∗M ϕ̂i′ , ϕ̂j′

〉
are replaced with 0 for i′ 6= j′ and λ̂i′ if i′ = j′.

The index (i, j) is computed from k in the following way: Let

k′ =
p(p+ 1)

2
− k + 1, i′ = p− i+ 1, and j′ = p− j + 1. (8)

We look at an upper triangle matrix (ai′,j′). Then, for column j′, we have that (j′ −
1)j′/2 < k ≤ j′(j′ + 1)/2. Thus j′ =

⌈√
2k′ + 1

4
− 1

2

⌉
and i′ = k′ − (j′ − 1)j′/2, where

dre = min{k ∈ Z : k ≥ r} for r ∈ R. Consequently, the index (i, j) can be computed from
k via

j = p−

⌈√
p(p+ 1)− 2k +

9

4
− 1

2

⌉
+ 1 and i = k + p− p · j +

j(j − 1)

2
. (9)

With the above notation, we can formulate the main result of this paper in the non-
Gaussian case. The latter case has briefly been mentioned (without any mathematical
details) in the concluding remarks of Panaretos et al. (2010) (see also Panaretos et al.
(2011)).

Theorem 3.1. We assume that H0, (1) and (3) hold, and∫ 1

0

E(X1(t))4dt <∞,
∫ 1

0

E(X∗1 (t))4dt <∞. (10)

Then
NM

N +M
ξ̂
T

N,M L̂
−1
N,M ξ̂N,M

D−→ χ2
p(p+1)/2, as N,M →∞,

where χ2
p(p+1)/2 stands for a χ2 random variable with p(p+ 1)/2 degrees of freedom.

Theorem 3.1 implies that the null hypothesis is rejected if the test statistic

T̂1 =
NM

N +M
ξ̂
T

N,M L̂
−1
N,M ξ̂N,M

exceeds a critical quantile of the chi–square distribution with p(p+1)/2 degrees of freedom.
If both samples are Gaussian random processes, the quadratic form ξ̂

T

N,M L̂
−1
N,M ξ̂N,M can be

replaced with the normalized sum of the squares of ∆̂N,M(i, j) − ∆̂∗N,M(i, j), as stated in
the following theorem (cf. Panaretos et al. (2010)).
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Theorem 3.2. If X1, X
∗
1 are Gaussian processes and the conditions of Theorem 3.1 are

satisfied, then, as N,M →∞,

T̂2 =
NM

N +M

∑
1≤i,j≤p

1

2

(
∆̂N,M(i, j)− ∆̂∗N,M(i, j)

)2

λ̂iλ̂j

D−→ χ2
p(p+1)/2.

Observe that the statistic T̂2 can be written as

T̂2 =
NM

N +M


∑

1≤i<j≤p

(
∆̂N,M(i, j)− ∆̂∗N,M(i, j)

)2

λ̂iλ̂j
+

p∑
i=1

(
∆̂N,M(i, i)− ∆̂∗N,M(i, i)

)2

2λ̂2
i

 .

Next we discuss the asymptotic consistency of the testing procedure based on Theorem 3.1.
Analogously to the definition of ξ̂N,M we define the vector ξ = (ξ(1), . . . , ξ(p(p + 1)/2))

using the columns of the matrix

D =

 1∫
0

1∫
0

(C(t, s)− C∗(t, s))ϕi(t)ϕj(s)dt ds


i,j=1,...,p

(11)

instead of ∆̂N − ∆̂∗M , i.e.

ξ = vech(D).

Theorem 3.3. We assume that HA, (1), (3) and (10) hold. Then there exist random
variables ĥ1 = ĥ1(N,M), . . . , ĥp(p+1)/2 = ĥp(p+1)/2(N,M), taking values in {−1, 1} such
that, as N,M →∞,

max
1≤i≤p(p+1)/2

∣∣∣ξ̂N,M(i)− ĥiξ(i)
∣∣∣ = oP (1) (12)

and therefore ∣∣∣ξ̂N,M ∣∣∣ P→|ξ| , (13)

where | · | denotes the Euclidean norm. If ξ 6= 0 and the p largest eigenvalues of C and C∗

are positive, we also have

T̂1
P→∞, as N,M →∞. (14)
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The assumption that the p largest eigenvalues of C and C∗ are positive implies that the
random functions Xi, i = 1, . . . , N , and X∗j , j = 1, . . . ,M , are not included in a (p− 1)-
dimensional subspace.

Remark 3.4. The application of the test requires the selection of the number p of the
empirical FPC’s to be used. A rule of thumb is to choose p so that the first p empirical
FPC’s in each sample (i.e. those calculated as the eigenfunctions of ĈN and Ĉ∗M) explain
about 85–90% of the variance in each sample. Choosing p too large generally negatively
affects the finite sample performance of tests of this type, and for this reason we do not
study asymptotics as p tends to infinity. It is often illustrative to apply the test for a
range of the values of p; each p specifies a level of relevance of differences in the curves
or kernels. A good practical approach is to look at the Karhunen–Loève approximations
of the curves in both samples, and choose p which gives approximation errors that can be
considered unimportant. Cross validation has also been suggested in the literature without
investigating its properties in detail. For a more formal discussion of this selection, confer
also Section 3.3 in Panaretos et al. (2010).

4 A simulation study and an application
We first describe the results of a simulations study designed to evaluate finite sample
properties of the tests based on the statistics T̂1 and T̂2. The emphasis is on verifying
the advantage of a nonparametric procedure, i.e., to see the “robustness” to the violation
of the assumption of normality. We simulated Gaussian curves as Brownian motions and
Brownian bridges, and non-Gaussian curves via

X(t) = A sin(πt) +B sin(2πt) + C sin(4πt), (15)

where A = 5Y1, B = 3Y2, C = Y3, and Y1, Y2, Y3 are independent t5-distributed ran-
dom variables (similarly X∗(t) for the second sample). All curves were simulated at 1000
equidistant points in the interval [0, 1], and transformed into functional data objects using
the Fourier basis with 49 basis functions. For each data generating process we used one
thousand replications.
Table 1 displays the empirical sizes for non-Gaussian data. The test based on T̂2 has
severely inflated size, due to the violation of the assumption of normality. As documented
in Panaretos et al. (2010), and confirmed by our own simulations, this test has very good
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Table 1: Empirical sizes of the tests based on statistics T̂1 and T̂2 for non-Gaussian data.
The curves in each sample were generated according to (15).

p = 2

T̂1 T̂2

Sample Sizes 1% 5% 10% 1% 5% 10%
N = M = 100 0.005 0.028 0.061 0.152 0.275 0.380
N = M = 200 0.003 0.021 0.058 0.163 0.314 0.402
N = M = 1000 0.002 0.021 0.056 0.190 0.313 0.426

p = 3

T̂1 T̂2

Sample Sizes 1% 5% 10% 1% 5% 10%
N = M = 100 0.004 0.028 0.065 0.167 0.332 0.434
N = M = 200 0.004 0.024 0.064 0.194 0.338 0.423
N = M = 1000 0.004 0.028 0.070 0.240 0.384 0.484
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Table 2: Power of the test based on statistic T̂1 for non-Gaussian data. The curves in the
equally sized samples were generated according to (15) in the first sample and as a scaled
version of (15) in the second sample, i.e. X∗(t) = cX(t).

c = 0.8 c = 0.9

p = 2 p = 3 p = 2 p = 3

N,M 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

200 0.061 0.289 0.491 0.033 0.181 0.351 0.007 0.041 0.106 0.006 0.037 0.089
500 0.532 0.811 0.917 0.485 0.804 0.896 0.032 0.159 0.274 0.017 0.116 0.231
1000 0.947 0.986 0.993 0.965 0.997 0.998 0.113 0.360 0.519 0.099 0.327 0.490

c = 1.2 c = 1.1

p = 2 p = 3 p = 2 p = 3

N,M 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

200 0.017 0.160 0.295 0.015 0.124 0.231 0.001 0.041 0.099 0.004 0.034 0.083
500 0.244 0.570 0.718 0.186 0.524 0.689 0.009 0.096 0.222 0.010 0.079 0.165
1000 0.762 0.913 0.952 0.760 0.956 0.980 0.091 0.295 0.461 0.056 0.226 0.396

empirical size when the data are Gaussian. The test based on T̂1 is conservative, especially
for smaller sample sizes. This is true for both Gaussian and non-Gaussian data; there is
not much difference in the empirical size of this test for different data generating processes.

Table 2 gives an example of the empirical power of the test based on statistic T̂1. The test
was carried out for two equally sized samples of 200, 500 and 1000 realizations, respectively,
of (15) for the first sample and scaled versions of (15), i.e. X∗(t) = cX(t), for the second
sample. The results are displayed for a selection of values for the scaling parameter c. It
can be seen that in all cases the power increases with the sample size. As can be expected
the convergence of the power towards 1 improves for larger deviations (c 6= 1) from the
null hypothesis. Since, due to the inflated size of the test based on T̂2 in the non-Gaussian
case (cf. Table 1), its power is (misleadingly) higher than that of the test based on T̂1, and
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Figure 1: Ten randomly selected smoothed egg-laying curves of short-lived medflies (left
panel), and ten such curves for long–lived medflies (right panel).
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thus will not be displayed here. We also studied a Monte Carlo version of the test based
on the statistic T̂3 = NM(N +M)−1ξ̂

T

N,M ξ̂N,M , and found that its finite sample properties
were similar to those of the test based on T̂1.

We now describe the results of the application of both tests to an interesting data set
consisting of egg–laying trajectories of Mediterranean fruit flies (medflies). The data were
kindly made available to us by Hans–Georg Müller. This data set has been extensively
studied in biological and statistical literature, see Müller and Stadtmüller (2005) and ref-
erences therein. We consider 534 egg-laying curves of medflies who lived at least 34 days,
but we only consider the egg–laying activities on the first 30 days. We examined two
versions of these egg-laying curves. The curves are scaled such that the functions in ei-
ther version are defined on the interval [0, 1]. Version 1 curves (denoted Xi(t)) are the
absolute counts of eggs laid by fly i on day b30tc. Version 2 curves (denoted Yi(t)) are
the counts of eggs laid by fly i on day b30tc relative to the total number of eggs laid
in the lifetime of fly i. The 534 flies are classified into long-lived, i.e. those who lived
44 days or longer, and short-lived, i.e. those who died before the end of the 43rd day
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Figure 2: Ten randomly selected smoothed egg-laying curves of short-lived medflies (left
panel), and ten such curves for long–lived medflies (right panel), relative to the number of
eggs laid in the fly’s lifetime.
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Table 3: P–values (in percent) of the test based on statistics T̂1 and T̂2 applied to absolute
medfly data. Here fp denotes the fraction of the sample variance explained by the first p
FPCs, i.e. fp = (

∑p
k=1 λ̂k)/(

∑N+M
k=1 λ̂k).

P-values
p 2 3 4 5 6 7 8 9
T̂1 82.70 36.22 30.59 63.84 37.71 39.03 33.77 34.77
T̂2 0.54 0.13 0.11 0.12 0.02 0.00 0.00 0.00
fp 72.93 78.36 81.87 83.94 85.62 87.08 88.49 89.72

after birth. In the data set, there are 256 short-lived, and 278 long-lived flies. This clas-
sification naturally defines two samples: Sample 1: the egg-laying curves {Xi(t) (resp.
Yi(t)), 0 ≤ t ≤ 1, i = 1, 2, . . . , 256} of the short-lived flies. Sample 2: the egg-laying
curves {X∗j (t) (resp. Y ∗j (t)), 0 < t ≤ 30, j = 1, 2, . . . , 278} of the long-lived flies. The
egg-laying curves are very irregular; Figure 1 shows ten (smoothed) curves of short- and
long-lived flies for version 1, Figure 2 shows ten (smoothed) curves for version 2 (both
using a B-spline basis for the representation).

Table 3 shows the P–values for the absolute egg-laying counts (version 1). For the statistic
T̂1 the null hypothesis cannot be rejected irrespective of the choice of p. For the statistic
T̂2, the result of the test varies depending on the choice of p. As explained in Section 3,
the usual recommendation is to use the values of p which explain 85 to 90 percent of the
variance For such values of p, T̂2 leads to a clear rejection. Since this test has however
overinflated size, we conclude that there is little evidence that the covariance structures of
version 1 curves for long– and short–lived flies are different. For the version 2 curves, the
statistic T̂2 yields P–values equal to zero (in machine precision), potentially indicating that
the covariance structures for the short– and long–lived flies are different. The assumption
of a normal distribution is however questionable, as the QQ-plots in Figure 3 show. These
QQ-plots are constructed for the inner products 〈Yi, ek〉 and 〈Y ∗i , ek〉, where the Yi are the
curves from one of the samples (we cannot pool the data to construct QQ-plots because
we test if the stochastic structures are different), and ek is the kth element of the Fourier
basis. The normality of a functional sample implies the normality of all projections onto a
complete orthonormal system. For 〈Xi, ek〉, the QQ-plots show a strong deviation from a
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Figure 3: Normal QQ–plots for the scores of the version 2 medfly data with respect to the
first two Fourier basis functions. Left – sample 1, Right – sample 2.
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Table 4: P–values (in percent) of the test based on statistics T̂1 applied to relative medfly
data; fp denotes the fraction of the sample variance explained by the first p FPCs, i.e.
fp = (

∑p
k=1 λ̂k)/(

∑N+M
k=1 λ̂k).

P-values

p 2 3 4 5 6 7 8
T̂1 0.14 0.06 0.33 1.50 3.79 4.53 10.28
fp 33.99 44.08 52.72 59.04 65.08 70.40 75.29

p 9 10 11 12 13 14 15
T̂1 5.51 2.78 5.32 3.21 1.78 6.28 3.80
fp 79.91 83.72 86.58 89.02 91.34 93.30 95.03

straight line for some projections. Almost all projections 〈Yi, ek〉 have QQ-plots indicating
a strong deviation from normality. It is therefore important to apply the nonparametric
test based on the statistic T̂1. The corresponding P–values for version 2 are displayed in
Table 4. For most values of p, these P–values indicate the rejection of H0. Many of them
hover around the 5 percent level, but since the test is conservative, we can with confidence
view them as favoring HA.

The above application confirms the properties of the statistics established through the
simulation study. It shows that while there is little evidence that the covariance structures
for the absolute counts are different, there is strong evidence that they are different for
relative counts.

5 Proofs of the results of Section 3

The proof of Theorem 3.1 follows from several lemmas, which we establish first. We can
and will assume without loss of generality that µ(t) = µ∗(t) = 0 for all t ∈ [0, 1].

We will use the identity

1

N1/2

N∑
k=1

(
Xk(t)−XN(t)

) (
Xk(s)−XN(s)

)
(16)
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=
1

N1/2

N∑
k=1

Xk(t)Xk(s)−N1/2XN(t)XN(s),

and an analogous identity for the second sample.
Our first lemma establishes bounds in probability which will often be used in the proofs.

Lemma 5.1. Under the assumptions of Theorem 3.1, as N,M →∞,∥∥∥∥∥N−1/2

N∑
k=1

{Xk(t)Xk(s)− C(t, s)}

∥∥∥∥∥ = OP (1), (17)∥∥N1/2XN(t)
∥∥ = OP (1), (18)

and ∥∥∥∥∥M−1/2

M∑
k=1

{X∗k(t)X∗k(s)− C∗(t, s)}

∥∥∥∥∥ = OP (1), (19)∥∥∥M1/2X
∗
M(t)

∥∥∥ = OP (1), (20)

where here and in the sequel the notation ‖ · ‖ is also used for the corresponding norm in
L2([0, 1]2).

Proof: These are classical estimates and can easily be obtained by a straightforward cal-
culation of the second moments. Note, for example, that

E

∫ 1

0

∫ 1

0

[ 1

N1/2

N∑
k=1

{Xk(t)Xk(s)− C(t, s)}
]2

dt ds =

∫ 1

0

∫ 1

0

E {X1(t)X1(s)− C(t, s)}2 dt ds,

so, by Markov’s inequality, we have∥∥∥∥∥ 1

N1/2

N∑
k=1

{Xk(t)Xk(s)− C(t, s)}

∥∥∥∥∥
2

= OP (1).

Similar arguments yield (18) – (20). Confer also Dauxois et al. (1982) for an early reference.

The next lemma shows that the estimation of the mean functions, cf. the definition of the
projections âk(i) and â∗k(j) in (5) and (6), has an asymptotically negligible effect.
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Lemma 5.2. Under the assumptions of Theorem 3.1, for all 1 ≤ i, j ≤ p, as N,M →∞,

N1/2∆̂N(i, j) =
1

N1/2

N∑
k=1

〈Xk, ϕ̂i〉〈Xk, ϕ̂j〉+OP

(
N−1/2

)
and

M1/2∆̂∗M(i, j) =
1

M1/2

M∑
k=1

〈X∗k , ϕ̂i〉〈X∗k , ϕ̂j〉+OP

(
M−1/2

)
.

Proof: Using (16) and (18) we have by the Cauchy-Schwarz inequality,∣∣∣∣∫ 1

0

∫ 1

0

N1/2XN(t)XN(s)ϕ̂i(t)ϕ̂j(s)dt ds

∣∣∣∣
= N−1/2

∣∣∣∣∫ 1

0

N1/2XN(t)ϕ̂i(t)dt

∣∣∣∣ ∣∣∣∣∫ 1

0

N1/2XN(s)ϕ̂j(s)ds

∣∣∣∣
≤ N−1/2

(∫ 1

0

(
N1/2XN(t)

)2
dt

∫ 1

0

ϕ̂2
i (t)dt

)1/2(∫ 1

0

(
N1/2XN(s)

)2
ds

∫ 1

0

ϕ̂2
j(s)ds

)1/2

= N−1/2

∫ 1

0

(
N1/2XN(t)

)2
dt

= OP

(
N−1/2

)
.

The second part can be proven in the same way.

We now state bounds on the distances between the estimated and the population eigen-
values and eigenfunctions. These bounds are true under the null hypothesis, and extend
the corresponding one sample bounds.

Lemma 5.3. If the conditions of Theorem 3.1 are satisfied, then, as N,M →∞,

max
1≤i≤p

|λ̂i − λi| = OP

(
(N +M)−1/2

)
and

max
1≤i≤p

‖ϕ̂i − ĉiϕi‖ = OP

(
(N +M)−1/2

)
,

where
ĉi = ĉi(N,M) = sign(〈ϕ̂i, ϕi〉).

Proof: These estimates are also well-known (cf., e.g., Bosq (2000), Lemma 4.3 and
assertion (4.43), or Horváth and Kokoszka (2012), Lemmas 2.2 – 2.3). Note that the
first rate above is independent of p, whereas the second one may actually depend on the
projection dimension p.
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Lemma 5.3 now allows us to replace the estimated eigenfunctions by their population
counterparts. The random signs ĉi must appear in the formulation of Lemma 5.4, but they
cancel in the subsequent results.

Lemma 5.4. If the conditions of Theorem 3.1 are satisfied, then, for all 1 ≤ i, j ≤ p, as
N,M →∞,(

NM

N +M

)1/2 (
∆̂N(i, j)− ∆̂∗M(i, j)

)
=

(
NM

N +M

)1/2
{

1

N

N∑
k=1

〈Xk, ĉiϕi〉〈Xk, ĉjϕj〉 −
1

M

M∑
k=1

〈X∗k , ĉiϕi〉〈X∗k , ĉjϕj〉

}
+ oP (1).

Proof: We write

1

N

N∑
k=1

〈Xk, ϕ̂i〉〈Xk, ϕ̂j〉 −
∫ 1

0

∫ 1

0

C(t, s)ϕ̂i(t)ϕ̂j(s)dt ds

= N1/2

∫ 1

0

∫ 1

0

{
1

N1/2

N∑
k=1

(
Xk(t)Xk(s)− C(t, s)

)}
ϕ̂i(t)ϕ̂j(s)dt ds.

Using Lemmas 5.1 – 5.3 we get∣∣∣∣∣
∫ 1

0

∫ 1

0

{
1

N1/2

N∑
k=1

(
Xk(t)Xk(s)− C(t, s)

)} (
ϕ̂i(t)ϕ̂j(s)− ĉiϕi(t)ĉjϕj(s)

)
dt ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

∫ 1

0

{
1

N1/2

N∑
k=1

(
Xk(t)Xk(s)− C(t, s)

)}

×
{(
ϕ̂i(t)− ĉiϕi(t)

)
ϕ̂j(s) + ĉiϕi(t)

(
ϕ̂j(s)− ĉjϕj(s)

)}
dt ds

∣∣∣∣∣
≤

(∫ 1

0

∫ 1

0

{
1

N1/2

N∑
k=1

(
Xk(t)Xk(s)− C(t, s)

)}2

dt ds

×
∫ 1

0

∫ 1

0

(
ϕ̂i(t)− ĉiϕi(t)

)2
ϕ̂2
j(s)dt ds

)1/2

+

(∫ 1

0

∫ 1

0

{
1

N1/2

N∑
k=1

(
Xk(t)Xk(s)− C(t, s)

)}2

dt ds

×
∫ 1

0

∫ 1

0

ϕ2
i (t)
(
ϕ̂j(s)− ĉjϕj(s)

)2
dt ds

)1/2
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=

∥∥∥∥∥ 1

N1/2

N∑
k=1

(
Xk(t)Xk(s)− C(t, s)

)∥∥∥∥∥{∥∥ϕ̂i − ĉiϕi∥∥+
∥∥ϕ̂j − ĉjϕj∥∥}

= oP (1).

Similar arguments give that∣∣∣∣∣
∫ 1

0

∫ 1

0

{
1

M1/2

M∑
k=1

(
X∗k(t)X∗k(s)− C∗(t, s)

)}{
ϕ̂i(t)ϕ̂j(s)− ĉiϕi(t)ĉjϕj(s)

}
dt ds

∣∣∣∣∣ = oP (1).

Since C = C∗, the lemma is proven.

The previous lemmas isolated the main terms in the differences ∆̂N(i, j)− ∆̂∗M(i, j). The
following lemma describes the limits of these main terms (without the random signs).

Lemma 5.5. If the conditions of Theorem 3.1 are satisfied, then, as N,M →∞,

{∆N,M(i, j), 1 ≤ i, j ≤ p} D−→ {∆(i, j), 1 ≤ i, j ≤ p} ,

where

∆N,M(i, j) =

(
NM

N +M

)1/2
{

1

N

N∑
k=1

〈Xk, ϕi〉〈Xk, ϕj〉 −
1

M

M∑
k=1

〈X∗k , ϕi〉〈X∗k , ϕj〉

}
,

and {∆(i, j), 1 ≤ i, j ≤ p} is a Gaussian matrix with E∆(i, j) = 0 and

E∆(i, j)∆(i′, j′) = (1−Θ)
{
E
(
〈X1, ϕi〉〈X1, ϕj〉〈X1, ϕi′〉〈X1, ϕj′〉

)
− E

(
〈X1, ϕi〉〈X1, ϕj〉

)
E
(
〈X1, ϕi′〉〈X1, ϕj′〉

)}
+ Θ

{
E
(
〈X∗1 , ϕi〉〈X∗1 , ϕj〉〈X∗1 , ϕi′〉〈X∗1 , ϕj′〉

)
− E

(
〈X∗1 , ϕi〉〈X∗1 , ϕj〉

)
E
(
〈X∗1 , ϕi′〉〈X∗1 , ϕj′〉

)}
.

Proof: First we note that

E〈X1, ϕi〉〈X1, ϕj〉 = E〈X∗1 , ϕi′〉〈X∗1 , ϕj′〉 =

{
0 if i 6= j,

λi if i = j.

Since E
(
〈X1, ϕi〉〈X1, ϕj〉

)2
< ∞ and E

(
〈X∗1 , ϕi〉〉X∗1 , ϕj〉

)2
< ∞, the multivariate central

limit theorem implies the result.
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Finally, we need an asymptotic approximation to the covariances L̂N,M(k, k′). Let

LN,M(k, k′) = (1−ΘN,M)

{
1

N

N∑
`=1

a`(i)a`(j)a`(i
′)a`(j

′)−
〈
ĈN ϕ̂i, ϕ̂j

〉〈
ĈN ϕ̂i′ , ϕ̂j′

〉}

+ ΘN,M

{
1

M

M∑
`=1

a∗`(i)a
∗
`(j)a

∗
`(i
′)a∗`(j

′)−
〈
Ĉ∗M ϕ̂i, ϕ̂j

〉〈
Ĉ∗M ϕ̂i′ , ϕ̂j′

〉}
,

where
a`(i) = 〈X`, ϕi〉 and a∗`(i) = 〈X∗` , ϕi〉,

and i, j, i′, j′ are determined from k and k′ as in (8) and (9).

Lemma 5.6. If the conditions of Theorem 3.1 are satisfied, then for all 1 ≤ k, k′ ≤ p(p +

1)/2,

L̂N,M(k, k′)− ĉiĉj ĉi′ ĉj′LN,M(k, k′) = oP (1) as N,M →∞,

where (i, j) and (i′, j′) are determined from k and k′ as in (8) and (9).

Proof: The result follows from Lemma 5.3 along the lines of the proof of Lemma 5.4

Proof of Theorem 3.1. According to Lemmas 5.2 and Lemmas 5.4 – 5.6, the asymptotic
distribution of ξ̂

T

N.M L̂
−1
N,M ξ̂N,M does not depend on the signs ĉ1, . . . , ĉp, so it is sufficient to

prove the result for ĉ1 = . . . = ĉp = 1. The law of large numbers yields that

LN,M(k, k′)
P−→L(k, k′), (21)

where

L(k, k′) = (1−Θ)
{
E
(
a1(i)a1(j)a1(i′)a1(j′)

)
− E

(
a1(i)a1(j)a1(i′)a1(j′)

)}
(22)

+ Θ
{
E
(
a∗1(i)a∗1(j)a∗1(i′)a∗1(j′)

)
− E

(
a∗1(i)a∗1(j)a∗1(i′)a∗1(j′)

)}
.

The result then follows from Lemmas 5.2, 5.4 and 5.5

Proof of Theorem 3.2. In the case of Gaussian observations, ∆(i, j), 1 ≤ i ≤ j ≤ p, are
independent normal random variables with mean 0 and

E∆2(i, j) =

{
λiλj if i 6= j,

2λ2
i if i = j.

Now the result follows from Lemmas 5.1 – 5.5. For more details we refer to Panaretos et al.
(2010).
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Proof of Theorem 3.3. First we observe that by the law of large numbers we have

1∫
0

1∫
0

(R̂N,M(t, s)−R(t, s))2dt ds = oP (1).

Hence using the result in section VI.1. of Gohberg et al. (1990) we get that

max
1≤i≤p

∣∣∣λ̂i − λi∣∣∣ = oP (1) (23)

and

max
1≤i≤p

‖ϕ̂i − ĉiϕi‖ = oP (1), (24)

where ĉi = ĉi(N,M) = sign(〈ϕ̂i, ϕi〉). Relations (23) and (24) show that Lemma 5.3 remains
true. It follows from the law of large numbers and (24) that for all 1 ≤ i, j ≤ p∣∣∣∣∣∣∆̂N(i, j)− ∆̂∗M(i, j)− ĉiĉj

1∫
0

1∫
0

(C(t, s)− C∗(t, s))ϕi(t)ϕj(s)dt ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1∫
0

1∫
0

(
ĈN(t, s)− Ĉ∗M(t, s)

)
ϕ̂i(t)ϕ̂j(s)dt ds− ĉiĉj

1∫
0

1∫
0

(C(t, s)− C∗(t, s))ϕi(t)ϕj(s)dt ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
1∫
0

1∫
0

(
ĈN(t, s)− C(t, s)−

(
Ĉ∗M(t, s)− C∗(t, s)

))
ϕ̂i(t)ϕ̂j(s)dt ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1∫
0

1∫
0

(C(t, s)− C∗(t, s)) (ϕ̂i(t)ϕ̂j(s)− ĉiϕi(t)ĉiϕj(s)) dt ds

∣∣∣∣∣∣
≤
∥∥∥ĈN − C∥∥∥+

∥∥∥Ĉ∗M − C∗∥∥∥+ ‖C − C∗‖ ‖ϕ̂iϕ̂j − ĉiϕiĉiϕj‖

= oP (1),

where the fact that ‖ϕi‖ = 1 = ‖ϕ̂i‖ was used. Hence the proof of (12) is complete. It is
also clear that (12) implies (13).
Next we observe that Lemma 5.6 and (21) remain true under the alternative. Now by some
lengthy calculations it can be verified that L given in (22) is positive definite so that (14)
follows from (13).
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FUNCTIONAL DATA ANALYSIS WITH INCREASING
NUMBER OF PROJECTIONS
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Abstract

Functional principal components (FPC’s) provide the most important and most
extensively used tool for dimension reduction and inference for functional data. The
selection of the number, d, of the FPC’s to be used in a specific procedure has at-
tracted a fair amount of attention, and a number of reasonably effective approaches
exist. Intuitively, they assume that the functional data can be sufficiently well ap-
proximated by a projection onto a finite dimensional subspace, and the error resulting
from such an approximation does not impact the conclusions. This has been shown
to be a very effective approach, but it is desirable to understand the behavior of
many inferential procedures by considering the projections on subspaces spanned by
an increasing number of the FPC’s. Such an approach reflects more fully the infi-
nite dimensional nature of functional data, and allows to derive procedures which are
fairly insensitive to the selection of d. This is accomplished by considering limits as
d→∞ with the sample size.

We propose a specific framework in which we let d → ∞ by deriving a normal
approximation for the partial sum process

bduc∑
j=1

bNxc∑
i=1

ξi,j , 0 ≤ u ≤ 1, 0 ≤ x ≤ 1,

where N is the sample size and ξi,j is the score of the ith function with respect to the
jth FPC. Our approximation can be used to derive statistics that use segments of
observations and segments of the FPC’s. We apply our general results to derive two
inferential procedures for the mean function: a change point test and a two sample
test. In addition to the asymptotic theory, the tests are assessed through a small
simulation study and a data example.

Keywords: Functional data, change in mean, increasing dimension, normal approxi-
mation, principal components.
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1 Introduction
Functional data analysis has grown into a comprehensive and useful field of statistics which
provides a convenient framework to handle some high–dimensional data structures, includ-
ing curves and images. The monograph of Ramsay and Silverman (2005) has done a lot to
introduce its ideas to the statistics community and beyond. Several other monographs and
thousands of papers followed. This paper focuses on a specific aspect of the mathematical
foundations of functional data analysis, which is however of fairly central importance. We
first describe the contribution of this paper in broad terms, and provide some more detailed
background and discussion in the latter part of this section.
Perhaps the most important, and definitely the most commonly used, tool for dimension
reduction of functional data is the principal component analysis. Suppose we observe a
sample of functions, X1, X2, . . . , XN , and denote by

η̂i,j =

∫ (
Xi(t)− X̄N(t)

)
v̂j(t)dt, i = 1, 2, . . . , N, j = 1, 2, . . . , d,

the scores of the Xi with respect to the estimated functional principal components v̂j. The
scores η̂i,j depend on two variables i and j, and to reflect the infinite–dimensional nature of
the data, it may be desirable to consider asymptotics in which both N and d increase. This
paper establishes results that allow us to study the two–dimensional partial sum process

bduc∑
j=1

bNxc∑
i=1

∫
(Xi(t)− µX(t)) vj(t)dt, 0 ≤ u ≤ 1, 0 ≤ x ≤ 1.

More specifically, we derive a uniform normal approximation and apply it to two problems
related to testing the null hypothesis that all observed curves have the same mean function.
We obtain new test statistics in which the number of the functional principal components,
d, increases slowly with the sample size N . We hope that our general approach will be
used to derive similar results in other settings.
Statistical procedures for functional data which use functional principal components (FPC’s)
often depend on the number d of the components used to compute various statistics. The se-
lection of an optimal d has received a fair deal of attention. Commonly used approaches in-
clude the cumulative variance method, the scree plot, and several forms of cross–validation
and pseudo information criteria. By now, most of these approaches are implemented in
several R packages and in the Matlab package PACE. A related direction of research has
focused on the identification of the dimension d assuming that the functional data actually
live in a finite–dimensional space of this dimension, see Hall and Vial (2006) and Bathia
et al. (2010). The research presented in this paper is concerned with functional data which
cannot be reduced to finite–dimensional data in an obvious and easy way. Such data are
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Figure 1: Melbourne temperature data: eigenvalues λ̂2, . . . , λ̂49.
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Figure 2: Melbourne temperature data: percentage of variance explained by the first k
eigenvalues, i.e. fk =

∑k
i=1 λ̂i/

∑N
j=1 λ̂j, k = 1, 2, . . . , 49.
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typically characterized by a slow decay of the eigenvalues of the empirical covariance op-
erator. Figure 1 shows the eigenvalues of the empirical covariance operator of the annual
temperature curves obtained over the period 1856–2011 in Melbourne, Australia, while
Figure 2 shows the cumulative variance plot for the same data set. It is seen that the
eigenfunctions decay at a slow rate, and neither their visual inspection nor the analysis of
cumulative variance provide a clear guidance on how to select d. This data set is analyzed
in greater detail in Section 5.

In situations when the choice of d is difficult, two approaches seem reasonable. In the
first approach, one can apply a test using several values of d in a reasonable range. If the
conclusion does not depend on d, we can be confident that it is correct. This approach
has been used in applied research, see Gromenko et al. (2012) for a recent analysis of this
type. The second approach, would be to let d increase with the sample size N , and derive
a test statistic based on the limit. In a sense, the second approach is a formalization of the
first one because if a limit as d → ∞ exists, then the conclusions should not depend on
the choice of d, if it is reasonably large. In the FDA community there is a well grounded
intuition that d should increase much slower than N , so asymptotically large d need not be
very large in practice. It is also known that the rate at which d increases should depend on
the manner in which the eigenvalues decay. We obtain specific conditions that formalize
this intuition in the framework we consider. In more specific settings, contributions in this
directions were made by Cardot et al. (2003) and Panaretos et al. (2010). The work of
Cardot et al. (2003) is more closely related to our research: as part of the justification
of their testing procedure, they establish conditions under which a limiting chi–square
distribution with d degrees of freedom can be approximated by a normal distribution as
d = d(N) → ∞. Panaretos et al. (2010) are concerned with a test of the equality of the
covariance operators in two samples of Gaussian curves. In the supplemental material, they
derive asymptotics in which d is allowed to increase with the sample size. Our theory is
geared toward testing the equality of mean functions, but we do not assume the normality
of the functional observations, so we cannot use arguments that use the equivalence of
independence and zero covariances. We develop a new technique based on the estimation
of the Prokhorov–Lévy distance between the underlying processes and the corresponding
normal partial sums.

The paper is organized as follows. In Section 2, we set the framework and state a general
normal approximation result in Theorem 2.1. This result is then used in Sections 3 and 4
to derive, respectively, change–point and two–sample tests based on an increasing number
of FPC’s. Section 5 contains a small simulation study and an application to the annual
Melbourne temperature curves. All proofs are collected in the appendices.
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2 Uniform normal approximation
We consider functional observations Xi(t), t ∈ I, i = 1, 2, . . . , N, defined over a compact
interval I. We can and shall assume without loss of generality that I = [0, 1]. Throughout
the paper, we use the notation

∫
=
∫ 1

0
and

〈f, g〉 =

∫
f(t)g(t)dt, ||f ||2 = 〈f, f〉.

All functions we consider will be elements of the Hilbert space L2 of square integrable
functions on [0, 1].
In the testing problems that motivate this research, under the null hypothesis, the obser-
vations follow the model

Xi(t) = µ(t) + Zi(t), 1 ≤ i ≤ N, (2.1)

where EZi(t) = 0 and µ(t) is the common mean. We impose the following standard
assumptions.

Assumption 2.1. Z1, Z2, . . . , ZN are independent and identically distributed.

Assumption 2.2.
∫
µ2(t)dt <∞ and E||Z1||2 <∞.

Under these assumptions, the covariance function

c(t, s) = EZ1(t)Z1(s),

is square integrable on the unit square and therefore it has the representation

c(t, s) =
∞∑
k=1

λkvk(t)vk(s),

where λ1 ≥ λ2 ≥ . . . are the eigenvalues and v1, v2, . . . are the orthonormal eigenfunctions
of the covariance operator, i.e. they satisfy the integral equation

λjvj(t) =

∫
c(t, s)vj(s)ds. (2.2)

One of the most important dimension reduction techniques of functional data analysis
is to project the observations X1(t), . . . , XN(t) onto the space spanned by v1, . . . , vd, the
eigenfunctions associated with the d largest eigenvalues. Since the covariance function c,
and therefore v1, . . . , vd, are unknown, we use the empirical eigenfunctions v̂1, . . . , v̂d and
eigenvalues λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂d defined by

λ̂j v̂j(t) =

∫
ĉN(t, s)v̂j(s)ds, (2.3)
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where

ĉN(t, s) =
1

N

N∑
i=1

(
Xi(t)− X̄N(t)

) (
Xi(s)− X̄N(s)

)
with X̄N(t) = N−1

∑N
i=1Xi(t).

In this section, we require only two more assumptions, namely

Assumption 2.3. λ1 > λ2 > . . .

Assumption 2.4. E||Z1||3 <∞.

Assumption 2.3 is needed to ensure that the FPC’s vj are uniquely defined. In Theorem 2.1
it could, of course, be replaced by requiring only that the first d eigenvalues are positive and
different, but since in the applications we let d→∞, we just assume that all eigenvalues are
positive and distinct. If λd∗+1 = 0 for some d∗, then the observations are in the linear span
of v1, . . . , vd∗ , i.e. they are elements of a d∗–dimensional space, so in this case we cannot
consider d = d(N) → ∞. Assumption 2.3 means that the observations are in an infinite–
dimensional space. Assumption 2.4 is weaker than the usual assumption E||Z1||4 <∞. As
will be seen in the proofs, subtle arguments of the probability theory in Banach spaces are
needed to dispense with the fourth moment.
To state the main result of this section, define

ξi = (ξi,1, . . . , ξi,d)
T and ξi,j = λ

−1/2
j 〈Zi, vj〉, 1 ≤ i ≤ N, 1 ≤ j ≤ d,

where ·T denotes the transpose of vectors and matrices. Set

Sj,N(x) =
1

N1/2

bNxc∑
i=1

ξi,j, 0 ≤ x ≤ 1, 1 ≤ j ≤ d. (2.4)

We now provide an approximation for the partial sum processes Sj,N(x) defined in (2.4)
with suitably constructed Wiener processes (standard Brownian motions).

Theorem 2.1. If Assumptions 2.1, 2.3 and 2.4 hold, then for every N we can define
independent Wiener processes W1,N , . . . ,Wd,N such that

P

{
max
1≤j≤d

sup
0≤x≤1

|Sj,N(x)−Wj,N(x)| ≥ N1/2−1/80

}
(2.5)

≤ c∗N
−1/80

{
d1/12

( d∑
`=1

1/λ`

)1/8

+
d∑
j=1

1/λ
3/2
j

}
,

where c∗ only depends on λ1 and E||Z1||3.
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The constant 1/80 in (2.5) is not crucial, it is a result of our calculations. Theorem 2.1
is related to the results of Einmahl (1987, 1989) who obtained strong approximations for
partial sums of independent and identically distributed random vectors with zero mean
and with identity covariance matrix. In our setting, for any fixed d, the covariance matrix
is not the identity, but this is not the central difficulty. The main value of Theorem 2.1
stems from the fact that it shows how the rate of the approximation depends on d; no
such information is contained in the work of Einmahl (1987, 1989), who did not need to
consider the dependence on d. The explicit dependence of the right hand side of (2.5) on
d is crucial in the applications presented in the following sections in which the dimension
of the projection space depends on the sample size N .
Very broadly speaking, Theorem 2.1 implies that in all reasonable statistics based on
averaging the scores, even in those based on an increasing number of FPC’s, the partial
sums of scores can be replaced by Wiener processes to obtain a limit distribution. The
right hand side of (2.5) allows us to derive assumptions on the eigenvalues required to
obtain a specific result. Replacing the unobservable scores ξi,j by the sample scores η̂i,j is
relatively easy. We will illustrate these ideas in Sections 3 and 4.

3 Change–point detection
Over the past four decades, the investigation of the asymptotic properties of partial sum
processes has to a large extent been motivated by change–point detection procedures, and
this is the most natural application of Theorem 2.1. The research on the change–point
problem in various contexts is very extensive, some aspects of the asymptotic theory are
presented in Csörgő and Horváth (1997). Detection of a change in the mean function was
studied by Berkes et al. (2009) who considered a procedure in which the number of the
FPC’s, d, was fixed, and the asymptotic distribution of the test statistic depended on d.
We show in this section that it is possible to derive tests with a standard normal limiting
distribution by allowing the d to depend on the sample size N .
We want to test whether the mean of the observations remained the same during the
observation period, i.e. we test the null hypothesis

H0 : EX1(·) = EX2(·) = · · · = EXN(·)

(“=” means equality in L2). Under the null hypothesis, the Xi follow model (2.1) in which
µ(·) is an unknown common mean function under H0. The alternative hypothesis is

HA : there is k∗ ∈ [1, 2, . . . , N) such that

EX1(·) = · · · = EXk∗(·) 6= EXk∗+1(·) = · · · = EXN(·).
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Under HA the mean changes at an unknown time k∗.
To derive a new class of tests, we introduce the process

ẐN(u, x) =
1

d1/2

bduc∑
j=1

{
1

N

[
Ŝj(bNxc)− xŜj(N)

]2

− x(1− x)

}
, 0 ≤ u, x ≤ 1,

where

Ŝj(k) =
1

λ̂
1/2
j

k∑
i=1

η̂i,j.

The process ẐN(u, x) contains the cumulative sums Ŝj(bNxc)−xŜj(N) which measure the
deviation of the partial sums from their “trend” under H0, and a correction term x(1− x)

needed to ensure convergence as d→∞.
To obtain a limit which does not depend on any unknown quantities, we need to impose
assumptions on the rate at which d = d(N) increases with N . Intuitively, the assumptions
below state that d is much smaller than the sample size N , the d largest eigenvalues are not
too small, and that the difference between the consecutive eigenvalues tends to zero slowly.
Very broadly speaking, these assumptions mean that the distribution of the observations
must sufficiently fill the whole infinite–dimensional space L2.

Assumption 3.1. d = d(N)→∞

Assumption 3.2. (d logN)1/2N−1/80 → 0,

Assumption 3.3. d1/12N−1/80

( d∑
j=1

1/λj

)1/8

→ 0.

Assumption 3.4. N−1/80

d∑
j=1

1/λ
3/2
j → 0.

Assumption 3.5.
1

d1/2N1/3

d∑
j=1

1

λjζj
→ 0,

where ζ1 = λ2 − λ1, ζj = min(λj−1 − λj, λj − λj+1), j ≥ 2.

With these preparations, we can state the main result of this section.

Theorem 3.1. If Assumptions 2.1–2.3 and 3.1–3.5 are satisfied, then

ẐN(u, x) → Γ(u, x) in D[0, 1]2,

where Γ(u, x) is a mean zero Gaussian process with

E[Γ(u, x)Γ(v, y)] = 2ux2(1− y)2, 0 ≤ u ≤ v ≤ 1, 0 ≤ x ≤ y ≤ 1.
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One can verify by computing the covariance functions that

{Γ(u, x), 0 ≤ u, x ≤ 1} D= {
√

2(1− x)2W (u, x2/(1− x)2), 0 ≤ u, x ≤ 1}, (3.1)

where {W (v, y), v, y ≥ 0} is a bivariate Wiener process, i.e. W (v, y) is a Gaussian process
with EW (v, y) = 0 and E[W (v, y)W (v′, y′)] = min(v, v′) min(y, y′). Representation (3.1)
means that continuous functionals of the process Γ(·, ·) can be simulated with arbitrary
precision, so Monte Carlo tests can be used. It is however possible to obtain a number of
simple asymptotic tests by examining closer the structure of the process Γ(·, ·). We list
some of them in Corollary 3.1, and we will see in Section 5 that the Cramér-von-Mises type
tests have very good finite sample properties. Let B denote a Brownian bridge and define

µ0 = E

(
sup

0≤x≤1
B2(x)

)
and σ2

0 = var
(

sup
0≤x≤1

B2(x)

)
.

Corollary 3.1. If the assumptions of Theorem 3.1 are satisfied, then

1

d1/2σ0

{
d∑
j=1

sup
0≤x≤1

1

N

(
Ŝj(bNxc)− xŜj(N)

)2

− dµ0

}
D→ N(0, 1), (3.2)

1

(d/45)1/2

{
d∑
j=1

1

N

∫
(Ŝj(bNxc)− xŜj(N))2dx− d

6

}
D→ N(0, 1), (3.3)

1

(d/8)1/2

{
sup

0≤x≤1

d∑
j=1

1

N
(Ŝj(bNxc)− xŜj(N))2 − d

4

}
D→ N(0, 1), (3.4)

where N(0, 1) stands for a standard normal random variable.

We conclude this section with two examples which show that Assumptions 3.2–3.5 hold
under both power law and exponential decay of the eigenvalues.

Example 3.1. If the eigenvalues satisfy

λj =
c1

(j − c2)α
+ o

(
1

jα+1

)
, as j →∞,

with some c1 > 0, 0 ≤ c2 < 1 and α > 0, then Assumptions 3.2–3.5 hold if d/(logN)β → 0

with some β > 0.

Example 3.2. If the eigenvalues satisfy

λj = c0e
−αj + o(e−αj), as j →∞,

with some c0 > 0 and α > 0, then Assumptions 3.2–3.5 hold if d/(log logN)β → 0 with
some β > 0.
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4 Two–sample problem
The two–sample problem for functional data was perhaps first discussed in depth by Benko
et al. (2009) who were motivated by a problem related to implied volatility curves. It
has recently attracted a fair amount of attention motivated by problems arising in space
physics, see Horváth et al. (2009), genetics, see Panaretos et al. (2010), and finance, see
Horváth et al. (2012). The above list does not include many other important contributions.
In its simplest, but most important form, it is about testing if curves obtained from two
populations have the same mean functions. The most direct approach, developed into a
bootstrap procedure by Benko et al. (2009), is to look at the norm of the difference of
the estimated mean functions. In this section, we show that the normal approximation of
Section 2 leads to an asymptotic test whose limit distribution is standard normal.
Suppose we have two random samples of functions: X1, . . . , XN and Y1, . . . , YM . We assume
the X sample satisfies (2.1) and Assumptions 2.1, 2.2 and 2.4. Similarly, the Y sample is
a location model given by

Yi(t) = µ∗(t) +Qi(t), 1 ≤ i ≤M, (4.1)

where µ∗(t) is the common mean of the Y sample and EQi(t) = 0. As in the case of the
X sample, the Y sample satisfies the following conditions:

Assumption 4.1. Q1, Q2, . . . , QM are independent and identically distributed.

Assumption 4.2.
∫
µ2
∗(t)dt <∞ and E||Q1||3 <∞.

Assumption 4.2 yields that
c∗(t, s) = EQ1(t)Q1(s)

is a square integrable function on the unit square.
In this section we are interested in testing the null hypothesis

H∗0 : µ(·) = µ∗(·).

The statistical inference to test H0 is based on the difference X̄N − ȲM , where X̄N and ȲM
denote the sample means. We assume

Assumption 4.3.
N

M
= λ+O(N−1/4) as min(M,N)→∞

with some 0 < λ <∞.
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Now we define the pooled covariance function

cP (t, s) = c(t, s) + λc∗(t, s).

Since cP (t, s) is a positive–definite, symmetric, square integrable function, there are real
numbers κ1 ≥ κ2 ≥ . . . and orthonormal functions u1, u2, . . . satisfying

κiui(t) =

∫
cP (t, s)ui(s)ds, i = 1, 2, . . . .

We wish to project X̄N − ȲM into the space spanned by u1, . . . , ud, where d = d(N)→∞,
so similarly to Assumption 2.3 we require

Assumption 4.4. κ1 > κ2 > κ3 > . . .

Assumption 4.5.

N−3/32d1/4

(
d∑
`=1

1/κ`

)3/8

→ 0.

Our test statistic is

DN,M =
d∑
i=1

N〈X̄N − ȲM , ui〉2/κi.

As in Section 3, we need additional assumptions balancing the rate of growth of d = d(N)

and the rate of decay of the κ` and the differences between them.

Assumption 4.6.

1

d1/2N1/4

d∑
`=1

1

κ2
`

→ 0 and
1

d1/2N1/4

d∑
`=1

1

κ`ι`
→ 0,

where ι1 = κ2 − κ1, ι` = min(ι`−1 − ι`, ι` − ι`+1), ` ≥ 2.

Since u1, u2, . . . are unknown, we replace them with the corresponding empirical eigenfunc-
tions û1, û2, . . . defined by the integral operator

κ̂iûi(t) =

∫
ĉP (t, s)ûi(s)ds, i = 1, 2, . . . ,

where κ̂1 ≥ κ̂2 ≥ . . . and

ĉP (t, s) = ĉN(t, s) +
N

M
ĉ∗M(t, s),



108 Functional data analysis with increasing number of projections

α 0.01 0.05 0.10

0.109256 0.0726292 0.0578267

Table 5.1: Critical values for the distribution of (5.3).

with

ĉ∗M(t, s) =
1

M

M∑
`=1

(Y`(t)− ȲM(t))(Y`(s)− ȲM(s)).

The empirical version of DN,M is

D̂N,M =
d∑
i=1

N〈X̄N − ȲM , ûi〉2/κ̂i.

Theorem 4.1. If H∗0 , Assumptions 2.1, 2.2 and 4.1–4.6 hold, then

(2d)−1/2(D̂N,M − d)
D→ N(0, 1),

where N(0, 1) stands for a standard normal random variable.

5 A small simulation study and a data example
The main contribution of this paper lies in the statistical theory, but it is of interest to
check if the new tests derived in Sections 3 and 4 perform well in finite samples. We report
the results for the test based on Theorem 3.1 in some detail, as it utilizes the convergence
of the two–parameter process in full force, and such an approach has not been used before.
We also comment on the tests based on Corollary 3.1 and Theorem 4.1. We conclude this
section with an illustrative data example.
The simulated data which satisfy the null hypotheses of Sections 3 and 4 are generated as
independent Brownian motions on the interval [0, 1]. We generate them by using iid normal
increments on 1,000 equispaced points in [0, 1] (random walk approximation). (Example
3.1 shows that for the Brownian motion the assumptions of Theorem 3.1 are satisfied.)
Alternatives are obtained by adding the curve at(1 − t) after a change–point or to the
observations in the second sample. The parameter a regulates the size of the change or the
difference in the means in two samples.
Many tests can be obtained from Theorem 3.1 by applying functionals continuous on
D[0, 1]2. It is not our objective to provide a systematic comparison, we consider only the
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N = 100

α = 0.05 α = 0.1

d p̂ [a, b] p̂ [a, b]

2 0.047 [0.0360,0.0580] 0.058 [0.0458,0.0702]
3 0.056 [0.0440,0.0680] 0.074 [0.0604,0.0876]
4 0.060 [0.0476,0.0724] 0.081 [0.0668,0.0952]
5 0.059 [0.0467,0.0713] 0.089 [0.0742,0.1038]
6 0.057 [0.0449,0.0691] 0.089 [0.0742,0.1038]
7 0.056 [0.0440,0.0680] 0.089 [0.0742,0.1038]
8 0.059 [0.0467,0.0713] 0.091 [0.0760,0.1060]
9 0.051 [0.0396,0.0624] 0.090 [0.0751,0.1049]
10 0.050 [0.0387,0.0613] 0.082 [0.0677,0.0963]
11 0.054 [0.0422,0.0658] 0.083 [0.0687,0.0973]
12 0.057 [0.0449,0.0691] 0.079 [0.0650,0.0930]
13 0.059 [0.0467,0.0713] 0.075 [0.0613,0.0887]
14 0.057 [0.0449,0.0691] 0.076 [0.0622,0.0898]
15 0.056 [0.0440,0.0680] 0.075 [0.0613,0.0887]

N = 200

α = 0.05 α = 0.1

d p̂ [a, b] p̂ [a, b]

2 0.039 [0.0289,0.0491] 0.055 [0.0431,0.0669]
3 0.048 [0.0369,0.0591] 0.070 [0.0567,0.0833]
4 0.049 [0.0378,0.0602] 0.075 [0.0613,0.0887]
5 0.053 [0.0413,0.0647] 0.076 [0.0622,0.0898]
6 0.057 [0.0449,0.0691] 0.085 [0.0705,0.0995
7 0.057 [0.0449,0.0691] 0.085 [0.0705,0.0995]
8 0.053 [0.0413,0.0647] 0.085 [0.0705,0.0995]
9 0.051 [0.0396,0.0624] 0.083 [0.0687,0.0973]
10 0.051 [0.0378,0.0602] 0.081 [0.0668,0.0952]
11 0.054 [0.0496,0.0624] 0.083 [0.0687,0.0973]
12 0.052 [0.0405,0.0635] 0.086 [0.0714,0.1006]
13 0.050 [0.0387,0.0613] 0.087 [0.0723,0.1017]
14 0.054 [0.0422,0.0658] 0.086 [0.0714,0.1006]
15 0.052 [0.0405,0.0635] 0.079 [0.0650,0.0930]

Table 5.2: Empirical sizes and 90% confidence intervals for the probability of rejection for
the change–point test based on convergence (5.1).
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Figure 3: Left panel: 20 realizations of the Brownian motion; Right panel: independent
20 realizations of the Brownian motion with the curve at(1− t), a = 1.5 added.

test based on the weak convergence∫ 1

0

∫ 1

0

Ẑ2
N(u, x)dudx →

∫ 1

0

∫ 1

0

Γ2(u, x)dudx. (5.1)

To compute the critical values, we use the following representation of the limit∫ 1

0

∫ 1

0

Γ2(u, x)dudx
D
=

∑
1≤k,`<∞

λkν`N
2
k,`. (5.2)

In (5.2), the λk = (π(k − 1/2))−2 are the eigenvalues of the Wiener process, the ν` are the
eigenvalues of the covariance operator with kernel 2(min(s, t)−st)2, and {Nk,`} is an array
of independent standard normal random variables. The critical values were determined for
a truncated version of the right–hand side of (5.2) with truncation level 49, i.e. for∑

1≤k,`≤49

λkν`N
2
k,`. (5.3)

Since the eigenvalues ν` are difficult to determine explicitly, they were calculated numeri-
cally using the R package fda, cf.Ramsay et al. (2009). The simulated critical values based
on 100,000 replications of (5.3) are provided in Table 5.1.
Table 5.2 shows the empirical sizes p̂, i.e. the fraction of rejections, as well as asymptotic
90% confidence intervals[

p̂− 1.654

√
p̂(1− p̂)

R
, p̂+ 1.654

√
p̂(1− p̂)

R

]
. (5.4)



5 A small simulation study and a data example 111

N = 100

a = 1 a = 1.5

d α = 0.05 α = 0.10 α = 0.05 α = 0.10

2 0.168 0.192 0.356 0.398
3 0.456 0.517 0.819 0.851
4 0.501 0.564 0.843 0.875
5 0.496 0.564 0.855 0.887
6 0.481 0.552 0.847 0.883
7 0.473 0.543 0.843 0.881
8 0.465 0.530 0.834 0.874
9 0.461 0.519 0.823 0.870
10 0.453 0.504 0.812 0.859
11 0.441 0.501 0.802 0.853
12 0.431 0.496 0.793 0.844
13 0.420 0.484 0.791 0.834
14 0.400 0.472 0.782 0.822
15 0.388 0.467 0.767 0.817

N = 200

a = 1 a = 1.5

d α = 0.05 α = 0.10 α = 0.05 α = 0.10

2 0.327 0.370 0.620 0.660
3 0.784 0.814 0.984 0.991
4 0.808 0.849 0.988 0.994
5 0.823 0.860 0.992 0.994
6 0.825 0.863 0.991 0.996
7 0.819 0.864 0.992 0.994
8 0.814 0.859 0.990 0.994
9 0.802 0.846 0.990 0.993
10 0.791 0.837 0.990 0.993
11 0.766 0.830 0.988 0.992
12 0.754 0.821 0.987 0.992
13 0.740 0.800 0.987 0.991
14 0.734 0.794 0.987 0.991
15 0.726 0.787 0.986 0.990

Table 5.3: Power of the test based on convergence (5.1). The change–point is at k∗ =

bN/2c.
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for the probability p of rejection. The entries are based on R = 1, 000 replications. The
table shows that the test based on convergence (5.1) has correct empirical size at the 5%
level and is a bit too conservative at the 10% level. However even at the 10% level the
empirical sizes for d ≥ 3 are not significantly different; they all fall into each others 90%
confidence intervals. This illustrates the main point that for the tests that use the asymp-
totics with d → ∞ developed in the paper, selecting d is not essential; every sufficiently
large d gives the same conclusion on the significance.
The empirical power of the test is reported in Table 5.3. Again, for d ≥ 3, the power
remains statistically the same. We note that the change in mean equal to the function
at(1 − t) with a = 1.5 is fairly small if the “noise curves” are Brownian motions. This
is illustrated in Figure 3 which shows 20 Brownian motions in the left panel and another
independent sample of 20 Brownian motions with the curve at(1 − t), a = 1.5 added. If
one knows that this curve was added, one can discern it in the plot in the right panel, but
the difference would have been much less obvious if individual curves were observed, as in
the change–point setting relevant to Table 5.3.
Regarding Corollary 3.1, we found out that the test based on convergence (3.3) has empiri-
cal size only slightly higher than nominal (about 1% at 5% level). For d ≥ 3, the empirical
size does not depend on d. The test based on (3.4) severely overrejects for N = 100,
and we do not recommend it. The test based on Theorem 4.1 overrejects by about 2%
at the 5% level, and by about 1% at the 10% level. The power of the test is above 95%
for N,M = 100 and a = 1.0, and practically 100% for larger a or N,M . For d ≥ 2, the
rejection probabilities do not depend on d.

Change–point analysis of annual temperature profiles. The goal of this section is
to illustrate the application of the change–point test based on convergence (5.1). Change–
point analysis is an important field of statistics with a large number of applications, the
recent monographs of Chen and Gupta (2011) and Basseville et al. (2012) provide numerous
references. The change–point problem in the context of functional data has also received
some attention, we refer to Horváth and Kokoszka (2012) for the references, Aston and
Kirch (2012) report some most recent research.
The data set we study consists of 156 years (1856-2011) of minimum daily temperatures
in Melbourne. These data are available at www.bom.gov.au (the Australian Bureau of
Meteorology website). The original data can be viewed as 156 curves with 365 measure-
ments on each curve. We converted them to functional objects in R using 49 Fourier basis
functions. Five consecutive functions are shown in Figure 4. It is important to emphasize
the difference between the data we use and the Canadian temperature data made popular
by the books of Ramsay and Silverman (2005) and Ramsay et al. (2009). The Canadian
temperature curves are the curves at 35 locations in Canada obtained by averaging an-
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Figure 4: Five annual temperature curves represented as functional objects.

nual temperature over forty years. Since each such curve is an average of forty curves like
those shown in Figure 4, those curves are much smoother, and the first two FPC’s are
sufficient to describe their variability. Even after smoothing with 49 Fourier functions, the
annual temperature curves exhibit noticeable year to year variability, and a larger number
of FPC’s is needed to capture it, see Table 5.4. The goals of our analysis are also different
from those of Ramsay and Silverman (2005). We are interested in detecting a change in the
mean function using a sequence of noisy curves; the examples in Ramsay and Silverman
(2005) used the averaged curves to describe static regression type dependencies between
climatic variables.
The analysis proceeds through the usual binary segmentation procedure. The test is first
applied to the whole data set. If the P–value is small, the change–point is estimated as

θ̂N = inf{k : IN(k) = sup
1≤j≤N

IN(j)},

where

IN(`) =
1

d2

d−1∑
i=1

(
i∑

j=1

{
1

N

[
Ŝj(`)−

`

N
Ŝj(N)

]2

− `

N

(
N − `
N

)})2

.

(IN is a discretization of ẐN .) The test is then applied to the two segments, and the
procedure continues until no change–points are detected. In practice, a procedure of this
type detects only a few change–points (four in our case), so the problems of multiple testing
are not an issue. We applied the test using many values of d, and we were pleased to see
that the final segmentation does not depend on d. Table 5.5 shows the outcome. The
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k 1 2 3 4 5 6 7 8

λ̂k 0.7151 0.1469 0.1295 0.1154 0.1046 0.1021 0.0944 0.0868
fp 0.2248 0.2711 0.3118 0.3480 0.3809 0.4130 0.4427 0.4700

k 9 10 11 12 13 14 15 16

λ̂k 0.0845 0.0833 0.0758 0.0732 0.0726 0.0687 0.0661 0.0641
fp 0.4966 0.5228 0.5466 0.5696 0.5925 0.6141 0.6349 0.6550

k 17 18 19 20 21 22 23 24

λ̂k 0.0620 0.0586 0.0559 0.0559 0.0534 0.0508 0.0472 0.0463
fp 0.6745 0.6930 0.7105 0.7281 0.7449 0.7609 0.7757 0.7903

k 25 26 27 28 29 30 31 32

λ̂k 0.0440 0.0427 0.0426 0.0400 0.0377 0.0367 0.0359 0.0325
fp 0.8041 0.8175 0.8309 0.8435 0.8553 0.8669 0.8782 0.8884

k 33 34 35 36 37 38 39 40

λ̂k 0.0320 0.0299 0.0281 0.0274 0.0252 0.0248 0.0228 0.0211
fp 0.8985 0.9079 0.9167 0.9253 0.9332 0.9410 0.9482 0.9548

k 41 42 43 44 45 46 47 48

λ̂k 0.0207 0.0201 0.0188 0.0171 0.0166 0.0163 0.0129 0.0114
fp 0.9614 0.9677 0.9736 0.9790 0.9842 0.9893 0.9934 0.9969

Table 5.4: Eigenvalues and percentage of variance explained by the first k eigenvalues, i.e.
fk =

∑k
i=1 λ̂i/

∑N
j=1 λ̂j, for k = 1, 2, . . . , 49.
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Figure 5: Average temperature functions in the estimated partition segments.

estimated change–points are the years 1892, 1960, 1967, 1996. It is clear that the change–
point model is not an exact climatological model for the evolution of annual temperature
curves, but it is popular in climate studies, see e.g. Gallagher et al. (2012), as it allows
us to attach statistical significance to conclusions and provides periods of approximately
constant mean temperature profiles. In this light, the weak evidence for a change–point in
1967 could be viewed as indicating an accelerated change in the period 1960–1995. The
estimated mean temperature curves over the segments of approximately constant mean are
shown in Figure 5. An increasing pattern of the mean temperature is seen; the mean curve
shifted upwards by about two degrees Celsius over the last 150 years. This could be due to
the conjectured global temperature increase or the urbanization of the Melbourne area, or
a combination of both. A discussion of such issues is however beyond the intended scope
of this paper.

A Proof of Theorem 2.1.
We start with some elementary properties of the projections ξi,j. Let | · | denote the
Euclidean norm of vectors.

Lemma A.1. If Assumptions 2.1, 2.3 and 2.4 hold, then

Eξ1 = 0, (A.1)

Eξ1ξ
T
1 = Id, (A.2)



116 Functional data analysis with increasing number of projections

It. Segment Estimated P-value

change–point d = 3 d = 4 d = 5 d = 6

1 1856-2011 1960 0.0000 0.0000 0.0000 0.0000
2 1856-1959 1892 0.0000 0.0000 0.0000 0.0000
3 1856-1891 — 0.1865 0.2323 0.3524 0.4822
4 1892-1959 — 0.9522 0.9690 0.9256 0.6561
5 1960-2011 1996 0.0000 0.0000 0.0000 0.0000
6 1960-1995 1967 0.0013 0.0011 0.0025 0.0017
7 1960-1966 — 0.9568 0.9549 0.9818 0.9935
8 1967-1995 — 0.2927 0.4305 0.1786 0.1348
9 1996-2011 — 0.4285 0.5345 0.6413 0.7365

It. Segment Estimated P-value

change–point d = 7 d = 8 d = 9 d = 10

1 1856-2011 1960 0.0000 0.0000 0.0000 0.0000
2 1856-1959 1892 0.0000 0.0000 0.0000 0.0000
3 1856-1891 — 0.4235 0.4325 0.4901 0.5667
4 1892-1959 — 0.4646 0.4348 0.4696 0.5068
5 1960-2011 1996 0.0000 0.0000 0.0000 0.0000
6 1960-1995 1967 0.0026 0.0038 0.0058 0.0067
7 1960-1966 — 0.9992 — — —
8 1967-1995 — 0.1245 0.0690 0.0571 0.0586
9 1996-2011 — 0.8243 0.9118 0.9618 0.9779

Table 5.5: Segmentation procedure of the data into periods with constant mean function
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where Id is the d× d identity matrix. Moreover,

E|ξ1|3 ≤ E||Z1||3
(

d∑
j=1

1/λj

)3/2

(A.3)

and for all 1 ≤ j ≤ d

E|ξ1,j|3 ≤ E||Z1||3/λ3/2
j . (A.4)

Proof: Since EZ1(t) = 0, the relation in (A.1) is obvious. The orthonormal functions
vk and v` satisfy (2.2), so we get

Eξi,kξi,` =
1

(λkλ`)1/2

∫∫
c(t, s)vk(s)v`(s)dtds =

 0, if k 6= `

1, if k = `,

proving (A.2). Using the definition of the Euclidean norm and the Cauchy–Schwarz in-
equality we conclude

|ξ1|3 =

(
d∑
j=1

〈Z1, vj〉2/λj

)3/2

≤

(
d∑
j=1

||Z1||2||vj||2/λj

)3/2

= ||Z1||3
(

d∑
j=1

1/λj

)3/2

,

since ||vj|| = 1. Taking the expected value of the equation above we obtain (A.3). Clearly,

E|ξ1,j|3 = λ
−3/2
j E|〈Z1, vj〉|3 ≤ λ

−3/2
j E||Z1||3.

The next lemma plays a central role in the proof of Theorem 2.1.

Lemma A.2. If Assumptions 2.1, 2.3 and 2.4 hold, then for all n we can define independent
identically distributed standard normal vectors γ1, . . . ,γn in Rd such that

P

{∣∣∣∣∣
n∑
i=1

ξi −
n∑
i=1

γi

∣∣∣∣∣ ≥ cn3/8d1/4(E|ξ1|3 + E|γ1|3)1/4

}
≤ cn−1/8d1/4(E|ξ1|3 + E|γ1|3)1/4,

where c is an absolute constant.

Proof: The result is a consequence of Theorem 6.4.1 on p. 207 of Senatov (1998) and
the corollary to Theorem 11 in Strassen (1965).
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We note that
(E|ξ1|3 + E|γ1|3)1/4 ≤ (E|ξ1|3)1/4 + (E|γ1|3)1/4. (A.5)

Also, since |γ1|2 is the sum of the squares of d independent standard normal random
variables, Minkowski’s inequality implies

E|γ1|3 ≤ c1d
3/2, (A.6)

with some constant c1, and clearly

d3/2 ≤ λ
3/2
1

(
d∑
`=1

1/λ`

)3/2

. (A.7)

Combining Lemma A.2 with (A.5)–(A.7), we conclude that

P

{∣∣∣∣∣
n∑
i=1

ξi −
n∑
i=1

γi

∣∣∣∣∣ ≥ c2n
3/8d1/4

(
d∑
j=1

1/λj

)3/8}
≤ c2n

−1/8d1/4

(
d∑
j=1

1/λj

)3/8

, (A.8)

where c2 does not depend on d.
In the next lemma we provide an upper bound for the variance of

∑n
i (ξi,j − γi,j), where

γi = (γi,1, . . . , γi,d)
T is defined in Lemma A.2.

Lemma A.3. If Assumptions 2.1, 2.3 and 2.4 hold, then for any 1 ≤ j ≤ d we get

E

(
n∑
i=1

ξi,j −
n∑
i=1

γi,j

)2

≤ c3n
23/24 1

λj

d1/4

(
d∑
`=1

1/λ`

)3/8
1/3

,

where c3 does not depend on d.

Proof: Let

Un(j) = n−1/2

n∑
i=1

(ξi,j − γi,j) and rn = c2n
−1/8d1/4

(
d∑
`=1

1/λ`

)3/8

.

First we write

EU2
n(j) = E[U2

n(j)I{|Un(j)| ≤ rn}] + E[U2
n(j)I{|Un(j)| > rn}]

≤ r2
n +

2

n
E

[( n∑
i=1

ξi,j

)2

I{|Un(j)| > rn}
]
+

2

n
E

[( n∑
i=1

γi,j

)2

I{|Un(j)| > rn}
]
.
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Using Hölder’s inequality we get that

E

[( n∑
i=1

ξi,j

)2

I{|Un(j)| > rn}
]
≤ E

[∣∣∣∣ n∑
i=1

ξi,j

∣∣∣∣3]2/3[
P{|Un(j)| > rn}

]1/3

≤ E

[∣∣∣∣ n∑
i=1

ξi,j

∣∣∣∣3]2/3

r1/3
n

by (A.8). Applying now Rosenthal’s inequality (cf. Petrov (1995), p. 59) we obtain

E

∣∣∣∣ n∑
i=1

ξi,j

∣∣∣∣3≤ c4

{ n∑
i=1

E|ξi,j|3 +

( n∑
i=1

Eξ2
i,j

)3/2}
,

where c4 is an absolute constant. Hence

E

∣∣∣∣ n∑
i=1

ξi,j

∣∣∣∣3≤ c5{nλ−3/2
j + n3/2} ≤ c6(n/λj)

3/2

and therefore

E

[( n∑
i=1

ξi,j

)2

I{|Un(j)| > rn}
]
≤ c7(n/λj)r

1/3
n

≤ c8n
23/24 1

λj

(
d1/4

( d∑
`=1

1/λ`

)3/8)1/3

.

Following the previous arguments one can show that

E

[( n∑
i=1

γi,j

)2

I{|Un(j)| > rn}
]
≤ c9n

23/24 1

λj

(
d1/4

( d∑
`=1

1/λ`

)3/8)1/3

.

The constants c8 and c9 do not depend on d. Since in view of Assumption 3.3, nr2
n is

smaller than the latter rates, this completes the proof of Lemma A.3.

Proof of Theorem 2.1. We use a blocking argument to construct a Wiener process which
is close to the partial sums

∑
1≤i≤k ξi,j, 1 ≤ k ≤ N, 1 ≤ j ≤ d. Let K be the length of the

blocks to be chosen later. Let M = bN/Kc. For k = `M, 1 ≤ ` ≤ K we write

k∑
i=1

ξi,j =
∑̀
v=1

( vM∑
i=(v−1)M+1

ξi,j

)
.
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Using the γi,j’s, the independent standard normal random variables constructed in Lemma
A.2, we define

Wj(k) =
k∑
i=1

γi,j, 1 ≤ j ≤ d, 1 ≤ k ≤ N. (A.9)

By Lemma A.3 we get for any 0 < δ < 1/2 and 1 ≤ j ≤ d via Kolmogorov’s inequality (cf.
Petrov (1995)), p. 54)

P

{
max

1≤`≤K

∣∣∣∣ `M∑
i=1

ξi,j −Wj(`M)

∣∣∣∣≥ N1/2−δ
}

(A.10)

= P

{
max

1≤`≤K

∣∣∣∣∑̀
v=1

( vM∑
i=(v−1)M+1

(ξi,j − γi,j)
)∣∣∣∣≥ N1/2−δ

}

≤ 1

N1−2δ

K∑
v=1

E

( vM∑
i=(v−1)M+1

(ξi,j − γi,j)
)2

≤ c3

N1−2δ
KM23/24 1

λj

(
d1/4

( d∑
`=1

1/λ`

)3/8)1/3

≤ c3N
2δ−1/24K1/24 1

λj

(
d1/4

( d∑
`=1

1/λ`

)3/8)1/3

.

One can define independent Wiener processes (standard Brownian motions) Wj(x), x ≥
0, 1 ≤ j ≤ d such that (A.9) holds. We obtained approximations for the partial sums of
the ξi,j’s at the points k = `M, 1 ≤ ` ≤ K. Next we show that neither the partial sums of
the ξi,j’s nor the Wiener processesWj(x) can oscillate too much between `M and (`+1)M .
Using again Rosenthal’s inequality (cf. Petrov (1995), p. 59) we obtain for all 1 ≤ j ≤ d

that

E

∣∣∣∣ M∑
i=1

ξi,j

∣∣∣∣3 ≤ c10

{ M∑
i=1

E|ξi,j|3 +

( M∑
i=1

Eξ2
i,j

)3/2}
(A.11)

≤ c11{M/λ
3/2
j +M3/2}

≤ c11(1 + λ
3/2
1 )(M/λj)

3/2

on account of Lemma A.1. Combining the Marcinkiewicz–Zygmund inequality (cf. Petrov
(1995), p. 82) with (A.11) we conclude

E

(
max

1≤h≤M

∣∣∣∣ h∑
i=1

ξi,j

∣∣∣∣)3

≤ c12(M/λj)
3/2. (A.12)
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Applying (A.12) we get

P

{
max

0≤`≤K+1
max

1≤h≤M

∣∣∣∣ `M∑
i=1

ξi,j −
`M+h∑
i=1

ξi,j

∣∣∣∣≥ N1/2−δ
}

(A.13)

≤ (K + 2)P

{
max

1≤h≤M

∣∣∣∣ h∑
i=1

ξi,j

∣∣∣∣> N1/2−δ
}

≤ c13

N3/2−3δ
K(M/λj)

3/2

≤ c13N
3δK−1/2λ

−3/2
j .

Lemma 1.2.1 of Csörgő and Révész (1981) yields

P

{
max

0≤`≤K
sup
|h|≤M

|Wj(`M)−Wj(`M + h)| ≥ c14M
1/2(logN)1/2

}
≤ c15

N2
. (A.14)

Now choosing δ = 1/80 and K = bNβc with β = 1/10, it follows from (A.10), (A.13) and
(A.14) for all 1 ≤ j ≤ d that

P

{
sup

0≤y≤N

∣∣∣∣ ∑
1≤i≤y

ξi,j −Wj(y)

∣∣∣∣> N1/2−δ
}

(A.15)

≤ c15N
−δ
{

1

λj

(
d1/4

( d∑
`=1

1/λ`

)3/8)1/3

+
1

λ
3/2
j

}
.

The result now follows from (A.15) with Wj,N(x) = N−1/2Wj(Nx), 0 ≤ x ≤ 1.

B Proofs of the results of Section 3.
We first investigate the weak convergence of the process

ZN(u, x) =
1

d1/2

bduc∑
j=1

{
(Sj,N(x)− xSj,N(1))2 − x(1− x)

}
, 0 ≤ u, x ≤ 1,

with Sj,N(x) given by (2.4). The difference between ẐN(u, x) and ZN(u, x) is that ẐN is
computed from the empirical projections v̂1, . . . , v̂d, while ZN is based on the unknown
population eigenfunctions v1, . . . , vd.

Theorem B.1. If Assumptions 2.1, 2.3, 2.4 and 3.1–3.4 hold, then

ZN(u, x) → Γ(u, x) in D[0, 1]2,

where the Gaussian process Γ(u, x) is defined in Theorem 3.1.
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To prove Theorem B.1, we need several lemmas and some additional notation.
Let

Vj,N(x) = Sj,N(x)− xSj,N(1) and Bj,N(x) = Wj,N(x)− xWj,N(1),

where Sj,N is defined in (2.4) and the Wj,N ’s are the Wiener processes of Theorem 2.1. It
follows from the definition that for each N the processes Bj,N , 1 ≤ j ≤ d, are independent
Brownian bridges.

Lemma B.2. If Assumptions 2.1, 2.3 and 2.4 hold, then

P

{
sup

0≤x≤1

d∑
j=1

∣∣V 2
j,N(x)−B2

j,N(x)
∣∣≥ 20dN−1/80(logN)1/2

}

≤ c∗N
−1/80

{
d1/12

( d∑
`=1

1/λ`

)1/8

+
d∑
j=1

1/λ
3/2
j

}
+c∗∗dN

−2,

where c∗ and c∗∗ only depend on λ1 and E||Z1||3.

Proof: First we write

V 2
j,N(x)−B2

j,N(x) = (Vj,N(x)−Bj,N(x))2 + 2Bj,N(x)(Vj,N(x)−Bj,N(x)).

Since the Bj,N ’s are Brownian bridges, the distribution of the supremum functional of the
Brownian bridge (cf. Csörgő and Révész (1981)) gives

P

{
max
1≤j≤d

sup
0≤x≤1

|Bj,N(x)| ≥ 4(logN)1/2

}
≤ c∗∗

d

N2
,

where c∗∗ is an absolute constant. Now the result follows immediately from Theorem
2.1.

Now we prove the weak convergence of the partial sums of the squares of independent
Brownian bridges. Let B1, B2, . . . , Bd be independent Brownian bridges.

Lemma B.3. As d→∞, we have that

1

d1/2

bduc∑
j=1

(
B2
j (x)− x(1− x)

)
→ Γ(u, x) in D[0, 1]2,

where the Gaussian process Γ(u, x) is defined in Theorem 3.1.
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Proof: The proof is based on Theorem 2 of Hahn (1978). Let B denote a Brownian
bridge and θ1 = sup0≤t≤1 |B(t)|. It is clear that Eθm1 < ∞ for all m ≥ 1. According to
Garsia (1970), there is a random variable θ2 such that Eθm2 <∞ for all m ≥ 1 and

|B(t)−B(s)| ≤ θ2(|t− s| log(1/|t− s|))1/2, 0 ≤ t, s ≤ 1.

Let V (t) = B2(t)− t(1− t). We note

|V (t)− V (s)| ≤ 2θ1θ2(|t− s| log(1/|t− s|))1/2 + |t− s|.

Thus we get

E(V (t)− V (s))2 ≤ c16|t− s| log(1/|t− s|) for all 0 ≤ t, s ≤ 1 (B.1)

and

E[(V (t)− V (z))2(V (z)− V (s))2] ≤ c17(|t− s| log(1/|t− s|))2 (B.2)

for all 0 ≤ s ≤ z ≤ t ≤ 1. The estimates in (B.1) and (B.2) yield that the conditions of
Theorem 2 of Hahn (1978) are satisfied, completing the proof Lemma B.3.

Proof of Theorem B.1. It follows immediately from Lemmas B.2 and B.3.

The transition from Theorem B.1 to Theorem 3.1 is based on the following lemma, in which
the norm is the Hilbert–Schmidt norm.

Lemma B.4. If Assumptions 2.1, 2.2 and 2.3 hold, then

|λj − λ̂j| ≤ ||c− ĉ|| (B.3)

and

||vj − ĉj v̂j|| ≤
2
√

2

ζj
||c− ĉ||, (B.4)

where ĉj = sign(〈v̂j, vj〉) are random signs, and ζ1, ζ2, . . . are defined in Assumption 3.5.

Proof: Inequality (B.3) can be deduced from the general results presented in Section
VI.1 of Gohberg et al. (1990) or in Dunford and Schwartz (1988). These results are pre-
sented in a convenient form in Lemma 2.2 in Horváth and Kokoszka (2012). Finally Lemma
2.3 in Horváth and Kokoszka (2012) gives (B.4).
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Proof of Theorem 3.1. Introducing

UN(x) = UN(x, t) =
1

N1/2

{bNxc∑
i=1

Zi(t)− x
N∑
i=1

Zi(t)

}
we can write

ẐN(u, x) =
1

d1/2

bduc∑
j=1

{
1

λ̂j
〈UN(x), v̂j〉2 − x(1− x)

}
.

Elementary arguments give

bduc∑
j=1

1

λ̂j
〈UN(x), v̂j〉2 =

bduc∑
j=1

1

λj
〈UN(x), ĉjvj〉2 +

bduc∑
j=1

{
1

λ̂j
− 1

λj

}
〈UN(x), v̂j〉2

+

bduc∑
j=1

1

λj
(〈UN(x), v̂j〉2 − 〈UN(x), ĉjvj〉2).

By the Cauchy–Schwarz inequality we have

1

d1/2

d∑
j=1

∣∣∣∣ 1

λ̂j
− 1

λj

∣∣∣∣〈UN(x), v̂j〉2 ≤ ||UN(x)||2 1

d1/2

d∑
j=1

|λj − λ̂j|
λ̂jλj

(B.5)

and since |a2 − b2| = |a+ b||a− b|,

1

d1/2

d∑
j=1

1

λj
(〈UN(x), v̂j〉2 − 〈UN(x)− ĉjvj〉2) ≤ ||UN(x)||2 2

d1/2

d∑
j=1

1

λj
||v̂j − ĉjvj||2. (B.6)

It follows from the results of Kuelbs (1973) (for a shorter proof we refer to Theorem 6.3 in
Horváth and Kokoszka (2012)) that

sup
0≤x≤1

||UN(x)||2 = OP (1).

Due to Assumption 2.4 we can use a Marcinkiewicz–Zygmund type law of large numbers
for sums of independent and identically distributed random functions in Banach spaces
(cf., e.g., Woyczynski (1978) or Howell and Taylor (1980)) to conclude

||c− ĉ|| = OP (N−1/3).

Assumption 3.4 gives that N−1/120/λd → 0 and therefore by Lemma B.4

max
1≤i≤d

λi

λ̂i
= OP (1).
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So by Lemma B.4 and (B.5) we have

1

d1/2

d∑
j=1

∣∣∣∣ 1

λ̂j
− 1

λj

∣∣∣∣〈UN(x), v̂j〉2 = OP (1)
1

d1/2N1/3

d∑
i=1

1/λ2
i

= OP (1)
d1/2

N1/3

1

λ2
d

= OP (1)
N1/80

N1/3
N1/60

= oP (1)

on account of Assumptions 3.2 and 3.4. Similarly, (B.6) and Assumption 3.5 yield

1

d1/2

d∑
j=1

1

λj
〈UN(x), v̂j − ĉjvj〉2 = OP (1)

1

d1/2N1/3

d∑
j=1

1

λjζj
= oP (1). (B.7)

Theorem 3.1 now follows from Theorem B.1.

Proof of Corollary 3.1. By Lemma B.2 and (B.7), relation (3.2) is proven if we show
that

1

d1/2σ0

{
d∑
i=1

sup
0≤x≤1

B2
i (x)− dκ0

}
D→ N(0, 1), (B.8)

where B1, B2, . . . , Bd are independent Brownian bridges. Clearly, (B.8) is an immediate
consequence of the central limit theorem. Similarly, to establish (3.3), we need to show
only that

1

(d/45)1/2

{
d∑
i=1

∫
B2
i (x)dx− d

6

}
D→ N(0, 1).

The above result is known, see Remark 2.1 in Aue et al. (2009). The same argument can
be used to prove (3.4).

C Proofs of the results of Section 4.
We note that under the null hypothesis X̄N − ȲM = Z̄N − Q̄M . Define

FN,M =
N∑
j=1

Zj −
N

M

M∑
j=1

Qj.

The proof of Theorem 4.1 is based on Lemma A.2, we need to write FN,M as a single sum
of independent identically distributed random processes and an additional small remainder
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term. Let K be an integer and define the integers R = bN/Kc and L = bM/Kc. Next we
define

Ai =
iR∑

`=R(i−1)+1

Z` −
iL∑

`=L(i−1)+1

N

M
Q`, i = 1, 2, . . . , K.

Clearly,

FN,M =
K∑
i=1

Ai + Ã,

where

Ã =
N∑

`=KR+1

Z` −
N

M

M∑
`=KL+1

Q`.

We will show first if v is a function with ||v|| = 1, then for every n

E

∣∣∣∣∣
n∑
`=1

〈Z`, v〉

∣∣∣∣∣
3

≤ c1n
3/2 (C.1)

and

E

∣∣∣∣∣
n∑
`=1

〈Q`, v〉

∣∣∣∣∣
3

≤ c2n
3/2, (C.2)

where c1 and c2 only depends on E||Z1||3 and E||Q1||3, respectively. Using Rosenthal’s
inequality (cf. Petrov (1995), p. 59) we get

E

∣∣∣∣ n∑
`=1

〈Z`, v〉
∣∣∣∣3≤ c3

{
nE|〈Z1, v〉|3 + (nE〈Z1, v〉2)3/2

}
,

where c3 is an absolute constant. It is easy to see that

|〈Z1, v〉| ≤ ||Z1||,

which implies (C.1). The same argument can be used to prove (C.2).
Next we define the function

cN,M(t, s) = c(t, s) +
N2L

M2R
c∗(t, s).

It is clear that cN,M is a covariance function and therefore we can find κ̄1 = κ̄1(N,M) ≥
κ̄2 = κ̄2(N,M) ≥ . . . and orthonormal functions ū1(t) = ū1(N,M), ū2(t) = ū2(N,M), . . .

satisfying

κ̄iūi(t) =

∫
cN,M(t, s)ūi(s)ds, 1 ≤ i <∞.
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Now we define the vector

ψi = (〈Ai, ū1〉/(Rκ̄1)1/2, 〈Ai, ū2〉/(Rκ̄2)1/2, . . . , 〈Ai, ūd〉/(Rκ̄d)1/2)T , 1 ≤ i ≤ K.

It is easy to see that ψi, 1 ≤ i ≤ K, are independent and identically distributed random
vectors with mean 0 and Eψ1ψ

T
1 = Id, where Id is the d× d identity matrix. Also, (C.1)

and (C.2) imply that

E|ψ1| ≤ c4

(
d∑
`=1

1/κ̄`

)3/2

,

where c4 only depends on E||Z1||3 and E||Q1||3. Using Lemma A.2 we obtain similarly to
(A.8) that there are independent standard normal random vectors γi = γi(N,M), 1 ≤ i ≤
K, in Rd such that

P

{∣∣∣∣ K∑
i=1

ψi −
K∑
i=1

γi

∣∣∣∣≥ c5K
3/8d1/4

( d∑
`=1

1/κ̄`

)3/8}
(C.3)

≤ c5K
−1/8d1/4

(
d∑
`=1

1/κ̄`

)3/8

,

where c5 does not depend on d. Let

ψ̃ = (〈Ã, ū1〉/
√
κ̄1, 〈Ã, ū2〉/

√
κ̄2, . . . , 〈Ã, ūd〉/

√
κ̄d)

T .

It follows from (C.1) and (C.2) that with some constant c6, not depending on d we have

E|ψ̃|3 ≤ c6K
3/2

(
d∑
`=1

1/κ̄`

)3/2

and therefore by Markov’s inequality for every x > 0

P

{
N−1/2|ψ̃| > x

}
≤ c7

K3/2

x3N3/2

(
d∑
`=1

1/κ̄`

)3/2

. (C.4)

Let
κN,M = (〈FN,M , ū1〉/

√
κ̄1, 〈FN,M , ū2〉/

√
κ̄2, . . . , 〈FN,M , ūd〉/

√
κ̄d)

T .

Next we choose K = bN3/4c in (C.3), (C.4) and x = K−1/8(
∑d

`=1 1/κ̄`)
3/8 in (C.4) to

conclude that there is γN,M , a standard normal random vector in Rd such that

P

{∣∣∣∣ 1√
N∗
κN,M − γN,M

∣∣∣∣ ≥ c8N
−3/32d1/4

(
d∑
`=1

1/κ̄`

)3/8}
(C.5)
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≤ c8N
−3/32d1/4

(
d∑
`=1

1/κ̄`

)3/8

,

where N∗ = bN/bN3/4ccbN3/4c. Using the definitions of cP and cN,M , together with
Assumption 4.3, we conclude

||cP − cN,M || = O(N−1/4), (C.6)

so by Lemma 2.3 of Horváth and Kokoszka (2012), cf. Lemma B.4, we have

|κi − κ̄i| ≤ c9 ||cP − cN,M || = O(N−1/4). (C.7)

Using Assumption 4.5 we conclude that

d∑
`=1

1/κ̄` = O

(
d∑
`=1

1/κ`

)
.

Hence it follows from (C.5) and Assumption 4.5 that

1

N
|κN,M |2 −

N∗

N
|γN,M |2 = oP (d1/2).

Since |γN,M |2 is a χ2 random variable with d degrees of freedom, Assumption 4.5 yields
that ∣∣∣∣N∗N − 1

∣∣∣∣ |γN,M |2 = oP (d1/2).

It is well known that (|γN,M |2 − d)/(2d)1/2 converges in distribution to a standard normal
random variable, and therefore

1√
2d

{
1

N
|κN,M |2 − d

}
D→ N(0, 1),

where N(0, 1) stands for a standard normal random variable.
The difference between |κN,M |2/N and D̂N,M is that the projections are done into the
direction of different functions (ūi’s and ûi’s, respectively) and the normalizations (κ̄i’s
and κ̂i’s, respectively) are also different. However, using the Marcinkiewicz–Zygmund law
of large numbers in a Banach space together with (C.6) and Assumption 4.5, we obtain
that

||̂cP − cN,M || = OP (N−1/4).

Hence, in view of (C.7), also

sup
i
|κ̂i − κ̄i| = OP (N−1/4),
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and there are random signs d̂i such that

sup
i

(
i∑

`=1

1/ι`

)−1

||ûi − d̂iūi|| = OP (N−1/4).

So repeating the arguments used in the proof of Theorem 3.1, we get∣∣∣∣D̂N,M −
1

N
|κN,M |2

∣∣∣∣ = oP (d1/2),

completing the proof.

References
J. A. D. Aston and C. Kirch. Estimation of the distribution of change–points with application to

fMRI data. The Annals of Applied Statistics, 2012. Forthcoming.

A. Aue, S. Hörmann, L. Horváth, and M. Reimherr. Break detection in the covariance structure
of multivariate time series models. The Annals of Statistics, 37:4046–4087, 2009.

M. Basseville, I. V. Nikifirov, and A. Tartakovsky. Sequential Analysis: Hypothesis Testing and
Change–Point Detection. Chapman & Hall/CRC, 2012.

N. Bathia, Q. Yao, and F. Ziegelmann. Identifying the finite dimensionality of curve time series.
The Annals of Statistics, 38:3353–3386, 2010.

M. Benko, W. Härdle, and A. Kneip. Common functional principal components. The Annals of
Statistics, 37:1–34, 2009.

I. Berkes, R. Gabrys, L. Horváth, and P. Kokoszka. Detecting changes in the mean of functional
observations. Journal of the Royal Statistical Society (B), 71:927–946, 2009.

H. Cardot, F. Ferraty, A. Mas, and P. Sarda. Testing hypothesis in the functional linear model.
Scandinavian Journal of Statistics, 30:241–255, 2003.

J. Chen and A. K. Gupta. Parametric Statistical Change Point Analysis: With Applications to
Genetics, Medicine, and Finance. Birkhäuser, 2011.

M. Csörgő and L. Horváth. Limit Theorems in Change-Point Analysis. Wiley, New York, 1997.

M. Csörgő and P. Révész. Strong Approximations in Probability and Statistics. Academic Press,
New York, 1981.

N. Dunford and J. T. Schwartz. Linear Operators, Parts I and II. Wiley, 1988.

U. Einmahl. Strong invariance principles for partial sums of independent random vectors. The
Annals of Probability, 15:1419–1440, 1987.



130 Functional data analysis with increasing number of projections

U. Einmahl. Extension of results of Komlós, Major and Tusnady to the multivariate case. Journal
of Multivariate Analysis, 28:20–68, 1989.

C. Gallagher, R. Lund, and M. Robbins. Changepoint detection in daily precipitation data.
Environmetrics, 23:407–419, 2012.

A. M. Garsia. Continuity properties of Gaussian processes with multidimensional time parame-
ter. In Proceedings of the 6th Berkeley Symp. Math. Stat. Probab., volume 2, pages 369–374.
University of California Press, 1970.

I. Gohberg, S. Golberg, and M. A. Kaashoek. Classes of Linear Operators, volume 49 of Operator
Theory: Advances and Applications. Birkhäuser, 1990.

O. Gromenko, P. Kokoszka, L. Zhu, and J. Sojka. Estimation and testing for spatially indexed
curves with application to ionospheric and magnetic field trends. The Annals of Applied Statis-
tics, 6:669–696, 2012.

M. G. Hahn. Central limit theorems in D[0, 1]. Zeitschrift für Wahrscheinlichkeitstheorie und
verwandte Gebiete, 44:89–101, 1978.

P. Hall and C. Vial. Assessing the finite dimensionality of functional data. Journal of the Royal
Statistical Society (B), 68:689–705, 2006.

L. Horváth and P. Kokoszka. Inference for Functional Data with Applications. Springer, 2012.

L. Horváth, P. Kokoszka, and M. Reimherr. Two sample inference in functional linear models.
Canadian Journal of Statistics, 37:571–591, 2009.

L. Horváth, P. Kokoszka, and R. Reeder. Estimation of the mean of functional time series
and a two sample problem. Journal of the Royal Statistical Society (B), doi: 10.1111/j.1467-
9868.2012.01032.x, 2012.

J. O. Howell and R. L. Taylor. Marcinkiewicz–Zygmund weak laws of large numbers for uncondi-
tional random elements in banach spaces. In J. Kuelbs, editor, Probability in Banach Spaces.
III. Proceedings of the Third International Conference held at Tufts University, Medford, Mass.,
pages 219–230. Springer, 1980.

J. Kuelbs. The invariance principle for Banach space valued random variables. Journal of Multi-
variate Analysis, 3:161–172, 1973.

V. M. Panaretos, D. Kraus, and J. H. Maddocks. Second-order comparison of Gaussian random
functions and the geometry of DNA minicircles. Journal of the American Statistical Association,
105:670–682, 2010.

V. V. Petrov. Limit Theorems of Probability Theory: Sequences of Independent Random Varianles.
Clarendon Press, 1995.



References 131

J. Ramsay, G. Hooker, and S. Graves. Functional Data Analysis with R and MATLAB. Springer,
2009.

J. O. Ramsay and B. W. Silverman. Functional Data Analysis. Springer, 2005.

V. V. Senatov. Normal Approximation: New Results, Methods and Problems. VSP, 1998.

V. Strassen. The existence of probability measures with given marginals. The Annals of Mathe-
matical Statistics, 36:423–439, 1965.

W. Woyczynski. Geometry and martingales in Banach spaces. II. independent increments. In
J. Kuelbs, editor, Probability on Banach Spaces, pages 267–517. Marcel Dekker, 1978.



132



Discussion 133

Discussion
The results presented in the preceding articles deal with problems from different areas of
change-point analysis and from the related two-sample inference. Aside from the results
themselves the intersection and combination of various of these areas and their particular
characteristics raise a multitude of interesting questions and bring forward suggestions for
further research.
Change-point procedures are presented in an a posteriori setting as well as in a sequen-
tial open-end setting. Explicitly univariate and functional data were considered, implicitly
multivariate methodology was applied to cope with the functional nature of the data. The
model characteristics subject to change (or difference in the two-sample inference) are the
mean, the regression parameters of a linear model, the mean function and the covariance
structure of the data. This list does not only show the great diversity of change-point
analysis it also indicates many yet unexplored research topics in a rapidly growing and
developing field.
In this section we want to connect the different concepts and approaches of the articles and
discuss in detail the several results with special respect to their impact in the context of
the general scope of this thesis. In particular the relevance of change-point procedures in
functional models should be highlighted by showing the need to develop statistical methods
to investigate and monitor the validity of functional models in the expanding fields of their
applications.

The first two articles Fremdt (2012b) and Fremdt (2012a) consider a so-called AMOC
(at most one change) model in a sequential open-end setting. In this open-end setting
the model parameters are unknown and a training period (where constancy of the model
parameters is assumed) is used to estimate the so-called “in control situation”. The mon-
itoring then begins with the end of the training period and is assumed to go on until a
change is detected. In contrast to a closed-end setting where a fixed monitoring horizon
is part of the design of the procedure, in the open-end setting the monitoring goes on
infinitely long unless the procedure detects a change.
The two articles focus on the development and assessment of change-point detection pro-
cedures based on an idea of Page (1954). The procedure introduced by Page (1954) has
been investigated extensively in the context of control charts and statistical process con-
trol, mostly using a constant threshold. However the approach of Fremdt (2012b) for this
detector uses a threshold function that guarantees the control of the error of first kind, the
“false alarm rate”, asymptotically and is therefore novel. The approach entails a number
of interesting features that can be transferred to related problem settings or related ap-
proaches for the construction of sequential change-point procedures.
The detectors introduced in Fremdt (2012b) are built from the residuals of a linear model
using cumulative sums of the residuals as well as cumulative sums of the squares of the
residuals. The main steps to show the validity of the procedures are then approximations
for the sum (sum of squares, resp.) of residuals with the sum (sum of squares) of the error



134

terms and invariance principles for these. In principle these two approximations are the
key steps to translate this approach into the context of other time series models like, e.g.,
ARMA (autoregressive moving average), where residuals can be calculated similarly. The
success of the implementation depending on the rates of convergence in the estimation and
in the invariance principle. In the context of the linear model in Fremdt (2012b) the two
approaches, residuals versus squared residuals, show different advantages and disadvan-
tages. While especially for moderate changes methods based on residuals perform better,
they cannot detect certain orthogonal changes. Procedures based on squared residuals
have different asymptotic properties like a different constant in the invariance principle or
differences in the drift term in case of a change. However one of their advantages is that
due to their quadratic construction even orthogonal changes can be detected. With respect
to a transfer of the approach to different model settings the procedures based on squared
residuals gain importance since the same argument as in the context of the linear model
applies yet with a higher impact. As an example in case of an ARMA-model procedures
based on the CUSUM of the residuals do not have asymptotic power one in case of a change
in the autoregressive and/or moving average parameters as well as in the variance of the
error sequence. They are in this case only suitable to detect changes in the mean of such
time series.
However, most importantly it can be noted that the arguments used in the proofs in Fremdt
(2012b) can be applied to adapt the approach to these important types of time series mod-
els.

The basic idea behind the given procedure is to compare the parameter estimates calcu-
lated from the data of the training period to parameter estimates calculated from the data
of the monitoring period. Since only the data after the occurrence of a change will cause
the difference of estimators to increase, but the time of change is unknown, estimates are
calculated from the data of all subintervals of the monitoring period with the present as
right end point. The maximum value of these differences is then taken as detector.
Many statistical procedures are based on this principle of comparing parameter estimates.
In particular in sequential change-point analysis such procedures have been suggested in
different contexts, mostly using all observations of the monitoring period to calculate the
reference estimate. For an example in the very similar setting of a linear model we refer
to Hušková and Koubková (2005) who propose a detector calculated as a quadratic form
of partial sums of weighted residuals which can be represented as quadratic form of the
differences of the estimators. This approach can be generalized to multivariate and func-
tional problem settings and can therefore be used as a starting point to construct sequential
change-point methods with similar properties to those introduced in Fremdt (2012b). Of
course an implementation of such procedures depends strongly on the derivation of the
behaviour of the detector whithout the occurrence of a structural break which is not a
trivial matter as can be seen in the proofs of the corresponding results in Fremdt (2012b).

Further interesting aspects that motivate future investigations are, e.g., the restriction of
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the presented procedures to a finite monitoring horizon, i.e., a closed-end setting. This
would simplify the proof of the results on the behaviour under the null hypothesis of no
change and allow for different choices of the threshold function. In general an adaptation of
the weights in the procedures could be considered that takes the length of the subinterval
of the monitoring procedure into account.
In the scope of the article the ordinary CUSUM procedure of Horváth et al. (2004) was
used as a reference for a comparison of the approaches. An extension of this comparison
to other approaches like moving sum detectors or exponentially weighted moving averages
would be of interest. For a discussion of these approaches we refer to Kühn (2007). How-
ever conclusions from such comparisons have to be handled with care since the performance
of these procedures depends strongly on the underlying model specification.
Another important aspect to be discussed in future research is the small sample behaviour
of the procedures particularly of those based on squared residuals. While the procedures
based on the cumulative sum of residuals show a satisfactory behaviour under the null
hypothesis in small samples this is not the case for the procedures based on squared resid-
uals. A possible approach for an improvement in this respect are resampling methods like
permutation tests or bootstrap. We refer to Kirch (2006) and her subsequent work for a
thorough discussion of this topic.

The result on the asymptotic distribution of the delay time in Fremdt (2012a) provides im-
portant information on the dynamics driving the procedure introduced in Fremdt (2012b)
under the alternative in the special case of the so-called location model. While often cri-
teria like average run length or (stochastic) bounds for the delay time are used to assess
change-point procedures the asymptotic distribution of the delay time provides far more
information than these criteria. E.g., upper bounds are not suitable to compare two proce-
dures like ordinary CUSUM (cf. Aue and Horváth (2004)) and Page CUSUM since these
have similar worst case behaviour and consequently similar upper bounds. Yet the distri-
butions of the delay times differ when a change occurs not too early.
The result in Fremdt (2012a) is extending the result of Aue and Horváth (2004) for an
ordinary CUSUM procedure in various aspects. The assumption on the size of the change
could be relaxed from local alternatives (where the size of the change tends to zero as the
length of the training period increases) to the assumption of boundedness of the size of
change. This assumption includes not only the local alternatives but also fixed alternatives.
However the more important extension regards the range for the change-point for which
the asymptotic distribution can be derived. This range could be extended from an order
of m1/4 (in the best case) to an order of m (in all cases) for the right end point.
Furthermore it is important to note that the methodology applied in this particular model
can again be used as a starting point to derive similar results for Page’s CUSUM proce-
dure in different models like, e.g., the linear model of Fremdt (2012b). In more complex
models the derivation of such results requires additional considerations since the variation
of additional stochastic quantities has to be taken into account in the determination of the
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drift introduced by a change in the model. In the case of a linear model to obtain a similar
result the variation of the regressors has to be considered resulting in an additional term
in the drift. For a related approach for the ordinary CUSUM of residuals we refer to Aue
et al. (2009b).
Since the drift in the location model is deterministic many calculations are simplified com-
pared to models where stochastic factors influence this drift. In models like, e.g., the
ARMA model the drift only converges in probability to a constant. This leads among
other effects to a slower convergence for the distribution of the delay time. However the
presented methodology is applicable in these cases as well.
Interesting challenges for future research are the translation of this approach in the context
of models like, e.g. the linear model or the ARMA model mentioned above. In addition the
adaptation of this result to a closed-end approach are of interest as well as a comparison
to methods like MOSUM or EWMA in the light of this theoretic result.

The two latter articles present results from functional data analysis and therefore primarily
focus on different problems than the first two articles. In univariate statistical analysis the
key steps to the development of procedures like those presented in Fremdt (2012b) have
already been performed and there exists a vast theory around them. The field of functional
data analysis is comparatively young and consequently the statistical theory is still at a
different stage in its development. The functional nature of the data has to be taken into
account and a sophisticated methodology is needed to cope with this and allow for the
construction of effective statistical tools to analyze functional data sets in practice.
In the introduction the increasing number of applications for functional data analytic
methods on account of the technical developments in collection and storage of data has
already been discussed. Along with this increasing number and diversity of data sets come
newly developed functional models fit to describe the dynamics and dependencies of the
data. Among them are many concepts from univariate or multivariate statistics that can
be translated into the functional context. For examples like functional linear models (in
different forms) or the functional autoregressive model we refer to Horváth and Kokoszka
(2012). Yet many other models can be found in the literature, e.g., generalized functional
linear models introduced by Müller and Stadtmüller (2005) or a functional ARCH model
introduced by Hörmann et al. (2012).
But this variety of models also strengthens the call for statistical methodology to investi-
gate the model’s characteristics. The scope of this statistical inference for functional data
is like in the univariate and multivariate context also focussed on estimation and testing
problems.
As mentioned above many of the introduced models include certain dependence structures.
However the first step in the development of statistical procedures is almost always carried
out under the assumptions of independence and identical distribution of the data. As this
is also the case in Fremdt et al. (2012) and Fremdt et al. (2012) an extension of the pre-
sented methods allowing for certain dependencies in the data is a natural step in further
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research.

In Fremdt et al. (2012) a two-sample test for the equality of the covariance operator in
functional samples is developed. The covariance structure is probably one of the most
interesting characteristics of data in general. It has been studied extensively in the multi-
variate case (in the context of change-point analysis we refer to, e.g., Aue et al. (2009a) and
Wied et al. (2012)). Yet for functional data such problems have mainly been investigated
under normality assumptions, i.e. for Gaussian processes (for a discussion of this we refer
again to Horváth and Kokoszka (2012)). The test presented in Fremdt et al. (2012) extends
these results by dropping the normality assumption and it is shown empirically that under
a violation of this assumption the methods developed for Gaussian data are inadequate.
The applied methodology to construct a suitable test statistic is a good example how ex-
ploiting the properties of functional principal components can help to develop statistical
tools for functional data. In particular it is shown how multivariate asymptotic results can
be used to obtain asymptotic distributions for the test statistic which are easily applicable
for a practitioner. In this special case a multivariate central limit theorem is used to obtain
a χ2-distribution for the test statistic and consequently the corresponding critical values
are well-known.
However since the choice of the number of principal components is left to the statistician
the criticism mentioned in the introduction is justified in this case as well. It should be
noted that from a practical point of view even without theoretical justification the rules of
thumb proposed for the choice of this number in general deliver acceptable results. Never-
theless a solid theoretical basis for this matter is doubtless of great importance. A starting
point for such a theoretical basis is given in Fremdt et al. (2012).

The main result in Fremdt et al. (2012) is a uniform normal approximation for the partial
sum process of the functional principal component scores. This result provides various
opportunities for the construction of statistics that show a certain robustness with respect
to the choice of the number of principal components. This is illustrated in the context
of change-point detection (in an a posteriori setting) in the mean of functional data and
in the context of a two-sample problem as well regarding the equality of mean functions.
For the change-point problem the Gaussian limit of a two-parameter partial sum process
constructed from the scores is presented that can be used to derive statistics directly or
from functionals of this process. In particular a Cramér-von-Mises type statistic should be
highlighted that uses the full force of the asymptotics of the two-parameter process. In the
empirical part of the article it is shown that this procedure behaves nicely in finite samples
including applications like the Australian weather data investigated in the scope of the
article. The proceeding in the construction of a statistic for the two-sample problem using
the uniform normal approximation is illustrated by deriving a statistic from the scores of
the differences of the empirical mean functions. As limit distribution of this statistic the
standard normal distribution is obtained.
The application of this uniform normal approximation in these two important statistical
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settings indicates the impact of the result. It also shows that the result can be used as a
basis for the construction of statistical procedures in other areas of functional data analy-
sis.

Finally with respect to future research the different concepts presented in the respective
articles should be brought together. The different problems were motivated in the scope
of the single articles nevertheless the concepts carry over to the intersection of their frame-
works. What is meant by this is that sequential change-point procedures are as well needed
in functional frameworks to monitor the validity of the multitude of already existing func-
tional models (and those that will doubtlessly be defined in the future). First work in
this direction has been conducted (e.g., cf. Aue et al. (2012) and Aue et al. (2012+)), yet
the problems described to motivate the introduction of Page’s procedure in the univariate
setting translate to the functional change-point problem. It would therefore be desirable to
develop similar approaches using Page’s idea for detectors based on differences of estima-
tors in a similar fashion to the one described earlier. As functional principal components
represent one of the most effective tools in the development of such procedures an incor-
poration of the results from Fremdt et al. (2012) would certainly increase the value of such
procedures. However the challenges hidden behind this easily formulated idea should not
be underestimated.

A concluding remark should be directed towards the applications presented in the scope
of this thesis. They come from economics, biology and climatology and indicate the wide
field the methods described and developed here can be applied to. And still these only
represent some of the many fields of application for the procedures developed in the field of
change-point analysis. They are the motivation to always push forward our research and
guarantee that mathematical statistics and probability theory stay a dynamic discipline
always keeping interesting challenges at hand.
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