
From subduction to extension: 

The tectonomagmatic evolution of the 

Bulgarian Rhodopes 

 

 

 

Inaugural-Dissertation 

zur 

Erlangung des Doktorgrades 

der Mathematisch-Naturwissenschaftlichen Fakultät 

der Universität zu Köln 

 

 

 

 

 

 

vorgelegt von 

Maria Kirchenbaur 

aus Nördlingen 

 

 

– Köln 2012 – 

 

 

 



 II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 III 

Prüfer:      Prof. Dr. C. Münker 

Zweiter Referent:    Prof. Dr. N. Froitzheim 

Vorsitzender der Prüfungskommission: Prof. Dr. T. Mansfeldt 

Beisitzer:     Dr. D. Hezel 

 

Tag der mündlichen Prüfung:   25.01.2012 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 IV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 V 

- Contents -  

 

Abstract                                                                                                                                       1 

Zusammenfassung                                                                                                                     3 

 

Chapter 1 – Introduction                              7 

 

Chapter 2 – Timing of high-pressure metamorphic events in the Bulgarian 

Rhodopes from Lu-Hf garnet geochronology                                                    17 

 

2.1. Introduction                                                                                                               17 

2.2. Geological overview                                                                                                 18 

2.3. Sample localities                                                                                                       23 

2.4. Analytical techniques                                                                                                27 

2.5. Petrography and Equilibrium Phase Diagrams                                                         30 

2.6. Geochemical results                                                                                                  38 

2.6.1. Major and trace elements                                                                                 38 

2.6.2. Lu-Hf and Sm-Nd geochronology                                                                   39 

2.7. Discussion                                                                                                                 41 

2.7.1. Significance of the Lu-Hf geochronological results                                        41 

2.7.2. Prograde growth ages versus cooling ages                                                      42 

2.7.3. Constraints on exhumation rates                                                                      44 

2.7.4. Constraints on the magmatic protolith                                                             45 

2.7.5. Implications for the tectonics of the Rhodopes and Hellenides                       48 

2.8. Conclusions                                                                                                               51 

 

Chapter 3 – Tectonomagmatic constraints on magma sources of Eastern  

Mediterranean K-rich lavas                                                                                53 

 

3.1. Introduction                                                                                                               53 

3.2. Geological background                                                                                             57 

3.2.1. Rhodopes – Bulgaria                                                                                        57 

3.2.2. Santorini – Aegean Sea                                                                                    58 



 VI 

3.2.3. Sample suite                                                                                                       59 

3.3. Analytical techniques                                                                                                  60 

3.4. Results                                                                                                                         66 

3.4.1. Major and trace elements                                                                                   66 

3.4.2. Sr-Nd-Hf-Pb isotope compositions                                                                    76 

3.5. Discussion                                                                                                                   80 

3.5.1. Fractional crystallization and assimilation of continental crust                         80 

3.5.2. Mantle source enrichment by subduction components vs. old lithospheric 

mantle components                                                                                                      84 

3.5.3. Assessment of the single-stage model                                                                85 

3.5.4. Assessment of the multi-stage model                                                                 88 

3.5.5. Comparison of the Bulgarian lavas with other post-collisional high-K lavas 

and lamproites                                                                                                              97 

3.5.6. Tectonomagmatic constraints on Mediterranean volcanism                              97 

3.6. Conclusions                                                                                                                 99 

 

Chapter 4 – The behaviour of the extended HFSE group (Nb, Ta, Zr, Hf, W, Mo, Sb)  

during the petrogenesis of mafic K-rich lavas from the Bulgarian Rhodopes 101 

  

4.1. Introduction                                                                                                               101 

4.2. Geological settings and source components                                                              103 

 4.2.1. Rhodopes – Bulgaria                                                                                           104 

 4.2.2. Santorini – Aegean Sea                                                                                       105 

4.3. Analytical techniques and results                                                                              108 

4.4. Discussion                                                                                                                 111 

 4.4.1. Assessment of assimilation and fractional crystallization                                   111 

 4.4.2. Behaviour of Nb-Ta and Zr-Hf in the mantle sources                                         114 

 4.4.3. Behaviour of W-Sb-Mo during source replenishment                                         118 

4.5. Conclusions                                                                                                               130 

 

References                                                                                                                                133 

Acknowledgments                                                                                                                    158 

Erklärung                                                                                                                                159 



 1 

- Abstract - 

 

The Bulgarian Rhodopes provide an unique opportunity to study processes that take place at 

convergent continental margins. Ophiolite complexes incorporated in the Rhodopean nappe 

stack as well as the directly overlying post-collisional volcanism allow the investigation of 

processes from subduction, collision, and subsequent lithospheric extension triggering 

lithospheric mantle melting that leads to volcanism in collisional orogens. 

The first part of this dissertation investigates the high-pressure (HP) metamorphic 

history of ophiolite complexes incorporated in different levels of the Rhodopean nappe stack. 

The determination of the exact timing of these HP events as well as the characterization of the 

metamorphic protoliths is crucial for reconstructing the geodynamic evolution of the 

Rhodopes. In this context, the Lu-Hf isotope system has already been proven useful to date 

HP mineral assemblages in other Alpine units and was therefore applied to four eclogite 

samples from different units of the nappe stack of the Bulgarian Rhodopes. The Lu-Hf garnet 

dating revealed a metamorphic event during the Cretaceous (~ 126 Ma) affecting the highest 

nappe unit investigated (Upper Allochthon) and an Eocene event (~ 43 Ma) for the Middle 

Allochthon. These results provide evidence for two separate subduction events in the 

Rhodopes, in support of previous findings. Moreover, thrusting of the Middle over the Lower 

Allochthon can be narrowed down to the time span 42 - 34 Ma.  

The second and third part of this dissertation provides an extensive dataset on the post-

collisional volcanism in the Bulgarian Rhodopes as well as for arc lavas from Santorini, 

which are used as a comparative suite throughout the text. The Bulgarian post-collisional 

volcanism is characterized by a high magnitude of incompatible trace element enrichment, 

which is particularly shown by its affiliation to the high-K and shoshonite series. Two 

petrogenetic models that were previously proposed for the generation of high-K magmas 

involve the melting of ancient, enriched lithospheric mantle sources (single-stage model) or 

melting triggered by young refertilization of subduction-related components derived from 

subducted sediments or oceanic crust (multi-stage model). These two models are tested for the 

Bulgarian K-rich rocks, based on new major, trace element and Sr-Nd-Hf-Pb isotope 

compositions. The single-stage model is evaluated by Sr-Nd isotope modelling assuming the 

presence of ancient lithospheric mantle domains whereas the multi-stage model is assessed by 

comparing compositions of the Bulgarian lavas with those of lavas from Santorini. Santorini 

Island lavas are thought to sample the current trace element and isotope inventory of the long-
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lived Aegean subduction-zone system. This northward facing system has been active since 

late Jurassic/Early Cretaceous and was potentially involved in refertilizing the mantle sources 

of the Bulgarian lavas. In addition to the Bulgarian lavas, we present new major, trace element 

and Sr-Nd-Hf-Pb isotope data for Santorini. Modelling of Sr-Nd isotope compositions of the 

Bulgarian lavas argues for a young (Meso- to Cenozoic) source enrichment. Therefore, single-

stage models involving melting of ancient,  > 1 Ga old lithospheric mantle can be confidently 

ruled out, in agreement with tectonic models for the region. The enriched isotope signatures 

found in the Bulgarian lavas, coupled with a pronounced enrichment in incompatible 

elements, instead indicate mantle refertilization by subduction components similar to 

presently subducted continent-derived sediments. Notably, the Bulgarian lavas record a 

predominant influx of fluid-like subduction components when compared to the Santorini 

lavas. Collectively, the data presented for the Bulgarian lavas are thus clearly in favour of a 

multi-stage model.  

The last part of this dissertation focuses on extended high-field-strength element (HFSE) 

systematics in the Bulgarian and Santorini lavas. The extended HFSE (Nb, Ta, Zr, Hf, W, Mo, 

and Sb) are of particular interest in magmatic rocks as their fractionations hint towards 

specific residual phases in their source regions, such as  rutile, allanite, zircon, micas, and 

sulphides. Tungsten, Sb, and Mo are of particular importance in that they are mobilized in 

subduction zones by fluids and melts at distinct temperatures and redox conditions and might 

provide important insights into the conditions and magnitude of source enrichment. However, 

no significant fractionation of the HFSE ratios (Nb/Ta, Zr/Hf, Zr/Nb) compared to MORB 

were observed in the Santorini lavas and in the Bulgarian high-K rocks. An influence on the 

HFSE budget by residual phases like allanite, zircon, or phengite can be largely ruled out, 

whereas trace amounts of residual rutile in the source may account for the slightly lower 

Nb/Ta observed in the dataset than expected for bulk sediment addition. The W-Sb-Mo 

systematics of both sample suites furthermore confirm the predominance of subducted 

sediments on the incompatible trace element budget, which is dominated by more fluid-like 

components in the Bulgarian lavas and melt-like in the Santorini lavas.  
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- Zusammenfassung - 

  

Der bulgarische Teil der Rhodopen stellt eine einzigartige Möglichkeit dar, Prozesse an 

konvergenten Kontinentalrändern zu studieren. Ophiolithkomplexe, die in den 

Deckenkomplex der Rhodopen mit eingegliedert wurden, sowie der direkt aufliegende post-

kollisionale Vulkanismus ermöglichen die Untersuchung der Prozesse von Subduktion, 

Kollision bis hin zur anschließenden Lithosphärenextension, die das Aufschmelzen des 

lithosphärischen Mantels bedingt und damit zu Vulkanismus in kollisionalen Orogenen führt. 

 Der erste Teil der vorliegenden Dissertation befasst sich mit der Hochdruck-

metamorphen Entwicklung der Ophiolithkomplexe, die sich in unterschiedlichen Stockwerken 

des Rhodopen-Deckenstapels befinden. Die genaue zeitliche Bestimmung dieser Hochdruck-

Ereignisse als auch die Charakterisierung der metamorphen Ausgangsgesteine ist 

entscheidend für die Rekonstruktion der geodynamischen Entwicklung der Rhodopen. In 

diesem Zusammenhang hat sich das Lu-Hf Isotopensystem als äußerst nützlich erwiesen, um 

Hochdruck-Mineralparagenesen in anderen alpinen Einheiten zu datieren. Es wurde deshalb 

an vier Eklogitproben aus unterschiedlichen Einheiten des Deckenstapels der bulgarischen 

Rhodopen angewandt. Die Lu-Hf Granatdatierung bestimmte ein metamorphes Ereignis 

während der Kreide (~ 126 Ma) für die oberste studierte Einheit (Oberes Allochthon) und eine 

weitere Hochdruckmetamorphose während des Eozäns (~ 43 Ma) für das Mittlere Allochthon. 

Diese Resultate belegen und unterstützen schon vorhandene Forschungsergebnisse, dass zwei 

unterschiedliche Subduktionsereignisse in den Rhodopen stattgefunden haben. Des weiteren 

kann die Überschiebung des Mittleren über das Untere Allochthon auf eine Zeitspanne 

zwischen 42 – 34 Ma eingegrenzt werden. 

Der zweite und dritte Teil dieser Dissertation stellt einen extensiven Datensatz über den post-

kollisionalen Vulkanismus in den bulgarischen Rhodopen sowie für Inselbogenvulkanite von 

Santorin bereit. Letztere werden als Vergleichssuite für die bulgarischen Vulkanite benutzt. 

Der bulgarische post-kollisionale Vulkanismus zeichnet sich insbesondere durch einen hohen 

Anreicherungsgrad von inkompatiblen Spurenelementen aus, was vor allem durch die 

Zugehörigkeit zu Kalium-angereicherten ('high-K') und shoshonitischen Vulkanitserien 

Ausdruck findet. Für die Entstehung von Kalium-reichen Vulkaniten werden gegenwärtig 

zwei unterschiedliche petrogenetische Modelle vorgeschlagen: partielles Aufschmelzen von 

altem lithosphärischem Mantel (Einstufenmodell) oder die Entstehung aus Mantelquellen, die 

durch ein junges Subduktionsereignis mit Sediment- oder ozeanischer Krustenkomponenten 
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angereichert wurden (Mehrstufenmodell). Diese beiden Modelle werden anhand neuer Haupt- 

und Spurenelementdaten und Sr-Nd-Hf-Pb Isotopenzusammensetzungen für die bulgarischen 

Vulkanite getestet. Die Validität des Einstufenmodells wird anhand von Sr-Nd 

Isotopenmodellierungen beurteilt, wohingegen das Mehrstufenmodell durch den Vergleich mit 

den Santorin-Laven evaluiert wird, welche das gegenwärtige Endglied der ägäischen 

Subduktionszone darstellen und für die neue Haupt-, Spurenelement und Sr-Nd-Hf-Pb 

Isotopendaten vorgestellt werden. Die nach Norden einfallende ägäische Subduktionszone ist 

seit dem späten Jura/frühe Kreide aktiv und war potenziell auch schon an der 

Quellenanreicherung der bulgarischen Laven beteiligt. Die Modellierung von Sr-Nd 

Isotopenzusammensetzungen für die bulgarischen Laven ergibt ein eher junges Alter für die 

Quellenanreicherung (meso- bis känozoisch). Deshalb kann das Einstufenmodell, bei dem 

alter lithosphärischer Mantel aufschmilzt (älter als 1 Ga), ausgeschlossen werden, was auch 

mit gängigen tektonischen Modellen für die Region übereinstimmt. Die angereicherten 

Isotopensignaturen der bulgarischen Laven, sowie deren ausgeprägte Anreicherung 

inkompatibler Spurenelemente sprechen für die Anreicherung der Magmenquellen durch 

klastische Sedimente, wie sie gegenwärtig in der Ägäis subduziert werden. Im Vergleich mit 

den Santorin-Laven sind die bulgarischen Magemenquellen eher durch Fluide angereichert 

worden. Zusammenfassend sprechen diese Resultate eindeutig für ein Mehrstufenmodell für 

die Entstehung der bulgarischen K-reichen Vulkanite. 

Der letzte Teil dieser Dissertation konzentriert sich auf die erweiterte Gruppe der high-field-

strength Elemente (HFSE) in den bulgarischen und Santorin Laven. Die erweiterten HFSE 

(Nb, Ta, Zr, Hf, W, Mo, und Sb) sind besonders in magmatischen Systemen von Bedeutung, 

da ihre jeweiligen Fraktionierungen auf spezifische residuale Phasen in den Mantelquellen 

hinweisen, wie zum Beispiel Rutil, Allanit, Zirkon, Glimmer und Sulfide. Wolfram, Sb und 

Mo sind besonders interessant, da diese Elemente in Subduktionszonen durch Fluide und 

Schmelzen bei unterschiedlichen Temperaturen und Redox-Bedingungen mobilisiert werden 

und dadurch Einblicke in den Grad und die Bedingungen der Quellenanreicherungen geben 

können. In dieser Studie konnte keine signifikante Fraktionierung der HFS 

Elementverhältnissen wie Nb/Ta, Zr/Hf und Zr/Nb in Bezug auf MORB in den bulgarischen 

und Santorin Laven festgestellt werden. Deshalb kann ein Einfluss residualer Phasen wie 

Allanit, Zirkon oder Phengit auf das HFSE Budget ausgeschlossen werden. Geringe Mengen 

an residualem Rutil in den subduzierten Sedimenten können dahingegen für die geringfügig 

niedrigere Nb/Ta verantwortlich sein, die so nicht erwartet würden für eine 

Quellenanreicherung durch Rutil-freie Sedimente. Desweiteren untermauert die W-Sb-Mo 
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Systematik der beiden Probensuiten die Dominanz von subduzierten Sedimenten auf das 

Budget der inkompatiblen Elemente, welche in den bulgarischen Laven hauptsächlich durch 

Fluide und in den Santorin Laven durch Schmelzen angereichert wurden. 
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- Chapter 1 - 

 

 Introduction 

 

 

Subduction and subsequent collision of oceanic and continental crust can be 

confidently considered as THE most important surface-shaping geological process currently 

occurring on Earth. Collisional orogens or their deeply eroded roots are found throughout 

most of Earth’s history and on all continents (Pan-African orogeny, Black et al., 1979; 

Variscan orogeny, Tait et al., 1997; Alpine orogeny, Dewey et al., 1973; Schmid et al., 1996), 

providing evidence that the amalgamation of continental crust fragments is a major process 

contributing to the assemblage of larger continents. However, collisional orogens are also the 

site where crust is destroyed and eventually in part recycled back into the mantle (von Huene 

& Scholl, 1991; Plank & Langmuir, 1998; Clift & Vannucchi, 2003).  

Subduction of oceanic crust precedes the collision of two crustal fragments. Remnants 

of the consumed oceanic crust can subsequently mark the suture zone between the two 

continental slivers, either as entire ophiolite complexes or as dismembered meta-basaltic 

sequences (e.g., Vardar suture; Ricou et al., 1998; Oman ophiolite; Coleman, 1981, Hacker, 

1994; Appalachian ophiolites; Dewey & Bird, 1971; Isua ophiolite complex; Furnes et al., 

2007). Three different types of collisional orogens can be distinguished, based on the 

lithologies involved. (1) The collision of two island arcs (arc-arc collision), as it presently 

occurs, for example, in Central Japan (Izu collision zone; Tani et al., 2010). (2) Arc-continent 

collision as it is currently found in Taiwan (collision of the Luzon arc with the Asian 

continent; e.g., Teng, 1990; Wang et al., 2004), and (3) continent-continent collision (e.g., 

Caledonides; Griffin et al., 1985; Alpine-Himalayan belt; Dewey et al., 1973; McKenzie, 

1978; Schmid et al., 1996). Whereas types (1) and (2) are important types for the growth and 

destruction of continental crust throughout Earth’s history, continent-continent collisions, 

however, might be considered as the processes creating the most extensive mountain belts 

(e.g., Caledonides; Smith, 1984; Alpine-Himalayan mountain belt; Stampfli & Borel, 2002). 

Being typical of the last step of the Wilson cycle, such collisions create supercontinents like 

Pangea or Gondwana (Wilson, 1966). Hence, the detailed investigation of convergent margins 

and collisional orogens is of paramount importance in understanding processes and timescales 
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that ultimately lead to the amalgamation of larger continents.  

Generally, the tectonic processes in collisional orogens are dominated by nappe 

stacking along low-angle detachment faults, thrusting and faulting in the early stages of 

collision, whereas late- to post-collision is mainly dominated by unroofing, extension and 

graben formation (Bott, 1976; Lister et al., 1986), as well as post-collisional volcanism 

(Turner et al., 1996; Miller et al., 1999; Aldanmaz et al., 2000; Sajona et al, 2000; Williams et 

al., 2004). Furthermore, collisional orogens are also the place where continental crust can be 

subducted to ultra-high pressure (UHP) conditions into the mantle, (~ 150 – 200 km) before 

being exhumed (e.g., Dora Maira Massif, Chopin, 1984; Caledonides, Smith, 1984; 

Kokchetav Massif, Sobolev & Shatsky, 1990; Dabieshan, Xu et al., 1992). The subsequent 

orogenic collapse of the piled up nappe stacks triggers melting in the mantle, while mafic 

underplating further facilitates extension and the exhumation of deeper portions of the nappe 

stack, which can afterwards be exposed in metamorphic core complexes (e.g., 

D’Entrecasteaux Islands, Davies & Warren, 1988; Colorado River, USA, Lister & Davis, 

1989; Arabian-Nubian Shield, Blasband et al., 2000).  

 

      
 

Fig. 1.1: Schematic sketch of the assumed genetic evolution of post-collisional volcanism, where (a) the 

lithospheric mantle source is enriched by subduction, and (b) at a later stage melts in response to a change in the 

P-T regime of the mantle source. 

 

Commonly, magmatism in collisional orogens is virtually entirely controlled by syn- 

to late-stage tectonic processes, i.e., lithospheric thickening, crustal heating and orogenic 

collapse. Combined with lithospheric thinning and asthenospheric upwelling, orogenic 

collapse might lead to extensive lithospheric mantle melting in some collisional orogens (e.g., 

Tibet; Turner et al., 1996, Williams et al., 2004). The ensuing volcanism is thus described as 

“post-collisional”. Bulk compositions of post-collisional volcanic rocks are usually bimodally 

distributed, i.e., predominantly basaltic and rhyolitic/phonolitic compositions (e.g., Gill, 
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1981). Although major element compositions of volcanic rocks in post-collisional settings can 

be highly variable, a common feature is the strong enrichment in incompatible elements and 

the large abundance of high-K or shoshonitic series (e.g., Peccerillo & Taylor, 1976; Turner et 

al., 1996; Williams et al., 2004; Wang et al., 2004; Prelević et al., 2005; Gao et al., 2009; 

Conticelli et al., 2009b). From early studies on, geochemical or experimental, it has been 

recognized that the petrogenesis of these rock suites involves hybrid mantle sources, with 

contributions from asthenospheric, lithospheric and crustal sources (Tatsumi & Koyagushi, 

1986; Meen, 1987; Foley, 1992; Edgar & Vukadinovic, 1992; Conceição & Green, 2004; 

Holbig & Grove, 2008). Typically, the subduction-related geochemical characteristics of post-

collisional lavas are interpreted to be inherited from the mantle source that has been 

metasomatized during prior subduction (multi-stage model; see Fig. 1.1a; e.g., Hawkesworth 

& Vollmer, 1979). However, highly enriched isotope signatures (e.g., Sr-Nd-Pb) recorded in 

post-collisional and high-K lavas were also interpreted to result from melting of an ancient 

lithospheric mantle (single-stage model; e.g., Varne, 1985; McKenzie, 1989; Turner et al., 

1996). This model implies that the mantle sources of post-collisional lavas may have been 

modified by subduction zone processes up to hundreds of million years before being tapped 

by decompression melting or astenospheric upwelling (see Fig. 1.1b).  

 

 
 

Fig. 1.2.: 

Overview of the Mediterranean with its most important tectonic structures (grey lines) and the location of the 

Rhodopes in relation to other major crustal fragments and accretionary units. Modified after Barr et al. (1999), 

and Wortel & Spakman (2000).  
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The Eastern Mediterranean and especially the Rhodopes provide an excellent 

opportunity to study tectono-magmatic processes along convergent margins and in collisional 

orogens. During the Alpine orogeny, microcontinents as well as ocean basins formerly located 

between Africa and Eurasia, were assembled along the Eurasian continental margin, thus 

forming a large-scale thrust wedge (Ricou et al., 1998; van Hinsbergen et al., 2005; Nagel et 

al., 2011). Moreover, subduction is still ongoing south of the Hellenic Trench (see Fig. 1.2) 

with currently active subduction zone volcanism located in the Aegean island-arc (Santorini; 

Zellmer et al., 2000; Bailey et al., 2009; Kos; Pe-Piper & Moulton, 2008). The Rhodopes, 

located in Bulgaria and northern Greece, represent a key area within the Alpine-Himalayan 

orogenic belt in the Eastern Mediterranean in that they form the link between the Hellenides 

and the Eurasian continental margin (see Fig. 1.2). They consist of a nappe stack of 

continental and oceanic units, where the deeper nappe units are exposed in large scale 

extensional domes. These domes, or metamorphic core complexes, are directly overlain by 

volcanoclastic sediments and post-collisional lavas. The direct succession of subduction, 

nappe stacking, lithospheric extension, and subsequent volcanism allows a detailed 

investigation of the kinematics of subduction-exhumation and mass fluxes triggering 

volcanism in post-collisional settings.  

Within the Rhodopes, ophiolite complexes have been reported that occur at different 

levels of the nappe stack (Kolčeva et al., 1986; Liati & Mposkos, 1991). They might 

constitute potential remnants of an ancient subduction zone: either remnants of subducted 

oceanic crust or, alternatively, mafic associations within continental crust that were subducted 

together with continental lithologies. In the Rhodopes, especially in the Greek part, eclogites 

have previously been reported and described by Kolčeva et al. (1986), Liati & Seidel (1996), 

Liati & Gebauer (1999), and Liati (2005). Increasing attention has been drawn on these 

assemblages after the discovery of ultra-high-pressure (UHP) assemblages in these rocks as 

well as in metapelites and mélange zone rocks (microdiamonds, coesite relics, and supersilicic 

garnet; Mposkos & Kostopoulos, 2001; Perraki et al., 2006; Cornelius, 2008; Schmidt et al., 

2010; Janák et al., 2011). Although petrological and geochronological investigations were 

carried out on eclogites and ultramafic rocks in separate studies (e.g., Liati & Seidel, 1996; 

Wawrzenitz & Mposkos, 1997), no combination of both together with a detailed geochemical 

investigation was performed so far. 

Within this thesis work, eclogites from two different structural entities of the 

Rhodopean nappe stack (Middle and Upper Allochthon; after Janák et al., 2011) were 

sampled and a systematic petrological, geochemical, and geochronological study was carried 
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out, which is here reported in Chapter 2. The petrological study involving pseudosection 

calculations, carried out in collaboration with Dr. Jan Pleuger and Dr. Thorsten Nagel, 

revealed peak metamorphic conditions of ca. 700°C/20-25 kbar. In order to provide a robust 

time constraint on this high-pressure (HP) metamorphic event, Lu-Hf and Sm-Nd garnet 

chronometry were applied during the course of this thesis, which is particularly useful to date 

peak metamorphism in garnet-bearing mafic lithologies (Vance & O’Nions, 1990; Duchêne et 

al., 1997; Scherer et al., 1997, 2000; Blichert-Toft & Frei, 2001; Thöni, 2002; Lapen et al., 

2003; Lagos et al., 2007; Herwartz et al., 2008, 2011). By employing these techniques, two 

HP metamorphic events could be revealed: (1) a Lower Cretaceous event in the Upper 

Allochthon (126.0 ± 1.7 Ma) and (2) an Eocene event in the Middle Allochthon of the 

Rhodopes (44.6 ± 0.7 Ma; 43.5 ± 0.4 Ma; 42.8 ± 0.5 Ma). In combination with whole-rock 

trace element and Hf-Nd isotope analyses it could furthermore been shown, that the eclogites 

do not represent remnants of an oceanic basin. They rather exhibit island-arc basaltic trace 

element signatures and hence were most likely subducted intimately associated with the 

continental units. Based on these results, a new interpretation for the crustal architecture of 

the Rhodopes is proposed in Chapter 2, showing that subduction and high-P metamorphism 

are younger than previously assumed, in support of the view that the Rhodopes represent a 

large scale tectonic window that exposes the deepest nappe units of the Hellenides (see also 

Nagel et al., 2011). 

The post-collisional volcanism in the Rhodopes directly post-dates the exhumation of 

the metamorphic core complexes (e.g., Bonev et al., 2006) and is later followed by alkaline 

intraplate volcanism (28 – 26 Ma; Marchev et al., 1998a, b). This provides a unique 

opportunity to study the change in mantle composition beneath the Rhodopes, following 

collision and nappe emplacement. In contrast to island-arc volcanism, where the K-

enrichment is attributed to the breakdown of hydrous minerals in the subducting oceanic slabs 

with increasing depth of the Benioff zone beneath the island-arc (‘K-h relationship’; 

Dickinson & Hatherton, 1967; Schmidt & Poli, 1998), there are two different models 

proposed for source enrichment in post-collisional settings (single-stage and multi-stage; see 

Fig. 1.1 and explanation in text). The Bulgarian post-collisional rocks and the currently active 

Aegean island-arc are connected by the same subduction zone, which is active since at least 

the Late Jurassic (van Hinsbergen et al., 2005), and involved compositionally similar 

sediments in the source refertilization of both sample suites. This genetic relationship 

consequently permits the evaluation of both models. 
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 In Chapter 3 the petrogenetic evolution of the Bulgarian post-collisional lavas is thus 

tested using an extensive data set of major and trace element concentrations as well as Sr-Nd-

Hf-Pb isotope compositions, all measured during the course of this thesis work. The single-

stage model is evaluated by comparing the Sr-Nd isotope compositions of Bulgarian lavas 

with modelled compositions of putative ancient lithospheric domains. As alternative, the 

multi-stage model is assessed by comparing compositions of the Bulgarian lavas with those of 

calc-alkaline lavas from Santorini (Aegean arc) that originate from presently active 

subduction zone processes. In addition to the Bulgarian lavas, Chapter 3 therefore includes 

new major, trace element and Sr-Nd-Hf-Pb isotope data for lavas from Santorini. These are 

evaluated together with literature data to infer the mode of source enrichment in the Aegean 

realm.  

The Bulgarian lavas exhibit an unusually broad range from medium-K to high-K and 

shoshonitic compositions, exhibiting radiogenic 87Sr/86Sr (0.706 – 0.709), and unradiogenic 

εNd (-5.7 to -1.9) and εHf isotope signatures (-3 to +3). The trace element and isotope budget 

of the lavas clearly mirrors mantle source processes as it was apparently well-buffered against 

shallow level assimilation as documented by major element and Sr-Nd isotope systematics. 

Modelling of these Sr-Nd isotope compositions of the Bulgarian lavas argues for a young 

(Meso- to Cenozoic) source enrichment. Therefore single-stage models involving melting of 

ancient, > 1 Ga old lithospheric mantle can be confidentially ruled out, in agreement with 

tectonic models for the region. The enriched isotope signatures together with a pronounced 

enrichment of incompatible elements rather indicate mantle refertilization by subduction zone 

processes closely related in time to eruption of the lavas. The subduction components are 

similar to those present in the sources of Santorini lavas, involving large amounts of 

continent-derived sediments. Collectively, the data presented for the Bulgarian lavas are 

therefore clearly in favour of a multi-stage model. 

 Trace element analyses carried out via quadrupole-ICPMS on the Bulgarian lavas in 

Chapter 3 suggest high concentrations of the high-field-strength elements (HFSE). The group 

of HFSE comprises elements with a high charge/size ratio like Nb, Ta, Zr, and Hf and also 

elements like W, Sb, Mo that are defined as “extended” HFSE group. High-field-strength 

elements are of particular interest in magmatic systems, as e.g., Nb-Ta and Zr-Hf are 

considered geochemical twins and display similar compatibility during mantle melting. 

However, recent work has shown that the silicate portion of the Earth is depleted in Nb with 

respect to Ta, leading to subchondritic Nb/Ta (< 20) in the mantle and the crust (see Fig. 1.3a; 

Münker et al., 2003). Several hypothesis have been proposed to explain this so-called ‘Nb-
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paradox’: (1) a hidden reservoir with high Nb/Ta (Rudnick et al., 2000; Kamber & Collerson, 

2000), (2) the preferential partitioning of Nb in the core during the conditions of core 

formation (Wade & Wood, 2001), (3) collisional erosion of a high Nb/Ta protocrust (e.g., 

O’Neill & Palme, 2008), and (4) an inherited feature from distinct groups of carbonaceous 

chondrites (CV group, Münker et al., 2003). Most recently it has been proposed that up to 30 

% of the ‘missing Nb’ may potentially be stored in the sublithospheric mantle owing to 

widespread carbonatite metasomatism (high Nb/Ta) recorded in the sources of continental 

basalts (Pfänder et al., 2011).  

 

 
Fig. 1.3.: 

(a) Major terrestrial silicate reservoirs in Nb/Ta - Zr/Hf space (modified after Münker et al., 2003), illustrating 

the subchondritic Nb/Ta of all reservoirs. 

(b) Nb/Ta vs. Nb concentration modified after Stolz et al., 1996; some high-K island-arc basalts from Indonesia 

show Nb/Ta up to 33, which suggests that these lavas might tap a high Nb-Ta source in the mantle.  

 

K-rich lavas are of particular interest in this respect, as they might tap mantle 

reservoirs with elevated Nb/Ta ratios. Stolz et al. (1996) reported HFSE data for K-rich rocks 

from Indonesia using spark source mass spectrometry (SSMS), yielding Nb/Ta of up to 33 

(see Fig. 1.3b), suggesting that such potassic rocks might tap a high-Nb/Ta source in the upper 

mantle. The Bulgarian lavas are uniquely suited to test this hypothesis in that the entire 

spectrum of K-enrichment found elsewhere in subduction zone systems is present in the 

sample suite. The HFSE patterns of Bulgarian lavas can subsequently be compared to the 

island-arc lavas of Santorini that represent the youngest volcanic suite of the Aegean 

subduction system. Furthermore, the extended HFSE W, Mo, and Sb are important proxies for 

the sediment flux in subduction zones due to their high concentrations in terrigeneous and 

pelagic sediments and their mobility in subduction zone fluids and hydrothermal systems (see 
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König et al., 2008). Different mobilities of W, Mo, and Sb at reducing or oxidizing conditions 

further enables to place constraints on redox conditions during slab dehydration and melting.  

In Chapter 4 the first high-precision measurements of the HFSE and W for mafic K-

rich volcanic rocks are reported. The analyses were carried out via isotope dilution and multi-

collector-ICPMS. Although concentrations of the HFSE are consistently high, no significant 

fractionations of Nb/Ta and Zr/Hf were observed, compositions of the samples rather overlap 

with values found for MORB (Büchl et al., 2002). The group of absarokites, however, 

displays near chondritic Nb-Ta ratios (~ 20; Münker et al., 2003), which can be attributed to 

the fractionation of phlogopite and does not mirror source processes. Employing HFSE ratios 

like Zr/Nb, 176Lu/177Hf, and Zr/Hf in combination with the Hf isotope compositions reported 

in Chapter 3 confirms a strong source overprint by sediment-derived melts, controlling the 

elemental budgets of all HFSE. HFSE ratios indicative for significant fractionation by 

residual phases like rutile (Nb/Ta), zircon (Zr/Hf) or allanite (Nb/La) rule out any major 

control of such phases on the Nb-Ta-Zr-Hf budget of the K-rich rocks.  

The elemental budget of the extended HFSE (W, Mo, Sb) is stronger enriched in the 

Bulgarian K-rich lavas than in the Santorini lavas, while both suites are considerably enriched 

compared to intra-oceanic island arcs (e.g., König et al., 2008; 2010). Whereas the W, Sb, and 

Mo budgets in the Bulgarian lavas are primarily controlled by dehydration of the slab and 

sediments (Sb) and mobilization from subducted terrigenous sediments by partial melts (W, 

Mo), the W budget in the Santorini lavas is dominated by hydrous sediment-melts. Small 

amounts of residual rutile might buffer the W budget to a small degree, which is the cause for 

the slightly lower W/Th of the Santorini lavas compared to MORB. A relative mobility order 

during sediment-melt mediated source overprint of Th > W > Ba > Nb was established, which 

is in contrast to fluid-dominated intra-oceanic island-arcs, where Ba has been shown to be 

more mobile than W. The difference is possibly caused by residual phengite in the subducted 

sediments. The Sb and Mo budget in the Santorini lavas is primarily controlled by the 

sediment-derived melts, which is less efficient than fluid-mobilization as recorded for the 

Bulgarian lavas, resulting in the mobility order W > Mo > Sb. Altogether, the W-Mo-Sb 

systematics of both sample suites argue for a source overprint by terrigeneous sediments 

rather than pelagic clays, which is in contrast to other island-arcs with low W/Mo like the 

Solomon Islands or Tonga. 

Collectively, the high precision HFSE data reported in Chapter 4 provide no evidence 

for a volumetrically important high Nb/Ta reservoir in the sources of the Mediterranean high-

K magmas. However, the extended HFSE systematic of the K-rich rocks emphasize the 
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exceptionally high magnitude of incompatible element enrichment compared to other island-

arcs, owing to selective source enrichment by sediment-derived melts.   
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- Chapter 2 - 

 

Timing of high-pressure metamorphic events in the 

Bulgarian Rhodopes from Lu-Hf garnet geochronology 

 

 

2.1. Introduction 

 

The convergence between Africa and the Eurasian continent since the Jurassic led to 

the closure of the Tethyan realm in a protracted succession of subduction and collision events 

involving several micro-plates (Stampfli & Borel, 2002; van Hinsbergen et al., 2005). In this 

context, rock units of both oceanic and continental affinity were subducted and 

metamorphosed at high-pressure (HP) and even ultra-high pressure (UHP) conditions (e.g., 

Gebauer et al., 1997; Mposkos & Kostopoulos, 2001), and subsequently they were exhumed 

and incorporated into the evolving Alpine orogen. Constraining the exact timing of these 

events as well as characterization of the protoliths involved is crucial for reconstructing the 

geodynamic evolution of the Eastern Mediterranean realm. The Rhodopes, which are exposed 

in Southern Bulgaria and Northern Greece (Fig. 2.1, 2.2), are a key locality to understand the 

succession of HP events in the eastern Mediterranean as they represent the link between the 

Hellenic-Dinaric thrust belt and the Eurasian continental margin. 

In the Rhodopes, evidence for the presence of deeply subducted oceanic and 

continental fragments reaching up to UHP conditions has been discovered in eclogites, 

metapelites and mélange-zone rocks (Mposkos & Kostopoulos, 2001; Perraki et al., 2006; 

Cornelius, 2008; Schmidt et al., 2010; Janák et al., 2011). However, only limited 

geochronological and geochemical data for the eclogite-facies rocks are available so far and 

the results are inconsistent. Based on zircon dating, Liati (2005) postulated four episodes of 

HP to UHP metamorphism whereas Krenn et al. (2010) argue that UHP metamorphism was 

confined to ca. 180 Ma, followed by decompression. 

In the last two decades, direct dating of HP metamorphic events in Alpine or older 

metamorphic rocks has been improved by the application of the Lu-Hf (and Sm-Nd) 

geochronometers to metamorphic garnet (e.g., Vance & O’Nions, 1990; Duchêne et al., 1997; 

Amato et al., 1999; Scherer et al., 1997, 2000; Blichert-Toft & Frei, 2001; Thöni, 2002; 
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 Lapen et al., 2003; Lagos et al., 2007; Herwartz et al., 2008, 2011; Smit et al., 2010). The 

major advantages of this approach are: (1) high Lu/Hf (and Sm/Nd) ratios in garnet, (2) the 

additional information from initial Hf-Nd isotope compositions about the nature of the 

protolith and (3) the fact that garnet ages can be tied to specific P-T conditions. New 

analytical approaches (e.g., Lagos et al., 2007) also allow the selective digestion of garnet, 

thus minimizing effects of inclusions that are in isotopic disequilibrium with the host garnet. 

In this study, we present Lu-Hf and Sm-Nd isotope data for whole rocks and 

omphacite/garnet mineral separates for four eclogite samples from two different tectonic units 

of the Bulgarian Rhodopes. These data are complemented by element profiles of garnet 

obtained by LA-ICP-MS and electron microprobe, whole rock major and trace element 

analyses and are furthermore combined with petrological observations and phase diagram 

calculations. The results lead to a fundamental tectonic re-interpretation of the Rhodopes as 

the most internal portion of the Hellenides rather than an independent older orogen. 

 

 

2.2. Geological overview 

 

The Rhodopes are tectonically sandwiched between the Hellenic-Dinaric thrust belt in 

the southwest and the Eurasian continental margin, including the Balkanides, to the North 

(Fig. 2.1). To the south, the Rhodopes extend into Greece and are partially covered by the 

Aegean Sea. The present study focuses on the Bulgarian part of the Rhodopes, which is built 

of several metamorphic thrust units that were re-structured by intense extension in the Eocene 

and Miocene (e.g., Burg et al., 1996; Kilias et al., 1999; Krohe & Mposkos, 2002; Bonev et 

al., 2006; Pleuger et al., 2011). The extensive nomenclature for individual, local units so far 

lacks a consistent classification scheme. Here, we follow the approach of Janák et al. (2011), 

referring to four large superunits: the Lower, Middle, Upper, and Uppermost Allochthon (Fig. 

2.1, 2.2). The nomenclature introduced by Janák et al. (2011) also allows a direct tectonic 

correlation between the Rhodopes in the strict sense and the Serbo-Macedonian Massif further 

southwest. A short description of the respective units along with the most important available 

geochronological data is given in Table 2.1. 
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Fig. 2.1: 

Geological overview of the Bulgarian and Greek Rhodopes; modified after Tückmantel et al. (2008) and Jahn-

Awe et al. (2010). Marked field illustrates map shown in Fig. 2.2. 
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The Lower Allochthon is exposed south of the Nestos Shear Zone (“Rhodope 

Metamorphic Core Complex” or “Pangaion-Pirin Complex”; Dinter & Royden, 1993; Dinter, 

1998; Georgiev et al., 2010; Jahn-Awe et al., 2010) as well as in three metamorphic core 

complexes (Arda – Byala Reka/Kechros – Kesebir/Kardamos) that form extensive domes in 

the eastern part of the Rhodopes (Fig. 2.1, 2.2). The Lower Allochthon is composed of  

Variscan basement (e.g., Wawrzenitz & Mposkos, 1997; Peytcheva et al., 2004; Ovtcharova et 

al., 2004; Turpaud & Reischmann, 2010) and a meta-sedimentary sequence, reaching 

greenschist- to amphibolite-facies metamorphism in the Pangaion-Pirin Complex and 

migmatisation in the Arda, Byala Reka/Kechros, and Kesebir/Kardamos complexes. 

Migmatisation in the Arda dome took place at 37.8 ± 1.5 Ma (Cherneva et al., 2002). 

 

 

Fig. 2.2: 

Sample localities of the four studied eclogite samples: Rh-83, Rh-89 and Rh-197 from the Middle Allochthon 

(Starcevo Unit and Chepelare suture) and Rh-210 from the Upper Allochthon (Kardzali Unit). Modified after 

Jahn-Awe et al. (2011). 

 

 

 

 

 



 21 

T
a
b
le
 2
.1
: 
C
o
m
p
il
a
ti
o
n
 o
f 
g
e
o
c
h
ro
n
o
lo
g
ic
a
l 
d
a
ta
 o
f 
th
e
 R
h
o
d
o
p
e
 t
h
ru
s
t 
u
n
it
s

L
o

w
e
r 

A
ll

o
c

h
th

o
n

M
id

d
le

 A
ll

o
c
h

th
o

n
U

p
p

e
r 

A
ll

o
c
h

th
o

n

C
o

rr
e
s

p
o

n
d

s
 t

o
P

a
n
g
a

io
n

-P
ir
in

-C
o
m

p
le

x 
[1

]
S

id
ir
o

n
e
ro

-M
e

s
ta

 U
n
it

K
im

i 
C

o
m

p
le

x 
(E

a
s
te

rn
 R

h
o
d
o

p
e
s
)

[1
]

J
a
h
n
-A

w
e
 e

t 
a
l.
 (

2
0
1
0
)

T
h
ra

c
ia

 t
e

rr
a
n
e

 [
2
]

S
ta

rc
e
v
o
 U

n
it

V
e

rt
is

k
o

s
/O

g
ra

z
h
d
e
n

 u
n
it
 (

S
M

M
)[

1
2
]

[2
]

T
u
rp

a
u
d
 &

 R
e
is

c
h
m

a
n
n

 (
2
0
1
0

)

A
s
e
n
ic

a
 U

n
it

K
a
rd

ž
a

li 
U

n
it

[3
]

P
e

y
tc

h
e
v
a

 e
t 

a
l.
 (

2
0
0
4

)

M
a
d
a
n

 U
n
it

[4
]

L
ia

ti
 &

 G
e

b
a
u
e

r 
(1

9
9
9
)

B
o
ro

v
ic

a
 U

n
it

[5
]

L
ia

ti
 e

t 
a

l.
 (

2
0
0
2

)

A
rd

a
 2

 U
n
it

[6
]

L
ia

ti
 (

2
0
0
5

)

[7
]

B
a

u
e
r 

e
t 

a
l.
 (

2
0
0
7

)

E
x
p

o
s
u

re
M

e
ta

m
o
rp

h
ic

 c
o
re

 c
o
m

p
le

x
e
s

N
o
rt

h
 o

f 
N

e
s
to

s
 S

h
e

a
r 

z
o

n
e

E
a

s
te

rn
 R

h
o
d
o

p
e
s
 a

ro
u
n
d
 c

o
re

 c
o
m

p
le

x
e
s

[8
]

M
p
o
s
k
o
s
 &

 W
a
w

rz
e
n
it
z
 (

1
9
9
5

)

S
o
u
th

 o
f 

N
e
s
to

s
 S

h
e

a
r 

z
o

n
e

a
ro

u
n
d
 c

o
re

 c
o
m

p
le

x
e
s

W
e

s
te

rn
 R

h
o
d
o

p
e
s

[9
]

W
a

w
rz

e
n
it
z
 &

 M
p
o
s
k
o

s
 (

1
9
9
7

)

[1
0

]
C

o
rn

e
liu

s
 (

2
0
0
8
)

L
it

h
o

lo
g

ie
s

C
o
m

p
o
s
it
e
 u

n
it

M
ix

e
d
 u

n
it
 (

c
o
n
ti
n
e
n
ta

l 
a
n

d
 o

c
e
a
n
ic

)
C

o
m

p
o
s
it
e

 u
n

it
[1

1
]

H
im

m
e
rk

u
s
 e

t 
a
l.
 (

2
0
0
9
a
)

V
a

ri
s
c
a
n
 b

a
s
e

m
e
n

t 
(o

rt
h

o
g
n
e
is

s
e

s
)

in
tr

u
d
e
d
 b

y
 a

rc
 g

ra
n

it
o
id

s
m

e
ta

p
e
lit

e
s
, 

g
n
e
is

s
e
s
, 

a
m

p
h
ib

o
lit

e
s

[1
2

]
H

im
m

e
rk

u
s
 e

t 
a
l.
 (

2
0
0
9
b
)

 m
e

ta
s
e

d
im

e
n
ta

ry
 s

e
q
u
e

n
c
e

u
lt
ra

m
a

fi
c
s
 (

d
u

n
it
e
s
, 

p
y
ro

xe
n

it
e
s
)

[1
3

]
O

v
tc

h
a
ro

v
a
 e

t 
a
l.
 (

2
0
0
4
)

m
a

rb
le

s
 h

o
s
ti
n
g
 e

c
lo

g
it
e
 b

o
u
d

in
s

[1
4

]
K

re
n
n

 e
t 

a
l.
 (

2
0
1
0

)

[1
5

]
L
ip

s
 e

t 
a

l.
 (

2
0
0
0

)

M
e
ta

m
o

rp
h

ic
 g

ra
d

e
g
re

e
n
s
c
h

is
t 

to
 a

m
p
h

ib
o
lit

e
 f

a
c
ie

s
U

p
 t

o
 e

c
lo

g
it
e
-f

a
c
ie

s
E

c
lo

g
it
e
-f

a
c
ie

s

L
o
c
a
lly

 r
e
a
c
h
in

g
 U

H
P

 (
m

ic
ro

d
ia

m
o
n
d
s
)

L
o

c
a
lly

 r
e
a
c
h
in

g
 U

H
P

 (
m

ic
ro

d
ia

m
o

n
d
s
)

F
e
ls
ic
 r
o
c
k
s
/M
e
ta
p
e
li
te
s

In
h

e
ri

te
d

 c
o

m
p

o
n

e
n

ts
 *

3
2
0
0

-5
0
0
 –

 4
1

0
 –

 3
5
6

 [
2
],

[6
],
[1

4
]

2
9
8
 [

7
]

3
3
0

 -
 2

5
0
 [

2
]

3
0
0

0
-2

3
7
0
 –

 4
5
1
 -

 2
9
0
 [

7
],

[1
0
]

P
ro

to
li

th
 c

ry
s
ta

ll
iz

a
ti

o
n

3
2
 [

1
];

 3
3
4

 –
 2

6
6

 [
2

],
[3

],
[9

],
[1

3
],

2
9
4

 [
4
],

[6
];

 1
7
0
 –

 1
3
4
 [

1
],

[2
],

[1
3
]

1
5
1
 [

1
0
];

 2
3

2
 [

1
1
];

 4
3
0
 [

1
2
]

M
e
ta

m
o

rp
h

is
m

E
o
c
e
n
e

 (
?
) 

[1
3
]

E
o

c
e
n

e
 [

4
],

[6
],

[1
],

[1
3

],
 +

 1
4

5
/1

4
8
 (

?
)[

1
4
],

[6
]

1
7
0
 –

 1
6
0
 [

7
]

8
2
 –

 6
5
 (

a
m

p
h
ib

o
lit

e
-f

a
c
ie

s
 ?

) 
[7

],
[8

]

C
o

o
li

n
g

 –
 U

p
li

ft
 -

 E
x
te

n
s

io
n

3
5
 –

 3
8
 -

 5
6
 [

3
],

[9
],

[1
3
]

5
2
.8

 -
 4

5
 -

 3
6

 -
 3

2
 [

4
],

[1
3
],

[1
5

]
6
5
 -

 6
2
 [

8
],

[5
]

M
a
fi
c
 r
o
c
k
s

n
o
n
e
 r
e
p
o
rt
e
d
 

P
ro

to
li

th
 c

ry
s
ta

ll
iz

a
ti

o
n

M
in

. 
7
7

.4
 b

is
 m

a
x
. 

2
9
4

 (
2
4
5
 –

 2
9
4
) 

[4
],

[6
]

1
1
7
.4

 (
?

)[
5
];

 2
8
8
 –

 2
0
0
 [

7
]

In
h
e

ri
te

d
: 

4
3
0
 [

6
]

M
e
ta

m
o

rp
h

is
m

4
2

.2
 –

 5
1
 [

4
],

[6
]

1
6
0
 (

H
T

) 
[7

]

1
2
0
-1

1
5

 (
H

P
) 

[7
],

[9
]

8
2
 –

 7
3

.5
 (

L
o
w

-g
ra

d
e
) 

[7
],

[5
]

* 
m

o
s
tl
y
 z

ir
c
o
n

 c
o
re

s
 i
n

 m
e

ta
p

e
lit

e
s
 a

n
d
 g

n
e
is

s
e
s
, 

in
te

rp
re

te
d
 t

o
 b

e
 i
n
h
e
ri

te
d
 f

ro
m

 s
e
d

im
e
n
ta

ry
 p

re
c
u

rs
o

r 
o
r 

fr
o
m

 a
s
s
im

ila
te

d
 m

a
te

ri
a
l

 

 

 

 

 

 

 

 



 22 

The Middle Allochthon corresponds to the Sidironero-Mesta Unit in the broad sense 

and includes the Madan, Arda 2, Starcevo, Borovica and Asenica Units in the Central 

Rhodopes (Table 2.1; Fig. 2.1, 2.2). The Middle Allochthon is equivalent to the “Rhodope 

Terrane” of Turpaud & Reischmann (2010) and Jahn-Awe et al. (2010) and is a mixed unit of 

continental and oceanic affinity, including orthogneisses derived from Jurassic to Early 

Cretaceous arc granitoids, and intruded by Eocene granitoids (U-Pb on zircons; Ovtcharova et 

al., 2004; Turpaud & Reischmann, 2010; Jahn-Awe et al., 2010). The metamorphic grade 

reached up to eclogite-facies (e.g., Kolčeva et al., 1986; Liati & Mposkos, 1990; Liati & 

Seidel, 1996). Furthermore, mineral relics and -compositions indicating UHP metamorphic 

conditions have been reported from several different localities from the base of the Middle 

Allochthon (microdiamond inclusions in garnet of metapelites; Mposkos & Kostopoulos, 

2001; Perraki et al., 2006; Schmidt et al., 2010). The timing for thrusting of the Middle on the 

Lower Allochthon along the top-to-the-southwest Nestos Shear Zone was recently confined 

by Jahn-Awe et al. (2010) to 55 - 32 Ma. An Eocene activity of the Nestos Shear Zone is also 

constrained by ca. 42 - 38 Ma old pegmatite veins affected by mylonitisation along the Nestos 

Shear Zone (Liati, 2005; Bosse et al., 2009). 

 

The Upper Allochthon is composed of the Kardžali Unit and the Kimi Complex in the 

Eastern Rhodopes and the Vertiskos/Ograzhden Unit in the Serbo-Macedonian Massif, which 

is regarded as the western continuation of the Rhodopes (Table 2.1 and Fig. 2.1, 2.2; Burg et 

al., 1996; Ricou et al., 1998; Himmerkus et al., 2009a, b). The Upper Allochthon is a 

composite unit made up of metapelites, gneisses, amphibolites, marbles, and boudins of 

eclogites and ultramafic rocks. The latter have previously been interpreted as melting residues 

and cumulates emplaced at the base of a thickened crust (Baziotis et al., 2008). A 

metamorphic grade of eclogite-facies up to UHP conditions has been documented for the 

Kimi Complex (Mposkos & Kostopoulos, 2001). Recently, microdiamond inclusions in 

zircons were also reported from the mélange zone at the base of the Upper Allochthon by 

Cornelius (2008). So far, the timing of UHP metamorphism in the Upper Allochthon could 

only be constrained between 200 and 41 Ma and is still a matter of debate for the Kimi 

Complex. Most recently an Early Jurassic age (~180 Ma) was suggested by Krenn et al. 

(2010). 

 

The Uppermost Allochthon consists of the Circum-Rhodope Belt as well as the 

Mandrica and Alexandropolis greenschists. These units consist of low-grade metamorphic 
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sedimentary and volcanic rocks, partly of oceanic affinity and were thrust northwards over the 

Eurasian margin in the Late Jurassic to Early Cretaceous (Bonev & Stampfli, 2003). 

 

 

2.3. Sample localities 

 

Three eclogite samples (Rh-83, Rh-89 and Rh-197) were taken from key localities in the 

Middle Allochthon and one sample (Rh-210) from the Upper Allochthon (GPS coordinates 

see Table 2.2). Rh-83 and Rh-197 were sampled near to each other, within the same sub-unit 

(Starcevo Unit of the Middle Allochthon; see Fig. 2.2). 

 

Sample Rh-83 is of particular importance, in that it is a sapphirine-bearing kyanite 

eclogite. It has been collected in a small creek bed ~300 m northeast of the town of Ardino, 

located at the top of the Ardino Mélange (Fig. 2.2). This mélange forms the basal part of the 

Starcevo Unit (Middle Allochthon) and is characterized by ortho- and para-gneisses, marbles, 

amphibolites and minor ultramafic rocks and eclogites. On top of the mélange towards east 

follow mixed gneisses of the Starcevo Unit proper. As sample Rh-83 was part of a stream 

boulder, it is not clear whether its original tectonic position was in the uppermost part of the 

mélange or upstream in the hanging-wall of the mélange within the mixed gneisses of the 

Starcevo Unit that also contain eclogites. 

 

Eclogite Rh-197 has been collected ~700 m to the northeast of Sransko village 

(southwest of Ardino; Fig. 2.2). It originates from lenses of amphibolite and eclogite enclosed 

in migmatitic gneisses of the Starcevo Unit. 

 

Eclogite sample Rh-89 originates from the so-called “Čepelare Shear Zone” (Fig. 2.2; 

Burg et al., 1990; Bosse et al., 2009; Gerdjikov et al., 2010), a mixed zone at the base of the 

Arda 2 Unit (Middle Allochthon). The sample has been collected ~1 km southeast of Beden 

village. At this locality, fine-grained eclogites and surrounding garnet-amphibolites form a 25 

m long and 10 m thick boudin embedded in gneiss. 

 

Eclogite sample Rh-210 originates from the Kardžali Unit, which is part of the Upper 

Allochthon (see Table 2.1). The sample has been collected ~3 km WNW of Drangovo village 

(Fig. 2.2). The sample originates from an eclogite boudin hosted by garnet-micaschists. More 
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eclogite outcrops can be found towards north-northeast and south-southwest in a thin band on 

top of a west-northwest-dipping extensional shear zone. 
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Table 2.2: Major and trace element analyses

Sample ID Rh-83 Rh-89 Rh-197 Rh-210

Unit Middle Allochthon Middle Allochthon Middle Allochthon Upper Allochthon

Sub-Unit Starcevo Unit Chepelare suture Starcevo Unit Kimi Complex

UTM coordinates E345379 E290760 E341746 E349781

N4606164 N4620157 N4601344 N4578464

Major elements

(wt.%)

SiO2 48.4 47.8 51.1 45.8

Al2O3 16.7 15.4 17.0 14.0

Fe2O3 10.3 12.4 9.2 14.0

MnO 0.17 0.21 0.18 0.25

MgO 8.32 7.84 6.71 7.43

CaO 10.2 9.34 9.86 12.9

Na2O 3.35 3.37 4.11 3.14

K2O 0.47 0.52 0.02 0.02

TiO2 1.63 2.38 1.18 2.29

P2O5 0.15 0.28 0.20 0.17

SO3 0.41 0.27 0.010 0.27

L.O.I. 0.00 0.19 0.00 0.00

Sum 100.2 100.2 99.6 99.9

Trace elements

(ppm)

Li 8.72 17.2 4.02 17.1

Sc 40.2 37.9 36.0 52.5

V 221 285 203 395

Cr 320 286 264 182

Co 43.4 45.2 32.9 45.6

Ni 94.1 142 54.2 62.0

Cu 35.1 44.7 41.3 74.0

Zn 81.5 106 95.9 103

Ga 17.7 22.8 17.9 18.4

Rb 12.4 15.1 0.986 0.594

Sr 194 151 166 86.6

Y 29.0 47.8 26.5 45.1

Zr 152 200 113 123

Nb 3.37 5.43 5.83 3.54

Mo 0.692 0.858 0.249 0.266

Sn 1.23 2.14 3.07 1.45

Sb 0.0768 0.178 0.0939 0.0487

Cs 0.788 0.464 0.107 0.0176

Ba 94.4 106 6.18 9.36

La 8.57 10.1 19.1 0.894

Ce 22.7 27.4 40.4 3.33

Pr 3.36 4.23 5.22 0.701

Nd 15.7 21.0 21.8 4.73

Sm 4.24 6.34 5.18 2.86

Eu 1.52 2.07 1.58 1.31

Gd 4.91 7.76 5.16 5.61

Tb 0.826 1.33 0.773 1.14

Dy 5.32 8.67 4.70 7.91

Ho 1.10 1.80 0.989 1.69

Er 3.03 4.97 2.86 4.78

Tm 0.445 0.731 0.435 0.719

Yb 2.94 4.81 2.89 4.75

Lu 0.435 0.706 0.432 0.709

Hf 3.42 4.92 2.82 3.24

Ta 0.232 0.371 0.381 0.264

W 0.209 0.545 0.461 0.355

Tl 0.174 0.154 0.0201 0.024

Pb 2.63 1.94 5.32 0.727

Th 0.585 0.927 4.01 0.0573

U 0.132 0.195 0.914 0.194
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2.4. Analytical techniques 

 

Sample preparation, separation and digestion 

 

Four eclogite samples (Rh-83, Rh-89, Rh-197, Rh-210) were analyzed for their whole 

rock major and trace element concentrations as well as for Lu-Hf and Sm-Nd isotope 

compositions. The results along with GPS coordinates of sample localities are listed in Table 

2.2 and 2.3. 

After removing the weathering crusts with a rock saw, the samples (total weight ca. 2-3 kg) 

were crushed in a steel mortar. A representative aliquot was then ground in an agate mill and 

the powder was subsequently used for bulk rock analyses. For trace element analyses, the 

sample powder was digested in a 1:1 mixture of HNO3-HF in Parr bombs for three days to 

ensure complete sample digestion and was subsequently dried down with one mL of 

perchloric acid. A second aliquot of the crushed sample was sieved and the fractions > 63 µm 

were purified with a Frantz magnet separator. In order to prevent a selective separation of 

either garnet rim or core, the settings were adjusted to remove non-magnetic minerals only. 

Subsequently, three to five garnet separates per sample were hand-picked under a binocular 

lens. Both visibly inclusion-free and inclusion-bearing garnet fractions were separated in 

order to avoid biasing the results towards either garnet rims or cores. For sample Rh-210 an 

additional omphacite fraction was separated. Nine to 120 mg of mineral fractions were used 

for Lu-Hf and Sm-Nd measurements (see Table 2.3). Prior to digestion, the whole rock 

powders and mineral separates were spiked with a mixed 176Lu-180Hf and 149Sm-150Nd tracer. 

The digestion procedures employed for whole rocks (bomb digestion) and mineral separates 

(tabletop digestion) were described in detail by Lagos et al. (2007) and Herwartz et al. (2008). 

The Lu-Hf separation as well as an additional clean-up step for the Hf fraction was carried out 

using the method of Münker et al. (2001). Samarium-Nd separation was carried out using the 

REE-rich matrix cut left over from the Hf separation, using BioRad® AG50W-X8 cation resin 

(200 – 400 mesh) and Eichrom Ln-spec resin (Pin & Zalduegui, 1997). Procedural blanks 

were less than 50 pg for both Hf and Nd. 

 

Measurements 

 

Major element whole rock analyses were carried out using a PANalytical ProTrace 

XRF at Universität Bonn, Germany. The whole rock trace element contents were determined 



 28 

by quadrupole ICPMS using an Agilent 7500cs mass spectrometer at Universität Kiel, 

Germany. Analytical procedures followed those of Garbe-Schönberg (1993). Lutetium, Hf, 

Sm and Nd were measured using the Thermo-Finnigan Neptune MC-ICP-MS at the 

Steinmann-Institut Bonn, operated in static mode. Values of 143Nd/144Nd and 176Hf/177Hf were 

corrected for mass fractionation using the exponential law and 146Nd/144Nd = 0.7219 and 
179Hf/177Hf = 0.7325, respectively. Measured 143Nd/144Nd and 176Hf/177Hf values of the 

samples are reported relative to 143Nd/144Nd = 0.511859 for the La Jolla Nd standard 

(measured value = 0.511836 ± 47 (2SE); n = 2) and 176Hf/177Hf = 0.282160 for the Münster 

Ames Hf standard (measured value = 0.282161 ± 44 (2SE); n = 27) that is isotopically 

identical to the JMC-475 standard. 

Several garnet grains were also analyzed in situ by laser ablation mass spectrometry 

along line profiles (Fig. 2.5), in order to measure their Mn and Lu abundances. Laser ablation 

of these garnet grains was carried out using a Resonetics M50-E ATL Excimer 193 nm laser 

system coupled to a Thermo-Finnigan X-series 2 quadrupole ICP-MS (Steinmann-Institut 

Bonn). Spot sizes were set between 33 and 75 µm depending on the size of the garnets 

analyzed, as well as the amount of mineral inclusions found in the cores of the individual 

grains. Laser fluence at the sample surface was measured at 7 J/cm-2, and the laser repetition 

rate was set to 15 Hz. Count rates were normalized using 29Si as the internal standard, and one 

external standard (NIST-610 glass, Pearce et al., 1997). The isotopes 29Si, 43Ca, 57Fe, 55Mn 

and 175Lu were monitored. Data reduction and evaluation was carried out following the 

procedure laid out by Longerich et al. (1996). Electron microprobe BSE images of the garnets 

before and after LA-ICP-MS analyses are enclosed in the Appendix material. 

Mineral major element abundances were analyzed by spot analysis using a JEOL superprobe 

JXA-8900 microprobe (Universität zu Köln) and a JEOL superprobe JXA-8200 microprobe 

(Steinmann-Institut Bonn) in wavelength dispersive mode (WDS) employing 15kV 

acceleration voltage and 15 nA beam current. Calibrations for Mg, Al, Si, Ti, Ca, Fe, Na, K, 

Cr, and Mn were carried out on andradite, rutile, basaltic glass (VG2 – USNM 111240/52), 

and Jadeite-Diopside synthetic glass. In addition, high-resolution X-ray maps were made for 

selected garnet grains of all four samples, in order to identify and characterize their zonations 

with respect to Ca, Fe, Mg, and Mn (see Fig. 2.4, 2.5). X-ray maps were performed using a 

JEOL superprobe JXA-8200 microprobe (Steinmann-Institut Bonn), with 15kV acceleration 

voltage and 100nA beam current over 24 hours. 
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Fig. 2.3: 

Results of the calculation of equilibrium phase diagrams for the samples Rh-83, Rh-89 and Rh-197. 

a: Equilibrium assemblage diagram for the bulk composition of Rh-83 (Table 2.2) in an Si-Al-Ti-Fe-Mn-Mg-Ca-

Na-K system with excess H2O. Grey-shaded area corresponds to the observed high-pressure assemblage. (1) 

Grt + Phe + Cpx + Ctd + Lws + Rt + Qtz; (2) Grt + Phe + Cpx + Ctd + Rt + Qtz; (3) Grt + Phe + Cpx + Ctd + 

Am + Rt + Qtz; (4) Grt + Fsp + Phe + Am + Rt + Spn + Qtz; (5) Grt + Fsp + Phe + Am + Spn + Qtz; (6) Grt 

+ Fsp + Phe + Cpx + Am + Rt + Qtz; (7) Grt + Fsp + Phe + Cpx + Rt + Qtz; (8) Grt + Fsp + Bt + Cpx + Am 

+ Rt + Qtz; (9) Grt + Fsp + Bt + Am + Spn + Qtz. 

b: Equilibrium assemblage diagram for the estimated composition of Al-rich coronae around decomposing 

kyanite in Rh-83 (Table 2.2) in an Si-Al-Ti-Fe-Mg-Ca-Na system. Grey-shaded area corresponds to the 

observed assemblage. (1) Grt + Fsp + Spl + Spr + Rt + Crn; (2) Fsp + Spl + Opx + Spr + Rt + Crn; (3) Fsp + 

Spl + Crd + Spr + Rt + Crn; (A) Boundary of stability field of Fsp + Spl + Spr + Rt + Crn with excess H2O. 

c: Equilibrium assemblage diagram for the bulk composition of Rh-89 (Table 1.2) in an Si-Al-Ti-Fe-Mn-Mg-Ca-

Na-K system with excess H2O. Grey-shaded area corresponds to the observed high-pressure assemblage 

d: Pressure-temperature path for the exhumation of the lower, eclogite-bearing part of the Middle Allochthon 

constrained by the high-pressure assemblage (see Fig. a) and Al-rich coronae (Pl + Spl + Rt + Spr + Crn; see 

Fig. b) observed in Rh-83, and Al-rich coronae (Pl + Ky + Spl + Spn + Crn) observed in Rh-197. 

e: Equilibrium assemblage diagram for the bulk composition of Rh-210 (Table 2) in an Si-Al-Ti-Fe-Mn-Mg-Ca-

Na-K system with excess H2O. Grey-shaded area corresponds to the observed high-pressure assemblage. (1) 

Grt + Phe + Cpx + Am + Rt + Qtz; (2) Grt + Fsp + Cpx + Am + Rt + Spn; (3) Grt + Fsp + Cpx + Am + Rt. 

 

 

2.5. Petrography and Equilibrium Phase Diagrams 

 

Mineral compositions of garnet, omphacite, amphibole, phengite, plagioclase and 

sapphirine were analyzed by electron microprobe, the results of which are listed in Tables 2.4 

and 2.5. Using these data, we calculated equilibrium assemblage diagrams (Fig. 2.3) for the 

samples Rh-83, Rh-89, and Rh-210 using the whole rock compositions obtained by XRF 

(Table 2.2), the Domino-Theriak program package (de Capitani & Petrakakis, 2010) and a 

modified JUN92 database (Berman, 1988; upgrade 1992). The database was modified with 

non-ideal solid solution models for garnet (Berman, 1990), phengite (Massonne & Szpurka, 

1997), and feldspar (Fuhrman & Lindsley, 1988) and ideal approximations for clinopyroxene 

(endmembers: diopside-hedenbergite-jadeite), clinoamphibole (tremolite, pargasite, Fe-

pargasite, glaucophane, tschermakite), spinel (spinel-hercynite), biotite (phlogopite-annite-

Mn-biotite), chlorite (chlinochlore-daphnite-Mn-chlorite), and sapphirine. For sapphirine, we 

chose Mg-sapphirine Mg3.5AL9Si1.5O20 and Fe-sapphirine Fe3.5AL9Si1.5O20 as end-members, 

as these are compositionally close to the sapphirine observed in sample Rh-83. ∆fH0 and S0 of  
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the sapphirine and daphnite end-members were adopted from Holland & Powell (1998) and 

slightly adjusted so that the internal consistency of the database was maintained. 

Table 2.4: 

Representative microprobe analyses 

of eclogite phases in weight % and 

p.f.u.. All Fe is calculated as Fe2+. 

See also Table 2.5. 
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The equilibrium assemblage diagrams were calculated for water-saturated Si-Al-Ti-Fe-Mn-

Mg-Ca-Na-K bulk rock compositions (see Table 2.2). In order to constrain the retrograde P-T 

path, we also calculated one diagram in a Si-Al-Ti-Fe-Mn-Mg-Ca-Na-K system for a 

retrograde corona forming around decomposing kyanite (sample Rh-83). The composition  

was estimated from the proportions and compositions of the minerals constituting the coronae 

(see Table 2.5). 

 

Sample Rh-83 from the Middle Allochthon (Starcevo Unit) is a sapphirine-bearing 

kyanite eclogite, from the same unit as and similar to those described by Kolčeva et al. 

(1986), and Liati & Seidel, (1996) It contains the high-pressure assemblage garnet-

omphacite1 (Jd37-43)-kyanite-quartz-rutile-zoisite-apatite, corresponding to 600-830°C/19-27.5 

kbar in the equilibrium assemblage diagram (Fig. 2.3a). Phengite was not observed, probably 

because it was completely consumed during retrograde growth of amphibole and biotite. Most 

of the omphacite was replaced during several stages of retrograde overprint, starting with the 

growth of pargasitic amphibole (mostly around garnet) and omphacite2 (Jd17-26)-plagioclase 

symplectites (mostly at the expense of omphacite1) that show ambiguous textural relations 

with the pargasitic hornblende. Symplectites of plagioclase (Ab29-57An41-69), spinel, and 

sometimes rutile, sapphirine and/or corundum formed around decomposing kyanite (see BSE 

images in the Appendix). Biotite is locally pseudomorphic after amphibole and together with 

plagioclase forms patches after the sapphirine-bearing symplectite coronae. Garnets in Rh-83 

are several millimeter large, corroded grains that display a complex chemical zonation (Fig. 

2.4a). A wide rim domain displays patches enriched in Fe and Ca and depleted in Mg. The 

inclusion-rich core has a composition similar to the outermost rim with respect to Fe, Mg, and 

Ca, but shows a higher Mn content than the rest of the grain. This Mn-rich domain preserves 

an edgy euhedral shape in some garnet grains (Fig. 2.4a) and a more diffuse shape in others 

(Fig. 2.5a). We interpret this compositional pattern to result from partial resetting (resorption) 

of the garnet rims that also result in an increase in abundance of trace elements like Lu in the 

resorbed rims (Fig. 2.5a and discussion below). 
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Fig. 2.4 a-d: 

Major element distribution maps and cross sections through representative garnets from the four eclogite 

samples obtained by electron microprobe analyses. 
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Fig. 2.5 a-d: 

Major element distribution map of the garnets analyzed by LA-ICP-MS as well as the element profiles obtained 

by LA-ICP-MS for Lu and Mn. BSE images of the selected garnet grains before and after laser ablation are 

enclosed in the Appendix. Note that “Res. Rim” in the Lu and Mn profiles of c) corresponds to resorbed garnet 

rim domains. 
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Based on chemical and textural evidence we propose that the growth of the 

plagioclase-spinel-sapphirine symplectites around kyanite was controlled by local chemical 

equilibria. Therefore, we used a composition estimated as described above (Table 2.5) as input 

for the calculation of the equilibrium assemblage diagram (Fig. 2.3b). For a dry composition, 

the observed assemblage plagioclase-spinel-sapphirine-corundum-rutile is predicted to be 

stable in the grey-shaded field of Fig. 2.3b, i.e. above 610°C. Adding excess water to the same 

composition leads to a shift of the plagioclase-spinel-sapphirine-corundum-rutile stability 

field to higher temperatures, i.e. above 670°C. The maximum pressure is constrained by the 

boundary of the plagioclase-spinel-sapphirine-corundum-rutile stability field toward garnet 

stability and increases from c. 8 kbar at 710°C to c. 12.5 kbar at 900°C. It is therefore realistic 

to assume that the sapphirine-bearing coronae formed at temperatures around or even below 

700°C, i.e., roughly at the same temperatures where the orthogneissic country rocks 

underwent migmatisation (Georgieva et al., 2002). Likewise, if calculated for a broader 

compositional range, the absence of garnet from the observed assemblage requires pressures 

significantly below those of a high-pressure granulite-facies overprint above 12 kbar, which 

was previously postulated by various authors (Liati & Seidel, 1996, Carrigan et al., 2002). 

 

The matrix assemblage of sample Rh-197 (Starcevo Unit) is much more strongly 

affected by retrogression than documented for sample Rh-83. However, large garnet 

porphyroblasts are much better preserved, are euhedral and clearly exhibit growth zonation 

(Figs. 2.4c, 2.5c). Manganese, Ca, and the Fe to (Fe+Mg) ratio show the classic bell-shaped 

distribution. Zonations of Fe and particularly Mn are edgy, discontinuous and parallel to the 

grain boundaries. Nevertheless, garnets in Rh-197 also display thin channels, along which 

transport and some re-equilibration might have occurred (Fig. 2.4c). However, Lu element 

profiles (Fig. 2.5c) strongly indicate that garnets in Rh-197 preserve their original trace 

element zonation displayed by the high Lu concentration in the core and decreasing 

concentrations towards the rims (see also discussion below). Clinopyroxene (Di62-79Hd6-

23Acm5-15Jd1-4) is abundant in symplectites with plagioclase. Pargasitic amphibole grew along 

the rims of garnet and within the matrix. Rh-197 also contains Al-rich symplectite patches 

comprising plagioclase (Ab46-57An43-53), kyanite, amphibole, spinel, ilmenite and sometimes 

corundum (see BSE images in the Appendix). Unlike in Rh-83, we did not observe specific 

mineral relicts within the symplectite patches. 
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Sample Rh-89 contains the high-pressure assemblage garnet-omphacite (Jd27-35)-

quartz-phengite-rutile, corresponding to the grey-shaded stability field in the phase diagram 

(Fig. 2.3c). Garnets occur as slightly corroded, euhedral grains and are much smaller than in 

the two previous samples (Fig. 2.4b, 2.5b). They show distinct Ca-poor and Fe- and Mg-rich 

rims. The Fe to (Fe+Mg) ratio is slightly elevated in the core. However, the distribution of Mn 

is flat (Fig. 2.4b, 2.5b).and indicates resorption of garnet. Altogether, the chemical zoning, at 

least of Fe, Mg, and Mn appear to be strongly reset in sample Rh-89, which is also 

documented by the enrichment of Lu in the rim domains (Fig. 2.5b). Metamorphic 

retrogression caused growth of pargasitic amphibole, plagioclase-clinopyroxene (Di70-83Hd0-

18Acm0-12Jd8-12) symplectites, and biotite together with plagioclase. Al-rich symplectites as in 

Rh-83 and Rh-197 were not observed in Rh-89. 

The overlapping stability fields of the high-pressure assemblages in samples Rh-83 

and Rh-89 and the Al-rich symplectites in both Rh-83 and Rh-197 allow to roughly constrain 

a pressure-temperature path for the exhumation of the lower part of the Middle Allochthon 

(Fig. 2.3d). 

 

The observed high-pressure assemblage in Rh-210 is garnet-omphacite (Jd32-41)-

amphibole-phengite-rutile. Mica is scarce (<1%) due to the low potassium content of the 

sample (0.02 wt.%). Garnets are again large (> 2 mm) and show original growth zonation 

with humps of Ca, Mn and the Fe to (Fe+Mg) ratio (Fig. 2.4d) and Lu (Fig. 2.5c) in the core. 

In the equilibrium assemblage diagram (Fig. 2.3e), this assemblage is predicted to be stable 

under somewhat lower pressures (15-19 kbar) than those estimated from the high-pressure 

assemblages of the samples from the Middle Allochthon (20 to 25 kbar). Sample Rh-210 

exhibits little evidence of retrogression other than the growth of chlorite along isolated cracks. 
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2.6. Geochemical results 

 

2.6.1. Major and trace elements 

 

The major and trace element concentrations of all four eclogite samples are given in 

Table 1.2. The four analyzed samples yield basaltic whole rock compositions (SiO2 = 45.8 – 

51.1 wt. %; MgO = 6.71 – 8.32 wt. %; Al2O3 = 14.0 – 17.0 wt. %), with both high Zr (113 – 

200 ppm) and compatible element contents (e.g., Cr = 182 – 320 ppm; Ni = 54.2 – 142 ppm). 

 

 

Fig. 2.6: 

Trace element composition of the four eclogite samples studied. 

a: CI-normalized trace element pattern of the four eclogite samples as well as OIB and N-MORB (after Sun & 

McDonough, 1989). 

b: Primitive-mantle normalized multi-element diagram of the four eclogite samples along with values for OIB 

and N-MORB for comparison (after Sun & McDonough, 1989). 

 

With the exception of sample Rh-210, all samples are LREE-enriched (LaN/YbN = 1.4, 

2.0, 4.5 for Rh-83, Rh-89 and Rh-197, respectively), but exhibit similar magnitudes of HREE 

abundances as N-MORB (Fig. 2.6a). Sample Rh-210 from the Upper Allochthon is 

characterized by a strong LREE depletion and a slight enrichment of the HREE with respect 

to N-MORB (LaN/YbN = 0.13). In the primitive mantle-normalized trace element diagram 

(Fig. 2.6b) sample Rh-210 is depleted in Th and La, Ce and Nd and displays positive 

anomalies of high field strength elements (HFSE) like Nb, Ta, Zr and Hf. In contrast, sample 

Rh-197 displays a striking negative Nb-Ta anomaly and Th-U enrichment. Samples Rh-83 

and Rh-89 are enriched with respect to N-MORB (Fig. 2.6b), especially with regard to U and 

Th. All four samples display similar Nb/Ta ranging from 13.4 to 15.3 at high Zr/Hf (37.9 - 
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44.5), broadly overlapping the range of values found in MORBs and island-arc basalts (Büchl 

et al., 2002; Münker et al., 2004). 

 

 

2.6.2. Lu-Hf and Sm-Nd geochronology 

 

We analyzed the four eclogite samples for their Lu-Hf and Sm-Nd isotope 

compositions, using one whole rock aliquot as well as three to five mineral separates per 

sample (garnets and pyroxenes). The results of the Lu-Hf and Sm-Nd measurements are given 

in Table 2.3 and are illustrated in Fig. 2.7. Isochron regressions were calculated using 

ISOPLOT v.2.49 (Ludwig, 2001) and λ 176Lu = 1.867 × 10-11 yr-1 (Scherer et al., 2001; 

Söderlund et al., 2004). The external reproducibilities of the isochron calculations were 

estimated by the empirical relationship 2σ external reproducibility ≈ 4σm (σm = standard error 

of a single analysis; Bizzarro et al., 2003). 

The Hf contents of the whole rock samples range from 2.92 to 4.78 ppm and those of 

the garnets from 60 to 150 ppb. The 176Lu/177Hf of the garnets range from 1.60 to 3.78 and the 

pyroxenes from sample Rh-210 display a 176Lu/177Hf of 0.00124. For each sample, mineral 

separates and whole rock aliquots define statistically significant isochrons (MSWDs of 0.1 to 

0.7; Fig. 2.7), also suggesting full sample-spike equilibrium during tabletop digestion. The 

Lu-Hf ages of the samples from the Middle Allochthon are 44.6 ± 0.7 Ma for Rh-83 (n = 6), 

43.5 ± 0.4 Ma for Rh-89 (n = 4) and 42.8 ± 0.5 Ma for Rh-197 (n = 5). The sample from the 

Upper Allochthon (Rh-210) yields a Lu-Hf age of 126.0 ± 0.7 Ma (n = 6). 

 The Nd contents of the whole rock samples range from 4.28 to 20.1 ppm with 
147Sm/144Nd of 0.14 to 0.37. The garnet (Gt-4) and the pyroxene (Px-1) fractions of sample 

Rh-210 display Nd concentrations of 1.96 and 1.67 ppm with 147Sm/144Nd of 0.726 and 0.440, 

respectively. The Sm-Nd age determined for sample Rh-210 is 109 ± 11 Ma (n = 3). 

Samarium-Nd garnet analyses of the other three samples were hampered by the presence of 

inclusions with low Sm/Nd in garnet. 
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Fig. 2.7: 

Lu-Hf isochrons for the four eclogite samples and a Sm-Nd isochron of sample Rh-210 from the Upper 

Allocthon. The elevated errors on sample splits Rh-83 Gt-4 and Gt-5 as well as Rh-197 Gt-4 reflect the smaller 

amount of analyzed Hf in these splits (see also Table 2.3).  
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2.7. Discussion 

 

2.7.1. Significance of the Lu-Hf geochronological results 

 

In order to adequately interpret the age information from the analyzed garnet 

populations, several important issues have to be addressed first. Two major points addressed 

here in detail are the representative sampling of garnet as well as protracted metamorphism 

and garnet growth. 

 

(a) Representative sampling of bulk garnet and the problem of inclusions 

 

The mineral separation technique employed in this study allows to test for any 

possible bias in the analyzed garnet separates. Pure garnet fractions (without visible 

inclusions; Gt-1, Gt-4, Gt-5 of each sample) as well as garnet fractions with a high density of 

inclusions were separated (Gt-2, Gt-3; see also Fig. 2.4 and 2.5, garnet major element 

distribution maps) and used for the Lu-Hf/Sm-Nd geochronological study. As illustrated in 

Fig. 2.7, all garnet separates define isochrons with considerably low MSWDs (< 1.7).  

Furthermore, inclusions in garnet may significantly compromise the measured Hf 

isotope composition (e.g., Scherer et al., 2000). This issue is readily avoided by the employed 

tabletop digestion technique, which prevents the dissolution of Hf-rich phases like rutile or 

zircon (e.g., Scherer et al., 2000; Lagos et al., 2007). In contrast to the Lu-Hf isotope system, 

the Sm-Nd system is very sensitive to inclusions of apatite and monazite (Scherer et al., 2000) 

that are abundant as inclusions in garnet in samples Rh-83, Rh-89 and Rh-197, lowering the 
147Sm/144Nd of the garnet separates. Hence, no meaningful Sm-Nd age could be determined 

for the samples from the Middle Allochthon. 

 

(b) Constraints on protracted metamorphism and garnet growth 

 

The good fit of all isochrons (MSWDs ≤ 1.7) strongly suggests that the Lu-Hf isotope 

system was not disturbed at a later stage, i.e., that garnets and whole rocks remained closed 

systems after formation. This is especially interesting for sample Rh-210 from the Upper 

Allochthon, which yields a Lu-Hf age of 126 ± 0.7 Ma. Based on U-Pb geochronology on 

zircons, Bauer et al. (2007) and Liati et al. (2002) infer a metamorphic event at ca. 74 – 77 

Ma for the Kimi Complex, which supposedly reached amphibolite-facies conditions (Bauer et 
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al., 2007) or even eclogite- to UHP metamorphic conditions (Liati et al., 2002). Considering 

the results of the Lu-Hf and Sm-Nd geochronology of sample Rh-210 as well as similar 

results by Wawrzenitz & Mposkos (1997; 117 ± 3.5 Ma; Sm-Nd of gt-cpx-whole rock of a 

garnet-pyroxenite), it appears rather unlikely that a high-grade (eclogite- or UHP) post-

Barremian metamorphic event affected sample Rh-210. To a certain degree, similar 

conclusions can be drawn with regard to older metamorphic events affecting the rocks from 

the Middle Allochthon as suggested from U-Pb zircon geochronology (~ 148 Ma, for the 

Nestos Shear Zone; Liati, 2005; Krenn et al., 2010). If garnet relicts from this Late Jurassic 

high-grade event had been preserved in the studied eclogite samples, then a mixture of old 

(radiogenic 176Hf/177Hf; = garnet cores) and young (unradiogenic 176Hf/177Hf; = garnet rims) 

garnet domains would be expected. Such observations have recently been made by Herwartz 

et al. (2011) for the Adula Nappe in the Central Alps. 

Consequently, the Lu-Hf isochrons defined by the studied Rhodopean eclogites argue 

either (1) for a pervasive nature of both the Eocene and Cretaceous HP events in the Starcevo 

Unit and the Kardžali Unit, respectively or (2) for the absence of relictic garnet associated 

with previous metamorphic events in the respective unit. Moreover, the low MSWDs and the 

generally good fit between three (Rh-83, Rh-89 and Rh-197) of the four Lu-Hf isochrons 

provide strong evidence for a relatively short duration of garnet growth during the Eocene 

metamorphic cycle. This is also in line with the phase diagrams (Fig. 2.3) that predict garnet 

growth over a relatively small P-T interval just before reaching peak-pressure conditions, i.e., 

only above 500 °C. If garnet grew over a period of several tens of Myr, the data points would 

show a higher scatter, i.e. a higher MSWD (e.g., Kohn, 2009). 

 

2.7.2. Prograde growth ages versus cooling ages 

 

During the nucleation and subsequent growth of garnets along a prograde P-T path, 

minerals such as garnet develop a growth zonation, which can be approximated by a Rayleigh 

process (or fractional crystallization and thermodynamic equilibrium; after Kohn, 2003). Of 

fundamental interest here is the preservation of undisturbed distribution patterns for Lu-Hf 

(and Sm-Nd) in the garnets. Especially during the thermal peak of metamorphism diffusion of 

these elements would get enhanced. These effects may reset the Lu-Hf and Sm-Nd isotope 

systems, and the ages defined by the isochrons may then reflect cooling ages. Element 

diffusivity in garnet depends on a variety of other factors in addition to temperature, e.g., 

grain size, peak temperature, garnet composition, matrix composition, oxygen fugacity (ƒO2), 
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duration of prograde metamorphism, cooling rate and ionic charge (e.g., Chakraborty & 

Rubie, 1996; Ganguly et al., 1998; van Orman et al., 2002;  Skora et al., 2006, Caddick et al., 

2010). A useful proxy to assess the effects of diffusion is the major element zonation found in 

garnets (Fig. 2.4, 2.5). As shown by experimental studies (e.g., van Orman et al., 2002) the 

ionic charge of an element exerts a major control on its diffusivity, where 2+ ions diffuse by 

orders of magnitude faster than 3+ (e.g. Lu), and presumably 4+ ions, (e.g., Hf). Furthermore, 

it appears that the Lu-Hf system is more resistant to diffusion compared to the Sm-Nd system, 

as relatively higher closure temperatures have been proposed for Lu-Hf (e.g., Scherer et al., 

2000; Lapen et al., 2003). 

The bell-shaped distributions of Mn, Ca and Fe/(Fe+Mg) in garnet in combination 

with elevated Lu concentrations in the garnet cores as it is shown for samples Rh-197 (Fig. 

2.4c, 2.5c) and Rh-210 (Fig. 2.4d, 2.5d) can therefore be readily regarded as evidence for the 

preservation of the prograde growth zonation patterns for Lu-Hf. In these two cases, the Lu-

Hf ages clearly reflect the time of garnet growth (e.g., Lapen et al., 2003). Based on mass 

balance arguments, however, Skora et al. (2009) pointed furthermore out, that the Lu-Hf ages 

reflect peak metamorphic conditions due to volumetrically higher abundance of garnet rims 

relative to garnet cores. 

The large garnets in sample Rh-83 show a certain degree of garnet rim resorption (~30 % of 

the garnet radius). However, the very cores still show elevated Mn (and to a certain degree 

also Lu) contents. Considering the near-identical Lu-Hf age of Rh-83 (44.6 ± 0.7 Ma) with 

that of Rh-197 (42.8 ± 0.5 Ma), it is evident that resorption of the garnet rims is 

geochronologically barely resolvable and must have occurred at near-peak metamorphic 

conditions. Otherwise the Lu that diffused back into the garnet rims would have compromised 

the fit of the Lu-Hf isochron and biased the isochron towards an apparently younger age (see 

Kelly et al., 2011). 

The more or less homogeneous major element composition of the small garnets in 

sample Rh-89 (Fig. 2.4b, 2.5b) probably results from diffusive reequilibration of formerly 

prograde zoned garnets. However, this feature may not necessarily indicate a concurrent 

diffusive mobilization of REEs, in line with findings by Dutch & Hand (2010), who reported 

garnets with flat equilibrated major element zonations but preserved primary REE zonations. 

Major element distribution maps shown in Fig. 2.4b and 2.5b in combination with the Lu 

concentration data obtained by LA-ICP-MS (Fig. 2.5b), however, also suggest the diffusion of 

Lu and resorption of large parts of the garnets. Considering the small garnet diameters of Rh-

89 (less than 600 µm) compared to Rh-83 (2 - 3 mm), garnets in Rh-89 might have been more 
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susceptible to complete resorption and equilibration than the larger garnets in Rh-83. 

Furthermore, as all three eclogites from the Middle Allochthon (Rh-83, Rh-89 and Rh-197) 

display virtually identical Lu-Hf ages, it seems likely that the same near-peak metamorphism 

affecting sample Rh-83 also affected sample Rh-89. 

Collectively, the Lu-Hf age of Rh-197 can be interpreted as closest representing the 

age of the peak metamorphic event affecting the Middle Allochthon. Samples Rh-83 and Rh-

89 were affected by different degrees of garnet resorption close to the timing of the 

metamorphic peak. The Lu-Hf age in sample Rh-210 furthermore can be readily regarded as 

representative of the age of HP metamorphism in the Kardžali Unit. As mentioned above, the 

Sm-Nd isotope system of sample Rh-210 has been affected by element mobility during the 

metamorphic cycle. Therefore, we interpret the Sm-Nd age of 109 ± 11 Ma as only 

representing a minimum age for garnet growth. 

 

 

2.7.3. Constraints on exhumation rates 

 

Considering the Lu-Hf results discussed above, we can now place a robust age 

constraint on the P-T path of the investigated samples, in particular on the prograde flank 

towards peak pressure conditions (Fig. 2.3). Combining these results with published 

stratigraphic and geochronological data from the retrograde path allows to roughly estimate 

the orders of magnitudes of the cooling and exhumation rates. For the timing of prograde 

metamorphism we use the Lu-Hf age of sample Rh-197 (42.8 ± 0.5 Ma), as it represents the 

youngest garnet growth age and we therefore place minimum constraints on the exhumation 

rate. The depth of formation inferred from phase relationships corresponds to ca. 70 km. From 

Ar-Ar geochronology carried out on rocks from nearby units of the Middle Allochthon, the 

timing of cooling below 380-320°C is constrained by ages of 37.1 ± 2.4, and 36.1 ± 0.4 Ma 

(Lips et al., 2000), which might be considered as minimum ages due to a relatively low 

blocking temperature applied by the authors (350 ± 30 °C). Following Liati & Gebauer (1999) 

we assume a mean depth of c. 10 km for this phase of retrograde cooling. Complete 

exhumation of the Middle Allochthon to the surface is robustly constrained by 

unmetamorphosed marine sediments of Priabonian age that are unconformably resting on top 

of the Starcevo Unit northeast of Ardino (Yordanov et al., 2007). Hence, vertical exhumation 

from 70 kilometers depth had to be accomplished within less than 8 Myr and exhumation 

rates are therefore around 1 cm/year, similar to values estimated for the exhumation of the 
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Arda 1 and Starcevo Unit by Pleuger et al. (2011). This is clearly a minimum rate because the 

maximum subduction depths were probably reached somewhat later than the determined Lu-

Hf age (< 42.8 ± 0.5 Ma). Moreover, exhumation and cooling in the study area may have 

occurred successively, the lithologies may have been exhumed isothermally first and then 

cooled (Fig. 2.3). Collectively, the actual exhumation may probably have occurred much 

faster, even before cooling started. Independent of this uncertainty, our results suggest higher 

exhumation rates than those proposed by Liati & Gebauer (1999), in the order of 5.7 – 11.8 

mm/year (mean of 7.7 mm/year), nevertheless the order of magnitude is similar between both 

studies. 

 

 

2.7.4. Constraints on the magmatic protolith 

 

In developing a paleotectonic model for the Rhodopes, it is essential to constrain the 

nature of the eclogite protoliths, i.e., the tectonic environment in which the eclogite precursors 

formed. Of importance for the present study is the distinction between a divergent (MORB), a 

convergent (island-/continental- or back-arc), and an intra-plate setting (e.g., OIB). In this 

regard, the whole rock trace element budget as well as the Hf-Nd isotope compositions serve 

as a valuable tool to identify the original composition of the magmatic precursor (e.g., Becker 

et al., 2000; John et al., 2004; Zack & John, 2007; Zhao et al., 2007). 

 

The mobility/immobility of trace elements during blueschist to eclogite transition has 

been the subject of extensive research over the past years where, for example, it has been 

shown that many trace elements are easily mobilized from the slab to the overlying mantle 

wedge during dehydration reactions (e.g., John et al., 2004, 2008; Zack & John, 2007; 

Beinlich et al., 2010). However, these processes are likely limited to zones with a high fluid 

flux (veins, channels and other fluid pathways). Other authors proposed a decoupling of fluid 

and trace element flux during subduction, i.e. only very limited amounts of trace elements are 

released from the subducting slab during prograde metamorphism (Spandler et al., 2003; 

2004; 2007). Considering these interpretations, the bulk trace element patterns of the studied 

eclogite samples (Fig. 2.6a and b) may mirror element-loss of a more LREE-enriched 

precursor, like arc-related basalts or even OIBs, or may be considered as representative of the 

original magmatic protolith composition. 

Sample Rh-210 from the Upper Allochthon appears to be affected by a selective loss 
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of LILE (Cs, Rb, Ba) and LREE (La, Ce, Pr, Nd), leaving behind positive anomalies of the 

HFSE and HREE (see Fig. 2.6a and b). Evidence for either a dehydration- or partial melt-

mediated dissipation of Nd and Hf in sample Rh-210 is provided by increased 147Sm/144Nd 

(0.3664) and 176Lu/177Hf (0.03468) when compared to the other three samples (see Fig. 2.8a). 

This feature has also major implications for the interpretation of the Sm-Nd age determined 

for Rh-210 (see below). In any case, the consistently low 147Sm/144Nd and 176Lu/177Hf of the 

samples Rh-83, Rh-89 and Rh-197 might provide some evidence that these samples preserved 

their original magmatic REE and HFSE compositions. 

 

A further tool to discriminate possible tectonic settings of metamorphic protoliths are 

the HFSE, which are considered as relatively immobile during subduction-zone 

metamorphism and subsequent retrograde overprint (e.g., Kogiso et al., 1997; Becker et al., 

2000; Spandler et al., 2004; Schmidt et al., 2009). Ratios like Nb/Ta and Zr/Hf (13.4 – 15.3 

and 37.9 – 44.5, respectively) of the four eclogites broadly overlap the fields of N-MORB, 

OIB and subduction-related basaltic rocks. The derivation of the protoliths from an enriched 

OIB-type source however can be excluded based on the high Zr/Nb (19.4 – 45.1) and low Nb 

concentrations (< 6 ppm), which would be expected to be higher if an OIB-type protolith is 

considered (Pfänder et al., 2007, Spandler et al., 2004). Furthermore, the negative Nb-Ta 

anomaly in sample Rh-197 (and to a lesser degree also in Rh-83 and Rh-89) are tentatively 

regarded as reflecting the derivation from a source with an island-arc setting. 

 

Whole rock Hf (and to a lesser degree also the Nd) isotope compositions can be highly 

useful to constrain the nature of the eclogite protoliths due to the particular robustness of the 

Lu-Hf isotope system with respect to metamorphic overprints (e.g., Blichert-Toft et al., 1999; 

Polat et al., 2003). However, for the studied eclogites this approach is hampered by 

uncertainties in the protolith formation age, which is required to calculate initial isotope 

compositions. Therefore we assume a similar protolith formation age as was determined for 

eclogites near Sidironero by Liati (2005), reporting U-Pb SHRIMP ages for zircons of ~ 250 

Ma (= t1). Furthermore, a second protolith formation age (t2) of 500 Ma was employed as a 

maximum estimate, as the presence of (possibly inherited) ~ 430 Ma old zircon domains 

(Liati, 2005) might indicate even older formation ages. Independent of the protolith age 

assumed, calculated εHf(t) and εNd(t) values for Rh-83 and Rh-197 are consistently low (see 

Fig. 2.8b), and they rather agree with the characteristics of a more enriched magmatic 

protolith than MORB. Conversely, initial values for Rh-89 well overlap the field for MORB. 
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Due to the near-chondritic 176Lu/177Hf of 0.03468, the whole rock εHf value of sample Rh-210 

(εHf (i) ~ +10) is rather independent of the protolith age and overlaps the lower limit of the 

MORB field (Fig. 2.8b). However, back-calculated Hf and Nd isotopes of samples Rh-83 and 

Rh-197 unambiguously indicate a more enriched protolith than MORB (Fig. 2.8b). 

 

 

Fig. 2.8: 

Constraints on the whole rocks of the four eclogites inferred by Lu-Hf and Sm-Nd isotope systematics.  

a: 176Lu/177Hf vs. 147Sm/143Nd of the four eclogite samples, illustrating the effect of fluid-induced LREE 

depletion as it is especially important for sample Rh-210. After John et al. (2004). 

b: εHf(t) - εNd(t) of the four samples in comparison to a compilation of global OIB and MORB (MORB after 

Pearce et al., 1999; Woodhead et al., 2001; Chauvel & Blichert-Toft, 2001 and Kempton et al., 2002; OIB field 

after Nowell et al., 1998). Each sample is shown with εHf-εNd at present day, and also back-calculated to t1 = 

250 Ma and to t2 = 500 Ma. 

 

 

Collectively, our trace element and Hf-Nd isotope data for the four eclogites indicate 

significant element-loss for sample Rh-210 and possibly preserved original magmatic trace 

element signatures for samples Rh-83, Rh-89 and Rh-197. We can furthermore confidently 

exclude an OIB-type source for all four eclogites. The protoliths of samples Rh-83, Rh-89 and 

Rh-197 most likely originate from an island-arc setting based on the negative Nb-Ta 

anomalies and the rather unradiogenic Hf-Nd isotope systematics that are inconsistent with a 

MORB-setting. For sample Rh-210 we propose that the modified trace element pattern (loss 

of LREE, Th and also low K content) as well as the elevated 147Sm/144Nd and 176Lu/177Hf are 

the result of a partial melting event affecting the protolith somewhat before the closure of the 

Lu-Hf and Sm-Nd chronometers. 
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2.7.5. Implications for the tectonics of the Rhodopes and Hellenides 

 

Our results show that two subduction events of different age are recorded in different 

structural levels of the Rhodopean nappe stack: Early Cretaceous in the Upper Allochthon and 

Eocene in the basal part of the Middle Allochthon. Such a distribution, older ages in the 

structurally higher nappes and younger ages in the deeper levels, is typical for collisional 

orogens and is also seen, for example, in the Alps (e.g., Gebauer, 1999) and the Norwegian 

Caledonides (e.g., Brueckner & Van Roermund, 2004). Our geochronological study confirms 

the results of Liati & Gebauer (1999) and Liati (2005) from U-Pb zircon dating, in that 

subduction-related metamorphism in the Rhodopes occurred more than once. In earlier 

studies, however, the geochronological results were rather assigned to specific areas (e.g., 

Western Rhodopes, Central Rhodopes – Liati, 2005) and not to specific structural levels in the 

Rhodopean nappe stack. In the present study we connect the results of the geochronology with 

the respective tectonostratigraphy, an approach that has emerged in the last few years (Krohe 

& Mposkos, 2002). It is also important to emphasize that our data actually support two 

metamorphic events (Early Cretaceous and Eocene), but do not preclude the existence of 

other subduction events, e.g., in the Jurassic (Liati, 2005; Bauer et al., 2007; Krenn et al., 

2010; Nagel et al., 2011), at a more regional scale.  

 

Significance of the Eocene ages from the Middle Allochthon 

 

According to the most widely accepted evolutionary models for the Hellenic-Aegean orogenic 

system (van Hinsbergen et al., 2005; Papanikolaou, 2009; Jolivet & Brun, 2010), subduction 

and related metamorphism and deformation migrated progressively southward during the 

Mesozoic and Cenozoic. These models have assumed that the stacking of the Rhodopean 

nappes is Cretaceous in age. It has also been assumed that from the end of the Cretaceous 

onward, the Rhodopes were already in the hinterland of the southward retreating subduction 

zone (e.g., von Quadt et al., 2005) and thus were only affected by HT metamorphism, 

magmatism, and exhumation. However, this view cannot be maintained any longer. Instead, 

the basal part of the Middle Allochthon records subduction in the Eocene. Eocene ages for the 

peak pressure were already determined by U-Pb zircon SHRIMP dating of kyanite-eclogites 

from the area of Thermes in northern Greece (42.2 ± 9 Ma; Liati & Gebauer, 1999).  
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Fig. 2.9: 

Schematic sketch illustrating the proposed paleotectonic reconstruction of the Rhodope nappe stack for (a) the 

Lower Cretaceous and (b) the Eocene. Modified after Jahn-Awe et al. (2011). 
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The results presented in our study thus confirm the inferences of Liati & Gebauer 

(1999). In the Nestos Shear Zone near Sidironero, further west but still in the same structural 

level, Liati (2005) dated the HP stage of an amphibolitized eclogite to 51.0 ± 1.0 Ma. Our new 

Eocene ages (44.6 ± 0.7 Ma, 43.5 ± 0.4 Ma, 42.8 ± 0.5 Ma) partially fill the gap between the 

ages from Thermes and from Sidironero. Hence, we assume that the ages from Thermes and 

Sidironero do not represent different metamorphic events, as suggested by Liati (2005), but 

rather point to protracted subduction lasting at least between 51 and 42 Ma. During the course 

of this subduction episode, different parts of the Middle Allochthon appear to have reached 

their peak pressure at different times.  

Given the age constraints above, the question arises in which subduction zone system, 

from a paleogeographic point of view, the Eocene eclogites of the Rhodopes formed. All of 

the Eocene eclogites are from the lower part of the Middle Allochthon. This tectonic unit 

disappears beneath the Upper Allochthon towards the southwest. It is unlikely that the Middle 

Allochthon re-emerges in the ophiolite-bearing Vardar Zone, adjacent to the Rhodopes to the 

SW, as no Eocene HP metamorphism is known from that area. In the Cycladic Blueschist 

Unit, however, which is derived from the more southwesterly located Pindos-Cyclades Ocean, 

eclogite-facies metamorphism is also Eocene in age (U-Pb zircon and Lu-Hf garnet ages from 

50 to 52 Ma; Tomaschek et al., 2003; Lagos et al., 2007). From stratigraphic evidence, 

ophiolites from the Pindos-Cyclades ocean were emplaced towards southwest onto 

continental crust of the Apulian continent during the Middle to Late Eocene (Papanikolaou, 

2009). The emplacement of the Middle on the Lower Allochthon of the Rhodopes is also of 

Middle to Late Eocene age, as it postdates ca. 43 Ma old eclogite-facies metamorphism in the 

Middle Allochthon (this study, Nagel et al., 2011), and predates granitoid intrusions at 32 Ma 

(Jahn-Awe et al., 2010). Therefore, we suggest that the base of the Middle Allochthon in the 

Rhodopes represents the continuation of the Pindos-Cyclades suture towards deeper levels. In 

consequence, the underlying Lower Allochthon is correlated with the continental crust of 

Apulia (External Hellenide carbonate platform), as suggested by Dinter (1998), Krohe & 

Mposkos (2002), Jahn-Awe et al. (2010), and as illustrated in a paleotectonic sketch map in 

Fig. 2.9b. The Rhodopes are therefore interpreted as a large-scale tectonic window, exposing 

in its core the deepest nappe units of the Hellenides (see also Mposkos & Krohe, 2000). The 

sutures of both the Vardar and Pindos-Cyclades oceans are rooted along the northern border of 

the Rhodopes, north of the metamorphic domes (Arda etc.). 
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Significance of the Early Cretaceous age from the Upper Allochthon 

 

The new 126.0 ± 0.7 Ma age for the eclogite from the Upper Allochthon is similar to 

published ages from the Kimi Complex (119.0 ± 3.5 Ma, Sm-Nd age for a garnet-pyroxenite; 

Wawrzenitz & Mposkos, 1997; and 117.4 ± 1.9, U-Pb zircon SHRIMP age for a garnet-rich 

mafic rock; Liati et al., 2002), and indicates that the Upper Allochthon in the Eastern 

Rhodopes was subducted during the Early Cretaceous. We assume that the Upper Allochthon 

represents the continental margin of Europe (Moesia), which collided with a Jurassic arc 

formed above a southwest-dipping subduction zone that consumed the Meliata Ocean (Bonev 

& Stampfli, 2008; Jahn-Awe et al., 2010; see Fig. 2.9a). During and after this collision, the 

European margin entered the subduction zone and was affected by eclogite-facies 

metamorphism. Between the Lower Cretaceous and the Eocene HP metamorphism, a 

subduction polarity switch occurred and the kinematic framework changed fundamentally. 

 

 

2.8. Conclusions 

 

New combined petrological and geochronological data for metamorphic rocks from 

the Bulgarian section of the Rhodopes can place new constrains on the tectonic evolution of 

the Eastern Mediterranean region. Lu-Hf garnet geochronological results for four eclogites 

from the Middle and Upper Allochthon reveal two high-pressure metamorphic events, (1) in 

the Lower Cretaceous (126 Ma) for the Upper Allochthon and (2) in the Eocene (45 – 42 Ma) 

for the Middle Allochthon. Geothermobarometry can place the peak metamorphic conditions 

in the Middle Allochthon at c. 700°C/20 – 25 kbar. Major and trace element analyses of the 

whole rocks point to an island-arc origin of the samples from the Middle Allochthon and 

clearly exclude OIB-like protoliths. Our data furthermore support previous findings that the 

Rhodopes represent a large-scale tectonic window, emphasizing a key role of the Rhodopes to 

understand the tectonic evolution of the Hellenides.  
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- Chapter 3 -  

 

Tectonomagmatic Constraints on Magma Sources of Eastern 

Mediterranean K-rich Lavas 

 

 

3.1. Introduction 

 

Potassium-enriched (high-K) volcanic rocks occur in a variety of tectonic settings like 

active island arcs (e.g., Indonesia; Varne, 1985; Stolz et al., 1990), or continental rifts (e.g., 

East African rift; Rosenthal et al., 2009). High-K rocks are furthermore typical for syn- to 

post-collisional continental settings such as Italy (e.g., Conticelli et al., 2002; 2009a, b; 

Gasperini et al., 2002), Taiwan (e.g., Wang et al., 2004), Serbia (e.g., Prelević et al., 2005, 

Cvetković et al., 2004), Tibet (e.g., Turner et al., 1996; Williams et al., 2004), and Tasmania 

(e.g., Crawford et al., 1997). Regardless of age and setting, all of these rock suites tend to 

share geochemical similarities such as a strong enrichment in incompatible elements, as well 

as isotope compositions including low εNd and radiogenic 87Sr/86Sr (e.g., Hawkesworth & 

Vollmer, 1979; Conticelli et al., 2002). In most cases, shallow level assimilation of continental 

crust can be excluded as a major process due to the lack of coupled variations of major 

elements and isotope compositions (e.g., Mg-number vs. 87Sr/86Sr). Thus, for mantle-derived 

high-K magmas, these features are generally assumed to mirror compositions of their source 

regions (e.g., Hawkesworth & Vollmer, 1979; Stolz et al., 1990; Nelson, 1992b; Prelević et 

al., 2008). In this context, two major models have been developed to explain the geochemical 

features of source regions of high-K magmas: 

(1) Low-degree partial melting of ancient lithospheric mantle, producing melt compositions 

extremely enriched in incompatible trace elements together with large variations in radiogenic 

isotope compositions (single stage model; Varne, 1985; McKenzie, 1989; Foley, 1992b; 

Turner et al., 1996). 

(2) Subduction-related source enrichment by an enhanced flux of fluid- and/or melt-like 

components originating from mafic oceanic crust and subducted sediments (multi-stage 

model; Hawkesworth & Vollmer, 1979; Stolz et al., 1990; Nelson, 1992b). 

The metasomatized domains produced by any of these two mechanisms subsequently melt in 
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response to contemporary subduction or during later episodes of extension-decompression or 

asthenospheric upwelling. 

In the present study we test these two genetic models using K-rich lavas from Bulgaria 

that comprise medium-K, high-K and shoshonitic suites after Peccerillo & Taylor (1976) (see 

Chapter 3.4). These lavas were emplaced in a post-collisional tectonic setting related to the 

closure of the Tethyan realm during the Alpine orogeny. The single stage model is assessed 

here by modelling the isotope evolution of ancient lithospheric mantle domains. In order to 

evaluate the role of young source enrichment by contemporary subduction (multi-stage 

model), we compare the compositions of the Bulgarian lavas to those of lavas from Santorini 

Island. The currently active volcanism on Santorini unambiguously taps mantle domains that 

have recently been overprinted by components derived from the subducting African plate 

(Francalanci et al., 2005; Bailey et al., 2009). 

A close tectonomagmatic relationship of the currently active Aegean arc with the older 

(Eo-Oligocene) volcanism in Bulgaria is supported on the basis of recent P-wave tomographic 

models for the Eastern Mediterranean realm (Bijwaard et al. 1998; see also Fig. 3.2c). These 

models illustrate a continuous northward subduction of the Aegean slab since the Mesozoic 

(see also Wortel & Spakman, 2000; Faccenna et al. 2003; van Hinsbergen et al. 2005; 

Papanikolaou, 2009; Jolivet & Brun, 2010). Older models claiming several independent 

north-dipping subduction zones, e.g., Dercourt et al. (1986) and Gealey (1988), are not 

supported by the more recent tomographic studies. The persistent northward subduction in a 

single subduction zone system resulted in the consumption of an estimated 2100 – 2500 km of 

crust since the late Jurassic (van Hinsbergen et al., 2005). The proposed decoupling of the 

upper crustal parts from the subducting mafic lithosphere results in a nappe stack of terranes 

assembled along the European continental margin (van Hinsbergen et al., 2005). The inferred 

collision of the various Mediterranean terranes (Pelagonia – Apulia) along the Eurasian 

margin assembled diverse associations of subduction-related magmatic suites ranging in age 

from Jurassic to Quaternary (Pe-Piper, 1998; Pe-Piper & Piper, 2001; Marchev et al., 2004, 

2009; Bonev & Stampfli, 2008; Georgiev et al., 2009; Vaggelli et al., 2009). Therefore, the 

different volcanic arcs that formed during the progressive south-ward migration of the 

Hellenic trench can be related to the activity of one single subduction zone. It can be assumed 

that sediments derived from the African continental margin were continously subducted 

beneath the Eastern Mediterranean arcs (Pe-Piper & Piper, 2001). For South Aegean arc lavas 

this has been shown on the basis of Pb isotope compositions (e.g., Pe-Piper, 1994; Pe-Piper & 

Piper, 2001; Weldeab et al., 2002). 
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Here we present major and trace element as well as new Sr-Nd-Hf-Pb isotope data for 

mafic medium-K, high-K and shoshonite suites from Bulgaria as well as for mafic medium-K 

calc-alkaline lavas from Santorini. In addition, we report data for alkaline basalts from 

Bulgaria that represent the youngest stage of anorogenic magmatism in Bulgaria (28 – 26 

Ma), tapping compositions of upwelling asthenospheric mantle during crustal extension. 

 

 
Fig. 3.1: 

(a) Overview of the Eastern Mediterranean, modified after Barr et al. (1999) and van Hinsbergen et al. (2008). 

The grey stars denote major localities of post-collisional ultrapotassic rocks studied by Prelević et al. (2005), the 

stippled line indicates political borders. (b) Overview of Eastern Bulgaria showing the major volcanic centers 

and sample localities, modified after Ricou et al. (1998) and Marchev et al. (2004). (c) Map of Santorini 

illustrating major volcanic complexes and sample localities; after Druitt et al. (1999), and Bailey et al. (2009).  
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Fig. 3.2: 

N-S cross sections from the Ionian Sea to the Rhodopes at (a) 34 Ma and (b) present day. Panel (c) illustrates a 

tomographic cross-section from the Hellenic Trench to the Eurasian platform modified after Bijwaard et al. 

(1998), van Hinsbergen et al. (2005) and Jolivet & Brun (2010). Black triangles denote location of Santorini (S) 

and Eastern Bulgaria (EB). 
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3.2. Geological background 

 

3.2.1. Rhodopes – Bulgaria  

 

The East Bulgarian Rhodope Massif is regarded as a pile of syn-metamorphic nappe 

stacks that were assembled at an active continental margin during the Alpine orogeny (e.g., 

Ricou et al., 1998; Dinter, 1998; Schmid et al., 2004; Turpaud & Reischmann, 2010; Jahn-

Awe et al., 2010). The Rhodope Massif is bound to the north by the Maritza strike-slip fault, 

to the west by the Vardar zone and to the east by the Thrace and Maritza basins (Fig. 3.1a, b). 

The Southern part of the Rhodopes is covered by the Aegean Sea (see Fig. 3.1a). During the 

course of the Alpine orogeny, the eastern Mediterranean region was affected by successive 

episodes of oceanic basin formation and repeated collisions with continental fragments 

derived from the African margin with Eurasian crust (Ricou et al., 1998; Dinter, 1998; van 

Hinsbergen et al., 2005; Jolivet & Brun, 2010). These tectonic episodes are intimately related 

to the magmatic pulses recorded around the Aegean Sea (e.g., Pe-Piper, 1998; Bailey et al., 

2009). In Bulgaria, subduction-related volcanic activity is recorded from the Jurassic - early 

Cretaceous (Evros-Thrace, Bonev & Stampfli, 2008), the Upper Cretaceous (Srednogorie 

Zone, Marchev et al., 2009; Georgiev et al., 2009) and the Eocene-Oligocene (Rhodopes, 

Yanev et al., 1998; Marchev et al., 1998a, b, 2004). The youngest subduction-related 

volcanism in the Eastern Mediterranean is represented by the active Aegean island-arc (e.g., 

Zellmer et al., 2000; Bailey et al., 2009; Vaggelli et al., 2009). 

The Eocene-Oligocene volcanism in the Eastern Rhodopes is considered post-

collisional (see also Fig. 3.2a). Compressional episodes in the Rhodopes are documented for 

the Lower Cretaceous (~ 120 Ma; Warwzenitz & Mposkos, 1997; Liati et al., 2002), probably 

early Paleocene (~ 65 Ma; Liati et al., 2002), and Eocene (~ 42 Ma; Liati & Gebauer, 1999). 

In the Late Cretaceous, an extensional episode was triggered by reorganization of plate 

boundaries, gravitational collapse and the retreat of the subduction zone further south (Burg et 

al., 1996; Mposkos & Krohe, 2000; Bonev et al., 2006) or, as recently suggested, by a 

reversal of the subduction zone polarity (Jahn-Awe et al., 2010). After a further episode of HP 

metamorphism during the Eocene (Liati & Gebauer, 1999), which was related to the 

amalgamation of the Rhodopean nappe stack to the Eurasian platform, the subsequent 

extensional episode was linked to the formation of metamorphic core complexes and 

sedimentary basins (Sokoutis et al., 1993; Boyanov & Goranov, 2001; Bonev et al., 2006; 

Siemes et al., 2009). This extensional process was furthermore accompanied by two distinct 
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episodes of magmatic pulses in the Rhodopes: (1) Paleocene-Early Eocene intrusion of 

granitoids (70-42 Ma), which is regarded as the direct continuation of the magmatism from 

the Srednogorie Zone, and (2) Eocene-Oligocene acid-intermediate and basic volcanism (ca. 

34-30 Ma; Krohe & Mposkos, 2002; Marchev et al., 2004, 2005; Bonev et al., 2006), which 

is the focus of our study. This post-collisional high-K volcanism in the Eastern part of the 

Rhodopes lasted from the late Eocene (Priabonian, ca. 34 Ma) to the Oligocene (ca. 30 Ma; 

Singer & Marchev, 2000; Marchev & Singer, 2002). After a hiatus of several Myrs, the 

emplacement of alkaline mafic intraplate lavas is recorded from 28 - 26 Ma (e.g., Marchev et 

al., 1998a, b), similar in age to other Cenozoic provinces with intraplate volcanism in Europe 

(e.g., Lustrino & Wilson, 2007). 

 

 

3.2.2. Santorini – Aegean Sea 

 

After the collision between the Eurasian continental margin and crustal fragments 

related to Africa (Dinter, 1998, van Hinsbergen et al., 2005), an extensional period followed 

during Paleogene time. Subsequently, active subduction has been re-located since the mid-

Miocene in the Aegean region with the Eastern Mediterranean sea floor subducting towards 

the northeast beneath the Aegean microplate (see Fig. 3.1a and 3.2b; e.g., Ninkovich & Hays, 

1972; Jolivet & Brun, 2010). Presently, subduction takes place south of Crete along the 

Hellenic Trench (see Fig. 3.1a; e.g., Lepichon & Angelier, 1979; Wortel & Spakman, 2000). 

Santorini is located in an extensional tectonic regime on thinned and stretched continental 

crust of the Aegean plate (20-32 km thick), consisting of metamorphic basement of late 

Palaeozoic/early Mesozoic age that is mainly composed of metapelites, limestones and 

various other metamorphic lithologies of the Cycladic Crystalline Complex (see Druitt et al., 

1999 and references therein). Volcanism at Santorini is active since ~ 750 ka, including 12 

major explosive and over 100 smaller eruption cycles (Druitt et al., 1999). The last eruption 

has been recorded in 1950 and Santorini is currently regarded as dormant. Explosive eruptions 

on Santorini are of plinian-type with andesitic to rhyodacitic products as well as lava flows 

and cinder cones of basaltic to andesitic compositions (Nicholls, 1971; Druitt et al., 1999; 

Bailey et al., 2009). A detailed description of the volcanism on Santorini is given in Druitt et 

al. (1999) and Bailey et al. (2009). 
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3.2.3. Sample suite 

 

(a) Bulgarian lavas from the Eastern Rhodopes  

 

The samples analyzed in our study represent the most mafic volcanic rocks found in 

the Eastern Rhodopes of Bulgaria and they originate from five discrete volcanic centres, 

located in close proximity to the border of Greece (see Fig. 3.1b). These volcanic centres 

include shield and stratovolcanoes, composed of lava flows, domes and dikes as well as large 

amounts of epiclastic and pyroclastic material. The volcanic structures are part of a Cenozoic 

magmatic belt that extends toward the NW into Macedonia and Serbia (see Cvetković et al., 

2004; Prelević et al., 2005), crossing the Vardar zone, and continues to the SE in the Thracian 

Basin and Western Anatolia. The sample locations are illustrated in Fig. 3.1b. The Borovitza 

caldera (1) is the largest volcanic edifice in the Eastern Rhodopes. Its tectono-magmatic 

evolution can be divided into six major absarokitic-shoshonitic-latitic episodes dated between 

34 and 30 Ma (Marchev et al., 2004; Dhont et al., 2008). Further shoshonitic to high-K calc-

alkaline volcanoes are, from W to E: (2) Sveti Ilya, (3) Zvezdel, (4) Iran Tepe and (5) 

Madzharovo. An additional volcanic edifice (Dambalak) was not sampled during the course of 

this study but is also shown in Fig. 3.1b. The younger alkaline basalts (28 – 26 Ma old) 

examined in this study originate from two localities SSE of Krumovgrad close to the village 

of Egrek (reported as “Krumovgrad alkaline basalts” by Marchev et al., 1998a, b; 2004; Fig. 

3.1b). They occur as N-S to NW-SE striking dikes of 0.5 – 50 m thickness. Detailed field and 

petrographic descriptions of the different volcanic centres are given by Marchev et al. (2004). 

The Bulgarian samples were collected in fresh outcrops and, except for the absarokites 

from Borovitza, generally lack major alteration features. The absarokites were collected at 

two different localities: (1) close to the village of Zhenda (Borovitza caldera) and (2) close to 

the village of Planinetz, located ca. 20 km east of Krumovgrad (Fig. 3.1b). Absarokites from 

the Borovitza caldera (Zhenda) are silica-undersaturated (nepheline-normative) and 

characterized by olivine, clinopyroxene and relict leucite phenocrysts, the latter are virtually 

entirely replaced by analcime, probably during low-grade alteration. The impact of analcime 

formation on the geochemistry of high-K, shoshonitic and lamproitic rocks was already 

discussed in detail by Prelević et al. (2005) and our observations are generally in accord with 

their interpretations. Planinetz absarokites are silica-saturated (hypersthene-normative) and 

characterized by clinopyroxene and olivine phenocrysts, and phlogopite was observed in the 

groundmass. The common phenocryst mineral assemblage in the silica-saturated medium-K 
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and high-K rock suite usually comprises olivine, clinopyroxene, plagioclase as well as minor 

phlogopite, amphibole and apatite in a groundmass comprising plagioclase, clino-

/orthopyroxene and a glassy/sanidine matrix in the shoshonitic rocks. The alkaline basalts are 

characterized by a glassy matrix with olivine, clinopyroxene, and plagioclase phenocrysts. 

Furthermore, some rare occurrences of micro-xenoliths (<1.5 mm) were observed in the 

alkaline basalts. The xenoliths exclusively consist of quartz, either as single crystals or as 

aggregates. A more detailed petrographic description of the alkaline basalts is given by 

Marchev et al. (1998b). 

 

(b) Santorini 

 

Samples analyzed in this study are from four different volcanic centers on Santorini: 

(1) Akrotiri, (2) Therasia, (3) Megalo Vouno and (4) Skaros (see Fig. 3.1c). All samples are 

characterized by the phenocryst assemblage olivine-clinopyroxene-plagioclase in a glassy/Pl-

rich matrix. Where available, the GPS coordinates of the sample localities are given in Table 

3.1. 

 

 

3.3. Analytical techniques 

 

A total set of 33 mafic samples was analyzed for major and trace element 

concentrations (Table 3.1) as well as for Sr-Nd-Hf-Pb isotope compositions (Table 3.2 and 

3.3). The major element contents were determined on Li2B4O7-flux fusion discs by X-ray 

fluorescence (XRF) using a PANalytical Axios X-ray spectrometer at Universität Bonn, 

Germany. Trace element analyses were performed by quadrupole inductively-coupled plasma 

mass spectrometry (ICP-MS) using an Agilent 7500cs at Universität Kiel, Germany. 

Analytical procedures followed those of Garbe-Schönberg (1993) involving multi-step multi-

acid digestions of 100 mg aliquots of powdered samples with HF-HNO3-HClO4 in either 

high-pressure Parr bombs (JA-1), or PFA vials (BHVO-II and samples). Typical analytical 

precision as estimated from replicate measurements and sample duplicate digests was better 

than 1.5 %RSD for all trace elements, except Mo, W, Tl, Pb (< 3 % RSD) and Sb (<15%). The 

accuracy of the results can be inferred from measured values for the JA-1 and BHVO-2 

reference materials that were analyzed along with the samples (Table 3.1). 

Chemical separation of Sr-Nd-Hf was carried out on one split of ca. 100 mg of sample 
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powder that was spiked with a mixed 176Lu-180Hf tracer and subsequently digested in a 1:1 

mixture of concentrated HF-HNO3. The chemical separation of Hf and Lu from the matrix 

follows the procedure reported by Münker et al. (2001). Strontium and Nd were separated 

from the matrix left-over from the Hf separation, using BioRad® AG50W-X8 cation resin 

(200 – 400 mesh) and Ln-Spec resin (see Pin & Zalduegui, 1997). Lead isotope measurements 

were carried out on hand-picked, 3-4 mm sized whole rock chips. About 250 mg of the 

sample chips were subsequently leached in warm 3 M and 6 M HCl for one hour, respectively. 

After digestion in 3: 1 HF-HNO3, a HCl-HBr chemistry was employed for Pb purification 

(after Korkisch & Hazan, 1965) using BioRad® AG1X8 (100 – 200 mesh) anion resin. The 

procedure was repeated to ensure a clean Pb fraction. Yields were always better than 97%. 

The Sr-Nd-Hf-Pb isotope compositions as well as Lu and Hf concentrations were 

determined via a Thermo-Finnigan Neptune multi-collector ICP-MS at Universität Bonn, 

operated in static mode. Values of 87Sr/86Sr, 143Nd/144Nd and 176Hf/177Hf were corrected for 

mass fractionation using the exponential law and 86Sr/88Sr = 0.1194, 146Nd/144Nd = 0.7219 and 
179Hf/177Hf = 0.7325, respectively. For Pb analyses, mass fractionation correction was carried 

out using the Tl-doping method employing the NBS 997 thallium standard (e.g., Hirata, 1996; 

Rehkämper & Mezger, 2000; Albarède et al., 2004). Repeated analyses of the standards NBS 

987 for Sr, La Jolla for Nd, JMC-475 for Hf and NBS 981 for Pb yield mean values of 
87Sr/86Sr = 0.710269 (n = 29), 143Nd/144Nd = 0.511803 (n = 5), 176Hf/177Hf = 0.282149 (n = 

21), and 206Pb/204Pb = 16.917, 207Pb/204Pb =  15.470, 208Pb/204Pb = 36.640 (n = 40). The 

external long-term reproducibility is ca. ±40 ppm for Sr, Nd, Hf, and better than ±130 ppm for 

all Pb isotope ratios (2 r.s.d.). Reported values are given relative to 0.710240 for NBS 987, 

0.511859 for La Jolla, and 0.282160 for JMC-475. Lead isotope data are given relative to 

NBS 981 values of 206Pb/204Pb = 16.9405, 207Pb/204Pb = 15.4963 and 208Pb/204Pb = 36.7219 as 

reported by Galer & Abouchami (1998). Procedural blanks were typically <70 pg for Hf and 

Nd, <200 pg for Sr and <30 pg for Pb. The external precision of Sr-Nd-Hf measurements was 

further assessed by multiple digestions of six selected samples and three replicate analyses 

were carried out for Pb isotopes (see Table 3.2). External precision (2 r.s.d.) for the replicates 

was better than 30 ppm for 87Sr/86Sr and 143Nd/144Nd, 40 ppm for 176Hf/177Hf and 100 - 300 

ppm for 206Pb/204Pb, 50 - 400 ppm for 207Pb/204Pb and 100 - 500 ppm for 208Pb/204Pb.  
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Table 3.1: Whole rock major and trace element analyses
Sample ID BG-99a BG-102 BG-99b BG-101 BG-109a BG-109b BG-60 BG-103 BG-113 BG-46

Rock type Abs Abs Abs Abs Abs Abs Sho Sho Sho Banakite

Locality Borovitza Borovitza Borovitza Borovitza Planinetz Planinetz Zvezdel Borovitza Madjarovo Madjarovo

GPS (N) 41° 46.627' 41° 46.388' 41° 46.627' 41° 46.388' 41° 30.002' 41° 30.002' 41° 45.508' 41° 39.350'

GPS (E) 025° 10.884' 025° 11.325' 025° 10.884' 025° 11.325' 025° 53.959' 025° 53.959' 025° 08.883' 025° 53.715'

wt %

SiO2 48.1 50.4 48.7 49.6 48.6 48.3 53.0 53.6 53.0 56.9

Al2O3 10.8 11.2 10.9 9.09 11.9 11.6 16.3 15.3 17.2 17.5

MgO 7.35 7.13 6.91 5.40 8.77 8.51 2.84 4.73 4.25 2.19

Fe2O3 7.59 6.23 7.54 6.08 9.01 9.02 7.53 6.56 8.33 6.52

FeO 6.83 5.61 6.78 5.47 8.11 8.12 6.78 5.90 7.50 5.87

TiO2 0.860 0.860 0.860 0.720 0.910 0.900 0.940 0.830 1.05 1.14

Na2O 2.62 2.71 2.85 2.31 1.71 1.88 2.70 2.26 2.60 3.46

K2O 3.30 3.27 3.10 2.57 3.74 3.56 3.15 3.98 2.65 3.77

CaO 12.8 12.8 12.5 15.3 10.6 10.8 5.87 6.60 8.47 5.90

P2O5 1.28 1.35 1.33 1.14 0.715 0.723 0.260 0.690 0.494 0.560

MnO 0.150 0.190 0.210 0.160 0.140 0.180 0.190 0.110 0.130 0.130

L.O.I. 4.32 3.71 4.06 6.90 2.98 3.27 6.78 4.74 1.01 1.42

Summe 99.5 100 99.3 99.6 99.3 99.1 99.8 99.8 99.5 99.8

ppm

Li 24.1 14.6 18.9 19.1 18.5 14.7 14.5 56.8 10.0 6.37

Sc 34.9 36.0 34.6 28.9 47.0 48.2 21.6 25.1 25.0 16.2

V 186 193 191 155 227 229 186 186 213 141

Cr 452 460 439 382 354 360 14.1 75.1 39.5 8.39

Co 33.5 30.2 29.5 23.4 39.0 39.6 18.4 19.4 24.2 11.3

Ni 110 93.6 104 88.3 55.7 56.5 4.05 18.4 15.0 1.97

Cu 77.3 131 67.2 41.3 112 117 2.22 27.4 35.0 6.93

Zn 62.2 71.5 65.0 55.0 61.0 70.5 76.2 70.2 83.8 70.0

Ga 12.4 12.8 12.7 10.5 13.1 13.0 17.7 16.9 18.7 19.2

Rb 88.9 78.8 94.2 75.3 333 323 120 186 89.7 143

Sr 590 692 610 591 379 367 347 1189 693 992

Y 17.4 18.1 17.7 14.6 15.5 15.7 27.0 21.9 21.6 24.9

Zr 128 133 128 107 87.8 87.5 177 176 150 239

Nb 8.92 9.02 8.73 7.44 5.14 5.12 8.61 10.7 12.2 19.3

Mo 1.02 0.648 1.14 0.802 1.39 1.38 0.680 0.835 1.51 2.49

Sn 3.06 3.11 3.39 3.31 3.45 4.07 2.15 3.01 4.20 6.79

Sb 1.32 0.0990 2.00 0.318 0.0562 0.0864 0.163 0.343 0.117 0.789

Cs 278 212 378 134 18.9 7.79 15.0 5.69 243 456

Ba 1334 1573 1364 1324 970 953 882 2180 1257 1665

La 18.3 19.1 18.5 15.8 12.0 12.2 32.2 36.2 23.9 29.8

Ce 39.3 40.8 39.2 33.4 28.4 28.5 57.3 72.4 49.0 61.3

Pr 5.12 5.26 5.07 4.29 3.99 3.98 7.27 8.24 6.02 7.50

Nd 21.7 22.6 21.6 18.3 17.7 17.6 28.2 31.4 24.5 30.2

Sm 4.88 5.03 4.88 4.10 4.08 4.08 5.59 6.10 5.35 6.47

Eu 1.24 1.28 1.25 1.04 1.13 1.12 1.37 1.41 1.39 1.60

Gd 4.25 4.44 4.29 3.57 3.80 3.79 5.23 5.16 4.84 5.66

Tb 0.593 0.615 0.594 0.500 0.546 0.549 0.768 0.733 0.713 0.824

Dy 3.36 3.47 3.38 2.83 3.11 3.11 4.53 4.12 4.10 4.76

Ho 0.649 0.674 0.654 0.545 0.591 0.589 0.903 0.798 0.797 0.924

Er 1.76 1.81 1.76 1.48 1.54 1.55 2.50 2.17 2.16 2.53

Tm 0.256 0.263 0.257 0.216 0.218 0.219 0.367 0.320 0.315 0.371

Yb 1.68 1.71 1.69 1.41 1.39 1.41 2.40 2.12 2.05 2.46

Lu 0.252 0.254 0.251 0.213 0.206 0.207 0.360 0.315 0.303 0.367

Hf 3.25 3.33 3.22 2.74 2.39 2.41 4.42 4.46 3.83 5.91

Ta 0.488 0.492 0.478 0.406 0.345 0.343 0.620 0.750 0.867 1.39

Tl 1.28 0.522 1.90 0.472 1.35 1.18 1.01 1.62 1.03 1.43

Pb 21.6 22.6 22.3 18.2 17.2 20.4 17.6 33.6 28.0 40.7

Th 7.69 7.93 7.67 6.54 5.99 6.02 11.6 17.2 12.8 22.0

U 1.86 2.77 1.76 2.37 2.98 3.03 3.46 4.97 5.97 11.9  
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Table 3.1: continued
Sample ID BG-62 BG-58 BG-78 BG-56 BG-67 BG-59 BG-82 BG-52 BG-92 BG-117

Rock type MK-HK MK-HK MK-HK MK-HK MK-HK MK-HK MK-HK MK-HK MK-HK MK-HK

Locality Zvezdel Zvezdel Zvezdel Zvezdel Zvezdel Zvezdel Iran Tepe Zvezdel Sveti Ilya Sveti Ilya

GPS (N) 41° 28.903' 41° 24.708' 41° 31.825' 41° 34.698' 41° 28.317' 41° 32.189' 41° 29.211'

GPS (E) 025° 31.508' 025° 25.673' 025° 28.411' 025° 40.088' 025° 32.438' 025° 38.057' 025° 37.690'

wt %

SiO2 55.4 53.1 55.5 55.4 53.2 55.6 55.3 55.2 54.1 53.2

Al2O3 17.4 16.7 17.4 16.6 16.6 17.0 16.8 16.7 16.3 16.0

MgO 3.40 4.91 3.36 2.87 4.90 3.74 3.88 4.25 4.82 5.33

Fe2O3 8.30 9.22 7.87 7.40 8.94 7.51 7.54 7.84 7.42 8.37

FeO 7.47 8.30 7.08 6.66 8.04 6.76 6.78 7.05 6.68 7.53

TiO2 1.00 1.00 0.91 0.99 0.97 0.81 0.99 0.89 0.84 0.96

Na2O 3.45 2.67 2.99 2.50 2.52 2.85 3.49 3.16 2.91 2.77

K2O 1.98 2.33 3.07 2.81 2.30 2.57 1.72 2.17 1.67 1.68

CaO 7.16 8.56 7.03 7.02 8.55 7.09 7.03 7.34 8.48 8.71

P2O5 0.280 0.290 0.250 0.280 0.270 0.200 0.280 0.270 0.270 0.280

MnO 0.220 0.180 0.130 0.160 0.150 0.150 0.140 0.150 0.130 0.120

L.O.I. 0.790 0.440 0.770 3.32 0.890 1.31 1.65 1.13 2.01 1.85

Summe 99.6 99.6 99.5 99.5 99.5 99.3 99.0 99.3 99.2 99.5

ppm

Li 6.77 4.77 7.95 11.4 8.74 6.04 5.88 6.69 11.0 11.0

Sc 23.4 30.4 22.5 22.5 31.4 24.8 23.7 24.5 27.9 30.9

V 204 239 205 182 237 200 185 189 195 219

Cr 22.9 52.8 24.2 19.5 56.4 16.9 45.9 46.3 71.6 119

Co 20.0 28.1 23.0 18.8 27.9 20.9 22.5 22.3 25.0 27.0

Ni 5.04 15.6 15.1 5.90 17.4 5.66 14.9 11.7 23.9 30.7

Cu 19.1 28.9 62.7 32.2 46.0 18.2 33.1 18.8 39.3 58.5

Zn 79.1 84.7 71.5 76.0 76.2 72.4 71.2 71.8 66.3 71.9

Ga 18.9 18.2 18.5 18.6 18.1 18.3 18.5 18.2 17.3 17.0

Rb 102 88.2 126 66.4 109 80.2 154 105 75.5 64.2

Sr 535 516 484 496 523 500 482 507 487 620

Y 25.4 22.0 22.1 24.8 22.2 21.5 24.3 22.5 21.4 23.4

Zr 187 121 181 232 149 148 191 183 139 162

Nb 8.95 7.49 9.26 10.9 7.52 8.40 9.81 8.56 7.46 8.68

Mo 1.71 1.35 1.51 2.05 1.30 1.53 1.38 1.50 1.11 1.19

Sn 2.44 2.33 2.65 2.60 2.36 1.97 2.87 2.61 2.70 2.84

Sb 0.107 0.0925 0.114 0.149 0.0896 0.206 0.0984 0.0988 0.108 0.107

Cs 4.18 5.11 3.42 1.32 4.88 4.28 7.18 5.22 4.59 6.18

Ba 836 843 865 1076 822 869 868 853 937 858

La 29.4 25.2 29.4 34.6 25.3 32.0 29.9 28.2 23.9 24.3

Ce 60.1 51.5 58.3 71.7 51.9 62.7 60.5 57.1 47.8 49.2

Pr 7.15 6.23 6.74 8.25 6.24 7.29 7.15 6.77 5.72 5.87

Nd 27.7 24.7 25.6 31.4 24.6 27.2 27.7 26.2 22.5 23.2

Sm 5.63 5.16 5.10 6.16 5.15 5.17 5.63 5.29 4.79 5.00

Eu 1.37 1.30 1.21 1.35 1.26 1.24 1.34 1.27 1.18 1.21

Gd 5.19 4.76 4.65 5.44 4.72 4.58 5.10 4.81 4.42 4.69

Tb 0.782 0.706 0.690 0.799 0.710 0.678 0.765 0.712 0.668 0.722

Dy 4.66 4.17 4.07 4.67 4.19 3.99 4.52 4.23 4.00 4.31

Ho 0.929 0.814 0.806 0.913 0.824 0.782 0.894 0.837 0.792 0.861

Er 2.58 2.23 2.22 2.52 2.27 2.18 2.47 2.31 2.21 2.37

Tm 0.381 0.326 0.335 0.374 0.334 0.326 0.366 0.345 0.327 0.354

Yb 2.55 2.13 2.22 2.43 2.20 2.16 2.39 2.28 2.17 2.32

Lu 0.38 0.315 0.333 0.362 0.329 0.322 0.358 0.342 0.322 0.342

Hf 4.66 3.06 4.60 5.77 3.88 3.78 4.83 4.58 3.56 4.05

Ta 0.649 0.550 0.700 0.784 0.561 0.627 0.789 0.632 0.584 0.679

Tl 1.12 0.621 0.673 0.516 0.770 0.410 1.632 0.868 1.05 0.522

Pb 20.3 17.8 23.3 24.0 19.2 19.7 24.9 20.2 23.7 25.8

Th 11.9 10.4 16.4 16.1 10.9 12.6 14.4 12.4 11.7 12.2

U 3.53 3.33 4.92 4.66 3.42 3.17 4.70 3.89 4.23 4.26  
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Table 3.1: continued
Sample ID BG-107 BG-61 BG-64 BG-72 BG-49 BG-110 BHVO-II

Rock type MK-HK MK-HK MK-HK MK-HK Alkaline dikes Alkaline dikes Standard

Locality Borovitza Zvezdel Zvezdel Zvezdel Egrek Egrek Tabletop digestion

GPS (N) 41° 45.159' 41° 28.261' 41° 30.785' 41°.29.597' 41° 18.761' 41° 19.106'

GPS (E) 025° 09.467' 025° 31.285' 025° 32.749' 025° 24.432' 025° 38.347' 025° 37.595'

wt %

SiO2 56.4 58.4 56.3 53.5 46.5 46.0

Al2O3 16.2 18.0 16.7 16.8 16.4 16.8

MgO 4.01 0.74 3.64 4.06 7.33 7.51

Fe2O3 6.19 6.87 7.79 8.99 8.74 8.96

FeO 5.57 6.18 7.01 8.09 7.86 8.06

TiO2 0.770 1.05 0.990 1.00 2.03 2.07

Na2O 3.02 2.99 3.47 3.14 3.78 2.02

K2O 2.97 3.28 2.16 1.27 1.97 2.31

CaO 7.11 6.32 6.63 8.36 9.48 10.1

P2O5 0.440 0.250 0.260 0.180 0.687 0.579

MnO 0.120 0.0600 0.140 0.170 0.160 0.140

L.O.I. 1.70 1.45 0.99 1.73 1.93 2.96

Summe 99.4 99.7 99.3 99.3 99.3 99.7

ppm

Li 5.42 17.0 6.85 10.2 9.31 13.3 4.70 (4.60)

Sc 21.1 21.4 23.2 28.6 23.4 25.1 34.7 (31.8)

V 156 177 184 226 200 226 327 (317)

Cr 72.4 16.6 23.5 31.3 183 151 310 (289)

Co 18.3 15.0 19.8 26.8 32.7 32.3 45.9 (45.0)

Ni 21.3 5.01 5.82 8.05 109 76.2 120 (119)

Cu 28.7 16.9 24.8 21.1 42.2 52.3 130 (127)

Zn 65.0 72.9 79.8 81.7 73.1 74.5 107 (103)

Ga 17.9 17.4 18.8 18.3 19.9 19.3 21.6 (21.7)

Rb 120 113 124 85.0 71.4 58.2 9.01 (9.20)

Sr 973 357 528 515 803 692 400 (395)

Y 21.4 22.0 24.2 24.8 24.0 23.9 25.0 (25.5)

Zr 189 167 236 150 213 190 173 (174)

Nb 11.9 8.04 10.3 7.24 65.8 63.6 17.2 (18.0)

Mo 1.69 0.880 1.97 1.21 3.18 3.14 3.58 (4.00)

Sn 3.23 1.66 2.59 1.75 1.64 1.71 1.64 (1.80)

Sb 0.101 0.164 0.124 0.0855 0.127 0.0879 0.110 (0.130)

Cs 108 51.9 4.97 2.94 2.12 3.43 0.100 (0.110)

Ba 1967 1453 852 605 680 715 123 (130)

La 38.9 30.8 34.1 23.4 43.0 40.5 15.3 (15.2)

Ce 77.9 60.6 70.6 47.9 80.9 77.1 37.6 (38.0)

Pr 8.67 6.97 8.07 5.78 9.27 8.93 5.35 (5.30)

Nd 32.2 26.2 30.8 23.0 36.2 35.0 24.6 (25.0)

Sm 6.17 5.10 6.04 4.93 7.03 6.93 6.09 (6.20)

Eu 1.39 1.20 1.37 1.28 2.16 2.11 2.06 (2.06)

Gd 5.18 4.58 5.36 4.80 6.31 6.21 6.15 (6.30)

Tb 0.730 0.677 0.783 0.744 0.885 0.873 0.925 (0.930)

Dy 4.07 3.98 4.55 4.54 4.89 4.85 5.29 (5.25)

Ho 0.781 0.796 0.893 0.914 0.901 0.899 0.967 (0.990)

Er 2.15 2.20 2.45 2.54 2.35 2.35 2.42 (2.50)

Tm 0.317 0.329 0.366 0.378 0.329 0.328 0.325 (0.340)

Yb 2.12 2.20 2.37 2.51 2.12 2.09 1.97 (2.00)

Lu 0.319 0.328 0.359 0.376 0.310 0.307 0.276 (0.280)

Hf 4.80 4.10 5.83 3.83 4.62 4.16 4.37 (4.20)

Ta 0.940 0.600 0.740 0.512 3.86 3.77 1.13 (1.13)

Tl 1.28 0.936 0.945 0.445 0.119 0.142 0.0277 (-)

Pb 49.3 13.0 22.3 14.4 4.71 4.91 1.49 (1.70)

Th 19.4 13.0 15.9 8.12 7.49 7.65 1.25 (1.21)

U 5.26 3.26 4.40 1.92 2.01 1.84 0.409 (0.410)  
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Table 3.1: continued
Sample ID SA-1 SA-3 SA-4 SA-6 SA-9 SA-10 SA-11

Rock type Basalt MK-Andesite HK bas. And. MK bas. And. MK-Andesite MK bas. And MK bas. And.

Locality Therasia Vouno Cone Therasia Akrotiri Skaros Skaros Skaros

GPS (N) 36° 27.820' 36 ° 27.959' 36° 27.303' 36° 20.832' 36° 25.940' 36° 25.918' 36° 27.904'

GPS (E) 025° 24.056 025° 24.411' 025° 25.302' 025° 23.725' 025° 25.146' 025° 25.095' 025° 24.758'

wt %

SiO2 51.5 56.5 54.5 54.5 56.8 52.5 55.2

Al2O3 18.5 17.3 18.3 17.3 16.1 16.9 17.9

MgO 6.26 4.24 3.87 5.79 3.96 7.17 3.88

Fe2O3 9.22 8.55 8.73 8.32 9.77 8.97 8.20

FeO 8.30 7.69 7.86 7.49 8.79 8.07 7.38

TiO2 0.88 0.88 1.02 0.88 1.25 0.85 0.84

Na2O 2.76 3.2 3.58 3.08 3.55 2.65 3.37

K2O 0.550 1.45 1.68 1.21 1.45 0.750 0.960

CaO 10.5 8.45 8.24 9.19 7.49 10.5 9.18

P2O5 0.0830 0.114 0.178 0.120 0.181 0.0910 0.122

MnO 0.160 0.160 0.160 0.150 0.200 0.170 0.170

L.O.I. 0.0600 -0.170 0.170 0.040 -0.200 -0.280 -0.208

Summe 101 101 101 101 101 100 99.7

ppm

Li 7.48 13.2 14.6 11.9 13.8 10.2 7.46

Sc 43.0 35.5 27.0 39.9 39.0 47.1 40.0

V 335 286 256 281 280 285 252

Cr 84.3 15.3 23.8 148 100 286 38.6

Co 37.8 29.9 26.6 32.3 27.0 38.4 26.1

Ni 51.8 16.3 13.3 52.2 23.1 75.3 15.1

Cu 74.8 50.7 40.4 64.0 74.8 64.7 60.2

Zn 74.2 75.4 84.8 76.5 95.6 76.6 81.8

Ga 17.9 18.5 20.3 17.7 18.8 16.7 18.7

Rb 15.4 62.0 57.8 45.3 58.4 27.9 31.7

Sr 242 210 309 195 191 192 229

Y 20.9 27.1 28.9 26.0 37.4 23.8 28.3

Zr 77.0 141 188 139 193 104 126

Nb 3.29 5.27 8.28 5.29 5.99 3.09 3.82

Mo 0.514 1.23 1.02 0.92 1.64 0.773 0.932

Sn 0.736 1.50 1.57 1.18 1.69 0.877 1.01

Sb 0.0658 0.139 0.0794 0.0959 0.178 0.0874 0.0986

Cs 0.422 1.83 1.80 1.15 1.86 0.882 0.829

Ba 130 209 386 219 230 128 187

La 8.03 14.8 24.7 15.4 17.1 9.07 12.1

Ce 17.2 30.8 51.5 31.5 37.3 20.1 26.5

Pr 2.33 3.83 5.93 3.87 4.81 2.65 3.46

Nd 10.4 15.8 23.2 15.6 20.5 11.7 14.9

Sm 2.80 3.89 5.01 3.72 5.23 3.16 3.86

Eu 0.943 1.05 1.29 1.03 1.37 0.949 1.17

Gd 3.31 4.32 5.04 4.15 5.93 3.74 4.43

Tb 0.576 0.749 0.844 0.711 1.03 0.649 0.770

Dy 3.75 4.79 5.20 4.53 6.66 4.26 4.99

Ho 0.793 1.01 1.08 0.963 1.41 0.905 1.07

Er 2.26 2.90 3.07 2.75 3.99 2.57 3.05

Tm 0.343 0.447 0.470 0.418 0.613 0.390 0.468

Yb 2.29 3.01 3.15 2.83 4.15 2.61 3.16

Lu 0.349 0.458 0.482 0.435 0.629 0.400 0.483

Hf 1.98 3.56 4.32 3.29 4.69 2.59 3.10

Ta 0.237 0.436 0.533 0.394 0.455 0.247 0.289

Tl 0.0242 0.166 0.0946 0.145 0.110 0.0586 0.0721

Pb 3.67 9.35 12.2 7.93 8.42 4.32 5.73

Th 2.33 8.83 7.39 6.77 9.00 4.13 5.07

U 0.679 2.89 2.05 1.99 2.74 1.27 1.54  
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3.4. Results 

 

3.4.1. Major and trace elements 

 

Major and trace element data for the mafic to intermediate potassium-rich volcanic 

rocks of Eastern Bulgaria as well as for seven mafic calc-alkaline rocks of Santorini (<57 wt. 

% SiO2) are listed in Table 3.1. Following the classification scheme of Peccerillo & Taylor 

(1976; Fig. 3.3a) the samples are grouped into the following suites: The Bulgarian samples 

comprise a medium- to high-K suite (15 samples) as well as a shoshonitic-banakitic group 

(four samples). Six absarokite samples that represent the most mafic samples of the 

shoshonite series are grouped separately on the basis of their distinct major and trace element 

composition. The Bulgarian dataset is complemented by two samples from alkaline basalt 

dikes, representing the youngest volcanic episode in Bulgaria (28 – 26 Ma).  

 

 
 

Fig. 3.3: 

K2O vs. SiO2 systematic of lavas from Bulgaria and Santorini. (a) Classification diagram after Peccerillo & 

Taylor (1976). (b) Comparison of Bulgarian, Santorini, Serbian and Italian K-rich rocks in SiO2 vs. K2O space.  

 

On the basis of the classification diagram of Peccerillo & Taylor (1976) the samples 

from Santorini from this study as well as from Bailey et al. (2009) can be classified as a low- 
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to medium-K calc-alkaline suite (see also Zellmer et al., 2009), comprising basaltic andesites 

and andesites (seven samples; see Fig. 3.3a). A comparison to other K-rich rocks from Serbia 

and Italy is shown in Fig. 3.3b.  

 

 
Fig. 3.4: 

Major element variation diagrams for the sample suites from Bulgaria (medium- to high-K, shoshonitic, 

absarokitic and alkaline basalts), and Santorini (low- to medium-K). 
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The most primitive end-member of the studied K-rich sample suites is the absarokitic 

group with MgO = 5.4 - 8.8 wt. %, Cr = 350 - 460 ppm, Ni = 56 - 110 ppm and relatively high 

Mg-numbers of 50-56. Notably, the absarokites are relatively Ca-rich with CaO/Al2O3 from 

0.9 – 1.7. Harker variation diagrams for the absarokites (Fig. 3.4 a-f and 3.5 a-c) generally 

show trends inverse to those expected for olivine fractionation, possibly reflecting 

fractionation of clinopyroxene and/or a K-Mg rich phase like phlogopite. Although phlogopite 

abundances in the studied rocks are rather low (< 5 vol. %), the Mg-numbers of subduction 

zone phlogopites can reach up to 94 (Coltorti et al., 2007; Grégoire et al., 2008), and therefore 

can be considered as an early phase to fractionate.  

 

 
Fig. 3.5 a-c: 

Major element variation diagrams indicating the major fractionating phases for the different sample suites 

(illustrated by vectors). Compositions of the Santorini and most Bulgarian lavas are controlled by olivine-

pyroxene fractionation. As an exception, the Bulgarian absarokites were influenced by phlogopite fractionation. 
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The CI-normalized REE patterns of the absarokites (see inlet Fig. 3.6a) indicate a less 

pronounced LREE enrichment than for K-rich rocks from Serbia (lamproite-affinity group, 

see figure captions of Fig. 3.6 for details; Prelević et al., 2005) and from Italy (Roccamonfina 

high-K rocks; Conticelli et al., 2009a). Furthermore, in a primitive mantle normalized multi-

element diagram (Fig. 3.6a) the absarokites from Bulgaria display enrichments in LILE, Pb 

and P and depletions of Nb and Ta. As for REE, the Bulgarian absarokites are less enriched in 

HFSE than the K-rich samples from Italy and Serbia. Compositions obtained here for the 

Bulgarian absarokites (and also the other compositional groups) are in excellent agreement 

with previously published trace element data for absarokites from Borovitza and Planinetz by 

Marchev et al. (2004; see stippled lines in Fig. 3.6).  
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Fig. 3.6 a-e: 

PRIMA-normalized multi-element diagrams and REE patterns for the three K-rich subgroups of the E-Bulgarian 

volcanic rocks, the Bulgarian alkaline basalts, and the calc-alkaline Santorini lavas. PRIMA and CI 

normalization values after Sun & McDonough (1989). For better comparability, Serbian LAG rocks (lamproite 

affinity group, after Prelević et al., 2005) were screened for SiO2 < 58 wt. % and K2O < 6 wt. %. The 

Roccamonfina sample suite from Conticelli et al. (2009a) is shown without ultrapotasssic rocks. Compilation of 

Cenozoic central European intraplate volcanics are based on the online database http://georoc.mpch-

mainz.gwdg.de. The stippled lines represent data of the same volcanic centres of the Eastern Rhodopes by 

Marchev et al. (2004). 

 

With higher SiO2 and MgO from 2.8 – 7.2 wt. %, Cr from 8.4 – 286 ppm, Ni from 4.1 

– 75.3 ppm, Mg# from 11 – 44, the shoshonites and medium- to high-K samples from 

Bulgaria are less primitive than the Bulgarian absarokites. In Harker variation diagrams, the 

suites follow trends as expected for olivine-clinopyroxene dominated fractionation (Fig. 3.5). 

Incompatible trace element systematics for the shoshonites (Fig. 3.6b) and medium- to high-K 

samples from Bulgaria (Fig. 3.6c) are overlapping compositions of both the Serbian 

lamproites, the Italian (Roccamonfina volcano, Roman Magmatic Province) K-rich rocks in 

CI normalized and primitive mantle normalized diagrams. 

The two (anorogenic) alkaline basalts from Bulgaria exhibit a narrow compositional 

range (MgO = 7.3 and 7.5 wt. %, Mg# = 48, SiO2 = 46 and 46.5 wt. %). The samples are rich 

in TiO2 (2.0 wt. %), and display Cr contents of 151 and 183 ppm and Ni contents of 76 and 

109 ppm, respectively. The LaN-YbN ratios for the Bulgarian alkaline basalts range from 13.9 

and 14.6. Figure 3.6d illustrates compositions of the Bulgarian alkaline basalts in comparison 
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to a compilation of Cenozoic central European intraplate volcanics and previously published 

data on the Bulgarian alkaline basalts by Marchev et al. (2004; stippled lines in Fig. 3.6e). 

Samples from all localities display similar CI-normalized REE patterns. In the primitive 

mantle (PRIMA) normalized diagram all suites show elevated Nb-Ta and Ti values. 

The calc-alkaline samples from Santorini are characterized by MgO contents from 3.9 

– 7.1 wt. %, resulting in Mg# from 31 – 47. Likewise, the compatible element contents are 

highly variable (Cr = 15 – 286 ppm and Ni = 13 – 75 ppm). In contrast to the Bulgarian lavas, 

the samples from Santorini are less enriched in LREE, yielding LaN/YbN from 2.4 – 7.3 (Fig. 

3.4), and also display lower abundances of fluid mobile elements like Ba, Cs, and Pb. As for 

the Bulgarian suite, Santorini lavas are characterized by high LILE-HFSE ratios with a 

variable enrichment of fluid-mobile elements and marked HFSE depletions. As illustrated in 

Fig. 3.6e (grey field), compositions of the samples analyzed in this study cover the range of 

previously published REE data for Santorini lavas by Bailey et al. (2009) and can therefore be 

regarded as being representative for volcanism on Santorini. 
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Table 3.2: 

Sample age (Ma)
87

Sr/
86

Sr ± 2σ
87

Rb/
86

Sr
87

Sr/
86

Sr (i)
143

Nd/
144

Nd ±  2σ
147

Sm/
144

Nd
143

Nd/
144

Nd (i) εNd(i) ±  2σ

measured measured

absarokites

BG-99a 32 0.708462 ± 15 0.4359 0.708264 0.512463 ± 10 0.1758 0.512426 -4.0 ± 0.4

BG-102 32 0.708405 ± 11 0.3296 0.708255 0.512450 ± 9 0.1739 0.512414 -4.2 ± 0.4

BG-99b 32 0.708454 ± 13 0.4465 0.708251 0.512448 ± 10 0.1769 0.512411 -4.3 ± 0.4

BG-101 32 0.708438 ± 16 0.3685 0.708271 0.512449 ± 9 0.1757 0.512412 -4.3 ± 0.3

BG-109a 32 0.707730 ± 17 2.542 0.706574 0.512560 ± 10 0.1809 0.512522 -2.1 ± 0.4

BG-109b 32 0.707580 ± 13 2.545 0.706423 0.512553 ± 13 0.1812 0.512515 -2.2 ± 0.5

BG-109b* 32 0.707562 ± 12 2.545 0.706405 0.512557 ± 9 0.1812 0.512519 -2.2 ± 0.4

shoshonites

BG-60 32 0.707715 ± 12 0.9992 0.707261 0.512488 ± 12 0.1554 0.512456 -3.4 ± 0.5

BG-103 32 0.708518 ± 12 0.4535 0.708312 0.512359 ± 11 0.1519 0.512327 -5.9 ± 0.4

BG-103* 32 0.708516 ± 16 0.4535 0.708310 0.512356 ± 11 0.1519 0.512324 -6.0 ± 0.4

BG-113 32 0.708217 ± 12 0.3745 0.708046 0.512502 ± 10 0.1712 0.512466 -3.2 ± 0.4

BG-46 32 0.708270 ± 14 0.4180 0.708080 0.512483 ± 9 0.1673 0.512448 -3.6 ± 0.3

 

medium- and high-K

BG-62 32 0.707365 ± 11 0.5535 0.707114 0.512478 ± 10 0.1587 0.512445 -3.6 ± 0.4

BG-58 32 0.707448 ± 11 0.4946 0.707223 0.512484 ± 9 0.1634 0.512449 -3.5 ± 0.3

BG-78 32 0.707298 ± 13 0.7541 0.706955 0.512496 ± 11 0.1559 0.512463 -3.3 ± 0.4

BG-78* 32 0.707277 ± 11 0.7542 0.706934 0.512490 ± 13 0.1559 0.512457 -3.4 ± 0.5

BG-56 32 0.707050 ± 14 0.3876 0.706874 0.512463 ± 10 0.1532 0.512431 -3.9 ± 0.4

BG-67 32 0.707494 ± 12 0.6050 0.707219 0.512470 ± 11 0.1638 0.512436 -3.8 ± 0.4

BG-67* 32 0.707472 ± 13 0.6050 0.70720 0.512466 ± 11 0.1638 0.512432 -3.9 ± 0.4

BG-59 32 0.707365 ± 13 0.4647 0.707153 0.512446 ± 10 0.1487 0.512414 -4.2 ± 0.4

BG-82 32 0.708178 ± 14 0.9233 0.707759 0.512468 ± 12 0.1591 0.512435 -3.8 ± 0.4

BG-52 32 0.707430 ± 13 0.5982 0.707158 0.512462 ± 11 0.1577 0.512429 -3.9 ± 0.4

BG-92 32 0.708073 ± 13 0.4486 0.707869 0.512468 ± 11 0.1663 0.512433 -3.8 ± 0.4

BG-117 32 0.707893 ± 12 0.2994 0.707757 0.512485 ± 11 0.1682 0.512449 -3.5 ± 0.4

BG-107 32 0.708804 ± 15 0.3559 0.708642 0.512360 ± 9 0.1500 0.512328 -5.9 ± 0.3

BG-61 32 0.707824 ± 16 0.9118 0.707409 0.512468 ± 11 0.1519 0.512436 -3.8 ± 0.4

BG-64 32 0.707038 ± 11 0.6778 0.706729 0.512479 ± 16 0.1532 0.512447 -3.6 ± 0.6

BG-64* 32 0.707040 ± 11 0.6779 0.706732 0.512460 ± 9 0.1532 0.512428 -3.9 ± 0.3

BG-72 32 0.707227 ± 13 0.4774 0.707010 0.512484 ± 12 0.1674 0.512449 -3.5 ± 0.5

BG-72* 32 0.707213 ± 11 0.4774 0.706996 0.512489 ± 13 0.1674 0.512454 -3.4 ± 0.5

alkaline basalts

BG-49 28 0.703672 ± 11 0.2571 0.703570 0.512896 ± 10 0.1520 0.512896 5.2 ± 0.5

BG-110 28 0.703767 ± 13 0.2432 0.703670 0.512897 ± 7 0.1549 0.512897 5.2 ± 0.5

* replicates

Parent daughter ratios calculated by using the trace element concentrations reported in Table 3.1.  
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Table 3.2: continuation

Sample age (Ma) Lu (ppm)¹ Hf (ppm)¹
176

Hf/
177

Hf ±  2σ
176

Lu/
177

Hf
176

Hf/
177

Hf (i) εHf(i) ±  2σ

measured

absarokites

BG-99a 32 0.2540 3.354 0.282760 ± 5 0.01075 0.282753 -0.7 ± 0.5

BG-102 32 0.2582 3.412 0.282767 ± 5 0.01074 0.282760 -0.4 ± 0.5

BG-99b 32 0.2549 3.336 0.282761 ± 5 0.01084 0.282754 -0.6 ± 0.5

BG-101 32 0.2139 2.820 0.282766 ± 5 0.01077 0.282759 -0.4 ± 0.5

BG-109a 32 0.2031 2.460 0.282857 ± 7 0.01172 0.282850 2.7 ± 0.5

BG-109b 32 0.2050 2.482 0.282853 ± 5 0.01172 0.282846 2.6 ± 0.5

BG-109b* 32 0.1925 2.329 0.282863 ± 6 0.01173 0.282856 3.0 ± 0.5

shoshonites

BG-60 32 0.3642 4.482 0.282783 ± 5 0.01155 0.282776 0.1 ± 0.5

BG-103 32 0.3229 4.560 0.282688 ± 7 0.01007 0.282682 -3.2 ± 0.5

BG-103* 32 0.3018 4.279 0.282691 ± 8 0.01001 0.282685 -3.1 ± 0.6

BG-113 32 0.3180 3.935 0.282774 ± 6 0.01111 0.282767 -0.2 ± 0.5

BG-46 32 0.3498 5.692 0.282779 ± 7 0.00872 0.282774 0.1 ± 0.5

medium- and high-K

BG-62 32 0.3651 4.533 0.282800 ± 6 0.01143 0.282793 0.7 ± 0.5

BG-58 32 0.3180 3.099 0.282798 ± 6 0.01457 0.282789 0.6 ± 0.5

BG-78 32 0.3392 4.771 0.282804 ± 10 0.01011 0.282798 0.9 ± 0.7

BG-78* 32 0.3185 4.490 0.282795 ± 6 0.01007 0.282789 0.6 ± 0.5

BG-56 32 0.3681 5.918 0.282768 ± 7 0.00884 0.282763 -0.3 ± 0.5

BG-67 32 0.3289 3.951 0.282787 ± 6 0.01183 0.282780 0.3 ± 0.5

BG-67* 32 0.3097 3.726 0.282781 ± 6 0.01180 0.282774 0.1 ± 0.5

BG-59 32 0.3292 3.835 0.282776 ± 5 0.01220 0.282768 -0.1 ± 0.5

BG-82 32 0.3630 4.956 0.282761 ± 10 0.01041 0.282755 -0.6 ± 0.7

BG-52 32 0.3445 4.714 0.282777 ± 7 0.01039 0.282771 -0.1 ± 0.5

BG-92 32 0.3081 3.459 0.282795 ± 7 0.01264 0.282787 0.5 ± 0.5

BG-117 32 0.3323 3.953 0.282810 ± 6 0.01193 0.282803 1.1 ± 0.5

BG-107 32 0.2999 4.612 0.282705 ± 6 0.00923 0.282699 -2.6 ± 0.5

BG-61 32 0.3315 4.173 0.282770 ± 6 0.01129 0.282763 -0.3 ± 0.5

BG-64 32 0.3619 5.920 0.282762 ± 7 0.00869 0.282757 -0.5 ± 0.5

BG-64* 32 0.3402 5.594 0.282771 ± 7 0.00863 0.282766 -0.2 ± 0.5

BG-72 32 0.3787 3.919 0.282785 ± 7 0.01374 0.282776 0.2 ± 0.5

BG-72* 32 0.3574 3.699 0.282792 ± 6 0.01372 0.282783 0.4 ± 0.5

alkaline basalts

BG-49 28 0.3129 4.810 0.283010 ± 5 0.00923 0.283005 8.2 ± 0.5

BG-110 28 0.3194 4.283 0.283009 ± 5 0.01058 0.283003 8.2 ± 0.5

* replicates

¹ Isotope dilution data  
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Table 3.2: continuation

Sample age (Ma)
206

Pb/
204

Pb
207

Pb/
204

Pb
208

Pb/
204

Pb
238

U/
204

Pb
235

U/
204

Pb
232

Th/
204

Pb
206

Pb/
204

Pb (i)
207

Pb/
204

Pb (i)
208

Pb/
204

Pb (i)

measured measured measured

absarokites

BG-99a 32 18.707 15.668 38.927 5.53 0.0402 23.6 18.679 15.666 38.889

BG-102 32 18.715 15.669 38.930 7.90 0.0574 23.3 18.676 15.667 38.893

BG-99b 32 18.705 15.667 38.926 5.08 0.0369 22.8 18.680 15.666 38.889

BG-101 32 18.716 15.668 38.926 8.34 0.0606 23.8 18.675 15.666 38.888

BG-109a 32 18.752 15.671 38.821 11.1 0.0806 23.1 18.697 15.669 38.784

BG-109b 32 18.754 15.670 38.817 9.52 0.0692 19.6 18.707 15.668 38.786

BG-109b* 32 18.748 15.669 38.813 9.52 0.0692 19.6 18.701 15.667 38.782

shoshonites

BG-60 32 n.d. n.d. n.d.

BG-103 32 18.805 15.673 38.895 9.49 0.0690 33.9 18.758 15.671 38.841

BG-103* 32 n.d. n.d. n.d.

BG-113 32 18.867 15.681 38.905 13.7 0.0996 30.4 18.799 15.677 38.857

BG-46 32 18.829 15.668 38.879 18.7 0.136 35.9 18.736 15.663 38.822

medium- and high-K

BG-62 32 18.831 15.677 38.907 11.2 0.0814 39.2 18.775 15.674 38.845

BG-58 32 18.842 15.686 38.936 12.0 0.0875 38.9 18.782 15.684 38.874

BG-78 32 18.829 15.673 38.907 13.6 0.0988 46.9 18.761 15.670 38.833

BG-78* 32 n.d. n.d. n.d.

BG-56 32 18.743 15.676 39.006 12.5 0.0910 44.5 18.681 15.674 38.935

BG-67 32 18.834 15.677 38.907 11.4 0.0831 37.6 18.777 15.674 38.847

BG-67* 32 18.832 15.676 38.903 11.4 0.0831 37.6 18.775 15.673 38.843

BG-59 32 18.829 15.681 38.926 10.3 0.0752 42.4 18.778 15.679 38.859

BG-82 32 18.807 15.681 38.928 12.1 0.0882 38.5 18.746 15.678 38.868

BG-52 32 18.829 15.666 38.868 12.4 0.0899 40.7 18.767 15.663 38.804

BG-52* 32 18.833 15.672 38.890 12.4 0.0899 40.8 18.771 15.669 38.825

BG-92 32 18.815 15.680 38.918 11.5 0.0834 32.7 18.758 15.678 38.866

BG-117 32 n.d. n.d. n.d.

BG-107 32 18.745 15.676 38.964 6.85 0.0498 26.1 18.711 15.674 38.923

BG-61 32 18.842 15.678 38.941 16.1 0.117 66.1 18.762 15.674 38.836

BG-64 32 18.805 15.674 38.905 12.7 0.0921 47.2 18.742 15.672 38.830

BG-64* 32 n.d. n.d. n.d.

BG-72 32 18.792 15.675 38.887 8.57 0.0623 37.5 18.750 15.673 38.828

BG-72* 32 n.d. n.d. n.d.

alkaline basalts

BG-49 28 18.988 15.636 38.893 27.459 0.200 105.866 18.869 15.631 38.746

BG-110 28 18.909 15.633 38.864 24.031 0.175 103.504 18.804 15.628 38.721  

 

Table 3.3: Sr-Nd-Hf-Pb isotope data Santorini

Sample
87

Sr/
86

Sr ± 2σ
143

Nd/
144

Nd ± 2σ εNd(i) ± 2σ Lu (ppm)
1

Hf (ppm)
1 176

Lu/
177

Hf
176

Hf/
177

Hf ± 2σ εHf(i) ± 2σ

measured measured

SA-1 0.704450 ± 17 0.512841 18 4.11 0.7 0.361 2.105 0.024331 0.283101 ± 7 11.6 ± 0.5

SA-3 0.704871 ± 15 0.512684 10 1.05 0.4 n.d. n.d. n.d. n.d. n.d.

SA-4 0.706380 ± 17 0.512593 8 -0.71 0.3 0.490 4.556 0.015260 0.282823 ± 8 1.80 ± 0.6

SA-6 0.704596 ± 17 0.512684 9 1.06 0.3 0.442 3.449 0.018184 0.282937 ± 7 5.83 ± 0.5

SA-9 0.704414 ± 17 0.512808 8 3.47 0.3 0.665 4.985 0.018934 0.283021 ± 7 8.80 ± 0.5

SA-10 0.704270 ± 18 0.512820 10 3.71 0.4 0.399 2.720 0.020795 0.283036 ± 7 9.35 ± 0.5

SA-11 0.704236 ± 18 0.512812 12 3.55 0.5 0.518 3.253 0.022607 0.283027 ± 9 9.03 ± 0.6

¹ Isotope dilution data

Calculation of εHf using
 176

Hf/
177

Hf(CHUR) of 0.282772 after Blichert-Toft and Albarède (1997)  

 

Sample
206

Pb/
204

Pb
207

Pb/
204

Pb
208

Pb/
204

Pb

measured measured measured

SA-1 18.917 15.669 38.901

SA-3 18.894 15.681 38.941

SA-4 18.847 15.686 38.938

SA-6 18.931 15.683 38.957

SA-9 18.908 15.671 38.907

SA-10 18.902 15.669 38.893

SA-11 18.922 15.668 38.904  
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3.4.2. Sr-Nd-Hf-Pb isotope compositions 

 

Strontium-Nd-Hf-Pb isotope compositions of all analyzed samples are listed in Tables 

3.2 and 3.3 and illustrated in Figs. 3.7, 3.8 and 3.9. High Rb/Sr of the samples from Bulgaria 

required an age correction for Sr isotope data. This was also carried out for Nd-Hf-Pb isotopes 

(see Table 3.2), where it was less significant. For Lu-Hf, the element concentrations obtained 

by isotope dilution were used for age correction, for all other isotope systems the 

concentrations obtained by quadrupole ICP-MS measurements were used. The larger 

uncertainties of these element ratios are negligible for discussion of the data in this study. 

 

 
Fig. 3.7: 
143Nd/144Nd(i) vs. 87Sr/86Sr(i) compositions of Bulgarian and Santorini lavas illustrating the variations between 

compositional groups (a) and individual volcanic centres (b). Panel (a) also shows a comparison to other 

potassium-enriched and alkaline rock suites as well as to compositions of local metamorphic basement and 

previous data on Eastern Rhodope K-rich rocks by Marchev et al. (2004; white diamonds). Fields for E-Serbian 

alkaline basalts, Serbian HKCA-SHO (high-K calc-alkaline and shoshonitic basalts) and Serbian ultrapotassic 

rocks after Prelević et al. (2005) and Cvetković et al. (2004), Italian lavas (Neapolitan District and 

Roccamonfina) after Conticelli et al. (2002) and references within, Eastern Bulgarian metamorphic basement 

and alkaline basalts, Bulgaria after Marchev et al. (2004), Central European intraplate volcanics after the online 

database http://georoc.mpch-mainz.gwdg.de; EAR (=European Asthenospheric Reservoir) after Cebriá & Wilson 

(1995). The white asterisk represents the inferred composition of the potential source contaminant. Symbols in 

panel (b) are as in Fig. 3.10b, d. 

 

The Bulgarian K-rich lavas are characterized by 87Sr/86Sr(i) values of 0.7064 – 0.7086. 

Initial εNd(i) range from -5.8 to -1.9 with most samples scattering around a value of -3. These 

values are within the range reported by Marchev et al. (2004) for mafic rocks from the 

Eastern Rhodopes (see Fig. 3.7a, white diamonds). Values of εHf(i) vary from -3 to +3, the 
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majority of the samples exhibit εHf(i) values of ~ 0. In contrast to the high-K samples, the two 

alkaline basalts are characterized by almost identical isotope compositions, yielding less 

radiogenic 87Sr/86Sr(i) (0.7036 – 0.7037) and more radiogenic εNd(i) (+5.3) and εHf(i) (+8.4). In  

comparison to the Bulgarian lavas, the Santorini lavas displays less radiogenic 87Sr/86Sr(i) 

(0.7042 – 0.7064), more radiogenic Nd isotope compositions (εNd(i) = -0.71 to +4.1) and a 

large range in εHf(i) values (+1.8 to +11.6). 

As illustrated in Fig. 3.7a, the Bulgarian K-rich samples broadly overlap the fields 

defined by high-K rocks from Serbia (Cvetković et al., 2004; Prelević et al., 2005) and Italy 

(Conticelli et al., 2009a, and references therein), but yield by far less radiogenic 143Nd/144Nd(i) 

and more radiogenic 87Sr/86Sr(i) than average global MORB. Furthermore, the K-rich 

Bulgarian lavas display considerably less radiogenic Sr isotope compositions than the 

Rhodope metamorphic basement (Fig. 3.7a; 87Sr/86Sr = 0.709 – 0.734; Marchev et al., 2004) 

and typical pelagic sediments (GLOSS, Global Subducting Sediment: 87Sr/86Sr = 0.717; Plank 

& Langmuir, 1998). Figure 3.7b illustrates the Sr-Nd isotope compositions of the samples 

grouped according to individual volcanic centres, which can be well distinguished in Sr-Nd 

space, showing an increase of 87Sr/86Sr(i) from Zvezdel volcano (west) to Madjarovo (east) at 

near-constant 143Nd/144Nd(i). However, Planinetz and Borovitza are notable exceptions in that 

they exhibit very similar major and trace element contents, but plot at different ends of the 

sample array in Sr-Nd as well as in εHf-εNd space. 

The Bulgarian alkaline basalts are located in Fig. 3.7a at the upper end of a 

compilation of Cenozoic central European intraplate volcanics, and furthermore overlap the 

proposed composition of the European Asthenospheric Reservoir (EAR; after Wilson & 

Downes, 1992) as well as previously published Sr-Nd isotope compositions of the Bulgarian 

alkaline basalts by Marchev et al. (2004; Fig. 3.7a). 

Compositions of Santorini samples are shifted towards less radiogenic Sr and more 

radiogenic Nd isotope compositions than those of the Bulgarian K-rich samples and the 

Serbian and Italian high-K rocks (Fig. 3.7a). Only one Santorini sample (SA-4, Therasia 

complex) yields considerably higher 87Sr/86Sr (= 0.7064). Nevertheless, the Sr-Nd isotope 

compositions of the Santorini samples from this study are in good agreement with those 

previously published by Bailey et al. (2009) and also cover a similarly broad range. 
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Fig. 3.8: 

εHf(i) vs. εNd(i) compositions of Bulgarian and Santorini lavas illustrating the variations between compositional 

groups (a) and individual volcanic centres (b). Panel (a) also shows a comparison to other Mediterranean high-K 

and calc-alkaline rocks; MORB after Pearce et al. (1999), Woodhead et al. (2001), Chauvel & Blichert-Toft 

(2001), and Kempton et al. (2002); OIB field after Nowell et al. (1998), RMP+TMP (Roman Magmatic Province 

and Tuscan Magmatic Province) and Tyrrhenian Sea after Gasperini et al. (2002); Mantle array after Vervoort et 

al. (1999). 

  

In εHf-εNd space (Fig. 3.8a), the Bulgaria-Santorini data plot well within the mantle 

array (after Vervoort et al., 1999), but are shifted towards less radiogenic εHf and εNd 

compared to MORB and other arc suites as represented by lavas from the Tyrrhenian Sea 

(Gasperini et al., 2002) and intra-oceanic arcs (e.g., Solomon Islands, Schuth et al., 2004, 

2009; Kamchatka, Münker et al., 2004; Izu-Bonin-Mariana, Pearce et al., 1999). Only the 

high-K rocks from the Roman and Tuscan magmatic provinces (RMP and TMP, respectively, 

Gasperini et al., 2002) yield less radiogenic εHf and εNd than the Bulgarian lavas, whereas 

values of the Santorini lavas are intermediate between those of the Bulgarian lavas and those 

of volcanic rocks elsewhere in the Tyrrhenian Sea (Gasperini et al., 2002). The Hf-Nd isotope 

compositions of the alkaline basalts are again less radiogenic and are similar to those of the 

Tyrrhenian Sea and Mt. Etna (compilation of Gasperini et al., 2002). Figure 3.8b illustrates 

the distribution of the dataset in Hf-Nd space for individual volcanic centres. Unlike for Sr-Nd 

isotopes, only the absarokites from Planinetz form a discrete group by displaying the most 

radiogenic εHf-εNd values. The other volcanic centres overlap within error and do not define 

any systematic trends.  
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Fig. 3.9: 

Lead isotope compositions of the samples from Bulgaria and Santorini in comparison to compositions of Atlantic 

and Pacific MORB, and pelagic sediments. Enlarged panels on the right hand side illustrate the present day (grey 

shaded field and grey shaded symbols) and initial Pb isotope composition of the Bulgarian samples, calculated to 

32 Ma for the K-rich samples and to 28 Ma for the alkaline basalts. For comparison, compositions of GLOSS (at 

32 Ma; white star; Plank and Langmuir, 1998) and a Mesozoic flysch after Prelević et al. (2005; at 32 Ma, black 

star) are shown. Fields for pelagic sediments and MORB are after Hofmann (2003) and Peate et al. (1997), 

NHRL (Northern hemisphere reference line) after Hart (1984), Depleted East European Lithosphere after 

Rosenbaum et al. (1997), North-African sediments after Pe-Piper (1994). Moreover, previously published data 

on the Eastern Rhodope K-rich rocks (white diamonds) and alkaline basalts (black diamonds) by Marchev et al. 

(2004) is shown as well. 

 

Lead isotope ratios of both the Bulgarian K-rich rocks and the Santorini samples 

(Tables 3.2 and 3.3; Fig. 3.9) are characterized by radiogenic compositions (206Pb/204Pb(i) = 

18.68 – 18.93, 207Pb/204Pb(i) = 15.63 – 15.68 and 208Pb/204Pb(i) = 38.72 – 39.96), overlapping 

both the field for pelagic sediments (Hofmann, 2003; Peate et al., 1997) as well as the MORB 

field (Pacific and Atlantic MORB; Hofmann, 2003; Fig. 3.9). As illustrated in Figs. 3.9a and 
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b, both the Bulgarian K-rich rocks (this study and Marchev et al., 2004) and the sample suite 

from Santorini (this study and Bailey et al., 2009) display similar Pb isotope compositions as 

local Mesozoic flysch sediments from Serbia (data taken from Prelević et al., 2005), GLOSS 

(Plank & Langmuir, 1998), and sediments derived from N-Africa (river Nile, Pe-Piper, 1994). 

The Pb isotope compositions of the Bulgarian alkaline basalts span a vertical array from the 

NHRL to more enriched 207Pb/204Pb and 208Pb/204Pb at low 206Pb/204Pb. Compared to the EAR, 

the Bulgarian alkaline basalts are shifted towards lower 207Pb/204Pb, 206Pb/204Pb and 
208Pb/204Pb.  

 

 

3.5. Discussion 

 

3.5.1. Fractional crystallization and assimilation of continental crust 

 

In order to explain the trace element and isotope geochemistry of the volcanic rocks 

from Bulgaria and Santorini, the role of fractional crystallization and crustal assimilation 

processes needs to be assessed first. Fractional crystallization of clinopyroxene, olivine, and 

Fe-Ti phases controls the elemental budget of MgO, CaO, Al2O3, Ni, and Cr in the lavas from 

Bulgaria and Santorini. In Harker variation diagrams, these suites follow typical calc-alkaline 

fractionation trends (see Fig. 3.4, 3.5). Furthermore, the negative Ti and P anomalies of the 

Bulgarian shoshonites and high-K lavas (except absarokites) in multi element diagrams (Fig. 

3.6b, c) indicate additional fractional crystallization of magnetite and apatite. In marked 

contrast to all other groups, the major element composition of the absarokites from the two 

localities is dominated by the fractionation of a K-Mg-rich solidus phase, possibly phlogopite 

(Lloyd et al., 1985; Foley, 1992a, b; Conceição & Green, 2004; Fig. 3.5), whereas the strong 

increase of the CaO/Al2O3 with decreasing MgO indicates fractionation of a Mg-Al-rich 

phase, again being most likely phlogopite, from a parental magma with an already initially 

high CaO/Al2O3 (Fig. 3.5a and b). Such high CaO-Al2O3 ratios, i.e., >1, are also often 

observed for melts tapping mantle sources that were refertilized by Ca-rich components, as 

e.g. observed for ankaramites (e.g., Green & Wallace, 1988; Green et al., 2004). Marchev et 

al. (2009) also suggested that ankaramites from the Bulgarian Srednogorie Zone (Georgiev et 

al., 2009) might represent the most primitive end-member of the shoshonitic series. 

Fractionation of plagioclase might play a role, as evident from the negative Eu-anomalies 

(Eu/Eu* = 0.74 – 0.87) observed in all three Bulgarian K-rich rock suites. However, the 
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negative Eu-anomalies might additionally reflect source enrichment by melt-like components 

derived from subducted sediments (e.g., Williams et al., 2004). 

The Mg# and Ni and Cr contents of the Bulgarian alkaline basalts indicate that their 

composition has been modified by incipient crystal fractionation involving Cr-spinel, olivine, 

and clinopyroxene. Furthermore, the lack of Eu anomalies (Fig. 3.6d) suggests the absence of 

plagioclase fractionation. 

Assimilation of continental crust during ascent of the magmas has long been 

considered as a cause for the distinct geochemical and isotope signatures of potassic magmas 

in continental settings and at active continental margins. However, several authors (Stolz et 

al., 1990; Nelson, 1992b; Prelević et al., 2008; Conticelli et al., 2009a, b) have demonstrated 

that the unique isotope and geochemical features of K-rich lavas can indeed largely be 

attributed to source enrichment. In the case of the Bulgarian lavas, shallow-level assimilation 

of continental crust during magma ascent most likely has occurred to some extent as invoked 

by Marchev et al. (2004). Crustal assimilation is supported by the occurrence of Variscan, 

Neoproterozoic and Ordovician zircons in the Iran Tepe volcanic rocks and also in the 

alkaline basalts (Bonev et al., 2010; Marchev et al., in press). The zircons certainly constitute 

remnants of crustal material that had been assimilated during melt ascent. Hence, the Nd-Hf 

values measured for samples from these volcanic centres may be regarded as minimum values 

and the Sr-Pb compositions as maximum values with respect to pristine melt compositions. 

However, to explain the radiogenic Pb isotope compositions solely by assimilation of 

continental crust (average Pb concentration ~ 17 ppm; Rudnick & Gao, 2003), unrealistically 

large amounts of assimilated material (> 40%) would be required, given the high Pb 

concentrations of the lavas (> 13 ppm; Table 3.1). This is not in agreement with the trace 

element budget and the Sr-Nd isotope systematics, especially of the alkaline basalts. The 

alkaline basalts only show a slight displacement of their Sr-Nd isotope compositions from the 

narrow field defined by asthenosphere-derived basalts from the Moesian platform (P. 

Marchev; unpublished data) and also overlap the field for the EAR in Sr-Nd space (Fig. 3.7a). 

Therefore, a different model has to be developed to explain the lower Pb isotope compositions 

of the studied alkaline basalts with respect to EAR. 

For the K-rich lavas from Bulgaria, assimilation of continental crust has previously 

been reported to exert some control on the isotope and trace element compositions (Marchev 

et al., 1998a, b; 2004). Inverse zonations of plagioclase, clino- and orthopyroxene have been 

observed in some high-K rocks and were attributed to result from mixing between mafic and 

evolved magmas (Marchev et al., 1998a, b). From W to E, the four volcanic centres from 
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Zvezdel, Sveti Ilya, Iran Tepe, and Madzharovo also exhibit increasingly radiogenic Sr 

isotope compositions at invariant Nd isotope ratios (Figs. 3.1b, 3.7b). Most importantly, this 

shift is not observed for Hf and Pb isotopes, leading to the conclusion that a putative 

assimilation process selectively affected the Sr budget. Given the elevated Sr contents of the 

lavas (340 to 950 ppm; Table 3.1), however, this appears to be unlikely, as most potential 

contaminants have similar or even lower Sr abundances (average crustal abundance ca. 350 

ppm Sr; Taylor & McLennan, 1995). The strikingly different Sr-Nd-Hf-Pb isotope 

compositions of the two absarokite localities (Borovitza and Planinetz) were also interpreted 

to indicate a variable crustal input (Shanov, 1998; Marchev et al., 2004). Again this can be 

questioned, as lavas from both localities overlap in their Mg# that are all near primitive. 

Despite the detailed observations summarised above, a significant role of shallow level 

crustal assimilation during the petrogenesis of the Bulgarian lavas can still be ruled out, 

largely on the basis of lacking correlations between isotope ratios and major elements (Fig. 

3.10). In Fig. 3.10a this is illustrated for 87Sr/86Sr(i) vs. SiO2, where the expected co-variations 

for any of the suites are absent. These patterns also hold for 87Sr/86Sr(i) if plotted versus Mg# 

(Fig. 3.10c), thus precluding any significant effect of crustal assimilation processes on the Sr 

budget of the lavas. Notably, the absarokites from Borovitza, which exhibit some of the 

highest 87Sr/86Sr(i) of the data set, are also among the most primitive samples (see Table 3.1). 

Figures 3.10b and d additionally illustrate the effects of shallow level crustal assimilation 

within each volcanic centre, generally indicating pure fractional crystallization trends rather 

than co-variations expected for crustal assimilation. Collectively, the Sr-Nd-Hf budgets in the 

Bulgarian magmas can be expected to have been well buffered during crustal assimilation, 

and an unrealistically large fraction of assimilated crust would be required to generate 

measurable isotope effects (see also Conticelli et al., 2002, for high-K lavas from Italy). 
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Fig. 3.10: 

Diagrams illustrating variations of radiogenic 87Sr/86Sr(i) with wt.-% SiO2 and Mg-number to assess the effect of 

shallow level crustal assimilation on compositions of the Bulgarian and Santorini rocks. (a) 87Sr/86Sr(i) isotope 

compositions vs.SiO2 (wt. %) illustrate that in contrast to the Bulgarian samples some Santorini lavas (this study 

and Bailey et al., 2009) were modified to a significant degree by crustal assimilation (see arrows). (c) 87Sr/86Sr(i) 

isotope compositions vs. Mg-number of the Bulgarian compositional groups lack co-variations expected for 

shallow-level bulk crustal assimilation. (b) and (d) The lack of variations of 87Sr/86Sr(i) isotope compositions vs. 

SiO2 (wt. %) and Mg-number of the individual volcanic centres rule out any significant effects of crustal 

assimilation for the Bulgarian lavas and confirm small effects of crustal assimilation for Santorini.  

 

In marked contrast to the Bulgarian lavas, the compositions of some Santorini lavas 

reveal a more significant influence of shallow level crustal contamination (e.g., SA-4, 

Therasia Complex; SA-6, Akrotiri). The Santorini lavas exhibit a systematic increase of 
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87Sr/86Sr(i) with increasing SiO2 (Fig. 3.10a) and also display correlations of 87Sr/86Sr(i) with 

other differentiation and assimilation parameters (e.g., Mg-number, Fig. 3.10c; SiO2 vs. 
207Pb/204Pb; not shown). Our inferences for the Santorini lavas are consistent with previous 

modelling by Druitt et al. (1999) and Zellmer et al. (2000), who postulated up to 1 - 12% of 

assimilation of upper crustal material. However, this estimate may vary significantly, 

depending on the different crustal compositions used for modelling, as pointed out by Bailey 

et al. (2009). Hence, for the discussion of source processes below, we only use Santorini lavas 

with MgO contents above 4 wt. % (SA-1, SA-3, SA-6, and SA-10). 

 

 

3.5.2. Mantle source enrichment by subduction components vs. old lithospheric mantle 

components 

 

Experimental studies demonstrated that the formation of K-rich rocks (e.g., 

shoshonites) requires mantle sources consisting of peridotite and hydrous, incompatible 

element-rich veins (e.g., Meen, 1987; Foley, 1992b; Mitchell, 1995). These domains are 

generated by reaction of metasomatic agents, i.e., silicic melts or fluids, with the host mantle 

peridotite. The mineral assemblages produced consist of mica (usually phlogopite) and 

clinopyroxene with varying amounts of additional apatite, spinel, titanium minerals, and 

amphibole (Wyllie & Sekine, 1982; Foley, 1991, 1992b; Conceição & Green, 2004). As these 

metasomatic mineral assemblages have a lower melting point than the surrounding wall rock, 

strongly incompatible element-enriched magmas may be produced at relatively low degrees of 

melting (Meen, 1987; Foley, 1992b).  

In the absence of source enrichment by subduction fluids, partial melting of veined 

lithospheric mantle domains may be the response to a change in the P-T regime following 

asthenospheric upwelling or crustal delamination (Nelson, 1992a; Platt & England, 1994; 

Moore & Wiltschko, 2004). A further mechanism, particular in post-collisional settings such 

as Bulgaria, is the onset of extension, reflecting slab rollback, slab-break off, or crustal 

relaxation (Davies & von Blanckenburg, 1995; Wortel & Spakman, 2000; Faccenna et al., 

2003; van Hinsbergen et al., 2005). The compositional spectrum of K-(Mg-) rich magmas 

produced in these settings could simply reflect variable proportions of melt contributions from 

veins and wall-rock domains (Foley, 1992a). In this context, the age of the lithospheric 

(veined) mantle being tapped is of crucial importance as it either reflects low-degree partial 

melting of old lithospheric mantle (single-stage model – ancient lithospheric mantle) or the 



 85 

recent addition of metasomatic agents to the mantle source (multi-stage model – subduction-

related source enrichment). 

In order to assess the potential validity of single-stage models for the Bulgarian K-rich 

rocks, we carried out Sr-Nd isotope modelling of old, veined lithospheric mantle domains (see 

below). Furthermore, the multi-stage model is subsequently evaluated by comparing the 

Bulgarian K-rich rocks with the calc-alkaline lavas from Santorini, which are regarded as a 

proxy for the currently active island-arc volcanism probing the present day sub-arc mantle 

beneath the Aegean subduction zone. 

 

 

3.5.3. Assessment of the single-stage model 

 

As proposed for high-K suites from Indonesia and Tibet (Varne, 1985; Turner et al., 

1996; Williams et al., 2004), ancient mantle source enrichment (single stage model) is a valid 

mechanism explaining the observed Sr-Nd isotope compositions (Fig. 3.7). In order to 

evaluate this hypothesis closer, we carried out Sr-Nd isotope modelling for two representative 

samples of the Bulgarian high-K lavas with low and high Rb/Sr, respectively. Schmidt et al. 

(1999) proposed that lamproites and shoshonites originate from previously depleted mantle 

sources, which were subsequently enriched by metasomatic veins dominated by 

clinopyroxene and > 5 % phlogopite. Due to the relatively high partition coefficients of Sm 

and Nd in clinopyroxene (DSm = 0.42, DNd = 0.6; Schmidt et al., 1999) and Rb and Sr for 

phlogopite (DRb = 1.44; DSr = 0.038; Schmidt et al., 1999), the abundances of Rb-Sr and Sm-

Nd in the metasomatized mantle are virtually entirely dominated by this mineral assemblage 

(partition coefficients are shown in Table 3.4). As a result of the given DSm/DNd 

(clinopyroxene-controlled, 0.7) and DRb/DSr (phlogopite-controlled, 36.2), phlogopite-

clinopyroxene assemblages in metasomatic veins would display high Rb/Sr at moderately 

elevated Sm/Nd. Hence, considering long residence times for this mineral assemblage in the 

mantle, the metasomatized veins should evolve towards enriched 87Sr/86Sr compositions at 

moderately radiogenic 143Nd/144Nd isotope signatures. 
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In applying the above approach, we modelled the temporal evolution of the mantle 

sources of the Bulgarian lavas back through time. Two mafic samples from the Bulgarian 

high-K suite with different Rb/Sr of 0.151 and 0.880 (samples BG-99a and BG-109b) as well 

as different Sr and Nd isotope compositions (see Table 3.4) were chosen as starting 

compositions. In a first step, we calculated the Sr-Nd isotope compositions of residual 

clinopyroxene-phlogopite assemblages using the partition coefficients of Schmidt et al. 

(1999) for K-rich magmas (see Table 3.4). Assuming variable modal abundances of 

phlogopite (phl) and clinopyroxene (cpx) ranging from 1:0.01 to 1:1, we calculated the 

isotopic evolution of corresponding mantle sources. The results are illustrated in Fig. 3.11.  

 

Fig. 3.11: 

Sr-Nd isotope modelling illustrating the ingrowth of 
87Sr and 143Nd in a veined lithospheric mantle with 

varying modal proportions of 

phlogopite:clinopyroxene. Calculations are made for 

two representative Bulgarian samples (BG-99a and 

BG-109b) with low and high 87Sr/86Sr as starting 

material. The grey shaded field corresponds to average 

MORB compositions after Hofmann (2003); the white 

field represents the compositional spread of the 

Bulgarian samples in Sr-Nd space. Tickmarks on 

isotope evolution trajectories correspond to 200 Myr 

steps, different tie lines correspond to cpx:phl ratios 

from 1:0.01 to 1:1. Input parameters are shown in 

Table 3.4. The back-calculation of Sr-Nd isotopes 

requires a minimum residence times of 250 Myr for 

the modelled mantle assemblages in order to evolve 

from average MORB compositions. Values used for 

calculation of εNd(t): CHUR(0) = 0.512638 (Jacobsen 

& Wasserburg, 1980); 147Sm/144NdCHUR(0) = 0.1967 

(Jacobsen & Wasserburg, 1980); λ147Sm = 6.54×10-12, 

λ87Rb = 1.42×10-11.  
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Table 3.4: Data used for model calculations 

Sample ppm Rb ppm Sr ppm Sm ppm Nd Rb/Sr Sm/Nd
87

Sr/
86

Sr (i)
143

Nd/
144

Nd (i)

BG-99a 88.9 590 4.88 21.7 0.151 0.192 0.708264 0.512426

BG-109b 322 366 4.08 17.6 0.880 0.232 0.706423 0.512515

Partition coefficients after Schmidt et al. (1999)

Phl/Lq Cpx/Lq

Rb 1.34 0

Sr 0.037 0.304

Sm 0.00003 0.42

Nd 0.00003 0.6

Calculation of εNd(t) using
 143

Nd/
144

Nd(CHUR) of 0.512630 after Bouvier et al. (2008) and 
147

Sm/
144

Nd(CHUR) of 0.1967  

 

The back-calculated 87Sr/86Sr are strongly dependant on the Rb/Sr of the starting 

composition, which is reflected in the slope of the tie lines for individual cpx:phl proportions. 

The higher the Rb/Sr in the starting composition (i.e., the composition of the two Bulgarian 

lavas), the stronger is the decrease in 87Sr/86Sr and the shallower the slope of the tie line. The 

simple conclusion is that at relatively high modal proportions of phlogopite and elevated 

Rb/Sr in the starting composition, a significant radiogenic ingrowth of 87Sr/86Sr in the mantle 

source occurs over a relatively short time span. As for Rb-Sr, the modelled Nd isotopic 

evolution is also dependant on the Sm/Nd of the starting composition. However, in contrast to 

the Rb-Sr system, the Nd isotope evolution is virtually entirely dominated by the cpx 

abundance. Due to the DSm/DNd of clinopyroxene (0.7; Schmidt et al., 1999), the back-

calculated εNd(t) evolve towards radiogenic εNd values at a given time. Figure 3.11 illustrates 

that typical Sr-Nd isotope compositions of the depleted mantle can be achieved over a time 

span of > 250 Myrs. The mantle source compositions required to account for such an 

ingrowth of 87Sr and 143Nd can be highly variable and the modal amounts of phlogopite 

required ranges from ca. 3-7% (sample with the highest Rb/Sr) to about 50 % (sample with 

the lowest Rb/Sr). This range is in accord with previous studies on mantle xenoliths where 

reported modal abundances of phlogopite range from 1.5% - 2.5% in phlogopite-wehrlites and 

phlogopite-lherzolites (Grégoire et al., 2002) to 20% in phlogopite-pyroxenites (Pearson & 

Nowell, 2002). For comparison, even higher modal amounts of phlogopite (40% and higher) 

are reported for MARID (mica-amphibole-rutile-ilmenite-diopside) suite of cratonic xenoliths 

(e.g., Pearson & Nowell, 2002). 
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Collectively, our modelling of Sr-Nd isotope compositions back through time 

highlights that residual mineral assemblages like phlogopite-clinopyroxene are capable of 

causing considerably enriched 87Sr/86Sr and 143Nd/144Nd compositions in the lithospheric 

mantle without any addition of enriched subducted material being required. For the Bulgarian 

setting, the time frame required to accomplish such a radiogenic ingrowth varies from ca. 250 

Ma to 1.2 Ga. The lowermost end of this age range is in rough agreement with crust formation 

and amalgamation ages in the region (~ 300 Ma; e.g., Turpaud & Reischmann, 2010; Gaggero 

et al., 2009; Buzzi et al., 2010). Notably, amalgamation of the crustal fragments in the 

Rhodope region is of Alpine age (e.g., Jahn-Awe et al., 2010, and references within), about 

150 - 200 Myrs younger than the time frame required for radiogenic isotope ingrowth in the 

lithospheric mantle. Assuming that stabilisation of a lithospheric keel beneath the Rhodope is 

coupled to the final amalgamation of continental fragments, it therefore appears rather 

unlikely that the evolved Sr-Nd isotope signatures are derived from old lithospheric domains. 

 

 

3.5.4. Assessment of the multi-stage model 

 

(a) Mantle sources of Bulgarian K-rich lavas and alkaline basalts 

 

As a significant role of crustal assimilation can be excluded, the compositions of the 

Bulgarian lavas allow a characterization of their mantle sources. The absarokites are silica-

undersaturated (nepheline- and hypersthene-normative) whereas the shoshonites and medium- 

to high-K rocks are silica-saturated. Nevertheless, the narrow range of isotope and trace 

element compositions displayed by all of these groups (see Figs. 3.6 to 3.9) argue for 

comparatively homogeneous mantle sources of the Bulgarian K-rich lavas.  
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Fig. 3.12: 

Trace element and isotope variation diagrams illustrating the role of fluid-like and melt-like subduction 

components for the lavas from Bulgaria and Santorini. (a) Zr/Nb versus La/Yb (after Münker, 2000). The 

variable Zr/Nb mirror different degrees of source replenishment of Bulgarian and Santorini lavas and possibly 

different initial mantle wedge compositions. 

(b-d) Ba/La versus 87Sr/86Sr, 143Nd/144Nd, and Ce/Pb, confirming an important role of fluid- dominated source 

enrichment during Stage 1 and phlogopite consumption during Stage 2. The subarc mantle sources beneath 

Santorini were rather fluxed by (sediment) melt-like components, resulting in nearly constant Ba/La. 

 

 

The mode of mantle source enrichment of the Bulgarian lavas is best illustrated by 

Zr/Nb and REE patterns. Due to the higher mobility of La in fluid-like subduction 

components compared to Yb, Zr and Nb (e.g., Kessel et al., 2005), it would be expected that a 

fluid-dominated source overprint increases La/Yb at largely unmodified Zr/Nb. Melt-like 

subduction components would not only increase La/Yb, but also decrease Zr/Nb (e.g., 

Münker et al., 2000). As illustrated in Fig. 3.12a, the Santorini lavas display higher Zr/Nb 
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(20-30) than the Bulgarian high-K lavas (Zr/Nb = 10-20). The higher Zr/Nb in the Santorini 

lavas either indicate a less pronounced source overprint by melt-like components or a more 

depleted mantle source prior to addition of subduction components. At low Zr/Nb, the 

Bulgarian lavas also display high La/Yb (9 – 18), pointing toward an important role of source 

enrichment via melt-like components (e.g., Pearce & Peate, 1995; Münker, 2000; Conticelli et 

al., 2009a, b). Such a strong LREE enrichment may also account for the observed negative 

Eu-anomalies, which can either be inherited from the subducted sediments (Turner et al., 

1996; Williams et al., 2004) or alternatively originate from the consumption of mica-rich 

metasomatic veins, which have been reported elsewhere to display pronounced negative Eu-

anomalies (Becker et al., 1999). Further support for sediment-derived subduction components 

is also provided by the radiogenic Sr-Pb and unradiogenic Nd-Hf isotope compositions of the 

Bulgarian lavas that plot along mixing arrays with typical continent-derived sediments (Fig. 

3.7, 3.8, 3.9). 

In contrast to the K-rich rocks, trace element data and the Sr-Nd isotope compositions 

of the Bulgarian alkaline basalts overlap with typical asthenospheric mantle compositions 

such as the European Asthenospheric Reservoir (EAR, as defined by Cebriá & Wilson, 1995). 

Likewise, Marchev et al. (1998a, b) have interpreted the alkaline basalts from Bulgaria to 

originate from a LREE-enriched asthenospheric or lower lithospheric mantle beneath the 

Rhodopes. Conversely, the unradiogenic Pb isotope compositions indicate the presence of a 

non-asthenospheric component in the sources of the alkaline basalts. There are several 

possibilities to explain the origin of this component: (1) preferential incorporation of 

lithospheric Pb during the magma ascent without significantly shifting the Sr-Nd isotope 

compositions to more crustal values and (2) the presence of subducted sediments with less 

radiogenic 206Pb/204Pb in the mantle sources. In support of the first model, a major role of 

phlogopite has been proposed, as part of the source assemblage of the alkaline basalts 

(Marchev et al., 1998a, b). Rosenbaum (1993) showed that mantle phlogopite might represent 

a potential reservoir for lead, thus accounting for variable Pb isotope compositions in 

lithospheric melts. To account for the low 87Sr/86Sr in the alkaline basalts, a relatively young 

vein assemblage in the lithospheric mantle would be required. To account for the second 

model (source contamination), a relatively mafic subducted sediment composition (e.g., 

volcanogenic sediments) would be required to account for the EAR-like Sr-Nd isotope 

compositions. 
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(b) Mantle sources of Santorini lavas 

 

The Sr-Nd-Hf isotope and incompatible element compositions of the most primitive 

Santorini samples (SA-1, SA-3, SA-6, and SA-10) indicate the enrichment of a depleted 

mantle source by subduction-derived components. A more depleted mantle source is also 

confirmed by Zr/Nb, which are higher than those of the Bulgarian lavas and average values 

for PRIMA and N-MORB (up to 30; Fig. 3.12). The high 207Pb/204Pb that are similar to those 

of the Bulgarian lavas resemble compositions of sediments thought to be subducted at the 

Hellenic Trench (N-African sediments, Fig. 3.9), confirming previous models arguing for an 

important role of subducted sediments (e.g., Zellmer et al., 2000; Vaggelli et al., 2009; Bailey 

et al., 2009).  

Collectively, compositions of K-rich lavas from Bulgaria and Santorini highlight an 

important role of subduction-related components in their petrogenesis, in particular subducted 

sediments from the African plate (e.g., Pe-Piper, 1994; Weldeab et al., 2002). However, in 

contrast to uniform Pb isotope compositions, there are marked differences in Sr-Nd-Hf 

isotope compositions between both sample suites. These differences might reflect (1) a less 

efficient mobilisation of Sr-Hf-Nd compared to Pb or (2) significantly different Sr-Nd-Hf 

compositions of the mantle sources prior to source enrichment. Variable source compositions 

are also supported by variable HFSE ratios such as Zr/Nb. 

 

(c) Subduction components 

 

As shown above, recent addition of subduction components to the mantle sources 

(multi-stage model) appears to be the dominating process for the lavas from Bulgaria. Such 

fluid- or melt-like components may originate from subducted sediments and from subducted 

oceanic crust (e.g., Hawkesworth et al., 1997; Elliott et al., 1997; Woodhead et al., 2001; 

Plank, 2005). Depending on the composition of the starting materials, pressure, and 

temperature, transport of subduction components may either occur as fluid- or melt-like 

phases (e.g., Kessel et al., 2005; Klimm et al., 2008). As the nature of the fluid phase released 

from the slab and the subducted sediments is contentious (aqueous fluid – hydrous siliceous 

melt – supercritical liquid; Kessel et al., 2005; Klimm et al., 2008), we therefore refer to the 

hydrous phase as “fluid-like component” in the following discussion. 

The multi-stage model for the generation of K-rich magmas assumes that fluid- and/or 

melt-like components derived from subducted sediments metasomatize the mantle wedge, 
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leading to the formation of metasomatic mineral assemblages often involving phlogopite 

(Stage 1). In response to tectonomagmatic events, e.g. extension, this vein-like assemblage is 

selectively affected by partial melting (Stage 2). The role of fluid- and melt-like components 

can be assessed by using a combination of geochemical parameters (McCulloch & Gamble, 

1991; Miller et al., 1994; Hawkesworth et al., 1997; Elliott et al., 1997; Woodhead et al., 

2001; Kelemen et al., 2003; Plank, 2005). For example, variations of Ba/La and co-variations 

with K2O, Ce/Pb and 87Sr/86Sr (see Fig. 3.12b, c, d) mirror selective addition of fluid-like 

components during Stage 1 and can be inherited by arc magmas given complete consumption 

of residual phlogopite during partial melting throughout Stage 2 (see Fig. 3.12b, c, d). Melt-

like source enrichment, for instance, is indicated by low Ba/La and Ba/Th coupled with 

enrichment of HFSE and REE. 

 

 
Fig. 3.13: 

The role of fluids and sedimentary components in the evolution of lavas from Bulgaria and Santorini. (a) Ba/Th 

vs. Th concentration indicating that compositions of both sample suites are controlled by sediment-melt 

dominated source replenishment. The grey shaded field represents a compilation of arc basalts worldwide 
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(Hawkesworth et al., 1997). (b) Th/Yb vs. Ba/La indicate that the compositions of Santorini lavas are controlled 

by sediment-melts whereas compositions of the Bulgarian lavas additionally show evidence for a fluid-controlled 

source overprint. The grey shaded field represents a compilation of oceanic-arc basalts (Woodhead et al., 2001). 

(c) U/Th versus 143Nd/144Nd(i) variations confirming the importance of fluid-dominated source enrichment in the 

sources of the Bulgarian lavas. 

 

 

Bulgarian lavas. The replenishment of the sources of the Bulgarian lavas during Stage 

1 might be illustrated in a plot of Ba/Th vs. Th concentration (Fig. 3.13a). The Bulgarian 

samples (this study and Marchev et al., 2004) exhibit high Th abundances and low Ba/Th if 

compared to a worldwide compilation of arc lava compositions (Hawkesworth et al., 1997, 

and references therein). Such low Ba/Th compositions are commonly interpreted as reflecting 

the predominance of subducted pelagic sediments in the magma sources, displaying high Th 

concentrations. However, if compared to the same compilation in Th/Yb vs. Ba/La space (Fig. 

3.13b), it becomes obvious that the Bulgarian lavas are enriched in both Ba and Th, with a 

stronger relative enrichment of Th. The selective enrichment of Ba relative to La can possibly 

be explained by the higher mobility of Ba in fluid-like components during Stage 1 (e.g., 

McCulloch & Gamble, 1991; Elliot et al., 1997; Kessel et al., 2005) and complete 

consumption of phlogopite during Stage 2 by melting of metasomatic veins. The high Th/Yb 

on the other hand can only be explained by the presence of melt-like components in the 

magma sources. Hence, there is clear evidence for the presence of both melt- and fluid-like 

subduction components in the sources of the Bulgarian lavas. 

Further constraints on the mode of source enrichment might be deduced from Ce/Pb 

systematics (Fig. 3.12d). Compared to Ce, Pb is preferentially partitioned into fluid-like slab 

components, resulting in low Ce/Pb (e.g., Miller et al., 1994; Chauvel et al., 1995). 

Alternatively, the low Ce/Pb might alternatively been simply inherited from subducted 

sediments (e.g., Tatsumi, 2000; Kelemen et al., 2003). The Bulgarian samples display low 

Ce/Pb of 1.5 – 4.7, which are comparable to arc basalts and continental crust. In a plot of 

Ce/Pb vs. εHf (not shown) the Bulgarian lavas yield invariant εHf with decreasing Ce/Pb, 

indicating that Ce/Pb is rather modified by fluid-like components due to the low mobility of 

Hf in shallow level subduction fluids (Pearce et al., 1999; Kessel et al., 2005). 

Lead isotopes are a sensitive tracer for source modification by subducted sediments 

because of the low Pb abundances in the mantle (< 0.2 ppm), high Pb concentrations in 

pelagic and terrigenous sediments (ca. 20 ppm; Plank & Langmuir, 1998; White & Dupré, 
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1986) as well as high 207Pb/204Pb for a given 206Pb/204Pb compared to OIB and MORB. Lead 

isotope compositions of the Bulgarian lavas overlap the field for pelagic sediments and are 

similar to compositions of Mesozoic flysch from Serbia (after Prelević et al., 2005), GLOSS 

(Plank & Langmuir, 1998), and N-African sediments (Pe-Piper, 1994; Fig. 3.9). The tight 

cluster of elevated 207Pb/204Pb in Pb isotope space (Fig. 3.9a) can be readily explained by 

flushing a depleted mantle source with subduction components derived from sediments with 

high 207Pb/204Pb. This might also be the case for 87Sr/86Sr, as Sr is also highly mobile in 

subduction fluids. Based on combined Th/Yb and Ba/La patterns in the Bulgarian lavas (Fig. 

3.13b) the sediment-derived components must have been transported as both fluid- and melt-

like components, possibly at different depths along the subducting African plate. 

The comparatively low εHf – εNd values (Fig. 3.8b) support the source contamination 

model presented above. A more fluid-dominated source replenishment is expected to shift the 

εHf – εNd off the mantle array due to the higher mobility of Nd in aqueous fluids compared to 

Hf. As the Bulgarian samples virtually all plot on the mantle array, melt-like components 

exert a more pronounced influence on the Hf-Nd budget. It is furthermore important to note 

that the Bulgarian samples have variable Hf-Nd compositions but quite similar Pb isotope 

compositions, which can be explained by the much lower fluid mobility of Hf-Nd compared 

to Pb. 

Similarly unradiogenic Hf-Nd isotope systematics as in the Bulgarian lavas were 

previously reported by Gasperini et al. (2002) for high-K rocks from the Roman Magmatic 

Province (RMP), the Tuscan Magmatic Province (TMP) and the Tyrrhenian Sea (see Fig. 

3.8a), that are also thought to origin from sources overprinted by subducted sediments. For 

medium- to high-K basalts from Indonesia, Stolz et al. (1990) have shown that the observed 

radiogenic Sr and unradiogenic Nd isotope signatures can be generated by addition of less 

than 5 % of continent-derived sediment to the source region. This estimate might even be 

lower, if sediment-derived melts with higher Sr-Nd-Pb concentrations are considered (e.g., 

White & Dupré, 1986; Münker, 2000). 

The fluid-like component in the sources of the Bulgarian lavas can be closer assessed 

using indicators of fluid contribution like Ba/La (e.g., Elliott et al., 1997) and Ba/Th (e.g., 

Hawkesworth et al., 1997). For the Bulgarian lavas, many of these element ratios follow 

hyperbolic mixing curves (Fig. 3.12b-d). Values of εNd (Fig. 3.12c) and εHf (not shown) in 

the Bulgarian lavas are nearly invariant with increasing Ba/La as expected from the low fluid 

mobilities of Nd and Hf. Hence, all of these co-variations are in accord with a preferential 

enrichment of K and Ba by aqueous fluids (Schmidt et al., 2004; Kessel et al., 2005). The 
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variations in Nd and Hf cannot be generated by the fluid components and require an 

additional source overprint by melt-like subduction components. 

Santorini lavas. In Fig. 3.13a the Santorini lavas are characterized by relatively high 

Th concentrations at low Ba/Th compared to other arcs. However, the Th concentrations are 

lower than in the Bulgarian lavas. Likewise, ratios of Ba-La and Th-Yb in the Santorini 

samples are also lower than in the Bulgarian lavas (Fig. 3.13b). As mentioned above, the high 

Th concentrations reflect the preferential enrichment of Th by sediment-derived melts. For 

Santorini, the smaller degree of Th enrichment suggests either a less efficient enrichment by 

such components or, alternatively, a more depleted composition of the sub-arc mantle prior to 

source replenishment. Ratios of Ce-Pb are higher in the Santorini lavas (3.3 – 4.7) and 

combined with the invariant Ba/La compositions suggest a source overprint by siliceous melts 

derived from subducted sediments. These inferences are in agreement with previous studies 

by Druitt et al. (1999), Zellmer et al. (2000), and Bailey et al. (2009). 

 

(d) Constraints on the subduction components 

 

As explained above, the trace element inventory of both sample suites is largely 

controlled by fluid- and melt-like components derived from subducted sediments, which 

resulted in different degrees of large ion lithophile elements (LILE) enrichments, by a factor 

of 15 – 100 in the Santorini suite and by 100 up to 1000 in the Bulgarian lavas. The more 

pronounced mantle replenishment by subduction components for the Bulgarian lavas is also 

confirmed by the Sr-Nd-Hf isotope compositions (Figs. 3.7 and 3.8). Closer constraints on the 

composition of the sediment-derived contaminant might be drawn from Ba/La vs. Sr-Nd-Hf 

relationships. The asymptotes of the hyperbolic mixing curves shown in Fig. 3.12 

approximate the composition of the possible contaminant, yielding 87Sr/86Sr of ≥ 0.709, εNd 

of ≤ -5, εHf of ≤ -2, and Ce/Pb of ~ 1.2. Such values are typical compositions of ocean floor 

sediments (e.g., Vervoort et al., 1999) and are also in good agreement with reported values for 

Mesozoic flysch from Serbia (87Sr/86Sr = 0.7119; εNd = -8.5 and Ce/Pb = 1.9; Prelević et al., 

2005) and to some extent with sediments of the N-African plate (87Sr/86Sr = 0.7075; εNd = -3 

to -7; Weldeab et al., 2002). However, detailed trace element and isotope studies concerning 

the presently subducted sediments at the Hellenic Trench are still lacking. 

 In addition to Pb, Th/La is an indicator of sediment recycling at subduction zones as 

Th and La are thought to mirror compositions of subducted sediments with only negligible 

contributions from the mantle and the subducted slab (Plank, 2005). Both suites yield 
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similarly high Th/La of 0.35 – 0.74 (Bulgaria; average 0.46) and 0.29 – 0.60 (Santorini; 

average 0.43), indicating a contaminant with comparable Th/La. This range of Th/La is also 

similar to Mesozoic flysch sediments (Prelević et al., 2005), which have been interpreted to 

be involved in sources of Serbian high-K rocks. However, the additional role of allanite in the 

mantle has to be considered, as it represents an important host for LREE and Th with DLa/DTh 

~ 2 (Hermann, 2002; Klimm et al., 2008). Hence, residual allanite would be able to increase 

the Th/La of the derivative partial melt. 

In agreement with our model for lavas from Bulgaria and Santorini, sediment-derived 

components were postulated for sources of high-K lavas elsewhere (e.g., Stolz et al., 1990; 

Wang et al., 2004; Prelević et al., 2005). Pelitic sediments with minor contributions from 

carbonates were also inferred to be the major sedimentary contaminant for Italian and Serbian 

high-K lavas (Conticelli et al., 2002; Gasperini et al. 2002; Prelević et al. 2005). Moreover, 

subducted upper continental crust has been invoked by Cvetković et al. (2004) as a possible 

source contaminant for some high-K rocks from Serbia. 

 

 
Fig. 3.14: 

Th/Yb vs. Ba/La diagram showing a compilation of low-K to high-K, shoshonitic and lamproitic volcanic rocks 

from post-collisional tectonic settings world-wide in comparison to measured compositions of lavas from 

Bulgaria and Santorini (dark grey fields). Only results for samples with SiO2 < 56 wt. % are shown. The light 

grey field indicates compositions of oceanic arc basalts by Woodhead et al. (2001). Compositions of most post-

collisional rocks overlap the composition of oceanic-arcs. However, lamproites as well as high-Mg shoshonites 

from Taiwan exhibit much higher Th/Yb. Notably, the Bulgarian samples, especially the absarokites, exhibit 

higher Ba/La than most other post-collisional suites. Note that GLOSS (Ba/La = 26.6, Th/Yb = 2.5; Plank & 

Langmuir, 1998) and average continental crust (Ba/La = 18.3, Th/Yb = 4.9; Taylor & McLennan, 1995) show 

considerably lower Th/Yb than most lamproites. 
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3.5.5. Comparison of the Bulgarian lavas with other post-collisional high-K lavas and 

lamproites 

 

Figure 3.14 shows a comparison of the high-K lavas from Bulgaria to other high-K 

rocks and lamproites from similar post-collisional settings (e.g., Tibet, Serbia, Taiwan, and 

Western Mediterranean). The comparison in Th/Yb vs. Ba/La space shows (1) that lavas in 

many other localities exhibit much higher Th/Yb, and (2) that many Bulgarian samples 

exhibit unusually high Ba/La. Except for a suite of K-rich lavas from Taiwan (TLS suite; 

Wang et al., 2004), the Th/Yb and Ba/La of most post-collisional K-rich rocks overlap typical 

compositions of arc basalts world-wide (Woodhead et al., 2001). The trace element inventory 

of other post-collisional K-rich suites seems to be rather dominated by source contamination 

involving subducted sediment components (Prelević et al., 2005; Conticelli et al., 2009a; 

Duggen et al., 2005). Notably, the combination of both fluid- and melt-dominated source 

enrichments as found for the Bulgarian lavas appears not to be a typical feature of other post-

collisional suites (Fig. 3.14).  

The extremely high Th/Yb in particular in post-collisional lamproites (from 15 up to 

80) can primarily be attributed to the extremely enriched Th concentrations (up to 130 ppm; 

Prelević et al., 2008). Current interpretations based on major, trace elements and isotope 

compositions of lamproites involve a strong overprint of ultra-depleted mantle sources by 

melt-like crustal components, resulting in “crustal” Sr-Nd-Pb isotope compositions (e.g., 

Prelević et al., 2008). The high Th concentrations in the lamproites may be explained by low 

degree melting of these enriched mantle domains. In this context, the absarokites from 

Bulgaria occupy an exceptional position in the compositional spectrum of post-collisional 

lavas, as they record some of the highest Ba/La of the compiled data sets. The high Ba/La 

might be attributed to the selective source replenishment by slab-derived fluids that do not 

significantly contribute to the Th budget. This enrichment by fluid-like components was 

apparently not as important in the sources of K-rich rocks elsewhere. 

 

 

3.5.6. Tectonomagmatic constraints on Mediterranean volcanism 

 

The petrogenetic model inferred for lavas from Bulgaria and Santorini can shed 

further light on the tectonomagmatic evolution of the eastern Mediterranean realm. 

Subduction in the Eastern Mediterranean was initiated in the Jurassic and continued until the 
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Paleogene when closure of the Vardar branch of the Tethys (Robertson & Karamata, 1994) 

was caused by collision of the Eurasian platform with the Pelagonian microplate (Ricou et al., 

1998; van Hinsbergen et al., 2005). This compressional phase is constrained to have occurred 

between 51 and 37 Ma (Liati & Gebauer, 1999; Krohe & Mposkos, 2002; Liati, 2005). 

Extensional deformation and exhumation of the core complexes (Bonev et al., 2006) took 

place contemporaneously with the onset of volcanism in the Eastern Rhodopes, at about 34 

Ma (Marchev & Singer, 2002). 

 The triggering mechanism for volcanism in post-collisional settings is still subject of 

debate. Seismic tomographic imaging in the eastern Mediterranean region (Bijwaard et al., 

1998) enables the reconstruction of processes affecting the subducted continental and oceanic 

lithosphere (Wortel & Spakmann, 2000; Faccenna et al., 2003; van Hinsbergen et al., 2005), 

thus allowing insights into the processes triggering post-collisional volcanism. The 

tomographic models strongly suggest one single, N-vergent active subduction zone with ca. 

1600 km of lithosphere being subducted since the Jurassic (see Fig. 3.2). No evidence for slab 

detachment or a reversal of subduction polarity since the Jurassic has been observed. In 

addition, the tomographic images indicate a slab-rollback towards the south by ~ 300 km, 

which would explain the extension of the Aegean region and trench retreat to the currently 

active subduction along the Hellenic Trench. In addition to slab-rollback, delamination of 

mantle beneath the Rhodopes might be a plausible mechanism explaining the change in 

tectonic regime. Replacing parts of the cold lithospheric mantle with hot asthenosphere would 

cause a thermal anomaly, and the increased heat flow beneath the remaining metasomatized 

lithospheric keel could have triggered partial melting (e.g., Wortel & Spakman, 2000). It is 

also inferred that the elevated heat flow and underplated hot magma might have played a 

significant role in the exhumation of the core complexes (Marchev et al., 2006). 

Our geochemical data clearly indicate a strong source overprint for the Bulgarian 

high-K rocks by subduction components that are similar to those presently fluxing the subarc 

mantle beneath Santorini. This observation is well in agreement with a long-lived subduction 

zone. For Bulgaria, delamination might as well explain the decrease in crustal thickness and 

migration of the volcanism from the western to the eastern Rhodopes (Marchev et al., 1998a, 

b, 2004). Nevertheless, a lithospheric keel must have been stable beneath Bulgaria until the 

termination of high-K volcanism by 30 Ma. A delamination model could also explain the 

transition from post-collisional high-K to alkaline intraplate volcanism between 30 and 28 

Ma. A fundamental change in the mantle regime must have occurred beneath Bulgaria during 

this period, leading to the upwelling of enriched asthenospheric mantle. 
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3.6. Conclusions 

 

Trace element and Sr-Nd-Hf-Pb isotope compositions of mafic high-K lavas from 

Eastern Bulgaria provide evidence for mantle sources overprinted to variable degrees by melt- 

and fluid-like subduction components that largely originated from subducted sediments 

(multi-stage model). The major constraints from this study are: 

1. Potassium-enriched lavas from Bulgaria cover virtually the entire spectrum of K-rich lavas 

worldwide, ranging from the medium-K to the shoshonite suite, and also including 

absarokites as the most mafic endmember. 

2. Crustal contamination via AFC processes modified the inventory of some incompatible 

trace elements in the Bulgarian lavas. However, many isotope and trace element compositions 

were well buffered during crustal assimilation. Conversely, compositions of some 

differentiated Santorini lavas provide clear evidence for shallow-level assimilation of 

continental crust. 

3. A test for a single-stage model was carried out by modelling the Sr-Nd isotope evolution of 

ancient lithospheric mantle. The presence of an old (> 1 Ga) trace element-enriched 

lithospheric mantle keel beneath the Bulgarian volcanic complexes can be excluded. Rather, it 

is more plausible that the lithospheric root was not stabilized until final amalgamation of 

continental crust in the region (Mesozoic to early Cenozoic). 

4. Santorini lavas originated from a depleted spinel-lherzolitic mantle source, which was 

refertilized by sediment-melts during contemporaneous subduction. The sub-arc mantle 

beneath Santorini was mainly metasomatized by sediment-derived melts. 

5. Trace element enrichment in the sources of the Bulgarian lavas was triggered by young 

subduction components, which originate from northward subduction of the Tethyan oceanic 

crust (multi stage model). The trace elements were transported by sediment-derived fluids and 

sediment-derived melts. 

6. Combined extension and delamination of the lithospheric mantle may have triggered 

melting processes beneath the Rhodopes, thereby also explaining a progressive change in 

mantle composition by asthenospheric uplift. The latter is manifested by the emplacement of 

28 – 26 Ma old alkaline intraplate basalts in Bulgaria. 
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- Chapter 4 - 

 

The behaviour of the extended HFSE group (Nb, Ta, Zr, Hf, 

W, Mo, Sb) during the petrogenesis of mafic K-rich lavas 

from the Bulgarian Rhodopes 

 

 

4.1. Introduction 

 

The extended high-field strength element (HFSE) group comprises the elements Nb-Ta-

Zr-Hf-W-Sb-Mo. They are all characterized by a small ionic size and high positive charges 

(4+ to 6+) and were (except for Sb and Mo) traditionally considered as being immobile in 

subduction zones (Brenan et al., 1994; Keppler, 1996; Noll et al., 1996 Pearce & Peate, 

1995). However, this view has been challenged over the past decade, in particular by studies 

involving high-precision HFSE data (e.g., Weyer et al., 2002, 2003; Münker et al., 2004; 

König et al., 2008) or experimental studies (Kessel et al., 2005). During partial mantle 

melting, a relative compatibility sequence of Ba < W < Th < U < Nb < Ta < Zr, Hf < REE has 

been established by experimental studies (Hart & Dunn, 1993; Hill et al., 2000; McDade et 

al., 2003) and studies on mafic lavas (Newsom et al., 1996; Niu et al., 1996; Münker et al., 

2004; König et al., 2010), confirming the incompatible behaviour of the HFSE. It has been 

shown that in arc lavas even the traditional HFSE (Nb, Ta, Zr, Hf) can be enriched by slab 

melts to a significant degree, whereas subduction fluids show only a limited transport 

capability for HFSE from the slab to the subarc mantle wedge (conservative behaviour; 

Brenan et al., 1994; Münker et al., 2004). Nevertheless, previous studies have shown that 

with increasing pressure and temperature silicic liquids of similar composition (aqueous fluids 

and silicate melts) may cross a critical endpoint, resulting in complete miscibility between the 

two phases (Bureau & Keppler, 1999; Kessel et al., 2005).  

Among the extended HFSE group, special attention has been paid in the past to W, 

which behaves moderately siderophile under reducing conditions and as a highly incompatible 

lithophile element during silicate differentiation, leaving the Earth’s core and the crust 

enriched and the mantle depleted in W (Palme & Rammensee, 1981; Newsom et al., 1996; 
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König et al., 2011). This is also expressed by the high crust/mantle ratio of W of ~ 60 (Palme 

& O’Neill, 2003). Thus, in the absence of metal and during partial melting, W behaves similar 

to lithophile elements like Ba, Th and U. However, W has been shown to be efficiently 

mobilized by fluids in subduction zones and hydrothermal fluids (Kishida et al., 2004; 

Arnórsson & Óskarsson, 2007; König et al., 2008; 2010), displaying a significant 

fractionation from the similarly incompatible elements Ba, Th, and U (König et al., 2008, 

2010). Especially island-arc rocks record a selective enrichment of W over Th, U, and Ta 

when compared to MORB or OIB, leading to the conclusion that components derived from 

the subducted slab (fluids, melts) act as transport- and replenishment agents. In this regard, Sb 

and Mo are also of particular importance. Molybdenum is preferentially incorporated in 

mantle sulfides and is enriched in reduced environments (Crusius et al., 1996; Kishida et al., 

2004). Conversely, Sb is, similar to W, moderately siderophile and behaves like an 

incompatible lithophile element during magmatic processes (Jochum & Hofmann, 1997). 

However, Sb is also highly enriched in altered oceanic crust and is preferentially mobilized by 

low-temperature fluids (Jochum & Verma, 1996; Rouxel et al., 2003; Hattori & Guillot, 

2003). The different redox-susceptibilities of W, Sb, and Mo and their different mobilities in 

fluids with different alkalinity and temperature thus allows assertions on the redox conditions 

during slab dehydration and melting.   

 A critical evaluation of the extended HFSE also allows the identification of residual 

mineral phases in the magma sources of subduction-related basalts. The major hosts of HFSE 

are Ti-bearing phases like ilmenite or rutile, which can account for the entire Nb-Ta budget 

even if present in trace amounts (e.g., Zack et al., 2002; Klemme et al., 2005). Further 

important phases for the HFSE budget in subduction zone lavas include zircon (Zr-Hf),  and 

possibly also mica (Nb-Ta). Furthermore, grain boundaries as well as micro-inclusions have 

been described as important hosts for HFSE (e.g, Bodinier et al., 1996; Kalfoun et al., 2002). 

It is important to note that previous high-precision HFSE studies mainly focused on 

trace element depleted mafic end-members (low-K basalts and boninites) in predominantly 

intra-oceanic subduction zone settings with no or only limited amount of subducted sediments 

involved in the petrogenesis of these rocks (e.g., Aleutians and Kamchatka, Münker et al., 

2004; Solomon Islands, Papua New Guinea, König et al., 2008; 2010). However, numerous 

studies have shown that subducted (terrigeneous and pelagic) sediments are, when compared 

to the mantle wedge and the subducted slab, the most important repository of incompatible 

trace elements in subduction zones (e.g., Plank & Langmuir, 1998; Hermann & Rubatto, 

2009; Skora & Blundy, 2010). Hence, in subduction zones with a high flux of sediments from 
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the trench to sub-arc mantle depths (e.g., Antilles; White & Dupré, 1986; Carpentier et al., 

2008; Aegean Arc; Zellmer et al., 2000, see also Chapter 3; Patchett et al., 1984), even the 

budgets of HFSE might be largely controlled by the sediment-derived components and may 

thus outbalance any contribution from the subducting slab or the mantle wedge. 

So far, little high precision HFSE (+ W) data are available for incompatible element 

enriched end-members in subduction zones and subduction-related tectonic settings (K-rich 

suites after Peccerillo & Taylor, 1976), especially for those found in continental arcs where 

assimilation of crustal basement constitutes an additional challenge for identifying primary 

mantle source signatures. The HFSE have been shown to be enriched in these settings (e.g., 

Indonesia; Stolz et al., 1996), which has been attributed to a high magnitude of source 

enrichment by subducted sediments (Vroon et al., 1993; 1995). 

The Eastern Mediterranean is particularly suited to study the evolution of K-rich 

volcanic suites because since the Tertiary several volcanic complexes including K-rich rocks 

were formed (e.g., Lesbos, Pe-Piper & Piper, 1992; Naxos, Samos; Pe-Piper & Piper, 2001) 

that are genetically linked by the same long-lasting subduction system (at least since Jurassic 

times; e.g., Bijwaard et al., 1998; Wortel & Spakman, 2000; van Hinsbergen et al., 2005). 

Thus, compositionally similar subducted sediments are involved in the replenishment of their 

respective mantle sources (Pe-Piper, 1994; Chapter 3). This study presents high-precision  

HFSE data (Nb, Ta, Zr, and W), together with Lu, Hf, Mo and Sb data to shed new light on 

HFSE fractionation processes in K-rich volcanic rocks. The sample suites studied include two 

well-characterized end-member suites of the Aegean subduction system, one being derived 

from metasomatized lithospheric mantle (Bulgaria) and one originating in a continental arc 

with a high flux of subducted sediments (Santorini).  

 

 

4.2. Geological settings and source components 

 

A detailed discussion of the petrogenetic evolution of the Santorini and Bulgarian lavas 

is provided in Druitt et al. (1999), Marchev et al. (2004), Bailey et al. (2009), and also in 

Chapter 3 of this thesis.  

 

 

4.2.1. Rhodopes – Bulgaria  
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The volcanism in the Rhodopes is part of a Cenozoic magmatic belt that extends 

towards NW into Serbia and Macedonia and originates from the collision of the African with 

the Eurasian plate during the Alpine orogeny. The post-collisional volcanism was triggered by 

gravitational collapse/lithospheric extension of the Aegean Sea region and the rollback of the 

subduction zone (e.g., Jolivet et al., 2009). Subsequently, mafic potassium-rich lavas of the 

medium- to high-K and shoshonitic series were erupted during the Eo-Oligocene (34 – 30 Ma; 

Marchev et al., 2004) in several discrete volcanic centres (for details see Chapter 3, and 

Marchev et al., 2004).  

 

 
Fig. 4.1:  

(a) Magnitude of K-enrichment in the Bulgarian and Santorini lavas in comparison to other (K-rich) orogenic 

and arc lavas. 

(b) Control of melt-like or fluid-like subduction components on the incompatible element budget of K-rich lavas 

from different tectonic settings (orogenic lamproites, island-arc, back-arc, post-collisional). 

Sunda arc and back-arc lavas after Barth et al. (2011) and unpublished; SW Taiwan (Tsaolingshan absarokites) 

after Wang et al. (2004); field for oceanic arc basalts after Woodhead et al. (2001); Mediterranean lamproites 

after Prelević et al. (2008). 

 

The K-rich rocks from Bulgaria cover the whole spectrum from medium-K to shoshonitic 

(Fig. 4.1a), whereas they are less mafic than similar post-collisional rocks from Taiwan and 

less potassic than lamproites, which are classified as ultrapotassic (K2O/Na2O > 2). The 

sample suite from Bulgaria is divided here in two different K-rich suites: a medium to high-K 

suite and a shoshonitic suite. The most mafic end-member of the shoshonite suite are a group 

of samples classified as absarokites (six samples). They are of particular interest in that they 

reflecting small degree near-primitive melts bearing the highest contribution from a 
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metasomatized mantle source (see Chapter 3). This is evident from high volatile contents, 

higher 87Sr/86Sr than the other K-rich samples, high K2O/Na2O (1.2 – 2.2), relatively high 

MgO (5.4 – 8.8 wt.%) high compatible element contents as well as leucite phenocrysts (Ne-

normative).  

The geochemistry of the Bulgarian lavas involves a strong enrichment in incompatible 

elements, which is evident from coupled enrichment of melt-and fluid-sensitive elements like 

Ba/La, Ce/Pb and Th/Yb (see Fig. 4.1b). Radiogenic 87Sr/86Sr(i) (0.7067 – 0.7083), 

unradiogenic 143Nd/144Nd(i) (εNd = -5.8 to -1.9) and 176Hf/177Hf(i) (εHf = -3 to +3) span a 

rather small range and have been interpreted to reflect homogenenous degrees of mantle 

metasomatism (see Chapter 3). Moreover, Pb isotope compositions (206Pb/204Pb(i) = 18.68 – 

18.93, 207Pb/204Pb(i) = 15.63 – 15.68 and 208Pb/204Pb(i) = 38.72 – 39.96), broadly overlap 

values recorded for flysch sediments in Serbia, that are thought to be isotopically 

representative of subducted Mesozoic material (see Chapter 3; Prelević et al., 2005). 

Especially the values for Ba/La and Sr-Nd and Hf isotopes have been shown to co-vary with 

K-enrichment, thus providing evidence for the presence of a metasomatic (vein) component in 

the lithospheric mantle. Hence, it has been proposed that the post-collisional rocks from 

Bulgaria are most likely derived by a multi-stage process, involving decompression melting 

of a veined (phlogopite-bearing) lithospheric mantle that was previously metasomatized by 

sediment-derived subduction components (melt- and fluid-like; Chapter 3). 

 

 

4.2.2. Santorini – Aegean Sea  

 

Santorini is part of the active Aegean island arc, which is considered as the youngest 

magmatic belt in the Eastern Mediterranean resulting from the Africa-Eurasia convergence.  

Currently, subduction takes place along the Hellenic trench south of Crete with a convergence 

rate of ~ 3 - 4 cm/yr (Bailey et al., 2009, and references therein). Santorini is located on 

thinned continental crust of the Aegean microplate, which was extended in response to slab 

roll-back during re-location of the subduction zone during the Mid-Miocene (e.g., Jolivet & 

Brun, 2010). Volcanic rocks on Santorini are largely andesitic to rhyodacitic, however, basalts 

to andesites also occur in lava flows and cinder cones. The mafic rocks on Santorini belong to 

a calc-alkaline low- to medium-K suite (Fig. 4.1a; Zellmer et al., 2000; Chapter 3), similar to 

other continental island-arcs (e.g, Sunda arc; Barth et al., 2011). The sub-arc mantle source 

refertilization was most likely dominated by sediment-derived melts, which is evident from 
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low Ba/Th, elevated Th/Yb and Th concentrations as well as low and invariant Ba/La (Bailey 

et al., 2009; Chapter 3). If compared to the Bulgarian lavas, the samples are furthermore 

characterized by radiogenic εHf – εNd (εHf = +1.8 to +11.6; εNd = -0.71 to +4.1), 

unradiogenic 87Sr/86Sr (0.7042 – 0.7064) as well as radiogenic Pb isotope compositions, the 

latter overlapping with the values for the Bulgarian lavas.  

Based on P-wave tomographic models (e.g., Bijwaard et al., 1998) it has been proposed 

that one continuous northward subduction zone is present beneath the Eastern Mediterranean 

since at least early Jurassic times (e.g., van Hinsbergen et al., 2005; Jolivet & Brun, 2010), 

genetically linking the volcanism on Santorini to the post-collisional rocks in Bulgaria. 

Geochemically this has been confirmed based on Pb isotope compositions of Santorini lavas, 

which are similar to locally subducted sediments and the Eo-Oligocene volcanic rocks from 

Bulgaria (see Chapter 3). The geochemical budget of the Santorini volcanic rocks further 

indicates, that they were derived from a depleted spinel-lherzolitic mantle source. A direct 

comparison to the lavas from Bulgaria (see Chapter 3) provides evidence for a more 

pronounced source replenishment of the Bulgarian lavas by both melt- and fluid-like 

components, whereas the Santorini mantle source overprint was clearly dominated by 

sediment-derived melts. The higher magnitude of incompatible trace element enrichment of 

the Bulgarian lavas might either argue for a more depleted mantle prior to source overprint or 

a more efficient source metasomatism. 

Collectively, Santorini lavas are well suited to study the contribution of sediment-melt 

dominated subduction components to the extended HFSE budget of continental arc lavas. 

Furthermore, the Bulgarian post-collisional high-K rocks enable to constrain the behaviour of 

HFSE in lavas derived from a multi-stage process in older, enriched lithosphere. The 

previously shown covariations of K-enrichment with those of other incompatible elements 

like Ba and Th provide a good opportunity to test for the relationship between HFSE+W 

enrichment and the magnitude of K-enrichment. This also might allow insights into the role of 

metasomatic mineral phases being responsible for the incompatible element budget in 

metasomatized lithospheric mantle assemblages. 
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4.3. Analytical techniques and results  

 

Major and trace element concentrations, Sr-Nd-Hf-Pb isotope compositions, and Lu and 

Hf isotope dilution data of the volcanic rock suites from Bulgaria and Santorini are given in 

Chapter 3. The HFSE concentration data reported in this study (see Table 4.1) were measured 

on the same sample splits (ca. 100 mg) as the Sr-Nd-Hf isotopes and the Lu-Hf ID data 

reported in Chapter 3. Prior to digestion, all sample splits were spiked with a mixed 183W-
180Ta-180Hf-176Lu-94Zr tracer that was calibrated against > 99.9% pure Ames Laboratory 

metals. Tabletop digestion was carried out in a 1:1 HNO3 – HF mixture for 48 h at 120 °C. 

Following digestion, the samples were dried down and evaporated to dryness three times with 

1 ml concentrated HNO3. Subsequent solution in 6 N HCl-0.06 N HF was carried out to 

ensure full sample-spike equilibrium. An aliquot of this solution was employed for W 

separation, as described in detail in Münker (2011; and references within). Separation of Nb, 

Ta, and Zr was carried out according to the procedures described by Münker et al. (2001) and 

Weyer et al. (2002). Procedural blanks were lower than < 50 pg for Nb, < 180 pg for Ta, < 10 

ng for Zr, and < 120 pg for W.  

 

The HFSE (Nb, Ta, Zr) and W concentration data reported in this study were obtained 

by isotope dilution and were measured using a Thermo-Finnigan Neptune MC-ICP-MS at 

Universität Bonn, operated in static mode. The results are shown in Table 4.1.  

Mass bias correction for Ta and Zr was carried out by Re-doping (for Ta and W) and Sr-

doping (for Zr). As niobium is monoisotopic its concentrations were measured as Zr/Nb 

against a Zr/Nb standard prepared from > 99.9 % pure Ames Laboratory metals. The Nb 

concentrations were subsequently calculated from the measured Zr/Nb using the Zr 

concentrations obtained by isotope dilution (Weyer et al., 2002). The external precision for 

Zr/Hf, Nb/Ta, Zr/Nb, and Ta/W corresponds to ± 0.5 % (Zr/Hf), ± 4 % (Zr/Nb, NbTa), and ± 

0.5 % (Ta/W), respectively (all 2σ r.s.d.). Using Th data obtained by conventional quadrupole 

ICPMS, the reproducibility for W/Th was ± 8 %. External reproducibility and accuracy were 

checked by digestion of reference standard material BHVO-II, and multiple digestion of six 

samples (replicates, see Table 4.1). Results for all 34 analyzed samples as well as the six 

replicates and two rock standards BHVO-II are reported in Table 4.1.  
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The Sb and Mo concentrations discussed in this study are reported in Chapter 3 and 

were obtained by conventional quadrupole ICP-MS using an Agilent 7500cs mass 

spectrometer at CAU Kiel. Analytical procedures follow Garbe-Schönberg (1993). The 

analytical precision was estimated to be better than 3 % (2σ r.s.d) for Mo and better than 15 % 

(2σ r.s.d) for Sb.  

 

 
Fig. 4.2: 

(a) Nb/Ta vs. Zr/Hf space with Bulgarian and Santorini lavas in comparison to a compilation of MORB, 

continental basalts and Mediterranean lamproites. Fields for MORB and continental basalts after Münker et al. 

(2003) and references within; lamproites after Prelević et al. (2008).  

(b) Both sample suites in Ta/W vs. Hf/W space, illustrating the selective enrichment of W compared to other 

incompatible lithophile elements like Hf or Ta. MORB after König et al. (2011). 

Symbols as in Fig. 4.1. 

 

HFSE systematics 

 

Both Santorini and Bulgarian suites display high Nb and Ta concentrations (Nb(Santorini) = 

3.27 – 11.0 ppm; Nb(Bulgaria) = 5.10 – 19.6 ppm; Ta(Santorini) = 0.228 – 0.768 ppm; Ta(Bulgaria) = 

0.324 – 1.35 ppm), exceeding values recorded for intraoceanic arc basalts like Cyprus and the 

Solomon Islands (0.228 – 5.71 ppm Nb, and 0.0130 – 0.272 ppm Ta).  

In Nb/Ta – Zr/Hf space the sample suites from Bulgaria and Santorini broadly cover the 

array previously defined for MORB (Büchl et al., 2002), with values ranging from 12.3 – 15.5 

for Nb/Ta and 35.1 – 38.6 for Zr/Hf (see Fig. 4.2a). The absarokites form a distinct group with 

higher, near chondritic Nb/Ta of 16.2 – 20.1, at Zr/Hf that overlap with the other suites of 34.6 

– 37.0. Except for the absarokites, the Bulgarian and the Santorini suites lack correlations of 
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either Nb/Ta or Zr/Hf with degree of K-enrichment. In contrast to Nb/Ta and Zr/Hf, the 
176Lu/177Hf of the Bulgarian and Santorini suite do not overlap, with the Bulgarian lavas 

(0.00863 – 0.0146) displaying lower Lu-Hf ratios than the Santorini lavas (0.0153 – 0.0243). 

Additionally, both suites are considerably lower than values defined for MORB (Büchl et al., 

2002) and for intraoceanic arc basalts (0.0224 – 0.102; König et al., 2008; 2010). 

  

 

W, Sb, Mo  systematics 

 

The Santorini suites displays W concentrations of 0.172 – 0.920 ppm, exceeding values 

reported for intraoceanic arc basalts, for which a maximum W concentration of 0.477 ppm is 

reported (König et al., 2008; 2010; 2011). Ratios of W-Th are relatively uniform, ranging 

from 0.060 – 0.074, which is lower than MORB (W/ThMORB = 0.087 – 0.24; Babechuk et al., 

2010; König et al., 2011) and estimated values for primitive mantle (W/ThPM = 0.14; König et 

al., 2011). This also account for Ta/W that range from 0.73 to 1.33 (Ta/WMORB =  2.84 – 11.8; 

Ta/WPM = 3.4; Babechuk et al., 2010; König et al., 2011), and except for two samples also for 

Hf/W (5.82 – 12.3, see Fig. 4.2b; Hf/WMORB = 8.9 – 304; Hf/WPM = 25.8; Babechuk et al., 

2010; König et al., 2011).  

The Bulgarian suite spans a range of high tungsten concentrations of 0.730 to 4.63 ppm, 

even exceeding average values reported for the continental crust (1.9 ppm; Rudnick & Gao, 

2003). Ratios of W/Th range from 0.047 – 0.30, trending to higher values than estimates for 

PM and MORB. From Fig. 4.2b it is evident that Ta/W (0.19 – 0.68) and Hf/W (1.30 – 5.38) 

of the Bulgarian suite are considerably lower than both MORB and PM, resulting from 

selective enrichment of W. This is similar to intra-oceanic arc basalts reported by König et al. 

(2008; 2011) that broadly overlap in Ta/W (0.170 – 4.84), and Hf/W (5.60 – 119) with the 

samples from Bulgaria and Santorini. 

The Mo concentrations in the Santorini and Bulgarian suites overlap with concentrations from 

0.514 – 2.49 ppm. Conversely, Sb concentrations of the Santorini lavas are systematically 

lower (65.8 – 178 ppb) compared to the Bulgarian lavas (0.0562 – 2.00 ppm). Intraoceanic arc 

basalts reported by König et al. (2008, 2010) display high Mo concentrations (0.115 – 2.82 

ppm) similar to the Bulgarian lavas while Sb concentrations tend to be as low as 0.658 – 103 

ppb.  
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4.4. Discussion 

 

4.4.1. Assessment of assimilation and fractional crystallization 

 

In order to constrain magmatic source signatures and to characterise the influence of 

different subduction components on the HFSE budget, it is important to discriminate between 

crustal assimilation and source contamination.  

As pointed out in detail in Chapter 3, assimilation of continental crust is negligible in 

the lavas from Bulgaria, which can be tested using differentiation parameters such as SiO2 or 

MgO together with Sr-Nd-Hf isotope compositions. The Bulgarian lavas are devoid of any 

such correlations. Moreover, the Bulgarian data set is considered as well-buffered against 

shallow-level assimilation owing to the high degree of trace element enrichment that by far 

exceeds average values for crustal contaminants (e.g., Rudnick & Gao, 2003; for details see 

Chapter 3). This is supported by the trace and major element geochemistry of the group of 

absarokites, which represent the most mafic samples of the sample set (highest MgO and 

compatible element contents like Cr, Ni, Co), yet display the highest degree of incompatible 

trace element enrichment as well as the most radiogenic 87Sr/86Sr isotope compositions of the 

Bulgarian lavas. Conversely, the Santorini lavas record effects of assimilation in the more 

evolved lavas, which is especially critical for the here investigated HFSE. The Bulgarian K-

rich rocks are devoid of any correlations between HFSE concentrations and MgO or SiO2 

whereas the concentrations of Nb, Ta, Zr, Hf, and W of the Santorini lavas tend to increase 

with decreasing MgO and increasing SiO2 (not shown). Hence, the data set was screened and 

only samples with < 55 wt.% SiO2 and > 4 wt.% MgO were selected from the data set and 

highlighted in Table 4.1 (17 samples). This selection criteria was also applied for the 

Bulgarian samples in order to provide a common basis for better comparability of the sample 

suites. Additionally, critical ratios of HFSE (Nb/Ta and W/Th) might provide further insight 

into AFC processes and are thus depicted in Fig. 4.3 to test for any fractionations of these 

ratios with increasing degree of differentiation. Fig. 4.3 shows that Nb/Ta as well as W/Th 

largely remain constant with decreasing MgO and increasing K2O contents in the Santorini 

and the Bulgarian high-K suite. Considering the lack of correlation between, for instance 

W/Th and MgO (Fig. 4.3c), which would be expected to tend to higher (‘crustal’) W/Th (> 

0.2; Rudnick & Gao, 2003) with increasing degree of differentiation, effects of assimilation 

can be regarded as negligible.  
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Fig. 4.3: 

Effects of assimilation and fractional crystallization illustrated based on Nb/Ta and W/Th ratios in conjunction 

with major elements. (a) Nb/Ta vs. MgO (wt.%); (b) Nb/Ta vs. K2O (wt.%); and (c) W/Th vs. MgO (wt.%).  

 

As illustrated in Fig. 4.3a and b, the Nb-Ta ratios of the Santorini lavas as well as of the 

Bulgarian high-K series remain constant with decreasing MgO and increasing K2O. The 

absarokite group of the Bulgarian shoshonite series, however,  provides an exception in that it 

shows an increase of Nb/Ta with decreasing MgO and K2O. Fractional crystallization of 

phlogopite is assumed to dominate the Nb-Ta budget in the absarokite group, owing to inverse 

correlations of Nb/Ta with MgO and K2O (Fig. 4.3b, c). The importance of phlogopite for the 

HFSE budget in metasomatized lithospheric mantle samples has previously been emphasized 

by Ionov & Hofmann (1995) and Ionov et al. (1997), who reported phlogopites from mantle 

xenoliths that span a wide range of superchondritic Nb/Ta (20 – 54) at high Nb concentrations 

(up to 700 ppm). Moreover, in experimental studies Nb and Ta have been shown to be mildly 

incompatible in phlogopite (DNb = 0.047 - 0.085; DTa =  0.047 – 0.11), with a DNb/DTa of 0.77 
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– 1; (phl/melt; Foley et al., 1996; Adam & Green, 2006). The slightly higher compatibility of 

Ta in phlogopite might explain the fractionation trends defined by the absarokites shown here 

in Fig. 4.3a, b; however, the overlap of Dphl/melt values for Nb and Ta within error and the 

highly variable HFSE concentrations in metasomatic phlogopites still leave it ambiguous as to 

whether phlogopite is indeed capable of fractionating Nb from Ta. Hence, as the Nb-Ta ratios 

of the absarokites are unlikely to represent source processes, this group is excluded from the 

discussion below. 

 

 

 

Fig. 4.4: 

Characterization of the Bulgarian and Santorini 

mantle sources based on HFSE ratios.  

(a) 176Lu/177Hf vs. Zr/Hf;  

(b) Zr concentration (ppm) vs. Zr/Hf;  

(c) Nb/Ta vs. Zr/Nb.  

MORB after Büchl et al. (2002); Kamchatka after 

Münker et al. (2004), Sunda arc and back-arc 

after Barth et al. (2011) and unpublished; 

Solomon Island and Cyprus basalts after König et 

al. (2008).  

Symbols as in Fig. 4.1. 
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4.2. Behaviour of Nb-Ta and Zr-Hf in the mantle sources  

 

The isovalent element pairs Nb-Ta and Zr-Hf possess virtually similar compatibilities 

during partial mantle melting, with a relative compatibility order of Nb < Ta << Zr < Hf << 

Lu, which has been confirmed by both experimental and geochemical studies (Weyer et al., 

2003; McDade et al., 2003, Büchl et al., 2002). These expected variations (inverse 

correlations of Lu/Hf with Zr/Hf and Nb/Ta with Zr/Nb) are indeed observed in MORB 

(Büchl et al., 2002, Münker et al., 2004), and are also broadly observed in both the Santorini 

and Bulgarian sample suites (Fig. 4.4a, c). However, at given Zr/Hf values both suites are 

displaced towards lower 176Lu/177Hf than MORB (Fig. 4.4a), similar to other subduction-

related high-K rocks (Sunda arc; Barth et al., 2011; unpublished), adakitic melts 

(Kamchatka/Aleutians; Münker et al., 2004) and some Mediterranean lamproites (except for 

Macedonian lamproites that tend towards higher 176Lu/177Hf). Notably, Santorini lavas display 

higher 176Lu/177Hf as well as 176Hf/177Hf at a given Zr/Hf compared to the Bulgarian samples. 

This is, however, not the case for Zr/Hf vs. Zr concentration (Fig. 4.4b) where Santorini 

samples broadly overlap with the Bulgarian absarokites and also with fields for MORB, 

adakites from Kamchatka and Sunda arc basalts, while the Bulgarian high-K suite is displaced 

to slightly higher Zr concentrations. Furthermore, the Bulgarian samples are displaced to 

lower Zr/Nb than the Santorini samples (Fig. 4.4c) at similar Nb/Ta, whereas only the 

absarokite group tends to higher Nb/Ta, which however does not reflect source processes and 

is excluded from the following discussion. 

Although both sample suites overlap the fields defined for MORB in Zr vs. Zr/Hf, 

Nb/Ta vs. Zr/Nb, and Nb/Ta vs. Zr/Hf spaces (Fig. 4.2a; 4.4b, c), they form two distinct 

groups in all diagrams shown in Fig. 4.4. Hence, a successful petrogenetic model needs to 

explain the contrasting HFSE fractionation trends of the sample suites, that only in some 

cases (Zr/Hf, Nb/Ta) broadly overlap with MORB compositions, but are depleted in 
176Lu/177Hf.  
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Fig. 4.5: 

Inferred influence of a sediment melt-like component on the Hf isotope and incompatible element budget of 

Santorini and Bulgarian lavas. Only samples < 4 wt.% MgO and > 55 wt.% SiO2 are shown. (a) 176Hf/177Hf vs. 

Eu-anomaly, (b) 176Hf/177Hf vs. 176Lu/177Hf. 

Mediterranean lamproites after Prelevic et al. (2010); Terrigeneous clays and volcaniclastic sediments after 

Vervoort et al. (2011); Sunda arc and back-arc after Barth et al. (2011) and unpublished; Kamchatka after 

Münker et al. (2004); Serbian flysch after Prelević et al. (2005); GLOSS after Plank & Langmuir (1998). 

 

Zr-Hf pairs  

  As shown in Chapter 3, the trace element and Sr-Nd-Hf-Pb isotope inventory of both 

sample suites is largely dominated by components derived from subducted sediments (fluids 

and melts), that are assumed to be compositionally similar to currently subducted sediments at 

the Hellenic trench as well as Mesozoic flysch sediments from Serbia (see Chapter 3; 

Weldeab et al., 2002; Prelević et al., 2005). For the Santorini suite is has been shown that the 

incompatible trace element budget as well as the Sr-Nd-Hf-Pb isotope compositions reflect 

the preferential enrichment by sediment-derived melts, overprinting a depleted spinel-

lherzolitic mantle (e.g., Druitt et al., 1999; Zellmer et al., 2000; Bailey et al., 2009; Chapter 

3). Fluid-like components were ruled out to play a major role in their trace element budget, in 

contrast to the K-rich lavas from Bulgaria. Based on trace element systematics, for instance 

shown here in Fig. 4.1b, the influence of both fluid-like and melt-like components in the 

sources of the Bulgarian lavas could be assessed. The significant higher magnitude of trace 

element enrichment in the Bulgarian lavas might either reflect a more pronounced and 

efficient source replenishment in the Bulgarian lavas or, alternatively, might mirror a more 

depleted Santorini sub-arc mantle wedge prior to source hybridization. These two different 

processes might also explain the systematically different Zr/Nb and 176Lu/177Hf  (Fig. 4.4a, c), 
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which are higher in the Santorini lavas compared to the Bulgarian K-rich lavas. The offset 

from the MORB array in Fig. 4.4a might reflect the selective addition of subduction 

components, as it is confirmed by e.g., negative covariation of Zr/Hf with εHf of the Santorini 

lavas (not shown). The importance of a metasomatizing sediment-melt in the sources of both 

Santorini and Bulgarian rock suites can be furthermore illustrated in Fig. 4.5, employing Hf 

isotopes as well as trace element systematics. Hafnium isotope compositions are a valuable 

tool to identify sediment-melt derived signatures in arc lavas (Pearce et al., 1999; Woodhead 

et al., 2001) owing to the conservative behaviour of Hf in subduction zone fluids and its 

selective mobility in hydrous melts (Hermann & Rubatto, 2009) or high-temperature 

(supercritical) fluids (Kessel et al., 2005). This can be illustrated for the most mafic rocks 

from Santorini, that follow trends predicted for source overprint by sediment-melts, e.g., 

increasing Eu-anomalies with decreasing Hf isotope composition (Fig. 4.5a), which is 

attributed to the inheritance of a negative Eu-anomaly by felsic sediment-melts overprinting 

an initially depleted mantle wedge to varying degrees. This is, to a lesser degree, also evident 

for some Bulgarian lavas. Figure 4.5b furthermore shows the Bulgarian and Santorini sample 

suites in 176Lu/177Hf vs. 176Hf/177Hf space in comparison to Kamchatka adakites (Münker et 

al., 2004), Sunda-arc and back-arc basalts (Barth et al., 2011, and unpublished), 

Mediterranean lamproites (Prelević et al., 2008) and a compilation of terrigeneous clays and 

volcaniclastic sediments (Vervoort et al., 2011). Notably, the Santorini suite defines a positive 

slope, trending from both high 176Lu/177Hf and 176Hf/177Hf similar to Kamchatka and Sunda-

arc basalts to lower values, overlapping with the field defined for terrigeneous clays and 

volcaniclastic sediments. This trend once more emphasizes the role of sediment-melts during 

source enrichment of the Santorini suite. This trend is less pronounced for the Bulgarian suite, 

which defines a narrow field at slightly less radiogenic 176Hf/177Hf as the high-K rocks from 

the Sunda back-arc. Nevertheless, both sample suites broadly overlap the field defined for 

terrigeneous clays and volcaniclastic sediments (e.g., Fig. 4.5b). 

 

Nb-Ta pairs 

The broad overlap of Nb/Ta with MORB of the Santorini and the Bulgarian sample suite 

(Fig. 4.2a, 4.4c) implies that Nb and Ta were not significantly fractionated during the 

respective source enrichment. As shown above, the budget of Zr/Hf was strongly replenished 

in both sample suites by sediment-derived components. Depending on the degree of mantle 

source depletion prior to source enrichment, it is also assumed that silicic melts dominate the 

Nb-Ta budget of the metasomatized (hybrid) mantle sources (e.g., Stolz et al., 1996). These 
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melts tend to exhibit very low Zr/Nb, which would explain the systematically lower Zr/Nb 

and higher Nb/Ta with increasing enrichment.  

In order to provide constraints on the possible mechanisms active during HFSE 

fractionation in subducted sediments, the experimental data set of Hermann & Rubatto (2009) 

might offer further insight. The authors studied the trace element distribution in hydrous 

sediment melts as a function of residual accessory phases present on the solidus. Phases 

relevant to HFSE frationation include zircon, phengite or apatite. Hermann & Rubatto (2009) 

also showed that in hydrous sediment-melts trace amounts of zircon (< 0.04%) constitute the 

major phase hosting Zr and Hf. Consequently, in the presence of residual zircon, hydrous 

pelitic melt is able to fractionate Zr and Hf, whereas Hf is preferentially enriched in the melt 

compared to Zr (Linnen & Keppler, 2002; Rubatto & Hermann, 2007), thus decreasing the Zr-

Hf ratio in the melt. Fractionation of Zr from Hf furthermore gets more pronounced with 

decreasing temperature (Hermann & Rubatto, 2009). This implies that in order to reproduce 

the observed Zr-Hf ratios in the two volcanic suites by sediment-melt dominated source 

enrichment, a precursor sediment with initially high Zr-Hf ratios is required. This is consistent 

with data for subducted sediments that range in their Zr/Hf between 30 – 43 (Plank & 

Langmuir, 1998; Barth et al., 2000).  

According to Hermann & Rubatto (2009), low-degree partial melting of hydrous 

sediment is also able to cause significant fractionation of Nb from Ta owing to the presence of 

residual rutile, in agreement with previous studies (e.g., Klimm et al., 2008). An overlap of 

Nb-Ta ratios with the MORB array in both the Santorini and Bulgarian high-K basalts and 

shoshonites, however, implies that any addition of Nb-Ta to the mantle wedge by subduction-

components caused a barely detectable change in the Nb/Ta ratios. This can either be 

explained by the absence of rutile in the subducted sediment due to low bulk TiO2 contents or 

by complete consumption of rutile during sediment melting. Alternatively, if compared to 

continental sediments (Barth et al., 2000), it is evident that these rocks possess lower Nb/Ta 

(10.1 – 16.0) at a wide range of Zr/Nb (7.10 – 46.1) or Zr/Hf (32.8 – 43.0). This might indeed 

argue for small amounts of residual rutile in the subducted sediments, resulting in slightly 

elevated Nb/Ta in the Santorini and Bulgarian lavas compared to continental sediments.  

Curiously, as noted by Hermann & Rubatto (2009), their experimentally produced 

hydrous sediment-melt is devoid of a pronounced negative Nb-Ta anomaly, although residual 

rutile was present in all of their experimental charges. Similar observations have additionally 

been made by other partitioning studies involving fluid-basalt or fluid-metapelite systems 

(Green & Adam, 2003; Spandler et al., 2007; Klimm et al., 2008). Hermann & Rubatto 
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(2009) therefore proposed that either in addition to rutile a further phase might be required to 

effectively retain Nb and Ta or that the negative Nb-Ta anomaly in arc lavas is simply 

inherited from subducted sediments with an initially negative Nb-Ta anomaly.  

Collectively, although some HFSE ratios (Zr/Nb, Nb/Ta, Zr/Hf) broadly overlap with 

MORB compositions, it is especially evident from lower 176Lu/177Hf than MORB, coupled 

variations of HFSE ratios with Hf isotope compositions (e.g., Fig. 4.5b), and experimental 

constraints on sediment-melting (Hermann & Rubatto, 2009) that sediment-derived 

components largely control the concentrations and ratios of the HFSE in both the Santorini 

and Bulgarian mantle sources. 

 

 

4.4.3. Behaviour of W-Sb-Mo during source replenishment 

 

General behaviour of W, Sb, Mo in subduction zone melts and fluids 

 

Following the pioneering study of Noll et al. (1996), Newsom et al. (1996) argued for 

an immobile behaviour of W in subduction zone fluids, attributing the enrichment of W in the 

crust to its highly incompatible behaviour. Therefore, W should not be significantly 

fractionated from elements like Th or U during mantle melting and crust formation. Owing to 

improved analytical techniques, now allowing for high-precision measurements of low-

concentration samples, König et al. (2008; 2010) could reveal a quite mobile behaviour of W 

in subduction zone fluids in a study on intra-oceanic island-arc basalts. This finding results in 

a significant enrichment of W over Th and U, which are considered as similar incompatible. 

Ensuing W/Th and W/U are significantly higher than MORB in the studied arc rocks by 

König et al. (2008; 2010). Conversely, Ba has been shown to be more mobile than W, Th, and 

U, resulting in a relative mobility trend of Ba > W > Th, U in subduction zone fluids. 

Moreover, high-grade W enrichment as in the Erzgebirge (Förster et al., 1999) or the 

Panasqueira ore district in Portugal (Noronha et al., 1992) commonly occur as magmatic-

hydrothermal deposits in association with granitic intrusion, where the ore-grade W-

enrichment is attributed to late-stage hydrothermal fluids (Förster & Tischendorf, 1992; 

Hedenquist & Lowenstern, 1994; Webster et al., 1997).  

Nevertheless, mechanisms controlling the fluid-melt partitioning of W are not straightforward 

and depend on several factors, e.g., chlorinity, pH, as well as oxygen fugacity and the 

peraluminosity of the melt (e.g., Hedenquist & Lowenstern, 1994; Kishida et al., 2004; Zajacz 
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et al., 2008; MacKenzie & Canil, 2011). Keppler & Wyllie (1991) and Newsom et al. (1996) 

constrained that W is transported as an hydroxide species (WO3(OH)-) with highest KD
fluid/melt 

in pure H2O and decreasing KD
fluid/melt with increasing concentration of HCl and HF. However, 

more recent studies indicate a larger influence of chlorine and fluorine on the solubility of W 

in aqueous fluids (Zajacz et al., 2008; MacKenzie & Canil, 2011). Whereas Zajacz et al. 

(2008) rather favour tungstate (WO4
2-) as dissolved W-species, MacKenzie & Canil (2011) 

showed for the system haplobasaltic melt - fluid that W might dissolve as an oxide-hydroxide 

complex even in low chlorinity fluids. However, W might be rather  present as a chloride 

species in fluids with a high chlorinity (threshold Cl molarity > 17). This discrepancy in 

existing experimental data sets and the observations in natural samples was attributed by 

Zajacs et al. (2008) to a combined effect of different oxygen fugacities, pH, or different fluid 

chlorinities in the respective studies. 

Molybdenum shares many geochemical properties with W, for example almost identical 

ionic radii (0.4 – 0.7 Å depending on coordination; Shannon, 1976) and a preferred 6+ 

oxidation state (O’Neill et al., 2008). Hence, in oxidized low-temperature aquatic 

environments Mo occurs as 6+ oxy-anion (molybdate, MoO4
2-), similar to W (tungstate, 

WO4
2-; Johannesson et al., 2000; Arnórsson & Óskarsson, 2007). Molybdenum is furthermore 

assumed to be rather immobile in low-temperature fluids (Hattori & Guillot, 2003), which is 

also supported by the formation of most Mo deposits at T > 500 °C (Hedenquist & 

Lowenstern, 1994). The solubility of Mo in aqueous solutions increases with increasing pH 

(Rempel et al., 2009), however, its speciation additionally exerts control on the solubility in 

high chlorine fluids (MacKenzie & Canil, 2011). However, Mo is enriched in reducing 

sedimentary environments with free H2S (e.g., shales; Crusius et al., 1996) where it is 

precipitated as sulfide, thus showing higher chalcophile tendencies as W. Hence, the higher 

redox-sensitivity of Mo compared to W leads to enrichment of Mo over W in suboxic 

sediments (pelagic shales; Crusius et al., 1996) and thus enables assertions on their redox 

state during subduction zone processes.  

Antimony is classified as chalcophile and moderately siderophile element and behaves 

like an incompatible lithophile element during silicate melting processes in the mantle 

(Jochum & Hofmann, 1997; Rouxel et al., 2003). In the presence of sulfur, Sb would be 

expected to be retained in the mantle sulfide (9 – 146 ppm Sb; Hattori et al., 2002). Antimony 

is furthermore particularly mobile in low-temperature fluids (Jochum & Verma, 1996; Hattori 

& Guillot, 2003), in H2S-rich fluids and Cl-rich and –poor solutions where it dissolves as 

Sb(OH) (Wood et al., 1987). Hence, similar to W, Sb may be transported as OH-complex. In 
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arc rocks, Sb has been shown to be enriched (0.01 – 1.5 ppm; Noll et al., 1996) compared to 

MORB (0.01 – 0.05; Jochum & Hofmann, 1994; Jochum & Verma, 1996), which is attributed 

to efficient scavenging of Sb by fluids derived from the slab or the mantle wedge (Hattori et 

al., 2002; Hattori & Guillot, 2003). Hence, Sb concentrations and ratios to similar mobile 

elements like Pb can provide constraints on redox and temperature conditions in the mantle 

source.  

The composition of any subduction fluid involved in the petrogenesis of the studied rock 

suites is especially important in that it might allow conclusions on the partition behaviour of 

incompatible trace elements and explain the high enrichment of the latter in enriched arc 

magmas. Following Konzett et al. (2011) any Cl-rich fluid (brine) released from, e.g., 

subducted serpentinites (e.g., Scambelluri & Phillippot, 2001; John et al., 2011) might 

efficiently strip any K from the mantle column and from subducted sediments, with Cl being 

similarly incompatible as K and Nb (Workman et al., 2006; Sun et al., 2007). Subsequently, 

Cl and F are preferentially partitioned into hydrous minerals like apatite, amphibole and some 

sheet minerals (owing to the similar ionic radius of F and OH-) in the lithospheric mantle. 

Whereas the presence of F stabilizes phlogopite (e.g., Foley et al., 1986), metasomatic mantle 

apatite has previously been identified to be rich in Cl in contrast to magmatic apatites, which 

are rich in F (O’Reilly & Griffin, 2000; Patiño Douce et al., 2011). This might argue for a 

concurrent transport of P, K and other similarly incompatible elements in Cl-rich fluids 

(Konzett et al., 2011). However, this is not straightforward for W. The alkalinity of a fluid has 

been shown to exert some control on the partitioning of W (Zajacs et al., 2008), but no clear 

dependance of chlorinity has been observed so far. It is likely that W, which is thought to be 

mostly present as WO4
2- (tungstate) in oxidized systems forms compounds with 2+ cations 

(preferably CaWO4 = scheelite), however, the stability and behaviour of these phases at 

mantle and subduction zone conditions as well as in hydrothermal systems are unknown.   

 

Arc lavas with high Ba/La are usually considered to mirror the addition of an aqueous 

fluid phase to their source as Ba is considered highly fluid-mobile (Elliott et al., 1997; Pearce 

et al., 2005). Thus, the comparison of ratios of incompatible elements with ratios of Ba-La 

allows placing constraints on relative fluid mobilities during subduction-related source 

replenishment. However, residual epidote-group minerals like allanite potentially fractionate 

Ba-La ratios owing to their high DLa
allanite-melt (> 700; Hermann, 2002; Klimm et al., 2008).  
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Fig. 4.6: 

(a) Ba/Nb vs. Ba/La illustrating the selective enrichment of Ba compared to Nb and La, with Ba enrichment 

covarying with K-enrichment in the Bulgarian suite. 

(b), (c), (d) Ba/La vs. ratios of W with incompatible elements, emphasizing the concurrent W and K enrichment 

in the Bulgarian suite whereas the W budget in the Santorini suite is controlled by melt-like source enrichment.  

Values for PM (Primitive mantle) and MORB after König et al. (2011; W-Th ratios) and Sun & McDonough 

(1989; Ba-La ratios), average values for continental crust after Rudnick & Gao (2003), Serbian flysch after 

Prelevic et al. (2005), Sunda arc and back-arc after Barth et al. (2011) and unpublished, intra-oceanic arc basalts 

after König et al. (2008; 2010). 

 

Figure 4.6a illustrates a positive co-variation between Ba/La and Ba/Nb for both the Santorini 

as well as the Bulgarian sample suite, inverse to a trend expected if La was buffered by 

residual allanite. Thus, it can be confidently assumed that Ba is selectively enriched by fluid-

like components relative to both La and Nb, excluding a major role of residual allanite. 

However, the fractionation of Ba-La ratios has recently also been documented for low-

temperature hydrous melts owing to the control of Ba by phengite with allanite or monazite 

controlling the budget of LREE including La. This is not the case for higher temperatures 
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(1050 °C;  Hermann & Rubatto, 2009) where these phases are not stable in the respectively 

investigated bulk compositions (Hermann & Rubatto, 2009). During partial melting Ba is 

considered as similarly incompatible as W or Th (Newsom et al., 1996). However, Ba was 

shown elsewhere to be more mobile in subduction zone fluids than both W or Th (König et 

al., 2008). Hence, the mobility of W-Mo-Sb in the sub-arc mantle can be tested by comparing 

ratios such as W/Th, W/Mo, Ta/W with Ba/La ratios (Fig. 4.6). 

Figure 4.6b, c, and d illustrates incompatible element ratios (W/Th, W/Mo, Ta/W) 

together with Ba/La. Generally, the Santorini and Bulgarian suites can be distinguished in all 

diagrams. The Bulgarian lavas show a broad range of W-Th ratios that both co-vary with 

increasing Ba/La as well as K-enrichment (Fig. 4.6b), i.e., the most primitive samples 

(absarokites) display the highest K-contents, highest Ba/La as well as highest W/Th. 

Conversely, the Santorini samples show invariant W/Th ratios for a small range of Ba/La 

(14.1 – 16.2). Whereas the Santorini suite and the Bulgarian high-K suite broadly overlap 

with compositions for other arc basalts (Fig. 4.6b; Sunda arc, intra-oceanic arcs like Cyprus or 

Tonga; references see figure caption), the shoshonite suite displays considerably higher Ba/La 

at similar W/Th than intra-oceanic arc basalts. Likewise, in W/Mo vs. Ba/La space (Fig. 4.6c) 

the Santorini and the Bulgarian high-K suite well overlap with fields defined for arc basalts, 

whereas the Bulgarian shoshonite series tends to high W/Mo at high Ba/La. The K-enrichment 

again increases with increasing W/Mo and Ba/La. A similar trend can be shown for Ta/W 

(Fig. 4.6d) that decreases with increasing Ba/La and K-enrichment. Conversely, the Santorini 

lavas display higher Ta/W than the Bulgarian lavas at invariant Ba/La, overlapping with fields 

for other arc-basalts.  

 

Bulgarian lavas - For the post-collisional Bulgarian lavas where multi-stage source 

enrichment and melting processes are involved, Ba-La ratios serve as a proxy for fluid-related 

K-enrichment in the sources of the post-collisional lavas. In addition, however, Ba/La 

represent a proxy for the presence of metasomatic phases in lithopheric veins (see Chapter 3). 

For instance, Ba/La might be lowered by residual phlogopite (Schmidt et al., 1999; Adam & 

Green, 2003) and increased by residual allanite or monazite (Hermann, 2002; Klimm et al., 

2008). This implies that a distinction between melt-like and fluid-like source enrichment is 

not straightforward for the Bulgarian suite, as the observed geochemical signatures may rather 

reflect trace element fractionation during partial melting processes in the metasomatized 

mantle controlled by volatile-rich hydrous minerals and a peridotitic wall rock (e.g., Foley, 

1992; Ionov et al., 1997).  
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In the Bulgarian lavas, W is strongly enriched with high concentrations (up to 4.63 ppm) 

and W/Th ratios exceeding MORB values, however, lower than values observed for arcs 

dominated by sediment-derived fluids like Cyprus (W/Th up to 0.96; König et al., 2008). 

With respect to the diagrams shown in Fig. 4.6, this implies that although strongly enriched in 

W (and Ta, see section 4.3), ratios of W/Th or Ta/W do not show higher W-Th or Ta-W 

fractionations when compared to other island-arcs. W/Th, W/Mo, and Ta/W covary with K-

enrichment and Ba/La, confirming a selective enrichment of W (see also Fig. 4.2b) as well as 

a coupled selective mobilization of K together with W. This implies that no residual phase is 

present in the lithospheric mantle that selectively retains W. Furthermore, the primary coupled 

high enrichment of W, Th, K, and Ba during mantle metasomatism emphasizes the importance 

of both a melt-like and a fluid-like component, which is most likely derived from subducted 

terrigeneous sediments. This is furthermore supported by the selective enrichment of W over 

Ta (not shown), that results in decreasing Ta/W with K-enrichment and increasing Ba/La (Fig. 

4.6d). This implies that Ta is probably retained by small amounts of residual rutile in either 

the subducted sediment or the lithospheric mantle. However, Ti-phases like rutile are usually 

not stable in the mantle wedge due to their high solubility in basaltic melts. Notably, some 

exceptions have been recorded, for example the MARID suite of cratonic xenoliths (e.g., 

Pearson & Nowell, 2002; Grégoire et al., 2002). In metasomatized lithospheric mantle, those 

Ti-phases can be shielded in metasomatic veins, as inclusions or during the unusual conditions 

related to the origin of K-rich rocks (Stolz et al., 1996 and references within). The presence of 

a residual Ti-phase in lithospheric veins could account for the negative Nb-Ta anomaly 

observed in all post-collisional rocks from this study. Conversely, these features could also be 

inherited from the primordial enrichment of the lithospheric mantle by sediment-melts with 

initial negative Nb-Ta anomalies, which could also account for the slightly elevated Nb/Ta 

compared to terrigeneous sediments (see section 4.2; Barth et al., 2000). Such a model is 

furthermore supported by the fact, that negative Nb-Ta anomalies have been observed in 

cratonic phlogopite-bearing mantle xenoliths (e.g., Grégoire et al., 2002).  
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Fig. 4.7: 

Variations of the extended HFSE W, Sb, and Mo in comparison to MORB, other island-arc (W-Pacific arcs, 

Sunda-arc and back-arc), and average values for the continental crust (Cc; Rudnick & Gao, 2003). Pelagic clay 

after Li (1991; Mo = 27 ppm, W = 4 ppm); values for MORB after König et al. (2011; W-Th ratios) and Sun & 

McDonough (1989; Sb-Ce ratios); Sunda arc and back-arc after Barth et al. (2011) and unpublished; Cyprus, 

Solomon Islands, and W-Pacific arcs after König et al. (2008; 2010); values for average continental crust (Cc) 

after Rudnick & Gao (2003). 

 

That a sediment-derived component dominates the budget of W and Mo is furthermore 

evident by the high W/Mo in the Bulgarian lavas (0.56 - 2.4, Figs. 4.6c, 4.7b), that rather 

argue for the involvement of terrigenous sediments than pelagic clays. The latter are 

characterized by low W/Mo (~ 0.1; e.g, Li, 1991) owing to the high concentration of Mo in 

reducing environments (e.g., Crusius et al., 1996). The selective enrichment of W relative to 

Mo in the Bulgarian suite is furthermore illustrated in Fig. 4.7b, in comparison to a 

compilation of W-Pacific arcs, as well as the Sunda arc and back-arc (references see figure 

caption). At similar Mo concentrations as in intra-oceanic arc and Sunda arc lavas, W is 

highly enriched in K-rich rocks from Bulgaria and Santorini, but also in K-rich rocks 

elsewhere such as in the Sunda back-arc (Barth et al., 2011; unpublished). These rocks 

additionally have higher Mo concentrations (Fig. 4.7b), possibly reflecting a different 

composition of the subducted sediments. The fact that W appears to be more efficiently 

replenished than Mo in the Bulgarian lavas might have several reasons. (1) Presence of a 

residual phase with low W/Mo, which might account for residual sulfides. However, arc rocks 

generally form under quite oxidized conditions (Ballhaus, 1993), where sulfides are oxidized 

and thus not stable as residual phases (ƒO2 as low as ∆FMQ = + 1.85; Jugo et al., 2005); (2) 

changing alkalinity of the hydrous melt, or (3) initially different element ratios in the 
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subducted sediment, i.e., terrigeneous sediments with initial high W/Mo (average crust W/Mo 

~ 1.7; Rudnick & Gao, 2003) as opposed to pelagic clays with low W/Mo (0.1; Li, 1991). 

Given the compositional similarities of flysch sediments from Serbia (Prelević et al., 2005), 

presently subducted sediments at the Hellenic trench (Weldeab et al., 2002), and the inferred 

composition of the subducted sediments for the Bulgarian lavas (see Chapter 3), it seems 

highly likely that fluids and melts derived from terrigeneous sediments dominate the W and 

Mo bugdet of the post-collisional K-rich lavas from Bulgaria. 

The Bulgarian lavas furthermore display a high enrichment in Sb (up to 2 ppm), 

exceeding values for average continental crust (0.4 ppm; Rudnick & Gao, 2003) and MORB 

(0.01 – 0.05 ppm; Jochum & Hofmann, 1994; Jochum & Verma, 1996). However, ratios of 

Sb/Ce overlap with MORB and arc lavas worldwide (Fig. 4.7a and Hattori & Guillot, 2003), 

which is owing to concomitant high concentrations of Sb and Ce (up to 78 ppm). Additionally, 

Sb/Pb of the shoshonite suite are similar to arc basalts like Cyprus, the Solomon Islands or 

Papua New Guinea (Ce < 36 ppm; Pb < 6.6 ppm; König et al., 2008; 2010), the high-K suite 

on the contrary tends to lower Sb/Pb (not shown) owing to the high Pb concentrations (up to 

49 ppm). As suggested by Jochum & Verma (1996), Hattori et al. (2002), and Hattori & 

Guillot (2003), high Sb concentrations in arc rocks can be attributed to the dehydration of 

altered oceanic crust, the overlying sediments as well as serpentinites, which all have been 

shown to yield high concentrations in chalcophile elements like Sb or As (up to 40 ppm Sb in 

MORB; Jochum & Verma, 1996; up to 12 ppm Sb in serpentinites; Hattori et al., 2002; 

Hattori & Guillot, 2003). The budget of Sb in the Bulgarian rocks can thus be attributed to 

efficient fluid-induced scavenging of Sb from the more or less altered slab and the mantle 

wedge at low-T in the absence of any residual mantle sulfides retaining Sb. Importantly, 

during partial melting of the metasomatized (veined) mantle residual phases buffering Sb 

were absent.  

Of particular interest for the Bulgarian lavas are also the identification of potential 

minerals hosting the extended HFSE in the metasomatized lithospheric mantle. Metasomatic 

hydrous and volatile-rich minerals like phlogopite, amphibole, and apatite can be considered 

as the major hosts of LILE and incompatible elements in a veined mantle (e.g., Foley, 1992; 

Ionov & Hofmann, 1995; Ionov et al., 1997). Metasomatic phlogopite is a major host for 

elements like Ba, Nb, Sr, and Rb (e.g., Ionov & Hofmann, 1995), whereas apatite hosts the 

LREE-MREE, Th, U, and Pb (O’Reilly & Griffin, 2000). From the high concentrations of all 

of these elements in the Bulgarian samples as well as from the correlations shown in Fig. 4.6 

it is evident that none of these minerals was present as a residual phase and were most likely 
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gradually consumed during partial mantle melting, as proposed by e.g., Foley (1992). This is 

confirmed by experimental studies by Conceição & Green (2004) on the decompression 

melting of metasomatized peridotite. These authors showed that phlogopite and amphibole 

(pargasite) disappear close to the solidus and are completely transferred to the melt, which 

forms at 1050 – 1150 °C at 10 – 15 kbar, leaving a residual lherzolite (ol + opx + cpx + sp).  

 

 

 

Fig. 4.8: 

Relative mobility of incompatible elements 

illustrated by (a) Th/Yb vs. K2O (wt.%), and (b) 

Th/Yb vs. W (ppm), furthermore showing the 

influence of potential metasomatic mineral on the 

incompatible trace element budget on the Bulgarian 

lavas.  

Glimmerites after Becker et al. (1999); fields for 

cpx, amph, phl, and apatite after a compilation of 

mantle xenoliths via  the http://georoc.mpch-

mainz.gwdg.de database. Tungsten data for MORB 

after König et al. (2011). 

(c) Ta/W vs. P2O5 (wt.%) space illustrating W and K 

enrichment with increasing P – content, 

emphasizing a possible role for metasomatic apatite.  

 



 127 

The major volatile-rich metasomatic minerals are illustrated in Fig. 4.8a in Th/Yb vs. 

K2O space together with the studied sample suites. The inverse correlation shown for the 

Bulgarian lavas is attributed to different contributions of phlogopite (dominating the K-

budget), apatite (control on Th-budget), and possibly also amphibole, which is less well 

constrained. For the source of the absarokites it seems that Th is selectively retained by a 

residual phase, due to invariant Th/Yb, Th/La, and Th concentrations with increasing W 

concentrations (see Fig. 4.8b). This feature also differs from the high-K group, where Th is 

similarly enriched compared to W. As the absarokites represent small-degree melts with the 

highest contribution from the metasomatized mantle, the phase controlling the Th budget 

might only get exhausted at higher degrees of partial melting as found for the other Bulgarian 

suites. Scarce partitioning data for W suggests that it is incompatible in grt, ol, cpx, opx, mica, 

and amphibole with DW < 0.004 in all minerals between mica-amphibole bearing garnet 

lherzolite and hydrous basanitic melt (Adam & Green, 2006). In contrast, for felsic systems W 

has been shown to be highly compatible in apatite (DW = 16; INA data by Luhr et al., 1984). 

However, as W is a redox sensitive element (O’Neill et al., 2008), and because melt 

composition (e.g., SiO2 saturation and melt polymerization; O’Neill & Eggins, 2002) may 

affect the crystal-melt partitioning of W, it is possible that these data are not suited for mafic 

systems. Nevertheless, a detailed study of the behaviour of P, W, K, and other incompatible 

elements might give further insight into a possible role of apatite for the sources of the 

Bulgarian lavas. Apatite has previously been shown to be an important phase in metasomatic 

mineral assemblages (O’Reilly & Griffin, 2000; Patiño Douce et al., 2011), while apatite-

bearing mantle assemblages, associated with calcite, ilmenite and phlogopite, have also been 

shown to be highly enriched in volatiles, P and REE (Grégoire et al., 2002). In Fig. 4.8c 

variations of Ta/W vs. P2O5 (wt.%) are shown. It is striking that Ta/W decreases with 

increasing P-content and with K-enrichment. This might suggest a possible influence of a 

phosphate phase hosting W, that is getting gradually consumed during increasing degrees of 

partial melting. The absarokites yield the highest contribution from the metasomatized 

lithospheric mantle, thus also having the highest P, K and W concentrations. The positive P-

anomaly of the absarokite group in primitive mantle normalized multi-element diagrams (see 

Chapter 3, Fig. 3.6a) provides additional evidence that apatite was completely consumed 

during partial melting. Altogether, this might eventually argue for apatite as a possible host for 

W in the metasomatic mineral assemblage, however more detailed studies on the partitioning 

behaviour of W in hydrous, volatile-rich phases is required to confirm this assertion. 
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Collectively, the above shown W, Mo, and Sb systematics show that these elements are 

highly enriched in the Bulgarian post-collisional K-rich lavas, which is evident from 

comparisons with other arc basalts. Nevertheless, some ratios of these elements (e.g., Sb/Ce, 

W/Th, Ta/W) broadly overlap with other arc basalts, whereas others (e.g., W/Mo, Sb/Pb) 

show a greater range of fractionations. These are ascribed to a higher magnitude, i.e., more 

efficient source enrichment, probably over a longer period of time. This is in agreement with 

geophysical and geochronological data inferring that subduction underneath the Rhodopes 

occurred for several tens of Myrs before the refertilized mantle sources were tapped (see 

Chapter 2 and 3 and references therein). Moreover, the major budget of incompatible 

elements is concentrated in the metasomatic portion of the lithospheric mantle. During partial 

melting, the metasomatic mineral assemblage is gradually consumed, leading to the high 

incompatible element enrichments found in the Bulgarian K-rich lavas. As major important 

hosts for the extended HFSE, phlogopite, apatite, and possibly also amphibole could be 

identified, whereas apatite might eventually represent a major host for W in the lithospheric 

mantle.  

Santorini lavas – In contrast to the sample suite from Bulgaria, the Santorini lavas lack 

evidence for the involvement of subduction-derived fluids in their source enrichment, which 

is for instance illustrated by invariant Ba/La and Ba/Nb (Fig. 4.6a). As illustrated in Chapter 3 

and section 4.2, the trace element and Nb-Ta and Zr-Hf budget is largely controlled by 

hydrous sediment-melts, which is subsequently also tested for W, Mo, and Sb.  

Ratios of W-Th in the Santorini lavas (0.060 – 0.074; Fig. 4.6b) are slightly lower than 

MORB (0.09 – 0.24; Babechuk et al., 2010; König et al., 2011). Compared to other island-

arcs both W and Th concentrations are strongly elevated. Both elements additionally show 

similar compatibilies as K in the Santorini lavas (Fig. 4.8a, b). The systematically lower W/Th 

than MORB hint towards a potential phase in the magma source that selectively retains W 

with respect to Th. In this context, small amounts of rutile in the subducted sediments have 

been proposed to control the Nb-Ta budget of the Santorini lavas (section 4.2) and might also 

buffer W to a certain degree, as proposed by Klemme et al. (2005). These authors showed that 

rutile/silicate melt partition coefficients are high for W (0.5 – 14.5) and low for Th (< 0.0011). 

Hence, fractionation of W-Th by residual rutile might be possible, but probably only occurred 

to a small degree in the Santorini lavas.  

As shown in Fig. 4.2b, W is selectively enriched compared to Ta (and Hf), thus implying 

that the decreasing Ta/W at invariant Ba/La (Fig. 4.6d) can be attributed to melt-like source 

enrichment, otherwise a stronger increase in Ba/La with decreasing Ta/W would be expected. 
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Thus, both W-Th and Ta-W ratios are controlled by the selective replenishment of W, which 

for the Santorini samples has been attributed to a sediment-melt that had left W/Th 

unfractionated but had strongly decreased Ta/W at invariant Ba/La (Fig. 4.6b, d). However, W 

has been replenished more efficiently by silicic sediment melts than Ba as evident from W-Ba 

ratios, which are controlled by the more pronounced enrichment of W over Ba. This might be 

due to Ba being preferentially buffered by residual phengite with DBa
mica/melt of 3 – 4 (Adam & 

Green, 2006), in which W has been shown to be incompatible (DW
mica/melt < 0.001; Adam & 

Green, 2006). Altogether, this establishes a relative mobility order of Th > W > Ba > Nb for 

the Santorini suite, which is furthermore supported by invariant W/Th at increasing W/Nb 

(not shown).  

Tungsten-Mo systematics shown in Fig. 4.6c illustrate the lower W/Mo at invariant 

Ba/La of the Santorini lavas compared to the Bulgarian suite. Nevertheless, the Santorini 

lavas are similar to other island-arc basalts like Cyprus and the Sunda arc in W/Mo – Ba/La 

space. Tungsten and Mo concentrations display a positive covariation (Fig. 4.7b), overlapping 

with the field for Sunda arc basalts. However, W is relatively enriched compared to Mo, 

which is evident from a comparison of W/Mo vs. W concentrations and W/Mo vs. Mo 

concentrations where the W budget dominates the increase of W-Mo ratios. The selective 

enrichment of W over Mo furthermore hints towards subducted sediments with high W/Mo, 

which accounts for terrigeneous sediments rather than pelagic clays (e.g, Li, 1991; Rudnick & 

Gao, 2003). Hence, W-Mo systematics support the assertion that, the Santorini source 

enrichment was accomplished rather by sediment-melts than by fluids, in contrast to the 

Bulgarian lavas. 

A more important role for sediment-melts can also be confirmed by Sb systematics in 

the Santorini lavas. Concentrations of Sb (66 – 180 ppb) are significantly lower than in the 

Bulgarian lavas, but only slightly higher than values found in MORB (0.01 – 0.05; Jochum & 

Hofmann, 1994; Jochum & Verma, 1996). Ratios of Sb/Ce and Sb/Pb (not shown) are similar 

to the Bularian lavas and plot within the MORB array (Fig. 4.7a). This emphasizes the fact 

that the Bulgarian lavas are significantly more enriched than the Santorini lavas, however, 

ratios of incompatible elements like Sb/Ce and Sb/Pb are not significantly fractionated 

compared to the Bulgarian lavas. As the bulk portion of Sb in arc lavas is most likely derived 

from the dehydration of the oceanic crust (Jochum & Verma, 1996; Hattori & Guillot, 2003) 

the Sb systematics in the Santorini lavas might be explained by: (1) dehydration of the slab 

was not as important as for the Bulgarian lavas; (2) a higher T regime hampering the 

mobilization of Sb from the slab; (3) a more depleted mantle source for the Santorini lavas, 
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(4) different alkalinity of the hydrous melts. 

Considering the findings reported above and in Chapter 3 it is rather likely that in the 

Santorini lavas, whose geochemical budget is largely dominated by sediment-derived melts, 

Sb is less efficiently mobilized by silicic melts than by fluids, probably at higher T than in the 

Bulgarian lavas.  

 

Combining the findings of König et al. (2008; 2010) with the results of this study it 

becomes obvious that care has to be taken when interpreting W data for island-arcs. If present, 

W abundances in subduction zone lavas might be largely controlled by hydrous sediment 

melts (e.g., Santorini) in agreement with findings of Spandler et al. (2007) and Hermann & 

Rubatto (2009) who showed that hydrous melts are capable of transporting traditionally 

“fluid-mobile” elements like Ba more efficiently (up to 2 magnitudes). Collectively, W is 

highly enriched in both suites from Santorini and Bulgaria. The W enrichment in the Santorini 

mantle source is assumed to have been accomplished by hydrous sediment-derived melts, 

which is supported by Sb-Mo systematics. For the Bulgarian lavas fluid-like components play 

a large role, accounting for significant fractionations of W from less fluid-mobile elements. 

However, the distinct phases hosting W and the other HFS elements in the metasomatic 

mantle assemblage have to be further characterised. From the composition of the Bulgarian 

lavas, however, it appears that in accord with petrological observations these phases were 

largely consumed during melting, although some diagnostic trends appear to be more 

obscured than in the Santorini lavas . 

 

 

4.5. Conclusions 

 

New extended HFSE data (Nb, Ta, Zr, Hf, W, Mo, Sb) for lavas from Bulgaria and 

Santorini are the first high precision HFSE dataset for K-rich lavas in continental subduction 

zone and post-collisional settings. In conjunction with previously published Sr-Nd-Hf-Pb and 

trace element data, the new HFSE data provide important insights into trace element mobility 

and the behaviour of W-Sb-Mo and the “traditional” HFSE in continental arcs and in K-rich 

rocks from post-collisional settings. 

 (1) No significant fractionation of the HFSE ratios (Nb/Ta, Zr/Hf, Zr/Nb) compared to 

MORB were observed in the Santorini lavas and in the Bulgarian high-K rocks. Elevated 

Nb/Ta in the absarokite group can be largely attributed to the fractionation of phlogopite. An 
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influence on the HFSE budget by residual phases like allanite, zircon, or phengite can be 

largely ruled out, whereas trace amounts of residual rutile in the source might account for 

slightly lower Nb/Ta than expected for bulk sediment addition.  

(2) Hafnium isotope compositions in combination with HFSE ratios highlight the role of  

hydrous sediment-melts in refertilizing the Bulgarian and Santorini sub-arc mantle wedges. 

 (3) The W, Sb, and Mo budgets in the Bulgarian lavas are primarily controlled by 

dehydration of the slab and sediments (Sb) and mobilization from subducted terrigenous 

sediments by partial melts (W, Mo). Tungsten enrichment covaries with K, Ba, and P 

enrichment, which highlights the role of a metasomatic mantle domain hosting the bulk of the 

incompatible elements. These hydrous, volatile-rich metasomatic mineral assemblages get 

virtually entirely consumed during partial melting and thus result in the high enrichment 

observed in the Bulgarian lavas.  

(4) The W budget in the Santorini lavas is dominated by hydrous sediment-melts, in which a 

relative mobility order of Th > W > Ba > Nb was established. This is in contrast to fluid-

dominated intra-oceanic island-arcs, where Ba has been shown to be more mobile than W. 

The difference is possibly caused by residual phengite in the subducted sediments. 

Furthermore, the higher incompatibility of Th compared to W results in W/Th lower than 

MORB, which is most likely caused by trace amounts of residual rutile that selectively retains 

W during partial melting.  

(5) The Sb and Mo budget in the Santorini lavas is primarily controlled by the sediment-

derived melts, which is less efficient than fluid-mobilization as recorded for the Bulgarian 

lavas, resulting in the mobility order W > Mo > Sb. 
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