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1. ABSTRACT  

Background : Disturbed endothelial barrier function is a hallmark of 

inflammation. Effusion of protein rich plasma fluid leading to edema formation 

and overshooting transmigration of leukocytes contribute to severe organ 

dysfunction under conditions of generalized inflammation, e.g. acute lung injury 

and sepsis. The peptide hormone Adrenomedullin (ADM) and its receptor 

(CRLR/RAMP2/3) constitute an important signaling system for the protection of 

endothelial barrier function. Although elevation of cAMP in endothelial cells was 

identified as signaling pathway of ADM responsible for barrier protection, it was 

speculated that other mechanisms are involved and precise intracellular 

signaling routes have not been explored, yet. 

Main findings and conclusions : ADM was confirmed to be a strong stabilizer 

of the endothelial barrier function in vitro, preventing and reversing 

hyperpermeability independent of the inflammatory stimulus (as determined by 

electrical impedance and FITC-dextran permeability measurements after 

stimulation with thrombin, TNFα, histamine, VEGF). Moreover, it was shown for 

the first time that ADM inhibited TNFα-induced granulocyte transmigration which 

was solely due to effects of ADM on endothelial cells. These in vitro-findings 

could be translated to animal models of vascular permeability and inflammation: 

ADM dose-dependently reduced vascular permeability in the skin of mice and 

rats (Miles assay; stimulus histamine). In a murine lipopolysaccharide (LPS)-

induced lung injury model, ADM reduced lung edema and leukocyte 

extravasation.  

In endothelial cells, barrier protection could solely be reduced to cAMP signaling 

via the protein kinase A (PKA) and Epac-Rap1 pathways (dose response 

comparison with Forskolin). Dissection of the downstream cascade by means of 

cAMP analogs, specific for PKA and Epac-Rap1 signaling (benz-cAMP and 

“007”, respectively), demonstrated that both pathways are with respect to their 

efficacy equally involved in effects on permeability probably addressing 

independent effector mechanisms as suggested by enhanced efficacy of 

combination of both. Consistently, both pathway activators prevented vascular 



ABSTRACT   2 

hyper-permeability in vivo. PKA activation and inhibition of MLC phosphorylation 

downstream of ADM diminish stimulus induced actin stressfiber formation and 

contraction of endothelial cells thus counteracting intercellular gap formation 

and hyperpermeability. Most notably, also effects independent of the contractile 

apparatus were demonstrated: ADM stabilized barrier function even in the 

absence of a functional actin cytosceletton after treatment with Cytochalasin D 

and knockdown of cortactin. ADM induced stabilization of VE-cadherin at the 

cell borders and increased the amount of detectable VE-cadherin/VE-PTP 

complex which is important for the regular function of VE-cadherin. 

In contrast, granulocyte transmigration was only reduced by PKA activation and 

ADM effects were lost after knockdown of cortactin. In line with this finding, a 

PKA inhibitor abolished the effect of ADM. As PKA activation reduces myosin 

light chain phosphorylation these data collectively link leukocyte extravasation 

to the contractile apparatus of the endothelial cell. As “007” was fully active with 

respect to TNFα induced hyperpermeability but had no effect with respect to 

granulocyte transmigration, endothelial hyperpermeability per se is not a 

prerequisite for granulocyte transmigration. 
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2. ZUSAMMENFASSUNG  

Hintergrund : Die Störung der endothelialen Schrankenfunktion ist ein 

Haupkennzeichen der Entzündung: Die Bildung von Ödemen durch den Austritt  

Protein-reicher Plasamaflüssigkeit und überschießende Auswanderung weißer 

Blutzellen ins Gewebe tragen zu schwerer Organfehlfunktion bei generalisierten 

Entzündungszuständen bei, wie z.B. im akuten Lungenversagen und der 

Sepsis. Das Peptidhormon Adrenomedullin (ADM) und sein Rezeptor 

(CRLR/RAMP2/3) stellen ein wichtiges Singalsystem dar, das die endotheliale 

Schrankenfunktion stabilisiert. Einer Erhöhung des cAMP-Spiegels wurde 

hierfür als Signalweg von ADM in Endothelzellen identifiziert. Daneben wurde 

aber auch die Existenz andere Mechanismen vermutet. Bislang sind die 

intrazellulären Signalwege von ADM in der endothelialen Schrankenfunktion 

noch nicht präzise untersucht worden. 

Hauptbefunde und Schlußfolgerungen : Es konnte bestätigt werden, dass 

ADM in vitro als starker Stabilisator der endothelialen Schrankenfunktion wirkt, 

indem es unabhängig vom verwendeten Entzündungsstimulus 

Hyperpemeabilität verhindert bzw. aufhebt (detektiert als elektrische Impedanz 

und Permeabilität für FITC-Dextran nach Stimulation mit Thrombin, TNFα, 

Histamin und VEGF). Darüber hinaus konnte erstmals gezeigt werden, dass 

ADM auch die durch TNFα-induzierte Transmigration von Granulozyten 

verhindert – ein Effekt der ausschließlich durch Wirkung von ADM auf das 

Endothel zustande kommt. Diese In vitro-Ergebnisse konnten auch in 

Tiermodellen für vaskuläre Permeabilität und Entzündung abgebildet werden. 

Mit ADM vorbehandelte Mäuse und Ratten zeigten dosisabhängig eine 

reduzierte Gefäßpermeabilität in der Haut (Miles-Assay mit Histamin als 

Stimulus). Darüber hinaus konnte eine Verringerung der Ödembildung und der 

Rekrutierung neutrophiler Granolozyten in der Lunge in einem murinen 

Lipopolysaccharid (LPS)-induzierten Lungenschädigungs-Modell gezeigt 

werden. 

In Endothelzellen konnte der die Schrankenfunktion steigernde Effekt von ADM 

ausschließlich auf den cAMP-Signalweg zurückgeführt werden, und gezeigt 
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werden, dass sowohl der Protein-Kinase A als auch der Epac/Rap1 Signalweg 

aktiviert werden (Dosis-Wirkungs-Vergleich mit Forskolin). Mit Hilfe von cAMP-

Analoga die spezifische Aktivatoren der Proteinkinase A (PKA) bzw. 

Epac/Rap1-Signalwege sind (benz-cAMP bzw. “007”) wurde die funktionelle 

Bedeutung der Signalwege analysiert. Die maximalen Effekte beider 

Signalwege in der Regulation der endothelialen Permeabilität sind zwar 

vergleichbar stark, laufen aber wahrscheinlich über unterschiedliche 

Effektormechanismen ab, da die Kombination beider Wege zur Verstärkung 

führt. Übereinstimmend mit dem in vitro-Befund verhinderten beide cAMP-

Analoga die Gefäß-Hyperpermeabilität in vivo. Durch Aktivierung des PKA 

Signalweges und Hemmung der MLC Phosphorylierung reduziert ADM die 

Stimulus-induzierte Bildung von Aktin Stressfibers und die Kontraktion von 

Endothelzellen und wirkt so der Bildung interzellulärer Lücken und der daraus 

folgenden Hyperpermeabilität entgegen. Bemerkenswerter Weise konnten auch 

Effekte, die unabhängig vom kontraktilen Apparat waren, gezeigt werden: ADM 

stabilisiert die Schrankenfunktion sogar in der Abwesenheit eines funktionellen 

Aktin-Cytoskeletts nach Behandlung mit Cytochalasin D und Knockdown von 

Cortactin. ADM induziert die Stabilisierung von VE-Cadherin an den Zell-Zell 

Kontakten und die Menge des nachweisbaren VE-cadherin/VE-PTP 

Komplexes, der wesentlich für die korrekte Funktion von VE-Cadherin ist. 

Im Gegensatz dazu wurde die Granulozytentransmigration nur durch die PKA-

Aktivierung gehemmt – ein Effekt der nach Knockdown von Cortactin 

aufgehoben war. Im Einklang mit diesem Befund hebt die Inhibition von PKA die 

Wirkung von ADM auf die Granulozytentransmigration auf. Da PKA-Aktivierung 

die Phosphorylierung der MLC hemmt, wird durch diese Befunde insgesamt die 

Abhängigkeit der Granulozytentransmigration vom kontraktilen Apparat der 

Endothelzelle deutlich. Da andererseits “007” die gestörte Schrankenfunktion 

aufhebt aber keinen Effekt auf die Transmigartion ausübt, ist eine gestörte 

Schrankenfunktion an sich (Hyperpermeabilitä) keine Voraussetzung für die 

Granulozytentransmigration. 
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3. INTRODUCTION 

The vascular endothelium represents a semipermeable barrier between blood 

and tissue which is important for tissue homeostasis by regulating the exchange 

of plasma fluid, electrolytes, proteins and cells. Endothelial barrier dysfunction is 

a hallmark of acute and severe inflammatory conditions associated with trauma, 

thrombosis, stroke, ischemia–reperfusion injury, sepsis, and acute lung injury 

(ALI/ARDS), but also relevant in the course of more chronic conditions such as 

diabetes and cancer. Increased microvascular permeability leads to plasma 

effusion and leukocyte extravasation, giving rise to tissue edema formation and 

eventually fatal organ dysfunction. Although the pathophysiology is well known 

for many years, a causative therapy to directly improve endothelial barrier 

function in inflammation is still not available (Temmesfeld-Wollbrück et al., 

2007).  

 

Adrenomedullin (ADM) was first discovered as a 52-amino-acid peptide from 

phaeochromocytoma that increased cAMP levels in a thrombocyte assay and 

was vasorelaxant when administered to rats (Kitamura et al., 1993). ADM is a 

multifunctional peptide which is able to act as an autocrine, paracrine, or 

endocrine mediator in many important and interrelated biological functions, such 

as in vascular tone regulation, fluid and electrolyte homeostasis and regulation 

of the reproductive system (Brain & Grant, 2004). More recent studies reveal 

the importance of ADM in systemic inflammatory response, particularly by 

improving endothelial barrier function thus establishing an organ protective 

effect in animal models of sepsis (Allaker et al. 2005; Zudaire et al., 2006). 

 

In the following three chapters, the present knowledge from literature is briefly 

summarized with respect to the biological function and regulatory effects of 

ADM in pathological conditions, particularly direct effects on endothelium in 

response to inflammation. Under this focus the knowledge is further reviewed 

with respect to the regulation of endothelial permeability as well as 

transendothelial migration of leukocytes. 
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3.1. Adrenomedullin (ADM) 

3.1.1. Structure and distribution of ADM 

Adrenomedullin was first discovered as a peptide from the lysate of an adrenal 

phaeochromocytoma that increased cyclic adenosine monophosphate (cAMP) 

levels in a thrombocyte assay and was vasorelaxant when administered to rats 

(Kitamura et al., 1993). The 52-amino-acid peptide belongs to the calcitonin 

superfamily of peptides, which also includes calcitonin, calcitonin gene-related 

peptide (CGRP), amylin, and intermedin (Muff et al., 1995; Wimalawansa, 

1997). The amidation at the C-terminus by peptidylglycine alpha-amidating 

monooxygenase (PAM) and the 6-amino acid ring structure formed by an 

intramolecular disulphide bond between residues 16 and 21 are essential for 

the receptor binding of ADM and for its biological activity (Eguchi et al., 1994). 

ADM22-52 lacking the intramolecular disulphide ring can only bind to ADM 

receptor without biological activity and is used as ADM receptor antagonist 

(Eguchi et al., 1994).  

 

The ADM gene encodes a 185-amino acid preproADM (Figure 1 ). After 

cleavage of a 21-residue N-terminal signaling peptide, preproADM is converted 

into a 164-amino acid proADM peptide, which is a precursor of two biologically 

active peptides, namely ADM and proADM N-terminal 20 peptide (PAMP) 

(Kitamura et al., 1994; Kitamura et al., 2002). Under normal healthy conditions, 

ADM circulates at low picomolar concentrations (2-10 pM) (Kitamura et al., 

1994; Suzuki et al., 2004) in the plasma in two forms, a mature 52-amino acid 

peptide (mADM) and an immature glycine-extended 53-amino acid peptide 

(iADM), which is subsequently converted to mADM after enzymatic amidation 

(Kitamura et al., 1998; Asakawa et al., 2001). ). iADM represents 85% of total 

plasma ADM (Yamaga et al., 2003).  
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Figure 1 Structure of ADM and post-translational pr ocessing of preproADM gene 

(Modified from Hamid & Baxter, 2005 ) 

After cleavage of a 21-residue N-terminal signaling peptide from the initial 185-amino acid 

preproADM peptide, the 164-amino acid proADM peptide is converted, which is a precursor of 

two biologically active peptides, namely ADM and PAMP. Further degradation products derived 

from the ADM precursor or ADM are also listed.  

 

 

In the blood circulation, ADM is bound to ADM binding protein 1 (AMBP-1; also 

called complement factor H) which stabilizes the peptide (Elsasser et al., 1999; 

Pio et al., 2001). It is also reported that via its binding to AMBP-1 the receptor-

mediated effects of ADM are increased, while its receptor-independent 

antimicrobial activity is suppressed (Beltoeski & Jamroz, 2004). In addition, the 

inhibitory effect of factor H in alternative pathway of complement activation is 

enhanced via its binding to ADM. It is noteworthy that, neither CGRP nor PAMP 

binds complement factor H from plasma (Beltoeski & Jamroz, 2004).  

 

In humans and rats, circulating ADM is rapidly metabolized with the elimination 

half-life (T1/2) of about 20 min. However, little is known about its precise 

metabolism and clearance. ADM is metabolized by neutral endopeptidase and 

cleared in the pulmonary circulation (Lisy et al., 1998; Dupuis et al., 2005). 

Studies using intravenous administration of radioactively labeled ADM 

derivatives demonstrate a high first pass effect during the passage through the 
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lung vasculature, where 36% of a bolus is captured in dogs (Dschietzig et al., 

2002; Dupuis et al., 2005). Studies in rats show that more than 25% of the lung 

bound ADM can be displaced by non-labeled ADM, which proportion is 

therefore likely to be receptor bound. Moreover, ADM is present in human urine 

with about six-fold higher concentration than in human plasma, suggesting that 

a renal clearance may be also relevant in addition to pulmonary clearance (Sato 

et al., 1995). However, circulating ADM is cleared by neutral endopeptidase in 

kidney, located in the tubular brush border system, and the subsequent urinary 

excretion of ADM may be derived from renal production rather than from 

glomerular filtration (Lisy et al. 1998, Nishikimi, 2007). 

3.1.2. Receptors and intracellular signalling of AD M 

ADM exerts its biological actions through binding to the heterodimeric G-protein 

coupled receptor complex (GPCR) composed of the calcitonin receptor-like 

receptor (CRLR) associated with RAMP-2 (ADM-1 receptor) or RAMP-3 (ADM-

2 receptor). RAMPs bind to the receptor molecule in the endoplasmic reticulum 

and facilitate their translocation to the plasma membrane. Additionally, RAMPs 

regulate the degree of receptor glycosylation and play an important role in 

receptor specificity, ligand affinity, and receptor desensitization (McLatchie et 

al., 1998). Although the three isoforms of RAMPs show a differential tissue 

distribution, a pharmacological difference of ADM-1 and-2 receptor is not 

established yet (Chakravarty et al., 2000; Hagner et al., 2002). Besides ADM-1 

and -2 receptors, ADM can also mediate its effects via CGRP-1 receptor, 

especially in the vascular system (Dennis et al., 1990; Chiba et al., 1989). 

Indeed, ADM can bind to some regions in the brain where actually CRLR is not 

expressed, suggesting the existence of specific ADM receptors with a different 

molecular structure (Hinson et al., 2000).  

 

The cellular signaling mechanisms through which ADM mediates its biological 

effects vary among species, vascular beds and cell types, but mainly involve 

cAMP, nitric oxide (NO) and calcium-dependent mechanisms (Lopez & 

Martinez., 2002). Moreover, activation of different kinases, such as protein 

kinase A (PKA), Src, protein kinase C (PKC), p38 mitogen-activated protein 
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kinase (MAPK), and extracellular-signal regulated kinases (ERK), have been 

reported to be involved in ADM signaling. The combinations of various signaling 

may be responsible for numerous biological functions of ADM in different cell 

types (reviewed by Gibbons et al., 2007). 

3.1.3. Biological actions of ADM in response to inf lammation 

The ADM gene is broadly expressed throughout most organs during embryonic 

development and adulthood, especially in endothelial cells, vascular smooth 

muscle cells, cardiac myocytes, and human leucocytes (Garayoa et al., 2002; 

Hinson et al., 2000). Moreover, in highly vascularized tissues, such as placenta, 

lung, heart, and kidney, levels of ADM tend to be relatively higher. Experimental 

data from literature underscore a role of ADM in a variety of functions, including 

blood pressure regulation, broncho-dilatation, renal function, hormone 

secretion, cell growth, differentiation, neurotransmission, and modulation of the 

immune response. Moreover, ADM plays a crucial role as autocrine factor 

during proliferation and regeneration of endothelial cells (reviewed by Ishimitsu 

et al., 2006; Gibbons et al., 2007). However, data from targeted deletion in mice 

of ADM or its receptor gene, point to another dominant function of this peptide 

in regulating vascular permeability. While heterozygous littermates show a mild 

hypertension (Shindo et al., 2000) and exhibit a more pronounced inflammatory 

response to endotoxin-induced septic shock (Dackor and Caron, 2007), 

homozygous knockout mice develop a strong and lethal hydrops fetalis (Caron 

and Smithies, 2001). A similar phenotype is further substantiated by data from 

knockout mice lacking CRLR or PAM genes (Dackor et al., 2006; Czyzyk et al., 

2005). Conversely, mice overexpressing ADM show moderate hypotension and 

are largely resistant to LPS induced shock (Shindo et al., 2000). 

 

Transcription of the ADM gene is stress sensitive. A variety of stimuli such as 

hypoxia, inflammatory stimuli (e.g. LPS), as well as pro-inflammatory cytokines 

(e.g. IL-1α, IL-1β, TNFα, and TNFβ) are shown to induce the expression of 

ADM (reviewed by Tammesfeld-Wollbrück et al., 2007). Accordingly, elevated 

plasma ADM levels have been detected in a wide variety of physiological and 

pathological conditions, including normal pregnancy and pregnancy with 
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complications, cardiovascular and pulmonary diseases, diabetes, endocrine 

disorders, hepatic and renal failure, cancer, and sepsis (reviewed by Gibbons et 

al., 2007). In their analysis, based on published human clinical data, Gibbons 

and colleagues compared fold change of plasma ADM in a variety of human 

conditions. One of the highest increases in plasma ADM levels occurred during 

sepsis, which evidences the importance of ADM under inflammatory conditions. 

Moreover, in animal studies, high expression of ADM was observed in the lung 

in endotoxaemia (Cheung et al., 2004) and in acute lung injury induced by 

hyperoxia and LPS (Agorreta et al., 2005). In a model of cecal ligation and 

puncture in rats, the small intestine was demonstrated to be an important 

source of ADM release during polymicrobial sepsis (Zhou et al., 2001). These 

observations raised the question as to whether elevated ADM levels reflect a 

protective defense mechanism rather than being of pathological significance. 

 

Meanwhile, there is strong evidence from the literature that administration of 

ADM to supra-physiological levels exerts strong anti-edematous effects: 

 

In vitro, using measurement of physiological hydrostatic pressure as indictor of 

endothelial permeability, ADM was shown to dose-dependently reduce 

hyperpermeability induced by different stimuli, such as thrombin, hydrogen 

peroxide, E. coli hemolysin, or S. aureus alpha-toxin, in endothelial cells from 

different species (human, rat, porcine) and different vasculatures (umbilical 

vein, lung pulmonary artery) (Hippenstiel et al., 2002; Hocker et al., 2006). The 

measurable increase of intracellular cAMP levels was supposed to be the key 

mechanism of action of ADM signaling. Inhibition of MLC phosphorylation via 

PKA activation was hypothesized to counteract and reduce endothelial 

contractility and to further stabilize endothelial barrier function (Hippenstiel et 

al., 2002). Moreover, ADM was shown to tighten blood brain barrier in terms of 

increased transendothelial electrical resistance (Kis et al., 2001; Kis et al., 2003; 

Honda et al., 2006). In ex vivo-models using hydrogen peroxide-exposed rabbit 

lungs and S. aureus α-toxin-infused rat ileums, ADM showed protective effects 

in those isolated organs (Hippenstiel et al., 2002; Brell et al., 2005; Hocke et al., 

2006).  
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Further in vivo- studies were in line with the results obtained in vitro and in 

isolated organs. ADM reduced the ovalbumin-induced airway microvascular 

leakage in an ovalbumin-sensitized guinea pig model (Ohbayashi et al., 1999). 

Intravenous infusion of ADM in rats protected against endotoxemia induced 

lung injury (Itoh et al. 2007). In a sheep model of endotoxemia induced lung 

injury, ADM reduced pulmonary hypertension and prevented hypodynamic 

circulation (Ertmer et al., 2007). ADM was shown to protect lung function 

significantly in models of oxygen and ventilator induced lung injury (Müller et al., 

2010; Tao et al, 2012).  

 

In a rodent model of Gram positive sepsis and in the severe model of coecum 

ligation and puncture (CLP) induced polymicrobial sepsis, ADM reduced 

vascular leakage and secondary lung damage, and prolonged survival (Hocke, 

et al, 2006; Temmesfeld-Wollbrück et al., 2007; Wu et al, 2008). In further 

models of polymicrobial sepsis (Wang, 2001; Yang et al., 2010; Gonzalez-Rey 

et al., 2006), endotoxin-related shock (Gonzalez-Rey et al., 2006) and 

hemorrhage (Cui et al., 2005) ADM showed beneficial effects on survival. 

 

In severe sepsis a loss of plasma ADM coincides with loss of AMBP (the 

complement factor-H) at the transition from the phase of hyperdynamic to 

hypodynamic circulation due to increased consumption of components of the 

complement system (Yang et al., 2002). A decrease of ADM plasma level in 

sepsis was believed to facilitate generalized edema formation and deterioration 

of cardiac function (Westphal et al., 2006). In the CLP-induced sepsis model, 

administration of ADM together with human complement factor-H significantly 

could halt transition to hypodynamic circulatory failure (Yang et al., 2002), while 

infusion of ADM stabilized cardiac output in endotoxemic sheep (Ertmer et al., 

2007). 

3.2. Regulation of vascular permeability 

Endothelial permeability is described as a passage through either one of two 

different routes: one transcellular (cross cells), via caveolae-mediated vesicular 

transport, and the other paracellular (between cells), through interendothelial 
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junctions. Although transcytosis plays an important role in the basal 

permeability of the endothelium, paracellular flux of plasma fluid and proteins 

through endothelial cell–cell junction is more dominant in the development of 

vascular inflammation under pathophysiological conditions (Komarova & Malik, 

2010; Mehta & Malik, 2006).  

3.2.1. Endothelial cell-cell junctions and vascular  integrity 

Although endothelial cell-cell junctions are differently structured in different 

organs, the general constituent of endothelial cell–cell junctional structures, with  

major impact on cell-to-cell adhesion and barrier properties, are tight junctions 

(TJs) and adherens junctions (AJs). AJs represent the predominant type of 

junctions within the endothelial barrier, whereas TJs predominate in the 

epithelium (Vandenbroucke et al., 2008). In the endothelium, the TJs are 

interwoven with AJs over the lateral intercellular space differing from the 

structure in epithelium (Figure 2 ). The molecular structure of AJ as well as TJ is 

based on the homophilic interaction of transmembrane proteins between two 

adjacent cells. Specific cytosolic proteins link to the adhesion proteins 

anchoring them to the cell cytoskeleton and transducing cellular signaling. By 

way of this protein complex, cell-cell junctions influence the important cellular 

process, such as proliferation, polarity, protein expression, and permeability 

(Bazzoni & Dejana, 2004).  
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Figure 2 Endothelial cell-cell junctions  

In the endothelium, the tight junctions and adherence junctions are interwoven with each other 

over the lateral intercellular space. The tight junction proteins, claudins, occludins and JAMs, 

are linked to the intracellular actin cytoskeleton via zonular occludins (ZOs). The primary 

molecular structure of adherence junction is VE-cadherin-catenin complex linking directly or 

indirectly to actin cytoskeleton. 

 

 

Tight junctions are primarily found in blood-brain, blood-retinal, or blood-testis 

barrier microvasculature (Mehta & Malik, 2006; Hawkins & Davis, 2005). Tight 

junction resembles a zipper-like structure formed by homophilic interactions of 

transmembrane proteins, including occludin, claudins, and junction adhesion 

molecule (JAMs). These three TJ proteins represent the backbone for TJs. 

They are intracellularly connected to the actin cytoskeleton via zonular 

occludins (ZO-1; 2) (Bazzoni, 2006). Complex tight junctions as found e.g. in 

the blood brain barrier are responsible for a high transendothelial electrical 

resistance and are exclusively impermeable to the passage of solutes (Crone & 

Olesen, 1982). Although TJs are well developed in large artery endothelial cells 

that are exposed to high flow rates, TJs are less complex in capillaries than in 

arterioles, and even less in venules within the microvasculature (Wallez & 

Huber, 2008). 
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Adherens Junctions have been recognized as a critical component in regulating 

paracellular permeability of microvascular endothelium, with the exception of 

blood-brain barrier and blood-retinal barrier endothelium (Mehta & Malik, 2006). 

AJs have been identified in nearly all types of vascular beds, especially in the 

peripheral microvasculature. In the postcapillary venules, where leukocyte 

adhesion and inflammatory hyperpermeability selectively occur, beside AJs 

other types of junctions are poorly developed. The primary molecular structure 

of AJ is based on homophilic interactions of vascular endothelial cadherin (VE-

cadherin) (Figure 3 ). VE-cadherin is a transmembrane protein composed of five 

extracellular calcium–binding domains, one transmembrane domain and a 

cytoplasmatic tail domain (Vestweber, 2008). The hemophilic interaction of 

extracellular domains is calcium dependent. The intracellular domain is 

anchored to the cell cytoskeleton through binding with catenins (α, β, γ and 

p120) (Djana, 2004; Vestweber, 2008). This cytosolic connection to the 

cytoskleton is of importance for maintaining junctional strength and for the 

regulation of paracellular permeability (Yuan, 2002). It is hypothesized that 

through these junction-cytoskeleton connections, endothelial cytoskeletal 

contractile forces can be transmitted to cell–cell junctions and thus dynamically 

regulate endothelial permeability. Antibodies that inhibit the adhesion function of 

VE-cadherin cause dissociation of endothelial cell layers in vitro, enhanced 

accumulation of neutrophils in a peritonitis mouse model and lead to 

subcutaneous hemorrhage and death of mice (Vestweber et al., 2009). 

  

The stability and composition of the VE-cadherin-catenin complex is dependent 

on the status of cell contacts and regulated by tyrosine phosphorylation 

(Vestweber, 2008). In subconfluent cell culture where the endothelial cells are 

weakly connected to each other, β-catenin and p120 are infirmly linked to VE-

cadherin, and the protein components of this complex are highly 

phosphorylated. In contrast, in confluent cell culture where endothelial cells are 

strongly connected to each other, γ-catenins are predominant over β-catenins in 

VE-cadherin-catenin complex, and the phosphorylation of the components is 

reduced (Lampugnani et al., 1997; Lampugnani et al., 1995). The 

destabilization of cell contacts is accompanied by a decreased association with 
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γ-catenin and increased association with β-catenin (Lampugnani et al., 1995). 

The underlying mechanism is still not fully understood (Vestweber, 2008).  

 

Furthermore, there is correlation between tyrosine phosphorylation of various 

components of the VE-cadherin-catenin complex and the decrease of VE-

cadherin-mediated adhesion. Many vasoactive stimuli, such as histamine, 

thrombin, VEGF and TNFα, have in common that they induce phosphorylation 

of the VE-cadherin-catenin components and thus destabilize the complex 

(Angelini et al., 2006; Vestweber, 2008).  Thrombin is shown to cause 

disassembly of AJs via PKC-induced modification of VE-cadherin and β-catenin 

phosphorylation (Konstantoulaki et al., 2003). Vascular endothelial growth factor 

(VEGF) stimulation induces activation of Src-kinase and thus phosphorylation of 

VE-cadherin on the residue Serine 665, leading to α-arrestin-2 regulated 

internalization and loss of endothelial barrier function (Gavard & Gutkind, 2006). 

 

An important counteracting regulator of this phosphorylation is the vascular 

endothelial protein tyrosine phosphatase (VE-PTP), which is associated with 

tyrosine kinase receptor (Tie 2) and VE-cadherin. Docking of neutrophil 

granulocytes or lymphocytes on tumor necrosis factor (TNFα)-stimulated 

endothelial cells leads to dissociation of VE-PTP from VE-cadherin, (Nottebaum 

et al., 2008). Down-regulation of VE-PTP expression increases endothelial cell 

permeability, enhances leukocyte transmigration, and inhibits VE-cadherin-

mediated adhesion (Nottebaum et al., 2008). 
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Figure 3 Structure of VE-cadherin-catenin complex i n endothelial cells 

The primary molecular structure of adherence junction is based on the homophilic interactions of VE-

cadherin. This transmembrane protein VE-cadherin consists from five extracellular domains, one 

transmembrane domain and a cytoplasmatic tail domain interactingwith catenins (α, β, γ and p120). VE-

cadherin is anchored to the cell cytoskeleton, whereas through binding its extracellular domains, VE-

cadherin can interact with other binding partners, such as VE-PTP. 

. 

3.2.2. Endothelial cytoskeleton and vascular permea bility 

3.2.2.1. Dynamic functions of cytoskeleton and vascular permeability 

Similar to smooth muscle cells vascular endothelial cells are contractile cells 

developing forces driven by a mechanochemical interaction between actin and 

myosin (Figure 4 ). The increased actomyosin contractility is characterized by 

the formation of stress fibers, which are bundles of actin filaments associated 

with nonmuscle myosin II (Wojciak-stothard & Ridley, 2002). The key signal to 

trigger endothelial contraction is the phosphorylation of the regulatory part of 

myosin, the myosin light chain (MLC) (Dudek & Garcia, 2001; Tiruppathi, 2002). 

Phosphorylation of MLC induces conformational change of myosin, interacting 

with actin, sliding along actin filaments, subsequently causing contraction 

(Tiruppathi, 2002; Sandoval et al., 2001). This myosin-actin cross-bridge cycling 

provides a mechanical basis to develop contractile force in response to 

physiological and pathological stimulation and is the cause for generating and 

maintaining a centripetal tension (Yuan, 2002).  

 

VE-cadherin

p120-catenin

α-catenin

β-catenin

actin

VE-PTP
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In vascular endothelial cells, the phosphorylation status of MLC results from the 

balance of MLC kinase (MLCK) and MLC phosphatase (MLCP) (Garcia et al., 

1995). Firstly, MLCK phosphorylates MLC at Ser-19 and subsequently at Thr-

18, starting actomyosin-interaction thus generating centripetal forces which 

ultimately may be responsible for dissociation of cell-cell contacts and formation 

of interendothelial gaps (Moy et al., 1996). MLCK is activated in a 

Ca2+/calmodulin dependent manner and by tyrosine kinase-mediated 

phosphorylation at Tyr-464 and Tyr-471 (Goeckeler & Wysolmerski, 1995; 

Garcia et al., 1995). Secondly, MLCP dephosphorylates MLC as opposed to 

MLCK, decreases contractile forces, and subsequently relaxes the endothelial 

cytoskeleton (Verin et al., 1995). Finally, small GTPases of the Rho family are 

also involved in regulating the phosphorylation status of MLC (van Nieuw 

Amerongen & van Hinsbergh, 2001). RhoA, a member of the Rho family of 

small GTPases, can increase MLC phosphorylation indirectly by activating its 

downstream effector, Rho C-terminal kinase (ROCK), which subsequently 

phosphorylates and inhibits MLCP (Noda et al., 1995; Yoshioka et al., 2007). 

Besides the formation of actin stress fibers and the induction of contractile 

forces, activation of Rho and ROCK directly affects the destabilization of cell 

contacts (Wojciak-Stozhard & Ridley, 2002). In addition to RhoA, additional 

small GTPases of the Rho superfamiliy, Rac and Cdc42, are also implicated in 

actomyosin contractility, since their downstream effector, p21-activated kinase 

(PAK), phosphorylates MLC on Ser-19 (Goeckeler et al., 2000). 

 

MLC phosphorylation is involved in modulating endothelial barrier dysfunction in 

response to cellular mediators (e.g. activated neutrophils), as well as 

inflammatory agonists (e.g. thrombin, histamine, cytokines, oxygen radicals). 

Inhibition of MLCK by specific inhibitors (ML7 and ML9), prevents 

phosphorylation of MLC and stabilizes vascular permeability. Using 

fluorescence microscopic approaches, endothelial cells exposed to 

inflammatory stimuli present a morphological change characterized by 

increased staining of MLC phosphorylation accompanied with formation of 

stress fiber and intercellular gaps (reviewed by Yuan, 2002). 
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Figure 4  Contractile machinery and actin cytoskele ton in endothelial cells 

In vascular endothelial cells, the balance of MLCK and MLCP results in the phosphorylation 

status of MLC, inducing conformational change of myosin, subsequently interacting with actin, 

sliding along actin filaments, and causing contractility. Ca2+/calmodulin dependent activation of 

MLCK, RhoA-ROCK dependent inactivation of MLCP, as well as the small GTPases (Rac, and 

Cdc42) are implicated in phosphorylation of MLC and acto-myosin based endothelial 

contractility. 

 

 

3.2.2.2. Static functions of cytoskeleton in vascular permeability 

Besides the role of actin in the active contractile apparatus, disruption and 

rearrangement of actin cytoskeleton are of equal importance in the development 

of endothelial gaps (Baldwin & Thurston, 2001; Schnittler et al., 1990). Upon 

stimulation by inflammatory mediators and neutrophils, as well as during 

ischemia–reperfusion injury, actin directly undergoes polymerization and 

redistribution to form stress fibers followed by the formation of intercellular gaps 

(Korthuis et al., 1991; Schnittler et al., 1990; Shasby et al., 1982). However, 

those effects can totally be abolished by actin stabilization agents in vitro and ex 

vivo, such as phalloidin, antamanide, cytochalasin B, or cytochalasin D 

(Korthuis et al., 1991; Shasby et al., 1982). In a study using confocal 

microscopic analysis in rat mesenteric venules, the time course of development 

and recovery of histamine-induced venular leaks is coincident with the 

rearrangement of endothelial actin fibers (Baldwinand & Thurston, 1995). Local 

breaks in the peripheral actin rim of endothelial cells are accompanying 
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histamine-induced focal leaks and hyperpermeability, whereas the central actin 

fibers are involved in the structural and functional recovery phase rather than 

the hyperpermeability-inducing phase. (For review see Yuan, 2002; Schnittler et 

al., 1990). 

 

In addition to actin and myosin, microtubules, another important cytoskeletal 

component in endothelial cells, are also implicated in response to inflammatory 

stimuli (Mehta & Malik, 2006). Microtubule assembly is necessary for 

maintenance of actin-dependent barrier integrity (Vadenbroucke et al., 2008). In 

human pulmonary artery endothelial cells, TNFα- induced barrier disruption was 

shown to be independent of MLC phosphorylation and involved the 

destabilization of the microtubule network (Petrache et al., 2003). TNFα can 

induce a decrease in stable tubulin content and partial dissolution of peripheral 

microtubule network as detected by immunofluorescent analysis of acetylated 

tubulin and beta-tubulin (Petrache et al., 2003). Inhibitors of microtubule 

polymerization (e.g. nocodazole or vinblastine), disrupt endothelial barrier 

function associated with increased stress fiber content and MLC 

phosphorylation, whereas a microtubule stabilizer (paclitaxel) attenuates this 

effect (Verin et al., 2001). The increase of MLC phosphorylation and endothelial 

cell contractility are attributed to a RhoA/ROCK-dependent and MLCK-

independent mechanism (Verin et al., 2001).  More in-depth, the downstream 

effector of ROCK, LimK domain containing kinase 1 (LIMK1), is considered be 

of importance in regulating actin and microtubule assembly in a MLCK-

independent manner (Gorovoy et al., 2005; Verin et al., 2001). Taken together, 

microtubule destabilization may serve to amplify endothelial cell contractility 

(beyond that induced by myosin-actin cross-bridging), thereby inducing a 

profound endothelial hyperpermeability (reviewed by Vadenbroucke et al., 

2008).  

3.2.3. Role of cAMP in regulating vascular permeabi lity 

The intracellular second messenger cAMP is involved in a multitude of 

biological functions, ranging from metabolism, gene expression, cell division 

and growth, cell differentiation and apoptosis, as well as secretion and 
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neurotransmission. So diverse essential physiological processes, such as 

learning and memory, contractility and relaxation of the heart, and fluid 

homeostasis in the gut and kidney are regulated by cAMP. Cyclic AMP 

mediated signaling is also involved in pathological conditions, such as diabetes 

mellitus, heart failure, and cancer (reviewed by Cheng et al., 2008).  

 

Binding of a ligand to a GPCR at the cell surface transduces the extracellular 

signal across the cell membrane via stimulatory or inhibitory heterotrimeric G-

proteins, interacting with the membrane-bound adenylate cyclase (AC), and 

regulates intracellular cAMP production. In eukaryotic cells, cAMP mediates its 

biological function via two ubiquitously expressed intracellular cAMP receptors, 

the classic protein kinase A (PKA) as well as the recently discovered exchange 

protein directly activated by cAMP (Epac). However, it is believed that cAMP 

mediates its biological function in mammalian cells predominantly via PKA. In 

addition cyclic nucleotide-gated ion channels (CNGs) are directly regulated by 

cAMP in photoreceptor cells, olfactory sensory neurons, and cardiac sinoatrial 

node cells (Zufall et al., 1997; Cheng et al., 2008).   

 

A large number of studies extensively document that stimulation of cAMP 

signaling stabilizes endothelial barrier function (Stelzner et al., 1989). By using 

tool compounds, such as forskolin (FSK), an activator of membrane associated 

adenylat cyclases, or 8-Br-cAMP, a cAMP analogous, the effects of cAMP on 

vascular contact integrity are demonstrated (reviewed by Mehta & Malik, 2006; 

Aslam et al., 2010; Yuan, 2002). Other cAMP increasing receptor agonists, 

such as prostacyclins or prostaglandins, also attenuate inflammatory stimuli-

induced endothelial hyperpermeability (Farmer et al., 2001). Interestingly, also 

the glycocalyx of endothelial cells contributes to cAMP-mediated stabilization of 

endothelial barrier function in intact microvessels (Huxley et al., 1997; Huxley & 

Williams, 2000).  

 

The signaling of cAMP/PKA is assumed to stabilize endothelial barriers due to 

an inactivation of the contractile machinery and a decrease of phosphorylation 

of MLC. Besides the initial identified action to directly inactivate MLCK, 

cAMP/PKA is also shown to induce site-specific MLC phosphatase activation 
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(Bindewald et al., 2004). Moreover, PKA is shown to inhibit RhoA activation via 

phosphorylation of Rho-GDP dissociation inhibitor, a negative regulator of Rho, 

and thus protects the endothelial barrier against Rho-dependent 

hyperpermeability (Qiao et al., 2003). In addition, PKA can also directly inhibit 

RhoA activity through direct phosphorylation of RhoA (Dong et al., 1998; Lang 

et al., 1996). Beside its effect on the contractile apparatus, cAMP dependent 

PKA activity is also involved in cytoskeleton rearrangement and microtubule 

assembly in endothelial cells (Liu et al., 2001; Birukova et al., 2004a).  

 

Upon binding to cAMP, Epac, activates the small GTPases Rap1 and Rap2, 

which are involved in diverse cAMP-mediated biological functions and 

pathologies, ranging from integrin-mediated cell adhesion, cadherin-mediated 

cell junction formation, exocytosis and secretion, cell differentiation and 

proliferation, phagocytosis, gene expression, apoptosis, as well as cardiac 

hypertrophy (reviewed by Cheng et al., 2008). Studies using human umbilical 

vein endothelial cells (HUVECs) show that Epac can induce redistribution of 

junctional molecules to cell-cell contacts and increase cortical actin, contributing 

to stabilization of endothelial barrier function. This effect of Epac is mediated by 

activation of Rap1, which is enriched at endothelial cell-cell contacts (Cullere et 

al., 2005; Kooistra et al., 2005; Fukuhara et al., 2005). Activation of Epac can 

suppress Rho GTPase activation and thus antagonize thrombin-induced 

hyperpermeability (Cullere et al., 2005). Cyclic AMP strengthens VE-cadherin 

mediated cell-cell junction in an Epac-Rap1 dependent manner thus supporting 

endothelial barrier function (Kooistra et al., 2005; Fukuhara et al., 2005). In rat 

mesentery, Epac/Rap1 pathway attenuates the platelet-activating factor (PAF)-

induced microvascular hyperpermeability as measured by hydraulic 

conductivity, and prevents the PAF-induced rearrangement of VE-cadherin 

(Adamson et al., 2008). These results suggest an important role of Epac/Rap1 

signaling in maintaining endothelial barrier function. Moreover, Mei et al. 

showed that Epac promotes microtubule growth in a Rap1-independent manner 

(Mei & Cheng, 2005). Epac activation is observed to reverse microtubule-

dependent vascular leakage induced by tumor necrosis factor-α (TNFα) and 

transforming growth factor-β (TGFβ) (Mei & Cheng, 2005). These studies 

suggest a two-leg strategy of Epac1 to regulate endothelial barrier function: a 
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Rap1-depedent regulation of cortical actin and VE-cadherin mediated cell-cell 

contacts, as well as a Rap-independent regulation of microtubules (Sehrawat et 

al., 2008). 

3.3. Transendothelial migration of leukocytes 

An important aspect of the inflammatory process is the translocation of 

leukocytes from blood stream to tissue. Transendothelial migration (TEM) of 

leukocytes is elemental in both adaptive and innate immune reaction and is of 

importance in routine immune surveillance and homing (Ley et al., 2007; 

Vestweber et al., 2008). Following stimulation in response to inflammation, 

immune cells, such as neutrophils, monocytes, and antigen-experienced 

lymphocytes, migrate across the vascular wall into lymphoid organs and 

infected tissues. However, excessive translocation of leukocytes can aggravate 

or even initiate a pathological process, such as atherosclerosis, multiple 

sclerosis, rheumatoid arthritis and acute lung injury (Hansson et al., 2006; 

Mattay & Zemans, 2011; Frohman et al., 2006).  

 

Transmigration of leukocytes occurs in a sequential set of four phases which 

are illustrated below in Figure 5 . Each single step is required to initiate 

signaling that facilitates progression to the next stage. The key element of this 

process is the interaction between leukocytes and endothelium which is 

facilitated by adhesion proteins from both endothelial cells and leukocytes as 

well as by direct signal exchange via adhesion proteins and cytokines (Panés & 

Granger, 1998).  
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Figure 5 Schematic diagram of leukocyte adhesion an d transendothelial migration ( Yuan et al., 

2012) 

In response to inflammatory stimuli, leukocytes initially weekly adhere on the endothelial cells, 

rolling along the vascular endothelial wall through transient selectin-mediated interactions. The 

activation stage allows the up-regulation of adhesion receptors expressed on the cell surfaces 

of both endothelial cells and leukocytes. This is required to initiate the firm adhesion of 

leukocytes to endothelium through binding intergrins on leukocytes to ICAM-1 and VCAM-1 on 

endothelial cells. Subsequently, leukocytes cross the endothelium and exit the bloodstream 

(transmigration or diapedesis). 

 

 

Rolling adhesion step 

Rolling adhesion occurs when leukocytes are first captured from the 

bloodstream, and loosely tethered to the endothelial cells lining blood vessel 

wall. This first transient adhesion of rolling leukocytes is mediated by E-, L-, and 

P-selectins, which bind to sialyzed glykoligand of glykoproteins (Barreiro et al., 

2004). While L-selectin is expressed on leukocytes, E- and P-selectin are 

expressed on the apical sites of activated endothelial cells (Vestweber & 

Blanks, 1999). Upon binding to selectins, leukocytes slow down and roll on the 

surface of the endothelium, allowing exposure to a local environment and 

initiating the activation step.  
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Activation step 

In this stage, β1- and β2-integrins take over the function from selectins. While 

leukocytes initiate to up-regulate the expression of integrins upon activation of 

G-protein coupled chemokine receptors, endothelial cells increase expression 

of immunoglobulin family proteins, such as intercellular adhesion molecule 

(ICAM-1, ICAM-2, ICAM-3), vascular adhesion molecule (VCAM)-1 and 

MAdCAM-1  (Ebnet & Vestweber, 1999). All these processes result in 

deformation of leukocytes morphology and facilitating transmigration.  

 

Firm adhesion step 

In the next step, strong adhesion of leukocytes to the surface of endothelial 

cells is mediated through the interaction of Ig-family adhesion molecules on 

endothelial cells and integrins on leukocytes, including ICAM-1 binding to LFA-1 

(CD11a/CD18; αLβ2), MAC-1 (CD11b/CD18; αMβ2), and p150,95 (αXβ2), as well 

as VCAM-1 binding to αDβ2 (reviewed by Yuan et al., 2012). In vitro-studies 

using HUVECs show that the firm adhesion of leukocytes on endothelial cells 

forms transmigratory cups or docking structures, containing microvilli around the 

attached leukocytes which are composed of high levels of ICAM-1, VCAM-1 

and LFA-1 (Carman & Springer, 2004). ICAM-1 is considered to be predominant 

in this interaction. Furthermore, cross-linking of ICAM-1 causes the activation of 

Rho, PLCγ, PKC and Src, as well as the phosphorylation of cortactin 

(Vestweber, 2007). 

 

Diapedesis step 

The final step is the diapedesis, in which leukocytes transmigrate through 

endothelial barrier, basal membrane, and the pericyte layer, and thus enter into 

inflammatory sides of infected tissue along a cytokine gradient (Springer, 1994). 

The mechanisms in this process are largely unknown, and have been intensely 

investigated in the recent years (Vestweber, 2007). The route by which 

leukocytes transmigrate through the endothelium can be broken down into two 

distinct modes: transcellular and paracellular. The transcellular route occurs 

when a leukocyte transmigrates directly through the body of a single endothelial 

cell, probably via the transient formation of a pore. The factors for the 

preference of paracellular or transcellular route are still largely unknown. For 
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leukocytes, both paracellular and transcellular routes are observed, although 

the paracellular route is considered as the most prevalent mechanism in vitro 

(Carman & Springer, 2004). Moreover, in regions where specific matrix proteins 

are less expressed, neutrophils prefer the transcellular route to penetrate the 

vascular basement membrane in vivo (Wang et al., 2006).  

 

Linking transmembrane junctional proteins to the actin cytoskeleton dynamically 

regulates endothelial junctions during transendothelial migration of leukocytes. 

The actin-myosin based generation of contractile force promotes the cell shape 

changes and junctional breakdown necessary for transendothelial migration of 

leukocytes. While pre-treating endothelial cells with specific MLCK inhibitors 

significantly reduces neutrophil transmigration, the adhesion of neutrophils to 

endothelial monolayer directly increases MLC phosphorylation (Garcia et al., 

1998; Saito et al., 1998; Hixenbaugh et al., 1997). It is believed that acto-

myosin based endothelial contractility facilitates the actual migration of 

leukocytes across the endothelium (Wittchen, 2009). 

 

3.4. Aims of the study 

In summary the extensive body of evidence from literature supports the concept 

that ADM has a strong protective potency during inflammatory processes which 

might be mediated by modulation of the endothelial barrier function with respect 

to transition of fluid and cells of the immune defense. Notably, the potential 

translation of this concept into clinical trials is supported by the recent positive 

opinion of the Committee for Orphan Medicinal Products of the European 

Medicines Agency. On the 9th June 2010, the development of ADM as an 

orphan medicinal product (EU/3/10/744) was granted by the European 

Commission to Prof Dr. Stefan Hippenstiel (Charité, Berlin, Germany) for the 

treatment of acute lung injury (EMA/COMP/169921/2010). 

 

In endothelial cells, binding of ADM to its receptor was shown to induce 

measurable accumulation of intracellular second messenger cAMP.  The effects 

of cAMP on vascular contact integrity have been extensively demonstrated by 
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using tool compounds (reviewed by Mehta & Malik, 2006; Aslam et al., 2010; 

Yuan, 2002). However, as previous studies have shown, cAMP levels that were 

measurable at comparable efficacy were notably lower with ADM than with FSK 

(Hippenstiel et al., 2002). Therefore, it was hypothesized that beside cAMP-

dependent pathways, also cAMP-independent pathways might be involved in 

ADM mediated regulation of vascular permeability (e.g. direct effects on cell-

cell-junctions, on cytoskeleton, on ion channels, or on endothelial glycocalyx) 

(Hippenstiel et al., 2002; Szokodi et al., 1998).  

 

The main goal of the present studies was to investigate and determine the 

signal transduction mechanisms which are responsible for ADM-mediated 

improvement of endothelial barrier function with respect to transition of fluid, 

macromolecules and polymorphonuclear garnulocytes. The following main 

topics have been worked out:  

 

• Analysis of ADM-mediated effects on endothelial barrier function in response 

to inflammatory stimuli.  

• Search for evidence of cAMP-independent effects of ADM in modulation of 

endothelial barrier function - including ADM-mediated effects on endothelial 

gene expression. 

• Dissection of the cAMP signaling pathways: impacts of PKA and Epac/Rap1 

in ADM signaling on endothelial cell-cell junctions and cytoskeleton 
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4. MATERIAL AND METHODS 

4.1. Material 

4.1.1. Chemical reagents and assay kits 

Table 1  List of chemical reagents, assay kits and their pro viders 

Chemical/Reagent/Kit  Provider  

Adrenomedullin human Bachem (Weil am Rhein) 

Alexa Fluor® 555 phalloidin Invitrogen (Darmstadt) 

Aprotinin from bovine lung Merck (Darmstadt) 

Gibco® Cell Culture β-mercaptoethanol  Invitrogen (Darmstadt) 

BAPTA/AM Merck (Darmstadt) 

BCECF/AM   Invitrogen (Darmstadt) 

Benz-cAMP  Biolog (Bremen) 

Β-Mercaptoethanol Sigma Aldrich (Steinheim) 

Bond-Breaker TCEP Solution, Neutral pH  Thermo Scientific (Bonn) 

Bovine serum albumin (BSA) Sigma Aldrich (Steinheim) 

Rp- isomer (Rp-8-Br-cAMP) Biolog (Bremen) 

Casy™ blue Roche (Basel) 

Casy™ clean Roche (Basel) 

Casyton isoton solution Roche (Basel) 

Cell Freezing Medium-DMSO Serum free 1x Sigma Aldrich (Steinheim) 

C5a R&D (Wiesbaden) 

8-pCPT-2'-O-Me-cAMP or “007”) Biolog (Bremen) 

Complete EDTA-free protease inhibitor cocktail Roche (Basel) 

Cytochalasin B Sigma Aldrich (Steinheim) 

Cytochalasin D Sigma Aldrich (Steinheim) 

DAKO fluorescent mounting medium Dako Inc. (Glostrup) 

Deoxyribonuclease I, Amplification Grade Invitrogen (Darmstadt) 

Dextran fluorescein 40,000MW  Invitrogen (Darmstadt) 

Dimethyl sulfoxide (DMSO) Sigma Aldrich (Steinheim) 

Dulbecco’s Phosphate Buffered Saline Sigma Aldrich (Steinheim) 

Dulbecco`s PBS with Ca/Mg PAA laboratories (Cölbe) 

ECL™ Western Blotting Detection Reagents GE healthcare (Munich) 

EBM-2 Basal Medium 500 ml Lonza (Cologne) 

EGM-2 MV SingleQuot Kit Suppl. & Growth Factors Lonza (Cologne) 
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EGM-2 SingleQuots Lonza (Cologne) 

Ethanol Merck (Darmstadt) 

Ethylendiamintetra essig acid (EDTA) Serva (Heidelberg) 

Evans Blue E2129 - Dye content ≥75 % Sigma Aldrich (Steinheim) 

Fetal bovine serum (FBS) mycoplex PAA laboratories (Cölbe) 

Fibronctin from bovine plasma Sigma Aldrich (Steinheim) 

fMLP  Sigma Aldrich (Steinheim) 

Formamid zur Analyse EMSURE®  Merck (Darmstadt) 

Forskolin Sigma Aldrich (Steinheim) 

Gelatin solution 2% Sigma Aldrich (Steinheim) 

Glycerin Merck (Darmstadt) 

HBSS without Ca/Mg with Phenolred PAA laboratories (Cölbe) 

HBSS without Phenolred PAA laboratories (Cölbe) 

Hanks’-based cell dissociation buffer Gibco®  Invitrogen (Darmstadt) 

HEPES solution (1M, pH 6,5-7,5) Sigma Aldrich (Steinheim) 

Histamine Sigma Aldrich (Steinheim) 

Histopaque 1077 Sigma Aldrich (Steinheim) 

Histopaque 1119 Sigma Aldrich (Steinheim) 

Hoechst dye  33342 (10mg/ml) Invitrogen (Darmstadt) 

Hydrogen peroxide Serva (Heidelberg) 

IBMX  Sigma Aldrich (Steinheim) 

IL-1ß/IL-1F2 (recombinant Human) R&D (Wiesbaden) 

IL-8 (recombinant Human) Peprotech (Hamburg) 

Isofluran (Foren) Baxter (Unterschleißheim) 

Isopropanol Merck (Darmstadt) 

Leupeptin, Hemisulfate, Microbial  Merck (Darmstadt) 

L-Glutamin Gibco® Cell Culture (100x) Invitrogen (Darmstadt) 

Lipopolysaccharides from Escherichia coli  Sigma Aldrich (Steinheim) 

Magnesium chlorid Sigma Aldrich (Steinheim) 

MCDB 131 medium Invitrogen (Darmstadt) 

Medium 199 (10x) Invitrogen (Darmstadt) 

Methanol EMPLURA® Merck (Darmstadt)  

ML-9  Merck (Darmstadt) 

N6-Benzoyl-cAMP Biolog life science (Bremen) 

Nonessential amino acids (NEAA) (100x) Invitrogen (Darmstadt) 

Novex® Sharp Pre-stained Protein Standard Invitrogen (Darmstadt) 

NuPAGE® LDS Sample Buffer (4X)  Invitrogen (Darmstadt) 

NuPAGE® MES SDS Running Buffer  Invitrogen (Darmstadt) 

NuPAGE® MOPS SDS Running Buffer  Invitrogen (Darmstadt) 



MATERIAL AND METHODS   29 

Paraformaldehyde (PFA) Sigma Aldrich (Steinheim) 

8-pCPT-2´-O-Me-cAMP / ``007`` Biolog life science (Bremen) 

Penicillin / Streptomycin Gibco® Cell Culture  Invitrogen (Darmstadt) 

2-Propanol Merck (Darmstadt) 

Protein A Sepharose Sigma Aldrich (Steinheim) 

Sodium Bicarbonate Gibco® Cell Culture 7.5%,  Invitrogen (Darmstadt) 

Sodium fluoride for analysis EMSURE®  Merck (Darmstadt) 

Sodium Orthovanadate  Merck (Darmstadt) 

Sodium pyruvat Gibco® Cell Culture (100x) Invitrogen (Darmstadt) 

Stop Reagent for TMB Substrate Sigma Aldrich (Steinheim) 

Thrombin from human plasma Sigma Aldrich (Steinheim) 

TMB Liquid Substrate System Sigma Aldrich (Steinheim) 

TNFα (recombinant human) Peprotech (Hamburg) 

Triza base Sigma Aldrich (Steinheim) 

Trypsin-EDTA- solution Lonza (Cologne) 

Trypanblue solotion Sigma Aldrich (Steinheim) 

Tyrode puffer (calcium free, pH7.4) (CAFTY) PAA laboratories (Cölbe) 

Tween-20 Merck (Darmstadt) 

VEGF 165 (recombinant human) R&D (Wiesbaden) 

Triton buffer PAA laboratories (Cölbe) 

TRIzol® RNA extraction reagent Invitrogen (Darmstadt) 

Water, sterile-filtered (cell culture) Sigma Aldrich (Steinheim) 

W54011  Sigma Aldrich (Steinheim) 

Assay/Kits  Provider  

cAMP Biotrak Enzymeimmunoassay System GE healthcare (Munich) 

 BCA Protein Assay (bicinchoninic acid) Thermo Scientific (Bonn) 

ImProm-IITM Reverse Transcription System Promega (Mannheim) 

Nucleofector® kit-OLD Lonza (Cologne) 

qPCR MasterMix Plus 7.5 ml Eurogentec (Belgium) 

Rap1 activation assay kit Upstate technology (Billercia) 

RNase mini kit Qiagen (Hilden) 
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4.1.2. Antibodies 

Table 2 List of primary antibodies and their provid ers 

Antigen (reactivity)  Clone  Source  Company  

β-actin (monoclonal) Mouse  Sigma Aldrich (Steinheim) 

β-tubulin SAP.4G5 

(monoclonal) 

Mouse  Sigma Aldrich (Steinheim) 

CD11b/Mac-1 ICRF44 Mouse BD Bioscience 

(Heidelberg) 

Cortactin (p80/85) 4F11 

(monoclonal) 

Mouse  Upstate technology (Billercia) 

E-selectin (CD62E) 1.2B6 

(monoclonal) 

Mouse  Abcam (Cambridge, UK) 

ICAM-1 (CD54) MEM-111 

(monoclonal) 

Mouse  Abcam (Cambridge, UK) 

ICAM-1 (CD54) BBIG-l1 (11C81) 

(monoclonal) 

Mouse  

 

R&D systems (Wiesbaden) 

 

Phospho-MLC 2 

(Thr18/Ser19) 

Polyclonal Rabbit  Cell Signaling 

(Frankfurt) 

VCAM-1 6G9 

(monoclonal) 

Mouse  Abcam (Cambridge, UK) 

VASP (phospho Ser157) (polyclonal) Rabbit  Abcam (Cambridge, UK) 

VASP (monoclonal) Mouse  Abcam (Cambridge, UK) 

VE-cadherin (C-19)  (polyclonal) Goat  Santa Cruz (Santa Cruz) 

VE-cadherin (11D4.1) 11D4.1 

(monoclonal) 

Rat  BD Bioscience 

(Heidelberg) 

Vinculin hVIN-1 

(monoclonal) 

Mouse  Sigma Aldrich (Steinheim) 

 

Table 3 List of secondary antibodies and their prov iders 

Antibody  Company  

ECL rabbit IgG, HRP Linked Secondary Ab GE healthcare (Munich) 

Peroxidase AffiniPure Donkey Anti- Rat IgG (H+L) Jackson (West Grove, PA)   

ECL Mouse IgG, HRP-Linked Whole Ab (from sheep)  GE healthcare (Munich) 

Alexa Fluor® 488 donkey anti-goat IgG (H+L) 2 mg/mL Invitrogen (Darmstadt) 

Alexa Fluor® 488 donkey anti-mouse IgG (H+L) 2 mg/mL Invitrogen (Darmstadt) 
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4.1.3. Buffers 

Table 4 Composition of buffers 

Buffer Composition 

ACK lysis buffer 4.145 g NH4Cl 

0.5 g NaHCO3 

18.6 mg EDTA 

Add H2O 500 ml 

pH 7.3 

Lysis buffer for Co-immunoprecipitation 

(CoIP) 

20 mM Imidazol (pH=6.8) 

100 mM NaCl 

2 mM CaCl2 

1% (v/v) Triton-X-100 

0.04% (w/v) NaN3 

Lysis buffer to detect phosphorylation of MLC 20 mM Imidazol (pH=7.4) 

150 mM NaCl 

2 mM CaCl2 

1 mM Na3VO4 

1% (v/v) Triton-X-100 

0.04% (w/v) NaN3 

Migration assay medium (MAM) M199 

20% (v/v) FBS 

25 mM HEPES 

PBST PBS 

0.1% (v/v) Tween®-20 

PMN wash buffer HBSS 

10% (v/v) FBS 

25 mM HEPES 

Phosphate Buffer (pH 6.8) 46.3 ml Na2HPO4 (1M) 

53.7 ml NaH2PO4 (1M) 

Add H2O 1,000 ml 

Rap1 lysis buffer 100 mM Tris-HCl, pH 7.4 

10% (v/v) glycerol 

5 mM MgCl2 

1 M NaCl 

2% (v/v) NP40 

10 ug/ml aprotinin 

10 ug/ml leupeptin 

25 mM NaF 

1 mM sodium orthovanadate 
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TBST (10x) 80 g NaCl 

2 g KCl 

30 g Tris 

5 ml Tween 20 

Add H2O 1,000 ml 

PH 7.5 

Transfer buffer 2.42 g Tris 

11.25 g glycin 

5 ml 10% (m/v) SDS 

100 ml MeOH 

Add H2O 1,000 ml 

PH 8.3-8.5 

 

4.1.4. Materials 

Table 5 List of materials and their providers 

Mterials Company 

Amersham Hybond-P (30 cm × 3 m) GE healthcare (Munich) 

Falcon Conical Tubes (polystyrene) (15 ml, 50 ml, 200 ml) BD (Heidelberg) 

Falcon Cell Culture Flasks (75 cm2, 175 cm2) BD (Heidelberg) 

Biohit proline (25-250 µl, 5-100 µl, 50-1200 µl) Biohit (Rosbach) 

CASY cups Roche (Basel) 

Falcon Multiwell(6-well, 12-well, 24-well) BD (Heidelberg) 

Cannula (27G.3/4”) (26G.1/2”) (23G.1 1/4”) BD (Heidelberg) 

Cell cultrue dishes CELLBIND 100 mm Corning (Kaiserslautern) 

Costar Stripette Serological Pipets, (polystyrene)(5 - 50 ml) Corning (Kaiserslautern) 

Corning Cell Lifter Corning (Kaiserslautern) 

Corning Vacuum Filter/Storage Bottle System, 0.22 µm Pore  Corning (Kaiserslautern) 

Corning Tubes (polypropylene)(15 ml, 50 ml) Corning (Kaiserslautern) 

Cryo 1oC freezing container Nalgene  Nalgene (Tuntenhausen) 

CryoTube Vials 1.8 ml NUNC Thermo Scientific (Bonn) 

ECIS arrays-10 electrode array (96 well) Ibidi (Munich) 

Eppendorf- reaction tubes (0.5 ml, 1.5 ml, 2.0 ml) Eppendorf (Hamburg) 

EpT.I.P.S.  Pipettenspitzen (10 µl - 1000 µl) Eppendorf (Hamburg) 

Eppendorf Pipetten (2.5 µl - 1000 µl) Eppendorf (Hamburg) 

Glas coverslides (12 mm, round) Menzel (Braunschweig) 

Kodak BioMax XAR Film  Sigma (Steinheim) 

Membrane Nitrocellulose GE healthcare (Munich) 

Membrane PVDF GE healthcare (Munich) 
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Microscope slides 76-26 mm Menzel (Braunschweig) 

Microplates 96-well (UB, VB, FB) Greiner (Frickenhausen) 

Microtiter plates Cellstar 384-well Greiner (Frickenhausen) 

Millex GP 0.22 µm Filter Millipore (Bedford, MA) 

Neolus 20G x2 ¾’’0.9x70 mm steril Terumo (Eschborn) 

NuPAGE Novex 4-12% Bis-Tris Gel 1.0 mm, 10 well Invitrogen (Darmstadt) 

NuPAGE Novex 12% Bis-Tris Gel 1.0 mm, 10 well Invitrogen (Darmstadt) 

NuPAGE Novex 10% Bis-Tris Gel 1.0 mm, 10 well Invitrogen (Darmstadt) 

NuPAGE Novex 8% Bis-Tris Gel 1.0 mm, 10 well Invitrogen (Darmstadt) 

NuPAGE Novex 6% Bis-Tris Gel 1.0 mm, 10 well Invitrogen (Darmstadt) 

PC transwell inserts 6.5-mm-diameter, 5.0-µm pore size Corning (Kaiserslautern) 

PC transwell inserts 6.5-mm-diameter, 0.4-µm pore size Corning (Kaiserslautern) 

QIAshredder (250) Qiagen (Hilden) 

STIEFEL Biopsy punch 8 mm GSK (Bühl) 

Thick Blot paper BioRad (Munich) 

 

4.1.5. Equipments 

Table 6 List of equipments and their providers 

Equipments Company 

PRISM 7900HT sequence detection system  Applied Biosystems (Darmstadt) 

BBD 6220 Incubator Heraeus (Hanau) 

GFL water quench GFL (Burgwedel) 

CASY cell counter Roche (Basel) 

Cell QuestTM Pro (Version 5.2.1) Becton Dickinson (Heidelberg) 

Centrifuge Varifuge 3.0R Heraeus (Hanau) 

Centrifuge 5415R Eppendorf (Hamburg) 

ECIS Model 9600 Applied Biosystems (Darmstadt) 

Developer Curix 60 Agfa (Mortel-Belgien) 

FACS Calibur Becton Dickinson (Heidelberg) 

Fluorescence microscope Axioskop Carl Zeiss AG (Jena) 

GeneChip® Human Gene 1.0 ST Affymetrix (Santa Clara, CA, USA) 

Genedata Expressionist®  Genedata (Martinsried, Germany) 

iBlot Gel Transfer Device Invitrogen (Darmstadt) 

KS250 basic IKA (Staufen) 

LSM 510 meta Carl Zeiss AG (Jena) 

LSM 710 Carl Zeiss AG (Jena) 

Lumino box Hamamatsu (Japan) 

Microscope Axiovert 135 Carl Zeiss AG (Jena) 

Amaxa Nucleofector® I Device Lonza (Cologne) 
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pH meter WTW (Weilheim) 

Steril bank HeraSafe Heraeus (Hanau) 

Tecan Safire miccroplate reader  Tecan (Crailsheim) 

Thermomixer comfort (1.5 ml and 2.0 ml) Eppendorf (Hamburg) 

Trans-Blot SD Semi-Dry Transfer Cell BioRad (Munich) 

XCell SureLock™ Mini-Cell Electrophoresis System Invitrogen (Darmstadt) 



MATERIAL AND METHODS   35 

4.2. Methods 

4.2.1. Molecular biological methods 

4.2.1.1. Microarray analysis 

After 12 h of serum starvation in basal medium, HUVECs were further cultured 

in EBM-2 supplemented with 100 nM ADM, 10 µM FSK or without compounds 

for 4 h and 16 h. The entire process was performed according to the Affymetrix 

instructions. Total RNA was isolated from the cells using TRIzol® RNA 

extraction reagent. Double-stranded cDNA was synthesized from total RNA, 

and in vitro-transcription was performed to produce biotinlabeled cRNA. After 

fragmentation, the cRNA was hybridized onto a GeneChip® Human Gene 1.0 

ST Array at 45 °C with 60 rpm for 17 hours in a Hyb ridization oven. 

Normalization, filtering, and gene ontology analyses of the data were performed 

with Genedata Expressionist® software. GeneChip® Human Gene 1.0 ST Array 

consists of approximately 764,885 probe sets with a resolution number of 26 

probes per gene, covering over 28,869 genes, whereas only genes with at least 

two fold changes were considered as significant. (Microarray and computational 

analysis were performed by Dr. Stefan Golz, Bayer HealthCareAG) 

4.2.1.2. Quantitative Real-Time RT-PCR analysis 

Endothelial cells cultured in 6 well plates or fresh isolated human PMNs were 

lysed with RLT buffer. Total RNA was isolated from the cell lysate using 

RNeasy mini kit, and converted to cDNA by reverse transcription using ImProm-

IITM Reverse Transcription System. The PCR was carried out under the 

following conditions: an initial denaturation step at 95 °C for 10 min, followed by 

40 cycles at 95 °C for 15 s and 60 °C for 60 s. Qua ntitative Taq-Man analysis 

was performed using the PRISM 7900 sequence detection system. 

Normalization was performed using β-actin as internal control, and relative 

expression was calculated using the following formula: relative expression=2(15 - 

(CTprobe - CTactin)). The parameter CT is defined as the threshold cycle number at 

which the amplification plot passed a fixed threshold above baseline. The 

resulting expression is given in arbitrary units.  
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Table 7 List of primers and fluorescent probes 

CRLR (mouse) 

Primer 1 5’- GGCTTTTCCCACTCTGATGCT -3’ 

Primer 2 5’- GGCTGTACCCTTGCATGTCA -3’ 

Probe 5’- TCCGCAGTGCATCCTACACAGTG -3’ 

RAMP2 (mouse) 

Primer 1 5’- GCAGCCCACCTTCTCTGATC -3’ 

Primer 2 5’- GGAACGGGATGAGGCAGAT -3’ 

Probe 5’- AGAGGATGTGCTCCTGGCCATG -3’ 

RAMP3 (mouse) 

Primer 1 5’- ACCCCCCGGATGAAGTACTC -3’ 

Primer 2 5’- ACCACCAGGCCAGCCATAG -3’ 

Probe 5’- ATCGCGGTTCCTGTCGTGCTGACT -3’ 

β-actin (mouse) 

Primer 1 5’- ACGGCCAGGTCATCACTATTG -3’ 

Primer 2 5’- AGGAAGGCTGGAAAAGAGCC -3’ 

Probe 5’- CAACGAGCGGTTCCGATGCCC -3’ 

CRLR (human) 

Primer 1 5’- CTGATTCCATGGCGACCTG -3’ 

Primer 2 5’- CCCTGGAAGTGCATAAGGATG -3’ 

Probe 5’- AGGAAAGATTGCAGAGGAGGTATATGACTACATCATG -3’ 

RAMP2 (human) 

Primer 1 5’- GATCCACTTTGCCAACTGCTC -3’ 

Primer 2 5’- TGGCCAGGAGTACATCCTCTG -3’ 

Probe 5’- TGGTGCAGCCCACCTTCTCTGACC -3’ 

RAMP3 (human) 

Primer 1 5’- TTCTCATCCCGCTGATCGTT -3’ 

Primer 2 5’- ACACCACCAGGCCAGCC -3’ 

Probe 5’- ACCCGTCGTTCTGACTGTCGCCA -3’ 

ICAM-1 (human) 

Primer 1 5’- CCCCCCGGTATGAGATTGT -3’ 

Primer 2 5’- GCCTGCAGTGCCCATTATG -3’ 

Probe 5’- CATCACTGTGGTAGCAGCCGCA -3’ 

VCAM-1 (human) 

Primer 1 5’- AAGAGGCTGTAGCTCCCCG -3’ 

Primer 2 5’- TGACATGCTTGAGCCAGGG -3’ 

Probe 5’- ATCCTGTGGAGCAGGCAGCTCCCTA -3’ 
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E-Selectin (human) 

Primer 1 5’- TGCCTACTATGCCAGATGCCT -3’ 

Primer 2 5’- CGTCCTTGCCTGCTGGACT -3’ 

Probe 5’- ACCGCAACACCCATCACCACTTCAAT -3’ 

PECAM (human) 

Primer 1 5’- TCTCCCAGCCCAGGATTTC -3’  

Primer 2 5’- GATTCGCAACGGACTTCGAT -3’ 

Probe 5’- ATGCCCAGTTTGAGGTCATAAAAGGA -3’ 

β-actin (human) 

Forward 5’- TCCACCTTCCAGCAGATGTG -3’ 

Reverse 5’- CTAGAAGCATTTGCGGTGGAC -3’ 

Probe 5’- ATCAGCAAGCAGGAGTATGACGAGTCCG -3’ 

 

4.2.1.3. RNA interference 

SiRNAs directed against the mRNAs of cortactin (QIAGEN) were transfected 

into HUVECs by Nucleofector® I device according to manufacturer’s 

instructions. 1~1.5x106 HUVECs (Passage 2) were transfected with 3 µg siRNA 

using Nucleofector® Kit-OLD. Hs_CTTN_5 (target sequence: 5’- 

CACCAGGAGCATATCAACATA -3’) and Hs_CTTN_6 (target sequence: 5’- 

ATGCAACTTATTGTATCTGAA -3’) were used to down-regulate gene 

expression of human cortactin. The Lamin A/C siRNA (target sequence: 5’-

AACTGGACTTCCAGAAGAACA-3’) served as negative control. Efficiency of 

gene silencing was evaluated by Western blot of cortactin (1 µg/ml mouse-anti-

cortactin antibody). All experiments to detect endothelial permeability and 

leukocyte extravasation were performed 48 h after transfection. 

4.2.2. Biochemical methods 

4.2.2.1. Measurement of cyclic AMP 

Measurements of intracellular cAMP levels were performed using Amersham 

cAMP biotrack enzymeimmunoassay system according to the manufacturer`s 

instructions with minor modifications. Briefly, endothelial cells cultured in 24-well 

cell culture plate or freshly isolated PMNs were washed and stimulated at 37 ºC 

as indicated. After being stimulated, endothelial cells were washed with ice-cold 
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PBS containing Ca2+/Mg2+ and extracted in 70% (v/v) ethanol overnight at -20 

ºC. The extracts were collected in 1.5 ml Eppendorf tubes and ethanol was 

removed using vacuum centrifugation. Aliquots of the extracts and standards 

were processed for ELISA according to the manufactures instructions. 

4.2.2.2. Detection of VASP activation 

After treatment, HUVECs grown in 6-well cell culture plate were rinsed with ice-

cold PBS containing Ca2+/Mg2+, lysed with 300 µl of SDS sample buffer with 

freshly added Bond breaker TCEP solution, scraped into 1.5 ml Eppendorf 

tubes, and boiled immediately for 5 min. Extracts (20 µl) were separated on 4-

12% gradient SDS-PAGE and transferred to polyvinylidenefluoride (PVDF) 

membrane using a Trans-Blot SD Semi-Dry Transfer Cell. PVDF blots were 

then incubated in TBST for 1 h and were blocked with 5% (w/v) nonfat milk in 

TBST for further 1 h. VASP phosphorylation was detected with 1 µg/ml of rabbit 

anti-phospho Ser157-VASP antibody and total VASP was detected with 1 µg/ml 

mouse monoclonal anti-VASP antibody. After incubation with primary antibodies 

diluted in TBST at 4 ºC overnight, PVDF blots were washed with TBST (3 x 5 

min), incubated with peroxidase-conjugated secondary antibodies (goat anti-

rabbit IgG, 1:10,000 dilution; or goat anti-mouse IgG, 1:10,000 dilution) diluted 

in TBST for 1 h, and completely washed with TBST (4 x 15 min). Finally, binding 

of antibodies was visualized on Hyperfilm x-ray films using ECL detection 

system. Tubulin blots were performed as loading control. 

4.2.2.3. Detection of MLC phosphorylation 

After treatment, endothelial cells cultured in 6-well plate were washed with ice-

cold PBS containing Ca2+/Mg2+, lysed with 200 µl of lysis buffer for detection of 

tyrosine-phosphorylation, and scraped into 1.5 ml Eppendorf tubes. Lysates 

were centrifuged at 4 °C for 10 min at 13,000 rpm. Supernatants were then 

adjusted with SDS sample buffer (4x) and bond-breaker solution (20x), and 

boiled immediately for 5 min. 20 µl of Extracts were separated on 12% SDS-

PAGE and transferred to PVDF membrane. Blots were analyzed as previously 

described (4.2.2.2). However, blocking buffer was replaced by 2% (w/v) BSA 

and 200 µM Na3VO4 was added overall to TBST, to preserve tyrosine 

phosphorylation during Western blot process by inhibition of any phosphatase 
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activity. MLC phosphorylation was detected with 1 µg/ml of rabbit anti- phospho-

MLC 2 (Thr18/Ser19) antibody and vinculins were detected with mouse 

monoclonal anti-VASP antibody (1:1,000) as loading control. 

4.2.2.4. Rap1 Pull-down assay 

To test for the activation levels of the small GTPase Rap1 the Rap1 pull down 

assay (Millipore) was employed according to the manufacturer’s 

recommendations. In brief: a GST-tagged fusion protein, corresponding to 

residues 788-884 of human Ral GDS-Rap Binding Domain (RBD), expressed in 

E. Coli. and bound to glutathione-agarose (Millipore) is provided with the 

detection kit as probe for coimmunoprecipitation of GTP bound (active) Rap1.. 

RBD is a specific interaction partner of GTP-RAP1.Endothelial cells grown in 

90-mm dishes were cultured to 85-90% confluence and treated with either 

agonists or vehicle control in medium. The cells were lysed on ice in lysis buffer, 

scraped into 1.5 ml Eppendorf tubes and debris was removed by a 10 min 

centrifugation at 13,000 rpm (4 ºC). 50 µl of the supernatants were transferred 

into new 1.5 ml Eppendorf tubes and kept on ice during the assays as control of 

total Rap-1 expression in total lysates. The rest of supernatants were 

incubatede with 30 µg of Ral GDS-RBD glutathione-agarose for 1 h at 4 ºC with 

gentle agitation. Agarose beads with precipitated GTP-Rap-1 were washed 

three times with lysis buffer, lysed with 25 µl of 2x SDS sample buffer with Bond 

breaker TCEP solution and boiled immediately for 5 min. 

 

20 µl Extracts were separated on 12% gradient SDS-PAGE and transferred 

electrophoretically to PVDF membranes. Blots were analyzed as previously 

described (4.2.2.2). PVDF blots were probed in primary anti-Rap1 antibodies 

(1:500 dilution in TBST) at 4 ºC overnight, and incubated with peroxidase-

conjugated secondary antibodies (goat anti-rabbit IgG, 1:10,000 dilution in 

TBST) for 1 h at room temperature, followed by ECL detection system. Total 

Rap1 iwas determined in cell lysates without previous precipitation.  

4.2.2.5. Co-immunoprecipitation of VE-PTP/VE-cadherin 

bEnd.5 cells were washed and starved with MCDB 131 medium containing 1% 

(w/v) BSA for 2 h, followed by incubation with ADM (100 nM, 15 min) and 
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subsequently stimulation with VEGF (100 ng/ml, 30 min) in MCDB 131 medium 

with 1% (w/v) BSA. After stimulation, bEnd.5 cells were washed twice with ice-

cold PBS to remove the stimulation medium. For docking of lymphocytes, 

bEnd.5s cells were pre-stimulated with TNFα (5 nM) overnight. On the day of 

assay, 3x107 ovalbumin-specific antigen-stimulated T cells were allowed to bind 

to the bEnd.5 cells in a 90 mm-falcon cell culture dish for 10 min. Then, T-cells 

were carefully and completely removed by washing the cells with warm PBS, to 

avoid the degradation of VE-cadherin by lymphocyte proteases.  

 

After stimulation with VEGF or docking of T-lymphocytes, bEnd.5 cells were 

lysed on ice in 500 µl lysis buffer for co-immunoprecipitations (CoIP) and 

scraped into 1.5 ml Eppendorf tubes. Lysates were centrifuged at 4 °C for 30 

min at 13,000 rpm. 50 µl Aliquots were set aside on ice for direct blot 

analysis.Supernatants for CoIP were incubated for 2 h at 4 °C with 30 µl protein 

A-sepharose loaded with the 3 µg VE-PTPc antibodies (provided by Prof. 

Dietmar Vestweber). Immunocomplexes were washed five times with lysis 

buffer, subsequently dissolved in 25 µl SDS sample buffer (2x), and boiled 

immediately for 5 min. Total cell lysates were separated by electrophoresis on 

8% SDS-PAGE, whereas immunocomplexes were separated on 6% SDS-

PAGE. After being transferred to nitrocellulose membranes, blots were 

analyzed as previously described (4.2.2.2). Nitrocellulose blots were probed in 1 

µg/ml primary anti-VE-cadherin (11D4) antibody at 4 °C overnight and 

incubated with peroxidase-conjugated secondary [donkey anti-rat antibodies 

(1:10,000)] for 1 h at room temperature. After washing with TBST, 

chemiluminescence signals were detected by use of ECL-detection system. 

After detection of VE-cadherin, blots were further used to detect VE-PTP. The 

same blots were washed with TBST for 1 h, blocked with 5% (w/v) nonfat milk 

for additional 1 h, and probed with anti-VE-PTPc antibody (0.5 µg/ml) for 1 h at 

room temperature, followed by incubation in peroxidase conjugated anti-rabbit 

antibody (1:10,000) for further 1 h. Chemiluminescence signals for VE-PTP 

were recorded on Hyperfilm x-ray films using ECL detection system.  
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4.2.2.6. Immnuofluorescence staining 

HUVECs were cultured on fibronectin-coated, 12-mm-diameter glass cover 

slides bathed in full medium. After the HUVECs reached confluence, endothelial 

monolayers were treated with the agonist or vehicle, fixed and permeabilized 

with ice-cold 100% (v/v) ethanol for 10 minutes at -20 ºC and were then 

incubated for 60 min in PBS containing 5% (w/v) BSA. Thereafter, the cover 

slides were immunolabeled for 60 min at room temperature with 5 µg/ml goat 

anti-VE-cadherin (C19) antibody or 10 µg/ml monoclonal anti-cortactin antibody. 

After rinsing twice with PBST and three times with PBS, binding of primary 

antibodies was visualized by incubation with Alexa-488-conjugated donkey anti-

goat antibody (for VE-cadherin; 1:1,000) or Alexa-488-conjugated donkey anti-

mouse antibody (for cortactin; 1:1,000) for 60 min at room temperature. The F-

actin cytoskeleton was visualized by incubating cover slides with Alexa-555-

conjugated phalloidin. The cover slides were then washed again twice with 

PBST and three times with PBS and covered with DAKO mounting medium. 

Prepared cover slides were analyzed using a confocal laser-scanning 

microscope LSM 710. 

4.2.3. Cell culture methods 

4.2.3.1. Cell culture condition 

bEnd.5 

The mouse endothelioma cell lines bEnd.5 cells were kindly provided by Prof. 

Dietmar Vestweber (MPI Münster, Germany). The bEnd.5 cells were cultivated 

at 37 °C and 10% CO 2 in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% (v/v) inactivated fetal calf serum (FCS), 2 mM L-

glutamine, 1% (v/v) sodium pyruvate, 1% (v/v) penicillin/streptomycin, 1% (v/v) 

NEAA and 0.1% (v/v) β-mercaptoethanol. Cells were passaged 1:4 every 14 

days in 90 mm falcon cell culture dishes. 

CHO-ADM1-reporter cells 

CHO-ADM1-reporter cells were generated and kindly provided by Dr. Frank 

Wunder (Bayer Healthcare, Wuppertal, Germany). Cells were cultured as 
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previously descript (Wunder et al., 2008) at 37 °C and 5% CO 2 in DMEM/NUT 

mix F-12 with L-glutamine, supplemented with 10% (v/v) inactivated FCS, 1 mM 

sodium pyruvate, 0.9 mM sodium bicarbonate, 50 U/ml penicillin, 50 µg/ml 

streptomycin, 2.5 µg/ml amphotericin B, 0.6 mg/ml hygromycin B, and 0.25 

mg/ml zeocin. In addition, 1 mg/ml G-418 was added to the cell culture medium 

used for the ADM1 receptor cell lines. Cells were passaged using enzyme-

free/Hanks’-based cell dissociation buffer.  

CREB-reporter cells 

Cells were generated and kindly provided by Dr. Frank Wunder (Bayer 

Healthcare, Wuppertal, Germany). Transfected CHO cells were cultured at 37 

°C and 5% CO 2 in DMEM/NUT mix F-12, supplemented with 10% (v/v) 

inactivated FCS, 2% (v/v) sodium pyruvate, 2% (v/v) sodium bicarbonate, 1% 

(v/v) penicillin/streptomycin, 1% (v/v) HEPES, and 2% (v/v) Glutamin. Cells 

were passaged using 0.05% trypsin-EDTA.  

Human umbilical vein endothelial cells (HUVECs) 

HUVES were purchased from Lonza Inc. and propagated in EBM-2 basal 

medium supplemented with EGM-2 Single Kit containing 2% fetal bovine serum 

(FBS), hFGF-B, VEGF, R3-IGF, ascorbic acid, hEGF, GA-1000, heparin, and 

hydrocortisone at 37 ºC in a humidified atmosphere of 5% CO2. Confluent 

cultures of primary endothelial cells were detached with 0.05% trypsin-EDTA 

and seeded on 90-mm cell-culture CELLBIND dishes at 1:4 to confluence. 

Experiments were performed using confluent endothelial cell monolayer at 

passage 1-4. 

Human lung microvessel endothelial cells (HLMECs) 

HLMECs were obtained from Lonza Inc., cultured according to the 

manufacturer`s recommendations and used for experiments at passage 1-4. 

Cells were cultured in EBM-2 basal medium supplemented with EGM-2 MV 

SingleQuot Kit containing 5% FBS, hFGF-B, VEGF, R3-IGF, ascorbic acid, 

hEGF, GA-1000, heparin, and hydrocortisone at 37 ºC in a humidified 

atmosphere of 5% CO2. Cells were passaged with 0.05% trypsin-EDTA 1:4 in 
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90 mm Cellbind corning cell culture dishes. Confluent endothelial cell monolayer 

at passage 1-4 was used for our experiments. 

OTII-Ova1-T-cells 

OTII-Ova 1 T-cells with ovalbumin specific T-cell receptors were isolated from 

6-8 week old OTII mice and were kindly provided by Prof. Dietmar Vestweber 

(MPI Münster, Germany).  T-cells were restimulated at 37 °C and 10% CO 2 in 

RPMI medium supplemented with 10% (v/v) T-cell FCS, 4 mM L-glutamine, 1% 

(v/v) sodium pyruvate, 1% (v/v) penicillin/streptomycin, 1% (v/v) NEAA, 0.1% 

(v/v) β-mercaptoethanol, and 1% (v/v) IL-2 supernatant. 1~1.5x106 T-cells were 

cultured for 2 days in a 90 mm-falcon cell culture dishes. 

4.2.3.2. Aequorin luminescence measurements 

Luminescence measurements were performed on opaque 384-well microtiter 

plates as previously describt with minor modification (Wunder et al., 2008). For 

the assays, 2,500 cells/well cultured for 24 h and were then loaded for 3 h with 

0.6 µg/ml coelenterazine in Ca2+-free Tyrode solution (CAFTY) at 37 °C and 5% 

CO2. To prevent cAMP degradation by endogenous phosphodiesterases 

(PDEs), cells were pre-incubated with 3-Isobutyl-1-methylxanthine (IBMX) (200 

µM) for 30 min. Afterwards, compounds were added for 6 min in CAFTY 

containing 0.1% bovine serum albumin. Immediately before adding Ca2+ ions 

(final concentration 3 mM), measurement of the aequorin luminescence was 

started using a luminometer. Luminescence was monitored continuously for 60 

s. 

4.2.3.3. CREB phosphorylation in luciferase-transfected CHO cells 

Detection of CREB phosphorylation was performed on opaque 384-well 

microtiter plates using Luceferase-transfected CHO cells. 10,000 CHO-cells 

were cultured for 24 h in 25 µl medium on 384-well microtiter plates at 37 °C 

and 5% CO2. For the assays, cells were incubated with 10 µl compounds for 4 h 

at 37 °C and 5% CO 2, followed by the addition of 35 µl luciferase buffer 

containing triton. Measurement of the luminescence was immediately started by 

using a luminometer. Luminescence was monitored continuously for 60 s.  
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4.2.3.4. Cell surface expression of adhesion molecules 

Cell surface expression of adhesion proteins (ICAM-1, VCAM-1, and E-selectin) 

by HUVECs was quantified by use of cell surface ELISA. HUVECs were grown 

to subconfluence (~80%) in 96-well plates coated with 0.01% (v/v) fibronectin. 

After overnight pre-incubation with TNFα (5 nM), indicated concentrations of 

compounds were added to HUVECs for 30 min. Subsequently, the cells were 

washed with PBS (Ca2+/Mg2+) and fixed with 4% paraformaldehyde (PFA) for 30 

min at 4 ºC, followed by the addition of 3% (v/v) nonfat milk in PBS for 1 h at 

room temperature to reduce nonspecific binding. Following washes with PBS, 

HUVECs were incubated with primary monoclonal antibody overnight at 4 ºC 

[ICAM-1 antibody (clone: MEM 111) 1:500; VCAM-1 antibody (clone: 6G9) 

1:1,000; and E-selectin antibody (clone: 1.2B6) 1:3,000]. On the next day, the 

cells were washed with PBS and incubated with peroxidase-conjugated goat 

anti-mouse secondary antibody (1:500) for 1 h. After being completely washed 

with PBS, the cells were exposed to the TMB substrate solution, followed by 

addition of TMB stop solution. The absorbance at 490 nm was measured by use 

of a Tecan microplate reader.  

4.2.3.5. Measurement of transendothelial electrical resistance (TEER) 

Measurement of transendothelial electrical resistance (TEER) across confluent 

endothelial cells was performed using the electrical cell-substrate impedance 

sensing system (ECIS). Confluent cultures of primary endothelial cells were 

detached with 0.05% trypsin-EDTA, resuspended in fresh medium and 3x104 

cells in 300 µl medium were seeded per ECIS well coated with 0.25% (v/v) 

gelatine. Cells were cultured for 24 h or 48 h to reach the confluence before the 

assay. For each assay, one group of wells without seeded endothelial cells was 

used to control the function of electrical arrays during the experimentation, while 

one group with seeded endothelial cells without any treatment was considered 

as control for the monolayer. Relative TEER in % was presented as the ratio of 

TEER measured at a given time point set to the middle value of TEER in the 

same group at the beginning time point of the experiment. Area under the curve 

(AUC) was calculated to quantify this assay by using a baseline at 100%. AUC 
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above the baseline was considered as positive value, whereas AUC under the 

baseline was considered as negative value. 

4.2.3.6. Detection of paracellular macromolecular permeability 

To determine paracellular permeability, 4x104 HUVECs were seeded per 

Transwell® filter (6.5-mm-diameter, 0.4-µm pore size), coated with 0.01% (v/v) 

bovine fibronectin. After 48 h incubation HUVECs reached confluence and were 

used for permeability assay on the third day after plating. Macromolecular 

permeability was analyzed with 0.25 mg/ml FITC-dextran (40 kDa). 50 µl FITC-

dextran was added to the upper compartment of Transwell® filter. 30 min later, 

100 µl aliquot was taken from the lower compartment for fluorescence 

measurement as the baseline value of the assay and 100 µl fresh medium was 

added immediately. 50 µl Vehicle or compounds as indicated were dissolved in 

FITC-dextran and added to the upper compartment. Every 30 min, fluorescence 

of a 100 µl aliquot from the lower compartment was measured and 100 µl fresh 

medium was refilled immediately during the whole assay. For the quantitative 

analysis of ADM and FSK, AUC was calculated. Area above X-axis and under 

the curve with relative FITC-intensity, as referred to to the mean value of the 

same group at the beginning time point of the experiment, was calculated as 

AUC. 

4.2.3.7. Isolation of human neutrophils 

Human polymorphonuclear neutrophils (PMNs) were isolated by Histopaque 

density gradients using the manufacturer’s protocols with slight modification. 

First, 4 ml Histopaque-1077 was added to a 15 ml polypropylene centrifuge 

tube, after which 4 ml Histopaque-1119 was carefully added under the 

Histopaque-1077. 5 ml venous EDTA-coated blood samples were then carefully 

added to the upper gradient and centrifuged at 700x g for 30 min without brake 

at room temperature. After centrifugation, the neutrophils were located at the 

interface of the Histopaque-1077 and Histopaque-1119. The neutrophils were 

then transferred to a tube containing 30 ml PMN wash buffer and were washed 

twice by centrifugation at 400 x g for 10 min. Contaminating red blood cells 

were lysed by adding 5 ml ACK buffer for 4 min. Finally, neutrophils were 
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resuspended in migration assay medium (MAM) at a concentration of 1x107 

PMN/ml and were kept at room temperature until used in the experiments. 

4.2.3.8. In vitro-transendothelial migration assay (TEM) 

Quantitative leukocyte transmigration assay was performed using HUVECs 

plated at confluent density (2x104 cell/well) on Transwell® filter inserts (6.5-mm-

diameter, 5.0 µm pore size), coated with 0.01% (v/v) bovine fibronectin. After 2 

days, HUVECs reached confluence and were activated with 5nM TNFα 

overnight. As indicated, HUVECs or human PMNs were pre-treated with 

vehicle, compounds or antibodies for 30 min, then medium was removed and 

cells were washed three times to ensure that test compounds were largely 

absent during the incubation with leukocytes. 500,000 Human PMNs were 

added to the top Transwell® filter and were bathed in 600 µl MAM. 

Transmigration of PMNs across HUVEC monolayers was allowed for 60 min in 

MAM or 30 min in IL-8 stimulated MAM in a humidified incubator (37 ºC, 5% 

CO2). After the transmigration, 500 µl cell-suspension from the bottom well was 

collected and transmigrated PMNs were counted using a CASY cell counter 

system. 

4.2.3.9. Adhesion assay 

HUVECs were cultured on 96-well plates to confluence and pre-stimulated with 

5 nM TNFα overnight. On the day of assay, HUVECs were washed twice with 

warm medium and treated with compounds for 30 min. Human PMNs were 

freshly isolated as previously described (4.2.3.7) and incubated in BCECF 

solution for 10 min at room temperature. After being labeled with BCECF, 

neutrophils were added to HUVEC monolayers and coincubated for 30 min at 

37 °C. Fluoresce intensity of the total applied cel ls was read using a Tecan 

plate reader. After being washed with medium (once, twice, and three times), 

the fluorescence intensity was measured after each wash. Relative 

fluorescence intensity was set to the fluorescence of total applied cells.  

4.2.3.10. Myeloperoxidase (MPO) activation assay 

Human PMNs were freshly isolated from healthy volunteers as previously in 

4.2.3.7 described. 2.5x104 PMNs in HBSS without Phenolred and 0.1% (v/v) 
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gelatine were pre-incubated with cytochalsin B (10 µg/ml) for 10 min at 37 ºC. 

The cells were then incubated with 10 µl PBS or increasing doses of 

compounds (ADM or FSK) for 10 min at 37 ºC, followed by further incubation 

with 10 µl C5a (10 nM) or fMLP (3 nM) for 10 min at 37 ºC. For the experiments 

to detect dose-response curves of C5a or fMLP, the cells were incubated with 

increasing doses of C5a (30 pM-30 nM) or fMLP (10 pM-30 µM) for further 10 

min at 37 ºC. Finally, 30 µl of phosphate buffer (0.1 M, pH 6.8) were added to 

each well, followed by 60 µl of TMB substrate reagent for 20 min at room 

temperature. The reaction was stopped using 60 µl TMB stop solution. 

Absorbance was measured at 450 nm in a Tecan plate reader. Absorbance is 

an indicator for the level of released MPO. 

4.2.3.11. Fluorescence activated cell sorting (FACS) analysis 

PMNs (2x106) were incubated with vehicle and increasing doses of ADM (1 nM-

1 µM) for 30 min at 37 °C in MAM buffer, followed b y stimulation with 100 nM 

fMLP for further 30 min. Cells were then washed and incubated with 

phycoerythrin (PE)-labeled anti-CD11b monoclonal antibody or isotype control 

for 45 min on ice. Subsequently the neutrophils were washed three times with 

PBS and fixed with 1% PFA at room temperature. The expression level of 

CD11b was detected using FACSCalibur and data were analyzed with the 

software CellQuestTM Pro 5.2.1. 

4.2.4. In vivo -experiments 

4.2.4.1. Animals 

All of the experiments conformed to the German federal animal protection law 

and were approved by the legal district authority. We used 5-6 weeks old adult 

male BALB/c mice (Harlan Nederland) and adult male 200 g -250 g Wistar rats 

(Harlan Nederland) for our study. All of the animals were housed in a standard 

room with a 12/12-hour light/dark cycle: white lights were on from 06:00 to 

18:00 hours and the night phase was from 18:00 to 06:00 hours. The laboratory 

temperature was 23 ˚C and humidity 51.5% controlled. Food and water were 

available ad libitum, except during testing. The animals were randomly assigned 

to their respective treatment groups. 
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4.2.4.2. Miles assay to determine vascular permeability 

Modified Miles assays were performed as described previously (Schnoor et al., 

2011). For mice, 100 µl Evans blue dye [1% (w/v)] and 100 µl vehicle or 

compounds (ADM, Benz-cAMP, and “007”) were intravenously administered 

through retro-orbital injection under deep anesthesia with isoflurane. 10 min 

later, 50 µl PBS and 4.5 µg/ml histamine in PBS were injected intradermally into 

the back skin that was shaved 24 h before the assay. For rats, intravenous 

injection of 1 mg/kg body weight (BW) Evans blue dye [2% (w/v)] through a 

catheter into the femoral vein was performed. Afterwards, 100 µl PBS and 2.5 

µg/ml, 5 µg/ml, 10 µg/ml, 20 µg/ml, and 40 µg/ml histamine were intradermally 

injected into the abdominal skin. 30 min later, mice and rats were sacrificed by 

an overdose of isoflurane and subsequent neck dislocation, and skin areas 

surrounding the sites of injections were excised using biopsy punch. Evans blue 

dye was extracted from the skin by incubation in formamide for 5 days at room 

temperature. Subsequently, the optic density of extracted dye was measured at 

620 nm using a spectrophotometer. The concentration of extracted dye was 

calculated via a standard curve using 0, 1.25 mg/ml, 2.5 mg/ml, 5 mg/ml, 10 

mg/ml, 20 mg/ml, 40 mg/ml, and 80 mg/ml Evans blue dyes. The ratio of 

extracted Evans blue dyes to skin sample weight was taken as a measure of 

vascular permeability. 

4.2.4.3. LPS-induced acute lung injury model 

Neutrophil recruitment into the lung was analyzed in a murine model of LPS-

induced pulmonary inflammation as previously described (Kang et al., 2001; 

Arsalane et al., 2000). Briefly, 1 mg/kg body weight (BW) of LPS in 100 µl saline 

was injected intratracheally under deep anesthesia with isoflurane and lungs 

were analyzed 48 h later. Sham animals received saline instead of LPS in the 

same manner. ADM or saline was injected subcutaneously immediately before 

and 24 h after LPS application. Mice were sacrificed with an overdose of 

isoflurane and the trachea of each mouse was intubated with a tube (PE 90) 

and bronchoalveolar lavage (BAL) fluid was collected (3x0.5 ml saline). BAL 

fluid was homogenated and the number of white blood cells (WBC) was 
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determined using Celldyn. Protein concentration was measured in the BAL fluid 

after the experiment using BCA Protein Assay Reagent. 

4.2.5. Statistical analysis 

Data are expressed as the means ± standard error of mean (SEM) or standard 

deviation (SD). The significance of differences between groups was assessed 

by the unpaired Student’s t-test if allowed or otherwise by Mann-Whitney Rank 

Sum Test. Analysis, curve-fitting and calculation of the half-maximal effective 

concentrations (EC50) were performed using GraphPad Prim software (version 

5.0; GraphPad Software Inc., San Diego, CA). Values of probability (P) < 0.05 

were considered statistically significant.  
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5. RESULTS 

5.1. Analysis of ADM receptor expression and signal ling 

ADM exerts its biological actions through binding to a heterodimeric GPCR 

complex composed of the CRLR associated with RAMP-2 or RAMP-3, which 

are essential to the receptor specificity, ligand affinity, and receptor 

desensitization. The first aim of the present studies was to characterize receptor 

expression and evaluate functional cAMP signaling of ADM in different 

endothelial cells.  

 

First of all, the expression patterns of CRLR, RAMP-2, and -3 were analyzed by 

quantitative RT-PCR in three types of endothelial cells from mouse and man 

which are widely used in endothelial cell biology research:  the murine brain 

endothelial cell line (bEnd.5), human primary umbilical vein endothelial cells 

(HUVECs) and human lung microvascular endothelial cells (HLMECs). 

Normalization was performed using β-actin as internal control, and relative 

expression was calculated as 2(15 - (CTprobe - CTactin)). The parameter CT is defined 

as the threshold cycle number at which the amplification plot passed a fixed 

threshold above baseline. The resulting expression is given in arbitrary units.  

 

As shown in Figure  6A, in bEnd.5, relative expression levels of CRLR, RAMP-

2, and -3 mRNA normalized to β-actin were equally high with approximately 

10.000 arbitrary units. The absolute CT values of CRLR, RAMP-2, and -3 in 

bEnd.5 cells were 22.3 ± 0.4, 19.8 ± 0.3, 22.0 ± 0.1, respectively (mean ± SD). 

In primary human endothelial cells, the relative expressions of CRLR and 

RAMP 2 were lower than those in bEnd.5 cells. The CT values of CRLR and 

RAMP 2 in HLMECs were 33.2 ± 1.3 and 23.8 ± 0.2; while in HUVECs 31.7 ± 

0.3 and 22.4 ± 0.1 (mean ± SD). The normalized expression levels of CRLR 

and RAMP-2 were comparable in HLMECs and HUVECs with 10 and 1,000 

arbitrary units, respectively. RAMP-3 mRNA was hardly detectable (CT=40.0). 

In HUVECs, stimulation with ADM lead to an increase of intracellular cAMP in a 
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dose-dependent manner (Figure  6B). The saturation dose was achieved at 3 

nM ADM inducing a maximal three-fold increase of cAMP levels. Because of 

their easy accessibility and their representative expression pattern of ADM 

receptor constituents for human endothelial cells and functional cAMP signaling 

after ADM stimulation, primary human umbilical endothelial cells were chosen to 

evaluate effects and signaling events of ADM in vitro.  

 

Figure 6 Analysis of ADM receptor expression and si gnaling in endothelial cells 

(A):  Expression of CRLR, RAMP-2 and -3 in different endothelial cells. Quantitative real-time 

RT-PCR analysis was performed on mouse bEnd.5 cells (white bar), human lung microvascular 

endothelial cells (HLMVECs) (black bars) and human umbilical vein endothelial cells (HUVECs) 

(striped bars) using specific oligonucleotide primers and probes.  Expression levels were 

normalized to β-actin as a house–keeping gene. (n=2, mean ± SD) (B): Evaluation of cAMP 

signaling in human endothelial cells. Intracellular cAMP accumulation was measured by use of 

a commercial ELISA. HUVECs were stimulated with different doses of ADM for 15 min and 

subjected to extraction in 70% (v/v) Ethanol overnight at -20 ºC. (n=2, mean ± SEM) 
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5.2. Effects of ADM on endothelial barrier integrit y 

Disruption of endothelial barrier contributes to tissue edema and facilitates 

leukocyte transmigration, which are hallmarks of inflammation. To evaluate the 

effects of ADM on endothelium under inflammatory conditions, two separate 

directions were explored: the regulation of endothelial permeability and the 

interference with granulocyte extravasation.  
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5.2.1. Anti-edematous effects of ADM in vitro  

Cytokines such as TNFα, as well as components of the activated coagulation 

cascade such as thrombin are important mediators of acute inflammation. 

Thrombin impairs endothelial permeability via activation of protease activated 

receptors (PAR1-3) and in concert with TNFα, leads subsequently to vascular 

leakage thereby contributing to severe organ dysfunction (Seybold et al., 2005). 

Different stimuli, such as thrombin, TNFα, histamine, VEGF, IL-1β, and LPS, 

were used to mimic inflammation in vitro. Whether ADM could antagonize 

stimuli-induced hyperpermeability was first analyzed using different in vitro-

models. 

5.2.1.1. Effects of ADM on thrombin-induced endothelial 

hyperpermeability 

Binding of thrombin to its PAR receptor activates heterotrimeric G-proteins, 

resulting in decrease of intracellular cAMP level, increase of calcium influx and 

activation of Rho-kinase, initially leading to phosphorylation of MLC and 

disrupted endothelial integrity (Garcia et al., 1995; Birukova et al., 2004b). On 

primary cultured HUVECs, two of the thrombin-responsive PARs, PAR-1 and -3, 

are expressed, of which only PAR-1 appears to be responsible for thrombin to 

affect cytoskeletal reorganization (Vouret-Craviari et al., 2002). Previous studies 

have demonstrated that pretreatment of ADM could reduce thrombin-induced 

hyperpermeability within 50 minutes using measurement of hydraulic 

conductivity (Hippenstiel et al. 2002). However, whether ADM could 

therapeutically attenuate thrombin-induced barrier dysfunction was still not 

investigated. 

 

The ECIS model and the FITC-dextran model were applied to characterize 

permeability of endothelial monolayer in vitro. Using ECIS, the transendothelial 

electrical resistance (TEER) was determined as a surrogate for the permeability 

of the endothelial cell monolayer for water and ions. Untreated HUVECs 

displayed a stable monolayer over the entire experiment (Figure 7A and B ). 

Thrombin induced a rapid decrease in TEER, which reached the peak of 36 ± 

4.5% (mean ± SD) 45 min after stimulation. But this decrease was transient, 
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and TEER returned to its original level within 3 h after thrombin addition. The 

initial peak decrease is due to the release of calcium from intracellular stores, 

whereas the plateau phase accounts for extracellular calcium influx (Sandoval 

et al., 2001). The addition of ADM as a bolus rapidly enhanced the TEER of 

resting cells to 171 ± 5.7% (mean ± SD). TEER remained stable within the time 

frame tested. Addition of thrombin after ADM pre-incubation caused a similar 

netto decrease of TEER  as without ADM pretreatment, however, the TEER 

was above the baseline value during the entire period and returned to 136 ± 

15.9%  (mean ± SD) similar to the ADM group without thrombin stimulation. 

Moreover, the decrease of TEER induced by thrombin was reverted 

immediately after ADM post-treatment and returned to 150 ± 7.4% (mean ± SD) 

which was in the same range as after ADM treatment without thrombin 

stimulation. Taken together, addition of ADM 30 min before or after thrombin 

administration antagonized and reversed thrombin-induced decrease of TEER, 

respectively.  

  

In addition to TEER measurements, paracellular permeability for 

macromolecular 40 kDa FITC-dextran through an endothelial cell monolayer 

was analyzed (Figure 7C-D ). Thrombin administration induced an increase of 

macromolecular permeability to 153 ± 27.2% (mean ± SD) after 60 min, which 

was consistent with the observations in the ECIS model. ADM pretreatment 

totally antagonized thrombin-induced hyperpermeability and even resulted in a 

less permeable monolayer as compared to the control cell monolayer during the 

entire experiment. Moreover, ADM post-treatment reversed thrombin-induced 

hyperpermeability to the levels of control monolayer. 

 

Both methods consistently revealed that thrombin rapidly caused 

hyperpermeability of EC monolayers, whereas ADM attenuated this barrier 

disruption in both a prophylactic and therapeutic manner. 
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Figure 7 Effects of ADM on thrombin-induced hyperpe rmeability using different in vitro -

models.  

(A-B):  HUVECs were seeded on 96-well ECIS microelectrode plates and TEER was 

continuously recorded. At the time points indicated by arrows, cells were treated with vehicle or 

100 nM ADM or 0.5 U/ml thrombin and TEER was measured over 6 hours. Relative TEER was 

normalized to the TEER measured at the beginning of the experiment. (C-D): Endothelial cells 

were cultured on transwell filters and paracellular permeability for 40kDa FITC-dextran was 

determined at different time points. (A and C):  Endothelial monolayer was pre-incubated with 

ADM 30 min prior to thrombin stimulation. (B and D):  ADM administration was followed 30 min 

after thrombin incubation. (n=8 for ECIS and n=4 for FITC-dextran-permeability, mean ± SEM) 
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In the next step, fluorescence microscopy was applied to investigate whether 

the observed ADM effect on barrier integrity was paralleled by an effect on 

junctional proteins and the contractile apparatus. Cellular actin was visualized 

with Alexa-555 phalloidin and no changes in regular stress fiber and cortical 

actin architecture were observed after addition of ADM to quiescent cells 

(Figure 8A and B ). Thrombin induced pronounced stress fiber formation 

followed by reduced cortical actin staining and retraction of cell mass toward the 

center (Figure 8C ). In quiescent cells, the staining for VE-cadherin around cell 

border represents a continuous straight line (Figure 8A ). This pattern was not 

changed by addition of ADM to normal cells (Figure 8B ). Thrombin stimulation 
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led to visible cellular retraction and distorted VE-cadherin linear structure with 

visibly deficient VE-cadherin staining, forming a zigzagged line with gaps 

(Figure 8C ). ADM incubation prevented the VE-cadherin distortion and gap 

formation, as well as stress fibers formation and retraction of the cell mass 

toward the center (Figure 8D ). These findings suggested that ADM enhanced 

the association of VE-cadherin with membrane structures, particularly 

peripheral cortical actin, thus stabilizing barrier integrity. 

 

Figure 8 Effect of ADM on thrombin-induced F-actin and VE-cadherin distribution.  

HUVECs were grown to confluence on fibronectin-coated glass cover slides, stained for F-actin 

(red) and VE-cadherin (green), nucleus (blue), and visualized with 100-fold magnification. Cells 

treated with vehicle (A) or 100 nM ADM (B) displayed a well-arranged cortical actin with few 

stress fibers and continuous cell-cell junctions. Stimulation with 0.5 U/ml thrombin (C) caused a 

massive increase of stress fibers, distortion of VE-cadherin and formation of intercellular gaps. 

Pretreatment of ADM prior to thrombin stimulation (D) prevented VE-cadherin distortion and gap 

formation, and reduced stress fibers. Bars = 20 µm.. 
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5.2.1.2. Effects of ADM on TNFα-induced endothelial hyperpermeability 

TNFα is reported to induce vascular hyperpermeability in vivo and in vitro via 

direct activation of endothelial actomyosin-based cytoskeleton and formation of 

paracellular gaps via phosphorylation of MLCK. In addition, TNFα upregulates 

cyclic guanosine monophosphate (cGMP) -stimulated PDE2 thus decreasing 

intracellular cAMP levels thus facilitating barrier disruption (Seybold et al., 

2005). 

  

Unlike thrombin, TNFα provoked a slow and long lasting diminishing in TEER 

levels (Figure 9A  and B). TEER gradually reached its trough at 63 ± 11.1% 

(mean ± SD) 5 h after stimulation with TNFα, and remained stable throughout 

the rest of the experiment. TEER did not recover as after thrombin stimulation. 

Addition of ADM as a bolus rapidly enhanced the TEER of resting cells to 159 ± 

50.0% (mean ± SD) and stayed stable within the time frame tested. Similar to 

the group without ADM treatment, TNFα stimulation decreased TEER by ~50% 

after ADM pre-incubation, however, the TEER decreased only to its initial 

baseline level. Moreover, the TNFα induced decrease of TEER was reverted 

immediately after ADM posttreatment and returned to its initial baseline level 

with reaching the same level as the control group without stimulation. Addition 

of ADM 30 min prior to or 5 h following TNFα administration could both 

antagonize and reverse the decrease of TEER towards the baseline level of the 

control monolayer. This effect of ADM was also observed in the FITC-dextran 

model (Figure 9C ). Addition of ADM reduced the endothelial permeability for 

FITC-dextran to 68 ± 7.2% (mean ± SD).  7 h TNFα stimulation induced a 

hyperpermeability of the endothelial monolayer to 164 ± 4.7%, whereas only to 

143 ± 9.7% (mean ± SD) after ADM pretreatment. Like under thrombin 

stimulation, ADM attenuated TNFα induced endothelial hyperpermeability in 

both, a prophylactic and therapeutic manner. 
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Figure 9 Prophylactic and therapeutic potency of AD M on TNFα stimulation in vitro .  

(A-B):  HUVECs were grown on ECIS microelectrode plates to confluence. Monolayers were 

treated with vehicle or 100 nM ADM prior to or following 1 nM TNFα stimulation. (C): HUVECs 

were seeded onto transwell filters and paracellular permeability for 40 kDa FITC-dextran was 

determined. (A and C):  Endothelial monolayer was pre-incubated with ADM 30 min prior to 

TNFα stimulation. (B):  ADM was added 7 h after TNFα incubation. (n=8 for ECIS and n=4 for 

FITC-dextran-permeability, mean ± SEM) (*p<0.05; ***p<0.0005 vs. control group; ###p<0.0005 

vs. TNFα group) 
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5.2.1.3. Effects of ADM on endothelial hyperpermeability induced by 

different stimuli (LPS, Histamine, IL-1β, and VEGF) 

Since ADM showed significant effects on stabilization of endothelial 

permeability against thrombin and TNFα stimulation, the question was raised 

whether these effects could also be transferred to other inflammatory stimuli, 

such as histamine, vascular endothelial growth factor (VEGF), 

lipopolysaccharide (LPS), and Interleukin 1β (IL-1β). 

 

Histamine, an edematogenic factor mainly released by basophilic granulocytes, 

contributes to microvascular leakage in response to the acute inflammation 

associated with trauma, burns, and allergy. Upon binding of histamine to Gq-
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coupled H1 receptor, intracellular calcium concentration is elevated, 

subsequently activating MLCK and triggering actin-myosin contraction. 

Histamine was also reported to activate MAP kinase downstream and to have 

direct effects on junctional proteins, phosphorylating and disrupting components 

of the adherence junction and tight junctions (reviewed by Kumar et al., 2009). 

In ECIS the barrier disrupting effects of histamine were less pronounced than 

after administration of thrombin. After application of saturating dose (data from 

pre-experiment not shown), the electrical resistance of a HUVEC monolayer 

rapidly dropped within 1 hour by 35 ± 9.7% (mean ± SD) and recovered 

completely to the level of control monolayer after 1 hour (Figure 10A ). 

Pretreatment with 100 nM ADM (30 min) induced an increase of TEER to 134 ± 

11.7% (mean ± SD) and attenuated the histamine evoked decrease of electrical 

resistance. However, the histamine induced drop-down by 16 ± 10.0% (mean ± 

SD) was not totally antagonized by treatment with ADM.   

 

Beside its important role as angiogenesis factor, VEGF was originally identified 

as a vascular permeability factor, causing interstitial accumulation of 

intravenously injected dyes and ascites in vivo. There is evidence from ultra-

structural studies that VEGF increases transcellular permeability, but also 

increase of paracellular permeability by promoting cellular contraction, 

influencing focal adhesion dynamics, as well as opening of cell-cell junctions 

(reviewed by Kumar et al., 2009). Similar to histamine, administration of 

saturating concentration of VEGF (100 ng/ml) induced a rapid decrease of 

electrical resistance by 23 ± 11.1% (mean ± SD) (as compared to control 

monolayer) within 1 hour (Figure 10B ). However, the effect of VEGF was not 

reversible and remained at the same level during 20 h experiment. Pretreatment 

with ADM prevented the initial VEGF-induced drop in TEER by ~10%. This 

protective effect was gradually lost over the observation interval.   

 

LPS has been identified as an important pathogenetic factor derived from the 

outer membrane of gram-negative bacteria which induces systemic 

inflammation and sepsis in mammals. Binding of LPS to Toll-like receptor 4 

(TLR4) activates the MAP kinase cascade, contributing to gene expression of 

pro-inflammatory cytokines, remodeling of endothelial cytoskeleton, as well as 
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permeability changes (reviewed by Xing & Birukova, 2010). LPS in the 

saturating dose of 300 ng/ml provoked a slow and long lasting dwindling in 

TEER levels with the trough at 85 ± 4.0% (mean ± SD) after 5 h stimulation, 

which remained stable throughout the rest of the experiment (Figure 10C ). 

Following treatment with ADM TEER was rapidly enhanced to 131 ± 8.7% and 

LPS stimulation decreased this TEER to 102 ± 5.5% (mean ± SD). Addition of 

ADM 30 min prior to LPS administration could antagonize the decrease of 

TEER towards the baseline level of the control monolayer. However, the 

amplitude of decrease in TEER was not influenced. 

 

In the similar manner to LPS, the pro-inflammatory cytokine IL-1β in saturating 

dose of 10 pM slowly and irreversibly induced a decline of TEER levels with 

maximal drop-down to 59 ± 14.3% (mean ± SD) after approximately 5 h 

stimulation (Figure 10D ). ADM pretreatment rapidly increased the TEER to 137 

± 5.6%, which was reduced to 87 ± 2.4% with the extent of 50 ± 6.9% (mean ± 

SD).  Despite stimulation with IL-1β, ADM stabilized TEER. However, the 

absolute changes of TEER following IL-1β addition were not affected by ADM.   

 

In summary the net gain in TEER which was inducible by treatment with ADM 

was not dependent on the cellular condition (i.e. resting or inflammatory 

stimulated).  Therefore it might be speculated that ADM exerts its barrier 

stabilizing effects via a signaling pathway that is independent of the pathway(s) 

addressed by the stimuli tested. 
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Figure 10 Effects of ADM on endothelial barrier dys function induced by different stimuli 

HUVECs were seeded on 96-well ECIS microelectrode plates and TEER was continuously 

recorded. At the time points indicated by the arrows, cells were pretreated with vehicle or 100 

nM ADM for 30 min, followed by different stimuli, including 4.5 µg/ml histamine (A), 100 ng/ml 

VEGF (B), 300 ng/ml LPS (C), and 10 pM IL-1β (D). Relative TEER was normalized to the 

TEER measured at the beginning of the experiment. (n=8, mean ± SEM) 
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5.2.2. Effects of ADM on leukocyte transmigration in vitro  

Transmigration of leukocytes from the bloodstream into the tissue is essential to 

the immune response that enables leukocytes to reach the site of infection and 

injury. This situation can be mimicked in vitro in a transmigration assay in which 

leukocytes are allowed to migrate through an endothelial monolayer grown on a 

filter membrane. While endothelial cells are stimulated by overnight 

pretreatment with TNFα, PMNs migrate towards the chemokine gradient of IL-8 

(Downey et al., 1995). In pre-experiments, buffy coat which contained all kinds 

of leukocytes (~40% neutrophilic granulocytes, 40% lymphocytes, 10% 

monocytes, 4% eosinophilic-, and 1% basophilic-granulocytes; data from pre-

experiment) was added to HUVEC monolayer. With >95% neutrophilic 

granulocytes (PMNs) were the predominant cell type having transmigrated the 

membraneBased on this observation, isolated PMNs were further used and 

discussed in the in vitro-leukocyte transmigration assays. 
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Because of the vital importance of leukocyte extravasation and an anti-

inflammatory role of ADM described in the literature, it was questioned whether 

ADM could affect this process. ICAM-1 is the major endothelial adhesion 

receptor relevant to firm adhesion of neutrophils to endothelial cell surfaces; 

therefore ICAM-1 antibody was used as a positive control in the assays. After 

the incubation with ICAM-1 antibody, only ~10% of PMNs transmigrated 

through TNFα- stimulated HUVEC monolayers (Figure 11A ). Also ADM 

significantly reduced PMN transmigration to 61 ± 14.1% (mean ± SD). In order 

to distinguish whether the effect of ADM was due to an effect on the endothelial 

cells or the leukocytes, in a parallel experiment PMNs were incubated with ADM 

and washed prior to transmigrating through the HUVEC monolayer. In contrast 

to its significant effect on endothelial cells, treatment of PMN with ADM or 

ICAM-1 antibody had no effect on the transmigration of leukocytes (Figure 

11B).  

 

Figure 11 Effects of ADM on TNF α-induced leukocyte transmigration  

PMNs were allowed to transmigrate toward the chemokine IL-8 through a HUVEC monolayer on 

transwell filter which was stimulated overnight by TNFα (5 nM). Either the HUVECs (A) or the 

human neutrophils (B) were treated for 30 min with vehicle, ICAM-1 antibody (60 µg/ml), or 

ADM (100 nM). In each case, the number of neutrophils migrating under control condition was 

set to 100%. (n=3, mean ± SEM) (***p<0.0005 vs. control group) 
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To more accurately comprehend any possible anti-inflammatory action of ADM 

on PMN, the expression of ADM receptors CRLR, RAMP-2, and -3 in PMNs 

were analyzed (Figure 12A ). The absolute CT value of CRLR, RAMP-2 and -3 

were 32.0 ± 0.1, 25.9 ± 0.7, 28.6 ± 0.3, respectively (mean ± SD). The relative 
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expression levels of CRLR and RAMP-2 normalized to β-actin were roughly at 

the same levels as in HUVECs, with 10 and 1000 arbitrary units, respectively. 

While RAMP-3 was hardly detectable in HUVECs, it was expressed in PMNs 

with relative expression of 100 arbitrary units. In PMNs, increasing 

concentrations of ADM (1 pM-1µM) had no effects on accumulation of 

intracellular cAMP (Figure 12B ). In this assay, FSK, known as a strong cAMP 

elevator via direct activation of adenylate cyclase (AC), was used as positive 

control. Stimulation with FSK (100 µM) significantly increased intracellular 

cAMP in PMNs. Taken the data together, despite the expression of ADM 

receptor mRNA (CRLR, RAMP-2, and -3), no functional cAMP signaling of ADM 

was detectable in PMNs. Wheter ADM receptor protein is expressed by PMNs 

could not be decided due to the unavailability of a specific and sufficiently 

sensitive antibody.  

 

Stimulated PMNs release a couple of hydrolytic and proteolytic enzymes as well 

as myeloperoxidase (MPO) from their cytoplasmic granules. MPO has a dual 

activity as peroxidase and chlorinating enzyme, generating other oxidant 

species and more particularly hypochlorous acid (HOCl), one of the most 

powerful oxidant molecules in vivo. Thus, MPO is an important component of 

the defense machinery (Franck et al., 2009). MPO release is a measure of MPO 

activation. A wide variety of stimuli (e.g. fMLP and the anaphylatoxin C5a) 

initiate the degranulation process of PMNs via specific receptor signaling 

(Patrick et al., 1996). In a modified MPO release assay (described by 

Paczkowski et al., 1999). it was examined whether ADM could affect MPO 

release from PMNs after stimulation with C5a or fMLP.  

 

C5a is a component of the complement system that causes chemotaxis and 

degranulation of PMNsAs shown in Figure 12C , human C5a dose-dependently 

increased activation of human PMNs, with the minimal dose of 3 nM. In the next 

step PMNs, stimulated with 10 nM C5a, were pre-incubated with increasing 

doses of ADM (1 nM to 1 µM) and forskolin (FSK) (100 nM to 100 µM) (Figure 

12D). W54011, a potent and highly selective C5a antagonist, was used in doses 

of 30 nM to 10 µM as positive control. While 1 µM W54011 totally antagonized 
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C5a-induced MPO release, neither ADM nor FSK showed any effects on PMN 

stimulation. 

 

The synthetic tripeptide, N-Formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP), 

mimics the effect of various bacterial cell wall-derived peptides activating PMN 

via binding to a specific GPCR and thus is widely used as a GPCR-dependent 

stimulus of the PMNs and as a chemo attractant molecule (Brazil et al., 1998; 

Sheppard et al., 2005). As shown in Figure 12E , fMLP dose-dependently 

increased activation of human PMNs, with the minimal dose of 100 pM and the 

saturation dose of 1 µM. Increasing doses of ADM (1 nM to 1 µM) and FSK 

(100 nM to 100 µM) were applied to - PMNs stimulated with 3 nM fMLP (Figure 

12F). Similarly to C5a-induced PMN activation, neither ADM nor FSK affected 

fMLP-induced activation of PMNs. A positive control was not available. 
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Figure 12 ADM Receptor expression and its effects o n MPO release from human 

neutrophils  

(A):  Quantitative real-time RT-PCR analysis was performed on freshly isolated human 

neutrophils using specific oligonucleotide primers and probes.  Expression levels of CRLR, 

RAMP-2, and -3 were normalized to β-actin. (n=2, mean ± SD) (B):  Intracellular cAMP 

accumulation was measured by use of a commercial ELISA. 5x106 Human PMNs were 

stimulated with different doses of ADM (1 pM-1 µM) and FSK (10 µM) for 15 min. Then the cells 

were subjected to extraction in 70% (v/v) ethanol overnight at -20 °C. (n=2, mean ± SD)  (C) - 

(F): To investigate the activation of human neutrophils, levels of released MPO were 

determined. (C) and (E): 2.5×104 PMNs  were incubated with increasing concentrations of C5a 

(C) or fMLP (E). (D) and (F): PMNs were incubated with increasing concentrations of test 

compounds (W-54011, ADM or FSK) for 10 min at 37 °C,  following by incubating the cells for a 

further 10 min at 37 °C with 10 nM C5a (D) or 3 nM fMLP (F). The level of released MPO was 

determined by measuring absorbance at 450 nm. (n=2, mean ± SEM)  
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In response to inflammtion, cytokines up-regulate expression of CD11b/18 on 

neutrophils and ICAM-1 on endothelial cells, promotiong adhesion and 

interaction of neutrophils with endothelium (Smith, 1993; Saito et al., 2001). In a 

static adhesion assay, different doses of ADM were tested whether they wre 

able to affect the adhesion of PMNs to HUVECs (Figure 13A-C ). None of the 

ADM doses were able to influence the adhesion of PMNs upon short term 

exposure for 30 min. In consistency with this observation, the cell surface 

expression level of CD11b on neutrophils was also not affected by ADM (Figure 

13D).  

 

Taken all these data together, prevention of TNFα-induced leukocytes 

transmigration was rather mediated by direct action of ADM on endothelial cells 

than on leukocytes. Despite the receptor mRNA expression, a significant effect 

of ADM on PMN activation and adhesion could not be established, which was 

consistent with lack of functional cAMP signaling.  
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Figure 13 Effect of ADM on cell adhesion of neutrop hils to endothelial cells  

(A):  Static cell adhesion assay was performed for human neutrophils to HUVECs. HUVECs 

were pretreated with 5 nM TNFα and incubated with increasing doses of ADM (10 pM-100 nM) 

for 30 min. BCECF-labeled human neutrophils were added to HUVEC monolayer and allowed 

for 30 min co-incubation. Fluorescence intensity was measured for the total applied PMNs and 

for each wash.  The relative fluorescence was set to the value of total applied PMNs. (n=4, 

mean ± SD) (B):  The protein expression of CD11b was measured by use of FACS. Human 

PMNs were incubated with different doses of ADM (1 pM-1 µM) for 30 min, followed by 

stimulation with fMLP (100 nM). Then the cells were subjected to PE-labeled anti-CD11b 

antibody and isotype control, and then performed for FACS analysis. Only the data with 100 nM 

ADM was shown below. 
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5.2.3. Anti-edematous effects of ADM in vivo  

The in vitro-data provided evidence that ADM stabilized the endothelial barrier 

for water, ions and macromolecules and attenuated endothelial barrier 

disruption provoked by thrombin and TNFα. Next, it was addressed whether this 

in vitro-finding could be translated to in vivo-models. A modified Miles assay 
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was performed to detect vascular permeability in the skin of rats (Figure 14A ) 

and mice (Figure 14B ) using intravenously administered Evans blue dye as 

indicator for vascular hyperpermeability. Evans blue is a highly plasma protein 

bound dye and therefore used as an indicator for protein-rich fluid extravasation 

and vascular leakage. 

 

In the rat vehicle group, intradermal administration of histamine dose-

dependently increased permeability of Evans blue dye in the skin about two-fold 

(194 ± 37.0%; mean ± SD) at 40 µg/ml, as compared to basal permeability with 

intradermal PBS application. Intravenous application of 10 µg/kg BW ADM 

reduced basal permeability by ~33% and decreased histamine-induced 

hyperpermeability by ~35%. 30 µg/kg BW and 100 µg/kg BW ADM reduced 

basal permeability by ~80% to 19 ± 6.2% and 22 ± 11.1% (mean ± SD), 

respectively, and the histamine-induced hyperpermeability was both decreased 

by ~75%. 30 µg/kg BW ADM reached the maximal effect on regulation of 

permeability and thus represented the saturation dose. Albeit on a four-fold 

lower level, histamine still caused a two-fold increase of permeability in rats, 

which was not diminished by the saturating dose of ADM.  

 

In the mouse vehicle group, intradermal administration of 4.5 µg/ml histamine 

induced a three-fold increase of permeability of Evans blue dye in the skin. 

Unlike Miles assay in rats, intravenous administration of 10 µg/kg BW ADM had 

no significant effect on vascular permeability in mice. Both 30 µg/kg BW and 

100 µg/kg BW ADM decreased basal permeability by ~50% and histamine-

induced hyperpermeablility by ~80%, which were consistent with the saturating 

doses in rats. These data were in support of the in vitro-finding that ADM 

stabilized endothelial barrier function and underscored its strong anti-

edematous potency.  
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Figure 14 Effects of ADM on histamine-induced vascu lar hyperpermeability in the skin of 

rats and mice  

Anesthetized rats (A) and mice (B) were i.v. injected with vehicle or ADM, then with Evans blue 

dye, and finally underwent intradermal injection of PBS or histamine and were sacrificed 30 min 

thereafter. The dye was extracted from skin samples and quantified. (A):  Evans blue dye was 

normalized to the sample weight. Rats were divided into four groups: control (black), ADM 10 

µg/kg BW (green), ADM 30 µg/kg BW (blue), and ADM 100 µg/kg BW (red). (Data are 

expressed as mean ± SEM, n=4~7.) (B):  Mice were divided into five groups: vehicle, 3 µg/kg 

BW, 10 µg/kg BW, 30 µg/kg BW and 100 µg/kg BW ADM followed by intradermal injections of 

PBS (black bars) and histamine (white bars). (Data were expressed as mean ± SEM, n=5~8.) 

(#p<0.05 vs. control group with PBS injection; ***p<0.0005 vs. control group with histamine 

injection) 
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5.2.4. Anti-inflammatory effects of ADM in vivo  

As the previous in vitro-data indicated the protective effects of ADM on 

endothelial permeability and granulocyte extravasation, anti-inflammatory 

effects of ADM in vivo were investigated. Intratracheal administration of LPS 

was performed in anesthetized mice as a model for acute lung injury which is 

characterized by increased permeability and granulocytes extravasation. As 

shown in Figure 15 , after 48 h, challenge with LPS dose-dependently induced 

significant lung injury as indicated by increased lung weight (A), WBC-counts 

(B), and protein content (C) in bronchoalveolar lavage (BAL) fluid as compared 

to the sham group. 0.5 mg/kg BW LPS represented the saturating dose, which 

induced ~1.5 fold increase of lung weight, ~3.5 fold increase of protein content 

and ~20 fold increase of WBC in BAL fluid. Increased protein content in BAL 

fluid and increased lung weight are regarded as markers for increased 

endothelial permeability of macromolecules and water, while increased WBC 
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counts are resulting from the interaction of endothelium with leukocytes. The 

LPS induced acute lung injury model allowed the in vivo-detection of those two 

inflammatory parameters, permeability and leukocytes extravasation. 

 

As shown in Figure 16A , 48 h after LPS challenge (1 mg/kg BW) a lung edema  

was present with increased lung weight to 170 ± 17.1% (mean ± SD), as 

compared to sham group. Treatment with ADM ameliorated the formation of 

lung edema, reducing the lung weight to 147 ± 17.8% (mean ± SD). 

Accompanied with lung edema formation, LPS challenge induced a 16 ± 5.4 

(mean ± SD) -fold increase of WBC counts in BAL fluid, which was reduced to 

12 ± 3.8 (mean ± SD) folds after ADM administration (Figure 16B ). This in vivo-

observation was consistent with the previous in vitro-finding, that ADM 

significantly prevented TNFα-induced PMN transmigration through HUVEC 

monolayers.  

 

Figure 15 Challenge of LPS induced lung edema and a ccumulation of leukocytes and 

proteins in BAL fluid 

Mice were intratracheally administrated with vehicle, 0.1 mg/kg BW, 0.5 mg/kg BW, 1 mg/kg BW 

and 3 mg/kg BW LPS. 48 hours later BAL was performed and lung injury was evaluated by 

measurement of wet lung weight (A), WBC (B) and protein (C) counts in the BAL fluid. The 

values are shown as mean ± SEM, n=4. (*p<0.05, **p<0.005, and ***p<0.0005 vs. sham group) 
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Figure 16 Anti-inflammatory effects of ADM in acute  lung injury induced by LPS 

challenge  

Mice were divided into three groups: 1) the sham group with intratracheal administration of 

saline (n=9); 2) the LPS group with intratracheal challenge of 1 mg/kg BW LPS (n=18); and 3) 

the LPS-ADM group pre-treated with ADM (100 µg/kg BW) and underwent intratracheal 

challenge with 1 mg/kg BW LPS (n=18). The severity of lung injury was evaluated regarding wet 

lung weight (A) and WBC (B) counts in the BAL fluid after 48 hours LPS administration. Data 

are shown as mean ± SEM. (***p<0.0005 vs. sham group; #p<0.05 and ###p<0.0005 vs. LPS 

group) 
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5.3. Analysis of cAMP-dependent pathway in ADM sign alling 

As shown in Figure 6  ADM caused intracellular cAMP accumulation in primary 

endothelial cells. The intracellular second messenger cAMP is known to 

stabilize endothelial barrier function via two distinct downstream mechanisms 

(Bindewald et al., 2004), on one hand via PKA activation reducing 

phosphorylation of MLC and thereby relaxing the contractile machinery (Essler 

et al., 2000), and on the other hand increasing VE-cadherin mediated cell 

adhesion via Epac/Rap1 activation (Fukuhara et al., 2005). It seems reasonable 

to hypothesize that ADM exerts its regulatory function on the endothelial barrier 

mainly through cAMP signaling. However, ADM-cAMP-independent signaling 

has also been discussed with the consideration that ADM fully exerts its barrier 

protective function at much lower cAMP levels as compared to forskolin (FSK), 

a direct activator of adenylate cyclase (AC) (Hippenstiel et al., 2002). Therefore 

additional signaling pathways were postulated. However, the precise correlation 

of induced cAMP levels and their protective effects have not been elaborated by 
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these authors. It was the aim of the following studies to precisely determine the 

lowest effective doses and pEC50 values of ADM and FSK under exactly the 

same experimental conditions with respect to reduction of endothelial 

permeability and leukocyte transmigration. Accumulation of cAMP and further 

activation of cAMP signaling pathways (activation of PKA and Epac/Rap1) were 

analyzed and correlated with their effects. 

5.3.1. Comparison of ADM and FSK effects on generat ion cAMP 

For the initial characterization of ADM and FSK-induced cAMP response, a 

CHO cell line stably expressing cAMP-gated cation channel, the ADM receptor 

(CRLR and RAMP-2), and cytosolic apoaequorin was employed. In this CHO-

ADM1-reporter system, ligand-mediated activation of Gs-coupled GPCRs 

increase cAMP levels by activation of adenylate cyclase and subsequent 

opening of the cAMP-gated cation channel, resulting in calcium influx from 

extracellular stores, which can be detected as aequorin luminescence signal. In 

addition, activation of Gq-coupled GPCR stimulates phospholipase C/IP3 

pathway which can also be detected via aequorin luminescence stimulated by 

calcium release from intracellular stores, the endoplasmic reticulum (Wunder et 

al., 2008). As shown in Figure 17A and B , stimulation of CHO-ADM1-reporter 

cell line with ADM and FSK resulted in concentration-dependent luminescence 

signals with pEC50 value of -8.1 ± 0.1 [M] and -5.6 ± 0.1 [M] (mean ± SD), 

respectively. Furthermore, 1 nM ADM and 1 µM FSK were the lowest effective 

doses able to increase luminescence signals significantly. ADM was about 4-

fold less efficacious than FSK. 
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Figure 17 Characterization of ADM and FSK in CHO-AD M1-reporter cells  

Concentration-dependent luminescence signals generated after stimulation with ADM (A) and 

FSK (B) were detected in CHO-ADM1-reporter system. Agonists were added for 6 min in 

CAFTY solution and measurements were started immediately prior to adding the final 

concentration of Ca2+ at 3 mM. (n=4, mean ± SEM) 

 

 

5.3.2. Comparision of ADM and FSK effects on cAMP a ccumulation 

In the next step, the intracellular cAMP levels which were induced by ADM and 

FSK in primary human endothelial cells, were compared (Figure 18A and B ). 

The lowest effective doses of ADM and FSK able to induce significant increase 

of cAMP were 100 pM and 100 nM, respectively. In addition, stimulation of ADM 

and FSK resulted in concentration-dependent increase of cAMP with pEC50 

value of -9.9 ± 0.3 [M] and -5.5 ± 0.6 [M] (mean ± SD), respectively. Moreover, 

FSK could induce ~40-fold increase of cAMP levels, whereas ADM induced 

only ~4-fold increase at its saturation dose. 
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Figure 18 ADM and FSK increased accumulation of int racellular cAMP  

Intracellular cAMP accumulation in HUVEC was measured using a commercial cAMP ELISA. 

The primary endothelial cells were stimulated with different doses of ADM (A) and FSK (B) for 

30 min and were subjected to incubation in 70% (v/v) ethanol overnight at -20ºC to extract 

intracellular cAMP. ∆cAMP was set as the difference to the values measured in control wells in 

each group. (n=4, mean ± SEM) (* and # vs. control group; * parametric t-test, # non-parametric 

Mann-Whitney test)(*p<0.05, **p<0.005, ***p<0.0005, #p<0.05, and ##p<0.005) 
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5.3.3. Comparision of ADM and FSK effects on permea bility 

The goal of the following studies was to correlate ADM and FSK-induced 

intracellular cAMP accumulation with their effects on permeability of HUVEC 

monolayer. In direct comparison using the ECIS methodel, ADM and FSK 

prevented thrombin induced hyperpermeability (as quantified by reduction of 

TEER) with pEC50 value of -9.6 ± 0.2 [M] and -5.6 ± 0.4 [M] (mean ± SD), 

respectively (Figure 19 ). 30 pM ADM and 30 nM FSK were the minimum doses 

to significantly reduce thrombin-induced hyperpermeability, respectively. In 

addition, FSK stimulation could induce much higher TEER after further dose 

escalation, as compared to ADM stimulation, which was consistent with the 

difference in accumulation of cAMP levels. 
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Figure 19 Comparison of ADM and FSK effects on elec trical resistance by using ECIS  

HUVECs were incubated with ADM (A) or FSK (B), and were stimulated with 0.5 U/ml thrombin. 

Measurement of TEER was performed over 4 hours. Relative TEER values were normalized to 

the time point prior to adding thrombin and the TEER-AUC was calculated to quantify the effects 

of ADM and FSK. AUC was normalized to control group. (n=8, mean ± SEM) (*p<0.05, 

**p<0.005, ***p<0.0005 vs. thrombin group) 

    

 

By using the FITC-dextran model for a further side by side comparison, both 

ADM and FSK dose-dependently reduced macromolecular permeability through 

a HUVEC monolayer with the lowest effective doses of 1 nM and 1 µM, 

respectively (Figure 20A and B ). Similar to the observation in ECIS, FSK 

stimulation could induce stronger effects on macromolecular permeability after 

further dose escalation, as compared to ADM stimulation, which might be 

explained by the accumulation of much higher cAMP levels. 
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Figure 20 Comparison of ADM and FSK effects on macr omolecular permeability  

HUVECs were stimulated with ADM (A) and FSK (B) followed by stimulation with 0.5 U/ml 

thrombin. Macromolecular permeability was measured over 4 hours. The AUC was calculated to 

quantify the effects of ADM and FSK. (n=4, mean ± SEM) (###p<0.0005 vs. control group; 

*p<0.05, **p<0.005, ***p<0.0005 vs. thrombin group) 
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5.3.4. Comparision of ADM and FSK effects on PMN ex travasation 

As shown in Figure 11 , ADM reduced granulocyte extravasation in vitro and 

protected the lungs against LPS-induced injury in terms of reduced lung edema 

and leukocytes in BAL fluid. The question is whether this anti-inflammatory 

effect results from cAMP signaling or whether additional signaling pathways are 

involved. Therefore, it was further investigated whether FSK could also affect 

granulocyte extravasation in a similar manner as ADM. Both ADM and FSK 

dose-dependently reduced transendothelial migration of leukocytes with 

effective doses of 1 nM and 1 µM, respectively (Figure 21 ). However, as 

compared to ADM, FSK caused stronger reduction of PMN transmigration after 

further dose escalation, which could be explained by a still increasing cAMP 

accumulation over this dose range, while cAMP accumulation was already 

saturated after exposure to 1 nM ADM (Figure 18 ). This data indicated the key 

role of cAMP signaling in ADM-mediated modulation of leukocyte 

transmigration. It can be speculated that the limited number of ADM receptors 

on endothelial cells is responsible for saturation of its effects at doses ≥10 nM. 
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Figure 21 Comparison of ADM and FSK effects on gran ulocyte extravasation  

HUVEC monolayers on transwell filters were stimulated overnight with TNFα (5 nM) and treated 

with different doses of ADM (A) and FSK (B) prior to adding human PMNs. PMNs were allowed 

to transmigrate toward the chemokine IL-8 through EC monolayer for 30 min. The number of 

neutrophils migrating under control condition was set to 100%. (n=6, mean ± SEM) (**p<0.005, 

and ***p<0.0005 vs. control group) 
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5.3.5. Comparision of ADM and FSK effects on PKA an d Epac/Rap1 

activation 

The aforementioned data have shown that cAMP signaling is strongly involved 

in the regulation of endothelial permeability and granulocyte extravasation and a 

sufficient explanation for the effects of ADM on endothelial permeability. 

Because of the importance of cAMP pathway in ADM signaling, the downstream 

events of cAMP signaling were further investigated, namely the activation status 

of PKA and Epac/Rap1. Activation of PKA was assessed by the 

phosphorylation status of its direct substrate vasodilator-stimulated 

phosphoprotein (VASP), which is specifically phosphorylated by PKA at Ser157 

(Butt et al., 1994). The specific PKA activator, N(6)-benzoyl-adenosine-3',5'-

cyclic monophosphate (Benz-cAMP) and the Epac/Rap1 activator, 8- (4- 

Chlorophenylthio)- 2'- O- methyladenosine- 3', 5'- cyclic monophosphate (8-

pCPT-2'-O-Me-cAMP or “007”), were employed as positive and negative 

controls in the experiment. As shown in Figure 22 , Benz-cAMP increased the 

phosphorylation of VASP, indicating the activation of PKA; in contrast, “007” 

had no influence on the phosphorylation of VASP. Both ADM and FSK dose-
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dependently increased the phosphorylation status of VASP with the lowest 

equally effective doses tested at 10 pM ADM and 10 nM FSK, respectively.  

 

Figure 22 Effects of ADM and FSK on PKA activation  

HUVECs were stimulated with ADM (A) and FSK (B) for 30 min. Upper panel: represented 

western blots of three separate experiments with independent cell preparation. Lower panel: 

densitometric analysis of western blots, in which VASP phosphorylation was normalized to total 

VASP. Relative VASP phosphorylation in control group was set to 100%. Β-tubulin was used as 

loading control. (n=3, mean ± SEM) (*p<0.05 and **p<0.005 vs. control group) 

 

   

To analyze Epac/Rap1 signaling, the activation status of Rap1-GTPase, the 

direct target of Epac (de Rooij et al., 1998), was analyzed by using Rap1-pull-

down assay. Both ADM and FSK increased the level of Rap1-GTP in a time-

dependent manner, with the maximal activation at 15 min (Figure 23 ). 
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Figure 23 Effects of ADM and FSK on activation of R ap1 signaling  

HUVECs were stimulated with 100 nM ADM (A) and 10 µM FSK (B) for 5 min, 15 min, and 30 

min. Rap1-pull-down assay was performed to detect the activation status of Epac/Rap1 

signaling.  
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5.3.6. Comparision of ADM and FSK effects on gene e xpression 

In the next study, the effects of ADM and FSK on gene expression in HUVECs 

were investigated through genome-wide microarray analysis. Gene expression 

after ADM and FSK stimulation with minimal two-fold changes was considered 

significant. Both stimulations were performed at two different time intervals: 3 

hours and 16 hours. After 3 h ADM stimulation, 36 genes were found to be 

regulated (24 up- and 12 down-regulated), while 16 h ADM stimulation caused 

only 13 gene regulations (8 up- and 5 down-regulated). The ADM effect seemed 

to be weakened after 16 hours. Similarly, 3 h FSK incubation modified 

expression of 57 genes (43 up- and 14 down-regulated), while 16 h FSK 

incubation caused changes in expression of 43 genes (26 up- and 17 down-

regulated).  

 

After 3 h stimulation, there was an overlap in the exepression of 20 genes which 

were stimulated by ADM and FSK, including PDE3A, RND1 (Rho family 

GTPase 1), MMP16 (Matrix metallopeptidase 16), CCRL1 (Chemokine C-C 

motified receptor like 1), as well as cell adherent receptors VCAM-1 and E-

selectin. After 16 h stimulation only 5 genes were induced by both agents. Also 

ICAM-1 which was reported to be down-regulated in lymphatic endothelium by 

ADM (Jin et al., 2011), was also down-regulated by FSK with a factor of 1.9-

fold, just below the limit of the exclusion criterion. Overall, both ADM and FSK 
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were shown to have similar effects and a tendency on gene regulation through 

the use of microarray analysis. An overview of regulated genes is given in 

Table 8  for 3 h incubation and in Table 9 for 16 h incubation. 

 

Table 8 Microarray analysis in HUVECs after 3 h inc ubation with ADM and FSK  

“Fold of changes” set to control group was listed. Only the gene expression after ADM and FSK 

stimulation with minimal two-fold changes was considered significant. (n.s.: not significant for 

<2.0 or >0.5 fold of changes) 

Gene Symbol  Gene description  

Fold of 

changes  

ADM 

Fold of 

changes  

FSK 

Gene regulated by ADM 

Septin14 septin 14 0.4 n.s. 

CEP170 centrosomal protein 170kDa 0.5 n.s. 

GRK5 G protein-coupled receptor kinase 5 0.5 n.s. 

GNA14 guanine nucleotide binding protein  alpha 14 0.5 n.s. 

SFRS2IP splicing factor. arginine/serine-rich 2. interacting protein 0.5 n.s. 

ITPR1 inositol 1.4.5-triphosphate receptor. type 1 0.5 n.s. 

TMF1 TATA element modulatory factor 1 0.5 n.s. 

RELB v-rel reticuloendotheliosis viral oncogene homolog B 2.0 n.s. 

TNFAIP3 tumor necrosis factor. alpha-induced protein 3 2.0 n.s. 

FLJ42220 FLJ42220 protein 2.1 n.s. 

ICAM1 intercellular adhesion molecule 1 2.1 n.s. 

CSF1 colony stimulating factor 1 (macrophage) 2.1 n.s. 

CYP1A1 cytochrome P450. family 1. subfamily A. polypeptide 1 2.2 n.s. 

TIFA TRAF-interacting protein (forkhead-associated domain) 2.2 n.s. 

CX3CL1 chemokine (C-X3-C motif) ligand 1 2.3 n.s. 

SPRY4 sprouty homolog 4 (Drosophila) 2.4 n.s. 

Gene regualted by FSK 

LOC388692 hypothetical LOC388692 n.s. 0.3 

SIK1 salt-inducible kinase 1 n.s. 0.4 

SOCS3 suppressor of cytokine signaling 3 n.s. 0.4 

DUSP10 dual specificity phosphatase 10 n.s. 0.4 

RNU4-2 RNA. U4 small nuclear 2 n.s. 0.4 

PCMTD2 protein-L-isoaspartate O-methyltransferase domain cont.2 n.s. 0.4 

RAPGEF5 Rap guanine nucleotide exchange factor (GEF) 5 n.s. 0.4 

HLA-DPB1 major histocompatibility complex. class II. DP beta 1 n.s. 0.4 

CREM cAMP responsive element modulator n.s. 0.4 
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DUSP1 dual specificity phosphatase 1 n.s. 0.5 

ZNF518A zinc finger protein 518A n.s. 0.5 

NIPBL Nipped-B homolog (Drosophila) n.s. 0.5 

MGC24103 hypothetical MGC24103 n.s. 0.5 

NBEAL1 neurobeachin-like 1 n.s. 0.5 

PRKAA2 protein kinase. AMP-activated. alpha 2 catalytic subunit n.s. 0.5 

LOC100128868 testin-related protein TRG n.s. 0.5 

CP110 CP110 protein n.s. 0.5 

SAMD9L sterile alpha motif domain containing 9-like n.s. 0.5 

PGAP1 post-GPI attachment to proteins 1 n.s. 0.5 

ITPRIP inositol 1.4.5-triphosphate receptor interacting protein n.s. 0.5 

PPAP2B phosphatidic acid phosphatase type 2B n.s. 0.5 

PDE4D phosphodiesterase 4D. cAMP-specific  n.s. 0.5 

TTC30B tetratricopeptide repeat domain 30B n.s. 0.5 

TAF4B TAF4b RNA polymerase II.  n.s. 0.5 

PSD3 pleckstrin and Sec7 domain containing 3 n.s. 0.5 

ZNF81 zinc finger protein 81 n.s. 0.5 

TBXA2R thromboxane A2 receptor n.s. 2.0 

C10orf41 chromosome 10 open reading frame 41 n.s. 2.0 

CELF5 CUGBP. Elav-like family member 5 n.s. 2.0 

NCAN neurocan n.s. 2.0 

CEACAM16 carcinoembryonic antigen-related cell adhesion molecule  n.s. 2.0 

VSIG7 V-set and immunoglobulin domain containing 7 n.s. 2.0 

KIR3DL1 killer cell immunoglobulin-like receptor.  n.s. 2.1 

MYCN v-myc myelocytomatosis viral related oncogene.  n.s. 2.3 

FLJ31958 hypothetical LOC143153 n.s. 2.4 

FLJ14100 hypothetical protein FLJ14100 n.s. 2.4 

RUNDC2C RUN domain containing 2C n.s. 3.5 

Gene regulated by both ADM and FSK 

CCRL1 chemokine (C-C motif) receptor-like 1 0.3 0.4 

SESN3 sestrin 3 0.3 0.3 

RIMKLB ribosomal modification protein rimK-like family member B 0.3 0.4 

PITPNC1 phosphatidylinositol transfer protein. cytoplasmic 1 0.4 0.4 

PDE3A phosphodiesterase 3A. cGMP-inhibited 0.4 0.4 

SEMA3A sema domain, secreted. (semaphorin) 3A 0.4 0.4 

RNF152 ring finger protein 152 0.4 0.4 

MMP16 matrix metallopeptidase 16 (membrane-inserted) 0.4 0.4 

NOX4 NADPH oxidase 4 0.4 0.5 

MOBKL1A MOB1. Mps One Binder kinase activator-like 1A (yeast) 0.4 0.4 
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C12orf63 chromosome 12 open reading frame 63 0.4 0.5 

N4BP2 NEDD4 binding protein 2 0.5 0.4 

C10orf118 chromosome 10 open reading frame 118 0.5 0.5 

ADAMTS18 ADAM metallopeptidase type 1, modif. 18 0.5 0.4 

ADAMTS1 ADAM metallopeptidase with type 1, modif.1  0.5 0.4 

CYorf15B chromosome Y open reading frame 15B 0.5 0.5 

ZNF654 zinc finger protein 654 0.5 0.4 

RND1 Rho family GTPase 1 2.2 2.2 

VCAM1 vascular cell adhesion molecule 1 6.6 3.3 

SELE selectin E 12.4 5.5 

 

Table 9: Microarray analysis in HUVECs after 16 h i ncubation with ADM and FSK 

“Fold of changes” set to control group was listed. Only the gene expression after ADM and FSK 

stimulation with minimal two-fold changes was considered significant. (n.s.: not significant for 

<2.0 or >0.5 fold of changes) 

Gene Symbol  Gene description  

Fold of 

changes  

ADM 

Fold of 

changes  

FSK 

Gene regulated by ADM 

CDRT1 CMT1A duplicated region transcript 1 0.3 n.s. 

ZNF737 zinc finger protein 737 0.4 n.s. 

LOC646508 hypothetical LOC646508 0.4 n.s. 

RFC1 replication factor C (activator 1) 1. 145kDa 0.5 n.s. 

ZNF680 zinc finger protein 680 0.5 n.s. 

ZNF814 zinc finger protein 814 0.5 n.s. 

EFCAB4B EF-hand calcium binding domain 4B 2.1 n.s. 

CSRP2 cysteine and glycine-rich protein 2 2.3 n.s. 

Gene regulated by FSK 

PDE3A phosphodiesterase 3A. cGMP-inhibited n.s. 0.4 

SELE selectin E n.s. 0.4 

ANKRD11 ankyrin repeat domain 11 n.s. 0.4 

GNA14 guanine nucleotide binding protein (G protein). alpha 14 n.s. 0.4 

LOC100131826 TSSP3028 n.s. 0.4 

BDNF brain-derived neurotrophic factor n.s. 0.4 

FILIP1 filamin A interacting protein 1 n.s. 0.4 

MME membrane metallo-endopeptidase n.s. 0.5 

FAT1 FAT tumor suppressor homolog 1 (Drosophila) n.s. 0.5 

C12orf63 chromosome 12 open reading frame 63 n.s. 0.5 

C5orf53 chromosome 5 open reading frame 53 n.s. 0.5 
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MMP16 matrix metallopeptidase 16 (membrane-inserted) n.s. 0.5 

DGKH diacylglycerol kinase. eta n.s. 0.5 

TMEM229A transmembrane protein 229A n.s. 0.5 

VSIG6 V-set and immunoglobulin domain containing 6 n.s. 0.5 

DNAJC8 DnaJ (Hsp40) homolog. subfamily C. member 8 n.s. 2.0 

RFT1 RFT1 homolog (S. cerevisiae) n.s. 2.1 

DHODH dihydroorotate dehydrogenase n.s. 2.1 

FLJ43860 FLJ43860 protein n.s. 2.2 

SNORD25 small nucleolar RNA. C/D box 25 n.s. 2.5 

Gene regulated by both ADM and FSK 

ADAMTS18 ADAM metallopeptidase with type 1 motif. 18 0.5 0.4 

ANGPT2 angiopoietin 2 0.5 0.5 

NCRNA00116 non-protein coding RNA 116 2.0 2.2 

PRAMEF15 PRAME family member 15 2.3 2.4 

GJA5 gap junction protein. alpha 5. 40kDa 2.6 2.9 

 

5.3.7. Qualitative and quantitative comparision of ADM- and FSK-

induced effects in different models 

From a qualitative perspective, ADM and FSK showed identical effects 

throughout all the different models, which are summarized in Table 10 . In the 

CHO-ADM1-reporter system, ADM and FSK resulted in concentration-

dependent luminescence signals in correspondence with increased cAMP 

levels. In primary human endothelial cells, ADM and FSK induced significant 

accumulation of cAMP and activated cAMP signaling pathways, demonstrated 

by the activation of PKA and Epac/Rap1. Activation of PKA was demonstrated 

by downstream VASP phosphorylation, while activation of Epac was 

demonstrated by the levels of directly activated Rap1-GTPase (de Rooij et al., 

1998). In primary human endothelial cells, both ADM and FSK are capable of 

increasing electrical resistance, decreasing macromolecular permeability, and 

inhibiting transendothelial migration of leukocytes. 
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Table 10 Effects of ADM and FSK in different models  

Models Effects 

CHO-ADM1 reporter cell Increase of luminescence signals  (cAMP  increase) 

cAMP ELISA Increase of intracellular cAMP levels 

ECIS Increase of transendothelial electrical resistance (TEER) 

FITC-dextran permeability assay Decrease of macromolecular permeability 

TEM assay Inhibition of leukocytes transmigration 

VASP phosphorylation Increased phosphorylation of VASP (PKA activation) 

Rap1 activation Activation of Epac/Rap1 pathway 

Microarray analysis Down regulation of ICAM-1, VCAM-1, and E-selectin 

 

For a quantitative comparison, the ratio between the lowest effective doses of 

FSK and ADM was calculated (Table 11 ). On a molar basis equally effective 

concentrations of FSK and ADM differ from each other in all models tested by a 

factor of about 1,000. A factor of 103 to 104 is obtained by using pEC50 as the 

parameter for ratio calculation, although it must be mentioned that pEC50 could 

be analyzed in only three assays due to a limited number of the tested doses in 

the other assays or due to assay formats not suited for calculation of EC50 

values. The relevant question was which increase in cAMP was required to 

achieve equivalent effects by FSK and ADM, respectively. As shown in Table 

12, the effects at the lowest effective doses of ADM and FSK were comparable 

in all assays. However, the increase in cAMP (∆cAMP) needed to achieve this 

effect was by a factor ~ 3-5 higher for FSK as compared with ADM. 
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Table 11 Quantitative comparison of ADM and FSK in different assays  

Models  
 

pEC50 

Lowest 

effective 

doses 

Factors 

of lowest 

effective 

doses 

CHO-ADM reporter cell 
ADM -8.1 ± 0.1 1 nM 

1,000 
FSK -5.6 ± 0.1 1 µM 

∆cAMP 
ADM -9.9 ± 0.3 100 pM 

1,000 
FSK -5.5 ± 0.6 100 nM 

ECIS 
ADM -9.6 ± 0.2 30 pM 

1,000 
FSK -5.6 ± 0.4 30 nM 

FITC-dextran permeability assay 
ADM not determined 1 nM  

1,000 FSK not determined 1 µM 

TEM assay 
ADM not determined 1 nM  

1,000 FSK not determined 1 µM 

VASP phosphorylation 
ADM not determined 10 pM 

1,000 
FSK not determined 10 nM 

 

 

Table 12 Quantitative comparison of ∆cAMP induced by ADM and FSK in different assays  

Models  

Lowest  

effective 

doses Effects 

∆cAMP 

(fmol/well) 

(n=8) 

Factors 

of 

∆cAMP 

ECIS 
ADM 30 pM -56 ± 21.5% 94 ± 162.4  

4.7 FSK 30 nM -42 ± 17.8% 439 ± 990.8 

FITC-dextran 

permeability assay 

ADM 1 nM 94.7 ± 18.2%  270 ± 169.3  

4.7 FSK 1 uM 101.2 ± 7.3% 1245 ± 1396.7 

VASP-

Phosphorylation 

ADM 10 pM 332.2 ± 29.4% 112 ± 212.5  

3.3 FSK 10 nM 335.0 ± 14.2% 375 ± 603.9 

TEM assay 
ADM 1 nM 68.9 ± 8.5% 270 ± 169.3  

4.7 FSK 1 µM 59.7 ± 18.3% 1245 ± 1396.7 
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5.4. Effects of ADM on gene expression 

Data from the genome-wide microarray-analysis suggested that ADM down-

regulated the expression of cell adhesion molecules (CAMs), such as ICAM-1, 

VCAM-1, and E-selectin which all exert distinct functions in the recruitment, 

adhesion and transmigration of leukocytes. Cytokines and growth factors which 

down-regulate the expression of cell adhesion molecules, are thought to have 

an anti-inflammatory effect. As data from Microarray analysis are not 

quantitative, the effects of ADM on the expression of those genes were 

analyzed in more details by use of quantitative RT-PCR (TaqMan® technique). 

5.4.1. Analysis of time-dependent effects of ADM on  CAMs 

First of all, actions of ADM on gene expression were analyzed in quiescent 

HUVEC cells without any stimulation. ADM was used at a concentration of 100 

nM which was previously shown to have satuated effects on endothelial barrier 

function. ADM reduced the mRNA levels of ICAM-1 by maximal 30%, as 

compared to control group (Figure 24A ) in a time frame of 2 to 8 h. Similarly, 

mRNA levels of E-selectin were reduced maximally by 30% after 2h stimulation 

with ADM (Figure 24C ). 16 h ADM stimulation had no impacts on regulation of 

E-selectin anymore. Expression of VCAM-1 and PECAM-1 were not influenced 

by ADM (Figure 24B and D ). Taken together, under basal conditions, ADM 

showed no effects on gene regulation of VCAM-1 and PECAM-1 and only slight 

effects on ICAM-1 and E-selectin mRNA expression.  
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Figure 24 Effects of ADM on gene expression of adhe sionce molecules  

HUVECs were incubated with 100 nM ADM as indicated and mRNA levels were measured by 

QRT-PCR. mRNA expression levels were normalized to that of β-actin. Relative gene 

expression levels of ICAM-1 (A), VCAM-1 (B), E-selectin (C), and PECAM-1 (D) are shown. 

Data are plotted as mean ± SEM, n=4. 
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5.4.2. Effects of ADM on TNF α-induced expression of CAMs 

Effects of ADM on gene expression were further analyzed in TNFα-stimulated 

HUVEC cells. As previously shown 5 nM TNFα induced endothelial barrier 

dysfunction, particularly endothelial hyperpermeability and granulocyte 

extravasation. Effects of increasing doses of TNFα (1 pM to 10 nM) were 

analyzed by using quantitative RT-PCR analysis. TNFα dose-dependently 

increased mRNA levels of ICAM-1, VCAM-1 and most prominently of E-selectin 

while mRNAs of PECAM-1 was slightly decreased. Induction factors as fold of 

changes refered to control group are given in Table 13. Interestingly, the mRNA 

levels of ADM receptors (CLRLR and RAMP-2) in HUVECs were down-

regulated in a dose-dependent manner.  
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Table 13 Effects of TNF α on gene expression of adhesion molecules and ADM r eceptors 

HUVECs were overnight incubated with increasing concentrations of TNFα (1 pM to 10 nM), 

and mRNA levels were measured by QRT-PCR. Relative gene expression levels were 

normalized to that of β-actin and fold of changes set to control group were listed. Cell adhesion 

molecules such as ICAM-1, VCAM-1, E-selectin, and PECAM-1, as well as ADM receptors 

CRLR and RAMP-2 were analyzed. Data are expressed as mean ± SD with n=4 

 

In the next step, HUVECs were treated with 100 nM ADM for 3 h and 16 h, and 

effects of ADM on basal as well as TNFα- induced mRNA levels of cell 

adhesion molecules were analyzed (Figure 25 ).  None of the changes induced 

by 10 pM TNFα were affected by exposure to 100 nM ADM for 3 h or 16 h. 

Taken these data together, ADM showed no effects on mRNA expression of cell 

adhesion molecules, such as ICAM-1, VCAM-1, E-selectin and PECAM-1 in 

TNFα-stimulated endothelial cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fold of 

changes  

(mRNA)                       

TNFα 

1 pM 

TNFα 

10 pM 

TNFα 

100 pM 

TNFα 

1 nM 

TNFα 

10 nM 

ICAM-1 1.0 ± 0.1 3.5 ± 0.6 21.7 ± 1.0 31.4 ± 2.2 37.6 ± 4. 1 

VCAM-1 0.9 ± 0.1 4.7 ± 0.6 50.8 ± 8.6 87.5 ± 12.5 87.6 ± 7 .2 

E-selectin  2.9 ± 0.7 6.3 ± 0.8 351.2 ± 44.9 721.2 ± 98.3 825.9  ± 77.0 

PECAM 0.4 ± 0.3 0.7 ± 0.1 0.5 ± 0.0 0.3 ± 0.0 0.3 ± 0.0 

CRLR 0.5 ± 0.1 0.8 ± 0.3 0.5 ± 0.2 0.4 ± 0.1 0.3 ± 0.1 

RAMP2 1.1 ± 0.3 0.7 ± 0.3 0.3 ± 0.1 0.1 ± 0.0 0.2 ± 0.0 



RESULTS   88 

Figure 25 Effects of ADM on TNF α-induced gene expression of cell adhesion molecules   

HUVECs were overnight treated with 10 pM TNFα and 100 nM ADM for 16 h, or HUVECs were 

treated with ADM (100 nM) for 3 hours followed by overnight incubation with 10 pM TNFα. After 

stimulation, mRNA levels were measured by QRT-PCR. The mRNA expression levels were 

normalized to that of β-actin. Relative gene expression levels of cell adhesion molecules such 

as ICAM-1 (A), VCAM-1 (B), E-selectin (C), and PECAM-1 (D) are shown. Data are plotted as 

mean ± SD, n=4. 
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5.4.3. Effects of ADM on surface expression of CAMs  

In addition to gene regulation of mRNAs, the protein expression of adhesion 

molecules on cell surface was further investigated by use of ELISA with specific 

antibodies against adhesion molecules. Similar to gene expression study, 100 

pM TNFα caused a 7.3 ± 1.8 fold, 5.6 ± 0.8 fold, and 3.7 ± 0.4 fold increases in 

cell surface expressions of ICAM-1, VCAM-1, and E-selectin, respectively. 

However, pretreatment or post-treatment with ADM could not affect those 

increases of cell adhesion molecules on cell surface. Therefore, changes in 
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gene expression or surface expression of endothelial adhesion molecules 

cannot be used as explanation for the inhibition of PMN transmigration by ADM. 

 

Figure 26 Effects of ADM on cell surface expression s of adhesions molecules after TNF α-

stimulation  

HUVECs were treated with 100 nM ADM 30 min prior to or following overnight incubation with 

100 pM TNFα. After stimulation, primary antibodies against ICAM-1 (A), VCAM-1 (B), and E-

selectin (C) were incubated for 60 min followed by incubation with peroxidase-conjugated 

secondary anti-mouse antibody for further 60 min. After adding TMB substrate solution, the 

absorbance signal on cell surface was measured. Cell surface expressions of adhesion proteins 

were quantified as the absorbance signals on cell surface. Data were expressed as mean ± 

SEM with n=4. 
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5.5. Role of PKA and Epac/Rap1 in ADM signalling 

The previous data showed, that the effects of ADM on endothelial barrier 

function can entirely be explained as cAMP-mediated. Therefore the two 
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downstream branches of cAMP signaling relevant for endothelial barrier 

function, the PKA and Epac/Rap1 pathways, were further investigated for their 

relative contribution to effects of ADM signaling. 

5.5.1. Dissection of PKA and Epac/Rap1 signaling 

The specific PKA activator Benz-cAMP and the specific Epac/Rap1 activator 

“007” were chosen to further dissect cAMP downstream events. However, it 

was reported that the cAMP analogous “007”, might have the potential to 

activate PKA at high concentrations (Holz et al., 2006). To verify or exclude the 

potential effect of “007” on PKA activation, the following experiments were 

performed: detection of CREB phosphorylation in Luceferase-transfected CHO 

cells as well as detection of VASP phosphorylation in primary human cells.  

 

The cyclic AMP response element (CRE)-binding protein (CREB) is one of the 

best understood phosphorylation dependent transcription factors. Increased 

cAMP activates PKA by dissociating the regulatory from the catalytic subunits, 

which in turn is translocated into the nucleus and phosphorylates CREB, 

promoting CREB to recruit transcriptional co-activators that induce transcription 

of a variety of immediate early response genes. The CREB reporter cell line is 

derived from CHO cells with chromosomal integration of a luciferase reporter 

construct regulated by a cAMP response element (CHO-CRE-luciferase). As 

shown in Figure 27C , increasing doses of Benz-cAMP and “007” (10 µM-10 

mM) were tested in the CREB reporter cell line. Beginning at 30 µM Benz-cAMP 

started to activate CREB-dependent luciferase transcription, serving as an 

indirect indicator of PKA activation.  The maximum effect was at 3 mM. In 

contrast, “007” up to doses of 10 mM showed no effect on CREB dependent 

transcription. 

 

PKA activation was indirectly monitored in HUVECs by detection of substrate 

phosphorylation by means of immnoblotting with an antibody against phospho-

VASP. Different doses of Benz-cAMP and “007” (100 nM-1 mM) were analyzed 

(Figure 27A and B ). At a concentration of 100 µM Benz-cAMP and higher 
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phosphorylation of VASP could be detected, whereas “007” had no effect on the 

VASP activation up to a concentration of 1mM.  

 

In addition, to exclude potential effects of Benz-cAMP on Epac/Rap1 signaling, 

a Rap1 Pull-down assay was performed in which activated GTP-bound Rap1 is 

detected (Figure 27D) . While 100 µM “007” activated Epac/Rap1 signaling, 500 

µM Benz-cAMP - a dose which significantly activated PKA signaling - had no 

effects. Based on this observation, 500 µM Benz-cAMP and 100 µM “007” were 

chosen for further experimental settings to dissect both pathways specifically. 

 

Figure 27 Dissection of Benz-cAMP and “007” in diff erent assays.  

(A) and (B):  HUVECs were treated with vehicle, Benz-cAMP (100 nM-1 mM) (A) or “007” (100 

nM-1 mM) (B) or for 15 min followed by sample collection and western blot analysis of signaling 

pathway activation. Representative results from three independent experiments. (C): CHO-

CREB-luciferase reporter cells were treated with Benz-cAMP (10 µM-10 mM) and “007” (10 µM-

10 mM) for 15 min. The cAMP dependent increase of CREB phosphorylation is read out by 

luminescence signals. (n=4, mean ± SEM, *p<0.05, **p<0.005, ***p<0.0005 vs. vehicle group) 

(D): HUVECs were treated with vehicle, “007” (100 µM) or Benz-cAMP (500 µM) for 15 min 

followed by sample collection and western blot analysis of signaling pathway activation. The 

small GTPase Rap1 activity was measured using Rap1-pull down assay. Representative results 

from a series of three independent experiments.  
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5.5.2. Impact of Epac/Rap1- and PKA-signaling on re gulation of 

vascular permeability 

Since the cAMP analogues Benz-cAMP and “007” were confirmed to 

specifically address the PKA and Epac/Rap1 pathways, the relative impact of 

the distinct cAMP-dependent signaling in the regulation of vascular permeability 

was further investigated by using these two tool compounds.  

 

In ECIS, the addition of both cAMP analogues rapidly enhanced the 

transendothelial resistance of resting cell monolayer up to 175% within 30 min 

and remained constantly elevated over the entire experiment. This was the 

maximum achievable effect during dose escalation of the individual compounds 

(Figure 28A ). However, combination of Benz-cAMP and “007” further enhanced 

TEER to 200% of control monolayer. The TEER reducing effect of thrombin was 

partially prevented by the individual compounds, more strongly by Benz-cAMP 

than by “007”. Again the combination of both compounds showed enhanced 

effects also on thrombin induced hyperpermeability (Figure 28B ). Like after 

ADM and FSK the level of TEER modulation by thrombin was shifted to more 

positive values rather than showing a true antagonism.  

 

In parallel to TEER measurements, paracellular permeability for FITC-dextran 

was analyzed (Figure 28C ). Both Benz-cAMP and “007” antagonized thrombin-

induced hyperpermeability. However, both treatments reversed the permeability 

to that of resting cells, which was in contrast to ADM which reduced 

permeability below that of resting cell monolayers (Figure 7C and D ).   

 

In the next step, the effects of Benz-cAMP and “007” on vascular permeability in 

the skin of mice were examined by use of the modified Miles assay (Figure 

28D). Intradermal application of histamine increased skin permeability to three-

fold above base line. This effect was partially prevented by pretreatment with 

Benz-cAMP and “007”. While Benz-cAMP reduced Histamine-induced 

hyperpermeability by about one third, “007” reduced permeability to almost 

normal values. In contrast to the in vitro-findings, combination of Benz-cAMP 



RESULTS   93 

and “007” showed no further enhancement of effects. In addition, Benz-cAMP 

and “007” also reduced basal vascular permeability significantly.  

 

Throughout all these three models, both Benz-cAMP and “007” were equally 

effective with respect to resulting stabilization of endothelial barrier function in 

vitro and in vivo. However, combination of maximal active doses showed further 

enhancement of resulting effects. These observations suggest that both PKA- 

and Epac/Rap1-dependent cAMP signaling activate at least partially 

independent anti-edematous mechanisms. 

 

Figure 28 Both PKA and Epac/Rap1 signaling are invo lved in regulating endothelial 

permeability in vitro  and in vivo .  

Transendothelial electrical resistance (A and B)  and paracellular permeability for FITC-dextran 

(C) were measured over the time. HUVECs were pretreated with vehicle. “007” (100 µM) or 

Benz-cAMP (500 µM) followed by stimulation with thrombin (0.5 U/ml). Both cAMP analogues 

reduced thrombin-induced endothelial hyperpermeability in vitro. (D) Miles Assay:  “007” (3 

µM/mouse) as well as Benz-cAMP (3 µM/mouse) attenuated histamine-induced vascular 

hyperpermeability in the skin of mice. (N=6-10, mean ± SEM; #p<0.05 and ##p<0.005 vs. vehicle 

group with PBS injection; *p<0.05 and ***p<0.0005 vs. vehicle group with histamine injection) 
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5.5.3. Role of PKA and Epac/Rap1 in regulation of g ranulocyte 

extravasation 

5.5.3.1. Effects of PKA- and Epac/Rap1-signaling in PMN transmigration 

As shown above ADM and FSK inhibited granulocyte extravasation in a dose-

dependent manner, which was correlated with the induced intracellular cAMP 

levels. The question was raised whether both PKA and Epac/Rap1 signaling 

were involved in controlling granulocyte extravasation. As shown in Figure 29A , 

PKA activator, Benz-cAMP, inhibited granulocyte transmigration to 71.4 ± 5.0% 

(mean ± SD), which was comparable with the effect of ADM. In contrast, “007” 

showed no effect on granulocyte extravasation. Even the combination of Benz-

cAMP and “007” had no additional inhibitory effects on granulocyte 

extravasation (56.3 ± 6.3%, mean ± SD), as compared to single treatment with 

Benz-cAMP. This result gave the first suggestion that only PKA-dependent 

cAMP-signaling might be involved in the regulation of granulocyte 

transmigration.  

 

To further verify the effect of PKA on granulocyte transmigration, another cAMP 

analogous, 8- Bromoadenosine- 3', 5'- cyclic monophosphorothioate, Rp- 

isomer (Rp-8-Br-cAMP) was used to block the PKA dependent pathway 

(Aandahl et al., 1998). As shown in Figure 29C , 200 µM and 400 µM Rp-8-Br-

cAMP, reduced ADM-induced phosphorylation of VASP in HUVECs, indicative 

of its inhibitory effect on PKA activation in endothelial cells. Thus, the dose of 

400 µM was further used to fully block the PKA dependent pathway in ADM 

signaling in order to investigate its effect in the granulocyte transmigration 

assay (Figure 29B) . While the PKA inhibitor alone had no effects on 

granulocyte transmigration, the initial inhibitory effect of ADM (56.7 ± 2.9%) was 

significantly weakened to 80.1 ± 2.6% of control group, further substantiating 

the PKA-dependency of the ADM effect (mean ± SD). Using both the activator 

and inhibitor of PKA signaling, evidence was provided for an involvement of 

PKA in the ADM-cAMP signaling in the regulation of granulocyte transmigration, 

while the Epac/Rap-1 pathway seems not to be involved. 
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Figure 29 PKA but not Epac/Rap1 is involved in leuk ocyte transmigration  

(A):  TNFα-stimulated HUVECs on Transwell filters were pretreated with vehicle, “007” (100 µM), 

Benz-cAMP (500 µM), or combination of “007” (100 µM) and Benz-cAMP (500 µM) for 30 min. 

(n=6; **p<0.005 vs. control group) (B): HUVEC on Transwell filters were stimulated overnight 

with TNFα (5 nM). On the day of experiment, HUVECs were pretreated with vehicle or Rp-8-Br-

cAMP (400 µM) for 40 min, and subsequently treated with vehicle or ADM (100 nM) for 20 min. 

(n=6; *p<0.05 and **p<0.005 vs. control group; ###p<0.0005 vs. ADM group without Rp-8-Br-

cAMP pretreatment) (C): Western blot was performed to detect phosphorylation status of VASP 

in HUVECs, indicative of PKA activation. HUVECs were pre-treated with vehicle or different 

doses of Rp-8-Br-cAMP (20 µM, 40 µM, 200 µM, and 400 µM) for 40 min and followed by 

subsequent stimulation with vehicle or ADM (100 nM) for 20 min. Anti-vinculin antibody was 

used as loading control. Representative data result from two independent experiments.  

 

 

5.5.3.2. Role of PKA- and Epac/Rap1-signaling in regulation of PMN-

induced hyperpermeability 

There is emerging evidence that adhesion of activated leukocytes to endothelial 

cells not only actively prepares opening of endothelial contacts for 

transmigration but also contributes to endothelial hyperpermeability (reviewed 

by He, 2010; Yuan et al., 2012). It is further discussed that leukocyte induced 

hyperpermeability might be a prerequisite for transmigaration. Therefore the 

question was raised whether leukocyte-induced hyperpermeability could be 



RESULTS   96 

verified in the assay systems used, and if so, to which extent cAMP dependent 

signaling via PKA and Epac/Rap1 can modulate this process. Therefore similar 

conditions as used in the leukocyte transmigration assay were employed in the 

ECIS model. As shown in Figure 30A , in addition to TNFα-induced slow and 

prolonged decrease of electrical resistance to 74.3 ± 4.1% (mean ± SD), 

contact to PMN irreversibly reduced TEER and reached its trough within 2 

hours. The extent of this effect of PMN was dependent on amounts of PMN 

added per well: the resistance was lowered to 70.2 ± 4.0% by 100,000 PMNs, 

to 54.0 ± 3.2% by 300,000 PMNs, to 47.4 ± 2.6% by 500,000 PMNs, and to 

46.5 ± 1.3% by 1000,000 PMNs (mean ± SD). In the further assay (Figure 30B ), 

the drop-down of electrical resistance evoked by 500,000 PMNs to 59.7 ± 4.0% 

was attenuated by addition of Benz-cAMP and “007” to 81.7 ± 3.1% and to 81.7 

± 4.8% (mean ± SD), respectively, when both compounds were added at 

maximal effective concentrations (as determined in pilot experiments, data not 

shown). The combined treatment of cells with both Benz-cAMP and “007” 

showed enhanced efficacy. These data were comparable to those obtained in 

TNFα stimulated cells without additional stimulation by PMNs: electrical 

resistance was decreased to 87.3 ± 6.4%, which was reversed to 127.1 ± 3.5% 

by Benz-cAMP, to 122.0 ± 7.8% by “007”, and to 151.0 ± 6.4% (mean ± SD) by 

combination of Benz-cAMP and “007” (Figure 30C ).  

 

These data from ECIS assays confirm an additional and dose-dependent 

permeability inducing effect of PMN contact to TNFα stimulated HUVECs. Like 

in TNFα and Thrombin induced hyperpermeability both, PKA and Epac/Rap-1 

pathway are involved in regulation of leukocyte induced hyperpermeability in 

endothelial cells. However, as hyperpermeability can effectively be prevted and 

reversed by “007” which has no impact on PMN transmigration, based on these 

data it can be excluded that PMN induced endothelial hyperpermeability is a 

prerequisite for their transmigration. 
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Figure 30 Effects of PKA- and Epac/Rap1 activator i n regulating PMN-induced 

hyperpermeability  

(A):  HUVECs were grown on ECIS microelectrode plates to confluence and overnight incubated 

with TNFα (5 nM). On the day of experiment, cells were additionally stimulated with different 

amounts of PMNs (1x105, 3x105, 5x105 and 1x106 / well) and measurement of TEER was 

performed over 16 hours. (B)-(C):  HUVECs were overnight stimulated with TNFα (5 nM). At the 

time indicated by the arrows, cells were treated with vehicle, “007” (100 µM), Benz-cAMP (500 

µM), or combination of “007” (100 µM) and Benz-cAMP (500 µM) for 30 min, without any further 

treatment (C) or following by additional stimulation with 5x105 PMNs /well (B). TEER was 

normalized to the TEER measured at the beginning of the experiment. (n=8; mean ± SEM). 
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5.5.3.3. Impact of PKA- and Epac/Rap1-signaling on endothelial 

contractility 

Adherence of neutrophils induces increase of intracellular calcium concentration 

and activation of MLC kinase in endothelial cells with subsequent activation of 

the contractile apparatus and paracellular gap formation, being a key 

determinant of leukocyte transendothelial migration in response to inflammation 

(Garcia et al., 1998).  MLC kinase phosphorylates MLC at Ser-19 and Thr-18, 

which subsequently facilitates the interaction of myosin with actin, leading to the 

acto-myosin based contractile response.  

 

ML-9 (1-[(5-chloro-1-naphthalenyl) sulfonyl] hexahydro-1H-1,4-diazepine) is a 

selective inhibitor of MLCK, which binds at or near the ATP-binding site of the 

active center and inhibits directly the catalytic activity of MLCK (Saitoh et al. 

1987).  BAPTA/AM, [1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid 

tetrakis(acetoxymethyl ester)], is a membrane-permeable intracellular calcium 

chelator, which inhibits calcium/calmodulin dependent activation of MLCK. In 

the established in vitro-leukocyte transmigration assay, both ML-9 and 

BAPTA/AM were shown to inhibit PMN transmigration dose dependently 

(Figure 31A and B) . Transmigration was reduced to 76.6 ± 3.2% and to 29.9 ± 

11.2% (mean ± SD) by 100 and 300 µM ML-9, respectively, and to 70.3 ± 9.6% 

and to 51.1 ± 3.1% (mean ± SD) by 100 and 300 µM BAPTA/AM, respectively. 

The observations of those experiments were in line with previous reports (Saito 

et al., 1998), indicating that activity of calcium/calmodulin-dependent MLCK is 

necessary for transendothelial migration of granulocytes.  

 

In addition to MLCK, also Rho kinase on one hand phosphorylates MLC on 

serine 19, and on the other hand phosphorylates the myosin–binding subunit 

(MBS) of MLCP thereby inactivating this enzyme, which is also crucial for 

regulating the phosphorylation status of MLC (Kawano et al., 1999; Amano et 

al., 1996). The azaindole derivative, 6-chloro-N4-{3,5-difluoro-4-[(3-methyl-1H-

pyrrolo[2,3-b]pyridin-4-yl)oxy]-phenyl}pyrimidine-2,4-diamine (BAY77-7549), is a 

potent and selective Rho kinase inhibitor (Kast et al., 2007). BAY77-7549 

inhibits granulocyte transmigration in a dose-dependent manner: to 47.7 ± 
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16.8% by 10 µM and to 18.6 ± 7.4% by 100 µM (mean ± SD) (Figure 31C) .  

Taken together, these results with all three inhibitors of independent pathways 

leading to MLC phosphorylation and activation, ML-9, BAPTA/AM, and BAY77-

7549, provided evidence for the crucial role of the phosphorylation status of 

endothelial MLC in regulating transendothelial migration of granulocytes.  

  

So, the question was raised whether Benz-cAMP and “007” which differently 

affect granulocyte transmigration show different effects on the phosphorylation 

of MLC. Phosphorylation status of MLC was analyzed using specific anti-

phosphor-Ser19/Tyr18 antibody and thrombin was used to increase basal 

phosphorylation of MLC. As shown in Figure 31D and E , 100 nM ADM, 10 µM 

FSK, and 500 µM Benz-cAMP, which effectively inhibited leukocyte 

transmigration, also significantly reduced phosphorylation of MLC. In contrast, 

100 µM “007” which protected endothelial permeability had no effect on the 

phosphorylation status of MLC.  These data suggest that the fact that PMN 

transmigration is inhibited by activation of PKA but not of Epac/Rap1 is most 

probably due to PKA dependent inhibition of MLC phosphorylation thereby 

counteracting endothelial contractility. 
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Figure 31 Regulation of MLC is involved in cAMP-PKA  pathway on granulocyte 

transmigration  

(A) (B)  and (C): Human neutrophils were allowed to transmigrate toward the IL-8 gradient 

through a HUVEC monolayer on transwell filter which was stimulated overnight with TNFα (5 

nM). Endothelial monolayers were treated for 30 min with different doses of ML-9 (30 µM, 100 

µM, and 300 µM) (A), BAPTA (30 µM , 100 µM, and 300 µM) (B), or RhoK-inhibitor BAY77-

7549 (1 µM, 10 µM, and 100 µM) (C). For each experiment, the number of neutrophils migrating 

under control condition (without compound treatment) was set to 100%. (n=3, mean ± SEM) 

(*p<0.05, **p<0.005, and ***p<0.0005 vs. control group) (D-E): HUVECs were pretreated with 

vehicle, ADM (100 nM), FSK (10 µM), Benz-cAMP (500 µM), and “007” (100 µM) for 15 min 

followed by 15 min stimulation with thrombin (0.5 U/ml). Anti-vinculin was used as loading 

control. Representative results of three independent experiments. 

 

 

It was further investigated by means of immunohistochemistry whether both 

pathway activators had effects on junctional structures and contractile 

apparatus. Similarly to ADM (Figure 8 ), both cAMP analogous prevented 

thrombin-induced gap formation on cell-cell junctions, preserving a continuous 

straight line of VE-cadherin around the cell borders (Figure 32 ). Benz-cAMP 

seemed to reduce formation of stress fibers and retraction of the cell mass 

toward the center and to enhance peripheral cortical actin (Figure 32C ). 

However, with “007” the formation of stress fibers seemed to be less affected 

(Figure 32D ).  
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Taken together, the cAMP-PKA pathway most likely counteracts granulocyte 

transmigration by regulating the contractile apparatus via inhibition of MLC 

phosphorylation in contrast to the Epac/Rap1 pathway which does not inhibit 

MLC phosphorylation and fails to interfere with granulocyte transmigration.  

 

Figure 32 Effects of PKA and Epac/rap1 on thrombin- induced F-actin and VE-cadherin 

distribution. 

HUVECs were grown to confluence on fibronectin-coated glass cover slides and pretreated with 

vehicle, Benz-cAMP (500 µM) (C) or “007” (100 µM) (D) for 30 min, following thrombin (0.5 

U/ml) stimulation for 30 min. Cells were fixed and permelized with 100% (v/v) ethanol (-20oC, 10 

min) and stained for F-actin (red), VE-cadherin (green), and nucleus (blue). (A) quiescent cells 

and (B) thrombin-stimulated cells. Scale bars = 20 µm. 
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5.6. Direct effects of ADM on endothelial cytoskele ton and 

cell-cell junctions 

5.6.1. Role of cortactin in ADM-mediated endothelia l barrier 

modulation 

Barrier protective effects of ADM could be related to a reduction of dynamic 

changes in myosin-actin based cellular contractility as refelected by the 

reduction of Myosin light chain phosphorylation and stress fiber formation. In the 

next step, it was addressed whether ADM could directly affect static 

cytoskeleton and cell-cell junctions. Beside a role of myosin-actin mediated 

cellular contraction, disruption and rearrangement of cytoskeleton are reported 

to be of equal importance in the development of endothelial gaps. One of the 

most important cytoskeletal components is the 80 to 85 kDa actin-binding 

protein, cortactin. Cortactin is involved in cortical actin assembly and dynamic 

actin rearrangement (Ammer & Weed, 2008). An important role of endothelial 

cortactin in leukocyte transmigration and barrier integrity is likely. Therefore the 

question was addressed whether this actin-binding protein is involved in ADM 

signaling with respect to the regulation of endothelial barrier function. 

 

First of all, an immunocytochemical approach was performed to investigate 

whether ADM has influence on the distribution of cortactin in endothelial cells 

(Figure 33).  In quiescent cells, cortical actin was well organized along the cell 

borders, while cortactin was diffusely distributed over the entire cytosol. The 

structure of cortical actin and the distribution pattern of cortactin seemed not to 

be affected after incubation of ADM and FSK. 
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Figure 33 Effect of ADM on cellular distribution of  cortactin by using 

immunofluorescence microscopy 

HUVECs were grown on fibronectin-coated glass cover slides and incubated with vehicle (A), 

ADM (100 nM) (B), or FSK (10 µM) (C) for 30 min. Cells were fixed and permelized with 100% 

(v/v) ethanol (-20oC, 10 min) and stained for F-actin (red), cortactin (green), and nucleus (blue). 

Scale bars = 10 µm. 

B CA

 

 

In the next step, RNA interference technique was applied to down-regulate the 

gene expression of cortactin. Silencing of cortactin by SiRNA transfection 

reached its maximal effect after 48 h in human endothelial cells (Schnoor et al., 

2011) (Figure 34 A).  Based on this result, assays for paracellular permeability 

for FITC-dextran (Figure 34 B)  and transendothelial migration of human PMN 

(Figure 34 C) were performed 48 h after SiRNA transfection. Silencing of 

cortactin expression increased basal macromolecular permeability to 118.5 ± 

5.7% (mean ± SD), which could be reversed to 83.7 ± 5.0% (mean ± SD) wi th 

ADM treatment. In the lamin-SiRNA transfected control group, treatment of 

ADM reduced basal permeability to 81.8 ± 3.2% (mean ± SD), which was 
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identical with the ADM-treated cortactin-SiRNA transfected group. This 

observation suggested that a cortactin-independent pathway was partly 

involved in ADM signaling regulating endothelial permeability.  

 

Differently to endothelial permeability, down-regulation of cortactin expression 

decreased transendothelial migration of human neutrophils to 66.2 ± 5.4% 

(mean ± SD) of control SiRNA group. Similarly, in control-SiRNA group, ADM 

reduced transmigrated PMN to 66.2 ± 5.7% (mean ± SD) of vehicle group. 

However, in the group with down-regulated cortactin, ADM had no additional 

effect to 60.9 ± 2.6% (mean ± SD), meaning that the inhibitory effect of ADM on 

leukocyte transmigration disappeared in the absence of cortactin. In summary 

the consequences of cortactin knock down in HUVECs were inconsistent: with 

respect to leucocyte transmigration the data suggest a potential role of cortactin 

in ADM signaling but not with respect to endothelial permeability. 
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Figure 34 Role of cortactin in ADM signaling regula ting endothelial permeability and 

granulocyte transmigration  

(A):  HUVEC were transfected with either lamin- or cortactin-specific SiRNAs and after 48 h 

were lysed for immunoblotting to detect expression levels of cortactin. Blotting for tubulin was 

used as loading control. Transfected HUVECs were seeded on transwell filter for 48 h and were 

used for paracellular permeability for FITC-Dextran (B) and leukocytes transmigration assay 

(C). For both assays, the cells were incubated with vehicle or ADM (100 nM) for 30 min. The 

relative FITC or relative transmigrated PMNs were set to the control group with lamin-SiRNA. 

(n=6, mean ± SEM) (*p<0.05 and **p<0.005 as compared to lamin SiRNA-transfected group 

treated with vehicle; ###p<0.0005 and n.s. not significant p>0.05 as compared to cortactin 

SiRNA-transfected group treated with vehicle) 

 

 

5.6.2. Analysis of ADM effects on the background of  disrupted actin 

cytoskeleton 

With the following experiments the question was addressed whether effects of 

ADM on endothelial barrier function are only based on its impact on actomyosin 

cytoskeleton. For this purpose, a mycotoxin which inhibited the actin 

polymerization, cytochalasin D (CytoD), was chosen to disrupt the endothelial 

actin cytoskeleton. The effects of ADM on junctional proteins and the 

cytoskeleton were investigated by laser scanning microscopy (Figure 35 ). In 
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quiescent cells, the staining for VE-cadherin around cell border represents a 

continuous straight line and staining of F-actin with Alex-555 phalloidin revealed 

a well-arranged structure of cortical actin fibers along the cell periphery (Figure 

35A). Cytochalasin D induced distortion of the linear structure of VE-cadherin 

with visibly defects of VE-cadherin staining, indicating intercellular clefts (Figure 

35B). In parallel, well-arranged distribution of cortical actin fibers along cell 

borders disappeared after treatment with cytochalasin D: the actin staining was 

intensely concentrated as a continuous straight line around the cell body and 

diffuse actin staining was also observed in the cytosol, indicating a severely 

disrupted endothelial cytoskeleton. Incubation of ADM prior to cytochalasin D 

seemed not to prevent the disruption of actin cytoskeleton, whereas the VE-

cadherin linear structure was reestablished and gap formation was prevented 

(Figure 35C).  
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Figure 35 Effect of ADM on VE-cadherin and actin fi bers in endothelial cells with intact 

cytoskeleton.  

HUVECs were grown to confluence on fibronectin-coated glass cover slides, stained for F-actin 

(red) and VE-cadherin (green), nucleus (blue). Cells treated with vehicle (A) displayed well-

arranged cortical actin fibers with few stress fibers and continuous cell-cell junctions. Treatment 

with 300 nM cytochalasin D (B) caused a massive decrease of actin fibers, distortion of VE-

cadherin pattern and formation of intercellular gaps. Pretreatment of ADM prior to cytochalasin 

D (C) prevented VE-cadherin disruption and gap formation without affecting actin fibers. Scale 

bars = 20 µm.. 

10

A B C

 

 

The effects of cytochalasin D on endothelial barrier integrity were further 

investigated by means of ECIS technique. As shown in Figure 36A, disruption 

of the actin cytoskeleton with cytochalasin D dose-dependently induced a rapid 

decline of TEER within minutes, which returned to baseline level after 13 hours. 

30 nM Cytochalasin D was the lowest dose to slightly decrease TEER to 92.4%, 

whereas 300 nM reduced the TEER to 31.4% and was also the maximal dose 

from which the cells were still able to recover after 13 hours. If the cells were 

pretreated with ADM for 30 min prior to cytochalasin D treatment, the dropdown 
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of TEER to 31.4% was reduced to 66.0%, with the amplitude of 34.6% (Figure 

36C). This amplitude was identical with the increase of TEER induced by ADM 

on control cells, suggesting that the effect of ADM was not changed by the 

treatment with cytochalasin D. In parallel, ADM was also administered after 

cytochalasin D, (Figure 36D) . The decline of TEER to 31.4% induced by 

cytochalasin D was reversed by ADM to baseline within 2 hours and cells 

reached the same level of TEER followed by ADM on control cells after 12 

hours.  

 

In addition, the effects of cytochalasin D on macromolecular permeability were 

analyzed (Figure 36B) . Cytochalasin D induced hyperpermeability over the time 

and reached its maximal effect to 140.0% of control group after 2 hours, 

whereas ADM reduced macromolecular permeability to 48.8%. The 

Cytochalasin D induced hyperpermeability was antagonized to 81.3% by pre-

treatment with ADM. The amplitude of ADM on cytochalasin D-induced 

hyperpermeability was 51.2%, identical with the direct ADM effect on basal 

permeability (51.2%). Taken all these findings together, in the endothelial cells 

with disrupted actin cytoskeleton, ADM could still stabilize barrier integrity with 

increased TEER and reduced macromolecular permeability, as well as VE-

cadherin distribution on cell borders. These observations implicate that effects 

of ADM on endothelial barrier function are at least partly independent of the 

actin cytoskeleton and lead to direct stabilization of the VE-cadherin dependent 

barrier function. 
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Figure 36 Effect of ADM on barrier integrity in end othelial cells with disrupted actin 

cytoskeleton.  

(A, C and D):  HUVECs were grown on 96-well ECIS microelectrode plates and measurement of 

TEER was performed over 16 hour. Relative TEER was normalized to the TEER measured at 

the beginning of the experiment. (A):  At the time indicated by the arrows, HUVECs were treated 

with vehicle or increasing doses of cytochalasin D (CytoD) (10 nM, 30 nM, 100 nM, and 300 

nM). (C): Endothelial monolayer was pre-incubated with ADM (100 nM) 30min prior to 

cytochalasin D (300 nM) treatment. (D): ADM (100 nM) administration was performed after 

maximal effect of cytochalasin D reached in ECIS. (B):  ECs were cultured on transwell filters 

and paracellular permeability for 40kDa FITC-dextran was determined at different time points. 

(For ECIS, n=8, mean ± SEM; for FITC-dextran assay: n=6, mean ± SEM) 
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5.6.3. Effects of ADM on VE-PTP/VE-Cadherin complex  

Stability of the VE-cadherin-catenin complex is important for endothelial 

permeability (Vestweber, 2008). Increased tyrosine phosphorylation of various 

components of the VE-cadherin-catenin complex is correlated with the decrease 

of VE-cadherin-mediated adhesion. Vasoactive stimuli, such as histamine, 

thrombin, VEGF and TNFα, have in common that they induce phosphorylation 

of the VE-cadherin-catenin components and thus lead to destabilization of the 

complex (Angelini et al., 2006; Vestweber, 2008). An important regulator of this 

phosphorylation is the vascular endothelial protein tyrosine phosphatase (VE-
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PTP), which is associated with the Angiopoietin-1 receptor (Tie 2) and VE-

cadherin. The work by Nottebaum et al. demonstrates the important role of VE-

PTP in endothelial cell contact integrity. Down-regulation of VE-PTP expression 

inhibits VE-cadherin-mediated adhesion and thereby increases endothelial cell 

permeability and enhances leukocyte transmigration (Nottebaum et al., 2008). 

The importance of VE-PTP on regulation of cell-cell junctions raises the idea 

whether ADM mediates its regulatory effects in endothelial barrier function via 

action on VE-PTP. 

 

As previously reported, docking of lymphocytes to TNFα-stimulated endothelial 

cells leads to dissociation of VE-PTP from VE-cadherin and is followed by 

destabilization of the endothelial barrier function (Nottebaum et al., 2008). A co-

immunoprecipitation (CoIP) approach was performed to detect association and 

dissociation of VE-PTP from VE-cadherin in endothelial cells. Mouse brain 

endothelial cells bEnd.5 which expressed high level of ADM receptor (CRLR, 

RAMP2, and RAMP3) (see Figure 6 ) were chosen for this assay due to the 

availability of antibodies for mouse VE-PTP. Ovalbumin-specific antigen-

stimulated T-lymphocytes were freshly prepared from mice and allowed to bind 

to the TNFα-stimulated endothelial cells for 10 min, and thereafter were 

completely removed before lysing endothelial cells for CoIP, in order to avoid 

degradation of VE-cadherin by neutrophil proteases during the experimentation 

(Moll et al., 1998). Endothelial cell lysates were immunoprecipited by VE-PTP 

antibody and the amount of coprecipitated VE-cadherin with VE-PTP was 

visualized in immunoblots by use of a specific anti VE-cadherin antibody. 

Aliquots of total cell lysates were subjected to immunoblots for VE-cadherin and 

were handled in the same way as the aliquots subjected to 

immunoprecipitations during the entire experiment, to exclude proteolysis as a 

potential reason for weakened VE-cadherin signaling. Immunoprecipitation of 

cell lysates with no antibody and isotype control antibody served as negative 

controls to exclude unspecific binding of antibodies. As shown in Figure 37A , 

the amount of immunoprecipitated VE-PTP (middle panel) and control VE-

cadherin in total cell lysates (bottom panel) was at the same level in all 

samples, allowing a quantitative analysis of coprecipitated VE-cadherin (top 

panel). Upon docking of T-cells to the endothelial cells, the amount of 
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coprecipitated VE-cadherin was reduced to approximately 50%. Incubation of 

endothelial cells with ADM increased the amount of coprecipitated VE-cadherin 

to levels above control which was reduced to control level upon docking of T-

cells to endothelial cells. In conclusion, treatment of endothelial cells with ADM 

prior to exposure to T-cells could strengthen the associated VE-cadherin to VE-

PTP but could not abolish the T-cell induced dissociation of VE-PTP from VE-

cadherin.  

 

As another stimulus that leads to dissociation of the VE-PTP/VE-cadherin 

complex, VEGF was added to the starved endothelial cells for 30 min, and 

washed away before lysing endothelial cells for CoIP. As described above, 

endothelial cell lysates were immunoprecipited by VE-PTP antibody and the 

amount of coprecipitated VE-cadherin with VE-PTP was analyzed in 

immunoblots (Figure 37B) . The amount of immunoprecipitated VE-PTP (middle 

panel) and control VE-cadherin in total cell lysates (bottom panel) were at the 

same level in all samples, allowing a quantitative analysis of coprecipitated VE-

cadherin (top panel). Stimulation of endothelial cells with VEGF reduced the 

amount of coprecipitated VE-cadherin to more than 50%. Incubation of 

endothelial cells with ADM increased the amount of coprecipitated VE-cadherin 

above control level, which was reduced to control level after VEGF stimulation. 

Also treatment with FSK increased the amount of coprecipitated VE-cadherin to 

above control level. VEGF stimulation after pre-treatment with FSK resulted in a 

reduction close to control levels. In conclusion pre-treatment of endothelial cells 

with FSK like ADM led to an increase of the VE-PTP/VE-cadherin complex in 

endothelial cells which was still sensitive to T-cell and VEGF induced 

dissociation. However the level of VE-PTP/VE-cadherin complex could be kept 

at normal levels. That the effect of ADM can be mimicked by FSK demonstrates 

its dependeny on cAMP mediated downstream signaling.  
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Figure 37 Effects of ADM on complex of VE-PTP and V E-Cadherin  

(A):  Mouse T-cells were added to overnight TNFα stimulated bEnd.5 cells. 10 min later, T-cells 

were removed by washing with PBS, and VE-PTP was immunoprecipitated (middle) and 

coprecipitated VE-cadherin (top) was analyzed in immunoblotting. Immunoprecipitation of cell 

lysates with no antibody (VE-PTP-/-) and isotype control antibody (IgG) served as negative 

controls to exclude unspecific binding of antibodies. The expression level of VE-cadherin in total 

cell lysates (bottom) was immunoblotted to exclude degradation of VE-cadherin during the 

experimentation. (B): 100 ng/ml VEGF was added to bEnd.5 cells for 30 min and cells were 

lysed for immunoprecipitation of VE-PTP (middle). Co-precipitated VE-cadherin (top) and 

expression levels of VE-cadherin in total cell lysates (bottom) were analyzed by immunoblotting. 

Molecular weight markers (kDa) are indicated on the left. 
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6. DISCUSSION 

Vascular endothelium forms a semi-permeable barrier regulating the trafficking 

of macromolecules and blood cells across the blood vessel wall. Disruption of 

the endothelial barrier contributes to tissue edema and leukocyte extravasation, 

which are hallmarks of inflammation. The data from the present studies confirm 

the potent anti-edematous and anti-inflammatory effects of ADM in vitro and in 

vivo, and are in support of ADM as an attractive therapeutic target for 

inflammatory diseases. These effects of ADM are based on direct regulation of 

dynamic and static functions of the cytoskeleton (actomyosin-based 

contractility, cortical actin stability), and integrity of cell-cell junctions (VE-

PTP/VE-cadherin interaction), rather than on interference with specific signaling 

mechanisms of different inflammatory stimuli. Increase of intracellular cAMP is 

the most important downstream signaling event of ADM receptor activation in 

endothelial cells. As all barrier-protective effects of ADM can be mimicked by 

FSK, no other pathway than the cAMP-dependent pathway is likely to contribute 

to these effects. Dissection of the downstream cascade by means of cAMP 

analogs, specific for PKA and Epac-Rap1 signaling, demonstrates that both 

pathways are equally effective with respect to permeability. In contrast, 

granulocyte transmigration is only reduced by PKA activation, which decreases 

myosin light chain phosphorylation linking effects of ADM on leukocyte 

extravasation to modulation of the contractile apparatus of the endothelial cell. 

6.1. Effects of ADM in response to inflammation 

6.1.1. Effects of ADM on endothelial permeability 

The in vitro-ECIS methodology enables to show changes of electric resistance 

in endothelial cells in real time. As transendothelial electric resistance (TEER) is 

a surrogate for endothelial permeability, in addition, macromolecular 

permeability was directly determined in a second model in which labeled 

dextran was used as a tracer for permeability. Results from both systems are in 

line with the previous observations that ADM protects barrier permeability 
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seemingly in a way that is independent of stimuli (thrombin, VEGF, histamine, 

LI-1β, LPS, and TNFα) (Hippenstiel et al., 2002; Dunworth et al., 2008). 

Interestingly, ADM is therapeutically active even after effects of stimuli on 

permeability are fully established. As evident from ECIS data, the effects of 

ADM mainly consist in shifting endothelial resistance to higher levels rather than 

interfering with the stimulus induced reduction of TEER itself. It may be 

concluded that ADM exerts its effects via modulation of the factors determining 

endothelial permeability rather than counteracting specific signaling 

mechanisms induced by the different stimuli. 

 

To investigate whether the in vitro-situation could be translated into the in vivo-

models a modified Miles assay was applied. The Miles assay is a commonly 

used method to give information about the direct actions on vascular 

permeability in the skin using histamine as a short-acting agent causing 

microvascular leakage. Histamine contributes to vascular leakage in the course 

of acute inflammation associated with trauma, burns, and allergy. In line with in 

vitro-data, ADM reduces basal permeability, as well as antagonizes 

hyperpermeability induced by histamine in the skin of both rats and mice. It is of 

note that our present finding is in contradiction with previous reports (Grant et 

al., 2004; Tam et al., 2004), in which increased vascular permeability in the skin 

of mice after ADM administration was described. However, differing from our 

assay, ADM was directly injected into the skin of mice instead of intravenous 

administration, which might have caused increased vessel recruitment which 

potentially was misinterpreted as direct hyperpermeability (Grant et al., 2004; 

Tam et al., 2004). ). The anti-edematous effect of ADM in the Miles assay is the 

first in vivo-finding that demonstrates its direct action on basal vascular 

permeability rather than that on inflammatory disturbed barrier function. 

Moreover, in the LPS-induced lung injury model, ADM treatment reduces lung 

weight and protein contents in BAL fluid, which displays the anti-edematous 

action of ADM under inflammatory conditions. These findings substantiate that 

ADM stabilizes endothelial barrier function also in vivo and represents a 

strongly anti-edematous principle. 
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6.1.2. Effects of ADM on granulocyte extravasation 

Migration of leukocytes from the blood stream into the tissue at sites of 

inflammation is a key process of the immune system important for the clearance 

of infections and apoptotic cells. However, excessive or inappropriate 

translocation of leukocytes can contribute to pathological processes, such as 

atherosclerosis, multiple sclerosis, and rheumatoid arthritis. Overshooting 

leukocyte transmigration, predominantly of neutrophil granulocytes (PMN), is a 

hallmark of acute lung injury and accompanies disrupted endothelial barrier 

function. In the pre-experiment, the transmigrated leukocytes through TNFα 

stimulated HUVEC monolayer or in LPS-injured lung are mostly PMN (>95%). 

Thus, in the further experiments only this cell population was considered and 

discussed. ADM significantly prevents the TNFα-induced PMN transmigration. 

Notably, this is the first report about the direct effect of ADM on granulocyte 

extravasation in an in vitro-study, which may explain the beneficial effects of 

ADM observed in numerous in vivo-inflammatory models, in addition to its 

action on permeability. This finding is consistent with reduced white blood cells 

in BAL fluid in LPS-induced mouse models of acute lung injury.  

6.1.2.1. Direct actions of ADM on human neutrophils 

Neutrophils play an important role in the inflammatory reaction, such as acute 

lung injury. In animal studies of acute lung injury, both the lung tissues and 

bronchoalveolar lavage fluid exhibit dramatic neutrophil infiltration. Bacterially 

derived chemoattractants, such as LPS and fMLP, are shown to be able to up-

regulate CD11b/18 expression on PMN and ICAM-1 expression on endothelial 

cells, thus facilitating adhesion of neutrophils to endothelium and migration into 

inflamed tissue (Smith 1993). By using cAMP analogous Bt2cAMP in mouse 

lymphoid cell line and human PMNs, elevation of cAMP inhibits chemoattractant 

stimulation of α4β1-integrin in lymphoid cells, as well as β2-integrin triggering in 

neutrophils (Laudanna et al., 1997). This anti-adhesive effect of cAMP is 

downstream of RhoA dependent integrin-mediated adhesion (Laudanna et al., 

1997). However, in the transmigration assay used in the present study, ADM 

had no effects on adhesion of human PMNs to TNFα-stimulated HUVECs. 
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Notably, this adhesion assay was performed under static conditions. In vitro-

assays under flow conditions may give rise to different results.  

 

In the present study, the primary endothelial cells, HUVEC and HLMEC, 

expressed high levels of CRLR and RAMP2 (ADMR-1), which was in line with 

previously published reports (Wunder et al., 2008; Aslam et al., 2010). In mouse 

brain endothelioma cells (bEnd.5), CRLR, RAMP-2, and RAMP-3 (ADMR-1 and 

-2) are highly expressed. Similarly, CRLR, RAMP-2, and -3 (ADMR-1 and -2) 

are present in human PMN. While the expression level of CRLR and RAMP-2 in 

human PMN is comparable to that in human endothelial cells, RAMP-3 mRNA 

which is not detectable in endothelial cells is also abundantly expressed in 

human PMN. Despite the abundant expression of ADM receptor mRNAs, no 

functional cAMP signaling could be demonstrated in human PMN. FSK, 

however, induced cAMP albeit at higher concentrations than in endothelial cells 

and with lower efficacy. Increased intracellular cAMP in PMN is reported to 

antagonize fMLP-stimulated up-regulation of CD11b/18 as well as decreased 

bronchial epithelial cells (Derian et al., 1995; Friedman et al., 1998). ADM is 

also reported to suppress fMLP-induced up-regulation of CD11b/18 of human 

neutrophils, in a cAMP/PKA dependent manner (Saito et al., 2001). However, in 

the MPO activation assay neither ADM nor FSK had any influence on either 

fMLP or C5a activated PMNs. There was also no effect on CD11b expression 

on PMN after treatment with ADM by use of FACS analysis.  

 

Consistently, while transmigration of PMN through the HUVEC monolayer was 

significantly inhibited by treatment of HUVECs with ADM, pretreatment of PMN 

with ADM had no effects on their transmigration. Altogether these observations 

provide evidence that prevention of TNFα-induced granulocyte transmigration 

was rather mediated by direct action of ADM on endothelial cells than on 

granulocytes. 

6.1.2.2. Effects of ADM on gene expression of endothelial adhesion 

receptors 

The primary element of leukocytes transmigration is the interaction between 

leukocytes and endothelium, which is facilitated by adhesion proteins from both 



DISCUSSION   117 

endothelial cells and leukocytes, as well as by direct signaling exchange via 

adhesion proteins and cytokines (Panes & Granger, 1998). Rolling adhesion 

occurs when leukocytes first capture from the bloodstream and loosely tether to 

the endothelial cells lining the blood vessel wall due to transient selectin 

mediated weak interactions between endothelial cells and leukocytes (Barreiro 

et al., 2004). Upon this rolling adhesion step, leukocytes slow down to pass 

through the blood vessel, which allows binding to endothelial cells and exposure 

to a local environment that initiates the activation step. This activation step is 

triggered by chemokine signals, such as TNFα. In the next step, firm adhesion 

of leukocytes to the surface of endothelial cells is mediated through the 

interaction of Ig-family adhesion molecules, such as ICAM and VCAM on 

endothelial cells, and activated integrins on leukocytes. Activation and gathering 

of endothelial cell adhesion molecules trigger a variety of signals within the 

endothelial cells and facilitate progression to the final diapedesis step, in which 

immune cells enter to inflammatory sites in infected tissue along a cytokine 

gradient.  

 

In lymphatic endothelial cells, a genome-wide Microarray-analysis demonstrates 

that ADM profoundly suppresses gene expression of cell adhesion receptors 

and inflammatory factors, such as ICAM-1, VCAM-1, E-selectin, IL-8, and 

chemokines (Jin et al., 2011). Additionally, by using QRT-PCR and flow 

cytometry analysis, ADM dose-dependently suppresses the TNFα -induced 

mRNA and protein expression of ICAM-1 and VCAM-l in lymphatic endothelial 

cells (Jin et al., 2011). In HUVECs, ADM inhibits VEGF-stimulated ICAM-1, 

VCAM-1, and E-selectin mRNA expression through a phosphatidylinositol 3'-

kinase/Akt pathway, and reduces VEGF-induced endothelial adhesiveness for 

leukocytes (Kim et al., 2003). However, controversial results are shown in the 

studies from Hagi-Pavli and colleagues: ADM up-regulates ICAM-1 expression 

in oral keratinocytes via a cAMP- and NFκB-involved pathway, explaining the 

immunostimulatory role of ADM in oral muocsa and skin (Hagi-Pavli et al., 

2005). In addition, ADM is shown to induce cell surface expression of the 

adhesion molecules E-Selectin, VCAM-1, and ICAM-1 on HUVEC in a cAMP-

dependent manner (Hagi-Pavli et al., 2004).  
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In the Microarray analysis on HUVECs of the present study, down-regulation of 

adhesion molecules, such as ICAM-1, VCAM-1 and E-selectin, is observed 3 

hours after ADM administration. However, in the TaqMan®-QRT-PCR analysis, 

which provides more precise results than the microarray analysis, this 

observation on gene regulation of ADM under basal condition as well as after 

TNFα stimulation could not be confirmed. TNFα stimulation induces up-

regulation of ICAM-1, VCAM-1 and E-Selectin, facilitating adhesion of 

neutrophils to endothelium and transmigration to inflamed tissue sides. Either 

long-term or short-term administration of ADM showed no effect on the TNFα-

induced increase of ICAM-1, VCAM-1 and E-Selectin. The same was observed 

for the protein expressions of ICAM-1, VCAM-1, and E-selectin on cell surface: 

TNFα increases protein expression of adhesion receptors on cell surface, which 

is not influenced by ADM.  

 

Moreover, in the leukocyte transmigration assay, short term administration of 

ADM was already sufficient to inhibit leukocyte transmigration, while long term 

administration of ADM had no additional effects (data not shown). Therefore, it 

can be assumed that the effects of ADM on leukocytes transmigration are 

mostly based on its direct action on the dynamic regulation of this process 

rather than regulation of gene expression of adhesion molecules. 

6.1.3. Effects of ADM on endothelial cytoskeleton a nd junctions 

6.1.3.1. Effects of ADM on endothelial cytoskeleton 

Endothelial cell contractility driven by the mechanochemical interaction between 

actin and myosin is of vital role in regulating vascular contact integrity. The 

contractility is characterized by the formation of stress fibers, bundles of actin 

filaments associated with nonmuscle myosin II (Wojciak-stothard & Ridley, 

2002), and triggered by the phosphorylation of MLC, inducing myosin-actin 

cross-bridge cycling.In a simplified view contraction leads to dissociation of VE-

cadherin (which is anchored to the actin cytoskeleton) from its adjacent partner 

thus forming inter-endothelial gaps (Garcia et al., 1995). In the present study, 

ADM was shown to prevent thrombin- induced stress fiber formation and 

retraction of cell mass toward the center and prevented endothelial barrier 
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disruption, visualized by preserved VE-Cadherin lining at the cell borders. 

Consistent with these immunofluorescence study observations, ADM abolished 

the thrombin-induced MLC phosphorylation, indicative of reduced actomyosin 

based cellular contractility. The observation that ADM significantly relaxed 

endothelial contractility is in line with previous reports (Hippenstiel et al., 2002). 

However, in the endothelial cells with disrupted actin cytoskeleton triggered by 

cytochalasin D, ADM still remained its barrier protective effects, correlated with 

the increased TEER, reduced macromolecular permeability, as well as linear 

VE-cadherin distribution at the cell borders. This data implicate that the effects 

of ADM regulating endothelial barrier function in endothelial cells are at least 

partly cytoskeleton-independent.  

6.1.3.2. Effects of ADM on endothelial cell-cell junctions 

Amounting data from the literature reveal a fundamental role of ADM in 

regulating the organization of junctional proteins in particular supporting the 

ability of VE-cadherin to associate with peripheral cortical actin even after 

stimulation with thrombin, hydrogen peroxide and S. aureus α–toxin 

(Hippenstiel et al., 2002; Brell et al., 2005; Hocke et al., 2006). Moreover, 

concerning the blood brain barrier function, in primary brain microvascular 

endothelial cells of rats, ADM is shown to up-regulate expression of claudin-5 

(Honda et al., 2006). Additionally, in a recent study in lymphatic endothelial 

cells, ADM stimulation causes a reorganization of the tight junction protein ZO-1 

and the adherens protein VE-cadherin at the plasma membrane, independently 

of changes in junctional protein gene expression (Dunworth et al., 2008).  

 

The stability of VE-cadherin-catenin complex is dependent on its tyrosine 

phosphorylation status. Increased phosphorylation is correlated with the 

decreased adhesion. The vascular endothelial protein tyrosine phosphatase 

(VE-PTP), an endothelial membrane protein associated with VE-cadherin is 

known as an important regulator of this tyrosine phosphorylation thereby 

interfering with endothelial permeability and granulocyte extravasation in vitro 

and in vivo (Nottebaum et al., 2008; Broermann et al, 2011). Docking of 

neutrophil granulocytes or lymphocytes to TNFα-stimulated endothelial cells 

was shown to dissociate VE-PTP from VE-cadherin, thus leading to vascular 
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leakage (Nottebaum et al., 2008). Down-regulation of VE-PTP expression 

increased endothelial cell permeability, enhanced leukocyte transmigration, and 

inhibited VE-cadherin-mediated adhesion (Nottebaum et al., 2008). In the 

present CoIP study, ADM was demonstrated to strengthen the association of 

VE-cadherin to VE-PTP, which might explain the stabilization of ADM on basal 

barrier function. However, ADM could not completely abolish the VEGF or 

lymphocyteinduced dissociation of the VE-PTP/VE-cadherin complex. Notably, 

the present study highlights at the first time that ADM stabilizes the VE-cadherin 

junctional complex via its action on the VE-PTP/VE-cadherin association.  

6.2. Cellular signalling of ADM: the cAMP-dependent  pathway 

ADM is a member of the CGRP super family and exerts its biological actions 

through binding to a CRLR/RAMP-2 and -3 receptor complex. RAMPs are 

essential for translocation of CRLR from the endoplasmic reticulum to the cell 

surface and regulate receptor specificity, ligand affinity, and receptor 

desensitization (McLatchie et al., 1998). The CRLRs and RAMPs are reported 

to play a role in the development and integrity of vasculature (Dackor et al., 

2006). Despite different tissue distribution of RAMPs isoforms, there are still no 

pharmacological differences between ADM-1 and -2 receptors to be observed 

so far. However, large tissue-specific analysis of the human and mouse 

transcriptomes shows that expression of RAMP2 is among the top 10 genes 

correlated with the expression pattern of CRLR, suggesting that most CRLR is 

coupled to RAMP-2 as a functional ADM receptor (Su et al. 2002; Gibbons et 

al., 2007). CRLR belongs to the super family of seven transmembrane GPCR 

and undergoes conformational changes resulting in coupling to cholera toxin-

sensitive Gs protein, activating adenylate cyclase and thus increasing second 

messenger cAMP (Mittra et al., 2006; Shimekake et al., 1995). 

6.2.1. The cAMP signaling in endothelial barrier fu nction 

The intracellular second messenger cAMP is involved in a multitude of 

biological functions, ranging from metabolism, gene expression, cell division 

and growth, cell differentiation and apoptosis, as well as secretion and 
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neurotransmission. A large number of studies extensively document that 

stimulation of cAMP signaling stabilizes endothelial barrier function (Stelzner et 

al., 1989). However, several studies show the divergent effect of cAMP in 

endothelial monolayers of coronary artery origin (e.g. rat, swine, and guine pig) 

(Hempel et al., 1996; Noll et al., 1996; Watanabe et al., 1992), as well as in 

microvessels from the coronary system (Huxley et al., 1997), in hamster cheek 

pouch (Gawlowski & Duran, 1986), and adipose tissue (Sollvei & Fredholm, 

1981). In the study of Bindewald and colleagues, using adenosine analogs, beta 

receptor agonists and FSK the opposite response to cAMP in microvascular 

coronary endothelial cells (destabilization) and macrovascular aortic endothelial 

cells (stabilization) are observed and further analyzed (Bindewald et al., 2004). 

In both endothelial cells, contractile elements have identical response to cAMP, 

reducing phosphorylation status of MLC via activation of MLCP. However, in 

coronary endothelial cells, but not in aortic endothelial cells, an additional 

cAMP-mediated effect, delocalization of VE-cadherin and paxillin from cellular 

adhesion complexes, overrules cAMP-mediated relaxation effect on contractile 

elements and provokes a divergent effect on endothelial barrier function. This 

effect was most likely due to the loss of matrix adhesion rather than to the loss 

of intercellular barrier integrity and the in vivo-relevance is not established yet. 

 

In the present study, the cAMP elevating agent FSK like ADM showed in lung 

microvessel endothelial cells and umbilical venous endothelial cells 

concordantly stabilizing effects on barrier function, as reflected by increased 

electrical resistance, decreased endothelial permeability, and inhibited 

extravasation of granulocytes. Similar effect on endothelial barrier function was 

also observed by using unspecific PDE inhibitor IBMX (data not shown). The 

effects of FSK could be synergistically increased by IBMX (data not shown), 

underlining the robustness of pulmonary microvascular and umbilical vein 

endothelial cells as in vitro-model for the barrier stabilizing effect of cAMP in 

endothelial cells of different origins. 
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6.2.2. Correlation of ADM effects with cAMP signali ng 

Driven by the fact that FSK, a direct activator of adenylate cyclase, although 

inducing much higher cAMP levels than ADM was less effective with respect to 

permeability it has been discussed that ADM may cause its effect also via 

cAMP-independent signaling  (Hippenstiel et al., 2002). However, the precise 

correlation of increased cAMP levels with their effects on endothelial barrier 

functions was not established in the studies. For this purpose, the 

pharmacology of ADM and FSK was re-evaluated, and their effects were 

quantified by using the lowest effective doses and pEC50 values. Throughout 

all the tested models, ADM and FSK showed qualitatively identical effects: both 

of them activated cAMP signaling pathways demonstrated by the activation of 

PKA and Epac/Rap1. Furthermore, both ADM and FSK were capable of 

increasing electrical resistance, decreasing macromolecular permeability, and 

inhibiting transendothelial migration of leukocytes. On a molar basis 

equivalently active doses (either with respect to pEC50 or minimal effective 

dose), FSK and ADM differed from each other overall by the same factor 

(~1000) in different models. This finding points at cAMP as the common 

signaling pathway in regulating barrier function.  

 

When changes of cAMP (∆cAMP over baseline) induced by equally effective 

doses of ADM and FSK were compared it was demonstrated that FSK requires 

3-5-fold higher cAMP concentration than ADM to achieve comparable effects on 

endothelial barrier function and activation of downstream events. The question 

was raised whether this quantitative difference of ADM and FSK is due to the 

different distribution of induced cAMP in endothelial cells. In a report by Rich 

and colleagues, a compartmentalized model of cAMP distribution is proposed 

that distinguishes between the microdomain and cytosol compartments (Rich et 

al., 2000). By using the cyclic nucleotide-gated (CNG) channels as cAMP 

sensors, which allow the real-time localized measurement of cAMP 

concentration in single cells, it was demonstrated that cAMP produced by 

transmembrane adenylate cyclase accumulates near membrane surface, and 

its further diffusion into cytosol is suggested to be hindered by the endoplasmic 

reticulum (ER) and plasma membrane invaginations such as caveolae (Rich et 
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al., 2000). The microdomain compartment of cAMP and its restricted diffusional 

access to the cytosol facilitate rapid and efficient activation of downstream 

events and also facilitate differential regulation of cellular targets (Rich et al., 

2000). Cyclic AMP gradients with decreasing concentrations from the 

subplasma membrane space toward the cell center have protective effects with 

respect to endothelial barrier function (Sayner et al., 2011). In contrast, reverse 

cAMP gradients with increasing concentrations in cytosol alter cytoskeleton and 

cell shape, leading to cell rounding and thus disruption of endothelial barrier 

function (Hong et al., 2005; Dal Molin et al., 2006). Edema factor of Bacillus 

anthracis activates a calcium- and calmodulin-dependent soluble adenylate 

cyclase, catalyzing the production of cAMP at the peri-nuclear region, which 

ultimately leads to the formation of transendothelial cell tunnels, barrier break 

down and edema (Maddugoda et al., 2011). Both FSK and ADM activate 

transmembrane G-protein coupled adenylate cyclase and induce microdomain 

compartment of cAMP, protecting endothelial barrier function. However, location 

of ADM receptor (CRLR and RAMP2/3) might be in close proximity to the target 

proteins, allowing that induced compartmentalized cAMP more sufficiently 

activate downstream signaling. This could explain the rather low difference of 

factor 2 to 3 between the cAMP levels needed for establishing equivalent 

effects by ADM and FSK, respectively. Notably all effects of ADM could be 

mimicked by use of FSK and moreover much higher efficacy in most assay 

systems was obtained upon dose escalation of FSK. This was clearly correlated 

to the much higher cAMP levels that were induced after FSK dose escalation, 

while induction of cAMP was saturated on a rather low level after escalation of 

ADM concentrations. This might be due to the limited number of ADM receptors 

of the cell surface limiting the signaling input. On the other hand this finding 

strongly supports the concept that all barrier protective effects of ADM are 

related to signaling via cAMP. 

6.3. Impacts of PKA and Epac/Rap1 on ADM signalling   

In eukaryotic cells, cAMP mediates its biological function via two ubiquitously 

expressed intracellular cAMP receptors, the classic protein kinase A (PKA) as 

well as the recently discovered exchange protein directly activated by cAMP 
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(Epac). Data of the present study show that ADM like FSK activates both 

pathways: activation of PKA pathway demonstrated by phosphorylation status 

of vasodilator stimulated phosphoprotein (VASP) as well as activation of 

Epac/Rap1 detected by use of a Rap1-pulldown assay. In order to find out to 

what extent the individual pathways contribute to the anti-edematous and anti-

inflammatory effects of ADM, the pathways were dissected by use of pathway 

specific cAMP mimetics, “007” for the Epac/Rap1 pathway and Benz-cAMP for 

the PKA pathway. In the present study, specificity of tool compounds for their 

corresponding pathways was demonstrated: Benz-cAMP specifically activated 

PKA pathway demonstrated by phosphorylation status of VASP in HUVECs and 

phosphorylation status of CREB in luciferase transfected CHO cells, while “007” 

specifically activated the Epac/Rap1 pathway detected by use of Rap1-pulldown 

assay but not vice versa. 

 

The coexistence of two cAMP effectors, PKA and Epac, allows a more precise 

and integrated control of cAMP-mediated signaling in a spatial and temporal 

manner (reviewed by Cheng et al., 2008). Firstly, PKA and Epac pathways can 

play distinct roles in a variety of biological processes. Epac but not PKA can 

mediate the prostanoid-mediated anti-proliferative effects (Haag et al., 2008). 

Epac/Rap1 pathway is exclusively involved in cAMP-mediated regulation of 

monocyte adhesion and chemotaxis (Lorenowicz et al., 2006). PKA is 

exclusively involved in the PGE2-induced inhibition of collagen I expression, 

while inhibition of fibroblast proliferation is exclusively mediated by Epac1 

(Huang et al., 2007). PKA activation but not Epac, has inhibitory effect on 

contractile activity of lung fibroblasts (Kamio et al., 2007). Secondly, Epac and 

PKA may play opposing physiological roles in different cell types (Mei et al., 

2002). Thirdly and most frequently, PKA and Epac signaling are interconnected 

in many cellular processes (Bos, 2006). The cAMP-activated signal pathways 

are interconnected in the regulation of endothelial barrier function. However, the 

exact crosstalk between both signaling is still not well understood. Particularly, 

the impacts of PKA and Epac/Rap1 signaling in ADM signaling are unknown 

and therefore are intensely investigated in the present study.  
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6.3.1. Impacts of cAMP signaling on anti-edematous effects of ADM 

In the present in vitro-study, both pathways were demonstrated to be equally 

involved in effects on regulating permeability, characterized by increased 

electrical resistance and reduced macromolecular permeability. Consistently, 

both pathway activators prevented vascular basal permeability and also hyper-

permeability induced by histamine in vivo. This finding was consistent with the 

previous studies that both PKA and Epac/Rap1 pathways exhibited permeability 

stabilized function (Birukova et al., 2010; Aslam et al., 2010).  In human 

pulmonary artery endothelial cells (HPAEC), agents like Prostaglandin E2 

(PGE2), prostacyclin, and atrial natriuretic peptide (ANP), are shown to induce 

cAMP elevation and subsequently stabilize pulmonary endothelial barrier 

function through both PKA and Epac pathways (Birukova et al., 2007; Birukova 

et al., 2008). Rac GTPase is further identified as a convergence point of PKA 

and Epac/Rap1 induced endothelial barrier protection (Birukova et al., 2010). 

Both PKA and Epac can activate Rac-specific GEFs, Tiam1 and Vav2, and 

converge on Rac activation, resulting in enhancement of cortical actin and 

adherens junctions. Down-regulating Epac, Rap1, Tiam1 and Vav2 by using 

SiRNA technique, as well as inhibiting PKA activity by PKI, all decrease Rac1 

activation and cAMP-mediated endothelial barrier enhancement (Birukova et al., 

2010). However, in the present study, both pathway activators were shown to 

synergistically enhance endothelial barrier function in vitro. In the Miles assay 

although both compounds effectively prevented histamine-induced 

hyperpermeability even no further additive effect was achievable upon 

combination of the used doses which might be explained by having reached the 

maximum achievable effect with the doses used. However, the synergistic effect 

of PKA and Epac/Rap1 activators in vitro suggested that both pathways do not 

regulate barrier function by simply converging in a Rac-dependent mechanisms.  

Indeed, PKA was reported to reduce endothelial MLC kinase activity, leading to 

decreased MLC phosphorylation and relaxed cellular contractility in a Rac-

independent manner (Birukova et al., 2004a; Yuan et al., 1997). Through 

phosphorylation on VASP, PKA could cause structural relaxation of the actin 

cytoskeleton linked to tight junctions via VASP-ZO-1 complex, thus stabilizing 

endothelial barrier function (Comerford et al., 2002). On the other hand, 
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Epac/Rap1 might directly enhance barrier function in a way of Rap1-dependent 

assembly of adherens junction and tight junction complexes in epithelial cell 

lines (Takai & Nakanishi, 2003; Birukova et al., 2010).   

6.3.2. Impacts of cAMP signaling on effects of ADM regulating 

granulocyte extravasation 

In the present study, ADM was demonstrated to inhibit granulocyte 

extravasation via its receptor activation and accumulation of intracellular cAMP. 

However, while the PKA activator Benz-cAMP inhibits leukocyte transmigration, 

which is comparable with the effect of ADM, “007” is shown to have no effect in 

this process. Even the combination of Benz-cAMP and “007” had no additional 

inhibitory effects on granulocyte extravasation, as compared to single treatment 

with Benz-cAMP. In a previous study, activation of Rap1 GTPase was reported 

to inhibit granulocyte transmigration by improving endothelial barrier function, 

whereas inhibiting Rap1 activity led to increased leukocyte transmigration 

(Wittchen et al., 2005). Notably, in the in vitro-leukocyte transendothelial 

migration assay used in the study by Wittchen et al., differentiated HL-60 cell 

lines instead of freshly isolated human PMNs were used for transmigration 

through the HUVECs monolayer, which might explain the different results. In 

line with this finding, a PKA inhibitor abolished the inhibitory effect of ADM on 

granulocyte transmigration, while the PKA inhibitor alone had no effects on 

granulocyte transmigration. These data are in support of a crucial role of PKA 

signaling in ADM-mediated regulation of leukocyte transmigration.  

 

For the paracellular transendothelial migration of neutrophils, the sequential 

opening and re-annealing of endothelial cell-cell junctions are required. 

Neutrophils release granular contents containing digestive enzymes and 

produce cytotoxic agents (e.g. reactive oxygen species and cytokines), inducing 

junction dissociation triggered by phosphorylation, actin stress fiber formation, 

and actomyosin contraction, subsequently causing endothelial 

hyperpermeability (Yuan et al., 2012). This mechanical disruption of endothelial 

barrier function was initially believed necessary for this process.  However, this 

conventional concept, the coupling between granulocyte transmigration and 
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endothelial hyperpermeability, has been recently challenged and discussed 

(reviewed by He, 2010; Yuan et al., 2012). The process of a neutrophil moving 

through two adjacent endothelial cells was demonstrated not to be 

accompanied with tracer protein leakage (Lewis and Granger, 1988). Both 

neutrophil and endothelial cell membranes were observed to remain in close 

contact during transmigration process using an immunofluorescence 

microscopic approach (Carman et al., 2007; Carman and Springer, 2004). 

Recently, granulocyte transmigration and endothelial hyperpermeability were 

shown to be temporally separated in aseptic cutaneous wounds: 

hyperpermeability preceded transmigration by several hours, and vascular 

permeability increased approximately threefold faster as compared to the rate of 

PMN influx (Kim et al., 2009). Indeed, in the present study, although PKA and 

Epac/Rap1 pathway differently influence granulocyte transmigration, both 

pathway activators were shown to attenuate PMN-induced endothelial 

hyperpermeability in the same manner (detected in ECIS model).  

 

Adherence of neutrophils induces increase of intracellular calcium concentration 

and activation of MLC kinase in endothelial cells (Saito et al., 1998). 

Subsequently, the signaling activates endothelial contractile apparatus and 

causes paracellular gap formation, being a key determinant of leukocyte 

transendothelial migration in response to inflammation (Garcia et al., 1998).  

MLC kinase phosphorylates MLC on serine 19, which subsequently facilitates 

the interaction of myosin with actin, leading to the actomyosin based contractile 

response. In our study, the MLCK inhibitor (ML-9) and the intracellular calcium 

chelator (BAPTA/AM) were shown to sufficiently inhibit leukocyte transmigration. 

In addition to MLCK, Rho kinase on one hand phosphorylates MLC on serine 19, 

and on the other hand phosphorylates the myosin –binding subunit (MBS) and 

inactivates MLC phosphatase, being also crucial in regulating the 

phosphorylation status of MLC (Kawano et al., 1999; Amano et al., 1996). 

BAY77-7549, a potent and highly selective Rho kinase inhibitor (Kast et al., 

2007) was shown to inhibit leukocyte transmigration. These data were 

consistent with the previous findings, suggesting that neutrophil-dependent 

activation of cellular contractility, indicated by phosphorylation status of 

endothelial MLC, could be a key determinant to regulate transendothelial 
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migration of leukocytes (Saito et al., 2001; Saito et al., 1998). In the present 

study, PKA activation was shown to reduce the phosphorylation status of MLC, 

whereas Epac/Rap1 activation was shown to have no effects on the same. 

However, the different data were reported by Birukova et al: phosphorylation of 

MLC was decreased by both PKA and Epac/Rap1 pathway activators (Birukova 

et al., 2010). It is of note that in their study human pulmonary artery endothelial 

cells instead of HUVECs were used to analyze the contractile apparatus. In 

another study using HUVECs, PKA activation but not Epac/Rap1 was also 

demonstrated to inhibit thrombin-induced phosphorylation of MLC and MLCP 

regulatory subunit MYPT1, partly via inhibition of the RhoA/ROCK pathway 

(Aslam et al., 2010). It is still unknown why PKA and Epac differently regulate 

contractile apparatus of endothelial cells from different origins. However, 

leukocyte adhesion and inflammatory hyperpermeability mainly occur in the 

postcapillary venules. Therefore, the endothelial contractility in HUVECs might 

be more predictive for the extravasation of PMN in vivo. In summary the data 

provide evidence that inhibition of leukocyte extravasation after cAMP signaling 

is linked to the contractile apparatus of the endothelial cell via PKA activation 

and subsequently reduced phosphorylation of the myosin light chain. 

Furthermore, these data underscore the concept that endothelial 

hyperpermeability and PMN transmigration are independently regulated 

processes and that hyperpermeability is not a prerequisite for transmigration 

because effective inhibition by activation of the Epac/Rap1 pathway is 

completely insufficient to inhibit PMN transmigration. 

6.4. Role of cortactin in cellular signalling of AD M 

Cortactin is one of the most important cytoskeletal components, and is identified 

as an F-actin binding protein and Src substrate. It is an 80 to 85 kDa actin-

binding protein involved in cortical actin assembly and dynamic actin 

rearrangement (Ammer & Weed, 2008). Cortactin is ubiquitously expressed with 

the exception that in leukocytes the cortactin-related protein hematopoietic cell-

specific Lyn substrate 1 (HS1) is expressed instead (Kitamura et al., 1989). The 

multidomain scaffold protein structure of cortactin facilitates multiple signals at 

locations of rapid actin rearrangement, such as sites of leukocyte adhesion and 
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transmigration. Cortactin stimulates actin polymerization by binding to the 

Arp2/3 complex in the cortical actin networks. The tyrosine residues 421, 466, 

and 482 within this proline-rich region of murine cortactin are identified as 

important targets of Src tyrosine kinases (Huang et al., 1998). Mutation of 

tyrosine residues with phenylalanine was previously shown to impair endothelial 

cell migration, which demonstrated the importance of tyrosine phosphorylation 

of cortactin in cytoskeletal regulation (Huang et al., 1998). 

Initially, cortactin was observed as a regulator of dynamic cytoskeletal 

remodeling involved in cell mobility. Recently, the role of endothelial cortactin in 

leukocytes transmigration and barrier integrity has been recognized 

increasingly. Following leukocyte adhesion or upon antibody-induced clustering 

of E-selectin or ICAM-1, cortactin was previously identified to become tyrosine 

phosphorylated and associated with adhesion molecules in human endothelial 

cells (Durieu-Trautmann et al., 1994; Adamson et al., 1999; Tilghman & Hoover, 

2002). This study suggested the role of cortactin in leukocyte transmigration by 

regulating adhesion molecule clustering on endothelial cells. Furthermore, 

silencing of cortactin by small interfering RNA (siRNA) was observed to inhibit 

leukocytes transmigration through HUVEC monolayer, accompanied by 

reduced accumulation of ICAM-1 at sites of neutrophil attachment (Yang et al., 

2006 a, b; Schnoor et al., 2011). In vivo, neutrophil extravasation into the TNF-

stimulated cremaster was inhibited in cortactin-deficient mice, which was 

caused by enhanced rolling velocity and reduced adhesion in postcapillary 

venules (Schnoor et al., 2011). More in-depth, cortactin supported neutrophil 

rolling via β2-integrin ligands instead of endothelial selectins, and cortactin 

facilicited firm adhesion via reduced ICAM-1 clustering around neutrophils 

(Schnoor et al., 2011).  

In line with the previous reports, silencing of cortactin by SiRNA in vitro was 

shown to increase endothelial permeability and reduce leukocyte 

transmigration. The cortactin knockdown-induced hyperpermeability could be 

reversed by ADM, suggesting that the cortactin-independent pathway was partly 

involved in ADM signaling on regulating endothelial permeability. In contrast to 

endothelial permeability, down-regulation of cortactin expression decreased 
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transendothelial migration of human neutrophils and abolished the inhibitory 

effect of ADM. These data suggest for the first time a crucial role of cortactin in 

ADM signaling to regulate granulocyte extravasation. Again these findings are 

in line with the concept that ADM influences endothelial permeability by both 

actin-dependent and actin independent pathways while its effects on PMN 

transmigration are solely dependent on actin modulating effects. 

6.5. Therapeutical potential of ADM for inflammator y diseases 

ADM is a multifunctional peptide which is able to act as an autocrine, paracrine, 

or endocrine mediator in many important and interrelated biological functions 

under normal and pathological conditions. Our present preliminary data 

evidences the beneficial effects of ADM during inflammatory processes, 

suggesting its pharmacological potency to treat human inflammatory diseases. 

Despite the wide expression of ADM throughout different organs and tissues, 

the receptor of ADM is demonstrated to be highly expressed in microvessels of 

lungs (Harel et al., 2008). Due to its specific receptor distribution ADM might be 

in particular of benefit for patients with acute lung inflammatory diseases (e.g. 

ALI or ARDS). ADM has been tested in several small clinical trials in humans for 

its potent hypotensive effects (Del Bene et al., 2000; Nagaya et al., 2000; Oya 

et al., 2000; Lainchbury et al., 1997; Lainchbury et al., 2000; Meeran et al., 

1997). All these studies demonstrated the safety of the endogenous peptide 

ADM in humans, being at significant advantage as compared to the direct 

adenylate cyclase activator (forskolin) with strong anti-inflammatory effects in 

vitro. The colforsin daropate hydrochloride (water-soluble forskolin derivative) 

has been approved in Japan as positive inotropic and vasodilatory compound to 

treat ventricular dysfunction in patients undergoing coronary artery bypass 

grafting (Kikura et al., 2004). However, due to unspecific effects of cyclic AMP, 

a number of side effects were observed in clinical trials, including 

tachycardia/palpitations, premature ventricular constriction, headache, hot 

flushes, as well as abnormal laboratory results (elevated LDH level, proteinuria, 

thrombocytopenia).  Based on these considerations, the development of ADM 

as an orphan medicinal product to treat life-threatening ALI is currently 

supported by the recent positive opinion of the Committee for Orphan Medicinal 
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Products of the European Medicines Agency (see the report from European 

Medicines Agency, EU/3/10/744). 

. 
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8. APPENDIX 

Compounds Function Structure 

BAPTA/AM Intracellular calcium 

chelator 

[1,2-Bis(2-aminophenoxy)ethane-N,N,N,N’-

tetraacetic acid tetrakis(acetoxymethyl ester)]  

 

BAY77-7549 Rho kinase inhibitor [6-chloro-N4-{3,5-difluoro-4-[(3-methyl-1H-

pyrrolo[2,3-b]pyridin-4-yl)oxy]-phenyl}pyrimidine-

2,4-diamine] 

 

Benz-cAMP PKA activator [N(6)-benzoyl-adenosine-3',5'-cyclic 

monophosphate] 

 

FSK (forskolin) Adenylate cyclase [(3R, 4aR, 5S, 6S, 6aS, 10S, 10aR, 10bS)- 

6,10,10b-trihydroxy-3,4a,7,7,10a-pentamethyl-1-

oxo-3-vinyldodecahydro-1H-benzo[f]chromen-5-yl 

acetate] 
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IBMX Unspecific PDE 

inhibitor 

[3-Isobutyl-1-methylxanthine] 

 

ML-9 MLCK inhibitor [1-(5-Chloronaphthalene-1-sulfonyl)-1H-hexahydro-

1,4-diazepine hydrochloride] 

 

Rp-8-Br-cAMP PKA-inhibitor [8- Bromoadenosine- 3', 5'- cyclic 

monophosphorothioate, Rp- isomer] 

 

W54011 C5a antagonist [N-((4-Dimethylaminophenyl)methyl)-N-(4-

isopropylphenyl)-7-methoxy-1,2,3,4-

tetrahydronaphthalen-1-carboxamide, HCl] 

 

“007” Epac/Rap1 activator [8-(4-Chlorophenylthio)- 2'- O- methyladenosine- 

3',5'- cyclic phonophosphate] 
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