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Abstract

We describe the image of a cell in the Bialynicki-Birula decomposition of Gaussent
and Littelmann’s Bott-Samelson type variety, which is a desingularization of an affine
Schubert variety, in type A for two particular cases. In the first case, we take a one-
skeleton gallery, which is completely included in the dominant Weyl chamber. We
can show, that the closure of the image of the cells associated to galleries, that
belong to certain parts of the associated crystal, are in fact MV-cycles. In the
second case we take a gallery of type Nwj, which is completely included in the
dominant Weyl chamber. We generalize the notion of a Young tableau and use the
1:1 correspondance between tableaux and one-skeleton galleries to analyze, how the
associated cells behave under the bumping algorithm. Finally, we can show that
if and only if we take two words, equivalent under the Knuth relations, then the
closure of the images of the cells associated to the galleries coming from these word,
are the same. In addition, this closure is an MV-cycle. This allows a geometric
interpretation of the combinatoric Knuth relations in the plactic monoid.

Kurzzusammenfassung

Wir analysieren die Bilder der Zellen in der Bialynicki-Birula Zerlegung von Gaussent
und Littelmanns Bott-Samelson Auflésung von affinen Schubert Varietdten im Typ
A fiir zwei spezielle Félle. Im ersten Fall nehmen wir eine Eins-Skelett Galerie, die
vollsténdig in der dominanten Weyl Kammer liegt. Wir zeigen, dass die Abschliisse
der Bilder von Zellen von Galerien aus Teilen des dazugehorigen Kristallgraphen MV-
Zykel sind. Im zweiten Fall nehmen wir eine Galerie vom Typ Nwj, die vollstindig
in der dominanten Weyl Kammer liegt. Wir verallgemeinern den Begriff eines Young
Tableau und nutzen die 1:1 Beziehung zwischen Tableaux und Eins-Skelett Gale-
rien um das Verhalten der Zellen unter dem Bumping Algorithmus zu analysieren.
Letztendlich kénnen wir zeigen, dass wenn man zwei unter den Knuth Relationen
dquivalente Worter nimmt, dann und nur dann die Abschliisse der Bilder der Zellen,
die von den Galerien zu diesen Wortern kommen, dieselben sind. Zusétzlich handelt
es sich bei diesem Abschluss um einen MV-Zykel. Dies erlaubt eine geometrische
Interpretation der kombinatorischen Knuth Relationen im plaktischen Monoid.
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Introduction

In their paper “One skeleton galleries, the path model and a generalization of Macdon-
ald’s formula for Hall-Littlewood polynomials” ([GL11]), Gaussent and Littelmann
introduced the notion of one-skeleton galleries to give a direct geometric interpre-
tation of the path model. This interpretation allows to compute the coefficients of
the expansion of the Hall-Littlewood polynomials in the monomial basis. In their
article, they also describe a Bott-Samelson type variety of galleries to give a desingu-
larization of affine Schubert varieties. In this thesis, we will only consider the case G
being of type A. Let A be a dominant coweight and ) a combinatorial one-skeleton
gallery joining o and A. Let (7)) be the associated Bott-Samelson type variety
and 7w : X(y)) — X\ the desingularization map. By fixing a generic anti-dominant
coweight n : C* — T, we can consider a decomposition of ¥(v,) in Bialynicki-Birula
cells:

Cs = { e 2w | limnt)o = 5

where v is a combinatorial gallery of the same type es 7). But since the map = is
S Ly, (O)-equivariant, we can observe

w(Co) < {ye g | lmn(try —nf =V (),

where p is the target of 5. And since 7(Cys) is included in the Schubert variety X},
the set 7(Cjs) has to be included in an MV-cycle. In this thesis, we want to determine
particular cases in type A, in which the set 7(Cj) really is an MV-cycle, but for a
possibly smaller Schubert variety. In the first chapter, we will introduce the basic
notions for our group G. In addition, we will define affine Schubert varieties and
MV-cycles. In the second chapter, we characterizing the affine and the spherical
building. Then we will define one-skeleton galleries. We introduce the notion of
minimality and of positive foldings. We also describe a 1:1 correspondence between
(positively folded) one-skeleton galleries of the same type as v, and (semi-standard)
Young tableaux of shape A. By defining root operators we obtain a crystal structure
on the set X(7,) of combinatorial galleries of type v, starting in o. At the end, we
will cite results by John R. Stembridge, describing simply-laced crystals in general.
In the third chapter, we define the already mentioned Bott-Samelson type variety
and we will describe a cellular decomposition of this variety. We will quote a result
by Gaussent and Littelmann, giving an upper bound for the dimension of these cells.
In the forth chapter, we obtain a result about the dimension of these cells in type
A, giving the exact dimension of a cell Cs. We will consider a gallery §, which
is completely included in the dominant Weyl chamber. Then we will look at the
crystal associated to this gallery using the root operators defined by Gaussent and
Littelmann (JGLO05]). By using a result from Stembridge ([Ste03|), we achieve:

Corollary 4.2.3 Tf § is a gallery of type 7, such that for every j € {1,...,n} we
have f,;6 =0 and if &k 6 is defined, then m(Ce 5) is a MV-cycle of coweight (A, p).



In the last chapter, we will consider a dominant coweight A and an LS-gallery of
type va. By reading the associated Young tableau box by box, we obtain a new
gallery, which is not necessarily an LS-gallery. The cells associated to these galleries
will be in different Bott-Samelson type varieties, we want to relate the image of
these cells in the affine Grassmannian. This can be done inductively, by studying
how these images relate under the application of the bumping algorithm ([Ful97]).
To be more precise, we will generalize the notion of a tableau and allow columns,
which are not necessarily decreasing in length. Then we will consider the tableaux

T=T " |xTand Tp =T "L " |+ T,
-1 -1
i J
1+1] 141
iy iy

where T is achieved by bumping into the first column. If we denote §; the
gallery obtained by reading 77 box by box, do the gallery obtained by reading T5
columnwise and 7, 7’ the associated desingularizations, we obtain:

Lemma 5.2.5 We have the following inclusion
7(Cs,) C 7' (Cs,).

If we consider a dominant gallery v of type Nwq, ¢ a gallery in the crystal associated
to v and T the Young tableaux associated to &, we can divide T into a second part,
which is semi-standard and a first part, which is not. Let u be the target of §. By
gradually bumping the single boxes of the first part into the second part, we will
obtain a semi-standard Young tableaux ¢’ at the end and relate the image of the
cells of § and ¢’. We obtain:

Theorem 5.2.1 If and only if two words are equivalent under the Knuth relations,
then the closure of the images of the cells associated to two words are the same.
They form an MV-cycle of coweight (A, ), where p is their target and A is the shape
of the semi-standard Young tableau resulting from the bumping algorithm.



1 Affine Schubert varieties

We want to fix the notations for our group G, introduce affine Schubert varieties and
MV-cycle. For a reference see [Kum02| and [MVO07].

1.1 Notations for the group

Let G be a connected complex semisimple algebraic group. Let us fix a Borel sub-
group B C G and a maximal torus 1. We denote by B~ the opposite Borel group.
We denote the unipotent radicals of B and B~ by U and U~. Let Ng(T) be the
normalizer of T in G and the Weyl group of G and T is given by W = Ng(T')/T.

Ezample: Let G = SL,(C). The Borel subgroup B consists of the upper triangu-
lar matrices in SLy,(C), while the set of diagonal matrices in SL,(C) will form a
mazimal torus in G. The Weyl group in this case is isomorphic to Sy,.

The character group (respectively cocharacter group) associated to T is defined by
X = X*(T) = Mor(T,C*) respectively XV = X,.(T) = Mor(C*,T). We use the
notation p : C* — T, s+ s#*. We write ® and ®V for the root and coroot-system.
According to our choice of B we denote by ®* and ®~ the set of positive and negative
roots of G, and use the notation ®Y and ®Y for the corresponding subsets of the
coroots. We denote the set

Xi={eX| (N\a")>0, Vo' € ®)}
the dominant weights and the set
XY ={NeXV| (a,\)>0, Vaed,}

the dominant coweights. Let oy, ..., ay be the simple roots and let p be half the sum
of the positive roots. We denote by w; € XV the fundamental coweight corresponding
to ;. By l(w) we denote the length of a Weyl group element, i.e. the length of a
reduced expression w = S;,...8;,..

1.2 Schubert varieties

We denote O = C[[t]] the ring of complex formal power series and K = C((¢))
its quotient field. Let v : K* — Z be the standard valuation such that O =
{f €K |v(f)>0}. We call the quotient

g=G(K)/GO)

the affine Grassmannian. It can be seen that G(K) and G are ind-schemes and G(O)
is a group scheme (see [Kum02]).
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Ezample: Considering the ezample G = SL,,(C), we have G(K) = SL,(K), matrices
with entries in IC and determinant equal to 1.

The G(O)-orbits in G are finite dimensional quasi-projective varieties. Given a
A € XV we can view A as an element of G(K) and, when we do, we will use the
notation t*. By abuse of notation, we will also write t* for the corresponding class
in G. Let ev : G(O) — G be the evaluation map at ¢t = 0 and let B = ev"!(B) the
corresponding Iwahori subgroup. Then we have the following decompositions:

6= |J Bt*= (J GOX\

AexV /\exyr

The closure of an orbit Bt* is the Schubert variety X (\) = Bt*. Note that for A € XY
we have

G(O)t* = X (wo(X)),

with wp being the longest element in the Weyl group W. We will write X, for
X (wo(A))-

1.3 Affine Kac-Moody groups

We can naturally equip the field IC with the rotation operation v : C* — Aut(K), that
“rotates” the indeterminante: v(z)(f(t)) = f(zt). This action lifts to an operation
on the group G(K), 7¢ : C* — Aut(G(K)). Let us denote the semidirect product
C*x G(K) by LI(G(K)), the loop group corresponding to G. Since the action restricts
to an operation of O, we also get L(G(O)) = C* x G(O).

Let ﬁ(G) be the affine Kac-Moody group associated to the affine Kac-Moody
algebra

L(g) =g® K ®Cca Cd,

where 0 - Cc - g K & Ce - g ® K — 0 is the universal central extension of
the loop algebra g ® K and d denotes the scaling element. Let Pp C L(g) be the
“parabolic” subgroup 7~ (L(G(0))), then

G = G(K)/G(0) = L(G(K))/L(G(0)) = L(G)/Po.

We denote by N the subgroup of G(K) generated by N and T'(K) and let T C ?(G)
be the corresponding standard maximal torus. By A we denote its stabilizer in £(G).
The extended affine Weyl group can be described the following ways:

W = Nic/T ~ N/T.

Remark 1 The affine Weyl group can be realized as the semidirect product of
the classical Weyl group of G with the coroot lattice on which the Weyl group acts
naturally.
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1.4 MV-cycles

Inside the affine Grassmannian, we are interested in two types of orbits. It is clear
that G(O) acts on G by left multiplication. As already mentioned in section 1.2, these
orbits are finite dimensional and can be indexed by the set of dominant coweights:

G= |J GOy

\%
Aexy

We will denote the G(O)-orbit by Gy = G(O)t*. The second type of orbits we are
interested in are the semi-infinite orbits S¥ for v € XV and w € W. They are defined

as
SY = wU~ (K)w 1

and we denote SI? by S,. We have well known closure relations for both types of
orbits, see [MVOT7].

Definition 1.4.1 ([And03],§5.3, Def. and [Kam10],2.2) Let A € XY and p € XV. If
the intersection Gy NS, is not empty we call the irreducible components of Gy N S,
the MV-cycles of coweight (X, ).

Mirkovic and Vilonen showed, that the collection of all MV-cycles of coweights
(A\,v) for v € XV form a natural basis of the irreducible representation V() for
GV of highest weight \, where GV is the Langlands dual group of G. In addition,
the MV-cycles of coweight (A, v) span the weight space of the coweight v. The
geometric Satake correspondence identifies the underlying space of the irreducible
rational representation V() with highest weight A with the intersection cohomology
of X and the MV-cycles afford a basis of this intersection cohomology.



2 Buildings and galleries

In this chapter, we will introduce the affine and spherical building. Then we can
define our main object, a one-skeleton gallery in the affine building. We will introduce
the notion of a minimal and positively folded one-skeleton gallery. Finally we define
root operators on the set of combinatorial galleries of a given type, that start in o,
similar as in Littelmann’s path model ([Lit95]). At the end we will state some of
Stembridge’s results (|Ste03]) about simply-laced crystals.

2.1 Buildings

Given a root and coroot datum, we associate to it the real vector space A = XV ®@7zR
together with the hyperplane arrangement defined by the set {(a,n) | a € ®,n € Z}
of affine roots. The couple («,n) corresponds to the real affine root a + nd with
0 being the smallest positive imaginary root. To an affine root (a,n) we associate
the affine reflection sq, @ @ — o — ((a,2"))a" and the affine hyperplane Hy,, =
{reA| {a,2V) +n=0}. We write

Hf, ={zeA| (a,z")+n>0}
for the corresponding closed half-space and analogously

H ,={zeA| {a,2¥)+n <0}

an —
for the negative half space.

Definition 2.1.1 We call the irreducible components of

A- |J Hao

acdt

open chambers and their closures closed chambers, Weyl chambers or just chambers.
An open alcove is an irreducible component of

A‘_ LJ }an,
(,n)ed+xZ

its closure is denoted as a closed alcove or just alcove.

It is well known, that the Weyl group W can also be described as the finite sub-
group of GL(A) generated by the reflections sy, € @, the affine Weyl group W*®
can be described as the group of affine transformations of A generated by the affine
reflections sq p, (@, n) € ® X Z. A fundamental domain for the action of W on A ist
given by

Ct={zecAl {(a,zV)>0, Vacdt}= () Hf,

acdt
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which we denote by the dominant Weyl chamber. Similarly the fundamental alcove

Ap={zeA|0<(a,2")<1, Vaed}= (| Hf,n () HI,
acdt aed n>0

is a fundamental domain for the action of W% on A.

Oéz al

Figure 2.1: Example in the case A

Definition 2.1.2 A subset F' of A, which can be written as

F= ﬂ HS,,
(B,m)

where we choose Hf , for every pair (B,n),B € ®T,n € Z as either the hyperplane,
the positive or the negative halfspace, will be called a face. The corresponding open
face F° will be the subset of F' obtained by replacing the closed affine halfspaces by
the corresponding open affine halfspaces.

The support of a face F' is the affine span (F°) 4 = (F),g, the dimension of a
face is the dimension of its support. We call the support of a codimension one face
a wall of an alcove. A face of dimension one in A is denoted an edge and a face of
dimension zero a wertex. For any vertex v let &, C ® be the subrootsystem of all
roots a such that v € H,, for some integer n. We call a vertex v special if &, = ®.

Ezample: In the case of G being of type A, every vertex is special.

A sector with vertex v € A is a closed chamber translated by v, i.e. there exists
a closed chamber C such that

s:={\N€A|X=v+zforsomezecC}.
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We will write —s for the sector
—s=v—C={p€A|pu=v—uzforsomexecC}.
We can translate a sector s with vertex V by p — v, where p € A and get:

s(u) ={ANe€ A | A= (u—r)+z for some z € s}
={ €A |X=p+zfor some z € C}.

Let N = Ng(T) be the normalizer in G of the fixed maximal torus 7' C G. The
Weyl group W of G is isomorphic to N/T. For any real number r € R we set

Unr = {1} U{za(f) | £ € K5 0(f) =1} C Ua(K).

For any non-empty subset Q C A let [,(2) = — inf (o, x) and set

f
e
Uq := <Ua7la(ﬂ) o€ <I>> c G(K).

Let N(K) be the subgroup of G(K) generated by N and T'(K) and we define the
affine building J* as
G(K) x A/ ~,

where
(g,2) ~ (h,y) if 3n € N(K) such that nz =y and g~ 'hn € U, := Utary-

Using the injective and N (K)-equivariant map A — J% = +— (1,z) we can identity
A with its image in J® Any subset A of J® of the form gA for some g € G(K) is
called an apartment. Similarly, we extend the notion of a face F’ and a chamber C.

We also want to look at another building, the residue building. Let V be a vertex
of 7% and Jy; be the set of all faces F', such that V' C F. The simplicial structure is
given by the relation F' C F’, for two faces F, F’ such that V C F and V C F'. If Hy
is the connected reductive subgroup of G with root system @y, then the structure
of the spherical building on the set of all parabolic subgroups of Hy is isomorphic
to the one on Jj}. For any face I of J° containing V', we denote the associated face
in Jy by Fy. Given a sector s = V' 4+ C'in A, one associates the chamber sy of Ay
in the following way: Let A D V be the unique alcove in A such that A°Ns® # (),
then sy := Ay. Let C"j,E be the positive (resp. negative) chamber in Ay associated
to V + C*.

2.2 One-skeleton galleries

Compared to a gallery of alcoves, a one-skeleton gallery will be a series of edges in
J*%, where two subsequent ones will share a vertex. We will denote combinatorial
galleries, those, that stay in the apartment A.

Definition 2.2.1 ([GL11|, Def. 5) A sequence vy = (Vo C Ey D Vi C E1 D ... D
V., C E, D Vy41) of faces in A is called a combinatorial one-skeleton gallery if

e the faces V; are vertices in A;
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o the faces E; are edges in A;

e the vertex Vj (the source of the gallery) and the vertex V,;1 (the target of the
gallery) are special vertices.

Let v =Vy C Ej O ... C E{ D V/,;) be another gallery such that Vij = V,11, then
we can concatenate these galleries to get

¥y =(VWCED..oOV, CE, DV, =Vy CEyD...C E;DV/,).

We will also concatenate galleries, if Vjj # V41, in this case we take v %+’ to be the
concatenation of v and the translated gallery v + (V41 — Vj).

We want to associate a combinatorial one-skeleton gallery to a fundamental co-
weight w. Let R>ow C A be the extremal ray of the dominant Weyl chamber C*
spanned by w. We set Vy = 0 and let Ej be the unique edge in the intersection of Ay
and R>ow. If the first vertex V; is not w, then we let F; be the unique dimension one
face in R>ow different vom Ej having V; as a common vertex with Ey. By iterating
we obtain a gallery

Yo=WVo=0CEy DV C..OV, CE, Dw="V41)

which joins 0 and w. We call these galleries fundamental galleries and their faces
fundamental faces.

If we have a fixed enumeration wy, ...,w, of the fundamental coweights and A\ =
> a;w; for an arbitrary dominant coweight A, we set

TN = Yarwy * -+ * Yanwn s
where Yo w; = Yoo; * oo * V-
—_———
a; times

Definition 2.2.2 (|GL11|, Def. 6) We define
S*={(a,n) | Ay N Hy,p, is a face of codimension one} .

The type of a face F' of the fundamental alcove is S*(F) = {(a,n) | F C Hyp}. For
an arbitrary face F we set S*(F) = S*(F7), where F7 is the unique face of the
fundamental alcove such that there exists a w € W® with w(F) = F7.

Definition 2.2.3 ([GL11], Def. 7) Let y= (W CEy D V1 C... DV, C E, D Vy11)
be a combinatorial one-skeleton gallery. The type t, of v is defined as

£ = (S%(Vo) € S%(Eg) D S°(Vi) C ... > S*(V;) € S*(Ey) D S (Vi)

which is also denoted the gallery of types. We denote by I'(t,, Vo) the set of all
combinatorial galleries starting in Vj of type t,.

For any dominant coweight A, a gallery of type A is a gallery of type ). The set
of all combinatorial galleries of type ) starting in o will be denoted by X(v,). For
an example see Figure 2.2.
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)\ :Oél + 9

Has0 Hayp

Figure 2.2: Example in the case Ao, galleries of type A = a1 + an

2.3 Minimal one-skeleton galleries

We know, that for two given sectors s1, §9, there exists an apartment A and subsectors
s} C 51,8, C s9 such that 7,8, C A. There is an bijection between the equivalence
classes of sectors and the set of Weyl chambers in A. These equivalence classe will
be denoted by s.

Definition 2.3.1 ([GL11|, Def. 9) Let § = (Vo C Ep D ... C E D Vp41) be a
one-skeleton gallery. It is called minimal, if every step (V; C E;) is included in the
same equivalence class of one sector, i.e. there exists an equivalence class of sectors
55 and representatives sy, ..., 8, € s5 such that V; is the vertex for the sector s; and
Vi C E; C s;. The equivalence class s; is not necessarily uniquely determined by 4.

We call the sequence s(0) = (s, ..., $,) a chain of sectors associated to d.

Example: Again, we consider the apartment of type As. For any element w of the
Weyl group, we set Yy, = W(Yw,). It is easy to see, that the galleries v1 =
Vi (wr) * Vsisa(ws) A V2 = Vs oo (wa) * Vsas (wy) @T€ minimal with s, = 5152(CT) and
Sy, = s158251(CT). The gallery v := Vsi(wr) * Vs1sa(ws) * Vsasiwy 18 not minimal in the
sense above (see Figure 2.3).

We have a natural action of G(K) on J*° that induces a natural action on one-
skeleton galleries. For § any one-skeleton gallery and g € G(K) we set:

go=(gWCgFyD..CgE DgVii).

Proposition 2.3.1 (|[GL11|,Prop. 8) Let d be a minimal one-skeleton gallery in J*°
starting in o and ending in X\ = V.1, where A € CT. Since V.11 = X is special, it

10
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is a coweight, which we can identify with an element in G(K)/G(O). The following
natural map between the G(Q)-orbit of § and the G(O)-orbit of X in G is bijective:

G(0).6 = GO} c G(K)/G(O),g.0 — gt

(12 Oél

Figure 2.3: Example of minimal galleries in the case As

2.4 Positively folded galleries

We call a sequence (Vo C E DV C F D Vy) a two step gallery, but we often omit
Vo and V. Such a gallery is called minimal if there exists a sector s with Vertex Vj
such that £ C s and F C s(V).

Definition 2.4.1 (|GL11], Def. 10) A two step gallery (F DV C F') C A'is
obtained from (E D V C F) C A by a positive folding if there exists an affine root
(o, n) such that

V € Hypn, F' = sp(F) and H,,y, separates F' and C~ (V) from F’.

A two step gallery (E DV C F) in A is called positively folded if either the gallery
is minimal, or if there exist faces Fp, ..., I containing V' such that:

e (E DV C Fp) is minimal and Fy = F,

e Vj=1,.,5: (F DV CF}) is obtained from (EF D V C F;_;) by a positive
folding.

11
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If we look at the residue building at a vertex V', we say that (Ey, Fy) is a minimal
pasr if there exists two opposite sectors s and —s with vertex V such that £ C s and
F C —s. Using this language, we can define a positively folded two-step gallery the
following way:

Definition 2.4.2 ([GL11], Def. 11) A two-step gallery (E DV C F) in A is called
positively folded if

e there exist faces Fyy,...,Fsy such that (Ey, Fpy) is a minimal pair, and
Fsv = Fy,

e for all j = 1,...,s there exists an affine root (5;,n;) such that g; € v,V €
Hg, n;»88;m;(Fj—1,v) = Fjv and Hg, ,,. separates Cy, and F;_; v from Fjy.

We have seen, that the equivalence classes of sectors are in bijection with the Weyl
chambers, therefore we can endow the set of equivalence classes with the Bruhat
order: s > ¢ iff s = 7(CT),s' = k(C") and 7 > k. For a minimal gallery § and its
associated chain of sectors s(0) = (so, ..., 5,) we hav §5 = ... = 5,..

Definition 2.4.3 (|[GL11], Def. 12) Let A be a dominant coweight and +, a minimal
one-skeleton gallery contained in C* with start in o and target A\. A combinatorial
one-skeleton gallery of type t,,

d=(Vo=0CEyD..CE.DV,41)CA
is called globally positively folded or just positively folded if

i) the gallery is locally positively folded, i.e. every two step gallery (F;—1 D V; C
E;) is positively folded for i = 1,...,r,

ii) there is a chain of sectors s(0) = (so, ..., ;) such that for all i = 0, ..., 7, V; is the
vertex of s;, F; C s; and 55 > ... > 5,.

Let us look at the special case of G in type A,. The fundamental weights can be
written w; = €1+4...4¢;. We have v, = (0 C E D w;), where E = {tw; | t € [0,1]}. It
is easy to see, that the galleries of the same type as 7, are exactly the galleries 7, (.,)

with o € W/W,,,. Let A be a dominant weight. Remember, if we have \ = Z a;wi,
we set

= Pyalwl *k fyanwn'

To a gallery 6 = 01 * ... ¥ 0, >_a; = r, of the same type as 7), we can associate a
Young tableau of shape A in the following way: Let eg, + ... + €; be the target of
0r. We associate to d; the column Cjs, of j boxes filled with the numbers ki, ..., k;
(decreasing from top to bottom). We get the Young tableau Y5 = (Cs,, ..., Cs, ), by
putting the columns next to each other in reverse order. In this way, the galleries of
the same type as ) can be identified with Young tableaux of shape A with entries
strictly increasing in the columns, and the positively folded galleries are identified
with the semi-standard tableaux (|[GL11]).

Let us look at an example: Consider the case Ao and the dominant weight A =
2w + wy, the associated gallery vy is Ve, * Ve, * Ve; 4, and its Young tableau is

11]1]
2

12



2 Buildings and galleries

Another tableau of shape A and entries strictly increasing in the columns would be

2[1]2]
3

to which we associate the gallery § = v, * vz, * Yey4e,, Which is of the same type as
7a- If we have a semi-standard Young tableau of shape A, like

1[2]2]
3

we get the gallery 6 = e, * e, *7Ve,4e5, Which is of the same type as 7, and positively
folded.

Let us look at the example above in the case of Ay and A = a7 + as. We had
YA = Vey * Vei4e,, the associated Young tableau is

1[1]
2

We get seven additional semi-standard Young tableaux of shape A:

L2 s][a]a]la]2][1]3][2]3][2]2]
2 2 3 3 3 3 3

— y b P y— y

These are associated to seven positively folded galleries of type A (see Figure 2.4):

Vea * Ver1+ear Ves * Ver+ear Yer ¥ Vertess Vea * Ver+ess Ves * Ver+esy Veo ¥ Veatess Veo * Veates-

2.5 Root operators

We want to define root operators for one-skeleton galleries, which are basically the
root operators defined by Littelmann in his path model (see [Lit95]). They put a
crystal structure on the set I'(yy).

Let = (0 C Ey D Vi C ... DV, C E, D u) be any one-skeleton gallery. Fix a
simple root « and let m the biggest integer, such that there exists a V; € Hy p,. Let
k be minimal, such that Vi, € Hy,m, i.e. let Vi be the first face of §, that touches
H, . The root operator €, is defined the following way:

If m =0, we set €,6 = 0. Otherwise, we set:

€ad =(0C ... D Ep_9 D Vi1 CSamPr-1DtaVi C ... DtaVr CtaEr D p+ a).

Here t, is the translation by a.

Now let k be maximal, such that Vj, € Hy p, i.e. let Vi be the last face of §, that
touches H, ,,. Then we definde:

If m = — (u,a), we set fo0 = 0. Otherwise we set:

fad=(0C ... DB 1D Vi CSamBr Dt Ve C.. Dt oVi Ct_oEr D p—a).

13



2 Buildings and galleries

)\ :Oél + 9

Has0 Hayp

Figure 2.4: Example in the case Ao, LS-galleries of type a1 + ao

For an easy example see Figure 2.5. Considering the functions

wt :T(yy) = XV
0+ target(9),

ea(d) =m,

and
$a(0) =m+ {(p,a’),

it can be seen, that we have a crystal structure on I'(7y).

2.6 Characterization of simply-laced crystals

In the following chapter, we will need a result from an article of John R. Stembride
(|Ste03]), in which he describes simply-laced crystals.

We denote I a finite index set and A = [a;;]; jer the Cartan matrix of a simply-
laced Kac-Moody algebra. In this case we have a; = 2 and a;; = aj; € {0,—1}
for ¢ # j. Stembridge associates to A a class of (possibly infinite) directed graphs,
that he calls A-regular. He asks the graphs to be edge-colored, i.e. the edges will be
labelled by elements from 1.

Let y = E;(x) if there is an i-colored edge = < y, and dually z = F;(z) if there is
an i-colored edge x — z. We define the i-string through x to be the maximal path
of the form
Fz) — ... = F Y (2) = o — Fi(z) = ... —» F/(z) (r,d > 0).

7
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2 Buildings and galleries

' Sm(Vk) /

Vi

Figure 2.5: Example in the case As

We define the i-rise and i-depth to be g(z,4) := r and 6(z, ) := —d. In addition, he
defines difference operators A;:

Alé(ﬂf,j) = 6(E1337]) - 6(567.])’ Alé‘(l',j) = S(El'raj) - 5(1),j)
whenever E;z ist defined (i.e. d(z,7) < 0), and analogously
VZ5($,]) = 5(‘177,7) - 5(leaj)av15($aj) = 5(1',].) - s(Fnyj)

Definition 2.6.1 ([Ste03|, Def. 1.1) Let A be a simply-laced Cartan matrix. An
edge-colored directed graph is A-regular if it satisfies:

(P1) All monochromatic directed paths in X have finite length. In particular, X
has no monochromatic circuits.

(P2) For every vertex x and every i € I, there is at most one edge x < y with color
i, and dually, at most one edge x — y with color 3.

(P4) Aid(x,j) <0,A:e(z,7) <O0.

(P5) If Ejx and Ejz are defined: A;d(x,j) = 0 implies E;Ejz = E;jE;xz and
Vje(y,i) =0, where y = E;Fjx = EjE;x.

(P6) If E;x and Ejz are defined: A;8(z,j) = A;d(x,i) = —1 implies E;E?FE;x =
E;E}Ejx and Vie(y,j) = Vje(y,i) = —1, where y = E;E; Ejx = E;E; Ejx.

(P5’) If Fiz and Fj are defined: V;e(z, j) = 0 implies F; Fjx = F;Fjx and
A;o(y,i) = 0, where y = F; Fjo = F;Fyx.

(P6') Vie(x,j) = Vje(x,i) = —1 implies F;F7Fix = F;F}Fjz and Ad(z,j) =
A;o(y,i) = —1, where y = EFJ-QFix = F;F?Fjx.

15



2 Buildings and galleries

Let us look at (P3) and (P4). For i # j, we have a;; € {0,1}, therefore (P3)
and (P4) only allow three possibilities:

(aij, Aid(x, j), Aie(x, 7)) = (0,0,0), (—1,-1,0), or (—1,0,—1).

Let us assume for a vertex x: e(z,i) = 0 Vj € I,i # j. Because of the observation
above, we have

e(Eiw,j) = e(Ei, j) — e(E, j) = Ai(w, j) € {0,—1} for all i # j.
But since e(E;z, j) > 0, we can only have
e(Fix,j) =0 for all ¢ # j.

Now it is easy to observe, that if we look at the crystal obtained by applying
the root operators to a gallery §, which is completely contained in CF, the associ-
ated crystal graph is A-regular, where A is a Cartan matrix of type A. Using the
observation above, we proved:

Lemma 2.6.1 If 0 is a gallery, such that faj(S =0 for all i # j, we have faj (€q,0) =
0 for all i # j.

16



3 Bott-Samelson varieties

In this chapter we will provide a desingularization of an affine Schubert variety in
form of a Bott-Samelson type variety consisting of all galleries of a given type. By
fixing a generic anti-dominant coweight, we obtain a decomposition of these varieties
in Bialynicki-Birula cells. We give a description of these cells and an upper bound
for their dimensions (|GL11]).

3.1 A Bott-Samelson type variety

To every face in A we can associate a unique parabolic subgroup of the affine Kac-

Moody group L£(G), which contains 7 and a unique parahoric subgroup in G(K)
which contains T. To any root vector X, € Lie(G) we can associate the one-
parameter subgroup Uy, = {24(f) = exp(Xo @ f) | f € K} of G(K) (resp. of L(G)).
Analogously, to any real affine root a4+ nd we associate the one-parameter subgroup
Uains = {za(at™) | a € C}. We will use both notations for the affine root morphism:

To(at") = T(qn)(a).
The following computation rules are used later in our proofs:
i) For all \Y € XV, a aroot, a € C* and b € C we have
0 za(a) = 24(a'**)b)a.
ii) For any root o and a,b € C such that 1+ ab # 0,

b
1+ab

a
1+ab

Za(@)T_a(b) = z_of )(1 4 ab)® zq( ).

iii) For any positive root o and any b € C*

Ta(D)T_o(—0 DNaad) = 2_o(=b Nza(d)r_o(—b1) = b 55 =550 .
iv) For any roots «, 8, # —f3 and a,b € C we have:

zg(b)ra(a) ifa+p5¢d

ol 0= {Wﬁ(ab)xmb)xa(a) fatfed.

Note that an easy calculation shows, that iv) also holds in the affine case:

T(8,m) (0)T(a,n)(a) ifa+p3¢d

a,n m)(b) =
P (@3em(®) {fﬂ<a+ﬁ,n+m)(ab)ww,m)(b)x(a,n)(a) ifat+fecd

17



3 Bott-Samelson varieties

Definition 3.1.1 ([GL11], Def. 3) For a face F we define Pr as the unique parabolic
subgroup of ﬁ(G) containing 7 and all root subgroups U,yns such that F' C H;rn
We let Up be the subgroup of G(K) generated by all z,(f) such that f € K*,v(f) >n
and F' C H;rn and define P to be the unique parahoric subgroup of G(K) containing
T and UF.

As we did in chapter 1, we extend the notion of a parahoric subgroup Pr associated
to a face F to the affine building J°. The action of G(K) is such that Uyyns fixes
the halfspace H;rn It is easy to see, that x,(at™) belongs to U,, therefore we have
(xa(at™),z) ~ (1, ).

The map 7_~ : J* — A denotes the retraction centered at —oo. It is a chamber
complex map and its fibers are exactly the U~ (K)-orbits in J¢ (see |GLO5| for further
information).

To any combinatorial one-skeleton gallery v = (Vo =0 C Ey D Vi C ... DV, C
E, D V,41) we can associate a sequence of parahoric subgroups

G(O) D PE(J; C Pvlf D..C Py DPyC PVTfH.
Using this correspondence we can identify one-skeleton galleries with points in Bott-
Samelson varieties.

Definition 3.1.2 ([GL11], Def. 8) Let 3(¢,) be the closed subvariety of
G(K)/G(0O) x G(IC)/PE({ X .. x G(K)/ Py x G(IC)/PV.erl

given by sequences of parahoric subgroups of the form
GO)DQoCRIDQ1C...D>Qr C Ry,

where R; is conjugate to P,s for i € {1,...,7 + 1} and Q; is conjugate to P, for
1=0,...,7. We call it the vafiety of galleries of type ¢, starting in Vy = o. '

We can naturally extend the action of G(K) on J® to an action on the set of
galleries. This action is type preserving and 3(t,) is stable under the action of
G(0O). Since there is a bijection between faces of J® and parahoric subgroups, we
have a bijection between the points in 3(¢,) and the one-skeleton galleries in J¢ of
type ta. The combinatorial galleries, which are those galleries in J¢ included in A,
correspond to sequences of subgroups who are conjugated to the P.;’s and P s’s

by elements in the affine Weyl group W°. These are precisely the T fixed point§ in
¥(ty). To a sequence of parahoric subgroups

G(0) D PEg C Pvlf D PE{ C..D PE{ C PVrf+1

we associate the fibred product

G(O) XPE(J; P Xp Foee ><pEf_1 PVTf/PE;f7

\%
1 By

which is defined as the quotient of PVf X ... X Pvf by PEf X ... X PEf given by the
0 T 0 r
action

(05 s Pr) * (Q0s s @) = (G0POS PG " QU1 -y Pt 1GrDr)-

18



3 Bott-Samelson varieties

Proposition 3.1.1 (|GL11|, Prop. 2) As a variety, 3X(t) is isomorphic to the fibred
product via the map
(90, "'797’) =

(I%Q 3>9017E0964 CgUPVlQ(T1 :>9091}ﬁh(9091)_1 C .. C:90~-QTI%G+1(90"-9T)_1)

To a dominant coweight A we associate the gallery vy = (0 C Ey D ... C E, D \)
described above. The variety of galleries of type ¢, starting in o is called the Bott-
Samelson variety associated to the gallery vy and we denote it by:

Z(’y/\) = G(O) XPE[I)' PVf Xp §oee XpEf PVrf—l XPEffl PVTf/PETJf.

L By r—2
The combinatorial galleries in ¥(7y) will be denoted by T'(7yy).

Proposition 3.1.2 ([GL11|,Prop. 3) We denote by ¢ the point in G corresponding
to the vertex of the fundamental alcove of the same type as . The canonical product
map

m:X(n) = G(O) xp_, Py xp

e X P.i/P.; —
g Py e Xy Bt [ =

[g0> ceey gr] — gogrtAfG(O)

has as image the Schubert variety Xy. The induced map m : X(v\) — X, defines a
desingularization of the variety X».

3.2 Cells

Let us fix a generic anti-dominant coweight 7 : C* — T. As already mentioned, the
set of n-fixed points in ¥ (y,) is finite and in bijection with the set of all combina-
torial galleries of the same type as yx. For such a gallery v we denote by C, the
corresponding Bialynicki-Birula cell, i.e.

Cy = {x € X(va) | %gl(l)n(t).x = 'y}.
Bruhat and Tits associate to a face F' of the Coxeter complex the function

: i >0}.
fr a%érelg{a(F)—i-kiO}

For any o € ® is fr(a) the smallest integer such that F C HJ,. For two faces F,V
in A, such that V' C F, we denote by ®% (V, F') the set of all affine roots (a,n),a €
®~,n € Z, such that V € Hop and F ¢ HY . Let Stab_(V, F) be the subgroup of
U~ (K) generated by the elements of the form z,(at™) with (a,n) € ®*(V, F) and
ac C.

Proposition 3.2.1 (|GL11]|,Prop. 4) 1. The stabilizer Stab_(F) of a face of the
Cozeter complex is generated by the elements x,(p) where o € ®~ and p € K
such that val(p) > fr(a).
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3 Bott-Samelson varieties

2. Let F and V be two faces of the Cozeter complexr such that V. C F. Then
Stab_(V, F) is a set of representatives for the right cosets of Stab_(F) in
Stab_(V'). For any total order on the set ®* (V, F'), the map

(ag)geas vy =[] wslan)
Beds (V,F)

is a bijection from C*~V'F) onto Stab_(V, F), where C® VF) s the set of all
mappings from ®* (V, F) to C.

Let 6 = [0g, ..., 0] = (0=Vy C Ey D V1 C ... DV, C E, D V,y1) € (), we set
Stab_(é) = Stab_(V(],Eo) X ... X Stab_(‘/},ET).
Proposition 3.2.2 (|GL11|,Prop.6) The map

f : (Uo, ...,Ur) — [Uo%, %—11}16051, [(50(51_102505152, . 50-"5r—1_1vr(50m5r]

from Stab_(0) to X(vyx) s injective and its image is Cs (by T we denote a cosel

representative of x in G(K)). Therefore, Cs is isomorphic to Cc®Vo.Bo) »
P (Vi)

3.3 Dimension of Cj

We remember ®* (V, E) being defined as the set of affine roots (a,n) € ®_ X Z,
such that V € Hon and E ¢ HY . For an affine root (o, n) € @~ x N we will say
that (V, E) crosses the wall H,, in the positive (negative) direction if F' ¢ H, ,
(respectively F' ¢ H ), i.e. a wall crossing is positive if (—a, —n) € ®*(V, F).

Let us denote for a gallery § the number of positive wall crossings appearing in
that gallery by 76, analogously the number of negative wall crossings by 7§ and
the sum of both by #%6:

,
116 = Z(jj positive wall crossings of (V;, E;))
=0
27‘
7= Z(jj negative wall crossings of (V;, E;))
i=0
#56 =470+ 470

It is easy to see, that #56 = (), 2p).
Lemma 3.3.1 (|[GL11], Lemma 9) #*§ = dim(Cy).
There is an upper bound for the dimension of a cell Cs:

Proposition 3.3.1 (|GL11|,Prop. 16) Let u be the target of 6, we have §76 <
A+ s p)-

Important for us is the following ([GL11]): Let
Zy,=GOWNU (K)t"

for a dominant coweight A and an arbitrary coweight p. If § is an LS-gallery of type
7 with target u, then Z) , N Cs is an MV-cycle of coweight (A, p).
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4 Cells in type A

Gaussent and Littelmann determine an upper bound for the dimension of the cells
Cjs. In the first part of this chapter, we provide the exact dimension of these cells in
type A. In the second part, we will give a description of the image of these cells by
the desingularization map 7 in type A. In a particular case, we can prove, that the
closure of this image is an MV-cycle.

4.1 Cell dimension

Let G be of type A,,. We have seen in chapter 3, that there is an upper bound for
the dimension of the cell Cys associated to a gallery §. In this section we want to
show, that in the case of G being of type A,, we even have equality, i.e. dim(Cys) =
A+, p).-

The fundamental weights are of the form w; = €1 + ... + €;, we denote the simple
roots aq,...,ap. By F5i1+~~~5ik resp. (0 C F5i1+~--5ik) we will denote the face going
from O to g, + ... + &;,. By abuse of notation, we will denote by Fai1+,_5ik or
(V C Fsi1+-..+sik) the face going from the vertex V to V +¢;, +...+¢;,. The context
will make it clear, which face we mean. We want to determine the number of positive
wall crossings of a gallery of the form Vo C Eg D Vi. In the case of Vj = 0, these
galleries are all of the form:

(O - F5i1+"'+5’ik DeEy+ ...+ Eik)'
Lemma 4.1.1 We have
|<I>Z(O,ng)| =n—k+1.

Proof. To determine the number of positive wall crossings for (0 C F;,) it is enough
to determine the number of negative roots «, such that (a,er) < 0. All the negative
roots in type A, are given by

— QU — QG — QU] ey — QG — oo — Qi fOr i =1, .00
Since €; = w; — w;—1, (@, €k) is negative for exactly the following negative roots:
{—ap, —ak — Qpt1y ey = — oo — Qi },
we get [®% (0, F., )| =n—k+1. O

Let us calculate the positive wall crossings of (0 C F5i1+-~~+€ik)7i1 < ... <. We
want to compare the number of positive wall crossings of (0 C Fz, ), ..., (0 C Fy, ) to
the number of positive wall crossings of (0 C F€i1+--~+5ik)'
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4 Cells in type A

Lemma 4.1.2 We have

k(k — 1)

‘ (0, ey ey, )| = Ek: ’(I)i(O, Faij)‘ 2
=1

Proof. As above, we count the number of negative roots «, such that
(a, €4, + ... +€i,,) <O0.

It is easy to see, that these are exactly the following roots:

O —(Qy, (O — Qg1 ey — Qg — oo — (2 (if 9 — 2> i1)7
— QU = e = Qg ey — Q) — o — Qg (i i3 — 2 > i),
e
—Q; = e — Qg ey — 0 — o — i (i — 4 > 0)
[
& —Qy, 1, QG T Oy 4y ey, O T e — Oy 2 (if ik -2 > ik—l),
vl
—Qp = e — Qg ey, — 0y, — o — i (i — 4 > 0)
b _aik7 _aik- - aik+17 seey _aik - Ay (lf n — ’I:k Z O)

If we have i; —2 % i;_1, then ®* (0, Fs¢1+...+s¢k) will not contain any root of the form

(—ai; —...,0). An easy calculation gives us:
(O Fazl+ +8lk)
k—1
=n—ig+ 1+ Y ({41 =i = 1)+ oo 4 (ip —ip-1 — 1) + (n — g + 1))
j=1

k
k(k—1

By Lemma 4.1.1, we get

k k
Z@S(O,ngj) = —le'j + kn + k.
]:

O

Lemma 4.1.3 The faces (0 C Iy, 1. 4¢, ) and (V C Iy, 4. 4e, ), for any vertez V

in A, have the same number of positive wall crossings. More precisely, the negative

roots a appearing in («,0) € % (0, Fe +. "+Eik) are the same as in ®* (V, Fe, +. ~'+5ik)'

Proof. For an affine root (o, 0) € ®% (0, F'), we have
FCH,,=«aF)<0
= a(F) +a(V) + (V) <
= a(V+F)+ (—a(V)) <0.

But this means F' C H _ ) = (o, —a(V)) € @2 (V, F), since in type A, every

o,—Q
vertex is special. O
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4 Cells in type A

Let A be a dominant weight. Let 0 be a gallery of the same type as vy and p be
the target of 4. We have the following Lemma:

Lemma 4.1.4 We have
dim(Cs) =470 = (A + p,p").

Proof. We have ¢; = w; —w;_1,1=1,...,n. Since p = % Z «, we get

acdt
n— 2+ 2
(€0 p) = {wi = wim1,p) = ——5
Write '
n n (3
A= Za,wi = Z(ai Z&‘j).
i=1 i=1  j=1
The target p of § can be written as
n a;
n= Z Z(Elz},jJ + .t Eli,j,i)’
i=1j=1
where [; ;1 < ... < l;;; and a; is the number of columns of length . An easy

calculation gives us:

7 n o a;
(ai )y Ej)7p> + <Zzszi,j,l +..t 6zi,j,i,p>

=1 k=1 i=1j=1

" =2k 42 =20+ 2 n—2li+2
=3 (ai(z — )Y (et 2”))

NE

<A'+’M7p>:: <

=1 k=1 J=1
n (i +1 i

=Y (ai(m+2l A ) )) =Y iga+ - +lija) |-
i=1 Jj=1

By using Lemma 4.1.1 and Lemma 4.1.2, we obtain the following:

a;

£ro=3 > L0, Fyy  tuie

i=1j=1

)

1,4,

n  a; . 1 .
=3 S @0 By )+ B0, By ) - ( 5 )iy
i=1j=1
n a; i — 1)4
=> > ((n—lijn+1)+ ot (n—lii+1)— e 5 )Z)
i=1j=1
" oo (i) X
= Z a;(ni+ 2i — 5 ) — Z(li’j’l + ...+ li,j,i)
i=1 Jj=1
= (A +u,p)
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4 Cells in type A

4.2 Cells and MV-cycles |

Let m : ¥, — X be the map from the Bott-Samelson variety onto the affine Schubert
variety. We are now interested in the image of a cell Cs C 3., under this map. We
want to give a partial answer to the question, in which cases and for which coweights
the image 7(Cjs) is an MV-cycle in a possibly smaller Schubert variety.

Let

d=(VWCEyDVICE| D...CE,Dup)
be a gallery of the same type as v, with target pu.
Lemma 4.2.1 Let a € ®, such that p € H, . For every 0 < i < —(u,a) there
exist a j € {0,...,7}, such that (a,i) € ®%(V;, Ej). In other words, if we consider

a negative root o and if the target of the gallery is on the negative side of Hy o, the
gallery will cross every wall between Hy o and H, _(,, o) positively.

Proof. Let « = —ag — ... — . Let us assume the gallery § has no positive wall
crossing at the wall H,; for any 0 <1i < — (u, ). In this case, every edge in d, up
to translation, must be of the form

F.‘+Ek+...+<€l+1-‘r.‘.

or
F...+€k+...
n+1
Let p = Z a;e;. Since u € HOZO, we must have a;11 < ag, in contradiction to the
i=1
above form of 4. ]

The first case, in which we can give an answer to our question, if 7(Cs) is an
MV-cycle, is the case of § being completely included in the dominant Weyl chamber:

Lemma 4.2.2 If we have § C CT, we get
m(Cs) = U (K)t' N G(O)tH.
Proof. The image of the cell Cs can be described as:

r

7T(05) - H H x(a,n)(a(ivavn)) tuG(O) ’ a(i,a,n) eC
1=0 \ (a,n)€d®? (V;,E;)
c U (K)t!

For every (a,n) € ®*(V;, E;) we have E; ¢ H('; ny and since 0 C C*, n must be
non negative. Therefore we have 7(Cs) C G(O)tF N U~ (K)t*. Let z € G(O)t* N
U= (K)tt = U~ (O)t*. Then z will be of the form:

T = H To(fa)t!

acd—

with f, € O. Using the relation

za(fa)t'G(O) = tHaa(t4) £2)G(O)
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4 Cells in type A

we get zq(fo)tFG(O) = t'G(O) if deg(fa) > — (4, ). Using Lemma 4.2.1 and since
the maximal n, such that («a,n) € ®* (E;,V;) for any j is at least — (i, ), we get

GO N U~ ()t € 7(Cy).

O

Obviously, G, NS, N7(Cs) is dense in 7(Cs) and we have the following corollary:

Corollary 4.2.1 If we have § C CV and p is the target of § then w(Cs) is a
MV-Cycle of coweight (u, ).

We will consider the crystal of galleries of type 7, and start at the “bottom” of
the graph. Let ¢ be a gallery of type v, such that for every i € {1,...,n} we have
fa;0 = 0. We want to determine 7(Cs).

Lemma 4.2.3 In this case, for a wall H, ,, with o a negative root, which is positively
crossed by §, we have pu € H;[n

Proof. Let my = max{m | 3V;:V; € Hy»}. Since we have faid =0 my =
— (o, p), the statement is clear for « being a simple root. Now let the wall

Hfaif...faj,n

be positively crossed by d, with ¢ < j. In this case, there exists V; C F; in § such
that V; € H_o,— —a;n and F; C H_,

—Q;—... =0y,
Let us assume p € HZ,,,_ _o, pn, i€ (—a; — ... —a;)(p) +n < 0. In this case,
either —a;(p) < 0 or (—ajy1 — ... —a;)(u) +n < 0. In the case of p € H-, g, by

Lemma 4.2.1, we would have a wall H_,, », which is positively crossed, but with
p e H”, , in contradiction to our above statement. Iteratively, we can prove our
statement in the general case. 0

Lemma 4.2.4 In the special case of § being such that faié = 0 for every i €
{i,...,n}, we have w(Cs) = {t*G(O)}, where w(0) = p.

Proof. According to the lemma above, for every wall H,, ,,,, which is positively crossed
by §, we have p € Hf . i.e. a(u)+m > 0. If we look at the associated root subgroup

a,m?

zq(at™),a € C. We have
Lo (at™G(O) = tray (at MM G(O) = tHG(O).
Therefore we have

r

7(C)={TIC TI  #al@ait™) | #G(O) | aa, €C
=1 (am)edt (Vi,B)
= {t"G(0)}.

O

Starting at § with f’aié =0for¢=1,...,n, we want to look at é’f”& for £ > 0. We
want to give an explicit description of the set 7(Cj).
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4 Cells in type A

Lemma 4.2.5 If é’;ié 1s defined, we have:

W(Cég.(s) =
T1 Tk
IT 2., i at™2) | o (art™) - oo | T 25, (big ™)
=1 =1

xfai(aitmk)t“—"_kaiG(O) | bi].,j,aj S C,Tj € N},

and we have g, (b, jt"™97) € Stab_ (ko).

Proof. Remember that Stab_(F') for a face F' of the Coxeter complex is generated
by the elements z,(p), where a € ®_ and p € K satisfying val(p) > fr(a). Since
Jule) = — (i, @), Stab_(p) is generated by x4 (at™) with m > — (i, «).

Let us first look at the application of one root operator. The image of the cell Cy
is

w(Cs) = H Za(aiant™)t'G(O) | aian € C ),
=1 (a,n)ed®* (V;,E;)

where every z,(a;qa,n) is in the stabilizer of t*G(O),

Stab_(t") = (p(at™) | B < 0,n > — (1, 8) ,a € C),

as we have just seen in Lemma 4.2.4. Let us see what happens, if we apply the root
operator €,, just once. Let é,,0 # 0, m and k be as in the definition of the root
operator. We get

k—2
m(Ceo;8) = ]._.[ ]._.[ Ta(aiant”) | T—a;(ct™ 1)

i=1 (a,n)€P (V;,E;)

H xa(ak—l,a,ntn)

(avn)esai,m—l(q)o; (Vk:—lka)—l))

H H To(Aiant™) | ' G(O) | aiam,c € C},

i=k (a,n)eT, v (2% (Vi,E;))

where

Taz\/(q)g(viﬂEi)) = {(a7n+ <a7a;/>) ’ (avn) € (I)S(VZ’El)} :

Note that we have m > 1, since €., is applicable at least once to d. Since we have
Zo(aiant"™) € Stab_(t") for every (a,n) € ®*(V;, E;),i =1,...,r,
it is easy to see that
To(iant™) € Stab_(t1) for every (a,n) € Ty (L (Vi, Ei)) i =k, ooy
and

To(@iant™) € Stab_(t1%) for every (a,n) € Sa;m—1(P% (Vi—1, Ex—1)).
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4 Cells in type A

Let us consider zg(at™) € Stab_(t*). We have
n>— (B,
Assume now, that 8 — a; € &, which is only possible if
Be{—a;—.—ais1,—qig1 — . —aj | j<i—1,5 >i+1},
therefore (3, ) = 1. We have the following commutation relation:
2(at™) g, (ct™ ) = 2o, (ct™ Vg (at™)z_o, (act" ™).

But since m —1 > 0 and — (i, 3") > —{(u+;,3Y), we have n + m — 1 >
— (1 + ay, V) and therefore

Tp_o; (act™ ™) € Stab_ ().

This basically shows, that for every root subgroup appearing in the product before
T_q, (ct™™1)  if it does not commute with x_,, (ct™~!), the new root subgroup coming
from the commutation relation will stabilize t*T®. Now it is left to show, that the
root subgroups appearing before x_,, (ct™!) in the product, do not only stabilize
t", but also t#+%. For every x4(a; qnt") appearing in

k—2
H H Ty (ai,a,ntn)7

i=1 (a,n)e®? (Vi, Ei)

we have z4(aj o nt") € Stab_(t") < n > — (u, V). But since we have

(oY) > —(p+ a0’y s ad {—ag — ... — i, —a; — . — i},
we have
To(Aiant™) € Stab_(t*T%) for every a ¢ {—ap — ... — iy, —; — ... — Qg }.
Now let 8 = —ay — ... — o and let 0 cross the wall Hg,, positively. The critical
case would be m’ = — (i, 8), because then we would have

m' = —(u, ') < —(n+ai,B"),

and if the reflection from the operator é,, is applied after the gallery has crossed
Hg ,,y positively, we would have xg(ct™) ¢ Stab_ (tH+*).

Let V; C Ej be the vertex, at which the gallery crosses the wall Hpg ,, positively.
Let us assume without loss of generality V; = 0, therefore m’ = 0. We will just look
at the last part of the gallery beginning at V;, we denote this gallery d>;. Let us
assume the operator é,, is applicable to >, in which case xg(c) ¢ Stab_(tFT2).
Since we have faié = 0 for every ¢ = 1, ...,n, the target u of 4 has to be antidominant:

<l’l/7 a:\l/> S 07 A <l’l’7 a’>1/> S 0'

Now it is easy to see

0= (1, 8") = (i, =0} + e - (1, )
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4 Cells in type A

= 0= (u,—a)) = ... = (g, —a;).

But since we have faié = 0, by definition, we have m = — (u, o) = 0 and €,,0>; = 0,
in contradiction to our assumption. Therefore, in our original gallery d, if é,, is
applicable, the reflection will be applied before the vertex V; and our critical case
does not appear. If we have 8 = —a; — ... — ay, the proof is completely analogous.

The general case can now be proven inductively. We apply €, to the gallery €3, d.
Every argument given above can be applied analogously by applying the lemma to
e, 0 itself, we only have to consider the critical case. Again, let 3 = —a; — ... — ay,
and let €;,0 cross the wall Hg .y positively. Let

m' = —{u+sa;, BY).

Let Vi, € Hgpny be the vertex, at which €; 0 crosses the wall positively and let us
consider (&;,,0)>; = €, (6>7), therefore we assume m’ = 0. We have

i

0= {pu+sa;,—B")=(p,a)) + ...+ {p, ) +s.

But since 5,6 # 0, we have (i, o) < —s. Using Lemma 2.6.1, we have

(.01 o 1) <0,

and therefore we must have
m=—{u,a)=s.

But then we have é4,¢;,. 0 = 0. O

Corollary 4.2.2 [If éﬁié is defined, we have:
7(Ca 5) = {@a(@t™) - - 2o (apt™ A G(O) | a; € C,

and mj >0 forall j =1,.... k.

Proof. As we have seen in Lemma 4.2.5, every other root subgroup xg(ct") besides

T_q,(a;t™) is in Stab_(t#ke1) If the xg(ct") and x_q,(a;t™) do not commute,

we can use the computation rules given in the chapter before and we get:

—a,; (at™) = 2_q, (ajt™ ) wg_q, (ajct™ ) g(ct™).

zg(ct")x
But by the definition of the root operator €,,, we must have m; > 0 and we have
Tg_q, (a;ct" M) € Stab_(tH+kea),

Now remember our argument about the additional subgroups coming from commu-
tation relations in the proof of Lemma 4.2.5, which proves the corollary. O

If 9 is as in the corollary above, we obtain directly:

7(Car 5) = U~ (K)t" N GO

Now, similarly as in Corollary 4.2.1, we have

Corollary 4.2.3 If ¢ is a gallery of type v, such that for every j € {1,...,n} we
have fo;0 =0 and if é’éié is defined, w(Ce 5) is a MV-cycle of coweight (A, p).
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5 Cell combinatorics in type A

In chapter 4, we have shown for a certain part of the crystal graph associated to a
gallery, that the closure of the image of the cells associated to these galleries is not
only contained in an MV-cycle, but actually is an MV-cycle. In this chapter we will
take a gallery d of type Nwi, which is completely included in the dominant Weyl
chamber. By applying the root operators, we get a crystal containing the gallery
6. We will use the bumping algorithm to show, that the cells associated to these
galleries include an MV-cycle.

5.1 The plactic monoid and bumping

We will introduce column bumping according to [Ful97|. Row bumping is defined
analogously. Column insertion or bumping is a construction, where a positive integer
x is added to a semi-standard Young tableau to obtain a new semi-standard Young
tableau. The integer x is added at the bottom of the first column, if it is strictly
bigger than every entry in it. If not, it replaces the smallest entry in the column, that
is larger than or equal to x. The replaced entry is bumped the same way into the
next column. The process stops if one entry can go to the bottom of the next column
or until it becomes the entry of a new column. Let us look at an easy example, let
us bump 3 into the tableau

2 L1 INEEIE
2|3 2 213
4 3 3(4(6
516 516 516
3 — 4 — 4 —
_>122w_>122 5
21314 213
346 31416
516 5106

5 —

Now we want to introduce the plactic monoid. We will write words as a sequence
of letters (positive integers) and write ww’ for the juxtaposition of the two words w
and w’. Let T be a tableau, we define the column word wee(T) of T by listing the
entries from bottom to top in each column, starting in the left column and moving
to right. The row word wyow(T') of T will be obtained by reading the entries from
left right, starting at the bottom row going to the top. This section is quoted from
Fulton’s book “Young Tableaux” (|Ful97|) and we use his notation. But in the rest
of this thesis, we will always read a tableau columnwise from top to bottom, going
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5 Cell combinatorics in type A

from right to left. The bumping algorithm can now be broken down into smaller
steps, we call the elementary Knuth transformations:

(K') yzz—yxz if 2 <y <z,
(K") zzyw zay if 2 <y<z.

It is easier to see this transformations as simple row-bumpings:

Ll (1)
Ban

Now two words w and w’ will be called Knuth equivalent, if they can be changed
into each other by a sequence of elementary Knuth transformations, and we write
w=w.

Lemma 5.1.1 ([Ful97|, p.27) We have

wcol(T) = wrow(T) .

5.2 Cells and MV-cycles llI

Let A be a dominant coweight and let v, be a combinatorial gallery joining o and
A. Consider the map 7 : ¥(yn) — G, which is SL,(O)-equivariant. For a generic
anti-dominant coweight 1 : C* — T, we have

n(t)m(x) = m(n(t).z).

For any gallery § € X(v,) with 7(d) = pu we have

w(Co) < {y e g | lmn(try =nf =V ()

But by construction we also have 7(Cs) C X and therefore 7(Cs) must be contained
in an MV-cycle of a Schubert variety contained in X,. The aim of this chapter is
to show in a particular case, that 7(Cys) in fact is a MV-cycle for a possibly smaller
Schubert variety.

Let us start by showing a Lemma, which we will need in the proofs of this chapter.
Set U=(0) = U~ (K)NSL,(O). Our Bott-Samelson variety ¥(+,) inherits naturally
a SLy(O)-action and the map 7 is equivariant with respect to this action. Remember,
that

Cs = {Z € X(m) | limn(t).z = 5}

for a fixed anti-dominant one-parameter subgroup n: C* — T. Using

. -1 _
limn(t)un(t) " =1,

we get u.z € Cs for all z € C5 and uw € U~ (O). Therefore it follows:
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5 Cell combinatorics in type A

Lemma 5.2.1 The image of the cell Cs under 7 is U~ (QO)-stable, in other words
T_qm(a).(Cs) = m(Cs) Va e C,a > 0 and m € N.

Now, for k > 0, consider

.
m(Cs)7F = 1 11 To,m(@jam)t" | ajam €C ¢,
Jj=k (a,n)e®? (V},E;)

where p is the target of § and the gallery 62% which is obtained by & by just
considering it after the vertex Vj. We replace the group U~ (O) by

U, :{Hl‘(—a,m) |a>=0mecZ V., € H }

(cr;m)
Now let ¢ be the coweight associated to V.

Lemma 5.2.2 The set 7(Cs)=F is U, -stable, in other words
.’L‘(,a,m).ﬂ’(C(g)Zk = 71(C5)2F Yo = 0,m > — (g, V).

Proof. We can view @y, : C* — T as a one-parameter subgroup as well as a /C rational
point in G. Let t,, and t_,, be the translations by ¢y, respectively —¢y. We have
tp,(0) = Vi and t_,, (V) = 0 and 502k := t_,, (62%). The translations act on the
roots by shifts: t,, : (o, 1) = (o, + (pg, @) and t_y, : (o, 1) = (o, — (g, ).
Note that
—1 _
(pkx(a,l)(a)gpk _x(a,lJr(ka,aV))(a)'
We have
prm(Cyzn) = m(Cs)=F.

By the lemma above, U~ (O) stabilizes C>x, therefore U~ (O)p, ! stabilizes
0
7(Cs)ZF. If @ = 0 and m > 0, we have
-1 _ _ : v
CrT(—a,m)Pk = T(—aymt{pr,a¥)) = T(—a,l) with [ > — <g0k, «Q >
O

Now let us consider an LS-gallery ¢ of type vy with A being a dominant coweight.
As we did at the beginning of chapter 4, we will write the target p of § as

n a;
W= Z Z(Slm,l + o te)

i=1j=1

according to the filling of the associated (not necessarily semi-standard) generalized
tableau and ¢, , + ... + ¢, ;, belonging to the column

v

lijn

liji
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5 Cell combinatorics in type A

where l; j1 > ... > [; ;. To this Young tableau we can also associate the following
gallery, obtained by reading the tableau box by box:

(5’ :’}/(

511,1,1) Koo X (7611,a1,1) * (7512,1,1 * 7512,1,2) *

X (%12@2’1 * 7%7%2) * ok (e * L% %zn,an,n)’

n,an,1

which, in most of the cases, will not be an LS-gallery. We will now consider two
different Bott-Samelson varieties. We have

Cs C X(m),
where 9§ is of type vy and
Cy C E(’YNL‘M)’

where N is the number of boxes in our Young tableau. Let 7 : X(y)) — G and
7' X(YNw,) — G the associated desingularizations.

Lemma 5.2.3 We have
7(Cs) = 7' (Cyr).

Proof. Let us first proof the statement for a single column. We have the following
two galleries:

0= Ves, +... 4,

and
§ = Vei, * - * Ve -

As we have seen in Lemma 4.1.1, we have the following negative roots, associated to
a wall, which is positively crossed by ¢':

= Qi QG = Qi1 ey — QG — o — i fOr J =1,

J
More precisely, let F, as defined in section 4.1, then:
. CDCL(O’F%) ={(—a;,0), e, (—aj; — ... —y,0)}

i (I)i(gilveil +F«5i2)
= {(—0@2, <5i1,a;/2>), vy (—Qy — oo — i, <z—:i1,a;/2 + ..+ ax>)}

o % (g +...tei 60 o te )=
{(—Oéir, <€1'1 + ...+ Ei,r,il,ax», ey
(=i, — oo — o, (i + o F i o + o))}

But since i1 < ig < ... < i, we have
<5i1 + €y qs —042; — . — a;/> =0
and the description of the associated root subgroups simplifies:

o ®2(0,F;, ) = {(—i;,0), ey (i — oo =, 0) }
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5 Cell combinatorics in type A

o D% (g, 64 + FL) = {(—iy, 0), ey (—viy — . — i, 0)}
e ...
° @5(61'1 +...t+ei_ 1,8+ +Ei —}—ngr) = {(—OZZ'T,O), . (—Oéir — .= an,())} .

Remember the proof of Lemma 4.1.2, if i1 — 2 # i}, the set ®% (0, Fop totey,) will
not, contain any root of the form (—a;, —...,0). Therefore ®¢ (0, ng1+m+5ir) consists
of the roots:

L] (—Ozil,()), (_ail - ai1+170)7 ceny (—ail — e — aiz_g,O) (if ig -2 > il),
(_ail — . — CY,L'Q,O), ceey (—Oél'l — .. — OéiS,Q,O) (lf ig —2 > ’ig),
(_ah — e — Oéik,O), cery (—Oéil — e — Oén,O) (If n — Zk > 0)

e ...

b (_O‘ikfpo)a (—Oéik71 _aik71+1’0)a Ey) (_O‘ik,l e _aik7270) (lf ik —22 ik—l)a
(—ay y — o — @, 0), 0, (—a, | — ... —ap, 0) (if n—id; > 0)

o (—a;,,0), (i, — iy, ,0), .0y (—, — ... — 0, 0) (if 0 — i3, > 0),

and we see right away
PL(0, Fiy 4. tes, ) CPL(0, Fy YU UBL (g4, + oo ey, + o8 + FL ),

and hence
m(Cs) C ﬂJ(CtS’) C U_(O)t€i1+“‘+5ir.

The last inclusion follows from the observation, that all the root subgroups appearing
in 7/ (Cs) are in U~ (0). But by Lemma 5.2.1, we have

(]

and we conclude
m(Cs) = 7' (Cé).

Now we want to add another column

from the left to a tableau T, and consider
TxC.

By induction, assume that our statement is already true for T', which means that
the image of the cell is the same, if we read T" column- or boxwise. Let ér be the
gallery associated to T" and p be the target of 7. We have already seen

PL(0, iy 4. tes,) CPL(0, Fr, YU U B (g4 + o+ ei sy + o8 + FL ),
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5 Cell combinatorics in type A

therefore we have

Cbi (/% H + FE¢1+...+€¢T)
COL(p,p+ Fey YU UPL(utey + oot iy it iy + oty + B

and it follows
W(C(SC*T) C 7T/(C(5/C*T).

But similar, as we have seen before, the root subgroups appearing in ® (u, p +
F5i1+~~~+5ik)’ 1<i<k<r—1arein

U (n) = {H:c(_a,m) |la=0,meZ,uc H(J;m)}

And we have
!/ — +&; +~~Eir
#(Cy ) C U (U (T)p+en i,

and U(T) is the product of root subgroups coming from 7', where we know by
induction, that it is irrelevant, if we read T boxwise or columnwise. But again,
similar to the case of a single column, we can use Lemma 5.2.2 to obtain

U~ (H)U(T)tﬂ+€il+...+€ir — 71.(05)’
and we have proven the lemma. O

Now we want to look at the case of bumping a single box into a column and relate
this to the geometry of cells in the Bott-Samelson varieties. We generalize the notion
of a Young tableau. By a tableau we mean an arrangement of boxes, compared to
a Young tableau, the numbers of boxes in the columns do not have to be decreasing
from left to right. We will still ask the entries in the columns of such tableaux to be
strictly increasing. Consider the tableau:

J i

]
2

-1
1
I+1

i

and bump the single box into the column to get a Young tableau

11| 9

N
|
—

p
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where 4; > 5 > 4;_1. The case j > i, will be discussed later. To 77, we will associate
the gallery §;, which we get by reading the tableau box by box:

o1 = Vesy * oo * Yoy, * Vey-

We will read T columnwise to get

0y = Vei, * Veiy +tey_  +ejten  +otei

As we did before, we will consider two different Bott-Samelson varieties and corre-
sponding cells, Cs5, C X(ynw,) and Cs, C 3(ya), where N is the number of boxes in
our tableau T7 and A is the shape of T». As before, we will denote 7’ : X(yny,) — G
and 7 : (7)) — G the desingularizations.

Let us first fix some notations to facilitate the following proofs. If

we set
T
ur = H H m(_sk_gij 70)
J=1k>i;

We have a shifted version for a weight u:

T
ur(p) = H H :U(*Ekfsi'7*</‘a75k*5'£'>)'
J=1k>i; ! ’
Whenever there is no confusion possible, we will write («,f) for the affine root
(o, — (u, ). If we have a tableau T consisting of the columns Kj, ..., K, from right
to left. Let v; be the weight of the tableau consisting of the columns Ky, ..., K;_1. If

we set
T
UK; = H H L(—en—ei; 75)"
j=1 k>i;
k#i('r«kl)j:'-'virjj

Then we have .

UK = H UK UKy UK, -
Jj=1

There is also a shifted version
q
UK(M) = H UK; (:u)v
j=1

where

UK, (M> = H t H x(—fk—aij7M+Vj)‘
r=1 k:>’ij
k#i(vﬂ»l)jr--vi'rjj
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5 Cell combinatorics in type A

Lemma 5.2.4 For any weight p and

Cc |aj ay| C
T = cland Th =

as as

we have
ury (/J’) = ur, (N)
Proof. We have

ury (:u) = (H H u(&z—Eaj ,ﬁ)) H W(ep—ec,i)-

j=1  I>a; m>c
l#aj 11,0505
Since we have m > ¢ > a; for all j, the root subgroups U(e)—ca, 1) and U, —c. )
commute, unless | = ¢, in which case we have

U(g, —¢ay ) (b)u(sm —Ec ) (a) = U(ey—ec,p) (a)u(sl —¢ay ) U(em —¢ay M) (ab) .

But since m > ¢ > a5, we have m > a; and m # aji1,...,as. Therefore the
rootsubgroups
Uy, —€a; L) (ab)

appear in the product
S
H H u(fl_sa]wﬁ)'
j=1  I>a;

l#aj41,....,as

We can reorder our product and get

(H H u(fl—aaj ,ﬁ))u(sm—ac,ﬁ) = u(fm_%vﬁ)(H H u(sl—ea]. ﬁ))’

j=1  I>a j=1  I>a;
l#aj41,...,a5 l#aj41,...,a5

if we neglect the parameters. Let us look at:

S
(H H u(gl_faj »E) <m‘(€l_5a]‘ 7ﬁ)))u(5m_567ﬁ) (x(f’m_acvﬁ))
7j=1 [>a;
l;éaj_;,_l,‘..,as
S
/
= U(em—ec,m) (:B(Em_ECaﬁ))(H H u(s,—aaj ) ('T(Elfgaj 7H)))
j=1 l>a]~
l#aj11,....a5s

The parameter :p’( ) is of the form

€1~ €a, i
! — —
x(z—:lfz-:aj ) T x(al—aaj L) +p,

where p ist a polynomial depending on z(gy) with 8 < e,; — €. Therefore we can
find a reparametrization such that we have an equality of varieties

(I I wee @ ten—scam " =" ven—en(I]l 11 weee,m):

7=1 I>a; j=1 I>a;
l#aj11,....a5 l#aj11,....05
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5 Cell combinatorics in type A

Corollary 5.2.1 Let K, L be tableaux and 11,15 as above, with
K=K xT'*K"L=K xTyx K".
Then we have
ug = uy,.

Proof. If py is the weight of K", we set po = 1 +&c+€qy +... + €4, By Lemma 5.2.4
we have

ug = ugrur (p)ugr (p2) = urrur, (p)ug (H2) = ur.

0
Now let
b|c| b
T, = i and Tp = i
Z @

Lemma 5.2.5 For any weight u, there exists a dense subset of the set of parameters
for the root subgroups, such that

~

UT1 = UT2 H €d; 7507# A))?

where f(A) indicates, that these parameters can not be chosen freely and depend on
the entries dy, ...,d; of the tableauz.

Proof. We write

H H u(em—ed]. :ﬁ))'

m>d;
m7édg+1, dt
We get
ury (N) = (H u(z—:lfec,ﬁ))ud(:u) (u(scsb,ﬁfl) H u(skfsb,ﬁ))
I>c k>b
ke,dr,...,ds
and

ury () = IT weeem Jua(in) (e e, - H U(ey, ~<p. Il weem)
Let us first look at uz, (p):

U’Tl Hu(al —&c,fi) Hu(ad —Ec,fi) ud( )( (ac—ab,ﬁ—l)) H U(gp,—ep, M)

I>c k>b
k?écydl yeeesdt

where we split the first product. The root subgroups in ug(p) (which are of the form
t

U —zq i) TV > d; > b,m # d, for all p) and in H Ueq, —<c.7) do not necessarily
j=1
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commute. But root subgroups appearing by using the commutation relation are of
¢

the form u(,, _._ 7 and therefore commute with the roots in 1—[1 Uea, —<e. )" Again,
j:
by neglecting the parameters we have

un (:u) - (H u(al—sc,ﬁ))ui(ﬂ) (H U(e;—ec,m) (xd,l))

I>c I>c

(Il ves,—ce)tcermvy 11 ver-em
j=1 k>b
k#c,dy,...,d¢
¢
The parameter 4 ; depends on data in ugq(p) and H U(ea, —ee )" The root subgroups
j=1
U(e,—eoi)s L > ¢, 1 # da, ..., dy commute with the root subgroups U(e 2 q)7)> TV > d; >
b, m # dp, for all p, which occur in u4. By using the commutation relation, we obtain
root subgroups that correspond to roots occuring in the product

[ue—ccm-
I>c

After reparametrization, we get

t

ury () = (L v —eem)eat) 1L v, <)

I>c j=1
Ueeepi-) ] Uer-am
k>b
k#c,dy,...,d¢
:(H u(sl—ec,ﬁ))ud(:u)( H u(ek—eb,ﬁ))
I>c k>b
k#c,dy,...,d¢

t
(H u(ed]‘ 7€Caﬁ))u(fc*€b,ﬁfl)7
j=1
since the root subgroups w, _., zy commute with the root subgroups w., _._ 7z and
?. J cs

U(e,—ey,i—1)- We rewrite the expression:

t

H U(ep—ep,i H (ea;—€c1t) u(ec_‘?b# 1)-

(1) =
ble ‘ k>b j=1
4 kt,dyds
dr

We commute

H u(sdj *5c’ﬁ)
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5 Cell combinatorics in type A

and (., _., z—1) using the commutating relation, and we get root subgroups of the

form U(ea, ~epa-1)- Since W(ea, ~ce.11) commutes with the u, ., ), we get

t

e =" e I (t(cs, ~enm (F(A))).
4 4
| ]

This is not an equality, since commuting the root subgroups in the last step leads
to the two parameters x and y of two roots appearing as xy in the sum of the two
roots and the parameter of this root being equal to zero only if one of the parameters
equals zero. So this the equality does hold only on an open dense subset. O

Lemma 5.2.6 For any weight 1 there exists a dense subset of the set of parameters
for the root subgroups such that

an ‘(u) :ﬂ ;T 1 (]Hl U(sdjeb,u)(f(A))> ,

where f(A) indicates that these parameters can not be chosen freely and depend on
the entries dy, ..., d;.

Proof. We abbreviate

ug(p) = H H U(em—ea, 1)
j=1

m>d;
m;édj+1,...,dt

We get

U bl e ‘(M) = Hu(al—ec,ﬁ)ud(u) U(e.—ep,m—1) H U(ep—ep,n)
I>c k>b
& kterdy y...,ds

We also have

% ble (N) = ( H u(slfsc,ﬁ))ud(li)
[>c
d; l7£d1>7---7dt
A
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5 Cell combinatorics in type A

t
U(ec—ep,i—1) H dv_5b’ﬁ_1) H u(€k—€b,ﬁ))
Jj=1

k>b
kc,dy,...,ds

Let us now rearrange the first product:

U b ‘(N) :( H u(elfsc,ﬁ))(H u(sdj fsc,ﬁ))ud(:u)
I>c j=1

d; l#d1,...,dt

U(ec—ep,i—1) H U(ep—ep,h)
k>b
ktc,dy,....ds

By commuting the w ) with ug(p), we obtain new root subgroups of the form

Edj —Ee, 1L

U(e,,—e0,i)» Which commute with

t

H u(sdj *Emﬁ) :

So again, if we neglect the parameters, we get

; C‘(M) =( 1T wereeq)uaC I1  wereom(®ay))
d; l;édll>,.(.:.,dt l7£dll>7-c--7dt

¢
H (d; o) | Wea—en 1) H U(ep—ep,n)

j=1 k>b
k#c,dy,...,ds

The parameter z4,; depends on data hidden in ug(p) and

t

H Sd —Ec,lh)

The root subgroups w(, .. m),l > ¢,l # di,...,d; commute with the root subgroups
U(eyy—eqy 1)y M > d; > b,m # d, for all p occuring in ug. The root subgroups
appearing when we commute the two products occur in the product

H u(al_fmﬁ)’

I>c
l#dy,...,dy
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5 Cell combinatorics in type A

and after a reparametrization, we obtain:

t
b‘(ﬂ)z( II weamua@(luc,—<m 1 weeamm)
>b j=1 k>b

dr Iy, dy kdy,....ds

d; |

and therefore

. ‘\/J) =“1 ;o
dy dy
d | |
O
Let us suppose now, we have generalized tableaux K, L of the form
b|c b|c
d d
K= K %4 x K" L =K' %*K”.
d | dr

so both have the same weight p. In the following, we will also allow the case of b = c.
Let 1 be the weight of K" let us = p1 + e + €4, + ... + &4, and pg = pz + €.

Proposition 5.2.1 The sets {uxt'} and {upt’} have a common dense subset, in
particular, {ugtrt} = {urtt} in the affine Grassmannian.

Proof. Let us first assume b > c¢. We have <,u1,5d]. —€c> = <us,€dj —5C> =
<,u3, €d; — £c>, and therefore

t
ugth = UKMW b (Ml)(H U(ea, i) (F(B)Jurc ()t
j=1

(m)(uz)(H ey, i) (F (D)) Jurer (1)t

J=1

Now the products of the form

¢
u(sdj _507.“72)

=1

<
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5 Cell combinatorics in type A

are elements ofn U~ (0,,), which is the intersction of U~ (K) and the stabilizer

G(Oy,) in G(K) of the vertex pa. All the root subgroups u(, _.. pz) lie in the
J

stabilizer of the edge joining ps with ps. Hence we know by Lemma 5.2.2 that

(12) H ey, i) (F (D) Jurer ()"

—u- p2)U™ (O, Juger (p3)t*
(MQ)UK/ (p3)t"

and as a direct consequence, we obtain
ugtt = uptt

on a dense subset. Suppose now b = ¢, then by Lemma 5.2.6, we have

urtt = upruy

/ = " / t'u — t'u-
7 To ‘LLK (n3)t" = ug ﬂw b T e (ka)t" = ur
d1 dl
dr| dr|

O

Theorem 5.2.1 Given a generalized tableau K, let Tk be the unique semi-standard
Young tableauz obtained from K by the bumping algorithm and denote by Ag the
shape of Tk and by pg the weight of K. Then

m(Ck) = m(Cry)
is an MV-cycle in the Schubert variety X, of weight jx.

Proof. Given a generalized tableaux K = Kj % K3 x K3, such that Ky is just one
column and K3 is a semi-standard Young tableaux and maximal with this property.
Let p be the weight of K. The proof will be by induction on the number of boxes of
Ks3. Remember, that K3 is never empty, but it may be just one column or even just
one box. We will show, that there exists another generalized tableau, which can be
obtained by the bumping algorithm from K and its semi-standard part has at least
one box more. If we have
n p2| b

thenletL:kapf3 * K.

I
Ds | 2]

Now ugtt = upt* since read box-wise K and L result in the same gallery and are
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5 Cell combinatorics in type A

related by the bumping algorithm. So without loss of generality, we may assume

If we have p > ¢, then we set

L=Kx*|: |xKj.

Again, we have ugt* = upt’ since K and L result in the same gallery read box-wise,
but they are related by bumping and in L the semi-standard part has one box more
than in K. Let K be of the form

S
S
[

K:Kl*

*Ké,

=K3

where a1 < a9 < ... <as <b<c<d; <..<di <n+1. By the above, we have
urtt = urtt since read box-wise, K and L give the same gallery, where

blclal

d1 a9

L =K * % K.

Qs

Again, K and L are related by the bumping algorithm. By Proposition 5.2.1, upst*
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and urt* have a common open subset, where

b|clar
dy as
— o
d, |

Note, that M and L are related by the bumping algorithm. By Corollary 5.2.1, upst#
and upt"* have a common open subset, where

blai]| ¢

d1 a9
M=K x| :|: * Kb,

as

dy

and the associated generalized tableaux are related by the bumping algorithm. We
set

ai| C

a2

d, |
and upst* = untt, since read box-wise M and N result in the same gallery and are
related by the bumping algorithm. By iterating this process, after a finite number

of steps we obtain a generalized tableau @, such that its semi-standard part hast at
least one box more and ugt” and ugt” coincide on a dense subset. O

Now consider two words equivalent under the Knuth relations. We regard them
as tableau of type Nwj. Since the equivalence means, that they result in the same
semi-standard Young tableau using the bumping algorithm and since the MV-cycle
associated to the cell of an LS-gallery is unique, we obtain the following theorem:

Theorem 5.2.2 If and only if two words are equivalent under the Knuth relations,
then the closure of the images of the cells associated to two words are the same. They
form an MV-cycle of coweight (X, ), where p is their target and X\ is the shape of
the semi-standard Young tableau resulting from the bumping algorithm.
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