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Abstract
A system-theoretic model for cooperative settings is presented that unifies and ex-

tends the models of classical cooperative games and coalition formation processes and
their generalizations. The model is based on the notions of system, state and transi-
tion graph. The latter describes changes of a system over time in terms of actions
governed by individuals or groups of individuals. Contrary to classic models, the pre-
sented model is not restricted to acyclic settings and allows the transition graph to have
cycles.
Time-dependent solutions to allocation problems are proposed and discussed. In par-
ticular, Weber’s theory of randomized values is generalized as well as the notion of
semi-values. Convergence assertions are made in some cases, and the concept of the
Cesàro value of an allocation mechanism is introduced in order to achieve convergence
for a wide range of allocation mechanisms. Quantum allocation mechanisms are de-
fined, which are induced by quantum random walks on the transition graph and it is
shown that they satisfy certain fairness criteria. A concept for Weber sets and two dif-
ferent concepts of cores are proposed in the acyclic case, and it is shown under some
mild assumptions that both cores are subsets of the Weber set.
Moreover, the model of non-cooperative games in extensive form is generalized such
that the presented model achieves a mutual framework for cooperative and non-co-
operative games. A coherency to welfare economics is made and to each allocation
mechanism a social welfare function is proposed.



Kurzzusammenfassung
Ein systemtheoretisches Modell für kooperative Situationen wird vorgestellt, welch-

es die klassischen Modelle kooperativer Spiele und Koalitionsbildungsprozesse und
deren Verallgemeinerungen vereinigt und erweitert. Das Modell basiert auf den Begrif-
fen System, Zustand und Übergangsgraph. Letzterer beschreibt die Veränderung eines
Systems in Form von Aktionen, welche von Individuen oder Gruppen von Individuen
beherrscht werden. Im Gegensatz zu klassischen Modellen, ist das vorgestellte Mod-
ell nicht auf azyklische Situationen beschränkt und erlaubt es dem Übergangsgraphen
auch Kreise zu enthalten.
Zeitabhängige Lösungen zu Allokationsproblemen werden vorgeschlagen und disku-
tiert. Insbesondere wird Webers Theorie der randomisierten Werte, ebenso wie der
Begriff des Halbwerts, verallgemeinert. In manchen Fällen werden Konvergenzaus-
sagen getroffen und das Konzept des Cesàro-Werts eines Allokationsmechanismus
wird eingeführt, um Konvergenz einer großen Menge von Allokationsmechanismen zu
erreichen. Quantenallokationsmechanismen, welche von Quantenirrfahrten auf dem
Übergangsgraphen induziert werden, werden definiert und es wird gezeigt, dass diese
gewissen Fairnesskriterien genügen. Ein Konzept für Weber-Mengen und zwei ver-
schiedene core-Konzepte werden im azyklischen Fall vorgeschlagen und es wird unter
schwachen Voraussetzungen gezeigt, dass beide cores Teilmengen der Weber-Menge
sind.
Überdies wird das klassische Modell nicht-kooperativer Spiele in extensiver Form ver-
allgemeinert, so dass das vorgestellte Modell einen gemeinsamen Rahmen für koopera-
tive und nicht-kooperative Spiele bildet. Ein Zusammenhang zur Wohlfahrtsökonomie
wird hergestellt und zu jedem Allokationsmechanismus wird eine gesellschaftliche
Wohlfahrtsfunktion vorgeschlagen.
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1 Preface

Whenever multiple agents (e.g. persons, companies, groups of individuals,...) interact
in a given economic or sociological context, these agents make decisions to take certain
actions that will influence the welfare of each individual, as well as the welfare of
the whole group. There is a basic conflict between the interests of individual agents
which are guided by self-interest and the interests of the group of agents as a whole.
The description and analysis of these interactions, this conflict and the behavior of the
agents by mathematical models are primary objectives of game theory. By performing
several actions, the agents mutually generate a social surplus or social costs. Finding
fair allocations of these surpluses or costs is a principal purpose of cooperative game
theory.
Cooperative processes and allocation processes naturally have a dynamic flavor, but
mathematical models for their analysis are often based on set theoretic frameworks or
acyclic combinatorial structures that are inherently static. Precisely this is the initial
point of this thesis. By understanding cooperation and allocation as dynamic processes,
it presents a new formalism for studying allocation problems and cooperative behavior.
This formalism is based on a simple observation: not the agents, but the actions gov-
erned by them, are the essential objects which cause surpluses or costs in a cooperative
environment.

In Chapter 2 classical and recent models of cooperative game theory and coalition
formation processes are reviewed. By giving certain examples of cooperative settings,
main points of criticism are figured out, that will serve as motivation for a more dy-
namic and non-acyclic approach to cooperative topics. Models for cooperative games
on precedence structures ([34], [46]), on combinatorial structures ([11], [13], [14], [15],
[30]), on closed set-systems ([19], [28], [32]), models for multi-choice games ([49],
[50], [44]), the first system-theoretic (but still acyclic) approach [37], as well as mod-
els for coalition formation are discussed. This motivates the wish to give a unifying
model for cooperative settings.
Chapter 3 picks up these points of criticism and this wish and introduces our model.
First, the terms system and state are defined and basic properties of these objects are
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2 1. PREFACE

derived. After this we investigate evolution processes of systems and find a strong
relation to a graph, the so called transition graph, whose vertices are states and whose
arcs are actions governed by agents to bring the system from one state to another. This
leads us to the general notions of a time dependent cooperation system and cooperative
games on cooperation systems. We prove that all mentioned classical models yield
special cases of cooperation systems. Hence cooperation systems yield a unifying
framework for cooperative settings.
The set of all cooperative games on classical structures is a vector space. A certain basis
- the unanimity basis - of this vector space is a tool to apply the theory of linear algebra
to cooperative games such that the elements of this basis have a nice game-theoretic
interpretation. We generalize the notion of unanimity games to general cooperation sys-
tems and give interpretations of these games in Chapter 4. This is done by embedding
the discussion into the framework of incidence algebras.
Chapter 5 is dedicated to first solutions to the allocation problem of cooperative games
on cooperation systems. The notion of allocation mechanisms is developed as a func-
tion that assigns to each cooperative game on a cooperation system a time-dependent
valuation of the actions governed by the agents. Linear allocation mechanisms are
studied and characterized and the non-negativity axiom is introduced, which is a gen-
eralization of the classical monotonicity axiom. Moreover, the classical concept of
efficiency is generalized and linear and efficient allocation mechanisms are character-
ized as certain flows on the transition graph. We argue that a fair allocation mechanism
should distribute values in the same ratio to certain arcs if the system is in the same
state more than once. We call this property ratio fairness, and linear, efficient and ratio
fair allocation mechanisms are seen to correspond to generalized random walks on the
transition graph. Therefore, we call them randomized. This yields a generalization of
Weber’s seminal theory of classical linear values [91]. Via this correspondence we are
able relate non-negative, linear, ratio fair and efficient allocation mechanisms to the
notion of entropy. A generalization of the classical Shapley value [82] is seen to be the
unique allocation mechanism of this type with maximal entropy. We give some basic
convergence results of randomized allocation mechanisms that are strongly related to
well-known facts of the convergence theory of random walks. The chapter is closed by
several concrete examples of allocation mechanisms and also a generalization of the
famous Banzhaf value [8] is given.
Given two cooperative settings, we consider in Chapter 6 how they could be jointly
modeled. The strong relation of cooperation systems to graphs again shows to be
worthwhile since transition graphs of jointly modeled settings are seen to be Cartesian
products of transition graphs of the single cooperation systems. We give an approach
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to construct a random walk on the Cartesian product of two graphs out of given ran-
dom walks on its factors. This approach directly leads to an application of the theory
developed in Chapter 5 and we are able to give a concrete description of randomized
allocation mechanisms on product systems that are induced by randomized allocation
mechanisms on the single factors.
In Chapter 7, our view is peeled away from randomized allocation mechanisms and
the class of not necessarily efficient allocation mechanisms is studied. Linear and ratio
fair allocation mechanisms are seen to be induced by certain matrices. This leads us
to a generalization of classical semi-values [26]. The second part of this chapter intro-
duces the Cesàro value of an allocation mechanism, which is the Cesàro mean of its
values over time. By applying the classical ergodic theorem of linear algebra together
with the characterization of linear and ratio fair allocation mechanisms, we achieve the
convergence of all Cesàro values of allocation mechanisms which are induced by a
matrix with norm less or equal to one. In particular, the Cesàro values of randomized
allocation mechanisms are convergent.
Chapter 8 introduces the term of quantum allocation mechanisms. These are alloca-
tion mechanisms which are induced by certain unitary evolution processes, so called
quantum random walks, on the transition graph of a cooperation system. It is shown
that quantum allocation mechanisms yield examples of linear and efficient but not ratio
fair allocation mechanisms. Moreover, by applying an ergodic theorem of Faigle and
Schönhuth [38] it is proven that - even if quantum allocation mechanisms are not ratio
fair - their Cesàro values converge.
Besides allocation mechanisms the set-valued solution concept of the core is widely
studied in cooperative game theory. Chapter 9 proposes two different generalizations of
the classical core for acyclic cooperation systems. Marginal-worth vectors are defined
in our general context. The convex hull of all marginal-worth vectors is classically
known as the Weber-set of a cooperative game due to a result of Weber [91], who
proved that the core is always a subset of the Weber-set. Both proposed core concepts
are seen to have this property, and we prove generalized versions of Weber’s theorem
with the aid of a greedy-type algorithm.
Chapter 10 takes a step beyond cooperative aspects. Non-cooperative games in exten-
sive form are generalized and are seen to be tuples of cooperative games on coopera-
tion systems. Equilibrium points are characterized in graph theoretic terms. A relation
between mixed strategies and random walks on a tensor product of certain graphs is
exposed in the case of a two player non-cooperative game. A social welfare function
measures a certain social utility with respect to individual utility functions. Motivated
by a model for coalition formation in societies [33] a bridge to welfare economics is
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build. Social welfare functions are seen to arise as special cooperative games on a
cooperation system. The developed theory of allocation mechanisms yields answers
to the question, how a certain social welfare value should be allocated in a fair way.
The basic theory of social welfare and social choice is recalled. And a possibility to
transport fairness criteria of social welfare functions to fairness criteria of allocation
mechanisms and vice versa is pointed out.
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2 Models for cooperative games
and coalition formation

This chapter recalls the model of classical cooperative games in Section 2.1 and some
of its generalizations as a basis for the introduction of our model in the next chapter.
Also the allocation problem is stated in Section 2.1 and discussed by means of some
examples. Solutions to the allocation problem are not proposed in this chapter, and we
will concentrate on finding solutions in later chapters.
In Section 2.2, we give examples of previously proposed set-theoretical generalizations
to the classical model. Amongst others we highlight the approach of Faigle and Kern
[34] to generalize cooperative games to games on precedence structures. After that, in
Section 2.3, we will present the model of Faigle and the author [37] that took a first
step towards a more general view on cooperative game theory and was a main part of
inspiration for this thesis.
In Section 2.4, we discuss points of criticism of the mentioned models by means of an
example in order to give reasons for further generalizations and to define tasks for our
approach that will be stated in the next chapter.
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8 2. COOPERATIVE GAMES AND COALITION FORMATION

2.1 Classical cooperative games

The classical model of cooperative games (first proposed by von Neumann and Mor-
genstern [70]) assumes that arbitrary subsets of agents can join to form coalitions and
create values in a given economic context. Formally a cooperative game is a pair (N, v)
consisting of a finite set of players (or agents) and a characteristic function v : 2N → R,
that assigns to each coalition S ⊆ N of players its value v(S). Usually one assumes
that v is normalized; i.e.: v(∅) = 0.

2.1.1 The allocation problem

Given a cooperative game (N, v) in some economic context, the players in N create the
value v(N). The allocation problem is to distribute the jointly generated value among
the players in a fair way. With other words: the allocation problem is the problem
of assigning to each cooperative game (N, v) a payoff vector, x ∈ RN , in a way such
that this allocation is fair and allocates a certain jointly generated value to the players.
Usually one assumes that the value v(N) is allocated, i.e.: x(N) :=

∑
i∈N xi = v(N).

Such an allocation vector is called efficient.
Since fairness is a very subjective concern, there are many different ideas of solution
concepts to the allocation problem proposed in the literature (cf. Section 5.1.1).

We give two examples of cooperative games and the associated allocation problems:

Example 2.1.1 (Government formation) Assume that in an elected parliament there
are representatives of five parties: a conservative party C, a social democratic party S,
a liberal party L, an ecologic party G and a Marxistian party M. The outcome of the
election does not admit that one party could govern on its own. Thus the parliament
goes into coalition negotiations. To be more concrete, assume the following outcome
of an election (fictive data for an election to the “Deutsche Bundestag”). There are
598 seats in the parliament. The distribution of seats is as follows:

C 198 seats

S 202 seats

G 81 seats

L 23 seats

M 95 seats

Assume one wants to model the distribution of power among the parties for the coalition
negotiations by a cooperative game. Therefore let v : 2{C,S,L,G,M} → R and set the value
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of a coalition to 1 if it is up to governance (i.e.: if it is capable to govern with a majority
of at least 299 seats) and 0 else wise. Set N := {C,S,L,G,M}. A payoff vector x ∈ RN

with
∑

i∈N xi = v(N) = 1 reflects a distribution of power of the parties. Intuitively
one would say, x is fair for this game if its power distribution gives account to the real
power of the party, i.e.: the power of a party X should depend on the possible coalitions,
which are up to governance and contain X. Therefore, the power of L should be much
lesser than that of S.

Example 2.1.2 (Gain distribution) Christy, Peter and Bob like cinema movies. The
local cinema offers the opportunity to buy tickets in advance without any compound
to a fixed film. A single ticket costs 10 Euros. But the cinema also offers a quantity
discount. If you buy three tickets at once, you get one ticket for free, and if you buy 5
tickets at once, you get 2 tickets for free. The budgets of Christy, Peter and Bob are as
follows:

Christy 25 Euros

Peter 35 Euros

Bob 20 Euros.

It is obvious that they should put all their money together in order to get tickets for
80 Euros, which will result in a whole of 11 cinema tickets. But how should those 11
tickets be distributed among Christy, Peter and Bob? One possible distribution could
be as follows: Christy and Peter both get 4 tickets and Bob gets 3 tickets. This seems
to be fair, but Peter could get this 4 tickets by spending only 30 of his 35 Euros alone
on tickets, without cooperating with Christy and Bob.

2.2 Set-theoretic generalizations

Consider Example 2.1.1 again. As long as there is no further information, this model-
ing seems adequate. But in reality, the political business is not as simple as mentioned
in this example. For instance, assume that the conservative party C has given its elec-
torates the promise, not to contract a coalition with the Marxistian party M. In order
to valuate the power distribution of the parties in this example, all possible coalitions
were considered. But with the election pledge of C, not to build a coalition with M,
this model does not reflect the reality. Arithmetically this possibility is feasible, party
politically it is not.
This example gives a reason for generalizing the classical model of cooperative games.
The classical model is not adequate for many real situations, since not in every situation
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all coalitions of players in 2N are feasible. In the literature there are many generaliza-
tions that aim in one way or another for a generalization of the classical model of the
form: given a set of feasible coalitions F ⊆ 2N and a valuation function v : F → R the
triple (N,F , v) is called a cooperative game. In the rest of this section we will give a
short overview over these approaches.

2.2.1 Precedence constraints

In 1992 Faigle and Kern [34] considered partially ordered player sets (N,≤). Interpret-
ing the partial order, such that the presence of j in a coalition enforces also the presence
of i in this coalition, if i ≤ j, they call a coalition S ⊆ N feasible if for all j ∈ S and
all i ≤ j also i ∈ S holds. By setting F≤ as the set of feasible coalitions induced by the
partial order ≤, a cooperative game on a partially ordered player set (N,≤) is a tuple,
(N,≤,F≤, v), where v is a valuation function from F≤ to R.
Another approach to games with precedence constraints is presented by Gilles, Owen
and v.d. Brink [46]. They represent the precedence constraints by a directed graph
with vertex set N and arc set {ij ∈ V × V |i < j}. Faigle and Kern [34] argue, that by
investigating the transitive hull of this graph, one can assume without loss of generality,
that the precedence order in [46] is already partially ordered.

2.2.2 Combinatorial coalition structures

Other approaches for generalizations of classical cooperative games investigated dif-
ferent combinatorial structures as underlying sets of feasible coalitions. Bilbao et al.
studied cooperative games on convex geometries [11], matroids [15] and antimatroids
[2]. Recently the models on certain combinatorial structures were generalized to so
called augmenting systems [14]. All these models yield special cases of greedoids:

Selection structures and greedoids

A selector is a map, σ : 2N → 2N , with the property:

σ(S) ⊆ N \ S, for all S ⊆ N.

An ordered selection is a sequence, π := p1...pk, of players with the property:

pi ∈ σ({p1, ..., pi−1}) (1 ≤ i ≤ k).

The underlying set of players of an ordered selection is called selection. Let S denote
the set of all selections induced by σ.
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A greedoid is a pair (N, σ) with the property: for all S, S′ ∈ S

|S| <
∣∣S′∣∣⇒ σ(S) ∩ S′ 6= ∅

holds. A general theory of greedoids could be found in the book of Korte, Lovász
and Schrader [56] (without any applications to game theory). A model of cooperative
games on selection structures was proposed by Faigle and Peis in [30]. Since the above
mentioned models are all based on greedoids, we will only discuss how greedoids
fit into our model and with that, we implicitly argue for all models on combinatorial
structures.

2.2.3 Closed set-systems

Aside the approaches that involve certain combinatorial structures, there are models on
(more or less) arbitrary set-systems with different properties to be closed in some sense.
For instance Faigle [28], as well as v. d. Brink et al. [19], investigated union closed set
systems as sets of feasible coalitions and studied different generalizations of solution
concepts on them.
Relaxations of the assumption of union closedness can for instance be found in the
work of Faigle, Grabisch and Heyne [32].

2.3 A first system-theoretic approach

In [37] Faigle and the author took a step beyond the set-theoretic viewpoint on cooper-
ative games. By understanding cooperative situations as sequences of actions, which
are performed by the players, that shift the cooperative situation from one state to an-
other, we developed a model for cooperation that has some sort of system-theoretic
spirit. For instance, in a classical cooperative situation, player i ∈ N takes the action
to join a coalition S and therefore i takes the cooperative situation from state S to state
S ∪ i.
Formally we define a game system to be a tuple, (N, V,A,A, s), consisting of a finite
set of players N , a finite set of states V , a set of actions A ⊆ V ×V , which is partitioned
into the actions that the single players can perform: A = (A1, ..., An) and of a starting
state s ∈ V . We make the following assumptions on the tuple (N, V,A,A, s) if we call
it a game system:

(a) s is the unique starting state
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(b) The situation is acyclic, i.e.: there is no possibility to take the system back to a
state, it previously was in.

A cooperative game on a game system (N, V,A,A, s) is a valuation of the states: v :

V → R s.t. v(s) = 0. First of all, note that all above stated generalizations of coopera-
tive games are acyclic. We give greedoids as examples of game systems:

Example 2.3.1 (Greedoids as game systems) Let (N, σ) be a greedoid and let S be
the set of selections induced by σ. By setting

V := S and Ai := {(S, S ∪ {i})|S ∈ S, i ∈ σ(S)} for i ∈ N,

(N, V,A,A, s) is a game system with A :=
⋃
i∈N Ai. Therefore, all the above mentioned

models for games on combinatorial structures yield special cases for games on game
systems.

2.4 Criticism of these models

In this short section we discuss some points of criticism of the above mentioned models.
Since we showed in Section 2.3, that all mentioned models (except those on closed set
systems) yield special cases of the model in 2.3, we will only critically discuss this
model. First we will extend Example 2.1.2:
Assume that Christy, Peter and Bob are regular cinema visitors. And assume that the
budgets in Example 2.1.2 are their monthly cinema budgets. So, every month they are
able to buy eleven cinema tickets. Assume the cinema plays a new movie each week.
Therefore, none of the three is interested in watching more than four films per month.
In January Christy, Peter and Bob agree to allocate the eleven tickets by (4, 4, 3). But
as mentioned in 2.1.2 this allocation treats Peter unfair since he could get his 4 tickets
solo and by only investing 30 of his 35 Euros. But the model does restrict Peter to
participate in the joint cinema ticket buy with his whole budget. Obviously it makes a
difference if Peter is present with 30 or with 35 Euros.
This is the first point of criticism of the above mentioned models:

• Only presence of players in a coalition is modeled, not their amount of presence.

2.4.1 Multi-choice games

This problem was solved model-sided through the idea of so called multi-choice games
introduced by Hsiao and Raghavan [49], [50]. We will briefly recall a model for multi-
choice games, which was proposed by Grabisch and Lange [44] as an extension: one
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assumes that each player i ∈ N has certain activity levels which are linearly ordered
Li := {0, 1, ...,mi} where mi is the maximal activity level of player i. A feasible coali-
tion is a weighted incidence vector S = (s1, .., sn) ∈ L1 × ... × Ln. The case si = 0

models the absence of player i in the coalition S and si = ki ∈ Li the presence of
player i in S with activity ki. A cooperative multi-choice game on S := L1× ...,×Ln is
a valuation v : S → R such that v(0, ..., 0) = 0.
This model of multi-choice games yields a special case of the model presented in Sec-
tion 2.3: Set

V := S, Ai := {((s1, ..., sn), (t1, ..., tn))|sj = tj for j 6= i and si < ti},

A :=
⋃
i∈N

Ai and s := (0, ..., 0).

Then (N, V,A, (A1, ..., An), s) is a game system in the sense of 2.3.
Back to the Cinema Example. In February Christy and Bob propose to allocate the
eleven tickets in the same way, they did in January. But Peter disagrees. In January
Peter payed 5 Euros too much in order to maximize the overall number of tickets they
can buy together. He is not willing to do so again in February.
This leads to our second point of criticism:

• All set-theoretic models are static and do not take past events into account.

Assume further that Christy, Peter and Bob disagree about a solution to their allocation
problem in February, and that Peter decides not to participate in the joint cinema ticket
buy this month. The classical models can not model such situations. Further assume
that Christy, Peter and Bob discuss about their February problem in the beginning of
March and that they agree again. Peter joins the cinema ticket coalition again. Thus
there is a cycle in the cooperative behavior of Christy, Peter and Bob, which leads us
to the following point of criticism:

• All above mentioned models are acyclic and can not handle cyclic cooperative
situations.

2.5 Coalition formation processes

In the first section, we had a look on cooperative games and associated allocation prob-
lems. We thought of situations in which a certain value was jointly generated by the
players in N . By examples we pointed out, that for distributing this value among the
players in a fair way, it seems eligible to take the possibilities of cooperation of the
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players into account. Another aspect of cooperative situations is the question, how
players form coalitions and coalition structures in a given economic context.

Example 2.5.1 Given a classical cooperative game (N, v), the formation of the grand
coalition N takes place by players that consecutively join in any order. The process
starts with the empty set and one by another players form larger and larger coalitions,
until the grand coalition is build. With each step the value of the marginal contribution
v(S ∪ i)− v(S) (S ⊆ N, i ∈ N) of this step is generated.

The study of such processes - so called coalition formation processes - was mainly
started by the work of Thrall and Lucas [87]. They studied so called

Example 2.5.2 (Games in partition function form) Given a setN of players denote
by Π(N) the set of all partitions of N . That is the set of all possibilities to distribute
the players into pairwise disjoint coalitions. In terms of coalition formation processes
a partition is also often called a coalition structure, and the contained coalitions are
sometimes called blocks of the partition. The idea of Thrall and Lucas [87] was,
that the value of a coalition should not depend only on the coalition itself, but on the
coalition structure in which this coalition has formed. Therefore, define an embedded
coalition as a pair, (S, π) ∈ 2N × Π(N), such that S ∈ π. Denote by C(N) the set of all
embedded coalitions.
A game in partition function form is a pair (N, v) with a valuation function

v : C(N)→ R.

Π(N) is partially ordered in a natural way induced by the partial order ⊆ on 2N : given
two partitions π1, π2 we set π1 ≤ π2 if for each S ∈ π1 there exists T ∈ π2 with S ⊆ T .

Aumann and Drèze [6] already marked, that the theory of cooperative games may be
viewed as a general study of coalition formation. Traditionally one assumes that coali-
tional moves are monotonic; i.e.: the situation is acyclic, in order to guarantee the
convergence of the coalition formation process after finitely many steps (cf. Funaki
and Grabisch [43], Macho-Stadler et al. [63], Hajdukova [52]).

Faigle et al. [33] took a step beyond the acyclic point of view on coalition formation
processes and proposed a model in which the acting agents could join and leave coali-
tions arbitrarily. They investigated coalition formation processes that not only arise
from personal interests of the players, but also from the benefit of the society. We will
discuss this model later in Chapter 10.
Later Faigle and Grabisch [31] investigated settings on the power-set 2N of the player-
set such that all transitions S → T (S, T ⊆ N) are feasible moves.



3 The model

In the previous chapter we recalled various models for cooperative situations and dis-
cussed, in which situations these models are not adequate for many real situations. The
two main points of criticism were:

• the statics and

• the acyclicity

of these models. In this chapter we propose a new model for cooperative situations,
which can deal dynamic and cyclic settings. We will carefully differentiate between
two perceptions: cooperative situations in which the underlying cooperation structure
is externally given and those situations where it is unknown and could only be observed
by an ongoing cooperative processes. Many of the used terms in the last sentence are
not yet well defined, but in view of the previous chapter, one should have a rough idea
of them.
In Section 3.1, we develop the abstract idea of states, state the prediction problem
and finally we define what a state space is. After that we introduce the formalism to
describe evolutionary processes in terms of evolution operators, which were already
studied by Faigle and Schönhuth [38], in Section 3.2.
Section 3.3 makes the term system available to us as a tuple consisting of a state space
and an evolution operator, which describes a certain evolution on this state space. More-
over, by defining the transition graph of a system, we emphasize the strong relation of
our model to the theory of directed graphs. This finally leads us to the definition of
cooperation systems in Section 3.5, where we will also see, that the models mentioned
in the previous chapter yield special cases of our model.

15
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3.1 Systems and states

For this whole chapter let K be a subfield of C. Whenever a total ordering of K is
needed, we implicitly assume K = R. In most applications K = R will hold. Since
most of our results even hold for arbitrary fields of characteristic 0, we state them for
arbitrary subfields of C for the sake of mathematical generality. However, it is riskless
if the reader assumes K to be the field of real numbers. We begin this section with an
example which was motivated by Faigle [29]:

Example 3.1.1 Assume there is an investor, who considers to bet a certain budget on
a future event with n ∈ N possible different outcomes Oi (i = 1, .., n). The investor
assigns weights pi to the possible outcomes, in order to measure which outcome he
expects to come true. In order to maximize his expected gain, he will bet each outcome
Oi with the pi-th part of his designed budget.
At the time of his decision to bet the pi-th part of his budget on outcome Oi, the investor
is in an economic “state” described by the parameter vector (p1, ..., pn).

In the first instance, the cooperative flavor of this example stays hidden. But abstractly
thinking of the possible outcomes as players, which share the budget of the investor
among them, the investors problem of allocating his budget to the outcomes, is also an
allocation problem of players in a certain cooperative context.
Besides the allocation problem we are interested in another question:

3.1.1 The prediction problem

Assume a cooperative situation of n players is given, which can perform certain cooper-
ative actions over time (think of “joining” or “leaving” certain coalitions, or “investing
x Euros into a certain stock”,...). Assume there is a time dependent payoff rule, (φt)t≥0

(φt ∈ Kn), that allocates certain gains to the players dependent on which actions they
were able to perform. We refer to the question:

“How could the behavior of the players in performing actions be predicted?”

as the prediction problem.
We will see in Section 5.5 that there is a strong relation between the prediction problem
and the allocation problem.
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3.1.2 A first step to systems

We aim for an algebraic formalization of the above ideas into a general framework in
which cooperative situations can be analyzed with respect to evolution of cooperation,
formation of coalitions and solutions to the allocation- and the prediction problem. We
will omit an abstract definition of a system at first and will instead define all needed
components, in order to go step by step towards our general model.

We think of a certain situation that should be modeled, as a (finite) collection of certain
observable basic events. We will also call these events ground states. The possibility
that a basic event takes place or not can change over time. We assume that time steps
are discrete and that the changes over time could be observed.

Think again of Example 3.1.1. A basic event that could be observed is, that the in-
vestor bets all his budget on Oi (i ∈ N). We denote the observation of the event “bet
everything on Oi” by a tuple (0, .., 0, 1, 0, ..., 0) with 1 in the i-th component. Just as
well: if we have a finite collection V of basic events the observation “event x takes
place” (x ∈ V ) by (0, .., 0, 1, 0, ..., 0) with one in the x-th component.

REMARK Note that we restrict ourselves to finite sets of basic events only for sim-
plicity of the presentation. The basic model could be generalized to arbitrary discrete
sets of ground states.

Superposition of ground states

Since the investor has the possibility to split up his budget among all possible events,
the definition of ground states is not sufficient to model this situation. Also one could
think of situations in which not only parts of an event take place, but it can take place
more than once at a time (for instance think of a second investor that also bets his
budget on the same events). In order to model those situations, we build formal linear
combinations of the ground states in V (so called superpositions) with respect to a
given field K: ∑

x∈V

cxx (cx ∈ K).

According to the setting that should be modeled, the observed formal linear combi-
nations of ground states could vary extremely. For instance, a certain split up of the
budget of the investor (p1, ..., pn) is a convex combination of the ground states “bet
everything on Oi”. In quantum mechanics a possible event is a normalized superposi-
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tion of basic events. The general case of a quantum state space will be treated later
in Chapter 8. We are mainly interested in convex or generalized convex combinations
of ground states, but also other reasonable sets of states are thinkable (cf. Chapter 11).
We split up definitions and merge all states into a set and call this set the state space:

Classical Markovian state space

If all possible events are convex combinations of ground states as in Example 3.1.1, we
merge all possible events in a set

V := {v|v =
∑
x∈V

cxx,
∑
x∈V

cx = 1, cx ≥ 0}

and call V the (classical) Markovian state space with respect to V .

Generalized Markovian state space

If all possible events are generalized convex combinations of ground states, i.e.: if the
occurring probabilities could be negative, we set

V := {v|v =
∑
x∈V

cxx,
∑
x∈V

cx = 1}

and call V the generalized Markovian state space with respect to V .

Negative probabilities

In physics, negative probabilities were discussed by Dirac [24] and Feynman [41]. Re-
cently Faigle and Schönhuth [39] developed a model for certain observable processes
in which probabilities could also be negative. The term probability is plausible, even if
probabilities could become negative or exceed 1: let v ∈ KV s.t. 1T v = 1. For a subset
S ⊆ V , set v(S) :=

∑
x∈S vx. Then v obeys some of the familiar Kolmogorov axioms:

v(V ) = 1, v(V \ S) = 1− v(S), v(S ∪ T ) + v(S ∩ T ) = v(S) + v(T )

for all S, T ⊆ V . We will give no further interpretations of negative probabilities and
we will just accept them as a feasible mathematical model.

If no further concretization is needed, we refer to V as the state space and will call
the elements of V states. We define the dimension of a state space V to be the cardinal-
ity |V | =: dim(V) of the underlying set of ground states.
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Dirac notation

We will often use the so called Dirac notation, which is widely used in quantum
physics. We write a vector v ∈ KV by |v〉 and its counterpart (its image under the
natural isomorphism) in the dual space by 〈v|. We will note some advantages of this
notation in the following lemma. Later we will use this lemma without further men-
tioning.

Lemma 3.1.1

(a) For all v, w ∈ V : 〈v| |w〉 = 〈v| w〉 =
∑

x∈V 〈v|x |w〉x.

(b) For all v, w ∈ V : 〈v| w〉 = 0, 〈v| v〉 = 1.

(c)
∑

x∈V |x〉 〈x| = Id

Proof. (a) is clear by inserting the definitions. (b) is clear by (a) since V is the standard
orthonormal basis of KV . We prove (c) point-wise on the standard basis V . Let |u〉 ∈ V .
Then ∑

x∈V

|x〉 〈x| |u〉 (b)= |u〉 〈u| |u〉 = |u〉 .

Therefore (c) holds. �

Example 3.1.2 Consider again the investor of Example 3.1.1 that bets his budget on
the n outcomes Oi. We model the n possible events “bet everything on outcome i” by
defining a set of ground states V := {|i〉 |i = 1, .., n}. The event that the investor bets
the pi-th part of his budget on outcome Oi, is then described by the state:

|p〉 :=
n∑
i=1

pi |i〉 (pi ≥ 0,
∑
i

pi = 1).

Example 3.1.3 (Classical cooperative games) Let (N, v) be a classical cooperative
game. Assume that

|v| :=
∑
S⊆N

v(S) 6= 0.
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Define ground states by V := {|S〉 |S ⊆ N}. Then (N, v) gives rise to a state

v′ :=
∑
S⊆N

v(S)

|v|
|S〉 .

Conversely, each state is a cooperative game on N .

3.2 Evolution

This section wants to give a formal framework for describing evolutionary processes on
Markovian (resp. generalized Markovian) state spaces. We will therefor characterize
state preserving maps and give a definition of evolution operators which is due to Faigle
and Schönhuth [38].

3.2.1 State preserving maps in the (generalized) Markovian
case

In order to describe evolutionary processes, we are interested in linear operators L :

KV → KV , that leave the state space invariant, i.e.:

L(V) ⊆ V . (*)

Those maps induce transformations of states in a natural way, since V is a basis of KV

and (*) guarantees that L |x〉 ∈ V for all |x〉 ∈ V .

Assume for the rest of this section: V is a Markovian or generalized Markovian state
space.

We give an example of state preserving maps:

Example 3.2.1 (Stochastic matrices) Assume V to be a (generalized) Markovian state
space. Let (sij) =: S ∈ KV×V be a stochastic matrix. That is:∑

i∈V

sij = 1, sij ≥ 0, for all j ∈ V .

And let |p〉 ∈ V . Then
〈1|S |p〉 = 〈1| p〉 = 1.

And therefore S |p〉 ∈ V . Note that the assumption sij ≥ 0 was not needed if we assume
a generalized Markovian state space. We therefore relax the assumptions and call S
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a generalized stochastic matrix if
∑

i∈V sij = 1. Thus we have proved: (generalized)
stochastic matrices leave V invariant if V is (generalized) Markovian. Note further that
by dropping the non-negativity assumption, this statement also stays true if K = C.

Denote by

O := O(V ) := {L ∈ KV×V |L(V) ⊆ V}

the set of all state preserving maps.

Lemma 3.2.1 O is a convex set (if K = R) that is closed under matrix multiplication
(also true if K = C).

Proof. That invariance of V is preserved under matrix multiplication is clear. Let λ ∈
[0, 1], |p〉 ∈ V and L,M ∈ O. Then

〈1| (λL+ (1− λ)M) |p〉 = λ 〈1|L |p〉+ (1− λ) 〈1|M |p〉 = λ+ 1− λ = 1.

And the statement follows. �

We aim for a characterization of state preserving maps in the (generalized) Markovian
case:

Theorem 3.2.1 The state preserving maps inO are precisely the (generalized) stochas-
tic matrices.

Proof. That (generalized) stochastic matrices are state preserving, was already shown
in Example 3.2.1. Let M ∈ O. Then for all |p〉 ∈ V

〈1|M |p〉 = 1 (*)

holds, since M |p〉 ∈ V . Let u ∈ V . Then∑
x∈V

mxu =
∑
x∈V

〈x|M |u〉 = (
∑
x∈V

〈x|)M |u〉 = 〈1|M |u〉 (∗)= 1.

Hence M is a (generalized) stochastic matrix. �
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3.2.2 Evolution operators

We aim for describing dynamic cooperative processes as sequences of states. Given
a discrete time horizon t = 0, 1, 2, ... and an observed sequence of states (|pt〉)t, we
imagine that the states evolution, from time t to time t+ 1, can be described by a state
preserving map Lt. We will call sequences of such maps, that describe an evolution,
evolution operators. The following notion of evolution operators is already used in
Schönhuth [81] and by Faigle and Schönhuth in [38]. The proposal of investigating
evolution operators in cooperative situations is due to Faigle [29].

An evolution operator is a map

Φ : KV ×N→ KV

such that for all t ≥ 0 the map

Φt := Φ(·, t) = Lt

is state preserving (and therefore Φt ∈ O). We associate an evolution sequence with Φ

and a given starting state |p0〉:

|p0〉 := L0 |p0〉 and |pt〉 := Lt |p0〉 .

Thus we made the assumption L0 = Id.

REMARK Note that this notion of evolution operator does not restrict the sequences
that can be described, since for any state |pt〉, one could construct a matrix, such that
|pt〉 is the image of |p0〉 under this matrix.

3.2.3 (Generalized) Markovian evolution

Given an evolution operator Φ, we call the induced evolution (generalized) Markovian
if there is a (generalized) stochastic matrix M ∈ O, such that for all t ≥ 0

Φt =M t.

In this case we call M the transition matrix of Φ. Markovian evolution processes give
rise to random walks in a natural way:

If the walk is in the ground state |x〉 ∈ V, it moves to the ground state
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|y〉 ∈ V with (possibly negative) probability myx.

Thus after t steps the walk, that started in a certain ground state |s〉, has evolved to
the state

Φt |s〉 =
∑
x∈V

ptx |x〉 ,

where ptx is the (possibly negative) probability, that the walk is in x after t steps.
REMARK Later in Section 10.1 we will see a concrete example of an evolution op-
erator, which is not induced by a single stochastic matrix, but by an inhomogeneous
Markovian process. However, we will mainly consider Markovian evolution operators
in this thesis.

3.3 Systems

The last section made the terms state space and evolution operator available to us. We
define a system to be a tuple, (V,Φ), consisting of a set of ground states V and an evo-
lution operator Φ. A system is called (generalized) Markovian if its evolution operator
is (generalized) Markovian in the sense of Section 3.2.3.

3.3.1 Transition graphs of systems

Let (V,Φ) be a Markovian system with transition matrix M = (mxy). Then Φ induces a
directed graph on V via the arc set

A := {xy ∈ V × V |myx 6= 0}.

The graph G := G(Φ) := (V,A) is called the transition graph of the system (or of the
evolution operator Φ). Note that M is transposed in the definition of A. This is only
for intuitive reasons, since by transposing M the row sums of MT are equal to 1. Thus
MT
xy can really be interpreted as the probability for a transition from state x to state y.

In our study of Markovian systems, transition graphs will play a central role. Note that
the random walk induced by Φ equals a random walk on G with transition probabilities
MT
xy.

Example 3.3.1 Let V = {x, y, z} and MT =

 0 1/2 1/2

1/4 0 3/4

2/3 1/3 0

. The corresponding

transition graph could be seen in Figure 3.1.
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Figure 3.1:

The opposite is also true: given a directed Graph G with vertex set V and arc set A
and given a random walk with transition matrix M on G, (V, (MT t)t≥0) is a Markovian
system. We note this down in

Theorem 3.3.1 (Generalized) Markovian systems and (generalized) random walks on
directed graphs correspond. �

3.4 Graphs

While in the last section the idea of observing and describing the evolution of a process
was ostensible, Theorem 3.3.1 gives rise to another perception, which reflects the spirit
of the system-theoretic model presented in [37] (see also: Section 2.3) more. We
head for this second perception in this section. Assume that, given a set of ground
states V , the feasible transitions from one state to another are fixed in advance by the
circumstances that should be modeled. Think for instance of cooperative games like the
government formation game (cf. Example 2.1.1). Denote the set of feasible transitions
by

A := {xy ∈ V × V |x→ y is feasible. }.

Again G = (V,A) is a graph which is induced by a feasibility structure.
With this perception the whole language of directed graph theory is available to us.
Therefore, we will sometimes call ground states vertices and feasible transitions arcs.
We briefly recall the graph-theoretic terminology that is needed.
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v1 v2

v3v4

Figure 3.2:

By a directed path in G we understand - depending on what “parts” of it we want to
emphasize - a tuple of adjacent vertices or a tuple of incident arcs. Whenever there
could be any confusion on which of these tuples is meant, we will be concrete.
We assume that there is a given starting ground state |s〉 ∈ V in which the observation
of certain processes on G starts. Without loss of generality we henceforth assume that
G is strongly s-connected, that is: for all x ∈ V exists a directed path from s to x.
Actually, this is not a loss of generality: if G is not strongly s-connected, remove all
vertices, that are not reachable by a directed path from s, and consider the smaller graph
instead.
A graph, which is strongly connected for all of its vertices, is called strongly connected.
Strong connectedness of a graph and strong connectedness relative to its vertices are
terms that differ extremely. Consider the following example.

Example 3.4.1 The graph in Figure 3.2 is strongly v-connected for each vertex v, ex-
cept for v3. But G is not strongly connected. Thus it is not sufficient for strong con-
nectedness of a graph, that it is strongly connected for a certain subset of its vertices.

Sources, sinks and flows

For x ∈ V denote by N+(x) resp. N−(x) the set of successors resp. predecessors of
x in the graph G. If x has no successors (i.e.: N+(x) = ∅), it is called a sink, if it has
no predecessors (i.e.: N−(x) = ∅), it is called a source. It follows directly from the
s-connectedness of G:

Lemma 3.4.1 If G is strongly s-connected, either s is the unique source in G, or G has
no sources. �
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A mapping f : A → R is called a flow if for all x ∈ V with N+(x) 6= ∅ 6= N−(x) the
flow conservation holds. That is:∑

u∈N−(x)

f(ux) =
∑

v∈N+(x)

f(xv).

Lemma 3.4.2 The set of all flows on a graph G is a K-vector space.

Proof. This is seen by direct calculation or by this argument: let V be the set of all
inner vertices of G (i.e.: all vertices that are neither a source nor a sink) and consider
the map

∆ : KA → KV , f 7→ (
∑

v∈N+(x)

f(xv)−
∑

u∈N−(x)

f(ux))x∈V .

Let f, g ∈ KA and c ∈ K. Then

∆(cf + g) = (
∑

v∈N+(x)

(cf + g)(xv)−
∑

u∈N−(x)

(cf + g)(ux))x∈V

= c(
∑

v∈N+(x)

f(xv)−
∑

u∈N−(x)

f(ux))x∈V + (
∑

v∈N+(x)

g(xv)−
∑

u∈N−(x)

g(ux))x∈V

= c∆(f) + ∆(g)

holds. Hence ∆ is a vector space homomorphism whose kernel equals the set of all
flows on G. Hence the set of all flows is also a vector space. �

We will tacitly use throughout the whole thesis the following fact, which is well-known
from graph theory:

Lemma 3.4.3 Let G = (V,A) be a graph and B ∈ KV×V a matrix with the property:

bxy = 0 if xy /∈ A. (*)

Let t > 0. If there is no path of length t from x to y, then〈
x
∣∣ Bty

〉
= 0.
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Proof. We use induction on t with trivial beginning by (*). Thus assume t > 1 and that
the statement is true for all t′ < t. Let x, y ∈ V and assume there is no path of length t
from x to y. Thus there is also no path of length t− 1 from x to u for all u ∈ N−(y). It
holds: 〈

x
∣∣ Bty

〉
=
∑
u∈V

〈
x
∣∣ Bt−1u

〉
〈u| By〉 .

Hence by induction
〈
x
∣∣ Bt−1u

〉
= 0, for all u ∈ N−(y) and by (*) 0 = buy = 〈u| By〉,

for all u ∈ V \N−(y). Therefore,
〈
x
∣∣ Bty

〉
= 0 holds. �

3.5 Cooperation systems

Since the cooperative flavor of the considered objects stepped a bit into the background
in the last sections, we will dedicate our attention to it all the more now. The goal of this
section is to show, how the different presented cooperative models fit into our model,
and how our model is able to deal with the criticisms given in Section 2.4.

Let N be a finite set of players, V be finite set of ground states, A ⊆ V × V a set of
feasible transitions and for S ⊆ N let AS ⊆ A such that A := (AS)S⊆N is a partition
of A. We think of a transition x → y ∈ AS as an action that could be performed
by the players in S in order to bring the system from state x to state y. Furthermore,
assume that there is an emphasized starting state s ∈ V such that (V,A) is strongly
s-connected. As mentioned in 3.4 this is not any loss of generality. We call the tuple,
Γ := (N, V,A,A, s), a cooperation system.

Times

We fix a discrete time-horizon by assuming that Γ is in the state s at time 0, in one of
its neighbors at time 1, in one of their neighbors at time 2 and so on. For t ≥ 0 we will
denote by Pt the set of all directed paths of length t, starting in s and by Et ⊆ V the set
of all endpoints of paths in Pt. For technical simplification we assume that each sink
in G is provided with a loop. Thus the system stays in a sink-state for all times if it is
ever reached.
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3.5.1 Cooperative games on cooperation systems

A cooperative game on Γ is a valuation function of the ground states

v : V → R,

such that v(s) = 0. We denote the set of all cooperative games on Γ by

G(Γ) := {v : V → R|v(s) = 0}.

If there is no confusion which cooperation system is meant, we omit the specification
of Γ and write G instead of G(Γ). G is a (|V | − 1)-dimensional vector space. We will
consecrate ourselves to it in Chapter 4.
We gathered all basic definitions needed. The next paragraphs will show that the men-
tioned classical models are special cases of cooperation systems.

Set-theoretic models

Let F ⊆ 2N be a set of feasible coalitions s.t. ∅ ∈ F and let (F , v) be a cooperative
game in the sense of Section 2.2. By setting

V := F

as set of ground states,

A := {ST ∈ F × F|S ⊆ T, for all S ⊆ U ⊆ T : U = S or U = T}

as set of feasible transitions and by setting

AS := {UW ∈ A|W \ U = S}

as action set of S ⊆ N and finally s := ∅, one gets a cooperation system Γ :=

(N, V,A, (AS)S⊆N , s). Then (F , v) is also a cooperative game on Γ. Note that it is
possible that AS = ∅. If this distracts the nature of the circumstances that should be
modeled, there is technically no constraint in assuming A to be partitioned into non
empty blocks.
By this construction, our model covers also the set-theoretic models mentioned in Sec-
tion 2.2.3, especially closed set-systems w.r.t. a certain closure operator. In the case of
the model of Faigle and Grabisch [31] in which all transitions S → T (S, T ⊆ 2N ) are
feasible, we need to adjust the action set. For S ⊆ N set

AS := {UW ∈ 2N × 2N |U∆W = S}.

Where ∆ means the symmetric difference of two sets: S∆T := (S ∪ T ) \ (S ∩ T ),
S, T ⊆ N .
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The first system-theoretic approach

The model of Faigle and the author [37] that was briefly introduced in 2.3, yields
a special case of our model in the following sense: the actions mentioned there are
governed by players in N , and therefore A was partitioned into n blocks Ai, i ∈ N .
Simply by setting

A{i} := Ai and AS := ∅ for |S| 6= 1

the game systems of Section 2.3 become cooperation systems in our sense. Therefore,
all models that are based on greedoids, even the precedence approaches, as well as
all mentioned models on combinatorial structures, yield special cases of cooperation
systems.
As seen in Subsection 2.4.1, multi-choice games could be considered as games on an
acyclic graph on certain lattice points in N|N |. Hence also multi-choice games yield a
special case of cooperative games on cooperation systems.

Games in partition function form

Let N be a finite set of players and C(N) the set of all embedded coalitions of N (cf.
Section 2.5). Set V := C(N) and define for i ∈ N :

Ai := {((S, π1), (S ∪ i, π2)) ∈ C(N)× C(N)|
∀S 6= X ∈ π1, i /∈ X : X ∈ π2 and for i ∈ X ∈ π1 : X \ i ∈ π2}

the action set of player i. Moreover, set A :=
⋃
i∈N Ai, s := (∅, (∅, N)) and A :=

(A1, ..., An). Then (C(N), V, A,A, s) is a cooperation system and cooperative games on
C(N) are games on this cooperation system. Hence also games in partition function
form yield a special case of our model.

3.5.2 Advantages of our model

Note that the acyclicity assumption, as well as the assumption that s is a source of the
graph (V,A), is dropped in our model. Therefore cooperation systems are more general
than all mentioned models of Chapter 2. Our model allows a much wider range of
interpretations and concentrates on actions that could be performed by players, instead
of the players themselves. Time-dependent circumstances can be modeled by cooper-
ation systems and past events could be taken into account in valuating certain actions.
Hence we came across all points of criticism, we pointed out in the previous chapter.
Even processes of joining, leaving and rejoining a coalition at a later point are covered
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by cooperation systems.

Moreover, the strong relation of our model to graph theory enables a more abstract
view on cooperative settings. This abstraction yields several tools known from graph
theory (cf. Section 6.1), and transports them naturally to the theory of cooperative
games.

The connection of Markovian systems and directed graphs yields another advantage:
the allocation problem and the prediction problem are related to each other. We will
see a direct connection between these two problems in Section 5.5.



4 Incidence algebras and the
space of cooperative games

In this short chapter we recall a very fruitful concept of combinatorics: so called inci-
dence algebras. We give the framework to apply this concept to our general model of
cooperative games.
Section 4.1 briefly recalls basic terms of incidence algebras and gives well-known re-
lations to classical cooperative games. Also two important bases of the vector space
of all classical cooperative games are presented. In Section 4.2, we give a relation
between acyclic graphs and certain partially ordered sets, which gave Faigle and the
author [37] the opportunity to speak of the incidence algebra of an acyclic graph and
to use the concept of incidence algebras in their model.
After that we generalize this idea to arbitrary graphs in Section 4.3 in a way, such that
the classical theory of incidence algebras is applicable to our model and has similar
relations to the vector space of cooperative games on cooperation systems and yields
similar interpretations.
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4.1 Classical cooperative games & incidence
algebras

Rota [77] developed the theory of incidence algebras. Given a partial order P := (X,≤)
of a set X and given a field K, he studied the following set of functions:

IK(P ) := {f : X ×X → K|f(x, y) = 0, if x 6≤ y(x, y ∈ X)}.

He showed that this set is a K-vector space which becomes a K-algebra via the multi-
plication given by:

(f ∗ g)(x, y) :=
∑
x≤z≤y

f(x, z)g(z, y).

IK(P ) is called the incidence algebra of P with respect to K. We note two essential
statements:

Lemma 4.1.1 ([3, p. 138 f.]) Let P = (X,≤) be a partial order.

(a) The map δ : X ×X → K, (x, y) 7→

{
1 , x = y

0 else.
is a (both-sided) neutral element

of (IK(P ), ∗).

(b) The map
Λ : IK(P )→ KX×X , f 7→ (f(x, y))x,y∈X

is a monomorphism from the incidence algebra to the algebra of upper triangular
matrices over K.

�

REMARK An important consequence of the lemma above is: Λ is an isomorphism into
a sub-algebra of the upper triangular matrices over K. Therefore the multiplication ∗ in
IK(P ) and the matrix multiplication are structurally the same. Thus one could identify
these multiplications. By this, the structure of an incidence algebra equals the structure
of a matrix algebra which is much more familiar (at least to the author).

Given a set N of players, it is well known that the set

G := {v : 2N → R|v(∅) = 0}
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is a (2|N | − 1) dimensional R-vector space - the space of all cooperative games on N .
In order to study cooperative games, one is interested in certain bases of G to write an
arbitrary cooperative game as a linear combination of simpler games. Note that 2N is
partially ordered by ⊆. Therefore, the incidence algebra of (2N ,⊆) is well defined.

4.1.1 Dirac games

For ∅ 6= S ⊆ N define

δS(T ) :=

{
1 S = T

0 else.
(T ⊆ N).

These games are called Dirac games. An obvious basis of G is the set of all Dirac
games:

{δS |S ∈ 2N \ {∅}}

(by identifying this set with the standard basis of R2N ). The connection between coop-
erative games and the incidence algebra associated with (2N ,⊆) is described by

Lemma 4.1.2 The Dirac games correspond to the columns of δ if we interpret
δ = (δ(S, T ))S,T∈2N as a 2N × 2N matrix. �

4.1.2 Unanimity games

Another set of well studied cooperative games are the so called unanimity games. For
a coalition S ⊆ N the unanimity game with respect to S is defined by:

ζS(T ) :=

{
1 , S ⊆ T

0 else.

Theorem 4.1.1 The set of unanimity games

{ζS |S ∈ 2N \ {∅}}

is a basis of V .

Proof. Again by interpreting ζ = (ζS(T ))S,T⊆N as a matrix, and by ordering rows and
columns of ζ, ζ becomes a triangular matrix with 1 on each diagonal entry. Therefore,
ζ is invertible in IK(P ), hence its columns are linearly independent. �
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Interpretation

The idea behind unanimity games ζS is the following. A coalition is winning (i.e.: is
valued with 1) if and only if S is a subset of this coalition. Thus one could argue: if S is
part of a coalition, it has the power to achieve unanimity of the players of this coalition.

4.2 Partial orders and acyclic graphs

An essential observation, which will lead us to our generalization, is the following
connection between partial orders and acyclic graphs.

Theorem 4.2.1 The directed graph of a Hasse diagram of a partial order is acyclic
and each acyclic directed graph induces a certain partial order.

Proof. Assume that the Hasse diagram of a partial order P := (X,≤) contains a directed
cycle x0, x1, ..., xk = x0 with xi 6= xj for i 6= j . Then x0 ≤ x1 ≤ ... ≤ xk = x0 holds.
By the antisymmetry of P it follows that x0 = xi for all i ∈ {1, ..., k}. A contradiction.
Thus the Hasse diagram of P is acyclic.
Let the other way around G = (V,A) be an acyclic graph. For x, y ∈ V define

x ≤ y :⇔ There is a directed path from x to y.

This relation is apparently reflexive and transitive and by the acyclicity of G it is also
antisymmetric. Therefore (V,≤) is a partial order. �

This theorem gives us the opportunity to speak of the incidence algebra of an acyclic
graph and to assign the whole theory developed in [77] to acyclic graphs. The transfer
of the concepts of incidence algebras to cooperative games on acyclic graph structures
was already done by Faigle and the author in [37]. We aim for dropping the acyclicity
assumption and to generalize these ideas to arbitrary graphs.

4.3 Incidence algebra of a graph

As seen in the last section, the antisymmetry of a partial order is the essential property
to prove the acyclicity of its directed Hasse diagram. In order to drop the acyclicity
assumption and to develop a more general theory of incidence algebras of graphs, the
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approach to associate a preorder with a graph G = (V,E), in analogy to the partial
order defined in 4.2.1, seems fruitful:

x ≤ y :⇔ There is a directed path from x to y.

By IK(G) we denote the incidence algebra induced by G. In fact, this approach was
taken by several authors (mainly started by Belding in [10]), in order to generalize
the ideas of the theory of incidence algebras to arbitrary preorders. We will make a
different approach. But first of all, we give a reason, why this approach to incidence
algebras of graphs is not suitable for the application of this theory to cooperative games
in our model.
A basic observation already made by Belding in [10] is the following. Since the proof
is embedded in a more complicated setting and is not direct in [10], we give a simple
proof.

Theorem 4.3.1 Given a graph G = (V,A), ζ is invertible in IK(G) if and only if G is
acyclic.

Proof. If G is acyclic, the rows of ζ (interpreted as a matrix) could be arranged, such
that ζ is upper triangular with each diagonal entry equal to 1. Thus ζ is invertible.
Assume the other way around, that G is not acyclic. Then there exists a directed cycle
x0, ..., xk in G with xi−1xi ∈ A, for i = 1, .., k. Thus xi ≤ y if and only if xj ≤ y for all
i, j ∈ 1, ..., k and y ∈ V . Hence the rows of ζ which correspond to xi and xj are equal,
and therefore especially linearly dependent, thus ζ is not invertible. �

Recall that the rows of ζ yield the unanimity basis of the space of all cooperative
games in the example of classical cooperation structures and therefore give rise to
representations of arbitrary cooperative games in this basis. This is the main reason
why the generalization of incidence algebras to preordered sets is not adequate from a
cooperative game theoretic point of view: a simultaneous generalization of the idea of
unanimity games and the ideas of incidence algebras is impossible via this approach.

4.3.1 Our approach to incidence algebras of graphs

Let G = (V,A) be a graph. We define a relation on V via

x ≤ y :⇔

{
x = y

There exists a path from x to y, but none from y to x.
or

This relation is an extension of the idea of the partial order induced in the acyclic case.
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Lemma 4.3.1 ≤ is a partial ordering of V . Moreover, if G is acyclic, it equals the
partial order induced by G.

Proof. Reflexivity holds by definition of ≤. Let x, y, z ∈ V . If x ≤ y and y ≤ x, the
conditions

There exists a path from x to y, but none from y to x.

and
There exists a path from y to x, but none from x to y.

are mutually exclusive. Therefore x = y holds, and thus ≤ is antisymmetric. Assume
x ≤ y ≤ z. If x = y or y = z, x ≤ z follows directly. Therefore assume that x 6= y

and y 6= z. Thus there is a path from x to y and one from y to z, but none from y to
x and none from z to y. Hence the concatenation of those paths yields a path from
x to z. Assume now that there is a path from z to x. Then x, y and z are on a circle
which contradicts the ≤ relation between them. Therefore, also x ≤ z holds. Hence
transitivity for ≤ is proven.
Assume now that G is acyclic. The condition that there is no return path from y to x if
x ≤ y, is redundant by the acyclicity of G. Thus the partial order induced by an acyclic
graph equals ≤. �

By the last lemma, there is a partial order of the vertices of an arbitrary graph such that
it corresponds to the partial order induced by acyclic graphs. Therefore, we can speak
of the partial order induced by G. If the context is clear, we will denote this order by
≤. Since ≤ is a partial order, the term incidence algebra of a graph is well defined
for arbitrary directed graphs, and by that we mean the incidence algebra induced by ≤.
Now we could assign the theory of incidence algebras to arbitrary graphs:

4.3.2 ζ-Functions of arbitrary graphs

The main advantage of this approach (from a cooperative game theoretic point of view)
is, that the ζ-function is well defined for arbitrary graphs. Therefore also ζ-games are
well defined in our model. The first question that comes into mind is:

“What is the interpretation of these games?”

Given a cooperation system Γ := (N, V,A,A, s) and a cooperative game v on Γ in the
sense of 3.5, we consider the partial order ≤ induced by the transition graph (V,A). For
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any x ∈ V \ {s} we set:

ζx(y) := ζ(x, y) :=

{
1 , x ≤ y

0 else.

Note that in fact ζx is a cooperative game in the sense of 3.5 (i.e.: is s-normalized):
since (V,A) is strongly s connected, there is a path from s to x. Assume ζx(s) = 1.
Then there exists a path from x to s and none from s to x. Which contradicts the
previous. Thus ζx(s) = 0 for all x ∈ V \ {s}.

Lemma 4.3.2 The set {ζx|x ∈ V \ {s}} is a basis of the vector space of all cooperative
games on Γ. Thus for any cooperative game v, there exist cx(v) ∈ K (x ∈ V \{s}), such
that

v =
∑

x∈V \{s}

cx(v)ζx.

Proof. By Lemma 4.3.1, ≤ is a partial order and therefore ζ is invertible in IK(G). �

Interpretation

Given a ζ-game, ζx, the unanimity interpretation of classical cooperative games is pre-
served and generalized: a state y ∈ V is winning (i.e.: ζx(y) = 1) relative to x if and only
if y is reachable from x and there is unanimity among the players that the system should
not be taken back to x (there is no return path from y to x). The other way around, one
could also argue that if there is a path from y back to x, there is no unanimity among
the players, since bringing the system into the state y was not as good as it seemed at
first. Hence the players took actions to return the system to a state, it previously was in.

REMARK Note that the ζ-function is strongly related to the structure of the graph: if
G is strongly connected, there are no vertices, that are strictly smaller than any other
vertex in the graph. Therefore ζ = δ holds in the case of strong connectedness. On
the other hand, we have already seen that if G is acyclic (which is the other extreme),
≤ (and therefore also ζ) equals its classical versions. Hence ζ reflects the “circular
structure” of a graph in this sense.
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4.4 Möbius-inversion

Let P = (V,≤) be a partially ordered set and let f : V → K. The map

Σf : V → K, x 7→
∑
y≤x

f(y)

is called the sum-function of f . Originally one was interested in the question: is it pos-
sible to give an inversion of the sum-function in a way, such that f could be calculated
out of Σf?
We formulate this in the terms of a graphG and its associated partial order≤. Therefore
let G = (V,A) be a directed graph and let s ∈ V be a vertex, such that G is strongly
s-connected. We define the sum-function of a vertex valuation f : V → K to be

Σf : V → K, x 7→
∑
y≤x

f(y).

By Theorem 4.3.1 we know, that ζ is invertible in IK(G). We denote the inverse of
ζ by µ, and call µ the Möbius function of G. Now we have collected all results and
definitions to give an answer to the initial question:

Theorem 4.4.1 (Möbius-inversion) Let f, g : V → K. Then the following holds for
all x ∈ V :

g(x) =
∑
y≤x

f(y)⇔ f(x) =
∑
y≤x

g(y)µ(y, x),

for all x ∈ V .

Proof. A proof could be found in the book of Aigner [3, Theorem 4.18] �

REMARK Note that (given that µ is known) the Möbius-inversion gives rise to the
concrete coefficients in the basis representation of cooperative games, in the ζ-basis in
the sense of 4.3.2. Write v =

∑
x∈V ∆xζx in its ζ-basis representation. Fix u ∈ V . Then

v(u) =
∑

x∈V ∆xζx(u) =
∑

x≤u∆xζx(u). Set f(x) := ∆xζx(u) for all x ∈ V . Then
v(u) =

∑
x≤u f(x). Hence by Möbius-inversion one gets: f(u) =

∑
y≤u v(y)µ(y, u).

On the other hand: f(u) = ∆uζu(u) = ∆u. Thus a concrete representation of ∆u is
found. The coefficients ∆x are known in classical cooperative game theory as Harsanyi
Dividends [48].
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Positive decomposition of cooperative games

As known from the last section, the ζ games are a basis of the space of all cooperative
games on Γ. By writing a game in this basis one gets a useful decomposition:

Lemma 4.4.1 Let v ∈ G. Then there are v+, v− ∈ G with the property v+, v− ≥ 0 such
that v = v+ − v−.

Proof. Write v =
∑

x∈V cxζx. And set

v+ :=
∑

x∈V,cx≥0

cxζx and v− :=
∑

x∈V,cx<0

(−cx)ζx.

This yields the desired representation. �

This decomposition becomes useful, if one wants to argue why games are assumed
to be non-negative in a certain setting.





5 Allocation mechanisms: Weber
theory

After stating our general model for cooperative settings, the following question was
left open in the previous chapters:

“How to solve the allocation problem for a cooperative game?”

In this chapter, we aim for a fractional answer to this question. Section 5.1 gives
a brief overview of classical fairness concepts and restates famous characterization
results of Weber [91] and Shapley [82]. We introduce the classical concept of values
and generalize it to our model. Furthermore, we propose new values that arise naturally
from our modeling and yield also new values in the classical model.
In Section 5.2, we generalize the classical theory of Weber to our model of cooperation
systems and develop time-dependent fairness criteria. In the end of Section 5.2 and in
Section 5.3 allocation rules, which satisfy those fairness criteria, are identified as being
induced by random walks on transition graphs of generalized Markovian systems.
In Section 5.4, we give generalizations of the famous Shapley value and define the
entropy of an allocation mechanism. This definition gives rise to two different percep-
tions of symmetry, which in turn give rise to two different notions of Shapley values
(which coincide in the case of classical cooperation systems).
In Section 5.5, relations between a certain class of allocation mechanisms and evolution
operators in the sense of Chapter 3 are pointed out. Basic convergence properties of
these allocation mechanism are investigated in Section 5.6. Finally we give examples
of classical values as special cases of allocation mechanisms in our model in Section
5.8. Also the famous Banzhaf value [8] is treated there.
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5.1 Classical Weber theory

Given a classical cooperative game (N, v), the allocation problem (cf. Section 2.1.1)
is: how should a jointly generated value be distributed among the players such that
the different cooperation possibilities of the players are taken into account fairly? In
other words: we search for a vector x ∈ RN , which allocates a certain fixed value
to the players. Since one heads for general fairness concepts that yield a solution for
every cooperative game (N, v), this search is equivalent to the retrieval for a general
allocation rule that assigns to each valuation function v an allocation vector φ(v) ∈ RN .
Denote by G(N) the set of all classical cooperative games onN (and note that by image-
wise addition resp. scalar multiplication, G(N) becomes a 2|N | − 1-dimensional vector
space). Thus we are seeking for a map

φ : G(N)→ RN ,

that enjoys certain fairness criteria. The proposed fairness criteria vary widely through
the literature. Depending on the situation that should be valuated, and also depending
on the subjective understanding of fairness of different authors, more or less countless
fairness axioms were proposed in the past. We will present some of the famous classical
axioms and will give a brief introduction to some characterization results. The goal of
this section is to briefly present the main ideas of the theory of so called “random order
values” developed by Weber [91] and to give some famous examples of allocation rules
for classical cooperative games.

5.1.1 Classical fairness axioms

We fix a player set N and a solution function φ : G(N)→ RN , v 7→ φ(v).

Efficiency

The first idea is that a solution to the allocation problem should really distribute a
certain value. In classical cooperative game theory one assumes that this value equals
the worth v(N) of the grand coalition. Therefore, φ is called efficient if for all v ∈ G(N):∑

i∈N

φ(v)i = v(N) (EFF)

holds.
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Additivity & linearity

Let v, w ∈ G(N) be two games. If one perceives a solution φ(v) to be fair for v and φ(w)
to be fair for w, also the sum of the solutions should be perceived to be fair for the sum
game v + w. φ is called additive if for all v, w ∈ G(N)

φ(v + w) = φ(v) + φ(w) (ADD)

holds.
Extending this idea to multiples of a game, one assumes homogeneity for φ in addition.
Hence φ is called linear if

φ is a linear map. (LIN)

holds.

Marginal worth & null-player

Given a game v ∈ G(N), a player i ∈ N and a coalition S ⊆ N \ {i}, which does not
contain i, the marginal worth of player i relative to S and v is defined by

v(S ∪ i)− v(S).

A player is called a null player for the game v if his marginal worth is zero for all
S ⊆ N \ {i}. The idea behind the so called Null-player Axiom is the following: a null
player does not contribute any worth to any coalition, therefore he should yield zero
payoff.
Thus φ fulfills the Null-player Axiom, if for all v ∈ G(N), i ∈ N :

If i is a null player for v, then φ(v)i = 0. (NUL)

holds.

Symmetry

Another idea of fairness is symmetry. Essentially that means, if two players contribute
the same marginal worth to all coalitions they can join, they should yield the same
payoff.
φ is called symmetric if for all i, j ∈ N , v ∈ G(N):

If v(S ∪ i) = v(S ∪ j) for all S ⊆ N \ {i, j}, then φ(v)i = φ(v)j . (SYM)

holds.
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Monotonicity

A player i ∈ N is called monotonic for v if his marginal worth contribution to any
coalition S is non-negative, i.e.:

v(S ∪ i) ≥ v(S), for all S ⊆ N.

The solution φ is called monotonic if the payoff of monotonic players is non-negative.
That is:

φ(v)i ≥ 0 if i is a monotonic player. (MON)

5.1.2 Characterization results

We will now give concrete examples of some famous classical solutions. After that,
we will briefly restate a result of Weber [91] and introduce the so called “randomized
values”.

Shapley value

In 1953 Shapley proved the following theorem:

Theorem 5.1.1 ([82]) There exists precisely one solution which suffices (ADD), (EFF),
(SYM) and (NUL). �

This unique solution became famous under the name Shapley value. We denote the
Shapley value by ΦSh. Furthermore, Shapley proved for all games (N, v) and all players
i ∈ N , that:

ΦSh(v)i =
∑
S⊆N

(|N | − |S|)!(|S| − 1)!

|N |!
(v(S ∪ i)− v(S))

holds.
Another representation of the Shapley value is achieved through so called marginal
vectors. For each permutation π = p1...pn ∈ Sym(N) define a tuple Si(π) as the ordered
set of all players, which precede player i in π. The Shapley value receives the following
form:

ΦSh(v)i =
1

|N |!
∑

π∈Sym(N)

v(Si(π) ∪ i)− v(Si(π)).

How the different representations of the classical Shapley value are derived from each
other, is not discussed here. We refer to the original work of Shapley [82] for further
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information on this topic in the classical model. We are interested in highlighting the
different ideas, which are involved in the Shapley value. Thus we summarize: the
Shapley value of player i ∈ N is the mean marginal value over all permutations of
players. One imagines that the grand coalition N is build by consecutively taken joins
of players. The order in which this join process takes place is irrelevant for the Shapley
value, since each permutation gets the same weight 1

|N |! .

Weber values

In 1988 Weber [91] studied so called random order values. In view of the mean value
characterization of the Shapley value (cf. 5.1.2), random order values generalize this
aspect. A solution φ is called a random order value if there exists a probability distri-
bution (λπ)π∈Sym(N) on the set of all permutations of players such that

φ(v)i =
∑

π∈Sym(N)

λπ(v(Si(π) ∪ i)− v(Si(π))

holds. Thus the Shapley value is a special random order value with λπ = 1
|N |! . Weber

proved the following characterization of random order values:

Theorem 5.1.2 ([91]) A solution φ is a random order value if and only if it suffices
(LIN), (NUL), (EFF) and (MON). �

Moreover, Weber proved another interesting statement:

Theorem 5.1.3 ([91]) A solution φ is a random order value if and only if for all S ⊆ N

there exists a probability distribution (qSi )S⊆N\i, such that for all i ∈ N

φ(v)i =
∑

S⊆N,i/∈S

qSi (v(S ∪ i)− v(S))

holds. �

We will go into detail, why this result is interesting to us. The set of coalitions 2N ,
together with ∩ and ∪, is a lattice. Think of the Hasse diagram of this lattice as a
directed graph (directed in an acyclic way from ∅ to N). Thus in this terms Theorem
5.1.3 says that each random order value describes a random walk on the Hasse diagram
of 2N with transition matrix πS,S∪i = qSi∑

j∈N\S q
S
j

. The beauty of this theorem is in
connecting the theory of values with the theory of random walks on graphs.
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5.2 Weber theory for cooperation systems

In this section we aim for a generalization of the solution concepts introduced in Sec-
tion 5.1 to our general model of cooperation systems. For the rest of the chapter we
fix a cooperation system Γ := (N, V,A,A, s) in the sense of Section 3.5. We denote
by G the |V | − 1 dimensional vector space of all s-normalized games on Γ. Instead
of valuating players depending on a given game v, we pursue the goal to valuate the
single actions in A. Afterwards we deduce how to valuate the individual players in N .
Therefore, for the moment it is enough to assume a directed graph (V,A) is given. One
could also think of a System (V,Φ) and its transition graph (V,A) (cf. Chapter 3). The
relation between Markovian systems and Weber’s theory will be highlighted later in
this chapter in Section 5.5.

5.2.1 Allocation mechanisms

We will constitute solutions as allocation mechanisms if they fulfill certain properties.
Note that the term allocation mechanism is yet defined as an established term in the
theory of mechanism design (cf. [71]). Since a solution is a mechanism to allocate
a certain value to the players of a game, we think the term allocation mechanism is
nevertheless accurate.
We define an allocation rule to be a map

φ : G ×N→ KA, (v, t) 7→ φt(v),

which assigns to a game v at time t, a valuation of the actions, φt(v) ∈ KA. We call an
allocation rule φ an allocation mechanism if the following basic axioms are satisfied:

(A1) The value of an action xy ∈ A at time t is independent of the values of the states in
V \ {x, y}; i.e.: for all v, v′ ∈ G with v(x) = v′(x), v(y) = v′(y), φt(v)xy = φt(v′)xy
holds.

(A2) An action, which could not be performed at time t, yields zero payoff; i.e.: for all
t > 0, xy ∈ A with d(s, x) > t and all v ∈ G: φt(v)xy = 0 holds.

(A3) The value of an action changes over time, only if this action could be performed
(possibly anew); i.e.: φt(v)xy = φt+1(v)xy if x /∈ Et.

Axioms (A1) and (A2) are quite intuitive. However, there may be situations in which
(A3) is not plausible. We refer to Chapter 7 for a discussion of allocation rules which
do not necessarily satisfy (A3).
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5.2.2 The marginal operator

The map ∂ : G → KA, v 7→ (v(y)− v(x))xy∈A is called marginal operator and assigns to
each action, xy ∈ A, its marginal worth w.r.t. v: v(y)−v(x). ∂ will be a main tool in the
understanding of allocation mechanisms. An important basic principle is the following
lemma:

Lemma 5.2.1 ∂ is a K-vector-space-monomorphism.

Proof. Let v, w ∈ G and c ∈ K. Then for all xy ∈ A:

∂xy(cv + w) = (cv + w)(y)− (cv + w)(x) = cv(y)− cv(x) + w(y)− w(x)
= c∂xy(v) + ∂xy(w)

holds. Thus ∂ is a homomorphism. Uniqueness is left to prove. Assume ∂(v) = 0

and let x ∈ V . Since G is strongly s-connected, there is a directed path P = (s =

x0, x1, ..., xk = x) from s to x. By assumption, v is s-normalized and therefore v(s) = 0.
But then also v(x1) = v(x1) − v(x0) = ∂x0x1(v) = 0. It follows by induction on k that
v(xi) = 0 for all i ≤ k. Thus v = 0, hence ∂ is injective. �

5.2.3 Linearity

An allocation mechanism φ is called linear if

For all t ≥ 0, φt is a K-linear map from G to KA. (LIN)

holds.

Theorem 5.2.1 Let φ be a linear allocation mechanism. Then for all t ≥ 0 there exists
αt ∈ RA such that

φt(v)xy = αtxy∂xy(v) = αtxy(v(y)− v(x))

for all v ∈ G.

Proof. Since φt is linear, the map

φtxy : G → K, v 7→ φt(v)xy

is also linear for all xy ∈ A. And since ∂ is a monomorphism, φtxy could be considered
as a linear map from ∂(V) to K. Thus there is β ∈ KA with

φtxy(v) = βT∂(v) =
∑
uw∈A

βuw(v(w)− v(u)), for all v ∈ G.
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On the other hand by (A1) the value of the action xy only depends on the values of x
and y. Thus βuv = 0 holds for all uv ∈ A \ {xy}. Therefore φtxy(v) = βxy(v(y) − v(x)),
as stated. �

An interpretative plausible deduction of this theorem is the following:

Corollary 5.2.1 Let φ be a linear allocation mechanism and let v(x) = 0 for all x ∈ V .
Then for all t > 0 and all xy ∈ A, φtxy(v) = 0 holds. �

In other words: if no value is generated over time, also no value is allocates to the
players. We are interested in describing linear allocation mechanisms via sequences
α := (αt)t>0 in KA. The next lemma characterizes those sequences that yield a linear
allocation mechanism.

Lemma 5.2.2 Let α := (αt)t>0 be a sequence in KA. Then α induces a linear alloca-
tion mechanism via

φt(v)xy := αtxy(v(y)− v(x)) , for all xy ∈ A, t > 0, v ∈ G

if and only if for all xy ∈ A, t > 0

αt+1
xy = αtxy if x /∈ Et. (*)

holds.

Proof. By the last statements on linear allocation mechanisms it is clear, that if (*)
holds, φ is an allocation mechanism, which is also linear. The other way around: if φt

is a linear allocation mechanism, then by linearity and (A3) also (*) holds. �

5.2.4 Non-negativity

We call an allocation mechanism φ non-negative (or monotone) if it satisfies the fol-
lowing axiom for all v ∈ G:

For all xy ∈ A : v(y)− v(x) ≥ 0⇒ φtxy(v) ≥ 0, for all t > 0. (NN)
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In words: if the marginal contribution of an action is non-negative, then also its value is.

REMARK In view of the classical monotonicity axiom (MON) from Section 5.1.1, (NN)
is a direct generalization of it.
Let us give a characterization of non-negative allocation mechanisms, which will clar-
ify, why we prefer the term “non-negative” instead of “monotone”.

Lemma 5.2.3 Let φ = φα be a linear allocation mechanism. Then φ is non-negative if
and only if αtxy ≥ 0 for all t ≥ 0 and xy ∈ A.

Proof. Assume first that (NN) holds. Let xy ∈ A and set

v(z) := δy(z) =

{
1 if z = y

0 else.

Then v(y)− v(x) = 1 > 0 holds. Thus by (NN) also φtxy(v) ≥ 0 holds. Combined with
Theorem 5.2.1 we get

0 ≤ φtxy(v) = αtxy(v(y)− v(x)) = αtxy. (*)

Assume the other way around: αtxy ≥ 0 for all t ≥ 0 and xy ∈ A. Given v ∈ G with
v(y)− v(x) ≥ 0 the statement follows also directly by (*). �

5.2.5 t-efficiency & efficiency

Let t > 0. Recall the definition of Et from Chapter 3 as the set of endpoints of all paths
of length exactly t, which start in s.
We call φ t-efficient if there is a vector (µte)e∈Et

with
∑

e∈Et
µte = 1 such that for all

v ∈ G: ∑
xy∈A

φt(v)xy =
∑
e∈Et

µtev(e)

holds. The idea behind this axiom is the following: it is only known to us that a certain
state in Et is achieved after t time steps, but not which of them. In order to model this
uncertainty, we assume a certain probability distribution µ is given and assume that
the expected value relative to µ equals the generated value at time t. Therefore, this
expected value should be allocated. This idea is not new and is strongly inspired by
notions of efficiency presented in the models of Bilbao [13] and Faigle and Voss [37]
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which are based on the same principle. Since t-efficiency is just a part of the desired
efficiency concept, we will show later (cf. Ex. 5.2.2) that classical efficiency concepts
are special cases of our.
t-efficiency of linear allocation mechanisms can be restated in terms of flows on the
graph (V,A):

Theorem 5.2.2 Let φ be a linear allocation mechanism. Then φ is t-efficient for t > 0

if and only if each of the following statements is true:

(a) αt fulfills the flow conservation property at all vertices x ∈ V \ (Et ∪ s). That is:∑
u∈N−(x)

αtux =
∑

w∈N+(x)

αtxw.

(b) It holds: ∑
e∈Et

(
∑
ue∈A

αtue −
∑
ew∈A

αtew) = 1.

.

Proof. Let t > 0 and assume first that φ is t-efficient. Let δx : V → {0, 1} with δx(y) = 1

if and only if x = y. For x ∈ V the following is true:∑
uw∈A

φt(δx)uw =
∑
uw∈A

αtuw(δx(w)− δx(u)) =
∑

u∈N−(x)

αtux −
∑

w∈N+(x)

αtxw. (*)

Because of the t-efficiency of φ, there is a generalized probability distribution (µte)e∈Et

on Et, such that ∑
uw∈A

φt(δx)uw =
∑
e∈Et

µteδx(e). (**)

If x /∈ Et, and therefore δx(e) = 0 for all e ∈ Et, (**) needs to equal zero. Together
these two equations yield the flow conservation at state x. It remains to show (b):
Set δ :=

∑
e∈Et

δe. Then the following holds:

1 =
∑
e∈Et

µteδ(e) =
∑
uw∈A

φt(δ)uw =
∑
uw∈A

αtuw(δ(w)− δ(u))

=
∑
e∈Et

(
∑
ue∈A

αtue −
∑
ew∈A

αtew).

Assume the other way around: αt fulfills the flow conservation on V \ Et and∑
e∈Et

(
∑
ue∈A

αtue −
∑
ew∈A

αtew) = 1
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holds. Then ∑
e∈Et

∑
uw∈A

φt(δe)uw =
∑
e∈Et

∑
ue∈A

αtue −
∑
ew∈A

αtew = 1

holds. On the other hand, by the linearity of φ,

φt(v) =
∑
x∈V

v(x)φt(δx)

holds for all v ∈ G . But then also∑
uw∈A

φt(v)uw =
∑
uw∈A

∑
x∈V

v(x)φt(δx)uw

=
∑
uw∈A

∑
x∈Et

v(x)φt(δx)uw

=
∑
e∈Et

(
∑
ue∈A

φt(δe)ue)v(e)

is true for all v ∈ G. The third equality holds since - as shown above -
∑

uw∈A φ
t(δx)uw

equals the net-flow at vertex x, which is 0 by the flow conservation for all x ∈ V \(Et∪s).
Moreover, we assumed v(s) = 0. Therefore, only those summands yield a contribution
to the sum, that correspond to Et.
We proved above that µte :=

∑
ue∈A φ

t(δe)ue add up to 1. Hence φ is t-efficient. �

In the last proof we found a nice representation of the coefficients µte, which we want
to write down in:

Corollary 5.2.2 Let φ = φα be a t-efficient allocation mechanism which suffices (LIN)
and (NN) and let (µte)e∈Et

be the coefficient vector on Et, that corresponds to the t-
efficiency of φ. Then µte =

∑
ue∈A φ

t
ue(δe) =

∑
x∈N−(e) α

t
xe −

∑
y∈N+(e) α

t
ey holds. �

The last theorem characterized linear and t-efficient allocation mechanisms. The prop-
erty of t-efficiency seems to be a very “local” axiom. One could think, that valuations
of actions at different times are independent of each other. We will be disabused by

Corollary 5.2.3 Let φ = φα be an allocation mechanism, which enjoys (LIN) and is
t+ 1-efficient (for some t > 0). Then for all e ∈ Et \ Et+1:∑

x∈N−(e)

αtxe =
∑

y∈N+(e)

αt+1
ey



52 5. ALLOCATION MECHANISMS: WEBER THEORY

holds.

Proof. Since e /∈ Et+1, it follows for all x ∈ N−(e): x /∈ Et. By axiom (A3) this means:
αtxe = αt+1

xe for all x ∈ N−(e). On the other hand, we have e /∈ Et+1 and Theorem 5.2.2
yields the flow conservation of αt+1 at e, i.e.:∑

x∈N−(e)

αt+1
xe =

∑
y∈N+(e)

αt+1
ey .

Combining both statements yields the claimed. �

The restriction to endpoints in Et \ Et+1 in the last corollary seems a bit unnatural.
Unfortunately, this assumption could not readily be dropped in order to extend this
result. As the following example shows:

Example 5.2.1 Let G = (V,A) be the complete directed graph on V . Thus each vertex
is an end vertex for all times t. Assuming t-efficiency for all times t > 0 does not yield
the “time comprehensive flow conservation” of Corollary 5.2.3. This is because (A3)
does not guarantee the conservation of the value of actions to certain times any longer.
Hence the α-values could vary arbitrarily and are a priori not liable to any restrictions.

t-efficiency is not efficient

One of the ideas behind efficiency axioms is: a jointly generated value is allocated to
all players that participated in the generation of it. Since we want to allocate time-
dependently, this idea should be extended to time steps. Consider the following exam-
ple: assume there is only one winning state e ∈ V and consider the game

δe(y) =

{
1 e = y,

0 else.

Assume that e ∈ Et ∩ Et+1 and that φ is (t + 1)-efficient. We want to allocate the
generated value µt+1

e among the actions in A. The essential actions that could take the
game to the only winning state e at time t+ 1 are exactly the actions in:

{xe ∈ A|x ∈ N−(e) ∩ Et}.

Since those actions could be performed to bring the system to the state e in time step
t → t + 1 independently from all other actions and on their own, the owners of those
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actions could raise a plea if the whole generated value at time t+1 is not fully allocated
to them. Therefore, one could argue that it is fair if they demand:

µt+1
e =

∑
x∈Et∩N−(e)

φt+1
xe (δe)− φtxe(δe),

which means, that the time-marginal value of those essential actions is the value that is
generated at this time. On the other hand:

µt+1
e =

∑
xy∈A

φt+1
xy (δe)

holds by (t + 1)-efficiency. Therefore, we call φ time efficient if for all t > 0 and all
e ∈ Et: ∑

xy∈A

φt+1
xy (δe) =

∑
x∈Et∩N−(e)

(φt+1
xe (δe)− φtxe(δe)) (TE)

holds.
In view of Example 5.2.1 and the restrictive assumption of Corollary 5.2.3, there is a
nice characterization of (TE):

Lemma 5.2.4 Let φ = φα be a linear allocation mechanism. Then φ is time efficient if
and only if for all t > 0 and e ∈ Et:∑

x∈N−(e)

αtxe =
∑

y∈N+(e)

αt+1
ey

holds.

Proof. Consider again the game δe. Then∑
xy∈A

φt+1
xy (δe) =

∑
x∈N−(e)

φt+1
xe (δe)−

∑
y∈N+(e)

φt+1
ey (δe)

holds. On the other hand∑
x∈N−(e)

φt+1
xe (δe) =

∑
x∈N−(e)∩Et

φt+1
xe (δe) +

∑
x∈N−(e)\Et

φt+1
xe (δe)

=
∑

x∈N−(e)∩Et

φt+1
xe (δe) +

∑
x∈N−(e)\Et

φtxe(δe)

=
∑

x∈N−(e)∩Et

φt+1
xe (δe) +

∑
x∈N−(e)

φtxe(δe)−
∑

x∈N−(e)∩Et

φtxe(δe)
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holds. Together these equations yield∑
xy∈A

φt+1
xy (δe) =

∑
x∈N−(e)∩Et

φt+1
xe (δe)− φtxe(δe) +

∑
x∈N−(e)

φtxe(δe) +
∑

y∈N+(e)

φt+1
ey (δe). (*)

Therefore, time efficiency is equivalent to∑
x∈N−(e)

φtxe(δe) +
∑

y∈N+(e)

φt+1
ey (δe) = 0,

which is equivalent to ∑
x∈N−(e)

αtxe −
∑

y∈N+(e)

αt+1
ey = 0,

by (LIN) and Theorem 5.2.1, as stated in this lemma. �

REMARK Note that by the last lemma time efficiency is implied by t-efficiency if the
underlying graph has the property that there is no vertex e ∈ V with e ∈ Et ∩ Et+1.
Which is especially the case in the classical cooperation system. Hence in the classical
model time efficiency is a redundant property.

Efficiency

In view of the last subsection we merge the two terms t-efficiency and time efficiency
and call a value φ efficient if

φ is t-efficient for all t > 0 and time efficient. (EFF)

We consider the example of classical cooperative games and allocation mechanisms
and show that our notion of efficiency agrees with the classical one:

Example 5.2.2 Let (N, v) be a classical cooperative game on the cooperation system
Γ := (2N , A, (Ai)i∈N , ∅) (with Ai := {UW ∈ A|W \ U = {i}}) and φ an efficient (in the
sense of (EFF)) allocation mechanism. Consider the value φn (n := |N |). Set

φni (v) :=
∑
xy∈Ai

φnxy(v).

Since En = {N} holds in the classical cooperation system, (EFF) guarantees:

v(N) =
∑
xy∈A

φnxy(v) =
∑
i∈N

∑
xy∈Ai

φnxy(v) =
∑
i∈N

φni (v).

Therefore the value v 7→ (φni (v))i∈N is efficient in the classical sense.
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Theorem 5.2.2 and Lemma 5.2.4 together give us a characterization of linear and effi-
cient allocation mechanisms:

Corollary 5.2.4 Let φ = φα be a linear allocation mechanism. Then φ is efficient if
and only if each of the following statements is true for all t > 0:

(a) αt fulfills the flow conservation property at all vertices x ∈ V \ (Et ∪ s). That is:∑
u∈N−(x)

αtux =
∑

w∈N+(x)

αtxw.

(b)
∑

e∈Et
(
∑

ue∈A α
t
ue −

∑
ew∈A α

t
ew) = 1.

(c)
∑

x∈N−(e) α
t
xe =

∑
y∈N+(e) α

t+1
ey , for all e ∈ Et.

�

In fact, these conditions have a much nicer interplay and we could give a better and
more compact characterization of linear and efficient allocation mechanisms, which
summarizes the results of this section:

Theorem 5.2.3 Let φ = φα be a linear allocation mechanism. Then φ is efficient if and
only if the following two conditions are true:

(a) For all t > 0:
∑

x∈N−(e) α
t
xe =

∑
y∈N+(e) α

t+1
ey for all e ∈ Et.

(b)
∑

u∈N+(s) α
1
su = 1.

Proof. Set δ :=
∑

u∈N+(s) δs. By efficiency φ is especially 1-efficient. Hence∑
u∈N+(s)

α1
su =

∑
xy∈A

φ1(δ) =
∑
e∈E1

µ1eδ(e) =
∑
e∈E1

µ1e = 1.

Thus, if φ is efficient, we already know that (a) and (b) are satisfied.
Assume the other way around that (a) and (b) hold. We have to show for all t > 0:

(i)
∑

u∈N−(x) α
t
ux =

∑
w∈N+(x) α

t
xw for all x ∈ V \ (Et ∪ s).

(ii)
∑

e∈Et

∑
ue∈A α

t
ue −

∑
ew∈A α

t
ew = 1.
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Then the last corollary yields the efficiency of φ.
(i): Let x ∈ V \ (Et ∪ s). We use induction on t. At time t = 1 we have α1

xy = 0 if x 6= s.
Thus the flow conservation for all x ∈ V \ (E1 ∪ s) is clear. Let t > 1 and assume that
the statement is true for all smaller t. Let x ∈ V \ (Et ∪ s). If x /∈ Et−1, the following
holds by induction: ∑

u∈N−(x)

αt−1
ux =

∑
w∈N+(x)

αt−1
xw =

∑
w∈N+(x)

αtxw.

Where the last equality holds by (A3). On the other hand, since x /∈ Et, no predecessor
of x could be in Et−1. Thus again by (A3):∑

u∈N−(x)

αt−1
ux =

∑
u∈N−(x)

αtux

holds and we are done. Assume that x ∈ Et−1. Then by (a)∑
u∈N−(x)

αt−1
ux =

∑
y∈N+(x)

αtxy

holds. Again
∑

u∈N−(x) α
t−1
ux =

∑
u∈N−(x) α

t
ux by (A3). Since x /∈ Et, u /∈ Et−1 holds

for all u ∈ N−(x).

(ii): By (a) we know that α is a flow over time. By (b) we know it sends out the
value 1 at time 1 from s. Hence at time t the flow transports the value 1 to the endpoints
in Et and (ii) holds. Alternatively again one uses induction on t with trivial beginning
and the fact that Et =

⋃
u∈Et−1

N+(u). Let t > 1 and assume (ii) to hold for all smaller
t. Then

1 =
∑
e∈Et−1

∑
ue∈A

αt−1
ue −

∑
ew∈A

αt−1
ew

=
∑
e∈Et−1

∑
ew∈A

αtew −
∑
ew∈A

αt−1
ew

=
∑
f∈Et

∑
uf∈A

αtuf −
∑
uf∈A

αt−1
uf

=
∑
f∈Et

∑
uf∈A

αtuf −
∑
fw∈A

αtfw.

�
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5.2.6 Ratio fairness

Recall the arguments of Section 5.2.5, which lead us to the notion of time efficiency:∑
xy∈A

φt+1
xy (δe) =

∑
x∈Et∩N−(e)

φt+1
xe (δe)− φtxe(δe) (TE)

for all t > 0 and e ∈ Et. In Lemma 5.2.4 we proved, that time efficiency is equivalent
to ∑

x∈N−(e)

φtxe(δe) = −
∑

y∈N+(e)

φt+1
ey (δe). (*)

The interpretation behind (*) is the following: those actions, which take the game from
the only winning state e to a non-winning state y ∈ N+(e) at time t+1, are responsible
for the loss of the value that was generated by the actions xe(x ∈ N−(e)) at time t by
taking the game to the winning state e. Right now, there is nothing said about, how
these costs are allocated to the actions ey(y ∈ N+(e)). Assume that this situation is
cyclic, i.e.: there is a circle in the graph, such that the system is in state e at time t′ > t

again. The abstract situation of possibilities and actions that could be performed has
not changed. The only thing that probably changed is the value of

∑
x∈N−(e) φ

t′
xe(δe).

Therefore, the owners of actions ey could argue, that at time t′ + 1 they take over lia-
bilities only at the same ratio, they did in the past. We want to call this property ratio
fairness. To be more formal:

Let φ be an allocation mechanism. φ is called ratio fair if for all t′ > t > 0 and
e ∈ Et ∩ Et′ the following holds:

φt+1
ey (δe)

∑
u∈N−(e)

φt
′

ue(δe) = φt
′+1
ey (δe)

∑
u∈N−(e)

φtue(δe). (RAT)

A reformulation of (RAT) in terms of linear values is

Lemma 5.2.5 Let φ = φα a linear allocation mechanism. φ enjoys (RAT) if and only if

αt+1
xy

∑
ux∈N−(x)

αt
′

ux = αt
′+1
xy

∑
ux∈N−(x)

αtux for all t, t′ with x ∈ Et ∩ Et′ .

�
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REMARK (A3) together with Lemma 5.2.5 implies

αt
′

xy

∑
ux∈N−(x)

αt
′

ux = αt
′+1
xy

∑
ux∈N−(x)

αt
′−1
ux

for linear, ratio fair allocation mechanism φα and all t′ > 0 with x ∈ Et′ .

Lemma 5.2.6 Let φ = φα be an allocation mechanism that satisfies (LIN), (EFF) and
(RAT). Then for all xy ∈ A and all t > 0 with d(s, x) < t and αtxy 6= 0:

αtxy

∑
w∈N+(x)

αt+1
xw = αt+1

xy

∑
w∈N+(x)

αtxw

holds.

Proof. If x /∈ Et, all considered αxy values are constant in the time step t → t + 1 by
Axiom (A3). Hence the claim follows trivially. Therefore, assume x ∈ Et. By (EFF)
and Theorem 5.2.3 ∑

w∈N+(x)

αt+1
xw =

∑
u∈N−(x)

αtux

holds. Moreover, by (RAT) and Lemma 5.2.5 for all xy ∈ A:

αtxy

∑
u∈N−(x)

αtux = αt+1
xy

∑
u∈N−(x)

αt−1
ux

holds. Thus
αtxy

∑
w∈N+(x)

αt+1
xw = αt+1

xy

∑
u∈N−(x)

αt−1
ux

holds. If x /∈ Et−1, ∑
u∈N−(x)

αt−1
ux =

∑
w∈N+(x)

αt−1
xw =

∑
w∈N+(x)

αtxw

and the claim follows. Hence we may assume that x ∈ Et−1. It follows by (EFF):∑
u∈N−(x)

αt−1
ux =

∑
w∈N+(x)

αtxw.

�
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Now we have gathered all preliminaries to generalize Weber’s theory of random values
and to discover linear, efficient and ratio fair allocation mechanisms as random walks
on the graph (V,A). Given φ = φα which suffices (LIN), (EFF) and (RAT) we define a
random walk on (V,A) via:

(0.) Start in s and move with (possibly negative) probability α1
sx along the arc sx.

(1.) If the random walk arrived in x ∈ V at time t > 0, move with (possibly negative)
probability πxy :=

αt
xy∑

w∈N+(x) α
t
xw

along the arc xy.

REMARK This random walk is well defined since φ is efficient and therefore α1
sx (x ∈

N+(s)) actually is a (generalized) probability distribution. If the walk arrives in x ∈ V
with nonzero probability

∑
u∈N−(x) α

t−1
ux 6= 0, by Lemma 5.2.5 also

∑
w∈N+(x) α

t
xw 6= 0

and therefore the term

πtxy :=
αtxy∑

w∈N+(x) α
t
xw

is well defined. Given that the walk arrives in x also at another time t′, Lemma 5.2.6
guarantees:

πtxy = πt
′

xy.

Hence the time-independence of π in the definition of the walk is justified.

By setting πxy := 0 for xy /∈ A, this random walk gives rise to a transition matrix
(πxy)xy∈V×V with row-sums equal to 1. The lemma above gives us another nice charac-
terization of (NN) and another reason for preferring the term “non-negative” instead of
“monotone”:

Corollary 5.2.5 Let φ = φα be a linear, efficient and ratio fair allocation mechanism
with corresponding transition matrix Π := (πxy)xy∈V×V . Then φ suffices (NN) if and
only if Π is a classical Markovian matrix.

Proof. Assume first that φ is non-negative. Let xy ∈ A and t > 0 s.t. x ∈ Et−1. Then
πxy =

αt
xy∑

w∈N+(x) α
t
xw
≥ 0. Hence Π is a classical Markovian matrix. Assume the other

way around: for all xy ∈ A and all t > 0 s.t. x ∈ Et−1:

0 ≤
αtxy∑

w∈N+(x) α
t
xw

(*)

holds. Assume by an inductive argument, that αt−1
ab ≥ 0 for all ab ∈ A. By the efficiency

of φ and induction we have ∑
w∈N+(x)

αtxw =
∑

u∈N−(x)

αt−1
ux ≥ 0.
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Hence multiplying (*) by
∑

w∈N+(x) α
t
xw yields αtxy ≥ 0. �

5.3 Allocation mechanisms induced by random
walks

In the last section we proved that each allocation mechanism, which enjoys the proper-
ties (LIN), (EFF) and (RAT), induces a (generalized) random walk on the underlying
graph. In this section we want to consider the contrary question:

Does a random walk on the graph induce an allocation mechanism?

Let Π = (πxy)xy∈V×V be a generalized stochastic matrix, which is compatible with the
graph G, i.e.:

(1)
∑

w∈V πuw = 1 for all u ∈ V and

(2) uw /∈ A⇔ πuw = 0.

We define recursively for all t > 0 and u,w ∈ V : p0(u) := 0, p0(s) = 1 and

pt(u) :=

{
pt−1(u) if u /∈ Et∑

xu∈A p
t−1(x)πxu if u ∈ Et.

Moreover, define for all t ≥ 0:

αt+1
uw (Π) := αt+1

uw := pt(u)πuw.

Lemma 5.3.1 For all xy ∈ A, t > 0 αt+1
xy = αtxy holds if x /∈ Et, i.e.: α induces a linear

allocation mechanism by Lemma 5.2.2.

Proof. Since x /∈ Et, pt(x) = pt−1(x). Hence αt+1
xy = pt(x)πxy = pt−1(x)πxyα

t
xy. �

Lemma 5.3.2 Let Π be a generalized stochastic matrix. The linear allocation mecha-
nism φ := φΠ := φα induced by Π satisfies (EFF) and (RAT).
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Proof. Let t > 0 and x ∈ Et. Then∑
u∈N−(x)

αtux =
∑

u∈N−(x)

pt−1(u)πux. (*)

This equals
pt(x) = pt(x)

∑
w∈N+(x)

πxw =
∑

w∈N+(x)

αt+1
xw .

Moreover,
∑

u∈N+(s) α
1
su =

∑
u∈N+(s) p

0(s)πsu = 1 holds.
This completes the proof of (EFF) holding for φ by the characterization given in Theo-
rem 5.2.3. It remains to prove ratio fairness for φ. Therefor let x ∈ Et ∩ Et′ . Then

αt+1
xy

∑
u∈N−(x)

αt
′

ux = pt(x)πxy
∑

u∈N−(x)

pt
′−1(u)πux

=
∑

u∈N−(x)

pt−1(u)πuxπxyp
t′(x)

=
∑

u∈N−(x)

αtuxα
t′+1
xy

holds which is exactly the condition of (RAT). �

To subsume the results of the last two subsection, we formulate:

Theorem 5.3.1 Allocation mechanisms, which satisfy (LIN), (EFF) and (RAT), corre-
spond to generalized stochastic matrices over V ; i.e.: to generalized random walks on
G. �

Moreover, as seen in the definition of the random walk associated to an allocation mech-
anism, these results characterize non-negativity in a way, which is another argument for
calling the axiom (NN) non-negativity and not monotonicity:

Theorem 5.3.2 Let φ = φΠ be an allocation mechanism that enjoys (LIN), (EFF) and
(RAT). Then φ suffices (NN), if and only if Π is a classical stochastic matrix; i.e.:
πxy ≥ 0 for all xy ∈ A. �



62 5. ALLOCATION MECHANISMS: WEBER THEORY

Thus we achieved a generalization of Weber’s result (Theorem 5.1.3) and characterized
allocation mechanisms, which enjoy certain fairness axioms, as being induced by ran-
dom walks. We will merge those allocation mechanism into a class and will call an
allocation mechanism randomized (RAN) if it enjoys (LIN), (EFF) and (RAT).

5.3.1 Action sequences & path probabilities

As presented in Section 5.1.2, Weber proved a bit more than a characterization of ran-
dom walks. He characterized random order values which evaluate players with respect
to random permutations of the player set. His result was restated in Theorem 5.1.2. We
aim for a generalization of the idea behind random order values.
In terms of our model, an order of the players (i.e. a permutation of N) in the classical
case, is a path of length |N | from ∅ to N . Therefore we consider action sequences
x1y1, ..., xkyk, such that yi = xi+1 and x1 = s. In terms of graph theory those sequences
of actions are precisely the paths that start in s. Set

P := {P |P is a path of finite length in G, that starts in s.}

and for all t > 0:

Pt := {P ∈ P| |P | = t}. (where |P | is the length of P )

Randomized allocation mechanisms induced by random orders

Let tmax be the cover time of G with respect to s (i.e.: the first time such that each
arc was at least once visitable). And let 0 < π := (πmax(P ))P∈Ptmax

be a probability
distribution on Ptmax . Set

βxy :=
∑

P∈Ptmax ,xy∈P

πmax(P )

for all xy ∈ A (that is: the probability of xy being part of a randomly chosen path of
length tmax). In analogy to the last section one can associate a random walk with β by
setting transition probabilities to:

πxy :=
βxy∑

z∈N+(x) βxz
.

And in turn, by the last section of this chapter: this random walk induces a randomized
allocation mechanism φ.
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Assume the other way around that φ is a randomized allocation mechanism. As seen
in Subsection 5.2.6, φ induces a random walk with transition matrix (πxy)xy∈A. Let
P = x0, ..., xtmax ∈ Ptmax . By setting

π(P ) :=

tmax∏
i=1

πxi−1xi ,

π induces a probability distribution on Ptmax . Hence we find:

Theorem 5.3.3 Each random order induces a randomized allocation mechanism and
each randomized allocation mechanism induces a random order. �

Hence the strong relation between random orders and randomized allocation mecha-
nisms known from the classical result of Weber is preserved. This relation will give us
the opportunity to introduce the entropy of a non-negative randomized allocation mech-
anism in Section 5.4.2 which in turn yields another notion of symmetry and a measure
for impartiality.

5.4 Characterization results

In the first section of this chapter we presented some classical allocation mechanisms,
which received much attention in the theory of cooperative games. In this section we
want to generalize the main ideas behind those allocation mechanism, that made them
that famous and aim for analogous characterization results in our model.

5.4.1 Shapley values

In the beginning of this chapter we restated the famous theorem of Shapley which
characterized the allocation mechanism that got his name:

Theorem 5.4.1 ([82]) Given a classical cooperation structure on a finite player set
N there exists exactly one allocation mechanism which enjoys the properties (ADD),
(NUL), (EFF) and (SYM). �

Compared with the results of Weber (cf. Section 5), it seems that the characterizing
axiom is (SYM).
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The symmetry axiom

In order to generalize the idea behind (SYM) to our model, let us restate (SYM) and
recapitulate the idea behind it in the case of a classical cooperation structure:

v(S ∪ i) = v(S ∪ j) for all S ⊆ N \ {i, j} ⇒ φi(v) = φj(v). (for all v ∈ G) (SYM)

In words the symmetry axiom means the following: if two players generate the same
marginal contributions to any coalition they can join, they only differ in their name and
should be treated equally in the payoff process.
Adapted to the general case, this idea could be generalized as follows: if two actions
that could bring the system out of state x to states y and z yield the same marginal
contribution, they should be treated equally. Thus we call an allocation mechanism φ

symmetric, if

For all xy, xz ∈ A : v(y) = v(z)⇒ φtxy(v) = φtxz(v) for all t > 0. (SYM’)

One directly observes:

Lemma 5.4.1 Let Γ be the classical cooperation system and let φ be an allocation
mechanism that enjoys (SYM’). Then v → (

∑
xy∈Ai

φnxy(v))i∈N satisfies (SYM). �

Since (SYM’) implies (SYM) in the classical case, it is riskless to omit the prime, and
we will do so in the following.

A first Shapley value

Theorem 5.4.2 There is precisely one randomized allocation mechanism Φ which is
symmetric.

Proof. Consider the transition matrix (πxy)xy∈V×V given by

πxy :=

{
1

deg+(x)
if xy ∈ A,

0 else.

Since the associated linear allocation mechanism φα (cf. Section 5.3) is induced by

αtxy := pt−1(x)πxy,
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and the first factor only depends on x, φα is symmetric. Assume the other way around:
there is another symmetric allocation mechanism which is induced by

βtxy = p̃t−1(x)π̃xy.

Since φβ is symmetric,
βtxy = βtxz

holds. Thus π̃xy = π̃xz. Hence α = β. �

This theorem gives a generalization of the classical Shapley value. Therefore, we call
Φ the symmetric Shapley allocation mechanism.
REMARK As seen in the proof of Theorem 5.4.2, symmetry implies non-negativity for
Φ since the (a priori generalized) probabilities πxy (y ∈ N+(x)) need to sum up to 1 and
πxy = πxz for all z ∈ N+(x).

5.4.2 Entropy - another notion of symmetry

Recall the representation of the classical Shapley value given in Section 5.1.2 as the
allocation mechanism, which is induced by the uniform distribution on the set of per-
mutations of the players:

ΦSh(v)i =
1

|N |!
∑

σ∈Sym(N)

v(Si(σ) ∪ i)− v(Si(σ)),

where Si(σ) is the ordered set of all players, which precede player i in σ. This reflects
another idea of symmetry in the Shapley value: all rankings of the players should be
treated equally and the payoff of a player should only depend on his marginal con-
tributions to coalitions he could join, not on the order in which this joining process
takes place. Given a classical probability distribution π on the set of all permutations
Sym(N), one could measure by the so called entropy (known from information theory
[51]), how symmetric a value induced by π is. Also Faigle and the author [37] proposed
the entropy of an allocation mechanism as a measure of fairness. Define the entropy of
π via:

H(π) := −
∑
σ∈SN

πσ log πσ.

It is well known (cf. [51]), that the entropy of classical probability distributions is
maximized by the uniform distribution. This fact yields another characterization of the
classical Shapley value:
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Theorem 5.4.3 ([37]) There exists precisely one random order value (in the classical
sense of Weber), that maximizes the entropy. This maximizer is the classical Shapley
value. �

This is our starting point for generalizing this notion of symmetry. In view of Section
5.3.1 we define the entropy of a non-negative randomized allocation mechanism φ with
underlying probability distribution πmax on Ptmax , as

H(φ) := H(πtmax) := −
∑
P∈Pt

πtmaxP log(πtmaxP ).

Theorem 5.4.4 There is exactly one non-negative randomized allocation mechanism
Ψ with maximal entropy.

Proof. This is direct, since if two random walks induce the same distribution on Ptmax

they equal each other. �

Since Ψ is also a generalization of the classical Shapley value (and in the classical case
Ψ = Φ holds) we call Ψ the entropy-symmetric Shapley value.
There is a large class of graphs on which these two concepts of symmetry coincide. We
will note this down in the following

Lemma 5.4.2 If G is a graph with the property

For all t > 0, x, y ∈ Et : d+(x) = d+(y). (R)

Then Ψ = Φ holds.

Proof. Let t := tmax and P = p0, ..., pt and Q = q0, ..., qt be paths of length t with
p0 = s = q0. The induced path probability of Φ is given by:

π(P ) =

t−1∏
i=0

πpipi+1 =

t−1∏
i=0

1

d+(pi)

Since pi, qi ∈ Ei, by (R) it holds:

π(P ) = π(Q).

Hence Φ induces the uniform distribution on Ptmax . Therefore Φ = Ψ holds. �
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5.5 Markovian systems and Weber theory

In Theorem 3.3.1 connected generalized Markovian systems and generalized random
walks on the associated transition graphs. This connection gives us the “switch” be-
tween two points of view on cooperative situations:

(I) Given a cooperative situation that could be modeled by states, actions and transi-
tion graphs, the Weber theory presented in this chapter could be used to propose
solutions to the Allocation Problem. As long as all participating players agree
with the fairness axioms of randomized allocation mechanisms, each allocation
that suffice (RAN) would yield a fair solution to the Allocation Problem.

(II) Given a cooperative situation, assume there is a certain randomized allocation
mechanism, which is the fixed payoff rule for this situation. In view of the Predic-
tion Problem (see 3.1.1) one could argue: the evolution operator of the associated
Markovian system solves the Prediction Problem, since it describes the random
walk induced by the fixed randomized allocation mechanism.

This observation shows that the Allocation Problem and the Prediction Problem are
related to each other and that solving one of these problems leads to a solution of the
other.

5.5.1 Allocation mechanisms induced by inhomogeneous
random walks

So far, we studied allocation mechanism that are induced by Markovian evolution oper-
ators. A natural generalization is the following: let (V,Φ) be a system with Markovian
state space V and let Φ = (Mt)t≥0 be a sequence of V × V -matrices, such that

(a) M0 = Id and

(b) Mt is stochastic for t > 0.

Assume that there is s ∈ V , such that for all x ∈ V \ s there is a sequence s =

x0, x1, ..., xk = x with (Mi)xi−1xi 6= 0 for all i. Then Φ also describes a random walk on
V via:

(0) Start in s and move with probability (M1)sx to x ∈ V \ s.

(1) If the walk arrives in x ∈ V at time t > 0, move to y ∈ V with probability
(Mt+1)xy.
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By adapting the ideas developed in this chapter, one could define a linear allocation
mechanism relative to Φ by:

αt+1
xy :=

{
pt(x)(Mt+1)xy if x ∈ Et
αtxy else.

Where pt is recursively defined by: p0(u) := 0 for u ∈ V \ s, p0(s) = 1 and

pt(u) :=

{
pt−1(u) if u /∈ Et∑

xu∈A p
t−1(x)(Mt)xu if u ∈ Et.

In analogy to the results of Section 5.3 one gets:

Corollary 5.5.1 φα is a linear allocation mechanism which is t-efficient for all t > 0.�

Later in Section 10.1 we will see a concrete example of an evolution operator which is
defined by an inhomogeneous random walk. But our focus still lies on homogeneous
processes.

5.6 Weber allocation in the long run

Until now we developed a theory of randomized allocation mechanisms that reflect
fair allocations over time in some sense. Whenever certain time-dependent objects are
considered, it is quite natural to ask

• How does an allocation mechanism evolve over time?

• Does (φt)t>0 converge?

• And if so, what does a limit look like?

In this last part of this chapter we want to give answers to these questions. To do so,
we need to recall some basic facts about random walks.

5.6.1 Basic facts about random walks

In order to give all tools needed for answering the above stated question but not losing
our focus on our main tasks of this thesis, this section is kept very brief and restates
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well-known facts about random walks. For further and much more detailed reading on
this topic we refer the reader to an introductory book on probability theory [55]. Deeper
matter and a beautiful presentation of the whole theory of Markov chains and mixing
times could be found in [62]. Especially the theory of random walks with continuous
time horizon is treated there in detail.
All considered random walks in this thesis stray on finite directed graphs with a discrete
time horizon. All results of this section are well-known in one or another form and
could be found in a more general or slightly different version in [62].
Assume for the rest of this section that G = (V,A, s) is a graph which is strongly s

connected and that Π := (πxy)xy∈A is a classical stochastic matrix, which is compatible
with G, i.e.:

πxy = 0⇔ xy /∈ A, (*)

and for all x ∈ V ∑
y∈V

πxy = 1, πxy ≥ 0.

Let us start by some definitions: Π is called irreducible if the probability of getting
to any vertex y, starting in any other node x, is positive. In other words: if every
two vertices x, y ∈ V are connected by a directed path, whose arcs have all a positive
transition probability. By (*) this is equivalent to G being strongly connected.
The period of a vertex x ∈ V , per(x), is the greatest common divisor of the length of all
directed circles, which contain x and have a positive probability. The first observation
is the following:

Lemma 5.6.1 ([62]) If Π is irreducible, all vertices in V have the same period. �

Π is called aperiodic if all vertices in V have period 1.
A probability distribution

p ∈ ∆(V ) := {x ∈ RV |xi ≥ 0,
∑
i∈V

xi = 1}

is called stationary with respect to Π if

pΠ = p

holds. A stationary distribution p therefore is an eigenvector to the eigenvalue 1 (or: a
fixed point of Π).
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Lemma 5.6.2 ([62]) For every stochastic matrix Π there exists a stationary distribu-
tion. �

Given a starting distribution s, p is called a limiting distribution if the limit

lim
t→∞

sΠt

exists and equals p.

Lemma 5.6.3 If p is a limiting distribution for Π, then p is stationary.

Proof. It is pΠ = (limt→∞ sΠt)Π = limt→∞ sΠt+1 = limt→∞ sΠt = p. �

We are interested in the question: under which circumstances does a unique station-
ary distribution exist. Obviously this is exactly then the case if the dimension of the
eigenspace to the eigenvalue 1 is 1. Because in a one dimensional space there is exactly
one non-negative vector with component sum equal to 1. Therefore we could find in
every one dimensional subspace of the eigenspace to the eigenvalues 1, a stationary
distribution.
We want to use a theorem from linear algebra: the theorem of Perron and Frobenius,
which was first proven in the case of positive matrices in [74] by Perron and was gener-
alized to non-negative ones later by Frobenius in [42]. Before we are able to state this
theorem, we need a further definition:
A matrix A ∈ Rn×n is called reducible if it is conjugated to a matrix in block-diagonal
form. If a matrix is not reducible, it is called irreducible. To avoid confusion, let us
first show, that this notion of irreducibility does not conflict the notion of irreducibility
of transition matrices:

Lemma 5.6.4 Stochastic matrices which underlying random walk is irreducible, are
irreducible matrices.

Proof. Assume the random walk associated to Π is irreducible, but Π is not. Then there
exists a block-diagonal form of Π and w.l.o.g. we assume Π to be in this form. It is
known from linear algebra that powers of block-diagonal matrices are block-diagonal.
Let x, y ∈ V such that the xy-entry of Π is in the 0-block of Π. Then also Πkxy = 0 holds
for all k > 0. But that means: there is no k > 0 such that x and y are connected by a



5.6. WEBER ALLOCATION IN THE LONG RUN 71

path of length k in G. therefore Π could not be irreducible. �

We only need a part of the statement of the Perron-Frobenius Theorem. Thus we only
restate a part of it:

Theorem 5.6.1 (Theorem of Perron-Frobenius) Let 0 ≤ A ∈ Rn×n a non-negative
irreducible matrix and λ an eigenvalue with maximal absolute value. Then the follow-
ing holds:

(a) The eigenspace of λ is of dimension 1.

(b) There is a (left-)eigenvector v of A to the eigenvalue λ with 0 < v.

Proof. The complete and a bit technical proof could be found in [54, p. 356 ff.]. �

In order to apply the theorem of Perron-Frobenius to stochastic matrices, we need:

Lemma 5.6.5 ([62]) For all eigenvalues λ of Π, |λ| ≤ 1 holds. �

Combining 5.6.2, 5.6.5 and 5.6.1 we get:

Lemma 5.6.6 Let Π be irreducible. Then there exists a unique stationary distribution
p of Π. �

As mentioned in the beginning of this section, we are interested in the existence of
limiting distributions.

Lemma 5.6.7 ([62]) Let Π be aperiodic and irreducible. Then the limit

p := lim
t→∞

sP t

exists for each starting distribution s. Furthermore, p is the only stationary distribution
of Π and each row of limt→∞Πt equals p. �
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5.6.2 Convergence results

Theorem 5.6.2 Let G be strongly connected. If the underlying random walk of the non-
negative randomized allocation mechanism φ = φα has a limiting distribution (ρu)u∈V ,
then the sequence (αt) converges for t → ∞. And for all xy ∈ A it is limt→∞ αtxy =

ρxπxy, where πxy is the transition probability of x→ y.

Proof. Let Π be the transition matrix of the random walk associated with φ. It holds:

lim
t→∞

αtuw = lim
t→∞

pt−1(u)πuw. (*)

By the theorem of Perron-Frobenius ρ is the unique stationary distribution. Further-
more it is: limt→∞ pt = ρ. Hence (*) equals:

lim
t→∞

αtuw = ρuπuw.

In particular: αt converges for t→∞. �

Moreover, we can achieve a nice structural property of the limit of (αt)t>0, if it exists:

Theorem 5.6.3 Let G be strongly connected. If the sequence (αt) converges for t→∞
to α∞, then α∞ is a circulation.

Proof. Let u ∈ V . Then the following holds:∑
xu∈A

α∞
xu =

∑
xu∈A

lim
t→∞

αtxu = lim
t→∞

∑
xu∈A

pt−1(x)πxu

= lim
t→∞

pt(u) = lim
t→∞

∑
uw∈A

πuwp
t(u)

= lim
t→∞

∑
uw∈A

αt+1
uw =

∑
uw∈A

α∞
uw

Thus α∞ is a circulation on G. �

The convergence of random walks gives us a solution to another practical problem,
which we want to describe in the following example:

Example 5.6.1 Assume there are two possible starting states s and s̃ in a coopera-
tive situation. Moreover, assume that the participants already agreed to take pay offs
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according to a certain randomized allocation mechanism φ, and assume that there is
disunity among two parties if the process should start in s or in s̃. The convergence re-
sults for allocation mechanism above then counter: if φ has a limiting distribution it is
regardless in which of those two states the situation starts. The situation will converge
to the same distribution in the long run.

5.6.3 Examples of convergent allocation mechanisms

In this section we want to briefly describe the convergence behavior of the Shapley
values Φ and Ψ defined in Section 5.4 by some examples. Recall that Φ is the allocation
mechanism induced by the transition probabilities πxy := 1

d+(x)
.

Example 5.6.2 Let G = KV the complete directed graph on V . The unique stationary
distribution of Φ is given by π(x) = 1

|V | (x ∈ V ). This holds in a much more general
context. Namely for regular graphs (i.e.: graphs in which d+(x) = d−(x) =: d(x) holds
for all x ∈ V and d(x) = d(y) for all x, y ∈ V ). Note that such graphs satisfy condition
(R) of Lemma 5.4.2. Therefore Ψ = Φ holds.
The value that is allocated to an action xy ∈ A by the Shapley value in the limit is:

Φ∞
xy(v) = α∞

xy(v(y)− v(x)) =
1

|V |
πxy(v(y)− v(x)) =

1

|V | d(x)
(v(y)− v(x)).

Since d(x) is independent of x in these graphs, we also get α∞
xy = α∞

uw for all xy, uw ∈ A.

Example 5.6.3 Let G be an undirected graph. We identify its edges {x, y} with the
directed arcs (x, y), (y, x). By this we define a directed graph and call it also G. Fur-
thermore, let Π be the underlying transition matrix of Φ
It is a direct calculation to see that the limiting distribution of Π is given by

π(x) =
d(x)∑

u∈N+(x) d(u)
.

This holds for more general graphs, namely for Eulerian graphs (i.e.: d+(x) = d−(x)

for all x ∈ V ).
We get:

Φxy(v) = α∞
xy(v(y)− v(x)) =

d(x)∑
u∈N+(x) d(u)

πxy(v(y)− v(x))

=
1∑

u∈N+(x) d(u)
(v(y)− v(x)).
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Example 5.6.4 Let G be acyclic. If d is the length of a maximal path in G which
starts in s, then a random walk on G stops after d steps by acyclicity. In other words:
αtxy = αdxy for all t > d and xy ∈ A. More precisely: set tx := max{j|x ∈ Ej}.
Then αtxy = αtx+1

xy for all t > tx and y ∈ N+(x). Hence each randomized allocation
mechanism on G converges. Moreover: its limit equals the allocation mechanisms
presented in the acyclic model in [37].

5.7 Weber-allocation with coalitions

Till now, we considered very general situations and aimed for allocating certain values
to all actions. Now we will have a more detailed view on situations, in which players,
or whole coalitions of players need to be treated fair in a certain context.
For the rest of this section let Γ := (N, V,A,A, s) be a cooperation system in the sense of
3.5. Thus the action set is partitioned into blocks AS (S ⊆ N) and each block indicates,
which actions are governed by which coalition. We want to highlight the special case:
AS = ∅, if |S| 6= 1. This leads to a cooperative situation, in which only single players
are allowed to perform actions. In the acyclic case this situation was investigated by
Faigle and the author in [37]. We will treat the general case here. In a first step we
define the value of S ⊆ N relative to a given randomized allocation mechanism φ and
a cooperative game v at time t to be:

φtS(v) :=
∑
xy∈AS

φtxy(v).

In other words: S should get all value, that was generated by actions governed by S.
This does not fully solve the allocation problem for the players in N . One question
remains open: how should S distribute the value φtS(v) among the players in S?
One could easily argue: it should be distributed equally among the players in S, since
if any player i ∈ S refuses his cooperation to take the action x→ y ∈ AS , S \ {i} is not
able to take the action at all. However, one easily could think of situations in which the
power ratios between the players in S are not equal by any external circumstances. To
be more general and to capture also those situations, we make a further assumption:
If the players in a coalition S agree to perform an action x → y ∈ AS there should
be an agreement amongst the players in S from the outset, how worthy each single
player is for S. If there is no such agreement, S is not stable enough to really take the
action xy in common. We will model this agreement by a weightvector (pSi )i∈S , pSi ≥ 0,∑

i∈S p
S
i = 1.
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The value of player i then is given by his proportional value of the actions in which his
presence was involved:

φti(v) :=
∑

S3i,S⊆N

pSi φ
t
S(v)

and we call φti(v) the individual value of player i w.r.t. v at time t.

5.8 Examples of classical values

In this section we want to demonstrate the power of the developed concept of allocation
mechanisms, by giving various examples of classical values which arise as special
cases of allocation mechanisms in our general model.
Let λ ∈ RN

>0. And set
λxy := λi if xy ∈ Ai.

Then λ gives rise to a random walk on G by defining the following transition probabil-
ities:

πxy :=
λxy∑

z∈N+(x) λxz
.

Denote by φλ the allocation mechanism induced by the transition matrix

Π(λ) := (πxy)xy∈V×V

and call it λ-value.

Example 5.8.1 Let λ := (1, ..., 1)T . Then for all xy ∈ A

πxy =
1

d+(x)

holds. Hence φλ equals the symmetric Shapley value. Together with Lemma 5.4.2, φλ

also equals the entropy-symmetric Shapley value if for all t > 0 and all x, x̃ ∈ Et:
d+(x) = d+(x̃) holds.

Example 5.8.2 In the acyclic case Faigle and the author [37] defined an analogue to
λ-values. If k is the length of a largest source-sink path in G, then (φλ)k equals the λ-
value defined there. There it is shown that certain concepts as weighted Shapley values
(cf. [83]) and, as a generalization of them, also weighted values of Kalai and Samet
[57] (see also: Chun [21]) yield special cases of λ-values in the acyclic case. Hence
they are also special cases of λ-values in our general context.



76 5. ALLOCATION MECHANISMS: WEBER THEORY

Hence λ-values are a special class of randomized allocation mechanism which general-
izes many classical value concepts and could be easily defined in our model.
There is a rich literature on generalizations of the classical value introduced by Shap-
ley [82]. Faigle and Kern [34] introduced a Shapley value for games on precedence
structures. They proposed a random order value in the sense of Section 5.3.1 by in-
vestigating the uniform distribution on all maximal paths in the precedence structure
(they call such paths rankings of players). Hence their Shapley value yields a special
case of the entropy-symmetric Shapley value in the special case of cooperation systems
induced by precedence structures.
For instance Derks and Peters [23] investigate a model with restricted coalition struc-
ture, which is restricted by a certain set-function ρ : 2N → 2N , such that the image
of ρ is the set of feasible coalitions F . Essentially they define a cooperative game on
the classical cooperation structure via v(S) := v(ρ(S)) and define the Shapley value
of the game v on the restricted system to be the Shapley value of v on the classical
cooperation system. Hence in this sense their Shapley value is just a special case of the
classical one and in turn a special case of our Shapley values.

5.8.1 Example: the Banzhaf value

Another very famous value is the so called Banzhaf value introduced by Banzhaf [8]
for voting situations and later generalized by Owen [72] to general cooperative games.
The original idea of Banzhaf was the following: given a finite player set N and a
monotone simple game v : 2N → {0, 1} the value of player i should depend on the
number of coalitions which become “winning” if i joins them. This means coalitions
S ⊆ N \ i, such that v(S) = 0 and v(S ∪ i) = 1. Denote the number of such coalitions
by ηi. Banzhaf proposed that the power of i in such a game should be measured via its
proportional possibilities to “make” coalitions winning:

Bi(v) :=
ηi∑
j∈N ηj

.

Bi is called the Banzhaf voting index. Owen [72] observed that

ηi =
∑
S⊆N\i

v(S ∪ i)− v(S),

since v(S ∪ i)− v(S) =

{
1 if v(S) = 0 and v(S ∪ i) = 1

0 else wise.
This expression only depends on marginal values which gives a direct generalization
to arbitrary classical cooperative games v. By definition of Bi(v) only ratios of the ηi
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matter. Thus one can multiply the vector (ηi)i∈N with a constant c without changing
Bi(v) in the case of a monotone simple game. For c ∈ R and a classical cooperative
game (N, v) define the vector

ψci (v) := c ·
∑
S⊆N\i

v(S ∪ i)− v(S).

Then ψc is a classical allocation mechanism and for all c and each monotone simple
game v the proportional contribution ψc

i (v)∑
j∈N ψc

j (v)
equals the Banzhaf voting index of

player i.
Owen proposed to take c := 1

2n−1 such that

ψci (v) =
1

2n−1

∑
S⊆N\i

v(S ∪ i)− v(S)

becomes an expected marginal worth. Due to this proposal the allocation mechanism
β := ψ1/2n−1

became famous under the name Banzhaf value. We want to define a linear
value which coincides with the classical Banzhaf value in the classical case. Therefor
we rewrite β in terms of the ζ-basis (cf. Section 4.4):

βi(ζS) =

{
1

2|S\i| if i ∈ T

0 else.

A Banzhaf value in our model

For t > 0 set A(t) := {xy ∈ A|d(s, x) < t− 1}. We define a linear and non-negative (cf.
Theorems 5.2.2 & 5.2.3) allocation mechanism φ = φα by setting α1

xy := 0, if x 6= s.
For t ≥ 0 and xy ∈ A define:

αt+1
xy :=

{
1

|Ai∩A(t+1)| if x ∈ Et and xy ∈ Ai.

αtxy else.

This expression is well-defined, since xy ∈ Ai∩A(t+1). Assume that Γ is the classical
cooperation system on 2N and let S ∈ V . Then for all i ∈ S

φni (ζS) =
∑
xy∈Ai

φnxy(ζS) =
∑
xy∈Ai

αnxy(ζS(y)− ζS(x))

= αnS\i,S = α
|S|
S\i,S

=
1

|Ai ∩ A(|S|)|
.
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holds. If i /∈ S,
∑

xy∈Ai
φnxy(ζS) = 0. Hence φn equals β on a basis of G. Therefore φn

is the Banzhaf value for classical cooperative games.
Also the Banzhaf value of Bilbao et al. [17] is covered by this generalization, since it
arises in an analogous way in the special case of convex geometries.

5.8.2 The model of Faigle & Grabisch

In [31] Faigle and Grabisch propose a model for Markovian values for coalition for-
mation processes. They consider a set N = {1, ..., n} of players and call a sequence
∅ = S0S1S2... of coalitions Si ⊆ N a scenario of a coalition formation process. The
transition from a coalition S to a coalition T at time t is modeled by transition probabil-
ities πtS,T , in order to account for incomplete information. Even if their general model
considers time-dependent transition probabilities, they restrict to the time-independent
case. Then the probability of a certain scenario S := S0S1S2...Sk is given by

k∏
i=1

πSi−1Si
.

This model is easily seen as a special case of our model: set V := 2N , AS := {UW ∈
2N × 2N |W∆U = S} (S ⊆ N), s = ∅. Then (N, V,

⋃
AS ,A, s) is a cooperation system

and the transition probabilities given above yield random walks on its transition graph.
For a given scenario S = S0...St Faigle and Grabisch define the scenario value of S
w.r.t. a game v : V → R to be a vector φS(v) ∈ RN . For a given length t > 0 they define

φt(v) =
∑

S,|S|≤t

πSφ
S(v).

For a scenario S = S0...St and i ∈ N they consider a special value and call it Shapley
scenario value:

φSi :=
∑

k|i∈Sk∆Sk+1

1

Sk∆Sk+1
(v(Sk+1)− v(Sk)).

Hence Faigle and Grabisch consider the case in which each coalition agrees to divide
all jointly generated values equally among its players (cf. individual values of Section
5.7). Thus the Shapley scenario value yields a special payoff rule according to the
randomized allocation mechanism induced by the initially given transition probabilities
πS,T .



6 Tensor products

Now we will turn to the question:

How could two previously modeled settings be jointly modeled?

In Section 6.1, we give a general framework for jointly modeling two settings on dif-
ferent state spaces of the same type. Formally we build tensor products of states and
argue, why this construction yields a good framework for our task.
Section 6.2 is dedicated to evolution operators of concatenated systems and their de-
compositions. We find a nice relation to Cartesian products of graphs in Subsection
6.2.2. Finally we have a look at tensor products of cooperative games in our model in
Section 6.2.3 and give an example of a voting situation which is a tensor product of
two independent voting situations.
We study randomized allocation mechanisms of concatenated systems in Section 6.3.
On our way, we give a construction to define a random walk on the Cartesian product
of two graphs out of random walks on its factors. This will give us the opportunity to
assign to each pair of randomized allocation mechanisms on two arbitrary cooperation
systems a randomized allocation mechanism on the product of these systems.

79
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6.1 Concatenation of state spaces

Think of two situations that were previously modeled by ground states V andW and the
state spaces V and W (of same type: Markovian or generalized Markovian). Assume
one wants to model these two situations in a joint model. This is possible by the
following definition. Set

V ⊗W

as the state space (of the same type as V andW) induced by the ground states in V ×W
of pairs of ground states in V and W . Thus states |p〉 ∈ V ⊗W are of the form

|p〉 =
∑

(x,y)∈V×W

cx,y |x, y〉

with restriction to the scalars cx,y as needed by the type of state space.
Obviously by construction

dim(V ⊗W) = dim(V) · dim(W)

holds.

Example 6.1.1 (Bicooperative games) In [16] Bilbao et al. introduced so called bi-
cooperative games. The idea behind these games is the following: assume a voting
situation in which n players can vote for a certain circumstance, against it or be absent.
All possible coalitions are pairs of disjoint subsets of the player set N := {1, ..., n}:

3N := {(S, T )|S, T ⊆ N,S ∩ T = ∅}.

A bicooperative game is a function

b : 3N → R.

This model could easily be extended to coalitions as arbitrary pairs of subsets of N by
thinking of the players in S ∩ T for a coalition (S, T ) ∈ 2N × 2N as double-minded. By
setting b(S, T ) := b(S, T \ S) we extend a classical bicooperative game to the set of all
pairs of subsets of players without losing any of the interpretation given by the model
of bicooperative games. Thus one could interpret bicooperative games as games on
the concatenated state space 2N ⊗ 2N .

Example 6.1.2 Let (N, v) and (M,w) be classical cooperative games. By interpreting
v, w as vectors, one can define the tensor product of v and w. This gives a natural
definition of the tensor product of classical cooperative games:

(N, v)⊗ (M,w) := (N ⊗M, v ⊗ w),

where (v ⊗ w)(S, T ) = v(S)w(T ) for S ⊆ N , T ⊆M .
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Tensor products of states

For |v〉 ∈ V and |w〉 ∈ W with ground state representations

|v〉 =
∑
x∈V

cx |x〉 and |w〉 =
∑
y∈W

dy |y〉 ,

we set in analogy to the concatenation of state spaces:

|v〉 ⊗ |w〉 :=
∑

(x,y)∈V×W

(cx · dy) |x, y〉

and call |v〉 ⊗ |w〉 the tensor product of |v〉 and |w〉. By this definition one can identify:

|x〉 ⊗ |y〉 = |x, y〉

for ground states x ∈ V, y ∈ W .
Note that indeed |v〉 ⊗ |w〉 is a state (of the same type as |v〉 and |w〉) since:∑

xy∈V×W

cx · dy =
∑
x∈V

cx(
∑
y∈W

dy) = 1

in the Markovian and generalized Markovian case (and also non-negativity is preserved
in the Markovian case).
Not all states |z〉 ∈ V ⊗W allow a representation as a tensor product of states in V and
W as the following example shows:

Example 6.1.3 Let V := {x, y} and W := {a, b}. Set

|z〉 := 1

5
|x, a〉+ 3

5
|x, b〉+ 1

4
|y, a〉+ 1

4
|y, b〉 .

Then |z〉 is irreducible and could not be expressed as a direct tensor product of states
in V andW .

Without further mentioning we will use the following fact known from linear algebra.

Lemma 6.1.1 ⊗ is bilinear and associative. �
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6.2 Evolution operators of concatenated state
spaces

Let V ,W be (generalized) Markovian state spaces, Φ an evolution operator on V and
Ψ one on W . Since we introduced in Section 6.1 the concept of concatenating state
spaces, a natural question after defining evolution operators is

Is there a relation between evolution operators on V ⊗W and those on V andW?

The answer to this question is positive. But first recall the definition of the tensor
product (sometimes also called Kronecker-product) of two matrices A ∈ Kn×n, B ∈
Km×m:

(A⊗B)(i,j),(k,l) := aijbkl

and the Kronecker-sum:

A⊕B := A⊗ Idm + Idn ⊗B

Lemma 6.2.1 Define (Φ � Ψ)t := (12(M(Φ) ⊕M(Ψ)))t. Then Φ � Ψ is an evolution
operator on V ⊗W .

Proof. We have to prove that for all t > 0 (Φ � Ψ)t is state preserving. Thus it is
enough to show that 1

2(M(Φ) ⊕M(Ψ)) is state preserving. Since the tensor products
of the ground states yield a basis of KV×W , each state |p〉 ∈ V ⊗ W has a unique
representation

|p〉 =
∑

x,y∈V×W

cxy |x, y〉 .

By definition M(Φ) �M(Ψ) is a linear operator. Thus it is enough to prove the state
preservation on the basis V ×W . Therefor let x ∈ V and y ∈ W . Then

(Φ�Ψ)1 |x, y〉 = 1

2
(M(Φ)⊕M(Ψ)) |x, y〉

=
1

2
(M(Φ) |x〉 ⊗ Id |y〉+ Id |x〉 ⊗M(Ψ) |y〉)

holds. Since M(Φ) and M(Ψ) are state preserving by assumption, this term is a convex
combination of two states and thus a generalized Markovian state itself. Furthermore,

(Φ�Ψ)0 = (
1

2
(M(Φ)⊕M(Ψ)))0 = Id.
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Hence Φ�Ψ is indeed an evolution operator on V ⊗W . �

REMARK Note that the last lemma in truth yields much more than only one evolution
operator on V ⊗W constructed from Ψ and Φ: the factor 1

2 in the definition of � was
arbitrary. Any convex combination of the summands of the Kronecker-sum of M(Φ)

and M(Ψ) gives rise to an evolution operator on V ⊗W , since - as seen in the proof of
the previous lemma - this is the only important property of this factor in this proof.
However, we decided to consider evolution operators with the factor 1

2 for an interpre-
tative reason, which we dwell on in the end of this chapter. For other interpretations or
application we had not thought of, also other weightings of the Kronecker-sum could
yield nice evolution operators on the concatenated space.

Tensor products of systems

Given two generalized Markovian systems S = (V1,Φ) and T = (V2,Ψ) we define the
tensor product of S and T to be

S ⊗ T := (V1 ⊗ V2,Φ�Ψ),

As proved in Lemma 6.2.1 this definition is well defined and Φ � Ψ is an evolution
operator on V1 ⊗ V2.

6.2.1 Products of graphs

Given two graphs G1 = (V1, A1) and G2 = (V2, A2) the product of G1 and G2 is defined
by the graph:

G1 ⊗G2 := (V1 × V2, A1 ⊗ A2),

where

A1 ⊗ A2 := {((u, u′), (v, v′)) ∈ A1 × A2|u = v and u′v′ ∈ A2 or u′ = v′ and uv ∈ A1}.

This notion of the product (also called Cartesian product) of two graphs was first de-
fined and studied by Russell in [79].

Example 6.2.1 (Tensor products of graphs of set-systems) Consider the set systems
{∅, {i}} and {∅, {j}, {k}, {j, k}} and the underlying directed graphs, Gi and Gj,k, of the
Hasse diagrams of the ⊆-partial orders.
As seen in Figure 6.1, the Cartesian product of Gi with Gj,k is isomorphic to the Graph
Gi,j,k of the set system of a power set of 3 elements.
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⊗

∅

{j, k }

{j} {k}

∅

{i}

=

(∅, ∅)

(∅, {i})({j}, ∅)
({k}, ∅)

({j, k }, ∅)

({j, k }, {i})

({k}, {i}) ({j}, {i})

Figure 6.1:

We will show that this definition agrees with our notion of tensor products of systems.
Therefore, it is safe to equally speak of tensor products of systems and products of the
underlying transition graphs.

Lemma 6.2.2 Let S = (V,Φ) and T = (W,Ψ) be two (generalized) Markovian systems
and GS resp. GT the underlying transition graphs. Then the following holds:

GS⊗T = GS ⊗GT .

Proof. Observe first, that V × W is the vertex set of GS⊗T . For any pair of vertices
((u, u′), (v, v′)) the following holds:

M(Φ�Ψ)((u,u′),(v,v′)) = (
1

2
(M(Φ)⊗M(Ψ)))((u,u′),(v,v′))

=
1

2
(M(Φ)⊗ Id)((u,u′),(v,v′)) +

1

2
(Id⊗M(Ψ))((u,u′),(v,v′))

=
1

2
M(Φ)(u,v)Id(u′,v′) +

1

2
Id(u,v)M(Ψ)(u′,v′)

By definition ((u, u′), (v, v′)) is an arc of GS ⊗GT if (w.l.o.g. by symmetry) u = v and
u′v′ ∈ A2. Hence M(Ψ)(u′,v′) 6= 0. But this is exactly the case if

0 6= 1

2
M(Ψ)(u′,v′) =

1

2
M(Φ)(u,u)Id(u′,v′) +

1

2
Id(u,u)M(Ψ)(u′,v′) =M(Φ�Ψ)((u,u′),(u,v′)).

Hence the arc sets of GS⊗T and GS ⊗GT are equal. �

A graph (resp. a system) is called reducible if it allows a representation as a tensor
product, all of whose factors are strictly smaller (i.e. with strictly smaller vertex set)
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as the graph itself. And we call a graph (resp. system) irreducible if it is not reducible.
In more formal words: A graph is reducible if and only if it is isomorphic to a ten-
sor product of smaller graphs. Note that the product of graphs is associative (up to
isomorphisms). An obvious observation is the following:

Lemma 6.2.3 Let G = (V,A) be a graph. Then there exists k ∈ N and irreducible
graphs G1, ..., Gk (Gi = (Vi, Ai)) with

G =

k⊗
i=1

Gi.

Proof. We use induction on |V |. If G itself is irreducible there is nothing to proof. Thus
assume G to be reducible and that G = G1⊗G2 with |Vi| < |V | (i = 1, 2). By induction
G1 and G2 both admit a presentation as in the statement of this lemma. Hence also G
does. �

A natural questions that arises is: is this presentation unique? Sabidussi [80] and inde-
pendently of him Vizing [89] proved:

Theorem 6.2.1 Let G be a finite graph. Then there exists a factorization of G into
irreducible factors and this factorization is unique up to isomorphisms. �

Moreover, Feigenbaum et al. [40] and Winkler [92] gave algorithms for finding this
unique factorization in polynomial time.

6.2.2 Factorizations of systems

In a natural generalization of the term “reducible graph” we call a generalized Marko-
vian system (V,Φ) reducible if there are nontrivial generalized Markovian systems
(V1,Φ1), (V2,Φ2) such that

(V,Φ) = (V1 × V2,Φ1 � Φ2).

By the same inductive argument as in Lemma 6.2.3 we find

Lemma 6.2.4 Each system is ⊗-decomposable and has a factorization as tensor prod-
uct of finitely irreducible systems. �
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Note that � is not associative. Hence such a factorization could not be unique in
general. A trivial observation is: since |V | = |V1| |V2|, (V,Φ) is irreducible if |V | is
prime.

6.2.3 Tensor products of cooperative games

In the previous sections we introduced the tensor product of game systems and evolu-
tion operators. We want to direct our attention more to the idea of building products
of games. Products of classical cooperative games were already considered by Shap-
ley [84] for the case of simple games (that is a classical monotone game (N, v) s.t.
v(S) ∈ {0, 1} for all S ⊆ N) under some restrictive assumptions. Owen [73] and
Megiddo [64] generalized this concept to non-negative and monotone games. But in
these works products were build such that the product of two games could only be
defined relative to a third game - the so called quotient game. However, the idea of
building products of games is not new. The mentioned papers essentially investigate
decomposition theorems. In contrast to that, we are interested in applying Chapter 5
and in finding solutions for products of games.
Let us motivate the wish of building tensor-products of games by an example:

Example 6.2.2 (Decomposition of Elections) A political party is electing its candi-
date for chancellor for the coming German “Bundestag”. Assume the elections for the
Bundestag are done and the coalition formation process is in progress. The question
of how much power each party has in the coalition poker, was already discussed in Ex-
ample 2.1.1. For party internal decisions it could be important, to analyze how much
power a certain wing of the party has. Thus one could ask: how much influence has a
certain party wing on the cast of the new chancellor of Germany?
Obviously the answer to this question depends on two things: first of all, it depends
on the influence of this wing in its own party, and second it depends on the influence
of the party in the coalition poker. This could be modeled by the following classical
cooperative game: let N be the set of all members of the party conference and M be
the set of all parties taking part in the coalition poker. Define for S = SN ∪SM ⊆ 2N∪M

v(S) :=

{
1 if SM is up to governance, and SN has a majority in its party.

0 else.

This game pictures all possible situations in which the party is able to govern Germany,
and takes into account, how and by whom a certain candidate for chancellor could
be chosen. A nearby question is: is v related to the coalition poker game and the
underlying candidate election? The answer is: yes, it is!
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Define by

w(SN ) :=

{
1 if SN has a majority at the party conference.

0 else

and by

u(SM ) :=

{
1 if SM is up to governance.

0 else.

Consider the tensor product w ⊗ u as defined in Example 6.1.2:

w ⊗ u(SN , SM ) = w(SN )u(SM ).

Thus v decomposes into w and u; i.e.: v = w ⊗ u.

This more or less simple example gives rise to a new question:

• If a game is decomposable, is there a relation between solutions to the factors of
the game and solutions to itself?

We consider this question in the next section. We will give compositions of a wide
range of solution concepts to factors of decomposable games there.
In general, the question, if a certain vector is decomposable by tensors, is very difficult.
Even if the underlying system is decomposable, the games on this system need not to
be:
Let Γ be a cooperation system and G = G(Γ) its transition graph. Note that if G is
irreducible with respect to ⊗ there could not exist any ⊗-decomposition of a game on
G. Thus whenever asking for an irreducible decomposition of a game, it is necessary
to ask for an irreducible decomposition of the underlying graph (or system) first. Thus
assume that G = G1 ⊗ G2 for strictly smaller graphs G1 and G2 and let v ∈ G. ⊗-
decomposability of a game could be characterized directly by the definition of the
tensor product:

Lemma 6.2.5 v is ⊗-decomposable by the decomposition G = G1 ⊗ G2 if and only if
there are games vi ∈ Gi on Gi (i = 1, 2) such that for all (x1, x2) ∈ V :

v(x1, x2) = v1(x1)v2(x2)

holds. In particular: the decomposability of G does not imply the decomposability of
all games on G in general. �

We will give a complete application of the theory developed in Chapter 5 to tensor-
decomposable systems in the next section:
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6.3 Allocation mechanisms of
tensor-decomposable games

For the rest of this section let G1 = (V1, A1), G2 = (V2, A2) be transition graphs of
cooperation systems Γ1 and Γ2 with starting vertices s1 resp. s2 and Φ1 resp. Φ2 linear
allocation mechanisms. Recall the definition of the Cartesian product G := G1 ⊗G2 =

(V1 × V2, A) of the graphs G1 and G2 and the fact, that the adjacency matrix of G is the
Kronecker-sum of the adjacency matrices of the Gi’s mentioned in Section 6.2.1.

6.3.1 The randomized approach

Let Φ1 (resp. Φ2) be an allocation mechanism on G1 (resp. G2) which suffices (RAN).
And let P1 (resp. P2) be the associated transition matrix. Assume that (RAN) is a
commonly accepted fairness concept of players of games on G1 and G2. Is there a
randomized allocation mechanism on G which is related to Φ1 and Φ2? The answer
to this question is already known to us: in Section 5.5 we pointed out the relation
between evolution operators of generalized Markovian systems and randomized allo-
cation mechanisms. Lemma 6.2.2 yielded a construction for evolution operators on
the tensor product of two systems, out of the evolution operators of its factors. We
concatenated the underlying transition matrices via

P := P1 � P2 :=
1

2
(P1 ⊗ Id+ Id⊗ P2)

and showed in Lemma 6.2.2 that P is a generalized stochastic matrix over V1×V2. Thus
by Theorem 5.3.1 P induces a randomized allocation mechanism Φ := Φ(P ) on G.

REMARK The factor 1
2 in the definition of P has an interpretation in terms of random

walks: imagine a random walker on G walks according to P . If he reaches the vertex
(x1, x2) ∈ V1 × V2, at first he flips a coin and by that he decides to take the next step in
the walk either in the graph G1 or in the graph G2. Assume w.l.o.g. he chose G1. After
that he performs the next step of the walk only on arcs, which are induced by G1, i.e.:
arcs of the form (x1, x2)(y1, x2) ∈ A with x1y1 ∈ A1, with probability (P1)x1y1 . This
process is described by the definition of �.

Entropy

Recall the definition of the entropy of a randomized allocation mechanism of Section
5.4.2 as a measure of symmetry and impartiality. Can we say something about the
entropy of Φ depending on the entropies of Φ1 and Φ2?
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Theorem 6.3.1 Let Φ1,Φ2 be as above. Then H(Φ) ≥ H(Φ1) +H(Φ2) holds.

Before we are able to prove this theorem, we need more information about covering
paths of length tmax (where again tmax is the time at which each arc of G is at least
once visitable). For the rest of this subsection let t := tmax(G), ti := tmax(Gi) (i = 1, 2),
P1, P2 the transition matrices of Φ1 resp. Φ2 and P the transition matrix of Φ. For any
path Q ∈ P(Gi) we write Pi(Q) for the probability of a random walker that starts in si
to take the path Q w.r.t. Pi (i.e.: the product over the transition probabilities of the arcs
of Q).

Lemma 6.3.1 (a) The map ∆ : P → P(G1)×P(G2), Q 7→ ∆(Q) := (∆(Q)1,∆(Q)2)
1,

where

∆(Q)i := {(xij , yij) ∈ Ai|there is zkj ∈ Vk(k 6= i) with (xij , z
k
j ), (y

i
j , z

k
j ) ∈ Q},

is surjective and for Q ∈ P(G):∣∣{Q̃ ∈ P(G)|∆(Q) = ∆(Q̃)}
∣∣ = (

|Q|
|∆(Q)1|

)
=

(
|Q|

|∆(Q)2|

)
.

(b) t = t1 + t2

(c) Let Q ∈ Pt(G). Then P (Q) = 1
2|Q|P1(∆(Q)1)P2(∆(Q)2) holds.

Proof. (a): The surjectivity of ∆ holds by concatenating paths in P(G1) and P(G2) to
a path in P(G) and by identifying an arc in Ai with an accordant arc in A. To see the
second statement of (a) we give a counting argument: any path Q ∈ P with predefined
image (P1, P2) = ∆(Q) has |∆(Q)1| arcs “in” A1, which could be in any position on Q.
Thus we have to choose |∆(Q)1| positions for arcs of ∆(Q)1 on Q and for that, there are( |Q|
|∆(Q)1|

)
possibilities (and symmetrically also

( |Q|
|∆(Q)2|

)
possibilities for fixing positions

of arcs of ∆(Q)2).

(b): Let (x1, x2) ∈ Et(G). Since xi is reachable by a path of length at most ti in Gi,
we have t ≤ t1+ t2. On the other hand, if d(si, xi) = ti, it follows that d(s1, s2; x1, x2) =
t1 + t2. Hence t ≥ t1 + t2.

(c): Follows directly by the definition of P := 1
2(P1 ⊗ Id+ Id⊗ P2). �

1∆ splits a path P ∈ P into its unique component paths in G1 and G2.
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Now we turn back to Theorem 6.3.1 and can give a proof:
Proof of Theorem 6.3.1.

H(Φ1) +H(Φ2)

= −
∑

Q1∈Pt1(G1)

P1(Q1) log(P1(Q1))−
∑

Q2∈Pt2(G2)

P2(Q2) log(P2(Q2))

≤ −
∑

(Q1,Q2)∈Pt1(G1)×Pt2(G2)

P1(Q1) log(P1(Q1)) + P2(Q2) log(P2(Q2))

≤ −
∑

(Q1,Q2)∈Pt1(G1)×Pt2(G2)

P1(Q1)P2(Q2) log(P1(Q1)) + P1(Q1)P2(Q2) log(P2(Q2))

≤ −
∑

(Q1,Q2)∈Pt1(G1)×Pt2(G2)

1

2|Q1|+|Q2|
P1(Q1)P2(Q2)(log(P1(Q1)) + log(P2(Q2)))

≤ −
∑

(Q1,Q2)∈Pt1(G1)×Pt2(G2)

1

2|Q1|+|Q2|
P1(Q1)P2(Q2) log(

1

2|Q1|+|Q2|
P1(Q1)P2(Q2))

≤ −
∑

Q∈Pt(G)

P1(∆(Q)1)P2(∆(Q)2)

2|∆(Q)1|+|∆(Q)2|
log(

P1(∆(Q)1)P2(∆(Q)2)

2|∆(Q)1|+|∆(Q)2|
)

= −
∑

Q∈Pt(G)

P (Q) log(P (Q))

= H(Φ).

Where the first inequality holds, since−Pi(Qi) log(Pi(Qi)) ≥ 0. Since P1(Q1), P2(Q2) ≥
P1(Q1)P2(Q2),−P1(Q1) log(P1(Q1))+P2(Q2) log(P2(Q2)) ≤ −P1(Q1)P2(Q2) log(P1(Q1))−
P1(Q1)P2(Q2) log(P2(Q2)) holds for all (Q1, Q2) ∈ Pt1(G1) × Pt2(G2) which yields the
second inequality. An anologous argument for the factor 1

2|Q1|+|Q2| and the monotonic-
ity of the logarithm yield inequalities number three and four. By the last lemma ∆ is
surjective on Pt1(G1)× Pt2(G2). Hence the last inequality holds. �

Thus if it is an agreement (among all parties participating in the cooperative situation),
that the entropy of a randomized allocation mechanism is a measure for fairness in a
sense of impartiality, Theorem 6.3.1 yields the following interpretation: by concatenat-
ing allocation mechanisms, no impartiality is lost.
One could intuitively hope, that the entropy-symmetric Shapley value of Section 5.4.2
of the product graph G is the product of the entropy-symmetric Shapley values on its
factors. But in most cases it is not. There are structural conditions needed in order to
get the equality hoped for:



6.3. ALLOCATION MECHANISMS OF TENSOR-DECOMPOSABLE GAMES 91

Corollary 6.3.1 Let Ψ1,Ψ2,Ψ be the entropy-symmetric Shapley value on G1, G2 and
G := G1 ⊗G2 respectively and t as above. Then Ψ = Ψ1 �Ψ2 holds if and only if

|Pt(G)| = 2t |Pk(G1)| |Pt−k(G2)|

is true for all k ≤ t.

Proof. Assume that Ψ = Ψ1 � Ψ2. Thus any path Q ∈ Pt(G) is chosen with equal
probability 1

|Pt(G)| with respect to the random walk P associated with Ψ1 � Ψ2. On
the other hand, by Lemma 6.3.1 (c) we have: P (Q) = 1

2|Q|P1(∆(Q)1)P2(∆(Q)2) for all
Q ∈ Pt(G). Since Q is arbitrary, it follows that |Pt(G)| = 2t |Pk(G1)| |Pt−k(G2)| for
all k ≤ t. All made conclusion were equivalence transformations and the statement is
proven. �

6.3.2 The linear approach

Let Φ1 = Φα and Φ2 = Φβ be randomized allocation mechanisms on G1 resp. G2. We
now turn to the questions: is it possible to give a sequence (γt) ∈ (KA)∞, depending
on α and β, such that Φγ is a linear allocation mechanism on G? And if so, does Φγ

equal Φ1 � Φ2?
Recall that we want to evaluate possibilities of taking actions. Since for any two paths
of length t and t′ in G1 and G2 there are

(
t+t′

t

)
paths in G corresponding to them, the

number of possibilities of being in a certain ground state inG is much bigger than it is in
the factor graphs of G. In particular, the possibilities of taking the action (x1, x2)(y1, x2)

in G are more numerous than performing the action x1y1 in G1 because also paths in
G2 give rise to new paths in G which end in (x1, x2)(y1, x2). This new possibilities for
cooperation should be taken into account, if (x1, x2)(y1, x2) is valuated.
We will give a possibility for defining γ in dependency of α and β first and argue
afterwards why this possibility is the right choice. Note that αt and βt are completely
known for every time t. For (x1, x2)(y1, y2) ∈ A and t > 0 we set

γt+1
(x1,x2)(y1,y2)

:=



γt(x1,x2)(y1,y2) if (x1, x2) /∈ Et(G).
1

2t+1

∑t
k=0

(
t
k

)
αk+1
x1y1

∑
u2∈N−(x2)

βt−ku2x2 if (x1, x2) ∈ Et(G)

and x2 = y2.

1
2t+1

∑t
k=0

(
t
k

)∑
u1∈N−(x1)

αk+1
u1x1β

t−k
x2y2 if (x1, x2) ∈ Et(G)

and x1 = y1.
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By Lemma 5.2.2, Φγ is a linear allocation mechanism. This construction is quite tech-
nical and a bit intransparent. An argument for defining γ in the way we did, is the
following theorem:

Theorem 6.3.2 Let Φ1,Φ2 and α, β, γ as above. Furthermore, let Φ := Φ1 � Φ2. Then
Φγ is a randomized allocation mechanism and equals Φ.

Proof. It is sufficient to show that Φ equals Φγ , since by Section 6.3.1 Φ is a ran-
domized allocation mechanism. By Theorem 5.2.1 Φ is uniquely determined by its
sequence (κt)t>0 of coefficient vectors. Thus we will show that γt = κt for all t > 0 to
prove this theorem. Section 5.3, tells us how κt is computed concretely. Therefor let
((x1, x2), (y1, x2)) ∈ A (w.l.o.g. we again only consider the case in which x2 = y2) and
t > 0. Denote again by P, P1, P2 the associated transition matrices of Φ,Φ1,Φ2. Then

κt+1
(x1,x2),(y1,x2)

=
〈
s1, s2

∣∣ P tx1, x2〉 〈x1, x2| Py1, x2〉 if (x1, x2) ∈ Et(G)

and κt(x1,x2),(y1,x2) = κt+1
(x1,x2),(y1,x2)

else wise. Since

κt+1
(x1,x2),(y1,x2)

=
〈
s1, s2

∣∣ P tx1, x2〉 〈x1, x2| Py1, x2〉
=
〈
s1, s2

∣∣∣ (1
2
(P1 ⊗ Id+ Id⊗ P2)

tx1, x2

〉〈
x1

∣∣∣ (1
2
(P1 ⊗ Id+ Id⊗ P2)y1, x2

〉
Note that P1 ⊗ Id and Id ⊗ P2 commute (via matrix multiplication). Hence by the
general ring-theoretic Binomial Theorem one has:

(
1

2
(P1 ⊗ Id+ Id⊗ P2))

t =
1

2t

t∑
k=0

(
t

k

)
(P1 ⊗ Id)k(Id⊗ P2)

t−k

=
1

2t

t∑
k=0

(
t

k

)
(P k1 ⊗ Id)(Id⊗ P t−k2 )

=
1

2t

t∑
k=0

(
t

k

)
(P k1 ⊗ P t−k2 )

The (s1, s2)(x1, x2) component of this matrix equals

1

2t

t∑
k=0

(
t

k

)〈
s1
∣∣ P k1 x1〉 〈s2∣∣ P t−k2 x2

〉
.
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All together we have:

κt+1
(x1,x2),(y1,x2)

=
1

2t

t∑
k=0

(
t

k

)〈
s1
∣∣ P k1 x1〉 〈s2∣∣ P t−k2 x2

〉
〈x1, x2| Py1, x2〉

=
1

2t

t∑
k=0

(
t

k

)〈
s1
∣∣ P k1 x1〉 〈s2∣∣ P t−k2 x2

〉 1

2
〈x1| Py1〉

=
1

2t+1

t∑
k=0

(
t

k

)
αk+1
x1y1

〈
s2
∣∣ P t−k2 x2

〉
=

1

2t+1

t∑
k=0

(
t

k

)
αk+1
x1y1

〈
s2
∣∣ P t−k2 x2

〉 ∑
w2∈N+(x2)

〈x2| P2w2〉

=
1

2t+1

t∑
k=0

(
t

k

)
αk+1
x1y1

∑
w2∈N+(x2)

βt−k+1
x2w2

=
1

2t+1

t∑
k=0

(
t

k

)
αk+1
x1y1

∑
u2∈N−(x2)

βt−ku2x2

Tacitly we used the facts that
∑

w2∈N+(x2)
〈x2| P2w2〉 = 1 since P2 is a generalized

stochastic matrix and
∑

w2∈N+(x2)
βt−k+1
x2w2

=
∑

u2∈N−(x2)
βt−ku2x2 since Φ2 is time-efficient.

All in all we get κt+1 = γt+1 and with that the statement of the theorem is proven. �

This theorem gives to each pair of randomized allocation mechanisms on factor systems
a randomized allocation mechanism on their product. Hence it is quite easy to construct
solutions to allocation problems on products of cooperations systems out of already
known solutions.





7 More on allocation mechanisms

Efficiency is one of the most powerful axioms in our characterization of randomized
allocation mechanisms (cf. Chapter 5). Section 7.1 extends our study of allocation
mechanisms in another direction, by dropping the assumption (EFF). We characterize
allocation mechanisms, which satisfy (LIN), (RAT) and (SYM) and give a generaliza-
tion of the idea behind a theorem of Dubey, Neyman and Weber [26]. By giving a
generalization of the classic dummy player axiom, we achieve a generalized represen-
tation of classical semi-values in our model.
We want to discuss another point of view. Assume that φ is an allocation mechanism.
Our previous discussion of allocation mechanisms leads to a problem in certain cooper-
ative settings: one could argue that the value of an action xy ∈ A at time t > 0, should
not only depend on the value that is created by xy at time t, but it should be a value that
takes the “past” of the valuations of this arc more into account.
In Section 7.2 we introduce Cesàro values, which are a concept for fair time-dependent
valuations of actions that heed the past in another way than allocation mechanisms do.
The concept of Cesàro values is new to the theory of cooperative games. Already Faigle
and Grabisch [31] mentioned an approach for Cesàro values in their model (cf. Section
5.8.2) but, however, did not study them.
Subsection 7.2.2 first gives some basic convergence results of Cesàro values and states
the famous Ergodic Theorem. In the end of this section we will give a convergence
result, which is mainly based on this theorem and states that many Cesàro values of
linear and ratio fair allocation mechanism converge. We will see that, under some
assumption on the graph, each Cesàro value of a non-negative randomized allocation
mechanism converges. Subsequently we will discuss the few restricting assumptions
of this convergence result in detail.

95
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7.1 Semi-value theory

In the classical theory of cooperative games allocation mechanisms which are not ef-
ficient received some attention ([26], [25], [78]). Since the symmetry axiom (SYM)
is a quite natural fairness requirement and since Shapley’s Theorem [82] stated that
there is exactly one symmetric randomized allocation mechanism, one needed to drop
certain axioms in order to study symmetric allocation mechanisms. This was done by
dropping the efficiency axiom. In this chapter we want to characterize some classes of
allocation mechanisms which are not efficient. Dubey, Neyman and Weber [26] gave
a characterization of symmetric, linear, monotone values which are not necessarily ef-
ficient but fulfill the so called Dummy Axiom (DA). In words (DA) means that, if the
marginal contribution of a player is constant, his value should equal this constant. To
be formal: let (N, v) be a classical cooperative game and i ∈ N . A classical allocation
mechanism φ suffices the dummy player axiom if and only if

If v(S ∪ i)− v(S) = v(i) for all S ⊆ N \ {i}, then φi(v) = v(i). (DA)

holds. Dubey, Neyman and Weber proved:

Theorem 7.1.1 ([26]) Let (N, v) be a classical cooperative game and φ an allocation
mechanism on (N, v). Then φ fulfills (LIN), (SYM), (NN) and (DA) if and only if there
is a vector p = (p1, ..., pn) with pi ≥ 0 and

∑n−1
k=1

(
n−1
k

)
pk = 1 such that

φi(v) =
∑
S⊆N\i

p|S|(v(S ∪ i)− v(S)).

We aim for a generalization of the approach which lead to the definition of semi-values.
On our way to it we will prove characterization results for classes of allocation mecha-
nisms. Finally we will find a new representation of semi-allocation mechanisms in our
model, which is also new to the classical model. We will vary from the classic defini-
tion of semi-values and will omit the dummy axiom. But in the end of this section we
will give a generalization of the dummy axiom as well and will also give a representa-
tion of semi-allocation mechanisms that satisfy the generalized dummy axiom which
coincides with the representation of Theorem 7.1.1 in the case of a classical coopera-
tion system.

Let V be a finite set of ground states and A ⊆ V × V a set of feasible actions. We
begin with a characterization of linear and ratio fair allocation mechanisms:
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Theorem 7.1.2 The allocation mechanism φ = φα enjoys the axioms (LIN) and (RAT)
if and only if there exists a matrix (bxy)xy∈V×V =: B ∈ KV×V with the property bxy = 0

if xy /∈ A, such that for all t ≥ 0, xy ∈ A the following holds:

αt+1
xy =

{〈
s
∣∣ Btx

〉
bxy if x ∈ Et

αtxy else.

Proof. Assume first that φ = φB is induced by a matrix B. Note that indeed φB is a
linear allocation mechanism by Theorem 5.2.2. It remains to prove ratio fairness of φ.
Therefor let x ∈ Et ∩ Et′ (t′ > t) and y ∈ N+(x). Then the following holds:

αt+1
xy

∑
u∈N−(x)

αt
′

ux =
〈
s
∣∣ Btx

〉
bxy

∑
u∈N−(x)

〈
s
∣∣∣ Bt′−1u

〉
bux

=
〈
s
∣∣ Btx

〉
〈x| By〉

∑
u∈N−(x)

〈
s
∣∣∣ Bt′−1u

〉
〈u| Bx〉

=
〈
s
∣∣ Btx

〉
〈x| By〉

〈
sBt′−1

∣∣∣ ∑
u∈N−(x)

|u〉 〈u| Bx〉

=
〈
s
∣∣ Btx

〉
〈x| By〉

〈
sBt′−1

∣∣∣∑
u∈V

|u〉 〈u| Bx〉

=
〈
s
∣∣ Btx

〉
〈x| By〉

〈
sBt′−1

∣∣∣ |Bx〉
=
〈
s
∣∣ Btx

〉
〈x| By〉

〈
s
∣∣∣ Bt′x

〉
=
〈
s
∣∣ Btx

〉
αt

′+1
xy

=
〈
sBt−1

∣∣ ∑
u∈N−(x)

|u〉 〈u| |Bx〉αt
′+1
xy

=
∑

u∈N−(x)

〈
s
∣∣ Bt−1u

〉
〈u| Bx〉αt

′+1
xy

=
∑

u∈N−(x)

αtuxα
t′+1
xy .

Thus φ satisfies (RAT). Assume the other way around that φ is linear and ratio efficient.
For all u ∈ N+(x) set: bsu := α1

su. Let xy ∈ A. If there is a time t > 0 with x ∈ Et and∑
u∈N−(x) α

t
ux 6= 0, define

bxy :=
αt+1
xy∑

u∈N−(x) α
t
ux

and bxy := 0 else wise. (*)
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If uw /∈ A, we set buw := 0. By (RAT) the definition of bxy is well defined and indepen-
dent of t. Set B := (bxy)xy∈V×V . It remains to prove

αt+1
xy =

〈
s
∣∣ Btx

〉
bxy f.a. t > 0, x ∈ Et and y ∈ N+(x).

Therefor let t ≥ 0, x ∈ Et and y ∈ N+(x). If t = 0, x = s and
〈
s
∣∣ B0s

〉
bsy = bsy = α1

sy

holds. Thus let t > 0 and the statement be true for all smaller t. As above we have:〈
s
∣∣ Btx

〉
bxy = bxy

∑
u∈N−(x)

〈
s
∣∣ Bt−1u

〉
〈u| Bx〉 .

By induction on t and the definition of B this equals:

bxy
∑

u∈N−(x)

αtux = αt+1
xy .

Which completes the proof. �

REMARK We know from the last chapter, that B equals the transition matrix of the
associated random walk if φ is efficient in addition to the assumptions of this theorem.
Moreover, this theorem associates to arbitrary matrices a certain allocation mechanism
which is linear and ratio fair.
A direct consequence of Theorem 7.1.2 and the representation of the α-values is the
following:

Corollary 7.1.1 Let φ = φB be a linear and ratio efficient allocation mechanism.

(a) φ is symmetric if and only if bxy = bxy′ for all x ∈ V and y, y′ ∈ N+(x).

(b) φ is non-negative if and only if B ≥ 0.

Proof. (a) is clear by the representation of the α-values of Theorem 7.1. So we prove
(b): assume first that φ is non-negative. Thus αt ≥ 0 for all t > 0. For x ∈ Et we have
as above:

αt+1
xy = bxy

∑
u∈N−(x)

αtux. (*)

Since α ≥ 0, also bxy ≥ 0 has to hold. Assume the other way around, that B ≥ 0 holds.
Let t = 1 then α1

sy = bsy ≥ 0 for all y ∈ N+(x). For t > 1 (*) yields inductively αtxy ≥ 0

for all xy ∈ A. �
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This corollary together with Theorem 7.1 yields a complete characterization of linear,
ratio fair and symmetric allocation mechanisms. Hence we generalized the idea of
dropping the efficiency assumption in order to study symmetric allocation mechanisms.

Theorem 7.1.3 Let Φ be an allocation mechanism. Φ suffices (LIN), (SYM) and (RAT)
if and only if there exists a vector b ∈ RV such that (with B := (bxy)xy∈A bxy = b(x)

if xy ∈ A and 0 else wise) Φ = ΦB holds. Moreover: the set of all linear, symmetric
and ratio fair allocation mechanisms is a vector space and the map b 7→ Φb is a vector
space isomorphism onto it. The dimension of this vector space equals |V |.

Proof. By Theorem 7.1 there is a matrix B such that Φ = ΦB. Since Φ is symmetric
Corollary 7.1.1 (a) yields bxy = bxy′ for all x ∈ V and all y, y′ ∈ N+(x). Which proves
the first statement of this theorem. That the map b 7→ Φb is linear and injective is a
direct consequence of the construction. This implies that the dimension of the space of
all linear, symmetric and ratio fair allocation mechanisms equals |V |. �

These results give us the possibility to characterize the (symmetric) Shapley value on
another way:

Corollary 7.1.2 Let Φ = Φb be a linear, symmetric, non-negative and ratio fair alloca-
tion mechanism. Then Φ is efficient if and only if Φ equals the symmetric Shapley value.
Moreover, this is the case if and only if b(x) = 1

|N+(x)| for all x ∈ V . �

7.1.1 The Dummy axiom

In the beginning of this section we gave some characterization results of linear, ratio fair
and symmetric allocation values. We still aim for a characterization and a definition of
semi-values in our model. Thus we need to give a generalization of (DA) to our model.
Since (DA) strongly depends on players and less on actions taken by them, we will
deviate from our present basic idea of taking actions as main objects of study and will
bring players more into the foreground. Therefore let (N, V,A,A, s) be a cooperation
system in the sense of Section 3.5 and φ an allocation mechanism. For ease of notation
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we assume that arcs are governed by players; i.e.:

A =
⋃
i∈N

Ai,

but also the general case in which each coalition S ⊆ N governs certain arcs is cover-
able by the following.
Let t := tmax be the cover time of G. We say that φ suffices the dummy player axiom if
for all v ∈ G and all i ∈ N :

If there exists c ∈ R, such that v(y)− v(x) = c f.a. xy ∈ Ai, then φti(v) = c. (DA’)

holds. The idea behind this axiom is the following: if all actions of a certain player
yield a fixed marginal contribution, this player should only be awarded this direct worth,
he produces.
First of all, this general version of the dummy axiom agrees with the classical dummy
player axiom in the classic case:

Lemma 7.1.1 Let (N, v) be a classical cooperative game and φ be an allocation mech-
anism on the classical cooperation system. Then φn suffices (DA’) if and only if φ
suffices (DA).

Proof. If (DA’) holds, also the dummy property at time n is fulfilled. But n is the cover
time of the classical cooperation graph. Thus given a classical dummy player i, all
marginal contributions of this player are constant. Moreover, this constant needs to
equal v(i) since v(i) = v(i) − 0 = v(i) − v(∅). Hence (DA) holds. The same argument
in the backward order yields the other implication. �

Since (DA’) and (DA) are equivalent in the classic case, we omit the prime in the
following. There is a nice characterization of allocation mechanisms which fulfill (LIN)
and (DA):

Theorem 7.1.4 Let Φ = Φα be a linear allocation mechanism. Then Φ suffices the
dummy axiom, if and only if ∑

xy∈Ai

αtxy = 1

for t = tmax.
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Proof. Let v be a game on G such that player i is a dummy player (i.e.: has constant
marginal contributions ci). Then

Φti(v) =
∑
xy∈Ai

Φtxy(v) =
∑
xy∈Ai

αtxy(v(y)− v(x)) =
∑
xy∈Ai

αtxyci.

Thus (DA) holds, if and only if

ci = Φti(v) =
∑
xy∈Ai

αtxyci

which is equivalent to: ∑
xy∈Ai

αtxy = 1.

�

This implies a generalized version of the representation of individual values Dubey,
Neyman and Weber 7.1.1 gave:

Corollary 7.1.3 Let Φ = Φα be an allocation mechanism that suffices (LIN), (RAT),
(DA) and (SYM) and let t := tmax. Then there are coefficients αt(x) such that

1 =
∑
x∈V

αt(x)
1

n

∣∣N+(x)
∣∣

and
φti(v) =

∑
xy∈Ai

αt(x)(v(y)− v(x)).

Proof. By the last theorem we have 1 =
∑

xy∈Ai
αtxy. Therefore n =

∑
xy∈A α

t
xy. By

Lemma 7.1.1 (SYM) is equivalent to αtxy = αtxy for all x ∈ V and all y, y ∈ N+(x).
Thus αt(x) := αtxy only depends on x. Then

n =
∑
xy∈A

αtxy =
∑
x∈V

αt(x)
∣∣N+(x)

∣∣ . (*)

Dividing by n yields the desired statement. �

REMARK For classical cooperative games and a coalition S ⊆ N there are |N \ S| out-
neighbors of S in the transition graph. On the other hand, to a fixed cardinality s ∈
{1, ..., n} there are

(
n
s

)
coalitions of this cardinality. By the symmetry of the classical
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cooperation graph one could prove that αt(S) = αt(T ) if |S| = |T |. And by that one
gets:

1 =
∑
x∈V

αt(x)

∣∣N+(x)
∣∣

n
=

∑
S∈2N

αt(|S|)
∣∣N+(S)

∣∣
n

=

n∑
|S|=1

αt(|S|)
(
n

s

)
n− |S|
n

=

n∑
|S|=1

αt(|S|)
(
n− 1

s

)
.

Hence this corollary indeed implies the value representation of Dubey, Neyman and
Weber.

7.2 Cesàro values

We start by giving an example:

Example 7.2.1 Assume a cooperative setting, such that player i governs the only out-
arc, sa, of s. Hence at time t = 0 player 1 governs the only possibility for the whole
cooperative process to take place. Furthermore, assume that there is a possibility to
bring the system back to s at time t′ > 0 with probability strictly smaller than 1. Thus
at time t′ + 1, the value of the action sa has decreased compared to its value at time t′.
Thus player i could raise the following plea: if it is not guaranteed that his engagement
to start the whole process is esteemed more in the future, he will deny his cooperation.

We come across this plea by taking an average. Therefor we consider a new valuation
of actions to a given allocation mechanism φ:

φ
t
xy :=

1

t

t∑
i=1

φixy. (t > 0, xy ∈ A).

φ allocates to every action xy at time t its so called Cesàro average of the previously
generated values of this action. Because of its relation to the Cesàro average we will
call this valuation the Cesàro value of φ. Building Cesàro averages of allocation mech-
anisms was already softly foretelled by Faigle and Grabisch [31] (cf. the model in
Section 5.8.2). However, the possibility to build these averages in an allocation context
was just mentioned there. Cesàro values are a good argument against the above stated
plea, only if certain fairness criteria are passed over to them. Thus immediately two
questions arise:
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• Is the Cesàro value of a randomized allocation mechanism at least as fair as the
original value is?

• When do Cesàro values converge?

In the rest of this section we aim for answers to these questions.

7.2.1 Fairness of Cesàro values

As seen before, φ does not need to suffice (A3) and therefore it is no allocation mecha-
nism in the sense of the definition given in 5.2.1.

Lemma 7.2.1 Let φ be an allocation mechanism.

(a) φ satisfies (A1) and (A2).

(b) If φ = φα suffices (LIN), also φ does. Moreover,

φ
t
xy(v) =

1

t

t∑
i=1

αixy(v(y)− v(x))

.

(c) If φ is non-negative, also φ is.

(d) If φ is symmetric, then also φ is.

Proof.

(a) Let v, v′ ∈ G, xy ∈ A with v(x) = v′(x), v(y) = v′(y) and t > 0. Then

φ
t
xy(v) =

1

t

t∑
i=1

φixy(v) =
1

t

t∑
i=1

φixy(v
′) = φ

t
xy(v

′)

and thus (A1) holds. In the same way (A2) follows directly for φ by (A2) holding
for φ.

(b) Assume φt is a linear map for all t > 0. Then also 1
t

∑t
i=1 φ

i is a linear map. Let
t > 0, xy ∈ A and v ∈ G. Then

φ
t
xy(v) =

1

t

t∑
i=1

φixy(v) =
1

t

t∑
i=1

αixy(v(y)− v(x)).
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(c) Let v ∈ G and xy ∈ A with v(x) ≤ v(y). Then for all t > 0, φtxy(v) ≥ 0 holds.
Hence 1

t

∑t
i=1 φ

i
xy(v) ≥ 0 which proves the non-negativity of φ.

(d) Let v ∈ G and xy, xz ∈ A with v(z) = v(y). Since φ is symmetric, we have
φtxy = φtxz for all t > 0. Hence

φ
t
xy =

1

t

t∑
i=1

φtxy =
1

t

t∑
i=1

φtxz = φ
t
xz.

Thus φ is symmetric. �

7.2.2 Convergence of Cesàro values

The limit theorem of Cauchy, well known in calculus states:

Lemma 7.2.2 (Theorem of Cauchy) Let (an)n∈N be a sequence in R which converges
to a ∈ R and define cn := 1

n

∑n
i=1 an. Then also (cn)n∈N converges and its limit equals

a. In this case the sequence (an)n∈N is called Cesàro-summable. �

Note that the converse is not true. A Cesàro-summable sequence must not converge, as
shown by the following example:

Example 7.2.2 Let an := (−1)n. The sequence (an)n∈N diverges. But the Cesàro-
averages

cn :=
1

n

n∑
i=1

(−1)n

converge to 0. Hence (an)n∈N is not Cesàro-summable.

The limit theorem of Cauchy directly gives us an answer to one of our stated questions:

Corollary 7.2.1 If φ converges to φ∞ for t→∞, then also φ converges and

lim
t→∞

φt = φ∞

holds. �
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Thus in the long run it does not matter, if we allocate by φ or φ. One can say even more
on the convergence of Cesàro values of randomized allocation mechanism by applying
the so called Ergodic Theorem:

Theorem 7.2.1 ([54, Satz 3.7.]) Let ‖·‖ be an algebra norm on Kn×n and let A ∈
Kn×n with ‖A‖ ≤ 1. Then the limit

lim
t→∞

1

t

t−1∑
i=0

Ai

exists. �

We will prove the following theorem:

Theorem 7.2.2 Let G be strongly connected and let φ = φB be a linear and ratio-fair
allocation mechanism. Let ‖·‖ be an algebra norm on KV×V . If ‖B‖ ≤ 1, then

lim
t→∞

1

t

t∑
i=1

φt

exists. Hence the Cesàro value φ associated to φ converges.

In order to prove this theorem, we need some lemmata. The first one is more or less
mathematical folklore and is not due to a single author. Since all citable resources the
author found leave this statement as an exercise to the reader, we will give a short proof
here:

Lemma 7.2.3 Let l1, ..., lm ∈ N such that gcd(l1, ..., lm) = 1. Then there exists F ∈ N,
such that for all n′ ≥ F there are c1, ..., cm ∈ N with n′ =

∑m
i=1 cili.

Proof. Either by the fact that Z is a principal ideal ring or by the Euclidean algorithm
one sees that, gcd(l1, ..., lm)Z =

∑m
i=1 liZ. Hence 1 =

∑m
i=1 aili for some ai ∈ Z.

W.l.o.g. assume that ai < 0 for i = 1, ..., k and ai ≥ 0 for i = k + 1, ...,m. Set

n := −(l1 − 1)

k∑
i=1

aili.

Then n is a non-negative linear combination of the li. Moreover, it is

n+1 = n+

m∑
i=1

aili = −(l1−1)
k∑
i=1

aili+

k∑
i=1

aili+

m∑
i=k+1

aili = (2−li)
k∑
i=1

aili+

m∑
i=k+1

ail.
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Hence also n + 1 is a non-negative linear combination of the li. This procedure could
be iterated (l1 − 1) times and we get a representation of n+ l1 − 1. This completes the
proof, since with n, also n + l1 is a non-negative linear combination of the li and with
n+ 1, also n+ l1 + 1 is one too. By induction each integer, which is greater or equal to
n is a non-negative linear combination of the li. �

Corollary 7.2.2 Let l1, ..., lm ∈ N. Then there exists N ≥ 0, such that:

{N + l ∗ gcd(l1, ..., lm)|l ∈ N} = {
m∑
i=1

cili ≥ N |ci ∈ N}.

Proof. Let g := gcd(l1, ..., lm). Then l1
g , ...,

lm
g are relatively prime. Hence Lemma 7.2.3

guarantees the existence of F := F ( l1g , ...,
lm
g ) ∈ N such that F and all n > F are a

non-negative linear combinations of the li
g . That is:

{F + l|l ∈ N} = {
m∑
i=1

ci
li
g
≥ F |ci ∈ N}.

Multiplying this by g yields:

{F ∗ g + l ∗ g|l ∈ N} = {
m∑
i=1

cili ≥ F ∗ g|ci ∈ N}.

Hence by setting N := F ∗ g the statement is proven. �

REMARK The problem of finding the largest natural number which is not representable
as a non-negative linear combination of relatively prime l1, ..., lm ∈ N is known as the
coin-exchange problem of Frobenius (cf. [9]). A closed form of this number is known
for m = 1, 2, 3. No closed-form solution is known for m ≥ 4. For arbitrary m and
arbitrary li the problem of finding the Frobenius number of the li is known to be NP-
hard [75]. Note that we are not interested in a concrete computation. We only need the
existence of this number in order to identify certain periodicities in our setting. These
periodicities will yield the desired convergence result.

Lemma 7.2.4 Let G = (V,A) be a strongly connected directed graph. Then for all
x ∈ V the following statement is true: there are N(x), k(x) ∈ N such that x ∈ EN(x)

and
{n ≥ N(x)|x ∈ En} = {N(x) + l ∗ k(x)|l ∈ N}.
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Proof. Let l1, ..., lm be the lengths of circles through x such that x occurs exactly twice
(i.e.: as start- and end-vertex of a circle). Let n ∈ N such that x ∈ En. Then there exist
a path P = (s = x0, ..., xn = x) from s to t with |P | = n. Hence there is a minimal k
such that xk = x. Thus P could be divided into the path x0...xk and some combination
of circles through x for which reason n = k +

∑m
i=1 cili has to hold for some ci ∈ N.

The other way around: each such combination yields a path such that x is its end-vertex.
Set g(x) := gcd(l1, ..., lm). By Corollary 7.2.2 there exists Ñ(x) such that

{Ñ(x) + l ∗ g(x)|l ∈ N} = {
m∑
i=1

cili ≥ Ñ(x)|ci ∈ N}.

Let k1, ..., kt be the lengths of all smooth paths from s to x and assume that k1 is maximal
beneath these. We have

{n ∈ N|x ∈ En} = {k1, ..., kt}+ {
m∑
i=1

cili|ci ∈ N}.

Since G is strongly connected, there is a smooth path Q from x to s. Let |Q| = q. Hence
there are circles of length q + ki through x for all i = 1, ..., t. Set N(x) := k1 + Ñ(x).
hence we find:

{n ≥ N(x)|x ∈ En} = {k1, ..., kt}+ {
m∑
i=1

cili ≥ ˜N(x)|ci ∈ N}

= {k1, ..., kt}+ {Ñ(x) + l ∗ g(x)|l ∈ N}.

W.l.o.g. assume that q + ki = li. Hence by dividing by g(x), all ki have the same
remainder. Thus

{k1, ..., kt}+{Ñ(x)+l∗g(x)|l ∈ N} = {kt+Ñ(x)+l∗g(x)|l ∈ N} = {N(x)+l∗g(x)|l ∈ N}

holds. �

Lemma 7.2.5 LetG be strongly connected and let P ∈ KV×V be a matrix which is com-
patible with G such that ‖P‖ ≤ 1 for some algebra norm on KV×V . Let t > 0 and define
for 0 < i < t: f(i, x) := max{j ≤ i|x ∈ Ej} and s(i, t, x) := |{j ≤ t− 1|f(j, x) = i}|.
Then for all x ∈ V the following limit exists:

lim
t→∞

1

t

t−1∑
i=0

s(i, t, x)P i.



108 7. MORE ON ALLOCATION MECHANISMS

Proof. Let x ∈ V , let N(x) and k(x) be as in Lemma 7.2.4 and let t > N(x). Then

1

t

t−1∑
i=0

s(i, t, x)P i =
1

t

N(x)−1∑
i=0

s(i, t, x)P i +
1

t

t−1∑
i=N(x)

s(i, t, x)P i

holds. For all i ≤ N(x) it is s(i, t, x) ≤ N(x). Hence 1
t

∑N(x)−1
i=0 s(i, t, x)P i → 0

for t → ∞. Divide t − 1 − N(x) by k(x) with remainder. Then there are at, bt s.t.
t− 1−N(x) = at ∗ k(x) + bt and bt < k(x). Hence we find

1

t

t−1∑
i=N(x)

s(i, t, x)P i =
1

t

N(x)+at∗k(x)+bt∑
i=N(x)

s(i, t, x)P i

=
1

t

N(x)+at∗k(x)∑
i=N(x)

s(i, t, x)P i +
1

t

N(x)+at∗k(x)+bt∑
i=N(x)+at∗k(x)

s(i, t, x)P i.

For N(x) + at ∗ k(x) < i ≤ N(x) + at ∗ k(x) + bt, x /∈ Ei holds. Thus: s(i, t, x) = 0.
Hence the second sum equals:

1

t

N(x)+at∗k(x)+bt∑
i=N(x)+at∗k(x)

s(i, t, x)P i =
s(N(x) + at ∗ k(x), t, x)

t
PN(x)+at∗k(x)

=
bt
t
PN(x)+at∗k(x).

Since bt is bounded by k(x), this term converges to 0 for t→∞:∥∥∥∥btt PN(x)+at∗k(x)
∥∥∥∥ ≤ k(x)

t
‖P‖N(x)+at∗k(x) =

k(x)

t
∗ 1→ 0

All in all we have until now:

lim
t→∞

1

t

t−1∑
i=0

s(i, t, x)P i = lim
t→∞

1

t

N(x)+at∗k(x)∑
i=N(x)

s(i, t, x)P i.

Since s(i, t, x) = 0 for x /∈ Ei, it holds:

1

t

N(x)+at∗k(x)∑
i=N(x)

s(i, t, x)P i =
1

t

N(x)+at∗k(x)∑
i=N(x),x∈Ei

s(i, t, x)P i.

Those indices are well-known by Lemma 7.2.4:

=
1

t

at∑
i=0

s(N(x) + i ∗ k(x), t, x)PN(x)+i∗k(x)
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Moreover it is: s(N(x) + i ∗ k(x), t, x) = k(x). Hence:

= PN(x)1

t

at∑
i=1

k(x)(P k(x))i = PN(x)k(x)

t

at∑
i=0

(P k(x))i.

Since ‖P‖ ≤ 1, also
∥∥P k(x)∥∥ ≤ 1. Since at →∞ for t→∞, Theorem 7.2.1 implies:

lim
at→∞

1

at

at∑
i=0

(P k(x))i

exists. We will show that k(x)
t

∑at
i=0(P

k(x))i converges to limt→∞
1
at

∑at
i=0(P

k(x))i. It

suffices to show that
∣∣∣k(x)t − 1

at

∣∣∣→ 0 for t→∞. The following holds.∣∣∣∣k(x)t − 1

at

∣∣∣∣ = ∣∣∣∣atk(x)− tat ∗ t

∣∣∣∣
On the other hand it is t = at ∗ k(x) + bt +N(x) + 1. Hence:

=

∣∣∣∣atk(x)− atk(x)− bt −N(x)− 1

at ∗ t

∣∣∣∣ = ∣∣∣∣−bt −N(x)− 1

at ∗ t

∣∣∣∣ .
This expression converges to 0 for t→∞, since bt is bounded by k(x). �

Now we are able to prove the desired convergence:
Proof of Theorem 7.2.2. Let xy ∈ A. And φ = φB a linear and ratio fair allocation
mechanism s.t. ‖B‖ ≤ 1. We have to prove: 1

t

∑t
i=1 α

i
xy converges for t → ∞. The

following holds:

1

t

t∑
i=1

αixy =
1

t

t−1∑
i=0

αi+1
xy

(A3)
=

1

t

t−1∑
i=0

α
f(i,x)+1
xy

=
1

t

t−1∑
i=0

〈
s
∣∣∣ Bf(i,x)x

〉
〈x| By〉

= 〈s| (1
t

t−1∑
i=0

Bf(i,x)) |x〉 〈x| By〉

= 〈s| (1
t

t−1∑
i=0

s(i, t, x)Bi) |x〉 〈x| By〉 .
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By Lemma 7.2.5 the limit limt→∞
1
t

∑t−1
i=0 s(i, t, x)B

i exists. Hence also

lim
t→∞

1

t

t∑
i=1

αixy

exists and it holds:

lim
t→∞

1

t

t∑
i=1

αixy = 〈s| ( lim
t→∞

1

t

t−1∑
i=0

s(i, t, x)Bi) |x〉 〈x| By〉 .

�

Corollary 7.2.3 Let G be strongly connected and let φ be a non-negative randomized
allocation mechanism. Then limt→∞ φ

t
converges.

Proof. Choose the row-sum norm on KV×V :

‖B‖ := max{
∑
y∈V

|bxy| |x ∈ V } (B ∈ KV×V ).

Let P be the transition matrix associated to φ. Since P is a stochastic matrix, it is
‖P‖ = 1. Hence by Theorem 7.2.2 the Cesàro value induced by φ converges. �

REMARK The assumption of G being strongly connected is more than really needed
to achieve the convergence of Cesàro values. Note that Lemma 7.2.4 is the only part
of the whole proof in which the strong connectedness was essential. We use the same
notations as in this lemma. In the proof of Lemma 7.2.4 we proved a stronger statement,
namely:

{n ≥ max{k1, ..., kt}+ Ñ(x)|x ∈ En} = {k1, ..., kt}+ {Ñ(x) + l ∗ g(x)|l ∈ N}.

By the strong connectedness of G we argued that ki is congruent kj modulo g(x) and
hence

{n ≥ N(x)|x ∈ En} = {N(x) + l ∗ g(x)|l ∈ N}.

Hence the statement remains true if we have a graph with the property that ki is con-
gruent kj modulo g(x) for all i, j.
If G is not necessarily strongly connected, let s = y1, ..., yk = x be all vertices on all
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smooth paths from x to s and for i = 1, ..., k let li1, ..., l
i
m(i) be the length of all circles

through yi s.t. yi occurs exactly twice on each of them. Hence for any s-x path in G

there is a unique smooth s-x path Q, s.t. V (Q) ⊆ V (P ) and |P | = |Q|+
∑k

i=1

∑m(k)
j=1 cijl

i
j

for some cij ∈ N. Hence again by Lemma 7.2.2 there is a number F (x)

{n ≥ max{k1, ..., kt}+ F (x)|x ∈ En} (*)

={k1, ..., kt}+ {F (x) + l ∗ gcd(lij |i = 1, ..., k; j = 1, ...,m(i))|l ∈ N}.

In order to achieve a convergence result as above, one needs some kind of periodic-
ity. In Lemma 7.2.5 the periodicity was needed in order to reduce the convergence of
1
t

∑t−1
i=0 s(i, t, x)P

i for t → ∞ to the known convergence of the Cesàro mean of a fixed
power P k(x) of P . Hence it seems natural to use (*) to build certain “periodic blocks”.
{n ≥ max{k1, ..., kt}+ F (x)|x ∈ En} is the union of the sets {kp + F (x) + l ∗ gcd(lij |i =
1, ..., k; j = 1, ...,m(i))|l ∈ N}, but in most cases these sets do not build a partition.
Hence it is not obvious that
1
t

∑t−1
i=0 s(i, t, x)P

i could be split up into periodic parts. Moreover, the terms s(i, t, x)
need not to equal k(x) any longer (for some range of i), hence even if a split-up into
periodic parts is possible, one needs to determine the terms s(i, t, x) in another way.
The author believes that convergence of Cesàro values holds for arbitrary s-connected
graphs and that the strong- connectedness assumption is dispensable.





8 The quantum case - new
allocation mechanisms

As seen in Chapter 5, Markovian cooperation systems are a quite powerful tool in
modeling cooperative settings and in giving answers to the allocation problem and the
prediction problem. A main advantage of these systems is the simple representation
of the evolution process in terms of the evolution operator by the powers of a single
matrix.
Nevertheless, there are situations which could not be modeled as Markovian systems.
In this chapter we take a step further and describe transitions from one state to another
from a quantum mechanical viewpoint.
In Section 8.1, beside some basic notations, we give an example of an evolution process,
which is not Markovian and aim for a compact description of it in the rest of this
chapter.
Section 8.2 gives a brief overview of models for quantum random walks on graphs.
After that we apply a model of Faigle and Schönhuth [38] for quantum random walks
on graphs to our model. By that we are able to associate to each quantum random
walk an allocation mechanism in Section 8.3 and call it quantum allocation mechanism.
These allocation mechanisms are seen to be linear and efficient in the end of the section.
Finally we apply a convergence theorem of Faigle and Schönhuth [38] to the Cesàro
values of these allocation mechanism in Section 8.3.1 and achieve a convergence result
similar to Theorem 7.2.2. Hence quantum allocation mechanisms are a class of non-
randomized allocation mechanisms whose Cesàro values converge.

113
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s

a

b

Figure 8.1:

8.1 Preliminaries & notations

We start by an example:

Example 8.1.1 Let V = {s, a, b} and A = {sa, ab, ba, bs}. Hence the graph G = (V,A)

equals the graph in Figure 8.1. Assume in time-steps t = 0, ..., 6 the following probabil-
ity distributions (pt(s), pt(a), pt(b)) have been observed:

t = 0 : (1, 0, 0), t = 1 : (0, 1, 0), t = 2 : (
1

2
, 0,

1

2
), t = 3 : (0, 1, 0),

t = 4 : (
1

4
, 0,

3

4
), t = 5 : (0, 1, 0), t = 6 : (

1

8
, 0,

7

8
).

Obviously there is no way to describe this process by a classical random walk on the
graph G = (V,A).

Let H be a Hilbert space over C. Since all studied dimensions in this thesis are finite,
we assume H also to be finite dimensional, even if general quantum theory is formu-
lated for the infinite dimensional case. Fix a basis V ⊆ H. A wave function is a state
|ψ〉 ∈ H with length 1, i.e.:

〈ψ| ψ〉 =
∑
x∈V

|ψx|2 = ‖ψ‖ = 1.

Thus each wave function describes a probability distribution on the basis V by inter-
preting the squared absolute component values as probabilities for the system to be
in state x ∈ V . We are interested in linear transformations of H which preserve the
wave function property; i.e.: we are interested in matrices U ∈ CV×V , such that for
any wave function ψ, also U |ψ〉 is a wave function. These matrices are known from
linear algebra and are called unitary. We recall a standard characterization of unitary
matrices in the following lemma. A proof is given in [54].
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Lemma 8.1.1 Let U ∈ CV×V be an invertible matrix. The following statements are
equivalent:

(a) U is unitary.

(b) ‖Uv‖ = ‖v‖ for all v ∈ H.

(c) 〈Uv| Uw〉 = 〈v| w〉 for all v, w ∈ H.

(d) U−1 = U∗.

(e) The columns of U are an orthonormal basis of H.

�

Any unitary matrix U gives rise to an evolution process of ψ via∣∣ψt〉 := U t |ψ〉

for all t ≥ 0.

8.1.1 Self-adjoint matrices

Given a wave function |ψ〉 one could identify it with a self-adjoint matrix (i.e. a matrix
Q with the property Q∗ = Q) via:

|ψ〉 ↔ |ψ〉 〈ψ| =: Qψ.

With this definition one could describe the evolution of ψ also through its representation
as self-adjoint matrix:

Qψt =
∣∣U tψ〉 〈U tψ∣∣ = U t |ψ〉 〈ψ|U t∗ = U tQψU

t∗.

In order to define certain mappings, we abstract from wave functions to self-adjoint
matrices of trace 1. Denote by S := SH the set of self-adjoint matrices over H with
trace 1 (which is closed under convex combination by the linearity of the trace function).
Later in this chapter we will describe quantum random walks by linear operations on
S.
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Known from linear algebra an element Q ∈ S has only real eigenvalues and there is an
orthonormal basis of eigenvectors. Hence if c1, ..., cn ∈ R are the (not necessarily differ-
ent) eigenvalues of Q and ψ1, ..., ψn is an associated orthonormal basis of eigenvectors,
we have:

Q =
∑
i

ci |ψi〉 〈ψi| and trQ =
∑
i

ci.

8.2 Quantum random walks

We want to generalize the concept of random walks on transition graphs to that of
quantum random walks. Quantum random walks received some attention in the past.
The wish to consider quantum walks is essentially based on the following: the model
of classical random walks was able to speed up certain algorithms in graph theory
by randomization. By development of the theory of a quantum computer one had
the wish to get an analogue of random walks, which could also be understood by a
quantum computer. The hope is that the theory of quantum random walks is as rich of
results as it was the theory of classical random walks in the classical case. However,
algorithmic aspects of quantum random walks are not treated here. We are interested in
processes that are induced by quantum random walks. More on the algorithmic aspects
of quantum random walks could be found in the work of Ambainis [4].

8.2.1 A very brief history of quantum random walks on
graphs

There are several approaches to quantum random walks in the literature. First of all
one should mention the model of Aharonov et al. [1]: first they considered d-regular
graphs. Laxly spoken, they imagined a random walker that tosses a d-sided coin at each
crossroad. This coin toss was modeled quantum-mechanically: by considering to each
vertex v of the graph d ground states |v, 1〉 , ..., |v, d〉, they studied unitary evolutions on
the Hilbert space spanned by all these vectors. (To be honest: they investigated unitary
transformations on the Hilbert space that is the tensor product of CV and a certain
d-dimensional coin space).
On a first view there was a problem: with this model only d-regular graphs were
quantum-random-walkable. The idea of the coin toss was adapted later (cf. [60])
and one studied more complicated spaces by giving each node in the graph its own
coin space in dependency of its neighborhood structure. An alternative (but equivalent)
trick was the following: one takes the maximal degree of the graph and gave any node
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x artificial and independent slopes {x, x} since the degree of x is also maximal. Thus
it was possible to model quantum walks on arbitrary graphs.
Faigle and Schönhuth [38] generalized the view on quantum walks on arbitrary graphs
in a general model of so called Quantum Markov Chains. In the special case of graphs,
this model yields a nicer representation of quantum walks and does not need the idea
of many coin tosses: by forgetting coin tosses and tensor products with coin spaces
completely, they studied unitary evolutions on the Hilbert space CA. We will view on
quantum random walks in the same spirit.

8.2.2 Quantum random walks in our model

According to Faigle and Schönhuth, a quantum walk is a triple (G = (V,A), U, ψ) con-
sisting of a directed graph G, a unitary matrix U ∈ CA×A and an initial wave function
ψ ∈ CA. By describing the evolution of the wave function as above:

∣∣ψt〉 := U t |ψ〉 for
t ≥ 0, one can give the probability of the walk that starts in ψ and evolves according to
U being in node v ∈ V at time t via:

pt(v | ψ) :=
∑
x∈V

∣∣〈vx∣∣ ψt〉∣∣2 . (*)

Again we identified the arc vx ∈ A with its associated element in the standard orthonor-
mal basis. Thus one could think of U describing a walk on the arcs of G. We make the
following assumption to U in order to get a much more interpretative view on quantum
random walks:

U(xw),(yz) = 0 if z 6= x.

In words: we assume U∗ to be compatible with the arc graph of G, since the (yz), (xw)

entry of U∗ is zero, if the arcs (yz) and (xw) are not adjacent in the arc graph of G. The
first question that comes into mind is

“Do unitary matrices of that kind exist for every graph G?”

The answer is: no. There are some previous works that give detailed answers to this
question. For instance Montanaro [67] gave the answer that essentially there is a unitary
matrix with this property if and only if the underlying graph is strongly connected. But
we do not aim for a detailed answer to this question here. We just make the assumption:
let G be a graph such that there is a unitary matrix U that has the desired property.
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Equation (*) could be expressed in a much more elegant way: define for all v ∈ V

Pv : CA → CA, (βxy)xy∈A 7→
∑
vy∈A

βvy |vy〉

the projection onto the neighborhood of the node v. A first observation is:

Lemma 8.2.1

(a)
∑

x∈V Px = Id

(b) For all ψ ∈ CA:
∑

x∈V |Pxψ〉 〈Pxψ| = |ψ〉 〈ψ|.

Proof. Let ψ ∈ CA. (a): Then∑
x∈V

Px |ψ〉 =
∑
x∈V

(
∑
xy∈A

ψxy |xy〉) =
∑
xy∈A

ψxy |xy〉 = |ψ〉

holds.
(b): The following is true:∑

x∈V

|Pxψ〉 〈Pxψ| =
∑
x∈V

(
∑

y∈N+(x)

ψxy |xy〉)(
∑

z∈N+(x)

ψxz 〈xz|)

=
∑
xy∈A

∑
xz∈A

ψxyψxz |xy〉 〈xz| = |ψ〉 〈ψ| .

�

Moreover, define an operator on the set of all self-adjoint matrices of trace one over
CA (S := S(CA)):

Tv(Q) := PvUQ(PvU)
∗ ∈ S.

Then for all t ≥ 0, all wave functions |ψ〉 and all v ∈ V one has

pt(v | ψ) =
∑
x∈V

∣∣〈vx∣∣ ψt〉∣∣2 = 〈
Pvψ

t
∣∣ Pvψt〉

= trPvψ
t(Pvψ

t)∗ = trTv(U
t−1QψU

t−1∗)

Thus one gets the probability of seeing a certain node at time t, by applying U t, project-
ing and then renormalizing - which is a quantum theoretic measurement. Note that in
the following we will make use of the well known basic facts of tr (tr is a linear map
and trAB = trBA for all quadratic matrices A,B) without further mentioning.
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Example 8.2.1 Recall the graph and the process described in Example 8.1.1. This
process could be described as the quantum random walk induced by the matrix:

U :=


0 0 0 i
1√
2

0 −i 0

0 i 0 0

− 1√
2

0 0 0


(which is in fact unitary, since it columns are an orthonormal basis) and by the wave
function |ψ〉 := (1, 0, 0, 0)T . It is a direct calculation to check, that the vectors pt(· | ψ)
equal the distribution vectors given in Example 8.1.1 for t = 0, ..., 6 and that U satisfies
the property: U(xw)(yz) = 0 if z 6= x for all xw, yz ∈ A.

The operators Tv yield a nice property, which will demonstrate the strong relation of a
quantum walk to the graph itself:

Lemma 8.2.2 Let x, y ∈ V . If xy /∈ A, then TyTx = 0.

Proof. Let Q = |ψ〉 〈ψ| ∈ S. Then

TyTxQ = PyUPxU |ψ〉 〈ψ| (PyUPxU)∗.

We will prove that PyUPxU |ψ〉 = 0, hence also TyTxQ = 0. Observe first that

PxU |ψ〉 ∈ span{|xw〉 | xw ∈ A}.

Thus

UPxU |ψ〉 ∈ span{U |xw〉 | xw ∈ A} = span{(u(ab),(xw))ab∈A | xw ∈ A}.

By projecting to the neighborhood of y we get:

PyUPvU |ψ〉 ∈ span{
∑
yz∈A

u(yz),(xw) |yz〉 | xw ∈ A}.

But u(yz),(xw) 6= 0 only if w = y. Since xy /∈ A we have:

span{
∑
yz∈A

u(yz),(xw) |yz〉 | xw ∈ A} = 0.

�

According to Faigle and Schönhuth we will call M :=
∑

v∈V Tv the evolution oper-
ator of the quantum walk (G,U, ψ). In fact, it is an evolution operator in the sense of
Chapter 3 by interpreting it as an operator on the state space S. The following Lemma
gives an argument, why this term is reasonable:



120 8. THE QUANTUM CASE - NEW ALLOCATION MECHANISMS

Lemma 8.2.3 Let t ≥ 0, x ∈ V and |ψ〉 a wave function. Then

(a) M t =
∑

(v1,...,vt)∈V t TvtTvt−1 ...Tv1 .

(b) Qψt =M tQψ

(c) trMQ = trQ for all Q ∈ S.

Proof. (a): We use induction on t with trivial beginning. Let t > 1 and the statement be
true for all smaller t. Then:

M t =MM t−1 = (
∑
v∈V

Tv)
∑

(v1,...,vt−1)∈V t

Tvt−1 ...Tv1 =
∑

(v1,...,vt)∈V t

TvtTvt−1 ...Tv1 .

(b): Again we use induction on t. For t = 1 we have:

MQψ =
∑
x∈V

TxQψ =
∑
x∈V

PxUQψU
∗P ∗

x = UQψU
∗ = Qψ1 .

Where the last equations holds since the sum over all projections is the identity matrix.
For t > 1 we have

M tQψ =M(M t−1Qψ) =MQψt−1 = UQψt−1U∗ = Qψt

by induction and the same argument as above.
(c): Since conjugation with U is trace-preserving and

trMQ = tr
∑
x∈V

TxQ = tr
∑
x∈V

PxUQU
∗P ∗

x ,

it is enough to show that

tr
∑
x∈V

PxQP
∗
x = trQ for all Q ∈ S.

But since Q is self-adjoint there is a spectral representation of Q as Q =
∑

i ci |ψi〉 〈ψi| -
where ci are the eigenvalues of Q and (ψi)i=1,...,|A| is an orthonormal basis of eigenvec-
tors of Q - we know the desired equality from Lemma 8.2.1 (b) and the fact that Q has
trace 1. �

REMARK Indeed M is an evolution operator in the sense of Section 3: by statement
(c) of the last lemma, M (and each of its powers) leaves the state space S invariant.
Moreover, since M is a linear operator it is M0 = Id by definition.
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8.3 Allocation mechanisms induced by quantum
random walks

We use the same notations as before. Let Γ := (N, V,A,A, s) be a cooperation system.
Let ((V,A), U, ψ) be a quantum random walk on the transition graph G of Γ. Since we
want the walk to “start in s”, we make an additional assumption on the wave function
ψ:

〈Psψ| Psψ〉 = 1. (s)

In terms of the probabilities we introduced in the last section, this reads as: the proba-
bility to be in s at time t = 0 is 1.
We aim to define a linear allocation mechanism with respect to this quantum walk; i.e.:
we want to define certain α-values. Recall Section 5.3.1. There we identified the α-
value of an arc xy ∈ A at time t (x ∈ Et) to be the probability, that a walk which starts
in s, is in x at time t and moves to y at time t+ 1. We want to copy this idea and try to
carry it over to the concept of quantum random walks. Therefore define inductively:

αtxy := trTyTxM
t−1Qψ if x ∈ Et−1

and

αtxy := αt−1
xy else.

Thus by definition and Lemma 5.2.2 we have

Lemma 8.3.1 φ = φα is a linear allocation mechanism. �

Our goal is to prove that φα is efficient.

Lemma 8.3.2 Let α be as above and t > 0. Then .

(a)
∑

x∈N−(e) α
t
xe =

∑
y∈N+(e) α

t+1
ey for all e ∈ Et.

(b)
∑

u∈N+(s) α
1
su = 1.

holds.
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Proof. (a): Let x ∈ Et. Since M is trace preserving and TbTa = 0 if ab /∈ A, we have:∑
u∈N−(x)

αtux =
∑

u∈N−(x)

trTxTuM
t−1Qψ = trTx(

∑
u∈N−(x)

Tu)M
t−1Qψ

= trTx(
∑
u∈V

Tu)M
t−1Qψ = trTxM

tQψ

= trMTxM
tQψ = tr(

∑
y∈V

Ty)TxM
tQψ

= tr(
∑

y∈N+(x)

Ty)TxM
tQψ =

∑
y∈N+(x)

trTyTxM
tQψ

=
∑

y∈N+(x)

αt+1
xy .

(b): Recall assumption (s) made on ψ and that M is trace preserving. By (s) we have

1 = 〈Psψ| Psψ〉 = trTsQψ.

On the other hand, we have:∑
u∈N+(s)

α1
su =

∑
u∈N+(s)

trTuTsM
0Qψ = tr

∑
u∈N+(s)

TuTsQψ

= tr(
∑
u∈V

Tu)TsQψ = trTsQψ

= 1.

�

This lemma together with Theorem 5.2.3 yields:

Theorem 8.3.1 Let ((V,A), U, ψ) be a quantum random walk such that ψ suffices (s).
And let φ be the linear allocation mechanism associated with this walk. Then φ is effi-
cient. �

Due to this theorem we will call an allocation mechanism, which is induced by a quan-
tum random walk, a quantum allocation mechanism.

8.3.1 Convergence of quantum allocation mechanisms

We use all objects and notations from the last section without introducing them again.
The convergence of quantum allocation mechanisms is strongly related to the conver-
gence of quantum random walks. In a more general context Faigle and Schönhuth [38]
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(and similarly Schönhuth [81]) proved the following theorem, which we will restate to
our restricted setting:

Theorem 8.3.2 ([38, Theorem 1]) Let |ψ〉 ∈ CA be a wave function and let U ∈ CA×A

be an unitary matrix. Furthermore, let M :=
∑

x∈V Tx be the evolution operator asso-
ciated with U . Then the limit

Q := lim
t→∞

1

t

t−1∑
i=0

M i(Qψ)

exists and is an eigenvector of M to the eigenvalue 1. Moreover, for each path
P = x1...xk in G also the limit

TP (Q) = lim
t→∞

1

t

t−1∑
i=0

TPM
i(Qψ)

exists, where TP := Txk ...Tx1 . �

We will use this theorem to prove

Theorem 8.3.3 Let G = (V,A) be a transition graph of a cooperation system Γ and
assume that G is strongly connected. Moreover, let (G,U, |ψ〉) be a quantum random
walk on G and φ = φα be the quantum allocation mechanism relative to this walk. Then
the associated Cesàro value (cf. Section 7.2) φ converges, i.e.:

lim
t→∞

αtxy

exists for all xy ∈ A.

In order to prove Theorem 8.3.3 we need some further lemmata:

Lemma 8.3.3 Let (G,U, |ψ〉) be a quantum random walk on G with associated evolu-
tion operator M and let k ∈ N. Then (G,Uk, |ψ〉) is a quantum random walk with
evolution operator Mk.

Proof. Since U is unitary, also Uk is unitary. Hence (G,Uk, |ψ〉) is indeed a quantum
random walk. For t > 0 we have (Mk)t(Q) = UktQ(Ukt)∗ = (Uk)tQ((Uk)∗)t. Thus Mk

equals the evolution operator of this walk. �
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Lemma 8.3.4 Let (G,U, |ψ〉) be a quantum random walk, set Q := Qψ and let t > 0.
Define: f(i, x) := max{j ≤ i|x ∈ Ej} and s(i, t, x) := |{j ≤ t− 1|f(j, x) = i}| for all
0 < i < t. Then for all x ∈ V the following limit exists:

lim
t→∞

1

t

t−1∑
i=0

s(i, t, x)M iQ.

Proof. The idea of the proof is essentially the same as of Lemma 7.2.5. Let x ∈ V , let
N(x) and k(x) be as in Lemma 7.2.4 and let t > N(x). Then

1

t

t−1∑
i=0

s(i, t, x)M iQ =
1

t

N(x)−1∑
i=0

s(i, t, x)M iQ+
1

t

t−1∑
i=N(x)

s(i, t, x)M iQ

holds. For all i ≤ N(x) it is s(i, t, x) ≤ N(x). Hence 1
t

∑N(x)−1
i=0 s(i, t, x)M iQ → 0

for t → ∞. Divide t − 1 − N(x) by k(x) with remainder. Then there are at, bt s.t.
t− 1−N(x) = at ∗ k(x) + bt and bt < k(x). Hence we find

1

t

t−1∑
i=N(x)

s(i, t, x)M iQ =
1

t

N(x)+at∗k(x)+bt∑
i=N(x)

s(i, t, x)M iQ

=
1

t

N(x)+at∗k(x)∑
i=N(x)

s(i, t, x)M iQ+
1

t

N(x)+at∗k(x)+bt∑
i=N(x)+at∗k(x)

s(i, t, x)M iQ.

For N(x) + at ∗ k(x) < i ≤ N(x) + at ∗ k(x) + bt, x /∈ Ei holds. Thus: s(i, t, x) = 0.
Hence the second sum equals:

1

t

N(x)+at∗k(x)+bt∑
i=N(x)+at∗k(x)

s(i, t, x)M iQ =
s(N(x) + at ∗ k(x), t, x)

t
MN(x)+at∗k(x)Q

=
bt
t
MN(x)+at∗k(x)Q.

Since bt is bounded by k(x), this term converges to 0 for t→∞:∥∥∥∥btt MN(x)+at∗k(x)Q

∥∥∥∥ ≤ k(x)

t

∥∥∥MN(x)+at∗k(x)Q
∥∥∥ =

k(x)

t
∗ 1→ 0

All in all, we have until now:

lim
t→∞

1

t

t−1∑
i=0

s(i, t, x)M iQ = lim
t→∞

1

t

N(x)+at∗k(x)∑
i=N(x)

s(i, t, x)M iQ.
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Since s(i, t, x) = 0 for x /∈ Ei, it holds:

1

t

N(x)+at∗k(x)∑
i=N(x)

s(i, t, x)M iQ =
1

t

N(x)+at∗k(x)∑
i=N(x),x∈Ei

s(i, t, x)M iQ

Those indices are well-known by Lemma 7.2.4:

=
1

t

at∑
i=0

s(N(x) + i ∗ k(x), t, x)MN(x)+i∗k(x)Q

Moreover it is: s(N(x) + i ∗ k(x), t, x) = k(x). Hence:

=MN(x)1

t

at∑
i=1

k(x)(Mk(x))iQ =MN(x)k(x)

t

at∑
i=0

(Mk(x))iQ.

By Lemma 8.3.3 Mk(x) is the evolution operator of (G,Uk(x), |ψ〉). Since at → ∞ for
t→∞, Theorem 8.3.2 implies:

lim
at→∞

1

at

at∑
i=0

(Mk(x))iQ

exists. We will show that k(x)t
∑at

i=0(M
k(x))iQ converges to limt→∞

1
at

∑at
i=0(M

k(x))iQ.

Therefor it suffices to show that
∣∣∣k(x)t − 1

at

∣∣∣→ 0 for t→∞. The following holds.

∣∣∣∣k(x)t − 1

at

∣∣∣∣ = ∣∣∣∣atk(x)− tat ∗ t

∣∣∣∣
On the other hand it is t = at ∗ k(x) + bt +N(x) + 1. Hence:

=

∣∣∣∣atk(x)− atk(x)− bt −N(x)− 1

at ∗ t

∣∣∣∣ = ∣∣∣∣−bt −N(x)− 1

at ∗ t

∣∣∣∣ .
This expression converges to 0 for t→∞, since bt is bounded by k(x). �

These two lemmata allow us to prove the desired convergence of Cesàro values induced
by quantum random walks:
Proof of Theorem 8.3.3. Let xy ∈ A. And φ be a quantum allocation mechanism
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induced by the unitary matrix U ∈ CA×A. We have to prove: 1
t

∑t
i=1 α

i
xy converges for

t→∞. The following holds:

1

t

t∑
i=1

αixy =
1

t

t−1∑
i=0

αi+1
xy

=
1

t

t−1∑
i=0

α
f(i,x)+1
xy

=
1

t

t−1∑
i=0

tr(TyTxMf (i, x)Qψ)

=tr(TyTx
1

t

t−1∑
i=0

Mf(i,x)Qψ)

=tr(TyTx
1

t

t−1∑
i=0

s(i, t, x)M iQψ).

By Lemma 8.3.4 the limit limt→∞
1
t

∑t−1
i=0 s(i, t, x)M

iQ exists. Hence also

lim
t→∞

1

t

t∑
i=1

αixy

exists and it holds:

lim
t→∞

1

t

t∑
i=1

αixy = tr(TyTx lim
t→∞

1

t

t−1∑
i=0

s(i, t, x)M iQψ).

�



9 Cores of cooperative games

In this chapter we want to generalize another notion of fairness from the classical mod-
els of cooperative games. The idea of the so called core (introduced by Gillies [47])
is the following: whenever players participate in the process of building a coalition,
their payoff should at least be the value of this coalition. Else wise these players would
be treated unfair, since the value they create by building this certain coalition, is not
allocated to them.
Section 9.1 gives the classical model of the core and some concepts related to it. In
Section 9.2, we generalize the classical core in two different ways. Each of them takes
on a different idea of fairness of the classical core. We give a generalization of a famous
fact and prove, that both cores in our general setting are subsets of the Weber-set. The
proof is mainly based on a greedy-type algorithm, which is given in Subsection 9.2.2.
Finally, we give examples of classical core concepts in Section 9.3 and show that they
are special cases of our notions of core.

127
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9.1 Classical core concept

Let (N, v) be a classical cooperative game with v : 2N → R+ and x ∈ RN
+ . Then x is

called fair in the above sense if

x(S) :=
∑
i∈S

xi ≥ v(S) for all S ⊆ N.

By merging all these vectors into a set, one defines the so called open core:

coreo(v) := {x ∈ RN
+ |x(S) ≥ v(S)}

which is by definition a polyhedron. The assumption that x has to be non-negative
is often made by the following argument: if a player gets a negative payoff he would
simply deny his participation in the game. Alternatively one could argue by the positive
decomposition of cooperative games by means of their ζ-representation (cf. Section
4.4). Note that the open core of a game is non-empty since the vector with components
all equal to maxS⊆N v(S) is obviously in the open core.
By additionally requiring the core vectors to be efficient, the classical core is defined
which is due to Gillies [47]:

core(v) := {x ∈ RN
+ |x(S) ≥ v(S), x(N) = v(N)}.

This restriction seems natural, but yields a new problem: the nice property of the open
core of being non-empty is lost by passing into the closed core. Thus one has a simple
concept of fairness for allocations, but it is open if such allocations exist.
We want to point out two essential ideas of fairness of the classical core. The obvious
idea is mentioned above: all players that could build a certain coalition should be re-
warded by a core allocation. The second idea is the following: all players, which could
deny their cooperation to build a certain coalition S ⊆ N are essential for building S
and should be rewarded. Even if these two points of view are different, they coincide
in the classical case. We want to generalize both ideas of fairness.

9.1.1 Marginal-worth vectors and the Weber-set

Given a permutation π = (p1, ..., pn) ∈ Sym(N) one defines the so called marginal-
worth vector in RN relative to it: fix i ∈ N and let j ∈ N such that pj = i. Define:

hπ(v)i := v(p1, ..., pj)− v(p1, ..., pj−1).

The convex hull of all these marginal-worth vectors is called the Weber-set of v, due to
Weber [91], who first investigated this set:

W(v) := conv{hπ|π ∈ Sym(N)}.
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2 2

2

2

1

1

Figure 9.1:

9.2 A core concept for the acyclic model

Let Γ be a cooperation system. In this section we define a set-valued solution con-
cept which is a generalization of the classical core to our model. Therefor we restrict
ourselves to the acyclic case; i.e.: we assume:

The transition graph of Γ is acyclic. (A)

Moreover, we need another structural assumption on Γ. The so called single action
property, which was already defined and used in [37] by Faigle and the author:

|P ∩ Ai| ≤ 1 for all P ∈ P and i ∈ N. (SA)

REMARK Conditions (A) and (SA) seem technical (and they are!), but note that all
models that are based on greedoids (cf. Chapter 2) in fact enjoy (A) and (SA). One
could think that (A) and (SA) are that restrictive, that Γ is also just a set system. But it
is not as the following example shows:

Example 9.2.1 Let N := {1, 2} and consider the graph in Figure 9.1 which reflects ac-
tions that are governed by player 1 resp. player 2. Obviously this graph is no subgraph
of the graph induced by the power-set lattice of N , but (A) and (SA) are satisfied.

In analogy to our notion of efficiency, we call a vector z ∈ RN efficient for the game
v ∈ G if there is a probability distribution on the sinks of G, s.t. z allocates the expected
v-value w.r.t. to this probability distribution. Denote by P(x) the set of all paths that
start in s and end in x and set:

core(v) := {z ∈ RN
+ |z(P ) ≥ v(x), ∀x ∈ V, P ∈ P(x), z is efficient for v}.
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Lemma 9.2.1 core(v) is a polyhedron.

Proof. Let E := {e1, ..., ek} be the set of sinks of G and consider the following linear
inequality system:

z(P ) ≥ v(x) for all x ∈ V, P ∈ P(x)

(1, ..., 1,−v(e1), ..,−v(ek))
(
z

µ

)
= 0

1Tµ = 1

µ ≥ 0

As known from the theory of polyhedra, also the projection of this polyhedron onto
its z-components is a polyhedron (cf. [36, Theorem 2.5]). And this projection equals
core(v). �

Example 9.2.2 (Classical Core) Let (N, v) be a classical cooperative game and let

Γ := (2N , {(S, T )| |T \ S| = 1},A, ∅)

be the classical cooperation system on N . Let x ∈ RN be a classical core vector;
i.e.: v(S) ≤ x(S) for all S ⊆ N and v(N) = x(N) holds. Then any coalition S is the
endpoint of paths P of length |S| from ∅ to S such that Ai ∩ P 6= ∅ if and only if i ∈ S.
Hence for such a path P , x(P ) = x(S) ≥ v(S) holds.
The efficiency condition of the core in our model simplifies to:

x(N) =
∑
e∈E

µev(e) = µNv(N) = v(N),

since N is the only sink. Thus any classical core vector is a core vector in our sense
and vice versa.

9.2.1 Marginal-worth vectors & the Weber-set

For a fixed game v ∈ G and a path P ∈ P , in analogy to the classical case, we define
the marginal-worth vector of P with respect to v via:

hPi := hPi (v) :=
∑

xy∈Ai∩P

v(y)− v(x) for all i ∈ N. (*)
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This gives a definition of marginal-worth vectors which is independent of (SA). How-
ever, by (SA) Equation (*) reduces to: hPi = v(y)− v(x), if {xy} = Ai ∩ P and hPi = 0,
if Ai ∩ P = ∅.
By taking the convex hull of all marginal worth vectors, we define the Weber-set of v:

W(v) := conv{hP |P ∈ P}.

9.2.2 A greedy-type algorithm

In this subsection we will give an algorithm, which will be the main tool in our analysis
of relations between the core and the Weber-set of a game.
For x ∈ V denote by

γ(x) := {j ∈ N |Ai ∩N−(x) 6= ∅}

the set of essential players, which own actions that lead to x.

The algorithm

Input: c ∈ RN
+ , e ∈ E

(0) Initialize:
P ← [ ]; y(x)← 0 for all x ∈ V ;X ← e.

(1) If X = s, output (P, y) and stop.

(2) If X 6= s, choose i ∈ γ(X) with minimal ci and update:
y(X)← ci; cj ← [cj − ci]for all j ∈ γ(X) with {ab ∈ Ai|a ≤ X} 6= ∅; P ← XP .

(3) Choose u ∈ {w ∈ V |wX ∈ Ai} uniformly distributed and update:
X ← u.

(4) Go to (1).

Lemma 9.2.2 Let (P, y) be the output of the algorithm with respect to the input e ∈ E
and c ∈ RN

+ . Then the following statements are true:

(a) y ≥ 0 and y(x) = 0, if x /∈ P .

(b) For all i ∈ N: ∑
x∈V ;i∈γ(x)

y(x) ≤ ci.

Moreover: equality holds if P ∩ Ai 6= ∅.
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Proof. Since only the y-values of vertices of P are updated by the algorithm, (a) follows
immediately by the update rule of it. By (a) we have:∑

x∈V ;i∈γ(x)

y(x) =
∑

x∈P ;i∈γ(x)

y(x).

The weight ci of player i is changed if and only if i ∈ γ(X) for the current X in the
algorithm step. Moreover, the weights are never increased by this change. If (and only
if) an action of a player is chosen at state x ∈ P , y(x) is set to the current weight of this
player. By (SA) this happens at most once.
Let i ∈ N and write P = (s = x0, x1, ..., xk = e). W.l.o.g. assume that xjxj−1 ∈ Aj and
that i ∈ γ(xj) for j ∈ {1, ..., l}. Denote by cji the current weight of i at state xj . Then

cli = ci − y(xl)

and inductively:
c1i = ci − y(xl)− ...− y(x1).

Since c1i ≥ 0 by the update rule, we have:

ci = c1i +

l∑
i=1

y(xj) ≥
l∑

i=1

y(xj).

Assume that Ai ∩ P 6= ∅. Then i governs an arc on P and by the above notation, this
arc needs to be x1x0. But then the updated weight of i at x1 is 0. It follows:

ci = c1i +

l∑
i=1

y(xj) =

l∑
i=1

y(xj).

�

Lemma 9.2.3 Let (P, y) be the output of the algorithm with respect to the input (e, c)
and let h := hP be the marginal-worth vector associated with P . Then∑

i∈N

cihi =
∑
x∈P

v(x)y(x) =
∑
x∈V

v(x)y(x)

holds.
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Proof. Again let P = (s = x0, x1, ..., xk = e) such that xixi−1 ∈ Ai. Note that hi = 0 if
Ai ∩ P = ∅ and that y(x) = 0 if x /∈ P . Hence∑

i∈N

cihi =
∑

i∈N,Ai∩P 6=∅

cihi =
∑
xi∈P

cihi =
∑
xi∈P

(ci − ci−1)v(xi). (*)

On the other hand, ci =
∑

x∈P,i∈γ(x) y(x). Hence (*) equals∑
xi∈P

(
∑

x∈P,i∈γ(x)

y(x)−
∑

x̃∈P,i+1∈γ(x̃)

y(x̃))v(xi) =
∑
xi∈P

y(xi)v(xi),

which proves the desired equality. �

9.2.3 Relations of the core and the Weber-set

The following theorem was proven in the classical case by Weber [91] and was later
simplified by Derks [22] by an argument of separating hyperplanes. We will use a
similar argument here.

Theorem 9.2.1 Let v ∈ G. Then core(v) ⊆ W(v).

Proof. Assume that the theorem is false and aim for a contradiction. Then there exists
z ∈ core(v)\W(v). SinceW is a closed convex set, there exists a separating hyperplane
that separates z fromW(v). Hence there is c ∈ RN with∑

j∈N

cjzj <
∑
j∈N

cjwj for all w ∈ W(v).

Since z is an efficient allocation for v, there exists a probability distribution (µe)e∈E
on E such that z(N) =

∑
e∈E µev(e). In particular, the above inequality holds for all

vectors h of the following kind: for all e ∈ E let Pe ∈ P be a path that ends in e and set
h :=

∑
e∈E µeh

Pe . Hence we have

(∗)
∑
j∈N

cjzj <
∑
j∈N

cjhj for all h of the above type.

Moreover, we have

0 ≤ z(N) =
∑
e∈E

µev(e) =
∑
e∈E

µeh
Pe(N) = h(N)
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and hence we can assume c ≥ 0 without violating inequality (*). Run the greedy-type
algorithm from the last subsection with respect to c for all e ∈ E and let (ye, Pe)e∈E
be the sequence of its outputs. Set h :=

∑
e∈E µeh

Pe . By the bilinearity of the inner
product, it is cTh =

∑
e∈E µec

ThPe .
For x ∈ Pe let Pe(x) be the unique subpath of Pe which ends in x. From Lemmata 9.2.2
and 9.2.3 together with the fact that z ∈ core(v) and c, y, z ≥ 0 we get:

cThPe =
∑
x∈V

v(x)ye(x) =
∑
x∈Pe

v(x)ye(x)

≤
∑
x∈Pe

z(Pe(x))ye(x) ≤
∑
x∈V

z(Pe(x))ye(x) (9.1)

≤
∑
j∈N

(
∑

Pe∩γ(x)3j

ye(x))zj =
∑
j∈N

(
∑

x∈V,j∈γ(x)

ye(x))zj (9.2)

≤
∑
j∈N

cjzj = cT z.

Summand-wise inserted in cTh, the last inequality yields:

cTh =
∑
e∈E

µec
ThPe ≤

∑
e∈E

µec
T z = cT z.

A contradiction which proves the theorem. �

Theorem 9.2.2 Observe the following optimization problem (P):

min cT z s.t.

z(P ) ≥ v(x) for all x ∈ V, P ∈ P(x)

(1, ..., 1,−v(e1), ..,−v(ek))
(
z

µ

)
= 0

1Tµ = 1

z ≥ 0

The following statements are equivalent:

(i) For all c ∈ RN
+ and all e ∈ E the associated marginal vector hP of the output

path P of the greedy algorithm solves this optimization problem optimally.

(ii) W(v) ⊆ core(v)
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Proof. Assume (i) holds. Let P = x0x1...xk ∈ P and e ∈ E the sink such that P ∈ Pe.
W.l.o.g. assume that xi−1xi ∈ Ai. Choose

0 ≤ ck < ck−1 < ... < c2 < c1 < ck+1 < ... < cn.

Because of the random component of the greedy algorithm in the last step, the proba-
bility that the greedy algorithm with respect to (c, e) picks P is not zero. Hence after
finitely many tries the greedy algorithm picks P and by (i) hP is an optimal solution of
(P). In fact, hP is a feasible solution and therefore hP ∈ core(v).

Assume the other way around that (ii) holds. Let c ∈ RN
+ . Since W(v) ⊆ core(v)

the associated marginal vector hP of the output path of the greedy algorithm is in the
core. It remains to show the optimality of hP for (P).
Assume that there is z ∈ core(v) with

cThP > cT z.

In analogy to the proof of of the last theorem one gets a contradiction. �

9.2.4 Another core concept

The idea, that owners of arcs of paths, which bring the system to a certain state, should
be treated fair, seems initial. But there is another idea of fairness included in the classi-
cal core, which differs from it. The system will be in state x if and only if the owners of
direct actions that could bring the system to x agree to do so. Therefore, those players
should be treated fair. In terms of the last section, the players in γ(x) should gain at
least the worth of x. This yields another notion of the core:

core](v) := {z ∈ RN
+ |z(γ(x)) ≥ v(x);∀x ∈ V, z is efficient for v}.

Note that Lemmata 9.2.2 and 9.2.3 only depend on the algorithm given in Section
9.2.2, but not on the definition of the core. Recall the proofs of Theorems 9.2.1 and
9.2.2 and observe that the only parts in which the definition of the core was essential
are equations (9.1) and (9.2), and the definition of the linear program (P). We will be
able to adapt these results to core].

Theorem 9.2.3 Let v ∈ G. Then core](v) ⊆ W(v) holds.



136 9. CORES OF COOPERATIVE GAMES

Proof. As mentioned above, it is enough to show that the inequalities (9.1) and (9.2)
also hold for z ∈ core](v). For z, c, h as in the proof of Theorem 9.2.1 with z ∈ core]

instead of z ∈ core, the following holds:

cThPe =
∑
x∈V

v(x)ye(x) =
∑
x∈Pe

v(x)ye(x)

≤
∑
x∈Pe

z(γ(x))ye(x) ≤
∑
x∈V

z(γ(x))ye(x)

≤
∑
j∈N

(
∑

x∈Pe;j∈γ(x)

ye(x))zj =
∑
j∈N

(
∑
γ(x)3j

ye(x))zj

≤
∑
j∈N

cjzj = cT z.

Hence by exactly the same arguments as in Theorem 9.2.1 we find: core](v) ⊆ W(v).�

Theorem 9.2.4 Observe the following optimization problem (Q):

min cT z s.t.

z(γ(x)) ≥ v(x) for all x ∈ V,

(1, ..., 1,−v(e1), ..,−v(ek))
(
z

µ

)
= 0

1Tµ = 1

z ≥ 0

The following statements are equivalent:

(i) For all c ∈ RN
+ and all e ∈ E the associated marginal vector hP of the output

path P of the greedy algorithm solves this optimization problem optimally.

(ii) W(v) ⊆ core](v)

Proof. The proof reads word to word from the proof of Theorem 9.2.2. �

Thus one has two concepts of fairness and it is a matter of taste which one should be
used.
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9.3 Generalizations of the classical core to other
models

In this section we want to give examples of core-generalizations made in the literature
and we briefly show how they fit into our core concepts.

Example 9.3.1 (The first system-theoretic approach) Faigle and the author [37] al-
ready investigated a core concept in the acyclic case. However, they did not give a
concept for arbitrary acyclic graphs and only had a look onto the restricted case of
graphs that arise as selection structures (cf. Section 2.2.2).
Let N be a finite set, σ : 2N → 2N a selector and S the set of all selections induced
by σ. For i ∈ N define Ai := {(S, S ∪ i)|S ∈ S, i ∈ σ(S)} and A :=

⋃
i∈N Ai. Let

Γ(σ) := (N,S, A, (A1, ..., An), ∅) the cooperation system induced by σ. Faigle and the
author chose the second idea behind the classical core and defined for a selection
S ⊆ N by

γ(S) := {i ∈ S|S \ i ∈ S}

the set of essential players for S. Relative to that they developed the following termi-
nology of an open core of a game v : S → R:

coreoFV(v) := {z ∈ RN
+ |z(γ(S)) ≥ v(S), for all S ∈ S}.

By setting v∗ := min{z(N)|z ∈ coreoFV(v)} and restricting the open core to

coreFV(v) := {z ∈ coreoFV(v)|z(N) = v∗},

they defined a core that is always non-empty. This notion of essential players agrees
with our notion of γ(x) (x ∈ V ) in our model in the special case of selection structures.
If one assumes core](v) 6= ∅ we directly see coreFV(v) ⊆ core](v), hence this core is a
special case of core].

Example 9.3.2 (Cores on set-systems) Let (N,F , v) be a cooperative game on a set-
system F ⊆ 2N with ∅, N ∈ F . A natural definition of a core is the following

coreF (v) := {z ∈ RN
+ |z(F ) ≥ v(F ), for all F ∈ F , z(N) = v(N)}.

For instance Faigle [28], Faigle, Grabisch and Heyne [31] or Grabisch and Xie [45]
investigate core concepts of this type. Define

AS := {(F,G) ∈ F × F|G \ F = S} and N(F) := {S ⊆ 2N |AS 6= ∅}.
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We define a cooperation system relative to F with abstract player set N(F) via:

Γ(F) := (N(F),F , A :=
⋃

S∈N(F)

AS , (AS)S∈N(F), ∅}

and view v as a cooperative game on Γ(F). Then

core(v) = {z ∈ RN(F)
+ |z(PF ) ≥ v(F ), for all PF ∈ P(F ), z(N(F)) = z(N)}.

Note that the abstract players which govern arcs on a path that starts in ∅ and ends in
F ∈ F , build a partition of F . Given a vector z ∈ coreF (v) and a coalition S ∈ N(F),
define

zS := z(S).

Let PF ∈ P(F ) be a path from ∅ to F which partitions F by (F1, ..., Fk). Then

z(Pf ) =

k∑
i=1

zFi
=

k∑
i=1

z(Fi) = z(F ) ≥ v(F )

holds, since z ∈ coreF (v). Hence each allocation in coreF (v) induces a core allocation
in core(v) and therefore coreF (v) could be seen as a special case of core(v).



10 Non-cooperative cooperative
settings

This chapter wants to build a bridge between some tasks of non-cooperative and coop-
erative game theory. We will not prove any new theorems here. Instead one should
view this chapter as an outlook and inspiration for further research.
Section 10.1 recalls the model of Faigle et al. [33] for coalition formation in societies in
order to highlight an interesting idea included. This example will motivate us to define
general cooperation systems for non-cooperative games in extensive form in Section
10.2. We will identify non-cooperative games as tuples of special cooperative games
on cooperation systems. This gives a general framework to model social welfare func-
tions as cooperative games. Applying any of the allocation mechanisms introduced in
the previous chapters of this thesis to these games, one gets the answer to the question:
how should a certain social welfare be allocated to society?

Moreover, we generalize the concept of potential functions to our general model of
non-cooperative games and can adopt certain classical results that yield a relation be-
tween games with a potential function and the existence of pure equilibrium points.
Section 10.2.3 is attended to the special case of 2-player non-cooperative games and
gives a relation between strong equilibrium points and certain vectors of the open core
of a game in our model. Moreover, we expose a relation of mixed strategies and random
walks on a tensor product of certain graphs.
The last section briefly introduces the classical model of social welfare and social
choice, which was first proposed by Arrow [5]. After stating the model, we are able
to associate to any allocation mechanism a social welfare function. This yields a con-
nection between fairness criteria of social welfare functions and fairness criteria of
allocation mechanisms.

139
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10.1 Coalition formation in societies

As mentioned in Section 2.5, the model of Faigle et al. [33] yields a generalized view
on coalition formation processes. We will go into detail and present the model here in
order to point out an idea, which is included.
Let N be a finite set of players. A non-empty family x ⊆ 2N of coalitions is called a
coalition structure. A coalition system X is a set of coalition structures. We imagine
that N and its subsets are part of a society σ, which can allow or deny certain moves
x → y, x, y ∈ X . Given a public benefit function v : X → R, we assume that σ is
interested in maximizing v(x), x ∈ X and bases its decision of allowing or denying a
move x→ y on the marginal benefit v(y)− v(x) by the following axioms:

(S1) If v(y)− v(x) ≥ 0, then σ allows the move x→ y.

(S2) If v(y) − v(x) < 0, then x → y will be accepted by σ with a certain probability
a(v(x), v(y)) > 0.

Furthermore assume there is a stochastic transition matrixM ∈ RX×X , which measures
a certain weight of a move x → y relative to the other moves x → z. If mxy = 0, the
move x→ y is called infeasible.
A coalition formation process in the sense of [33] is a sequence (xt)t>0 in X , such that
xi → xi+1 is a feasible move with respect to M . By taking into account the regulatory
possibilities of σ, a(v(x), v(y)) (x, y ∈ X ), one gets the combined move matrix

axy =


mxy if v(y) > v(x) and y 6= x.

mxya(v(x), v(y)) if v(y) < v(x).

1−
∑

z 6=x axz if y = x.

(*)

In [33] one of the questions that were considered is: is there a regulation scheme
a(v(x), v(y)), such that σ regulates the coalition formation process in a way s.t. the
expected social benefit is close to its maximum? Under mild assumptions (as reversibil-
ity and weak symmetry of M) a result of Faigle and Kern [35] was used to prove that
a Metropolis regulation (aθ(v(x), v(y)) := e

v(x)−v(y)
θ , θ > 0; cf. [65]) converges to an

optimum if θ → 0 is lowered slowly enough. These mild assumptions are:

(a) The transition graph induced by M is strongly connected.

(b) M is weakly symmetric; i.e.: mxy > 0⇒ myx > 0 holds for all x, y ∈ X .
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10.1.1 A special case of a system

We use the same notations as in the last section. Set V := X and define by V the
Markovian state space associated to V . Assume there is a lowering procedure θt → 0

for t → ∞. Define Φθ0 := Id and Φθt := (aθtxy)xy∈V×V , where aθt is the regulated move
matrix relative to θt from Equation (*). Then the pair (V,Φ) yields a special case of
a (inhomogeneous) Markovian system, since Φθt is indeed a stochastic matrix for each
t > 0.
As seen in Subsection 5.5.1, Φθ induces a linear and t-efficient (f.a. t > 0) allocation
mechanism and due to its relation to the Metropolis algorithm, we call it the Metropolis
allocation mechanism relative to θ. In view of the prediction problem and Section 5.5,
together with the convergence result of Faigle and Kern and its interpretation above,
one can argue that: for a suited lowering procedure θ the coalition formation behav-
ior of a society converges to an optimum by allocating payoffs due to the Metropolis
allocation mechanism.

The motivating idea of this example

Typically the behavior of people in a society is egoistic; i.e.: each player wants to max-
imize his own profit and does not care about the social benefit of his actions. The move
matrix M from above could be interpreted as the probabilities, induced by individual
incentives to take certain actions. The individual payoff functions of certain actors
(and with that the egoistic reasons for the certain probabilities in M) are hidden in this
model, but nevertheless it is possible to make statements on the evolution of the system
and hence also on a social benefit function v expected value.

10.2 Non-cooperative games

10.2.1 Extensive-form games

Let N = {1, .., n} be a finite set of players. Assume that each player has a finite set
of strategies Si. Denote by S := ×i∈NSi the Cartesian product of all strategy sets of
all players. Moreover, assume that there are functions ui : S → R which measure
the profit of player i by ui(s) for each s ∈ S. We call the tuple Θ := (N, (Si)i∈N ) a
strategy system and the tuple (N, (Si)i∈N ,S, (ui)i∈N ) is called a non-cooperative game
in extensive-form (on Θ).
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Equilibria

In part of non-cooperative game theory one is interested in so called equilibria. A
“state” s = (s1, ..., sn) ∈ S is called a (Nash-)equilibrium if for all i ∈ N there is no
appeal to vary from s; i.e.:

ui(s1, ..., sn) ≥ ui(s1, ..., si−1, si, si+1, ..., sn)

holds. By randomizing the choices of strategies of players and extending the ui linearly
to convex combination of strategies, one gets the term (Nash-)equilibrium in mixed
strategies (named due to the famous existence result of Nash [69]). Formally: for
i ∈ N let πi ∈ ∆(Si) be a probability distribution. Define

ui(π1, ..., πn) :=
∑

(s1,...,sn)∈S

π1(s1)...πn(sn)ui(s1, ..., sn).

Then (πi)i∈N is called an equilibrium in mixed strategies if for all i ∈ N and all πi ∈
∆(Si):

ui(π1, ..., πn) ≥ ui(π1, ..., πi−1, πi, πi+1, ..., πn)

holds. Aumann [6] strengthened this notion. Due to him, an equilibrium is called
strong if for all S ⊆ N , (πi)i∈S

ui(π1, ..., πn) ≥ ui((πi)i∈N\S , (πi)i∈S)

holds.
Two games on Θ, (ui)i∈N and (ui)i∈N , are called strategically equivalent (cf. [90, p.4
ff.]) if there is 0 < k ∈ R and c ∈ Rn such that for all i ∈ N and s ∈ S

ui(s) = kui(s) + ci.

Lemma 10.2.1 ([90]) Strategic equivalence is an equivalence relation. Moreover, stra-
tegically equivalent games have the same equilibria. �

REMARK Note that this lemma directly extends to equilibria in mixed strategies and
also to strong equilibria.



10.2. NON-COOPERATIVE GAMES 143

10.2.2 Non-cooperative games as games on cooperation
structures

Assume Θ := (N, (Si)i∈N ) is a strategy system and (ui)i∈N is a non-cooperative game
on Θ. Choose s ∈ S. By setting ci := ui(s) and defining

ui(x) := ui(x)− ci, for all i ∈ N,

we get a strategically equivalent game on Θ, which is s-normalized; i.e.: ui(s) = 0.
Hence by Lemma 10.2.1 we may without loss of generality assume, that (ui)i∈N is
s-normalized for any predefined and fixed strategy state s.
Set V := S and for each i ∈ N :

Ai := {(s, t) ∈ V × V |si 6= ti and sj = tj for j 6= i}.

As before we setA := (A1, ..., An) and A :=
⋃
i∈N Ai. Then Γ := Γ(Θ) := (N, V,A,A, s)

is a cooperation system. By fixing s, we tacitly assume in the following that non-
cooperative games on Θ are s-normalized.
In view of Chapter 6.1, the following observation is interesting:

Theorem 10.2.1 Let (ui)i∈N a non-cooperative game on a strategy system Θ. Further-
more, let G = G(Γ(Θ)) = (V,A) be the transition graph associated with Θ as above.
Then G = ×i∈NGi is the Cartesian product of graphs Gi, where Gi is the complete
graph on Si without loops. Assume that ui is independent of the choices of other play-
ers, then ui is a function of Si, hence

∏
i∈N ui = u1 ⊗ u2...⊗ un.

Proof. This is direct by the definition of G and the definition of the Cartesian product
of graphs (cf. Chapter 6). �

REMARK Obviously, d+(x) = d+(y) =
∑

i∈N (|Si| − 1) for all x, y ∈ V by construction.
Hence these graphs yield a whole class of examples, in which the symmetric and the
entropy-symmetric Shapley value equal each other (cf. Lemma 5.4.2). Moreover, G is
strongly connected and to each arc xy, also its reverse arc yx is an arc in G. Hence:
given a Markovian matrix M with the property Mxy > 0 for all xy ∈ A, this matrix
fulfills the weak symmetry and strong connectedness assumptions made for the conver-
gence results of Faigle et al. [33] mentioned in the first section of this chapter.

As seen above:



144 10. NON-COOPERATIVE COOPERATIVE SETTINGS

Lemma 10.2.2 Let (ui)i∈N be a game on Θ. Then for all i ∈ N ui is a cooperative
game on Γ(Θ). Hence also u :=

∑
i∈N ui is a cooperative game on Γ(Θ). And con-

versely: each set (vi)i∈N of cooperative games on Γ(Θ) is a non-cooperative game on
Θ. �

This lemma yields a cooperative interpretation of non-cooperative games in extensive-
form: we associated to each non-cooperative game, a cooperative game u, such that u
reflects the jointly generated payoff of all players. Hence a nearby question is: how
should this jointly generated payoff be distributed? The whole theory of allocation
mechanisms developed in this thesis makes a proposal.
The social benefit function u gives a characterization of equilibrium states in terms of
marginal contributions:

Lemma 10.2.3 Let (ui)i∈N be a game on Θ which is s-normalized and such that ui ≥ 0

holds. Let u :=
∑

i∈N ui be the associated cooperative game on Γ(Θ). Then x ∈ V is
an equilibrium state if and only if u(y)− u(x) ≤ 0 for all y ∈ N+(x).

Proof. If x is an equilibrium state, ui(x) ≥ ui(y) for all y ∈ N+(x) and all i ∈ N . Hence
also

∑
i∈N ui(x) ≥

∑
i∈N ui(y). By the assumption ui ≥ 0, also the reversal is true. �

REMARK Note that the “if”-part of the lemma above is also true, if the assumption
ui ≥ 0 is dropped. Hence an equilibrium state is a local maximum of the social benefit
function u.

Example 10.2.1 If one restricts the arc-set of the graph G := G(Γ(Θ)) with respect to
a given non-cooperative game (ui)i∈N in the following way:

Au := {(s, t) ∈ Ai|ui(s) < ui(t), i ∈ N},

and if this graph (V,Au) is acyclic, its sinks are exactly the equilibrium states.

Example 10.2.2 (Potential games) Due to Monderer and Shapley [66] a potential
game is a non-cooperative game (N, (Si)i∈N , (ui)i∈N ) such that there exists a poten-
tial function P : S → R with the property:

P (s1, ..., si−1, si, si+1, ...sn)− P (s1, ..., si−1, si, si+1, ...sn)

=ui(s1, ..., si−1, si, si+1, ...sn)− ui(s1, ..., si−1, si, si+1, ...sn)
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for all i ∈ N , sj ∈ Sj and si, si ∈ Si. Shapley and Monderer proved that each potential
game has an equilibrium point (namely each strategy profile whose potential equals
max(s1,...,sn)∈S P (s1, ..., sn)). In view of Example 10.2.1, this is not as surprising as it
seems at first: consider the non-cooperative game (P )i∈N with pay-off functions equal
to P . The sinks of the graph in Example 10.2.1 are exactly the maxima of P .

Due to the result of Monderer and Shapley, it is a natural wish to search for poten-
tial functions instead of equilibrium points. However, Rosenthal [76] gave a concrete
potential function for a class of games called congestion games, without knowing the
abstract connection between potential games and equilibrium points. Hence the idea
of investigating potential functions is based on his work.

10.2.3 Non-cooperative games with two agents

In this section we restrict ourselves to the case N = {1, 2}. Let V1, V2 be finite strategy
sets of player 1 resp. 2 and u1, u2 : V := V1×V2 → R be utility functions such that ui is
s := (s1, s2)-normalized for a certain node s ∈ V . Denote by Gi the complete directed
graph on Vi without loops. Let πi ∈ ∆(Vi) be a mixed strategy of player i = 1, 2, such
that pi(si) = 0. For each vertex (x, y) ∈ Vi × Vi define πixy := πi(y)πi(x). Hence πi
induces a random walk on Gi with transition matrix Pi. By Section 6.2.1

P :=
1

2
(P1 ⊗ Id+ Id⊗ P2)

is a transition matrix of a random walk on G. Hence we find:

Lemma 10.2.4 Each pair of s-normalized mixed strategies, induces a randomized al-
location mechanism on G. �

Proposition 10.2.1 Let (π1, π2) be a strong equilibrium that is s-normalized and φ =

φα the induced randomized allocation mechanism. Set z := z(i) := (φ21(ui), φ
2
2(ui)).

Then z is a 2-efficient allocation for ui and for all (x, y) ∈ V :

z(γ(x, y)) ≥ 1

2
ui(x, y) for i = 1, 2

holds.
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Proof. Note first that by the 2-efficiency of φ, z is efficient. Hence there is a probability
distribution (µe)e∈E2

(which is independent of the games ui), s.t.

z1 + z2 =
∑

(xy)(wz)∈A

φ2(xy)(wz)(u) =
∑
e∈E2

µeui(e).

Recall that µe equals the probability of the underlying random walk to be in node e at
time 2. For all (x, y) ∈ E2 \ (s1, s2):

µ(x,y) =
1

2
π1(x)π2(y)

holds. Combining these two equations yields:

z1 + z2 =
∑

x∈V1\{s1},y∈V2\{s2}

1

2
π1(x)π2(y)ui(x, y).

πi(si) = 0 holds by assumption, hence:∑
(x,y)∈V

1

2
π1(x)π2(y)ui(x, y) =

1

2
ui(π1, π2) ≥ ui(a, b)

for all (a, b) ∈ V . The last inequality holds, since (π1, π2) is a strong equilibrium in
mixed strategies. We just proved z1 + z2 ≥ 1

2ui(x, y) for (x, y) ∈ V , but desired the
inequality z(γ(x, y)) ≥ 1

2ui(x, y). By the structure of G it holds γ(x, y) = {1, 2} for all
(x, y) ∈ V . Hence we achieved the desired inequality. �

REMARK Recall the definition of core] from Section 9. The last proposition states that
the vector 2z fulfills all inequalities of the core of the games ui, except the efficiency
condition. Since we restricted our analysis of the core to the acyclic case, no core for
games on arbitrary graphs is yet defined. One could easily think of a core of a game v
on a game system Γ = (N, V,A,A, s):

core(v) := {z ∈ RN |z(γ(x)) ≥ v(x) for all x ∈ V }.

Hence Proposition 10.2.1 yields a core vector in this sense.

10.2.4 Generalized non-cooperative games

We generalize the view on non-cooperative games to arbitrary graphs and aim define
non-cooperative games on cooperation systems. Let Γ := (N, V,A,A, s) be a coopera-
tion system s.t. A = (A1, ..., An) and let (ui)i∈N be a tuple of cooperative games on Γ.
We call the pair (Γ, (ui)i∈N ) a non-cooperative game on Γ. The terms equilibrium and
potential function can be defined analogously via:
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• x ∈ V is an equilibrium if for all y ∈ N+(x) s.t. xy ∈ Ai: ui(x) ≥ ui(y) holds.

• P : V → R is a potential function if for all i ∈ N and all xy ∈ Ai: P (y)− P (x) =
ui(y)− ui(x) holds.

Hence in the special case of a cooperation system induced by a strategy system, these
definitions coincide with the classical ones. By abstracting from sets of strategies to
arbitrary sets of actions of the players, one could cover a much wider range of non-
cooperative situations as in the extensive form. In terms of potential functions, even
the argument for proving the theorem of Monderer and Shapley stays the same.

Proposition 10.2.2 ([66]) Let (ui)i∈N be a non-cooperative game on a cooperation
system Γ. If there is a potential function P for (ui)i∈N , then there is an equilibrium
point.

Proof. Let x ∈ V with P (x) maximal. And let y ∈ N+(x) s.t. xy ∈ Ai. Then
ui(y) − ui(x) = P (y) − P (x) ≤ 0 holds by maximality of P (x). Hence ui(y) ≤ ui(x).
Thus x is an equilibrium point. �

Monderer and Shapley also gave a characterization of potential games which directly
extends to our model. Their proof does not depend on the fact, that a non-cooperative
game in extensive form is considered and reads one to one if one substitutes the classi-
cal notions with our notions. Hence we do not repeat their proof here and refer instead
to it:

Theorem 10.2.2 ([66]) The non-cooperative game (ui)i∈N admits a potential function
if and only if for all circles C in G∑

xy∈C

ui(xy)(y)− ui(xy)(x) = 0

holds. Where i(xy) ∈ N s.t. xy ∈ Ai(xy). �

Expected social welfare - a special case of the prediction problem

In the beginning of this chapter we proposed to assume u :=
∑

i∈N ui to be the func-
tion which measures the social benefit. This function is known as the utilitarian welfare
function. Also other measures are thinkable (and were already thought of [68]) depend-
ing on the concrete application. For instance, taking the maximum utility of the players,
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the minimum, the product over all utility functions or the mean utility of the players are
famous social welfare functions. The question, which social welfare function should
be used in which situation, is a wide area of research. An overview of these (and other)
topics can be found in the book of Moulin [68]. Mainly these topics were started by
the work of Arrow [5] in which also the famous Impossibility Theorem was proven by
him. This whole area of research was named welfare economics.
Besides the question, which social welfare function should be used to measure social
welfare in a certain context, also the allocation problem of allocating the social ben-
efit to certain groups of players is of interest. For instance, Hougaard and Østerdal
[53] recently proposed to allocate social welfare by allocation procedures of coopera-
tive game theory, by assuming a certain classical cooperative game is given that reflects
certain societal claims. They used the concept of the core to prove certain impossibility
theorems. Thus the idea of allocating a social benefit is not new to welfare economics.
However, our model gives the opportunity to give a direct connection to cooperative
allocation mechanisms and to directly give a cooperative setting, which suits the gen-
eration process of any social welfare.

Let (N, (Si)i∈N , (ui)i∈N ) be a non-cooperative game and let Γ be the associated cooper-
ation system, with underlying transition graph G = (V,A). Moreover, let u :=

∑
i∈N ui

be the utilitarian social welfare function on V . Assume that there is an agreement (or a
dictation) to allocate social welfare according to a certain randomized allocation mech-
anism φ. Since φ is efficient and Et = V for t > 1, there are πt(x) ∈ R such that∑

x∈V π
t(x) = 1 for all t > 1 and∑

x∈V

πt(x)u(x) =
∑
xy∈A

φtxy(u).

Hence the expected social welfare could be expressed in terms of efficient allocation
mechanisms. As seen in the chapters before (cf. Section 5.5), equivalently one could
also give a concrete evolution operator in order to model the expected behavior of the
players.

Example 10.2.3 (Maximizing social welfare at time t) Assume a society consisting
of players N = {1, ..., n} wants not to maximize a social welfare function u depending
on individual utility functions ui (i ∈ N) overall, but at a given time step t. For instance:
a company or a governmental department is called more to account for its financial sit-
uation during a legal year, as it is at the end of it. Hence one could be interested in
maximizing u at a given time t. Again let V be the underlying state space and s an em-
phasized starting state. The society aims for being in a state e ∈ argmax{u(x)|x ∈ Et}
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at time step t. In order to impulse certain actions of the players that lead to a desired
state at time t, one could give a random walk with transition matrix P which starts in
s such that ∑

e∈argmax{u(x)|x∈Et}

〈
s
∣∣ P te〉 = 1. (*)

Each transition matrix P which satisfies (*) yields an evolution process that evolves s to
a state of maximal social welfare at time t. Moreover, the randomized allocation mech-
anism induced by P yields a distribution of the worthiness of the individual actions for
the generation of the social welfare at time t.

Example 10.2.4 (Multi-agent resource allocation) We want to turn our attention to a
related example. So called multi-agent resource allocation problems. The recent survey
on multi-agent resource allocation of Chevaleyre et. al. [12] gives a nice overview
over the whole topic. However, we will just give a brief idea of the modeling of such
situations as cooperation systems here: assume there is a set of agents N = {1, ..., n}
and a set R = {r1, ..., rk} of resources (e.g. electricity, money, man-power, time ... .).
Moreover, assume that each agent i ∈ N has a utility function ui : 2R → R; i.e.: each
agent measures a certain value to each package of resources. Finding a partition of
R into n components, such that this partition is fair in some sense, is an allocation
problem in this setting. Set

V := {(R1, ..., Rn)|Ri ⊆ R, (Ri)i∈N is a partition of R}

and define an action-set of player i ∈ N by

Ai := {(S1, ..., Sn)(R1, ..., Rn)|there is j ∈ N and r ∈ Sj , s.t.

Si ∪ {r} = Ri, Sj \ {r} = Rj , Rk = Sk for k ∈ N \ {i, j}}.

We extend the functions ui and define:

ui : V → R, ui(R1, ..., Rn) := ui(Ri).

This yields a cooperative situation in the sense above and gives another view on re-
source allocation problems: agents trade resources until a certain state v ∈ V is
reached, in which nobody has incentives to trade any further. A main question in
multi-agent resource allocation is: what is a good measure for the value of a certain
partition and which partition of the resources is optimal for society? Thus the task is
again to optimize a certain social welfare function.
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Assume a certain social welfare function u (depending on the ui) is given and its fair-
ness is commonly accepted (or dictated). In view of Section 10.1, one could view
resource allocation as a random process on the graph (V,A), hence a state in which u
is maximized; i.e. a global social optimum is reached, seems to be a reasonable state
for a “good” resource allocation.

Example 10.2.5 (Allocating a surplus - a connection to social welfare)
Assume a company has investors N = {1, ..., n} and investor i has the possibility to
invest a maximum of mi Euros. Hence there are the following investment states the
company is confronted with:

V := {0, 1, ...,m1} × ...× {0, 1, ...,mn}.

Assume that investments are not symmetric; i.e.: investor i could probably invest his
money bounded on a certain purpose. Hence the state (1, 2, 3) probably reflects an-
other investment situation for the company as the state (3, 2, 1) does. Moreover, as-
sume that each investor can withdraw his investment after a certain time period or
invest more money. The company predicts its gains depending on the certain states
and in turn the payoffs of the individual investors in advance. Hence investor i is
assured a payoff of ui(x) if the investment state x ∈ V comes true. However, be-
cause of external unpredictable circumstances, the profit c(x) of the company is strictly
greater than the predicted profit cpred(x). Hence the company got a surplus u(x) =

c(x)− cpred(x)−
∑

i∈N ui(x) depending on the state x ∈ V which was unexpected. The
company wants to share this unexpected surplus with its investors in order to keep the
investors willing to do further investments.
Thus the company has a social welfare allocation problem and could use the allocation
mechanisms presented in the previous chapters to allocate its surplus to the investors.

10.3 Social welfare

The following setting is essentially due to Arrow [5]. Let V be a finite set of alterna-
tives, N = {1, ..., n} a finite set of players and for i ∈ N let ≺i be a linear ordering of V
which reflects the preferences of player i over the alternatives in V . Moreover, assume
that there is s ∈ V such that s is a joint minimum of ≺i. To each ≺i we associate a
utility function ui : V → R≥0, such that ui(s) = 0, and for all x, y ∈ V : ui(x) ≤ ui(y)

holds if x ≺i y. A social welfare function is a function

W : (RV )n → RV ,
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which maps any tuple of utility functions to a mutual social utility function. One task
of welfare economics is to define social welfare functions that fulfill certain fairness or
rationality criteria.
REMARK Note that in welfare economics the domain of W is often assumed to be a
subset of (RV )n and that players preferences are also given relative to these subsets
(cf. [68]). By assuming W to be defined on (RV )n, we implicitly assume the so called
unrestricted domain axiom. However, we will not go into these details and for our
purposes it is enough to define welfare functions on (RV )n instead.

10.3.1 Examples of fairness criteria

A social welfare function W satisfies non-dictatorship (ND) if there is no i ∈ N such
that for all (uj)j∈N ∈ (RV )n and all x, y ∈ V

ui(x) ≤ ui(y)⇒ W (u1, ..., un)(x) ≤ W (u1, ..., un)(y)

holds; i.e.: the social preferences are not dictated by a single players preferences.

W is independent of irrelevant alternatives (IIA) if for all x, y ∈ V and all (uj)j∈N ,
(uj)j∈N ∈ (RV )n

(for all i ∈ N : ui(x) < ui(y)⇔ ui(x) < ui(y))⇒ W ((uj)j∈N )(x) < W ((uj)j∈N )(y),

holds.

W satisfies unanimity (U) if for all x, y ∈ V :

(∀i, j : ui(x) ≤ ui(y)⇔ uj(x) ≤ uj(y))⇒ W ((uj)j∈N )(x) ≤ W ((uj)j∈N )(y)

holds. Arrow proved in [5]:

Theorem 10.3.1 (Impossibility Theorem of Arrow) If W fulfills (U) and (IIA), then
it does not fulfill (ND). Hence there is a dictator. �

W satisfies anonymity if for each permutation σ ∈ Sym(N), all x, y ∈ V and all
(ui)i∈N ∈ (RV )n the following holds:

W ((uj)j∈N )(x) < W ((uj)j∈N )(y)⇔ W ((uσ(j))j∈N )(x) < W ((uσ(j))j∈N )(y).
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10.3.2 Welfare functions induced by allocation mechanisms

By investigating non-negative utility functions instead of linear orderings, we abstrac-
ted from the classical model of Arrow. In order to apply our theory of cooperative
situations to social welfare functions, we will additionally consider a graph on V . We
will restrict ourselves to the case where G = (V,A) is the complete directed graph on
V without loops; i.e.: A := V × V \ {(x, x)|x ∈ V }. If it is necessary for a concrete
application to restrict this graph any further, there should be no formal reason not to do
so, as long as G is s-connected.
Let φ : G → RA be an allocation mechanism. We propose a social welfare function
associated to φ and define it point-wise on V . Therefor let x ∈ V and (ui)i∈N a tuple of
utility functions as above. Moreover, let t := |V |. Define

Wφ(u1, ..., un)(x) :=
1

N

∑
i∈N

∑
u∈N−(x)

φtux(ui).

ThusWφ(u1, ..., un)(x) measures the value of the in-arcs of x according to φ. For further
cooperative considerations it could be useful if Wφ(u1, ..., un) again is a cooperative
game (i.e.: is s-normalized). One gets this property by simply assuming s to be a
source in G. But we will not do so. We conclude this chapter by giving two properties
of Wφ:

Proposition 10.3.1 Wφ satisfies anonymity for all allocation mechanisms φ. More-
over: if φ is linear, Wφ permits no dictators.

Proof. Anonymity is clear by definition ofWφ, since permuting the summands does not
change the sum. Let φ be linear. Assume there is a dictator i ∈ N . Consider the utility
function ui(x) := 1 for all x ∈ V \ s. Hence i is indifferent between all alternatives. Let
x, y ∈ V . Since i is a dictator, it follows: Wφ(u1, ..., un)(x) = Wφ(u1, ..., un)(y) for all
utility functions uj (j 6= i). Obviously this yields a contradiction by the definition of
Wφ. �



11 Open problems & perspective

In this thesis we presented a general model for settings, in which agents can cooperate.
We gave a general algebraic framework for stating allocation and prediction problems
of cooperative settings, in which the modeling of non-acyclic situations is possible.
Even non-static, time-discrete cooperative circumstances could as well as static ones
be represented by our model. The model puts the actions of players in the center of
interest, instead of the players themselves.

Initially we aimed for a general model for cooperative games that covers time-depen-
dent and dynamic cooperative settings. In Chapter 3 and 4 we achieved parts of this
goal and transported some seminal questions of cooperative game theory to a much
more general framework. Chapter 5 gave concrete and time-dependent solutions to
the allocation problem. We developed solutions to the allocation problem in terms
of randomized allocation mechanisms and were able to characterize these allocation
mechanisms by certain fairness criteria. We generalized Weber’s classical value theory
and, moreover, we extended it by investigating generalized stochastic matrices. This
yields a new class of fair allocation mechanisms, even in the classical case.
We uncovered a relation between tensor products of cooperation systems and Cartesian
products of the underlying transition graphs in Chapter 6. Moreover, we proposed a
composition of randomized allocation mechanisms on different systems, in order to
construct a fair allocation mechanism on their tensor product.

We studied allocation mechanisms that are not necessarily efficient in Chapter 7 and
gave several characterizations by means of various fairness axioms. After that we in-
troduced the Cesàro value of an allocation mechanism, which gives another notion of
fairness over time by taking certain Cesàro means. Even if arbitrary allocation mech-
anisms need not to converge, we achieved the convergence of a very large class of
Cesàro values (cf. Theorem 7.2.2).

In Chapter 8, we showed, how a general model of quantum random walks on graphs
could be used to propose a whole new class of linear and efficient, but not necessarily
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ratio fair, allocation mechanism: quantum allocation mechanisms. On the basis of the
concepts developed in Chapter 7 we proved the convergence of all Cesàro values of
quantum random walks.

We proposed two different ideas for cores in our general framework in Chapter 9 and
proved their inclusion in the Weber-set. After that we had a look on non-cooperative
games and could identify non-cooperative games in extensive form as a special case
of games on cooperation systems. By that we jointly modeled cooperative and non-
cooperative games. We also pointed out relations to welfare economics and gave a first
idea of a social welfare function that is induced by a linear allocation mechanism.

We will state open problems and questions for future research in the spirit of the fol-
lowing quotation:

“As long as there is something left to do, we have not done anything.”

-unknown author.1

Non-Markovian evolution

In view of Chapter 7 and especially of Theorems 7.1.2 & 7.2.2 plenty of linear and
ratio fair allocation mechanisms with convergent Cesàro values are imaginable. For in-
stance one could study allocation mechanisms φ = φO induced by orthogonal matrices
O ∈ RV×V . Since O has euclidean norm equal to 1, the Cesaro value of φ converges.
Orthogonal matrices preserve the lengths of vectors. Hence O gives also rise to an
orthogonal evolution operator on the orthogonal state space V := {v ∈ RV | ‖v‖ = 1}.
These states could also be interpreted in a quantum mechanical spirit as probabilities,
since 1 = ‖v‖ = (

∑
x∈V |vx|

2)
1
2 . Are there concrete examples of cooperative processes,

which are describable by orthogonal matrices? Is there a characterization of orthogo-
nal allocation mechanisms in terms of fairness axioms? Even other state-spaces and
evolution operators are thinkable by investigating another norm than the euclidean one.
In view of Chapter 8, it is desirable to characterize quantum allocation mechanisms by
means of fairness criteria. To prove that quantum allocation mechanisms enjoy certain
properties is more or less easy by the concrete representation of them. But identifying
an allocation mechanism to be induced by a quantum random walk, seems to be a much
harder task.

1even if two websites indicate that Bertrand Russell is the originator of this quotation, we failed to
prove this claim. Hence we refer to the author of this statement as unknown.
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Convergence & Mixing times

As mentioned in the last remark of Section 7.2.2 the assumption of G being strongly
connected in order to achieve convergence of Cesàro values is unsatisfying. Is this as-
sumption avoidable or could it be weakened?

Except for Example 5.6.1 we neither gave a fairness interpretation of convergence of
an allocation mechanism, nor of its speed of convergence. Is a convergent allocation
mechanism in some sense fairer than a divergent one? Is it fairer, if it converges fast or
if it converges slow? Chung [20] gave a model for measuring speed of convergence of
random walks on directed graphs by means of inequalities relying on certain eigenval-
ues of a matrix, associated to the transition matrix of the considered random walks. Is
there a cooperative interpretation of those eigenvalues and the induced inequalities?

Compromise values

Let Γ := (N, V,A,A, s) be a cooperation system s.t. A = (A1, ..., A|N |). Assume there
are reasonable time-dependent upper and lower bounds lt and ot such that it is an agree-
ment that a solution φt should suffice:

ltxy(v) ≤ φtxy(v) ≤ utxy(v), (*)

for all xy ∈ A, t > 0 and v ∈ G. Moreover, assume that at each time t the value
P t(v) ∈ R should be allocated (think for instance of the expected value of the t-
endpoints relative to a given probability distribution). Then there exists λt(v) ∈ R
such that λt(v)(

∑
xy∈A l

t
xy(v)) + (1− λt(v))(

∑
xy∈A u

t
xy(v)) = P t(v). If l and u admit a

λt ∈ R such that it is independent of v, we say that l and u admit a t-compromise and
call

φt = λlt + (1− λ)ut

the t-compromise value of u and l. The idea of compromise values was first devel-
oped in the context of bargaining problems by Kalai and Smorodinsky [58], later this
idea was adapted for the case of non-transferable utility games [18] and for classical
cooperative games [88] by Tijs et al. The above construction gives a first idea of a
generalization of compromise values in the general case of cooperation systems. How
could fairness ideas of concrete compromise values be generalized to cooperation sys-
tems? Is there a characterization of upper and lower bounds u and l such that they
admit a compromise?
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Non-cooperative settings

Chapter 10 gave a first idea of connecting cooperative allocation mechanisms with the
construction of social welfare functions. Also other natural welfare functions could be
associated with an allocation mechanism φ instead of the proposed one. For instance,
one could measure the value of the out-arcs of a vertex instead of the in-arcs, or one
could take the average value of the in- and the out-arcs.
However, this relation opens the door to a wide array of questions: is a certain welfare
function associated to φ more reasonable than another? Is there a relation between
fairness criteria for φ and Wφ? Do randomized allocation mechanisms φ yield a ran-
domized interpretation in terms of social welfare? Could cooperative game theory learn
something from impossibility theorems as Theorem 10.3.1 in this context?

Core & Weber-set

In Chapter 9 we only gave core concepts for games on acyclic cooperation systems.
Thus natural questions are: are there extensions of these concepts to arbitrary graphs?
What is a good notion for a time-dependent core concept?

In classical cooperative game theory the fact that the Weber-set of a game is a sub-
set of the core of the game if and only if the game is supermodular, is very famous.
Essentially this result is due to Edmonds [27], who studied certain polyhedra and sub-
modular functions in a non-game-theoretic context. In the case of general cooperation
systems: is there a nice property of characteristic functions v ∈ G which characterizes
the above mentioned inclusion?

Invariants & continuous times

Attention: this paragraph uses some terms of physics which are not explained any fur-
ther. In physics a theorem of Noether became very famous. We will give just the
informal idea of its statement here: “To every system symmetry there is an invariant.”.
This theorem is the mathematical reason for several conservation-laws in physics (e.g.
energy conservation, impulse conservation,...). Mathematically it means: whenever a
Hamilton operator commutes with a matrix a certain measurement (i.e. expected value)
is conserved over time. Faigle [29] suggested to adapt this idea and to study operators
which commute with the evolution operator of a system (i.e. with its defining matrices).
A main problem is to prove a discrete version of a theorem like the Noether Theorem.
Since times are continuous in quantum mechanics one could consider the derivative of
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a wave function in time. We investigated discrete time steps, hence differential calculus
w.r.t. to time is not available to us. It seems natural to avoid this problem by investigat-
ing difference equations instead of differential equations, in order to achieve a discrete
Noether Theorem. How could this be done? And if it can be done, what is a cooperative
interpretation of the conserved quantities? Besides invariants: are there any concrete
applications of cooperative game theory in the sense of our model to physics?

Another aspect is interesting about continuous times: is there a generalization of our
model to the time-continuous case? And if so, is this generalization compatible with
the relation between discrete time Markov chains and continuous time Markov chains?
Could the whole theory of transition graphs be embedded into a setting of so called
continuous graphs?

This list of topics and question is by no means complete but it reflects and highlights
the open problems that are perceived as interesting by the author.
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List of symbols

We list certain symbols that appear regularly in this thesis. In order to keep this list
short, let V be a finite set, G = (V,A) be a directed graph on V and N = {1, ..., n} a
finite set of players. Moreover, let x ∈ V and xy ∈ A.

N+(x), N−(x), d+(x), d−(x) the out- resp. in-neighbors of x
and the out- resp. in-degree of x.

s an emphasized start vertex in V
t a discrete time t = 0, 1, 2, ...

2N the power-set of N
gcd(l1, ..., lm) the greatest common divisor of natural numbers l1, ..., lm
K a subfield of C
z(S) sum over the S-components of a vector z ∈ KN

Sym(N) the symmetric group of N
∂ the marginal operator
Pt set of all paths of length t starting in s
P(x) set of all paths that end in a fixed vertex x
P set of all paths starting in s
Et set of endpoints of all paths of length t
AS set of arcs, governed by a coalition S ⊆ N

Ai set of arcs governed by {i} ⊆ N

A(t), Ai(t) set of arcs of all paths of length t resp. A(t) ∩ Ai
A a partition of A in blocks AS (S ⊆ N)
V a state space
Γ a cooperation system
G,G(Γ) the space of all cooperative games on Γ

(V,Φ) a system on V with evolution operator on Φ

hP (v), hP the marginal-worth vector relative to
a path P ∈ P and v ∈ G
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168 List of symbols

φ an allocation mechanism
φt the allocation vector in KA induced by φ at time t
φtxy(v) the payoff of xy ∈ A at time t relative to φ and v ∈ G
φ the Cesàro value of an allocation mechanism φ

γ(x) the set of essential players relative to a vertex x ∈ V
core(v) the path-core relative to v ∈ G
core](v) the essential player core relative to v ∈ G
W(v) the Weber-set with respect to v ∈ G
G⊗H the Cartesian product of two graphs G and H
A⊕B the Kronecker-sum of two quadratic matrices A,B
Φ�Ψ the concatenated evolution operator of evolution operators Φ and Ψ

V ⊗W the tensor product of systems V andW
H(φ) entropy of a randomized allocation mechanism φ

I(G) incidence algebra of the graph G
S := S(KA) the space of all positive self-adjoint (|A| × |A|)-matrices
|ψ〉,

∣∣ψt〉 a wave function, resp. an evolved wave-function w.r.t. an unitary matrix
pt(x|ψ) probability to be in state x ∈ V at time t w.r.t.

a quantum walk that started in |ψ〉
Px the projection operator onto the neighborhood of a vertex x ∈ V
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randomized, 62
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bicooperative game, 80

Cartesian product, 83
Cartesian product of graphs, 83
Cesàro average, 102
Cesàro value, 102

convergence of, 104, 110
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coalition formation, 14
in societies, 140

coalition structure, 140
coalition system, 140
coalitional value, 74
compromise value, 155
congestion game, 145
cooperation system, 27
cooperative game

classical, 8, 19
in partition function form, 14, 29
on cooperation systems, 28
tensor decomposable, 86

core, 129, 146
for games on selection structures, 137
for games on set-systems, 137
classical, 128
essential player, 135
path-, 129

dictator, 151
Dirac game, 33
Dirac notation, 19
dummy axiom, 99, 100

classical, 96
dummy player, 96

efficiency axiom, 54
t-efficiency, 49
classical, 42
relative to a game, 129

entropy, 65
of an allocation mechanism, 66

equilibrium, 142, 147
in mixed strategies, 142
strong, 142

ergodic theorem, 105
essential player, 131

evolution
(generalized) Markovian, 22
non-Markovian, 154
operator, 22

evolution operator
of a quantum random walk, 119
of concatenated state spaces, 82

flow, 26
conservation, 26

Frobenius number, 105

game system, 11
graph factorization, 85
greedoid, 11
greedy algorithm, 131
ground state, 17

Harsanyi Dividends, 38

impossibility theorem, 151
incidence algebra, 32

of a graph, 34
independ. of irrelevant alternatives, 151
individual value, 75

Kronecker-product, 82
Kronecker-sum, 82

limiting distribution, 70
linearity axiom, 47

classical, 43

Möbius function, 38
Möbius-inversion, 38
marginal operator, 47
marginal worth, 43
marginal-worth vector, 130

classical, 128
Metropolis regulation, 140
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mixed strategy, 142
monotonic game, 44
monotonic player, 44
monotonicity axiom, 44, 48
multi-choice games, 12

Nash-equilibrium, 142
in mixed strategies, 142
pure, 142
strong, 142

negative probability, 18, 23
non-cooperative game, 141, 146

as games on cooperation systems, 143
generalized, 146
in extensive form, 141
with 2 players, 145

non-dictatorship, 151
non-negativity axiom, 48
null player, 43
null-player axiom, 43

orthogonal evolution, 154

path, 25
probability, 62

period, 69
Perron-Frobenius theorem, 71
potential function, 144, 147
potential game, 144
prediction problem, 16
projection operator, 118

quantum allocation mechanism, 121
convergence of a, 122

quantum random walk, 116
convergence of a, 123
on regular graphs, 116
on arbitrary graphs, 117

random order value, 45
random walk, 69

aperiodic, 69
convergence of a, 72
irreducible, 70
period, 69

ratio-fairness, 57
reducible matrix, 70
resource allocation, 149

selection, 10
self-adjoint matrix, 115

eigenvalues of a, 116
spectral representation, 116

semi-allocation mechanism, 96
semi-value, 96
Shapley value, 63

classical, 44
convergence, 73
entropy-symmetric, 66, 73, 91
symmetric, 64, 73
weighted, 75

simple game, 86
single action property, 129
sink, 25
social welfare function, 150

fairness of a, 151
ind. by an allocation mechanism, 152

source, 25
state, 18

starting-, 27
state space, 18

concatenation of, 80
dimension of a, 18
generalized Markovian, 18
Markovian, 18
orthogonal, 154
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quantum, 119
stationary distribution, 69
strategic equivalence, 142
strategy system, 141
strong s-connectedness, 25
superposition, 17
symmetry axiom, 64

classical, 43
system, 23

factorization, 85
irreducible, 85
Markovian, 67
reducible, 85

tensor product
irreducibility, 84
of allocation mechanisms, 88
of classical cooperative games, 80
of evolution operators, 82
of graphs, 83
of matrices, 82
of states, 81
of systems, 83
reducibility, 84

time efficiency, 53
time horizon, 27
transition graph, 23
transition matrix, 22

unanimity axiom, 151
unanimity game, 33, 36

classical, 33
unitary matrix, 114, 115

wave function, 114
weak symmetry, 140
Weber value

classical, 45

Weber-set, 130, 131
classical, 128

welfare function
utilitarian, 147
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