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Kurzzusammenfassung

Heutige Schaltungsmodelle verlieren in der Schaltungssimulation aufgrund der rasanten
technologischen Entwicklung, Miniaturisierung und höherer Komplexität von integri-
erten Schaltungen zunehmend ihre Gültigkeit. Dies motiviert die direkte Kombination
von Schaltungssimulation mit Bauelementesimulation für kritische Schaltungsteile.
In dieser Arbeit betrachten wir ein Modell von partiellen Differentialgleichungen für
elektromagnetische Bauelemente - modelliert durch die Maxwell-Gleichungen - gekop-
pelt mit differential-algebraischen Gleichungen, welche die einfachen Schaltungselemente
einschließlich Memristoren und die Topologie der Schaltung beschreiben.
Wir untersuchen das gekoppelte System nach Diskretisierung der Maxwell-Gleichungen
in einer Potentialformulierung im Ort durch die Finite Integration Technik, die eine
gängige Methode in der Praxis ist. Das ortsdiskretisierte gekoppelte System ist als
differential-algebraische Gleichung mit einem proper formulierten Hauptterm modelliert.
Es werden topologische Bedingungen sowie Modellierungsbedingungen, die sicherstellen,
dass der Index der differential-algebraischen Gleichung nicht größer als zwei ist, präsen-
tiert. Es zeigt sich, dass der Index abhängig von der gewählten Eichbedingung für die
Maxwell-Gleichungen ist.
Für die erfolgreiche numerische Integration von differential-algebraischen Gleichungen
spielt die Index-Charakterisierung eine entscheidende Rolle. Der Index kann als Maß für
die Empfindlichkeit der Gleichung gegenüber Störungen der Eingangsfunktionen und
numerischer Schwierigkeiten, wie der Berechnung von konsistenten Anfangswerten für
Zeitintegration, gesehen werden.
Wir verallgemeinern Indexreduktionstechniken für den Traktabilitätsindex für eine all-
gemeine Klasse von differential-algebraischen Gleichungen. Mit Hilfe der Indexreduktion
erhalten wir lokale Lösbarkeits- und Störungsaussagen für differential-algebraische Gle-
ichungen mit einem proper formulierten Hauptterm vom Index-2, und wir geben einen
Algorithmus an, um konsistente Initialisierungen für das ortsdiskretisierte gekoppelte
System zu bestimmen.
Schließlich werden die Ergebnisse durch numerische Experimente verifiziert.





Abstract

Today’s most common circuit models increasingly tend to loose their validity in cir-
cuit simulation due to the rapid technological developments, miniaturization and higher
complexity of integrated circuits. This has motivated the idea of combining circuit
simulation directly with distributed device models to refine critical circuit parts.
In this thesis we consider a model, which couples partial differential equations for electro-
magnetic devices - modeled by Maxwell’s equations -, to differential-algebraic equations,
which describe basic circuit elements including memristors and the circuit’s topology.
We analyze the coupled system after spatial discretization of Maxwell’s equations in
a potential formulation using the finite integration technique, which is often used in
practice. The resulting system is formulated as a differential-algebraic equation with a
properly stated leading term. We present the topological and modeling conditions that
guarantee the tractability index of these differential-algebraic equations to be no greater
than two. It shows that the tractability index depends on the chosen gauge condition
for Maxwell’s equations.
For successful numerical integration of differential-algebraic equations the index char-
acterization plays a crucial role. The index can be seen as a measure of the equation’s
sensitivity to perturbations of the input functions and numerical difficulties such as the
computation of consistent initial values for time integration.
We generalize index reduction techniques for a general class of differential-algebraic
equations by using the tractability index concept. Utilizing the index reduction we de-
duce local solvability and perturbation results for differential-algebraic equations having
tractability index-2 and we derive an algorithm to calculate consistent initializations for
the spatial discretized coupled system.
Finally, we demonstrate our results by numerical experiments.
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1 Introduction

Insofern sich die Sätze der Mathematik auf die
Wirklichkeit beziehen, sind sie nicht sicher, und
insofern sie sicher sind, beziehen sie sich nicht auf
die Wirklichkeit.

Albert Einstein, 1879-1955

In various fields such as automotive industry or telecommunication technological progress
is mainly driven by a rapid development of integrated circuits. The enormous growth of
performance is based on a higher complexity and packing density of integrated circuits
as well as decreasing spatial scales and increasing frequencies of electronic devices.
The miniaturization of the circuits causes an increasing power density, which in turn
makes it necessary for the prediction of the circuits behavior to take, amongst others,
into account heating effects, electromagnetic fields and an accurate switching behavior
of semiconductors.

A common tool to predict the behavior of circuits and to reduce the costs of development
is circuit simulation. Due to the complexity, which arises from up to millions of circuit
elements it is absolutely necessary to keep the model sizes as low as possible. The
consequences are contradicting demands in circuit simulation: On the one hand the
physical behavior of the circuit needs to be described correctly whereas on the other
hand the computing time must be reasonably small.
A well established approach, which tries to fulfill both requirements is the modified nodal
analysis, see [CL75, CDK87, DK84]. The modified nodal analysis models the circuit with
basic elements only, such as capacitors, resistors, inductors, voltage and current sources.
Complex elements such as semiconductors or even conductors and their interactions,
respectively, are modeled by equivalent circuits consisting of basic elements only. The
modeling of equivalent circuits in an appropriate manner is a challenging task leading
to hundreds of model parameters, see [DF06].

Due to decreasing spatial scales and increasing frequencies the device behavior is also
influenced by the surrounding circuitry, for example, by inductive coupling. It happens
with ever greater frequency that these equivalent circuits are not accurate enough and
a refined modeling of a particular device is necessary. Consequently, for complex cir-
cuits it is recommended to directly combine circuit simulation with device simulation for
particular devices. However, due to up to millions of circuit elements belonging to one
circuit we are restricted to equivalent circuits for most devices. There is a wide range
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of modeling levels from linear and nonlinear equations to partial differential equations
depending on the effects to be described, for example, heating [Bar04, Cul09], semicon-
ductor behavior [Tis04, Bod07] and electromagnetic fields [Gün01, Ben06, Sch11].

From the circuit designer point of view not only new manufacturing technologies have
a great impact on future integrated circuits but also the development of new circuit
elements. Such a new element that most likely will be of huge impact is the memristor.
In 1971 Leon Chua postulated the theory of such an element to be existing, but only
in 2008 the first physical model was released by HP Labs, see [Chu71, SSSW08]. Apart
from the three basic elements, namely, the capacitor, the resistor and the inductor,
already discovered in the 18th and 19th century, the memristor is considered the fourth
basic element. This holds true as the behavior of the memristor cannot be reproduced
by any circuit using only the other three basic elements, see [Chu71].

The circuit models including refined devices and memristors lead to systems composed of
linear, nonlinear and ordinary differential equations after applying a method of lines. For
a reliable simulation of these systems we are interested in the perturbation sensitivity.
Thus, modeling these systems as differential-algebraic equations with a properly stated
leading term is an appropriate approach since for certain classes of such differential-
algebraic equations it has been shown that backward differentiation formulas and Runge-
Kutta methods are stability preserving, see [HMT03a, HMT03b].

There are several different index concepts to characterize a differential-algebraic equa-
tion. All concepts are a measure of the difficulties to be found in the numerical simulation
such as sensitivity to input perturbations. A direct measure of this sensitivity is the per-
turbation index, which takes perturbations of the right hand side into account. These
perturbations result, for instance, from round-off and Newton method errors. However,
the perturbation index in general is difficult to determine. For our investigations we
choose the tractability index concept to determine the differential-algebraic equation’s
sensitivity with respect to perturbations.

This thesis is based on three basic issues, namely, differential-algebraic equation theory,
structural investigations of circuits including memristors and structural investigations
of circuits including refined electromagnetic devices modeled by Maxwell’s equations.

The first basic issue is the differential-algebraic equation theory, which is the basis for our
later analysis of the extended circuit models. We familiarize with differential-algebraic
equations with a properly stated leading term and the index concept up to index-2 used in
this thesis. For a complete overview on that topic we refer to [LMT13]. The differential-
algebraic equation analysis is guided by a generalization of the index reduction technique
by differentiation of differential-algebraic equations without a properly stated leading
term to differential-algebraic equations with a properly stated leading term lowering the
index down from two to one. We show that the index reduced differential-algebraic
equation has index-1 and a properly stated leading term. Utilizing the index reduction
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1 Introduction

we deduce local solvability and perturbation index-2 for differential-algebraic equations
having index-2 from well-known index-1 results given in [LMT13]. One of the difficul-
ties in solving differential-algebraic equations numerically is to determine a consistent
initial value to start the integration. To solve this problem we derive an algorithm to
calculate consistent initializations for differential-algebraic equations having index-2 and
a properly stated leading term by an approach, which is a generalization of the results
of [Est00]. All results are derived under sufficient structural conditions.

The second basic issue is the structural investigation of circuits including memristors. We
introduce the characteristic equations and topology for capacitors, resistors, inductors,
voltage and current sources known from literature, [CDK87, DK84], and, in addition, for
the memristor, [Chu71]. For circuits without memristors we introduce the modified nodal
analysis and well-known topological index results of [Tis99, ET00]. For a potential use
of the memristor in circuit simulation we need to embed the memristor in actual circuit
models. The nodal analysis method has already been extended by memristor models.
The index of the resulting differential-algebraic equation is investigated in [Ria10]. In
this thesis we extend the modified nodal analysis by memristor models and the structural
properties of resulting differential-algebraic equation are presented, which leads to an
extension of the topological index results for circuits without memristors.

The third basic issue is the structural investigation of circuits including refined devices
modeled by Maxwell’s equations. First, we investigate Maxwell’s equations. The par-
tial differential equations have been postulated by James Clerk Maxwell in the middle
of the 19th century and form the basic of the modern theory of electromagnetics, see
[Max64]. We take Maxwell’s equations in a potential formulation into account which
are very popular in a broad filed of applications. Various spatial discretizations have
been studied, see [BP89, StM05, Cle05, CMSW11], and common spatial discretizations
are the cell method [Ton01], a finite-volume method [MMS01] and variants of the finite-
element method [Ned80, Bos98, Göd10]. In the work presented we opt for the finite
integration technique introduced in 1977 by Thomas Weiland [Wei77] for spatial dis-
cretization. Weiland generalized a finite-difference time-domain-scheme of Kane Yee
[Yee66], also known as leap-frog scheme, to solve Maxwell’s equations. The potential
approach results in a suitable description of Maxwell’s equations and provide a natural
link to the concept of potential differences used in circuit simulation. However, the po-
tentials are not uniquely defined and a gauge condition is needed, see [Jac98, Bos01].
For the finite integration technique, grad-div formulations based on the Coulomb gauge
are already well known, see [CW02, BCDS11]. In this thesis we introduce a new class
of gauge conditions in terms of the finite integration technique motivated by a Lorenz
gauge formulation. After spatial discretization we analyze the structural properties of
resulting differential-algebraic equation formulated with a properly stated leading term.
It turns out that the index of the differential-algebraic equation depends on the cho-
sen gauge condition but without exceeding index-2. To concentrate the link to circuit
simulation a suitable boundary excitation and current formulation is deduced. Next
we investigate coupled electromagnetic device/circuit models with spatially resolved
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electromagnetic devices, where the electromagnetic devices are described by Maxwell’s
equations in a potential formulation spatially discretized by the finite integration tech-
nique. In literature coupled magnetoquasistatic device/circuit models are investigated in
[HM76, KMST93, DHW04, DW04] and the index of the resulting differential-algebraic
equations is discussed in [Tsu02, Ben06, BBS11, Sch11] using certain conductor models
and different circuit configurations. These results extend the topological index conditions
for the modified nodal analysis given in [Tis99, ET00]. Our index analysis for coupled
electromagnetic device/circuit models is not restricted to certain conductor models and
we do not suppose that the magnetoquasistatic assumption holds. We deduce that
the index of the coupled system depends on the chosen gauge. For the coupled elec-
tromagnetic device/circuit model using Lorenz gauge we extend the topological index
conditions for the modified nodal analysis. The Coulomb gauge always results in an
index-2 differential-algebraic equation.

All considered differential-algebraic equations from our application areas have a common
structure such as a properly stated leading term, constant projectors onto/along certain
subspaces, linear index-2 variables and do not exceed index-2. That is, for all resulting
differential-algebraic equations we obtain solvability results, perturbation index results
and we can determine consistent initial values. In particular, we show that the per-
turbation index coincides with the tractability index and does not exceed perturbation
index-2.

The first chapter is devoted to the description of the differential-algebraic equations
with a properly stated leading occurring in this thesis. The analysis is guided by the
tractability index concept up to index-2. We investigate index reduction, solvability and
perturbation results. Methods for computing consistent initializations are derived. The
following chapter introduces the fundamentals of Maxwell’s equations using a potential
formulation and discusses boundary and different gauge conditions. We briefly introduce
the finite integration technique for spatial discretization. The structural properties of
the formulated differential-algebraic equations with incorporated boundary conditions
are discussed and we introduce a new class of gauge conditions formulated for the finite
integration technique. Index results using different gauge conditions are derived. Chap-
ter 3 is devoted to a detailed network analysis. The modified nodal analysis including
memristor models is derived and new topological index criteria and structural properties
of the resulting differential-algebraic equations are deduced. In chapter 4 we investigate
the coupled system consisting of circuits refined by spatially resolved electromagnetic
devices modeled by the modified nodal analysis and Maxwell’s equations. We generalize
the topological index criteria for the modified nodal analysis for this coupled system and
present its structural properties. The final chapter provides proof-of-concept examples
to verify the different models including memristors and electromagnetic devices. Ap-
pendix A and B subsume the basic aspects of linear algebra and graph theory relevant
for this thesis. Appendix C collects auxiliary calculations needed to prove the index
results.
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2 Differential-Algebraic Equations

Differential/Algebraic Equations are not ODE’s.

Linda Petzold, [Pet82]

Two major application fields of differential-algebraic equations are the simulation of
electric networks and constrained systems. These application areas in engineering can
be seen as important impulse to start with a systematic differential-algebraic equation
research, since failures in numerical simulations have provoked to analyze these equa-
tions.
During the last three decades considerable progress in differential-algebraic equation
theory has been made and we refer to [GM86, HLR89, BCP96, ESF98, AP98, HNW02,
RR02, KM06, Ria08, LMT13].

Mostly differential-algebraic equations occur because of simplifications of the real prob-
lem. In electric networks Kirchhoff current law gives rise to algebraic relationships. If
these were modeled either as they are really found or with less idealizations we would
obtain an ordinary differential equation or a partial differential equation. In mechani-
cal systems the simple pendulum model has a fixed constraint on the pendulum length
whereas any real material will stretch very slightly, see [Gea06].

Differential-algebraic equations are known to be ill-posed in the sense of Hadamard.
This ill-posedness is characterized by the differential-algebraic equation index. Briefly
speaking, the index can be seen as a measure of the systems’ sensitivity to input per-
turbations, as a measure of the difficulties to be found in the numerical simulation and
as the difference to an ordinary differential equation. Depending on the point of view
several index definitions exist which mostly generalize the Kronecker index in the linear
time-independent case.

In this chapter we introduce the basic notation and tools for the analysis of differential-
algebraic equations with a properly stated leading term which occur in this thesis. First,
we establish the abstract term of a differential-algebraic equation and point out the
main problems we face when dealing with differential-algebraic equations. Second, we
briefly introduce some well-known index concepts from literature. Then we familiarize
with differential-algebraic equations having a properly stated leading term guided by
the tractability index concept. Lastly, we deduce new results in index reduction, lo-
cal solvability, perturbation results and consistent initialization of differential-algebraic
equations.
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An implicit ordinary differential equation (ODE - Ordinary Differential Equation) is an
equation of the form

f

ˆ

d

dt
y, y, t

˙

“ 0, (2.1)

where f P C pRn ˆD ˆ I,Rnq is given and y P C1 pI,Dq denotes the unknown function
with D Ă Rn, I Ă R. In this thesis we restrict ourselves to initial value problems, (IVP
- Initial-Value Problem) of the form

f

ˆ

d

dt
y, y, t

˙

“ 0 with y pt0q “ y0 P D and t0 P I.

Definition 2.1. Let be py, tq P D ˆ I with D Ă Rn and I Ă R. We call the implicit
ODE (2.1) a differential-algebraic equation, (DAE - Differential-Algebraic Equation) if
f P C pRn ˆD ˆ I,Rnq, the continuous partial derivatives B

By
f pz, y, tq and B

Bz
f pz, y, tq

exist and, in addtion, the partial derivative B

Bz
f pz, y, tq is singular with constant rank for

all pz, y, tq P Rn ˆD ˆ I.

DAEs have, amongst others, the following two important properties:

� Several components of the solution are determined by constraints. For IVPs these
constraints limit the choice of initial values since there is not a solution through
every given initial value.

� DAEs with an index higher than two do not only represent integration problems
but also differentiation problems. This implies that some parts of the DAE must
be differentiable sufficiently often and the differentiations and integrations may be
intertwined in a complex manner.

The behavior of DAEs differs from that of explicit ODEs in several aspects. In the
following we describe some of the essential differences.

Example 2.2. Regarding the DAE

d

dt
y2 “ y2 ` y1 y1 “ q ptq

with the solution

y1 “ q ptq
and y2 being the solution to the explicit ODE d

dt
y2 “ y2`q ptq for a given input function

q. The solution has the properties:

� Only y2 has to be continuously differentiable with respect to t.

� The initial value for y1 is fixed by the input function q.

6



2 Differential-Algebraic Equations

Example 2.3. Regarding the DAE

d

dt
y1 “ y2 ´ y1 y1 “ q ptq

with the solution

y2 “ d

dt
q ptq ` q ptq y1 “ q ptq

where q is a given input function. The solution has the properties:

� The input function q has to be continuously differentiable with respect to t.

� The initial values are completely fixed by the input function q and d
dt

q.

� To get a solution to y2 we need to differentiate y1 with respect to t.

Example 2.4. DAEs are are ill-posed problems. Regarding

d

dt
x1 “ x2 and x1 “ sinptq ` δptq

where δptq is a perturbation of the system, the solution is given by

x1 “ sinptq ` δptq and x2 “ cosptq ` d

dt
δptq.

A very small perturbation δptq, for example δptq “ 10´k sinp102ktq with k " 1, can
have a serious impact on the solution when compared to the solution x2 “ cosptq of the
unperturbed problem, where δ “ 0, since d

dt
δptq “ 10k cosp102ktq.

2.1 Brief Index Survey

. . . and please no war between the different index
camps . . .

Andreas Griewank during the “Twelfth
European Workshop on Automatic
Differentiation with Emphasis on

Applications to DAEs”, Dec. 09, 2011,
Berlin.

In this section, we briefly introduce some well-known index concepts from literature
namely the Kronecker index, the differential index, the perturbation index and the
strangeness index. In the majority of cases DAEs arising in industrial applications
are nonlinear. The Kronecker index is only defined for linear DAEs with constant co-
efficients. Other index definitions are mostly generalizations of the Kronecker index for
the time-varying and nonlinear case. The different index definitions depend on various
perspectives but all concepts exist in their own right and each has its own pros and cons.
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Kronecker Index

The first introduced index concept was the Kronecker index [GP83, GM86]. The concept
is only defined for linear DAEs (2.1) with constant coefficients given by

A
d

dt
y ` By “ q (2.2)

with A,B P Rnˆn, q P C pI,Rnq and y P C1 pI,Dq, where A is singular. For this type of
DAEs the Kronecker index provides a closed solution formula. The Kronecker index is
closely related to regular matrix pencils.

Definition 2.5 ([Gan71]). Let be A,B P Rnˆn. The ordered matrix pair tA,Bu and the
matrix pencil λA` B respectively are called nonsingular if there is a constant λ P R so
that det pλA` Bq ı 0. Otherwise they are called singular.

Both the ordered matrix pair tA,Bu and the linear DAE (2.2) are said to be regular
if the accompanying matrix pencil is nonsingular. In fact, the regular matrix pencil is
essential for the unique solvability of the DAE (2.2), see [LMT13].

Lemma 2.6. If the matrix pair tA,Bu is nonsingular, then 1
h
A ` B is nonsingular for

sufficiently small h ą 0.

Proof . We regard the polynomial det pλA` Bq in λ. If det pλA` Bq ı 0 then there
is only a finite number of roots of the polynomial. Let λ0 be the root with the largest
absolute value. Then 1

h
A` B is nonsingular for all 0 ă h ă 1

|λ0|
.

Theorem 2.7. For any regular matrix pair tA,Bu there are nonsingular matrices L,K P
Rnˆn and an integer 0 ď l ď n such that

LAK “
„

I 0
0 N



and LBK “
„

W 0
0 I



(2.3)

with N P Rlˆl and W P Rpn´lqˆpn´lq. Here, N is absent if l “ 0. Otherwise there
is 0 ď k ď l such that N is nilpotent of order k, that is, Nk “ 0 and Nk´1 ‰ 0.
The integers l and k as well as the eigenstructure of the blocks N and W are uniquely
determined by the matrix pair tA,Bu.
Proof . See Proposition 1.3 in [LMT13].

The matrix N in Theorem 2.7 has only the eigenvalue zero and can be transformed into
its Jordan normal form by means of a real valued similarity transformation. Therefore,
the transformation matrices L and K can be chosen such that N is in Jordan form. The
pair given by (2.3) is called Weistraß-Kronecker form of the regular matrix pair tA,Bu,
see [Gan71].

Definition 2.8 (Kronecker index ). The Kronecker index of a matrix regular pair tA,Bu
and the Kronecker index of a regular DAE (2.2) are defined to be the nilpotency order
k in the Weistraß-Kronecker form (2.3).
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2 Differential-Algebraic Equations

The DAE (2.2) in Weistraß-Kronecker form is completely decoupled and provides a broad
insight into the structure of the DAE. Every regular DAE (2.2) with Kronecker index-k
can be transformed into the Weistraß-Kronecker form given by

d

dt
u`Wu “ p (2.4)

N
d

dt
v ` v “ r (2.5)

with y “ K

ˆ

u
v

˙

and Lq “
ˆ

p
r

˙

. We obtain the explicit ODE (2.4) and for l ą 0 we

deduce from (2.5) the unique solution

v “
k´1
ÿ

i“0

p´1qi Nirpiq, (2.6)

provided r P Ck´1 pI,Rq by recursive use of (2.5), see [LMT13]. Thus (2.6) shows the
dependence of the solution y on derivatives of the right-hand side or the perturbation
term q.
The higher the index the more differentiations are needed. From the numerical point
of view it is very important to know the index of a DAE (2.2) as well as details on
the structure responsible for differentiations. The regularity of the matrix pair tA,Bu
guarantees the unique solvability for linear constant DAE (2.2) if we assume smooth
input functions q. If A and B are time-dependent this unfortunately holds no longer
true. There are examples, where the matrix pair is regular for all t P I and the DAE
has infinitely many solutions. It may also happen that the matrix pair is singular and a
unique solution exists, see [BCP96].

If r P Ck pI,Rq, the differentiation of (2.6) yields an ODE for v. That idea is picked
up by the differentiation index that figures out how many differentiations are necessary
to transform the DAE (2.2) into an ODE. On the other hand the perturbation index
directly measures the impact of perturbations on the solution.

Differentiation Index

The best known index is probably the differentiation index [Cam87, BCP96]. It is more
or less the number of differentiations needed to transform a DAE into an ODE. The
differentiation index received much attention and it is widely used. But it assumes high
smoothness of the DAE which often does not hold for applications.

Definition 2.9 (differentiation index ). The DAE (2.1) has differentiation index-k if
f P Ck pRn ˆD ˆ I,Rnq and k is the minimal number of analytical differentiations with
respect to t needed to determine an ODE for d

dt
y as a continuous function in y and t by

algebraic manipulations only.
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A major drawback in application of the differentiation index is that the calculated dif-
ferentiation index-k is just an upper bound for the exact differentiation index of the
system and the exact index can be lower than k. The calculated differentiation index
depends strongly on a successful rearranging of the system’s unknowns. However, the
differentiation index is not clearly defined for DAEs as

y
d

dt
y “ 0.

Here y ” 0 is a solution, but then we can not determine an ODE for y. Otherwise for
y ” 1 we obtain d

dt
y “ 0 and hence differentiation index-1.

Perturbation Index

The perturbation index [HLR89, HNW02] interprets the index as a measure of sensitivity
of the solution with respect to perturbations of the given problem and the right hand
side. The perturbation may arise from rounding errors and numerical approximations.
From a numerical point of view the perturbation index is the most important one. A
major drawback is that the perturbation index does not give us a prescription way how
to determine it and requires knowledge about the exact solution.

Definition 2.10 (perturbation index ). The DAE (2.1) has perturbation index-k along
a solution y˚ P C1 pI,Dq on a compact interval I “ rt0, T s, if k is the smallest number
so that for all functions y P C1 pI,Dq with

f

ˆ

d

dt
y, y, t

˙

“ q ptq

for q P Ck´1 pI,Rnq and all t P I, the inequality

}y ´ y˚}8 ď c

˜

}y pt0q ´ y˚ pt0q}8 `
k´1
ÿ

j“0

›

›qpjq
›

›

8

¸

holds true for some c ą 0 as long as
›

›qpjq
›

›

8
, j ă k, and }y pt0q ´ y˚ pt0q}8 are sufficiently

small.

Strangeness Index

The strangeness index [KM94, KM06] is an algorithmic approach, relies on a transforma-
tion to a canonical form and is closely related to the differentiation index, but extended
to over- and under-determined systems.
We will briefly review some of the key properties related to the strangeness index, see
[Voi06]. From the Kronecker index point of view two matrix pairs tA1,B1u and tA2,B2u
are considered to be equivalent if there exist nonsingular matrices U and V, so that

A2 “ UA1V and B2 “ UB1V.
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2 Differential-Algebraic Equations

For A1 “ A and B1 “ B the DAE (2.2) is rewritten in terms of the transformed unknown
x “ V´1y. If V depends on the time, then y “ Vx needs to be differentiated to obtain
the transformed DAE. Thus, d

dt
y “ d

dt
Vx ` V d

dt
x holds true and the additional term

d
dt

Vx has to be taken into account.
The strangeness index concept considers two time-dependent matrix pairs tA1,B1u and
tA2,B2u, with Ai,Bi P C pR,Rnˆmq and i “ 1, 2, equivalent, if there exist point-wise
nonsingular matrix functions U P C pR,Rnˆnq and V P C pR,Rmˆmq, so that

A2 “ UA1V and B2 “ UB1V ` UA1
d

dt
V.

Under certain constant rank assumptions it is possible to derive the normal form

tA1,B1u „ tA2,B2u “

$

’

’

’

’

&

’

’

’

’

%

»

—

—

—

—

–

Is 0 0 0
0 Id 0 0
0 0 0 0
0 0 0 0
0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

–

0 A12 0 A14

0 0 0 A24

0 0 Ia 0
Is 0 0 0
0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

,

/

/

/

/

.

/

/

/

/

-

s1

d1

a1

s1

m1 ´ d1 ´ a1

where the blocks

A12 P C
`

R,Rs1ˆd1
˘

,A14 P C
`

R,Rs1ˆpm´m1´d1´a1q
˘

and A24 P C
`

R,Rd1ˆpm´m1´d1´a1q
˘

are again matrix functions. The numbers s1, d1 and a1 are invariants of the equivalence
relations, see [KM06]. The corresponding linear DAE (2.2) is found to be equivalent to
the DAE:

d

dt
y1 ` A12y2 ` A14y4 “ q1 (2.7a)

d

dt
y2 ` A24y4 “ q2 (dynamic part)

y3 “ q3 (algebraic part)

y1 “ q4 (2.7b)

0 “ q5 (consistency condition)

The “strangeness” is derived from the coupling between (2.7a) and (2.7b). Differentiating
(2.7b) and inserting into (2.7a) leads to an algebraic equation and we get the DAE:

A12y2 ` A14y4 “ q1 ´ d

dt
q4

d

dt
y2 ` A24y4 “ q2

y3 “ q3

y1 “ q4

0 “ q5
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The resulting modified matrix pair is again denoted by tA2,B2u. The procedure to
obtain a normal from and the elimination of the “strangeness” can be repeated to obtain
a sequence of characteristic values psi, di, aiq for the matrix pairs tAi,Biu.
A matrix pair tAi,Biu is called strangeness-free if si “ 0. The strangeness index is i,
if i P N is the smallest number so that the matrix pair tAi,Biu is strangeness-free, see
[KM06].

The strangeness index is a powerful tool for the analysis of DAEs, including over- and
under-determined systems. The resulting normal forms provide much inside into the
structure of a given DAE. But even for simple DAEs it may be difficult to calculate the
normal forms, in particular for nonlinear problems.

Other Index Concepts

Thanks to Caren we have all the numerical
problems.

Andreas Steinbrecher during the
“Twelfth European Workshop on

Automatic Differentiation with Emphasis
on Applications to DAEs” as response to

Caren Tischendorf’s example pointing out
a gap in the structural index concept,

Dec. 9, 2011, Berlin.

In addition to the index concepts already mentioned a geometrical theory to study
DAEs as ODEs on manifolds is provided by the geometrical index [RR90, RR02]. A
combinatorial index concept is the structural index [BMR00, Pry01]. In [Jan12a] a
new index concept is introduced combining the ideas of the tractability index and the
strangeness index. For more index discussions we refer to [Voi06, Meh12].

Expect the structural index all index concepts mentioned are generalizations of the
Kronecker index in case of linear DAEs (2.2) with constant coefficients.

2.2 Analysis of Differential-Algebraic Equations

Actually, DAEs ARE ODEs but those which
cannot be solved with respect to x1.

Eberhard Griepentrog, Michael Hanke
and Roswitha März, [GHM92]

Apart from the index concepts discussed so far there is the tractability index concept.
The tractability index is a projector-based algorithmic decoupling concept working in
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2 Differential-Algebraic Equations

terms of the original unknowns and it is straightforward to determine the tractability in-
dex at least in theory. The concept behind the tractability index is a stepwise projection
of the solution onto certain invariant subspaces leading to a precise solution description,
see [LMT13]. It focuses on the linearization of a DAE and requires only weak smooth-
ness conditions. The decoupling procedure provides a detailed insight into the structure
of a given DAE, see [GM86, Ria08, LMT13]. In addition for some classes of DAEs we
can connect the tractability index with the perturbation index, which is of importance
for our purposes.

Quasilinear DAEs (2.1) can be written as

A py, tq d

dt
y ` b py, tq “ 0,

where A P C pD ˆ I,Rnˆnq and b P C pD ˆ I,Rnq. Formally, it must be assumed that the
solution y P C1 pI,Dq is more smooth than actually required since A py, tq is singular and
hence only the solution components in the cokernel of A py, tq have to be continuously
differentiable. To avoid the unnecessary smoothness we focus on DAEs (2.1) of the more
special form

A py, tq d

dt
d py, tq ` b py, tq “ 0 (2.8)

with

� A P C pD ˆ I,Rnˆmq, d P C1 pI,Rmq, b P C pD ˆ I,Rnq,
� a properly stated leading term, see Definition 2.11,

and

� the continuous partial derivatives B

By
A py, tq, B

By
d py, tq, B

Bt
d py, tq and B

By
b py, tq exist.

We denote D py, tq “ B

By
d py, tq. The leading term d py, tq figures out precisely which

derivatives are actually involved and we need the continuous differentiability of combi-
nations of the solution components only in the cokernel of A py, tq.
Definition 2.11 ([Mär01]). The DAE (2.8) has a properly stated leading term if a
projector R P C1 pI, Rmˆmq exists with

ker A py, tq “ ker R ptq and im D py, tq “ im R ptq
for all py, tq P D ˆ I.

Hence ker A py, tq and im D py, tq do not depend on y P D for a DAE with a properly
stated leading term and the subspaces have constant dimensions. Furthermore they are
well matched together without any overlap or gap. Once again the leading term shows
precisely all involved derivatives. Due to the historical development most DAEs are
formulated without a properly stated leading term.
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Lemma 2.12. For the DAE (2.8)

ker A py, tq ‘ im D py, tq “ Rm (2.9)

holds true, which is equivalent to

im A py, tq “ im A py, tqD py, tq and ker D py, tq “ ker A py, tqD py, tq .

In addition the identities A py, tqR ptq “ A py, tq and R ptqD py, tq “ D py, tq hold true
for all py, tq P D ˆ I.

Proof . See Lemma A.1.3 in [LMT13] and Lemma A.9.

Definition 2.13. A function y P C pI,Rnq is said to be a solution to the DAE (2.8) if
y P C1

d pI,Dq with the canonical solution set

C1
d pI,Dq “

 

y P C pI,Dq | d py p¨q , ¨q P C1 pI,Rmq(

and the DAE (2.8) is fulfilled pointwisely.

The solution set of the DAE (2.8) is nonlinear if d py, tq is nonlinear with respect to y.
Fortunately it is straightforward to transform the DAE (2.8) into a DAE of the form

A py, tq d

dt

“

D ptq y
‰` b py, tq “ 0 (2.10)

with a properly stated leading term as shown in the following. The transformation to
a DAE (2.10) makes useful implication such as a solvability and perturbation result
available for the DAE (2.8) for a certain DAE class as we will see in the next section.

Definition 2.14. A function y P C pI,Rnq is said to be a solution to the DAE (2.10) if
y P C1

D
pI,Dq with the canonical linear solution space

C1
D
pI,Dq “  

y P C pI,Dq | D p¨q y p¨q P C1 pI,Rmq(

and the DAE (2.10) is fulfilled pointwisely.

This allows linearization of the DAE which based on linear function spaces, see [Mär01].
In fact, C1

D
pI,Dq is a vector space over R using point-wise addition and scalar multipli-

cation. Together with the norm

}y}C1
D

“ }y}
8
`
›

›

›

›

d

dt

“

D ptq y
‰

›

›

›

›

8

we obtain the Banach space
´

C1
D
, }¨}C1

D

¯

, see Theorem 9 in [GM86].
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2 Differential-Algebraic Equations

Definition 2.15. The natural extension of a DAE (2.8) is given by

A py, tq d

dt

“

D ptq y
‰` b py, tq “ 0 (2.11)

with

y “
„

y
z



, A py, tq “
„

A py, tq
0



, D ptq “ “

0 R ptq‰ and b py, tq “
„

b py, tq
z´ d py, tq



.

The original DAE (2.8) is called the underlying DAE to the natural extension.

The natural extension and the underlying DAE are closely related as shown in the next
theorem.

Theorem 2.16 ([Mär01]). The natural extension (2.11)

(i) is a DAE of the form (2.10)

(ii) and the underlying DAE are equivalent by the relation z “ d py, tq, t P I.

Proof . (i) Clearly ker A py, tq “ ker A py, tq and im D py, tq “ im D ptq due to the prop-
erly stated leading term of the underlying DAE (2.8). Hence we can choose R ptq “ R ptq
and the natural extension (2.11) has a properly stated leading term as well.
(ii) If y˚ P C1

d pI,Dq is a solution to the DAE (2.8) then y˚ P C1
D
pI,D ˆ Rnq with

z “ d py, tq, t P I, is a solution to the natural extension (2.11). If y˚ P C1
D
pI,D ˆ Rnq is

a solution to the natural extension (2.11), then d py, tq “ R ptq z P C1 pI,Rmq holds true
and hence y˚ P C1

d pI,Dq is a solution to the underlying DAE (2.8).

Obviously if y P C pI,Rnq is a solution to the DAE (2.8) then y ptq PM0 ptq for all t P I
must hold true with

M0 ptq “ ty ptq P D | b py, tq P im A py, tqu Ă Rn

is the so-called obvious constraint set, see [Mär03]. The flow of the DAE (2.8) is restricted
to M0 ptq and there is no solution through every given initial value. Thus, for the
numerical integration of the DAE (2.8) we need to start the integration using a suitable
intial value.

Definition 2.17. A value y0 P M0 pt0q is said to be a consistent initial value of the
DAE (2.8) if there is a solution passing through py0, t0q P D ˆ I.

Definition 2.18. A triple pz0, y0, t0q P RmˆM0 pt0qˆI is said to be an operating point
of the DAE (2.8) if

A py0, t0q z0 ` b py0, t0q “ 0

is fulfilled.
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The term operating point comes originally from circuit simulation, which is an important
application class for this thesis. In some cases, depending on the integration method, we
are also interested in a starting value of the derivatives appearing in the DAE (2.8). The
following lemma and definition will characterize the values of the derivatives properly.

Lemma 2.19. For every y0 PM0 pt0q, t0 P I, of the DAE (2.8) there is a unique z0 P Rm

such that

A py0, t0q z0 ` b py0, t0q “ 0 and z0 “ R pt0q z0 (2.12)

are fulfilled.

Proof . Let y0 PM0 pt0q, t0 P I and z1
0, z2

0 P Rm be fulfilling (2.12). Then

A py0, t0q
`

z1
0 ´ z2

0

˘ “ 0 and z1
0 ´ z2

0 P ker R pt0q .
Furthermore z1

0 ´ z2
0 “ R pt0q pz1

0 ´ z2
0q and z1

0 ´ z2
0 P im R pt0q are valid. Hence we have

z1
0 ´ z2

0 “ 0.

Definition 2.20. A triple pz0, y0, t0q P im R pt0q ˆM0 pt0q ˆ I is said to be a consistent
initialization of the DAE (2.8) if y0 PM0 pt0q is a consistent value and the triple is an
operating point.

For our investigations we choose the tractability index concept. Once again the tractabil-
ity index is a projector-based algorithmic decoupling concept and the concept behind it
is a stepwise projection of the solution onto certain invariant subspaces, see [LMT13].
In this thesis we focus on DAEs (2.8) of tractability index-1 and index-2 which occur
in our applications. Next we define the needed matrices and subspaces for this index
concept.

Definition 2.21 (Matrix Chain and Subspaces). Given the DAE (2.8) we define:

G0 py, tq “ A py, tqD py, tq
B0 pz, y, tq “ B

By rA py, tq z` b py, tqs
P0 py, tq “ I´Q0 py, tq , Q0 py, tq projector onto ker G0 py, tq
N0 py, tq “ ker G0 py, tq

S0 pz, y, tq “ tv P Rn|B0 pz, y, tq v P im G0 py, tqu
G1 pz, y, tq “ G0 py, tq ` B0 pz, y, tqQ0 py, tq
P1 pz, y, tq “ I´Q1 pz, y, tq , Q1 pz, y, tq projector onto ker G1 pz, y, tq
N1 pz, y, tq “ ker G1 pz, y, tq
S1 pz, y, tq “ tv P Rn|B0 pz, y, tqP0 py, tq v P im G1 py, tqu
G2 pz, y, tq “ G1 pz, y, tq ` B0 pz, y, tqP0 py, tqQ1 pz, y, tq

We choose the projector Q1 pz, y, tq such that N0 py, tq Ă ker Q1 pz, y, tq.
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2 Differential-Algebraic Equations

Remark 2.22. The choice of the projector Q1 pz, y, tq so that N0 py, tq Ă ker Q1 pz, y, tq
is always possible. The matrix chain is said to be admissible up to two, see [LMT13].

For computational aspects of the matrix chain as well as for the properly stated leading
term we refer to [LMT13] taking Remark 2.31 into account.

Definition 2.23 (tractability index ). The DAE (2.8) has (tractability)

� index-0 if and only if the index-0 set N0 py, tq satisfies

N0 py, tq “ t0u

� index-1 if and only if the DAE (2.8) does not have index-0 and the index-1 set
N0 py, tq X S0 pz, y, tq satisfies

N0 py, tq X S0 pz, y, tq “ t0u

� index-2 if and only if the DAE (2.8) has neither index-0 nor index-1, the index-1
set satisfies

dim pN0 py, tq X S0 pz, y, tqq “ const.

and the index-2 set N1 py, tq X S1 pz, y, tq satisfies

pN1 X S1q pz, y, tq “ t0u

for all pz, y, tq P Rm ˆD ˆ I.

Remark 2.24 ([Mär02]). For the matrix chain of the DAE (2.8) holds:

(i) The projectors Q0 py, tq and Q1 pz, y, tq are not uniquely determined.

(ii) If N0 py, tq Ă ker Q1 pz, y, tq, then Q1 pz, y, tqQ0 py, tq “ 0.

(iii) The index is independent of the choice of the projectors Q0 py, tq and Q1 pz, y, tq
as long as (ii) is valid.

Furthermore the index of the DAE (2.8) is invariant under transformation and scaling.

It is worth to formulate a DAE with a properly stated leading term because for a large
class of index-1 and index-2 DAEs it has been shown that backward differentiation
formulas (BDF - Backward Differentiation Formulas) and Runge-Kutta methods are
stability preserving, see [HMT03a, HMT03b]. Such a DAE formulation is called numer-
ically qualified. An appropriate formulation of the problem ensures a correct behavior
of the numerical solution. The numerical methods keep their stability properties and
unexpected step size restrictions can be avoided.
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Example 2.25. Consider the linear index-1 DAE
„

λt λ´ 1
0 0



d

dt

ˆ

u
v

˙

`
„

0 0
λt´ 1 λ´ 1

ˆ

u
v

˙

“ 0 (2.13)

reported [But03] with λ ‰ 1. From the DAE (2.13) we obtain the ODE d
dt

u “ λu. Using
the implicit Euler to solve the DAE (2.13) we obtain

un`1 “ p1` hλq un

which is in fact the explicit Euler applied to the ODE. This will have several consequences
such as step size restrictions due to stability requirements. Formulating the DAE (2.13)
with a properly stated leading term may lead to

„

1
0



d

dt

ˆ

“

λt λ´ 1
‰

ˆ

u
v

˙˙

`
„ ´λ 0
λt´ 1 λ´ 1

ˆ

u
v

˙

“ 0. (2.14)

Using the implicit Euler to solve the DAE (2.14) with a properly stated leading term we
obtain

un`1 “ 1

1´ hλun

and induce the implicit Euler for the ODE, too.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

−6

−4

−2

0

2

4

6

v

numerical solution
exact solution

(a) standard formulation

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.2

0.4

0.6

0.8

1.0

v

numerical solution
exact solution

(b) proper formulation

Figure 2.1: BDF-2 solution to the η-DAE with step size h “ 0.01 and η “ ´0.275.

Example 2.26. The well-known linear index-2 DAE, so-called the η-DAE, described in
[GP83], further investigated in [HLR89] and successfully tackled by the properly stated
leading term in [HMT03b], is given by

„

0 0
1 ηt



d

dt

ˆ

u
v

˙

`
„

1 ηt
0 1` η

ˆ

u
v

˙

“
ˆ

e´t

0

˙

18



2 Differential-Algebraic Equations

with the exact solution u ptq “ p1´ ηtq e´t and v ptq “ e´t such that pu0, v0q “ p1, 1q
is a consistent initial value at t0 “ 0. Using the original formulation the implicit Euler
fails completely for η “ ´1 and is exponentially unstable for η ă ´1

2
, see [GP84]. The

simple reformulation

„

0
1



d

dt

ˆ

“

1 ηt
‰

ˆ

u
v

˙˙

`
„

1 ηt
0 1

ˆ

u
v

˙

“
ˆ

e´t

0

˙

with a properly stated leading term leads to a correct implicit Euler solution, see
[HMT03b]. These statements are confirmed by the numerical results given in Figure 2.1.

Remark 2.27. Let W0 py, tq be a projector along im G0 py, tq. Then

S0 pz, y, tq “ ker W0 py, tqB0 pz, y, tq
holds true for all pz, y, tq P Rm ˆD ˆ I.

Remark 2.28. Let W1 pz, y, tq be a projector along im G1 pz, y, tq. Then

S1 pz, y, tq “ ker W1 pz, y, tqB0 pz, y, tqP0 py, tq
holds true for all pz, y, tq P Rm ˆD ˆ I.

Now we come back to the relation between the natural extension and their underlying
DAE. The index of the natural extension (2.11) is given by the underlying DAE and
vice versa.

Theorem 2.29. The natural extension (2.11) and the underlying DAE have both index-
1 or index-2.

Proof . See Theorem 3.4 in [Mär01].

At a later stage we will utilize an equivalent characterization for the tractability index.
We use this equivalence to prove that the index reduction introduced in the next section
really reduce the index.

Lemma 2.30. The DAE (2.8) has (tractability)

� index-0 if and only if G0 py, tq is nonsingular

� index-1 if and only if the DAE does not have index-0 and G1 pz, y, tq is nonsingular

� index-2 if and only if the DAE has neither index-0 nor index-1 and G2 pz, y, tq is
nonsingular

for all pz, y, tq P Rm ˆD ˆ I with constant rank.

Proof . See [GM86] and [Est00].
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Remark 2.31. Notice that we define G2 pz, y, tq different to [LMT13]. However, since

G2 pz, y, tq “ G2 pz, y, tq pI´ P1 pz, y, tqE pz, y, tqQ1 pz, y, tqq
holds true with pI´ P1 pz, y, tqE pz, y, tqQ1 pz, y, tqq nonsingular, see Lemma A.5, it is
sufficient to check whether G2 pz, y, tq is nonsingular or not in the index-2 case. For
G2 pz, y, tq we have E pz, y, tq “ D py, tq´ d

dt

`

D py, tqP0 pz, y, tqP1 py, tqD py, tq´˘D py, tq.
The next lemma is motivated by [Sch03]. We need the lemma to prove Theorem 2.59.
In fact the next lemma provides a decoupling into certain solution components as shown
later.

Lemma 2.32. Let the index-2 DAE (2.8) be given. Then

G2 pz, y, tq´1 G0 py, tq “ P1 pz, y, tqP0 py, tq

and

G2 pz, y, tq´1 B0 pz, y, tq “ G2 pz, y, tq´1 B0 pz, y, tqP0 py, tqP1 pz, y, tq
`Q1 pz, y, tq `Q0 py, tq

holds true for all pz, y, tq P Rm ˆD ˆ I.

Proof . The first identity is true since

G0 py, tq “ pG0 py, tq ` B0 pz, y, tqQ0 py, tqqP0 py, tq
“ G1 pz, y, tqP0 py, tq
“ pG1 pz, y, tq ` B0 pz, y, tqP0 py, tqQ1 pz, y, tqqP1 pz, y, tqP0 py, tq
“ G2 pz, y, tqP1 pz, y, tqP0 py, tq

and the second one due to

B0 pz, y, tq “ B0 pz, y, tqP0 py, tqP1 pz, y, tq ` B0 pz, y, tqP0 py, tqQ1 pz, y, tq
` B0 pz, y, tqQ0 py, tq

“ B0 pz, y, tqP0 py, tqP1 pz, y, tq `G2 pz, y, tqQ1 pz, y, tq `G2 pz, y, tqQ0 py, tq

is valid.

2.2.1 Index Reduction, Solvability and Perturbation Results

Our goal is to describe all constraint sets for index-2 DAEs with a properly stated leading
term having a special structure and to derive a solvability and perturbation result. For
this, a suitable tool is the index reduction. The index reduction may be applied to a
DAE to lower the index down from an initially higher index. A well known approach
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is the differentiation of the DAE or of parts of it. Depending on the DAE structure
this approach may lead to a reduction of the index. Here we follow the techniques in
[MR99, Est00, Rod00] for DAEs without a properly stated leading term to reduce the
index of a subclass of index-2 DAE (2.8) with a properly stated leading term. For index-
2 DAEs of the form (2.10) an index reduction result can be found in [Mär01, Men11].
We have already applied these techniques in [Bau08, BST10] for index-2 DAEs of the
form (2.8).

The next lemma shows that the obvious constraint set M0 pt0q describes all constraints
in case of an index-1 DAE (2.8).

Theorem 2.33. Let the DAE (2.8) be of index-1 and t0 P I. Then through each
y0 PM0 pt0q passes exactly one solution to the DAE (2.8).

Proof . See Theorem 2.3 in [HM04], using the relation between the DAE (2.8) and its
natural extension given in Theorem 2.16 and 2.29.

Note that Theorem 2.33 ensures local unique solvability only. For a a global unique solv-
ability result for DAEs using the concept of strong monotonicity under certain structural
conditions we refer to [JMT12].

In contrast to index-1 DAEs the flow of the index-2 DAE (2.8) is additionally restricted
by a set M1 ptq, where the relation M1 ptq Ă M0 ptq holds true. For every solution
y P C pI,Rnq of the DAE (2.8) the relation y ptq PM1 ptq, is fulfilled for all t P I. The
set M1 ptq is the index-2 constraint set with M1 ptq “ M0 ptq X H1 ptq, t P I, where
H1 ptq is the so-called hidden constraint set. In case of an index-2 DAE for a consistent
value y0 “ y pt0q PM1 pt0q holds true for py0, t0q P D ˆ I.

Example 2.34. Consider the index-2 DAE

d

dt
u´ u “ 0 (2.15)

v
d

dt
v ´ vz “ 0 (2.16)

u2 ` v2 ´ 1 “ 0 (2.17)

on D “ tpu, v, zq P R3|v ą 0u. Obviously we get

M0 ptq “
 pu, v, zq P R3|u2 ` v2 ´ 1 “ 0

(

.

Differentiation of (2.17) and utilizing (2.15) and (2.16) yields the hidden constraint set

H1 ptq “
 pu, v, zq P R3|u2 ` vz “ 0

(

.

That is, the index-2 constraint set is given by

M1 ptq “
 pu, v, zq P R3|u2 ` v2 ´ 1 “ 0 and u2 ` vz “ 0

(

.
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Next we determine the index-2 constraint set M1 ptq by the use of index reduction. Let
W0 py, tq and W1 pz, y, tq be projectors along im G0 py, tq and im G1 pz, y, tq, respectively.
The projectors W0 py, tq and W1 pz, y, tq will play an important for the index reduction by
differentiation. At first we need some basic results presented in the next four lemmata.

Lemma 2.35 (Lemma 2.3.1, [Est00]). Let the DAE (2.8) be given. The identities

(i) W1 pz, y, tqW0 py, tq “ W1 pz, y, tq
(ii) W1 pz, y, tqB0 pz, y, tqQ0 py, tq “ 0

hold true, for all pz, y, tq P Rm ˆD ˆ I.

Proof . (i) We get

0 “ W1 pz, y, tqG1 pz, y, tqP0 py, tq “ W1 pz, y, tqG0 py, tq .
Hence im G0 py, tq Ă ker W1 pz, y, tq that is

ker W0 py, tq “ im G0 py, tq Ă ker W1 pz, y, tq
and we conclude

W1 pz, y, tq pI´W0 py, tqq “ 0 ô W1 pz, y, tqW0 py, tq “ W1 pz, y, tq .
(ii) We obtain directly

0 “ W1 pz, y, tqG1 pz, y, tq
“ W1 pz, y, tq pG0 py, tq ` B0 pz, y, tqQ0 py, tqq
“ W1 pz, y, tqB0 pz, y, tqQ0 py, tq .

Lemma 2.36. Let an index-2 DAE (2.8) be given. The identity

im W1 pz, y, tq “ im W1 pz, y, tqB0 pz, y, tq
holds true for all pz, y, tq P Rm ˆD ˆ I.

Proof . Clearly im W1 pz, y, tqB0 pz, y, tq Ă im W1 pz, y, tq holds true. From the index-2
condition N1 pz, y, tq ‘ S1 pz, y, tq “ Rn can be deduced, see [GM86] using a canonical
projector

Q1,S pz, y, tq “ Q1 pz, y, tqG2 pz, y, tq´1 B0 pz, y, tqP0 py, tq .
Using the Rank–nullity theorem and Lemma 2.35 we can conclude

dim pim W1 pz, y, tqB0 pz, y, tqq “ dim pim W1 pz, y, tqB0 pz, y, tqP0 py, tqq
“ n´ dim pker W1 pz, y, tqB0 pz, y, tqP0 py, tqq
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“ n´ dimS1 pz, y, tq
“ dimN1 pz, y, tq
“ dim pker G1 pz, y, tqq
“ n´ dim pim G1 pz, y, tqq
“ n´ dim pker W1 pz, y, tqq
“ dim pim W1 pz, y, tqq

and therefore it follows the missing inclusion, see Remark 2.28.

For the next investigations we denote by D py, tq´ a pseudoinverse of D py, tq. To obtain
a unique D py, tq´ we choose

D py, tq´ D py, tq “ P0 py, tq and D py, tqD py, tq´ “ R ptq
for all py, tq P D ˆ I, see Theorem A.14 and Lemma A.15.

Lemma 2.37. Let an index-2 DAE (2.8) be given. The identity

im W1 pz, y, tq “ im W1 pz, y, tqB0 pz, y, tqD py, tq´

holds true for all pz, y, tq P Rm ˆD ˆ I with P0 py, tq “ D py, tq´ D py, tq.
Proof . Clearly one inclusion is obvious. Let be x P im W1 pz, y, tq. Then there are
v, u P Rn and w P Rm such that

x “ W1 pz, y, tq v

“ W1 pz, y, tqB0 pz, y, tqP0 py, tq u

“ W1 pz, y, tqB0 pz, y, tqD py, tq´ D py, tq u

“ W1 pz, y, tqB0 pz, y, tqD py, tq´ w

and hence x P im W1 pz, y, tqB0 pz, y, tqD py, tq´, see Lemma 2.35 and 2.36.

In the following we need d py, tq depends only on dynamic components. This structure
will be exploited later on.

Lemma 2.38. Let the DAE (2.8) be given with P0 P C pI,Rnˆnq and domain D so that
for each py, tq P D ˆ I also P0 ptq y` sQ0 ptq y P D for all s P r0, 1s. Then, the identities

(i) d py, tq “ d pP0 ptq y, tq
(ii) D py, tq “ D pP0 ptq y, tq
(iii) B

Bt
d py, tq “ D pP0 ptq y, tq d

dt
P0 ptq y ` B

Bt
d pP0 ptq y, tq

hold true for all py, tq P D ˆ I.
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Proof . We use ker P0 ptq “ im Q0 ptq “ ker D py, tq for all py, tq P D ˆ I. (i) We apply
the mean value theorem, see [Mär03]. We get

d py, tq ´ d pP0 ptq y, tq “
ż 1

0

D psy ` p1´ sqP0 ptq y, tqQ0 ptq yds “ 0.

(ii) We directly obtain

D py, tq “ B
Byd py, tq “ B

Byd pP0 ptq y, tq “ D pP0 ptq y, tqP0 ptq “ D pP0 ptq y, tq .

(iii) On the one hand we have

d

dt
d py, tq “ D py, tq d

dt
y ` B

Btd py, tq

and on the other hand

d

dt
d pP0 ptq y, tq “ D pP0 ptq y, tqP0 ptq d

dt
y `D pP0 ptq y, tq d

dt
P0 ptq y ` B

Btd pP0 ptq y, tq

“ D pP0 ptq y, tq d

dt
y `D pP0 ptq y, tq d

dt
P0 ptq y ` B

Btd pP0 ptq y, tq .

Combining both via d
dt

d py, tq “ d
dt

d pP0 ptq y, tq we achieve

B
Btd py, tq “ D pP0 ptq v, tq d

dt
P0 ptq y ` B

Btd pP0 ptq y, tq .

Now we collect all ingredients for the index reduction of index-2 DAEs. The application
classes we investigate the forthcoming chapters have special structures. We will restrict
ourselves to index-2 DAEs (2.8) of the form

A py, tq d

dt
d py, tq ` b py, tq “ 0, (2.18)

where we assume

� constant projectors Q0 and W1,

� domain D so that for each y P D also P0y ` sQ0y P D for all s P r0, 1s,
� the continuous partial derivative B

Bt
W1b py, tq exists for all py, tq P D ˆ I

and

� by D py, tq´ we denote the pseudoinverse of D py, tq with D py, tq´ D py, tq “ P0 and
D py, tqD py, tq´ “ R ptq, see above.

24



2 Differential-Algebraic Equations

Remark 2.39. Since W1 is constant the relation

W1B0 pz, y, tq “ W1
B
By rA py, tq z` b py, tqs “ W1

B
Byb py, tq

holds true.

To extract suitable parts of the DAE (2.18) to reduce the index by differentiation we
left-multiplying the DAE (2.18) by W1 and obtain

W1b py, tq “ 0

due to Lemma 2.35 and ker W0 py, tq “ im G0 py, tq “ im A py, tq. Hence the relation

d

dt
W1b py, tq “ 0 (2.19)

holds true, too. The next step is to describe the derivative (2.19) in a proper way so that
the DAE (2.18) can be reformulated as an index-1 DAE with a properly stated leading
term.

Lemma 2.40. Let the DAE (2.18) be given. The relation

d

dt
W1b py, tq “ W1

B
Byb py, tqD py, tq´

ˆ

d

dt
d py, tq ´ B

Btd py, tq
˙

` B
BtW1b py, tq

holds true for all py, tq P D ˆ I.

Proof . We apply Lemma 2.35 and 2.38. Since Q0 is constant, it holds that

d

dt
d py, tq “ D py, tq d

dt
rP0ys ` B

Btd py, tq (2.20)

and

d

dt
W1b py, tq “ W1

B
Byb py, tq d

dt
rP0ys ` B

BtW1b py, tq . (2.21)

Left-multiplying of (2.20) by D py, tq´ leads to

d

dt
rP0ys “ D py, tq´ d

dt
d py, tq ´D py, tq´ BBtd py, tq

since D py, tq´ D py, tq “ P0. Substitution into (2.21) yields the result.

The DAE (2.18) can be written as

0 “ A py, tq d

dt
d py, tq ` b py, tq

“ A py, tq d

dt
d py, tq ` pI´W1q b py, tq `W1b py, tq
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and replacing W1b py, tq by d
dt

W1b py, tq leads to

A py, tq d

dt
d py, tq ` pI´W1q b py, tq ` d

dt
W1b py, tq “ 0.

Using Lemma 2.40 we obtain from the index-2 DAE (2.18) the index-1 DAE

A py, tq d

dt
d py, tq ` b py, tq “ 0 (2.22)

with

A py, tq “ A py, tq `W1
B
Byb py, tqD py, tq´ ,

b py, tq “ pI´W1q b py, tq ´W1
B
Byb py, tqD py, tq´ BBtd py, tq ` B

BtW1b py, tq

and a properly stated leading term. Within the next lemmata we prove the properly
stated leading term and that the DAE (2.22) has indeed index-1.

Lemma 2.41. The DAE (2.22) has a properly stated leading term utilizing the projector
R P C1 pI,Rnˆnq of the DAE (2.18).

Proof . It is sufficient to show the relation ker A py, tq “ ker A py, tq. The first inclusion
ker A py, tq Ă ker A py, tq follows immediately using the identity

W1
B
Byb py, tqD py, tq´ “ W1

B
Byb py, tqD py, tq´ R ptq

and ker A py, tq “ ker R ptq. Let be v P ker A py, tq. Using the constant projector W1,
see Lemma 2.35, we achieve v P ker W1

B

By
b py, tqD py, tq´ and hence v P ker A py, tq.

That means the decomposition in ker A py, tq and im D py, tq can be realized using the
projector R ptq.
The relation ker G0 py, tq “ ker G0 py, tq holds true since the DAEs (2.18) and (2.22) have
the same leading term d py, tq, see Lemma 2.12. That is, the same derivatives occur in
both DAEs.

First, we need a technical lemma to handle second order derivatives with respect to the
unknowns to prove the index-1 result for the DAE (2.22).

Lemma 2.42. Let the DAE (2.18) be given. Then, the relations

(i) W1b py, tq “ W1b pP0y, tq
(ii) B

By

”

W1
B

By
b py, tq z

ı

Q0 “ 0 for all z P Rn

hold true for all py, tq P D ˆ I.
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Proof . (i) We apply the mean value theorem. We get

W1b py, tq ´W1b pP0y, tq “
ż 1

0

W1
B
Byb psy ` p1´ sqP0y, tqQ0yds

“
ż 1

0

W1B0 pz, sy ` p1´ sqP0y, tqQ0yds

“ 0.

(ii) We define H pyq “ W1
B

By
b py, tq z for fixed z P Rn. Regarding the directional deriva-

tive of H pyq along Q0w for all w P Rn. Using (i) we get

B
ByH pyqQ0w “ lim

hÑ0

H py ` hQ0wq ´ H pyq
h

“ lim
hÑ0

1

h

„

W1
B
Byb py ` hQ0w, tq z´W1

B
Byb py, tq z



“ lim
hÑ0

1

h

B
By rW1b pP0y, tq z´W1b pP0y, tq zs

“ 0

for all w P Rn.

Lemma 2.43. The DAE (2.22) has index-1.

Proof . We compute G1 pz, y, tq by

G1 pz, y, tq “ G0 py, tq ` B0 pz, y, tqQ0

“ G0 py, tq ` B
By

“

A py, tq z` b py, tq‰Q0

“ G1 pz, y, tq `W1
B
Byb py, tqP0

` B
By

„

W1
B
Byb py, tqD py, tq´

ˆ

z´ B
Btd py, tq

˙

Q0

deploying Lemma 2.35. Using Lemma 2.42 we get

G1 pz, y, tq “ G1 pz, y, tq `W1
B
Byb py, tqP0.

Finally we have

v P ker G1 pz, y, tq ô v P ker G1 pz, y, tq and v P ker W1B0 pz, y, tqP0

ô v P N1 pz, y, tq X S1 pz, y, tq
by using Remark 2.39 and hence v “ 0, because N1 pz, y, tq X S1 pz, y, tq “ t0u due to
the DAE (2.18) having index-2. The decomposition of G1 pz, y, tq can be realized by W1

and we conclude that G1 pz, y, tq is nonsingular, that is, the DAE (2.22) has index-1.
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To make use of the index reduced DAE (2.22) we need to relate the solution to (2.18)
and (2.22). An analytical solution to the index reduced DAE is not necessarily a solution
to the index-2 DAE but the other way holds true. The index reduced DAE has more
solutions than the index-2 one. But if the initial conditions are chosen properly a solution
to the index reduced DAE is a solution to the index-2 DAE, too.

Theorem 2.44. Let W1b py0, t0q “ 0 be fulfilled in one point py0, t0q P DˆI. A solution
to the DAE (2.18) through py0, t0q is a solution to the DAE (2.22) through py0, t0q and
vice versa.

Proof . Let y˚ P C1
d pI,Dq be a solution to the DAE (2.18). Due to construction the

solution is a solution y˚ to the DAE (2.22), too.
The other direction is only true if W1b py0, t0q “ 0 for py0, t0q P D ˆ I and y pt0q “ y0.
If the relation d

dt
W1b py, tq “ 0 holds true then W1b py, tq “ 0 for all py, tq P D ˆ I. Let

y˚ P C1
d pI,Dq be a solution to the DAE (2.22) with y pt0q “ y0. Then

A py˚, tq d

dt
d py˚, tq ` b py˚, tq “ 0

and left-multiplication by W1 yields

W1
B
Byb py˚, tqD py˚, tq´

ˆ

d

dt
d py˚, tq ´ B

Btd py˚, tq
˙

` B
BtW1b py˚, tq “ 0

and

d

dt
W1b py˚, tq “ 0

respectively, see Lemma 2.40. Due to W1b py0, t0q “ 0 we obtain

W1b py˚, tq “ 0.

Left-multiplying the DAE (2.22) by pI´W1q results in

A py˚, tq d

dt
d py˚, tq ` pI´W1q b py˚, tq “ 0.

Hence y˚ is a solution to (2.18).

Now we are able to describe the hidden constraint set H1 ptq and hence the index-2
constraint set M1 ptq “M0 ptq XH1 ptq of the DAE (2.18).

Theorem 2.45. The hidden constraint set H1 ptq of the DAE (2.18) can be described
by

H1 ptq “
"

y P D|Dz P Rm : W1
B
Byb py, tqD py, tq´

ˆ

z´ B
Btd py, tq

˙

` B
BtW1b py, tq “ 0

*

.
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Proof . The set

M0 ptq “
 

y ptq P D|b py, tq P im A py, tq(

is the obvious constraint set of the index-1 DAE (2.22). Then the index-2 constraint set
M1 ptq of the DAE (2.18) can be described by

M1 ptq “
 

y ptq PM0 ptq |W1b py, tq “ 0
(

.

due to Theorem 2.44. Hence

M1 ptq “
 

y ptq P D|b py, tq P im A py, tq ,W1b py, tq “ 0
(

“  

y ptq P D|Dz P Rm : A py, tq z` pI´W1q b py, tq ,W1b py, tq “ 0

W1
B
Byb py, tqD py, tq´

ˆ

z´ B
Btd py, tq

˙

` B
BtW1b py, tq “ 0

(

“M0 ptq XH1 ptq
is valid.

Next we deduce an unique solvability result for index-2 DAEs (2.18) using an unique
solvability result for index-1 DAEs (2.8).

Theorem 2.46. Let a DAE (2.18) be given with t0 P I. Then through each y0 PM1 pt0q
passes exactly one solution.

Proof . Applying the index reduction by differentiation to the DAE (2.18) we get an
index-1 DAE (2.22). Due to Theorem 2.33 for every y0 P M0 ptq we obtain a unique
solution to the index-1 DAE (2.22). Utilizing Theorem 2.44 leads to the result.

Remark 2.47. The index-2 constraint set M1 ptq of the DAE (2.18) is filled with solu-
tions due to the index reduced DAE having index-1 and M1 ptq ĂM0 ptq. Hence every
y PM1 ptq is a consistent value.

As mentioned previously the index reduced DAE has more solutions than the index-2
DAE. Hence we need to choose proper initial conditions, see Theorem 2.44. Otherwise
we provoke the so-called drift-off-phenomenon. This is due to differentiating parts of the
algebraic constraints of the index-2 DAE. The former algebraic constraints turns into
ODEs for the index reduces DAE. That is, the initial values are not restricted by the
former algebraic constraints anymore and if the initial values violate the former alge-
braic constraints then the error increases in time, independent of the step size. Unfortu-
nately consistent initial values are not always available. Additionally the used numerical
method do not necessarily preserve the former algebraic constraints even though they
are preserved in the ODEs with proper initial values. If the step size goes to zero, the
drift-off will go to zero on a fixed time interval, too. To reduce the effect of the drift-off
we can apply projection or stabilizing techniques to correct the algebraic constraints
at certain time points like a Gear-Gupta-Leimkuhler formulation known for multibody
systems, see [Mär96, HNW02, GGL85].

Next we illustrate how the solution to a given example changes due to index reduction.
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Example 2.48. Consider the index-2 DAE (2.18) given by
„

1
0



d

dt

`“

1 0
‰

u
˘`

ˆ ´uv
u` 1´ f ptq

˙

“ 0

with f ptq ‰ 1 for all t P rt0, T s, T P R. The solution is given by
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(a) obvious constraints
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(b) hidden constraints

Figure 2.2: Index reduced DAE starting with consistent values.

u ptq “ f ptq ´ 1 and v ptq “
d
dt

f ptq
f ptq ´ 1

with consistent initial values u0 “ f pt0q ´ 1 and v0 “
d
dt

fpt0q

fpt0q´1
. The constraints are given
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(b) hidden constraints

Figure 2.3: Index-2 DAE starting with consistent values.

by:

u` 1´ f ptq “ 0 (obvious constraint)
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uv ´ d

dt
f ptq “ 0 (hidden constraint)

Using the constant projectors
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(b) hidden constraints

Figure 2.4: Index reduced DAE starting with inconsistent values.

R “ “

1
‰

and P0 “
„

1 0
0 0



we choose

D´ “
„

1
0



and W1 “
„

0 0
0 1



.

This lead to

W1b ppu, vq , tq “
ˆ

0
u` 1´ f ptq

˙

and

d

dt
W1b ppu, vq , tq “

„

0
1



d

dt

`“

1 0
‰

u
˘`

ˆ

0
´ d

dt
f ptq

˙

.

Hence the index reduced DAE reads
„

1
1



d

dt

`“

1 0
‰

u
˘`

ˆ ´uv
´ d

dt
f ptq

˙

“ 0

with consistent initial values u0 “ f pt0q ´ 1 and v0 “
d
dt

fpt0q

fpt0q´1
fulfilling the hidden con-

straints. We choose f ptq “ sin ptq ` 3t ` 3, t0 “ 0 and T “ 24. The calculation were
carried out by the implicit Euler scheme using the fixed step size h “ 1e-2. Starting
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with consistent initial values the difference of the exact and the numerical solution to the
constraints is given in Figure 2.2 and 2.3. To show the drift-off we choose inconsistent

initial values u0 “ ´200 and v0 “
d
dt

fpt0q

fpt0q´1
. The differences in exact and numerical solu-

tions to the constraints are given in Figure 2.4. Note that in case of the index reduced
DAE the hidden constraints turn into obvious constraints.

With the index reduction technique we can derive a perturbation result for index-2 DAEs
(2.18). First we present a perturbation result for index-1 DAEs (2.8).

Theorem 2.49. Let the DAE (2.8) be of index-1 and I˚ Ă I a compact interval with
t0 P I˚. If y˚ P C1

d pI,Dq is a solution to the DAE (2.8), then for all solutions y P C1
d pI,Dq

of

A py, tq d

dt
d py, tq ` b py, tq “ q ptq ,

the inequality

}y ´ y˚}8 ď c p}y pt0q ´ y˚ pt0q}8 ` }q}8q
holds true for some c ą 0 as long as }q}

8
and }y pt0q ´ y˚ pt0q}8 are sufficiently small

and q P C pI˚,Rnq.
Proof . See Theorem 4.11 and Remark 4.12 in [LMT13] and using the relation between
the DAE (2.8) and its natural extension given in Theorem 2.16 and 2.29.

That is, if the DAE (2.8) has index-1, then the DAE (2.8) has perturbation index-1, see
Definition 2.10. With that preliminary work we elaborate a new perturbation result for
index-2 DAEs (2.18) using the index reduction techniques.

Theorem 2.50. Let the DAE (2.18) be of index-2 and I˚ Ă I a compact interval
with t0 P I˚. If y˚ P C1

d pI,Dq is a solution to the DAE (2.18), then for all solutions
y P C1

d pI,Dq of

A py, tq d

dt
d py, tq ` b py, tq “ q ptq , (2.23)

the inequality

}y ´ y˚}8 ď c

ˆ

}y pt0q ´ y˚ pt0q}8 ` }q}8 `
›

›

›

›

d

dt
q

›

›

›

›

8

˙

holds true for some c ą 0 as long as }q}
8

,
›

›

d
dt

q
›

›

8
and }y pt0q ´ y˚ pt0q}8 are sufficiently

small and q P C1 pI˚,Rnq.
Proof . Applying the index reduction by differentiation to the DAE (2.18) we get an
index-1 DAE (2.22) with

A py, tq d

dt
d py, tq ` b py, tq “ 0 (2.24)
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and from the perturbed DAE (2.23) we obtain an index-1 DAE (2.22) given by

A py, tq d

dt
d py, tq ` b py, tq “ qt (2.25)

with q “ pI´W1q q ` W1
d
dt

q. Assume }q}
8

,
›

›

d
dt

q
›

›

8
and }y pt0q ´ y˚ pt0q}8 are suffi-

ciently small and q P C1 pI˚,Rnq. Next we apply Theorem 2.49 and we get the the
inequality

}y ´ y˚}8 ď c p}y pt0q ´ y˚ pt0q}8 ` }q}8q

with c ą 0, where y˚ P C1
d pI,Dq is a solution to (2.24) and y P C1

d pI,Dq of (2.25). Thus
the inequality

}y ´ y˚}8 ď d

ˆ

}y pt0q ´ y˚ pt0q}8 ` }q}8 `
›

›

›

›

d

dt
q

›

›

›

›

8

˙

with d ą 0 holds true, due to the projector W1 being constant.

That is, if the DAE (2.18) has index-2 then the DAE (2.18) has perturbation index-2,
too. That is a major justification for choosing the tractability index as index concept.

2.2.2 Consistent Initialization

Image by [HNW02]

An important task for a successful time integration of DAEs is the determination of
a consistent initial value. In this subsection we present methods for the calculation of
consistent initial values for a subclass of index-1 and index-2 DAEs. For the index-2
case we follow the idea of [Est00]. In contrast to [Est00] we elaborate the approach for
DAEs with a properly stated leading term.

For the index-1 case a very general approach to calculate consistent initial values can be
given, see [Mär03].
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Theorem 2.51. Let the index-1 DAE (2.8) be given and t0 P I. The system

A py0, t0q z0 ` b py0, t0q “ 0 (2.26)

pI´ R pt0qq z0 ` R pt0q
`

d py0, t0q ´ z0
˘ “ 0 (2.27)

is locally uniquely solvable for given z0 P Rm and provides a consistent initialization
pz0, y0, t0q P im R pt0q ˆM0 pt0q ˆ I.

Proof . The Jacobian of the nonlinear system (2.26) and (2.26) reads

J pz, yq “
„

A py, t0q B0 pz, y, t0q
I´ R pt0q R pt0qD py, t0q



.

Let be pz˚, y˚q P ker J pz, yq. Then

A py, t0q z˚ ` B0 pz, y, t0q y˚ “ 0 (2.28)

pI´ R pt0qq z˚ ` R pt0qD py, t0q y˚ “ 0 (2.29)

and we can conclude that y˚ P N0 py, tq X S0 pz, y, tq. That is true since (2.28) leads to
B0 pz, y, t0q y˚ P im A py, t0q and (2.29) results in y˚ P ker D py, t0q. We achieve y˚ “ 0
because the DAE has index-1. Next (2.28) and (2.29) come to z˚ P im R pt0qXker R pt0q.
Hence the Jacobian is nonsingular. From (2.26) we obtain z0 P im R pt0q.
In Theorem 2.51 the equation (2.26) ensures that the DAE (2.8) including the obvious
constraints are fulfilled and (2.27) provide the uniqueness of z0.

A difficulty for index-2 DAEs is the description of the so-called index-2 components,
which belong to the index-1 set N0 py, tq X S0 pz, y, tq and are determined neither by
differential nor by derivate-free equations but require inherent differentiation. We call the
components of the index-1 set index-2 components since the index-1 set would be empty if
the DAE may of index-1. To describe the index-2 components we introduce the projector
T pz, y, tq onto N0 py, tq X S0 pz, y, tq and the complementary projector U pz, y, tq “ I ´
T pz, y, tq, see [Tis96].

Example 2.52. To clear clear up the misunderstanding that every single solution com-
ponent belongs to exactly one index set we inspect the linear index-2 DAE

d

dt
x1 ´ x2 ´ x3 “ 0

x1 “ f ptq
x2 ´ x3 “ 0

proposed by [Jan12b]. For the description of the index-2 components we make use of
the relation im Q0Q1 “ N0 X S0, see Lemma 3.5 in [Tis96]. Choosing the projectors

Q0 “
»

–

0 0 0
0 1 0
0 0 1

fi

fl and Q1 “
»

–

1 0 0
1
2

0 0
1
2

0 0

fi

fl
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we obtain

N0 X S0 “ span pp0, 1, 1qq “ im T with T “
»

–

0 0 0
0 1 0
0 1 0

fi

fl ,

that is, the index-2 component is a linear combination of the solution components.

The first relation of the next lemma is taken from [Voi06] and is used to exploit the
index-2 components.

Lemma 2.53. Let a DAE (2.8) be given. The projector U pz, y, tq can be chosen so that

(i) U pz, y, tqP0 py, tq “ P0 py, tq “ P0 py, tqU pz, y, tq
(ii) P0 py, tqP1 pz, y, tqU pz, y, tq “ P0 py, tqP1 pz, y, tq

hold true for all pz, y, tq P Rm ˆD ˆ I.

Proof . (i) With im T pz, y, tq Ă ker P0 py, tq we get P0 py, tqT pz, y, tq “ 0. Furthermore
we can choose the projector T pz, y, tq with the property T pz, y, tqP0 py, tq “ 0 due to
im P0 py, tq X im T pz, y, tq “ t0u.

(ii) Using (i) we get

P0 py, tqP1 pz, y, tqP0 py, tqU pz, y, tq “ P0 py, tqP1 pz, y, tqP0 py, tq .
Furthermore we have

P0 py, tqP1 pz, y, tqP0 py, tq “ pI´Q0 py, tqq pI´Q1 pz, y, tqq pI´Q0 py, tqq
“ pI´Q0 py, tqq pI´Q1 pz, y, tqq
“ P0 py, tqP1 pz, y, tq

due to Q1 pz, y, tqQ0 py, tq “ 0.

We restrict ourselves to index-2 DAEs (2.18) of the form

A ptq d

dt
d py, tq ` b py, tq “ 0, (2.30)

where we assume

� N0XS0 py, tq does not depend on py, tq P DˆI and T is a constant projector onto
the index-1 set, U “ I´ T and P0 “ UP0, see [Est00],

� domain D so that for each y P D also Uy ` sTy P D for all s P r0, 1s,
and
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� index-2 components Ty occur linearly only, that is, the DAE (2.30) can be written
as

A ptq d

dt
d pUy, tq ` b pUy, tq ` B ptqTy “ 0,

where b py, tq “ b pUy, tq ` B ptqTy and B ptq P C pI,Rnˆnq problem given.

In this subsection we develop a step-by-step method to compute consistent initial values
guided by [Est00]. Note that we extend the approach to DAEs with a properly stated
leading term. Under the later structural properties we compute a consistent initialization
for index-2 DAEs as follows:

(i) Describe the hidden constraints.

(ii) Compute an operating point.

(iii) Correct the operating point to fulfill the hidden constraints.

Next we derive the necessary statements for this step-by-step approach. The leading
term d py, tq of the DAE (2.8) depends only on the non-index-2 components as shown
in the following which is an essential ingredient for our investigations. The next two
lemmata are used to describe the hidden constraint set H1 ptq given in Theorem 2.45
without the index-2 components.

Lemma 2.54. Let the DAE (2.8) be given with P0,U P C pI,Rnˆnq and domain D so
that for each py, tq P Dˆ I also P0 ptq y` sQ0 ptq y P D and U ptq y` sT ptq y P D for all
s P r0, 1s. The identities

(i) d py, tq “ d pU ptq y, tq
(ii) D py, tq “ D pU ptq y, tq
(iii) D py, tq´ “ D pU ptq y, tq´

(iv) B

Bt
d py, tq “ D pU ptq y, tq d

dt
U ptq y ` B

Bt
d pU ptq y, tq

hold true for all py, tq P D ˆ I.

Proof . Following the proof of Lemma 2.38 and using Lemma 2.53 leads to (i), (ii) and
(iv). (iii) Using (ii) the matrix D py, tq´ fulfills the conditions to be a pseudoinverse of
D pU ptq y, tq.
Lemma 2.55 (Lemma 2.3.4, [Est00]). Let the DAE (2.8) be given with domain D so
that for each py, tq P DˆI also U ptq y`sT ptq y P D for all s P r0, 1s, W0,U P C pI,Rnˆnq
and W1 P Rnˆn. Then

(i) W0 ptqB0 py, tqT ptq “ 0

(ii) W0 ptq b py, tq “ W0 ptq b pU ptq y, tq
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(iii) W0 ptqB0 py, tq “ W0 ptqB0 pU ptq y, tqU ptq
(iv) B

Bt
W1b py, tq “ B

Bt
W1b pU ptq y, tq `W1B0 pU ptq y, tq d

dt
U ptq y

hold true for all py, tq P D ˆ I.

Proof . (i) We have im T ptq Ă S0 py, tq and ker W0 ptqB0 py, tq “ S0 py, tq, see Re-
mark 2.27, that is, W0 ptqB0 py, tqT ptq “ 0.
(ii) We apply the mean value theorem. We get

W0 ptq b py, tq ´W0 ptq b pUy, tq “
ż 1

0

W0 ptqB0 psy ` p1´ sqU ptq y, tqT ptq yds “ 0

since (i) holds.
(iii) We have

W0 ptqB0 py, tq “ B
ByW0 ptq b py, tq

“ B
ByW0 ptq b pU ptq y, tq

“ W0 ptqB0 pU ptq y, tqU ptq .
(iv) On the one hand we have

d

dt
W1b py, tq “ W1B0 py, tq d

dt
y ` B

BtW1b py, tq
and on the other hand applying (iii) we get

d

dt
W1b pU ptq y, tq “ W1B0 pU ptq y, tqU ptq d

dt
y `W1B0 pU ptq y, tq d

dt
U ptq y

` B
BtW1b pU ptq y, tq

“ W1B0 pU ptq y, tq d

dt
y `W1B0 pU ptq y, tq d

dt
U ptq y

` B
BtW1b pU ptq y, tq .

Combining both via d
dt

W1b py, tq “ d
dt

W1b pU ptq y, tq proves the statement.

We have already described the hidden constraints for the DAE (2.30), see Theorem 2.45,
but have not yet taken into account the projector U.

Theorem 2.56. The hidden constraint set H1 ptq of the DAE (2.30) can be described
as

H1 ptq “
 

y P D|Dz P Rm : W1B0 pUy, tqD pUy, tq´
ˆ

z´ B
Btd pUy, tq

˙

` BBtW1b pUy, tq “ 0
(

.
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Proof . Let be y P H1 ptq. Then there is z P Rm with

0 “ W1B0 py, tqD py, tq´
ˆ

z´ B
Btd py, tq

˙

` B
BtW1b py, tq ,

see Theorem 2.45. The use of U being constant, W1 “ W1W0 ptq, see Lemma 2.35,

UD pUy, tq´ “ UP0D pUy, tq´ “ P0D pUy, tq´ “ D pUy, tq´ ,
due to Lemma 2.53 and P0 “ D pUy, tq´ D pUy, tq, Lemma 2.54 and 2.55 lead to

0 “ W1B0 py, tqD py, tq´
ˆ

z´ B
Btd py, tq

˙

` B
BtW1b py, tq

“ W1B0 pUy, tqD pUy, tq´
ˆ

z´ B
Btd pUy, tq

˙

` B
BtW1b pUy, tq .

Lemma 2.57. Let the DAE (2.30) be given with b py, tq “ b pUy, tq ` B ptqTy. Then

B0 py, tqT “ B ptqT

holds true for all py, tq P D ˆ I.

Proof . We get

B0 py, tq “ B
By

“

b pUy, tq ` B ptqTy
‰

“ B
BUy

b pUy, tqU` B ptqT.

Thus right-multiplying by T yields B0 py, tqT “ B ptqT, since UT “ 0.

We are ready for the calculation of a consistent initialization in case of an index-2 DAE
(2.30). For this we specify and fix all non-index-2 components Uy and try to correct
the index-2 components Ty of the DAE (2.30). At first we need an operating point
pz0, y0, t0q, that is, a triple fulfilling

A pt0q z0 ` b
`

Uy0, t0

˘` B pt0qTy0 “ 0, (2.31)

see Definition 2.18. A consistent initialization pz0, y0, t0q, see Definition 2.20, needs to
fulfill all constraints and we obtain

A pt0q z0 ` b pUy0, t0q ` B pt0qTy0 “ 0. (2.32)

Due to the fixing of the non index-2 components we have

Uy0 “ Uy0 (2.33)
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and subtraction of (2.31) from (2.32) using (2.33) yields

A pt0q
`

z0 ´ z0
˘` B pt0qT

`

y0 ´ y0
˘ “ 0. (2.34)

In addition the hidden constraints

W1B0 pUy0, tqD pUy0, t0q´
ˆ

z0 ´ B
Btd pUy0, t0q

˙

` B
BtW1b pUy0, t0q “ 0 (2.35)

are fulfilled, see Theorem 2.56. Using the properties of W1, Lemma 2.35, 2.55, 2.57 and
(2.33) the two equations (2.34) and (2.35) are equivalent to

´

A pt0q `W1B0

`

Uy0, t0

˘

D
`

Uy0, t0

˘´
¯

z` B pt0qTy “

´W1B0

`

Uy0, t0

˘

D
`

Uy0, t0

˘´

ˆ

z0 ´ B
Btd

`

Uy0, t0

˘

˙

´ B
BtW1b

`

Uy0, t0

˘

with z “ z0 ´ z0 and y “ y0 ´ y0.

Now we are able to calculate a consistent initialization starting from an operating point.

Theorem 2.58. Let pz0, y0, t0q be an operating point of the index-2 DAE (2.30). The
rectangular linear system

´

A pt0q `W1B0

`

Uy0, t0

˘

D
`

Uy0, t0

˘´
¯

z` B pt0qTy “

´W1B0

`

Uy0, t0

˘

D
`

Uy0, t0

˘´

ˆ

z0 ´ B
Btd

`

Uy0, t0

˘

˙

´ B
BtW1b

`

Uy0, t0

˘

Uy “ 0

pI´ R pt0qq z “ ´pI´ R pt0qq z0

has a unique solution pz, yq P Rm`n. A consistent initialization pz0, y0, t0q is given by
z0 “ z` z0 and y0 “ y ` y0.

Proof . The proof is divided into three part: Show that the problem has at most one
solution, show that the problem has at least one solution and prove that pz0, y0, t0q is a
consistent initialization.

First we show that the matrix

M “
»

–

A pt0q `W1B0 pUy0, t0qD pUy0, t0q´ B pt0qT
0 U

pI´ R pt0qq 0

fi

fl (2.36)

is injective, that is,

´

A pt0q `W1B0

`

Uy0, t0

˘

D
`

Uy0, t0

˘´
¯

z` B pt0qTy “ 0 (2.37)
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Uy “ 0 (2.38)

pI´ R pt0qq z “ 0 (2.39)

has only the trivial solution. We split (2.37) into

A pt0q z` B pt0qTy “ 0 (2.40)

W1B0

`

Uy0, t0

˘

D
`

Uy0, t0

˘´
z “ 0 (2.41)

using W1, Lemma 2.35 and 2.55. First, we focus on (2.40), which can be rewritten as

0 “ A pt0q z` B pt0qTy

“ A pt0q z` B0

`

y0, t0

˘

Ty

“ A pt0qR pt0q z` B0

`

y0, t0

˘

Ty

“ A pt0qD
`

y0, t0

˘

D
`

y0, t0

˘´
z` B0

`

y0, t0

˘

Ty

“ G0

`

y0, t0

˘

D
`

y0, t0

˘´
z` B0

`

y0, t0

˘

Ty

by Lemma 2.57. Left multiplying by G2 py0, t0q´1
yields

0 “ G2

`

y0, t0

˘´1
´

G0

`

y0, t0

˘

D
`

y0, t0

˘´
z` B0

`

y0, t0

˘

Ty
¯

“ P1

`

y0, t0

˘

P0D
`

y0, t0

˘´
z`G2

`

y0, t0

˘´1
B0

`

y0, t0

˘

P0P1

`

y0, t0

˘

Ty

`Q1

`

y0, t0

˘

Ty `Q0Ty,

see Lemma 2.32. Finally, we obtain

0 “ P1

`

y0, t0

˘

D
`

y0, t0

˘´
z` y, (2.42)

since Lemma 2.53 and (2.38) lead to

Q0T “ T

Ty “ y

Q1

`

y0, t0

˘

T “ 0

P0P1

`

y0, t0

˘

T “ 0

due to Q1 py0, t0qQ0 “ 0. Splitting (2.42) by Q0 and P0 results in

0 “ P0P1

`

y0, t0

˘

D
`

y0, t0

˘´
z ô 0 “ D

`

y0, t0

˘

P1

`

y0, t0

˘

D
`

y0, t0

˘´
z (2.43)

and

y “ ´Q0P1

`

y0, t0

˘

D
`

y0, t0

˘´
z ô y “ Q0Q1

`

y0, t0

˘

D
`

y0, t0

˘´
z (2.44)

since Q0D py0, t0q´ “ 0 and P0 “ D py0, t0q´ D py0, t0q. By combining (2.39) and (2.43)
we gain

z “ D
`

y0, t0

˘

Q1

`

y0, t0

˘

D
`

y0, t0

˘´
z (2.45)
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2 Differential-Algebraic Equations

because of

z “ R pt0q z

“ D
`

y0, t0

˘

D
`

y0, t0

˘´
z

“ D
`

y0, t0

˘

P1

`

y0, t0

˘

D
`

y0, t0

˘´
z`D

`

y0, t0

˘

Q1

`

y0, t0

˘

D
`

y0, t0

˘´
z.

Starting from (2.41) using Lemma 2.53, 2.55 and (2.45) we can deduce

0 “ W1B0

`

Uy0, t0

˘

D
`

Uy0, t0

˘´
z

“ W1B0

`

Uy0, t0

˘

D
`

Uy0, t0

˘´
D
`

y0, t0

˘

Q1

`

y0, t0

˘

D
`

y0, t0

˘´
z

“ W1B0

`

Uy0, t0

˘

P0Q1

`

y0, t0

˘

D
`

y0, t0

˘´
z

“ W1B0

`

y0, t0

˘

P0Q1

`

y0, t0

˘

D
`

y0, t0

˘´
z,

that is,

Q1

`

y0, t0

˘

D
`

y0, t0

˘´
z P ker W1B0

`

y0, t0

˘

P0 “ S1

`

y0, t0

˘

.

Furthermore

Q1

`

y0, t0

˘

D
`

y0, t0

˘´
z P im Q1

`

y0, t0

˘ “ N1

`

y0, t0

˘

and we conclude Q1 py0, t0qD py0, t0q´ z “ 0 due to N1 py0, t0q X S1 py0, t0q “ t0u since
the DAE (2.30) has index-2. From (2.44) and (2.45) we end up with pz, yq “ 0. That
is, the matrix (2.36) is injective and if a solution to the linear system exists then the
solution is unique.

The right-hand side of the linear system reads

g “
¨

˝

´W1B0 pUy0, tqD pUy0, t0q´
`

z0 ´ B

Bt
d pUy0, t0q

˘´ B

Bt
W1b pUy0, t0q

0
´pI´ R pt0qq z0

˛

‚.

For the existence of a solution we have to prove g P im M, that is, we have to show that
it exist pz, yq P Rm`n with

»

–

A pt0q `W1B0 pUy0, t0qD pUy0, t0q´ B pt0qT
0 U

pI´ R pt0qq 0

fi

fl

ˆ

z
y

˙

“ g.

We need y P ker U and z “ v ´ z0 with v P im R pt0q and z0 P Rm. Using W1 we split
the first equation of the linear system into

A pt0q z` B pt0qTy “ 0 (2.46)

W1B0

`

Uy0, t0

˘

D
`

Uy0, t0

˘´
z “ ´W1B0

`

Uy0, t
˘

D
`

Uy0, t0

˘´ “

z0
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´ B
Btd

`

Uy0, t0

˘ ‰´ B
BtW1b

`

Uy0, t0

˘

“ ´W1B0

`

Uy0, t
˘

D
`

Uy0, t0

˘´ “

R pt0q z0 (2.47)

´ R pt0q BBtd
`

Uy0, t0

˘` R pt0qw
‰

since D pUy0, t0q´ R pt0q “ D pUy0, t0q´ and it exists w P Rm such that

W1B0

`

Uy0, t
˘

D
`

Uy0, t0

˘´
w “ ´ BBtW1b

`

Uy0, t0

˘

,

see Lemma 2.37. From (2.47) we can deduce

v “ R pt0q BBtd
`

Uy0, t0

˘´ R pt0qw P im R pt0q
is always a valid choice for fixing the component z. It remains to fix y. For that we have
to investigate (2.46). We get

A pt0q z` B pt0qTy “ A pt0qR pt0q z` B pt0qTy

“ A pt0qR pt0q z` B0

`

y0, t0

˘

Ty

“ G0

`

y0, t0

˘

D
`

y0, t0

˘´
z` B0

`

y0, t0

˘

Ty

and left-multiplication of G´1
2 py0, t0q yields

y “ ´TP1

`

y0, t0

˘

D
`

y0, t0

˘´
z P im T,

see above. We show that g P im M and hence the system has a unique solution.

In the final step we have to show that z0 “ z ` z0 and y0 “ y ` y0 is a consistent
initialization. Since pz0, y0, t0q is an operating point

A pt0q z0 ` b
`

Uy0, t0

˘` B pt0qTy0 “ 0

is valid. Addition of A pt0q z` B pt0qTy “ 0 leads to

A pt0q z0 ` b pUy0, tq ` B pt0qTy0 “ 0

due to Uy “ 0, that is, pz0, y0, t0q is an operating point and we get y0 PM0 pt0q. The
equation

0 “ W1B0

`

Uy0, t0

˘

D
`

Uy0, t0

˘´

ˆ

`

z` z0
˘´ B

Btd
`

Uy0, t0

˘

˙

` B
BtW1b

`

Uy0, t0

˘

“ W1B0 pUy0, t0qD pUy0, t0q´
ˆ

z0 ´ B
Btd pUy0, t0q

˙

` B
BtW1b pUy0, t0q

ensures that the hidden constraints are fulfilled, that is, y0 PM1 pt0q and pz0, y0, t0q is
a consistent initialization since z0 P im R pt0q.
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2 Differential-Algebraic Equations

The rectangular linear system stated in Theorem 2.58 is well suited for a least square
method due to the full column rank.

So far we have not shown how to calculate an operating point pz0, y0, t0q, which is an
essential ingredient for Theorem 2.58. Motivated by our application classes we determine
an operating point for a subclass of DAEs (2.8) given by

A py, tq d

dt
d py, tq ` b py, tq “ 0, (2.48)

where we assume

� ker B0 py, tq “ ker B0 py, tqJ independent of y P Rn

and

� it exists y0 P Rn such that b py0, t0q “ 0 for t0 P I.

First, we are interested in a point of equilibrium py0, t0q P Rn ˆ I of the DAE (2.48),
that is, a point fulfilling b py0, t0q “ 0. If y0 P D, then the point of equilibrium is an
operating point pz0, y0, t0q of the DAE (2.48) with z0 “ 0. For the calculation of a point
of equilibrium for the subclass of DAEs (2.48) we make use of an orthogonal projector
decomposition developed in [Jan12a] for a new index concept.

Theorem 2.59. Let

f py, tq “ 0 with f : Rn ˆ R Ñ Rn

be given. Moreover, let F py, tq “ B

By
f py, tq with ker F py, tq “ ker F py, tqJ be indepen-

dent of y P Rn, BP ptq “
“

b1 ptq . . . bk ptq
‰ P Rnˆk, where tb1 ptq , . . . , bk ptqu is an

orthonormal basis with respect to the standard scalar product on Rk of ker F py, tq, and
BP ptq “

“

bk`1 ptq . . . bn ptq
‰ P Rnˆn´k, where tbk`1 ptq , . . . , bn ptqu is an orthonormal

extension of tb1 ptq , . . . , bk ptqu to an orthonormal basis with respect to the standard
scalar product on Rn, t P R. In addition we assume the domain D to be so that for each
py, tq P D ˆ I also PB ptq y ` sQB ptq y P D for all s P r0, 1s with PB ptq “ BP ptqBP ptqJ
and QB ptq “ I´ PB ptq. Then

BP ptqJ f pBP ptq v, tq “ 0

has a unique solution v P Rk and y “ BP ptq v`u, with u P ker BP ptqBP ptqJ arbitrarily.

Proof . We choose an orthogonal projector PB ptq along ker F py, tq by

PB ptq “ BP ptqBP ptqJ .
Using Lemma A.7, A.9, the orthogonality of PB ptq and ker F py, tq “ ker F py, tqJ yields
im PB ptq “ im F py, tq and

PB ptqF py, tq “ F py, tq “ F py, tqPB ptq
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for all py, tq P Rn ˆ R. The relation

f py, tq “ f pPB ptq y, tq
holds true since applying the mean value theorem provides

f py, tq ´ f pPB ptq y, tq “
ż 1

0

F psy ` p1´ sqPB ptq y, tq pI´ PB ptqq yds “ 0.

Due to the choice of BP ptq and BP ptq the matrix C ptq “ “

BP ptq BP ptq
‰

is nonsingular.
Hence:

f pPB ptq y, tq “ 0 ô C ptqJ f pPB ptq y, tq “ 0 ô
#

BP ptqJ f pPB ptq y, tq “ 0

BP ptqJ f pPB ptq y, tq “ 0

Notice that BP ptqJ f pPB ptq y, tq “ 0 holds true for all y P Rn since

BP ptqJ F pPB ptq y, tqPB ptq “ 0

for all py, tq P Rn ˆ I, that is, BP ptqJ f pPB ptq y, tq is independent of y P Rn, and due to
the requirements that y P Rn exists so that f py, tq “ 0 for t P R. Regarding

0 “ BP ptqJ f pPB ptq y, tq
“ BP ptqJ f

´

BP ptqBP ptqJ y, t
¯

“ BP ptqJ f pBP ptq v, tq

with v “ BP ptqJ y and Jacobian given by

J pvq “ BP ptqJ F pBP ptq v, tqBP ptq .
Due to the construction of BP ptq the Jacobian is nonsingular.

Remark 2.60. The orthogonal basis tb1 ptq , . . . , bk ptqu, needed in Theorem 2.59 can
be calculated by, for example, a QR decomposition.

If we are not interested in a consistent initialization of the DAE (2.30) at t0 P I, but
finding a solution satisfying the DAE after the first step, we can also apply the implicit
Euler method starting with an operating point y0 P M0 pt0q. Since the DAE (2.30)
depends linearly on the index-2 components, the approximation obtained at t1 “ t0 ` h
is identical to the approximation obtained with a consistent initial value y0 satisfying
Uy0 “ Uy0. In detail, if the implicit Euler method is applied to the DAE (2.30) then the
approximation y1 to y pt1q is the solution to the following nonlinear system of equations

f py1q “ 1

h
A pt1q pd pUy1, t1q ´ d pUy0, t0qq ` b pUy1, t1q ` B pt1qTy1 (2.49)
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2 Differential-Algebraic Equations

with f py1q “ 0 and Jacobian J pUy1q “ B

By
f py1q given by

J pUy1q “ 1

h
A pt1qD pUy1, t1qU` B

BUy
b pUy1, t1qU` B pt1qT.

Applying Newton’s method to (2.49) yields

y1
1 “ y0

1 ´ J
`

Uy0
1

˘´1
f
`

y0
1

˘

and

J
`

Uy0
1

˘

y1
1 “ J

`

Uy0
1

˘

y0
1 ´ f

`

y0
1

˘

.

That can be reformulated to

J
`

Uy0
1

˘

y1
1 “ J

`

Uy0
1

˘

y0
1 ´ f

`

y0
1

˘

“ 1

h
A pt1qD

`

Uy0
1, t1

˘

Uy0
1 ` B

BUy
b
`

Uy0
1, t1

˘

Uy0
1 ` B pt1qTy0

1

´ 1

h
A pt1q

`

d
`

Uy0
1, t1

˘´ d pUy0, t0q
˘´ b

`

Uy0
1, t1

˘´ B pt1qTy0
1

“ 1

h
A pt1q

`

D
`

Uy0
1, t1

˘

Uy0
1 ´ d

`

Uy0
1, t1

˘` d pUy0, t0q
˘

` B
BUy

b
`

Uy0
1, t1

˘

Uy0
1 ´ b

`

Uy0
1, t1

˘

“ g
`

Uy0
1

˘

and we obtain

y1
1 “ J

`

Uy0
1

˘´1
g
`

Uy0
1

˘

.

Since this equation depends only on Uy0,Uy0
1 and Uy0 “ Uy0, the choice y0

1 “ y0

yields the same approximation at t1 as the choice y0
1 “ y0. The result does not surprise

because it is true for classes of DAEs without a properly stated leading term [Est00].
Consequently, py1

1, t1q is a consistent initial value for the DAE (2.30) at t1 P I provided
the rounding errors are zero.

Lemma 2.61. For the DAE (2.30) it is sufficient to start the integration with the implicit
Euler using an operating point. All constraints are fulfilled after the first integration
step.

Remark 2.62. It is a common approach to start the numerical integration with the
implicit Euler to overcome the problem of the calculation of a consistent value, but
usually it is not proven that the approach works. Here we have shown that starting the
integration of the DAE (2.30) using the implicit Euler we only need an operating point
and we obtain after one time step a consistent initial value. For this the Theorem 2.58
is essential, since here we prove that starting with an operating point only the index-2
components Ty has to be correct while the non-index-2 components Uy are fixed.
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Remark 2.63. The tractability index concept and all techniques presented are not
invariant under transformation with respect to solution components which can be chosen
freely. Consider the index-1 DAE

´x` y “ 0
d

dt
y ` 2x “ 0

where y0 can be chosen arbitrarily within the tractability index concept, but we can
not choose the algebraic component x0. Inserting the first equation into the second one
leads to the index-1 DAE

´x` y “ 0
d

dt
x` 2x “ 0

where x0 can be chosen freely within the tractability index concept, but we cannot choose
the algebraic component y0. That is dissatisfying since an engineer, for example, does
not have the immediate possibility to fix certain initial algebraic components such as
the velocity of a car or the energy consumption of an electric device. How to solve this
challenging task is still an open issue and may become subject of future research.

For the index-3 or higher DAEs are more of a challenge. If such a DAE is solved by a BDF
method, then the solution can have a huge error in the first steps even if consistent initial
values are given. Instead of consistent initial values we have to introduce numerically
consistent initial values, that is, values fulfilling the numerical constraints to solve the
DAE numerically, see [Aré08].

2.3 Summary

In this chapter we have laid the basis of for our later analysis. We have identified
problems and challenges in differential-algebraic equation theory and developed and
refined methods to tackle them within the tractability index concept for differential-
algebraic equations with a properly stated leading term.
The basis was a generalization of the index reduction method by differentiation for index-
2 differential-algebraic equations (2.18) to index-1 differential-algebraic equations (2.22)
(Lemma 2.41 and 2.43). Next, we have deduced a suitable description of the hidden
constraints of the index-2 differential-algebraic equations (2.18) (Theorem 2.45), the local
unique solvability (Theorem 2.46) and a perturbation index-2 result (Theorem 2.50).
The latter is an important justification for the choice of the tractability index concept
in this thesis and is essential to numerics.
To start the numerical integration we focused on consistent initial values for differential-
algebraic equations (2.30). For index-2 differential-algebraic equations (2.30) we gener-
alized a step-by-step approach of [Est00] for differential-algebraic equations without a
properly stated leading term to differential-algebraic equations with a properly stated
leading term. For this we had to calculate an operating point. Next the operating point
was corrected by a full rank linear system providing a consistent initialization (Theo-
rem 2.58). For differential-algebraic equations (2.48) we provided a method to compute
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2 Differential-Algebraic Equations

an operating point (Theorem 2.59). It turned out that for differential-algebraic equa-
tions (2.30) it is sufficient to start with an operating point if the implicit Euler method
is used for time integration (Lemma 2.61 and Remark 2.62).
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3 Maxwell’s Equations

From a long view of the history of mankind, seen
from, say, ten thousand years from now, there can
be little doubt that the most significant event of the
19th century will be judged as Maxwell’s discovery
of the laws of electrodynamics.

The Feynman Lectures on Physics, Volume II
Richard Feynman.

Nowadays electric and magnetic fields are an integral part of our technological life. We
are surrounded by electric and magnetic fields ranging from induction cooking, mobile
phones, wireless networks, electric cars to magnetic resonance tomographs.

The reduction of development costs is a core industrial demand. One way to mini-
mize efforts is to replace as much laboratory testing as possible by numerical simulation
predicting the full range of device performance. A common device type is the electro-
magnetic, which is governed by the interaction between electric and magnetic fields fully
as described by the partial differential equation system of Maxwell’s equations. For
the numerical simulation of an electromagnetic device we need to discretize Maxwell’s
equations in space and time.

A well established method of lines approach for the spatial discretization is the finite inte-
gration technique introduced by Thomas Weiland [Wei77] and further developed during
the last three decades [MW07]. The finite integration technique is used by our partners
in the EU-funded ICESTARS project and the SOFA project, funded by the German
government. Moreover, it is successfully applied in established software packages such
as MAFIA (Technical University Darmstadt) and CST studio (Computer Simulation
Technology AG).

We investigate electromagnetic models described by Maxwell’s equations in a potential
formulation. They are much used in low and high frequency applications with vari-
ous formulations and discretizations having already been analyzed, for an overview see
[BP89, StM05, Cle05, CMSW11]. Apart from the finite integration technique discretiza-
tion the cell method [Ton01], particular finite-volume methods [MMS01] and also certain
variants of the finite-element method are broadly used [Ned80, Bos98, Göd10]. Here we
focus on the finite integration technique discretization scheme. The potential approach
results in an adequate problem description that provides a natural link to the concept of
potential differences, which are crucial in circuit simulation. However, the potentials are
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not uniquely defined and to obtain a consistent description a gauge condition is needed,
see [Jac98, Bos01]. For the finite integration technique, grad-div formulations based on
the Coulomb gauge are well understood, see [CW02, BCDS11]. In this thesis we intro-
duce a new class of gauge conditions in terms of the finite integration technique driven
by a Lorenz gauge formulation. After spatial discretization we investigate the structural
properties of the resulting differential-algebraic equation formulated with a properly
stated leading term. It turns out that the index of the differential-algebraic equation
depends on the chosen gauge condition but does not exceed index-2. To concentrate
the link to circuit simulation a suitable boundary excitation and current formulation is
deduced. Similar differentiation index results are obtained in [BCS12] using a source
term excitation and different gauge conditions.

In this chapter the relevant fundamentals of Maxwell’s equations are discussed focusing
on the basic features of electromagnetism. First, we analyze the electromagnetic fields
by using a potential formulation. Different gauge conditions and suitable boundary
conditions are discussed. Second, we briefly introduce the finite integration technique.
Especially the structural properties of the discrete operators with incorporated bound-
ary conditions are discussed and we introduce a new class of gauge conditions in terms
of the finite integration technique. This leads to Maxwell’s grid equations and we derive
a current formulation and present a boundary excitation for the potential. Third, the
resulting differential-algebraic equations are formulated with a properly stated leading
term and the new index results are presented, which depend on the chosen gauge con-
dition. In addition, we present an approach to calculate a consistent initialization for
Maxwell’s grid equations.

3.1 Classical Electromagnetism

Maxwell’s equations (ME - Maxwell’s Equations) are a set of four coupled partial differ-
ential equations postulated by James Clerk Maxwell in the middle of the 19th century
and form the basic of the modern theory of electromagnetics (EM - ElectroMagnetic),
see [Max64]. These equations describe all phenomena of EM fields by four vector valued
functions of space x P Ω Ă R3 and time t P I Ă R on a simple connected domain Ω. The
EM quantities are denoted by the electric and magnetic field ~E, ~H : Ω ˆ I Ñ R3 and
by the electric and magnetic induction ~D, ~B : Ω ˆ I Ñ R3. An EM field is created by,
amongst others, a distribution of electric charges and a current flow. The distribution
of charges is given by ρ : Ωˆ I Ñ R3 while the conduction current density is described
by ~Jc : Ωˆ I Ñ R3, see [Jac98, HW05].

Today ME in differential form reads:

∇ ¨ ~D “ ρ (3.1)

∇ ¨ ~B “ 0 (3.2)
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3 Maxwell’s Equations

∇ˆ ~E “ ´ BBt
~B (3.3)

∇ˆ ~H “ ~Jc ` B
Bt
~D (3.4)

These equations describe the spatial and temporal behavior of the EM quantities. Tables
of SI units are given in Table 3.1 and 3.2.

quantity SI units

~E V{m
~D C{m2 “As{m2

~B T“Vs{m2

~H A{m
~Jc, ~Jd, ~Jt A{m2

ϕ V
~A Wb{m“Vs{m
~Π V{m
ρ C{m3 “As{m3

Table 3.1: Field quantities.

operator SI units
B

Bt
1{s

∇ 1{m
∇ˆ 1{m
∇¨ 1{m

Table 3.2: Differential operators.

ME are the work of several well-known physicians. That is why the individual equa-
tions are attributed to other scientists. But Maxwell grouped all the equations together
into a consistent set and introduced the displacement current. The Gauss’ law (3.1)
describes the effect of the charge density on the electric induction and Gauss’ law for
magnetism (3.2) expresses the fact that magnetic induction is solenoidal. The Maxwell-
Faraday’s law (3.3) describes the effect of a time changing magnetic field on the electric
field. Finally, Maxwell-Ampère’s law (3.4) gives the effect of the total current density

on the magnetic field. The total and displacement current density ~Jt,~Jd : Ω ˆ I Ñ R3

are given by

~Jt “ ~Jc ` ~Jd and ~Jd “ B
Bt
~D.

An essential feature of ME is that electric charges are conserved. For this we derive
the charge-current continuity equation from ME. The divergence of (3.4) and the time
derivative of (3.1) lead to the continuity equation

∇ ¨ ~Jc ` B
Btρ “ 0 (3.5)

expressing the conservation of electric charges. The continuity equation reveals that ME
are not independent. If charge is conserved, then Gauss’ law and Gauss’ law for mag-
netism are consequences of Maxwell-Faraday’s law and Maxwell-Ampère’s law. Taking
the divergence of (3.3) and (3.4) and interchanging the derivatives we obtain

B
Bt∇ ¨

~B “ 0 and
B
Bt

´

∇ ¨ ~D´ ρ
¯

“ 0
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using the continuity equation (3.5). Thus, if the divergence conditions (3.1) and (3.2) are
fulfilled at one time they hold for all time, see [Mon03]. Hence the divergence conditions
are consequences of the dynamic curl conditions (3.3) and (3.4) and can be seen as re-
striction on valid initial conditions for the Maxwell-Faraday’s law and Maxwell-Ampère’s
law. Therefore we conclude that the whole time evolution is completely specified by the
dynamic curl conditions. ME are completed by three constitutive laws. The laws relate

quantity SI units

ε F{m=As{Vm
ν m{H“Am{Vs
σ S{m“A{Vm

Table 3.3: Material properties.

~E and ~B to ~D, ~Jc and ~H. These laws depend on the material properties in the domain
occupied by the EM field. One distinguishes between linear and nonlinear, homogeneous
and inhomogeneous, isotropic and anisotropic materials. For linear materials the consti-
tutive laws are independent of the fields quantities. The constitutive laws of nonlinear
materials depend on the fields quantities. For homogeneous materials the constitutive
laws are independent on the spatial coordinates. The constitutive laws of inhomogeneous
materials are functions of the spatial coordinates. Isotropic and anisotropic materials
are characterized by the absence or presence of a dependence of the constitutive laws
upon the spatial direction, see [Ben06].

We restrict ourselves to the following constitutive laws. The first constitutive law relates
~E and ~D by

~D “ ε~E, (3.6)

with ε : Ω Ñ R and the permittivity ε depending on the spatial coordinates only.
The second constitutive law relates ~B and ~H by

~H “ νp~Bq~B, (3.7)

with ν : Ωˆ R3 Ñ R3ˆ3 and the reluctivity ν depending on the spatial coordinates and
depending nonlinearly and anisotropically on the magnetic induction. The reluctivity is
the inverse of the permeability µ.
In case of conductive materials the electric field ~E itself gives rise to a current flow. That
leads to the last constitutive law also known as Ohm’s law. As long as the field strengths
are not too large we can assume that Ohm’s law is fulfilled. It relates ~E and ~Jc by

~Jc “ σ~E, (3.8)

with σ : Ω Ñ R and the conductivity σ depending on the spatial coordinates only. In
insulating materials we can assume that σ vanishes.
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3 Maxwell’s Equations

Assumption 3.1 (constitutive laws). The materials have:

(i) Linear, inhomogeneous and isotropic permittivity and conductivity.

(ii) Nonlinear, inhomogeneous and anisotropic reluctivity given by Brauer’s model, see
[Sch11, BH91].

Table 3.3 shows the corresponding SI units of the material properties. In this thesis we
restrict ourselves to materials fulfilling Assumption 3.1.

Classification of Electromagnetic Problems

The behavior of EM fields is governed by ME. To simplify the calculation of ME there
are several approaches that disregard effects depending on the speed of propagation of
the EM waves. Common simplifications are:

(i) Static fields: The time dependence in the EM quantities are neglected, that is,
B

Bt
~B “ 0 and B

Bt
~D “ 0.

(ii) Magnetoquasistatic (MQS - MagnetoQuasiStatic): The electric induction ~D is

slowly varying and the time dependence is neglected, that is, B

Bt
~D “ 0.

(iii) Electroquasistatic: The magnetic induction ~B is slowly varying and the time de-

pendence is neglected, that is, B

Bt
~B “ 0.

Every simplification has an impact on the solution, that is, we have to take care if a
simplification is really admissible, see [HM89]. In this thesis we mainly focus on ME
without simplification, that is, we consider the “full set” of ME in time domain.

3.1.1 Potential Formulation and Gauge Conditions

When studying ME it is often convenient to introduce auxiliary functions that simplify
the representation of ME. For our investigations we use a potential approach, see [BP89,
Jac98, StM05, HW05].

From Gauss’ law for magnetism (3.2) we deduce from Helmholtz decomposition that

there is a vector field ~A : Ωˆ I Ñ R3 such that

~B “ ∇ˆ ~A

and using Maxwell-Faraday’s law (3.3) we obtain

∇ˆ
ˆ

~E` B
Bt
~A

˙

“ 0.
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Thus using Helmholtz decomposition we can conclude that there is a scalar function
ϕ : Ωˆ I Ñ R such that

~E “ ´∇ϕ´ B
Bt
~A.

This potential approach is the so-called p~A, ϕq-formulation with the vector potential ~A
and scalar potential ϕ, see [StM05]. Note there are different potential approaches and

for an overview we refer to Tabelle 2.4 in [Koc09]. The p~A, ϕq-formulation has the
advantage that the scalar potential ϕ provides a natural link to the concept of potential
differences which plays a crucial role in conventional simulations of electric circuits.
A second advantage is that Gauss’ law for magnetism and Maxwell-Faraday’s law are
automatically fulfilled. A visual representation of all quantities is given in Figure 3.1(a).

∇�
∇�

~B [Wb{m2]

0 [V{m2]

0 [Wb{m3]

~A [Wb{m]

~E [V{m]

ϕ [V]
ρ [C{m3]

~D [C{m2]

~Jc [A{m2]

~H [A{m]

0 [A{m3]

BBt

BBt
� BBt σ [S{m]

ε [F{m]

ν [m{H]

Primary Dual

∇�
∇�

�∇ � BBt

(a) continuous

rC
rS

q [C]

""
d [C]

""
j c [A]

"
h [A]

0 [A]

Mε [F]

Primary Dual

� d
dt

d
dt

d
dt

�G

Mν [1{H]

""
b [Wb]

C

Mσ [S]

S

"a [Wb]

0 [Wb]

"e [V]

φ [V]

0 [V]

� d
dt

(b) discrete

Figure 3.1: Tonti’s diagram or Maxwell’s house, [Ton95, Cle05, StM05].

The potential approach has a drawback: The scalar and vector potentials exhibit a
so-called gauge freedom, that is, there are arbitrary in the sense that ~B and ~E are left
unchanged if the gauge transformation

~A1 “ ~A`∇χ and ϕ1 “ ϕ´ B
Btχ

is applied, where the gauge function χ : Ω ˆ I Ñ R is an arbitrary scalar function, see
[Jac98, HW05]. For ~B and ~E we have

~B1 “ ∇ˆ ~A1
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3 Maxwell’s Equations

“ ∇ˆ ~A`∇ˆ∇χ
“ ∇ˆ ~A

“ ~B

and

~E1 “ ´∇ϕ1 ´ B
Bt
~A1

“ ´∇ϕ´∇ B
Btχ´

B
Bt
~A` B

Bt∇χ

“ ´∇ϕ´ B
Bt
~A

“ ~E.

A physical law which does not change under a gauge transformation is said to be gauge
invariant. In that sense ~E and ~B are gauge invariant. To obtain a unique solution the
next step is to remove the gauge freedom of ~A and ϕ. For that reason we fix a gauge
function except for a constant scalar field by choosing a gauge condition. In the following
we introduce the two most common gauge conditions, namely the Coulomb gauge and
Lorenz gauge given by

∇ ¨ ~A “ 0 (3.9)

and

εµ
B
Btϕ`∇ ¨

~A “ 0 (3.10)

for the case of linear, homogeneous and isotropic materials.

Remark. Lorenz gauge is named after Ludvig Lorenz. It is an invariant condition, and
is often wrongly called Lorentz gauge because of confusing with Hendrik Lorentz, after
whom Lorentz covariance is named.

To show the impact of the two gauge conditions we assume ε and µ to be constant
and the functions ρ and ~Jc to be given, but related by the continuity equation (3.5), see

[MRT05]. That is, we regard ~Jc as a given source current density. Then Gauss’ law (3.1),
Maxwell-Ampère’s law (3.4) and the constitutive laws (3.6) and (3.7) lead to

∆ϕ` B
Bt∇ ¨

~A “ ´1

ε
ρ

∇2~A´ εµ B
2

Bt2
~A´∇

ˆ

∇ ¨ ~A` εµ BBtϕ
˙

“ ´µ~Jc
(3.11)
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where the vector Laplace operator is denoted by ∇2. Applying Coulomb gauge to (3.11)
we get the semi-decoupled system

∆ϕ “ ´1

ε
ρ

∇2~A´ εµ B
2

Bt2
~A “ ´µ~Jc ` εµ BBt∇ϕ

(3.12)

consisting of an elliptic equation for ϕ and three wave equations for ~A. Applying Lorenz
gauge to (3.11) we can deduce the fully decoupled system

∆ϕ´ εµ B
2

Bt2
ϕ “ ´1

ε
ρ

∇2~A´ εµ B
2

Bt2
~A “ ´µ~Jc

(3.13)

consisting of four wave equations.

In both cases the systems lead to an unique solution if we choose initial and boundary
conditions properly, see [Eva10], and hence the gauge function χ is fixed. To derive
the system (3.12) and (3.13) we apply Coulomb and Lorenz gauge directly to (3.11).
To make sure that the gauge conditions are fulfilled implicitly we need to choose the
initial and boundary conditions such that we obtain only the trivial solution for the
homogeneous wave equation

∆ψ ´ εµ B
2

Bt2
ψ “ 0 (3.14)

with ψ : Ω ˆ I Ñ R given by ψ “ ∇ ¨ ~A and ψ “ εµ B
Bt
ϕ ` ∇ ¨ ~A, depending on the

chosen gauge condition. We obtain (3.14) by taking the continuity equation (3.5) into
account. That is important since the systems (3.12) and (3.13) solve ME if and only if
the applied gauge is implicitly fulfilled. Note that both gauges regularize the curl-curl
operator in the sense that a Green function exists to determine the vector potential ~A
uniquely.

For our later analysis we need to generalize the Coulomb and Lorenz gauge to obtain
suitable gauge conditons for the spatial discretization method presented in the next
section. We rewrite Maxwell-Ampère’s law (3.4) to

~Jc “
´

∇ˆ ν∇ˆ ~A´ ζ∇ξ∇ ¨ ζ~A
¯

`
ˆ

ε∇ B
Btϕ` ζ∇ξ∇ ¨ ζ

~A

˙

` B2

Bt2
ε~A

with artificial material properties ζ, ξ : Ω ˆ R Ñ R such that the SI units of ν and ζ2ξ
match. A possible class of gauge conditions reads

ϑε∇ B
Btϕ` ζ∇ξ∇ ¨ ζ

~A “ 0 (3.15)
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3 Maxwell’s Equations

with ϑ P R. For ϑ “ 0 we obtain a grad-div type of Coulomb gauge

ζ∇ξ∇ ¨ ζ~A “ 0.

Moreover for ϑ “ 1 we get a type of Lorenz gauge

ε∇ B
Btϕ` ζ∇ξ∇ ¨ ζ

~A “ 0.

For further discussion on gauge conditions we refer to [BCS12, StM05, Bos01, CMSW11].

Finally, ME formulated in terms of potentials using Maxwell-Ampère’s law (3.4), the
constitutive laws (3.6), (3.7) and (3.8), and the gauge condition (3.15) reads

ϑε∇ B
Btϕ` ζ∇ξ∇ ¨ ζ

~A “ 0

∇ˆ ν∇ˆ ~A` ε BBt
´

∇ϕ` ~Π
¯

` σ
´

∇ϕ` ~Π
¯

“ 0

B
Bt
~A´ ~Π “ 0

(3.16)

utilizing an auxiliary vector field ~Π : ΩˆI Ñ R3 to avoid the second-order differentiation
in time for ~A.

3.1.2 Boundary and Interface Conditions

In general, EM field problems are not restricted, open boundary problems. However, for
our later investigations we have to restrict ourselves to a finite domain Ω Ĺ R3. That
is, we deal with an artificially bounded problem.

Assumption 3.2. The finite domain Ω Ĺ R3 is simply connected with the boundary
Γ “ BΩ.

In case of MQS the truncation of the domain is reasonable if a sufficiently large region
of air is around the MQS device, since the magnetic induction decays rapidly in the air
towards the boundary. As a general rule it recommends the distance from the device to
the boundary to be at least five times the radius of the device, see [CK97].

Remark 3.3. A MQS device is an EM device under the MQS assumption.

Unfortunately, this argumentation is not valid in our case since we will assume that
the device is connected to the boundary. We assume that the main part of the device
is sufficiently far away from the boundary and that wires with a good conductivity
connect the main part of the device to the boundary. Due to the damped wave equations
character of ME the fields decays towards the boundary.

To complete the system (3.16) we need boundary conditions. In addition, we have
to handle discontinuities of ε, ν and σ which can appear at the boundary between
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different materials in our bounded domain Ω. We denote by Γint the internal boundary
between different materials. The conditions on the internal boundary are called interface
conditions.

We consider an internal boundary separating two different materials 1 and 2 with mate-
rial properties pε1, σ1, ν1q and pε2, σ2, ν2q. Interface conditions are obtained by applying
the Gauss’ theorem and Stokes’ theorem to ME in a small region at the internal boundary
between two materials:

´

~E2 ´ ~E1

¯

¨ ~nq “ 0
´

~B2 ´ ~B1

¯

¨ ~nK “ 0
´

~D2 ´ ~D1

¯

¨ ~nK “ %
´

~H2 ´ ~H1

¯

¨ ~nq “ κ

A detailed derivation is given in [Jac98, Str07]. The subscripts 1 and 2 of the EM
quantities denote the quantities in materials 1 and 2. Here % describes the surface
charge density and κ the surface current density with

%, κ : Γint Ñ R.

That is, the tangential component of ~E and the normal component of ~B are continuous
functions across the internal boundary. The method to derive the interface conditions
is known as pill-box method.

The interface conditions motivates boundary conditions for ~E and ~B. One approach is
the so-called electric boundary condition (PEC - Perfectly Electric Conducting) and are
also called “flux wall” or “current gate” boundary conditions, see [Cle98, Ben06]. We
assume:

~E ¨ ~nq “ 0 (3.17)

~B ¨ ~nK “ 0 (3.18)

The idea is to think of a complete universe, where ME are also true outside the simulation
domain Ω. The picture is to attached a perfect conductor from outside at the boundary,
where the magnetic induction does not pass through.

The next step is to interpret and motivate the boundary conditions for ~E and ~B in terms
of the potentials ~A and ϕ.

Assumption 3.4. We assume that the boundary consists of k P N disjoint parts with
Γ “ Ťk

i“1 Γi and for every Γi the material properties pε, σ, νq to be constant.
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3 Maxwell’s Equations

Let Assumption 3.4 be fulfilled. We examine an arbitrarily boundary part Γi. Due to
(3.18) we get

0 “ ~B ¨ ~nK “ ∇ˆ ~A ¨ ~nK
and we deduce that

~A ¨ ~nq “ 0 (3.19)

is a possible choice. Next we inspect (3.17) and we obtain

0 “ ~E ¨ ~nq “ ´∇ϕ ¨ ~nq ´ B
Bt
~A ¨ ~nq “ ´∇ϕ ¨ ~nq.

To fulfill that condition a possible choice is

∇ϕ ¨ ~nq “ 0. (3.20)

The conditions (3.19) and (3.20) can be interpreted as Dirichlet boundary conditions for
the potentials.

Applying the pill-box method using the gauge conditions (3.9) and (3.10) it is possible to

show that ∇ϕ inherits the discontinuity of ~E at internal boundaries and ~A is continuous,
see [AH01]. This motivates choosing homogeneous Dirichlet boundary conditions for ~A
and spatial-constant time-dependent Dirichlet boundary conditions for ϕ on each Γi. In
addition, we choose Dirichlet boundary conditions for ~Π in accordance with ~A. This
set of boundary conditions are a suitable link to circuit simulation, where the boundary
condition for the scalar potential ϕ can be identified with the applied potentials at the
device contacts.

Essential for our later analysis of ME is the charge conservation expressed by the conti-
nuity equation (3.5), since including EM devices into circuit models are only possible if

charges are conserved. Due to the definition of the total current ~Jt “ ~Jc ` ~Jd we obtain

ż

Γ

~Jt ¨ ~nKdF “
ż

Ω

∇ ¨ ~JtdV “ 0 with ~Jt “ ∇ˆ ν∇ˆ ~A,

that is, the sum of in- and outgoing currents equals. Without loss of generality we
suppose that we number the disjoint boundary parts Γi such that the first nE ă k
boundary parts have the material property σ ‰ 0 and the last k ´ nE boundary parts
have the material property σ “ 0. We call Γg “ Ťk

i“nE`1 Γi the mass contact while the
other Γi are called conductive contacts and we get

jg “ ´
nE
ÿ

i“1

ji with ji “
ż

Γi

~Jt ¨ ~nKdF.
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This means that the current jg flowing through the mass contact of the EM device is the
negative sum of the currents ji, i “ 1, . . . , nE, flowing through the conductive contacts.
The picture is that each conductive contact is connected to a wire from outside while
the mass contact is grounded.

3.2 Finite Integration Technique

This section provides a survey on the finite integration technique (FIT - Finite Integration
Technique) for spatial discretization for solving ME in integral form. That approach
was developed and formulated by Thomas Weiland [Wei77] and is based on a stag-
gered discretization. For orthogonal grids in time domain the FIT is equivalent to the
finite-difference time-domain-scheme of Kane Yee, also known as leap-frog scheme, see
[Yee66].

The first step in the FIT discretization is the decomposition of the domain Ω into a finite
number of three-dimensional volumes so that the intersection of two different volumes is
either empty - or a two-dimensional facet, a one-dimensional edge or a zero-dimensional
node shared by both volumes. This decomposition yields a finite volumes complex
G. To each edge of the volumes we prescribe an initial orientation, so that G can be
characterized as a directed graph, see Chapter B for the notation in Graph theory. The
volume facets are supplied with an initial orientation, too.

For a rectilinear grid in Cartesian coordinates on a brick-shaped domain Ω, see [Wei77,
TW96], the corresponding volumes complex G reads

G “  

V pnq “ V pn pix, iy, izqq |V pn pix, iy, izqq “ rxix , xix`1s ˆ
“

yiy , yiy`1

‰ˆ rziz , ziz`1s ,
ix “ 1, . . . , Nx ´ 1, iy “ 1, . . . , Ny ´ 1, iz “ 1, . . . , Nz ´ 1

(

where Nx, Ny and Nz are the total numbers of (grid) nodes in x-, y- and z- direction,
respectively. The total number of nodes is then N “ NxNyNz. The space indices ix, iy
and iz can be reduced to one canonical space index

n “ n pix, iy, izq “ 1` pix ´ 1qKx ` piy ´ 1qKy ` piz ´ 1qKz ď N

where Kx “ 1, Ky “ Nx, Kz “ NxNy and ix “ 1, . . . , Nx, iy “ 1, . . . , Ny, iz “ 1, . . . , Nz.

To each node N pnq we associate three (grid) edges Ex pnq, Ey pnq, Ez pnq, three (grid)
facets Fx pnq, Fy pnq, Fz pnq and finally, one (grid) volume V pnq.
The orientation of edges and facets is given as follows: The front node of the edge Ew pnq
in w-direction is N pnq. A facet Fw pnq is defined by the lower left node N pnq and the
direction w, in which its normal vector points.

Remark 3.5. The numbering scheme of the grid G introduces phantom edges, facets
and volumes at the boundary of the finite domain Ω. To not disrupt the convenient
numbering scheme, we tackle this issue later, see Subsection 3.2.4.
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3 Maxwell’s Equations

The FIT makes use of two staggered grids. The primary grid G is supported by a dual
grid rG, which is constructed by connecting the center points of neighboring primary
volumes sharing a facet, see Figure 3.2. The center points define the dual (grid) nodes
rN pnq. The definition of the dual (grid) edges rEw pnq, facets rFw pnq and volume rV pnq,
are analogous to the primary grid. The orientation of dual edges and dual facets is given

primary node

dual node

dual volume

primary volume

Figure 3.2: Spatial allocation of a primary cell and a dual cell of the grid doublet, see [CW01b].

as follows: The dual back node of the dual edge rEw pnq in w-direction is rN pnq. A dual

facet rFw pnq is defined by the upper right dual node rN pnq and the direction w, in which
its normal vector points.

Remark 3.6. With this definition of the dual grid it is ensured that there is a one-to-one
relation between nodes and edges of G and volumes and facets of rG and vice versa.

The collection of all primary nodes and primary edges are denoted by N and E .

3.2.1 Maxwell’s Grid Equations

The formulation of discrete approach to electromagnetism arises from the mapping of
ME in their integral form and the constitutive laws on tG, rGu. As variables of the FIT
we introduce electric and magnetic voltages located on the edges defined by

"ew pnq “
ż

Ewpnq

~E ¨ ~nqdE,
"

hw pnq “
ż

rEwpnq

~H ¨ ~nqdE,

as well as magnetic and electric fluxes and electric currents allocated at the facets defined
by

""

bw pnq “
ż

Fwpnq

~B ¨ ~nKdF,
""

dw pnq “
ż

rFwpnq

~D ¨ ~nKdF,
""

j c,w pnq “
ż

rFwpnq

~Jc ¨ ~nKdF.
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The variables are tagged by arcs according to the underlying geometric object, see
[Bos88]. For a convenient notation we introduce the state variable vector

"e “ p"ex p1q , . . . ,"ex pNq ,"ey p1q , . . . ,"ey pNq ,"ey p1q , . . . ,"ey pNqq

and the vector
"

h,
""

b ,
""

d and
""

j c are defined analogously. This notation allows to write
ME in terms of the FIT discretization. Gauss’ law for magnetism (3.2), for example,

y

z

x

""
bx pnq ""

bx pn ` Kxq

""
by pnq

""
by pn ` Kyq

""
bz pn ` Kzq

""
bz pnq

(a) Gauss’ law for magnetism.

""
bz pnq "ey pn ` Kxq"ey pnq

"ex pnq

"ex pn ` Kyq

y

x

z

(b) Maxwell-Faraday’s law.

Figure 3.3: Allocation of the FIT degrees of freedom on the primary grid.

integrated over a volume V pnq, see Figure 3.3(a), can be written as

´""

bx pnq `
""

bx pn`Kxq ´
""

by pnq `
""

by pn`Kyq ´
""

bz pnq `
""

bz pn`Kzq “ 0

using Gauss’ theorem. The relations for all volumes are collected in the equation

»
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3 Maxwell’s Equations

The Maxwell-Faraday’s law (3.3) integrated over a volume Fz pnq, see Figure 3.3(b),
leads to

"ex pnq ´ "ex pn`Kyq ´ "ey pnq ` "ey pn`Kxq “ d

dt

""

bz pnq
using Stokes’ theorem and can be organized for all facets by

»

—

–
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¨

˚
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...

˛

‹

‚

.

The discretization of both laws exploits the numbering scheme and we refer to [Wei77,
Wei96] for more details. The discretization of Gauss’ law (3.1) and Maxwell-Ampère’s
law (3.4) is analogously to the procedure described above with the only difference that
the discrete quantities are allocated at the dual grid elements. Finally, the FIT has

primary edges

primary nodes

primary volumes

Mν

dual nodes

dual facets

primary facets

Mε, Mσ

dual edges

dual volumes

S

C

G

rGrC
rS

Figure 3.4: Operator mapping.

translated ME exactly into Maxwell’s grid equations (MGE - Maxwell’s Grid Equations),
[CW01b], given by

rS
""

d “ q (3.21)

S
""

b “ 0 (3.22)

C"e “ ´ d

dt

""

b (3.23)

rC
"

h “ d

dt

""

d ` ""

j c (3.24)

with the discrete Gauss’ law (3.21), discrete Gauss’ law for magnetism (3.22), the dis-
crete Maxwell-Faraday’s law (3.23) and the discrete Maxwell-Ampère’s law (3.24). The
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discrete curl operators C and rC, the discrete divergence operators S and rS on the pri-
mal and dual grid, respectively. The discrete curl operators contain only information
on the incidence relation of the volume edges and on their orientation, see Figure 3.5.
The divergence operators collect information on the incidence relation and on the ori-
entation of the facets of the volumes. The curl operator maps from edges to facets and
the divergence operator from facets to volumes, see Figure 3.4. The unknowns are the
discrete electric field and magnetic field "e,

"

h : I Ñ R3N , discrete electric and magnetic
induction

""

d,
""

b : I Ñ R3N , conduction current
""

j c : I Ñ R3N and distribution of charges
q : I Ñ RN . Tables of SI units are given in Table 3.4 and 3.5.

1

´1

1

´1

Figure 3.5: Orientation of the curl.

Remark 3.7. The discrete distribution of charges q is located on dual volumes and
hence q should be written as

"""q to be consistent with the notation. Nonetheless, for
clarity, we simple write q in abuse of notation.

So far the discretization of the physical laws does not require any approximation since
the ME have been directly applied to the grid by using topological information only.
For a complete discretization of ME the constitutive laws (3.6), (3.7) and (3.8) have to
be related to the discrete EM quantities allocated at the grid doublet. At this point all

quantity geometric object SI units
"e primary edges V
""

d dual surfaces C“As
""

b primary surfaces Wb“Vs
"

h dual edges A
""

j c,
""

j t dual surfaces A
φ primary node V
"a primary edges Wb“Vs
"π primary edges V
q dual volumes C“As

Table 3.4: Discrete field quantities.

operator SI units
d
dt

1{s
G, rG 1

C, rC 1

S, rS 1

Table 3.5: Discrete differential operators.
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3 Maxwell’s Equations

metric information enters the spatial discretization and the constitutive laws establish
a coupling between the primary and the dual EM quantities. Now the need for the grid
doublet becomes clear. For example the discrete version of the constitutive laws (3.6)

needs to relate "e and
""

d, but these discrete quantities are defined on different geometric
objects. We can relate them because of the one-to-one relation between edges of G and
facets of rG.

σ pn � Kx � Kyqε pn � Kx � Kyq

σ pnqε pnq
σ pn � Kxqε pn � Kxq

σ pn � Kyqε pn � Kyq
N pn � Kx � Kyq N pn � Kyq

N pnqN pn � Kxq
Ez pnq

rFz pnq
y

x

z

(a) permittivity and conductivity

Fy pnq
rEy pnq

N pnq

N pn � Kyq
ν pn � Kyq

ν pnq

y

x

z

(b) reluctivity

Figure 3.6: Material properties located on the grid.

Assumption 3.8. The material properties are constant in each primary volume.

Let Assumption 3.1 and 3.8 be true. To derive a discrete version of the constitutive laws
(3.6) for linear, inhomogeneous and isotropic permittivities we employ the rectangle rule.

Regarding the edge Ez pnq and the facet rFz pnq. Using the midpoint rectangle rule we
get

"ez pnq “ |Ez pnq| |~E|z,n `O
`

h3
˘

(3.25)

where |~E|z,n is the sample value of the electric field at the midpoint of the edge Ez pnq,
|Ez pnq| is the edge lengths and

h “ max
wPtx,y,zu
1ďnďN

|Ew pnq|

is the maximum length of the edges. The discontinuities of electric induction ~D at
internal boundaries in normal direction does not effect the discretization since we need to
switch to the electric field ~E for the discretization of the constitutive law (3.6). Applying
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quantity SI units

Mε F=As{V
Mν 1{H“A{Vs
Mσ S“A{V

Table 3.6: Discrete material matrices.

the top-left and top-right rectangle rule we get
""

dz pnq “ rεz pnq |~E|z,n `O
`

h3
˘

(3.26)

with the average permittivity

rεz pnq “ 1

4
pε pnxyq |Fz pnxyq| ` ε pnxq |Fz pnxq| ` ε pnq |Fz pnq| ` ε pnyq |Fz pnyq|q

and nxy “ n´Kx ´Ky, nx “ n´Kx, ny “ n´Ky. Note that for the dual facet rFz pnq
it holds

ˇ

ˇ

ˇ

rFz pnq
ˇ

ˇ

ˇ
“ 1

4
p|Fz pnxyq| ` |Fz pnxq| ` |Fz pnq| ` |Fz pnyq|q

and ε pnq denotes the permittivity on the volume V pnq, see Figure 3.6(a). Combining
(3.25) and (3.26) yields

""

dz pnq “ εz pnq"ez pnq `O
`

h3
˘

.

with εz pnq “ rεzpnq
|Ezpnq|

. Finally we get the permittivity matrix

Mε “ diag pεx p1q , . . . , εx pNq , εy p1q , . . . , εy pNq , εz p1q , . . . , εz pNqq .
The conductivity matrix Mσ for linear, inhomogeneous and isotropic conductivities is de-
fined analogously, see [Cle98, Krü00, Ben06]. On a similar way a linear, inhomogeneous
and isotropic reluctivity matrix can be deduced by taking Figure 3.6(b) into account. For

the derivation of a nonlinear, inhomogeneous and anisotropic reluctivity matrix Mνp
""

bq
given by Brauer’s model, we refer to [Sch11]. The discrete constitutive laws reads:

""

d “ Mε
"e (3.27)

""

j c “ Mσ
"e (3.28)

"

h “ Mνp
""

bq""

b (3.29)

Table 3.6 shows the SI units.

Remark 3.9. The discrete material matrix of permittivities is diagonally positive defi-
nite, while the discrete material matrix of conductivities is typically diagonally positive
semi-definite if insulators are present in our domain Ω, otherwise positive definite. In
case of non-orthogonal grids band structured matrices results. For Brauer’s model the
discrete material matrix of reluctivities is positive definite.
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3 Maxwell’s Equations

The basic approximation of the constitutive laws leads to a staircase approximations at
curved boundaries. In practice this limitation is overcome by subgridding at boundaries
or using other more elaborate schemes, see [TW96, Cle05].

3.2.2 Algebraic Properties of the Discrete Operators

The discrete operators in terms of the FIT have several important inheritances of their
continuous counterparts and are composed of simple two-banded matrices, which can be
interpreted as discretized partial differential operators, see [BDD`92, CW01b].

Let be w P tx, y, zu. We introduce the upper shift matrices Uw P t0, 1uNˆN with

pUwqij “ δi`Kw,j and Uw “ UKw
x . (3.30)

We define the discretized partial differential operators Pw P t´1, 0, 1uNˆN by

Pw “ Uw ´ I

where Pw is nonsingular, w P tx, y, zu. The discrete curl operators can be written as

C “
»

–

0 ´Pz Py

Pz 0 ´Px

´Py Px 0

fi

fl P t´1, 0, 1u3Nˆ3N

and the duality of the two grids yields the simple relation

rC “ CJ.

The discrete divergence operators are constructed by

S “ “

Px Py Pz

‰ P t´1, 0, 1uNˆ3N and rS “ “´PJx ´PJy ´PJz
‰

.

Finally the discrete gradient operators are obtained by

G “ ´rSJ and rG “ ´SJ,

see [CW01b, CW01a].

Lemma 3.10 (Lemma A.1., [Sch11]). Let be v, w P tx, y, zu. The relation

PvPw “ PwPv

holds true.

Proof . Straightforward calculus using (3.30) leads to

PvPw “ pUv ´ Iq pUw ´ Iq
“ UvUw ´ Uv ´ Uw ` I
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“ UKv
x UKw

x ´ Uv ´ Uw ` I

“ UKw
x UKv

x ´ Uv ´ Uw ` I

“ UwUv ´ Uw ´ Uv ` I

“ pUw ´ Iq pUv ´ Iq
“ PwPv.

The result reflects the interchange of partial derivatives as in the continuous case,
[BDD`92].

Lemma 3.11 ([BDD`92]). The discrete operator identities

SC “ 0 rSrC “ 0 (3.31)

CG “ 0 rCrG “ 0

hold true.

Proof . To prove the identities we use Lemma 3.10. We get

SC “ “

PyPz ´ PzPy PzPx ´ PxPz PxPy ´ PyPx

‰ “ 0.

The dual case is analogous. To show the other identities we simply transpose (3.31).

That is, the discrete gradient, curl and divergence inherit important operator identities
from their continuous counterparts, namely

∇ ¨∇ˆ ” 0 and ∇ˆ∇ ” 0,

which is an important property of the FIT discretization.

We have already seen that the continuity equation can be derived from ME. Due to the
properties of the discrete operators given in Lemma 3.11 that is possible in the discrete
case, too. From (3.24) we derive the built-in discrete continuity equation by

d

dt
rS

""

d ` rS
""

j c “ 0 (3.32)

which corresponds to the continuous counterpart and is an essential feature of FIT.
The discrete continuity equation is of great importance for our later investigations in
circuit models including EM devices. The discrete continuity equation ensures that no
erroneous charges arises, see [CW01b].

Lemma 3.12. For the discrete operators the relations

ker S “ im C kerrS “ im rC

ker C “ im G ker rC “ im rG

hold true.
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3 Maxwell’s Equations

Proof . We apply Lemma 3.10 and 3.11. Exemplarily we show ker S “ im C. Due to
Lemma 3.11 we achieve directly ker S Ą im C. Let be w P ker S. Then we get

Pxw1 ` Pyw2 ` Pzw3 “ 0 ô w1 “ ´P´1
x pPyw2 ` Pzw3q .

Next we choose u1 “ 0, u2 “ P´1
x w3 and u3 “ ´P´1

x w2. So we obtain w “ Cu and hence
w P im C. The other relations can be deduced in a similar way.

3.2.3 Discrete Potential Formulation and Gauge Conditions

In analogy to ME we introduce auxiliary functions to simplify the representation of MGE
and use a discrete potential approach, see [Cle98, CW99, MMS01].

From discrete Gauss’ law for magnetism (3.22) we deduce from a discrete version of
Helmholtz decomposition that there is a vector function "a : I Ñ R3N such that

""

b “ C"a (3.33)

and using discrete Maxwell-Faraday’s law (3.23) we obtain

C

ˆ

"e ` d

dt
"a

˙

“ 0

and conclude, using a discrete version of Helmholtz decomposition, that there is a vector
function φ : I Ñ RN such that

"e “ ´Gφ´ d

dt
"a, (3.34)

see [Cle05]. This approach is the discrete p"a, φq-formulation with the discrete vector
potential "a and discrete scalar potential φ. It fulfills immediately the discrete Gauss’
law for magnetism and the discrete Maxwell-Faraday’s law because important properties
from vector calculus are transfered to the discrete level, see Lemma 3.11. A visual
representation of all quantities is given in Figure 3.1(b).

As in the continuous case we need a gauge condition to remove the gauge freedom since
the discrete curl-operator inherits the non-uniqueness from its continuous counterpart. A
common gauge condition approach is the grad-div regularization, [CW02], which utilizes
the discrete gradient and divergence operator and suitable discrete artificial material
matrices. This motivates a new discrete class of gauge conditions in terms of the FIT
given by

ϑMεG
d

dt
φ`MζGMξ

rSMζ
"a “ 0 (3.35)

where the artificial material matrices Mζ maps primary edges to dual facets, Mξ maps
dual points to primary volumes and ϑ P R is a “slider” between a type of discrete
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Coulomb and Lorenz gauge. The discrete class of gauge conditions (3.35) is the discrete
analogon to (3.15). The discrete material matrix Mξ is called norm matrix and supplies
the correct units to the discrete grad-div regularization. In case of ϑ “ 0 suitable choices
for the discrete material matrices Mζ and Mξ are discussed in [CW02, Cle05, BCDS11].
For another type of discrete gauge conditions motivated by damped wave equations we
refer to [BCS12].

Assumption 3.13. The discrete artificial material matrices Mζ and Mξ are positive
definite.

Let Assumption 3.13 be true. For ϑ “ 0 we obtain a type of discrete Coulomb gauge

rSMζ
"a “ 0

due to rSMξG is nonsingular. The discrete Coulomb gauge is known from literature.
Moreover, for ϑ “ 1 we obtain a type of discrete Lorenz gauge

MεG
d

dt
φ`MζGMξ

rSMζ
"a “ 0

and selecting in addition Mζ “ Mε yields

d

dt
φ`Mξ

rSMε
"a “ 0,

due to rSMεG is nonsingular. For linear, homogeneous and isotropic materials and an
equidistant grid the discrete grad-div regularization regularizes the discrete curl-curl
matrix and the resulting discrete operator corresponds to the discrete vector Laplacian.

Lemma 3.14. Let M P RNˆN be positive definite. Then, the matrix

C “ rCMνC´GJMrS

is positive definite.

Proof . We use the relation G “ ´rSJ. The matrix C is symmetric positive semidefinite
since C is the sum of two positive semidefinite matrices. To show positive definiteness
we prove the nonsingularity. Let be x P ker C. Then

´

rCMνC` rSJMrS
¯

x “ 0 ô Cx “ 0 and rSx “ 0,

see Lemma A.3. Hence x P ker CX kerrS. With Lemma 3.12 it is clear that

x P ker CX im rC “ ker CX pker CqK

and hence x “ 0.

Note that rCMνC`Mζ
rSJMξ

rSMζ is not necessarily positive definite. Hence not an arbi-
trary type of discrete Coulomb or Lorenz gauge leads to a gauge condition in the sense
of a discrete curl-curl operator regularization.
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3 Maxwell’s Equations

3.2.4 Phantom Objects and Discrete Boundary Conditions

The numbering scheme of the grid G introduces needless phantom objects at the bound-
ary. The phantom objects are edges, facets and volumes which have to be disregarded.
In order to disregard those objects we follow and extend the idea of [Doh92, Sch11].
Table 3.7 gives an overview of the number of non-phantom objects.

object number of non-phantom objects

primary nodes/dual volumes NxNyNz

primary facets/dual volumes pNx ´ 1qNyNz

`Nx pNy ´ 1qNz

`NxNy pNz ´ 1q
primary facets/dual edges Nx pNy ´ 1q pNz ´ 1q

` pNx ´ 1qNy pNz ´ 1q
` pNx ´ 1q pNy ´ 1qNz

primary volumes/dual nodes pNx ´ 1q pNy ´ 1q pNz ´ 1q

Table 3.7: Number of non-phantom objects.

Example 3.15. Regarding the primary FIT grid of two points in each direction as
shown in Figure 3.7. The grid consists of 8 nodes, 12 edges, 6 facets and one volume.
The numbering scheme introduces 12 edges, 18 facets and 7 volumes which are needless.

y

x

z

Ey p5q Ey p6q

Ey p1q Ey p2q

Ez p4q

Ez p1q Ez p2q
Ex p5q

Ex p7q

Ex p1q

Ex p3q
Ez p3q

(a) non-phantom edges

y

x

z

Fy p1q

Fy p3q

Fx p1q Fx p1qV p1q
Fz p1q

Fz p5q

(b) non-phantom facets and volumes

Figure 3.7: Primary FIT grid of dimensions 2ˆ 2ˆ 2 with non-phantom objects.

To find all phantom objects it is sufficient to characterize the phantom edges. These
edges are always attached to points on the boundary that are addressed by n pix, iy, izq,
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where one direction reaches its maximum iw “ Nw with w P tx, y, zu. For each w P
tx, y, zu the set

Hw “ t1 ď n pix, iy, izq ď N |iw “ Nwu
contains the indices of all points with an attached phantom edge in direction w and we
fade-out all phantom objects using the diagonal fade-out matrix Fw P t0, 1uNˆN given
by:

pFwqij “
#

1, for i “ j and i R Hw,

0, else.

The sets Hxyz “ Hx YHy YHz and Hvw “ Hv YHw contain all points connected to at
least one phantom edge and connected to at least one phantom edge in the pv-wq-plane
with v, w P tx, y, zu, v ‰ w, respectively. Next we investigate some properties of the
fade-out matrices.

Lemma 3.16 (Lemma A.3., [Sch11]). The matrices Fw are orthogonal projectors and
for v ‰ w

FwFv “ FvFw, (3.36)

FwFvPv “ FvPvFw (3.37)

is valid with v, w P tx, y, zu.
Proof . The projector properties of Fw as well as (3.36) are clear since they are diagonal
matrices containing only zeros and ones. The left-hand side of (3.37) reads:

pFwFvPvqij “

$

’

&

’

%

´1, for j “ i and i R Hwv,

1, for j “ i`Kv and i R Hwv,

0, else.

The right-hand side of (3.37) reads:

pFvPvFwqij “

$

’

&

’

%

´1, for j “ i and i R Hwv,

1, for j “ i`Kv, j R Hw and i R Hv,

0, else.

Now we show that both sides equals. Since i R Hv we can write

i “ ix ` iyKy ` izKz, with iv ă Nv

and thus j “ i`Kv gives

j “ jx ` jyKy ` jzKz, with jv “ iv ` 1 ď Nv.

Then we know that jw “ iw since v ‰ w and thus the condition i R Hw is equivalent to
j “ i`Kv R Hw for v ‰ w.
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3 Maxwell’s Equations

All points addressed by the numbering scheme are included in the primary grid but only
subsets of the addressed edges, facets and volumes really exist. Only edges not in Hw,
w P tx, y, zu, exists. Furthermore facets and volumes exists if and only if all their edges
exist. To fade-out the phantom objects we define

FN “ I, FE “
»

–

Fx 0 0
0 Fy 0
0 0 Fz

fi

flFF, “
»

–

FyFz 0 0
0 FxFz 0
0 0 FxFy

fi

fl and FV “ FxFyFz

where FN, FE, FF and FV denote the fade-out projectors for all points, edges, facets and
volumes in the primary grid. Analogously we define the corresponding counterparts for
the dual grid and benefit of the relation between both grids.

Corollary 3.17. The fade-out projectors FN, FE, FF and FV are orthogonal projectors.

Next we define the discrete operators with fade-out phantom objects. The gradient
operator maps points to edges and we have to ignore contributions from phantom points
and edges. We achieve

GF “ FEGFN and rGF “ FF
rGFV.

The curl operator maps edges to facets and therefore we have to ignore contributions
from phantom edges and facets. We get

CF “ FFCFE and rCF “ FE
rCFF.

In the end the divergence operator maps facets to volumes and hence we have to ignore
contributions from phantom facets and volumes. We gain

SF “ FVSFF and rSF “ FN
rSFE.

All discrete operators with fade-out phantom objects have a redundancy.

Lemma 3.18 (Corollary A.5., [Sch11]). For the discrete operator with fade-out phantom
objects the relations

GF “ FEG rGF “ rGFV

CF “ FFC rCF “ rCFF

SF “ FVS rSF “ rSFE

hold true.

Proof . This is a consequence of Lemma 3.16.

For the discrete operators with fade-out phantom objects all important properties still
hold true.
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Lemma 3.19 (Theorem A.6., [Sch11]). The discrete operator identities

SFCF “ 0 rSF
rCF “ 0

CFGF “ 0 rCF
rGF “ 0

hold true.

Proof . This is a consequence of Lemma 3.11 and 3.18.

Remark 3.20. Sometimes in literature the discrete partial differential operators are
directly constructed as Pw “ FwPw with w P tx, y, zu, for example, as in [Ben06].

Not only in the discrete operators the phantom objects occur but also in the discrete
material matrices. The discrete permittivity matrix as well as the discrete conductivity
matrix are mapped from primary edges to dual facets and we get

MF
ε “ FEMεFE and MF

σ “ FEMσFE.

Furthermore, the discrete reluctivity matrix maps from primary facets to dual edges and
reads

MF
ν “ FFMµFF.

In fact we do not simply want to fade-out the phantom objects but we want to delete the
corresponding rows and columns within the discrete operators, too. For that we extend
the idea of phantom objects of [Sch11] and we define the matrices

Dw P t0, 1uN´|Hw|ˆN , Dvw P t0, 1uN´|Hvw|ˆN , Dxyz P t0, 1uN´|Hxyz |ˆN

related to the fade-out projectors by

DJwDw “ Fw DwDJw “ I

DJvwDvw “ FvFw DvwDJvw “ I

DJxyzDxyz “ FxFyFz DxyzD
J
xyz “ I

with v, w P tx, y, zu, v ‰ w. We construct the deletion and shrinking matrices

DN “ I, DE “
»

–

Dx 0 0
0 Dy 0
0 0 Dz

fi

fl , DF “
»

–

Dyz 0 0
0 Dxz 0
0 0 Dxy

fi

fl and DV “ Dxyz

where DN, DE, DF and DV denotes the matrix deleting all rows of FN, FE, FF and FV

belonging to phantom objects. For the deletion matrices the relations

DJNDN “ FN DNDJN “ I

DJEDE “ FE DEDJE “ I
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3 Maxwell’s Equations

DJFDF “ FF DFDJF “ I

DJVDV “ FV DVDJV “ I

hold true.

Now we remove the phantom objects. For that we left-multiply the different discretized
laws of MGE by the corresponding deletion matrix and we set the unknowns correspond-
ing to phantom objects to zero. From MGE (3.21) to (3.24) we deduce the phantom-free
MGE

rSD

""

dD “ qD (3.38)

SD

""

bD “ 0 (3.39)

CD
"eD “ ´ d

dt

""

bD (3.40)

rCD
"

hD “ d

dt

""

dD ` ""

j c,D (3.41)

where the existing unknowns are

"eD “ DE
"e,

""

dD “ DE

""

d,
""

j c,D “ DE

""

j c,
"

hD “ DF
"

h,
""

bD “ DF

""

b and qD “ DNq

and for the phantom-free operators the relations

rCD “ DE
rCDJF , rSD “ DN

rSDJE, SD “ DVSDJF and CD “ DFCDJE

hold true. Applying the same deduction as above, the discrete constitutive laws (3.27),
(3.28) and (3.29) yields

""

dD “ MD
ε

"eD (3.42)
""

j c,D “ MD
σ

"eD (3.43)
"

hD “ Mu
νp

""

bDq
""

bD (3.44)

where the phantom-free material matrices are given by

MD
ε “ DEMεD

J
E, MD

σ “ DEMσDJE and MD
ν “ DFMνD

J
F .

The discrete equations for the vector and scalar potential (3.33) and (3.34) result in

""

bD “ CD
"aD (3.45)

"eD “ ´GDφD ´ d

dt
"aD (3.46)

at which the existing unknowns are

φD “ DNφ and "aD “ DE
"a

and the phantom-free gradient reads GD “ DEGDJN.
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Remark 3.21. By EF Ă E we denote the set of non-phantom edges indices. We can
interpret GD as the transpose incidence matrix of the directed graph pN , EFq. We will
come back to that later when motivating the boundary conditions.

For completeness we have rGD “ DF
rGDJV. The phantom-free operators still have the

following properties:

Lemma 3.22. The phantom-free operators identities

SDCD “ 0 rSD
rCD “ 0

CDGD “ 0 rCD
rGD “ 0

hold true.

Proof . This is a consequence of Lemma 3.19.

Using (3.41) and Lemma 3.22 we can derive the phantom-free continuity equation given
by

d

dt
rSD

""

dD ` rSD

""

j c,D “ 0 (3.47)

but note that we can derive (3.47) also directly from (3.32). Therefore charge conserva-
tion is also fulfilled for the phantom-free operators.

From the phantom-free equation for the vector potential (3.45) and scalar potential (3.46)
we can deduce that the phantom-free Gauss’ law for magnetism (3.39) and Maxwell-
Faraday’s law (3.40) are fulfilled automatically like in the continuous case. Based on
(3.47) we conclude that if

rSD

""

dD pt0q “ qD pt0q , t0 P I,
then the phantom-free Gauss’ law (3.38) is always fulfilled like in the continuous case.
That is, it is sufficient to take the phantom-free Maxwell-Ampère’s law (3.41) into ac-
count using the phantom-free potential formulation.

Boundary Conditions

The next step is to incorporate the boundary conditions. Here we focus on the PEC
case and apply Dirichlet boundary conditions for the unknowns.

Let ΩN “ t1, . . . , Nu be the set of node indices and ΓN “ tn P ΩN|N pnq P Γu the set
of boundary node indices. We denote by ΩC

N “ ΩNzΓN the set of non-boundary node
indices and nφ “

ˇ

ˇΩC
N

ˇ

ˇ. To describe the non-phantom edge indices properly we need
some notation. Let

Ex “ tn P N|n P Hxu Ey “ tn`N P N|n P Hyu Ez “ tn` 2N P N|n P Hzu
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3 Maxwell’s Equations

and

Ex “ t1, . . . , Nu zEx Ey “ tN ` 1, . . . , 2Nu zEy Ez “ t2N ` 1, . . . , 3Nu zEz
be the index sets of phantom and non-phantom edges in each direction. Then the set of
non-phantom edges indices is given by EF “ ExY Ey Y Ez. Let ΩE “ t1, . . . , |EF|u be the
set of the renumbered non-phantom edge indices. For renumbering the non-phantom
edges we define the injective and surjective mapping

p : t1, . . . , 3Nu Ñ ΩE

with the property

i ă j ô p piq ă p pjq , i, j P t1, . . . , 3Nu ,
where for the preimage

p´1 pkq P EF, k P ΩE

holds true. By

ΓE “
 

n P ΩE | m “ p´1 pnq ,m P Ew and Em pwq Ă Γ, w P tx, y, zu(

we denote the set of renumbered boundary edge indices and ΩC
E “ ΩEzΓE is the set

of renumbered non-boundary non-phantom edge indices, where the non-boundary non-
phantom edges are degrees of freedom. We denote na “

ˇ

ˇΩC
E

ˇ

ˇ.

We introduce the unknown and boundary selection matrices

UN P t0, 1unφˆN , UE P t0, 1unaˆ|EF| , BN P t0, 1u|ΓN|ˆN , BE P t0, 1u|ΓE|ˆ|EF|

for nodes and edges defined by

UJNUN “ UF,N UNUJN “ I BJNBN “ BF,N BNBJN “ I

UJEUE “ UF,E UEUJE “ I BJEBE “ BF,E BEBJE “ I

with the properties

UF,N ` BF,N “ FN and UF,E ` BF,E “ FE.

With that we obtain the relations

UN “ UNUF,N UJN “ UF,NUJN BN “ BNBF,N BJN “ BF,NBJN UNBF,N “ 0

and

UE “ UEUF,E UJE “ UF,EUJE BE “ BEBF,E BJE “ BF,EBJE UEBF,E “ 0

hold true

At this point we need the orthogonality of each grid complex G and rG.
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Remark 3.23. For every diagonal matrix D P R|EF|ˆ|EF| we get UEDBJE “ 0.

Now we incorporate the boundary conditions into the equations. We start with the
phantom-free constitutive laws. Left-multiplying (3.42) by UEDJE and using Remark 3.23
we acquire on the one hand

UEDJE
""

dD “ UEDJEMD
ε

"eD

“ UEDJEDEMεD
J
EDE

"e

“ UEFEMεFE
"e

“ UEMε pUF,E ` BF,Eq"e

“ UEMεUF,E
"e

“ UEMεU
J
EUE

"e

and on the other hand

UEDJE
""

dD “ UEDJEDE

""

d

“ UEFE

""

d

“ UE

""

d.

With that the phantom-free constitutive laws (3.42), (3.43) and (3.44) yields the reduced
discrete constitutive laws

""

du “ Mu
ε

"eu, (3.48)
""

j c,u “ Mu
σ

"eu, (3.49)
"

hu “ Mu
νp

""

buq
""

bu (3.50)

with the unknowns

"eu “ UE
"e,

""

bu “
""

bD,
"

hu “ "

hD,
""

du “ UE

""

d and
""

j c,u “ UE

""

j c

and reduced discrete material matrices

Mu
ε “ UEMεU

J
E, Mu

σ “ UEMσUJE and Mu
νp

""

buq “ MD
ν p

""

bDq.
From phantom-free Maxwell-Ampère’s law (3.41) we get the reduced discrete Maxwell-
Ampère’s law

rCu
"

hu “ d

dt

""

du ` ""

j c,u (3.51)

with the reduced discrete dual curl operator

rCu “ UE
rCDJF .

78



3 Maxwell’s Equations

From the equations of the phantom-free vector and scalar potential (3.45) and (3.46) we
obtain

""

bu “ Cu
"au ` Cb

"ab (3.52)

"eu “ ´Guφu ´Gbφb ´ d

dt
"au (3.53)

at which the unknowns read

φu “ UNφ, φb “ BNφ,
"au “ UE

"a and "au “ BE
"a

and reduced discrete operators are given by

Gu “ UEGUJN, Gb “ UEGBJN, Cu “ DFCUJE and Cb “ DFCBJE.

In addition the reduced discrete dual divergence operator reads

rSu “ UN
rSUJE

We show that important reduced discrete operator identities are still valid.

Lemma 3.24. The relations Gu “ ´rSJu and rCu “ CJu hold true.

Lemma 3.25. The reduced discrete operator identity rSu
rCu “ 0 and CuGu “ 0 hold

true.

Proof . We infer from Gu “ UEGUJN that UJEGuUN “ UF,EGUF,N. For every edge in ΓE

the front and back node are in ΓN. That is, UF,N set exactly that columns to zero which
are not effected by UF,E Hence GUF,N “ UF,EGUF,N and GUJN “ UF,EGUJN. We get

rSu
rCu “ UN

rSUJEUE
rCDJF

“ UN
rSUF,E

rCDJF

“ UN
rSrCDJF

“ 0,

see Lemma 3.11. The other statement follows directly.

Using (3.51) and Lemma 3.25 we can derive the reduced discrete continuity equation
given by

d

dt
rSu

""

du ` rSu

""

j c,u “ 0 (3.54)

but note that we can (3.54) derive also directly from (3.47). Left-multiplying (3.47) by
UNDJN we obtain

0 “ d

dt
UNDJNrSD

""

dD ` UNDJNrSD

""

j c,D
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“ d

dt
UNDJNDN

rSDJEDE

""

d ` UNDJNDN
rSDJEDE

""

j c

“ d

dt
UNFN

rSFE

""

d ` UNFN
rSFE

""

j c

“ d

dt
UN

rS pUF,E ` BF,Eq
""

d ` UN
rS pUF,E ` BF,Eq""

j c

“ d

dt
UN

rSUF,E

""

d ` UN
rSUF,E

""

j c

“ d

dt
UN

rSUJEUE

""

d ` UN
rSUJEUE

""

j c

“ d

dt
rSu

""

du ` rSu

""

j c,u

using BF,EGUJN “ 0 since UF,N sets exactly that columns to zero which are effected by
BF,E. Therefore charge conservation is also fulfilled.

We already mentioned that GD can be interpreted as the transpose incidence matrix of
the directed graph pN , EFq, see Remark 3.21. In fact GJ

u is a kind of reduced incidence
matrix of the directed graph pN , EFq with more then one reference node, due to setting
Dirichlet boundary conditions for all boundary nodes and edges. That is an important
observation for the later index analysis of the resulting DAE from MGE.

Remark 3.26. The reduced discrete operator Gu has full column rank.

3.2.5 Maxwell’s Grid Equations with Boundary Excitation

In this subsection we formulate a new class of reduced discrete gauge conditions in terms
of FIT for the non-phantom and non-boundary unknowns. We describe the boundary
conditions for the scalar potential as excitation of the EM fields at the boundary and
formulate the current through the EM devices. The excitation and current formulation
play a vital role for the circuit models including EM devices.

Motivated by (3.35) we reformulate the class of discrete gauge conditions into the class
of reduced discrete gauge conditions given by

ϑMu
εGu

d

dt
φu `Mu

ν
"au “ 0 (3.55)

with reduced discrete artificial material matrices given by

Mu
ν “ Mu

ζGuMu
ξ
rSuMu

ζ , Mu
ζ “ UEMζU

J
E and Mu

ξ “ UNMξU
J
N.

Note, we cannot deduce (3.55) directly from (3.35) due to the presence of the boundary
conditons but (3.55) is motivated by that. For later investigation we left-multiply (3.55)

by rSu and we regard

ϑrSuMu
εGu

d

dt
φu ` rSuMu

ν
"au “ 0. (3.56)
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3 Maxwell’s Equations

The next step is to describe the Dirichlet boundary conditions for the discrete boundary
scalar potentials given by φb : I Ñ R|ΓN| in more detail to have an excitation for the
EM fields at the domain boundary. Here we do not follow the approach presented
in [DHW04, Ben06, BBS11, Sch11], where the excitation is constructed using different
conductor models and applied as a source term. In Subsection 3.1.2 we motivate spatial-
constant time-dependent Dirichlet boundary conditions for scalar potentials on each ΓN,i

with

ΓN,i “ tn P ΩN|N pnq P Γiu .
Without loss of generality we suppose that the first nE ă k boundary parts ΓN,i are

conductive contacts and ΓN,g “ Ťk
i“nE`1 ΓN,i is the mass contact. That is, the EM

device has nE`1 contacts. At the mass contact we apply zero potential. The potentials
at the conductive contacts are described by vE : I Ñ RnE . Next we construct an
pre-excitation matrix X P RNˆnE defined by

pXqij “
#

1, if i P ΓN,j,

0, else.

which maps from conductive contacts to nodes, acting only on boundary nodes at con-
ductive contacts. Note that we directly skip the mass contact because of the zero po-
tential. We write the boundary conditions in terms of the input function and obtain the
boundary excitation

φb “ BNXvE.

With the pre-excitation matrix we define excitation matrix Λu P RnaˆnE by

Λu “ ´GbBNX (3.57)

which maps from conductive contacts to non-phantom and non-boundary edges. Due to
that construction it is obvious that the excitation matrix acts only on edges attached to
conductive contacts and Λu has full column rank.

Assumption 3.27. We assume homogeneous Dirichlet boundary condition for the dis-
crete vector potential, that is, "ab “ 0, and that the applied potential at the mass contact
is zero.

Let Assumption 3.27 be true. The applied potential at the EM device conductive con-
tacts generates currents and the reduced discrete total current density in terms of FIT
is given by reduced discrete Maxwell-Ampère’s law (3.51). We get

""

j t,u “ d

dt

""

du ` ""

j c,u

“ rCuMu
νpCu

"auqCu
"au.
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For our later investigation we are interested in the reduced discrete total current density
at the conductive contacts. Here we can utilize the excitation matrix Λu. The reduced
discrete total current density at a contact is the sum of all contributions from non-
phantom and non-boundary edges attached to the contact taking the edges orientation
into account. That is, the reduced discrete total current density at the conductive
contacts can be described by

jE “ ΛJu rCuMu
νpCu

"auqCu
"au P RnE . (3.58)

Assumption 3.28. For a consistent contact formulation we assume:

(i) There are at least two conductive contacts.

(ii) The conductive contacts are disjoint and simply connected.

(iii) Between two conductive contacts are at least two primary surfaces.

To ensure this we need a sufficiently fine spatial discretization of the EM device.

To show that we have a consistent discrete contact current formulation we formulate the
following lemma.

Lemma 3.29. Let Assumption 3.28 be true. The matrix CuΛu has full column rank.

Proof . Regarding the j-th column of CuΛu. The i-th row of the j-th column of CuΛu

is nonzero if the i-th primary facets consists of one or three primary edges connected
with the j-th conductive contact. Such a primary facet always exists for each conductive
contact. If the i-th row of the j-th column is nonzero the other columns are zero at the
i-th row.

Next we derivative the reduced curl-curl equation. Starting with the reduced discrete
Maxwell-Ampère’s law (3.51), the reduced discrete constitutive laws (3.48), (3.49) and
(3.50), using the excitation matrix (3.57) and formulated in terms of the reduced poten-
tials (3.52) and (3.53) we gain

0 “ rCu
"

hu ´ d

dt

""

du ´ ""

j c,u

“ rCuMu
νp

""

buq
""

bu ´Mu
ε

d

dt
"eu ´Mu

σ
"eu

“ rCuMu
νpCu

"auqCu
"au `Mu

ε

d

dt

ˆ

Guφu `Gbφb ` d

dt
"au

˙

`Mu
σ

ˆ

Guφu `Gbφb ` d

dt
"au

˙

and we are ending with the reduced curl-curl equation

0 “ Mu
εGu

d

dt
φu `Mu

ε

d2

dt2
"au `Mu

σGuφu ` rCuMu
νpCu

"auqCu
"au `Mu

σ

d

dt
"au

´Mu
εΛu

d

dt
vE ´Mu

σΛuvE.

(3.59)
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3 Maxwell’s Equations

Grouping a reduced discrete gauge conditions given by (3.56), the reduced discrete total
current density at the conductive contacts (3.58) and the reduced curl-curl equation
(3.59) we obtain the MGE

jE ´ ΛJu rCuMu
νpCu

"auqCu
"au “ 0

ϑrSuMu
εGu

d

dt
φu ` rSuMu

ν
"au “ 0

Mu
εGu

d

dt
φu `Mu

ε

d

dt
"πu `Mu

σGuφu ` rCuMu
νpCu

"auqCu
"au `Mu

σ
"πu

´Mu
εΛu

d

dt
vE ´Mu

σΛuvE “ 0

d

dt
"au ´ "πu “ 0

(3.60)

with the auxiliary vector "πu to avoid the second-order differentiation in time for "au. The
number of non-boundary nodes is nφ, the number of non-boundary edges is na, nπ and
the number of conductive contacts by nE. The given vector function vE ptq describes the
applied potential at the conductive contacts in time t, I “ rt0, T s Ă R. The unknowns
are the (reduced) discrete scalar potentials φu : I Ñ Rnφ , the (reduced) discrete vector
potentials "au : I Ñ Rna , the auxiliary vector "πu : I Ñ Rnπ and the current jE : I Ñ RnE

through the conductive contacts.

Remark 3.30. Let pφu,
"au,

"πuq P Rnφ ˆRna ˆRnπ be a solution of (3.60). Then all field
quantities can be derived. We obtain

""

bu “ Cu
"au,

"eu “ ´Guφu ` ΛuvE ´ "πu,
""

du “ Mu
ε

"eu,
""

j c,u “ Mu
σ

"eu,
"

hu “ Mu
νp

""

buq
""

bu

and

qu “ rSu

""

du.

3.2.6 Numerical Analysis of Maxwell’s Grid Equations

In this subsection we investigate MGE (3.60) using the Coulomb and Lorenz gauge
without the current equation since it is only an explicit function evaluation. We are
mainly interested in the index of the resulting DAEs. We obtain similar results as
[BCS12] but we do not use the differentiation index, the excitation of the fields is coming
from boundary conditions instead of source term and we regard a different class of gauge
conditions.
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We collect some basic assumptions and properties for the discrete operators from the
previous section.

Assumption 3.31. The reduced discrete conductivity matrix Mu
σ is a symmetric pos-

itive semi-definite diagonal matrix and Mu
ε is a symmetric positive definite diagonal

matrix. Furthermore the reduced discrete material matrices Mu
ζ , Mu

ξ , Mu
νpCu

"auq and
the reduced discrete differential reluctivity matrix Mu

ν,dpCu
"auq are positive definite, see

Remark 3.33.

Property 3.32. Let Assumption 3.28 be fulfilled. We have:

� Mu
ν “ Mu

ζGuMu
ξ
rSuMu

ζ

� Gu has full column rank

� CuΛu has full column rank

� Gu “ ´rSJu , rGu “ ´SJu and rCu “ CJu

�
rSu

rCu “ 0 and CuGu “ 0

In the following we suppose that Assumption 3.31 and Property 3.32 are valid.

Maxwell’s Grid Equations using Coulomb Gauge

First we focus a Coulomb gauge, that is, ϑ “ 0, and we obtain a DAE of the type

A py, tq d

dt
d py, tq ` b py, tq “ 0 (3.61)

with

A “
»

–

0 0
I 0
0 I

fi

fl , d py, tq “
ˆ

Mu
εGuφu `Mu

ε
"πu

"au

˙

and

b py, tq “
¨

˝

rSuMu
ν

"au

Mu
σGuφu `Ku

νp"auq"au `Mu
σ

"πu ` d
dt

Mu
εGbφb `Mu

σGbφb

´"πu

˛

‚,

where Ku
νp"auq “ rCuMu

νpCu
"auqCu. The DAE (3.61) has a properly stated leading term.

With

D py, tq “
„

Mu
εGu 0 Mu

ε

0 I 0



.

it is easy to verify and we can choose R “ I.
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3 Maxwell’s Equations

The next steps are: First we determine the higher index components. With that it is
easy to show that the index is always greater than one. Finally we show that the index
is always two. Following the index analysis we present an approach to compute suitable
starting values for the numerical integration.

We determine the index of the DAE (3.61). We start with the first matrix of the matrix
chain, see Definition 2.21, given by

G0 py, tq “
»

–

0 0 0
Mu
εGu 0 Mu

ε

0 I 0

fi

fl .

Obviously the matrix G0 py, tq is always singular and thus the DAE (3.61) has not index-
0, see Lemma 2.30. A projector onto ker G0 py, tq is given by

Q0 “
»

–

I 0 0
0 0 0
´Gu 0 0

fi

fl .

For the matrix chain we need the derivative of b py, tq with respect to the unknowns.

Remark 3.33 ([DMW08, Sch11]). The derivative of Ku
νp"auq “ rCuMu

νpCu
"auqCu with

respect to "au is given by

Ku
ν,dp"auq “ rCuMu

ν,dpCu
"auqCu

with:

d

d"au

”

rCuMu
νpCu

"auqCu
"au

ı

“ d

d"au

”

rCuMu
νp

""

buq
""

bu

ı

“ rCu
d

d
""

bu

”

Mu
νp

""

buq
""

bu

ı d

d"au

""

bu

“ rCu
d

d
""

bu

”

Mu
νp

""

buq
""

bu

ı d

d"au

rCu
"aus

“ rCu
d

d
""

bu

”

Mu
νp

""

buq
""

bu

ı

Cu

“ rCuMu
ν,dpCu

"auqCu

For Brauer’s model the reduced discrete differential reluctivity matrix Mu
ν,dpCu

"auq is
positive define, see Corollary A.13. in [Sch11].

Then we get

B0 py, tq “
»

–

0 rSuMu
ν 0

Mu
σGu Ku

ν,dp"auq Mu
σ

0 0 ´I

fi

fl
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and

B0 py, tqQ0 “
»

–

0 0 0
0 0 0

Gu 0 0

fi

fl .

The next step is the calculation of the intersection of N0 and S0 py, tq. That intersection
is crucial for the index and for the consistent initialization as well. The intersection of
N0 and S0 py, tq can be described as follows.

Lemma 3.34. The Assumption 3.31 and Property 3.32 holds true. The index-1 set of
the DAE (3.61) can be described by

N0 X S0 py, tq “ im Q0

for all py, tq P D ˆ I.

Proof . For calculating the index-1 set we make use of Remark 2.27. For a suitable
description we need a projector along im G0 py, tq. In order to determine such a projector
we calculate a projector onto ker G0 px, tqJ, see Remark A.8, with

G0 py, tqJ “
»

–

0 ´rSuMu
ε 0

0 0 I
0 Mu

ε 0

fi

fl .

We can choose a projector onto ker G0 py, tqJ and along im G0 py, tq by

WJ
0 “

»

–

I 0 0
0 0 0
0 0 0

fi

fl and W0 “
»

–

I 0 0
0 0 0
0 0 0

fi

fl .

We get

W0B0 py, tqQ0 “
»

–

0 0 0
0 0 0
0 0 0

fi

fl

and hence N0 X S0 py, tq “ im Q0.

It is obvious that the index-1 set N0 X S0 py, tq is always not empty, that is, the DAE
(3.61) has never index-1, see Definition 2.23. But the index does not exceed two as we
will see in the next theorem.

Theorem 3.35 (index-2). Let Assumption 3.31 and Property 3.32 be fulfilled. The
DAE (3.61) has index-2.
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3 Maxwell’s Equations

Proof . At first we need

G1 py, tq “
»

–

0 0 0
Mu
εGu 0 Mu

ε

Gu I 0

fi

fl

in order to proceed the matrix chain. For the characterization of the index-2 set we
introduce a projector along im G1 py, tq, see Remark 2.28. On this we determine a
projector onto ker G1 px, tqJ, see Remark A.8. By investigating in

G1 py, tqJ “
»

–

0 ´rSuMu
ε ´rSu

0 0 I
0 Mu

ε 0

fi

fl .

We can choose a projector onto ker G1 py, tqJ and along im G1 py, tq by WJ
1 “ WJ

0 and
W1 “ W0. Next we take into account

P0 “
»

–

0 0 0
0 I 0

Gu 0 I

fi

fl , B0 py, tqP0 “
»

–

0 rSuMu
ν 0

Mu
σGu Ku

ν,dp"auq Mu
σ

´Gu 0 ´I

fi

fl ,

where P0 is the complementary projector to Q0, and

W1B0 py, tqP0 “
»

–

0 rSuMu
ν 0

0 0 0
0 0 0

fi

fl .

Let be z P ker G1 py, tq X ker W1B0 py, tqP0. That is true if and only if the conditions

z"πu
“ ´Guzφu (3.62)

z"au
“ ´Guzφu (3.63)

rSuMu
νz"au

“ 0 (3.64)

are fulfilled. Left-multiplying (3.63) by rSuMu
ν and using (3.64) yields

rSuMu
νGuzφu “ 0

and hence zφu “ 0 due to the choice of Mu
ν “ Mu

ζGuMu
ξ
rSuMu

ζ . From (3.62) and (3.63) we

get
`

z"au
, z"πu

˘ “ 0 and conclude z “ 0, see Definition 2.23.

In order to start the integration of the DAE (3.61) we need a consistent initialization.
For the index-2 case we apply Theorem 2.58.

Assumption 3.36. For the DAE (3.61) exists the continuous partial derivatives B

Bt
d py, tq

and B

Bt
W1b py, tq for all py, tq P D ˆ I.
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These assumptions are not a restriction since, if a solution exists, then B

Bt
d py, tq exists

and is continuous. Moreover W1b py, tq describes exactly the hidden constraints and
hence B

Bt
W1b py, tq needs to exists and to be continuous to have a solution to the problem.

In addition the DAE (3.61) has a constant matrix A and there are the constant projectors
Q0 and W1. We need to show that the index-2 variables enter linearly only.

Lemma 3.37. Let Assumption 3.31 and Property 3.32 be fulfilled. The index-2 variables
enter the DAE (3.61) linearly only.

Proof . From Lemma 3.34 we easily obtain a constant projector T onto N0 X S0 py, tq
given by Q0 and U “ P0. The unknowns are divided into

y “ Ty ` Uy “
¨

˝

φu

0
´Guφu

˛

‚`
¨

˝

0
"au

Guφu ` "πu

˛

‚.

Now we can write b py, tq “ b pUy, tq ` BTy with

B “
»

–

0 0 0
0 0 0
0 0 ´I

fi

fl .

The relation d py, tq “ d pUy, tq is obvious by Lemma 2.54.

The DAE (3.61) fulfills all requirements to apply Theorem 2.58 in case of index-2. But
we still need an operating point when we want to integrate it numerically. Since Theo-
rem 2.58 is applicable to the DAE an operating point is sufficient to start the numerical
integration, see Lemma 2.61.

Lemma 3.38. Let the DAE (3.61) be given and t0 P I. An operating point pz0, y0, t0q
with z0 “

´

z0
"au
, z0

"πu

¯

and y0 “ pφ0
u,

"a0
u,

"π0
uq can be calculated as follows:

� Choose φ0
u P Rnφ and "π0

u P Rnπ arbitrarily, and "a0
u P kerrSuMu

ν .

� Compute the missing parts by:

Mu
εz

0
"au
“ Mu

σGuφ
0
u `Ku

νp"a0
uq"a0

u `Mu
σ

"π0
u ` d

dt
Mu
εGbφb pt0q `Mu

σGbφb pt0q
z0

"πu
“ "π0

u

Remark 3.39. Due to the structure of the DAE (3.61) we obtain a locally unique solu-
tion through every consistent initial value and perturbation index-2, see Theorem 2.46,
and 2.50.
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3 Maxwell’s Equations

Maxwell’s Grid Equations using Lorenz Gauge

Next we take Lorenz gauge into account, that is ϑ “ 1. Let Assumption 3.31 and
Property 3.32 be fulfilled. Then we obtain an ODE of the form

A
d

dt
y ` b py, tq “ 0 (3.65)

with

A “
»

–

rSuMu
εGu 0 0

Mu
εGu 0 Mu

ε

0 I 0

fi

fl

and

b py, tq “
¨

˝

rSuMu
ν

"au

Mu
σGuφu `Ku

νp"auq"au `Mu
σ

"πu ` d
dt

Mu
εGbφb `Mu

σGbφb

´"πu

˛

‚.

Lemma 3.40. Let Assumption 3.31 and Property 3.32 be fulfilled. Then, MGE (3.60)
using Lorenz gauge is an ODE of the form (3.65).

Proof . From Assumption 3.31 and Property 3.32 we deduce that rSuMu
εGu and Mu

ε are
nonsingular. Thus,

A “
»

–

rSuMu
εGu 0 0

Mu
εGu 0 Mu

ε

0 I 0

fi

fl

is nonsingular.

Hence for Lorenz gauge we have no restriction for initial values.

Remark 3.41. The chosen gauge condition for MGE (3.60) has a huge impact on the
structure of the resulting system. In case of the Coulomb gauge we obtain an index-2
DAE and for Lorenz gauge we attain an ODE. That is, from the numerical point of view
Lorenz gauge is to be prefer. Next we consider the Jacobians results from integrating the
DAE in time by BDF methods with step size h ą 0. For the DAE (2.30) the Jacobian
reads

J py, tq “ α0

h
A ptqD py, tq ` B0 py, tq .

Depending on the choice of Mu
ζ and Mu

ξ , the MGE (3.60) using Lorenz gauge may leads
to more dense Jacobians than using Coulomb gauge. In addition the structure of the
Jacobians depending on the gauge. For Lorenz gauge the Jacobian reads

JL py, tq “
»

–

α0

h
rSuMu

εGu
rSuMu

ν 0
`

Mu
σ ` α0

h
Mu
ε

˘

Gu Ku
ν,dp"auq

`

Mu
σ ` α0

h
Mu
ε

˘

0 α0

h
I ´I

fi

fl
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with a nonzero diagonal and for Coulomb gauge

JC py, tq “
»

–

0 rSuMu
ν 0

`

Mu
σ ` α0

h
Mu
ε

˘

Gu Ku
ν,dp"auq

`

Mu
σ ` α0

h
Mu
ε

˘

0 α0

h
I ´I

fi

fl .

Hence the Lorenz gauge system could be suitable for iterative solvers, particularly with
regard to the possible large number of unknowns. Note that for sufficient small h ą 0
the Jacobian JL py, tq and JC py, tq are nonsingular due to Lemma 2.6.

Remark 3.42. Coulomb gauge could be suitable for iterative solvers, too. For this we
need to reformulate the DAE (3.61). We add the Coulomb gauge (3.56), ϑ “ 0, by a
grad-div formulation directly to the reduced discrete Maxwell-Ampère’s law (3.51) and
we add the reduced discrete continuity equation (3.54) to the system equations. This
leads to the DAE

rSuMu
εGu

d

dt
φu ` rSuMu

ε

d

dt
"πu ` rSuMu

σGuφu ` rSuMu
σ

"πu

´rSuMu
εΛu

d

dt
vE ´ rSuMu

σΛuvE “ 0

Mu
εGu

d

dt
φu `Mu

ε

d

dt
"πu `Mu

σGuφu ` rCuMu
νpCu

"auqCu
"au `Mu

ζGuMu
ξ
rSuMu

ζ
"au `Mu

σ
"πu

´Mu
εΛu

d

dt
vE ´Mu

σΛuvE “ 0

d

dt
"au ´ "πu “ 0

where the Coulomb gauge is implicitly fulfilled. The BDF Jacobian for this DAE is given
by

JC py, tq “
»

–

rSu

`

Mu
σ ` α0

h
Mu
ε

˘

Gu 0 rSu

`

Mu
σ ` α0

h
Mu
ε

˘

`

Mu
σ ` α0

h
Mu
ε

˘

Gu Ku
ν,dp"auq `Mu

ζGuMu
ξ
rSuMu

ζ

`

Mu
σ ` α0

h
Mu
ε

˘

0 α0

h
I ´I

fi

fl

with a nonzero diagonal.

Remark 3.43. It seems that MGE (3.60) using Coulomb gauge has some disadvantages
compared to Lorenz gauge. However, a reformulation of MGE (3.60) using Coulomb
gauge with Mu

ζ “ Mu
ε proposed by [Jan12b] lead to an ODE if we disregard the current

equation and taking into account that rSuMu
ζGu and Mu

ξ are nonsingular. The idea is to
exploit the kernel of the Coulomb gauge. Let tb1, . . . , bku be an orthonormal basis with

respect to the standard scalar product on Rk of kerrSuMu
ε . Moreover let tbk`1, . . . , bnau

be an orthonormal extension of tb1, . . . , bku to an orthonormal basis with respect to the
standard scalar product on Rna . We define BP “

“

bk`1 . . . bna

‰ P Rnaˆna´k. Then

P “ BPBJP is a projector along kerrSuMu
ε and we obtain

0 “ rSuMu
ε

"au “ rSuMu
εP

"au “ rSuMu
εBPBJP

"au.
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3 Maxwell’s Equations

Due to the choice of BP we obtain that rSuMu
εBP is nonsingular and hence

BJP
"au “ 0.

With Q “ BQBJQ, BQ “
“

b1 . . . bk
‰ P Rnˆk, and "aq “ BJQ

"au, "πq “ BJQ
"πu we obtain

Mu
εGu

d

dt
φu `Mu

εBQ
d

dt
"πq `Mu

σGuφu `Ku
νpBQ

"aqqBQ
"aq `Mu

σBQ
"πq

´Mu
εΛu

d

dt
vE ´Mu

σΛuvE “ 0

d

dt
"aq ´ "πq “ 0

(3.66)

from MGE (3.60). We split the first equation of (3.66) using BJQ and BJP. We achieve

BJQMu
εBQ

d

dt
"πq ` BJQMu

σGuφu ` BJQKu
νpBQ

"aqqBQ
"aq ` BJQMu

σBQ
"πq

´BJQMu
εΛu

d

dt
vE ´ BJQMu

σΛuvE “ 0

BJPMu
εGu

d

dt
φu ` BJPMu

εBQ
d

dt
"πq ` BJPMu

σGuφu ` BJPKu
νpBQ

"aqqBQ
"aq ` BJPMu

σBQ
"πq

´BJPMu
εΛu

d

dt
vE ´ BJPMu

σΛuvE “ 0

d

dt
"aq ´ "πq “ 0

using Property 3.32. Since BJQMu
εBQ and BJPMu

εGu are nonsingular we obtain an ODE
for pφu,

"aq,
"πqq. In fact, that is some kind of index reduction using knowledge of the

solution of "au given by the Coulomb gauge.

3.3 Summary

This chapter has briefly introduced Maxwell’s equations and the finite integration tech-
nique for the resulting spatial discretization. We discussed a potential formulation of
Maxwell’s equations and presented a general class of gauge conditions. Next we moti-
vated Dirichlet boundary conditions for the potentials.
General properties of the discrete operators in terms of the finite integration technique
were discussed. The Maxwell’s grid equations (3.60) were formulated in terms of poten-
tials with incorporated boundary conditions using a new class of discrete gauge condi-
tions (3.55) in terms of the finite integration technique. We defined a suitable boundary
excitation and formulated current equations (3.58) for the currents through the elec-
tromagnetic devices to be easily accessible for circuit simulation. The chosen approach
differs substantially from [DHW04, Ben06, BBS11, Sch11], where the excitation is con-
structed using several conductor models and applied as a source term.
The structural properties of Maxwell’s grid equations (3.60) formulated as a differential-
algebraic equation with a properly stated leading term were discussed and analyzed by
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the index concept to obtain new index results. The first new result was that the index
depends on the chosen gauge condition. The Coulomb gauge leads to the locally unique
solvable index-2 and perturbation index-2 differential-algebraic equation (3.61) formu-
lated with a properly stated leading term (Theorem 3.35 and Remark 3.39) with linear
index-2 variables (Lemma 3.37) and we provided a way to calculate an operating point
(Lemma 3.38) to determine a consistent initialization. Maxwell’s grid equations turned
out to be an ordinary differential equation (3.65) using Lorenz gauge (Lemma 3.40).
These results were obtained without taking the currents through the device into ac-
count.
We analyzed the structural differences of Maxwell’s grid equations using Coulomb and
Lorenz gauge (Remark 3.41 and 3.42). Finally, we reformulated Maxwell’s grid equations
using a particular Coulomb gauge as an ordinary differential equation (3.66) by an
orthonormal basis decomposition (Remark 3.43) without taking the currents through
the device into account. From the results of both ordinary differential equations it can
be concluded that the modeling of the Maxwell’s grid equations has an impact on the
perturbation sensitivity and thus careful modeling is desirable.
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4 Electric Network

Today electric networks and circuits are indispensable. They can be found in almost
every electronic device from radios to central processing units of our personal computer
to smartphones. An electric network is the interconnection of elements such as con-
densers, resistors, coils and batteries modeled by capacitors, resistors, inductors, current
sources and voltage sources or more complex elements such as diodes and metal-oxide-
semiconductor field-effect transistor.

To reduce cost and development cycles of new electric products numerical simulations
are used to predict the circuit’s behavior in terms of physical quantities such as voltages
and currents. A suitable model for numerical simulation of electric networks has to
meet two contradicting requirements. On the one hand the physical behavior of an
electric network should be as correct as possible. On the other hand the model has
to be simple enough to keep the simulation time reasonably small. With regard to
the simulation time usually the first step is to restrict the circuit elements to the basic
elements capacitors, resistors, inductors, current sources and voltage sources while other
elements are replaced by equivalent circuits, that is, basic elements only.

A well-established modeling approach to meet the requirements is the modified nodal
analysis providing a system with a relatively small dimension that is able to automat-
ically setup the network equations, see [CL75, CDK87, DK84]. This model analysis is
successfully applied in established programs such as SPICE (Electronics Research Lab-
oratory of the University of California, Berkeley) and TITAN (Infineon Technologies
AG).

For today’s challenges the circuit industry is continuously developing new circuits and
circuit elements. In 2008 HP Labs announced the physical realization of a new circuit
element, namely, the memristor, whose existence was postulated in 1971 by Leon Chua,
see [Chu71, SSSW08]. This has motivated further research on memristors since many
potential applications are reported such as storing huge amount of data or replacing
transistors. The use of memristors in circuit simulation requires some effort and the
memristor needs to be embedded in actual circuit models. The nodal analysis method
has already been extended by memristor models. The index of the resulting differential-
algebraic equation is investigated in [Ria10]. In this thesis we extend the modified
nodal analysis by memristor models and investigate the structural properties of resulting
differential-algebraic equation formulated with a properly stated leading term.

This chapter is organized as follows. First, we introduce the characteristic equations
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and topology for the basic circuit elements known from literature, [CDK87, DK84],
and, in addition, for the memristor, [Chu71]. Next, we familiarize with the modified
nodal analysis. Finally we extend the modified nodal analysis by memristor models
and the resulting differential-algebraic equation with a properly stated leading term is
analyzed in terms of the index. We extend the well-known topological index conditions
of [Tis99, ET00] for the modified nodal analysis to circuits including memristors. In
addition, we present an approach to calculate a consistent initialization for the modified
nodal analysis including memristor models.

4.1 Network Modeling

ME are also applicable to circuits. However, the complexity of integrated circuits makes
simplifications unavoidable. Therefore an independent theory was deduced from ME,
tailored for circuit simulations, see [CL75].
The spatial dimensions of the elements are disregarded in this investigations. Two
preconditions must be met: The electrical connections between the circuit elements
have to be ideally conducting and the nodes have to be ideal and concentrated. The
physical behavior of the circuit elements is modeled by characteristic equations.

In the modified nodal analysis (MNA - Modified Nodal Analysis) the circuit is modeled
by a network graph and the topology can be described by Kirchhoff’s laws, see [DK84,
Ria08]. We restrict ourselves to elements with two contacts and terminals, respectively,
that is, every circuit element is represented by an edge with a different front and back
node.

4.1.1 Basic Electric Elements

The physical behavior of each network element is modeled by the relation between its
edge currents and its edge voltages.
We specify the characteristic equations for the basic elements, that is for capacitors, re-
sistors, inductors, voltage and current sources, in terms of currents and voltages through
the elements, see [CL75, CDK87]. A part from the sources characteristic equations are
deducible from ME by neglecting certain effects. Capacitors store energy in their electric

�
�
�
�

current source

resistor

node

capacitor

voltage source

inductor

mass node

Figure 4.1: Symbols of circuit elements.
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4 Electric Network

field. The electric charges of the capacitor are modeled by a function qC : RnCˆI Ñ RnC

and the characteristic equations are given by

jC “ d

dt
qC pvC, tq ,

where jC, vC : I Ñ RnC are the capacitors currents, voltages and nC P N is the number
of capacitors and I Ă R.
Resistors limit the flow of electrical current by generating voltage drops and may be
described by a function gR : RnR ˆ I Ñ RnR given by

jR “ gR pvR, tq ,
where jR, vR : I Ñ RnR are the resistor currents and voltages and nR P N is the number
of resistors.
Inductors store energy in their magnetic field. The magnetic flux of the inductors is
modeled by the function φL : RnL ˆ I Ñ RnL and the characteristic equation is given by

vL “ d

dt
φL pjL, tq

with jL, vL : I Ñ RnL being the inductor currents and voltages and nL P N the number
of inductors.
We confine our investigation to independent sources. Voltage and current sources are
distinguished by the fact that the voltage and the current are given by

vV “ vs ptq and jI “ is ptq
with vV : I Ñ RnV and jI : I Ñ RnI , where nV, nI P N is the number of voltage and
current sources.

4.1.2 Memristors

If it’s pinched, it’s a memristor.

Leon Chua about the characterization of
a resistance memory device, [Chu11].

In 1971 Leon Chua introduced a new circuit element named memristor [Chu71]. He
motivated the plausibility that such a device might someday be discovered by ME, see
[Chu71, AASE`10]. This element provides a nonlinear relationship between the charge
and the flux and hence it completes the conceptual symmetry with the resistor, whose
characteristic relate current and voltage, the inductor, involving current and flux, and the
capacitor, which relates voltage and charge. In 2008, a physical model of a two-contact
device behaving like a memristor was announced in [SSSW08]. This has motivated a
lot of research on this topic, and the memristor and related devices are likely to have a
great impact on electronics in the near future at the nanometer scale, see references in
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memristor

Figure 4.2: Symbols of memristor elements.

[Ria10, Ria11]. For this reason the memristor needs to be embedded in actual circuit
models.

Memristors are governed by charge-flux relations gM : RnMˆRnMˆI Ñ RnM of the type

gM pφ, qM, tq “ 0

with φ, qM : I Ñ RnM , nM P N is the number of memristors and I Ă R. In the following
we assume that the devices have two contacts and are either charge-controlled, that is,
the fluxes can be expressed by

φ “ φM pqM, tq ,
where φM : RnM ˆ I Ñ RnM . We assume that the partial derivatives

M pq, tq “ B
BqφM pq, tq

exist and is continuous. We call M : RnM ˆ I Ñ RnMˆnM the memristance. Together
with the basic relations

d

dt
φM pqM, tq “ vM and

d

dt
qM “ jM, (4.1)

where jM, vM : I Ñ RnM are the memristors currents and voltages, we can conclude

vM “ M pqM, tq jM

and it becomes clear why that devices are called memristors. In case of a constant
memristance the memristors do not differ from resistors. For a non-constant memristance
the memristance depends on

qM ptq “
ż t

´8

jM pτq dτ

and hence the memristors have an memory effect.

In [Ria10, RT11, Ria11] an extension of the nodal analysis and in [BT10, FY10] an
extension of the MNA are presented including memristor models. There is a number of
SPICE implementations of the memristor, see [BBB09a, KKS10, BBBK10, AASE`10]
and references therein. Most SPICE models of the memristor are developed on the
basis of the HP memristor or using subcircuits to model the memristor’s behavior. In
[SSSW08, KKS10, BBBK10, Chu11] memristances are given.
A lot of recent research is focused on devices closely related to the memristor, such as
the memcapacitors and meminductors recently introduced in [CPD09, BBB09b]. These
and other related circuit elements are beyond the scope of the thesis.
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4 Electric Network

4.1.3 Network Topology and Kirchhoff Laws

We model a circuit by a directed graph G :“ pN , Eq with arbitrarily orientation, see
[DK84, Ria08]. Then the network topology for elements with two contacts is retained
by the (reduced) incidence matrix A P t´1, 0, 1unNˆnb , see Appendix B. The matrix A
describes in an elegant way the relation between all nN `1 “ |N | nodes and all ne “ |E |
edges of the circuit. The (reduced) incidence is defined by:

pAqij “

$

’

&

’

%

1 if the edge j leaves node i,

´1 if the edge j enters node i,

0 else.

The reference node is called mass node and is an arbitrarily node of G.

A milestone for circuit modeling are the Kirchhoff’s laws, which deal with the conserva-
tion of charge and energy in electrical circuits and were first described in 1845 by Gustav
Kirchhoff. Both laws can be directly derived from ME, but Kirchhoff preceded Maxwell
and instead generalized the work by Georg Ohm.

The Kirchhoff’s laws take into account the circuit’s topology:

(i) Kirchhoff’s voltage law (KVL - Kirchhoff’s Voltage Law): At every instant of time
the algebraic sum of voltages along each loop of the network is equal to zero.

(ii) Kirchhoff’s current law (KCL - Kirchhoff’s Current Law): At every instant of time
the algebraic sum of currents entering one node of the network is equal to zero.

KVL and KCL can be deduced from ME. We start from the following Assumptions:
First, cross talk, that is, undesired capacitive, inductive, or conductive coupling from
one circuit element to another, can be neglected. Second, there is no time evolution of
the EM fields. Last, the electrical connections between the circuit elements to be ideally
conducting and the nodes to be ideal and concentrated. If these assumptions are met
ME imply the Kirchhoff’s laws. KCL can be derived by the continuity equation (3.5)
and KVL by Maxwell-Faraday law (3.3), respectively. In the static case ME leads to:

∇ ¨ ~Jc “ 0 (4.2)

∇ˆ ~E “ 0 (4.3)

Applying Gauss’ law to (4.2) we achieve
ż

F

~Jc ¨ ~nKdF “
ż

V

∇ ¨ ~JcdV “ 0,

where V donates the volume and F “ BV the surface of an idealized electrical node. The
current is defined by

i “
ż

F

~JcdF.
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Considering one node with edge currents i1, . . . , im with F “ řm
i“1 Fi, see Figure 4.3(a),

entering this node we may describe KCL as
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(a) Node with m con-
ducting edges
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(b) Loop with m con-
ducting edges

Figure 4.3: KCL and KVL.

m
ÿ

k“1

ik “
m
ÿ

k“1

ż

Fk

~Jc ¨ ~nKdF “
ż

F

~Jc ¨ ~nKdF “ 0

that is, the sum of all edge currents entering a node equals zero. Applying Stokes’ law
on (4.3) we achieve

ż

F

~E ¨ ~nqdF “
ż

E

∇ˆ ~E ¨ ~nKdE “ 0

with E “ BF and F being a loop of idealized electrical wires. The voltage is defined by

v “
ż

E

~E ¨ ~nqdE

If we consider a loop with the edge voltages v1, . . . , vm with E “ řm
i“1 Ei, see Fig-

ure 4.3(b), then we can formulate KVL as

m
ÿ

k“1

vk “
m
ÿ

k“1

ż

Ek

~E ¨ ~nqdE “
ż

E

~E ¨ ~nqdE “ 0

that is, the sum of all edge voltages in a loop equals zero.
Let a connected electric network be given and j, v P Rnb be the vectors of all edge currents
and voltages. Then KCL and KVL imply

Aj “ 0 (4.4)

and

v “ AJe, (4.5)
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4 Electric Network

where e P RnN are called node potentials, see [DK84], where the node potentials are
defined as voltage drop with respect to the mass node. The node potentials leads to a
smaller system size compared to a system with the edge voltages as variables. This is
due to the fact that the network graph usually contains considerably more edges than
nodes.

4.2 Modified Nodal Analysis for Circuits including
Memristors

In this section we extend the charge oriented MNA, [FG99, ET00, Gün01], for circuits
including memristors. We arrive at the system as [FY10], but in contrast to [FY10] we
provide a detailed analysis of the resulting DAE.

The four essential steps in setting up the equations of the MNA equations are:

(i) Apply KCL to every node, except for the mass node, that is, start from (4.4).

(ii) Replace the characteristic equations for currents of resistors, capacitors and current
sources in KCL.

(iii) Add the characteristic equations for inductors.

(iv) Add the characteristic equations for voltage sources and apply KVL (4.5) to obtain
a formulation in node potentials instead of branch voltages.

The first step to gain structure information is sorting the network edges in such a way
that the incidence matrix A forms a block matrix with blocks describing the different
types of network elements, that is,

A “ “

AC AR AL AV AI

‰

,

where the index stands for capacitive, resistive, inductive, voltage source and current
source edges, respectively, see [Tis99, ET00].

We are back to the MNA equations, which results in a DAE system of the form

AC
d

dt
qC

`

AJCe, t
˘` ARgR

`

AJRe, t
˘` ALjL ` AVjV ` AIis ptq “ 0

d

dt
φL pjL, tq ´ AJL e “ 0

AJVe´ vs ptq “ 0

(4.6)

in time t P I, I “ rt0, T s Ă R. Denoting the number of nodes - except for the mass
node - by nN , the number of inductive edges by nL and the number of voltage source
edges by nV. The dimension of the system is nN ` nL ` nV. The given vector functions
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qC pv, tq, gR pv, tq, φL pj, tq, vs ptq and is ptq describe the characteristic equations for the
circuit elements.
The unknowns are the node potentials e : I Ñ RnN , except of the mass node, as well
as the currents jL : I Ñ RnL through inductors and the currents jV : I Ñ RnV through
voltage sources. The potential at the mass node is assigned to zero.
The first equation of (4.6) states KCL and the second one states the characteristic
equations for inductances. The last equation combines the characteristic equations and
KVL for the voltage sources. Details can be found in [ET00, Tis04].

Remark 4.1. In stating the model as we do we implicitly assume independent voltage
and current sources only. For results with a broad class of controlled sources we refer to
[ET00].

For the MNA (4.6) there are well-known index results depending on the circuit topology
only, [Tis99, ET00]. For this we need the following assumptions and definitions.

Assumption 4.2 (no short circuit). The matrices AV and
“

AC AR AL AV

‰J
have

full column rank, that is, it exists neither a loop containing only voltage sources ( V-loop)
nor a cutset containing only current sources ( I-cutset), see Remark B.14.

These assumptions are necessary for a consistent model description and very natural
since a violation would in reality result to a short circuit. From the mathematical point
of view, the circuit equations would have either no solution or infinite many solutions
due to KCL and KVL.

Example 4.3. The linear circuit in Figure 4.4(a) has a V-loop and the MNA (4.6) lead
to

j1V ` j2V `Ge “ 0

e “ v1
s ptq

e “ v2
s ptq

with infinitely many solutions if and only if v1
s ptq “ v2

s ptq, otherwise no solutions exist.
The linear circuit in Figure 4.4(b) has an I-cutset and the MNA equations (4.6) lead to

�
�
�
�

v2
s ptqe

v1
s ptq

(a) V-loop

�
�
�
�

����

i2s ptq e2

e1

i1s ptq
(b) I-cutset

Figure 4.4: Example of a V-loop and an I-cutset.
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4 Electric Network

i1s ptq ´ i2s ptq “ 0

i1s ptq `Ge1 “ 0

with infinitely many solutions if and only if i1s ptq “ i2s ptq since e2 can be chosen freely,
otherwise no solutions exists.

Assumption 4.4 (Passivity, [Bar04]). The functions qC pu, tq , φL pj, tq and gR pu, tq are
continuously differentiable with

C pu, tq “ B
BuqC pu, tq , L pj, tq “ B

BjφL pj, tq , G pu, tq “ B
BugR pu, tq ,

being positive definite. Physically, we say that the elements are locally passive, that is,
they do not produce any energy.

For the later analysis special loops and cutsets play a key role, [ET00].

Definition 4.5 (LI-cutset). A cutset is called LI-cutset if and only if the cutset contains
only inductors and current sources.

Definition 4.6 (CV-loop). A loop is called CV-loop if and only if the loop contains
only capacitors and voltage sources.

Theorem 4.7. Let Assumption 4.2 and Assumption 4.4 be fulfilled. The MNA (4.6)
represent a DAE (2.18) with a properly stated leading term. The DAE has

� index-0 if and only if there are no voltage sources in the circuit and the circuit has
a tree containing capacitors only,

� index-1 if and only if there is at least a voltage sources in the circuit or there is no
tree containing capacitors only and if there is neither an LI-cutset nor a CV-loop
with at least one voltage source,

� otherwise, it has index-2.

Proof . For the properly stated leading term we refer to [Mär03]. The index result can
be found in [Tis99] and in Theorem 4.3. in [ET00].

If the DAE (4.6) has index-2 then the numerically unstable index-2 components are given
by currents through voltage sources of CV-loops but also by potentials of inductors and
current sources of LI-cutsets, see [Est00, EFM`03]. Fortunately the index-2 variables
appear linearly only, see [Est00]. Using perturbation index analysis it has been shown
for index-2 Hessenberg systems with linear index-2 variables, [ASW95], and for index-2
circuits, [Tis01], that the numerical difficulties in time integration are moderate, because
the differential (index-0) variables are not affected by numerical differentiations.

Next, we add memristor elements to our system. That is, we enlarge our list of basic
elements by the memristor. In the MNA framework, we simply add the unknown current
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jM P RnM through the memristors to KCL using the corresponding incidence matrix AM

with nM the number of memristors. In addition we have to add the characteristic
equations for memristors. Starting from the MNA (4.1), we obtain the extended MNA
system

AC
d

dt
qC

`

AJCe, t
˘` AM

d

dt
qM ` ARgR

`

AJRe, t
˘` ALjL ` AVjV ` AIis ptq “ 0

d

dt
φM pqM, tq ´ AJMe “ 0

d

dt
φL pjL, tq ´ AJL e “ 0

AJVe´ vs ptq “ 0

(4.7)

with the additional unknowns qM : I Ñ RnM and characteristic equations φM pq, tq.

For our later investigations we need the following assumptions.

Assumption 4.8 (no short circuit). The matrices AV and
“

AC AR AM AL AV

‰J

have full column rank, that is, it exists neither a V-loop nor an I-cutset, see Remark B.14.

Assumption 4.9 (Passivity). The function φM pq, tq is continuously differentiable with

M pq, tq “ B
BqφM pq, tq

being positive definite.

4.3 Numerical Analysis

In this section we investigate the extended MNA system (4.7) and extend the topological
index results for the MNA equations (4.6). The index still depends on simple topological
criteria and we see that memristors behave like resistors from the index point of view.
Furthermore we provide an approach to calculate a consistent initialization.

The steps are as follows: At first we show that the resulting DAE has a properly stated
leading term. Then we develop network topological index-0 conditions. Next we deter-
mine the higher index components. With this it is easy to formulate network topological
index-1 conditions. Finally we show that the index is always lower or equal two. After
the index analysis, we present an approach to compute suitable starting values for the
numerical integration.

We suppose that Assumption 4.4 and 4.9 are valid. The extended MNA (4.7) can be
written as a DAE given by

A
d

dt
d py, tq ` b py, tq “ 0 (4.8)
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with unknowns y “ pe, qM, jL, jVq and the describing matrix and functions

A “

»

—

—

–

AC AM 0 0
0 0 I 0
0 0 0 I
0 0 0 0

fi

ffi

ffi

fl

, d py, tq “

¨

˚

˚

˝

qC

`

AJCe, t
˘

qM

φM pqM, tq
φL pjL, tq

˛

‹

‹

‚

as well as

b py, tq “

¨

˚

˚

˝

ARgR

`

AJRe, t
˘` ALjL ` AVjV ` AIis ptq

´AJMe
´AJL e

AJVe´ vs ptq

˛

‹

‹

‚

.

Remark 4.10. In practice, a reformulation of the DAE

A
d

dt
d py, tq ` b py, tq “ 0

to a DAE

A
d

dt
rd py, tq ` b py, tq “ 0

with a properly stated leading term and relations

A
d

dt
d py, tq “ A

d

dt
rd py, tq ,rd py, tq “ rPd py, tq and ker A “ ker rP

is not necessary since we are allowed to move the constant projector rP from outside into
the time derivative and vice versa, see [Mär03]. Moreover with AD py, tq “ A B

By
rd py, tq

the matrix chain is uneffected by the reformulation, too.

Lemma 4.11. Let the Assumption 4.4 and 4.9 be satisfied. Then, the DAE (4.8) has a
properly stated leading term, where the constant projector

R “

»

—

—

–

“

AC AM

‰` “

AC AM

‰ 0
0

0
0

0 0 I 0
0 0 0 I

fi

ffi

ffi

fl

realizes the decomposition (2.9).

Proof . The first step is to rewrite the DAE (4.8). For that we choose the projector

R with ker A “ ker R, see Lemma A.13, where
“

AC AM

‰`
denote the Moore-Penrose

inverse of
“

AC AM

‰

. With that we get

rd px, tq “ Rd px, tq
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and A d
dt

d py, tq “ A d
dt
rd py, tq holds true. We to show im R “ im B

By
rd py, tq, see Defini-

tion 2.11, that is, it remains to prove

im
“

AC AM

‰` “

AC AM

‰ “ im
“

AC AM

‰` “

ACC
`

AJCe, t
˘

AJC AM

‰

That is true since im ACC
`

AJCe, t
˘

AJC “ im AC, see Lemma A.3.

Remark 4.12. Note, the constant projector

rP “

»

—

—

–

A`CAC 0 0 0
0 A`MAM 0 0
0 0 I 0
0 0 0 I

fi

ffi

ffi

fl

does not provide a properly stated leading term since ker A Ć ker rP.

Next we determine the index of the DAE (4.8) by simple topological criteria. We start
with the first matrix of the matrix chain, see Definition 2.21, given by

G0 py, tq “

»

—

—

–

ACC
`

AJC, t
˘

AJC AM 0 0
0 M pqM, tq 0 0
0 0 L pjL, tq 0
0 0 0 0

fi

ffi

ffi

fl

(4.9)

with

D py, tq “

»

—

—

–

C
`

AJCe, t
˘

AJC 0 0 0
0 I 0 0
0 M pqM, tq 0 0
0 0 L pjL, tq 0

fi

ffi

ffi

fl

.

If the matrix G0 py, tq is nonsingular, all equations are differential equations, such that
the problem is an ODE. This is the case for the following class of circuits.

Theorem 4.13 (index-0). Suppose Assumption 4.4 and 4.9 hold true. The DAE (4.8)
has index-0 if and only if there is a tree containing capacitors only and no voltage source.

Proof . We have to check under which conditions the matrix G0 py, tq is nonsingular.
Since C

`

AJCe, t
˘

, M pqM, tq and L pjL, tq are positive definite this is the case if and only
if the zero rows and columns disappear and ker AJC “ t0u, see Lemma A.3. The null
space of AJC is trivial if and only if the circuit has a tree containing capacitors only, see
Theorem B.11. The zero rows and columns disappear if and only if no voltage sources
exist. Using Lemma 2.30 we can conclude that the DAE has index-0.

To further continue the matrix chain we need a projector onto ker G0 py, tq. A possible
choice for such a projector is

Q0 “

»

—

—

–

QC 0 0 0
0 0 0 0
0 0 0 0
0 0 0 I

fi

ffi

ffi

fl
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due to Assumption 4.4, where QC is constant projectors onto ker AJC. For the matrix
chain we need the derivative of b py, tq with respect to the unknowns which is given by

B0 py, tq “

»

—

—

–

ARG
`

AJRe, t
˘

AJR 0 AL AV

´AJM 0 0 0
´AJL 0 0 0
AJV 0 0 0

fi

ffi

ffi

fl

.

In addition we calculate

B0 py, tqQ0 “

»

—

—

–

ARG
`

AJRe, t
˘

AJRQC 0 0 AV

´AJMQC 0 0 0
´AJL QC 0 0 0
AJVQC 0 0 0

fi

ffi

ffi

fl

.

As already mentioned with regard to the analysis, certain loops and cutsets of edges
play a key role. In order to describe different circuit configurations in more detail we
will introduce some useful projectors. We denote by

QC´V and QCRMV

projectors onto

ker QJ
CAV and ker

“

AC AR AM AV

‰J

respectively, see [ET00]. The next lemmata are basically known from [ET00] and slightly
extend them to circuits including memristors.

Lemma 4.14 (LI-cutsets). Let a connected circuit be given. The circuit does not
contain an LI-cutset if and only if the projector QCRMV is equal to the zero matrix.

Proof . See Lemma C.2 with AR “
“

AR AM

‰

and AV “ AV.

Lemma 4.15 (CV-loops). The circuit does not contain a CV-loop with at least one
voltage source if and only if the projector QC´V is equal to the zero matrix.

Proof . See Lemma C.4 with AV “ AV.

The next step is the calculation of N0 X S0 py, tq. This intersection is crucial for index
determination and the consistent initialization as well.

Lemma 4.16. Assume Assumption 4.4 and 4.9 to be satisfied. The index-1 set of the
DAE (4.8) can be described by

N0 X S0 py, tq “ tz P Rn|ze P im QCRMV, zjV P im QC´V, zqM
“ 0, zjL “ 0u

for all py, tq P D ˆ I.
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Proof . For calculating the index-1 set we make use of Remark 2.27. For a suitable
description we make use of a projector along im G0 py, tq. We are given one by

W0 py, tq “

»

—

—

–

QJ
C ´QJ

CAMM pqM, tq´1 0 0
0 0 0 0
0 0 0 0
0 0 0 I

fi

ffi

ffi

fl

,

see Lemma C.13, and we get

W0 py, tqB0 py, tqQ0 “

»

—

—

–

QJ
CG pe, qM, tqQC 0 0 QJ

CAV

0 0 0 0
0 0 0 0

AJVQC 0 0 0

fi

ffi

ffi

fl

with G pe, qM, tq “
`

ARG
`

AJRe, t
˘

AJR ` AMM pqM, tq´1 AJM
˘

.

Let be z P im Q0 X ker W0 py, tqB0 py, tqQ0. That is true if and only if

QCze “ ze (4.10)

zqM
“ 0

zjL “ 0

QJ
C

`

ARG
`

AJRe, t
˘

AJR ` AMM pqM, tq´1 AJM
˘

QCze `QJ
CAVzjV “ 0 (4.11)

AJVQCze “ 0 (4.12)

hold true, using Assumption 4.4 and 4.9. Left-multiply (4.11) by zJe and using (4.12)

leads to QCze P ker
“

AR AM

‰J
, see Lemma A.3. We obtain ze P im QCRMV in combina-

tion with (4.10) and (4.12). Thus (4.11) leads to

QJ
CAVzjV “ 0 and zjV P im QC´V.

We get z P N0 X S0 py, tq if and only if

ze P im QCRMV

zqM
“ 0

zjL “ 0

zjV P im QC´V

holds true.

Remark 4.17. It is possible to choose a constant projector along im G0 py, tq, since
im A “ im G0 py, tq, see Lemma 2.12. Nonetheless it is more convenient to make use of
the given non-constant projector W0 py, tq to prove Lemma 4.16.

With the characterization of N0 X S0 py, tq we are able to provide network topological
index-1 conditions. We show that, from the index point of view, the memristors behave
like resistors.
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Theorem 4.18 (index-1). Let Assumption 4.4 and 4.9 to be true. The DAE (4.8) has
index-1 if and only if there is at least a voltage sources in the circuit or there is no tree
containing capacitors only and if there is neither an LI-cutset nor a CV-loop with at
least one voltage source.

Proof . We make use of the representation of N0XS0 py, tq as proposed in Lemma 4.16.
The intersection N0 X S0 py, tq is trivial if and only if QCRMV “ 0 and QC´V “ 0. This
is equivalent the condition that to the circuit containing neither LI-cutsets nor CV-
loops, see Lemma 4.14 and 4.15. Using Definition 2.23 we get the DAE (4.8) to be of
index-1.

The DAE (4.8) can be of index-2 also, but higher index problems can be avoided as we
will see in the next theorem. We will see that LI-cutsets and CV-loops are the only
critical circuit configurations.

Obviously the dimension of N0XS0 px, tq is constant, which is important for the index-2
case.

Theorem 4.19 (index-2). Let Assumption 4.4, 4.8 and 4.9 hold true. The DAE (4.8)
has index-2 if and only if there is an LI-cutset or a CV-loop with at least one voltage
source.

Proof . At first we need

G1 py, tq “

»

—

—

–

ACC
`

AJCe, t
˘

AJC ` ARG
`

AJRe, t
˘

AJRQC AM 0 AV

´AJMQC M pqM, tq 0 0
´AJL QC 0 L pjL, tq 0
AJVQC 0 0 0

fi

ffi

ffi

fl

(4.13)

in order to proceed the matrix chain. For the characterization of the index-2 set we
introduce a projector along im G1 py, tq, see Remark 2.28. We are given one by

W1 “

»

—

—

–

QJ
CRMV 0 0 0
0 0 0 0
0 0 0 0
0 0 0 QJ

C´V

fi

ffi

ffi

fl

,

see Lemma C.14. Next we take into account

P0 “

»

—

—

–

PC 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0

fi

ffi

ffi

fl

, B0 py, tqP0 “

»

—

—

–

ARG
`

AJRe, t
˘

AJRPC 0 AL 0
´AJMPC 0 0 0
´AJL PC 0 0 0
AJVPC 0 0 0

fi

ffi

ffi

fl

,

where P0 is the complementary projector to Q0 and

W1B0 py, tqP0 “

»

—

—

–

0 0 QJ
CRMVAL 0

0 0 0 0
0 0 0 0

QJ
C´VAJVPC 0 0 0

fi

ffi

ffi

fl

.
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Let be z P ker G1 py, tq X ker W1B0 py, tqP0. That is true if and only if the conditions

QJ
CRMVALzjL “ 0 (4.14)

QJ
C´VAJVPCze “ 0 (4.15)

QCze P im QCRMV (4.16)

zjV P im QC´V (4.17)

zqM
“ 0

PCze “ ´HC

`

AJCe, t
˘´1

AVQC´VzjV (4.18)

L pjL, tq´1 AJL QCze “ zjL (4.19)

are fulfilled, using

N1 py, tq “
 

z P Rn|QCze P im QCRMV, zjV P im QC´V, zqM
“ 0,

PCze “ ´HC

`

AJCe, t
˘´1

AVQC´VzjV ,L pjL, tq´1 AJL QCze “ zjL

(

,

see Lemma C.15, where HC

`

AJCe, t
˘ “ ACC

`

AJCe, t
˘

AJC `QJ
CQC is positive definite, see

Lemma A.10, using Assumption 4.4 and 4.9. From (4.16) we deduce QCze “ QCRMVQCze.
Left-multiplying (4.14) by zJe QJ

C and inserting of (4.19) yields

zJe QJ
CL pjL, tq´1 AJL QCze “ 0 and QCze P ker AJL ,

see Lemma A.3. Hence QCze P ker
“

AC AV AR AM AL

‰J
and we conclude that

QCze “ 0, since I-cutsets are prohibited. Consequently (4.19) leads to zjL “ 0. Inserting
(4.18) in (4.15) and using (4.17) we obtain AVzjV “ 0. Thus zjV “ 0 due to V-loops are
forbidden. From (4.18) we get ze “ 0 and we result in z “ 0, see Definition 2.23.

To start the integration of the DAE (4.8) we need a consistent initialization. In case of
index-1 we make direct use of Theorem 2.51. In case of index-2 we apply Theorem 2.58.
For this we need to check the requirements.

Assumption 4.20. For the DAE (4.8) exist the continuous partial derivatives B

Bt
d py, tq

and B

Bt
W1b py, tq for all py, tq P D ˆ I.

These assumptions are not a restriction since, if a solution exists, then B

Bt
d py, tq exists

and is continuous. Moreover W1b py, tq describes exactly the hidden constraints and
hence B

Bt
W1b py, tq needs to exists and to be continuous to have a solution of the problem.

In addition, the DAE (4.8) has a constant matrix A and there are the constant projectors
Q0 and W1. It remains to show that the index-2 variables enter linearly only.

Lemma 4.21. The relation

gR

`

AJRe, t
˘ “ gR

`

AJRPCRMVe, t
˘

holds true for all pe, tq P RnN ˆ I.
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Proof . We apply the mean value theorem. We get

gR

`

AJRe, t
˘´ gR

`

AJRPCRMVe, t
˘ “

ż 1

0

G
`

sAJRe` p1´ sqAJRPCRMVe, t
˘

AJRQCRMVeds

“ 0.

Lemma 4.22. Let Assumption 4.4 and 4.9 be fulfilled. The index-2 variables enter the
DAE (4.8) linearly only.

Proof . From Lemma 4.16 we easily obtain a constant projector T onto N0 X S0 py, tq
given by

T “

»

—

—

–

QCRMV 0 0 0
0 0 0 0
0 0 0 0
0 0 0 QC´V

fi

ffi

ffi

fl

and the complementary projector U reads

U “

»

—

—

–

PCRMV 0 0 0
0 I 0 0
0 0 I 0
0 0 0 PC´V

fi

ffi

ffi

fl

.

The unknowns are divided into

y “ Ty ` Uy “

¨

˚

˚

˝

QCRMVe
0
0

QC´VjV

˛

‹

‹

‚

`

¨

˚

˚

˝

PCRMVe
qM

jL
PC´VjV

˛

‹

‹

‚

.

Now we can write b py, tq “ b pUy, tq ` BTy with

B “

»

—

—

–

0 0 0 AV

0 0 0 0
´AJL 0 0 0

0 0 0 0

fi

ffi

ffi

fl

,

using Lemma 4.21. The relation d py, tq “ d pUy, tq is obvious by Lemma 2.54.

The DAE (4.8) fulfills all requirements to apply Theorem 2.58 in case of index-2. But
we still need an operating point when we want to integrate it numerically. Since Theo-
rem 2.58 is applicable to the DAE an operating point is sufficient to start the numerical
integration, see Lemma 2.61.
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The computation of an operating point and DC (direct current) solution is very well
established area, see [CL75, CDK87, DK84, SV93], and is usually the first step in the
simulation of ciruits. Common approaches are, among others, homotopy methods and
source ramping, which are used in SPICE and TITAN, [Vla94, SW96, Dau10].

Let be z0 “ `

z0
C, z

0
M, z

0
φM
, z0

L

˘

, y0 “ pe0, q0
M, j

0
L, j

0
Vq and t0 P I. We choose pz0

C, z
0
Mq and

pq0
M, j

0
Lq such that

ACz0
C ` AMz0

M ` ALj0L ` AIis pt0q P im
“

AR AV

‰

. (4.20)

Definition 4.23 ( RV-path). A path is called RV-path if and only if the path containing
resistors and voltage sources only.

Remark 4.24. The condition (4.20) can be fulfilled if we choose all currents through
capacitors, memristors and inductors to be zero. For capacitors, memristors and in-
ductors, where the elements contacts are connected by a RV-path we can choose freely
the currents and charges through the elements, respectively. For simplicity we assume
the currents through current sources to be zero if the contacts are not connected by a
RV-path, otherwise we apply a source ramping, see [Vla94].

Next we determine pe0, j0Vq. For this we need a solution of the nonlinear system:

ARgR

`

AJRe0, t0

˘` AVj0V “ ´ACz0
C ´ AMz0

M ´ ALj0L ´ AIis pt0q
AJVe0 “ vs pt0q

(4.21)

The Jacobian of the nonlinear system (4.21) has the form

Jev

`

e0, j0V
˘ “

„

ARG
`

AJRe0, t0

˘

AJR AV

AJV 0



.

Let be v P ker Jev pe0, j0Vq. Then we get:

ARG
`

AJRe0, t0

˘

AJRv1 ` AVv2 “ 0 (4.22)

AJVv1 “ 0 (4.23)

Left multiplying (4.22) by vJ1 and using (4.23) leads to v1 P ker
“

AR AV

‰J
and hence

ker Jev

`

e0, j0V
˘ “ ker

“

AR AV

‰J ˆ t0u . (4.24)

In analogy we show ker Jev pe0, j0Vq “ ker Jev pe0, j0VqJ.

Approach 4.25. To solve the system (4.21) we suggest two possible ways:

(i) Assume
“

AR AV

‰

to have full row rank. In terms of network configurations that
means there is a tree containing voltage sources and resistors only, that is, the
index-2 configurations are CV-loops only. That is, we can choose pz0

C, z
0
Mq and
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pq0
M, j

0
Lq arbitrarily. Let be v P ker Jev pe0, j0Vq. Then we deduce from (4.24) the

relation v1 P ker
“

AR AV

‰J
and v1 “ 0 due to

“

AR AV

‰

has full row rank.
Furthermore we get v2 “ 0 by Assumption 4.8, that is, V-loops are forbidden.
With that we conclude Jev pe0, j0Vq to be is nonsingular. Hence we obtain a unique
solution for pe0, j0Vq by solving the nonlinear system (4.21) using, for example,
Newton’s method.

(ii) We apply Theorem 2.59 to (4.21). Then

`

e0, j0V
˘ “ BPv ` u

with u P ker BPBJP being arbitrarily and v P Rk is the unique solution of

BJPf pBPv, t0q “ 0,

where

f ppe, jVq , tq “
ˆ

ARgR

`

AJRe, t
˘` AVjV ` ACz0

C ` AMz0
M ` ALj0L ` AIis ptq

AJVe´ vs ptq
˙

.

After applying Approach 4.25 we compute the missing parts by

z0
φM
“ AJMe0 and z0

L “ AJL e0.

Remark 4.26. Due to the structure of the DAE (4.8) we obtain a locally unique solution
through every consistent inital value and the perturbation index to be not greater than
two, see Theorem 2.33, 2.46, 2.49 and 2.50.

4.4 Summary

In this chapter we have introduced the modified nodal analysis to model circuits con-
taining the basic elements including memristors formulated as a differential-algebraic
equation (4.8) with a properly stated leading term.
We extended the well-known topological index conditions of [Tis99, ET00] for the mod-
ified nodal analysis to circuits including memristors (Theorem 4.13, 4.18 and 4.19) and
showed that the index does not exceed two. We conclude that, from index point of
view, the memristors behave like resistors. Moreover. we have shown perturbation and
solvability results for the modified nodal analysis including memristors (Remark 4.26)
and the perturbation index does not exceed two.
We presented two approaches (Approach 4.25) for the calculation of an operating point.
Based on the linearity of the index-2 components (Lemma 4.21) the calculation of a
consistent initialization is possible by correcting an operating point by solving a linear
system. Due to the structure it is sufficient to start the numerical integration with the
implicit Euler using an operating point to obtain a consistent initialization after the first
time step.
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5 Coupled Electromagnetic
Field/Circuit Models

Usually in a technology computer aided design environment devices exhibiting multi-
physical effects such as electromagnetic or semiconductor devices are simplified and the
devices are modeled by an equivalent circuits.

The rapid developments in chip technology lead the devices being ever more minimized
and higher frequencies evoking effects that no longer can be reproduced by an equivalent
circuit in an appropriate manner. One reason is that the performance of the devices is
significantly influenced by the surrounding circuitry such as, for example, heating or
inductive coupling. This requires additional iterations during the circuit design for the
extraction and generation of equivalent circuit parameters for the different time steps
in simulation. Today, the equivalent circuits such as the BSIM6 transistor models (Uni-
versity of California Berkeley Device Group) depend on up to hundreds of parameters.
Most of these parameters do not have a direct physical interpretation, see [DF06], and
their calibration is a time consuming and challenging task.

To meet future demands in circuit design it is recommended to combine circuit simu-
lation directly with device simulation. While most elements are modeled by equivalent
circuits we simulate a particular device with a refined model to meet the contradicting
requirements of correct physical behavior of the circuit and reasonably small simulation
time.

In engineering it is a common task to couple circuit and device simulation, see [Tis04]
and references therein. But for mathematics it is a young research area. Several index
results for circuits with various distributed elements leading to differential-algebraic
equations have beed proposed during the last years: lossy transmission lines [Gün01],
heating [Bar04, Cul09] and semiconductors [Tis04, ST05, Sel06, Bod07, BST12]. More
theoretical results concerning solvability of abstract differential algebraic equations, that
is, differential-algebraic equations on infinite dimensional Banach spaces, are presented
in [Tis04, Rei06, Mat12] with their results being also applicable to circuits including
partial differential equation models.

We investigate coupled electromagnetic device/circuit models with spatially resolved
electromagnetic devices. The electromagnetic devices are described by Maxwell’s equa-
tions in a potential formulation and spatially discretized by the finite integration tech-
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nique. Coupled magnetoquasistatic device/circuit models are investigated in [HM76,
KMST93, DHW04, DW04] and index results are presented in [Tsu02, Ben06, BBS11,
Sch11] using certain conductor models like stranded and solid conductors. The magne-
toquasistatic assumption leads to the eddy-current problem for the device. In [Tsu02,
Ben06] index-1 circuit configurations are investigated while [BBS11, Sch11] take general
circuit configurations into account by extending the topological index conditions for the
modified nodal analysis given in [Tis99, ET00]. Our index analysis for coupled electro-
magnetic device/circuit models does not cover a special class of conductor models and
we do not suppose that the magnetoquasistatic assumption holds. It turns out that the
index of the coupled system depends on the chosen gauge condition. For the coupled
electromagnetic device/circuit model using Lorenz gauge we extend the topological in-
dex conditions for the modified nodal analysis. The Coulomb gauge always results to
an index-2 differential-algebraic equation.

This chapter is devoted to the index analysis of coupled systems. First, we introduce
the terminology of coupled system and point out why an index analysis is necessary.
Next, we introduce the coupled system consisting of circuits refined by spatially re-
solved electromagnetic devices modeled by the modified nodal analysis and spatial dis-
cretized Maxwell’s equations formulated as a differential-algebraic equation with a prop-
erly stated leading term. We generalize the topological index criteria for the modified
nodal analysis to the coupled system. In addition, we present an approach to calculate
a consistent initialization.

5.1 Simulation of Coupled Systems

Mathematical models for coupled systems are characterized by their decomposition into
different subsystems described by differential equations in space and time. These sub-
systems may arise through refined modeling. The interdependencies are named coupling
conditions and describe the mutal impact of the subsystems. There are two major
approaches for the time integration of coupled systems:

� cosimulation: The subsystems are solved sequentially or in parallel. The infor-
mation interchange is restricted to particular time points. All subsystems may
be solved on their own time scale (multirate) with tailor-made methods (multi-
method). We call cosimulation systems weakly coupled. Cosimulation requires
more detailed analysis of the system formulation and the coupling conditions.

� monolithic: All subsystems are combined into one single system of equations and
solved simultaneously. Every subsystem has all system information at every time
point. All subsystems must be solved on the same time scale using the same
methods. We call monolithic systems strongly coupled.

In this thesis monolithic systems of DAEs are investigated. We would like to stress that
it is not sufficient to determine the index of the different subsystems to deduce the index
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5 Coupled Electromagnetic Field/Circuit Models

of the coupled system as shown by the following examples. The index of the coupled
system depends on the structure of the subsystems as well as on the structure of the
coupling conditions.

Example 5.1. We show that coupling of an index-1 and index-2 DAE can result in a
monolithic index-1 or index-2 DAE. Let us consider the following system

d

dt
x1 “ x2

d

dt
y1 “ y2

x2 “ u ptq y1 “ v ptq
where u ptq and v ptq are given inputs and the subsystems consist of an index-1 and an
index-2 DAE. The coupling conditions are given by

(i)

u “ y1 ` y2 and v “ x1 ` x2

(ii)

u “ y1 and v “ x1

such that the monolithic system using (i) leads to an index-1 and using (ii) leads to an
index-2 DAE.

Example 5.2. We show that coupling two index-1 DAEs can result in a monolithic
index-2 DAE and vice versa. Let us consider the following systems

(i)

d

dt
x1 “ x2

d

dt
y1 “ y2

x1 ` x2 “ u ptq y1 ` y2 “ v ptq

(ii)

d

dt
x1 “ x2

d

dt
y1 “ y2

x1 “ u ptq y1 “ v ptq

where u ptq and v ptq are given inputs and the subsystem (i) consists of an index-1 and
(ii) of an index-2 DAE. The coupling conditions are given by

u “ y2 and v “ x2

such that the monolithic system (i) leads to an index-2 and (ii) leads to an index-1 DAE.
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5.2 Electromagnetic Field/Circuit Model

In this section we investigate circuits refined by spatially resolved EM devices modeled
by the MNA and ME. The MNA describes the non-critical circuit parts for which a
modeling using basic elements only is sufficient. Critical circuit parts for which the
MNA approach is insufficient to describe the EM device behavior are modeled by ME
directly. For simplicity we assume that only one critical EM device is given.
We have to include the EM device into the MNA framework. For this charge conservation
is essential which is given by the additional mass contact. We suppose that the EM device
has nE disjoint conductive contacts and each contact of the device is joined to a node
of the circuit. In addition we suppose that the mass contact is connected to the mass
node. The contacts of the EM device joined to the same node of the electrical circuit
define a terminal, see [Tis04, Bod07]. Let nT ` 1 be the number of terminals of the EM
device and nN be the number of circuit’s nodes except the mass node. We define the
following (reduced) incidence matrix AE P t´1, 0, 1unNˆnT by

pAEqij “

$

’

&

’

%

1 if terminal j is joined to node i,

´1 if the reference terminal is attached to node i,

0 else.

The coupling of the EM device to the circuit is established by the applied node potentials
at the EM device conductive contacts and the currents through it. For this we need to
add the EM device to our list of elements. In the MNA framework we simply add the
current through the EM device to the KCL using the corresponding incidence matrix
AE. In addition we add the MGE (3.60) for the EM device to the MNA (4.6), where the
Dirichlet boundary conditions for the scalar potentials are described by e “ AJEe. That
is, we apply the potential difference to the mass node at the conductive contacts. That
is possible since the scalar potentials are determined up to a constant. The coupled EM
device/circuit system with gauge condition reads

AC
d

dt
qC

`

AJCe, t
˘` ARgR

`

AJRe, t
˘` ALjL ` AVjV ` AEjE ` AIis ptq “ 0

d

dt
φL pjL, tq ´ AJL e “ 0

AJVe´ vs ptq “ 0

jE ´ ΛJu Ku
νp"auq"au “ 0

ϑrSuMu
εGu

d

dt
φu ` rSuMu

ν
"au “ 0

´Mu
εΛuAJE

d

dt
e`Mu

εGu
d

dt
φu `Mu

ε

d

dt
"πu ´Mu

σΛuAJEe

`Mu
σGuφu `Ku

νp"auq"au `Mu
σ

"πu “ 0

d

dt
"au ´ "πu “ 0

(5.1)
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in time t P I, I “ rt0, T s Ă R, see Remark 3.33.

For our analysis of the coupled system (5.1) certain loops and cutsets play a key role.

Assumption 5.3 (no short circuit). The matrices AV and
“

AC AR AL AE AV

‰J

have full column rank, that is, it exists neither a V-loop nor an I-cutset, see Remark B.14.

Definition 5.4 (LEI-cutset). A cutset is called LEI-cutset if and only if the cutset
contains only inductors, EM devices and current sources.

In order to describe different circuit configurations in more detail we will introduce some
useful projectors. We denote by

QC, QC´V and QCRV

projectors onto

ker AJC, ker QJ
CAV and ker

“

AC AR AV

‰J

respectively, see [ET00]. The next lemmata are basically known from [ET00] and we
slightly extend them to circuits including EM devices.

Lemma 5.5 (LEI-cutsets). Let a connected circuit be given. The circuit does not
contain an LEI-cutset if and only if the projector QCRV is equal to the zero matrix.

Proof . See Lemma C.2 with AR “ AR and AV “ AV.

Lemma 5.6 (CV-loops). The circuit does not contain a CV-loop with at least one
voltage source if and only if the projector QC´V is equal to the zero matrix.

Proof . See Lemma C.4 with AV “ AV.

5.3 Numerical Analysis

In this section we investigate the coupled system (5.1) using Coulomb and Lorenz gauge.
For both systems we extend the topological index results for the MNA (4.6), see [Tis99,
ET00]. The index depends still on simple topological criteria and we see that an EM
device using Lorenz gauge, from the index point of view, behaves like an inductor.
Furthermore we provide an approach to calculate a consistent initialization.

We suppose that Assumption 4.4, 3.31 and Property 3.32 are fulfilled.

The steps are as follows: First we show that the resulting DAEs have a properly stated
leading term. Then we develop network topological index-0 conditions. Next we deter-
mine the higher index components. With this it is easy to formulate network topological
index-1 conditions. Finally we show that the index is always lower or equal two. After
the index analysis, we present an approach to compute suitable starting values for the
numerical integration.
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5.3.1 Field/Circuit System using Coulomb Gauge

The coupled system (5.1) using Coulomb gauge, that is, ϑ “ 0, can be formulated as a
DAE given by

A
d

dt
d py, tq ` b py, tq “ 0 (5.2)

with unknowns y “ pe, jL, jV, jE, φu,
"au,

"πuq and the describing matrix and functions

A “

»

—

—

—

—

—

—

—

—

–

AC 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Mu

ε

0 0 I 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, d py, tq “

¨

˚

˚

˝

qC

`

AJCe, t
˘

φL pjL, tq
"au

´ΛuAJEe`Guφu ` "πu

˛

‹

‹

‚

as well as

b py, tq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

ARgR

`

AJRe, t
˘` ALjL ` AVjV ` AEjE ` AIis ptq

´AJL e
AJVe´ vs ptq

jE ´ ΛJu Ku
νp"auq"au

rSuMu
ν

"au

´Mu
σΛuAJEe`Mu

σGuφu `Ku
νp"auq"au `Mu

σ
"πu

´"πu

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

First, we show that the DAE has a properly stated leading term.

Lemma 5.7. Let Assumption 4.4 and 3.31 be fulfilled. Then, the DAE (5.2) has a
properly stated leading term where the constant projector

R “
„

A`CAC 0
0 I



realizes the decomposition (2.9).

Proof . The first step is to rewrite the DAE (5.2). For that we choose a projector

rP “
„

A`CAC 0
0 I



with A “ ArP, where A`C denote the Moore-Penrose inverse of AC. With this we get

rd px, tq “ rPd px, tq
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and A d
dt

d py, tq “ A d
dt
rd py, tq holds true. We denote rD py, tq “ B

By
rd py, tq given by

rD py, tq “

»

—

—

–

A`CACC
`

AJCe, t
˘

AJC 0 0 0 0 0 0
0 L pjL, tq 0 0 0 0 0
0 0 0 0 0 I 0

´ΛuAJE 0 0 0 Gu 0 I

fi

ffi

ffi

fl

We get

ker A “ ker AC ˆ t0u
and

im rD py, tq “ im A`CACC
`

AJCe, t
˘

AJC ˆ RnL`na`nπ ,

using Assumption 4.4 and 3.31. Applying Lemma A.1, A.19 and A.21 we obtain

im A`CACC
`

AJCe, t
˘

AJC “ im A`CAC “ im AJC.

Hence we can choose the projector R “ rP, see Lemma A.13.

Notice that the projector rP in Lemma 5.7 is not needed for practical computations, see
Remark 4.10.

We follow the matrix chain concept, see Definition 2.21. For that we need the matrix

G0 py, tq “

»

—

—

—

—

—

—

—

—

–

ACC
`

AJCe, t
˘

AJC 0 0 0 0 0 0
0 L pjL, tq 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

´Mu
εΛuAJE 0 0 0 Mu

εGu 0 Mu
ε

0 0 0 0 0 I 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.3)

with

D py, tq “

»

—

—

–

C
`

AJCe, t
˘

AJC 0 0 0 0 0 0
0 L pjL, tq 0 0 0 0 0
0 0 0 0 0 I 0

´ΛuAJE 0 0 0 Gu 0 I

fi

ffi

ffi

fl

.

To obtain an index-0 DAE we need to check under which conditions the matrix G0 py, tq is
nonsingular. If the matrix G0 py, tq is nonsingular all equations are differential equations,
such that the problem is an ODE. This is the case for the following class of circuits.

Theorem 5.8 (index-0). Let Assumption 4.4 be fulfilled. The DAE (5.2) has index-0
if and only if the circuit does not contain voltage sources and EM device and if there is
a tree containing capacitors only.
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Proof . Following the proof of Theorem 4.13, the remaining zero rows and columns
disappear if and only if there are no EM device.

To further continue the matrix chain we need a projector onto ker G0 py, tq. Let be
z P ker G0 py, tq. That is true if and only if

ze P im QC

zjL “ 0

z"πu
“ ΛuAJEQCze ´Guzφu

z"au
“ 0

hold true, due to Lemma A.3, Assumption 4.4 and 3.31. We can choose a constant
projector onto ker G0 py, tq by

Q0 “

»

—

—

—

—

—

—

—

—

–

QC 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 0 0

ΛuAJEQC 0 0 0 ´Gu 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

For the matrix chain we need the derivative of b py, tq with respect to the unknowns
which is given by

B0 py, tq “

»

—

—

—

—

—

—

—

—

–

ARG
`

AJRe, t
˘

AJR AL AV AE 0 0 0
´AJL 0 0 0 0 0 0
AJV 0 0 0 0 0 0
0 0 0 I 0 ´ΛJu Ku

ν,dp"auq 0

0 0 0 0 0 rSuMu
ν 0

´Mu
σΛuAJE 0 0 0 Mu

σGu Ku
ν,dp"auq Mu

σ

0 0 0 0 0 0 ´I

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and we obtain

B0 py, tqQ0 “

»

—

—

—

—

—

—

—

—

–

ARG
`

AJRe, t
˘

AJRQC 0 AV AE 0 0 0
´AJL QC 0 0 0 0 0 0
AJVQC 0 0 0 0 0 0

0 0 0 I 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

´ΛuAJEQC 0 0 0 Gu 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

see Remark 3.33.

The next step is the calculation of N0 X S0 py, tq. This intersection is crucial for index
determination and the consistent initialization as well.
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Lemma 5.9. Assume Assumption 4.4, 3.31 and Property 3.32 to be satisfied. The
index-1 set of the DAE (5.2) can be described by

N0 X S0 py, tq “
 

z P Rn | ze P im QCRV, zjV P im QC´V,

ΛuAJEQCRVze ´Guzφu “ z"πu
,
`

zjL , zjE , z"au

˘ “ 0
(

.

Proof . For calculating the index-1 set we make use of Remark 2.27. For this we need
a projector along im G0 py, tq. We are given one by

W0 “

»

—

—

—

—

—

—

—

—

–

QJ
C 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

see Lemma C.16, and we get

W0B0 py, tqQ0 “

»

—

—

—

—

—

—

—

—

–

QJ
CARG

`

AJRe, t
˘

AJRQC 0 QJ
CAV QJ

CAE 0 0 0
0 0 0 0 0 0 0

AJVQC 0 0 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Let be z P im Q0 X ker W0B0 py, tqQ0. That is true if and only if

ze “ QCze (5.4)

zjL “ 0

z"au
“ 0

z"πu
“ ΛuAJEze ´Guzφu

QJ
CARG

`

AJRe, t
˘

AJRQCze `QJ
CAVzjV “ 0 (5.5)

AJVQCze “ 0 (5.6)

zjE “ 0

hold true by taking Assumption 4.4, 3.31 and Property 3.32 into account. Left-multiply
of (5.5) by zJe and utilizing (5.6) leads to QCze P ker AJR due to Lemma A.3. In combina-
tion with (5.4) and (5.6) we obtain ze P im QCRV. Moreover, (5.5) yields zjV P im QC´V.
With it we obtain z P N0 X S0 py, tq if and only if

ze P im QCRV

zjL “ 0
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z"au
“ 0

z"πu
“ ΛuAJEQCRVze ´Guzφu

zjV P im QC´V

zjE “ 0

hold true.

It is easy to see that the index-1 set N0XS0 py, tq is always not empty, that is, the DAE
(5.2) has never index-1. But the index does not exceed two as we will see in the next
theorem.

Theorem 5.10 (index-2). Let Assumption 4.4, 5.3, 3.31 and Property 3.32 be fulfilled.
The DAE (5.2) has at most index-2. It has exactly index-2 if and only if the circuit does
contain a voltage source or if an EM device or if it has not a tree containing capacitors
only.

Proof . For the matrix chain we need

G1 py, tq “

»

—

—

—

—

—

—

—

—

–

G pe, tq 0 AV AE 0 0 0
´AJL QC L pjL, tq 0 0 0 0 0
AJVQC 0 0 0 0 0 0

0 0 0 I 0 0 0
0 0 0 0 0 0 0

´Mu
εΛuAJE 0 0 0 Mu

εGu 0 Mu
ε

´ΛuAJEQC 0 0 0 Gu I 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (5.7)

with G pe, tq “ ACC
`

AJCe, t
˘

AJC`ARG
`

AJRe, t
˘

AJRQC and we calculate the index-2 set,
see Definition 2.23 and Remark 2.28. For the subspaces needed, we have to provide a
projector along im G1 py, tq. We are given one by

W1 “

»

—

—

—

—

—

—

—

—

–

QJ
CRV 0 0 ´QJ

CRVAE 0 0 0
0 0 0 0 0 0 0
0 0 QJ

C´V 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

see Lemma C.17. Next we take into account

P0 “

»

—

—

—

—

—

—

—

—

–

PC 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 I 0

´ΛuAJEQC 0 0 0 Gu 0 I

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
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where P0 is the complementary projector to Q0, and we calculate

B0 py, tqP0 “

»

—

—

—

—

—

—

—

—

–

ARG
`

AJRe, t
˘

AJRPC AL 0 0 0 0 0
´AJL PC 0 0 0 0 0 0
AJVPC 0 0 0 0 0 0

0 0 0 0 0 ´ΛJu Ku
ν,dp"auq 0

0 0 0 0 0 rSuMu
ν 0

´Mu
σΛuAJE 0 0 0 Mu

σGu Ku
ν,dp"auq Mu

σ

ΛuAJEQC 0 0 0 ´Gu 0 ´I

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and

W1B0 py, tqP0 “

»

—

—

—

—

—

—

—

—

–

0 QJ
CRVAL 0 0 0 QJ

CRVAEΛJu Ku
ν,dp"auq 0

0 0 0 0 0 0 0
QJ

C´VAJVPC 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 rSuMu
ν 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Let be z P ker G1 py, tq X ker W1B0 py, tqP0. That is true if and only if the conditions

QCze “ QCRVze (5.8)

zjV “ QC´VzjV (5.9)

zjE “ 0

L pjL, tq´1 AJL QCze “ zjL (5.10)

PCze “ ´HC

`

AJCe, t
˘´1

AVQC´VzjV (5.11)

ΛuAJEze ´Guzφu “ z"πu
(5.12)

ΛuAJEQCze ´Guzφu “ z"au
(5.13)

QJ
CRVALzjL `QJ

CRVAEΛJu Ku
ν,dp"auqz"au

“ 0 (5.14)

QJ
C´VAJVPCze “ 0 (5.15)

rSuMu
νz"au

“ 0 (5.16)

are fulfilled, using the representation

N1 py, tq “
 

z P Rn | QCze P im QCRV, zjV P im QC´V,

L pjL, tq´1 AJL QCze “ zjL , PCze “ ´HC

`

AJCe, t
˘´1

AVQC´VzjV , zjE “ 0,

ΛuAJEze ´Guzφu “ z"πu
, ΛuAJEQCze ´Guzφu “ z"au

(

,

see Lemma C.18, where HC

`

AJCe, t
˘ “ ACC

`

AJCe, t
˘

AJC `QJ
CQC is positive definite, see

Lemma A.10, using Assumption 4.4, 3.31 and Property 3.32. Left-multiplying of (5.11)
by zJjVQJ

C´VAJV and using (5.15) leads to

zJjVQJ
C´VAJVHC

`

AJCe, t
˘´1

AVQC´VzjV “ 0.
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With Lemma A.3 and (5.9) we deduce

AVzjV “ 0 and zjV “ 0

since V-loops are forbidden. From (5.11) we acquire ze P im QC and together with (5.8)
we get ze P im QCRV. Combining (5.10), (5.13) and (5.14) yields

QJ
CRVALL pjL, tq´1 AJL QCRVze `QJ

CRVAEΛJu Ku
ν,dp"auqΛuAJEQCRVze “ 0,

since CuGu “ 0 holds true, and we deduce ze P ker
“

AL AE

‰J
. Thus we come by the

condition

ze P ker
“

AC AR AL AE AV

‰J
.

Because I-cutsets are forbidden, we gain ze “ 0. Then the relation (5.10) leads to zjL “ 0.

Left-multiplying (5.13) by rSuMu
ν and using (5.16) yields

rSuMu
νGuzφu “ 0

and hence zφu “ 0 due to the choice of Mu
ν “ Mu

ζGuMu
ξ
rSuMu

ζ . From (5.12) and (5.13) we

get
`

z"au
, z"πu

˘ “ 0 and we conclude z “ 0, see Definition 2.23.

To start the integration of the DAE (5.2) we need a consistent initialization. For the
index-2 case we apply Theorem 2.58. For this we need to check the requirements.

Assumption 5.11. For the DAE (5.2) exist the continuous partial derivatives B

Bt
d py, tq

and B

Bt
W1b py, tq for all py, tq P D ˆ I.

These assumptions are not a restriction since, if a solution exists, then B

Bt
d py, tq exists

and is continuous. Moreover W1b py, tq describes exactly the hidden constraints and
hence B

Bt
W1b py, tq needs to exists and to be continuous to have a solution of the problem.

In addition, the DAE (5.2) has a constant matrix A and there are the constant projectors
Q0 and W1. It remains to show that the index-2 variables enter linearly only.

Lemma 5.12. Let Assumption 4.4, 3.31 and Property 3.32 be fulfilled. The index-2
variables enter the DAE (5.2) linearly only.

Proof . From Lemma 5.9 we easly obtain a constant projector T onto N0 X S0 py, tq
given by

T “

»

—

—

—

—

—

—

—

—

–

QCRV 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 QC´V 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 0 0

ΛuAJEQCRV 0 0 0 ´Gu 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Furthermore the complementary projector U is given by

U “

»

—

—

—

—

—

—

—

—

–

PCRV 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 PC´V 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 I 0

´ΛuAJEQCRV 0 0 0 Gu 0 I

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and the unknowns are divided into

y “ Ty ` Uy “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

QCRVe
0

QC´VjV
0
φu

0
ΛuAJEQCRVe´Guφu

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

PCRVe
jL

PC´VjV
jE
0

"au

´ΛuAJEQCRVe`Guφu ` "πu

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Now we can write b py, tq “ b pUy, tq ` BTy with

B “

»

—

—

—

—

—

—

—

—

–

0 0 AV 0 0 0 0
´AJL 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 ´I

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

using Lemma 4.21 without memristors. The relation d py, tq “ d pUy, tq is obvious by
Lemma 2.54.

The DAE (5.2) fulfills all requirements to apply Theorem 2.58 in case of index-2. But
we still need an operating point when we want to integrate it numerically. Since Theo-
rem 2.58 is applicable to the DAE an operating point is sufficient to start the numerical
integration, see Lemma 2.61.

Let be z0 “
´

z0
C, z

0
L, z

0
"au
, z0

"πu

¯

, y0 “ pe0, j0L, j
0
V, j

0
E, φ

0
u,

"a0
u,

"π0
uq and t0 P I. We choose

"a0
u P ker Cu and pφ0

u,
"π0

uq arbitrarily. Then we get

j0E “ 0

and choose z0
C and j0L such that

´ACz0
C ´ ALj0L ´ AIis pt0q P im

“

AR AV

‰

,
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see Remark 4.24 without memristors. Next we determine pe0, j0Vq. For that we need a
solution of the nonlinear system:

ARgR

`

AJRe0, t0

˘` AVj0V “ ´ACz0
C ´ ALj0L ´ AIis pt0q

AJVe0 “ vs pt0q
(5.17)

To obtain a solution pe0, j0Vq of (5.17) we apply Approach 4.25 without memristors. Then
we compute the missing parts by:

z0
L “ AJL e0

Mu
εz

0
"au
“ Mu

σΛuAJEe0 ´Mu
σGuφ

0
u ´Mu

σ
"π0

u

z0
"πu
“ "π0

u

Remark 5.13. Due to the structure of the DAE (5.2) we obtain a locally unique solution
through every consistent initial value and the perturbation index-2, see Theorem 2.46
and 2.50.

5.3.2 Field/Circuit System using Lorenz Gauge

The coupled system (5.1) using Lorenz gauge, that is, ϑ “ 1, can be formulated as a
DAE given by

A
d

dt
d py, tq ` b py, tq “ 0 (5.18)

with unknowns y “ pe, jL, jV, jE, φu,
"au,

"πuq and the describing matrix and functions

A “

»

—

—

—

—

—

—

—

—

–

AC 0 0 0 0
0 I 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 rSuMu
εGu 0 0

0 0 Mu
εGu 0 Mu

ε

0 0 0 I 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, d py, tq “

¨

˚

˚

˚

˚

˝

qC

`

AJCe, t
˘

φL pjL, tq
φu
"au

´ΛuAJEe` "πu

˛

‹

‹

‹

‹

‚

as well as

b py, tq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

ARgR

`

AJRe, t
˘` ALjL ` AVjV ` AEjE ` AIis ptq

´AJL e
AJVe´ vs ptq

jE ´ ΛJu Ku
νp"auq"au

rSuMu
ν

"au

´Mu
σΛuAJEe`Mu

σGuφu `Ku
νp"auq"au `Mu

σ
"πu

´"πu

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
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5 Coupled Electromagnetic Field/Circuit Models

Lemma 5.14. Let Assumption 4.4 and 3.31 be satisfied. Then, the DAE (5.18) has a
properly stated leading term where the constant projector

R “
„

A`CAC 0
0 I



realizes the decomposition (2.9).

Proof . We follow the idea of the proof of Lemma 5.7.

The first step is an index-0 result. For this we need the matrix, see Definition 2.21,

G0 py, tq “

»

—

—

—

—

—

—

—

—

–

ACC
`

AJCe, t
˘

AJC 0 0 0 0 0 0
0 L pjL, tq 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 rSuMu
εGu 0 0

´Mu
εΛuAJE 0 0 0 Mu

εGu 0 Mu
ε

0 0 0 0 0 I 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.19)

with

D py, tq “

»

—

—

—

—

–

C
`

AJCe, t
˘

AJC 0 0 0 0 0 0
0 L pjL, tq 0 0 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0

´ΛuAJE 0 0 0 0 0 I

fi

ffi

ffi

ffi

ffi

fl

.

Theorem 5.15 (index-0). Let Assumption 4.4, 3.31 and Property 3.32 be fulfilled. The
DAE (5.18) has index-0 if and only if the circuit does not contain voltage sources and if
EM device and if there is a tree containing capacitors only.

Proof . Following the proof of Theorem 4.13, the remaining zero rows and columns
disappear if and only if there is no EM device.

The next step is to describe the intersection index-1 set. For this we compute a projector
onto ker G0 py, tq and the derivative

B0 py, tq “

»

—

—

—

—

—

—

—

—

–

ARG
`

AJRe, t
˘

AJR AL AV AE 0 0 0
´AJL 0 0 0 0 0 0
AJV 0 0 0 0 0 0
0 0 0 I 0 ´ΛJu Ku

ν,dp"auq 0

0 0 0 0 0 rSuMu
ν 0

´Mu
σΛuAJE 0 0 0 Mu

σGu Ku
ν,dp"auq Mu

σ

0 0 0 0 0 0 ´I

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Let be z P ker G0 py, tq. That is true if and only if

ze P im QC
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zjL “ 0

z"πu
“ ΛuAJEQCze

zφu “ 0

z"au
“ 0

due to Lemma A.3. Hence we can choose a projector onto ker G0 py, tq by

Q0 “

»

—

—

—

—

—

—

—

—

–

QC 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

ΛuAJEQC 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and we calculate

B0 py, tqQ0 “

»

—

—

—

—

—

—

—

—

–

ARG
`

AJRe, t
˘

AJRQC 0 AV AE 0 0 0
´AJL QC 0 0 0 0 0 0
AJVQC 0 0 0 0 0 0

0 0 0 I 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

´ΛuAJEQC 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

see Remark 3.33. Next N0 X S0 py, tq is calculated, since the intersection plays an im-
portant role for the index calculation and for the consistent initialization.

Lemma 5.16. Let Assumption 4.4, 3.31 and Property 3.32 hold true. The index-1 set
of the DAE (5.18) can be described by

N0 X S0 py, tq “
 

z P Rn | ze P im QCRV, zjV P im QC´V,

ΛuAJEQCRVze “ z"πu
,
`

zjL , zjE , zφu , z"au

˘ “ 0
(

.

Proof . For calculating the index-1 set we make use of Remark 2.27. For that we need
a projector along im G0 py, tq. We are given one by

W0 “

»

—

—

—

—

—

—

—

—

–

QJ
C 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
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5 Coupled Electromagnetic Field/Circuit Models

see Lemma C.19, and we get

W0B0 py, tqQ0 “

»

—

—

—

—

—

—

—

—

–

QJ
CARG

`

AJRe, t
˘

AJRQC 0 QJ
CAV QJ

CAE 0 0 0
0 0 0 0 0 0 0

AJVQC 0 0 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The rest of the proof is entirely analog to the proof of Lemma 5.9.

With the characterization of the intersection we are able to deduce network topological
index-1 conditions for the coupled system DAE (5.18). The EM devices are insert into
the circuit as a kind of controlled current sources, but the analysis show that for using
Lorenz gauge they, from the index point of view, behave like inductances.

Theorem 5.17 (index-1). Let Assumption 4.4, 3.31 and Property 3.32 be true. The
DAE (5.18) has index-1 if and only if there is at least a voltage sources in the circuit
or there is no tree containing capacitors only and if there is neither an LEI-cutset nor a
CV-loop with at least one voltage source.

Proof . We make use of the representation of N0XS0 py, tq as proposed in Lemma 5.16.
The intersection N0 X S0 py, tq is trivial if and only if QCRV “ 0 and QC´V “ 0. This
is equivalent to the circuit containing neither LEI-cutsets nor CV-loops, see Lemma 5.5
and 5.6. Using Definition 2.23 we get the DAE (5.18) to be of index-1.

The DAE (5.18) can be of index-2 also, but higher index problems can be avoided.
We will see that LEI-cutsets and CV-loops are the only critical circuit configurations.
Obviously the dimension of N0XS0 px, tq is constant, which is important for the index-2
case.

Theorem 5.18 (index-2). Let Assumption 4.4, 5.3, 3.31 and Property 3.32 be fulfilled.
The DAE (5.18) has index-2 if and only if there is an LEI-cutset or a CV-loop with at
least one voltage source.

Proof . For the matrix chain we need

G1 py, tq “

»

—

—

—

—

—

—

—

—

–

G pe, tq 0 AV AE 0 0 0
´AJL QC L pjL, tq 0 0 0 0 0
AJVQC 0 0 0 0 0 0

0 0 0 I 0 0 0

0 0 0 0 rSuMu
εGu 0 0

´Mu
εΛuAJE 0 0 0 Mu

εGu 0 Mu
ε

´ΛuAJEQC 0 0 0 0 I 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (5.20)
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with G pe, tq “ ACC
`

AJCe, t
˘

AJC`ARG
`

AJRe, t
˘

AJRQC, and we calculate the index-2 set,
see Definition 2.23 and Remark 2.28. For the subspaces needed, we have to provide a
projector along im G1 py, tq. We are given one by

W1 “

»

—

—

—

—

—

—

—

—

–

QJ
CRV 0 0 ´QJ

CRVAE 0 0 0
0 0 0 0 0 0 0
0 0 QJ

C´V 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

see Lemma C.20. Next we take into account

P0 “

»

—

—

—

—

—

—

—

—

–

PC 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0

´ΛuAJEQC 0 0 0 0 0 I

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where P0 is the complementary projector to Q0, and we calculate

B0 py, tqP0 “

»

—

—

—

—

—

—

—

—

–

ARG
`

AJRe, t
˘

AJRPC AL 0 0 0 0 0
´AJL PC 0 0 0 0 0 0
AJVPC 0 0 0 0 0 0

0 0 0 0 0 ´ΛJu Ku
ν,dp"auq 0

0 0 0 0 0 rSuMu
ν 0

´Mu
σΛuAJE 0 0 0 Mu

σGu Ku
ν,dp"auq Mu

σ

ΛuAJEQC 0 0 0 ´Gu 0 ´I

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and

W1B0 py, tqP0 “

»

—

—

—

—

—

—

—

—

–

0 QJ
CRVAL 0 0 0 QJ

CRVΛJu Ku
ν,dp"auq 0

0 0 0 0 0 0 0
QJ

C´VAJVPC 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Let be z P ker G1 py, tq X ker W1B0 py, tqP0. That is true if and only if the conditions

QCze P im QCRV (5.21)

zjV P im QC´V (5.22)
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5 Coupled Electromagnetic Field/Circuit Models

zjE “ 0

zφu “ 0

L pjL, tq´1 AJL QCze “ zjL (5.23)

PCze “ ´HC

`

AJCe, t
˘´1

AVQC´VzjV (5.24)

ΛuAJEze “ z"πu

ΛuAJEQCze “ z"au
(5.25)

QJ
CRVALzjL `QJ

CRVΛJu Ku
ν,dp"auqz"au

“ 0 (5.26)

QJ
C´VAJVPCze “ 0 (5.27)

are fulfilled, using

N1 py, tq “
 

z P Rn | QCze P im QCRV, zjV P im QC´V,

L pjL, tq´1 AJL QCze “ zjL , PCze “ ´HC

`

AJCe, t
˘´1

AVQC´VzjV ,

pzjE , zφuq “ 0, ΛuAJEze “ z"πu
, ΛuAJEQCze “ z"au

(

,

see Lemma C.21, where HC

`

AJCe, t
˘ “ ACC

`

AJCe, t
˘

AJC `QJ
CQC is positive definite, see

Lemma A.10, using Assumption 4.4, 3.31 and Property 3.32. Left-multiplying of (5.24)
by zJjVQJ

C´VAJV and using (5.27) leads to

zJjVQJ
C´VAJVHC

`

AJCe, t
˘´1

AVQC´VzjV “ 0.

With Lemma A.3 and (5.22) we deduce

AVzjV “ 0 and zjV “ 0

since V-loops are forbidden. From (5.24) we acquire ze P im QC and together with (5.21)
we come by ze P im QCRV. Combining (5.23), (5.25) and (5.26) yields

QJ
CRVALL pjL, tq´1 AJL QCRVze `QJ

CRVAEΛJu Ku
ν,dp"auqΛuAJEQCRVze “ 0

since CuGu “ 0 holds true, and we deduce ze P ker
“

AL AE

‰J
. Thus we come by the

condition

ze P ker
“

AC AR AL AE AV

‰J
.

Because I-cutsets are forbidden we gain ze “ 0. Then the relations (5.23), (5.12) and
(5.25) leads

`

zjL , z"au
, z"πu

˘ “ 0 and we conclude z “ 0, see Definition 2.23.

The topological index results for the coupled system using Lorenz gauge are also a
extentsion of the topological index results of [BBS11] for coupled MQS device/circuit
systems using Lorenz gauge.

In order to start the integration of the DAE (5.18) we need a consistent initialization.
In case of index-1 we make direct use of Theorem 2.51. In case of index-2 we apply
Theorem 2.58. For this we need to check the requirements.
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Assumption 5.19. For the DAE (5.18) exist the continuous partial derivatives B

Bt
d py, tq

and B

Bt
W1b py, tq for all py, tq P D ˆ I.

These assumptions are not a restriction since, if a solution exists, then B

Bt
d py, tq exists

and is continuous. Moreover W1b py, tq describes exactly the hidden constraints and
hence B

Bt
W1b py, tq needs to exists and to be continuous in order to have a solution of

the problem.

In addition, the DAE (5.18) has a constant matrix A and there are constant projectors
Q0 and W1. It remains to show that the index-2 variables enter linearly only.

Lemma 5.20. Let Assumption 4.4, 3.31 and Property 3.32 be fulfilled. The index-2
variables enter the DAE (5.18) linearly only.

Proof . From Lemma 5.16 we easily obtain a constant projector T onto N0 X S0 py, tq
given by

T “

»

—

—

—

—

—

—

—

—

–

QCRV 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 QC´V 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

ΛuAJEQCRV 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Furthermore, the complementary projector U is given by

U “

»

—

—

—

—

—

—

—

—

–

PCRV 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 PC´V 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0

´ΛuAJEQCRV 0 0 0 0 0 I

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and the unknowns are divided into

y “ Ty ` Uy “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

QCRVe
0

QC´VjV
0
0
0

ΛuAJEQCRVe

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

PCRVe
jL

PC´VjV
jE
φu
"au

´ΛuAJEQCRVe` "πu

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
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5 Coupled Electromagnetic Field/Circuit Models

Now we can write b py, tq “ b pUy, tq ` BTy with

B “

»

—

—

—

—

—

—

—

—

–

0 0 AV 0 0 0 0
´AJL 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 ´I

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

with Lemma 4.21 without memristors. The relation d py, tq “ d pUy, tq is obvious by
Lemma 2.54.

The DAE (5.18) fulfills all requirements to apply Theorem 2.58 in case of index-2. But
we still need an operating point when we want to integrate it numerically. Since Theo-
rem 2.58 is applicable to the DAE an operating point is sufficient to start the numerical
integration, see Lemma 2.61.

Let be z0 “
´

z0
C, z

0
L, z

0
φu
, z0

"au
, z0

"πu

¯

, y0 “ pe0, j0L, j
0
V, j

0
E, φ

0
u,

"a0
u,

"π0
uq and t0 P I. We choose

"a0
u P ker Cu and pφ0

u,
"π0

uq arbitrarily. Then we get

j0E “ 0

and choose z0
C and j0L such that

´ACz0
C ´ ALj0L ´ AIis pt0q P im

“

AR AV

‰

,

see Remark 4.24 without memristors. Next we determine pe0, j0Vq. For that we need a
solution of the nonlinear system:

ARgR

`

AJRe0, t0

˘` AVj0V “ ´ACz0
C ´ ALj0L ´ AIis pt0q

AJVe0 “ vs pt0q
(5.28)

To obtain a solution pe0, j0Vq of (5.28) we apply Approach 4.25 without memristors. Then
we compute the missing parts by:

z0
L “ AJL e0

SuMu
εGuz0

φu
“ ´rSuMu

ν
"a0

u

Mu
εz

0
"au
“ ´Mu

εGuz0
φu
`Mu

σΛuAJEe0 ´Mu
σGuφ

0
u ´Mu

σ
"π0

u

z0
"πu
“ "π0

u

Remark 5.21. Due to the structure of the DAE (5.18) we obtain a locally unique
solution through every consistent initial value and the perturbation index to be not
greater than two, see Theorem 2.33, 2.46, 2.49 and 2.50.
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5.4 Summary

In this chapter we have introduced circuits refined by spatially resolved electromagnetic
devices and modeled by the modified nodal analysis and Maxwell’s grid equations. The
coupling is realized by the applied potential at the conductive contacts of the electro-
magnetic device and by the current through it. We discussed the structural properties
of the coupled electromagnetic device/circuit system. The chosen coupling approach is
different to [DHW04, Ben06, BBS11, Sch11], where the coupling is realized using serveral
conductor models and applied as a source term.
We generalized the well-known topological index conditions of [Tis99, ET00] for the
modified nodal analysis to circuits refined by spatially resolved electromagnetic devices
modeled using Lorenz gauge (Theorem 5.15, 5.17 and 5.18) and proved that index-2
does not exceed. The index bound is also true for Coulomb gauge (Theorem 5.8 and
5.10). Furthermore we presented perturbation and solvability results for the coupled
systems and the perturbation index does not exceed two (Remark 5.13 and 5.21). The
electromagnetic devices were inserted into the circuit as controlled current sources, but
the analysis showed that if using Lorenz gauge they, from the index point of view, did
behave like inductances. We concluded that in case of an index-1 configuration it is
always preferable to choose Lorenz gauge for the electromagnetic device.
Next, we presented an approach for the calculation of an operating point. Based on the
linearity of the index-2 components (Lemma 5.12 and 5.20) the calculation of a consistent
initialization is possible by correcting an operating point by solving a linear system. Due
to the structure of the coupled system it is sufficient to start the numerical integration
with the implicit Euler using an operating point to obtain a consistent initialization after
the first time step.
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6 Numerical Examples

In this chapter the different circuit models including memristors and electromagnetic
devices are verified by some basic examples.
The simulation software is written in Python and is an extension in the framework of
the MECS (Multiphysical Electric Circuit Simulator) developed by the group of Caren
Tischendorf. The framework use for time integration a backward differentiation formulas
implementation with an adaptive order and step size control for index-2 differential
algebraic equations with a properly stated leading term which is based on [Tis96].
For the electromagnetic device simulation we integrate parts of the FIDES (Field Device
Simulator) package of Sebastian Schöps, see [Sch11], implemented for the magnetoqua-
sistatic device simulation. FIDES is written in OCTAVE and integrated within the
framework of the demonstrator platform of the CoMSON project (Coupled Multiscale
Simulation and Optimization in Nanoelectronics).
The 3D Visualizations are obtained by Paraview.

6.1 Index Behavior of Field Problems

(a) 3D view.

0.
5

m
m

3 m

(b) Geometric dimensions.

Figure 6.1: Geometry of the copper bar.

Let us consider a copper bar used in [BCS12] with a cross-sectional area of 0.25 mm2

surrounded by air and discretized by the FIT, see Figure 6.1. The left contact is excited
by a sinusoidal source of the form v ptq “ sin p2πtq, the other contact is grounded.
The simulations are carried out on the time interval r0 s, 0.5 ss by the implicit Euler
scheme with fixed step sizes h “ 8e-5 s, 4e-5 s, 2e-5 s, 1e-5 s.
The numerical solution of the Lorenz (index-0) and Coulomb gauge (index-2) formula-
tions of MGE are given in Figure 6.2(a) and 6.3(a). Both formulations provide solutions
as anticipated.
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To analyze the sensitivity of the formulations we perturb the sinusoidal source v ptq by
a small high-frequent noise

δ ptq “ 10´k sinp2 ¨ 10k`5πtq.
We get the perturbed source vp ptq “ v ptq ` δ ptq. For the simulation, in this thesis, we
have chosen k “ 4. As expected, the numerical solution of the perturbed Lorenz-based
formulation is not affected, see Figure 6.2(b). On the other hand the solution of the
index-2 formulation suffers strongly from the perturbation, see Figure 6.3(b). The effect
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Figure 6.2: Plot of a single component of the electric field using the Lorenz formulation (3.60).

occurs even for tiniest perturbations, that is, for very large k " 1. Moreover, the effect
increases with a reduction in step size, that is, it cannot be compensated by a finer
temporal mesh. This is a typical index-2 behavior: The error increases while the step
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Figure 6.3: Plot of a single component of the electric field using the Coulomb formulation (3.60).

size decreases. The index-2 problem is ill-conditioned but the perturbation error is not
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propagated in time because the index-2 components enter only linearly. However, using
a step size control we should exclude the index-2 variables for the step size prediction,
because the numerical error might be detected by the step size control and leads to an
unprofitable reduction of the step size. The best case would be an unreasonably small
step size whereas in the worst case the integration could completely fail.

6.2 Memristive Circuits
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(a) Basic memristor circuit.
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(b) HP memristor circuit.

Figure 6.4: Memristor examples.

In this section we consider two models for the memristor to show that the MNA including
memristor models (4.7) works properly, see Figure 6.4(a). The first example is the HP
memristor stated in [SSSW08], see Figure 6.4(b). The HP device is composed of a
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Figure 6.5: HP memristor with Roff “ 16e3 Ω and f “ 5 Hz.

thin titanium dioxide film between two electrodes containing a doped (D) region and
an undoped (U) region and thus it behaves as a semiconductor. The application of
a voltage drop across the device moves the boundary between the two regions. With
electric current passing in a given direction, the boundary between the two regions is
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moving in the same direction. The total device length is d and the length of the doped
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Figure 6.6: HP memristor with Roff “ 16e3 Ω and f “ 50 Hz.

region is denoted by w P r0, ds. The limits of the memristor resistance is given by Roff

and Ron for w “ 0 and w “ d. The dopant mobility is described by µV. The HP
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Figure 6.7: HP memristor with Roff “ 36e3 Ω and f “ 5 Hz.

memristor is modeled by the memristance

M pq, tq “ Roff

ˆ

1´ µVRon

d2
q

˙

(6.1)

with Roff " Ron and the length of the doped region is given by

w “ µVRon

d
q.
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6 Numerical Examples

The simulations were carried out on the time interval r0 s, 0.6 ss by the implicit Euler
scheme using the parameters d “ 1e-8 m, Ron “ 1e2 Ω and µV “ 1e-13 m{Vs. For
Figure 6.5 and 6.6 we use as applied voltage source v ptq “ sin p2πftq and for Figure 6.7
the applied voltage source is given by

v ptq “
#

sin p2πftq2 , for t P r 0, 0.3s ,
´ sin p2πftq2 , for t P p0.3, 0.6s.

Unfortunately, the results shown in Figure 2 of [SSSW08] do not fit the stated parameters
therein since the applied sinusoidal voltage source has in both cases a frequency of 5e-3
Hz instead of 1e2 Hz. Nonetheless the results show the same qualitative behavior as our
results here.

In fact the HP memristance (6.1) is a polynomial. Another memristance described by a
polynomial is given in [BBBK10] and reads

M pq, tq “ r1 ` 3r3q2

with r1 “ 5 V{A and r3 “ 1e4 V{A3s2. The results in [BBBK10] are obtained by the
circuit given in Figure 6.4(a) in SPICE using a subcircuit to describe the behavior of
the memristor.
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Figure 6.8: Memristor with memristance described in [BBBK10].

Our simulations were carried out on the time interval r0 s, 5 ss by the implicit Euler
scheme and applied voltage source v ptq “ 13e-1 sin p2πtq. The results are given in
Figure 6.8 and fit perfectly to the simulation results given in [BBBK10].

6.3 Coupled Field/Circuit Problems

We regard two interlocking open copper loops with a cross-sectional area of 1 mm2

surrounded by air and discretized by the FIT, see Figure 6.9(b). First we examine the
basic circuit given in Figure 6.9(a).
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The simulations were carried out for Coulomb gauge on the time interval r0 s, f´1s by
the implicit Euler scheme using as supply voltage sources v ptq “ 1e-3 sin p2πftq with
frequency f .
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(a) Basic circuit with two sources.
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Figure 6.9: Two interlocking open copper loops.

For f “ 1 Hz we obtain the expected results since the static resistance of each open
copper loop is between 124e-6 Ω and 158e-6 Ω. The results are given in Figure 6.10. For
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Figure 6.10: Current through the open copper loops with f “ 1 Hz.

f “ 1e9 Hz we obtain the results given in Figure 6.11. The current through the dark
open copper loop is larger then the current through the light open copper loop. That
behavior, of course, results from the increasing frequency and arises from the proximity
effect, see [Ter43].
The effect can be described as follows: When an alternating electric current flows through
an isolated conductor, it creates an associated alternating magnetic field around it, which

140



6 Numerical Examples

influences the distribution by electromagnetic induction of an electric current flowing
within an electrical conductor.
The alternating magnetic field induces eddy currents in adjacent conductors, altering
the overall distribution of current flowing through them.
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Figure 6.11: Two interlocking open copper loops with f “ 1e9 Hz.

Eddy currents are electric currents induced in conductors when a changing magnetic field
acts on the conductor and causes a circulating flow of current within the conductor, see
[Ter43]. These currents are responsible for the skin effect in conductors. The skin effect
is the tendency of an alternating electric current to distribute itself within a conductor
with the current density being largest near the surface of the conductor, decreasing at
greater depths, that is, the electric current flows mainly at the skin of the conductor.
This effect is due to opposing eddy currents induced by the changing magnetic field
resulting from the alternating current. Figure 6.12 demonstrates well the increasing

(a) Equal distribution for f “ 1 Hz. (b) Skin effect: surface currents forf “ 1e9 Hz.

Figure 6.12: Change in the distribution of the currents through the two interlocking open copper loops.

skin effect at increasing frequency for the basic circuit with two sources.
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The second example circuit given in Figure 6.13 uses the two interlocking open copper
loops of Figure 6.9(b), too. We choose R1 “ 9865e-6 Ω, R2 “ 140e-6 Ω, L “ 1e-2 H
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Figure 6.13: More complex circuit with EM device.

and the supply voltage sources to be v ptq “ 1e-1 sin p2πftq with the frequency f . The
simulations are carried out for Coulomb gauge on the time interval r0 s, 2f´1s by the
implicit Euler scheme. The results are given in Figure 6.14 and 6.15.
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Figure 6.14: Equivalent circuit: Currents through the voltage sources.

In Figure 6.13(a) the EM device is replaced by two resistors with a resistance of R2.
For f “ 1 Hz the results of both circuits are equal. This, of course, is not true for
higher frequencies. There the inductive behavior of the EM device plays a crucial role.
Amongst others, inductive coupling occurs and affects the circuit strongly, see above.
Furthermore due to the skin effect the effective resistance of the device is increased.
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Figure 6.15: EM device circuit: Currents through the voltage sources.

Note that the equivalent circuit, Figure 6.13(a), is only for validating the low frequency
results using the EM device.

6.4 Implementation Aspects

The simplest model in applied mathematics is a
system of linear equations. It is also by far the
most important.

Gilbert Strang.

In every time integration step in transient simulation we have to solve linear systems.
For effective solving of large linear systems iterative solvers and multigrid methods play
an essential role since direct solvers are memory and time consuming and rapidly reach
the limit of applicability. For an introduction to iterative solvers and multigrid methods
we refer to [OST01, Saa03]. But most linear systems of the coupled simulation are not
(directly) suitable for an iterative scheme since they are usually not symmetric, not
positive definite and not diagonally dominant.

However, we often find the following structure of the systems:

Az “
„

A1 A2

A3 A4

ˆ

x
y

˙

“
ˆ

u
v

˙

(6.2)

with A4 P Rn4ˆn4 , A1 P Rn1ˆn1 , n1 ! n4 and A4 being nonsingular and suitable for
iterative solvers, while A1 is not. Applying the Schur complement S “ `

A1 ´ A2A´1
4 A3

˘

of the block A4 we achieve the two linear systems

A4y “ v ´ A3x (6.3)
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and

Sx “ u´ A2A´1
4 v. (6.4)

The idea is to apply different linear solvers for solving the linear systems (6.3) and (6.4).
To solve (6.4) we solve simultaneously n1 ` 1 linear systems of the dimension n4 in
advance, namely

A4w “ v (6.5)

and

A4W “ A3. (6.6)

Then (6.4) becomes

pA1 ´ A2Wq x “ u´ A2w (6.7)

For this, we solve (6.5) and (6.6) by an iterative solver. Then the linear system (6.7)
can be solved by a direct solver to determine x P Rn1 .
Finally, we solve the linear system (6.3) by an iterative solver, too. We obtain the
solution y P Rn4 and thus we have solved the original linear system (6.2).

For the field/circuit system using Lorenz gauge (5.18) the Jacobian of the BDF methods
for the time integration can be decomposed into the blocks are given by:

A1 “
»

–

α0

h
ACC

`

AJCe, t
˘

AJC ` ARG
`

AJRe, t
˘

AJR AL AV

´AJL
α0

h
L pjL, tq 0

AJV 0 0

fi

fl

A2 “
»

–

AE 0 0 0
0 0 0

0 0 0 0

fi

fl

A3 “

»

—

—

–

0 0 0
0 0 0

´ `

α0

h
Mu
ε `Mu

σ

˘

ΛuAJE 0 0
0 0 0

fi

ffi

ffi

fl

A4 “

»

—

—

–

I 0 ´ΛJu Ku
ν,dp"auq 0

0 α0

h
rSuMu

εGu
rSuMu

ν 0
0

`

α0

h
Mu
ε `Mu

σ

˘

Gu Ku
ν,dp"auq α0

h
Mu
ε `Mu

σ

0 0 α0

h
I ´I

fi

ffi

ffi

fl

Obviously, A1 coming from the MNA (4.6) is not (directly) suitable for an iterative
solver, whereas A4 coming from the MGE (3.65) using Lorenz gauge could be suitable
for iterative solvers, see Remark 3.41. This is motivated by the experience about the
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use of iterative solvers for MGE especially for MQS and electroquasistatic devices, see
[Hip98, CSvW96, Cle98, DW04, Cle05, Sch11].

In [BCK`11] we presented a systematic approach to reformulate the MNA (4.6) to be
accessible for iterative solvers. Here the main goal was to eliminate the zero entries on
the main diagonal of the Jacobian by manipulating the voltage sources. Nonetheless,
this reformulation needs some effort and is usually not done within circuit simulation
packages.

6.5 Summary

We have shown that the extended models work as expected due to our theoretical findings
of the Chapters 3, 4 and 5. For the modified nodal analysis including memristors models
we validated our model by using the HP memristor and an another memristance model
from literature. We obtained the same qualitative results for both models
For the electromagnetic device we showed the influence of the chosen gauge with respect
to perturbations and we observed the predicted behavior.
For the modified nodal analysis including electromagnetic device models we examined
two simple circuits. In both cases we investigated two interlocking open copper loops
with different frequencies for changing the applied potentials. For the low frequency case
we observed the expected resistance behavior of the device. For the high frequency case
we took note of the proximity and skin effect due to the inductive coupling.
The combination of methods for solving the resulting linear systems were briefly out-
lined.
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Conclusion and Outlook

In this thesis, we presented the derivation of the modified nodal analysis including mem-
ristor models and coupled electromagnetic device/circuit models and we investigated the
models in terms of the tractability index concept for differential-algebraic equations with
a properly stated leading term.

We have derived new index results for circuits including memristors formulated as
differential-algebraic equations with a properly stated leading term. We extended the
well-known topological index conditions of [Tis99, ET00] for the modified nodal analysis
to circuits including memristors. The critical index-2 circuit configurations are loops of
only capacitors and voltage sources and cutsets of only inductors and current sources.
We concluded that, from index point of view, the memristors behave like resistors.

The electromagnetic devices were modeled by Maxwell’s equation in a potential for-
mulation using the finite integration technique for the resulting spatial discretization.
General properties of the discrete operators have been discussed. The spatial discretiza-
tion leads to Maxwell’s grid equations, which were formulated in terms of potentials with
incorporated boundary conditions using a new class of discrete gauge conditions in terms
of the finite integration technique based on Lorenz gauge. The structural properties of
Maxwell’s grid equations were discussed and analyzed by the index concept to obtain
knowledge about the stability of the solutions with respect to perturbations. The main
result here is that the index depends on the chosen gauge condition. For Coulomb gauge
we obtain an index-2 differential-algebraic equation with a properly stated leading term
whereas for Lorenz gauge we achieve an ordinary differential equation.

The coupled electromagnetic device/circuit system was formulated as a differential-
algebraic equation with a properly stated leading term. The coupling was realized by
the applied potential at the conductive contacts of the electromagnetic device and by
the current through it. In our case we have taken a different coupling approach than
[DHW04, Ben06, BBS11, Sch11], where the coupling is realized using several conductor
models and applied as a source term. We generalized the well-known topological index
conditions for the modified nodal analysis to circuits refined by spatially resolved elec-
tromagnetic devices modeled in case of using Lorenz gauge. In case of Lorenz gauge the
critical index-2 circuit configurations are loops of only capacitors and voltage sources
and cutsets of only inductors, electromagnetic devices and current sources. For Coulomb
gauge we have shown that the index does not exceed two. The electromagnetic devices
were inserted into the circuit as controlled current sources, but the analysis showed that
when applying Lorenz gauge they, from the index point of view, behave like inductances.
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We concluded that in case of an index-1 circuit configuration it is always preferable to
choose Lorenz gauge for the electromagnetic device.

All considered differential-algebraic equations resulting from our fields of applications
have a common structure such as a properly stated leading term, constant projectors
onto/along certain subspaces and linear index-2 variables. For that reason we investi-
gated the differential-algebraic equations in a common differential-algebraic equation
framework. For index-2 differential-algebraic equations we derived a local uniquely
solvability result and a perturbation estimation. To achieve these results we extended
the well-known index reduction techniques for differential-algebraic equations without a
properly stated leading term to differential-algebraic equations with a properly stated
leading term and exploited local uniquely solvability and perturbation results for index-1
differential-algebraic equations with a properly stated leading term from literature. In
particular we have proved that if the differential-algebraic equations with a properly
stated leading term have index-2 then the differential-algebraic equation has perturba-
tion index-2 as well. We extended the step-by-step approach by [Est00] for calculating
consistent initial values for differential-algebraic equations with a properly stated lead-
ing term using the linearity of the index-2 components. In addition we presented an
approach to calculate an operating point.

Some numerical examples were given to show that the models works as expected.

There are still a lot of unsolved problems and tasks to be tackled. For electromagnetic
devices further sets of consistent boundary conditions for the coupled electromagnetic
device/circuit model and other models for nonlinear materials have to be considered.
Beyond that it would be of great interest to combine existing models for electromag-
netic devices, semiconductor devices and heating of devices. For this the next step
could be to combine electromagnetic and semiconductor device models to study the
influence of electromagnetic fields of the surrounding circuitry to semiconductor switch-
ing elements. Then an index analysis of the coupled electromagnetic-semiconductor
device/circuit model would be an inevitable future step for the numerical simulation.
Finally, heat effects could be studied by extending the models by heat conducting model
equations.
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A Linear Algebra

We make use of several simple definitions and deductions from linear algebra in this
thesis and collect the results in this Chapter.

Lemma A.1. Let be A P Rnˆm. Then

ker A “ `

im AJ
˘K

and im A “ `

ker AJ
˘K

holds true.

Proof . We show both inclusions.

pĎq Let be x P ker A. Then

AJz P im AJ ñ 0 “ pAxqJ z “ xJAJz ñ x P `im AJ
˘K

is true. For z P ker AJ we obtain

Ax P im A ñ 0 “ xJ
`

AJz
˘ “ pAxqJ z ñ z P `ker AJ

˘K
.

pĚq Starting with

dim
`

im AJ
˘K ě dim ker A “ n´ dim im A ě n´ dim

`

ker AJ
˘K

“ n´ `

m´ dim ker AJ
˘ “ n´ dim im AJ “ dim

`

im AJ
˘K

we get

dim ker A “ dim
`

im AJ
˘K

and dim im A “ dim
`

ker AJ
˘K
.

Definition A.2. A (non-symmetric) matrix A P Rnˆn is called positive semidefinite if
and only if xJAx ě 0 and positive definite if and only xJAx ą 0 for all x ‰ 0, x P Rn.

From the definition above several simple results can be elementarily derived.

Lemma A.3. Let A P Rmˆm be positive definite and B P Rkˆm. Then

ker BABJ “ ker BJ and im BABJ “ im B

holds true.
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Proof . At first we show ker BABJ “ ker BJ.

pĎq Let be x P ker BABJ. Then

xJBABJx “ 0 ñ yJAy “ 0, y “ BJx ñ BJx “ 0 ñ x P ker BJ,

since A is positive definite.

pĚq If x P ker BJ then BABJx “ 0 and hence x P ker BABJ.

Due to Lemma A.1 and we have

im BABJ “ `

ker BAJBJ
˘K “ `

ker BJ
˘K “ im B,

since AJ is positive definite.

A.1 Properties of Projectors

Für euch ist es einfach. Ihr seid mit Projektoren
aufgewachsen.

Roswitha März during the “Deutsche
Mathematiker-Vereinigung” conference,

Sept. 20, 2011, Cologne.

This section is devoted to basic definitions and results in projector calculus.

Definition A.4. The basics definitions for a projector are:

(i) A matrix Q P Rmˆm is called projector, if Q2 “ Q.

(ii) A projector Q P Rmˆm is called projector onto S Ď Rm, if im Q “ S.

(iii) A projector Q P Rmˆm is called projector along S Ď Rm, if ker Q “ S.

(iv) A projector Q P Rmˆm is called orthogonal projector if Q “ QJ.

Lemma A.5. Let Q P Rmˆm be a projector and P “ I´Q. Then:

(i) P is a projector.

(ii) x P im Q ô x “ Qx.

(iii) ker P “ im Q and ker Q “ im P.

(iv) ker Q‘ im Q “ Rm.

(v) If Q is nonsingular, then Q “ I.
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(vi) Let Q be a projector with P “ I´Q and im Q “ im Q. Then QQ “ Q and PP “ P
hold true.

(vii) I` PEQ is nonsingular for all E P Rmˆm.

Proof . The proofs are straightforward.

(i) Q2 “ Q ô pI´ Pq2 “ I´ P ô P2 “ P.

(ii) x P im Q ô Dz P Rm : x “ Qz and Qx “ Qz ô x “ Qx.

(iii) x P ker P ñ Px “ 0 ñ x “ Qx ñ x P im Q. The other one is analog.

(iv) x “ Qx` Px, x P ker QX im Q ñ Qx “ 0, x “ Qx ñ x “ 0.

(v) Q2 “ Q ô Q´1Q2 “ I ô Q “ I.

(vi) Let be x P Rm. Then Qx P im Q “ im Q. Hence Qx “ QQx and Q “ QQ. We get

PP “ pI´Qq `I´Q
˘ “ I´Q´Q´QQ “ I´Q “ P.

(vii) The inverse is given by I´ PEQ.

If Q is a projector then we call P “ I´Q the complementary projector.

Remark A.6. The product of two projectors is not necessarily a projector, too. For
that we look at the projectors P1 and P2 given by

P1 “
„

1 1
0 0



and P2 “
„

1 0
1 0



.

Obviously P3 “ P1P2 is not a projector.

Lemma A.7. Let A P Rmˆn and Q P Rmˆm be a projector onto ker AJ. Then

ker QJ “ im A

holds true.

Proof . Using Lemma A.1 we obtain

ker QJ “ pim QqK “ `

ker AJ
˘K “ im A.

Remark A.8. Instead of determining a projector Q along im A we can calculate QJ

onto ker AJ and betimes the computation of a projector onto a subspace is easier.

Lemma A.9. Let be A P Rnˆn. Then:
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(i) Q P Rnˆn a projector onto im A implies QA “ A.

(ii) Q P Rnˆn a projector along ker A implies AQ “ A.

Proof . We get:

(i) im Q “ ker pI´Qq “ im A ñ pI´QqA “ 0 ñ QA “ A

(ii) ker Q “ im pI´Qq “ ker A ñ A pI´Qq “ 0 ñ AQ “ A

The next Lemma is motivated by [ET00].

Lemma A.10. Let A P Rmˆm be positive definite, B P Rkˆm, Q be a projector onto
ker BJ and P “ I´Q. Then the matrix

H “ BABJ `QJQ

is positive definite and

HP “ BABJ “ PJH

holds true.

Proof . It is clear that H is positive semidefinite since it is the sum of two positive
semidefinite matrices. With that we get

zJHz “ 0 ô
#

zJBABJz “ 0

zJQJQz “ 0

and we obtain z “ 0 by reason of z P ker BJ “ im Q and z P ker Q. Hence H is positive
definite. The second statement follows immediately:

HP “ `

BABJ `QJQ
˘

P “ BABJ “ PJ
`

BABJ `QJQ
˘ “ PJH

For computational aspects of projectors calculus we refer to [LMT13], where the projec-
tors are determined by matrix decompositions.

A.2 Generalized Inverse

We report the (basic) definitions and relations of generalized inverses needed for our
considerations. A more detailed look on this topic is provided by, for example, [BIG03,
BO71].
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Definition A.11. With A´ P Rnˆm we denote a pseudoinverse and t1, 2u-inverse of
A P Rmˆn if

AA´A “ A and A´AA´ “ A´

are fulfilled.

Lemma A.12. A pseudoinverse A´ P Rnˆm exists for every A P Rmˆn.

Proof . For every A P Rmˆn it exist nonsingular matrices S P Rmˆm and T P Rnˆn with

SAT “
„

I 0
0 0



ô A “ S´1

„

I 0
0 0



T´1

with I P Rrˆr and r “ rank A. The matrix

A´ “ T

„

I X
Y YX



S

fulfills all necessary properties, where Y P Rpm´rqˆr, X P Rrˆpn´rq are arbitrarily, see
[BO71].

Lemma A.13. The matrices AA´ P Rmˆm and A´A P Rnˆn are projectors onto im A
and along ker A.

Proof . The projector properties are clear due to the definition of the pseudoinverse. It
remains to show im AA´ “ im A and ker A´A “ ker A. We show the first identity. We
have:

pĎq x P im AA´ ñ x “ AA´z ñ x “ Ay ñ x P im A

pĚq x P im A ñ x “ Az ñ x “ AA´Az ñ x “ AA´y ñ x P im AA´

The second identity is completely analog.

Let R P Rnˆn be a projector onto im A and P P Rmˆm a projector along ker A.

Theorem A.14. Let R P Rnˆn be a projector onto im A and P P Rmˆm a projector
along ker A. The choice

(i) A´A “ P

(ii) AA´ “ R

is always possible.
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Proof . Let be I P Rrˆr and r “ rank A. It exists nonsingular matrices S P Rmˆm and
T P Rnˆn with

A´ “ T

„

I X
Y YX



S, A´A “ T

„

I 0
Y 0



T´1, and AA´ “ S´1

„

I X
0 0



S,

see proof of Lemma A.12.
(i) Let be z P ker P “ ker A´A. Then y P ker P1 “ ker P2 with

P1 “ T´1PT, P2 “
„

I 0
Y 0



and y “ T´1z.

The matrices P1 and P2 are projectors with the same nullspace. We have

P2y “ 0 ñ p0, y2q P ker P2 with y “ py1, y2q
and hence we obtain

P1 “
„

P1,1 0
P1,2 0



and P2
1 “

„

P2
1,1 0

P1,2P1,1 0



.

Since P1 is a projector we conclude that P1,1 is a projector, too, and P1,2 “ P1,2P1,1.
Assume P1,1 ‰ I, that is, P1,1 is singular. Then there exist y1 ‰ 0 with P1,1y1 “ 0 and
P1y “ 0 with y “ py1, y2q. With y1 ‰ 0 we obtain

P2y “
ˆ

y1

Yy1

˙

‰
ˆ

0
0

˙

which is a contradiction to the property that both nullspaces equals. Hence P1,1 “ I and

T´1PT “
„

I 0
P1,2 0



with Y “ P1,2.

(ii) Let be z P im R “ im AA´. Then y P im R1 “ im R2 with

R1 “ SRS´1, R2 “
„

I X
0 0



and y “ Sz.

The matrices R1 and R2 are projectors with the same image. We have

y P im R2 ñ y “ py1, 0q with y “ py1, y2q
and hence we obtain

R1 “
„

R1,1 R1,2

0 0



and R2
1 “

„

R2
1,1 R1,1R1,2

0 0



.
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Since R1 is a projector we conclude that R1,1 is a projector, too, and R1,2 “ R1,1R1,2.
Assume R1,1 ‰ I, that is, R1,1 is singular. Then there exist y1 ‰ 0, y1 P Rr, with
R1,1y1 “ 0. Thus y1 R im R1,1 and hence py1, 0q R im R1. But py1, 0q P im R2 since

ˆ

y1

0

˙

“
„

I X
0 0

ˆ

y1

0

˙

.

That is a contradiction to the property that both images equals. Hence R1,1 “ I and

SRS´1 “
„

I R1,2

0 0



with X “ R1,2.

A proof of Theorem A.14 is already given in [BIG03], Chapter 2, Theorem 12. But the
proof given above provides a way to construct the pseudoinverse A´ explicitly with the
special choice above.

Lemma A.15. Let R P Rnˆn be a projector onto im A and P P Rmˆm a projector along
ker A. The pseudoinverse A´ together with

A´A “ P and AA´ “ R

is uniquely determine.

Proof . Let B be a pseudoinverse of A too. Then:

B “ BAB “ BR “ BAA´ “ PA´ “ A´AA´ “ A´

Definition A.16. With A` P Rnˆm we denote the Moore-Penrose pseudoinverse and
t1, 2, 3, 4u-inverse of A P Rmˆn if

AA`A “ A A`AA` “ A`

A`A “ `

A`A
˘J

AA` “ `

AA`
˘J

are fulfilled.

The Moore-Penrose pseudoinverse is a special pseudoinverse. In contrast to a pseudoin-
verse we require also that A´A and AA´ are orthogonal projectors

Lemma A.17. A Moore-Penrose pseudoinverse A` exist for every A P Rmˆn.

Proof . Let A “ UΣVJ be a singular value decomposition. The Moore-Penrose pseu-
doinverse is given by

A` “ V

„

D´1 0
0 0



UJ and Σ “
„

D 0
0 0



.

The necessary properties follow immediately.
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An essential difference between the pseudoinverse A´ and the Moore-Penrose pseudoin-
verse A` is the uniqueness of the latter.

Lemma A.18. The Moore-Penrose pseudoinverse A` of A P Rmˆn is uniquely deter-
mine.

Proof . Let B be also Moore-Penrose pseudoinverse of A. Then

B “ BAB “ B pABqJ “ BBJAJ “ BBJ
`

AA`A
˘J “ BBJAJ

`

A`A
˘J

“ B pABqJ `A`A
˘J “ BABAA` “ BAA` “ pBAqJ A`AA`

“ pBAqJ `A`A
˘J

A` “ AJBJAJ
`

A`
˘J

A` “ pABAqJ `A`˘J A`

“ AJ
`

A`
˘J

A` “ `

A`A
˘J

A` “ A`AA` “ A`

is valid.

Lemma A.19. The matrices AA` P Rmˆm and A`A P Rnˆn are projectors along ker AJ

and onto im AJ.

Proof . The projector properties is clear due to the definition of the pseudoinverse. It
remains to show ker AA` “ ker AJ and im A`A “ im AJ. We show the first identity.
We have

ker AA` “ ker
`

AA`
˘J “ `

im AA`
˘K “ pim AqK “ ker AJ.

The second identity is completely analog.

Remark A.20. If A P Rnˆn is nonsingular, the pseudoinverse and the inverse coincide.

Lemma A.21. Let A P Rmˆm be positive definite and B P Rkˆm. Then

im B`B “ im B`BABJ

holds true.

Proof . We show both inclusions.

(Ă) Let be x P im B`B. Then there exists y P Rm such that x “ B`By and z P im B
with z “ By. Lemma A.3 leads to z P im BABJ and there exists u P Rk such that
z “ BABJu. Hence we obtain x “ B`BABJu and x P im B`BABJ.

(Ą) Let be x P im B`BABJ. Then there exists y P Rk such that x “ B`BABJy.
Choosing z “ ABJy we obtain x “ B`Bz and x P im B`B.

For computational aspects of generalized inverses calculus we refer to [LMT13], where
the generalized inverses a determine by matrix decompositions.

156



B Graph Theory

In this section we want to introduce elementary basics derived from the theory of graphs
and digraphs. For more details we refer the reader to [Die05]. First, we start with some
basic notation and definitions. Roughly speaking, a graph is a set of edges and the ends
of the edges are called nodes. If all edges own an orientation then the graph is called a
digraph. Let N be a set. Then |N | P N is the number of elements in N .

Definition B.1 (graph, node, edges). A graph G is a tuple of finite sets G :“ pN , Eq
such that E Ď N ˆN with |N | , |E | ă 8. We call an element of the set N node and of
the set E edge. In general each edge corresponds to an unsorted tuple of nodes denoted
by e “ pn1, n2q and e “ pn2, n1q, respectively, with e P E and n1, n2 P N . We call n a
node of G if n P N and e an edge of G if e P E .

A graph, where edges correspond to an unsorted tuple of nodes, is called undirected
graph. We say that two nodes n1 and n2 of G are adjacent if either e “ pn1, n2q or
e “ pn2, n1q are edges of G. In case of e “ pn1, n2q we say that n1 is the front node and
n2 is the back node of edge e. A node n of G is called incident to an edge e of G if n is
the front or back node of e. Two edges e1 and e2 of G are called incident if these edges
have one common node n of G and an edge e of G is called incident with a node n of G
if the node n is the front or back node of the edge e .

A common approach to illustrate a graph is drawing a dot for each node and joining two
of dots by a line if there exists an edge between these two dots. How to draw the dots
and edges is considered irrelevant because all relevant information is the node-to-edge-
relation. Hence the representation of a graph is not unique.

For further investigations we exclude the possibility to have an edge with the same front
and back node.

Definition B.2 (digraph). A digraph G is a graph, where each edge corresponds to a
sorted tuple of nodes. We say that the edges are orientated.

In case of digraphs the representation of edges are considered as arrows instead of lines.
Each digraph G we can assign an undirected graph by dropping the edge orientation. If
we speak about graphs we include digraphs by the assigned undirected graph.

Definition B.3 (path). A set of n edges te1, . . . , enu Ď E of a graph G is called a path
between n1 and n2 if:

(i) the edges ei and ei`1 are incident, i P t1, . . . , n´ 1u
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(ii) each node is incident to at most two edges

(iii) the nodes n1, n2 belong to exactly one edge of the set

Definition B.4 (Connected graph). A graph is called a connected graph if there exists
at least one path between any two nodes of the graph. Otherwise we call the graph
disconnected.

For defining loops, trees and cutsets of a graph we need the following definition of a
subgraph.

Definition B.5 (subgraph). A graph G 1 :“ pN 1, E 1q is called a subgraph of G if N 1 Ď N ,
E 1 Ď E and E 1 Ď N 1 ˆN 1.The difference graph GzG 1 is given by GzG 1 “ pN , EzE 1q and
for e P E we define pGzG 1q Y teu “ pN , pEzE 1q Y teuq.
Next we can define loops, trees and cutsets of a graph.

Definition B.6 (loop). A subgraph G 1 of a connected graph G is called a loop if it is
connected and precisely two edges of it are incident with each node.

Definition B.7 (tree). A subgraph G 1 of a connected graph G is called a tree if:

(i) G 1 is connected

(ii) G 1 contains all nodes of G
(iii) G 1 has no loops

It should be mentioned that we can construct a tree for each connected graph. Further-
more each tree of a connected graph with |N | nodes consists of exactly |N | ´ 1 edges,
see [Die05] Proposition 1.5.3 and 1.5.6.

Definition B.8 (cutset). A subgraph G 1 of a connected graph G is called a cutset if:

(i) GzG 1 is disconnected

(ii) For every e1 P E 1 the graph pGzG 1q Y te1u is connected

Now we will focus on digraphs and combine some linear algebra with graph theory by in-
troducing the so-called incidence matrix for digraphs. We obtain a matrix representation
for a graph, which shows the relationship between nodes and edges.

Definition B.9 (incidence matrix). Let a digraph G with |N | nodes and |E | edges be

given. The incidence matrix denoted by Aa P t´1, 0, 1u|N |ˆ|E| is defined as Aa “ paijq
with

aij “

$

’

&

’

%

1 if the edge j leaves the node i,

´1 if the edge j enters the node i,

0 else.
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By definition of the incidence matrix Aa of a connected digraph it is easy to see that
the rows are linear dependent. To be more specific the sum of all rows of Aa equals
zero. This is caused by the fact that each column contains exactly one 1 and one ´1
and all other entries are zero. This becomes obvious if one observes that each column
corresponds to exactly one edge and each edge has two incident nodes. Hence one row
of the incidence matrix can be neglected in order to describe the graph. That node
corresponding to the neglected row is called reference node and can be chosen freely.
Erasing one row of Aa we obtain the so-called reduced incidence matrix A. In literature
the reduced incidence matrix A is often called only incidence matrix A. In our case we
will name the matrix A incidence matrix too.
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(b) digraph

Figure B.1: An undirected graph and digraph with four nodes and five edges.

Example B.10. Regarding the graph G “ pN , Eq in Figure B.1(a) the set of nodes is
given by N “ tn1, n2, n3, n4u and the set of edges by E “ te1, e2, e3, e4, e5u. The graph
G is the undirected version of the digraph in Figure B.1(b). Obviously the graph G is
connected. A loop is given by the edges te1, e4, e3u, but not by the edges te2, e5u. The
last set of edges builds a path starting in node n1 and ending in node n4. In this case
the set describes a cutset, too. A tree is given by the edges te1, e3, e5u. Choosing the
node n4 as reference node the incidence matrices are

Aa “

»

—

—

–

1 ´1 1 0 0
´1 0 0 ´1 0
0 1 0 0 ´1
0 0 ´1 1 1

fi

ffi

ffi

fl

and A “
»

–

1 ´1 1 0 0
´1 0 0 ´1 0
0 1 0 0 ´1

fi

fl

respectively.

In the following we collect some facts about incidence matrices.

Theorem B.11. The incidence matrix A of a connected graph G with |N | nodes has
|N | ´ 1 linear independent rows.
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Theorem B.12. A subgraph G 1 of a connected graph G with |E 1| edges has loops if and
only if the columns of the incidence matrix A corresponding to these |E 1| edges are linear
dependent.

Theorem B.13. Let A be the incidence matrix of a connected graph G with |N | nodes.
Then |N | ´ 1 columns of A are linear independent if and only if the edges of these
columns form a tree.

We refer the reader to Appendix A.1 in [Tis04] for the proofs.

Remark B.14 (Incidence matrices). We note the following:

(i) An incidence matrix AX of a subgraph has full column rank if and only if there is
no loop (in the subgraph), that is, no X-loop, see Theorem B.12.

(ii) Let
“

AX AY

‰

denote the incidence matrix of a connected graph. Then AJX has
full column rank if and only if there is a spanning tree of elements from AX, that
is, no Y-cutset, see Theorem B.13.
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C Auxiliary Calculations

C.1 Topological Projectors

Let the network edges be sorted in such a way that the (reduced) incidence matrix A
has the form

A “ “

AC AR AL AV AI

‰

,

where the index stands for capacitive, (extended) resistive, (extended) inductive, (ex-
tended) voltage source and current source edges, respectively.
In order to describe different circuit configuration in more detail we will introduce some
useful projectors.
We denote by

QC, QC´V, QV´C, QR´CV and QCRV

projectors onto

ker AJC, ker QJ
CAV, ker AJ

V
QC, ker AJ

R
QCQV´C and ker

“

AC AR AV

‰J
,

respectively. All complementary projectors will be denoted by P “ I ´ Q with corre-
sponding subindex.
In the following we show that QCRV “ QCQV´CQR´CV is a valid construction. That
special construction goes back to [ET00], here it is slightly extended them to an enlarge
class of network edges.
At first we introduce some notation and results concerning special cutsets and loops to
motivate the projectors above.

Definition C.1 (LI-cutset). A cutset is called LI-cutset if and only if the cutset contains
(extended) inductors and current sources only.

Lemma C.2 (LI-cutsets). Let a connected circuit be given. The circuit does not contain
an LI-cutset if and only if

(i) the matrix
“

AC AR AV

‰

has full row rank or

(ii) the projector QCRV is equal to the zero matrix.

Proof . See Lemma 1.2 in [Tis04].
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Definition C.3 (CV-loop). A loop is called CV-loop if and only if the loop contains
capacitors and (extended) voltage sources only.

Lemma C.4 (CV-loops). Let QC be a projector onto ker AJC. The circuit does not
contain a CV-loop with at least one (extended) voltage source if and only if

(i) the matrix QJ
CAV has full column rank or

(ii) the projector QC´V is equal to the zero matrix.

Proof . See Lemma 1.3 in [Tis04].

Next we construct the projector QCRV. For that we need the following lemmata.

Lemma C.5. The relations

(i) im PC Ă ker PV´C

(ii) im PV´C Ă ker PR´CV

(iii) im PC Ă ker PR´CV

hold true.

Proof . Straightforward computations show the results.

(i) x P ker QC ñ AJ
V

QCx “ 0 ñ x P im QV´C

(ii) x P ker QV´C ñ AJ
R

QCQV´Cx “ 0 ñ x P im QR´CV

(iii) x P ker QC

(i)ñ AJ
R

QCQV´Cx “ 0 ñ x P im QR´CV

Corollary C.6. The relations

(i) PV´CPC “ 0 ô QV´CQC “ QC `QV´C ´ I

(ii) PR´CVPC “ 0 ô QR´CVQC “ QC `QR´CV ´ I

(iii) PR´CVPV´C “ 0 ô QR´CVQV´C “ QV´C `QR´CV ´ I

hold true.

Lemma C.7. QCQV´C is a projector.

Proof . Using Corollary C.6 we get

`

QCQV´C

˘2 “ QC

`

QC `QV´C ´ I
˘

QV´C “ QCQV´C.
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Lemma C.8. QCQV´CQR´CV is a projector.

Proof . Using Corollary C.6 and Lemma C.7 we get

`

QCQV´CQR´CV

˘2 “ QCQV´C

`

QC `QR´CV ´ I
˘

QV´CQR´CV

“ QCQV´CQR´CVQV´CQR´CV

“ QCQV´C

`

QV´C `QR´CV ´ I
˘

QR´CV

“ QCQV´CQR´CV.

Lemma C.9. The relations im QCQV´CQR´CV Ă im QC hold true.

Lemma C.10. The matrix QCQV´CQR´CV is a projector onto ker
“

AC AR AV

‰J
.

Proof . We have to show two inclusions.

pĎq Let be x P im QCQV´CQR´CV. Then x P im QC “ ker AJC. We obtain x P ker AJ
R

since im QR´CV “ ker AJ
R

QCQV´C. Due to im QV´C “ ker AJ
V

QC we get x P ker AJ
V

and we conclude im QCQV´CQR´CV Ă ker
“

AC AR AV

‰J
.

pĚq Let be x P ker
“

AC AR AV

‰J
. Then we get x P im QC and also x P ker AJ

V
QC.

Consequently, we gain x P im QV´C and thus x P im QCQV´C. From x P ker AJ
R

we obtain x P ker AJRQCQV´C and hence x P im QR´CV. Accordingly, we achieve

x P im QCQV´CQR´CV and therefore ker
“

AC AR AV

‰J Ă im QCQV´CQR´CV.

Lemma C.11. The relation ker QC Ă ker QCRV hold true.

Proof . We use Lemma C.5. Let be x P ker QC. Then x P im QV´C and we achieve
x P ker QCQV´C. Therefore x P im QR´CV and thus x P ker QCRV.

Corollary C.12. The matrix

QCRV “ QCQV´CQR´CV

is a projector onto ker
“

AC AR AV

‰J
and the relation QCRVQC “ QCRV holds true.

C.2 Electric Network

Lemma C.13. Let Assumption 4.4 and 4.9 be fulfilled. For the DAE (4.8) we get

W0 py, tq “

»

—

—

–

QJ
C ´QJ

CAMM pqM, tq´1 0 0
0 0 0 0
0 0 0 0
0 0 0 I

fi

ffi

ffi

fl

.
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Proof . We compute a projector along im G0 py, tq. In order to determine such a pro-
jector we calculate a projector onto ker G0 py, tqJ, see Remark A.8, with

G0 py, tqJ “

»

—

—

—

–

ACC
`

AJC, t
˘J

AJC 0 0 0

AJM M pqM, tqJ 0 0

0 0 L pjL, tqJ 0
0 0 0 0

fi

ffi

ffi

ffi

fl

,

see (4.9). Let be z P ker G0 py, tqJ. This it true if and only if

ze P im QC

´M pqM, tq´J AJMze,t “ zqM

zjL “ 0

hold true, using Assumption 4.4, 4.9 and Lemma A.3. We can choose a projector onto
ker G0 py, tqJ and along im G0 py, tq by

W0 py, tqJ “

»

—

—

–

QC 0 0 0

´M pqM, tq´J AJMQC 0 0 0
0 0 0 0
0 0 0 I

fi

ffi

ffi

fl

and

W0 py, tq “

»

—

—

–

QJ
C ´QJ

CAMM pqM, tq´1 0 0
0 0 0 0
0 0 0 0
0 0 0 I

fi

ffi

ffi

fl

,

respectively.

Lemma C.14. Let Assumption 4.4 and 4.9 be fulfilled. For the DAE (4.8) we get

W1 “

»

—

—

–

QJ
CRMV 0 0 0
0 0 0 0
0 0 0 0
0 0 0 QJ

C´V

fi

ffi

ffi

fl

.

Proof . We compute a projector along im G1 py, tq. On this we determine a projector
onto ker G1 py, tqJ, see Remark A.8. Hereby we investigate

G1 py, tqJ “

»

—

—

–

G pe, tqJ ´QJ
CAM ´QJ

CAL QJ
CAV

AJM M pqM, tqJ 0 0

0 0 L pjL, tqJ 0
AJV 0 0 0

fi

ffi

ffi

fl

,
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with G pe, tq “ ACC
`

AJCe, t
˘J

AJC ` ARG
`

AJRe, t
˘J

AJRQC, see (4.13).

Let be z P ker G1 py, tqJ. That is true if and only if

´

ACC
`

AJCe, t
˘J

AJC `QJ
CARG

`

AJRe, t
˘J

AJR

¯

ze ´QJ
CAMzqM

`QJ
CAVzjV “ 0 (C.1)

´M pqM, tq´J AJMze “ zqM
(C.2)

zjL “ 0

AJVze “ 0 (C.3)

hold true, taking Assumption 4.4 and 4.9 into account. Left-multiplication of (C.1) by
QJ

C yields

QJ
CARG

`

AJRe, t
˘J

AJRze ´QJ
CAMzqM

`QJ
CAVzjV “ 0

and subtraction of (C.1) leads to ze P im QC by applying Lemma A.3. Using ze P im QC

and (C.2) we can rewrite (C.1) as

QJ
CARG

`

AJRe, t
˘J

AJRQCze `QJ
CAMM pqM, tq´J AJMQCze `QJ

CAVzjV “ 0.

Left-multiplying that by zJe leads to ze P ker
“

AR AM

‰J
by taking (C.3) into account.

Together with (C.3) we attain ze P im QCRMV. From (C.2) we obtain zqM
“ 0 and (C.1)

yields

QJ
CAVzjV “ 0 and zjV P im QC´V,

that is, we can choose a projector onto ker G1 py, tqJ and along im G1 py, tq by

WJ
1 “

»

—

—

–

QCRMV 0 0 0
0 0 0 0
0 0 0 0
0 0 0 QC´V

fi

ffi

ffi

fl

and W1 “

»

—

—

–

QJ
CRMV 0 0 0
0 0 0 0
0 0 0 0
0 0 0 QJ

C´V

fi

ffi

ffi

fl

,

respectively.

Lemma C.15. Let Assumption 4.4 and 4.9 be fulfilled. For the DAE (4.8) we get

N1 py, tq “ tz P Rn|QCze P im QCRMV, zjV P im QC´V, zqM
“ 0,

PCze “ ´HC

`

AJCe, t
˘´1

AVQC´VzjV ,L pjL, tq´1 AJL QCze “ zjL

)

.

Proof . Let be z P ker G1 py, tq. This is holds if and only if

ACC
`

AJCe, t
˘

AJC ` ARG
`

AJRe, t
˘

AJRQCze ` AMzqM
` AVzjV “ 0, (C.4)

M pqM, tq´1 AJMQCze “ zqM
(C.5)
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L pjL, tq´1 AJL QCze “ zjL

AJVQCze “ 0, (C.6)

are valid, see (4.13) and using Assumption 4.4 and 4.9. Left-multiplication of (C.4) by
zJe QJ

C and inserting (C.5) give rise to

zJe QJ
CARG

`

AJRe, t
˘

AJRQCze ` zJe QJ
CAMM pqM, tq´1 AJMQCze ` zJe QJ

CAVzjV “ 0

Utilizing (C.6) leads to QCze P ker
“

AR AM

‰J
by using Lemma A.3. We attain zqM

“ 0
and together with (C.6) to QCze P im QCRMV. Left-multiplication of (C.4) by QJ

C results
in

QJ
CAVzjV “ 0 and zjV P im QC´V.

Moreover we can reduce (C.4) to

ACC
`

AJCe, t
˘

AJCze ` AVzjV “ 0

which can be rewritten as

HC

`

AJCe, t
˘

PCze ` AVzjV “ 0,

where HC

`

AJCe, t
˘ “ ACC

`

AJCe, t
˘

AJC ` QJ
CQC is positive definite, see Lemma A.10.

Hence we deduce that

QCze P im QCRMV

zjV P im QC´V

zqM
“ 0

PCze “ ´HC

`

AJCe, t
˘´1

AVQC´VzjV

L pjL, tq´1 AJL QCze “ zjL

hold true and yields the representation

N1 py, tq “ tz P Rn|QCze P im QCRMV, zjV P im QC´V, zqM
“ 0,

PCze “ ´HC

`

AJCe, t
˘´1

AVQC´VzjV ,L pjL, tq´1 AJL QCze “ zjL

)

.

C.3 Field/Circuit System using Coulomb Gauge

Lemma C.16. Assume Assumption 4.4, 3.31 and Property 3.32 to be fulfilled. For the
DAE (5.2) we get

W0 “

»

—

—

—

—

—

—

—

—

–

QJ
C 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Proof . We compute a projector along im G0 py, tq. In order to determine such a pro-
jector we calculate a projector onto ker G0 py, tqJ, see Remark A.8, with

G0 py, tqJ “

»

—

—

—

—

—

—

—

—

—

–

ACC
`

AJCe, t
˘J

AJC 0 0 0 0 ´AEΛJu Mu
ε 0

0 L pjL, tqJ 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 ´rSuMu
ε 0

0 0 0 0 0 0 I
0 0 0 0 0 Mu

ε 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

see (5.3), using Assumption 3.31 and Property 3.32. Let be z P ker G0 py, tqJ. This is
valid if and only if

ze P im QC

zjL “ 0

z"au
“ 0

z"πu
“ 0

hold true, using Assumption 4.4 and Lemma A.3. We can choose a projector onto
ker G0 py, tqJ and along im G0 py, tq by

WJ
0 “

»

—

—

—

—

—

—

—

—

–

QC 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and W0 “

»

—

—

—

—

—

—

—

—

–

QJ
C 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

respectively.

Lemma C.17. Let Assumption 4.4, 3.31 and Property 3.32 be true. For the DAE (5.2)
we get

W1 “

»

—

—

—

—

—

—

—

—

–

QJ
CRV 0 0 ´QJ

CRVAE 0 0 0
0 0 0 0 0 0 0
0 0 QJ

C´V 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Proof . We compute a projector along im G1 py, tq. On this we determine a projector
onto ker G1 py, tqJ, see Remark A.8. Hereby we investigate

G1 py, tqJ “

»

—

—

—

—

—

—

—

—

–

G pe, tqJ ´QJ
CAL QJ

CAV 0 0 ´AEΛJu Mu
ε ´QJ

CAEΛJu
0 L pjL, tqJ 0 0 0 0 0

AJV 0 0 0 0 0 0
AJE 0 0 I 0 0 0

0 0 0 0 0 ´rSuMu
ε ´rSu

0 0 0 0 0 0 I
0 0 0 0 0 Mu

ε 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where G pe, tq “ ACC
`

AJCe, t
˘

AJC`QJ
CARG

`

AJRe, t
˘

AJR, see (5.7), using Assumption 3.31

and Property 3.32. Let be z P ker G1 py, tqJ. This is valid if and only if

´

ACC
`

AJCe, t
˘J

AJC `QJ
CARG

`

AJRe, t
˘J

AJR

¯

ze `QJ
CAVzjV “ 0 (C.7)

zjL “ 0

AJVze “ 0 (C.8)

zjE “ ´AJEze

z"au
“ 0

z"πu
“ 0

hold true, taking Assumption 4.4 into account. Left-multiplication of (C.7) by QJ
C yields

QJ
CARG

`

AJRe, t
˘J

AJRze `QJ
CAVzjV “ 0 (C.9)

and subtraction from (C.7) leads to

ACC
`

AJCe, t
˘J

AJCze “ 0.

Hence we obtain ze P im QC due to Lemma A.3. Left-multiply (C.9) by zJe and taking
(C.8) into account leads to ze P im QCRV. From (C.9) follows that zjV P im QC´V. Hence
we deduce

ze P im QCRV

zjL “ 0

zjV P im QC´V

zjE “ ´AJEQCRVze

z"au
“ 0

z"πu
“ 0
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and we can choose a projector onto ker G1 py, tqJ and along im G1 py, tq by

WJ
1 “

»

—

—

—

—

—

—

—

—

–

QCRV 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 QC´V 0 0 0 0

´AJEQCRV 0 0 0 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and

W1 “

»

—

—

—

—

—

—

—

—

–

QJ
CRV 0 0 ´QJ

CRVAE 0 0 0
0 0 0 0 0 0 0
0 0 QJ

C´V 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

respectively.

Lemma C.18. Let Assumption 4.4, 3.31 and Property 3.32 be true. For the DAE (5.2)
we get

N1 py, tq “
 

z P Rn | QCze P im QCRV, zjV P im QC´V,

L pjL, tq´1 AJL QCze “ zjL , PCze “ ´HC

`

AJCe, t
˘´1

AVQC´VzjV , zjE “ 0,

ΛuAJEze ´Guzφu “ z"πu
, ΛuAJEQCze ´Guzφu “ z"au

(

.

Proof . Let be z P ker G1 py, tq. This is valid if and only if

`

ACC
`

AJCe, t
˘

AJC ` ARG
`

AJRe, t
˘

AJRQC

˘

ze ` AVzjV “ 0 (C.10)

L pjL, tq´1 AJL QCze “ zjL

AJVQCze “ 0 (C.11)

zjE “ 0

ΛuAJEze ´Guzφu “ z"πu

ΛuAJEQCze ´Guzφu “ z"au

hold true, see (5.3), using Assumption 4.4, 3.31 and Property 3.32. Left-multiplication
of (C.10) by zJe QJ

C and taking advantage of (C.11) results in QCze P ker AJR due to
Lemma A.3. From (C.11) we attain QCze P im QCRV. With this (C.10) reduces to

ACC
`

AJCe, t
˘

AJCze ` AVzjV “ 0 (C.12)
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which can be rewritten as

HC

`

AJCe, t
˘

PCze ` AVzjV “ 0,

where HC

`

AJCe, t
˘ “ ACC

`

AJCe, t
˘

AJC ` QJ
CQC is positive definite, see Lemma A.10.

Left-multiplication of (C.12) by QJ
C leads to zjV P im QC´V. Hence we deduce that

QCze P im QCRV

zjV P im QC´V

zjE “ 0

PCze “ ´HC

`

AJCe, t
˘´1

AVQC´VzjV

L pjL, tq´1 AJL QCze “ zjL

ΛuAJEze ´Guzφu “ z"πu

ΛuAJEQCze ´Guzφu “ z"au

hold true and we obtain

N1 py, tq “
 

z P Rn | QCze P im QCRV, zjV P im QC´V,

L pjL, tq´1 AJL QCze “ zjL , PCze “ ´HC

`

AJCe, t
˘´1

AVQC´VzjV , zjE “ 0,

ΛuAJEze ´Guzφu “ z"πu
, ΛuAJEQCze ´Guzφu “ z"au

(

.

C.4 Field/Circuit System using Lorenz Gauge

Lemma C.19. Let Assumption 4.4, 3.31 and Property 3.32 be true. For the DAE (5.18)
we get

W0 “

»

—

—

—

—

—

—

—

—

–

QJ
C 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Proof . We compute a projector onto ker G0 py, tq. On this we determine a projector
along ker G0 py, tqJ, see Remark A.8. Hereby we investigate

G0 py, tqJ “

»

—

—

—

—

—

—

—

—

—

–

ACC
`

AJCe, t
˘J

AJC 0 0 0 0 ´AEΛJu Mu
ε 0

0 L pjL, tqJ 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 rSuMu
εGu ´rSuMu

ε 0
0 0 0 0 0 0 I
0 0 0 0 0 Mu

ε 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
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see (5.19), using Assumption 3.31 and Property 3.32. Let be z P ker G0 py, tqJ. This is
valid if and only if

ze P im QC

zjL “ 0

z"au
“ 0

z"πu
“ 0

zφu “ 0

hold true, due to Lemma A.3 and Assumption 4.4. Hence we can choose a projector
onto ker G0 py, tqJ and along im G0 py, tq by

WJ
0 “

»

—

—

—

—

—

—

—

—

–

QC 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and W0 “

»

—

—

—

—

—

—

—

—

–

QJ
C 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Lemma C.20. Assume Assumption 4.4, 3.31 and Property 3.32 to be fulfilled. For the
DAE (5.18) we get

W1 “

»

—

—

—

—

—

—

—

—

–

QJ
CRV 0 0 ´QJ

CRVAE 0 0 0
0 0 0 0 0 0 0
0 0 QJ

C´V 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Proof . We compute a projector along im G1 py, tq. On this we determine a projector
W1 py, tqJ along ker G1 py, tqJ, see Remark A.8, where

G1 py, tqJ “

»

—

—

—

—

—

—

—

—

–

G pe, tqJ ´QJ
CAL QJ

CAV 0 0 ´AEΛJu Mu
ε ´QJ

CAEΛJu
0 L pjL, tqJ 0 0 0 0 0

AJV 0 0 0 0 0 0
AJE 0 0 I 0 0 0

0 0 0 0 rSuMu
εGu ´rSuMu

ε 0
0 0 0 0 0 0 I
0 0 0 0 0 Mu

ε 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
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see (5.20), with G pe, tq “ ACC
`

AJCe, t
˘

AJC`ARG
`

AJRe, t
˘

AJRQC, using Assumption 3.31

and Property 3.32. Let be z P ker G1 py, tqJ. This is valid if and only if

´

ACC
`

AJCe, t
˘J

AJC `QJ
CARG

`

AJRe, t
˘J

AJR

¯

ze `QJ
CAVzjV “ 0 (C.13)

zjL “ 0

AJVze “ 0 (C.14)

zjE “ ´AJEze

z"au
“ 0

z"πu
“ 0

zφu “ 0

are valid, taking Assumption 4.4 into account. Left-multiplying (C.13) by QJ
C yields

QJ
CARG

`

AJRe, t
˘J

AJRze `QJ
CAVzjV “ 0 (C.15)

and subtraction from (C.13) leads to

ACC
`

AJCe, t
˘J

AJCze “ 0.

We obtain ze P im QC due to Lemma A.3. Left-multiplying (C.15) by zJe and taking
(C.14) into account leads to ze P im QCRV. Hence we deduce that

ze P im QCRV

zjL “ 0

zjV P im QC´V

zjE “ ´AJEQCRVze

z"au
“ 0

z"πu
“ 0

zφu “ 0

hold true. We can choose a projector onto ker G1 py, tqJ and along im G1 py, tq by

WJ
1 “

»

—

—

—

—

—

—

—

—

–

QCRV 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 QC´V 0 0 0 0

´AJEQCRV 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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and

W1 “

»

—

—

—

—

—

—

—

—

–

QJ
CRV 0 0 ´QJ

CRVAE 0 0 0
0 0 0 0 0 0 0
0 0 QJ

C´V 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

respectively.

Lemma C.21. Let Assumption 4.4, 3.31 and Property 3.32 be true. For the DAE (5.18)
we get

N1 py, tq “
 

z P Rn | QCze P im QCRV, zjV P im QC´V,

L pjL, tq´1 AJL QCze “ zjL , PCze “ ´HC

`

AJCe, t
˘´1

AVQC´VzjV ,

pzjE , zφuq “ 0, ΛuAJEze “ z"πu
, ΛuAJEQCze “ z"au

(

.

Proof . Let be z P ker G1 py, tq. This is valid if and only if

`

ACC
`

AJCe, t
˘

AJC ` ARG
`

AJRe, t
˘

AJRQC

˘

ze ` AVzjV “ 0 (C.16)

L pjL, tq´1 AJL QCze “ zjL

AJVQCze “ 0 (C.17)

zjE “ 0

ΛuAJEze “ z"πu

zφu “ 0

ΛuAJEQCze “ z"au

hold true, see (5.20), using Assumption 4.4, 3.31 and Property 3.32. Left-multiplying
(C.16) by zJe QJ

C and taking (C.17) into account result in QCze P ker AJR due to Lemma A.3.
We attain QCze P im QCRV using (C.17). With this we reduce (C.16) to

ACC
`

AJCe, t
˘

AJCze ` AVzjV “ 0 (C.18)

which can be rewritten as

HC

`

AJCe, t
˘

PCze ` AVzjV “ 0,

where HC

`

AJCe, t
˘ “ ACC

`

AJCe, t
˘

AJC ` QJ
CQC is positive definite, see Lemma A.10.

Left-multiplication of (C.18) by QJ
C leads to zjV P im QC´V. Hence we deduce that

QCze P im QCRV

zjV P im QC´V
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zjE “ 0

zφu “ 0

PCze “ ´HC

`

AJCe, t
˘´1

AVQC´VzjV

L pjL, tq´1 AJL QCze “ zjL

ΛuAJEze “ z"πu

ΛuAJEQCze “ z"au

are valid and in the end we achieve

N1 py, tq “
 

z P Rn | QCze P im QCRV, zjV P im QC´V,

L pjL, tq´1 AJL QCze “ zjL , PCze “ ´HC

`

AJCe, t
˘´1

AVQC´VzjV ,

pzjE , zφuq “ 0, ΛuAJEze “ z"πu
, ΛuAJEQCze “ z"au

(

.
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Notation

Abbreviation
ODE ordinary differential equation
DAE differential algebraic equation
MNA modified nodal analysis
IVP initial value problem
BDF backward differentiation formulas
KCL Kirchhoff’s current law
KVL Kirchhoff’s voltage law
ME Maxwell’s equations
EM electromagnetic
MQS magnetoquasistatic
PEC perfectly electric conducting
FIT finite integration technique
MGE Maxwell’s grid equations
I-cutset cutset of current sources
LI-cutset cutset of inductors and current sources
LEI-cutset cutset of inductors, EM devices and current sources
V-loop loop of voltage sources
CV-loop loop of capacitors and voltage sources

General
D there exists
@ for all
N naturals
Z integer
R real numbers
Rn real n-dimensional vector space
A P Rnˆm and A P Znˆm matrix with n rows and m columns
I identity matrix
S set
|S| number of elements in S
dimS dimension of a vector space S
SK orthogonal complement of S Ă Rn with respect to

the standard scalar product on Rn

I interval
D domain of definition
ta1, . . . , anu set consisting of the elements a1, . . . , an



x PM x is an element of the set M
x RM x is not an element of the set M
M Ă N M is contained in N
M Ć N M is not contained in N
MYN union of M and N
MXN intersection of M and N
M‘N direct sum of M and N
MˆN product set of M and N
f : MÑ N function that maps from M into N
B

Bx
f partial derivative of f with respect to x

d
dt

f total derivative of f with respect to t
}¨} function norm
Ck pM,N q linear space of k-times pk ě 0q continuously differen-

tiable functions f : M Ñ N , M Ă Rm and N Ă Rn

open
im A image of the matrix A
ker A kernel of the matrix A
rank A rank of the matrix A
det A determinant of the matrix A
AJ transpose of the matrix A
A´ pseudoinverse of the matrix A
A` Moore-Penrose pseudoinverse of the matrix A
A´1 inverse of the matrix A
A´J transposed inverse of the matrix A
~nK normal vector
~nq tangential vector

Matrix Chain and Subspaces
C1

d pI,Dq “ ty P C pI,Dq | d py p¨q , ¨q P C1 pI,Rmqu
C1

D pI,Dq “ ty P C pI,Dq | D p¨q y p¨q P C1 pI,Rmqu
D py, tq “ B

By
d py, tq

G0 py, tq “ A py, tqD py, tq
B0 pz, y, tq “ B

By
rA py, tq z` b py, tqs

G1 pz, y, tq “ G0 py, tq ` B0 pz, y, tqQ0 py, tq
N0 py, tq “ ker G0 py, tq
S0 pz, y, tq “ tv P Rn|B0 pz, y, tq v P im G0 py, tqu
N1 pz, y, tq “ ker G1 pz, y, tq
S1 pz, y, tq “ tv P Rn|B0 pz, y, tqP0 py, tq v P im G1 py, tqu
M0 ptq and H1 ptq obvious and hidden constraint set
M1 ptq index-2 constraint set

Projectors
Q0 py, tq projector onto ker G0 py, tq



P0 py, tq “ I´Q0 py, tq
Q1 pz, y, tq projector onto ker G1 pz, y, tq
P1 pz, y, tq “ I´Q1 pz, y, tq
T pz, y, tq projector onto N0 py, tq X S0 pz, y, tq
U pz, y, tq “ I´ T pz, y, tq
W0 py, tq projector along im G0 py, tq
W1 pz, y, tq projector along im G1 pz, y, tq
R ptq projector onto im D py, tq and along ker A py, tq

Electric Network
AR, AM, AL, AC, AE, AV, AI incidence matrix of elements
e node potential
qM charges through the memristors
jM currents through the memristors
jL currents through the inductors
jV currents through the voltage sources
jE currents through the electromagnetic devices
vs ptq given voltage sources
is ptq given current sources
qC pu, tq charges of capacitors
gR pu, tq currents of resistors
φL pj, tq fluxes of inductors
φM pq, tq fluxes of memristors
C pu, tq “ B

Bu
qC pu, tq

G pu, tq “ B

Bu
gR pu, tq

L pj, tq “ B

Bj
φL pj, tq

M pq, tq “ B

Bq
φM pq, tq

Projectors for Electric Networks
QC projector onto ker AJC
PC “ I´QC

QC´V projector onto ker QJ
CAV

PC´V “ I´QC´V

QV´C projector onto ker AJVQC

QRM´CV projector onto ker
“

AR AM

‰J
QCQJ

C´V

QCRMV projector onto ker
“

AC AV AR AM

‰J

PCRMV “ I´QCRMV

QR´CV projector onto ker AJRQCQJ
C´V

QCRV projector onto ker
“

AC AV AR

‰J

PCRV “ I´QCRV

Electromagnetic Field
~E electric field



~H magnetic field
~D electric induction
~B magnetic induction
ρ distribution of charges
~Jc conduction current density
~Jd displacement current density
~Jt total current density
ε permittivity
ν reluctivity
σ conductivity
ζ artificial material property
ξ artificial material property
ϕ scalar potential
~A vector potential
~Π auxiliary vector field

Discrete Electromagnetic Field
"e, "eu (reduced) discrete electric field strength
"

h,
"

hu (reduced) discrete magnetic field strength
""

d,
""

du (reduced) discrete electric induction density
""

b,
""

bu (reduced) discrete magnetic induction density
q, qu (reduced) discrete distribution of charges density
""

j c,
""

j c,u (reduced) discrete conduction current density
""

j t,
""

j t,u (reduced) discrete total current density
Mε, Mu

ε (reduced) discrete permittivity matrix
Mν , Mu

ν (reduced) discrete reluctivity matrix
Mσ, Mu

σ (reduced) discrete conductivity matrix
Mζ , Mu

ζ (reduced) discrete artificial material property matrix
Mξ, Mu

ξ (reduced) discrete artificial material property matrix
φ, φu (reduced) discrete scalar potential
"a, "au (reduced) discrete vector potential
"π, "πu (reduced) discrete auxiliary vector

S, rS, Su, rSu (reduced) discrete divergence operators

G, rG, Gu, rGu (reduced) discrete gradient operators

C, rC, Cu, rCu (reduced) discrete curl operators
Λu excitation matrix

Vector Analysis
∇¨ divergence operator
∇ gradient operator
∇ˆ curl operator
∆ Laplace operator
∇2 vector Laplace operator
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