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I. Introduction

1. Lysyl oxidase
The discovery  of the matrix enzyme lysyl oxidase (LOX) emerged from the convergence of mainly 

two research areas. Already the greek philosopher Hippocrates reported that  chronic ingestion of the 

sweet pea Lathyrus odoratus can result in a disease today referred to as lathyrism. Studies with 

experimental animal models in the first half of the 20th century demonstrated increased connective 

tissue fragility and increased collagen solubility in the individuals affected {Geiger et al., 1933}. 

Scientific research in the 1950s revealed that the symptoms are caused by the chemical compound 

beta-aminopropionitrile (BAPN) present in L. odoratus extracts {McKay et al., 1954}. Further 

studies showed that lathyritic connective tissue contained collagen and elastin with reduced levels 

of covalent crosslinks resulting in their increased solubility {Tanzer, 1965; Piez, 1968}. 

Around the same time nutritional copper deficiency had been demonstrated to cause similar 

connective tissue symptoms with reduced covalent crosslinks between lysine residues in collagen 

and elastin fibers {O’Dell et al., 1961; Savage et al.; 1966; O’Dell et al., 1966}. These findings led 

to the hypothesis of a putative copper-dependent enzyme that  was inhibitable by  the lathyric factor 

BAPN and that catalyzed the oxidative deamination of lysine residues resulting in spontaneous 

intra- and intermolecular crosslink formation of collagen and elastin fibers. Pinnell and Martin 

published in 1968 their landmark paper demonstrating that BAPN was an irreversible inhibitor of 

an extracellular enzyme with substrate specificity  for peptidyl lysine residues {Pinnell & Martin, 

1968}. This enzyme was later given the name lysyl oxidase {Siegel et al., 1970}.

1.1 Amine oxidases
Lysyl oxidase belongs to the family  of amine oxidases including monoamine oxidases A and B 

(MAO A and B), polyamine oxidase (PAO), semicarbazide-sensitive amine oxidase (SSAO) also 

called vascular adhesion protein 1 (VAP-1) and diamine oxidase (DAO) {Jalkanen & Salmi, 2001}. 

This enzyme family is classified into different subgroups based on their cofactors, either a flavin-

adenine dinucleotide (FAD) or a copper atom in conjunction with a quinone cofactor (Table 1). 

FAD-containing amine oxidases have the ability  to oxidize primary, secondary  or tertiary amines 

whereas the copper-containing amine oxidases (CuAO) oxidize exclusively primary amine 

substrates. In contrast to most amine oxidases, which act primarily on small molecule amines such 
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as neurotransmitters in the case of MAOs, LOX is known for its catalytic action on lysine residues 

of macromolecular substrates such as fibrillar collagen and elastin. 

Amine Oxidase Cofactor Substrates
MAO A & B FAD Monoamines (e.g. dopamine, 

serotonin)
PAO FAD Polyamines (e.g. spermine, 

spermidine)
DAO Copper and topaquinone (TPQ) Diamines (e.g. histamines, 

spermine)
SSAO or VAP-1 Copper and topaquinone (TPQ) Monoamines (e.g. dopamine, 

tyramine)
LOX and LOX-like 1-4 Copper and lysyl-tyrosylquinone 

(LTQ)
Peptidyl lysines (e.g. collagen 

elastin, cadaverine)

Table 1. Characteristics of mammalian amine oxidases.

1.2 The lysyl oxidase family
The mammalian lysyl oxidase gene family consists of the prototypic LOX and four additional 

LOX-like genes encoding proteins that share a highly conserved C-terminus but are rather diverse 

at their N-termini (Figure 1). Researchers observed from early  on that chromatographic separation 

of purified LOX from tissue extracts yielded multiple isoforms leading to the hypothesis that 

several LOX isozymes may exist {Narayanan et al., 1974; Stassen, 1974; Kagan et al. 1979}. 

However, it was not  until the 1990s that four additional LOX-like genes were identified and 

subsequently  cloned {reviewed in Csiszar, 2001}. All five members of the lysyl oxidase enzyme 

family contain a catalytic domain and a cytokine-receptor-like domain at the N-terminus (Figure 1). 

The catalytic domain consists of the copper-binding motif and a unique lysyl-tyrosylquinone (LTQ) 

cofactor. The copper-binding motif contains four histidines that are thought to coordinate binding of 

copper into the active site (Figure 2) {Gacheru et al., 1990; Kosonen et al., 1997}.  The LTQ 

cofactor is formed through covalent linkage between lysine 314 (K314) and tyrosine 349 (Y349) in 

the rat LOX protein and is conserved in all LOX-like proteins (Figures 3 and 4). This cofactor is 

unique to the lysyl oxidase enzyme family and is essential for the catalytic activity  of LOX. In 

mutagenesis studies with rat LOX where the LTQ tyrosine residue was replaced by  phenylalanine, 

activity of the LOX enzyme was diminished {Wang et al., 1996; Wang et al., 1997}. Partially 

overlapping with the LTQ site is the cytokine receptor-like (CRL) domain whose name results from 

its sequence homology to the N-terminal consensus sequence of class I cytokine receptors (Figure 

5) {Bazan, 1990}. The function of this domain in the lysyl oxidase family of proteins is not known. 
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As much as the C-terminus is conserved, the N-terminus displays a great diversity among LOX and 

the LOX-like proteins implicating potential differences in their function (Figure 1). LOXL, the first 

LOX-like protein identified after the prototypic LOX, contains a distinct proline-rich region whose 

functional significance has not been clarified yet {Kenyon et al., 1993; Kim et al., 1995}.

Figure 1. Domain organization of the five members of the mammalian lysyl oxidase enzyme family. 
The name and number of amino acids of each protein are indicated on the left  and right  side, respectively. 
The signal sequence (SS) for each protein is shown in magenta, the copper-binding motif (Cu) in red, the 
cytokine-receptor-like (CRL) domain in green and the location of the lysyl-tyrosylquinone (LTQ) cofactor is 
indicated with a bracket. In addition, known processing sites for proteases, such as bone-morphogenetic 
protein 1 (BMP-1), are marked with an arrow. A 22-mer peptide within the LOX sequence that was used as 
an epitope to generate a polyclonal antibody used in this study is shown in light  blue. A proline-rich region in 
LOXL is marked in orange. The four scavenger-receptor cysteine-rich (SRCR) modules present in LOXL2, 
LOXL3 and LOXL4 are highlighted in grey (from Csiszar, 2001).

Figure 2. Sequence alignment for the copper-binding motif of the human lysyl oxidase enzymes. 
Conserved amino acids among the proteins are shown in green. The four histidine residues thought to 
coordinate the copper atom within the catalytic site are depicted in orange (from Csiszar, 2001).
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Figure 3. Sequence alignment for the LTQ cofactor of the human lysyl oxidase enzymes. 
Conserved amino acids among the proteins are shown in green. The lysine residue and the tyrosine residue 
forming the lysyl-tyrosylquinone (LTQ) cofactor linkage are highlighted in orange (from Csiszar, 2001).

Figure 4. Chemical structure  of the LTQ  cofactor in mature  LOX with the  lysine  and tyrosine residue 
involved numbered according to the rat LOX sequence (from Smith-Mungo & Kagan, 1998).
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Figure 5. Sequence alignment of the  cytokine  receptor-like (CRL) domain of the human lysyl oxidase 
enzymes and its homology to the N Domain of class I cytokine receptor. 
Top panel: Conserved amino acids among lysyl oxidase proteins are shown in green. Residues highlighted in 
orange match the type I cytokine receptor consensus sequence. Middle panel: Schematic depiction of the 
beta-sheets forming the N and C Domain in class I cytokine receptors. Residues matching the CRL domain 
of lysyl oxidase proteins are highlighted in blue. Bottom  panel: Diagram of the cytokine receptor as it 
dimerizes with a secondary binding molecule (magenta) to bind a cytokine ligand (red) (from Csiszar, 2001).
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However, it is known from the literature that proline-rich sequences can interact with other protein 

domains such as SH3 (Src-homology  3) domains {Kay et al., 2000}. Future studies will have to 

determine whether the proline-rich region in LOXL mediates interactions with other proteins. 

LOXL2, LOXL3 and LOXL4 define a subgroup of the lysyl oxidase enzyme family that is 

characterized by the four scavenger-receptor cysteine-rich (SRCR) domains at the N-termini {Saito 

et al., 1997; Jourdan Le Saux et al., 1998; Maki et al., 2001a; Huang et al., 2001; Jourdan Le Saux 

et al., 2001; Asuncion et al., 2001; Maki et  al., 2001b}. The function of the repetitive SRCR 

domains in LOX-like proteins remains unknown. SRCR domains are highly conserved ancient 

protein modules that are found in membrane-bound or soluble receptors in a variety of cell types in 

all species throughout the animal kingdom {Resnick et al. 1994; Sarrias et al., 2004}.

1.3 Biosynthesis and processing of LOX
After cloning and sequencing of the LOX gene, the molecular weight of the corresponding protein 

was predicted to be 48 kD thus differing from the previously  characterized 32 kD active enzyme 

purified from bovine aorta {Kagan et al., 1979; Mariani et al., 1992}. Subsequent studies revealed 

that LOX is synthesized as a pre-proenzyme with the signal sequence being cleaved off in the 

endoplasmatic reticulum followed by multiple N-glycosylation during the secretory pathway in the 

Golgi network {Trackman et al., 1992}. Therefore, the LOX proenzyme emerges from the cell as a 

50 kD glycosylated inactive precursor protein.  After secretion into the extracellular space human 

proLOX is processed by proteolytic cleavage of the propeptide between Gly  168 and Asp 169 

through bone morphogenetic protein 1 (BMP-1) into the mature form of the enzyme {Cronshaw et 

al., 1995; Panchenko et al., 1996}. Further studies showed that other extracellular proteases, 

including mammalian tolloid and tolloid-like 1 and 2, are also capable to convert proLOX into the 

mature active form, although with less efficiency compared to BMP-1 {Uzel et al., 2001}. Notably, 

BMP-1 is also known as procollagen-C-proteinase, and is the same protease that processes type I 

collagen precursors into mature collagen, one of the major substrates of LOX in the extracellular 

matrix {Prockop et al., 1998}.

2. Significance of LOX for connective tissue homeostasis
The connective tissue gives major structural support  for all organs and provides with the skeleton 

also the scaffold that builds the internal frame of the vertebrate body {Olsen et al., 2000}. It 

consists of a highly complex and organized proteinaceous mixture called extracellular matrix 
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(ECM) that is inhabited by different cell types of mesodermal origin {Mecham, 2011}. The 

connective tissue provides mainly two mechanical functions: tensile strength and elasticity. 

Collagen fibers, made of triple-helical ordered microfibrils, are the molecular basis for the tensile 

strength of bones {Knott & Bailey, 1998}. Elastic fibers, made of the protein elastin, ensure the 

elasticity of skin {Mecham, 1991}. More recently, the extracellular matrix of the connective tissue 

has also become appreciated as a reservoir of growth factors and effector of diverse cell functions 

{Nelson & Bissell, 2006}.

LOX is primarily  known as an enzyme of outstanding importance for the formation of covalent 

crosslinks in collagen and elastin fibers, a crucial process for the maturation of these extracellular 

matrix macromolecules {Trackman & Kagan, 1991; Smith-Mungo & Kagan, 1998}. In this context, 

LOX is best characterized as the catalyst of the oxidative deamination of ε-amino groups in specific 

lysine residues of fibrillar collagen and elastin {Siegel, 1974; Bedell-Hogan et al., 1993}. The 

stoichiometry of this reaction is depicted in Figure 6. In the presence of molecular oxygen and 

water, the ε-amino group is transformed into an aldehyde group during the LOX-catalyzed reaction. 

The resulting allysine can then condensate in a spontaneous reaction with either another allysine or 

lysine residue to form covalent crosslinkages (Figure 7). Notably, hydrogen peroxide is generated as 

a side product during each reaction cycle. The specific detection of LOX-generated hydrogen 

peroxide has been used since many years as a sensitive indicator for the measurement of LOX 

activity {Trackman et al., 1981; Palamakumbura & Trackman, 2002}. The physiological 

importance of lysyl oxidase mediated crosslinking in soluble collagen and elastin precursors is 

illustrated by the phenotype of LOX knockout mice. These mice die either before, or shortly  after 

birth, due to severe fragility of the connective tissue supporting the cardiovascular system, which is 

indicated by  numerous aneurysms in major blood vessels {Maki et al., 2002; Hornstra et al., 2003; 

Maki et al., 2005}. Ultrastructural analysis of LOX knockout mice by electron microscopy revealed 

dramatic disturbances in connective tissue organization with strongly  fragmented collagen and 

elastic fiber formation in cardiovascular, respiratory and skin tissues. Thus, LOX-initated 

crosslinking is essential for both, the tensile strength of collagen fibers and for the elasticity  of 

elastin fibers thereby mediating connective tissue integrity. Although it was assumed that soluble 

precursors of fibrillar collagen and elastin were the unique substrates of LOX, biochemical studies 

soon demonstrated this view as too limited. In vitro studies on the substrate specificity of LOX 

showed that the purified enzyme is able to oxidize a number of basic globular proteins with pI 

values > 8.0 including the H1 histone protein {Kagan et al., 1984}. 
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Figure 6. Stoichiometry of the LOX-catalyzed reaction. 
LOX catalyzes the oxidative deamination of ε-amino groups in a peptidyl lysines resulting in the peptidyl 

aldehyde α-aminoadipic-δ-semialdehyde (AAS). The catalytic reaction also requires the presence of 

molecular oxygen and water and yields in addition ammonia and hydrogen peroxide as side-products (from 
Lucero & Kagan, 2006).

Figure 7. LOX-catalyzed oxidation of primary amines in  lysine  residues and crosslink formation by 
spontaneous condensation of the resulting aldehydes (from Kagan & Cai, 1995). 
LOX-catalyzed deamination of lysine residues results in allysine (or α-aminoadipic-δ-semialdehyde) where 
the ε-amino group is replaced by an aldehyde function. The aldehyde group in allysine can then 
spontaneously condensate with the aldehyde group of another allysine (via aldol condensation) or with the ε-
amino group of another lysine residue (via Schiff base).
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Notably, bovine serum albumine (BSA), a rather acidic protein, was oxidized by LOX, too, when 

glutamate and aspartate residues were converted into their basic counterparts glutamine and 

asparagines resulting in a basic protein. In addition, LOX can also oxidize non-peptidyl amine 

substrates such as cadaverine (1, 5-diaminopentane), which is commonly used as a substrate for the 

detection of LOX activity  during in vitro assays {Palamakumbura & Trackman, 2002}.  But until 

today  there is no clear evidence for LOX activity towards other substrates than collagen and elastin 

in vivo. 

These studies indicated that LOX may have a preference for cationic protein substrates. Attempts to 

elucidate the three-dimensional structure of LOX have not been successful yet due to difficulties in 

crystallizing sufficient amounts of the purified enzyme. However, analysis of the amino acid 

sequence suggests that anionic residues are indeed distributed in a manner that likely provides a 

localized density of anionic charge in the microenvironment of the catalytic site of LOX {Kagan et 

al., 1979}. The sequences surrounding the lysine and tyrosine residues forming the LTQ cofactor 

are both enriched in anionic residues (Figure 8). The notion that LOX seems to exhibit a strong 

preference for cationic protein substrates is also supported by the fact that the elastin precursor 

tropoelastin, a cationic protein, is easily oxidized by LOX in vitro {Bedell-Hogan et al., 1993}. In 

contrast, susceptible lysine residues in type I collagen that are known to be oxidized by  LOX in vivo 

are located within hydrophilic sequences enriched in anionic residues. Synthetic peptides of these 

sequences of the N-terminal region of type I collagen were not oxidized by LOX in vitro {Nagan & 

Kagan, 1994}. This may indeed explain why collagen precursors have to undergo a self-assembly 

into microfibrillar arrays that presumably allow a favorable distribution of ionic charges along the 

protein prior to their oxidation by LOX {Siegel, 1974}. Thus, the electrostatic properties of the 

LOX protein and in particular of the catalytic region seem to reflect an important determinant for 

substrate specificity of this enzyme. At the same time it  may provide an effective mechanism to 

prevent the random modification of abundant lysine residues in other proteins. 

Since its discovery, research on lysyl oxidase has been conducted almost exclusively in 

mesenchymal cell types such as vascular smooth muscle cells in blood vessels, osteoblasts in 

cartilage or fibroblasts {reviewed in Kagan & Li, 2003}. These cell types, reside within the 

connective tissue and are traditionally known to produce and secrete most of the extracellular 

matrix proteins, such as collagen and elastin, into the surrounding stroma (Figure 9) {Gordon & 

Olsen, 1990}. Originally, it was believed these cell types may be the only source producing matrix 
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proteins for the tissue stroma. However, accumulating evidence in the 1970s suggested that matrix 

proteins are not exclusively synthesized by mesenchymal cell types.

Figure 8. Space-filling model  of the sequences adjacent to the lysine and tyrosine  that form the  LTQ 
cofactor within the catalytic site of LOX. 
The square highlights the covalent link between Lys314 and Tyr349 in rat  LOX. Shown in red are anionic 
residues such as glutamine and asparagines and in dark blue two cationic arginines. All remaining amino 
acids are highlighted in magenta (from Lucero & Kagan, 2006).

Figure 9. Schematic depiction of a fibroblast secreting precursors of collagen and elastin. 
Fibroblasts are residential cells of the connective tissue. They synthesize and secrete typical matrix proteins 
such as collagen and elastin precursors. After secretion into the extracellular space these proteins assemble 
into their mature fibrillar structure (from Liebich, 1993).
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Hay and colleagues were the first to demonstrate that epithelial cells can produce and secrete 

fibrillar collagen into the tissue stroma {Dodson & Hay, 1971}. In subsequent years it was well 

established that  many epithelial tissues contribute significant amounts of diverse matrix proteins to 

the stromal compartment {Hay, 1979}. Nevertheless, until today  connective tissue research focuses 

primarily on mesenchymal cell types and so does lysyl oxidase research.

Although LOX expression has been detected in several epithelial tissues by immunohistochemistry, 

its potential role in epithelial cells has never been investigated. In recent studies LOX protein 

expression was observed in epithelial cell layers of the skin, kidney, liver and in reproductive 

organs such as the uterus and placenta {Hayashi et al., 2004; Noblesse et al., 2004; Fogelgren et al., 

2005}. Some of the stainings imply intracellular localization of LOX but it remains unclear whether 

intracellular signals detected by  LOX antibodies correspond to the proenzyme or to the mature 

form. However, because there is evidence for expression of LOX in epithelial tissues, it would be 

interesting to probe into the molecular function of LOX in epithelial cells.

3. LOX in cancer: tumor suppressor versus metastasis promoter
Lysyl oxidase research has traditionally  focused on its matrix function within the connective tissue. 

However, one additional area of major interest arose in the early 1990s and suggested that LOX 

may also act  as a tumor suppressor gene. The first  evidence came already  from a study  a few years 

earlier where Kivirikko and colleagues observed decreased LOX activity in cancer cell lines of 

several sarcomas {Kuvianemi et al., 1986}. Around the same time when the LOX gene was cloned, 

Friedman and colleagues identified a gene that was not expressed in ras-transformants of NIH 3T3 

fibroblasts but re-appeared in spontaneous revertants after prolonged interferon treatment {Contente 

et al., 1990}. Further investigation revealed that this gene, which was given the name ras-recision 

gene (rrg), was identical to LOX {Kenyon et al., 1991; Mariani et al., 1992}. These findings led to 

the hypothesis that LOX acts as a phenotypic suppressor of the ras oncogene. Subsequent studies 

demonstrated that LOX expression is downregulated in several malignantly transformed human cell 

lines {Hamalainen et al., 1995}. Decreased LOX expression was also observed in gastric, prostate 

and colorectal cancer tissues {Ren et al., 1998; Csiszar et  al. 2002, Kaneda et al. 2004}. However, 

these studies did not investigate whether the decrease in LOX expression was related to ras-

transformation in the corresponding tumor tissue. In fact, two reports indicated that loss-of-

heterozygosity  due to chromosomal aberrations in tumor cells was the cause for down-regulation of 

LOX expression rather than transformation by the ras oncogene {Csiszar et al., 2002; Kaneda et al., 
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2004}. Until today the exact mechanism(s) underlying the down-regulation of LOX in ras-

transformed cells remains elusive. Although numerous consensus sequences for binding sites of 

transcription factors were identified within the promoter region of LOX, so far none of these have 

been linked mechanistically to decreased LOX mRNA levels in ras-transformed cells {Hamalainen 

et al., 1995; Csiszar et al., 1996}. However, DNA methylation of the LOX gene has been shown in 

ras-transformed fibroblasts as well as in gastric cancer tissues suggesting epigenetic inhibition of 

LOX expression {Contente et al., 1999; Kaneda et al., 2004}. 

Evidence for a tumor suppressor role of LOX came also from other areas of research. Di Donato 

and colleagues demonstrated that knockdown of LOX in normal rat kidney fibroblasts by stable 

transfection of antisense constructs resulted in a transformed phenotype of these cells, that  was 

characterized by anchorage-independent growth, reduced cell-matrix attachment and most 

importantly increased ras-expression {Giampuzzi et al., 2001}. In addition, these cells proved 

highly  tumorigenic in nude mice. Subsequent studies provided evidence the transformed phenotype 

in cells of this model system was mediated by  nuclear accumulation of beta-catenin in concert  with 

up-regulation of cyclin D1 (Giampuzzi et al., 2003; Giampuzzi et al., 2005}. In contrast, the 

phenotype in ras-transformed NIH 3T3 fibroblasts seems to be mediated, at least partially, by the 

transcription factor NF-κB as ectopic LOX expression inhibited NF-κB activity  indirectly through 

upstream signaling pathways that have not been clarified yet {Jeay et al., 2003}. More recently, 

Trackman and colleagues made the interesting observation that the phenotypic reversion of ras-

transformed fibroblasts was independent of LOX catalytic activity. Further investigation revealed 

that the cleaved propeptide and not the mature enzyme inhibits ras-mediated transformation 

{Palamakumbura et al., 2004}. Subsequent studies using a mice Her-2/neu breast cancer model 

demonstrated that the LOX-propeptide inhibits Her-2/neu-driven transformation in these tumor 

cells, as well as tumor growth in nude mice and invasive properties {Min et al., 2007}. Her-2/neu is 

a member of the EGF receptor family and upstream activator of ras that has been found 

constitutively active in many  breast cancers {Yarden & Sliwkowski, 2001}. In addition, ectopic 

expression of the LOX propeptide in lung and pancreatic cancer cells has been shown to inhibit 

their transformed phenotype via Bcl-2, a target gene of NF-κB {Wu et al., 2007}. 

On the other hand, there has been evidence accumulating in recent years that LOX may also act as a 

metastasis promoter during cancer progression. Gene expression profiling of cancer cells reflecting 

different stages of the disease showed a significant increase of LOX expression when tumors 

acquire a more invasive phenotype and start to metastasize distant tissue sites. 
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While comparing gene expression profiles in human breast carcinoma cell lines from different 

disease stages by differential display  analysis, Kirschmann and colleagues observed strongly 

elevated LOX mRNA levels in invasive breast cancer cells compared to non-invasive cell lines 

{Kirschmann et al., 1999}. Similarily, LOX was detected in a panel of genes up-regulated in renal 

cell carcinomas which were in particular aggressive and resistant to chemo- and radiation therapy 

{Stassar et  al., 2001}. Strongly increased expression of LOX in invasive compared to non-invasive 

breast carcinoma cells was later also confirmed in microarray and proteomic expression profiling 

studies {Nagaraja et al., 2006; Mbenkui et al., 2007}. The first  mechanistic link between LOX and 

cancer cell invasion came from a study  showing that over-expression of LOX in a non-invasive 

breast cancer cell line resulted in a two-fold increase of invasiveness that was reversible upon 

treatment with the LOX-specific inhibitor BAPN in a dose-dependent manner {Kirschmann et al., 

2002}. Similarily, antisense knock-down or BAPN-mediated inhibition of endogenous LOX in 

invasive breast cancer cells greatly  reduced their invasive potential {Kirschmann et al., 2002}. 

Since BAPN treatment abolished invasiveness, these findings suggested that LOX-facilitated 

invasion depends on its catalytic activity. Further investigation revealed that LOX promotes breast 

cancer cell migration via a hydrogen peroxide-mediated mechanism involving focal adhesion kinase 

(FAK) and Src kinase signaling pathways {Payne et al., 2005}.

In addition, LOX expression was found elevated in hypoxic tumor cells that were in particular 

aggressive and invasive {Denko et al.; 2003}. Hypoxia is a characteristic feature of tumors > 1 mm 

in diameter and inflicts a selective pressure on tumor cells favoring angiogenesis and invasion of 

the tissue environment. Clinically, hypoxia is associated with poor distant metastasis-free survival 

in patients {Hockel & Vaupel, 2001}. Detailed analysis in breast carcinoma cells demonstrated that 

LOX expression is up-regulated under hypoxic conditions by the transcription factor hypoxia-

inducible factor 1 (HIF-1) {Erler et al., 2006}. Furthermore, the authors showed that inhibition of 

LOX eliminates metastasis of orthotopically grown breast carcinomas in mice. The data indicated 

that LOX facilitated breast cancer cell invasion in this hypoxic tumor model through focal adhesion 

kinase signaling as suggested by other studies under normoxic conditions earlier as well. A follow-

up study  complemented these findings with the notion that hypoxia alone leads only to an increase 

in LOX expression but that  subsequent reoxygenation is required for LOX catalytic activity, which 

in turn is essential for the induction of migratory properties during cancer cell invasion {Postovit et 

al., 2007}. Finally, most recently LOX was also identified as a critical factor for cellular 

invasiveness in malignant astrocytes. 

Introduction

17



In line with previous observations in breast carcinomas, increased LOX expression and catalytic 

activity seems to be critical for invasive cell behavior in astrocytomas, which account for the most 

aggressive form of brain tumors {Laczko et al., 2007}.

A general observation is that LOX seems to play a role when tumors start to form metastases at 

distant tissue sites. As a prerequisite, cells within the primary tumor have to loose critical epithelial 

characteristics and have instead to acquire migratory properties that allow them to spread away 

from the tumor mass {Fidler, 2003}. Indeed, research over the last  years has shown that malignant 

cells of primary tumors can undergo such a phenotypic change and this process is referred to as 

epithelial-mesenchymal transition (EMT) {Thiery, 2002; Huber et al., 2005}. In the field of 

developmental biology EMT has been already recognized for a long time as a critical process for 

metazoan organ development (Figure 10) {Hay, 2005}. During EMT, transcriptional programs 

become activated that lead to down-regulation of cell-cell adhesion molecules, such as E-cadherin, 

and up-regulation of mesenchymal marker proteins, such as vimentin or fibroblast-specific protein 1 

(FSP-1) (Table 2). Researchers have discovered that often the same transcriptional programs 

become active during cancer metastasis {Kang & Massagué, 2004}. Therefore, LOX could be 

possibly one of the many target genes being up-regulated during EMT reprogramming of cancer 

cells.

Up-regulated genes Down-regulated genes

Vimentin E-cadherin
Fibroblast-specific protein 1 (FSP-1) Occludins

Snail Claudins
Slug Desmoplakin

α-mooth muscle actin Cytokeratins

Table 2. Genes and their respective proteins that are up- or down-regulated during EMT.

Interestingly, the notion that LOX can induce cell motility is not completely  new. Studies in the late 

1980s showed that BAPN treatment of sea urchin embryos in the blastula stage prevented them 

from entering gastrulation {Wessel & McClay, 1987; Butler et al., 1987}. Gastrulation is a 

developmental process that is characterized by massive cell migration of cell clusters within the 

embryo and results in the formation of the three germ layers. Around the same time, wound healing 

studies demonstrated that migration of fibroblasts into fibrin clots was inhibited by BAPN in a 

dose-dependent manner {Nelson et al., 1988}. 
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The first direct evidence that LOX can induce cell migration followed almost  a decade later. 

Lazarus et al. could show that addition of purified mature LOX to human monocyte cultures in 

subnanomolar concentrations resulted in a chemotactic response, which was prevented by heat 

inactivation of the enzyme or inhibition with BAPN {Lazarus et al., 1995}. 

Figure 10. Epithelial-mesenchymal transition (EMT) during development and cancer. 
EMT  occurs first  during gastrulation of the embryo when epiblasts of the blastula start  to migrate into the 
hollow lumen forming the primary mesenchyme (top left). Mesenchymal-epithelial transition of the primary 
mesenchyme results in the secondary epithelium, which can undergo again EMT  during organ development 
to differentiate into specialized cell types (center and bottom). The secondary epithelium can also give rise to 
epithelial tumors, that can undergo EMT during the formation of metastases at distant tissue sites. (top right). 
Recently, it was also discovered that EMT  of the secondary epithelium can result in formation of fibroblasts 
and pericytes during organ fibrosis (bottom right). During EMT  in both, cancer and fibrosis, the generated 
cells express the mesenchymal marker protein FSP-1 (from Kalluri & Neilson, 2003).
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Finally, Kagan and colleagues demonstrated that LOX induces chemotaxis in vascular smooth 

muscle cells in a hydrogen peroxide-dependent manner, providing more evidence that catalytic 

activity of LOX is required to induce the chemotactic response {Li et al., 2000}. Thus, LOX-

induced cell migration seems not to be limited to malignantly transformed cells but  can also occur 

in diverse normal non-transformed cell types.

The question arises of how the apparent paradox of LOX being both, a tumor suppressor and 

metastasis promoter, can be reconciled. Most of the data pointing towards a tumor suppressor role 

of LOX was obtained from studies with either transformed fibroblasts or sarcomas, which are both 

of mesenchymal origin. In contrast, data indicating LOX as a metastasis promoter result  exclusively 

from studies with carcinoma cells, which are of epithelial origin. It is possible that the opposing 

effects of LOX observed in malignant mesenchymal versus epithelial cells is at least in part the 

result of different gene expression programs in these cell types due to their different ontological 

background. However, most recent studies demonstrating the LOX pro-peptide causes reversion of 

the ras-transformed phenotype provide for the first time more detailed molecular evidence for the 

tumor suppressor effect of LOX not only in mesenchymal but also in cancer cells of epithelial 

origin {Palamakumbura et al., 2004; Min et al., 2007; Wu et al., 2007}. In contrast, the metastasis 

promoting effect of LOX in carcinomas seems to be clearly linked to the mature enzyme and 

requires catalytic activity, although the potential substrate(s) remain unknown {Payne et  al., 2005; 

Erler et al., 2006}. Genomic mutations and gene expression patterns among cancer cells display a 

great diversity. Therefore, the LOX propeptide may have the ability to counterbalance the tumor 

promoting effect of the mature protein only  in cancer cells with aberrant ras-signaling. But this 

compensation may be not effective in cells that are transformed independently of ras-signaling, or 

in later stages of malignancies, for example under hypoxic conditions. This hypothesis is supported 

indirectly by a recent study  that suggested fibroblasts may be not appropriate to investigate ras 

oncogenic activation in tumors of epithelial origin (carcinomas) because they do not respond the 

same way to ras-transformation as epithelial cells {Skinner et al., 2004}. 

So far it is completely unknown whether the function of LOX in normal epithelial cells is 

potentially associated with its metastasis-promoting effect  in progressive stages of carcinomas. 

Detailed knowledge about the role of LOX in normal epithelia could therefore complement and 

facilitate efforts to characterize its role in cancer.
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4. Dissertation hypothesis and specific aims
LOX is traditionally  known as a copper-dependent enzyme that  catalyzes the initial step  of collagen 

and elastin crosslinking within the extracellular matrix. LOX is synthesized as a proenzyme that is 

secreted into the extracellular space where it is proteolytically processed into the mature protein and 

catalytically  active enzyme. LOX catalyzes the oxidative deamination of peptidyl lysine residues in 

fibrillar collagen and elastin to allysine, which can then spontaneously condense with other lysine 

or allysine residues of neighboring fibrils to form covalent cross-linkages. The formation of cross-

links in collagen- and elastin fibers is essential for connective tissue integrity. Until today the role of 

LOX in the ECM has been studied almost exclusively in mesenchymal cell types that reside within 

the tissue stroma. Although epithelia face the ECM  with their basal surfaces, it is still unclear 

whether epithelial cells secrete active LOX protein into the ECM and whether epithelial LOX may 

have additional - so far unknown - functions as well. Over the last two decades, extensive research 

has also revealed a context-dependent role for LOX in cancer, either as a tumor suppressor or as a 

metastasis promotor. In ras-transformed cells the LOX propeptide seems to exhibit a tumor 

suppressive function. In contrast, during cancer progression the active LOX enzyme is capable to 

promote invasion of primary tumor cells. Interestingly, most cancers are carcinomas, tumors of 

epithelial origin. The question emerges whether and how LOX function in normal epithelial cells 

may be altered during the course of malignancies.

In all multicellular organisms, epithelial tissues serve as critical barriers and communication 

windows to the external environment. The goal of this PhD project was to investigate the role of 

LOX in epithelial cells and its potential significance for connective tissue homeostasis and cancer.

Specific Aim 1. Establish an in vitro model system to study LOX in epithelial cells.

a) Characterize extra- and potentially intracellular LOX expression

b) Determine whether LOX expression is dependent on the differentiation state of epithelial 

cells

c) Test whether epithelial cells produce catalytically active LOX enzyme

Specific Aim 2. Recapitulate characteristic features of cancer progression in vivo using the epithelial 

in vitro model.

a) Establish an assay reflecting hallmarks of cancer invasion

b) Analyze changes of LOX expression between normal and cancer-like states
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Specific Aim 3. Analyze the effect of LOX over-expression in normal epithelial cells.

a) Design and generate mammalian LOX expression constructs

b) Stable transfection of LOX into normal epithelial cells

c) Characterize exogenous LOX expression

d) Analyze potential changes of the epithelial phenotype in stable cell lines
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II. Material and methods

1. Cell Culture
All cell culture work was performed under a sterile hood. In this study  two mammalian cell lines of 

epithelial origin were grown as adherent monolayers in tissue culture flasks. Cells were cultured at 

37°C in a humidified atmosphere supplemented with 5% CO2 content.

MDCK II cells

Madine Darby Canine Kidney II (MDCK II) cells were cultured in DMEM  low Glucose 

(Invitrogen) supplemented with 10 % (w/v) fetal bovine serum (Mediatech), 1 x penicillin/

streptomycin (Invitrogen). After reaching 80 % confluency the culture medium was aspirated and 

cells were rinsed with sterile PBS. Subsequently, cells were detached in Trypsin/EDTA solution 

(Invitrogen) and split in a ratio of 1:10 to 1:15 into new cell culture flasks.

MCF-10A cells

MCF-10A (human mammary epithelial) cells were grown in DMEM/F12 (Invitrogen) 

supplemented with 5 % (w/v) horse serum (Invitrogen), 20 ng/ml EGF (Peprotech), 500 ng/ml 

hydrocortisone (Sigma), 100 ng/ml cholera toxin (Sigma), 10 µg/ml insulin (Sigma) and penicillin/

streptomycin (Invitrogen). At 80 % confluency cells were split in a ratio of 1:6 to 1:10 into new cell 

culture flasks.

2. RNA purification
Total RNA was isolated from cells using the RNeasy® Mini Kit from Qiagen. This protocol is 

based on the selective binding of RNA to a silica membrane in the presence of chaotropic salts and 

allows purification of RNA molecules longer than 200 nucleotides thereby eliminating small rRNAs 

and tRNAs that make up to 15-20 % of total RNA. 

Initially, cells were lysed in a highly  denaturating salt buffer containing guanidine-thiocyanate, 

which inactivates RNases thereby  ensuring isolation of intact RNA. By using a non-ionic detergent 

in the lysis buffer, nuclei remained intact during cell lysis and were removed during subsequent 

homogenization minimizing potential DNA contamination of the samples. Ethanol was then added 

to allow selective binding of cytoplasmic RNA to a silica membrane whereas contaminants were 

washed away during additional steps. Finally, almost pure RNA was eluted into RNase-free water. 
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RNA concentration was determined by OD 260 measurement with a Nanodrop™ 

spectrophotometer. RNA was stored at -80°C.

3. cDNA synthesis
Reverse transcriptases were initially discovered in the 1970s as enzymes from retroviruses. Because 

of their unique ability  to synthesize DNA from RNA templates these viral DNA polymerases have 

become an important tool for the analysis of gene expression at the mRNA level. After isolation of 

cellular mRNA they are commonly used to generate copy DNA for subsequent PCR amplification 

of a specific gene of interest. 

First-strand cDNA was synthesized from total RNA preparations with SuperScript™II Reverse 

Transcriptase Kit from Invitrogen. SuperScript™II RT has been engineered to retain the full DNA 

polymerase activity of Mouse-Moloney Leukemia Virus (M-MLV) RT combined with a reduced 

intrinsic RNase H+ activity. Therefore SuperScript™II RT has greater yields and improved 

capabilities to copy long RNA templates in comparison to many viral reverse transcriptases.

1-2 µg of total RNA was used as template for first-strand cDNA synthesis reactions. Briefly, RNA 

was denaturated at 65°C to eliminate potential secondary structures and then incubated with Oligo 

(dT) 12-18 primer to allow selective amplification of mRNA only. Through addition of an RNase 

inhibitor to the reaction mix RNA templates were further protected from enzymatic degradation 

resulting from potential RNase contamination in the samples that  could possibly affect RNA 

integrity. Then first strand cDNA synthesis was performed in the presence of SuperScript™II RT at 

42°C for 50 minutes. In the final step the RNA template was removed from the cDNA:RNA hybrid 

molecule by digestion with RNase H at 37°C for 20 minutes. cDNA was stored at -20°C. 

4. Polymerase chain reaction (PCR)
In the 1980s Kary Mullis and colleagues invented a method that allows the synthetic amplification 

of DNA in vitro {Mullis et al., 1986}. This method was called polymerase chain reaction (PCR) and 

has revolutionized modern molecular biology because of its capability to selectively amplify DNA 

from tiny amounts of starting material. The principle is fairly simple: DNA template, primer pair, 

buffer, nucleotides and DNA polymerase are mixed in a test tube where a specific section of the 

template DNA (defined by the primer pair) is amplified in repetitive cycles. One reaction cycle 

encompasses the following steps:
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1. Denaturation of the double-stranded DNA template molecule (denaturation)

2. Annealing of the primer pair to the template sequence (primer annealing)

3. DNA synthesis (synthesis)

For PCR reactions in this study Deep VentR™ Polymerase (New England Biolabs) was used. Deep 

VentR™ Polymerase is a genetically modified thermophilic DNA polymerase with 3´→ 5´ 

proofreading exonuclease activity for high fidelity. PCR was performed to amplify gene-specific 

templates from first-strand cDNA for gene expression analysis on the mRNA level.

The reaction mix for each sample was assembled as follows:

• 5 µl 10 x Thermopol buffer (New England Biolabs)
• 1 µl sense primer (20 µM)
• 1 µl antisense primer (20 µM)
• 4 µl 2.5 mM dNTP mix (New England Biolabs)
• 1 µl template DNA
• 0.5 µl (2 U/µl) Deep VentR™Polymerase (New England Biolabs)
• 37.5 µl dH2O (nuclease-free)

------------------------------------------------------------------------------
            50 µl total volume

The cycle parameters were adjusted as follows for a total of 35 cycles:

• 5 min. at 95°C (start)
------------------------------------------------------------

• 30 sec. at 95°C
• 30 sec. at 59-62°C (depending on primer)
• 45 sec. at 72°C

------------------------------------------------------------
• 10 min. at 72°C (end)
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Gene Primer Primer Sequence Size of amplified 
fragment

canine LOX sense 5’-AATGGCACAGTTGTCACCAA-3’ 289 bp

antisense 5’-CTGGGGTTCACACTGACCTT-3’

 human LOX sense 5’-GACGGCATGGTGGGCGACGAC-3’ 572 bp

antisense 5’-GGTATCATAACAGCCAGGACTCAA-3’

human LOX sense 5’-GATCCTGCTGATCCGCGACAA-3’ 368 bp

antisense 5’-GGGAGACCGTACTGGAAGTAGCCAGT-3’

human β-actin sense 5’- GGAAATCGTGCGTGACATTA-3’ 372 bp

antisense 5’-GGAGCAATGATCTTGATCTTC-3’

Table 3: Primers for RT-PCR detection of LOX in MDCK II cells and MCF-10A cells.

The primers in Table 3 (see above) were used to analyze LOX mRNA expression in MDCK II cells 

and MCF-10A cells. The first human LOX primer amplified due to the high sequence homology, 

both canine and human LOX. This primer was utilized to quantify canine LOX mRNA levels by 

means of copy numbers using amplification of a human LOX plasmid as a reference (see Results).

5. Cloning of lysyl oxidase constructs

5.1 PCR and agarose gel electrophoresis of amplified DNA fragments
Full-length LOX constructs (with and without V5-tag) were previously generated in our laboratory 

and had only to be subcloned into the pcDNA3.1(-) vector from Invitrogen or the pEGFP-N1 vector 

from BD Biosciences. Constructs carrying the sequence for mature LOX were engineered from the 

full-length constructs by PCR amplification with restriction sites, Kozak sequence, start and stop 

codons designed into the primer sequence (Table 4).

Construct Primer Primer sequence Restriction Site

pcDNA-LOX30 sense 5’-CGGAATTCGTTATGGACG
ACCCTTACAACCCCTAC-3’

EcoRI

antisense 5’-CCGGGATCCCTAAT
ACGGTGAAATTGTGCA-3’

BamHI

pcDNA-LOX30-V5 sense 5’-CGGAATTCGTTATGGACG
ACCCTTACAACCCCTAC-3’

EcoRI

antisense 5’-CGGGATCCTCAACG
CGTAGAATCGAGACC-3’

BamHI

pEGFP-LOX30 sense 5’-CGGAATTCGTTATGGACG
ACCCTTACAACCCCTAC-3’

EcoRI

antisense 5’-CGGATCCGGA
TACGGTGAAAT-3’

BamHI

Table 4: PCR primers for the generation of LOX expression constructs.
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The amplified DNA fragments were separated by  agarose gel-electrophoresis. Briefly, 10 µl of 6 x 

loading dye (0.25 % (w/v) bromophenol blue, 40 % (w/v) sucrose in H2O) were added to each 50 µl 

PCR reaction. 15 µl aliquots of each sample were then separated on 1 % agarose gels in TE-buffer 

containing ethidium bromide (0.5 µl EtBr/10 ml TE-buffer) at 100 V for 45 to 60 minutes.  Log-2 

DNA ladder from New England Biolabs was used as a molecular weight marker. The separated 

DNA fragments were visualized with a UV transilluminator connected to a Kodak EDAS 290 

Imaging System.

5.2 DNA purification from agarose gels
DNA fragments were purified from agarose gels using the Geneclean Spin Kit from Q-Biogene. 

DNA fragments were excised from agarose gels under UV illumination with a razor blade and then 

melted for 5-10 minutes in 400 µl glassmilk at 55°C.  The mixture was incubated for 5 min. at room 

temperature to allow DNA binding to the silica particles. After two washes with EtOH-containing 

wash buffer the DNA was eluted from the column.

5.3 Restriction enzyme digestion
Purified DNA fragments were digested with EcoRI and BamHI restriction enzymes (New England 

Biolabs) to create sticky ends for ligation into the vector. 20 µl reaction mixes were assembled as 

follows and incubated for 30 min. at 37°C:

• 11 µl gel-purified DNA

• 2 µl 10 x restriction digest buffer (New England Biolabs)

• 1 µl EcoRI [20 U/µl] (New England Biolabs)

• 1 µl BamHI [20 U/µl] (New England Biolabs)

• 5 µl dH2O (nuclease-free)
--------------------------------------------------------------------------------
            20 µl total volume

To stop the reaction samples were placed on ice for 2 minutes. To eliminate restriction enzymes 

from the samples for downstream processing (e.g. DNA ligations) DNA was purified again with the 

Geneclean Spin Kit (see above).
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5.4 DNA ligations
The digested LOX fragments were ligated into the corresponding plasmid vector (pcDNA3.1(-) or 

pEGFP-N1) in a 10 µl reaction with an insert/vector ratio of ~ 4:1. The reaction mix was incubated 

at room temperature for 20 minutes.

• 3 µl dH2O (sterile)

• 4 µl LOX insert

• 1 µl plasmid vector

• 1 µl 10 x ligase buffer (New England Biolabs)

• 1 µl T4 DNA ligase [400 U/µl] (New England Biolabs)
---------------------------------------------------------------------
            10 µl total volume

5.5 Bacterial transformation
Transformation of plasmid DNA into competent XL-1 Blue E. coli bacteria (Stratagene) was 

performed using the heat-shock method. Competent cells were thawed for 10 minutes on ice. 100 µl 

aliquots of competent cells per transformation were transferred to a sterile tube. After addition of 

1.7 µl 1.42 M β-mercaptoethanol the mix was incubated for 10 minutes on ice. Then 5 µl of the 

ligation reaction were added and incubated for 30 minutes on ice. The cells were now heat-shocked 

at 42°C for 45 seconds and placed on ice for 2 minutes. To allow expression of the antibiotic 

resistance gene on the plasmids, 900 µl of LB-medium were added to the cells and then incubated 

on a shaker (250 rpm) at  37°C for 1 hour. Finally, 200 µl of transformed cells were spread on LB-

agar plates containing the corresponding antibiotic (ampicillin for pcDNA3.1(-) vector and 

kanamycin for pEGFP-N1 vector) and incubated overnight at 37°C. Single colonies were picked 

after 15-18h the next day with a sterile wire loop and were grown overnight in 30 ml LB-media at 

37°C/250 rpm for plasmid purifications the next day. 

5.6 Plasmid purification
Plasmid purifications for transfection-grade plasmid DNA were performed using the “QIAfilter 

Plasmid Midi Kit” from Qiagen. The principle of this plasmid purification protocol is based on a 

modified alkaline lysis procedure, followed by binding of plasmid DNA to an anion-exchange resin 

under appropriate low-salt and pH conditions. 
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RNA, proteins, dyes and low-molecular-weight impurities are removed by a medium-salt  wash. 

Finally, plasmid DNA is eluted in a high-salt buffer and then concentrated and desalted by 

isopropanol precipitation.

Bacterial cells were harvested by centrifugation at 4000 rpm for 15 min. at 4°C. The bacterial pellet 

was resuspended in 4 ml Buffer P1 (50 mM Tris-HCL, pH 8.0; 10 mM EDTA; 100µg/ml RNase A). 

Cells were lysed for 5 min. at room temperature through addition of 4 ml Buffer P2 (200 mM 

NaOH; 1 % (w/v) SDS). Bacterial lysis was stopped and genomic DNA, proteins and cell debris 

were precipitated by addition 4 ml of neutralizing Buffer P3 (3 M potassium acetate, pH 5.0). The 

neutralized bacterial lysate was then transferred into a QIAfilter Cartridge and incubated at room 

temperature for 10 minutes. After equilibrating a Qiagen-tip 100 column with 4 ml of Buffer QBT 

(750 mM NaCl; 50 mM  MOPS, pH 7.0; 15 % (w/v) isopropanol; 0.15 % (w/v) Triton-X-100) the 

cell lysate was filtered into the column and allowed to enter the resin by gravity flow. The column 

was washed twice with 10 ml Buffer QC (1.0 M  NaCl; 50 mM MOPS, pH 7.0; 15 % (w/v) 

isopropanol) before the DNA was eluted with 5 ml Buffer QF (1.25 M  NaCl; 50 mM  Tris-HCl, pH 

8.5; 15 % (w/v) isopropanol). The eluted plasmid DNA was precipitated with 3.5 ml isopropanol 

and centrifuged at 4000 rpm for 60 minutes at  4°C. The DNA pellet was washed twice with 2 ml 70 

% (w/v) EtOH and then allowed to air-dry. Purified plasmid DNA was redissolved in 500 TE buffer 

(pH 8.0). To determine the yield, concentration of the plasmid DNA was determined by  OD 260 

measurement with a Nanodrop™ spectrophotometer.

6. Site-directed mutagenesis
A mature LOX construct was generated where the tyrosine at position 355 was converted into 

phenylalanine through exchange of one base in the codon from TAT to TTT. This point mutation 

yields in a catalytically inactive enzyme because tyrosine 355 is essential for formation of the lysyl 

tyrosyl quinone (LTQ) cofactor of LOX. Site-directed mutagenesis in vitro was performed using the 

“QuikChange II Site-directed Mutagenesis Kit” from Stratagene. 

The method is basically a mutagenic primer-directed replication of both plasmid strands with 

PfuUltra™ high fidelity DNA polymerase. The procedure utilizes a supercoiled double-stranded 

DNA vector with an insert of interest and two synthetic oligonucleotide primers, both containing the 

desired mutation. 
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The oligonucleotide primers, each complementary to opposite strands of the vector, are extended 

during temperature cycling by  PfuUltra™ high fidelity DNA polymerase, without primer 

displacement. Extension of the oligonucleotide primers generates a mutated plasmid containing 

staggered nicks. Following temperature cycling, the product is treated with Dpn I. The Dpn I 

endonuclease is specific for methylated and hemimethylated DNA and is used to digest the parental 

DNA template. DNA from E. coli is dam methylated and therefore susceptible to Dpn I digestion 

whereas the mutated newly synthesized strands are not. The nicked vector DNA containing the 

desired mutations is then transformed into XL1-Blue competent cells.

As a template served the pcDNA-LOX30(-V5) construct(s) carrying the sequence for the mature 30 

kD LOX. Mutagenic primers carrying the point mutation TAT (tyrosine) to TTT (phenylalanine) 

were designed for, both the sense and antisense strand of the vector (Table 5).

Construct Primer Primer sequence
pcDNA-LOX30-Y355F(-V5) sense 5’-GGCTGTTATGATACCTTTG

GTGCAGACATAGACTGCC-3’
antisense 5’-GGCAGTCTATGTCTGCAC

CAAAGGTATCATAACAGCC-3’

Table 5: Mutagenic primers for generation of mutated mature LOX constructs.

The reaction mix was assembled as outlined below:

• 5 µl 10 x reaction buffer
• 2.5 µl plasmid DNA template (20 ng/µl dilution from plasmid stock)
• 5 µl sense primer (2 µM)
• 5 µl antisense primer (2 µM)
• 1 µl dNTP mix (10 mM)
• 1 µl (2.5 U/µl) PfuUltra DNA polymerase
• 30.5 µl dH2O (nuclease-free)

---------------------------------------------------------------------------------------------------------
             50 µl total volume

The vector containing the mutated sequence of mature LOX was then synthesized during 

temperature cycling as depicted in Table 4. After completion the reaction was placed on ice for 2 

minutes to cool the reaction mix below 37°C.
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Cycles Temperature Time
1 95°C 30 seconds
12 95°C 30 seconds12

55°C 1 minute
12

68°C 6 minutes

Table 6: Cycle parameters for synthesis and amplification of the  mutated pcDNA-LOX30-Y355F 
construct.

To digest  and eliminate the non-mutated template plasmid 1 µl of Dpn I restriction enzyme (10 U/

µl) were added to the reaction mixture and incubated at 37°C for 1 hour. The newly generated 

mutated pcDNA-LOX30-Y355F(-V5) vector was then transformed into XL-1 Blue competent cells 

and the cloning process completed as described for the constructs above.

7. Generation of stable MDCK cell lines
To generate stable cell lines MDCK II cells were transfected with the generated LOX constructs 

using Lipofectamine reagent from Invitrogen. Lipofectamine consists of a cationic lipid formulation 

that is widely used to transfect plasmid DNA into cells and to force exogenous expression of a gene 

of interest. The exact molecular mechanism is not completely understood but there is evidence that 

cationic lipid vesicles form stable complexes with DNA. These complexes are delivered into the 

cell by fusion of the DNA-lipid vesicles with the plasma membrane and can then subsequently  enter 

the nucleus by an unknown mechanism to allow gene expression from the transfected plasmid 

DNA.

MDCK II cells were seeded in six-well plates overnight so that monolayers reached 60-70 % 

confluency the next day. For each transfection 1 µg of purified plasmid DNA was mixed with 

Lipofectamine in a ratio of 1:3 in a total volume of 500 µl in Opti-MEM® reduced serum medium 

(Invitrogen) and incubated at room temperature for 20 minutes to allow DNA-lipid complex 

formation. The regular cell culture medium was removed and cells were washed in sterile PBS to 

eliminate serum and antibiotics from the culture. The DNA-Lipofectamine mixture was added to 

the cells and after incubation at 37°C for 4 h the transfection mixture was replaced by normal cell 

culture medium. Stable expressing clones were selected starting 24 h after transfection for two 

weeks by addition of 500 µg/ml G418 (Geneticin) to the normal culture medium. The selection 

medium was replaced every two days to ensure proper nutrient supply and active antibiotics. 
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After 7-10 days most of the cells that were not carrying the transfected construct died and stable-

expressing clones became evident as isolated growing clusters of cells. Stable clones were brought 

up to T75 flasks and freezing stocks were generated prior to gene expression analysis and further 

experiments. Usually, each transfection resulted in at least 5-10 stable clones which were 

maintained as polyclonal cultures under the continuous selection pressure of G418.

8. Preparation of protein extracts from whole cell lysates
Crude cytoplasmic fractions were prepared from whole cell lysates using a mild detergent-based 

method. As a lysis buffer served “M-PER Mammalian Protein Extraction Reagent” (Pierce) 

containing a proprietary detergent formulation in 25 mM  bicine buffer (pH 7.6) including “Halt 

Protease Inhibitor Cocktail” (Pierce). 

The whole protein extraction procedure was performed on ice. First, the cell culture medium was 

aspirated and monolayers were washed once with PBS. After addition of the lysis buffer cells were 

detached using a plastic cell scraper. The mixture of detached cells and lysis buffer was transferred 

into a microcentrifuge tube and incubated for 10 minutes to allow efficient cell lysis. Cell debris 

and nuclei were pelleted at 3500 rpm for 10 minutes. The supernatant containing a crude 

cytoplasmic fraction was transferred into a new tube and aliquots were taken to measure protein 

concentration. SDS sample buffer (final concentration: 50 mM  Tris-HCl pH 6.8; 5 % (w/v) 

glycerol; 100 mM Di-thio-threitol; 1 % (w/v) SDS; 0.01 % (w/v) bromo-phenolblue) was added to 

keep proteins in a denatured state and samples were stored at -20°C until further usage.

9. Preparation of protein extracts from conditioned cell medium
For preparation of protein extracts from medium supernatants the regular cell culture medium was 

replaced by  phenol-red-free and serum-free medium 48 h prior to protein harvest to avoid 

interference with measurement of protein concentration and contamination of serum proteins, 

respectively.

The medium supernatant was transferred into a tube and potential cellular contaminations were 

pelleted at 1500 rpm for 2 minutes. The “supernatant” was transferred into a new tube, stored on ice 

and aliquots were taken to measure protein concentration. Because the absolute protein 

concentration in medium supernatants was relatively low, aliquots equivalent to 20 µg of total 

protein each were concentrated by  incubation with 1 µl of “Strataclean Resin” per 100 µl medium 

supernatant on a rocker at 4 °C for 30 minutes. The bound protein on the resin was pelleted for 1 
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min. at full speed and the supernatant subsequently discarded. The pellet  was resuspended in SDS 

sample buffer (50 mM  Tris-HCl pH 6.8; 5 % (w/v) glycerol; 100 mM Di-thio-threitol; 1 % (w/v) 

SDS; 0.01 % (w/v) bromo-phenolblue) and stored at -20°C.

10. Measuring protein concentration with the Bradford Assay
The Bradford Assay takes advantage of the fact that Coomassie brilliant blue G-250 dye forms a 

complex with amino acids of proteins {Bradford, 1976}. Upon complex formation the absorption 

maximum of the Coomassie dye transitions from 465 nm to 595 nm. The OD595 is directly 

proportional to the protein concentration in the solution. 

We used a Bradford Assay that was adapted for microtiter plate format and utilized bovine serum 

albumin (BSA) standards from 5 to 25 µg protein/ml to generate a calibration graph. Aliquots of 

samples from protein extracts were diluted in 160 µl PBS before 40 µl of Bradford reagent were 

added to a total volume of 200 µl. The OD 595 was measured in a Polarstar Optima plate reader 

from BMG Labtechnologies Inc. and the protein concentration was determined based on the 

calibration graph and the dilution factor of the corresponding sample aliquot. Each sample was 

assayed in triplicate to minimize systematic errors.

11. SDS Polyacrylamid Gel-Electrophoresis (PAGE)
Protein extracts of whole cell lysates and conditioned cell medium were separated based on their 

molecular weight using SDS-PAGE. Sodium-dodecyl sulfate (SDS) is a detergent that is able to 

bind and denature proteins thereby forming a SDS-protein complex with constant mass-/charge-

ratio. When applying an electric field the proteins are separated within a polyacrylamide gel matrix 

according to their molecular weight, with smaller proteins running faster relative to bigger proteins. 

Laemmli and colleagues were the first to introduce this method in 1970 {Laemmli, 1970}.

We used the NuPAGE precast gel system from Invitrogen for our SDS-PAGE analyses. Protein 

samples were boiled for 5 minutes in a water bath and then incubated on ice for 2 minutes. Bis-Tris 

buffered 4-12 % gradient gels were loaded with 20 µg of total protein for each sample and also with 

molecular weight protein standards from Invitrogen for SDS-PAGE (SeeBlue Plus2) and for 

subsequent western blot analysis (MagicMark XP). Protein extracts were separated by gel-

electrophoresis at 200 V for 50 minutes.
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12. Western blot analysis
Resolved proteins on SDS-PAGE gels were transferred onto PVDF (Polyvinylidene fluoride) 

membranes by western blotting. The tank blot system “XCell II” from Invitrogen was used for wet 

protein transfer. The SDS-PAGE gel was placed on top of an Immobilon-P PVDF membrane 

(Millipore) inside the tank blot apparatus and submerged in NuPAGE transfer buffer. The proteins 

were then transferred for 90 minutes at 30 V onto the PVDF membrane. Successful transfer of 

proteins was verified by Ponceau-S staining. The blot membrane was now blocked with 5 % (w/v) 

Carnation non-fat dry milk in PBS-T (PBS containing 0.2 % (w/v) Tween-20) for 1 h. The primary 

antibody was incubated for 1 h and after 3 washes in PBS-T the secondary horseradish peroxidase-

coupled antibody was incubated for an additional hour. Prior to chemiluminescence detection with 

ECLplus substrate (Amersham) the blot membrane was thoroughly washed in PBS-T and PBS, 

respectively. Finally, the blot membrane was exposed to x-ray  film for 30 sec. to 5 min. depending 

on the signal intensity. The film was then developed, fixed and air-dried before analysis of the 

detected antibody signals.

13. Immunofluorescence staining
MDCK II cells were seeded overnight on cover-slips in six-well plates and fixed in 2 % para-

formaldehyde for 15 minutes the next day  at approximately  60-70 % confluency. Cells were 

permeabilized in 0.1 % (w/v) Triton-X-100 for 15 minutes and then blocked in 3 % (w/v) BSA for 

30 minutes. Cells were incubated with the primary  antibody for 1 h and then with the fluorophore-

coupled secondary antibody for 45 minutes. To visualize nuclei and the actin cytoskeleton, cells 

were stained in selected experiments with Hoechst 33258 dye and fluorophore-coupled Phalloidin 

in PBS for 20 minutes, respectively. After each of the steps described above, cells were washed 3 

times in PBS. Finally, cover-slips were mounted in anti-fading fluorescence mounting medium 

(Molecular Probes) and stored at 4°C in the dark. Images were recorded with a Zeiss LSM  5 

confocal microscope unit and figures were assembled with Adobe Photoshop 7.0 software.

Material and methods

34



14. Primary antibodies

α-LOX antibody

LOX protein was detected using two rabbit polyclonal antibodies (“DK 1” and “KF 00116”) raised 

against the peptide sequence KYSDDNPYYNYYDTYERPRPGG of human LOX, seven amino 

acids down from the BMP-1 cleavage site (N-terminus of the mature LOX protein) {Hayashi et al., 

2004, Fogelgren et al., 2005}. The antibodies were used at a concentration of 1-2 µg/ml for western 

blot analysis and 10 µg/ml for immunofluorescence stainings.

α-BMP-1 antibody

Bone morphogenetic protein 1 (BMP-1) was detected using a rabbit  polyclonal antibody from 

Affinity Bioreagents that was raised against the CUB-2 domain of human BMP-1. The antibody 

was used at a dilution of 1:5000 for western blot analysis.

α-Fibronectin

Fibronectin was detected using a mouse monoclonal antibody (clone P5F3) from Santa Cruz 

Biotechnology  Inc. that  recognizes the highly conserved adhesive peptide FN CH/1 within the 

carboxy  Hep II region. The antibody  was used at a concentration of 1 µg/ml for western blot 

analysis.

α-E-cadherin antibody

E-cadherin was detected using a mouse monoclonal antibody (clone 36) from BD Biosciences that 

was raised against an epitope at the C-terminus. The antibody was used at  a dilution of 1:2000 for 

western blot analysis and 1:1000 for immunofluorescence stainings.

α-vimentin

Vimentin was detected using a mouse monoclonal antibody (clone) from Chemicon International 

that was raised against the epitope. The antibody was used at a dilution of 1:1000 for western blot 

analysis and immunofluorescence stainings.
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α-GFP

Green fluorescent protein (GFP) was detected using a mouse monoclonal antibody (clone 11E5) 

from Molecular Probes that was raised against native GFP from Aequorea victoria. The antibody 

was used at a dilution of 1:1000 for western blot analysis and immunofluorescence stainings.

α-GAPDH

Glyceraldehyde phosphate dehydrogenase (GAPDH) was detected using a goat polyclonal antibody 

from Acris Antibodies GmbH that  was raised against a C-terminal epitope of human GAPDH. The 

antibody was used at a dilution of 1:1000 for western blot analysis.

α-V5

The V5-tag was detected using a mouse monoclonal antibody  from Invitrogen that was raised 

against the V5-epitope found in P and V proteins of the paramyxovirus SV5. The antibody was used 

at a dilution of 1:2000 for western blot analysis.

α-ZO-1

Zonula occludens protein 1 (ZO-1) was detected using a mouse monoclonal antibody (clone 1520) 

from Chemicon International that was raised against a tight  junction-containing fraction from 

mouse liver. The antibody was used at a dilution of 1:1000 for immunofluorescence stainings.

15. Secondary antibodies
The following list comprises all secondary  antibodies that were used for western blot or 

immunofluorescence experiments throughout this study.

Antibody Application Dilution Company

HRP-coupled anti-rabbit 
IgG

western blot 1:4000 Amersham

HRP-coupled anti-mouse 
IgG

western blot 1:2000 Amersham

HRP-coupled anti-goat 
IgG

western blot 1:20.000 Jackson Laboratories

AF488-labeled anti-rat 
IgG

immunofluorescence 1:1000 Molecular Probes

AF488-labeled anti-
rabbit IgG

immunofluorescence 1:1000 Molecular Probes

AF546-labeled anti-
rabbit IgG

immunofluorescence 1:1000 Molecular Probes

AF546-labeled anti-
mouse

immunofluorescence 1:1000 Molecular Probes

Table 7: Secondary antibodies used for western blot analysis or immunuofluorescence studies.
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16. Assay for lysyl oxidase enzyme activity 
The principle of measuring enzyme activity of LOX is based on the detection of hydrogen peroxide 

which is generated in stoichiometric proportions as a side product during each catalytic cycle. 

Addition of beta-aminoproprionitrile BAPN, a specific and irreversible inhibitor of LOX activity, to 

the reaction mix allows the detection of hydrogen peroxide that originates specifically from LOX 

catalytic activity.

We used an adapted microplate version of a fluorometric assay recently developed by Trackman and 

colleagues {Palamakumbura & Trackman, 2002}. This assay uses 1,5-diaminopentane as a 

synthetic substrate and the Amplex Red dye (Molecular Probes) in conjunction with horseradish 

peroxidase (HRP) as a sensor to detect  LOX generated hydrogen peroxide. In the presence of 

hydrogen peroxide HRP converts Amplex Red into the fluorescent product  resorufin. Conditioned 

cell medium was concentrated in sequential centrifugation steps using Amicon 10 kD cut-off filter 

devices (Millipore). Aliquots equal to 100 µg of total protein were added to the final reaction mix 

(50 mM sodium borate, pH 8.2; 1.2 M urea; 50 µM Amplex Red; 1 U/ml horseradish peroxidase, 10 

mM 1,5-diaminopentane substrate) in the presence or absence of 500 µM  BAPN and incubated at 

37°C. The fluorescent product was excited at 560 nm and the emission was read at 590 nm every 5 

minutes for 3 h using a Polarstar Optima plate reader (BMG Labtechnologies Inc.). Activity assays 

were repeated three times and samples for each experiment were performed at least in triplicates. 

Purified LOX (300 ng per assay) from bovine aorta, kindly provided by Dr. Kagan from Boston 

University, was used as a positive control. BAPN-inhibitable lysyl oxidase enzyme activity was 

calculated by subtracting the detected fluorescence in BAPN-treated samples from the values 

detected in non-treated samples.
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III. Results

Rationale to study LOX in epithelial cells

There are two major rationales to study LOX in epithelial cells. The first rationale results from the 

traditional role of LOX during initiation of collagen and elastin cross-linkages in the extracellular 

matrix (ECM), a crucial process for connective tissue integrity. Up  to date LOX studies have been 

conducted almost exclusively in mesenchymal cell types because they are the residential cells 

within the tissue stroma that produce most of the matrix proteins. However, epithelia face the 

extracellular matrix with their basal surfaces and although for a long time not recognized, it  is now 

well established that epithelial cells contribute a significant amount of extracellular matrix proteins 

to the connective tissue, in particular to basement membranes {Hay, 1980; Kalluri & Neilson, 2003; 

Quondamatteo, 2002; Yurchenco et  al., 2004}. Preliminary evidence provided by 

immunohistochemistry  data from several laboratories suggests that LOX is among the matrix 

proteins that are not only expressed by mesenchymal cells within the tissue stroma but also by cells 

of surrounding epithelia {Hayashi et al., 2004; Noblesse et al., 2004; Fogelgren et al. 2005}. 

The second rationale is related to more recent findings in cancer research where increased LOX 

expression has been observed during progression of carcinomas towards a migratory and more 

invasive phenotype {Kirschmann et al., 1999; Payne et al. 2005; Erler et al. 2006}. As carcinomas 

are cancers of epithelial origin these findings raise the question if there is a change of LOX function 

during the transition from a normal to a malignant state in epithelial cells.

1. Characterization of LOX expression in MDCK II and MCF-10A cells

The first goal of this dissertation was to verify and characterize LOX expression and enzyme 

activity in epithelial cells using an in vitro cell culture model that  reflects key features of normal 

epithelia in vivo. 

We decided to use MDCK II dog kidney  epithelial cells and MCF-10A human mammary epithelial 

cells for our studies. Both cell lines have been extensively characterized and have been shown to 

possess crucial properties of epithelial tissues in vivo {Yeaman et al., 1999; Debnath et al., 2003}. 

The characteristic “cobblestone” morphology as displayed in Figure 11 is a direct consequence of 

the epithelial phenotype. 
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In addition, expression and localization pattern of the cell-cell adhesion protein E-Cadherin and the 

tight junction protein ZO-1 as detected by immunofluorescence in MDCK II cells confirmed 

important epithelial characteristics at the molecular level (Figure 12). 

It has been established that cultured normal epithelial cells in a pre-confluent stage possess many 

features of undifferentiated epithelia in vivo, whereas post-confluent monolayers reflect  many 

properties of differentiated epithelia in vivo {Simons & Fuller, 1985}. Therefore we wanted to 

analyze LOX expression in both pre- and post-confluent cultures of MDCK II and MCF-10A cells. 

Initially, we examined LOX expression at the mRNA level and detected LOX transcripts by semi-

quantitative RT-PCR in each cell line (Figure 13). To determine LOX protein expression, we 

subjected cell lysates as well as protein fractions from conditioned cell medium to western blot 

analysis. Cell lysates were basically  crude cytoplasmic fractions cleared from nuclei. Protein from 

conditioned cell medium was concentrated with 10 kD cut-off centrifugal filter devices up to 

applicable levels for western blot analysis.

In these studies we have used two rabbit polyclonal antibodies, named “DK1” and “KF30116”, that 

were both raised independently  against the same epitope at the N-terminus of the mature human 

LOX protein, seven amino acids down from the BMP-1 cleavage site {Li et al., 2004; Hayashi et 

al., 2004, Fogelgren et al., 2005}. 

MDCK II cells are dog cells and because the antibodies were generated against the human LOX 

protein we examined sequence homology of the epitope between dog LOX and human LOX. 

Sequence analysis revealed that all of the 22 amino acids within the antibody epitope were identical 

except for the last amino acid where glycine in the human LOX sequence was replaced by serine in 

the dog LOX sequence (Figure 14). The amino acid sequence of essential functional domains such 

as the copper-binding site, the BMP-1 cleavage site and the amino acids forming the LTQ cofactor 

were also identical between dog and human LOX suggesting the putative dog LOX protein may 

have the same functional capabilities as the human enzyme (Figure 14). This was important 

information as the dog genome has been sequenced but the canine LOX gene has not been cloned 

yet and no functional studies with the dog LOX protein have been conducted before.
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Figure 11. (A) MDCK II and (B) MCF-10A cells display the  characteristic “cobblestone” morphology 
of polarized epithelial cells in culture.

Figure 12: MDCK II cells express (A) E-Cadherin and (B) ZO-1, two characteristic cell-cell  junction 
proteins for epithelial cells.
MDCK II cells were seeded overnight  on glass cover slips and then fixed in 2 % para-formaldehyde at 
70-80% confluency the next  day. Cells were stained with anti-E-Cadherin (A) and anti-ZO-1 (B) antibody. In 
addition the actin cytoskeleton was counterstained with fluorophore-conjugated phalloidin and nuclei were 
visualized with Hoechst 33258 dye. Images were recorded with a Zeiss Axioskop fluorescence microscope 
set-up.
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Figure 13. Expression of LOX mRNA in MDCK II and MCF-10A cells as detected by RT-PCR with 
gene-specific primers.
Dog LOX (MDCK II cells) was amplified with a primer pair yielding in a fragment  of 572 bp and human 
LOX (MCF-10A cells) was amplified with primers resulting in a fragment of 368 bp. As an internal control 
beta-actin was amplified with a primer pair yielding a 372 bp fragment. Signal intensities in samples 
amplified for beta-actin indicate lower mRNA template inputs from post-confluent MDCK II samples.
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Figure 14. Alignment of the  annotated amino acid sequences of the  human and putative  dog LOX 
protein. 
Highlighted are the signal peptide cleavage site in yellow, the BMP-1 cleavage site of the pro-peptide in red, 
the copper-binding site in blue, the lysine and tyrosine residue generating the lysyl-tyrosyl quinone cofactor 
in orange and the cytokine-receptor-like domain in green. Notably, the annotated dog LOX protein is lacking 
8 amino acids in the pro-peptide region compared to human LOX. However, the sequence of the mature 
proteins is highly conserved between both species and is identical for important functional domains 
(highlighted in colors). In addition, the epitope sequence of the two anti-LOX antibodies used in this study is 
highlighted in black.
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In media fractions of MDCK II cells the “DK1” antibody detected one signal close to 30 kD and 

another signal at 50 kD corresponding to the expected size of mature and pro-LOX, respectively 

(Figure 15 A). The 50 kD signal was slightly stronger in media fractions from pre-confluent 

cultures whereas the 30 kD signal was more pronounced in media fractions from post-confluent 

cultures probably reflecting advanced processing of pro-LOX into the mature form within the 

extracellular space during the transition from pre- to post-confluent stages. Surprisingly, we 

detected an even stronger 30 kD signal in cell lysates of both pre- and post-confluent cultures 

suggesting the presence of mature LOX in the cytoplasm of MDCK II cells. In addition, a strong 

band of approximately 100 kD was observed in cell lysates. The identity of this band is unclear but 

signals of similar molecular weight have been observed with different LOX antibodies in other cell 

types and by other laboratories as well (personal communication with H. Kagan and P. Sommer). In 

previous biochemical studies it has also been observed that LOX is a rather insoluble protein in 

physiological buffer systems. Therefore, researchers have speculated that the 100 kD signal could 

result from aggregation of LOX monomers and may represent a homodimer of the 50 kD full-length 

LOX (personal communication with H. Kagan and P. Sommer). However, this band could also be 

the result of the antibody cross-reacting with another protein. 

As the supply  of the anti-LOX “DK 1” antibody was limited, we were forced to switch to another 

antibody (anti-LOX “KF 30116” that was raised against the same epitope, see above) where 

sufficient stocks were available from our own laboratory. Western blot results were almost identical 

except that the anti-LOX “KF 30116” antibody did only  barely detect the 50 kD signal of the LOX 

pro-enzyme in MDCK II cells (Figure 15 B). This observation was confirmed in other cell types 

such as NIH3T3 fibroblasts and vascular smooth muscle cells by  our laboratory and may be due to 

the source of a different animal for antibody generation (personal communication with K. Fong). 

However, after long exposures of western blots, weak signals between 45 kD and 50 kD 

corresponding to the size of the LOX pro-enzyme were detected as well (data not shown).

Using the anti-LOX “KF 30116” antibody  we then analyzed LOX protein expression in MCF-10A. 

As in MDCK II cells we detected mature LOX in media fractions of predominantly  post-confluent 

cultures and even stronger 30 kD signals in cell lysates (Figure 15 C). In addition, cell lysates of 

MCF-10A cells showed a signal of approximately 35 kD and a double band between 40 kD and 50 

kD. Although substantially weaker, the latter signals could be also seen in MDCK II cells after long 

exposures and might correspond to non-glycosylated forms of the LOX pro-enzyme.
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Figure 15. Detection of LOX protein by western blot analysis in cell lysates and media fractions of (A + 
B) MDCK II and (C) MCF-10A cells.
Protein extracts of pre- and post-confluent  MDCK II and MCF-10A cells were prepared from crude 
cytoplasmic fractions and conditioned cell medium. 20 µg of total protein were loaded for each sample. 
Western blots were probed with a rabbit polyclonal anti-LOX antibodies “DK 1” (A) and “KF 30116” (B + 
C) that  both target an epitope 7 amino acids down from the BMP-1 cleavage site but  were generated in 
different animals.
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Interestingly, the 35 kD signal was not detected in MDCK II cells and in MCF-10A cells was only 

observed in the cytoplasmic fraction. The 35 kD band could result from a cross-reaction of the 

antibody with a protein that is expressed in MCF-10A but not  in MDCK II cells. Alternatively, it 

could also represent a novel post-translational modified form of the 30 kD mature LOX in the 

cytoplasm that is specific for mammary epithelial cells. Notably, MCF-10A cells are not only 

supplemented with serum during cell culture but also with 20 ng/ml EGF and 10 ug/ml Insulin, two 

potent growth factors and activators of tyrosine kinase receptor signaling pathways that result in 

phosphorylation of multiple target proteins in the cytoplasm {Bublil & Yarden, 2007; Saltiel & 

Pessin, 2002}. However, phosphorylation of the LOX protein has not  been published so far 

although there is preliminary evidence from other laboratories that it may occur (personal 

communication, Dr. Aukhil Ikramuddin).

In most fibrogenic cells LOX is synthesized as a glycosylated 50 kD pro-enzyme that  is secreted 

into the extracellular space where according to current knowledge it is being processed into the 30 

kD catalytically  active form by procollagen-C-proteinase, now often referred to as bone 

morphogenetic protein 1 (BMP-1) {Cronshaw et al., 1995; Panchenko et al., 1996; Uzel et al., 

2001}. To address the question whether epithelial cells do possess the cellular machinery  required 

for adequate processing of LOX we examined the expression of BMP-1 in MDCK II and 

MCF-10A cells. Western blots showed expression of the 70 kD mature BMP-1 not only  in 

extracellular media fractions but also in cell lysates of both cell lines implying that MDCK II and 

MCF-10A cells might have the ability  to process LOX not only in the extracellular space but also 

inside the cell (Figure 16). Besides the 70 kD band corresponding to mature BMP-1, the antibody 

also detected bands at 50 kD and 30 kD, especially in media fractions of both cell lines. This 

antibody was designed against the CUB-2 domain of BMP-1, a motif that is shared by a BMP-1-

interacting protein named Procollagen C Proteinase Enhancer Protein (PCOLCE). These signals 

most likely  represent  the uncleaved 50 kD and the processed 30 kD form of the enhancer protein 

that is known to act in concert with BMP-1 on collagen-processing in the extracellular matrix 

{Takahara et al., 1994}.

In addition, we wanted to exclude the possibility  that detection of 30 kD mature LOX in 

cytoplasmic fractions was an artifact due to extracellular contaminations during preparation of 

protein extracts. Therefore we decided to probe our samples with an antibody against  fibronectin, 

one of the most abundant proteins in the extracellular matrix {Pankov & Yamada, 2002}.
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Figure 17. Detection of fibronectin in conditioned cell medium of MDCK II and MCF-10A cells. 
Western blots probed with anti-LOX antibodies were stripped and then reprobed with anti-fibronectin 
antibody to examine the presence of fibronectin in cell lysates and media fractions of MDCK II (A) and 
MCF-10A cells (B).
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Figure 18. Immunofluorescence staining of LOX in MDCK II cells. 
MDCK II cells were seeded overnight on glass coverslips and fixed in 2 % para-formaldehyde at 70-80 % 
confluency the following day. Cells were stained with anti-LOX (KF 30116) antibody and the actin 
cytoskeleton was visualized with Palloidin-TRITC. Images were recorded with a Zeiss LSM confocal 
microscope. Nuclei were counterstained with Hoechst 33258 dye but no images could be recorded on the 
UV-channel due to technical limitations. Scale bar indicates 10 µm.
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Fibronectin signals were detected only in media fractions but not in cell lysates of both cell lines 

suggesting validity of the detected LOX signals and high purity of the cytoplasmic fractions (Figure 

17). Furthermore, immunofluorescence stainings with MDCK II cells reinforced the observations 

made during western blot analysis. LOX was detected in a broadly distributed punctate staining 

pattern throughout the cytoplasm (Figure 18). In contrast, no significant LOX staining was seen 

within nuclei (indicated by arrows) of MDCK II cells. Interestingly, although MDCK II cells were 

cultured on plain tissue culture plasticware, fluorescent signals were also detected in the 

extracellular space surrounding the cells. These LOX signals could indicate early stages of a 

developing extracellular matrix which is supported by the fact that  fibronectin was detected by 

western blot analysis in extracellular medium fractions of MDCK II cells (Figure 17 A).

So far the results provided evidence for expression of mature LOX in both MDCK II and 

MCF-10A cells but it was not clear from those data if the LOX enzyme was catalytically  active. As 

the question of catalytic activity is critical with respect to the functional relevance of the observed 

LOX expression in those epithelial cell lines we performed in vitro assays to measure LOX enzyme 

activity. Trackman and colleagues developed and recently  optimized a sensitive fluorometric assay 

that uses 1, 5-diaminopentane, a non-peptidyl alkyl amine, as a substrate {Trackman et al., 1981; 

Palamakumbura & Trackman, 2002}. An adapted version of this assay for microplate formats has 

been used by our laboratory since 2003 for the routine detection of LOX activity from conditioned 

cell medium of fibrogenic cells (Fogelgren et al., 2005). The principle of the assay is based on the 

detection of hydrogen peroxide that is generated in stoichiometric proportions as a side-product 

during the catalytic reaction (Figure 19). In the presence of hydrogen peroxide, horseradish 

peroxidase converts Amplex Red dye into the fluorescing reagent resorufin. To determine the 

amount of hydrogen peroxide that is generated only by LOX catalytic activity, reactions were run in 

parallel in the presence of excess amounts of the irreversible LOX-inhibitor beta-

aminoproprionitrile (BAPN).

In conditioned cell medium of both, MDCK II and MCF-10A cells, significant lysyl oxidase 

enzyme activity was measured in post-confluent cultures but only little activity was detected from 

pre-confluent cultures (Figure 20). These data confirmed previous western blot results where 

prominent signals of 30 kD LOX were detected in medium fractions from post-confluent cells and 

weak signals in pre-confluent cells. We also tried to measure LOX activity  from cell lysates but 

those attempts were not successful (data not shown). 
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The limitation here may  have been the assay itself. Hydrogen peroxide is produced by a variety of 

sources within the cytoplasm, such as superoxid dismutase and NADPH oxidase {Veal et al., 2007}. 

All of these sources could mask the hydrogen peroxide generated by LOX. However, it cannot be 

excluded that  intracellular mature LOX may not be catalytically  active, for example due to 

interaction(s) with other proteins that keep it in an inactive conformation.

Figure 19. Principle of the assay for LOX activity measurements. 
LOX protein (e.g. from conditioned cell medium and/or purified LOX) is incubated with a substrate (e.g. 
cadaverine) yielding H2O2 as a side product. In the presence of H2O2, Amplex Red is converted by horse 
radish peroxidase (HRP) into resorufin whose fluorescence signal can be measured at 590 nm. The amount 
of BAPN-inhibitable H2O2 generation is defined as LOX activity.
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Figure 20. BAPN-inhibitable  lysyl oxidase enzyme activity in conditioned cell  medium of MDCK II 
(top panel) cells and MCF-10A (bottom panel) cells. 
100 µg of total protein from conditioned cell medium of MDCK II and MCF-10A cells were assayed for 
BAPN-inhibitable lysyl oxidase enzyme activity with 1, 5-diaminopentane as a synthetic substrate. 300 ng of 
purified LOX protein from bovine aorta (kindly provided by Dr. Kagan, Boston University) were used as a 
positive control.

Results

51



Summary
Using MDCK II dog kidney  epithelial cells and MCF-10A human mammary epithelial cells, two 

well characterized cell lines that exhibit important features of epithelia in vivo, we could 

demonstrate for the first time the expression of catalytically  active LOX in epithelial cells 

{published in Jansen & Csiszar, 2007}. During western blot analyses mature 30 kD LOX was 

detected in conditioned cell medium especially from post-confluent cultures of both cell lines. 

These results suggest that cells in differentiated epithelial tissues might contribute to LOX-

catalyzed crosslinking of ECM  fibrils at their underlying basal surfaces and basement membranes. 

Enzyme activity assays with media fractions confirmed these findings as significant BAPN-

inhibitable LOX activity  was observed. Furthermore, high amounts of 30 kD LOX were detected in 

cell lysates that were cleared from nuclei, indicating the presence of mature LOX in the cytoplasm 

of these cells. Immunofluorescence stainings of MDCK II  monolayers  reinforced this observation 

as LOX was detected in a punctate staining pattern throughout the cytoplasm but could not be seen 

within nuclei. Together these results raise the intriguing option for a novel intracellular function of 

LOX in the cytoplasm of epithelial cells. The presence of BMP-1 in cell lysates and media fractions 

underlined that MDCK II and MCF-10A cells possess the molecular machinery  to process LOX 

into its mature form both, intracellularily and extracellularily. Interestingly though, LOX activity 

could not be measured in cytoplasmic fractions yet. It remains to be resolved whether mature LOX 

in the cytoplasm does not possess catalytic activity  or if the conditions of the current standard assay 

are not applicable for intracellular activity measurements.
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2. Increased LOX expression during scattering of MDCK II cells
The second goal of the first dissertation project was to simulate phenotypical events of cellular 

invasion during malignant progression using our established epithelial cell model system and to 

analyze potential changes of LOX expression. For this purpose we utilized a well characterized in 

vitro assay that recapitulates important features of epithelial-mesenchymal transition (EMT), a 

cellular phenotype transition that is widely considered to be one of the hallmarks of tumor 

metastasis {Thiery, 2002}. After treatment with hepatocyte growth factor (HGF) MDCK II cells 

start to scatter and dissolve their cell-cell contacts within hours and acquire a migratory  and motile 

phenotype {Stoker et al., 1987}. During this process the cells loose important epithelial 

characteristics whereas typical mesenchymal features are gained. However, the “Scatter Assay”, 

although a valuable model, is not a true EMT per definition as it is transient and completely 

reversible upon HGF withdrawal.

After testing several lots of commercially available recombinant HGF we established a protocol 

using 5 ng/ml HGF which was added to the cell culture medium for the duration of the assay. After 

incubation with HGF for 15 hours, MDCK II cells showed a dramatic change in their morphology 

(Figure 21). The cells lost contact to neighboring cells resulting in flattened and elongated 

fibroblast-like cell shapes (Figure 21 C and D) whereas cells from control assays without HGF 

treatment retained the typical “cobblestone” morphology of polarized epithelial cells in culture 

(Figure 21 A and B). 

Analysis of characteristic marker proteins confirmed phenotypical changes from an epithelial 

towards a mesenchymal phenotype during scattering of MDCK II cells. Increased expression of 

vimentin, an intermediate filament protein and marker for mesenchymal cell types {Helfand et al., 

2004}, was observed in immunofluorescence stainings after induction of scattering in MDCK II 

cells (Figure 22 A and B). In contrast, E-cadherin, a homophilic cell-cell adhesion protein 

characteristic for epithelial cells {Gumbiner, 2005}, was massively relocated from cell-cell 

junctions into the cytoplasm (Figure 22 C and D). It is known that down-regulation of E-cadherin 

during EMT is initiated through E-cadherin internalization into the cytoplasm where it becomes 

subject to proteasomal degradation {Yap et al., 2007}.
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Figure 21. Scattering of MDCK II cells induced by HGF treatment. 
Pre-confluent  (< 50 % confluency) cultures of MDCK II cells were supplemented with 5 ng/ml HGF for 15 
hours. Morphological changes in HGF-treated (C + D) compared to control (A + B) cells were documented 
with a Zeiss Axiovert brightfield microscope.
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Figure 22. Increased expression of vimentin and cytoplasmic re-localization of E-cadherin during 
scattering of MDCK II cells. 
After induction of scattering with 5 ng/ml HGF for 15 hours, MDCK II cells were fixed in 2 % para-
formaldehyde and stained with antibodies against vimentin (A + B) and E-cadherin (C  + D). Images were 
recorded with a Zeiss LSM confocal microscope. Scale bars correspond to 10 µm.
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Western blot analysis emphasized these findings showing both, a strong increase of vimentin 

expression and accumulation of E-cadherin in the cytoplasmic fraction during scattering of MDCK 

II cells (Figure 23). In fact, the E-cadherin signal in cell lysates of HGF-treated samples was so 

strong that the film was bleached in the center of the signal. Furthermore, we detected an increase 

of 30 kD mature LOX in the cytoplasm of MDCK II cells after HGF treatment (Figure 23). This 

raised the question whether increased amounts of intracellular 30 kD LOX were due to post-

translational changes, for example through increased protein stability, or whether these observations 

were due to transcriptional up-regulation of LOX expression. It was therefore decided to perform 

quantitative real-time PCR experiments to assess the transcript levels of LOX. Total RNA was 

extracted from control and HGF-treated MDCK II cells and cDNA was generated. Initially, 

housekeeping genes, i.e. GAPDH, β-actin and ribosomal RNA genes, were used as internal 

standards for relative quantification of LOX expression in control and HGF-treated samples.  

However, as all of those genes showed significant changes in transcript  levels themselves (data not 

shown), we decided to quantify  LOX transcript  copy numbers directly. Serial dilutions of LOX-

plasmid DNA were amplified with gene-specific primers for LOX to generate a standard graph 

where the C(t) value for each dilution was plotted against the copy number of LOX template DNA 

(Figure 24). Based on the standard graph it was now possible to determine and compare the 

transcript levels of LOX in control and HGF-induced samples by means of absolute copy numbers. 

The results showed a more than two-fold increase of LOX mRNA levels in HGF-treated versus 

control cells indicating a significant transcriptional up-regulation of LOX during scattering of 

MDCK II cells (Figure 25).

Summary
Applying the “Scatter Assay” with MDCK II cells as an in vitro model for EMT, increased amounts 

of intracellular 30 kD mature LOX were detected during the transition from an epithelial towards a 

mesenchymal phenotype. The increase in LOX protein expression most likely resulted from 

increased transcriptional activity of the LOX gene as quantitative real-time PCR experiments 

revealed a strong increase of LOX mRNA levels in HGF-treated versus untreated cells. Using a 

simple in vitro cell culture assay, we were able to recapitulate transcriptional up-regulation of LOX 

expression as it has been previously observed during tumor metastasis in vivo.
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Figure 23. Examination of vimentin and E-cadherin expression during scattering of MDCK II cells  by 
western blot analysis. 
After induction of scattering with 5 ng/ml HGF for 15 hours, cell lysates from MDCK II cells were collected. 
20 µg of total protein from each sample were subjected to western blot  analysis. Western blots were probed 
with specific antibodies against vimentin, E-cadherin, LOX and GAPDH. The latter was used as a loading 
control.
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PCR amplification of LOX from serial dilutions 
of a pcDNA-LOX plasmid template
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Figure 24. Standard graph for LOX copy numbers after linear amplification  from a pcDNA-LOX 
plasmid template. 
Serial dilutions of pcDNA-LOX plasmid were amplified with gene-specific LOX primers. The C(t) values 
were then plotted against the LOX copy numbers on a logarithmic scale. LOX copy numbers were calculated 
based on size and concentration of the pcDNA-LOX plasmid.
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 LOX mRNA copy numbers after induction 
of scattering in MDCK II cells
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Figure 25. Increased LOX transcript levels after scattering of MDCK II cells. 
Total RNA was harvested and reverse transcribed into cDNA from control cells and HGF-treated cells for 15 
h. LOX mRNA expression was assessed with gene-specific primers using quantitative real-time PCR as 
described in the text.
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3. Generation of stable MDCK II cell lines over-expressing LOX
Almost a decade ago, analysis of differential gene expression patterns in breast cancer cell lines 

detected LOX in a set of highly  up-regulated genes in cell lines with a metastatic phenotype 

{Kirschmann et al., 1999}.  Subsequent in vitro and in vivo studies revealed LOX as a key  factor for 

cellular invasiveness and tumor metastasis in breast carcinomas {Kirschmann et al., 2002; Payne et 

al., 2005; Erler et al., 2006}. Although carcinomas are tumors of epithelial origin, until now the 

effect of increased LOX expression on the cellular phenotype in normal epithelia has not been 

addressed. Therefore, the aim was to investigate the consequence of LOX over-expression in 

normal, non-transformed epithelial cells. Consequently, the third goal of this dissertation was to 

generate stable MDCK II cell lines over-expressing LOX. The rationale was to utilize forced over-

expression of LOX as a tool to test if LOX can induce a phenotype that could be further dissected at 

the molecular level. As the presence of mature LOX was detected to our surprise within the 

cytoplasm of MDCK II cells earlier in this study, one particular interest was to analyze the epithelial 

phenotype after intracellular over-expression of mature LOX.

3.1 Stable MDCK II cell lines that over-express LOX-EGFP constructs
Green fluorescent protein (GFP) is an auto-fluorescing protein that was originally  discovered in the 

jellyfish Aequorea in the 1960s by Shimoura et al. and then later cloned by Prasher et al. in 1992 

{reviewed in Tsien, 1998}. In contrast to many  fluorescent dyes GFP can be introduced into 

mammalian cells without cellular toxicity. It  is often expressed as a fusion protein together with the 

gene of interest and has become an excellent tool to study  intracellular localization and dynamics of 

proteins {Ward & Lippincott-Schwartz, 2006}. Due to its auto-fluorescing properties GFP is widely 

used for “live-cell imaging” experiments where localization patterns and movements of the GFP-

fusion protein in different cellular compartments can be tracked with a microscope {Rizzuto et al., 

1995; Kanda et al., 1998; Riesen et al., 2002}. Considering the potential applications of LOX-GFP-

fusion proteins for intracellular LOX studies constructs were generated that express mature or full-

length LOX as a fusion protein with GFP at the C-terminus. To build the LOX-GFP construct, the 

pEGFP-N1 vector (BD Biosciences) which encodes a red-shifted GFP-variant optimized for 

brighter fluorescence and higher expression efficiency in mammalian cells was used {Chalfie et al., 

1994}. A diagram of the pEGFP-N1 vector is shown in Figure 26. 
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A cDNA fragment encoding the full-length  human LOX protein was cloned into the EcoRI and 

BamHI restriction sites of pEGFP-N1. Restriction analysis of this construct yielded an expected 

fragment of ~ 1.25 kb fragment (Figure 27 A). Interestingly, an additional fragment of ~ 600 bp also 

occurred. The cause of this band has never been determined but sequencing of purified plasmid 

DNA ruled out any contaminants (data not shown). 

In addition, a construct  coding for mature LOX (amino acids 169-417) was generated by  PCR. The 

insert was ligated into the EcoRI and BamHI sites of  the pEGFP-N1 vector. Positive recombinants 

were identified by restriction digest yielding in a ~ 750 bp fragment (Figure 27 B) as well as by 

DNA sequencing (data not shown).

Figure 26. Schematic depiction of the cloning strategy for LOX-EGFP expression constructs. 
The human LOX gene, flanked by EcoRI and BamHI restriction sites, was ligated into the multiple cloning 
site of the pEGFP-N1 vector from BD Biosciences. As a consequence LOX-EGFP is expressed as a fusion 
protein where EGFP is expressed in frame and C-terminal of LOX.
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Figure 27. Analysis of LOX-EGFP constructs by restriction digest. 
Constructs carrying (A) LOX50-EGFP (encoding full-length LOX) and (B) LOX30-EGFP (encoding mature 
LOX) were digested with EcoRI and BamHI restriction enzymes for 30 min. at 37°C. An aliquot of each 
restriction digest was loaded on a 1% agarose gel to visualize the fragments.
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The mature LOX30-EGFP and full-length LOX50-EGFP constructs were transfected into MDCK II 

cells. Cells stably expressing the LOX-EGFP constructs were selected by antibiotic treatment with 

500 µg/ml G418 for two weeks. After cell culture propagation, stable clones were initially  analyzed 

for phenotype changes based on their morphology (Figure 28). Parental MDCK II cells (Figure 28 

A) displayed the characteristic cuboidal morphology  of epithelial cells as did MDCK II cells 

transfected with the pEGFP-N1 vector only (Figure 28 B). Also cells transfected with the mature 

LOX30-EGFP construct did not change their morphology (Figure 28 C). In contrast, especially one 

particular clone of MDCK II cells transfected with LOX50-EGFP showed a remarkable change in 

morphology  (Figure 28 D). The cell shapes were flattened out and strongly elongated but 

interestingly cells were still growing in clusters and seemed to maintain adhesive contacts with 

most adjacent cells (see insert of Figure 28 D). 

In the next step expression of the transfected constructs was examined by western blot analysis 

using anti-GFP and anti-LOX antibodies. In cell lysates from LOX30-EGFP cells the anti-GFP 

antibody did not detect any signal except for two background bands at approximately  65 kD and 

120 kD that were also seen in the parental cell line (Figure 29, left panel). Because the secondary 

antibody alone did not yield any  signal (data not shown), the background bands were probably due 

to cross-reaction of the primary  antibody with other protein(s) in MDCK II cells. The anti-LOX 

antibody detected endogenous mature LOX and the glycosylated and non-glycosylated forms of 

proLOX, both in parental and LOX30-EGFP cells (Figure 29, right  panel). Based on the molecular 

weight of mature LOX (~ 30 kD) and EGFP (~ 30 kD) the fusion protein would be expected at an 

approximate molecular weight of 60 kD. A signal of this size was detected with neither the anti-

GFP nor the anti-LOX antibody suggesting a LOX30-EGFP fusion protein was not successfully 

expressed in these cells. We did not test expression of the LOX30-EGFP fusion gene on the mRNA 

level but due to the constantly  stringent selection conditions (cells were continuously cultured in the 

presence of G418), only cells expressing the construct presumably had a chance to survive. 

However, it is possible that expressed LOX30-EGFP may  have become subject to a pre-

translational mRNA decay  mechanism or to post-translational degradation, for example due to 

misfolding of the fusion protein {Isken & Maquat, 2007; Herbert & Molinari, 2007}.
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Figure 28. Morphology of stable MDCK II LOX-EGFP cell lines. 
MDCK II cells were transfected with (B) EGFP-vector, (C) LOX30-EGFP construct, and (D) LOX50-EGFP 
construct. After selection of stable clones with G418 for two weeks, clonal populations were propagated. 
Images were taken with a Zeiss Axiovert 25 microscope.
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Figure 29. Examination of LOX30-EGFP expression in stable MDCK cell lines. 
Protein extracts of MDCK-LOX30-EGFP cells were prepared from cell lysates. 20 µg of total protein were 
loaded for each sample. Western blots were probed with anti-LOX and anti-GFP antibody to detect LOX30-
EGFP expression.
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Western blots with anti-LOX antibody on protein extracts from LOX50-EGFP cells detected a 

signal at ~ 80 kD in cell lysates and at ~ 85 kD in conditioned cell medium (Figure 30 A, far right). 

The same two bands were also detected by the anti-GFP antibody (Figure 30 B, far right). The 

predicted molecular weight of the full-length LOX-EGFP fusion protein is approximately  80 kD 

suggesting that the 80 kD signal in cell lysates and the 85 kD signal in conditioned cell medium 

represent non-glycosylated and glycosylated forms of the fusion protein, respectively. Interestingly, 

in conditioned cell medium of LOX50-EGFP cells the anti-LOX antibody also detected a weak 

signal close to 60 kD which may  correspond to the processed mature LOX-EGFP protein (Figure 30 

A). In addition, endogenous 30 kD mature LOX and the previously discussed unspecified 100 kD 

band were seen in cell lysates of LOX50-EGFP, parental and EGFP-expressing cells (Figure 30 A). 

As expected, the anti-GFP antibody also detected a strong signal of EGFP close to 30 kD in the cell 

lysate of EGFP-expressing cells and two previously  described background signals at 65 kD and at 

120 kD in all three cell lines (Figure 30 B). To further analyze the morphological change in LOX50-

EGFP cells, immunofluorescence stainings with anti-LOX and anti-GFP antibodies were performed 

(Figure 31). Both antibodies showed strong cytoplasmic LOX staining and a good overlap with 

EGFP fluorescence resulting in a yellow staining pattern (Figure 31 A and B). As this clone of 

LOX50-EGFP expressing cells displayed, in comparison to the parental MDCK II cell line, a very 

distinct and elongated almost spindle-like morphology similar to mesenchymal cells (Figure 3), we 

examined if any  changes occurred in the expression and localization pattern of the epithelial marker 

protein E-cadherin (Figure 31 C). However, even in cells with a very elongated cell shape, E-

cadherin staining was observed as a pronounced line between adjacent cells indicating the presence 

of intact cell-cell junctions typical for epithelial cells (indicated by arrows). Using western blot 

analysis significant amounts of proLOX-EGFP but only  tiny levels of the processed mature LOX-

EGFP were detected in conditioned cell medium of LOX50-EGFP cells (Figure 30 A). As the 

conversion of the LOX pro-enzyme into the mature catalytically  active form is important for its 

function and relevant for the evaluation of the observed phenotype of these cells, LOX activity 

measurements were conducted. Lysyl oxidase enzyme activity  in conditioned medium of MDCK-

LOX50-EGFP cells was not increased compared to the parental cell line or to EGFP-expressing 

MDCK II cells (Figure 32). These results suggest that the expressed LOX-EGFP fusion protein does 

not possess detectable LOX activity. It could not be determined if the lack of enzyme activity was a 

result of low processing rates of proLOX-EGFP into mature LOX-EGFP or if the mature fusion 

protein simply does not possess catalytic activity in these cells.
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Figure 30. Examination of LOX50-EGFP expression in  stable MDCK cell lines by western blot 
analysis. 
Protein extracts of MDCK-LOX50-EGFP cells were prepared from cell lysates and conditioned cell medium. 
20 µg of total protein were loaded for each sample. Western blots were probed with (A) anti-LOX and (B) 
anti-GFP antibody to analyze LOX50-EGFP expression.
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Figure 31. Examination of LOX50-EGFP expression in stable  transfected MDCK II cell  lines by 
immunofluorescence analysis. 
MDCK-LOX50-EGFP cells were seeded overnight on cover slips and fixed in 2 % para-formaldehyde the 
following day. Cells were stained with (A) anti-LOX antibody, (B) anti-GFP antibody and (C) anti-E-
cadherin antibody. In addition, LOX-EGFP expression was monitored by EGFP fluorescence. Images were 
recorded with a Zeiss LSM 5 confocal microscope. Scale bars correspond to 10 µm.
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Figure 32. BAPN-inhibitable lysyl  oxidase enzyme activity in conditioned cell  medium of LOX-EGFP 
expressing MDCK II cells. 
100 µg of total protein from conditioned cell medium of different cell lines were assayed for BAPN-
inhibitable lysyl oxidase enzyme activity using 1, 5-diaminopentane as a synthetic substrate.
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3.2 Stable cell lines that over-express pcDNA-LOX(-V5) constructs
The LOX-EGFP cell lines could not be successfully established as an experimental system 

generating sufficient LOX-EGFP fusion protein that is properly processed and catalytically active. 

One reason for these difficulties might be the fact that EGFP is almost as big as the mature LOX 

protein and could possibly cause steric hindrance that  may interfere with the maturation of the LOX 

pro-enzyme and/or the catalytic function of mature LOX. The experimental strategy was re-

designed and it  was decided to generate expression constructs where LOX is tagged with a V5-

epitope. The V5-tag was originally  discovered as a C-terminal epitope on P- and V-proteins of 

simian virus 5 and contains only 14 amino acids resulting in a short peptide of ~ 1.4 kD {Southern 

et al., 1991}. The V5-epitope is commonly used as a tag on recombinant proteins and in most cases 

does not interfere with the conformation and function of the expressed protein of interest. Due to 

the difficulties to generate a functional LOX-EGFP fusion protein it seemed a reasonable approach 

to attempt expression of recombinant LOX with a small tag only. Full-length and mature human 

LOX were ligated each, with and without a V5-tag, into the pcDNA3.1(-) expression vector from 

Invitrogen (Figure 33).

Figure 33. Schematic depiction of the cloning strategy for pcDNA-LOX(-V5) expression constructs.
The human LOX gene, flanked by EcoRI and BamHI restriction sites, was ligated into the multiple cloning 
site of the pcDNA3.1(-) vector from Invitrogen. LOX was expressed with and without a C-terminal V5 tag.
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Restriction digest verified the corresponding inserts at the correct size (Figure 34). Full-length LOX 

yielded a fragment of ~ 1.25 kb and with the V5-tag about 1.3 kb (Figure 34 A). Mature LOX 

resulted in a fragment of ~ 750 bp and with V5-tag about 800 bp (Figure 34 B). In addition, a 

construct was generated encoding a catalytically  inactive mature LOX variant resulting from a point 

mutation where the tyrosine forming the LTQ-cofactor at  position 355 was converted into 

phenylalanine (Figure 34 C) {Chang et al., 1996}. This particular construct was generated with the 

intention to test the possibility of reversing a potential phenotype that may be caused by stable over-

expression of the mature LOX construct in MDCK II cells. All pcDNA-LOX constructs were 

additionally verified by DNA sequencing (data not shown).
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Figure 34. Restriction digest of pcDNA-LOX constructs. 
pcDNA-constructs carrying (A) LOX50(-V5), (B) LOX30(-V5) and (C) LOXY355F(-V5) where tyrosine 
(Y) at  position 355 was mutated into phenylalanine yielding in an inactive enzyme, were digested with 
EcoRI and BamHI restriction enzymes for 30 min. at  37°C. An aliquot  of each restriction digest  was loaded 
on a 1% agarose gel to visualize the fragments.
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The mature and full-length LOX constructs were transfected into the parental MDCK II cell line 

and stable-expressing clones were selected for two weeks by G418 treatment. Morphological 

examination with a brightfield microscope did not reveal a striking phenotype change in any of the 

stable cell lines (Figure 35). However, cells of the LOX30 and LOX30-V5 clones displayed a 

slightly flattened cell shape (indicated by  arrows) and therefore showed subtle differences compared 

to the parental and the vector-only expressing cell line (Figure 35 C, D, A and B, respectively). 

Figure 35. Morphology of stable MDCK II pcDNA-LOX cell lines. 
MDCK II cells were transfected with (B) pcDNA-vector, (C) pcDNA-LOX30 construct, (D) pcDNA-
LOX30-V5 construct, (E) pcDNA-LOX50 construct and (F) pcDNA-LOX50-V5 construct. After selection 
of stable clones with G418 for two weeks, clonal populations were propagated. Images were taken with a 
Zeiss Axiovert 25 brightfield microscope.
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Notably, cells of LOX50 and LOX50-V5 clones did not seem to exhibit  visible phenotype 

differences compared to the parental and vector-expressing control cell lines (Figure 35 E and F).

Following phenotypic evaluation, all stable cell lines were assessed by western blot analysis for 

expression of the transfected LOX constructs. Western blots with cell lysates of MDCK II cells 

transfected with the mature LOX constructs did only reveal expression of endogenous mature LOX 

when probed with the anti-LOX antibody (Figure 36 A, left panel). However, when using the anti-

V5 antibody, cell lines carrying the constructs with V5-tagged mature LOX showed a clear signal 

above 30 kD indicating the expression of exogenous mature LOX (Figure 36 A, right panel). This 

observation may suggest that  the anti-LOX antibody did not recognize exogenous mature LOX 

which was expressed from the transfected constructs. Furthermore, these results imply  that mature 

LOX from constructs without the V5-tag may be expressed and present in these cell lines but 

cannot be detected by the anti-LOX antibody. This hypothesis is indirectly supported by RT-PCR 

data where human LOX primers amplified the expected fragment in all cell lines transfected with 

the mature LOX constructs but not in the parental and vector-only expressing cells which express 

only the endogenous dog LOX (data not shown). In addition, western blots were stripped and re-

probed with anti-GAPDH antibody as an internal standard confirming equal amounts of protein 

were loaded for each sample (Figure 36 B).
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Figure 36. Examination of pcDNA-LOX30 expression in stable  transfected MDCK cell  lines by 
western blot analysis. 
Protein extracts of MDCK-LOX30 cells were prepared from cell lysates. 20 µg of total protein were loaded 
for each sample. Western blots were probed with (A) anti-LOX (left  panel) and anti-V5 (right  panel) 
antibody to assess expression of the pcDNA-LOX30 construct. Blots were re-probed with (B) anti-GAPDH 
antibody as an internal standard for equal loading of the samples.

Western blots also verified expression of exogenous LOX in MDCK II cells that were transfected 

with full-length LOX constructs (Figure 37). As expected, the anti-LOX antibody detected 

endogenous mature 30 kD LOX in both, cell lysates and conditioned cell medium, of parental 

MDCK II cells and all transfected, cell lines (Figure 37 A). Furthermore, in conditioned cell 

medium of cell lines carrying the constructs with full-length LOX, signals above 30 kD were seen 

in polyclonal populations #1 and #2 of LOX50 and in polyclonal populations #3 and #4 of LOX50-

V5 transfected cells, suggesting the detection of exogenous mature LOX. In addition, strong signals 

between 50 kD and 60 kD in conditioned cell medium indicated the presence of exogenous 

proLOX. Interestingly, the molecular weight of these bands was significantly  higher compared to 

the expected size of ~ 50 kD for human proLOX. Alternatively, these signals could also represent 

dimers of exogenous mature LOX instead. The expected molecular weight for a dimer consisting of 

two 30 kD mature LOX monomers would match almost exactly the observed signals. Considering 

the highly insoluble properties of LOX and its known tendency to form aggregates {Herbert Kagan, 

personal communication} the formation of such dimers could be favored under the increasing 

concentration of mature LOX in these over expressing cell lines. However, the observed 60 kD 

bands seen in conditioned cell medium may also represent glycosylated forms of the secreted 

exogenous proLOX. In this case it remains still puzzling why  these bands are not seen in cell 

lysates.
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The expression of V5-tagged LOX was confirmed when western blots with protein extracts of 

MDCK II cells transfected with LOX50-V5 constructs were probed with the anti-V5 antibody 

(Figure 37 B). A strong double band just above 50 kD was detected in cell lysates reflecting the 

slightly elevated size of V5-tagged proLOX. In addition, a very strong signal around 60 kD in 

media fractions indicated the presence of glycosylated and secreted V5-tagged LOX. A band above 

30 kD in conditioned cell medium suggested that V5-tagged proLOX was also correctly  processed 

by BMP-1 into the mature form within the extracellular space.

Figure 37. Examination of pcDNA-LOX50 expression in stable  transfected MDCK cell  lines by 
western blot analysis. 
Protein extracts of MDCK-LOX50 cells were prepared from cell lysates and conditioned cell medium. 20 µg 
of total protein were loaded for each sample. Western blots were probed with (A) anti-LOX and (B) anti-V5 
antibody for verification of LOX50-EGFP expression.
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After successful over-expression of intra- and extracellular mature LOX, it  was intriguing to test 

whether the exogenous expressed LOX does possess catalytic activity. In the case of MDCK II cell 

lines expressing the transfected mature LOX inside the cell, activity measurements were performed 

with cell lysates to determine if active LOX was accumulating in the cytoplasm (Figure 38 A). The 

detected activity levels were relatively low and displayed a high degree of variability  within each 

sample as indicated by the big error bars. Furthermore, the activity levels in parental MDCK II cells 

and the vector-only expressing cell line were higher compared to the cell lines expressing the 

mature LOX constructs. Also, cell lines transfected with catalytically  inactive mature LOX (LOX-

Y355F) did not exhibit lower activity  levels compared to cells carrying the active form (LOX30). 

The detection of enzyme activity  from mature LOX in the cytoplasm has been already difficult for 

endogenous mature LOX in the parental MDCK II cell line (Results 1.1). As discussed previously 

the lack of activity does not necessarily mean that mature LOX is not active in the cytoplasm. It is 

possible that other sources of hydrogen peroxide in the cytoplasm mask the amount that is 

generated by LOX activity. However, it was expected to overcome this signal-to-noise ratio 

problem in cell lines that over-express mature LOX in the cytoplasm. It is also possible that 

intracellular mature LOX is kept  in an inactive state by  an unknown mechanism, possibly through 

interaction(s) with other proteins. In contrast, activity assays with conditioned cell medium of cell 

lines over-expressing extracellular mature LOX showed a minor increase in LOX-activity compared 

to the parental cell line (Figure 38 B). This suggests that at least part of the exogenous expressed 

mature LOX in conditioned cell medium may exhibit catalytic activity. Still, based on the amount of 

exogenous LOX observed by  western blot analysis it was surprising not to detect more enzyme 

activity compared to the parental cell line.
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Lysyl oxidase enzyme activity from protein 
extracts of conditioned cell medium 
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Figure 38. BAPN-inhibitable lysyl oxidase enzyme activity in  conditioned cell  medium of pcDNA-LOX 
expressing MDCK II cells. 
100 µg of total protein from (A) cell lysates and (B) conditioned cell medium of pcDNA-LOX transfected 
cell lines were assayed for BAPN-inhibitable lysyl oxidase enzyme activity using 1, 5-diaminopentane as a 
synthetic substrate.
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Summary
In this part of the dissertation two approaches were undertaken to over-express catalytically active 

LOX in MDCK II cells. The first strategy comprised expression of mature and full-length LOX as a 

fusion protein with EGFP at the C-terminus (Table 8). 

Expression construct Location LOX activity compared to 
parental MDCK cells

Morphology compared to 
parental MDCK cells

pEGFP-LOX30 not detected not measured same

pEGFP-LOX50 extracellullar similar elongated, fibroblast-like

pcDNA-LOX30 intracelullar similar slightly flattened

pcDNA-LOX30-V5 intracelullar similar slightly flattened

pcDNA-LOX50 extracellullar similar epithelial

pcDNA-LOX50-V5 extracellullar similar epithelial

Table 8. Qualitative characteristics of stable MDCK-LOX cell lines. 
Listed are the names of the respective expression constructs, location of the expressed protein, detected lysyl 
oxidase enzyme activity (in comparison to the parental cell line) and the morphological phenotype.

The expression of intracellular 30 kD mature LOX-EGFP was not successful, as it  did not yield a 

detectable protein for yet unknown reasons. Expression of 50 kD full-length LOX-EGFP resulted in 

an 80-85 kD proLOX-EGFP fusion protein that was detected by western blot and 

immunofluorescence analysis. In western blots a weak signal at 60 kD was also observed in 

conditioned cell medium that might correspond to the processed mature LOX-EGFP form. 

However, activity  assays did not reveal an increase in LOX activity compared to parental cells 

implying that  the observed phenotype in LOX50-EGFP cells may not  be related to over-expression 

of the LOX-EGFP fusion protein. Although it is also possible that the morphological phenotype 

change was induced by LOX but independent from its catalytic activity, for example through 

interaction with (an)other protein(s).

As a second approach mature and full-length LOX constructs containing C-terminal V5-tags were 

generated and successfully  over-expressed in MDCK II cells (Table 3). Cell lines over-expressing 

30 kD mature LOX in the cytoplasm did not yield higher LOX activity than controls although a 

mild morphological phenotype was observed in these cells. Over-expression of 50 kD full-length 

LOX in MDCK II cells resulted in significant amounts of extracellular mature LOX as examined by 

western blot analysis. The level of lysyl oxidase enzyme activity in extracellular medium fractions 

was slightly elevated compared to control cell lines. 
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However, MDCK-LOX50 cell lines did not show morphological changes in their phenotype 

indicating that over-expression of extracellular mature LOX may not have an obvious influence on 

the epithelial phenotype of MDCK II cells.

For both strategies it has been proven difficult to express recombinant mature LOX that does 

possess detectable enzyme activity. This may  be partially related to assay conditions, at least in case 

of intracellular LOX activity  measurements, but may also reflect a general problem to generate 

active recombinant LOX protein, an observation supported by results from other laboratories as 

well (personal communication with Drs. Kagan, Kirschmann and Sommer).
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IV. Discussion and future perspectives

This project provides the first detailed studies on the role of the extracellular matrix enzyme LOX 

in epithelial cells. Initially, an in vitro model system was established that allowed the investigation 

of LOX in epithelia using two well-characterized epithelial cell lines. In the second part it  was 

tested whether this in vitro model is capable to recapitulate epithelial phenotype changes observed 

during cancer progression that may be in particular related to the function of LOX. Furthermore, the 

third part  addressed the question whether LOX over-expression has an effect on the epithelial 

phenotype in normal epithelial cells.

Initially, an in vitro model system was established to study the role of LOX in normal epithelial 

cells. Using the MDCK II and MCF-10A cell lines, it  was demonstrated for the first time that 

epithelial cells have the ability  to express catalytically active LOX {published in Jansen & Csiszar, 

2007}. Mature LOX protein and enzyme activity were detected in conditioned cell medium of both 

cell lines suggesting that epithelial tissues may contribute to the crosslinking formation in collagen 

and elastin fibers within the extracellular matrix. In addition, using western blot and 

immunofluorescence analysis, we detected unexpectedly even larger amounts of mature LOX in the 

cytoplasm of these cells. Cytoplasmic localization of the mature 30 kD protein has not been 

reported before and was a surprising discovery raising the question for a novel intracellular 

function. It is also of particular interest whether mature LOX present in the cytoplasm of these cells 

does possess catalytic activity. Despite tremendous efforts we were not able to recover significant 

LOX activity from cytoplasmic fractions with the current standard assay system. These findings 

could indicate that mature LOX is not catalytically  active in the cytoplasm, for example as a result 

from interactions with other proteins that may  keep it in an inactive conformation. A yeast-two-

hybrid screen performed in our laboratory identified several cytoplasmic proteins that could 

potentially interact with LOX (Fogelgren & Csiszar, unpublished data). However, these potential 

interactions have to be confirmed and the possible impact on the function of LOX is subject  of 

ongoing investigations in a collaborating group {D. Kirschmann, personal communication}. The 

yeast-two-hybrid screen also identified several extracellular proteins as potential LOX-interacting 

partners. Among those was fibronectin that in subsequent biochemical studies has been confirmed 

to physically interact with LOX {Fogelgren et al., 2005}. 
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Interestingly, this interaction did not have an inhibitory  effect on LOX catalytic activity  but rather 

seems to act as a scaffold promoting processing of LOX within the extracellular matrix {Fogelgren 

et al., 2005}.  

However, the lack of LOX activity in cytoplasmic fractions could also be a result of the method that 

is applied in the current standard assay for activity measurements {Palamakumbura & Trackman, 

2002}. The principle of this assay is based on the detection of LOX-generated hydrogen peroxide, a 

side-product of the catalytic reaction. The assay has been used successfully for years to measure 

LOX activity within the extracellular space, e.g. conditioned cell medium. However, the 

biochemical environment in the cytoplasm is very different and other intracellular sources 

generating hydrogen peroxide could mask the produced hydrogen peroxide amounts generated by 

LOX. For example, hydrogen peroxide is a side-product of the respiration chain in mitochondria 

where superoxide radicals are converted into hydrogen peroxide spontaneously or through 

enzymatic catalysis of superoxide dismutase (SOD)  {Rhee et  al., 2005}. A second intracellular 

source is NADPH oxidase, which is mainly activated through tyrosine receptor kinase signaling, 

also resulting in hydrogen peroxide generation by spontaneous or SOD-mediated conversion of 

reactive oxygen species {Chiarugi & Cirri, 2003}. On the other hand, the amount of hydrogen 

peroxide resulting from physiological sources is probably reduced in the lysed cytoplasmic 

fractions that  are used for LOX activity  assays. The reaction mixture for activity measurements 

contains urea at  a final concentration of 1.2 M, which most likely leads to disruption of most 

physiological signaling cascades due to inactivation of proteins through denaturation. But hydrogen 

peroxide could be also generated as a consequence of oxidative degradation processes that occur in 

cytoplasmic fractions while LOX activity  measurements are performed. Altogether, these potential 

sources of hydrogen peroxide can impede the specific detection of LOX-generated hydrogen 

peroxide during intracellular activity measurements.

Another interesting aspect of the detection of mature LOX in the cytoplasm of MDCK II and 

MCF-10A cells is the question whether proLOX, at least  in epithelial cells, can be processed inside 

the cell. In the literature the conversion of the pro-enzyme into the mature form by cleavage of the 

pro-peptide is only described for the extracellular space {Cronshaw et al., 1995; Panchenko et  al, 

1996; Uzel et  al., 2001}. Our study  provided indirect evidence for intracellular processing of LOX 

as the mature form of BMP-1, the major known processing enzyme of proLOX, was not only 

detected in conditioned cell medium of MDCK II and MCF-10A cells but also in cytoplasmic 

fractions. 
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Alternatively, processed mature LOX could enter the cytoplasm from the extracellular space 

through a yet unknown mechanism. Kagan and colleagues have demonstrated the “proof of 

principle” for this hypothesis when they  investigated the role of mature LOX inside the nucleus of 

vascular smooth muscle cells in the late 1990s. In those studies, purified and fluorescently labeled 

mature LOX protein was added to the cell culture medium and then subsequently  detected inside 

the nucleus of these cells, suggesting it must have passed the plasma membrane and the nuclear 

envelope in order to enter the nucleus {Li et al., 1997; Nellaiappan et al., 2000}. Furthermore, it 

was shown that LOX retained catalytic activity within the nucleus. The molecular events of how 

LOX has entered the cells have never been elucidated but competitive inhibition of fluorescently 

labeled LOX by the addition of unlabeled LOX implies that its cellular uptake is mediated by an 

active transport mechanism. 

Another novel finding was the observation of an approximately  35 kD signal, in addition to the 30 

kD band of mature LOX, in western blots with cytoplasmic fractions of MCF-10A cells. Due to the 

size difference of only ~ 5 kD it could possibly represent a post-translational modified, e.g. 

phosphorylated, form of the mature protein. Previous analysis of the amino acid sequence of LOX 

revealed several potential phosphorylation sites close to the BMP-1 cleavage site at the N-terminus 

of the mature protein {K. Fong, personal communication}. However, solid experimental evidence 

for the phosphorylation of LOX is still missing except for initial data from a preliminary  study. 

Using an in vitro phosphorylation assay, where LOX was artificially  over-expressed in NIH3T3 

fibroblasts, phosphatase treatment diminished a putative phosphorylated band of LOX compared to 

controls {A. Ikramuddin, personal communication}. But these data have not been confirmed by a 

precise biochemical analysis of the potential phosphorylation sites involved. For a long time 

researchers in the field have speculated about post-translational modifications, such as 

phosphorylation, of mature LOX. Interestingly, this signal was not detected in MDCK II cells but 

may  be due to the presence of high EGF and IGF concentrations in the culture medium of 

MCF-10A cells.  Clearly, the detection of intracellular mature LOX opens up new avenues for 

future LOX research, raising the possibility to discover novel (intracellular) functions and new 

substrates of this versatile matrix enzyme. It remains to be seen in the future, if further biochemical 

and cell biology studies addressing the role of intracellular LOX can shed more light on this area of 

research. 
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In the second part of this thesis project, it  was possible to recapitulate the observed up-regulation of 

LOX during cancer progression by applying a well-characterized in vitro EMT assay.  Using 

western blot analysis, we detected elevated LOX protein levels after the induction of scattering in 

MDCK II cells. Quantitative real-time PCR analysis revealed a more than two-fold increase of LOX 

mRNA copy numbers suggesting transcriptional up-regulation as the cause of increased LOX 

expression. These results show that our epithelial in vitro model is under defined conditions capable 

to reflect key features of tumor progression in vivo. This is important as the interest to study  the 

function of LOX in epithelia is also motivated by the goal to obtain further insights into the 

mechanistic role of LOX during cancer progression. Increased LOX mRNA levels have been also 

detected by differential gene expression analysis in metastatic breast cancer cell lines and then later 

also by microarray  analysis in hypoxic cancer cell lines with increased metastatic potential 

{Kirschmann et al., 1999; Denko et al., 2003}. Immunohistochemistry studies with breast cancer 

tissue arrays confirmed elevated LOX expression on the protein level as well {Payne et al., 2005}. 

One more recent study provided evidence that in hypoxic tumor tissues transcriptional up-

regulation of LOX is mediated by hypoxia-inducible factor 1 (HIF-1) {Erler et al., 2006}. In 

contrast, conditions during the scatter assay with MDCK II cells were rather normoxic, implying 

that transcription of the LOX gene during EMT in cancer might be also up-regulated by  alternative 

means. Numerous growth factors have been shown to induce EMT by  initiating conserved 

transcription programs leading to a loss of epithelial and a gain of mesenchymal, and therefore 

migratory, characteristics in epithelial cells {reviewed in Thiery, 2002}. Notably, TGF-beta is one of 

the growth factors inducing EMT and has been shown to increase LOX mRNA levels in several 

fibrogenic cell types, i.e., vascular smooth muscle cells, lung fibroblasts and osteoblastic cells 

{Boak et  al., 1994; Feres-Filho et al., 1995; Gacheru et al., 1997}. Future studies will have to 

clarify the molecular mechanisms and the players of the EMT transcriptome involved that result in 

increased transcription activity of LOX. 

In this context it is of interest that LOXL2, another member of the lysyl oxidase gene family, has 

been recently demonstrated to promote Snail-mediated EMT in MDCK II cells {Peinado et  al., 

2005}. The data suggests that LOXL2 increases protein stability of the Snail transcription factor 

through modification of two lysine residues that are critical for its proteolytic degradation. These 

results raise the possibility for potentially novel cytoplasmic substrates of LOX as well.
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In the third part of this study, it was tested whether over-expression of LOX alters the epithelial 

phenotype of MDCK II cells. Both, intra- and extracellular over-expression of the mature protein 

was performed. Two strategies, using different tags, were developed to achieve this goal and each of 

those will be discussed separately. The tags were used to distinguish endogenous LOX in MDCK II 

cells from stably transfected exogenous LOX. 

First, LOX was over-expressed as an EGFP-fusion protein. Intracellular expression of a mature 

LOX30-EGFP construct  did not yield a detectable protein for unknown reasons.  It  can be 

speculated whether the construct was not successfully  integrated into the genome or whether the 

LOX30-EGFP fusion gene was not successfully expressed. For the latter case, it is possible that 

either the mRNA transcript or the expressed protein did not pass intrinsic quality control 

mechanisms and became subject to pre-translational mRNA decay or to post-translational 

degradation {Isken & Masquat, 2007; Herbert & Molinari, 2007}. As mature LOX and EGFP have 

almost the same molecular weight (30 kD) correct protein folding may have been affected by steric 

hindrance. The relatively large size of EGFP could also have prevented access of a chaperon that 

may  stabilize the conformation of intracellular mature LOX. Expression of a full-length LOX50-

EGFP construct resulted in a secreted ~ 85 kD protein that  was detected independently by LOX and 

GFP antibodies and corresponded to the calculated size of the LOX50-EGFP fusion protein. In 

addition, a weak signal of approximately  60 kD was detected that  might represent the mature fusion 

protein. The analyzed subclone of this cell line displayed a strong mesenchymal morphology 

although cells were still growing in clusters and maintaining adhesive cell-cell contacts as indicated 

by E-cadherin expression. However, we did not detect increased LOX activity from conditioned cell 

medium of this subclone and the signal of the processed LOX50-EGFP fusion protein was relatively 

weak. Therefore it is questionable if the observed phenotype is a direct consequence of LOX over-

expression. Due to the random genomic integration of the construct, it is also possible that  the 

function of other genes may have been affected resulting in the altered morphology. At the same 

time it cannot be excluded that LOX induced the morphological phenotype independent of its amine 

oxidase activity as well.

The second approach comprised over-expression of mature and full-length V5-tagged LOX 

constructs in MDCK II cells. We decided to use the V5-tag because it is very  small, only 1.5 kD, 

and has therefore in comparison to the 30 kD EGFP protein a smaller potential to affect the native 

conformation of LOX by steric means. Over-expression of mature LOX seems to have a mild effect 

on the epithelial phenotype in MDCK II cells as cell lines transfected with the mature LOX 
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construct showed slightly flattened cell shapes. In contrast, the morphology from stable cell lines 

expressing the full-length construct was not  different from parental MDCK II cells. These results 

suggest that the intracellular mature LOX protein but not the extracellular form may  affect the 

epithelial phenotype. Despite the detection of exogenous intracellular and extracellular mature LOX 

by western blot analysis we were not able to detect increased LOX activity  compared to parental 

cells. Although intracellular measurement of LOX activity may be difficult due to other potential 

hydrogen peroxide sources as discussed previously, it was expected to overcome the signal-to-noise 

ratio by constitutive LOX over-expression under the CMV promoter. Therefore it  was even more 

surprising that cell lines expressing full-length constructs did not yield increased LOX activity 

although significant  amounts of processed exogenous mature LOX were detected by western blot 

analysis in conditioned cell medium of these cell lines. It is also unlikely that the V5-tag has 

influenced the catalytic ability  of LOX as cell lines over-expressing untagged constructs did not 

yield increased activity either. The generation of recombinant LOX with catalytic activity has been 

a challenge for a long time in the field. Until today there is only  one publication reporting 

successful generation of recombinant active LOX from E. coli inclusion bodies {Jung et al., 2003}. 

However, these results have not  been reproducible yet in our and other laboratories {B. Fogelgren 

& P. Trackman, personal communication}. The difficulties to express recombinant active LOX in 

this and other studies may result in part from its biochemical properties. Researchers have observed 

from early on that LOX is highly  insoluble in aqueous buffer solutions such as PBS {Kagan et al., 

1979}.  Starting at moderate concentrations LOX has the tendency to form multimers and 

sometimes becomes even visible as amorphous precipitates in the solution. This is also the main 

reason why purified LOX is traditionally solubilized in buffers containing high concentrations of 

urea {Sullivan & Kagan, 1982}. In conclusion, difficulties to express and detect recombinant active 

LOX in this study do also reflect a general problem to master the unique biochemical properties of 

this protein.

The lack of a morphological change in cell lines transfected with V5-tagged full-length LOX is 

another hint that the strong phenotype observed in one subclone of LOX50-EGFP cells was not 

caused by  exogenously expressed LOX. In fact the data obtained in this study imply  that over-

expression of LOX in normal epithelial cells may have not the same consequence as in their 

malignant counterparts. Transfection of LOX into non-invasive breast cancer cells increased their 

invasive potential as determined by migration assays and was reversible in a dose-dependent 

manner upon treatment with BAPN {Kirschmann et al., 2002; Payne et al., 2005}. 
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Invasive breast cancer cell lines with high endogenous LOX expression levels displayed a greatly 

reduced invasiveness in vitro and a decreased metastatic spread in orthotropic tumors in vivo after 

inhibition of LOX with BAPN or specific siRNAs {Payne et al., 2005; Erler et al., 2006}. These 

studies provided strong evidence that LOX is capable to induce a migratory and invasive phenotype 

in cancer cells. However, cancer cells have acquired numerous mutations throughout their lifespan 

that altogether do account for their altered cell behavior. In contrast, normal epithelial cells could 

have regulatory mechanisms in place that are able to compensate over-expression of LOX thereby 

maintaining their normal epithelial characteristics. 

This study demonstrated for the first  time that epithelial cells produce catalytically  active LOX. 

Furthermore, it presents compelling evidence that mature LOX is not  only  present in the 

extracellular space but also expressed in the cytoplasm of this cell type. Studies presented in this 

dissertation research have reinforced that more knowledge about the biochemical properties of LOX 

would greatly  facilitate research efforts on the cell biology of this protein. To further investigate the 

function of intracellular LOX, a novel assay  to measure intracellular LOX activity  may be needed. 

Ideally, this assay would not rely  on the detection of hydrogen peroxide due to its high abundance 

in the cytoplasm. An important step that remains to be investigated is whether the function of 

intracellular LOX in epithelial cells is related to its role during cancer metastasis. However, 

research on the role of intracellular LOX certainly has the potential to pave the way for new areas 

of exciting research and discoveries of this multifunctional protein. 
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V.  Abstract

The aim of the first  part of my PhD project was to investigate the role of the extracellular matrix 

enzyme lysyl oxidase (LOX) in epithelial cells and its potential implications for cancers of 

epithelial origin.

Using two well-characterized epithelial cell lines, i.e. MDCK II and MCF-10A, an in vitro model 

system was established to study  the function of LOX in epithelia. For the first time the presence of 

mature LOX protein was demonstrated within cytoplasmic fractions. In addition, the enzyme was 

found to be secreted from the cells and BAPN-inhibitable LOX enzymatic activity  was detected in 

concentrated fractions of conditioned cell medium. This result suggests that epithelial cells can 

express catalytically active LOX. Notably, extracellular expression and enzymatic activity of LOX 

were significantly elevated in post-confluent compared to pre-confluent cell cultures. This finding 

may indicate that LOX expression is elevated in differentiated epithelia. Although large amounts of 

mature LOX protein were observed in cytoplasmic fractions by western blotting, it  was not possible 

to recover intracellular BAPN-inhibitable LOX enzymatic activity.

LOX protein expression was shown to increase during scattering of MDCK II cells after hepatocyte 

growth factor (HGF) treatment. This process recapitulates important cellular characteristics of 

tumor metastasis in vivo. The higher LOX protein level correlated with a two-fold increase of LOX 

mRNA in HGF-treated compared to control cells as revealed by  quantitative PCR. Therefore, the 

scatter assay may  represent a suitable model system to study the recently reported role of LOX 

during cancer progression in vitro.

Two strategies were followed to generate stable MDCK II lines that express recombinant LOX 

under a CMV promoter in order to determine whether constitutive LOX over-expression can induce 

changes of the epithelial phenotype. The first strategy comprised transfection of LOX-EGFP 

constructs. However, this approach did not yield detectable amounts of recombinant protein. Steric 

hindrance of the relatively large EGFP-tag (30 kD) may be a reason for the failure to express LOX-

EGFP fusion proteins. Nevertheless, one clone transfected with full-length LOX-EGFP displayed an 

elongated morphology that resembled mesenchymal cells. The second approach used LOX-V5 

expression constructs. Neither intra- nor extracellular expression of LOX induced significant 

phenotypical/morphological changes in MDCK II cells. 
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In addition, no increase of LOX enzyme activity  was detected in either, cytoplasmic fractions or 

conditioned cell medium of stably transfected cell lines. The difficulties in expressing recombinant 

LOX in this study represents a general challenge of the field and may  result from its biochemical 

properties as well as the lack of more specific and sensitive assays to reliably determine its catalytic 

activity. 

Even though preliminary, the results of this study can serve as a promising basis for future 

investigations with the goal to decipher the precise function of LOX in epithelial cells.

Abstract

89



VI. Zusammenfassung

Das Ziel des ersten Teils der vorliegenden Dissertation war es die Rolle des extrazellulären Matrix 

Enzyms Lysyl Oxidase (LOX) in Epithelzellen zu untersuchen, sowie die daraus resultierenden 

Implikationen für Krebsarten epithelialen Ursprungs.

Unter Anwendung der beiden gut charakterisierten Zelllinien MDCK II und MCF-10A, wurde ein 

in vitro Modellsystem für Studien zur Funktion von LOX in Epithelien etabliert. Zum ersten Mal 

wurde die Präsenz des reifen LOX Proteins in zytoplasmatischen Fraktionen nachgewiesen. 

Außerdem konnte in beiden Zelllinien gezeigt werden, dass das Enzym in den extrazellulären 

Bereich sekretiert  wird und BAPN-inhibierbare Enzymaktivität konnte in Überständen von 

konditioniertem Zellkulturmedium gemessen werden. Dieses Resultat lässt darauf schließen, dass 

Epithelzellen katalytisch aktives LOX Protein exprimieren können. Interessanterweise war die 

extrazelluläre LOX Expression und Enzymaktivität deutlich höher in post-konfluenten als in prä-

konfluenten Zellkulturen. Dies könnte ein Hinweis darauf sein, dass LOX in differenzierten 

Epithelien verstärkt exprimiert  wird. Obwohl größere Mengen von prozessiertem LOX Protein bei 

Western-Blot Analysen auch in zytoplasmatischen Fraktionen gefunden wurden, konnte keine 

intrazelluläre BAPN-inhibierbare LOX Enzymaktivität nachgewiesen werden. 

Eine erhöhte LOX Protein Expression in MDCK II Zellen wurde nach Behandlung mit dem 

Wachstumsfaktor HGF während des sogenannten „Scattering“ (Auflösung des epithelialen 

Zellverbandes) beobachtet. Dieser Prozess rekapituliert wichtige Merkmale der Metastasenbildung 

von Tumoren in vivo. Zusätzlich wurde durch quantitative PCR Analysen gezeigt, dass die erhöhten 

LOX Protein Mengen ebenfalls mit einem zweifachen Anstieg der LOX mRNA Transkripte in 

HGF-behandelten versus unbehandelten Zellen korrelierten. Deshalb könnte der „Scatter-Assay“ als 

geeignetes in vitro Modellsystem für die Untersuchung der Funktion von LOX während der 

Metastasenbildung von Krebsarten epithelialen Ursprungs dienen.

Desweiteren wurden zwei Strategien verfolgt, um stabile MDCK II Zelllinien zu generieren, die 

rekombinantes LOX Protein unter der Kontrolle eines CMV Promoters exprimieren. Ziel war es zu 

untersuchen, ob eine konstitutive Überexprimierung Änderungen im epithelialen Phänotyp 

induzieren würde. Die erste Strategie umfaßte die Transfektion von LOX-EGFP Konstrukten. 

Allerdings resultierte dieser Ansatz nicht in detektierbaren Mengen von rekombinantem Protein. 
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Sterische Hinderung durch das relativ große EGFP-Tag (30 kD) könnten ein Grund dafür sein, dass 

eine detektierbare Expression von LOX-EGFP Fusionsproteinen gescheitert  ist. Dennoch zeigte ein 

selektierter Klon, der mit einem LOX-EGFP Konstrukt transfiziert war, eine Morphologie, die 

mesenchymalen Zellen ähnelt. Beim zweiten strategischen Ansatz wurden LOX-V5 

Expressionsvektoren verwendet. Weder die intra- noch die extrazelluläre Überexprimierung von 

LOX mit diesen Konstrukten resultierte in einer signifikanten phänotypischen oder 

morphologischen Änderung der MDCK II Zellen. Es konnte auch keine erhöhte LOX 

Enzymaktivität in zytoplasmatischen Fraktionen oder konditionierten Zellkulturmedium 

Überständen von stabil transfizierten Zelllinien nachgewiesen werden. Die in dieser Studie 

beobachteten Schwierigkeiten, rekombinantes LOX Protein zu exprimieren, stellen ein generelles 

Problem des Forschungsfeldes dar und liegen vermutlich zumindest teilweise an den biochemischen 

Eigenschaften dieses Proteins, sowie dem Fehlen eines spezifischeren und sensitiveren Assays zum 

zuverlässigen Nachweis seiner katalytischen Aktivität.

Obwohl die Ergebnisse dieser Studie nur als vorläufig zu betrachten sind, können Sie als 

vielversprechende Basis für zukünftige Untersuchungen dienen, mit dem Ziel die präzise Funktion 

von LOX in Epithelzellen zu entschlüsseln.
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I. Introduction

1.1 Significance of cardiovascular disease for modern western societies
Cardiovascular disease is the leading cause for mortality  in developed countries and based on the 

„Global Burden Disease Study“ predicted to become the pre-eminent health problem worldwide 

(Murray & Lopez, 1997). Most commonly manifested as myocardial infarction (MI), it accounts for 

approximately one out of three deaths in the United States (Cutler et al., 2006). By the late 1940s, 

atherosclerosis resulting in ischaemic heart disease was recognized as the major cause for death in 

the United States and led to increased efforts towards the identification of underlying mechanism(s) 

and subsequent prevention measures (Levy & Thom, 1998). Until the 1970s, atherosclerosis was 

considered a lipid storage disease based on numerous experimental and clinical evidence (Gofman 

et al., 1950; Ross & Harker, 1976). During the 1970s and 1980s, the dominating influence of 

vascular biology  led to an increased focus on growth factors and smooth muscle cell proliferation 

(Ross, 1979). The concept of atherosclerosis as an inflammatory disease has emerged in the 1990s 

due to the notion that atherosclerotic plaques, besides lipids and vascular cell types do also contain 

immune cells such as leukocytes (Jonasson et al., 1986; Libby, 2002). The economic burden of 

cardiovascular disease is substantial and causes the European Union over € 150 billion and the 

United States more than € 300 billion of annual direct as well as indirect costs (Leal et al., 2006; 

Thom et al., 2006). In comparison, the annual costs of all cancer treatments in the United States 

make up  about 50 % of those from cardiovascular disease. Most importantly, the economic impact 

is not only  exerted on a country‘s healthcare system but also as a loss of productivity in companies 

and a loss of income for affected individuals (Gaziano, 2007).

1.2 A brief historical perspective of atherosclerosis research
Although it has become an epidemic only in the modern world, the occurence of atherosclerosis 

dates back to ancient times. The English pioneer of Paleopathology  Sir Marc Ruffer described in 

1911 arterial changes in an Egyptian mummy that were suggestive of atherosclerosis (Ruffer M, 

1911). This observation was confirmed in the early 1960s using modern immunohistochemical 

techniques that identified lipid deposits, reduplication of the internal elastic lamina and calcification 

in arteries of Egyptian mummies (Sandison, 1962). 
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However, the first detailed scientific description of an atherosclerotic degenerated arterial wall 

seems to date back to 1804 when the Italian surgeon and anatomist Antonio Scarpa speculated 

metabolic processes to be the cause for this pathological observation. Nevertheless, Albrecht von 

Haller was in 1755 the first to introduce the term „atheroma“ (greek = porridge) for degenerative 

processes of the intimal layer within the arterial wall. In the 19th century  a debate erupted of 

whether these arterial changes are induced by inflammation or simply the result  of timely 

degeneration. Most of the pathologists followed Carl Rokitanski who considered atherosclerosis as 

a purely degenerative process characterized by  connective tissue accumulation and calcification in 

the intimal layer of arteries. Notably, the German pathologist Rudolf Virchow assumed chronic 

inflammation as the underlying cause of atheroma that he designated „chronic endarteritis 

deformans“. However, Virchow also considered that lipid accumulation was only a late 

manifestation of the disease. Finally, the term „atherosclerosis“ was introduced in 1904 by 

Marchand to refer to the degenerative process of the inner arterial layer (Leibowitz, 1970). 

Until the beginning of the 20th century atherosclerosis research remained purely descriptive. The 

first breakthrough towards a mechanistic assessment came in 1908 when the Russian scientist 

Alexander Ignatowski showed that feeding rabbits with a diet of egg yolk and milk resulted in 

experimental atherosclerosis (Ignatowski, 1908). The experiments were confirmed by  Anitschkov 

and Chalatov in 1913 who obtained the same results by supplementing rabbit  food with pure 

cholesterol (Anitschkow & Chalatov, 1913). This was the beginning of the lipid theory  of 

atherosclerosis that dominated the research field for most of the 20th century. This view was for the 

first time adapted in the 1970s when Russel Ross developed the „response to injury“ hypothesis that 

attributed a major role for the endothelium and smooth muscle cells in atherogenesis (Ross et  al., 

1977). The second breakthrough emerged in the 1990s with the generation of mouse models for 

atherosclerosis based on homologous recombination techniques. Genetically engineered mice 

lacking Apolipoprotein E and/or LDL receptor developed atherosclerotic lesions similar to those 

observed in humans and therefore opened a new era of research at a mechanistic level (Ishibashi et 

al., 1994; Nakashima et  al., 1994). Due to increasing evidence of immune system involvement in all 

stages of the disease, Ross reshaped in 1999 his „response to injury“ hypothesis towards the view of 

atherosclerosis as a „chronic inflammatory disease“ (Ross, 1999). As of today, it is widely accepted 

that atherosclerosis is a multifactorial disease converging on the interplay of excess cholesterol, 

inflammation and the vascular response to both of those factors (Rocha & Libby, 2009).
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A

B

Figure 1. Scheme of the  mevalonate pathway leading to cholesterol  biosynthesis (A) and chemical 
structure of cholesterol (B). 
(A) Statins interfere with cholesterol synthesis through inhibition of HMG-CoA reductase, the key enzyme in 
the second step of the pathway (from Tobert JA,  Nature Reviews Drug Discovery 2; 517-526. July 2003).
(B) Notably, the amphipathic properties of cholesterol result from one hydrophilic hydroxyl group and from 
the hydrophobic hydrocarbon backbone containing four saturated hydrocarbon rings that are characteristic 
for all steroids (from  p. 167 „Taschenatlas der Biochemie“, Koolman & Röhm).
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1.3 A morphological and anatomical view on development and progression of 

atherosclerosis
Cholesterol is an essential component  of the cell membrane. It provides the phospholipid bilayer of 

membranes rigidity to withstand mechanical forces. As for all lipids the biosynthesis pathway 

begins with activated acetic acid (Acetyl-CoA) and results in the characteristic steroid core module 

of cholesterol (Figure 1). It is mainly produced in the liver but to some extent also in other organs 

such as the intestine and the skin. Most of the cholesterol is incorporated into cell membranes 

contributing to their structural integrity. In addition, it is converted into bile acids that support 

intestinal digestion and a small fraction of cholesterol serves as a template for the synthesis of 

steroid hormones such as cortisol. Different lipoprotein complexes that differ in their protein and 

lipid composition transport cholesterol via the circulation into the tissues. The most significant 

carrier for cholesterol is low density lipoprotein (LDL) that consists of a lipid rich core surrounded 

by an amphipathic lipid layer inserted with apolipoprotein B (Figure 2). These proteins are 

important as they mediate binding to receptors for cellular uptake of cholesterol. Lipids are mainly 

hydrophobic molecules and would be insoluble within the hydrophilic blood stream. Therefore 

lipoprotein complexes facilitate the transport of an otherwise insoluble cargo through the circulation 

system. A characteristic manifestation of atherosclerosis is the formation of atherosclerotic plaques 

or lesions (also known as atheroma) in blood vessels (Figure 3). Normal arteries have a typical 

trilaminar structure. The endothelium is in direct contact with the blood and rests upon a basement 

membrane. The tunica intima consists of smooth muscle cells scattered within the extracellular 

matrix. An internal elastic lamina separates the intimal layer from the tunica media that contains 

multiple layers of smooth muscle cells embedded in a collagen- and elastin-containing matrix. 

Finally, the adventitia encloses the arterial wall towards the surrounding tissue. Excess levels of 

cholesterol can lead to the formation of early lesions, also called fatty  streaks. They are 

characterized by a lipid-rich core embedded in the intimal layer and an enlargement of the artery in 

an outward direction. Yet the normal size of the arterial lumen remains (almost) constant. Notably, 

fatty streaks are still reversible and prevalent in young individuals and were even found in fetal 

aortas of neonates (Berenson et al., 1998; Napoli et  al., 1997). Mature plaques develop when 

smooth muscle cells migrate from the tunica media past the internal elastic lamina into the tunica 

intima and/or subendothelial space. Mature plaques can occur as two different phenotypes: 

„vulnerable“ and „stable“ plaques. Vulnerable plaques contain a large lipid pool along with many 

inflammatory cells and a thin fibrous cap of extracellular matrix components.

Introduction

7



Figure 2. Schematic depiction of a low density lipoprotein (LDL) particle.
A hydrophobic core containing cholesteryl esters is covered with amphipathic lipids embedding 
apolipoprotein B (from www.foodspace.wordpress.com).
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Figure 3. Stages of atherosclerotic plaque development in the coronary artery.
Normal arteries have a trilaminar structure consisting of an endothelium lining the arterial lumen, the tunica 
intima and the tunica media (displayed in the enlargement). The intimal layer contains mesenchymal cells 
scattered in an extracellular matrix and the medial layer comprises several layers of smooth muscle cells. In 
addition, arteries are covered by a surrounding adventitial layer. Early atherosclerotic plaques are 
characterized by lipid accumulation in the intimal layer. Further lipid accumulation and inflammatory 
processes can lead to vulnerable plaques with a thin fibrous cap . This cap might rupture resulting in 
thrombosis and possibly myocardial infarction. The arterial lumen at the site of a healed ruptured plaque is 
significantly narrowed due to fibrous tissue accumulation in the intimal layer. In contrast, stabilized plaques 
contain a small lipid pool and a thick fibrous cap that  is usually resistant  to physical rupture (from Libby P, 
Nature 420; 868-871. Dec 2002). 
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This plaque phenotype is prone to physical rupture with subsequent thrombus formation and might 

result in artery occlusion and myocardial infarction. In case of a non-fatal cardiovascular event, the 

ruptured plaque can heal but  is often accompanied by massive expansion of smooth muscle cells 

and extracellular matrix deposits in the intimal layer and thereby reduces the arterial lumen. In 

contrast, a stable plaque is characterized by a small lipid pool, low amounts of inflammatory cells 

and a thick fibrous cap that is rich in collagen. This plaque phenotype usually  remains quiescent 

unless inflammatory stimulation triggers conversion into a vulnerable plaque.

1.4 Inflammatory processes during atherosclerosis
As of today it has become evident that inflammation is a critical feature from early to late stages of 

atherosclerosis. Poole and Florey observed already  in the 1950s that soon after feeding rabbits a 

cholesterol diet, leukocytes would attach to and cross the intact endothelium into the intimal layer 

of the arterial wall (Poole & Florey, 1958). Experimental animal studies in the 1990s have 

eventually revealed the molecular basis for immune-cell recruitment during the initiation of 

atherosclerosis. Leukocyte adhesion molecules, in particular vascular cell-adhesion molecule 1 

(VCAM-1), mediate attachment of monocytes and T-cells on endothelial cells lining the arterial 

lumen and initiate their subsequent penetration into the intimal layer (Cybulsky & Gimbrone, 1991) 

(Figure 4 A). In addition, other adhesion molecules including E-selectin and P-selectin seem to be 

involved in monocyte attachment to the endothelium (Dong et al., 1998). Leukocytes enter the 

intimal layer through passage between intact endothelial cell junctions, a process that is referred to 

as diapedesis. This directed migration is mediated by  a chemotactic gradient built of various 

cytokines. For example, monocyte chemoattractant protein-1 (MCP-1) is secreted by vascular 

endothelial cells and can recruit mononuclear phagocytes into nascent atheroma (Gu et al., 1998; 

Boring et al., 1998). The inflammatory activation of the endothelium can result from several 

stimuli. Excess cholesterol seems to be the major initiating trigger in both, animal models and 

humans, as atherosclerosis is practically absent in human populations with cholesterol levels below 

150 mg/dl but  gradually increases with elevated serum cholesterol (Campbell et  al., 1998; Stamler 

et al., 1986). Cholesterol sequestered in LDL particles can freely penetrate the intimal layer of the 

arterial wall where it becomes susceptible to oxdiative modification by reactive oxygen species and/

or extracellular enzymes (Williams & Tabas, 1998).
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Oxidized LDL (oxLDL) induces monocyte chemoattractant protein 1 (MCP-1) expression in 

endothelial cells thereby attracting monocytes (Navab et al., 1996). Accordingly, expression of the 

corresponding receptor CCR2 on monocytes is also stimulated by hypercholesterolemia (Han et al., 

1999).  Another stimulus may  be hypertension resulting in shear stress within the arterial lumen that 

can also contribute to expression of inflammatory genes in endothelial cells (Topper & Gimbrone, 

1999). In fact, endothelial cells in culture that are exposed to shear stress mimicking   arterial blood 

flow, display elevated expression of several leukocyte adhesion molecules (Dai et al., 2004). 

Once monocytes have entered the intimal layer they differentiate into macrophages under the 

influence of macrophage colony-stimulating factor (M-CSF) secreted by endothelial cells and 

smooth muscle cells (Figure 4 B) (Rajavashisth et al., 1998). Macrophages can undergo a second 

conversion into „foam cells“ whose name results from the massive accumulation of lipids within 

cytoplasmic droplets. In the presence of oxLDL, macrophages start expressing scavenger receptors 

that initiate the conversion into foam cells by allowing cellular uptake and clearance of modified 

LDL particles from the system (Febraio et al., 2000; Suzuki et al., 1997). Internalized oxLDL is 

subject to lysosomal degradation and antigen presentation of degraded fragments on the cell surface 

via MHC class II molecules can result in activation of T-cells (Nicoletti et al., 1999).

T-cells are critical inflammatory regulators of atherogenesis through diverse actions (Figure 4 C). 

Upon activation via antigen presentation (e.g. oxLDL) and stimulation by cytokines such as 

interleukin 12 (IL-12) secreted from macrophages they can differentiate into T helper 1 (Th1) cells 

(Uyemura et al., 1996). Th1 cells produce potent pro-inflammatory cytokines including IFN-γ and 

TNF-α that reinforce the inflammatory cascade by  prompting macrophages and vascular cells to 

secrete additional pro-inflammatory mediators (Frostegard et al., 1999). Furthermore, Th1-mediated 

immune responses increase endothelial permeability and expression of adhesion molecules on 

endothelial cells resulting in recruitment of additional inflammatory cells (Figure 4 D). In fact, it 

seems that antigen-presenting cells (e.g. dendritic cells) may  travel from atherosclerotic plaques to 

the thymus where they activate memory and effector T-cells that undergo clonal expansion before 

traveling back to the lesion site (Angeli et al., 2004). Another key  player among pro-inflammatory 

cytokines is CD40 ligand (CD40LG), a member of the tumor necrosis factor (TNF) family, that is 

expressed by most  cell types present in atherosclerotic lesions (Mach et al., 1997a). CD40LG 

signaling triggers inflammatory activation of T-cells, macrophages, endothelial cells and smooth 

muscle cells and is not only characterized by cytokine production but also results in expression of 

matrix metalloproteinases (MMPs) and procoagulant tissue factor (Mach et al., 1997b). 
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The latter two are important mediators during plaque rupture as MMPs degrade the fibrous 

extracellular matrix cap  that stabilizes the mature plaque and tissue factor triggers thrombocytic 

aggregation of platelets once the blood gains access to the lipid core (Libby & Aikawa, 2002). 

Figure 4. Immune cell recruitment and activation at atherosclerotic lesion sites.
(a) LDL particles enter the intimal layer where they are subject  to oxidative modification. Leukocytes bind to 
adhesion molecules (e.g. VCAM-1) on the surface of endothelial cells and then passage through the 
endothelial layer following a chemokine gradient. (b) Monocytes differentiate under the influence of M-CSF 
into macrophages. In response to oxLDL macrophages undergo foam cell conversion thereby accumulating 
lipids in their cytoplasm. In addition, macrophages can present antigens of degraded fragments of oxLDL, 
lipopolysaccharides (LPS) or heat  shock proteins (HSP60) on their surface. (c) T-cells become activated 
through antigen presentating cells (APC), express the cell surface marker CD4 and can differentiate into Th1 
cells in the presence of interleukins (e.g. IL-12). (d) Th1 cells mediate pro-inflammatory signals in 
atherosclerotic plaques. They secrete interferon gamma (IFN-γ) and tumor necrosis factor (TNF) further 
activating the endothelium and inhibiting smooth muscle cell proliferation. In addition, Th1 cells can trigger 
inflammatory cascades in macrophages through CD40 ligand signaling. (e) Th2 cells mediate anti-
inflammatory signals in atherosclerotic plaques. They produce interleukin 10 (IL-10) and transforming 
growth factor beta (TGFβ) that  both inhibit  Th1 cell responses and stimulate smooth muscle cell 
proliferation and differentiation (from Hansson & Libby, Nat Rev Immun 6; 508-519. July 2006).
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Persistent inflammation at atherosclerotic lesion sites results on one hand in a lipid-rich core and on 

the other hand in a fibrous cap  that is thin and fragile due to smooth muscle cell inhibition and 

MMP-mediated extracellular matrix degradation (Figure 5). This imbalance renders the plaque 

vulnerable to physical rupture and is the main cause for thrombocytic occlusions that  can lead to 

ischemia in coronary arteries and eventually to myocardial infarction, the most adverse 

cardiovascular event (Virmani et  al., 2002). In addition to plaque disruption by  fracture of the 

fibrous cap  two other mechanisms are discussed as initiating events for atherothrombosis. First, 

steady  plaque erosion driven by endothelial desquamation, possibly as a result of apoptosis, may 

expose sub-endothelial collagen and von Willebrandt factor that promote platelet aggregation (Farb 

et al., 1996; Durand et al., 2004). Second, it is speculated that microvessels generated in atheromas 

as a result of neo-angiogenesis may be more fragile and therefore prone to micro-hemorrhage (de 

Boer et al., 1999).

However, mature plaques can also exhibit  a stable phenotype that is characterized by a small lipid 

core with a thick fibrous cap and seems to be supported by T helper 2 (Th2) cell immune responses 

(Figure 4E and Figure 6). This T-cell subpopulation secretes interleukin 10 (IL-10) and 

transforming growth factor beta (TGF-β) that both suppress pro-inflammatory processes mediated 

by Th1 cells including production of IL-12 and IFN-γ (Mallat et al., 1999; Mallat et al., 2001). Most 

importantly, TGF-β stimulates proliferation of smooth muscle cells that produce and secrete 

collagen fibrils thereby adding tensile strength and resilience to the fibrous cap  (Lutgens et al., 

2002). Stable plaque phenotypes often develop as a consequence of the healing process after a 

resolved plaque rupture. However, increased extracellular matrix synthesis and fibrous tissue 

accumulation cause expansion of the intimal layer and come as mentioned earlier at the price of 

reducing the arterial lumen and thereby decrease blood flow capacity.

Introduction

13



Figure 5. Rupture of a vulnerable plaque.
Persistent  inflammatory signals from immune cells within the plaque induce secretion of matrix 
metalloproteinases (MMPs) and inhibit collagen synthesis by smooth muscle cells. The result is a plaque 
with a thin fibrous cap that may eventually fissure upon mechanical shear stress from the arterial blood flow. 
The release of cellular debris and cholesterol from the plaque interior into the arterial lumen leads to platelet 
aggregation and can result  in thrombosis.  Arterial occlusion due to thrombus formation might  cause 
ischaemia and - depending on location and duration - subsequent myocardial infarction (from Hansson & 
Libby, Nat Rev Immun 6; 508-519. July 2006).
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Figure 6. Stable plaque phenotype. 
The plaque contains a lipid-rich core consisting of cholesterol and cellular debris from degenerated cells and 
is covered by a thick fibrous cap made up by smooth muscle cells and a tight meshwork of collagen fibrils 
(not  shown). The intact  plaque is sealed against  the arterial lumen by an endothelial layer. Diverse immune 
cell types including monocytes, macrophages and T-cells reside within the plaque and may affect its 
phenotype by secretion of cytokines, proteases, thrombotic molecules and vasoactive substances (from 
Hansson & Libby, Nat Rev Immun 6; 508-519. July 2006).
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1.5 Circulating blood cells and their potential significance in atherosclerosis
Infiltrating immune cells from the circulation are a hallmark of atherosclerotic plaque development 

at the lesion site and set the stage for inflammatory  processes in atherosclerosis (Libby, 2002).  

Approximately  40% of the cells in human atherosclerotic plaques express macrophage markers, 

about 10% are T-cells and almost 50% are vascular smooth muscle cells (Jonasson et al., 1986). 

Interestingly, the actual ratio of immune cells in the plaque that  represent resident cells of the vessel 

wall versus cells originating from the circulation is not known. Even vascular endothelial cells and 

smooth muscle cells at atherosclerotic lesion sites have been shown to originate at least  in part from 

circulating bone marrow-derived precursors (Saiura et al., 2001; Werner & Nickenig, 2007). These 

observations indicate that plaques are throughout the disease process in dynamic exchange with the 

circulation and are modulated by  stimuli from not only  their local micro- but  also the systemic 

environment.

Circulating monocytes appear to be a major source of macrophages in plaques where they can 

further transition into cholesterol-loaded foam cells (Smith et al., 1995; Suzuki et  al., 1997; 

Febbraio et  al., 2000). Furthermore, recent studies have demonstrated that in particular a pro-

inflammatory subset of circulating monocytes expressing the surface marker P-selectin glycoprotein 

ligand 1 (PSGL-1) accumulates in atherosclerotic plaques (An et al., 2008). Circulating monocytes 

apparently  represent  a heterogenous population of immune cells but the distinct functions of 

different monocyte subsets in atherosclerosis remain to be resolved (Woolard & Geissmann, 2010). 

Interestingly, monocytes are not only  recruited to but may also emigrate from atherosclerotic lesion 

sites back into the circulation (Llodra et  al., 2004). However, the underlying mechanism(s) that 

control monocyte traffic in and out of plaques, as well as the functional significance of this 

observation are unknown. In conclusion, monocytes seem to exhibit a high degree of plasticity 

within their local environment. In addition, within plaques they are also capable to differentiate into 

dendritic cells upon cytokine stimulation by granulocyte macrophage colony stimulating factor 

(GM-CSF) (Geissmann et al., 2003).

Dendritic cells (DCs) can originate from monocytes (myeloid) as well as from lymphoid 

progenitors  and comprise a small fraction of leukocytes (0,3 %). DCs serve mainly as antigen-

presenting cells  thereby modulating the adaptive immune response. There are resident DCs within 

the vascular wall but also circulating DCs in the blood stream. During atherosclerotic progression 

the number of circulating DCs decreases whereas the numbers in vulnerable plaques increase 

(Yilmaz et al., 2006). Notably, oxidized LDL promotes differentiation of monocytes into dendritic 
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cells, a process that is inhibited by  statins, a potent class of cholesterol-lowering drugs (Perrin-

Cocon et al., 2001;  Yilmaz et al., 2004). Furthermore, in response to high cholesterol levels DCs 

seem to travel back from atherosclerotic lesion sites to lymphoid tissues where they may induce 

clonal expansion of auto-reactive T-cells against oxLDL epitopes (Angeli et al., 2004).

Mast cells represent another small but  potentially important subset of leukocytes that enter 

atherosclerotic plaques from the circulation and may contribute to disease progression. Originating 

from myeloid progenitor cells, mast cells are involved in inflammatory and hypersensitivity 

reactions of the immune system (Hofmann & Abraham, 2009). Upon stimulation they can release 

vasoactive substances (e.g. histamine and leukotrienes), proteolytic enzymes (e.g. tryptase and 

chymase), pro-inflammatory  cytokines (e.g. TNF-α = tumor necrosis factor-α) and growth factors 

(e.g. PAF = platelet activating factor) that are all stored within cytoplasmic granules. Mast cells are 

activated in response to antigen binding to Immunoglobulin E (IgE), components of the 

complement cascade and excess cholesterol of which the latter two are found in atherosclerotic 

plaques (Niculescu & Rus, 2004; Baumruker et al., 2003). Mast cells are present in atherosclerotic 

lesion sites from early  to late stages of the disease process but  specifically  in rupture-prone regions 

of vulnerable plaques (Kartinen et al., 1994). Proteolytic enzymes secreted by  mast cells are thought 

to degrade the fibrous cap leading to plaque stabilization whereas release of TNF-α from secretory 

granules may act on macrophages and T cells amplifying the inflammatory cascade (Johnson et al., 

1998; Kartinen et al., 1996). In conclusion, mast cells seem to enhance pro-atherogenic events 

throughout the disease process.

Although circulating platelets are mostly recognized for their central role during hemostasis, studies 

within the last decade attribute a significant impact for this anucleate cell type on atherosclerotic 

disease development and progression (May et al, 2008). The role of platelets during thrombus 

formation after rupture of atherosclerotic plaques is well understood (Bhatt & Topol, 2003). 

However, accumulating evidence strongly suggests that platelets contribute to early stages of 

atherogenesis as well. About a decade ago, studies have demonstrated that adhesion of circulating 

platelets to the endothelium is critical for atherosclerotic plaque development (Massberg et al., 

2002). Platelets not only adhere to endothelial cells but also to leukocytes and may in particular 

facilitate recruitment of monocytes to the vascular wall thereby promoting plaque formation (Huo et 

al., 2003). Platelet attachment to the endothelium is thought to occur via a two-step  process that 

includes interaction of P-selectin glycoprotein ligand 1 (PSGL-1) and integrins with corresponding 

receptors on target cells (Figure 7 A) (Romo et al., 1999; Frenette et al., 2000). 
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Monocytes are bound similarly  through adhesion receptors on the cell surface (Figure 7 B). 

According to the current concept, platelets may be activated upon chemical (e.g. cytokines, oxLDL) 

and/or physical (e.g. hypertension) stimulation and modulate diverse inflammatory processes 

contributing to an atherogenic milieu at the vascular wall (May  et a., 2008). For example, secretion 

of interleukin-1β (IL-1β) by platelets induces expression of pro-inflammatory cytokines and 

leukocyte adhesion molecules in endothelial cells (Hawrylowicz et  al., 1991; Gawaz et al., 2000). 

Similarly, platelet-derived CD40 ligand triggers expression of leukocyte chemoattractants and 

adhesion receptors in endothelial cells (Henn et al., 1998). Furthermore, platelet factor 4 (PF4) a 

chemokine unique for platelets has been shown to promote hypercholesterolemia by inhibition of 

LDL uptake via the LDL receptor on one hand and to induce foam cell formation by uptake of 

oxidized LDL via scavenger receptors in macrophages on the other hand (Sachais et al., 2002; 

Nassar et al., 2003). In conclusion, the significance of platelets in atherosclerosis may go far beyond 

the involvement in thrombus formation during acute cardiovascular events. It seems as if the role of 

this cell type as inflammatory modulator is at  least as important during early stages of the disease 

process.

In summary, circulating immune cells and platelets patrol within the blood stream and may  act as 

both, primary  sensors and effectors, of the atherosclerotic coronary artery  disease phenotype. 

Therefore, circulating blood cells as an entity do represent  an attractive target to investigate the 

cellular interplay between the plaque site and systemic influences with the aim to identify novel 

biomarkers and yet unknown mechanisms of atherosclerosis.
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A.

B.

Figure 7. Adhesion of platelets to vascular endothelium (A) and adhesion of platelets to monocytes (B).
(A) Initially, platelets tether to endothelial cells via interaction of the cell surface ligands GPIbα and PSGL-1 
with P-selectin. Firm adhesion is mediated via integrin αIIbβ3 binding of platelets with αVβ3 integrins on 
endothelial cells. (B) Platelet  binding to monocytes through adhesion molecules can induce transcription 
programs that result in diverse downstream signaling events (from Gawaz et al., J Clin Invest. 2005 Dec;115
(12):3378-84.).
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1.6 Systems biology and the analysis of the atherosclerotic phenotype
One of the fundamental aims in biology is to understand the complexity of organisms and to 

decipher the underlying molecular mechanisms of cell function. Despite the breakthroughs of 

modern biochemistry  and molecular biology since the mid 20th century that were enabling the 

investigation of single genes and proteins, it has remained a daunting task to analyze multifactorial 

and complex phenotypes at  the systemic level. Soon it became evident that phenotypes result from 

characteristic gene expression signatures involving simultaneous and coordinated expression 

patterns of many  genes. With the rise of the genome sequencing era in the 1990s, genome 

sequences from many  organisms became accessible. Yet researchers did not have the technology in 

their hands to analyze the expression of more than a few genes at a time. It was originally a 

competitive sequencing technique that yielded rapidly a powerful technology  for whole genome 

expression profiling. Sequencing by hybridization (SBH) was proposed as an alternative approach 

to de novo DNA sequencing and utilized short oligonucleotide probes of defined sequence to search 

for complementary sequences on an unknown target DNA (Strezoska et al., 1991). A significant 

improvement was achieved by Stephen Fodor and colleagues. They  reversed the configuration and 

attached oligonucleotide probes to an array surface that could be hybridized to known target DNAs 

of interest  (Fodor et al., 1991; Pease et al., 1994). Due to fluorescent labeling, the hybridization 

pattern directly revealed the identity of all complementary probes. An important prerequisite for this 

approach was the development of a photolithographic combinatorial chemistry strategy that allowed 

the synthesis of oligonucleotide probes on the surface of miniaturized arrays. Initially, a matrix of 

256 spatially defined oligonucleotide probes was generated. Nowadays, capacities of probing short 

oligonucleotides - usually 60mers - representing the genes of entire genomes on microarrays are 

realized. Notably, sequence specificity has been demonstrated down to single base pair mismatches 

emphasizing the accuracy and stringency of the method (Chee et al., 1996). Over the last decade 

microarrays have become a widely  used tool for genome-wide expression profiling between two 

phenotypic states (e.g. disease vs non-disease). Although the financial costs for the equipment to 

carry  out microarray experiments remain high, most researchers have nowadays access to this 

technology due to the establishment of core facilities at  many research centers. As of today, 

commercially available arrays feature the genes of entire genomes from diverse model organisms, 

including mice and man, thereby allowing assessment of the complete transcriptome of a tissue or 

cell type of interest. The procedure itself starts with the extraction of total RNA from cells or 

tissues, for example from a healthy and a diseased tissue (Figure 8). 
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mRNA is then labeled by  fluorescent or chemiluminescent dyes for later detection of hybridization 

between complementary samples and probes on the microarray. In addition, template RNA may be 

amplified by  in vitro transcription. Samples are then hybridized to the array and fluorescence or 

chemiluminescence of bound probes is detected with a scanner. Signal intensities are normalized 

and subsequently analyzed with detection algorithms for differential gene expression patterns. 

Significance and functional grouping of differentially  expressed genes can be assessed using 

biological knowledgebases. Finally, candidate genes are validated by  independent techniques such 

as quantitative PCR. Besides expression profiling, microarray analysis is also used for the detection 

of single nucleotide polymorphisms (SNPs) due to high sequence specificity  of the hybridization 

between samples and probes. In addition, a second competitive gene expression profiling technique 

emerged in the 1990s called serial analysis of gene expression (SAGE). This method was 

introduced by  Kinzler and coworkers and is based on two basic principles (Velculescu et al., 1995). 

First, a cleavage site for a restriction enzyme at a fixed distance from the poly(A) tail allows 

specific detection of mRNA transcripts. Second, the sequence identity of extracted transcript 

fragments is determined by primary  sequencing reactions. Altogether, the SAGE procedure 

encompasses multiple enzymatic, PCR amplification, purification and cloning steps that  are 

finalized by a sequencing reaction. It starts with the purification of mRNA on solid phase oligo(dT) 

beads followed by subsequent cDNA synthesis (Figure 9). The cDNA is then digested with a 

restriction enzyme, that is also called anchoring enzyme (AE), to reveal the closest 3‘-cleavage site 

with respect to the poly(A) tail of a given transcript. A commonly  used anchoring enzyme is NlaIII 

recognizing a 4 bp cleavage site that is predicted to occur every 256 bp and is therefore likely to be 

present on most mRNA species. In the next step, the sample is equally  divided and then ligated to 

two different  linkers. Both linkers are recognized by an restriction enzyme, also called the tagging 

enzyme (TE), that cuts 10 bp 3‘ from the anchoring enzyme yielding a transcript fragment known as 

the SAGE tag. The SAGE tags are then ligated to form ditags and amplified by PCR using primers 

designed against the known linker sequences. Following PCR amplification the ditags are released 

from the linker, become serially ligated creating concatenates that are cloned and finally sequenced. 

The initial data analysis comprises two essential steps: 1) Examining the sequence identity  of the 

SAGE tags. 2) Identification of the corresponding genes by  comparison to a reference database. 

Relative expression levels can be calculated by dividing the unique tag count by the total tags 

sequenced. The fold change of gene expression changes between two sample groups is determined 

by the ratio of tags between libraries.

Introduction

21



Figure 8. Workflow of the critical steps during a microarray experiment.
mRNA is purified from cells or tissue(s) of interest and subsequently labeled for later chemiluminescent  or 
fluorescent  detection. The labeling process may also involve amplification of the template RNA (not  shown). 
Labeled mRNA is then hybridized onto the microarray where it  binds specifically to complementary DNA 
sequences (competitively for two-color arrays; non-competitively for single-color arrays). Bound sequences 
are detected and identified according to their position on the array. Signal intensities are then normalized to 
enable interarray comparisons. Normalized data sets are subjected to computational analysis yielding a list  of 
differentially expressed transcripts that may be further analyzed using biological knowledgebases. Finally, 
candidate genes are validated with alternative methods, for example by quantitative PCR (from Cook & 
Rosenzweig, Circ Res 91(7):559-64. October 2002).
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There are subtle differences between expression profiling based on microarray versus SAGE 

analysis. The latter technique seems to be slightly more sensitive as less starting material is needed. 

Microarray experiments require typically  the preparation of at least a few nanograms of total RNA. 

In contrast, only a few cells are technically sufficient to perform a SAGE analysis due to the PCR 

amplification step. In addition, the SAGE technique has the advantage that no prior sequence 

information of the interrogated sample is needed whereas hybridization on microarrays can be only 

performed against known oligonucleotide probes (Velculescu et al., 2000). However, with several 

genomes - including the human genome - being sequenced and annotated this has not been a major 

obstacle anymore for the past decade. A strength of microarray experiments is,  they do require less 

time and effort especially with regard to the efficient  semi-automated commercial setups that have 

been developed in recent years.

Both, the SAGE and microarray technology, have greatly  contributed to the field of functional 

genomics that aims to understand the relationship between the genome of an organism and its 

phenotype. Whole genome measurement technologies have also paved the way for the feasibility of 

systems biology approaches that attempt to elucidate not  only the molecular components but also 

their interactions within networks of a cell type, tissue or entire organism (Tegner et al., 2007). Due 

to the large amount of data from whole genome expression profiling studies, computational analysis 

including the use of biological knowledgebases has become a prerequisite for data mining (Kitano, 

2002). Synergistic use of bioinformatics and whole genome technologies has yielded novel 

conceptual approaches for systems biology such as reverse engineering that can be viewed as a 

„process of identifying gene networks from whole genome data using an underlying computational 

model“ (Tegner et al., 2003). 
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Figure 9. Schematic illustration of the SAGE protocol.
Double-stranded cDNA is synthesized on mRNA templates bound to oligo(dT) beads (circles). Digestion 
with the anchoring enzyme (AE) exposes the 3‘ most  restriction site. The resulting fragments are equally 
divided and ligated to different linkers (A and B) yielding the SAGE tag. The SAGE tags are then blunt-
ended and ligated to ditags, PCR amplified with primers against  the linkers, ligated to concatenates, cloned 
and finally sequenced (from Patino et al., Circ Res 91(7):565-69. October 2002).
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Systems biology  studies in the genomics era were first conducted in prokaryotic organisms and 

yeast but have been extended to mammalian models in recent years (Gardner et al., 2003; 

Mustacchi et al., 2006; Basso et al., 2005; Calvano et al., 2005). This „bottom-up“ approach, 

moving from relatively simple to more complex model systems, has been a common and successful 

strategy in life science research. For example, basic mechanisms of gene regulation were initially 

discovered in peas, fruit flies and bacteria and then applied and extended to mammalian systems 

(Mendel, 1950; Morgan, 1911; Jacob & Monod, 1961). However, Tegner and colleagues propose in 

parallel a „top-down“ approach that starts with a phenotype (e.g. a multifactorial disease) in humans 

or animal models and narrows down to „simple“ cellular models (Tegner et al., 2007). Reverse 

engineering may thereby  be used to identify „principal networks“ in complex traits that comprise 

most of the key interactions between their molecular components. These networks, representing 

sub-phenotypes, can then be further delineated and most importantly  also manipulated in 

appropriate cellular model systems. Manipulation can encompass a variety  of measures including 

gene silencing or specific inhibition of their respective proteins.

Coronary artery  disease (CAD) resulting from atherosclerosis is a multifactorial disease based on 

genetic predisposition(s) and environmental pressures (Watkins & Farrall, 2006). It is therefore an 

excellent example for a complex trait that may be amenable to a systems biology  approach. CAD is 

a degenerative inflammatory disease of the arterial wall leading to the formation of atherosclerotic 

plaques that  can eventually cause adverse clinical events such as myocardial infarction. From the 

systems biology perspective, a key assumption is that the CAD phenotype must  be in some way 

also represented by the components (e.g. cells, metabolites and proteins) that are most affected by 

the disease. These components presumably reflect  the environmental influences filtered through the 

genetic composition of an individual. Over years, lifestyle factors such as food intake and stress 

were believed to alter gene expression patterns related to lipid metabolism and inflammation, both 

of which are known factors contributing to the disease phenotype (Glass & Witztum, 2001). 

However, current knowledge about atherosclerosis is largely a fragmented picture based on single 

candidate gene approaches (e.g. knock-outs) and individual risk factors (e.g. inflammatory 

markers). Therefore, whole genome measurement technologies such as microarray expression 

profiling together with computer-assisted modeling of biological knowledgebases harbor the 

potential to unravel systemic gene regulatory networks of the CAD phenotype at the mRNA level.
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1.7 Working hypothesis and experimental approach of the second thesis project
Atherosclerosis has once been defined as a lipid storage disease but is now widely  recognized as a 

chronic inflammatory  condition of the arterial vessel wall. So far research has largely focused on 

the atherosclerotic lesion site including resident vascular cell types and infiltrating immune cells 

that both contribute to the development and progression of atherosclerotic plaques (Hansson & 

Libby, 2006). Circulating blood cells are the source for many inflammatory cell types within the 

plaque and represent an interface between immune system and atherosclerotic lesion(s). However, 

whether circulating blood cells themselves do reflect and possibly contribute to the disease 

phenotype is poorly understood (Kang et al., 2006). Therefore, this study aimed to investigate the 

whole blood transcriptome from CAD patients using a systems biology approach by microarray 

expression profiling and subsequent biological knowledgebase-assisted analysis of differentially 

expressed genes. In the first step a small but prospectively  matched study cohort  was assembled that 

featured individuals diagnosed with atherosclerotic coronary artery  disease and healthy control 

subjects. Whole blood samples were collected and total mRNA from circulating blood cells was 

prepared for hybridization onto whole genome microarrays. A novel algorithm designed for the 

detection of heterogenous and sparse signals was used for differential expression analysis. 

Biological knowledgebases were then applied to identify networks and functional groups within the 

differentially expressed genes. Finally, candidate genes representing different functional categories 

were validated by quantitative PCR.
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II. Material and Methods

1. Study subjects
Following a protocol that was reviewed and approved by the Veterans Administration Pacific 

Islands Healthcare System (VAPIHCS), the University of Hawaii IRB and the United States Army 

Medical Research and Materiel Command Human Research Protection Office, age and ethnicity 

matched groups of subjects that had no evidence of chronic or active infectious or autoimmune 

diseases were recruited. Using a relational data warehouse, developed at VAPIHCS to mirror its 

clinical database (VistA) (Advani et al., 1999, Proc AMIA Symp, 653-7), eligible patients were 

electronically identified as having diagnoses and clinical laboratory results appropriate for 

enrollment based upon the inclusion and exclusion criteria listed below. 

Inclusion criteria for the two age, gender and ethnicity-matched study groups were as follows:  1)  

Individuals diagnosed with early-onset coronary artery disease (EMI) that had an ICD-9 code for 

myocardial infarction (MI) before age 50 but at least more than 6 months prior to screening and 

enrollment. These individuals were undergoing standard post-MI therapy and were taking any of a 

specific set of cardiac-related medication classes including acetylic salicylic acid (aspirin), 

angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor type 1 blockers, β-

adrenoceptor blockers and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins).  

2) Medicated control individuals (MCON) did not have an ICD-9 code for myocardial infarction 

but were taking any combination of these medications. 

Criteria for exclusion were 1) treatment of active infection within the last month, 2) a clinical 

history of chronic infection or rheumatologic disease, 3) active use of non-steroidal anti-

inflammatory drugs, 4) laboratory evidence of active infectious or autoimmune disease, 5) a history 

of an MI within the last 6 months, 6) an absolute monocyte count < 125 cells/µl within the last year, 

7) anemia defined as hemoglobin < 10 g/dL or HCT < 30% within the last year (CAD subjects were 

excluded if their hemoglobin levels were < 11 g/dL or HCT < 33%), 8) CRP ≥ 2.0 mg/dL or ESR ≥ 

30 mm/hr.  In addition, potential subjects with active pregnancy  or dementia were excluded. Finally, 

subjects with severe active mental illness were excluded based upon review of the medical record.

All eligible subjects were invited to be screened for enrollment. After giving informed consent, 

eligible subjects were given a detailed medical history questionnaire to record baseline 

characteristics, such as past medical history, medication use and habits. 
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All subjects screened also underwent routine clinical laboratory testing, which included a complete 

blood count with differential, comprehensive metabolic profile, erythrocyte sedimentation rate and 

C-reactive protein level. Eligible subjects that were not excluded during the screening process were 

invited to return for a second blood draw, when 80 ml of blood was collected for RNA extraction. 

This process yielded two study groups (EMI and  MCON) with 10 subjects in each group. 

2. RNA purification
Total RNA was isolated from peripheral blood drawn from the study subjects using the Qiagen 

PAXgene RNA Kit (Valencia, CA) according to the manufacturer’s instructions. Briefly, blood was 

incubated in PAXgene Blood RNA Tubes at room temperature for 2 h to ensure complete lysis of 

blood cells and subsequent stabilization of RNA. Nucleic Acids were then pelleted for 10 minutes at 

4000 g and washed once in RNase-free water. The pellet was resuspended and incubated with 

Proteinase K for 10 minutes at 55 °C. Remaining cell debris and proteins were removed by 

centrifugation at 20.000 g for three minutes through a shredder spin column. Flow-through was 

transfered into a RNA spin column and binding conditions were adjusted by adding half the volume 

ethanol. DNA was removed by treatment with DNase I for 15 minutes at room temperature. After 

several washing steps RNA was eluted twice in 40 µl elution buffer. Up to 70 % of whole blood 

mRNA consists of globin transcripts that were removed subsequently with Ambion GLOBINclear 

Reduction Kit (Foster City, CA). Briefly, biotinylated globin probes were hybridized to purified 

whole blood RNA and globin transcripts were depleted with streptavidin magnetic beads. Final 

RNA concentration was determined with a NanoDrop ND-100 Spectrophotometer (Wilmington, 

DE). RNA quality was assessed using the RNA LabChip  Kits on an Agilent Bioanalyzer 2100 

(Santa Clara, CA).  Samples with a RNA integrity number (RIN) of  ≥ 7 were further processed for 

microarray  hybridization. The RIN is a score on a scale from 1 to 10 determined by  Agilent 

Bioanalyzer software using an algorithm that is based on the data of 1300 electropherograms of 

total eukaryotic RNA ranging from completely  degenerated (score = 1) up to highly intact (score = 

10) samples. In addition to ribosomal ratios this procedure allows quality assessment of total RNA 

with respect to the complete electrophoretic trace (Imbeaud et al., 2005; Schroeder et al., 2006). 
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3. Microarray hybridization
1 µg of total RNA from each sample was processed using Applied Biosystems NanoAmp RT-IVT 

Labeling Kit (Foster City, CA) to generate digoxigenin (DIG, Roche)-labeled cRNA for microarray 

hybridizations. Double-stranded cDNA was synthesized from RNA template and in vitro-

transcribed resulting in approximately  100-fold amplified DIG-labeled cRNA. 10 µg of cRNA from 

each sample were hybridized onto Applied Biosystems Human Survey Genome Microarray 2.0 

(Foster City, CA) containing 32,878 probes for the interrogation of 29,098 genes, of which 21 % 

have been curated only by Celera Genomics and 79 % were based on public databases. After 

hybridization each microarray was scanned with an Applied Biosystems 1700 Chemiluminescent 

Microarray Analyzer (Foster City, CA). Chemiluminescent images from each microarray were auto-

gridded, then spot and spatially  normalized. Chemiluminescent signals were quantified, corrected 

for background and the final images and feature data were processed using the Applied Biosystems 

1700 Chemiluminescent Microarray Analyzer software v1.1. Data and images were collected 

through an automated process for each microarray using the ABI 1700 Analyzer platform. Each 

biological sample of this study was assayed and analyzed on a single microarray as previous work 

in our laboratory and by others has consistently demonstrated limited variability between  technical 

replicates (Shi et al., 2006).

4. Data analysis
A novel detection algorithm that utilizes a localized version of statistical testimation (LOTEST) was 

used to detect a global signal for differential gene expression between cases (EMI) and controls 

(MCON) (Okimoto, 2006). First, the data output from each microarray was vectorized to form a 

column of an expression data matrix where the control and EMI samples segregated into two 

disjoint groups (Figure 10 A). Each row of the data matrix represents the expression profile of a 

gene across the control and EMI sample groups. The data matrix was then quantile normalized to 

suppress low-frequency systematic (experimental) error and log2 transformed to equalize variation 

(fold change) over intensity (expression). A Ratio-Intensity (RI) scatter plot of mean log2 ratio 

(MLR) versus mean log2 expression (MLE) was generated where each gene was represented by a 

point in (MLR/MLE) space (Figure 10 C). Genes with similar mean log2 expression levels were 

grouped across the x-axis in 51 quantile bins, where each bin contained approximately 650 genes. 

Material and methods

29



Statistical testimation based on the Donoho-Johnstone Universal Threshold (DJUT) was computed 

for each bin to detect genes that were differentially expressed (Donoho & Johnstone, 1994, Sabatti 

et al., 2002). The genes that exceeded the DJUT for each bin, together, formed a global estimate of 

the signal for differential gene expression between EMI and control samples. The LOTEST 

algorithm can be viewed as a localized „test-and-estimate“ (testimation) procedure to detect a 

sparse signal of differential expression - embedded in additive Gaussian noise - that simultaneously 

controls for multiple comparisons. Localized testimation for the detection of differentially 

expressed genes has been implemented in a web-based software application called Microarray 

ANalysis of INtensities and RatIos (MANINI) that is publicly  available on the internet for 

registered academic users at  http://crchbioinfo.org/CRCHXpress. The resulting list  of differentially 

expressed genes identified by the LOTEST algorithm was further analyzed using row-clustered 

heatmaps and principal component analysis (PCA) (Fig. 11).  Ingenuity  Pathway Analysis 

(Ingenuity Systems, Inc, Redwood City, CA) and PANTHER (www.pantherdb.org) knowledgebases 

were used to identify sets of functionally related genes and signaling pathways that were 

overrepresented in the list of differentially expressed genes. The overrepresented pathways defined 

subsets of genes that were likely to have functional relevance to early MI. The genes contained in 

significant IPA networks and PANTHER functional categories were depicted in row-clustered 

heatmaps and were further analyzed by visual inspection for consistency of expression levels in 

order to discriminate truly  differentially expressed genes between EMI and control samples. These 

discriminatory genes were used to define a set of candidate genes with significance for 

atherosclerotic coronary artery disease.

5. Real-time PCR
Candidate genes for potential biomarkers were further validated by quantitative real-time PCR 

analysis. 1 µg of total RNA from selected samples was reverse transcribed into cDNA using 

Superscript III cDNA Synthesis Kit from Invitrogen (Carlsbad, CA) according to the 

manufacturer’s instructions. 100 ng of cDNA template for each sample were amplified with Applied 

Biosystems TaqMan Gene Expression Assays for the corresponding gene and Applied Biosystems 

TaqMan Gene Expression Master Mix according to the manufacturer’s instructions (Foster City, 

CA). All samples were assayed in triplicates. Gene expression values were calculated relative to 

GAPDH levels (as an internal standard) using the 2-∆∆CT method (Livak & Schmittgen, 2001; 

Schmittgen & Livak, 2008).
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III. Results

3.1 The study cohorts
To analyze global gene expression profiles in circulating blood cells of patients with early  onset 

coronary  artery disease 10 subjects with early myocardial infarction (EMI) were recruited. Using 

their age and ethnicity  data, a matched cohort of 10 medicated control subjects (MCON) without a 

known diagnosis of coronary  artery  disease or EMI was assembled. Each group  comprised two 

black, four asian and 4 caucasian patients with ages ranging from 43 to 60 (Table 1). Neither mean 

body weight (approximately 92 kg) nor body mass index (29) was different between the groups. 

Values for traditional cardiac risk factors, such as hypertension, diabetes, hyperlipidemia, cigarette 

use, and family  history  of heart disease, were similar across the study groups. Comparing the  

clinical laboratory  results also revealed no significant differences among the groups (data not 

shown). From each patient one whole blood sample was available for RNA extraction and 

subsequent microarray analysis.

EMI MCON
 (n=10) (n=10) p-value

Age, average±SD, y 51.5±5.79 51.5±5.79 1.0000
Ethnicity, %
    Black 20 20 1.0000
    Asian 40 40 1.0000
    Caucasian 40 40 1.0000
Weight±SD, kg 89.5±13.0 94.6±15.1 0.1873
Body Mass Index
±SD

28.7±4.6 29.7±3.5 0.7103

Hypertension, % 50 70 0.6831
Diabetes mellitus, % 30 20 1.0000
Hyperlipidemia, % 80 70 1.0000
Smoking status, % 20 10 1.0000
Family history, % 10 10  0.4795

Table 1. Clinical characteristics of early myocardial  infarction (EMI) and medicated control (MCON) 
subjects.
Depicted are for each study group the clinical parameters age, ethnicity, body weight & body mass index as 
well as the history of hypertension, diabetes, hyperlipidemia, smoking status and history of cardiovascular 
disease, respectively. p-values were calculated from the t-test for continuous variables and the McNemar’s 
test for categorical covariates.

Results

31



3.2 Two step sample quality control analysis
Purified RNA samples with an RNA integrity  number (RIN) of 7 were deemed sufficient  for 

downstream processing and microarray analysis (see also Material & Methods). All 20 samples 

(MCON and EMI) revealed a RIN > 7, and therefore were processed for microarray hybridization 

(data not shown). To evaluate the quality of microarray  hybridization, the raw data were tested 

using box-and-whisker plots and histograms (Figure 10 A and B). From the box plot  diagram it is 

obvious that  sample MCON 4 produced increased amounts of outliers and a strongly decreased 

interquartile range compared to all other samples (Fig. 10 A). Histogram analysis revealed similar 

distributions of the expression data for all samples with the exception of MCON 4 (Fig. 10 B). Due 

to the high likelihood that there was a technical or experimental problem with sample MCON 4, it 

was excluded from further data analysis. Therefore, the final dataset available for differential 

expression analysis included 10 EMI samples and 9 MCON samples.

3.3 Analysis of differential gene expression in circulating blood cells of patients  
with early-onset coronary artery disease
The LOTEST algorithm, a localized „test-and-estimate“ procedure for detecting a sparse signal 

embedded in additive Gaussian noise, was used to analyze differential gene expression between the 

EMI and MCON groups (Okimoto, 2006). A Ratio-Intensity (RI) scatter plot  of mean log2 ratio 

(MLR) versus mean log2 expression (MLE) was generated where each gene was represented by a 

point in (MLR/MLE) space (Fig. 10 C). Genes with similar mean log2 expression levels were 

grouped across the x-axis in 51 quantile bins (black and yellow stripes), where each bin contained 

approximately 650 genes. Assuming that only  a small percentage of genes in a bin were truly 

differentially expressed, i.e., that the signal for differential expression was sparse, a threshold was 

computed for each bin based on the Donoho Johnstone universal threshold (DJUT) of wavelet 

denoising theory  (Donoho & Johnstone, 1994; Sabatti et al., 2002). Using this approach, 1203 

differentially expressed genes were detected between EMI and MCON samples with 664 genes up-

regulated and 539 genes down-regulated in the EMI group (Figure 10 C). 

The expression intensity  (fold change) for each gene was plotted in a color-coded heatmap with 

genes numbered on the vertical axis and the corresponding MCON/EMI samples placed on the 

horizontal axis (Figure 11 A). In the heatmap, the expression data fall into four clusters with down-

regulated genes of EMI samples located in the top half and up-regulated genes in the bottom half 

and vice versa for the MCON group. 
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Furthermore, heatmap diagrams ensure visual identification of genes that display truly consistent 

expression patterns across the sample groups (EMI vs MCON). After visual inspection of the 

clustered heatmap containing all differentially expressed genes, 195 genes (panel of genes 540 to 

735) were excluded from further analysis as most of the variation in expression for this set of genes 

was contributed by  only  two samples (EMI2 and EMI5). Downstream data analysis using the 

biological knowledgebases PANTHER and IPA revealed no significant functional grouping or 

pathway structure in these genes (data not shown).

In addition, principal component analysis (PCA), a mathematical procedure in multivariate analysis 

providing a lower dimensional picture of a complex data matrix, was performed (Pearson, 1901; 

Miranda et al., 2008). PCA is often used as a tool in exploratory data analysis to distinguish data 

according to their variance. Principal component analysis of the differentially  expressed genes 

identified by the LOTEST algorithm clearly separated EMI from MCON individuals (Figure 11 B). 

Interestingly, PCA results also indicated that samples EMI2 (asian), EMI5 (caucasian) and EMI7 

(caucasian) were distinct from the rest of the EMI group. The separation of EMI 2 and EMI 5 in 

PCA results may also be related to the differences observed in the expression patterns for the genes 

540 to 735 as described above. PCA separates sample EMI 7 from the rest of the EMI group as well 

and EMI 7 also displays two patches of unique expression patterns in the top  (genes 100 to 200) and 

bottom half (genes 1050 to 1100) compared to other EMI subjects (Figure 11 A).
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Figure 10. Microarray sample quality control and detection of differentially expressed genes.
(A) Box and whiskers plots of raw microarray data. Samples are depicted along the horizontal axis while 
log2 expression intensities for each gene are plotted on the vertical axis; the upper and lower ends of the box 
contain all genes between the first and third quartiles of log2 expression; the red line in each box represents 
the median log2 expression; the upper and lower ends of the dotted vertical lines represent outliers of log2 
expression. (B) Histogram of raw microarray data, showing the number of genes with a given log2 
expression intensity. (C) Ratio-intensity (RI) plot  of the quantile normalized microarray data. The results of 
the LOTEST  differential expression analysis are superimposed on the RI plot whith fold change (ratio) of 
gene expression is plotted versus log2 expression (intensity). The vertical black and yellow stripes represent 
51 sets of approximately 650 genes having similar levels of fluorescent intensity. The dots in red triangles 
show the up-regulated and the dots in blue triangles show the down-regulated genes.
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Figure 11. Clustered heatmap and principal component analysis (PCA) of all  differentially expressed 
genes identified by the LOTEST algorithm in EMI compared to MCON samples.
(A) Clustered heatmap: genes are numbered on the vertical axis and the columns represent  the specified 
subject. The color of each rectangle represents the expression value (as fold change) of a gene according to 
the color scale bar on the right. (B) Principal component analysis (PCA) of all differentially expressed genes 
separates the EMI (dark squares) from the MCON (bright squares) group.
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3.4 Application of gene ontology databases to identify functional gene expression 

signatures in circulating blood cells associated with coronary artery disease 
(CAD)
Clustered heatmap  and principal component analyses describe overall changes in gene expression, 

but provide few insights into the biological processes and signaling networks involved in 

propagation and manifestation of a disease phenotype. Identifying the perturbed biological 

networks underlying a complex clinical phenotype such as coronary artery disease requires 

systematic analysis of the contributing gene functions based on known mammalian biology 

(Calvano et al., 2005). To identify functionally significant expression patterns in EMI subjects, the 

list of differentially expressed genes was further analyzed by screening gene ontology databases. 

Ontologies represent a formal structuring of knowledge that is ideally suited and amenable to 

computational analysis of complex data sets. In this study, web-based entry tools of the two 

biological knowledgebases IPA (Ingenuity  Pathway Analysis) and PANTHER (Protein Analysis 

Through Evolutionary Relationships) were applied to analyze the obtained microarray expression 

data. These bioinformatics knowledgebases enable a new analytical approach that objectively 

examines large experimental data sets in order to identify significant  functional patterns. Therefore, 

this methodology is in particular applicable to high-throughput platforms such as whole-genome 

microarray  expression profiling. Furthermore, the original literature detailing the functional 

categories and interactions can be accessed to examine and verify the findings.

3.5 Ingenuity Pathway Analysis (IPA) identifies inflammatory gene expression 
signatures and immune imbalance in EMI samples
The IPA database from Ingenuity  Systems is a unique resource that aims to identify  networks of 

interacting genes representing functional modules within a microarray  expression data set 

(www.ingenuity.com). These networks contain approximately  25 to 30 genes with a functional 

relationship  and direct physical, transcriptional or enzymatic interactions based on manually curated 

findings of hundreds of thousands full-text articles in the peer-reviewed scientific literature. Every 

network is characterized by one or more hub genes that represent a central interface due to their 

multiple interactions with other genes. 

The 1008 genes identified as differentially expressed by  the LOTEST algorithm and their 

corresponding expression values were fed into the IPA database. The IPA algorithm detected four 

significant networks with 26 to 30 focus molecules each (Table 2). 
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The network with the highest significance (score of 46) contained „Cell Death, Immunological 

Disease, Immune Response“ as top  functions. The following networks with a score of 37 comprised 

also immunological themes such as „Immune and Lymphatic System Development and 

Function“ (network 3) but also diverse functions such as „Cell Morphology“, „Connective Tissue 

Development and Function“ (network 2) and „Cellular Assemby and Organization“ in network 4 

(Table 2). Subsequent networks had scores below 25 and were therefore excluded from further 

analysis (data not shown). To evaluate consistency  of gene expression patterns across the sample 

groups the top four networks were additionally analyzed using clustered heatmap  diagrams. Criteria 

for consistency were matched if more than 50 % of subjects within EMI and MCON samples 

displayed a fold change in expression > 1 according to the color scale bar of the corresponding 

heatmap. This procedure was considered an important measure to identify false positives among the 

differentially expressed genes.

# Top Functions Score Focus 
Molecules

1 Cell Death, Immunological Disease, Immune Response 46 30

2 Cell Morphology, Cellular Response to Therapeutics, Connective Tissue Development and Function 37 26

3
Cellular Function and Maintenance, Hematological System Development and Function, Immune and 
Lymphatic System Development and Function

37 26

4 Gene Expression, Cellular Assembly and Organization, Cellular Movement 37 26

Table 2. The top four networks identified by Ingenuity Pathway Analysis (IPA).
„Score“  is a ranking algorithm of IPA and „Focus Molecules“  indicates the number of genes within a 
network. Immunological functions are indicated in bold.

Network 1 contains a total of 28 genes of which 15 genes were up-regulated (top half) and 13 

genes down-regulated (bottom half) in EMI subjects (Figure 12 B). The up-regulated FOS is the 

major hub gene of this network (Figure 12 A). However, visual inspection of the heatmap revealed 

that differential expression of FOS is only driven by individual EMI 7 (Figure 12 B, row 2). Genes 

that displayed a more consistent up-regulation across EMI samples were AHNAK (row 5), PTX3 

(row 7), JAG1 (row 9), CRABP2 (row 11) and MLLT7 (row 14). AHNAK or desmyokin mediates 

in a complex with L-type Ca2+-channels activation of cytolytic T-cells that kill virally  infected cells, 

tumor cells and potentially autoreactive T-cells (Matza et  al., 2009). PTX3 or pentraxin 3 is a 

member of the pentraxin family  and is a pro-inflammatory  peptide of the innate immune system that 

results in complement activation (Botazzi et al., 2005). 
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Similar to CRP (C-reactive Protein), PTX3 behaves as an acute phase protein with low blood levels 

under normal physiological conditions that increase rapidly  during inflammatory processes. JAG1 

or serrate is a Notch-ligand and a positive regulator of T-cell development, peripheral T-cell 

activation and effector cell differentiation (Yuan et al., 2010). CRABP2 is a retinoic acid binding 

protein with unknown function but increased levels were recently found in a murine model of 

degenerative joint  disease (Welch et al., 2009). MLLT7 or Foxo4 belongs to the winged/helix 

forkhead family of transcritption factors (Katoh & Katoh, 2004). Genes in network 1 that were 

down-regulated included CCl22 (row 16), S100B (row 17), CCR7 (row 20), TXNL2 (row 22), 

SNFT (row 23), TAGLN (row 24) and NOX4 (row 25). CCL22 or chemokine ligand 22 is a 

cytokine that acts chemotactic on monocytes, dendritic cells, natural killer cells and chronically 

activated T-cells (Gear & Camerini, 2003). S100B belongs to the S100 family  of proteins 

containing 2 EF-hand calcium-binding motifs and is involved in diverse Ca2+-dependent 

cytoplasmic signaling cascades (Donato, 2001). CCR7 encodes a chemokine receptor that is 

important for immune protection but also for immune tolerance as loss of expression results in 

multiple organ auto-immunity  (Sanchez-Sanchez et al., 2006; Worbs & Förster, 2007). TXNL2 or 

PICOT (PKC-interacting cousin of thioredoxin) interacts with protein kinase C (PKC) via its 

thioredoxin homology domain and is a modulator T-cell receptor signaling (Isakov & Altman, 2002; 

Kato et al., 2008). SNFT or p21SNFT is a basic leucine zipper transcription factor and inhibits Il-2 

transcription, a major stimulator of T-cell activation (Iacobelli et al., 2000). Therefore, down-

regulation of SNFT indicates increased IL2-levels  in EMI subjects. TAGLN or transgelin encodes 

an acting-crosslinking protein, its disruption has been recently shown to enhance inflammation of 

the vasculature during atherosclerosis (Shen et al., 2010). NOX4 belongs to the family of NADPH 

oxidases and has been implicated in hypertension, vascular inflammation and atherosclerosis 

(Sedeek et al., 2009; Schröder, 2010; Lassegue & Griendling, 2010). In summary, the expression 

pattern of the represented genes in network 1 suggests an alert and active immune system with pro-

inflammatory themes. Activating and pro-inflammatory factors of the immune response (AHNAK, 

PTX3, JAG1) were significantly  up-regulated whereas antagonists of inflammation (SNFT, 

TAGLN) as well as an important  inhibitor of auto-immunity (CCR7) were down-regulated within 

the EMI group compared to medicated control samples (Table 3).
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Figure 12. Ingenuity Network 1.
(A) Red color denotes up- and blue color down-regulation of a particular gene. Solid lines denote direct, 
dotted lines indirect  interactions. Arrowheads indicate direction of interactions. The gene with the most 
connections (FOS) is defined as a hub-gene. Symbols: square = ligand, rectangle = receptor, circle = 
cytoplasmic protein, rhomboid = enzyme, oval = transcription factor. B. Clustered heatmap of genes 
contained in Ingenuity Network 1. The color of each square represents the expression value (as fold change) 
of a gene according to the color scale bar on the right.
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Gene Symbol Reference

AHNAK Matza et al., Proc Natl Acad Sci U S A 2009; 106:9785-9790.

PTX3 Botazzi et al., Curr Opin Immunol 2006 Feb;18(1):10-5.

JAG1 Guidos CJ, J Exp Med 2006; 203:2233-2237.

SNFT Iacobelli et al., J Immunol 2000 Jul 15;165(2):860-8.

TAGLN Shen et al., Circ Res 2010 Apr 30;106(8):1351-62.

CCR7 Worbs & Förster, Trends Immunol 2007 Jun;28(6):274-80.

Table 3. Differentially expressed genes of Ingenuity Network 1 with reported function in 
cardiovascular disease and/or inflammation.
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Network 2 consists of 30 genes where expression of 12 genes was increased and expression of 18 

genes was decreased in EMI subjects (Figure 13). This network displays three major hub genes with  

PTPRC (protein tyrosine phosphatase receptor type) and BCL2L1 (BCL2-like 1) found up-

regulated, and CD40LG (CD 40 ligand) down-regulated in EMI samples (Figure 13 A). PTPRC is a 

receptor type protein tyrosine phosphatase that is specifically expressed in hematopoietic cells and 

essential for positive regulation of T- and B-cell antigen receptor signaling (Hermiston & 

Zikherman, 2009). BCL2L1 is a member of the BCL-2 protein family and can be expressed as a 

long isoform inhibiting apoptosis and a short isoform activating apoptosis. More recently, BCL2L1 

has been also implicated in autoimmunity  mediated by B-cells (Dörner & Lipsky, 2006). The 

decreased CD40LG belongs to the TNF family, is expressed on activated T-cells and in conjunction 

with its receptor CD40 known as a major player in inflammatory  and autoimmune diseases 

including atherosclerosis. Inhibition of CD40 signaling has been shown to stabilize atherosclerotic 

plaques and to attenuate the disease progress (Lutgens et al., 2007). Interestingly, in this study 

CD40LG was found down-regulated in EMI samples raising the question whether this observation 

reflects the disease phenotype or possibly  the response to the high dose of anti-inflammatory 

medication received by these subjects. Among the genes in network 2 that were found consistently  

over-represented in EMI samples, the gene products of CAMP (cathelicidin antimicrobial peptide), 

LGALS3 (galectin-3) and IL12RB1 (interleukin 12 receptor beta 1 subunit) in particular exert pro-

inflammatory actions of the immune system. CAMP is an antimicrobial peptide and acts as a 

chemoattractant for a wide range of immune cells including neutrophils, monocytes, mast cells and 

T-cells (Zanetti, 2004). LGALS3 is a pro-inflammatory beta-galactoside carbohydrate binding 

protein of the lectin family that is absent in resting T-cells and a positive mediator of acute and 

chronic inflammation (Rabinovich et al., 2002, Hsu et al., 2009, Henderson & Sethi, 2009). 

IL12RB1 encodes the beta-1 subunit of the IL-12 receptor that  is mainly expressed on activated T-

cells and natural killer cells and initiates signaling cascades triggered by interleukin-12 tuning the 

immune response to increased cytotoxicity (Trinchieri, 2003). ST6GAL1 (ST6 beta-galactosamide 

alpha-2,6-sialyltransferase 1) and MGST1 (microsomal glutathione S-transferase 1) were also found 

up-regulated in EMI subjects and are agonists of B-cell receptor signaling and involved in the 

homeostasis of oxidative stress, respectively (Collins et al., 2009; Schmidt-Krey et al., 2000). 

Interestingly, CD22 and PTPRCAP, both down-regulated in EMI samples, represent agonists of the 

up-regulated STGAL1 and PTPRC, respectively. 
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CD22 belongs to the sialic acid binding family of lectins and serves as receptor of STGAL1 thereby 

inhibiting B-cell receptor signaling (O‘Reilly & Paulson, 2009). Its down-regulation may suggest 

increased BCR signaling in EMI samples. PTPRCAP (protein tyrosine phosphatase receptor type 

associated protein) is thought to bind PTPRC dimers thereby promoting formation of active 

monomers (Takeda et al., 2004; Leitenberg et al., 2007). A decrease of PTPRCAP expression in 

EMI subjects could then indicate less PTPRC activity  and subsequent decreased T-cell activity. 

SIT1 encodes a regulatory transmembrane adaptor protein that acts as a negative regulator of T-cell 

activation and was found decreased in EMI subjects (Simeoni et al., 2008). A set of eight (row 

20-27) out of the 18 down-regulated genes in EMI samples of network 2 were interferon-inducible 

genes including a RNA helicase (DDX58 or RIG-1), a GTPase (MX1), a ubiquitin-like protein 

(ISG15) and a transcription factor (IRF7). ID3, an inhibitor of transcription through formation of 

non-functional DNA-binding dimers, was also down-regulated within the EMI group. Loss of 

expression is responsible for a phenotype similar to Sjörgen‘s Syndrome that is characterized by 

auto-reactive immune cells against exocrine glands (Guo et al., 2010). The two down-regulated 

genes in EMI samples of network 2 with the most consistent expression pattern were PRSS3 and 

ITGAX. PRSS3 encodes a serine protease of the trypsin family and has been implicated in chronic 

pancreatitis (Rosendahl et  al., 2010). ITGAX or CD11C represents the gene for a leukocyte-specific 

integrin and high expression levels have been associated with hypercholesterolemia in 

atherogenesis (Wu et al., 2009). The observed decrease of expression could be a side-effect of statin 

treatment that may reduce lipid levels in EMI patients. Taken together, network 2 suggests an 

increased activation status of the immune system in EMI subjects with potent pro-inflammatory 

mediators (CAMP, LGALS3) and B-/T-cell agonists (ST6GAL1, IL12RB1) up-regulated and on the 

other hand decreased expression of negative regulators of immune cell function (CD22, SIT1) and 

interferon-inducible genes (Table 4).

Results

42



Figure 13. Ingenuity Network 2.
(A) Red color denotes up- and blue color down-regulation of a particular gene. Solid lines denote direct, 
dotted lines indirect interactions. Arrowheads indicate direction of interactions. Genes with many 
connections (PTPRC, BCL2L, CD40LG) are defined as hub-genes. Symbols: square = ligand, rectangle = 
receptor, circle = cytoplasmic protein, rhomboid = enzyme, oval = transcription factor. (B) Clustered 
heatmap of genes contained in Ingenuity Network 2. The color of each square represents the expression 
value (as fold change) of a gene according to the color scale bar on the right.
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Gene Symbol References for function in cardiovascular disease and/or 
inflammation

CAMP Zanetti M, J Leukoc Biol 2004 Jan;75(1):39-48.

LGALS3 Rabinovich et al., Trends Immunol 2002; 23:313-320.

ST6GAL1 Collins et al., Nat Immunol 2006 Feb;7(2):199-206.

IL12RB1 Trinchieri et al., Nat Rev Immunol 2003; 3:133-146.

CD22 OʻReilly & Paulson, Trends Pharmacol Sci 2009 May;30(5):240-8.

SIT1 Simeoni et al., Trends Pharmacol Sci 2009 May;30(5):240-8.

Table 4. Differentially expressed genes of Ingenuity Network 2 with reported function in 
cardiovascular disease and/or inflammation.
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Network 3 displays 26 genes with only  9 genes up-regulated but 17 genes down-regulated in the 

EMI group (Figure 14). There are two hub genes, IL8 and NRG1, both with increased expression in 

EMI samples (Figure 14 A). It has to be emphasized though that increased expression of 

interleukin-8 (IL8) is driven by only one individual (EMI7) and may therefore be not representative 

for the whole group  (Figure 14 B). NRG1 or neuregulin 1 is a member of the growth factor family 

that binds to and activates ErbB receptor tyrosine kinase signaling. NRG1 has been implicated in 

neural development, synaptic plasticity and schizophrenia (Mei & Xiong, 2008). A recent report 

suggested also a role in immune system dysregulation of schizophrenic patients carrying genetic 

polymorphisms of the NRG1 gene (Marballi et al., 2010). The two up-regulated genes AEBP1 

(adipocyte enhancer binding protein 1) and WNT5A have been both described as pro-inflammatory 

mediators of macrophages (Majdalawieh, 2010; Pereira et al. 2009). AEBP1 is a transcriptional 

repressor with carboxy-peptidase activity that has been reported as a novel atherogenic factor that 

increases NF-kappaB levels in macrophages leading to activation of pro-inflammatory gene 

cascades  (Majdalawieh et al., 2006; Majdalawieh et al., 2007). Toll-like receptor-mediated 

expression of WNT5A has been shown as a key process for sustained inflammatory  macrophage 

activation and was elevated upon microbial infection and in patients with acute sepsis (Blumenthal 

et al., 2006; Pereira et al., 2008). A platelet chemokine encoded by PPBP (row 5) or CXCL7 with 

elevated expression in EMI samples is the precursor of a strong chemoattractant and activator of 

neutrophils (Gleissner et al., 2008). Two genes not yet implicated in cardiovascular disease but with 

consistently  elevated expression in EMI subjects were MIR16, a membrane-bound 

phosphodiesterase, and RNASE1, a secretory ribonuclease A (Zheng et al., 2003; Bai et al. 2009). 

Several of the genes that were found down-regulated within the EMI group are known antagonists 

of inflammation and auto-immunity or involved in lipid metabolism. NR1H4 is a farnesoid-sensing 

nuclear receptor involved in lipid and bile acid homeostasis and has been more recently also shown 

to counter-regulate inflammation and effector activities of the innate immune system (Li et al., 

2007; Fiorucci et  al., 2010). Expression of IL2RA or CD25, the alpha subunit of the interleukin-2 

receptor, is crucial for suppressor T-cells that antagonize potential auto-immune reactions of the 

immune system (Shevach, 2002). CYP27A1, a cytochrome P450 member, promotes regression of 

atherosclerosis through cholesterol elimination (Luoma, 2008). LIPC, known as hepatic lipase, 

modifies lipids and lipid-binding proteins with observed pro- and anti-atherogenic effects 

depending on the cellular context (Zambon et al., 2003; Brown & Rader, 2007). 
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LRP6, displaying decreased expression levels in EMI individuals, belongs to the family  of low 

density  lipoprotein receptors and defines together with frizzled a receptor complex for wnt signaling 

proteins (Manolagas & Almeida, 2007). A missense mutation in LRP6 that impairs wnt signaling 

has been identified in a family  of iranian ancestry as the cause for autosomal dominant early-onset 

coronary  artery disease with myocardial infarction prior to age 50 (Mani et al., 2007; Liu et al., 

2008). The down-regulated HLA-DQA1 is a paralogue of HLA class II molecules expressed in 

antigen-presenting cells. Interestingly, synthetic peptides of conserved HLA-DQA1 regions have 

been reported to inhibit priming and effector function of T lymphocytes in vitro and in vivo 

(Murphy et al., 1999; Zang & Murphy, 2005). AKAP12, decreased in EMI samples, represents the 

gene for a scaffolding protein in cell signaling that binds to protein kinase A (PKA) confining it to 

discrete locations within the cell (Wong & Scott, 2004). NOXA1 is an activator of NADPH oxidase 

1, increased levels have been reported in atherosclerotic plaques (Niu et al., 2010). The down-

regulated PTCH1 encodes a receptor for sonic hedgehog and has been implicated as a tumor 

suppressor gene (Toftgard, 2000). SP4, also decreased in EMI subjects, encodes a transcription 

factor whose knock-out mice display a heart failure phenotype due to defects in cardiomyocyte 

conduction (Ngyen-Tran et al., 2000). Altogether, the snapshot of differential gene expression in 

network 3 illustrates a picture where again pro-inflammatory genes (AEBP1, PPBP, WNT5A) are 

up-regulated. On the other hand, anti-inflammatory  genes (NR1H4, HLA-DQA1) and genes that 

protect from auto-immunity (e.g. IL2RA) as well as factors that  lower cholesterol levels 

(CYP27A1, LIPC, LRP6) were observed down-regulated in EMI subjects.
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Figure 14. Ingenuity Network 3. 
(A) Red color denotes up- and blue color down-regulation of a particular gene. Solid lines denote direct, 
dotted lines indirect  interactions. Arrowheads indicate direction of interactions. Genes with most connections 
(IL8, NRG1) are defined as hub-genes. Symbols: square = ligand, rectangle = receptor, circle = cytoplasmic 
protein, rhomboid = enzyme, oval = transcription factor. (B) Clustered heatmap of Ingenuity Network 3. The 
color of each square represents the expression value (as fold change) of a gene according to the color scale 
bar on the right.
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Gene Symbol References for function in cardiovascular disease

AEBP1 Majdalawieh et al., Proc Natl Acad Sci U S A 2006 Feb 14;103(7):2346-51.

PPBP Gleissner et al., Arterioscler Thromb Vasc Biol 2008 Nov;28(11):1920-7.

WNT5A Pereira et al., Curr Atheroscler Rep 2009 May;11(3):236-42.

NR1H4 Fiorucci et al., Curr Mol Med 2010 Aug 1;10(6):579-95.

HLA-DQA1 Murphy et al., J Clin Invest 1999 Mar;103(6):859-67.

IL2RA Shevach, Nat Rev Immunol 2002 Jun;2(6):389-400.

CYP27A1 Luoma, Eur J Clin Pharmacol 2008 Sep;64(9):841-50.

LIPC Zambon et al., Curr Opin Lipidol 2003 Apr;14(2):179-89.

LRP6 Mani et al., Science 2007 Mar 2;315(5816):1278-82.

Table 5. Differentially expressed genes of Ingenuity Network 3 with reported function in 
cardiovascular disease and/or inflammation.
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Network 4 contains 26 genes of which 17 were over-represented and 9 were under-represented 

within the EMI group. The first central hub gene in this network is PCAF, or p300/CBP-associated 

factor, that is connected with two circadian clock genes (NPAS2, CLOCK), the tumor suppressor 

gene BRCA2 and the histone methyl transferase gene MLL2 (Figure 15). PCAF, up-regulated in 

EMI samples, encodes a histone acetyl transferase involved in post-translational modification of 

lysine residues in histone and cardiac sarcomer proteins (Gupta et al., 2008; Dekker & Haisma, 

2009). Most recently, a genetic variation in the promotor region of PCAF has been linked to 

reduced vascular morbidity  and mortality during coronary artery disease in a major epidemiological 

study with three large patient cohorts (Pons et al., 2011). In addition, PCAF was detected up-

regulated in a transcriptome analysis during the anti-inflammatory  response of macrophages 

(Pereira et al., 2010). The down-regulated NPAS encodes a basic-helix-loop helix (bLHL) 

transcription factor that has been linked to hypertension and to altered circadian rhythm of cardiac 

β3-adrenoceptor activity following myocardial infarction (Englund et al., 2009; Zhou et al., 2010). 

The CLOCK gene, under-represented in EMI subjects, also belongs to bLHL transcription factors 

and loss of expression is associated with metabolic syndromes including diabetes (Kovac et al., 

2009; Marcheva et al., 2010). BRCA2, consistently down-regulated in EMI samples, has a crucial 

function during the homologous recombination pathway for DNA double-strand repair (Badie et al., 

2010). The up-regulated MLL2, a histone methyl transferase, is involved in transcriptional 

regulation of beta-globin and estrogen receptor genes. It  was also identified as the cause for Kabuki 

syndrome, a rare hereditary disorder characterized by intellectual disability  and a distinct 

dysmorphic facial appearance (Ng et al., 2010; Paulussen et al., 2010). The second hub gene of 

network 4 is the up-regulated HDAC2 that besides a connection with PCAF and BRCA2 is also 

connected with ZBTB32. As a histone deacetylase and therefore antagonist of histone acetyl 

transferases (e.g. PCAF), HDAC2 forms transcriptional repressor complexes and has been shown to 

suppress inflammation in lung tissue during chronic obstructive pulmonary disease (COPD) 

(Barnes, 2009; Krämer, 2009). ZBTB32, under-represented in EMI samples, seems to attenuate 

immune responses as a negative regulator of T-cell activation and proliferation (Miaw et al, 2004, 

Piazza et al., 2004).

Two up-regulated genes (PIP5K2A, SNCA) and one down-regulated gene (IL1RAPL2) in EMI 

samples are implicated in central nervous system function. PIP5K2A encodes a unique kinase that 

generates phosphatidyl inositol bisphosphate and is genetically linked to schizophrenia (Rethelyi et 

al., 2010). 
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SNCA or alpha-synuclein inhibits phospholipase D 2 selectively  and is a major component of 

accumulating inclusion bodies in several neurodegenerative disorders including Parkinson‘s disease 

and Alzheimer‘s disease (Norris et al., 2009). IL1RAPL2, or interleukin 1 receptor accessory 

protein-like 2, is associated with x-linked mental retardation (Bahi et al., 2003). Among the nine 

genes in Network 4 with decreased expression levels in EMI samples were also BIN1 and SOX6 

that both regulate L-type calcium channel function in cardiac myocytes as  scaffolding protein and 

transcription factor, respectively (Hong et al., 2010, Cohen-Barak et al., 2003). Finally, two genes 

(ABCE1, KLHL2) that  were found up-regulated and down-regulated in EMI individuals, 

respectively, have been associated with auto-immunity. ABCE1, an ABC transporter, has been 

implicated in systemic lupus erythematosus (SLE) and KLHL2, a transcription factor, has been 

reported as an auto-antigen in Sjörgen‘s Syndrome an auto-immune disease of the salivary glands 

(Deng et al., 2006; Uchida et al., 2005). 

In summary, the prevailing theme of differentially expressed genes in network 4 features 

transcriptional regulation including circadian clock transcription factors (CLOCK, NPAS2), genes 

involved in DNA and histone modification (MLL2, PCAF, HDAC2, BRCA2), transcription factors 

implicated in immune system function (KLHL2, ZBTB32) but also genes that have been known in 

the context of central nervous system function (PIP5K2A, SNCA).
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Figure 15. Ingenuity Network 4.
(A) Red color denotes up- and blue color down-regulation of a particular gene. Solid lines denote direct, 
dotted lines indirect interactions. Arrowheads indicate direction of interactions. Genes with many 
connections (PCAF, HDAC2) are defined as hub-genes. Symbols: square = ligand, rectangle = receptor, 
circle = cytoplasmic protein, rhomboid = enzyme, oval = transcription factor. (B) Clustered heatmap of 
Ingenuity Network 4. The color of each square represents the expression value (as fold change) of a gene 
according to the color scale bar on the right.
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Gene Symbol References for function in cardiovascular disease

CLOCK Marcheva et al., Nature 2010 Jul 29;466(7306):627-31.

NPAS2 Zhou et al., Basic Res Cardiol 2010 Jul 27.

MLL2 Ng et al., Nat Genet 2010 Sep;42(9):790-3.

PCAF Gupta et al., J Biol Chem 2008 Apr 11;283(15):10135-46.

HDAC2 Krämer, Trends Pharmacol Sci 2009 Dec;30(12):647-55.

BRCA2 Badie et al., Nat Struct Mol Biol. 2010 Dec;17(12):1461-9.

ABCE1 Deng et al., Mol Immunol 2006 Mar;43(9):1497-507.

KLHL2 Uchida et al., Mutagenesis 2010 Jul;25(4):365-9.

ZBTB32 Piazza et al., Mol Cell Biol 2004 Dec;24(23):10456-69.

PIP5K2A Rethelyi et al., Am J Med Genet B Neuropsychiatr Genet 2010 Apr 5;153B(3):792-801.

SNCA Norris et al., Curr Top Dev Biol 2004;60:17-54.

Table 6. Differentially expressed genes of Ingenuity Network 4 with reported function in 
cardiovascular disease and/or inflammation.
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3.6 PANTHER identifies differentially expressed genes associated with the 
immune response as the most significant functional category in EMI samples
The PANTHER database also classifies genes according to their function based on electronically 

and manually  curated scientific publications (Thomas et al., 2003). However, rather than detecting 

networks of interacting genes, PANTHER provides an expression analysis tool for microarray data 

interpretation where gene lists from experimental data sets are assigned to functional categories 

such as „Biological Process“ and „Molecular Function“ (Thomas et al., 2006). „Biological Process“ 

describes the biological system of the corresponding gene product, for example glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) is involved in carbohydrate metabolic processes. “Molecular 

Function“ is the function that a gene product performs on its molecular target, e.g. the enzyme 

GAPDH exerts oxidoreductase activity.

Biological Process. Of the 1008 genes detected by  the LOTEST algorithm, 965 were represented 

within the PANTHER database (Table 7). Ontological analysis revealed „Immunity and defense“ (p 

= 1.4E-05) as the most significant parent category in Biological Process with a set of 90 detected 

genes. Interestingly, the significance was almost exclusively  assigned to the 56 down-regulated 

genes (p = 1.39E-05) and not within the 34 up-regulated genes (p  = 1.00E-00) of the EMI group. 

The sub-categories of the biological process „Immunity and defense“ were „Interferon-mediated 

immunity“, „Cytokine/chemokine mediated immunity“ and „B-cell and antibody-mediated 

immunity“. Eight down-regulated genes in sub-category „Interferon-mediated immunity“ displayed 

the highest significance (p = 5,72E-03) and were also detected by Ingenuity analysis in network 2 

(Figure 16). Seven genes of sub-category „Cytokine/chemokine-mediated immunity“ were over-

represented (p = 6,23E-01) and 10 genes of sub-category „B-cell- and antibody-mediated 

immunity“ were under-represented (p  = 1,21E-01) with a less significant correlation in EMI 

samples. However, both themes were also represented across Ingenuity networks 1 to 4. The 

subsequent parent categories were scored less significant but five up-regulated genes in category 

„Nitrogen Metabolism“ (p = 6.73E-03) and 84 genes in category „Signal transduction“ (p  = 

7.04E-03) showed significant p-values.

Molecular Function. The parent-category  „Defense/immunity protein“ displayed the highest 

significance (p  = 9.99E-02) but almost exclusively within the 23 under-represented genes of the 

EMI group  (p = 2.12E-03). A certain level of significance was also found in six down-regulated 

genes of the sub-category „Immunoglobulin“ (4.65E-01) in EMI samples. 
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All genes (965)All genes (965)All genes (965)All genes (965) Up regulated genes (456)Up regulated genes (456)Up regulated genes (456)Up regulated genes (456) Down regulated genes (509)Down regulated genes (509)Down regulated genes (509)Down regulated genes (509)

*REFLIST 
(25909) # exp.  P-value # exp.  P-value # exp.  P-value

Biological Process

Immunity and defense 1393 90 51.88 + 1.40E-05 34 24.52 + 1.00E+00 56 27.37 + 1.39E-05

      Interferon-mediated immunity 62 9 2.31 + 9.37E-02 1 1.09 - 1.00E+00 8 1.22 + 5.72E-03
      Cytokine/chemokine mediated 
immunity 113 11 4.21 + 5.86E-01 7 1.99 + 6.23E-01 4 2.22 + 1.00E+00
      B-cell- and antibody-mediated 
immunity 148 13 5.51 + 6.39E-01 3 2.6 + 1.00E+00 10 2.91 + 1.21E-01

Nitrogen metabolism 30 5 1.12 + 1.79E-01 5 0.53 + 6.73E-03 0 0.59 - 1.00E+00

      Nitrogen utilization 5 3 0.19 + 1.35E-01 3 0.09 + 1.53E-02 0 0.1 - 1.00E+00

Protein metabolism and modification 3063 107 114.08 - 1.00E+00 49 53.91 - 1.00E+00 58 60.17 - 1.00E+00

      Protein biosynthesis 692 34 25.77 + 1.00E+00 8 12.18 - 1.00E+00 26 13.59 + 2.20E-01

Small molecule transport 136 9 5.07 + 1.00E+00 8 2.39 + 4.62E-01 1 2.67 - 1.00E+00

Receptor mediated endocytosis 108 9 4.02 + 1.00E+00 8 1.9 + 1.52E-01 1 2.12 - 1.00E+00

Signal transduction 3259 138 121.38 + 1.00E+00 84 57.36 + 7.04E-03 54 64.03 - 1.00E+00

Molecular Function

Defense/immunity protein 467 30 17.39 + 9.99E-02 7 8.22 - 1.00E+00 23 9.17 + 2.12E-03

      Immunoglobulin 70 6 2.61 + 1.00E+00 0 1.23 - 1.00E+00 6 1.38 + 4.65E-01

Nucleic acid binding 2897 114 107.9 + 1.00E+00 42 50.99 - 1.00E+00 72 56.91 + 6.60E-01

     Translation elongation factor 37 6 1.38 + 5.88E-01 6 0.65 + 1.18E-02 0 0.73 - 1.00E+00

     Ribosomal protein 579 35 21.57 + 6.95E-01 9 10.19 - 1.00E+00 26 11.37 + 1.80E-02

Growth factor 115 10 4.28 + 1.00E+00 8 2.02 + 1.84E-01 2 2.26 - 1.00E+00

Transfer/carrier protein 329 14 12.25 + 1.00E+00 12 5.79 + 4.39E-01 2 6.46 - 1.00E+00

Table 7. Ontological analysis of differentially expressed genes using PANTHER. 
Categories in italics are sub-categories of the parent-categories. Yellow highlight denotes the categories 
within „Biological Process“  and „Molecular Function“  containing the most significant numbers of 
differentially expressed genes. *Reference list  containing all genes on the ABI microarray. + denotes 
overrepresentation, - denotes underrepresentation, # denotes number of genes detected. Bonferroni correction 
was used for multiple comparisons.
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A clustered heatmap of the genes detected within the most significant PANTHER category 

„Immunnity  and Defense“ (Biological Process) was generated for further expression analysis 

(Figure 16). Notably, many of the differentially expressed genes that have been previously 

identified by Ingenuity  analysis were also found in the PANTHER database. They include the hub 

genes of network 2 (CD40LG), network 1 (FOS) and network 3 (IL8). In addition, the down-

regulated IL2RA and CCR7, previously detected in Ingenuity  networks 3 and 1 were identified by 

PANTHER as well. Both genes encode members of the cytokine receptor family  and are crucial for 

maintenance of self-tolerance and for suppression of auto-immunity (Shevach, 2002; Worbs & 

Förster, 2007). The up-regulated genes JAG1, CAMP, PTX3 and LGALS3 encode peptides of the 

pro-inflammatory cascade that were also picked up by Ingenuity networks 1 and 2. 

However, PANTHER analysis also identified additional genes distinct from Ingenuity results (Table 

8). GSTT1, consistently down-regulated in EMI individuals, encodes a member of the Glutathione-

S-transferase family  of enzymes that plays a major role in the detoxification of reactive oxygen 

species and xenobiotics (Bolt & Thier, 2006). The GSTT1 null allele, a common genetic 

polymorphism that impairs catalytic activity, has been associated with coronary artery disease in 

several major epidemiological studies and was independent of the ethnic background (Maciel et al., 

2009; Tang et al., 2010; Wang et al., 2010). Five genes whose expression levels were over-

represented in EMI samples included IFNGR1, VAV3, MARCO, IL5RA and IKBKB, all of them 

are known mediators of inflammation during the innate and/or adaptive immune response. The 

IFNGR1 gene product  comprises the ligand-binding chain of the interferon-gamma receptor and 

initiates interferon-mediated inflammatory signals at the cell surface of immune cells.  IFNGR1 

levels were recently found increased in a subset of limited systemic sclerosis patients with 

pulmonary arterial hypertension (Pendergrass et al., 2010). VAV3 belongs to the guanine nucleotide 

exchange factors (GEFs) and is critical for signaling during T-cell activation (Tybulewicz, 2005). 

MARCO, encoding a class A macrophage scavenger receptor with collagenous structure, is a 

differentiation marker for monocytic-derived cell lineages such as macrophages and dendritic cells 

(Sarrias et al., 2004). In macrophages MARCO is thought to mediate lipid influx promoting their 

conversion into foam cells that were detected in atherosclerotic plaques (Platt et al., 2002). 

Increased MARCO expression was also found in a mouse model for cerebral artery occlusion 

suggesting a role during ischaemic processes as they also occur during atherosclerotic processes 

leading to infarction (Milne et al., 2005). 
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The up-regulated IL5RA,  encoding the alpha subunit of the interleukin 5 receptor, has been 

associated with increased serum antibody levels, expansion of eosinophil numbers in the blood and 

eosinophil infiltration into various tissues (Adachi & Alam, 1998; Takatsu et al., 2009). The 

increased IKBKB encodes a positive regulator of NF-kappaB-mediated pro-inflammatory gene 

expression in immune cells and is a target for inhibitor treatment of chronic inflammatory disorders 

such as rheumatoid arthritis, inflammatory bowel diseases and chronic obstructive pulmonary 

disease (Perkins, 2007; Strnad & Burke, 2007). In summary, PANTHER analysis identified immune 

response relevant genes and therein those mediating inflammation as the major feature within the 

global expression signal of the EMI group. Notably, this observation largely confirms our Ingenuity 

results (see section 3.5) reinforcing the potential significance of immunity  for the disease 

phenotype.

Gene Symbol References for function in cardiovascular disease

GSTT1 Wang et al., Mutagenesis 2010 Jul;25(4):365-9.

IFNGR1 Pendergrass et al., PLoS One 2010 Aug 17;5(8):e12106.

VAV3 Tybulewicz, Curr Opin Immunol 2005 Jun;17(3):267-74.

MARCO Platt et al., Int Rev Cytol 2002;212:1-40.

IL5RA Takatsu et al., Adv Immunol 2009;101:191-236.

IKBKB Strnad & Burke, Trends Pharmacol Sci 2007 Mar;28(3):142-8.

Table 8. Differentially expressed genes of the PANTHER „Biological  Process“ category Immunity and 
Defense with reported function in cardiovascular disease and/or inflammation.
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Figure 16. Clustered heatmap of genes from the biological  process category “Immunity and defense” 
identified by PANTHER. 
Expression of genes depicted in the top zone (row 1-53) is down-regulated within the EMI group, expression 
of genes in the bottom zone (row 54-85) is up-regulated within the EMI group. The color of each square 
represents the expression value (as fold change) of a gene according to the color scale bar on the right.
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3.7 Examination of mRNA expression levels from selected differentially 
expressed genes in EMI individuals using quantitative real-time PCR
The expression level for every single gene of a sample that was hybridized to a microarray was 

calculated and normalized in a complex workflow. An algorithm integrated into the manufacturers 

software allowed normalization of a multitude of control samples with known quantities distributed 

across the array surface. But even before microarray hybridization the primary RNA sample is 

subjected to a labeling procedure including synthesis of cDNA and in vitro transcription of cRNA 

that could possibly differ from the quantities of the original sample. 

Therefore, quantitative real-time PCR was performed to test whether the expression intensities 

observed during microarray analysis could be reproduced by an independent technique. A set  of 

selected candidate genes implicated in inflammation and/or cardiovascular disease that were found 

either up- or down-regulated within the EMI group was analyzed. The aim of these experiments 

was to compare quantitative expression trends between microarray and qPCR results. The criteria 

for gene selection were consistency  of expression within the sample groups (EMI vs MCON) and 

representation of the most prominent  functional categories detected during microarray analysis 

(Figure 17 A). The pro-inflammatory  category was represented by the genes encoding PTX3, 

LGALS3 and CAMP. Agonists of T-cell activation were represented by  IL12RB1 and JAG1. 

IL2RA and CCR7 represented genes with a link to auto-immunity. GSTT1 serves as an cellular 

antioxidant that protects from atherosclerosis. NGFR represented a pro-apoptotic antagonist  of 

lymphocytes. All of the selected genes were assayed in triplicates using TaqMan probes on reverse 

transcribed RNA samples from two individuals representing the expression trend of the respective 

sample group. Quantitative real-time PCR analysis revealed in particular two findings. First, the 

expression trends observed during microarray analysis were confirmed (Figure 17 B). However, the 

absolute expression intensities measured by quantitative PCR were not necessarily identical with 

those of the microarray  analysis. This may be due to the fact that  qPCR results were normalized 

against the expression level of only one housekeeping gene (GAPDH) whereas microarray 

expression values were calculated in a normalization workflow containing multiple technical and 

spatial features during array analysis. One exception is PTX3 whose expression levels were found 

on average more than two-fold up-regulated in EMI samples in microarray  analysis but showed 

only 20 % up-regulation in qPCR results (Figure 17 A and B, top panel). In this case MCON 

samples displayed similar mRNA levels compared to microarray  analysis whereas expression levels 

of EMI samples differed by more than 40 % (data not shown).
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Figure 17. Average microarray expression levels (A) and relative  quantities  determined by quantitative 
real-time PCR of selected candidate genes (B).
PTX3, LGALS3 and CAMP are pro-inflammatory molecules, IL12RB and JAG1 are T-lymphocyte agonists, 
CCR7 and IL2RA prevent autoimmune reactions, GSTT1 is an antioxidant  protective against  atherosclerosis, 
and NGFR is pro-apoptotic to lymphocytes. (A) On the clustered heat map strips, blue hues represent down- 
and red hues up-regulation. (B) Confirming quantitative real-time PCR analysis of mRNA levels of the same 
genes.
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Summary
Whole-genome expression profiling of circulating blood cells from subjects with early-onset 

coronary  artery disease identified inflammatory themes associated with the immune response as the 

predominant signature within all differentially expressed genes detected by the LOTEST algorithm. 

Functional analysis using the gene ontology databases Ingenuity Pathway Analysis and PANTHER 

revealed a pool of identical genes that were found within their networks and functional categories, 

respectively, reinforcing the significance of these genes within the global expression pattern that 

distinguishes subjects with early myocardial infarction (EMI) from medicated control subjects 

(MCON). Quantitative real-time PCR of selected candidate genes confirmed the expression trends 

of microarray analysis. Furthermore, the results of this microarray  study also suggest that 

inflammatory processes continue in EMI individuals despite therapeutical anti-inflammatory 

medication.
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IV. Discussion

In the second part of my  PhD project, the transcriptome of circulating peripheral blood cells from 

healthy subjects and patients with early-onset  coronary artery disease was analyzed for differential 

gene expression patterns. Data were assessed by  hybridization of microarrays and subsequent 

quantification of fluorescence signals. In silico methods were applied to identify functional groups 

according to gene ontology terms within the differential gene expression signatures. Finally, a 

selection of candidate genes distinguishing case (EMI) and control (MCON) groups was 

additionally examined using quantitative PCR.

1. The phenotype of early-onset coronary artery disease is reflected in gene 

expression signatures of circulating blood cells
Using whole genome expression profiling, this study provides evidence that features of the 

coronary  artery disease phenotype are imprinted into the gene expression profile of circulating 

blood cells. Microarray analysis using the LOTEST algorithm detected 1008 genes that were 

differentially expressed in EMI subjects. An integrated functional analysis approach based on 

Ingenuity Pathway Analysis and PANTHER biological knowledgebases revealed over-

representation of genes involved in inflammatory processes mediated by the immune system within 

the EMI group.

1.1 Critical features of experimental design and differential expression analysis
The multiethnic study cohort representing African-americans, Caucasians and Asians comprised 10 

individuals in each of the case (EMI) and control group (MCON).  Compared to epidemiological 

studies that cover large patient cohorts with thousands of individuals this may seem a low number 

of study subjects. Indeed, studies with a broad epidemiological scope would need larger sample 

sizes in order to obtain unequivocal results. However, the aim of this study was to test  a novel 

microarray  data analysis method suitable to reliably  identify differentially expressed genes that 

would distinguish the phenotype of cases from controls. We hypothesized that fundamental signals 

for differential expression associated with early-onset coronary artery  disease can be tracked down 

with relatively few samples in an appropriate experimental setting. 
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A clinical database of the Veterans Administration Pacific Islands Healthcare System (VAPHICS) 

containing tens of thousands of patients enabled us to assemble a valid small-scale study group with 

most prospectively matched individuals based on age, ethnicity and clinically relevant  parameters 

for the disease phenotype.

A crucial challenge for the analysis of whole genome microarray data is the detection of relatively 

weak signal(s) within a noisy background of thousands of genes being simultaneously  expressed 

with similar expression levels (Chelly et al. 1989; Butte, 2002). As the phenotype of atherosclerotic 

coronary  artery disease is multifactorial and a result of both, environmental and genetic influences, 

we not only expected a noisy but also heterogeneous signals consisting of multiple signal 

components for differential expression. LOTEST, a novel detection algorithm applying a „localized 

test and estimate“ procedure was implemented for microarray data analysis (Okimoto, 2006). Based 

on the principles of estimation theory, this algorithm applies spatial adaptation and thresholding to 

the fold change values of genes with similar expression using the Donoho Johnstone Universal 

Threshhold (DJUT) in order to detect weak and sparse signals for differential expression (Donoho 

& Johnstone, 1994; Sabatti et al., 2002). 

In contrast, detection algorithms commonly used for differential expression analysis of microarray 

data are typically  based on the t-test such as the Significance Analysis of Microarrays (SAM) 

(Tusher et al., 2001). These traditional methods of linear statistics rely on adequate sample numbers 

and assume that differential expression (DE) is consistent within a sample class but significantly 

different between two sample classes. However, this signal model may be inappropriate in 

situations where true DE genes are rare and sample heterogeneity and complexity  of the phenotype 

result in DE patterns that are highly variable over the samples of a microarray experiment (Donoho 

& Jin, 2008). In fact, comparison of SAM  and LOTEST performance on simulated and actual 

microarray  data demonstrated that SAM picked up only  homogenous single-component  signals 

whereas LOTEST detected heterogenous multi-component signals (G. Okimoto, personal 

communication). LOTEST analysis of microarray data from this study cohort detected a total of 

1203 differentially  expressed genes from 32,878 probes representing 29,098 genes on a human 

genome survey  array. However, the probability to generate false positives from a background of 

tens of thousands of genes on the array remains significant. To address this issue we implemented 

an additional tool in order to make the analysis workflow more robust. Color-coded heatmap 

diagrams enabled visual verification or falsification of genes specified as differentially expressed by 

the LOTEST algorithm (Eisen et al., 1998). 

Discussion

62



Why is this important? The initial heatmap diagram of all 1203 differentially expressed genes 

immediately revealed a patch of 195 genes that was driven by only  two individuals within the case 

group (EMI2 and EMI7, Figure 11 A). Downstream in silico analysis using Ingenuity and 

PANTHER knowledgebases confirmed there was no functional significance within this set of 195 

genes. In conclusion, complementing statistical analysis by heatmap diagrams provides a powerful 

control measure to evaluate expression patterns during the course of the analysis workflow. This 

may in particular be true for studies with low sample numbers where statistical confidence is 

decreased by definition.

Two recent studies investigating the transcriptome of peripheral blood cells in coronary artery 

disease correlated stringent gene expression thresholds with specific features of the clinical 

phenotype. The first study determined differential expression by setting an arbitrary threshold at > 

1.3 fold difference between clinical phenotypes as defined by  the extent of coronary  stenosis 

(Wingrove et al., 2008). The second study applied a threshold by calculating a correlation 

coefficient between gene expression values and a stringent CAD-Index as defined by  number and 

severity of lesions and diseased vessels (Sinnaeve et al., 2009). In summary, both studies applied 

criteria for DE analysis that reflect a typical linear relationship. As outlined above, approaches 

based on linear assumptions may limit the capability for the detection of rare, weak and 

heterogenous signals consisting of multiple signal components. In contrast, the net we casted in this 

microarray  study to detect differential expression patterns used adaptive statistics based on DJUT 

thresholding to correlate variable gene expression values with the CAD phenotype as defined by 

myocardial infarction prior to age 50 (Okimoto, 2006). Besides different microarray platforms and 

individual sample handling these differences in the analysis approach may account for the limited 

overlap in terms of the identified genes between our and other studies. In conclusion, neither one 

nor the other approach may be better but they are likely to detect fundamentally different signals of 

differential expression. Notably, there are similarly few DE gene overlaps between other studies for 

which the reasons are not fully  understood and may involve ethnic and/or environmental differences 

of the study cohorts at different geographical locations.
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1.2 Over-representation of pro-inflammatory gene expression changes in EMI 
subjects
In the second step  of analysis, functional groups of genes were identified using additional  in silico 

methods. The two gene ontology databases IPA and PANTHER unravelled a heterogenous signal 

within the gene expression signature of circulating blood cells in EMI subjects representing a broad 

spectrum of inflammatory processes (Table 9). Notably, most positive regulators of inflammation 

were over-represented whereas negative regulators were under-represented in the disease group. 

Furthermore, inflammatory themes could be divided into subgroups representing the innate and 

adaptive immune system and in many cases differentially expressed genes even indicated the 

contributing cell-type(s).

Immunological context Genes References

Antimicrobial host defense PTX3↑, CAMP↑, LGALS3↑ Botazzi et al., 2006; Zanetti, 2004; 
Rabinovich et al., 2002

T-cell signaling AHNAK↑, JAG1↑, SNFT↓, 
CD40LG↓, IL12RB1↑, SIT1↓, 
HLA-DQA1↓,  ZBTB32↓, VAV3↑

Matza et al., 2009; Guidos, 2006; 
Iacobelli et al., 2000; Lutgens et al., 
2007; Trinchieri et al., 2003; Simeoni 
et al., 2009; Murphy et al., 1999; 
Piazza et al., 2004; Tybulewicz, 2005

Auto-immunity CCR7↓, ID3↓, IL2RA↓ Worbs & Fröster, 2007; Maruyama et 
al., 2011; Shevach, 2002

Macrophages AEBP1, WNT5A↑, MARCO↑ Majdalawieh et al., 2006; Blumenthal 
et al., 2006; Arredouani & Kobzik, 
2004

Granulocytes PPBP↑, IL5RA↑ Gleissner et al., 2008; Adachi & 
Alam, 1998

Vascular inflammation TAGLN↓, NOX4↓ Feil et al., 2004; Brandes & 
Schröder, 2008

IFN-γ-signaling IFNGR1↑ Leon & Zuckerman, 2005

IFN-inducible genes RIG-I↓, IFIT2↓, IFI6↓, IFIT1↓, 
MX1↓, IRF7↓, ISG15↓, OAS2↓

Haller et al., 2007; Taniguchi et al., 
2001; Parker & Porter, 2004; Fensterl 
& Sen, 2011; Jeon et al., 2010; 
Esklidsen et al., 2003; Berchthold et 
al., 2008

Table 9. Potential  candidate genes involved in immune regulation that separate  the  atherosclerotic 
phenotype between EMI and control individuals based on differential expression analysis.
Arrow ↑ = up-regulated in EMI group; arrow ↓ = down-regulated in EMI group
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The up-regulated pro-inflammatory genes PTX3, CAMP and LGALS3 encode antimicrobial 

peptides and are potent mediators of the innate immune response. PTX3 encodes the prototypic 

long pentraxin 3 that activates the classical pathway of complement activation in response to 

microbial infection and facilitates pathogen recognition by macrophages and dendritic cells 

(Garlanda et al., 2002; Nauta et al., 2003). In addition, increased blood levels of PTX3 as 

inflammatory marker even outperformed the diagnostic and prognostic value of c-reactive protein 

(CRP) for myocardial infarction in CAD patients (Peri et al., 2000; Latini et al., 2004). CAMP is a 

strong chemoattractant for neutrophils, monocytes, and T-cells and induces degranulation of mast 

cells as well as transcriptional alterations in macrophages (Zanetti, 2004). LGALS3 belongs to the 

lectin family of carbohydrate-binding proteins and is a key component not only during the initial 

host defense against microbes but also during chronic inflammation as a potent agonist of T-cell 

function (Henderson & Sethi, 2009; Hsu et al., 2009). 

It is well known that phospholipids of oxidized low density lipoproteins (oxLDL) are recognized as 

antigens by the immune system during atherosclerosis (Stemme et al., 1995). Furthermore, cross-

reactivity has been observed between oxLDL and epitopes from microbial pathogens such as 

streptococcus and chlamydia (Kol et  al., 1998; Shaw et al., 2000). Therefore, elevated transcript 

levels of antimicrobial peptides may indicate ongoing molecular mimicry where factors of the 

antimicrobial host defense are induced by endogenous oxLDL molecules in EMI individuals. 

Differential expression of a set of at least eight genes (AHNAK, JAG1, SNFT, IL12RB1, SIT1, 

HLA-DQA1, ZBTB32 and VAV3) indicates increased T-cell activation in EMI subjects. T-cell 

populations play a major role in the regulation of the innate and adaptive immune response during 

inflammatory processes in both, early  and late stages of atherosclerosis (Hansson & Libby, 2006). 

This could explain why most inflammatory genes that were detected in our analysis account for 

activated T-cells. These eigtht genes encode a broad range of proteins including adaptor molecules 

(AHNAK, SIT1), ligands (JAG1), transcription factors (SNFT, ZBTB32), cytokine receptors 

(IL12RB1), major histocompatibility complex (MHC) proteins (HLA-DQA1)  and guanine 

nucleotide exchange factor (GEF) signaling molecules (VAV3). However, based on their differential 

expression pattern in EMI subjects they do all have in common to promote T-cell activation. T-cells 

become activated in response to oxLDL particles, differentiate and produce secreted cytokines 

including IFN-γ (Frostegard et al., 1999). Paracrine crosstalk with effector cell types results for 

example in macrophage activation (Hansson & Libby, 2006). Activated macrophages produce 

additional cytokines and pro-thrombotic mediators again reinforcing the pro-inflammatory cascade. 
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Altogether, the putative T-cell gene expression signature detected in EMI individuals could be 

considered a positive feedback-loop  system that seems to maintain the inflammatory response in 

EMI individuals.

Expression of the genes CCR7, IL2RA and ID3 was found decreased in EMI samples. This is an 

interesting observation considering that loss of expression for each of the three genes has reportedly 

resulted in substantial autoimmune reactions. For CCR7 it has been demonstrated that knock-out 

mice were prone to the development of generalized multi-organ autoimmunity (Worbs & Förster, 

2007). The auto-immune phenotype was characterized by lymphocytic infiltrations into several 

organs in addition to the presence of circulating auto-antibodies against a multitude of tissue-

specific antigens (Davalos-Misslitz et al., 2007). IL2RA (also called CD25), the gene encoding the 

interleukin-2 receptor α-chain, is a marker for a small population of suppressor T-cells that maintain 

self-tolerance within the immune system (Shevach, 2002).  Knock-out mice of ID3, a DNA-binding 

inhibitor, display T-cell-mediated autoimmune reactions to salivary  glands a phenotype similar to 

Sjögren‘s Syndrome (Li et al., 2004). A most recent study demonstrated that ID3 is also crucial for 

expression of Foxp3 which itself is an important  transcription factor of suppressor T-cells 

(Maruyama et al., 2011). With respect to our findings these data raise the question whether self-

tolerance in EMI subjects may be compromised or even indicate auto-immunity as an ongoing 

disease feature in EMI individuals.

AEBP1, WNT5A and MARCO, all over-represented in EMI samples, have been reported as pro-

inflammatory mediators in macrophages, that represent a potent phagocytic cell population of 

monocytic origin. AEBP1 is known to be expressed in marophages where it promotes inflammatory 

signals and atherosclerotic foam cell formation (Majdalawieh et al., 2006). The effects seem to be 

mediated via IκB-α inhibition resulting in increased NF-κB activity (Majdalawieh et al., 2007). 

Toll-like receptor-mediated WNT5A expression is a key  process for sustained inflammatory 

macrophage activation upon microbial stimuli (Blumenthal et  al., 2006). In addition, WNT5A was 

increased in individuals with sepsis implicating its relevance in systemic inflammation (Perreira et 

al., 2009). MARCO belongs to the class A scavenger receptor family that is expressed on 

macrophages and also implicated in foam cell conversion during atherosclerosis (Arredouani & 

Kobzik, 2004). Interestingly, MARCO was identified as the major binding receptor for unopsonized 

particles and bacteria in human lung alveolar macrophages (Arredouani et  al., 2005). In conclusion, 

elevated transcript levels of AEBP1, WNT5A and MARCO could be an indicator of increased 

macrophage-induced inflammation in EMI individuals. 
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The two up-regulated genes, PPBP and IL5RA, are known to exert effects on the behavior of 

specific granulocyte subpopulations. PPBP (or CXCL7), is the most abundant platelet chemokine 

and its proteolytically  cleaved variant NAP-2 is a strong neutrophil chemoattractant (Harter et al., 

1994; Gleissner et al., 2008). IL5RA encodes the α-chain of the interleukin-5 receptor and is 

strongly expressed on activated eosinophils (Adachi & Alam, 1998). IL-5 signaling is critical for 

growth, activation and survival of eosinophils. Furthermore, increased IL-5 signal transduction 

results in expansion of eosinophil numbers in the blood and eosinophil infiltration into various 

tissues (Takatsu et al., 2009). Taken together, up-regulated PPBP and IL5RA in EMI subjects may 

indicate increased activity of granulocyte subpopulations that represent powerful phagocytic cells of 

the innate immune response. 

Down-regulation of TAGLN and NOX4, as observed in EMI subjects, has been implicated in 

vascular inflammation during atherosclerosis. TAGLN (or SM22) was known as a gene for a 

smooth muscle-cell specific cytoskeletal protein with unknown function when a study  was 

published demonstrating that loss of expression in hypercholesterolemic mice resulted in increased 

atherosclerotic lesions (Feil et al., 2004). In addition, disruption of TAGLN enhances arterial 

inflammation in response to injury (Shen et al., 2010). NOX4 belongs to the NADPH oxidase 

family that influences diverse physiological processes in the vasculature through production of 

reactive oxygen species (ROS) in response to a variety  of stimuli (Brandes & Schröder, 2008). 

Whereas some NOX isoforms are associated with inflammatory  macrophages in atherosclerotic 

plaques, NOX4 seems to be restricted to vascular smooth muscle cells (Sorescu et al., 2002). 

Furthermore, NOX4 is required for the differentiated phenotype of smooth muscle cells in the 

vasculature (Clempus et al., 2007). Therefore, NOX4 seems important  for normal physiological 

function of the vascular system and may even prevent inflammatory  processes. In conclusion, 

decreased transcript  levels of both, TAGLN and NOX4, could indicate enhanced arterial 

inflammation in EMI individuals.

Finally, transcript levels of IFNGR1 encoding the ligand-binding chain of the interferon gamma 

receptor were significantly increased within the EMI group. IFN-γ-signaling plays a central role in 

the crosstalk between innate and adaptive immune response during inflammatory  processes in 

atherosclerosis (Leon & Zuckerman, 2005). For example, IFN-γ is secreted by  T-cells in 

atherosclerotic plaques leading to macrophage activation. Knock-out studies for IFN-γ or its 

receptor in animal models clearly suggest a potentiating role in atherosclerosis (Hansson & Libby, 

2006). 
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Expression of IFNGR1 was recently  found increased in limited systemic sclerosis patients with 

pulmonary arterial hypertension (Pendergrass et  al., 2010). Limited systemic sclerosis or 

scleroderma is a fibrotic autoimmune disease characterized by apoptosis of endothelial cells and 

smooth muscle cells in small blood vessels followed by  inflammation and fibrotic deposition of 

extracellular matrix components (Gabrielli et al., 2009). Taken together, elevated IFNGR1 

expression could be a sign of enhanced inflammatory crosstalk between components of the innate 

and adaptive immune system in EMI patients.

1.3 Over-representation of pro-atherogenic gene expression changes in EMI 
subjects
In addition, differentially expressed genes were observed in the EMI group that have not been 

reported in the context of inflammation but in other cellular processes implicated in atherosclerosis 

(Table 10). 

Biological context Genes References

Cholesterol homeostasis CYP27A1↓, LIPC↓, LRP6↓ Luoma, 2008; Zambon et al., 
2003; Mani et al., 2007

Detoxification of reactive 
oxygen species

GSTT1↓ Hayes & Strange, 2000; Wang et 
al., 2010

Apoptosis NGFR↓ Fiore et al., 2009

Cardiomyopathy SP4↓, BIN1↓, SOX6↓ Nguyen-Tran et al., 2000; Muller 
et al., 2003; Hagiwara et al., 
2000

Table 10. Potential  candidate  genes involved in diverse  biological  functions that separate the 
atherosclerotic phenotype between EMI and control  individuals based on differential expression 
analysis.
Arrow ↑ = up-regulated in EMI group; arrow ↓ = down-regulated in EMI group

For example, three genes involved in cholesterol depletion were found significantly under-

represented in EMI subjects. CYP27A1 belongs to the cytochrome P450 enzyme family and is 

involved in cholesterol oxidation as part of bile synthesis pathway. Since the conversion of 

cholesterol to bile acids is the major route for removing cholesterol from the body  this protein is 

important for overall cholesterol homeostasis (Luoma, 2008). 
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LIPC encodes a triglyceride lipase mainly expressed in the liver and serves the dual functions of 

triglyceride hydrolysis as well as a bridging factor for receptor-mediated cellular lipoprotein uptake. 

A common polymorphism in the promoter region resulting in decreased LIPC expression and 

subsequent enzyme activity  is associated with an increased risk of atherosclerosis (Zambon et  al., 

2003). A missense mutation in LRP6, a member of the LDL receptor family, that results in loss of 

function has been recently demonstrated as the cause for autosomal dominant early-onset coronary 

artery disease (CAD) in an iranian family (Mani et al., 2007, Liu et al., 2008). Interestingly, many 

individuals of the family carrying the mutation develop CAD with subsequent myocardial infarction 

prior to age 50 which was one of the most important inclusion criteria for EMI subjects in this 

study. Decreased expression levels of LRP6 may therefore implicate impaired LDL clearance in 

EMI individuals of our study  cohort. In conclusion, the down-regulation of three genes that are 

involved in the elimination of cholesterol indicates an imbalance of cholesterol homeostasis 

reflecting the disease phenotype. However, the observed expression pattern of cholesterol-

regulating genes could at least in part also result from a possibly higher dose of cholesterol-

lowering medication (statin) in the EMI group.

GSTT1 encodes an enzyme of the glutathione-S-transferase family  that is known for its critical role 

in the detoxification of side products generated by reactive oxygen species  (Bolt & Thier, 2006). In 

recent years, several major studies have shown that a common polymorphism resulting in a non-

functional GSTT1 null allele is associated with hyperlipidemia, inflammation and myocardial 

infarction in patients with coronary artery disease independent of the ethnic background (Cornelis et 

al., 2007, Maciel et al., 2009, Tang et al., 2010, Wang et al., 2010). Interestingly, GSTT1 is one of 

the most  consistent down-regulated genes in EMI subjects reflecting the results of the 

epidemiological studies cited above even within this small sample group. We assume that some of 

the EMI individuals may be carriers of the GSTT1 null allele as quantitative real-time PCR on a 

few samples from our study cohort did not yield detectable signals (data not shown). One of the 

known side effects of reactive oxygen species (ROS) is the generation of oxidized LDL, a feature 

with substantial significance for atherosclerosis (Hayes & Strange, 2000). In conclusion, decreased 

GSTT1 expression in EMI individuals could potentiate the pathophysiological effects of ROS on 

the CAD phenotype.
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NGFR is the gene encoding nerve growth factor receptor, a death receptor of the TNF receptor 

superfamily mediating apoptotic signals in neurons but also in cells of the immune system such as 

macrophages (Fiore et al, 2009). Therefore, decreased transcript levels of NGFR could reflect 

reduced apoptosis of immune cell populations in EMI subjects with the consequence of an overall 

increased immune response that obviously  contributes to inflammatory  processes during 

atherosclerosis.

An interesting finding of this study  was the down-regulation of three genes implicated in cardiac 

myopathies. BIN1 is a scaffolding protein of L-type calcium channels in cardiac myocytes and 

genetic ablation results in perinatal lethal cardiomyopathy that is characterized by aberrant 

myofibril formation (Muller et al., 2003; Hong et al., 2010). SP4 encodes a transcription factor that 

is mainly expressed in ventricular myocytes. Its loss of expression in knock-out mice results in 

sudden death due to spontaneous ventricular tachycardia with a high incidence of atrioventricular 

block leading to cardiac arrest (Nguyen-Tran et al., 2000). At the molecular level, a decrease and 

mislocalization of connexins was identified as a cause for malignant arrythmias. SOX6 is a 

transcription factor that  is important for cardiac myocyte differentiation and its disruption leads also 

to sudden neonatal death due to atrioventricular blocks (Hagiwara et al., 2000). The molecular 

mechanism seems to involve suppression of the cardiac L-type Ca2+ channel alpha 1c subunit 

expression (Cohen-Barak et al., 2003). Expression levels for both, SP4 and SOX6, were decreased 

in cases and raise the question of whether cardiac myocytes in EMI subjects also display  reduced 

transcript levels. For obvious reasons this is difficult to test in humans but the intriguing thought 

remains that circulating blood cells could possibly mirror the phenotype of cardiac tissue. In fact, it 

has been recently demonstrated that gene expression signatures in peripheral blood cells during 

atherosclerosis do reflect the gene expression patterns of an adjacent tissue, the atherosclerotic 

vasculature (Sinnaeve et al., 2009). However, the circulating blood stream is in direct contact with 

the vasculature and therefore makes interactions between those tissues more amenable. 

Nevertheless, it  is quite puzzling that three genes, whose loss of expression in mice results in lethal 

cardiomyopathy, were found significantly down-regulated in EMI samples from our study cohort.
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2. Potential impact of cardiac-related medication on gene expression profiles in 
the study cohort
All individuals of the EMI group, diagnosed with atherosclerotic coronary artery  disease, have 

suffered myocardial infarction (MI) prior to age 50 and receive as a consequence standard post-MI 

therapeutical medication (see also Material & Methods). As any of these drugs could potentially 

affect gene expression profiles, we assembled a healthy control group that was treated with the 

same subset of medication. However, due to possible variations in the doses of applied medication 

some remaining variance in gene expression cannot be excluded. The following section will discuss 

this issue with regard to the identified differential expression profile within the obtained microarray 

data set of this study.

One of the surprising findings of this study was the decreased expression of CD40LG in EMI 

individuals. It was the major hub gene of Ingenuity Network 2 and was also detected within the 

PANTHER biological process category „Immunity  and defense“ (Figure 13 A and Figure 16). 

CD40LG belongs to the tumor necrosis factor (TNF) family  and signaling via its receptor CD40 

results in NF-κB mediated pro-inflammatory  gene expression (Lievens et al., 2009). About a decade 

ago extensive studies demonstrated a major role for CD40LG and its receptor CD40 in promoting 

inflammation during atherosclerosis (Lutgens et al., 2007). Knock-out mice and inhibition of 

CD40LG by  antibody treatment resulted in a decrease in atherosclerosis with a stable plaque 

phenotype that was rich in collagen and low in inflammatory cells (Mach et al., 1998; Lutgens et 

al., 1999; Lutgens et al., 2000). The role of CD40LG as a pro-inflammatory mediator in 

atherosclerosis was also confirmed in clinical studies (Lee et al., 1999; Heeschen et al., 2003). 

CD40LG is expressed on the surface of activated T-cells but the main source of soluble CD40 

ligand are platelets (Graf et al., 1995; Henn et al., 1998). Furthermore, CD40LG binds to 

glycoprotein IIb/IIIa on platelets which promotes platelet aggregation and eventually leads to 

coagulation and thrombus formation (Andre et  al., 2002). Interestingly, it is known that 

acetylsalicylic acid, the active ingredient of Aspirin, inactivates platelet  function in part by 

irreversible glycoprotein IIb/IIIa modification and may thereby cease CD40LG production 

(Muhlestein, 2010). Therefore, possibly higher doses of Aspirin medication in cases compared to 

controls may account for decreased transcript levels of CD40LG in EMI individuals. 
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In addition, there is substantial evidence that  statins are capable to reduce expression of the CD40/

CD40LG dyad via inhibition of IFN-γ signaling in a variety of atherogenic cell types (Arnaud et  al., 

2005). Statins are traditionally known as 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) 

reductase inhibitors that block a rate-limiting step in cholesterol biosynthesis (Alberts et  al., 1980). 

Clinical studies in the 1990s have proven statins as the most efficient drugs to reduce serum 

cholesterol levels in atherosclerotic patients (Scandinavian Simvastatine Survival Study Group, 

1994). During the last decade accumulating evidence emerged that statins also exert 

immunomodulatory and anti-inflammatory properties contributing to an improved clinical outcome 

in atherosclerosis (Downs et al., 1998; Tonkin et al., 2000; Nissen et al., 2005; Ridker et al., 2005). 

Benefits of statin therapy  have actually been extended to other (auto-immune) inflammatory 

diseases such as multiple sclerosis and rheumatoid arthritis (McCarey et al., 2004; Vollmer et al., 

2004). Basic research has rendered some mechanistic insight on these pleiotropic effects and 

revealed HMG-CoA reductase dependent and independent actions of statin. Inhibition of HMG-

CoA reductase does not only  block cholesterol synthesis but also interferes with isoprenoid 

synthesis. Isoprenylation is crucial for post-translational modification and subsequent function of 

small GTPases of the Ras and Rho family  (Hall, 1998). For example, inhibition of Rac1 prenylation 

and Rac1-mediated NAD(P)H oxidase activity by statins attenuates the production of reactive 

oxygen species (Takemoto et al., 2001; Wassmann, 2001). However, it is questionable whether the 

observed down-regulation of NOX4 in Ingenuity Network 2 is possibly related to statin treatment 

(Figure 13). An important finding is that statins inhibit IFN-γ-induced MHC-II expression in 

atherogenic cells such as monocytes and macrophages and, thus, act as direct repressors of MHC-II-

mediated T-cell activation. Repression is independent of HMG-CoA reductase inhibition and occurs 

via attenuation of an inducible promoter of the transactivactor CIITA (Kwak et al., 2000). 

Decreased transcript levels of HLA-DQA1, a MHC-II class gene, were indeed found in Ingenuity 

Network 3 and could therefore result from statin treatment. In contrast to classic MHC-II-mediated 

T-cell activation, HLA-DQA1 peptides seem to have inhibitory effects on T-cells though (Murphy 

et al., 1999; Zang & Murphy, 2005).

Several studies in mice and man demonstrated that statins also suppress the production of pro-

atherogenic cytokines (e.g. IFN-γ, IL-12) and induce the production of anti-atherogenic cytokines 

(e.g. TGF-β) thereby shifting the immune response from a pro-inflammatory Th1 cell-mediated 

towards an anti-inflammatory Th2 cell-mediated phenotype (Youssef et al., 2002; Gegg et al., 2005; 

Rosenson et al., 1999; Shimada et al., 2004). 
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Interestingly, the receptors for IL-12 and IFN-γ were found up-regulated during our differential 

expression analysis in Ingenuity Network 2 and PANTHER biological process category „Immunity 

and Defense“, respectively (Figure 13 and Figure 17). Increased transcript  levels of these two 

cytokine receptors could in fact represent a response to statin-reduced IL-12 and IFN-γ expression 

thereby maintaining a pro-inflammatory  Th1 cell-mediated immune response. Moreover, this 

implicates a mechanism for evasion of the disease phenotype from therapeutical medication and 

provides at least in part an explanation why the inflammatory  signature is still persistent in EMI 

subjects. A possible decrease of IFN-γ levels due to statin treatment may  be also the reason for the 

observed down-regulation of eight interferon-inducible genes in Ingenuity network 2 (Figure 13 and 

Table 9). Most of these genes encode either transcription factors or enzymes involved in DNA 

metabolism that have not been implicated in cardiovascular disease before. Altogether, the 

interference with IFN-γ and CD40 ligand signaling seems a critical feature of statin 

immunosuppressive effects. Obviously, both cytokines play a major role at the interface of cytokine 

crosstalk between atherogenic cells resulting in activation of T-cell populations that mediate pro-

inflammatory effector functions. 

3. Significance of the study results
This study used whole genome expression profiling and a systems biology  analysis approach that 

together yielded a rich data set  with potential candidate genes for early-onset coronary artery 

disease. A complex picture of robust and redundant inflammatory signatures within the EMI cohort 

emerged. The complexity of pathways was at least in part expected as the samples comprised 

pooled RNA from circulating blood cells including platelets and leukocytes (lymphocytes, 

granulocytes, monocytes). We decided to analyze initially  the whole blood transcriptome as further 

separation into different leukocyte cell types could have affected the gene expression pattern. 

However, as a follow-up study it may  be of interest  to analyze cell fractions of lymphocytes, 

granulocytes and monocytes separately. The identified genes cover multiple functional aspects of 

inflammation but also revealed other features related to atherosclerosis such as cholesterol 

homeostasis (Table 9 and Table 10). However, among the diverse genes related to the innate and 

adaptive immune response were many that have been previously  not reported in the context of 

atherosclerosis. In addition, there were new candidate genes without  a documented function in 

cardiovascular disease and inflammation. Interestingly, only a few genes were found that encode for 

cytokines. 
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This may reflect the phenotype but could also result  from technical limitations as many growth 

factors are produced in low quantities and/or have a short half life in terms of their mRNA stability. 

Most cytokine genes are known to harbor AU-rich elements (AREs) in their 3‘ untranslated region 

(UTR) that confer to rapid mRNA decay, for example via a multiprotein complex called the 

exosome (Khabar, 2007; Hamilton et al., 2010). 

The overlap  of our candidate genes with those of other studies seems marginal at first. Two 

laboratories within the Cardiovascular Research Unit at Duke University have recently analyzed 

peripheral blood cell gene expression signatures in patients with coronary artery disease (CAD). In 

one study, comprising 222 subjects, a set of 160 differentially  expressed genes predictive of the 

extent of CAD was identified. From these, one perfect match (NOX4) as well as six genes of gene/

protein families (LGALS9, ABCC6, NOTCH2, IL2, SOX4, HDAC5) correlating to our candidate 

genes were detected (Table 11) (Sinnaeve et al., 2009).

Sinnaeve et al. Corresponding candidate gene of 
this study

Biological function

NOX4 (NADPH oxidase) NOX4 (Network 1 and PANTHER) Vascular inflammation

LGALS9 (L-galectin) LGALS3 (Network 2 and PANTHER) Pro-inflammatory

ABCC6 (ABC transporter) ABCG5 (Network 3) Cholesterol depletion

NOTCH2 (notch ligand) JAG1 (Network 1 and PANTHER) T-cell activation

IL2 (cytokine) CD40LG (Network 2) Pro-inflammatory

SOX4 (transcription factor) SOX6 (Network 4) Cardiac development

HDAC5 (histone 
deacetylase)

HDAC2 (Network 4) Lymphocyte differentiation

Table 11. Overlapping functions within  the gene  expression signature between the study of Sinnaeve et 
al. and our results.
Full name of the gene family is added in parentheses. Network plus number and/or PANTHER indicate the 
source within our ontological analysis.
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Another study, comprising a total of 243 subjects, identified 50 genes from microarray analysis (41 

subjects) and 56 genes based on a literature search that correlated with the extent of coronary artery 

stenosis and were in addition validated by qPCR analysis in two independent patient cohorts 

comprising 95 subjects and 107 subjects, respectively  (Wingrove et al., 2008). Out of these 106 

identified genes, one exact match (MGST1) of the microarray pool and five validated genes (TNF, 

TNFRSF1B, IFNG, IL8RA, IL8RB) of the literature search did correspond to genes of cytokines 

and/or corresponding receptors in our potential candidate list (Table 12). 

Wingrove et al. Corresponding candidate gene of 
this study

Biological function

MGST1 (microsomal 
glutathione-S-transferase)

MGST1 (Network 2) Oxidative stress

TNF, TNFRSF1B (tumor 
necrosis factor / receptor)

CD40LG (Network 2) Pro-inflammatory

IFNG (interferon-γ) IFNGR1 (PANTHER) Pro-inflammatory

IL8RA, IL8RB (interleukin 
receptor)

IL12RB1 (Network 2) Pro-inflammatory

Table 12. Overlapping functions within the  gene  expression signature between the study of Wingrove 
et al. and our results.
Full name of the gene family is added in parentheses. Network plus number and/or PANTHER indicate the 
source within our ontological analysis.

Taken together, our and other studies display at least a partial overlap in terms of the identified 

inflammatory profiles and their respective cytokine signaling pathways. Notably, expression levels 

of CD40LG were not found elevated in those studies either, possibly as a result of similar 

medication (e.g. aspirin and statins) of the patient cohorts. In conclusion, there is a certain degree of 

consistency between microarray data with respect to the functional categories embedded in the gene 

expression signatures.

The use of genome-wide expression profiling in order to investigate the underlying phenotype of 

atherosclerosis has started at the beginning of this millennium. However, these studies have almost 

exclusively addressed the vasculature and therein atherosclerotic plaques (Bijnens et al., 2006). 
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Most studies were performed using animal models as well as human tissue samples and revealed 

diverse individual genes and/or pathways that confirmed the prevailing knowledge of 

atherosclerosis as an inflammatory disease (Hiltunen et al., 2002; Archacki et al., 2003; King et al., 

2005; Lutgens et al., 2005; Tabibiazar et al., 2005). At the time when this investigation was 

initiated, to our knowledge no comprehensive microarray study  was published that had analyzed 

gene expression signatures of whole blood in atherosclerotic coronary  artery disease. Hence, it was 

of outstanding interest to answer the question whether circulating blood cells would mirror the 

phenotype of vascular tissue. Based on the findings of this study the answer seems to be, yes. In 

addition, our results are supported by the two recently  published studies of the Duke Medical 

Center (Wingrove et al., 2008; Sinnaeve et al., 2009). Both studies demonstrated a correlation of 

gene expression signatures in circulating blood cells with the CAD phenotype. Furthermore, 

Sinnaeve and colleagues were able to show that gene expression patterns in peripheral blood cells 

actually correlated with those from tissue samples of atherosclerotic vasculature from an 

independent patient cohort.

The future perspective of the present investigation is to further validate genes from our candidate 

list in larger epidemiological studies but also in basic research. Testing of individual genes in larger 

patient cohorts would add statistical significance and could be in addition used to investigate 

potential genetic causes for reduced expression as observed in some of the detected genes. One of 

the limitations of microarray analysis remains the inability to distinguish whether decreased 

transcript levels of a specific gene result from genetic or epigenetic influences. For example, the 

gene GSTT1 is deleted in a relatively  high percentage of the human population and was also 

identified with decreased expression in EMI individuals during our analysis (Bolt & Thier, 2006). 

Genes successfully validated in large scale studies could eventually  qualify as biomarkers that may 

serve as diagnostic indicators of the atherosclerotic phenotype. Complementary, it  would be 

interesting to further assess candidate genes in basic research using functional studies at the 

molecular level in the diverse cell types implicated in atherosclerosis. By gaining mechanistic 

insight this approach could lead to the identification of new targets for therapeutical drug 

development. In conclusion, genome-wide expression profiling is a powerful tool that can serve as 

an unbiased high-throughput approach to discover new candidate genes for phenotypes with a 

multifactorial background such as atherosclerotic coronary artery disease.
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V. Abstract

The aim of the second part of my PhD project  was to identify differential gene expression 

signatures in circulating blood cells that are associated with coronary artery disease.

Using a microarray-based whole genome expression profiling approach the transcriptome of 

circulating peripheral blood cells from individuals diagnosed with atherosclerotic coronary artery 

disease (CAD) was analyzed. The study cohort was assembled from a large clinical database hosted 

by the Veterans Administration Pacific Islands Healthcare System (VAPHICS). Samples from 

patients with early  myocardial infarction (MI) prior to age 50 and clinically diagnosed with CAD 

were compared to a healthy control group treated with the same cardiac-related medication. Gene 

expression profiles from whole blood mRNA samples that were depleted for β-globin transcripts 

was assessed by microarray  analysis. A novel algorithm called LOTEST that was specifically 

designed to detect heterogenous and sparse signals embedded within gaussian noise, identified 1203 

differentially expressed genes between patients and controls. Out of these, 195 genes were excluded 

from downstream analysis as they  were represented by only  two individuals within the patient 

group. The gene ontology databases „Protein Analysis Through Evolutionary 

Relationships“ (PANTHER) and „Ingenuity  Pathway  Analysis“ (IPA) were then applied to analyze 

functional grouping within the identified differential gene expression pattern. The analysis revealed 

over-representation of genes that are associated with inflammation and immune system function. A 

list of potential candidate genes with the most consistent expression pattern across the sample 

groups was confirmed by quantitative real-time PCR analysis and included up-regulated pro-

inflammatory genes (PTX3, LGALS3, CAMP), down-regulated anti-inflammatory  genes 

(IL12RB1, JAG1), decreased expression of genes that protect from auto-immunity (IL2RA, CCR7) 

and genes not previously  implicated in immune system function (GSTT1, NGFR). The results of 

this study suggest persistent ongoing inflammation in CAD patients of the study cohort despite 

treatment with anti-inflammatory medication. 

The outcome of this small-scale study can serve as a basis for future investigations in order to 

discover new biomarkers and/or potential targets for drug development against so far unknown 

disease mechanism(s). Certainly, the realization of these tasks would require substantial 

epidemiological and basic research efforts.
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VI. Zusammenfassung

Das Ziel des zweiten Teils dieser Dissertation war die Identifizierung von Genen in zirkulierenden 

Blutzellen, deren differentielles Expressionsmuster mit dem Phänotyp  der koronaren Herzkrankheit 

korreliert.

Unter Verwendung eines Microarray-basierten Ansatzes wurde das gesamte Transkriptom aus 

peripher zirkulierenden Blutzellen von Patienten mit koronarer Herzkrankheit im Vergleich zu einer 

gesunden Kontrollgruppe analysiert. Die Teilnehmer der vorliegenden Studie wurden aus einer 

klinischen Datenbank des „Veterans Administration Pacific Islands Healthcare System“ (VAPHICS) 

ausgewählt. Proben von Patienten, die vor Erreichen des 50. Lebensjahres einen Herzinfarkt erlitten 

haben, und bei denen eine klinisch diagnostizierte koronare Herzkrankheit  vorlag, wurden mit einer 

gesunden Kontrollgruppe verglichen, die die gleichen Medikamente einnahm. 

Genexpressionsprofile von mRNA Proben aus Gesamtblut, die zuvor von beta-Globin Transkripten 

bereinigt waren, wurden anhand von Microarray-Analysen untersucht. Ein neuer Algorithmus mit 

dem Namen LOTEST, der speziell drauf ausgerichtet ist  heterogene und seltene Signale in einem 

starken Gaußschen Hintergrundrauschen zu detektieren, identifizierte 1203 differentiell exprimierte 

Gene zwischen Patienten und Kontrollindividuen. Davon wurden 195 Gene von der nachfolgenden 

Datenanalyse ausgeschlossen, da dieses Signal nur in zwei Individuen der Patientengruppe 

repräsentiert  war. Die beiden Gen-Ontologie Datenbanken „Protein Analysis Through Evolutionary 

Relationships“ (PANTHER) und „Ingenuity Pathway Analysis“ (IPA) wurden nachfolgend 

angewandt um mögliche funktionelle Gruppierungen in der differentiellen Genexpressionssignatur 

zu analysieren. Die Analyse ergab eine Überrepräsentierung von Genen, die mit 

Entzündungsmechanismen und der Funktion des Immunsystems assoziiert sind. Eine Liste von 

potentiellen Kandidatengenen, deren Expressionsmuster in den jeweiligen Studiengruppen 

besonders homogen war, konnte durch quantitative PCR Analysen bestätigt werden. Diese 

Kandidatengene umfassen hochregulierte entzündungsfördernde Gene (PTX3, LGALS3, CAMP), 

herunterregulierte entzündungshemmende Gene (IL12RB1, JAG1), abgeschwächte Expression von 

Genen, die vor Autoimmunreaktionen schützen (IL2RA, CCR7), sowie Gene, die vorher nicht im 

Kontext der Funktion des Immunsystems bekannt waren. Die Ergebnisse dieser Studie deuten 

darauf hin, dass trotz medikamentöser Behandlung mit Entzündungshemmern, ein persistenter 

Entzündungsstatus bei Patienten mit koronarer Herzkrankheit vorliegt.
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Das Resultat  dieser im kleinen Maßstab angelegten Studie kann als Basis für zukünftige 

Untersuchungen dienen, deren Zielsetzung es ist neue Biomarker und/oder potentielle Zielgene für 

die Entwicklung von neuen Medikamenten gegen bislang unbekannte Mechanismen der koronaren 

Herzkrankheit zu finden. Diese ambitionierten Ziele erfordern jedoch weitere substantielle 

Anstrengungen auf den Gebieten der Grundlagen- sowie der epidemiologischen Forschung.
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