Strukturelle und mechanistische Untersuchungen an Übergangsmetall– S,N–Chelatkomplexen

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von

> Johannes Hermle aus Blaubeuren

> > Köln 2011

Berichterstatter: Prof. Dr. Gerd Meyer Prof. Dr. Axel Klein

Tag der letzten mündlichen Prüfung: 10.10.2011

Abstract

The aim of this work was the synthesis and characterization of new thiophenolate chelate complexes with an amidine function of the general formula $M(SC_6H_4[2-N=CH-NR_2])_2$ employing the group 12 metals zinc, cadmium and mercury. Two different synthesis routes were used.

In the first reaction pathway, metal cations and secondary amines cause a ring opening reaction of the heterocycle benzothiazole that results in the formation of thiophenolate chelate complexes. The structural composition of the formed complexes was determined by X–ray crystallography, and NMR spectroscopy clarified the mechanism of these reactions. Dynamic NMR spectroscopy delivered thermodynamic data arising from the hindered rotation about the C–N single bond of the amidine group. In addition further divalent 4th row transition metal acetates were probed to investigate their reactivity towards benzothiazole and secondary amines. The use of nickel acetate in the reactions yielded thiophenolate chelate complexes, whereas in the reactions with cobalt acetate an oxidation of benzothiazoline intermediates occurred which resulted in the formation of disulfides. Only traces of cobalt containing thiophenolate chelate complexes were detected by mass spectrometry. The use of copper(II) acetate monohydrate formed tetra- μ -acetato-bis[benzothiazolecoper(II)].

Furthermore, the thiophenolate complexes were synthesized by reacting bis(2– aminothiophenolate)metal chelates with dimethylformamide dimethylacetal. Zinc and mercury thiophenolate chelate complexes as well as a metal-free disulfide were characterized by X–ray crystallography. The hindered rotation about the C–N single bond of the amidine group in these complexes was investigated using dynamic NMR spectroscopy.

Kurzzusammenfassung

Das vorrangige Ziel dieser Arbeit war die Darstellung und Charakterisierung neuer Thiophenolat–Chelatkomplexe mit Amidin-Funktionen der allgemeinen Formel $M(SC_6H_4[2 - N=CH-NR_2])_2$ mit Metallen der Gruppe 12, Zink, Cadmium und Quecksilber. Die Darstellung der Thiophenolat–Chelatkomplexe wurde auf zwei unterschiedlichen Wegen durchgeführt.

Zum einen erfolgte durch Umsetzung von Benzothiazol mit einer Reihe von sekundären Aminen unter Einwirkung der Metallkationen eine Ringöffnung des Heterocyclus von Benzothiazol unter Bildung der Thiophenolat-Chelatkomplexe mit Amidin-Funktionen. Durch Strukturaufklärung mittels Röntgenbeugung an Einkristallen und NMRspektroskopischen Untersuchungen konnte der strukturelle Aufbau der Verbindungen sowie mechanistische Details der Reaktionen aufgeklärt werden. Mittels dynamischer NMR-Spektroskopie konnten zudem thermodynamische Daten der eingeschränkten Rotation um die C-N-Einfachbindung der Amidin-Funktionen gewonnen werden. Neben Metallen der Gruppe 12 wurden eine Reihe von zweiwertigen Übergangsmetallacetaten der 4. Periode auf dieselbe Weise mit Benzothiazol und sekundären Aminen umgesetzt. Dabei zeigte sich, dass insbesondere Nickel unter diesen Bedingungen analoge Produkte bildet, während Kobalt unter diesen Bedingungen vornehmlich zur Oxidation der intermediär gebildeten Benzothiazoline unter Bildung von Disulfiden neigt und nur in Spuren die gewünschten kobalthaltigen Thiophenolat-Chelatkomplexe bildete. Mit Kupfer(II)-acetat-monohydrat bildete sich unter diesen Bedingungen Tetra-µ-acetato-bis[benzothiazolkupfer(II)].

Zum anderen wurden die Thiophenolatkomplexe durch Umsetzung von Bis(2– aminothiophenol)metall–Chelatverbindungen und Dimethylformamid–Dimethylacetal dargestellt. Eine Strukturaufklärung mittels Röntgenbeugung an Einkristallen konnte für die Zink– und Quecksilber–Thiophenolat–Chelatverbindung, sowie eine metallfreie Disulfidverbindung durchgeführt werden. Auch an diesen Verbindungen wurden dynamische NMR–Experimente aufgrund von eingeschränkter Rotation um die C–N–Einfachbindung der Amidin-Funktionen durchgeführt.

Vorwort

Die vorliegende Arbeit wurde im Zeitraum von Oktober 2008 bis August 2011 am Institut für Anorganische Chemie der Universität zu Köln unter der Anleitung von Herrn Prof. Dr. Gerd Meyer angefertigt.

Mein besonderer Dank gilt Herrn Prof. Dr. Gerd Meyer für die interessante und vielseitige Aufgabenstellung, exzellenten Arbeitsbedingungen, die mir überlassenen Freiheiten und die Förderung meiner Arbeit.

Für die Übernahme des Zweitgutachtens danke ich Herrn Prof. Dr. Axel Klein, für die Übernahme des Prüfungsvorsitzes bedanke ich mich bei Herrn Prof. Dr. Hans-Günther Schmalz.

Für eine kritische Durchsicht meiner Arbeit und die damit verbundenen Korrekturen danke ich Dr. Selvan Demir, Stefanie Busch, Dr. Wieland Tyrra und Prof. Dr. Siegfried Hermle.

Ein umfassender Dank gilt allen Mitgliedern der Arbeitsgruppe Meyer für die sehr gute Arbeitsatmosphäre und den kollegialen Umgang.

Insbesondere möchte ich mich bei meinen aktuellen und ehemaligen Laborkollegen Dr. Vladislav Abramov, Dr. Selvan Demir, Johannes Eckert, Dr. Verena Lingen, Doreen Muus und Ralph Striebinger für die stets hervorragende Arbeitsatmosphäre, für umfassende fachliche Diskussionen, tolle Zusammenarbeit, interessante Gespräche und für die gemeinsamen Aktivitäten über die Arbeit hinaus bedanken.

Ich bedanke mich zudem bei Yaroslav Afanasyev, Stefanie Busch, Alexander Gräfe und Dr. Björn Wittich für viele interessante Gespräche fernab des Universitätsalltags.

Ein großer Dank gilt Christian Biewer für die ausgezeichneten Ratschläge bezüglich quantenmechanischer Rechnungen. Bei André Uthe, Claudia Hamacher und Prof. Dr. Axel Klein bedanke ich mich für die Durchführung und Interpretation von ESR–Spektren und CV–Messungen.

Für die Ausführung der Analytik bedanke ich mich bei Dr. Ingo Pantenburg, Ingrid Müller (Röntgenstrukturanalysen), Peter Kliesen (IR/UV/VIS–Spektroskopie), Astrid Baum (Massenspektrometrie) und Silke Kremer (CHNS–Analytik).

Von ganzem Herzen danke ich meiner Familie, für ihre Unterstützung und Förderung, welche mir den Weg zu dieser Promotion geebnet hat.

Inhaltsverzeichnis

1 Einleitung	1
2 Grundlagen	2
2.1 Zink	2
2.1.1 Vorkommen und Gewinnung	2
2.1.2 Physiologische Bedeutung	2
2.2 Cadmium	3
2.2.1 Vorkommen und Gewinnung	3
2.2.2 Physiologische Bedeutung	3
2.3 Quecksilber.	4
2.3.1 Vorkommen und Gewinnung	4
2.3.2 Physiologische Bedeutung	4
2.4 Physikalische und chemische Eigenschaften im Überblick	5
2.5 Schiffsche Basen	6
2.5.1 Komplexchemie von Schiffschen Basen	7
2.5.2 Syntheserouten zur Darstellung S.N-chelatisierter Metallthiophenolatkomplexe	7
2.6 Amidine	11
2.6.1 Eigenschaften von Amidinen	12
2.6.2 Formamidine – Synthese	13
2.7 Thiole	14
2.7.1 Eigenschaften	14
2.7.2 Synthesen	16
2.7.3 Metallsalze von Thiolen	17
3 Aufgabenstellung	18
4 Diskussion und Ergebnisse	19
4.1 Umsetzungen von Metallacetaten mit Benzothiazol und Aminen	19
4.1.1 Umsetzungen von Zinkacetat mit Benzothiazol und sekundären Aminen	19
4.1.1.1 Kristallstrukturen	20
4.1.1.2 NMR-Spektroskopie	23
4.1.1.3 Infrarot–Spektroskopie	25
4.1.1.4 Simultane Thermoanalyse	27
4.1.2 Umsetzungen von Cadmiumacetat mit Benzothiazol und sekundären Aminen	27
4.1.2.1 Kristallstrukturen	28
4.1.2.2 NMR–Spektroskopie	33
4.1.2.3 Infrarot–Spektroskopie	35
4.1.2.4 Simultane Thermoanalyse	35
4.1.3 Umsetzungen von Quecksilber(II)–acetat mit Benzothiazol und sekundären	
Aminen	36
4.1.3.1 Kristallstrukturen	37
4.1.3.2 NMR–Spektroskopie	44
4.1.3.3 Infrarot–Spektroskopie	53
4.1.3.4 Simultane Thermoanalyse	53
4.1.4 Quantenmechanische Rechnungen	54
4.1.5 Nebenprodukte der Umsetzungen von Ouecksilber(II)–chlorid mit Benzothiazol	l
und sekundären Aminen	61
4.1.5.1 Piperidinium–hydrochlorid	63
1 2	

4.1.5.2 Morpholinium-hydrochlorid	64
4 1 5 3 Ouecksilber(II)–chlorid Piperidin	
4 1 5 4 Bis(2 2'-Dinyridylamino)quecksilber(II)	05
4 1 6 Umsetzungen mit anderen Metallacetaten	07
4.1.6 0 Insetzungen mit Manganacetat	72
4.1.6.2 Umsetzungen mit Kohaltagetat	72
4.1.6.2 Umsetzungen mit Nickelagetat	72
4.1.6.4 Umsetzungen mit Kunferegetat	75 Q1
4.1.0.4 Ollisetzungen von Oueeksilber(II), egetet mit Penzevezel und selaundören	01
4.1.7 Offisetzungen von Quecksnoer(11)-acetat mit Benzoxazof und sekundaren	05
Anninen	03
4.2 Zusammentassung I	88
4.3 Umsetzungen von 2-Aminotniopnenolaten mit Dimetnylformamid-Dimetnylacetal	102
4.3.1.1 Kristallstrukturen.	103
4.3.1.2 NMR-Spektroskopie	
4.3.1.3 Infrarot–Spektroskopie	114
4.3.1.4 Simultane Thermoanalyse	115
4.3.2 Quantenmechanische Rechnungen	116
4.3.3 Nebenprodukte der Umsetzungen von 7 mit Phosphor(V)-chlorid und	
Dimethylformamid	124
4.3.4 Zusammenfassung II	129
5 Zusammenfassung und Ausblick	132
6 Experimenteller Teil	134
Bis(2-aminothiophenolato)zink, 1	136
Bis(2-aminothiophenolato)cadmium, 2	137
Bis(2-aminothiophenolato)quecksilber, 3.	137
Bis(2-Aminobenzol)disulfid, 4	138
Bis[2-(dimethylamino-methyleneamino)thiophenol]zink, 5	139
Bis[2-(dimethylamino-methyleneamino)thiophenol]cadmium, 6	139
Bis[2-(dimethylamino-methyleneamino)thiophenol]quecksilber, 7.	140
2,2'-bis(N,N-dimethyl-N'-phenylformamidin)disulfid, 8.	141
Bis[2-(1-pyrrolidinyl-methyleneamino)thiophenol]zink, 9.	142
Bis[2-(1-piperidinyl-methyleneamino)thiophenol]zink, 10.	142
Bis[2-(1-morpholinyl-methyleneamino)thiophenol]zink, 11	143
Bis[2-(diethylamino-methyleneamino)thiophenol]zink, 12.	144
Bis[2-(1-pyrrolidinyl-methyleneamino)thiophenol]cadmium, 13.	144
Bis[2-(1-piperidinyl-methyleneamino)thiophenol]cadmium, 14.	145
Bis[2-(1-morpholinyl-methyleneamino)thiophenollcadmium, 15.	146
Bis[2-(1-pyrrolidinyl-methyleneamino)thiophenol]quecksilber 16	146
Bis[2-(1-piperidinyl-methyleneamino)thionhenollouecksilber 17	147
Bis[2-(1-morpholinyl-methyleneamino)thiophenol]quecksilber 18	148
Bis[2-(dibenzylamino-methyleneamino)thiophenol]quecksiber, 70	150
Bis[2-(di- <i>n</i> -butylamino-methyleneamino)thionhenol]quecksibler 21	151
Bis[2-(1-nvrrolidinyl-methyleneamino)nhenol]queeksilber, 22	152
Bis[2-(1-mornholinyl-methyleneamino)phenol]queeksilber 21	152
Bis[2-(1-morphomy-methyleneamino)thionhanollnickel 25	157
Bis[2-(1-pynonumyn-meuryneneanino)henzenethiollkohalt 27	154
$Dis_2 - (1-pipertainy)$ -methyteneanino joenzeneunoi jo	155
Pis(2, 2) Dinvridingming) guagksilbar(II) 20	150
Dis(2,2 -Dipyriananino)queeksinoei(11), 29	130

2,2'-Bis(N-Piperidinyl-methyleneamino)diphenyldisulfide, 30.	
7 Literatur	
8 Anhang	
8.1 Quantenmechanische Rechnungen	
8.1.1 Atomkoordinaten von 5, BP86/def2-TZVPP.	
8.1.2 Atomkoordinaten von 6, BP86/def2-TZVPP.	
8.1.3 Atomkoordinaten von 7, BP86/def2-TZVPP.	
8.1.4 Atomkoordinaten von 9, BP86/def2-TZVPP.	171
8.1.5 Atomkoordinaten von 13, BP86/def2-TZVPP.	
8.1.6 Atomkoordinaten von 16, BP86/def2-TZVPP.	
8.1.7 Atomkoordinaten von 26, BP86/def2-TZVPP.	
8.2 Kristallographische Daten	
8.2.1 Kristallographische Daten von 3	
8.2.2 Kristallographische Daten von 5	
8.2.3 Kristallographische Daten von 7	
8.2.4 Kristallographische Daten von 8	
8.2.5 Kristallographische Daten von 9	
8.2.6 Kristallographische Daten von 10	
8.2.7 Kristallographische Daten von 13	
8.2.8 Kristallographische Daten von 14	
8.2.9 Kristallographische Daten von 15	
8.2.10 Kristallographische Daten von 16	
8.2.11 Kristallographische Daten von 17	
8.2.12 Kristallographische Daten von 18	
8.2.13 Kristallographische Daten von 19	
8.2.14 Kristallographische Daten von 20	
8.2.15 Kristallographische Daten von 21	
8.2.16 Kristallographische Daten von 23	
8.2.17 Kristallographische Daten von 28	
8.2.18 Kristallographische Daten von 29	
8.2.19 Kristallographische Daten von 31	
8.2.20 Kristallographische Daten von 32	
8.2.21 Kristallographische Daten von 33	
8.2.22 Kristallographische Daten von 34	
8.2.23 Kristallographische Daten von 35	

1 Einleitung

Unter den Übergangsmetallen nehmen die Elemente der Gruppe 12, Zink, Cadmium und Quecksilber, aufgrund ihrer vollständig gefüllten d–Schale eine besondere Stellung ein und werden häufig auch als Postübergangsmetalle¹ und ihre Elektronenkonfiguration als pseudo– Edelgaskonfiguration bezeichnet. Ihre Chemie wird fast ausschließlich durch die *s*– Elektronen geprägt; dies macht sich dadurch bemerkbar, dass die Chemie der Metalle der Gruppe 12 auf die Oxidationsstufen +I und +II beschränkt ist und sich die d–Orbitale nicht an chemischen Bindungen beteiligen. Von Quecksilber sind eine Vielzahl an Verbindungen in der Oxidationsstufe +I bekannt, während Zink(I)– und Cadmium(I)–Verbindungen bereits unter Normbedingungen in die Metalle und Metall–Verbindungen in der Oxidationsstufe +II disproportionieren.² Theoretische Berechnungen haben schon früh gezeigt, dass Quecksilber auch in der Oxidationsstufe +IV existieren müsste, der experimentelle Nachweis, dass Quecksilber zu den Übergangsmetallen zu zählen ist, gelang *Kaupp et al.*³ durch die Darstellung von HgF₄ in einer Neonmatrix bei 4 K.

Quecksilber besitzt nicht nur in der Gruppe 12 eine besondere Stellung, sondern ist auch das einzige unter Normalbedingungen flüssige Metall des Periodensystems. Elementares Quecksilber und Cadmium, sowie deren Verbindungen sind in der Regel sehr giftig und umweltgefährdend. Im Gegensatz dazu ist Zink für alle Organismen ein essentielles Spurenelement, welches eine Schlüsselfunktion in einer Reihe von Stoffwechselvorgängen einnimmt; zudem spielt es in einer Vielzahl von Metalloenzymen und Hormonen eine wichtige Rolle. In den klassischen Zinkfingerproteinen bindet das Zinkkation an zwei Cystein– und zwei Histidingruppen und besitzt somit eine tetraedrische ZnS₂N₂–Umgebung.⁴ Cadmium, welches in seiner Chemie dem Zink ähnlicher ist als dem schwereren Gruppenhomologen Quecksilber, ist in der Lage, Zink aus seinen Strukturen zu verdrängen und dabei Enzyme zu deaktivieren.⁵ Daher werden Verbindungen mit einer MS₂N₂-Umgebung dargestellt, um als Strukturmodell für das Verständnis der biologischen Koordinationsumgebung in Zinkfingerproteinen zu dienen.⁶ Hierbei werden häufig 2-Aminothiophenolate mit Aldehyden zu Schiffschen Basen umgesetzt, welche über die Thiolfunktion an das Metall binden und über die Imin-Funktion der Schiffschen Base an das Metallzentrum koordinieren.

2 Grundlagen

2.1 Zink

2.1.1 Vorkommen und Gewinnung^{2,7}

Der Name Zink geht auf *T. Paracelsus* zurück, der das zinkhaltige Mineral Galmei aufgrund seiner zackigen Struktur als *Zinck* bezeichnete. Das Element Zink ist schon lange bekannt, so erfolgte seine Darstellung beispielsweise in Indien bereits im 13. Jahrhundert durch Reduktion von Zinkoxid mit Kohlenstoff. Über einen langen Zeitraum wurde Zink aus Asien nach Europa importiert, bevor im frühen 18. Jahrhundert die Produktion auch in Europa erfolgte. Im Jahr 1746 identifizierte *A. S. Marggraf* Zink als eigenständiges Element.

Mit einer Häufigkeit von 76 ppm in der Erdkruste ist Zink in etwa genauso häufig wie Rubidium und etwas häufiger als Kupfer. In der Natur kommt Zink fast ausschließlich in sulfidischen und oxidischen Erzen gebunden vor. Die wichtigsten Zinkerze sind Zinksulfid, ZnS, welches in einer kubischen (Zinkblende) und einer hexagonalen (Wurtzit) Modifikation bekannt ist, und Zinkcarbonat, ZnCO₃ (Zinkspat).

Zur Gewinnung von elementarem Zink werden die Erze zunächst geröstet. Die hieraus gewonnenen Oxide werden entweder mit Kohlenstoff zu Zink reduziert, oder mit Schwefelsäure aufgelöst und anschließend elektrolysiert. Unter Verwendung von Quecksilber als Kathodenmaterial lässt sich auf elektrolytischem Weg, aufgrund der Bildung von Zinkamalgam, besonders reines Zink gewinnen.

2.1.2 Physiologische Bedeutung⁸

Alle Lebewesen und Pflanzen benötigen Zink als essentielles Spurenelement. Im menschlichen Organismus ist es nach Eisen das zweithäufigste Übergangsmetall und kommt in etwa 300 Metalloenzymen vor. Dem Zink können dabei entweder katalytische oder aber strukturstabilisierende Funktionen zukommen. In Carboanhydrasen sind die Zinkatome das katalytische Zentrum, während ihnen in Zinkfingerproteinen von DNS-bindenden Transkriptionsfaktoren eine strukturstabilisierende Aufgabe zukommt.

Das häufigste Motiv in Zinkfingerproteinen in menschlichen Zellen beinhaltet eine Cys_2His_2Zn -Einheit und damit ein ZnS_2N_2 -Motiv.^{4,9-11}

Die physiologische Bedeutung von Zink beruht auf verschiedenen Eigenschaften des Metallions. Der Ionenradius von Zn^{2+} (0,74 Å) ist vergleichbar mit Mg²⁺ (0,71 Å); aufgrund des größeren 2. Ionisierungspotentials besitzt Zink jedoch eine höhere Elektronenaffinität als Magnesium, im Vergleich zwischen beiden Metallen ist Zink somit eine deutlich weichere Lewis–Säure. Zinkionen sind daher in der Lage, sowohl mit harten als auch mit weichen Lewis–Basen stabile Komplexe zu bilden. Unter den zweiwertigen Übergangsmetallen der 4. Periode ist lediglich Kupfer eine weichere Lewis–Säure, aufgrund der Cu²⁺/Cu⁺ Redoxaktivität scheint eine Funktion in Enzymen jedoch ungünstiger zu sein.

Durch eine variable Koordinationssphäre und die Ausbildung stabiler Komplexe mit Oxo-, Amin- und Thiolatliganden erklärt sich die biologische Rolle von Zink in Katalysereaktionen und zur Strukturstabilisierung von Enzymen.

2.2 Cadmium

2.2.1 Vorkommen und Gewinnung^{2,7}

Elementares Cadmium wurde 1817 von *F. Strohmeyer* bei Untersuchungen an gelblichem, cadmiumhaltigem Zinkoxid entdeckt. Der Begriff Cadmium leitet sich vom griechischen Wort καδμία (kadmia) ab und war eine Bezeichnung für Mineralien, welche bei der Umsetzung mit Kupfer Messing ergaben. Wie Zink kommt auch Cadmium (Häufigkeit in der Erdkruste: 2 ppm) in der Natur fast ausschließlich in Form von Sulfiden und Oxosalzen vor und liegt mit den entsprechenden Zinksalzen verschwistert vor. Die Gewinnung des Metalls erfolgt daher fast ausschließlich als Nebenprodukt der Zinkverhüttung. Aufgrund des niedrigeren Siedepunktes von Cadmium (767,3 °C) im Vergleich zu Zink (908,5 °C), reichert sich Cadmium in der ersten Fraktion einer Destillation an und kann durch erneute Reduktion der Oxide und anschließender fraktionierter Destillation zum Feincadmium raffiniert werden.

2.2.2 Physiologische Bedeutung

Im Gegensatz zu Zink ist Cadmium für fast alle höher entwickelten Organismen nicht essentiell, sondern vielmehr hochtoxisch. Cadmium wird in Leber und Niere in Metallothionein–Proteinen gebunden, ist jedoch auch in der Lage, Zink, Kupfer, Eisen und Calcium aus Proteinen zu verdrängen und somit die biochemische Funktion der Proteine zu

4

beeinflussen. Eine mögliche Ursache für die Karzinogenität von Cadmium ist in der Substitution von Zink gegen Cadmium in Zinkfingerproteinen zu sehen.¹²

Methallotheinproteine können sieben Cadmiumionen binden, die jeweils tetraedrisch in Schwefelclustern koordiniert werden, unter anderem in einem Cd₃S₃–Ring in Sesselkonformation.¹³ Cadmium ist eine etwas weichere Lewis–Säure als Zink und bevorzugt daher weichere Basen. Genauso wie Zink bevorzugt Cadmium eine tetraedrische Koordinationssphäre. Aufgrund der Fähigkeit, den Zinkmetabolismus zu stören, wird Cadmium als Antimetabolit von Zink gesehen.

Wegen der ähnlichen Ionenradien von sechsfach koordiniertem Cadmium (0,95 Å) und Calcium (1,00 Å), ist eine Substitution des Calciums im Knochengewebe möglich, zudem stört ein erhöhter Cadmiumpegel die Resorption von Calcium und führt damit zu einer vermehrten Ausscheidung von Calcium und somit zur Itai–Itai–Krankheit.⁵

In einer maritimen Kieselalge wurde das erste cadmiumspezifische Enzym entdeckt, welches als Carboanhydrase den Abbau von Kohlensäure zu Kohlenstoffdioxid katalysiert.^{14,15}

2.3 Quecksilber

2.3.1 Vorkommen und Gewinnung^{2,7}

Elementares Quecksilber ist bereits seit mehreren tausend Jahren bekannt. Das Elementsymbol Hg leitet sich von der griechischen/lateinischen Bezeichnung Hydrargyros/Hydrargyrum ab und bedeutet soviel wie Wassersilber (flüssiges Silber). Der deutsche Name Quecksilber (quick = beweglich) hat dieselbe Bedeutung.

In der Natur findet man Quecksilber hauptsächlich in gebundener Form als Sulfide, HgS (Zinnober) und Levingstonit, Hg[Sb₄S₇], selten sogar in gediegener Form.

Reines Quecksilber wird durch Rösten der sulfidischen Erze und Kondensation des gasförmigen Quecksilberdampfes gewonnen.

2.3.2 Physiologische Bedeutung

Quecksilber und Quecksilberverbindungen sind für alle Organismen toxisch und nicht essentiell. Quecksilbervergiftungen führen zu schwersten Schädigungen des zentralen Nervensystems; Langzeitschäden, die zusätzlich auftreten, sind Nieren– und Leberschäden. Jedes Jahr gelangen geschätzt 4,4–7,0 Kilotonnen Quecksilber in die Atmosphäre. Der anthropogene Anteil der Quecksilberemission beträgt hierbei 2,2–2,6 Kilotonnen.¹⁶ Durch die Atmosphäre und über Flüsse gelangt Quecksilber ins Meer, hier setzen Bakterien anorganische Quecksilbersalze zu hochgiftigem Methylquecksilber um. Dieses wird zwar teilweise durch Schwefelwasserstoff zum ungiftigen Quecksilbersulfid abgebaut, gelangt aber auch teilweise in den Nahrungskreislauf.^{17,18} Daneben nehmen Pflanzen Quecksilber aus dem Boden auf und machen es dadurch für den Nahrungskreislauf verfügbar, Abbildung 1, so dass Pilze nach Fisch zu den am stärksten belasteten Lebensmitteln zählen. Der Mensch, am Ende der Nahrungskette, nimmt täglich ungefähr 10–30 µg Quecksilber zu sich.¹⁹

Abbildung 1. Vereinfachter ökologischer Quecksilber-Kreislauf.

2.4 Physikalische und chemische Eigenschaften im Überblick^{2,7}

Unter den Übergangsmetallen besitzen die Elemente der Gruppe 12 aufgrund ihrer gefüllten Elektronenschalen eine Sonderstellung. Anders als die Erdalkalimetalle, die ebenfalls über gefüllte Elektronenschalen verfügen, handelt es sich bei den Metallen der Zinkgruppe jedoch um edlere Metalle, die über höhere Ionisierungsenergien verfügen. Durch das positive Redoxpotential ist Quecksilber zudem viel edler als die leichteren Gruppenhomologen.

Betrachtet man die Elemente bezüglich ihres chemischen Verhaltens, so sind sich die leichteren, homologen Elemente Zink und Cadmium ähnlicher, unterscheiden sich aber deutlich vom nachfolgenden, schwereren Quecksilber.

Quecksilber ist unter Normalbedingungen das einzige flüssige Metall des Periodensystems, innerhalb der Gruppe besitzt es die höchste Elektronegativität, wodurch sich deutlich kovalente Bindungen ergeben. Die Änderungen der Eigenschaften beim Übergang von der 5. zur 6. Periode lassen sich durch relativistische Effekte erklären.

Mit einem Kernspin von S = $\frac{1}{2}$ sind Quecksilber und Cadmium besonders gut für NMR– Experimente geeignet, während Zink mit einem Kernspin von 5/2 über ein großes Kern– Quadrupol–Moment verfügt und daher für NMR–Messungen nur selten herangezogen wird. Cadmium besitzt zwei NMR–relevante Kerne, jedoch wird aufgrund der etwas höheren Empfindlichkeit in der Regel nur der ¹¹³Cd–Kern für NMR–Experimente genutzt.

		Zn	Cd	Hg
Atomnummer		30	48	80
Atomgewicht [g/mol]		65,39(2)	112,411(8)	200,59(2)
Massenanteil in der Erdhülle [ppm]]	76	0,16	0,08
Elektronenkonfiguration		$[Ar] 3d^{10} 4s^2$	$[Kr] 4d^{10} 5s^2$	$[Xe] 4f^{14} 5d^{10} 6s^2$
Ionisierungsenergie [eV]	1.	9,393	8,992	10,44
	2.	17,96	16,90	18,76
	3.	39,72	37,47	34,20
Schmelzpunkt [°C]		419,6	320,9	-38,84
Siedepunkt [°C]		908,5	767,3	356,6
Elektronegativität		1,6	1,7	1,9
Elektronenaffinität [kJ/mol]		+9	-26	-18
$E^{0}(M^{2+}/M)$ [V]		-0,7626	-0,4025	+0,8545
Atomradius (12) [Å]		1,34	1,49	1,62
Ionenradius (4) [Å]		0,60	0,78	0,97
NMR-aktive Kerne (Spin; abs.		⁶⁷ Zn (5/2; 1,17·10 ⁻²)	¹¹¹ Cd (½; 1,21·10 ⁻³)	¹⁹⁹ Hg (½; 9,54·10 ⁻⁴)
Empfindlichkeit bzgl. ¹ H)			¹¹³ Cd (¹ / ₂ ; 1,33·10 ⁻³)	

Tabelle 1: Ausgewählte Eigenschaften der Elemente Zink, Cadmium und Quecksilber.

2.5 Schiffsche Basen

Im Allgemeinen werden Verbindungen, welche über eine C=N–Doppelbindung als funktionelle Gruppe verfügen, als Imine²⁰ bezeichnet und besitzen den strukturellen Aufbau $R^1R^2C=NR^3$. Im speziellen Fall, wenn der Rest R^3 aus Alkyl– oder Arylgruppen besteht, spricht man von *Schiff*schen Basen,²¹ welche nach *Hugo Schiff* benannt worden sind.²² Vornehmlich werden *Schiff*sche Basen durch Umsetzung eines primären Amins mit Aldehvden oder Ketonen in einer Kondensationsreaktion hergestellt. Die Produkte bezeichnet

Aldehyden oder Ketonen in einer Kondensationsreaktion hergestellt. Die Produkte bezeichnet man entsprechend der eingesetzten Carbonylverbindungen auch als Aldimine²³ ($R^2 = H$) oder Ketimine²⁴ ($R^1, R^2 \neq H$).

*Schiff*sche Basen sind wichtige Synthesebausteine in der Organischen Chemie. So stellen sie unter anderem bedeutsame Vorstufen bei der Synthese chiraler primärer, sekundärer²⁵⁻⁴⁰ und

tertiärer Amine,⁴¹⁻⁴⁵ sowie Amide⁴⁶⁻⁴⁹ dar. Aufgrund ihrer vergleichsweise hohen Reaktivität eignen sich Imine nur in seltenen Fällen als Schutzgruppen für Carbonylfunktionen, dafür finden sie relativ häufig als Schutzgruppe für Amin–Funktionen Verwendung.⁵⁰ *Schiff*sche Basen spielen darüber hinaus auch in der Natur eine wichtige Rolle. So bindet Retinal – ein Carotinoid – unter Bildung eines Imins an das Protein Opsin und bildet somit den Sehpurpur, der für das Hell–Dunkel–Sehen verantwortlich ist.⁵¹⁻⁵³ Iminfunktionen sind zudem ein wichtiger Bestandteil in einer Reihe von Naturstoffen.⁵⁴⁻⁵⁹

2.5.1 Komplexchemie von Schiffschen Basen

Neben ihrem breiten Anwendungsspektrum in der organischen Synthesechemie sind in der metallorganischen Chemie aufgrund der guten Donorfähigkeit von Stickstoffatomen eine Vielzahl von Koordinationsverbindungen mit *Schiff*schen Basen bekannt. Zu den bekanntesten *Schiff*schen Basen zählen die Gruppen der Salen–Liganden⁶⁰⁻⁶⁵ und der Diketimine.⁶⁶⁻⁷¹ Mit letzteren ist es in der jüngeren Vergangenheit gelungen, eine Reihe von niedervalenten Metallkomplexen⁷²⁻⁸³ herzustellen.

Eine Vielzahl von *Schiff*schen–Base–Komplexen mit Metallen der Gruppe 12 konnte zudem dargestellt und kristallographisch charakterisiert werden, die über eine MS₂N₂–Umgebung mit einer kovalenten Metall–Schwefel–Bindung verfügen.⁸⁴⁻⁹⁸ Von Metallen der Gruppe 12 ist bekannt, dass sie eine hohe Affinität zu Stickstoff– und Schwefelatomen besitzen.^{88,89,99} Zinkkomplexe MS₂N₂ mit *Schiff*schen Basen, die über fünf– oder sechsgliedrige Chelatringe verfügen, stellen ein wichtiges Strukturmodell für die DNS–Anbindung von Zinkfingerproteinen dar.^{4,9-11} Die Entwicklung neuer Zink(II)–Komplexe mit *Schiff*schen Basen wurde durch die Entdeckung fluoreszierender Verbindungen¹⁰⁰ weiter beflügelt. Infolgedessen wurde eine Vielzahl von Zink(II)–Komplexen synthetisiert und intensiv auf ihre photophysikalischen Eigenschaften untersucht, wobei auch Verbindungen gefunden wurden, die Lumineszenz zeigen.⁸⁶

2.5.2 Syntheserouten zur Darstellung S,N-chelatisierter Metallthiophenolatkomplexe

In der Literatur finden sich zwei typische Syntheserouten, die zur Darstellung von S,Nchelatisierten Metallkomplexen mit Imin-Funktionen genutzt werden. Ausgehend von 2-Aminothiophenol erfolgt zunächst die Umsetzung mit Aldehyden, HC(O)R, zu Benzothiazolin–Derivaten. Unter Ringöffnung reagieren diese mit Metallsalzen zu den gewünschten Metall–Thiophenolatkomplexen, Abbildung 2, Weg A.^{86,93,94,101-108} Alternativ können durch Umsetzung von Metallsalzen mit 2–Aminothiophenol zunächst die entsprechenden Bis(2–Aminothiophenolat)metall–Komplexe hergestellt werden. Durch Kondensation mit Aldehyden lassen sich *Schiff*sche–Base–Komplexe mit MS₂N₂–Umgebung darstellen, Abbildung 2, Weg B.¹⁰³⁻¹⁰⁸

Abbildung 2. Gängige Syntheserouten zur Darstellung von Metall–Thiophenolatkomplexen mit *Schiff*base–Funktionen und einer MS_2N_2 –Umgebung ausgehend von 2–Aminothiophenol. R = Aryl, Heteroaryl.

Als funktionelle Gruppen R kommen hierbei aromatische sowie heteroaromatische Liganden zum Einsatz, ^{86,93,94,100-108} seltener werden α,β –Dicarbonylverbindungen eingesetzt, um zwei Amine zur verbrücken. Aktivierte Formamide, welche bei der Umsetzung mit Aminen zu Amidinen R¹N=CH–NR²₂ reagieren, wurden bislang noch nicht verwendet, und somit gibt es noch keinen kristallographischen Nachweis für MS₂N₂–Komplexe mit N=CH–NR₂–Amidin– Substituenten. Ein anderer möglicher Reaktionsweg zur Synthese von Metallkomplexen mit Amidin–*Schiff*basen würde die Ringöffnung von Benzothiazol in Gegenwart von Aminen darstellen, wobei eine solche Reaktion in der Literatur bislang noch nicht bekannt ist. Jedoch konnte gezeigt werden, dass Zirkonium–Alkin–Komplexe genutzt werden können, um mit heterocyclischen Verbindungen wie Benzothiazol und (Benzo–)Thiazolderivaten unter Ringexpansion der heterocyclischen Ringe zu reagieren, Abbildung 3.¹⁰⁹ Hierbei erfolgt (formal) die Insertion des Metallatoms in die Kohlenstoff–Schwefel–Bildung und die Bildung einer neuen Kohlenstoff–Kohlenstoff–Bindung.

Abbildung 3. Ringöffnungsreaktion von Benzoxazol oder Benzothiazol mit Cp₂Zr(Py)(Me₃SiC₂SiMe₃).¹⁰⁹

Die übergangsmetallkatalysierte C–H–Aktivierung stellt eines der herausforderndsten Forschungsgebiete der Organischen Chemie dar.¹¹¹⁻¹¹⁶ Die aciden C–H–Bindungen des Benzothiazols lassen sich, entsprechend einer Synthesevorschrift von *Mori et al.*,¹¹⁷ mit sekundären Aminen in Gegenwart eines Kupfer(II)–acetat–Katalysators und einer Base aktivieren und in Amin–Derivate des Benzothiazols überführen. Die Autoren schlagen hierfür den in Abbildung 4 abgebildeten Mechanismus vor. Im ersten Schritt (I) erfolgen hierbei die baseninduzierte Aktivierung einer aciden C–H–Bindung und die Bindung an den Kupferkatalysator. Der zweite Schritt (II) führt zur Bindung des sekundären Amins an den Kupferkatalysator. Infolge einer Oxidation durch Luftsauerstoff wird im letzten Schritt (III) des katalytischen Zyklus der katalytisch aktive Kupferkomplex LnCu^{II}X₂ regeneriert, unter Bildung des Kupplungsproduktes Ar–NR₂.

Abbildung 4. Postulierter Mechanismus für die kupferkatalysierte Synthese funktionalisierter Benzothiazolverbindungen.¹¹⁷

Auf der Basis von Kobalt(II)– und Mangan(II)–acetat in Gegenwart von Peroxiden und einem Säure–Additiv entwickelten *Chang et al.*¹¹⁸ ein katalytisches System zur direkten Aminierung von Benzoxazol und Benzothiazol, welches unter milden Bedingungen mit einer Vielzahl unterschiedlicher Substrate durchgeführt werden kann. Ihr für diese Reaktion vorgeschlagener Mechanismus, Abbildung 5, sieht die säurekatalysierte Bildung eine Azolins vor. Dabei wird im ersten Reaktionsschritt zunächst das Benzoxazol bzw. Benzothiazol protoniert, und anschließend bildet sich durch einen nukleophilen Angriff des Amins die Azolin–Verbindung. In Gegenwart katalytischer Mengen an Übergangsmetallkationen bilden sich aus organischen Hydroperoxiden Radikale, welche die gebildeten funktionalisierten Azoline *in situ* zu den entsprechenden Azol–Derivaten oxidieren.

Das tautomere Gleichgewicht^{107,108,118-121} von Azolidinen und den geöffneten Imin– Äquivalenten könnte die Möglichkeit bieten, die Amidin–Verbindungen durch Einsatz von geeigneten oxophilen bzw. thiophilen Metallkationen abzufangen.

Abbildung 5. Postulierter Mechanismus der Kobalt(II)–katalysierten Bildung funktionalisierter Benzothiazolverbindungen mit R^2 , $R^3 = Alkyl$, Cyloalkyl.¹¹⁸

2.6 Amidine

Amidine sind Stickstoff–Analoga von Carbonsäureestern bzw. Amiden, Abbildung 6. Sie sind Bestandteil einer Vielzahl biologischer Verbindungen, ebenso wie in wichtigen medizinischen und biochemischen Wirkstoffen.¹²²⁻¹³⁰

Abbildung 6. Strukturelle Beziehung zwischen Carbonsäureestern, Amiden und Amidinen.

2.6.1 Eigenschaften von Amidinen

Amidine enthalten zwei Stickstoffatome unterschiedlicher Funktionalität, einen formal einfach gebundenen Amin-Stickstoff und einen formal doppelt gebundenen Imin-Stickstoff. Aufgrund von Konjugation kommt es jedoch zu einer Verlängerung der C=N–Doppelbindung und einer Verkürzung der C-N-Einfachbindung, Abbildung 7. Ist ein elektronenakzeptierender Rest R¹ an den Imin-Stickstoff gebunden, so führt dies zu weiteren Grenzstrukturen bei denen die negative Partialladung über diesen Rest delokalisiert vorliegt. Ein Maß für die Einbeziehung des aromatischen Systems in die mesomeren Grenzstrukturen gibt das Dipolmoment. So findet man für das Dipolmoment in N,N-Dimethyl-N'phenylformamidin 1,81 D, während das analoge N,N–Dimethyl–N'–methyl–formamidin ohne zusätzliche aromatische Konjugation lediglich einen Wert von 0,88 D aufweist.¹³¹ Aufgrund der Resonanzstrukturen beobachtet man eine Verlängerung der formalen C=N-Doppelbindung und eine Verkürzung der formalen C-N-Einfachbindung. So findet man in Kristallstrukturen durchschnittliche C-N-Abstände für nicht konjugierte Einfachbindungen mit tertiären Stickstoffatomen d($C_{sp^2}-N_{sp^3}[3]$) = 1,416(18) Å, während diese in konjugierten Systemen auf $d(C_{sp^2}-N_{sp^2}[3]) = 1,355(14)$ Å abnehmen.¹³² Umgekehrt findet man eine Zunahme der C=N-Abstände für nicht konjugierte Einfachbindungen von $d(C_{sp^2}-N_{sp^2}[2])$ 1,279(8) Å auf d(C_{sp2}-N_{sp2}[2]) 1,313(11) Å in konjugierten Systemen.¹³² Der partielle Doppelbindungsanteil der formalen C-N-Einfachbindung führt zu einer Erhöhung der Rotationsbarriere um diese Bindung.

Abbildung 7. Mesomere Grenzstrukturen von Amidinen.

Sowohl die Amin–Funktion, als auch der Imin–Stickstoff können Teil eines Heterozyklus sein, weshalb die Klasse der Amidine eine große Anzahl an Verbindungen umfasst. Im Falle von $R^4 = H$, R^1 , R^2 , $R^3 \neq H$ lässt sich das Strukturmotiv von Formamiden ableiten, weswegen diese Verbindungen als Formamidine bezeichnet werden.

Generell besteht bei acyclischen Strukturen dieser Verbindungsklasse die Möglichkeit von E,Z-Isomerie bezüglich der C=N-Doppelbindung, wobei üblicherweise die E-Form energetisch günstiger ist.¹³³

2.6.2 Formamidine – Synthese

Es gibt zwei gebräuchliche Synthesewege, um aus Aminen Formamidine herzustellen. Wie in Abbildung 8 dargestellt, kann einerseits durch Umsetzung von Formamiden mit Dimethylsulfat oder einem anderen Alkylierungsmittel und anschließender Zugabe einer Natriumalkoholat–Lösung ein Acetal¹³⁴⁻¹³⁷ generieren werden, Weg A, oder andererseits durch Umsetzung mit Phosphoroxychlorid ein Chloriminium–Ion gebildet werden, Weg B.^{138-¹⁴¹ Die auf diese Weise aktivierten Formamide lassen sich mit Aminen zu Formamidinen umsetzen.}

Abbildung 8. Gebräuchliche Syntheserouten¹³⁸⁻¹⁴¹ zur Herstellung von Formamidinen aus Aminen.

Andere Methoden zur Aktivierung von Formamiden beruhen auf der Umsetzung mit Phosphorpentoxid,¹⁴² Phosphor(V)–chlorid,¹⁴³ Phosphor(III)–chlorid,¹⁴⁴ Thionylchlorid,¹⁴⁴⁻¹⁴⁷ Arylsulfonylchloriden,¹⁴⁸⁻¹⁵¹ Oxalylchlorid,¹⁵² Sulphamylchlorid,¹⁵³ Pivaloylchloride,¹⁵⁴ Phosgen,¹⁵⁵ Phthaloylchlorid¹⁵⁶ oder Natriumhydrid/Trifluoressigsäureanhydrid.¹⁵⁷ Weitere Reaktionen beinhalten die Umsetzungen von Arylisocyanaten mit Dimethylformamid,¹⁵⁸ Aminen mit Triethylorthoformiat,¹⁵⁹ oder Anilin–Derivaten und Essigsäure/Hexamethyl– phosphorsäuretriamid.¹⁶⁰

2.7 Thiole

Thiole sind aliphatische oder aromatische Verbindungen mit Sulfhydryl–Gruppen (–SH). Sie leiten sich daher formal von Alkoholen ab, wobei die Sauerstoffatome durch das schwerere Gruppenhomologe Schwefel ersetzt sind. Aufgrund der starken Affinität zu Quecksilber werden diese Verbindungen auch Mercaptane genannt. Thiole werden nach demselben System benannt wie es für Alkohole üblich ist, wobei das Suffix –*ol* durch –*thiol* ersetzt wird. Als Thiolate werden, entsprechend den Alkoholaten, Metallsalze der Thiole benannt.¹⁶¹ Als Sulfide bezeichnet man die analogen Verbindungen von Ethern,¹⁶² während Disulfide den Peroxiden entsprechen.¹⁶³

2.7.1 Eigenschaften

Die Hauptunterschiede zwischen Sauerstoff und Schwefel sind die Atomradien, Elektronegativitäten und die elektrochemischen Wertigkeiten in ihren Verbindungen.

Vierfach koordinierte Sauerstoffatome in der Oxidationsstufe –II haben einen Shannon-Radius von 1,38 Å; der Shannon–Radius für Schwefel in derselben Koordinationsumgebung beträgt 1,84 Å.¹⁶⁸ Der *van der Waals*–Radius von Sauerstoff in kovalenten Bindungen beträgt 1,50 Å, während Schwefel einen *van der Waals*–Radius von 1,80 Å besitzt.¹⁶⁹ Thiole und Alkohole unterschieden sich darüber hinaus in den C–E–H–Winkeln (E = O, S). Während bei Sauerstoff die nichtbindenden sp³–Hybridorbitale z.B. in Methanol zu einem Winkel von 105° führen, liegt dieser Winkel aufgrund eines höheren p–Charakters in Methanthiol nahe bei 100°.¹⁷¹

 π -Akzeptor–Liganden, wie z. B. Carbonylliganden, verfügen über Orbitale geeigneter Symmetrie und Energie, um über π -Rückbindungen einen zusätzlichen Beitrag zur Stabilität von Metallkomplexen in niedrigen Oxidationsstufen zu liefern. Im Gegensatz dazu sind Thiolatliganden sowohl gute σ -Donoren als auch gute π -Donoren und können daher Metalle in hohen Oxidationsstufen stabilisieren, indem sie über ein besetztes Schwefel–3p–Orbital durch p_{π} -d $_{\pi}$ -Wechselwirkung zusätzliche Elektronendichte an die Metallzentren übertragen. Der Unterschied der Elektronegativität zwischen Wasserstoff (2,20) und Sauerstoff (3,44) ist sehr hoch, weswegen die Bindung ausgesprochen polar ist und Alkohole zur Ausbildung von Wasserstoffbrückenbindungen befähigt. Anders verhält es sich bei Thiolen, hier ist der Elektronegativitätsunterschied zwischen Wasserstoff (2,20) und Schwefel (2,58) zu gering, um zu starken Wasserstoffbrückenbindungen zu führen.¹⁷² Dies bedingt zum einen, dass die Siedepunkte der Thiole deutlich unter den Siedepunkten der entsprechenden Alkohole liegen, und zum anderen führt die geringe Tendenz zur Ausbildung von Wasserstoffbrückenbindungen zu einer schlechteren Wasserlöslichkeit von Thiolen im Vergleich zu Alkoholen. Das Fehlen von Wasserstoffbrückenbindungen lässt sich infrarotspektroskopisch belegen, da die Streckschwingung der S–H–Bindung¹⁷³ ($v_{\text{S-H}}$ 2550–2600 cm⁻¹) nur in geringem Maße durch eine Änderung des Lösungsmittels oder der Konzentration beeinflusst wird.

Infolge deutlich schwächerer S–H–Bindungen¹⁷⁴ (ca. 85 kcal mol⁻¹) im Vergleich zu entsprechenden O–H–Bindungen¹⁷⁵ (ca. 105 kcal mol⁻¹) begründet sich die höhere Acidität von Thiolen gegenüber Alkoholen.

Die Valenzelektronen von Schwefel werden durch die inneren Elektronen stärker vor der elektrostatischen Anziehungskraft des Kernes abgeschirmt als dies beim Sauerstoff der Fall ist; Schwefel ist zudem wesentlich besser polarisierbar. Dadurch sind die Valenzelektronen weniger stark gebunden und eine Oxidation kann leichter erfolgen. Den Elementen in der 3. Periode stehen erstmals *d*–Orbitale für zusätzliche Bindungen zur Verfügung und ermöglichen Verbindungen mit höheren Valenzen.

Im Gegensatz zu Sauerstoff besitzen Schwefelatome eine relativ hohe Tendenz, in Gegenwart von Oxidationsmitteln mit sich selbst Bindungen einzugehen und Disulfide oder gar Polysulfide zu bilden.

Thiole spielen in einer Vielzahl biologischer Prozesse und pharmakologischen Substanzen eine wichtige Rolle. Die Aminosäure Cystein besitzt in Organismen aufgrund ihrer Thiolfunktion vielfältige Aufgaben, unter anderem kommt es in Proteinen und Enzymen zur Ausbildung von Disulfidbrücken, welche ein wesentlicher Grund für die Tertiär- und Quartärstrukturen von Proteinen sind.

Thiolfunktionen sind zudem Bestandteil einer Vielzahl von Aromastoffen. Aufgrund der geringen Geruchsschwelle werden Ethylmercaptan oder *tert*–Butylmercaptan dem Erdgas als Geruchsstoff zugesetzt,¹⁷⁶ 3–Methylbutanthiol, (*E*)–2-Buten–1–thiol und 2–Chinolin–methanthiol sind Geruchsstoffe im Sekret von Stinktieren¹⁷⁷ und Thioterpineol ist ein Aromastoff in Grapefruits.¹⁷⁸

2.7.2 Synthesen

Die direkte Insertion von Schwefel in eine C–H–Bindung zur Bildung von Thiolen spielt nur eine untergeordnete Rolle, da sie lediglich auf wenige, heterocyclische Systeme angewendet werden kann.

Thiole lassen sich durch Reaktion eines Lithium–¹⁷⁹ oder Magnesiumorganyls^{180,181} mit elementarem Schwefel, durch Umsetzung von Alkylhalogeniden mit einem Überschuss an Natriumhydrogensulfid^{182,183} oder durch Umsetzung von Alkenen mit Schwefelwasserstoff darstellen, Abbildung 9.^{184,185} Nachteil der letzten beiden Umsetzungen ist jedoch, dass dabei in nicht unerheblichen Mengen Sulfide als Nebenprodukte entstehen. Die Umsetzung mit Natriumhydrogensulfid ist zudem auf primäre und sekundäre Alkylhalogenide beschränkt, da bereits sekundäre Alkylhalogenide, aufgrund von β –Eliminierung, in einer Konkurrenzreaktion Alkene bilden.¹⁸⁶

Abbildung 9. Darstellung von Thiolen durch Umsetzung von Alkenen mit Schwefelwasserstoff (I), Alkylhalogeniden mit Natriumhydrogensulfid (II), Organometallverbindungen mit Schwefel (III).

Um die Bildung von sulfidischen Nebenprodukten zu umgehen, wurden Syntheserouten entwickelt, die über einen zusätzlichen Bindungsbruch, Reduktions– oder Hydrolyseschritt ablaufen.¹⁸⁷ Hierzu zählen Umsetzungen von Alkenen oder Alkylhalogeniden mit Thioessigsäure,¹⁸⁸ aber auch Umsetzungen von Alkylhalogeniden mit Kaliumthioacetat,^{189,190} Thioharnstoff und dessen Derivaten,¹⁹¹⁻¹⁹³ Kaliumethylxanthat,^{194,195} Natriumthiosulfat,¹⁹⁶ Natriumtrithiocarbonat,^{197,198} Phosphorthiolat,¹⁹⁹ Dialkyldithiocarbamat,²⁰⁰ Natrium-thiocyanat.^{196,201}

Aromatische Thiole werden ausgehend von Arylhalogeniden durch Umsetzung mit Kaliumhydrogensulfid,²⁰² Natriumsulfid,²⁰³ Thioharnstoff²⁰³ oder durch Umsetzung zu Metallorganylen und anschließende Umsetzung mit Schwefel dargestellt.^{179,204-206} Alternativ

können aromatische Thiole auch durch Umsetzung mit Kupferthiophenolaten und anschließender Reduktion unter *Birch*–Bedingungen erhalten werden.^{207,208} Werden aromatischen Amine als Ausgangsmaterial verwendet, muss zunächst das entsprechende Diazoniumsalz hergestellt werden, bevor Umsetzungen mit Kupfer(I)–thiocyanat,²⁰⁹ Kaliumethylxanthat,²¹⁰ Natriumsulfid,²¹¹ Tetrathiomolybdat²¹² oder Thioharnstoff²¹³ die Darstellung von aromatischen Thiolen ermöglichen.

Die Darstellung von 2–Aminothiophenol erfolgt durch Umsetzung von 2–Chlornitrobenzol mit Kaliumhydrogensulfid und anschließender Reduktion mit Zink und Essigsäure.²¹⁴ Die Reaktion von 2–Aminothiophenol mit Orthoformiaten^{215,216} oder Formaldehyd^{217,218} ermöglicht die Darstellung von Benzothiazol.

2.7.3 Metallsalze von Thiolen

Gemäß *Pearsons* HSAB–Prinzip²¹⁹ sind Thiolate weiche Liganden und besitzen eine starke Affinität zu weichen Metallkationen und bilden daher auch eine große Anzahl an Thiolatkomplexen.²²⁰ Thiolatanionen sind isoelektronisch zu Chloriden und können daher als Pseudohalogeniden aufgefasst werden, dies zeigt sich auch darin, dass ähnliche Syntheserouten durchgeführt werden können wie zur Darstellung analoger Halogen-verbindungen.

Die am häufigsten genutzte Methode zur Darstellung von Thiolaten ist die direkte Umsetzung eines Metallsalzes mit einem Thiol.^{220,221} Eine elegante Methode zur Darstellung von Thiolaten bietet aber auch die Insertion eines Metallatoms in eine Disulfid-Bindung in einer Redoxreaktion oder durch photochemische Aktivierung²²¹⁻²²⁴ analog zur Umsetzung von Metallen mit Halogenen.

Aufgrund ihrer höheren Acidität verglichen mit Alkoholen lassen sich durch Umsetzung von Alkalimetallbasen mit Thiolen recht einfach Alkalimetallthiolate darstellen. Diese sind wertvolle Ausgangsverbindungen zur Darstellung von Thiolatkomplexen durch Salzmetathesereaktionen mit geeigneten Metallalzen.^{221,225-228} Ebenfalls für Metathesereaktionen geeignet sind Organozinn-^{228,229} oder Bleithiophenolate.²³⁰

3 Aufgabenstellung

Die erste Darstellung eines Metall–Thiophenolatkomplexes durch Umsetzung eines Metallsalzes mit Benzothiazol und einem sekundären Amin gelang *M. Nolte* im Rahmen seiner Dissertation *"Zum Koordinationsverhalten von Quecksilber(II)–Salzen unter dem Einfluss organischer Donorliganden"*,⁸⁹ durch Umsetzung von Quecksilber(II)–chlorid mit Benzothiazol und Morpholin in Ethanol. Die ursprüngliche Intention dieser Umsetzung war die Darstellung von *"Mixed–Ligand–Verbindungen"*, bei denen mehrere unterschiedliche Liganden an ein Metallzentrum koordinieren. Dabei zeigte sich jedoch, dass infolge eines Bindungsbruchs der C–S–Bindung die Ringöffnung des Benzothiazols erfolgt, wobei das eingesetzte Amin unter Bildung einer N=C–N–Amidin–Funktion an den Thiophenolat–liganden bindet.

Es stellte sich heraus, dass die Umsetzungen zu dem Quecksilber(II)–Thiophenolatkomplex auch durch Verwendung von Quecksilber(II)–acetat, –thiocyanat oder Bis(trifuormethyl)– quecksilber(II) durchgeführt werden können.

Bei der gewählten Reaktionsführung zeigten sich zwei gravierende Probleme. Einerseits wurden die Reaktanden Benzothiazol und Morpholin in großem Überschuss eingesetzt, andererseits zeigte sich, dass die Reihenfolge, in der die Komponenten zusammengegeben werden, entscheidend für den Erfolg der Umsetzung ist.

Ein Hauptaugenmerk der Arbeit lag daher darin, die Reaktion in einem stöchiometrischen Verhältnis durchzuführen und die Probleme bei der Kristallisation zu umgehen. Daneben sollte der Mechanismus, der zur Bildung der Quecksilber–Thiophenolat– Komplexe führt, aufgeklärt sowie die Substratbandbreite untersucht werden.

Da von den Metallen der Gruppe 12 eine Vielzahl stabiler Komplexe mit Thiophenolatliganden bekannt ist, sollte zunächst untersucht werden, inwieweit die Reaktionen auch mit anderen Metallsalzen dieser Gruppe durchführt werden können.

Die erhaltenen Verbindungen sollten durch gängige Analysemethoden wie IR- und NMR-Spektroskopie, Kristallstrukturanalyse, Dynamische Differenzkalorimetrie und Massenspektrometrie charakterisiert werden.

4 Diskussion und Ergebnisse

4.1 Umsetzungen von Metallacetaten mit Benzothiazol und Aminen

4.1.1 Umsetzungen von Zinkacetat mit Benzothiazol und sekundären Aminen

Die Synthesen der Zinkkomplexe erfolgte durch Umsetzung von Benzothiazol mit Zinkacetat-dihydrat und einem sekundären Amin bei Raumtemperatur in Ethanol als Lösungsmittel, Abbildung 10.

Abbildung 10. Allgemeines Reaktionsschema für die Umsetzung von Zinkacetat mit Benzothiazol und einem sekundären Amin, mit $NR_2 = Pyrrolidino$ (9), Piperidino (10) und Morpholino (11).

Durch langsames isothermes Verdampfen konnten aus den Umsetzungen mit Pyrrolidin und Piperidin Kristalle erhalten werden, die zur Einkristallstrukturanalyse geeignet waren. Auch die Umsetzung mit Morpholin ergab kristallines Material, dieses besaß jedoch nicht die nötige Qualität für eine Strukturanalyse. Daneben wurden weitere Amine eingesetzt, um die Substratbreite der Reaktion zu testen. Von den verwendeten Aminen zeigte lediglich Diethylamin im ¹H–NMR–Spektrum Signale, die dem Thiophenolat **12** zugeordnet werden konnten. Trotz intensiver Bemühungen konnte keine ausreichende Menge phasenreiner Substanz isoliert werden, um damit weitergehende Analytik zu betreiben. Mit Di–*n*–Butylamin, Dibenzylamin und Diphenylamin konnte keine Reaktivität beobachtet werden.

Die Verbindungen wurden zusätzlich mittels NMR- und IR-Spektroskopie, Massenspektrometrie und Differenzkalorimetrie charakterisiert.

4.1.1.1 Kristallstrukturen

Die Kristallstrukturen der Verbindungen 9 und 10 konnten durch Einkristallstrukturanalyse bestimmt werden. Die kristallographischen Daten sind in Tabelle 2 zusammengefasst, ausgewählte Bindungslängen und Winkel sind in Tabelle 3 aufgelistet. Eine Bestimmung der Kristallstruktur von 11 war trotz zahlreicher Versuche nicht erfolgreich. Die Kristallisationsbedingungen wurden variiert, verschiedene Lösungsmittel und Lösungsmittel-gemische (Methanol, Ethanol, *iso*–Propanol, Ethanol/THF, Ethanol/Aceton, Ethanol/Toluol), sowie unterschiedliche Temperaturen (–25°C, RT, 50°C) und Kristallisationsmethoden (isothermes Verdampfen, H–Rohr, Diffusion durch Überschichten) kamen zum Einsatz, führten jedoch nicht zur Bildung geeigneter Einkristalle. Auch die Verwendung anderer Zinksalze wurde untersucht, dabei zeigte sich, dass Zinkchlorid und Zinkcarbonat zu keiner Bildung von Thiophenolatkomplexen führen.

	9	10
Summenformel	$C_{22}H_{26}N_4S_2Zn$	$C_{24}H_{30}N_4S_2Zn$
$M [g mol^{-1}]$	475,96	504,06
a/Å	22,681(7)	13,745(2)
b/Å	12,134(3)	15,200(2)
c/Å	19,344(5)	36,795(6)
α/°	90	90
β/°	120,35(2)	100,71(1)
γ/°	90	90
Volumen / Å ³	4594(2)	7554(2)
Z	8	12
Kristallsystem	Monoklin	Monoklin
Raumgruppe	C2/c	C2/c
T/K	293(2)	293(2)
R _{int}	0,173	0,182
R ₁ (beob./alle) ^a	0,059 / 0,124	0,054/0,207
wR ₂ (beob./alle) ^a	0,123 / 0,141	0,101/0,123
S_{alle}^{a}	0,754	0,766

 Tabelle 2. Kristallographische Daten von 9 und 10.

^a Definition: $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, $wR_2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]]^{1/2}$, $S_{alle} = \Sigma [w(F_o^2 - F_c^2)^2] / (N_{obs} - N_{param})]^{1/2}$. In den Verbindungen 9, Abbildung 11, und 10, Abbildung 12, binden jeweils zwei Thiophenolatliganden an das Zinkzentrum und bilden eine tetraedrische ZnS_2N_2 – Koordinationsumgebung mit fünfgliedrigen Chelatringen.

In **9** findet man eine Zn–S–Bindungslänge von 2,291(2) Å, in **10** ist dieser Abstand 2,283(2) Å lang und somit geringfüg kürzer. Insgesamt sind die Abstände geringfügig länger als die Summe der Kovalenzradien¹⁶⁷ der Element Zink (1,22 Å) und Schwefel (1,05 Å). Die Bindungslängen in Strukturen mit vergleichbarem ZnS₂N₂–Motiv stimmen sehr gut mit literaturbekannten Zn–S–Bindungslängen von 2,264(2)–2,266(2) Å,⁸⁴ 2,2564(8)–2,2771(8) Å,⁸⁶ 2,2766(9) Å,⁹¹ 2,238(2)–2,261(2) Å,⁹³ 2,264(2)–2,266(2) Å⁹⁴ und 2,262(1)–2,265(1) Å⁹⁵ überein.

Die Zn–N–Abstände von 2,055(5) Å in **9** und 2,046(7) Å in **10** sind in der gleichen Größenordnung wie man sie in analogen Komplexen in der Literatur findet, 1,997(6) Å,⁸⁴ 2,092–2,114 Å,⁸⁶ 2,107(4) Å,⁹¹ 2,105(4)–2,118(4) Å,⁹³ 2,062(5)–2,089(5) Å,⁹⁴ und 2,047(3)– 2,067(3) Å.⁹⁵

Abbildung 11. Molekülstruktur der Verbindung **9**. Thermische Auslenkungsellipsoide¹⁶⁴ sind mit einer Wahrscheinlichkeit von 50% dargestellt.

Die N1–C7– und C7–N3–Bindungslängen innerhalb der Amidin–Funktion sind in **9** 1,311(8) Å und 1,325(8) Å, in **10** findet man Abstände von 1,342(9) Å und 1,322(9) Å. Diese Bindungslängen zeigen, dass infolge der Delokalisation der Doppelbindung beinahe identische Abstände auftreten. In der Literatur findet man für lokalisierte C=N– Doppelbindungen durchschnittliche Bindungslängen von 1,279(8) Å, während formale C–N– Einfachbindungen mit nicht konjugierten tertiären Stickstoffatomen im Mittel 1,416(18) Å lang sind.¹³² 1,313(11) Å in konjugierten Systemen

Abbildung 12. Molekülstruktur von **10**. Thermische Auslenkungsellipsoide¹⁶⁴ sind mit einer Wahrscheinlichkeit von 50% dargestellt.

Die S–Zn–S–Winkel in **9** und **10** sind $122,52(8)^{\circ}$ sowie $125,0(2)^{\circ}$ und unterscheiden sich damit kaum von Winkeln, die in ähnlichen Strukturen gefunden werden, mit $122,8(1)^{\circ}$,⁸⁴ $117,80(3)-125,93(4)^{\circ}$,⁸⁶ $123,33(7)^{\circ}$,⁹¹ $123,6(1)^{\circ}$,⁹³ $123,4(1)^{\circ}$ ⁹⁴ und $132,08(5)^{\circ}$.⁹⁵

Vergleicht man die N–Zn–N–Winkel in **9**, 121,3(2)°, und **10**, 120,2(4)°, mit analogen Verbindungen aus der Literatur, $100,5(3)^{\circ},^{84}$ 99,66(9)–118,43(10)°,⁸⁶ 116,7(2)°,⁹¹ 115,1(2)°,⁹³ 106,9(2)°⁹⁴ und 114,9(1)°,⁹⁵ so sieht man, dass diese Winkel stark vom sterischen Anspruch der betreffenden Liganden abhängen und sich deshalb deutlich voneinander unterscheiden.

Die S1–Zn1–N2–Winkel zwischen zwei Thiophenolatliganden in **9**, 119,8(1)°, und **10**, 118,7(2)°, besitzen aufgrund des ähnlichen sterischen Anspruchs der Liganden die gleiche Größe; verwandte Verbindungen mit einer ZnS₂N₂–Koordinationsumgebung zeigen jedoch eine große Streuung, von 110–130°.^{84,86,91,93-95}

Wegen der starren Struktur des 2–Aminothiophenolat–Gerüsts unterscheiden sich die S1–Zn1–N1–Winkel innerhalb eines Liganden in 9, 87,4(1)°, und 10, 88,9(2)°, kaum von Winkeln in vergleichbaren Strukturen, $100,2(2)^{\circ},^{84}$ 87,73(5)–89,26(18)°,⁸⁶ 89,1(1)°,⁹¹ 88,0(1)–89,4(1)°,⁹³ 88,7(2)–89,7(2)°⁹⁴ und 88,3(1)–89,8(1)°.⁹⁵

	9	10
Zn1–S1	2,291(2)	2,283(2)
Zn1–N1	2,055(5)	2,046(7)
N1C7	1,311(8)	1,342(9)
C7-N3	1,325(8)	1,322(9)
S1-Zn1-S2	122,52(8)	125,0(2)
N1–Zn1–N2	121,3(2)	120,2(4)
S1–Zn1–N1	87,4(1)	88,9(2)
S1–Zn1–N2	119,8(1)	118,7(2)

 Tabelle 3. Ausgewählte Bindungslängen [Å] und Winkel [°] von 9 und 10.

Zusammenfassend kann gesagt werden, dass sich die Abstände und Winkel der erhaltenen Strukturen sehr gut mit *Schiff*schen Base Komplexen mit einem ZnS₂N₂–Motiv vergleichen lassen.

In Metalloproteinen mit Zn(Cys)₂(His)₂–Struktureinheit liegen Zn–S–Abstände von 2,30–2,32 Å und Zn–N–Abstände von 2,03–2,08 Å vor.^{165,166} Diese sind in guter Übereinstimmung mit den Bindungslängen der Verbindungen **9** und **10**, so dass sie tatsächlich als Strukturmodell für Zinkfingerproteine genutzt werden können.

4.1.1.2 NMR-Spektroskopie

Die Verbindungen 9–12 wurden NMR–spektroskopisch charakterisiert. Hierbei zeigte sich, dass sie in gängigen deuterierten Lösungsmitteln wie Aceton– d_6 , Acetonitril– d_3 , Benzol– d_6 , Chloroform–d, Methanol– d_4 , Tetrahydrofuran– d_8 und Wasser– d_2 keine ausreichende Löslichkeit besitzen. Lediglich in Dimethylsulfoxid– d_6 konnten sie in genügender Menge in Lösung gebracht werden, um NMR-spektroskopische Untersuchungen durchzuführen.

Die Protonen der N=C*H*–N–Amidin–Funktion erfahren die größte paramagnetische Verschiebung, so konnten die Signale bei 8,25 (9), 8,08 (10), 8,20 (11) und 7,80 ppm (12) beobachtet werden. Die zugehörigen Kohlenstoffsignale liegen bei 155,8 (9), 157,7 (10) und 158,2 (11) ppm. Die Verschiebungen der aromatischen Protonen wurden im typischen Bereich zwischen 7,40 und 6,80 ppm erhalten.

Die α -Methylenprotonen der N(CH₂R)₂-Amino-Komponenten zeigten eine deutliche Linienverbreiterung und sind somit ein Anzeichen von dynamischen Prozessen, welche in Lösung ablaufen.

Durch dynamische NMR–Spektroskopie kann die Kinetik chemischer Prozesse verfolgt werden, sofern die fluktuierenden Vorgänge in die NMR–Zeitskala fallen; sehr schnell ablaufende dynamische Gleichgewichtsreaktionen können daher nicht beobachtet werden.²⁴⁰ Die Linienform von NMR–Signalen wird durch die Geschwindigkeitskonstante k einer Rotation bestimmt. Eine vollständige Linienformanalyse zur Bestimmung von k wurde mit der Software *WINDNMR 7.1* durchgeführt.²⁴¹

Die freie Enthalpie ΔG^{\ddagger} der gehinderten Rotation um die formale C–N–Einfachbindung kann mittels der *Eyring*–Gleichung berechnet werden.²⁴³

$$k = \frac{k_{\rm B}T}{h} e^{\frac{-\Delta G^{2}}{RT}}$$
(1)

$$\ln\frac{k}{T} = -\frac{\Delta H^{\ddagger}}{R} \cdot \frac{1}{T} + \ln\frac{k_{b}}{h} + \frac{\Delta S^{\ddagger}}{R}$$
(2)

mit: k = Geschwindigkeitskonstante, T = absolute Temperatur, R = universelle Gaskonstante, k_b = Boltzmann–Konstante und h = Planck–Konstante.

Sterische Effekte und die Delokalisation der Doppelbindung der N=CH–NR₂–Gruppe führen dazu, dass die internen Rotationsmoden der formalen C–N–Einfachbindung bei Raumtemperatur nicht mehr äquivalent sind. Die N– α –Methylen–Protenenresonanzen des Komplexes 9 werden daher zu einem stark verbreiterten Dublett aufgespalten. Bei den Komplexen 10 und 11 liegen stark verbreiterte Singuletts vor, so dass davon auszugehen ist, dass hier bereits die Koaleszenzpunkte überschritten wurden. Um das Koaleszenzphänomen bei tiefen Temperaturen zu untersuchen ist DMSO– d_6 als Lösungsmittel aufgrund seines Schmelzpunkts von 291 K ungeeignet.

Die Aktivierungsenthalpie ΔH^{\ddagger} und die Aktivierungsentropie ΔS^{\ddagger} können mittels der *Eyring*– Gleichung durch Auftragung von ln(k/T) gegen 1/T ermittelt werden. In Abbildung 13 sind die dynamischen NMR–Spektren sowie der *Eyring*–Plot für **9** dargestellt; die daraus erhalten thermodynamischen Daten sind in Tabelle 4 zusammengefasst. In organischen Verbindungen mit Amidin–Funktionen ohne Metallkoordination findet man vergleichbare Werte für die freie Aktivierungsenthalpie ΔG^{\ddagger} von 50–70 kJ/mol^{245,244} wie in **9** mit 63,1 kJ/mol. Die Koordi– nation an das Zinkatom besitzt daher in Lösung bei Raumtempreatur keinen größeren Einfluss auf die elektronischen Verhältnisse innerhalb der Amidin–Funktionen.

Abbildung 13. Ausschnitt aus den bei variabler Temperatur gemessenen ¹H–NMR Spektren (400,13 MHz, DMSO– d_6) von 9 bei 298 K, 308 K, 318 K, 324 K, 328 K und 338 K, Lösungsmittelsignale (Wasser in DMSO– d_6) sind mit einem Asterisk gekennzeichnet (links); *Eyring*–Plot für 9 (rechts).

Tabelle 4: Thermodynamische Daten für die gehinderte Rotation in 9.

	T _c	k _c	$\Delta G^{\ddagger}_{298K}$	EA	$\Delta \mathbf{H}^{\ddagger}$	ΔS^{\ddagger}	R ²
	[K]	$[s^{-1}]$	[kJ/mol]	[kJ/mol]	[kJ/mol]	[J/mol]	
9	324	330	$63,1 \pm 1$	$59,9 \pm 4$	$57,3 \pm 4$	$-20,3 \pm 8$	0,995

4.1.1.3 Infrarot-Spektroskopie

Photonen mit einer Wellenlänge von 780 nm bis 1 mm werden als Infrarotstrahlung bezeichnet und haben Energien zwischen etwa 1,6 und 0,001 eV.²⁴² Diese Energiebeträge reichen nicht zur Anregung von Elektronenübergängen aus, können aber Rotations– und Schwingungsbewegungen von Molekülen und funktionellen Gruppen anregen.

Je nach Schwingungsform unterscheidet man zwischen Valenz- und Deformationsschwingung; bei Valenzschwingungen ändern sich ausschließlich Bindungslängen, während bei Deformationsschwingungen die Bindungslängen unverändert bleiben, dafür aber die Bindungswinkel eine Änderung erfahren. Des Weiteren kann zwischen symmetrischen und antisymmetrischen Schwingungen unterschieden werden. Symmetrische Schwingungen erfolgen unter vollständigem Erhalt der Molekülsymmetrie, während bei antisymmetrischen Schwingungen mindestens ein Symmetrieelement verloren geht. Aufgrund der Quantentheorie und den damit verbundenen Auswahlregeln können mit IR–Strahlung nur solche Übergänge angeregt werden, bei denen eine Änderung des Dipolmoments eines Moleküls erfolgt.

Charakteristische Schwingungen die aufgrund funktioneller Gruppen erwartet werden, sind aromatische und nicht aromatische C–H–Valenz– (v) und Deformationsschwingungen (δ) in den Bereichen 2850–3040 cm⁻¹ (v), 1430–1470 cm⁻¹ (δ) 1370–1390 cm⁻¹ (δ), 740–760 cm⁻¹ (aromatische Systeme mit vier benachbarten H-Atomen). Die typische Bande der C=N– Valenzschwingung kann in organischen Verbindungen zwischen 1640–1690 cm⁻¹ beobachtet werden, aromatische C–C–Gerüstschwingungen findet man bei 1500–1600 cm⁻¹. C–C–, C–O– und C–N–Schwingungen absorbieren im Allgemeinen im sogenannten Fingerprint– Bereich zwischen 1000 und 1430 cm⁻¹. Diese geben zwar dem IR-Spektrum ein charakteristisches Muster, besitzen jedoch meistens keinen diagnostischen Wert.^{173,246}

	v _{C=N}	v _{C-O-C}	v _{C-H}
9	1614	_	733
10	1612	_	729
11	1616	1115	729

Tabelle 5. Ausgewählte IR-Banden [cm⁻¹] der Komplexe 9–11.

In Tabelle 5 sind charakteristische Banden der Zinkkomplexe **9–11** zusammengefasst. Es ist deutlich zu erkennen, dass die C=N–Valenzschwingungen im Vergleich zu organischen Verbindungen zu kleineren Wellenzahlen verschoben sind. Die C–H–Schwingungen bei ungefähr 730 cm⁻¹ werden durch die vier benachbarten Protonen der aromatischen Ringe verursacht und sind infolge des vorliegenden Metallchelatkomplexes zu etwas kleineren Wellenzahlen verschoben. Die Morpholino-Verbindung **11** zeigt als zusätzliches Charakteristikum eine Bande bei 1115 cm⁻¹, welche einer C–O–C–Schwingung zugeordnet werden kann, da sie bei den anderen Verbindungen nicht auftritt. Generell findet man für Ether Absorptionen in einerm Wellenzahlenbereich von 1070–1150 cm⁻¹,¹⁷³ in reinem Morpholin kann die C–O–C–Absorption bei 1102 cm⁻¹ detektiert werden.²⁴⁷
4.1.1.4 Simultane Thermoanalyse

Die thermochemischen Eigenschaften der Zinkverbindungen wurden durch langsames Aufheizen (10 °C/min) im Inertgasstrom (Stickstoff, 25 mL/min) auf Phasenübergänge und Zersetzungspunkte untersucht, sowie simultan der Massenverlust der Proben aufgezeichnet. Die gewonnen Daten sind in Tabelle 6 zusammengefasst.

	T ₁ [°C]	ΔH 1 [kJ/mol]	T ₂ [°C]	ΔH ₂ [kJ/mol]	Δm _{total} [%]
9	258	23,5	272	44,4	-57,9
			343	46,0	
10	243	25,5	271	57,5	-64,5
			391	18,5	
11	—	-	261	99,6	-62,0
			343	14,3	

Tabelle 6. Thermochemische Daten, Enthalpien von Phasenübergängen und Zersetzungen.

Während 9 und 10 bei 258 °C bzw. 243 °C schmelzen, zersetzte sich 11 bei 261 °C durch den thermischen Einfluss ohne vorherigen Phasenübergang. Die Schmelzenthalpien, welche für die Phasenübergänge der Verbindungen 9 und 10 bestimmt wurden, liegen bei 23,5 kJ/mol und 25,5 kJ/mol. Die Zersetzung der Zinkkomplexe verläuft jeweils über zwei Stufen. Durch Pulverdiffraktometrie konnte der zurückgebliebene Rückstand in allen Fällen als Zinksulfid (α -ZnS, Sphalerit) identifiziert werden.

4.1.2 Umsetzungen von Cadmiumacetat mit Benzothiazol und sekundären Aminen

Die Synthesen der Cadmiumverbindungen 13–15 erfolgte unter den gleichen Bedingungen, wie für die Zinkverbindungen 9–11 beschrieben, durch Umsetzung von Cadmiumacetatdihydrat mit Benzothiazol und einem sekundären Amin in Ethanol unter Normalbedingungen. Ein allgemeines Reaktionsschema der Umsetzung ist in Abbildung 14 dargestellt.

Kristallines Material für weitere Analytik wurde durch langsames isothermes Verdampfen des Lösungsmittels erhalten. Die Verbindungen wurden mittels Einkristallstrukturanalyse, NMR– und IR–Spektroskopie, Massenspektrometrie und Differenzkalorimetrie charakterisiert.

Abbildung 14. Allgemeines Reaktionsschema für die Umsetzung von Cadmiumacetat mit Benzothiazol und einem sekundären Amin, mit $NR_2 = Pyrrolidino$ (13), Piperidino (14) und Morpholino (15).

4.1.2.1 Kristallstrukturen

Die kristallographischen Daten der Verbindungen **13–15** wurden durch Einkristallstrukturanalyse mittels Röntgenbeugung erhalten und sind in Tabelle 7 zusammengefasst. Eine Auflistung ausgewählter Bindungslängen und Winkel ist in Tabelle 8 zu finden.

	13	14	15				
Summenformel	$C_{22}H_{26}CdN_4S_2$	$C_{24}H_{30}CdN_4S_2$	$C_{22}H_{26}CdN_4O_2S_2$				
M [g mol ⁻¹]	522,99	551,06	555,01				
a/Å	14,980(2)	8,972(1)	9,042(2)				
b/Å	13,935(1)	11,444(2)	11,714(3)				
c/Å	21,743(3)	13,000(2)	12,356(3)				
α/°	90	102,19(2)	101,05(2)				
β/°	97,60(1)	104,97(2)	106,43(2)				
γ/°	90	106,38(2)	108,59(2)				
Volumen / Å ³	4499,1(9)	1177,6(3)	1131,1(5)				
Z	8	2	2				
Kristallsystem	Monoklin	Triklin	Triklin				
Raumgruppe	$P2_{1}/n$	$P\overline{1}$	$P\overline{1}$				
T/K	298	298	298				
R _{int}	0,081	0,083	0,053				
R ₁ (beob./alle) ^a	0,032/0,129	0,041/0,115	0,031/0,102				
wR ₂ (beob./alle) ^a	0,051/0,063	0,068/0,079	0,044/0,053				
S _{alle} ^a	0,733	0,768	0,713				
^a Definition: $R_1 = \Sigma F_o - F_c / \Sigma F_o $, $wR_2 = [\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]]^{1/2}$,							

Tabelle 7. Kristallographische Daten von 13–15.

 $S_{alle} = \sum [W(F_o] - F_c] / 2|F_o|, WK_2 - [2[W(F_o - F_c])] / 2[W(F_o])$ $S_{alle} = \sum [W(F_o^2 - F_c^2)^2] / (N_{obs} - N_{param})]^{1/2}.$ Der strukturelle Aufbau von 13 besteht, wie bei den Zinkkomplexen 9–11 aus einem einkernigen, vierfach koordinierten Cadmium–Thiophenolatkomplex, Abbildung 15. Verbindung 13 kristallisiert in der monoklinen Raumgruppe $P2_1/n$ mit acht Formeleinheiten je Elementarzelle. Im Gegensatz dazu sind die Cadmiumverbindungen 14, Abbildung 16, und 15, Abbildung 17, zweikernig aufgebaut und kristallisieren beide in der triklinen Raumgruppe $P\overline{1}$ mit zwei Formeleinheiten pro Elementarzelle.

Zusätzlich zu den Atomen S1, S2, N1 und N2, welche auch in der einkernigen Struktur **13** an das Cadmiumzentrum binden, verbrücken die Schwefelatome S2 und S2ⁱ zwei einkernige Einheiten zu zweikernigen Komplexen **14** und **15**. Ein Grund für die erweiterte Koordinationszahl von Cadmium könnte in dem etwas größeren sterischen Anspruch der sechsgliedrigen Piperidino– und Morpholino–Reste im Vergleich zum fünfgliedrigen Pyrrolidino–Rest liegen. Wie die Shannon–Radien¹⁶⁸ für vierfach koordiniertes Cadmium (0,78 Å) und für fünffach koordiniertes Cadmium (0,87 Å) zeigen, erfolgt durch eine Vergrößerung der Koordinationszahl eine Aufweitung der Ionenradien, welchen die sterisch etwas anspruchsvolleren Morpholin– und Piperidin–Ringe allem Anschein nach benötigen.

Die Cd–S–Bindunslängen von 2,425(1) Å und 2,450(1) Å in **13**, 2,424(1) Å und 2,444(2) Å in **14** sowie 2,424(1) Å und 2,453(1) Å in **15** werden offensichtlich nicht von den unter–schiedlichen Koordinationszahlen beeinflusst und sind nur geringfügig kürzer als die Summe der Kovalenzradien von Cadmium (1,44 Å) und Schwefel (1,05 Å).¹⁶⁷

Abbildung 15. Molekülstruktur von **13**, thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt.

Abbildung 16. Asymmetrische Einheit der Molekülstruktur von 14 (links); Molekülstruktur von 14 (rechts), Wasserstoffatome wurden zur besseren Übersicht nicht abgebildet. Thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt. [Symmetrie Code: (i) -x+1, -y, -z+1].

Abbildung 17. Asymmetrische Einheit der Molekülstruktur von 15 (links); Molekülstruktur von 15 (rechts), Wasserstoffatome wurden zur besseren Übersicht nicht abgebildet. Thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt. [Symmetrie Code: (i) -x+1, -y, -z+1].

Die Cd1–S2ⁱ–Bindungslängen in den zweikernigen Strukturen von 3,147(2) Å in 14 und 3,086(2) Å in 15 sind um ungefähr 25% länger als reguläre, kovalente Cd–S–Bindungen, jedoch immer noch kürzer als die Summe der van der Waals–Radien¹⁶⁹ der Elemente Cadmium (1,58 Å) und Schwefel (1,80 Å). Diese Bindungen sind daher im Vergleich zu den

kürzeren, kovalenten Cd–S–Bindungen deutlich schwächer; diese Aussage wird gestärkt durch die Massenspektrometrie und NMR–Spektroskopie, welche lediglich die Detektion einkerniger Metallkomplexe ermöglichten.

Die Cd1–Cd1ⁱ–Abstände in den zweikernigen Komplexen 14 und 15 sind länger als der doppelte van der Waals Abstand von Cadmium, eine nennenswerte Metall–Metall–Wechsel– wirkung kann somit ausgeschlossen werden.

	13	14	15
Cd1–S1	2,425(1)	2,426(1)	2,424(1)
Cd1–S2	2,450(1)	2,445(1)	2,454(1)
Cd1–S2 ⁱ	_	3,146(2)	3,085(2)
Cd1–N1	2,336(5)	2,323(3)	2,337(3)
Cd1–N2	2,335(4)	2,592(4)	2,605(3)
Cd1–Cd1 ⁱ	_	4,245(1)	4,207(1)
N1C7	1,308(6)	1,304(5)	1,311(4)
C7–N3	1,326(6)	1,335(4)	1,326(4)
N2-C18	1,312(6)	1,278(5)	1,300(4)
C18-N4	1,320(7)	1,334(5)	1,326(4)
S1-Cd1-S2	128,12(5)	137,32(5)	138,42(4)
N1Cd1N2	99,47(12)	97,85(12)	96,37(10)
S1-Cd1-N1	82,47(11)	82,79(8)	82,19(7)
S1-Cd1-N2	134,64(10)	118,67(8)	117,66(7)
S2Cd1N2	80,77(10)	75,25(9)	74,94(7)
S2Cd1N1	135,94(10)	138,02(8)	138,20(7)
S1-Cd1-S2 ⁱ	_	95,75(4)	97,36(4)
S2-Cd1-S2 ⁱ	_	82,00(4)	81,79(4)
N1–Cd1–S2 ⁱ	_	81,90(9)	83,53(6)
N2-Cd1-S2 ⁱ	_	145,36(9)	144,70(8)
Cd1–S2–Cd1 ⁱ	_	98,00(4)	98,21(4)
C6-N1-C7-N3	-169,3(5)	-169,8(4)	-169,4(3)
C17-N2-C18-N4	174,8(5)	-167,1(5)	-167,9(4)

Tabelle 8. Ausgewählte Bindungslängen [Å] und Winkel [°] von 13–15.

In der Literatur findet man nur wenige Strukturen, die einen direkten Vergleich der Bindungslängen ermöglichen. Es zeigte sich, dass die Cd–S–Abstände in einkernigen Komplexen mit 2,423(1)–2,438(1) Å⁸⁶ sowie 2,481(1)–2,482(1) Å²³¹ gut mit den Abständen übereinstimmen, die für **13** bestimmt wurden. Eine Datenbankrecherche in der "Cambridge

Structural Database" ergab, dass lediglich ein vergleichbarer zweikerniger Cadmiumkomplex mit CdS₂SⁱN₂-Motiv kristallographisch bekannt ist. Diese Verbindung besitzt zwei kürzere Cd–S–Abstände von 2,4721(12) Å und 2,523(11) Å, sowie einen längeren Cd1–S2ⁱ–Abstand von 2,7496(11) Å.⁸⁶ Der Unterschied zwischen den beiden kürzeren Cd-S-Bindungen und der längeren Cd-S-Bindung beträgt somit ungefähr 0,25 Å, während in 14 und 15 der Unterschied mit 0,68 Å beinahe dreimal so groß ausfällt. In erster Näherung wird die in der Literatur beschriebene zweikernige Verbindung daher durch drei Cd-S-Bindungen mit kovalenten Bindungsanteilen gebildet, während in den Verbindungen 14 und 15, zwei kovalente Cd-S-Bindungen vorliegen, sowie eine schwächere koordinative Wechselwirkung. Die Cd-N-Abstände in dem einkernigen Komplex 13 sind beinahe äquidistant, 2,336(4) Å und 2,335(4) Å, während sich in den zweikernigen Komplexen 14 mit 2,320(4) Å und 2,591(4) Å sowie 15 mit 2,336(3) Å und 2,600(3) Å die Cd1-N1- und Cd1-N2-Abstände deutlich voneinander unterscheiden. Diese Abstände sind in sehr guter Übereinstimmung mit Literaturdaten für vergleichbare einkernige Verbindungen mit vierfach koordiniertem Cadmium, 2,346(2) Å und 2,345(3) Å,86 sowie 2,267(3) Å und 2,286(3) Å,231 und zweikernigen Verbindungen mit fünffach koordiniertem Cadmium, 2,347(2) Å und 2,766(3) Å.⁸⁶ Wie in Abbildung 18 zu erkennen ist, wird die "Asymmetrie" der Cd-N-Bindungslängen durch die Bildung zweikerniger Komplexe verursacht, indem ein freies Elektronenpaar des $S2^{i}$ -Atoms mit den bindenden und antibindende σ^{*} -Molekülorbitale der Cd-N2-Bindung wechselwirkt. Das Gesamtsystem erfährt dabei einen Energiegewinn, aufgrund der Besetzung von nichtbindenden Orbitalen mit Elektronen kommt es jedoch zu einer Schwächung der Cd-N2–Bindung.

Abbildung 18. Elektronischer Einfluss der Cd–S2ⁱ–Wechselwirkung in zweikernigen Verbindungen auf die Cd–N2–Bindung.

Der S–Cd–S–Winkel in der einkernigen Verbindung **13** ist 128,12(4)°, wohingegen die zweikernigen Komplexe **14** und **15** mit 137,33(5)° und 138,40(4)° deutlich stumpfwinkliger sind. Diese Ergebnisse stehen auf den ersten Blick in starkem Widerspruch zu den Werten, die *Kawamoto et al.*⁸⁶ für ein– und zweikernige Komplexe von 144,29(3)° und 122,52(4)° erhalten haben, lassen sich jedoch durch den sterischen Anspruch der Liganden und zusätzliches π – π –Stacking erklären.

Wie auch bei den entsprechenden Zinkverbindungen sind in den Verbindungen 13–15 die Bindungslängen der N=CH–N–Amidin–Funktionen aufgrund der Delokalisierung der Doppelbindung beinahe gleichlang.

Legt man in dem einkernigen Komplex **13** je eine Ebene durch die Atome N1–Cd1–S1 und N2–Cd1–S2 und bestimmt den Schnittwinkel, so erkennt man, dass dieser mit 65,65(10)° ein deutlich verzerrtes, tetraedrisches Koordinationspolyeder beschreibt.

Eine fünffache Koordinationsumgebung lässt sich entweder durch eine quadratische Pyramide oder eine trigonale Bipyramide beschreiben. Diese Koordinationspolyeder lassen sich durch Berry–Pseudorotation ineinander überführen.²³² Es ist davon auszugehen, dass Metallionen der Gruppe 12 eine trigonal–bipyramidale Umgebung bevorzugen, wenn in axialer Position σ –Akzeptor– oder π –Donoren-Liganden, oder aber in äquatorialer Position σ –Donor– und π –Akzeptorliganden gebunden sind.²³³ Um die genaue Koordinationsgeometrie der fünffach koordinierten Komplexe 14 und 15 zu bestimmen, wurde der winkelabhängigen Strukturparameter χ^{234} berechnet. Dabei zeigte sich, dass beide Strukturen mit $\chi = 0,49$ als gleichmäßig verzerrte Mischung aus quadratischer Pyramide und trigonaler Bipyramide aufgefasst werden müssen.

4.1.2.2 NMR–Spektroskopie

Wie auch bei den Zinkverbindungen beobachtet werden konnte, waren die Cadmiumverbindungen in gängigen deuterierten Lösungsmitteln nur sehr schlecht löslich. Lediglich in DMF und DMSO zeigten die Komplexe eine hinreichend gute Löslichkeit. Die NMR– Messungen wurden daher aus ökonomischen Gründen in DMSO– d_6 durchgeführt.

Die Protonen der Amidin-Funktionen zeigten die größte paramagnetische Verschiebung von 8,10 (13), 7,84 (14) und 7,87 (15) ppm. Die betreffenden Kohlenstoffatome wurden bei 154,8 (13), 156,9 (14) und 157,0 (15) ppm detektiert. Die Verschiebungen der aromatischen Protonen liegen im typischen Bereich zwischen 7,40 und 6,70 ppm.

Aufgrund des partiellen Doppelbindungscharakters der N=CH–NR₂–Gruppe sind, wie bei der analogen Zinkverbindung 9, die N– α –Methylen–Protonenresonanzen des Komplexes 13 bei Raumtemperatur nicht mehr äquivalent und daher zu einem stark verbreiterten Dublett aufgespalten. Die Verbindungen 14 und 15 zeigen, wie die entsprechenden Zinkkomplexe 10 und 11, deutliche Linienverbreiterungen, welche auf ein Überschreiten der Koaleszenzpunkte hindeuten und aufgrund des Schmelzpunktes von DMSO– d_6 (291 K) nicht näher untersucht werden konnten.

Für Komplex 13 wurde mittels dynamischer NMR–Spektroskopie die Kinetik des chemischen Austauschs verfolgt und durch eine vollständige Linienformanalyse die Geschwindigkeitskonstante k der Rotation bestimmt.

Die Aktivierungsenthalpie ΔH^{\ddagger} und die Aktivierungsentropie ΔS^{\ddagger} wurden mit Hilfe der *Eyring*–Gleichung durch Auftragung von $\ln(k/T)$ gegen 1/T ermittelt. In Abbildung **19** sind die dynamischen NMR–Spektren sowie der *Eyring*–Plot für **13** dargestellt, eine Auflistung der daraus erhalten thermodynamischen Daten findet sich in Tabelle 9.

 Tabelle 9. Thermodynamische Daten f
 ür den chemischen Austausch in Verbindung 13.

Abbildung 19. Ausschnitt aus den mit variabler Temperatur gemessenen ¹H-NMR Spektren (400,13 MHz, DMSO– d_6) von **13** bei 298 K, 306 K, 308 K, 318 K, 328 K und 338 K, Lösungsmittelsignale (Wasser in DMSO– d_6) sind mit einem Asterisk gekennzeichnet (links); Eyring–Plot für **13** (rechts).

4.1.2.3 Infrarot-Spektroskopie

Für das organische Grundgerüst der Cadmiumkomplexe werden aufgrund der darin enthaltenen funktionellen Gruppen aromatische und nicht aromatische C–H–Valenz– (v) und Deformationsschwingungen (δ) in den Bereichen 2850–3040 cm⁻¹ (v), 1430–1470 cm⁻¹ (δ), 1370–1390 cm⁻¹ (δ) und 740–760 cm⁻¹ (aromatische Systeme mit vier benachbarten H– Atomen) erwartet. In organischen Verbindungen führen C=N–Valenzschwingungen im Bereich von 1630–1680 cm⁻¹ zu einer charakteristischen Absorption, durch koordinierende Cadmiumionen werden diese Banden jedoch zu kleineren Wellenzahlen von 1590–1620 cm⁻¹ verschoben.^{86,104,252}

Aromatische C–C–Schwingungen zeigen Absorptionen bei 1500–1600 cm⁻¹. C–C–, C–O– und C–N–Schwingungen lassen sich nur selten einer spezifischen Schwingung zuordnen und werden im Fingerprint–Bereich zwischen 1000–1430 cm⁻¹ beobachtet.^{173,246}

Die Banden mit den stärksten Absorptionen im Bereich von 1615–1625 cm⁻¹ lassen sich den C=N-Valenzschwingungen zuordnen, Tabelle 10.

Die C–H–Schwingungen bei ungefähr 730 cm⁻¹ werden durch die vier benachbarten Protonen der aromatischen Ringe verursacht und sind infolge des vorliegenden Metallkomplexes zu etwas kleineren Wellenzahlen verschoben. Die Morpholin–Verbindung **15** zeigt eine zusätzliche charakteristische Bande bei 1117 cm⁻¹, die der Schwingung der Etherfunktion des Morpholino–Liganden zugeordnet werden kann.

	v _{C=N}	v _{C-O-C}	v _{C-H}
13	1616	_	731
14	1618	_	729
15	1624	1117	731

Tabelle 10. Ausgewählte IR-Banden [cm⁻¹] der Komplexe **13-15.**

4.1.2.4 Simultane Thermoanalyse

Die Ergebnisse der thermochemischen Untersuchungen der Cadmiumverbindungen sind in Tabelle 11 zusammengefasst. Temperaturen von Phasenübergängen sowie Zersetzungstemperaturen wurden durch langsames Aufheizen der Verbindungen **13-15** im Inertgasstrom erhalten. Anders als bei den Zinkverbindungen besitzt lediglich der einkernige Cadmiumkomplex 13 einen Schmelzpunkt, 246 °C, während sich die zweikernigen Cadmiumkomplexe 14 und 15 ohne vorherige Änderung des Aggregatzustands zersetzen. Untersuchungen der Rückstände der thermischen Zersetzungen mittels Pulverdiffraktometrie zeigten, dass alle Cadmium-verbindungen über eine oder mehrere Stufen zu Cadmiumsulfid reagieren.

	T ₁	ΔH_1	T ₂	ΔH_2	Δm_{total}
	[°C]	[kJ/mol]	[°C]	[kJ/mol]	[%]
13	246	36,9	270	57,8	-61,7
14			288	124,8	-65,8
			335	4,7	
15			232	3,1	-62,1
			277	72,4	
			315	18,1	

Tabelle 11. Thermochemische Daten, Enthalpien von Phasenübergängen und Zersetzungen.

4.1.3 Umsetzungen von Quecksilber(II)-acetat mit Benzothiazol und sekundären Aminen

Die erste Darstellung eines Metall–Thiophenolat–Chelatkomplexes durch Umsetzung eines Metallsalzes mit Benzothiazol und einem sekundären Amin gelang *M. Nolte* im Rahmen seiner Dissertation "*Zum Koordinationsverhalten von Quecksilber(II)–Salzen unter dem Einfluss organischer Donorliganden*",⁸⁹ durch Umsetzung von Quecksilber(II)–chlorid mit Benzothiazol und Morpholin in Ethanol. Nachteil dieser Reaktionsdurchführung ist, dass die Reihenfolge in der die Komponenten zusammengegeben werden von entscheidender Bedeutung für den Kristallisationsprozess ist. Zudem wurden die Reaktanten Benzothiazol in einem 10–fachen und Morpholin in einem 100–fachen Überschuss zum Quecksilberderivat eingesetzt.

In dieser Arbeit wurden daher zunächst verschiedene Lösungsmittel auf ihre Eignung bei der Umsetzung von stöchiometrischen Mengen eines Quecksilber(II)–salzes mit Benzothiazol und Morpholin untersucht. Es zeigte sich dabei, dass insbesondere die aprotisch polaren Lösungsmittel Dimethylsulfoxid und Dimethylformamid hervorragend geeignet sind, um bei den durchgeführten Umsetzungen hohe Ausbeuten und gute Kristallqualitäten zu erzielen, Abbildung 20. Die Verwendung dieser Lösungsmittel brachte jedoch mit sich, dass Lösungsmittelreste durch mehrmaliges Waschen mit Wasser und Alkoholen aufwändig aus den erhaltenen Produkten entfernt werden mussten, da diese Lösungsmittel über ausgesprochen hohe Siedepunkte und hohe Akzeptor– und Donorzahlen verfügen.¹⁷²

Abbildung 20. Allgemeines Reaktionsschema für die Umsetzung von Quecksilber(II)–acetat mit Benzothiazol in Gegenwart eines sekundären Amins, mit $NR_2 = Pyrrolidino$ (16), Piperidino (17), Morpholino (18), Diethylamino (19), Dibenzylamino (20) und Di–*n*–Butylamino (21).

Die Verbindungen wurden mittels Einkristallstrukturanalyse, NMR– und IR–Spektroskopie, Massenspektrometrie und Differenzkalorimetrie charakterisiert; dies wird im Folgenden näher ausgeführt.

4.1.3.1 Kristallstrukturen

Die kristallographischen Daten der Verbindungen **16–21** sind in Tabelle 12 zusammengefasst, ausgewählte Bindungslängen und Winkel sind in Tabelle 13 aufgelistet.

Das Metallatom ist in allen erhaltenen Quecksilber–Thiophenolatkomplexen fünffach koordiniert, die Koordination kann aber auch als eine 4+1 Koordination beschreiben werden, da es sich um vier Bindungen mit regulären Abständen handelt, sowie einer langen Hg–S–Wechselwirkung die zur Bildung von zweikernigen Strukturen führt. Die einzige Ausnahme bildet die Quecksilberverbindung **20**, die aufgrund des verwendeten, sterisch anspruchs–volleren Dibenzylamino–Restes eine einkernige Struktur ausbildet.

Die Shannon Ionenradien¹⁶⁸ für fünffach koordinierte Quecksilber(II)–Ionen wurden bislang noch nicht berechnet, aber es ist davon auszugehen, dass der Wert zwischen dem des vierfach koordinierten Quecksilbers (0,96 Å) und dem des sechsfach koordinierten Quecksilbers (1,02 Å) bei ungefähr 1,00 Å liegt.

Die zweikernigen Komplexe, 16–19 und 21, kristallisieren in der triklinen Raumgruppe $P\overline{1}$ mit je zwei Formeleinheiten pro Elementarzelle; die einkernige Struktur 20 hingegen kristallisiert in der monoklinen Raumgruppe $P2_1/c$ mit vier Formeleinheiten in der Elementarzelle.

Die Hg-S-Abstände von 2,352(2) Å und 2,362(2) Å in 16, Abbildung 21, 2,354(2) Å und 2,362(2) Å in 17, Abbildung 22, 2,349(2) Å und 2,360(2) Å in 18, Abbildung 23, 2,339(1) Å und 2,342(1) Å in 19, Abbildung 24, 2,332(4) Å und 2,353(4) Å in 20, Abbildung 25, sowie 2,345(1) Å und 2,348(1) Å in 21, Abbildung 26, stimmen sehr gut mit der Summe der Kovalenzradien¹⁶⁷ der Elemente Quecksilber (1,32 Å) und Schwefel (1,05 Å) überein. Diese Bindungslängen sind typisch für kovalente σ–Bindungen zwischen Quecksilber und Schwefel in neutralen Komplexen mit einer HgS₂N₂-Umgebung, 2,3376(8)-2,3518(6) Å,⁸⁵ 2,329(4)-2,345(4) Å⁹⁴ und 2,391(2) Å.⁹⁶

Die Hg-S-Abstände sind durchschnittlich 2,350(9) Å lang und damit länger als Zn-S-Bindungen mit 2,289(5) Å in den Verbindungen 9, 10, aber kürzer als Cd–S–Bindungen von 2,437(13) Å in den Komplexen 13–15.

	16	17	18	19	20	21
Summenformel	C30H46HgN4S2	$C_{24}H_{30}HgN_4S_2$	$C_{22}H_{26}HgN_4S_2O_2$	C22H30HgN4S2	C ₄₂ H ₃₈ HgN ₄ S ₂	C ₃₀ H ₄₆ HgN ₄ S ₂
M [g mol ⁻¹]	727,42	639,23	643,18	615,21	863,47	727,42
a/Å	8,759(1)	8,903(1)	8,991(1)	8,307(1)	23,020(2)	9,783(5)
b/Å	12,448(2)	11,486(2)	11,726(2)	11,279(1)	11,331(2)	12,386(5)
c/Å	12,404(2)	12,999(2)	12,460(2)	14,073(2)	14,185(2)	13,548(5)
α/°	118,98(10)	102,67(2)	101,85(2)	109,62(2)	90	85,806(5)
β/°	92,73(1)	103,60(2)	105,27(2)	101,54(2)	76,462(9)	80,142(5)
$\gamma/^{\circ}$	103,98(1)	106,35(2)	108,86(2)	97,06(2)	90	77,708(5)
Volumen / Å ³	1126,2(3)	1180,1(3)	1136,9(3)	1190,8(3)	3597,4(7)	1579,2(12)
Z	2	2	2	2	4	2
Kristallsystem	Triklin	triklin	Triklin	Triklin	Monoklin	Triklin
Raumgruppe	ΡĪ	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	$P2_{1}/c$	$P\overline{1}$
T/K	293(2)	293(2)	293(2)	293(2)	170(2)	170(2)
R _{int}	0,086	0,064	0,066	0,058	0,135	0,050
R ₁ (beob,/alle) ^a	0,040/0,086	0,036/0,070	0,043/0,077	0,033/0,075	0,075/0,139	0,032/0,060
wR ₂ (beob,/alle) ^a	0,085/0,106	0,055/0,062	0,087/0,097	0,043/0,049	0,127/0,137	0,056/0,066
S _{alle} ^a	1,008	0,871	0,889	0,844	1,091	0,997

Tabelle 12. Kristallographische Daten von 16-21.

Definition: $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, $wR_2 = [\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]]^{1/2}$, $S_{alle} = \Sigma [w(F_o^2 - F_c^2)^2] / (N_{obs} - N_{param})]^{1/2}$.

Abbildung 21. Asymmetrische Einheit der Molekülstruktur von 16 (links), thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt. Dimere Struktur von 16 (rechts), Wasserstoffatome wurden zur besseren Übersicht nicht abgebildet. [Symmetrie Code: (i) -x+1, -y+1, -z+1].

Abbildung 22. Asymmetrische Einheit der Molekülstruktur von 17 (links), thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt. Dimere Struktur von 17 (rechts), Wasserstoffatome wurden zur besseren Übersicht nicht abgebildet. [Symmetrie Code: (i) -x+1, -y+1, -z].

Abbildung 23. Asymmetrische Einheit der Molekülstruktur von 18 (links), thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt. Dimere Struktur von 18 (rechts), Wasserstoffatome wurden zur besseren Übersicht nicht abgebildet. [Symmetrie Code: (i) -x+3, -y+1, -z].

Abbildung 24. Asymmetrische Einheit der Molekülstruktur von 19, thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt. Dimere Struktur von 19, Wasserstoffatome wurden zur besseren Übersicht nicht abgebildet. [Symmetrie Code: (i) -x+2, -y-1, -z+1].

Abbildung 25. Molekülstruktur von **20**, thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt.

Abbildung 26. Asymmetrische Einheit der Molekülstruktur von 21 (links), thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt. Dimere Struktur von 21 (rechts), Wasserstoffatome wurden zur besseren Übersicht nicht abgebildet. [Symmetrie Code: (i) -x+2, -y, -z+2].

Die Bindungslängen zwischen Quecksilber und dem verbrückenden Schwefelatom Hg1–S2ⁱ sind 3,486(2) Å in **16**, 3,400(2) Å in **17**, 3,382(2) Å in **18**, 3,376(2) Å in **19** und 3,693(2) Å in **21**. Diese Abstände sind geringfügig länger als die Summe der *van der Waals*–Radien¹⁶⁹ der Elemente Quecksilber (1,55 Å) und Schwefel (1,80 Å). Die van der Waals Anziehung ist eine

Wechselwirkung zwischen Dipolmomenten und fällt mit der sechsten Potenz des Abstandes zweier Kerne ab,¹⁷⁰ der kovalente Bindungsanteil an den Verbrückungen ist daher gering.

Trotz intensiver Recherche wurden keine Verbindungen gefunden, die einen direkten Vergleich mit den zweikernigen Komplexen **16–19** und **21** zulassen. Die ähnlichste Struktur hat [Hg(SC₆H₄-4-NMe₃)₂(C₄H₁₃N₃)](PF₆)₂ mit primären Hg–S–Abständen von 2,389(1) Å und 2,402(2) Å und Hg–N–Bindungslängen von 2,411(2) Å und 2,533(2) Å.²³⁵ Die Autoren berichten jedoch nicht von einer Verbrückung zu einem zweikernigen Komplex; dennoch, bei genauerem Vergleich kann neben den asymmetrischen Hg–N–Abständen auch eine Verbrückung zu einem zweikernigen Komplex über einen schwachen Hg1–S2ⁱ Kontakt von 4,149(2) Å interpretiert werden, der jedoch von den Autoren nicht diskutiert wurde.

	16	17	18	19	20	21
Hg1–S1	2,352(2)	2,354(15)	2,349(2)	2,339(1)	2,353(4)	2,345(1)
Hg1–S2	2,362(2)	2,362(15)	2,360(2)	2,342(1)	2,332(4)	2,348(1)
Hg1–S2 ⁱ	3,486(2)	3,400(2)	3,382(2)	3,376(2)	_	3,694(2)
Hg1–N1	2,614(5)	2,620(4)	2,621(6)	2,686(3)	2,624(10)	2,665(4)
Hg1–N2	2,775(5)	2,784(4)	2,772(5)	2,900(4)	2,736(12)	2,598(4)
Hg1–Hg1 ⁱ	4,4312(9)	4,3796(8)	4,3729(9)	4,4521(8)	_	4,3210(16)
N1-C7	1,300(8)	1,299(6)	1,296(9)	1,301(6)	1,290(15)	1,305(6)
C7–N3	1,327(8)	1,341(6)	1,346(8)	1,332(6)	1,348(15)	1,343(6)
N2-C18	1,303(9)	1,284(7)	1,286(9)	1,282(6)	1,289(15)	1,299(6)
C18-N4	1,328(10)	1,332(7)	1,342(8)	1,322(6)	1,310(16)	1,329(6)
S1-Hg1-S2	156,39(6)	153,76(5)	154,73(7)	161,48(5)	163,69(11)	166,00(4)
N1-Hg1-N2	89,44(16)	90,59(15)	89,93(19)	104,34(11)	96,78(29)	90,98(11)
S1-Hg1-N1	77,63(12)	78,17(9)	77,69(12)	75,93(9)	77,8(2)	79,68(9)
S1-Hg1-N2	120,47(13)	120,96(11)	120,56(14)	116,00(10)	114,33(26)	109,82(9)
S2-Hg1-N2	73,01(13)	74,31(11)	74,57(14)	72,04(9)	77,12(27)	78,46(9)
S2–Hg1–N1	124,01(12)	125,46(9)	124,94(12)	119,57(9)	113,5(2)	112,08(9)
S1-Hg1-S2 ⁱ	92,47(7)	93,17(5)	93,28(6)	97,71(5)	_	74,94(4)
S2–Hg1–S2 ⁱ	83,36(6)	82,69(5)	82,39(6)	79,29(4)	_	91,62(4)
N1–Hg1–S2 ⁱ	79,90(13)	77,40(11)	124,94(12)	72,16(8)	_	150,40(10)
N2-Hg1-S2 ⁱ	142,41(12)	140,87(10)	74,57(14)	144,53(8)	_	111,70(9)
Hg1-S2-Hg1 ⁱ	96,64(7)	97,31(5)	97,61(7)	100,71(5)	_	88,38(4)
C6-N1-C7-N3	-173,8(7)	170,5(5)	-169,6(7)	-168,4(5)	163,4(12)	-166,0(4)
C17-N2-C18-N4	-175,5(8)	168,1(6)	-168,5(7)	-169,3(5)	166,0(12)	166,1(4)

 Tabelle 13. Ausgewählte Bindungslängen [Å] und Winkel [°] von 16–21.

Die Hg–N–Bindungen sind 2,614(4) Å und 2,775(5) Å in **16**, 2,619(4) Å und 2,784(4) Å in **17**, 2,621(6) Å und 2,772(5) Å in **18**, 2,684(3) Å und 2,902(4) Å in **19**, 2,624(10) Å und 2,736(12) Å in **20** sowie 2,598(4) Å und 2,665(4) Å in **21** lang. Damit sind die Bindungslängen deutlich länger als die Summe der Kovalenzradien¹⁶⁷ der Elemente Quecksilber (1,32 Å) und Stickstoff (0,71 Å), liegen aber deutlich unter der Summe der *van der Waals*–Radien¹⁶⁹ der Elemente Quecksilber (1,55 Å) und Stickstoff (1,55 Å), so dass ein gewisser kovalenter Bindungsanteil vorliegt. In der Literatur findet man Hg–N–Bindungslängen in Komplexen mit einer HgS₂N₂–Umgebung von 2,615(2) Å und 2,724(3) Å,⁸⁵ 2,808(13) Å und 2,860(14) Å,⁹⁴ sowie 2,397(8) Å.⁹⁶

Wie auch bei den Cadmiumverbindungen wird die "Asymmetrie" der Hg–N–Bindungslängen durch die Bildung zweikerniger Komplexe verursacht, indem ein freies Elektronenpaar des $S2^{i}$ –Atoms mit den bindenden und antibindende σ^{*} –Molekülorbitale der Hg–N2–Bindung wechselwirken. Das Gesamtsystem erfährt dabei eine Energieerniedrigung, aufgrund der Besetzung von nichtbindenden Orbitalen mit Elektronen kommt es jedoch zu einer Schwächung der Hg–N2–Bindung. Die Entwicklung der Hg1–N2–Abstände scheint mit größer werdendem Hg1–S2ⁱ–Abstand linear abzunehmen. Dies ist gleichbedeutend mit einer schlechteren Überlappung der Orbitale und damit eines geringeren Einflusses der nichtbindenden Molekülorbitale.

Aber auch die Hg1–S1/S2 und die Hg1–N1–Bindungslängen der zweikernigen Komplexe scheinen mit den Hg–S–Bindungen Hg1–S2ⁱ zu korrelieren, Abbildung 27.

In den zweikernigen Komplexen **16–19** und **21** verändern sich die Hg1–S1 und Hg1–S2– Abstände simultan mit dem Abstand zu der verbrückenden Hg1–S2ⁱ–Koordination. Zunächst werden die Hg1–S1 und Hg1–S2–Bindungslängen mit wachsendem Hg1–S2ⁱ–Abstand größer, durchlaufen bei einem Hg1–S2ⁱ–Abstand von 3,40 Å ein Maximum und fallen dann langsam wieder ab.

Interessanterweise ist der Kurvenverlauf der Hg1–N1–Abstände genau entgegengesetzt zu den Kurven der Hg–S–Abstände, so dass davon auszugehen ist, dass sich der Einfluss der Hg–S–Bindungen und der Hg1–N1–Wechselwirkung gegenseitig kompensieren. Steigt der kovalente Anteil der Hg–S–Bindungen so wird die Hg1–N1–Wechselwirkung schwächer, und umgekehrt.

Abbildung 27. Korrelation zwischen Hg1–S2ⁱ, Hg–S1 (rot) und Hg1–S2–Abständen (blau) [Å] (links); Korrelation zwischen Hg1–S2ⁱ, Hg1–N1 (rot) und Hg1–N2–Abständen (blau) [Å] (rechts).

Die S–Hg–S–Winkel variieren von 153,76(5)° in Komplex 17 bis 166,00(4)° in Komplex 21. In seinen Verbindungen zeigt Quecksilber bei einer Koordinationszahl von zwei in Verbindungen mit zwei Schwefelliganden in der Regel eine lineare Anordnung mit Winkeln zwischen 170 und 180°. Es gibt Fälle, bei denen dieser Winkel auch durch zusätzlich koordinierte Stickstoffliganden nur geringfügig beeinflusst wird.^{85,94,235-237} In einer vierfachen Koordinationsumgebung HgS₂N₂ werden die S–Hg–S–Winkel jedoch normalerweise auf Winkel zwischen ungefähr 140° und 165° gestaucht.^{88,235}

Wie bereits bei den Cadmiumverbindungen ausgeführt, kann eine fünffache Koordination entweder als trigonale Bipyramide oder als quadratische Pyramide aufgefasst werden. Liegt eine verzerrte Koordinationsumgebung vor, so kann durch Bestimmung des winkelabhängigen Strukturparameters χ^{234} der Beitrag der beiden idealen Strukturen zu der tatsächlichen Struktur quantifiziert werden. Anhand der berechneten Strukturparameter χ von 0,41 (16), 0,42 (17), 0,42 (18), 0,38 (19) und 0,30 (21) lassen sich die Strukturen als stark verzerrte Mischungen aus trigonaler Bipyramide und quadratischer Pyramide beschreiben, wobei der Beitrag der quadratischen Pyramide geringfügig größer ist.

4.1.3.2 NMR–Spektroskopie

Neben der Kristallstrukturanalyse stellt die NMR–Spektroskopie eine der effektivsten und umfangreichsten Methoden zur Strukturlösung beinahe aller organischer Moleküle, aber auch einer Vielzahl anorganischer oder metallorganischer Verbindungen dar. Dabei ist sie jedoch nicht nur auf Reinsubstanzen und einkristalline Festkörper beschränkt, sondern kann auch an Mischungen und Lösungen durchgeführt werden.

Die untersuchten Quecksilberverbindungen **16–21** besitzen nur eine geringe Löslichkeit in gebräuchlichen deuterierten Lösungsmitteln wie Aceton– d_6 , Acetonitril– d_3 , Benzol– d_6 , Chloroform–d, Methanol– d_4 , Tetrahydrofuran– d_8 und Wasser– d_2 . Da die Verbindungen jedoch eine ausreichende Löslichkeit in Dimethylsulfoxid– d_6 besitzen, wurde dieses Lösungsmittel zur qualitativen und thermodynamischen Untersuchung eingesetzt.

Die Produktbildung ließ sich anhand der Bildung des Amidin–N=CH–N–Signals und dem Verschwinden des Benzothiazol–N=CH–S–Signals (δ 9,40²³⁸ ppm in DMSO– d_6) verfolgen. Zur Untersuchung der Bildung der Produkte mittels NMR–Spektroskopie wurden 0,1 mmol Quecksilber(II)–acetat, 0,2 mmol Benzothiazol und 0,4 mmol des jeweiligen Amins (Dibenzylamin, Diethylamin, Morpholin, Pyrrolidin, Piperidin und Di–n–Butylamin) in 0,5 mL DMSO– d_6 gelöst.

Zusätzlich wurden weitere sekundäre Amine auf ihre Fähigkeit zur Bildung der Thiophenolat– Liganden untersucht. Aromatische Amine wie Diphenylamin, Dipyridylamin (siehe Kapitel 4.1.5.4), Benzimidazol, Imidazol und Indol, aber auch Amine mit verzweigten Alkylketten wie Diisopropylamin zeigten in den Untersuchungen keine Umsetzung zu Quecksilber– Thiophenolatverbindungen.

Die ¹H– und ¹³C–NMR–Spektren legen nahe, dass alle Verbindungen in Lösung, anders als im Festkörper, nicht zweikernig sondern einkernig vorliegen und über eine C₂–Symmetrie verfügen, denn in zweikernigen Komplexen müssten die verbrückenden Liganden andere chemische Verschiebungen aufweisen als die terminalen Liganden.

Die chemischen Verschiebungen des charakteristischen Singuletts der Resonanzen der N=CH–N–Amidinfunktionen wurden bei δ 7,83 (16), 7,62 (17), 7,71 (18), 7,66 (19), 7,99 (20) und 7,66 (21) ppm beobachtet. Die zugehörigen Resonanzen im ¹³C–NMR sind 152,9 (16), 154,9 (17), 155,1 (18), 154,7 (19), 156,2 (20) und 155,9 (21) ppm.

Die aromatischen Protonen der NC₆ H_4 S–Gruppe führen zu scharfen Multipletts im Bereich 6,6–7,4 ppm. Die zugehörigen Resonanzen im ¹³C–NMR werden im Bereich von 115–139 ppm detektiert.

Der partielle Doppelbindungscharakter der N=CH–NR₂–Gruppe führt dazu, dass, wie bei den analogen Zink– und Cadmiumverbindungen 9 und 13, die N– α –Methylen–Protonen– resonanzen der Komplexe 16, 19–21 bei Raumtemperatur nicht mehr äquivalent sind und zu

einem stark verbreiterten Dublett aufgespalten werden. Die Verbindungen 17 und 18 zeigen wie die entsprechenden Zinkkomplexe 10 und 11 sowie Cadmiumkomplexe 14 und 15 deutliche Linienverbreiterungen, welche ein Überschreiten des Koaleszenzpunktes anzeigen. Aufgrund des Schmelzpunktes des verwendeten Lösungsmittels DMSO- d_6 , erfolgte keine weitere Untersuchung des Koaleszenzphänoms dieser Verbindungen.

Durch dynamische NMR–Spektroskopie wurde die Kinetik des chemischen Austauschs verfolgt und durch eine vollständige Linienformanalyse die Geschwindigkeitskonstanten k der Rotationen bestimmt.

Die Aktivierungsenthalpie ΔH^{\ddagger} und die Aktivierungsentropie ΔS^{\ddagger} können mittels der *Eyring*–Gleichung durch Auftragung von ln(*k*/*T*) gegen 1/*T* ermittelt werden. In Abbildung 28 sind die dynamischen NMR–Spektren sowie der *Eyring*–Plot für **9** dargestellt, eine Auflistung der daraus erhaltenen thermodynamischen Daten findet sich in Tabelle 14.

Die Koaleszenstemperaturen liegen bei 329 K, 16, 322 K, 19, 334 K, 20 und 333 K, 21. Die thermodynamischen Daten für die Freie Aktivierungsenthalpie ΔG^{\ddagger} wurden aus den experimentellen Daten berechnet und liegen alle in der gleichen Größenordnung. Die Werte der Aktivierungsenergie E_a , –enthalpie ΔH^{\ddagger} und –entropie ΔS^{\ddagger} zeigen eine gewisse Streuung, die sich aufgrund der größeren Fehlergrenzen wieder relativiert.

Abbildung 28. Ausschnitt aus den mit variabler Temperatur gemessenen ¹H-NMR Spektren (400,13 MHz, DMSO– d_6) von **19** bei 298 K, 308 K, 318 K, 322 K, 328 K und 338 K, Lösungsmittelsignale (Wasser in DMSO– d_6) sind mit einem Asterisk gekennzeichnet (links); *Eyring*–Plot für **19** (rechts).

	T _c	k _c	$\Delta G^{\ddagger}_{298K}$	EA	ΔH^{\ddagger}	ΔS^{\ddagger}	\mathbb{R}^2
	[K]	$[s^{-1}]$	[kJ/mol]	[kJ/mol]	[kJ/mol]	[J/mol]	
16	329	200	65,6 ± 1	$60,2 \pm 4$	57,6 ± 4	$-27,3 \pm 8$	0,990
19	322	322	$63,2 \pm 1$	$57,0 \pm 4$	$54,3 \pm 4$	$-29,3 \pm 8$	0,987
20	334	516	$63,4 \pm 1$	$55,0 \pm 4$	$52,4 \pm 4$	$-37,4 \pm 8$	0,997
21	333	334	$65,2 \pm 1$	$64,3 \pm 4$	61,6±4	$-12,3 \pm 8$	0,999

Tabelle 14. Thermodynamische Daten für die gehinderte Rotation in den Verbindungen 16,19–21.

Die exakte Resonanzfrequenz und damit die chemische Verschiebung eines bestimmten Kerns wird von der am Kernort wirkenden, effektiven Magnetfeldstärke bestimmt. Je größer die Elektronegativität eines Bindungspartners ist, umso weniger wird ein Kern vor dem äußeren Magnetfeld abgeschirmt, da die lokale Elektronendichte reduziert wird; dies hat eine Tieffeldverschiebung der Absorption zur Folge. Das tatsächlich auf einen Kern wirkende Feld wird also entscheidend von induktiven oder mesomeren Effekten seiner chemischen Umgebung beeinflusst.

Die chemische Verschiebung δ ist eine dimensionslose, von Messfrequenz bzw. Magnetfeldstärke unabhängige Größe, die jedoch charakteristisch von der chemischen Umgebung eines Kerns abhängt. Besonders deutlich fällt eine Änderung der chemischen Verschiebung aus, wenn positive oder negative Ionen entstehen, auch der induktive Effekt aufgrund der Koordination an ein Metallkation führt zu einer starken Änderung des effektiven Magnetfelds, welches auf einen Kern wirkt.

Um Aussagen über das Koordinationsverhalten und damit über einen möglichen Mechanismus der Bildung der Produkte treffen zu können, wurde der Einfluss des Metallions auf die chemische Verschiebung der Edukte untersucht. So wurde eine 1–molare Quecksilber(II)–chlorid–Lösung in DMSO– d_6 hergestellt und die ¹⁹⁹Hg–chemische Verschiebung gemessen (Literatur –1501,6 ppm³²⁸). Anschließend wurde festgestellt, welche Änderungen die Zugabe von 4 eq. Diethylamin bzw. 2 eq. Benzothiazol auf die Resonanzfrequenz bewirken, Abbildung 29. Daneben wurde auch der Einfluss des Quecksilbers auf die Verschiebung der Protonenresonanzen betrachtet, da die Koordination des Metallsalzes an die organischen Verbindungen, insbesondere bei Protonen welche über 2–3 Kerne vom Metallion entfernt sind, eine deutliche Änderung der chemischen Umgebung verursacht, Abbildung 30.

Abbildung 29. ¹⁹⁹Hg–NMR–Spektren (300 MHz, DMSO– d_6 , 25 °C) einer 1,0 M HgCl₂–Lösung (schwarz), einer 0,1 M HgCl₂–Lösung (gelb), einer 0,1 M HgCl₂–Lösung mit 2 eq. Benzothiazol (grün), einer 1,0 M HgCl₂–Lösung mit 2 eq. Benzothiazol (blau) und einer einer 1,0 M HgCl₂–Lösung mit 4 eq. Diethylamin (rot).

Abbildung 30. ¹H–NMR Spektren (300 MHz, DMSO– d_6 , 25 °C) von Diethylamin (links) und Benzothiazol (rechts). In schwarz sind die Spektren der Verbindungen ohne Quecksilber(II)–chlorid, in rot die Spektren nach Quecksilber(II)–chlorid Zugabe abgebildet.

Von Quecksilber(II)–Solvatkomplexen mit schwach koordinierenden Anionen ist aus Einkristallstrukturen bekannt, dass sechs DMSO–Moleküle an das "nackte" Quecksilber(II)– Kation koordinieren.^{329,330} Quecksilber(II)–chlorid dagegen liegt in Lösung weitgehend undissoziert vor und wird von zwei DMSO–Molekülen koordiniert.^{331,332} Allen Solvatkomplexen ist gemein, dass die DMSO–Moleküle über das Sauerstoffatom an das Metallatom koordinieren.^{333,334}

Die Verschiebung des ¹⁹⁹Hg–Signals ist konzentrationsabhängig, nicht nur für Quecksilber(II)–chlorid, sondern auch bei der Zugabe von Liganden. So beobachtet man für eine 0,1 M HgCl₂–Lösung nur eine geringe Änderung der chemischen Verschiebung von –1496 ppm zu –1483 ppm bei Zugabe von 2 eq. Benzothiazol. Dieser Shift fällt deutlich größer aus, wenn zu einer 1,0 M HgCl₂–Lösung 2 eq. Benzothiazol gegeben werden, die Signale erfahren dann eine Verschiebung von –1502 ppm zu –1442 ppm. Erst bei sehr hoher Konzentration erfolgt daher ein nennenswerter Shift des ¹⁹⁹Hg–Signals zu tieferem Feld, der gleichbedeutend mit einer Koordination des Benzothiazols an das Metallatom ist.

Dies erklärt auch die Bildung von Quecksilber(II)–chlorid–Benzothiazol–Koordinations– verbindungen⁸⁹ aus konzentrierten Lösungen, welche durch langsames isothermes Verdampfen erhalten werden können. In den ¹H–NMR–Spektren der Benzothiazol–Lösung ist ebenso deutlich zu erkennen, dass praktisch keine Änderung der Koordination erfolgt und somit auch keine Änderung der chemischen Verschiebungen.

Anders verhält es sich bei Zugabe von Aminen. Diese sind in der Lage, DMSO aus der Koordinationssphäre der Quecksilberionen zu verdrängen und führen daher zu einer deutlichen Veränderung der beobachteten Resonanzfrequenzen. Umgekehrt beobachtet man aber auch eine signifikante Verschiebung der Protonenresonanzsignale der Aminfunktion von 1,35 ppm zu 3,21 ppm. Die Amin–Protonen zeigen infolge des schnell stattfindenden Protolysegleichgewichts in polaren Lösungsmitteln eine starke Linienverbreiterung, die Zugabe von Quecksilber(II)–chlorid führt zu scharfen Signalen.

Zusammenfassend wird festgestellt, dass in Lösung lediglich eine schwache Wechselwirkung zwischen Quecksilber(II)–ionen und Benzothiazol beobachtet wird, während im Gegensatz dazu zwischen Aminen und Quecksilber(II)–ionen eine starke Koordination erfolgt. Diese Erkenntnis steht in Einklang mit dem postulierten Mechanismus der Aminomerkurierung von Olefinen, Abbildung 31.³²⁷ Hierbei wird angenommen, dass sich in Gegenwart von Aminen aus Quecksilber(II)–salzen zunächst ein kationisches Intermediat bildet, welches unter Abspaltung einer Säure mit dem Olefin unter Bildung des Markovnikoff–Produktes reagiert.

Abbildung 31. Mechanismus der Aminomerkurierung von Olefinen.³²⁷

Daher wird angenommen, dass diese oder ähnliche Zwischenstufen bei der Bildung der Metallthiophenolate in dieser Arbeit, eine entscheidende Rolle spielen, zumal mit Piperidin eine Verbindung der Zusammensetzung HgCl₂·Piperidin **33** kristallisiert werden konnte, in der Quecksilber in einer Lage linear von zwei Piperidinmolekülen umgeben ist und $[(C_5H_{10}NH)_2HgCl]^+$ -Kationen bildet (siehe Kapitel 4.1.5.3).

Die Kinetik der Bildung der Metall–Thiophenolatkomplexe aus der Umsetzung von Quecksilber(II)–Salzen mit Benzothiazol und sekundären Aminen wurde genauer untersucht, um detaillierte Aussagen über den Reaktionsmechanismus treffen zu können. Aufgrund der guten Löslichkeit, und da keine Überlagerung von Signalen im untersuchten Bereich erfolgte, wurden diese Untersuchungen an **19** durchgeführt. Hierzu wurden die Substanzen mittels einer Präzisionswaage (Sartorius RC210P) eingewogen, die angefertigte Probe enthielt 211,6 µmol (28,61 mg, 2,1 eq) Benzothiazol, 100,0 µmol (31,88 mg, 1,0 eq) Quecksilber(II)–acetat und 4,624 µmol (33,82 mg, 4,6 eq) Diethylamin gelöst in 0,491 mL (540,48 mg) DMSO– d_6 . Um den Umsatz der Reaktion zu verfolgen, wurde über 16 Stunden alle 30 Minuten ein ¹H–NMR–Spektrum aufgenommen. Der Umsatz wurde durch den Verbrauch an Benzothiazol bestimmt, wobei hier insbesondere die N=CH–S–Protonen–Peakfläche integriert und gegen die Bildung des Produktes aufgetragen wurde, dessen Konzentration über die N=CH–NR₂–Protonen–Peakfläche bestimmt wurde, Abbildung 32. Die Abnahme der Konzentration des Benzothiazols und die Zunahme der Konzentration des Produktes findet gemäß der Reaktionsgleichung im Verhältnis 2:1 statt.

Die Reaktionsgeschwindigkeit für eine Reaktion pseudo-zweiter Ordnung mit zwei unterschiedlichen Reaktanden A und B ergibt sich zu d[A]/dt = -k[A][B]. Dies vereinfacht

sich zu $[A]/dt = -k [A]^2$, solange die Konzentrationen der Reaktanden A und B gleich sind. Die Integration dieser Gleichung liefert das Geschwindigkeitsgesetz für Reaktionen zweiter Ordnung, $1/[A]-1/[A]_0 = kt$ bzw. $[A] = [A]_0/(1+kt[A]_0)$. Durch Auftragung von 1/[A] gegen die Zeit erhält man eine Gerade, deren Steigung die Geschwindigkeitskonstante $k = 2,67(3)\cdot10^{-4} \text{ L}\cdot\text{mol}^{-1}\cdot\text{s}^{-1}$ der Reaktion darstellt, Abbildung 32.

Abbildung 32. Zeitabhängige Abnahme der Konzentration von Benzothiazol bei gleichzeitiger Bildung von 19 (links). Auftragung des Kehrwerts der Konzentration gegen die Zeit (rechts).

Vereint man die gewonnenen Erkenntnisse über das Koordinationsverhalten von Benzothiazol und Aminen bezüglich Quecksilber(II)–salzen und der Kinetik der Bildung der Metall– Thiophenolatkomplexe, erhält man eine gute Vorstellung über die in Lösung stattfindenden Prozesse. Als initialer Schritt wird die Bildung eines kationischen Metall–Amin–Komplexes (I) postuliert. Dieser Komplex stellt nach dem HSAB–Konzept eine weiche Lewis–Säure dar, die bevorzugt mit einer weichen Lewis–Base reagiert. In Lösung steht neben der Amin–Base das Benzothiazol für eine Reaktion verfügbar. Der Metall–Amin–Komplex bindet über das Schwefelatom an Benzothiazol. Die gebildete Zwischenstufe (II) reagiert unter Abspaltung eines Protons und Ringöffnung des Benzothiazol–Ringes zu einem Metall–Thiophenolat– komplex (III). Durch den Austausch des Thiophenolatliganden gegen ein Amin wird der katalytisch aktive Metall–Aminkomplex (I) zurückgewonnen und der Katalysezyklus geschlossen.

Das gebildete Thiophenolatanion (IV) liegt wie in der Literatur bekannt im Gleichgewicht mit dem geschlossenen Benzothiazolin (V) vor. Je nach Konzentration des Metalls in Lösung kommen nun zwei Reaktionswege in Frage. Wurde das Metall in katalytischen Mengen zugesetzt, wie bei *Mori*¹¹⁷ und *Chang*¹¹⁸, so ist die Wahrscheinlichkeit gering, dass ein Thiophenolatanion mit einem Metall–Thiophenolatkomplex reagiert und der Katalysezyklus somit unterbrochen wird. Vielmehr ist die Oxidation des Benzothiazolins durch Luftsauerstoff oder ein anderes Oxidationsmittel zu einem 2–substituierten Benzothiazolderivat bevorzugt (VI). Ist die Metallkonzentration jedoch sehr hoch, so liegt in Lösung eine nicht unerhebliche Menge des Metall–Thiophenolatkomplexes vor. Die gebildeten metallfreien Thiophenolat– anionen können mit einem Äquivalent des Metall–Thiophenolatkomplexes zu den in dieser Arbeit vorgestellten Produkten (VII) abreagieren. In Lösung bilden sich daher immer nur geringe Mengen des freien Thiophenolats, und die Oxidation mit gelöstem Luftsauerstoff ist deshalb unwahrscheinlich.

Abbildung 33. Postulierter Reaktionsmechanismus für die Darstellung von Metall-Thiophenolatkomplexen aus Benzothiazol und sekundären Aminen bei hoher Metallkonzentration und Bildung von 2–substituierten Benzothiazolderivaten bei geringer Metallkonzentration.

4.1.3.3 Infrarot-Spektroskopie

Aufgrund des organischen Liganden zeigen die Quecksilberverbindungen **16–21** typische Absorptionsbanden aromatischer und nicht aromatischer C–H–Valenz– (v) und Deformationsschwingungen (δ) in den Bereichen 2850–3040cm⁻¹ (v), 1430–1470 cm⁻¹ (δ), 1370–1390 cm⁻¹ (δ) und 740–760 cm⁻¹.

Die C=N–Valenzschwingungen, welche in metallfreien, organischen Strukturen bei 1630– 1680 cm⁻¹ Absorption zeigen, sind durch die Koordination an die Quecksilberatome zu kleineren Wellenzahlen von ungefähr 1600–1630 cm⁻¹ verschoben. In der Literatur findet man für *Schiff*sche Basen, welche an Quecksilber koordinieren, Absorptionen bei Wellenzahlen von 1580–1615 cm⁻¹.^{94,103,104}

Aromatische C–C–Schwingungen zeigen Absorptionen bei 1500–1600 cm⁻¹. Die C–C–, C–O– und C–N–Schwingungen lassen sich nur selten einer spezifischen Schwingung zuordnen und werden im Fingerprint-Bereich zwischen 1000–1430 cm⁻¹ beobachtet.^{173,246}

Die C–H–Schwingungen bei ungefähr 730 cm⁻¹ werden durch die vier benachbarten Protonen der aromatischen Ringe verursacht. Die Morpholino–Verbindung **15** zeigt eine zusätzliche charakteristische Bande bei 1115 cm⁻¹, die der Schwingung der Ether-Funktion C–O–C zugeordnet werden kann.

	v _{C=N}	v _{C-O-C}	v _{C-H}
16	1616	_	733
17	1606	_	731
18	1626	1115	731
19	1620	_	732
20	1603	_	730
21	1608	_	725

Tabelle 15. Ausgewählte IR-Banden [cm⁻¹] der Verbindungen 16–21.

4.1.3.4 Simultane Thermoanalyse

Die thermochemischen Eigenschaften der Quecksilberverbindungen wurden durch dynamische Differenzkalorimetrie untersucht und sind in Tabelle 16 zusammengefasst.

Anders als bei den Zink- und Cadmiumverbindungen verfügen alle Quecksilberverbindungen über Schmelzpunkte. Die Komplexe, welche aus der Umsetzung mit cyclischen Aminen erhalten wurden, besitzen dabei die höchsten Schmelzpunkte von 204 °C (16), 231 °C (17)

und 240 °C (**18**). Man kann erkennen, dass die Verbindungen mit den sechsgliedrigen Piperidino– und Morpholino–Gruppen um ungefähr 30 °C höhere Schmelzpunkte besitzen als die Pyrrolidino–Verbindung. Bei den acyclischen Verbindungen zeigt sich, dass mit steigender Kettenlänge die Schmelzpunkte sinken, so dass die Diethylamino–Verbindung (**19**) einen höheren Schmelzpunkt hat als die Di–n–Butylamino–Verbindung (**21**).

Erhitzt man die Verbindungen über ihre Schmelzpunkte hinaus, tritt anders als bei den Zinkund Cadmiumverbindungen, keine partielle Zersetzung zu den Metallsulfiden ein, vielmehr findet ein vollständiger Massenverlust statt. Es kann daher davon ausgegangen werden, dass die Verbindungen bei 256 °C (16), 282 °C (17), 280 °C (18), 284 °C (19), 278 °C (20) und 282 °C (21) unzersetzt in die Gasphase übergehen.

	T ₁	ΔH_1	T_2	ΔH_2	Δm_{total}
	[°C]	[kJ/mol]	[°C]	[kJ/mol]	[%]
16	204	41.7	256	169.0	-98.5
17	231	40.4	282	171.7	-98.2
18	240	49.3	280	147.3	-97.7
19	150	41.0	284	150.3	-98.1
20	136	45.4	278	218.5	-99.3
21	58	21.2	282	171.5	-98.3
	77	27.4			

Tabelle 16. Thermochemische Daten, Enthalpien von Phasenübergängen und Zersetzungen.

4.1.4 Quantenmechanische Rechnungen

Die Optimierung der Strukturen erfolgte zunächst mit semiempirischen Methoden, anschließend durch eine Hartree–Fock–Rechnung²⁶³⁻²⁶⁴ unter Verwendung des def2–SV(P)– Basissatzes.^{273,272} Die so optimierten Strukturen wurden mittels DFT-Rechnungen unter Verwendung des Becke–1988–Austauschfunktional, B(88), mit dem Perdew–1986– Korrelationsfunktional, P86, sowie Valence–Triple–Zeta–Plus–Polarisations Basissätze mit Kernpotentialen für schwere Elemente, def2–TZVPP,^{273,272} berechnet.

Die Strukturoptimierung wurde an einkernigen C₂–symmetrischen Strukturen durchgeführt, wie sie in Lösung und in der Gasphase vorliegen und durch NMR–Spektroskopie und Massenspektrometrie detektiert wurden. Abweichungen in den Winkeln sind in erster Linie darauf zurückzuführen, dass es sich bei den durchgeführten Rechnungen um Gasphasenrechnungen handelt und daher Molekül–Molekül–Wechselwirkungen, wie sie in Festkörpern auftreten, teilweise nicht berücksichtigt werden. Vor allem die Abweichungen der Winkel um das Metallzentrum lassen vermuten, dass der Einfluß der d-Orbitale nicht richtig in die Rechnugnen eingeflossen ist, aufwändige Post-HF-Rechnungen sollten dies jedoch berücksichtigen können.

Quantenmechanische Rechnungen ermöglichen nicht nur eine Strukturoptimierung oder Frequenzanalyse, sondern auch einen Einblick in die elektronische Struktur.

Der Zinkkomplex 9 bildet sowohl in der Gasphase, der Lösung, als auch in der Kristallstruktur einen einkernigen Komlex. Dennoch weichen die Winkel um das Zentralatom, insbesondere der N1-Zn1-N2-Winkel, recht deutlich von den experimentellen Werten ab, Tabelle 17. Die Bindungslängen stimmen dafür sehr gut mit den experimentell gefundenen Werten überein. Die Frequenzanalyse ergab ausschließlich positive Werte, so dass es sich bei den simulierten Strukturen um ein Minimum handelt. Die intensivste simulierte Schwingung stimmt sehr gut mit den experimentell bestimmten Werten der N=C-Schwingungsfrequenzen überein. Die Strukturoptimierung mit der semiempirischen Methode liefert vergleichbar gute, teilweise sogar bessere Ergebnisse als die HF-Rechnung. Während das HOMO zweifach entartet ist, liegt das LUMO nur einfach entartet vor. Die Energiedifferenz zwischen diesen Orbitalen beträgt 2,31 eV; durch Anregung eines Elektrons in ein LUMO und anschließender Relaxation in den Grundzustand können Photonen mit einer Wellenlänge von ungefähr 540 nm emittiert werden. Man müsste daher in Photolumineszenzspektroskopischen Untersuchungen eine grüne Emission beobachten können. In organischen Halbleitern verschiebt sich die maximal emittierte Wellenlänge der Lumineszenz jedoch zu kleineren Wellenlängen als die Energiedifferenz zwischen E_{HOMO} und E_{LUMO} verhersagt.²⁷⁵

Das Zinkatom ist an den vier höchsten besetzten und unbesetzten Molekülorbitalen nur in Form von Knotenebenen beteiligt. Vielmehr spielen hier das ausgedehnte π -System und die beiden Schwefelatome eine wichtige Rolle, Abbildung 84. Zudem sind die Schwefelatome nicht nur durch eine σ -Bindung an das Metallatom gebunden, sondern übertragen durch die besetzten Schwefel-3p-Orbital mittels p_{π} - d_{π} -Wechselwirkungen zusätzliche Elektronendichte auf das Metallzentrum und liefern somit einen wichtigen Beitrag zur Stabiliserung.

Wie die Zinkverbindung 9, so liegt auch die Cadmiumverbindung 13 in der Kristallstruktur als einkerniger Komplex vor. Die Anpassung der Bindungslänge an die experimentellen Werte ist sehr gut, einige der Winkel zeigen jedoch eine deutliche Abweichung, Tabelle 18. Die IR–Schwingungen lassen sich durch BP86–Rechnungen sehr gut mit experimentellen Daten vergleichen, die Frequenzanalyse zeigt zudem, dass es sich bei der simulierten Struktur um ein Minimum handelt. Die Energiedifferenz zwischen HOMO und LUMO beträgt 2,5 eV und entspricht somit einer Wellenlänge von 500 nm. Wird die Verbindung angeregt, sollte daher blau-grünes Licht emittiert werden. Der Einfluss der d-Orbital des Metalls auf die Bindungen ist größer als bei der Zinkverbindung, dennoch haben das ausgedehnte π -System und die beiden Schwefelatome den größten Einfluss auf die HOMO und LUMO, Abbildung 35.

	PM6	HF /	BP86 /	Exp
		def2-SV(P)	def2-TZVPP	
Zn1–S1	2,2126	2,3282	2,2801	2,291(2)
Zn1–N1	2,0730	2,2235	2,1562	2,055(5)
N1-C7	1,3308	1,2789	1,3143	1,311(8)
C7-N2	1,3972	1,3322	1,3417	1,325(8)
S1–Zn1–S2	133,16	139,89	127,82	122,52(8)
N1-Zn1-N2	107,54	125,47	103,77	121,3(2)
S1–Zn1–N1	89,62	85,44	88,50	87,43(14)
S1-Zn1-N2	118,45	113,18	124,69	119,78(14)
C6-N1-C7-N2	-179,19	-170,30	-161,88	-167,4(6)
$\nu_{C=N}$	1599	1836	1604	1614
μ	11,888	12,284	11,147	
Е		-3637,65	-3649,64	

 Tabelle 17. Vergleich zwischen quantenmechanischen und experimentellen Daten von 9.

Tabelle 18. Vergleich zwischen q	uantenmechanischen und	experimentellen	Daten von 13.
----------------------------------	------------------------	-----------------	---------------

	PM6	HF /	BP86 /	Exp
		def2-SV(P)	def2-TZVPP	
Cd1-S1/2	2,5061	2,4732	2,4358	2,425(1) / 2,450(1)
Cd1-N1/2	2,3496	2,5212	2,4418	2,336(5) / 2,335(4)
N1/2-C7/16	1,3303	1,2741	1,3108	1,308(6) / 1,326(6)
C7/16-N3/4	1,3992	1,3367	1,3437	1,312(6) / 1,320(7)
S1-Cd1-S2	147,69	156,26	143,88	128,12(5)
N1-Cd1-N2	131,29	124,43	102,28	99,47(12)
S1/2-Cd1-N1/2	78,03	77,63	81,33	82,47(11) / 80,77(10)
S1/2-Cd1-N2/1	115,91	113,95	122,67	134,64(10) / 135,94(10)
N1/2-C7/16-N3/4	175,33	-172,93	-161,91	-169,3(5) / 174,8(5)
$\nu_{C=N}$	1595		1604	1616
μ	10,516	10,866	10,053	
Е		-2026,90	-2037,84	

Die Quecksilberverbindung 16 bildet im Festkörper einen zweikernigen Komplex, in der Gasphase und in Lösung hingegen liegt die Verbindung einkernig vor. Die

Strukturoptimierung am zweikernigen Komplex ergibt eine sehr gute Übereinstimmung der Abstände und Winkel mit den experimentellen Daten. Rechnungen auf dem BP86–DFT– Level ergeben für metallorganische Verbindungen sehr gute Übereinstimmungen der IR– Schwingungen mit den experimentellen Daten, die Frequenzanalyse zeigt zudem, dass es sich bei der simulierten Struktur um ein Minimum handelt. Wie auch bei den Verbindungen **9** und **13** kommt dem Quecksilber bei den vier HOMO keine tragende Rolle zu, bei den beiden LUMO ist das Quecksilber beteiligt. Eine Reduktion der Verbindung würde antibindende Hg-S-Orbitale besetzen und somit zur Zerstörung der Verbindung führen. Die Energiedifferenz zwischen HOMO und LUMO beträgt 2,9 eV und entspricht somit einer Wellenlänge von 420 nm. Wird die Verbindung angeregt, sollte daher blau Licht emittiert werden.

	PM6	HF /	BP86 /	Exp
		def2-SV(P)	def2-TZVPP	
Hg1–S1	2,7700	2,4391	2,3602	2,352(2)
Hg1–S2	2,6227	2,4413	2,3781	2,362(2)
Hg1–S2 ⁱ	3,0173	3,8482	3,7831	3,486(2)
Hg1–N1	2,1885	2,7318	2,6834	2,614(5)
Hg1–N2	2,2302	2,9218	2,8331	2,775(5)
N1-C7	1,3386	1,2738	1,2782	1,300(8)
N2-C16	1,4015	1,3325	1,3263	1,303(9)
C7-N3	1,3390	1,2688	1,2690	1,327(8)
C16-N4	1,3927	1,3386	1,3306	1,328(10)
S1-Hg1-S2	131,85	156,44	156,53	156,39(6)
N1-Hg1-N2	106,62	93,78	89,06	89,4(2)
S1-Hg1-N1	82,72	74,59	76,63	77,6(1)
S2-Hg1-N2	74,38	70,40	72,84	73,0(1)
S1-Hg1-N2	112,64	121,24	120,79	120,5(1)
S2-Hg1-N1	143,28	127,42	124,30	124,0(1)
N1-C7-N3	153,47	170,43	174,53	-173,8(7)/
N2-C16-N4	165,28	173,70	175,88	-175,5(8)
$\nu_{C=N}$	1573	1835	1610	1616
μ	0,000	0,000	0,000	
Е		-4025,08	-4038,05	

 Tabelle 19. Vergleich zwischen quantenmechanischen und experimentellen Daten von 16.

Abbildung 34. Die vier höchsten besetzten Molekülorbitale (HOMO) und die vier niedrigsten unbesetzten Molekülorbitale (LUMO) von **9**.

Abbildung 35. Die vier höchsten besetzten Molekülorbitale (HOMO) und die vier niedrigsten unbesetzten Molekülorbitale (LUMO) von 13.

Abbildung 36. Die vier höchsten besetzten Molekülorbitale (HOMO) und die vier niedrigsten unbesetzten Molekülorbitale (LUMO) von 16.

4.1.5 Nebenprodukte der Umsetzungen von Quecksilber(II)-chlorid mit Benzothiazol und sekundären Aminen

Den Umsetzungen von Quecksilber(II)–chlorid mit Benzothiazol und sekundären Aminen wurde zum Abfangen der bei der Reaktion entstehenden Salzsäure ein zusätzliches Äquivalent des Amins zugesetzt. Nachdem aus den Reaktionsmischungen die entsprechenden Quecksilber–Thiophenolatkomplexe auskristallisiert waren, konnte aus der verbleibenden Mutterlauge durch langsames Abdampfen des Lösungsmittels die entsprechenden Ammonium–hydrochloride in Form langer Nadeln auskristallisiert werden, Abbildung 37.

Abbildung 37. Umsetzung von Quecksilber(II)-chlorid mit Benzothiazol und einem sekundären Amin zu Quecksilber-Thiophenolatkomplexen. Als Nebenprodukte bilden sich aufgrund der Zugabe von zusätzlichen Äquivalenten des Amins die entsprechenden Ammonium-hydrochloride.

Die kristallographischen Daten des Piperidinium-hydrochlorids (**31**) und Morpholiniumhydrochlorids (**32**) wurden durch Einkristallstrukturanalyse erhalten und sind in Tabelle 20 zusammengefasst. Ausgewählte Bindungslängen und Winkel der Verbindungen sind in Tabelle 21 aufgelistet.

Beide Verbindungen kristallisieren mit vier Formaleinheiten je Elementarzelle, jedoch in unterschiedlichen Kristallsystemen. Während **31** im höher symmetrischen tetragonalen Kristallsystem kristallisiert, bevorzugt **32** das monokline Kristallsystem. Beide Strukturen sind bereits bekannt,^{307–309} daher wird im Folgenden nur kurz auf die Kristallstrukturen eingegangen.

Daneben konnte aus der Umsetzung von Quecksilber(II)–chlorid mit Benzothiazol und Piperidin ein Salz der Zusammensetzung $[(C_5H_{11}N)_2HgCl][HgCl_3]$, **33**, erhalten werden.

	31	32
Summenformel	C ₅ H ₁₂ ClN	C ₄ H ₁₀ ClNO
M [g mol ⁻¹]	121,61	123,58
a/Å	9,8037(15)	5,7280(9)
b/Å	7,3810(11)	10,606(2)
c/Å	9,8037(15)	10,1300(16)
a/°	90	90
β/°	90	101,252(12)
γ/°	90	90
Volumen / Å ³	709,4(2)	603,6(2)
Z	4	4
Kristallsystem	Tetragonal	Monoklin
Raumgruppe	Pbcm	$P2_{1}/c$
T/K	293(2)	293(2)
R _{int}	0,0292	0,0981
R ₁ (beob./alle) ^a	0,036/0,068	0,040/0,048
wR ₂ (beob./alle) ^a	0,074/0,078	0,103/0,107
S _{alle} ^a	0,716	1,141
ition: $R_1 = \Sigma F_o - F_c $ $S_{alle} = \Sigma$	$/\Sigma F_{o} , wR_{2} = [\Sigma[w] \Sigma[w(F_{o}^{2} - F_{c}^{2})^{2}] / (M_{o}^{2} - F_{c}^{2})^{2}]$	$w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2 - N_{param})]^{1/2}$.

 Tabelle 20. Kristallographische Daten von 31 und 32.

Tabelle 21. Ausgewählte Bindungslängen [Å] und Win	ikel [°] von 31 und 32
--	------------------------

	31	32
N1C1	1,464(3)	1,496(2)
N1C11	3,114(4)	3,166(1)
N1–Cl1 ⁱ	3,096(2)	3,126(1)
N1–Cl1 ⁱⁱ	_	3,292(1)
Cl1-N1-Cl1	107,63(8)	110,60(12)
C1-N1-C1 ⁱ	114,6(4)	131,11(4)
C1-N1-C1 ⁱⁱ	_	73,72(3)
4.1.5.1 Piperidinium-hydrochlorid

Piperidinium-hydrochlorid, **31**, kristallisiert, wie in der Literatur^{307,308} beschrieben, im tetragonalen Kristallsystem in der Raumgruppe *Pbcm* mit vier Formeleinheiten in der Elementarzelle.

In Abbildung 38 sind die Molekülstruktur von **31** sowie die Verknüpfung der Piperidinium– Kationen über die Chloridanionen zu einer eindimensionalen Kette dargestellt. Das Ammoniumkation bindet dabei über Wasserstoffbrückenbindungen an zwei Chloridionen.

Abbildung 38. Molekülstruktur von 31. Thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt. Verknüpfung der Ammoniumkationen über Chloridionen zu einer Kette entlang der b–Achse.

Abbildung 39. Elementarzelle von **31** mit Blickrichtung entlang [001] und [010]. Zur besseren Übersicht sind nur verbrückende Wasserstoffatome abgebildet.

4.1.5.2 Morpholinium-hydrochlorid

Morpholinium–hydrochlorid, **32**, kristallisiert, wie bereits in der Literatur³⁰⁹ beschrieben, im monoklinen Kristallsystem in der Raumgruppe $P2_1/c$ mit den Gitterparametern a = 5,7280(9) Å, b = 10,606(2) Å, c = 10,130(2) Å, $\beta = 101,25(1)^{\circ}$ und einem Volumen von 603,6(2) Å³. In der Elementarzelle befinden sich vier Formeleinheiten.

Abbildung 40. Molekülstruktur von **32**, thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt. Verknüpfung der Ammoniumkationen über Chloridanionen zu einer eindimensionalen Kette entlang der a–Achse.

Anders als beim Piperidinium-hydrochlorid werden drei Wasserstoffbrückenbindungen zu benachbarten Chloridionen ausgebildet.

Abbildung 41. Elementarzelle von 32 mit Blickrichtung entlang [001] und [010]. Wasserstoffatome wurden zur besseren Übersicht nicht abgebildet.

4.1.5.3 Quecksilber(II)-chlorid Piperidin

Neben dem Piperidinium-hydrochlorid, **31**, konnte aus der Umsetzung von Quecksilber(II)chlorid mit Benzothiazol und Piperidin eine weitere Verbindung mit der formalen Zusammensetzung HgCl₂·(C₅H₁₁N), **33**, isoliert werden. Tabelle 22 enthält eine Übersicht über die kristallographischen Daten der Verbindung, Tabelle 23 eine Auflistung ausgewählter Bindungslängen und Winkel.

Verbindung **33** kristallisiert im monoklinen Kristallsystem in der Raumgruppe C2/c mit acht Formeleinheiten je Elementarzelle.

	33
Summenformel	C ₅ H ₁₁ Cl ₂ HgN
M [g mol ⁻¹]	356,64
a/Å	24,109(6)
b/Å	6,1473(11)
c/Å	11,914(3)
α/°	90
β/°	104,541(19)
γ/°	90
Volumen / Å ³	1709,1(7)
Ζ	8
Kristallsystem	Monoklin
Raumgruppe	C2/c
T/K	293(2)
R _{int}	0,1373
R ₁ (beob./alle) ^a	0,056/0,082
wR ₂ (beob./alle) ^a	0,154/0,174

Tabelle 22. Kristallographische Daten von 33.

In Verbindung **33** existieren zwei unterschiedliche Quecksilberlagen, Abbildung 42. Zum einen gibt es eine Lage mit einer trigonal-bipyramidalen Koordinationsumgebung des Quecksilbers. In der Hg1–Lage werden die Quecksilberkationen von fünf Chloridanionen umgeben, der kürzeste Hg–Cl–Abstand ist 2,398(4) Å, der längste 2,9838(7) Å. Insgesamt gibt es drei kurze und zwei lange Bindungen, weshalb man auch von [HgCl₃]⁻-Ionen sprechen kann, die von zwei weiteren Chloratomen koordiniert werden. Die Abstände korrelieren sehr gut mit anderen, trigonal–bipyramidal koordinierten Quecksilberatomen, in denen ebenfalls

die basalen Hg–Cl–Abstände mit 2,4–2,5 Å deutlich kürzer sind als die apikalen Bindungen mit 2,9–3,0 Å. $^{310-312}$

Abbildung 42. Koordinationsumgebung von Hg1 und Hg2 in 33.

Zum anderen gibt es die Hg2–Lage, in welcher eine oktaedrische Koordinationsumgebung des Quecksilbers mit vier Chloratomen und zwei Stickstoffatomen vorliegt. Diese Lage kann auch als $[(C_5H_{11}N)_2HgCl_{4/4}]^+$ beschrieben werden, da das Quecksilberatom von vier Chloratomen und zwei Piperidinmolekülen koordiniert wird. Die Hg–Cl–Abstände sind mit 3,0326(9) Å und 3,0736(5) Å deutlich länger als für die Hg1–Lage. Daneben gibt es die Hg–N–Koordination mit einem interatomaren Abstand von 2,101(15) Å. Eine solche Koordinationsumgebung des Quecksilbers ist in der Literatur bekannt, es werden Hg–Cl–Abstände von 2,7–2,8 Å, sowie Hg–N–Bindungen von 2,3–2,4 Å berichtet.^{313,314} In den meisten Fällen beobachtet man jedoch zwei lange (2,8–3,1 Å) und zwei kurze (2,3–2,5 Å) Hg–Cl–Abstände, dafür aber deutlich längere (2,5–2,7 Å) Hg–N–Abstände.³¹⁵⁻³¹⁷

Bipyramide in ihrer Basis deutlich verzerrt ist und der Cl3–Hg1–Cl3ⁱ–Winkel zu Ungunsten der Cl3–Hg1–Cl1–Winkel deutlich von den idealen 120° abweicht. Der Grund hierfür sind Wasserstoffbrückenbindungen zwischen den Chloranionen Cl3 und den Amin–Protonen, die die zwei unterschiedlichen Quecksilberlagen miteinander zu einer 2–dimensionalen Schichtstruktur verknüpfen. Nach außen schließen die Schichten mit den unpolaren Resten des Piperidins ab, Abbildung 43, so dass davon auszugehen ist, dass zwischen den Schichten lediglich schwache Wechselwirkungen zur Stabilisierung beitragen. Hierdurch begründen

sich auch die Plättchenform der farblosen Kristalle, sowie die leichte Spaltbarkeit paralell zu den Schichten.

Abbildung 43. Elementarzelle von 33 mit Blickrichtung entlang [010]. Ausschnitt aus einer Ebene. Wasserstoffatome wurden zur besseren Übersicht nicht abgebildet.

	33		33
Hg1–Cl1	2,680(3)	Cl1-Hg1-Cl2	86,601(4)
Hg1–Cl2	2,9838(7)	Cl1-Hg1-Cl3	103,04(7)
Hg1–Cl3	2,398(4)	Cl2–Hg1–Cl2 ⁱ	173,201(4)
Hg2–Cl1	3,0326(9)	Cl2-Hg1-Cl3	90,465(83)
Hg2–Cl2	3,0736(5)	Cl3–Hg1–Cl3 ⁱ	153,93(14)
Hg2–N1	2,101(15)	Cl1-Hg2-N1	92,89(60)
N1-C13	3,626(21)	Cl1-Hg2-Cl2	79,157(9)
		Cl2-Hg2-N1	86,98(50)

 Tabelle 23. Ausgewählte Bindungslängen [Å] und Winkel [°] von 33.

4.1.5.4 Bis(2,2'–Dipyridylamino)quecksilber(II)

Umsetzungen von aromatischen Aminen mit Benzothiazol und Metallacetaten führen nicht zur Bildung von Metall–Thiophenolatkomplexen. Bei der Reaktion von 2,2'–Dipyridylamin mit Benzothiazol und Quecksilber(II)–acetat bildete sich ein farbloser Niederschlag, der mittels NMR–Spektroskopie als Bis(2,2'–Dipyridylamino)quecksilber(II), **29**, identifiziert werden konnte. Durch gezielte Umsetzung von 2,2'–Dipyridylamin und Quecksilber(II)– acetat in Ethanol gelang es, Verbindung **29** phasenrein (CHNS–Analyse) herzustellen und

vollständig durch NMR– und IR–Spektroskopie zu charakterisieren. Zudem konnte ein geeigneter Einkristall erhalten und die Kristallstruktur bestimmt werden. Die kristallographischen Daten sind in Tabelle 24 zusammengestellt, ausgewählte Bindungs– längen und Winkel in Tabelle 25 aufgelistet.

	29	
Summenformel	$C_{20}H_{16}HgN_6$	
$M [g mol^{-1}]$	540,98	
a/Å	25,543(5)	
b/Å	25,543(5)	
c/Å	5,5644(7)	
$\alpha/^{\circ}$	90	
β/°	90	
$\gamma/^{\circ}$	90	
Volumen / Å ³	3630,4(11)	
Ζ	8	
Kristallsystem	Tetragonal	
Raumgruppe	I $4_1/a$	
T/K	293(2)	
R _{int}	0,167	
R ₁ (beob./alle) ^a	0,043 / 0,075	
wR ₂ (beob./alle) ^a	0,094 / 0,101	
S_{alle}^{a}	0,860	
nition: $R_1 = \overline{\Sigma F_o - F_c / \Sigma F_o , WF}$ $S_{alle} = \Sigma [W(F_o^2 - I)]$	$\overline{R_2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[F_c^2)^2] / (N_{obs} - N_{param})]^{1/2}}$	$w(F_o^2)^2]$]

Tabelle 24. Kristallographische Daten von 29.

Verbindung **29** kristallisiert in der tetragonalen Raumgruppe I4₁/a mit acht Formeleinheiten je Elementarzelle. In der Struktur gibt es drei unterschiedliche Hg–N–Abstände. Den kürzesten Abstand findet man für die kovalente Bindung zwischen Hg1 und N1 mit 2,061(8) Å. Dieser stimmt sehr gut mit der Summe der Kovalenzradien¹⁶⁷ der Elemente Quecksilber (1,32 Å) und Stickstoff (0,71 Å) überein. Ähnliche Abstände werden auch für kovalent gebundene Azide, 2,091(3) Å,³⁴⁶ Amine, 2,073(4) und 2,080(4) Å,³⁴⁷ Amide, 2,041(6) und 2,031(6) Å,³⁴⁸ und Imide, 2,028(8) und 2,035(8) Å³⁴⁹ gefunden.

Die Koordination der Pyridin–Ringe innerhalb der Ebene erfolgt über die N2–Atome und führt zur Bildung von planaren, neutralen Bis(2,2'–Dipyridylamino)quecksilber(II)– Molekülen, Abbildung 44. Die Hg1–N2–Abstände von 2,660(9) Å sind deutlich länger als die Summe der Kovalenzradien, aber auch wesentlich kürzer als die Summe der *van der Waals–*

Radien¹⁶⁹ der Elemente Quecksilber (1.55 Å) und Stickstoff (1.55 Å), so dass von einer koordinativen Wechselwirkung ausgegangen werden kann. In der Literatur findet man für Komplexe, in denen an ein Hg²⁺–Kation lediglich N–Donoren koordinieren, typische Abstände für aromatische Liganden von 2,40–2,50 Å in oktaedrischen Systemen,^{350,351} in achtfacher Koordination erreichen die Hg–N–Abstände bis zu 2,60 Å.³⁵² Gibt es zusätzliche kovalente Hg–N–Bindungen, so führt dies zu einer Verlängerung der restlichen Hg–N–Koordinationen auf 2,60–2,82 Å.^{353,354}

	29		29
Hg1-N1	2,061(8)	N1-Hg1-N1 ⁱ	180,0(4)
Hg1-N2	2,660(9)	N1-Hg1-N2	55,5(3)
Hg1-N3 ⁱⁱ	3,141(9)	N1-Hg1-N2 ⁱ	124,5(3)
N1-C1	1,390(13)	N1-Hg1-N3 ⁱⁱ	84,4(3)
N1-C6	1,378(13)	N1-Hg1-N3 ⁱⁱⁱ	95,6 (3)
C1-N1-C6	127,3(9)	N2-Hg1-N2 ⁱ	180,0(1)
C1-N1-C6-N3	7,9 (15)	N2-Hg1-N3 ⁱⁱ	80,8(3)
		N2-Ha1-N3 ⁱⁱⁱ	00.2(3)

Tabelle 25. Ausgewählte Bindungslängen [Å] und Winkel [°] von 29.

Abbildung 44. Molekülstruktur von **29**. Thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt. [Symmetrie Code: -x, -y, -z+1]

In Metall–2,2'–Dipyridylamin–Komplexen findet man unterschiedliche Verknüpfungsmuster. Das am häufigsten vorkommende Muster ist dabei die Verbrückung von zwei oder drei Metallzentren durch vier Dipyridylamin–Liganden zu einem Metallcluster.³⁵⁵ Hierbei zeigt sich, dass die Ausrichtung der Pyridinringe so ausfällt, dass alle N–Atome eine cis– Orientierung aufweisen und die Pyridinringe um ca. 40–55° gegeneinander gekippt vorliegen. Sind dagegen mehrere Dipyridylamino–Liganden an ein einzelnes Metallatom gebunden, erfolgt dies über einen Pyridinring und das Amin–Stickstoffatom, der nicht koordinierende Pyridinring zeigt zumeist eine trans–Orientierung.^{356,357} Eine Verknüpfung über den transoiden Pyridinring zu einer Kette konnte bislang nur in $\frac{1}{\infty}$ [Me₂Tl(NPy₂)] beobachtet werden.³⁵⁶

Eine Verknüpfung zu einer Kette findet auch in **29** statt, Abbildung 45. Die Ketten sind entlang der c–Achse angeordnet, Abbildung 46. Die verbrückenden Hg1–N3ⁱⁱ–Abstände sind 3.141(9) Å und damit etwa genauso lange wie die Summe der *van der Waals*–Radien der Elemente, jedoch deutlich länger als der entsprechende Abstand in Me₂Tl(NPy₂) von 2,689(6) Å.³⁵⁶

Abbildung 45. In **29** führt die Koordination von Hg1 an die N3–Atome benachbarter 2,2'– Dipyridylamino–Liganden zur Bildung einer Kette. Wasserstoffatome sind zur besseren Übersicht nicht abgebildet.

Abbildung 46. Elementarzelle von 29 mit Blickrichtung entlang [001]. Wasserstoffatome sind zur besseren Übersicht nicht abgebildet.

Die NMR–spektroskopischen Untersuchungen deuten darauf hin, dass die Verbindung in Lösung nicht als Kette, sondern molekular vorliegt. Eine Vergleich zwischen den NMR–Spektren von **29** und dem eingesetzten 2,2'–Dipyridylamin²³⁹ zeigt, dass die Verschiebung der ¹H–Signale durch das Quecksilberatom nur gering ausfällt. Einzig das Fehlen des Signals der N*H*–Funktion bei 9,64 ppm belegt das Vorliegen des Metallkomplexes.

Anders der Einfluss auf die Verschiebung der ¹³C–Signale. Hier kann ebenfalls nur eine geringe Verschiebung der tertiären Signale beobachtet werden, das quartenäre Signal jedoch erfährt einen deutlichen paramagnetischen Shift zu tieferem Feld, welcher auf den Einfluss des Quecksilbers zurückgeführt werden kann.

Der Schmelzpunkt von **29** liegt bei bei 219 °C. Die anschließende Zersetzung verläuft in zwei Stufen. Der erste, endotherme Zersetzungsschritt erfolgt bei 235 °C, verbunden mit einem Massenverlust von 30%. Dies entspricht dem Verlust eines 2,2'–Dipyridylamins. Die zweite Stufe der Zersetzung verläuft exotherm, einhergehend mit einem Massenverlust von 55%. Der schwarze Rückstand der Thermoanalyse wurde nicht näher untersucht, so dass keine Aussage über die zweite Zersetzungsstufe getroffen werden kann.

Abbildung 47. DSC–TG-Messung von 29.

Tabelle	26.	Thermochemische	Daten,	Enthalpien	von	Phasenübergängen	und	Zersetzungen
von 29.								

	T ₁	ΔH_1	T ₂	ΔH_2	Δm_{total}
	[°C]	[kJ/mol]	[°C]	[kJ/mol]	[%]
29	219,0	38,6	235,4	15,1	-85,2
			289,2	-16,5	

4.1.6 Umsetzungen mit anderen Metallacetaten

In der Literatur sind bereits Strukturen von Kobalt,^{288,289} Nickel,²⁸⁹⁻³⁰¹ Eisen,³⁰² Palladium³⁰³⁻³⁰⁵ und Platin³⁰⁶ in einer MS₂N₂–Umgebung mit 2–Aminothiophenolatliganden bekannt. Daher wurde neben der Variation der Amine bei der Umsetzung von Benzothiazol mit Metallacetaten und sekundären Aminen auch untersucht, inwieweit eine Veränderung der Metallsalze toleriert wird. Hierzu wurden zweiwerteige Metallacetate der vierten Periode eingesetzt, dazu zählen Mangan(II)–acetat, Kobalt(II)–acetat, Nickel(II)–acetat und Kupfer(II)–acetat.

4.1.6.1 Umsetzungen mit Manganacetat

Anders als bei der katalytischen Umsetzung von Benzothiazol mit sekundären Aminen in Acetonitril durch *Chang et. al.*¹¹⁸ bildete sich bei der Umsetzung von Benzothiazol mit sekundären Aminen mit einer stöchiometrischen Menge Manganacetat in Ethanol oder Acetonitril als Lösungsmittel ein unlöslicher, brauner, schleimiger Rückstand. Alternative Umsetzungen in DMSO führten nicht zur Bildung von Feststoffen.

4.1.6.2 Umsetzungen mit Kobaltacetat

Bei der stöchiometrischen Umsetzung von Kobalt(II)-acetat mit Benzothiazol und sekundären Aminen in Acetonitril oder Ethanol bildete sich ein (schwach) rosafarbener Niederschlag. Dieser wurde abfiltriert und mehrmals aus Acetonitril oder Ethanol umkristallisiert. Hierbei zeigte sich, dass der Großteil des gebildeten Produktes ein farbloser Feststoff war und der farbige Anteil nur in Spuren in dem ursprünglich ausgefallenen Feststoff enthalten war.

Durch Massenspektrometrie konnte 27 bei der Umsetzung von Kobalt(II)–acetat mit Piperidin und Benzothiazol nachgewiesen werden. Im Gegensatz zur entsprechenden Nickelverbindung 26 zeigte sich hier nur das Isotopengatter der Elemente C, H, N und S, da Kobalt ein Reinelement mit nur einem natürlich vorkommenden Isotop (⁵⁹Co) ist, während Nickel über mehrere stabile Isotope (⁵⁸Ni, ⁶⁰Ni, ⁶¹Ni, ⁶²Ni, ⁶⁴Ni; 100 : 39 : 2 : 5 : 1) verfügt.

Trotz Variation der Reaktionsbedingungen gelang es nicht, mehr als nur Spuren des gewünschten Produkts **27** entstehen zu lassen. Dabei wurden die Versuche bei Raumtemperatur und –25°C durchgeführt, um die Reaktionsgeschwindigkeit herabzusetzen. Neben Ethanol und Acetonitril wurden auch Dimethylformamid und Dimethylsulfoxid als Lösungsmittel eingesetzt; zudem wurde versucht nach unterschiedlichen Reaktionszeiten die Reaktion durch Zugabe von Wasser zu quenchen, da die Produkte in Wasser unlöslich sind.

Nicht versucht wurde, die Reaktion unter sauerstofffreien Bedingungen in entgasten Lösungsmitteln durchzuführen, um eine Oxidation der Produkte durch Luftsauerstoff zu Disulfiden zu unterbinden.

4.1.6.3 Umsetzungen mit Nickelacetat

Die Umsetzungen von Benzothiazol mit sekundären Aminen und Nickelacetat-tetrahydrat führten je nach Reaktionsbedingungen zu unterschiedlichen Produkten.

In ethanolischer Lösung mit Pyrrolidin und Piperidin ändert sich bereits wenige Minuten nach Zugabe des Benzothiazols zu den aminhaltigen Metallsalzlösungen die ursprünglich grüne Färbung der Lösung zu einem dunkleren Farbton; innerhalb eines Tages bildete sich ein olivgrüner Niederschlag. Mit Dibenzylamin, Di–*n*–Butylamin, Diethylamin und Morpholin konnte weder ein Farbumschlag beobachtet, noch ein Niederschlag erhalten werden. Die Verbindungen **25** und **26** konnten durch Elementaranalyse, Infrarotspektroskopie, Massenspektrometrie und Differenzkalorimetrie untersucht werden. Untersuchungen mittels NMR–Spekroskopie zeigten, dass die ¹H–Signale über einen weiten Bereich von über 50 ppm verteilt vorliegen und über große Halbwertsbreiten verfügen. Lediglich von **26** konnte ein Einkristall erhalten werden, der ausreichende Qualität für eine Strukturanalyse besaß.

Die Reaktionen mit unterschiedlichen Aminen wurden zudem in Acetonitril durchgeführt. Hierbei bildeten sich aus den Umsetzungen mit Pyrrolidin und Piperidin nach einer Reaktionszeit von zwei Wochen farblose Feststoffe. Durch Einkristallstrukturanalyse von **30**, sowie durch IR- und NMR-Spektroskopie, konnten die Feststoffe als Disulfide identifiziert werden.

Die kristallographischen Daten von **26** und **30** sind in Tabelle 27 zusammengefasst. Ausgewählte Bindungslängen und Winkel sind in Tabelle 28 aufgelistet.

Aus Acetonitril konnte bei der Umsetzung von Piperidin mit Benzothiazol und Nickelacetat die metallfreie Verbindung **30** erhalten werden, Abbildung 48. **30** kristallisiert in der orthorhombischen Raumgruppe *Pbca* mit acht Formeleinheiten je Elementarzelle.

Mit 2,044(3) Å sind die S–S–Abstände vergleichbar mit den Bindungslängen, die in **8**, 2,0396(9) Å, gefunden wurden. In ähnlichen, literaturbekannten Disulfiden, welche an aromatische Systeme gebunden sind, und in 2–Position über eine *Schiff*base–Funktion verfügen, wurden Abstände von 2,041(2) Å,³¹⁹ 2,0302(6) Å,³²⁰ 2,029(2)Å,³²¹ 2,025(2) Å,³²² und 2,026(2) Å³²³ gefunden.

	26	30
Summenformel	$C_{24}H_{30}N_4NiS_2$	$C_{24}H_{30}N_4S_2$
$M [g mol^{-1}]$	497,35	438,64
a/Å	15,103(2)	14,655(5)
b/Å	20,674(2)	17,403(6)
c/Å	16,549(2)	18,628(5)
α/°	90	90
β/°	111,90(1)	90
γ/°	90	90
Volumen / Å ³	4794,5(9)	4751(3)
Z	8	8
Kristallsystem	Monoklin	Orthorhombisch
Raumgruppe	$P2_{1}/c$	Pbca
T/K	293(2)	293(2)
R _{int}	0,2104	0,8441
R_1 (beob./alle) ^a	0,054 / 0,231	0,052 / 0,407
wR ₂ (beob./alle) ^a	0,064 / 0,087	0,106 / 0,207
S_{alle}^{a}	0,616	0,425

Tabelle 27. Kristallographische Daten von 26 und 30.

^a Definition: $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, $wR_2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]]^{1/2}$ $S_{alle} = \Sigma[w(F_o^2 - F_c^2)^2] / (N_{obs} - N_{param})]^{1/2}$.

	26		30
Ni1-S1	2,156(2)	S1-S2	2,044(3)
Ni1-S2	2,169(2)	S1C1	1,767(8)
Ni1–N1	1,961(4)	S2-C13	1,831(9)
Ni1–N2	1,950(4)	N1-C7	1,309(10)
N1-C7	1,312(6)	C7-N3	1,387(11)
C7-N3	1,329(6)	N2-C19	1,258(10)
N2-C19	1,304(6)	C19-N4	1,344(10)
C19-N4	1,337(6)	C1-S1-S2	104,7(3)
S1-Ni1-S2	88,49(6)	S1-S2-C13	105,2(4)
N1-Ni-N2	99,18(18)	C1-S1-S2-C10	-84,0(4)
S1-Ni1-N1	87,51(14)	C6-N1-C7-N3	179,6(9)
S2-Ni1-N2	85,79(14)	C15-N3-C16-N4	-176,0(9)
Torsionswinkel	11,6(2)		

Tabelle 28. Ausgewählte Bindungslängen [Å] und Winkel [°] von 26 und 30.

Abbildung 48. Molekülstruktur von 30. Thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt.

Mit 1,767(8) Å und 1,831(9) Å weichen die C–S–Abstände deutlich voneinander ab, liegen aber dennoch im Rahmen der Abstände von 1,790(6)–1,814(6) Å,³¹⁹ 1,779(2)–1,7815(16) Å,³²⁰ 1,744(4)–1,745(7) Å,³²¹ 1,758(6)–1,781(6) Å,³²² 1,782(2)–1,786(3) Å³²³ und 1,765(3)–1,771(3) Å,^{324,325} die in vergleichbaren Verbindungen gemessen wurden.

Auch der C1–S1–S2–C13–Diederwinkel von -84,0(4) stimmt sehr gut mit den Winkeln in literaturbekannten Verbindungen von $85,0(2)^{\circ}$,³¹⁹ $-86,14(8)^{\circ}$,³²⁰ $88,2(2)^{\circ}$,³²¹ $-90,3(3)^{\circ}$,³²² $82,34^{\circ}$,³²³ und $-89,29(13)^{\circ}$,^{324,325} überein.

Änhlich wie in **8** scheinen die formalen Doppel– und Einfachbindungen der Amidinfunktionen deutlicher lokalisiert zu sein als in den bereits besprochenen Zink–, Cadmium– und Quecksilberverbindungen.

Die Nickelverbindung **26** kristallisiert in der monoklinen Raumgruppe $P2_1/c$ mit acht Formeleinheiten pro Elementarzelle. Nickel ist verzerrt quadratisch–planar von zwei Stickstoff– und zwei Schwefelatomen umgeben, Abbildung 49.

Die S–Ni–S–, N–Ni–N– und S–Ni–N–Winkel liegen aufgrund der verzerrten, quadratischplanaren Struktur alle sehr nahe bei 90°, die Winkelsumme der vier Winkel bei 360,97°. Die beiden Thiophenolatliganden, die an das Nickelion koordinieren, sind um 11,6(2)° gegeneinander verdreht. Die Torsionswinkel, in vergleichbaren literaturbekannten Verbindungen liegen zwischen 13–23,5°, die Winkelsummen zwischen 360–365°. Je größer die Abweichung der Winkelsummen vom idealen Wert von 360° ist, desto größer ist auch der Torsionswinkel.

Abbildung 49. Molekülstruktur von 26. Thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt.

Die Ni–S–Abstände betragen 2,156(2) Å und 2,169(2) Å und sind damit vergleichbar mit Abständen in literaturbekannten Verbindungen von 2,182(5)–2,184(4) Å,²⁹⁰ 2,1802(11)²⁹¹ und 2,144(5)–2,182(2) Å.²⁹² Die Abstände sind sogar geringfügig kürzer als die Summe der Kovalenzradien der Elemente Nickel (1,24 Å) und Schwefel (1,03 Å).

Für die Ni–N–Abstände in **26** findet man 1,950(4) Å und 1,961(4) Å. Diese Abstände entsprechen ziemlich genau der Summe der Kovalenzradien der Elemente Nickel (1,24 Å) und Stickstoff (0,71 Å). Anders als bei den Zink–, Cadmium– und Quecksilberverbindungen liegen damit sowohl zwischen Nickel und Schwefel, als auch zwischen Nickel und Stickstoff kovalente Bindungen vor.

In den Thiophenolatkomplexen von Zink, Cadmium und Quecksilber, sind die Metallatome über kovalente M–S–Bindungen an die Liganden gebunden, der kovalente Bindungsanteil zwischen Stickstoffatomen und Metallzentrum ist gering. Den Metallatomen kann daher die formale Oxidationsstufe +II zugeordnet werden; die Liganden sind "innocent".³¹⁸

In den Nickelverbindungen ist die formale Oxidationsstufe des Metalls nicht bestimmbar; der Ligand ist "non-innocent". Non-Innocent-Liganden können einerseits als σ -Donoren, andererseits aber auch als π -Akzeptoren fungieren. Geringe energetische Unterschiede zwischen dem HOMO des Metalls und dem LUMO der Liganden führen zu einem permanenten Elektronentransfer zwischen dem Metallatom und dem Liganden. Durch radikalische Grenzstrukturen kann diese Fluktuation veranschaulicht werden, Abbildung 50. Diese d- π *-Übergange äußern sich in der Farbigkeit der Verbindungen im Feststoff und in Lösung. Im Gegenzug erfolgt aber auch eine starke kovalente Bindung des Liganden an das Metallzentrum, sowohl über die Schwefelatome als auch über die Stickstoffatome.

Abbildung 50. Verschiedene Redoxstufen der Nickel–Thiophenolatkomplexe.

Die Nickelverbindungen **25** und **26** sind gut in gängigen Lösungmitteln wie Aceton, Alkoholen, Dichlormethan und Pyridin löslich, in Diethylether und Tetrahydrofuran ist die Löslichkeit hingegen schlecht. Die Lösungen sind durchweg rot–violett gefärbt. Es wurden daher UV/VIS–Messungen an Lösungen und am Festkörper vorgenommen, die zeigen, dass in **26** die nicht solvatisierte Struktur drei Absorptionsmaxima bei 410, 530 und 715 nm besitzt, während in Lösung nur noch zwei Absorptionsmaxima bei 545 und 680 nm auftreten, Abbildung 51. Ein möglicher Grund hierfür könnte eine Verändertung in der Koordinationsumgebung des Nickels sein. In **25**, mit den sterisch weniger anspruchvollen Pyrrolidino–Liganden, gibt es keinen Hinweis auf eine Änderung der Koordinations– umgebung. Hier treten die Absorptionen in DMSO–Lösung bei 515 und 685 nm auf, während im Festkörper die Absorptionen bei 520 und 690 nm erfolgen.

Abbildung 51. UV/VIS–Spektren von 26 in DMSO–Lösung und im Festkörper.

Cyclovoltammetrische Messungen an **26** wurden bei Raumtemperatur in DMSO und Dichlormethan unter Verwendung von n-Bu₄N[PF₆] als Elektrolyt durchgeführt, Abbildung 52. Die Messungen belegen, dass die Oxidation zu einem Disulfid bereits bei einer geringen Spannung von -0,13 V bezüglich des internen Standards Ferrocen erfolgt. Bei einem deutlich negativeren Halbstufenpotential von -1,90 V erfolgt die reversible Ein-Elektronen-Reduktion der Verbindung unter Bildung eines Radikal-Anions, Abbildung 53. Eine zweite Ein-Elektronen-Reduktion bei einer Spannung von -2,69 V erfolgt vermutlich irreversibel unter Bildung von zwei Thiophenolat Anionen und Nickel(0).

Abbildung 52. Cyclovoltagramm der Verbindung 26, aufgenommen in DMSO / n-Bu₄NPF₆ bei Raumtemperatur.

Abbildung 53. Durch eine irreversible Oxidation bilden sich aus den Nickelkomplexen die Disulfide, durch eine reversibel verlaufende Reduktion lassen sich Radikal–Anionen erzeugen.

ESR-spektroskopische Messungen bestätigen, dass bei der reversiblen Reduktion Radikale entstehen; diese sind auf den organischen Liganden lokalisiert, Abbildung 54.

Abbildung 54. ESR-Spektrum von **25** (links) und **26** (rechts) in DMSO bei 110 K unter Elektrolyse mit 12 V.

Quantenmechanische Rechnungen wurden auf dem DFT–Level der Theorie mit Becke–1988– Austauschfunktional, B(88), mit dem Perdew–1986–Korrelationsfunktional, P86, sowie Valence–Triple–Zeta–Plus–Polarisations Basissätze, def2–TZVPP,^{273,272} durchgeführt.

Die Strukturoptimierung wurde an einkernigen C₂-symmetrischen Strukturen mit NMe₂-Resten durchgeführt. Geringe Abweichungen in den Abständen und Winkeln sind in erster Linie darauf zurückzuführen, dass es sich bei den durchgeführten Rechnungen um Gasphasenrechnungen handelt und daher Molekül-Molekül-Wechselwirkungen, wie sie in Festkörpern auftreten, teilweise nicht richtig berücksichtigt werden. Quantenmechanische Rechnungen ermöglichen nicht nur eine Strukturoptimierung oder Frequenzanalyse, sondern auch einen Einblick in die elektronische Struktur, Abbildung 55.

Abbildung 55. Die vier höchsten besetzten Molekülorbitale (HOMO) und die vier niedrigsten unbesetzten Molekülorbitale (LUMO) von 26.

Im Gegensatz zu den Zink–, Cadmium– und Quecksilberverbindungen sind die d_{z^2} –, d_{xy} –, d_{xz} – und d_{yz} –Orbitale des Nickels an den HOMO und LUMO des Komplexes beteiligt. Orbitale mit z–Komponente besitzen in einer quadratisch–planaren Umgebung eine niedrigere Energie als solche, die in der Ebene liegen. Die Rechnung zeigt zudem, dass die Struktur diamagnetisch sein sollte. Die Bandlücke von 1,3 eV ist jedoch verglichen mit den Zink–, Cadmium- und Quecksilberverbindungen klein und führt zur Farbigkeit der Verbindung, der Energieunterschied entspricht einer Wellenlänge von 950 nm.

Das LUMO wird durch das d_{xy}–Orbital gebildet, zwischen den koordinierenden Atomen und dem Nickel liegen dabei Knotenebenen. Die Besetzung dieses Orbitals mit Elektronen führt zur Schwächung der Ni–S– und Ni–N–Bindungen, der zweite irreversible Reduktionsprozess, welcher in den CV-Messungen beobachtet wurde, lässt sich somit durch den Zerfall des Moleküls infolge einer vollständigen Besetzung dieses Orbitals erklären.

	PM6	BP86 /	Exp
		def2-TZVPP	
Ni1-S1/2	2,1948	2,1841	2,156(2) / 2,169(2)
Ni1-N1/2	1,8982	1,9645	1,961(4) / 1,950(4)
N1/2-C7/16	1,3127	1,3117	1,312(6) / 1,304(6)
C7/16-N3/4	1,4373	1,3508	1,329(6) / 1,337(6)
S1-Ni1-S2	91,94	89,81	88,49(6)
N1-Ni1-N2	96,62	100,94	99,18(18)
S1/2-Ni1-N1/2	85,64	86,43	85,79(14) / 87,51(14)
N1/2-C7/16-N3/4	-179,33	165,67	-154,0(5)
$\nu_{C=N}$	1690	1604	1616
μ	10,222	9,974	
Е		-3223,69	

Tabelle 29. Vergleich zwischen quantenmechanischen und experimentellen Daten von 26.

4.1.6.4 Umsetzungen mit Kupferacetat

Bei den Versuchen, durch Umsetzung von Kupfer(II)–acetat–monohydrat mit 2 eq. Benzothiazol und 4 eq. eines sekundären Amins in ethanolischer Lösung Kupfer– Thiophenolate zu erhalten, zeigte sich, dass aus allen Umsetzungen vereinzelte, grüne Kristalle gewonnen werden konnten. Diese wurden mittels Einkristallstrukturanalyse als Tetra– μ –acetato–bis[benzothiazol–Kupfer(II)], [(C₇H₅NS)Cu]₂(μ –OAc)₄, **28**, identifiziert und durch zusätzliche Analytik wie Infrarotspektroskopie, UV/VIS–Spektroskopie und Differenz– kalorimetrie charakterisiert. Durch Umsetzung von Kupfer(II)–acetat–monohydrat mit 2 eq. Benzothiazol in Ethanol kann **28** mit einer Ausbeute von 93% gewonnen werden.

Die kristallographischen Daten von **28** sind in Tabelle 30 aufgelistet, ausgewählte Abstände und Winkel sind in Tabelle 31 zusammengefasst.

Verbindung **28** kristallisiert in der triklinen Raumgruppe $P\overline{1}$ mit einem Molekül pro Elementarzelle. Die Koordinationszahl von Kupfer ist sechs, mit vier Sauerstoffatomen in der basalen Ebene, einem axialen Stickstoffatom und einem axialen Kupferatom. Vier Acetatanionen wirken als zweizähnige Linker und verknüpfen zwei Kupferatome, wobei zwischen den beiden Kupferatomen ein kristallographisches Inversionszentrum liegt.

	3
Summenformel	$C_{22}H_{22}Cu_2N_2O_8S_2$
$M [g mol^{-1}]$	633,66
a/Å	7,1850(10)
b/Å	8,1918(12)
c/Å	11,8265(16)
$\alpha/^{\circ}$	106,516(16)
β/°	106,429(16)
γ/°	97,344(17)
Volumen / Å ³	623,49(18)
Z	1
Kristallsystem	Triklin
Raumgruppe	$P\overline{1}$
T/K	293(2)
R _{int}	0,038
R ₁ (beob./alle) ^a	0,032/0,051
wR ₂ (beob./alle) ^a	0,070/0,075
S _{alle} ^a	0,968

Tabelle 30. Kristallographische Daten von 28.

^a Definition: $\overline{R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|}, wR_2 = [\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]]^{1/2}$ $S_{alle} = \Sigma [w(F_o^2 - F_c^2)^2] / (N_{obs} - N_{param})]^{1/2}.$

Die Acetationen bilden eine leicht verzerrte quadratisch-planare Koordinationsumgebung um jedes der Metallatome, wobei jedes der Kupferatome um 0,2089(4) Å aus dieser Ebene herausgerückt ist. Dadurch vergrößert sich der Cu–Cu–Abstand auf 2,6378(7) Å, verglichen mit dem Abstand von 2,2180(7) Å zwischen den beiden basalen Ebenen. Der O–Cu–O–Winkel wird dabei von 180° (lineare Anordnung) auf durchschnittlich 167,8° verzerrt. Der Winkel zwischen der Cu–N–Bindung und der basalen Ebene beträgt 4,84(6)°. Die Cu–O–Abstände sind im Durchschnitt 1,972(10) Å und stimmen damit hervorragend mit Werten anderer Acetat–verbrückter Strukturen überein.

Abbildung 56. Molekülstruktur von 28. Thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt.

Abbildung 57. Elementarzelle von 28 mit Blickrichtung entlang [010]. Wasserstoffatome sind zur besseren Übersicht nicht abgebildet.

Die C–O–Abstände der Acetate sind im Mittel 1,254 Å, und zeigen, dass es sich um ein delokalisiertes Anion handelt. Der C–O–Abstand ist deutlich länger als in lokalisierten C=O– Doppelbindungen in organischen Estern (1,19 Å) und deutlich kürzer als eine C–O– Einfachbindung von 1,33 Å.³³⁵ Der strukturelle Prototyp von $(LCu)_2(\mu$ -OAc)_4–Komplexen ist das Kupfer(II)–acetatmonohydrat (L = Wasser). In dieser Verbindungsklasse liegen Cu–Cu–Bindungen vor;^{336,337} ähnliche Strukturen mit L= Benzimidazol³³⁸ und L = 2–Aminobenzothiazol³³⁹ konnten bereits bestimmt werden. Daneben sind aber noch eine Vielzahl weiterer Komplexe bekannt, da diese interessante magnetische Eigenschaften besitzen.³⁴⁰⁻³⁴² Das magnetische Moment von **28** beträgt 1,42 µ_B unter Normalbedingungen und ist ein eindeutiger Hinweis auf das Vorliegen einer Cu–Cu–Bindung.³⁴⁰

Cu1–O1	1,959(2)	N1–Cu1–Cu1 ⁱ	173,67(6)
Cu1–O2	1,969(2)	Cu1–O1– C8	123,5(2)
Cu1–O3	1,978(2)	Cu1–O2– C8	124,4(2)
Cu1–O4	1,984(2)	Cu1-O3-C10	121,5(2)
Cu1–Cu1 ⁱ	2,6378(7)	Cu1-O4-C10	125,4(2)
Cu1–N1	2,203(2)	O1–C8–O2	124,2(2)
O1–C8	1,253(3)	O3-C10-O4	124,7(3)
O2–C8	1,256(3)	O3-Cu1-O4	167,89(8)
O3–C10	1,261(3)	O1–Cu1–O2	167,71(7)
O4–C10	1,246(3)		

Tabelle 31 Ausgewählte Bindungslängen [Å] und Winkel [°] von 28.

Die Verbindung **28** zeigt zwei Absorptionen im UV-Spektrum bei 360 und 690 nm; die Absorption im UV-Bereich wird durch den Benzothiazol-Liganden infolge von $n-\pi$ - und π - π -Übergängen verursacht. Die Absorptionen stimmen mit jenen vergleichbarer Strukturen überein.^{343,344}

Abbildung 58. UV–VIS–Spektrum von 28 in Chloroform.

Im IR–Spektrum liegen die typischen Banden aufgrund der C–H–Valenz– und Deformations– schwingungen in den Bereichen 2930–3080 cm⁻¹ (v), 1430–1470 cm⁻¹ (δ), und 762 cm⁻¹ (aromatische Systeme mit vier benachbarten H–Atomen). Bei 1612 cm⁻¹ kann die intensive Bande der C=N-Valenzschwingung des Benzothiazols beobachtet werden, welche aufgrund der Kupfer-Koordination gegenüber unkoordiniertem Benzothiazol³⁴⁵ (1644 cm⁻¹) um 30 cm⁻¹ verschoben ist. Aromatische C-C-Schwingungen zeigen Absorptionen bei 1500–1600 cm⁻¹. C-C-, C-O- und C-N-Schwingungen lassen sich nur selten einer spezifischen Schwingung zuordnen und werden im Fingerprint-Bereich zwischen 1000–1430 cm⁻¹ beobachtet.^{173,246}

4.1.7 Umsetzungen von Quecksilber(II)-acetat mit Benzoxazol und sekundären Aminen

Beim Versuch Quecksilber(II)–acetat mit Benzoxazol und sekundären Aminen in Ethanol umzusetzen, blieb nach dem isothermen Verdampfen des Lösungsmittels ein öliger Rückstand zurück. Eine NMR–spektroskopische Untersuchung zeigte, dass eine Umsetzung zu den Quecksilber(II)–Phenolatkomplexen 22–24 erfolgreich durchgeführt worden war; die Aufarbeitung des Rohprodukts gestaltete sich jedoch schwierig. Bei der Umsetzung in Dimethylformamid und Aceton konnten die Produkte jedoch in guten Ausbeuten isoliert werden.

Abbildung 59. Allgemeines Reaktionsschema für die Umsetzung von Quecksilber(II)-acetat mit Benzoxazol und einem sekundären Amin, mit $NR_2 = Pyrrolidino (22)$, Piperidino (23) und Morpholino (24).

Die Quecksilber(II)–Phenolatkomplexe **22–24** wurden durch IR– und NMR–Spektroskopie, Elementaranalyse und Massenspektrometrie charakterisiert.

Es wurden Versuche unternommen, um von den Verbindungen Einkristalle zu erhalten, die zur Strukturanalyse geeignet sind, jedoch konnten nur von Verbindung **23** geeignete Kristalle dargestellt werden. Die kristallographischen Daten von **23** sind in Tabelle 32 zusammengefasst, die wichtigsten Bindungslängen und Winkel in Tabelle 33 aufgelistet.

Bei 23 handelt es sich, wie bei den homologen Thiophenolaten 16-19 und 21, um einen zweikernigen Komplex. Das Zellvolumen ist kleiner als bei dem Homologen 17, der

		23		
	Summenformel	$C_{24}H_{30}HgN_4O_2$	-	
	$M [g mol^{-1}]$	607,11		
	a/Å	9,366(13)		
	b/Å	10,679(14)		
	c/Å	12,916(17)		
	$\alpha/^{\circ}$	104,70(2)		
	β/°	104,40(2)		
	$\gamma/^{\circ}$	106,10(2)		
	Volumen / Å ³	1128(3)		
	Ζ	2		
	Kristallsystem	Triklin		
	Raumgruppe	P -1		
	T/K	293(2)		
	R _{int}	0,096		
	R ₁ (beob./alle) ^a	0,040 / 0,085		
	wR_2 (beob./alle) ^a	0,063 / 0,072		
	S_{alle}^{a}	0,808		
^a Definition:	$\overline{\mathbf{R}_{1}} = \Sigma F_{o} - F_{c} / \Sigma F_{o} , \mathbf{v}$ $S_{alle} = \Sigma [\mathbf{w}(F_{o}^{2} + \mathbf{v})]$	$wR_{2} = [\Sigma[w(F_{o}^{2}-F_{c}^{2})^{2}] / (N_{obs} - N_{param})]$ - F_{c}^{2} ²] / (N_{obs} - N_{param})]	$\sum_{1/2} [w(F_o^2)^2]]^{1/2},$	
C20 C19 C1 N4 N2 C24	C17 C15 C13 C13 C14 C15 C15 C15 C15 C15 C15 C15 C15 C15 C15			
O1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C2 C1 C2 C2 C1 C2 C2 C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	C12CB C11			

 Tabelle 32. Kristallographische Daten von 23.

16

C5

C4

NE

In der Literatur findet man nur wenige Verbindungen, bei denen Alkoxy–,³⁵⁸ Phenoxy– Liganden³⁵⁹ oder Oxine³⁶⁰ kovalent an Quecksilber gebunden sind; vergleichbare Strukturen mit einer HgO₂OⁱN₂–Koordinationsumgebung sind bislang nicht bekannt. Die Hg–O– Abstände in **23** sind 2,087(4) und 2,091(5) Å und damit in guter Übereinstimmung mit der Summe der Kovalenzradien¹⁶⁷ der Elemente Quecksilber (1,32 Å) und Sauerstoff (0,66 Å). In der Literatur findet man Bindungslängen von 2,050(3) Å in Alkoholaten,³⁵⁸ 2,05(2)–2,06(1) Å in Phenolaten³⁵⁹ und 2,161 Å in Oxin–Komplexen.³⁶⁰

Der Abstand zu dem verbrückenden Sauerstoffatom Hg1–O2ⁱ beträgt 2,956(6) Å und ist damit um 0,4 Å kürzer als der verbrückende Hg1-S2ⁱ-Abstand in 17. In der Literatur verbrücken die Phenolate und Oxin–Komplexe ebenfalls über schwächere Hg1–O2ⁱ Wechselwirkungen, 2,702(9)–2,719(9) Å³⁵⁹ und 2,790 Å.³⁶⁰

Der O1–Hg1–O2–Winkel von 157,5(2)° unterscheidet sich nur unwesentlich von dem Winkel der homologen Verbindung **17**, 153,76(5)°.

Wie auch für andere Verbindungen mit fünffacher Koordinationsumgebung, gibt es die Möglichkeit, das Koordinationspolyeder entweder als trigonale Bipyramide oder als quadratische Pyramide aufzufassen. Liegt eine verzerrte Koordinationsumgebung vor, so kann durch Bestimmung des winkelabhängigen Strukturparameters χ^{234} der Beitrag der beiden idealen Strukturen zu der tatsächlichen Struktur quantifiziert werden. Der berechnete Strukturparameter χ von 0,38 sagt aus, dass die Strukturen als stark verzerrte Mischungen aus trigonaler Bipyramide und quadratischer Pyramide aufzufassen ist, wobei der Anteil der quadratischen Pyramide größer ist.

Hg1-O1	2,087(4)	O1–Hg1–O2	157,5(2)
Hg1-O2	2,091(5)	N1–Hg1–N2	99,4(2)
Hg1.O2 ⁱ	2,956(6)	O1–Hg1–N1	74,8(2)
Hg1-N1	2,454(5)	O1-Hg1-N2	118,1(2)
Hg1-N2	2,569(5)	O2-Hg1-N2	72,5(2)
N1-C7	1,286(7)	O2–Hg1–N1	125,0(2)
C7-N3	1,325(7)	O1–Hg1–O2 ⁱ	96,7(2)
N2-C19	1,283(7)	O2–Hg1–O2 ⁱ	79,0(2)
C19-N4	1,322(8)	N1–Hg1–O2 ⁱ	78,9(2)
Hg1-Hg1 ⁱ	3,934(4)	N2–Hg1–O2 ⁱ	143,7(1)
		Hg1–O2–Hg1 ⁱ	101,0(2)
		C6-N1-C7-N3	170,3(6)
		C17-N2-C18-N4	171,8(7)

 Tabelle 33. Ausgewählte Bindungslängen [Å] und Winkel [°] von 23.

4.2 Zusammenfassung I

Abbildung 61. Allgemeines Reaktionsschema für die Bildung von Metallthiophenolat-Chelatkomplexen durch Umsetzung von Metallacetaten mit Benzothiazol und einem sekundären Amin.

Im Rahmen dieser Arbeit konnte gezeigt werden, dass neben unterschiedlichen Quecksilber(II)-salzen auch Zink-, Cadmium-, Nickel-, und Kobalt(II)-acetat in der Lage sind, mit Benzothiazol und sekundären Aminen in polaren Lösungsmitteln zu Thiophenolat-Chelatkomplexen zu reagieren.

Während Quecksilber(II)-chlorid, –thiocyanat oder Bis(trifluormethyl)quecksilber(II) erfolgreich zur Darstellung von Thiophenolatkomplexen eingesetzt werden konnten, führte die Verwendung von Chloriden und Carbonaten von Zink, Cadmium, Nickel, und Kobalt zu keiner Produktbildung.

Anders als bei den Umsetzungen mit Quecksilber(II)-salzen, die besonders gut in polaren, aprotischen Lösungsmitteln wie Dimethylsulfoxid oder Dimethylformamid durchgeführt werden konnten, zeigten die übrigen Metallsalze in polaren, protischen Lösungsmitteln, wie Ethanol oder Methanol hohe Reaktivität; in DMSO und DMF hingegen konnten keine Umsetzungen beobachtet werden.

Insbesondere cyclische Amine wie Pyrrolidin, Piperidin und Morpholin zeigen mit den Metallacetaten hohe Reaktivität. Diethylamin, Dibenzylamin und Di-*n*-Butylamin konnten zudem mit Quecksilber(II)-acetat zur Bildung von Thiophenolat-Chelatkomplexen eingesetzt werden.

Durch Umsetzung von Quecksilber(II)–acetat mit Benzoxazol und den cyclischen sekundären Aminen Pyrrolidin, Piperidin und Morpholin konnten zudem die Phenolat–Chelatkomplexe 22–24 erhalten werden.

Während die Zinkverbindungen 9 und 10 in ihren Kristallstrukturen einkernige Komplexe mit einem MS₂N₂-Motiv bilden, Abbildung 62, zeigt bei den Cadmiumverbindungen 13–15 nur der Komplex mit der fünfgliedrigen Pyrrolidino–Gruppe, **13**, eine einkernige Struktur, Abbildung 63, wobei die Verbindungen mit den sterisch anspruchvolleren sechsgliedrigren Piperidino- und Morpholinoringen in zweikernigen Komplexen **14** und **15** kristallisieren.

Abbildung 62. Molekülstrukturen der Verbindungen 9 (links) und 10 (rechts). Thermische Auslenkungsellipsoide¹⁶⁴ sind mit einer Wahrscheinlichkeit von 50% dargestellt.

Abbildung 63. Molekülstruktur von **13**, thermische Auslenkungsellipsoide¹⁶⁴ sind mit einer Wahrscheinlichkeit von 50% dargestellt.

Mit Quecksilber(II) bildet lediglich die sterisch gehinderte Verbindung 20 mit Dibenzylamino–Gruppen eine einkernige Struktur, Abbildung 64, während die übrigen Verbindungen 16–19 und 21 als zweikernige Chelatkomplexe vorliegen.

Abbildung 64. Molekülstruktur von **20**. Thermische Auslenkungsellipsoide¹⁶⁴ sind mit einer Wahrscheinlichkeit von 50% dargestellt.

Die Nickelverbindung **26** bildete ebenfalls einen einkernigen Komplex mit einer leicht verzerrten quadratisch–planaren Koordinationsumgebung des Metallions und kristallisiert in der monoklinen Raumgruppe $P2_1/c$, Abbildung 65.

Abbildung 65. Molekülstruktur von **26**. Thermische Auslenkungsellipsoide¹⁶⁴ sind mit einer Wahrscheinlichkeit von 50% dargestellt.

In der Kristallstruktur des Quecksilber(II)–Phenolats **23** wird das Quecksilberatom von drei Sauerstoffatomen und zwei Stickstoffatomen koordiniert; bei der Struktur handelt es sich um einen zweikernigen Komplex, Abbildung 66.

Abbildung 66. Asymmetrische Einheit von **23** (links); Molekülstruktur von **23** (rechts). Thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt.

Die mittleren M–S–Bindungslängen in den Zinkverbindungen 9 und 10 sind 2,287 Å. In den Quecksilberverbindungen 16–21 findet man durchschnittliche Bindungslängen von 2,350 Å. Die längsten gemittelten M–S–Abstände findet man in den Cadmiumkomplexen 13–15 mit 2,437 Å. Die Ni–S–Abstände sind mit 2,156 Å erwartungsgemäß kürzer als die Zn–S–Bindungen.

Die mittleren Hg-O-Abstände in Verbindung 23 betragen 2,089 Å.

Im Durchschnitt sind die M–N–Abstände der Zinkverbindungen 9 und 10 mit 2,058 Å am kürzesten, gefolgt von den Cd–N–Bindungslängen mit 2,421 Å in den Strukturen 13–15, am längsten sind die Hg–N–Abstände in den Komplexen 16–21 mit 2,704 Å. Die Ni–N–Bindungslängen sind mit 1,956 Å kürzer als in den Zinkverbindungen. Mit durchschnittlich 2,512 Å sind die Hg–N–Abstände der Phenolatverbindung 23 deutlich kürzer als in den Thiophenolatstrukturen 16–21.

Die S–M–S–Winkel der Zinkverbindungen 9 und 10 sind gemittelt 125,0°, gefolgt von den Cadmiumverbindungen 13–15 mit 134,6°; die durchschnittlichen S–Hg–S–Winkel in den Strukturen 16–21 von 159,9° sind bezeichnend dafür, dass Quecksilber in seinen Strukturen häufig eine lineare Anordnung von nur zwei Liganden bevorzugt.

Bei den gemittelten N–M–N–Winkeln zeigen die Quecksilberverbindungen 16–21 die kleinsten Winkel mit 93,7°, gefolgt von den Cadmiumverbindungen 13–15 mit 97,9°; die größten Winkel besitzen die Zinkverbindungen 9 und 10 mit 120,9°.

Die Koordinationsumgebung des Nickels ist quadratisch planar, sowohl die Winkel S–Ni–S und N–Ni–N als auch S–Ni–N liegen sehr nahe bei 90°.

M:	Ni	Zn	Cd	Hg	
E:	S	S	S	S	0
M-E	2,156	2,287	2,437	2,350	2,089
M-N	1,956	2,058	2,421	2,704	2,512
E-M-E	88,5	125,0	134,6	159,9	157,5
N-M-N	87,5	120,9	97,9	93,7	99,4

Tabelle 34. Gemittelte Bindungslängen [Å] und Winkel [°].

Quantenmechanische Rechnungen mit BP86–Dichtefunktionaltheorie–Level unter Verwend– ung von def2–TZVPP–Basissätzen ergeben eine gute Übereinstimmung zu den experimentell bestimmten Bindungslängen für die Pyrrolidino–Strukturen der Zink– 9, Cadmium– 13 und Quecksilberkomplexe 16.

Die Metall-Metall-Abstände der zweikernigen Komplexe liegen bei allen vorgestellten Verbindungen weit über der Summe der Kovalenzradien der Metalle und sind somit ein eindeutiges Anzeichen dafür, dass keine Wechselwirkungen zwischen den Metallatomen bestehen.

Abbildung 67. Elektronischer Einfluss der M–S2ⁱ–Wechselwirkung in zweikernigen Verbindungen auf die M–N2–Bindung.

In den zweikernigen Cadmium- und Quecksilberkomplexen unterscheiden sich die M-N1und M-N2-Abstände signifikant voneinander. Dies ist auf eine Schwächung der M-N2Bindung infolge der Besetzung nichtbindender Orbitale durch die Überlappung eines freien Elektronenpaares des Sⁱ-Atoms mit den σ - und σ *-Orbitalen der M-S-Bindung,

Abbildung 67.

Aufgrund der Anzahl an hergestellten zweikernigen Quecksilber–Thiophenolaten kann der Einfluss des S2ⁱ–Kontakts auf die Änderung der M–N–Bindungslängen tendenziell verfolgt werden, Abbildung 68. Die Hg1–N2–Abstände nehmen linear mit größer werdendem Hg1–S2ⁱ ab. Dies ist gleichbedeutend mit stärker werdenden Hg1–N2–Bindungen aufgrund einer schlechteren Überlappung von bindenden S2ⁱ–Orbitalen mit antibindenden σ^* –Orbitalen der Hg1–N2–Bindung.

Der Kurvenverlauf der Hg1–N1–Abstände verläuft genau entgegengesetzt zu den Kurven der Hg–S–Abstände. Dies führt zu der Vermutung, dass Energieunterschiede der Hg–S– Bindungen durch die Hg–N–Wechselwirkungen hervorgerufen bzw. kompensiert werden.

Abbildung 68. Korrelation zwischen Hg1–S2ⁱ, Hg–S1 und Hg1–S2–Abständen [Å] (links), sowie die Korrelation zwischen Hg1–S2ⁱ, Hg1–N1 und Hg1–N2–Abständen [Å] (rechts).

Bei der Umsetzung von Quecksilber(II)-acetat mit Benzothiazol und Dipyridylamin wurden keine Thiophenolat-Chelatliganden erzeugt, sondern es konnte Bis(2,2'-

Dipyridylamino)quecksilber(II) erhalten werden. In der Kristallstruktur ist Quecksilber(II) oktaedrisch von sechs Stickstoffatomen umgeben und bildet eine Kette entlang der c-Achse aus, Abbildung 69.

Abbildung 69. Koordination von Hg1 an die N3–Atome benachbarter 2,2'–Dipyridylamin– Liganden führt zur Bildung einer eindimensionalen Kette in **29**. Wasserstoffatome sind zur besseren Übersicht nicht abgebildet.

Anders als mit Nickel– und Kobalt(II)–acetat führte die Umsetzung von Benzothiazol mit sekundären Aminen und Kupfer(II)–acetat–monohydrat zur Bildung von Tetra– μ –acetato–bis[benzothiazolkupfer(II)], **28**, Abbildung 70. Die Verbindung kristallisiert in der triklinen Raumgruppe *P*T mit einem Molekül pro Elementarzelle. Kupfer besitzt in dieser Verbindung die Koordinationszahl sechs. Es wird durch vier Sauerstoffatome in der basalen Ebene, einem axialen Stickstoffatom und einem axialen Kupferatom koordiniert. Vier Acetatanionen wirken als zweizähnige Linker und verknüpfen zwei Kupferatome, wobei zwischen den beiden Kupferatomen ein kristallographisches Inversionszentrum liegt.

Abbildung 70. Molekülstruktur von **28**, thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt.

Die Verbindung **28** zeigt zwei Absorptionen im UV/VIS–Spektrum bei 360 und 690 nm, wobei die Absorption im UV–Bereich vom Benzothiazol–Liganden aufgrund von n– π – und π – π –Übergängen verursacht wird.

Neben den Kristallstrukturen wurden von den Verbindungen, sofern sie nicht paramagnetisch waren, wie die Nickelverbindungen **25** und **26** und die Kupferverbindung **28**, NMR–Spektren aufgenommen. Bei den Versuchen, die Zink–, Cadmium– und Quecksilber–Thiophenolat– komplexe in Lösung zu bringen, zeigte sich, dass sie in gängigen organischen Lösungsmitteln unlöslich sind. Jedoch wiesen sie in den aprotisch–polaren Lösungsmitteln Dimethyl– formamid und Dimethylsulfoxid eine ausreichende Löslichkeit auf, so dass NMR– Experimente durchgeführt werden konnten.

Die Protonen der N=C*H*–N–Amidin–Funktionen zeigen die stärksten paramagnetischen Verschiebungen von 8,25 (9), 8,08 (10), 8,20 (11) und 7,80 (12) ppm für die Zinkkomplexe, 8,10 (13), 7,84 (14) und 7,87 (15) ppm für die Cadmiumkomplexe, sowie 7,83 (16), 7,62 (17), 7,71 (18), 7,66 (19), 7,99 (20) und 7,66 (21) für die Quecksilberkomplexe. Mit chemischen Verschiebungen von 8,15 (22), 7,91 (23) und 7,97 (24) ppm besitzen die Quecksilber–Phenolatkomplexe einen geringfüg größeren paramagnetischen Shift als die analogen Thiophenolate 16–18.

Die α -Methylenprotonen der Amino-Komponenten N(CH₂R)₂ zeigen eine deutliche Linienverbreiterung und sind ein Zeichen für in Lösung stattfindende dynamische Prozesse. Da die fluktuierenden Prozesse in die NMR-Zeitskala fielen, konnte die Kinetik der

dynamischen Prozesse verfolgt werden. Sterische Effekte und die Delokalisation der Doppelbindung der N=CH–NR₂–Gruppe führen dazu, dass die internen Rotationsmoden der C–N–Einfachbindung bei Raumtemperatur nicht mehr äquivalent sind. Daher spalten die N– α –Methylen–Protonenresonanzen der Komplexe **9**, **13**, **16** und **19–21** zu stark verbreiterten Dubletts auf. Bei den übrigen Komplexen liegen stark verbreiterte Singuletts vor, so dass davon auszugehen ist, dass hier bereits die Koaleszenzpunkte überschritten wurden. Durch eine vollständige Linienformanalyse wurden die Geschwindigkeitskonstante *k* der Rotation bestimmt und mittels der *Eyring*–Gleichung die thermodynamischen Daten der Rotation bestimmt. Hierzu zählen die freie Enthalpie ΔG^{\sharp} , die Aktivierungsenthalpie ΔH^{\sharp} , die Aktivierungsentropie ΔS^{\sharp} und die Aktivierungsenergie E_a . Die entsprechenden Daten sind in Tabelle 35 zusammengefasst.

Tabelle 35: Thermodynamische Daten für die gehinderte Rotation in den Verbindungen 9,13, 16 und 19–21.

	T _c	k _c	$\Delta G^{\ddagger}_{298K}$	EA	ΔH^{\ddagger}	ΔS^{\ddagger}	\mathbb{R}^2
	[K]	$[s^{-1}]$	[kJ/mol]	[kJ/mol]	[kJ/mol]	[J/mol]	
9	324	330	$63,1 \pm 1$	$59,9 \pm 4$	$57,3 \pm 4$	$-20,3 \pm 8$	0,995
13	308	354	$60,2 \pm 1$	$66,7\pm4$	$64,0\pm4$	$11,9 \pm 8$	0,991
16	329	200	$65,6 \pm 1$	$60,2 \pm 4$	$57,6 \pm 4$	$-27,3 \pm 8$	0,990
19	322	322	$63,2 \pm 1$	$57,0 \pm 4$	$54,3 \pm 4$	$-29,3 \pm 8$	0,987
20	334	516	$63,4 \pm 1$	$55,0 \pm 4$	$52,4 \pm 4$	$-37,4 \pm 8$	0,997
21	333	334	$65,2 \pm 1$	$64,3 \pm 4$	$61,6 \pm 4$	$-12,3 \pm 8$	0,999

Es konnte gezeigt werden, dass die chemische Verschiebung des ¹⁹⁹Hg–Signals von Quecksilber(II)–chlorid in DMSO nur unwesentlich durch die Zugabe von Benzothiazol verändert wird, eine Koordination von Benzothiazol in Lösung ist daher unwahrscheinlich. Durch Zugabe von Aminen erfährt das ¹⁹⁹Hg–Signal hingegen einen starken paramagnetischen Shift aufgrund der Bildung kationischer Komplexe. Ein solcher Komplex konnte mit dem Amin Piperidin auskristallisert werden. In der Struktur von **33** gibt es zwei kristallographisch unterschiedliche Quecksilberlagen. Die chemische Umgebung der Lagen unterscheiden sich deutlich, zum einen existieren Ebenen von kationische [(C₅H₁₁N)₂HgCl]⁺– Ionen, zum anderen anionische [HgCl₃][–]–Ionen, Abbildung 71.

Abbildung 71. Elementarzelle von 33 mit Blickrichtung entlang [010]. Ausschnitt aus einer Ebene. Zur besseren Übersicht sind nur die Amin-Wasserstoffatome abgebildet.

Kinetische Studien zeigen, dass die Bildung des Quecksilber–Thiophenolatkomplexes **19**, welcher bei der Umsetzung von Quecksilber(II)–chlorid mit Benzothiazol und Diethylamin in DMSO– d_6 entsteht, einem Geschwindigkeitsgesetz zweiter Ordnung folgt, Abbildung 72.

Abbildung 72. Zeitabhängige Abnahme der Konzentration von Benzothiazol bei gleichzeitiger Bildung von 19 (links). Auftragung des Kehrwerts der Konzentration gegen die Zeit (rechts).

Aufgrund der gewonnen Erkenntnisse über das Koordinationsverhalten von Benzothiazol und Aminen bezüglich Quecksilber(II)–salzen und der Kinetik der Bildung der Metall– Thiophenolatkomplexe, kann eine gute Vorstellung über die in Lösung stattfindenden Prozesse erhalten werden.

Für die Bildung der Quecksilber-Thiophenolatkomplexe wird angenommen, dass im initialen Schritt ein kationischer Metall-Amin-Komplexes (I) entsteht, Abbildung 73, der nach dem

HSAB-Konzept eine weiche Lewis-Säure darstellt und somit bevorzugt mit der weichen Lewis-Base Benzothiazol reagiert. Die gebildete Zwischenstufe (II) reagiert unter Abspaltung eines Protons und Ringöffnung des Benzothiazol-Ringes zu einem Metall-Thiophenolatkomplex (III). Durch den Austausch des Thiophenolatliganden gegen ein Amin wird der katalytisch aktive Metall-Aminkomplex (I) regeneriert und der Katalysezyklus geschlossen.

Das gebildete Thiophenolatanion (IV) liegt, wie aus der Literatur bekannt, im Gleichgewicht mit dem geschlossenen Benzothiazolin (V) vor. Je nach Konzentration des Metallions in Lösung kommen zwei Folgereaktionen in Frage:

Wird das Metall in katalytischen Mengen zugesetzt so ist die Wahrscheinlichkeit gering, dass ein Thiophenolatanion mit einem Metall–Thiophenolatkomplex reagiert und der Katalyse– zyklus abgebrochen wird. Vielmehr wird die Oxidation des Benzothiazolins durch Luft– sauerstoff oder ein anderes Oxidationsmittel zu einem 2–substituierten Benzothiazolderivat bevorzugt (VI).

Ist die Metallkonzentration in Lösung jedoch sehr hoch, so liegt stets eine nicht unerhebliche Menge des Metall–Thiophenolatkomplexes vor. Die gebildeten Thiophenolatanionen (IV) können mit einem Äquivalent des Metall–Thiophenolatkomplexes (III) zu den in dieser Arbeit vorgestellten Produkten (VII) abreagieren. In Lösung bilden sich daher immer nur geringe Mengen des freien Thiophenolats und eine Oxidation mit gelöstem Luftsauerstoff ist deshalb unwahrscheinlich.

Abbildung 73. Postulierter Reaktionsmechanismus für die Darstellung von Metall-Thiophenolatkomplexen aus Benzothiazol und sekundären Aminen bei hoher Metallkonzentration und Bildung von 2–substituierten Benzothiazolderivaten bei geringer Metallkonzentration.

Die Substanzen wurden durch simultane Thermoanalyse auf Phasenübergänge, Zersetzungstemperaturen und Masseänderungen der Probensubstanz untersucht, die entsprechenden Daten sind in Tabelle 36 aufgelistet. Die Morpholino–Verbindungen des Zinks 11 und Cadmiums 15 sowie die Piperidino–Verbindung des Cadmiums 14 zersetzen sich ohne vorher zu schmelzen. Die Zersetzungsprodukte der thermischen Analysen der Zink– und Cadmiumverbindungen konnten mittels Pulverdiffraktometrie als Metallsulfide identifiziert werden. Das thermische Verhalten der Quecksilberverbindungen 16–21 unterscheidet sich deutlich von den Verbindungen der leichteren Gruppenhomologen. Alle Quecksilberverbindungen besitzen Schmelzpunkte; anders als die Zink- und Cadmiumverbindungen zersetzen sich die Komplexe beim weiteren Aufheizen jedoch nicht, sondern verdampfen unzersetzt. Im Gegensatz dazu führte das Erhitzen der Phenolatkomplexe dazu, dass die Verbindungen bereits bei Temperaturen unweit oberhalb von 100 °C anfingen sich zu zersetzen. Lediglich die Pyrrolidino-Verbindung **22** besitzt einen Schmelzpunkt.

	T_1	ΔH_1	T_2	ΔH_2	Δm_{total}
	[°C]	[kJ/mol]	[°C]	[kJ/mol]	[%]
9	258	23,5	272	44,4	-57,9
			343	46,0	
10	243	25,5	271	57,5	-64,5
			391	18,5	
11	_	_	261	99,6	-62,0
			343	14,3	
13	246	36,9	270	57,8	-61,7
14	_	_	288	124,8	-65,8
			335	4,7	
15	_	_	232	3,1	-62,1
			277	72,4	
			315	18,1	
16	204	41.7	256	169.0	-98.5
17	231	40.4	282	171.7	-98.2
18	240	49.3	280	147.3	-97.7
19	150	41.0	284	150.3	-98.1
20	136	45.4	278	218.5	99.3
21	58	21.2	282	171.5	-98.3
	77	27.4			
22	108	27,4	146	75,1	-96,2
23	_	_	124	28,1	-90,7
24	_	_	119	85,1	-89,2
			180	8,3	
			344	14,4	

Tabelle 36. Thermochemische Daten, Enthalpien von Phasenübergängen und Zersetzungen.

Das organische Ligandensystem erlaubt es, durch Infrarotspektroskopie funktionelle Gruppen anhand ihrer typischen Absorptionen zu identifizieren. Aromatische und nicht aromatische C– H–Valenz– (v) und Deformationsschwingungen (δ) führen zur Absorption in den Bereichen 2850–3040 cm⁻¹ (v), 1430–1470 cm⁻¹ (δ), 1370–1390 cm⁻¹ (δ) und 740–760 cm⁻¹. Das intensivste Signal wird durch die C=N–Valenzschwingungen der Amidinfunktionen verursacht und ist gegenüber metallfreien, organischen Strukturen zu kleineren Wellenzahlen verschoben. Die C–H–Schwingungen bei ungefähr 730 cm⁻¹ werden durch die vier benachbarten Protonen der aromatischen Ringe verursacht. Die Morpholin–Verbindungen **11**, **15** und **18** zeigen eine zusätzliche charakteristische Bande bei 1115 cm⁻¹.

	vC=N	vC-O-C	vC-H	vC-H
9	1614	_	733	708
10	1612	_	729	692
11	1616	1115	729	694
13	1616	-	731	706
14	1618	-	729	690
15	1624	1117	731	690
16	1616	-	733	708
17	1606	-	731	690
18	1626	1115	731	690
19	1620	-	732	688
20	1603	-	730	694
21	1608	-	725	698

Tabelle 37. Ausgewählte IR-Banden [cm⁻¹].

4.3 Umsetzungen von 2–Aminothiophenolaten mit Dimethylformamid– Dimethylacetal

Metallsalze der Elemente der Gruppe 12 konnten erfolgreich mit Benzothiazol und einer Reihe sekundärer Amine zu neuartigen Metall–Thiophenolatkomplexen umgesetzt werden. Manche Amine zeigten jedoch unter diesen Reaktionsbedingungen keine Reaktivität. Dazu zählen Amine in aromatischen Systemen wie Benzimidazol, Carbazol, Diphenylamin, 2,2'– Dipyridylamin, Indol, Imidazol und Pyrrol, aber auch Amine mit sterisch anspruchsvolleren Alkylresten wie Diisopropylamin.

Daher lag die Überlegung nahe, eine Syntheseroute zur Darstellung der Metall–Thiophenolate zu entwickeln, die einen vielfältigeren Zugang erlaubt. Betrachtet man die Synthese der Metall–Thiophenolatverbindungen retrosynthetisch, Abbildung 74, so ergeben sich neben den bereits besprochenen Synthesen aus Benzothiazol und sekundären Aminen, Weg A, noch eine weitere Möglichkeit durch eine Kondensationsreaktion eines 2–Aminthiophenolats mit einem Formamid, Weg B.

Abbildung 74. Retrosynthese der Metall-Thiophenolate aus A) Benzothiazol und einem sekundären Amin und B) aus einem 2–Aminthiophenolat und "Dimethylformamid".

In chemischen Reaktionen werden Formamide in der Regel am Carbonylkohlenstoff unter Bruch der C=O-Doppelbindung angegriffen. Aufgrund der Resonanzstabilisierung sind Amide jedoch unter Normalbedingungen häufig unreaktiv und bedürfen einer Aktivierung, um die Hydrolysereaktion zu beschleunigen. Dies kann entweder durch Umsetzung mit einem Alkylierungsreagenz wie Dimethylsulfat und anschließender Zugabe eines Alkoholats zur Darstellung eines Dialkylacetals erfolgen,¹³⁴⁻¹³⁷ oder aber durch Verwendung von Phosphoroxidtrichlorid zur Synthese des *Vilsmeier–Haack*–Reagens, wobei hier eine aktivierte kationische Struktur als reaktives Intermediat dient, Abbildung 8 (Seite 13).^{138–141} Andere Methoden zur Aktivierung von Formamiden beruhen beispielsweise auf der Umsetzung mit Phosphor(V)–chlorid.¹⁴³

Zur Synthese der Substrate wurden die Metallacetate zunächst in einer Mischung aus Dimethylformamid und Chloroform gelöst und unter intensivem Rühren mit zwei Äquivalenten einer Lösung von 2–Aminothiobenzol in Chloroform versetzt. Auf diesem Wege wurden für die Zinkverbindung 1 und Cadmiumverbindung 2 Ausbeuten von über 90% erhalten, die Darstellung der Quecksilber–Verbindung 3 ergab eine deutlich schlechtere Ausbeute von nur 62%. Aufgrund der besseren Löslichkeit der Quecksilberverbindung in organischen Lösungsmitteln gelang es durch Umkristallisieren aus einer bei 70 °C gesättigten Toluollösung geeignete Einkristalle für eine Strukturanalyse zu erhalten.

Das metallfreie Disulfid 4 wurde durch Oxidation von 2–Aminothiobenzol mit Wasserstoffperoxid unter alkalischen Bedingungen erhalten. Die Synthese orientierte sich an einer Vorschrift von *Gialdi et. al.*³²⁶ Die Verbindung konnte mittels Röntgenbeugung anhand der literaturbekannten Gitterparameter^{324,325} identifiziert werden.

Die weiteren Umsetzungen der Metall–Thiophenolatkomplexe erfolgten in wasserfreiem Methanol unter Schutzgasatmosphäre. Keines der Metall–Thiophenolate zeigte dabei eine große Löslichkeit. Zu den Suspensionen wurde das Dimethylformamid–Dimethylacetal in stöchiometrischen Mengen hinzugegeben und die Reaktionsansätze zwei Tage lang bei Raumtemperatur gerührt. Alternativ erfolgte die Darstellung innerhalb von 12 Stunden durch Erhitzen auf 50 °C. Insbesondere die Umsetzung der Quecksilberverbindung ließ sich optisch gut verfolgen, da das 2–Aminothiophenolat **3** gelb und das Produkt 7 der Umsetzung farblos ist. Nach beendeter Reaktion wurde das Lösungsmittel abdekantiert und die Feststoffe aus Aceton umkristallisiert. Die Zink– und Quecksilberverbindungen kristallisieren in kleinen Plättchen, während die Beschaffenheit der Cadmiumverbindung an Watte erinnerte.

Ausgehend von 4 wurde die Umsetzung zum Amidin 8 auf anderem Wege durchgeführt. Zunächst wurde Phosphor(V)–chlorid in Chloroform vorgelegt und anschließend mit Dimethylformamid versetzt, bevor die Zugabe einer Lösung von 4 in Chloroform erfolgte.

4.3.1.1 Kristallstrukturen

Die Kristallstrukturen der Verbindungen 3, 5, 7 und 8 konnten durch Einkristallstrukturanalyse bestimmt werden. Die kristallographischen Daten dieser Verbindungen sind in Tabelle 38 zusammengefasst, ausgewählte Bindungslängen und Winkel sind in Tabelle 39 aufgelistet.

	3	5	7	8
Summenformel	$C_{12}H_{12}HgN_2S_2$	$C_{18}H_{22}N_4S_2Zn$	$C_{18}H_{22}HgN_4S_2$	$C_{18}H_{22}N_{4}S_{2} \\$
$M [g mol^{-1}]$	448,95	423,89	559,11	358,52
a/Å	6,0500(10)	14,319(2)	12,7901(16)	16,8679(16)
b/Å	7,5791(13)	7,5568(12)	12,9842(17)	14,2312(10)
c/Å	13,995(2)	19,337(4)	12,9249(15)	15,8701(13)
α/°	93,760(14)	90	90	90
β/°	95,112(14)	111,932(12)	112,167(13)	93,237(7)
γ/°	96,693(14)	90	90	90
Volumen / Å ³	632,92(19)	1940,9(6)	1987,8(4)	3803,5(5)
Z	2	4	4	6
Kristallsystem	Triklin	Monoklin	Monoklin	Monoklin
Raumgruppe	$P\overline{1}$	$P2_{1}/c$	$P2_{1}/n$	$P2_{1}/c$
T/K	293(2)	293(2)	293(2)	250(2)
R _{int}	0,044	0,064	0,099	0,038
R ₁ (beob./alle) ^a	0,030/0,039	0,032/0,069	0,038/0,099	0,042/0,060
wR ₂ (beob./alle) ^a	0,068/0,074	0,067/0,079	0,060/0,068	0,113/0,121
$\mathbf{S}_{\mathrm{alle}}^{a}$	1,050	0,893	0,802	0,965
R_{1} (beob./alle) ^a wR ₂ (beob./alle) ^a S_{alle}^{a}	0,030/0,039 0,068/0,074 1,050	0,004 0,032/0,069 0,067/0,079 0,893	0,038/0,099 0,060/0,068 0,802	0,042/0,060 0,113/0,121 0,965

Tabelle 38. Kristallographische Daten von 3, 5, 7 und 8.

$$\begin{split} \text{Definition: } & R_1 = \Sigma ||F_o| - |F_c|| \ / \ \Sigma |F_o|, \ wR_2 = [\Sigma[w(F_o^2 - F_c^2)^2] \ / \ \Sigma[w(F_o^2)^2] \]^{1/2}, \\ & S_{alle} = \Sigma \ [w(F_o^2 - F_c^2)^2] \ / \ (N_{obs} - N_{param})]^{1/2}. \end{split}$$

Die Quecksilberverbindung 7 kristallisierte im monoklinen Kristallsystem in der Raumgruppe $P2_1/n$, die Zinkverbindung 5 und die metallfreie Disulfidverbindung 8 dagegen im monoklinen Kristallsystem in der Raumgruppe $P2_1/c$. Die Verbindungen 5 und 7 besitzen geringfügig unterschiedliche Zellvolumina, unterscheiden sich jedoch deutlich in ihren Gitterparametern. Da Verbindung 8 bei –25 °C im Tiefkühlschrank isoliert wurde, erfolgte die Röntgenbeugung ebenfalls bei dieser Temperatur, um zu vermeiden, dass die Kristalle durch einen Temperaturunterschied zerstört werden.

Der strukturelle Aufbau von Bis(2–Aminothiophenolato)quecksilber(II), **3** kann am besten als Schichtstruktur beschrieben werden, mit einem zweidimensionalen Netzwerk entlang der a,b– Ebene, Abbildung 75. Beinahe linear binden dabei zwei Thiophenolatliganden über Schwefelatome an Quecksilber(II). Einer der beiden Thiophenolatliganden wirkt dabei über das Schwefelatom S2 und die Aminfunktion N2 verbrückend zu einer Kette, der andere verbrückt über die Aminfunktion N1 die Ketten zu einer Schichtstruktur, Abbildung 76.

Abbildung 75. Elementarzelle von 3 mit Blickrichtung entlang [010]. Wasserstoffatome sind zur besseren Übersicht nicht abgebildet.

Abbildung 76. Ausschnitt aus der Struktur von **3** (links). Thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt. [Symmetriecode: (i) -x+2, -y+1, -z+2]; Koordinationsumgebung von Quecksilber (rechts). Wasserstoffatome sind zur besseren Übersicht nicht abgebildet, Abstände in Å.

Die Bindungen in dem Quecksilber–Komplex **3** zwischen Quecksilber und Schwefel stimmen mit 2,351(2) Å und 2,393(2) Å sehr gut mit der Summe der Kovalenzradien¹⁶⁷ der Elemente Quecksilber (1,32 Å) und Schwefel (1,05 Å) überein und deuten somit auf das Vorliegen kovalenter σ–Bindungen zwischen Quecksilber und Schwefel hin. Deutlich ist aber auch, dass sich die Hg–S–Abstände zwischen dem verbrückend und dem nichtverbrückend wirkenden Ligenden um 0,04 Å unterscheiden, so dass der verbrückend wirkende Ligand S2 schwächer gebunden ist. Die Verbrückung zu einer dimeren Einheit erfolgt dabei zum einen über das Schwefelatom S2 mit einem Hg1–S2–Abstand von 3,338(2) Å, zum anderen über das Stickstoffatom N2 mit einem Hg1–N2–Abstand von 2,833(5) Å. Die dimeren Einheiten wiederum verbrücken über das Schwefelatom S2 zu einer Kette, wobei hier der Hg1–S2– Abstand 3,144(1) Å beträgt. Über die Stickstoffatome N1 erfolgt die Verknüpfung der Ketten zu Schichten, die dabei beobachteten Hg1–N1–Abstände betragen 3,483(9) Å.

Bei Verbindung 5 handelt es sich, wie bereits bei den entsprechenden homologen Verbindungen 9 und 10, um einkernige Komplexe, Abbildung 77.

Abbildung 77. Molekülstruktur von **5**. Thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt.

Die Zn–S–Bindungslängen von 2,265(1) Å und 2,283(1) Å und sind somit von vergleichbarer Größe wie in den bereits besprochenen Strukturen 9, 2,291(2) Å, und 10, 2,283(2) Å. Alle Abstände stimmen gut mit der Summe der Kovalenzradien¹⁶⁷ der Elemente Zink (1,22 Å) und Schwefel (1,05 Å) überein, so dass davon ausgegangen werden kann, dass zwischen Zink und Schwefel kovalente σ -Bindungen vorliegen. In literaturbekannten Strukturen mit vergleichbarem ZnS₂N₂–Motiv findet man in guter Übereinstimmung Zn–S–Bindungslängen von 2,264(2)–2,266(2) Å,⁸⁴ 2,2564(8)–2,2771(8) Å,⁸⁶ 2,2766(9) Å,⁹¹ 2,238(2)–2,261(2) Å,⁹³ 2.264(2)–2.266(2) Å⁹⁴ und 2,262(1)–2,265(1) Å⁹⁵.

Die Zn–N–Abstände von 2,102(3) Å und 2,063(3) Å in **5** weichen geringfügig voneinander ab, stimmen aber sehr gut mit den Abständen überein wie sie in **9**, 2,055(5) Å, und **10**, 2,046(7) Å, gefunden werden, aber auch in vergleichbaren literaturbekannten Komplexen mit 1,997(6) Å,⁸⁴ 2,092–2,114 Å,⁸⁶ 2,107(4) Å,⁹¹ 2,105(4)–2,118(4) Å,⁹³ 2,062(5)–2,089(5) Å,⁹⁴ und 2,047(3)–2,067(3) Å⁹⁵.

In den Amidin–Gruppen findet man aufgrund der Resonanzstabilisierung für die formalen Doppel– und Einzelbindungen beinahe äquidistante Bindungslängen von N1–C7, 1,310(5) Å, C7–N3, 1,322(5) Å, und N2–C18, 1,321(5) Å, C18–N4, 1,320(5) Å.

Der S–Zn–S–Winkel von 120,38(4)° in **5** ist den Winkeln in den Verbindungen **9**, 122,52(8)°, und **10**, 124,98(15)° ähnlich und damit besteht auch kein großer Unterschied zu Winkeln in anderen vergleichbaren Strukturen, $122,8(1)^{\circ},^{84}$ 117,80(3)–125,93(4)°,⁸⁶ 123,33(7)°,⁹¹ 123,6(1)°,⁹³ 123,4(1)°,⁹⁴ 132,08(5)°.⁹⁵

Die N–Zn–N–Winkel in Komplex **5** sind mit 115,90(12)° etwas kleiner als die Winkel in **9**, 121,3(2)°, und **10**, 120,2(4)°, jedoch in guter Übereinstimmung mit Winkeln in analogen Verbindungen aus der Literatur, $100,5(3)^{\circ},^{84}$ 99,66(9)–118,43(10)°,⁸⁶ 116,7(2)°,⁹¹ 115,1(2)°,⁹³ 106,9(2)°⁹⁴ und 114,9(1)°.⁹⁵ Der Unterschied in den Winkeln ist auf den unterschiedlichen sterischen Anspruch der Dimethylamino–Liganden im Vergleich zu den Pyrrolidino– und Piperidino–Resten zu sehen und führt dazu, dass im Gegenzug die S1–Zn–N2–, 123,61(9)°, und S2–Zn1–N–Winkel, 122,51(8)°, größer ausfallen als in **9**, 119,8(1)°, und **10**, 118,7(2)°. Vergleicht man mit ähnlichen Verbindungen aus der Literatur, so findet man je nach sterischem Anspruch der Liganden eine breite Streuung, 115,8(2)°,⁸⁴ 118,88(8)–128,76(5)°,⁸⁶ 120,9(1)°,⁹¹ 120,0(1)–123,8(1)°,⁹³ 121,5(2)–128,9(2)°,⁹⁴ 113,9(1)–119,94(9)°.⁹⁵

Wie bei den Quecksilberverbindungen **16–19** und **21** liegt auch in **7** ein zweikerniger Komplex vor. Dabei wird das Metallatom fünffach von drei Schwefelatomen und zwei Stickstoffatomen koordiniert. Vier der Abstände bewegen sich im Rahmen, wie man es für kovalente oder koordinative Bindungen findet. Bei der fünften, verbrückenden Wechselwirkung handelt es sich um eine lange Hg–S–Koordination. Man kann die Koordinationsumgebung des Quecksilbers daher auch als 4+1 Koordination beschreiben.

Abbildung 78. Asymmetrische Einheit von 7 (links); Dimerer Aufbau der Molekülstruktur von 7 (rechts), Wasserstoffatome wurden zur besseren Übersicht nicht abgebildet. Thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt. [Symmetrie Code: (i) -x, -y, -z+2].

Die Hg–S–Abstände von 2,344(2)Å und 2,347(2) Å in 7 stimmen sehr gut mit der Summe der Kovalenzradien¹⁶⁷ der Elemente Quecksilber (1,32 Å) und Schwefel (1,05 Å) überein und sind damit typisch für kovalente σ –Bindungen. Die Abstände stimmen ebenso gut mit den durchschnittlichen Abständen in den Verbindungen **16–21** von 2,350(9) Å, oder den Bindungslängen zwischen Quecksilber und Schwefel in neutralen Komplexen mit einer HgS₂N₂–Umgebung von 2,3376(2)–2,724(3) Å,⁸⁵ 2,329(4)–2,345(4) Å⁹⁴ und 2,391(2) Å⁹⁶ überein.

Der Abstand zwischen Quecksilber und dem verbrückenden Schwefelatom Hg1–S2ⁱ, 3,744(2) Å, ist deutlich länger als die Summe der van der Waals–Radien der Elemente. Im Vergleich zu den zweikernigen Komplexen **16–19** und **21** ist der Abstand ebenfalls deutlich länger, die Wechselwirkung zwischen den einzelnen Kernen daher schwächer.

Die Hg–N–Bindungen sind 2,622(6)Å und 2,786(5) Å lang und damit praktisch identisch mit den durchschnittlichen Bindungslängen von 2,641(32) Å und 2,766(108) Å in **16–21.** Die Bindungslängen sind aber dennoch deutlich länger als die Summe der Kovalenzradien¹⁶⁷ der Elemente Quecksilber (1,32 Å) und Stickstoff (0,71 Å), so dass kovalente Bindungen hier ausgeschlossen werden können. Sie liegen aber innerhalb der Summe der van der Waals-Radien¹⁶⁹ der Elemente Quecksilber (1,55 Å) und Stickstoff (1,55 Å). Für Komplexe mit einer

HgS₂N₂–Umgebung findet man in der Literatur Hg–N–Bindungslängen von 2,615(2) Å und 2,724(3) Å,⁸⁵ 2,808(13) Å und 2,860(14) Å,⁹⁴ sowie 2,397(8) Å.⁹⁶ Wie auch bei den Quecksilberverbindungen **16–19** und **21**, sowie den Cadmiumverbindungen **14** und **15**, ist für die "Asymmetrie" der Bindungslängen die Ausbildung von zweikernigen Komplexen verantwortlich.

Der S1-Hg1-S2-Winkel von $163,54(7)^{\circ}$ passt sehr gut zu den Winkeln der anderen Quecksilberverbindungen **16–21**, die von $153,76(5)^{\circ}$ in Komplex **17** bis $166,00(4)^{\circ}$ in Komplex **21** reichen.

Der N1–Hg1–N2–Winkel ist mit 85,1(2)° ist deutlich kleiner als die Winkel der anderen Quecksilberverbindungen mit durchschnittlich 93,7° wobei dies auf den vergleichsweise geringeren sterischen Anspruch und die größere Flexibilität der Methylgruppen zurück– zuführen ist.

	3	5	7		8
M1-S1	2,351(2)	2,2655(8)	2,344(2)	S1–S2	2,0396(9)
M1-S2	2,393(2)	2,2828(8)	2,347(2)	S1C1	1,781(2)
M1-S2 ⁱ	3,338(2)	_	3,744(2)	S2C10	1,776(2)
M1-N1	_	2,098(2)	2,622(6)	N1-C7	1,285(3)
M1-N2	2,833(5)	2,063(2)	2,786(5)	C7-N1	1,327(4)
M1-M1 ⁱ	_	—	4,7644(7)	N3-C16	1,275(3)
N1-C7	_	1,316(3)	1,294(8)	C16-N4	1,338(3)
C7–N3	_	1,431(3)	1,323(8)	C1-S1-S2	106,62(8)
N2-C19	_	1,318(3)	1,295(8)	S1-S2-C10	105,44(8)
C19–N4	_	1,431(3)	1,317(8)	C1-S1-S2-C10	92,0(1)
S1-M1-S2	165,45(5)	120,41(3)	163,54(7)	C6-N1-C7-N2	174,3(3)
N1-M-N2	_	115,92(8)	85,1(2)	C15-N3-C16-N4	175,0(2)
S1-M1-N1	_	89,10(6)	77,5(1)		
S1-M1-N2	114,7(1)	123,51(6)	116,4(1)		
S2-M1-N2	78,9(1)	88,95(6)	74,5(1)		
S2-M1-N1	_	122,44(6)	117,1(1)		
$S1-M1-S2^{i}$	_	_	95,35(7)		
S2-M1-S2 ⁱ	_	_	79,60(6)		
N1-M1-S2 ⁱ	_	_	100,40(6)		
N2-M1-S2 ⁱ	_	—	143,0(1)		
$M1-S2-M1^{i}$	_	_	100,40(6)		

Tabelle 39. Ausgewählte Bindungslängen [Å] und Winkel [°] von 3, 5, 7 und 8.

Symmetrie Code: (i) -x, -y, -z+2

Eine fünffache Koordinationsumgebung kann entweder als trigonale Bipyramide oder als quadratische Pyramide beschrieben werden. Durch Bestimmung des winkelabhängigen Strukturparameters χ kann der Beitrag der beiden idealen Strukturen zu der tatsächlichen Struktur quantifiziert werden. Der berechnete Strukturparameter χ von 0,40 besagt, dass die Struktur als stark verzerrte Mischungen aus trigonaler Bipyramide und quadratischer Pyramide beschrieben werden kann, wobei der Beitrag der quadratischen Pyramide leicht überwiegt.

In der metallfreien Verbindung **8** findet man einen S–S–Abstand von 2,0396(9) Å. Dieser ist damit genauso groß wie Abstände in vergleichbaren, literaturbekannten Disulfiden, die an aromatische Systeme gebunden sind und in 2–Position über eine *Schiff*base–Funktion verfügen, 2,041(2) Å,³¹⁹ 2,0302(6) Å,³²⁰ 2,029(2)Å,³²¹ 2,025(2) Å,³²² und 2,026(2) Å.³²³ Auffällig ist, dass die S–S–Abstände kaum variieren; so findet man auch in Bis(2–Aminobenzol)disulfid einen übereinstimmenden Abstand von 2,0687(9) Å.^{324,325}

Die S–C–Abstände betragen 1,776(2) und 1,781(2) Å und sind damit identisch mit Abständen in vergleichbaren Verbindungen, 1,790(6) und 1,814(6) Å,³¹⁹ 1,7790(16) und 1,7815(16) Å,³²⁰ 1,744(4) und 1,745(7) Å,³²¹ 1,758(6) und 1,781(6) Å,³²² 1,782(2) und 1,786(3) Å³²³ und 1,765(3) und 1,771(3) Å.^{324,325}

Der Diederwinkel C1–S1–S2–C10 ist mit 92,00(11)° ebenfalls vergleichbar mit den Diederwinkeln von $85,0(2)^{\circ},^{319}$ –86,14(8)°,³²⁰ $88,2(2)^{\circ},^{321}$ –90,3(3)°,³²² $82,34^{\circ}$ ³²³ und – $89,29(13)^{\circ},^{324,325}$ die in literaturbekannten Verbindungen gefunden werden.

Anders als bei den bereits besprochenen Zink–, Cadmium– und Quecksilberverbindungen mit Amidin–Funktionen sind eine Lokalisation der formalen C=N–Doppelbindung, 1,285(3) und 1,275(3) Å, und der C–N–Einfachbindung, 1,327(4) und 1,338(3) Å, deutlich zu erkennen. Der mittlere Unterschied der Bindungslängen beträgt 0,05 Å, während in den bereits besprochenen Zink–, Cadmium– und Quecksilberverbindungen der durchschnittliche Unterschied lediglich 0,03 Å beträgt. Die Koordination an ein Metallzentrum scheint daher dazu zu führen, dass die Doppelbindung innerhalb der Amidin-Funktion stärker delokalisiert vorliegt.

Abbildung 79. Molekülstruktur von 8, thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt.

4.3.1.2 NMR-Spektroskopie

Sowohl die Ausgangsverbindungen 1–4 wie auch die Produkte 5–8 wurden vollständig mittels NMR–Spektroskopie charakterisiert. Die Produkte zeigten dabei Koaleszens, weswegen an den Verbindungen 5–8 dynamische NMR–Spektroskopie gemessen wurde.

Die Edukte zeigen im ¹H–NMR keine Absorptionen der Thiolfunktion mehr, sondern lediglich Absorptionen der Aminfunktionen bei 5,84 (1), 4,96 (2), 5,17 (3) und 5,44 (4) ppm, sowie die typischen aromatischen Signale. Im ¹³C–NMR zeigen sich die erwarteten Signale im aromatischen Verschiebungsbereich, wobei die quartenären Kohlenstoffatome mit der Aminfunktion den stärksten paramagnetischen Shift aufweisen. Mit einem Wert von 149,7 ppm zeigte die metallfreie Verbindung 4 den stärksten Shift, so dass davon ausgegangen werden kann, dass hier aufgrund einer fehlenden Koordination an ein Metallzentrum die Elektronegativität des Stickstoffatoms (–I–Effekt) am stärksten zum Tragen kommt.

Die Ausgangsverbindungen wurden in trockenem Methanol mit Dimethylformamid-Dimethylacetal umgesetzt und anschließend aus Aceton umkristallisiert. Trotz der deutlich höheren Löslichkeit in organischen Lösungsmittlen, verglichen mit den im Kapitel 4.1 besprochenen Verbindungen, wurden die NMR–Spektren der Produkte **5–8** jedoch zur besseren Vergleichbarkeit ebenfalls in DMSO– d_6 gemessen.

Wie bereits bei den anderen Amidin–Funktionen zeigte sich, dass die Koordination an ein Zinkzentrum, verglichen mit den anderen Metallen der Gruppe, zu einem stärkeren paramagnetischen Shift der Signale führt, 8,09 (5), 7,36 (6), 7,61 (7) und 7,83 (8) ppm.

Die aromatischen Protonen der Verbindungen **5–8** sind gegenüber ihren Ausgangsverbindungen **1–4** geringfügig paramagnetisch verschoben. Die 13 C–chemischen Verschiebungen der Amidinfunktion N=*C*H–N sind 159,3 (**5**), 158,3 (**6**), 156,2 (**7**) und 153,2 (**8**) ppm.

Die Koaleszenstemperaturen liegen bei 338 K (5), Abbildung 80, 311 K (6), Abbildung 81, 332 K (7), Abbildung 82 und 319 K (8), Abbildung 83. Die thermodynamischen Daten für die Freie Aktivierungsenthalpie ΔG^{\ddagger} wurden aus den experimentellen Daten berechnet und liegen alle in der gleichen Größenordnung, Tabelle 40. Die Werte der Aktivierungsenergie E_a, –enthalpie ΔH^{\ddagger} und –entropie ΔS^{\ddagger} zeigen eine gewisse Streuung, die sich aufgrund der größeren Fehlergrenzen wieder relativiert. Am Koaleszenspunkt weist die Zinkverbindung 5 die größte Rotationsfrequenz k_c und damit die größte Halbwertsbreite auf, die über die Cadmium– 6 und Quecksilberverbindung 7 hin zur metallfreien Verbindung 8 abnehmen.

Abbildung 80. Ausschnitt aus den mit variabler Temperatur gemessenen ¹H–NMR Spektren (400,13 MHz, DMSO– d_6) von **5** bei 298 K, 308 K, 318 K, 328 K, 338 K und 348 K; Lösungsmittelsignale (Wasser in DMSO– d_6) sind mit einem Asterisk gekennzeichnet; *Eyring*–Plot für **5**.

Abbildung 81. Ausschnitt aus den mit variabler Temperatur gemessenen ¹H–NMR Spektren (400,13 MHz, DMSO– d_6) von **6** bei 298 K, 308 K, 311 K, 318 K, 328 K und 338 K; Lösungsmittelsignale (Wasser in DMSO– d_6) sind mit einem Asterisk gekennzeichnet; *Eyring*–Plot für **6**.

Abbildung 82. Ausschnitt aus den mit variabler Temperatur gemessenen ¹H–NMR Spektren (400,13 MHz, DMSO– d_6) von 7 bei 298 K, 308 K, 318 K, 328 K, 332 K und 338 K; Lösungsmittelsignale (Wasser in DMSO– d_6) sind mit einem Asterisk gekennzeichnet; *Eyring*–Plot für 7.

Abbildung 83. Ausschnitt aus den mit variabler Temperatur gemessenen ¹H–NMR Spektren (400,13 MHz, DMSO– d_6) von **8** bei 298 K, 308 K, 318 K, 319 K, 328 K und 338 K; Lösungsmittelsignale (Wasser in DMSO– d_6) sind mit einem Asterisk gekennzeichnet; *Eyring*–Plot für **8**.

Tabelle 40: Thermodynamische Daten für die gehinderte Rotation in den Verbindungen 5–8.

	T _c	kc	$\Delta G^{\ddagger}_{298K}$	E _A	ΔH^{\ddagger}	ΔS^{\ddagger}	R ²
	[K]	$[s^{-1}]$	[kJ/mol]	[kJ/mol]	[kJ/mol]	[J/mol]	
5	338	285	$66,7 \pm 1$	$67,6 \pm 4$	$64,9 \pm 4$	$-6,6 \pm 8$	0,998
6	311	265	$61,7 \pm 1$	$59,4 \pm 4$	$57,1 \pm 4$	$-15,1 \pm 8$	0,999
7	332	182	$67,0 \pm 1$	$67,7 \pm 4$	$65,0 \pm 4$	$-6,9 \pm 8$	0,999
8	319	93	$66,0 \pm 1$	$62,6 \pm 4$	$60,0 \pm 4$	$-20,2 \pm 8$	0,998

4.3.1.3 Infrarot-Spektroskopie

Die funktionellen Gruppen der Verbindungen **1–8** lassen charakteristische Schwingungen erwarten. So führen die aromatischen und nichtaromatischen C–H–Valenz– (v) und Deformationsschwingungen (δ) zu Absorptionen in den Bereichen 3040–2850 cm⁻¹ (v) und 1470–1430 cm⁻¹ (δ) 1390–1370 cm⁻¹ (δ), 760–740 cm⁻¹ (aromatische Systeme mit vier benachbarten H–Atomen).

	v _{C=N}	v _{N-H}	v _{C-H}	v_{C-H}
1	_	3429	_	746
		3232		
2	_	3302	_	741
3	_	3408	_	750
		3311		
4	_	3377	_	754
		3298		
5	1630	_	2798	760
6	1628	_	2806	758
7	1626	_	2802	748
8	1632	_	2810	756

Tabelle 41. Ausgewählte IR–Banden $[cm^{-1}]$ der Komplexe 9–11.

In Tabelle 41 sind charakteristische Banden der Verbindungen 1–8 aufgelistet. Die Ausgangsverbindungen 1–4 enthalten zudem typische N–H–Absorptionen aufgrund der Aminfunktionen im Bereich 3300–3500 cm⁻¹. Hierbei ist auffällig, dass alle Verbindungen zwei unterschiedliche N–H–Absorptionen zeigen, außer die Cadmiumverbindung 2, bei der nur eine Bande beobachtet wird. Dies könnte bedeuten, dass der strukturelle Aufbau sich deutlich von den anderen Verbindungen unterschiedet und alle Aminfunktionen das gleiche Verknüpfungsmuster zeigen, während von 3 bereits bekannt ist, dass die Aminfunktionen ein unterschiedliches Koordinationsverhalten zeigen.

Die Produkte **5–8** enthalten zum einen die Amidinfunktion, welche in organischen Verbindungen aufgrund der C=N–Valenzschwingung typische Banden im Bereich 1640–1690 cm⁻¹ ergibt; sie werden jedoch aufgrund der Koordination an das Metallzentrum zu kleineren Wellenzahlen verschoben. Die NMe₂–Gruppen ergeben typische Banden bei 2780–2820 cm⁻¹. Aromatische C-C-Schwingungen findet man bei 1500–1600 cm⁻¹, C-N Schwingungen im Fingerprint-Bereich zwischen 1000–1430 cm⁻¹. Somit geben sie zwar dem IR–Spektrum ein charakteristisches Muster, besitzen jedoch keinen weiteren diagnostischen Wert.^{173,246}

4.3.1.4 Simultane Thermoanalyse

Durch langsames Aufheizen (10 °C/min) im Inertgasstrom (Stickstoff, 25 mL/min) wurden die thermochemischen Eigenschaften der Verbindungen 1–8 untersucht und die daraus gewonnenen Daten in Tabelle 42 zusammengefasst.

Wie auch die Zinkverbindungen 9–11 und die Cadmiumverbindungen 13–15 besitzen weder die Komplexe 5 und 6 noch die 2–Aminothiophenolate 1 und 2 einen Schmelzpunkt. Vielmehr zersetzen sie sich, wobei die Zinkverbindungen im Allgemeinen thermisch stabiler sind als die Cadmiumverbindungen.

Die metallfreien Verbindungen sowie die Quecksilberverbindungen sind thermisch so stabil, dass sie sowohl einen Schmelzpunkt als auch einen Siedepunkt besitzen. Interessanterweise unterscheiden sich die Schmelz– und Siedepunkte der Verbindungen 7 und 8 nur um wenige Grad, die Quecksilberverbindung 7 benötigt jedoch beinahe die doppelte Energiemenge für den zweiten Phasenübergang. Da bei den Verbindungen 3, 7 und 8 der zweite Phasen– übergang mit einer beinahe vollständigen Massenänderung einhergeht, ist davon auszugehen, dass es sich hierbei um einen Siedevorgang handelt, bei dem die Verbindungen unzersetzt in die Gasphase übergehen.

Der gefundene Schmelzpunkt von 4 ist in guter Übereinstimmung mit Literaturdaten für diese Verbindung von 88–90 °C.²⁴⁸ Die Zersetzung erfolgt bei 226 °C. Anhand des Massenverlusts wird angenommen, dass es sich bei dem Tiegelrückstand um Schwefel handelt. Eine genauere Untersuchung durch Energiedispersive Röntgenspektroskopie oder Pulveraufnahmen wurde jedoch nicht durchgegführt.

	T ₁	ΔH_1	T ₂	ΔH_2	Δm_{total}
	[°C]	[kJ/mol]	[°C]	[kJ/mol]	[%]
1	_	—	360,1	-79,3	-56,6
2	—	—	321,5	-29,2	-44,5
			356,9	-15,9	
3	144,5	-32,4	203,9	-84,8	-99,0
4	90,1	-24,0	225,7	-65,2	-88,5
5	—	—	286,1	-101,7	-52,6
6	—	-	264,3	-96,9	-54,0
7	158,9	-42,4	260,1	-172,9	-98,9
8	159,5	-32,6	258,7	-97,6	-98,9

Tabelle 42. Thermochemische Daten, Enthalpien von Phasenübergängen und Zersetzungen.

4.3.2 Quantenmechanische Rechnungen

Die quantenmechanischen Rechnungen wurden mit der Gaussian 03 Rev E.01²⁶⁵ Software durchgeführt. Die Strukturen wurden zunächst mittels einfacher semiempirischer Methoden unter Verwendung des "Parameterization Method 6⁴²⁶² optimiert und anschließend durch eine

*Hartree–Fock–*Rechnung²⁶³⁻²⁶⁴ unter Verwendung des def2–SV(P)–Basissatzes^{273,272} weiter optimiert.

In dieser Arbeit wurde das *Becke*–1988–Austauschfunktional, B(88), mit dem *Perdew*–1986– Korrelationsfunktional, P86, sowie Valence–Triple–Zeta–Plus–Polarisations–Basissätze mit Kernpotentialen für schwere Elemente, def2–TZVPP,^{273,272} verwendet.

Die Strukturoptimierung wurde an einkernigen C₂–symmetrischen Strukturen durchgeführt, wie sie in Lösung und in der Gasphase vorliegen und durch NMR–Spektroskopie und Massenspektrometrie detektiert wurden. Abweichungen in den Winkeln sind in erster Linie darauf zurückzuführen, dass es sich bei den durchgeführten Rechnungen um Gasphasenrechnungen handelt und daher Molekül–Molekül–Wechselwirkungen, wie sie in Festkörpern auftreten, nicht berücksichtigt werden.

Quantenmechanische Rechnungen ermöglichen nicht nur eine Strukturoptimierung oder Frequenzanalyse, sondern auch einen Einblick in die elektronische Struktur.

Der Zinkkomplex 5 bildet auch in seiner Kristallstruktur einen einkernigen Komplex. Dennoch weichen die Winkel um das Zentralatom, insbesondere der S1–Zn1–S2–Winkel, teilweise recht deutlich von den experimentellen Werten ab, Tabelle 43. Die Bindungslängen stimmen dafür sehr gut mit den gemittelten experimentell gefundenen Werten überein. Eine Frequenzanalyse ergab ausschließlich positive Werte, so dass gesagt werden kann, dass es sich bei den simulierten Strukturen nicht um einen Übergangszustand, sondern um ein Minimum handelt. Die intensivste simulierte Schwingung stimmt für alle Verbindungen sehr gut mit den experimentell gefundenen Werten der N=C–Schwingungsfrequenzen überein.

Auch die HF-Strukturoptimierung mit dem einfacheren Basisatz SV(P), ja selbst die Optimierung mit der semiempirischen Methode liefert sehr gute Übereinstimmung zwischen den theoretischen und experimentellen Daten.

Sowohl die HOMO als auch die LUMO sind zweifach entartet. Das Zinkatom ist an den vier höchsten besetzten und unbesetzten Molekülorbitalen nur in Form von Knotenebenen beteiligt. Vielmehr spielen hier das ausgedehnte π -System und die beiden Schwefelatome eine wichtige Rolle, Abbildung 84. Es kann zudem gesagt werden, dass die Schwefelatome nicht nur durch eine σ -Bindung an das Metallatom gebunden sind, sondern es wird auch durch die besetzten Schwefel-3p-Orbital über p_{π} -d_{\pi}-Wechselwirkungen zusätzliche Elektronendichte auf das Metallzentrum übertragen, was zu einer zusätzlichen Stabilisierung führt.

	PM6	HF /	BP86 /	Exp
		def2-SV(P)	def2-TZVPP	
Zn1-S1/2	2,2180	2,3259	2,2841	2,2653(11)/2,2828(11)
Zn1-N1/2	2,0711	2,1673	2,1355	2,063(3)/2,102(3)
N1/2-C7/16	1,3388	1,2858	1,3139	1,310(5)/1,321(5)
C7/16–N3/4	1,3847	1,3280	1,3440	1,322(5)/1,320(5)
S1–Zn1–S2	132,10	130,24	131,80	120,38(4)
N1-Zn1-N2	115,72	118,91	117,40	115,90(12)
S1/2-Zn1-N1/2	89,66	87,55	88,66	88,87(9)/89,07(8)
S1/2-Zn1-N2/1	115,97	118,06	116,60	122,51(8)/123,61(9)
N1/2-C7/16-N3/4	-155,95	-164,09	-162,44	-162,3(4)/-167,5(4)
$\nu_{C=N}$	1586	1829	1620	1630
μ	7,368	7,370	6,685	
Е		-3483,96	-3494,76	

 Tabelle 43. Vergleich zwischen quantenmechanischen und experimentellen Daten von 5.

Die vier niedrigsten unbesetzten Orbitale, die ausnahmslos durch das ausgedehnte π -System gestellt werden, sind energetisch sehr hochliegend. Aufgrund der Bandlücke von ungefähr 2,6 eV sollten durch Anregung eines Elektrons in ein LUMO und anschließender Relaxation in den Grundzustand Photonen mit einer Wellenlänge von ungefähr 500 nm emitiert werden. Man müsste daher in Photolumineszenz-spektroskopischen Untersuchungen eine grün-blaue Emission beobachten können. In organischen Halbleitern verschiebt sich die maximal emittierte Wellenlänge der Lumineszenz jedoch zu einer kleineren Wellenlänge, als die Energiedifferenz zwischen E_{HOMO} und E_{LUMO} verhersagt.²⁷⁵

Für Verbindung **6** stehen leider keine kristallographischen Vergleichsdaten zur Verfügung, Tabelle 44, die Bindungslängen und Winkel stimmen jedoch sehr gut mit den kristallographisch charakterisierten Cadmiumkomplexen **13–15** überein. Anders als bei **5** und **7** ist hier zwar auch das HOMO zweifach entartet, das LUMO jedoch nur einfach. Die Bandlücke zwischen HOMO und LUMO beträgt ungefähr 2,5 eV, die Verbindung sollte daher in Photolumineszenz-spektroskopischen Messungen ähnlich wie die Zinkverbindung **5** bei ungefähr 500 nm grün–blaues Licht emittieren. Wie auch bei der Zinkstruktur erfolgt eine Stabiliserung der Metall-Schwefel-Bindung durch die besetzten Schwefel–3p–Orbitale über p_{π} –d_{π}–Wechselwirkungen.

	PM6	HF /	BP86 /	Exp
		def2-SV(P)	def2-TZVPP	
Cd1-S1/2	2,50445	2,4496	2,4290	
Cd1-N1/2	2,36605	2,4766	2,4755	
N1/2-C7/16	1,32699	1,3106	1,3074	
C7/16-N3/4	1,40688	1,3590	1,3512	
S1-Cd1-S2	147,91	146,69	145,98	
N1-Cd1-N2	129,08	106,85	103,91	
S1/2-Cd1-N1/2	77,71	80,82	80,96	
S1/2-Cd1-N2/1	116,78	120,07	121,17	
N1/2-C7/16-N3/4	-164,67	-163,21	-162,58	
$\nu_{C=N}$	1603	1843	1613	1628
μ	11,376	10,283	9,916	
Е		-1881,59	-1882,94	

Tabelle 44. Vergleich zwischen quantenmechanischen und experimentellen Daten von 6.

 Tabelle 45. Vergleich zwischen quantenmechanischen und experimentellen Daten von 7.

	PM6	HF /	BP86 /	Exp
		def2-SV(P)	def2-TZVPP	
Hg1-S1/2	2,6119	2,4218	2,3781	2,346(2)/2,347(3)
Hg1-N1/2	2,1812	2,86710	2,7237	2,617(6)/2,793(5)
N1/2-C7/16	1,3360	1,268'2	1,3032	1,294(8)/1,298(10)
C7/16-N3/4	1,4049	1,3442	1,3518	1,320(8)/1,312(12)
S1-Hg1-S2	144,26	163,80	158,98	163,51(8)
N1–Hg1–N2	125,84	94,97	96,49	85,12(17)
S1/2-Hg1-N1/2	80,29	72,07	77,25	77,49(12)/74,42(13)
S1/2-Hg1-N2/1	116,61	119,88	117,62	116,46(13)/117,10(14)
N1/2-C7/16-N3/4	-163,36	-171,39	-164,35	169,34(69)/-167,60(73)
$\nu_{C=N}$	1578	1863	1624	1626
μ	4,523	4,031	4,754	
Е		-1858,84	-1868,67	

Bei der experimentell gefundenen Festkörperstruktur von 7 handelt es sich um einen zweikernigen Komplex, Bindungslängen und –winkel weichen daher teilweise deutlich von den simulierten Werten ab, Tabelle 45. So konnten aufgrund der verwendeten C_2 –Symmetrie die unterschiedlichen Bindungslängen der Hg1–N1/N2–Abstände nicht korrekt wiedergegeben werden, vielmehr wurde ein Mittelwert erhalten. Der S1–Hg1–S2–Winkel wurde gut angepasst, während der N1–Hg1–N2–Winkel eine große Abweichung zeigt.

Die Strukturoptimierung mittels semiempirscher Methoden weicht, verglichen mit den abinitio und DFT-Rechnungen am deutlichsten von den experimentellen Werten ab. Insbesondere die richtige Anpassung der Hg-S- und Hg-N-Abstände schlugen fehl. Eine Die Bandlücke ist mit 3 eV so groß, dass die Verbindung in die Klasse der Isolatoren fällt. Sowohl die HOMO als auch die LUMO sind zweifach entartet. Der große Energieunterschied zwischen HOMO und LUMO bedeutet, dass in Photolumineszenz-spektroskopischen Messungen bei ungefähr 400 nm violettes Licht emittiert werden sollte. Auch bei dieser Verbindung erfolgt eine Stabiliserung der Metall-Schwefel-Bindung durch die besetzten Schwefel-3p-Orbitale über p_{π} -d_{π}-Wechselwirkungen.

Das LUMO der Verbindung wird durch antibindene σ^* -Hg-S-Orbitale gebildet, während bei den Verbindungen **5** und **6** das Metall keinen Anteil an den ersten vier LUMOs besitzt. Die Zufuhr von Elektronen zu Verbindung **7** sollte daher zu einer Schwächung der Hg-S-Bindung führen.

Abbildung 84. Die vier höchsten besetzten Molekülorbitale (HOMO) und die vier niedrigsten unbesetzten Molekülorbitale (LUMO) von **5**.

Abbildung 85. Die vier höchsten besetzten Molekülorbitale (HOMO) und die vier niedrigsten unbesetzten Molekülorbitale (LUMO) von **6**.

Abbildung 86. Die vier höchsten besetzten Molekülorbitale (HOMO) und die vier niedrigsten unbesetzten Molekülorbitale (LUMO) von 7.

4.3.3 Nebenprodukte der Umsetzungen von 7 mit Phosphor(V)-chlorid und Dimethylformamid

Es wurde versucht, analog der Umsetzung von 4 mit Phosphor(V)-chlorid in Dimethylformamid/Chloroform zu 8 eine Aktivierung des DMFs zur Darstellung von 7 aus 3 durchzuführen.

Abbildung 87. Versuchte Umsetzung von **3** mit DMF und PCl₅ in Chloroform unter Rückfluss zur Darstellung von **7**.

Bei der Umsetzung bildete sich jedoch nicht wie erwartet die Verbindung 7, sondern eine Mischung aus verschiedenen Verbindungen. NMR-spektroskopisch konnte keine Verbindung eindeutig identifiziert werden. Einzelne Kristalle wurden ausgewählt und mittels Einkristallstrukturanalyse untersucht. Dabei zeigte sich, dass eine Umsetzung zu Verbindung 7 als Intermediat stattgefunden haben muss, diese aber unter den sauren Reaktionsbedingungen nicht stabil war und zu Benzothiazol zerfiel. Es bildeten sich Kristalle von Benzothiazolium-tetrachloromercurat(II), **34**.

Abbildung 88. Umsetzung von 3 mit DMF und PCl₅ in Chloroform unter Rückfluss.

Beim Versuch, **34** aus Ethanol umzukristallisieren, um weitere Analytik daran durchzuführen, konnten einige wenige Kristalle isoliert werden die für eine Einkristallstrukturanalyse

geeignet waren. Dabei zeigte sich jedoch, dass die Verbindung 34 mit dem Lösungsmittel weiterreagiert hatte zum N-Ethylbenzothiazolium-trichloromercurat(II), 35, Abbildung 89.

Abbildung 89. Bildung von 35 durch Umsetzung von 34 mit Ethanol.

In Tabelle 46 sind die kristallographischen Daten der Verbindungen 34 und 35 zusammengefasst. In Tabelle 47 sind ausgewählte Bindungslängen und Winkel aufgelistet. Verbindung $34 \cdot 2H_2O$ kristallisiert in der triklinen Raumgruppe $P\overline{1}$ mit zwei Formeleinheiten je Elementarzelle, Abbildung 90.

	34	35
Summenformel	$C_{14}H_{12}Cl_4HgN_2O_2S_2$	$C_{14}H_{18}Cl_{6}Hg_{2}N_{2}O_{2}S_{2} \\$
$M [g mol^{-1}]$	646,77	924,30
a/Å	7,3880(10)	9,7568(14)
b/Å	7,7229(10)	10,970(2)
c/Å	18,887(3)	12,2929(16)
$\alpha/^{\circ}$	101,044(17)	90
β/°	96,389(18)	92,662(11)
γ/°	94,365(16)	90
Volumen / Å ³	1045,8(3)	1941,0(5)
Z	2	3
Kristallsystem	Triklin	Monoklin
Raumgruppe	$P\overline{1}$	$P2_{1}/n$
T/K	293(2)	293(2)
R _{int}	0,092	0,057
R ₁ (beob./alle) ^a	0,046 / 0,115	0,028 / 0,074
wR ₂ (beob./alle) ^a	0,092 / 0,114	0,043 / 0,052
S_{alle}^{a}	0,859	0,884

 Tabelle 46. Kristallographische Daten von 34 und 35.

Definition: $\mathbf{R}_1 = \Sigma ||\mathbf{F}_0| - |\mathbf{F}_c|| / \Sigma ||\mathbf{F}_0|$, $\mathbf{w} \mathbf{R}_2 = [\Sigma [\mathbf{w} (\mathbf{F}_0^2 - \mathbf{F}_c^2)^2] / \Sigma [\mathbf{w} (\mathbf{F}_0^2)^2]$

Die Hg-Cl-Abstände liegen dabei zwischen 2,45 und 2,52 Å, die Winkel zwischen den Chlor-Atomen weichen nur um wenige Grad vom idealen Tetraederwinkel von 109,5° ab. Die Abstände und Winkel stimmen sehr gut mit vergleichbaren organischen Strukturen überein, die HgCl₄²⁻-Anionen enthalten.²⁸²⁻²⁸⁴ Bislang sind nur zwei Strukturen mit einem Benzothiazolium-Kation bekannt, in beiden fungiert Tetrachloroaurat als Gegenion.^{285,286} Die C1–N1–Abstände in diesen Strukturen betragen 1,310(6) Å²⁸⁵ und 1,308(7) Å²⁸⁶ und sind damit nur geringfügig länger als in **34** mit 1,291(13) Å. Die C3–N1–Abstände in beiden Verbindungen sind 1,392(6)^{285,286} und damit ebenfalls etwas länger als in **34**, 1,371(12) Å. Der C1–N1–C3–Winkel ist 114,7(9)° und ist damit genauso groß wie der entsprechende Winkel in den beiden literaturbekannten Verbindungen mit 114,4(4)°²⁸⁵ und 114,3(4)°.²⁸⁶

Abbildung 90. Molekülstruktur von **34**. Thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt.

Abbildung 91. Elementarzelle von 34 mit Blickrichtung entlang [100] und [010]. Wasserstoffatome sind zur besseren Übersicht nicht abgebildet.

Abbildung 92. 2x2–Elementarzelle von **34** mit Blickrichtung entlang [001]. Wasserstoff– atome sind zur besseren Übersicht nicht abgebildet.

	34	35
Hg1-Cl1	2,463(2)	2,340(2)
Hg1-Cl2	2,458(3)	2,342(2)
Hg1-Cl3	2,472(3)	2,746(2)
Hg1-Cl4	2,523(2)	_
Hg1-Cl3 ⁱ	_	2,735(2)
C1-N1	1,291(13)	1,313(8)
N1-C3	1,371(12)	1,404(7)
N1-C8	_	1,484(7)
C3-N1-C1	114,7(9)	113,1(5)
C1-N1-C8	_	123,3(5)
C3-N1-C8	_	123,6(5)
N1-C8-C9	_	112,5(5)
C1-N1-C8-C9	_	-101,5(7)

Tabelle 47. Ausgewählte Bindungslängen [Å] und Winkel [°] von 34 und 35.

In **35** liegen anders als in **34** keine einkernigen $HgCl_4^{2-}$ -Anionen, sondern zweikernige $Hg_2Cl_6^{2-}$ -Anionen vor. Die terminalen Hg-Cl-Abstände, Hg1-Cl1 und Hg1-Cl2 sind mit 2,340(2) und 2,342(2) Å identisch, der Abstand zu den verbrückenden Chloratomen betragen 2,746(2) und 2,735(2) Å. In vergleichbaren Anionen findet man für die terminalen Abstände 2,34–2,39 Å, für die verbrückenden Abstände 2,56–2,81 Å.²⁷⁶⁻²⁷⁹

Ein *N*-Ethyl-Benzothiazolium-Kation ist strukturell bislang noch nicht beschrieben wurden, sehr wohl jedoch Benzothiazolium-Kationen mit *n*-Propyl- und *iso*-Propyl-Funktionen.^{280,281} Das Stickstoffatom N1 ist planar von drei Kohlenstoffatomen umgeben, der Abstand zum Kohlenstoffatom C1 ist mit 1,313(8) Å um 0,02 Å länger als in der protonierten Verbindung **34** und stimmt sehr gut mit den Abständen in vergleichbaren Verbindungen mit 1,31–1,33 Å überein.^{280,281} Der C3–N1–Abstand von 1,404(7) Å ist um 0,03 Å länger als in **34**. Der Abstand zu dem Ethyl–Liganden C8–N1 ist 1,484(7) Å und damit identisch mit den Abständen in vergleichbaren Strukturen, 1,48–1,50 Å.^{280,281}

Die Winkel der trigonal–planaren Einheit um das Stickstoffatom weichen nur geringfügig von dem idealen Winkel von 120° ab, wobei der Winkel innerhalb des Heterocyclus mit 113,1(5)° am stärksten gestaucht ist.

Abbildung 93. Molekülstruktur von **35**. Thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt.

Abbildung 94. Elementarzelle von 35 mit Blickrichtung entlang [001] und [100]. Wasserstoffatome sind zur besseren Übersicht nicht abgebildet.

4.3.4 Zusammenfassung II

Durch Umsetzung von 2-Aminothiophenol mit Metallacetaten lassen sich mit sehr guten Ausbeuten die entsprechenden Metall-Thiophenolate darstellen. Diese dienen als Precursoren für weitere Umsetzungen mit aktivierten Formamiden. Exemplarisch wurden die Metall-Thiophenolate mit Dimethylformamid-Dimethylacetal umgesetzt. Es wird jedoch davon ausgegangen, dass dieser Weg der Reaktionsführung einen breiteren Zugang zu Metall-Thiophenolatkomplexen mit Amidin-Funktionen ermöglicht als es durch Umsetzung der Metallacetate mit Benzothiazol und sekundären Aminen möglich ist. Im Gegenzug dafür sind sowohl der präparative als auch der finanzielle Aufwand deutlich höher.

Ausgehend von Bis(2–Aminothiophenolat)zink und Bis(2–Aminothiophenolat)quecksilber konnten durch Umsetzung mit Dimethylformamid–Dimethylacetal farblose Kristalle erhalten werden; die Umsetzung der Cadmiumverbindung führte ebenfalls zur Bildung eines farblosen Produktes, Einkristalle konnten jedoch nicht erhalten werden.

Die mittleren M–S–Bindungslängen sind in der Zinkverbindung **5** 2,287 Å, Abbildung 95, und in der Quecksilberverbindung **7** 2,346 Å, Abbildung 96. Diese Abstände stimmen sehr gut mit den mittleren Abständen in den Zinkverbindungen **9** und **10** von 2,287 Å sowie der Quecksilberverbindungen **16–21** mit 2,350 Å überein.

Abbildung 95. Molekülstruktur von **5**. Thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt.

Durchschnittlich sind die M-N-Abstände der Zinkverbindung 5 2,055 Å lang, die entsprechenden Abstände der Quecksilberverbindung 7 betragen 2,704 Å. Auch diese

Abstände stimmen sehr gut mit den Werten der Zinkkomplexe 9 und 10 von 2,058 Å sowie der Quecksilberkomplexe 16–21 von 2,704 Å überein.

Der S-M-S-Winkel in der Zinkverbindung 5 ist mit 120,4° etwas kleiner als der entsprechende Winkel in den Verbindungen 9 und 10 von 125,0°. In der Quecksilberverbindung 7 ist der S-M-S-Winkel mit 163,5° etwas größer als der mittlere Winkel in den Strukturen 16-21 von 159,9°.

In Verbindung 5 ist der N-M-N-Winkel 115,9° und damit kleiner als in den Zinkverbindungen 9 und 10 mit 120,9°. Auch im Quecksilberkomplex 7 ist der N-M-N-Winkel mit 85,1° deutlich kleiner als die gemittelten Winkel der Verbindungen 16–21 mit 93,7°.

Neben den Metallkomplexen konnte durch Oxidation von 2-Aminothiophenol zunächst das Bis(2-Aminophenyl)disulfid dargestellt werden, durch Umsetzung mit Dimethylformamid und Phosphor(V)-chlorid konnte die metallfreie Disulfid-Verbindung mit Amidin-Funktion, **8**, dargestellt werden, Abbildung 97.

Der S-S-Abstnde der Disulfidbrücke ist 2,040 Å lang und stimmt sehr gut mit Abstände in vergleichbaren, literaturbekannten Disulfiden überein. Auch der Diederwinkel C1–S1–S2–C10 ist mit 92,0° vergleichbar mit den Winkeln in ähnlichen Verbindungen.

Abbildung 96. Asymmetrische Einheit von 7 (links); Dimerer Aufbau der Molekülstruktur von 7 (rechts); Wasserstoffatome sind zur besseren Übersicht nicht abgebildet. Thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt. [Symmetrie Code: (i) -x, -y, -z+2].

Abbildung 97. Molekülstruktur von 8. Thermische Auslenkungsellipsoide sind mit einer Wahrscheinlichkeit von 50% dargestellt.

5 Zusammenfassung und Ausblick

Im Rahmen der vorliegenden Arbeit wurden neue Thiophenolat–Chelatkomplexe mit Amidin-Funktionen der allgemeinen Formel $M(SC_6H_4[2-N=CH-NR_2])_2$ mit Metallen der Gruppe 12, Zink, Cadmium und Quecksilber, sowie Nickel dargestellt und mit den zur Verfügung stehenden Mitteln charakterisiert.

Die Darstellung der Thiophenolat–Chelatkomplexe wurde auf zwei unterschiedlichen Wegen durchgeführt. Zum einen erfolgte durch Umsetzung von Benzothiazol mit einer Reihe von sekundären Aminen unter Einwirkung der Metallkationen eine Ringöffnung des Heterocyclus von Benzothiazol unter Bildung der Thiophenolat–Chelatkomplexe mit Amidin–Funktionen, zum anderen konnten diese Komplexe auch durch Umsetzungen von Bis(2–Aminothiophenolat)–Metallkomplexen mit Dimethylformamid–Dimethylacetal dargestellt werden.

Insbesondere der erste Syntheseweg stellt einen interessanten Zugang zu den Metallkomplexen dar, da hierbei kommerziell verfügbare, billige Chemikalien genutzt werden können. Im Großen und Ganzen scheint die Reaktion aber auf cyclische Amine beschränkt zu sein, lediglich mit Quecksilber(II)–salzen konnten auch andere Amine zur Reaktion gebracht werden.

Die zweite Darstellungsmethode ist präparativ aufwändiger, da die Umsetzungen unter Wasser- und Sauerstoffausschluss durchgeführt werden müssen. Das Potential der Reaktionsführung bezüglich der Substratvielfalt ist jedoch größer als beim ersten Syntheseweg, da hochreaktive Substrate eingesetzt werden und die Bildung der Amidine daher begünstig ist. Die Umsetzung von Phosphor(V)-chlorid und Dimethylformamid mit Bis(2-Aminothiophenolat)quecksilber führte zur Bildung von Salzen mit Tetrachloromercurat-Anionen und Benzothiazolium-Kationen.

Der zugrunde liegende Reaktionsmechanismus für die Umsetzungen von Metallsalzen mit Benzothiazol und sekundären Aminen konnte aufgeklärt werden, sowie eine Vielzahl von Verbindungen kristallographisch beschrieben werden. Die thermische Analyse zeigt, dass sich die Zink- und Cadmiumverbindungen zu den Metallsulfiden zersetzen. Da Metallsulfide interessante Anwendungen in den Materialwissenschaften besitzen, ist zu prüfen, ob die Verbindungen als Precursoren geeignet sind. Die Verwendung von Nickel- und Kobaltsalzen führte je nach Reaktionsführung zu Thiophenolatkomplexen, oder zur Bildung von organischen Verbindungen mit Disulfidbrücken. Durch Cyclovoltammetrie wurden die Redoxpotentiale für die Nickelverbindungen in DMSO und CH₂Cl₂ bestimmt; sie belegen, dass bereits bei einem geringen Potential die Oxidation zu den Disulfiden erfolgt. Aufgrund der cis-Anordnung der Liganden in den Nickelverbindungen wird angommen, dass eine Oxidation zu den Disulfiden hierdurch begünstigt wird, wobei dem Nickel eine katalytische Rolle zukommen kann. ESR-Experimente zeigen, dass die Nickelkomplexe in Lösung diamagnetisch sind, durch Reduktion der Komplexe in Lösung werden Radikalanionen generiert, es kann gezeigt werden, dass die Elektronen dabei auf dem organischen Liganden lokalisiert sind.

Unter analogen Bedingungen gelang es nicht vergleichbare Kobaltkomplexe zu isolieren, vielmehr scheint die Oxidation zu den Disulfiden noch einfacher abzulaufen. Durch Massenspektrometrie war es jedoch möglich den Nachweis für das Auftreten der Kobaltkomplexe zu erbringen. Die Reaktionsdurchführung unter inerten Bedingungen erscheint in Anbetracht des geringen Oxidationspotentials unumgänglich, um entsprechende Metallkomplexe darzustellen.

Kupfer(II)-acetat-monohydrat konnte mit Benzothiazol und sekundären Aminen nicht zu Thiophenolatkomplexen umgesetzt werden, stattdessen bildete sich ein Kupfer(II)-acetat-Komplex, in dem an die Kupferatome jeweils ein Benzothiazolmolekül koordiniert.

6 Experimenteller Teil

Reaktionen, die unter Schutzgasatmosphäre durchgeführt werden mussten, wurden entweder in einem MBRAUN Handschuhkasten (M. Braun Inertgas-Systeme GmbH, Garching) oder mit Hilfe der Schlenktechnik durchgeführt.

Nickel(II)–acetat–tetrahydrat, Quecksilber(II)–acetat, Zinkacetat–dihydrat, Benzoxazol, Dimethylformamid–dimethylacetal (Acros), Kupfer(II)–acetat–monohydrat und Cadmium–acetat–dihydrat (Merck) wurden in Analysequalität bezogen und ohne weitere Reinigung verwendet. 2–Aminothiophenol (ABCR, farblose Flüssigkeit, Sdp: 110–112 °C/14 mbar), Dibenzylamin, Diethylamin und Pyrrolidin (Acros), Piperidin (Biosolve LTD), Di–*n*–butylamin, Morpholin und Benzothiazol (Alfa Aesar) wurden vor Verwendung destilliert. DMSO–*d*₆ (Deutero, 99,8% + 0,03% TMS) wurde über 4Å–Molekularsieb (Linde) getrocknet und in einem MBRAUN–Handschuhkasten gelagert. Die verwendeten Lösungsmittel Aceton und Methanol (Acros) enthielten weniger als 50 ppm Wasser und wurden über 3Å–Molekularsieb gelagert.

NMR-Spektroskopie. ¹H, ¹³C, ¹¹³Cd und ¹⁹⁹Hg NMR Spektren wurden an einem Bruker Avance 400 Spektrometer (¹H, 400,13 MHz; ¹³C, 100,62 MHz; ¹¹³Cd, 88,80 MHz; ¹⁹⁹Hg 71,66 MHz) mit ¹H–Entkopplung für ¹³C–Messungen aufgenommen und relativ zu den Messfrequenzen der Standardsubstanzen (Tetramethylsilan [¹H, ¹³C], Dimethylquecksilber [¹⁹⁹Hg] und Cadmiumnitrat [¹¹³Cd]) kalibriert. Die Temperatur des Spektrometers ließ sich mit einer Genauigkeit von 0,1 K regeln. Die Auswertung der Spektren erfolgte mit der Software *Spinworks 3.1.7*.²⁵³

Infrarot-Spektroskopie. Infrarotspektren wurden im Bereich von 400–4000 cm⁻¹ aufgenommen. Von der zu analysierenden Substanz wurde ein KBr–Pressling hergestellt; als Messgerät wurde das Spektrometer BRUKER IFS 66v/S verwendet. Das Spektrometer wird im Vakuum betrieben, da unterhalb von 5000 cm⁻¹ starke Absorptionsbanden von Kohlenstoffdioxid und Wasser liegen.

Elementaranalytik. Die Bestimmung des Kohlenstoff–, Wasserstoff–, Stickstoff– und Schwefelgehalts der untersuchten Proben erfolgte durch dynamische Spontanverbrennung mit reinem Sauerstoff und anschließender chromatographischer Trennung der Verbrennungsgase im Helium-Trägergasstrom. Als Gerät wurde hierfür der CHNS HEKAtech EuroEA 3000 Elementaranalysator verwendet.

Thermogravimetrie. Dynamische Differenzkalorimetrie (DSC) und Thermogravimetrie (TG) wurden in einem Temperaturfenster von 25–600°C an einem Mettler Toledo TGA/DSC 1
STAR^e System mit Gas Controller GC 100 durchgeführt. Hochreines Indium (99,999%, $T_m = 156,60 \text{ °C}$, $\Delta H_m = 28,45 \text{ J g}^{-1}$) und Aluminium (99,999%, $T_m = 660,32 \text{ °C}$, $\Delta H_m = 395,53 \text{ J g}^{-1}$) wurden als Kalibrationsstandards verwendet. DSC–TG–Messungen wurden in offenen Aluminiumoxid–Tiegeln mit 4–5 mg Probengröße unter Stickstoffatmosphäre (25 mL min⁻¹, Linde; 99,9996%) mit einer Scanrate von 8–10 °C min⁻¹ durchgeführt.

Massenspektrometrie. Die Massenspektren wurden mit einer niedrigen Auflösung am Gerät Thermo Quest Finnigan MAT 95 gemessen. Hierzu wurde die Verbindung im Hochvakuum sublimiert und durch Elektronenstoßionisation ionisiert. Durch das angelegte Potential von "nur" 20 eV lassen sich in der Regel neben den Fragmentionen auch die Probenmoleküle beobachten.

Kristallstrukturanalyse. Zur Bestimmung von Kristallstrukturen wurde zunächst ein geeigneter Kristall unter dem Lichtmikroskop ausgewählt und in ein Markröhrchen eingeschmolzen. Zur Bestimmung der Kristallgüte wurden vorab Laue-Aufnahmen angefertigt.

Die Messung der vollständigen Beugungsdaten erfolgte mit Flächendetektor-Diffraktometern der Firma Stoe & Cie (IPDS I und IPDS II, Mo K_{α}, λ = 71,073 pm, 50 kV, 40 mA). Die Daten wurden auf Lorentz– und Polarisationseffekte korrigiert.

Zur Strukturlösung wurde die Benutzeroberfläche Wingx²⁵⁴ genutzt. Die darin enthaltenen kristallographischen Programme SHELXS-97²⁵⁵ und SIR-92²⁵⁶ dienten der Strukturlösung. Zur Strukturverfeinerung wurde SHELXL-97²⁵⁷ verwendet. Die Verfeinerung erfolgte zunächst unter Verwendung isotroper Auslenkungsparameter, erst die letzten Verfeinerungszyklen wurden mit anisotropen Auslenkungsparametern durchgeführt. Wasserstoffatome konnten aufgrund der geringen Elektronendichte in der Regel nicht gefunden, daher wurden idealisierte Abstände und Winkel für die Verfeinerung verwendet. Die numerische Absorptionskorrektur wurde mit den Programmen X-RED²⁵⁸ und X-SHAPE²⁵⁹ vorgenommen. Zur Darstellung der Kristallstrukturen wurde das Programm Diamond in der Version $3.2g^{287}$ verwendet.

Quantenmechanische Rechnungen wurden mithilfe des Programms Gaussian 03, Release E.01²⁶⁵ durchgeführt. Die Auswertung der Daten erfolgte mit dem Softwarepaket GaussView 3.0.9.²⁷⁴ Die Strukturen wurden zunächst mit semiempirischen Methoden, gefolgt von einer $def2-SV(P)^{272,273}$ Hartree–Fock–Rechnung mit dem Basissatz berechnet. Die Strukturoptimierung mit anschließender Frequenzanalyse wurde auf dem Dichtefunktionaltheorie–Level^{260,261} mit BP86–Austausch–Korrelation,^{266,267} aufgrund hervoragender Rechenergebnisse und einer sehr guten Frequenzanpassung,²⁷¹ unter Verwendung von def2–TZVPP^{272,273} Basissätzen, mit Pseudopotentialen für kernnahe Elektronen für die Elemente Cadmium und Quecksilber, durchgeführt.

Cyclovoltametrie. Unter Schutzgas wurde das Lösungsmittel (DMSO oder CH_2Cl_2) in der Messzelle bei Raumtemperatur entgast, anschließend der Elektrolyt *n*–Bu₄N[PF₆] zugesetzt und eine kleine Menge der Probensubstanz zugegeben, so dass eine ungefähr 10^{-6} – 10^{-7} M Lösung resultierte. Zur Mesung wurde eine Drei–Elektroden–Anordnung mit einer Platin– Arbeitselektrode, einer Ag/AgCl–Referenzelektrode und einer Gegenelektrode aus Glaskohlenstoff verwendet. Die Messungen wurden mit einer Scanrate von 100 mVs⁻¹ an einem Autolab PGSTAT 30 Potentiostat and Function Generator durchgeführt. Als interner Standard wurde Ferrocen verwendet.

Bis(2-aminothiophenolato)zink, 1.

In einer siedenden Lösung aus 20 mL Dimethylformamid und 150 mL Chloroform wurden 7,02 g Zinkacetat–dihydrat (32 mmol) gelöst und unter intensivem Rühren mit einer Lösung von 8,45 g 2–Aminothiophenol (67,5 mmol, 2,1 eq.) in 30 mL Chloroform versetzt. Die siedende Reaktionsmischung wurde für eine Stunde gerührt, bevor der ausgefallene farblose Niederschlag über einen Büchnertrichter abfiltriert wurde. Der Rückstand wurde zweimal mit je 50 mL Chloroform und Dichlormethan gewaschen und anschließend im Vakuum getrocknet. Ausbeute: 9,07 g (90%). Schmelzpunkt: 360 °C (Zers.). ¹H–NMR (400,13 MHz, DMSO–*d*₆, 25 °C) δ 7,33 (dd, *J* = 7,2, 1,9 Hz, 2H), 7,03 (dd, *J* = 7,1, 1,8 Hz, 2H), 6,87-6,76 (m, 4H), 5,84 (s, 4H). ¹³C–NMR (100,62 MHz, DMSO–*d*₆, 25 °C) δ 144,6, 133,9, 130,8, 123,3, 119,9, 117,5. IR: 3429(w), 3232(m), 3086(m), 3043(m), 1587(m), 1535(m), 1466(m), 1437(w), 1288(w), 1269(m), 1227(w), 1203(w), 1163(w), 1153(w), 1132(w), 1113(m), 1059(m), 1036(w), 939(w), 816(w), 746(s), 675(w), 584(w), 569(w), 501(w), 432(m) cm⁻¹. Elementaranalyse: berechnet für C₁₂H₁₂N₂S₂Zn: C, 45,93; H, 3,85; N, 8,93; S, 20,44; gemessen: C, 45,88; H, 3,99; N, 8,92; S, 20,68. MS: m/z: 125[C₆H₇NS^{*+}], 93, 80.

Bis(2-aminothiophenolato)cadmium, 2.

8,53 g Cadmiumacetat–dihydrat (32 mmol) wurden in 20 mL Dimethylformamid gelöst und unter intensivem Rühren zu einer 50 °C heißen Lösung von 8,01 g 2–Aminothiophenol (64 mmol, 2,0 eq.) in 100 mL Chloroform gegeben. Die Reaktionsmischung wurde eine Stunde bei 50 °C gerührt und der Niederschlag anschließend über einen Büchnertrichter abfiltriert. Der farblose Feststoff wurde zweimal mit je 50 mL Chloroform und Dichlormethan gewaschen und anschließend im Vakuum getrocknet. **Ausbeute**: 10,88 g (94%). **Schmelzpunkt**: 221 °C (Zers.). ¹**H–NMR** (400,13 MHz, DMSO–*d*₆, 25 °C) δ 7,23 (dd, *J* = 7,5, 1,3 Hz, 2H), 6,81-6,68 (m, 4H), 6,51 (dt, *J* = 7,5, 1,7 Hz, 2H), 4,96 (s, 4H). ¹³**C–NMR** (100,62 MHz, DMSO–*d*₆, 25 °C) δ 140,6, 139,7, 131,9, 124,2, 123,4, 121,9. IR: 3302(m), 3151(m), 3115(m), 3084(m), 3055(m), 3014(w), 2927(w), 1589(s), 1552(m), 1471(s), 1441(m), 1410(w), 1327(w), 1308(w), 1275(m), 1227(w), 1215(w), 1157(w), 1120(w), 1061(m), 1034(m), 1011(m), 931(w), 858(w), 820(w), 756(m), 741(s), 719(w), 675(m), 563(w), 555(w), 534(w), 438(w) cm⁻¹. **Elementaranalyse:** berechnet für C₁₂H₁₂CdN₂S₂: C, 39,95; H, 3,35; N, 7,76; S, 17,78; gemessen: C, 39,85; H, 3,27; N, 7,01; S, 17,46. **MS: m/z**: 125[C₆H₇NS⁺⁺], 97, 93, 80.

Bis(2-aminothiophenolato)quecksilber, 3.

In 20 mL Dimethylformamid wurden 10,21 g (32 mmol) Quecksilber(II)–acetat gelöst. Zu dieser Lösung wurde bei Raumtemperatur unter Rühren eine Lösung von 8,01 g 2– Aminothiophenol gelöst in 100 mL Chloroform hinzugegeben, wobei sich der Reaktionsansatz dunkel violett verfärbte. Durch Ultraschall–Anregung der Lösung wurde der Kristallisationsprozess initiiert, der ausgefallene Niederschlag über einen Büchnertrichter abfiltriert und der gelbe Feststoff zweimal mit je 50 mL Chloroform und Dichlormethan gewaschen und anschließend im Vakuum getrocknet. Bis(2–aminothiophenolato)quecksilber wurde bei 70 °C aus Toluol in Form gelber Plättchen umkristallisiert. **Ausbeute**: 8,85 g (62%). **Schmelzpunkt**: 145 °C. ¹**H–NMR** (400,13 MHz, DMSO–*d*₆, 25 °C) δ 7,27 (dd, *J* = 7,7, 1,4 Hz, 2H), 6,88 (dt, *J* = 7,9, 1,5 Hz, 2H), 6,73 (dd, *J* = 7,9, 1,3 Hz, 2H), 6,48 (dt, *J* = 7,5, 1,3 Hz, 2H), 5,17 (s, 4H). ¹³C–NMR (100,62 MHz, DMSO–*d*₆, 25 °C) δ 147,6, 134,3, 126,6, 120,3, 117,2, 115,2. ¹⁹⁹Hg NMR (66,63 MHz, DMSO–*d*₆, 25 °C) δ –1049. **IR**: 3408(m), 3311(w), 3055(w), 3012(w), 1597(s), 1568(w), 1506(w), 1475(s), 1444(m), 1311(w), 1294(m), 1246(w), 1157(w), 1136(w), 1080(w), 1024(w), 928(w), 858(w), 750(s), 677(m), 557(w), 544(w), 455(w), 440(w) cm⁻¹. **Elementaranalyse:** berechnet für C₁₂H₁₂HgN₂S₂: C, 32,10; H, 2,69; N, 6,24; S, 14,28; gemessen: C, 32,11; H, 2,72; N, 6,37; S, 14,18. **MS: m/z**: 450 [M], 248, 202, 124, 97, 93, 80.

Bis(2-Aminobenzol)disulfid, 4.³²⁶

In einem 600 mL Becherglas wurden unter Rühren 18,03 g 2–Aminothiophenol (144 mmol) in 450 mL 10%–iger Natronlauge gelöst. Die farblose Lösung wurde im Eisbad auf 0°C abgekühlt und langsam mit 120 mL 3%–iger Wasserstoffperoxid Lösung versetzt. Der Ansatz wurde für drei Stunden im Eisbad gerührt und der Niederschlag anschließend über einen Büchnertrichter abfiltriert. Der Feststoff wurde in Diethylether gelöst, über Magnesiumsulfat getrocknet und das Lösungsmittel anschließend im Vakuum entfernt. **Ausbeute**: 15,95 g (89%). **Schmelzpunkt**: 160 °C. ¹**H–NMR** (400,13 MHz, DMSO–*d*₆, 25 °C) δ 7,08 (dt, *J* = 7,6, 1,6 Hz, 2H), 7,01 (dd, *J* = 7,7, 1,5 Hz, 2H), 6,74 (dd, *J* = 8,1, 1,2 Hz, 2H), 6,43 (dt, *J* = 7,6, 1.3 Hz, 2H), 5,44 (s, 4H). ¹³**C–NMR** (100,62 MHz, DMSO–*d*₆, 25 °C) δ 149,7, 135,4, 131,1, 116,5, 116,1, 114,8. **IR**: 3377(m), 3298(w), 3211(w), 3182(w), 3062(w), 3018(w), 1612(m), 1583(m), 1566(m), 1473(s), 1446(m), 1302(m), 1246(m), 1157(m), 1095(w), 1049(w), 4024(w), 966(w), 935(w), 864(w), 849(w), 837(w), 754(s), 698(m), 671(m), 553(w), 540(w), 471(w), 457(m) cm⁻¹. **Elementaranalyse:** berechnet für C₁₂H₁₂N₂S₂: C, 58,03; H, 4,87; N, 11,28; S, 25,82; gemessen: C, 58,30; H, 4,92; N, 11,42; S, 25,51. **MS: m/z**: 248 [M⁺], 231, 124, 80.

Bis[2-(dimethylamino-methyleneamino)thiophenol]zink, 5.

Zu einer Suspension aus 0,63 g fein gemörsertem 1 (2,0 mmol) in 50 mL trockenem Methanol wurden unter Inertgasatmosphäre bei Raumtemperatur 0,50 g Dimetylformamid– dimethylacetal (4,2 mmol, 2,1 eq.) gegeben. Die Reaktionsmischung wurde 48 Stunden gerührt und der Feststoff anschließend abfiltriert. Das farblose Produkt wurde aus Aceton umkristallisiert. **Ausbeute**: 0,60 g (71%). **Schmelzpunkt**: 286 °C (Zers.). ¹**H–NMR** (400,13 MHz, DMSO–*d*₆, 25 °C) δ 8,09 (s, 2H), 7,33–7,27 (m, 2H), 6,90–6,80 (m, 6H), 3,06 (d, *J* = 76,3 Hz, 12H). ¹³**C–NMR** (100,62 MHz, DMSO–*d*₆, 25 °C) δ 159,3, 146,5, 138,8, 131,6, 123,6, 122,1, 119,3, 41,8, 36,8. **IR**: 3047(w), 2985(w), 2926(w), 2798(w), 1630(s), 1574(m), 1556(m), 1462(m), 1421(m), 1408(m), 1362(m), 1279(w), 1265(m), 1248(w), 1201(w), 1117(m), 1059(m), 1043(w), 995(w), 974(w), 937(w), 926(w), 904(w), 835(w), 760(m), 750(m), 729(w), 696(w), 636(w), 606(w), 552(w), 482(w), 455(w), 409(w) cm⁻¹. **Elementaranalyse:** berechnet für C₁₈H₂₂N₄S₂Zn: C, 51,00; H, 5,23; N, 13,22; S, 15,13; gemessen: C, 51,03; H, 5,46; N, 14,39; S, 15,28. **MS: m/z**: 422 [M⁺], 378, 243, 180, 163, 136, 108, 91, 71, 57, 44.

Bis[2-(dimethylamino-methyleneamino)thiophenol]cadmium, 6.

Wie für Verbindung **5** beschrieben, wurde **6** als farbloser, kristalliner Feststoff aus der Umsetzung von 0,50 g Dimetylformamid–dimethylacetal (4,2 mmol, 2,1 eq.) mit 0,72 g **2** (2 mmol) in 50 mL Methanol erhalten. **Ausbeute**: 0,36 g (38%). **Schmelzpunkt**: 264 °C (Zers.). ¹H–NMR (400,13 MHz, DMSO– d_6 , 25 °C) δ 7,91 (s, 2H), 7,36 (dd, J = 7,2, 2,0 Hz, 2H),

6,87–6,78 (m, 4H), 6,76 (dd, J = 7,1, 2,1 Hz, 2H), 3,02 (d, J = 54,8 Hz, 12H). ¹³C–NMR (100,62 MHz, DMSO– d_6 , 25 °C) δ 158,3, 147,1, 137,7, 132,6, 123,2, 122,5, 120,6. **IR**: 3045(w), 2954(w), 2920(w), 2877(w), 2854(w), 2806(w), 1628(s), 1574(m), 1556(w), 1464(m), 1448(w), 1421(m), 1406(m), 1373(m), 1267(w), 1252(w), 1198(w), 1157(w), 1119(m), 1059(m), 1041(w), 985(w), 970(w), 939(w), 835(w), 758(m), 733(w), 694(w), 633(w), 600(w), 550(w), 480(w), 471(w), 451(w) cm⁻¹. **Elementaranalyse:** berechnet für C₁₈H₂₂CdN₄S₂: C, 45,91; H, 4,71; N, 11,90; S, 13,62; gemessen: C, 45,24; H, 4,71; N, 11,51; S, 13,28. **MS: m/z**: 472 [M⁺], 428, 291, 180, 147, 136, 108.

Bis[2-(dimethylamino-methyleneamino)thiophenol]quecksilber, 7.

Wie für Verbindung **5** beschrieben, wurde **7** als farbloser, kristalliner Feststoff aus der Umsetzung von 0,50 g Dimetylformamid–dimethylacetal (4,2 mmol, 2,1 eq.) mit 0,72 g **3** (2 mmol) in 50 mL Methanol erhalten. **Ausbeute**: 0,85 g (76%). **Schmelzpunkt**: 159 °C. ¹**H**–**NMR** (400,13 MHz, DMSO–*d*₆, 25 °C) δ 7,61 (s, 2H), 7,37 (dd, *J* = 7,6, 1,6 Hz, 2H), 6,91 (dt, *J* = 7,5, 1,7 Hz, 2H), 6,84 (dt, *J* = 7,4, 1,5 Hz, 2H), 6,72 (dd, *J* = 7,7, 1,5 Hz, 2H), 2,85 (d, *J* = 53,6 Hz, 12H). ¹³**C**–**NMR** (100,62 MHz, DMSO–*d*₆, 25 °C) δ 156,2, 148,2, 132,3, 131,4, 124,5, 122,4, 120,2, 40,0, 35,2. ¹⁹⁹**Hg–NMR** (66,63 MHz, DMSO–*d*₆, 25 °C) δ –703. **IR**: 3053(w), 2991(w), 2945(w), 2914(w), 2802(w), 1626(s), 1568(m), 1554(m), 1489(w), 1462(m), 1444(w), 1425(m), 1412(m), 1404(m), 1371(m), 1267(w), 1250(w), 1207(w), 1159(w), 1149(w), 1107(m), 1061(w), 1039(w), 964(w), 930(w), 841(w), 766(w), 748(m), 729(m), 692(w), 629(w), 579(w), 550(w), 542(w), 478(w), 469(w), 436(w), 413(w) cm⁻¹. **Elementaranalyse:** berechnet für C₁₈H₂₂HgN₄S₂: C, 38,67; H, 3,97; N, 10,02; S, 11,47; gemessen: C, 38,48; H, 3,94; N, 10,35; S, 11,42. **MS: m/z**: 560, 508, 456, 202, 180, 149, 136, 108, 71, 57.

2,2'-bis(N,N-dimethyl-N'-phenylformamidin)disulfid, 8.

In einem 250 mL Dreihalskolben mit Rückflusskühler und Tropftrichter wurden unter Inertgasatmosphäre im Eisbad 3,75 g Phosphorpentachlorid (18 mmol) in 80 mL Chloroform suspendiert und langsam mit einer Lösung von 1,4 mL Dimethylformamid (18 mmol) in 10 mL Chloroform versetzt. Die farblose Reaktionsmischung wurde 30 Minuten bei 0 °C gerührt und anschließend mit einer Lösung von 1,00 g Bis(2-aminobenzene)disulfid (4 mmol), 4, in 20 mL Chloroform umgesetzt. Die Reaktionsmischung wurde für weitere 30 Minuten bei 0 °C gerührt und anschließend drei Stunden zum Rückfluss erhitzt. Die rote Reaktionsmischung wurde auf Raumtemperatur abgekühlt und anschließend filtriert. Der Filterkuchen wurde mit Aceton gewaschen und im Vakuum getrocknet. Der Feststoff wurde in 70 mL Wasser gelöst und mit 30 mL gesättigter Natriumhydrogencarbonat-Lösung versetzt. Der farblose Niederschlag wurde über einen Büchnertrichter abfiltriert und dreimal mit je 20 mL Wasser gewaschen. Der Rückstand wurde in Diethvlether aufgenommen, über Magnesiumsulfat getrocknet und das Lösungsmittel schließlich im Vakuum entfernt. Ausbeute: 1,15 g (80%). Schmelzpunkt: 160 °C. ¹H–NMR (400,13 MHz, DMSO–d₆, 25 °C) δ 7,83 (s, 2H), 7,23 (dd, J = 7,8, 1,3 Hz, 2H), 7,05 (dt, J = 7,7, 1,4 Hz, 2H), 6,91 (dd, J = 7,9, 1,1 Hz, 2H), 6,88 (dt, J = 7,5, 1,2 Hz, 2H), 3,03 (d, J = 22,08 Hz, 12H).¹³C–NMR (100,62 MHz, DMSO– d_6 , 25 °C) δ 153,2, 148,8, 129,0, 126,4, 123,9, 122,3, 117,2, 39,6, 34,0. **IR**: 3055(w), 3028(w), 2991(w), 2914(w), 2864(w), 2810(w), 2727(w), 1632(s), 1572(s), 1493(w), 1464(m), 1431(s), 1417(m), 1402(m), 1365(s), 1273(m), 1246(m), 1213(w), 1151(w), 1107(s), 1051(m), 1038(m), 976(w), 966(w), 928(w), 899(w), 837(m), 756(m), 748(m), 723(m), 690(m), 629(w), 565(w), 540(w), 486(w), 445(w), 409(w) cm⁻¹. Elementar analyse: berechnet für $C_{18}H_{22}N_4S_2$: C, 60,30; H, 6.18; N. 15,63; S. 17,89; gemessen: C, 59,99; H, 6,43; N, 15,27; S, 17,57. MS: m/z: 358 [M], 229, 180, 164, 136, 108, 45.

Bis[2-(1-pyrrolidinyl-methyleneamino)thiophenol]zink, 9.

Zu einer Suspension von 0,22 g Zinkacetat–dihydrat (1 mmol) und 0,22 mL Benzothiazol (0,27 g, 2 mmol) in 15 mL Ethanol wurden 0,33 mL Pyrrolidin (0,28 g, 4 mmol) hinzugegeben. Unter Ultraschall-Anregung entstand eine klare, farblose Lösung. Langsames Abdampfen des Lösungsmittels innerhalb von zwei Tagen führte zur Bildung des farblosen, kristallinen Produkts. **Ausbeute**: 0,43 g (91%). **Schmelzpunkt**: 258 °C. ¹H–NMR (400,13 MHz, DMSO–*d*₆, 25 °C) δ 8,25 (s, 2H), 7,30 (tt, *J* = 5,2, 2,5 Hz, 2H), 6,99–6,92 (m, 2H), 6,78–6,87 (m, 4H), 3,30–3,78 (m, 8H), 1,65 (d, *J* = 74,5 Hz, 8H). ¹³C–NMR (100,62 MHz, DMSO–*d*₆, 25 °C) δ 155,8, 146,5, 138,9, 131,7, 123,4, 122,0, 118,8, 50,8, 46,6, 24,4, 23,8. **IR**: 3435(w), 3041(w), 2972(w), 2951(w), 2918(w), 2872(w), 1614(s), 1574(m), 1556(m), 1041(w), 982(m), 931(w), 908(w), 887(w), 868(w), 849(w), 808(w), 756(s), 733(m), 708(m), 661(w), 588(w), 548(w), 465(w), 447(w), 417(w) cm⁻¹. **Elementaranalyse:** berechnet für C₂₂H₂₆N₄S₂Zn: C, 55,51; H, 5,51; N, 11,77; S, 13,47; gemessen: C, 55,24; H, 6,10; N, 11,97; S 13,33. **MS: m/z**: 474 [M⁺], 404, 350, 304, 269, 234, 206, 173, 135, 108, 70, 43.

Bis[2-(1-piperidinyl-methyleneamino)thiophenol]zink, 10.

Wie für Verbindung **9** beschrieben, wurde **10** als farbloser, kristalliner Feststoff aus der Umsetzung von 0,22 g Zinkacetat–dihydrat (1 mmol) mit 0,22 mL Benzothiazol (0,27 g, 2 mmol) und 0,40 mL Piperidin (0,34 g, 4 mmol) in 15 mL Ethanol erhalten. **Ausbeute**: 0,44 g

(88%). Schmelzpunkt: 243 °C. ¹H–NMR (400,13 MHz, DMSO–*d*₆, 25 °C) δ 8,08 (s, 2H), 7,40–7,22 (m, 2H), 6,87–6,93 (m, 2H), 6,80–6,87 (m, 4H), 3,53 (s, $\Delta v_{\frac{1}{2}} = 15,2$ Hz, 8H), 1,45 (s, $\Delta v_{\frac{1}{2}} = 16,4$ Hz, 4H), 1,39 (d, J = 141,3 Hz, 8H). ¹³C–NMR (100,62 MHz, DMSO–*d*₆, 25 °C) δ 157,7, 146,8, 138,9, 131,5, 123,5, 122,1, 119,2, 51,2, 45,5, 25,7, 24,8, 23,1. **IR**: 3421(w), 3043(w), 2939(w), 2854(w), 1612(s), 1574(m), 1556(m), 1462(m), 1448(m), 1352(m), 1265(m), 1230(m), 1186(m), 1161(w), 1130(m), 1113(m), 1059(m), 1041(m), 1026(w), 1007(m), 987(m), 953(w), 935(w), 920(w), 877(w), 850(w), 791(w), 754(m), 729(w), 694(m), 634(w), 600(w), 573(w), 550(w), 465(w), 440(w), 413(w) cm⁻¹. **Elementaranalyse:** berechnet für C₂₄H₃₀N₄S₂Zn: C, 57,19; H, 6,00; N, 11,12; S, 12,72; gemessen: C, 57,72; H, 6,19; N, 11,51; S, 12,84. **MS: m/z**: 502 [M⁺], 418, 366, 283, 268, 220, 203, 187, 135, 108, 84, 57.

Bis[2-(1-morpholinyl-methyleneamino)thiophenol]zink, 11.

Wie für Verbindung **9** beschrieben, wurde **11** als farbloser, kristalliner Feststoff aus der Umsetzung von 0,22 g Zinkacetat–dihydrat (1 mmol) mit 0,22 mL Benzothiazol (0,27 g, 2 mmol) und 0,35 mL Morpholin (0,35 g, 4 mmol) in 15 mL Ethanol erhalten. **Ausbeute**: 0,36 g (71%). **Schmelzpunkt**: 261 °C (Zers.). ¹**H–NMR** (400,13 MHz, DMSO–*d*₆, 25 °C) δ 8,20 (s, 2H), 7,33 (m, 2H), 6,92–7,03 (m, 2H), 6,84–6,92 (m, 4H), 3,08–3,88 (m, 16H). ¹³**C–NMR** (100,62 MHz, DMSO–*d*₆, 25 °C) δ 158,2, 146,3, 138,6, 131,7, 123,9, 122,2, 119,5, 65,6, 56,0, 45,8. **IR**: 3402(w), 3043(w), 2964(w), 2918(w), 2900(w), 2850(w), 1616(s), 1574(m), 1558(m), 1468(m), 1439(m), 1377(m), 1350(s), 1302(w), 1267(m), 1238(m), 1209(w), 1163(w), 1115(s), 1063(m), 1045(m), 1024(m), 1012(m), 997(m), 980(m), 935(w), 881(w), 854(m), 802(w), 752(s), 729(m), 694(m), 640(w), 609(w), 600(w), 584(w), 550(w), 482(w), 469(w), 451(w) cm⁻¹. **Elementaranalyse:** berechnet für C₂₂H₂₆N₄S₂O₂Zn: C, 52,01; H, 5,16; N, 11,03; S, 12,62; gemessen: C, 52,31; H, 5,26; N, 11,07; S, 12,84. **MS: m/z**: 506 [M⁺], 420, 285, 222, 189, 149, 135, 108, 87, 57, 29.

Bis[2-(diethylamino-methyleneamino)thiophenol]zink, 12.

Unter Rühren wurden 35 μ L Diethylamin (29 mg, 0,4 mmol) zu einer farblosen Suspension aus 22 mg Zinkacetat–dihydrat (0,1 mmol) in 0,6 mL Acetonitril-*d*₃ hinzugegeben. Dadurch entstand eine farblose, klare Lösung, welche mit 22 μ L Benzothiazol (27 mg, 0,2 mmol) versetzt wurde. ¹H–NMR (400,13 MHz, DMSO–*d*₆, 25 °C): 7,80 (2H), 7,40 (2H), 6,84–6,92 (4H), 6,80 (2H), 3,30–3,80 (8H), 1,21 (12H).

Bis[2-(1-pyrrolidinyl-methyleneamino)thiophenol]cadmium, 13.

Wie für Verbindung **9** beschrieben, wurde **13** als farbloser, kristalliner Feststoff aus der Umsetzung von 0,27 g Cadmiumacetat–dihydrat (1 mmol) mit 0,22 mL Benzothiazol (0,27 g, 2 mmol) und 0,33 mL Pyrrolidin (0,28 g, 4 mmol) in 15 mL Ethanol erhalten. **Ausbeute**: 0,40 g (76%). **Schmelzpunkt**: 246 °C. ¹**H**–**NMR** (400,13 MHz, DMSO–*d*₆, 25 °C) δ 8,10 (s, 2H), 7,37 (dd, *J* = 6,6, 1,8 Hz, 2H), 6,88–6,78 (m, 6H), 3,49 (d, *J* = 67,6 Hz, 8H), 1,59 (d, *J* = 72,7 Hz, 8H). ¹³**C**–**NMR** (100,62 MHz, DMSO–*d*₆, 25 °C) δ 154,8, 147,3, 137,8, 132,7, 123,1, 122,6, 120,2, 50,1, 45,5, 24,1. ¹¹³**Cd NMR** (88,80 MHz, DMSO–*d*₆, 25 °C): δ –77. **IR**: 3373(w), 3045(w), 3035(w), 2966(w), 2947(w), 2924(w), 2868(w), 1616(s), 1570(s), 1552(m), 1464(m), 1421(m), 1371(m), 1331(m), 1263(m), 1250(m), 1209(m), 1142(m), 1124(m), 1059(m), 1041(m), 1007(w), 978(m), 930(w), 910(w), 889(w), 876(w), 849(m), 808(w), 752(s), 731(m), 706(m), 658(m), 580(m), 542(w), 465(w), 438(w), 411(w) cm⁻¹.

Elementaranalyse: berechnet für C₂₂H₂₆CdN₄S₂: C, 50,52; H, 5,01; N, 10,71; S, 12,26; gemessen: C, 50,47; H, 5,13; N, 11,18; S, 12,29. **MS: m/z**: 524 [M⁺], 474, 317, 206, 173, 135, 108, 99, 70, 43.

Bis[2-(1-piperidinyl-methyleneamino)thiophenol]cadmium, 14.

Wie für Verbindung **9** beschrieben, wurde **14** als farbloser, kristalliner Feststoff aus der Umsetzung von 0,27 g Cadmiumacetat–dihydrat (1 mmol) mit 0,22 mL Benzothiazol (0,27 g, 2 mmol) und 0,40 mL Piperidin (0,34 g, 4 mmol) in 15 mL Ethanol erhalten. **Ausbeute:** 0,49 g (89%). **Schmelzpunkt:** 289 °C (Zers.). ¹**H–NMR** (400,13 MHz, DMSO–*d*₆, 25 °C) δ 7,84 (s, 2H), 7.37 (dd, *J* = 7,1, 2,1 Hz, 2H) 6,82–6,90 (m, 4H), 6,76 (dd, *J* = 7,1, 2,1 Hz, 2H), 3,41 (t, *J* = 4,6 Hz, 8H), 1,01–1,69 (m, 12H). ¹³C–NMR (100,62 MHz, DMSO–*d*₆, 25 °C) δ 156,9, 147,6, 137,9, 132,5, 123,2, 122,5, 120,5, 50,4, 44,2, 25,1, 24,9, 23,2. ¹¹³Cd NMR (88,80 MHz, DMSO–*d*₆, 25 °C): δ –83. **IR**: 3429(w), 3047(w), 2939(m), 2852(w), 1618(s), 1570(s), 1552(m), 1462(m), 1448(m), 1423(s), 1381(m), 1358(m), 1325(w), 1277(m), 1254(m), 1232(m), 1188(m), 1157(w), 1119(m), 1059(m), 1009(m), 1007(m), 989(m), 974(w), 958(w), 939(w), 924(w), 877(w), 852(w), 806(w), 789(w), 756(m), 746(m), 729(m), 692(m), 638(w), 584(w), 575(w), 563(w), 538(w), 472(w), 444(w), 409(w) cm⁻¹. **Elementaranalyse:** berechnet für C₂₄H₃₀CdN₄S₂: C, 52,31; H, 5,49; N, 10,17; S, 11,64; gemessen: C, 52,09; H, 5,79; N, 10,29; S, 11,73. **MS: m/z**: 552 [M⁺], 460, 331, 219, 187, 135, 108, 97, 84, 70, 57, 44.

Bis[2-(1-morpholinyl-methyleneamino)thiophenol]cadmium, 15.

Wie für Verbindung **9** beschrieben, wurde **15** als farbloser, kristalliner Feststoff aus der Umsetzung von 0,27 g Cadmiumacetat–dihydrat (1 mmol) mit 0,22 mL Benzothiazol (0,27 g, 2 mmol) und 0,35 mL Morpholin (0,35 g, 4 mmol) in 15 mL Ethanol erhalten. **Ausbeute**: 0,45 g (81%). **Schmelzpunkt**: 232 °C (Zers.). ¹**H–NMR** (400,13 MHz, DMSO–*d*₆, 25 °C) δ 7,87 (s, 2H), 7,39 (m, 2H), 6,85 (m, 4H), 6,78 (m, 2H), 3,22–3,65 (m, 16H). ¹³C–**NMR** (100,62 MHz, DMSO–*d*₆, 25 °C) δ 157,0, 147,5, 137,9, 132,6, 123,4, 122,6, 120,7, 66,0, 65,5, 46,5. ¹¹³Cd NMR (88,80 MHz, DMSO–*d*₆, 25 °C): δ –117. **IR**: 3431(w), 3051(w), 3037(w), 2980(w), 2964(w), 2908(w), 2862(w), 1624(s), 1606(s), 1570(m), 1554(m), 1466(m), 1446(m), 1425(m), 1377(m), 1352(m), 1327(w), 1302(w), 1277(m), 1263(m), 1236(m), 1211(m), 1169(w), 1117(s), 1063(m), 1039(m), 1026(m), 1009(m), 984(m), 962(w), 941(w), 930(w), 881(w), 862(w), 849(w), 800(w), 754(s), 733(w), 692(m), 650(w), 638(w), 600(w), 582(w), 548(w), 536(w), 484(w), 447(w) cm⁻¹. **Elementaranalyse:** berechnet für C₂₂H₂₆CdN₄O₂S₂: C, 47,61; H, 4,72; N, 10,09; S, 11,55; gemessen: C, 47,37; H, 4,87; N, 10,22; S, 11,86. **MS: m/z**: 556[M+], 506, 470, 333, 304, 222, 189, 149, 135, 108, 87, 69, 57, 29.

Bis[2-(1-pyrrolidinyl-methyleneamino)thiophenol]quecksilber, 16.

In 4 mL Dimethylformamid wurden 0,32 g Quecksilber(II)–acetat (1 mmol) gelöst und mit 0,22 mL Benzothiazol (0,27 g, 2 mmol) und 0,33 mL Pyrrolidin (0,28 g, 4 mmol) versetzt.

Innerhalb von 24 Stunden schieden sich farblose Kristalle ab, die zunächst dreimal mit je 10 mL Wasser, anschließend je zweimal mit Ethanol und Diethylether gewaschen wurden. **Ausbeute**: 0,49 g (80%). **Schmelzpunkt**: 204 °C. ¹H–NMR (400,13 MHz, DMSO–*d*₆, 25 °C) δ 7,83 (s, 2H), 7,37 (dd, *J* = 7,6, 1,6 Hz, 2H), 6,90 (dt, *J* = 7,5, 1,6 Hz, 2H), 6,83 (dt, *J* = 7,4, 1,5 Hz, 2H), 6,78 (dd, *J* = 7,7, 1,3 Hz, 2H), 3,38 (dt, *J* = 49,5, 6,4 Hz, 8H), 1,58 (m, 8H). ¹³C– **NMR** (100,62 MHz, DMSO–*d*₆, 25 °C) δ 152,9, 148,4, 132,7, 131,5, 124,5, 122,3, 119,9, 48,9, 45,8, 24,2. ¹⁹⁹Hg NMR (66,63 MHz, DMSO–*d*₆, 25 °C): δ -698. **IR**: 3442(w), 3047(w), 2962(w), 2945(w), 2924(w), 2868(w), 1616(s), 1570(m), 1554(m), 1468(m), 1419(m), 1373(m), 1333(m), 1265(m), 1246(w), 1213(m), 1182(w), 1149(w), 1122(w), 1059(w), 600(w), 567(w), 538(w), 467(w), 428(w) cm⁻¹. **Elementaranalyse:** berechnet für C₂₂H₂₆HgN₄S₂: C, 43,23; H, 4,29; N, 9,17; S, 10,49; gemessen: C, 43,13; H, 4,21; N, 9,11; S, 10,61. **MS: m/z**: 612 [M⁺], 474, 206, 200, 149, 135, 108, 70, 43.

Bis[2-(1-piperidinyl-methyleneamino)thiophenol]quecksilber, 17.

Wie für Verbindung **16** beschrieben, wurde **17** als farbloser, kristalliner Feststoff aus der Umsetzung von 0,32 g Quecksilber(II)-acetat (1 mmol) mit 0,22 mL Benzothiazol (0,27 g, 2 mmol) und 0,40 mL Piperidin (0,34 g, 4 mmol) in 4 mL Dimethylformamid erhalten. **Ausbeute**: 0,57 g (89%). **Schmelzpunkt**: 231 °C. ¹H–**NMR** (400,13 MHz, DMSO– d_6 , 25 °C) δ 7,62 (s, 2H), 7,39 (dd, J = 7,6, 1,6 Hz, 2H), 6,92 (dt, J = 7,5, 1,7 Hz, 2H), 6,86 (dt, J = 7,4, 1,6 Hz, 2H), 6,74 (dd, J = 7,7, 1,5 Hz, 2H), 3,31 (d, J = 110,5 Hz, 8H), 1,44 (s, $\Delta v_{\frac{1}{2}} = 11$ Hz, 8H), 1.20 (s, $\Delta v_{\frac{1}{2}} = 19$ Hz, 4H). ¹³C–**NMR** (100,62 MHz, DMSO– d_6 , 25 °C) δ 154,9, 148,4, 132,4, 131,3, 124,5, 122,5, 120,3, 49,7, 43,6, 25,8, 24,6, 23,6. ¹⁹⁹Hg NMR (66,63 MHz, DMSO– d_6 , 25 °C): δ –627. **IR**: 3413(w), 3035(w), 2922(m), 2908(m), 2835(m), 1606(s), 1589(s), 1554(s), 1539(m), 1448(m), 1433(m), 1406(s), 1365(m), 1344(m), 1250(m), 1236(m), 1221(m), 1174(m), 1142(w), 1105(m), 1045(m), 1022(m), 991(m), 968(m), 955(w), 937(w), 922(w), 912(w), 860(w), 837(w), 791(w), 777(w), 733(s), 715(m), 675(m), 623(w),

553(w), 521(w) cm⁻¹. **Elementaranalyse:** berechnet für C₂₄H₃₀HgN₄S₂: C, 45,09; H, 4,73; N, 8,76; S, 10,03; gemessen: C, 45,34; H, 4,90; N, 8,58; S, 10,44. **MS: m/z**: 640 [M⁺], 502, 322, 220, 200, 187, 163, 136, 108, 84, 43.

Bis[2-(1-morpholinyl-methyleneamino)thiophenol]quecksilber, 18.

Wie für Verbindung **16** beschrieben, wurde **18** als farbloser, kristalliner Feststoff aus der Umsetzung von 0,32 g Quecksilber(II)-acetat (1 mmol) mit 0,22 mL Benzothiazol (0,27 g, 2 mmol) und 0,35 mL Morpholin (0,35 g, 4 mmol) in 4 mL Dimethylformamid erhalten. **Ausbeute**: 0,53 g (82%). **Schmelzpunkt**: 240 °C. ¹**H–NMR** (400,13 MHz, DMSO–*d*₆, 25 °C) δ 7,71 (s, 2H), 7,41 (dd, *J* = 7,5, 1,6 Hz, 2H), 6,95 (dt, *J* = 7,4, 1,7 Hz, 2H), 6,90 (dt, *J* = 7,4, 1,6 Hz, 2H), 6,78 (dd, *J* = 7,6, 1,4 Hz, 2H), 3,66–3,10 (m, 16H). ¹³**C–NMR** (100,62 MHz, DMSO–*d*₆, 25 °C) δ 155,1, 148,2, 132,4, 131,5, 124,7, 122,9, 120,6, 65,9, 65,4. ¹⁹⁹**Hg NMR** (66,63 MHz, DMSO–*d*₆, 25 °C): δ -713. **IR**: 3431(w), 3053(w), 2968(w), 2906(w), 2864(w), 1626(s), 1610(s), 1570(m), 1556(m), 1470(m), 1446(m), 1425(m), 1375(m), 1354(m), 1329(w), 1300(w), 1265(m), 1234(m), 1213(w), 1171(m), 1115(s), 1066(m), 1038(m), 1026(m), 1009(m), 978(m), 960(w), 941(w), 879(w), 852(m), 804(w), 754(s), 733(m), 690(m), 648(w), 638(w), 600(w), 571(w), 536(w), 484(w), 472(w), 440(w), 415(w) cm⁻¹. **Elementaranalyse:** berechnet für C₂₂H₂₆HgN₄O₂S₂: C, 41,08; H, 4,07; N, 8,71; S, 9,97; gemessen: C, 40,88; H, 4,18; N, 8,50; S, 9,85. **MS: m/z**: 644 [M⁺], 458, 222, 202, 135, 108, 87, 57.

Wie für Verbindung **16** beschrieben wurde **19** als farbloser, kristalliner Feststoff aus der Umsetzung von 0,32 g Quecksilber(II)–acetat (1 mmol) mit 0,22 mL Benzothiazol (0,27 g, 2 mmol) und 0,42 mL Diethylamin (0,29 g, 4 mmol) in 4 mL Dimethylformamid erhalten. **Ausbeute**: 0,56 g (91%). **Schmelzpunkt**: 150 °C. ¹**H–NMR** (400,13 MHz, DMSO–*d*₆, 25 °C) δ 7,66 (s, 2H), 7,37 (dd, *J* = 7,6, 1,5 Hz, 2H), 6,92 (td, *J* = 7,6, 1,5 Hz, 2H), 6,84 (td, *J* = 7,4, 1,3 Hz, 2H), 6,73 (dd, *J* = 7,7, 1,1 Hz, 2H), 3,38 (dd, *J* = 70,6, 5,8 Hz, 8H), 1,00 (d, *J* = 63,6 Hz, 12H). ¹³**C–NMR** (100,62 MHz, DMSO–*d*₆, 25 °C) δ 154,7, 149,2, 132,0, 131,5, 124,8, 122,3, 120,4, 44,9, 14,7, 12,2. ¹⁹⁹**Hg NMR** (66,63 MHz, DMSO–*d*₆, 25 °C): δ -725. **IR**: 3427(w), 3045(w), 2974(w), 2929(w), 2902(w), 2868(w), 1620(s), 1605(s), 1570(m), 1554(m), 1473(w), 1460(m), 1439(m), 1423(m), 1373(m), 1358(m), 1304(w), 1263(m), 1230(m), 1190(w), 1155(w), 1119(m), 1099(w), 1078(w), 1061(w), 1041(w), 1001(w), 970(w), 945(w), 930(w), 870(w), 777(w), 756(m), 733(w), 727(w), 688(w), 579(w), 544(w), 420(w) cm⁻¹. **Elementaranalyse:** berechnet für C₂₂H₃₀HgN₄S₂: C, 42,95; H, 4,92; N, 9,11; S, 10,42; gemessen: C, 43,20; H, 5,06; N, 9,71; S, 10,73. **MS: m/z**: 616 [M⁺], 528, 472, 264, 208, 202, 135, 108, 86, 72, 58, 44.

Wie für Verbindung **16** beschrieben, wurde **20** als farbloser, kristalliner Feststoff aus der Umsetzung von 0,32 g Quecksilber(II) –acetat (1 mmol) mit 0,22 mL Benzothiazol (0,27 g, 2 mmol) und 0,77 mL Dibenzylamin (0,79 g, 4 mmol) in 4 mL Dimethylformamid erhalten. **Ausbeute**: 0,65 g (75%). **Schmelzpunkt**: 136 °C. ¹**H–NMR** (400,13 MHz, DMSO–*d*₆, 25 °C) δ 7,99 (s, 2H), 7,32–7,10 (m, 18H), 7,01–6,89 (m, 6H), 6,85 (t, *J* = 7,4 Hz, 2H), 6,79 (d, *J* = 7,7 Hz, 2H), 4,42 (d, *J* = 92,79 Hz, 8H). ¹³**C–NMR** (100,62 MHz, DMSO–*d*₆, 25 °C) δ 156,2, 148,3, 136,6, 136,0, 132,0, 131,6, 128,5, 128,3, 127,6, 127,5. 127,1, 124,7, 122,8, 120,7, 53,3, 47,9. ¹⁹⁹**Hg NMR** (66,63 MHz, DMSO–*d*₆, 25 °C): δ -725. **IR**: 3427(w), 3045(w), 2974(w), 2929(w), 2902(w), 2868(w), 1620(s), 1605(s), 1570(m), 1554(m), 1473(w), 1460(m), 1439(m), 1423(m), 1373(m), 1358(m), 1304(w), 1263(m), 1230(m), 1190(w), 1155(w), 1119(m), 1099(w), 1078(w), 1061(w), 1041(w), 1001(w), 970(w), 945(w), 930(w), 870(w), 777(w), 756(m), 733(w), 727(w), 688(w), 579(w), 544(w), 420(w) cm⁻¹. **Elementaranalyse:** berechnet für C₄₂H₃₈HgN₄S₂: C, 58,42; H, 4,44; N, 6,49; S, 7,43; gemessen: C, 58,51; H, 4,55; N, 7,06; S, 7,99. **MS: m/z**: 864 [M⁺], 776, 718, 685, 662, 647, 332, 239, 202, 195, 135, 106, 91, 69.

Wie für Verbindung 16 beschrieben, wurde 21 als farbloser, kristalliner Feststoff aus der Umsetzung von 0,32 g Quecksilber(II)-acetat (1 mmol) mit 0,22 mL Benzothiazol (0,27 g, 2 mmol) und 0,68 mL Di-n-Butylamin (0,52 g, 4 mmol) in 4 mL Dimethylformamid erhalten. Ausbeute: 0,20 g (28%). Schmelzpunkt: 58/77 °C. ¹H–NMR (400,13 MHz, DMSO–*d*₆, 25 °C) δ 7,66 (s, 2H), 7,35 (dd, J = 7,6, 1,5 Hz, 2H), 6,90 (dt, J = 7,5, 1,5 Hz, 2H), 6,84 (dt, J = 7,4, 1,2 Hz, 2H), 6,67 (dd, J = 7,6, 1,1 Hz, 2H), 3,32 (td, J = 12,5, 6,5 Hz, 8H), 1,26 (m, 8H), 1,22 (d, J = 168,9 Hz, 8H), 0,77 (td, J = 69,4, 7,11 Hz, 12H). ¹³C-NMR (100,62 MHz, DMSO-d₆, 25 °C) & 155,9, 148,3, 132,3, 131,3, 124,3, 122,4, 120,5, 49,8, 44,2, 30,6, 28,4, 19,2, 13,6. ¹⁹⁹Hg NMR (66,63 MHz, DMSO-d₆, 25 °C): δ -645. IR: 3055(w), 2954(m), 2927(m), 2870(m), 1608(s), 1570(s), 1552(m), 1468(m), 1456(m), 1425(m), 1387(m), 1369(m), 1308(w), 1296(w), 1263(m), 1244(w), 1209(m), 1184(w), 1120(m), 1097(w), 1063(m), 1041(m), 1011(w), 989(w), 972(w), 949(w), 933(w), 922(w), 899(w), 877(w), 845(w), 820(w), 789(w), 750(s), 725(m), 698(w), 688(w), 638(w), 594(w), 586(w), 546(w), 521(w), 501(w), 461(w), 428(w) cm⁻¹. Elementar analyse: berechnet für $C_{60}H_{92}Hg_2N_8S_4$: C, 49,53; H, 6,37; N, 7,70; S, 8,82; gemessen: C, 49,81; H, 6,56; N, 8,12; S, 8,49. MS: m/z: 728 [M⁺], 582, 320, 264, 202, 135, 86, 44.

Bis[2-(1-pyrrolidinyl-methyleneamino)phenol]quecksilber, 22.

In 5 mL Dimethylformamid wurden unter Rühren 0,32 g Quecksilber(II)-acetat gelöst und mit 0,33 mL Pyrrolidin (0,28 g, 4 mmol) versetzt. Zu dem Reaktionsansatz wurde unter Rühren eine Lösung von 0,27 g Benzoxazol (2 mmol, 2,25 eq) in 10 mL Aceton hinzugegeben, wobei ein Farbumschlag von farblos zu gelb beobachtet werden konnte. Innerhalb weniger Minuten färbt sich die Lösung dunkel und ein gelber Feststoff begann auszufallen. Das gelbe, feinkristalline Produkt wurde über einen Büchnertrichter abfiltriert und zunächst zweimal mit Aceton, anschließend einmal mit Diethylether gewaschen und abschließend im Vakuum getrocknet. Ausbeute 0,07 g (6%). Schmelzpunkt: 108 °C. ¹H-**NMR** (400,13 MHz, DMSO-*d*₆, 25°C) δ 8,15 (s, 2H), 7,02–6,72 (m, 4H), 6,72–6,27 (m, 4H), 3,75-3,15 (s, 8H), 2,20-1,51 (s, 8H). ¹³C-NMR (100,62 MHz, DMSO- d_{6} , 25°C) δ 157,5, 154,5, 136,3, 123,9, 118,2, 117,1, 114,9, 23,6. **IR**: 3097(w), 3016(w), 2954(w), 2931(w), 2897(w), 2667(w), 1587(s), 1510(s), 1454(m), 1437(m), 1396(m), 1348(m), 1317(m), 1271(m), 1230(m), 1209(w), 1163(w), 1128(w), 1111(w), 1061(w), 1001(w), 895(w), 850(w), 800(w), 773(w), 702(w), 563(w), 426(w) cm⁻¹. Elementaranalyse: Berechnet für C₂₂H₂₆HgN₄O₂ C, 45,63; H, 4,53; N, 9,68. MS: m/z: 438, 305, 252, 236, 202, 188, 160, 135, 119, 91, 70.

Bis[2-(1-piperidinyl-methyleneamino)phenol]quecksilber, 23.

Wie für Verbindung **22** beschrieben, wurde **23** als gelber, kristalliner Feststoff aus der Umsetzung von 0,32 g Quecksilber(II)–acetat (1 mmol) mit 0,27 g Benzoxazol (2,25 mmol) und 0,40 mL Piperidin (0,34 g, 4 mmol) erhalten. **Ausbeute** 0,30 g (25%), **Schmelzpunkt**: 124 °C (Zers.). ¹**H–NMR** (400,13 MHz, DMSO–*d*₆, 25°C) δ 7,91 (s, 2H), 6,80–6,78 (m, 4H), 6,65 (br, $\Delta v_{\frac{1}{2}} = 19$ Hz, 2H), 6.42 (br, $\Delta v_{\frac{1}{2}} = 19$ Hz, 2H), 3.36 (br, $\Delta v_{\frac{1}{2}} = 21$ Hz, 8H), 0,95–1,72 (m, 12H). ¹³**C–NMR** (100,62 MHz, DMSO–*d*₆, 25°C) δ 157,5, 154,5, 136,3, 123,9, 118,2, 117,1, 114,9, 23,6. **IR**: 3053(w), 3037(w), 2935(m), 2922(m), 2848(m), 1614(s), 1574(m), 1477(s), 1444(m), 1375(m), 1363(m), 1288(m), 1275(m), 1257(s), 1230(m), 1180(m), 1149(w), 1120(m), 1103(m), 1036(w), 1009(w), 1001(w), 968(m), 953(w), 914(w), 856(m), 829(m), 771(m), 746(m), 737(m), 642(w), 619(w), 590(m), 567(w), 552(w), 474(w), 455(w) cm⁻¹. **Elementaranalyse:** Berechnet für C₂₄H₃₀HgN₄O₂ C, 47,48; H, 4,98; N, 9,23; gefunden: C, 47,85; H, 4,85; N, 9,65. **MS: m/z**: 606 [M⁺], 522, 492, 438, 404, 320, 236, 202, 187, 147, 134, 119, 91, 84, 64.

Bis[2-(1-morpholinyl-methyleneamino)phenol]quecksilber, 24.

Wie für Verbindung **22** beschrieben, wurde **23** als gelber, kristalliner Feststoff aus der Umsetzung von 0,32 g Quecksilber(II) –acetat (1 mmol) mit 0,27 g Benzoxazol (2,25 mmol) und 0,35 mL Morpholin (0,35 g, 4 mmol) erhalten. **Ausbeute** 0,17 g (14%). **Schmelzpunkt**:

119 °C. ¹**H**–**NMR** (400,13 MHz, DMSO–*d*₆, 25°C) δ 7,97 (s, 2H), 6,75-6,94 (4H), 6,69 (d, *J* = 7,6 Hz, 2H), 6,47 (t, *J* = 7,1 Hz, 2H), 2,80-3,90 (16H). ¹³C–**NMR** (100,62 MHz, DMSO–*d*₆, 25°C) δ 157,6, 155,0, 136,7, 124,7, 119,1, 117,8, 115,7, 65,4, 48,6, 42,7. **IR**: 3055(w), 3039(w), 2962(w), 2906(w), 2866(w), 2848(w), 1616(s), 1578(m), 1560(m), 1479(m), 1439(m), 1414(m), 1377(m), 1360(m), 1290(w), 1267(s), 1248(m), 1165(m), 1113(m), 1068(w), 1041(w), 1024(m), 964(m), 941(w), 920(w), 879(w), 866(m), 852(w), 831(m), 779(w), 748(m), 661(w), 640(w), 623(w), 588(m), 563(w), 482(w), 463(w) cm⁻¹. **Elementaranalyse:** Berechnet für C₂₂H₂₆HgN₄O₄ C, 43,24; H, 4,29; N, 9,17; gefunden: C, 43,50; H, 4,57; N, 10,04. **MS: m/z**: .

Bis[2-(1-pyrrolidinyl-methyleneamino)thiophenol|nickel, 25.

In 50 mL Ethanol wurden bei Raumtemperatur 0,25 g Nickel(II) –acetat–tetrahydrat (1 mmol) unter Zugabe von 0,33 mL Pyrrolidin (0,28 g, 4 mmol) gelöst. Zu der grünen Lösung wurden unter Rühren 0,22 mL Benzothiazol (0,27 g, 2 mmol) zugetropft. Langsames Verdampfen des Lösungsmittels führte innerhalb von 48 Stunden zur Bildung grün-brauner Kristalle. **Ausbeute**: 0,31 g (66%). **Schmelzpunkt**: 215 °C. **UV (DMSO)**: 515, 685 nm; **(KBr-Pressling)**: 515, 690 nm. **IR**: 3049(w), 2964(w), 2949(w), 2922(w), 2870(w), 1618(s), 1562(m), 1462(m), 1425(m), 1383(m), 1331(m), 1292(w), 1263(m), 1228(w), 1207(w), 1180(w), 1124(w), 1063(w), 1028(w), 966(w), 928(w), 914(w), 852(w), 748(m), 731(w), 712(w), 685(w), 669(w), 594(w), 580(w), 571(w), 447(w), 426(w), 411(w) cm⁻¹. **Elementaranalyse:** berechnet für $C_{22}H_{26}N_4NiS_2$: C, 56,31; H, 5,58; N, 11,94; S, 13,67; gemessen: C, 56,46; H, 5,78; N, 12,76; S, 13,16. **MS: m/z**: 468 [M⁺], 308, 264, 237, 206, 173, 135, 108, 91, 70, 58, 43.

Bis[2-(1-piperidinyl-methyleneamino)thiophenol]nickel, 26.

In 20 mL Acetonitril wurden bei Raumtemperatur 0,25 g Nickel(II)–acetat–tetrahydrat (1 mmol) unter Zugabe von 0,33 mL Pyrrolidin (0,28 g, 4 mmol) gelöst. Zu der grünen Lösung wurden unter Rühren 0,22 mL Benzothiazol (0,27 g, 2 mmol) zugetropft. Langsames Verdampfen des Lösungsmittels führte innerhalb von 48 Stunden zur Bildung grüner Kristalle. **Ausbeute**: 0,31 g (70%). **Schmelzpunkt**: 196 °C (Zers.). **UV (DMSO):** 545, 680 nm; **(KBr-Pressling):** 420, 530, 720 nm. **IR**: 3051(w), 2935(w), 2922(w), 2850(w), 1616(s), 1564(m), 1448(m), 1439(m), 1387(m), 1362(m), 1346(m), 1336(m), 1279(m), 1267(m), 1250(m), 1230(m), 1186(m), 1159(w), 1132(w), 1111(m), 1061(w), 1024(w), 1003(w), 966(m), 947(w), 933(w), 922(w), 876(w), 852(w), 804(w), 785(w), 748(s), 721(w), 702(m), 638(w), 596(w), 580(w), 565(w), 550(w), 469(w), 463(w), 447(w), 420(w), 405(w) cm⁻¹. **Elementaranalyse:** berechnet für $C_{24}H_{30}N_4NiS_2$: C, 57,96; H, 6,09; N, 11,27; S, 12,89; gemessen: C, 57,40; H, 6,08; N, 11,28; S, 12,70. **MS: m/z**: 187, 135, 108, 84, 57.

Bis[2-(1-piperidinyl-methyleneamino)benzenethiol]kobalt, 27.

In 20 mL Acetonitril wurden bei Raumtemperatur 0,25 g Kobalt(II)–acetat–tetrahydrat (1 mmol) unter Zugabe von 0,33 mL Pyrrolidin (0,28 g, 4 mmol) gelöst. Zu der roten Lösung wurden unter Rühren 0,22 mL Benzothiazol (0,27 g, 2 mmol) zugetropft. Langsames Verdampfen des Lösungsmittels führte innerhalb von 48 Stunden zur Bildung eines farblosen

Feststoffs, der mit einigen wenigen roten Kristallen durchsetzt war. **MS: m/z**: 468 [M⁺], 308, 264, 237, 206, 173, 135, 108, 91, 70, 58, 43.

Tetra-µ-acetato-bis[benzothiazolkupfer(II)], 28.

In einem Becherglas wurden unter mäßigem Erhitzen 0,40 g Kupfer(II)–acetat–monohydrat (2 mmol) in 50 mL Ethanol gelöst. Unter Rühren erfolgte die Zugabe von 0,44 mL Benzothiazol (0,54 g, 4 mmol). Durch langsames Abdampfen des Lösungsmittels fällt **22** innerhalb einer Woche aus der Lösung in Form grüner Kristalle aus. **Ausbeute**: 0,59 g (93%). **Schmelzpunkt**: 206 °C (Zers.). **UV/VIS:** (Chloroform) 360, 690 nm. **IR**: 3080(w), 3057(w), 2995(w), 2927(w), 1612(s), 1562(m), 1468(m), 1454(m), 1431(s), 1348(m), 1321(w), 1304(m), 1273(w), 1205(w), 1155(w), 1066(w), 1049(w), 1030(w), 1016(w), 949(w), 897(m), 870(w), 856(w), 810(w), 762(m), 733(m), 681(m), 627(m), 534(w), 507(w), 424(w) cm⁻¹. **Elementaranalyse:** berechnet für $C_{22}H_{22}Cu_2N_2O_8S_2$: C, 41,70; H, 3,50; N, 4,42; S, 10,12; gemessen: C, 41,30; H, 3,30; N, 4,17; S, 10,14. **MS: m/z**: 267, 244, 185, 166, 135, 122, 108, 60.

Bis(2,2'-Dipyridinamino)quecksilber(II), 29.

In 40 mL Ethanol wurden 1 mmol Quecksilber(II)–acetat (0,32 g) mit einer Lösung von 2 mmol 2,2'–Dipyridylamin (0,34 g) versetzt. Die Lösung verfärbte sich bei der Zugabe gelb.

Das Lösungsmittel wurde durch langsames isothermes Verdampfen eingeengt. Innerhalb von vier Tagen bildete sich ein farbloser, kristalliner Niederschlag. **Ausbeute**: 0,47 g (87%). **Schmelzpunkt**: 219 °C (Zers.). ¹**H–NMR** (400,13 MHz, DMSO– d_6 , 25°C) δ 8,23 (d, J = 4,4 Hz, 1H), 7,70 (t, J = 7,2 Hz, 1H), 7,60 (d, J = 8,4 Hz, 1H), 6,85 (t, J = 6,4 Hz, 1H). ¹³**C–NMR** (100,62 MHz, DMSO– d_6 , 25°C) δ 148,6, 147,8, 138,4, 115,5, 111,2. **IR**: 3118(w), 3107(w), 3078(w), 3047(w), 3001(w), 1597(s), 1581(s), 1560(m), 1549(m), 1471(s), 1456(s), 1435(s), 1375(s), 1308(m), 1275(m), 1227(m), 1171(m), 1144(m), 1097(w), 1043(w), 991(m), 984(m), 951(w), 926(w), 876(m), 766(s), 731(m), 642(w), 625(w), 606(w), 534(w), 422(w) cm⁻¹. **Elementaranalyse:** Berechnet für C₂₂H₂₆HgN₄O₄ C, 44,40; H, 2,98; N, 15,54; gefunden: C, 44,30; H, 3,00; N, 15,80 **MS: m/z**: 542 [M⁺], 466, 403, 247, 202, 170, 143, 79.

2,2'-Bis(*N*-Piperidinyl-methyleneamino)diphenyldisulfide, 30.

In 50 ml Aceton wurden 0,25 g Nickel(II)–acetat–tetrahydrat (1 mmol) unter Zugabe von 0,33 mL Pyrrolidin (0,28 g, 4 mmol) gelöst. Zu der grünen Lösung wurden unter Rühren 0,22 mL Benzothiazol (0,27 g, 2 mmol) hinzugetropft. Innerhalb von 3 Tagen bildete sich ein farbloser, kristalliner Niederschlag. Dieser wurde abfiltriert und dreimal mit je 10 mL Aceton gewaschen. **Ausbeute**: 0,29 g (66%) **Schmelzpunkt**: 134 °C. ¹**H–NMR** (400,13 MHz, DMSO–*d*₆, 25°C) δ 7,38 (s, 2H), 6,79 (d, *J* = 7,7 Hz, 2H), 6,60 (t, *J* = 7,5 Hz, 2H), 6,52–6,39 (m, 4H), 3,06 (d, *J* = 67,7 Hz, 8H), 1,31–0,98 (m, 12H). ¹³C–NMR (100,62 MHz, DMSO–*d*₆, 25°C) δ 152,0, 148,8, 129,2, 126,4, 124,0, 122,3, 117,0, 49,4, 42,6, 26,3, 24,2. **IR**: cm⁻¹. **Elementaranalyse:** Berechnet für C₂₄H₃₀N₄S₂ C, 65,71; H, 6,89; N, 12,77; S: 14.62; gefunden: C, 65,63; H, 6,80; N, 13,05, S, 14,86. **MS: m/z**: 439 [M⁺], 354, 220, 187, 136, 108, 84.

7 Literatur

- [1] Jensen, W. B. J. Chem. Educ. 2003, 80, 952–961.
- [2] Wiberg, N.; Wiberg, E.; Holleman, F. A. *"Lehrbuch der Anorganischen Chemie"* 102. Auflage, Walter de Gruyter, Berlin, **2007**, 1483f.
- [3] Wang, X.; Andrews, L.; Riedel, S.; Kaupp, M. Angew. Chem. 2007, 119, 8523-8527.
- [4] Krishna, S. S.; Majumdar, I.; Grishin, N. V. Nucl. Acids Res. 2003, 31, 532–550.
- [5] Peraza, M. A.; Ayala–Fierro, F.; Barber, D. S.; Casarez, E.; Rael, L. T. *Environ. Health Perspect.* **1998**, *106*, 205–216.
- [6] Corwin, Jr., D. T.; Koch, S. A. Inorg. Chem. 1988, 27, 493–496.
- [7] Greenwood, N. N.; Earnshaw A. "*Chemistry of Elements*" 2nd Edition, Butterworth–Heinemann, Oxford, **1988**, 1202.
- [8] Alsfasser, R. "*Bioanorganische Chemie"* in "*Moderne Anorganische Chemie"*, 3. Auflage, Riedel, E. (Hrsg.), Walter de Gruyter, Berlin, **2007**.
- [9] Pabo, C. O.; Peisach, E.; Grant, R. A. Annu. Rev. Biochem. 2001. 70, 313–340.
- [10] Omichinski, J. G.; Clore, G. M.; Robien, M.; Sakaguchi, K.; Appella, E.; Gronenborn, A. M. *Biochemistry* 1992, *31*, 3907–3917.
- [11] Wolfe, S. A.; Nekludova, L.; Pabo, C. O. Annu. Rev. Biophys. Biomol. Struct. 1999, 3, 183–212.
- [12] Sundermann, F. W. Jr. Toxicol. Environ. Chem. 1990, 27, 131–141.
- [13] W. Kaim, B. Schwederski, "Bioanorganische Chemie", 2. Aufl., Teubner, Stuttgart 1995, S. 336 f.
- [14] Strasdeit, H. Angew. Chem. 2001, 113, 730–732.
- [15] Lane, T. W.; Saito, M. A.; George, G. N.; Pickering, I. J.; Prince, R. C.; Morel, F. M. M. *Nature* 2005, 435, 42.
- [16] AMAP/UNEP "Technical Background Report to the Global Atmospheric Mercury Assessment" Arctic Monitoring and Assessment Programme/UNEP Chemicals Branch, 2008, 5.
- [17] Pacyna, J. M.; Sundseth, K.; Pacyna, E. G.; Munthe, J.; Belhaj, M.; Åström, S.; Panasiuk, D.; Glodek, A. "Socio-economic costs of continuing the status-quo of mercury pollution" TemaNord, 2008.
- [18] Kümmel, R.; Papp, S. ,, *Umweltchemie eine Einführung* "2. unveränderte Auflage, Deutscher Verlag für Grundstoffindustrie, Leipzig, **1990**.
- [19] SCHER "scientific opinion on the environmental risks and indirect health effects of mercury in dental amalgam", **2008**, 14.
- [20] IUPAC, "Imines", Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford, 1997.
- [21] IUPAC, "Schiff bases", Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford, 1997.
- [22] Tidwell, T. T. Angew. Chem. Int. Ed. 2007, 46, 2–7.
- [23] IUPAC, "Aldimine", Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford, 1997.
- [24] IUPAC, "Ketimine", Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford, 1997.

- [25] Zhou, S.; Fleischer, S.; Junge, K.: Das, S.; Addis, D.; Beller M. Angew. Chem. 2010, 122, 8298–8302.
- [26] Willoughby, C. A.; Buchwald, S. L. J. Am. Chem. Soc. 1992, 114, 7562-7564.
- [27] Yun, J.; Buchwald, S. L. J. Org. Chem. 2000, 65, 767–774.
- [28] Becalski, A. G.; Cullen, W. R.; Fryzuk, M. D.; James, B. R.; Kang, G.-J.; Rettig, S. R. Inorg. Chem. 1991, 30, 5002–5008.
- [29] Shang, G.; Yang, Q.; Zhang, X. Angew. Chem. 2006, 118, 6508-6510.
- [30] Abe, H.; Amii, H.; Uneyama, K. Org. Lett. 2001, 3, 313-315.
- [31] Wang, Y.-Q.; Lu, S.-M.; Zhou, Y.-G. J. Org. Chem. 2007, 72, 3729–3734.
- [32] Spindler, F.; Pugin, B.; Blaser, H.-U. Angew. Chem. 1990, 102, 561-562;
- [33] Beaza, A.; Pfaltz, A. Chem. Eur. J. 2010, 16, 4003–4009.
- [34] Hoffmann. S.; Seayad, A. M.; List, B. Angew. Chem. 2005, 117, 7590–7593.
- [35] Fu, P.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2008, 130, 5530–5541.
- [36] G. Li, Y. Liang, J. C. Antilla, J. Am. Chem. Soc. 2007, 129, 5830–5831.
- [37] M. N. Cheemala, P. Knochel, Org. Lett. 2007, 9, 3089–3092.
- [38] Pei, D.; Zhang, Y.; Wei, S.; Wang, M.; Sun, J. Adv. Synth. Catal. 2008, 350, 619-623.
- [39] Marin, S. D. L.; Martens, T.; Mioskowski, C.; Royer, J. J. Org. Chem. 2005, 70, 10592– 10595.
- [40] M. Suigura, F. Robvieux, S. Kobayashi, Synlett 2003, 11, 1749.
- [41] Woodward, R. B.; Bader, F. E.; Bickel, H.; Frey, A. J.; Kierstead, R. W. Tetrahedron 1958, 2, 1–57.
- [42] Paventi, M.; Hay, A. S. J. Org. Chem. 1991, 56, 5875–5882.
- [43] Yunnikova, L. P. Mendeleev Commun. 1996, 6, 104–105.
- [44] Jin, M.; Zhang, D.; Yang, L.; Liu, Y.; Liu, Z. Tetrahedron Lett. 2000, 41, 7357–7360.
- [45] Pérard–Viret, J.; Souquet, F.; Manisse, M.; Royer, J. Tetrahedron Lett. 2010, 51, 96–98.
- [46] Nongkunsarn, P.; Ramsde C. A. Tetrahedron 1997, 53, 3805–3830.
- [47] Nongkunsarn, P.; Ramsde C. A. Tetrahedron Lett. 1993, 34, 6773-6776.
- [48] An, G.; Kim, M.; Kim, J. Y.; Rhee, H. Tetrahedron Lett. 2003, 44, 2183–2186.
- [49] Aitken, R. A.; Raut, S. V. J. Chem. Soc., Perkin Trans. 1, 1996, 747-751.
- [50] Green, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*, Wiley-Interscience, New York, **1999**, 359–360, 586–590, 744–747.
- [51] Nakamichi, H.; Okada, T. Angew. Chem. Int. Ed. 2006, 45, 4270–4273.
- [52] Wald, G. Science 1968, 162, 230–239.
- [53] Schreiber, M.; Sugihara, M.; Okada, T.; Buss, V. Angew. Chem. Int. Ed. 2006, 45, 4274–4277.
- [54] Kong, K.; Moussa, Z.; Romo, D. Org. Lett. 2005, 7, 5127–5130.
- [55] Beaumont, S.; Ilardi, E. A.; Tappin, N. D. C.; Zakarian, A. Eur. J. Org. Chem. 2010, 5743–5765.
- [56] Varseev, G. N.; Maier, M. E. Angew. Chem. Int. Ed. 2006, 45, 4767–4771.
- [57] Tan, C.-J.; Di, Y.-T.; Wang, Y.-H.; Zhang, Y.; Si, Y.-K.; Zhang, Q.; Gao, S.; Hu, X.-J.; Fang, X.; Li, S.-F.; Hao, X.-J. Org. Lett. 2010, 12, 2370–2373.
- [58] Pelc, M. J.; Zakarian, A. Org. Lett. 2005, 7, 1629–1631.
- [59] Jokela, J.; Herfindal, L.; Wahlsten, M.; Permi, P.; Selheim, F.; Vasconçelos, V.; Døskeland, S. O.; Sivonen, K. *ChemBioChem* 2010, 11, 1594–1599.
- [60] Schiff, H. Liebigs Ann. Chem. 1869, 150, 193–200.
- [61] Pfeiffer, P.; Breith, E.; Lübbe, E.; Tsumaki, T. Liebigs Ann. Chem. 1933, 503, 84-130
- [62] Pfeiffer, P.; Hesse, T.; Pfitzner, H.; Scholl, W.; Thielert, H. J. Prakt. Chem. 1937, 149, 217–296.
- [63] Jacobsen, E. N. Acc. Chem. Res. 2000, 33, 421–443.
- [64] Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 1307–1315.

- [65] Baleizão, C.; Garcia, H. Chem. Rev. 2006, 106, 3987–4043.
- [66] McGeachin, S. G. Can. J. Chem. 1968, 46, 1903–1912.
- [67] Mindiola, D. J. Angew. Chem. Int. Ed. 2009, 48, 6198-6200.
- [68] El–Zoghbi, I.; Ased, A.; Oguadinma, P. O.; Tchirioua, E.; Schaper F. Can. J. Chem. 2010, 88, 1040–1045.
- [69] Qian, B.; Ward, D. L.; Smith, M. R. Organometallics, 1998, 17, 3070-3076.
- [70] Panda, A.; Stender, M.; Wright, R. J.; Olmstead, M. M.; Klavins, P.; Power, P. P. *Inorg. Chem.* 2002, 41, 3909–3916.
- [71] Bourget-Merle, L.; Lappert, M. F.; Severn, J. R. Chem. Rev. 2002, 102, 3031-3066.
- [72] Budzelaar, P. H. M.; van Oort, A. B.; Orpen. A. G. Eur. J. Inorg. Chem. 1998, 1485– 1494.
- [73] Dai, X.; Kapoor, P.; Warren, T. H. J. Am. Chem. Soc. 2004, 126, 4798-4799.
- [74] Dai, X.; Warren, T. H. J. Am. Chem. Soc. 2004, 126, 10085–10094.
- [75] Wang, Y.; Quillian, B.; Wei, P.; Wang, H.; Yang, X.-J.; Xie, Y.; King, R. B.; Schleyer, P. v. R.; Schaefer, H. F.; Robinson, G. H. J. Am. Chem. Soc. 2005, 127, 11944 –11945.
- [76] Bai, G.; Wei, P.; Stephan, D. W. Organometallics 2005, 24, 5901–5908.
- [77] Chai, J.; Zhu, H.; Stückl, A. C.; Roesky, H. W.; Magull, J.; Bencini, A.; Caneschi, A.; Gatteschi, D.; J. Am. Chem. Soc. 2005, 127, 9201–9206.
- [78] Smith, J. M.; Sadique, A. R.; Cundari, T. R.; Rodgers, K. R.; Lukat–Rodgers, G.; Lachicotte, R. J.; Flaschenreim, C. J.; Vela, J.; Holland, P. L. J. Am. Chem. Soc. 2006, 128, 756–769.
- [79] Green, S. P.; Jones, C.; Stasc, A. Science 2007, 1754–1757.
- [80] Monillas, W. H.; Yap, G. P. A.; Theopold, K. H. Angew. Chem. 2007, 119, 6812-6814.
- [81] Rose, R. P.; Jones, C.; Schulten, C.; Aldridge, S.; Stasch, A. Chem. Eur. J. 2008, 14, 8477 – 8480.
- [82] Tsai, Y.-C.; Wang, P.-Y.; Lin, K.-M.; Chen, S.-A.; Chen, J.-M. Chem. Commun. 2008, 205–207.
- [83] Woodul, W. D.; Carter, E.; Müller, R.; Richards, A. F.; Stasch, A.; Kaupp, M.; Murphy, D. M.; Driess, M.; Jones, C. J. Am. Chem. Soc. 2011, 133, 10074–10077.
- [84] Hewlins, M. J. E. J. Chem. Soc., Dalton Trans. 1975, 429–432.
- [85] Wu, K.-Y.; Hsieh, Ch.-C.; Horng, Y.-C. J. Organomet. Chem. 2009, 694, 2085–2091.
- [86] Kawamoto, T.; Nishiwaki, M.; Tsunekawa, Y.; Nozaki, K.; Konno, T. *Inorg. Chem.* 2008, 47, 3095–3104.
- [87] Stenson, P. A.; Board, A.; Marin-Becerra, A.; Blake, A. J.; Davies, E. S.; Wilson, C.; McMaster, J.; Schröder, M. Chem. Eur. J. 2008, 14, 2564–2576.
- [88] Fleischer, H. Coord. Chem. Rev. 2005, 249, 799-827.
- [89] Nolte, M.: "Zum Koordinationsverhalten von Quecksilber(II)–Salzen unter dem Einfluss organischer Donorliganden", Dissertation, Universität zu Köln 2004.
- [90] Mugesh, G.; Singh, H. B.; Butcher, R. J. Eur. J. Inorg. Chem. 1999, 1229–1236.
- [91] Öztürk, S.; İde, S.; Öztaş, S. G.; Ancın, N.; Tüzün, M.; Fun, H. K. Z. Kristallogr. 1999, 214, 763–765.
- [92] Anderson, O. P.; la Cour, A.; Findeisen, M.; Hennig, L.; Simonsen, O.; Taylor, L. F.; Toftlund, H. J. Chem. Soc., Dalton Trans. 1997, 111–120.
- [93] Brand, U.; Vahrenkamp, H. Chem. Ber. 1995, 128, 787–791.
- [94] Kawamoto, T.; Kushi, Y. J. Chem. Soc., Dalton Trans. 1992, 3137-3143.
- [95] Castro, J.; Romero, J.; García–Vázquez, J. A.; Durán, M. L.; Castiñeiras, A.; Sousa, A.; Fenton, D. E. J. Chem. Soc., Dalton Trans. 1990, 3255–3258.
- [96] Nivorozhkin, A. L.; Sukholenko, E. V.; Nivorozhkin, L. E.; Borisenko N. I.; Minkin, V. I.; Grishin, Y. K.; Diachenko, O. A.; Takhirov, T. G.; Tagiev, D. B. *Polyhedron* 1989, 8, 569–575.

- [97] Tkachev, V. V.; Kondrashkina, E. A.; Atovmyan, L. O. J. Struct. Chem. 1977, 18, 833– 841.
- [98] Takhirov, T. G.; D'yachenko, O. A.; Tagiev, D. B.; Nivorozhkin, A. L.; Nivorozhkin, L. E.; Minkin, V. I. Koord. Khim. 1988, 14, 237.
- [99] Meyer, G.; Nockemann, P. Z. Anorg. Allgem. Chem. 2003, 629, 1447–1461.
- [100] Das, S.; Nag, A.; Sadhu, K. K.; Goswami, D.; Bharadwaj, P. K. J. Organomet. Chem. 2007, 692, 4969–4977.
- [101] El-Ansary, A. L.; Soliman, A. A.; Sherif, O. E.; Ezzat, J. A. Synth. React. Inorg. Met.-Org. Chem. 2002, 32, 1301–1318.
- [102] Ancın, N.; İde, S.; Öztaş, S. G.; Tüzün, M.; Şahin, E. J. Mol. Struct. 2002, 608, 89-93.
- [103] El-Bindary, A. A. Synth. React. Inorg. Met.-Org. Chem. 1998, 28, 1743-1757.
- [104] Capitan–Vallvey, L. F.; Espinosa, P. Polyhedron, 1983, 2, 1147–1154.
- [105] Boolieris, D. S.; Ferrier, R. J.; Branda, L. A. Carbohydr. Res. 1974, 35, 131-139.
- [106] Ried, W.; Oxenius, R. Chem. Ber. 1973, 106, 484-490.
- [107] Lindoy, L. F.; Livingstone, S. E. Inorg. Chim. Acta, 1967, 1, 365-370.
- [108] Jadmus, H.; Fernando, Q.; Freiser, H. J. Am. Chem. Soc. 1964, 86, 3056-3059.
- [109] Arndt, P.; Lefeber, C.; Kempe, R.; Rosenthal, U. Chem. Ber. 1996, 129, 207-211
- [110] Smith, V. C. M.; Aplin, R. T.; Brown, J. M.; Hursthouse, M. B.; Karalulov, A. I.; Malik, K. M. A.; Cooley, N. A. J. Am. Chem. Soc. 1994, 116, 5180–5189.
- [111] Tanba, S.; Fujiwara, T.; Monguchi, D.; Mori, A. J. Phys.: Conf. Ser. 2010, 232, 012010.
- [112] Bergman, R. G. Nature 2007, 446, 391–393.
- [113] Godula, K.; Sames, D. Science 2006, 312, 67-72.
- [114] Goldman, A. S.; Goldberg K. I. "Organometallic C-H Bond Activation: An Introduction". In Activation and Functionalization of C-H Bonds; Goldberg, K. I.; Goldman, A. S., Eds.; ACS Symposium Series 885; American Chemical Society: Washington, DC, 2004, 1–43.
- [115] Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633-639.
- [116] Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 2879–2932.
- [117] Monguchi, D.; Fujiwara, T.; Furukawa, H.; Mori, A. Org. Lett. 2009, 11, 1607–1610.
- [118] Kim, J. Y.; Cho, S. H.; Joseph, J.; Chang, S. Angew. Chem. 2010, 122, 10095–10099.
- [119] Carlsona, L. J.; Welbya, J.; Zebrowskia, K. A.; Wilka, M. M.; Girouxc, R.; Ciancioc, N.; Tanskib, J. M.; Bradleyc, A.; Tylera, L. A. *Inorg. Chim. Acta* **2011**, *365*, 159–166.
- [120] Garg, A.; Tandon, J. P. Transition Met. Chem. 1987, 12, 42-45.
- [121] Fahmi, N.; Jadon, S. C. S.; Singh, R. V. Phosphorus, Sulfur Silicon Relat. Elem. 1993, 81, 133–140.
- [122] Shriner, R. L.; Neumann, F. W. Chem. Rev. 1944, 35, 351-425.
- [123] Beeman, R. W.; Matsumura, F. Nature 1973, 242, 273–274.
- [124] Grant, R. J. In: Patai, S. (Ed.), "The Chemistry of Amidines and Imidates", Wiley, New York 1975, 255–281.
- [125] Lund, F.; Tybring, L. Nature New Biol. 1972, 236, 135-137.
- [126] Hollingworth, R. M. Environ. Health Perspect. 1976, 14, 57-69.
- [127] Hollingworth, R. M.; Murdock, L. L. Science 1980, 208, 74-76.
- [128] Granik, V. G. Russ. Chem. Rev. 1983, 52, 377-393.
- [129] Nakayama, A.; Sukekawa, M.; Eguchi, Y. Pestic. Sci. 1997, 51, 157–164.
- [130] Leung, V. K. S.; Chan, T. Y. K.; Yeung, V. T. F. Clin. Toxicol. 1999, 37, 513–514.
- [131] Exner, O.; Buděšínský, M.; Hynk, D.; Všetečka, V.; Raczyńska, E. D. J. Mol. Struct. 1988, 178, 147–159.
- [132] Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2, 1987, S1–S19
- [133] Zielinski, T. J.; Peterson, M. R.; Csizmadia, I. G.; Rein, R. J. Comp. Chem. 1982, 3, 62– 68.

- [134] Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed., John Wiley & Sons, Inc.: New York, 1999, 588.
- [135] Bredereck, H.; Effenberger, F.; Henseleit, E. Chem. Ber. 1965, 98, 2754–2761.
- [136] Meerwein, H.; Florian, W.; Schön, N.; Stopp, G. Liebigs Annalen der Chemie 1961, 641, 1–39.
- [137] Yao, B.; Zhang, Y.; Li, Y. J. Org. Chem., 2010, 75, 4554–4561.
- [138] Vilsmeier, A.; Haack, A. Ber. Dtsch. Chem. Ges. 1927, 60, 119.
- [139] H. Bredereck, R. Gompper, K. Klemm, H. Rempfer, Chem. Ber. 1959, 92, 837-849.
- [140] Filleux–Blanchard, M. L.; Quemeneur M. T.; Martin, G. J. Chem. Commun. 1968, 836– 837.
- [141] Su, W.; Weng, Y.; Jiang, L.; Yang, Y.; Zhao, L.; Chen, Z.; Li, Z.; Li, J. Org. Prep. Proced. Int. 2010, 42, 503–555.
- [142] Pedersen, E. B. Synthesis 1979, 7, 546–547.
- [143] Weintraub, L.; Oles, S. R.; Kalish, N. J. Org. Chem. 1968, 33, 1679-1681.
- [144] Bésán, J.; Kulcsár, L.; Kovács, M. Synthesis 1980, 11, 883-884.
- [145] Warren, W. H.; Wilson, F. E. Ber. Dtsch. Chem. Ges. 1935, 68, 957-960.
- [146] Karady, S.; Weinstock, L. M.; Roberts, F. E.; ten Broeke, J.; Shuman, R. F.; Hoinowski, A. M.; Pines S. H.; Sletzinger, M. *Tetrahedron Lett.* 1976, 17, 2401–2404.
- [147] Furukawa, Y.; Miyashita, O.; Shima, S. Chem. Pharm. Bull. 1976, 24, 970-978.
- [148] Steiger, N. US Patent 3,135,755, 1964.
- [149] Priewe, H.; Poljak, A. Chem. Ber. 1960, 93, 2347-2352.
- [150] Han, Y.; Cai, L. Tetrahedron Lett. 1997, 38, 5423-5426.
- [151] Cai, L.; Han, Y.; Ren, S.; Huang L. Tetrahedron 2000, 56, 8253-8262.
- [152] Suvorov, N. N.; Chernov, V. A.; Velezheva, V. S.; Ershova, Y. A.; Simakov, S. V.; Sevodin, V. P. *Pharmaceutical Chemistry Journal* 1981, 15, 631–638.
- [153] Scott F. L.; Barry, J. A. Tetrahedron Lett. 1968, 9, 2457–2460.
- [154] Nonogawa, M.; Arai, T.; Endo, N.; Pack, S. P.; Kodaki, T.; Makino, K. Org. Biomol. Chem., 2006, 4, 1811–1816.
- [155] Scott, M. K.; Jacoby, H. I.; Bonfilio, A. C.; Corcoran, T. W.; Lopez, I. S. J. Med. Chem. 1987,30, 894–899.
- [156] Chen, M.-J.; Chi, C.-S.; Chen, Q.-Y. J. Fluorine Chem. 1990, 49, 99-106.
- [157] Mekhalfia, A.; Mutter, R.; Heal, W.; Chen, B. Tetrahedron 2006, 62, 5617–5625.
- [158] Weiner, M. J. Org. Chem. 1960, 25, 2245-2246.
- [159] Taylor, E. C.; Ehrhart, W. A. J. Org. Chem. 1963, 28, 1108–1112.
- [160] Pedersen, E. B. Acta Chem. Scand. 1977, B31, 261.
- [161] IUPAC. "Thiols", Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997).
- [162] IUPAC. "Sulfides", Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997).
- [163] IUPAC. "Polysulfides", Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997).
- [164] Burnett, M. N.; Johnson, C. K.; ORTEP–III: Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Oak Ridge National Laboratory Report ORNL–6895, 1996.
- [165] Chance, M. R.; Sagi, I.; Wirt, M. D.; Frisbie, S. M.; Scheuring, E.; Chen, E.; Bess, Jr., J. W.; Henderson, L. E.; Arthur, L. O.; South, T. L.; Perez–Alvarado, G.; Summers, M. F. *Proc. Natl. Acad. Sci. USA* **1992**, 89, 10041–10045.

- [166] Clark-Baldwin, K.; Tierney, D. L.; Govindaswamy, N.; Gruff, E. S.; Kim, C.; Berg, J.; Koch, S. A.; Penner-Hahn, J. E. J. Am. Chem. Soc. 1998, 120, 8401–8409.
- [167] Cordero, B.; Gómez, V.; Platero–Prats, A. E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. *Dalton Trans.* 2008, 2832–2838.
- [168] Shannon, R. D. Acta Cryst. 1976. A32, 751-767.
- [169] Bondi A. J. Phys. Chem. 1964, 68, 441-451.
- [170] Riedel, E.; Janiak, C. , Anorganische Chemie "7. Auflage, Walter de Gruyter, Berlin, 2007.
- [171] Csizmadia, I. G. In: Patai, S. (Ed.), "The Chemistry of the thio group", Wiley, New York 1974, 1–109.
- [172] Lide, D. R. ,, *CRC Handbook of Chemistry and Physics* ", 90th revised edition, Taylor & Francis, Boca Raton, FL, **2009**.
- [173] Hesse M., Meier H., Zeeh B.; *"Spektroskopische Methoden in der organischen Chemie"* 7., überarbeitete Auflage, Georg Thieme Verlag, Stuttgart, **2005**.
- [174] Wilson, S. H. S.; Ashfold, M. N. R.; Dixon, R. N. J. Chem. Phys. 1994, 101, 7538-.
- [175] Reed, D. R.; Hare, M. C.; Fattahi, A.; Chung, G.; Gordon, M. S.; Kass, S. R. J. Am. Chem. Soc. 2003, 125, 4643–4651.
- [176] Brown, W. H.; Foote, C. S.; Iverson, B. L.; Anslyn, E. V. "Organic Chemistry", 5th Edition, Brooks/Cole Cengage Learning, Belmont, CA, 2009, 405.
- [177] Wood, W. F.; Sollers, B. G.; Dragoo, G. A.; Dragoo, J. W. J. Chem. Ecol. 2002, 28, 1865–1870.
- [178] Buettner, A.; Schieberle, P. J. Agric. Food Chem. 1999, 47, 5189-5193.
- [179] Gilman, H.; Fullhart, L. J. Am. Chem. Soc. 1949, 71, 1478–1481.
- [180] Wuyts, H.; Cosyns, G. Bull. Soc. Chim. France 1903, 29, 689-693
- [181] Houff, W. H.; Schuetz, R. D. J. Am. Chem. Soc. 1953, 75, 6316–6317.
- [182] Ellis, Jr., L. M.; Reid, E. E. J. Am. Chem. Soc. 1932, 54, 1674–1687.
- [183] Bandgar, B.; Pawar, S. B. J. Chem. Res. (S) 1998, 212–213.
- [184] Jones, S. O.; Reid, E. E. J. Am. Chem. Soc. 1938, 60, 2452-2455.
- [185] Vaughan, W. E.; Rust, F. F. J. Org. Chem. 1942, 7, 472–476.
- [186] Wardell, J. L. In: Patai, S. (Ed.), "The Chemistry of the thio group", Wiley, New York 1974, 163–269.
- [187] Schrank, K.; Bügler, S.; Fotz, H.; Schott, N. Helv. Chim. Acta 2007, 90, 1606–1649.
- [188] Bullock, M.W.; Brockman, J. A.; Patterson, E. L.; Pierce, J. V.; von Saltza, M. H.; Sanders, F.; Stokstad, E. L. R. J. Am. Chem. Soc. 1954, 76, 1828–1832.
- [189] Hauptmann, H.; Bobbio, P. A. Chem. Ber. 1960, 93, 280-282.
- [190] Sohn, C. H.; Chung, C. K.; Yin, S.; Ramachandran, P.; Loo, J. A.; Beauchamp, J. L. J. Am. Chem. Soc. 2009, 131, 5444–5459.
- [191] Clinton, R. O.; Suter, C. M.; Laskowski, S. C.; Jackman, M.; Huber, W. J. Am. Chem. Soc. 1945, 67, 594–597.
- [192] Albertson, N. F.; Clinton, R. O. J. Am. Chem. Soc. 1945, 67, 1222–1223.
- [193] Dauselt, J.; Zhao, J.; Kind, M.; Binder, R.; Bashir, A.; Terfort, A.; Zharnikov, M. J. Phys. Chem. C 2011, 115, 2841–2854.
- [194] Rumpf, P. Bull. Soc. Chim. France 1942, 9, 661–667.
- [195] Zhang, S.-J.; Ge, Q.-F.; Guo, D.-W.; Hu, W.-X.; Liu, H.-Z. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 3078–3083.
- [196] Hamacher, K.; Hanuš, J. J. Labelled Comp. Rad. 1989, 27, 1275–1283.
- [197] Martin, D. J.; Greco, C. C. J. Org. Chem. 1968, 33, 1275–1276.
- [198] Moreno-Mañas, M.; Arredondo, Y.; Pleixats, M.; Teixidó, M.; Raga, M. M.; Palacín, C.; Castelló J. M.; Ortiz, J. A. J. Heterocyl. Chem. 1992, 29, 1557–1560.
- [199] Piper, J. R.; Johnston, T. P. J. Org. Chem. 1967, 32, 1261–1262.

- [200] Tsuboi, S.; Kohara, N.; Dori, K.; Utaka, M.; Takeda, A. Bull. *Chem. Soc. Jpn.* **1988**, *61*, 3205–3209.
- [201] Frederiksen, E.; Liisberg, S. V. Chem. Ber. 1955, 88, 684-685.
- [202] Gattermann, L. Liebigs Ann. Chem. 1912, 393, 215–233.
- [203] Price, C. C.; Stacy, G. W. J. Am. Chem. Soc. 1946, 68, 498-500.
- [204] Taboury, F. Compt. Rend. 1904, 138, 982–983.
- [205] Taboury, F. J. Chem. Soc., Abstr. 1904, 86, 493.
- [206] Taboury, F. Ann. Chem. Phys. 1908, 15, 5-66.
- [207] Adams, R.; Ferretti, A. J. Am. Chem. Soc. 1959, 81, 4927-4931.
- [208] Adams, R.; Ferretti, A. J. Am. Chem. Soc. 1959, 81, 4939-4940.
- [209] Kaufmann, H. P.; Rossbach, E. Chem. Ber. 1925, 58, 1556-
- [210] Tarbell, D. S.; Fukushima, D. K. Org. Synth. Coll. Vol. III 1955, 809.
- [211] Guise, G. B.; Ollis, W. D.; Peacock, J. A.; Stephanatou, J. S.; Stoddart, J. F. J. Chem. Soc., Perkin Trans. 1 1982, 1637–1648.
- [212] Bhar, D.; Chandrasekaran, S. Synthesis 1994, 785–786.
- [213] Kopylova, B. V.; Khasanova, M. N. Russ. Chem. Bull. 1969, 18, 2468-2470.
- [214] Bauer, W.; Steckelberg, W. European Patent, EP0409009, 1990.
- [215] Ried, W.; Storbeck, W. Schmidt, E. Arch. Pharm. 1962, 295, 143-145.
- [216] Mohammadpoor–Baltork, I.; Khosropour, A. R.; Hojati, S. F. *Catal. Commun.* 2007, *8*, 1865–1870.
- [217] Itoh, T.; Nagata, K.; Miyazaki, M.; Ohsawa, A. Heterocycles 2000, 52, 1037–1040.
- [218] Nomura, Y.; Kawashita, Y.; Hayashi, M. Heterocycles 2007, 74, 629-635.
- [219] Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533-3539.
- [220] Dance, I. G. Polyhedron 1986, 5, 1037–1104.
- [221] Stephan, D. W.; Nadasdi, T. T. Coord. Chem. Rev. 1996,147, 147-208
- [222] Bierschenk, T. R.; Lagow, R. J. Inorg. Chem. 1983, 22, 359-360.
- [223] Zervas, L.; Photaki, I. J. Am. Chem. Soc. 1962, 84, 3887-3897.
- [224] Gomes de Lima, L.; Cariou, M.; Scordia, H.; Kergoat, R.; Kubicki, M. M.; Guerchais, J. E. J. Organomet. Chem. 1985, 290, 321–327.
- [225] Tyrra, W.; Naumann, D.; Hoge, B.; Yagupolskii, Y. L. J. Fluor. Chem. 2003, 119, 101– 107.
- [226] Krebs, B.; Brömmelhaus, A. Z. Anorg. Allgem. Chem. 1991, 595, 167–182.
- [227] Cofone, A.; Niemeyer, M. Z. Anorg. Allgem. Chem. 2006, 632, 1930–1932.
- [228] Arumugam, K.; Shaw, M. C.; Mague, J. T.; Bill, E.; Sproules, S.; Donahue, J. P. *Inorg. Chem.* **2011**, *50*, 2995–3002.
- [229] Treichel, P. M.; Schmidt, M. S.; Crane, R. A. Inorg. Chem. 1991, 30, 379-381
- [230] Golden, M. L.; Reibenspies, J. H.; Darensbourg, M. Y. Inorg. Chem. 2004, 43, 5798– 5800.
- [231] Tarafder, M. T. H.; Jin, K. T.; Crouse, K. A.; Ali, A. M.; Yamin, B. M.; Fun, H.-K. *Polyhedron* **2002**, *21*, 2547–2554.
- [232] Muetterties, E. L.; Guggenberger, L. J. J. Am. Chem. Soc. 1974, 96, 1748-1756.
- [233] Rossi, A. R.; Hoffmann, R. Inorg. Chem. 1975, 14, 365-374.
- [234] Konno, T.; Tokuda, K.; Sakurai, J.; Okamoto, K. Bull. Chem. Soc. Jpn. 2000, 73, 2767– 2773.
- [235] Tang, X.-Y.; Yuan, R.-X.; Ren, Z.-G.; Li, H.-X.; Zhang, Y.; Lang, J.-P. *Inorg. Chem.* **2009**, *48*, 2639–2651.
- [236] Silin', E. Y.; Bel'skii, V. K.; Zavodnik, V. E.; Ashaks, Y. V.; Pech, L. Y.; Zaruma, D. E. Russ. J. Inorg. Chem. 2008, 53, 378–384.
- [237] Bochmann, M.; Webb, K. J.; Powell, A. K. Polyhedron 1992, 11, 513-516.
- [238] ¹**H**–**NMR** (300 MHz, DMSO– d_6) δ 9.40 (s, 1H), 8.17 (d, J = 7.8 Hz, 1H), 8.11 (d, J = 8.0 Hz, 1H), 7.55 (t, J = 7.6Hz, 1H), 7.48 (t, J = 7.4 Hz, 1H).

- [239] ¹H–NMR (400,13 MHz, DMSO– d_6 , 25 °C) δ 9,64 (s, 2H), 8,21 (dd, J = 4,90, 1,14 Hz, 2H), 7,74 (d, J = 8,44 Hz, 2H), 7,63 (td, J = 7,8, 1,90 Hz, 2H), 6,84 (t, J = 6,0 Hz, 2H). ¹³C–NMR (100,62 MHz, DMSO– d_6 , 25 °C) δ 154,4, 147,4, 137,5, 115,8, 111,8.
- [240] Bryant, R. G. J. Chem. Educ. 1983, 60, 933-935.
- [241] Reich, H. J. "WinDNMR: Dynamic NMR Spectra for Windows." J. Chem. Educ. Software 1996, 3D, 2.
- [242] Wikipedia.org: Elektromagnetisches Spektrum
- [243] Kincaid, J. F.; Eyring, H.; Stearn, A. E.; Chem. Rev. 1941, 28, 301–365.
- [244] Wawer, I. Mag. Res. Chem. 1989, 27, 577-581.
- [245] Wawer, I. J. Mol. Liquids. 1992, 52, 243-250.
- [246] Günzler H., Gremlich H.–U. "*IR–Spektroskopie"* Vierte, vollständig überarbeitete und aktualisierte Auflage, WILEY–VCH, Weinheim, **2003**.
- [247] Friedel, R. A.; McKinney, D. S. J. Am. Chem. Soc. 1947, 69, 604-607.
- [248] Eshghia, H.; Bakavolia, M.; Moradia, H.; Davoodniab, A. *Phosphorus, Sulfur* **2009**, *184*, 3110–3118.
- [249] Cereda, E.; Bellora, E.; Donetti, A. Synthesis, 1986, 4, 288–291.
- [250] Fujiwara, S.; Asanuma, Y.; Shin-ike, T.; Kambe, N. J. Org. Chem., 2007, 72, 8087– 8090.
- [251] Vincent, S.; Mioskowski, C.; Lebeau, L. J. Org. Chem., 1999, 64, 991-997.
- [252] Burlov, A. S.; Borodkina, I. G.; Kuznetsova, L. I.; Uraev, A. I.; Makarova, N. I.; Vasil'chenko, I. S.; Borodkin, G. S.; Altun, O.; Feiizoglu (Abdullaev), A.; Garnovskii, A. D. Russ. J. Gen. Chem., 2004, 74, 772–775.
- [253] Marat, K. Spinworks 3.1.7, University of Manitoba, 2010.
- [254] Farrugia, L. J. Wingx V1.70.01, An Integrated System of Windows Programs for the Solution, Refinement and Analysis of Single Crystal X–Ray Diffraction Data, University of Glasgow, 1997–2005.
- [255] Sheldrick, G. M. SHELXS, Program for crystal structure solution, Universität zu Göttingen, Göttingen, 1997.
- [256] Altomare, A.; Cascarano, G.; Giacovazo, C.; Gualardi, A. J. Appl. Cryst. 2006, 26, 343.
- [257] Sheldrick, G. M. SHELXL–97, Program for the refinement of crystal structures, Universität zu Göttingen, Göttingen, **1997.**
- [258] *X–RED, STOE Data Reduction Program*, 1.22 ed., STOE & Cie GmbH, Darmstadt, **2001**.
- [259] *STOE X–SHAPE, Crystal Optimisation for Numerical Absorption Correction*, 1.06, STOE & Cie GmbH, Darmstadt, **1999**.
- [260] Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864-871.
- [261] Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133–1138.
- [262] Stewart, J. J. P. J. Mol. Model. 2007, 13, 1173–1213.
- [263] Roothaan, C. C. J. Rev. Mod. Phys. 1951, 23, 69-89.
- [264] McWeeny, R.; Dierksen, G. J. Chem. Phys. 1968, 49, 4852.
- [265] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.;

Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;

Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M.

W.; Gonzalez, C.; Pople, J. A. *Gaussian 03, Revision E.01,* Gaussian, Inc., Wallingford CT, **2004**.

- [266] Becke, A. D. Phys. Rev. A 1988, 38, 3098–3100.
- [267] Perdew, J. P. Phys. Rev. B 1986, 33, 8822-8824.
- [268] Dirac, P. A. M. Proc. Cambr. Phil. Soc. 1930, 26, 376-385.
- [269] Slater, J. C. Phys. Rev. 1951, 81, 385-390.
- [270] Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200-1211.
- [271] Neugebauer, J.; Hess, B. A. J. Chem. Phys. 2003, 118, 7215-7225.
- [272] Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. *Theor. Chim. Acta* **1990**, 77, 123–141.
- [273] Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- [274] Dennington II, R.; Keith, T.; Millam, J.; Eppinnett, K.; Hovell W.L.; Gilliland, R. GaussView, Version 3.0.9, Semichem, Inc., Shawnee Mission, KS, 2003.
- [275] Tyagi, P.; Srivastava, R.; Kumar, A.; Rai, V. K.; Grover, R.; Kamalasanan, M. N. Synthetic Met. 2010, 160, 756–761.
- [276] Linden, A.; James, B. D.; Liesegang, J.; Gonis, N. Acta Cryst. 1999, B55, 396-409.
- [277] Chaari, S.; Salah, A. B.; Jouini, T.; Daoud, A. Acta Cryst. 1989, C45, 1495–1497.
- [278] Goggin, P. L.; King, P.; McEwan, D. M.; Taylor, G. E.; Woodward, P.; Sandström, M. J. Chem. Soc., Dalton Trans. 1982, 875–882
- [279] Wen, H.; Miller, S. E.; House, D. A.; McKee, V.; Robinson, W. T. Inorg. Chim. Acta 1992, 193, 77–85.
- [280] Yen, S. K.; Koh, L. L.; Huynh, H. V.; Hor, T. S. A. Dalton Trans. 2008, 699-706.
- [281] Yen, S. K.; Koh, L. L.; Huynh, H. V.; Hor, T. S. A. J. Organomet. Chem. 2009, 694, 332–338.
- [282] Salah, A. B.; Bats, J. W.; Kalus, R.; Fuess, H.; Daoud, A. Z. Anorg. Allg. Chem. 1982, 493, 178–186.
- [283] Batten, S. R.; Harris, A. R.; Murray, K. S.; Smith, J. P. Cryst. Growth Des., 2002, 2, 87–89.
- [284] Book, L.; Mak, T. C. W. Inorg. Chim. Acta 1983, 77, L57–L59.
- [285] Hagos, T. K.; Nogai, S. D.; Dobrzanska, L.; Cronje, S.; Raubenheimer, H. G. Acta Cryst. 2009. E65, m255–m256.
- [286] Kouroulis, K. N.; Hadjikakou, S. K.; Kourkoumelis, N.; Kubicki, M.; Male, L.; Hursthouse, M.; Skoulika, S.; Metsios, A. K.; Tyurin, V. Y.; Dolganov, A. V.; Milaeva, E. R.; Hadjiliadis, N. *Dalton Trans.* 2009, 10446–10456.
- [287] Brandenburg, K. Diamond, 3.2g, Crystal Impact GbR, Bonn, 1997–2011.
- [288] Sproules, S.; Kapre, R. R.; Roy, N.; Weyhermüller, T.; Wieghardt, K. Inorg. Chim. Acta 2010, 363, 2702–2714.
- [289] Kawamoto, T.; Kuma, H.; Kushi, Y. Bull. Chem. Soc. Jpn. 1997, 70, 1599–1606.
- [290] Kawamoto, T.; Kushi, Y. Bull. Chem. Soc. Jpn. 2004, 77, 289–294.
- [291] Kawamoto, T.; Kuma, H.; Kushi, Y. Bull. Chem. Soc. Jpn. 1997, 70, 1599–1606.
- [292] Kawamoto, T.; Kushi, Y. Inorg. Chim. Acta 1998, 282, 71-75.
- [293] Bouwman, E.; Henderson, R. K.; Powell, A. K.; Reedijk, J.; Smeets, W. J. J.; Spek, A. L.; Veldman, N. J. Chem. Soc., Dalton Trans. 1998, 3495–3500.
- [294] Ercan, F.; Ülkü, D.; Ancin, N.; Öztas, S. G.; Tüzün, M. Acta Cryst. 1996, C52, 1141– 1143.
- [295] Kawamoto, T.; Takeda, K.; Nishiwaki, M.; Aridomi, T.; Konno, T. *Inorg. Chem.* **2007**, *46*, 4239.
- [296] Kawamoto, T.; Konno, T. Bull. Chem. Soc. Jpn. 2003, 76, 127–132.

- [297] Müller, A.; Johannes, K. U.; Plass, W.; Bögge, H.; Krahn, E.; Schneider, K.; Z. Anorg. Allgem. Chem. 1996, 622, 1765–1772.
- [298] Fernando, Q.; Wheatley, P. J. Inorg. Chem. 1965, 4, 1726–1729.
- [299] Şahin, E.; İde, S.; Ancın, N.; Öztas, S.G.; Tüzün, M. Z. Kristallogr. 2002, 217, 174– 177.
- [300] Kawamoto, T.; Kushi, Y. Inorg. Chim. Acta 1998, 282, 71-75.
- [301] Kawamoto, T.; Kushi, Y. J. Chem. Soc., Dalton Trans. 2000, 3022-3026.
- [302] Karsten, P.; Maichle–Mössmer, C.; Strähle, J. Z. Anorg. Allg. Chem. 1997, 623, 1644– 1650.
- [303] Kawamoto, T.; Nagasawa, I.; Kushi, Y.; Konno, T. *Inorg. Chim. Acta* **2003**, *348*, 217–220.
- [304] Kawamoto, T.; Kuma, H.; Kushi, Y. Chem. Commun. 1996, 2121-2122.
- [305] Kawamoto, T.; Nagasawa, I.; Kuma, H.; Kushi, Y. Inorg. Chem. 1996, 35, 2427-2432.
- [306] Nagasawa, I.; Kawamoto, T.; Kuma, H.; Kushi, Y. Bull. Chem. Soc. Jpn. 1998, 71, 1337–1342.
- [307] Rérat, C. Acta Cryst. 1960, 13, 72-80.
- [308] Gaudet, M. V.; Zaworotko, M. J.; White, P. S. Inorg. Chem. 1989, 28, 1191-1193.
- [309] Loehlin, J. H.; Okasako, E. L. N. Acta Cryst. 2007, B63, 132-141.
- [310] Sandström, M.; Liem, D. H. Acta Chem. Scand. 1978, A32, 509-514.
- [311] Boorman, P. M.; Merrit, C. L.; Nandana, W. A. S.; Richardson, J. F. J. Chem. Soc., Dalton Trans. 1986, 1251–1255.
- [312] Byriel, K. A.; Dunster, K. R.; Gahan, L. R.; Kennard, C. H. L.; Latten, J. L. Inorg. Chim. Acta 1992, 196, 35–41.
- [313] Nockemann, P.; Meyer, G. Acta Cryst. 2004, E60, m751-m752
- [314] Xie, Y.-M.; Wu, J.-H. Acta Cryst. 2007 C63, m220-m221.
- [315] Nockemann, P.; Meyer, G. Acta Cryst. 2004, E60, m744-m746
- [316] Khavasi, H. R.; Sadegh, B. M. M. Inorg. Chem. 2010, 49, 5356-5358.
- [317] King, K. N.; McNeil, A. J. Chem. Commun. 2010, 46, 3511–3513
- [318] Jørgensen, C. K. Coord. Chem. Rev. 1966, 1, 164-178.
- [319] Elmali, A.; Özbey, S.; Kendi, E.; Kabak, M.; Elerman, Y. Acta Cryst. 1995, C51, 1878– 1880.
- [320] Raftery, J.; Jhaumeer–Laulloo, S.; Bhowon, M. G.; Chikhooree, K.; Joule, J. A. Acta Cryst. 2010, E66, 03307.
- [321] Beloglazkina, E. K.; Majouga, A. G.; Yudin, I. V.; Rakhimov, R. D.; Tarasevich, B. N.; Zatonsky, S. V.; Zyk, N. V. J. Sulfur Chem. 2007, 28, 201–210.
- [322] Jin, L.-X.; Liu, Z.; Xia, J.-H.; Li, G.-Z. Acta Cryst. 2007, E63, o3854.
- [323] Wang, D.; Behrens, A.; Farahbakhsh, M.; Gätjens, J.; Rehder, D. Chem. Eur. J. 2003, 9, 1805–1813.
- [324] Gomes de Mesquita, A. H. Acta Cryst. 1967, 23, 671–672.
- [325] Goh, J. H.; Fun, H.-K.; Babu, M.; Kalluraya, B. Acta Cryst. 2010, E66, o292-o293.
- [326] Gialdi, F.; Ponci, R.; Baruffini, A. Farmaco, Ed. Sci. 1959, 14, 216-39.
- [327] Griffith, R. C.; Gentile, R. J.; Davidson, T. A.; Scott, F. L. J. Org. Chem. 1979, 44, 3580–3583.
- [328] Sens, M. A.; Wilson, N. K.; Ellis, P. D.; Odom, J. D. J. Magn. Reson. 1975, 19, 323– 336.
- [329] Hook, J. M.; Dean, P. A. W.; Hockless, D. C. R. Acta Cryst. 1995, C51, 1547–1549.
- [330] Sandström, M.; Persson, I. Acta. Chem. Scand. A 1978, 32, 95–100.
- [331] Cardile, S. A.; Burchell, T. J.; Jennings, M. C.; Puddephatt, R. J. J. Inorg. Organomet. Polym. Mater. 2007, 17, 235–240.
- [332] Biscarini, P.; Fusina, L.; Nivellini, G. D.; Mangia, A.; Pelizzi, G. J. Chem. Soc., Dalton Trans. 1974, 1846–1849.

- [333] Calligaris, M.; Carugo, O. Coord. Chem. Rev. 1996, 153, 83–154.
- [334] Calligaris, M. Coord. Chem. Rev. 2004, 248, 351–375
- [335] Eichhorn, K. Z. Kristallographie 1984, 169, 313-316.
- [336] Van Niekerk, J. N.; Schoening, F. R. L. Nature, 1953, 171, 36–37.
- [337] Ferguson, G.; Glidewell, C. Acta Cryst. 2003, E59, m710-m712.
- [338] Bukowska–Strzyzewska, M.; Skoweranda, J.; Tosik, A. Acta Cryst. **1982**, B38, 2904–2906.
- [339] Sun, Y.-F.; Lu, J.-R.; Zheng, Z.-B. Acta Cryst. 2007, E63, m1881.
- [340] Ford, R. A.; Halkyard, G.; Underhill, A. E. Inorg. Nucl. Chem. Letters 1968, 4, 507–512.
- [341] Rodríguez–Fortea, A.; Alemany, P.; Alvarez, S.; Ruiz, E. Chem. Eur. J. 2001, 7, 627– 637.
- [342] Tokii, T.; Muto, Y. Bull. Chem. Soc. Jpn. 1983, 56,1549-1550.
- [343] Giesse, R.; Gushikem, Y.; Volpe, P. L. O. Thermochim. Acta 1982, 54, 257-262.
- [344] Beloglazkina, E. K.; Yudin, I. V.; Mazhuga, A. G.; Moiseeva, A. A.; Zatonskii, S. V.; Zyk, N. V. Russ. Chem. Bull. 2008, 57, 577–584.
- [345] Panizzi, J.-C.; Davidovics, G.; Guglielmetti, R.; Mille, G.; Metzger, J.; Chouteau, J. *Can. J. Chem.* **1971**, *49*, 956–964.
- [346] Atoub, N.; Mahmoudi, G.; Morsali, A. Inorg. Chem. Commun. 2007, 10, 166–169.
- [347] Bunge, S. D.; Just, O.; Rees, Jr., W. S. Polyhedron 2001, 20, 823-830.
- [348] Goodgame, D. M. L.; Hill, S. P. W.; Williams, D. J. Polyhedron 1992, 11, 1507–1512.
- [349] Morzyk, B.; Michalska, D.; Wojciechowski, W.; Głowiak, T. J. Mol. Struct. 1999, 478, 99–105.
- [350] Deacon, G. B.; Raston, C. L.; Tunaley, D.; White, A. H. Aust. J. Chem. 1979, 32, 2195–2201.
- [351] Åkesson, R.; Sandström, M.; Stålhandske, C.; Persson, I. Acta Chem. Scand. 1991, 45, 165–171.
- [352] Bebout, D. C.; Ehmann, D. E.; Trinidad, J. C.; Crahan, K. K. *Inorg. Chem.* **1997**, *36*, 4257–4264.
- [353] Hörner, M.; de Oliveira, G. M.; Visentin, L. C.; Cezar, R. S.; *Inorg. Chim. Acta* **2006**, *359*, 4667–4671.
- [354] Hou, H.; Wei, Y.; Song, Y.; Mi, L.; Tang, M.; Li, L.; Fan, Y. Angew. Chem. Int. Ed. **2005**, *44*, 6067–6074.
- [355] Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Zhou, H.-C. *Inorg. Chim. Acta* **2000**, *305*, 69–74.
- [356] Gornitzka, H.; Stalke, D. Eur. J. Inorg. Chem. 1998, 311-317.
- [357] Pfeiffer, M.; Murso, A.; Mahalakshmi, L.; Moigno, D.; Kiefer, W.; Stalke, D. Eur. J. Inorg. Chem. 2002, 3222–3234.
- [358] Ivanova, J.; Pantcheva, I. N.; Mitewa, M.; Simova, S.; Mayer–Figge, H.; Sheldrick, W. S. Centr. Europ. J. Chem. 2010, 8, 852–860.
- [359] Canty, A. J.; Devereux, J. W.; Skelton, B. W.; White, A. H. Can. J. Chem. 2006, 84, 77-80.
- [360] Raston, C. L.; Skelton, B. W.; White, A. H. Aust. J. Chem. 1978, 31, 537.

8 Anhang

8.1 Quantenmechanische Rechnungen

	Х	Y	Ζ
Zn	0,000000	0,000000	0,769654
S	1,536961	-1,408876	1,702319
Ν	0,769188	1,654652	-0,339692
Ν	-0,769188	-1,654652	-0,339692
S	-1,536961	1,408876	1,702319
С	0,000000	2,833618	-0,160300
С	2,053088	1,818080	-0,566025
С	-1,096148	2,826623	0,749482
С	0.272271	3.995185	-0.908501
Н	2,535914	2,780547	-0.341255
Ν	2.882597	0.895248	-1.082284
C	-1.841267	4.013941	0.894269
Ċ	-0.475789	5,161456	-0.740196
Н	1 063392	3 966946	-1 661165
Н	-2 673718	4 015443	1 600029
C	-1 535697	5 167837	0 172600
Н	-0.246099	6 046922	-1 334396
Н	-2,137054	6 067726	0 312923
C	1 096148	-2.826623	0 749482
C	0,000000	-2.833618	-0 160300
Ċ	-0.272271	-3.995185	-0.908501
Н	-1.063392	-3 966946	-1 661165
C	1.841267	-4.013941	0.894269
Н	2.673718	-4.015443	1.600029
C	1.535697	-5.167837	0.172600
Н	2.137054	-6.067726	0.312923
С	0.475789	-5.161456	-0.740196
Н	0,246099	-6,046922	-1,334396
С	-2,053088	-1,81808	-0,566025
Н	-2,535914	-2,780547	-0,341255
Ν	-2,882597	-0,895248	-1,082284
С	-2,418938	0.367675	-1,644933
Н	-2,575875	1,198700	-0,942372
Н	-1,348579	0,295260	-1,865454
Н	-2,975161	0,562373	-2,574709
С	-4,325063	-1,072818	-0,985858
Н	-4,792568	-0,887239	-1,964642
Н	-4,552748	-2,097742	-0,667807
Н	-4,756891	-0,373528	-0,252472
С	4,325063	1,072818	-0,985858
Н	4,792568	0,887239	-1,964642
Н	4,552748	2,097742	-0,667807
Н	4,756891	0,373528	-0,252472
С	2,418938	-0,367675	-1,644933
Н	2,575875	-1,198700	-0,942372
Н	1,348579	-0,295260	-1,865454
Н	2,975161	-0,562373	-2,574709

8.1.1 Atomkoordinaten von 5, BP86/def2-TZVPP.

	Х	Y	Ζ
Cd	0,000000	0,000000	1,168004
Ν	-0,650437	1,837868	-0,357542
Ν	0,650437	-1,837868	-0,357542
S	1,610548	1,673641	1,8786
S	-1,610548	-1,673641	1,8786
С	1,020519	3,077104	0,981963
С	1,619509	4,318469	1,281678
С	0,000000	3,048859	-0,012777
С	1,237974	5,499392	0,64874
Н	2,403355	4,336723	2,040759
С	-0,404956	4,26463	-0,605701
С	0,208655	5,477688	-0,297677
Н	1,725117	6,438395	0,916634
Н	-1,256337	4,256471	-1,289527
Н	-0,135992	6,398526	-0,770216
С	-1,020519	-3,077104	0,981963
С	0,000000	-3,048859	-0,012777
С	-1,619509	-4,318469	1,281678
С	0,404956	-4,26463	-0,605701
С	-1,237974	-5,499392	0,64874
Н	-2,403355	-4,336723	2,040759
С	-0,208655	-5,477688	-0,297677
Н	1,256337	-4,256471	-1,289527
Н	-1,725117	-6,438395	0,916634
Н	0,135992	-6,398526	-0,770216
С	1,052489	-1,722575	-1,596269
Н	0,671374	-2,40099	-2,376285
С	-1,052489	1,722575	-1,596269
Н	-0,671374	2,40099	-2,376285
Ν	1,960657	-0,831359	-2,050924
Ν	-1,960657	0,831359	-2,050924
С	2,136324	-0,626973	-3,480111
Н	1,754443	0,357986	-3,796987
Н	3,204185	-0,679015	-3,741737
Н	1,597964	-1,405044	-4,036292
С	2,735447	0,018383	-1,155346
Н	2,270148	1,004366	-1,008183
Н	2,815526	-0,462715	-0,174631
Н	3,739502	0,158629	-1,580983
С	-2,735447	-0,018383	-1,155346
Н	-2,270148	-1,004366	-1,008183
Н	-2,815526	0,462715	-0,174631
Н	-3,739502	-0,158629	-1,580983
С	-2,136324	0,626973	-3,480111
Н	-1,754443	-0,357986	-3,796987
Н	-3,204185	0,679015	-3,741737
Н	-1,597964	1,405044	-4,036292

8.1.2 Atomkoordinaten von	6,	BP86/def2-TZVPP.
---------------------------	----	------------------

8.1.3 Atomkoordinaten von 7, BP86/def2-TZVPP.

	Х	Y	Ζ
Hg	0,000000	0,000000	1,150563
S	1,186115	-2,014961	1,584374
Ν	1,068050	1,728496	-0,663351
---	-----------	-----------	-----------
Ν	-1,068050	-1,728496	-0,663351
S	-1,186115	2,014961	1,584374
С	0,385089	2,953771	-0,598034
С	2,348759	1,764775	-0,901746
С	-0,665566	3,164393	0,339056
С	0,677865	3,989156	-1,514043
Н	2,924521	2,699985	-0,802899
Ν	3,096102	0,707914	-1,291295
С	-1,348045	4,395806	0,329813
С	0,000000	5,207456	-1,499162
Н	1,436392	3,803579	-2,277461
Н	-2,147922	4,549979	1,056677
С	-1,020722	5,412565	-0,566514
Н	0,254296	5,980704	-2,225700
Н	-1,572671	6,353365	-0,543035
С	0,665566	-3,164393	0,339056
С	-0,385089	-2,953771	-0,598034
С	-0,677865	-3,989156	-1,514043
Н	-1,436392	-3,803579	-2,277461
С	1,348045	-4,395806	0,329813
Н	2,147922	-4,549979	1,056677
С	1,020722	-5,412565	-0,566514
Н	1,572671	-6,353365	-0,543035
С	0,000000	-5,207456	-1,499162
Н	-0,254296	-5,980704	-2,225700
С	-2,348759	-1,764775	-0,901746
Н	-2,924521	-2,699985	-0,802899
Ν	-3,096102	-0,707914	-1,291295
С	-4,547469	-0,783929	-1,272885
Н	-4,958575	-0,444300	-2,236463
Н	-4,863662	-1,820152	-1,098435
Н	-4,970210	-0,150476	-0,475434
С	-2,509550	0,581348	-1,634618
Н	-2,685723	1,324117	-0,842337
Н	-1,428541	0,463071	-1,763422
Н	-2,959125	0,942802	-2,572665
С	2,509550	-0,581348	-1,634618
Н	2,685723	-1,324117	-0,842337
Н	1,428541	-0,463071	-1,763422
Н	2,959125	-0,942802	-2,572665
С	4,547469	0,783929	-1,272885
Н	4,958575	0,444300	-2,236463
Н	4,863662	1,820152	-1,098435
Н	4,970210	0,150476	-0,475434

8.1.4 Atomkoordinaten von 9, BP86/def2-TZVPP.

	Х	Y	Ζ
Zn	0,0000000	0,0000000	1,3868710
Ν	-0,6823400	1,5531820	0,0559810
Ν	0,6823400	-1,5531820	0,0559810
S	1,3533440	1,5367800	2,3896210
S	-1,3533440	-1,5367800	2,3896210
С	0,8259520	2,9196130	1,4356500
С	1,3534950	4,1933100	1,7320740

С	-0,1223320	2,8180540	0,3765050
С	0,9637870	5,3342350	1,0332490
Н	2,0828780	4,2697620	2,5401740
С	-0,5432750	3,9904890	-0,2841940
С	0,0000000	5,2379550	0,0233020
Н	1,3905620	6,3031430	1,2982460
Н	-1,3504740	3,9290670	-1,0170010
Н	-0,3522020	6,1288270	-0,4984790
С	-0,8259520	-2,9196130	1,4356500
С	0,1223320	-2,8180540	0,3765050
С	-1,3534950	-4,1933100	1,7320740
С	0,5432750	-3,9904890	-0,2841940
С	-0,9637870	-5,3342350	1,0332490
Н	-2,0828780	-4,2697620	2,5401740
С	0,0000000	-5,2379550	0,0233020
Н	1,3504740	-3,9290670	-1,0170010
Н	-1,3905620	-6,3031430	1,2982460
Н	0,3522020	-6,1288270	-0,4984790
С	1,0856410	-1,3815210	-1,1830340
Н	0,7469900	-2,0661410	-1,9763620
С	-1,0856410	1,3815210	-1,1830340
Н	-0,7469900	2,0661410	-1,9763620
С	-2,8271510	-0,3474980	-0,7137930
С	-2,2873780	0,2570710	-3,0197730
С	-3,7318380	-1,1175600	-1,6886520
Н	-3,3873530	0,3627310	-0,0838260
Н	-2,2673910	-0,9997100	-0,0305900
С	-3,7319900	-0,2525500	-2,9622200
Н	-2,1686700	1,2077080	-3,5595580
Н	-1,6293310	-0,4905790	-3,4963200
Н	-4,7351150	-1,2757370	-1,2747380
Н	-3,3011000	-2,1072610	-1,9008910
Н	-4,4239210	0,5959440	-2,8515300
Н	-4,0158070	-0,8079230	-3,8652030
С	2,8271510	0,3474980	-0,7137930
С	2,2873780	-0,2570710	-3,0197730
С	3,7318380	1,1175600	-1,6886520
Н	3,3873530	-0,3627310	-0,0838260
Н	2,2673910	0,9997100	-0,0305900
С	3,7319900	0,2525500	-2,9622200
Н	2,1686700	-1,2077080	-3,5595580
Н	1,6293310	0,4905790	-3,4963200
Н	4,7351150	1,2757370	-1,2747380
Н	3,3011000	2,1072610	-1,9008910
Н	4,4239210	-0,5959440	-2,8515300
Н	4,0158070	0,8079230	-3,8652030
Ν	1,9309540	-0,4271810	-1,6010670
Ν	-1,9309540	0,4271810	-1,6010670

8.1.5 Atomkoordinaten von 13, BP86/def2-TZVPP.

	Х	Y	Ζ
Cd	0,000000	0,000000	1,475563
Ν	1,870104	0,343470	-0,056491
Ν	-1,870104	-0,343470	-0,056491
S	1,432380	-1,819666	2,230654

S	-1,432380	1,819666	2,230654
С	2,856792	-1,524332	1,228183
С	3,980056	-2,344562	1,461184
С	2,949536	-0,531492	0,209057
С	5,162733	-2,207521	0,737542
Н	3,903889	-3,105320	2.239980
С	4,172844	-0.381227	-0.480979
C	5.265974	-1.211747	-0.238972
Н	6.009733	-2.859961	0.956115
Н	4.277689	0.443733	-1.188796
Н	6.197788	-1.059168	-0.785440
C	-2.856792	1.524332	1.228183
C	-2,949536	0.531492	0.209057
Ċ	-3 980056	2 344562	1 461184
C	-4 172844	0 381227	-0 480979
C	-5 162733	2,207521	0 737542
н	-3 903889	3 105320	2,239980
C	-5 265974	1 211747	-0 238972
н	-4 277689	-0.443733	-1 188796
н	-6.009733	2 859961	0.956115
н	-6 197788	1 059168	-0 785440
C II	-1 742462	-0 772530	-1 288438
н	-1,742402	-0,772330	-1,200450
n C	1 742462	0.772530	-1,288/38
ч	2 261078	0,772330	-1,288458
II C	0.860500	0,205409	-2,118009
C C	0,809390	2,240271	0.735087
C C	0,347823	2,893178	2 088306
с u	0,700975	1,813001	-2,988590
П Ц	1 722021	1,815091	-5,498008
II C	0,000000	2 087460	-5,005100
с u	0,000000	2,514507	-1,007108
п	-0,209072	2,314397	-0,033309
П П	0.247041	3,230434	-0,130909
п	0,247941	4,202707	-3,838304
п	1,700137	4,210062	-2,951950
п	-1,079155	5,842434	-1,822723
п	0,140703	4,990300	-1,240255
C C	-0,809390	-2,240271	-3,008999
C C	-0,347829	-2,893178	-0,755087
	-0,700975	-3,773330	-2,988390
п	0,030943	-1,813091	-3,498008
п	-1,723031	-1,888300	-5,005100
	0,000000	-3,98/409	-1,00/108
11 U	1 402922	-2,31439/ 2,326454	-0,033309
11 U	-1,403822	-3,230434 1 202767	-0,130909
11 U	-0,24/941	-4,202/0/	-3,838304
11 U	-1,/0013/	-4,210082	-2,931930 1 822725
п u	1,079133	-3,042434	-1,022/20
11 N	-0,140703	-4,990300	-1,240233
IN N	-1,023287	-1,044333 1 844225	-1,002132
1 N	1,023207	1,044333	-1,002132

8.1.6 Atomkoordinaten von 16, BP86/def2-TZVPP.

	Х	Y	Z
С	2,768019	1,827371	0,877685

С	2,74398	1,956952	2,266041
С	4,004818	1,838097	0,20875
S	1,201271	1,715647	0,038144
Н	1,787764	1,951699	2,773171
С	3,913281	2,089733	3,001905
С	5,173734	1,938694	0,968839
Ν	4,066733	1,684411	-1,185828
Hg	1,64008	0,181319	-1,809289
Н	3.863253	2,190103	4.078746
С	5.135653	2.075244	2.348647
Н	6.129907	1.8865	0.463923
C	4,787049	2,495482	-1.843889
N	2.894487	-2.242606	-1.691828
S	1.306249	-0.828337	-4.004337
Н	6.060168	2.155237	2,906995
Н	5 259172	3 350509	-1 35621
N	5 049622	2,417615	-3 154128
C	3 299734	-2.550304	-3 002867
C	2 629913	-3 217675	-0.916068
C	2,686003	-1 946973	-4 115286
C	5 855608	3 40844	-3 855366
C	4 65638	1 298541	-4 002083
C	4 369566	-3 423382	-3 219835
Н	2 577585	-4 235953	-1 304484
N	2,407854	-3 135813	0 395228
C	3 146662	-2 266241	-5 392689
Н	5 497275	4 421908	-3 664553
Н	6.903016	3.359443	-3.536826
С	5.710132	3.001853	-5.322347
C	5.525279	1.483927	-5.246355
Н	3,594145	1,348647	-4,248501
Н	4,832025	0,351653	-3,493757
С	4,809111	-3,738417	-4,496882
Н	4,876567	-3,845484	-2,361522
С	1,955809	-4,275589	1,186927
С	2,580579	-1,925439	1,186901
Н	2,665265	-1,803675	-6,244305
С	4,190402	-3,157871	-5,592736
Н	4,817073	3,466579	-5,749001
Н	6,565412	3,308825	-5,926654
Н	6,493132	0,994808	-5,104521
Н	5,067742	1,057859	-6,139832
Н	5,637909	-4,422857	-4,62841
Н	1,086812	-4,752056	0,732028
Н	2,750318	-5,024918	1,273308
С	1,628792	-3,653859	2,545842
С	2,571764	-2,449869	2,622333
Н	1,758682	-1,228397	1,01732
Н	3,50649	-1,41981	0,915622
Н	4,520278	-3,386453	-6,598482
Н	1,756507	-4,360055	3,368013
Н	0,589776	-3,316843	2,551073
Н	3,576461	-2,774213	2,908458
Н	2,251046	-1,693146	3,339224
Hg	-1,64008	-0,181319	1,809289
S	-1,201271	-1,715647	-0,038144

Ν	-2,894487	2,242606	1,691828
Ν	-4,066733	-1,684411	1,185828
S	-1,306249	0,828337	4,004337
С	-2,768019	-1,827371	-0,877685
С	-3,299734	2,550304	3,002867
С	-2.629913	3.217675	0.916068
C	-4.004818	-1.838097	-0.20875
Ċ	-4 787049	-2 495482	1 843889
C	-2 686003	1 946973	4 115286
Ċ	-2 74398	-1 956952	-2 266041
C	-4 369566	3 423382	3 219835
н	-2.577585	4 235953	1 304484
N	-2.407854	3 135813	-0 395228
C	-5 173734	-1 938694	-0.968839
н	-5 259172	-3 350509	1 35621
N	-5 049622	-2 417615	3 154128
C	-3 146662	2,417015	5 392689
ч	-1.787764	-1 951699	-2 773171
II C	-1,787704	-1,931099	-2,773171
C C	-3,913281	-2,089733	-3,001903
с u	-4,009111	3,730417	4,490882
II C	-4,870307	1 275580	2,301322
C C	-1,955809	4,275569	-1,180927
C	-2,380379	1,923439	-1,160901
C II	-3,133033	-2,073244	-2,348047
П	-0,129907	-1,0003	-0,403923
C C	-3,833008	-3,40844	3,833300
C	-4,65638	-1,298541	4,002083
H	-2,005205	1,803675	6,244305
C	-4,190402	3,15/8/1	5,592736
H	-3,863253	-2,190103	-4,078746
H	-5,63/909	4,422857	4,62841
H	-1,086812	4,752056	-0,732028
Н	-2,/50318	5,024918	-1,2/3308
C	-1,628/92	3,653859	-2,545842
C	-2,5/1/64	2,449869	-2,622333
H	-1,758682	1,228397	-1,01732
H	-3,50649	1,41981	-0,915622
H	-6,060168	-2,155237	-2,906995
H	-5,497275	-4,421908	3,664553
H	-6,903016	-3,359443	3,536826
C	-5,710132	-3,001853	5,322347
С	-5,525279	-1,483927	5,246355
Н	-3,594145	-1,348647	4,248501
Н	-4,832025	-0,351653	3,493757
Н	-4,520278	3,386453	6,598482
Н	-1,756507	4,360055	-3,368013
Н	-0,589776	3,316843	-2,551073
Н	-3,576461	2,774213	-2,908458
Н	-2,251046	1,693146	-3,339224
Н	-4,817073	-3,466579	5,749001
Н	-6,565412	-3,308825	5,926654
Н	-6,493132	-0,994808	5,104521
Н	-5,067742	-1,057859	6,139832

	Х	Y	Z
Ni	0,0000000	0,0000000	0,7786871
S	-1,4880271	-0,403629	2,3256052
S	1,4880271	0,403629	2,3256052
Ν	1,5107541	-0,116464	-0,471681
Ν	-1,5107541	0,116464	-0,471681
С	-2,7149452	-1,0487521	1,2455671
С	2,7149452	1,0487521	1,2455671
С	2,5966862	0,7640631	-0,132344
С	1,7749481	-1,0171891	-1,3878431
С	-1,7749481	1,0171891	-1,3878431
С	-2,5966862	-0,7640631	-0,132344
С	-3,7965843	-1,8360301	1,6809571
С	3,7965843	1,8360301	1,6809571
С	3,5005293	1,3082121	-1,0523811
Ν	1,0660221	-2,1195622	-1,7147431
Н	2,7054142	-0,9199091	-1,9593831
Ν	-1,0660221	2,1195622	-1,7147431
Н	-2,7054142	0,9199091	-1,9593831
С	-3,5005293	-1,3082121	-1,0523811
С	-4,7083594	-2,3601572	0,7623311
Н	-3,9025653	-2,0475782	2,7462872
Н	3,9025653	2,0475782	2,7462872
С	4,7083594	2,3601572	0,7623311
Н	3,3753203	1,1256621	-2,1227462
С	4,5571563	2,1120592	-0,607598
С	-4,5571563	-2,1120592	-0,607598
Н	-3,3753203	-1,1256621	-2,1227462
Н	-5,5311484	-2,9837342	1,1164341
Н	5,5311484	2,9837342	1,1164341
Н	5,2481054	2,5495562	-1,3292031
Н	-5,2481054	-2,5495562	-1,3292031
С	0,0000000	2,6958022	-0,9036021
Н	0,052279	2,1740272	0,065047
Н	0,9777161	2,6199032	-1,3997221
Н	-0,226518	3,7600863	-0,7312561
С	-1,4613631	2,9012902	-2,8778932
Н	-1,6945101	3,9369483	-2,5828852
Н	-0,64968	2,9315542	-3,6228753
Н	-2,3469612	2,4579002	-3,3491983
С	1,4613631	-2,9012902	-2,8778932
Н	1,6945101	-3,9369483	-2,5828852
Н	0,64968	-2,9315542	-3,6228753
Н	2,3469612	-2,4579002	-3,3491983
С	0,0000000	-2,6958022	-0,9036021
Н	-0,052279	-2,1740272	0,065047

Н	-0,9777161	-2,6199032	-1,3997221
Н	0,226518	-3,7600863	-0,7312561

8.2 Kristallographische Daten

8.2.1Kristallographische Daten von 3

 Tabelle 48. Kristallographische Daten von 3.

Summenformel		$C_{12}H_{12}HgN_2S_2$
Molekulargewich	nt / [g/mol]	448,95
Kristallfarbe		gelb
Kristallform		Plättchen
Messgerät		Stoe IPDS II
Messtemperatur	/ K	293(2)
Wellenlänge / Å		0,71073
Kristallsystem		Triklin
Raumgruppe		P -1
Zellparameter	a / Å	6,0500(10)
	b / Å	7,5791(13)
	c / Å	13,995(2)
	α / \circ	93,760(14)
	β / °	95,112(14)
	γ / °	96,693(14)
Volumen / Å ³		632,92(19)
Z		2
Dichte (berechne	$(t) / [g/cm^3]$	2,356
Absorptionskoeffizient / mm ⁻¹		12,466
F(000)		420
Messbereich $2\theta_m$	in/max / °	1,47 - 27,27
$h_{min} / h_{max}, k_{min} / k_{max} l_{min} / l_{max}$		-7 / 7, -9 / 9, -18 / 17
gesamte Reflexe		8072
unabhängige Ref	lexe	2472
beobachtete Refl	exe	2120
Absorptionskorre	ektur	Numerisch
Restraints		3
Anzahl Paramete	er	171
S _{alle}		1,050
R _{int}		0,0436
R1 (beob./alle)		0,0300 / 0,0390
wR2 (beob./alle)		0,0682 / 0,0744
Extinktionskoeffizient		0,0172(9)
$\Delta \rho_{min/max} / e \text{ Å}^{-3}$		0,878 / -1,059

	Х	у	Z	U(eq)
Hg(1)	7589(1)	6732(1)	9781(1)	44(1)
S(2)	7530(2)	4382(2)	10844(1)	36(1)
S(1)	7936(3)	9493(2)	9101(1)	45(1)
C(7)	8539(9)	5345(7)	12024(4)	33(1)
C(8)	10736(9)	6154(8)	12240(4)	36(1)
C(12)	7121(10)	5162(9)	12757(4)	42(1)
C(1)	6721(9)	9035(8)	7894(4)	37(1)
C(2)	4681(10)	9608(9)	7615(5)	45(1)
C(9)	11470(10)	6762(10)	13186(5)	48(2)
C(6)	7889(11)	8199(10)	7208(6)	52(2)

Tabelle 49. Atomkoordinaten ($x \ 10^4$) und isotrope Auslenkungsparameter (Å² $x \ 10^3$) von **3**.

C(10)	10061(12)	6565(11)	13907(5)	55(2)
C(11)	7886(11)	5758(11)	13692(5)	52(2)
C(3)	3874(13)	9378(11)	6637(7)	64(2)
C(4)	5078(16)	8550(13)	5980(6)	74(3)
C(5)	7056(16)	7973(13)	6258(6)	71(2)
N(2)	12222(8)	6253(7)	11525(4)	40(1)
N(1)	3544(11)	10486(11)	8289(7)	68(2)
H(12)	5653	4634	12612	50
H(9)	12929	7308	13337	57
H(6)	9241	7795	7399	63
H(10)	10576	6976	14538	66
H(11)	6942	5618	14178	63
H(3)	2532	9782	6431	77
H(4)	4518	8388	5336	89
H(5)	7846	7425	5807	86
H(13A)	11680(140)	6900(120)	11010(70)	70(30)
H(13B)	13480(40)	6690(70)	11720(40)	18(12)
H(1B)	2280(70)	10460(120)	8040(60)	70(30)
H(1A)	3580(170)	10210(140)	8850(30)	70(40)

Tabelle 50. Anisotrope Auslenkungsparamete	er (Å ² x	(10^3)) von 3 .
--	----------------------	----------	------------------

	U11	U22	U33	U23	U13	U12
Hg(1)	45(1)	46(1)	40(1)	11(1)	1(1)	5(1)
S(2)	36(1)	39(1)	32(1)	2(1)	1(1)	2(1)
S(1)	53(1)	38(1)	42(1)	3(1)	-7(1)	-3(1)
C(7)	37(3)	27(3)	35(3)	3(2)	4(2)	5(2)
C(8)	39(3)	34(3)	34(3)	2(2)	1(2)	6(2)
C(12)	37(3)	48(4)	39(3)	2(3)	5(2)	0(2)
C(1)	38(3)	34(3)	38(3)	0(3)	4(2)	-1(2)
C(2)	40(3)	36(3)	56(4)	3(3)	-2(3)	-2(2)
C(9)	43(3)	53(4)	44(3)	-4(3)	-1(3)	-4(3)
C(6)	48(3)	51(4)	58(4)	-3(3)	17(3)	1(3)
C(10)	60(4)	68(5)	34(3)	-5(3)	2(3)	-1(3)
C(11)	54(4)	67(5)	36(3)	0(3)	14(3)	1(3)
C(3)	57(4)	52(4)	75(5)	18(4)	-25(4)	-10(3)
C(4)	98(6)	72(6)	42(4)	11(4)	-8(4)	-29(5)
C(5)	84(6)	78(6)	47(4)	-10(4)	21(4)	-18(5)
N(2)	30(2)	45(3)	43(3)	3(3)	4(2)	-1(2)
N(1)	40(3)	61(4)	101(7)	-12(4)	2(4)	13(3)

8.2.2 Kristallographische Daten von 5

Summenformel	$C_{18}H_{22}N_4S_2Zn$
Molekulargewicht / [g/mol]	423,89
Kristallfarbe	farblos
Kristallform	Würfel
Messgerät	Stoe IPDS II
Messtemperatur / K	293(2)
Wellenlänge / Å	0,71073
Kristallsystem	Triklin
Raumgruppe	P -1
Zellparameter a / Å	7,5568(12)
b / Å	14,319(2)
c / Å	19,290(3)
α/°	111,586(12)
β / °	90,048(13)
γ / °	90,030(13)
Volumen / Å ³	1941,0(5)
Z	4
Dichte (berechnet) / $[g/cm^3]$	1,451
Absorptionskoeffizient / mm ⁻¹	1,489
F(000)	880
Messbereich $2\theta_{min/max}$ / °	1,53 - 27,28
h_{min} / h_{max} , k_{min} / k_{max} l_{min} / l_{max}	-9 / 8, -18 / 18, -24 / 24
gesamte Reflexe	18906
unabhängige Reflexe	8364
beobachtete Reflexe	4410
Absorptionskorrektur	Numerisch
Restraints	0
Anzahl Parameter	452
S _{alle}	0,823
R _{int}	0,0560
R1 (beob./alle)	0,0395 / 0,0935
wR2 (beob./alle)	0,0885 / 0,1059
Extinktionskoeffizient	0,0053(5)
$\Delta \rho_{\rm min/max} / e {\rm \AA}^{-3}$	0.356 / -0.510

Tabelle	51.	Kristal	lograp	hische	Daten	von 5 .
			<u> </u>			

Tabelle 52. Atomkoordinaten ($x 10^4$) und isotro	ne Auslenkun	gsparameter ($Å^2 \times 10^3$	³) von 5
	(AIU)	<i>f</i> und 150010	pe i tustellikuli	Spurumeter (11 110	<i>) v</i> on <i>S</i> .

	Х	у	Z	U(eq)
Zn(1)	6082(1)	3801(1)	6243(1)	45(1)
Zn(2)	11083(1)	1199(1)	8757(1)	45(1)
S(2)	7995(1)	5106(1)	6432(1)	56(1)
S(4)	12994(1)	-106(1)	8568(1)	56(1)
S(1)	6840(2)	2224(1)	5488(1)	62(1)
S(3)	11839(2)	2778(1)	9512(1)	63(1)
N(2)	4133(4)	4631(2)	5989(2)	48(1)
N(3)	5316(4)	4664(2)	8197(2)	54(1)
N(5)	10460(4)	1749(2)	7916(2)	41(1)
N(1)	5460(4)	3248(2)	7083(2)	41(1)
N(7)	10309(4)	336(2)	6801(2)	54(1)
N(8)	6965(4)	1519(3)	9672(2)	55(1)
N(4)	1959(4)	3479(3)	5331(2)	56(1)
N(6)	9129(4)	371(2)	9012(2)	47(1)
C(6)	5520(4)	2176(3)	6822(2)	41(1)
C(20)	11136(5)	4414(3)	9159(2)	51(1)

C(24)	10521(4)	2825(3)	8177(2)	41(1)
C(2)	6137(5)	591(3)	5842(2)	52(1)
C(23)	9922(5)	3350(3)	7748(2)	52(1)
C(10)	6319(5)	5971(3)	6458(2)	50(1)
C(1)	6129(4)	1635(3)	6095(2)	44(1)
C(9)	4548(6)	5341(3)	7877(2)	66(1)
C(9)	4340(0) 11121(4)	3341(3)	2006(2)	42(1)
C(19)	11131(4)	(0(2))	6900(2)	43(1)
C(4)	49/1(6)	606(3)	0987(3)	02(1)
C(33)	9589(5)	-66/(3)	8/82(2)	49(1)
C(5)	4929(5)	1644(3)	7251(2)	52(1)
C(15)	4589(5)	5669(3)	6217(2)	48(1)
C(34)	7870(5)	688(3)	9518(2)	50(1)
C(25)	10627(5)	1292(3)	7192(2)	49(1)
C(16)	2870(5)	4317(3)	5481(2)	50(1)
C(32)	8316(7)	-1393(3)	8738(3)	69(1)
C(29)	11689(6)	-1997(3)	8260(2)	61(1)
C(7)	5627(5)	3704(3)	7806(2)	49(1)
C(22)	9969(6)	4392(3)	8011(3)	62(1)
C(28)	11326(5)	-977(3)	8543(2)	51(1)
C(3)	5584(6)	79(3)	6282(3)	61(1)
C(21)	10588(6)	4920(3)	8718(3)	60(1)
C(27)	9549(6)	-346(3)	7123(2)	66(1)
C(11)	6684(6)	7003(3)	6740(2)	60(1)
C(11)	3310(6)	6301(3)	6767(3)	67(1)
C(14)	5319(0) 5704(7)	5001(3)	0202(3)	$\frac{0}{(1)}$
C(0)	3/94(7)	5091(4)	6960(2)	79(1)
C(20)	10/98(7)	-94(4)	6019(2)	/0(1) 95(2)
C(13)	3/50(8)	7400(4)	6522(3)	85(2)
C(31)	8/38(8)	-2402(4)	8482(3)	83(2)
C(18)	2050(7)	2853(4)	5775(3)	80(1)
C(12)	5435(8)	7697(3)	6767(3)	79(2)
C(17)	684(6)	3180(4)	4724(2)	72(1)
C(35)	5682(6)	1813(4)	10279(2)	74(1)
C(30)	10433(8)	-2699(3)	8236(3)	78(1)
C(36)	7051(6)	2147(4)	9227(3)	80(1)
H(20)	11523	4780	9641	61
H(2)	6528	228	5361	62
H(23)	9479	2997	7273	62
H(9A)	4440	5998	8256	98
H(9B)	3399	5100	7679	98
H(9C)	5297	5373	7485	98
H(4)	4585	266	7287	74
H(5)	4305	1994	7207	63
П(3) Ц(34)	7602	286	0780	60
$\Pi(34)$ $\Pi(25)$	11000	200	6028	50
$\Pi(23)$	2604	1082	0928 5 2 00	59
H(10)	2004	4/1/	5209	00
H(32)	/161	-1194	8885	83
H(29)	12818	-2212	8081	73
H(7)	6002	3314	8072	58
H(22)	9584	4731	7710	74
H(3)	5625	-619	6102	73
H(21)	10634	5617	8896	72
H(27A)	9433	-1003	6743	99
H(27B)	8405	-105	7326	99
H(27C)	10309	-380	7512	99
H(11)	7817	7220	6914	72
H(14)	2162	6193	6115	80

H(8A)	5486	5790	9186	118
H(8B)	7044	5019	9040	118
H(8C)	5165	4744	9252	118
H(26C)	10481	-792	5819	114
H(26A)	12052	-27	5970	114
H(26B)	10186	253	5749	114
H(13)	2902	7874	6530	102
H(31)	7888	-2875	8475	100
H(18A)	1281	2285	5564	120
H(18C)	1686	3236	6276	120
H(18B)	3244	2625	5778	120
H(12)	5724	8376	6952	94
H(17C)	138	2558	4688	109
H(17B)	1278	3093	4265	109
H(17A)	-205	3690	4818	109
H(35C)	5139	2436	10319	111
H(35B)	6273	1893	10738	111
H(35A)	4790	1302	10180	111
H(30)	10725	-3377	8053	94
H(36A)	6289	2717	9440	119
H(36C)	6677	1765	8727	119
H(36B)	8246	2372	9221	119

1	Tabelle 53. Anisotro	pe Auslenkungsparameter	$(Å^2 \times 10^3)$	³) von 5 .
----------	----------------------	-------------------------	---------------------	-------------------------------

	U11	U22	U33	U23	U13	U12
Zn(1)	51(1)	42(1)	44(1)	18(1)	2(1)	-3(1)
Zn(2)	50(1)	42(1)	44(1)	17(1)	0(1)	1(1)
S(2)	52(1)	51(1)	68(1)	26(1)	-4(1)	-9(1)
S(4)	52(1)	52(1)	68(1)	27(1)	6(1)	7(1)
S(1)	88(1)	45(1)	49(1)	14(1)	25(1)	-2(1)
S(3)	89(1)	45(1)	50(1)	14(1)	-24(1)	-1(1)
N(2)	52(2)	51(2)	45(2)	21(1)	-3(1)	-4(1)
N(3)	61(2)	54(2)	38(2)	9(2)	3(1)	-2(2)
N(5)	44(2)	45(2)	36(2)	15(1)	0(1)	1(1)
N(1)	42(2)	44(2)	38(2)	17(1)	0(1)	-3(1)
N(7)	62(2)	56(2)	38(2)	10(2)	-1(1)	2(2)
N(8)	51(2)	70(2)	50(2)	28(2)	7(2)	9(2)
N(4)	52(2)	70(2)	48(2)	25(2)	-6(2)	-11(2)
N(6)	48(2)	48(2)	50(2)	22(1)	3(1)	2(1)
C(6)	34(2)	48(2)	45(2)	21(2)	-4(1)	-3(2)
C(20)	53(2)	44(2)	54(2)	16(2)	-2(2)	-2(2)
C(24)	37(2)	46(2)	43(2)	22(2)	4(2)	0(2)
C(2)	51(2)	47(2)	55(2)	15(2)	-2(2)	-1(2)
C(23)	54(2)	60(2)	46(2)	25(2)	0(2)	-2(2)
C(10)	67(3)	46(2)	44(2)	23(2)	2(2)	-5(2)
C(1)	40(2)	46(2)	45(2)	16(2)	0(2)	-1(2)
C(9)	80(3)	57(2)	55(2)	15(2)	13(2)	5(2)
C(19)	39(2)	45(2)	46(2)	17(2)	1(2)	-2(2)
C(4)	66(3)	63(3)	73(3)	44(2)	1(2)	-7(2)
C(33)	63(2)	46(2)	41(2)	19(2)	1(2)	-4(2)
C(5)	51(2)	61(2)	50(2)	27(2)	2(2)	-2(2)
C(15)	60(2)	45(2)	44(2)	21(2)	0(2)	1(2)
C(34)	49(2)	62(2)	44(2)	25(2)	4(2)	1(2)
C(25)	49(2)	58(2)	42(2)	20(2)	2(2)	0(2)

C(16)	48(2)	58(2)	44(2)	20(2)	-1(2)	-1(2)
C(32)	76(3)	61(3)	72(3)	26(2)	7(2)	-15(2)
C(29)	80(3)	48(2)	57(2)	22(2)	-2(2)	9(2)
C(7)	47(2)	57(2)	43(2)	19(2)	-1(2)	-4(2)
C(22)	70(3)	61(3)	71(3)	43(2)	-2(2)	4(2)
C(28)	67(3)	47(2)	43(2)	24(2)	0(2)	3(2)
C(3)	69(3)	45(2)	71(3)	25(2)	-5(2)	2(2)
C(21)	65(3)	46(2)	73(3)	26(2)	8(2)	0(2)
C(27)	82(3)	58(2)	52(2)	14(2)	-10(2)	-8(2)
C(11)	78(3)	49(2)	56(2)	22(2)	6(2)	-10(2)
C(14)	74(3)	62(3)	66(3)	26(2)	-1(2)	15(2)
C(8)	83(3)	93(3)	41(2)	3(2)	-5(2)	-2(3)
C(26)	87(3)	85(3)	40(2)	4(2)	9(2)	5(3)
C(13)	99(4)	63(3)	99(4)	36(3)	8(3)	26(3)
C(31)	102(4)	60(3)	95(4)	37(3)	-10(3)	-27(3)
C(18)	71(3)	100(4)	89(4)	58(3)	-19(3)	-30(3)
C(12)	114(4)	50(3)	74(3)	25(2)	18(3)	5(3)
C(17)	63(3)	106(4)	52(2)	33(2)	-14(2)	-26(3)
C(35)	65(3)	106(4)	54(3)	33(3)	13(2)	26(3)
C(30)	113(4)	47(2)	76(3)	25(2)	-15(3)	-6(3)
C(36)	68(3)	100(4)	87(4)	54(3)	20(3)	25(3)

8.2.3 Kristallographische Daten von 7

Tabelle 54. Kristall	ographische Daten von 7.
----------------------	--------------------------

Summenformel	$C_{18}H_{22}Hg N_4S_2$
Molekulargewicht / [g/mol]	559,11
Kristallfarbe	farblos
Kristallform	Würfel
Messgerät	Stoe IPDS I
Messtemperatur / K	293(2)
Wellenlänge / Å	0,71073
Kristallsystem	Monoklin
Raumgruppe	$P2_1/n$
Zellparameter a / Å	12,7901(16)
b / Å	12,9842(17)
c / Å	12,9249(15)
α/°	90
β/°	112,167(13)
γ / °	90
Volumen / Å ³	1987,8(4)
Z	4
Dichte (berechnet) / $[g/cm^3]$	1,868
Absorptionskoeffizient / mm ⁻¹	7,961
F(000)	1080
Messbereich $2\theta_{min/max}$ / °	2,31 - 28,14
h_{min}/h_{max} , $k_{min}/k_{max} l_{min}/l_{max}$	-16 / 16, -17 / 17, -17 / 17
gesamte Reflexe	18762
unabhängige Reflexe	4484
beobachtete Reflexe	4410
Absorptionskorrektur	Numerisch
Restraints	0
Anzahl Parameter	226
S _{alle}	0,802
R _{int}	0,0952
R1 (beob./alle)	0,0382 / 0,0985

wR2 (beob./alle)	0,0601 / 0,0683
Extinktionskoeffizient	0,0000(1)
$\Delta \rho_{min/max} / e Å^{-3}$	0,730 / -0,680
$\Delta \rho_{\rm min/max} / e A^{-3}$	0,730 / -0,680

Tabelle 55. Atomkoordinaten	$(x 10^4)$ und isotrone Auslenkungsparameter ($Å^{2} x 10$	³) yon 7 .
Tabelle 55. Atomkoorumaten	(x 10) the isotrope Austerikungsparameter (A A IU	<i>)</i> von <i>/</i> .

	X	у	Z	U(eq)
Hg(1)	1032(1)	1249(1)	9421(1)	52(1)
S(1)	1545(2)	1015(2)	7877(2)	65(1)
S(2)	848(2)	1066(1)	11151(2)	55(1)
C(17)	3793(7)	4696(6)	10412(9)	71(3)
C(12)	-564(7)	3254(8)	12382(7)	66(2)
C(14)	374(6)	4143(6)	11356(6)	55(2)
N(2)	1346(5)	3216(4)	10349(5)	48(2)
C(6)	-228(6)	2448(5)	7036(6)	44(2)
N(4)	2765(5)	4077(4)	9985(6)	59(2)
N(3)	-1867(5)	2422(4)	8725(5)	47(2)
N(1)	-676(5)	2069(4)	7789(5)	45(1)
C(15)	733(6)	3213(5)	11042(6)	41(2)
C(13)	-243(7)	4153(7)	12032(7)	66(2)
C(4)	-337(8)	3573(7)	5496(7)	72(2)
C(10)	406(6)	2297(5)	11411(6)	41(2)
C(8)	-2383(7)	3194(6)	9184(7)	58(2)
C(1)	790(6)	2037(6)	7009(6)	50(2)
C(5)	-764(7)	3200(6)	6261(6)	55(2)
C(11)	-250(6)	2342(6)	12059(7)	56(2)
C(16)	2202(5)	3833(6)	10619(6)	44(2)
C(3)	668(8)	3186(8)	5505(8)	77(3)
C(2)	1212(7)	2423(7)	6237(7)	66(2)
C(18)	2474(8)	3639(7)	8877(7)	78(2)
C(7)	-1253(6)	2695(5)	8144(6)	43(2)
C(9)	-2048(6)	1361(6)	8950(6)	56(2)
H(17C)	4085	4787	9835	107
H(17B)	4345	4352	11038	107
H(17A)	3624	5357	10645	107
H(12)	-987	3265	12830	79
H(14)	555	4763	11104	66
H(13)	-443	4779	12253	79
H(4)	-724	4078	4984	86
H(8C)	-2794	2863	9578	87
H(8B)	-2891	3606	8589	87
H(8A)	-1807	3626	9690	87
H(5)	-1442	3468	6252	65
H(11)	-482	1730	12280	67
H(16)	2442	4131	11325	52
H(3)	977	3445	5013	92
H(2)	1879	2154	6219	79
H(18A)	2978	3902	8547	118
H(18C)	1712	3823	8419	118
H(18B)	2539	2902	8932	118
H(7)	-1235	3391	7979	51
H(9A)	-2515	1335	9382	83
H(9C)	-1335	1040	9360	83
H(9B)	-2416	1003	8257	83

	U11	U22	U33	U23	U13	U12
Hg(1)	56(1)	56(1)	51(1)	2(1)	27(1)	10(1)
S(1)	63(1)	80(2)	63(1)	-2(1)	35(1)	20(1)
S(2)	71(1)	45(1)	56(1)	4(1)	32(1)	1(1)
C(17)	53(5)	54(4)	116(8)	14(5)	44(6)	1(4)
C(12)	47(5)	101(7)	51(5)	-10(5)	20(5)	7(5)
C(14)	54(5)	55(5)	53(5)	-6(4)	15(5)	-3(4)
N(2)	50(4)	39(3)	59(4)	2(3)	25(4)	-3(3)
C(6)	44(4)	52(4)	37(4)	3(3)	17(4)	4(3)
N(4)	54(4)	57(4)	75(5)	6(3)	36(4)	2(3)
N(3)	52(4)	49(4)	50(4)	-4(3)	31(4)	2(3)
N(1)	42(4)	56(4)	45(4)	1(3)	24(3)	3(3)
C(15)	37(4)	45(4)	36(4)	-3(3)	7(4)	6(3)
C(13)	58(6)	76(6)	59(6)	-22(4)	16(5)	5(4)
C(4)	83(6)	82(6)	57(5)	11(5)	35(5)	2(5)
C(10)	44(4)	46(4)	36(4)	-8(3)	17(4)	-2(3)
C(8)	56(5)	64(5)	59(5)	-10(4)	28(5)	-2(4)
C(1)	47(5)	75(5)	31(4)	-4(3)	17(4)	-4(4)
C(5)	52(5)	72(5)	44(5)	-2(4)	23(4)	0(4)
C(11)	46(5)	75(6)	50(5)	-1(4)	20(5)	1(4)
C(16)	53(4)	31(3)	49(4)	6(4)	22(4)	4(4)
C(3)	78(7)	104(7)	63(6)	7(5)	44(6)	-4(5)
C(2)	53(5)	96(6)	63(6)	-9(5)	38(5)	-10(5)
C(18)	93(7)	85(6)	75(6)	13(6)	51(6)	0(6)
C(7)	42(4)	44(4)	43(4)	2(3)	17(4)	1(3)
C(9)	55(4)	58(5)	61(5)	3(5)	31(4)	-6(4)

Tabelle 56. Anisotrope Auslenkungsparameter ($Å^2 \ge 10^3$) von 7.
--

8.2.4 Kristallographische Daten von 8

Summenformel	$C_{18}H_{22}N_4S_2$		
Molekulargewicht / [g/mol]	358,52		
Kristallfarbe	farblos		
Kristallform	Würfel		
Messgerät	Stoe IPDS II		
Messtemperatur / K	250(2)		
Wellenlänge / Å	0,71073		
Kristallsystem	Monoklin		
Raumgruppe	$P2_1/c$		
Zellparameter a / Å	16,8679(16)		
b / Å	14,2312(10)		
c / Å	15,8701(13)		
α/°	90		
β / °	86,763(7)		
γ / °	90		
Volumen / Å ³	3803,5(5)		
Z	8		
Dichte (berechnet) / $[g/cm^3]$	1,252		
Absorptionskoeffizient / mm ⁻¹	0,287		
F(000)	1520		
Messbereich $2\theta_{min/max}$ / °	1,87 - 25,00		
h_{min} / h_{max} , k_{min} / k_{max} l_{min} / l_{max}	-20 / 20, -16 / 16, -18 / 18		
gesamte Reflexe	42157		
unabhängige Reflexe	6662		
beobachtete Reflexe	4702		
Absorptionskorrektur	Numerisch		
Restraints	0		
Anzahl Parameter	434		
S_{alle}	0,965		
R _{int}	0,0378		
R1 (beob./alle)	0,0422 / 0,0604		
wR2 (beob./alle)	0,1130 / 0,1209		
Extinktionskoeffizient	0,0038(7)		
$\Delta \rho_{\min/\max} / e \text{ Å}^{-3}$	0,224 / -0,276		

Tabelle 58. Atomkoordinaten ($x 10^4$) und isotro	ne Auslenkun	gsparameter ($Å^2 x 10^3$) von 8.
abene 50. Rionikooramaten	, AIU	<i>j</i> und 150000	pe musicilikuli	sparameter (IL AIU	<i>y</i> von o .

	x	V	7.	U(ea)
S (4)		7151(1)	1304(1)	61(1)
S(4) S(1)	-4208(1)	2159(1)	956(1)	60(1)
S(1) = S(3)	-1885(1)	6498(1)	1493(1)	62(1)
S(3) = S(2)	-3135(1)	1550(1)	1129(1)	62(1)
C(36)	1588(2)	8562(3)	1795(2)	103(1)
N(3)	-2173(1)	177(2)	1789(1)	65(1)
C(26)	-4992(2)	4324(3)	2483(2)	102(1)
N(1)	-5441(1)	3194(2)	337(1)	65(1)
N(5)	-2979(1)	5053(1)	1864(1)	64(1)
N(7)	450(1)	8261(2)	640(1)	64(1)
C(1)	-4185(1)	2540(2)	-113(1)	58(1)
C(2)	-3583(2)	2344(2)	-719(2)	73(1)
N(6)	-4246(1)	4848(2)	2448(1)	71(1)
C(28)	-744(1)	7529(2)	230(1)	58(1)
N(8)	1436(1)	9203(2)	1122(2)	78(1)
C(33)	-75(1)	8077(2)	3(2)	61(1)

C(6)	-4847(1)	3074(2)	-314(2)	63(1)
N(2)	-6493(1)	4053(2)	893(2)	87(1)
C(29)	-1277(2)	7286(2)	-366(2)	69(1)
N(4)	-1012(1)	119(2)	2471(1)	71(1)
C(19)	-1741(1)	5336(2)	1092(1)	54(1)
C(15)	-2721(1)	-254(2)	1092(1) 1278(1)	59(1)
C(32)	51(2)	8335(2)	-838(2)	$\frac{3}{81(1)}$
C(32)	1140(2)	7567(2)	-636(2)	99(1)
C(30)	-1140(2)	7307(2)	-1193(2)	67(1)
C(12)	-3893(2)	-985(2)	280(2)	0/(1)
C(5)	-4888(2)	5580(2) 4(21(2)	-1141(2)	83(1)
C(25)	-3646(1)	4631(2)	1901(2)	63(1)
C(24)	-2359(1)	4/16(2)	1318(2)	60(1)
C(14)	-2785(2)	-1216(2)	1135(2)	74(1)
C(9)	-6710(2)	3333(3)	1501(3)	110(1)
C(16)	-1524(1)	-234(2)	1939(2)	63(1)
C(3)	-3639(2)	2683(2)	-1532(2)	90(1)
C(10)	-3267(1)	337(2)	915(1)	54(1)
C(23)	-2291(2)	3792(2)	1027(2)	76(1)
C(35)	1913(2)	10048(3)	1046(2)	108(1)
C(13)	-3363(2)	-1573(2)	644(2)	74(1)
C(4)	-4291(2)	3199(3)	-1733(2)	97(1)
C(18)	-1203(2)	984(3)	2913(2)	96(1)
C(17)	-295(2)	-375(3)	2655(2)	101(1)
C(21)	-1044(2)	4127(2)	302(2)	74(1)
C(11)	-3848(1)	-29(2)	420(1)	60(1)
C(7)	-5881(2)	3931(2)	341(2)	73(1)
C(20)	-1094(1)	5043(2)	584(2)	64(1)
C(27)	-4129(2)	5543(3)	3081(2)	113(1)
C(34)	885(2)	9004(2)	580(2)	67(1)
C(22)	-1641(2)	3504(2)	523(2)	80(1)
C(31)	-474(2)	8079(3)	-1428(2)	95(1)
C(8)	-6967(2)	4904(3)	903(3)	122(2)
H(36A)	2005	8813	2126	122(2)
H(36R)	1753	7050	1550	155
H(36C)	1108	939 9491	2153	155
$\Pi(30C)$	5252	4597	2133	155
H(20A)	-3332	4307	2920	154
$\Pi(20D)$	-4000	3070	2011	154
H(20C)	-5230	430/	1943	154
H(2)	-3142	1984	-580	8/
H(29)	-1/31	6931	-207	83
H(32)	502	8691	-1006	97
H(30)	-1503	/40/	-1599	105
H(12)	-4285	-1229	-50	80
H(5)	-5333	3731	-1293	99
H(25)	-3720	4137	1519	75
H(14)	-2427	-1630	1378	88
H(9A)	-7164	3540	1854	164
H(9B)	-6267	3213	1850	164
H(9C)	-6843	2761	1208	164
H(16)	-1401	-806	1666	76
H(3)	-3231	2561	-1946	108
H(23)	-2694	3358	1177	92
H(35A)	2278	10066	1496	161
H(35B)	1569	10595	1086	161
H(35C)	2211	10050	505	161
H(13)	-3395	-2225	554	89

H(4)	-4326	3425	-2286	116
H(18A)	-776	1144	3272	144
H(18B)	-1692	905	3256	144
H(18C)	-1268	1484	2507	144
H(17A)	-4	-11	3052	152
H(17B)	32	-461	2138	152
H(17C)	-431	-983	2898	152
H(21)	-602	3930	-41	88
H(11)	-4211	377	177	72
H(7)	-5765	4402	-63	87
H(20)	-687	5470	429	77
H(27A)	-4617	5624	3427	170
H(27B)	-3982	6135	2813	170
H(27C)	-3709	5340	3433	170
H(34)	810	9425	135	81
H(22)	-1608	2879	332	96
H(31)	-376	8256	-1995	114
H(8A)	-7382	4863	1350	183
H(8B)	-7205	4976	365	183
H(8C)	-6631	5441	1002	183

Tabelle 59. Anisotrope Auslenkungsparameter ($Å^2 \times 10^3$) von **8**.

	U11	U22	U33	U23	U13	U12
S(4)	68(1)	55(1)	61(1)	3(1)	-12(1)	-8(1)
S(1)	62(1)	56(1)	60(1)	2(1)	0(1)	4(1)
S(3)	66(1)	50(1)	70(1)	-3(1)	2(1)	-3(1)
S(2)	62(1)	51(1)	73(1)	-3(1)	-11(1)	0(1)
C(36)	86(2)	99(2)	129(3)	-2(2)	-45(2)	-2(2)
N(3)	63(1)	60(1)	73(1)	-4(1)	-17(1)	1(1)
C(26)	74(2)	102(3)	129(3)	4(2)	22(2)	-6(2)
N(1)	61(1)	64(1)	70(1)	-5(1)	-4(1)	6(1)
N(5)	59(1)	58(1)	75(1)	-10(1)	4(1)	-1(1)
N(7)	61(1)	62(1)	70(1)	-2(1)	-10(1)	-7(1)
C(1)	62(1)	52(1)	61(1)	-1(1)	-1(1)	1(1)
C(2)	79(2)	69(2)	70(2)	3(1)	5(1)	14(1)
N(6)	62(1)	82(2)	69(1)	-2(1)	7(1)	6(1)
C(28)	62(1)	51(1)	63(1)	0(1)	-10(1)	-3(1)
N(8)	65(1)	76(2)	94(2)	-12(1)	-11(1)	-15(1)
C(33)	62(1)	59(1)	62(1)	1(1)	-6(1)	-5(1)
C(6)	67(1)	59(1)	62(1)	-2(1)	-5(1)	6(1)
N(2)	68(1)	103(2)	92(2)	-18(2)	-9(1)	22(1)
C(29)	70(2)	69(2)	69(1)	5(1)	-15(1)	-13(1)
N(4)	65(1)	77(2)	72(1)	-4(1)	-17(1)	-2(1)
C(19)	56(1)	49(1)	57(1)	0(1)	-5(1)	-1(1)
C(15)	63(1)	53(1)	63(1)	-1(1)	-13(1)	-2(1)
C(32)	85(2)	86(2)	70(2)	7(1)	-5(1)	-25(2)
C(30)	95(2)	103(2)	67(2)	9(2)	-24(1)	-25(2)
C(12)	70(1)	62(2)	69(1)	-5(1)	-14(1)	-6(1)
C(5)	94(2)	84(2)	70(2)	1(1)	-10(1)	26(2)
C(25)	63(1)	58(1)	65(1)	-2(1)	7(1)	3(1)
C(24)	57(1)	55(1)	66(1)	-4(1)	1(1)	0(1)
C(14)	79(2)	54(2)	90(2)	-1(1)	-25(1)	6(1)
C(9)	71(2)	138(3)	118(3)	-14(2)	14(2)	-7(2)
C(16)	67(1)	58(1)	66(1)	0(1)	-14(1)	-1(1)

C(3)	108(2)	99(2)	62(2)	4(2)	14(2)	26(2)
C(10)	57(1)	52(1)	54(1)	0(1)	-4(1)	-1(1)
C(23)	67(2)	54(2)	106(2)	-13(1)	15(1)	-10(1)
C(35)	93(2)	104(3)	124(3)	-33(2)	7(2)	-44(2)
C(13)	83(2)	52(1)	88(2)	-7(1)	-19(1)	-1(1)
C(4)	119(3)	110(3)	60(2)	11(2)	0(2)	33(2)
C(18)	74(2)	115(3)	98(2)	-37(2)	-6(2)	-18(2)
C(17)	84(2)	92(2)	132(3)	15(2)	-45(2)	1(2)
C(21)	61(1)	69(2)	90(2)	-15(1)	9(1)	2(1)
C(11)	61(1)	59(1)	59(1)	-2(1)	-8(1)	0(1)
C(7)	71(2)	74(2)	73(2)	-10(1)	-10(1)	12(1)
C(20)	55(1)	59(1)	77(2)	-1(1)	1(1)	-6(1)
C(27)	77(2)	168(4)	95(2)	-54(2)	-5(2)	22(2)
C(34)	66(1)	65(2)	71(1)	-5(1)	-3(1)	-9(1)
C(22)	70(2)	58(2)	111(2)	-19(2)	12(2)	-1(1)
C(31)	109(2)	114(3)	63(2)	15(2)	-18(2)	-32(2)
C(8)	97(2)	139(3)	132(3)	-45(3)	-25(2)	61(2)

8.2.5 Kristallographische Daten von 9

Summenformel $C_{22}H_{26}N_4S_2Zn$ Molekulargewicht / [g/mol]475,96KristallfarbefarblosKristallfarbefarblosKristallformWürfelMessgerätSTOE IPDS IIMesstemperatur / K293(2)Wellenlänge / Å0.71073KristallsystemTriklinRaumgruppeP-1Zellparametera / Åb / Å12.848(3)c / Å17.818(5)a / °76.31(2) β / °70.221(19) γ / °61.965(19)Volumen / ų2297.1(10)Z4Dichte (berechnet) / [g/cm³]1.376Absorptionskoeffizient / mm¹1.266F(000)992Messbereich $2\theta_{min/max}$ / °1.80 - 25.00hmin / hmax, kmin / k max lmin / 1 max-12 / 14, -15 / 15, -21 / 21gesamte Reflexe2758AbsorptionskorrekturNumerischRestraints4Anzahl Parameter511Salle0.811Rimt0.1396R1 (beob./alle)0.0705 / 0.1669wR2 (beob./alle)0.1126 / 0.1291Extinktionskoeffizient0,0000(1)Appmingar / e Ų³0.624 / -0.511				
Molekulargewicht / [g/mol]475,96KristallfarbefarblosKristallformWürfelMessgerätSTOE IPDS IIMesstemperatur / K293(2)Wellenlänge / Å0.71073KristallsystemTriklinRaumgruppeP-1Zellparametera / Å12.134(3)b / Å12.848(3)c / Å17.818(5)a / °76.31(2) β / °70.221(19) γ / °61.965(19)Volumen / ų2297.1(10)Z4Dichte (berechnet) / [g/cm³]1.376Absorptionskoeffizient / mm⁻¹1.266F(000)992Messbereich 2 $\theta_{min/max}$ / °1.80 - 25.00hmin / hmax, kmin / k max lmin / 1 max-12 / 14, -15 / 15, -21 / 21gesamte Reflexe22302unabhängige Reflexe7967beobachtete Reflexe2758AbsorptionskorrekturNumerischRestraints4Anzahl Parameter511Salle0,811Rint0.1396R1 (beob./alle)0.1126 / 0.1291Extinktionskoeffizient0,0000(1) $\Delta Dmingray / e Å^3$ 0.624 / -0.511	Summenformel	$C_{22}H_{26}N_4S_2Zn$		
KristallfarbefarblosKristallformWürfelMessgerätSTOE IPDS IIMesstemperatur / K293(2)Wellenlänge / Å0.71073KristallsystemTriklinRaumgruppeP-1Zellparametera / Å12.134(3)b / Å12.848(3)c / Å17.818(5)a / °76.31(2) β / °70.221(19) γ / °61.965(19)Volumen / ų2297.1(10)Z4Dichte (berechnet) / [g/cm³]1.376Absorptionskoeffizient / mm⁻¹1.266F(000)992Messbereich 2 $\theta_{min/max}$ / °1.80 - 25.00hmin / hmax, kmin / k max lmin / 1 max-12 / 14, -15 / 15, -21 / 21gesamte Reflexe22302unabhängige Reflexe7967beobachtete Reflexe2758AbsorptionskorrekturNumerischRestraints4Anzahl Parameter511S _{alle} 0,811Rint0.1396R1 (beob./alle)0.0705 / 0.1669wR2 (beob./alle)0.1126 / 0.1291Extinktionskoeffizient0,0000(1) $\Delta Dminmax / e Å^{-3}$ 0.624 / -0.511	Molekulargewicht / [g/mol]	475,96		
KristallformWürfelMessgerätSTOE IPDS IIMesstemperatur / K293(2)Wellenlänge / Å0.71073KristallsystemTriklinRaumgruppeP-1Zellparametera / Å12.134(3)b / Å12.848(3)c / Å17.818(5)a / °76.31(2) β / °70.221(19) γ / °61.965(19)Volumen / ų2297.1(10)Z4Dichte (berechnet) / [g/cm³]1.376Absorptionskoeffizient / mm⁻¹1.266F(000)992Messbereich 2 $\theta_{min/max}$ / °1.80 - 25.00h_min / h_max, k_min / k_max l_min / 1_max-12 / 14, -15 / 15, -21 / 21gesamte Reflexe22302unabhängige Reflexe7967beobachtete Reflexe2758AbsorptionskorrekturNumerischRestraints4Anzahl Parameter511Salle0.811Rimt0.1396R1 (beob./alle)0.0705 / 0.1669wR2 (beob./alle)0.1126 / 0.1291Extinktionskoeffizient0,0000(1) $\Delta p_{minmax} / e Å^3$ 0.624 / -0.511	Kristallfarbe	farblos		
MessgerätSTOE IPDS IIMesstemperatur / K293(2)Wellenlänge / Å0.71073KristallsystemTriklinRaumgruppeP-1Zellparametera / Å12.134(3)b / Å12.848(3)c / Å17.818(5)a / °76.31(2) β / °70.221(19) γ / °61.965(19)Volumen / ų2297.1(10)Z4Dichte (berechnet) / [g/cm³]1.376Absorptionskoeffizient / mm⁻¹1.266F(000)992Messbereich 2 $\theta_{min/max}$ / °1.80 - 25.00h_min / h_max, k_min / k_max l_min / 1_max-12 / 14, -15 / 15, -21 / 21gesamte Reflexe22302unabhängige Reflexe7967beobachtete Reflexe2758AbsorptionskorrekturNumerischRestraints4Anzahl Parameter511Salle0.811Rint0.1396R1 (beob./alle)0.0705 / 0.1669wR2 (beob./alle)0.1126 / 0.1291Extinktionskoeffizient0,0000(1) $\Delta p_{minmax} / e Å⁻³0.624 / -0.511$	Kristallform	Würfel		
Messtemperatur / K 293(2) Wellenlänge / Å 0.71073 Kristallsystem Triklin Raumgruppe P-1 Zellparameter a / Å b / Å 12.134(3) b / Å 12.848(3) c / Å 17.818(5) α / \circ 76.31(2) β / \circ 70.221(19) γ / \circ 61.965(19) Volumen / Å ³ 2297.1(10) Z 4 Dichte (berechnet) / [g/cm ³] 1.376 Absorptionskoeffizient / mm ⁻¹ 1.266 F(000) 992 Messbereich $2\theta_{min/max} / \circ$ -12 / 14, -15 / 15, -21 / 21 gesamte Reflexe 22302 unabhängige Reflexe 7967 beobachtete Reflexe 2758 Absorptionskorrektur Numerisch Restraints 4 Anzahl Parameter 511 Salle 0,811 Rint 0.1396 R1 (beob./alle) 0.0705 / 0.1669 wR2 (beob./alle) 0.1126 / 0.1291 Extinktionskoeffizient 0,0000(1)	Messgerät	STOE IPDS II		
Wellenlänge / Å 0.71073 Kristallsystem Triklin Raumgruppe P-1 Zellparameter a / Å 12.134(3) b / Å 12.848(3) c / Å 17.818(5) α / \circ 76.31(2) β / \circ 70.221(19) γ / \circ 61.965(19) Volumen / Å ³ 2297.1(10) Z 4 Dichte (berechnet) / [g/cm ³] 1.376 Absorptionskoeffizient / mm ⁻¹ 1.266 F(000) 992 Messbereich $2\theta_{min/max} / \circ$ 1.80 - 25.00 hmin / hmax, kmin / k max lmin / 1 max -12 / 14, -15 / 15, -21 / 21 gesamte Reflexe 22302 unabhängige Reflexe 7967 beobachtete Reflexe 2758 Absorptionskorrektur Numerisch Restraints 4 Anzahl Parameter 511 Saile 0,811 Rint 0.1396 R1 (beob./alle) 0.0705 / 0.1669 wR2 (beob./alle) 0.1126 / 0.1291 Extinktionskoeffizient 0,0000(1) $\Delta \rho_{mi/m$	Messtemperatur / K	293(2)		
Kristallsystem Triklin Raumgruppe P-1 Zellparameter $a / Å$ 12.134(3) $b / Å$ 12.848(3) $c / Å$ 17.818(5) $a / °$ 76.31(2) $\beta / °$ 70.221(19) $\gamma / °$ 61.965(19) Volumen / Å ³ 2297.1(10) Z 4 Dichte (berechnet) / [g/cm ³] 1.376 Absorptionskoeffizient / mm ⁻¹ 1.266 F(000) 992 Messbereich 2 $\theta_{min/max} / °$ 1.80 - 25.00 hmin / hmax, kmin / k max lmin / 1 max -12 / 14, -15 / 15, -21 / 21 gesamte Reflexe 22302 unabhängige Reflexe 7967 beobachtete Reflexe 2758 Absorptionskorrektur Numerisch Restraints 4 Anzahl Parameter 511 Salle 0,811 Rint 0.1396 R1 (beob./alle) 0.0705 / 0.1669 wR2 (beob./alle) 0.1126 / 0.1291 Extinktionskoeffizient 0,0000(1) $\Delta \rho_{min/max} / e Å^{-3}$ 0.624 / -0.511 <td>Wellenlänge / Å</td> <td>0.71073</td>	Wellenlänge / Å	0.71073		
Raumgruppe P-1 Zellparameter $a / Å$ 12.134(3) $b / Å$ 12.848(3) $c / Å$ 17.818(5) $a / °$ 76.31(2) $\beta / °$ 70.221(19) $\gamma / °$ 61.965(19) Volumen / Å ³ 2297.1(10) Z 4 Dichte (berechnet) / [g/cm ³] 1.376 Absorptionskoeffizient / mm ⁻¹ 1.266 F(000) 992 Messbereich 2 $\theta_{min/max} / °$ 1.80 - 25.00 h _{min} / h _{max} , k _{min} / k _{max} l _{min} / 1 _{max} -12 / 14, -15 / 15, -21 / 21 gesamte Reflexe 22302 unabhängige Reflexe 7967 beobachtete Reflexe 2758 Absorptionskorrektur Numerisch Restraints 4 Anzahl Parameter 511 S _{alle} 0,811 R _{int} 0.1396 R1 (beob./alle) 0.1126 / 0.1291 extinktionskoeffizient 0,0000(1) $\Delta \rho_{min/max} / e Å^{-3}$ 0.624 / -0.511	Kristallsystem	Triklin		
Zellparameter a / Å 12.134(3) b / Å 12.848(3) c / Å 17.818(5) α / \circ 76.31(2) β / \circ 70.221(19) γ / \circ 61.965(19) Volumen / Å ³ 2297.1(10) Z 4 Dichte (berechnet) / [g/cm ³] 1.376 Absorptionskoeffizient / mm ⁻¹ 1.266 F(000) 992 Messbereich $2\theta_{min/max} / \circ$ 1.80 - 25.00 h _{min} / h _{max} , k _{min} / k _{max} l _{min} / 1 _{max} -12 / 14, -15 / 15, -21 / 21 gesamte Reflexe 22302 unabhängige Reflexe 7967 beobachtete Reflexe 2758 Absorptionskorrektur Numerisch Restraints 4 Anzahl Parameter 511 S _{alle} 0,811 Rint 0.1396 R1 (beob./alle) 0.0705 / 0.1669 wR2 (beob./alle) 0.1126 / 0.1291 Extinktionskoeffizient 0,0000(1) $\Delta \rho_{mi/max} / e Å^{-3}$ 0.624 / -0.511	Raumgruppe	P-1		
b / Å 12.848(3) c / Å 17.818(5) α / \circ 76.31(2) β / \circ 70.221(19) γ / \circ 61.965(19) Volumen / Å ³ 2297.1(10) Z 4 Dichte (berechnet) / [g/cm ³] 1.376 Absorptionskoeffizient / mm ⁻¹ 1.266 F(000) 992 Messbereich 2 $\theta_{min/max} / \circ$ 1.80 - 25.00 h _{min} / h _{max} , k _{min} / k _{max} l _{min} / 1 _{max} -12 / 14, -15 / 15, -21 / 21 gesamte Reflexe 22302 unabhängige Reflexe 7967 beobachtete Reflexe 2758 Absorptionskorrektur Numerisch Restraints 4 Anzahl Parameter 511 S _{alle} 0,811 Rint 0.1396 R1 (beob./alle) 0.0705 / 0.1669 wR2 (beob./alle) 0.1126 / 0.1291 Extinktionskoeffizient 0,0000(1) $\Delta \rho_{min/max} / e Å^{-3}$ 0.624 / -0.511	Zellparameter a / Å	12.134(3)		
c / Å 17.818(5) α / \circ 76.31(2) β / \circ 70.221(19) γ / \circ 61.965(19) Volumen / Å ³ 2297.1(10) Z 4 Dichte (berechnet) / [g/cm ³] 1.376 Absorptionskoeffizient / mm ⁻¹ 1.266 F(000) 992 Messbereich $2\theta_{min/max} / \circ$ 1.80 - 25.00 h _{min} / h _{max} , k _{min} / k _{max} l _{min} / l _{max} -12 / 14, -15 / 15, -21 / 21 gesamte Reflexe 22302 unabhängige Reflexe 7967 beobachtete Reflexe 2758 Absorptionskorrektur Numerisch Restraints 4 Anzahl Parameter 511 S _{alle} 0,811 Rint 0.1396 R1 (beob./alle) 0.0705 / 0.1669 wR2 (beob./alle) 0.1126 / 0.1291 Extinktionskoeffizient 0,0000(1) $\Delta \rho_{min/max} / e Å^{-3}$ 0.624 / -0.511	b / Å	12.848(3)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	c / Å	17.818(5)		
β / \circ $70.221(19)$ γ / \circ $61.965(19)$ Volumen / Å ³ $2297.1(10)$ Z 4 Dichte (berechnet) / [g/cm ³] 1.376 Absorptionskoeffizient / mm ⁻¹ 1.266 F(000) 992 Messbereich $2\theta_{min/max} / \circ$ $1.80 - 25.00$ $h_{min} / h_{max}, k_{min} / k_{max} l_{min} / 1_{max}$ $-12 / 14, -15 / 15, -21 / 21$ gesamte Reflexe 22302 unabhängige Reflexe 7967 beobachtete Reflexe 2758 Absorptionskorrektur Numerisch Restraints 4 Anzahl Parameter 5111 Salle 0.811 Rint 0.1396 R1 (beob./alle) $0.1126 / 0.1291$ Extinktionskoeffizient $0,0000(1)$ $\Delta \rho_{min/max} / e Å^{-3}$ $0.624 / -0.511$	α/°	76.31(2)		
γ / \circ $61.965(19)$ Volumen / Å ³ $2297.1(10)$ Z 4 Dichte (berechnet) / [g/cm ³] 1.376 Absorptionskoeffizient / mm ⁻¹ 1.266 F(000) 992 Messbereich $2\theta_{min/max} / \circ$ $1.80 - 25.00$ $h_{min} / h_{max}, k_{min} / k_{max} l_{min} / 1_{max}$ $-12 / 14, -15 / 15, -21 / 21$ gesamte Reflexe 22302 unabhängige Reflexe 7967 beobachtete Reflexe 2758 Absorptionskorrektur Numerisch Restraints 4 Anzahl Parameter 511 Salle 0.811 Rint 0.1396 R1 (beob./alle) $0.1126 / 0.1291$ Extinktionskoeffizient $0,0000(1)$ $\Delta \rho_{min/max} / e Å^{-3}$ $0.624 / -0.511$	β/°	70.221(19)		
Volumen / ų $2297.1(10)$ Z4Dichte (berechnet) / [g/cm³] 1.376 Absorptionskoeffizient / mm¹ 1.266 F(000)992Messbereich $2\theta_{min/max}$ / ° $1.80 - 25.00$ h_{min} / h_{max} , k_{min} / $k_{max} l_{min}$ / 1_{max} -12 / 14 , -15 / 15 , -21 / 21 gesamte Reflexe 22302 unabhängige Reflexe 7967 beobachtete Reflexe 2758 AbsorptionskorrekturNumerischRestraints4Anzahl Parameter 511 Salle 0.811 Rint 0.1396 R1 (beob./alle) 0.1126 / 0.1291 Extinktionskoeffizient $0,0000(1)$ $\Delta \rho_{min/max}$ / e Å⁻³ 0.624 / -0.511	γ / °	61.965(19)		
Z4Dichte (berechnet) / [g/cm³]1.376Absorptionskoeffizient / mm¹1.266 $F(000)$ 992Messbereich $2\theta_{min/max}$ / °1.80 - 25.00 h_{min} / h_{max} , k_{min} / $k_{max} l_{min}$ / 1_{max} -12 / 14, -15 / 15, -21 / 21gesamte Reflexe22302unabhängige Reflexe7967beobachtete Reflexe2758AbsorptionskorrekturNumerischRestraints4Anzahl Parameter511Salle0,811Rint0.1396R1 (beob./alle)0.0705 / 0.1669wR2 (beob./alle)0.1126 / 0.1291Extinktionskoeffizient0,0000(1) $\Delta \rho_{min/max}$ / e Å⁻³0.624 / -0.511	Volumen / Å ³	2297.1(10)		
Dichte (berechnet) / $[g/cm^3]$ 1.376Absorptionskoeffizient / mm ⁻¹ 1.266F(000)992Messbereich $2\theta_{min/max}$ / °1.80 - 25.00 h_{min} / h_{max} , k_{min} / $k_{max} l_{min}$ / l_{max} -12 / 14, -15 / 15, -21 / 21gesamte Reflexe22302unabhängige Reflexe7967beobachtete Reflexe2758AbsorptionskorrekturNumerischRestraints4Anzahl Parameter511Salle0,811Rint0.1396R1 (beob./alle)0.1126 / 0.1291Extinktionskoeffizient0,0000(1) $\Delta \rho_{min/max}$ / e Å ⁻³ 0.624 / -0.511	Z	4		
Absorptionskoeffizient / mm ⁻¹ 1.266 $F(000)$ 992Messbereich $2\theta_{min/max}$ / °1.80 - 25.00 h_{min} / h_{max} , k_{min} / k_{max} l_{min} / 1_{max} -12 / 14, -15 / 15, -21 / 21gesamte Reflexe22302unabhängige Reflexe7967beobachtete Reflexe2758AbsorptionskorrekturNumerischRestraints4Anzahl Parameter511Salle0,811Rint0.1396R1 (beob./alle)0.0705 / 0.1669wR2 (beob./alle)0.1126 / 0.1291Extinktionskoeffizient0,0000(1) $\Delta \rho_{min/max}$ / e Å ⁻³ 0.624 / -0.511	Dichte (berechnet) / $[g/cm^3]$	1.376		
F(000)992Messbereich $2\theta_{min/max} / \circ$ 1.80 - 25.00 $h_{min} / h_{max}, k_{min} / k_{max} l_{min} / l_{max}$ -12 / 14, -15 / 15, -21 / 21gesamte Reflexe22302unabhängige Reflexe7967beobachtete Reflexe2758AbsorptionskorrekturNumerischRestraints4Anzahl Parameter511Salle0,811Rint0.1396R1 (beob./alle)0.0705 / 0.1669wR2 (beob./alle)0.1126 / 0.1291Extinktionskoeffizient0,0000(1) $\Delta \rho_{min/max} / e Å^{-3}$ 0.624 / -0.511	Absorptionskoeffizient / mm ⁻¹	1.266		
Messbereich $2\theta_{min/max} / \circ$ $1.80 - 25.00$ $h_{min} / h_{max}, k_{min} / k_{max} l_{min} / l_{max}$ $-12 / 14, -15 / 15, -21 / 21$ gesamte Reflexe 22302 unabhängige Reflexe 7967 beobachtete Reflexe 2758 AbsorptionskorrekturNumerischRestraints4Anzahl Parameter 511 S_{alle} $0,811$ Rint 0.1396 R1 (beob./alle) $0.1126 / 0.1291$ Extinktionskoeffizient $0,0000(1)$ $\Delta \rho_{min/max} / e Å^{-3}$ $0.624 / -0.511$	F(000)	992		
$h_{min} / h_{max}, k_{min} / k_{max} l_{min} / l_{max}$ $-12 / 14, -15 / 15, -21 / 21$ gesamte Reflexe22302unabhängige Reflexe7967beobachtete Reflexe2758AbsorptionskorrekturNumerischRestraints4Anzahl Parameter511S _{alle} 0,811Rint0.1396R1 (beob./alle)0.0705 / 0.1669wR2 (beob./alle)0.1126 / 0.1291Extinktionskoeffizient0,0000(1) $\Delta \rho_{min/max} / e Å^{-3}$ 0.624 / -0.511	Messbereich $2\theta_{min/max} / \circ$	1.80 - 25.00		
minmax22302gesamte Reflexe22302unabhängige Reflexe7967beobachtete Reflexe2758AbsorptionskorrekturNumerischRestraints4Anzahl Parameter511 S_{alle} 0,811 R_{int} 0.1396R1 (beob./alle)0.0705 / 0.1669wR2 (beob./alle)0.1126 / 0.1291Extinktionskoeffizient0,0000(1) $\Delta \rho_{min/max} / e Å^{-3}$ 0.624 / -0.511	hmin / hmax, kmin / kmax lmin / l max	-12 / 1415 / 1521 / 21		
unabhängige Reflexe7967beobachtete Reflexe2758AbsorptionskorrekturNumerischRestraints4Anzahl Parameter511 S_{alle} 0,811 R_{int} 0.1396R1 (beob./alle)0.0705 / 0.1669wR2 (beob./alle)0.1126 / 0.1291Extinktionskoeffizient0,0000(1) $\Delta \rho_{min(max} / e Å^{-3}$ 0.624 / -0.511	gesamte Reflexe	22302		
beobachtete Reflexe2758AbsorptionskorrekturNumerischRestraints4Anzahl Parameter511 S_{alle} 0,811 R_{int} 0.1396R1 (beob./alle)0.0705 / 0.1669wR2 (beob./alle)0.1126 / 0.1291Extinktionskoeffizient0,0000(1) $\Delta \rho_{min/max} / e Å^{-3}$ 0.624 / -0.511	unabhängige Reflexe	7967		
AbsorptionskorrekturNumerischRestraints4Anzahl Parameter511 S_{alle} 0,811 R_{int} 0.1396R1 (beob./alle)0.0705 / 0.1669wR2 (beob./alle)0.1126 / 0.1291Extinktionskoeffizient0,0000(1) $\Delta \rho_{min/max} / e Å^{-3}$ 0.624 / -0.511	beobachtete Reflexe	2758		
Restraints 4 Anzahl Parameter 511 S_{alle} 0,811 R_{int} 0.1396 R1 (beob./alle) 0.0705 / 0.1669 wR2 (beob./alle) 0.1126 / 0.1291 Extinktionskoeffizient 0,0000(1) $\Delta \rho_{min/max} / e Å^{-3}$ 0.624 / -0.511	Absorptionskorrektur	Numerisch		
Anzahl Parameter 511 S_{alle} $0,811$ R_{int} 0.1396 R1 (beob./alle) $0.0705 / 0.1669$ wR2 (beob./alle) $0.1126 / 0.1291$ Extinktionskoeffizient $0,0000(1)$ $\Delta \rho_{min/max} / e Å^{-3}$ $0.624 / -0.511$	Restraints	4		
S _{alle} 0,811 R _{int} 0.1396 R1 (beob./alle) 0.0705 / 0.1669 wR2 (beob./alle) 0.1126 / 0.1291 Extinktionskoeffizient 0,0000(1) $\Delta \rho_{min/max} / e Å^{-3}$ 0.624 / -0.511	Anzahl Parameter	511		
Rint 0.1396 R1 (beob./alle) $0.0705 / 0.1669$ wR2 (beob./alle) $0.1126 / 0.1291$ Extinktionskoeffizient $0,0000(1)$ $\Delta \rho_{min/max} / e Å^{-3}$ $0.624 / -0.511$	Salla	0.811		
R1 (beob./alle) $0.0705 / 0.1669$ wR2 (beob./alle) $0.1126 / 0.1291$ Extinktionskoeffizient $0,0000(1)$ $\Delta \rho_{min/max} / e Å^{-3}$ $0.624 / -0.511$	R _{int}	0.1396		
wR2 (beob./alle) $0.1126 / 0.1291$ Extinktionskoeffizient $0,0000(1)$ $\Delta \rho_{min/max} / e Å^{-3}$ $0.624 / -0.511$	R1 (beob./alle)	0.0705 / 0.1669		
Extinktionskoeffizient $0,0000(1)$ $\Delta \rho_{min/max} / e Å^{-3} 0.624 / -0.511$	wR2 (beob./alle)	0 1126 / 0 1291		
$\Delta \rho_{min/max} / e Å^{-3}$ 0.624 / -0.511	Extinktionskoeffizient	0.0000(1)		
	$\Delta \rho_{\rm min/max} / e {\rm \AA}^{-3}$	0.624 / -0.511		

Tabelle 60. Kristallographische Daten von 9.
--

	Х	у	Z	U(eq)
Zn(1)	3471(1)	3564(1)	6258(1)	65(1)
Zn(2)	8293(1)	1434(1)	8742(1)	64(1)
S(1)	4519(2)	1898(2)	7013(1)	75(1)
S(2)	2550(3)	5425(2)	6666(1)	79(1)
S(4)	9640(2)	-422(2)	8331(1)	78(1)
S(3)	8418(2)	3113(2)	7992(1)	75(1)
N(2)	1723(7)	3883(7)	6121(4)	63(2)
N(2)	6728(7)	1115(7)	8878(4)	63(2)
N(5)	8547(6)	10/3(6)	9662(4)	61(2)
N(3)	5146(7)	1943(0) 2027(6)	5002(4)	60(2)
N(1) N(3)	3140(7)	3037(0) 3870(7)	3331(4)	67(2)
N(3)	4407(7)	3870(7)	4143(4)	$\frac{0}{2}$
N(0)	4934(7)	2993(7)	0093(4) 10947(4)	71(2)
N(7)	/40/(/)	1100(7)	1084/(4)	70(2)
N(4)	1847(7)	1998(7)	6116(4)	/1(2)
C(27)	9/41(9)	2917(8)	9839(5)	69(2)
C(28)	9136(8)	2759(7)	9382(5)	57(2)
C(39)	7083(9)	-80(8)	8814(5)	62(2)
C(6)	6251(9)	2238(8)	5617(4)	60(2)
C(7)	5306(8)	3090(7)	4574(5)	62(2)
C(17)	809(9)	5099(9)	6179(5)	63(2)
C(34)	8411(10)	-873(8)	8558(5)	69(3)
C(1)	6077(9)	1659(7)	6374(5)	61(2)
C(23)	9115(8)	3344(8)	8616(5)	63(2)
C(5)	7512(9)	2098(7)	5168(5)	64(2)
C(18)	1218(9)	3138(9)	6265(5)	69(2)
C(29)	7960(8)	1928(7)	10437(5)	64(2)
C(12)	1111(9)	5862(9)	6429(5)	71(3)
C(40)	5622(10)	1882(9)	8722(5)	73(3)
C(24)	9733(9)	4104(8)	8336(5)	66(2)
C(4)	8568(9)	1321(9)	5461(6)	77(3)
C(44)	5196(10)	3571(9)	9396(6)	79(3)
C(22)	3155(9)	1444(8)	5595(5)	74(3)
C(16)	-360(10)	5520(9)	5979(5)	79(3)
C(30)	6928(11)	1156(10)	11734(5)	97(4)
C(19)	1154(10)	1247(9)	6303(6)	91(3)
C(11)	3362(12)	4972(11)	4453(6)	129(4)
C(38)	6125(9)	-523(9)	9014(5)	73(3)
C(35)	8707(11)	-2061(9)	8490(5)	82(3)
C(2)	7183(10)	886(8)	6662(5)	70(2)
C(26)	10361(10)	3661(9)	9563(5)	81(3)
C(8)	4820(11)	3833(10)	3265(5)	100(4)
C(25)	10362(10)	4250(9)	8789(6)	84(3)
C(33)	7780(15)	51(11)	10584(6)	138(4)
C(3)	8409(10)	740(8)	6201(6)	79(3)
C(14)	-997(13)	7463(10)	6322(7)	103(4)
C(41)	3729(11)	3740(10)	8691(7)	101(3)
C(36)	7797(12)	-2476(10)	8681(6)	93(3)
C(37)	6478(13)	-1698(11)	8943(7)	102(4)
C(10)	3048(11)	5697(9)	3686(6)	99(3)
C(13)	149(11)	7071(9)	6495(6)	86(3)
C(15)	-1279(10)	6718(10)	6074(6)	94(3)
C(21)	3218(11)	347(10)	5382(7)	117(4)

Tabelle 61 Atomkoordinaten (v 10 ⁴) und isotro	ne Auslenkun	osnarameter ($^{\wedge}$ $^{\circ}$ x 10 ³) von 9
Tabelle 01. Atomkoorumaten (X IU) unu isouo	pe Ausielikuli	gsparameter (AXIU) von 9.

C(43)	3940(12)	4664(11)	9618(8)	126(4)
C(9)	4062(12)	5130(11)	3036(6)	129(4)
C(31)	7114(15)	-32(11)	11971(6)	138(4)
C(32)	7444(12)	-695(9)	11339(6)	108(4)
C(20)	2108(13)	182(12)	5902(9)	150(6)
C(20)	3170(13)	4808(12)	9109(9)	130(0) 145(5)
H(27)	0737	2516	10347	83
$\Pi(27)$	6075	2510	4204	74
$\Pi(7)$	7622	2525	4294	74
$\Pi(3)$	/055	2330	4075	11
H(18)	330 7995	3425	0490	83
H(29)	/885	2494	10/1/	//
H(40)	5272	1612	8461	8/
H(24)	9717	4518	7833	79
H(4)	9398	1196	5145	93
H(44A)	5905	3786	9102	95
H(44B)	5404	3054	9870	95
H(22A)	3802	1241	5874	89
H(22B)	3292	1968	5119	89
H(16)	-534	5018	5785	94
H(30A)	7397	1366	11973	116
H(30B)	6018	1697	11878	116
H(19A)	886	1058	6876	109
H(19B)	397	1636	6096	109
H(11A)	3594	5367	4735	155
H(11B)	2641	4809	4807	155
H(38)	5255	-17	9193	88
H(35)	9570	-2580	8304	99
H(2)	7080	474	7166	84
H(26)	10764	3767	9880	98
H(8A)	4520	3337	3132	119
H(8R)	5742	3570	3019	119
H(25)	10788	4739	8584	101
H(23A)	8603	-320	10311	165
H(33R) H(22D)	8093 7275	-323	10311	165
$\Pi(33D)$ $\Pi(2)$	01273	244	6200	105
$\Pi(3)$	9124	244	6275	95 104
$\Pi(14)$	-1594	8249	03/3	124
H(41A)	3162	3342	88/3	122
H(41B)	3870	3939	811/	122
H(36)	8040	-3268	8641	111
H(3/)	5846	-1972	9068	122
H(10A)	2238	5756	3654	118
H(10B)	2959	6490	36/6	118
H(13)	320	7601	6662	104
H(15)	-2073	6991	5965	112
H(21A)	3210	443	4827	140
H(21B)	4007	-334	5455	140
H(43A)	3491	4565	10177	151
H(43B)	4111	5353	9537	151
H(9A)	4640	5517	2845	155
H(9B)	3706	5209	2602	155
H(31A)	7794	-420	12246	165
H(31B)	6325	-38	12351	165
H(32A)	6720	-835	11348	130
H(32B)	8179	-1452	11378	130
H(20A)	2376	-478	6301	180
H(20B)	1716	-10	5593	180

H(42A)	3131	5487	8720	174
H(42B)	2295	4955	9429	174

	U11	U22	U33	U23	U13	U12
Zn(1)	56(1)	81(1)	58(1)	-5(1)	-8(1)	-35(1)
Zn(2)	57(1)	78(1)	59(1)	-4(1)	-11(1)	-34(1)
S(1)	66(2)	97(2)	60(1)	10(1)	-11(1)	-44(2)
S(2)	79(2)	88(2)	80(2)	-16(1)	-16(1)	-43(2)
S(4)	58(2)	88(2)	82(2)	-18(1)	-7(1)	-28(1)
S(3)	79(2)	90(2)	61(1)	12(1)	-22(1)	-47(2)
N(2)	61(5)	76(5)	64(4)	-5(4)	-13(4)	-43(5)
N(6)	58(5)	69(5)	60(4)	-10(4)	-14(4)	-24(4)
N(5)	63(5)	83(5)	47(4)	5(3)	-14(3)	-45(4)
N(1)	70(5)	65(4)	51(4)	10(3)	-21(4)	-36(4)
N(3)	60(5)	95(6)	48(4)	0(4)	-18(4)	-36(5)
N(8)	62(5)	68(5)	88(5)	-15(4)	-34(4)	-19(4)
N(7)	65(5)	85(6)	55(5)	-5(4)	5(4)	-45(5)
N(4)	56(5)	79(5)	78(5)	-14(4)	1(4)	-38(5)
C(27)	78(7)	81(6)	57(5)	-3(5)	-20(5)	-40(6)
C(28)	48(5)	55(5)	54(5)	0(4)	-6(4)	-17(4)
C(39)	64(6)	74(6)	59(5)	-6(5)	-23(5)	-33(5)
C(6)	74(7)	76(6)	42(5)	0(4)	-7(4)	-49(5)
C(7)	57(6)	69(6)	63(6)	-6(5)	-14(5)	-31(5)
C(17)	45(6)	79(7)	54(5)	-10(5)	4(4)	-26(5)
C(34)	82(8)	63(6)	51(5)	2(4)	-20(5)	-25(5)
C(1)	74(7)	64(5)	52(5)	-3(4)	-15(5)	-38(5)
C(23)	53(6)	75(6)	60(5)	-6(5)	-7(4)	-31(5)
C(5)	68(7)	65(6)	56(5)	-2(4)	-14(5)	-29(5)
C(18)	57(6)	80(7)	64(6)	-7(5)	-8(5)	-28(6)
C(29)	68(6)	72(6)	60(5)	-11(4)	-8(5)	-39(5)
C(12)	75(7)	82(7)	63(6)	1(5)	-18(5)	-43(6)
C(40)	70(7)	81(7)	77(6)	-2(5)	-33(6)	-34(6)
C(24)	68(6)	72(6)	54(5)	3(4)	-8(5)	-37(5)
C(4)	51(6)	92(7)	79(7)	-2(6)	-12(5)	-30(6)
C(44)	69(7)	88(7)	79(6)	-12(6)	-13(6)	-35(6)
C(22)	62(7)	83(7)	81(6)	-24(5)	-9(5)	-33(6)
C(16)	62(7)	94(8)	85(7)	-7(6)	-14(5)	-42(6)
C(30)	107(9)	130(10)	63(6)	-6(6)	12(6)	-83(8)
C(19)	65(7)	91(8)	123(8)	-14(7)	-6(6)	-49(6)
C(11)	113(7)	129(8)	68(5)	14(5)	-36(5)	8(6)
C(38)	50(6)	83(7)	75(6)	-11(5)	-5(5)	-26(5)
C(35)	79(8)	83(7)	73(6)	-14(5)	-13(6)	-27(6)
C(2)	71(7)	75(6)	62(6)	-5(5)	-21(5)	-27(5)
C(26)	93(8)	93(7)	76(7)	-4(6)	-22(6)	-56(7)
C(8)	105(9)	126(10)	59(6)	-16(6)	-26(6)	-36(8)
C(25)	100(9)	89(7)	84(7)	-1(6)	-14(6)	-66(7)
C(33)	254(13)	154(9)	61(5)	26(5)	-33(6)	-153(10)
C(3)	67(7)	77(7)	85(7)	0(6)	-38(6)	-16(6)
C(14)	95(10)	82(8)	129(10)	-20(7)	-27(8)	-32(7)
C(41)	85(9)	95(8)	116(9)	-26(7)	-31(7)	-21(7)
C(36)	89(9)	77(7)	113(8)	-12(6)	-26(7)	-35(7)
C(37)	116(11)	93(9)	119(9)	10(7)	-31(8)	-72(8)
C(10)	126(11)	84(7)	85(7)	-22(6)	-32(7)	-36(7)

Tabelle 62. Anisotrope Auslenkungsparameter ($Å^2 \times 10^3$) von **9**.

C(13)	85(9)	78(7)	88(7)	-14(6)	-5(6)	-37(7)
C(15)	65(7)	92(8)	96(8)	4(7)	-15(6)	-21(7)
C(21)	82(9)	117(9)	145(10)	-60(8)	20(8)	-50(8)
C(43)	104(11)	110(10)	163(11)	-55(9)	-51(9)	-14(8)
C(9)	113(7)	129(8)	68(5)	14(5)	-36(5)	8(6)
C(31)	254(13)	154(9)	61(5)	26(5)	-33(6)	-153(10)
C(32)	137(11)	90(8)	81(7)	-5(6)	-2(7)	-54(8)
C(20)	107(12)	130(11)	232(16)	-101(11)	11(11)	-64(10)
C(42)	88(10)	127(11)	211(15)	-91(11)	-46(10)	0(8)

8.2.6 Kristallographische Daten von 10

Summenformel	$C_{24}H_{30}N_4S_2Zn$
Molekulargewicht / [g/mol]	504,01
Kristallfarbe	farblos
Kristallform	Würfel
Messgerät	STOE IPDS II
Messtemperatur / K	293(2)
Wellenlänge / Å	0,71073
Kristallsystem	Monoklin
Raumgruppe	C2/c
Zellparameter a / Å	13,7452(19)
b / Å	15,2004(19)
c / Å	36,795(6)
α/°	90
β/°	100,710(12)
γ / °	90
Volumen / Å ³	7553,8(18)
Ζ	12
Dichte (berechnet) / $[g/cm^3]$	1,330
Absorptionskoeffizient / mm ⁻¹	1,159
F(000)	3168
Messbereich $2\theta_{min/max} / \circ$	1,13 - 25,28
h_{min}/h_{max} , k_{min}/k_{max} l_{min}/l_{max}	-16 / 16, -18 / 18, -43 / 43
gesamte Reflexe	41282
unabhängige Reflexe	6730
beobachtete Reflexe	1791
Absorptionskorrektur	Numerisch
Restraints	7
Anzahl Parameter	421
Salla	0 766
R int	0 1819
R1 (beob /alle)	0.0538 / 0.2071
wR2 (beob /alle)	0 1007 / 0 1228
Extinktionskoeffizient	0.00027(3)
$\Delta 0_{\rm min/max} / e Å^{-3}$	1026/-0488
-Philliphiax / VII	1,020, 0,100

Tabelle 63. Kristallographische	Daten von 10.	
--	---------------	--

Tabelle 64. Atomkoordinaten ($(x 10^4)$) und isotro	ne Auslenkung	osnarameter ($Å^2 \times 10^3$) von 10.
Tabelle 04. Atomkoorumatell) unu isono	pe Ausienkung	gsparameter (AAIU	<i>y</i> von 10.

	х	у	Z	U(eq)
Zn(2)	6434(1)	4851(1)	886(1)	61(1)
Zn(1)	0	4401(1)	2500	76(1)
S(3)	6931(2)	3722(1)	556(1)	71(1)
S(2)	5255(2)	4706(2)	1237(1)	73(1)
S(1)	-99(2)	5095(2)	3042(1)	92(1)
N(6)	5232(5)	6829(4)	528(2)	62(2)
N(2)	-1762(5)	3144(5)	1936(2)	70(2)

N(5)	8567(5)	6256(5)	1094(2)	74(2)
N(3)	7372(5)	5463(4)	1334(2)	58(2)
N(1)	-1268(5)	3730(4)	2538(2)	68(2)
N(4)	6195(5)	5606(4)	414(2)	56(2)
C(30)	6574(6)	5197(6)	114(2)	60(2)
C(18)	6964(6)	5408(5)	1667(2)	56(2)
C(19)	7990(7)	6104(6)	1337(2)	68(3)
C(26)	7398(6)	3998(6)	-124(2)	68(2)
C(25)	6975(6)	4344(6)	121(2) 161(2)	59(2)
C(23) C(17)	7513(6)	5677(5)	2007(2)	72(2)
C(17)	1051(6)	3503(5)	2007(2) 2243(3)	$\frac{72(2)}{65(2)}$
C(7) C(24)	-1931(0) 5212(7)	2505(5) 8526(6)	2243(3)	102(2)
C(34)	3313(7)	7472(5)	044(3)	102(3)
C(52)	4409(0)	7475(S) 4004(G)	383(2)	(0(2))
C(14)	5650(6)	4994(6)	1986(2)	69(2) 01(2)
C(8)	-2489(7)	3102(6)	1599(2)	81(3)
C(13)	6014(6)	5069(5)	1653(2)	55(2)
C(31)	5534(6)	6205(6)	314(2)	65(2)
C(5)	-2535(7)	3511(6)	2931(2)	76(3)
C(6)	-1673(7)	3950(6)	2857(2)	66(2)
C(1)	-1210(6)	4590(5)	3098(2)	65(2)
C(12)	-795(7)	2793(6)	1899(2)	88(3)
C(24)	8777(8)	5599(6)	829(3)	103(3)
C(2)	-1669(8)	4833(6)	3390(2)	76(3)
C(36)	5672(7)	6945(6)	916(2)	91(3)
C(16)	7104(8)	5624(6)	2327(2)	81(3)
C(15)	6167(8)	5285(6)	2312(2)	82(3)
C(4)	-2965(7)	3790(7)	3221(3)	83(3)
C(3)	-2534(8)	4457(7)	3447(2)	84(3)
C(29)	6648(7)	5679(6)	-197(2)	80(3)
C(35)	6106(7)	7840(5)	979(3)	102(4)
C(20)	9317(9)	6970(7)	1166(3)	123(4)
C(33)	4902(7)	8376(6)	442(2)	85(3)
C(28)	7064(7)	5283(8)	-484(2)	94(3)
C(10)	-1663(9)	1869(7)	1391(3)	106(4)
C(9)	-2628(8)	2226(7)	1446(3)	94(3)
C(21)	9486(9)	7387(6)	838(3)	115(4)
C(27)	7443(7)	4453(7)	-437(3)	85(3)
C(27)	0758(8)	6768(7)	573(3)	111(4)
C(22) C(11)	9758(8)	1802(7)	1737(3)	111(4) 115(4)
C(11) C(22)	-908(8)	1092(7)	525(2)	175(4)
U(23)	9071(11)	5974(8)	323(3) 1521	170(0)
П(19)	8033	2422	1331	82 01
H(26)	/659	3432	-98	81
H(1/)	8153	5892	2021	86
H(7)	-2611	3607	2255	/8
H(34A)	4787	8484	986	122
H(34B)	5598	9111	878	122
H(32A)	3916	7417	513	85
H(32B)	4227	7371	124	85
H(14)	5034	4735	1980	83
H(8A)	-2285	3488	1417	97
H(8B)	-3117	3317	1647	97
H(31)	5233	6206	66	78
H(5)	-2804	3041	2784	91
H(12A)	-366	2771	2140	106
H(12B)	-491	3176	1742	106
H(24A)	9295	5209	952	124

H(24B)	8188	5248	747	124
H(2)	-1377	5267	3553	91
H(36A)	6184	6507	988	109
H(36B)	5170	6863	1066	109
H(16)	7466	5820	2551	98
H(15)	5893	5256	2525	98
H(4)	-3544	3528	3264	100
H(3)	-2831	4654	3640	101
H(29)	6429	6259	-220	96
H(35A)	6361	7925	1241	123
H(35B)	6651	7905	848	123
H(20A)	9098	7408	1325	147
H(20B)	9936	6726	1297	147
H(33A)	4395	8810	355	103
H(33B)	5425	8442	299	103
H(28)	7077	5588	-702	113
H(10A)	-1752	1266	1305	127
H(10B)	-1427	2209	1202	127
H(9A)	-3086	2244	1211	113
H(9B)	-2907	1849	1613	113
H(21A)	10012	7817	902	138
H(21B)	8891	7698	724	138
H(27)	7734	4199	-621	102
H(22A)	10435	6573	657	133
H(22B)	9725	7058	336	133
H(11A)	-277	1697	1684	138
H(11B)	-1100	1489	1915	138
H(23A)	8476	6142	354	211
H(23B)	9390	5517	406	211

Tabelle 65. Anisotrope Auslenkungsparameter ($Å^2 \times 10^3$) von **10**.

	U11	U22	U33	U23	U13	U12
Zn(2)	68(1)	60(1)	56(1)	-1(1)	13(1)	-2(1)
Zn(1)	62(1)	90(1)	76(1)	0	13(1)	0
S(3)	90(2)	56(2)	68(1)	-2(1)	15(1)	4(1)
S(2)	63(2)	91(2)	65(1)	-4(1)	11(1)	-12(1)
S(1)	81(2)	103(2)	91(2)	-26(2)	16(1)	-23(2)
N(6)	73(5)	55(5)	54(4)	-8(4)	-1(4)	10(4)
N(2)	56(5)	84(6)	67(5)	-15(4)	5(4)	16(4)
N(5)	78(5)	63(5)	85(5)	-31(4)	28(4)	-27(4)
N(3)	50(4)	73(5)	53(4)	2(4)	16(3)	3(4)
N(1)	53(5)	81(5)	67(5)	-19(4)	8(4)	3(4)
N(4)	59(4)	55(4)	54(4)	6(3)	9(3)	16(4)
C(30)	74(6)	58(6)	49(5)	5(5)	13(4)	-12(5)
C(18)	49(5)	68(6)	52(5)	1(4)	14(4)	4(4)
C(19)	72(7)	72(7)	67(6)	-10(5)	30(5)	-15(5)
C(26)	79(7)	68(6)	57(5)	-10(5)	13(5)	7(5)
C(25)	65(6)	55(6)	54(5)	5(5)	7(4)	0(5)
C(17)	61(6)	93(7)	60(5)	-1(5)	8(5)	8(5)
C(7)	53(6)	58(6)	83(6)	-11(5)	9(5)	7(4)
C(34)	118(8)	72(7)	98(7)	-32(6)	-25(6)	13(6)
C(32)	68(6)	58(6)	87(6)	-7(5)	17(5)	-1(5)
C(14)	70(6)	81(7)	55(5)	3(5)	12(5)	3(5)
C(8)	75(7)	83(8)	78(6)	-11(6)	-6(6)	5(5)

C(13)	63(6)	51(5)	52(5)	-3(4)	12(4)	11(5)
C(31)	73(7)	73(7)	47(5)	1(5)	5(5)	-5(5)
C(5)	72(7)	83(7)	75(6)	6(5)	20(6)	-11(6)
C(6)	59(6)	79(7)	60(6)	14(5)	11(5)	22(5)
C(1)	55(6)	69(7)	67(6)	-13(5)	-1(5)	0(5)
C(12)	82(8)	100(8)	77(7)	-22(6)	1(6)	12(6)
C(24)	128(9)	82(7)	118(8)	-37(6)	69(7)	-36(6)
C(2)	86(7)	79(7)	61(5)	0(5)	8(5)	12(6)
C(36)	141(9)	64(7)	63(6)	-5(5)	5(6)	21(6)
C(16)	87(8)	100(8)	52(6)	-1(5)	1(6)	23(6)
C(15)	87(7)	103(8)	58(6)	-4(5)	21(5)	-1(6)
C(4)	77(7)	106(9)	70(7)	22(6)	22(6)	3(6)
C(3)	93(8)	94(8)	67(6)	8(6)	17(6)	17(6)
C(29)	105(8)	72(7)	66(6)	11(5)	23(6)	12(6)
C(35)	113(9)	63(7)	108(8)	-31(6)	-40(6)	31(6)
C(20)	147(11)	110(9)	120(10)	-57(8)	48(8)	-44(8)
C(33)	97(7)	66(7)	88(7)	-7(5)	2(6)	9(5)
C(28)	102(8)	122(10)	57(6)	14(6)	11(6)	12(7)
C(10)	133(10)	107(9)	74(7)	-29(6)	7(7)	10(8)
C(9)	88(8)	101(9)	98(8)	-28(6)	29(6)	-8(7)
C(21)	205(13)	59(7)	90(8)	5(6)	49(8)	-28(7)
C(27)	87(7)	92(8)	74(7)	-17(6)	11(6)	22(6)
C(22)	129(10)	120(10)	104(8)	-26(7)	69(7)	-64(8)
C(11)	148(11)	111(10)	89(8)	3(7)	29(8)	72(8)
C(23)	278(16)	142(11)	141(10)	-47(8)	128(11)	-103(11)

8.2.7 Kristallographische Daten von 13

Tabelle	66 .	Kristal	lograp	hische	Daten	von 13	ί.
---------	-------------	---------	--------	--------	-------	--------	----

Summenformel $C_{22}H_{26}CdN_4S_2$ Molekulargewicht / [g/mol]522,99KristallfarbefarblosKristallformWürfelMessgerätSTOE IPDS IIMesstemperatur / K293(2)Wellenlänge / Å0,71073KristallsystemMonoklinRaumgruppeP21/nZellparametera / Å14,9804(19)b / Å13,9351(11)c / Å21,743(3) α / \circ 90 β / \circ 97,604(11) γ / \circ 90Solutioner / Å ³ 4499,1(9)Z8Dichte (berechnet) / [g/cm ³]1,544Absorptionskoeffizient / mm ⁻¹ 1,172
Molekulargewicht / [g/mol]522,99KristallfarbefarblosKristallformWürfelMessgerätSTOE IPDS IIMesstemperatur / K293(2)Wellenlänge / Å0,71073KristallsystemMonoklinRaumgruppeP21/nZellparametera / Å14,9804(19)b / Å13,9351(11)c / Å21,743(3) α / \circ 90 β / \circ 97,604(11) γ / \circ 90Stolumen / ų4499,1(9)Z8Dichte (berechnet) / [g/cm³]1,544Absorptionskoeffizient / mm ⁻¹ 1,172
KristallfarbefarblosKristallformWürfelMessgerätSTOE IPDS IIMesstemperatur / K293(2)Wellenlänge / Å0,71073KristallsystemMonoklinRaumgruppeP21/nZellparametera / Å14,9804(19)b / Å13,9351(11)c / Å21,743(3)a / °90 β / °97,604(11) γ / °90Solution8Dichte (berechnet) / [g/cm³]1,544Absorntionskoeffizient / mm ⁻¹ 1,172
KristallformWürfelMessgerätSTOE IPDS IIMesstemperatur / K293(2)Wellenlänge / Å0,71073KristallsystemMonoklinRaumgruppe $P2_1/n$ Zellparameter $a / Å$ 14,9804(19) $b / Å$ 13,9351(11) $c / Å$ 21,743(3) $a / °$ 90 $\beta / °$ 97,604(11) $\gamma / °$ 90Solution8Dichte (berechnet) / [g/cm ³]1,544Absorptionskoeffizient / mm ⁻¹ 1,172
MessgerätSTOE IPDS IIMesstemperatur / K293(2)Wellenlänge / Å0,71073KristallsystemMonoklinRaumgruppeP21/nZellparametera / Å14,9804(19)b / Å13,9351(11)c / Å21,743(3)a / °90 β / °97,604(11) γ / °90Stolumen / ų4499,1(9)Z8Dichte (berechnet) / [g/cm³]1,544Absorptionskoeffizient / mm ⁻¹ 1,172
Messtemperatur / K 293(2) Wellenlänge / Å 0,71073 Kristallsystem Monoklin Raumgruppe P21/n Zellparameter a / Å 14,9804(19) b / Å 13,9351(11) c / Å 21,743(3) α / \circ 90 β / \circ 97,604(11) γ / \circ 90 Volumen / Å ³ 4499,1(9) Z 8 Dichte (berechnet) / [g/cm ³] 1,544 Absorptionskoeffizient / mm ⁻¹ 1 172
Wellenlänge / Å 0,71073 Kristallsystem Monoklin Raumgruppe P21/n Zellparameter a / Å 14,9804(19) b / Å 13,9351(11) c / Å 21,743(3) α / \circ 90 β / \circ 97,604(11) γ / \circ 90 Volumen / Å ³ 4499,1(9) Z 8 Dichte (berechnet) / [g/cm ³] 1,544 Absorptionskoeffizient / mm ⁻¹ 1,172
Kristallsystem Monoklin Raumgruppe $P2_1/n$ Zellparameter $a / Å$ $14,9804(19)$ $b / Å$ $13,9351(11)$ $c / Å$ $21,743(3)$ $\alpha / °$ 90 $\beta / °$ $97,604(11)$ $\gamma / °$ 90 Volumen / Å ³ $4499,1(9)$ Z 8 Dichte (berechnet) / [g/cm ³] $1,544$ Absorptionskoeffizient / mm ⁻¹ $1,172$
Raumgruppe $P2_1/n$ Zellparameter $a / Å$ 14,9804(19) $b / Å$ 13,9351(11) $c / Å$ 21,743(3) $\alpha / °$ 90 $\beta / °$ 97,604(11) $\gamma / °$ 90 Volumen / Å ³ 4499,1(9) Z 8 Dichte (berechnet) / [g/cm ³] 1,544 Absorptionskoeffizient / mm ⁻¹ 1,172
Zellparameter $a / Å$ 14,9804(19) $b / Å$ 13,9351(11) $c / Å$ 21,743(3) $\alpha / °$ 90 $\beta / °$ 97,604(11) $\gamma / °$ 90 Volumen / Å ³ 4499,1(9) Z 8 Dichte (berechnet) / [g/cm ³] 1,544 Absorptionskoeffizient / mm ⁻¹ 1,172
b / Å 13,9351(11) c / Å 21,743(3) $\alpha / ^{\circ}$ 90 $\beta / ^{\circ}$ 97,604(11) $\gamma / ^{\circ}$ 90 Volumen / Å ³ 4499,1(9) Z 8 Dichte (berechnet) / [g/cm ³] 1,544 Absorptionskoeffizient / mm ⁻¹ 1 172
$ \begin{array}{cccccc} c / Å & 21,743(3) \\ \alpha / \circ & 90 \\ \beta / \circ & 97,604(11) \\ \gamma / \circ & 90 \\ \end{array} $ Volumen / Å ³ 4499,1(9) Z & 8 \\ Dichte (berechnet) / [g/cm ³] 1,544 \\ Absorptionskoeffizient / mm ⁻¹ 1 172
$\begin{array}{ccc} \alpha / \circ & 90 \\ \beta / \circ & 97,604(11) \\ \gamma / \circ & 90 \end{array}$ Volumen / Å ³ 4499,1(9) Z 8 Dichte (berechnet) / [g/cm ³] 1,544 Absorptionskoeffizient / mm ⁻¹ 1 172
$ \begin{array}{ccccc} \beta / & & 97,604(11) \\ \gamma / & & 90 \\ \hline Volumen / Å^3 & & 4499,1(9) \\ Z & & & 8 \\ Dichte (berechnet) / [g/cm^3] & & 1,544 \\ \hline Absorptionskoeffizient / mm^{-1} & & 1,172 \\ \hline \end{array} $
γ / \circ 90 Volumen / Å ³ 4499,1(9) Z 8 Dichte (berechnet) / [g/cm ³] 1,544 Absorptionskoeffizient / mm ⁻¹ 1 172
Volumen / $Å^3$ 4499,1(9)Z8Dichte (berechnet) / [g/cm³]1,544Absorptionskoeffizient / mm³11,172
Z8Dichte (berechnet) / $[g/cm^3]$ 1,544Absorptionskoeffizient / mm^{-1} 1,172
Dichte (berechnet) / $[g/cm^3]$ 1,544 Absorptionskoeffizient / mm^{-1} 1,172
Absorptionskoeffizient / mm ⁻¹ 1 172
1,1,2
F(000) 2128
Messbereich $2\theta_{\min/\max} / \circ$ 1,74 - 27,33
h _{min} / h _{max} , k _{min} / k _{max} l _{min} / l _{max} -19 / 16, -17 / 16, -27 / 27
gesamte Reflexe 49764
unabhängige Reflexe 9827
beobachtete Reflexe 3521
Absorptionskorrektur Numerisch
Restraints 0
Anzahl Parameter 524

S _{alle}	0,733
R _{int}	0,0811
R1 (beob./alle)	0,0317 / 0,1287
wR2 (beob./alle)	0,0507 / 0,0630
Extinktionskoeffizient	0,000051(17)
$\Delta \rho_{\text{min/max}} / \text{ e Å}^{-3}$	0,458 / -1,345

	4				(82 103)	
Tabelle 67. Atomkoordinaten (X 10 ⁻) und isotro	pe Auslenkung	gsparameter ($(A^{-}X 10^{\circ})$) von 13.

	Х	у	Z	U(eq)
C(1)	761(4)	1692(4)	6103(3)	49(2)
C(12)	3796(3)	1888(3)	8386(2)	49(1)
C(34)	-1145(4)	586(4)	8391(3)	63(2)
C(23)	-4275(4)	841(4)	6190(3)	59(2)
C(2)	273(5)	1595(4)	5515(3)	60(2)
C(13)	4167(4)	2023(4)	9006(3)	62(2)
C(35)	-795(5)	467(6)	9019(4)	90(2)
C(24)	-4821(5)	955(5)	5626(3)	75(2)
C(3)	-441(4)	966(4)	5399(3)	75(2)
C(14)	4486(5)	1260(6)	9378(3)	75(2)
C(36)	-477(5)	1259(8)	9378(4)	96(3)
C(25)	-5565(4)	1535(4)	5557(3)	77(2)
C(4)	-722(4)	454(4)	5878(3)	73(2)
C(15)	4421(4)	342(4)	9146(3)	70(2)
C(37)	-503(4)	2145(6)	9128(4)	98(2)
C(26)	-5777(4)	2053(4)	6053(3)	76(2)
C(5)	-254(3)	532(3)	6465(2)	59(1)
C(16)	4055(3)	191(3)	8537(2)	57(1)
C(38)	-866(3)	2289(4)	8528(3)	74(2)
C(27)	-5238(4)	1979(3)	6614(2)	62(1)
C(6)	507(3)	1122(3)	6587(2)	45(1)
C(17)	3756(3)	945(3)	8147(2)	47(1)
C(39)	-1177(4)	1522(4)	8145(3)	60(2)
C(28)	-4475(3)	1394(3)	6700(2)	52(1)
C(7)	1020(4)	391(4)	7519(3)	52(2)
C(18)	3742(4)	92(4)	7232(3)	52(2)
C(40)	-1215(5)	2345(4)	7213(3)	59(2)
C(29)	-3903(4)	2097(4)	7641(3)	55(2)
C(8)	1431(6)	-548(5)	8468(3)	88(2)
C(19)	3945(4)	-1007(4)	6388(3)	70(2)
C(41)	-1071(4)	3441(4)	6340(3)	86(2)
C(30)	-3470(6)	3017(5)	8586(3)	99(3)
C(9)	1664(5)	-304(4)	9109(3)	95(2)
C(20)	3318(5)	-1260(5)	5820(3)	104(2)
C(42)	-1782(5)	3744(5)	5844(3)	109(2)
C(31)	-3147(6)	2745(5)	9194(3)	112(3)
C(10)	1849(4)	753(4)	9157(2)	72(2)
C(21)	2703(5)	-497(6)	5681(3)	102(2)
C(43)	-2414(5)	2957(5)	5711(3)	111(2)
C(32)	-3112(4)	1696(4)	9255(3)	79(2)
C(11)	1535(3)	1172(3)	8522(2)	55(1)
C(22)	2641(3)	61(3)	6279(2)	60(1)
C(45)	-2364(4)	2395(4)	6308(2)	72(2)
C(33)	-3372(3)	1286(3)	8614(2)	63(1)
N(1)	999(3)	1180(3)	7191(2)	45(1)
N(2)	3363(3)	776(2)	7522(2)	45(1)

N(6)	-1579(3)	1684(3)	7524(2)	54(1)
N(5)	-3938(3)	1327(3)	7286(2)	51(1)
N(3)	1325(3)	351(3)	8120(2)	54(1)
N(4)	3460(3)	-239(3)	6671(2)	51(1)
N(8)	-1533(4)	2692(3)	6673(3)	63(1)
N(7)	-3584(3)	202(3) 2127(3)	8225(2)	50(1)
$\mathbf{N}(1)$	-550+(5)	2127(3) 2540(1)	6125(2)	55(1)
S(1)	1029(1)	2349(1)	7052(1)	60(1)
S(2)	3303(1)	2099(1)	7932(1)	$\frac{00(1)}{77(1)}$
S(4)	-154/(1)	-42/(1)	(955(1)	//(1)
S(3)	-3402(1)	-20(1)	6229(1)	80(1)
Cd(1)	2355(1)	2006(1)	7189(1)	53(1)
Cd(2)	-2619(1)	472(1)	7226(1)	61(1)
H(2)	433	1965	5191	72
H(13)	4199	2640	9171	75
H(35)	-775	-141	9197	108
H(24)	-4675	623	5282	90
H(3)	-732	888	4996	90
H(14)	4744	1368	9785	90
H(36)	-245	1173	9792	115
H(25)	-5924	1578	5175	93
H(4)	-1224	57	5806	88
H(15)	4622	-174	9397	84
H(37)	-271	2663	9368	118
H(26)	-6280	2451	6011	91
H(5)	-448	186	6789	71
H(16)	4008	-434	8385	68
H(38)	-909	2909	8369	89
H(27)	-5387	2333	6948	74
H(7)	810	-172	7321	62
H(18)	4258	-187	7321	62
H(40)	-669	2507	7308	71
H(20)	-009	2597	7398	67
$\Pi(29)$	-4120	2000	74 <i>3</i> 7 8410	106
$\Pi(0A)$	0/4 1002	-911	8410 8227	100
П(0D)	1902	-935	6327	100
H(19A)	4050	-1555	0005	84
H(19B)	4517	-//8	6283	84
H(41A)	-872	3972	6613	103
H(41B)	-557	3177	6169	103
H(30A)	-3044	3438	8421	119
H(30B)	-4040	3350	8573	119
H(9A)	2195	-660	9283	114
H(9B)	1174	-469	9339	114
H(20A)	3655	-1366	5475	125
H(20B)	2995	-1845	5890	125
H(42A)	-2092	4304	5976	131
H(42B)	-1519	3911	5474	131
H(31A)	-3537	3005	9475	134
H(31B)	-2549	3008	9308	134
H(10A)	2487	870	9274	86
H(10B)	1522	1040	9467	86
H(21A)	2116	-747	5516	122
H(21B)	2909	-78	5373	122
H(43A)	-2244	2558	5380	133
H(43R)	-3019	3198	5589	133
H(32A)	-3528	1480	9532	94
H(32R)	-2509	1491	9421	94
()		1 I / I	/ · · · · ·	/ ·

H(11A)	1007	1571	8533	66
H(11B)	2007	1557	8379	66
H(22A)	2637	748	6206	72
H(22B)	2107	-116	6461	72
H(45A)	-2875	2541	6523	86
H(45B)	-2357	1711	6226	86
H(33A)	-2877	927	8481	76
H(33B)	-3891	868	8604	76

Tabelle 68. Anisotrope Auslenkungsparameter ($Å^2 \times 10^3$) von **13**.

	U11	U22	U33	U23	U13	U12
C(1)	52(3)	47(3)	47(3)	6(2)	2(3)	10(2)
C(12)	50(3)	50(3)	48(3)	-4(2)	8(2)	-5(2)
C(34)	51(4)	76(4)	65(4)	0(3)	15(3)	13(3)
C(23)	54(4)	52(3)	72(5)	-13(3)	15(3)	-16(3)
C(2)	58(4)	66(4)	57(4)	14(3)	5(3)	8(3)
C(13)	60(4)	71(4)	56(4)	-8(3)	5(3)	-8(3)
C(35)	68(5)	137(7)	68(5)	28(5)	16(4)	24(5)
C(24)	85(6)	75(4)	68(4)	-19(3)	18(4)	-19(4)
C(3)	74(4)	86(4)	59(4)	7(3)	-11(3)	-5(3)
C(14)	63(4)	110(6)	48(4)	2(4)	-4(3)	2(4)
C(36)	59(5)	174(10)	56(5)	-2(6)	12(4)	11(6)
C(25)	78(4)	81(4)	71(4)	12(3)	2(3)	-20(3)
C(4)	58(3)	84(4)	73(4)	1(3)	-10(3)	-16(3)
C(15)	63(4)	78(4)	66(4)	16(3)	4(3)	6(3)
C(37)	70(4)	147(7)	80(6)	-31(5)	17(4)	-10(5)
C(26)	71(4)	68(3)	88(5)	7(3)	15(3)	-3(3)
C(5)	58(3)	58(3)	60(3)	5(2)	5(3)	-2(2)
C(16)	55(3)	55(3)	60(4)	4(2)	5(3)	2(2)
C(38)	58(4)	89(4)	77(5)	-25(3)	16(3)	-5(3)
C(27)	66(3)	62(3)	56(3)	0(2)	5(3)	-2(3)
C(6)	47(3)	45(2)	45(3)	-2(2)	6(2)	10(2)
C(17)	43(3)	49(3)	48(3)	-1(2)	4(3)	-1(2)
C(39)	48(3)	67(4)	67(4)	-9(3)	16(3)	5(3)
C(28)	52(3)	42(3)	62(4)	1(2)	16(3)	-8(2)
C(7)	56(4)	52(3)	47(4)	-8(3)	5(3)	-1(3)
C(18)	49(4)	36(3)	68(4)	2(3)	3(3)	-1(2)
C(40)	50(4)	49(4)	79(5)	-5(3)	9(4)	-5(3)
C(29)	68(4)	32(3)	68(4)	4(3)	15(3)	0(3)
C(8)	151(7)	58(4)	52(4)	12(3)	0(4)	4(4)
C(19)	75(4)	53(3)	84(4)	-19(3)	18(3)	6(3)
C(41)	69(4)	57(3)	138(6)	25(3)	39(4)	-4(3)
C(30)	158(8)	55(4)	78(5)	-25(4)	-5(5)	-12(4)
C(9)	135(6)	76(4)	70(5)	15(3)	3(4)	-9(4)
C(20)	132(6)	105(5)	73(5)	-31(4)	5(4)	25(5)
C(42)	144(7)	90(5)	96(5)	26(4)	25(5)	-23(5)
C(31)	166(8)	94(6)	76(6)	-23(4)	25(5)	-14(5)
C(10)	72(4)	94(4)	47(3)	-11(3)	2(3)	3(3)
C(21)	103(5)	111(5)	84(5)	-45(4)	-16(4)	7(5)
C(43)	141(6)	98(5)	93(5)	35(4)	11(5)	-21(5)
C(32)	75(4)	100(5)	62(4)	1(3)	15(3)	6(3)
C(11)	66(3)	50(3)	50(3)	-8(2)	14(2)	-5(2)
C(22)	54(3)	61(3)	63(4)	-7(2)	1(3)	2(3)
C(45)	82(4)	54(3)	77(4)	14(3)	6(3)	-5(3)

C(33)	68(3)	59(3)	67(4)	6(3)	25(3)	5(3)
N(1)	51(3)	37(2)	49(3)	4(2)	11(2)	3(2)
N(2)	46(3)	36(2)	50(3)	-5(2)	1(2)	5(2)
N(6)	52(3)	48(2)	62(3)	-2(2)	11(2)	3(2)
N(5)	56(3)	44(2)	55(3)	-4(2)	12(2)	-2(2)
N(3)	74(3)	41(2)	45(3)	-1(2)	5(2)	0(2)
N(4)	51(3)	43(3)	59(3)	-13(2)	4(2)	3(2)
N(8)	65(3)	50(3)	78(4)	11(3)	20(3)	-9(3)
N(7)	82(3)	49(3)	46(3)	-2(2)	11(2)	-4(2)
S(1)	65(1)	57(1)	69(1)	21(1)	-3(1)	-8(1)
S(2)	78(1)	41(1)	61(1)	-4(1)	6(1)	-9(1)
S(4)	95(1)	54(1)	85(1)	14(1)	21(1)	14(1)
S(3)	80(1)	66(1)	93(1)	-34(1)	15(1)	-3(1)
Cd(1)	55(1)	44(1)	58(1)	2(1)	2(1)	0(1)
Cd(2)	65(1)	46(1)	72(1)	-3(1)	13(1)	-2(1)

8.2.8 Kristallographische Daten von 14

Summenformel	$C_{24}H_{30}CdN_4S_2$	
Molekulargewicht / [g/mol]	551,04	
Kristallfarbe	Farblos	
Kristallform	Plättchen	
Messgerät	STOE IPDS I	
Messtemperatur / K	293(2)	
Wellenlänge / Å	0,71073	
Kristallsystem	Triklin	
Raumgruppe	P -1	
Zellparameter a / Å	8,9719(12)	
b / Å	11,4435(16)	
c / Å	13,000(2)	
α/°	102,194(18)	
β / °	104,966(18)	
γ / °	106,384(16)	
Volumen / Å ³	1177,6(3)	
Z	2	
Dichte (berechnet) / [g/cm ³]	1,554	
Absorptionskoeffizient / mm ⁻¹	1,124	
F(000)	564	
Messbereich $2\theta_{min/max}$ / °	2,52 - 28,13	
h_{min} / h_{max} , $k_{min} / k_{max} l_{min} / l_{max}$	-11 / 11, -15 / 15, -17 / 17	
gesamte Reflexe	14282	
unabhängige Reflexe	5272	
beobachtete Reflexe	2442	
Absorptionskorrektur	Numerisch	
Restraints	0	
Anzahl Parameter	280	
S_{alle}	0,768	
R _{int}	0,0834	
R1 (beob./alle)	0,0406 / 0,1146	
wR2 (beob./alle)	0,0676 / 0,0793	
Extinktionskoeffizient	0,0000(1)	
$\Delta \rho_{\text{min/max}} / e \text{ Å}^{-3}$	0,400 / -0,398	

Tabelle 69. Kristallographische Daten von 14
--

Tabelle 70. Atomkoordinaten ($x \ 10^4$) und isotrope Auslenkungsparameter (Å² x 10^3) von 14.

	Х	у	Z	U(eq)
C(1)	8717(5)	2684(3)	3619(4)	48(1)

_

C(13)	1922(4)	-1507(4)	2748(4)	50(1)
C(2)	9889(5)	3720(4)	3515(4)	60(1)
C(14)	880(5)	-2714(4)	2698(5)	60(1)
C(3)	11016(6)	3562(5)	3035(5)	77(2)
C(15)	-11(6)	-3656(4)	1691(6)	73(2)
C(4)	11049(6)	2365(5)	2596(5)	78(2)
C(16)	100(6)	-3449(4)	714(6)	77(2)
C(10)	9886(5)	1310(4)	2666(4)	57(1)
C(3)	1141(5)	2208(4)	740(4)	57(1) 63(1)
C(17)	9752(5)	-2290(4)	740(4)	44(1)
C(0)	$\frac{8733(3)}{2068(5)}$	1444(3) 1200(4)	31/9(4)	44(1)
C(18)	2008(3)	-1309(4)	1/40(4)	49(1)
C(7)	8177(5)	-505(5)	3343(3)	44(1)
C(19)	2754(5)	31/(4)	989(5)	61(1)
C(8)	8101(5)	-2297(3)	4247(4)	5/(1)
C(20)	2990(7)	1711(6)	-201(6)	115(3)
C(9)	7340(5)	-3746(4)	3746(4)	63(1)
C(21)	3747(7)	2925(7)	-140(7)	135(3)
C(10)	5501(6)	-4190(4)	3503(5)	65(2)
C(22)	5605(6)	3414(5)	267(5)	91(2)
C(11)	4733(5)	-3568(3)	2695(4)	56(1)
C(23)	6295(7)	2921(7)	1181(7)	124(3)
C(12)	5494(4)	-2114(3)	3175(4)	51(1)
C(24)	5491(6)	1678(5)	1107(6)	99(2)
N(1)	7589(4)	354(3)	3280(3)	42(1)
N(2)	3230(4)	-160(3)	1764(3)	52(1)
N(3)	7292(4)	-1665(3)	3528(3)	46(1)
N(4)	3691(4)	1241(3)	707(3)	63(1)
S(1)	7335(1)	3014(1)	4271(1)	59(1)
S(2)	2914(1)	-293(1)	4041(1)	52(1)
Cd(1)	5447(1)	828(1)	3744(1)	60(1)
H(2)	9891	4540	3785	72
H(14)	794	-2876	3356	72
H(3)	11788	4278	2999	92
H(15)	-696	-4444	1677	88
H(4)	11826	2266	2263	94
H(16)	-526	-4084	35	92
H(5)	9875	495	2359	68
H(17)	1236	-2170	73	75
H(7)	0317	-286	3765	53
П(7) Ц(10)	1632	-280	5705	55 73
П(19) Ц(8А)	7006	2050	1078	68
$H(0\mathbf{R})$	7390 0267	-2030	4978	68
$\Pi(OD)$	9207	-2018	4342	120
$\Pi(20A)$	1952	1104	-895	139
H(20B)	1858	1000	-251	139
H(9A)	/566	-4005	3060	/5
H(9B)	/829	-4140	4266	/5
H(21A)	3399	3470	353	162
H(21B)	3364	3015	-878	162
H(10A)	5272	-3963	4193	78
H(10B)	5024	-5113	3179	78
H(22A)	5977	3156	-352	109
H(22B)	6020	4342	535	109
H(11A)	3553	-3842	2551	68
H(11B)	4908	-3838	1990	68
H(23A)	7424	3019	1231	149
H(23B)	6341	3467	1878	149

H(12A)	5082	-1736	2612	61
H(12B)	5162	-1836	3810	61
H(24A)	5857	1574	1841	119
H(24B)	5825	1125	611	119

	U11	U22	U33	U23	U13	U12
C(1)	37(2)	39(2)	53(3)	17(2)	1(2)	3(2)
C(13)	29(2)	49(2)	76(4)	23(2)	19(2)	16(2)
C(2)	42(3)	49(2)	77(4)	31(2)	2(3)	7(2)
C(14)	38(2)	53(3)	87(4)	24(3)	19(3)	12(2)
C(3)	50(3)	74(3)	106(5)	51(3)	22(3)	9(3)
C(15)	42(3)	46(3)	115(5)	19(3)	17(3)	6(2)
C(4)	60(3)	89(4)	99(5)	45(3)	37(3)	26(3)
C(16)	52(3)	50(3)	100(5)	2(3)	4(3)	13(2)
C(5)	44(2)	61(3)	64(3)	23(2)	15(3)	15(2)
C(17)	44(3)	61(3)	71(4)	12(3)	8(3)	18(2)
C(6)	32(2)	43(2)	48(3)	16(2)	3(2)	7(2)
C(18)	31(2)	45(2)	63(3)	11(2)	9(2)	12(2)
C(7)	34(2)	40(2)	49(3)	6(2)	8(2)	13(2)
C(19)	39(2)	57(3)	75(4)	17(3)	9(3)	12(2)
C(8)	47(2)	45(2)	68(3)	18(2)	2(2)	18(2)
C(20)	59(3)	127(5)	135(6)	86(5)	-18(4)	9(3)
C(9)	70(3)	42(2)	78(4)	26(2)	14(3)	27(2)
C(21)	66(4)	168(7)	190(8)	137(7)	19(5)	31(4)
C(10)	55(3)	47(2)	95(4)	27(3)	27(3)	16(2)
C(22)	65(3)	104(4)	104(5)	69(4)	12(3)	20(3)
C(11)	39(2)	45(2)	75(4)	15(2)	11(2)	9(2)
C(23)	57(3)	155(6)	153(7)	115(6)	6(4)	7(4)
C(12)	36(2)	39(2)	74(3)	17(2)	13(2)	14(2)
C(24)	44(3)	91(4)	139(6)	63(4)	-8(3)	4(3)
N(1)	37(2)	34(2)	48(2)	11(2)	5(2)	10(1)
N(2)	39(2)	55(2)	61(3)	27(2)	10(2)	15(2)
N(3)	38(2)	36(2)	56(2)	14(2)	5(2)	14(1)
N(4)	43(2)	72(2)	69(3)	37(2)	5(2)	17(2)
S(1)	61(1)	35(1)	76(1)	16(1)	20(1)	13(1)
S(2)	42(1)	52(1)	62(1)	20(1)	16(1)	16(1)
Cd(1)	49(1)	40(1)	91(1)	20(1)	29(1)	13(1)

8.2.9 Kristallographische Daten von 15

Summenformel		C ₂₂ H ₂₆ CdN ₄ O ₂ S ₂
Molekulargewich	nt / [g/mol]	554,99
Kristallfarbe		farblos
Kristallform		Plättchen
Messgerät		STOE IPDS II
Messtemperatur /	′ K	293(2)
Wellenlänge / Å		0,71073
Kristallsystem		Triklin
Raumgruppe		P -1
Zellparameter	a / Å	9,042(2)
-	b / Å	11,714(3)
	c / Å	12,356(3)
	α/°	101,05(2)

 Tabelle 72. Kristallographische Daten von 15.

β/°	106,43(2)
γ/°	108,588(19)
Volumen / Å ³	1131,1(5)
Z	2
Dichte (berechnet) / [g/cm ³]	1,629
Absorptionskoeffizient / mm ⁻¹	1,177
F(000)	564
Messbereich $2\theta_{min/max}$ / °	1,93 - 27,31
$h_{min} / h_{max}, k_{min} / k_{max} l_{min} / l_{max}$	-11 / 11, -14 / 15, -15 / 14
gesamte Reflexe	9965
unabhängige Reflexe	4740
beobachtete Reflexe	2177
Absorptionskorrektur	Numerisch
Restraints	0
Anzahl Parameter	280
S _{alle}	0,713
R _{int}	0,0528
R1 (beob./alle)	0,0306 / 0,1015
wR2 (beob./alle)	0,0437 / 0,0529
Extinktionskoeffizient	0,0000(1)
$\Delta \rho_{min/max} / e \text{ Å}^{-3}$	0,615 / -0,715

Tabelle 73. Atomkoordinaten	$(x \ 10^4)$) und isotro	pe Auslenkun	gsparameter	$(Å^2 \times 10^3)$) von 15.

	Х	V	Z	U(eq)
Cd(1)	5559(1)	843(1)	3729(1)	51(1)
S(2)	2931(1)	-259(1)	3977(1)	45(1)
S(2)	7608(1)	2989(1)	4285(1)	51(1)
O(2)	5689(3)	3763(2)	540(3)	60(1)
N(1)	7633(3)	349(2)	3222(2)	33(1)
O(1)	5086(3)	-4208(2)	3098(3)	60(1)
N(2)	3277(3)	-112(3)	1594(3)	37(1)
N(4)	3741(3)	1363(3)	559(3)	39(1)
N(3)	7119(3)	-1680(2)	3421(3)	37(1)
C(7)	8118(4)	-537(3)	3490(3)	37(1)
C(11)	5294(4)	-2120(3)	2983(4)	45(1)
C(6)	8898(4)	1419(3)	3166(3)	36(1)
C(16)	1128(4)	-2234(3)	482(4)	44(1)
C(17)	2054(4)	-1263(3)	1543(3)	37(1)
C(5)	10043(4)	1273(4)	2652(3)	44(1)
C(15)	29(4)	-3383(4)	422(4)	55(1)
C(8)	7769(5)	-2437(3)	4082(4)	49(1)
C(3)	11412(5)	3497(4)	3097(4)	60(1)
C(18)	2772(4)	419(3)	812(3)	38(1)
C(2)	10259(5)	3670(3)	3559(4)	52(1)
C(19)	3035(4)	1982(3)	-246(4)	49(1)
C(9)	6853(5)	-3820(3)	3396(4)	57(1)
C(22)	5532(4)	1776(3)	918(4)	48(1)
C(12)	1850(4)	-1474(3)	2595(4)	39(1)
C(4)	11292(5)	2304(4)	2645(4)	59(1)
C(21)	6362(5)	3209(4)	1378(4)	60(1)
C(20)	3944(5)	3394(4)	289(4)	56(1)
C(13)	760(4)	-2660(4)	2506(4)	50(1)
C(1)	8978(4)	2649(3)	3618(3)	40(1)
C(14)	-133(5)	-3600(4)	1450(5)	59(1)
C(10)	4495(5)	-3530(3)	2373(4)	53(1)
H(7)	9265	-347	3752	45

H(11A)4933-16892429H(11B)4939-19213641H(16)1255-2101-211H(5)99574632310H(15)-603-4012-306H(8A)7636-22854842	54 54 52 53 66 59 59 72
H(11B)4939-19213641H(16)1255-2101-211H(5)99574632310H(15)-603-4012-306H(8A)7636-22854842	54 52 53 66 59 59 72
H(16)1255-2101-211H(5)99574632310H(15)-603-4012-306H(8A)7636-22854842	52 53 66 59 59 72
H(5)99574632310H(15)-603-4012-306H(8A)7636-22854842	53 66 59 59 72
H(15) -603 -4012 -306 H(8A) 7636 -2285 4842	66 59 59 72
H(8A) 7636 -2285 4842	59 59 72
	59 72
H(8B) 8958 -2184 4231	72
H(3) 12271 4191 3094	
H(18) 1622 106 389	45
H(2) 10326 4488 3841	62
H(19A) 1850 1742 -385	59
H(19B) 3144 1713 -1002	59
H(9A) 7085 -3984 2675	69
H(9B) 7252 -4310 3867	69
H(22A) 5810 1468 247	57
H(22B) 5947 1429 1535	57
H(4) 12068 2186 2326	71
H(21A) 6204 3505 2108	72
H(21B) 7559 3477 1555	72
H(20A) 3499 3803 -258	67
H(20B) 3763 3667 1015	67
H(13) 634 -2818 3191	60
H(14) -850 -4387 1422	71
H(10A) 3287 -3819 2149	64
H(10B) 4726 -3709 1653	64

Tabelle 74. Anisotrope Auslenkungsparameter ($Å^2 \ge 10^3$) von 15.

	U11	U22	U33	U23	U13	U12
Cd(1)	50(1)	37(1)	69(1)	14(1)	31(1)	13(1)
S(2)	42(1)	53(1)	44(1)	19(1)	19(1)	19(1)
S(1)	61(1)	33(1)	52(1)	10(1)	21(1)	13(1)
O(2)	48(2)	55(2)	66(2)	37(2)	10(2)	7(1)
N(1)	33(2)	28(2)	32(2)	7(1)	10(1)	9(1)
O(1)	59(2)	41(2)	74(2)	25(2)	20(2)	11(1)
N(2)	36(2)	34(2)	38(2)	11(2)	15(2)	10(1)
N(4)	33(2)	41(2)	44(2)	21(2)	11(2)	13(1)
N(3)	33(2)	30(2)	44(2)	11(2)	10(2)	12(1)
C(7)	30(2)	38(2)	33(2)	6(2)	6(2)	9(2)
C(11)	41(2)	36(2)	54(3)	12(2)	16(2)	13(2)
C(6)	31(2)	34(2)	31(2)	9(2)	3(2)	6(2)
C(16)	37(2)	41(2)	47(3)	10(2)	14(2)	14(2)
C(17)	30(2)	34(2)	47(3)	14(2)	14(2)	11(2)
C(5)	42(2)	45(2)	36(3)	7(2)	12(2)	13(2)
C(15)	44(2)	43(2)	68(3)	8(2)	16(2)	13(2)
C(8)	54(2)	44(2)	48(3)	17(2)	10(2)	23(2)
C(3)	44(3)	62(3)	59(3)	28(3)	17(2)	-2(2)
C(18)	35(2)	32(2)	40(3)	5(2)	15(2)	9(2)
C(2)	51(2)	35(2)	50(3)	16(2)	5(2)	3(2)
C(19)	42(2)	58(3)	49(3)	25(2)	13(2)	20(2)
C(9)	61(3)	42(2)	66(3)	21(2)	15(2)	22(2)
C(22)	33(2)	48(2)	61(3)	26(2)	17(2)	8(2)
C(12)	25(2)	41(2)	57(3)	19(2)	16(2)	16(2)
C(4)	50(3)	68(3)	57(3)	21(3)	27(2)	14(2)
C(21)	48(2)	61(3)	67(3)	37(3)	9(2)	16(2)

C(20)	57(3)	52(3)	62(3)	29(2)	17(2)	23(2)
C(13)	44(2)	47(2)	69(3)	29(3)	28(2)	17(2)
C(1)	35(2)	38(2)	37(3)	13(2)	5(2)	8(2)
C(14)	42(2)	35(2)	90(4)	20(3)	21(3)	6(2)
C(10)	45(2)	46(2)	61(3)	20(2)	12(2)	14(2)

8.2.10 Kristallographische Daten von 16

Summenformel	$C_{22}H_{26}HgN_4S_2$
Molekulargewicht / [g/mol]	611,18
Kristallfarbe	farblos
Kristallform	Würfel
Messgerät	STOE IPDS I
Messtemperatur / K	293(2)
Wellenlänge / Å	0,71073
Kristallsystem	Triklin
Raumgruppe	P -1
Zellparameter a / Å	8,7591(12)
b / Å	12,4477(18)
c / Å	12,4037(18)
α/°	118,980(10)
β / °	92,732(11)
γ/°	103,980(11)
Volumen / Å ³	1126,2(3)
Z	2
Dichte (berechnet) / $[g/cm^3]$	1,802
Absorptionskoeffizient / mm ⁻¹	7,035
F(000)	596
Messbereich $2\theta_{min/max}$ / °	1,91 - 29,67
h_{min}/h_{max} , $k_{min}/k_{max} l_{min}/l_{max}$	-12 / 12, -17 / 17, -17 / 17
gesamte Reflexe	22052
unabhängige Reflexe	6234
beobachtete Reflexe	
Absorptionskorrektur	Numerisch
Restraints	1
Anzahl Parameter	257
S _{alle}	1,008
R _{int}	0,0857
R1 (beob./alle)	0,0402 / 0,0855
wR2 (beob./alle)	0,0846 / 0,1058
Extinktionskoeffizient	0,0074(6)
$\Delta \rho_{min/max} / e \text{ Å}^{-3}$	1,314 / -2,516

 Tabelle 75. Kristallographische Daten von 16.

Tabelle 76. Atomkoordinaten ($(x 10^4)$) und isotroi	ne Auslenkun	gsnarameter ($(Å^2 \times 10^3)$) von 16
Tabelle / 0. Atolikoolullatell	A IU) unu isouoj	Je Austelikuli	gsparameter	AAIU) von 10 .

	Х	у	Z	U(eq)
C(1)	7038(7)	1369(6)	4218(6)	49(1)
C(12)	3106(7)	3526(6)	2093(7)	51(2)
C(2)	7436(9)	368(7)	4284(8)	64(2)
C(13)	3146(8)	4441(8)	1743(8)	61(2)
C(3)	8614(10)	-110(8)	3690(9)	75(2)
C(14)	3207(10)	4147(9)	525(9)	75(2)
C(4)	9411(10)	387(8)	3023(9)	72(2)
C(15)	3246(11)	2941(9)	-373(9)	79(2)
C(5)	9009(8)	1339(7)	2918(7)	58(2)
C(16)	3219(10)	2026(8)	-34(8)	69(2)
C(6)	7830(7)	1866(6)	3532(6)	46(1)

C(17)	3130(7)	2274(7)	1180(7)	52(2)
C(7)	8629(6)	3728(6)	3461(6)	47(1)
C(18)	2360(8)	185(7)	759(7)	$\frac{4}{(1)}$
C(8)	9882(8)	5648(7)	3339(8)	61(2)
C(19)	1357(16)	-2132(9)	35(11)	112(3)
C(9)	9197(10)	6604(11)	3357(16)	112(5) 120(5)
C(20)	1589(16)	-2815(9)	670(11)	120(3) 112(3)
C(20)	7504(9)	6013(0)	2827(11)	83(3)
C(21)	2925(15)	-2018(10)	1730(11)	105(3)
C(21)	7005(7)	-2018(10) 4832(7)	2026(7)	55(2)
C(11)	7003(7)	-608(8)	1920(7)	$\frac{33(2)}{71(2)}$
$\mathcal{C}(22)$ $\mathcal{N}(1)$	7430(6)	-0.98(8)	3422(5)	71(2)
N(1) N(2)	7430(0)	2830(3)	15422(5)	43(1) 53(1)
N(2)	3178(0) 8506(6)	1385(0)	1340(3)	35(1)
N(3) N(4)	2353(7)	707(6)	918(6)	40(1)
$\mathbf{S}(1)$	2333(7)	-797(0) 1088(2)	5115(0)	58(1)
S(1)	3028(2)	1900(2)	3113(2)	53(1)
S(2)	3027(2)	3990(2)	3071(2)	53(1)
H(2)	4038(1)	2099(1)	4003(1)	32(1) 77
$\Pi(2)$ $\Pi(12)$	2122	27 5261	4732	77
H(13)	8870	770	2340	/4 80
H(3) H(14)	3221	-776	307	00
H(14)	10223	4700	2643	90 87
H(15)	3200	78	1104	0/
H(13)	0523	1641	-1194	94 70
H(16)	3323	1041	630	70 83
H(10)	9656	2607	-039	56
H(18)	1733	3097	3040	30 72
$\Pi(10)$ $\Pi(2\Lambda)$	1/55	5	30 4007	72
П(0А) Ц(9Д)	10073	5203	4097	73
П(0D) Ц(10A)	10385	5295 2191	2013	125
H(19R)	1714	-2181	-114	135
H(0A)	0357	-24/3	-702	135
$H(0\mathbf{R})$	9337	6051	4214	144
H(3D)	1802	3607	2873	144
H(20R)	621	-3007	063	135
H(10A)	7303	-3037	903 1056	100
H(10R)	6000	5780	2280	100
$\Pi(10D)$ $\Pi(21A)$	3840	2240	1520	100
H(21R)	2640	-2041	1559 7464	120
H(11A)	6361	-2041	2404	66
п(11А) П(11Р)	6201	4900	2121	66
П(11D) П(22A)	0391 4471	4091	2131	00 85
п(22А) ц(22Р)	44/1	-3/1	2007	03 85
п(22В)	30/0	-134	2112	00
	.		. 0 2	1 . 3

Tabelle 77. Anisotro	pe Auslenkungsparame	eter (Å ² x 10^3) von 16 .

	U11	U22	U33	U23	U13	U12
C(1)	49(3)	40(3)	52(4)	24(3)	-5(3)	3(3)
C(12)	39(3)	50(4)	58(4)	26(3)	0(3)	10(3)
C(2)	63(4)	48(4)	83(6)	38(4)	1(4)	12(3)
C(13)	52(3)	58(4)	69(5)	30(4)	3(3)	16(3)
C(3)	85(5)	51(4)	92(6)	37(5)	6(5)	27(4)
C(14)	77(5)	72(6)	88(7)	52(5)	9(5)	20(4)
C(4)	77(5)	56(5)	83(6)	29(4)	14(4)	34(4)
Anhang

C(15)	100(6)	78(6)	66(5)	45(5)	11(5)	22(5)
C(5)	62(4)	47(4)	58(4)	23(3)	8(3)	15(3)
C(16)	81(5)	60(5)	59(5)	27(4)	8(4)	16(4)
C(6)	45(3)	40(3)	48(4)	22(3)	0(3)	9(2)
C(17)	45(3)	53(4)	54(4)	28(3)	3(3)	10(3)
C(7)	34(3)	51(4)	60(4)	31(3)	8(3)	13(3)
C(18)	59(4)	56(4)	57(4)	25(4)	0(3)	16(3)
C(8)	45(3)	58(4)	84(6)	45(4)	4(3)	4(3)
C(19)	151(7)	52(4)	96(6)	30(4)	-36(5)	-4(4)
C(9)	60(5)	97(8)	235(16)	118(10)	0(7)	6(5)
C(20)	151(7)	52(4)	96(6)	30(4)	-36(5)	-4(4)
C(10)	67(5)	89(6)	130(9)	81(7)	23(5)	31(5)
C(21)	139(9)	71(7)	103(8)	52(6)	-7(7)	17(6)
C(11)	44(3)	61(4)	71(5)	42(4)	11(3)	16(3)
C(22)	71(4)	60(5)	71(5)	29(4)	2(4)	19(4)
N(1)	44(2)	44(3)	51(3)	28(3)	5(2)	12(2)
N(2)	54(3)	52(3)	52(3)	26(3)	5(3)	16(3)
N(3)	41(2)	47(3)	54(3)	29(3)	5(2)	11(2)
N(4)	68(3)	46(3)	57(4)	20(3)	1(3)	15(3)
S(1)	61(1)	64(1)	62(1)	43(1)	16(1)	18(1)
S(2)	43(1)	55(1)	58(1)	25(1)	10(1)	20(1)
Hg(1)	49(1)	55(1)	58(1)	33(1)	14(1)	20(1)

8.2.11 Kristallographische Daten von 17

Tabelle 78. Kristallographische Daten von 1	17.
--	-----

Summenformel	$C_{24}H_{30}HgN_4S_2$	
Molekulargewicht / [g/mol]	639,23	
Kristallfarbe	farblos	
Kristallform	Würfel	
Messgerät	STOE IPDS I	
Messtemperatur / K	293(2)	
Wellenlänge / Å	0,71073	
Kristallsystem	Triklin	
Raumgruppe	P -1	
Zellparameter a / Å	8,9026(13)	
b / Å	11,4859(16)	
c / Å	12,9987(18)	
α/°	102,672(16)	
β/°	103,603(17)	
γ / °	106,354(17)	
Volumen / Å ³	1180,1(3)	
Ζ	2	
Dichte (berechnet) / $[g/cm^3]$	1,799	
Absorptionskoeffizient / mm ⁻¹	6,718	
F(000)	628	
Messbereich $2\theta_{min/max}$ / °	2,51 - 28,11	
h_{min} / h_{max} , $k_{min} / k_{max} l_{min} / l_{max}$	-11 / 11, -15 / 15, -15 / 15	
gesamte Reflexe	14192	
unabhängige Reflexe	5259	
beobachtete Reflexe	3532	
Absorptionskorrektur	Numerisch	
Restraints	0	
Anzahl Parameter	281	
S _{alle}	0,871	
R _{int}	0,0639	
R1 (beob./alle)	0,0353 / 0,0698	

wR2 (beob./alle)	0,0547 / 0,0615
Extinktionskoeffizient	0,00032(19)
$\Delta \rho_{min/max} / e Å^{-3}$	0,969 / -1,440

	Х	у	Z	U(eq)
Hg(1)	4721(1)	3970(1)	1215(1)	39(1)
S(2)	7131(2)	5363(1)	1073(1)	38(1)
S(1)	2619(2)	1979(1)	745(1)	46(1)
C(23)	3774(8)	1959(7)	3730(7)	65(2)
N(1)	2362(5)	4637(4)	1759(4)	30(1)
N(3)	2664(5)	6623(3)	1460(4)	33(1)
N(2)	6834(5)	5184(4)	3387(4)	35(1)
C(15)	10015(7)	8665(6)	3395(7)	58(2)
C(6)	1210(6)	3569(4)	1841(5)	31(1)
C(21)	6235(9)	1968(8)	5103(8)	87(3)
C(8)	1872(7)	7240(5)	727(5)	40(1)
C(5)	39(7)	3691(5)	2363(5)	45(2)
C(18)	7970(6)	6335(5)	3391(5)	36(1)
C(11)	5202(7)	8506(5)	2259(6)	48(2)
C(4)	-1110(7)	2650(6)	2447(6)	55(2)
C(20)	6976(8)	3332(6)	5341(6)	63(2)
C(1)	1242(6)	2321(5)	1429(5)	37(1)
N(4)	6326(5)	3763(4)	4403(4)	$\frac{37(1)}{44(1)}$
C(14)	9083(6)	7713(5)	2395(6)	43(2)
C(19)	7297(7)	4704(5)	4156(5)	43(2)
C(7)	1771(6)	5/63(5)	1450(3)	$\frac{42(2)}{33(1)}$
C(16)	0034(7)	8463(5)	130(7)	55(2)
C(10) C(13)	8094(7)	6530(5)	+390(7) 2384(5)	33(2) 34(1)
C(13)	-1074(8)	1456(6)	2304(5) 2048(6)	54(1) 61(2)
C(2)	-1074(0) 85(7)	1296(5)	1548(5)	46(2)
C(2)	4370(8)	1290(3) 1518(7)	1340(3)	40(2)
C(22) C(17)	4370(8) 8002(7)	7305(5)	4/1/(7)	$\frac{09(2)}{44(2)}$
C(24)	4518(7)	3336(6)	3080(6)	$\frac{44(2)}{56(2)}$
C(24) C(12)	4318(7)	7068(5)	1808(5)	30(2)
C(12)	2607(7)	7008(<i>3</i>) 8684(5)	1222(6)	$\frac{39(1)}{48(2)}$
C(10)	2007(7)	0134(5)	1222(0)	40(2)
U(10)	4403(7)	154(5)	2105	31(2) 77
H(23D) H(23A)	4030	1340	2516	77
$\Pi(25A)$ $\Pi(15)$	2382	0444	3310	60
$\Pi(13)$ $\Pi(21A)$	6611	9444 1729	5592	104
$\Pi(21A)$ $\Pi(21D)$	6507	1/30	3707 4521	104
$\Pi(21D)$	607	1338	4331	104
П(0А) Ц(0Д)	2022	6003	621	48
П(0D) Ц(5)	2022	4500	0	40 54
$\Pi(3)$ $\Pi(11A)$	29 6295	4300	2003	59
$\Pi(11A)$	5012	0772	2390	50
$\Pi(IID)$	1004	0/0/	2902	58
U(204)	-1904	2100	2//4 5500	74
п(20A) П(20D)	8102	3304 2762	5002	/0
п(20В) П(14)	0/04	3/03	3992 1727	/0
П(14) П(10)	9122	/808	1/2/	52
П(19) Ц(7)	8408	5043	45/8	5U 20
П(/) Ц(10)	629 10564	5230	1200	59 (5
H(16)	10564	9095	5067	65
H(3)	-1832	/54	2115	/4

Tabelle 79. Atomkoordinaten ($(x 10^4)$) und isotro	ne Auslenkun	gsnarameter	$(Å^2 \times 10^3)$) von 17 .
abene 77. Atomikoorumaten	A IU	j ullu isouo	pe Ausielikuli	gsparameter	(A AIV	/ von 1/.

H(2)	97	480	1280	55
H(22B)	3992	1860	5317	83
H(22A)	3919	595	4506	83
H(17)	8827	7170	5048	52
H(24B)	4125	3755	4547	67
H(24A)	4179	3577	3326	67
H(12B)	4813	6777	1179	46
H(12A)	4857	6706	2377	46
H(9A)	2120	9074	707	58
H(9B)	2360	8941	1907	58
H(10A)	4933	10053	1779	61
H(10B)	4714	8907	769	61

Tabelle 80.	Anisotrope A	uslenkungspar	ameter (Å ² x	(10^3) von 17 .
-------------	--------------	---------------	--------------------------	--------------------------

	U11	U22	U33	U23	U13	U12
Hg(1)	37(1)	30(1)	47(1)	11(1)	14(1)	7(1)
S(2)	31(1)	42(1)	44(1)	15(1)	15(1)	12(1)
S(1)	48(1)	24(1)	58(1)	9(1)	16(1)	5(1)
C(23)	47(4)	65(5)	68(6)	34(4)	-3(4)	5(3)
N(1)	29(2)	23(2)	35(3)	8(2)	6(2)	8(2)
N(3)	27(2)	18(2)	45(3)	9(2)	2(2)	5(2)
N(2)	28(2)	35(2)	36(3)	13(2)	6(2)	5(2)
C(15)	33(3)	35(3)	94(7)	16(4)	17(4)	0(3)
C(6)	25(3)	29(3)	34(4)	13(2)	3(2)	5(2)
C(21)	56(4)	96(6)	127(8)	80(6)	17(5)	29(4)
C(8)	39(3)	33(3)	45(4)	12(3)	4(3)	13(2)
C(5)	36(3)	40(3)	51(5)	10(3)	11(3)	6(3)
C(18)	28(3)	30(3)	44(4)	8(3)	7(3)	10(2)
C(11)	27(3)	41(3)	70(5)	16(3)	11(3)	7(2)
C(4)	37(3)	59(4)	71(5)	24(4)	24(3)	10(3)
C(20)	48(4)	71(5)	61(5)	36(4)	-5(3)	12(3)
C(1)	29(3)	34(3)	41(4)	20(3)	-2(2)	2(2)
N(4)	30(2)	42(3)	55(4)	27(2)	2(2)	6(2)
C(14)	27(3)	40(3)	63(5)	18(3)	18(3)	5(2)
C(19)	31(3)	41(3)	47(4)	12(3)	7(3)	10(3)
C(7)	29(3)	29(3)	33(4)	5(2)	5(2)	7(2)
C(16)	36(3)	36(3)	69(6)	-7(3)	3(3)	9(3)
C(13)	21(3)	32(3)	51(4)	14(3)	12(3)	10(2)
C(3)	42(4)	57(4)	87(6)	40(4)	21(4)	6(3)
C(2)	36(3)	30(3)	59(5)	18(3)	3(3)	0(2)
C(22)	48(4)	66(4)	94(6)	54(4)	6(4)	11(3)
C(17)	39(3)	44(3)	41(4)	8(3)	11(3)	11(3)
C(24)	36(3)	57(4)	73(5)	35(4)	5(3)	13(3)
C(12)	32(3)	27(3)	53(4)	11(3)	10(3)	10(2)
C(9)	43(3)	33(3)	70(5)	20(3)	11(3)	18(3)
C(10)	48(4)	34(3)	76(5)	23(3)	25(3)	11(3)

8.2.12 Kristallographische Daten von 18

Tabelle 81.	Kristal	lograph	nische	Daten	von 1	18.
-------------	---------	---------	--------	-------	-------	-----

Summenformel	$C_{22}H_{26}HgN_4O_2S_2$
Molekulargewicht / [g/mol]	643.18
Kristallfarbe	Farblos
Kristallform	Würfel

Messgerät	STOE IPDS I		
Messtemperatur / K	293(2)		
Wellenlänge / Å	0 71073		
Kristallsystem	Triklin		
Raumgruppe	P -1		
Zellparameter a / Å	8 9909(14)		
b / Å	11 7258(18)		
c / Å	12 4602(17)		
α / \circ	101 846(17)		
β/°	105 267(17)		
γ/°	108 860(17)		
Volumen / $Å^3$	1136.9(3)		
Z	2		
$\overline{\text{Dichte}}$ (berechnet) / [g/cm ³]	1.879		
Absorptionskoeffizient / mm ⁻¹	6.980		
F(000)	628		
Messbereich $2\theta_{min/max} / \circ$	2.52 - 28.15		
h_{min}/h_{max} , $k_{min}/k_{max} l_{min}/l_{max}$	-11 / 11, -15 / 15, -16 / 16		
gesamte Reflexe	13694		
unabhängige Reflexe	5071		
beobachtete Reflexe			
Absorptionskorrektur	Numerisch		
Restraints	0		
Anzahl Parameter	280		
S_{alle}	0.889		
R _{int}	0.066		
R1 (beob./alle)	0.043 / 0.077		
wR2 (beob./alle)	0.087 / 0.097		
Extinktionskoeffizient	0		
$\Delta \rho_{min/max} / e Å^{-3}$	1.800 / -1.649		

	Х	у	Z	U(eq)
Hg(1)	14625(1)	3957(1)	1240(1)	41(1)
S(2)	17135(2)	5333(2)	1148(2)	41(1)
S(1)	12338(3)	2005(2)	704(2)	47(1)
C(21)	13677(10)	1781(7)	3604(8)	45(2)
O(2)	14261(6)	1188(5)	4398(5)	54(2)
C(14)	20213(9)	8638(7)	3681(9)	51(2)
N(4)	16275(7)	3631(5)	4524(6)	35(1)
C(4)	8625(10)	2712(8)	2344(8)	52(2)
O(1)	14945(7)	9199(5)	1903(6)	55(2)
C(20)	16035(9)	1571(7)	4723(8)	46(2)
N(3)	12894(7)	6671(5)	1555(5)	35(1)
C(18)	17293(8)	4606(6)	4305(6)	31(2)
C(9)	13174(11)	8799(7)	1570(9)	53(2)
N(2)	16817(7)	5132(5)	3547(5)	34(1)
C(2)	9721(9)	1348(6)	1449(7)	48(2)
N(1)	12372(7)	4666(5)	1797(5)	34(1)
C(22)	14470(9)	3208(7)	4101(8)	42(2)
C(17)	18005(8)	6282(6)	3588(6)	32(2)
C(6)	11089(8)	3603(6)	1844(6)	31(2)
C(19)	16925(9)	2997(7)	5299(7)	40(2)
C(8)	12264(10)	7407(7)	888(7)	44(2)
C(15)	20065(9)	8426(7)	4699(8)	51(2)
C(1)	11009(8)	2373(6)	1396(6)	35(2)

Tabelle 82. Atomkoordinaten ($x \ 10^4$) und isotrope Auslenkungsparameter (Å² x 10^3) von **18.**

C(12)	18171(8)	6496(6)	2543(7)	36(2)
C(16)	18968(9)	7262(6)	4659(7)	40(2)
C(13)	19260(9)	7681(7)	2616(8)	47(2)
C(11)	14702(8)	7105(6)	1997(7)	39(2)
C(7)	11871(9)	5510(6)	1491(6)	34(2)
C(5)	9929(9)	3751(7)	2349(7)	42(2)
C(3)	8539(10)	1514(8)	1905(8)	57(2)
C(10)	15519(10)	8532(7)	2616(8)	48(2)
H(21A)	12466	1495	3386	54
H(21B)	13912	1522	2898	54
H(14)	20949	9419	3705	62
H(4)	7816	2830	2636	63
H(20A)	16307	1323	4032	56
H(20B)	16417	1149	5263	56
H(18)	18437	4927	4738	37
H(9A)	12806	9285	1096	64
H(9B)	12890	8968	2269	64
H(2)	9663	530	1168	57
H(22A)	14119	3573	3499	51
H(22B)	14110	3485	4739	51
H(19A)	16750	3238	6034	48
H(19B)	18124	3257	5469	48
H(8A)	11068	7150	731	53
H(8B)	12430	7248	143	53
H(15)	20701	9066	5415	61
H(16)	18867	7127	5351	48
H(13)	19354	7839	1930	57
H(11A)	15085	6903	1352	46
H(11B)	15033	6671	2541	46
H(7)	10719	5298	1206	41
H(5)	10029	4566	2699	51
H(3)	7685	814	1915	68
H(10A)	15273	8716	3329	58
H(10B)	16729	8821	2835	58

	U11	U22	U33	U23	U13	U12
Hg(1)	43(1)	33(1)	45(1)	12(1)	20(1)	9(1)
S(2)	37(1)	50(1)	42(1)	20(1)	21(1)	15(1)
S(1)	55(1)	25(1)	50(1)	5(1)	19(1)	7(1)
C(21)	38(4)	33(4)	52(6)	15(3)	3(4)	10(3)
O(2)	43(3)	42(3)	66(4)	34(3)	10(3)	3(2)
C(14)	34(4)	32(4)	84(7)	20(4)	24(4)	4(3)
N(4)	31(3)	33(3)	43(4)	18(3)	14(3)	9(2)
C(4)	37(4)	64(5)	56(6)	24(4)	25(4)	11(4)
O(1)	56(3)	33(3)	70(4)	25(3)	23(3)	7(2)
C(20)	44(4)	38(4)	55(6)	21(4)	13(4)	13(3)
N(3)	34(3)	24(3)	42(4)	10(2)	10(3)	8(2)
C(18)	33(3)	24(3)	34(4)	7(3)	16(3)	8(3)
C(9)	64(5)	33(4)	66(6)	25(4)	17(5)	22(4)
N(2)	28(3)	28(3)	39(4)	12(2)	12(3)	2(2)
C(2)	47(4)	25(3)	53(5)	14(3)	11(4)	-5(3)
N(1)	31(3)	27(3)	39(4)	8(2)	11(3)	9(2)
C(22)	38(4)	39(4)	55(5)	22(4)	21(4)	13(3)

C(17)	25(3)	31(3)	40(4)	12(3)	16(3)	9(3)
C(6)	27(3)	32(3)	32(4)	11(3)	10(3)	7(3)
C(19)	35(4)	43(4)	41(5)	18(3)	12(4)	12(3)
C(8)	48(4)	41(4)	44(5)	19(3)	10(4)	19(3)
C(15)	34(4)	33(4)	68(6)	2(4)	14(4)	5(3)
C(1)	33(3)	31(3)	30(4)	10(3)	7(3)	2(3)
C(12)	26(3)	33(3)	55(5)	20(3)	20(3)	11(3)
C(16)	34(4)	34(3)	52(5)	11(3)	16(4)	11(3)
C(13)	40(4)	45(4)	69(6)	33(4)	29(4)	16(3)
C(11)	34(4)	33(3)	48(5)	11(3)	16(4)	12(3)
C(7)	32(3)	33(3)	33(4)	7(3)	12(3)	11(3)
C(5)	41(4)	38(4)	38(5)	10(3)	9(4)	8(3)
C(3)	42(4)	53(5)	57(6)	23(4)	16(4)	-5(4)
C(10)	41(4)	36(4)	57(6)	12(4)	15(4)	6(3)

8.2.13 Kristallographische Daten von 19

Tabelle 84. Kristallographisch	e Daten von 19.
Summenformel	C ₂₂ H ₂₆ HgN ₄ O ₂ S ₂
Molekulargewicht / [g/mol]	643,18
Kristallfarbe	farblos
Kristallform	Würfel
Messgerät	STOE IPDS I
Messtemperatur / K	293(2)
Wellenlänge / Å	0,71073
Kristallsystem	Triklin
Raumgruppe	P -1
Zellparameter a / Å	8,9909(14)
b / Å	11,7258(18)
c / Å	12,4602(17)
α/°	101,846(17)
β/°	105,267(17)
γ / °	108,860(17)
Volumen / $Å^3$	1136,9(3)
Ζ	2
Dichte (berechnet) / [g/cm ³]	1,879
Absorptionskoeffizient / mm ⁻¹	6,980
F(000)	628
Messbereich $2\theta_{min/max}$ / °	2,52 - 28,15
h_{min} / h_{max} , $k_{min} / k_{max} l_{min} / l_{max}$	-11 / 11, -15 / 15, -16 / 16
gesamte Reflexe	13694
unabhängige Reflexe	5071
beobachtete Reflexe	3353
Absorptionskorrektur	Numerisch
Restraints	0
Anzahl Parameter	280
S _{alle}	0,889
R _{int}	0,0660
R1 (beob./alle)	0,0430 / 0,0767
wR2 (beob./alle)	0,0867 / 0,0972
Extinktionskoeffizient	0,0000(1)
$\Delta \rho_{\min/max} / e \text{ Å}^{-3}$	1,800 / -1,649

Tabelle 84.	Kristallographische Daten von	19

Tabelle 85. Atomkoordinaten ($x \ 10^4$) und isotrope Auslenkungsparameter (Å² x 10³) von **19.**

x y	Z	U(eq)
-----	---	-------

Hg(1)	14625(1)	3957(1)	1240(1)	41(1)
S(2)	17135(2)	5333(2)	1148(2)	41(1)
S(1)	12338(3)	2005(2)	704(2)	47(1)
C(21)	13677(10)	1781(7)	3604(8)	45(2)
0(2)	14261(6)	1188(5)	4398(5)	54(2)
C(14)	20213(9)	8638(7)	3681(9)	51(2)
N(4)	16275(7)	3631(5)	4524(6)	35(1)
C(4)	8625(10)	2712(8)	2344(8)	52(2)
O(1)	14945(7)	9199(5)	1903(6)	55(2)
C(20)	16035(9)	1571(7)	4723(8)	46(2)
N(3)	12894(7)	6671(5)	1555(5)	35(1)
C(18)	17293(8)	4606(6)	4305(6)	31(2)
C(10)	17293(0) 13174(11)	8799(7)	1570(9)	51(2) 53(2)
N(2)	151/4(11) 16817(7)	5132(5)	3547(5)	33(2) 34(1)
$\Gamma(2)$	0721(0)	1348(6)	1440(7)	$\frac{34(1)}{48(2)}$
$\mathcal{O}(2)$ $\mathcal{N}(1)$	$\frac{3721(3)}{12372(7)}$	1546(0)	1449(7) 1707(5)	48(2) 34(1)
$\Gamma(1)$	12372(7) 14470(0)	4000(3)	$\frac{1}{9}(3)$	34(1)
C(22)	144/0(9) 18005(8)	5208(7)	4101(6)	42(2)
C(17)	10005(8)	0282(0)	5388(0) 1944(6)	32(2)
C(0)	11089(8)	3003(0)	1844(0)	51(2)
C(19)	16925(9)	2997(7)	5299(7)	40(2)
C(8)	12264(10)	/40/(/)	888(7)	44(2)
C(15)	20065(9)	8426(7)	4699(8)	51(2)
C(1)	11009(8)	23/3(6)	1396(6)	35(2)
C(12)	18171(8)	6496(6)	2543(7)	36(2)
C(16)	18968(9)	7262(6)	4659(7)	40(2)
C(13)	19260(9)	7681(7)	2616(8)	47(2)
C(11)	14702(8)	7105(6)	1997(7)	39(2)
C(7)	11871(9)	5510(6)	1491(6)	34(2)
C(5)	9929(9)	3751(7)	2349(7)	42(2)
C(3)	8539(10)	1514(8)	1905(8)	57(2)
C(10)	15519(10)	8532(7)	2616(8)	48(2)
H(21A)	12466	1495	3386	54
H(21B)	13912	1522	2898	54
H(14)	20949	9419	3705	62
H(4)	7816	2830	2636	63
H(20A)	16307	1323	4032	56
H(20B)	16417	1149	5263	56
H(18)	18437	4927	4738	37
H(9A)	12806	9285	1096	64
H(9B)	12890	8968	2269	64
H(2)	9663	530	1168	57
H(22A)	14119	3573	3499	51
H(22B)	14110	3485	4739	51
H(19A)	16750	3238	6034	48
H(19B)	18124	3257	5469	48
H(8A)	11068	7150	731	53
H(8B)	12430	7248	143	53
H(15)	20701	9066	5415	61
H(16)	18867	7127	5351	48
H(13)	19354	7839	1930	57
H(11A)	15085	6903	1352	46
H(11B)	15033	6671	2541	46
H(7)	10719	5298	1206	41
H(5)	10029	4566	2699	51
H(3)	7685	814	1915	68

H(10A)	15273	8716	3329	58
H(10B)	16729	8821	2835	58

	U11	U22	U33	U23	U13	U12
Hg(1)	43(1)	33(1)	45(1)	12(1)	20(1)	9(1)
S(2)	37(1)	50(1)	42(1)	20(1)	21(1)	15(1)
S(1)	55(1)	25(1)	50(1)	5(1)	19(1)	7(1)
C(21)	38(4)	33(4)	52(6)	15(3)	3(4)	10(3)
O(2)	43(3)	42(3)	66(4)	34(3)	10(3)	3(2)
C(14)	34(4)	32(4)	84(7)	20(4)	24(4)	4(3)
N(4)	31(3)	33(3)	43(4)	18(3)	14(3)	9(2)
C(4)	37(4)	64(5)	56(6)	24(4)	25(4)	11(4)
O(1)	56(3)	33(3)	70(4)	25(3)	23(3)	7(2)
C(20)	44(4)	38(4)	55(6)	21(4)	13(4)	13(3)
N(3)	34(3)	24(3)	42(4)	10(2)	10(3)	8(2)
C(18)	33(3)	24(3)	34(4)	7(3)	16(3)	8(3)
C(9)	64(5)	33(4)	66(6)	25(4)	17(5)	22(4)
N(2)	28(3)	28(3)	39(4)	12(2)	12(3)	2(2)
C(2)	47(4)	25(3)	53(5)	14(3)	11(4)	-5(3)
N(1)	31(3)	27(3)	39(4)	8(2)	11(3)	9(2)
C(22)	38(4)	39(4)	55(5)	22(4)	21(4)	13(3)
C(17)	25(3)	31(3)	40(4)	12(3)	16(3)	9(3)
C(6)	27(3)	32(3)	32(4)	11(3)	10(3)	7(3)
C(19)	35(4)	43(4)	41(5)	18(3)	12(4)	12(3)
C(8)	48(4)	41(4)	44(5)	19(3)	10(4)	19(3)
C(15)	34(4)	33(4)	68(6)	2(4)	14(4)	5(3)
C(1)	33(3)	31(3)	30(4)	10(3)	7(3)	2(3)
C(12)	26(3)	33(3)	55(5)	20(3)	20(3)	11(3)
C(16)	34(4)	34(3)	52(5)	11(3)	16(4)	11(3)
C(13)	40(4)	45(4)	69(6)	33(4)	29(4)	16(3)
C(11)	34(4)	33(3)	48(5)	11(3)	16(4)	12(3)
C(7)	32(3)	33(3)	33(4)	7(3)	12(3)	11(3)
C(5)	41(4)	38(4)	38(5)	10(3)	9(4)	8(3)
C(3)	42(4)	53(5)	57(6)	23(4)	16(4)	-5(4)
C(10)	41(4)	36(4)	57(6)	12(4)	15(4)	6(3)

Tabelle 86.	Anisotrope A	Auslenkungsp	arameter (Å	$A^2 x$	10^{3})	von 1	19.
-------------	--------------	--------------	-------------	---------	------------	-------	-----

8.2.14 Kristallographische Daten von 20

_

Summenformel		$C_{42}H_{38}HgN_4S_2$
Molekulargewich	nt / [g/mol]	863,47
Kristallfarbe		farblos
Kristallform		Würfel
Messgerät		STOE IPDS II
Messtemperatur /	′ K	170(2)
Wellenlänge / Å		0,71073
Kristallsystem		Monoklin
Raumgruppe		$P 2_1/c$
Zellparameter	a / Å	23,0204(24)
•	b / Å	11,3312(15)
	c / Å	14,1851(16)
	α/°	90
	β/°	76,462(9)
	γ / °	90

 Tabelle 87. Kristallographische Daten von 20.

Volumen / Å ³	3597,4(7)
Z	4
Dichte (berechnet) / [g/cm ³]	1,594
Absorptionskoeffizient / mm ⁻¹	4,431
F(000)	1720
Messbereich $2\theta_{min/max}$ / °	1,82 - 27,31
h_{min} / h_{max} , k_{min} / k_{max} l_{min} / l_{max}	-29 / 29, -14 / 14, -18 / 18
gesamte Reflexe	27375
unabhängige Reflexe	7818
beobachtete Reflexe	3920
Absorptionskorrektur	Numerisch
Restraints	0
Anzahl Parameter	442
S_{alle}	1,091
R _{int}	0,1345
R1 (beob./alle)	0,0750 / 0,1387
wR2 (beob./alle)	0,1267 / 0,1366
Extinktionskoeffizient	0,0000(1)
$\Delta \rho_{\text{min/max}} / e \text{ Å}^{-3}$	2,774 / -1,740

Tabelle 88. Atomkoordinaten ($(x 10^4)$) und isotro	pe Auslenkun	gsparameter ($(Å^2 \times 10^3)$) von 20 .
rabene oo. monikoorumaten	(AIU	j unu isouo	pe musicinkun	gsparameter	I AIU) von 20 .

	-			\mathbf{I}
	Х	У	Z	U(eq)
Hg(1)	1899(1)	320(1)	6127(1)	43(1)
S(2)	975(1)	48(2)	5749(3)	46(1)
S(1)	2657(2)	711(2)	6945(2)	46(1)
N(1)	2657(5)	-1401(8)	5520(7)	44(2)
C(8)	1626(5)	-2809(9)	5449(9)	43(3)
N(4)	3043(5)	1468(8)	3540(8)	43(3)
N(3)	2132(5)	-2534(8)	4592(8)	46(3)
C(27)	1458(6)	1699(9)	4253(8)	42(3)
C(6)	3207(5)	-1045(9)	5605(9)	41(3)
C(1)	3265(5)	-119(9)	6280(9)	42(3)
N(2)	2043(5)	1443(8)	4380(9)	49(3)
C(3)	4349(5)	-406(12)	5883(9)	54(3)
C(30)	3810(5)	197(11)	2467(9)	46(3)
C(13)	965(10)	-5882(14)	5849(11)	81(6)
C(7)	2599(5)	-1894(9)	4727(9)	38(3)
C(28)	2466(6)	1451(9)	3602(9)	43(3)
C(37)	3576(6)	2834(10)	4433(9)	44(3)
C(2)	3825(5)	165(10)	6411(9)	46(3)
C(36)	3291(6)	1619(10)	4361(10)	49(3)
C(20)	929(7)	-1034(13)	3022(10)	61(4)
C(23)	384(6)	1442(8)	4757(9)	43(3)
C(21)	1414(7)	-1422(11)	3288(9)	55(4)
C(5)	3730(6)	-1568(10)	5112(9)	45(3)
C(29)	3479(6)	1339(11)	2594(10)	51(4)
C(24)	308(6)	2250(10)	4063(10)	49(3)
C(12)	1427(10)	-6476(13)	6075(12)	77(5)
C(18)	625(7)	-3026(15)	2864(9)	63(4)
C(25)	793(6)	2814(10)	3488(9)	49(3)
C(40)	4070(8)	5000(10)	4624(13)	78(5)
C(17)	1125(7)	-3413(11)	3143(10)	56(4)
C(4)	4286(6)	-1276(10)	5240(11)	56(4)
C(33)	4399(8)	-1959(13)	2310(11)	68(4)
C(9)	1558(6)	-4130(10)	5621(9)	45(3)
C(19)	514(7)	-1850(16)	2836(10)	69(4)

C(15)	2093(7)	-2996(11)	3670(10)	54(3)
C(22)	959(5)	1162(9)	4834(8)	39(3)
C(16)	1550(7)	-2625(12)	3346(10)	56(4)
C(14)	1039(6)	-4687(13)	5608(10)	59(3)
C(42)	4063(7)	2925(11)	4816(12)	64(4)
C(34)	4677(8)	-965(16)	2447(13)	84(5)
C(35)	4389(6)	104(12)	2510(12)	73(5)
C(31)	3508(7)	-844(12)	2310(12) 2331(11)	59(4)
C(31)	1967(10)	-5965(13)	6068(13)	78(5)
C(11)	3347(6)	-3903(13) -3838(11)	4132(11)	57(4)
C(38)	3347(0) 4303(7)	4015(12)	4152(11) 4056(12)	$\frac{37(4)}{71(4)}$
C(41)	4303(7) 3812(8)	4013(12) 1032(12)	4950(12) 2251(12)	71(4) 70(4)
C(32)	3580(7)	-1932(12)	2231(12) 4247(11)	63(4)
C(39)	3389(7)	4919(11) 4757(14)	4247(11) 5820(10)	63(4)
C(10)	2057(0)	-4/3/(14)	3820(10)	03(4) 40(2)
U(20)	1330(0)	2300(10)	5018(10)	49(3)
$H(\delta A)$	1249	-2484	5554	52
H(8B)	1702	-2424	6035	52
H(3)	4/32	-193	5972	64
H(13)	599	-6272	5855	97
H(7)	2922	-1795	4177	45
H(28)	2346	1443	3006	51
H(2)	3860	759	6867	55
H(36A)	3599	1004	4343	58
H(36B)	2973	1490	4954	58
H(20)	866	-212	2959	73
H(23)	48	1084	5176	51
H(21)	1681	-856	3446	66
H(5)	3705	-2167	4655	54
H(29A)	3771	1992	2522	62
H(29B)	3264	1418	2069	62
H(24)	-83	2416	3983	58
H(12)	1372	-7286	6246	92
H(18)	357	-3579	2691	75
H(25)	742	3368	3011	58
H(40)	4250	5747	4660	94
H(17)	1185	-4237	3199	68
H(4)	4629	-1680	4882	67
H(33)	4607	-2689	2252	82
H(19)	154	-1582	2690	82
H(15A)	2100	-3869	3702	64
H(15B)	2451	-2743	3178	64
H(14)	723	-4263	5434	71
H(42)	4242	2229	4990	77
H(34)	5080	-996	2503	101
H(35)	4603	800	2585	88
H(31)	3102	-813	2292	70
H(11)	2283	-6406	6223	93
H(38)	3017	3788	3840	68
H(41)	4621	4078	5275	85
H(32)	3612	-2641	2158	84
H(39)	3416	5614	4058	76
H(10)	2408	-4373	5789	75
H(26)	1688	2993	3256	58

Tabelle 89. Anisotrope Auslenkungsparameter ($Å^2 \times 10^3$) von **20**.

Anhang	
•	

	UII	U22	U33	U23	U13	U12
Hg(1)	44(1)	38(1)	47(1)	-1(1)	-12(1)	1(1)
S(2)	42(2)	34(2)	63(2)	7(1)	-16(2)	-6(1)
S(1)	52(2)	42(2)	47(2)	-5(1)	-16(2)	5(1)
N(1)	38(6)	53(6)	40(6)	-3(5)	-12(5)	-3(5)
C(8)	41(7)	46(6)	46(7)	-10(5)	-15(6)	-3(5)
N(4)	45(7)	39(5)	51(7)	5(4)	-23(6)	-5(5)
N(3)	41(6)	49(6)	45(6)	-11(5)	-6(5)	1(5)
C(27)	59(9)	34(5)	38(7)	-5(5)	-22(6)	-1(5)
C(6)	45(8)	34(5)	47(7)	9(5)	-13(6)	3(5)
C(1)	37(6)	36(6)	56(7)	13(5)	-16(5)	-5(5)
N(2)	31(6)	38(5)	79(8)	-8(5)	-17(6)	-7(4)
C(3)	45(7)	57(7)	58(8)	18(8)	-10(6)	-4(7)
C(30)	50(7)	43(6)	52(7)	-15(6)	-28(6)	3(6)
C(13)	124(17)	57(8)	47(9)	-5(7)	10(10)	-20(10)
C(7)	22(6)	41(6)	50(8)	12(5)	-10(5)	4(5)
C(28)	52(9)	38(6)	42(7)	7(5)	-17(7)	-2(5)
C(37)	35(7)	54(7)	41(7)	1(5)	-6(6)	-5(6)
C(2)	57(8)	34(6)	47(7)	6(5)	-12(6)	2(6)
C(36)	31(7)	48(7)	63(9)	-1(6)	-2(7)	7(5)
C(20)	66(10)	64(8)	56(9)	-12(7)	-23(8)	8(8)
C(23)	57(8)	27(5)	42(7)	-4(5)	-10(6)	0(5)
C(21)	76(11)	56(8)	39(8)	-11(6)	-21(7)	-4(7)
C(5)	57(9)	46(6)	35(7)	-1(5)	-20(6)	3(6)
C(29)	51(9)	65(8)	45(8)	8(6)	-24(7)	-4(7)
C(24)	37(7)	50(6)	61(9)	-16(6)	-15(6)	9(6)
C(12)	123(17)	42(8)	64(11)	2(7)	-19(11)	6(9)
C(18)	52(10)	101(12)	34(8)	-20(7)	-10(7)	-19(8)
C(25)	57(9)	50(7)	39(7)	3(6)	-12(7)	6(6)
C(40)	85(12)	42(9)	102(13)	0(7)	-10(10)	-8(7)
C(17)	65(10)	56(7)	45(8)	-18(6)	-7(7)	-11(7)
C(4)	41(8)	43(6)	80(10)	5(7)	-8(7)	11(6)
C(33)	74(12)	57(8)	75(11)	-29(7)	-22(9)	17(8)
C(9)	60(9)	41(6)	36(7)	-1(5)	-16(6)	3(6)
C(19)	54(10)	108(12)	42(8)	-18(8)	-7(7)	7(9)
C(15)	60(9)	52(7)	46(8)	-4(6)	-6(7)	-3(6)
C(22)	51(8)	31(5)	37(7)	0(5)	-17(6)	10(5)
C(16)	76(11)	56(8)	38(8)	-10(6)	-16(7)	1(7)
C(14)	69(9)	42(6)	67(9)	-9(8)	-18(7)	-5(9)
C(42)	55(9)	49(7)	89(12)	-12(7)	-18(8)	-7(6)
C(34)	59(11)	94(11)	96(14)	-20(10)	-11(10)	29(10)
C(35)	31(7)	63(10)	113(13)	-25(8)	10(7)	-1(6)
C(31)	41(8)	65(8)	64(10)	-10(7)	0(7)	-7(7)
C(11)	118(16)	52(8)	70(10)	-28(9)	-36(10)	30(11)
C(38)	54(9)	54(7)	69(10)	2(7)	-30(7)	5(6)
C(41)	57(10)	63(9)	97(13)	-2(8)	-26(9)	-11(7)
C(32)	72(12)	57(8)	80(12)	-13(8)	-18(9)	8(8)
C(39)	63(9)	52(9)	77(10)	-5(6)	-20(8)	9(6)
C(10)	53(9)	61(7)	71(10)	-15(9)	-10(7)	8(8)
C(26)	52(9)	42(7)	52(8)	11(6)	-12(7)	-1(6)

8.2.15 Kristallographische Daten von 21

Summenformel	$C_{30}H_{46}HgN_4S_2$
Molekulargewicht / [g/mol]	727,42
Kristallfarbe	farblos
Kristallform	Würfel
Messgerät	STOE IPDS II
Messtemperatur / K	170(2)
Wellenlänge / Å	0,71073
Kristallsystem	Triklin
Raumgruppe	P -1
Zellparameter a / Å	9,783(5)
b / Å	12,386(5)
c / Å	13,548(5)
α/°	85,806(5)
β/°	80,142(5)
· γ / °	77,708(5)
Volumen / $Å^3$	1579,2(12)
Ζ	2
Dichte (berechnet) / $[g/cm^3]$	1,530
Absorptionskoeffizient / mm ⁻¹	5,030
F(000)	732
Messbereich $2\theta_{min/max}$ / °	2,16 - 27,32
h_{min} / h_{max} , $k_{min} / k_{max} l_{min} / l_{max}$	-12 / 11, -15 / 15, -17 / 17
gesamte Reflexe	19441
unabhängige Reflexe	6991
beobachtete Reflexe	5145
Absorptionskorrektur	Numerisch
Restraints	0
Anzahl Parameter	335
S _{alle}	0,997
R _{int}	0,0496
R1 (beob./alle)	0,0320 / 0,0600
wR2 (beob./alle)	0,0561 / 0,0664
Extinktionskoeffizient	0,0038(2)
$\Delta \rho_{\text{min/max}} / e \text{ Å}^{-3}$	1,367 / -2,964

 Tabelle 90. Kristallographische Daten von 21.

Tabelle 91. Atomkoordinaten ($x \ 10^4$) und isotrope Auslenkungsparameter (Å² x 10³) von **21.**

	X	у	Z	U(eq)
Hg(1)	8162(1)	708(1)	9308(1)	29(1)
S(1)	6456(1)	1710(1)	10519(1)	30(1)
S(2)	10128(1)	-474(1)	8436(1)	34(1)
N(2)	9180(4)	2094(3)	7916(3)	29(1)
N(1)	5908(4)	888(3)	8485(3)	26(1)
N(3)	6725(4)	-286(3)	7135(3)	28(1)
N(4)	7808(4)	3777(3)	8463(3)	31(1)
C(11)	8855(8)	-4206(5)	6159(6)	73(2)
C(2)	3616(5)	2241(4)	10717(3)	29(1)
C(7)	5807(5)	79(4)	7955(3)	28(1)
C(15)	7770(8)	2589(6)	4464(5)	69(2)
C(16)	11012(5)	415(4)	7598(3)	30(1)
C(23)	7746(6)	4797(4)	8960(4)	38(1)
C(25)	8625(5)	3878(4)	10546(4)	38(1)
C(19)	12673(6)	1625(5)	6242(4)	40(1)
C(1)	4845(5)	1754(4)	10082(3)	26(1)
C(6)	4696(5)	1324(4)	9176(3)	25(1)

C(27)	6463(5)	3514(4)	8327(3)	31(1)
C(9)	7879(6)	-2192(4)	6573(4)	39(1)
C(17)	12333(5)	-93(5)	7068(3)	35(1)
C(28)	5933(6)	4073(5)	7390(4)	39(1)
C(20)	11370(5)	2134(4)	6747(3)	35(1)
C(8)	6582(5)	-1262(4)	6650(3)	33(1)
C(14)	8311(6)	1731(5)	5241(4)	53(2)
C(4)	2138(5)	1882(4)	9609(3)	31(1)
C(22)	9046(5)	3101(4)	8188(3)	30(1)
C(3)	2278(5)	2293(4)	10499(3)	29(1)
C(5)	3335(5)	1418(4)	8956(3)	29(1)
C(29)	4557(6)	3764(4)	7245(4)	29(1) 38(1)
C(23)	7761(5)	3704(4)	72+3(+)	30(1) 31(1)
C(12)	10527(5)	350(4)	0029(3)	20(1)
C(21)	10327(3)	1300(4)	7455(5) 10108(4)	29(1)
C(24)	/400(0)	4077(4)	10108(4)	38(1)
C(18)	13148(5)	507(5)	6400(3)	41(1)
C(30)	3996(7)	4327(5)	6319(4)	54(2)
C(26)	8353(7)	3/98(6)	11690(4)	53(2)
C(13)	7220(6)	1124(5)	5795(4)	43(1)
C(10)	7559(7)	-3276(4)	6334(4)	49(2)
H(11A)	8570	-4879	6005	110
H(11B)	9301	-4343	6764	110
H(11C)	9532	-3996	5595	110
H(2)	3708	2546	11320	35
H(7)	5030	-277	8163	34
H(15A)	8542	2945	4135	104
H(15B)	6994	3148	4794	104
H(15C)	7426	2229	3963	104
H(23A)	6987	5378	8736	45
H(23B)	8655	5042	8749	45
H(25A)	9536	4115	10319	45
H(25B)	8714	3135	10286	45
H(19)	13234	2042	5790	48
H(27A)	5740	3750	8919	38
H(27R)	6587	2704	8287	38
$H(9\Delta)$	8625	_1992	6044	30 47
H(0R)	8251	-1772	7216	47 47
$H(\mathbf{JD})$ H(17)	12672	-220 4 964	7210	41
$\Pi(17)$	12072	-004	/1/1	41
$\Pi(28A)$	5779	3833	0/98	47
H(28B)	5//8	4885	/438	47
H(20)	(271	2902	0022 50/7	42
H(8A)	63/1	-1038	5967	39
H(8B)	5/62	-1543	/030	39
H(14A)	9116	1186	4903	63
H(14B)	8676	2103	5734	63
H(4)	1223	1917	9446	38
H(22)	9885	3370	8190	36
H(3)	1463	2607	10955	35
H(5)	3224	1156	8339	34
H(29A)	4718	2953	7190	46
H(29B)	3834	3971	7843	46
H(12A)	8634	-168	6345	37
H(12B)	8010	790	7128	37
H(24A)	7354	5412	10388	46
H(24B)	6562	4424	10317	46
H(18)	14035	147	6049	49

H(30A)	3112	4101	6262	81
H(30B)	4698	4111	5722	81
H(30C)	3815	5131	6375	81
H(26A)	9138	3274	11930	80
H(26B)	7467	3542	11920	80
H(26C)	8280	4528	11953	80
H(13A)	6922	690	5315	51
H(13B)	6377	1668	6085	51
H(10A)	7100	-3161	5727	59
H(10B)	6874	-3504	6894	59

Tabelle 92.	Anisotrope Auslenkungsparameter ($Å^2 \ge 10^3$) von 21 .

	U11	U22	U33	U23	U13	U12
Hg(1)	26(1)	29(1)	31(1)	2(1)	-5(1)	-7(1)
S(1)	29(1)	35(1)	26(1)	-2(1)	-4(1)	-10(1)
S(2)	30(1)	29(1)	41(1)	1(1)	-4(1)	-2(1)
N(2)	25(2)	27(2)	34(2)	-2(2)	-7(2)	-5(2)
N(1)	29(2)	26(2)	23(2)	-3(2)	1(2)	-6(2)
N(3)	30(2)	32(2)	22(2)	-4(2)	0(2)	-8(2)
N(4)	32(2)	23(2)	37(2)	0(2)	-6(2)	-5(2)
C(11)	83(5)	35(3)	86(5)	-14(3)	25(4)	-3(3)
C(2)	38(3)	25(2)	23(2)	-1(2)	-5(2)	-4(2)
C(7)	28(2)	30(3)	25(2)	4(2)	-2(2)	-7(2)
C(15)	102(6)	60(4)	53(4)	19(3)	-16(4)	-35(4)
C(16)	26(2)	36(3)	28(2)	-5(2)	-7(2)	-7(2)
C(23)	42(3)	28(3)	44(3)	-2(2)	-9(2)	-9(2)
C(25)	36(3)	38(3)	39(3)	-4(2)	-6(2)	-7(2)
C(19)	34(3)	56(4)	29(2)	-3(2)	-2(2)	-12(3)
C(1)	28(2)	22(2)	24(2)	4(2)	-1(2)	-5(2)
C(6)	27(2)	24(2)	23(2)	-1(2)	2(2)	-7(2)
C(27)	30(3)	24(2)	38(2)	3(2)	-4(2)	-4(2)
C(9)	41(3)	40(3)	33(3)	-9(2)	2(2)	-6(3)
C(17)	30(3)	43(3)	29(2)	-12(2)	-7(2)	-2(2)
C(28)	40(3)	38(3)	40(3)	6(2)	-8(2)	-13(2)
C(20)	38(3)	40(3)	29(2)	2(2)	-7(2)	-13(2)
C(8)	38(3)	31(3)	30(2)	-5(2)	-3(2)	-10(2)
C(14)	51(4)	55(4)	46(3)	17(3)	3(3)	-11(3)
C(4)	25(3)	34(3)	34(2)	2(2)	-5(2)	-5(2)
C(22)	30(3)	29(3)	31(2)	5(2)	-6(2)	-9(2)
C(3)	27(2)	28(2)	28(2)	1(2)	0(2)	-1(2)
C(5)	33(3)	26(2)	28(2)	-1(2)	-4(2)	-9(2)
C(29)	40(3)	36(3)	38(3)	1(2)	-10(2)	-6(2)
C(12)	28(2)	37(3)	27(2)	-1(2)	1(2)	-9(2)
C(21)	28(2)	33(3)	27(2)	-4(2)	-6(2)	-7(2)
C(24)	39(3)	30(3)	43(3)	-1(2)	-7(2)	-2(2)
C(18)	27(3)	64(4)	29(2)	-15(2)	0(2)	-5(3)
C(30)	60(4)	56(4)	46(3)	8(3)	-18(3)	-9(3)
C(26)	52(4)	59(4)	41(3)	-7(3)	-9(3)	8(3)
C(13)	53(3)	45(3)	36(3)	7(2)	-13(2)	-19(3)
C(10)	67(4)	32(3)	44(3)	-3(2)	3(3)	-7(3)

8.2.16 Kristallographische Daten von 23

Summenformel	$C_{24}H_{30}HgN_4O_2$
Molekulargewicht / [g/mol]	607,11
Kristallfarbe	gelb
Kristallform	Nadel
Messgerät	STOE IPDS I
Messtemperatur / K	293(2)
Wellenlänge / Å	0,71073
Kristallsystem	Monoklin
Raumgruppe	P -1
Zellparameter a / Å	9,366(13)
b / Å	10,679(14)
c / Å	12,916(17)
α / °	104,696(15)
β/°	104,404(16)
γ / °	106,102(16)
Volumen / $Å^3$	1128(3)
Ζ	2
Dichte (berechnet) / $[g/cm^3]$	1,788
Absorptionskoeffizient / mm ⁻¹	6,853
F(000)	596
Messbereich $2\theta_{min/max}$ / °	2,22 - 28,11
h_{min} / h_{max} , $k_{min} / k_{max} l_{min} / l_{max}$	-12 / 12, -14 / 14, -17 / 17
gesamte Reflexe	12939
unabhängige Reflexe	4847
beobachtete Reflexe	2950
Absorptionskorrektur	Numerisch
Restraints	0
Anzahl Parameter	280
Salle	0,808
R _{int}	0,0964
R1 (beob./alle)	0,0396 / 0,0848
wR2 (beob./alle)	0,0634 / 0,0716
Extinktionskoeffizient	0,0000(1)
$\Delta \rho_{\rm min/max} / e {\rm \AA}^{-3}$	0,655/-1,108

 Tabelle 93. Kristallographische Daten von 23.

Tabelle 94. Atomkoordinaten ($x \ 10^4$) und isotrope Auslenkungsparameter (Å² x 10³) von 23.

	Х	у	Z	U(eq)
Hg(1)	4643(1)	4092(1)	1110(1)	47(1)
N(2)	6829(5)	5120(5)	3077(4)	41(1)
O(1)	2707(5)	2323(4)	787(3)	42(1)
O(2)	6700(5)	5290(5)	943(4)	50(1)
N(1)	2657(5)	4968(5)	1615(4)	37(1)
C(24)	4598(7)	3141(7)	3553(6)	51(2)
C(20)	6947(7)	2881(7)	4770(5)	51(2)
N(4)	6337(6)	3695(6)	4144(4)	46(1)
C(19)	7266(7)	4624(7)	3856(5)	40(2)
C(11)	5739(7)	9046(7)	2327(6)	49(2)
C(7)	2219(7)	5901(6)	1317(5)	38(1)
C(18)	7947(7)	6218(7)	2994(5)	41(2)
C(12)	4896(7)	7485(6)	1783(5)	45(2)
C(22)	4307(8)	1824(8)	4880(6)	61(2)
N(3)	3180(5)	7103(5)	1362(4)	40(1)
C(17)	9101(7)	7313(8)	3921(6)	53(2)
C(14)	8900(8)	7398(9)	1798(7)	59(2)

C(13)	7825(7)	6294(7)	1887(6)	44(2)
C(15)	10057(8)	8433(9)	2729(7)	64(2)
C(6)	1550(6)	3838(6)	1693(5)	36(1)
C(9)	3453(7)	9385(7)	1170(6)	53(2)
C(10)	5220(7)	9783(7)	1527(6)	55(2)
C(16)	10169(8)	8427(8)	3819(7)	63(2)
C(23)	3723(7)	2743(8)	4316(6)	54(2)
C(21)	6070(8)	2531(8)	5532(6)	60(2)
C(1)	1642(7)	2522(6)	1284(5)	36(1)
C(2)	589(7)	1396(6)	1397(5)	45(2)
C(5)	436(7)	3975(7)	2218(5)	47(2)
C(3)	-511(7)	1553(8)	1895(6)	54(2)
C(4)	-595(7)	2821(8)	2302(6)	57(2)
C(8)	2622(7)	7838(7)	627(6)	51(2)
H(24B)	4310	2333	2884	62
H(24A)	4289	3839	3302	62
H(20A)	8054	3403	5222	61
H(20B)	6876	2028	4231	61
H(19)	8345	4950	4258	47
H(11A)	6872	9269	2532	59
H(11B)	5516	9373	3019	59
H(7)	1137	5718	1047	46
H(12B)	5239	7140	1155	54
H(12A)	5178	7052	2338	54
H(22B)	4097	944	4309	73
H(22A)	3752	1640	5399	73
H(17)	9163	7300	4648	63
H(14)	8837	7439	1078	71
H(15)	10779	9153	2633	77
H(9B)	3167	9717	1832	64
H(9A)	3112	9825	634	64
H(10B)	5734	10781	1908	66
H(10A)	5523	9522	861	66
H(16)	10935	9146	4459	76
H(23A)	2606	2263	3871	65
H(23B)	3837	3579	4898	65
H(21B)	6266	3373	6142	72
H(21A)	6450	1920	5872	72
H(2)	634	519	1128	54
H(5)	387	4846	2512	57
H(3)	-1206	784	1955	65
H(4)	-1346	2918	2638	68
H(8A)	1493	7610	460	62
H(8B)	2797	7525	-88	62
· /				

Tabelle 95. Anisotrope Auslenkungsparameter ($Å^2 \ge 10^3$) von **23**.

	U11	U22	U33	U23	U13	U12
Hg(1)	49(1)	49(1)	50(1)	23(1)	21(1)	18(1)
N(2)	38(3)	43(3)	47(3)	20(3)	16(2)	19(2)
O(1)	55(3)	32(2)	45(2)	15(2)	23(2)	20(2)
O(2)	53(3)	67(3)	48(3)	33(2)	35(2)	23(2)
N(1)	33(3)	32(3)	40(3)	12(2)	6(2)	12(2)
C(24)	45(4)	45(4)	50(4)	17(3)	4(3)	5(3)
C(20)	51(4)	54(4)	51(4)	28(3)	12(3)	21(3)
N(4)	44(3)	59(3)	45(3)	27(3)	12(3)	28(3)

Anhang

C(19)	37(3)	49(4)	39(4)	16(3)	17(3)	21(3)	
C(11)	37(3)	47(4)	57(4)	24(3)	9(3)	5(3)	
C(7)	36(3)	35(3)	33(3)	5(3)	3(3)	12(3)	
C(18)	31(3)	51(4)	51(4)	26(3)	16(3)	22(3)	
C(12)	40(3)	44(4)	52(4)	19(3)	13(3)	17(3)	
C(22)	64(5)	60(5)	52(4)	29(4)	22(4)	2(4)	
N(3)	32(3)	38(3)	43(3)	14(2)	3(2)	14(2)	
C(17)	41(4)	71(5)	60(4)	35(4)	22(4)	26(4)	
C(14)	51(4)	80(5)	67(5)	45(4)	28(4)	31(4)	
C(13)	33(3)	48(4)	66(5)	33(4)	27(3)	16(3)	
C(15)	49(4)	77(5)	97(6)	62(5)	38(4)	26(4)	
C(6)	28(3)	32(3)	37(3)	9(3)	1(3)	6(2)	
C(9)	55(4)	45(4)	73(5)	35(4)	20(4)	25(3)	
C(10)	57(4)	42(4)	73(5)	34(3)	25(4)	15(3)	
C(16)	35(4)	65(5)	77(5)	27(4)	11(4)	6(3)	
C(23)	37(4)	65(5)	53(4)	23(4)	11(3)	10(3)	
C(21)	70(5)	63(5)	45(4)	31(4)	5(4)	24(4)	
C(1)	35(3)	39(3)	31(3)	13(3)	5(3)	12(3)	
C(2)	41(3)	36(3)	50(4)	17(3)	5(3)	8(3)	
C(5)	41(4)	49(4)	45(4)	5(3)	15(3)	16(3)	
C(3)	35(4)	60(5)	63(5)	30(4)	14(3)	8(3)	
C(4)	46(4)	68(5)	68(5)	28(4)	31(4)	23(4)	
C(8)	46(4)	51(4)	58(4)	27(3)	6(3)	21(3)	

8.2.17 Kristallographische Daten von 28

Tabelle 96. Kris	stallographische	Daten	von 28
------------------	------------------	-------	--------

$C_{22}H_{22}Cu_2N_2O_8S_2$
633,60
grün
Plättchen
STOE IPDS I
293(2)
0,71073
Triklin
P -1
7,1850(10)
8,1918(12)
11,8265(16)
106,516(16)
106,429(16)
97,344(17)
623,49(15)
1
1,688
1,923
322
2,70 - 28,12
-8 / 8, -10 / 10, -15 / 15
7525
2784
2094
Numerisch
0
164
0,964
0,0325

R1 (beob./alle)	0,0309 / 0,0495
wR2 (beob./alle)	0,0691 / 0,0745
Extinktionskoeffizient	0,006(2)
$\Delta \rho_{min/max} / e Å^{-3}$	0,409 / -0,439

Tabelle 97. Atomkoordinaten ($x \ 10^4$) und isotrope Auslenkungsparameter (Å² x 10³) von **28.**

	х	у	Z	U(eq)
Cu(1)	4347(1)	4623(1)	5852(1)	25(1)
S(1)	472(1)	4327(1)	8385(1)	44(1)
N(1)	2931(3)	4022(3)	7158(2)	28(1)
O(3)	6747(3)	6372(3)	7089(2)	44(1)
O(4)	7827(3)	7016(3)	5650(2)	40(1)
O(1)	5913(3)	2834(3)	5695(2)	39(1)
C(2)	3608(4)	3326(3)	8110(2)	27(1)
O(2)	6989(3)	3441(3)	4245(2)	44(1)
C(6)	3007(5)	2860(4)	9929(3)	42(1)
C(4)	5754(5)	2007(4)	9316(3)	48(1)
C(5)	4657(6)	2172(4)	10126(3)	48(1)
C(11)	9536(6)	8715(4)	7756(3)	55(1)
C(9)	7833(5)	1027(4)	4826(3)	44(1)
C(1)	1331(4)	4560(4)	7202(3)	36(1)
C(3)	5266(5)	2597(4)	8312(3)	37(1)
C(7)	2466(4)	3421(3)	8893(2)	32(1)
C(10)	7913(4)	7259(3)	6754(2)	30(1)
C(8)	6834(4)	2541(3)	4931(2)	29(1)
H(6)	2267	2953	10466	51
H(4)	6838	1489	9455	57
H(5)	5055	1806	10816	58
H(11A)	9449	8769	8560	82
H(11B)	9392	9803	7625	82
H(11C)	10808	8506	7724	82
H(9A)	8484	958	4214	66
H(9C)	6852	-38	4574	66
H(9B)	8799	1192	5622	66
H(1)	676	5047	6627	43
H(3)	6023	2511	7785	44

Tabelle 98.	. Anisotrope Auslenkungspara	meter (Å ² x	(10 ³) vo	n 28 .

	U11	U22	U33	U23	U13	U12
Cu(1)	27(1)	28(1)	25(1)	13(1)	12(1)	8(1)
S(1)	37(1)	66(1)	41(1)	23(1)	23(1)	14(1)
N(1)	28(1)	34(1)	25(1)	13(1)	10(1)	5(1)
O(3)	46(1)	51(1)	28(1)	12(1)	8(1)	-9(1)
O(4)	36(1)	52(1)	27(1)	12(1)	10(1)	-4(1)
O(1)	48(1)	44(1)	46(1)	29(1)	27(1)	25(1)
C(2)	30(2)	26(1)	23(1)	8(1)	7(1)	0(1)
O(2)	60(2)	46(1)	59(1)	35(1)	40(1)	32(1)
C(6)	61(2)	38(2)	27(1)	12(1)	18(1)	-3(1)
C(4)	56(2)	39(2)	46(2)	20(1)	7(2)	16(2)
C(5)	74(3)	35(2)	32(2)	19(1)	9(2)	5(2)

C(11)	54(2)	51(2)	38(2)	8(2)	2(2)	-12(2)	
C(9)	50(2)	34(2)	60(2)	23(2)	26(2)	21(1)	
C(1)	31(2)	49(2)	33(1)	20(1)	12(1)	11(1)	
C(3)	42(2)	37(2)	35(2)	16(1)	13(1)	10(1)	
C(7)	35(2)	31(1)	27(1)	8(1)	12(1)	-1(1)	
C(10)	28(2)	30(1)	29(1)	11(1)	5(1)	5(1)	
C(8)	26(2)	27(1)	36(1)	13(1)	10(1)	8(1)	

8.2.18Kristallographische Daten von 29

Tabelle 99. Kristallographische Daten vor	1 29 .
--	---------------

Molekulargewicht / [g/mol]540,98KristallfarbefarblosKristallformWürfelMessgerätSTOE IPDS IMesstemperatur / K293(2)Wellenlänge / Å0,71073KristallsystemTetragonalRaumgruppeI 4 ₁ /aZellparametera / Åb / Å25,543(5)c / Å5,5644(7) α / \circ 90 β / \circ 90 γ / \circ 90Volumen / Å ³ 3630,4(11)Z8Dichte (berechnet) / [g/cm ³]1,980Absorptionskoeffizient / mm ⁻¹ 8,497F(000)2064Messbereich 2 $\theta_{min/max} / \circ$ 3,57 - 25,00h _{min} / h _{max} , k _{min} / k max l _{min} / 1 max-30 / 30, -30 / 30, -5 / 6gesamte Reflexe12032unabhängige Reflexe1488beobachtete Reflexe977AbsorptionskorrekturNumerischRestraints0	Summenformer	
KristallfarbefarblosKristallformWürfelMessgerätSTOE IPDS IMesstemperatur / K293(2)Wellenlänge / Å0,71073KristallsystemTetragonalRaumgruppeI $4_1/a$ Zellparametera / Å25,543(5)b / Å25,543(5)c / Å5,5644(7)a / °90 $\beta / °$ 90 $\beta / °$ 90 $\gamma / °$ 90Volumen / ų3630,4(11)Z8Dichte (berechnet) / [g/cm³]1,980Absorptionskoeffizient / mm ⁻¹ 8,497F(000)2064Messbereich $2\theta_{min/max} / °$ 3,57 - 25,00h_min / h_max, k_min / k_max l_min / 1_max-30 / 30, -30 / 30, -5 / 6gesamte Reflexe12032unabhängige Reflexe1488beobachtete Reflexe977AbsorptionskorrekturNumerischRestraints0	Molekulargewicht / [g/mol]	540,98
KristallformWürfelMessgerätSTOE IPDS IMesstemperatur / K293(2)Wellenlänge / Å0,71073KristallsystemTetragonalRaumgruppeI $4_1/a$ Zellparametera / Å25,543(5)b / Å25,543(5)c / Å5,5644(7)a / °90 β / °90 β / °90 γ / °90Volumen / ų3630,4(11)Z8Dichte (berechnet) / [g/cm³]1,980Absorptionskoeffizient / mm ⁻¹ 8,497F(000)2064Messbereich $2\theta_{min/max}$ / °3,57 - 25,00 h_{min} / h_{max} , k_{min} / $k_{max} l_{min}$ / 1_{max} -30 / 30, -30 / 30, -5 / 6gesamte Reflexe12032unabhängige Reflexe1488beobachtete Reflexe977AbsorptionskorrekturNumerischRestraints0	Kristallfarbe	farblos
MessgerätSTOE IPDS IMesstemperatur / K293(2)Wellenlänge / Å0,71073KristallsystemTetragonalRaumgruppe $14_1/a$ Zellparameter $a / Å$ $b / Å$ 25,543(5) $b / Å$ 25,543(5) $c / Å$ 5,5644(7) $a / °$ 90 $\beta / °$ 90 $\gamma / °$ 90Volumen / Å ³ 3630,4(11)Z8Dichte (berechnet) / [g/cm ³]1,980Absorptionskoeffizient / mm ⁻¹ 8,497F(000)2064Messbereich $2\theta_{min/max} / °$ 3,57 - 25,00 $h_{min} / h_{max}, k_{min} / k_{max} l_{min} / l_{max}$ -30 / 30, -30 / 30, -5 / 6gesamte Reflexe12032unabhängige Reflexe1488beobachtete Reflexe977AbsorptionskorrekturNumerischRestraints0	Kristallform	Würfel
Messtemperatur / K293(2)Wellenlänge / Å0,71073KristallsystemTetragonalRaumgruppe $14_1/a$ Zellparameter $a / Å$ $b / Å$ 25,543(5) $b / Å$ 25,543(5) $c / Å$ 5,5644(7) $a / °$ 90 $\beta / °$ 90 $\beta / °$ 90 $\gamma / °$ 90Volumen / Å ³ 3630,4(11)Z8Dichte (berechnet) / [g/cm ³]1,980Absorptionskoeffizient / mm ⁻¹ 8,497F(000)2064Messbereich $2\theta_{min/max} / °$ 3,57 - 25,00 $h_{min} / h_{max}, k_{min} / k_{max} l_{min} / l_{max}$ -30 / 30, -30 / 30, -5 / 6gesamte Reflexe12032unabhängige Reflexe1488beobachtete Reflexe977AbsorptionskorrekturNumerischRestraints0	Messgerät	STOE IPDS I
Wellenlänge / Å0,71073KristallsystemTetragonalRaumgruppeI $4_1/a$ Zellparametera / Å25,543(5)b / Åc / Åc / Å α / \circ $g0$ β / \circ $\gamma ^{\circ}$ 90 β / \circ $\gamma ^{\circ}$ 90 β / \circ $\gamma ^{\circ}$ 90 β / \circ $\gamma ^{\circ}$ 90 γ / \circ 90Volumen / Å ³ 2630,4(11)ZZ8Dichte (berechnet) / [g/cm ³]1,980Absorptionskoeffizient / mm ⁻¹ 8,497F(000)2064Messbereich $2\theta_{min/max} / \circ$ 3,57 - 25,00 $h_{min} / h_{max}, k_{min} / k_{max} l_{min} / l_{max}$ -30 / 30, -30 / 30, -5 / 6gesamte Reflexe12032unabhängige Reflexe1488beobachtete Reflexe977AbsorptionskorrekturNumerischRestraints0	Messtemperatur / K	293(2)
KristallsystemTetragonalRaumgruppeI 41/aZellparameter $a / Å$ $b / Å$ 25,543(5) $b / Å$ 25,543(5) $c / Å$ 5,5644(7) $a / °$ 90 $\beta / °$ 90 $\beta / °$ 90 $\gamma / °$ 90Volumen / Å ³ 3630,4(11)Z8Dichte (berechnet) / [g/cm ³]1,980Absorptionskoeffizient / mm ⁻¹ 8,497F(000)2064Messbereich $2\theta_{min/max} / °$ 3,57 - 25,00 $h_{min} / h_{max}, k_{min} / k_{max} l_{min} / 1_{max}$ -30 / 30, -30 / 30, -5 / 6gesamte Reflexe12032unabhängige Reflexe1488beobachtete Reflexe977AbsorptionskorrekturNumerischRestraints0	Wellenlänge / Å	0,71073
Raumgruppe I $4_1/a$ Zellparameter a / Å 25,543(5) b / Å 25,543(5) c / Å 5,5644(7) α / \circ 90 β / \circ 90 γ / \circ 90 γ / \circ 90 γ / \circ 90 γ / \circ 90 Volumen / Å ³ 3630,4(11) Z 8 Dichte (berechnet) / [g/cm ³] 1,980 Absorptionskoeffizient / mm ⁻¹ 8,497 F(000) 2064 Messbereich $2\theta_{min/max} / \circ$ 3,57 - 25,00 h _{min} / h _{max} , k _{min} / k _{max} l _{min} / l _{max} -30 / 30, -30 / 30, -5 / 6 gesamte Reflexe 12032 unabhängige Reflexe 1488 beobachtete Reflexe 977 Absorptionskorrektur Numerisch Restraints 0	Kristallsystem	Tetragonal
Zellparameter a / Å 25,543(5) b / Å 25,543(5) c / Å 5,5644(7) α / \circ 90 β / \circ 90 γ / \circ 90 Volumen / Å ³ 3630,4(11) Z 8 Dichte (berechnet) / [g/cm ³] 1,980 Absorptionskoeffizient / mm ⁻¹ 8,497 F(000) 2064 Messbereich $2\theta_{min/max} / \circ$ 3,57 - 25,00 h _{min} / h _{max} , k _{min} / k _{max} l _{min} / 1 _{max} -30 / 30, -30 / 30, -5 / 6 gesamte Reflexe 12032 unabhängige Reflexe 1488 beobachtete Reflexe 977 Absorptionskorrektur Numerisch Restraints 0	Raumgruppe	I $4_1/a$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zellparameter a / Å	25,543(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	b / Å	25,543(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	c / Å	5,5644(7)
$\begin{array}{cccc} & \beta / & \circ & 90 \\ & \gamma / & \circ & 90 \\ \hline \gamma / & \circ & 90 \\ \hline Volumen / Å^3 & & 3630,4(11) \\ Z & & 8 \\ \hline Dichte (berechnet) / [g/cm^3] & & 1,980 \\ \hline Absorptionskoeffizient / mm^{-1} & & 8,497 \\ \hline F(000) & & 2064 \\ \hline Messbereich 2\theta_{min/max} / & & 3,57 - 25,00 \\ \hline h_{min} / h_{max}, k_{min} / k_{max} l_{min} / l_{max} & -30 / 30, -30 / 30, -5 / 6 \\ \hline gesamte Reflexe & & 12032 \\ \hline unabhängige Reflexe & & 1488 \\ \hline beobachtete Reflexe & & 977 \\ \hline Absorptionskorrektur & Numerisch \\ \hline Restraints & 0 \\ \hline \end{array}$	α / °	90
γ / \circ 90Volumen / ų3630,4(11)Z8Dichte (berechnet) / [g/cm³]1,980Absorptionskoeffizient / mm²¹8,497F(000)2064Messbereich $2\theta_{min/max} / \circ$ 3,57 - 25,00 $h_{min} / h_{max}, k_{min} / k_{max} l_{min} / l_{max}$ -30 / 30, -30 / 30, -5 / 6gesamte Reflexe12032unabhängige Reflexe1488beobachtete Reflexe977AbsorptionskorrekturNumerischRestraints0	β / °	90
Volumen / ų $3630,4(11)$ Z8Dichte (berechnet) / [g/cm³] $1,980$ Absorptionskoeffizient / mm² $8,497$ F(000) 2064 Messbereich $2\theta_{min/max}$ / ° $3,57 - 25,00$ h_{min} / h_{max} , k_{min} / $k_{max} l_{min}$ / l_{max} -30 / 30 , -30 / 30 , -5 / 6 gesamte Reflexe 12032 unabhängige Reflexe 1488 beobachtete Reflexe 977 AbsorptionskorrekturNumerischRestraints 0	γ / °	90
Z8Dichte (berechnet) / [g/cm³]1,980Absorptionskoeffizient / mm³8,497F(000)2064Messbereich $2\theta_{min/max}$ / °3,57 - 25,00h_{min} / h_{max}, k_{min} / k_{max} l_{min} / l_{max}-30 / 30, -30 / 30, -5 / 6gesamte Reflexe12032unabhängige Reflexe1488beobachtete Reflexe977AbsorptionskorrekturNumerischRestraints0	Volumen / Å ³	3630,4(11)
Dichte (berechnet) / [g/cm³]1,980Absorptionskoeffizient / mm²8,497F(000)2064Messbereich $2\theta_{min/max}$ / °3,57 - 25,00h_{min} / h_{max}, k_{min} / k_{max} l_{min} / l_{max}-30 / 30, -30 / 30, -5 / 6gesamte Reflexe12032unabhängige Reflexe1488beobachtete Reflexe977AbsorptionskorrekturNumerischRestraints0	Z	8
Absorptionskoeffizient / mm ⁻¹ $8,497$ F(000) 2064 Messbereich $2\theta_{min/max}$ / ° $3,57 - 25,00$ h_{min} / h_{max} , k_{min} / $k_{max} l_{min}$ / l_{max} -30 / 30 , -30 / 30 , -5 / 6 gesamte Reflexe 12032 unabhängige Reflexe 1488 beobachtete Reflexe 977 AbsorptionskorrekturNumerischRestraints 0	Dichte (berechnet) / $[g/cm^3]$	1,980
$F(000)$ 2064Messbereich $2\theta_{min/max} / \circ$ $3,57 - 25,00$ $h_{min} / h_{max}, k_{min} / k_{max} l_{min} / l_{max}$ $-30 / 30, -30 / 30, -5 / 6$ gesamte Reflexe12032unabhängige Reflexe1488beobachtete Reflexe977AbsorptionskorrekturNumerischRestraints0	Absorptionskoeffizient / mm ⁻¹	8,497
Messbereich $2\theta_{min/max} / \circ$ $3,57 - 25,00$ $h_{min} / h_{max}, k_{min} / k_{max} l_{min} / l_{max}$ $-30 / 30, -30 / 30, -5 / 6$ gesamte Reflexe12032unabhängige Reflexe1488beobachtete Reflexe977AbsorptionskorrekturNumerischRestraints0	F(000)	2064
	Messbereich $2\theta_{min/max}$ / °	3,57 - 25,00
gesamte Reflexe12032unabhängige Reflexe1488beobachtete Reflexe977AbsorptionskorrekturNumerischRestraints0	h_{min} / h_{max} , k_{min} / k_{max} l_{min} / l_{max}	-30 / 30, -30 / 30, -5 / 6
unabhängige Reflexe1488beobachtete Reflexe977AbsorptionskorrekturNumerischRestraints0	gesamte Reflexe	12032
beobachtete Reflexe977AbsorptionskorrekturNumerischRestraints0	unabhängige Reflexe	1488
AbsorptionskorrekturNumerischRestraints0	beobachtete Reflexe	977
Restraints 0	Absorptionskorrektur	Numerisch
115	Restraints	0
Anzahl Parameter 124	Anzahl Parameter	124
S _{alle} 0,855	S _{alle}	0,855
R _{int} 0,1807	R _{int}	0,1807
R1 (beob./alle) 0,042 / 0,075	R1 (beob./alle)	0,042 / 0,075
wR2 (beob./alle) 0,090 / 0,097	wR2 (beob./alle)	0,090 / 0,097
Extinktionskoeffizient 0.0000(1)	Extinktionskoeffizient	0.0000(1)
$\Delta \rho_{\min/max} / e Å^{-3}$ 1,270 / -1,073	$\Delta \rho_{\text{min/max}} / e \text{ \AA}^{-3}$	1,270 / -1,073

Tabelle 100.	Atomkoordinaten (x	10 ⁴) und isotrope	Auslenkungsparamete	$r(Å^2 x 10^3)$ von

29.				
	Х	у	Z	U(eq)
Hg(1)	0	0	5000	38(1)
N(2)	885(4)	-407(3)	3316(18)	46(2)
N(1)	396(3)	276(3)	2037(15)	34(2)
C(8)	-333(4)	1456(4)	290(30)	52(3)
N(3)	475(3)	815(3)	-1372(17)	42(2)
C(10)	312(4)	1252(4)	-2560(20)	50(3)
C(9)	-81(5)	1569(5)	-1790(20)	56(3)

C(4)	1630(5)	-754(6)	1390(30)	69(4)
C(3)	1567(5)	-395(5)	-420(20)	58(3)
C(7)	-174(4)	1008(4)	1570(20)	43(3)
C(1)	820(4)	-46(4)	1585(19)	32(2)
C(5)	1279(4)	-749(5)	3230(20)	55(3)
C(6)	237(4)	710(4)	736(19)	38(3)
C(2)	1166(4)	-42(4)	-350(20)	45(3)
H(8)	-602	1667	860	62
H(10)	480	1340	-3983	60
H(9)	-177	1861	-2685	67
H(4)	1904	-994	1366	83
H(3)	1799	-392	-1706	69
H(7)	-346	913	2981	52
H(5)	1316	-991	4466	65
H(2)	1124	199	-1590	54

Tabelle 101. Anisotrope Auslenkungsparameter ($Å^2 \times 10^3$) von **29**.

	T 7		TT	TT	TT	T T
	U11	U22	U33	U23	U13	U12
Hg(1)	44(1)	36(1)	34(1)	3(1)	8(1)	-1(1)
N(2)	50(6)	39(5)	48(7)	-2(4)	13(4)	-1(4)
N(1)	33(4)	34(4)	36(6)	0(4)	7(4)	-5(3)
C(8)	45(6)	45(6)	66(10)	5(6)	-13(6)	6(5)
N(3)	45(5)	42(5)	40(6)	8(4)	2(4)	-10(4)
C(10)	42(6)	53(7)	55(8)	23(6)	0(6)	-7(5)
C(9)	54(7)	48(7)	66(11)	22(6)	-13(6)	-3(6)
C(4)	58(8)	79(10)	71(11)	-5(8)	5(7)	34(7)
C(3)	50(7)	73(8)	51(10)	-10(7)	22(6)	11(6)
C(7)	42(6)	51(7)	36(7)	1(5)	-1(5)	5(5)
C(1)	36(5)	35(5)	26(7)	-11(4)	6(4)	-4(4)
C(5)	44(7)	47(7)	73(10)	0(6)	7(6)	22(6)
C(6)	42(6)	44(6)	28(7)	7(5)	2(5)	-4(5)
C(2)	47(6)	44(6)	45(8)	-3(5)	5(5)	2(5)

8.2.19 Kristallographische Daten von 31

Summenformel	C ₅ H ₁₂ ClN
Molekulargewicht / [g/mol]	121,61
Kristallfarbe	farblos
Kristallform	Würfel
Messgerät	STOE IPDS I
Messtemperatur / K	293(2)
Wellenlänge / Å	0,71073
Kristallsystem	Tetragonal
Raumgruppe	Pbcm
Zellparameter a / Å	9,8037(15)
b / Å	7,3810(11)
c / Å	9,8037(15)
α / °	90
β / °	90
γ / °	90
Volumen / Å ³	709,41(19)
Z	4
Dichte (berechnet) / [g/cm ³]	1,139
Absorptionskoeffizient / mm ⁻¹	0,430

Tabelle	102.	Kristall	ograp	hische	Daten	von 31.
---------	------	----------	-------	--------	-------	---------

F(000)	264
Messbereich $2\theta_{min/max} / \circ$	3,46 - 25,01
h_{min}/h_{max} , k_{min}/k_{max} l_{min}/l_{max}	0 / 11, 0 / 8, -11 / 11
gesamte Reflexe	1188
unabhängige Reflexe	633
beobachtete Reflexe	
Absorptionskorrektur	Numerisch
Restraints	0
Anzahl Parameter	37
S _{alle}	0,716
R _{int}	0,0292
R1 (beob./alle)	0,0358 / 0,0675
wR2 (beob./alle)	0,0737 / 0,0776
Extinktionskoeffizient	
$\Delta \rho_{min/max} / e \text{ Å}^{-3}$	0,218 / -0,163

Tabelle 103. Atomkoordinaten ($x \ 10^4$) und isotrope Auslenkungsparameter (Å² x 10^3) von

31.				
	Х	у	Z	U(eq)
Cl(1)	-1730(1)	374(2)	7500	50(1)
N(1)	-1369(2)	4566(5)	7500	42(1)
C(1)	-1932(3)	5334(5)	8757(2)	59(1)
C(2)	-4086(4)	5880(8)	7500	101(2)
C(3)	-3459(3)	5074(5)	8768(3)	80(1)
H(1A)	-460	4736	7500	51
H(1B)	-1521	3364	7500	51
H(1C)	-1717	6615	8807	71
H(1D)	-1530	4738	9542	71
H(2A)	-5060	5653	7500	121
H(2B)	-3946	7181	7500	121
H(3A)	-3669	3791	8812	96
H(3B)	-3843	5652	9569	96

Tabelle 104.	Anisotrop	e Auslenkun	gsparamete	r (Å ² x	10^{3}) von 31
1 abene 104.	mouop	c / tusiciikuii	gsparamete	т (<i>г</i> х л	10) von J I.

	U11	U22	U33	U23	U13	U12
Cl(1)	42(1)	43(1)	65(1)	0	0	1(1)
N(1)	32(2)	41(2)	53(2)	0	0	-5(2)
C(1)	64(2)	70(2)	44(2)	-8(2)	6(1)	-17(2)
C(2)	32(3)	63(5)	208(7)	0	0	-1(2)
C(3)	65(2)	83(3)	91(2)	-22(2)	38(2)	-17(2)

8.2.20 Kristallographische Daten von 32

Tabelle 1	05.	Kristal	lograp	hische	Daten	von 32.
-----------	-----	---------	--------	--------	-------	---------

Summenformel	C ₄ H ₁₀ ClNO
Molekulargewicht / [g/mol]	123,58
Kristallfarbe	farblos
Kristallform	Würfel
Messgerät	STOE IPDS I
Messtemperatur / K	293(2)
Wellenlänge / Å	0,71073
Kristallsystem	Monoklin
Raumgruppe	$P2_1/c$
Zellparameter a / Å	5,7280(9)

b / Å	10,606(2)
c / Å	10,1300(16)
α/°	90
β/°	101,252(12)
γ/°	90
Volumen / $Å^3$	603,59(18)
Ζ	4
Dichte (berechnet) / [g/cm ³]	1,360
Absorptionskoeffizient / mm ⁻¹	0,518
F(000)	264
Messbereich $2\theta_{min/max}$ / °	2,81 - 27,28
h_{min} / h_{max} , k_{min} / k_{max} l_{min} / l_{max}	-6 / 7, -13 / 13, -12 / 12
gesamte Reflexe	7568
unabhängige Reflexe	1332
beobachtete Reflexe	1100
Absorptionskorrektur	Numerisch
Restraints	0
Anzahl Parameter	65
S _{alle}	1,141
R _{int}	0,0981
R1 (beob./alle)	0,0400 / 0,0481
wR2 (beob./alle)	0,1029 / 0,1068
Extinktionskoeffizient	0,163(13)
$\Delta \rho_{min/max} / e Å^{-3}$	0,411 / -0,370

_

32.

Tabelle 106. Atomkoordinaten ($x \ 10^4$) und isotrope Auslenkungsparameter (Å² x 10^3) von

	х	у	Z	U(eq)
Cl(01)	7455(1)	1244(1)	5600(1)	32(1)
O(1)	2432(2)	1050(1)	9588(1)	34(1)
N(1)	2843(2)	839(1)	6837(1)	24(1)
C(1)	3255(3)	-258(1)	7782(2)	29(1)
C(4)	3273(3)	2049(1)	7591(2)	30(1)
C(3)	1859(4)	2095(2)	8695(2)	34(1)
C(2)	1836(3)	-99(2)	8871(2)	34(1)
H(5A)	3827	784	6246	29
H(5B)	1336	820	6370	29
H(1B)	4934	-317	8180	35
H(1A)	2786	-1031	7291	35
H(4A)	2819	2749	6978	36
H(4B)	4955	2130	7976	36
H(3A)	2198	2875	9195	41
H(3B)	172	2079	8304	41
H(2B)	152	-101	8475	40
H(2A)	2148	-804	9492	40

1 1 1 1 0 7 1 1 1 1 1 1 1 1 1 1	
anelle 10 /. Anisotrone Alisienklingsparameter (A x 10) von 32	

	U11	U22	U33	U23	U13	U12
Cl(01)	23(1)	44(1)	29(1)	-6(1)	6(1)	-1(1)
O(1)	41(1)	40(1)	20(1)	-1(1)	7(1)	1(1)
N(1)	25(1)	30(1)	20(1)	0(1)	7(1)	2(1)
C(1)	35(1)	24(1)	28(1)	1(1)	4(1)	5(1)
C(4)	35(1)	25(1)	30(1)	1(1)	3(1)	-6(1)
C(3)	42(1)	31(1)	28(1)	-7(1)	4(1)	5(1)
C(2)	40(1)	33(1)	29(1)	6(1)	9(1)	-5(1)

8.2.21 Kristallographische Daten von 33

Summenformel	C ₅ H ₁₁ Cl ₂ HgN
Molekulargewicht / [g/mol]	356,64
Kristallfarbe	farblos
Kristallform	Stäbchen
Messgerät	STOE IPDS I
Messtemperatur / K	293(2)
Wellenlänge / Å	0,71073
Kristallsystem	Monoklin
Raumgruppe	C2/c
Zellparameter a / Å	24,109(6)
b / Å	6,1473(11)
c / Å	11,914(3)
α / °	90
β/°	104,541(19)
γ/°	90
Volumen / $Å^3$	1709,1(7)
Ζ	8
Dichte (berechnet) / $[g/cm^3]$	2,772
Absorptionskoeffizient / mm ⁻¹	18,555
F(000)	1296
Messbereich $2\theta_{min/max}$ / °	1,75 - 29,54
h_{min} / h_{max} , $k_{min} / k_{max} l_{min} / l_{max}$	-33 / 33, -8 / 8, -16 / 16
gesamte Reflexe	8577
unabhängige Reflexe	2365
beobachtete Reflexe	1588
Absorptionskorrektur	Numerisch
Restraints	0
Anzahl Parameter	88
S _{alle}	0,973
R _{int}	0,1373
R1 (beob./alle)	0,0558 / 0,0815
wR2 (beob./alle)	0,1535 / 0,1737
Extinktionskoeffizient	0,00075(13)
$\Delta \rho_{\text{min/max}} / e \text{ Å}^{-3}$	3,178 / -2,479

Tabelle 108. Kristallographische Daten von 33.

Tabelle 109. Atomkoordinaten ($x \ 10^4$) und isotrope Auslenkungsparameter (Å² x 10³) von

33.

	X	у	Z	U(eq)
Hg(1)	0	4712(1)	2500	49(1)
Hg(2)	0	10000	0	38(1)
Cl(1)	0	9072(5)	2500	47(1)
Cl(2)	0	5000	0	41(1)
Cl(3)	1001(2)	3832(4)	2998(3)	53(1)
C(1)	1200(7)	8340(20)	1175(11)	62(4)
C(3)	2115(7)	9770(30)	987(15)	77(5)
C(5)	1190(7)	11530(20)	-52(12)	63(3)
N(1)	897(6)	10180(30)	564(18)	96(6)
C(2)	1834(8)	8520(30)	1623(17)	100(6)
C(4)	1829(8)	11680(30)	380(20)	121(9)
H(1B)	1120	7091	659	74
H(1A)	1039	8022	1827	74
H(3B)	2216	8833	414	93
H(3A)	2471	10257	1505	93

H(5A)	1035	12002	61	75
$\Pi(3A)$	1103	12992	-01	75
п(зб)	1102	11051	-849	75
H(6)	920	1106/	118/	210(170)
H(2B)	1914	9113	2402	120
H(2A)	1995	7067	1680	120
H(4A)	1988	11967	-278	145
H(4B)	1920	12920	897	145

Tabelle 110. Anisotrope Auslenkungsparameter ($Å^2 \times 10^3$) von **33**.

	U11	U22	U33	U23	U13	U12
Hg(1)	49(1)	50(1)	49(1)	0	13(1)	0
Hg(2)	30(1)	43(1)	41(1)	1(1)	9(1)	-1(1)
Cl(1)	69(3)	35(2)	37(2)	0	16(2)	0
Cl(2)	51(2)	37(1)	36(2)	1(1)	11(2)	2(1)
Cl(3)	68(2)	45(1)	46(2)	0(1)	15(2)	6(1)
C(1)	67(10)	56(6)	57(7)	24(5)	8(7)	1(6)
C(3)	29(7)	93(11)	101(13)	21(9)	2(8)	9(7)
C(5)	58(9)	63(7)	67(8)	17(6)	17(8)	-8(6)
N(1)	44(7)	94(9)	138(14)	85(10)	2(8)	3(6)
C(2)	50(10)	121(15)	116(14)	56(12)	-5(11)	2(10)
C(4)	45(10)	118(15)	190(20)	91(15)	10(13)	-13(10)

8.2.22 Kristallographische Daten von 34

Tabelle 111. Kristallographische Daten von	34	4	ł			l			1	/	4	,	5	2	2			•			Ĺ	l	1	ľ]))	C	(1	V	١	١	,		۱	1	ľ	1)	2	e)	t	1	ł	a	Е);)]		L	ſ	I]]]					;	,	2	e	(l	1	ł	1)	C	(3	S	1	i	1	l	1	1)	r	1	ľ	ł	a	έ	1	-	r	1)	C	ç	1))	C	(]		1		l	3	έ		t	1	5	5	5		i	1	•	r	1	1					\$	5		ζ	<	K	k	k	k	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	l	
---	----	---	---	--	--	---	--	--	---	---	---	---	---	---	---	--	--	---	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	----	---	---	--	---	---	---	---	---	---	--	--	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	--	---	--	---	--	---	---	---	--	---	---	---	---	---	--	---	---	---	---	---	---	--	--	--	--	----	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

Summenformel	C. H. Cl. HgN. O.S.		
Molekulargewicht / [g/mol]	646 77		
Kristallfarbe	farblos		
Kristallform	Plättchen		
Messgerät	STOF IPDS I		
Messtemperatur / K	293(2)		
Wellenlänge / Å	0 71073		
Kristallsystem	Triklin		
Raumgruppe	P _1		
Zellnarameter a / Å	7 3880(10)		
b / Å	7,7229(10)		
c / Å	18 887(3)		
a / °	10,007(3) 101 044(17)		
β/°	96 389(18)		
γ / °	94 365(16)		
Volumen / $Å^3$	1045 8(3)		
Z	2		
Dichte (berechnet) / $[g/cm^3]$	2.054		
Absorptionskoeffizient / mm ⁻¹	8,079		
F(000)	612		
Messbereich $2\theta_{min/max}$ / °	2,70 - 28,19		
h_{\min} / h_{\max} , $k_{\min} / k_{\max} l_{\min} / l_{\max}$	-9/9, -10/10, -25/24		
gesamte Reflexe	12680		
unabhängige Reflexe	4686		
beobachtete Reflexe			
Absorptionskorrektur	Numerisch		
Restraints	1		
Anzahl Parameter	231		
S_{alle}	0,859		
R _{int}	0,0920		
R1 (beob./alle)	0,0455 / 0,1152		

wR2 (beob./alle)	0,0922 / 0,1140
Extinktionskoeffizient	0,0001(4)
$\Delta \rho_{\text{min/max}} / e \text{ Å}^{-3}$	1,824 / -1,703

Tabelle 112. Atomkoordinaten ($x \ 10^4$) und isotrope Auslenkungsparameter (Å² $x \ 10^3$) von 34.

	X	у	Z	U(eq)
Hg(1)	8339(1)	1272(1)	-2501(1)	57(1)
Cl(3)	9585(4)	-137(4)	-3608(2)	63(1)
S(2)	8333(3)	7434(3)	4632(2)	56(1)
S(1)	7826(3)	1590(4)	191(2)	55(1)
Cl(4)	4988(3)	1530(4)	-2853(2)	66(1)
Cl(2)	8583(4)	-531(4)	-1560(2)	72(1)
Cl(1)	9738(4)	4358(3)	-2127(2)	69(1)
N(2)	7559(10)	4510(12)	3745(5)	49(2)
N(1)	5788(10)	2872(10)	1091(4)	49(2)
C(10)	7286(10)	4088(13)	4412(5)	44(2)
C(7)	4942(13)	2014(14)	-854(6)	55(3)
C(2)	5713(12)	2147(13)	-149(5)	47(2)
C(6)	3241(14)	2576(14)	-986(6)	59(3)
C(3)	4788(12)	2846(12)	431(5)	45(2)
C(14)	7495(12)	5443(14)	5693(6)	54(3)
C(9)	7673(11)	5576(13)	4980(5)	45(2)
C(8)	8094(12)	6182(15)	3798(6)	60(3)
C(12)	6616(12)	2331(14)	5250(7)	60(3)
C(4)	3045(12)	3400(13)	296(6)	51(2)
C(1)	7372(13)	2288(13)	1052(6)	53(3)
C(5)	2315(13)	3247(14)	-403(6)	59(3)
C(11)	6751(12)	2428(13)	4554(6)	52(3)
C(13)	6962(12)	3817(14)	5826(6)	57(3)
O(1)	4348(11)	4169(13)	2330(5)	90(3)
O(2)	7462(10)	1756(10)	2619(4)	72(2)
H(15)	5391	3249	1498	59
H(7)	5563	1549	-1238	66
H(6)	2707	2511	-1462	71
H(14)	7733	6434	6069	65
H(8)	8328	6648	3394	72
H(12)	6278	1232	5356	72
H(4)	2410	3860	676	61
H(1)	8189	2253	1460	64
H(5)	1154	3601	-500	71
H(11)	6497	1429	4182	62
H(13)	6828	3692	6297	68
H(16)	7560(120)	3570(80)	3390(40)	50(30)

	• 2	2
Tabelle 113. Anisotrope Auslenkungs	parameter (Ų x	10 [°]) von 34 .

	U11	U22	U33	U23	U13	U12
Hg(1)	58(1)	54(1)	60(1)	13(1)	9(1)	4(1)
Cl(3)	77(2)	54(2)	58(2)	8(1)	14(1)	5(1)
S(2)	60(1)	51(2)	58(2)	14(1)	11(1)	-1(1)
S(1)	46(1)	60(2)	59(2)	11(1)	7(1)	4(1)
Cl(4)	49(1)	85(2)	66(2)	29(2)	3(1)	0(1)
Cl(2)	75(2)	74(2)	77(2)	36(2)	15(1)	19(1)

Anhang

Cl(1)	67(2)	49(2)	83(2)	4(1)	-7(1)	0(1)	
N(2)	57(4)	57(6)	35(5)	16(4)	7(4)	3(4)	
N(1)	56(5)	48(5)	40(5)	3(4)	7(4)	1(4)	
C(10)	31(4)	55(6)	46(6)	14(5)	1(4)	1(4)	
C(7)	55(6)	60(7)	48(7)	8(5)	9(5)	-4(5)	
C(2)	48(5)	49(6)	44(6)	13(5)	5(4)	-8(4)	
C(6)	61(6)	58(7)	57(7)	17(5)	-1(5)	-7(5)	
C(3)	48(5)	38(5)	50(6)	10(4)	5(4)	-1(4)	
C(14)	52(5)	59(7)	48(7)	5(5)	8(4)	-7(5)	
C(9)	40(4)	55(6)	37(6)	9(5)	3(4)	-1(4)	
C(8)	49(5)	68(7)	69(8)	27(6)	13(5)	2(5)	
C(12)	50(5)	52(7)	83(9)	29(6)	7(5)	1(5)	
C(4)	56(5)	45(6)	51(7)	6(5)	7(5)	1(5)	
C(1)	52(5)	47(6)	58(7)	12(5)	1(5)	-4(5)	
C(5)	51(5)	57(7)	73(8)	22(6)	6(5)	4(5)	
C(11)	51(5)	48(6)	57(7)	12(5)	11(5)	2(5)	
C(13)	55(5)	65(7)	54(7)	20(6)	9(5)	5(5)	
O(1)	79(5)	118(8)	68(6)	-7(5)	11(4)	32(5)	
O(2)	85(5)	66(5)	66(5)	14(4)	13(4)	9(4)	

8.2.23 Kristallographische Daten von 35

Tabelle 114. Kristallographische Daten von 35	
---	--

Summenformel $C_7H_9Cl_3HgNOS$ Molekulargewicht / [g/mol]462,15KristallfarbefarblosKristallformWürfelMessgerätSTOE IPDS IIMesstemperatur / K293(2)Wellenlänge / Å0,71073KristallsystemMonoklinRaumgruppeP 2 ₁ /nZellparametera / Åb / Å10,970(2)c / Å12,2929(16)a / °90 β / °92,662(11) γ / °90b / Å1314,4(4)Z6Dichte (berechnet) / [g/cm³]3,503Absorptionskoeffizient / mm ⁻¹ 18,673F(000)1278Messbereich 2 $\theta_{min/max}$ / °2,49 - 27,34h_min / h_max, k_min / k_max l_min / 1_max-12 / 12, -14 / 14, -15 / 15gesamte Reflexe12214unabhängige Reflexe2867beobachtete Reflexe1583AbsorptionskorrekturNumerischRestraints0O0,0570R1 (beob./alle)0,0432 / 0,0520Extinktionskoeffizient0,00236(14) $\Delta p_{min/max}$ / e Å ⁻³ 0,893 / -2,709		
Molekulargewicht / [g/mol] $462,15$ KristallfarbefarblosKristallformWürfelMessgerätSTOE IPDS IIMesstemperatur / K293(2)Wellenlänge / Å0,71073KristallsystemMonoklinRaumgruppeP 2_1/nZellparametera / Åb / Å10,970(2)c / Å12,2929(16)a / °90 β / °92,662(11) γ / °90b / Å1314,4(4)Z6Dichte (berechnet) / [g/cm³]3,503Absorptionskoeffizient / mm ⁻¹ 18,673F(000)1278Messbereich 2 $\theta_{min/max}$ / °2,49 - 27,34h _{min} / h _{max} , k _{min} / k _{max} l _{min} / 1 _{max} -12 / 12, -14 / 14, -15 / 15gesamte Reflexe12214unabhängige Reflexe2867beobachtete Reflexe1583AbsorptionskorrekturNumerischRestraints0O0,0570R1 (beob./alle)0,0277 / 0,0740wR2 (beob./alle)0,0432 / 0,0520Extinktionskoeffizient0,00236(14) $\Delta p_{min/max}$ / e Å ⁻³ 0,893 / -2,709	Summenformel	C7H9Cl3HgNOS
KristallfarbefarblosKristallformWürfelMessgerätSTOE IPDS IIMesstemperatur / K293(2)Wellenlänge / Å0,71073KristallsystemMonoklinRaumgruppeP 2 ₁ /nZellparametera / Åb / Å10,970(2)c / Å12,2929(16) $\alpha / °$ 90 $\beta / °$ 92,662(11) $\gamma / °$ 90Volumen / Å ³ 1314,4(4)Z6Dichte (berechnet) / [g/cm ³]3,503Absorptionskoeffizient / mm ⁻¹ 18,673F(000)1278Messbereich 2 $\theta_{min/max} / °$ 2,49 - 27,34hmin / hmax, kmin / k max lmin / 1 max-12 / 12, -14 / 14, -15 / 15gesamte Reflexe12214unabhängige Reflexe2867beobachtete Reflexe1583AbsorptionskorrekturNumerischRestraints0Anzahl Parameter137S _{alle} 0,0570R1 (beob./alle)0,0432 / 0,0520Extinktionskoeffizient0,00236(14) $\Delta \rho_{min/max} / e$ Å ⁻³ 0,893 / -2,709	Molekulargewicht / [g/mol]	462,15
KristallformWürfelMessgerätSTOE IPDS IIMesstemperatur / K293(2)Wellenlänge / Å0,71073KristallsystemMonoklinRaumgruppeP 2 ₁ /nZellparametera / Åb / Å10,970(2)c / Å12,2929(16)a / °90 β / °92,662(11) γ / °90Volumen / ų1314,4(4)Z6Dichte (berechnet) / [g/cm³]3,503Absorptionskoeffizient / mm¹18,673F(000)1278Messbereich 2 $\theta_{min/max}$ / °2,49 - 27,34h _{min} / h _{max} , k _{min} / k _{max} l _{min} / 1 _{max} -12 / 12, -14 / 14, -15 / 15gesamte Reflexe1283unabhängige Reflexe2867beobachtete Reflexe1583AbsorptionskorrekturNumerischRestraints000,0277 / 0,0740wR2 (beob./alle)0,0432 / 0,0520Extinktionskoeffizient0,00236(14) $\Delta \rho_{min/max}$ / e Ų0,893 / -2,709	Kristallfarbe	farblos
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Kristallform	Würfel
Messtemperatur / K 293(2) Wellenlänge / Å 0,71073 Kristallsystem Monoklin Raumgruppe P 2 ₁ /n Zellparameter $a / Å$ b / Å 10,970(2) c / Å 12,2929(16) $a / °$ 90 $\beta / °$ 92,662(11) $\gamma / °$ 90 Volumen / Å ³ 1314,4(4) Z 6 Dichte (berechnet) / [g/cm ³] 3,503 Absorptionskoeffizient / mm ⁻¹ 18,673 F(000) 1278 Messbereich 2 $\theta_{min/max} / °$ 2,49 - 27,34 h _{min} / h _{max} , k _{min} / k _{max} l _{min} / 1 max -12 / 12, -14 / 14, -15 / 15 gesamte Reflexe 12214 unabhängige Reflexe 2867 beobachtete Reflexe 1583 Absorptionskorrektur Numerisch Restraints 0 Anzahl Parameter 137 S _{alle} 0,884 R _{int} 0,0570 R1 (beob./alle) 0,0432 / 0,0520 Extinktionskoeffizient 0,00236(14) $\Delta \rho_{min/max} / e Å^{-3}$ <td>Messgerät</td> <td>STOE IPDS II</td>	Messgerät	STOE IPDS II
Wellenlänge / Å 0,71073 Kristallsystem Monoklin Raumgruppe P 2 ₁ /n Zellparameter a / Å 9,7568(14) b / Å 10,970(2) c / Å 12,2929(16) a / ° 90 β / ° 92,662(11) γ / ° 90 Volumen / Å ³ 1314,4(4) Z 6 Dichte (berechnet) / [g/cm ³] 3,503 Absorptionskoeffizient / mm ⁻¹ 18,673 F(000) 1278 Messbereich 2 $\theta_{min/max}$ / ° 2,49 - 27,34 h _{min} / h _{max} , k _{min} / k max l _{min} / 1 max -12 / 12, -14 / 14, -15 / 15 gesamte Reflexe 12214 unabhängige Reflexe 2867 beobachtete Reflexe 1583 Absorptionskorrektur Numerisch Restraints 0 Anzahl Parameter 137 Salle 0,884 R _{int} 0,0570 R1 (beob./alle) 0,0277 / 0,0740 wR2 (beob./alle) 0,0432 / 0,0520 Extinktionskoeffizient 0,00236(14) $\Delta \rho$	Messtemperatur / K	293(2)
Kristallsystem Monoklin Raumgruppe $P 2_1/n$ Zellparameter $a / Å$ $9,7568(14)$ $b / Å$ $10,970(2)$ $c / Å$ $12,2929(16)$ $a / °$ 90 $\beta / °$ $92,662(11)$ $\gamma / °$ 90 Volumen / Å ³ $1314,4(4)$ Z 6 Dichte (berechnet) / [g/cm ³] $3,503$ Absorptionskoeffizient / mm ⁻¹ $18,673$ F(000) 1278 Messbereich $2\theta_{min/max} / °$ $2,49 - 27,34$ $h_{min} / h_{max}, k_{min} / k_{max} l_{min} / 1_{max}$ $-12 / 12, -14 / 14, -15 / 15$ gesamte Reflexe 12214 unabhängige Reflexe 2867 beobachtete Reflexe 1583 Absorptionskorrektur Numerisch Restraints 0 Anzahl Parameter 137 Salle $0,0884$ R_{int} $0,0277 / 0,0740$ wR2 (beob./alle) $0,0432 / 0,0520$ Extinktionskoeffizient $0,00236(14)$ $\Delta \rho_{min/max} / e Å^{-3}$ $0,893 / -2,709$ <td>Wellenlänge / Å</td> <td>0,71073</td>	Wellenlänge / Å	0,71073
Raumgruppe $P 2_1/n$ Zellparameter $a / Å$ $9,7568(14)$ $b / Å$ $10,970(2)$ $c / Å$ $12,2929(16)$ $a / °$ 90 $\beta / °$ $92,662(11)$ $\gamma / °$ 90 Volumen / Å ³ $1314,4(4)$ Z 6 Dichte (berechnet) / [g/cm ³] $3,503$ Absorptionskoeffizient / mm ⁻¹ $18,673$ F(000) 1278 Messbereich $2\theta_{min/max} / °$ $2,49 - 27,34$ $h_{min} / h_{max}, k_{min} / k_{max} l_{min} / l_{max}$ $-12 / 12, -14 / 14, -15 / 15$ gesamte Reflexe 12214 unabhängige Reflexe 2867 beobachtete Reflexe 1583 Absorptionskorrektur Numerisch Restraints 0 Anzahl Parameter 137 Salle $0,0570$ R1 (beob./alle) $0,0236(14)$ $0,90236(14)$ $0,90236(14)$ $\Delta \rho_{min/max} / e Å^{-3}$ $0,893 / -2,709$	Kristallsystem	Monoklin
Zellparametera / Å9,7568(14)b / Å10,970(2)c / Å12,2929(16) α / \circ 90 β / \circ 92,662(11) γ / \circ 90Volumen / ų1314,4(4)Z6Dichte (berechnet) / [g/cm³]3,503Absorptionskoeffizient / mm ⁻¹ 18,673F(000)1278Messbereich 2 $\theta_{min/max} / \circ$ 2,49 - 27,34hmin / hmax, kmin / k max lmin / 1 max-12 / 12, -14 / 14, -15 / 15gesamte Reflexe12214unabhängige Reflexe2867beobachtete Reflexe1583AbsorptionskorrekturNumerischRestraints0Anzahl Parameter137Salle0,0570R1 (beob./alle)0,0277 / 0,0740wR2 (beob./alle)0,0432 / 0,0520Extinktionskoeffizient0,00236(14) $\Delta \rho_{min/max} / e Å^{-3}$ 0,893 / -2,709	Raumgruppe	$P 2_1/n$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Zellparameter a / Å	9,7568(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	b / Å	10,970(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	c / Å	12,2929(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	α / °	90
γ / \circ 90Volumen / ų1314,4(4)Z6Dichte (berechnet) / [g/cm³]3,503Absorptionskoeffizient / mm²¹18,673F(000)1278Messbereich $2\theta_{min/max} / \circ$ 2,49 - 27,34 $h_{min} / h_{max}, k_{min} / k_{max} l_{min} / l_{max}$ -12 / 12, -14 / 14, -15 / 15gesamte Reflexe12214unabhängige Reflexe2867beobachtete Reflexe1583AbsorptionskorrekturNumerischRestraints0Anzahl Parameter137Salle0,884Rint0,0570R1 (beob./alle)0,0277 / 0,0740wR2 (beob./alle)0,0432 / 0,0520Extinktionskoeffizient0,00236(14) $\Delta \rho_{min/max} / e$ Ų³0,893 / -2,709	β/°	92,662(11)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	γ / °	90
Z 6 Dichte (berechnet) / [g/cm ³] 3,503 Absorptionskoeffizient / mm ⁻¹ 18,673 F(000) 1278 Messbereich $2\theta_{min/max}$ / ° 2,49 - 27,34 h _{min} / h _{max} , k _{min} / k _{max} l _{min} / l _{max} -12 / 12, -14 / 14, -15 / 15 gesamte Reflexe 12214 unabhängige Reflexe 2867 beobachtete Reflexe 1583 Absorptionskorrektur Numerisch Restraints 0 Anzahl Parameter 137 S _{alle} 0,884 R _{int} 0,0570 R1 (beob./alle) 0,0432 / 0,0520 Extinktionskoeffizient 0,00236(14) $\Delta \rho_{min/max} / e Å^{-3}$ 0,893 / -2,709	Volumen / Å ³	1314,4(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Z	6
Absorptionskoeffizient / mm ⁻¹ 18,673 F(000) 1278 Messbereich $2\theta_{min/max}$ / ° 2,49 - 27,34 h _{min} / h _{max} , k _{min} / k _{max} l _{min} / l _{max} -12 / 12, -14 / 14, -15 / 15 gesamte Reflexe 12214 unabhängige Reflexe 2867 beobachtete Reflexe 1583 Absorptionskorrektur Numerisch Restraints 0 Anzahl Parameter 137 S _{alle} 0,884 R _{int} 0,0570 R1 (beob./alle) 0,0432 / 0,0520 Extinktionskoeffizient 0,00236(14) $\Delta\rho_{min/max}$ / e Å ⁻³ 0,893 / -2,709	Dichte (berechnet) / [g/cm ³]	3,503
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Absorptionskoeffizient / mm ⁻¹	18,673
Messbereich $2\theta_{min/max} / \circ$ $2,49 - 27,34$ $h_{min} / h_{max}, k_{min} / k_{max} l_{min} / l_{max}$ $-12 / 12, -14 / 14, -15 / 15$ gesamte Reflexe 12214 unabhängige Reflexe 2867 beobachtete Reflexe 1583 AbsorptionskorrekturNumerischRestraints 0 Anzahl Parameter 137 S _{alle} $0,884$ R _{int} $0,0570$ R1 (beob./alle) $0,0277 / 0,0740$ wR2 (beob./alle) $0,00236(14)$ $\Delta \rho_{min/max} / e Å^{-3}$ $0,893 / -2,709$	F(000)	1278
$\begin{array}{lll} h_{min} / h_{max}, k_{min} / k_{max} l_{min} / l_{max} & -12 / 12, -14 / 14, -15 / 15 \\ gesamte Reflexe & 12214 \\ unabhängige Reflexe & 2867 \\ beobachtete Reflexe & 1583 \\ Absorptionskorrektur & Numerisch \\ Restraints & 0 \\ Anzahl Parameter & 137 \\ S_{alle} & 0,884 \\ R_{int} & 0,0570 \\ R1 (beob./alle) & 0,0277 / 0,0740 \\ wR2 (beob./alle) & 0,0432 / 0,0520 \\ Extinktionskoeffizient & 0,00236(14) \\ \Delta \rho_{min/max} / e Å^{-3} & 0,893 / -2,709 \\ \end{array}$	Messbereich $2\theta_{min/max}$ / °	2,49 - 27,34
gesamte Reflexe12214unabhängige Reflexe2867beobachtete Reflexe1583AbsorptionskorrekturNumerischRestraints0Anzahl Parameter137 S_{alle} 0,884 R_{int} 0,0570R1 (beob./alle)0,0277 / 0,0740wR2 (beob./alle)0,0432 / 0,0520Extinktionskoeffizient0,00236(14) $\Delta \rho_{min/max} / e Å^{-3}$ 0,893 / -2,709	h_{min} / h_{max} , $k_{min} / k_{max} l_{min} / l_{max}$	-12 / 12, -14 / 14, -15 / 15
unabhängige Reflexe2867beobachtete Reflexe1583AbsorptionskorrekturNumerischRestraints0Anzahl Parameter137 S_{alle} 0,884 R_{int} 0,0570R1 (beob./alle)0,0277 / 0,0740wR2 (beob./alle)0,0432 / 0,0520Extinktionskoeffizient0,00236(14) $\Delta \rho_{min/max} / e Å^{-3}$ 0,893 / -2,709	gesamte Reflexe	12214
$\begin{array}{llllllllllllllllllllllllllllllllllll$	unabhängige Reflexe	2867
$\begin{array}{llllllllllllllllllllllllllllllllllll$	beobachtete Reflexe	1583
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Absorptionskorrektur	Numerisch
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Restraints	0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Anzahl Parameter	137
R_{int} 0,0570R1 (beob./alle)0,0277 / 0,0740wR2 (beob./alle)0,0432 / 0,0520Extinktionskoeffizient0,00236(14) $\Delta \rho_{min/max}$ / e Å ⁻³ 0,893 / -2,709	S _{alle}	0,884
R1 (beob./alle) $0,0277 / 0,0740$ wR2 (beob./alle) $0,0432 / 0,0520$ Extinktionskoeffizient $0,00236(14)$ $\Delta \rho_{min/max} / e Å^{-3}$ $0,893 / -2,709$	R _{int}	0,0570
wR2 (beob./alle) $0,0432 / 0,0520$ Extinktionskoeffizient $0,00236(14)$ $\Delta \rho_{min/max} / e Å^{-3}$ $0,893 / -2,709$	R1 (beob./alle)	0,0277 / 0,0740
Extinktionskoeffizient $0,00236(14)$ $\Delta \rho_{min/max} / e Å^{-3}$ $0,893 / -2,709$	wR2 (beob./alle)	0,0432 / 0,0520
$\Delta \rho_{\min/max} / e Å^{-3}$ 0,893 / -2,709	Extinktionskoeffizient	0,00236(14)
	$\Delta \rho_{min/max} / e Å^{-3}$	0,893 / -2,709

	х	у	Z	U(eq)
Hg(1)	4010(1)	1437(1)	5034(1)	55(1)
Cl(1)	5276(2)	2824(2)	4039(2)	66(1)
Cl(2)	2159(2)	837(2)	6056(1)	56(1)
Cl(3)	6110(2)	514(1)	6352(1)	51(1)
S1	3914(2)	2443(2)	1369(1)	53(1)
N1	4481(5)	2438(4)	-618(4)	45(1)
C(2)	5297(6)	1575(5)	998(5)	41(1)
C(1)	3629(6)	2889(6)	72(5)	52(2)
C(5)	7413(6)	388(5)	44(5)	49(2)
C(3)	5487(6)	1680(5)	-121(5)	39(1)
C(7)	6179(6)	860(5)	1652(5)	47(2)
C(6)	7230(6)	278(5)	1152(5)	49(2)
C(4)	6543(6)	1083(5)	-612(5)	45(2)
C(8)	4409(7)	2728(6)	8201(5)	57(2)
C(9)	5468(8)	3659(7)	7901(6)	74(2)
H(1)	2920	3416	-141	63
H(5)	8139	-17	-262	58
H(7)	6063	779	2395	57
H(6)	7835	-204	1570	59
H(4)	6660	1149	-1356	55
H(8A)	3501	3037	7999	69
H(8B)	4547	1986	7791	69
H(9C)	5384	3815	7132	110
H(9B)	6370	3352	8088	110
H(9A)	5322	4402	8292	110

Tabelle 115. Atomkoordinaten ($x \ 10^4$) und isotrope Auslenkungsparameter (Å ² x 10^3) von
35.	

				•		
Tabelle 116.	Anisotrope A	Auslenkungspa	rameter (Å	$x^{2} x = 1$	10^3) von	35.

	U11	U22	U33	U23	U13	U12
Hg(1)	52(1)	63(1)	51(1)	2(1)	6(1)	-8(1)
Cl(1)	63(1)	61(1)	75(1)	12(1)	11(1)	-11(1)
Cl(2)	51(1)	57(1)	60(1)	9(1)	14(1)	5(1)
Cl(3)	47(1)	62(1)	45(1)	-7(1)	1(1)	-1(1)
S1	46(1)	62(1)	52(1)	-1(1)	11(1)	5(1)
N1	42(3)	49(3)	42(3)	-1(2)	-1(3)	0(2)
C(2)	38(3)	40(3)	46(3)	-3(3)	2(3)	-4(3)
C(1)	44(4)	54(4)	59(4)	-3(3)	7(4)	-3(3)
C(5)	46(4)	39(3)	61(4)	-8(3)	1(3)	0(3)
C(3)	36(3)	37(4)	44(3)	-3(3)	-3(3)	0(2)
C(7)	52(4)	50(4)	40(3)	5(3)	3(3)	-6(3)
C(6)	42(4)	50(4)	55(4)	1(3)	-5(3)	4(3)
C(4)	47(4)	42(4)	47(4)	-5(3)	4(3)	0(3)
C(8)	57(4)	70(5)	44(4)	0(3)	-2(3)	12(4)
C(9)	78(5)	79(5)	65(4)	16(4)	11(4)	6(5)

"Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie – abgesehen von unten angegebenen Teilpublikationen – noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Gerd Meyer betreut worden."

Köln, den

Johannes Hermle

Zur Wahrung der Priorität wurden Teile dieser Arbeit bereits publiziert:

Hermle, J.; Meyer, G. Acta Cryst. 2011, 67, m1089.

Lebenslauf

Persönliche Daten

Name	Johannes Hermle
Geburtsdatum	07. August 1982
Geburtsort	Blaubeuren
Staatsangehörigkeit	deutsch
Familienstand	Ledig
Anschrift	Luxemburgerstr. 124–136
	50939 Köln
E-Mail:	j.hermle@uni-koeln.de

Schulbildung

1988 - 1992	Grund- und Hauptschule Nehren
1992 - 1994	Steinlach-Wiesaz-Gymnasium Dußlingen
1994 - 2001	Albert-Schweitzer-Gymnasium Leonberg
	Abschluss: Allgemeine Hochschulreife

Zivildienst

Marienhospital	Erftstadt
	Marienhospital

Studium

Universität zu Köln
Fachbereich Chemie
Diplom–Vorprüfung
Gesamtnote: sehr gut
Diplom
Gesamtnote: sehr gut
Promotion an der Universität Köln