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KURZZUSAMMENFASSUNG

In dieser Arbeit verleihen wir der Gaussent-Littelmann Formel fiir Hall-
Littlewood Polynome eine rein kombinatorische Gestalt fiir die Typen A,
B,, und ()}, indem wir von den in der Formel verwendeten One-Skeleton
Galerien zu Young Tableaux tibergehen. Mithilfe dieser kombinatorischen
Beschreibung zeigen wir weiter, dass die Gaussent-Littelmann Formel und
die bekannte Macdonald Formel fiir Hall-Littlewood Polynome vom Typ A,
iibereinstimmen.

ABSTRACT

We study the Gaussent-Littelmann formula for Hall-Littlewood polynomi-
als and we develop combinatorial tools to describe the formula in a purely
combinatorial way for type A,, B, and C,. This description is in terms of
Young tableaux and arises from identifying one-skeleton galleries that appear
in the Gaussent-Littelmann formula with Young tableaux. Furthermore, we
show by using these tools that the Gaussent-Littelmann formula and the
well-known Macdonald formula for Hall-Littlewood polynomials for type A,
are the same.



DANKSAGUNGEN

Mein grofter Dank gilt meinem Betreuer Professor Peter Littelmann dafiir,
dass er mir dieses schone Thema iiberlassen und diese Arbeit erméglicht hat.
Weiter mochte ich mich bei Dr. Stéphane Gaussent, Dr. Ghislain Fourier
und Bruno Niemann fiir viele hilfreiche Diskussionen bedanken.

Diese Arbeit wurde von dem DFG Schwerpunktprogramm Darstellungsthe-
orie 1388 finanziert.



CONTENTS

Kurzzusammenfassung

Abstract

Danksagungen

1. Introduction

2. Basics

2.1. Hall-Littlewood polynomials
2.2. Buildings

2.3. One-skeleton galleries

2.4. Galleries of residue chambers
3. Gaussent-Littelmann formula
4. Combinatorial Gaussent-Littelmann formula
4.1. Recurrence

4.2. Type A,

4.3. Type B,

4.4. Type C,

4.5. Combinatorial formula

5. Macdonald formula

6. Comparison of the formulas
6.1. Proof of Equality

7. Examples

7.1. Type A

7.2. Type By

7.3. Type Co

References



1. INTRODUCTION

The symmetric Hall-Littlewood polynomials Py(z,¢q) have an intrinsic
meaning in combinatorial representation theory generalizing other impor-
tant families of symmetric functions i.e. the monomial symmetric functions
and the Schur functions. Originally P. Hall defined the Hall-Littlewood poly-
nomials for type A, as a family of symmetric functions associated to certain
elements in the Hall algebra. Later, Littlewood defined them explicitly in
terms of the Weyl group W and a coweight lattice X for type A,, [Li|]. This
formula led to defining Hall-Littlewood polynomials of arbitrary type by re-
placing W and X in Littlewood’s definition by a Weyl group and a coweight
lattice of arbitrary type. These polynomials coincide with the so-called Mac-
donald spherical functions [Mac2|, thus both names appear in the literature
denoting the same objects.

There are various explicit combinatorial formulas for the Hall-Littlewood
polynomials proven by Gaussent-Littelmann, Macdonald, Lenart, Schwer,
Haiman-Haglund-Loehr [GL1] [Macl],[L1], [L2], [S], [HHL] to name only a
few. The first and probably most famous combinatorial formula, the Mac-
donald formula, is exclusively for type A,,. This formula is in terms of Young
tableaux of type A,. Most recently, Gaussent-Littelmann developed a for-
mula for Hall-Littlewood polynomials for arbitrary type as sum over posi-
tively folded one-skeleton galleries in the standard apartment of the affine
building. This formula has a geometric background which relates it closely
to the Schwer formula which is a sum over positively folded alcove galleries in
the standard apartment of the affine building. Let us explain the geometric
background and their connection more precisely:

Express a given Hall-Littlewood polynomial Py(z, q) of arbitrary type in the
monomial basis {m,(z)}uex,

Pa(z,q) = Y q MLy W (q)mpu()
HEXT

with Ly ,.(q) € Zlq].

The Satake isomorphism yields that the Laurent polynomial L) ,(q) can
be calculated by counting points in a certain intersection of orbits in an
affine Grassmannian depending on the coweights A and p over a finite field
[F,. Both, Schwer and Gaussent-Littelmann use this approach by describing
the elements in this intersection with galleries in the standard apartment of
the affine building, namely Gaussent-Littelmann use one-skeleton galleries
whereas Schwer uses alcove galleries. In geometric terms using different
types of galleries results from choosing different Bott-Samelson type vari-
eties. Gaussent-Littelmann refer to this connection between the formulas as
"geometric compression". One major advantage of using one-skeleton gal-
leries instead of alcove galleries is that there is a one-to-one correspondence
between the positively folded one-skeleton galleries of type A and target u for
some dominant coweights A and p and the semistandard Young tableaux of
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shape A and content p, for classical types. This correspondence leads to the
question whether it is possible to calculate the contribution to the Gaussent-
Littelmann formula of a positively folded one-skeleton gallery ¢ directly from
the associated semistandard Young tableau Ts. In the first part of this thesis
we give a positive answer to this question by developing the so-called com-
binatorial Gaussent-Littelmann formula. The key ingredient for the proof of
this formula is a recurrence for a certain set of positively folded galleries of
chambers in the standard apartment of the residue building that appears in
the Gaussent-Littelmann formula.

It turns out that the Macdonald formula and the combinatorial Gaussent-
Littelmann formula coincide for type A,. In fact, the Macdonald formula is a
closed formula for the recursively defined combinatorial Gaussent-Littelmann
formula. The aim of the second part of this thesis is to explain and prove this
equality. Apparently, the first indicator for the equality of the two formulas
is that they are both sums over semistandard Young tableaux. Further, in
the combinatorial Gaussent-Littelmann formula the contribution of a semi-
standard Young tableau is a product of contributions of the columns of the
tableau. These contributions only depend on the column itself and, if ex-
isting, on the column to the right. Reformulating the Macdonald formula
reveals this property in the formula, too, although it is not at all obvious at
first glance. We prove the equality of the two formulas by showing that the
contribution of every column is the same.

Since the Macdonald formula is valid only for type A, the formula of Gaussent-
Littelmann generalizes the Macdonald formula and provides it with a geo-
metric background.

This thesis is organized as follows:

In the second section we start by revisiting all basics regarding building
theory that we need in order to compute the Gaussent-Littelmann formula.
In the third section we state this formula. The combinatorial version of it
for type A,, B, and C, is developed in the fourth section including a de-
tailed description of the respective Young tableaux. In the fifth section we
present the Macdonald formula and the sixth section is devoted to proving
the equality of both formulas for type A,,.

2. BAsics

In this section we recall some basic notation, definitions and facts. Let
(X, ¢, X, #) be a reduced root datum where (.,.) denotes the non-degenerate
pairing between X and X" Let W be the Weyl group and I(-) denote the
length function on W. Further, let A = {aq,...,a,} be a fixed choice of
simple roots and ¢ the set of positive roots with respect to A, p is, as usual,
half the sum of all positive roots. Let

X, ={ e X| (\a)>0forallac¢™}

be the set of dominant coweights.



2.1. Hall-Littlewood polynomials. Consider the group algebra R[X] with
coefficients in some ring R. Let {e1,...,€,} be a Z-basis of unit vectors for
X By sending ¢; to x; for every ¢ we can identify this group algebra with
the polynomial ring in n variables over the ring R. In the following we
identify a given coweight p = pi1e; + -+ + punen, € X with the monomial
zh = )" x - x 2l The Weyl group W acts naturally on this algebra
thus we can consider R[X]" which is the algebra of invariants under this
action. This algebra is also known as the algebra of symmetric polynomials
due to the above identification. There are several classical bases known for
the algebra of symmetric polynomials. The one we need is the monomial
basis {mx(x)} ex, consisting of the monomial symmetric functions my(x)
for A € Xy. They are defined as follows:

my(z) := Z 2N,
weW/Wy
where W), is the stabilizer of X\ in W.
Now let R = Z[q,q~ '] be the ring of Laurent polynomials with coefficients
in Z. The Hall-Littlewood polynomials {Py(z,q)} ex, form a basis for
Z[q,q'][X]". They are defined as follows:

Prag) = o S wet [ A
2NT,q) = T =i w\xr ﬁ ,
Wie™) S e L
where Wy (q~!) = ZwGW)\ g~
Expanding the Hall-Littlewood polynomials {Py(z, )} xex-, in terms of the
monomial basis {m,(x)}.ex, leads to Laurent polynomials Ly ,(q):

Pa(x,q) = Y q MLy L (q)mp().
peEXy
The Gaussent-Littelmann formula describes exactly these Laurent polyno-
mials Ly ,(q).

2.2. Buildings. In this section we recall that part of the theory of build-
ings which is essential for understanding the combinatorics in this thesis (see
|[GL1]). For a detailed introduction to buildings we refer to Ronan’s book [R].

The Gaussent-Littelmann formula for Hall-Littlewood polynomials is in terms
of combinatorial one-skeleton galleries. These objects are contained in a fixed
standard apartment of the affine building.

Let A := X' ®z R be the real span of the coweight lattice. For every pair
(a,n) with « € ¢ and n € Z we define the affine hyperplane

Hpy i={r € A| (z,a) = n}.
Let H* = {H(op) | @ € ¢F, n € Z} be the set of all affine hyperplanes.

The standard apartment of the affine building associated to the given
3



root datum is the vector space A together with the hyperplane arrangement
He.

Recall that the Weyl group W is the subgroup of GL(A) generated by all
reflections
Sa(x) =2 — (o, z)

at the hyperplanes H, ) for @ € ¢ and z € A. The reflections s; = sq,
for i € {1,...,n} at the hyperplanes H,, ) are called simple reflections.
The set of simple reflections already generates W. We define the affine Weyl
group W% to be the subgroup of the affine transformations of A generated
by all reflections at the hyperplanes H®. We denote the reflection at the
hyperplane Hy ny by S(a,n)-

Let

H(En):{a:GA| (a,x) > n}
be the positive closed half-space and

He, 0 ={r e Al (a,z) <n}

be the negative closed half-space corresponding to (a,n).
A face F'in A is a subset of A of the following form:

— €(a,n)
F= (1 Hg
(a,n)€dpT XZ
where ey, € {+,—,0} and H(@a’n) = H(o)- By the corresponding open

face F° we mean the subset of F' obtained by replacing the closed affine half-
spaces in the definition of F' by the corresponding open affine half-spaces.
We call the affine span of a face F' the support of F', the dimension of
a face F'is the dimension of its support. We call a face of dimension zero
a vertex and a face of dimension one an edge. The faces given by non-
empty intersections of half-spaces are the faces of maximal dimension and
are called alcoves. For a vertex V let ¢y denote the subrootsystem of ¢
consisting of all roots a such that H(, ) contains V for some n € Z. We
call a vertex V with ¢y = ¢ a special vertex. The special vertices are
precisely the coweights X. We denote the subgroup of W consisting of all
reflections s, such that o € ¢y by Wy,. For an arbitrary face F'in A let Wp
be the stabilizer of F' in W and W} the stabilizer of F' in W*. Note that
W and Wy, are isomorphic. An important face, the fundamental alcove
Ay is defined as follows:

Ar={zeA|0< (a,z) <1Va€¢th

The fundamental alcove A ¢ is a fundamental domain for the action of W*
on A.

The type of a face F is defined as follows: Let S® be the subset of (¢1 x Z)
4



with Ay N Hgpy is a face of codimension one for (a,n) € (¢* x Z). Let F
be a face of A contained in Ay. The type of F'is defined as

t(F) = {(a,n) € S* | F C Higm}-

Let now F be an arbitrary face of A. Then there is a unique face F; of A
contained in Ay with the property that there exists an element w € W such
that w(Fy) = F. We define the type of F' to be t(F) = t(F}).

Let Q be a subset of A. We say that a hyperplane H € H® separates
Q and a face F of A if Q is contained in H* or H~ and F° is contained in
the opposite open half space.

The closures of the irreducible components of A\,cs H(a0) are called
chambers. The chamber that contains A is called the dominant cham-
ber and is denoted by C". This chamber is a fundamental domain for the
action of W on A. By applying the longest Weyl group element wg € W to
C™T we obtain the so-called anti-dominant chamber C~. This chamber
is the unique chamber of A such that every hyperplane H(,, o) separates a;
from C~ for all simple roots «;. A sector S at the vertex V in A is a cham-
ber C translated by the vertex V and the sector —S at V is the chamber
—C = {—xz | z € C} translated by V. We can define an equivalence relation
on the set of sectors as follows: Any two sectors are in the same equivalence
class if their intersection is again a sector. We denote the equivalence class
of a sector S by S. The set of all equivalence classes is in bijection with the

Weyl group W via the map that sends a sector S tow € W with w(C*) = S.

The last object we need to introduce is the standard apartment of the
residue building at a vertex V in A. The standard apartment of the residue
building at V is the vector space A together with the subset of H® consisting
of the affine hyperplanes that contain V. We refer to the standard apart-
ment of the residue building as Ay . The set of faces of Ay consists of all
faces F' of A that contain V. We denote the corresponding face in A by Fy .
Let S be a sector at V' in A. We associate to S a face Sy of Ay as follows:
Let A € A be the unique alcove in the apartment of the affine building with
S°NA° # (. Then Sy is defined to be Ay.

We can identify the faces of Ay as follows: Consider the set R of objects in

A of the form
€(a,n)
N Hely

(o,n)€dt X7
H(a,n)BV
where e,y € {+, —, 0} and H(@a ) = Han)- We identify every face F of Ay
with the object in R that contains F' and is the smallest with this property.
Because of this identification we call a face Fy in the standard apartment of
5



the residue building at V' coming from an alcove F' in the apartment of the
affine building a chamber.

Consider the sector C~ 4V, the translated anti-dominant chamber in A. We
denote the corresponding chamber in the standard apartment of the residue
building at V' by Cy,. The chamber Cj, is a fundamental domain for the
action of the subgroup Wy, of W* on Ay. Let {B1,...,5n} be the set of
simple roots for ¢y such that for every (53;,n;) with Hg, ,,) contains V' the
hyperplane H g, ,) separates 07+ V from Cj,. The reflections sg, ,) for
i € {1,...,m} are the simple reflections of the Weyl group Wi}. Since there
will be no room for confusion we also denote the simple reflections of W, by
8; = 8(g,n;) for i € {1,...,m}. With respect to this set of simple reflections
O, is the anti-dominant chamber of Ay. Let F' be a face of Ay in Cj,. The
type of I is defined as t(F) = {i | I' € H(g, n,)}.- Now let I be an arbitrary
face of Ay, then there exists a unique face Fy € C, and a w € Wy} such
that F' = w(Fy). We define the type of F' to be t(F') = t(F}). Note that we
start by defining the type of the faces of the anti-dominant chamber Cy, and
not of the dominant as in the definition of the type of a face in the standard
apartment of the affine building.

2.3. One-skeleton galleries. In general, a gallery is a sequence of faces in
the standard apartment of a building where a face is contained or contains
the subsequent face.

Definition 1. A one-skeleton gallery in A is a sequence § = (Vo C Eg D
Vi C - D Viy1) where

(i) Vi fori € {0,...,r+ 1} is a vertex in A and

(ii) E; for i€ {0,...,r} is an edge in A.

We can concatenate two one-skeleton galleries § = (Vy C Eg D V3 C -+ D
‘/7~+1) and 5/:<VHCE63V1/CDW+1) 1fV}+1:V0’1nAby

00 =V CEDVIC- DV =V CE DV C DV,

We also use this notation if the last vertex of the first gallery does not co-
incide with the first vertex of the second one. In this situation § *x ¢’ means
the concatenation of 6 with the translated gallery ¢ + (V41 — V).

The formula of Gaussent-Littelmann is in terms of combinatorial one-skeleton
galleries.

Definition 2. A combinatorial one-skeleton gallery in A is a one-skeleton
gallery 6 = (Vo € Ey D Vi C -+ D Viy1) where Vy and V41 are special
vertices.

Let w be a fundamental coweight. We define a combinatorial one-skeleton
gallery d, = (0 C Eg D -+ D w) associated to w as follows:
Consider R>ow the real span of w in A. Let Ey be the unique edge in
the intersection of the fundamental alcove Ay with R>ow. Let V; be the
vertex contained in Ey different from V. If V] is w (as it is if and only if w is
6



minuscule) then §,, = (0 C Fy D w). Otherwise the subsequent edge F is the
unique edge in R>ow that contains V; and is different from Ey and so on until
the vertex is w. We call these one-skeleton galleries fundamental although
they do not have to be contained in the fundamental alcove and we call
E,, := Ey the fundamental edge and V,, := V; the fundamental vertex in w-
direction. Unless w is not minuscule V,, does not coincide with the vertex w.
Further, we define the minuscule one-skeleton gallery ép, = (o C E, D V)
and its Weyl group conjugates d,(g,) = w(dg,) = (0 C w(E,) D w(Vy,))
for w € W. Every edge in the apartment A is a (displaced) Weyl group
conjugate of a fundamental edge. Thus, every one-skeleton gallery d is a
concatenation of Weyl group conjugates of minuscule one-skeleton galleries
ie. 0= 5“’0(5%) D 5wr(Ew¢T) where w;; are fundamental coweights and
w; € W for every i. We refer to this presentation of a one-skeleton gallery
as its minuscule presentation.

We now define a combinatorial one-skeleton gallery associated to a dominant
coweight: Let wq,...,w, be an enumeration of the fundamental coweights
and let A = Y . \w; € X be a dominant coweight. The associated one-
skeleton gallery d) is defined as follows:

On = Oy -+ k Oy k- vk Oy %o % Oy,
Definition 3. The type of a one-skeleton gallery 6 = (Vo C Ey D --- C
E, CV,y1) in A is defined as
t(0) = (S*(Vo) € S“(Ep) O - 2 5%(Vit)).
We say a combinatorial one-skeleton gallery 6 in A has type X for some

X€E X, if t(8) = t(6y).

Note that there exist combinatorial one-skeleton galleries such that the
type is not a dominant coweight A. For example for the combinatorial one-
skeleton gallery 6 = (0 C Ep D %wl C E1 D we) with Fy = {tw; |t € [0, %]}
and By = {3w1 + t(ws — 3w1) | t € [0,1]} in the standard apartment of the
affine building of type By there does not exist a dominant coweight A such
that A is the type of d:

o= é(61+62)

62_."




In order to define some properties of combinatorial one-skeleton galleries we
need to introduce 2-step one-skeleton galleries:

Definition 4. A 2-step one-skeleton gallery 0 in A is a one-skeleton gallery
i A of the following form

d=(WCEDV DFCW).
We omit the vertices Vy and Vs in the following.

Note that the 2-step one-skeleton galleries do not need to be combinatorial
one-skeleton galleries.

Definition 5. Let (E DV C F) be a 2-step one-skeleton gallery in A. We
call (E DV C F) minimal if there exists a sector S at V in A such that
FeSand E € -S.

A one-skeleton gallery § = (Vo C Eg D V4 C - D Vig) in A is called locally
minimal if the 2-step one-skeleton gallery 6; = (E;—1 D V; C E;) is minimal
forie{l,...,r}.

We call § (globally) minimal if there exists an equivalence class of sectors
S such that there exists a sector S; € S with E;_y € S; and E; € —S; for
ie{l,...,r}.

Clearly, global minimality implies local minimality.

We can associate to a given 2-step one-skeleton gallery (E DV C F)in A a
pair of faces (Ey, Fy) in Ay and vice versa. We call the pair (Ey, Fy) a mini-
mal pair if and only if the associated 2-step one-skeleton gallery (E D V C F)
is minimal in A.

Definition 6. We say we obtain (E DV C F) by a positive folding from
(E DV C F') if there exists (a,n) in (o7 x Z) with sqn)(F') = F,
V € Hian) and H ) separates Cy, and F' from F.

A 2-step one-skeleton gallery (E DV C F) in A is called positively folded if
it 1s minimal or if there exist faces Fy, ..., Fy in A such that

o ['= E;

e (EDV C Fy) is minimal and

o (EDV CF) is obtained from (E D'V C F;_1) by a posilive folding

for every i € {1,...,1}.

A one-skeleton gallery 6 = (Vo C Ey D -+ D Viy1) in A is called locally
positively folded if

e (E;_1 DV; C E;) is positively folded for everyi € {1,...,r}.

As already mentioned it holds that the set of equivalence classes of sectors
in A is in bijection with the Weyl group W. Consequentley we can carry the
Bruhat order from W over to the equivalence classes: Let S and S’ be two
equivalence classes of sectors in A. Then S > S7if and only if w; > ws with
w1(CF) = S and wy(CH) = 5.
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Definition 7. A one-skeleton gallery 6 = (Vo C Eg D -+ D Vipg1) in A is
called (globally) positively folded if

(1) 9 is locally positively folded and
(ii) there exists a sequence of sectors So, e Sy such that S; is a sector
at Vi and contains E; and So > --- > S, for everyi € {1,...,r}.

In [GL1] Gaussent and Littelmann show under which conditions locally
positively folded implies positively folded and local minimality implies min-
imality. In this thesis we concentrate on the root systems for type A,, B,
and C),. In these cases the theorem provides the following:

Theorem 8. Let A be a dominant coweight and let wy, . .., wy be the Bourbak:
enumeration of the fundamental coweights. Let § be a combinatorial one-
skeleton gallery in A of type X. If 0 is locally positively folded (resp. locally
manimal) then it is positively folded (resp. minimal).

2.4. Galleries of residue chambers. The next objects we need in order to
compute the formula are the galleries of (residue) chambers in Ay for some
vertex V in A. In this section we define what galleries of chambers are and
introduce some of their properties.

Let V be a vertex in A.

Definition 9. A gallery of chambers in Ay is a sequence C' = (Cy D Hy C
Cy D -+ CC,) where
(i) H; is a face of Ay coming from a codimension one face in A for
ie{l,...,r} and
(i) C; is a chamber of Ay for all i € {0,...r}.

The type of a codimension one face in a gallery of chambers is only a num-
ber in the set {1,...,m}. We define the type of a gallery of chambers
C=(CyDH CCiD---CCy) to be the sequence (t(Hi),...,t(H,)). In-
stead of describing a gallery of chambers as sequence of chambers and faces
of codimension one, we write only the sequence of chambers and additionally
the type of the gallery throughout the thesis.

One crucial definition is the following:

Definition 10. Let ¢ = (Cy,...,C;) be a gallery of chambers in Ay of
type © = (i1,...,1,). If C; = Cjq1 for some j we call the pair (Cj,Cjt1)
a folding of c. Let Sy be a chamber of Ay. We say a folding (Cj,Cjt1)
is positive (resp. negative) with respect to Sy if H(ﬂij+1ani,-+1) separates Sy
from C; = Cji1 (resp. separates —Sy from C; = j+1). The gallery of
chambers ¢ is said to be positively folded (resp. negatively folded) with re-
spect to Sy if all foldings of ¢ are positive (resp. negative) with respect to Sy .

Every pair (Cj,Cj11) that is not a folding is called a wall-crossing of type
ij+1 or a wall-crossing of H(,Bi.+17ni-+1)' We say a wall-crossing (Cj, Cj41)
J J

9



of type ij11 is positive (resp. negative) with respect to Sy if Hg,

1M 41)
separates Sy and C; from Cji1 (resp. separates —Sy and C; from Cjiq).

Associated to a gallery of chambers we can define the so-called +-sequence:

Definition 11. Let ¢ = (Cyp,...,C;) be a gallery of chambers in Ay of
type © = (i1,...,9,) and Sy be a chamber. We call the sequence pm(c) =
(c1y...,¢p) with
+, if (Ci—1,Cy) is a positive wall-crossing or positive folding
c; = with respect to Sy,

—, else

the £-sequence of ¢ with respect to Sy .

3. GAUSSENT-LITTELMANN FORMULA

In this section we introduce a few more definitions and then finally state
the Gaussent-Littelmann formula for Hall-Littlewood polynomials of arbi-
trary type as in [GL1].

Let A and p be dominant coweights and fix an enumeration w1, . . ., w, of the
fundamental weights. We define I'" (8, 1) to be the set of all positively folded
combinatorial one-skeleton galleries § = (0 = Vo C Eg D --- D Vp41) in A
with Vy41 = p and ¢(8) = t(6y). Now let 6 = (0 =Vp C Eg D --- D Vopq) be
in T (3, u). For every j € {1,...,r} we define the following:
e D; is the chamber in the standard apartment of the residue building
at Vj closest to C;j containing (Ej)y;,
e 57 is a sector at V; containing Ej_y and —S57 contains a face F' that
has the same type as I,

. e G 1 4 a . e )
® iy oSy, I8 a reduced expression for w € Wy, with w(CVj) = Dy,

define IJ = (ijl’ v 7ijr‘j>'
We denote by F;} (i, 0p) the set of all galleries of chambers ¢ = (C;j,

Ci,...,Cp)) in A‘J/j with type i; that are positively folded with respect to
Sﬂj and have the property that the face F\'/] that is contained in C,, and
has the same type as (E;)y, forms a minimal pair with (E;_1)y, in Ay,. Let
wp, be the element of W that sends Cy, to Dy.

In the Gaussent-Littelmann formula we need two statistics for a given gallery
of chambers ¢ = (Co = Cy,,C1, ..., C,;) in F;{/ (i, 0p):
J
r(c) is the number of positive foldings of ¢ and
t(c) is the number of positive wall-crossings of c.
Now we can finally state the Gaussent-Littelmann formula for the Laurent
polynomial Ly ,(q):
10



Theorem 12.

()= > ¢ (] > ¢9a-1")
SETH (0, 11) j=1 ceF;j (#;,0p)

Vj

One significant property of this formula is that the summand of the first

sum for § = (0 = Vo C Ep D -+ D Vp41) can be interpreted as the product
over all edges E; for j € {0,...,r} as follows:

Define
c(Ey) = ¢"ro) and
C((Ejfl oV C EJ)) = Z qt(C)(q - 1)r(c) for j € {17 ce 7T}'
cert, (ij,0p)
s{,j
We obtain

Corollary 13.
Lag@) = Y cBo)[[e(Ei-1 oV, c Ey)).

GET (dx,1) J=1

Define .
(6) = e(By) [ el(Bj-1 > Vi € Ey)).
j=1

We want to point out that the contribution ¢(Ey) of Ey only depends on
the edge Ey itself and that the contribution c¢((Ej—1 D V; C Ej)) of E; for
j€{1,...,r} only depends on the 2-step gallery (E;_1 D V; C Ej).

4. COMBINATORIAL GAUSSENT-LITTELMANN FORMULA

In this section we state a recurrence for the set of galleries of chambers
F;rj (i, 0p) that is used in the Gaussent-Littelmann formula in order to com-

putje Ly ,. This recurrence holds for arbitrary type. Furthermore, we intro-
duce Young tableaux of type A,,B, and C,, that can be identified with one-
skeleton galleries in the associated standard apartment of the affine building.
Using the language of Young tableaux and the recurrence leads to a com-
binatorial version of the Gaussent-Littelmann formula for type A,, B, and
Cy, in terms of Young tableaux.

4.1. Recurrence. Let \ and p be dominant coweights and fix an enumera-
tion wi,...,wy of the fundamental weights. Let § = (o =Vp C Eg D -+ D
V,1+1) be a positively folded combinatorial one-skeleton gallery in T'"(dy, u1).
In this section we want to take a closer look at the set F;j (ij,0p) for

jeA{l,...,r}. To calculate F:]V (ij, 0op) we only need the 2-step one-skeleton

gallery (E;—1 D V; C Ej). This]ga,llery on its own is again positively folded.
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For this reason we work in this section only with positively folded 2-step
one-skeleton galleries. Let (E D V C F) be a 2-step one-skeleton gallery
in A. Throughout the following we identify (E D V C F) in A with the
associated gallery in Ay . First of all we need to fix some more definitions:

Let ks be the type of the face F' in Ay. Further let F; be the face in
Cy, with type ka. Then wp € WY, denotes the minimal Weyl group element
that sends Fy to F. The length of a face F' is defined by

I(F) = l(wp).

This is equivalent to saying that [(F') is the length of the minimal Weyl
group element that sends Cy, to a chamber that contains F.

Let D be the chamber in Ay that contains F' and is closest to Cy,. Further
let s;, ---s; be a reduced expression of the Weyl group element wg in W7;.
Then s;, ---s; sends Cy, to D. Define i = (i1,...,4%;). Let Sy be a chamber
in Ay that contains E. Now define F:gv(i,op) = ng((E DV C F),i) to
be the set of all galleries of chambers ¢ = (C,,,C} ..., () with type i that
are positively folded with respect to Sy and with the property that the face
that is contained in C; and has the same type as F' forms a minimal pair
with E in Ay. Define F;V((E D V C F)) to be the disjoint union of all
F;V((E DV CF),j=(j,---,41)) where sj, ...sj, is a reduced expression
of wp in Wy,.

Let k1 be the type of E and ko the type of F' in Ay, then k = (ki, k2)
denotes the type of the 2-step one-skeleton gallery (E DV C F'). Define the
following sets:

I't(k) = {(E' >V C F') | positively folded with type k},

(k) = U L (B'>V cF)).
(E'DVCF)elt (k)
S{, a chamber in Ay that contains E’
Further we can write F;V((E DV C F)) as the disjoint union of the set of
galleries ¢ € ng((E DV C F)) with a folding in the first position, call this

set I‘gv((E OV C F)), with the set of galleries ¢ in T'{ ((E DV C F))

\4

with a crossing in the first position, call this set I'g ((E DV C F)):

I{ (EDVCF) =T, (EDVCF) UT% (EDV CF)).

We are going to state a recurrence for the set I'f (k). For this purpose
we need to define two different ways to construct a gallery of chambers in
12



' (k) out of a given one. Let us begin with the first construction:

We want to start with a gallery of chambers in F;V((E DV C F)) and
end up with one in F;;(SV)((SJ'(E) DV Cs;(F))) where l(s;(F)) = I(F)+1.

Remark 14. For F ¢ C’{ﬁ there always exists such a reflection.

Letc = (Cy,Cy,...,Cr) € F;V((E DV C F),i) be a gallery of chambers.
Let s; be a simple reflection in Wy} with

I(sj(F)) =1(F)+1.
Define
c1 = (Cy,5;(Cy),5i(C1), ..., s;(Ch))
with type (j,1).

Theorem 15. Then
c1 €I (5,)(55(E) DV C s5(F), (j,4))
holds and we get the following map:
ATE(ESV L) — T g (55(B) >V C si(F)).(7,9)
c=(Cy,C,....,C0) +— c1 = (Cy,55(Cy), 5(Ch), ..., 5;(Ch)).
Moreover the one-skeleton gallery (s;(E) DV C sj(F)) is positively folded.

Proof. In order to prove the statement we need to check three properties of
the new gallery cy:

(i) type of ¢; has to be correct,
(ii) all foldings in c; are positive with respect to s;(Sy),
(iii) the face that is contained in s;(C;) and has the same type as s;(F)
forms a minimal pair with s;(E).
For (i): The element s;wp sends Cy, to the chamber that contains s;(£') and
is closest to C, because [(sjwr) = [(wr) + 1. Further s;, ---s;, is a reduced
expression of wg. It follows:
8584y ** Sq;

is a reduced expression of s;wp.
For (ii): Since all foldings in ¢ are positive with respect to Sy all foldings in
c1 are positive with respect to s;(Sy).
For (iii): Asc e Tt ((F DV C F),i) the following holds: The face F’ that
is contained in Cj and has the same type as F forms a minimal pair with
E in Ay. Subsequently, s;(E) and s;(F’) form a minimal pair and since
s;(F") € s;(C;) we get the desired property.
From Theorem 6.5 in [GL1] it is clear that (s;(E) DV C s;(F)) is positively
folded. O

Remark 16. Informally speaking we reflect the gallery and extend it in such
a way that the new gallery starts again in CY,.
13



We have the following lemma.
Lemma 17. Let pm(c) be the +-sequence of ¢ with respect to Sy. Then

pm(ecr1) = (a,pm(c)) , where

)

0 {+ , l(sjwsy,) = Hws, ) — 1

—, else

where wg,, € WY, is the element that sends C\, to Sy is the £-sequence of
c1 with respect to s;j(Sy).

Proof. That the two +-sequences coincide except for the first crossing is
clear. It remains to calculate the sign of the first crossing:

Consider (s;(E) DV C s;(F)). The element sjwg, sends C|, to s;(Sy).
For the first crossing we get

+ L if U(sjsjwsy, ) = U(sjws, ) + 1,

— L if U(sjsjws, ) = U(sjws, ) — 1.
And this is equivalent to saying

,if U(sjwsy, ) = lwg, ) + 1,

+ L if I(sjws,) = l(wg, ) — 1.

Example
Let (E DV C F) be a 2-step one-skeleton gallery in the standard apartment
of the residue building of type Ay with E = F = {V +t(e1 +¢€3) | t € [0, 00]}:

V + e / F

The dotted line in the picture illustrates the only gallery of chambers c in
the set F;rv((E OV C F),(1)). For the simple reflection sy € W which is
the reflection at the hyperplane containing V' + € it holds that I(so(F)) =
I(F) + 1. Consequently, we can apply fZ to Fgrv((E DV CF)1)):

14



The dotted line in the picture illustrates the new gallery of chambers c;.

Let us now get to the second construction. In this construction we start
with a gallery of chambers in ng((E DV C F)) and end up with a gallery
of chambers in ng((E DV Cs;(F))) where I(s;(F)) = I(F) +1. Let again
c=(C,C,...,Cp) € F;V((E DV C F),i) be a gallery of chambers.

Let s; be a simple reflection in Wi with I(s;(F)) = I(F)+1 and l(sjws,, ) =
l(wg, ) — 1.
Define
Co = (C‘;,C‘;,Cl, Ce ,Cl)
with type (j,1).
Theorem 18. Then
e2 €4 (EDV C 5i(F)). (4:4))

holds and we get the following map:

f3TE(ESVCE)  —  TL(EDVCs(F)).9)

c=(Cy,Ch,...,Cy) — c = (Cy,Cy,Ch,...,0).

Moreover the one-skeleton gallery (E DV C s;(F)) is positively folded.

Proof. Like in the first construction we need to check three properties of the
new gallery co:
(i) type of c2 has to be correct,
(i) all foldings have to be positive with respect to Sy,
(iii) the face that is contained in C; with the same type as s;(F) forms a
minimal pair with F.

For (i): see the proof of the last construction.
For (ii): neither F nor the walls on which the foldings are are changed, it
remains to show that the new folding in the first step is positive. For having
a positive folding we need

l(sjws, ) = l(wg, ) — 1.
But this was our assumption.
For (iii): the type of F' coincides with the type of s;(F) and C; does not

change, consequently the desired property follows.
15



It again follows from Theorem 6.5 in [GL1] that (£ D V C s;(F)) is posi-
tively folded. O

As in the first construction we are interested in the £-sequence of the new
gallery ca:

Lemma 19. Let pm(c) be the +-sequence of the gallery ¢ with respect to
Sy .
Then:
pm(e2) = (+,pm(c))
1s the +-sequence of co with respect to Sy .

Proof. There is nothing to show. (]

Example
Let (E DV C F) be a 2-step one-skeleton gallery in the standard apartment
of the residue building of type Ag with E = {V +t(e; +¢€2) | t € [0,00]} and
F = {Vth(Gl + 63) ‘ te [0,00]}

The dotted line in the picture illustrates the only gallery of chambers c
in the set ng((E O V C F),(1)). For the simple reflection s, € W
which is the reflection at the hyperplane containing V + €; it holds that
l(s2(F)) =1(F)+1 and I(sqws,, ) = l(ws, ) — 1. Consequently, we can apply
12 to ng((E DV CF)(1)):

The dotted line in the picture illustrates the new gallery of chambers c;.

Using the two constructions presented above we show that the set I'[ (k)
can be build recursively from special galleries which are described in the
following lemma:

16



Lemma 20. Let (E DV C F) be a positively folded one-skeleton gallery
with ' € Cy, and let Sy be a chamber that contains E and V in the standard

apartment of the residue building at V.
Then

IS, (EDV CF))={ec}={(Cy)}

Proof. As Fisin Cy, it follows: The chamber that contains F' and is closest
to O, is O, itself. Therefore the Weyl group element in Wy} that sends Cf,
to this chamber is id with (id) = 0. The claim follows. O

Now we can finally formulate the recurrence for I'} (k):

Theorem 21. Recurrence for the galleries of chambers

Let (E DV C F) be a positively folded one-skeleton gallery of type k. Let
¢ be a gallery of chambers in ng((E DV CF)i=(i1,...,i1) C T'F(k).
Then there ezists a unique (E' DV C F') € Tt (k) with F' C Cy; and a
unique chamber S{, with S{, D E' and a unique sequence (pi,...,p;) with
pm € {1,2} for every m € {1,...,1} such that:

c= I’,i( ;,3 ;i(co)...),

where ¢ € TS, (E' >V C F')).
14

Proof. In order to prove the recurrence we define the inverse maps to ff and
/3. Recall that we can write F;CV((E DV C F)) as the disjoint union of
I‘év((E DV CF))and I'g ((E DV C F)). If the crossing in the first
position of the galleries is of type i then we write I'§ ((E DV C F)) and if
the folding in the first position is of type i then we write Féiv (ED>V CF)).

Further recall the two constructions:
Let s; be a simple reflection in W with I(s;(F)) = [(F) + 1. We get:

AOTEESVERL)  — T8 (5(B) 2V € 5(F), (i)
C:(C‘;,Cl,...,cl) — Cq :(O‘;,Sj(c‘;),sj‘(cl),...,Sj(Cl)).

If additionally [(sjws, ) = l(wg, ) — 1 holds for j then we get:
f L (EDV CF)i) —  TE((EDVCsi(F), (1)
c:(C;,Cl,...,Cl) — CQZ(C‘;,C‘;,Cl,...,Cl).

Now we want to construct the inverse maps for these. Let (E DV C F) be
a positively folded gallery with ' ¢ C,,. Define

FTL(ESVCRLGE)  — T (5(B) SV € sy(F))
c=(Cy,Ch,...,C) — ¢ = (5;(C1) =Cy,...,55(C1)).
17



Further define:

fTE (ESVCF),(i) — T (EDVCs(F),i)
c:(C"j,ClzC‘j,...,Cl) — 622(0120‘;,...,00.

With the same arguments as in the constructions of ff and f‘Qj we get that
fI and f] are defined in a proper way i.e. that & € F;(SV)((SJ'(E) oV C
5j(F)),(i)) and that ¢o € F;V((E DOV Csj(F)),i) and that (s;(E) DV C
5j(F)) and (E DV C s;(F)) are positively folded.

It is easy to check that these maps are the inverse maps to ff and fg.

We now want to prove the statement. Let ¢ be a gallery of chambers in
Iy, (B DV C F)i) C I'f(k). Depending on whether the first step is a

crossing or a folding we can apply either ffl or 21. Now we take the resulting
gallery of chambers and check again which one of the two maps f{z and f;Q
can be applied and so one. In other words, how to reduce a given gallery
of chambers step by step is determined by the shape of the gallery itself.
Therefore there exists a unique (E' D V C F') € I't (k) with F' C C}, and
a unique chamber S{, with S{, D E’ and S{, D V and a unique sequence
(p1,-..,p) with py, € {1,2} for every m € {1,...,1} such that

c= ﬁ( ;g Iﬁ;(co)...),

where ¢q € rg,v((E’ DV CF)). a

4.2. Type A,. Let A be the standard apartment of the affine building of
type A,. The coweight lattice X can be identified with Z"*1/(1,...,1) and
we identify the weight lattice X with X using the standard inner product on
Z™*L1. The simple coroots are a; = €; — ;41 for i € {1,...,n} where ¢; is the
ith unit vector of Z"*!, the simple roots a; coincide with the simple coroots
a;. The positive roots are €; — €; with 4 < j and p = 1/2 )" positive roots =
1/2(n)e1+1/2(n—2)ea+- - -+1/2(—n)ep41. For the fundamental coweights we
choose the Bourbaki enumeration i.e. w; = €;+---+¢; fori € {1,...,n} [B].
The combinatorial one-skeleton gallery associated to a fundamental coweight
w; coincides with the minuscule one-skeleton gallery in w;-direction i.e. d,, =
0p,, = (0 C Ey, D w;) for i € {1,...,n} since all fundamental coweights
are minuscule for type A,. The combinatorial one-skeleton galleries of the
same type as w; are 0r(g, ) = (0 C 7(Ey,) D 7(w;)) with 7 € W/W,,.
A dominant coweight A = Aje; + ... €, is given by a weakly decreasing
sequence A1 > --- > A\, > 0. Recall that d, denotes the combinatorial one-
skeleton gallery d4,u, *- + “*0q,,w, Where A =Y a;w;. In this section we restrict
ourselves to combinatorial one-skeleton galleries 6 = 0, By )Xo o ( Eu, )

with 79 < --- < 4,. Note that for every one-skeleton gallery ¢ of type A,

there exists a dominant coweight A such that ¢(§) = ¢(dx). The Weyl group

W is the symmetric group S,4+1. Consider the action of W on the coweights

X Let A € X be given in the basis {e€, ..., €,41}. Then applying the simple
18



reflection s; to A interchanges the coefficient of ¢; with the coefficient of €;41
and fixes the coefficient of €; for j ¢ {i,7 + 1} for every i € {1,...,n}.
Since every vertex V' is special the Weyl group Wy, coincides with W.

4.2.1. Young tableau of type A,. Let A = Aje1 + - -+ 4+ A€, be a dominant
coweight and let r be the smallest index with A\.4; = 0. We associate to
A a diagram consisting of r left-aligned rows where the ith row consists of
A; boxes (from top to bottom). In the following we denote the diagram by
dg()).

Example.

For A\ = 3¢1 + 3¢9 + 2¢3 + 1leg we obtain

dg(\) =

A Young tableau T of type A, of shape ) is the diagram dg(\) where
each box is filled with a number in {1,...,n + 1} such that the entries
are strictly increasing in the columns (from top to bottom). The coweight
W= p1€1 + -+ + Unti1€nt1, where p; is the number of boxes in the diagram
in which an ¢ is inserted is called the content of the Young tableau.
Example.

The Young tableau

w
[\

‘»chow_n
i~

has shape A as in the first example and content = 2¢; 4 3e2 + 2€3 + 2¢4.

Let T be a Young tableau and C; denotes the ith column of T for i €
{0,...,1} (from left to right). We call T' minimal if all entries of C; also
appear in C;_q for i € {1,...,1}.

Example.

w
=~

‘»kaw.—u
B~

A Young tableau T is called semistandard if the entries are weakly increas-
ing from left to right in the rows.
Example.

\V)
\V)

o
W

,_\‘»BOJI\DH
ot

©



Note that minimal Young tableaux are always semistandard. Let SSYT (), u)
denote the set of all semistandard Young tableau with shape A and content
1b.

We can identify one-skeleton galleries in A with Young tableaux of type A,
as follows:

Let 6 = 0y (B, )*** *0uw, (£, ) be aone-skeleton gallery. Let wy(w;, ) = €x, +

i0 ir
o te, for k € {0,...,7}. Then we associate to Owy (E,, ) the column C_g
3

consisting of j boxes filled with the numbers k1 < --- < kj; in increasing order
from top to bottom. The Young tableau T5 = (Cy, ..., C,) that we associate
to the one-skeleton gallery § is the tableau that we obtain by putting the
columns next to each other aligned at the top. This tableau has shape
A= Z;:O wi]..

Example.

For ¢ = (5515332(&2) * Oy 535483 (Fuy) * 0E,,) the associated Young tableau is

212
314
3 .

Ts =

‘.kal\vr—l

This assignment is clearly a bijection between the set of Young tableaux of
type A, of shape A and the combinatorial one-skeleton galleries of type A,, of
type A for a dominant coweight A starting in the origin o. Thus for a Young
tableau 7' = (Cy,...,C}), the one-skeleton gallery ér = (0 C Ey D Vi C
.-+ D Vp41) denotes the associated combinatorial one-skeleton gallery where
E,_; is the edge corresponding to the column Cj for j € {0,...,r}. A 2-step
one-skeleton gallery (E D V' C F') becomes a 2-column Young tableau, a
Young tableau consisting of only 2 columns, at vertex V.

Now we can investigate how being minimal and positively folded for a one-
skeleton gallery translates in terms of Young tableaux:

Theorem 22. This assignment defines a bijection between the set of all
minimal Young tableaux of shape A and the set of all minimal combinatorial
one-skeleton galleries of type \ starting in the origin o. Further, it also
defines a bijection between the set of all semistandard Young tableaux of shape
A and the set of all positively folded combinatorial one-skeleton galleries of
type X\ starting in the origin o.

Remark 23. The proof that semistandard Young tableauz of type A, and
positively folded combinatorial one-skeleton galleries of type A, are the same
can be found in [LMS| and in |GL1|. For the convenience of the reader we
also give a detailed proof.

Proof. Because of Theorem 8 it suffices to show that the set of all minimal
2-step one-skeleton galleries starting in the origin o is in bijection with the
20



set of all minimal 2-column Young tableaux and that the set of all positively
folded 2-step one-skeleton galleries starting in the origin o is in bijection with
all semistandard 2-column Young tableaux:

We begin with minimality: Let (E D V C F) be a minimal 2-step one-
skeleton gallery in A. We can assume that V is a special vertex because we
are in type A,. Because (E D V C F') is minimal we know that there exist
fundamental coweights w;, and w;, with ¢; < iy and a minimal Weyl group
element w € W such that the minuscule presentation of (E D V C F) is
5“’(Ew1) * 61U(Ewi2)' Consider

w(wiy) = w(wiy + €11+ -+ €y) = w(wiy) +wle 41+ -+ €y).

Thus the set of all entries in the column Cr associated to F' contains the set
of all entries of the column Cg associated to E.

Conversely, let T be a minimal 2-column Young tableau where C denotes
the first and C5 the second column of T'. Let [; denote the number of boxes
in C7 and ly the number of boxes in Co. Let (E D V C F) be the as-
sociated 2-step one-skeleton gallery. We now give an explicit construction
of the minimal Weyl group element w € W such that d,, Euy ) * Ou( Buy,) is

the minuscule presentation of (EF D V C F): Without loss of generality we
assume that [1 > [5. Because if [; =[5 then the set of entries is the same in
both columns. Let {i1,...,4;,} be the set of entries in Cy and {j1,...,Ji,}
the set of entries in Cy. If 7;; is not an entry of C then Sig, —1°"" 8l does
not change wy, but s;, —1--- s, (wi,) = wi, — €, + €, . Go on like this until
im = Ji,- Now applying s;_ —1---si, to i —1---s;(wy,) does not change
anything and w;, becomes wi, — €, +¢€;,,. By iterating these steps we derive
the Weyl group element w € W with the desired properties.

Now consider a 2-step one-skeleton gallery (E D V C F') that is positively
folded. Without loss of generality we assume that (£ D V C F)) is not min-
imal. Then there exists a minimal 2-step one-skeleton gallery (E DV C F')
such that we obtain F' from F’ by a positive folding. This means that there
exist fundamental coweights w;, and w;, with 41 > 2 and Weyl group ele-
ments wi and ws such that 5“’1(Ew¢1) *5“)1(Ew¢2) is the minuscule presentation

of (E DV C F') and that 0y, (g, ) * Owyw, (B, ) i the minuscule presenta-
11 12

tion of (E DV C F). In type A,, we can conclude that wy interchanges the
coefficient of some ¢; with the coefficient of some €; with j > 4. Let wo € W
be the minimal Weyl group element with this property. Consider

wawi (wiy) = wa(wi(w1)) + wowi (€, 41 + - - + €y).

Because ws is minimal it interchanges only the coefficient of some ¢; with

the coefficient of some €; with j < 7. The desired property follows.

Conversely, let T" be a semistandard Young tableau where C denotes the

first and C3 denotes the second column. Let (E D V C F') be the associated

2-step one-skeleton gallery and 5w1(w¢1) * (5w2(w1,2) the minuscule presentation.

Let w € W be the minimal Weyl group element such that the Young tableau
21



associated to the 2-step one-skeleton gallery (E D V C w(F) = F’) is
minimal. Then 8, (g, ) * Ow(ws(E,,. )) i the minuscule presentation of (£ D
7/1 12

V C F’). Because T is semistandard and w is minimal, applying w to F
means changing the coefficient of ¢; with the coefficient of €¢; with j > 4
in wy(w;,) to obtain w(ws(ws,)). Thus we know that applying w=! to F’
changes the coefficient of €; with the coefficient of €; with j < 4. The claim
follows. O

We now translate the notion of reflections on Young tableaux. Let C be
a column of a Young tableau of type A,, with entries {i; < --- < 4;} and let
s € W be a simple reflection. Then s;(C) is defined to be the column with
entries {j; < --- < ji} where s3.(¢;, +- - -+¢€;,) = €, +- - -+¢j,. More precisely,
a simple reflection s, interchanges the entries k and k+1 for k € {1,...,n}.

4.3. Type B,. Let A be the standard apartment of the affine building of

type B,. The simple coroots are a; = €; — €41 for ¢ = 1,...,n — 1 and
Qq, = €, where ¢; is the ith unit vector of Z™. For the fundamental coweights
w; we choose Bourbaki enumeration i.e. w; = €1 +---+¢ fori=1,...,n—1

and w, = 1/2(e; + -+ 4+ €,) [B]. The combinatorial one-skeleton galleries
associated to the fundamental coweights are as follows: For the minuscule
fundamental coweight w, we get du, = dp, = (o C E,, D wp). Since we
are in type By, we have (w;, 8) < 2 for all positive roots 5. The fundamental
coweights w; with ¢ # n are not minuscule, so there exists at least one pos-
itive root 8 with (w;, 8) = 2. Hence, d,, = (0 C Ey DV C Ej D w;) where
Ey = Ewi = {twi ‘ t e [O,%]}, V = Vwi = %wi and F = {twi ‘ t e [%,1]}
The combinatorial one-skeleton galleries of type wy, are (0 C 7(E,,,) D 7(wy))
with 7 € W. For a non-minuscule fundamental coweight w; the fundamental
one-skeleton galleries of type w; are (o C 7(Ep) D # C 70(Eo)+37(w;) D
w) where 7 € W and 0 € Wg. Let A = > | ajw; be a domi-
nant coweight. Recall that §) denotes the combinatorial one-skeleton gallery
Ox = Ogjwy * -+ * 0q,w,- In this section we restrict ourselves to one-skeleton
galleries § = 5w0(Ewi0) o '*5wr(Ewi,,,) with ig < --- < 4,. Consider the action
of the Weyl group W on the coweights X Let A be a coweight given in the
basis {€1,...,€,}. Applying the simple reflection s; for i = 1,...,n — 1 to
A interchanges the coefficient of ¢; and the coefficient of €11 and fixes all
other coefficients. Applying the simple reflection s, changes the sign of the
coefficient of ¢, and fixes all other coefficients.

We also need to take a closer look at the Weyl group Wy, for some ver-
tex V in A. It is sufficient to investigate the Weyl group Wy, where V =
%(eil +---4¢€,) where iy < --- <4 and | < n and where V =V, since we
obtain all other vertices in A by translating these vertices at coweights. For
every vertex V = %(eil +---+¢€,) where 97 < --- <4y and [ < n in A the
fundamental vertex V,, is of the same type as V' such that the Weyl group
W{}wl and the Weyl group W7y, are isomorphic. More precisely, there exists a
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minimal element o € (s1,...,s,-1) = S" such that o(w;) = (€, + - +€;,).
Let {f1,..., 8k} be the set of simple roots for ¢v,, such that C";w, is the
anti-dominant chamber of Ay, . Then {o(a1),...,0(ag)} is the set of sim-

ple roots for ¢y such that Cf, is the anti-dominant chamber of Ay. The
simple reflections of W;(le) are Sy(q;) = os;o ! fori € {1,...,k}. Because
of this fact we have a bijection between the root system ¢y and ¢y, in the
following way: We identify the linearly ordered set {i; < --- < i;} with the
linearly ordered set {1 < --- < [}. Consequently, the description of the Weyl
group Wy reduces to the case where V =1V, for [ =1,... n:

For the minuscule fundamental coweight w,, the vertex V,, 1is special and
W{}wn coincides with W. Now consider a non-minuscule fundamental coweight

w; with ¢ # n. The set of simple coroots such that Cy, is the anti-

dominant chamber of the standard apartment of the residue building at
Vi, is {aiy = €, 00, oo, i1, @it 1, .. ., b Let A be a coweight given in the
basis {€1,..., €, }. Applying the simple reflection s;, = Sa,, to A changes the
sign of the coefficient of €; and does not change any other coefficient.

4.3.1. Young tableaux of type B,,. Let A = ajwy + - - - + a,wy, be a dominant
coweight and define p = (p1,...,pn) with p; = 2a; + - -+ + 2ap—1 + ay. Let r
be the smallest index with p,+; = 0. We associate to A a diagram consisting
of r left-aligned rows where the ith row consists of p; boxes (from top to
bottom). In the following we denote the diagram by dg(\).

Example

For n =3 and A = w; + ws + w3 we obtain

dg(\) =

A Young tableau T of type B, of shape X is the diagram dg(\) where
each box is filled with a letter of the linearly ordered alphabet {1 < ...n <
n < --- < 1} such that the entries are strictly increasing in the columns and
that never i and 7 are in the same column. Additionally it holds that for each
pair of columns (Cyj_1,Coj) with j =1,...,a1+...a,—1 either Cyj_1 = Co,
or we obtain Cg; from C3;_1 by exchanging some entries k by k and some
by some [ with k,l € {1,...,n}. The coweight © = p1€1 + ... tin€n, where
2u1; = number of boxes with entry 4 — number of boxes with entry i is called
the content of the Young tableau 7'

Example

The Young tableau
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has shape A and content = 1(e1 — €2 — €3).

Let T be a Young tableau and C; denotes the ith column of T for ¢ €
{0,...,1} (from left to right). We call 7" minimal if all entries of C; also
appear in C;_; for ¢ € {1,...,1}.

A Young tableau T is called semistandard if the entries are weakly in-
creasing from left to right in the rows. Let SSYT(A, p) denote the set of all
semistandard Young tableaux with shape A and content u.

We can identify one-skeleton galleries in A with type A for some dominant
coweight A starting at the origin o with Young tableaux of type B,, of shape
A as follows:

Let § = 5“’0(]3%) Kook 5wr(EWi,«) be a one-skeleton gallery of type A\ =

%(alwl + -+ ap—1wp—1) + apw, where ay is the number of indices j such
that E"Jij = E,,. Define ¢ to be —¢;. Let wy(w;,) = exy + -+ + ¢, for

i # n and wi(w;,) = %(ekl + -+ ekj) for i, = n. Then we associate
t0 Oy, (E,. ) the column C,_j consisting of j boxes filled with the letters
k

[

1 <k <---<kj <1 in increasing order from top to bottom. The Young
tableau T5 = (Cy, ..., C,) that we associate to the one-skeleton gallery § is
the tableau that we obtain by putting the columns next to each other aligned
at the top. This Young tableau T" has shape A.

Example

For n = 3 the corresponding Young tableau to the combinatorial one-skeleton

gallery 0= (5838231(Ew1) * 53231(Ew1) * 531325352(EWQ) * 5525332(EWQ) * 5Ew3 is

2(3[3]
1 .

1
T(;: 2

‘C»O[\D)—\

This assignment is clearly a bijection between the set of Young tableaux of
type B, of shape A\ for some dominant coweight A\ and the combinatorial
one-skeleton galleries of type B, of type A starting in the origin o. Thus
for a Young tableau T' = (Cy,...,C,) of shape A, the one-skeleton gallery
0r = (0 C Eg D Vi C -+ D Vy41) denotes the associated combinatorial
one-skeleton gallery of type A starting in the origin o where E)._; is the edge
corresponding to the column Cj for j € {0,...,7}. A 2-step one-skeleton
gallery (E' DV C F) becomes a 2-column Young tableau at vertex V.

As in type A, we have the following statement:

Theorem 24. This assignment defines a bijection between the set of all
minimal combinatorial one-skeleton galleries of type X starting in the origin
o and the set of all minimal Young tableaux of shape A. Further, it also
defines a bijection between the set of all positively folded combinatorial one-
skeleton galleries of type \ starting in the origin o and semistandard Young
tableaux of shape A.
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Proof. See type A, for the first part of the proof. The second part can be
found in [GL1]. O

Now we need to translate the notion of reflections on Young tableaux.
Let C' be a column of a Young tableau of type B, with entries {1 < i <

- < iy < 1}. Let w be a fundamental coweight and s,(,,) € Wl
a simple reflection where o € (s1,...,8,-1) = S". Then s5,,,)(C) is
defined to be the column with entries {1 < j; < .-+ < j; < 1} where
So(ay)(€iy + -+ €;) = €j, + -+ ¢;. More precisely, consider o = id: Ap-
plying sy for k € {1,...,n—1} interchanges the entry k with k+1 and k with
k + 1, s, interchanges the entry n with n and s;, for ¢ € {1,...,n—1} inter-
changes i with i. For o # id we have: Applying So(ay) for k€ {1,...,n—1}

interchanges the entry o(k) with o(k + 1) and o (k) with o(k + 1), s,(a,)

interchanges the entry o(n) with o(n) and sy(q, ) for i € {1,...,n — 1} in-
terchanges o (i) with o(i) where we identify the elements of (s1,...,S,-1) in
the natural way with the elements of the symmetric group S™.

4.4. Type C),. Let A be the standard apartment of the affine building of

type Cp. The simple coroots are o = ¢; — €41 for i = 1,...,n — 1 and
an, = 2€, where ¢; is the ith unit vector of Z". For the fundamental coweights
w; we choose Bourbaki enumeration i.e. w; =e1+---+¢ fori=1,...,n—1

and w, = € + -+ + ¢, [B]. The combinatorial one-skeleton galleries as-
sociated to the fundamental coweights are as follows: For the minuscule
fundamental coweight wy we get 0y, = 0p,, = (0 C Ey, D wi). Since we
are in type C), we have (w;, 8) < 2 for all positive roots 8. The fundamental
coweights w; with ¢ # 1 are not minuscule, so there exists at least one pos-
itive root B with (w;, 8) = 2. Hence, d,, = (0 C Ey DV C Ej D w;) where
Ey=E,, ={tw, |t € [0,1]}, V=V, = Jw; and Ey = {tw, | t € [,1]}.
The combinatorial one-skeleton galleries of type wy are (0 C 7(Ey,) D 7(w1))
with 7 € W. For a non-minuscule fundamental coweight w; the combinatorial
one-skeleton galleries of type w; are (o C 7(Ep) D w C 70(Eo)+37(w;) D
W) where 7 € W and 0 € W{. Let A = >°" | ajw; be a domi-
nant coweight. Recall that J, denotes the combinatorial one-skeleton gallery
Ox = Oaqwy * -+ * Oa,w,- 10 this section we restrict ourselves to one-skeleton
galleries § = 5“’0(sz~0) SRR *5wT(EWiT) with ig < --- <4,. Consider the action
of the Weyl group W on the coweights X Let A be a coweight given in the
basis {€1,...,€,}. Applying the simple reflection s; for i = 1,....,n — 1 to
A interchanges the coefficient of ¢; and the coefficient of €41 and fixes all
other coefficients. Applying the simple reflection s, changes the sign of the
coefficient of €, and fixes all other coefficients.

We also need to take a closer look at the Weyl group Wy, at a vertex V'
for some vertex V in A. It is sufficient to investigate the Weyl group
Wy at V where V. = i(e;, + -+ +¢;,) where iy < --- < 4 and 1 < I

25



and where V' = V,,, since we obtain all other vertices in A by translating
these vertices at coweights. For every vertex V = Z(e;, + -~ +¢;) where
i1 <---<7qpand 1 <!in A the fundamental vertex V,, is of the same type
as V such that the Weyl group W{}wl and the Weyl group Wy, are isomor-

phic. More precisely, there exists a minimal element o € (s1,...,8,-1) = S"
such that o(w) = (€, + -+ €,). Let {aa,...,a;} be the set of sim-
ple roots for ¢v,, such that C’;wl is the anti-dominant chamber of Ale-

Then {o(a1),...,0(ax)} is the set of simple roots for ¢y such that Cj, is
the anti-dominant chamber of Ay. The simple reflections of WU(VWZ) are

So(a;) = os;o~ ! for i € {1,...,k}. Because of this fact we have a bijec-
tion between the root system ¢y and Py, in the following way: We iden-
tify the linearly ordered set {i; < --- < 4;} with the linearly ordered set
{1 <--- < 1}. Consequently, the description of the Weyl group W7y, reduces
to the case where V =V, forl =1,... ,n:

For the minuscule fundamental coweight w; the vertex V,, is special so
W and VV{}W1 are the same. Now consider a non-minuscule fundamental

coweight w; with ¢ # 1. The set of simple coroots such that Cy, is the

anti-dominant chamber of the standard apartment of the residue Building
at Vi, is {ai, = €1 + €,00, .., i1, it 1, - .., i }. Let A be a coweight
given in the basis {€1,...,€,}. Applying the simple reflection s;, = Sy, 10
A interchanges the coefficient of €;_1 with the coefficient of ¢; and the sign
and does not change any other coefficient.

4.4.1. Young tableaux of type C,. Let A\ = aqwy + - - - 4+ a,w, be a dominant
coweight and define p = (p1,...,pn) with p1 = a1 + 377, 2a; and for i > 2
with p; = 2a; + - -+ + 2a,,. Let r be the smallest index with p,41 = 0. We
associate to A a diagram consisting of r left-aligned rows where the ith row
consists of p; boxes (from top to bottom). In the following we denote the
diagram by dg(\).

Example

For n =3 and A = wy + w9 + w3 we obtain

dg(\) =

A Young tableau T of type C, of shape X is the diagram dg(\) where
each box is filled with a letter of the linearly ordered alphabet {1 <...n <
n < --- < 1} such that the entries are strictly increasing in the columns and
that never ¢ and 4 are in the same column. Additionally it holds that for
each pair of columns (Cg,42j—1,Ca,+2j) With j = 1,...,a2 + ...a, either
Ca1+2j—1 = Cq 425 or we obtain C,, 495 from Cg,42;-1 by exchanging for
an even number of times some entries k by k and some [ by some [ with
k,l € {1,...,n}. The coweight u = 1€ + ... pn€y, where 2u; = number of
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boxes with entry i — number of boxes with entry ¢ + number of boxes with
entry 4 in a column with a single box — number of boxes with entry i in a
column with a single box, is called the content of the Young tableau T'.
Example

The Young tableau

1]
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has shape A\ and content p = €1 + €o.

Let T be a Young tableau and C; denotes the ith column of T for ¢ €
{0,...,1} (from left to right). We call T minimal if all entries of C; also
appear in C;_; fori € {1,...,1}.

A Young tableau T is called semistandard if the entries are weakly in-
creasing from left to right in the rows. Let SSYT(A, u) denote the set of all
semistandard Young tableaux with shape A and content pu.

We can identify one-skeleton galleries of type A for some dominant coweight
Ain A with Young tableaux of type C, of shape X as follows:

Let § = 5w0(Ewi0) * % Oy (B, ) be a one-skeleton gallery of type A\ =

a1 + 3(aswi + - + an_1wy) where a is the number of indices j such that

wa,j = FE,, . Define € to be —¢;. Let wy(w;, ) = €k, +- - + €x, for iy # n and

w (Wi, ) = €gy ++ - e, for iy = n. Then we associate t0 6, (g, ) the column
ik

C_j, consisting of j boxes filled with the letters 1 < k; < -+ < k; < 1in
increasing order from top to bottom. The Young tableau T5 = (Cy,...,C;)
that we associate to the one-skeleton gallery ¢ is the tableau that we obtain
by putting the columns next to each other aligned at the top. This Young
tableau has shape A.

Example
For n = 3 the corresponding Young tableau to the one-skeleton gallery
0= 68182838281(Ew1) * 552335152(EW2) * 5533152(EW2) * 5533233(E'¢,.,3) * 5Ew3 is
1[1]2[3]1]
Ts=|21313[2] -
312

This assignment is clearly a bijection between the set of Young tableaux of
type C, and shape A for some dominant coweight A\ and the combinatorial
one-skeleton galleries of type C, and type A starting in the origin o. Thus
for a Young tableau T' = (Cy,...,C,) of shape A, the one-skeleton gallery
dp = (0 C Eg D Vi C -+ D V,41)) denotes the associated combinatorial
one-skeleton gallery of type A starting in the origin o where E._; is the edge
corresponding to the column Cj for j € {0,...,7}. A 2-step one-skeleton
gallery (E DV C F') becomes a 2-column Young tableau at vertex V.

As in type A, we have the following statement:
27



Theorem 25. This assignment defines a bijection between the set of all
minimal combinatorial one-skeleton galleries of type \ starting in the origin
o and the set of all minimal Young tableauxr of shape A. Further, it also
defines a bijection between the set of all positively folded combinatorial one-
skeleton galleries of type \ starting in the origin o and semistandard Young
tableaur of shape A.

Proof. See type A, for the first part of the proof. The second part can be
found in |[GL1]. O

Now we need to translate the notion of reflections on Young tableaux.
Let C be a column of a Young tableau of type C,, with entries {1 < i; <

- < iy < 1}. Let w be a fundamental coweight and So(ay) € W;(Vw) a
simple reflection where o € (s1,...,8,-1). Then s,(,,)(C) is defined to
be the column with entries {1 < j; < .-+ < j; < 1} where s,(4,)(€;, +
-+ €,) = €, + -+ €. More precisely, consider 0 = id: Applying
s; for k € {1,...,n — 1} interchanges the entry k with k + 1 and k with
k+1, s, interchanges the entry n with n and s;, for ¢ € {1,...,n — 1}
interchanges i with i — 1 and ¢ — 1 with 7. For o # id we have: Applying
So(ay) for k € {1,...,n — 1} interchanges the entry o(k) with o(k + 1) and

o(k) with o(k + 1), $5(q,,) interchanges the entry o(n) with o(n) and s,

Qi)
for i € {1,...,n — 1} interchanges o (i) with o(i — 1) and o(i — 1) with o(¢)
where we identify the elements in (si,...,$,—1) in the natural way with the
elements of the symmetric group S™.

4.5. Combinatorial formula. A natural question now is whether it is pos-
sible to calculate the contribution ¢(d) of a positively folded combinatorial
one-skeleton gallery § to the Gaussent-Littelmann formula for type A,, By
and C, only with the associated semistandard Young tableau Ty. It turns
out that the recurrence in Theorem 21 leads to a very simple algorithm how
to do this:

In order to explain the algorithm we first need some more notation:

We say a simple reflection s; in W for some vertex V increases (resp.
decreases) a column C' if there is at least one entry in C' that is increased
(resp. decreased) by applying s.

Let now (E D V C F) be a 2-step one-skeleton gallery in A and T =
(Cp,CEg) be the associated 2-column Young tableau at vertex V. Consider
(sj(E) DV C s;(F)) for a simple reflection s; in W{%. We denote the asso-
ciated Young tableau by s;(T). Clearly, s;(T) = (s;(CF),s;(CE)), where s;
on the right hand side is the simple reflection in Wy;. We can also consider
(E DV C sj(F)). We denote the associated Young tableau by id;(T") and
again we have id;(T") = (s;(CF), CE), where s; on the right hand side is the
simple reflection in Wy;.
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Let § = (o = Vy C Eg D -+ D Vp41) be a positively folded combinatorial
one-skeleton gallery with type A and target p. Recall that the contribution
of this gallery to the Gaussent-Littelmann formula for L, , is a product of
contributions c¢((Ej—1 D V; C Ej)) for j € {1,...,7} and ¢(Ep). We now
explain how to compute c¢((E;j—1 O V; C Ej)) for j € {1,...,r} in a very
simple way with the associated Young tableau:

Let therefore § = (E D V C F) be a positively folded 2-step one-skeleton
gallery. Let T5 = (CF, CE) be the associated semistandard 2-column Young
tableau at vertex V.

We build a tree Gs where the vertices are 2-column semistandard Young
tableaux and the root is T5. Let T' = (C}, C2) be a semistandard 2-column
Young tableau at vertex V:

Step 1: Find a simple reflection s; € Wy that increases Cy. If s;(T) is
still semistandard then s;(T") is a vertex of the tree connected to the vertex
T by an edge. If s;(T) is not semistandard then id;(T’) is semistandard and
id;(T') is a vertex of the tree connected to the vertex 7" by an edge.

Step 2: Label the edge created in the first step as follows: If the edge
connects T and id;(T) label the edge with zd;F If the edge connects T" and
5j(T') the labeling depends on s;(C>):

+ . o . . _
We label the edge with sj_, ?f s; increases Cy or if 5;(Ca) = Co

S s if s; decreases Co.

Step 3: If we have labeled an edge in the second step with S5 then the
tree branches at the vertex 7" as follows: id;(T") is also a vertex of the tree
connected to T by an edge. This edge is labeled with zal;r

Build the tree Gs starting by applying step 1 to step 3 to the vertex Ty
and go on by applying step 1 to step 3 to the new created vertices using the
same simple reflection in step 1 for all tableaux with the same first column
and so on. This procedure stops when there is no simple reflection s; that
increases C1 or in other words when the edge corresponding to the column Cy
in the associated 2-step one-skeleton gallery 7 is contained in Cfy,. We call
these vertices final. We denote the subset of all simple paths in G starting
at the root Ts and ending at a final vertex by Fj.

Definition 26.

o(Cp,CE) = Z @) (g — 1P,

oc€Fy
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where pr(o) is the number of edges in o labeled with an s;“ for some j and
pf(o) is the number of edges in o labeled with an icl;-F for some j.

Proposition 27.
¢c((EDV CF))=¢Cp,Cg).

Proof. Consider ¢((E D V C F)). Choosing a reduced decomposition
Siy - .- 84, in W for wp is equivalent to choose the sequence s;,, ..., s;,, with
si; increases the column Sij_y - Siy (CF) for every j € {1,...,m} and there
does not exist a simple reflection that increases the column s;,, ... s;, (CF)
further. Fix a reduced decomposition sjs;, ... s;,, for wp. We now want to
apply the recurrence in Theorem 21 and Lemma 17 and 19. Therefore we
need to consider two cases:
1. case: I(sjws, ) = l(wg, ) +1
We know that all galleries of chambers in F’SLV((E DV CF),(j,01,--yim))
must have a crossing in the first step and that we therefore obtain all galleries
of

I, (EDV CF),(jits- -y im))

by applying f{ to the galleries of F:‘j(sv)((sj(E) DV Csi(F)), (i1, ,0m)).
This means that we extend the galleries of chambers in the first step by a
crossing of type j. In this case the crossing is positive and with Theorem 21
and Lemma 17 it follows that we obtain ¢((F D V C F')) by multiplying ev-
ery contribution of an element in F:J_(SV)((SJ-(E) DV Csi(F)), (i1, im)),
and therefore the whole product ¢((s;(E) DV C s;(F))), by q.

2. case: [(sjwg, ) = l(wg, ) —1

Then we know by Theorem 21 that we obtain all galleries in

IS (EDV CF),(jyit, - sim))
by applying f7 to all galleries in F;(SV)((sj(E) DOV Csi(F)), (i1, ,0m))

and f3 to all galleries in ng((E DV Cs(F)),(i1,-..,im)). Applying f{
means extending the galleries of chambers in the first step by a crossing
of type j. In this case the crossing is negative. Applying f] extends the
galleries by a positive folding in the first step. Hence, with Theorem 21 and
with Lemma 17 and 19, we obtain

(EDV CF))=cl(sj(B) DV C 5(F)) + (g~ Del(E CV C 5;(F))).

It remains to explain how to decide whether we are in the first or in the second
case just by consideration of the associated Young tableau: If s; increases
C5 we are clearly in the first case because the face corresponding to Cs and
therefore also Sy is on the same side of the hyperplane corresponding to
the reflection s; as Cf,, if s; decreases Cy we are clearly in the second case
because the face corresponding to Cy and therefore also Sy is on the different
side of the hyperplane corresponding to s; independent of the choice of Sy. If
sj does not change the column C5 this means that the face corresponding to
(> is contained in the hyperplane corresponding to s; thus the case in which
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we are depends on our choice of Sy. Recall that the Gaussent-Littelmann
formula is independent of the choice of Sy. We choose Sy to be on the
same side of the hyperplane corresponding to the simple reflection s; as CY,
thus we are in the first case. The claim follows by induction over the length
I(F). O

Remark 28. (1) Note that ¢(Cr,CEg) is independent of the choice of the
simple reflection s; in the first step because the Gaussent-Littelmann
formula is independent of the choice of the reduced expression for
wp.

(2) We want to point out that the simple paths in the tree Fs do not
correspond to the galleries of chambers in the Gaussent-Littelmann
formula. The reason for this is that we make a new choice of chamber
Sy in every step of the induction. In fact, not keeping track of where
Sy is reflected to makes our algorithm as simple as it is.

(3) In the proof above, if sj(E) = E, we have chosen Sy to be on the same
side of the hyperplane corresponding to sj as Cy, because it creates
a tree as simple as possible. Let us explain this in more detail: In
every step of the induction of the proof where the simple reflection s;
does not change the second column of the tableau T we can choose
whether Sy lies on the same side of the hyperplane corresponding to
the reflection s; as Cy, column or not. In our construction of the tree
this means that we can decide if we label the edge connecting T and
5;(T) with S;L ors; . Since the tree branches everytime we choose s;
we obtain a tree as simple as possible if we choose Sy in every step to
be on the same side of the hyperplane corresponding to the reflection
Sj-

For the sake of completeness we now explain how to compute ¢(Ep) with
the associated column C,: As already mentioned in the previous proof to
choose a reduced expression s;, ...s;, for the Weyl group element wp, €
Wy = W that sends C; to the chamber Dy of A, that contains Ej and
is closest to Cj is equivalent to choosing a sequence s;,,...,s; Wwith s;;
increases the column s;,_, ...s; (C;) for every j € {1,...,m}. Thus,

c(Ep) = ¢(C,) = ¢~.

Summing up we obtain the following formula:

Theorem 29. Combinatorial version of the Gaussent-Littelmann formula
Let X and p be dominant coweights. Then

r—1
Lao)= Y. oC)]]eCi,Cin),
TESSYT(Au) i=0

forT = (Cy,...,Cy) where c(C;) is as above and c(C;, Cit1) as in definition
26 for i€ {0,...,r —1}.
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We define

r—1

o(T) = o(Cy) [ e(Ci, Cig).
=0

Remark 30. For the algorithm it is not required to know exactly at what
vertex V the 2-column Young tableau is. It is sufficient to know at what type
of vertex it is:

Starting with a Young tableau T = (Cy,...,C,) we only need to calculate
the type of the vertex at which the 2-column Young tableau (C;, Ciy1) is for

i € {0,
(1)

(2)

coo,n—1}:

In type A, : All vertices are special and therefore for all 2-column
Young tableau (Cj, Cit1) at o vertex V' the Weyl group W) is W.

In type By: If the columns C; and Cjy1 both have j boxes where j
is stricty smaller then n and r — 1 1s odd, then the 2-column Young
tableau (C;,Ciy1) ts al a vertex V of the same type as the funda-
mental vertex V,,. in w;-direction. Let {ky, ... kj—syl1,...,ls} be the
set of entries of C;. Let 0 € (s1,...5,-1) = S™ be the permuta-
tion that identifies the linearly ordered set {1 < --- < j} with the
set {ki,...,kj—s,l1,...,ls} in ascending order. Then the Weyl group
Wy s W;(ij). Recall that the simple reflections of W;(ij) are

So(am) Where m € {1,...5 —1,70,5 +1,...,n}. Applying s,(a,,) for
me{l,....; =17+ 1,...,n— 1} to the column C; interchanges

the entry o(m) with o(m + 1) and o(m) with o(m + 1) and apply-
NG So(ay) interchanges o(n) and o(n). Applying So(aj,) tnterchanges
o(j), which is the highest element in the set {ki,... . kj_s,l1,...,ls}
with o (). All other 2-column Young tableauz are at a special vertex.
In type Cy: If the columns C; and Ci11 both have j bozes where
j s bigger then 1 and i is even, then the 2-column Young tableau
(Ci, Ciy1) is at a vertex V' of the same type as the fundamental vertex
Vi, inwj-direction. Let {k1,... k:j,s,a, ..., 15} be the set of entries of
Ci. Leto € (s1,...,8,—1) = S™ be the permutation that identifies the
linearly ordered set {1 < --- < j} with the set {ky,..., kj_s,l1,..., ls}

in ascending order. Then the Weyl group Wy, is W;(V ) Recall that
wj
the simple reflections of W;}(Vw,.) are S (ap,) where m € {1,...j5 —
L, jo, j+1,...,n}. Applying s(a,,) form € {1,...,j—1,j+1,...,n—
1} to the column C; interchanges the entry o(m) with o(m + 1) and
o(m) with o(m + 1) and applying s,(a,) interchanges o(n) and o(n).
Applying So(aj,) interchanges o (j) which is the highest element in the
set {ki,..., kj—s,l1,...,ls} witho(j —1) and o(j —1) with o(j). All
other 2-column Young tableauz are at a special vertex.

Remark 31. The combinatorial Gaussent-Littelmann formula is recursively
defined. It is desirable to have a closed formula. In the next chapter we prove
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that the well-known Macdonald formula for Hall-Littlewood polynomials for
type A, is the closed formula for our combinatorial Gaussent-Littelmann
formula for type A,. Finding a closed formula for type B, and C, seems
much more complicated. To see this consider for example the combinatorial
formula for type A, : For every simple path o in Fs the number pf(o) is the
same. Namely, it is the number of boxes in C;11 such that the entry of this
box is not an entry of a box in C;. We do not have this property in the other
two types.

5. MACDONALD FORMULA

Our point of departure in this section is the Macdonald formula as it is
presented in [Macl]. This formula is a sum over all semistandard Young
tableaux of type A, and the computation uses the so-called A-chain associ-
ated to a semistandard Young tableau. For our purposes we need to restate
it explicitly in terms of Young tableaux i.e. in terms of boxes and entries of
these boxes.

We work with a root sytem of type A, throughout this section. First we
need some more definitions and notation as in [Macl]:

Let A € X} be a dominant coweight. Consider the diagram dg(\). By
reflecting in the main diagonal (from top-left to bottom-right) we obtain a
new diagram. We refer to the dominant coweight of the new diagram as the
conjugate of A and denote it by X'. Note that A, is the number of boxes in
the (¢ — 1)th column of dg(A) (the Oth column is left). Define

mZ(A) )\/ Z+1

Let A and p be dominant coweights with A D pie. A\; > p; for all 4. In other
words, the diagram dg()\) contains the whole diagram dg(u). The skew-
diagram dg(\ — p) is what we get when we cancel out all boxes in dg(A) that
also appear in dg(u). The coefficient A\; — p; is again the number of boxes in
the ith row of the diagram dg(\ — i) and X, — 4} is the number of boxes in
the ¢th column. Let T be a semistandard Young tableau of shape A. Define
dg(A?) to be the diagram consisting of all boxes in T with entries < i for

i €{0,...,n+ 1} and where )\(i) is again the number of boxes in the jth
column of dg()\( )). We get the followmg chain:
NONGTTGD \Lan Yy
We are now in the position to state Macdonald’s formula:
Theorem 32. [Macl| Macdonald formula for Hall-Littlewood polynomials of
type A,.
1

Let A be a dominant coweight and t = q~~ a variable. Then the Hall-
Littlewood polynomial Py(t) is

t
Sy r g
peZn+1 TESSYT (A1) A(8)
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where

ba(t) = HQOmi()\) (),

i>1
where
o) =1 -t) 1 —=1t3)---(1—tF) for ke N
and
n+1
pr(t) = [T #ao e (@),
i=1
where
et = I — ™),
Jel
where

I={21 ] (=pf > O =},

Remark 33. Note that by(t) divides op(t). A detailed proof can be found
in Macdonald’s book [Macl|.

It turns out that the Macdonald and the combinatorial Gaussent-Littelmann
formula for type A,, are the same. The most noticeable property of the com-
binatorial Gaussent-Littelmann formula is that we calculate the contribution
of a Young tableau columnwise. More precisely this means, that we obtain
the contribution of a Young tableau 7" as a product of contributions of every
column of T where as these contributions only depend on the column itself
and, if existing, on the column to the right. In order to prove that the two
formulas are the same the first step is to express the Macdonald formula in
such a way that it becomes clear how to calculate it columnwise. Therefore
we have to avoid the usage of the associated A-chain in the new presentation.
Later we show that the formulas are the same by showing that the contribu-
tion of each column is the same.

Before proceeding further we need to establish some more notation:
Let A = Aeg + -+ + A€, be a dominant coweight and let 7 be the small-
est index such that A\,41 = 0 and let T' = (Cy,...,C%) be a Young tableau
of shape A with columns C; with ¢ € {0,...,k}. Consider the diagram
dg(>°i_1(Ai + 1)e;). Note that this diagram contains 7. We now define the
augmented tableau T to be the diagram dg(>-i_1 (Ai +1)e;) where every box
that is contained in 7" and dg(}_;_;(A; + 1)¢;) has the same filling as in T
and all other boxes are filled with co. We extend the order on N to an order
on the set NU {oo} by defining i < oo for every i € N.
Let u be a box of T'. Then c(u) denotes the entry of the box u in T'. Now
let u be a box in the ith column and the jth row of T. Then h(u) denotes
the head of u which is the set of all boxes v in the (i 4+ 1)th column and kth
row for k < j in T such that c(u) < ¢(v).
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Example

1[3]3]
For T = ééf" the augmented Young tableau is
113300
? 214|500
7=
316 |00
9 |oo

Let u be the box of T' in the 4th row with entry 5. The head of u consists
of the box in the 4th row of T" with entry co and the box in the third row of
T with entry 6.

Using this new definitions we can reformulate the original Macdonald for-
mula:

Theorem 34. 2. version of the Macdonald formula
Let T be a semistandard Young tableau of shape A and content . Then

er(t) = I1 (1 — "),
box ueT
fveh(u):c(u)=c(v)

Proof. We want to write ¢7(t) as a product over all boxes in 7"

or(t) = H contribution (u).
ueT

For this purpose we assign every factor (1 —tmj(k(”)) of pr(t) to exactly that
box in T that is in the jth column and has the entry ¢. These are exactly
the boxes in T" whose entries do not show up in the column to the right and
hence not in the head of it.

Let w in T be a box such that ¢(u) does not appear in the column to the
right. Then m;(A(?)) is the number of boxes in the head of w. O

Let T = (Cy,...,C,) be a semistandard Young tableau and C; the ith
column with i € {0,...,r}.

Define
o, (t) = 11 (1 — ¢,
ueC;
Pveh(u):c(u)=c(v)
Then



Consider b(t) = L;cq0,....r} Pmiyi (v (). We can assign the factor @y, ,, (3 (%)
to the 7th column. With this last observation it follows that also the Mac-
donald formula can be calculated columnwise:

er(t)  Ilicp,..pea®) 11 oc, (1)
ba(t) Hie{o r} (ani+1()\)(t)

6. COMPARISON OF THE FORMULAS

Let A and p be dominant coweights. Recall that the coefficient Ly ,(q) is
defined as

Pa(z,q) = Y q MLy (q)mp()
peXy

and that the combinatorial Gaussent-Littelmann formula calculates Ly ,(q)
as a sum over all semistandard Young tableau of shape A and content pu:

Lyu(q) = Z o(T).
TeSSYT (A u)
On the other side the Macdonald formula calculates Py(t) as follows:

Py(z,t) = Z Z (Zf((tt)) m#(x)

HEX{TESSYT (A1)

Thus we derive

(1) Z q_<>‘+“’p>c(T) — Z er(t) '

- ba(t)
€SSYT(\p) TESSYT(A )

As we have seen in the sections before ¢(7'), o7 (t) and by (t) can be calculated
columnwise. Consider ¢~ ##). Tet T be in SSYT(\, ) and C; the ith
column of T and i € {0, ...,r}. Every column C; on its own is again a semis-
tandard Young tableau with shape A(;) and content y ;) and A = > A and

=7, p(iy holds. Consequently we can also calculate g~ A FHp) columnwise.
We show that

t)

2 o(T) = +—At+Hp) pr

) () T

holds for every T' € SSYT' (A, 1) and that especially the contribution of every
column of the Young tableau T is the same on both sides:

Theorem 35. Let T = (Cy,...,C,) be a semistandard Young tableau of
type A, with shape X and content p and let C; be the ith column of T for
i €{0,...,r}. Then the following holds:

o(Cy, Cipr) = t~ Pt e) _pailt)
P () (1)
36



forie{0,...,r—1} and

C(Cr> = t_<>‘(r)+.“(r),p> L(t)
Pmyr1(N) (t)
We know from [Macl] that ¢, (t) divides ¢c,(t). Additionally we

wc, (t)

know that <)\(Z-) + ,u(i),p> is bigger then the highest exponent in Ee—GE

Consequently, we obtain:

=iy Fae») _val®)

(sz+1 )\)(t)

=11 =) (1 %)%

. a+y zaz(t 1 1)(11( )ag o

_qa > zal( o )al(q2_ 1)a2 N

= T (g 1 (1 4+ ) (g~ D)2 (1+ g+ ) (g - D)

= "R (g = )2 (1 )2 (L g + )% ...
forie{l,...,r}.

Hence for every column C; of a semistandard Young tableau there exist
numbers b, by, - - - € N such that

t_<>‘(i)+/‘(i)7p>L(t) - qb(q _ 1)21 bi(l + q)bl(l +q+ q2)b2

To simplify the notation define

M(Ci, Cipr) =t~ PQtra ) _vailt)
Prmi1(N) (t)
for ¢ # r and
M(Cy) = =Pt _2Cl)
Prry1 () (t)
Like in the Gaussent-Littelmann formula this notation shall underline that

the contribution of the columns of the tableau to the formula depends on
the column itself and, if existing, on the column to the right.

Remark 36. (1) In the Gaussent-Littelmann formula it is not at all
obvious that the contribution

c(BiaDV;CE))= >  ¢9q-1
't (ij,0
ce S{/j(z] D)

is always o product
(g —1)="(1+q)" (1 +q+¢*)"

for some b,by,--- € N.
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(2) As already mentioned the Gaussent-Littelmann formula is developed
by describing o certain intersection in the affine Grassmannian and
counting the points over a finite field Fy. In fact, the polynomial
c(Cs, Ciq1) counts the points over Fy of a subvariety Min(C;, Cit1) of
a generalized Grassmannian H/R, where H and R are determined by
the positively folded combinatorial one-skeleton gallery ép. For more
details regarding the geometry behind the Gaussent-Littelmann for-
mula see [GL1|. Now, our Theorem 35 suggests that Min(C;, Ciy1)
is 1somorphic to a product of b; times PJ for j € N, b times C and
>_;bj times C*.

6.1. Proof of Equality. This section is devoted to proving the equality of
the two formulas by showing that the contribution of every column of the
semistandard Young tableau T' € SSYT (A, ) is the same to both formulas.

Proof. First we consider the last column C; of T" with content j(,y and shape
A(r)- Because C; is the only semistandard Young tableau with content ;)
and shape A, the coefficent L/j’('r)v A only consists of one summand coming
from the column C, itself. With (1) the claim follows.

The proof for the other columns is more intricate: Let C; be a column of T’
that has a column to the right i.e. ¢ # r. As mentioned before the contribu-
tion depends on Cj;41 on both sides of the equation. Thus our study in this
part of the proof concerns semistandard 2-column Young tableaux: Let T;
denote the semistandard 2-column Young tableau where C; is the first and
Cit+1 the second column. Let s;,...,s; be a sequence of reflections such
that s;; increases the column s;,_, ...s; (C;) for every j € {1,...,I} and
there exists no simple reflection that increases s;, ... s;, (C;). We prove the
claim by induction over [.

Basis: [ =0

Let us start with the left hand side, the combinatorial Gaussent-Littelmann
formula: For [ = 0 the contribution ¢(Cy, Ci+1) is 1 because we only have
one single simple path consisting of one vertex.

Now comnsider the right hand side, the Macdonald formula: Suppose C; con-
sists of m boxes. For [ = 0 the column C; has the entries n—m+2,...,n+1.
The shape of C; is A;) = €1 + €2 + -+ + €y and the content is p) =
€n—m+2 + -+ + €nq1 and we derive

m—1 n+1
Ny + o) =1/20) n—=1-2j)+1/2( Y n—1-2k)
j=0 k=n+1—m
m—1 m—1
=1/2() n—-1-2j)-1/2() n—1-2k)
j=0 k=0

=0.
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Thus ¢~ P@+#e#) = 1. Tt remains to show that —2¢ equals 1:
@'mi+1 (X) (t)

Consider ¢¢; (t) = [luce, (- 1) The entries in C;;; have to be
Bveh(u):c(u)=c(v)

bigger than or equal to the entries to the left in C; because the Young tableau

T is semistandard. But the entries in C; are already as big as possible, thus

the entries of C;11 are also entries in C;. Consequently there are exactly

mi+1(A) boxes in C; that make a contribution to the formula. Let b; be the

Jjth box (from top to bottom) in C; whose entry e; is not an entry in Cjyq.

The contribution of this box to the formula is (1 — ¢/"%)]) with
|h(b;)| = |{ boxes with oo in h(b;)}| + |[{boxes with entry in N in h(b;)}|.

We need to check two cases:
1. case: Jv € h(b;) with entry oo:
Then we have

[{ boxes with oo in h(b;)}| = mit1(A) — |[{boxes in C; at the top of b;}|
and
[{boxes with entry in N in h(b;)}|
=|{boxes in C; at the top of b;}| — (m1(N) — J).

Using the last two equations we obtain |h(b;)| = J.

2. case: flv € h(b;) with entry oo:

Then we clearly have |h(b;)| = j.

Thus, for all j € {1,...,m;41} we have |h(b;)| = j and consequently

miy1(A)
roi(t) = H (1 - tk) = SOWLH-I()\)(t)'

k=1
It follows that M (C;, Cit1) is 1.
Induction step: [ — [+ 1
Let T; be a semistandard 2-column Young tableau where Cj is the first and
Ci41 is the second column. Because [ # 0 there exists a simple reflection s;
that increases the column C;. There a three cases to check:
1. case: Sj(Cz'—i-l) = Cz'—i—l
By induction hypothesis we know that ¢(s;(Cj), s;(Ciy1)) equals
M(s;(Ci), sj(Cit1)) say

(g—1D°PA+) ... (A +qg+--+g)*. ...

The combinatorial version of the Gaussent-Littelmann formula now tells us
that we obtain ¢(Cj, Ciy1) simply by multiplying c(s;(C;), s;(Ci+1)) by ¢
hence we have:

C(Civci-i‘l):qa+1(q—1)b(1—|—q)a1,,_(1—{—q—|—----|-qk)ak“”

Next, we need to calculate the contribution M (Cj, Cit+1) to the Macdonald

formula from M (s;(C;), s;(Ciy1)): Because s; increases the column C; we

know that there is a j but no j + 1 in C; and s;(Cjy1) = Cjy1 means that
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either j and j + 1 or neither j nor j + 1 are in Cj4.

Let us first consider the case when j and j + 1 are entries in C;11. We know
that M (C;, Ci41) is a product over all boxes in C; where the contribution of a
box depends on the entries in Cj11. Apply s; to s;(7T;) only changes a single
box in the first column, thus we only need to exchange the contribution of
this box, which is the box with entry j + 1, and the contribution of the box
with entry j to M(Cj,Ci+1). But because j and j + 1 are in the second
column of T; and of s;(7;) the contribution of the box is in both cases 1,
thus we derive that only the content of the tableau changes. We get that we
have to multiply the contribution M (s;(C;), s;(Ci+1)) by t=! = ¢ to obtain
the contribution M(Cj, Ci+1). This is what we did in the combinatorial
Gaussent-Littelmann formula.

Now consider the case where neither j nor j 4+ 1 are entries in C;11. We
again need to exchange the contribution of the box with entry 57 + 1 to
M (s;(C;), sj(Cix1)) with the contribution of the box with entry j to
M(C;, Cit1). But the contributions of the boxes are the same because the
heads are the same. Again only the content of the tableau changes and we
obtain the same result as above.

2. case: s; increases Cj1

We again know by hypothesis that the contributions of (s;(C;), sj(Cit1)) is
the same on both sides, say

¢"(g=1)"(1+ )™ ... (L+g+---+¢")% ...
As in the first case it follows that
qa+1(q_1)b(1+q)a1"'(1+q+".+qk)ak'“

is ¢(s;(Cy),sj(Ci+1)). Now we consider the Macdonald formula: In both
columns of the Young tableau T; there is a j but no j + 1. Consequently
in both columns of the Young tableau s;(7;) there is a j 4+ 1 but no j. The
box in C; with entry j has contribution 1 to M(C;, C;y1) because there is
a j in Cjy1. By the same argument we derive that the contribution of the
box with entry j 4+ 1 to M(s;(C;),sj(Cit1)) is 1. As in the first case only
the content of the tableau changes and we have to multiply the contribution
M (5;(C;),3j(Cit1)) by t71 = g to obtain the contribution M (Cj, Cit1). And
this is what we did in the combinatorial Gaussent-Littelmann formula.

3. case: s; decreases C;

Suppose that s;(7;) is semistandard. We know by induction hypothesis that
M(s;(Ci), 5j(Ciy1)) = c(s;(Ci), 55(Civa)) and M (5(C5), Civ1) = c(s5(Ci), Cigr)-
Let

M(5§(Ci),5i(Ciy1)) = (¢ — 1)P(1+ @)™ ...+ g+ +¢")™ ...
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We can express M (s;(C;), Cit1) depending on M (s;(C;), sj(Cit1)):
-
(1 _ tl+1)

t*(l+1)

T (@ )

ql+1
= M(s; Cz , S5 Cz
(q_l)(1+q+ql) (J( ) ]( +1>)

_ qa+l+1(q _ 1)b71(1 +q)a1 (1 +q+--- _i_ql)alfl o
where [ +1 = h(u) and w is the box in s;(C;) with entry j + 1 because
u has contribution (1 — 1) to M(s;(C;), sj(Cit+1)) and contribution 1 to
M (sj(C;),Cit1) and u is the only box with different contributions.

In the combinatorial Gaussent-Littelmann formula we obtain ¢(C;, Ciy1) by
multiplying ¢(s;(C;),s;(Ciy1)) by 1 and add ¢(s;(C;), Ci+1) multiplied by
(¢ —1):
(=1 A+ )" .. (Lg+--+q")™ ...
+" T gD A+ (gt + )T
= (1+ - +d)+d")@" @~ D"A+ . +g+-+d)" ).

— g g— 1 (14 q)" . (L4 4 g)u (14 g Fhumt

M(sj(Cy), Cit1) = M(s;(Ci),5;(Ciy1))

M(s55(Cy),5;(Cit1))

We now need to compute M (Cj, Cit1) from M(s;(C;),5i(Cit1)): We know
that there is a j but no 5 + 1 in C; and that we have no box with entry
J but one with entry j + 1 in Cj;1. Because s;(7;) and id;(T;) are both
semistandard we know that the box with entry j in C; cannot be next to
the box in Cjy1 with entry j + 1. Consider the box u in s;(C;) with the
entry j + 1. Then the box in s;(Cjy1) with entry j is not in the head of
u. After applying s; to s;(7;) the box u in C; has entry j and now the
box with entry j + 1 in Cjy1 is in the head of u. Further, the content of
the tableau also changes but again all other contributions of boxes stay the
same. Consequently we obtain M (C;, Cit+1) as

(1 _ 7fl+2)
(1 — ¢+l
— M(s:(C). s:(C

(1+-~~|—ql) (S]( 2)75]( z+1))
and this is exactly what we did in the combinatorial Gaussent-Littelmann
formula.
Now suppose that s;(7;) is not semistandard. By induction hypothesis we
know that M (s;(C;), Cit1) = ¢(s;(Cy), Cit1). In the combinatorial Gaussent-
Littelmann formula we obtain ¢(Cj;, Cj41) by multiplying ¢(s;(C;), Cit1) by
(¢ —1). Now we need to consider what happens in the Macdonald formula:
41
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The column C; contains a j but no j+1 and C;4; contains a 5+ 1 but no j.
Because s;(7T;) is not semistandard we know that the box that contains j in
C; is next to the box in Cj11 that contains j+1. In M (s;(C;), Ci11) the box
in s5;(C;) with entry j+1 has contribution 1 but in M (Cj;, Cj41) this box has
entry j and because there is no j in Cj41 the contribution is different from 1.
The head of the box in C; with entry j in T; only consists of the box in Cj 1
with entry j+1. The content of the tableau also changes but all contributions
of the other boxes to the formula stay the same and we derive that we have
to multiply M(S]’(Ci), Ci—i—l) by (1 —t)t_l = (q— 1) to get M(C“ Ci—i—l)- This
is again what we did in the combinatorial Gaussent-Littelmann formula. U

7. EXAMPLES

7.1. Type As.

For the semistandard Young tableau T' = (Cy, Cy) = the corresponding
combinatorial positively folded one-skeleton gallery in the standard apart-
ment of the affine buidling is 67 = 05,4, (5,,) * 0B, = (0 C Eg D V1 C Eq1 D

0):

We now calculate the contribution of T' (resp. dr) to the formulas:

Gaussent-Littelmann formula
Consider the gallery (o C (Ep),) associated to the last column of T" at the
origin o0, namely [3], in the standard apartment of the residue building at o:

Thus, wp, = id and




Now consider the gallery ((Ep)y, D Vi C (E1)y,) associated to the 2-column
Young tableau at V1 = €3, in the standard apartment of the residue
building at Vi:

In the picture above we label the walls of the anti-dominant chamber Cy,
with 4 if the wall is contained in the hyperplane H ,, ,,) for a simple root
@; € ¢v;. The labeling of the walls of the chambers in Ay, is Wy} -equivariant
so that the labeling of the walls of w(Cy,) for w € WY, is the image of the

labeling of the walls of C‘;l. The labeling of a wall is exactly its type.
The signs on the hyperplanes indicate on which side of the hyperplane the
chamber S%/l is. More precisely, the negative half-space of the hyperplane
contains S‘l,l.
In type Az, Wy coincides with W for every vertex V in A. The reduced
expression for the Weyl group element w € W{}l that sends C;l to Dy 18 $9871
indicated in the picture above by the dotted line. The galleries of chambers
in F:g‘l/ ((2,1),0p) are illustrated below:

1

Let ¢ denote the upper and co the lower gallery of chambers. The gallery
c1 has one positive folding and one positive wall-crossing, the gallery cs has
one positive folding and one negative wall-crossing. We obtain

(o), DVi € (Byw)) =alg =)+ (g1 =(@+1)(@g-1)=¢" - 1L
Together with the first calculation we have
c(0r) = c(Eo) * c((Eo)vy D Vi € (E1)wy)) = 1% (¢ —=1) =¢* — 1.

Combinatorial Gaussent-Littelmann formula
First consider the last column of the Young tableau 7', namely C =[3]
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There is no simple reflection in W that increases C7. We obtain
o(Cr) =¢" = 1.

Now consider the 2-column Young tableau in order to calculate ¢(Cy, C).
Applying the algorithm yields the following tree:

1[3] 55 1]2] idf 2/2]
2] 3] 3]
idy
\ 13] s 2[3]
13 13

There are two simple paths in the tree that start in and end in a final
vertex. Let o1 denote the upper and oy the lower path. We have

pr(o1) =0 and pf(o1) =1
and

pr(o2) =1 and pf(oz) = 1.
It follows that

c(Co,C1) =(qg—1) +qlg—1)=¢* 1

and

o(T)=1%(*—1)=¢>—1.
Macdonald formula

The Young tableau T has shape A = 2¢; + €2 and content 1 = 0. In order to
calculate o7 (t) we need the augmented Young tableau T = .

For Cy = [5] we have p(C1)(t) = (1 — 1), @m,)(t) = (1 — 1), A2) = €1 and
p2) = €3 such that

—_

—t
1-t¢

For Cp = Y we have o(Co)(t) = (1 — £)(1 — 12), @, (0y(t) = (1 = t), Ay =
€1 + €9 and p(1) = €1+ €2 such that

~—

o(Cr) = t-tatesa—e 12D

—
~—

2
— —<2€1+262,61—63> (1 B t)(]‘ —t )
C(C(],Cl) t —(1—t>
=t 21 -t)=t2%-1

=¢ -1

We have
o(T)=1x(g*—1)=¢*—1.
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7.2. Type Bs.

For the semistandard Young tableau T' = (Cp,C1,C2) = the corre-
sponding positively folded combinatorial one-skeleton gallery in the stan-
dard apartment of the affine building of type B is 6 = 6515251(&1) *0p,,, *
552(EWQ) = (0 CEyDViCE{DVoCEyD VE;)

€1 n

62_."

We now calculate the contribution of T' (resp. dr) to the formulas:
Gaussent-Littelmann formula

Consider the gallery (o C (Ep),) associated to the last column of T" at the
origin o0, namely [I], in the standard apartment of the residue building at o:

(Eo)o

Thus, wp, = td and

c(Eo) =¢" = 1.
Now consider the gallery ((Ep)y, D Vi C (E1)y,;) associated to the 2-column
Young tableau at V1, in the standard apartment of the residue building
at Vi:

-+
(Eo)vy || (E1)wy
1 _
SV1 = Dy
_ % _
1U 1U
+ +
CV1
|+




The labeling of the walls and the signs at the walls are as explained in the
example for type As.
The reduced expression for the Weyl group element w € Wy, = W{}wl that
sends 0\71 to D; is s1, indicated in the picture above by the dotted line.
There is only one gallery of chambers ¢; in Fgl ((1p), op) which is illustrated
Vi

below:
-+
(Eo)vy | (E1)wy
1 _
Svl =D
_ Vi _
1[) lU
+ +
OV1
-+

The gallery of chambers ¢; has one positive folding. We obtain

c(((Bo)vy D Vi C (E1)w)) = (¢ —1).

Now consider the gallery ((E1)y, D Va C (E2)y,) associated to the 2-column
Young tableau T' = at Vo in the standard apartment of the residue
building at Va:

+ +
— — + —
(E2)v,2
D2 ~
+ . 2 N +
2 (E1)vy
- _ Q2

+ /Oy, =55 + +

The reduced expression for the Weyl group element w € Wy, that sends Cf,
to Dy is s1s9 indicated above by the dotted line. The gallery of chambers
of type (1,2) starting in Cy, that goes straight to Dy (i.e. has only wall-

crossings) has only positive wall-crossings with respect to 5‘2/2. Consequently
this is the only gallery of chambers in FEQ ((1,2),0p). We obtain
Va

c((Br)v, D Va C (B2)wy)) = ¢
Together with the previous results we have
c(0r) = 1% (g —1)*q°

Combinatorial Gaussent-Littelmann formula

First consider the last column of the Young tableau T, namely Cy = [II.
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There is no simple reflection in W that increases Cy. We obtain
o(Co) =¢" = 1.

Now consider the 2-column Young tableau (Cy,Cs) = at vertex V. Since
i = 1is smaller thann =2 and r—7i =2—1 =1 is odd and since Cy and Cy
both consist of one box the 2-column Young tableau is at a vertex V of
the same type as V,,,. In fact, the Weyl group Wy equals W‘q}wl. Applying
the algorithm yields the following tree:

idy —
It follows that
C(Cl,CQ) = (q - 1).
It remains to calcuate ¢(Cp,C1). Consider the 2-column Young tableau

(Co,Cy) = . Since the two columns consist of an unequal number of
boxes it is at a special vertex. Applying the algorithm yields

1] s 2[2] s 22]
2] 1] 1]
It follows
6(007 Cl) = q2

and in the whole
e(T) :1*(q—1)*q2.

7.3. Type Co.

For the semistandard Young tableau 7' = (Cyp, C1,Cs) = the corre-
sponding positively folded combinatorial one-skeleton gallery in the standard
apartment of the affine building of type C2 is 07 = 05,5 (E,,) * Osy55(Euy) *

Osy(Bay) = (0 C B D Vi C E1 D Vo C Ey D V3):

We now calculate the contribution of T' (resp. dr) to the formulas:
Gaussent-Littelmann formula
Consider the gallery (o C (Ep),) associated to the last column of T at the
origin o0, namely [2], in the standard apartment of the residue building at o:
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(Eo)o
>

Ccy Dy

o

The labeling of the walls is explained in the example of type As.
The Weyl group element w € W that sends C; to Dy is s; indicated above
by the dotted line. It follows that

c(Eo) = ¢ =q.
Now consider the gallery ((Ep)y, D Vi C (E1)y,) associated to the 2-column

Young tableau at V1, in the standard apartment of the residue building
at Vi:

+ —
- -1+ +
(Eo)v,
1
SV]
_ { _
+ (E1) +
D, ™
- Cvi + +
+ —_

The labeling of the walls and the signs at the walls are as explained in the
example of type As.
The Weyl group element sy sends the chamber Cy, to Dy (indicated by the

dotted line). There is a single gallery of chambers c; in the set F;C‘l/ ((2),0p):
1

+ —
- -1+ +
(Eo)v,
Sl
Vi
— (S —
+ (E1)7 +
Dy
- Cvi + +
+ —

Since ¢; has one positive folding we obtain

c((Bo)vs 2 Vi C (Ew)) = (¢ = 1).
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Now consider the gallery ((E1)y, D Va C (E2)y,) associated to the 2-column
Young tableau T = at V5 in the standard apartment of the residue
building at Va:

+ —
+ Va (E2)w
()U U
- (E1)w,
— 17 _
Cv2 SV2 = Do
+ —

The labeling of the walls and the signs at the walls are as explained in the
example for type As.
The reduced expression for the Weyl group element w € Wy, that sends Cf,
to Dy is 51 indicated in the picture above by the dotted line. There is only
one gallery of chambers ¢; in Fg‘z/ ((1), op) which is illustrated below:
2

+ -
+ Vs (E2)wy
qU U
- (E1) v,
— X 1 _
Cy, Sy, = D2
+ —

The gallery of chambers ¢; has one positive folding and we obtain:

c((B)w, D V2 C (E2)w,)) = (¢ —1)
and
o(T) = q*(g—1)"
Combinatorial Gaussent-Littelmann formula
First consider the last column of T, namely Cy = [2]. Applying s1 € W to

Cy increases it and there is no simple reflection that increases s;([2]) =
further. We obtain

c(Cy) =q¢' =q.
Now consider the 2-column Young tableau (Ci,C3) = . Since the two

columns consist of an unequal number of boxes the tableau is at a special
vertex. Applying the algorithm yields

1]2] id}
2]

2]

‘b—‘l DI
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It follows that

6(01,02) = (q — 1).

It remains to calcuate ¢(Cp,Cy). Consider the 2-column Young tableau

_ v v ]
(Co,Ch) = at the vertex V. The Weyl group Wy, equals WVWQ' Ap
plying the algorithm yields

2] _ai, [2]2
2|1 11
It follows
¢(Co,C1) = (¢ — 1)
and
o(T) = q*(q—1)°
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