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1 Preamble 

1 Preamble 

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by the 

homozygous loss of the survival motor neuron gene 1 (SMN1) (Lefebvre et al., 1995). Motor 

neurons, their axons and distal neuromuscular junctions (NMJs) have been demonstrated to 

be severely affected in SMA, resulting in muscle weakness and atrophy. Next to SMN1, a 

nearly identical copy gene is present in all SMA patients, termed SMN2. Importantly, 

however, a silent c.C280T transition is present in exon 7 of SMN2, causing the disruption of 

an exonic splicing enhancer (ESE) (Lorson et al., 1999, Cartegni and Krainer, 2002). Finally, 

this leads to exon 7 skipping in ~90 % of the transcripts and the production of truncated 

Δ7SMN protein with reduced oligomerization capacity and stability (Lorson et al., 1998). Due 

to genetic drift, the SMN2 copy number is highly variable among the population, ranging from  

zero to a maximum of four copies per allele.  Since ~10 % of SMN2 transcripts still code for 

full length (FL) SMN, SMA severity is inversely correlated with SMN2 copy number (Burghes, 

1997, Brahe, 2000, Feldkotter et al., 2002). 

In the past, so called discordant families have been described in which homozygously 

SMN1-deleted individuals are fully asymptomatic despite carrying an identical number of 

SMN2 copies as their affected siblings. From such observations, it has been concluded that 

other SMA-modifying factors must be present in these patients. In 2008, high levels of the 

actin filament bundling protein PLS3 have been shown to act fully protective in SMN1-

deleted unaffected individuals of six discordant SMA families in our group (Oprea et al., 

2008). Further functional analyzes revealed that PLS3 overexpression is able to rescue axon 

outgrowth defects in Smn-depleted PC12 cells as well as motor neurons derived from SMA 

mice. Most strikingly, however, PLS3 overexpression was able to rescue axon outgrowth 

defects in a zebrafish model of SMA in vivo. 

The main goal of the present work was to study the effects of PLS3 overexpression on a 

mouse model of SMA. For this purpose and using the Cre/loxP system, a V5-tagged version 

of human PLS3 was targeted into the murine Rosa26 locus in order to ubiquitously or tissue 

specific overexpress PLS3. PLS3V5 transgenic mice were next crossed on an SMA 

background. As careful morphological analysis revealed, PLS3V5 overexpression led to clear 

improvements of neuromuscular connectivity at the NMJ level (delayed axonal pruning, 

highly arborized axon terminals, highly occupied Acetylcholine receptor (AChR) clusters, 

increase in the size of AChR clusters). Moreover, motor neuron specific expression of PLS3 

in a wt background was sufficient to increase muscle fiber size in P21 mice, indicating that 

the observed changes at NMJ level are indeed functional.  

The following introduction is subdivided into three parts (2.1, 2.2 and 2.3). The first part 

(2.1) starts with a detailed explanation of the clinical picture of SMA and is then leading to the 

underlying molecular causes of the disease. Based on the knowledge from different animal 
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models, the section continues with a description of SMN protein function with particular focus 

on the role of SMN in axons. Although no cure is available yet, the first section will close with 

a brief overview of potential therapeutic strategies for SMA treatment.  

In the second part of the introduction (2.2), the discovery of PLS3 as a fully protective 

modifier of SMA in homozygously SMN1-deleted individuals of discordant families will be 

described. After a short overview on PLS3 gene and protein structure, PLS3 function will be 

explained, again, with particular focus on PLS3 function in the axon. Finally, recent data on 

other potential modifiers of SMA from invertebrate screens will be discussed. 

As PLS3V5 overexpression led to significant improvements of neuromuscular connectivity 

at NMJ level of SMA mice, the third part of the introduction (2.3) deals with the development 

of the neuromuscular system in general. As PLS3V5 overexpression led to delayed axonal 

pruning, an overview about this fundamental developmental process will be given first. 

Moreover, PLS3V5 overexpression resulted in highly arborized nerve terminals as well as 

increased postsynaptic AChR cluster. Therefore, further information will be presented on the 

mechanisms underlying axon growth as well as AChR cluster patterning, with particular focus 

on the role of actin dynamics in both processes. 

  



 
3 Introduction 

2 Introduction 

2.1 Autosomal recessive proximal spinal muscular atrophy (SMA) – 

Symptoms and classification 

First described in the late 19th century by Werdnig and Hoffmann (University of Vienna 

and Heidelberg, respectively), SMA is the leading genetic cause of infant death today 

(Montes et al., 2009). In the western European population, SMA has an incidence of 1 in 

6.000 to 10.000 births with a carrier frequency of 1:35 (Pearn, 1978, Czeizel and Hamula, 

1989, Emery, 1991, Feldkotter et al., 2002). SMA is caused by the homozygous deletion or 

mutation of the survival motor neuron 1 gene (SMN1) located on chromosome 5q13 

(Brzustowicz et al., 1990, Melki et al., 1990) and results in the degeneration of α-motor 

neurons in the anterior ventral horns of the spinal cord as well as their respective efferent 

axons. As a consequence, affected individuals suffer from progressive weakening of 

muscles. In the severe Type I SMA (see below), first signs of muscle weakening are often 

noticed already during the 3rd trimester of pregnancy as fetal movements decrease 

abnormally (MacLeod et al., 1999). Importantly, the decrease of fetal movements has been 

shown to be accompanied by progressive loss of motor neurons (Markowitz et al., 2004). 

Together, these findings suggest that in severely affected SMA patients the onset of disease 

occurs in utero. The first postnatal symptom common to all severity types is weakening of the 

proximal voluntary muscles, e.g. limb or intercostal muscle of the chest. With ongoing 

progression and depending on the severity type of disease, further symptoms include a weak 

cough, dyspnea and even bulbar involvement (Rudnik-Schöneborn et al., 1994). Although 

diaphragmatic strength is usually intact, weakening of intercostal chest muscles can lead to a 

severely restrictive lung deficit and finally to the need of ventilatory support (Markowitz et al., 

2004). Later symptoms, especially in the less affected Type II, III or IV patients (see below), 

typically include progressive weakening of also the distal muscle. Since muscles of the legs 

are affected first, patients will usually be wheelchair bound or suffer major problems in 

climbing stairs or getting up from the floor. Even though a recent study in mouse indicated 

that cellular proliferation, migration and development in hippocampal regions of the brain 

might be affected patient´s sensation and cognitive abilities usually remain intact (D'Angelo 

and Bresolin, 2006, Wishart et al., 2010).  

The denervation of muscle finally results in atrophy, whereby often a few residual motor 

neurons stay connected. The uncontrolled and sporadic firing of such remaining motor 

neurons leads to twitching (fasciculation), particular of the tongue and fingers, a finding often 

used in diagnosis (Markowitz et al., 2004). When there are additional clinical grounds for 

suspecting a diagnosis of SMA in a newborn, e.g. hypotonia or headlag, DNA based tests 

offer quick and reliable sureness. The two most common methods used for the detection of 



Introduction 
 

4 

SMN1 deletions are (i) a PCR based approach with subsequent test restriction (Scheffer et 

al., 2001) or (ii) Multiplex Ligation-dependent Probe Amplification (MLPA) (Scarciolla et al., 

2006, Zapletalova et al., 2007). Since in 5 % of all patients the loss of SMN1 function is 

caused by a deletion of one allele and a small intragenic (subtle) deleterious mutation on the 

second allele or, very infrequently, from subtle mutations on both alleles (Alias et al., 2009, 

Vezain et al., 2011), sometimes sequencing must be recruited to determine the exact cause.   

In the following, the classification of SMA into the four Types I, II, III and IV and their 

characteristics will be briefly outlined.  

 

Type I SMA (Werdnig-Hoffmann disease, MIM #253300): 

Type I SMA, also called the infantile acute form, is the most severe type of SMA and 

accounts for ~50 % of all SMA cases (Werdnig, 1891, Pearn, 1978, Markowitz et al., 2004). 

The onset of disease is usually before the age of 6 months, but often around the time of birth. 

Prognosis for type I SMA patients is poor. In different studies, the survival of patients with 

disease onset in the first three months was determined to ~7 months (Rudnik-Schoneborn et 

al., 2009). The proportion of patients surviving more than 2 years is ~6 % (Cobben et al., 

2008, Rudnik-Schoneborn et al., 2009). SMA type I patients will never be able to sit or even 

walk independently. Proximal intercostal muscles (muscle of the chest) are strongly affected, 

resulting in severe breathing problems and increased infection rate.  

 

Type II SMA (Intermediate form, MIM #253550): 

The onset of type II SMA is between 6 months to 18 years, with most patients being 

diagnosed within the first year to 18 months. Affected children are usually able to sit without 

support, but walking is almost impossible. The prognosis is extremely variable in SMA type II 

patients and depends to a large extent on the degree of respiratory muscle involvement and 

the problems associated with the development of kyphoscoliosis (abnormal curvature of the 

spine) (Talbot, 1999). In a comprehensive study with 240 SMA type II patients the survival 

rate was 98.5 % at 5 years and 68.5 % at 25 years (Zerres et al., 1997). 

 

Type III SMA (Kugelberg-Welander, MIM #253400): 

Type III SMA is a very heterogenous form of SMA with first mild symptoms occurring after 

the first 18 months of life (Kugelberg and Welander, 1956). Most patients are diagnosed 

between 2 and 12 years of age. Typically, walking and running as well as climbing stairs are 

possible, but become increasingly difficult with age. The prognosis for SMA type III patients 

is good since life expectancy is almost normal. Type III SMA is further subclassified into type 

IIIa, with onset before the age of 3 years, and type IIIb SMA, with onset after the 3rd year.   
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SMA Type IV  (Adult form, MIM #271150): 

SMA type IV is a very mild form of SMA with late median onset beyond 30 years of age 

(Pearn, 1978, Zerres et al., 1995). As in all SMA forms, weakness is progressive, but affects 

mostly proximal muscle while distal muscle function is preserved. Type IV patients have a 

normal life expectancy. 

2.1.1 SMN1 and SMN2 as SMA determining genes 

In the year 1995 and after a long search, the survival of motor neuron 1 gene (SMN1) has 

been identified as the SMA causing gene (Lefebvre et al., 1995). SMN1 lies within the 

telomeric part of a 500 kb duplicated region on chromosome 5q13 (Brzustowicz et al., 1990) 

(Figure 1). The SMN1 gene spans a 28 kb genomic region and comprises 9 exons (1, 2a, 2b, 

3, 4, 5, 6, 7, 8). The coding sequence of SMN1 is 882 bp and produces a ~1.7 kb transcript 

(together with 5´and 3´ UTR) which is ubiquitously expressed, but particularly high in spinal 

cord. The mRNA codes for a protein of 294 amino acids having a molecular weight of 38 

kDa. Furthermore, SMN1 was found to be highly conserved between all organisms, 

underlining its essential function (Miguel-Aliaga et al., 1999, Paushkin et al., 2000). 

 

Figure 1: 500 kb telomeric and centromeric region containing SMN1 and its duplicated version 
SMN2, respectively. 

In the centromeric region, a nearly identical copy of SMN1 is located, termed SMN2, 

which has been found to be present in all SMA patients. SMN2 differs from SMN1 by only 5 

silent discrepancies: A synonymous mutation in exon 7 (c.C280T in SMN2), exon 8 (nt 27869 

G>A), intron 6 (nt 27092 G>A) and another two in Intron 7 (nt 27289 A>G and 27404 A>G) 

(Lefebvre et al., 1995, Burglen et al., 1996).  

Already at their discovery, it was found that SMN1 and SMN2 have distinct splicing 

patterns. In humans only carrying SMN1, solely the full length transcript (FL-SMN) containing 

exon 7 was present. However, controls carrying both SMN1 and SMN2 additionally showed a 

transcript lacking exon 7 (Δ7SMN2) (Lefebvre et al., 1995). Based on these observations, it 

was found that the c.C280T transition in exon 7 of SMN2 causes the disruption of an exonic 

splicing enhancer (ESE) (Lorson et al., 1999, Cartegni and Krainer, 2002). This in turn 

results in exon 7 skipping in about 90 % of the total transcripts while 10 % of SMN2 

transcripts are still full length. The skipping of exon 7 leads to a frameshift and an alternative 

stop codon in exon 8. Finally, this produces a truncated protein (Δ7SMN2) of reduced 

oligomerization capacity and stability (Lorson et al., 1998). SMN2 lies within a highly 

repetitive genomic region prone to rearrangements. Therefore, the SMN2 copy number is 

variable among the population. Since still about 10 % of the total SMN2 transcript code for 
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fully functional SMN protein, the SMN2 copy number is inversely correlated with the disease 

phenotype and prognosis (Burghes, 1997, Brahe, 2000, Feldkotter et al., 2002).  

Although not absolute, SMN1 deficient SMA type I patients usually carry 1 or 2 SMN2 

copies, SMA type II patients 2 or 3 and SMA type III patients 3 or 4 copies of SMN2. 

Infrequently, patients are observed that develop the relatively mild SMA type III despite 

having only 2 SMN2 copies. The other way around, type I SMA patients were described 

carrying 3 SMN2 copies. This may be because of true variation caused by modifying genes 

or other external factors, intragenic mutations within SMN2, or SMN2 genes partially deleted 

or duplicated as a result of deletions or gene conversions involving either the 5´ or 3´end of 

the SMN genes (Feldkotter et al., 2002). Moreover, up to now three unrelated patients have 

been described who possessed SMN2 copy numbers that did not correlate with the observed 

mild clinical phenotypes and who all carried a c.G859C substitution in the SMN2 gene (Prior 

et al., 2009, Vezain et al., 2010). In their study, the authors were able to demonstrate that 

this mutation creates a new exonic splicing enhancer favoring exon 7 inclusion and 

consequentially increasing SMN levels in the patients. Therefore, not only the number of 

SMN2 copies can affect the disease severity but also sequence variations within SMN2. 

2.1.2 SMN protein  

SMN is a 294 aa protein of about 38 kDa in size and is encoded by 8 exons (Lefebvre et 

al., 1995). SMN has been shown to be ubiquitously expressed with especially high levels in 

the central nervous system (CNS) and the liver (Liu and Dreyfuss, 1996, Carvalho et al., 

1999, Young et al., 2000, Young et al., 2001). While SMN shows diffuse distribution in the 

cytoplasm, it is present in punctate structures in the nucleus termed gemini of Cajal bodies 

(CBs), or gems (Liu and Dreyfuss, 1996). Gems are often located proximal to or overlapping 

with Cajal bodies (CB), structures that are implicated to play an important role in the nuclear 

biogenesis of spliceosomal small nuclear ribonucleoproteins snRNPs (Darzacq et al., 2002, 

Jady et al., 2003). The SMN protein has several functional domains, including an N-terminal 

RNA-binding-domain (RBD, exon 2b and 3), a Tudor domain involved in Sm protein 

interaction (exon 3), a proline-rich stretch (exon 4 and 5), which can interact with profilin as 

well as a C-terminal YG-box (exon 6 and 2) that is important for self-oligomerization (Lorson 

et al., 1998, Bertrandy et al., 1999, Selenko et al., 2001, Bowerman et al., 2007, Bowerman 

et al., 2009). 

2.1.3 SMN function 

After the current model, SMN has multiple roles in a plethora of cellular processes and 

pathways, however, its most recognized and studied function is in the assembly of small 

nuclear ribonucleoproteins (snRNP), important factors within the spliceosome. As will be 

demonstrated in the results part of this thesis, the modifying factor PLS3V5 positively 
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incluences axonal integrity and nerve connectivity in SMA mice at the level of the 

neuromuscular junction (NMJ). Therefore, a particular focus of this chapter is on the function 

of SMN in axonal transport and growth as well as NMJ maturation. Last but not least, recent 

findings about an involvement of muscle and other non-neuronal tissues in SMA disease will 

be outlined.  

 

I. The SMN complex and its function in snRNP assembly: 

SMN has been shown to play an important role in the assembly of small nuclear 

ribonucleoproteins (snRNPs), important factors within the spliceosome (Fischer et al., 1997, 

Meister et al., 2001, Pellizzoni et al., 2002, Gubitz et al., 2004, Eggert et al., 2006, Burghes 

and Beattie, 2009). snRNPs are important in splice site (ss) recognition and catalytic removal 

of introns from pre-mRNA and consist of a U small nuclear RNA (snRNA) (U1, U2,U4, U5, 

U11 or U12) and a heptameric ring of Sm proteins (D1, D2, E, F, G and D3, B) (Raker et al., 

1999). It was demonstrated in the past that Sm proteins can self-assemble on snRNAs in 

vitro, however, in vivo this process requires the SMN complex (Meister et al., 2001, Meister 

et al., 2002, Pellizzoni et al., 2002, Pellizzoni, 2007). In this conformation the SMN complex, 

containing the assembled snRNPs, is then transferred into the nucleus. There, snRNPs are 

further processed and matured in the gems while the SMN complex translocates out of the 

nucleus again (Chari et al., 2009). The SMN complex (approx. 1 mDa) itself is comprised of 

many factors, which are called gemins due to their subcellular localization similar to that of 

SMN (including gems (Carissimi et al., 2006)). SMN is believed to act as the core backbone 

of the complex, however the exact stoichiometry of SMN and its binding partners is still 

unknown.    

Based on these findings, it is assumed that SMN1-deletion impacts on correct splicing. 

Therefore, attempts have been undertaken to investigate the impact of SMN depletion on 

splicing in an SMA mouse model. Indeed, analysis revealed differences in pathways 

associated with neuronal development as well as cellular injury. Nevertheless, it is hard to 

distinguish between splice or expression changes due to secondary stress reactions, and 

changes that are truly caused by SMN depletion (Zhang et al., 2008b, Baumer et al., 2009). 

 

II. SMN function in translational regulation and axonal transport: 

A function of SMN in translational regulation was suggested based on the observation that 

SMN localizes in granules that are transported along the axons of neurons and that show 

colocalization with ribosomal RNAs (Zhang et al., 2003). Local protein synthesis is important 

for axonal integrity, this fact being in line with the observation that SMN deficient neurons 

show defects in axonal outgrowth and pathfinding (McWhorter et al., 2003, Carrel et al., 

2006, van Bergeijk et al., 2007, Oprea et al., 2008, Holt and Bullock, 2009).  
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The effects of Smn deficiency were also studied in primary motor neuron cultures from 

SMA mice (Rossoll et al., 2003). Even though motor neurons derived from SMA mice 

showed the same survival as wt motor neurons, the axon length was significantly reduced. 

Previous electron microscopic (EM) analyses showed that Smn protein is associated with 

axonal microtubules (Bechade et al., 1999, Pagliardini et al., 2000, Rossoll et al., 2003). 

Furthermore, in murine motor neurons Smn protein colocalized with hnRNP R (Rossoll et al., 

2002), which in turn was shown to associates with β-Actin mRNA. Therefore, it was 

speculated that a complex of Smn and hnRNP R might be involved in axonal β-actin mRNA 

transport or processing (Rossoll et al., 2003). Indeed, hnRNP protein was only present in a 

punctuate pattern along motor axons of SMA mice and, presumably due to defects in 

transport, β-actin protein was severely reduced in the growth cones of such. These results 

suggest that the localization of β-actin mRNA and hnRNP R to growth cones depends on the 

presence of Smn and that cytosceletal defects in the growth cones and axons might 

contribute to SMA pathology (Rossoll et al., 2003). 

Besides hnRNP R, many other interaction partners of SMN were identified in the past that 

have important function in RNA binding or translational regulation, e.g.: hnRNP Q, KH-type 

splicing regulatory protein (KSRP), Hu antigen D (HuD) and fragile X mental retardation 

protein (FMRP) (Rossoll and Bassell, 2009, Fallini et al., 2011). Since FMRP associates with 

polyribosomes and has been proven to be a negative regulator of translation by associating 

with mRNAs, SMN might impact on the regulative ability of FMRP through physical 

interaction (Piazzon et al., 2008).  

 

III. The role of SMN in axonal growth and neuromuscular junction (NMJ) maturation: 

SMN has been observed to be expressed at highest levels during embryonic and fetal 

stages compared to the postnatal period (Burlet et al., 1998), indicating essential function of 

SMN during development. Additional expression analyses revealed the presence of SMN in 

vivo in neurites and growth cones of motor neurons in mouse and rat spinal cord, embryonic 

chick forebrain and in vitro in primary rat cortical neurons transfected with recombinant SMN 

as well as in differentiating, neuron-like mouse P 19 cells (Bechade et al., 1999, Pagliardini 

et al., 2000, Dodds et al., 2001, Jablonka et al., 2001, Fan and Simard, 2002, Zhang et al., 

2003, Briese et al., 2005). Using PC12 cells it was found that SMN protein levels increase 

during neuronal differentiation under continuous neuronal growth factor (NGF) treatment (van 

Bergeijk et al., 2007). Furthermore, it was shown in the same study that shRNA-mediated 

knockdown of SMN significantly reduced neurite length in PC12 cells while overexpression of 

SMN led to extensive sprouting. By testing different deletion constructs and transfecting into 

SMN depleted PC12 cells, the growth promoting region could be narrowed to a C-terminal 

fragment comprising amino acid (aa) residues 235-294 of the human SMN. In this construct 
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the tudor domain which is necessary for Sm protein-binding and thus, in turn, essential for 

SMN function in snRNP was completely missing. Therefore, these results could argue for 

distinct functions of SMN in snRNP-assembly / splicing and axons or dendrites (van Bergeijk 

et al., 2007).  

It is well known, that axonal growth and branching strongly depend on actin dynamics 

(Pak et al., 2008, Schmidt and Rathjen, 2010). In this process, a set of actin binding proteins 

such as the main neuronal form of Profilin, Profilin IIa, play an important role. Profilin IIa can 

sequester actin monomers or promote polymerization by desequestering of actin from the 

thymosin/β-actin pool and by adding these monomers to the free barbed ends of 

microfilaments (Pantaloni and Carlier, 1993, Sharma et al., 2005) (see also chapter 2.3.2). It 

has previously been shown that SMN can interact with Profilin IIa and influences the 

sequestering ability of Profilin IIa negatively, thereby triggering polymerization (Rossoll et al., 

2002, Sharma et al., 2005). However, the effect of profilin polymerizing function on the actin 

cytoskeleton and thus on axonal growth is controversially discussed: While in one study the 

knockdown of individual profilin isoforms (I and II) had seemingly no effect and the double 

knockdown clearly inhibited axonal growth (Sharma et al., 2005), it was demonstrated 

elsewhere that the single knockdown of Profilin IIa was sufficient to stimulate neurite 

outgrowth (Da Silva et al., 2003). In combination with the finding of an SMN / hnRNP 

interaction, these observations indicate an involvement of SMN in axonal growth via the 

regulation of actin dynamics.  

Besides observations from cell culture, the findings of axonal growth defects upon SMN 

depletion have been confirmed in a variety of different SMA animal models. In 

Caenorhabditis elegans, a less complete knockdown of smn-1 leads to developmental arrest, 

reduced lifespan and axonal outgrowth defects, which finally results in locomotion deficits 

(Briese et al., 2009). Also in the fly Drosophila melanogaster, developmental and motor 

behavior deficits were observed (Chan et al., 2003). Further electrophysiological combined 

with morphological analysis revealed reduced endplate (Acetyl Choline Receptor (AChR) 

cluster) currents and endplate disorganization (Chan et al., 2003). These findings for the first 

time led to the suggestion of primary defects at the SMA NMJ. Also in the vertebrate 

Xenopus laevis, motor neuron abnormalities with reduced axonal outgrowth and abnormal 

formation of branching extensions have been described (Ymlahi-Ouazzani et al., 2010). 

Similarly, zebrafish deficient for Smn display motor axons with abnormal growth and 

branching, that often do not reach their most distant targets (McWhorter et al., 2003, Carrel 

et al., 2006, Oprea et al., 2008, Hao le et al., 2011).  

While axonal defects have been frequently observed in these models and also in vitro in 

murine motor neurons, in vivo in SMA mouse models no defects in axonal outgrowth were 

detected (McGovern et al., 2008, Torres-Benito et al., 2011). In line with this fact, no changes 
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have been observed in SMA animals with regards to the number of axonal branches 

innervating single muscle fibers. Nevertheless, severe SMA mice have been shown to exhibit 

a significant reduction of axonal inputs per endplate during synapse elimination process, also 

termed axonal pruning (chapter 2.3.1), in proximal TVA muscle (Murray et al., 2008) 

Furthermore, electrophysiological recordings of synaptic activity at the NMJ have shown a 

number of abnormalities in Smn depleted mice (Torres-Benito et al., 2011). In the proximal 

slow twitch Transversus abdominis muscle (TVA), the quantal content (QC, amount of 

neurotransmitter released per action potential) was reduced up to ~50 % in the SMNΔ7 

mouse model (chapter 2.1.4), followed by ~40 % reduction in the distal and fast twitch 

muscles Tibialis anterior (TA), and ~25 % reduction in Extensor digitorum longus (EDL) (Ruiz 

et al., 2010). Since the amount of neurotransmitter per fused vesicle (quantal size) was not 

altered between control and SMA mice, it has been speculated that the reduction in QC was 

due to a decrease in release probability and/or in the number of docked vesicles (Kong et al., 

2009, Ling et al., 2010, Ruiz et al., 2010, Torres-Benito et al., 2011). Indeed, measurements 

in SMA and control mice have confirmed significant changes in vesicle release probability as 

well as in the number of docked vesicles (Kong et al., 2009). Furthermore, also the 

distribution of vesicles in the presynapse appeared abnormal in SMA animals (Kariya et al., 

2008).  

The functional defects observed in NMJs of SMA mice manifest also in altered 

morphological appearance of both pre- and postsynaptic structures. SMA presynapses are 

often characterized by accumulations of Neurofilament (NF) and it is believed that NF 

accumulations participate in motor neuron dysfunction, e.g. by slowing down the transport of 

components required for axonal and synaptic maturation and maintenance (Cifuentes-Diaz et 

al., 2002, Kariya et al., 2008, Kong et al., 2009, Ruiz et al., 2010, Dachs et al., 2011, Torres-

Benito et al., 2011). Further hallmarks of presynaptic defects include tiny nerve terminals that 

are often detached from the postsynaptic membrane, reduced sprouting and concomitantly 

large areas of postsynaptic membrane unoccupied by synaptic terminals. The defects 

observed at SMA postsynapses affect mainly the maturation process of Acetyl Choline 

receptor (AChR) clustering. While in wt ovoid AChR plaques are transformed into complex, 

pretzel-like shapes (characteristic of adult synapses), SMA animals display small and still 

oval shaped endplates with almost no gutters of perforations and postsynaptic membrane 

folds fail to form (Sanes and Lichtman, 1999, Torres-Benito et al., 2011). Postsynaptic 

responses remain slow compared to wildtype, which might in part be attributed to 

predominantly embryonic γ-subunit containing forms of AChR in SMA mice (Kong et al., 

2009). However, the exact mechanisms underlying the maturation defects of NMJs in SMA 

remain elusive. 
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Together, these data suggest that NMJ pathology rather than axonal defects are the 

characteristic disease feature in SMA mice. Since NMJ defects are an early characteristic 

timely preceding motor neuron death, a dying back mechanism was suggested.  

 

IV. SMN function in muscle and other non-neuronal tissues: 

It has previously been shown in different studies that muscle specific overexpression of 

SMN is not sufficient to ameliorate the SMA phenotype in flies and mice in the absence of 

neuronal SMN. In turn, neuron specific expression alone significantly improved survival but 

did not fully rescue the SMA phenotype (Chan et al., 2003, Gavrilina et al., 2008). Therefore, 

it has been speculated that the observed motor defects might be caused by primary 

abnormalities in both muscles and motor neurons, or perhaps due to a failure of 

communication between these two tissues (Walker et al., 2008). There are several further 

hints that SMA is not only caused by defects in motor neurons, axons or at NMJ level. E.g., 

SMN depletion experiments revealed defects in fusion and proliferation of human and mouse 

myoblasts and also the maintenance of stable innervation seems to depend on muscle 

specific expression of SMN (Braun et al., 1995, Guettier-Sigrist et al., 2002, Arnold et al., 

2004, Shafey et al., 2005). In accordance with a muscular involvement of SMN, Smn and its 

complex partners were found to localize to the Z-disc (Divides two Sarcomeres, anchor for 

actin filaments) of  skeletal and cardiac muscle in mouse. Furthermore, Smn was proven to 

be a direct target of calpain, a protease with important function in Z-disc turnover (Walker et 

al., 2008, Fuentes et al., 2010, Anderton et al., 2011). In this context, myofibers from SMA 

mice display morphological defects that are consistent with a Z-disc deficiency (Walker et al., 

2008). Besides the neuronal functions of Smn, these findings point at an additional role of 

Smn in the muscle.  

Apart from muscle, SMN depletion has often been reported to affect also other non 

neuronal tissues, such as heart, bone, blood vessels and liver (Finsterer and Stollberger, 

1999, Kelly et al., 1999, Hsieh-Li et al., 2000, Felderhoff-Mueser et al., 2002, Arai et al., 

2005, Hachiya et al., 2005, Bach, 2007, Shanmugarajan et al., 2007, Khatri et al., 2008, 

Rudnik-Schoneborn et al., 2008, Araujo Ade et al., 2009, Meyer et al., 2009, Shanmugarajan 

et al., 2009, Bevan et al., 2010, Gogliotti et al., 2010, Heier et al., 2010, Hua et al., 2010, 

Michaud et al., 2010, Riessland et al., 2010, Shababi et al., 2010). These observations have 

led to the development of the so called threshold theory, which proposes different 

susceptibility of certain cells to SMN depletion: While motor neurons are affected at weakly 

reduced SMN levels, other tissues such as heart, bone and finally all tissue types get 

affected as SMN levels further decrease or are even completely absent (Sleigh et al., 2011). 
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2.1.4 SMA mouse models 

In contrast to humans, where a second copy of SMN1 is present, the SMN1 orthologue in 

mouse, Smn, has been shown to exist as a single copy gene (DiDonato et al., 1997). The 

homozygous knockout of Smn is embryonically lethal, providing evidence that Smn is 

indispensable for cell survival (Schrank et al., 1997, Hsieh-Li et al., 2000, Park et al., 2010). 

Due to its early embryonic lethality, however, this SMA model was not useful to adequately 

study disease mechanisms. For this reason and to more accurately mimic the human 

situation, the aberrantly spliced human SMN2 (hSMN2) gene was introduced into the Smn-/- 

background as a genomic fragment (Hsieh-Li et al., 2000, Monani et al., 2000, Park et al., 

2010).  

In the SMA mice generated by Monani, the hSMN2 transgene is present as one copy per 

transgenic allele. Homozygous Smn-/-;hSMN2tg/tg mice (2 hSMN2 copies) are viable but 

develop severe symptoms including motor neuron loss and motoric disability by P2 and die 

by P4 (Monani et al., 2000). Heterozygous Smn-/-;hSMN2tg/wt with a total of 1 hSMN2 copy, 

however, are embryonically lethal. Importantly, 8 copies of hSMN2 have been shown to be 

sufficient to fully rescue the lethal SMA phenotype of the Monani mice, providing the first 

proof-of-concept study of the feasibility of modulating the SMN2 gene for therapeutic 

purposes (Monani et al., 2000, Park et al., 2010).  

The most commonly used SMA model today is the so called SMNΔ7-mouse (Le et al., 

2005). This line carries the Monani-hSMN2 transgene (1 hSMN2 copy per allele) and 

additionally Δ7hSMN2 (an SMN cDNA lacking exon 7), each homozygously, on the Smn null 

background. In Smn-/-;hSMN2tg/tg;Δ7hSMN2tg/tg mice a modest attenuation of the SMA 

phenotype was observed with a mean survival of 13.3±0.3 d., demonstrating that also 

Δ7SMN2 is at least partially functional and does not, as was previously alleged, act 

deleterious through dominant-negative effects (Kerr et al., 2000, Le et al., 2005).  

Further SMA mouse models include the Smn2B/- mouse line with a 3 bp substitution in the 

exon 7 exonic splicing enhancer (ESE) (mean survival ~P30) (Bowerman et al., 2009) or the 

Smn-/-;hSMN2tg/tg;A2Gtg/wt with an A2G missense mutation in the first exon of the SMN1 

transgene (mean survival ~8 mo)  (Monani et al., 2003).  

Recently, a stably integrated Cre-inducible SMA mouse was generated in which 

expression of full length hSMN2 occurs after tamoxifen administration (Bebee et al., 2011). 

Many approaches today aim at the successful restoration of SMN levels in motor neurons. 

Using self-complementary adeno-associated virus 9 (scAAV9) mediated SMN1 gene 

transfer, researchers were able to fully rescue the SMA phenotype when treating early P1, 

but not P10 SMA animals (Foust et al., 2010). Such findings indicate a certain timing 

requirement for SMN inductive or delivery therapy. Therefore, inducible SMA models will be 

of great help in defining the optimum therapeutic window in SMA therapy.   
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In the year 2000, Hsieh-Li et al. generated another SMA mouse model, also termed Hung 

mice, by crossing an integrate carrying 2 hSMN2 copies onto the Smn-/- background. 

Heterozygous Smn-/-;hSMN2tg/wt animals (2 hSMN2 copies) show a background-dependent 

survival of ~10 (FVB) (Riessland et al., 2010) to ~14 d (C57BL/6N, this thesis) while 

homozygous mice of the genotype Smn-/-;hSMN2tg/tg (4 hSMN2 copies) are fully viable and 

fertile but show necrosis of the ears and tail. The Hung mouse model offers the big 

advantage of producing 50 % of SMA and 50 % of control mice in one litter. Since the Hung 

mouse model was in this study used to analyze the effect of PLS3 overexpression on the 

SMA phenotype, this model including the breeding scheme for the production of SMA mice is 

described in chapter 5.4.2.1. 

2.1.5 Therapeutic strategies in SMA treatment 

Currently, a number of therapeutic strategies are investigated for their potential in SMA 

therapy, however, to date no cure is available.  

Several approaches aim at the stimulation of SMN2 transcription, since still around ~10% 

of FL-SMN transcript are produced by this locus. Drugs of the so called Histone deacetylase 

inhibitor (HDACi) class of substances have turned out promising candidates for the 

development of an SMA therapy. As the name suggests, HDACi block the activity of histone 

deacetylases (HDAC). Therefore, these drugs activate gene transcription by shifting the 

modification of histones towards an increased acetylation state. In several studies using 

different substances (e.g. Sodium butyrate, valproic acid (VPA), phenylbutyrate, Trichostatin 

A, suberoylanilide hydroxamic acid (SAHA), M344 and LBH589), HDAC inhibition was 

proven to activate SMN2 expression when tested in cell culture or murine SMA models 

(Chang et al., 2001, Brichta et al., 2003, Sumner et al., 2003, Andreassi et al., 2004, Brahe 

et al., 2005, Brichta et al., 2006, Riessland et al., 2006, Avila et al., 2007, Mercuri et al., 

2007, Tsai et al., 2008, Garbes et al., 2009, Hauke et al., 2009).  

Another strategy aims at the correction of the SMN2 splicing pattern towards increased 

levels of FL-SMN transcripts. Although attempts using antisense oligonucleotides (ASOs) 

such as morpholinos or RNAs (Lim and Hertel, 2001, Cartegni and Krainer, 2003, Dickson et 

al., 2008) have been proven successful in elevating SMN levels in cell culture and even 

when injected into the brain of SMA mice (Passini et al., 2011), delivery into the human CNS 

remains challenging.  

An additional way to increase SMN levels in SMA patients might be to stabilize remaining 

FL-SMN protein. In 2004, it was discovered that SMN is degraded via the 

ubiquitin/proteasome pathway (Chang et al., 2004, Garbes et al., 2009). In line with this, 

treatment of SMA patient`s cell lines with the proteasome inhibitor MG132 led to an increase 

in SMN protein. These results raise the possibility that proteasome inhibitors may be useful 

for the treatment of SMA. 
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Also stem cell therapy has been suggested as a potential treatment form of SMA. Indeed, 

when transplanted into the spinal cord of the SMNΔ7 mouse model, neural stem cells 

differentiated into motor neuron like cells, protected host motor neurons from degeneration 

and significantly improved motoric ability as well as survival (Corti et al., 2010). However, it is 

unlikely that transplanted motor neurons form axons that reach their targets in the respective 

muscle tissue. Therefore, any positive effect is likely to be mediated through neuroprotection 

of host motor neurons by numerous factors released from the donor cells, such as brain-

derived neurotrophic factor (BDNF), neurotrophin-3 (NT3), neurotrophin-4/5 (NT4/5) and 

nerve growth factor (NGF) (Ebert et al., 2009, Corti et al., 2010, Wyatt and Keirstead, 2010). 

Last but not least, outstanding progress has been achieved in the development of a gene 

therapeutic approach to treat SMA in the last two years. In three independent studies, 

researchers used the self-complementary adeno-associated virus 9 (scAAV9) for gene 

delivery into motor neurons of SMA mice by intravenous injection (Foust et al., 2010, Valori 

et al., 2010, Dominguez et al., 2011). Most strikingly, scAAV9-SMN was able to cross the 

blood brain barrier (BBB), highly efficiently transduced motor neurons in the lumbar region of 

the spinal cord as well as muscle tissue and rescued the survival phenotype.  

2.2 PLS3 - a fully protective modifier of SMA 

Typically, genetically caused diseases display a broad phenotypic variability among 

patients. The reasons for such variability include environmental as well as intrinsic genetic 

factors that might influence the severity. Genetic factors with impact on a certain disease 

phenotype are referred to as genetic modifying genes, or short modifiers. In multifactorial 

genetic diseases, modifications may comprise complex genetic networks which are often 

hard to dissect. Therefore, “monogenic” diseases provide unique opportunities to dissect 

components as they each have a single etiology, relatively uniform treatments, and the 

contribution of the disease-causing gene is usually known to some degree (Antonarakis and 

Beckmann, 2006, Cutting, 2010). Often, different mutations in one single gene account for a 

broad spectrum of disease variability. E.g., in one of the most prevalent genes causing 

deafness, connexin 26 (CNX26), different mutations can result in either a recessive or a 

dominant inheritance mode (Rabionet et al., 2000). The finding, however, that patients with 

one and the same mutations often strongly vary in their phenotypic appearance suggests the 

existence of other modifying genes or variants.  

For a long time, SMN2 was the only known SMA-modifying gene with a strongly inverse 

correlation of SMN2 copy number and SMA severity (Feldkotter et al., 2002). Interestingly, 

however, homozygously SMN1-deleted patients and parents have been reported who are 

completely healthy, whereas members of the same family carrying the identical genotype 

show SMA symptoms according to the SMN2 copy number (Brahe et al., 1995, Cobben et 

al., 1995, Hahnen et al., 1995, Wang et al., 1996). The observation that siblings with identical 
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SMN2 copy number and homozygous absence of SMN1 can show variable phenotypes has 

suggested that SMA is also modified by other unknown factors (Helmken and Wirth, 2000).  

In 2008, the actin filament bundling protein PLS3 was identified as the first SMA modifying 

protein besides SMN2 in a total of six discordant families (Oprea et al., 2008). In these 

discordant families, a small proportion of individuals homozygous for the absence of SMN1 

are fully asymptomatic despite carrying an identical number of SMN2 copies as their affected 

siblings (mostly 3 – 4, reflecting SMA type III). Via differential gene expression (micro-array) 

analysis and as confirmed by qRT-PCR as well as protein analysis, PLS3/PLS3 was then 

found to be highly upregulated in Epstein-Barr-virus (EBV)-transformed lymphoblastoid (LB) 

cell lines of unaffected individuals compared with their affected siblings. Expression of PLS3 

in blood is very rare, as it could be shown only in ~5 % of healthy controls. Furthermore, by 

detecting high PLS3 levels in native blood of an unaffected individual, it was ruled out that 

PLS3 expression in LBs was induced by Epstein-Barr virus transformation. Further 

expression analysis showed, that PLS3 is highly expressed in fetal and adult human spinal 

cord, as well as brain and muscle.  

To functionally dissect the working mechanism underlying PLS3 protection, PLS3 

overexpression analysis was performed in Smn-depleted neuronal PC12 cells and primary 

mouse motor neuron cultures derived from SMA mice. In both cases, PLS3 was able to 

rescue axon outgrowth defects typically observed in the absence of Smn. Most strikingly, 

however, PLS3 overexpression led to a full rescue of axon defects in smn depleted zebrafish 

(Danio rerio) embryos. Since PLS3 mainly functions in actin bundling, G- to F-actin ratios 

were determined in LB cells of affected and unaffected siblings. Here, it has been found that 

unaffected SMN1-deleted siblings who highly expressed PLS3 had significantly increased F-

actin levels in LBs, as compared with their affected siblings who lack PLS3 expression. Also 

when overexpressed in HEK cells, PLS3 activity resulted in a highly significant increase in F-

actin levels. These findings, together with the observed rescue of axonal outgrowth defects in 

vitro and in vivo, suggest a model by which PLS3 might exert its rescuing effect through a 

stabilization of the actin cytoskeleton in motor neurons.  

As revealed by 2 dimensional blue-native–polyacrylamide gel electrophoresis (2D-BN-

PAGE), Pls3 has been observed to be present in one ~500 and another ~200 kDa complex 

together with Smn in murine spinal cord. These observations have further been supported by 

the finding of indirect PLS3/SMN interaction as demonstrated in co-immunoprecipitation (Co-

IP) experiments. Based on their findings, the authors have speculated that PLS3, apart from 

the actin filament stabilizing effect, might exert additional functions in cooperation with Smn 

within the complex. Interestingly, only females seem to be protected by high PLS3 

expression, since Oprea et al. (2008) observed that males highly expressing PLS3 displayed 

a phenotype as expected based on SMN2 copy number.  
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Most strikingly, the Drosophila melanogaster and Caenorhabditis elegans orthologues of 

PLS3, Fim and plst-1, have been demonstrated to ameliorate disease severity also in these 

organisms, suggesting that PLS3 is a cross species SMA modifier (Dimitriadi et al., 2010) 

(see also chapter 2.2.4).  

After PLS3 had been shown to act as a gender specific modifier of SMA by Oprea et al. in 

2008, three more studies focusing on the aspect of PLS3 protection were published in the 

following years. In 2009, Bowerman et al. presented a study investigating the role of profilin 

IIa, an actin binding protein, in SMA pathology (Bowerman et al., 2009). As it has been 

demonstrated before also by others, the knockdown of profilin IIa alone results in stimulation 

of neurite outgrowth, while overexpression of profilin IIa reduces neurite number and size (Da 

Silva et al., 2003). Furthermore, SMN and profilin IIa directly interact, whereby SMN has 

been shown to moderate and restrict profilin IIa negative function on actin polymerization 

(Sharma et al., 2005). Interestingly, Bowerman et al. have detected increased profilin IIa 

levels in motor neurons of SMA mice and therefore speculated that negatively acting profilin 

IIa might be causative for axonal defects in SMA. Moreover, the researchers detected lower 

PLS3 protein levels in brain and spinal cord of the Smn2B/- SMA mouse model, this finding 

being in line with the idea of a Pls3/Smn complex formation in mouse. To investigate a 

possible negative effect of profilin IIa on axon development in vivo, Bowerman et al. crossed 

the profilin IIa knockout (pfn2-/-) into the Smn2B/- SMA background, hoping to see an 

amelioration of the SMA phenotype. Interestingly, the authors have been able to show that 

Pls3 levels were restored in Smn2B/-;pfn2-/- animals compared to Smn2B/-;pfn2+/+ mice, 

suggesting a modulation of plastin 3 levels by profilin IIa. Unfortunately, however, despite the 

restoration of Pls3 levels in pfn2-/-;Smn2B/- animals, this did not result in an amelioration of the 

SMA phenotype. Therefore, Bowerman et al. speculate that in addition to profilin IIa and 

plastin 3, other components of actin dynamics are also affected in SMA, which would explain 

why the simple downregulation of profilin IIa or upregulation of Pls3 is not sufficient on its 

own to ameliorate the SMA phenotype (Bowerman et al., 2009). 

In another study, it has been investigated whether PLS3 might serve more broadly as a 

biomarker for SMA severity (Stratigopoulos et al., 2010). To investigate this question, PLS3 

expression was measured in whole blood from 88 types I, II, and III SMA patients. A clear 

correlation between PLS3 expression and SMA phenotype was detected in postpubertal 

females, whereas in prepubertal females as well as age matched male patients no such 

coincidence was observable. Therefore, the authors conclude that it is unlikely that PLS3 

expression alone will be a generalizable biomarker for SMA in most clinical trials.  

A third study assessed PLS expression in EBV-transformed lymphoblastoid and  fibroblast 

cell lines from four SMA discordant families (Bernal et al., 2011). Based on expression 

analysis using LB cell lines, PLS3 has been excluded as the protective factor for two of the 
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four families investigated. In contrast, in the other two families, PLS3 levels were 8-9 fold 

increased in unaffected siblings when compared to affected siblings. When investigating 

PLS3 levels in fibroblasts of discordant siblings, Bernal et al. found that the PLS3 expression 

levels exceeded those of blood ~12-200-fold. Based on this observation, they pointed out 

that the subtle positive changes obtained in LBs of the asymptomatic individuals may reflect 

a similar situation in their motor neurons and nerves and should therefore be considered 

cautiously. To exclude that higher PLS3 levels in LB cells of unaffected siblings resulted from 

immortalization, Oprea et al. in their study investigated native blood of an unaffected sibling 

and found a similar increase as in the respective LB sample. Likewise, Bernal et al. used 

native blood as a control for all of their discordant families. Interestingly, PLS3 expression 

levels were different when comparing LB cell lines with native blood of the same patient`s 

cell lines. Therefore, the authors speculated that at least in their study immortalization or 

another unknown factor may influence the regulation of PLS3 expression (Bernal et al., 

2011). In summary, the results of this study only partially confirm the data presented in 

Oprea et al., 2008.  

2.2.1 PLS3 gene 

Human PLS3 (NP_001129497), also called T-plastin, fimbrin  or plastin 3, was first cloned 

in 1988 and is located on Xq23 spanning a region of ~90 kb (Lin et al., 1988). PLS3 

comprises 16 exons and produces three mRNA transcript variants (1,2 and 3). Despite 

differences in the 5`UTR, Splice variants 1 and 2 encode exactly the same 1893 bp 

transcript. Splice variant 3, however, uses an alternate in-frame splice site in the coding 

region, producing an 81 bp shorter mRNA of 1812 bp in size. Plastins are highly conserved 

from lower eukaryotes to humans, reflecting their important role in the cell (Klein et al., 2004, 

Delanote et al., 2005). Next to PLS3, two homologues genes exist in humans, I-plastin and 

L-plastin, which are encoded by distinct genes on chromosomes 3 and 13, respectively (Lin 

et al., 1993a, Lin et al., 1993b, Lin et al., 1994). Additionally, analyses of intron/exon borders 

revealed that all three human Plastins have emerged from one ancestral gene (Lin et al., 

1993b). 

2.2.2 PLS3 protein 

PLS3 consists of 630 aminoacids (aa) and has a predicted size of ~70 kDa. The original 

name for PLS3, fimbrin, derives from its first described association with surface structures 

such as membrane ruffles, microvilli, microspikes and focal adhesions in chicken embryo 

fibroblasts and cultured rat mammary cells (Bretscher and Weber, 1980, Delanote et al., 

2005). PLS3, L- and I-Plastin show 70 % similarity on aa level. While PLS3 is expressed in 

almost all solid tissue (including human brain, spinal cord and muscle (Oprea et al., 2008)) 

and usually not in the hematopoietic system, L-plastin is mainly found in cells of the 
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hematopoietic lineage. The expression of I-plastin, in contrast, is restricted to intestinal 

tissues only, as was demonstrated by expression analysis including humans and rat (Lin et 

al., 1994). PLS3 has a modular structure consisting of two N-terminal EF-hand domains 

(helix-loop-helix structural domains) and two actin binding domains (ABD1 and ABD2), each 

comprising two calponin-homology (CH) domains (Figure 2). 

 

Figure 2:  PLS3 protein structure: The 630 aa long protein has two N-terminal EF-hand domains   
followed by two actin binding domains (ABD1 and ABD2), each consisting of two 
calponin homology domains.  

The EF-hand motif has a structure much like the spread thumb and forefinger of a hand, 

in which Ca2+ ions are coordinated by ligands within the loop. The CH domains are each 

composed of four α-helical segments. Three of the four helices form a loose bundle, while 

the fourth is oriented perpendicular to the major bundle.  

The crystal structure of the complete PLS3 protein has not been determined yet, however, 

the fragmented parts including the N-terminal human ABD1 domain as well as the 

crosslinking core of Schizosaccharomyces pombe (S.pombe) and Arabidopsis thaliana 

(A.thaliana) have been resolved (Goldsmith et al., 1997, Klein et al., 2004). Recently, another 

study has been published in which the authors used cryo electron-microscopy (EM) and a 

single-particle approach to generate a 12-Å-resolution map of F-actin alone and F-actin 

decorated with the ABD2 domain of human L-plastin containing tandem CH-domains (Galkin 

et al., 2008). In their study the authors propose a working mechanism of PLS3 actin-bundling 

activity: Based on their findings, they propose that first ABD2 binds to one actin filament, 

which in turn “activates” ABD1 so that it may bind in a more ordered manner than that 

observed for free ABD1 to another actin filament with high affinity. 

Based on crystallization experiments, it has been proposed that calcium binding to the N-

terminal EF-hand domains of PLS3 might regulate its activity in actin bundling (Hanein et al., 

1998). Based on calculations, the authors supposed that the EF-hand domains are needed 

for PLS/actin binding, however, calcium acts as a negative regulator in this interaction. 

Furthermore, by a digestion approach it was shown that a hot spot for proteolysis, between 

the putative EF-hands and the ABD1, becomes protease-resistant in the presence of 

calcium. Therefore, the authors followed that the observed calcium induced conformational 

change might be the mechanism behind the inhibition of PLS3/actin interaction (Hanein et 

al., 1998). In several studies the role of calcium in the regulation of plastin isoforms was 
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examined by studying the actin bundling activity of plastins at variable calcium 

concentrations. All three plastin isoforms show a rather weak homology regarding their 

calcium binding domains and this may suggest that their actin binding activities are 

differentially regulated by calcium (de Arruda et al., 1990, Delanote et al., 2005). L-plastin 

possesses all conserved and essential aa required for calcium binding and is indeed 

negatively regulated by calcium (Namba et al., 1992). Also I-plastin has been demonstrated 

to be negatively regulated by calcium. Despite above mentioned findings, however, a calcium 

dependent regulation of PLS3 is controversially discussed. Even though Hanein et al. 

showed conformational changes occurring in the ABD1-containing fragment of PLS3 in the 

presence of calcium, a regulatory influence of the calcium concentration on PLS3 activity 

was neither proven in vitro, nor in vivo. Moreover, another group showed that co-

sedimentation of actin with T-plastin was not affected by free calcium concentrations of up to 

2,2 μmol/l (Giganti et al., 2005). Furthermore, in a depolymerization assay of the same study, 

calcium concentrations in the range of 4.6 nmol/L–1.6 μmol/L had no impact on PLS3 

activity. Also phosphorylation by protein kinase A (PKA) has been shown to influence L-

plastin activity (Janji et al., 2006). However, although conserved, Ser7, has never been 

demonstrated to become phosphorylated in PLS3. Additionally, L-plastin binding activity to 

actin seems to be negatively regulated by increasing amounts of phospholipids, e.g. 

Phosphatidylinositol 4,5-bisphosphate (PIP2) (Lebart et al., 2004). For I-plastin and PLS3, 

however, no such studies have been performed so far. 

2.2.3 PLS3 function 

PLS3 is an actin binding protein with its main function in actin filament cross-linking. 

Generally, plastins are located in focal adhesions, ruffling membranes, lamellipodia, 

filopodia, or in specialized surface structures with highly ordered microfilament bundles such 

as microvilli and stereocilia. Sometimes they co-localize with stress fibers (Bretscher and 

Weber, 1980, Delanote et al., 2005). PLS3 function in actin bundling and the consequences 

of overexpression have nicely been demonstrated in vitro in fibroblast–like CV-1 and 

epithelial LLC-PK1 cells (Arpin et al., 1994). In CV-1 cells, PLS3 overexpression resulted in a 

rounding-up of cells, concomitantly with a significant reorganization of the actin cytoskeleton. 

In this regard, actin filaments became organized into polygonal networks in the cortical 

region of the cells. In LLC-PK1 epithelial cells, PLS3 overexpression led to a high increase in 

length and density of brush border microvilli, particularly at the periphery of the cells. 

Furthermore, PLS3 overexpression resulted in a significant diminution of focal contacts, 

presumably due to extensive remodeling of the actin cytoskeleton, implying a possible 

involvement of PLS3 in cell movement processes. Another study focused on the mechanism 

underlying PLS3 induced cytoskeletal rearrangements (Giganti et al., 2005). Here, beads 

were coated with the VCA domain of Wiskott/Aldrich-syndrome protein (WASP) to recruit the 
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actin-branching and polymerizing complex Arp2/3. This alone resulted in actin polymerization 

at the surface of the beads and movements of such when placed in cell-free extracts. 

Importantly, it was shown that PLS3 increased the velocity of VCA beads movement, 

stabilized actin comets and concomitantly displaced cofilin, an actin-depolymerizing protein. 

Since a mutated form of the ABD1 domain unable in cross-linking was sufficient to induce the 

above described effects, Giganti et al. propose a novel mechanism of action for PLS3 in 

which this protein might contribute to Arp2/3 mediated actin assembly independently of 

cross-link formation. In other words: PLS3 on the one hand stabilizes actin filaments through 

cross-linking and additionally triggers Arp2/3-mediated actin polymerization. Since the Arp2/3 

complex nucleates a branched actin network found, e.g., in the lamellipodium at the leading 

edge of migrating cells, this fact highlights the significance of PLS3 function for protrusive 

membrane-outgrowth and more generally, cell motility. A role of PLS3 in cell motility was 

further confirmed in studies by Serio et al., who found that T-plastin is important for actin tail 

formation in the pathogenic bacteria Rickettsia parkeri (R. parkeri) and for its actin-based 

motility in mammalian cells (Serio et al., 2010). In line with this, PLS3 was shown to play an 

important role in invasion of the bacteria Shigella flexneri and Salmonella typhimurium 

(Prevost et al., 1992, Adam et al., 1995, Zhou et al., 1999a). In both cases, PLS3 causes 

actin cytoskeleton rearrangements in the host cells that lead to the formation of actin 

protrusions engulfing the bacteria and finally resulting in phagocytosis and uptake of the 

pathogen.  

PLS3 was furthermore implicated to play a role in DNA repair and cell cycle control and 

consequentially also in cancer. By differential mRNA display, it has been demonstrated that 

PLS3 is 12-fold more abundant in cisplatin-resistant cell lines from bladder, prostatic, head 

and neck cancer (Hisano et al., 1996). In this regard, cisplatin is an anti-cancer drug 

intercalating with DNA and interfering with DNA-repair. Accordingly, the downregulation of 

PLS3 was found to be associated with higher cisplatin sensitivity. Additionally, the increased 

sensitivity of cancer cells to DNA interfering drugs as caused by plastin3 downregulation, has 

also been shown for the Topoisomerase II-blocking agent VP-16 (Ikeda et al., 2005). In line 

with these findings, higher PLS3 levels were also detected in UV-radiation resistant cell lines 

(Higuchi et al., 1998). Also in Sézary syndrom, the most common form of cutaneous T-cell 

lymphoma, the presence of sézary cells was correlated with high levels of PLS3 in peripheral 

blood mononuclear cells (PBMCs) (Capriotti et al., 2008, Tang et al., 2010). Vice versa, 

PLS3 levels dropped upon chemotherapeutic treatment and completely disappeared after 

bone marrow transplantation in a patient. In another study, higher levels of PLS3 were 

correlated with G2-phase arrest upon X-radiation in Chinese hamster ovary (CHO) cells 

(Sasaki et al., 2002). However, when PLS3 was downregulated via antisense knockdown, 

radiation-induced G2 arrest was short and decreased in transfected cells. The authors have 
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therefore speculated that downregulation of PLS3 may be involved in cancer development 

through G2/M cell-cycle control in mammalian cells. These results highlight low levels of 

PLS3 as possibly causative for cancer development, different from the before mentioned 

findings, where high PLS3 levels were associated with cancerous state. Possibly, species- or 

cell type specific differences might explain these opposite observations. In this line, it is also 

unclear whether up- or downregulation of PLS3 in the various cancer forms is causative for, 

or is a result from cancer development. Next to PLS3, the L-plastin isoform is an even more 

prevalent cancer marker, since it is expressed in a high percentage of tumor-derived cells, 

but never in normal diploid cells of solid tissues (Leavitt and Kakunaga, 1980, Leavitt, 1994).  

Apart from cancer, PLS3 is also involved in the human autoimmune disease systemic 

lupus erythematosus (SLE). In an animal model for this disease as well as in human patients, 

antibodies against L- and T-plastin were found in serum (De Mendonca Neto et al., 1992, 

Mine et al., 1998, Shinomiya et al., 2003, Delanote et al., 2005). However, it has to be 

determined in how far these antibodies contribute to the loss of cell function or other aspects 

of SLE.  

Due to interaction with ataxin-2 (ATX2) in yeast and also murine brain, PLS3 has 

additionally been implicated in the regulation of RNA metabolism and translational pathway. 

In this context, ATX2 is known to interact with cytoplasmic poly(A)-binding protein (PABP) 

that functions in translation initiation and mRNA decay regulation and forms part of stress 

granules (Ralser et al., 2005a). The finding of an interaction of PLS3 and ATX2 has been 

further underlined by the observation of a stabilizing effect of ATX2 on PLS3 when 

overexpressed (Ralser et al., 2005b). 

2.2.4 Other potential SMA modifiers – knowledge from invertebrates 

There are several examples, where invertebrate modifier screens have identified 

conserved human disease-related genes and/or functional pathways (Kim, 2007, Schlegel 

and Stainier, 2007, Silverman et al., 2009). In this context, SMN orthologs are also present in 

Drosophila melanogaster (D.m., DmSmn) and Caenorhabditis elegans (C.e., Cesmn-1) and 

loss of function studies have revealed growth and neuromuscular defects as well as larval 

lethality in both organisms (Miguel-Aliaga et al., 1999, Chan et al., 2003, Rajendra et al., 

2007, Chang et al., 2008, Briese et al., 2009).  

In 2008, a study was set out to find modifying factors of SMA in the invertebrate model 

D.m. (Chang et al., 2008). In this screen, a total of 27 modifiers were identified able to rescue 

the lethal SMA phenotype. Surprisingly, despite the essential role of SMN in snRNP 

assembly, none of the modifying factors identified function in RNA processing. Moreover, 

three of the identified genes were orthologous to human BMP type II receptor (BMPRII), 

Fragile X relative protein 2 (FXR2) and dynein light chain LC8-type 2 (DYNLL2), all of which 

have been associated with functions at the NMJ (Aberle et al., 2002, Marques et al., 2002, 

http://www.ncbi.nlm.nih.gov/gene/140735
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Pan et al., 2004). Interestingly, also high levels of the actin bundling protein α-actinin were 

associated with an enhancement of the SMA phenotype in this screen. In another study, 

RNAi knockdown of α-actinin was able to rescue the growth defects observed in Cesmn-1 

depleted C.e. (Dimitriadi et al., 2010). Therefore, the identification of α-actinin as another 

actin bundling protein with impact on SMA severity highlights the importance of cytoskeletal 

organization in SMA pathology.  

In a second screen using C.e. as SMA model, 4 more modifiers were identified (Dimitriadi 

et al., 2010): nuclear cap binding protein 2 (ncbp-2), the predicted protein T02G5.3, G-protein 

coupled receptor kinase 2 (grk-2), and FMRF-like peptide family member (flp-4). Apart from 

T02G5.3, the other 3 genes are present as orthologs also in human. Since these candidates 

represent potential new targets for SMA therapy, their function should be further analyzed in 

the disease context in vertebrates. Furthermore, the D.m. and C.e. orthologs of PLS3, Fim 

and plst-1, were in the same study tested for their potential to modify the SMA phenotype. 

Most strikingly, Fim and plst-1 were confirmed as SMA modifiers in both organisms, verifying 

the previous findings by Oprea et al. and suggesting that PLS3 is a cross species modifier of 

SMA.  

2.3 Development of the neuromuscular system 

NMJ pathology is one of the striking disease features in SMA mice and chronologically 

precedes motor neuron loss in the ventral horns of the spinal cord (Kariya et al., 2008, 

Murray et al., 2008, Kong et al., 2009). In the context of SMA, NMJ abnormalities include 

both pre- and postsynaptic defects, among these abnormal neurofilament (NF) accumulation 

in the nerve terminals, poor terminal arborization, immature plaque-like AChRs and 

embryonic γ-subunit containing forms of the receptor (Wyatt and Keirstead, 2010). In the 

present work, PLS3 was overexpressed in SMA mice to test whether high levels of PLS3 are 

able to rescue the SMA phenotype, similar to the situation in humans (chapter 2.2). PLS3 

overexpression was shown to result in significant pre as well as postsynaptic changes at the 

NMJ of SMA mice. Therefore, an overview about fundamental processes driving axon growth 

and specification (axonal pruning) as well as NMJ development and refinement will be given 

in the following chapters. 

2.3.1 The process of axonal pruning in NMJ refinement 

In the present thesis, overexpression of PLS3 has been shown to delay axon withdrawal 

from the NMJ during the process of axonal pruning. How is axonal pruning defined and what 

is the mechanism underlying this developmental process? 

Per definition, axonal pruning is a strategy to selectively remove exuberant neuronal 

branches and connections in the immature nervous system to ensure the proper formation of 

functional circuitry (Low and Cheng, 2006). Perinatally, individual AChR cluster are 

http://www.ncbi.nlm.nih.gov/protein/NP_496173.1
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innervated by numerous nerve terminals. During the axonal pruning process, all but one 

presynaptic connections are removed, so that finally one endplate gets innervated by one 

single motor nerve ending (Lichtman and Colman, 2000, Luo and O'Leary, 2005). It is 

assumed that 50 % of the postmitotic neurons of the vertebrate nervous system do not 

survive until adulthood. However, it is important to note that controlled apoptotic events in the 

context of neuronal plasticity are a phenomenon highly distinct from axonal pruning. Namely, 

axon pruning enables removal of exuberant or misguided axon branches in the absence of 

cell death, whereas other appropriate connections of the same neuron are maintained 

(Vanderhaeghen and Cheng, 2010).  

Historically, the two most popular mechanisms to explain how these axons disappear 

were axon retraction and Wallerian-type degeneration. During axon retraction, axonal 

contents are believed to be shuttled to other axon branches, however, axon retraction has 

never been directly documented at the neuromuscular junction (NMJ) (Riley, 1981, Bishop et 

al., 2004). Alternatively, it was believed that axons might undergo a classical Wallerian-type 

degeneration, as has been suggested by ultrastructural data (Rosenthal and Taraskevich, 

1977, Bishop et al., 2004). However, what speaks against this last mentioned possibility is 

that Wallerian-type degeneration usually removes entire axon arbors rather than a subset of 

axon`s branches. As new tools with better spatial and temporal resolution have become 

available, these opportunities revealed a new and unexpected mechanism termed axosome 

shedding (Bishop et al., 2004). In the process of axon shedding, retreating axons leave 

behind dismantled bulbs at their tips. These bulbs are removed over time as they get 

subdivided into smaller remnants, termed axosomes. Most importantly, by fluorescent 

confocal microscopy it could be proven that engulfing Schwann cells incorporated axosome 

material, therefore actively driving axonal recycling (Bishop et al., 2004).  

The molecular factors driving axonal pruning at the NMJ (small scale pruning) are largely 

unknown (Vanderhaeghen and Cheng, 2010). However, some molecules driving large scale 

axonal pruning (E.g. of neurons in the corticospinal tract (CST) or in the central nervous 

system (CNS)) have been identified. These molecules are subdivided into intrinsic and 

extrinsic proteins. As for intrinsic factors, e.g. the homeodomain transcription factor Otx1 has 

been identified (Weimann et al., 1999). As major extrinsic factors hormones and trophic 

factors have been suggested, however, their effects are often broad and nonspecific 

(Vanderhaeghen and Cheng, 2010). 

2.3.2 Actin dynamics in axon growth 

It was demonstrated in the present work, that PLS3 overexpression results in an increase 

of presynaptic nerve arborization and occupancy of AChR clusters at the NMJ. Furthermore, 

PLS3 led to a delay in the axonal pruning process (chapter 2.3.1), indicating that PLS3 might 

exert a positive effect on axonal integrity. To understand how PLS3 accomplishes 
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“stabilizing” function on axons, a basic knowledge about fundamental mechanisms driving 

axonal growth and the involvement of the actin cytoskeleton in this process is required.  

Axons grow out from the tip region of neurites, the so called growth cones. Growth cones 

are highly complex structures subdivided into three distinct zones (Figure 3): (i) The central 

zone (C domain), (ii) the intermediary transition zone (T domain) and (iii) the  peripheral zone 

(P domain). In the central zone, microtubules enter from the axon shaft and polymerize. 

These filaments act mainly as transport system for organelles and vesicles into the growth 

cone. The P domain represents the 

cortex of the growth cone and consists of 

actin filaments. Such filaments are crucial 

for the formation of filiopodia (finger like 

protrusions containing bundled actin 

filaments) and lamellipodia (flattened, 

veil-like membrane extensions containing 

an unbundled actin network) (Stiess and 

Bradke, 2011). The T domain contains 

both, microtubules and actin filaments 

and the interplay between both systems 

leads to neurite extension (Schaefer et 

al., 2008, Stiess and Bradke, 2011). The process of axonal extension can be seen as a 

continuous repetition of the three phases protrusion, engorgement, and consolidation 

(Goldberg and Burmeister, 1986). During the protrusion phase, actin polymerizes in the P 

domain and filopodial/lamellipodial structures are formed and progress in the direction of 

outgrowth. The following engorgement phase is characterized by a disassembly of actin 

filaments in the T domain, which previously inhibited microtubules from entering the P 

domain. Finally, in the consolidation phase an actin free corridor is formed in the T domain so 

that microtubules can invade the P domain. Thereupon, vesicles and organelles can be 

transported into the newly formed area (Stiess and Bradke, 2011).  

Today, a whole plethora of factors is known that act on actin dynamics and modulate axon 

growth. One important actin destabilizing factor (ADF) is Cofilin. Cofilin is present in the T 

zone of the growth cone and localizes to the pointed (-) end of actin filaments, where it 

severs and depolymerizes actin (Pak et al., 2008). This way, Cofilin regenerates the 

available globular actin (G-actin) pool, a necessary prerequisite for axon outgrowth. In line 

with this, it could be shown that overexpression of the active form of Cofilin triggered axon 

growth while depletion impaired axon formation (Garvalov et al., 2007). As it was mentioned 

earlier in this thesis (chapter 2.1.3), profilin IIa is another key component regulating axon 

dynamics and has even been proven to interact with SMN (Rossoll et al., 2002, Sharma et 

Figure 3 Structure of a growth cone at the 
distal tip  of a neurite (Taken from 
(Lowery and Van Vactor, 2009)).  
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al., 2005). Profilin IIa accelerates the ADP/ATP exchange in G-actin monomers. This way, 

profilin IIa is able to trigger the polymerization of Actin filaments. Against intuition, the 

polymerization of Actin per se does not account for enhanced axonal growth. Moreover, 

overexpression of profilin IIa resulted in reduced neurite outgrowth while the knockdown had 

the opposite effect (Da Silva et al., 2003). In this context, it has been demonstrated, indeed, 

that a more dynamic and less condensed actin cytoskeleton in the growth cone defines the 

future axon, whereas growth cones of designated neurites remain rather static and retain a 

rigid actin cytoskeleton (Bradke and Dotti, 1999, Kunda et al., 2001). Profilin IIa is activated 

by the Rho/Rock cascade. This pathway, in turn, is negatively controlled by plasma 

ganglioside sialidase (PMGS). The fact that profilin IIa is a negative regulator of axonal 

growth was further supported by the finding of high levels of PMGS in the designated axon 

during axon specification (Da Silva et al., 2005). While the described consequences of 

profilin IIa function suggest that actin polymerization acts negatively on axon growth, other 

examples exist where controlled actin polymerization is supportive for axon formation and 

elongation. The Wiskott-Aldrich syndrom protein (WASP) family is known to transduce 

signals from membrane receptors to the actin cytoskeleton. Through complex formation 

together with verprolin-homologous protein (VE), WASP and VE (WAVE) mediate actin 

polymerization via recruitment of the actin-related protein 2/3 (Arp2/3) complex (Takenawa 

and Suetsugu, 2007). In this context, the Arp2/3 complex closely resembles the structure of 

G-actin and serves as nucleation site for new actin filaments. In fact, the knockdown of 

Arp2/3 complex results in axonal growth defects (Takenawa and Suetsugu, 2007). Together, 

these results highlight the importance of actin dynamics (actin severing and polymerization) 

for correct axonal growth.  

Next to actin polymerization or depolymerization, also the connections between actin 

filaments, as mediated by actin-crosslinking as well as branching proteins, are important for 

cytoskeleton dynamics and thus for axonal growth. Bundling proteins typically found in 

filopodia of growth cones e.g. include α-actinin, fascin, CamKII, Myosin, AbLIM, Filamin as 

well as PLS3 (Letourneau and Shattuck, 1989, Lundquist et al., 1998, Cohan et al., 2001, 

Dent and Gertler, 2003, Okamoto et al., 2007, Oprea et al., 2008). The formation of filopodial 

structures requires the presence of parallel actin bundles, however, in lamellipodia actin is 

predominantly organized into a branched dendritic network. Therefore, actin branching 

proteins such as Arp2/3 complex are dominating in lamellipodia while actin bundling proteins 

are predominantly present in filopodia.  

As it was indicated above, also the microtubule network has important function in axonal 

growth. Microtubules consist of alternating α/β-tubulin heterodimers and have a dynamic 

plus-end (+) and a less dynamic minus-end (-). At the (+)-end, microtubules polymerize 

(rescue) or shrink (catastrophe). Disturbance of proper microtubule function has in the past 
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been associated with defects in axonal growth and the other way around, the stabilization of 

microtubules in dendrites can initiate axon specification (Baas, 2002, Hoogenraad and 

Bradke, 2009).  

Taken together, the Actin and microtubule network and their respective regulators are the 

key cellular systems in defining axon specification, growth and maintenance. 

2.3.3 Acetylcholine receptor (AChR) prepatterning 

Neuromuscular junctions (NMJ) are the contacts formed by a motor neuron´s axon and a 

muscle target cell. The communication between nerve and muscle is established through 

neurotransmitter release from the presynaptic nerve terminal and receptor mediated signal 

perception and transduction at the postsynapse. The excitatory signals secreted by the 

presynapse vary between organisms. E.g., in Drosophila glutamate acts as the excitatory 

neurotransmitter, while in the vertebrate system Acetyl Choline (ACh) is presynaptically 

released and bound by ACh receptors (AChR) at the postsynaptic site. In vivo studies have 

shown that prior axon arrival AChRs cluster along the central region of muscle fibers in a 

process termed AChR-prepatterning (Lin et al., 2001, Yang et al., 2001). Supporting the idea 

of prepatterning, aneural AChR clustering was also observed in mice that lack phrenic or 

motor nerves (Yang et al., 2000, Wu et al., 2010). The muscle-specific receptor tyrosine 

kinase MuSK is required for both, aneural and neural clustering (Zhang et al., 2004, Wu et 

al., 2010). Interestingly, in MuSK-/- mice the absence of aneural clusters is associated with 

nerve terminals straying from the central regions of muscle fibers (DeChiara et al., 1996, Lin 

et al., 2001, Yang et al., 2001, Zhang et al., 2004, Jing et al., 2009). These findings indicate 

an important role of AChR clustering in guiding axons to their distinct muscle targets. 

Regarding AChR prepatterning, it is important to mention that fundamental differences exist 

between species. While AChR prepatterning in mice and zebrafish seems to confine axonal 

guidance along the central muscle fiber region, there is no evidence for aneural clustering in 

Drosophila melanogaster Caenorhabditis elegans so far. In Drosophila melanogaster, motor 

neurons seek out target regions independently of the target cell while in Caenorhabditis 

elegans, motor neurons form so called “en passant” interactions with muscle arms actively 

searching for presynaptic terminals (Keshishian et al., 1996, Wu et al., 2010).  

With ongoing development, axons innervate some but not all clusters, whereby the size of 

innervated clusters increases and primitive clusters will finally disappear.  

2.3.4 The role of presynaptic signaling in AChR clustering and refinement 

During the process of axonal pruning, all but one remaining nerve connection will 

disappear with ongoing development so that endplates become innervated by one single 

motor axon only. Also at postsynaptic level, clear morphological changes can be observed as 

axons are specified. As the NMJ matures, the size of innervated AChR cluster slowly 
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increases. Furthermore, the postsynaptic membrane invaginates to form junctional folds, and 

AChRs are concentrated only at the crests of the junctional folds, giving the synapse a 

characteristic pretzel-like appearance (Sanes and Lichtman, 2001, Wu et al., 2010). The 

process of NMJ assembly is orchestrated by positively and negatively acting factors, most 

important to mention here Agrin and Acetylcholine (Ach), respectively (Figure 4).  

 

Figure 4: Circuitry in AChR clustering at the NMJ. Positive signals, such as Agrin-MuSK 
signaling, postsynaptically activate certain pathways that trigger AChR clustering, 
expression and stabilization. Counteracting negative signals, such as ACh stimulate 
the serine/threonine kinases cyclin-dependent kinase 5 (Cdk5) and Ca

2+
/calmodulin-

dependent kinase II (CaMKII) to inhibit AChR clustering, to suppress AChR expression 
and to destabilize AChR clusters in entire muscle fibers. Positive and negative signals 
together refine AChR clustering to sites of axonal innervation. (Taken from (Wu et al., 
2010). 

The most central pathway in NMJ assembly is the Agrin/Lrp4/MuSK pathway. Agrin is a 

glycoprotein synthesized in motor neurons and is transported along the axons to the nerve 

terminals where it is synaptically released. Agrin is the essential key player in the induction of 

AChR clustering and postsynaptic differentiation, a fact that has been proven by several 

different observations. In mice deficient for Agrin (Agrin-/-), NMJs do not form with several 

postsynaptic marker proteins being absent and AChR dispersed throughout the mutant 

muscle fiber (Gautam et al., 1996). Interestingly, however, prepatterning of AChR still occurs 

indicating that this process is Agrin independent (Lin et al., 2001, Yang et al., 2001). 

Furthermore, Agrin is able to induce ectopic AChR clustering in adult muscle and elicits the 

formation of the postsynaptic apparatus in denervated muscle (Gesemann et al., 1995, 

Jones et al., 1997, Bezakova et al., 2001, Wu et al., 2010).  

MuSK is a receptor tyrosine kinase and has been identified as a protein stringently 

colocalizing with AChR at NMJs (Valenzuela et al., 1995). In MuSK-/- mice, NMJs do not 

form, no prepatterning of AChR is observeable and also upon innervation AChR are evenly 

distributed throughout the muscle fiber (DeChiara et al., 1996, Lin et al., 2001, Yang et al., 
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2001). Moreover, Agrin is not able to induce AChR clustering in MuSK-/- mice, however, 

MuSK can restore Agrin sensitivity (Glass et al., 1996, Zhou et al., 1999b, Herbst and 

Burden, 2000). Together, these findings underline the necessity of interplay of both Agrin and 

MuSK in the formation of nerve-induced AChR clustering (Wu et al., 2010). Most 

interestingly, MuSK seems to represent an important factor for retrograde signaling from the 

post- to the presynapse. This assumption is based on the observation that MuSK-/- mice 

exhibit highly branched and arborized motor neuron terminals, which is indicative for a role of 

MuSK in presynaptic differentiation (Wu et al., 2010).  

As has been described, both Agrin and MuSK mediate AChR clustering in vertebrate NMJ 

formation. Nevertheless, a direct interaction between Agrin and MuSK has never been 

observed. Recently, Lrp4 was identified as a coreceptor of MuSK that can directly interact 

with Agrin (Kim et al., 2008). Lrp4-/- exhibit NMJ defects closely similar to that observed in 

MuSK-/- mice (Weatherbee et al., 2006). That Lrp4 is the long searched linker in Agrin 

mediated MuSK signaling was confirmed by studies demonstrating that Lrp4 is necessary for 

Agrin-induced MuSK activation and AChR clustering in cultured muscle cells (Kim et al., 

2008, Zhang et al., 2008a, Wu et al., 2010). The downstream functions of MuSK signaling 

will be outlined in chapter 2.3.5. 

Presynaptically released ACh is the main excitatory signal inducing muscle contraction in 

vertebrates and at the same time the most important negatively acting factor in NMJ 

assembly. The first evidence for ACh being a negative regulator of AChR clustering came 

from the observation that AChR grow faster and larger in mice deficient for choline 

acetyltransferase (ChAT), an enzyme essential for ACh biosynthesize (Misgeld et al., 2002, 

Brandon et al., 2003). Further functional analyses revealed that ACh activates the 

serine/threonine kinase cyclin dependent kinase 5 (Cdk5) or Ca2+/calmodulin-dependent 

protein kinase II (CaMKII) (Tang et al., 2001, Fu et al., 2005, Lin et al., 2005). These 

pathways have been connected with negative regulatory roles in AChR assembly, 

expression and stabilization. Importantly, the negative effect of ACh is global affecting the 

entire muscle fiber. Therefore, positive and negative outcome of Agrin-MuSK and ACh 

signaling, respectively, together accounts for the correct refinement of AChR clusters to 

positions of axonal innervation.   

2.3.5 MuSK downstream signaling and the importance of cytoskeletal dynamics in 

AChR clustering 

As it will be outlined in chapter 5.4.3.3, PLS3 overexpression resulted in an increase in 

AChR cluster size when ubiquitously overexpressed in SMA mice. Importantly, motor neuron 

specific overexpression of PLS3 was sufficient to increase endplate size, suggesting that 

increased presynaptic arborization and occupancy contribute to the endplate size increase. 

Nevertheless, based on the experiments performed in this work a muscle specific effect of 
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PLS3V5 cannot be entirely excluded. Indeed, cytoskeletal rearrangements in the muscle are 

a prerequisite for proper AChR clustering, suggesting that also muscle specific PLS3V5 

might account for the observed increase in AChR size.   

As it was explained in chapter 2.3.4, MuSK is indirectly activated by Agrin binding to its 

coreceptor Lrp4. Upon interaction and as a prerequisite for AChR clustering, MuSK is rapidly 

internalized via endocytosis (Zhu et al., 2008). One consequence of MuSK activation is the 

rearrangement of cytoskelletal structures. Such rearrangements are assumed to be pre-

conditional for AChR anchorage and redistribution, as well as shaping postsynaptic 

membrane into folds opposed to presynaptic active zones (Dobbins et al., 2006). Upon Lrp4 

mediated Agrin-MuSK interaction, tyrosine kinase Abl and the metalloenzyme geranylgeranyl 

transferase I (GGT) get activated. Both proteins in turn activate small GTPases of the Rho 

family (Weston et al., 2000, Weston et al., 2003). One target of Rho GTPases is p21 

activated kinase (Pak1), a serine/threonine kinase that has been shown to phosphorylate 

and hence activate the actin binding protein Cortactin. Cortactin is located in the cytoplasm 

and promotes actin polymerization and rearrangements through interaction with the (Arp2/3) 

complex (see also chapter 2.2.3). The finding that Cortactin might act in Agrin-MuSK 

mediated cytoskelletal rearrangements is in line with previous reports showing an 

involvement of Cortactin in promoting lamellipodia formation, invadopodia formation, cell 

migration, and endocytosis (Kelley et al., 2010, Astro et al., 2011, Zhu et al., 2011). 

Moreover, it has been demonstrated that AChR clustering is directly regulated via Cofilin- 

directed vesicular trafficing (Lee et al., 2009). Next to Pak1, other targets of Rho GTPases 

have been identified that are actively involved in cytoskeletal rearrangements, among these 

Wiskott-Aldrich syndrome protein (WASP) family proteins, which activate the Arp2/3 complex 

and Rho-associated protein kinase (ROCK). ROCK is a key regulator of actin organization 

since it can phosphorylate a variety of effectors assumed in the regulation of the actin 

cytoskeleton, including LIM kinase, myosin light chain (MLC) and MLC phosphatase (Riento 

and Ridley, 2003).  

Another important factor for neural and aneural AChR clustering is Rapsyn. Rapsyn has 

been shown to interact with AChR as well as the actin bundling protein α-Actinin in an Agrin-

MuSK signaling dependent manner (Moransard et al., 2003, Dobbins et al., 2008). Therefore, 

it is assumed that Rapsyn anchors AChR to the Actin cytoskeleton and hence stabilizes 

AChR clusters. Furthermore, Agrin-MuSK signaling intensifies the interaction between 

Rapsyn and the chaperone heat shock protein 90β (HSP90β). Rapsyn is a very unstable 

protein, however, bound to HSP90β the AChR/Actin linking function of Rapsyn might be 

preserved. Furthermore, also HSP90β itself has been demonstrated to exert actin filament 

cross-linking activity. Additionally, Agrin binding strengthens the interaction of Rapsyn with 

the protease Calpain, resulting in a suppression of Calpain activity. Calpain, in turn, is 

http://en.wikipedia.org/wiki/Lamellipodia
http://en.wikipedia.org/wiki/Invadopodia
http://en.wikipedia.org/wiki/Cell_migration
http://en.wikipedia.org/wiki/Cell_migration
http://en.wikipedia.org/wiki/Endocytosis
http://en.wikipedia.org/wiki/Kinase
http://en.wikipedia.org/wiki/Myosin
http://en.wikipedia.org/wiki/Phosphatase
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involved in the activation of Cdk5, a negative regulator of AChR clustering acting on 

cytoskeletal dynamics. Therefore, Rapsyn/Calpain interaction establishes another link 

between AChR clustering and cytoskeletal dynamics. Interestingly in this context is the 

finding, that Smn is a direct target of Calpain in muscle cells (Walker et al., 2008). Defects in 

synaptic release are a hallmark of SMA. Therefore, reduced Agrin amounts might indirectly 

account for an increased Smn turnover in muscle cells and contribute to the known muscular 

SMA phenotype. In other studies, Agrin was shown to induce the association of AChR with 

the tumor suppressor adenomatous polyposis coli (Apc) (Wang et al., 2003). Furthermore, 

this interaction turned out to be a necessary pre-requisite for AChR clustering. Apc itself is 

able to directly interact with Actin filaments and microtubules or to recruit further 

cytoskeleton-associated proteins (E.g. Asef, Iqgap1) to AChR, contributing to cytoskeletal 

rearrangement (Kawasaki et al., 2000, Watanabe et al., 2004, Wu et al., 2010).  

The above mentioned downstream cascades following Agrin-mediated MuSK activation 

highlight the importance of cytoskeletal dynamics in the process of AChR clustering.  

2.3.6 Mutations in NMJ genes cause myasthenic syndromes  

In many of the above mentioned genes, mutations have been identified which are 

causative for the development of the neuromuscular disorder congenic myasthenic syndrome 

(CMS). Depending on the mutated gene, CMS are subdivided into three categories: 

Presynaptic (e.g. Choline acetyltransferase (CHAT), synaptic (Acetylcholinesterase 

collagenic tail peptide (COLQ)) and postsynaptic (e.g. Acetylcholine receptor (ACHR)). For 

all categories, different subtypes of CMS exist displaying highly variable phenotypic severity 

(Table  1). General clinical features of variable phenotypic strength and time of onset 

common to many CMS forms comprise muscle weakness accompanied by reduced mobility 

as well as swallowing and often respiratory problems (Barisic et al., 2011). The symptoms 

are often similar to Myasthenia Gravis (MG), with the difference that MG is an autoimmune 

disease with circulating antibodies mostly against the ACHR (~85 – 90 % of patients, (Guptill 

and Sanders, 2010)) and sometimes against the MUSK receptor(~8 %, (Sanders et al., 

2003)) .  

MG therapy includes treatment with Acetylcholinesterase (ACHE) inhibitors or 

immunosuppressants (Angelini, 2011). In CMS, immunotherapy is not useful. Instead, AChE 

inhibitors and/or the potassium channel blocker 3,4-diaminopyridine (3,4-DAP), quinidine, 

fluoxetine or ephedrine have been shown to improve disease symptoms (Abicht and 

Lochmuller, 1993, Argov, 2009). 
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Table  1: Congenital myasthenic syndromes (CMS) with associated NMJ genes and clinical picture of the different types. White background: Presynaptic 
genes, light gray: synaptic genes, dark gray: postsynaptic genes (Abbreviations: mNE = mainly Northern European, n.d. = not determined)  

 

Gene / OMIM Name 

 

Type of CMS 

 

Detection frequency 

 

Population 

 

Literature (exemplary) 

Choline 
Acetyltransferase / 
CHAT 

CMS-EA < 3 %1 Diverse origin (mNE) (Ohno et al., 2001) 

Acetylcholinesterase 
collagenic tail peptide / 
COLQ 

EAD < 7,5 %1 Diverse origin (mNE) 
(Donger et al., 1998, Ohno et al., 
1998, Shapira et al., 2002, Yeung et 
al., 2010) 

Acetylcholine receptor 
(AChR) subunits (α, β, 
δ, γ, ε) / CHRNA1, 
CHRNB1, CHRND, 
CHRNG, CHRNE 

CHRNA1: FC/SCCMS, MPS (lethal 
type)  
CHRNB1: SCCMS, CMS ass. with 
ACHR deficiency 
CHRND: FC/SCCMS; MPS (lethal 
type) 
CHRNG: MPS, MPS (lethal type) 
CHRNE: MG, FC/SCCMS, CMS ass. 

with ACHR deficiency 

CHRNA11:  < 0,5 %  
CHRNB11:  < 0,5 % 
CHRND1  :  < 0,5 % 
CHRNG  :  < very rare, 

(<2X105 in the US) 
CHRNE1  :  10 – 30 % 

CHRNA1: Diverse origin 
(mNE) 
CHRNB1: Diverse origin 
(mNE) 
CHRND: Diverse origin 
(mNE) 
CHRNG: US citizens 
CHRNE: Roma/  

southeastern European 
individuals, The Maghreb 
(especially Algeria and 
Tunisia), Diverse origin 
(mNE) 

CHRNA1: (Garchon et al., 1994, 
Engel et al., 1996, Wang et al., 1999, 
Michalk et al., 2008)  
CHRNB1: (Engel et al., 1996, Quiram 

et al., 1999) 
CHRND: (Gomez et al., 2002, Shen et 
al., 2002, Michalk et al., 2008) 
CHRNG: (Hoffmann et al., 2006, 

Morgan et al., 2006, Amalnath et al., 
2011) 
CHRNE: (Uchitel et al., 1993, Ohno et 
al., 1995, Engel et al., 1996, Croxen 
et al., 2002) 

Muscle-specific tyrosine 
kinase / MUSK 

CMS ass. with ACHR deficiency < 1 %1 Diverse origin (mNE) 
(Chevessier et al., 2004, Mihaylova et 
al., 2009, Maselli et al., 2010) 
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Gene / OMIM Name 

 

Type of CMS 

 

Detection frequency
1 

 

Population 

 

Literature (exemplary) 

43 kDa receptor-
associated protein of 
the synapse (Rapsyn) / 
RAPSN 

CMS ass. with ACHR deficiency < 10 %1 Diverse origin (mNE) 
(Ohno et al., 2002, Muller et al., 2006, 
Gaudon et al., 2010) 

Downstream of tyrosine 
kinase 7 / DOK-7 

LGM ~ 1 %1 n.d. 
(Rodolico et al., 2002, Beeson et al., 
2006, Srour et al., 2010) 

Sodium channel, 
voltage gated, type IV, 
alpha polypeptide / 
SCN4A 

HYPP, PMC, HOKPP2 < 0,5 %1 Diverse origin (mNE) 
(Ptacek et al., 1991, Bulman et al., 
1999) 

Type of CMS Clinical picture2 

CMS-EA (Congenital 
myasthenic syndrome 
with episodic apnoea) 

Sudden and recurrent episodes of apnoea, bulbar weakness precipitated by infection, fever, either neonatal onset respiratory 
distress with progressive improvement over time but then further respiratory relapses in adulthood, or late onset (during 
infancy or childhood) respiratory crises with a more unpredictable course of disease  

EAD (COLQ) 
(Endplate 
Acetylcholinesterase 
(AChE) deficiency) 

Broad clinical heterogeneity (often severe) with early onset with progressive disability or later onset with much milder progression 
over the years,  
onset of symptoms in the neonatal period, evidence of delayed motor milestones, frequent early respiratory complications, 
sometimes needing ventilator support, ocular involvement, ptosis, ophthalmoparesis, pupillary reactions  

 

FCCMS 
(Fast channel 
congenital myasthenia 
gravis) 

Caused by mutations in various ACHR subunits and reduced ACh responsiveness, sometimes decreased neonatal movements, 
contractures of both hands, neonatal hypotonia, weak cry, respiratory difficulties, poor feeding, fatigue, ptosis, ophthalmoplegia, facial 
weakness, weakness of the neck flexor muscles, high-arched palate, micrognathia, large ears  

HOKPP2 
(Hypokalemic periodic 
paralysis type 2) 

Onset in childhood to adolescence, hypokalemia, paralytic episodes of all limbs, infrequent but severe attacks, myotonia (sometimes 
temperature depending), muscle weakness 
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Type of CMS Clinical picture2 

HYPP 
(Hyperkalemic periodic paralysis) 
 

Hyperkalemia, muscle weakness (periodic), myotonia (sometimes ocular), bidirectional cardiac dysrhythmia, 
facial dysmorphism, muscle hypertrophy, severe constipation, psychomotor delay, progressive myopathy 

LGM 
(Limb-girdle myasthenia) 
 

Often early onset, weakness within first 5 years of life, difficulty in walking, in adulthood proximal weakness 
in upper and lower limbs as well as neck and trunk, fatigue, ptosis, facial weakness, bulbar symptoms, 
respiratory difficulties  

SCCM 
(Slow channel congenital 
myasthenia symptom) 

Caused by mutations in various AChR subunits and, selective severe neck, wrist, finger extensor weakness 
Onset varies from childhood to adult, varies from mild to severe progressive, ventilatory insufficiency may 
require assisted ventilation 

MPS 
(Multiple pterygium syndrome 
(prenatally lethal and Escobar)) 
 

Pterygia of the neck, elbows, and/or knees and joint contractures (arthrogryposis), small stature, scoliosis, 
flexion contraction of fingers, facial dysmorphism 

PMC 
(Paramyotonia congenita) 

Early childhood to adolescence onset, myotonia (increased by exposure to cold), intermittent flaccid paresis, 
not necessarily dependent on cold or myotonia, lability of serum potassium, nonprogressive nature, lack of 
atrophy or hypertrophy of muscles 

1: Detection frequency based on individuals with CMS investigated in (Abicht and Lochmuller, 1993, Beeson et al., 2005, Engel and Sine, 2005, Amalnath et al., 
2011)  

2: Clinical manifestations of the different CMS types are very heterogenously and thus not exhaustively listed in this table. Taken from OMIM and (Lajoie, 1961, 
Gamstorp, 1963, Bradley et al., 1990, Abicht and Lochmuller, 1993, Bulman et al., 1999, Sugiura et al., 2000, Ohno et al., 2001, Miller et al., 2004, Barisic et al., 
2005, Beeson et al., 2006, Hoffmann et al., 2006, Morgan et al., 2006, Gay et al., 2008, Mihaylova et al., 2008, Schara and Lochmuller, 2008, Selcen et al., 2008, 
Huze et al., 2009, Schara et al., 2010, Barisic et al., 2011) 
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3 Study Aims 

Spinal muscular atrophy (SMA) is the leading genetic cause of infant death and caused by 

the homozygous loss of the survival of motor neuron 1 (SMN1) gene. A nearly identical copy 

gene, SMN2, possesses a C to T transition in exon 7, resulting in the disruption of an exonic 

splicing enhancer (ESE) and consequentially skipping of exon 7 in 90 % of the total 

transcript. However, SMN2 still produces around 10 % full length (FL) transcript. Although 

SMN2 does not fully compensate the SMN1 loss, residual FL-SMN2 is able to ameliorate 

SMA symptoms. Since SMN2 copy number is variable in the population ranging from zero to 

a maximum of four per allele, SMA severity is inversely correlated with SMN2 copy number. 

For a long time SMN2 was the only known modifying gene of SMA. However, in 2008, the 

actin bundling protein PLS3 was identified as another SMA modifying gene showing high 

upregulation in SMN1-deleted unaffected siblings of discordant SMA families. In a detailed 

functional study, PLS3 has been found to rescue axonal outgrowth defects in neuronal cell 

cultures as well as in a zebrafish SMA model. 

The main aim of the present study was to investigate whether PLS3 overexpression is 

able to rescue the disease phenotype in an SMA mouse model. Using the Cre/loxP system, 

a V5-tagged version of human PLS3 (PLS3V5) should be targeted into the Rosa26 locus in 

order to motor neuron (MN) specifically or ubiquitously express the transgene. Prior to further 

analysis, expression of PLS3V5 on mRNA and protein level as well as the subcellular 

localization of the transgene should be analyzed in detail. 

Since PLS3 has been demonstrated to be unexpectedly overexpressed in the 

hematopoietic system of discordant SMA siblings, it was next planned to ubiquitously 

overexpress PLS3V5 in the Hung SMA mouse model. In unaffected SMN1-deleted siblings 

of discordant families, PLS3 overexpression fully compensates SMA symptomatic. To study 

the effects of PLS3V5 overexpression on the clinical picture of SMA mice, motoric tests (tube 

test, righting reflex test) as well as weight and survival measurements should be performed.  

It has been shown in the past that MN death and defects at the neuromuscular junction 

(NMJ) are a hallmark of SMA, finally resulting in atrophy of the muscles. To study the effects 

of PLS3 overexpression on MN, NMJ and muscle development, detailed immuno-

/histological analysis should be performed on these tissues (MN size, presynaptic 

connectivity, Acetylcholine receptor (AChR) cluster size, muscle fiber size). Furthermore, 

possible cell autonomous effects of PLS3V5 overexpression should be studied by motor 

neuron specific activation of the transgene using the Hb9-Cre line. 

The findings presented in this thesis provide new insights into the mechanisms underlying 

PLS3-mediated protection in unaffected SMA patients of discordant families. Furthermore, 

understanding PLS3V5 function in the disease context might ultimately reveal new cellular 

pathways and potential candidate genes for the development of therapeutic strategies. 
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4 Materials and methods  

4.1 Equipment  

 Analytical balance ARJ 120-4M Sartorius 

 Autoradiography cassette Developer Cassettes Siemens 

 Avanti J-20XPI Beckman Coulter 

 Bacterial incubators 

 Standard Kelvitron T Heraeus 

 Shaking Innova 44 New B.scientific 

 FACS FACS Vantage SE BD 

 Cell counting chamber Neubauer chamber Optik Labor 

 Cell incubator Hera Cell 150 Hereaus 

 Centrifuges Allegra X22-R Beckman Coulter 

 5415 D Eppendorf  

 5415 R Eppendorf 

 Avanti J-20XPI Beckman Coulter 

 Concentrator 5301 Eppendorf 

 Developer machines Curix 60  Agfa 

 DNA engine Tetrad 2 MJ research 

 Electrophoresis chambers 

 Agarose gels SGE-020-02 CBS-scientific 

 SDS-PAA gels Mini-Protean 3 cell Biorad 

 Protean II xi Biorad 

 Electroporation cuvettes  GP cuvettes, 0.4 cm Biorad 

 Electroporation system Gene pulser Xcell Biorad 

 Embedding apparatus EG 1150c Leica 

 Flattening table HI 1220 Leica 

 Floating water bath FBC 620 FischerBrand 

 Geiger counter LB 1210B Berthold 

 Glass staining chamber 

 Glaskasten  Roth 

 Färbegestell  Roth 

 Drahtbügel  Roth 

 Heating block HTMR-133 HLC 

 Hot plate magn. stirrer MR 3000 Heidolph 

 Imaging system ChemiDoc XRS Biorad 

 Microplate reader Safire2 Tecan 

 Microscopes  
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 Fluorescent microscope Axioplan 2 Zeiss 

 Inverted microscope DMIL Leica 

 Confocal microscope TCS-SP Leica 

 Confocal microscope META 510 Zeiss 

 Stereo microscope S8 APO Leica 

 Microwave Micro combi Bosch 

 Multi channel pipettes  

 12 channel pipette Finpipette 

 8 channel pipette 4780 Eppendorf 

 pH-meter pH Level 1 Inolab 

 Photometer cuvettes UV-Vette Eppendorf 

 Pipettes 0.5-10  µl Eppendorf 

 2-20  µl Eppendorf 

 10-100  µl Eppendorf 

 20-200  µl Eppendorf 

 100-1000  µl Eppendorf 

 Power supplies PowerPac 1000 Biorad 

  PowerPac HC Biorad 

  Protean II xi Biorad 

 Real time thermocycler Light cycler 1.5 Roche 

 Rotary Microtome RM2255 Leica  

 Shaker 3015 GFL 

 VS.R23 Grant BOEKEL 

 Spectrophotometer BioPhotometer Eppendorf 

 Nanodrop ND-1000 Peqlab 

 Staining chamber Rotilabo® Roth 

 Thermocycler GeneAmp 9700 Applied Biosystems 

 DNA engine Tetrad 2 MJ research 

 Tissue culture hood Hera Safe Hereaus 

 Tissue processor TP 1020 Leica 

 Vacuum pump BVC 21 Vacuubrand 

 Vibratomes Vibratome Series® 1000 Pelco 

 VT 1200 S Leica 

 Water bath par. sections HI 1210 Leica 

 Western blot chambers Mini-Protean 3 cell Biorad 

  Protean II xi Biorad 
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4.2 Chemicals 

If available, chemicals used in this work were purchased as purity grade “pro analysis”. 

For RNA isolation and analysis only RNase-free chemicals were used. Most chemicals and 

reagents were purchased from the following companies: 

 Applichem Darmstadt Germany 

 GE Healthcare Freiburg Germany 

 Life science (formerly Invitrogen) Leek Netherlands 

 Merck Darmstadt Germany 

 Perkin Elmer Rodgau-Jügesheim Germany 

 Promega Mannheim Germany 

 Qiagen Hilden Germany 

 Roche Molecular Biochem. Mannheim Germany 

 Roth Karlsruhe Germany 

 Sigma Aldrich Taufkirchen Germany 

 

Frequently used chemicals include: 

 2-Propanol Applichem 

 Acetic acid  Applichem 

 Chloroform : Isoamyl alcohol 24:1 Applichem 

 Ethanol (EtOH) Applichem 

 Glycerol Applichem 

 Hydrochloric acid (37 %, HCL) Applichem 

 Methanol (MeOH) Applichem 

 Phenol Applichem  

 Potassium acetate (KAc) Applichem 

 Sodium acetate, anhydrous (NaAc) Sigma  

 Sodium Chloride (NaCl) Applichem 

 Sodium hydroxide (NaOH) Applichem 

 Tris (hydroxymethyl)-aminomethane (TRIS) Applichem 

 TRIZMA-base Sigma 

 Xylol Applichem 

4.3 Reagents for molecular biology 

4.3.1 Reagents for DNA work 

 100 bp & 1 kb DNA ladder Applichem 

 Agarose Sigma 

 dNTPs Peqlab 
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 Ethidiumbromide Applichem 

 Oligo d(T) primers 0.5 µg/µl Fermentas 

 Proteinase K Sigma 

 10 x PCR buffer (from Taq kit) Invitrogen 

 50 mM MgCl2 

 TBE-10x-buffer Applichem 

4.3.2 Reagents for radioactive DNA work 

 Hybond XL membrane GE-Healthcare 

 Probe Quant G50 micro columns GE-Healthcare 

 Salm sperm DNA Merck 

 α-[32P]-dCTP radioisotope Perkin Elmer 

4.3.3  Reagents for protein work 

 Ammoniumpersulfate (APS) Applichem 

 Aqua plus (29:1) Acrylamide Applichem 

 Bromphenolblue Applichem 

 Complete Mini Protease Inhibitor Roche 

 Glycin Applichem 

 Nitrocellulose membrane Protran 

 Non fat dried milk powder Applichem 

 Page Ruler Plus Fermentas 

 Ponceau S Sigma 

 Restore Western Blot Stripping Buffer Pierce  

 RIPA-buffer Sigma   

 SuperSignal West Pico ECL Substrate Pierce 

 Tetramethylethylenediamine (TEMED) Applichem 

 Whatman paper Hartenstein 

4.3.4 Reagents for work with bacteria 

 Ampicilin 

 Bacto tryptone 

 Bacto yeast extract 

4.3.5 Reagents for cell culture 

 1x PBS Dulbecco w/o Ca2+, Mg2+, low endotoxin  Biochrom  

 Amphotericin B  Gibco 

 Bacillol®  Bode 

 Dimethylsulfoxide (DMSO) Sigma 
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 Disposable Filter Unit 0.2 μm FP30/0.2 CA-S  Whatman  

 DMEM (+D-Glucose, +L-Glutamine, #41966) Gibco 

 DMEM (+D-Glucose, +Sodiumpyruvate, #10829-018) Gibco 

 DMEM high Glucose (4.5 g/l ) – Glutamine (E15-009) PAA 

 DMEM high Glucose (4.5 g/l) + stable Glutamine PAA 

(E15-883) 

 Fetal Calf Serum (FCS, S0115)  Biochrom AG 

 Gelatine (2 %) Sigma 

 Geneticin (G418-Sulfate) Gibco   

 Leukemia inhibitory factor 1000x (LIF)  Embl 

 L-Glutamin (100 x), 200 mM Invitrogen 

 Mitomycin C (MMC) Sigma 

 Non essential amino acids 100x (NEA) Invitrogen 

 PenStrep (Penicillin Streptomycin)  Invitrogen 

 RPMI transfection-buffer (w/o Phenol red) Gibco 

 Sodiumpyruvate 100mM (1000x) Invitrogen 

 Trypsin-EDTA-Solution  Sigma  

 β-Mercaptoethanol 1000x (ME)  Merck 

4.3.6 Reagents for histo- and immunohistochemical methods 

 Acidic Eosin Y Sigma 

 Bovine serum albumine (BSA) Invitrogen 

 Cresyl violet acetate (Nissl)  Sigma 

 Hard set mounting media (w/o DAPI) Vectashield 

 Hematoxylin  Sigma 

 Horse serum (HS) Invitrogen 

 Mowiol® mounting media Polysciences, Inc. 

 Normal goat serum (NGS) Invitrogen 

 Paraformaldehyde (PFA) Riedel de Haen 

 Triton X-100 Applichem 

 Tween-20 Applichem 
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4.3.7 Kits 

 BCA Protein Assay Reagent  Pierce  

 EndoFree Plasmid Maxi Kit  Qiagen 

 LightCycler FastStar DNA Master SYBR green I  Roche  

 Qiagen MiniPrep Kit  Qiagen  

 QIAquick Gel Extraction Kit  Qiagen 

 QiaQuick PCR Purification Kit  Qiagen   

 QIAshredder  Qiagen  

 Quant-iT RiboGreen RNA assay Kit  Invitrogen 

 QuantiTect Reverse Transcription Kit  Qiagen  

 RediprimeTMII Random Prime Labeling System Ge Healthcare 

 RNase-free DNase I Set  Qiagen  

 RNeasy Mini Kit  Qiagen  

 SuperSignal West Pico ECL Substrate  Pierce  

 QIAEX II gel extraction system Qiagen 

 BigDye Terminator V1.1 Sequencing Kit  Applied Biosystems 

 pcDNA3.1/V5-His Topo TA Expression kit  Invitrogen  
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4.4 Enzymes 

All enzymes were used with buffers recommended by the respective company 

4.4.1 Restriction enzymes 

 Asc I NEB 

 Bam HI NEB 

 Eco RI NEB 

 Eco RV NEB 

 Hind III NEB 

 Kpn I NEB 

 Nco I NEB 

 Not I NEB 

 Not I NEB 

 Pst I NEB 

 Xho I NEB 

4.4.2 Other enzymes 

 Platinum® Taq DNA Polymerase High Fidelity Invitrogen 

 RNase A Qiagen (19101) 

 RNase-free DNase I  Qiagen (79254)  

 Shrimp alkaline phosphatase I (SAP I)  NEB (R0569)  

 T4 DNA-ligase Roche (481220) 

 Taq DNA Polymerase Recombinant  Invitrogen  

4.5 Material for the work with mice 

4.5.1 Mouse dissection equipment 

 Cutfix Sterile Scalpel (5518040) Aesculap 

 Dissecting forceps (BD047R) Aesculap 

 Ear tags (1005-1) National Band & Tag Co. 

 Iris and ligature scissors (BC 100R) Aesculap 

 Micro forceps (FM002R) Aesculap 

 Micro scissors, Spring type (FD012R) Aesculap 

 Operating scissors (BC 321R) Aesculap 

 Splinter forceps (BD302) Aesculap 

 Splinter forceps curved (BD312) Aesculap 

 Surgical scissors (BC 341R) Aesculap 

 Tag applicator (1005-s1) National Band & Tag Co. 

javascript:void(ck_products_show_details(0))
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4.5.2 Reagents for Embryo transfers / Cryoconservation 

 100 Sterican Braun 

 Gonadotropin from pregnant mare serum (PMSG) Sigma 

 Human Chorionic Gonadotropin (hCG) Sigma 

 Omnifix®-F 1 ml Braun 

4.6 Antibodies 

4.6.1 Primary antibodies and staining reagents 

 α-bungarotoxin labeled with rhodamine (B35451) Invitrogen 

 α-Choline Acetyltransferase (ChAt), goat  Millipore 

 (Ab144, Ab144P) 

 α-GAPDH, monoclonal IgG1 (50A19A-1) Imgenex 

 α-Neurofilament M (160kDa, MAB5254), rabbit Millipore 

 α-Neurofilament, monoclonal (2H3-c) Hybridoma Bank  

 α-RPL13a1, goat (sc-160039) Santa Cruz  

 α-SMN, monoclonal IgG1 (S55920) BD Transduction Lab. 

 α-Synaptic vesicle 2, monoclonal (SV2-c) Hybridoma Bank  

 α-V5, monoclonal (R960CUS) Invitrogen 

 α-V5, rabbit (ab9116) Abcam 

 α-V5-HRP, monoclonal (R96125) Invitrogen 

 α-β-actin, monoclonal IgG2a (A2228) Sigma 

 α-β-tubulin, monoclonal IgG1 (T4026) Sigma 

4.6.2 Secondary antibodies 

 HRP-conjugated goat α-mouse IgG (115035000) Dianova 

 HRP-conjugated goat α-rabbit IgG (31460) Pierce 

 Donkey α-goat Alexa 568 IgG (H+L) (A11057) Invitrogen 

 Donkey α-rabbit Alexa 568 IgG (H+L) (A10042) Invitrogen 

 Donkey α-goat Alexa 488 IgG (H+L) (A11055) Invitrogen 

 Goat α-mouse Alexa 488 IgG (H+L) (A10667) Invitrogen 

 Donkey α-rabbit Alexa 350 IgG (H+L) (A10039) Invitrogen 

 Goat α-rabbit Alexa 488 IgG (H+L) (11034) Invitrogen 

 Goat α-mouse Alexa 568 IgG (H+L) (A11004) Invitrogen 
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4.7 Solutions and media 

4.7.1 Frequently used solutions 

Diethylpyrocarbonate (DEPC) treated H2O (for 1 l): 

DEPC  1 ml 

Deionized H2O  to a final volume of 1 l 

 Mix overnight and autoclave 

 

Phosphate buffered saline (PBS, 10 x, for 1 l): 

NaCl  80.0 g 

KCl  2.0 g 

Na2HPO4  14.4 g 

KH2PO4 (pH 7.3)  2.4 g 

deionized H2O  to a volume of 800 ml 

 adjust pH to 7.4 

deionized H2O to a final volume of 1 l 

 autoclave 

 

Sodium Dodecyl Sulfate (SDS) solution 10 % (for 100 ml): 

SDS  10.0 g 

deionized H2O  to a final volume of 100 ml 

 dilute at 65°C, store at room temperature 

 

Tris-HCl (1 M, pH 6.8, for 400 ml): 

Tris-HCl  60.0 g 

deionized H2O  to a final volume of 400 ml 

adjust pH to 8.5 with concentrated HCl 
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4.7.2 Cell culture media 

All cell culture media were stored at 4°C. Freezing-media was used immediately. MMC-

solution was aliquoted and frozen at -20°C. MEF- and ES cell culture was performed using 

media without addition of antimicrobial substances. 

 

Murine embryonic fibroblast (MEF) media (Feeder for ES cell culture): 

DMEM (E15-883, PAA) 500 ml 

FCS (S0115, Biochrom) 70ml 

Sodium pyruvate (100 x) 6 ml 

 

Embryonic stem cell (ES) media (free of antibiotics and fungicides): 

DMEM (E15-009, PAA) 500 ml 

FCS (S0115, Biochrom) 90 ml 

L Glutamine (100 x) 6 ml 

LIF (1000 x) 1.2 ml 

NEA (100 x) 6 ml 

Sodium pyruvate (100 mM) 6 ml 

β-mercaptoethanol 1.2 ml 

 

Common Murine embryonic fibroblast (MEF) media: 

DMEM (41966, Invitrogen) 500 ml 

Amphotericin B (250 µg/ml) 1.4 ml 

FCS (S0115) 50 ml 

PenStrep (10 U/ml) 7 ml 

 

Freezing media for MEF cells (for 1 ml): 

DMSO 0.1 ml 

FCS (S0115) 0.9 ml 

 

Freezing media for ES cells (for 1 ml): 

DMSO 0.2 ml 

FCS (S0115) 0.8 ml 

 

Mitomycin C (MMC) solution: 

MEF media (w/o antimicrobials) 100 ml 

MMC 1.0 g 
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4.7.3 Solutions for bacterial work 

LB-Media (pH 7.5, for 2 l): 

Bacto Trypton 20 g 

Bacto yeast extract 10 g 

NaCl 10 g 

 adjust pH to 7.5, autoclave and store at 4°C 

 

LB-Agar (for 500 ml): 

LB Media 500 ml 

Agar 7.5 g 

 autoclave and store at 4°C  

4.7.4 Solutions for the work with DNA 

DNA loading buffer (10 x, for 50 ml): 

0.1 % Brom phenol Blue  0.05 g 

1% SDS 2.5 ml 20 % SDS 

100 mM EDTA (pH 7.2-8.5)  10 ml 0.5 M EDTA (pH 7.2-8.5) 

50 % Glycerol 28.7 ml 87 % Glycerol 

Deionized H2O  to a final volume of 50 ml 

 

dNTP mix (for 1 ml): 

dNTP (100 mM)  12.5 μl of each dNTP  

Deionized H2O  to a final volume of 1000 μl 

 

Tail-tip lysis buffer (pH 7.4) (for 500 ml): 

EDTA (0,5 M) 5ml 

NaCl (5 M) 20 ml 

SDS (20 %) 5 ml 

Tris/HCl (1 M, pH 8.5) 50 ml 

Deionized H2O to a final volume of 500 ml 

Proteinase K (200µg/ml)  separately added to each approach 

TBE buffer (5 x): for 1 l: 

Tris base (445 mM)  54 g Tris base 

Borate (445 mM)  27.5 g Boric acid 

EDTA (10 mM)  20 ml 0.5 M EDTA (pH 8.0) 

deionized H2O  to a final volume of 1000 ml 
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TE-4 buffer (for 100 ml): 

Tris (1 M, pH 8.0)  1 ml 

EDTA (0.5 M, pH 8.0)  20 μl 

deionized H2O  to a final volume of 100 ml 

RNAse A (50 µg/ml) separately added to each approach 

 

4.7.5 Solutions for Southern blotting 

Prehybridization mix (for 20 ml): 

deionized H2O 2 ml 

EDTA (0.5 M, pH8) 40 µl  

NaH2PO4 (1 M) 10 ml  

Sonicated and denatured Salm sperm DNA 1 ml add freshly (10 mg/ml) 

SDS (20 %) 7 ml  

 

Salm sperm DNA (10 mg/ml, for 100 ml): 

Salm sperm (sonicated) 1 g 

TE buffer (pH 8.0) 99 ml 

 Solve over night, store at 4°C 

 

TE buffer (for 100 ml): 

Tris/HCl (1 M, pH 8) 1 ml 

EDTA (pH 8, 0.5 M) 0.2 ml 

deionized H2O to a final volume of 100 ml 

 autoclave 
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Wash buffer: 

Wash I:  

SSC (20 x) 100 ml 

SDS (10 %) 10 ml 

deionized H2O to a final volume of 1 l 

 

Wash II: 

SSC (20 x) 10 ml 

SDS (10 %) 10 ml 

deionized H2O to a final volume of 1 l 

 

 Heat buffers to 68°C prior use 

4.7.6 Solutions for Western blotting 

Ammonium Persulfate (APS) solution (10 %, for 10 ml): 

APS  1.0 g 

deionized H2O  to a final volume of 10 ml 

 

Blocking solution (6 %, for 100 ml): 

Nonfat dry milk  6 g 

TBS Tween buffer  to a final volume of 100 ml 

 

Bradford solution (for 1l): 

Coomassie Brilliant Blue G250  100 mg 

H3PO4 (85 %)  100 ml 

Ethanol (95 %)  50 ml 

deionized H2O  to a final volume of 

 

Electrophoresis buffer (10 x, for 1 l): 

Tris-Base  30.29 g 

Glycine  144.13 g 

SDS  10.0 g 

deionized H2O  to a final volume of 1 l 

 

Laemmli buffer for SDS PAGE (2x, for 100 ml): 

Tris-Base  0.757 g 

Glycerol  20 ml 
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Brom phenol Blue  10 mg 

SDS  6 g 

deionized H2O  to a final volume of 90  

β-Mercaptoethanol (prior to use)  10 ml  

 

Ponceau solution (for 100 ml): 

0.5 % Ponceau S  0.5 g 

1 % Acetic acid glacial  1 ml 

deionized H2O  to a final volume of 100 ml 

 

RIPA buffer (for 50 ml): 

NaCl (150 mM)  1.5 ml 5 M NaCl 

IGEPAL (1 %) 5 ml 10 % IGEPAL 

Deoxycholic acid (DOC) (0.5 %)  2.5 ml 10 % DOC 

SDS (0.1 %)  0.5 ml 10 % SDS 

50 mM Tris (pH 8.6)  2.5 ml 1 M Tris (pH 8.6) 

deionized H2O  to a final volume of 50 ml 

 

Separation gel for SDS PAGE (12 %, for 1 gel): 

deionized H2O  1.7 ml 

acrylamide-bisacrylamide mix (29:1, 30 %)  2.0 ml 

Tris (1.5M, pH 8.8)  1.3 ml 

SDS 0.05 ml of 10 % SDS 

APS 0.05 ml of 10 % APS 

TEMED  0.002 ml 

 

Stacking gel for SDS PAGE (for 1 gel): 

deionized H2O  0.68 ml 

acrylamide-bisacrylamide mix (29:1, 30 %)  0.17 ml 

Tris (1 M, pH 6.8)  0.13 ml 

SDS (10 %) 0.01 ml  

APS (10 %) 0.01 ml  

TEMED  0.001 ml 
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TBS Tween buffer (for 5 l): 

Tris (20 mM)  12.1 g  

NaCl (137 mM)  40.0 g 

Tween 20 (0.5 %)  25 ml  

deionized H2O  to a final volume of 5 l 

 adjust to pH 7.56 

 

Transfer buffer (for 5 l): 

Tris-Base  12.1 g 

Glycine  56.3 g 

Methanol  1000 ml 

deionized H2O  to a final volume of 5 l 

 

Tris-HCl (1 M, pH 6.8, for 400 ml): 

Tris-HCl  60.0 g 

deionized H2O  to a final volume of 400 ml 

 adjust pH to 6.8 with concentrated HCl 

 

Tris-HCl (1.5 M, pH 8.8, for 400 ml): 

Tris-HCl  90.5 g 

deionized H2O  to a final volume of 400 ml 

 adjust pH to 8.8 with concentrated HCl 

 

4.7.7 Solutions for histo- and immunohistochemical work 

Blocking (cell-stainings, for 20 ml): 

NGS  1 ml 

BSA 1 g 

PBS to a final volume of 20 ml 

 

Blocking (paraffin sections, for 20 ml): 

NGS (5 %) 1 ml 

BSA (5 %) 1 ml 

TBS to a final volume of 20 ml 
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Blocking (Vibratome sections, for 200 ml): 

Triton X 100 (20 %) 7 ml  

DMSO (1 %) 2 ml 

BSA (2 %) 4 g 

PBS to a final volume of 200 ml 

 

Citrate buffer (0.01 M, pH 6.0, for 1 l): 

Citrate monohydrate 2.1 g 

deionized H2O to a final volume of 900 ml 

 adjust pH to 6.0 

deionized H2O to a final volume of 1 l 

 store at 4°C 

 

Cresyl violet acetate (Nissl) solution (for 1 l): 

Cresyl violet acetate  5 g 

deionized H2O to a final volume of 1 l 

 

4 % Paraformaldehyde (PFA) in PBS (pH 7,3, for 1 l): 

PFA 40 g 

deionized H2O  to a volume of 900 ml 

 adjust pH to 7.3 

deionized H2O to a final volume of 1 l 

 Aliquot and store at -20°C 

TBS (pH 7.5, 10 x, for 1 l): 

NaCl 87.66 g  

Tris 12.11 g 

deionized H2O  to a volume of 900 ml 

 adjust pH to 7.5 

deionized H2O to a final volume of 1 l 
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4.8 Primer 

Primers were individually designed and purchased by Metabion in lyophilized form. Upon 

arrival, lyophilized primers were diluted to 100 pmol/μl stock solutions using deionized 

autoclaved water. Working solutions were obtained by diluting stock solutions to a final 

concentration of 10 pmol/µl. 

Table 2: Primers for cloning a V5-tagged version of PLS3 into the Rosa26 targeting vector 

Transcript / 

Description 

Sequence  

(5´ - 3´) 
ID# Name 

Annealing / 

Amplicon 

length 

PLS3 / 

Amplification of 

PLS3-coding 

sequence (cds) 

for GAGGTGCAGAAGTTGTCTGA 2454 Plst.3T_ex.1-2_fw 

55°C / 

1968 bp rev CACTCTCTTCATTCCCCTGC 2586 Pl_NO_stop_rev 

PLS3V5 / 

Colony PCR 

for TAATACGACTCACTATAGGG 1840 T7 55°C / 

721 bp 

 
rev GTTGATTGCTCTTTCATCAATG 2457 

Plst.3T_ex.3-

4_rev 

PLS3V5 / 

Amplification of 

PLS3V5 with 

Asc I - overhang 

primers 

for 
GGCGCGCCACCATGGATGAGA

TGGCTACCACTC 
3289 AscI-PLS3 For 

55°C / 

2047 bp 
rev 

GGCGCGCCTCAATGGTGATGG

TGATGATGACCGGTA 
3290 AscI-PLS3 REV 

PLS3V5 with 

Asc I restriction 

overhangs / 

colony PCR 

for TGGTGACAGGAATAAAGATG 2456 Plst.3T_ex.3-4_fw 

55°C / 

1112 bp rev ACTGTAAGATTACCAGGGCATC 2463 
Plst.3T_ex.9-

10_rev 
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Table 3:  PLS3V5-sequencing primer 

Transcript 
Sequence 

(5´ - 3´) 
ID# Name Annealing  

PLS3V5 

for GAGGTGCAGAAGTTGTCTGA 2454 Plst.3T_ex.1-2_fw 

55°C for TGGTGACAGGAATAAAGATG 2456 Plst.3T_ex.3-4_fw 

for TGACCTGTTCAAAGCTGTTG 2458 Plst.3T_ex.5-6_fw 

for ATCATTAAGATCGGTTTGTTCG 2460 Plst.3T_ex.7-8_fw 

55°C 

for GGACAAAAGGAAGGTGAACC 2462 
Plst.3T_ex.9-

10_fw  

for TGAAGAAAGAACCTTCCGTAAC 2464 
Plst.3T_ex.11-

12_fw  

for ACTTTAGCTTTAGTCTGGCAGC 2466 
Plst.3T_ex.13-

14_fw  

rev CCTTCTTTCCTGTTGATTGC 2455 
Plst.3T_ex.1-

2_rev  

rev GTTGATTGCTCTTTCATCAATG 2457 
Plst.3T_ex.3-

4_rev  

rev TAAGTTCCTCCAAAGTCTCACC 2459 
Plst.3T_ex.5-

6_rev 

rev TGCAACCTAATTTATCTGCTTG 2461 
Plst.3T_ex.7-

8_rev  

rev ACTGTAAGATTACCAGGGCATC 2463 
Plst.3T_ex.9-

10_rev 

rev GTCGTCATTGGCTTTCTGAC 2465 
Plst.3T_ex.11-

12_rev 

rev AGAGCATACACTCTGGCTCC 2467 
Plst.3T_ex.13-

14_rev  

 

Table 4:  Primers used in qRT-PCR 

Transcript / 

Description 

Sequence  

(5´ - 3´) 
ID# Name 

Annealing / 

Amplicon 

length 

Hprt1 
for TCAGTCAACGGGGGACATAAA 4118 musHprt1F1 63°C / 

142 bp rev GGGGCTGTACTGCTTAACCAG 4119 musHprt1R1 

Murine / 

human PLS3 

for ATGAGCTTGATGAACTCAAA 4092 PLS3olFor1 66°C / 

107 bp rev TGGCATATTAGCTTCCTTGA 4093 PLS3olRev1 

murine Pls3 
for AGCTGATCTGTTCAGCACACC 3301 

Pls3_Mus_3_cDN

A_for 63°C / 

95 bp rev ATACAAAGCAAGCCGGAATG 3302 
Pls3_Mus_3_cDN

A_rev 

PLS3V5 

for GCCAAGTATGCAGTGTCAATG 3913 PLS3 RT For1.2 
66°C / 

230 bp rev 
CCGAGGAGAGGGTTAGGGATA

GG 
3911 PLS3 RT Rev1 

Rpl13a1 
for TTCGGCTGAAGCCTACCAGA 4116 musRpl13aF3  63°C /  

146 bp rev CAAGATCTGCTTCTTCTTCC 4117 musRpl13aR3  
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Table  5:  Genotyping-primers 

Inbred 

strain 

Gene/ 

Transcript 

Sequence  

(5´ - 3´) 
ID# Name 

Annealing/ 

Amplicon 

length 

SMA-Hung 

WT Smn 

for 
ATAACACCACCACTC 

TTA CTC  
3370 

HungSMA_mouse

_wt/Mut_fw_S1 59°C / 

1050 bp 
rev 

GTAGCCGTGATGCCATT

GTCA  
3372 

HungSMA_mouse

_wt_rev_H1 

Hung KO 

for 
AGCCTGAAGAACGAGAT

CAGC  
3371 

HungSMA_mouse

_wt_rev_S2 59°C / 

950 bp 
rev 

ATAACACCACCACTCTTA

CTC  
3370 

HungSMA_mouse

_wt/Mut_fw_S1 

hSMN2 tg 

for 
CGAATCACTTGAGGGCA

GGAGTTTG 
3375 

HungSMA_mouse

_tghSMN2_fw_2F 
59°C / 

479 bp 
rev 

AACTGGTGGACATGGCT

GTTCATTG 
3376 

HungSMA_mouse

_tghSMN2_rev_2

B 

PLS3V5 

PLS3V5 rec 

for 
AAAGTCGCTCTGAGTTG

TTATC 
3650 Typ_forw 

56°C / 

380 bp 
rev 

GATATGAAGTACTGGGC

TCTT 
3649 TYP_rev_wt 

PLS3V5 wt 

for 
AAAGTCGCTCTGAGTTG

TTATC 
3650 Typ_forw 

56°C / 

576 bp 
rev 

TGTCGCAAATTAACTGTG

AATC 
3648 TYP_rev_CAGS 

Stop-

cassette 

Stop-in 
for 

AGGGTTTCCTTGATGAT

GTCA 
3988 Rosa1 Stop for1 59°C / 

505 bp 
rev CATCAGGGGCTCGCGCC 3989 NeoStatRev 

Stop-out 

for 
AGGGTTTCCTTGATGAT

GTCA 
3988 Rosa1 Stop for1 

59°C / 

412 bp 
rev 

CCTTCTTTCCTGTTGATT

GC 
2455 

Plst.3T_ex.1-

2_rev 

CMV-Cre 

Cre for 
CGCATAACCAGTGAAAC

AGCAT 
3104 Credel_fw 

60°C / 

600 bp 
Cre rev 

GAAAGTCGAGTAGGCGT

GTACG 
3105 Credel_rev 

Hb9-Cre 

Cre for 
GTCCAATTTACTGACCGT

ACACC 
3140 Hb9Cre_fw 

60°C / 

704 bp 

Cre rev 
GTTATTCGGATCATCAGC

TACACC 
3141 Hb9Cre_rev 

60°C / 

704 bp 
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4.9 Generated plasmids / GVOs 

The following Plasmids have been generated and were used in the context of this work. 

All insert sequences have been verified by sequencing. 

Table 6:  Plasmids generated and used in this study 

Name 
Vector 

backbone 

GVO # /  

Description 
Antibiotic 

Colony 

PCR 

primer # 

Product 

size (bp) 

PLS3 in 

Topo3.1V5/His, 

correct orientation 

pcDNA3.1V5   

/ His Topo 

500 / 

PLS3 in 

pcDNA3.1V5/His in 

frame with tags 

Amp 

Neo 

1840 

and 

2457 

721 

PLS3V5 Asc I in 

Topo zero blunt 

K2 180807 

Zero blunt 

Topo 

 

502 / PLS3V5 with 

Asc I restriction 

overhangs in Zero 

blunt Topo 

Kan 

Zeocin 

 

2456 

and 

2463 

1106 

PLS3V5 Asc I in 

Rosa26 K1 

20.09.07 

 

Rosa26 CAGS 

targeting 

vector 

503 / PLS3V5 cloned 

into Rosa26 CAGS 

targeting vector 

Amp 

Neo 

 

2533 

and 

2459 

864 

Rosa26 Sonde 

cut EcoRI BamHI 

KII 

pCR Topo 

 

501 / Neo probe 

cloned into pCR Topo 

Amp 

Kan 

 

no 

primers 
- 

 

4.10 Software, internet programs and databases 

 AxioVision Rel.4.7 (fluorescence imaging)  Zeiss 

 CellQuest BD 

 Chromas 2.22 Technelysium Ltd 

 EndNote9/X2 (reference organization)  Thomson Research  

 Lasergene Package (Sequence analysis)  DNAstar Inc. 

 Leica LCS confocal software Leica 

 LightCycler Software (qRT-PCR analysis)  Roche 

 LSM 510 confocal working software Zeiss 

 Office 2003/2007 (word processing etc.)  Microsoft 

 Photoshop CS (image editing)  Adobe 

 Quantity One 4.5.1 (densitometric analysis)  Biorad  

 Sequence Detection Software (qRT-PCR analysis)  ABI 

 SigmaPlot 9/10 (creation of graphs)  Systat Software Inc 

 Vector NTI Invitrogen 

 XFluor4Safire² software (platereader)  Tecan 
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Ensembl  http://www.ensembl.org/  

Gene Expression Atlas database  http://www.ebi.ac.uk/gxa/  

Genecards  http://www.genecards.org/  

Medline  https://www.ncbi.nlm.nih.gov/pubmed  

NCBI  http://www.ncbi.nlm.nih.gov/  

OMIM  http://www.ncbi.nlm.nih.gov/omim  

UCSC  http://genome.ucsc.edu/  

4.11  Molecular biology methods 

4.11.1 Working with DNA 

4.11.1.1 Isolation of genomic DNA from tissue 

To isolate DNA from tissue, the respective tissue (mostly tail tips) was incubated in 493 µl 

lysis buffer + 7 µl Proteinase K (200µg/ml) at 55°C o.n. until the tissue was completely 

resolved. Next, the samples were centrifuged for 5 min at 13.200 rpm. to sediment residual 

hair. The supernatant was transferred into a fresh 1.5 ml tube and 500 µl of RT isopropanole 

were added to precipitate DNA. Tubes were then centrifuged for 10 min at 13.200 rpm to 

pellet the DNA. The supernatant was again discarded and the pellet was rinsed with 700 µl 

70 % EtOH to remove residual salts. After another centrifugation step for 10 min at 13.200 

rpm, the EtOH was removed and the pellet was air-dried in a sterile incubator for 30 min. 

Finally, the pellet was resuspended in an adequate volume of TE-4/RNase (e.g. 70 µl). 1 µl of 

the DNA solution was used for subsequent genotyping PCR reactions. To obtain highly 

purified DNA, as it was needed for Southern blotting, phenol/chloroform extraction was 

performed (chapter 4.11.1.4). 

4.11.1.2 Isolation of genomic DNA from cells 

Attaching cells were first washed with PBS and then trypsinized using 1 x Trypsin solution 

for 5 min at 37°C in a sterile incubator. After trypsinization, the cells were transferred into an 

adequate collection tube and centrifuged for 5 min at 1200 rpm. Another washing step with 1 

x PBS was added and the resulting pellet resolved in 493 µl lysis buffer + 7µl Proteinase K. 

All subsequent steps were performed as in chapter 4.11.1.1. 

4.11.1.3 Determination of DNA concentration 

To determine DNA concentrations, the respective DNA solution was measured using the 

NanoDrop ND-1000 spectrophotometer (Peqlab). After blank with solvent, 1.5 µl of DNA 

solution were applied. Absorptions at wavelengths of 260 and 280 nm were measured 

utilizing a path length of 0.2 mm. Next to the concentration, purity grade was automatically 

determined as the ratio of measured absorption at the wavelength of 260 nm and 280 nm. 
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The optimum range was between 1.8 and 2.0 whereby higher ratios indicate RNA 

contamination and lower ratios indicate protein- or EtOH contamination.  

4.11.1.4 Phenol/chloroform extraction 

Genomic DNA isolated from tissues is highly enriched with proteins. Since protein content 

can interfere with subsequent reactions, e.g. restriction digestions or sequencing, 

phenol/chloroform extraction was applied after DNA isolation. By building hydrogen bonds 

and via hydrophobic interactions, phenol is able to bind to denatured proteins. This property 

makes it possible to separate the organic from the aqueous solution. In brief, the protocol 

included the following steps: First, the supernatant of the cell lysate was mixed with an equal 

volume of phenol/chloroform (1:1) in a Phase Lock Gel™ Heavy tube. The tube was incubated 

for 5 min on a rotator, centrifuged for 5 min at 13.200 rpm and the aqueous supernatant 

transferred into a fresh Phase Lock Gel™ Heavy tube. An equal amount of chloroform was 

added to the solution to extract remaining phenol and another centrifugation step for 5 min at 

13.200 rpm was performed. The purified DNA solution was transferred into a fresh 1.5 ml 

tube. Next, 3 Vol. of ice-cold 100 % EtOH together with 1/10 Vol. of 3 M NaAc (pH 5.2) were 

added to precipitate the solution o.n. at -20°C. The next day, tubes were centrifuged for 20 

min at 13.200 rpm and the resulting pellet was washed once in 70 % EtOH. After another 

centrifugation step the pellet was air-dried and resuspended in an appropriate Vol. of TE-

4/RNase. Phenol/chloroform extraction was also applied to linearized plasmid prior to ligation 

and transfection of ES cells.  

4.11.1.5 Agarose gel electrophoresis 

The principle of gel electrophoresis is the size dependent separation of DNA fragments in 

a gel matrix applying an electric field. Since the ribose-phosphate backbone of DNA is 

negatively charged the DNA migrates towards the cathode (+ pole) in the electric field.  

1 % standard gels were prepared by solving 2.0 g of agarose in 200 ml of 1 x TBE buffer 

under constant heating in a microwave. After cooling of the clear solution to about 50-60°C, 

ethidiumbromide was added to a final concentration of 1 µg/ml.  

The solution was then poured into an appropriate gel tray with a well comb fixed properly and 

placed in the 4°C room. After solidifying, the gel tray was transferred into an electrophoresis 

chamber and covered with 1 x TBE. The comb was removed and PCR samples were 

supplemented with 5 µl of loading dye. The DNA solution was carefully pipetted into the slots 

and the gel was run at 120 V. When the respective bands were nicely separated, as 

controlled by using a UV hand lamp, the gel was documented using the ChemiDoc XRS 

Imaging system (Biorad). 
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4.11.1.6 Purification of DNA fragments out of agarose gels 

To purify DNA fragments out of an agarose gel, the respective DNA band was cut out 

using a scalpel and transferred into a 1.5 ml tube. Normally, the QIAEX II gel extraction- and 

the QIAquick Gel Extraction Kit were used following the manufacturer`s instructions. This 

method was used for the purification of PCR amplified fragments, probes for Southern 

blotting or vectors prior to cloning.  

4.11.1.7 Polymerase chain reaction (PCR) 

The polymerase chain reaction is an enzymatic method to specifically amplify certain 

regions of single-stranded DNA using sequence specific oligonucleotides (primers) (Mullis 

KB, 1986). For DNA amplification the thermostable and so called Thermophilus aquaticus 

(Taq) DNA polymerase was used. Starting from the 3´- end, Taq polymerase is able to 

synthesize complementary DNA sequences from-single stranded template DNA. The 

PCR reaction consists of a series of the three steps denaturation, primer-annealing and 

elongation, termed cycles. An example of a typical cycling sequence is given in Table 7. 

Annealing temperatures of primers depend on the CG/AT content of the individual primer and 

the elongation time on the amplicon size, whereby Taq has an amplification speed of ~1 kb 

/1 min. 

Table 7:  Example of a typical thermocycler program  

Step Temperature [°C] Duration  

1.) Initial denaturation 95 10 min 

2.) Denaturation 94 30 sec 

3.) Annealing XX (depending on primers  

4.) Elongation 72 XX (depending on amplicon size) 

Cycle to step 2 for 35 repetitions 

5.) Final extension 72 10 min 

 

Typically, amplification volumes had a size of 25 µl for genotyping reactions and up to 80 

µl for amplification of fragments to be cloned. An example for a standard 25 µl genotyping 

PCR reaction is given in Table 8. 

Table 8:  Example of a typical 25 µl genotyping PCR reaction 

Component Amount 

dNTPs (200 µM of each, dATP, dCTP, dGTP, dTTP) 4 µl 

MgCl2 0.75 µl 

Forward primer (10 pmol) 1 µl 

Reversed primer (10 pmol) 1 µl 

10 x reaction buffer 2.5 µl 

Taq polymerase (1 U) 0.2 µl 

DNA 1 µl (or minimum 100 – 200 ng) 

H2O to a final volume of 25 µl 
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4.11.1.8 Sanger sequencing 

Underlying the Sanger method of DNA sequencing (Sanger F, 1977) is the use of 

dideoxynucleotide triphosphates (ddNTPs). When incorporated into an elongating DNA 

strand, ddNTPs terminate the PCR amplification reaction. In principle, a PCR reaction is 

performed with a mixture of DNA primer, a Taq DNA polymerase, normal 

deoxynucleotidephosphates (dNTPs), and modified ddNTPs. Each of the four ddNTPs is 

labeled with a different fluorescent dye allowing the identification of the final nucleotide by 

capillary electrophoresis. In this work, the BigDye Terminator V1.1 Sequencing Kit (Applied 

Biosystems) was used strictly following the manufacturer`s instructions.  

4.11.1.9 Enzymatic restriction digestion 

Enzymatic restriction digestion was frequently used in site specific cloning reactions, for 

test restrictions of cloned plasmids or for restriction of genomic DNA prior to Southern 

blotting. Restriction endonucleases cut double- or single stranded DNA by hydrolyzing 

phosphodiester bonds between two nucleotides. The recognition nucleotide sequences 

specific for each of the different enzymes are termed restriction sites. For digestion of 

plasmids 2-5 µg and for genomic DNA 5-20 µg of DNA were restricted o.n. in a water bath at 

37°C. To increase efficiency, a three-fold enzymatic excess was used for plasmid restriction. 

For genomic DNA restriction, an even 5-fold enzymatic excess was used in the reaction. 

Additionally, spermidin and DTT were added to the reaction when genomic DNA was 

digested. A typical example of a restriction reaction for plasmid and genomic DNA is given in 

Table  9. 

 

Table  9:  Exemplary restriction digestion reactions for 1.) plasmid and 2.) genomic DNA 

Component Amount  

1.) Plasmid restriction (total Volume = 30 µl) 

Plasmid  2-5 µg 

10 x buffer 3 µl 

100 x BSA (if necessary)  0.3 µl 

Enzyme  3 U / 1 µg of plasmid DNA 

H2O to a final volume of 30 µl 

2.) Genomic DNA restriction (total Volume = 50 µl) 

DNA 5-20 µg 

10 x buffer 5 µl 

100 x BSA 0.5 µl 

DTT (1 M) 0.05 µl 

Spermidine (1 M) 0.05 µl 

Enzyme 5 U / 1 µg of genomic DNA 

H2O to a final volume of 50 µl 

http://en.wikipedia.org/wiki/Dideoxynucleotides
http://en.wikipedia.org/wiki/Primer_%28molecular_biology%29
http://en.wikipedia.org/wiki/DNA_polymerase
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4.11.1.10 Ligation of DNA fragments 

Ligation reactions were carried out using T4-DNA ligase (Roche). This enzyme catalyzes 

the joining of two DNA strands between the 5´-phosphate and the 3´-hydroxyl groups of 

adjacent nucleotides in either a cohesive-ended or blunt-ended configuration. For ligation 

reactions, 5 U of T4-DNA ligase were mixed together with the respective vector and insert 

(molar ratio of 1:3, 200 ng of vector standard amount) as well as 1.5 µl of 10 x ligase buffer 

provided by the company and added to a total volume of 15 µl. The approach was incubated 

in a thermocycler o.n. at 16°C. Typically, 5 µl of the ligation reaction was used for the 

transformation of 1 vial TOP 10 cells. 

4.11.1.11 Southern blotting  

Via Southern blot technique, enzymatically restricted DNA is transferred to a nylon 

membrane and target fragments are detected via radioactively labeled DNA probes 

(Southern, 1975) . In this work, Southern blotting was employed for the verification of correct 

insertion of the Rosa26 targeting vector into its destined genomic region in ES cell clones 

and transgenic animals. Following preceding digestion of genomic DNA using EcoR I, two 

different probes were used to prove correct insertion of the Rosa26 targeting construct: 1.) 

An external probe, termed Rosa probe, which binds 5´ of the targeting construct in the 

intrinsic genomic region. This probe allows the detection of correct insertion into the Rosa26 

locus. 2.) An internal probe, called Neo probe, which binds in the Neomycin cassette of the 

targeting construct. Using this probe, random integration of the targeting construct into the 

genome could be detected. The phenomenon of random integration is strictly to avoid since 

insertion into other genes or their promoter regions can disrupt correct gene function. 

4.11.1.12 Restriction and transfer of genomic DNA on a nylon membrane 

Before genomic DNA of ES cells or tail tips was transferred to the nylon membrane it was 

digested with EcoR I o.n. (chapter 4.11.1.9) and separated on a 0.7 % agarose gel o.n. at 

20-30 V. Prior to the transfer, a picture of the gel was taken using the ChemiDoc XRS 

Imaging system. The DNA standard was delineated by stitching through the gel using a 200 

µl pipette tip. Before the transfer, the gel was carefully placed in 0.125 M HCl on a swinging 

incubator for 10 min to depurinate and break DNA into smaller pieces. In the next step, the 

gel was transferred to 0.4 M NaOH and incubated on a swinging incubator for another 20 

min. This step is important for the denaturation of double stranded DNA. The Southern blot 

was assembled avoiding bubbles between the different layers. Before the membrane was 

placed on the Whatman papers, both were briefly preincubated in 0.4 M NaOH. Transfer was 

conducted for 16 h o.n.. The next day, the blot was disassembled and attaching gel rests 

were removed by a short wash in 2 x SSC. For fixing of the DNA, the membrane was 
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incubated for 2 h at 80°C in an incubator. The membrane was either directly used for 

subsequent steps or could be stored at RT for a longer time.  

4.11.1.13 Radioactive labeling of probes and hybridization of the blot  

Prior to hybridization of the nylon membrane with the radioactively labeled DNA probe, 

prehybridization was carried out by incubating the membrane in prehybridization mix (chapter 

4.7.5) for 2-4 h at 65°C on a rolling incubator.  

The sequence of the external Rosa26 probe was subcloned into pCR Topo and was 

generated by enzymatic digestion of the vector with EcoR I and BamH I. The Neo probe was 

PCR-amplified directly from the Rosa26 targeting vector (primer #3849 and 3850). Both 

probes were purified as described in 4.11.1.6. Radioactive labeling of the probes was 

performed using RediprimeTMII Random Prime Labeling kit following the manufacturer`s 

instructions and α-[32P]-dCTP as radioisotope (25µCi). To remove excess nucleotides, the 

probe was purified by centrifugation of the solution in a Probe Quant G50 micro column for 5 

min. After a denaturation step at 95°C and cooling on ice, the labeled DNA probe was given 

to the membrane directly into the prehybridization mix. The membrane was incubated for 16 

h o.n. on a rolling incubator at 65°C. The following day, hybridization mix containing the 

labeled probe was removed and unbound probe was washed off the membrane by stepwise 

20 min incubation in prewarmed washing buffer I and II. Between the washing steps, 

radioactivity was monitored with a Geiger counter to avoid complete removal of the probe. 

When the value of measured radioactivity reached approx. 30-80 Becquerel, the membrane 

was shrink-wrapped in plastic foil and fixed in an autoradiography cassette. An X-ray film 

was placed upon the membrane and incubated, depending on the intensity of the signal, o.n. 

or longer at -80°C. For incubation of the same membrane with a different probe, the 

membrane was stripped by boiling in Southern stripping solution for 20 min. The membrane 

was then incubated with a different radioactively labeled probe. An overview about probes 

and expected fragment sizes is given in Table 10. 

Table 10:  DNA probes for Southern blotting and expected sizes 

Name Detection Enzyme Fragment sizes 

Rosa probe 

Correct insertion of the construct into 

the Rosa26 locus of ES cells and 

transgenic mice 

EcoR I 
wt = 16 kb 

rec = 6.8 kb 

Neo probe 

Random insertion of the construct 

into the genome of ES cells and 

transgenic mice 

EcoR I 

rec = 6.8 kb 

in case of random 

integration: 

additional bands of 

undefined size 
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4.11.2 Working with RNA 

All RNA work was performed using RNAse free substances and material. Since RNA is 

less stabile compared to DNA, samples were always thawed and kept on ice or otherwise 

stored at -80°C.  

4.11.2.1 Isolation of total RNA from mouse tissues 

Isolation of total RNA from mouse tissues was performed using the RNeasy Kit (Qiagen) 

and the QIAshredder (Qiagen) kit according to the manufacturer`s instructions. Since the 

isolation of RNA from fatty tissues like brain and spinal cord can be problematic, an 

additional Qiazol® step was included prior use of the RNeasy Kit. The optional DNase I 

digestion in the RNeasy kit protocol was always conducted.  

4.11.2.2 Determination of RNA concentration 

Total RNA isolated from mouse tissues was used for quantitative real time PCR analysis 

(qRT-PCR). Since the photometric measurement of total RNA is rather imprecise, the Quant-

iT™ RiboGreen® RNA Assay Kit (Invitrogen) was conducted following the manufacturer`s 

instructions. The kit is based on RiboGreen, a dye that is only fluorescent when bound to 

RNA. Therefore, the fluorescence intensity is directly correlated to the RNA concentration 

present in a sample. The assays were performed as triplicates in 96 well plates (Black, flat 

bottom, medium binding, #655076, Greiner bio-one) and analyzed with the TECAN Safire2 

monochromator-based microplate reader (Tecan). 

4.11.2.3 Reverse transcription of RNA into cDNA 

Since RNA cannot be used as template in quantitative real time PCR (qRT-PCR) 

analyses, RNA was first reversely transcribed into cDNA. For this purpose, the QuantiTect 

Reverse Transcription Kit (Qiagen) was used following the manufacturer`s protocol. To avoid 

contamination with genomic DNA, a DNase digestion step was included in the kit. 

Furthermore, oligo-dT primers (Fermentas) binding to the mRNA-specific poly-A tail were 

used to specifically transcribe mRNA only. For the individual samples 300 ng of total RNA 

were transcribed in a volume of 20 µl. Of the defined standard 600 ng of total RNA were 

transcribed in a volume of 20 µl. 

4.11.2.4 Quantitative real time PCR (qRT-PCR) 

Total RNA was isolated from tissues and reversely transcribed as explained in chapters 

4.11.2.1 and 4.11.2.3. When used for qRT-PCR, cDNAs of the samples were diluted in a 

ratio of 1:5 in TE-4. For the standard, 16 µl were mixed with 24 µl of TE-4, properly mixed and 

diluted 8 times in a ratio of 1:2 to obtain all in all 9 dilutions. 3 µl of the diluted sample as well 

as the standard were used in a standard qRT-PCR reaction. An example of a standard 

reaction is given in Table 11. qRT-PCR was performed on a LightCycler 1.5 instrument using 



Materials and methods 
 

62 

Fast Start DNA Master SYBR Green I (Roche). To analyze measurements, the second 

derivative maximum method of the LightCycler software was recruited. Experiments were 

always conducted in triplicates. All primer combinations used in qRT-PCR including 

annealing temperature and amplicon size are given in Table 4.  

Table 11:  Example of a standard qRT-PCR reaction 

Component Amount [ul] 

V[sample] 3 

H2O 2.7 

MgCl2 1.2 

Forward primer 1 

Reversed primer 1 

Fast start DNA Master mix 0.83 

Polymerase 0.27 

 

4.11.3 Working with bacteria 

All cloning steps in this thesis were performed using TOP10 chemocompetent cells 

(Invitrogen). Only for the cloning of PLS3V5 into the targeting vector, XL1-Blue 

chemocompetent cells (Agilent Biotechnology) were used.  

4.11.3.1 Topo TA cloning 

Transformation of Plasmids into TOP 10 cells was performed using the Topo TA cloning 

technology (Invitrogen). This technique makes use of the vaccinia virus derived enzyme 

topoisomerase I that can function as both, a restriction enzyme and as a ligase. The Topo-

vectors are provided linearized and carry topoisomerase I covalently bound to each 3´ 

phosphate of the extending thymine of the pentameric sequence 5´-(C/T)CCTT-3´. If a Taq-

amplified PCR product is added to the buffered reaction solution, topoisomerase I ligates the 

overhanging adenosine rests of  the PCR-fragment to the complementary 3´ thymine of the 

vector. The Topo vectors used in this work were pcDNA3.1/V5-His Topo and Zero blunt 

Topo. 

To clone a certain DNA fragment into a Topo cloning vector, the DNA fragment was first 

amplified using the Taq High Fidelity system (Invitrogen). The PCR product was purified 

using the QIAquick PCR purification system and eluted in TE-4-buffer. To ensure the 

specificity of the PCR reaction, a small aliquot of 5 µl of the PCR product was always tested 

on an agarose gel. If the expected size was detected on the gel, ligation into the respective 

Topo vector was performed as follows: 4 µl of PCR product was mixed with 1 µl of salt 

solution provided by the manufacturer. 1 µl of Topo vector was added and the solution was 

incubated for 10 min at RT. 2 µl of the cloning reaction were given to a vial of freshly thawed 

TOP10 chemocompetent cells. The vial was finger-flipped and incubated for 30 min on ice. 

Following incubation on ice, the heat shock was performed for 30 sec at 42°C. The tube was 
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transferred on ice and 250 µl of RT S.O.C. medium was added. Next, the tube was shaken 

horizontally (200 rpm) for 1 h at 37°C. Different volumes of bacteria (e.g. 30 µl and 70 µl) 

were dispersed on agar-plates containing Ampicillin or Kanamycin in a final concentration of 

50 µg/ml. Plates were incubated o.n. in a sterile incubator at 37°C.  

4.11.3.2 Cloning of PLS3V5 into the Rosa targeting vector 

Before PLS3V5 was inserted into the Rosa targeting vector, 5´ and 3´ Asc I restriction 

overhangs were added via HiFi-Taq PCR and the construct was subcloned into the Zero 

blunt Topo vector. For the final cloning step into the Rosa 26 targeting vector, 5 µg of the 

Zero blunt vector containing PLS3V5 and the empty Rosa26 targeting vector were digested 

with Asc I (chapter 4.11.1.9). To prevent self ligation, the targeting vector was alkaline 

phosphatase treated prior ligation by addition of the respective buffer and enzyme directly to 

the restriction reaction. The complete restrictions were then separated on a 1 % agarose gel. 

The restricted Rosa targeting vector as well as the 2 kb PLS3V5 fragment were cut out and 

purified from the gel using QIAEX II gel extraction kit for the targeting vector and the 

QIAquick Gel Extraction Kit for the PLS3V5 fragment. After elution in an adequate volume of 

H2O (e.g. 20 – 50 µl) the concentration of the eluates was determined and the ligation 

reaction performed  using a vector:insert ratio of 1:3 o.n. at 13°C (chapter 4.11.1.10).The 

next morning, transformation of XL1-Blue chemocompetent cells was performed according to 

the protocol described for TOP10 cells under 4.11.3.1. 

4.11.3.3 Picking and colony PCR for the identification of correct clones 

The agar plates containing the respective antibiotic were kept at 37°C o.n. and usually 10 

colonies were picked per construct the next morning. For colony PCR, clones were lysed by 

osmotic shock in 20 µl dH2O. 5 µl of the clone were used for colony PCR, while the other 15 

µl were used to inoculate an 8 ml o.n. culture.  

The next morning, 0.5 ml of the culture were mixed with 0.4 ml of 50 % glycerol, snap-

frozen and then stored as glycerol stocks at -80°C. The rest of the culture (7.5 ml) was used 

for the isolation of plasmids with the Qiagen MiniPrep Kit after the manufacturer`s 

instructions. After elution of plasmids in dH2O, the concentrations were photometrically 

determined and 150 ng used for sequencing (chapter 4.11.1.8).  

4.11.3.4 Maxi preparation of plasmids 

To isolate up to 500 µg of plasmid, the EndoFree Plasmid Maxi Kit (Qiagen) was used 

following the manufacturer`s instructions. Usually 250 ml of o.n. culture were used for the 

experiments. The kit is specifically designed to eliminate any bacterial contaminations, e.g. 

lipopolysaccharides (LPS) that might interfere with subsequent transfection reactions.  

The plasmids generated and used in this work are listed in Table 6. 



Materials and methods 
 

64 

4.12  Protein biochemical and immunological methods 

4.12.1 Working with proteins 

Since proteins are highly temperature-sensitive, all protein work including thawing was 

performed on ice. Since proteins can furthermore degrade through protease activity, 

protease inhibitor was added to the RIPA buffer. 

4.12.1.1 Isolation of proteins from mouse tissues 

For protein isolation from mouse tissue, a small part of the respective tissue was lysed in 

350-600 µl RIPA buffer, depending on the size of the sample. Prior use, complete mini 

protease inhibitor (1 pill per 7 ml of RIPA buffer) was added to the RIPA buffer to block 

protease activity. Soft tissues like spinal cord or brain were homogenized with help of an 

EPPI-pestle. For compact tissues like muscle, the T 10 basic ULTRA-TURRAX homogenizer 

was used. Next, protein solutions were centrifuged for 30 min at 13.200 rpm at 4°C. The 

supernatant containing the dissolved proteins was transferred to a fresh tube and the protein 

concentration was determined (chapter 4.12.1.3). 

4.12.1.2 Isolation of proteins from cells 

To harvest proteins, cells were first washed two times in 1 x PBS. Lysis of the cells was 

performed by adding 50 µl RIPA buffer containing protease inhibitor (chapter 4.12.1.1) 

directly on a 10 cm Petri dish (30 µl per 1 well of a 6 well plate). The dishes were kept on ice 

for 20 min before a cell scraper was used to collect the solution which was then transferred 

into a fresh 1.5 ml tube. Following another 20 min of incubation on ice, the tubes were 

centrifuged for 20 min at 13.200 rpm at 4°C. The supernatant was transferred into a new 1.5 

ml tube and the concentration was determined (chapter 4.12.1.3) before it was frozen at -

80°C.  

4.12.1.3 Determination of protein concentration 

The protein concentration was determined using the Bradford method (Bradford, 1976). 

Bradford dye is able to bind to proteins whereupon it shifts its absorption maximum from 470 

to 595 nm. To determine the protein concentration of a sample, 2 µl of protein lysate were 

mixed in 498 µl of Bradford solution and incubated for 20 min at RT. After blank with Bradford 

dye, the absorption of the sample was measured at a wavelength of 595 nm. The protein 

concentration of the unknown sample was determined by the mashine comparing the 

measurements to a bovine serum albumin (BSA) standard curve.  

4.12.1.4 SDS polyacrylamide gel electrophoresis (SDS PAGE) 

When separated by SDS PAGE, proteins need to be denatured in Laemmli buffer and 

under the influence of heat (95°C). The SDS of the Laemmli buffer and the PAA gel applies a 
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negative charge to the protein which by far exceeds the intrinsic charge of the protein. This 

way, SDS page allows the separation of all proteins of a sample by size (Laemmli, 1970). 

For SDS PAGE, a 12 % PAA separation gel (chapter 4.7.6) was prepared between two 

glass plates (0.5 mm thickness). Isopropanole was pipetted on top to cover the gel. After 

polymerization, the isopropanole was removed and a stacking gel (chapter 4.7.6)  was 

poured on top of the separation gel. A suitable comb was fixed between the glass slides and 

adjusted using two clamps. Stacking- and separation gel differ by their PAA content and pH. 

Since the stacking gel contains less PAA it forms bigger pores through which the denatured 

proteins can migrate easily in between a front of dipolar glycine and Cl- ions. Therefore, the 

function of a stacking gel is to concentrate the proteins along the border of stacking and 

separation gel. Once the proteins migrate into the separation gel, the glycine dissociates due 

to the increased pH. The separation gel contains a bigger amount of PAA and therefore 

smaller pores are formed. Thus, bigger proteins are slowed while small proteins can easily 

migrate through the pores. Due to their overall negative net charge, proteins are separated 

only by size. Protein samples to be separated (typically 7.5 µg) were supplied with 5 µl of 2x 

Laemmli buffer to which β-Mercaptoethanol had been added in a ratio of 1:10. After mixing 

and a short spin to collect the solution at the bottom of the tube, the proteins were heated to 

95°C for 5 min for complete denaturation. The heating step was followed by a short 

centrifugation step at 4°C to collect condensed fluid from the tube seam. Proteins were kept 

on 4°C until loaded on the gel. Protein size was estimated loading the PAGE Ruler Plus 

(Fermentas) protein ladder in a separate lane. Gel electrophoresis was performed using the 

Mini-Protean 3 cell or Protean II xi system (Biorad). The proteins were run at 40 V in 1 x 

electrophoresis buffer (4.7.6) until reaching the separation gel. From this point on, the 

applied current was increased to 80-120 V. 

4.12.1.5 Transfer of proteins to a nitrocellulose membrane (Western blotting) 

To transfer proteins on a nitrocellulose membrane by wet blotting, the separation gel was 

removed from the glass plates and the remaining stacking gel was discarded. Two sponge 

pads, two filters, the nitrocellulose membrane as well as the gel were equilibrated in transfer 

buffer (4.7.6) and arranged on top of each other in the following order: Sponge pad, filter, gel, 

membrane, filter, sponge pad. Possible air bubbles in the sandwich were removed by 

carefully rolling a small glass pipette over the filter paper. The gel sandwich was then 

inserted into a transfer cell and a cooling module was added. The transfer cell was placed in 

a 4°C room and a current of 30 V was applied o.n..Caused by the negative charge, the 

proteins migrate in the electric field and finally adhere to the membrane due to hydrophobic 

interactions, at the same time keeping the separation pattern present in the gel. The next 

morning, the wet blot was disassembled and the membrane was briefly rinsed in TBST. 
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Protein transfer was either monitored via reversible Ponceau staining or the membrane was 

immediately used for subsequent immunological detection. 

4.12.1.6 Ponceau staining of proteins on nitrocellulose membranes 

To control the protein transfer to the nitrocellulose membrane staining with Ponceau 

solution is commonly used. Ponceau interacts with positively charged amino acid side chains 

and since the staining is reversible the membrane can afterwards be used for subsequent 

immunological detection using antibodies. For Ponceau staining, the membrane was 

incubated in Ponceau solution for 30 sec. The arising band pattern could be clarified rinsing 

the membrane in fresh TBST. For further analysis, the membrane was simply washed in 

TBST until no red signal was present on the membrane any longer.  

4.12.1.7 Immunological detection of proteins on nitrocellulose membranes 

To detect proteins on a nitrocellulose membrane, primary antibodies are used that 

specifically recognize the protein of interest. The staining procedure was performed as 

follows: After wet blotting, the membrane was washed 5 times in TBST to remove any 

residual MeOH from the transfer buffer. To avoid background, the membrane was next 

blocked using 6 % non-fat milk powder in TBST for 3 h. The 6 % non-fat milk was discarded 

and exchanged with 3 % non-fat milk in which the primary antibody had been diluted. After 

incubation with the primary antibody, the membrane was washed 5 x for 5 min in TBST to 

remove unbound primary antibody. Following washing, the membrane was incubated with an 

HRP-conjugated secondary antibody in 3 % non-fat milk that was directed against the 

species from which the primary antibody was derived. After incubation with the secondary 

antibody, the membrane was washed again 5 x for 5 min in TBST to remove unspecifically or 

unbound secondary antibody. To chemiluminescently detect the protein bands, the 

membrane was incubated for another 5 min in SuperSignal® West Pico Chemiluminescent 

Substrate (Pierce). Lastly, the membrane was carefully wrapped in plastic foil, placed into an 

developing cassette and exposed to Hyperfilm ECL (Amersham). Densitometric analysis of 

the films was performed using ChemiDOC XRS analysis software. 

For a summary of primary and secondary antibodies used in this study and respective 

dilutions and incubation times see Table 12. For order numbers of the respective antibodies 

refer to chapter 4.6. 
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Table 12:  Antibodies used in Western blotting 

Primary antibodies Dilution Incubation time 

Rabbit-α-PLS3 

(custom made, Eurogentech) 
1: 4,000 o.n. 

α-SMN (monoclonal) 1:2,000 2 h, alt. o.n. 

α-V5 (monoclonal) 1:3,500 o.n. 

α-V5-HRP conjugated 1:1,500 2 h 

α-Actin (monoclonal) 1:80,000 0.5 h 

α-GAPDH (monoclonal) 1:4,000 o.n. 

Rabbit-α-β-Tubulin (polyclonal) 1:80,000 0.5 h 

Secondary antibodies Dilution incubation time 

Goat-α-mouse-HRP 1:10,000 1 h 

Donkey-α-rabbit-HRP 1:10,000 1 h 

4.12.2 Immuno- and histochemical staining procedures 

Histochemical stainings were performed to visualize cells of the spinal cord (Nissl 

stainings) as well as muscle fibers (Hematoxylin and eosin stainings, H&E). While 

histochemistry describes the staining of tissues using structure specific dyes (e.g. 

hematoxylin staining nuclei and eosin delineating the cytoplasm), immunohistochemical 

stainings are based on the use of primary- and secondary antibodies to detect a protein of 

interest. In a first step, the fixed section is incubated with the primary antibody. After washing 

steps, the fluorophore-conjugated secondary antibody is applied to indirectly detect the 

protein. Analysis is then performed under UV light excitation using a microscope equipped 

with respective filter sets. Alternatively, HRP-conjugated secondary antibodies can be used, 

whereby HRP converts the substrate 3,3'-Diaminobenzidine (DAB) into an insoluble brown 

reaction product in the presence of H2O2. The signal can then be detected using a common 

transmission filter. 

4.12.2.1 Nissl stainings 

For Nissl stainings the basophilic organic compound Cresyl violet is used to outline 

nucleic and ribosomal structures of nerve tissue. In this work, Nissl stainings were 

exclusively performed on 7 µm thick spinal cord sections. First, spinal cord sections were 

deparaffinized by incubation in Xylol for 3 min. Via incubation in decreasing EtOH 

concentrations (100 %, 96 %, 70 %, 50 %, 3 min each) and subsequent incubation for 5 min 

in PBS, the sections were rehydrated before they were stained in Cresyl violet acetate for 10 

min. Following a short wash in H2O, sections were washed in highly diluted acetic acid (2-3 

drops in 100 ml H2O), dehydrated via increasing EtOH concentrations (50 %, 70 %, 96 %, 

100 %, 3 min each), air-dried and embedded in Entellan mounting media.  
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4.12.2.2 Hematoxylin and eosin (H&E) stainings of muscle fibers 

H&E stainings were in this study performed to counter-stain mouse muscle tissue for 

subsequent fiber size measurements. In order to stain with H&E, muscle sections of 7 µm 

thickness were deparaffinized by incubation in Xylol for 30 min. Following incubation in 

decreasing EtOH concentrations (100 %, 96 %, 70 %, 50 %, 3 min each), the sections were 

quickly washed once in PBS and then incubated in H2O for 1 min. Next, sections were 

incubated in Hematoxylin for 6 min and afterwards washed in H2O for 15 min. The sections 

were rinsed quickly in H2O once to remove excess dye and then placed into Eosin solution 

for 1 min. To clarify the stainings, sections were rinsed in H2O 6-7 times and then dehydrated 

in increasing EtOH concentrations. Finally, sections were air dried and embedded in 

Entellan. 

4.12.2.3 Immunohistological stainings of motor neurons 

In order to stain motor neurons, 7 µm thick spinal cord sections were deparaffinized for 2 

h in Xylol and subsequently rehydrated in decreasing EtOH concentrations (100 % I, 100 % 

II, 96 %, 70 %, 1 min each). Following an incubation in H2O for 10 min, antigen retrieval was 

performed by boiling the sections in citrate buffer for 3 x 5 min at 600 W in a microwave. 

After boiling, the sections were left in citrate buffer and cooled down to RT for 45 min. To 

remove citrate buffer, sections were washed once in TBS for 5 min. Blocking of the sections 

was carried out in 5 % of the secondary antibody`s host serum plus 5 % BSA in TBS by 

directly pipetting the solution on the sections and incubating for 45 min at RT in a wet 

chamber.  Subsequently, sections were washed for 3 x 5 min using TBS in a glass tray. After 

that, the sections were incubated with primary antibodies diluted in blocking media o.n. at 

4°C in a wet chamber (Rabbit α-PLS3 1:40; rabbit α-V5 1:40, goat α-Chat 1:40). The next 

day, unbound primary antibody was removed from the sections by 3 x 5 min washing steps in 

TBS. The secondary antibodies were diluted in freshly made blocking solution (Donkey α-

goat Alexa 488 1:200, donkey α-rabbit Alexa 568 1:200) and directly pipetted on the 

sections. Incubation with the secondary antibodies was carried out for 3-4 h at 4°C in a wet 

chamber. To get rid of unbound secondary antibody, sections underwent 3 more washes for 

5 min each. To remove residual salt, sections were briefly rinsed in H2O and then embedded 

in Mowiol® mounting media. 

4.12.2.4 Immunohistological stainings of neuromuscular junctions (NMJ) 

Neuromuscular junction (NMJ) stainings were either performed on proximal- (Transversus 

abdominis, TA) or distal muscle tissue (Gastrocnemius). The isolation of TA- and 

Gastrocnemius muscle is described in chapter 4.14.2.2. All washing and incubation steps 

were performed in 24 well plates.  
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First, the tissue derived from TA muscle was fixed for 10 min and such from 

Gastrocnemius muscle for 20 min in 4 % PFA at RT. After fixing, the TA muscle could 

directly be used for stainings. Different from that Gastrocnemius was embedded in 4 % low 

melting agarose and sliced into 150 µm thick sections prior the actual staining protocol. From 

this point on, the staining protocol was the same for TA- and Gastrocnemius muscle. To 

remove excess PFA, the muscles were washed in 1 x PBS 3 x for 10 min on a rocking 

platform at RT. To permeabilize the tissue, muscles were incubated in PBS containing 2 % of 

Triton X for 30 min on a rocking platform. Following permeabilization, blocking was 

performed in PBS containing 4 % BSA and 1 % Triton. Finally, the antibodies were prepared 

in blocking solution (Mouse-α-2H3 1:100, mouse-α-SV2 1:100, mouse-α-neurofilament 

1:250) and pipetted on the tissue samples. To obtain the best results, incubation with the first 

antibody was always performed o.n.. To reduce background, the samples were 6 x washed 

in 1 x PBS for 10 min under constant shaking on a rocking platform. At this point of the 

protocol, a Bungarotoxin (BTX, labeled with Rhodamine) staining step was included into the 

protocol. For that, 10 µl of BTX stock solution (1 M) was diluted in 7 ml of PBS and the 

samples incubated for 10 min under shaking at RT. In the meanwhile, the secondary 

antibody (goat α-mouse Alexa 488 1:250) was diluted in PBS. After the BTX staining had 

completed, the media was exchanged with the secondary antibody in PBS without any 

intermediate washing step and incubated for 2 h at RT on a rocking platform and wrapped in 

tin foil.  

4.12.2.5 Immunohistological stainings of murine embryonic fibroblasts (MEF)  

For staining of murine embryonic fibroblasts, cells were trypsinized and replated in 12 

wells provided with sterile cover slips. After settling o.n., MEFs were rinsed in PBS once and 

afterwards fixed in 4 % PFA for 15 min at RT. Following fixation, the cells were washed once 

in 1 x PBS for 5 min. To make the epitope better accessible for the antibody, antigen retrieval 

was conducted by adding 80°C hot citrate buffer (pH 6.0) to the cells and incubating them 

under constant cooling to RT for 20 min. After another washing step in 1 x PBS, cells were 

permeabilized in 0.2 % Triton X (alternatively Tween20) in PBS for 5 min. For blocking, cells 

were incubated in 5 % of the secondary antibody`s host serum plus 5 % BSA in PBS for 2 h 

at RT. Next, the primary antibodies (Rabbit α-PLS3 1:40, mouse α-V5, rabbit α-V5 1:40, 

mouse α-Vinculin 1:150) were diluted in 5 % BSA in PBS and given to the cells for o.n. 

incubation. The next day, unbound antibody was removed in 3 washing steps in 1 x PBS for 

15 min each. The secondary antibodies (Donkey α-rabbit Alexa 350 1:250, goat α-mouse 

Alexa 488 1:250) were codiluted with Phalloidin (1:40) in PBS containing 5 % BSA. For an 

optimum result, the cells were incubated in secondary antibody/phalloidin for 4 h, however, if 

shorter incubation times were necessary, the time could be reduced to a minimum time of 1 

h. To remove residual salt, cover slips were repeatedly dunked in dH2O before they were 
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mounted in Vectashield mounting media containing DAPI. Especially when an Alexa 350 

conjugated antibody was used, the DAPI of the mounting media could mask all upcoming 

signals. In this case, DAPI-free Mowiol was used as mounting media. 

To save antibodies, in all experiments a 40 µl droplet of the respective antibody solution 

was pipetted on parafilm and the cover slips placed on the drop with the cells facing the 

solution. For washing steps, the cover slips could easily be transferred into 12 wells again. 

4.13  Eukaryotic cell culture procedures 

To avoid microbial contamination, all cell culture work was performed under sterile 

conditions in a laminar flow tissue culture hood. Additionally, all equipment was sterilized with 

Bacillol or 70 % Ethanol. All ES cell work was conducted under antibiotic- as well as 

fungicide-free conditions, whereas amphotericin B and PenStrep were added to the media 

used for the work with isolated primary murine fibroblasts (chapter 4.7.2). All cell cultures 

were stored in sterile cell incubators at normal cultivation growing conditions in an 

atmosphere with 5 % CO2 at 37°C.  

4.13.1 Common cell-culture techniques 

4.13.1.1 Thawing of cells 

All cell types used in this work were long-term stored in 2 ml Nunc cryo-tubes at either –

80°C or in liquid nitrogen. To thaw eukaryotic cells, 1 ml of the respective media was added 

to the cells and carefully pipetted up and down to slowly resuspend the cells. To dilute toxic 

DMSO the media containing the cells was then transferred into a 15 ml Falcon tube 

containing 8 ml of media. Subsequently, cells were pelleted at 1,200 rpm for 5 min and then 

resuspended in an appropriate volume for further cultivation. 

4.13.1.2 Freezing of cells 

For freezing, the cells were once rinsed with PBS, then trypsin was added and cells were 

incubated at 37°C in a sterile incubator for 5 min. The detachment-process was monitored 

using an inverse microscope since extensive trypsin-treatment might harm the cells. When 

all cells were detached from the surface, the trypsinization-reaction was stopped adding the 

equivalent amount of culture media. Cells were harvested into a collection tube of 

appropriate size and centrifuged at 1,200 rpm for 5 min. The pellet was resuspended in 

freezing media (chapter 4.7.2) and resuspended cells were distributed into cryo-tubes. Cells 

were frozen and stored at -80°C for the first 24 h and then transferred to liquid nitrogen. 

4.13.1.3 Passaging of cells and cell number estimation 

For passaging, cells were first rinsed in PBS and then trypsinized at 37°C in a sterile 

incubator for 5 min. The trypsinization reaction was interrupted by addition of an equivalent 

amount of culture media and resuspended cells were transferred into appropriate collection 
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tubes. The collection tubes were centrifuged at 1200 rpm for 5 min and the pellet was 

reconstituted in an adequate volume of culture media. The resuspended cells where then 

split onto fresh cell plates.  

Estimation of cell number was a frequently used method, e.g. for plating constant 

numbers of cells for immunohistochemical stainings (as performed with MEF cells) but also 

for the transfection procedure of ES cells. To estimate cell number, the cell pellet was 

resuspended in 10 ml of the respective media. 10 µl of the suspension were taken and 

dispersed between a cover slip and a Neubauer counting chamber. The mean value of cells 

of four squares was determined and multiplied by 104 to obtain the total amount of cells per 1 

ml of media.  

4.13.2 Murine embryonic fibroblasts 

Mitotically inactive murine embryonic fibroblasts (MEFs) are commonly used in the 

culturing of murine embryonic stem cells (ES cells). Since transgenic ES cells are eventually 

transplanted into host-blastocysts to finally develop the germline of the chimeric animal, it is 

absolutely necessary to keep them undifferentiated while in culture. In ES cell culturing, 

MEFs serve as monolayer cell matrix to promote ES cell growth. At the same time, MEFs 

secrete leukemia inhibitory factor (LIF), a protein needed to maintain the undifferentiated 

state of ES cells. To further inhibit unwanted differentiation, ES cell media was additionally 

supplied with recombinant LIF (Smith et al., 1988, Williams et al., 1988). 

4.13.2.1 Isolation of murine embryonic fibroblasts 

Murine embryonic fibroblasts (MEFs) for ES cell culture were isolated from E13.5 animals. 

Since ES cells were selected against Neomycin during the transgenesis-procedure, it was 

important to obtain fibroblasts from Neomycin resistant embryos. For that purpose, 

Neomycin-resistant male mice of the line IL-4 (Muller et al., 1991) were bred with wt female 

animals of clean C57BL/6N background. To determine the exact time point of fertilization, 

females were routinely plug-checked early in the morning. If plug positive, the day of 

fertilization was considered as day E0.5 of embryonic development. At E13.5, mothers were 

sacrificed and the embryos carefully prepared from the surrounding uterine tissue. Heart and 

liver were removed while the head of the embryo was used for subsequent genotyping. The 

remaining tissue was transferred to a Petri dish where it was rinsed in PBS 2 times. After the 

washing steps, the embryonic tissue was incubated in 50 ml trypsin/EDTA solution at 37°C 

for 30 min before the reaction was stopped using MEF media. Cells were then centrifuged at 

1,200 rpm for 5 min and the cell pellet was resuspended in MEF media. Finally, the cell-

number was determined as described in chapter 4.13.1.3 and 2.5x106 cells were plated per 

15 cm Petri dish. Cells were grown to confluence under standard cell culture conditions and 

frozen as aliquots containing 5x106 cells. Whenever needed, one aliquot of MEF cells could 
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be thawed and afterwards plated on three 15 cm Petri dishes. At this stage, MEF cells were 

considered as so called EF1 cells, the name indicating that they had been passaged once. 

EF1 cells were then grown to confluence and again split in a 1:3 ratio on three more 15 cm 

Petri dishes resulting in nine 15 cm Petri dishes of EF2 cells. In a last round, EF2 cells were 

passaged to another three 15 cm dishes. Via this way, all in all 27 15 cm dishes of EF3 cells 

could be obtained from one single MEF cell aliquot.  EF3 cells could then be mitotically 

inactivated by MMC treatment for usage in ES cell culture. If not directly needed for ES cell 

culture, EF2 cells were frozen instead and thawed as EF3 cells, inactivated via MMC 

treatment and used for ES cell culturing whenever needed. 

MEFs that were isolated for immunohistochemical stainings were obtained from E13.5 

embryos, too.  A wt female of clean C57BL/6N background was bred with a PLS3V5tg/wt 

animal. At E13.5, the mother animal was sacrificed and again heart and liver were removed 

from the embryos while the head was used for genotyping. Individual embryos were 

homogenized by pressing the tissue through a cell sieve using the plunger of a 10 ml 

syringe. The sieve containing the cells was then rinsed with 10 ml of MEF media and the 

flow-through collected in a 50 ml tube. The cell suspension was centrifuged at 1,200 for 5 

min rpm, the resulting pellet was resuspended in an adequate volume of MEF media and the 

cells plated on 6 cm Petri dishes. MEFs could then be expanded as described above and 

used for immunohistochemical stainings. 

4.13.2.2 Mitomycin C treatment of EF cells 

For usage in ES cell culture, it is important to mitotically inactivate EF cells by MMC 

treatment. Before MMC treatment, EF cells were rinsed once in PBS. After the washing step, 

15 ml of sterile-filtered MMC/MEF media of 10 µg/ml concentration were added per one 15 

cm Petri dish of EF cells. This way, EF cells were incubated for 2-4 h at 37°C in a sterile 

incubator. Next, MMC solution was removed from the cells followed by two washing steps in 

PBS. Finally, normal EF media was added to the cells. Before EF cells were used for ES cell 

culture, 2 h of incubation were given allowing the EF cells to release intracellular MMC that 

might inhibit ES cell proliferation. MMC treated EF cells were always prepared on gelatinized 

Petri dishes. Preceding gelatinization of Petri dishes was performed by incubation of the Petri 

dishes with 0.1 % gelatin/PBS for 5 min at 37°C. After gelatin-excess was removed EF cells 

were plated. 

4.13.3 Murine embryonic stem cells 

Murine embryonic stem cells (ES cells) are derived from the inner cell mass of the 

blastocysts of an early stage embryo at around 3dpc. ES cells are pluripotent cells, meaning 

that they have the capacity to differentiate into all derivates of every of the three germ layers, 

namely endo-, ecto- and mesoderm. They replicate indefinitely and can be cultured on a 
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monolayer of mitotically inactivated feeder cells. Feeder cells serve as an ideal substrate to 

allow proper proliferation of ES cells (Evans and Kaufman, 1981, Martin, 1981). Furthermore, 

feeder cells secrete leukemia inhibitory factor (LIF), a protein inhibiting the differentiating 

process of ES cells. Therefore, they are of highest importance to preserve pluripotency of ES 

cells while culturing. Additionally, the ES cell media is usually supplied with recombinant LIF 

to preserve an undifferentiated state of the ES cells.  

It is possible to genetically manipulate ES cells in vitro and to inject these cells 

afterwards into host-blastocysts. Thereupon, the ES cells can incorporate into the early stage 

embryo to differentiate into all the various tissues and cellular subtypes, including sperm- or 

oocytes of the germ line (Bradley et al., 1984, Gossler et al., 1986, Robertson et al., 1986). 

The resulting animal consists of cells of the host embryo and of donor ES cells and is thus 

chimeric, whereby the degree of chimerism depends on the proliferative ability and the 

degree of pluripotency of the injected ES cells. If the germ-line in the Chimera has formed of 

transgenic ES cells, the respective ES cell genotype can be inherited and a stable founder 

generation of genetically modified animals be established.  

4.13.3.1 Cultivation of murine embryonic ES cells 

ES cells were grown on mitotically inactivated fibroblasts under standard culturing 

conditions of 37°C, 5 % CO2 and 95 % air humidity. ES cell media was changed daily. When 

ES cell colonies reached app. 80 % confluence, cells were passaged, usually in a ratio of 

1:3.  

4.13.3.2 Transfection of ES cells  

Transfection of DNA into eucaryotic cells can be accomplished via different methods. Next 

to methods using lipophilic carrier substrates to deliver DNA into the cell, the transfection via 

electric pulses has turned out to be a highly efficient technique (Neumann et al., 1982). The 

so called electroporation-method was used in this work for the targeted transgenesis of ES 

cells. 

 For one round of electroporation, a total of 60 µg of Rosa26 targeting vector was 

linearized by restriction digestion using Asis I. The linearized vector was afterwards 

phenol/chloroform extracted and could be stored in 70 % ethanol at -20°C until the 

transfection time point. For transfection, the linearized vector was centrifuged at 13,200 rpm 

for 10 min, excess 70 % Ethanol was removed from the tube and the pellet was air dried at 

RT under the sterile hood for 15-20 min. Finally, the targeting construct was resuspended in 

400 µl RPMI medium (w/o phenol-red) and was then ready to use. In one round of 

electroporation, the ES cells (Type V6.5, (Eggan et al., 2002)) of one 10 cm dish (~1x107 

cells) were first trypsinized, centrifuged at 1,200 rpm for 5 min and also resuspended in 400 

µl of RPMI-media. ES cell- and DNA suspension were mixed together and the whole 
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approach (800 µl) was pipetted into the electroporation cuvette. Electroporation was then 

conducted applying 500 µF at a current of 240 mV. Immediately after the transfection, 0.7 ml 

of ES-media was pipetted into the cuvette, the cells were incubated for 10 min and finally 

resuspended in 40 ml of ES-media. 10 ml of the ES cell suspension were pipetted on one of 

four 10 cm Petri dishes that had previously been prepared with mitotically inactivated EF3 

cells. 

4.13.3.3  Selection of recombinant ES cell clones 

After the transfection of the targeting construct, the ES cells were positively selected using 

the Neomycin analogon G418. Since the targeting vector carries the Neomycin resistance 

gene Neor, only ES cells that have stably inserted the construct into their genome should 

survive the selection. Two days after the transfection, positive selection was started by 

adding G418 to a final concentration of 250 µg/ml to the ES cell media.  

Next to the positive selection, it was also possible to negatively select the ES cells against 

random insertion of the construct into the genome. For that purpose, the thymidin-kinase 

gene was cloned downstream of the 3´-homology arm of the Rosa26 targeting construct. 

Thymidin-kinase can convert the selection substrate Ganciclovir (nucleoside-analogon) into 

Ganciclovir-monophosphate. Cellular kinases then phosphorylate the monophosphate into 

Ganciclovir-triphosphate. This molecule can be incorporated into DNA during the process of 

replication which is toxic to the cell and finally leads to cell death. Since the Thymidin-kinase-

gene was cloned downstream of the 3´-homology arm it should be lost in case of 

homologous recombination but not if the construct was inserted randomly. As a 

consequence, only cells in which the construct had inserted via homologous recombination 

should survive negative selection with Ganciclovir. Negative selection was started at day 5 

after transfection. For it Ganciclovir was added to the media to a final concentration of 2 µM 

while positive selection was further continued, too. Between 8-10 days after transfection, 

surviving ES cell colonies were picked into 96 well plates that had been covered with 

mitotically inactive EF3 cells. 

4.13.3.4 Isolation of ES cell clones 

Between days 8-10 after transfection, the positive and negatively-selected ES cells had 

formed nicely oval-shaped colonies with rounded borders. For ES cell colony harvesting, the 

10 cm dishes harboring the colonies were rinsed once with cold PBS and then kept in PBS. 

Using a pipette-tip, single colonies were carefully detached and then sucked up in a total 

volume of 40 µl of PBS. The colonies were then transferred into a single u-shaped slot of a 

96 well plate. To avoid contamination, this work was performed under a sterile hood using a 

stereo-microscope. The slots of the 96 well plate had each been provided with 25 µl of 1 x 

trypsin solution. Since trypsin can harm the cells, the isolation of a total of 96 clones was 
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completed in a maximum time of 30 min. After sampling, the 96 well plates were incubated 

for 5 min at 37°C in a sterile incubator and the reaction was stopped by adding 100 µl of ES 

cell media. After properly pipetting up- and down, the suspension of each slot (total volume 

165 µl) was split (each 50µl) to 3 further 96 well plates with flat bottoms to produce triplicates 

of each clone. These 96 well plates had been covered with MMC treated EF3 cells before. 

When these plates were almost confluent two of the three plates were frozen on two 

consecutive days. For that purpose, plates were first washed 2 x with 100 µl of PBS and then 

treated with 50 µl of 1 x trypsin solution for 3 min at 37°C in a sterile incubator. The reaction 

was stopped adding 100 µl ES cell media and 100 µl 2 x freezing media. Plates were 

accurately sealed using parafilm, properly labeled and frozen in a box at -80°C. The last of 

the three plates was again split to 3 new gelatinized 96 well plates. When the clones of these 

plates had grown confluently, the plates were washed twice with 100 µl of 1 x PBS. The PBS 

was removed and two of the three plates were sealed and then frozen without media for later 

DNA isolation and subsequent southern blot analysis at -20°C. The third plate was 

immediately used for DNA isolation (chapter 4.13.3.6) 

4.13.3.5 Freezing and passaging of isolated ES cell clones on 96 well plates 

After culturing the 96 well plates harboring the individual clones for 2-3 days, 2 of the 3 

plates were frozen on following days. For that purpose, cells were rinsed once with 200 µl of 

1 x PBS and then treated with 50 µl of trypsin for 5 min at 37°C in a sterile incubator. To stop 

the reaction, 50 µl of 2 x freezing media were added to the cells (80 % FK, 20 % DMSO). To 

properly suspend the cells, the solution was pipetted up- and down several times. The plates 

were sealed with parafilm and frozen at -80°C.  

To obtain DNA for Southern blotting the remaining 96 well plate was split on 3 more 96 

well plates. Since the cells served only for DNA-isolation, the plates were not prepared with 

MMC treated EF3 cells but only gelatinized instead.  

4.13.3.6 Identification of positive ES cell clones from 96 well plates 

Positive ES cell clones were identified via Southern blotting (chapter 4.11.1.11) from 96 

well plates. Both, the isolation of DNA and the enzymatic restriction with EcoR I were 

performed directly on the 96 well plate. To isolate DNA, 50 µl of lysis buffer/Proteinase K 

were pipetted into each slot and the well was sealed with parafilm. To avoid drying-out, the 

wells were additionally wrapped in wet paper and placed in a wet chamber for o.n. incubation 

at 55°C in a water bath. After cooling to RT, 100 µl of EtOH were added to each of the slots 

and the DNA was allowed to precipitate for 1 h. By carefully inverting the plates over tissue 

paper, the supernatant EtOH was removed. The remaining DNA pellet was 3 x washed in 70 

% EtOH and then air dried for 30 min at 37°C in an incubator. In a next step, DNA was 

enzymatically restricted by adding 35 µl of restriction solution to each of the slots and 
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incubating o.n. again in a wet chamber (chapter 4.11.1.9). The following day, the restricted 

DNA was subjected to Southern blot analysis. 

4.13.3.7 Thawing and expansion of positive ES cell clones from 96 well plates 

After identification of positive ES cell clones, clones from triplica-96 well plates were 

thawed to expand the cells for blastocyst injection. For that purpose, 100 µl RT ES cell media 

was given to each positive clone and the cell suspension was carefully pipetted up and 

down. Positive clones were first dispersed in 24 wells that had been covered with MMC 

treated EF3 cells. To avoid mixing up of positive clones, the neighboring clones were 

isolated, too. Additionally, these clones served as negative controls in later Southern blot 

analyses. When subconfluent, clones were further split on 6 cm wells covered with EF3 cells 

for further expansion. When grown nicely, the clones of one 6 well were finally split on two 10 

cm Petri dishes covered with EF3 cells. When subconfluent, the ES cells of one 10 cm dish 

were frozen as ¼ as described in chapter 4.13.1.2. A small amount of every clone was 

additionally given on a gelatinized 24 well for later DNA isolation and reconfirmation via 

Southern blotting.  

4.13.3.8 In vitro Cre mediated deletion of the stop-cassette 

ES cells were subjected to in vitro Cre-mediated deletion of the stop cassette to analyse 

functionality of the system and proof proper transgene expression. For in vitro deletion of the 

stop cassette, a modified version of Cre recombinase (HTN-Cre) is used that carries a 

hydrophobic N-terminal tag including a nuclear localization signal (NLS). This modification of 

the protein allows HTN-Cre to pass the membrane of cells and to even enter the nucleus 

(Peitz et al., 2002). In the nucleus, Cre catalyzes site-specific recombination (deletion of the 

stop cassette) between the two loxP sites. In vitro Cre-deleted positive ES cell clones were 

analyzed visually under a microscope and via fluorescent activated cell sorting (FACS) 

analysis for Green fluorescent protein (GFP) expression (chapter 4.13.3.9). Furthermore, the 

expression of the PLS3V5 transgene was demonstrated via Western blotting and 

immunological detection of the transgene with a V5-antibody.  

For in vitro HTN-Cre deletion, 2 x 105 cells of positive clones (served as negative controls) 

were plated on a 6 well and incubated for 5 h. After the incubation phase, the cells were 

washed once in 1 x PBS and sterile filtered HTN-Cre solutions of molarities ranging from 0.5-

8 µM/DMEM were added to the cells as a total volume of 600 µl. As negative control, one 

well of each positive clone was treated with DMEM only. After 20 h of incubation with HTN-

Cre, the media was taken off, the cells were washed once in 1 x PBS and  fresh ES cell 

media was added. To allow GFP and PLS3V5 expression, cells were incubated in another 3 

days.  
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4.13.3.9 Fluorescent activated cell sorting of positive ES cell clones (FACS) 

FACS is a specialized type of flow cytometry that allows sorting of a mixture of cells based 

on the fluorescent characteristics of the cells.  

For FACS analysis, HTN-Cre deleted cells (chapter 4.13.3.8) were first trypsinized and 

then sedimented at 1,200 rpm for 5 min. The pellet was reconstituted in 500 µl PBS and 

pipetted up and down several times to perfectly suspend the cells. Cells were kept on ice 

until FACS analysis using the BD FACS Vantage SE and CellQuest analysis software. 

Excess of cells was further used for Western blot analysis. 

4.13.3.10 Preparation of ES cells for injection into blastocysts 

To prepare positively tested ES cells for injection, one vial of expanded ES cells (4.13.3.7) 

was thawed on a EF3 cells-covered 10 cm Petri dish and grown to subconfluently for 2-3 d. 

The cells were then split at different densities on 3 new 10 cm Petri dishes provided with EF3 

cells (e.g. 1:3, 1:5, 1:8). At the day of injection, the clones with the optimum density grade 

and morphology were chosen for the final preparation steps. Cells were first trypsinized as 

described previously, sedimented at 1,200 rpm and resuspended in 10 ml of ES cell media. 

The cell suspension was given to a fresh 10 cm dish and cells allowed to settle for 30-40 

min. EF-3 cells settle faster than ES cells and therefore ES cells can be enriched in the 

supernatant media this way. Supernatant ES cells were centrifuged at 1,200 rpm for 5 min 

and the pellet was resuspended in 500 µl of prechilled injection media. Cells were kept on ice 

until injection into blastocysts.   

4.13.3.11 Injection of positive ES cells into blastocysts 

The injection of prepared ES cells (chapter 4.13.3.10) was performed as a service of the 

centre for mouse genetics of the University of Cologne. In brief: ES cells were sucked into 

the injection needle fixed to a micro manipulator (Leica) and injected into blastocysts derived 

from CB20 females (white coated). The chimeric blastocysts were then surgically 

transplanted into the uteri of pseudopregnant females that had been produced by breeding 

with vasectomized males. In the best case, chimeric animals were born 21 d later. After 

another 4 weeks, chimeras could be bred with C57BL/6N male and the offspring be analyzed 

for germline transmission.  

4.14  Working with mice 

4.14.1 Mouse inbred strains 

To exclude the influence of the genetic background on a given phenotype it is essential to 

use mouse inbred strains of high homozygosity (Silver, 1995). In this work, all experiments 

were performed using mice on a genetically pure C57 black 6 N (C57BL/6N) background. If 

not on a C57BL/6N background, mouse mutant- or transgenic lines were backcrossed for at 
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least 7 generations to 100 % pure C57BL/6N wt animals. Mice were housed in micro-

isolation chambers in the mouse facility of the Institute of Genetics, Cologne. All experiments 

conducted had previously been described in the animal experimental form as such was 

confirmed by the local animal protection committee under reference number 

93.2.10.31.07.186. All mice were humanely euthanized according to protocols set forth by 

the Landesamt für Natur, Umwelt und Verbraucherschutz NRW. In the following, mutant- and 

transgenic mouse strains used in this study are explained.  

4.14.1.1 SMA-mice 

The FVB.Cg-Tg(hSMN2)2Hung Smn1tm1Hung/J were purchased from The Jackson 

Laboratory (Bar Harbor, Maine (USA), Stock number: 005058) and served as SMA mouse 

model in this study. In these mice, Smn exon 7 is replaced by a targeted insertion of the 

hypoxanthine phosphoribosyl transferase (HPRT) cassette. Since the homozygous knockout 

of Smn (Smn-/-) results in early embryonic lethality, transgenic mice with a 115-kb genomic 

DNA fragment encompassing the human SMN2 region from a human BAC library were 

generated (Hsieh-Li et al., 2000). Importantly, these mice carry 2 hSMN2 copies per 

integrate (Riessland et al., 2010). In a next step, the hSMN2 transgene was crossed into the 

existing SMA background. This way, normal living and fertile Smn-/-;hSMN2tg/tg animals could 

be generated. It is then possible to breed Smn-/-;hSMN2tg/tg mice with Smn-/+ animals to 

produce 50 % SMA-offspring of the disease genotype Smn-/-;hSMN2tg/wt and 50 % of 

heterozygous control animals of the genotype Smn+/-;hSMN2tg/wt. In the course of this work 

this SMA mouse line is termed “Hung SMA” mouse line or the “Taiwanese mouse model” 

referring to the fact that it was generated by a Taiwanese group (Hsieh-Li et al., 2000). 

Originally, SMA-Hung mice were obtained on pure FVB genetic background by the Jackson 

Laboratory. In contrast to that, all used Cre-lines and PLS3V5-transgenic mice were bred 

onto a pure C57BL/6N background. To investigate possible disease modifying effects of 

PLS3V5 expression on the SMA background, SMA-Hung mice had to be backcrossed 

against C57BL/6N wt animals for 7 generations to reach 99 % genetic purity.  

4.14.1.2 PLS3V5-transgenic mice 

4.14.1.2.1  PLS3V5-floxed mice  

In the scope of this work PLS3V5 transgenic mice were generated. An N-terminally V5-

tagged version of human PLS3 (PLS3V5) was first cloned into a murine Rosa26 locus 

targeting construct (Kindly provided by Dr. Thomas Wunderlich, Cologne). Targeted 

transgenesis was performed using the Hybrid ES cell line V6.5 (Eggan et al., 2002). Since 

this cell line represents a mixture of 129/Sv and C57BL/6 genetic background the resulting 

PLS3V5-floxed line had to be backcrossed against C57BL/6N wt animals for 7 generations to 

reach 99 % genetic purity. In the targeting construct, the PLS3V5 coding sequence (cds) is 
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located downstream of the CMV enhancer/chicken β-actin (CAG) fusion promoter. However, 

a loxP sites flanked stop-cassette is present between promoter and PLS3V5 transgene 

preventing uncontrolled PLS3V5 expression. By breeding with tissue-specific Cre-strains 

conditional overexpression of the PLS3V5 transgene can be achieved. For a detailed 

description of the generation and nomenclature of the PLS3V5-floxed line see chapters 5.3.1 

and 5.3.2. 

4.14.1.2.2 PLS3V5-ubi mice 

By intercrossing the PLS3V5-floxed line with the Cre-deleter line cytomegalovirus minimal 

promoter (CMV)-Cre (Schwenk et al., 1995), permanent deletion of the stop-cassette 

between promoter and PLS3V5-cds was achieved. In the resulting and from now on termed 

PLS3V5-ubi mice deletion of the stop-cassette resulted in ubiquitous expression of the 

transgene in nearly all tissues investigated (chapter 5.4.1.1). Neither animals heterozygous 

nor homozygous for PLS3V5 displayed any obvious outer phenotypes. PLS3V5-ubi animals 

are fully fertile and show a normal life expectancy. Since CMV-Cre mediated deletion 

includes germ cells, the deletion of the stop-cassette is inherited to further generations also 

in the absence of the CMV-Cre allele. For a detailed description of the generation and 

nomenclature of the PLS3V5-floxed line see chapters 5.3.1 and 5.3.3.  

4.14.1.3 Cre-lines 

4.14.1.3.1 CMV-Cre-deleter mice 

The CMV-Cre deleter line expresses Cre-Recombinase under the control of the human 

cytomegalovirus minimal promoter (CMV) (Schwenk et al., 1995). Using this mouse line, 

deletion of loxP flanked genes or stop-cassettes occurs in all tissues, including germ cells. 

For this reason and because it was available in the mouse facility of the Institute of Genetics 

(Cologne) the CMV-Cre line was chosen to permanently remove the stop-cassette between 

promoter and PLS3V5-cDNA in the PLS3V5-floxed line. In this context, it is important to 

mention that the CMV-Cre transgene is located on the X-chromosome (Schwenk et al., 

1995). Due to gene silencing effects via X-chromosomal inactivation only CMV-Cre 

homozygous females (CMV-CreX_tg/X_tg) were used to efficiently delete the stop-cassette in F1 

male mice of the genotype PLS3V5fl_st/wt;CMV-CreX_tg/y (For a detailed explanation see 

chapter 5.3.3). 

4.14.1.3.2 Hb9-Cre mice 

In the Hb9-Cre mouse line the Cre gene is expressed under the intrinsic motor neuron-

specific promoter of the Hb9 gene. Since homozygous loss of Hb9 results in perinatal 

lethality and because the Cre insertion disrupts Hb9 function (Arber et al., 1999, Yang et al., 

2001) it is only possible to keep the Hb9-Cre transgene in a heterozygous state. By breeding 



Materials and methods 
 

80 

the PLS3V5-floxed line with Hb9-Cre mice, it was possible to delete the stop-cassette 

specifically in the motor neurons. This technique allows to investigate possible cell 

autonomous effects of PLS3V5 overexpression on motor neurons, nerve terminals as well as 

AChR clustering. The Hb9-Cre line was on pure C57BL/6N background. 

4.14.2 Preparation of mouse tissues and organs 

For the preparation of mouse organs, the animals were euthanized, placed on their dorsal 

side and arms and legs were fixed using needles.  A longitudinal section was cut through the 

abdominal wall and the rib cage to open the animal. The rib cage and abdominal skin were 

stretched sideways and also fixed with needles. Organs were isolated into 1.5 ml tubes using 

ligature scissors and dissecting forceps and could directly be used for isolation of RNA or 

proteins. Alternatively, organs were snap frozen in liquid nitrogen and placed at -80°C for 

longer storage. 

4.14.2.1 Isolation of the spinal cord 

To isolate the spinal cord as a whole, the fur and skin on the dorsal side of the euthanized 

animal had to be removed. Next, it was cut in posterior to anterior direction along the spine. 

Head and tail were cut off and the spine was removed by carefully detaching it from ventral 

connective tissue. Using a scalpel, the tail region of the spinal cord was removed up to where 

the lumbar region begins. In a next step, PBS was loaded into a 20 ml syringe and the blunt 

grinded 20G needle inserted into the lumbar end of the spinal cord. Under constant pressure, 

the spinal cord was flushed out of the spine into a glass containing 1 x PBS. For subsequent 

staining procedures, the spinal cord was fixed for 2 d in 4 % PFA at 4°C and then embedded 

into paraffin. When used for RNA or protein isolation, the halves of the spinal cord were 

separated longitudinally. One half was used for RNA while the other half was used for protein 

isolation. 

4.14.2.2 Preparation of muscle tissue 

4.14.2.2.1  Transversus abdominis muscle 

The isolation of the proximal Transversus abdominis (TVA) muscle is laborious and 

requires working under a stereomicroscope. To open the skin, first a little cut was made 

above the genitals of the euthanized animal. Next, a careful section once around the belly 

and immediately under the skin was performed. Using forceps, the animal was skinned over 

the head so that the underlying abdominal wall was exposed. Before the next steps, the 

connective- and muscle tissue of the neck and the throat had to be removed. Then, the 

abdominal wall was opened carefully just above the bladder of the animal. In a next step, it 

was cut on both sides laterally towards the spine and on the dorsal side of the animal along 

the spine towards the neck through the dorsal part of the ribcage. To remove the ribcage 
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from the abdominal cavity, it was sectioned through the diaphragm from both sides. The 

whole ribcage was then placed on Sylgard-filled Petri dishes, the abdominal wall was stretch-

fixed using fine minutien-pins and covered in 1 x PBS. To expose TA muscle, small windows 

were cut through the first three muscle layers (Rectus abdominis, external oblique muscle 

and internal oblique muscle) using micro scissors. After fixing the whole rib cage for 20 min 

in 4 % PFA the windows were excised and stored in 1 x PBS at 4°C for subsequent staining 

procedures. 

4.14.2.2.2  Isolation of Gastrocnemius and Vastus lateralis muscle 

To isolate Gastrocnemius and Vastus lateralis muscle, the legs were cut off from the 

euthanized animal just above the pelvises. Using forceps, remaining skin and hair were 

removed.  

For preparation of Gastrocnemius muscle, attaching tendons of the femoral bone and 

Achilles tendon were intersected so that the muscle could easily be isolated. For Vastus 

lateralis isolation, the lower leg was cut off after Gastrocnemius preparation. The upper leg 

was fixed and embedded as whole prior sectioning. 

For fixation, muscles were incubated for 10 min in 4 % PFA. Gastrocnemius was most of 

the times immediately used in subsequent neuromuscular junction (NMJ) staining 

procedures. Alternatively, it was stored for up to one week in 1 x PBS at 4°C. For isolation of 

protein, Gastrocnemius was snap frozen and proteins were isolated whenever needed. 

Vastus lateralis was exclusively used for muscle fiber size determination and therefore 

dehydrated and subsequently embedded for sectioning.  

4.14.2.3 Motoric ability testing and weight measurement 

To analyze the motoric ability of animals, the tube test and the righting reflex test were 

recruited (El-Khodor et al., 2008).  

Via the tube test, the proximal hind limb muscle strength, weakness and fatigue in mouse 

Neonates can be assessed. The test is performed in two consecutive trials, whereby the 

animal is placed head down into a 50 ml Falcon tube hanging by its hind limbs. In the 

following, the so called hind limb score (HLS) was evaluated based on the positioning of the 

hind limbs towards each other (Figure 5).  

The righting reflex test is another method to examine muscle strength. For this test, 

animals were placed on their back on a flat surface. The time to reposition themselves was 

measured over a 30 sec period. The righting times were related to a score in the following 

manner: >1 sec = 0, 1-2 sec = 1, 3-4 sec = 2, 5-6 sec = 3, 7-8 sec = 4, 9-10 sec = 5, <10 sec 

= 6. 
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Figure 5:  Tube test (El-Khodor et al., 2008): Hind limb scores (HLS) and respective leg positions 
for motoric ability assessment  

4.14.3 The Cre/loxP system for conditional gene-deletion or activation  

The Cre/loxP system is a genetic recombination tool which was developed in the 1980s 

and patented by DuPont. The system allows the deletion of any kind of DNA sequences 

located between two loxP sequences, which are target sites for the recombinase Cre 

(Cyclyzation recombination).  

For gene deletion, the loxP sites are targeted into the endogenous gene locus flanking the 

whole gene or only certain parts, e.g., an exon important for proper function of the protein. 

The targeted mouse line with the so called floxed allele is then crossed with another mouse 

line expressing Cre recombinase under a tissue specific promoter. In the offspring carrying 

both the floxed allele as well as the Cre recombinase the target gene (or exon) will be 

deleted only in the tissue where Cre is active (Figure 6, A). 

For conditional transgene expression, as used in the present work, a floxed stop cassette 

is cloned between a ubiquitously active promoter (e.g. CAG promoter) and the transgene 

(chapter 5.1.1). When the LoxP line is then crossed with another line expressing Cre under a 

tissue specific promoter, the stop cassette is conditionally deleted resulting in tissue specific 

transcription of the transgene (Figure 6, B). In this work, motor neuron specific activation of 

PLS3V5 was established using a Cre-line carrying Cre under the motor neuron specific Hb9-

promoter . 
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Figure 6 Cre/loxP system. A: Cre is expressed under a tissue specific promoter and therefore 
tissue specifically deletes the floxed target gene. B: Cre/loxP system in conditional 
transgene expression. Cre is expressed under a tissue specific promoter and 
accomplishes deletion of the floxed stop cassette present between promoter and 
transgene. This results in tissue specific transgene expression. 

4.15 Statistical methods 

To test significance of measurements the directional student`s t-test was recruited. Three 

levels of statistical significance were distinguished: p<0.05 = *, p<0.01 = **, and p<0.001 = 

***. Furthermore, a Wilcoxon-rank-sum test was performed in order to determine the 

significance of the survival differences (the shift of the Kaplan-Meier curves) between SMA 

and PLS3V5 + SMA mice and SMA mice on different genetic backgrounds. 
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5 Results 

5.1 Generation of the Rosa26 targeting construct 

5.1.1 Rosa26 targeting and structure of the targeting construct 

Currently, the two most common methods for the generation of transgenic animals are (i) 

pronuclear injection or (ii) gene targeting into a certain locus of the mouse genome. For 

pronuclear injection, a solution of DNA is directly injected into fertilized oocytes with a micro 

syringe under a microscope (Costantini and Lacy, 1981, Gordon and Ruddle, 1981). In a 

next step, the blastocysts are then transplanted into pseudopregnant recipient females. 

Transgenic founder can be obtained after 3 weeks and be bred with wt animals another 7 

weeks later to identify germline transmission. This method of transgenesis offers the 

advantage of being relatively fast and cost effective. Since the insertion of the transgene into 

the genome is random, however, the chance exists that it integrates into another gene or its 

promoter region, thereby disrupting the function of the gene. Insertional mutagenesis can 

therefore contribute to any observed phenotype and complicate analysis. Furthermore, 

transgenes are often silenced due to multiple transgene copy number insertions (up to 1000+ 

tandem copies of the transgene) (Garrick et al., 1998).  

To circumvent these problems, targeted transgenesis into the Rosa26 locus was used in 

this work. For targeted transgenesis, ES cells were stably transfected with the targeting 

vector carrying the transgene. After selection of clones that had correctly inserted the 

targeting construct in the Rosa26 locus, cells of such clones were injected into blastocysts 

and these transplanted into pseudopregnant females. After 3 weeks chimeric mice were 

born, raised to adulthood and bred with wt mice to scan the F1 offspring for transgenic 

founder animals.  

The Rosa26 locus is frequently used for transgenesis of mice since integration into this 

site occurs highly efficient, it supports strong and ubiquitous expression of inserted 

sequences and is not subjected to gene silencing effects (Zambrowicz et al., 1997). 

Importantly, the murine Rosa26 locus is located on chromosome 6. Since Smn, hSMN2 and 

Hb9-Cre all map to other chromosomes, it was possible to cross the PLS3V5 transgene onto 

the SMA background (Figure 7) or to motor neuron specifically express the transgene. E.g., 

to study the effect of PLS3V5 overexpression on the SMA phenotype, PLS3V5tg/wt;Smn-/-

;hSMN2tg/wt mice were generated. In case, however, that PLS3V5 and the Smn knockout 

mapped to the same chromosome, it would not be possible to express PLS3V5 on an Smn-/- 

background since the allele carrying PLS3V5 carries a wt version of Smn. 
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Figure 7: Illustration of the chromosomal location of transgene and knockout alleles important in 
this work. Rosa26 maps to chromosome 6 and thus PLS3V5, Smn is located on 
chromosome 13, the hSMN2 transgene is on chromosome 4. Hb9-Cre maps to 
chromosome 5 and has been inserted under the Hb9-promoter. 

In the Rosa26 targeting construct (Kindly provided by Dr. Thomas Wunderlich, University 

of Cologne (Belgardt et al., 2008)) the gene of interest, in this work PLS3V5, is cloned via an 

Asc I restriction site and driven by the CMV enhancer/chicken β-actin (CAG) promoter 

(Figure 8). The Neomycin resistance gene (Neor) and the transcription stop cassette are 

flanked by loxP sites on both sides and are located between promoter and transgene to allow 

conditional activation of the transgene (Cre/loxP system, chapter 4.14.3). 3´ of the gene of 

interest, green fluorescent protein (GFP) is cloned behind an internal ribosomal entry site 

(IRES) allowing indirect detection of the transgene in vivo. The size of the DNA homology 

arms was 1.080 and 4.247bp for the short and long arm, respectively. The sequences were 

cloned 5´ and 3´ flanking the internal elements to allow targeted homologous recombination. 

Additionally, Diphteria toxin A was cloned 3´ of the long homology arm and served as 

negative selection marker in case of non homologous random insertion of the construct. The 

sequence including both homology arms and internal elements has a size of 16.054 bp. The 

nucleotide sequence of the targeting construct is included in the appendix of this work.  

 

Figure 8: The Rosa26 targeting construct. (Abbreviations: CAG = CMV enhancer/chicken β-
actin promoter, Neo

r
 = Neomycin, IRES = internal ribosomal entry side, GFP = green 

fluorescent protein; DTA = Diphteria toxin A).  

5.1.2 3 Step (A-C) strategy for cloning PLS3V5 into the Rosa26 targeting vector – 

Overview 

Before PLS3 was inserted into the Rosa26 targeting vector, a V5-tag was cloned in frame 

with the PLS3 coding sequence (cds) so that the transgene could be discriminated from 

murine Pls3. For that purpose, PLS3 cds was inserted into the pcDNA3.1V5/His Topo vector 

(Figure 9, Step A). After confirmation of the sequence, Asc I restriction overhangs were 
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added to the 5´ and 3´ ends of PLS3V5 via HiFi Taq PCR and the product was subcloned 

into Zero blunt Topo (Step B). The sequence was again confirmed and using enzymatic 

restriction with Asc I, PLS3V5 was cut out of the vector and finally ligated into the Rosa26 

targeting vector (Step C). The GVO numbers of the sequence-confirmed clones are depicted 

in Figure 9.   

 

Figure 9: Steps of PLS3V5 cloning into the targeting vector. A: Amplification of PLS3 and 
subcloning into pcDNA3.1V5/HIS Topo vector to add the V5-tag. B: Amplification of 

PLS3V5 using Asc I restriction overhang primers and subcloning into Zero blunt Topo. 
Note that Asc I-PLS3V5-Asc I was reversely cloned as indicated by the 5´ and 3´ 
orientation of the vector. C: Enzymatic restriction with Asc I and ligation into the Rosa26 
targeting vector. (Abbreviations: GVO # = Gentechnisch veränderter Organismus) 

5.1.2.1 Step A: Subcloning of PLS3 into the pcDNA3.1V5His Topo vector 

At the beginning of this work, PLS3 cds (1893bp) was present in the pcDNA3.1V5/His 

Topo vector, however it was inversely oriented. To correctly add the V5-tag 3´ of the PLS3 

cds, PLS3 was first amplified using Hifi Taq, purified via a 1 % agarose gel and again 

subcloned into the pcDNA3.1V5/His vector (Figure 9). Clones with correct orientation of the 

PLS3 insert were identified via colony-PCR, amplified, plasmids isolated and subjected to 

test restriction using Xmn 1 and Hind III restriction enzymes (Figure 10).  
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Figure 10: A: Colony PCR of PLS3V5 in pcDNA3.1V5/His (Primer:  #1840 + 2457, expected size 
= 714 bp) B: Test restriction of clone 1 of PLS3V5 in pcDNA3.1V5/His and respective 

expected sizes. (Abbreviations: C = clone; u.c. = uncut vector) 

Clones showing the expected restriction band pattern were analyzed via sequencing to 

assure that no mutations were present after the PCR-amplification step and that the V5-tag 

was in frame with PLS3 cds. Clones were backup-frozen in liquid nitrogen under GVO 

reference number 500. 

5.1.2.2 Step B: Addition of Asc I restriction overhangs to PLS3V5 and subcloning 

into Zero blunt Topo 

For inserting PLS3V5 into the Rosa26 targeting vector, Asc I restriction sites had to be 

cloned 5´ and 3´ of PLSV5. For this purpose, PLS3V5 was Hifi Taq-amplified from GVO # 

500 (Figure 9) with Asc I restriction-overhang primers, gel purified and subcloned into Zero 

blunt Topo. Since the orientation of PLS3V5 in this vector was of no relevance, a colony PCR 

using primers binding in the internal region of PLS3 was performed. Through test restriction 

clone one (C 1) was identified as reversely inserted into Zero blunt and afterwards confirmed 

to be correct by complete sequencing of the insert (Figure 11). Bacteria of this clone were 

backup-frozen in liquid nitrogen under GVO reference number 502. 
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Figure 11: A: Colony PCR of PLS3V5 with Asc I restriction sites in Zero blunt Topo (Primer: 
#2463 + 2456, expected size = 1.1kb). B: Test restriction of C 1 using EcoR I and 

Hind III revealed a reversed insertion of Asc I-PLS3V5-Asc I into Zero blunt Topo. 
(Abbreviations: C = Clone; u.c. = uncut) 

5.1.2.3 Step C: Insertion of PLS3V5 into the Rosa26 targeting vector 

To insert PLS3V5 into the Rosa26 targeting vector, GVO clone # 502 and the empty 

targeting vector were enzymatically restricted using Asc I (Figure 12, A). After restriction was 

completed, the PLS3V5 band (~2 kb) and the linearized Rosa26 targeting vector (~16 kb) 

were cut out of the gel and purified using QIAquick Gel Extraction Kit. To avoid religation, the 

linearized targeting vector was alkaline phosphatase treated and subsequently 

phenol/chloroform extracted. Since transformation of large constructs into bacterial cells can 

be problematic, XL1-Blue bacteria were used in this approach. Bacteria were selected 

against Ampicilin, clones picked the next morning and subjected to colony PCR (Figure 12, 

B). Positive clones were amplified and a test restriction was performed using EcoR V, XhO I 

and Asc I (Figure 12, C) After observation of the correct band pattern, clone 1 (GVO # 503) 

was analyzed by sequencing and found to be 100 % correct (Figure 12, D). Since large 

amounts of Rosa26 targeting vector were needed for the transfection of ES cells, new media 

was inoculated with GVO clone # 503 and Maxi preparation of the plasmid was performed 

using the EndoFree Plasmid Maxi Kit (Qiagen). The transfection of ES cells, ES cell 

selection, clone picking and DNA preparation for subsequent Southern blot analysis were 

performed as described in the Material and Methods part of this work (chapter 4.13.3). 
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Figure 12: A: Enzymatic restriction digestion of the Rosa26 targeting vector and PLS3V5 in Zero 
blunt Topo with Asc I. B: Colony PCR with clones obtained after ligation of PLS3V5 
into the Rosa26 targeting vector (Primer: #2533 + 2459, expected size = 817bp). C: 

Test restriction of the targeting vector containing PLS3V5 demonstrated the correct 
insertion of PLS3V5 into the Rosa26 targeting vector. Note that restriction with Asc I 
results in appearance of the 2 kb PLS3V5 band. D: Snapshot of Seqman sequencing 
analysis software showing 100 % correct sequence for the ready cloned targeting 
construct (Abbreviations: C = clone, u.c. = uncut). 

5.2 Transgenesis of ES cells  

5.2.1 Stable integration of the targeting construct into the genome of ES cells  

The transfection of ES cells, ES cell selection, picking of recombinant clones and DNA 

restriction using EcoR I for subsequent Southern blot analysis were performed as described 

in the Material and Methods part of this work (chapter 4.13.3). In the following chapters, the 

identification of correctly targeted ES cells via Southern blotting and the evaluation of such 

clones via in vitro Cre-deletion will be described. 

5.2.1.1 Southern blotting strategy 

The correct insertion of a targeting construct into its destined region is typically 

investigated and confirmed via Southern blotting. For this purpose, genomic DNA of 

recombinant clones was enzymatically restricted with EcoR I and then transferred on a 

Hybond XL membrane. To identify recombinant clones with a correctly inserted targeting 

construct, also termed positive clones, two different radioactively labeled probes were used: 

(i) An external probe, termed Rosa probe, that binds in the genomic region 5´ of the short 
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homology arm of the construct. After restriction of genomic DNA with EcoR I, a 6.8 kb 

recombinant fragment is observed in the case of correct insertion of the targeting vector 

(Figure 13, A). Since homologous recombination is a rare event, the targeting construct 

typically inserts on one chromosome only, while the other chromosome remains wt. On the 

wt chromosome, restriction with EcoR I then leads to a fragment of 16 kb size (Figure 13, B). 

(ii) An internal probe, termed Neo probe, which is complementary to parts of the Neor gene 

and detects the same 6.8 kb fragment as the Rosa probe in case of correct homologous 

recombination into the target site and digestion of DNA with EcoR I enzyme (Figure 13, C). 

However, random integration of the insert can only be detected by the Neo probe: In case of 

non homologous recombination a fragment of undefined size is observed ranging from the 

internal EcoR I restriction site in the stop-cassette to the next genomic upstream EcoR I 

restriction site in the region 5´ of the short homology arm (Figure 13, D). 

 

Figure 13: Southern blotting strategy to identify recombinant ES cell clones with correct insertion into 
the Rosa26 locus. A: In case of homologous recombination of the targeting vector into 
the Rosa26 locus, the Rosa probe detects a 6.8 kb DNA fragment. B: On a wt 
chromosome, the Rosa probe recognizes a 16 kb fragment. C: The Neo probe binds in 
the Neo

r
 gene and identifies the same 6.8 kb fragment as the Rosa probe in case of 

homologous recombination. D: In case of random integration of the targeting construct, 
the Neo probe will detect a fragment of undefined size 
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5.2.1.2 Identification of positive clones via Southern blotting 

The Southern blot strategy for the identification of positive recombinant ES cell clones with 

a correctly inserted targeting construct using an external (Rosa) as well as internal (Neo) 

probe was described in detail (chapter 5.2.1.1). To identify positive clones, genomic DNA 

was isolated from 96 well backup plates and enzymatically restricted by EcoR I digestion. 

The genomic DNA of each clone was separated by gel electrophoresis and the DNA blotted 

on a nylon membrane. In a next step, the membrane was incubated with the radioactively 

labeled external Rosa probe and analyzed using a phosphorimager (Figure 14, A). Of 196 

spotted clones, 8 clones were identified as recombinant for the Rosa26 targeting construct 

resulting in a recombination efficiency of 4.1 %. 

 

Figure 14: A: Snapshot of a membrane of clones from one 96 well plate hybridized with the Rosa 
probe. Clones were loaded next to each other in two vertical rows (E.g., A5-A13, B11-
B19). Next to the 16 kb wt band, clones A6 and A11 (underlined) showed the 6.8 kb 
recombinant band (red arrows) and were identified as positive clones. B: Exclusion of 

random integration of the Rosa26 targeting construct into the genome in positive 
clones A6 and A11 

All 8 positive clones were thawed from 96 well plates, expanded to 10 cm dishes and 

finally frozen as ¼ aliquots of one 10 cm dish. However, only clones A6 and A11 showed a 

high proliferation rate and were further analyzed via in vitro Cre deletion of the stop cassette 

(chapter 5.2.1.3). Since the Rosa probe does not identify random genomic integration of the 

targeting construct and to exclude this possibility, clones A6 and A11 were additionally 

investigated using the Neo probe. As expected and considering that homologous 

recombination is a rare event both clones A6 and A11 showed exclusively the predicted band 

at a size of 6.8 kb (Figure 14, B). 

 Therefore, it was concluded that the Rosa26 targeting vector had correctly integrated 

into the Rosa26 genomic locus in clones A6 and A11. 

5.2.1.3 In vitro Cre deletion and analysis of positive ES cell clones 

In vitro Cre deletion is a powerful tool to delete loxP flanked sequences in cell culture 

experiments. The technique makes use of a modified version of Cre recombinase (HTN-Cre) 

that carries a hydrophobic N-terminal tag including a nuclear localization signal (NLS) (Peitz 
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et al., 2002). If added to the cell media, HTN-Cre can permeate the membrane, be 

transported into the nucleus and catalyze recombination of loxP- flanked sequences. Here, 

this method was recruited to evaluate the potential of positive ES cell clones to express 

PLS3V5 before they were injected into blastocysts. Moreover, any cell toxicity effects caused 

by the overexpression of the transgene would become obvious. In line with that, such 

observations would make it necessary to reassess the chances of success in establishing a 

transgenic PLS3V5 overexpressing mouse line.  

To analyze HTN-Cre-mediated activation of PLS3V5, positive ES cell clones A6 and A11 

(chapter 5.2.1.2) were thawed from ¼ aliquots of one 10 cm petri dish. After expansion of the 

clones to 80 % confluence, in vitro Cre treatment was conducted (chapter 4.13.3.8). Since in 

vitro HTN-Cre treatment is a rather harsh method that can lead to cell death, ES cells were 

given 4 days to recover prior analysis.  

In vitro Cre-deleted ES cells were first analyzed under a fluorescence microscope. Given 

that GFP is located downstream of the PLS3V5 cds in the targeting vector (Figure 8), the 

deletion of the stop-cassette should result in a green fluorescent signal. As anticipated, both 

recombinant clones (A6 and A11) that were treated with HTN-Cre showed a green 

fluorescent signal while no signal was detected under UV light for untreated cells (Figure 15, 

compare A+B with E+F and I+J with M+N). To further support these observations, clones A6 

and A11 were trypsinized and subjected to FACS analysis. When gating the ES cell 

population, a clear peak-shift towards GFP was detected for both clones and only when cells 

were treated with HTN-Cre (Figure 15, compare D with H and L with P). Additionally, by 

comparing HTN-Cre treated with untreated cells under transmitted light no morphological 

differences could be observed. Stop-cassette-deleted clones exhibited the typical ES cell-like 

shape as untreated controls and appeared to proliferate normally. Taken together, these 

experiments demonstrate that the deletion of the stop-cassette results in GFP expression 

and that, accordingly, the Cre/loxP expression system of the targeting vector is functional. 

Since GFP expression after stop-cassette deletion alone is only a principle proof for the 

functionality of the Cre/loxP expression system, proteins were isolated from the remaining 

cells and examined for PLS3V5 expression via Western blotting. Using a V5 antibody for the 

specific detection of PLS3V5, a sharp and clear signal in the calculated size of ~75 kDa 

could only be observed for HTN-Cre treated cells of both clones, A6 and A11 (Figure 16).  

To summarize, via HTN-Cre mediated deletion of the stop-cassette the expression of 

both, PLS3V5 and GFP could be induced. These findings demonstrate the functionality of 

Cre-inducible conditional activation of the vector-expression system. Additionally, the 

absence of any GFP or PLS3V5 signals in untreated cells, either via FACS as well as in 

Western blot analysis, proves that the stop-cassette successfully prevents uncontrolled 

transcription of the transgenes. Based on these findings and in combination with the proof of 
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correct insertion of the targeting vector into the Rosa26 locus (chapter 5.2.1.2), clones A6 

and A11 were used for the injection into blastocysts (chapter 5.3.2). 

 

Figure 15: GFP expression after HTN-Cre mediated deletion of the stop-cassette. A-H: 
Microscopical- and FACS detection of GFP fluorescence after stop-cassette deletion 
in clone A6. I-P: Microscopical- and FACS detection of GFP fluorescence after stop-
cassette deletion in clone A11. For FACS analysis, the ES cell population was gated 
and analyzed for GFP expression. 
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Figure 16: Western blot analysis of ES cell clones A6 and A11 with or without HTN-Cre 
treatment. Using an antibody directed against the V5-tag of the PLS3V5, only cells 
treated with HTN-Cre and deleted for the stop-cassette express PLS3V5 and show a 
sharp signal at the correct size of ~75 kDa 

5.3 Generation of PLS3V5 transgenic mice 

5.3.1 Nomenclature of the PLS3V5 transgenic mouse lines generated in this thesis - 

Overview 

In the course of this work, first a stable cohort of PLS3V5 transgenic mice was generated 

that still carried the stop-cassette between promoter and the PLS3V5 cds (chapter 5.3.2). 

This line is from now on termed the PLS3V5-floxed line. To indicate that the stop-cassette is 

still present between promoter and the PLS3V5 cds in these mice, e.g. heterozygous 

individuals of this line are from now on defined as PLS3V5fl_st/wt (fl = floxed, st = stop) mice. 

Due to the presence of the stop-cassette in PLS3V5fl_st/wt mice, PLS3V5 is not yet being 

expressed in such individuals. By breeding PLS3V5fl_st/wt mice with Cre-lines expressing Cre 

under tissue specific promoters, conditional activation of PLS3V5 can be achieved. In this 

thesis, PLS3V5fl_st/wt animals were e.g. bred with the motor neuron specific Cre line Hb9-Cre 

(Arber et al., 1999, Yang et al., 2001) to exclusively activate transcription of the PLS3V5 

transgene in motor neurons.  

To activate PLS3V5 expression ubiquitously, the stop-cassette in PLS3V5fl_st/wt animals 

was deleted by breeding animals of the PLS3V5-floxed line with the ubiquitously Cre-

expressing line CMV-Cre (Schwenk et al., 1995). As a result, a stable cohort of PLS3V5 

ubiquitously expressing animals was generated (chapter 5.3.3). This line is from now on 

termed the PLS3V5-ubi line. E.g., heterozygous individuals of this line are by now defined as 

PLS3V5tg/wt mice. Once the stop-cassette was genomically deleted via Cre in the germline 
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and this was inherited to the next generation, the Cre allele was no longer necessary to 

ubiquitously activate PLS3V5 expression.  

In Table 13, an overview about the two different PLS3V5 transgenic lines and their 

respective nomenclature is given.  

Table 13: Nomenclature of transgenic PLS3V5 lines generated in this thesis 

PLS3V5 transgenic 
line 

E.g. heterozygous 
individual 

(exemplary) 

E.g. homozygous 
individual 

(exemplary) 
Description 

PLS3V5-floxed PLS3V5fl_st/wt PLS3V5fl_st/fl_st 

Stop cassette 
present, conditional 

activation of PLS3V5 
via breeding with 

Cre-lines. 

PLS3V5-ubi PLS3V5tg/wt PLS3V5tg/tg 

Permanent and 
inherited deletion of 

stop cassette. 
Ubiquitous PLS3V5 

expression.  

 

5.3.2 Generation of chimeras and identification of transgenic PLS3-floxed mice 

For the generation of chimeric animals in which the germline carries the PLS3V5 

transgene, cells of both positive clones, A6 and A11, were prepared (4.13.3.10) and injected 

into blastocysts derived from CB20-background females (Table  14). Using ES cells of clone 

A6, an additional pilot-injection-series using morulae (2-3 dpf) was performed. At morula 

stage, cells are completely undifferentiated while around blastula stage, first gastrulation 

events take place and along with that the determination of cell fate precedes. For that reason 

and because morulae consist of fewer cells, it is assumed that injected ES cells are better 

integrated and can stronger contribute to the developing embryo. 

Table  14: ES cell injection and chimera production  

Injected 

clone 

(V6.5) 

Date 

Injected 

Blastulae / 

Morulae 

Foster / 

pregnant 
Pups / DOB Chimeras (gender, % chimerism) 

A6 

11.12.08 29 Blastulae 3 / 3 13 / 28.12.08 
7 (6 ♂, 10, 15, 25, 25, 45, 75 

(#94); 1 ♀ 20) 

18.12.08 29 Blastulae 3 / 1 3 / 04.01.09 1 (1 ♂, 70 (#97)) 

18.12.08 9 Morulae 1 / 1 1 / 05.01.09 1 (1 ♂, 75 (#98)) 

A11 12.12.08 26 Blastulae 3 / 0 - - 

 

Even though ES cells of both clones were injected, chimeric animals were only obtained 

following injection with clone A6 (Table  14). From injections into blastocysts and morulae, all 

together 9 chimeric mice were produced of which 3 male mice were of higher chimerism 
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(estimated by the percentage of dark hair contributing to the coat color), namely one 70 % (# 

97) and two 75 % (# 94, 98) chimeric animals (Table  14, highlighted in red). Only the 3 

higher chimeric animals were used for breeding with wt animals and the offspring screened 

for the presence of the insertional allele via PCR. (Figure 17).  

 

Figure 17: Chimera breedings with wt mice (F0) to obtain transgenic offspring in the F1 
generation. A: Example of a 90 % chimeric mouse (picture kindly provided by Dr. Ylva 
Mende). B: Numbers of litters, offspring and transgenics obtained. Only a single 

transgenic female was obtained by chimera # 94. 

Of the three chimeric mice used for F0 breedings with wt mice, animal # 97 was infertile 

and did not produce any offspring. However, chimeras # 94 and 98 were normally fertile and 

generated potentially transgenic F1 offspring that was screened via PCR for the presence of 

the targeting construct. Of a total of 92 F1 offspring screened via PCR (Primer see chapter 

4.8), only one female mouse showed the recombinant band (Figure 18, A).  

 Since PCR is in fact a fast but also sensitive method, another PCR was conducted using 

a forward primer within PLS3V5 and a reversed primer located in the 3´-V5-tag. Thereupon, 

a signal of correct size was only observed using DNA of the assumed PLS3V5fl_st/wt 

(explanation of nomenclature see chapter 5.3.1) animal, but not in control wt DNA (Figure 18, 

B).  

To further confirm the transgenic state of the animal, DNA of the tail tip was subjected to 

Southern blotting using Rosa- and Neo probes. When compared to wt control DNA, using the 

Rosa probe the recombinant band was only detected in the DNA of the PLS3V5fl_st/wt mouse 

(Figure 18, C). With the Neo probe, a single band could be observed at the correct size in the 

PLS3V5fl_st/wt animal. 

A picture of the first PLS3V5fl_st/wt female is depicted in Figure 18, D. 
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Figure 18: Confirmation of the first PLS3V5
fl_st/wt

 female A: Screening (genotyping) PCR (primers 
# 3648, # 3649 and # 3650), B: PCR targeting PLS3V5 (primer # 3911 and # 3913), 
C: Southern blot using the Rosa probe. D: Picture of the first PLS3V5

fl_st/wt
 female   

To conclude, ES cells of clones A6 and A11 were injected into blastocysts and morulae 

and 3 higher percentage chimeras could successfully be produced from clone A6. Of the 

three chimeras, two males were fertile and one of them, chimera # 94, produced one single 

transgenic PLS3V5fl_st/wt female. The presence and correct insertion of the targeting construct 

into the Rosa26 locus of the female was confirmed via PCR and Southern blotting. By 

breeding with a C57BL/6N wt male mouse a stable founder generation of the PLS3V5-floxed 

line was established. Given that the first transgenic female was of 129/Sv and C57BL/6 

mixed genetic background, the PLS3V5-floxed line was backcrossed for 7 generations to a 

clean C57BL/6 background. 

5.3.3 Generation of the PLS3V5-ubi line by permanent deletion of the stop cassette 

in PLS3V5-floxed mice 

PLS3 has been shown to be expressed in a broad variety of tissues in rat, including liver, 

lung and heart as well as brain and muscle (Lin et al., 1994). Also in SMA patients, PLS3 is 

highly expressed in brain, spinal cord and muscle tissue, with its highest expression in the 

spinal cord (Oprea et al., 2008). In blood, however, PLS3 was shown to be present in 5 % of 

the control population only, confirming that PLS3 expression in blood is rare. In order to 
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optimally mimic the situation in unaffected patients, ubiquitous expression of the PLS3V5 

transgene was established.  

Since PLS3V5 expression is inhibited in the PLS3V5-floxed line by the presence of the 

stop-cassette, the ubiquitously Cre-expressing line CMV-Cre (Cre is located on the X-

chromosome in these mice, see also 4.14.1.3.1) was used to permanently delete the stop-

cassette in the PLS3V5-floxed line. For that purpose, male mice of the genotype 

PLS3V5fl_st/wt were bred with homozygous CMV-CreX_tg/X_tg female mice (Figure 19, A). In 

resulting female offspring, one X chromosome originates from the father while the Cre- 

transgenic X chromosomes is derived from the mother. Due to X inactivation, however, one 

X chromosome is randomly silenced. Accordingly, the female offspring is mosaic for the Cre 

expression and the stop cassette is not deleted in all cells. Yet in the resulting male offspring 

the Cre-carrying X chromosome can only result from the CMV-CreX_tg/X_tg mother. Because 

the only X chromosome in PLS3V5fl_st/wt;CMV-CreX_tg/Y male mice is never silenced, Cre is 

active in all cells of the body and consequently, the stop-cassette should be deleted in all 

cells as well. By breeding a PLS3V5fl_st/wt male with a CMV-CreX_tg/X_tg female mice, males 

with the genotype PLS3V5fl_st/wt;CMV-CreX_tg/Y were obtained (Figure 19, A, B). 

 

Figure 19: Ubiquitous deletion of the stop cassette. A: Breeding scheme for PLS3V5
fl_st/wt

 X 
CMV-Cre crossings. B: Genotyping PCR (Primer: PLS3V5: # 3648, # 3649 and # 
3650; CMV-Cre: # 3104 and # 3105 ): E.g., male # 5702 showed the recombinant 
PLS3V5 band in combination with the CMV-Cre allele. (wt = 576 bp; rec = 380 bp; 
Cre-tg = 600 bp) 

To investigate the real deletion efficiency of CMV-Cre in PLS3V5fl_st/wt;CMV-CreX_tg/Y male 

mice, a multiplex PCR was designed allowing the simultaneous detection of the stop-

cassette-containing allele, here termed “stop-in” allele (band size = 505 bp), and the stop-

cassette-deleted allele, termed “stop-out” allele (band size = 412 bp). Multiplex PCR was 

then performed on genomic tail tip DNA of PLS3V5fl_st/wt;CMV-CreX_tg/Y male mice. Despite 

carrying the same genotype, big discrepancies could be observed regarding the deletion 

efficiency between individuals: Beside the complete deletion of the stop-cassette, also 

mosaic deletion or no deletion at all was observed (Figure 20, A). An analysis of a total of 15 
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male mice of the genotype PLS3V5fl_st/wt;CMV-CreX_tg/Y revealed that indeed 52 % of animals 

showed no stop-out signal albeit the presence of Cre (Figure 20, A). 

To address whether the variable deletion-efficiencies observed among PLS3V5fl_st/wt;CMV-

CreX_tg/Y individuals directly correlated with PLS3V5 expression, proteins from one animal 

completely lacking the stop cassette (Figure 20, A, # 5745) and another animal showing the 

stop-in signal only (Figure 20, A, # 5732) were compared by Western blot analysis. Using a 

V5 antibody, PLS3V5 protein could be detected in all tissues of the stop-out-only animal # 

5745 (Figure 20, B). By contrast, PLS3V5 expression was entirely absent in animal # 5732, 

where only the stop-in signal had been detected by PCR. Thus, the data obtained in Western 

blot analysis were in line with the results from multiplex PCR and multiplex PCR is a powerful 

tool to predict whether any PLS3V5fl_st/wt;CMV-CreX_tg/Y mouse would indeed express 

PLS3V5.  

 

Figure 20: Stop-cassette deletion efficiencies in PLS3V5
fl_st/wt

;CMV-Cre
X_tg/Y

 male mice. A: 
Deletion efficiencies could be classified into three groups: (i) Complete deletion of the 
stop-cassette (1

st 
lane, stop-out only), (ii) mosaic deletion of the stop cassette (2

nd 

lane, stop-in + stop-out) and (iii) no deletion of stop-cassette despite presence of the 
Cre-allele (3

rd
 lane, stop-in only). 52 % of a total of 15 PLS3V5

fl_st/wt
;CMV-Cre

X_tg/Y
 

males showed no deletion of the stop cassette despite presence of the CMV-Cre 
allele. B: Western blot analysis of one stop-out only animal (# 5745) and one stop-in 

only animal (# 5732). Using α-V5 antibody, PLS3V5 expression could be detected in 
all tissues investigated of animal # 5745. In animal # 5732, PLS3V5 expression was 
completely absent despite the presence of the CMV-Cre allele. (wt = 576 bp; rec = 380 
bp; Cre-tg = 600 bp; stop-in = 505 bp; stop-out = 412 bp. Abbreviations: S.c. = Spinal 
cord, POS = positive control (ES cell clone # A6)) 

The knowledge about the deletion efficiency in a certain PLS3V5fl_st/wt;CMV-CreX_tg/Y male 

was also important from a different perspective: For the generation of mice in which 
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effectively all cells are deleted for the stop-cassette and that are ubiquitously PLS3V5 

expressing, PLS3V5fl_st/wt;CMV-CreX_tg/Y males were further bred with wt females. If the stop-

cassette was also deleted in the germ cells of PLS3V5fl_st/wt;CMV-CreX_tg/Y males and since 

PLS3V5 and CMV-Cre are located on different chromosomes, the deletion should be 

inherited to some of the offspring independently of the CMV-Cre allele. Since the deletion 

efficiency in a certain PLS3V5fl_st/wt;CMV-CreX_tg/Y male could be estimated via stop-cassette 

multiplex PCR, only males solely showing the stop-out signal were used in such breedings. 

In fact, when mating PLS3V5fl_st/wt;CMV-CreX_tg/Y-stop-out-only males with wt females, 

PLS3V5 transgenic offspring was identified that did not carry the CMV-Cre allele but at the 

same time showed the stop-out signal only (Figure 21, B). 

 

Figure 21: Generation of PLS3V5-ubi mice (PLS3V5
tg/wt

). A: Breeding scheme for the production 
of PLS3V5

tg/wt
 animals. B: In PLSV5

tg/wt
 animals, the stop-cassette is ubiquitously 

deleted in the absence of the CMV-Cre allele. Animal # 5828 showed the recombinant 
PLS3V5 band and only the stop-out signal coincidental with the absence of CMV-Cre. 
(wt = 576 bp; rec = 380 bp; Cre-tg = 600 bp; stop-in = 505 bp; stop-out = 412 bp. 
Abbreviations: POS = positive controls. # 5733 = PLS3V5

fl_st/wt
;CMV-Cre

X_tg/Y
 (stop-

in+stop-out); # 5745 = PLS3V5
fl_st/wt

;CMV-Cre
X_tg/Y

 (stop-out only); # 5791 = 
PLS3V5

fl_st/wt
 (stop-in only); 5701 = CMV-Cre

tg/wt
 (no stop signal)). 
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In these mice, the stop cassette is heritably deleted in effectively all body cells resulting in 

ubiquitous expression of PLS3V5. Accordingly, the line was termed PLS3V5-ubi and mice 

e.g. heterozygous for the transgene were defined as PLS3V5tg/wt animals. 

In summary, PLSV5 ubiquitously expressing mice (PLS3V5-ubi line, genotypic definition 

PLS3V5tg/wt) were successfully generated crossing the PLS3-floxed line with the CMV-Cre 

line. In the context of these experiments, the functionality of Cre-mediated activation of the 

PLS3V5 transgene was for the first time demonstrated in a Western blot experiment using a 

V5 antibody to specifically detect PLS3V5 in vivo (Figure 20, B). Since a detailed analysis of 

ubiquitous PLS3V5 expression in PLS3V5tg/wt mice is presented in chapter 5.4.1 and 

following, it should at this point only be mentioned that Cre-mediated PLS3V5 

overexpression was activated in the mainly through SMA affected tissues, namely brain, 

spinal cord and muscle. Before PLS3V5tg/wt animals were used in PLS3V5 overexpression 

experiments on an SMA background (chapter 5.4), the line was bred congenic by 

backcrossing to wt C57BL/6N animals for 7 generations. 

5.4 Ubiquitous expression of PLS3V5 in an SMA mouse model 

When PLS3V5-floxed mice were crossed with the Hb9-Cre line, PLS3V5 expression was 

conditionally activated in the resulting offspring. A detailed analysis of the effects of motor 

neuron specific overexpression of PLS3V5 in wt background is given in chapter 5.5 and 

following.  

In the PLS3V5-ubi line, the stop-cassette is permanently deleted resulting in ubiquitous 

expression of the PLS3V5 transgene. Since PLS3 is expressed in all SMA-affected tissues in 

human (Oprea et al., 2008), ubiquitous overexpression of PLS3V5 in a murine SMA 

background would resemble the situation in human best possible. To study the effects of 

PLS3V5 expression on the SMA phenotype, the PLS3V5-ubi line was therefore crossed into 

the Hung SMA background (chapter 5.4.2.1).  

5.4.1 Quantitative and qualitative assessment of PLS3V5 ubiquitous expression on 

wt background 

Prior to studying the effects of PLS3V5 expression on the murine SMA phenotype, 

quantitative expression analysis using qRT-PCR and Western blotting was performed in the 

PLS3V5-ubi line. Furthermore, to prove functionality of the PLS3V5 protein, murine 

embryonic fibroblast cells (MEFs) were isolated from PLS3V5tg/wt animals to investigate the 

cellular localization of PLS3V5 compared to wt murine Pls3 (mPls3) via 

immunohistochemical detection. 
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5.4.1.1 Total plastin 3 mRNA (PLS3V5 + mPls3 mRNA) levels are significantly 

increased in various tissues of PLSV5-ubi mice  

To assess the fold overexpression of plastin 3 mRNA in PLS3V5-ubi animals, mRNA from 

various tissues of wt and PLS3V5tg/wt mice (n=3 each) was isolated and quantitative real time 

PCR (qRT-PCR) performed. The amount of total plastin 3 mRNA was quantified as the sum 

of transgenic PLS3V5 plus murine Pls3 (mPls3) mRNA by using primers detecting both 

genes and standardizing to endogenous Hprt1 expression. Due to drastic discrepancies in 

housekeeper expression between different tissue types, only the fold upregulation for a 

certain tissue could be determined. For this purpose, wt mPls3 mRNA level was set to 100 % 

and excess plastin 3 amount in PLS3V5tg/wt mice assumed to be caused by additional 

transgene expression. For all of the tissues investigated, total plastin 3 mRNA levels were 

significantly increased in PLS3V5tg/wt animals compared to wt basal expression (Figure 22, 

A). While in brain and spinal cord only moderate changes of 3.6 and 3.4 fold were detected, 

the level of plastin 3 expression was remarkably elevated to 206 fold over endogenous level 

in blood. In this context, it is important to mention that mPls3 is naturally almost absent in 

blood. Since total plastin 3 levels in PLS3V5tg/wt mice resemble PLS3V5 + mPls3 expression 

relative to endogenous mPls3 levels in wt this might explain the immense increase observed 

in blood tissue.  
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Figure 22: Assessment of fold overexpression of T-plastin mRNA in PLS3V5
tg/wt

 versus wt 
animals. A Logarithmic scale: Using primers detecting both, PLS3V5 and mPls3, a 

significant increase of T-plastin expression was observed in PLS3V5
tg/wt

 animals 
compared to wt. B: murine Pls3 mRNA levels (mPls3) were not changed in 

PLS3V5
tg/wt

 compared to wt animals, suggesting that the measured excess of total T- 
plastin (PLS3V5 + mPls3) in Figure 22 A reflects the true PLS3V5 overexpression. 
(Animal numbers of both experiments: PLS3V5

tg/wt
 = 3 and Wt = 3; * = p < 0.05; ** = p 

< 0.01; *** = p < 0.001; Abbreviations: S.c. = Spinal cord) 

As mentioned, by setting the wt mPls3 expression to 100 % all measured excess in 

PLS3V5tg/wt animals should be attributed to the additional expression of the PLS3V5 

transgene. This idea holds true except in the presence of regulatory feedback mechanisms 

of PLS3V5 on mPls3 expression. To exclude this possibility, mPls3 mRNA levels were 

analyzed in PLS3V5tg/wt and wt animals using primers solely detecting endogenous mPls3. 

Strikingly, no significant differences were noticed, except for heart tissue where only a very 

slight increase of up to 1.4 fold in PLS3V5tg/wt animals could be observed. These findings 

showed that PLS3V5 has no feedback on endogenous mPls3 expression, legitimizing the 

methodology as well as confirming the measurements of total T-plastin mRNA levels.  

Taken together, total plastin 3 mRNA levels are significantly increased in all tissue types 

investigated in PLS3V5tg/wt animals, including brain, spinal cord and muscle (Figure 22, A). 

Since PLS3V5 expression does not influence endogenous mPls3 levels (Figure 22, B), it can 
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be concluded that the excess of measured total plastin 3 in PLS3V5tg/wt animals is indeed 

attributable to PLS3V5 overexpression. 

5.4.1.2 PLS3V5 protein is detected in nearly all tissues of PLS3V5tg/wt mice using a 

V5 antibody, but quantification of total T-plastin expression on protein level 

is not in line with mRNA measurements  

In the targeting construct, PLS3V5 is located downstream of the CMV enhancer/chicken 

β-actin (CAG) fusion promoter (Figure 8). This promoter is frequently used for driving strong 

and ubiquitous expression of transgenes in the mouse (Niwa et al., 1991, Xu et al., 2001). To 

qualitatively and quantitatively analyze PLS3V5 protein expression in the PLS3V5-ubi line, 

proteins of various tissues from PLS3V5tg/wt mice were isolated and the lysates investigated 

by Western blot analysis using V5 antibody to specifically detect PLS3V5 protein. In order to 

compare PLS3V5 expression levels between individual tissues, standardization of PLS3V5 

protein to a subset of housekeeper proteins was carried out (e.g. actin, rpl13a1, tubulin). 

However, this attempt failed due to immense discrepancies of housekeeper expression in the 

different tissues. Therefore, simply the total protein amount of 15 µg of each of the tissues 

was loaded on an SDS-Gel, Western blotting was performed and PLS3V5 detected with the 

V5 antibody. To confirm loading of equal protein amounts for PLS3V5tg/wt and wt control 

animals, Ponceau staining was conducted prior immunological detection using the V5 

antibody (Figure 23, A). As expected, apart from kidney all other tissues investigated showed 

a clear V5 signal at the expected size of ~75kDa in PLS3V5tg/wt but not in wt animals. This 

way, strongest expression of PLS3V5 was detected in liver while in brain, spinal cord and 

muscle moderate expression levels were observed (Figure 23, B). To exemplarily 

demonstrate the heterogeneous housekeeper expression found in the different tissues, the 

membrane was costained with an antibody directed against β-tubulin. While in brain, spinal 

cord and lung strong to moderate β-tubulin levels were detected, respectively, the β-tubulin 

signal was completely absent in the rest of the tissues for the chosen exposure time. Even if 

rather imprecise, loading equal protein amounts to compare PLS3V5 expression was 

therefore the only appropriate method to estimate expression intensities between the 

different tissues. 
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Figure 23: Analysis of PLS3V5 expression in various tissues of PLS3V5
tg/wt 

and wt animals. A: To 

demonstrate loading of equal protein amounts for PLS3V5
tg/wt 

and wt animals, 
Ponceau staining was performed prior to immunological detection of PLS3V5. Note 
that for all tissues loaded PLS3V5

tg/wt 
and wt animals show approximately the same 

band intensities. B: Using V5 antibody PLS3V5 protein was detected in almost all 

tissues of PLS3V5
tg/wt

 animals, but not in wt.  

Similar to the analysis performed on mRNA level (chapter 5.4.1.1), it was tried to 

determine the fold upregulation of plastin 3 (PLS3V5 + mPls3) expression relative to 

endogenous mPls3 level in brain and spinal cord tissue of PLS3V5tg/wt animals. Protein 

lysates of PLS3V5tg/wt and wt animals (n=3 each) were blotted and subsequently incubated 

with PLS3 antibody that recognizes an N-terminal region in the coding sequence of both, 

mPls3 and PLS3V5. Since the molecular mass of PLS3V5 (~75kDa) is slightly increased due 

to the V5-tag compared to mPls3 (~70kDa), transgenic and murine plastin 3 were expected 

to run as two adjacent bands. Using the PLS3 antibody, however, apart from the signal for 

endogenous mPls3 (~70kDa), no additional PLS3V5 band could be detected in PLS3V5tg/wt 

mice for both brain and spinal cord (Figure 24, A and B, lane II.). Only when the PLS3 

antibody was used in combination with V5 antibody, two separate bands appeared for mPls3 

and PLS3V5 exclusively in PLS3V5tg/wt mice (Figure 24, A and B, lane I.). These findings 

together with an only moderate plastin 3 increase in spinal cord and brain of PLS3V5tg/wt mice 

on mRNA level (Figure 22, A) led to the assumption that PLS3V5 protein concentration in 
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these tissues might be too low for immunological detection. Since for liver a bigger increase 

in plastin expression was detected in PLS3V5tg/wt mice on mRNA (Figure 22, A) and protein 

level (Figure 23, B) as compared to brain and spinal cord, liver protein of PLS3V5tg/wt mice 

was analyzed with the PLS3 antibody. Indeed, for liver both mPls3 and PLS3V5 were 

detected using the PLS3 antibody solely (Figure 24, C´, lane I.). While for liver an almost 8 

fold increase of total plastin 3 (mPls3 + PLS3V5) was observed in PLS3V5tg/wt animals on 

mRNA level (Figure 22), quantification of total plastin 3 protein revealed an only 2 fold 

increase over endogenous mPls3 level (Figure 24, C´, lane I.). Therefore, it is to consider 

that also in brain and spinal cord of PLS3V5tg/wt mice the plastin 3 upregulation on protein 

level is rather below the observed increase on RNA level (Figure 22) and that PLS3V5 was 

therefore not detected in Western blot analysis using the PLS3 antibody.  

Another explanation for the absence of the PLS3V5 band in brain and spinal cord of 

PLS3V5tg/wt mice (Figure 24, A and B, lane II.) could be a different binding affinity of the PLS3 

antibody to mPls3 and PLS3V5. It has previously been shown that the homologue L-plastin 

can be phosphorylated at Serin 7 in the N-terminus of the protein, regulating the actin 

bundling activity of L-plastin (Lin et al., 1998). Serin 7 is highly conserved and also present in 

the epitope region of plastin 3 recognized by the PLS3 antibody (H2N-

MATTQISKDELDELKC-CONH2). However, at least in fibroblasts and leukocytes no 

equivalent phosphorylation of the Serin 7 residue could be observed for plastin 3 (Lin et al., 

1998). Nevertheless, an effect of the recombinant V5 tag on the phosphorylation properties 

of PLS3V5 could not entirely be excluded. Therefore, proteins of spinal cord and brain were 

investigated using another PLS3 antibody (Santa Cruz), accordingly termed PLS3-sc 

antibody, that was raised against a different epitope located between amino acids 482 and 

516 in the C-terminal region of PLS3. Due to strong and unspecific background obtained 

when using the PLS3-sc antibody, however, this question could not further be studied (data 

not shown).  
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Figure 24: Assessment of total plastin 3 (Pls3V5
tg/wt

 + mPls3) protein levels in brain, spinal cord 
and liver of PLS3V5

tg/wt
 and wt animals. A + B: Analysis of total plastin 3 in brain and 

spinal cord using the α-PLS3 antibody resulted in the detection of the mPls3 band only 
(lane II. in A and B). In combination with the α-V5 antibody signals for both, mPls3 
(~70 kDa) and PLS3V5 (~75kDa) were obtained (lane I. in A and B). Quantifying 
mPls3 expression levels (lane II.) and standardizing to Actin, no changes in 
endogenous mPls3 levels were detected between Pls3V5

tg/wt
 and wt animals in brain 

and spinal cord. C: In liver both mPls3 and PLS3V5 were recognized by the PLS3 
antibody leading to two bands of 70 and 75 kDa size, respectively. Quantification of 
only endogenous mPls3 (indicated by the red square in lane I.) revealed no significant 
changes between PLS3V5

tg/wt 
and wt animals as it was also observed in brain and 

liver. C´: Quantification of total plastin 3 protein amount (indicated by the red square in 
lane I.) revealed a significant 2 fold upregulation in PLS3V5

tg/wt
 compared to wt 

animals. (All quantifications were standardized to actin expression; * = p < 0.05; ** = p 
< 0.01; ***) 

Furthermore, endogenous mPls3 protein levels were quantitatively assessed in brain, 

spinal cord and liver of PLS3V5tg/wt and wt mice (Figure 24, A, B and C). As was the case on 

mRNA level (Figure 22, B), no significant changes in mPls3 protein amount were measured 

between PLS3V5tg/wt and wt animals. 

To summarize, using V5 antibody PLS3V5 expression was proven in almost all tissues 

investigated, that is brain, spinal cord, muscle, heart, liver, lung and blood while only in 

kidney PLS3V5 was absent for the given exposure time (Figure 23). Since the PLS3V5 

transgenic band (~75 kDa) was not recognized by the PLS3 antibody in brain and spinal cord 

(Figure 24, A and B), it was not possible to determine the fold upregulation of total plastin 3 
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protein levels in these tissues of PLS3V5tg/wt mice. Using liver proteins showing a stronger 

upregulation of PLS3V5 on mRNA (Figure 22) and protein level (Figure 23) it was possible to 

detect PLS3V5 by PLS3 antibody and to estimate the fold upregulation of plastin 3 protein to 

~2 fold in this tissue (Figure 24, C´). Since the total plastin 3 upregulation was only ~2 fold on 

protein as compared to ~8 fold on mRNA level in liver, it is to assume that also in brain and 

spinal cord PLS3V5 protein upregulation is comparatively low considering the only moderate 

upregulation of 3.6 and 3.4 fold on mRNA level in these tissues, respectively (Figure 22).  

5.4.1.3 Transgenic PLS3V5 colocalizes with actin filaments, shows wt localization 

and results in extensive filopodial outgrowth in murine embryonic 

fibroblasts (MEFs)  

To confirm the functionality of transgenic PLS3V5 protein, murine embryonic fibroblasts 

(MEFs) were isolated from PLS3V5tg/wt and wt control embryos and immunohistochemistry 

was performed.  

To study the capability of PLS3V5 to colocalize with and bundle actin filaments, the V5 

antibody was used together with phalloidin stainings on MEFs of PLS3V5tg/wt animals. This 

way, a strong colocalization of PLS3V5 (green) with actin filaments (red) could be observed 

predominantly in the area of filopodial growth (Figure 25, A + A´). In this regard, 

PLS3V5/actin colocalization did not occur along the entire actin filament but was rather 

restricted to regions of filament consolidation, the region-specific localization pointing out the 

functionality of the PLS3V5 protein (Figure 25, white arrow in C, C´and C´´). To ascertain the 

specificity of the antibody, wt MEFs were incubated with α-V5 antibody using the same 

concentration, incubation condition as well as exposure time in microscopic analysis as for 

PLS3V5tg/wt MEFs. As expected, no green signals were observed using the V5 antibody in wt 

MEFs proving specificity of all signals observed in PLS3V5tg/wt MEFs (Figure 25, B and B´). 

Furthermore, a diffuse PLS3V5 staining was detected all over the cell body with slightly 

increased intensities around the cell nucleus. However, the increase around the nucleus 

might only be a secondary effect caused by an intensity overlay due to a thicker three 

dimensional cell structure in this area.  
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Figure 25: PLS3V5 transgene expression in murine embryonic fibroblasts (MEFs). A + A´: Different 
magnifications (20x and 50x) of PLS3V5 staining using V5 antibody in MEFs of 
PLS3V5

tg/wt
 animals. PLS3V5 colocalizes with actin filaments predominantly in regions of 

filiopodial growth (white arrows in A´). B + B´: No green signal was obtained when wt 

MEFs were stained with the α-V5 antibody, proving specificity of the signals in A and A´. 
C, C´+ C´´: Detailed view of an actin filament branch point. PLS3V5 accumulates where 

actin filaments overlap (white arrow in C, C´and C´´) but is not present on isolated actin 
filaments. (Green = PLS3V5, red = F-actin (Phalloidin), blue = DAPI) 

After PLS3V5 turned out to be functional as based on its very specific localization in regions 

of actin filament consolidation, costainings of PLS3V5 and wt  mPls3 in MEFs of PLS3V5tg/wt 

animals were performed to investigate whether the V5 tagged transgene and the wt protein 

share overlapping expression domains (Figure 26, A – A´´´). The PLS3 antibody was used to 

detect both mPls3 and PLS3V5 (Figure 26, A´). Additionally, the V5 antibody was recruited to 

detect exclusively PLS3V5 (Figure 26, A´´). Since the individual stainings overlapped 

completely and no extra staining domains were observed for mPls3 when the PLS3 antibody 

was used, it is to conclude that transgenic PLS3V5 shows a totally wt localization in MEF 

cells.  

It has previously been reported that plastin 3 colocalizes with vinculin in integrin mediated 

focal adhesions of fibroblast like cells (Arpin et al., 1994). To further support the finding of wt 

localization of transgenic PLS3V5, mPls3 and PLS3V5 were costained with vinculin in wt and 

PLS3V5tg/wt MEFs, respectively. In line with previously published data, mPls3 was observed 

to colocalize with vinculin also in wt MEFs (Figure 26, white arrows in B, B´ and B´´). 
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Importantly, also transgenic PLS3V5 showed a strong overlay with vinculin in focal 

adhesions of PLS3V5tg/wt MEFs (Figure 26, white arrows in C, C´and C´´´). These 

observations further underline that PLS3V5 localizes wildtypic and that the C-terminal V5-tag 

does not interfere with normal PLS3 function.    

 

Figure 26:  PLS3V5 localization analysis. A-A´´´: PLS3V5
tg/wt 

MEFs were stained with either PLS3 
antibody detecting both, mPls3 and PLS3V5

tg/wt
 (A´, blue) or V5 antibody to stain PLS3V5 

protein only (A´´, green). Because no additional expression domains for mPls3 were 
observed in A´ compared to PLS3V5 in A´´, transgenic PLS3V5 displays fully normal and 
wt localization. B-B´´´: Colocalization of vinculin and mPls3 is demonstrated in wt MEFs 
by using vinculin (B, green) and PLS3 antibodies (blue). Arrows in B-B´´´ indicate 
vinculin/mPls3 overlapping regions. C-C´´´: Also for PLS3V5 colocalization with vinculin 
was proven by combined stainings using vinculin (B, green) and V5 antibodies (blue).  

 Moreover, it has been shown that plastin 3 overexpression leads to changes in cell 

morphology of polarized epithelial cells (LLC-PK1) (Arpin et al., 1994). When overexpressed, 

plastin 3 resulted in the formation of thicker microvilli on the surface of LLC-PK1 cells, 

resembling a phenotype similar to that observed after overexpression of Villin, another actin 

bundling protein (Friederich et al., 1989). Besides that, PLS3V5 overexpression led to 

extensive axonal outgrowth in in vitro experiments with PC12 cells and murine primary motor 

neurons (Oprea et al., 2008). Therefore, MEFs derived from wt and PLS3V5tg/wt animals were 

morphologically compared using immunohistochemistry and focusing on filopodial 

protrusions. Such membrane protrusions are continuously initiated at the leading edge of 

migrating fibroblasts in a process that is highly dependent on actin dynamics (Mitchison and 

Cramer, 1996). Typically, filopodia contain a thick stretch of actin that is held together by 

actin bundling proteins such as PLS3. Based on that, it was speculated that PLS3V5 might 
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have a stabilizing effect on filopodia of MEFs from PLS3V5tg/wt mice. When analyzing MEF 

cell structure microscopically, filopodial outgrowth was markedly enhanced in MEFs derived 

from PLS3V5tg/wt animals (Figure 27, compare A and A´ as well as B and B´). Additionally, 

while wt MEFs appeared completely normal, the biggest proportion of PLS3V5tg/wt MEFs 

exhibited an elongated, polarized shape as it is typically observed for migrating fibroblasts. 

According to its function in cytoskeletal regulation, it can therefore be stated that PLS3V5 

overexpression has a severe impact on the cell structure also in MEF cells.  

 

Figure 27: PLS3V5 overexpression leads to structural changes in MEFs derived from PLS3V5
tg/wt

 
animals. A + A´: actin (Phalloidin, red) and PLS3 (green) costainings reveal a drastic 
increase in filopodial growth in PLS3V5

tg/wt
 MEFs (white arrows in A´). B + B´: 

Enhanced filopodial outgrowth was also confirmed in actin (red) and vinculin (green) 
costainings (note white arrows in B´). 

To summarize, by using immunofluorescence it was demonstrated that PLS3V5 

specifically accumulates at distal ends of lamellipodia and filopodia at actin filament branch 

points, proving that PLS3V5 is functional (Figure 25). By costaining with its endogenous 

orthologue mPls3 and vinculin, PLS3V5 was confirmed to entirely colocalize with 

endogenous Pls3 in MEFs (Figure 26). Moreover, PLS3V5 overexpression results in 

excessive filopodial growth in MEFs derived from PLS3V5tg/wt animals (Figure 27). These 

results are in line with previously published data after which PLS3 is important in microvilli 

formation as well as axonal outgrowth in PC12 cells as well as motor neurons (Arpin et al., 
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1994, Oprea et al., 2008). The here presented results anticipate a role of PLS3 in the 

regulation of axon growth in the context of NMJ maturation (chapter 5.4.3 and following).  

5.4.2 Generation of an SMA mouse model for the overexpression analysis of 

PLS3V5 

To ubiquitously express PLS3V5 on an SMA background and to investigate possible 

rescuing effects it was important to select an appropriate SMA mouse model. The Taiwanese 

SMA mouse model (chapter 4.14.1.1), also termed Hung SMA mouse model here, appeared 

to be the most suitable model for three reasons:  

(i) The distribution of the alleles on different chromosomes allows uncomplicated 

breedings (Smn = chromosome 13, human SMN2 transgene (hSMN2) = chromosome 4, 

PLS3V5 = chromosome 6, Hb9-Cre transgene = chromosome 5).  E.g., the homozygous 

expression of PLS3V5 on the Hung SMA background (chapter 5.2) resulting in the genotype 

Smn-/-;hSMN2tg/wt;PLS3V5tg/tg would not be possible if PLS3V5 mapped to the same 

chromosome as either the Smn knockout or the hSMN2 transgene.  

(ii) Hung SMA mice display a life expectancy that is long enough to study effects of 

PLS3V5 expression in postnatal stages. As will be outlined in the following chapters, Hung 

SMA mice on a pure C57BL/6N background live ~15d, allowing e.g. motoric ability testing or 

analysis of possible NMJ phenotypes.  

(iii) As will be described in chapter 5.4.2.1, breedings of the Hung mouse model result in 

50 % of affected SMA animals and 50 % control animals. Since the limitations in time and 

space during daily laboratory routine often interfere with fast analysis progression, the Hung 

SMA line displays an excellent model to overcome these issues.  

Since at the beginning of this work the Hung SMA model was only available on an FVB 

genetic background it had to be backcrossed with C57BL/6N animals to reach 100 % genetic 

purity. It is commonly accepted, that the genetic background of mouse strains can have an 

enormous modifying impact on the severity of a given phenotype. This has also been 

reported for the Hung SMA model: When on pure FVB background, Hung SMA animals 

show a mean survival of ~10d (Riessland et al., 2010). However, on a clean C57BL/6J 

background Hung SMA animals were reported to survive ~13 months, showing first signs of 

spinal motor neuron degeneration from 6 months of age (Tsai et al., 2008). Knowing that 

Hung SMA animals on the closely related C57BL/6J background survive for more than 1 

year, it appeared questionable if Hung SMA mice on C57BL/6N background would show 

earlier signs of SMA symptoms and with a survival time similar to that of FVB-SMA animals. 

Backcrossing is very time consuming. Assuming 7 generations of backcrossing and 

considering the 10 weeks generation time of mice, it was calculated that backcrossing of 

Hung SMA mice to a clean C57BL/6N background would take at least 17.5 months. 

However, a possibly strong ameliorative impact of the C57BL/6N background on the SMA 
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phenotype, e.g. an extremely extended life expectancy, was expected to become apparent 

already after some rounds of backcrossing. Therefore, Hung SMA animals with a statistic 

proportion of 87.5 % C57BL/6N / 12.5 % FVB mixed background, short “mixed background”, 

were phenotypically analyzed and compared to Hung SMA mice on a pure FVB background. 

This way, the Hung SMA phenotype on a relatively high C57BL/6N background was 

analyzed while backcrossings were still ongoing, giving an early first impression whether 

Hung SMA mice on pure C57BL/6N background would be appropriate for subsequent 

analysis at all.  

As will be outlined in the next chapters, the comparison of the phenotype of Hung SMA 

mice on either FVB or mixed background suggests that the SMA phenotype is severely 

influenced by the genetic background, underlining the importance of genetic purity for 

accurate phenotypic analysis.  

5.4.2.1 Nomenclature of Hung SMA mice and breeding scheme for the production 

of SMA mice 

As was mentioned, the Hung SMA mouse model was selected to serve for the analysis of 

PLS3V5 overexpression on an SMA background. In this mouse line, hSMN2 is 

homozygously present on Smn null background. These animals, here defined as Smn-/-

;hSMN2tg/tg, carry 2 SMN2 copies per integrate, thus homozygous transgenic mice have 4 

SMN2 copies. They do not develop an SMA phenotype, are fully fertile and live for > 1 year 

but develop a shortened and thick tail as well as necrotic ears (Riessland et al., 2010). By 

breeding Smn-/-;hSMN2tg/tg mice with animals heterozygous for the Smn knockout (Smn+/-), in 

each litter 50 % of SMA mice (Smn-/-;hSMN2tg/wt) and 50 % of control carriers (Smn+/-;hSMN 

tg/wt) were produced. In the following, for reasons of simplicity SMA mice of the genotype 

Smn-/-;hSMN2tg/wt are abbreviated with “SMA animals” and control carriers of the genotype 

Smn+/-;SMN tg/wt are termed “HET animals” (derived from heterozygously for the Smn 

knockout). An overview about the breeding scheme to produce SMA offspring and the 

nomenclature used for SMA animals as well as control carriers is given in Figure 28.  
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Figure 28: Breeding scheme and nomenclature of Hung SMA mice. Breeding of Smn
-/-

;hSMN2
tg/tg 

with Smn
+/-

 mice produces 50 % of SMA offspring of the genotype Smn
-/-

;hSMN2
tg/wt

 and 
50 % of control carriers of the genotype Smn

+/-
;hSMN2

tg/wt
. SMA and control carriers are 

abbreviated as “SMA” and “HET” animals, respectively 

5.4.2.2 Survival, weight and motoric ability of Hung SMA mice are strongly 

dependent on the genetic background 

In order to get an impression of the influence of the C57BL/6N genetic background on the 

SMA phenotype, SMA animals (Smn-/-;hSMN2tg/wt) of the mixed background (87.5 % 

C57BL/6N / 12.5 % FVB) were analyzed and compared with SMA mice from a clean FVB 

background. First survival, weight gain and motoric ability of SMA animals were compared, 

before also morphological differences were analyzed (Endplate occupancy, endplate area, 

muscle fiber size, chapter 5.4.2.3). Since at the end of this work data for survival, weight and 

motoric ability were available for pure C57BL/6N SMA animals and HET controls, these were 

included into the respective diagrams. Regarding morphological analyses, only data of FVB 

and mixed background animals were available and could thus be compared with each other.  

SMA animals on the different backgrounds showed highly significant differences in 

survival, as revealed by Student`s t-test. While FVB SMA mice show a mean survival of 9.9 

d, mixed background SMA animals survive only ~ 9 d longer, namely ~19.2 d, despite the 

relative high proportion of 87 % C57BL/6N background (Figure 29, A). It was therefore 

assumed that also further backcrossing to C57BL/6N background would not increase the 

survival of mixed background SMA animals to such extent as it was observed when the Hung 

SMA model was backcrossed onto clean C57BL/6J background  (Mean survival ~13 mo) 

(Tsai et al., 2008).  
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Figure 29: Survival and weight analysis of Hung SMA mice (Smn
-/-;

;hSMN2
tg/wt

) on different 
genetic backgrounds (100 % FVB, mixed (87 % C57BL/6N + 13 % FVB) and 100 % 
C57BL/6N). A: SMA mice on pure FVB background show a mean survival of 9.9 d, 

mixed background SMA animals have a mean life expectancy of 19.2 days and SMA 
animals on clean C57BL/6N background survive for 15.5 days. B: Example of P13 

SMA animals on the three different backgrounds: FVB, mixed and C57BL/6N. Note the 
size differences. C: Weight diagram of HET controls (Smn

+/-;
;hSMN2

tg/wt
) of all three 

genetic backgrounds. D: Weight progression in SMA animals of all three genetic 
backgrounds. C57BL/6N animals weigh less than pure FVB or mixed background 
mice. (Animal numbers for weight and survival measurements: HET animals: nFVB=29, 
nmixed=51, nC57BL/6N=23; SMA animals: nFVB=33, nmixed=44, nC57BL/6N=22) 

Based on this assumption, backcrossing to C57BL/6N background was continued in order 

to produce an appropriate SMA model for PLS3V5 overexpression studies. It was found, that 

SMA mice of clean C57BL/6N background had an again reduced mean life expectancy of 

15.5 d as compared to mixed SMA animals (Figure 29, A). The fact that Hung SMA mice 

show reduced survival on both pure FVB and C57BL/6N background if compared to mixed 

SMA animals suggests an ameliorative effect through heterogeneity on the disease 

phenotype. Furthermore, the increase in survival observed for C57BL/6N SMA mice (15.5 d) 

when compared to FVB SMA animals (9.9 d) may indicate the presence of background 

specific modifiers in the C57BL/6N background.  

The general picture of SMA mice on different backgrounds did not forcedly correlate with 

the observed survival. Around P13, mixed SMA mice, that lived longest, showed a significant 

increase in weight when compared to FVB or C57BL/6N SMA animals (Figure 29, D). 
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Additionally, they were visibly larger and seemed more robust than FVB or C57BL/6N SMA 

mice of the same age (Figure 29, B). In contrast to that, between FVB and C57BL/6N SMA 

mice the disease picture did not correlate with the survival data: Even though C57BL/6N 

SMA live ~5 d longer than FVB SMA animals, C57BL/6N SMA mice weighed significantly 

less at P13 and are by far smaller compared to FVB SMA mice of the same age (Figure 29, 

B and D). One possible explanation for this contradictive observation could be that even 

when smaller and lighter, C57BL/6N mice possess an increased muscle/fat tissue ratio 

compared to FVB SMA animals. Noteworthy, HET animals (Smn+/-;HSMN2tg/wt) of all genetic 

backgrounds showed no significant weight differences at P13 (Figure 29, C).  

To investigate the motoric ability of SMA animals on the different backgrounds, mice were 

subjected to the tube test. In this test, SMA animals of mixed background showed the best 

motoric ability from P0 until P15 again pointing at an ameliorative effect of heterogeneity on 

the SMA phenotype (Figure 30, B). Between P15 and P30, the motoric ability of mixed 

background SMA animals improved to almost the level of HET animals (Figure 30, A). In this 

context it is important to mention that only a few mixed SMA animals survived P25 (n=3). 

Therefore, it is to keep in mind that these animals displayed exceptional motoric abilities but 

were not representative for the gross of mixed SMA mice. In the time period between P5 and 

P11 and similar to the weight results, FVB SMA mice displayed a tendency towards better 

motoric performance compared to C57BL/6N SMA animals (Figure 30, B), even though they 

live significantly shorter than C57BL/6N mice (Figure 29, A). At around P10, however, the 

curve steeply decreases for FVB SMA animals, reflecting the progression of SMA pathology. 

 

Figure 30: Motoric evaluation of HET (Smn
+/-;

;hSMN2
tg/wt

) and SMA mice (Smn
-/-;

;hSMN2
tg/wt

) 
using the tube test. A: Motoric ability of HET mice over a time period of 35 days. B: 
Motoric ability curve of SMA animals over a time period of 35 days. (Used animal 
numbers: HET animals: nFVB=29, nmixed=51, nC57BL/6N=23; SMA animals: nFVB=33, 
nmixed=44, nC57BL/6N=22) 

HET animals of mixed and FVB background behaved similar reaching the maximum tube 

score of 4 at around P9. Interestingly, however, HET mice on clean C57BL/6N background 

displayed significantly weaker performance between P2 and P12 (p=0.0003). This finding 

might indicate that C57BL/6N animals do principally exhibit reduced motoric abilities in early 
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stages. On the other hand, the weight of HET C57BL/6N mice did not significantly differ from 

FVB and mixed background animals in this time period. Additionally, the overall size and 

appearance of HET animals on C57BL/6N was by all means comparable to that of FVB and 

mixed background mice.  

Taken together, SMA mice show significantly different survival times, weight gain and 

motoric abilities depending on the genetic background. In this regard heterogeneity seems to 

have a positive influence on the SMA phenotype since mixed background SMA mice were 

the longest living and motorically fitter compared to clean FVB or C57BL/6N SMA mice. 

5.4.2.3 Hung SMA mice on pure FVB and mixed genetic background show highly 

significant differences regarding endplate area size and occupancy as well 

as muscle fiber size   

The vertebrate neuromuscular junction (NMJ) consists of the terminal part of the motor 

neuron, the so called presynapse, and the muscular accumulation of acetyl 

cholinetransferase receptors (AChR), called endplate. It has previously been demonstrated 

that the maturation of the NMJ is seriously impaired in SMA-like mice, including poor 

arborization of presynaptic motor neuron terminals as well as reduction of the endplate area 

size in SMA mice compared to control littermates (Kariya et al., 2008).  

Taking these characteristics of SMA pathology as criteria, NMJs of Gastrocnemius muscle 

of SMA mice on FVB and mixed genetic background were compared with each other. For 

this purpose, muscle sections were prepared and nerve terminals stained using an antibody 

against neurofilament-M (green) and endplates using rhodamine labeled bungarotoxin (red).  

The arborization degree of incoming motor neuron terminals was assessed in P5 SMA 

and HET mice by allocating the observed phenotypic appearance of NMJs to one of 4 

different branching types (Figure 31, A). For each respective genotype (SMA or HET) and 

background (FVB or mixed) 100 NMJs of a total of 3 animals were analyzed. When 

comparing HET animals on FVB and mixed background, no significant differences regarding 

the distribution of branching types could be observed (Figure 31, B), as was confirmed by 

Student`s t-test. In contrast to that when comparing SMA animals on FVB and mixed genetic 

background, mixed SMA animals showed a significantly reduced number of type I (p=0.039) 

and a significantly increased number of type III NMJs (p=0.02). These results suggest that 

endplates of SMA mice on a mixed genetic background display a stronger occupation by 

nerve terminals compared to FVB mice.  
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Figure 31: Analysis of NMJ occupancy in Gastrocnemius muscle of P5 SMA and HET mice on 
pure FVB and mixed genetic background. A: Categorization scheme depicting the 4 

different branching types: Type I like endplates display one, Type II two, Type III three 
and Type 4 four or more nerve branchings per endplate. B: Assessment of the 

percentages of the different occupancy types (A) in HET and SMA mice of FVB and 
mixed background. While HET mice exhibited no significant changes among the 
different genetic backgrounds, mixed SMA mice displayed a significantly lower 
proportion of type I but instead increased number of type III occupied endplates. (Used 
animal numbers : HET animals: nFVB=3, nmixed=3; SMA animals: nFVB=3, nmixed=3; 
Stainings: Red = bungarotoxin (Btx); Green = α-neurofilament (NF); 100 NMJs were 
classified per animal) 

Next the endplate area size of SMA and HET animals was determined in a time course 

experiment for both genetic backgrounds, FVB and mixed. For this purpose, endplates were 

visualized using rhodamine labeled Bungarotoxin and the sizes of AChR clusters were 

measured with help of Axio Vision computer software (Zeiss) under a fluorescent 

microscope. 

Including P1, P5 and P10 time points it was found that HET animals on FVB or mixed 

genetic background exhibited no significant differences in their endplate sizes (Figure 32, B). 

However, when SMA animals of FVB and mixed background were compared a significant 

increase in endplate size was observed for SMA mice of mixed background starting at P5 

(SMAFVB = 100,29 ± 36,53 µm2, SMAmixed = 129,37 ± 33,93 µm2; p=0.00193) and becoming 

even more evident at P10 (SMAFVB = 120,30 ± 38,45 µm2, SMAmixed = 169,28 ± 84,16 µm2; 

p=0.00066). To visualize the measurements, the difference in endplate size of FVB and 
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mixed SMA animals is additionally depicted in Figure 32, A. These findings are in line with 

the observed increase in endplate occupancy in mixed SMA animals. In the past, numerous 

studies have identified a broad spectrum of diffusible and non diffusible factors provided by 

the presynapse that are important for AChR clustering, one of the most important effectors in 

AChR clustering being the secreted MuSK receptor ligand Agrin (Wu et al., 2010). Assuming 

that a higher degree of arborization of nerve terminals in mixed SMA animals results in 

elevated secretory vesicle release it seems plausible that motor endplate size of mixed SMA 

animals increases simultaneously.  

Together with the data from the occupancy studies, the increase of endplate size in mixed 

SMA animals points at an improved NMJ maturation process compared to FVB SMA 

animals.  

 

Figure 32: Analysis of endplate size in Gastrocnemius muscle of SMA and HET mice on FVB and 
mixed genetic background. A: Representative picture of NMJ sizes in P10 SMA and 

HET animals on FVB and mixed genetic background. The endplate size of mixed SMA 
animals is markedly increased compared with SMA mice on FVB background. B: Time 

course experiment (P1, P5 and P10) depicting NMJ sizes of SMA and HET mice on 
FVB and mixed genetic background. While FVB and mixed HET mice show nearly the 
same endplate size at the various time points, the endplates of mixed SMA animals 
are clearly enlarged compared to FVB SMA mice starting at P5 (p=0.00193) and 
becoming even more evident at P10 (p=0.00066). (Used animal numbers: HET 
animals: nFVB=3, nmixed=3; SMA animals: nFVB=3, nmixed=3; Stainings: Red = 
bungarotoxin (Btx); Green = α-NF; 100 endplates were measured per animal) 

To investigate whether the improved NMJ maturation process observed for mixed SMA 

mice resulted in increased muscle fiber size compared to FVB SMA animals, cross sections 

of Vastus lateralis muscle from mouse upper legs were produced and H&E stainings 

performed. As could be observed HET animals of both, FVB and mixed background 

displayed no significant differences in muscle fiber size at the various time points, as 

evaluated by the Student`s t-test. However, muscle fiber size of mixed SMA mice was highly 

significantly increased at P1 (SMAmixed = 111.00 ± 49.00 µm2, SMAFVB = 87.38 ± 30.02 µm2; 

p=2.2 x 10-12), P5 (SMAmixed = 129.37 ± 33.93 µm2, SMAFVB = 100.29 ± 36,53 µm2; p=2.3 x 10-
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23) and P10 (SMAmixed = 169.28 ± 84.16 µm2, SMAFVB = 120.30 ± 38.45 µm2; p=8.5 x 10-15) 

time points when compared to SMA mice of FVB genetic background animals. These results 

are highly consistent with the previous findings of improved motoric ability (chapter 5.4.2.2) 

as well as NMJ maturation in mixed background SMA animals.  

 

 

Figure 33: H&E staingins to determine Vastus lateralis muscle fiber size in SMA and HET 
controls on FVB and mixed genetic background. A: Cross section through Vastus 
lateralis muscle of P10 SMA and HET mice of FVB and mixed background to illustrate 
muscle fiber size differences. B: Time course experiment (P1, P5 and P10) depicting 
Muscle fiber sizes of SMA and HET mice on FVB and mixed genetic background. 
While HET mice on FVB and mixed background display identical muscle fiber sizes at 
the various time points, mixed SMA mice show an increase of muscle fiber size at P1 
(p=2.2 x 10

-12
), P5 (p=2.3 x 10

-23
) and P10 (p=8.5 x 10

-15
) when compared with FVB 

SMA mice. (Used animal numbers: HET animals: nFVB=3, nmixed=3; SMA animals: 
nFVB=3, nmixed=3, 100 muscle fibers were measured per animal) 

To summarize, mixed SMA were found to exhibit longer survival and improved motoric 

abilities compared to SMA animals on pure FVB or C57BL/6N background. The assumption 

that heterogeneity causes an amelioration of the SMA phenotype was further confirmed by 

morphological analyzes of mixed and FVB SMA animals: In this context, mixed SMA mice 

when compared with FVB SMA animals showed clear improvement of the NMJ maturation 

process, as demonstrated by occupancy as well as endplate size measurements. 

Furthermore, improved NMJ maturation in mixed SMA mice was accompanied by an 

increase in muscle fiber size strengthening the view of an ameliorative effect of heterogeneity 

on the SMA phenotype. 

Finally, SMA animals on pure C57BL/6N background showed a ~5 days prolonged mean 

survival compared to SMA mice on pure FVB background. Since heterogeneity can be 

excluded, this suggests the presence of background specific SMA ameliorative modifiers in 

C57BL/6N SMA mice. 

5.4.3 Functional analysis of PLS3V5 expression on the SMA phenotype 

To study a possible rescuing effect of PLS3V5 expression on the SMA phenotype, the 

ubiquitously PLS3V5 expressing PLS3V5-ubi line (chapter 5.3.1) was crossed onto the Hung 
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SMA background. Since the genetic background had been demonstrated to markedly 

influence the severity of the SMA phenotype (chapters 5.4.2.2 and 5.4.2.3) both, the 

PLS3V5-ubi as well as the SMA line were first backcrossed on pure C57BL/6N background. 

Functional analysis of PLS3V5 overexpression effects comprised survival, weight and 

motoric ability assessment of PLS3V5 expressing SMA mice and controls (chapter 5.4.3.2). 

Furthermore, morphological studies were performed with particular focus on the development 

and integrity of the NMJ. In a previous study, transient PLS3V5 expression has been shown 

to rescue axonal outgrowth defects observed in primary motor neurons from SMA mice and 

in zebrafish, in which Smn was knocked down by morpholino injection (Oprea et al., 2008). 

Moreover, in chapter 5.4.1.3 of this work PLS3V5 overexpression was shown to result in the 

stabilization of filopodial protrusions in MEF cells (chapter 5.4.1.3). Therefore, it was 

assumed that PLS3V5 overexpression might also in the mouse play an important role for 

axonal integrity at the level of NMJ formation in vivo.   

5.4.3.1 Crossing PLS3V5 onto the SMA background and nomenclature of animals  

To facilitate PLS3V5 expression on the SMA background, heterozygous Smn knockout 

mice were crossed with PLS3V5tg/wt mice in a first step to obtain Smn+/-;PLS3V5tg/wt offspring 

(Figure 34). Smn+/-;PLS3V5tg/wt mice were then bred with Smn-/-;hSMN2tg/tg animals. The 

resulting offspring was made up of 4 different genotypes, each occurring with a statistically 

equal incidence of 25 %:  

 

 Smn-/-;hSMN2tg/wt :  SMA mice 

 Smn-/-;hSMN2tg/wt;PLS3V5tg/wt :  SMA mice expressing PLS3V5 

 Smn+/-;hSMN2tg/wt : HET mice 

 Smn+/-;hSMN2tg/wt;PLS3V5tg/wt :   HET mice expressing PLS3V5 

 

Since all resulting offspring could be used for further examinations, the 100 % outcome of 

this breeding scheme accelerated the process of analysis.  

For reasons of simplicity, in the next chapters all genotypes of SMA and PLS3V5 

expressing SMA animals as well as the HET and PLS3V5 expressing HET mice are 

abbreviated as is defined in Figure 34.  
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Figure 34: Breeding scheme for the production of PLS3V5 overexpressing Hung SMA mice 

5.4.3.2 PLS3V5 expression does not improve survival, weight or motoric ability of 

Hung SMA mice 

Since SMN1-deleted unaffected siblings of discordant SMA families, who are highly 

expressing PLS3, are fully asymptomatic (Oprea et al., 2008), it was nearby to first 

investigate the survival of SMA animals compared to SMA mice expressing PLS3V5 (SMA + 

PLS3V5 mice). A total of 20 animals were analyzed for each genotype, whereby the group 

consisted always of 10 males and 10 females to exclude any gender specific effects. 

Unexpectedly, SMA + PLS3V5 mice displayed no different life expectancy compared to SMA 

animals (Figure 35, A): While SMA animals showed a mean survival of 15.5 ± 2.9 d, SMA + 

PLS3V5 animals have a mean life expectancy of 14.6 ± 3.4 d. However, the slight 

divergence of 0.9 d between the two genotypes was not significant (p=0.529). Since only 

female patients were observed to be protected by high levels of PLS3 (Oprea et al., 2008), it 

was plausible to ask if also in mice a possible rescuing effect was restricted to female mice 

only. To answer this question, the mean survival of female SMA and SMA + PLS3V5 mice 

was separately compared. While female SMA mice exhibited a mean survival of 15.9 ± 3.1 d, 

the mean life expectancy of SMA + PLS3V5 females was reduced to 13.7 ± 3.1 d. However, 

when applying Student`s t-test, this difference turned out to not be significant (p=0.148). Also 

male SMA and SMA + PLS3V5 mice did not display obvious changes in their survival times: 

While male SMA animals have a mean survival of 15.1 ± 2.6  d, male SMA + PLS3V5 mice 

live for an average of 15.5 ± 4.0 d, the observed differences again not being significant 

(p=0.777). Since no changes regarding survival time were observed in the groupwise 

comparison of females and males this indicates that there is no gender specific ameliorative 

effect on the SMA phenotype in mice.   

The absence of survival differences between SMA + PLS3V5 and SMA animals was also 

reflected in the general phenotypical picture of these mice. During the developmental 
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process from birth until death, SMA and SMA + PLS3V5 mice were not at all distinguishable 

(Figure 35, B). Also HET + PLS3V5 animals did not phenotypically differ from HET mice by 

any means. Additionally, also the analysis of weight revealed no differences between SMA 

and SMA + PLS3V5 animals as well as HET and HET + PLS3V5 mice (Figure 35, C).  

 

Figure 35: Survival, gross appearance and weight analysis of PLS3V5 expressing SMA animals and 
HET controls. A: Kaplan Meier curve of SMA and SMA + PLS3V5 animals, demonstrating 
no beneficial effect of PLS3V5 expression on survival (Mean survival times: SMA = 15.5 
d, SMA + PLS3V5 = 14.6 d (p=0.529)). HET and HET + PLS3V5 animals are not 
depicted since they showed normal survival B: Gross appearance of SMA and SMA + 
PLS3V5 mice as well as HET and HET PLS3V5 control mice. C: Weight progression of 
SMA and SMA + PLS3V5 as well as HET and HET + PLS3V5 mice. (Animal numbers: In 
survival as well as weight progression analysis 20 animals (10 males and 10 females) 
were analyzed for each genotype) 

Next, a possible effect of PLS3V5 overexpression on the motor function of SMA animals 

was investigated by applying the tube test and the righting reflex test. As has been described 

by others, SMA mice showed in the tube test a highly significant decrease in motor function 

compared to HET mice starting around P10 (p=0.0009) (Figure 36, A). However, no 

improvement of motoric ability was detected in SMA + PLS3V5 animals compared to SMA 

mice and also HET + PLS3V5 mice did not display any functional changes when compared 

with HET animals.  

These results were further confirmed by the righting reflex test. While SMA animals 

displayed a highly significant weakening in motor function compared with HET mice starting 



Results 
 

124 

at P10 (p= 3.7 x 10-5), the presence of PLS3V5 once again had no positive impact on motor 

function in SMA mice: As confirmed by Student`s t-test, no significant changes in their ability 

to right could be measured between SMA + PLS3V5 and SMA animals over the whole life 

span (Figure 36, B).  

 

Figure 36: Evaluation of motoric ability in SMA and SMA + PLS3V5 as well as HET and HET + 
PLS3V5 controls by tube and righting reflex test. A: The tube test did not reveal any 
changes in motoric ability between SMA and SMA + PLS3V5 animals. B: Also in the 

righting reflex test, SMA and SMA + PLS3V5 animals performed similar and did not 
display any significant differences. (Animal numbers: In both tube- and righting reflex test, 
20 animals (10 males and 10 females) were analyzed for each genotype) 

Taken together, no ameliorative effects of PLS3V5 overexpression were observed on 

neither survival, nor on weight or the general clinical picture of SMA mice. Furthermore, SMA 

+ PLS3V5 mice did not show any improvement in their motoric ability as assessed by tube 

and righting reflex test. These data are not in line with the previous findings in human, where 

high PLS3V5 levels had a fully rescuing effect on the SMA phenotype. In this context, it is 

important to mention that unaffected human siblings in most cases carried 3 hSMN2 copies, 

reflecting Type III SMA while Hung SMA mice display a very severe form of SMA. Therefore, 
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one might speculate that a high PLS3 level exerts its ameliorative effect only in the presence 

of certain amounts of SMN/Smn protein. 

5.4.3.3 NMJ endplate area but not muscle fiber size is increased in the distal 

Gastrocnemius muscle of ubiquitously PLS3V5 expressing P10 SMA mice 

Unexpectedly, PLS3V5 overexpression had no influence on the survival or motoric 

abilities of SMA mice (chapter 5.4.3.2). Nevertheless, it was observed before that PLS3V5 

overexpression results in extensive filopodial protrusions in MEF cells derived from 

PLS3V5tg/wt animals (chapter 5.4.1.3). Additionally, a positive effect of PLS3V5 on the 

outgrowth of axons from Smn depleted PC12 cells as well as murine primary motor neurons 

has been reported before (Oprea et al., 2008). Therefore, the focus of further analysis lay on 

studying a potential effect of PLS3V5 expression on the integrity of the neuromuscular 

junctions (NMJ).  

To investigate on that, NMJs of Gastrocnemius muscle sections from 6 animals (3 males 

and 3 females) of SMA, SMA + PLS3V5, HET and HET + PLS3V5 mice were analyzed using 

an antibody directed against neurofilament and bungarotoxin. Next, AxioVision Rel.4.7 

software was employed to measure the surface area size of muscular acetylcholine receptor 

(AChR) clusters (also termed “endplates”). As depicted in Figure 37 (A and B), SMA + 

PLS3V5 animals demonstrated markedly increased endplates when compared with SMA 

mice (SMA = 121.28 ± 8.31 µm2; SMA + PLS3V5 = 141.75 ± 2.76 µm2; p = 2.8 x 10-38). 

However, the endplate size in SMA + PLS3V5 mice was not restored to that of HET mice 

(HET = 162.15 ± 2.99 µm2), highlighting the importance of Smn protein in the process of 

proper NMJ formation. Moreover, this effect of PLS3V5 overexpression became also 

apparent in healthy HET + PLS3V5 mice when compared with HET mice (HET + PLS3V5 = 

190.48 ± 7.22 µm2; p = 1.9 x 10-50).  

Noticeably, endplate measurements of male and female mice of each genotype did not 

reveal any gender specific differences. For that reason and in combination with the finding 

that no survival differences were detectable between sexes (chapter 5.4.3.2) the gender was 

no longer considered in further analyzes. 
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Figure 37: Endplate measurements in Gastrocnemius muscle of SMA, SMA + PLS3V5, HET and 
HET + PLS3V5 controls. A: Endplate size differences as visualized by confocal 
microscopy. B: Quantification of endplate sizes found in the different genotypes. SMA 

+ PLS3V5 possess enlarged endplates than SMA mice. Also in HET animals, the 
endplate size increased highly significant upon PLS3V5 expression. (Animal numbers: 
For endplate measurements, 6 animals (3 males and 3 females) were analyzed for 
each genotype; Stainings: Red = Bungarotoxin (Btx); Green = α-Neurofilament (NF); * 
= p < 0.05; ** = p < 0.01; *** = p < 0.001; 100 endplates were measured per animal) 

In view of the fact that these results pointed towards improved NMJ integrity, next cross 

sections of Vastus lateralis, a proximal muscle, were prepared and the muscle fiber size of 

the same animals was determined. Different from what was expected, SMA + PLS3V5 and 

HET + PLS3V5 animals showed no increase in muscle fiber size compared to SMA or HET 

mice, respectively (Figure 38, B; SMA = 142.66 ± 51.54 µm2; SMA + PLS3V5 = 147.02 ± 

66.1 µm2; HET = 179.10 ± 55.91; HET + PLS3V5 = 181.71 ± 54.53). At the same time, 

however, these results are in line with the observation that SMA + PLS3V5 animals were not 

displaying any signs of improved motoric function compared to SMA mice (Figure 36).   
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Figure 38: H&E stainings to determine Vastus lateralis muscle fiber size in SMA, SMA + PLS3V5, 
HET and HET + PLS3V5 mice. A: Cross section through Vastus lateralis muscle of P10 
animals of the 4 different genotypes. No obvious size differences were observable B: 

Quantification of muscle fiber size found in the different genotypes. SMA + PLS3V5 and 
SMA mice as well as HET and HET + PLS3V5 display no significant differences 
regarding muscle fiber size. (Animal numbers: 3 animals were analyzed for each 
genotype; Abbreviations: n.s.= not significant; 100 muscle fibers were measured per 
animal) 

In summary, PLS3V5 led to an increase of endplate size in SMA or HET animals 

compared to the respective controls, independent of the gender. Since these results pointed 

towards improved NMJ integrity in PLS3V5 expressing mice, it was assumed that this might 

result in increased muscle fiber size in the same animals. However, muscle fiber size was 

unchanged between SMA + PLS3V5 and SMA mice as well as HET + PLS3V5 and HET 

control animals at P10 time point.  

5.4.3.4 Ubiquitous PLS3V5 expression leads to improved axonal connectivity in 

the proximal Transversus abdominis (TVA) muscle of SMA animals  

PLS3V5 expression resulted in an increased postsynaptic endplate size in P10 SMA 

animals. Since factors secreted by presynaptic terminals regulate AChR clustering, e.g. Agrin 

(Nitkin et al., 1987), an improved axonal integrity might explain this observation. The actin 

cytoskeleton plays an important role in axon growth, branching and retraction, but also in 

synapse formation and stability (Luo, 2002). Particularly in motor neurons, Smn has a 

function in promoting presynaptic differentiation by contributing to the translocation of β-actin 

mRNA to the presynaptic compartment (Rossoll et al., 2003). In another work, the lack of 

presynaptic β-actin protein has been linked to defective clustering of voltage-gated Ca2+ 

channels in motor neurons isolated from SMA animals (Jablonka et al., 2007). The authors 

speculate that this, in turn, could impair transmitter release from the axon terminals (Zhong 

and Zucker, 2004), finally leading to NMJ degeneration. Furthermore, PLS3V5 transient 

overexpression has been demonstrated to rescue axon outgrowth defects caused by Smn 

depletion in PC12 cells and primary motor neurons derived from SMA animals (Oprea et al., 
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2008). Moreover, as was reported before (Arpin et al., 1994) and was additionally shown in 

this work for MEF cells, PLS3V5 expression led to extensive filopodial outgrowth (chapter 

5.4.1.3), reflecting its function in actin bundling and cytoskeletal stabilization.  

Together, these findings highlight the importance of cytoskeleton integrity in presynaptic 

development. Therefore, a possible effect of PLS3V5 expression on the stability of terminal 

motor axons in vivo was assumed. To investigate on that, the process of axonal pruning was 

studied in a time course experiment at P1, P4 and P8 time points. The process of vertebrate 

nervous system development results in an overabundance of axonal connections. In this 

context, axonal pruning is a strategy to selectively remove exuberant neuronal branches and 

connections in the immature nervous system to ensure the proper formation of functional 

circuitry (Low and Cheng, 2006). The vertebrate NMJ has been a perfect model to study 

NMJ disassembly for a long time. During early postnatal stages, each muscle fiber is 

innervated by multiple axons or terminal arbors (Sanes and Lichtman, 1999). In a process of 

fine tuning, axon collaterals and axon arbors are removed or remodeled over time. Then, 

with ongoing maturation, postsynaptic endplates finally become innervated by only one 

terminal arbor from a single motor neuron (Low and Cheng, 2006). To find out whether 

PLS3V5 has any “stabilizing” effect on axons in the process of axonal pruning, the number of 

axons innervating individual endplates was determined in SMA, SMA + PLS3V5, HET and 

HET + PLS3V5 animals via fluorescent microscopy at P1, P4 and P8 time points. For this 

purpose, proximal Transversus abdominis (TVA) muscle was prepared from 3 animals for 

each of the described genotypes and time points and co-stained with neurofilament + 

Synaptic vesicle 2 (SV2) antibodies and bungarotoxin to outline incoming axon terminals of 

the NMJ. The number of axons was then counted for 100 endplates as is exemplarily 

depicted in Figure 39, A.  
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Figure 39: PLS3V5 delays axon withdrawal in the process of axonal pruning in Transversus 
abdominis muscle (P1 – P8). A: Exemplary pictures for axon counting. The number of 

axonal inputs of 100 endplates in 3 mice of each genotype (SMA, SMA + PLS3V5, 
HET and HET + PLS3V5) were determined and classified as I = 1 axon, II = 2 axons, 
III (+) = 3 or more axons. B: Calculation of the mean axon input number of all four 
genotypes revealed that PLS3V5 expressing SMA and HET animals show an 
increased mean number of axonal inputs per endplate at all given time points 
compared with SMA and HET mice. B´: Endplate size of all four different genotypes. 

First significant differences in endplate size get obvious around P4 and manifest at P8, 
whereby PLS3V5 expressing SMA and HET mice show an increase in endplate size 
compared with SMA or HET mice, respectively. C: Different representation of the data 
given in B, depicting the distribution of either I, II or III(+) axonal inputs / endplate (in 
percent) for each genotype at the respective time points P1, P4 and P8. (Animal 
numbers: 3 animals were analyzed for each genotype and time point; Stainings: Red = 
bungarotoxin; Green: neurofilament + SV2; * = p < 0.05; ** = p < 0.01; *** = p < 0.001; 
100 NMJs were classified per animal) 

  

As is shown in Figure 39 B and C, the mean number of axons innervating one single 

endplate decreased constantly from P1 until P8 in all genotypes investigated. Importantly, 

during the whole developmental phase of 8 days, HET animals showed a significantly higher 

mean number of axons per endplate compared to SMA mice, indicating poorer 

neuromuscular connectivity in TVA muscle of SMA animals. Interestingly, this result is 

contrary to findings by others, who were not able to observe a significant disturbance of the 

axonal pruning process in SMA mice (Kariya et al., 2008). However, a possible explanation 

for this could be that Kariya et al. investigated the distal and thus less affected 
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Gastrocnemius muscle, whereby in this thesis the proximal Transversus abdominis muscle 

was analyzed.  

Furthermore, and most strikingly, SMA + PLS3V5 mice displayed a highly increased mean 

number of axons per endplate compared to SMA animals at all given time points (Figure 39, 

B and C). These findings strongly suggest that PLS3V5 expression causes a delay in the 

axonal pruning process and exerts a “stabilizing” effect on axons, as it was similarly 

observed for filopodial protrusions in MEF cells before (chapter 5.4.1.3). Moreover, the 

observation of increased axon number was not only restricted to SMA + PLS3V5 mice but 

could also be seen in HET + PLS3V5 animals. Compared to HET mice, HET + PLS3V5 mice 

displayed significantly more axons reaching the endplates at all time points. Importantly, the 

number of incoming axons was almost identical between SMA + PLS3V5 and HET + 

PLS3V5 mice over the whole time course, indicating that the axon “stabilizing” effect of 

PLS3V5 is likely independent of Smn.  

Measurement of the endplate size in PLS3V5 expressing SMA and HET animals 

previously revealed that PLS3V5 has a positive effect on the endplate size at P10 (chapter 

5.4.3.3). Also in the time course experiment, PLS3V5 expression in SMA and HET animals 

resulted in highly significantly increased endplates when compared to SMA or HET animals, 

respectively (Figure 39, B´). This observation was first detectable around P4 and manifested 

at P8, whereas at P1 almost no significant differences in endplate size were observable in 

the different genotypes. At P1, however, the mean axon number per endplate was already 

highly significantly increased in PLS3V5 expressing SMA and HET mice. This observation 

indicates that the increase in endplate size timely follows improved axonal connectivity 

observed in PLS3V5 expressing animals and implicates that enhanced AChR clustering 

might be a consequence of stronger innervation. Even though the mean axon number per 

endplate in SMA + PLS3V5 mice significantly exceeded the level of HET controls at P1 and 

P4, this was not sufficient to restore endplate size in SMA + PLS3V5 mice to the level of HET 

mice (Compare B and B´ in Figure 39).  

This result highlights the importance of Smn in correct NMJ formation and suggests that 

PLS3V5 alone, at least at heterozygous expression levels, is not sufficient to compensate 

endplate defects observed in SMA animals. As shown in unaffected siblings of discordant 

families, who in most cases possess three or four hSMN2 copies, a certain amount of SMN 

protein seems to be required for full rescue. 

It has been demonstrated in the past that actin filament assembly in the muscle is a 

necessary pre-requisite for Agrin induced AChR clustering (Dai et al., 2000). Since PLS3V5 

was ubiquitously expressed in the here described experiments, including muscle tissue, an 

influence of PLS3V5 on the endplate size by stabilizing actin filaments in the muscle must be 

considered. In order to dissect the impact of presynaptic PLS3V5 expression on the endplate 
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size, experiments in which PLS3V5 was motor neuron specifically activated will be presented 

in the course of this work (chapter 5.5.). 

Taken together, it was shown that the presence of PLS3V5 results in a “stabilization” of 

incoming motor axons in SMA and HET animals during the process of axonal pruning. Since 

the extend of axon “stabilization” mediated by PLS3V5 was similar between SMA and HET 

animals, this indicates an Smn independent mechanism. The increase in axonal input 

number was accompanied by enhanced AChR clustering, whereby SMA + PLS3V5 mice 

displayed a highly significant increase in endplate size when compared to SMA animals. At 

least when heterozygously expressed, PLS3V5 was not able to fully restore endplate size in 

Gastrocnemius muscle of SMA animals to the level of HET controls, pointing at the 

indispensability of Smn protein in the process of proper NMJ maturation.  

5.4.3.5 Ubiquitous PLS3V5 expression results in highly occupied endplates and 

extensive presynaptic branching at the NMJ 

It was studied next, whether PLS3V5 had a direct influence on the occupancy level of 

postsynaptic endplates. For this purpose, the degree of nerve occupation at the NMJ was 

estimated for 100 NMJs of 3 P4 animals of each of the genotypes SMA, SMA + PLS3V5, 

HET and HET + PLS3V5 regarding to the reference given in Figure 40, A. As has been 

reported before (Cifuentes-Diaz et al., 2002), the comparison between HET and SMA mice 

revealed less occupied endplates in SMA animals, with 68 % of all investigated NMJs 

reflecting Type I (poorly occupied) AChR cluster (Figure 40, A). In contrast to that, PLS3V5 

expressing SMA as well as HET animals displayed hyperinnervated endplates with the main 

proportion of NMJs reflecting Type III (fully occupied) AChR clusters (63  and 67 %, 

respectively) when compared to SMA or HET animals, respectively. No significant 

differences were found regarding occupancy level between PLS3V5 expressing SMA and 

HET animals, further supporting the view that PLS3V5 mediated “stabilization” of presynaptic 

structures occurs Smn independently. Moreover, careful microscopical analysis of PLS3V5 

expressing SMA and HET mice revealed generally stronger arborized and branched 

presynaptic nerve terminals, reflecting the positive impact of PLS3V5 on axon outgrowth as 

was observed in PC12 as well as isolated murine motor neurons (Oprea et al., 2008) (Figure 

40, B). 
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Figure 40 Increased NMJ occupancy and nerve terminal sprouting in Transversus abdominis 
muscle of PLS3V5 expressing SMA and HET mice. A: Classification of occupancy 

level into poorly occupied (Type I), medium occupied (Type II) and fully occupied 
(Type III) endplates. SMA + PLS3V5 and HET + PLS3V5 mice displayed a higher 
degree of fully occupied endplates compared to SMA and HET animals, respectively. 
B: Presynaptic nerve terminals are strongly arborized and branched in SMA + 

PLS3V5 and HET + PLS3V5 mice compared to SMA and HET animals, respectively. 
Four representative examples (1-4) are given per genotype. (Animal numbers: 3 P4 
animals were analyzed for each genotype ;Stainings: Red = Bungarotoxin; Green = α-
Neurofilament + SV2; 100 NMJs were classified per animal). 

In summary, PLS3V5 expressing SMA and HET animals show highly increased endplate 

occupancy as well as presynaptic branching when compared to non expressing animals. 

These findings are in line with the observed axon stabilization phenotype during the process 

of axonal pruning (chapter 5.4.3.4) and implicate that an increased endplate size in the 

presence of PLS3V5 might be caused by enhanced presynaptic release, e.g. Agrin.  

5.4.3.6 PLS3V5 protein has no stabilizing effect on Smn protein and vice versa 

Via 2-dimensional gel electrophoresis Pls3 and Smn were shown to exist in a 200- and in 

a 500 kDa complex in murine spinal cord (Oprea et al., 2008). Furthermore, via Co-

immunoprecipitation experiments it was found that Pls3 and Smn indirectly interact with each 

other. These observations led to the assumption that Pls3 and Smn might have a stabilizing 

effect on each other. In line with this idea, it was previously reported that Pls3 levels were 

significantly reduced in brain and spinal cord of SMA mice, as shown by quantitative Western 
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blotting and immunohistochemistry (Bowerman et al., 2009). Similar results were obtained 

when Smn was knocked down via morpholino (MO) injection in zebrafish: Also here, pls3 

protein levels were significantly reduced when smn was depleted, whereas restoration of 

smn resulted in a simultaneous normalization of pls3 levels (Oral presentation Dr. Christine 

Beattie at the 15th FSMA meeting, San Francisco, USA).  

To investigate whether the loss of Smn protein affects Pls3 levels also in the here used 

SMA mouse model, proteins were isolated from brain and spinal cord tissue of 3 animals of 

HET controls and SMA mice and subjected to semi-quantitative Western blotting detecting 

Pls3. As was found for both brain and spinal cord Pls3 protein levels were not significantly 

changed between SMA and HET mice (Figure 41, A). In the inverse experiment, Smn levels 

were measured in PLS3V5tg/wt mice of the PLS3V5-ubi line and compared with wt animals. It 

was speculated that in case of PLS3V5/Smn interaction PLS3V5 might have a stabilizing 

effect on Smn protein, however, no increase in Smn protein could be detected in PLS3V5tg/wt 

animals (Figure 41, B). Together, these data do not confirm the observations made by others 

((Bowerman et al., 2009) and Dr. Christine Beattie) who reported a correlation of Pls3/pls3 

and Smn/smn protein amounts in mouse and zebrafish.  

 

Figure 41 Pls3 expression analysis in the SMA background and Smn protein expression analysis 
in PLS3V5

tg/wt 
mice of the PLS3V5-ubi line. A: Pls3 protein amount was not changed 

between HET and SMA mice. B: Smn protein amount did not change in the presence 

of PLS3V5.  
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5.5 Motor neuron specific expression of PLS3V5 on a wt background 

In the last few years, diverse publications have proven a direct involvement of actin 

polymerization in the process of AChR clustering (Dai et al., 2000, Campagna and Fallon, 

2006, Stetzkowski-Marden et al., 2006, Willmann et al., 2006, Zhu et al., 2006, Pato et al., 

2008, Lee et al., 2009). To address the question whether the observed positive effect of 

ubiquitous PLS3V5 expression on endplate size (chapters 5.4.3.3 and 5.4.3.4) is driven by 

PLS3V5 present in the muscle or whether motor neuron specific expression is sufficient, 

PLS3V5 was overexpressed specifically in motor neurons on a wt background. For this 

purpose, PLS3V5fl_st/wt mice of the PLS3V5-floxed line were crossed with the motor neuron 

specific Cre expressing line Hb9-Cre (Arber et al., 1999) (Figure 42). Resulting offspring was 

then analyzed via immunohistological methods for the effect of motor neuron specific 

PLS3V5 expression on motor neuron-, endplate- and muscle fiber size.  

 

Figure 42  Breeding scheme for the production of motor neuron specific PLS3V5 expressing 
mice: In PLS3V5

tg/wt 
; Hb9-Cre

tg/wt
 animals, Cre is motor neuron specifically expressed 

and leads to the deletion of the Stop-cassette between promoter and PLS3V5 
transgene. In WT, PLS3V5

tg/wt
 and Hb9-Cre

tg/wt
 control animals, PLS3V5 is not 

expressed. 

5.5.1 Effects of motor neuron specific expression of PLS3V5  

5.5.1.1 PLS3V5 is motor neuron specifically expressed in PLS3V5fl_st/wt;Hb9-Cretg/wt 

mice and leads to an increase of motor neuron cell body size 

To analyze whether Hb9-Cre mediated deletion of the stop-cassette between promoter 

and PLS3V5 transgene was successful and resulted in motor neuron specific PLS3V5 

expression in PLS3V5fl_st/wt;Hb9-Cretg/wt mice, immunohistological stainings were performed. 

For this purpose, spinal cord sections from lumbar regions 4 to 5 of P10 PLS3V5fl_st/wt;Hb9-

Cretg/wt mice were stained using V5 antibody to specifically detect PLS3V5 protein. In this 

approach, WT, PLS3V5fl_st/wt and Hb9-Cretg/wt mice were used as negative controls to exclude 

false positive signals due to unspecific binding of the antibody. Importantly, PLS3V5 protein 

was only detectable in motor neurons of PLS3V5fl_st/wt;Hb9-Cretg/wt mice but not in WT, 

PLS3V5fl_st/wt or Hb9-Cretg/wt controls (Figure 43).  
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Figure 43 PLS3V5 is motor neuron specifically expressed in PLS3V5
fl_st/wt

;Hb9-Cre
tg/wt

 mice, but 
not in PLS3V5

fl_st/wt
 and Hb9-Cre

tg/wt
 controls. For a better orientation, the respective 

ventral horn area is delineated in the above Nissl overview. (Stainings: Red = Chat 
staining; Green = V5) 

Since it is known from MEF cells that PLS3V5 overexpression can lead to morphological 

changes (chapter 5.4.1.3), it was next asked whether PLS3V5 overexpression might have an 

influence on motor neuron cell shape also in vivo. To investigate on that, AxioVision Rel.4.7 

software was used to determine the motor neuron soma size in spinal cord sections of P21 

PLS3V5fl_st/wt;Hb9-Cretg/wt animals as well as PLS3V5fl_st/wt and
 

Hb9-Cretg/wt controls. As 

depicted in Figure 44, PLS3V5fl_st/wt;Hb9-Cretg/wt animals showed a highly significant increase 

in motor neuron size compared to PLS3V5fl_st/wt and
 
Hb9-Cretg/wt controls (p = 3.52 x 10-40 and 

p = 3.62 x 10-34, respectively; PLS3V5fl_st/wt;Hb9-Cretg/wt  =  931.44 ± 24.64 µm2, PLS3V5fl_st/wt 

= 726.70 ± 55.6 µm2, Hb9-Cretg/wt = 754.24 ± 11.75 µm2), whereby motor neuron size 

between PLS3V5fl_st/wt and
 
Hb9-Cretg/wt animals did not significantly differ (p = 0.05263). The 

finding of increased motor neuron size in PLS3V5fl_st/wt;Hb9-Cretg/wt animals is of particular 

interest since reduced proprioceptive reflexes of motor neurons have recently been 
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correlated with decreased number and function of synaptic connections between motor 

neurons and muscle spindle afferents in SMA mice (Mentis et al., 2011). Since an increased 

motor neuron soma might provide extra surface area for afferent synapses this could 

possibly have a positive impact on spinal circuit function. 

 

Figure 44 Measurement of motor neuron size revealed highly significantly increased motor 

neuron soma size in PLS3V5
fl_st/wt

;Hb9-Cre
tg/wt

 compared  to PLS3V5
fl_st/wt

 and
 
Hb9-

Cre
tg/wt 

controls. (Animal numbers: 3 animals were analyzed for each genotype; 
Stainings: Red: Chat; Green: PLS3 or PLS3V5; * = p < 0.05; ** = p < 0.01; *** = p < 
0.001; 100 motor neurons were counted per animal) 

Here it was shown that PLS3V5 is activated specifically and exclusively in motor 

neurons of PLS3V5fl_st/wt;Hb9-Cretg/wt mice. These findings allowed to investigate, whether 

motor neuron specific expression of PLS3V5 is sufficient to increase endplate size or if 

improved AChR clustering is solely regulated by muscular PLS3V5 protein (chapter 5.5.1.2.) 

Furthermore, in P21 PLS3V5fl_st/wt;Hb9-Cretg/wt animals PLS3V5 expression lead to a highly 

significant increase in motor neuron soma size compared to control mice.  
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5.5.1.2 Motor neuron specific expression of PLS3V5 is able to rescue endplate 

defects observed in Hb9-Cretg/wt p10 and p21 animals and leads to a highly 

significant muscle fiber size increase in p21 PLS3V5fl_st/wt;Hb9-Cretg/wt mice.   

As was speculated in chapter 5.5, PLS3V5 in the muscle might account for the observed 

increase in endplate size in P10 PLS3V5 ubiquitously expressing SMA and HET mice 

(chapters 5.4.3.3 and 5.4.3.4.). To assess if also motor neuron specific expression of 

PLS3V5 was sufficient to increase endplate size in Gastrocnemius muscle, PLS3V5 was 

motor neuron specifically activated on a wt background by crossing with the Hb9-Cre line 

(chapter 5.5). In Hb9-Cre mice, Cre recombinase is inserted in the intrinsic Hb9 gene causing 

loss of function. In 1999, Arber et al. reported that the homozygous loss of Hb9 in Hb9-Cretg/tg 

mice resulted in total absence of motor axons and consequentially perinatal lethality. 

Furthermore, severe AChR clustering defects were observed as the process of prepatterning 

and the individual shape of early endplates was disturbed (Arber et al., 1999).  

In line with these observations, P10 Hb9-Cretg/wt mice showed a highly significant 

reduction in endplate size when compared to PLS3V5fl_st/wt and PLS3V5fl_st/wt;Hb9-Cretg/wt 

mice (Figure 45, A; p = 3.09 x 10-39 and 3.46 x 10-44, respectively; P10 Hb9-Cretg/wt = 136.66 ± 

10.09 µm2, PLS3V5fl_st/wt = 160.08 ± 4.14 µm2, PLS3V5fl_st/wt;Hb9-Cretg/wt = 162.96 ± 5.66 µm2) 

. The fact that the endplate size in PLS3V5fl_st/wt;Hb9-Cretg/wt mice was restored to that of 

PLS3V5fl_st/wt animals demonstrated that motor neuron specific overexpression of PLS3V5 

was sufficient to rescue endplate size defects of Hb9-Cretg/wt animals. Nevertheless, an 

involvement of muscular PLS3V5 protein in the process of AChR clustering cannot be 

excluded based on these findings. Furthermore, when comparing muscle fiber diameter of 

Vastus lateralis muscle, PLS3V5fl_st/wt, Hb9-Cretg/wt and PLS3V5fl_st/wt;Hb9-Cretg/wt mice did not 

display any differences at P10 (Figure 45, A´). 

At later time point P21, PLS3V5 expression in PLS3V5fl_st/wt;Hb9-Cretg/wt led to a highly 

significant increase in endplate size relative to PLS3V5fl_st/wt and Hb9-Cretg/wt animals in 

Gastrocnemius muscle (Figure 45, B; p = 5.16 x 10-5 and p = 0.00081, respectively; 

PLS3V5fl_st/wt;Hb9-Cretg/wt = 372.62 ± 15.02 µm2, PLS3V5fl_st/wt = 306,49 ± 6.02 µm2;     Hb9-

Cretg/wt = 319.03 ± 5.17 µm2). In addition and most strikingly, the bigger endplate size in 

PLS3V5fl_st/wt;Hb9-Cretg/wt animals was accompanied by the observation of a highly significant 

increase in muscle fiber size (Vastus lateralis) compared to PLS3V5fl_st/wt and Hb9-Cretg/wt 

controls (Figure 45, B´, p = 3.15 x 10-11 and p = 5.81 x 10-15, respectively; PLS3V5fl_st/wt;Hb9-

Cretg/wt = 539.53 ± 16.85, PLS3V5fl_st/wt  =  408.87 ± 9.36 µm2;  Hb9-Cretg/wt = 382.48 ± 9.94 

µm2 ). These findings strongly suggest that the observed improvement in axonal connectivity 

and NMJ occupation in PLS3V5 expressing mice (chapters 5.4.3.4 and 5.4.3.5) is indeed 

functional. However, since endplate size and muscle fiber size were determined in different 



Results 
 

138 

muscles, further experiments will include endplate size measurements in Vastus lateralis 

muscle as well as muscle fiber size determination in Gastrocnemius muscle. 

 

Figure 45: Motor neuron specific expression of PLS3V5 at P10 and P21 time points and its 
effects on endplate (Gastrocnemius muscle) as well as muscle fiber size (Vastus 
lateralis muscle). A and A´: PLS3V5 expression in P10 PLS3V5

fl-st/wt
;Hb9-Cre

tg/wt 
mice 

is able to compensate endplate size defects observed in Hb9-Cre
tg/wt

 animals, 
whereby muscle fiber size did not differ between PLS3V5

fl_st/wt
, Hb9-Cre

tg/wt
 and 

PLS3V5
fl-st/wt

;Hb9-Cre
tg/wt

 mice. B and B´: At P21, PLS3V5 expression in PLS3V5
fl-

st/wt
;Hb9-Cre

tg/wt
 resulted in highly increased endplate- and muscle fiber size compared 

to PLS3V5
fl_st/wt

 and Hb9-Cre
tg/wt

 mice. (Animal numbers: 5 animals were analyzed for 
each genotype at P10 and 3 animals for each genotype at P21; * = p < 0.05; ** = p < 
0.01; *** = p < 0.001, 100 endplates and 100 muscle fibers were counted per animal in 
the respective tissue) 

To summarize, conditional expression of PLS3V5 exclusively in motor neurons was 

sufficient to increase endplate size at both time points, P10 and P21. These results support 

the view that enhanced axonal connectivity and endplate occupancy observed in PLS3V5 

expressing SMA and HET animals directly augmented AChR clustering, possibly through 

improved presynaptic release. Importantly, motor neuron specific PLS3V5 expression was 

able to highly significantly increase Vastus lateralis muscle fiber size in PLS3V5fl_st/wt;Hb9-

Cretg/wt mice at P21 time point. This finding demonstrates that improved axonal connectivity 

and endplate occupancy in PLS3V5 expressing animals is functional. The finding of 

increased muscle fiber size at P21 but not at P10 suggests that PLS3V5 effects on muscle 

fiber size become obvious first at later time points. However, sever Hung SMA mice die 
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already around P15. Therefore, SMA mice might just die too early to profit from PLS3V5 

overexpression. 
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6 Discussion 

6.1 Generation of a PLS3V5 expressing mouse 

PLS3 has previously been proven to be a fully protective modifier in unaffected SMN1-

deleted siblings of discordant SMA families (Oprea et al., 2008). Therefore, it was the main 

aim of the present study to investigate, whether PLS3 overexpression is also able to rescue 

the phenotype of an SMA mouse model.  

PLS3-overexpressing mice were produced by targeting a V5-tagged version of the human 

PLS3 gene (PLS3V5) controlled by the CMV enhancer/chicken β-actin (CAG) fusion 

promoter into the Rosa26 locus. Since a LoxP sites flanked stop-cassette was present 

between promoter and transgene (Figure 8), PLS3V5 expression could be driven either 

ubiquitously or tissue specifically. We induced a motor neuron specific expression by 

breeding PLS3V5-floxed mice with the Cre-expressing line Hb9-Cre (Arber et al., 1999). 

For transgenesis, the hybrid ES cell line V6.5 (SV129 and C57BL/6N) was used in this 

study (Eggan et al., 2002). V6.5 ES cells offer the big advantage of being insensitive and 

robust in handling. Furthermore, favorable germline transmission rates have been reported 

for those cells by various laboratories. Altogether, two rounds of ES cell transgenesis 

(chapter 5.2) and injection into blastocysts were performed using V6.5 ES cells before a 

single PLS3V5fl_st/wt transgenic female could be identified by genotyping PCR. Nevertheless, 

to study a possible modifying function of PLS3V5, a clean genetic background was required. 

Therefore, resulting PLS3V5fl_st/wt founder animals had to be backcrossed for more than 7 

generations to reach a statistical genetic purity of 100 % prior to further analysis.  

While constantly backcrossing PLS3V5fl_st/wt mice onto a clean C57BL/6N background, the 

same line was bred with the ubiquitously Cre-expressing line CMV-Cre (Schwenk et al., 

1995) in order to permanently delete the stop cassette between CAG promoter and 

transgene. Importantly, the Cre transgene is located on the X-chromosome in CMV-Cre 

mice. In animals of the genotype PLS3V5fl_st/wt;CMV-CreX_tg/Y the transgene was expected to 

be expressed ubiquitously in every cell type (chapter 5.3.3). However, using a PCR allowing 

to detect the presence or absence of the stop cassette, it was found that the stop cassette 

was present in ~50 % of PLS3V5fl_st/wt;CMV-CreX_tg/Y mice despite the presence of Cre, likely 

due to insufficient penetrance of the Cre enzyme (Figure 20, A). In line with this, the 

presence of the stop cassette in PLS3V5fl_st/wt;CMV-CreX_tg/Y mice was correlated with an 

absence of PLS3V5 expression on protein level (Figure 20, B). Importantly, this finding 

proved that the stop cassette between CAG promoter and PLS3V5 transgene successfully 

prevents uncontrolled transgene expression. This observation was of particular importance 

with respect to motor neuron specific overexpression of the PLS3V5 transgene. 

Cre expression has been shown to act toxic on cells in a dose dependent manner in 

various organisms and should therefore be outcrossed for further analyzes whenever 
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possible (Silver and Livingston, 2001). Moreover, Cre recombinase has been shown to 

induce proliferation disturbances in Drosophila melanogaster, resulting in phenotypic 

aberrations (Heidmann and Lehner, 2001). Finally, mice expressing Cre at high levels in 

spermatids display chromosome scrambling after meiosis II, causing complete male sterility 

(Schmidt et al., 2000). Since Cre was not necessary to activate PLS3V5 expression once the 

stop cassette had been deleted in the germline and to avoid unspecific side effects of Cre, 

PLS3V5 was outcrossed by breeding PLS3V5fl_st/wt;CMV-CreX_tg/Y mice with C57BL/6N wt 

animals (chapter 5.3.3). 

This way, heterozygous PLS3V5tg/wt animals of the so termed PLS3V5-ubi line (Table 13) 

were established, invariably carrying the stop-cassette-deleted allele in every cell and tissue. 

Notably, PLS3V5tg/wt animals displayed completely normal behavior, motoric ability, weight 

gain and fertility and were indistinguishable by their wt littermates. This suggested that 

PLS3V5 overexpression, at least when driven by the CAG promoter, is not per se toxic to 

cells. Additionally, the absence of toxic effects of PLS3V5 transgene expression allowed to 

model the situation in unaffected SMA siblings best possible, namely by ubiquitously 

overexpressing PLS3V5 in the murine SMA background.  

PLS3V5tg/wt animals on C57BL/6N wt background were further analyzed for PLS3V5 

expression on mRNA and protein level. By comparing total plastin 3 mRNA levels (here 

defined as the sum of PLS3V5 + endogenous Pls3) between wt and PLS3V5tg/wt mice, it was 

shown that plastin 3 is significantly overexpressed in all examined tissues affected by SMA, 

including brain, spinal cord and muscle (Figure 22, A). However, total plastin 3 mRNA levels 

were only moderately increased in brain, spinal cord and muscle to 3.6, 3.4 and 21.5 fold of 

endogenous level, respectively. In other tissue types, e.g. heart or blood, plastin 3 levels 

were more significantly increased, with 76.2 and 206 fold overexpression. Notice that the 

fold-expression reflects the difference compared to the endogenous level. Since there is 

usually no Pls3 expression in blood, a 200 fold increase is easy to be achieved. On the other 

hand, endogenous Pls3 is highly expressed in spinal cord or muscle, which means that the 

total plastin 3 level observed in spinal cord or muscle of transgenic mice might still exceed 

the level in blood. To ultimately compare plastin 3 overexpression levels between different 

tissue types, an absolute quantification would be necessary.  

On protein level, PLS3V5 was neither detectable in brain, nor in spinal cord of PLS3V5tg/wt 

mice using a PLS3 antibody recognizing both, endogenous Pls3 as well as PLS3V5 (Figure 

24, A, B). In this regard, it was only possible to obtain the endogenous Pls3 protein band and 

only in combination with V5 antibody, also PLS3V5 was detectable. Together, these findings 

indicated that PLS3V5 is present in brain and spinal cord of PLS3V5tg/wt animals, however, in 

lower concentrations as was indicated on mRNA level. This finding gets further support from 

experiments with liver proteins, where total plastin 3 mRNA amount was 7.8 fold increased 
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compared to endogenous level (Figure 22, A). Concomitantly with an increased PLS3V5 

expression on mRNA level, PLS3V5 protein was indeed detectable by using the PLS3 

antibody (Figure 24, C`). Nevertheless, as assessed by densitometric analysis, the 

expression of total plastin 3 protein in liver of PLS3V5tg/wt mice was only ~2 fold increased 

compared to wt level. Therefore, it is likely that also in brain, spinal cord and muscle the real 

plastin 3 upregulation is far below the levels indicated by mRNA expression analysis. These 

findings suggest that PLS3V5 mRNA is not likewise converted into PLS3V5 protein, 

indicating translational regulation of the transgene or other possible negative feedback 

mechanisms on its own expression. In this context it might be possible that 5` and 3` 

sequence elements of the targeting vector might account for lower translation rates. 

Furthermore, the V5-tag of the human PLS3 transgene might negatively impact on protein 

folding or stability and might thus induce degradation via the ubiquitin-proteasome system. 

Additionally, PLS3V5 was successfully activated specifically in motor neurons by crossing 

PLS3V5fl_st/wt mice with the motor neuron specific Cre line Hb9-Cre. Via qRT-PCR and 

Western blotting it was tried to detect PLS3V5 expression on mRNA and protein level in 

spinal cord of PLS3V5fl_st/wt;Hb9-Cretg/wt mice. Unexpectedly, PLS3V5 expression was 

detectable neither on mRNA, nor on protein level (data not shown). It is known that only a 

small percentage, in the range of 3-5 % of the total cell population, of spinal cord consists of 

motor neurons (Arce et al., 1999, Wiese et al., 2010). Therefore, it must be considered that in 

spinal cord lysate PLS3V5 mRNA and protein also hold only a very small percentage of total 

transcripts and proteins. Since no expression differences were detectable between 

PLS3V5fl_st/wt;Hb9-Cretg/wt animals and PLS3V5fl_st/wt as well as Hb9-Cretg/wt controls, it was 

concluded that qRT-PCR and Western blotting methods are not sensitive enough to detect 

such low levels of PLS3V5 mRNA and protein, respectively. A similar observation has been 

made in the context of motor neuron specific deletion of the splicing factor Sfrs10 in 

Sfrs10fl/fl;Hb9-Cretg/wt mice by our group (Mende et al., 2010). Finally, motor neuron specific 

expression of PLS3V5 was proven via immunohistochemical stainings using a V5 antibody 

on spinal cord sections of PLS3V5fl_st/wt;Hb9-Cretg/wt mice.  

6.2 The genetic background influences the phenotypic severity in Hung SMA 

mice 

The PLS3V5 transgenic lines were backcrossed onto pure C57BL/6N background in this 

thesis while the Hb9-Cre line for motor neuron specific overexpression was already present 

on pure C57BL/6N. It is commonly accepted that genetic purity is absolutely essential for the 

reliability and consistency of precise analysis. For that reason, also Hung SMA mice, at that 

time only present on FVB background, were backcrossed for at least 7 generations to 

C57BL/6N wt animals. Hung SMA mice on FVB background show a mean survival of 9.9 d 

(Riessland et al., 2010), while SMA mice on a C57BL/6N background live for 15.5 d. 
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Interbred SMA mice containing a statistical portion of 87 % C57BL/6N and 13 % FVB (mixed 

background), however, displayed the longest mean survival with 19.2 d. Because mice on 

pure C57BL/6N background live longer compared to SMA mice on FVB background, this 

suggests the presence of genomic modifying factors. Furthermore, the fact that mixed SMA 

mice survive longer than SMA animals on either of the two clean backgrounds indicates that 

genetic heterogeneity mitigates phenotypic severity. In contrast to the short survival time of 

only 15.5 d in Hung SMA mice on pure C57BL/6N background found here, Tsai et al. found 

that Hung SMA mice on pure C57BL/6J background survived for ~13 months (Tsai et al., 

2008).  

How can these huge discrepancies between genetically distinct backgrounds, but in 

particular between the relatively close two C57BL/6 substrains (“N” and “J”), be explained? 

Of the two strains mentioned, C57BL/6J was the “original” strain, whereby subline C57BL/6N 

originated at the National Institute of Health (NIH) and was separated by C57BL/6J in 1951 

(Zurita et al., 2011). Until today, the individual lines were kept over many generations by 

various investigators and vendors. Due to genetic drift, it is supposed that each of these 

sublines is genetically distinct, although externally, they are very similar (Zurita et al., 2011). 

Genetic differences comprise a whole consortium of minor or major genomic alterations, 

among these single nucleotide polymorphisms (SNPs), microsatellites, copy number 

variations but also genomic rearrangements as well as mutations in genes or promoter 

regions of genes. E.g., with regard to the latter, most substrains derived from C57BL/6J mice 

carry a mutation in the nicotinamide nucleotide transhydrogenase (Nnt) gene, resulting in 

inappropriate glucose homeostasis (Freeman et al., 2006, Zurita et al., 2011). Up to now, 

only little information is available on the differences between various substrains. In a screen 

applying an Illumina® Mouse Medium Density (MD) Linkage mapping panel, one study 

comprised alltogether 1.449 SNPs selected from 20 mouse chromosomes and compared 

these between different C57BL/6 substrains (Zurita et al., 2011). In this study, only 12 SNPs 

were found to be polymorphic between the C57BL/6J and C57BL/6N substrains. Although 5 

of the 12 SNPs mapped to boundaries of known genes (Naaladl2, Fgf14, Lims1, Aplp2, 

Snap29), it appears unlikely that the enormous survival differences between Hung SMA mice 

on C57BL/6J and C57BL/6N can be explained by only those variants. Moreover, considering 

a mean coverage of 3 SNPs per 5 Mb interval when using only 1.449 SNPs, it seems even 

more obvious that further genetic differences must be present among the two substrains that 

account for the phenotypical discrepancies.  

Last but not least, it must be mentioned that also environmental factors can have a major 

impact on the severity of SMA-pathology. Besides different animal care and health 

standards, e.g. also nutrition has been demonstrated to significantly influence the course of 

disease in the SMNΔ7 mouse model. In this regard, combining Trichostatin A (TSA, an 
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HDAC inhibitor) treatment with nutritional support extended the median life span of SMA 

mice to about 170 %, compared to only 40 % when TSA was given alone (Narver et al., 

2008).  

6.3 The effects of PLS3V5 overexpression on the morphology of murine 

embryonic fibroblasts 

In the present study, murine embryonic fibroblasts (MEFs) were isolated from PLS3V5tg/wt 

animals and the transgene detected using an antibody against the V5-tag. By comparing the 

localization pattern of wt Pls3 with PLS3V5, it was found that transgenic protein localizes 

completely normal and specifically at sites of actin filament consolidation. Moreover, PLS3V5 

overexpression led to significant changes in MEF cell morphology as was implicated by a 

significantly increased number of filopodial and lamelipodial structures compared to wt cells.  

In the year 1980, PLS3 was first described as a 68 kDa protein colocalizing with actin 

filaments and being present in membrane ruffles, microspikes and microvilli of chicken 

fibroblast cells (Bretscher and Weber, 1980). Based on these observations, further analysis 

revealed that PLS3 is an F-actin bundling protein with main function in cytoskeletal 

organization (Bretscher, 1981, Glenney et al., 1981). By overexpressing PLS3 in fibroblast 

like CV-1 cells and in the polarized epithelial cell line LLC-PK1, it was found that high levels 

of PLS3 exert significant effects on cell morphology (Arpin et al., 1994). In CV-1 cells, PLS3 

overexpression led to the reorganization of F-actin filaments into polygonal networks around 

the cell surface and consequentially to a rounding up of cells, structural properties 

reminiscent of rat embryo cells just before spreading (Lazarides, 1976). Moreover, PLS3 

overexpression was associated with a partial loss of adherence in CV-1 cells as concluded 

by the observation of a diminution of focal contacts. In contrast, PLS3 overexpression 

induced the formation of thickened and elongated microvilli in LLC-PK1 cells. Also, when 

overexpressed in stereocilia of developing auditory hair cells, PLS3 led to an increase in 

length, width, and density of microvilli (Daudet and Lebart, 2002). Together, these results 

suggest an important role for PLS3 in the rearrangement of cytoskeletal structures towards 

membrane outgrowth. Accordingly, in the present study overexpression of PLS3V5 in MEFs 

derived from PLS3V5tg/wt mice led to a significant stabilization of lamelipodial as well as 

filopodial structures when compared to wt cells.  

The observation of stabilized filopodia in PLS3V5 overexpressing MEFs raises the 

question how an actin bundling protein might affect the length of an actin microfilament. In 

the yeast null-mutant of fimbrin (SAC6Δ) cytoplasmic actin filaments are completely absent 

(Belmont and Drubin, 1998). The other way around, in yeast strains expressing the V159N 

mutant form of actin (act1-159), filaments depolymerize approximately three times slower 

than in wt filaments and are more abundant than in wt (Belmont and Drubin, 1998). However, 

in the sac6Δ act1-159 double mutant the number of F-actin cables is restored to almost wt 
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level while filaments seemed mislocalized and displayed an abormal organization. 

Furthermore, by a rhodamine-phalloidin-binding assay as well as G-actin measurement in 

permeabilized yeast sac6Δ mutant cells, F-actin was found to be decreased, G-actin to be 

increased while no change in total actin levels compared with wt was observed (Karpova et 

al., 1995). Also in lymphoblastoid as well as HEK cells, overexpression of PLS3 led to 

increased F-actin levels (Oprea et al., 2008). Together, these findings suggest that PLS3 has 

multiple roles in stabilizing F-actin by inhibiting depolymerization and directing F-actin 

filament orientation. However, in order to find out how PLS3 mechanistically prevents F-actin 

depolymerization further biochemical investigations are required.  

6.4 Effects of PLS3V5 overexpression at NMJ level 

The main goal of this study was to investigate a possible rescuing effect of PLS3V5 

overexpression on the murine SMA phenotype. As outlined previously, PLS3V5 

overexpression did not have a positive impact on survival and motoric ability of the severe 

Hung SMA mouse model (chapter 5.4.3.2). Nevertheless, careful morphological analysis 

revealed a very prominent phenotype at the neuromuscular junction (NMJ) of ubiquitously 

PLS3V5 expressing SMA and HET control mice (Figure 39 and Figure 40). Additionally, to 

further dissect pre- and postsynaptic effects of PLS3V5 expression on AChR clustering, 

PLS3V5 was motor neuron specifically activated on a wt background (chapter 5.5). In the 

next chapters, the effects of PLS3V5 overexpression on NMJ morphology and the 

implications for SMA pathology will be discussed. 

6.4.1 Increased AChR clusters – effect of pre- or postsynaptic PLS3V5 action? 

Since no improvement in survival and motoric ability were detected in PLS3V5 

overexpressing SMA mice, morphological analysis was performed on muscle sections to 

investigate whether PLS3V5 overexpression affects NMJ morphology. Thereupon, it was 

found that the size of postsynaptic AChR clusters was highly significantly increased in the 

Gastrocnemius muscle of P10 SMA + PLS3V5 and HET + PLS3V5 animals when compared 

to SMA and HET mice (Figure 37). At early time points of mouse development and still 

preceding axon arrival, patches of AChR spontaneously assemble along the midline of 

muscles in a process termed AChR-prepatterning (Lin et al., 2001, Yang et al., 2001). Upon 

nerve arrival, synaptogenic factors are released that further trigger and refine AChR 

clustering to sites of nerve innervation. In this context, the most important presynaptic factor 

known to trigger AChR clustering is the proteoglycan and MuSK receptor ligand Agrin (Wu et 

al., 2010). Since in the initial experiments PLS3V5 was ubiquitously expressed in SMA + 

PLS3V5 and HET + PLS3V5 animals, the question was raised whether PLS3V5 at pre- or 

postsynaptic sites accounts for the increase in endplate size of P10 animals.  
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Noteworthy, addressing this question was of particular interest since a presynaptic effect 

of PLS3V5 expression on AChR clustering would point at improved presynaptic signaling in 

transgenic mice. Initial support for the view of a presynaptic contribution of PLS3V5 

overexpression on AChR cluster size came from a time course experiment: Here, it was 

found that the endplate size between SMA, SMA + PLS3V5, HET and HET + PLS3V5 

animals did not significantly differ at the early time point P1 (Figure 39). Importantly, endplate 

size differences between PLS3V5 expressing and control mice were first seen around P4. 

However, the CAG promoter driving PLS3V5 expression is ubiquitously active already very 

early during development, also in the muscle (Sakai and Miyazaki, 1997). Therefore, in case 

of a muscle specific effect of PLS3V5 on AChR cluster size, one would expect an effect of 

PLS3V5 on AChR clustering already during the AChR prepatterning process, just before first 

nerve terminals arrive. In line with that, an increase in endplate size should also be 

detectable at P1. Around P4, significant morphological changes take place in the context of 

mouse NMJ maturation. Principally, these changes comprise synapse elimination (axonal 

pruning) and concomitant conversion of the uniform patch-like shape of AChR cluster into a 

perforated pretzel-like appearance (Kariya et al., 2008, Murray et al., 2008). In this context, 

postnatal endplate maturation is known to be dependent on excitation from motor nerve 

terminals (Misgeld et al., 2002). The fact that endplate size increase in PLS3V5 transgenic 

mice falls together with motor axon rearrangement processes further suggests a presynaptic 

role for PLS3V5 in AChR clustering. At this point it should be remembered that PLS3V5 

overexpression indeed results in significant changes of presynaptic organization, such as 

delayed axonal pruning as well as hyperinnervation of endplates. Therefore, these effects of 

PLS3V5 on presynaptic organization might well account for the observed increase in 

endplate size.  

To further analyze the influence of presynaptic presence of PLS3V5 on endplate size, 

PLS3V5 was motor neuron specifically overexpressed in PLS3V5fl_st/wt;Hb9-Cretg/wt mice. In 

heterozygous Hb9-Cretg/wt mice, Cre is located in the endogenous Hb9 locus, resulting in 

heterozygous knockout of Hb9 (Arber et al., 1999). Moreover, homozygous Hb9-Cretg/tg mice 

are even perinatally lethal and display a complete loss of motor neuron axons (Yang et al., 

2001). Furthermore, AChR prepatterning has been shown to be clearly disturbed in Hb9-

Cretg/tg mice with abnormal scattered distribution of AChR clusters across the diaphragm 

muscle at the early time point E12-E18.5. Although postsynaptic prepatterning defects of 

homozygous Hb9-Cretg/tg are long known, until now no study has ever focused on later time 

points in living heterozygous Hb9-Cretg/wt mice. In the present study, it was found that also 

Hb9-Cretg/wt mice exhibit AChR clustering defects by means of reduced endplate size in 

Gastrocnemius muscle as compared to controls at P10. This finding highlights the essential 

role of Hb9 for normal motor neuron development (Yang et al., 2001). Furthermore, these 
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findings underline the importance of normal motor neuron development and nerve 

innervation for proper AChR clustering. Most strikingly, endplate size was restored to normal 

level in PLS3V5fl_st/wt;Hb9-Cretg/wt mice. As muscular PLS3V5 expression can be excluded in 

PLS3V5fl_st/wt;Hb9-Cretg/wt animals, it seems plausible that presynaptic changes must account 

for the observed increase in endplate size. Since PLS3V5 overexpression led to an 

amelioration of the endplate size defects not only in SMA but also in Hb9-Cre mice, these 

findings together point at a general PLS3V5 neuroprotective effect, which might in turn 

impact on endplate size.  

Nevertheless, despite clear evidence for presynaptic contribution of PLS3V5 

overexpression to enhanced AChR clustering, an additional muscle specific effect of PLS3V5 

from P4 time point on cannot be excluded. Many studies have focused on the relationship 

between the actin cytoskeletal organisation and AChR clustering in the past. In myotubes, F-

actin filament formation clearly precedes Agrin induced AChR clustering (Dai et al., 2000). 

Additionally, it has been shown in the same study, that AChR clusters did not form in the 

presence of Latrunculin, a toxin that sequesters globular (G)-actin and prevents F-actin 

assembly. From these experiments, it can be concluded that F-actin assembly is a 

prerequisite for the formation of Agrin induced AChR clusters. Furthermore, AChR clustering 

involves signaling by positive regulators of actin polymerization and filament growth, e.g.  

Rho-family GTPases (regulate actin polymerization-driven processes) (Weston et al., 2003, 

Hall, 2005), p21-activated kinase 1 (effector of the GTPase Cdc42, which in turn regulates 

actin polymerization) (Luo et al., 2002) or geranylgeranyl transferase (enhances the 

membrane association and activation of GTPases) (Luo et al., 2003). Additionally, cortactin, 

which is an activator of the Arp 2/3 complex, has been shown to be important for AChR 

clustering (Madhavan et al., 2009). Most interestingly, however, many F-actin-associated 

proteins with impact on filament organization have been found to colocalize with AChR 

clusters at the mature or developing NMJ, such as vinculin (links integrins to the actin 

cytoskeleton) or filamin as well as α-actinin (function in F-actin bundling and interconnection) 

(Bloch and Hall, 1983, Cartaud et al., 2011). α-actinin has been shown to inhibit the rate of F-

actin depolymerization, thereby stabilizing F-actin (Cano et al., 1992). This observation is in 

line with findings for PLS3 which, when overexpressed in LB or HEK cells, increases the F-

actin to G-actin ratio (Oprea et al., 2008). Although mechanics of PLS3-mediated F-actin 

stabilization have not yet been sufficiently studied, the findings together indicate that F-actin 

filament stabilization through inhibition of depolymerization might be a feature common to 

actin bundling proteins. Assuming that PLS3 exerts a stabilizing effect on F-actin and on the 

background that F-actin formation is essential for AChR clustering and maintenance, muscle 

specific PLS3 might hence be positively involved in endplate maturation. To examine 

possible muscle specific contribution of PLS3, it would be interesting to compare AChR 
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cluster size between motor neuron specifically and ubiquitously PLS3V5 expressing mice.  

Any increase in endplate size in PLS3V5 ubiquitously expressing animals compared  to 

motor neuron specifically expressing mice would then indicate muscle specific effects.  

6.4.2 Delayed axonal pruning in PLS3V5 overexpressing mice 

Based on the fact that presynaptic PLS3V5 overexpression influences AChR cluster size 

(chapter 6.4.1), it was speculated whether improved nerve connectivity in PLS3V5 

expressing mice might account for the bigger endplates. It has previously been reported that 

smn-depleted zebrafish as well as cultured motor neurons derived from SMA mice exhibit 

severe axon outgrowth defects. Since no defects in initial axon outgrowth have ever been 

observed in mice in vivo, it is assumed that loss of nerve connectivity at the NMJ results 

rather from a dying-back mechanism (McWhorter et al., 2003, Rossoll et al., 2003, McGovern 

et al., 2008, Sleigh et al., 2011). Nevertheless, severe SMA mice have been shown to exhibit 

a significant reduction of axonal inputs per endplate during the axonal pruning process in 

proximal TVA muscle (Murray et al., 2008). In order to analyze the impact of PLS3V5 on 

axonal integrity, the process of axonal pruning was studied in time course experiment (Figure 

39). Including P1, P4 and P8 time points, it was demonstrated that SMA animals showed a 

reduced number of axonal inputs at all given time points compared to HET controls. 

However, in SMA + PLS3V5 animals, the mean number of axonal inputs was highly 

significantly increased compared to SMA controls and exceeded even that of HET animals. 

These findings suggested that PLS3V5 might exert a positive effect on the integrity of 

existing axons. At later time point P11, however, the number of axons per endplate adapted 

between PLS3V5 expressing and non-expressing animals and approached a nearly singular 

innervation pattern (preliminary data and thus not shown). Therefore, rather a retraction-

delaying than a “stabilizing” function of PLS3V5 on axons during the axonal pruning process 

must be assumed.  

Nevertheless, the observations raise the questions about the mechanism of PLS3V5-

mediated delay in axon retraction. The observation of delayed axonal pruning is highly 

reminiscent of the analogous finding from MEF cells, where PLS3V5 overexpression led to 

an increase in filopodial structures. Additionally, it was observed in MEF cells that PLS3V5 

specifically localizes to sites of actin filament consolidation in filopodia as well as 

lamellipodia. Since the localization pattern of PLS3V5 in motor neurons has not yet been 

resolved, it can only be speculated whether PLS3V5 is enriched in axonal filopodia and 

lamellipodia as well and exerts similar function there as well. It is known that actin dynamics 

play an essential role in regulating axon growth, branching ability as well as motility and 

guidance of the growth cone (Luo, 2002, Dent et al., 2003). Ultimately, the term actin 

dynamics comprises a variety of processes including actin polymerization and 

depolymerization, filament branching, bundling and interaction of actin polymers with other 
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components of the cytoskeleton, such as the microtubule network. Particularly, a balanced 

rate of F-actin polymerization and depolymerization is an important prerequisite for axon 

dynamics, including formation and withdrawal of growth cone filopodia. This has e.g. been 

demonstrated by experiments in which the effect of the drug jasplakinolide (jasp), a cell-

permeable macrocyclic peptide that inhibits F-actin turnover, was tested on retinal and dorsal 

root ganglion (DRG) neuron cultures (Gallo et al., 2002). When neurons were treated with 

jasp, growth cone motility, defined as lamellipodial and filopodial extension, stopped, the 

growth cones contracted and the axons began to retract. In their experiments, the authors 

observed that actin depolymerization was absent in the central zone (C domain) of the 

growth cone. Since polymerization of F-actin at the leading edge of the growth cone (P 

domain) requires G actin release by filament turnover in the C domain (Cramer, 1999), a lack 

of G actin supply might explain axon retraction after jasp treatment. In line with this 

observation, inhibiting actin polymerization using drugs like Cytochalasin or Latrunculin also 

interferes with normal axon growth. At high doses, Cytochalasin treatment has been shown 

to result in the disassembly of F-actin and subsequent defects in neurite outgrowth 

(Letourneau et al., 1987). Furthermore, axons in the developing grass hopper nervous 

system have been shown to lose all pathfinding capabilities upon treatment with 

Cytochalasin (Bentley and Toroian-Raymond, 1986). Interestingly, it was reported in another 

study that neurons form multiple axons upon Cytochalasin and Latrunculin treatment in 

moderate concentrations, suggesting that high actin turnover rates support axon outgrowth 

(Bradke and Dotti, 1999). Based on these findings it appears obvious that actin dynamics 

and turnover, rather than overall cytoskeletal rigidity, are essential for axon elongation and 

growth. As it was already mentioned earlier, α-actinin has been shown to inhibit the rate of F-

actin depolymerization, thereby indirectly stabilizing F-actin (Cano et al., 1992). Similarly, 

also PLS3 overexpression has been demonstrated to increase the F-actin to G-actin ration in 

lymphoblastoid (LB) and HEK cells (Oprea et al., 2008). Therefore, it might be possible that 

PLS3 prevents F-actin depolymerization and thus exerts a stabilizing effect on axons and 

growth cones, however, without shifting the equilibrium of actin poly- and depolymerization 

towards a critical end.  

In this context, it would be interesting to further investigate the substructural location of 

PLS3V5 in growth cones. In MEF cells, PLS3V5 is generally more abundant in filopodia and 

lamellipodia. Nevertheless, a rather weak staining was also detected throughout the entire 

cell body. In the axonal growth cone, F-actin is mainly present in filopodia and lamellipodia of 

the P domain, while C and transition (T) domains represent areas of G-actin regeneration. 

Given that PLS3 binds only filamentous actin and has no intrinsic actin polymerizing activity, 

a possible actin filament-stabilizing effect is therefore likely to be restricted to axonal filopodia 

and lamellipodia. Nevertheless, stabilizing effects of PLS3V5 on F-actin filaments migrating 
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into T and C domain, a normal process during axon dynamics, might consequentially reduce 

regeneration of G-actin in the C domain of the growth cone. Similar to the observations under 

jasp treatment, insufficient regeneration of G-actin would be expected to result in axon 

retraction and withdrawal. In the complainant's view, this raises the question how PLS3V5 

overexpression can result in exactly the opposite effect, namely a delay in axon withdrawal 

from the NMJ? In order to investigate the role of PLS3V5 in actin dynamics of the growth 

cone, high resolution confocal microscopy might be an adequate tool. In a vice versa 

experiment, it would also be interesting to precisely analyze the consequences of Pls3 

depletion for growth cone motility in mouse motor neurons.  

6.4.3 Innervation defects in Hung SMA mice and hyperinnervation of endplates in 

PLS3V5 expressing animals 

Besides delayed axonal pruning, hyperinnervated endplates were found at P4 in SMA + 

PLS3V5 and HET + PLS3V5 mice compared to SMA and HET mice (Figure 40, A). 

Furthermore, SMA + PLS3V5 animals displayed highly arborized nerve terminals at the same 

time point, while nerve terminals of age matched SMA littermates exhibited significantly 

reduced terminal sprouting when compared to HET controls (Figure 40, B). Most strikingly, 

the observed effects of PLS3V5 overexpression at NMJ level seem to be functional, since 

mice specifically overexpressing PLS3V5 in the motor neurons showed a highly significant 

increase in muscle fiber size. 

The finding of reduced endplate occupancy in Hung SMA mice is consistent with previous 

findings from other mouse models (Murray et al., 2008, Kong et al., 2009). In 2008, Kariya et 

al. have been the first to extensively investigate NMJ pathology in the SMNΔ7 SMA mouse 

model (Kariya et al., 2008). In their studies, they have been able to show that SMA mice 

display severe structural abnormalities at the NMJ level in Gastrocnemius muscle, including 

massive neurofilament accumulations and a failure of axons to form fine terminal arbors. 

However, Kariya et al. were unable to observe complete endplate denervation in the distal 

Gastrocnemius muscle of postnatal SMNΔ7 SMA mice. In humans, SMA usually affects the 

proximal muscles first. In line with this, others have detected the presence of 51 % 

unoccupied AChR clusters already at E18.5 and 49 % at P2 in the proximal intercostal 

muscles of the SMNΔ7 mouse (McGovern et al., 2008). Similarly, in late symptomatic SMA 

mice of the very severe Monani model (Smn-/-;SMN2(89Ahmb)tg/tg, survival ~ 5 d, (Monani et 

al., 2000)), ~15 % of endplates have been shown to be completely denervated in proximal 

TVA muscle (Murray et al., 2008). Interestingly, the authors have observed denervated 

endplates also in distal muscles of the lumbricals in Monani SMA animals, however, at 

significantly lower percentage. Therefore, as above findings suggest, NMJs display highly 

variable phenotypic severity among diverse muscles in one and the same SMA model, but 

also between different SMA mouse models. Despite a reduction in presynaptic coverage of 
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endplates, completely denervated endplates were more or less absent in proximal TVA 

muscle of Hung SMA mice in the present study (Figure 40). Surprisingly, however, it has 

been published before that in the distal Gastrocnemius muscle of Hung SMA mice around 9 

% of endplates showed a denervation phenotype (Riessland et al., 2010). Together, these 

observations are not in line with the findings from human, where proximal rather than distal 

muscles are severely affected by SMA. One possible explanation for these findings is that 

the Hung SMA mice analyzed here were on pure C57BL/6N background, while Riessland et 

al. have used Hung SMA mice on pure FVB background in their work. As was found in the 

present study, Hung SMA mice on C57BL/6N background show a five days prolonged mean 

life span (15.5 d) compared to Hung SMA mice on pure FVB background (9.9 d). As it was 

discussed before (chapter 6.2), the C57BL/6N background obviously exerts an ameliorative 

effect on disease severity, which might explain the observation of better nerve connectivity in 

proximal TVA (C57BL/6N) compared to distal Gastrocnemius muscle (FVB) in Hung SMA 

mice.  

As mentioned, P4 SMA and HET animals expressing PLS3V5 displayed increased 

endplate occupancy and extensive sprouting of nerve terminals compared to SMA and HET 

littermates, respectively (Figure 40). What implication do these observations have with 

regards to NMJ maturation and better neurotransmission? Since reduced nerve occupancy is 

a hallmark of SMA, stronger nerve coverage of endplates has frequently been taken as 

positive criteria to verify beneficial effects of various drugs, e.g. in studies investigating the 

therapeutic potential of the HDACi VPA, SAHA or TSA (Narver et al., 2008, Tsai et al., 2008, 

Riessland et al., 2010). In the present work, an increase in endplate occupancy and nerve 

terminal arborization was observed at P4, however, PLS3V5 expressing mice at earlier (P1) 

or later (P8, P11) time points showed similar effects at the NMJ. Therefore, observed effects 

at the NMJ might impact on both endplate maturation and signal transduction of established 

NMJs. It is well known that synaptogenic factors, such as Agrin and ACh, direct endplate 

maturation by refining areas of AChR clustering (Wu et al., 2010). While Agrin positively 

triggers the recruitment, assembly and maintenance of AChR at sites of innervation, ACh 

negatively impacts on AChR clustering, suppresses AChR expression and destabilizes 

AChR clusters globally in entire muscle fibers. During endplate maturation, the patch-like 

structure of AChR clusters gets perforated and clusters only remain at sites of presynaptic 

innervation. In the present work, motor neuron specific PLS3V5 expressing animals showed 

an increase in endplate size (Figure 45). Therefore, one possible explanation for the bigger 

endplates could be that the increased nerve occupancy and terminal arborization leads to a 

higher release of pro-AChR-clustering factors such as Agrin. 

In line with this idea, PLS3V5 overexpression and concomitant cytoskeletal 

rearrangements might have an influence on the location and the release of synaptic vesicles 
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and thus on neurotransmission. In two studies using the  SMNΔ7 mouse model, an abnormal 

synaptic vesicle number and location was accompanied with defects in neurotransmission as 

assessed by detailed electrophysiological analyzes (Kariya et al., 2008, Kong et al., 2009). 

Two pools of vesicles exist in motoric presynapses: Readily releasable vesicles (RRVs), 

which are in proximity to or already docked with the presynaptic membrane and vesicles of 

the reserve pool (RPV), which are located farther from the membrane (Dillon and Goda, 

2005). Kong et al. have observed a 36 % reduction of RRVs in TVA muscle of the SMNΔ7 

mouse (Kong et al., 2009). Moreover, the transmitter per single vesicle (quantal content, QC) 

QA) was unchanged between SMA and control mice, while a significantly reduced number of 

synaptic vesicles was released after nerve stimulation in SMA mice (quantal amplitude, QA). 

Therefore, the authors assumed that reduced density of synaptic vesicles may contribute to 

declined QC at SMA NMJs. As mentioned, not only the number of vesicles was found to be 

reduced, but also overall location of vesicles in the presynapse was disturbed. Therefore, the 

authors further speculated whether the commonly observed neurofilament (NF) 

accumulations are indicative for a more generally disturbed neuronal cytoskeleton. A 

disruption of cytoskeletal structures, in turn, might then result in displacement of vesicles, 

and consequentially in impaired neurotransmission. Interestingly, the idea of cytoskeletal 

disorganization as a pathological feature of SMA also matches the observation of 

significantly impaired β-actin mRNA transport into growth cones of SMA motor neurons 

(Rossoll et al., 2002). Additionally, also many other findings highlight the importance of a 

functional actin cytoskeleton for presynaptic function: E.g., it is well accepted that F-actin 

plays important roles in both recycling and transport of synaptic vesicles (Shupliakov et al., 

2002, Bloom et al., 2003). Furthermore, after a current model synaptic vesicles are tethered 

near the membrane by F-actin via phosphorylation-dependent interaction with the vesicular 

molecule synapsin (Dillon and Goda, 2005). Upon depolymerization, Synapsin undergoes a 

conformational change, thereby freeing synaptic vesicles for release (Li et al., 2010). Last not 

least, F-actin regulates the availability of RPV by surrounding the vesicle cluster, thus 

providing a corralling function by forming a physical barrier to impede vesicle dispersion 

(Dillon and Goda, 2005). Taken together, these observations underline the importance of F-

actin in synaptic vesicle organization and release. Therefore, by influencing F-actin dynamics 

PLS3V5 might act as a regulator of synaptic release, compensating for presynaptic 

dysfunction in SMA nerve terminals.  

6.5 Why does PLS3V5 overexpression not ameliorate the survival of SMA 

mice? SMN and PLS3V5 protein amounts as limiting factors  

In 6 discordant families PLS3 has been demonstrated to act as a fully protective modifier 

of SMA in SMN1-deleted unaffected siblings (Oprea et al., 2008). In the present study, the 

goal was to investigate a possible rescuing effect of PLS3 overexpression on the murine 
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SMA phenotype. To analyze the effect of ubiquitous PLS3V5 overexpression on the SMA 

phenotype, PLS3V5 was heterozygously overexpressed in the severe Hung SMA 

background (chapter 5.4 and following). However, differently from the situation in SMA 

patients, where high PLS3 levels had previously been reported to result in a full rescue of 

SMA symptoms, PLS3V5 overexpression did not affect survival in the murine system: While 

SMA mice showed a mean survival of 15.5 d, SMA + PLS3V5 animals lived for 14.6 d (p = 

0.529). Interestingly, despite the absence of any positive effects of PLS3V5 overexpression 

on survival of SMA mice, the observed pre- as well as postsynaptic morphological changes 

in PLS3V5 overexpressing animals seem to be functional. This assumption is based on the 

fact that motor neuron specific activation of the transgene on wt background led to an 

increase in muscle fiber size at the late time point P21. However, at P10 time point, PLS3V5 

overexpression had no significant effect on muscle fiber size, suggesting that PLS3V5 effects 

on muscle fiber size get obvious only at later time points. 

In recent times, it became more and more clear that the severe form of SMA is not simply a 

motor neuron disease, but that also other neuronal (e.g. proprioceptive neurons, 

hippocampus) and non 

neuronal tissues (e.g. heart, 

bone, blood vessels, liver) 

are affected (Finsterer and 

Stollberger, 1999, Kelly et 

al., 1999, Hsieh-Li et al., 

2000, Felderhoff-Mueser et 

al., 2002, Arai et al., 2005, 

Hachiya et al., 2005, Bach, 

2007, Shanmugarajan et 

al., 2007, Khatri et al., 2008, 

Rudnik-Schoneborn et al., 

2008, Araujo Ade et al., 

2009, Meyer et al., 2009, 

Shanmugarajan et al., 2009, 

Bevan et al., 2010, Gogliotti et 

al., 2010, Heier et al., 2010, Hua et al., 2010, Michaud et al., 2010, Riessland et al., 2010, 

Shababi et al., 2010). The observation of pathological features in cell types other than motor 

neurons has led to the development of the so called threshold theory. This hypothesis 

proposes that there is a differential susceptibility of cells to SMN depletion: While motor 

neurons are affected at already relatively weakly reduced SMN levels, other cells and tissues 

such as the heart, bone and finally all tissue types get affected as SMN levels further 

Figure 46: Differential susceptibility of cell and tissue 
types to SMN reduction (Sleigh et al., 2011)  
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decrease or are even completely absent (Sleigh et al., 2011). Consequentially, in the severe 

Hung SMA model any positive effects of PLS3V5 on survival through improved axonal 

connectivity, NMJ maturation and muscle fiber size might be limited by defects in other 

tissues, which finally result in early death of SMA mice. In other words: An amelioration of the 

survival phenotype by PLS3V5 overexpression might require relatively high SMN levels.  

Importantly, there are two observations strongly supporting this idea. The first hint comes 

from discordant families themselves: It has been found here, that all SMN1-deleted 

unaffected siblings of the 6 discordant families harbored 3 or 4 SMN2 copies, accordingly 

leading to type III SMA in their affected siblings.  

Further support for this idea comes from a study investigating the effects of the Rho-

kinase (ROCK) inhibitor Fasudil on the murine SMA phenotype. Rho/ROCK signaling is a 

major regulatory pathway of actin dynamics and has been demonstrated to be upregulated in 

Smn-depleted PC12 cells and SMA mice (Bowerman et al., 2007, Bowerman et al., 2010). 

Accordingly, Rho/ROCK activation has been implicated in dendritic simplification, reduced 

spine length and density (Nakayama et al., 2000, Govek et al., 2004). In their studies, 

Bowerman et al. have shown that treatment of severe SMNΔ7 SMA mice with Fasudil results 

in increased AChR cluster and TA myofiber size. Most interestingly and very similar to our 

results, despite the positive effect of Fasudil treatment on endplate and muscle fiber size no 

improvements of survival could be detected in severe SMNΔ7 animals. In further 

experiments, the authors treated the intermediate Smn2B/- mouse SMA model (Bowerman et 

al., 2009) with Fasudil and subsequently investigated the effects on survival. Most strikingly, 

Fasudil treatment of Smn2B/- mice led to a significant increase in survival. These findings 

suggest that the improvements at NMJ and muscle level upon Fasudil treatment have an 

ameliorative effect solely in the presence of higher Smn threshold levels.  

Similar to the results obtained upon Fasudil treatment, it might be possible that high PLS3 

levels only improve the SMA survival phenotype in the presence of relatively higher Smn 

levels, too. Since Smn2B/- mice represent an intermediate SMA model with a mean survival of 

~4 weeks (Bowerman et al., 2009), these animals might be appropriate to study possible 

effects of PLS3V5 overexpression on survival as well. However, Smn2B/- mice are currently 

maintained on C57BL/6×CD1 mixed background resulting in a broad distribution in survival 

time of individuals from the same litter. Therefore, to analyze the impact of PLS3V5 

overexpression on the SMA survival phenotype, backcrossing Smn2B/- mice to a clean 

C57BL/6N background would be required first. Additionally, considering that the genetic 

background has a major impact on survival of SMA mice (chapter 6.2), purification of Smn2B/- 

mice to clean C57BL/6N background might result in a significant alteration of mean survival 

in these animals. Finally, it must be considered that Smn2B/- mice are not available at the 

Institute of Genetics, Cologne, and would need to be imported via embryo transfer first, 
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which is time and cost intensive. Another possibility to study the consequences of PLS3 

expression in a milder SMA model would be to cross PLS3V5 onto the homozygous Hung 

Smn-/-;hSMN2tg/tg background. Smn-/-;hSMN2tg/tg mice carry a total of 4 hSMN2 copies (2 per 

integrate) and show only very mild SMA symptoms, e.g. necrosis of ears and tail with 

subcutaneous edema. Moreover, Smn-/-;hSMN2tg/tg mice display normal fertility slightly 

reduced life span of ~1.5 years. Nonetheless, an exact description of the pathological 

features of this model has not been performed yet and therefore bears further analyses (e.g. 

motor neuron count, NMJ pathology, degeneration of muscle). Additionally, due to the 

extremely weakened phenotype of Smn-/-;hSMN2tg/tg mice, subtle improvements upon 

PLS3V5 expression might be hard to detect. To investigate the effect of PLS3V5 

overexpression on a milder SMA background, it would also be possible to make use of the 

fact that a mixed genetic background has an ameliorative effect on survival of Hung SMA 

mice. As it has been demonstrated in the present work, SMA animals of 87 % C57BL/6N / 23 

% FVB mixed background have a prolonged life span of 19.2 d as compared to 15.5 d and 

9.9 d in pure C57BL/6N or FVB background animals, respectively. In this context, Smn-/-

;SMN2tg/tg animals on pure FVB background could be mated with Smn+/-;PLS3V5tg/wt mice on 

pure C57BL/6N background, according to the breeding scheme presented in Figure 28. As 

the resulting offspring represents genetically mixed animals of 50 % C57BL/6N and 50 % 

FVB background, an accompanying increase in life span is expected. Furthermore, Hung 

SMA mice expressing PLS3V5 on pure or mixed background could additionally be treated 

with histone deacetylase inhibitors (HDACi) to increase SMN levels. Due to their ability to 

increase SMN2 expression and in combination with the fact that ~10 % of full length SMN 

protein are being produced by SMN2, a collection of HDACi has been proven to effectively 

counteract SMA pathology in the mouse model, e.g. Sodium butyrate (NaBu), Valproic acid 

(VPA), Trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA) (Chang et al., 

2001, Avila et al., 2007, Narver et al., 2008, Tsai et al., 2008, Riessland et al., 2010). An 

increase of SMN in Hung SMA mice might also be accomplished by antisense 

oligonucleotides (ASOs) treatment. Via binding to SMN2 pre-mRNA, ASOs have been shown 

to redirect the incorrect splicing of SMN2, resulting in the production of predominantly 

functional SMN (Passini et al., 2011). Moreover, Passini et al. have shown that early 

postnatal delivery of ASOs into the lateral ventricle led to improvements in muscle 

physiology, motor function and survival of SMNΔ7 SMA mice. Therefore, by titrating the 

injected ASO amount in early Hung SMA mice it might be possible to generate an 

intermediate mouse model appropriate for studying PLS3V5 modifying effects in the 

presence of relatively high SMN levels. Both, treatment with HDACi or ASO injection to 

increase SMN levels, however, require high methodological reliability and expertise. 
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It needs to be mentioned that also only moderate PLS3V5 expression levels in transgenic 

animals might explain the absence of ameliorative effects on survival in severe Hung SMA 

animals. It was demonstrated  that PLS3V5 is overexpressed in all tissues affected by SMA 

of transgenic animals, namely brain, spinal cord and muscle (chapter 5.4.1.2). However, 

despite significant, total plastin 3 (endogenous Pls3 + PLS3V5) mRNA levels were only 

moderately increased in PLS3V5 transgenic compared to wt mice with 3.6 fold in brain, 3.4 

fold in spinal cord and 21.5 fold in muscle tissue (chapter 5.4.1.1). Since it was assumed that 

PLS3V5 mRNA is not likewise converted into PLS3V5 protein (previously discussed in 

chapter 6.1), an even lower increase of total plastin 3 in PLS3V5 transgenic mice must be 

expected on protein level. In Epstein Barr virus (EBV) transfected lymphoblastoid (LB) cell 

lines of unaffected siblings from discordant families, PLS3 was shown to be ~40 fold 

upregulated on mRNA level (Oprea et al., 2008). This observation, however, does not reflect 

the situation in the actual target tissue of SMA, namely motor neurons. Since only LB as well 

as fibroblast cell lines of discordant families are available, it is unknown to what extend PLS3 

is upregulated in spinal cord or even motor neurons of unaffected SMN1-deleted  individuals. 

This information, however, might provide important information on the quantitative 

requirement of PLS3 to exert rescuing effects on the survival of SMA patients. As spinal cord 

tissue of unaffected siblings is not available, redifferentiation of fibroblast cells into induced 

pluripotent stem (IPS) cells and subsequent differentiation into motor neurons would be a 

way to address this question. The effort to obtain such cultures is currently being undertaken 

in our laboratory and in cooperation with iPierian (CA, US). While fibroblasts have already 

been successfully redifferentiated into IPS cells, the next steps will include differentiation into 

motor neurons and subsequent confirmation via marker analysis and gene expression 

profiling. Furthermore, motor neuron specific PLS3V5-expressing mice (PLS3V5fl_st/fl;Hb9-

Cretg/wt) might help to investigate the PLS3 amount required for SMA protection. Notice that 

GFP is cloned downstream of PLS3V5 in the targeting construct and is co-activated via an 

internal ribosomal entry site together with PLS3V5 (Figure 8). This might enable to 

specifically isolate motor neurons from PLS3V5fl_st/fl;Hb9-Cretg/wt mice, e.g. via FACS, and to 

compare total plastin 3 expression levels with those from respective controls (e.g. motor 

neuron specifc GFP expressing mice, available at Jacksons laboratories).  

6.6 Does PLS3V5 act together with or independent of Smn? 

It has previously been shown via co-immunoprecipitation (Co-IP) that PLS3 and SMN are 

both present together with Actin in a 500 kDa complex (Oprea et al., 2008). These findings 

were further supported by the fact that Pls3 colocalizes with Smn in growth cones of 

differentiated PC12 cells. Moreover, it has been previously assumed that Smn exerts 

stabilizing function on Pls3. This idea comes from experiments in the Smn2b/- and SMNΔ7 

mouse models, where a low level of Smn was found to be associated with reduced Pls3 
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protein amounts ((Bowerman et al., 2009) and Dr. Christine Beattie, oral presentation at the 

15th FSMA meeting, Orlando, USA). Beattie et al. further showed that also in zebrafish smn 

depletion is correlated with a reduction in pls3 amount. In turn, however, restoration of pls3 

did not result in simultaneous increase in smn protein. Therefore, Beattie et al. suppose that 

smn might positively act on translation of pls3 mRNA.  

In the present study, a possible interaction between Smn and Pls3/PLS3V5 was 

investigated in Hung SMA and PLS3V5 transgenic mice. In a scenario where Smn and Pls3 

interact and based on the above mentioned findings by other groups, Smn and Pls3/PLS3V5 

might exert stabilizing function on each other. In contrast to the results obtained in Smn2b/- 

and SMNΔ7 mice, however, endogenous Pls3 was not downregulated in Hung SMA animals. 

In the vice versa experiment, also Smn levels were not increased in PLS3V5 transgenic mice 

compared to wt (Figure 41). These results suggested, that at least in Hung SMA mice Smn 

and Pls3 do not exert a stabilizing effect on each other. Further support for an Smn-

independent working mechanism of PLS3 comes from the time course experiment, which 

was in this thesis performed to investigate the process of axonal pruning in PLS3V5 

expressing SMA mice (Figure 39). Here, it was found that SMA animals expressing PLS3V5 

display an increased number of axons compared to SMA mice at P1, P4 and P8. Also in HET 

+ PLS3V5 animals, the number of axons was significantly increased compared to HET 

animals at all time points. Importantly, however, the number of incoming axons was almost 

identical between SMA + PLS3V5 and HET + PLS3V5 mice over the whole time course. 

More or less the same was observed regarding nerve occupancy at the endplates. Also in 

this experiment, no difference regarding occupancy status was detected between SMA and 

HET mice expressing PLS3V5. Together, these findings indicate that at least in Hung SMA 

mice Smn and Pls3/PLS3V5 do not act stabilizing on each other. Furthermore, the results 

suggest that the axon retraction-delaying effect of PLS3V5 is likely independent of Smn. 

One explanation for these opposing findings could be that Dr. Bowerman and Dr. Beattie 

used different mouse models (Smn2B/- and SMNΔ7) than was used in this study (Hung SMA). 

Additionally, at least in the case of Smn2B/- mice, animals were kept on C57BL/6×CD1 hybrid 

background, giving rise to the assumption that background depending factors might influence 

the stability of Pls3 in an Smn dependent manner. Similarly, species-specific differences 

might account for the observation of smn/pls3 protein level correlation made by Beattie et al. 

in the zebrafish system.  

6.7 Future prospects and next steps 

In order to investigate the mechanisms underlying PLS3 protection in SMN1-deleted 

unaffected siblings, transgenic PLS3V5 expressing mice were generated in this study. It 

could be shown that PLS3V5 exerts wt function by localizing the transgene in MEF cells of 

transgenic mice. Furthermore, it was demonstrated that PLS3V5 overexpression supports 
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the formation of lamellipodial/filopodial structures in MEF cells and results in increased 

occupancy of endplates and highly arborized nerve terminals at the NMJ in vivo. Moreover, 

by investigating the process of axonal pruning, it was revealed that PLSV5 overexpression is 

able to delay axon withdrawal from NMJs, indicating an important role for PLS3 in the 

maintenance of axonal integrity. Most strikingly, the observed changes at NMJ level seem to 

be functional, as motor neuron specific overexpression of PLS3V5 resulted in a highly 

significant increase in AChR cluster and muscle fiber size. 

Despite first insight into PLS3 working mechanisms, several questions remain open or 

require further investigations. In the following, the next steps to address these questions will 

be outlined briefly: 

I. PLS3V5 overexpression did neither ameliorate survival nor motoric ability of the 

severe Hung SMA mouse model. As previously discussed in chapter 6.5, it might 

be possible that PLS3V5 effects can not compensate the severe and lethal global 

defects of the here used SMA model. Of the different options to investigate 

PLS3V5 effects in a milder SMA background depicted (chapter 6.5), PLS3V5 

overexpression in Hung SMA mice on mixed background is the most time and cost 

effective method and is therefore currently being performed.  

II. Since PLS3V5 was only heterozygously overexpressed in the SMA background, 

also PLS3V5 expression levels might not be sufficiently high to ameliorate the 

survival phenotype. In order to increase PLS3V5 levels, breedings are currently 

ongoing with the goal to homozygously overexpress PLS3V5.  

III. Upon PLS3V5 overexpression, improved axonal connectivity was observed in 

PLS3V5 expressing mice. Additionally, muscle fiber size was significantly 

increased in motor neuron specific PLS3V5-expressing mice. In this context, it is 

important to mention that the observed increase in endplate size in 

PLS3V5fl_st/wt;Hb9-Cretg/wt mice was measured in Gastrocnemius muscle, however, 

muscle fiber size increase was assessed in Vastus lateralis muscle. Since distinct 

muscles are differently affected in SMA mice, a potential muscle fiber size 

increase has to be reassessed in Gastrocnemius muscle of PLS3V5fl_st/wt;Hb9-

Cretg/wt animals. Furthermore, to confirm functionality of the observed 

morphological changes at NMJ level, more precise analyzes, e.g. quantal content 

measurements or Motor Unit Number Estimate (MUNE) are required and will be 

performed in the future. 

IV. Until now, no information is available on the PLS3 amount required for SMA 

protection in motor neurons of unaffected discordant siblings. Therefore, 

approaches to redifferentiate human embryonic fibroblasts into iPS cells and 
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subsequently differentiate these into motor neurons are currently being performed 

in our laboratory and in cooperation with iPierian (CA, US).  

V. Pls3 has been described to be enriched in growth cones of PC12 cells and primary 

motor neurons (Oprea et al., 2008). However, no detailed analysis has been 

performed on the exact subcellular localization of Pls3 within growth cones. In 

order to understand the impact of PLS3 action on neurocytoskeletal organization in 

growth cones, high resolution confocal in combination with electron microscopy will 

be performed.  

VI. Based on the findings of the present study, PLS3V5 might exert an SMN 

independent neuroprotective function. Therefore, it would be interesting to test the 

effects of PLS3V5 overexpression on other motor neuron diseases, e.g. 

amyotrophic lateral sclerosis (ALS). In most familial ALS forms (~20%), mutations 

in the superoxide dismutase 1 (SOD1) gene account for disease development 

(Ticozzi et al., 2011). Since mutated Sod1 resembles the ALS phenotype in mouse 

(Gurney et al., 1994), PLS3V5 transgenic mice might be crossed on a Sod1 

mutant background. 
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7 Summary 

Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by the loss 

of α-motor neurons in the ventral horn of the spinal cord. Depending on the severity, the 

clinical spectrum of SMA ranges from early infant death to normal adult life with only mild 

muscle weakness. To date, no cure is available. SMA is caused by the homozygous loss of 

the survival motor neuron gene 1 (SMN1). Besides SMN1, another nearly identical copy of 

the gene is present in the human genome, thus called SMN2. In the SMN2 gene, a C to T 

transition in exon 7 leads to the disruption of an exonic splicing enhancer, resulting in 

alternative splicing of SMN2 pre-mRNA and skipping of exon 7 in 90 % of total transcript. 

However, about 10 % of full length (FL) transcripts are still being produced by SMN2. 

Through gene duplication events, SMN2 is present in varying copy numbers in the human 

population, ranging from the total absence to a maximum of 4 SMN2 copies per allele. Since 

every copy produces about 10 % FL transcript, SMA severity is inversely correlated with 

SMN2 copy number. 

For a long time, SMN2 was the only known modifying gene and has therefore been target 

for the development of therapeutic strategies. The observation of SMN1-deleted patients with 

either extremely weakened or even absent symptoms in the presence of only a small number 

of SMN2 copies has in the past been associated with the existence of SMA-modifying genes. 

Finally, in 2008 the Actin-bundling protein Plastin 3 (PLS3) has been identified as a 

protective modifying gene showing high expression in asymptomatic homozygously SMN1-

deleted siblings of discordant SMA families in our group (Oprea et al., 2008). Cell culture as 

well as in vivo experiments in a zebrafish SMA model revealed that PLS3 overexpression 

rescues the axonal outgrowth phenotype. 

The goal of the present study was to address the question whether PLS3 overexpression 

is able to rescue the phenotype in an existing SMA mouse model. Furthermore, it was asked 

which effect PLS3 overexpression has on the development of neuromuscular junctions 

(NMJ) as well as muscle development and function. 

Using the Cre/loxP system, transgenic mice were generated expressing a V5-tagged 

version of human PLS3 (PLS3V5) either ubiquitously or motor neuron specifically (Hb9 

promoter). In a next step, PLS3V5 transgenic mice were crossed onto the SMA background 

using the Hung mouse model. All mice were crossed congenic onto clean C57BL/6N 

background to exclude any background modifying effects. Transgenic PLS3V5 mice on 

wildtype (wt) as well as on SMA background were histologically (Motor neurons, NMJs, 

muscle) and functionally (Motoric tests, weight, survival) analyzed in detail. 

Ubiquitous as well as motor neuron specific PLS3V5 expression was proven by qRT-PCR, 

Western blot analysis and immunohistochemistry. PLS3V5 transgenic mice on wt as well as 

on SMA background showed remarkable influence of PLS3 overexpression on motor neuron 
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and NMJ phenotype: The motor neuron and Acetylcholine receptor (AChR) cluster size was 

highly increased as compared to wt or SMA littermates. Time course measurements of 

presynaptic sprouting during the process of axonal pruning revealed highly improved axonal 

connectivity. These findings raised the question whether the increase of AChR cluster size in 

transgenic animals is an effect of pre- or postsynaptic PLS3V5 overexpression. To address 

this issue, motor neuron specific PLS3V5 overexpression was analyzed in wt mice. 

Strikingly, motor neuron specific overexpression of PLS3V5 was sufficient to increase AChR 

cluster and muscle fiber size, further strengthening the positive impact of neuronal PLS3V5 

expression on neurotransmission. Moreover, electrophysiological analyzes (NMJ quantal 

content measurements, Motor Unit Number Estimate (MUNE)) will be performed in the future 

and correlated with the recent findings.  

Despite this positive impact on axon biology, PLS3 overexpression neither increased 

survival nor improved motoric ability in the severe type I-like SMA mouse model used in this 

study. Therefore, it was hypothesized that a certain amount of SMN is required – similar to 

asymptomatic humans, who own at least 3 SMN2 copies – to rescue the SMA phenotype. To 

test this hypothesis, the PLS3V5 transgene is currently crossed onto a milder SMA 

background. Additionally, PLS3V5 was up to now only heterozygously overexpressed in 

SMA mice. Since also higher PLS3V5 levels might be necessary to finally improve SMA 

symptoms, PLS3V5 will be homozygously expressed in the SMA background in the future.  
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8 Zusammenfassung 

Die spinale Muskelatrophie (SMA) ist eine neurodegenerative Erkrankung und 

kennzeichnet sich durch den Verlust der α-Motoneurone in den ventralen Hörnern des 

Rückenmarks aus. Abhängig vom Schweregrad der SMA, für die es derzeit noch keine 

Heilmethode gibt, reicht das klinische Erscheinungsbild vom frühkindlichen Tod bis zu einer 

normalen Lebenserwartung in Begleitung einer milden Form der Muskelschwäche.  SMA 

wird durch den homozygoten Verlust des survival motor neuron Gens 1 (SMN1) verursacht. 

Neben SMN1 existiert beim Menschen noch ein weiteres, sehr ähnliches Gen: SMN2. Das 

SMN2 Gen besitzt eine C zu T Nukleotidtransition in Exon 7. Durch die Transition wird ein 

exonischer Spleißverstärker (engl. exonic splicing enhancer  (ESE)) in seiner Sequenz 

verändert, was zu alternativem Spleißen der SMN2 prä-mRNA und Verlust von Exon 7 in 90 

% der Gesamttranskriptmenge führt. Dennoch produziert auch SMN2 noch rund 10 % 

Vollängetranskripte. Durch Genkonversion bedingt, kommt SMN2 in der menschlichen 

Population in unterschiedlicher Kopienzahl vor, wobei die Anzahl zwischen null und maximal 

vier Kopien pro Allel schwanken kann. Da von SMN2 noch rund 10 % Volllängetranskripte 

gebildet werden, korreliert der Schweregrad der Erkrankung invers mit der Anzahl 

vorhandener SMN2 Kopien. 

Eine lange Zeit war SMN2 das einzige bekannte SMA-modifizierende Gen und daher Ziel 

zahlreicher Therapieansätze. Interessanterweise jedoch wurden in der Vergangenheit immer 

wieder SMN1-deletierte Patienten beschrieben, die trotz geringer SMN2 Kopienzahl eine nur 

sehr schwache bis gar nicht ausgeprägte Symptomatik zeigen. Diese Beobachtungen 

wurden auf das Vorhandensein anderer modifizierender Faktoren in nichtbetroffenen 

Patienten solcher sogenannten diskordanten Familien zurückgeführt. Im Jahr 2008 wurde in 

unserer Arbeitsgruppe schließlich das Aktinfilament bündelnde Protein Plastin 3 (PLS3) als 

stark hochreguliert und vor SMA schützend in asymptomatischen SMN1 homozygot 

deletierten Geschwistern diskordanter Familien identifiziert (Oprea et al., 2008). An 

neuronalen Zellkulturen und in einem Zabrafisch-SMA Modell wurde gezeigt, dass PLS3-

Überexpression Defekte im axonalen Auswachsen kompensieren kann.  

Im Sinne eines klassischen Rettungsexperiments war das Ziel der hier vorgelegten Arbeit 

die Untersuchung der Frage, ob die PLS3-Überexpression zu deutlicher Verbesserung der 

SMA-Symptomatik in einem bestehenden SMA-Mausmodell (Hung SMA Mäuse) führt. 

Weiterhin wurde untersucht, welchen Einfluss die PLS3-Überexpression auf die Entwicklung 

der neuromuskulären Endplatte (NME) sowie der Muskulatur und deren Funktion hat. 

Zur Beantwortung dieser Fragen wurden Im Rahmen dieser Arbeit unter Zuhilfenahme 

des Cre/loxP Systems transgene Mäuse hergestellt, die eine V5-markierte Version des 

humanen PLS3 entweder Motoneuronen-spezifisch (Hb9 Promotor), oder ubiquitär 

exprimieren. Im nächsten Schritt wurde das PLS3V5-Transgen dann auf den SMA-
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Hintergrund des Hung  Mausmodells gekreuzt. Um modifizierende Einflüsse des genetischen 

Hintergrunds auszuschließen, wurden alle Mäuse durch Rückkreuzung über mindestens 7 

Generationen auf einen reinen C57BL/6N-Hintergrund gebracht. Transgene PLS3V5-Mäuse 

auf wt und SMA Hintergrund wurden dann histologisch (Motoneuronen, NME, Muskel) und 

funktional (Motorische Tests, Gewichtsmessung, Überlebensdauer) detailliert analysiert. 

Zunächst wurde die Motoneuronen-spezifische sowie ubiquitäre PLS3V5-Expression 

mittels quantitativer reverser Trankskription (qRT) PCR, Western blot Analyse sowie 

Immunohistochemie bestätigt. Bei der anschließenden Untersuchung PLS3V5 transgener 

Mäuse auf wt und SMA Hintergrund wurde ein signifikanter Einfluss der PLS3 

Überexpression auf den Motoneuronen und NME Phänotyp festgestellt: Im Vergleich zu wt 

oder SMA Kontrolltieren waren Motoneurone und Acetylcholinrezeptoren (AChR) Cluster 

stark vergrößert. Die Untersuchung präsynaptischer Verästelungen zu unterschiedlichen 

Zeitpunkten während der axonalen Spezifizierung ergab eine stark verbesserte axonale 

Verknüpfung in PLS3V5 exprimierenden Tieren. Diese Ergebnisse ließen die Frage 

aufkommen, ob die beobachtete Vergrößerung der AChR Cluster auf prä- oder 

postsynaptische Effekte der PLS3V5 Expression zurückzuführen sei. Um diese Frage zu 

beantworten, wurde PLS3V5 im folgenden motoneuronenspezifisch im wt Hintergrund 

überexprimiert und die AChR Cluster Größe bestimmt. Dabei konnte festgestellt werden, 

dass die motoneuronenspezifische Überexpression von PLS3V5 ausreichend für die 

Vergrößerung der AChR Cluster ist. Darüber hinaus konnte in solchen Tieren sogar eine 

signifikante Zunahme des Muskelfibrillen-Durchmessers festgestellt werden. Diese 

Beobachtungen scheinen einen positiven Effekt der PLS3V5-Überexpression auf die 

neuronale Weiterleitung zu bestätigen. Dennoch müssen weitere elektrophysiologische 

Untersuchungen (z.B. Bestimmung des „quantal content“, Motor Unit Number Estimate 

(MUNE)) durchgeführt werden, um ein detaillierteres Bild der Auswirkungen einer PLS3V5-

Überexpression auf die Reizweiterleitung zu gewinnen.  

Trotz der genannten positiven Effekte auf die axonale Entwicklung konnte in PLS3V5 

exprimierenden SMA Tieren weder eine verlängerte Lebenszeit, noch eine verbesserte 

Motorik beobachtet werden. Darum wurde die Hypothese aufgestellt, dass PLS3V5 

möglicherweise nur in Gegenwart einer gewissen SMN Menge den SMA-Phänotyp 

verbessern oder retten kann, ähnlich der Situation in asymptomatischen Menschen, die 

immer mindestens 3 SMN2 Kopien trugen. Um diese Hypothese zu überprüfen, wird das 

PLS3V5-Transgen derzeit bereits auf einen milderen SMA-Hintergrund gebracht. Außer 

einer nicht ausreichenden SMN Menge könnte auch eine zu niedrige PLS3V5-Konzentration 

für das Ausbleiben von krankheitsverbessernden Effekten sein. Da in allen bisherigen 

Versuchen PLS3V5 lediglich heterozygot überexprimiert wurde, werden aktuell 
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Verpaarungen zur homozygoten Überexpression von PLS3V5 auf dem SMA Hintergrund 

durchgeführt. 
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Original publications: 

 

Ackermann B., Nölle A. 

Conference report of the “14th Spinal Muscular Atrophy Research meeting”, Santa Clara, 

USA, 2010 

Website: http://www.initiative-sma.de 

Direct link: http://www.initiative-sma.de/menu/menu.php?id=5&choice=1&archiv=0&aid=204 

 

Riessland M, Ackermann B, Förster A, Jakubik M, Hauke I, Garbes L, Fritzsche I, Mende 

Y, Blumcke I, Hahnen E, Wirth B, 2010 

SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy  

Hum Mol Genet. 

 

Sieger, D., Ackermann B., Winkler C., Tautz D., Gajewski M., 2006 

her1 and her13.2 are jointly required for somitic border specification along  the entire axis 

of the fish embryo 

Dev. Biol. 293, 242-251 

 

 

Oral Presentations: 

 

21.06. – 26.06.2011 

15th Spinal Muscular Atrophy Research meeting, Orlando, Florida, USA  

Titel:  PLS3 overexpression rescues synaptic defects in a mouse model of Spinal 

Muscular Atrophy   

 

13.05.2011 

Annual Human Genetics meeting, Universität zu Köln, Cologne, Germany  

Titel:  PLS3 overexpression rescues synaptic defects in a mouse model of Spinal 

Muscular Atrophy  

 

28.05.2010 

 23rd Meeting of Medical Genetics, Bologna, Italy  

Titel:  PLS3 – a modifying factor of Spinal Muscular Atrophy  
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Poster presentations 

 

24.06. – 26.06.2010 

14th Spinal Muscular Atrophy Research Group meeting”, Santa Clara, California, USA  

Titel:  PLS3 overexpression in the mouse increases Motoneuron- and Neuromuscular   

junction size  

B.Ackermann, S. Kröber, B.Wirth 

 

09.10.2009 

Annual Human Genetics meeting, Universität zu Köln, Cologne, Germany  

Titel:  Characterization and Identification of Modifying Factors of Spinal Muscular Atrophy  

 B.Ackermann, S. Kröber, M. Riessland, A. Förster, B.Wirth 

 

10.09. – 14.09.2008 

Axon guidance, Synaptogenesis & Neural Plasticity meeting”, New York / USA  

Titel:  Overexpression study of human T-Plastin (PLS3) to rescue the mouse SMA 

phenotype 

B.Ackermann, S. Kröber, M. Riessland, A. Förster, B.Wirth 

 

21.02.2008   

Annual Human Genetics meeting, Universität zu Köln, Cologne, Germany  

Titel:  Overexpression study of human T-Plastin (PLS3) to rescue the mouse SMA 
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B.Ackermann, G. Oprea, B. Wirth 

 

12.07 – 15.07.2007 

5th European Zebrafish Genetics and Development meeting”, Amsterdam / Niederlande  

Titel:  The role of E-Cadherin in the Danio rerio thyroid developmental process 

B.Ackermann, B. Alt, K. Rohr 

 

13.07 – 16.07.2005 

4th European Zebrafish Genetics and Development meeting,  Dresden, Germany  

Titel:  Analysis of the function of Ol-her1/11 und Ol-her13/2 during the somitogenesis 

process in Medaka (Oryzias latipes)  

 B.Ackermann, Dirk Sieger, Martin Gajewski 
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June 2011: 

Travel grant for the Families of SMA families (FSMA) conference in Orlando, Florida, 

USA, permitted by Families of SMA (FSMA), USA  

 

June 2010 

Travel grant for the Families of SMA families (FSMA) conference in Santa Clara, 

California, permitted by Initiative SMA and Förderverein für die Deutsche Gesellschaft für 

Muskelkranke e.V.  

 

May 2010 

„Best Poster Award“, 23rd Meeting of Medical Genetics”, Bologna, Italy  
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11 Appendix 

Rosa26 targeting vector with PLS3V5 integrate 

 
SHORT HOMOLOGY ARM ccgcggcaggccctccgagcgtggtggagccgttctgtgagacagccgggtacgagt

cgtgacgctggaaggggcaagcgggtggtgggcaggaatgcggtccgccctgcagcaaccggagggggagggagaaggg
agcggaaaagtctccaccggacgcggccatggctcgggggggggggggcagcggaggacgcttccggccgacgtctcgtcg
ctgattggcttttttcctcccgccgtgtgtgaaaacacaaatggcgtgttttggttggcgtaaggcgcctgtcagttaacggcagccgg
agtgcgcagccgccggcagcctcgctctgcccactgggtggggcgggaggtaggtggggtgaggcgagctgacgtgcgggc
gcggtcggcctctggcggggcgggggaggggagggagggtcagcgaaagtagctcgcgcgcgagcggccgcccaccctcc
ccttcctctgggggagtcgttttacccgccgccggccgggcctcgtcgtctgattggctctcggggcccagaaaactggcccttgcc
attggctcgtgttcgtgcaagttgagtccatccgccggccagcgggggcggcgaggaggcgctcccaggttccggccctcccctc
ggccccgcgccgcagagtctggccgcgcgcccctgcgcaacgtggcaggaagcgcgcgctgggggcggggacgggcagt
agggctgagcggctgcggggcgggtgcaagcacgtttccgacttgagttgcctcaagaggggcgtgctgagccagacctccat
cgcgcactccggggagtggagggaaggagcgagggctcagttgggctgttttggaggcaggaagcacttgctctcccaaagtc
gctctgagttgttatcagtaagggagctgcagtggagtaggcggggagaaggccgcacccttctccggaggggggaggggagt
gttgcaatacctttctgggagttctctgctgcctcctggcttctgaggaccgccctgggcctgggagaatcccttgccccctcttcccct
cgtgatctgcaactccagtctttCTAGCATCTGTAGGGCGCAGTAGTCCAGGGTTTCCTTGATGATG
TCATACTTATCCTGCTCGCGGTTGAGGACAAACTCTTCGCGGTCTTTCCAGTGGTTAATT
AAAGTTATAATCGCTGAGGTAATATTTAAAATCATTTTCAAATGATTCACAGTTAATTTGC
GACAATATAATTTTATTTTCACATAAACTAGACGCCTTGTCGTCTTCTTCTTCGTATTCCT
TCTCTTTTTCATTTTTCTCTTCATAAAAATTAACATAGTTATTATCGTATCCATATATGTATC
TATCGTATAGAGTAAATTTTTTGTTGTCATAAATATATATGTCTTTTTTAATGGGGTGTATA
GTACCGCTGCGCATAGTTTTTCTGTAATTTACAACAGTGCTATTTTCTGGTAGTTCTTCG
GAGTGTGTTGCTTTAATTATTAAATTTATATAATCAATGAATTTGGGATCGTCGGTTTTGT
ACAATATGTTGCCGGCATAGTACGCAGCTTCTTCTAGTTCAATTACACCATTTTTTAGCA
GCACCGGATTAACATAACTTTCCAAAATGTTGTACGAACCGTTAAACAAAAACAGTTCAC
CTCCCTTTTCTATACTATTGTCTGCGAGCAGTTGTTTGTTGTTAAAAATAACAGCCATTGT
AATGAGACGCACAAACTAATATCACAAACTGGAAATGTCTATCAATATATAGTTGCTCTA
GTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCG
TTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATT
GACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCA
ATGGGTGGACTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGC
CAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCA
GTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTAT
TACCATGCATGGTCGAGGTGAGCCCCACGTTCTGCTTCACTCTCCCCATCTCCCCCCCC
TCCCCACCCCCAATTTTGTATTTATTTATTTTTTAATTATTTTGTGCAGCGATGGGGGCGG
GGGGGGGGGGGGGGCGCGCGCCAGGCGGGGCGGGGCGGGGCGAGGGGCGGGGCG
GGGCGAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTT
CCTTTTATGGCGAGGCGGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCGCGCGGCGG
GCGGGAGTCGCTGCGACGCTGCCTTCGCCCCGTGCCCCGCTCCGCCGCCGCCTCGCG
CCGCCCGCCCCGGCTCTGACTGACCGCGTTACTCCCACAGGTGAGCGGGCGGGACGG
CCCTTCTCCTTCGGGCTGTAATTAGCGCTTGGTTTAATGACGGCTTGTTTCTTTTCTGTG
GCTGCGTGAAAGCCTTGAGGGGCTCCGGGAGGGCCCTTTGTGCGGGGGGAGCGGCTC
GGGGCTGTCCGCGGGGGGACGGCTGCCTTCGGGGGGGACGGGGCAGGGCGGGGTT
CGGCTTCTGGCGTGTGACCGGCGGCTCTAGAGCCTCGCTAGCATCTGTAGGGCGCAGT
AGTCCAGGGTTTCCTTGATGATGTCATACTTATCCTGTCCCTTTTTTTTCCACAGCTCGC
GGTTGAGGACAAACTCTTCGCGGTCTTTCCAGTGGTTAATTAAATAACTTCGTATAGCAT
ACATTATACGAAGTTATGGATCCGAACAAACGACCCAACACCCGTGCGTTTTATTCTGTC
TTTTTATTGCCGATCCCC NEOMYCIN: TCAGAAGAACTCGTCAAGAAGGCGATAGAAGG

CGATGCGCTGCGAATCGGGAGCGGCGATACCGTAAAGCACGAGGAAGCGGTCAGCCC
ATTCGCCGCCAAGCTCTTCAGCAATATCACGGGTAGCCAACGCTATGTCCTGATAGCGG
TCCGCCACACCCAGCCGGCCACAGTCGATGAATCCAGAAAAGCGGCCATTTTCCACCA
TGATATTCGGCAAGCAGGCATCGCCATGGGTCACGACGAGATCCTCGCCGTCGGGCAT
GCGCGCCTTGAGCCTGGCGAACAGTTCGGCTGGCGCGAGCCCCTGATGCTCTTCGTC
CAGATCATCCTGATCGACAAGACCGGCTTCCATCCGAGTACGTGCTCGCTCGATGCGAT
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GTTTCGCTTGGTGGTCGAATGGGCAGGTAGCCGGATCAAGCGTATGCAGCCGCCGCAT
TGCATCAGCCATGATGGATACTTTCTCGGCAGGAGCAAGGTGAGATGACAGGAGATCC
TGCCCCGGCACTTCGCCCAATAGCAGCCAGTCCCTTCCCGCTTCAGTGACAACGTCGA
GCACAGCTGCGCAAGGAACGCCCGTCGTGGCCAGCCACGATAGCCGCGCTGCCTCGT
CCTGCAGTTCATTCAGGGCACCGGACAGGTCGGTCTTGACAAAAAGAACCGGGCGCCC
CTGCGCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCGATTGTCTGTTGTGCCCAG
TCATAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGAACCTGCGTGCAATCCATCTT
GTTCAATGGCCGATCCCATATTGGCTGCAGGGTCGCTCGGTGTTCGAGGCCACACGCG
TCACCTTAATATGCGAAGTGGACCTGGGACCGCGCCGCCCCGACTGCATCTGCGTGTT
CGAATTCGCCAATGACAAGACGCTGGGCGGGGTTTGCTCGACATTGGGTGGAAACATT
CCAGGCCTGGGTGGAGAGGCTTTTTGCTTCCTCTTGCAAAACCACACTGCTCGACATTG
GGTGGAAACATTCCAGGCCTGGGTGGAGAGGCTTTTTGCTTCCTCTTGCAAAACCACAC
TGCTCGACTAGTGATTAAAGTCGACTCGGGGACACCAAATATGGCGATCTCGGCCTTTT
CGTTTCTTGGAGCTGGGACATGTTTGCCATCGATCCATCTACCACCAGAACGGCCGTTA
GATCTGCTGCCACCGTTGTTTCCACCGAAGAAACCACCGTTGCCGTAACCACCACGAC
GGTTGTTGCTAAAGAAGCTGCCACCGCCACGGCCACCGTTGTAGCCGCCGTTGTTGTT
ATTGTAGTTGCTCATGTTATTTCTGGCACTTCTTGGTTTTCCTCTTAAGTGAGGAGGAAC
ATAACCATTCTCGTTGTTGTCGTTGATGCTTAAATTTTGCACTTGTTCGCTCAGTTCAGC
CATAATATGAAATGCTTTTCTTGTTGTTCTTACGGAATACCACTTGCCACCTATCACCACA
ACTAACTTTTTCCCGTTCCTCCATCTCTTTTATATTTTTTTTCTCGAGGGATCTTTGTGAA
GGAACCTTACTTCTGTGGTGTGACATAATTGGACAAACTACCTACAGAGATTTAAAGCTC
TAAGGTAAATATAAAATTTTTAAGTGTATAATGTGTTAAACTACTGATTCTAATTGTTTGTG
TATTTTAGATTCCAACCTATGGAACTGATGAATGGGAGCAGTGGTGGAATGCCTTTAATG
AGGAAAACCTGTTTTGCTCAGAAGAAATGCCATCTAGTGATGATGAGGCTACTGCTGAC
TCTCAACATTCTACTCCTCCAAAAAAGAAGAGAAAGGTAGAAGACCCCAAGGACTTTCCT
TCAGAATTGCTAAGTTTTTTGAGTCATGCTGTGTTTAGTAATAGAACTCTTGCTTGCTTTG
CTATTTACACCACAAAGGAAAAAGCTGCACTGCTATACAAGAAAATTATGGAAAAATATT
CTGTAACCTTTATAAGTAGGCATAACAGTTATAATCATAACATACTGTTTTTTCTTACTCC
ACACAGGCATAGAGTGTCTGCTATTAATAACTATGCTCAAAAATTGTGTACCTTTAGCTTT
TTAATTTGTAAAGGGGTTAATAAGGAATATTTGATGTATAGTGCCTTGACTAGAGATCATA
ATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCC
CTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATA
ATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCA
TTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCTGACATGGT
AAGTAAGCTTATAACTTCGTATAGCATACATTATACGAAGTTATGGGCGCGCCACC PLS3
: ATGGATGAGATGGCTACCACTCAGATTTCCAAAGATGAGCTTGATGAACTCAAAGAGG
CCTTTGCAAAAGTTGATCTCAACAGCAACGGATTCATTTGTGACTATGAACTTCATGAGC
TCTTCAAGGAAGCTAATATGCCATTACCAGGATATAAAGTGAGAGAAATTATTCAGAAAC
TCATGCTGGATGGTGACAGGAATAAAGATGGGAAAATAAGTTTTGACGAATTTGTTTATA
TTTTTCAAGAGGTAAAAAGTAGTGATATTGCCAAGACCTTCCGCAAAGCAATCAACAGGA
AAGAAGGTATTTGTGCTCTGGGTGGAACTTCAGAGTTGTCCAGCGAAGGAACACAGCAT
TCTTACTCAGAGGAAGAAAAATATGCTTTTGTTAACTGGATAAACAAAGCTTTGGAAAAT
GATCCTGATTGTAGACATGTTATACCAATGAACCCTAACACCGATGACCTGTTCAAAGCT
GTTGGTGATGGAATTGTGCTTTGTAAAATGATTAACCTTTCAGTTCCTGATACCATTGAT
GAAAGAGCAATCAACAAGAAGAAACTTACACCCTTCATCATTCAGGAAAACTTGAACTTG
GCACTGAACTCTGCTTCTGCCATTGGGTGTCATGTTGTGAACATTGGTGCAGAAGATTT
GAGGGCTGGGAAACCTCATCTGGTTTTGGGACTGCTTTGGCAGATCATTAAGATCGGTT
TGTTCGCTGACATTGAATTAAGCAGGAATGAAGCCTTGGCTGCTTTACTCCGAGATGGT
GAGACTTTGGAGGAACTTATGAAATTGTCTCCAGAAGAGCTTCTGCTTAGATGGGCAAA
CTTTCATTTGGAAAACTCGGGCTGGCAAAAAATTAACAACTTTAGTGCTGACATCAAGGA
TTCCAAAGCCTATTTCCATCTTCTCAATCAAATCGCACCAAAAGGACAAAAGGAAGGTGA
ACCACGGATAGATATTAACATGTCAGGTTTCAATGAAACAGATGATTTGAAGAGAGCTGA
GAGTATGCTTCAACAAGCAGATAAATTAGGTTGCAGACAGTTTGTTACCCCTGCTGATGT
TGTCAGTGGAAACCCCAAACTCAACTTAGCTTTCGTGGCTAACCTGTTTAATAAATACCC
AGCACTAACTAAGCCAGAGAACCAGGATATTGACTGGACTCTATTAGAAGGAGAAACTC
GTGAAGAAAGAACCTTCCGTAACTGGATGAACTCTCTTGGTGTCAATCCTCACGTAAAC
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CATCTCTATGCTGACCTGCAAGATGCCCTGGTAATCTTACAGTTATATGAACGAATTAAA
GTTCCTGTTGACTGGAGTAAGGTTAATAAACCTCCATACCCGAAACTGGGAGCCAACAT
GAAAAAGCTAGAAAACTGCAACTATGCTGTTGAATTAGGGAAGCATCCTGCTAAATTCTC
CCTGGTTGGCATTGGAGGGCAAGACCTGAATGATGGGAACCAAACCCTGACTTTAGCTT
TAGTCTGGCAGCTGATGAGAAGATATACCCTCAATGTCCTGGAAGATCTTGGAGATGGT
CAGAAAGCCAATGACGACATCATTGTGAACTGGGTGAACAGAACGTTGAGTGAAGCTG
GAAAATCAACTTCCATTCAGAGTTTTAAGGACAAGACGATCAGCTCCAGTTTGGCAGTTG
TGGATTTAATTGATGCCATCCAGCCAGGCTGTATAAACTATGACCTTGTGAAGAGTGGC
AATCTAACAGAAGATGACAAGCACAATAATGCCAAGTATGCAGTGTCAATGGCTAGAAG
AATCGGAGCCAGAGTGTATGCTCTCCCTGAAGACCTTGTGGAAGTAAAGCCCAAGATG
GTCATGACTGTGTTTGCATGTTTGATGGGCAGGGGAATGAAGAGAGTG V5-TAG: AAGG
GCAATTCTGCAGATATCCAGCACAGTGGCGGCCGCTCGAGTCTAGAGGGCCCGCGGTT
CGAAGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACGCGTACCGGTCATC
ATCACCATCACCATTGAGGCGCGCCGCGGCCGCGATCAATTCGGTACCGAAGTTCCTA
TTCCGAAGTTCCTATTCTCTAGAAAGTATAGGAACTTCCTCGAGGGTACCCCAATTCCGC
CCCCCCCCCCCCCCTAACGTTACTGGCCGAAGCCGCTTGGAATAAGGCCGGTGTGCGT
TTGTCTATATGTTATTTTCCACCATATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAAC
CTGGCCCTGTCTTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATG
CAAGGTCTGTTGAATGTCGTGAAGGAAGCAGTTCCTCTGGAAGCTTCTTGAAGACAAAC
AACGTCTGTAGCGACCCTTTGCAGGCAGCGGAACCCCCCACCTGGCGACAGGTGCCTC
TGCGGCCAAAAGCCACGTGTATAAGATACACCTGCAAAGGCGGCACAACCCCAGTGCC
ACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATGGCTCTCCTCAAGCGTATTCAAC
AAGGGGCTGAAGGATGCCCAGAAGGTACCCCATTGTATGGGATCTGATCTGGGGCCTC
GGTGCACATGCTTTACATGTGTTTAGTCGAGGTTAAAAAACGTCTAGGCCCCCCGAACC
ACGGGGACGTGGTTTTCCTTTGAAAAACACGATGATAATATGGCCACAACC GFP: ATGG

TGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACG
GCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCT
ACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCC
CACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCAC
ATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCA
CCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGG
CGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAAC
ATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGA
CAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGC
AGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTG
CTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACG
AGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGG
CATGGACGAGCTGTACAAGTAATCCGGGATCCGGAGAGCTCCCAACGAAGTTCCTATTC
CGAAGTTCCTATTCTCTAGAAAGTATAGGAACTTCCTCGAGGTTGGATGCAGCCCGGGG
GATCCACTAGTTCTAGAGCGGCCGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCAT
CTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTC
CTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTG
GGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCA
TGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTC
GAGATCCACTAGTTCTAGCCTCGAGGCTAGAGCGGCCGCCGCGGATATCGAATTCG LO
NG HOMOLOGY ARM: ctagaagatgggcgggagtcttctgggcaggcttaaaggctaacctggtgtgtgggcgttgtc
ctgcaggggaattgaacaggtgtaaaattggagggacaagacttcccacagattttcggttttgtcgggaagttttttaataggggc
aaataggaaaatggaggatagggtcatctggggtttatgcagcaaaactacaggtatattgcttgtatccgcctcggagatttccat
gaggagataaagacatgtcacccgagtttatactctcctgcttagatcctactacagtatgaaatacagtgtgcgaggtagactatg
taagcagatttaatcattttaaagagcccagtacttcatatccatttctcccgctccttctgcagccttatcaaaaggtatttagaacact
cattttagccccattttcatttattatactggcttatccaacccctagacagagcattggcattttccctttcctgatcttagaagtctgatga
ctcatgaaaccagacagattagttacatacaccacaaatcgaggctgtagctggggcctcaacactgcagttcttttataactcctt
agtacactttttgttgatcctttgccttgatccttaattttcagtgtctatcacctctcccgtcaggtggtgttccacatttgggcctattctcag
tccagggagttttacaacaatagatgtattgagaatccaacctaaagcttaactttccactcccatgaatgcctctctcctttttctccatt
ataactgagctataccattaatggtttcaggtggatgtctcctcccccaatatacctgatgtatctacatattgccaggctgatattttaa
gacataaaggtatatttcattattgagccacatggtattgattactgctactaaaattttgtcattgtacacatctgtaaaaggtggttcctt
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ttggaatgcaaagttcaggtgtttgttgtctttcctgacctaaggtcttgtgagcttgtattttttctatttaagcagtgctttctcttggactgg
cttgactcatggcattctacacgttattgctggtctaaatgtgattttgccaagcttcttcaggacctataattttgcttgacttgtagccaa
acacaagtaaaatgattaagcaacaaatgtatttgtgaagcttggtttttaggttgttgtgttgtgtgtgcttgtgctctataataatactat
ccaggggctggagaggtggctcggagttcaagagcacagactgctcttccagaagtcctgagttcaattcccagcaaccacatg
gtggctcacaaccatctgtaatgggatctgatgccctcttctggtgtgtctgaagaccacaagtgtattcacattaaataaataatcct
ccttcttcttctttttttttttttaaagagaatctgtctccagtagaattactgaagtaatgaaatactttgtgtttgttccaatatggagccaat
aatcaaatactcttagcactggaaatgtaccaaggaactattttatttaagtgactgtggacagaggagccataactgcagacttgt
gggatacagaagaccaatgcagacttaatgtcttttctcttacactaagcaataaagaaataaaaattgaacttctagtatcctatttg
ttaaactgctagctttactaacttttgtgcttcatctatacaaagctgaaagctaagtctgcagccattactaaacatgaaagcaagta
atgataattttggatttcaaaaatgtagggccagagtttagccagccagtggtggtgcttgcctttatgccttaatcccagcactctgg
aggcagagacaggcagatctctgagtttgagcccagcctggtctacacatcaagttctatctaggatagccaggaatacacaca
gaaaccctgttggggaggggggctctgagatttcataaaattataattgaagcattccctaatgagccactatggatgtggctaaat
ccgtctacctttctgatgagatttgggtattattttttctgtctctgctgttggttgggtcttttgacactgtgggctttcttaaagcctccttccct
gccatgtggtctcttgtttgctactaacttcccatggcttaaatggcatggctttttgccttctaagggcagctgctgagtttgcagcctga
tttccagggtggggttgggaaatctttcaaacactaaaattgtcctttaatttttttttaaaaaatgggttatataataaacctcataaaat
agttatgaggagtgaggtggactaatattaatgagtccctcccctataaaagagctattaaggctttttgtcttatactaactttttttttaa
atgtggtatctttagaaccaagggtcttagagttttagtatacagaaactgttgcatcgcttaatcagattttctagtttcaaatccagag
aatccaaattcttcacagccaaagtcaaattaagaatttctgactttaatgttatttgctactgtgaatataaaatgatagcttttcctgag
gcagggtctcactatgtatctctgcctgatctgcaacaagatatgtagactaaagttctgcctgcttttgtctcctgaatactaaggttaa
aatgtagtaatacttttggaacttgcaggtcagattcttttataggggacacactaagggagcttgggtgatagttggtaaatgtgttta
agtgatgaaaacttgaattattatcaccgcaacctactttttaaaaaaaaaagccaggcctgttagagcatgctaagggatcccta
ggacttgctgagcacacaagagtagtacttggcaggctcctggtgagagcatatttcaaaaaacaaggcagacaaccaagaa
actacagtaaggttacctgtctttaaccatctgcatatacacagggatattaaaatattccaaataatatttcattcaagttttcccccat
caaattgggacatggatttctccggtgaataggcagagttggaaactaaacaaatgttggttttgtgatttgtgaaattgttttcaagtg
atagttaaagcccatgagatacagaacaaagctgctatttcgaggtctcttggttatactcagaagcacttctttgggtttccctgcact
atcctgatcatgtgctaggcctccttaggctgattgttgttcaaataacttaagtttcctgtcaggtgatgtcatatgatttcatatatcaag
gcaaaacatgttatatatgttaaacatttgacttaatgtgaaagttaggtctttgtgggttttgattttaatttcaaaacctgagctaaataa
gtcattttacatgtcttacatttggtgaattgtatattgtggtttgcaggcaagactctctgacctagtaaccctcctatagagcactttgct
gggtcacaagtctaggagtcaagcatttcaccttgaagttgagacgttttgttagtgtatactagttatatgttggaggacatgtttatcc
agaagatattcaggactatttttgactgggctaaggaattgattctgattagcactgttagtgagcattgagtggcctttaggcttgaatt
ggagtcacttgtatatctcaaataatgctggccttttttaaaagcccttgttctttatcaccctgttttctacataatttttgttcaaagaaata
cttgtttggatctccttttgacaacaatagcatgttttcaagccatattttttttcctttttttttttttttttggtttttcgagacagggtttctctgtata
gccctggctgtcctggaactcactttgtagaccaggctggcctcgaactcagaaatccgcctgcctctgcctcctgagtgccgggat
taaaggcgtgcaccaccacgcctggctaagttggatattttgtatataactataaccaatactaactccactgggtggatttttaattca
gtcagtagtcttaagtggtctttattggcccttattaaaatctactgttcactctaacagaggctgttggactagtggactaagcaacttc
ctacggatatactagcagataagggtcagggatagaaactagtctagcgttttgtatacctaccagcttatactaccttgttctgatag
aaatatttaggacatctagcttatcgatccgtcgacggtatcgataagcttgatatcgaattctaccgggtaggggaggcgcttttcc
aaggcagtctgagcatgcgcttagcagccccgctggcacttggcgctacacaagtggccttggcctcgcacacattccacatcca
ccggtaggcgccaaccggctccgttctttggtggccccttcgcgccaccttctctcctcccctagtcaggaagttcccccccgcccc
gcagctcgcgtcgtaggacgtgacaaatggaagtagcacgtctcactagtctcgtcagatggacagcaccgctgagcaatgga
agcgggtaggcctttggggcagcggccaatagcagctttgctccttcgctttctgggctcagaggctgggaaggggtgggtccgg
gggcgggctcaggggcgggctcaggggcggggcgggcgcccgaaggtcctccggaggcccggcattctgcacgcttcaaaa
gcgcacgtctgccgcgctgttctcctcttcctcatctccgggcctttcgacctgcaggtcctcgccatggatcctgatgatgttgttattct
tctaatcttttgtatggaaaacttttcttcgtaccacgggactaaacctggttatgtagattccattcaaaaaggtatacaaaagccaa
aatctggtacacaaggaaattatgacgatgattggaaagggttttatagtaccgacaataaatacgacgctgcgggatactctgta
gataatgaaaacccgctctctggaaaagctggaggcgtggtcaaagtgacgtatccaggactgacgaaggttctcgcactaaa
agtggataatgccgaaactattaagaaagagttaggtttaagtctcactgaaccgttgatggagcaagtcggaacggaagagttt
atcaaaaggttcggtgatggtgcttcgcgtgtagtgctcagccttcccttcgctgaggggagttctagcgttgaatatattaataactg
ggaacaggcgaaagcgttaagcgtagaacttgagattaattttgaaacccgtggaaaacgtggccaagatgcgatgtatgagta
tatggctcaagcctgtgcaggaaatcgtgtcaggcgatctctttgtgaaggaaccttacttctgtggtgtgacataattggacaaact
acctacagagatttaaagctctaaggtaaatataaaatttttaagtgtataatgtgttaaactactgattctaattgtttgtgtattttagatt
ccaacctatggaactgatgaatgggagcagtggtggaatgcagatcctagagctcgctgatcagcctcgactgtgccttctagttg
ccagccatctgttgtttgcccctcccccgtgccttccttgaccctggaaggtgccactcccactgtcctttcctaataaaatgaggaaa
ttgcatcgcattgtctgagtaggtgtcattctattctggggggtggggtggggcaggacagcaagggggaggattgggaagacaa
tagcaggcatgctggggatgcggtgggctctatggcttctgaggcggaaagaaccagctggggctcgacctcgagggggggcc
cgcggccgccctgcagggcgatcgctacgtacagcttttgttccctttagtgagggttaattgcgcgcttggcgtaatcatggtcata
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gctgtttcctgtgtgaaattgttatccgctcacaattccacacaacatacgagccggaagcataaagtgtaaagcctggggtgccta
atgagtgagctaactcacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatc
ggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctg
cggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgag
caaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcat
cacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccct
cgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacg
ctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgcctta
tccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagag
cgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaaggacagtatttggtatctgcgctc
tgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgc
aagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaa
aactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatc
taaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatcca
tagttgcctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagac
ccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatc
cgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctac
aggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgt
tgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagc
actgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatg
cggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaa
aacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttc
agcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacac
ggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtat
ttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctaaattgtaagcgttaatattttgttaaaattcg
cgttaaatttttgttaaatcagctcattttttaaccaataggccgaaatcggcaaaatcccttataaatcaaaagaatagaccgagat
agggttgagtgttgttccagtttggaacaagagtccactattaaagaacgtggactccaacgtcaaagggcgaaaaaccgtctat
cagggcgatggcccactacgtgaaccatcaccctaatcaagttttttggggtcgaggtgccgtaaagcactaaatcggaacccta
aagggagcccccgatttagagcttgacggggaaagccggcgaacgtggcgagaaaggaagggaagaaagcgaaaggag
cgggcgctagggcgctggcaagtgtagcggtcacgctgcgcgtaaccaccacacccgccgcgcttaatgcgccgctacaggg
cgcgtcccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctattacgccagctggcgaaa
gggggatgtgctgcaaggcgattaagttgggtaacgccagggttttcccagtcacgacgttgtaaaacgacggccagtgagcgc
gcgtaatacgactcactatagggcgaattggagct 
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