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Abstract 

The circadian clock anticipates daily environmental changes and optimizes 

timing of physiological events. Circadian systems are present in most living organisms. 

In Arabidopsis, circadian components are arranged in positive/negative regulatory 

feed-back loops. The core loop is arranged by the morning transcription factors LHY 

and CCA1, and the evening pseudo-response regulator TOC1. The morning loop 

reciprocally connects LHY and CCA1 to the TOC1-sequence-related components 

PRR9 and PRR7. Other genes, when mutated, display a clock phenotype, but not all of 

such genes have been placed into the clock model. For instance, three evening genes, 

ELF3, ELF4, and LUX, have been found to be essential for circadian function. Clock- 

and light-signaling networks are tightly interconnected. Light input to the clock is 

mediated by photoreceptors, such as the phytochromes. ELF3 and ELF4 play a pivotal 

role in the generation of circadian rhythms and in the integration of light signal to the 

clock mechanism. Both encoded proteins are reported to be located in the nucleus, and 

both the elf3 and the elf4 mutants display a similarly arrested clock. 

In this thesis, ELF3 was found to be genetically downstream of ELF4 within the 

same clock signaling pathway required to sustain circadian rhythms. Moreover, I found 

that ELF3 and ELF4 proteins physically interact. This interaction correlated with an 

increase of ELF3 nuclear localization. These observations are consistent with a role of 

ELF4 as an effector that promotes ELF3 activity to lengthen circadian periodicity. A 

functional complementation approach identified three functional modules in the ELF3 

encoded protein. The N-terminus and middle domains mediate interaction with phyB 

and ELF4, respectively. The C-terminus domain was found to be required for ELF3 

nuclear localization. Thus, ELF3 is a multifunctional protein that interacts with both 

light-signaling and clock components. 

The molecular function of ELF3 had previously remained elusive. PRR9 

expression was found to be down-regulated in ELF3 and ELF4 over-expressors. 

Interestingly, I found that ELF3 physically associated with the same conserved region 

in the PRR9 promoter as the transcription factor LUX. I found that LUX was genetically 

downstream of ELF4, and that LUX required ELF3. Taken together, I proposed that 

ELF3, ELF4, and LUX are part of an evening-clock complex required to repress PRR9 

expression, and to sustain circadian oscillations. 



Abstract 

- ii - 

ELF3 has been reported to be crucial to buffer light input to the oscillator. 

Photoreceptors and ELF3 play an opposite role in light-mediated acceleration of 

circadian periodicity, where photoreceptors shortens, and ELF3 lengthens, circadian 

period under constant light. Interestingly, I found that the N-terminus of ELF3 was not 

essential for ELF3 circadian function, but that mediated the physical interaction of ELF3 

to phyB. An elf3 complementation line deleted for its N-terminus displayed 

hyposensitivity to the period-shortening effect induced by constant-red light. Therefore, 

I hypothesized that phyB interaction to the N-terminus of ELF3 mediates light-

repression of ELF3 action in circadian-periodicity. 

In chapter 4, further characterization of the weak allele elf3-12 supported the 

role of ELF3 as a decelerator of circadian periodicity. The elf3-12 mutation encodes an 

amino-acid replacement in a conserved box within the ELF4-binding domain. The 

elf3-12 coding region led to robust expression of ELF3-12 protein, and ELF3-12 

retained the capacity to bind both ELF4 and phyB. elf3-12 displayed light-dependent 

short-period phenotype that was enhanced by phytochrome over-expression. 

Moreover, elf3-12 displayed hypersensitive to red-light-resetting pulses. Thus, I found 

that elf3-12 is attenuated in its function to repress light input to the clock and/or and 

increased phy-mediated repression of ELF3 function. elf3-12 was the first described 

elf3 weak allele. My characterization of a collection of elf3 TILLING alleles led to the 

identification of novel short- and long-period alleles that I predict will expand current 

understanding of the role of ELF3 as an integrator of light signals and as a core-clock 

component. 

Taken together, my thesis has placed ELF3 within the circadian mechanism. 

ELF3, ELF4, and LUX are part of an evening-repressor complex required to sustain 

circadian function. The genetic interaction of these three genes is consistent with a 

hierarchy of complex assembly. In this, I propose that ELF4 works as an effector 

protein that activates ELF3, possibly by increasing the ELF3 nuclear pool. Then, the 

association of both ELF3 and LUX to the PRR9 promoter is required for transcriptional 

repression of PRR9. Additionally, I propose that ELF3 function in circadian periodicity is 

modulated by its interaction partners by a competition between a positive effect of 

ELF4 and a light-mediated-negative effect of phyB. This is consistent with ELF3 being 

a multifunctional protein that integrates light signals as a core-oscillator component. 
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Zusammenfassung 

Die innere zirkadiane Uhr antizipiert die täglichen Umweltveränderungen und 

optimiert die zeitliche Koordinierung physiologischer Abläufe. Zirkadiane Systeme 

existieren in den meisten lebenden Organismen. In der Modellpflanze Arabidopsis sind 

die Komponenten der zirkadianen Uhr in positiv/negativen Rückkopplungsschleifen 

arrangiert. Der sogenannte Morgenschaltkreis besteht aus den Transkriptionsfaktoren 

LHY und CCA1, sowie dem abends expremierten Pseudo-response Regulator TOC1. 

Der morgendliche Schaltkreis verbindet reziprok LHY und CCA1 mit den Komponenten 

PRR9 und PRR7, deren Sequenzen mit der von TOC1 verwandt sind. Andere Gene 

zeigen bei Mutation ebenfalls einen Phänotyp bezüglich der zirkadianen Uhr, aber nicht 

alle von ihnen sind bisher in das Modell der inneren Uhr integriert worden. So sind 

beispielsweise die drei abends expremierten Gene ELF3, ELF4 und LUX essentiell für 

die Funktion der inneren Uhr. Die Netzwerke der inneren Uhr und des 

Lichtsignalweges sind eng miteinander verbunden. Das Lichtsignal wird über 

Photorezeptoren, wie beispielsweise die Phytochrome, an die innere Uhr 

weitergegeben. ELF3 und ELF4 spielen dabei eine ausschlaggebende Rolle bei der 

Erzeugung von zirkadianen Rhythmen, aber auch bei der Integration von Lichtsignalen 

in das System der zirkadianen Uhr. Von beiden Proteinen wird berichtet, dass sie im 

Nukleus lokalisiert sind. Mutanten beider Gene zeigen eine ähnlichen Phänotyp, der 

eine Arretierung der inneren Uhr zur Folge hat. 

In dieser Dissertation konnte gezeigt werden, dass ELF3 genetisch downstream 

von ELF4 im selben Signalweg der inneren Uhr arbeitet und dazu benötigt wird die 

zirkadiane Rhythmik aufrecht zu erhalten. Darüber hinaus wurde gezeigt, dass die 

Proteine ELF3 und ELF4 physisch miteinander interagieren. Diese Interaktion 

korrelierte mit einer vermehrten Lokalisation von ELF3 im Zellkern. Diese 

Beobachtungen decken sich mit dem Effekt, dass ELF4 die Aktivität von ELF3 fördert 

und dadurch die zirkadiane Periode verlängert. Mit Hilfe eines funktionellen 

Komplementierungsansatzes konnten drei funktionelle Abschnitte im ELF3 Protein 

identifiziert werden. Der N-Terminus vermittelt die Interaktion mit PhyB, während der 

mittlere Proteinabschnitt für die Interaktion mit ELF4 verantwortlich ist. Für den C-

Terminus konnte festgestellt werden, dass er für die Lokalisierung von ELF3 im 

Nukleus verantwortlich ist. Daraus folgt, dass ELF3 ein mutlifuntionelles Protein ist, das 

sowohl mit dem Lichtsignalweg als auch mit Komponenten der inneren Uhr interagiert. 
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Die molekulare Funktion von ELF3 war bisher unbekannt. Man wusste lediglich, 

dass die Expression von PRR9 in Überexpressoren von ELF3 und ELF4 verringert war. 

Interessanter Weise konnte in dieser Arbeit gezeigt werden, dass ELF3 physisch mit 

der selben konservierten Region im PRR9 Promotor interagiert wie der 

Transkriptionsfaktor LUX. Außerdem konnte gezeigt werden, dass LUX genetisch 

downstream von ELF4 arbeitet und dass LUX ELF3 benötigt um zu funktionieren. 

Zusammenfassend lässt sich daher annehmen, dass ELF3, ELF4 und LUX Teil eines 

abends gebildeten Komplexes der inneren Uhr sind, der benötigt wird um die 

Expression von PRR9 zu verhindern und daher für die Aufrechterhaltung von 

zirkadianen Oszillationen benötigt wird. 

Von ELF3 wird berichtet, dass es ausschlaggebend ist für die Abpufferung der 

Lichtsignale an den Hauptoscillator der inneren Uhr. Die Photorezeptoren und ELF3 

spielen entgegengesetzte Rollen bei der Licht vermittelten Beschleunigung der 

zirkadianen Periodizität. Währen die Photorezeptoren die Periode verkürzen, 

verlängert ELF3 die Periode unter konstanten Lichtbedingungen. In dieser Arbeit 

konnte gezeigt werden, dass der N-Terminus zwar für die zirkadiane Funktion von 

ELF3 entbehrlich ist, dennoch aber die physische Interaktionsebene für ELF3 und 

PhyB darstellt. Eine elf3 Komplementationslinie, die keinen N-Terminus mehr besaß, 

zeigte einen hyposensitiven Phänotyp bezüglich der Verkürzung der zirkadianen 

Periode unter konstantem Rotlicht. Daraus wurde gefolgert, dass die Interaktion von 

PhyB mit dem N-Terminus von ELF3 die Licht vermittelte Unterdrückung der 

zirkadianen Periodizität ermöglicht. 

In Kapitel 4 wurde ein schwaches Allel von ELF3, elf3-12, charakterisiert. Die 

durchgeführten Untersuchungen lieferten weitere Anhaltspunkte für eine 

entschleunigende Wirkung von ELF3 auf die zirkadiane Periode. Die elf3-12 Mutation 

sorgt für einen Aminosäureaustausch in einem konservierten Bereich innerhalb der 

ELF4-Bindedomäne. Die kodierende Region von elf3-12 erzeugte eine robuste 

Expression des ELF3-12 Proteins, welches die Fähigkeit ELF4 und PhyB zu binden 

behielt. elf3-12 hatte einen lichtabhängigen Phänotyp mit einer verkürzten Periode, 

welcher durch die Überexpression von Phytochrom B noch verstärkt wurde. Darüber 

hinaus war elf3-12 hypersensitiv für Lichtpulse, die den Oszillator zurücksetzen. 

Daraus lässt sich schließen, dass elf3-12 nur eine abgeschwächte Funktion bei der 

Unterdrückung von Lichtsignalen an die innere Uhr hat. Möglich ist auch eine 

Verstärkung der durch PhyB vermittelte Unterdrückung der ELF3 Aktivität. elf3-12 war 

das erste schwache Allel von ELF3, das beschrieben wurde. Durch die 

Charakterisierung weiter sogenannter TILLING Allele von ELF3 konnten weitere Allele 
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mit verlängerter oder verkürzter Periode identifiziert werden, die zum künftigen 

weiteren Verständnisses der Rolle von ELF3 als Integrator von Lichtsignalen und als 

Hauptkomponente der inneren Uhr beitragen werden. 

Zusammenfassend lässt sich sagen, dass durch die Untersuchungen in dieser 

Arbeit ELF3 eine Rolle im Mechanismus der inneren Uhr zugeschrieben werden 

konnte. ELF3, ELF4 und LUX sind Teil eines Abendkomplexes mit reprimierender 

Funktion, der für die Aufrechterhaltung der zirkadianen Rhythmik von Nöten ist. Die 

genetische Interaktion dieser drei Gene ist vereinbar mit der Hierarchie der Bildung des 

Komplexes. Das könnte bedeuten, dass ELF4 als ein Effektorprotein funktioniert, das 

ELF3 aktiviert, was möglicherweise durch eine Erhöhung der im Nukleus befindlichen 

Menge von ELF3 bewerkstelligt wird. Darüber hinaus wird der Effekt von ELF3 auf die 

zirkadiane Periode vermutlich durch seine Interaktionspartner moduliert. So könnte es 

zu einem Konkurrieren von ELF4 mit positivem Effekt auf die innere Uhr und dem 

negativen, durch Licht vermittelten Effekt von PhyB kommen. Dies wiederum wäre 

vereinbar mit der Rolle von ELF3 als multifunktionelles Protein, das als eine 

Kernkomponente der inneren Uhr Lichtsignale integriert. 
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1.1 Introduction to circadian rhythms 

Diurnal life rhythms are shaped by circadian clocks. The Earth’s rotation has 

been a constant generator of rhythmic oscillations in environmental conditions. These 

are notably light - dark, warm - cool, and dampness rhythms. Therefore, physiological 

processes in most organisms have adapted to be rhythmic. Organism evolved 

circadian clocks to anticipate these predictable diurnal oscillations in environmental 

conditions. Circadian rhythms are endogenously generated and enable overall 

optimization of the timing of physiological processes. Circadian oscillations have a 

periodicity of ≈ 24 hours to match the duration of a day (Dunlap et al., 2004). 

Although biological rhythms had been observed for many centuries, the first 

circadian experiment was performed in the 18th century. The French astronomer 

DeMarian showed that rhythms of leaf movement persist in constant dark conditions, 

providing the first evidence that circadian rhythms are endogenously generated. Since 

that experiment, the existance of circadian rhythms has extended to many diverse 

organisms, such as cyanobacteria, yeast, insects, birds, mammals, and plants. Hence, 

circadian clocks are ubiquitous mechanisms in living organism (Dunlap et al., 2004). 

Chronobiology studies the occurrence and generation of life rhythms. Circadian 

oscillations are part of our everyday. For example, they are found in the patterns of 

sleeping and awaking, mental concentration, hormone levels, and body-temperature 

homeostasis. In most organisms, core biological processes, such as cell division and 

changes in gene expression, occur in a circadian fashion (Dunlap et al., 2004). These 

processes are outputs of the circadian clock. In plants, examples of clock outputs are 

leaf movement, growth, metabolic pathway, and stress responses [Figure 1.1, (Harmer, 

2009)]. 

The fitness advantage of an endogenous clock has been demonstrated in 

several model systems. Plants with an internal-clock length matching the day length of 

the environment had increased fitness through increasing levels of photosynthesis, 

growth, and survival (Dodd et al., 2005). Similar conclusions have been observed in 

cyanobacteria (Ouyang et al., 1998). Moreover, plant mutants that loss circadian 

regulation had increased levels of mortality (Green et al., 2002) and susceptibility to 

pathogen infections (Wang et al., 2011). Importantly, in man, serious diseases, such as 

diabetes, cancer, and depression, have been associated to circadian defects (Dunlap 
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et al., 2004). These observations highlight the biological relevance of internal time-

keeping. 

Importantly, external cues reset the circadian clock daily, keeping internal and 

external times synchronized. This process is called entrainment and it is mediated by 

the so-called zeitgebers (‘time-givers’). In most organisms, the main zeitgebers are 

light and temperature signals (Jones, 2009). Entrainment is mediated by the clock-input 

pathways. Notably, these input pathways are simultaneously controlled as clock 

outputs (Figure 1.1). This enables circadian clocks to modulate the susceptibility for 

entrainment cues throughout the day. Therefore, entrainment is a complex process that 

requires interaction of the circadian clock with both input and output pathways. 

 

Figure 1.1. The plant circadian clock system.  
Circadian rhythms are generated by a central oscillator. The timing of many 
physiological processes is regulated by the circadian clock through the output pathways 
(green arrows). Moreover, the oscillator is reset daily by the input pathways (pink 
arrows). Simultaneously, the input pathways are circadian regulated through the output 
pathways, increasing the robustness of the oscillator to external and internal 
perturbations. 
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Entrainment allows circadian clocks to keep track of seasonal changes in day 

length, in a process termed photoperiodism. Organisms living in extreme latitudes are 

particularly challenged by seasonal environmental oscillations (Dunlap et al., 2004). 

Hence, photoperiod is widely used as an external cue to predict the most favorable 

time for developmental choices. For example, in plants, photoperiod pathways controls 

flowering time (de Montaigu et al., 2010). Also, photoperiodism controls the timing of 

bird and monarch butterflies migrations (Gwinner, 2003; Kyriacou, 2009). Photoperiod 

perception is achieved cooperatively by integrating the timing of the information derived 

from the circadian clock and light-input pathways (de Montaigu et al., 2010). 

The molecular components of the clock are not conserved between kingdoms, 

suggesting that circadian systems have multiple evolutionary origins. In red-blood cells 

and the microscopic algae Ostreococcus tauri, circadian oscillations persist in the 

absence of transcription (O'Neill and Reddy, 2011; O'Neill et al., 2011). Nevertheless, 

the molecular mechanism in most multi-cellular circadian systems involves 

interconnected transcriptional-translational feedback loops between clock components. 

Circadian clocks are a fascinating example of convergence evolution (Dunlap et al., 

2004). The next sections will focus on the state of the circadian clock in the plant 

Arabidopsis thaliana (Arabidopsis). 

1.2 The Arabidopsis circadian clock  

1.2.1 Tools to investigate clock function 

Circadian waves can be mathematically described. Several properties of 

circadian oscillations are of particular interest. The period is the duration of a single 

oscillation and defines the speed of the circadian rhythm. The phase describes the 

timing of specific events within the circadian day. The amplitude is defined as half the 

difference between the maximum and the minimum value of an oscillation (Figure 1.2). 

These three properties can be genetically separable (Harmer, 2009). Finally, the 

accuracy of the circadian oscillation is described by its robustness. Here, the term 

arrhythmicity is used when circadian rhythms are not sustained. Period, phase, 

amplitude, and robustness are used to characterize circadian mutants, and to describe 

input signals that affect the endogenous oscillator. 

The main tool to investigate circadian function in plants is the monitoring of 

circadian oscillations of cotyledon movement and transcript accumulation of clock-
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control-genes (CCG). In the early 90s, the use of firefly-luciferase based circadian 

reporters (CCG:LUC) boosted circadian research in Arabidopsis (Millar et al., 1992). In 

these reporters, the promoter of a CCG was fused to the luciferase coding sequence. 

In the presence of the luciferase substrate (luciferin) plants then emit bioluminescence 

in a circadian fashion. In such experiments, plants harboring CCG:LUC are grown for 

few days under entraining cycles of light or temperature (Light/Dark, LD or Warm/Cool, 

WC, respectively), and then they are released to so-called free-running conditions of 

continuous light (LL) or darkness (DD) (Figure 2A). The bioluminescence emission is 

acquired by highly sensitive cameras that can detect low intensity light. Then, the 

obtained data can be analyzed by using mathematical and statistical tools.  
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Figure 1.2. Analysis of circadian rhythms.  
The figure shows the main features of bioluminescence-based circadian experiments. 
Under diurnal or entraining cycles of time-givers, such as temperature or light/dark 
cycles, the period of the clock is about 24 hours. Under constant conditions, circadian 
period-length deviates from 24 hours. Phase refers to the timing of a physiological event 
within the circadian cycle. Normally, it is refers to the highest luminescence value within 
the oscillation (peak). Amplitude is half the difference between the highest and the lowest 
value of the oscillation. 

Several CCG promoters have been fused to luciferase to study circadian 

oscillations. One example is CHLOROPHYLL A/B BINDING PROTEIN (CAB). CAB 

has a complex regulation by both light and the circadian clock. Hence, CAB:LUC was 

the first luciferase reporter to be used for studying the interaction between light and 

clock (Millar et al., 1995a). Moreover, CAB:LUC expression was used to identify 
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circadian mutants with aberrant reporter expression (Millar et al., 1995b; Millar et al., 

1995a). The dampening of CAB expression in the dark limits the use of CAB:LUC for 

DD experiments. However, robust rhythmic expression persist in DD for other CCG 

genes, such as the COLD AND CIRCADIAN REGULATED (CCR2, also known as 

AtGRP7) (Heintzen et al., 1997; Covington et al., 2001; Hanano et al., 2006; 

McWatters et al., 2007; Schoning et al., 2007). Finally, most of the core-clock 

components (see below) are also CCG, and their promoters have also been used 

within the luciferase platform to build up the complex interconnections of the circadian-

clock model. 

1.2.2 The circadian clock model 

In Arabidopsis, the first loop to be defined was the so-called core loop. The core 

loop connects LATE AND ELONGATED HYPOCOTYL (LHY) (Schaffer et al., 1998) 

and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) (Wang and Tobin, 1998) to TIME 

OF CAB EXPRESSION (TOC1) (Strayer et al., 2000) (Figure 1.3). LHY and CCA1 

encode two myb-like transcription factors that are expressed in the morning. LHY and 

CCA1 act additively as transcriptional repressors by associating to the promoter of 

TOC1, confining TOC1 expression to dusk (Alabadi et al., 2001; Perales and Mas, 

2007) (Figure 1.4). Consistently, the over-expression of LHY or CCA1 led to clock 

arrest with basal levels of TOC1 expression (Wang and Tobin, 1998; Matsushika et al., 

2002b). Conversely, the pseudo response regulator (PRR) TOC1 promotes the 

expression of CCA1 and LHY by an unknown mechanism [Figure 1.3, (Alabadi et al., 

2001; Pruneda-Paz et al., 2009)]. This thus closes the core of the clock. Notably, in the 

absence of the core loop the circadian clock arrests (Ding et al., 2007). 

Subsequent experimental and mathematical approaches expanded the plant 

clock to the so-called three-loop-model (Locke et al., 2006; Zeilinger et al., 2006). In 

this model, a morning and evening loop were added interlocking with the central loop 

(Figure 1.3). This was extended and confirmed with molecular genetics and 

biochemical experiments. In here, three TOC1-sequence-related clock components, 

PRR9, PRR7, and PRR5, were placed within the core mechanism. During the day, 

PRR9 and PRR7 associate sequentially with the promoter of LHY and CCA1 to repress 

their transcription [Figure 1.4, (Nakamichi et al., 2005; Nakamichi et al., 2010)]. 

Reciprocally, LHY and CCA1 promote the expression of PRR9 and PRR7 by direct 

association to promoter cis-elements [Figure 1.4, (Farre et al., 2005; Portoles and Mas, 

2010)]. Notably, the function of TOC1 as an activator of LHY and CCA1 is opposite to 

the function of PRR9/7. Moreover, PRR5 has been shown to play a dual role within the 
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oscillator, one as direct repressor of LHY and CCA1 (Nakamichi et al., 2010), and a 

second one as stabilizer of TOC1 protein-nuclear pool [Figure 1.4, (Wang et al., 2010)]. 

This second role of PRR5 seems to be more prominent since both toc1 and prr5 null 

alleles were shown to have short-period phenotypes, and this was opposite to prr9, 

prr7, and the double mutant prr7 prr9, all of which displayed a long-period phenotypes 

(Alabadi et al., 2001; Yamamoto et al., 2003; Farre et al., 2005). Recent mathematical 

modeling efforts validated the PRR9, PRR7, and PRR5 repressor wave to LHY and 

CCA1 (Pokhilko et al., 2010). Consequently, the triple mutant prr975 was found to be 

arrhythmic for all circadian outputs (Nakamichi et al., 2005).  
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Figure 1.3. One Arabidopsis circadian clock model.  
Circadian-clock components are arranged in interconnected feedback loops. In the core 
loop (black arrows, green box), LHY and CCA1 negatively regulate TOC1 expression, and 
feedback from TOC1 promotes LHY and CCA1. In the morning loop (orange arrows), 
PRR9 and PRR7 negatively regulate LHY and CCA1, and LHY and CCA1 feedback to 
promote PRR9 and PRR7. In the evening loop (light blue arrows), TOC1 negatively 
regulates GI/Y expression, and Y activates TOC1 expression. ZTL promotes TOC1 protein 
degradation. CCA1 and LHY represses ELF3, ELF4, and LUX expression (pink, green and 
blue, respectively). LUX, ELF3, and ELF4 repress PRR9 expression. Additionally, ELF3 
and ELF4 repress GI and PRR7. Continuous line indicates regulatory link is direct, 
dashed line indicates direct link has not been determined. 

An evening loop was proposed between an unknown component Y and TOC1 

(Figure 1.3). The component Y is light induced and acts as a promoter of TOC1 

expression (Locke et al., 2006; Zeilinger et al., 2006). Partial Y function was assigned 

to the evening gene GIGANTEA (GI). However, high levels of TOC1 found in the gi 

mutants suggested additional components may assist in Y function (Martin-Tryon et al., 

2007). GI encodes for a protein of unknown function and is unique to plants. Different 
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gi mutants showed pleiotropic defects in flowering time, hypocotyl growth, and stress 

response (Huq et al., 2000; Cao et al., 2005; Mizoguchi et al., 2005). This suggests 

that GI has a wide role in plant physiology. 
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Figure 1.4. Clock components are interconnected by transcriptional loops of 
activation and repression.  
Squares and circles represent clock promoters and clock proteins, respectively. 
Continuous lines indicate links are direct and have been experimentally validated. 
Dashed lines refer to indirect or not experimentally confirmed links. Links ending on 
arrows or horizontal lines represent activation or repression, respectively. Squared line 
refers to target 26S-proteasome-mediated degradation. The model is explained in the text 
(Sections 1.2.2 and 1.3). 

GI function in the circadian clock is mediated by its physical interaction with 

ZEITLUPE (ZTL) [Figure 1.4, (Kim et al., 2007)]. ZTL is a F-box protein that facilitates 

ubiquitination by E3-ligase of TOC1 and PRR5, targeting them for degradation by the 

26S-proteasome [Figure 1.4; (Mas et al., 2003; Kiba et al., 2007; Baudry et al., 2010; 

Wang et al., 2010)]. Consequently, loss of ZTL function lengthened circadian period. 

ZTL protein interactions are mediated by the LOV (Light, Oxygen, or Voltage) domain 

that also functions as a blue-light photoreceptor. Hence, blue light modulates the 

affinity of ZTL to its protein interactors (Mas et al., 2003; Kiba et al., 2007; Baudry et 

al., 2010; Wang et al., 2010). For instance, blue light induces ZTL and GI protein 

interaction, resulting in stabilization of both proteins. Since ZTL protein is localized in 
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the cytoplasm, the interactions of ZTL, GI, and TOC1 in the cytoplasm is thought to 

regulate active levels of nuclear TOC1 protein [Figure 1.4, (Kim et al., 2007)]. 

Therefore, GI negatively regulates TOC1 levels by stabilizing ZTL. 

1.3 Three clock genes are essential for sustained circadian 
oscillations 

The function of any individual clock components of the three-loop model is not 

essential for circadian function (Locke et al., 2006; Zeilinger et al., 2006). To date, only 

a small group of clock components have been found to be essential for sustained 

circadian function in Arabidopsis. These three genes are EARLY FLOWERING-3 

(ELF3), EARLY FLOWERING-4 (ELF4), and LUX ARRYTHMO/PHYTOCLOCK1 

(LUX/PCL1) (Hicks et al., 1996; Doyle et al., 2002; Hazen et al., 2005; Onai and 

Ishiura, 2005). 

1.3.1 ELF3 

ELF3 is required for core-clock function since elf3 loss-of-function mutants are 

arrhythmic for circadian outputs under LL (Covington et al., 2001) and in DD 

(Covington et al., 2001; Thines and Harmon, 2010). ELF3 encodes for an unknown 

protein unique to plants. It was reported to localize in the nucleus (Liu et al., 2001). 

ELF3 protein accumulation is rhythmic and peaks at subjective night (dusk) under LD 

(Liu et al., 2001). ELF3 protein possess features of a transcriptional regulator, such as 

a proline-rich region (residues 440-540), an acidic region (residues 206-320), a 

threonine-rich region (residues 636-652), a putative nuclear-targeting signal starting at 

residue 591, and a glutamine-stretch (residues 544-585). The glutamine stretch is 

polymorphic in length between different Arabidopsis accessions (Hicks et al., 2001; 

Tajima et al., 2007). The timing of ELF3 protein accumulation, ELF3 nuclear 

localization, and ELF3 protein features suggest a role in clock-mediated transcriptional 

regulation at dusk. elf3 null alleles affect the expression of the core-loop components, 

with low levels of LHY and CCA1, and high levels of TOC1 (Kikis et al., 2005). 

Moreover, expression levels of PRR9, PRR7, and GI were found to be constantly high 

in elf3 loss-of-function mutants (Dixon et al., 2011). Interestingly, ELF3 protein was 

recently found to associate to the promoter of PRR9, but not to PRR7 or GI, indicating 

a direct transcriptional repression of ELF3 on PRR9 expression [Figure 1.3 and 1.4, 

(Dixon et al., 2011)]. Plants over-expressing ELF3 (ELF3-OX) have rhythmic circadian 
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oscillations with long period (Covington et al., 2001). Therefore, ELF3 functions within 

the core oscillator as a transcriptional repressor of PRR9, and a negative regulator of 

clock periodicity. 

1.3.2 ELF4 

ELF4 is a small homodimeric nuclear protein unique to plants (Khanna et al., 

2003; Kolmos et al., 2009). Structural modeling predicts ELF4 to consist of a single 

protein-protein interaction domain, and hence, ELF4 was predicted to function as an 

effector for a target protein (Kolmos et al., 2009). Similar to ELF3, loss of ELF4 function 

leads to clock arrest both under LL and in DD, as well as, arrhythmic low levels of LHY 

and CCA1 expression with high levels of TOC1 (Doyle et al., 2002; Kikis et al., 2005; 

McWatters et al., 2007). Hypomorphic alleles of ELF4 had accelerated circadian 

rhythms, and a long periodicity resulted by ELF4-OX. Hence, ELF4 decelerated 

circadian periodicity (McWatters et al., 2007; Kolmos et al., 2009). Additionally, the 

transcript accumulation of the secondary loop components PRR9, PRR7, and GI was 

found to be constitutively high in elf4 loss of function, and this was also found to a 

lesser extent in weak elf4 alleles (Kolmos et al., 2009). The expression phenotypes of 

LHY, CCA1, and TOC1 in the elf4 mutant can be mimicked computationally by the 

simultaneous increase of the expression levels of PRR9 and GI in the three-loop 

mathematical model (Kolmos et al., 2009). Taken together, ELF4 is core-clock 

component that has two entry points to the oscillator, by repressing both morning and 

evening secondary loop components [Figure 1.3 and 1.4, (Kolmos et al., 2009)]. 

1.3.3 LUX 

The GARP-type transcription factor LUX is pivotal to sustain circadian rhythms. 

LUX loss of function is arrhythmic for all tested circadian outputs, and this phenotype is 

more severe under LL (Hazen et al., 2005; Onai and Ishiura, 2005). LUX has been 

recently found to work as a transcriptional repressor by associating to a DNA motif 

found in the promoter of PRR9, called the LUX BINDING SITE (LBS, nucleotide 

sequence GATTCG) [(Helfer et al., 2011), Figure 1.3 and 1.4]. Lack of repression of 

PRR9 expression is likely to cause abnormal expression levels of core-loop clock 

components: low expression of LHY and CCA1 and high levels of TOC1 (Hazen et al., 

2005; Onai and Ishiura, 2005), which are also found in elf3 and elf4 loss of function 

mutants (Kikis et al., 2005; McWatters et al., 2007). Since PRR9 over-expression does 

not lead to clock arrest (it leads to a short-period phenotype) (Matsushika et al., 
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2002a), additional lack of repression of other targets of LUX are likely to participate in 

the lux severe clock phenotypes. 

Sustained circadian rhythms in Arabidopsis require ELF3, ELF4, and LUX 

function. The three genes act as transcriptional repressors at dusk. Their loss function 

phenotypes are similar. Therefore, these three genes could act closely in a genetic 

pathway essential for the circadian-clock mechanism. 

1.4 Outputs of the clock 

In plants, circadian oscillations can be found in many physiological processes. 

These include gene expression, hypocotyl growth, photosynthesis, and pathogen 

responses (Hanano and Davis, 2007; Nozue et al., 2007; Covington et al., 2008; 

Michael et al., 2008; Roden and Ingle, 2009; Graf et al., 2010). The transcript 

accumulation of about 40 % of Arabidopsis genes is circadian regulated, as shown by 

microarray analysis (Covington et al., 2008; Hubbard et al., 2009). Such an extensive 

circadian regulation is achieved by the rhythmic expression of transcription factor 

families, such as MYB, bHLH, and bZIP (Hanano et al., 2008). Clock regulation 

extends to hormone production, magnitude of hormone and cold responses, and 

primary metabolic pathways (Hanano et al., 2006; Covington and Harmer, 2007; 

Covington et al., 2008; Fukushima et al., 2009). Clock transcriptional regulation of gene 

expression is extensive in Arabidopsis. 

Multiple cis-elements in the promoter of CCG genes mediate association of 

positive and negative regulators that shape their circadian oscillation (Michael and 

McClung, 2002; Harmer and Kay, 2005; Michael et al., 2008; Helfer et al., 2011). 

Computational analyses have shown the importance of the interplay of the circadian 

clock with temperature- and light-signaling pathways (Michael et al., 2008). 

Additionally, several cis-elements have found to be over-represented in the promoter of 

CCG (Covington et al., 2008; Michael et al., 2008). The most studied cis-element is the 

so-called Evening Element (EE, nucleotide sequence AAAATATCT), over-represented 

in the promoter of genes that peak at dusk, such as TOC1, GI, ELF4, and LUX 

(Harmer, 2009; Li et al., 2011). The binding of LHY and CCA1 to the EE mediates 

transcriptional repression during the subjective day and confers evening-phase 

expression. Notably, the EE also mediates activation of the expression of morning 

phased genes, such as PRR9, PRR7, and CAB (Farre et al., 2005; Lu et al., 2009; 

Portoles and Mas, 2010). This indicates that LHY and CCA1 can work both as 
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activators and repressors, possibly by participating in different protein complexes 

depending on promoter context (Lu et al., 2009). In summary, different clock 

transcription factors mediate transcriptional activation or repression by associating to 

the promoters of CCG. 

Phylogenetic shadowing of promoter sequences can reveal evolutionary 

conserved cis-elements required for transcriptional regulation (Boffelli et al., 2003). For 

this, the extent of sequence conservation is examined in an alignment of homologous 

sequences of related species. Sequence conservation indicates selective pressure to 

keep DNA motifs of functional importance (Picot et al., 2010), and can be then 

validated by experimental approaches. The use of this process as a technique is 

exemplified by the identification of regulatory elements in the LHY promoter (Spensley 

et al., 2009).  

1.5 Photoperiodism and plant development 

Light- and clock-signaling pathways control diurnal plant growth and the 

transition from vegetative to reproductive phase (de Montaigu et al., 2010). The 

regulation of hypocotyl elongation has been studied as a model for diurnal-growth 

control. Hypocotyl growth rate is controlled by the circadian clock. Hypocotyl growth 

arrests at the beginning of the day. In arrhythmic mutants, such as elf3, hypocotyls are 

constantly growing. Therefore, these mutants displayed long hypocotyls when grown 

under LD conditions (Dowson-Day and Millar, 1999; Nozue et al., 2007). Light also 

inhibits hypocotyl elongation independently of the clock. long hypocotyl 1 (hy) mutant 

displayed rhythmic-hypocotyl elongation, but still had long hypocotyl due to lack of light 

perception through the phytochrome photoreceptors (Dowson-Day and Millar, 1999). 

The PHYTOCHROME INTERACTING FACTORS (PIF) PIF4 and PIF5 promote 

hypocotyl growth. These encode bHLH transcription factors that bind to the active form 

of phytochromes. The clock controls transcript accumulation of PIF4 and PIF5 that is 

highest at the end of the night. PIF4 and PIF5 expression peaks coincide with maximal 

hypocotyl growth rate. In the absence of clock function, PIF4 and PIF5 levels are 

constitutively high leading to continuous growth (Nozue et al., 2007). At dawn, light 

signaling arrests hypocotyl growth by degrading PIF4 and PIF5. The combined 

regulation by clock and by light restricts maximal diurnal hypocotyl elongation to the 

end of the night, when PIFs highest transcript accumulation coincides with protein 

stability. 
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Interestingly, loss of ELF3 or PHYTOCRHOME B (PHYB) functions were found 

to lead to similar developmental defects, such as such as long hypocotyls, elongated 

petioles, and pale leaves (Zagotta et al., 1996; Liu et al., 2001). The loss of elf3 had 

long hypocotyls under constant red light (Rc), and to less extent under constant blue 

light (Bc), whereas no phenotype was observed under constant far-red light (FRc). This 

indicates that ELF3 plays a more important role in phyB mediated red-light signals to 

inhibit hypocotyl elongation (Reed et al., 2000; Liu et al., 2001). Light inhibition of 

hypocotyl growth is fluence-rate dependent, i.e. increasing light intensities lead to an 

increase in the inhibition rate. Notably, elf3 PHYB-OX mutant responded to increasing 

red light intensities, but showed longer hypocotyls than PHYB-OX (Reed et al., 2000). 

Overall, ELF3 affects hypocotyl elongation as a component of the clock mechanism 

and phyB signaling, whereas phyB role is likely limited to RL signaling. 

The circadian clock participates in regulation of the transition from vegetative to 

reproductive development through the photoperiodic pathway (de Montaigu et al., 

2010). In the external coincidence model, the clock controls the phase of CONSTANS 

(CO) expression (Suarez-Lopez et al., 2001). Under short day, CO expression occurs 

in the dark phase, and CO protein is targeted to degradation by the E3-ligase 

CONSTITUTIVE MORPHOGENENIC 1 (COP1) (Jang et al., 2008). However, under 

long days, maximal CO expression coincides with the light phase. CO protein is stable 

in the light and activates the transcription of FLOWERING LOCUS T (FT) (Valverde et 

al., 2004). Finally, FT moves from the leaf to the apex and triggers the transition to 

flowering (Corbesier et al., 2007). 

The elf3, elf4, and lux loss of function mutants are early-flowering mutants 

regardless of photoperiod (Zagotta et al., 1996; Hicks et al., 2001; Doyle et al., 2002; 

Hazen et al., 2005). A weaker early-flowering phenotype has been also observed in 

phyB mutants. Notably, elf3 and phyB mutations were additive in reducing flowering 

time (Reed et al., 2000). This suggests that ELF3 and phyB delay flowering time by at 

least partially independent mechanisms. 

The elf3 early-flowering phenotype was shown to be independent of CO, and 

did not require high levels of FT expression. This suggest that ELF3 may repress 

flowering independently of the CO-dependent pathway (Kim et al., 2005). GI also 

posses separable functions in the clock and as a promoter of flowering (Martin-Tryon et 

al., 2007). GI is an activator of CO transcription and consequently gi mutants are late 

flowering. Moreover, elf3 gi double mutant is late flowering, but displayed a long 

hypocotyl like elf3 (Chou and Yang, 1999). This suggests the existence of separate 



Chapter 1 Introduction 

- 14 - 

genetic pathways for hypocotyl elongation and flowering time. In the flowering-time 

control, GI is downstream of ELF3, whereas in the hypocotyl-elongation control, ELF3 

is downstream of GI. 

1.6 Light signaling is tightly interconnected with the circadian 
clock 

Light is the primary source of energy for plants through photosynthesis. In 

addition, light signals are important modulators of plant development through a process 

called photomorphogenesis. Light is also a major input signal to the circadian clock 

through the action of three different types of photoreceptors: phytochromes (phys) for 

red light (RL) and far-red light (FRL), and cryptochromes (crys), and the ZTL family for 

blue light (BL). Interestingly, PHYs and CRYs transcript accumulation is regulated as 

an output of the circadian clock with different phases of maximum expression during 

the subjective day (Toth et al., 2001). Therefore, clock modulates light input by the 

photoreceptors. 

In Arabidopsis, the phytochrome family has five members: PHYA to PHYE 

(Sharrock and Quail, 1989). Functional phytochromes form homodimers, and each 

monomer has a chromophore covalently attached. In dark grown seedlings, cytosolic 

localization is exclusive for phyA and predominant for phyB to phyE. Upon specific 

irradiation, activated phytochromes are translocated to the nucleus where they localize 

in distinct phytochrome-nuclear bodies (PNB). Under light dark cycles, PNB formation 

precedes the lights on signal, indicating both diurnal and circadian regulation (Kircher 

et al., 2002). Thereby, the circadian clock optimizes phytochrome signaling by enabling 

dawn anticipation. 

Phytochromes control the responses to RL and FRL. phyA controls FR 

responses mediated by short pulse of low fluence FRL and FRc (Hiltbrunner et al., 

2007). phyA also participates in the response to low intensities of Rc in etiolated 

seedlings. phyB mediates the response to Rc, and here also phyC, phyD, and phyE 

participate to a minor extent (Hiltbrunner et al., 2007). Hence, phytochromes play 

redundant and complementary roles in FRL an RL signaling. 

In Arabidopsis, cry1 and cry2 play the major role on BL light induced changes in 

gene expression, that can be separable in immediate and in long-term BL responses 

(Batschauer et al., 2007). Similarly to phyA, cry2 levels rapidly decreased upon 

exposure to BL (Ahmad et al., 1998a; Lin et al., 1998), whereas cry1 was stable under 
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BL (Ahmad et al., 1998a). Cross-talk and interdependence between phytochrome and 

cryptochrome signaling pathways are directly mediated by physical interaction between 

phyA and cry1 (Ahmad et al., 1998b), and phyB and crys (Jarillo et al., 2001). Crys are 

the main BL photoreceptors and they also participate in phy signaling. 

1.6.1 Photoreceptors are not core-clock components 

In mammalian clocks, cryptochromes are essential to sustain circadian 

oscillations (Kume et al., 1999). In plants, phys and crys seem to play a pivotal role 

only in light-input signaling into the clock, but not in the core-clock mechanism. For 

instance, the quintuple-phy mutant was found to retain circadian rhythms of leaf 

movement under LL. However, the quintuple-phy mutant was arrhythmic under Rc, 

indicating that phys function is required for sustain oscillations under Rc (Strasser et 

al., 2010). Moreover, phy mutations does not affect clock function in the dark (Devlin 

and Kay, 2000b). More strikingly, a quadruple photoreceptor mutant 

phyA phyB cry1 cry2 displayed robust circadian rhythms of leaf movement (Yanovsky 

et al., 2000). Still, the three remaining phytochromes phyC-E and the ZTL family may 

contribute to this function. In this line, hy1 has low amount of phytochromes, still 

showed robust rhythms of CAB (Millar et al., 1995a). In plants, photoreceptors are not 

required for generating a functional oscillator. 

1.6.2 Light regulation of gene expression 

Downstream of phys, and crys several transcriptional regulators participate in 

gene expression changes that lead to photomorphogenesis. PIFs function as 

repressors of photomorphogenesis. Although PIF3 binds to the G-box of LHY and 

CCA1 promoters, no clock phenotype has been found in pif3 loss of function mutants 

or in PIF3 over-expression plants (Oda et al., 2004; Viczian et al., 2005). This indicates 

that PIF3 does not participate in the clock mechanism or in light-input-signaling 

pathway to the clock.  

The bZIP transcription factor LONG HYPOCOTYL 5 (HY5) is an important 

component of light signaling. HY5 binds to the promoter of many light responsive 

genes, including clock components, through ACGT-containing elements (ACE) (Lee et 

al., 2007). HY5 physical interaction with CCA1 and LHY (Andronis et al., 2008) is a 

possible mechanism of HY5-mediated light input to the clock. The loss of HY5 function 

shortens the period of CAB circadian oscillations (Andronis et al., 2008), but it has no 

effect on the periodicity of other CCG such as CATALASE3 (CAT3) and ELF4 
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(Andronis et al., 2008; Li et al., 2011). FAR RED-ELONGATED HYPOCOTYL 3 (FHY3) 

and FAR-RED-IMPAIRED RESPONSE 1 (FAR1) induce gene expression by binding to 

the FHY3 binding site (FBS), present in the promoter of light regulated genes (Lin et 

al., 2007; Li et al., 2011). The FHY3 direct activation of clock components may explain 

circadian phenotypes in fhy3 mutants (Allen et al., 2006). Hence, HY5 and FHY3 act in 

the light input pathways to the circadian clock. 

A recent study on the regulation of ELF4 gene expression nicely illustrates the 

direct interaction between circadian and light-regulation pathways (Li et al., 2011). 

ELF4 transcript accumulation followed circadian oscillations under LL (Doyle et al., 

2002). The amplitude of ELF4 expression was found to be phyB-dependant (Khanna et 

al., 2003). In DD, ELF4 expression rhythms dampened (Doyle et al., 2002). Notably, 

the precise peak of ELF4 expression changed under different photoperiods (Doyle et 

al., 2002; McWatters et al., 2007). In the ELF4 promoter there are FBS boxes, and EE 

and ACE elements that mediate association with FHY3/FAR1, CCA1, and HY5, 

respectively (Li et al., 2011). In the fhy3 far1 double mutant, the amplitude of ELF4 

transcript accumulation was found to be severely reduced, and resembled that of ELF4 

expression in the dark. A less dramatic reduction of amplitude was also observed for 

ELF4 expression in the hy5 mutant (Li et al., 2011). Therefore, FHY3, FAR1, and HY5 

act as transcriptional activators on the ELF4 promoter. Conversely, CCA1 binding to 

the EE mediates transcriptional repression of ELF4. Moreover, CCA1 and FHY3 

physically interact, and this interaction reduces the binding of FHY3 to the FBS, leading 

to transcriptional repression. The combination of cis-elements in the ELF4 promoter is 

also present in other promoters, suggesting a similar mode of regulation (Li et al., 

2011). Taken together, through the repressor activity of CCA1, the circadian clock 

delimits light-mediated transcriptional activation of ELF4 to the end of the day, when 

CCA1 levels decay. 

1.6.3 Entrainment 

An essential property of circadian systems is the ability to be reset by external 

or internal cues allowing synchronization to changing conditions, such as day length. In 

plants, entrainment is mainly mediated by light and temperature zeitgebers. Overall, 

entrainment is achieved by a change in the phase of the oscillator (Devlin, 2002). 

Phase resetting is studied by constructing a phase response curve (PRC). Zeitgeber 

cues lead to different resetting depending on when they are applied. Resetting pulses 

applied at the end of the night or after dusk lead to phase advances or phase delays, 
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respectively. Additionally, a “dead zone” without phase changes is commonly observed 

at the subjective day (Figure 1.5). Light and temperature pulses produce similar PRCs. 
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Figure 1.5. Phase response curve (PRC).  
Entrainment pulses reset the circadian clock differently depending of the circadian time 
(CT) of the pulses. Pulses applied around dusk (≈CT 10-16) or around dawn (≈CT 20-4) 
induce phase delays or phase advances, respectively. There is a dead zone during the 
subjective day (≈CT 4-10) when pulses do not reset the oscillator. Modified from (Devlin 
and Kay, 2001) 

In Arabidopsis, BL and RL pulses both confer similar PCRs, indicating that both 

phys and crys are involved in entrainment. The elf3 loss of function mutant could not be 

entrained by RL and BL pulses given at subjective night, possibly because ELF3 is 

require for overall circadian function. On the contrary, ELF3-OX reduced the magnitude 

of phase advances and delays caused only by RL pulses (Covington et al., 2001), 

confirming a repressor role of ELF3 to RL signals to the core oscillator. However, the 

PRC constructed for temperature pulses was similar for ELF3-OX and wild type 

(Thines and Harmon, 2010), indicating that ELF3 is not directly involved in temperature 

input to the clock. FHY3 is involved in both phyA and phyB signaling pathways. Loss of 

function of FHY3 had aberrant red light resetting, with increase phase delays during the 

subjective day (Allen et al., 2006). In a separate work, pulses of LHY and CCA1 

transcription driven by an ethanol-inducible promoter were able to shape a normal 

PRC, whereas similar TOC1 pulses cannot (Knowles et al., 2008). Hence the 

expression timing of these morning genes was sufficient for clock resetting. In 

summary, photoreceptors, ELF3, FHY3, LHY, and CCA1 are components of the light-

entrainment mechanism. 
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1.6.4 Aschoff’s rule 

Diurnal organisms are subjected to the Aschoff’s rule: continuous-light input 

accelerates circadian-oscillator speed leading to shortening of periodicity (Aschoff, 

1979). The light acceleration effect is thought to account for the sum of phase 

advances and delays induced by light throughout the circadian cycle (Devlin, 2002). In 

plants, light pulses predominantly produce phase advances. Hence, continuous light 

leads to an overall speeding of the oscillator.  

Phys and crys contribute to Aschoff’s rule at different fluence rates and light 

qualities. Under low fluence of Rc, the phyA mutant displayed a longer period. Under 

medium and high fluence Rc, phyB mutant displayed long period (Somers et al., 1998; 

Devlin and Kay, 2000b). The double mutant phyA phyB displayed a long period under 

all fluence of Rc. Under Rc, the effects of loss of the phyD and the phyE were foung to 

be additive to those of the loss phyB (Devlin and Kay, 2000b). Consistently, over-

expression of PHYA (PHYA-OX) or PHYB (PHYB-OX) shortened the circadian period 

of CAB, with larger effects observed in PHYA-OX (Anderson et al., 1997). Overall, 

phytochromes have both complementary and redundant roles on periodicity under Rc. 

Under BL, cry1 mutants displayed long period under low- and high-light 

intensities. However, cry2 period was found to be similar to that of the wild type 

(Somers et al., 1998; Devlin and Kay, 2000b). The double mutant cry1 cry2 displayed a 

pronounced long period under all light intensities (Devlin and Kay, 2000b). 

Interestingly, phyA mutants resulted in similar long period to the cry1 under low fluence 

Bc, showing that phyA is required for cry1 signaling at this fluence. In this BL response, 

phyB mutant was not affected (Somers et al., 1998; Devlin and Kay, 2000b). 

Conversely, cry1 is also required for period shortening under low to medium intensities 

of Rc. cry1 and cry2 function is partially redundant, since cry1 cry2 double mutant 

showed larger period lengthening effects under low and medium fluence of Rc (Devlin 

and Kay, 2000b). Taken together, photoreceptors are collectively required for Aschoff’s 

rule. 

Downstream of photoreceptors, several clock-components display abnormal 

fluence-rate responses when mutated or over-expressed. ELF3-OX lengthens 

circadian period under all intensities of BL and at high intensities of RL (Covington et 

al., 2001), indicating that ELF3 works as a repressor of light signals to the central 

oscillator. Interestingly, ELF3 was found to physically interact with phyB (Liu et al., 

2001). The period lengthening effect of ELF3-OX (Covington et al., 2001) and phyB 

(Somers et al., 1998; Devlin and Kay, 2000a) mutant is similar under high RL 
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intensities, suggesting direct repression of phyB to ELF3. For Aschoff’s rule, ELF3 

plays an opposite role to photoreceptors. 

1.6.5 Gating of light signals by the clock 

The circadian clock modulates sensitivity to external and internal inputs 

throughout the day. Such a mechanism is called gating. For example, the transcript 

accumulation of CAB has a characteristic RL acute induction that is limited to the early 

subjective day (Millar and Kay, 1996). Therefore, CAB induction has been extensively 

used to study the clock-gating mechanism. This acute induction of CAB is mediated by 

phyA and phyB. In phyA phyB double mutant the acute induction of CAB by light was 

greatly attenuated while circadian oscillation of CAB persists. Consistently, PHYA-OX 

and PHYB-OX leaded to dramatic increase of CAB acute peak and amplitude of CAB 

oscillations in etiolated seedlings (Anderson et al., 1997). Two major components of 

the gating of acute CAB induction are ELF3 and ELF4. In their respective loss of 

function mutants CAB was induced by light regardless of the time of the day 

(McWatters et al., 2000; McWatters et al., 2007). Lack of gating response may be 

caused by arrhythmia in elf3 and elf4 (McWatters et al., 2000; Covington et al., 2001; 

McWatters et al., 2007). In ELF3-OX the acute peak of CAB was attenuated, but 

showed normal gating response (Covington et al., 2001). ELF3 and ELF4 are thus 

critical for processing light information to the oscillating mechanism. 

1.7 Conserved mechanisms in circadian systems: chromatin 
remodeling and regulation of sub-cellular distribution 

Although the core components of circadian systems are specific to plants, 

animals, or fungi, several molecular mechanisms seem to be conserved or they have 

been recruited for the oscillator function in different kingdoms (Rosbash, 2009). This 

section focuses on chromatin remodeling, and regulation of sub-cellular distribution of 

clock proteins that have been found in several clock systems. 

1.7.1 Chromatin remodeling  

DNA in eukaryotes is wrapped around highly conserved basic proteins called 

histones to form nucleosomes. These are the basic structural units of chromatin and 

they play a pivotal role in the regulation of transcription (Pfluger and Wagner, 2007). In 

each nucleosome, two turns of DNA are wound to a histone (H) octamer containing two 
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H2A-H2B dimmers and one H3-H4 tetramer (Pfluger and Wagner, 2007). Nucleosomes 

are connected by linker DNA. Chromatin remodeling uses three major classes of 

proteins: histone chaperones, DNA and histone modifying enzymes, and 

ATP-dependent chromatin remodeling enzymes.  

The histone code comprises a wide array of post-translational modifications of 

the N-terminal tails of histones termed histone marks (Pfluger and Wagner, 2007). 

Different histone marks are correlated to transcriptional activation or transcriptional 

repression depending if they confer a more relaxed or a more compacted conformation 

of the nucleosomes, respectively. On one hand, histone-hyperacetlyation marks, such 

as H3Lys14 and H3Lys9, lead to an opening of the nucleosomes, and they correlate 

with transcriptional activation (Lee and Workman, 2007). On the other hand, histone-

methylation marks, such as H3K27me3, mediate nucleosome compaction, and 

transcriptional repression (Pfluger and Wagner, 2007). 

Histone acetylation is involved in the core-clock mechanism. In animal clocks, 

the core-clock component CLOCK has intrinsic histone acetyltransferase (HAT) 

activity. CLOCK HAT-activity is mediated by its glutamine-rich domain (Doi et al., 

2006). In Arabidopsis, rhythms of H3 acetylation and deacetylation at the promoter of 

TOC1 were found to be essential for rhythmic expression of TOC1. Moreover, CCA1 

association to TOC1 promoter precedes the transition from a permissive to a 

repressive transcriptional state of TOC1 (Perales and Mas, 2007). Therefore, rhythmic 

histone-acetylation changes are important for clock transcriptional regulation.  

Recently, histone methylation function has been implicated in the circadian 

clock. The JUMONJI DOMAIN CONTAINING 5 (JMD5) is co-expressed with evening-

clock components, such as TOC1. Loss of function and over-expression of JMD5 

caused shortening of the circadian period under LL, but no periodicity phenotype was 

observed in DD (Jones et al., 2010; Lu et al., 2010). The clock function of JMD5 and its 

human orthologue is conserved between plants and humans (Jones et al., 2010). 

1.7.2 Regulation of sub-cellular distribution of clock proteins 

In animals and fungi, the core-clock mechanism consists of a positive-negative 

feedback loop. A transcriptional activator complex promotes the expression of negative 

factors. In turn, these negative factors act to repress the activator complex (Mehra et 

al., 2009). Nuclear import and export events regulate the activity of the components of 

the core loop in several circadian systems. Some examples are discussed below 

(Figure 1.6). 
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In Drosophila, the activator complex is arranged by CLOCK (CLK) and CYCLE 

(CYC). These two proteins interact both in the cytoplasm and the nucleus. CLK-CYC 

interaction is required for nuclear import of CLK and stabilization of CLK in the nucleus 

(Hung et al., 2009). CLK-CYC complex activates the transcription of the negative 

factors PERIOD (PER) and TIMELESS (TIM) (Hung et al., 2009). Newly synthesized 

PER and TIM proteins bind in the cytoplasm, and their nuclear import is delay several 

hours by an unknown mechanism (Meyer et al., 2006). Once in the nucleus, PER 

disrupts association of the CLK-CYC complex with DNA, and displaces CLK to protein 

complex that does not associate to DNA (Menet et al., 2010) 

In mice, the core activator complex is formed by the homologues of CLK and 

CYC that are CLK and BMAL, respectively (Gekakis et al., 1998). When BMAL and 

CLK proteins were ectopically expressed, they preferentially accumulated in the 

nucleus and cytoplasm, respectively. BMAL-CLK co-expression did not change BMAL 

nuclear localization, but it dramatically changed CLK sub-cellular distribution to be 

nuclear. In Bmal1 mutant fibroblast, CLK protein was constitutively cytoplasmic 

(Kondratov et al., 2003). The BMAL-CLK complex activates the expression of the 

negative factors PER and CRY (Gekakis et al., 1998). PER and CRY interact both in 

the nucleus and cytoplasm. The nuclear-cytoplasm shuttling of PER and CRY is 

regulated by nuclear import signal (NLS) and nuclear export signal (NES) present in 

PER protein (Loop et al., 2005). Target mutagenesis of the PER NES leads to 

arrhythmicity of clock-controlled gene expression (Loop et al., 2005). In the mammalian 

clock, dynamic nuclear-cytoplasm partitioning of core clock proteins is essential for 

clock function. 

In Neurospora, the WHITE COLLAR (WC) transcription factors WC-1 and WC-2 

form the WCC transcriptional activator complex (Cheng et al., 2002). Whereas the 

WCC complex is concentrated in the nucleus, WC-2 protein localizes both in the 

nucleus and the cytoplasm (Schwerdtfeger and Linden, 2000). WC-1 protein is the 

limiting factor of the WCC complex and only accumulates in the nucleus in the 

presence of WC-2 (Cheng et al., 2002). The WCC complex activates the expression of 

FREQUENCY (FRQ). FRQ protein shuttles to the nucleus where it binds WC-1, and 

inactivates WCC. This inactivation involves nuclear export of WC-1 (Kondratov et al., 

2003; Tamaru et al., 2003; Loop et al., 2005; Hong et al., 2008). Hence, nuclear import-

export dynamics are essential for the Neurospora clock mechanism. 

In Arabidopsis, the nuclear localization of TOC1 is stabilized by its interaction 

with PRR5 (Figure 1.4). The disruption of this interaction in weak alleles of TOC1 and 



Chapter 1 Introduction 

- 22 - 

PRR5 decrease TOC1 nuclear pool, and makes TOC1 susceptible for degradation 

mediated by ZTL in the cytoplasm (Mas et al., 2003; Wang et al., 2010). Taken 

together, dynamic sub-cellular distribution of clock components is at the core of 

eukaryotic circadian systems. 
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Figure 1.6. Sub-cellular localization dynamics are at the core of circadian systems.  
Circadian clock systems of Drosophila (top left), Mouse (top right), and Neurospora 
(bottom left). Clock- and light-signaling components localize in nuclear bodies (NB) in 
Mouse (top right) and in Arabidopsis (bottom right). Mouse and plant NB are colored in 
white. Phytochrome nuclear bodies (PNB) are colored in green. Abbreviations: N 
(nucleus), C (cytoplasm), U (ubiquitination). The models are explained in sections 1.3.2 
and 1.3.3. 
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1.7.3 Light and clock signaling proteins localize in nuclear bodies 

The eukaryotic nucleus is a complex tridimensional structure organized in 

numerous sub-domains and compartments. Nuclear compartments are generically 

termed nuclear bodies (NB). Examples of NB are the nucleoli, the Cajal bodies, and the 

spliceosome. Essential nuclear processes such as RNA transcription and processing 

occur within these NB (Matera et al., 2009).  

Notably, several clock proteins have been shown to localize in NB. In 

Drosophila, the localization of CLK in NB, have been postulated as an storage pool for 

excess of CLK protein (Hung et al., 2009). In the mammalian clock, sumoylation of 

BMAL relocates BMAL in transcription-related NB (Figure 1.6). In this NB, CLK-BMAL 

mediate transcriptional activation, and the CLK-BMAL complex is rapidly targeted to 

proteasome-mediated degradation (Lee et al., 2008; Kalamvoki and Roizman, 2010). In 

animal clocks, NB are associated to transcriptional regulation and protein degradation. 

In Arabidopsis, a common feature of numerous light and clock signaling 

proteins is the localization within NB (Figure 1.5). Phy nuclear bodies (PNBs) formation 

is light and circadian regulated. In etiolated seedlings, phytochromes are mainly in the 

cytoplasm. FRL and RL pulses induce nuclear translocation of phys (Bauer et al., 

2004). In the nucleus, phys localize in transient PNBs (tPNBs). In these tPNBs several 

PIFs are phosphorylated, ubiquitinated, and then targeted for proteasome degradation 

(Bauer et al., 2004; Shen et al., 2005; Shen et al., 2007; Lorrain et al., 2008). 

Subsequently, under extended light tPNBs diffuse, and, later, stable PNBs appear 

(sPNBs). Recently, the characterization of the hemera (hmr) mutant has demonstrated 

the exceptional importance of PNBs. The hmr mutants do not form PNBs and cannot 

degrade phyA, PIF1, and PIF3. Thereby, hmr mutants are impaired in many 

phy-mediated responses. HMR protein structure indicates that it could posses a 

proteolysis activity (Chen et al., 2010). Thus, PNBs seem to be sub-nuclear structures 

involved in protein degradation. 

The photoreceptors cry2 and phyB also co-localize in nuclear bodies (Mas et 

al., 2000). Interestingly, cry2 and phyB have been implicated in light-mediated changes 

in chromatin compaction (Tessadori et al., 2007; van Zanten et al., 2010). Therefore, 

phyB and cry2 may associate to a Chromatin-Protein Complex that maintains 

chromatin compaction. Potential members of such a complex are HISTONE 

DEACETYLASE 6 (HDA6), COP1, and DETIOLATED 1 (Tessadori et al., 2009; van 

Zanten et al., 2010). Hence, PNB may be involved in light-induced changes in 

chromatin compaction.  
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Interestingly, COP1 co-localizes in nuclear foci with the clock components 

ELF3, and GI, where ELF3 recruits GI to such foci. This co-localization could mediate 

ELF3 and GI targeting for degradation (Yu et al., 2008). Moreover, co-localization in NB  

COP1 with HY5 and CRY2 (Chen, 2008). Other clock proteins, such as TOC1 and  

PRR5, also co-localized in NB (Fukamatsu et al., 2005; Perales et al., 2006; Wang et 

al., 2010). In plants, nuclear bodies may mediate protein degradation and chromatin 

remodeling. 

1.8 The TILLING approach 

Reverse genetics is a powerful tool to identify new signaling components and 

understand the function of genes. A good example is the use of T-DNA lines in 

Arabidopsis. Such T-DNA lines most often lead to loss of function of the target gene. 

However, in some cases the severity given by the loss of a given gene can be an 

obstacle to understand gene function. In here, two relevant examples are ELF3 and 

ELF4. Both elf3 and elf4 null alleles are arrhythmic, and this has precluded placement 

of these genes into the clock network. TILLING (Targeting Induced Local Lesions in 

Genomes) has emerged as more subtle reverse genetics approach that generates a 

series of alleles with point mutations in the coding sequence of the target gene 

(McCallum et al., 2000). The TILLING approach has been used successfully for many 

plant and animal model systems (Stemple, 2004). 

In Arabidopsis, TILLING alleles have been obtained by ethyl methanesulfonate 

(EMS) mutagenesis of seeds. Then, mutations in the gene of interest in the 

mutagenized population are identified by gene specific PCR amplification followed by 

mismatch-specific enzymatic digestion (CELI) of the PCR products (McCallum et al., 

2000). The Arabidopsis TILLING Project (ATP) has automated all of this process in 

Arabidopsis, and TILLING alleles can be obtained from the seed stock center (Greene 

et al., 2003). The TILLING approach has been successfully applied to a diverse list of 

genes in Arabidopsis (Van Norman et al., 2004; Finkelstein et al., 2005). In particular, 

the isolation of missense alleles provides essential information about gene function and 

functional domains. For instance, the analysis of a collection of elf4 missense alleles 

provided with a model of ELF4 action within the circadian clock (Kolmos et al., 2009). 

Hence, TILLING can be a powerful genetic tool for the functional characterization of 

clock genes. 
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1.9 Thesis objectives 

Circadian clock and light-signaling networks have a complex interconnection. 

Previous studies have shown the phenotypic similarities between elf3 and elf4 mutants 

that include clock arrest, aberrant expression of core clock components, light-gating 

defects, and light-resetting defects (Covington et al., 2001; Kikis et al., 2005; 

McWatters et al., 2007; Kolmos et al., 2009; Thines and Harmon, 2010). Therefore, 

ELF3 and ELF4 play an essential role to sustain circadian function, and they are also 

required for correct light-input signaling into the clock. Additionally, LUX function is also 

pivotal for circadian rhythms (Hazen et al., 2005; Onai and Ishiura, 2005). The severity 

of the clock phenotypes of elf3, elf4, and lux has hindered the molecular 

characterization of their function. Notably, ELF3, ELF4 and LUX are the only three 

clock-components known that lead to clock arrest when mutated, suggesting that they 

may act within the same genetic pathway. In particular, an insight on the genetic 

interaction of the ELFs indicated that ELF3 is genetically downstream of ELF4 (Kolmos, 

2007). 

This PhD thesis aimed to expand the genetic and molecular characterization of 

ELF3. For this, I studied the biological relevance of ELF3-ELF4 interaction. Then I 

dissect functionality of distinct domains of the ELF3 protein. To address role of ELF3 in 

transcriptional regulation I tested the association of ELF3 to clock promoters. Finally, I 

examined the genetic interaction of ELF3, ELF4, and LUX. 

In Chapter 4, I expanded the investigation of the role of ELF3 as an integrator of 

light signaling to the clock. For this, I further characterized the elf3 missense allele 

elf3-12. Additionally, I investigated circadian phenotypes of a previously established 

collection of elf3 TILLING alleles in the context of light-input signaling to the clock. 
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2.1 Materials 

2.1.1 Mutant lines and genetic markers 

Arabidopsis LUC markers used in this thesis are listed in table 2.1 (LUC 

markers). Mutant lines were in three different Arabidopsis accession: Wassilewskija-2 

(Ws-2, Table 2.2), C24 (Table 2.3), and Columbia-0 (Col-0, see below). When used, 

markers for genotyping transgenic lines are specified in Table 2.4. 

In the Col-0 background, the elf3 TILLING lines were previously described 

(Kolmos, 2007). All lines were crossed to Col-0 GI:LUC, and homozygous plants were 

selected in the F3 generation. Most of TILLING alleles co-segregate with the linked 

erecta mutation. Hence, when possible, selection of homozygous lines was first via 

visual inspection of the erecta phenotype. Then, the presence of homozygous elf3 

alleles was confirmed by genotyping. Cleave Amplified Polymorphic Sequence (CAPS) 

and derived CAPS (dCAPS) were used for genotyping. The CAPS and dCAPS markers 

where previously described (Kolmos, 2007). 

In the C24 background (Table 2.3), the elf3-12 (elf3-G12), and the elf3-1 

mutations genotyping were previously described (Kolmos, 2007). 

Table 2.1. Luciferase lines. 

LUC marker Background Reference source Selection marker 

LHY:LUC+ Ws-2 (McWatters et al., 2007) Hygromycin 

GI:LUC+ Col-0 This study PTT 

LHY:LUC+ C24 (Kolmos, 2007) Hygromycin 

CCR2:LUC+ C24 (Hall et al., 2003) Hygromycin 

CCA1:LUC+ C24 (Kevei et al., 2006) Hygromycin 
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Table 2.2. Mutant and transgenic lines in the Ws background 

Stable lines previously generated Reference  

elf3-4 LHY:LUC  (Hicks et al., 1996)  

elf4-1 LHY:LUC (Doyle et al., 2002; McWatters 
et al., 2007)  

35::ELF3-CFP LHY:LUC (Kolmos, 2007)  

35S::ELF4 LHY:LUC (McWatters et al., 2007)  

elf4-1 35S::ELF3-CFP LHY:LUC (Kolmos, 2007) Crossed 

elf3-4 35S::ELF4 LHY:LUC (Kolmos, 2007) Crossed 

35::ELF3-CFP 35S::ELF4 LHY:LUC This study Crossed 

Stable lines obtained by floral dipping for this study 

Background T-DNA insertion  

elf3-4 LHY:LUC 35S::YFP-ELF3F  

elf3-4 LHY:LUC 35S::YFP-ELF3N  

elf3-4 LHY:LUC 35S::YFP-ELF3NM  

elf3-4 LHY:LUC 35S::YFP-ELF3M  

elf3-4 LHY:LUC 35S::YFP-ELF3MC  

elf3-4 LHY:LUC 35S::YFP-ELF3C  

elf3-4 LHY:LUC 35S::YFP-LUX  

elf4-1 LHY:LUC 35S::YFP-ELF4  

elf4-1 LHY:LUC 35S::YFP-LUX  

Ws LHY:LUC 35S::YFP-LUX Crosseda

a Ws LHY:LUC YFP-LUX lines were obtained from crossing elf4-1 LHY:LUC YFP-LUX to Ws 
LHY:LUC. The Ws YFP:LUX lines were found in the segregating population. 

Table 2.3. Genotyping of mutant lines in the C24 background. 

Line Primers PCR Product Restriction 
enzyme 

elf3-12 
F gataaatgaagaggcaagtgatga 197 bp; cuts mutant band 

to 99 and 98 bp MboI 
R gaaagagcggagaataaataacca 

elf3-1 
F gtgactctgtttctccattacaatcga 133 bp; cuts mutant band 

to 111 and 22 bp  ClaI 
R cagctcgagaagaaacaaatactcat 
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Table 2.4. Primers for genotyping transgenic lines 

Transgenic line Primers PCR band 

YFP ELF3 
F GGGCATCGACTTCAAGGAGGAC 

1307 
R ACAAAGCCACCTGACCTTGCA 

YFP ELF3N 
F GGGCATCGACTTCAAGGAGGAC 

890 
R CAACTGTGTAATAATCAGGTTC 

YFP ELF3NM 
F GGGCATCGACTTCAAGGAGGAC 

1567 
R CTTCTCCGAGTCACCCCTTTGT 

YFP ELF3M 
F GGGCATCGACTTCAAGGAGGAC 

796 
R CTTCTCCGAGTCACCCCTTTGT 

YFP ELF3MC 
F GGGCATCGACTTCAAGGAGGAC 

1418 
R ATGGCCGAAAGGACTTGCTACC 

YFP ELF3C 
F GGGCATCGACTTCAAGGAGGAC 

746 
R ATGGCCGAAAGGACTTGCTACC 

YFP ELF4 
F GGGCATCGACTTCAAGGAGGAC 

568 
R AATGTTTCCGTTGAGTTCTTGAATC 

YFP LUX 
F GGGCATCGACTTCAAGGAGGAC 

959 
R CCGAAGCAGAGGGACCTTCATT 

2.1.2 Chemicals 

Tris (hydroxymethyl) aminomethane Hydrochloride, Tris HCl (Roth, #5429.3) 
Ethylenediaminetetraacetic acid, EDTA (Merck, #944) 
KLORIX®, commercial sodium hypochlorite solution 
Triton-X100 (Roth, #3051) 
Murashige and Skoog media, MS (Sigma, #M5524 and Duchefa, #M0221) 
2-(N-morpholino)ethanesulfonic acid, MES (Duchefa, #M1503) 
Sucrose (Roth, #4621) 
Phytoagar (Duchefa, #P0001) 
Bacto-tryptone (BD, #211705) 
Yeast extract (BD, #212750) 
Sodium chloride, NaCl (Mecrk, #1.37017) 
Bactoagar (BD, #214040) 
Beef extract (BD, #212303) 
Peptone (Difco, #0122-17-4) 
Magnesium sulphate, MgSO4 (Duchefa, #110513) 
Gentamicin sulfate (Sigma, #G-3632) 
Carbenicillin (Sigma, #C-1389) 
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Kanamycin sulfate (Duchefa, #K4378) 
Chloramphenicol (Sigma, #C-0378) 
Rifampicin (Sigma, #83907) 
Spectinomycin (Sigma, #S-9007) 
Streptomycin (Sigma, #S-9137) 
DL-Phosphinothricin, PPT (Duchefa, #P0159) 
Hygromycin (Duchefa, #H0192) 
D-Luciferin (Synchem, #S039) 
Na2HPO4 (Sigma, #S0876) 
NaH2PO4 (Merck, #1.06346) 
Adenine hemisulfate (Sigma, #A-9126) 
Sodium dodecyl sulfate, SDS (Roth, #23.26.2) 
Boric acid (Merck, #1.00165) 
Bromophenol blue (Sigma, #47522) 
Glycerol (Roth, #7530.1) 
Ethidium bromide (Sigma; #46067) 
Glycine (Roth, #3908.2) 
Formaldehyde (Merck, #1.040003) 
ß-mercapthoethanol (Sigma, #47522) 
Protease Inhibitors (PI): 

• Protease Inhibitors Cocktail for plant cell and tissue extracts (Sigma, #P9599) 

• cOmplete® EDTA-free tablets (Roche, #11873580001) 
• cOmplete® Mini EDTA-free tablets (Roche, #11836170001) 

Phenol /Chloroform (Roth, #A156.1) 
Chloroform (Merck, #1.02445) 
Isopropanol (Appli. Chem., #A0900) 
Ethanol (J.T.Baker, #8006) 
Sodium Acetate (Merck, #1.06268) 
Lithium chloride (Li Cl) (Roth, #3739.1) 
Nonyl phenoxypoluethoxylethanol (NP-40) (Fluka, #74385) 
Sodium deoxycholate (Fluka, #30970) 
3′,5′-Dimethoxy-4′-hydroxyacetophenone, Acetosyringone (Sigma, # D134406) 
Silwet L-77 (Lehle seeds, #Vis-02) 
Lithium Acetate (Sigma, #L-5750) 
Polyethylene glycol, PEG 3350 (Sigma, # P-3640) 
Dimethyl sulfoxide, DMSO (Sigma, #P8418) 
3-amino-1,2,4-triazole (3-AT; Sigma, #A-8056) 
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2.1.3 Reagents for each method 

General use 

TE buffer: 10 mM Tris HCl pH 8 and 1 mM EDTA 

Seed sterilization 

Bleach solution: 33% KLORIX®, 0.02% (v/v) Triton-X100 in ddH2O 
0.01% agar in sterile ddH2O 

Growth media for plants  

MS1 (1% sucrose) 
4.4 g/L MS 
0.5 g/L MES 
10 g/L Sucrose 
1.5% Phytoagar 
pH 5.7 

MS1(1% sucrose) 3% agar 
4.4 g/L MS 
0.5 g/L MES 
10 g/L Sucrose 
3% Phytoagar 
pH 5.7 

MS3 (3% sucrose) 
4.4 g/L MS 
0.5 g/L MES 
30 g/L Sucrose 
1.5% Phytoagar 
pH 5.7  

Table 2.5. Antibiotics for plant selection 

Antibiotic Stock Plants 

Gentamicin 100 mg/mL in ddH2O 125 µg /mL 

Kanamycin 100 mg/mL in ddH2O 100 µg /mL 

PPT  12 mg/mL in ddH2O 12 µg/mL 

Hygromycin 30mg/mL in ddH2O 15 µg/mL 

Bioluminesence analysis 

50 mM D-luciferin stock 
1 g Firefly D-Luciferin 
71.3 mL 1M Triphosphate buffer (Na2HPO4 / NaH2PO4) pH 8 

5 mM D-luciferin working solution 
  1.5 mL 50 mM D-Luciferin stock 
13.5 mL 0.01% (w/v) Triton-X100 

Plant DNA extraction 

DNA Extraction Buffer (DEB) 
200 mM Tris pH 8.0 
240 mM NaCl 
25 mM EDTA 
1% (w/v) SDS 
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PCR and molecular cloning 

Primers (Invitrogen or Sigma) 
dNTP Set, 100 mM Solutions (Fermentas, # R0182) 
Taq-DNA polymerase (Genaxxon Bioscience : PeqLab, #01-1000) 
Pfu II Ultra® II Fusion HS DNA polymerase (Stratagene, # 600670) 
Restriction enzymes (New England BioLabs) 
GATEWAY® BP Clonase II enzyme mix (Invitrogen, 11789-020) 
GATEWAY® LR Clonase II enzyme mix (Invitrogen, 11791-020) 
30% PEG 8000/30 mM MgCl2. (Invitrogen, #P/N59890) 
QIAquick Gel extraction kit (Qiagen, #28704)  
QIAprep® Spin Miniprep kit (Qiagen, #27104 
10 mg/mL Ethidium bromide 
2X TBE Electrophoresis buffer 

67.23 g/L Tris HCl 
34.31 g/L Boric acid 
37.22 g/L EDTA 
pH 8.0 

6X DNA loading buffer (Fermentas, # R1151) 

Table 2.6. Plasmid used for molecular cloning 

Plasmid Antibiotic Source 

pDONR201 Kanamycin Invitrogen 

pDONR207 Gentamicin Invitrogen 

pDONRP4-P1R Kanamycin Invitrogen 

pDONRP2R-P3 Kanamycin Invitrogen 

pDEST22 Gentamicin Invitrogen 

pDEST32 Carbenicillin Invitrogen 

35S::GW::CFP Carbenicillin This study 

35S::YFP::GW Carbenicillin This study 

35S::GW::BIO Kanamycin (Qi and Katagiri, 
2009) 

pPZP211R4R3 Spectinomycin 
Streptomycin  

Darrah, unpublished 
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Table 2.7. Primers for cloning cDNAs into pDONR 201/207 (Invitrogen) 

ELF4 
F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGAAGAGGAACGGCGAG 

R GGGGACCACTTTGTACAAGAAAGCTGGGTAAGCTCTAGTTCCGGCAGC 

PHYB full 
F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGAAGGAGATAGAACCATGGTTTCCGGA

GTCGGG 

R GGGGACCACTTTGTACAAGAAAGCTGGGTAATATGGCATCATCAGCAT 

PHYB C 
F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGAAGGAGATAGAACCATGATTGATGAGT

TAGGTGCA 

R GGGGACCACTTTGTACAAGAAAGCTGGGTACTAATATGGCATCATCAG 

LUX 
F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGGAGAGGAAGTACAAATG 

R GGGGACCACTTTGTACAAGAAAGCTGGGTCTTAATTCTCATTTGCGCTTCCACCTC 

RFP 

F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGGGTCTTCCAAGAATGTTAT 

R GGGGACCACTTTGTACAAGAAAGCTGGGTATTAAAGGAACAGATGGTGGCGTC (stop) 

R GGGGACCACTTTGTACAAGAAAGCTGGTTAAAGGAACAGATGGTGGCGTC (no stop) 

Table 2.8. Primers for cloning ELF3 into pDONR 201/207 (Invitrogen) 

ELF3 F  
full-length cDNA 

F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAGATAGAACCATGGGGAAAGAT
GAGGAGAAGAT 

R GGGGACCACTTTGTACAAGAAAGCTGGGTATTAAGGCTTAGAGGAGTCATAGCG 

ELF3N 
F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAGATAGAACCATGGGGAAAGAT

GAGGAGAAGAT 

R GGGGACCACTTTGTACAAGAAAGCTGGGTACTACAAGTGAGATTCAGCTCC 

ELF3NM 
F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAGATAGAACCATGGGGAAAGAT

GAGGAGAAGAT 

R GGGGACCACTTTGTACAAGAAAGCTGGGTGCTAGTATATCAGTCCTTCCGAGGGA 

ELF3M 
F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAGATAGAACCATGGCAACGGAA

AATCATTCAC 

R GGGGACCACTTTGTACAAGAAAGCTGGGTGCTAGTATATCAGTCCTTCCGAGGGA 

ELF3MC 
F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAGATAGAACCATGGCAACGGAA

AATCATTCAC 

R GGGGACCACTTTGTACAAGAAAGCTGGGTATTAAGGCTTAGAGGAGTCATAGCG 

ELF3C 
F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAGATAGAACCATGAAGCCTCAC

CCAGGTATGG 

R GGGGACCACTTTGTACAAGAAAGCTGGGTATTAAGGCTTAGAGGAGTCATAGCG 

ELF3F genomic 
F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGAAGAGAGGGAAAGAT 

R GGGGACCACTTTGTACAAGAAAGCTGGGTAAGGCTTAGAGGAGTCATA 
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Table 2.9. Primers for Multi-gateway cloning 

ELF3 promoter 
pDONR4-1R 

F GGGGACAACTTTGTATAGAAAAGTTGCTAAAAACCCAATAAAAACCAC 

R GGGGACTGCTTTTTTGTACAAACTTGCCACTCACAATTCACAACC 

ELF3 genomic 
pDONR201 

F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGAAGAGAGGGAAAGAT 

R GGGGACCACTTTGTACAAGAAAGCTGGGTAAGGCTTAGAGGAGTCATA 

YFP 
pDONR23R 

F GGGGACAGCTTTCTTGTACAAAGTGGCTGGTATCGATAAGCTTATAATGGTG 

R GGGGACAACTTTGTATAATAAAGTTGCTTACTTGTACAGCTCGTCCATGCC 

Table 2.10. Primer for elf3-12 mutagenesis 

F GATGTTGTGGGTATATTAGATCAAAAACGTTTCTGGAGAG 

R CTCTCCAGAAACGTTTTTGATCTAATATACCCACAACATC 

Growth media bacteria 

Luria Bertani (LB) 

10 g/L Bacto-tryptone 
5 g/L Yeast extract 
5 g/L NaCl 
1% Agar  
pH 7.5 

YEBS 
5 g/L Beef extract 
5 g/L Peptone 
5 g/L Sucrose 
1 g/L Yeast extract 
0.5 g/L MgSO4 
1% agar 
pH 7.0 

Table 2.11. Antibiotics for bacteria selection 

Antibiotic Stock Bacteria 

Gentamicin 100 mg/mlL in ddH2O 10 µg /mL 

Carbemicilin 100 mg/mL in ddH2O 
100 µg /mL for E. coli  

50 µg/mL for Agrobacterium 

Kanamycin 100 mg in ddH2O 50 µg /mL 

Chloramphenicol 10 mg/mL in ethanol 30 µg /mL 

Rifampicin 50 mg/mL in methanol 25 µg /mL 

Spectinomycin 
Streptomycin 30 mg/mL in ddH2O 30 µg /mL 
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Yeast two-hybrid 

SD media 
6.7 g/LYeast nitrogen base without amino acids (Clontech, #8602-1) 
Aminoacid Dropout Solution 

• -Leu (Clontech, #630414) 
• -Trp (Clontech, #630413) 
• -Leu His (Clontech, #630418) 
• -Leu Trp (Clontech, #630417)  
• -Leu Trp His (Clontech, #630419) 
• -Leu Trp His Ade (Clontech, #630428) 

20 g Bacto-agar (for plates only) 

YPAD 
20 g/L Peptone 
10 g/L Yeast extract 
15 mL/L 0.2% Adenine hemisulfate 
20 g/L Bacto-agar (for plates only) 

DNA salt salmon testes (Sigma, # D1626) 

1X TE / 1X LiAc solution (for 10 mL) 
1 mL 10X TE pH 8 
1 mL 1M Li Ac 
8 mL ddH20 

PEG/ Li Ac (for 10 mL) 
8 mL 50% PEG 3350 
1 mL 10X TE pH 8 
1 mL 1M Li Ac 

1 M 3-AT in sterile ddH2O 

96 well Suspension Culture Plate sterile, F-bottom, with lid CELLSTAR® (Greiner Bio-
One, #655185) 

Chromatin immunoprecipitation (ChIP) 

2 M Glycine 
GammaBind™ Plus Sepharose™, protein G beads (GE Healthcare, #17-0886-01) 
Anti-GFP antibody (Roche, #11814460001) 
Miracloth (Calbiochem, #475855) 
3M Sodium acetate 
Glycogen mol. grade (Fermenas, #R0561) 
Tris HCl pH 7.5 
iQ™ SYBR® Green Supermix (BioRad, # 170-8882) 
Non-stick Rnase-free 1.5 ml microcentrifuge tubes (Ambion, #AM12450) 
Proteinase K (Roche, #13085800) 
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Table 2.12. ChIP buffers. All buffers made in sterile ddH2O 

Cross-linking  
1 % formaldehyde 
0.4 M sucrose 
10 mM Tris HCl 

Extraction 1 
0.4 M sucrose 
10 mM Tris-HCl pH 8 
10 mM MgCl2 
5 mM ß-Mercaptoethanol 
Protease inhibitors 

Extraction 2 
0.25 M sucrose 
10 mM Tris-HCl pH 8 
1% Triton X-100 
5 mM ß-Mercaptoethanol 
Protease inhibitors 

Extraction 3 
1.7 M sucrose 
10 mM Tris HCl pH 8 
0.15% Triton X-100 
2 mM MgCl2 
5 mM ß-Mercaptoethanol 
Protease inhibitors 

Nuclei lysis 
50 mM Tris HCl pH 8 
10 mM EDTA 
1% SDS 
Protease inhibitors 

ChIP dilution 
1.1 % Triton X-100 
1.2 mM EDTA 
16.7 mM NaCl 
Protease inhibitors 

Low-salt wash  
150 mM NaCl 
0.1 % SDS 
1 % Triton X-100 
2mM EDTA 
20mM Tris HCl pH 8 
Protease inhibitors 

High-salt wash 
500 mM NaCl 
0.1 % SDS 
1 % Triton X-100 
2mM EDTA 
20mM Tris HCl pH 8 
Protease inhibitors 

LiCl wash 
0.25 M LiCl 
1% NP-40 
1% Sodium deoxycholate 
1mM EDTA 
10mM Tris-HCl pH 8 
Protease inhibitors 

Protease inhibitors were added just before use 
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Table 2.13. Primers for amplification of PRR9 and PRR7 promoters for ChIP 

PRR9 promoter PCR1 
F GATTGAACCTTTTTGATAATTATTTTG 

R TGAAATATTATCCATTGACGAAGAA 

PRR9 promoter PCR2 
F TGGATTCCAAAGGGGATCTT 

R CCTTAGATTTTCAAAAGCCCATA 

PRR9 promoter PCR3 
F TGGGCTTTTGAAAATCTAAGG 

R TGCTTTGCGTGGAAAGAATA 

PRR9 promoter PCR4 
F CGCACTGTCCACATCATAGA 

R CGTTAGTGGCCGCGTAAAT 

PRR9 promoter PCR5 
F CCAATTTTTCATTTGGAGTCG 

R TTCAAATTGGATGGCTTTTT 

PRR9 promoter PCR6 
F TGAATGATACATAGAGCAGCTGAA 

R AATCGCTCTACGGAAGTGGA 

PRR9 promoter PCR7 
F TCCACTTCCGTAGAGCGATT 

R GTAACAAAGCGGGCCTTCAC 

PRR9 promoter PCR8 
F GCCGCGATACAGAGAAAATC 

R CTTTCGATCACAACCACGAA 

PRR9 promoter PCR9 
F GAGTTTAACTTTCTTCTTCCTTCTTCT 

R GACTCAGACCTCAAAACAAACTGA 

PRR7 promoter PCR1 
F TTGAAATCTATTGGGCTTCG 

R GGCGGAAGAGACTAGCGTTT 

PRR7 promoter PCR2 
F GAATGGCCCATATGGTAAGC 

R GTCGTTCAGGAGGCTAGTGG 

PRR7 promoter PCR3 
F ATATCCGCTCTGACGTGGAA 

R GGAAATCGGAGACGACCATA 

PRR7 promoter PCR4 
F CTCCGATTTCCACTCTCTGG 

R GCTCCAGAAGTTGCATCAATC 

PRR7 promoter PCR5 
F TCTGGAGCTCGATTCTTCGT 

R TGAAGAACGACGAATTCTCAAA 

PRR7 promoter PCR6 
F TGTATGGTTGGATTTTTATTTGATG 

R CAGCCATAAACCCTAATTTCG 
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Tobacco Agro-infiltration 

Infiltration solution: 1 mM MgCl2 and 1 mM MES in sterile ddH2O 
1M acetosyringone 
1 mL Syringe (BD Plastipak™, #300013) 
3-week old Nicotiana benthamiana plants 

2.2 Methods 

2.2.1 Seed sterilization 

Seed aliquots were placed in clean 1.5 mL microcentrifuge tubes. Seeds were 

rinsed with 500 μl of 100% ethanol for 2 min. Then, ethanol was removed and seeds 

were rinsed with 500 μl of bleach solution for 2 min. The bleach solution was removed 

and seeds were washed with 1mL of sterile water. The washing step was repeated 

2-3 times. Finally the seeds were suspended in sterile 0.01 % Agar. 

Seeds were plated on the appropriate MS agar plate supplemented with 

antibiotics (if required), according to Table 2.5. Seed were stratified at 4 °C for 2-3 days 

in the dark, and then transferred to the appropriate growth cabinet (see Table 2.14). 

Table 2.14. Light and entrainment conditions in the growth cabinets. 

Condition Light Temperature 

LD 12h light / 12h dark Constant 22 °C 

SD 8h light / 16h dark Constant 22 °C 

LL WC Constant light 12h 22 °C/ 12h 16 °C 

2.2.2 Bioluminescence assays 

After stratification, seedlings were grown under entrainment cycles for 7 days. 

On day 7, seedlings were transferred to black 96-well Microplates (OPTIPLATE TM-96F, 

PerkinElmer) containing 200 µl of MS3 agar. Plants of the same genotype were 

arranged in rows. Then, 15 µl of 5mM Luciferin was added to each well and plates 

were sealed with transparent film (Packard Topseal). Finally, each well was perforated 

using a needle. An additional day of entrainment in the growth cabinet was applied 

before plates were transferred to the TOPCOUNT® scintillation counter (PerkinElmer), 

at subjective dusk. Luminescence values were recorded as the average count of 



Chapter 2 Materials and methods 

- 39- 

5 second and monitored every 30-60 min for 4-5 days. When using constant-light 

conditions, reflector plates were placed in between the seedling plates, and an 

additional count delay of one minute was applied before the start of the luminescence 

measurements. The light source was tri-chromatic LED panels (Mark Darby, MD 

Electronics, UK) attached to the TOPCOUNT® stackers. A minimum of 24 plants per 

genotype was used for each experiment. 

Circadian rhythms of luminescence were analyzed by using Biological Rhythms 

Analysis Software System (BRASS) macro in EXCEL (Southern and Millar, 2005). For 

period analysis, a 72 h window was considered starting within the free-running 

conditions. Period values weighted by real amplitude error (RAE) were considered. The 

RAE describes the error of the oscillation amplitude in relation to the most probable 

amplitude that fits the actual data to a theoretical circadian curve. Hence, the RAE is 

one estimate of rhythmicity, ranging from 0 (perfect fit of data to theoretical curve) to 1 

(arrhythmic oscillation). Phase values were corrected to circadian time. Luminescence 

traces were visualized with the EXCEL macro TOPTEMP II 

(http://millar.bio.ed.ac.uk/Downloads.html).  

The phase response curve (PRC) was constructed according to (Covington et 

al., 2001). Plants were grown for 7 days under LD and then transferred to DD for one 

full day before 1h red light pulses (40 μmol m-2s-1) were applied every 3h to replicate 

plant populations. The time of the first peak after each pulse was calculated for the 

pulsed and non-pulsed populations. The circadian period of each population after the 

pulse was calculated and used to transform phase values to circadian time (CT). Phase 

advances were plotted as positive and phase delays as negative values with error bars 

that represent pooled S.E.M. (y-axis). The time of the pulse was corrected to circadian 

time (CT; x-axis). 

2.2.3 Molecular biology 

Genomic DNA and cDNA sequences were obtained from TAIR. All primers 

were designed using Vector NTI (Invitrogen), Lasergene (DNASTAR®) software, and 

Primer3Plus (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi, (Rozen 

and Skaletsky, 2000) 

Plant DNA extraction 

DNA extractions were performed according to the protocol from Michaels and 

Amasino (Michaels and Amasino, 2001) in Qiagen collection microtubes (96-format). 
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Plant material was ground using metal beads in 400 μL DEB and 60 μL chloroform with 

a mixer mill (Retsch MM 301, Qiagen). The material was then centrifuged at 2500 g for 

10 min. In a fresh 96-well microplate, 75 µl of supernatant were mixed with 75 µl of 

isopropanol, and then cenentrifuged at 2500g for 10 min. DNA pellets were washed 

once with 70 % ethanol and let to air dry at ≈20 °C. Finally, DNA was resuspended in 

sterile ddH2O and stored at -20 °C. 

PCR for genotyping 

For plant genotyping, PCR was performed using Taq-polymerase (Genaxxon or 

Peqlab). A given PCR product was typically resolved in 1% agarose in TBE buffer, and 

visualized by ethidium bromide staining fluorescence. For CAPS and dCAPS markers 

restriction of PCR product was performed according to manufacturer’s protocol and 

resolved in a 4 % agarose gel. 

PCR and purification for cloning 

All PCR for subcloning were made using proof-reading enzyme Pfu II Ultra HF 

DNA polymerase (Stratagene). PCR was resolved in 1% agarose. The appropriate 

band was excised, and purified using QIAquick Gel Extraction Kit (Qiagen). Purified 

product was resuspended in TE. Additionally, purification of PCR product was 

performed with 30% PEG8000/ 30mM MgCl2 (Invitrogen) according to manufacter’s 

protocol. Primers used for obtaining PCR are listed in Table 2.8 for ELF3 amplicons, 

and in Table 2.7 for other amplicons. 

Cloning with Gateway® 

All Gateway® empty vectors were propagated in Escherichia coli (E. coli) DB3.1 

cells, and LB media was supplemented with 10 µg/mL of Chloramphenicol. E. coli 

DH5α cells were used to propagate transformed vectors. 

BP reaction was performed to recombine PCR products into pDONR201, 

pDONR207, pDONR4R-1PR, and pDONR2-3PR (Invitrogen). The BP reaction was set 

up in a fresh 1.5 mL microcentrifuge tube as indicated in Table 2.15, and gently mixed. 

The reaction was left ≈12 h at 20 °C. Then, 0.5 µl of Proteinase K (Invitrogen) was 

added to the BP reaction followed by incubation for 10 min at 37°C. Tubes were then 

kept on ice until transformation. Finally, 1 to 4 µl of BP reaction were used for 

transforming 50 µl cells. 



Chapter 2 Materials and methods 

- 41- 

LR reaction was performed to recombine cloning cassette from pDONR to 

pDEST vectors. LR reaction was set up in a fresh 1.5 mL microcentrifuge as indicated 

in table 2.16, and gently mixed. The reaction was left ≈12 h at 20 °C. Then, 0.5 µl of 

Proteinase K (Invitrogen) was added to the LR reaction followed by incubation for 

10 min at 37°C. Tubes were then kept on ice until transformation. Then, 1-4 µl of 

LR reaction were used for transforming 50 µl cells. The destination vectors used for 

yeast and plant expression are listed in Table 2.6. 

The Gateway® cassette of the pDESTR4R3 vector (Invitrogen) was cloned into 

the binary vector pPZP211 (Hajdukiewicz et al., 1994) to obtain the modified 

pPZP211R4R3 vector. The MultiGateway® LR reaction was set up in a fresh 1.5 mL 

microcentrifuge tube as indicated in Table 2.15, and gently mixed. The reaction was 

incubated ≈12 h at 20 °C. Then, 1 µl of Proteinase K (Invitrogen) was added to the 

LR reaction followed by incubation for 10 min at 37°C. Tubes were then kept on ice 

until transformation. Then, 4-8 µl of the reaction volume was used for transforming 

50 µl cells. 

Table 2.15. Gateway® reactions set up. 

BP reaction LR reaction LR reaction MultiGateway 

≈100 fmola pure PCR 
0.5 µl pDONR (≈100 fmol) 
TE pH 8 to 4 µl final volume 
1 µl BP Clonase Enzyme mix 

0.5 µl pDONR 
0.5 µl pDEST 
3 µl TE pH 8 
1 µl LR Clonase Enzyme mix 

1 µl 200 fmol pDONR 4-1R 
1 µl 200 fmol pDONR 201 
1 µl 200 fmol pDONR 2-3R 
1 µl 40 fmol pPZP211R4R3 
4 µl TE pH 8 
2 µl LR Clonase Enzyme mix 

a The following formula was used to calculate the appropriate amount of PCR or Plasmid. 
  ng= (n fmol) (n bp PCR or plasmid ) x (660/10 6) 

Site-directed mutagenesis 

The point mutation in the ELF3 genomic sequence present in the elf3-12 allele 

was introduced into pDONR vectors containing ELF3 coding sequences, in order to 

obtain ELF3-12 constructs. Site-directed mutagenesis was performed using the primers 

listed in Table 2.10. First, primer extension was performed according to Table 2.16. 

Then, 1 µl of DpnI restriction enzyme was added to the reaction and incubated for 

2 hours at 37 °C. Finally, 10 µl of the reaction were used to transform E. coli. This is 

analogous to the Quickchange protocol (Stratagene). 
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Table 2.16. Site-directed mutagenesis set up. 

Primer extensin Cycling conditions 

2 µl Pfu buffer 
1 µl Plasmid template 
2 µl Primer mix 
1 µl dNTPs 

0.5 µl Pfu II Ultra HS  
13.5 µl with ddH20 

  1X      95 °C 30 sec 
18X      95 °C 30 sec 

55 °C 1 min 
68 °C 10-15 min 

 

E.coli transformation 

For E. coli transformation, an aliquot of chemical-competent E. coli cells was 

thawed on ice and 1- 8 µl of plasmid or BP/LR reaction was added to the cells. After 

20 minutes on ice, cells were submerged in a 42 °C water bath for 45 sec. Immediately 

after, 900 µl of LB media was added to the cells, and they were incubated for at least 

1 hour at 37 °C, with gentle shaking. After incubation, the cells were plated on LB agar 

plate supplemented with appropriate antibiotics (see Table 2.11). Plates were sealed 

with parafilm and incubate for ≈12 h in a 37 °C growth cabinet. 

Isolation of Plasmid DNA 

Bacterial clones (colonies) that grew on the selective plate were propagated on 

3 ml of selective LB media o/n. Plasmid miniprep was performed using the Qiaprep® 

Spin Miniprep Kit (Qiagen) following manufacturer’s protocol. DNA was resuspended in 

50 µl sterile ddH2O. 

Agrobacterium transformation 

Agrobacterium tumefaciens (Agrobacterium) strains GV3101 (Koncz and 

Schell, 1986) and ABI (Schomburg et al., 2001) were used. An aliquot of chemically 

competent cells was thawed on ice. Then, 1 µl of plasmid miniprep (100-200 ng), and 

80 µl of sterile ddH2O were gently added to the cells. Cells were transferred to an 

electroporation cuvette. Electric pulse was applied with Gene Pulser (Bio-Rad). After 

electroporation, cells were diluted with 900 µl of LB media, and incubated for at least 

2 h at 28 °C while shaking at 250 rpm. Then, 80 µl of the culture was plated in YEBs 

agar complemented with appropriate antibiotics (Table 2.11). Plates were sealed with 

parafilm and incubated for 2 days at 28 °C.  
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2.2.4 Yeast 2-Hybrid 

Y2-H assay was performed by mating using Saccharomyces cerevisiae (yeast) 

strain PJ69a/α (James et al., 1996), and by co-transformation using yeast strain AH109 

(Clontech). 

Yeast transformation  

Yeast transformation was performed following Small-scale Li Cl Yeast 

transformation procedure (Clontech Yeast Handbook, # PT-3024-1). Yeast glycerol 

stock was streaked on a YPAD agar plate and grown for 3 days at 30 °C, until colonies 

reached 2-3 mm in diameter. Several colonies were resuspended in 1mL of liquid 

YPAD by vortexing for 5 min. Then, the 1 mL of resuspended yeast was diluted in 

50 mL of YPAD, and incubated for 16-18 hrs at 30 °C with shaking at 250 rpm. After 

16-18 hrs, the culture was diluted with fresh YPAD to obtain a culture of 300 mL of 

OD600 ≈0.2-0.3. The 300 mL culture was grown for ≈ 3 hours or until the cell density 

reached OD600<0.5. Then, the culture was transferred to six 50 mL centrifuge tubes, 

and centrifuged for 5 min at 1000g at ≈20 °C. The supernatant of each tube was 

discarded, and the pellet was resuspended in sterile TE. Then, the resuspended pellets 

were collected into the same centrifuge tube, and the celss were pelleted a second with 

a centrifugation of 5 min at 1000 g at RT. The supernatant was decanted and the yeast 

pellet was resuspended in a sterile 1X TE/1X Li Ac solution. For each transformation, a 

fresh microcentrifuge tube was prepared containing well mixed 100 µg of carrier DNA 

and 0.1 µg plasmid DNA (for co-transformation, 0.1 µg of each plasmid was added). 

Then, 100 µl of yeast suspension was added to each tube and mixed by vortexing. 

Finally, 0.6 mL of PEG/LiAC solution was added to each tube and mixed by 10 sec of 

vortexing. Tubes were then incubated at 30 °C for 30 min with shaking at 200 rpm. 

After this incubation, 70 µl of DMSO was added to each tube and mixed by gentle 

inversion. The tubes were placed in a water bath at 42 °C for 15 min. Immediately after, 

tubes were chilled for 2 min on ice. Then, tubes were centrifuged for 10 sec at 

14,000 rpm. The supernatant was discarded and the yeast cells were resuspended in 

200 µl of sterile TE. Cells suspensions were gently distributed on appropriate 

SD Dropout agar media (for single transformation SD-L and SD -W, and SD-LW for 

double transformation). Finally, plates were sealed with parafilm and incubated for 2-

3 days until colonies with a 2-3 mm diameter resulted. 
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Yeast mating  

Yeast strain PJ69a was transformed with pDEST22 and strain PJ69α was 

transformed with pDEST32 to obtain yeast single-transformants. For the mating, 160 µl 

of YPAD was added to each well of a 96-well Suspension Culture plate F-bottom 

(Greiner Bio-One). For each strain to be mated, several colonies, each about 2-3 mm 

of diameter, were resuspended in 1.5 mL of YPAD. Then, 20 µl of each PJ69a and 

PJ69α strains were added to the corresponding well. The plate was incubated for ≈16 h 

at 30 °C with 200 rpm. The following day, the cultures of each well were resuspended, 

and 5 µl of each suspension was plated onto a SD-LW plate. Plates were sealed with 

parafilm and incubated for 2-3 days. 

Interaction test 

Double-transformed yeast strains, obtained by co-transformation or mating, 

were tested for genetic complementation by growing them on selective media with 

SD-LWH supplemented with 1 to 10 mM 3AT and SD-LWHA. For the interaction test, 

5 colonies of each reporter strain were resuspended in 100 µl of sterile TE. Then, 5 µl 

was plated on the each of the SD plates with selective media. Plates were sealed with 

parafilm and incubated at 30 °C for 3 days. The interaction results were then collected. 

2.2.5 Floral dipping 

Arabidopsis floral-dipping transformation was performed by a simplified protocol 

(Davis et al., 2009). For the starting culture, 2-3 colonies of the Agrobacterium strains 

were grown for 2 days in 25 mL of YEBS with appropriate antibiotics (Table 2.11). On 

the day of the transformation, the starting culture was diluted in 500 mL of YEBS and 

grown for 6-8 hours. Then, 80 µl of Silwet L-77 were added to the culture. For dipping, 

the culture was transferred to a 500 mL beaker. Arabidopsis flowering plants were 

submerged for 30 seconds in the bacterial culture. After dipping, plants were wrapped 

with plastics bags for 12-18 hours. Selection of T1 transgenic plants was made on MS1 

plates supplemented with appropriate antibiotics. Surviving plants were propagated in 

the greenhouse and genotyped for the presence of the transgene (Table 2.4). 
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2.2.6 Tobacco agro-infiltration 

Agro-infiltration of tobacco leaves was performed basically as (Voinnet et al., 

2003). Cultures of 5-10 mL YEBS with the appropriate antibiotics of each strain were 

grown for 2 days at 28 °C at 250 rpm. On the day of the infiltration, bacterial cultures 

were centrifuged at 4000 rpm for 10 minutes, and the supernatant was discarded. 

Pellets were resuspended in infiltration buffer. Then, 1 µl of 1M acetosyringone was 

added and the cultures were left for 3 hours in the dark at ≈20 °C. Cell density was 

determined by measuring OD600. For the infiltration, bacterial cultures were diluted 

with infiltration buffer until OD3. Appropriate bacterial strains were mixed with the strain 

P19 (Voinnet et al., 2003), to a final OD1 for each strain. Bacterial mixtures were 

infiltrated into N. bentamiana leaves with a 1 mL syringe. Plants were watered several 

hours before the infiltration. After infiltration, plants were kept in the greenhouse for 

3 days before microscope observation or sample collection.  

2.2.7 Chromatin immunoprecipitation (ChIP) 

Seeds were surface sterilize and plated on MS3 3% agar plates. After 

stratification, seedlings were grown under SD. Buffers composition is listed in Table 

2.13. The ChIP protocol was related to these two references (Gendrel et al., 2005; 

Perales and Mas, 2007) 

Sample collection 

For each sample 1.5g of 2-week old seedlings was harvested. Seedlings were 

cross-linked on 65 mL of fixing solution for 10 min by vacuum infiltration. The cross-link 

reaction was stopped by adding 5 ml of 2M glycine and vacuum-infiltration for an 

additional 10 min. Then, the seedlings were rinse twice with sterile ddH2O. Surface 

liquid on the seedling was removed, by gentle blotting a paper towel. Finally, seedlings 

were packed into aluminum foil and froze in liquid nitrogen. Fixed samples were stored 

at -80 °C until further use. 

Isolation and sonication of chromatin 

Frozen plant material was ground in liquid nitrogen with a pre-cooled mortar 

and pestle until a fine powder was obtained. The powder was placed in a pre-cooled 

50mL centrifuge tube, resuspend in 30 mL extraction-buffer-1, and filtered through four 

layers of Miracloth. The filtered solution was centrifuged for 20 min at 2880 g at 4ºC. 
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After gently removing the supernatant, the pellet was resuspended in 2 ml of 

extraction-buffer-2, and transferred to a fresh 2 mL microcentrifuge tube. Samples were 

incubated for 10 min on ice, and then centrifugated at 12000 g for 10 min at 4ºC. The 

supernatant was discarded and the nuclei pellet was resuspended in 800 µl of nuclei 

lysis buffer. The chromatin was sonicated to obtain DNA fragments ≈ 500 bp 

(Bioruptor, 30 sec on/ 1 min off, medium power). Then chromatin was centrifuged for 

5 min at 14.000 rpm at 4°C to pellet down nuclear debris. The supernatant was 

transferred to a new tube. To test the efficiency of the sonication, 15 µl of chromatin 

samples were resolved in 1 % agarose gel and the sonication pattern was visualized by 

ethidium bromide fluorescence. If required, additional sonication was applied. 

Immunoprecipitation 

For immunoprecipitation (IP), 150 µl of chromatin was diluted with 1350 µl of 

ChIP dilution buffer, and the volume was divided to 3 Non-stick Rnase-free 1.5 ml 

microcentrifuge tubes (Ambion): one tube was kept at -80 °C as the input, the second 

tube was the no-antibody control, and the third tube was the IP. In the IP tube, 5 µl of 

Anti-GFP antibody (Roche) was added. IP and no-antibody control tubes were 

incubated for ≈12h in a rotor at 4° C. 

On the next day, GammaBind Plus Sepharose G Beads (GB HealthCare) were 

equilibrated with binding buffer and collected by centrifugation 0.8 rpm for 2 min. 

Washing of beads with binding buffer was repeated 3 times. Then, 100 µl of beads in a 

50% slurry with binding buffer were added to the IP and to the no-antibody control 

tubes. After incubation for 2 hours in a rotor at 4° C, beads were collected by 

centrifugation at 800 rpm for 2 min. The supernatant was discarded and pelleted bead-

complexes were washed with 1 mL of Low-Salt Buffer for 10 min. Beads were collected 

by centrifugation at 8000 rpm for 2 min. This washing procedure was then repeated 

with High-Salt Buffer, Li Cl buffer, and twice with TE buffer. For elution, 200 µl of freshly 

prepared elution buffer was added to the beads and mixed by vortexing. Tubes were 

incubated at 65ºC for 15 min with agitation. Beads were collected by centrifugation for 

2 min at 800 rpm and supernatant was transferred to a new tube. The elution was 

repeated once more, obtaining a final volume of 500 µl.  

For the following steps, the tubes with the input were also processed. To 

reverse the cross-linking, 20 µl of 5M NaCl was added to the eluates from the IP and 

the no-antibody control, and the input. This was followed by incubation at 65ºC for 5 h. 
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Then, 10 µl of 0.5 M EDTA, 20 µl 1M Tris HCl pH 6.5, and 5 µl of 14 mg/ml Proteinase 

K were added, and the tubes were incubated at 45 °C for 1 h. 

Purification of DNA from the ChIP samples 

For DNA purification, equal volume of Phenol/Chloroform was added to the de-

cross-linked samples and this was vortexed. Then, the tubes were centrifuged for 2 min 

at 12,000 rpm at 4 °C. The supernatant was carefully transferred to a clean tube and 

1/10 volume of 3M sodium acetate, 2.5 volumes of 100% ethanol, and 1 µl of 

10 mg/mL Glycogen was added. This was vortexed. Afterwards the tubes were placed 

at -20 °C for DNA precipitation. The next day, tubes were centrifuged for 20 min at 

12.000 rpm at 4 °C, and supernatant was discarded. Then 1mL of 0 °C 70% ethanol 

was carefully added to the DNA pellet, and tubes were centrifuged for 2 min at 

12,000 rpm at 4 °C. The supernatant was discarded, and then the tubes were left open 

to allow evaporation of ethanol. Finally, the dried DNA pellet was resuspended in 50 µl 

of 10 mM Tris pH 7.5 and stored at -20 °C. 

qPCR 

Enrichment of DNA sequences was measured by qPCR. Primers for 

amplification of promoter fragments were designed using Primer3Plus (Untergasser et 

al., 2007) to obtain amplicon sizes that ranged from 150-200bp (Table 2.13). Primer 

efficiencies were calculated for a melting temperature of 58°C. qPCR was performed 

with IQ SYBR Green Supermix (Bio-Rad) in the iCycler iQ5 Multicolor Real-time PCR 

Detection System (Bio-Rad). Expression values of ChIP samples were normalized to 

expression values of input samples to calculate the percent of enrichment. 

2.2.8 Confocal imaging  

For all experiments, a LEICA TCS SP2 AOBS Confocal laser scanning 

microscope with an HCX PL APO CS 40.0x1.25 OIL UV objective, and LEICA Confocal 

Software (Leica Microsystems) was used. N. benthamiana leaf excisions and 

A. thaliana seedlings were submerged in water. The spectral settings were as follows: 

for YFP, excitation 514nm and emission 518-570nm; for CFP, excitation 405nm and 

emission spectra 460-550nm. The pinhole was set to Airy 1 (optimal for objective). 

Laser intensity was ≈ 40%. For each image, channel voltage and offset was adjusted to 

obtain a linear LUT of fluorescence intensity.  
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Fluorescence resonance energy transfer (FRET) was assayed by Acceptor-

Photobleaching. The spectral settings before and after bleaching were as follows: for 

CFP (donor) excitation 405nm and emission 450-505nm, and for YFP (acceptor) 

excitation 514nm and emission 518-590nm. Laser light-intensity was 40%. For 

bleaching, 100% laser light-intensity of 405nm was applied until YFP levels were 

reduced to about 25%. Then, FRET efficiency was calculated with the following 

formula: FRET efficiency = CFP intensity post-bleaching – CFP intensity pre-bleaching 

/ CFP intensity post-bleaching. 

2.2.9 Analysis of ELF3 encoded sequence 

The analysis of ELF3 protein sequence was performed using CLC Protein 

Workbench 5.5.1. Domains with distinct amino-acid composition in ELF3 encoded 

protein were previously described (Hicks et al., 2001). For the prediction of secondary 

structure, the CLC Protein Workbench Secondary structure prediction was used. This 

uses a trained and performance-evaluated hidden-Markov-model (HMM) with extracted 

protein sequences from the protein databank (http://www.rcsb.org/pdb/). This feature of 

CLC predicts alpha-helixes and beta-sheets. Protein-kinase-C phosphorylation sites 

and N-glycosylation sites were predicted by PROSITE (Sigrist et al., 2010) within the 

CLC Protein Workbench. Evolutionary conserved regions were identified by a multiple-

alignment of 35 ELF3 sequences from different plant species (Saini, personal 

communication). These regions have an overall conservation of at least 80% of 

sequence similarity. 
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3.1 Introduction 

ELF3 and ELF4 are essential for sustain circadian function (Doyle et al., 2002; 

McWatters et al., 2007; Thines and Harmon, 2010). The ELF3 and ELF4 transcripts are 

co-expressed, and both act at dusk to achieve their function (Liu et al., 2001; Doyle et 

al., 2002; McWatters et al., 2007). For ELF3, it has also been shown that protein 

accumulation reaches a maximum in the first half of the night (Liu et al., 2001; Yu et al., 

2008). Previous studies described similar clock arrest phenotypes for elf3 and elf4 loss-

of-function plants, including attenuated LHY and CCA1 transcript accumulation and 

elevated levels of TOC1 (Kikis et al., 2005). Notably, the arrhythmic phenotype of elf4 

can be mimicked computationally by setting the parameters of the three-loop model to 

the high levels of expression of GI and PRR9 that are found in elf4 (Kolmos et al., 

2009). This suggests that ELF4 has a dual entry point into the oscillator to repress 

morning and evening loop components (Kolmos et al., 2009). High expression of 

PRR9, PRR7, and GI at dusk has also been reported for elf3 (Thines and Harmon, 

2010; Dixon et al., 2011). Therefore, it is possible that ELF3 and ELF4 act in the same 

signaling pathway. 

The biochemical function of ELF3 and ELF4 remains unclear. Both are nuclear 

localized proteins, but neither show any known conserved domains. Also, ELF3 and 

ELF4 protein sequences do not relate to each other. Nevertheless, structural modeling 

suggested that ELF4 has a single domain involved in protein-protein interactions, and 

therefore, it is likely to be an effector protein (Kolmos et al., 2009). Interestingly, a 

genetic-epistasis experiment placed ELF3 genetically downstream of ELF4 (Kolmos, 

2007). Thus, one attractive hypothesis I explore here is that ELF4 acts as an effector 

for ELF3.  

To expand on the functional characterization of ELF3, I conducted a transgenic 

complementation approach to identify genic regions required to restore the 

elf3 null-allele phenotype. Interestingly, I could separate the functional domains of 

ELF3 required to sustain circadian function and to modulate ELF3 function. This is 

consistent with ELF3 being a multifunctional protein. 

ELF3 and phyB play an opposite role in the regulation of clock speed: ELF3 

lengthens and phyB shortens circadian period, respectively (Anderson et al., 1997; 

Covington et al., 2001). ELF3 has been proposed as a general repressor of light 

signals to the oscillator (Carre, 2002). Light-input repression has been proposed to be 
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mediated by ELF3-phyB physical interaction (Liu et al., 2001). In this Chapter, the 

functional relevance of ELF3-phyB interaction is explored. 

General amino-acid features of ELF3 protein suggest its involvement in 

transcriptional regulation (Hicks et al., 2001). As explained above, levels of PRR9 and 

PRR7 are constitutively high in the elf3 mutants. Hence, I hypothesized that ELF3 

could act as a transcriptional regulator of PRR7 and PRR9 expression. Therefore, in 

this chapter I tested if ELF3 can associate to the PRR9 and PRR7 promoters.  

Finally, lux mutants show similar phenotypes to those of elf3 and elf4 (Hazen et 

al., 2005; Kikis et al., 2005; Onai and Ishiura, 2005; McWatters et al., 2007). In this 

chapter, I also tested if ELF3, ELF4, and LUX are components of the same genetic 

complex required to maintain circadian oscillations.  

3.2 Results 

3.2.1 ELF3 and ELF4 physically and genetically interact  

The overall similarity of elf3 and elf4 mutant phenotypes led me to the 

hypothesis that ELF3 and ELF4 act in the same pathway. Therefore, the physical 

interaction of ELF3 and ELF4 was first tested in a yeast two-hybrid assay (Y2-H). 

Figure 3.1A shows that full-length ELF4 interacts with ELF3. Moreover, using a series 

deletion fragments of ELF3, the ELF3 the middle domain (ELF3M, residues 261-484) 

was found to contain the sequence required for ELF4 associations (Figure 3.1A). Note 

that only the constructs containing the middle domain (ELF3NM, ELF3M, and 

ELF3MC) led to viable yeast, whereas ELF3N and ELF3C did not. Subsequently, this 

interaction was confirmed in planta by fluorescence resonance energy transfer (FRET). 

For this, ELF3-CYAN FLUORESCENT PROTEIN (ELF3-CFP) and YELLOW 

FLUORESCENT PROTEIN-ELF4 (YFP-ELF4) were co-expressed in N. benthamiana 

leaves. Efficiency of FRET from the CFP to the YFP fluorophores was assayed by YFP 

photo-bleaching. As negative controls RED FLUORESCENT PROTEIN-CFP 

(RFP-CFP) and YFP-RFP fusions were used. When YFP-ELF4 and ELF3-CFP were 

co-expressed, the FRET efficiency was 52.4±10.6%, while for the negative controls 

YFP-RFP with ELF3-CFP and YFP-ELF4 with RFP-CFP the FRET efficiency was 

much lower (2.0±2.3% and 3.5±2.6%, respectively; Figure 3.1B). Thus, I concluded 

that ELF4 physically associates with ELF3. 
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Figure 3.1. The middle domain of ELF3 mediates the physical interaction with ELF4. 
(a), Y-2H assay of ELF4-BD and ELF3-AD fragments. AD-ELF3 fragments are defined in 
the right panel. Color code bars: ELF3 F (full-length, black), ELF3N (residues 1-259, blue), 
ELF3M (residues 261-484, green), and ELF3C (residues 485-695, blue). Abbreviations: AD 
(activation domain only), BD (binding domain only); - LW and -LWH (drop out for Leu/Trp 
and Leu/Trp/His, respectively); 3AT (3-Amino- 1,2,4-triazole). Y 2-H experiments were 
performed three times with similar results. (b), ELF3 and ELF4 interact in planta. Left 
panel, FRET assay of ELF3-CFP and YFP-ELF4 in N. benthamiana. FRET efficiency ±SEM: 
ELF3-CFP YFP-RFP, 2.0±0.7%; ELF3-CFP ELF4-YFP, 52.0±3.4%; RFP-CFP YFP-ELF4, 
3.5±0.8%; n=10. Error bars indicate Standard Error of the Mean (SEM). Right panel, 
representative photos of FRET assay by photo-bleaching. The experiment is 
representative of three independent replicates.  
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In order to analyze the epistatic relationship between these two ELF genes, and 

"bypass" their arrhythmic mutant phenotypes, double mutants combining the 

loss-of-function of one and the over-expression of the other were generated. Then, 

circadian rhythms LHY:LUC under LL were assayed. A version of this experiment was 

previously performed (Kolmos, 2007), and in my extended version, similar results were 

obtained. In the wild type, LHY:LUC expression showed a circadian rhythm with a peak 

in the early morning (Figure 3.2A-C). Consistent with previous studies (Kikis et al., 

2005; McWatters et al., 2007), both elf3-4 and elf4-1 single mutants displayed marginal 

LHY:LUC activity and were arrhythmic (Figure 3.2A,B). The over-expression of ELF3 

(ELF3-OX) and ELF4 (ELF4-OX) produced a long circadian period (Figure 3.2 A-C), as 

expected (Covington et al., 2001; McWatters et al., 2007). Similar to elf3-4, the double 

mutant elf3-4 ELF4-OX displayed essentially no LHY:LUC expression and no circadian 

rhythms, as seen in the elf3-4 single mutant (Figure 3.2A). Thus, ELF4 over-expression 

has no effect on the elf3-4 phenotype. In stark contrast, elf4-1 ELF3-OX regained overt 

bioluminescence of the reporter and rhythmic activity, relative to the single elf4-1 

phenotype (Figures 3.2B). Note here that the real amplitude of error (RAE) was similar 

for wild type, ELF3-OX, ELF4-OX, and elf4-1 ELF3-OX, indicating similar rhythmicity of 

these backgrounds (Figure 3.2C). Formally, this genetic interaction places ELF3 and 

ELF4 in the same signaling pathway, were ELF3 acts downstream. 

Both the observations that ELF3 and ELF4 physically interact and that 

ELF3-OX bypass the elf4 arrhythmicity phenotype, support the hypothesis that works 

ELF4 as an effector (Kolmos et al., 2009), and the ELF4 target protein is ELF3. Both 

ELF3-OX and ELF4-OX confered a long period phenotype, where ELF4-OX effect was 

larger (Figure 3.2 and 3.3). To examine the effect of simultaneously over-expression of 

ELF3 and ELF4, I introduced ELF3-OX and ELF4-OX in the same line by crossing, and 

tested LHY:LUC expression under LL. When both ELF3-OX and ELF4-OX were 

combined, the LHY:LUC period was rhythmic with a long period similar to ELF4-OX 

(Figure 3.3), further supporting that ELF3 and ELF4 are in the same pathway within the 

circadian clock.  
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Figure 3.2. ELF3 is genetically downstream of ELF4. 
(a) and (b), Bioluminescence of LHY:LUC under LL. Note that in elf3-4, elf3-4 ELF4-ox (a), 
and in elf4-1 (b) LHY:LUC is nearly undetectable (arrow). On the contrary, elf4-1 ELF3-OX 
regains LHY:LUC rhythms (b). Wt is the same in both panels. (c) Period vs. RAE of 
LHY:LUC under LL of (a) and (b). Period length ± SD: (a) Wt, 25.1±1.3h; ELF4-OX, 
28.75±0.95, (b) Wt, 25.1±1.3h; ELF3-OX, 25.9±1.6h; elf4-1 ELF3-OX, 25.2±0.9h. Error bars 
indicate SEM, n=24. In (a) and (b) errors bars are shown every 6 time point to clarify the 
curves. cps, count per second. RAE, real amplitude error. This experiment is 
representative of at least three independent replicates. 



Chapter 3 Characterization of ELF3-ELF4 complex 

- 55 - 

a b

0

3

0 24 48 72 96
Time (h)

N
or

m
. b

io
lu

m
in

es
ce

nc
e

22

26

30

W
t

ELF
3-O

X
ELF

4-O
X

ELF
3-O

X E
LF

4-O
X

Pe
rio

d 
(h

)

ELF4-OX ELF3-OX ELF4-OX

Wt ELF3-OX

ELF4-OX ELF3-OX ELF4-OX

Wt ELF3-OX

 

Figure 3.3. ELF3-OX ELF4-OX double over-expressor retains circadian rhythms. 
(a), Bioluminescence of LHY:LUC under LL. (b) Period length of LHY:LUC under LL: Wt, 
25.39±0.17h; ELF3-OX, 26.98±0.2h; ELF4-OX, 28.43±0.23; ELF3-OX ELF4-OX, 28.10±0.31. 
Error bars indicate SEM, n=24. In (a) errors bars are shown every 6 time point to clarify 
the curves. This experiment is representative of at least three independent replicates. 

3.2.2 ELF4 constrains ELF3 to nuclear distribution 

Observations that different domains of ELF3 are required for given protein 

interactions suggests that the function of ELF3 can be separated [Figure 3.1, (Liu et al., 

2001; Yu et al., 2008)]. To further examine this, six different YFP-ELF3-OX lines were 

generated, corresponding to the ELF3 fragments used in the Y2-H experiments (Figure 

3.1A and 3.4), and analyzed for their sub-cellular distribution in N. benthamiana 

epidermal cells. Consistent with previous studies (Liu et al., 2001; Yu et al., 2008), 

full-length ELF3 (YFP-ELF3F) was localized in the nucleus and formed distinct nuclear 

foci (Figure 3.4). On the contrary, the N-terminal fragment of ELF3 (YFP-ELF3N) was 

nearly absent from the nucleus, and accumulated preferentially in the cytoplasm 

(Figure 3.4). Furthermore, the middle domain (YFP-ELF3M) and a longer N-terminal 

fragment (YFP-ELF3NM) were evenly distributed in the nuclear and cytoplasmic 

compartments (Figure 3.4). Finally, the C-terminal domain of ELF3 (ELF3C) was 

exclusively localized in few, but bright nuclear foci (Figure 3.4). Consistently, the 

fragment comprising both the middle and C-terminal domains (ELF3MC) was 

preferentially nuclear (Figure 3.4). Thus, the C-terminal domain of ELF3 was required 

for nuclear localization, which is consistent with the prediction of a nuclear-import 

signal in the C-terminal of ELF3 (residue 591) (Liu et al., 2001). 
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Figure 3.4.  ELF3 fragments have different sub-cellular distribution and ELF4 is nuclear 
localized. 
YFP channel of epidermal cells of N. benthamiana infiltrated with YFP-ELF3 fragments 
and ELF4-CFP. Color code bars: ELF3 F (full-length, black), ELF3N (residues 1-259, blue), 
ELF3M (residues 261-484, green), ELF3C (residues 485-695, blue), and ELF4 (grey). White 
bar is 20µm. YFP-ELF3F (black) and magnification of the nuclei highlighted with a star, 
YFP-ELF3MC (residues 261-695, green-blue), and YFP-ELF3C (residues 485-695,blue) are 
all localized in nuclear foci, while YFP-ELF3N (residues 1-260, pink) is cytoplasmic. YFP-
ELF3NM (residues 1-484, pink-green) and YFP-ELF3M (residues 261-484, green) have 
both a cytoplasmic and nuclear distribution. The photos are representative of three 
independent experiments.  

Next, the function of ELF4 as an effector of ELF3 localization was tested. For 

this, the various YFP-ELF3 fragments were co-expressed with ELF4-CFP and tested if 

there was a change in the ELF3 cellular distribution. When expressed alone, 

ELF4-CFP showed a diffuse nuclear localization (Figure 3.4). I did not observe a 

change in the sub-cellular distribution for the YFP-ELF3 fusions that were already 

nuclear localized, i.e. for ELF3F, ELF3MC and ELF3C; nor for ELF3N, which was 

found in the cytoplasm. Interestingly, ELF3 co-expression with ELF4 dramatically 

increased the nuclear accumulation of both YFP-ELF3M and YFP-ELF3NM (Figures 

3.5). Note here that the sub-cellular distribution of ELF4-CFP did not change when co-

expressed with YFP-ELF3M and YFP-ELF3NM (Figure 3.5). Thus, ELF4 binding to the 

middle domain of ELF3 constrains it to the nucleus, even in the absence of the ELF3C 

domain. 
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Figure 3.5. ELF4 constrains ELF3 to nuclear distribution. 
(a), ELF4 increases ELF3M nuclear localization. Expression of YFP-ELF3M only: (1), YFP 
channel. Co-expression of YFP-ELF3M and ELF4-CFP: (2), YFP channel and (3), CFP 
channel. Signal intensity of YFP channel: (4), YFP-ELF3M alone from experiment 1; (5), 
co-expression of YFP-ELF3M and ELF4-CFP from experiment (2).  
b), ELF4 increases ELF3NM nuclear localization. Expression of YFP-ELF3NM only: (1), 
YFP channel. Co-expression of YFP-ELF3M and ELF4-CFP: (2), YFP channel. Signal 
intensity of YFP channel: (3), YFP-ELF3MM alone from experiment 1; (4), co-expression 
of YFP-ELF3NM and ELF4-CFP from experiment (2).  
The z, x, and y axes represent YFP intensity, horizontal plane, and vertical plane, 
respectively. Black arrows (1,2) correspond to white arrows in (4,5). This experiment is 
representative of two independent replicates. 
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3.2.3 The ELF4 binding site of ELF3 is required for sustaining circadian 
period 

In order to identify the ELF3 domains required for circadian function, I tested 

whether each of the YFP-ELF3 fragments described in Figure 3.4 could complement 

the null allele elf3-4. These YFP-ELF3 fragments were expressed under the control of 

the 35S promoter. The sub-cellular localization of all the YFP-ELF3 fragments in stable 

Arabidopsis lines was similar to those in transient expression in N. benthamiana 

(Figures 3.4 and 3.6). Thus, these constructs behaved as expected in stable transgenic 

lines. Interestingly, I observed that the nuclear bodies generated by YFP-ELF3 full 

length and YFP-ELF3C were different in size and number. The YFP-ELF3 nuclear 

bodies were smaller, but more abundant than YFP-ELF3C nuclear bodies (Figure 3.6) 

F N

M C

NM

MC

CF MC

 

Figure 3.6. Complementation of elf3-4 with YFP-ELF3 fragments. 
Confocal microscopy of stable Arabidopsis lines YFP-ELF3 fragments expressed under 
the 35S promoter. The cellular distribution of YFP ELF3 fragments was similar in N. 
benthamiana (Figure 4) and in Arabidopsis stable transgenic lines. Maximum projection 
of 6 µm stacks of hypocotyl cells, and 4 µm stacks for single nuclei zoom-in. White bars 
indicate 50 µm and 10 µm, in hypocotyl cells and nuclei magnification images, 
respectively. 
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The complementation capacity of the elf3-4 phenotype by each ELF3 

transgenic line was tested with the LHY:LUC reporter. Consistent with Figure 3.2, and 

with previous studies (Covington et al., 2001), the over-expression of YFP-ELF3 

conferred a long circadian period of LHY:LUC under LL, when compared to the wild 

type (Figure 3.7). Interestingly, the over-expression of YFP-ELF3MC was sufficient to 

re-establish circadian rhythms in elf3-4, albeit with a lower amplitude of LHY:LUC, 

compared to YFP-ELF3 (Figure 3.7). The rest of the complementation lines did not 

restore the elf3-4 phenotype. Thus, both nuclear localization conferred by the ELF3 

C-terminal domain, and ELF4-binding mediated by the ELF3 middle domain, are 

required for ELF3 circadian function. 

Interestingly, the amino-terminus of ELF3 (ELF3N) was dispensable for 

circadian function. Previously, it was shown that a large N-terminal fragment of ELF3 

(residues 1 - 440) mediates the physical interaction with the C-terminus of phyB (Liu et 

al., 2001). Furthermore, using the same ELF3 fragments as in Figure 3.1., the phyB 

interaction domain of ELF3 was further delineated. The co-expression of ELF3 full 

length (ELF3) with and PHYB full length (PHYB) or PHY C-terminus domains (PHYBC) 

led to viable yeast in selective media. Moreover, the fragments containing the ELF3N 

domain (ELF3N and ELF3NM) also lead to viable yeast when co-expressed with PHYB 

and PHYBC, whereas, ELF3M, ELF3MC, and ELF3 did not (Figure 3.8). Hence, 

ELF3N was found to be dispensable for ELF3 circadian function and required for 

physical interaction with phyB. 

The functional relevance of ELF3-phyB interaction is not well understood. 

Notably, ELF3 and phyB have opposite effects on the speed of the oscillator (Devlin 

and Kay, 2000b; Covington et al., 2001). Therefore, it is possible that the amino 

terminus of ELF3 negatively modulates ELF3 action in period lengthening by 

interacting with phyB. To physiologically test this hypothesis, the circadian rhythms of 

YFP-ELF3 and YFP-ELF3MC were measured under different light qualities -continuous 

red+blue light (R+Bc), continuous red light (Rc), and Bc- and in the darkness (DD). 

Importantly, all lines were similarly rhythmic under all conditions tested (see R.A.E. in 

Table 4.1). In diurnal organisms, continuous light shortens circadian period, a 

phenomena defined as the Aschoff’s rule (Aschoff, 1979). Consistently, the period of 

LHY:LUC in the wild type was shorter under R+Bc, Rc, and Bc when compared to DD 

(Figure 3.9). LL also shortened period length in YFP-ELF3, but it had significantly 

longer period than that of the wild type in DD, under Bc, and under R+Bc (Figure 3.9, 

Table 3.1). Interestingly, under Rc, the period length of wild type and YFP-ELF3 was 
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similar (Figure 3.9). Taken together, YFP-ELF3 has a significantly longer period than 

that of the wild type under R+Bc, Bc, and in DD, whereas no significant difference was 

found in Rc. This suggests that RL, in particular, negatively affects the ELF3 period 

lengthening effect and that ELF3N is required for Rc shortening of periodicity. 
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Figure 3.7.  Bioluminescence of LHY:LUC under LL.  
The over-expression of YFP-ELF3N, YFP-ELF3NM, YFP-ELF3M, and YFP-ELF3C does not 
restore elf3-4 circadian oscillations. However, the over-expression of YFP-ELF3 and YFP-
ELF3MC restores circadian rhythmicity. Arrows indicate the position of traces for elf3-4. 
Error bars,  SEM and they are placed every two points for clarification of the curves. Wt 
is the same for the six panels. cps, count per second. These experiment was performed 
three times with similar results. 
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Figure 3.8. The N-terminus of ELF3 mediates interaction with phyB. 
Y-2H assay of ELF3-BD fragments and PHYB-AD fragments. AD-ELF3 fragments are 
defined in Figure 3.1 right panel: ELF3 (full-length), ELF3N (residues 1-259), ELF3M 
(residues 261-484) ELF3C (residues 485-695); PHYB (full length), and PHYBC (residues 
646-1172). Abbreviations: AD (activation domain), BD (binding domain); empty (AD or DB 
only); - LW and -LWH (drop out for Leu/Trp and Leu/Trp/His, respectively); 3AT (3-Amino- 
1,2,4-triazole). Y 2-H experiments were performed three times with similar results. 

Subsequently, I tested the period-lengthening effect on LHY:LUC expression of 

YFP-ELF3MC, which retains circadian function but lacks the phyB-binding domain 

(ELF3N). For the YFP-ELF3MC lines, the period was significantly longer than wild type 

under all four free-running conditions (Figure 3.9, Table 3.1). Under R+Bc YFP-ELF3 

and YFP ELF3MC displayed similar period length. However, under Bc, YFP-ELF3MC 

had a 2h-longer period that YFP- ELF3. Interestingly, both in DD and under Rc, the 

period length was 3 h longer for YFP-ELF3MC than for YFP-ELF3. Notably, there was 

no difference in period length for YFP-ELF3MC between DD and Rc conditions 

(Figure 3.9, Table 3.1), suggesting that YFP-ELF3MC does not respond to 

Rc-period-shortening effect and can lengthen circadian period further in DD. Taken 

together, the period lengthening effect of YPF-ELF3MC under Rc and in DD is 

consistent with a role of ELF3N as a negative modulator of ELF3 reduction of circadian 

speed. The shorter period length under R+Bc, and Bc suggests that BL signaling does 

not require ELF3N for shortening of periodicity. 
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Figure 3.9.  ELF3N accelerates circadian periodicity under Rc and in DD. 
(a) Normalized bioluminescence of LHY:LUC in DD (a), under R+Bc (b), Rc (c), and Bc (d). 
(e) Circadian period length of LHY:LUC of Wt, YFP-ELF3 and YFP-ELF3MC. Period and 
RAE values are listed in table 3.1. Wt and YFP-ELF3MC values correspond to panels a-d. 
Error bars indicate SEM, count 24. In (e) stars depict statistical significance of 
comparisons: pvalue >0.05 (*), >0.01(**), >0.001 (***). These experiments were performed 
at least twice with similar results. 
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Wt 27.6 ± 0.4 0.2 ± 0.04 25.4 ± 0.2 0.2 ± 0.01
YFP ELF3 1 28.8 ± 0.1 0.1 ± 0.01 27.6 ± 0.3ns ns 0.3 ± 0.02
YFP ELF3 2 28.6 ± 0.2 0.1 ± 0.01 27.1 ± 0.3ns ns 0.2 ± 0.04
YFP ELF3MC 1 31.3 ± 0.4 ns * 0.2 ± 0.04 26.8 ± 0.4ns ns 0.2 ± 0.01
YFP ELF3MC 2 30.9 ± 0.4 ns * 0.2 ± 0.04 26.3 ± 0.3ns ns 0.2 ± 0.01

Wt 26.5 ± 0.2 ns *** 0.2 ± 0.01 26.6 ± 0.3 0.2 ± 0.01
YFP ELF3 1 27.0 ± 0.2 ns 0.2 ± 0.02 27.7 ± 0.3 0.1 ± 0.01
YFP ELF3 2 27.1 ± 0.2 ns 0.1 ± 0.01 27.6 ± 0.3 0.1 ± 0.01
YFP ELF3MC 1 30.8 ± 0.4 ns * *** 0.2 ± 0.03 29.6 ± 0.5* * * 0.4 ± 0.08
YFP ELF3MC 2 31.0 ± 0.4 ns * *** 0.2 ± 0.04 29.5 ± 0.5* * * 0.2 ± 0.01

Rc Bc
Period (h) ± SE RAE ± SE Period (h) ± SE RAE ± SE 

Period (h) ± SE RAE ± SE Period (h) ± SE RAE ± SE 

DD R+Bc

 

Table 3.1 Period and RAE values of LHY:LUC rhythms in DD, under R+Bc, Rc, and Bc.  
From Figure 3.9. SE, standard error of the mean. Color code is used to define 
comparisons of differences in the period-length between genotypes and/or conditions: 
YFP-ELF3MC 1 in DD vs. under Rc (Light blue), YFPELF3MC 2 in DD vs. under Rc (Dark 
blue), YFP-ELF3MC 1 in DD vs. under Bc (Pink), YFP-ELF3MC 2 in DD vs. under Bc (Red), 
Wild type vs. YFP-ELF3 1 and YFP-ELF3 2 under Rc (Grey), Wild type vs. YFP-ELF3MC 1 
and YFP-ELF3MC 2 under Rc (Dark green), YFP-ELF3MC1 under Rc vs. under Bc 
(orange), YFP-ELF3MC 2 under Rc vs. under Bc (yellow), YFP ELF3 1 and YFP ELF3 2 vs. 
YFP-ELF3MC 1 and YFP-ELF3MC 2 under R+Bc (light green). Stars depict statistical 
significance as follows pvalue >0.05 (*), >0.01(**), >0.001 (***)* p value < 0.05; ns (not 
significant). Additional statistical comparisons are presented in Figure 3.7. 
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3.2.4 ELF4 is localized preferentially in the nucleus in Arabidopsis 

ELF4 was shown to be a nuclear localized protein in transient expression in 

epidermal cells of onion (Khanna et al., 2003), and in N. benthamiana (Figure 3.4 and 

3.10 A1). However, these experiments did not confirm the sub-cellular localization of 

ELF4 in Arabidopsis. Hence, stable Arabidopsis lines over-expressing YFP-ELF4 were 

generated in the elf4-1 background. Consistent with transient assay YFP-ELF4 

localized diffusely in the nuclei of hypocotyl cells (Figure 3.10 A3). Additionally, a 

portion of YFP-ELF4 signal was found in the cytoplasm (Figure 3.10 A2). The 

YFP-ELF4 expression restore the arrhythmic LHY:LUC expression of elf4-1 mutant, 

and confer a long period (Figure 3.10 B), consistent with previous observation (Figure 

3.2, 3.3). 
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Figure 3.10. Constitutive expression of YFP-ELF4 is localized preferentially in the 
nucleus.  
(a) YFP confocal microscopy of YFP-ELF4 of epidermal cells in N. benthamiana (1), and 
hypocotyl of elf4-1 YFP-ELF4 lines (2) and (3) expressed under the 35S promoter. White 
bars indicate 25µM (1) and (2) and 10µM in (3). The images are representative of at least 
two independent elf4-1 YFP-ELF4 lines. The imaging was performed twice with similar 
results. (b) Normalized bioluminescence of LHY:LUC under LL for Wt, elf4-1, and elf4-1 
YFP-ELF4 lines.(c) Period vs RAE plot of panel b. Period and RAE values ±SEM: Wt, 
24.93±0.20, 0.2±0.01: elf4-1, 21.50±0.167, 0.91±0.03; elf4-1 YFP-ELF4 1, 28.63±0.24, 
0.18±0.01; elf4-1 YFP-ELF4 2, 27.61±0.19, 0.19±0.01. Error bars indicate SEM, n=24. 
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3.2.5 ELF3 represses PRR9 by physical association to its promoter 

The transcript accumulation of PRR9 and PRR7 is elevated in elf4 (Kolmos et 

al., 2009) and elf3 (Thines and Harmon, 2010), implicating that ELF4 and ELF3 are 

genetic repressors of these morning-clock genes. To test whether ELF genes are 

sufficient to mediate PRR9 and PRR7 repression, the expression of PRR9 and PRR7 

was measured in ELF3-OX and ELF4-OX under LL and SD conditions (Bujdoso, 

personal communication). Both ELF3-OX and ELF4-OX alone were genetically 

sufficient to decrease PRR9 transcript levels, especially under LL (Figure 3.11). 

Notably, the over-expression of these ELF genes had a much less pronounced effect of 

PRR7 accumulation (Figure 3.11). Thus, the ELF4-ELF3 signaling activity seems to 

mediate preferentially the repression of PRR9. 
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Figure 3.11. PRR9 is down-regulated in ELF3-OX, and ELF4-OX. 
Samples were collected after 48h under LL (a) and (b), and under short days (SD) (c) and 
(d). Expression values were normalized to PP2A and are representative of two biological 
replicates. Error bars indicate SD. This experiment was performed by Nora Bujdoso. 
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Aiming to identify conserved elements in the PRR9 promoter that could mediate 

repression by an ELF4-ELF3 complex, a phylogenetic shadowing approach was used 

(Berns, personal communication). The PRR9 promoter of Arabidopsis was compared 

to orthologous promoters of Arabidopsis lyrata, Capsella rubella, and Arabis alpina. 

This analysis revealed high conservation upstream of PRR9 (-556 to-136 bp), and it 

was called Conserved Region 1 (Figure 3.12A). Notably, this region was found to be 

crucial for the normal expression of PRR9 (Ito et al., 2005). Within the Conserved 

Region 1, there are two fully conserved cis-elements: an Evening Element (EE) 

(Harmer et al., 2000) and a LUX Binding Site (LBS) (Helfer et al., 2011). It is likely that 

both elements contribute to the rhythmic circadian oscillation of the PRR9 transcript, as 

promoter deletion analysis reveals this region to be critical for normal PRR9 function 

(Ito et al., 2005). 

Using the YFP-ELF3 line described in figure 3.6, I tested by Chromatin 

immunoprecipitation (ChIP) if ELF3 associates with the promoter of PRR9. For this, 

both YFP-ELF3 (Figure 3.6-3.9) and elf3-4 seedlings were grown for 2 weeks under 

SD. Samples for ChIP were collected at ZT 16 when PRR9 levels are lowest 

(Figure 3.11D). Chromatin fractions were pulled down with anti-GFP antibody and the 

enrichment of different fragments of the PRR9 promoter in the YFP-ELF3 ChIP 

samples was quantified by qPCR. Interestingly, ELF3 was found to associate 

specifically to the Conserved Region 1 in the PRR9 promoter (Figure 3.12B). On the 

contrary, association of ELF3 to the PRR7 promoter was not detected, supporting the 

idea that the ELF4-ELF3 complex acts directly on PRR9, but not PRR7. 
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Figure 3.12. ELF3 associates with conserved region of PRR9 promoter. 
(a), Phylogenetically conserved region of the PRR9 promoter mediates circadian 
regulation. Pairwise alignments of Arabidopsis PRR9 promoter to orthologous 
sequences of A. lyrata, Capsella rubella and Arabis alpina, shown as VISTA plots. 
Light-red color indicates regions where a sliding window of at least 30bp has >70% 
identity. Conserved Region 1 (556 to -130bp) is highlighted with a black line. Vertical bars 
indicate the position of highly conserved LBS, EE, and the translational initiation codon 
(pointing arrow). Conservation of LBS and EE is shown as WEBLOGO. The phylogenetic 
shadowing was performed by Markus Berns. 
(b), ELF3 associates to Conserved Region 1 of PRR9 promoter. ChIP of YFP-ELF3 to the 
PRR9 promoter. elf3-4 and elf3-4 YFP-ELF3 seedlings were grown under SD 
(8h-light/16h-dark) and samples collected at ZT16. Chromatin fractions were pulled down 
with anti-GFP antibody. Enrichment was determined by qPCR and normalized to the 
input DNA; error bars indicate SEM, n=3 independent experiments. Two biological 
replicates and two technical replicates were performed with similar results to the values 
presented here. Grey horizontal bars indicate the position of the ChIP amplicons and are 
within the same scale as the shadowing regions of panel (a). 
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3.2.6 LUX is a component of ELF3/ELF4 signaling 

Since ELF3 does not obviously encode a DNA-binding domain (Liu et al., 

2001), its association with the PRR9 promoter could require a coupling component. 

Interestingly, a recent publication found that the evening-expressed factor LUX (Helfer 

et al., 2011) can associate with the Conserved Region 1 of the PRR9 promoter (Figure 

3.9A). Moreover, the phenotype of the lux mutant was reported to be similar of that of 

elf3 and elf4 (Hazen et al., 2005). Thus, it is possible that LUX is a component of the 

ELF3/ELF4 repressive activity. To test this hypothesis, I generated double mutants that 

over-expressed LUX (YFP-LUX) in both elf3-4 and elf4-1, respectively. Since LUX is a 

transcription factor, nuclear localization was expected. Hence, I tested the sub-cellular 

localization of LUX in wild type, elf3, and elf4 backgrounds. LUX was localized in the 

nucleus regardless of the presence of ELF3 or ELF4 (Figure 3.13). Therefore, ELF3 or 

ELF4 were not found to be required for LUX nuclear localization. 

3 4

5 6

1 2
Wt YFP-LUX

elf3-4 YFP-LUX

elf4-1 YFP-LUX

 

Figure 3.13.  YFP-LUX nuclear localization is not affected in the elf3-4 and elf4-1. 
YFP confocal microscopy of hypocotyl epidermal cells in Arabidodpsis YFP-LUX lines, 
Wt (1-2), elf3-4 (3-4), and elf4-1 (5-6). White bars indicate 50µM (1,3,5) or 10µM (2,4,6). The 
images are representative of at least two independent lines for each background. The 
imaging was performed twice with similar results. 
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Using the transgenic YFP-LUX lines, I tested if LUX-OX could restore elf3 and 

elf4 LHY:LUC phenotype (Figure 3.2) Consistent with previous reports (Onai and 

Ishiura, 2005; Helfer et al., 2011), LHY:LUC expression in the LUX-OX background 

was rhythmic under LL, but the oscillations gradually faded to a constitutive level of 

LHY (Figure 3.14). Interestingly, as ELF3-OX suppressed the elf4-1 phenotype 

(Figure 3.2B), the elf4-1 LUX-OX double mutant resulted in overt LHY:LUC rhythmicity 

(Figure 3.14). Furthermore, LUX-OX was ineffective in complementing elf3-4 

(Figure 3.14). Taken together, LUX is a downstream component of ELF4 signaling that 

requires ELF3 action. 
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Figure 3.14.  LUX is downstream of ELF4 action. 
(a)-(c), LHY:LUC rhythms of YFP-LUX in the Wt (a), elf4-1 (b) and elf3-4 (c) backgrounds, 
respectively, under LL. Arrows indicate the position of traces for elf4-1 and elf3-4. (d) 
Period vs. RAE of LHY:LUC rhythms from (a), (b) and (c). Period length / RAE ±SEM: 
Wt, 27.7±0.4h/0.28±0.05; elf3-4, 23.7±3.9h/0.94±0.03; elf4-1, 27.9±2.8h/0.96±0.03; 
Wt°YFP-LUX°1, 26.8±0.8h/0.36±0.04; Wt YFP-LUX 2, 27.3±1.1h/0.35±0.05; 
elf3-4-YFP-LUX 1, 24.2±3.1h/0.96±0.02; elf3-4 YFP-LUX 2, 28.5±2.6h/0.93±0.03; 
elf4-1 YFP-LUX 1, 26.3±0.7h/0.38±0.04; elf4-1 YFP-LUX 2, 26.4±0.6h/0.32±0.05. cps, count 
per second. Error bars indicate SEM, and they were plotted every sixth count to clarify 
the curves, in a, b, and c. 
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3.3 Discussion 

In this chapter, I showed that three evening components of the circadian clock, 

ELF4, ELF3, and LUX, cooperatively act to sustain circadian oscillations. This 

cooperation is consistent with these mutants having similar circadian-arrhythmicity 

phenotypes (Covington et al., 2001; Doyle et al., 2002; Hazen et al., 2005; Kikis et al., 

2005; Onai and Ishiura, 2005; McWatters et al., 2007; Thines and Harmon, 2010). 

The physical interaction between ELF3 and ELF4 was demonstrated and the 

binding interface was mapped (Figure 3.1). Moreover, the over-expression of ELF3 

restored circadian rhythmicity of elf4 mutants, indicating that is ELF3 genetically 

downstream of ELF4 (Figure 3.2). Both physical and genetic interaction of ELF3 and 

ELF4 are consistent with the previous hypothesis of ELF4 being an effector protein that 

binds a target protein (Kolmos et al., 2009), and this target protein was shown to be 

ELF3. The middle domain of ELF3 (ELF3M) mediated physical interaction with ELF4 

(Figure 3.1). The ELF3M (residues 261-484) domain mediates ELF3-GI interaction, 

whereas ELF3N (residues 1-259) domain is required for both phyB (Figure 3.8) and 

COP1 binding (Liu et al., 2001; Yu et al., 2008). Therefore, ELF3 has different 

interaction domains for each of its interaction partners. 

The same ELF3 fragments used for Y2-H were fused to YFP to study their sub-

cellular distribution. My studies revealed that the C-terminus domain (ELFC) mediates 

ELF3 nuclear localization. On the contrary, the N-terminal domain of ELF3 (ELF3N) 

was localized in the cytoplasm (Figure 3.4 and 3.6). In other circadian systems, specific 

regions of clock proteins have been shown to mediate dynamics of cytoplasmic-nuclear 

distribution. For example, mouse PER protein has both nuclear import signals (NLS) 

and nuclear export signals (NES) (Loop et al., 2005). The YFP-ELF3M and 

YFP-ELF3NM fusion-proteins localized both in the nucleus and cytoplasm. 

Interestingly, the co-expression of these two ELF3 fragments with ELF4 increased their 

nuclear distribution (Figure 3.5). This mechanism is analogous to CLK-BMAL in mice, 

and to CLK-CYC in Drosophila. Both BMAL and CYC stabilize CLK nuclear pool 

(Kondratov et al., 2003; Hung et al., 2009). The stabilization of ELF3 nuclear pool by 

ELF4 provides a mechanism of ELF4 activation to the ELF3 protein. 

Both ELF4 binding (ELF3M) and nuclear-targeting domain (ELF3C) were 

required for complementation of elf3-4 arrhythmicity of LHY:LUC expression (Figure 

3.7, 3.9). Notably, the ELF3N domain that mediates interaction with phyB (Figure 3.8) 
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was found to be dispensable for LHY:LUC rhythmicity (Figure 3.7). ELF3 and phyB 

have opposite roles in Aschoff’s rule, where ELF3 decreases and phyB decreases 

clock periodicity (Devlin and Kay, 2000b; Covington et al., 2001). Hence, it is possible 

that phyB-ELF3 binding mediates phyB deactivation of ELF3 action, leading to 

acceleration of circadian speed. The observation that YFP-ELF3MC lines had 

a 3.5 h longer periodicity of LHY:LUC than wildtype under Rc is consistent with a 

phyB-mediated negative-modulation of ELF3 action (Figure 3.9, Table 3.1). This 

negative modulation could be mediated by phyB-ELF3N binding. However, in the 

presence of Bc, the period of ELF3MC was significantly shorter that in Rc and DD 

(Figure 3.7, 3.9; Table 3.1), suggesting that Bc acceleration of periodicity is achieved 

independently of the ELF3 repression thorough the ELF3N domain. Under all free-

running conditions (DD, Rc, Bc, and R+Bc), the expression level of LHY:LUC in 

YFP-ELF3MC lines was significantly reduced. This suggests that ELF3N is required for 

positive induction of LHY expression. Taken together, ELF3 is a multifunctional protein 

where ELF3MC mediates circadian function and ELF3N domain may modulate ELF3 

activity. 

ELF3 nuclear localization and its amino-acid features suggest a role of ELF3 in 

transcriptional regulation (Hicks et al., 2001). The loss of function of ELF3 and ELF4 

leads to constitutive elevated levels of PRR9 and PRR7 transcripts (Kolmos et al., 

2009; Dixon et al., 2011). This indicates that ELF3 and ELF4 act as repressors of 

PRR7 and PRR9. To further test this, PRR9 and PRR7 transcript accumulation in the 

ELF3-OX and ELF4-OX backgrounds were tested. Under LL, the levels of PRR9 were 

severely repressed compared to wild type, whereas the reduction of PRR7 levels was 

minor. This indicated that PRR9 is likely a direct target of ELF3-ELF4 repressor 

complex. 

Phylogenetic shadowing identified a highly conserved region in the PRR9 

promoter (Figure 3.12 A). Notably, the Conserved Region 1 is part of a previously 

identified region of the PRR9 promoter required for PRR9 rhythmic accumulation (Ito et 

al., 2005). This confirms the functional relevance of the Conserved Region 1. By using 

ChIP, I tested the association of ELF3 to the PRR9 promoter. Interestingly, ELF3 

associated specifically to the Conserved Region 1 (Figure 3.12 B), suggesting that 

ELF3 association to the PRR9 promoter is required for PRR9 rhythmicity. However, 

I did not find association of ELF3 to the PRR7 promoter. My results are consistent with 

a recent publication, where it was found that ELF3 associates to the promoter of PRR9, 

but not PRR7 (Dixon et al., 2011). 
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LUX associates to the PRR9 promoter through a LBS located in the Conserved 

Region 1 (Helfer et al., 2011). Loss of any of ELF3, ELF4 or LUX leads to similar clock-

arrest phenotypes (Covington et al., 2001; Doyle et al., 2002; Hazen et al., 2005). 

Since ELF3 does not have a DNA-binding domain, LUX could act within the ELF3-

ELF4 complex to modulate PRR9 expression. I tested this hypothesis by examining the 

genetic interactions of LUX with ELF3 and ELF4. Similar to the ability of ELF3-OX to 

bypass the elf4 phenotype (Figure 4.2), LUX-OX restore LHY:LUC rhythmicity in the 

elf4 mutant, indicating that LUX is genetically downstream of ELF4. However, LUX-OX 

did not restore elf3 arrhythmicity (Figure 3.14). The nuclear localization of YFP-LUX 

was not affected in the elf4 or elf3 backgrounds (Figure 3.13). Therefore, an evening 

repressor complex formed by ELF3, ELF4, and LUX is required to sustain circadian 

rhythmicity.  

Taken together, the genetic interaction of LUX, ELF3, and ELF4 reveals a 

hierarchy of complex assembly (Figures 3.2 and 3.14). Association to the PRR9 

promoter of both ELF3 and LUX is required for clock function [Figure 3.12 and 3.14; 

(Helfer et al., 2011)]. The over-expression of both ELF3 and LUX can bypass the lack 

of ELF4 function. In here, ELF4 appears to work as an effector protein that activates 

ELF3, possibly by stabilizing the ELF3-nuclear pool (Figures 3.1 and 3.5). Finally, ELF3 

function in periodicity may be modulated by its interaction with phyB (Figures 3.8 and 

3.9). This latter hypothesis will be further explored in Chapter 4. 
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4.1 Introduction 

ELF3 function is essential both for circadian function and to process light-signal 

inputs to the oscillator (McWatters et al., 2000; Thines and Harmon, 2010). The elf3 

alleles described in the literature are null alleles eg. elf3-1, or nearly null alleles eg. 

elf3-7. In the case of elf3-7, it was proposed that a residual ELF3 function enable 

sustained circadian function in the first day under free-running conditions (McWatters et 

al., 2000; Reed et al., 2000). This arrhythmicity phenotype of previously described 

alleles of elf3 has precluded the understanding of the overall function of ELF3. 

ELF3 has been proposed to be a repressor of light signals to the oscillator 

(Covington et al., 2001). In Aschoff’s rule, photoreceptors act to shorten circadian 

periodicity, whereas ELF3 lengthens circadian period. In particular, under high fluence 

Rc, both the phyB mutant and ELF3-OX displayed long periodicity, when compared to 

the wild type (Devlin and Kay, 2000b; Covington et al., 2001). In Chapter 3, I proposed 

that the interaction of phyB to N-terminus of ELF3 (ELF3N, residues 1-259) mediates 

light-repression ELF3 action in circadian periodicity, in particular by red light (RL). In 

this case, attenuation of ELF3 function by light would lead to a reduction of circadian 

periodicity. 

Interestingly, a forward genetic screen led to the isolation of a new elf3 allele 

termed elf3-12 (Kevei et al., 2006; Kolmos, 2007). The elf3-12 allele causes a weak 

phenotype as compared to the elf3 loss of function. Initially, elf3-12 was found to have 

an early first-peak of CAB:LUC expression in DD. Subsequent analysis revealed that 

elf3-12 displayed short periodicity under LL. Unlike loss of function alleles of elf3, 

elf3-12 displayed wild-type flowering time and normal hypocotyl length (Kolmos, 2007). 

The elf3-12 has a missense mutation leading to a change from an evolutionary-

conserved glycine at position 236 for an aspartic acid (G326D) (Kolmos, 2007). Since 

elf3-12 is not a null allele, I used this allele to test the hypothesis that light represses 

ELF3 function in periodicity as a component of phytochrome signaling. 

The availability of additional new weak elf3 alleles could assist in the 

characterization of the ELF3 encoded protein. The TILLING (Targeted Induced Local 

Lesions in Genomes) approach has been widely used for isolation of new mutant 

alleles in many plant and animal species. For instance, the phenotypic characterization 

of new weak elf4 alleles aided the placement of ELF4 within the clock function (Kolmos 

et al., 2009). For ELF3, a collection of 31 elf3-TILLING alleles was previously described 
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(Kolmos, 2007). In this Chapter, I characterized circadian rhythms of the elf3-TILLING 

alleles. Circadian phenotypic data was interpreted based on the position of the residue 

changed of each allele in relation to the functional domains and the amino-acid 

features of the ELF3 encoded protein. 

4.2 Results 

4.2.1 Characterization of elf3-12 allele 

ELF3 is proposed to lengthen circadian period (Covington et al., 2001), and 

thus, a reduction of ELF3 protein levels could explain an attenuated function in elf3-12 

allele leading to the observed a short-period phenotype. To examine this possibility, 

I tested the capacity of ELF3-12 coding region to generate cellular-accumulated 

protein. For this, ELF3-YFP and ELF3-12-YFP fusion constructions were generated 

under the control of the native ELF3 promoter, and these constructs were used for 

transient expression in N. benthamiana. Young leaf material was imaged at dusk, the 

time of maximal ELF3 accumulation (Liu et al., 2001). I found that both ELF3-YFP and 

ELF3-12-YFP robustly accumulated in the nuclei of epidermal cells during the evening 

phase of the circadian day (~ZT14) (Figure 4.1 A). More cytoplasmic accumulation 

could be observed in ELF3-12 YFP compared to ELF3-YFP. Taken together, the 

phenotypes in elf3-12 are unlikely to be a result of a failure to accumulate ELF3 

protein. 

In Chapter 3.1, I showed that ELF4 is likely to work as an effector of ELF3. 

Moreover, ELF3-ELF4 binding, mediated by ELF3M domain, increased ELF3 nuclear 

pool. Notably, the ELF3-12 point mutation is located within the ELF3M domain of ELF3. 

Hence, it was possible that elf3-12 encodes for a protein with altered ELF4 binding 

capacity. I tested this possibility in a Y2-H assay, and I found that both ELF3-12 

full-length and ELF3M-12 led to viable yeast when co-expressed with ELF4 

(Figure 4.1B). This indicates that ELF3-12 allele does not abolish ELF3-ELF4 binding.  
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Figure 4.1. ELF3-12 protein is nuclear localized, and can bind to ELF4 and phyB 
(a) Confocal microscopy of ELF3-YFP and ELF3-12-YFP. The fusion-proteins ELF3-YFP 
and ELF3-12-YFP were expressed in N. benthamiana leaves under native ELF3 promoter. 
YFP channel (1,3,5,7) and bright field (2,4,6,8). Maximum projection of 10 µm stacks (10 
stacks, 1 µm each) White bars indicate 25 µm (1-2,5-6) and 50 µm (3-4, 7-8). All photos 
were made with the same microscope settings. 
(b) Y2-H assay of ELF4-BD with ELF3-AD and ELF3-12-AD. ELF3-F (full length), ELF3M 
(residues 261-484); ELF3-12 and ELF3M 12 has a point mutation (G326D). Abbreviations: 
empty (AD or BD only); -LW and -LHW (drop out for Leu/Trp and Leu/Trp/His, 
respectively); 3-AT (3-amino-1,2,4-triazole).  
(c) Y2-H assay of ELF3-BD, ELF3-12-BD and phyB-AD. ELF3-12 has a point mutation 
(G326D). Abbreviations same as in b. 
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The elf3-12 allele displayed short periodicity of CCA1:LUC and LHY:LUC under 

LL (Kolmos, 2007). To further examine the effect of light on the elf3-12 phenotype, 

I tested LHY:LUC and CCR2:LUC rhythms under LL and in DD. elf3-12 rhythms were 

compared to the wild type and to the elf3-1 loss of function allele. Under LL, elf3-1 

displayed marginal LHY:LUC expression and no detectable circadian rhythms (Figure 

3.2A). This was previously showed for elf3-4 null allele in Chapter 3 (Figure 3.2). 

However, elf3-12 had rhythmic LHY:LUC expression that were shorter in periodicity 

compared to wild type (Figure 3.2 ,D). In DD, no periodicity phenotype was observed 

for elf3-12 (Figure 3.2 D). Under LL and in DD, elf3-1 displayed arrhythmic high levels 

of CCR2:LUC expression (Figure 4.2C). On the contrary, elf3-12 had rhythmic 

expression of CRR2:LUC under LL with a short period, when compared to the wild type 

(Figure 4.2 B, D). Similarly to LHY, under DD, elf3-12 did not display a periodicity 

phenotype for CCR2 (Figure 4.2 C,D). Taken together, the elf3-12 short period 

phenotype was light-dependent. 
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Figure 4.2. Mutant clock-period properties are light-dependent in elf3-12 
(a) Free-running profile of LHY:LUC expression in the wild type, elf3-12, and elf3-1 under 
LL. Arrow indicate marginal expression in elf3-1. (b) Free-running profile of CCR2:LUC in 
the wild type, elf3-12, and elf3-1 under LL. 
(c) Free-running profile of CCR2:LUC in the wild type, elf3-12, and elf3-1 in DD. 
(d) Circadian period length of LHY:LUC and CCR2:LUC rhythms. Under LL, the period of 
elf3-12 was short for LHY:LUC and CCR2:LUC. In DD, no period phenotype was found for 
LHY:LUC and CCR2:LUC. Error bars correspond to SE. Statistical significance: pvalue 
>0.01 (**), >0.001 (***). cps, count per second.  
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In Chapter 3, I showed that the interaction of ELF3 and phyB was mediated by 

the N-terminus of ELF3 (ELF3N). The point mutation of elf3-12 occurs in the ELF3M 

domain. Hence, I predicted that ELF3-12 retains phyB-binding capacity. In a Y2-H 

assay, co-expression of ELF3-12 and phyB protein led to yeast growth on selective 

media, similarly to the comparison of ELF3 wild type co-expression with phyB (Figure 

4.1C). This suggests that ELF3-12 phenotype is not caused by a deficient phyB 

binding.  

The observation that elf3-12 short periodicity is light dependent suggests a 

direct repression of light to ELF3-12 function. If true, then increasing light input should 

lead to further period shortening of elf3-12 rhythms. The over-expression of phys 

(PHY-OX) causes a constant increase of light input to the oscillator (Anderson et al., 

1997). I thus generated double mutants elf3-12 PHY-OX and used this lines to were to 

test elf3-12 periodicity in the context of increased light-input to the clock. The circadian 

rhythms of CCR2:LUC were assayed under LL. elf3-12 plants showed rhythmic, but 

significantly short-period oscillations, compared to the wild type (Figure 4.3). PHYB-OX 

did not cause a statistically-significant period-shortening effect whereas PHYA-OX 

have short period compared to wild type (Figure 4.3). Interestingly, the period of 

elf3-12 PHYB-OX was significantly shorter than the single mutant elf3-12 and 

PHYB-OX. A similar additive effect was found in elf3-12 PHYA-OX plants (Figure 4.3). 

Therefore, increased light input to the clock caused by PHY-OX led to an enhanced 

period-shortening effect of elf3-12. This is consistent with an attenuated function of 

elf3-12 to repress light input to the clock and/or an increased phy-mediated repression 

of ELF3 function in the elf3-12 mutants. 
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Figure 4.3. PHY-OX enhances the elf3-12 short period phenotype under LL. 
(a) Free-running profile of CCR2:LUC for the wild type, PHYB-OX, elf3-12, and PHYB-OX 
elf3-12 under LL. Error bars indicate S.E.M, and they are plotted every 6 time points to 
clarify traces. 
(b) Circadian period length of CCR2:LUC rhythms under LL, from panel a. 
(c) Free-running profile of CCR2:LUC for the wild type, PHYA-OX, elf3-12, and PHYA-OX 
elf3-12 under LL. Error bars indicate S.E.M, and they are plotted every 6 time points to 
clarify traces. Statistical significance: pvalue >0.05 (*), >0.01(**) and >0.001 (***). 
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Light mediates daily resetting of the phase of the oscillator (Jones, 2009). The 

phase response curve (PRC) recapitulates phase advances and delays caused by 

entrainment pulses depending on the time of the day when they are applied 

(Chapter 1 Figure 1.6). ELF3 is also involved in the clock-resetting mechanism 

(Covington et al., 2001). I compared the ability of elf-12 and wild type to reset the 

oscillator by constructing a PRC curve. For this, elf3-12 and wild type plants where 

grown for 7 days under LD cycles and then transferred to DD. After one full day in DD, 

replicate populations were subjected to 1 hour RL pulse at different times of the day. 

Then, changes in the circadian phase of the oscillator were calculated and plotted in 

the PRC. Wild-type plants responded with phase delays at early subjective night 

(CT 12-18) and with phase advances at the end of the night (CT18-24), as expected. 

Additionally, an expected “dead zone” with limited phase changes was observed for 

wild type during the circadian day (CT 3-12) (Figure 4.4). At early subjective night 

(CT12-18), elf3-12 responded similarly to the wild type, as it displayed phase delays. 

However, elf3-12 responded with increased phase advances to light pulses given at the 

end of the subjective night and early subjective day (CT 18-3) (Figure 4.4). Therefore, 

RL-resetting pulses caused increased phase advances on elf3-12, indicating that 

encoded ELF3-12 protein is hypersensitive to RL input to the clock.  
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Figure 4.4. ELF3-12 is hypersensitive to RL resetting pulses. 
Circadian period length of CCR2:LUC rhythms under LL, from panel c. Error bars indicate 
S.E.M. Error bars indicate pooled S.E.M of pulsed and non-pulsed plant populations. 
Grey bars and black bars depict subjective day and subjective night, respectively. 
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4.2.2 Identification of novel elf3 alleles 

The characterization of elf3-12 allele confirmed the essential role of ELF3 as an 

integrator of light signal to the core mechanism. The availability of additional ELF3 

alleles may be useful in deciphering ELF3 functions within the clock mechanism. For 

this, I further characterized of a series of elf3-TILLING alleles that were previously 

generated (Kolmos, 2007). Figure 4.5 depicts the distribution of these 31 elf3 alleles 

according to the position of the encoded-residue change within the ELF3 protein. The 

residue changes on the alleles elf3-201 to elf3-213 are located in the ELF3N domain 

necessary to mediate phyB (Figure 3.8) and COP1 binding (Yu et al., 2008). The 

residue changes on the alleles elf3-214 to elf3 -221 are located in the ELF3M domain 

that is required to ELF4 binding (Figure 3.1). Finally, the residue changes on the alleles 

elf3-222 to elf3-231 are located in the ELF3C domain that mediates ELF3 nuclear 

localization (Figure 3.4). ELF3 has two regions of special amino acid compositions that 

suggest a role of ELF3 in transcriptional regulation (Figure 4.5 yellow boxes) (Hicks et 

al., 2001). The acidic region (residues 206-320) is located between ELF3N and ELF3M 

domains. The residue changes on the alleles elf3-208 to elf3-218 are located within the 

acidic region. The proline-rich region lies between ELF3M and ELF3C domains. The 

residue changes on the alleles elf3-220 to elf3-224 are located in the proline-rich 

region. Additionally, four highly-conserved regions of ELF3 protein can be found in the 

N-terminus (residues 1-53), at the middle part (residues 298-382), within the proline-

rich region (residues 470-490) and at the C-terminus end (residues 670-end) (Figure 

4.5 grey boxes). From the elf3-TILLING collection, the residue changes on the alleles 

elf3-219 and elf3-221 lie within the highly conserved middle, and proline-rich regions, 

respectively. Hence, the residue changes encoded by the elf3-TILLING alleles are 

distributed throughout different domains of the encoded ELF3 protein. 
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Figure 4.5. Distribution of the residue changes on the elf3 TILLING lines within the 
encoded ELF3 protein. 
Figure legend continues in the next page. 
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Scheme of ELF3 protein features and distribution of the elf3-TILLING alleles. See legend 
for color coding of boxes. The domains ELF3N (residue 1-259), ELF3M (residues 261-
484), and ELF3C (residue 485-695) are described in Chapter 3. Table 4.1 describes the 
encoded residue change of each elf3-TILLING line. Domains with distinct amino-acid 
compositions have been previously described (Hicks et al., 2001). Predictions of 
secondary structure, N-glycosylation sites, and Protein-kinase-C phosphorylation sites 
were made with CLC software. 

Table 4.1 elf3-TILLING lines 

elf3 allele ELF3 aa 
residue

Residue 
change

% 
conserved ¥

201 86 L to F 22
202 129 P to S 82
203 143 I to T 17
204 154 P to S 44
205 157 A to T 26
206 187 E to K 15
207 209 V to I 23 Acidic region
208 235 E to K 37 Acidic region, alpha helix
209 243 D to N 26 Acidic region
210 248 R to H 11 Acidic region
211 252 T to I 29 Acidic region
212 255 G to E 32 Acidic region
213 256 A to T 50 Acidic region, alpha helix

214 262 T to M 10 Acidic region, alpha helix
215 265 H to Y 26 Acidic region, predicted N-glycosylation site
216 268 E to K 29 Acidic region
217 273 P to L 37 Acidic region, alpha helix
218 286 R to K 26 Acidic region, alpha helix
219 303 S to F 83 Acidic region
220 442 P to L 43 Proline-rich region
221 474 P to S 98 Proline-rich region, beta-strand

222 494 G to R 37 Proline-rich region
223 497 G to E 11 Proline-rich region
224 520 P to L 80 Proline-rich region
225 550 Q to * Glutamine strectch in Arabidopsis
226 562 G to R 32 Glutamine strectch in Arabidopsis
227 586 P to S 46 Glutamine strectch in Arabidopsis
228 589 S to F 17
229 610 G to R 58
230 623 V to I 20
231 633 P to S 49

Features in ELF3 protein

 
¥ % conserved was calculated according to amino-acid identity in a multiple alignment of 
35 ELF3 sequences (Saini, personal communication) 
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In order to characterize the circadian rhythms of the elf3-TILLING collection, 

I introgressed GI:LUC reporter to each line. In the F3 populations, homozygous lines 

for the corresponding elf3 allele, and harboring GI:LUC reporter, were used for 

circadian analysis. All elf3-TILLING alleles, except elf3-212, co-segregate with erecta 

mutation, and therefore I used er-105 as the wild type for these lines. For the line elf3-

212, Col-0 was used as the wild type. Circadian rhythms were assay under LL and in 

DD, after plants have been entrained under LD cycles or WC cycles. Additionally, free-

running conditions of monochromatic Rc or Bc after LD entrainment were analyzed. 

Only the line elf3-225 displayed arrhythmic GI:LUC expression, both under LL and in 

DD (Figure 4.6). The line elf3-225 has an encoded stop codon (residue 550) and is 

likely an elf3 loss of function allele.  
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Figure 4.6. elf3-225 is a loss of function allele. 
(a) Free-running profile of GI:LUC for Col-0 and elf3-225 under LL. 
(b) Free-running profile of GI:LUC for Col-0 and elf3-225 in DD. 
Error bars indicate S.E.M., and they are plotted every sixth read to clarify traces. 

All the elf3-TILLING alleles, except the elf3-225, showed robust rhythms of 

GI:LUC. For each experiment, the difference in phase and period between each line 

and the corresponding wild type was plotted to identify alleles with phase and period 

phenotypes (Figures 4.7 to 4.12). First, free-running-circadian rhythms of GI:LUC in 

elf3 lines was tested under LL. For the LD to LL experiments, plants were grown for 

7 days under LD and then transferred to free-running LL. Under these conditions, the 

elf3-lines 210, 211, 214, and 218 displayed short periodicity, whereas elf3-219 and 

elf3-220 displayed long-period rhythms. Several elf3 lines displayed late phase of 

GI:LUC expression: elf3-204, 205, 210, 211, 213, 214, 217, and 231. On the contrary, 

elf3-212 showed early phase of GI:LUC expression. (Figure 4.7, Table 4.2). Next, 

elf3 lines were subjected to WC entrainment under LL followed by free running LL at a 

constant temperature (WC to LL). Under these conditions, elf3-210 and elf-218 
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displayed short-circadian periodicity, whereas elf3-lines 204, 219, and 224 displayed 

long-period rhythms. Under WC to LL, the phase of GI:LUC in elf3-lines 204, 205, 220, 

224, and 231 was late compared to the wild type, whereas elf3-217 displayed an 

early-phase phenotype (Figure 4.8, Table 4.2). Thus, under LL, short-period rhythms 

for elf3-210 and elf3-218, and long-period rhythms for elf3-219, were found, regardless 

of the entrainment condition. For phase, elf3-lines 204, 205, and 231 showed a late 

phase of GI:LUC expression under LL in both entrainment conditions. In summary, 

seven elf3 lines showed phenotypic differences under free-running LL. 

The free-running-circadian rhythms of GI:LUC in elf3 lines were assayed in DD. 

For the LD to DD experiment, elf3 lines were entrained for 7 days under LD and then 

released to DD. Under this condition, elf3-205 and elf3-222 displayed short periodicity 

of GI:LUC, whereas no line displayed long-period rhythms. Late-circadian phase was 

found for lines elf3-226 and elf3-227, whereas elf3-215 and elf3-220 displayed 

early-circadian phase of GI:LUC expression (Figure 4.9, Table 4.2). Next, circadian 

rhythms in DD were assayed for plants grown under WC cycles under LL (WC to DD). 

The elf3-lines 215, 218, 220, 226, and 231 displayed short periodicity in DD. Also, 

elf3-lines 201, 218, 219, 223, 226, and 231 displayed late phase of GI:LUC expression 

in the WC to DD experiment (Figure 4.10, Table 4.2). Thus, under LD to DD conditions, 

fewer elf3 lines displayed circadian phenotypes. The line elf3-226 showed 

late-circadian phase under both DD conditions. The line elf3-218 that displayed short 

periodicity under LL, also showed short-periodicity under WC to DD.  

Since some of the elf3 lines show circadian phenotypes under LL, I tested 

circadian rhythms of GI:LUC rhythms in elf3 lines under Rc and Bc, after LD 

entrainment. Under Rc, elf3-lines 214, 218, and 219 displayed a short period, whereas 

elf-231 displayed a long period. For phase, elf3-211 and elf3-217 had an early phase of 

GI:LUC expression (Figure 4.11, Table 4.2). Under Bc, elf3-lines 201, 207, 209, 211, 

and 218 displayed short periodicity, whereas elf3-212 and elf3-219 displayed long 

periodicity. For circadian phase, elf3-202 and elf3-212 displayed early phase of GI:LUC 

expression (Figure 4.12, Table 4.2)  
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Figure legend for Figure 4.7 to Figure 4.12. 
(a) Period vs. Phase differences of elf3-TILLING lines to the corresponding wild type, 
er-105 (left panel) and Col-0 (right panel), respectively. The graphs show differences in 
period- and phase-mean values between each elf3-TILLING line and the corresponding 
wild type. Error bars depict SEM of period and phase estimates of each elf3-TILLING 
lines and the wild type. Grey areas around x and y axis indicate values similar to 
wild type. Lines identified with the corresponding number have statistically significant 
period and/or phase changes compared to the wild type. Color code assigns location of 
residue change within the encoded ELF3 domains according to legend. 
(b) Normalize luminescence traces of GI:LUC for elf3-TILLING lines with statistically 
significant period or phase differences. Color code for elf3-TILLING lines is same as 
panel (a). Error bars indicate SEM, and are plotted every sixth read to clarify traces. 
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Figure 4.7. Circadian rhythms of GI:LUC in elf3-TILLING-lines under LL after LD 
entrainment.  
Please see figure legend text on page 86. Period and phase values are listed in Appendix 
1 Table 1. 
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Figure 4.8. Circadian rhythms of GI:LUC in elf3-TILLING-lines under LL after WC 
entrainment. 
Please see figure legend text on page 86. Period and phase values are listed Appendix 1 
Table 2. 
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Figure 4.9. Circadian rhythms of GI:LUC in elf3-TILLING-lines in DD after LD 
entrainment.  
Please see figure legend text on page 86. Period and phase values are listed Appendix 1 
Table 3. 
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Figure 4.10. Circadian rhythms of GI:LUC in elf3-TILLING-lines in DD after WC 
entrainment.  
Please see figure legend text on page 86. Period and phase values are listed Appendix 1 
Table 4. 
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Figure 4.11. Circadian rhythms of GI:LUC in elf3-TILLING-lines Rc.  
Please see figure legend text on page 86. Period and phase values are listed Appendix 1 
Table 5. 
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Figure 4.12. Circadian rhythms of GI:LUC in elf3-TILLING-lines under Bc.  
Please see figure legend text on page 86. Period and phase values are listed Appendix 1 
Table 6. 
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Table 4.2 Summary of period and phase phenotypes of elf3-TILLING lines under 
different entrainment and free-running conditions. 

elf3 
allele

LD to 
LL

WC to 
LL

LD to 
DD

WC to 
DD Rc Bc LD to 

LL
WC to 

LL
LD to 
DD

WC to 
DD Rc Bc Period Phase 

201 ▬ ▬ ▬ ▬
202 ▬ ▬ ▬ ▬
203 ▬ ▬ ▬ ▬ ▬ ▬ ▬ ▬
204
205
206 ▬ ▬ ▬ ▬ ▬ ▬ ▬ ▬
207 ▬ ▬ ▬ ▬ ▬ ▬
208 ▬ ▬ ▬ ▬
209 ▬ ▬ ▬ ▬
210 ▬ ▬ ▬ ▬
211
212
213

214 ▬ ▬
215 ▬ ▬ ▬ ▬
216 ▬ ▬ ▬ ▬
217 ▬ ▬ ▬ ▬
218
219
220
221 ▬ ▬ ▬ ▬

222 ▬ ▬ ▬ ▬
223 ▬ ▬ ▬ ▬
224
225
226 ▬ ▬
227 ▬ ▬
228 ▬ ▬ ▬ ▬ ▬ ▬
229 ▬ ▬ ▬ ▬ ▬ ▬ ▬ ▬
230 ▬ ▬ ▬ ▬ ▬ ▬ ▬ ▬
231

arrythmic arrythmic arrythmic

Allelic test 
(LL)Period Phase

LongShort LateEarly

 
▬ indicates that period or phase values were not determined under the corresponding 
condition. 
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In order to confirm that the phenotypes of some of the elf3 alleles was due to 

the missense mutation and not due to a linked second site mutation, I tested GI:LUC 

circadian rhythms of trans-heterozygous plants from crosses of the elf3 line and the 

null allele elf3-1. Thus, these plants have one missense-active-mutant allele over the 

null allele, and are heterozygous from potential second-site mutations. Under LL, 

F1 trans-heterozygous plants from the cross of elf3-1 and elf3-225 displayed 

arrhythmic GI:LUC expression (Figure 4.13B). This confirms that elf3-225 is a null 

allele. The trans-heterozygous plants from er-105 and elf3-1 displayed a similar 

GI:LUC expression that the cross between Col-0 and elf3-1 (Figure 4.13A). This 

suggests that the erecta mutation does not confer a circadian phenotype. The 

phenotypes of elf3-210, elf3-211, elf3-212 and elf3-218 homozygous lines were similar 

of the F1 crosses of each line and elf3-1 (Figure 4.13). These latter results confirm that 

these lines have an elf3-dependent phenotypic difference to the wild type. Taken 

together, line elf3-210 and elf3-218 display short periodicity, whereas elf3-211 and 

elf3-212 display long period. 
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Figure 4.13. Allelic test for er105 and elf3-225. 
(a) Free-running profile of er-105 and wild type (left panel), elf3-1 x er-105 F1 and 
elf3-1 x wild type F1 (central panel). 
(b) Free-running profile of elf3-225 and wild type (left panel), elf3-1 x elf3-225 F1 and 
elf3-1 x wild type F1 (central panel).  
Error bars indicate SEM, and they are every sixth count to clarify traces. 
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Figure 4.14. Allelic test of elf3 lines 210, 211, 212 and 218. 
(a) Free-running profile of elf3-210 and wild type (left panel), elf3-1 x elf3-210 F1 and 
elf3-1 x wild type F1 (central panel). Period vs. phase values for left and central panel 
(right panel).  
(b) Free-running profile of elf3-211 and wild type (left panel), elf3-1 x elf3-211 F1 and 
elf3-1 x wild type F1 (central panel). Period vs. phase values for left and central panel 
(right panel) 
(c) Free-running profile of elf3-212 and wild type (left panel), elf3-1 x elf3-212 F1 and 
elf3-1 x wild type F1 (central panel). Period vs. phase values for left and central panel 
(right panel) 
(d) Free-running profile of elf3-218 and wild type (left panel), elf3-1 x elf3-218 F1 and 
elf3-1 x wild type F1 (central panel). Period vs. phase values for left and central panel 
(right panel) 
Error bars indicate SEM. For free-running profiles SEM is plotted every sixth count to 
clarify traces. 
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4.3 Discussion 

The loss of ELF3 led to clock arrest under constant conditions, seen as 

arrhythmicity of all outputs (Covington et al., 2001; Thines and Harmon, 2010). The 

phenotipical severity of elf3 null alleles reduces the ability to assign a biological 

function to ELF3 protein. The over-expression of ELF3-OX led to a long-periodicity 

phenotype and an attenuated light-input to the oscillator (Covington et al., 2001). This 

indicates that ELF3 functions to lengthen circadian rhythms and to buffer light-signals 

to the clock. Hence, in the case of attenuated ELF3 function the opposite effect would 

be expected, i.e., short periodicity and increased of light-signaling effects to the clock. 

A forward genetic approach led to the identification of a new allele of elf3 

(Kolmos, 2007). The elf3-12 allele retained circadian rhythmicity, albeit with 

short-periodicity phenotype. This indicates that attenuated ELF3 function was present 

in elf3-12. ELF3-12 protein function was sufficient for the normal control of flowering 

time and hypocotyl elongation (Kolmos, 2007). This suggests that the developmental 

defects observed in elf3 null alleles are caused by circadian arrhythmicity and not only 

because of a defect in light signaling.  

The attenuated function of elf3-12 could be cause by a decrease capacity to 

produce ELF3 transcript or ELF3 protein. The expression of ELF3 in the elf3-12 was 

similar to the wild type (Bujdoso, personal communication). Hence, I tested if ELF3-12 

transcript could lead to viable protein expression. When ELF3-12-YFP fusion protein 

were expressed under ELF3 promoter in N. benthamiana, a similar ELF3-YFP 

accumulation than that of ELF3 wild type was observed. Also, ELF3-12-YFP 

cytoplasmic signal seemed to be increased as compared to the ELF3-YFP (Figure 4.1). 

In Chapter 3, I showed that co-expression of ELF4 and ELF3, enhances ELF3 nuclear 

localization (Figure 3.5). A decrease of TOC1 nuclear-pool was also observed for 

toc1-weak alleles affected in PRR5 binding (Wang et al., 2010). Similarly, a defect on 

ELF3-ELF4 interaction in the presence of the elf3-12 mutation could explain the 

increase of cytoplasmic localization, and by extension, the attenuated ELF3-12 

function. In a Y2-H assay, I observed that ELF3-12 and ELF4 can still physically 

interact (Figure 4.1). However, it is possible that the Y-2H experiment is not sensitive 

enough to detect a weaker binding affinity of ELF3-12 and ELF4. Thus, future 

experiments may underlie a defect of ELF3-12 protein to physically associate with 

ELF4. 
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The elf3-12 mutation was found to have a light-dependent short-periodicity 

(Figure 4.2 A-D). This phenotype is opposite to that of YFP-ELF3 MC lines that did not 

have the phyB-binding domain (ELF3N) and displayed long-period rhythms (Figure 3.8 

and 3.9). In a Y2-H assay, ELF3-12 was found to bind PHYB (Figure 4.1). Moreover, 

elf3-12 short-periodicity was enhanced by PHYB-OX and PHYA-OX. These 

observations are consistent with a direct negative role of phyB to modulate ELF3 action 

on periodicity. In the phase-resetting assay, elf3-12 displayed pronounced phase 

advances induced by RL pulses at the end of the subjective night (Figure 4.2 E). Thus, 

elf3-12 displayed hypersensitivity to light-input signals to the clock. 

The isolation of new elf3 weak alleles could expand the characterization of 

ELF3 protein function. Within the collection of 31 elf3 point-mutation alleles, only 

elf3-225 displayed arrhythmicity of GI:LUC expression. Since elf3-225 encodes for a 

truncated ELF3 protein with an early stop codon at residue 550, it is likely a null allele. 

This confirms the essential role of the C-terminus of ELF3 protein for circadian function. 

The rest of elf3 alleles displayed robust GI:LUC rhythms. Several elf3 lines with residue 

changes within the ELF3N domain were found to display circadian phenotypes under 

LL. elf3-210 displayed short periodicity in the LD to LL and WC to LL experiments 

(Figure 4.7 and 4.8). This short-periodicity could be confirmed by allelic test, although 

the period difference was less pronounced (Figure 4.13), this could be due to the action 

of other locus on periodicity in this line. Conversely, elf3-212 displayed a statistically 

significant long-period phenotype under Bc (Figure 4.12). In the LD to LL and the WC 

to LL experiments, elf3-212 also displayed long-periodicity, but this was not statistically 

significant (Appendix 1 Tables 1 and 2). The allelic test confirmed a slight 

long-periodicity and an early-phase under LL (Figure 4.13). Hence, elf3-210 and 

elf3-212 could serve to study the role of the ELF3N domain in light-input to the clock.  

Within the lines encoding residue changes within the ELF3M domain, elf3-218 

and elf3-219 displayed short and long periodicity, respectively, in several experiments. 

For elf3-218, short-period rhythms were observed under all conditions tested but LD to 

DD (Figure 4.7 to 4.12, Table 4.2). This phenotype was confirmed in the allelic test 

(Figure 4.13). The phenotype of elf3-218 resembled elf3-12 short-periodicity phenotype 

(Figure 4.2), but elf3-218 also displayed short-period in the WC to DD experiment. 

Hene, it is possible that elf3-218 encodes for a ELF3 protein with attenuated ELF4 

binding. elf3-219 displayed long-periodicity in the LD to LL, WC to LL assays and under 

Bc (Figure 4.7, 4.8 and 4.12). elf3-219 encodes for change in a evolutionary-conserved 

serine (S303F, Table 4.1) located within a conserved region (residues 298-382) in the 

ELF3M domain. The functional importance of this conserved region was already 
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indicated by the circadian phenotypes of elf3-12 allele (G326D). The ELF3-dependent 

phenotype of elf3-219 should be confirmed with an allelic test.  

The molecular mechanisms that set the phase of the circadian oscillator are not 

understood. The phyB mutant was found to display early-phase circadian rhythms after 

LD entrainment, but not after WC entrainment (Salome et al., 2002). More recently, the 

phyB mutant was reported to have early phase of GI:LUC under white light (red+blue 

light), whereas it displayed late phase under Rc (Palagyi et al., 2010). The elf3-lines 

204, 205, and 213 displayed late phase under both LD to LL and WC to LL, but in DD 

(Table 4.2). elf3-210 also displayed late phase of GI:LUC expression in the LD to LL 

experiment and in the allelic test (Figure 4.7 and 4.13). Hence, these three lines 

displayed have the opposite effect to that observed in phyB mutants (Palagyi et al., 

2010). elf3-212 displayed an early-phase of GI:LUC under LD to LL, which was 

confirmed in the allelic test. These four alleles encode for residue changes within the 

ELF3N domain. Hence ELF3N could be involved in setting the phase of GI:LUC under 

LL. elf3-231 displayed late phase both under LL and in DD (Table 4.2). Similarly, 

elf3-226 also displayed late phase, but the phase change was only statistically 

significant in DD (Table 4.2). Both elf3-226 and elf3-231 encode for residue changes in 

the C-terminus of ELF3. Hence, it is possible that C terminus of ELF3 controls 

circadian phase independently of light. Further analysis of these elf3 alleles may assist 

in determining if the role of ELF3 in circadian phase depends on phyB signaling. 

Taken together, I propose that ELF4 and phyB compete for the activation and 

the repression of ELF3, respectively. ELF4 binding to the middle part of ELF3 would 

activate ELF3 by enhancing ELF3 nuclear. phyB binding to the N-terminus of ELF3 

would negatively affect ELF3 capacity to lengthen periodicity. In the elf3-12 a decrease 

of affinity for ELF4 would lead to an increase in phyB-mediated repression. This 

hypothesis is consistent with ELF3 being a multifunctional protein that sustains 

circadian rhythms and integrates light signals to the oscillator. Future experiments with 

the elf3-12 mutant and other elf3 weak alleles could assist in the understanding of the 

biochemical mechanism underlying ELF4 activation and phyB repression of ELF3 

action.  
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5.1 Summary 

ELF3 plays a pivotal role in the circadian clock mechanism and in the 

integration of light signals to the clock (McWatters et al., 2000; Covington et al., 2001; 

Thines and Harmon, 2010). However, at the start of this thesis, the molecular basis of 

ELF3 action was not understood. The functional characterization of ELF3 protein led 

me to identify three functional modules within ELF3 protein: (1) ELF3M (residues 

261-484) mediates ELF4 binding. (2) ELF3N (residues 1-259) associates with phyB 

and COP1, and (3) ELF3C (residues 485-695) targets ELF3 nuclear localization and 

formation of nuclear bodies (NB). Therefore, ELF3 is a multifunctional protein 

(Figure 5.1). 

ELF4

ELF3

CMN

phyB

COP1
NB

ELF4

ELF3

CMN

phyB

COP1
NB

 

Figure 5.1. ELF3 is a multifunctional protein. 
The N-terminus of ELF3 (N, pink) mediates interaction with phyB and COP1. The middle 
domain of ELF3 (M, green) binds to ELF4. The C-terminus domain (C, blue) is required for 
localization into nuclear bodies (NB). 

5.1.1 ELF4 acts as an effector for ELF3 

In Chapter 3, I explored the genetic and physical interaction of ELF4 to ELF3. 

ELF3 and ELF4 were found to physically interact through the ELF3M domain (Figure 

3.1). Notably, ELF4 protein localization is preferentially nuclear (Figure 3.10), whereas 

different fragments of ELF3 displayed distinct cytoplasmic and nuclear pools (Figure 

3.4 and 3.6). This supports that ELF4 does not "move" ELF3, but rather, that ELF4 

could serve as an anchor to dock ELF3 nuclear fraction. Consistently, I found that the 

ELF4-binding domain of ELF3 (the middle domain, ELF3M) was required for ELF3 

signaling function (Figure 3.7). The levels of ELF3 nuclear protein were found to be 

stabilized under LL, whereas they gradually fade in DD (Liu et al., 2001). ELF4 
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transcript accumulation is induced by light and it dampens in DD (Doyle et al., 2002; 

Khanna et al., 2003; Li et al., 2011). Although, ELF4 protein levels were not measured, 

it is possible that there is more ELF4 protein under LL that in DD. Hence, stabilization 

of ELF3 protein under LL maybe mediated by higher levels of ELF4 protein under LL, 

as compared to DD. 

ELF3-OX was found to restore the arrhythmic-clock phenotypes of elf4 (Figure 

3.2). This may further suggest that there is an active process that reduces the ELF3 

nuclear pool (see below), and that ELF4 counteracts this process. In the elf4 mutant, 

ELF3 would be preferential to a greater cytosolic fraction. In elf4 ELF3-OX, this active 

nuclear export process would not cope with the high amounts of ELF3, and there would 

be enough ELF3 protein to fulfill circadian function, even in the absence of elf4 (Figure 

5.2). In ELF4-OX, the ELF3 nuclear pool would be further stabilized leading to an 

enhanced capacity of ELF3 to lengthen circadian periodicity (Figure 3.2 and 3.3). 

Analogous processes have been found in other clock systems (Figure 1.6). For 

example, in the mouse clock, co-expression of BMAL and CLK led to re-localization of 

CLK in the nucleus (Kondratov et al., 2003). Consistently, in Bmal1 mutant fibroblasts, 

CLK protein was constitutively cytoplasmic (Gekakis et al., 1998; Kondratov et al., 

2003). In Drosophila, the role of BMAL is taken by CYC that stabilizes nuclear-active 

CLK pool (Hung et al., 2009). In Neurospora, WC-1 only localizes in the nucleus in the 

presence of WC-2, and they both assemble into WCC complex (Cheng et al., 2002). 

Recent efforts in plants have observed the requirement of protein re-localization in 

normal clock function in Arabidopsis. For example, PRR5 increased TOC1 nuclear 

pool, and this protected TOC1 from ZTL-mediated targeted-proteasome degradation 

that would have occurred in the cytosol (Wang et al., 2010). Also ZTL stabilization was 

found to be achieved by physical interaction with GI in the cytosol (Kim et al., 2007). 

GI-ELF3 interaction was required for destabilization of GI by COP1-mediated 

proteosomal degradation (Yu et al., 2008). Thus, protein re-localization mediated by 

protein-protein interactions is a common regulatory mechanism in circadian systems. 

Taken together, my observations are consistent with a role of ELF4 as an effector 

protein  (Kolmos et al., 2009) for its target ELF3. The effector activity of ELF4 would 

constrain ELF3 to a nuclear pool leading to an increase of ELF3 repressor activity. 
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5.1.2 The N-terminus of ELF3 is involved in Aschoff’s rule 

Interestingly, the N-terminal domain of ELF3 was found to be dispensable for 

ELF3 circadian function (Figure 3.7). Alone it preferentially localized in a cytoplasmic 

pool (Figure 3.4 and 3.6). Notably this N-terminal domain mediates physical interaction 

of ELF3 with phyB photoreceptor (Figure 3.8) (Liu et al., 2001). As a result, I proposed 

that such protein-protein interactions modulate the repressive function of ELF3 activity, 

possibly by reducing the ELF3 nuclear pool. This active reduction of the ELF3 nuclear 

could serve as a mechanism for Aschoff’s rule (Aschoff, 1979). In here, ELF3 and phyB 

play opposite roles, where ELF3 decelerates and phyB accelerates periodicity, 

respectively (Devlin and Kay, 2000b; Covington et al., 2001). To physiologically test 

this hypothesis, I measured periodicity of LHY:LUC circadian rhythms in YFP-ELF3 and 

YFP-ELF3MC and compared this to the wild type. This experiment indicated that 

YFP-ELF3 period lengthening is suppressed under Rc, but not under Rc+Bc, Bc, and 

in DD (Figure 3.9). Interestingly, under Rc+Bc, YFP-ELF3MC was found to have a 

similar period length of LHY:LUC to that of YFP-ELF3 (Figure 3.7 and 3.9, Table 3.1). 

However, under Rc and in DD, YFP-ELF3MC displayed a similar longer periodicity as 

compared to YFP-ELF3 (Figure 3.9, Table 3.1). This indicates that ELF3N domain is 

required to repress ELF3 action in Aschoff’s rule in a RL-dependent manner. Hence, 

physical association of phyB to ELF3N domain is likely to modulate ELF3 active levels. 

Furthermore, as ELF4 activity in the dark mediates the correct timing of PRR9 

expression (Kolmos et al., 2009), this could suggest that ELF4 binding to ELF3 disrupts 

phyB-mediated repression of ELF3. Below I will address the competitive roles of ELF4 

and phyB on ELF3 function (Figure 5.4). 

5.1.3 ELF3 localizes in nuclear bodies 

The localization on nuclear bodies (NBs) is common for both clock and 

light-signaling proteins (Mas et al., 2000; Chen, 2008; Yu et al., 2008; Wang et al., 

2010). For ELF3, the ELF3C domain was found to be essential for localization in NBs. 

Notably, the NBs foci observed in YFP-ELF3C were different in size and number to the 

ones observed in YFP-ELF3 full length. In particular, the YFP-ELF3C nuclear bodies 

were less abundant, but larger than those of YFP-ELF3 (Figure 3.4 and 3.6). In 

transient expression in N. benthamiana, ELF3C nuclear bodies (Figure 3.4) were 

similar in size and shape to the ones observed for TOC1-PRR5 interaction (Wang et 

al., 2010); both experiments used a similar experimental set up. On the contrary, 
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YFP-ELF3 NBs resembled the nuclear bodies where ELF3, COP1, and GI were found 

to co-localize [Figure 3.4 and 3.6, (Yu et al., 2008)]. Moreover, YFP-ELF3 NBs 

resemble the phyB NBs observed in phyB-GFP fusion proteins (Oka et al., 2008). The 

YFP-ELF3MC construct generated few and small nuclear bodies (Figure 3.6). These 

observations suggest that ELF3 can localize into two different sub-cellular 

compartments. The interaction of ELF3 with phyB and COP1 through the ELF3N 

domain may mediate re-localization of ELF3 to the smallest, but more numerous 

YFP-ELF3 NBs. 

5.1.4 ELF3, ELF4, and LUX form a transcriptional repressor complex 

ELF3 and ELF4 were proposed to act as transcriptional repressors of the 

morning genes PRR9 and PRR7 (Kolmos et al., 2009). In ELF3-OX and ELF4-OX, the 

transcript accumulation of PRR9 was severely reduced, whereas PRR7 where not as 

severely affected (Figure 3.11). This indicates that ELF3-ELF4 repressor complex 

preferentially targets PRR9. ELF3 was found to associate to the Conserved Region 1 in 

the PRR9 promoter as identified by phylogenetic shadowing (Figure 3.12). Others has 

also recently reported ELF3 association to the PRR9 promoter (Dixon et al., 2011). The 

Conserved Region 1 is required for rhythmic expression of PRR9, and contains a LUX 

binding site (LBS) (Figure 3.12). The LBS mediates association of LUX (Helfer et al., 

2011). elf3, elf4, and lux mutants display similar phenotypes (Kolmos et al., 2009; 

Thines and Harmon, 2010; Helfer et al., 2011), leading me to test if these three genes 

act together in the circadian oscillator. Similar to the capacity of ELF3-OX to bypass the 

elf4 mutant phenotype, LUX-OX restore LHY:LUC rhythmic expression in elf4. 

However, LUX-OX did not restore the elf3 phenotype (Figure 3.14). This indicated that 

both ELF3 and LUX are downstream of ELF4. As LUX appears to be nuclear localized 

regardless of the presence of ELF4 and ELF3 (Figure 4.13), a clear hierarchy exists in 

the cellular dynamics of this clock-sustaining co-repressor complex (Figure 5.2). First 

ELF3 moves to the nucleus where it locates ELF4. ELF4 retains ELF3 in the nuclear 

compartment. In the nucleus, ELF3 and LUX association to the PRR9 promoter leads 

to repression of PRR9 expression. Thus, three evening components of the circadian 

clock, ELF4, ELF3, and LUX, cooperatively act to sustain circadian oscillations 

(Figure 5.2) 
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Figure 5.2. Model of the assembly of ELF3, ELF4, and LUX repressor complex. 
1) ELF3 protein is imported to the nucleus. In the absence of ELF4, ELF3 is exported to 
the cytoplasm, and an active-ELF3 threshold is not achieved. Hence ELF3 does not 
associate to the PRR9 promoter. LUX requires ELF3 for PRR9 repression, and PRR9 is 
not repressed. 
2) Nuclear ELF3 pool is stabilized by ELF4 binding, and an active-ELF3 threshold is 
achieved.  
3) ELF3, ELF4 and LUX association cooperatively promotes PRR9 transcriptional 
repression. 
4) Model for elf4-1 ELF3-OX. The ELF3-active export process can not cope with high 
levels of ELF3. Hence, ELF3 reaches an active threshold, even in the absence of ELF4. 
ELF3 and LUX cooperatively mediate PRR9 transcriptional repression. 
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5.1.5 Activation and repression in the PRR9 promoter 

The Conserved Region 1 in the PRR9 promoter (Figure 3.12) mediates both 

1) transcriptional repression by the ELF4/ELF3/LUX complex, where LUX binds to the 

LBS [Figure 3.12, (Helfer et al., 2011)], as well as, 2) transcriptional activation by CCA1 

via the proximal EE (Portoles and Mas, 2010). The competition between activator and 

repressor complexes within such a promoter context has recently been found to be 

critical for ELF4 expression (Li et al., 2011). However, CCA1 plays opposite roles in 

ELF4 and PRR9 expression. In the case of ELF4, CCA1 mediates transcriptional 

repression  by interfering in FHY3 association to ELF4 promoter (Li et al., 2011). In the 

case of PRR9, CCA1 mediates transcriptional activation (Farre et al., 2005; Portoles 

and Mas, 2010). In here, CCA1 could interfere in LUX and ELF3 association to PRR9 

promoter (Figure 5.3). Additionally, PRR9 expression is light induced, and this acute 

response is severely reduced in phyB mutants, indicating that phyB is a positive 

regulator of PRR9 expression (Ito et al., 2003; Ito et al., 2005). This positive regulation 

could be directly mediated by phyB attenuation of ELF3 repressive function (see 

section 5.1.4). In this context, phyB could displace ELF3 from PRR9 promoter leading 

to a release of transcriptional repression (Figure 5.3). Thus, the competition of 

ELF3-ELF4-LUX repression complex with CCA1 and phyB activation could be a 

molecular basis for rhythmic PRR9 transcript accumulation. 
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Figure 5.3. Activation and repression in the PRR9 promoter.  
Competition between activation and repression complex could shape PRR9 circadian 
expression. ELF3, ELF4 and LUX cooperatively mediate transcriptional repression; LUX 
associates via the LUX binding site (LBS). CCA1 associates to the PRR9 promoter via the 
evening element (EE) and mediates transcriptional activation. Light induction of PRR9 
expression depends on phyB. phyB binding to the N-terminus of ELF3 (pink) could 
indirectly active PRR9 by repressing ELF3.  
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5.1.6 elf3-12 in the middle of phyB-ELF4 competition 

The, elf3-12 allele harbors a missense mutation within this ELF4 recognition 

domain (ELF3M), and it displays attenuated ELF3 repressor activity (Figure 4.2). 

Missense alleles of TOC1 (Wang et al., 2010) and ZTL (Kim et al., 2007) have been 

found to affect interaction with PRR5 and GI, respectively, leading to attenuated clock 

function. Thus a similar mechanism could underlie elf3-12 phenotype, where ELF3-12 

would be affected in ELF4 binding. elf3-12 displayed light-dependent short-period 

rhythms and hypersensitivity to RL-resetting pulses applied at the end of the subjective 

night. Hence, an increased light repression of ELF3 function seems to be present in 

elf3-12. Therefore, I hypothesize that ELF4 and phyB compete for activation and 

repression of ELF3 function (Figure 5.4), respectively. ELF3-phyB binding through the 

ELF3N seemed to be required for period-shortening under Rc (see section 5.1.2). 

ELF4-ELF3 binding through ELF3M (see section 5.1.1) would stabilize ELF3 nuclear 

pool by interfering in the ELF3-phyb interaction, leading to an enhanced capacity of 

ELF3 to lengthen circadian period (Figure 5.4). Therefore, ELF3 contains two functional 

modules that are required for repression (ELF3N) and for activation (ELF3M) of its 

function (Figure 5.4). 
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Figure 5.4. ELF4-phyB competition hypothesis. 
ELF3 has one activation domain ELF3M and one repression domain ELF3N. The 
competition of ELF4 and phyB for binding to ELF3 provides modulation of ELF3 function. 
ELF4 binds the ELF3M domain leading to enhanced ELF3 action to lengthen periodicity. 
phyB binds to the ELF3N domain leading to repression of ELF3 action and, thus, period 
shortening. Clock cartoons were obtained from www.google.com clock images. 
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5.2 Perspectives 

5.2.1 ELF3-ELF4 interaction 

ELF4-mediated stabilization of ELF3 nuclear-pool could be confirmed by 

measuring ELF3 nucleo-cytoplasmic ratio in the elf4-1, wild type, and ELF4-OX 

backgrounds. Additionally, the capacity of ELF4 to retain ELF4 in the nucleus could be 

examined by co-expressing ELF3 with increasing concentration of ELF4, and then, by 

measuring the ELF3 nucleo-cytoplasmic ratio in these samples. This approach was 

used to assess the PRR5-mediated TOC1 stabilization (Wang et al., 2010). The 

expectation of this experiment would be that increasing ELF4 levels would enhance 

ELF3 nuclear distribution. 

The elf3-12 mutation maps to a highly-evolutionary conserved box (Kolmos, 

2007) defined within the ELF3M region, which mediates ELF3-ELF4 binding (Figure 3.1 

and Figure 5.5). Additionally, two weak elf4 alleles were found to confer short 

periodicity, similarly to elf3-12 (Kolmos et al., 2008). The encoded proteins elf3-12, and 

these elf4 weak alleles, could be affected in the ELF3-ELF4 binding capacity 

(Figure 5.5). Ultimately, combination of these mutations and/or additional mutagenesis 

of ELF3-conserved box and ELF4 protein, could assist in obtaining an ELF3, an ELF4, 

or an ELF3-ELF4 combination that abolishes ELF3-ELF4 interaction (Figure 5.5). The 

binding capacity could be assessed by FRET, similarly to Figure 4.1. For this assay, 

ELF3 and ELF4 fusion proteins could be expressed under the control of their native 

promoters to achieve physiological levels or both proteins. Then, the analysis study 

circadian function in the absence of ELF3-ELF4 binding could lead to the confirmation 

of the functional relevance of ELF3-ELF4 interaction. I expect that the failure of ELF4 

activation of ELF3 severely affects ELF3-clock function and by extension lead to clock 

arrest (Figure 5.5). 

The observation that both ELF3 and ELF4 display nuclear and cytoplasmic 

pools may indicate an additional cytoplasmic function of ELF3 and ELF4. In order to 

separate a putative cytoplasmic function from the known nuclear function, fusion 

proteins of ELF3 and ELF4 to nuclear localization signals (NLS) and nuclear export 

signals (NES) could be used to assay restoring of elf3 and elf4 phenotype, 

respectively. For example, it could be expected that an ELF3-NLS protein would be 

constitutively nuclear and able to mediate ELF3 function in the absence of ELF4. By 

extension, an ELF3-NLS protein might be insensitive to phyB action. On the contrary, 

an ELF3-NES protein that would be constrained in the cytoplasm could not restore elf3 
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phenotype. In a different experiment, an ELF4-NLS could mediate ELF3-nuclear 

stabilization and hence restore elf4 phenotype. On the contrary, an exclusively 

cytoplasmic form of ELF4 (ELF4-NES) would fail to stabilize nuclear ELF3, and by 

extension would not restore elf4 phenotype. This approach would further test ELF4 

action on ELF3 nuclear stabilization. 
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Figure 5.5. ELF3-ELF4 interaction essential for circadian function. 
ELF3-ELF4 binding is mediated by the ELF3M domain (green). This interaction requires 
electrostatic interaction between ELF3 and ELF4 conserved residues. In elf3-12 and 
elf4-203 weak alleles, the residue change leads to attenuated ELF3-ELF4 binding, 
resulting in short-periodicity of circadian rhythms. In the case of a ELF3 mutant, an ELF4 
mutant, or a mutant combination that abolish ELF3-ELF4 interaction, arrhythmicity of 
circadian rhythms would be expected. 

5.2.2 Functional analysis of ELF3 nuclear bodies 

ELF3 was found to localize in NBs (Figure 3.4 and 3.6). It could be interesting 

to explore the functionality of these NBs. First, co-expression experiments could 

determine if YFP-ELF3 full NBs contain COP1 or phyB. Second, reporter constructs for 

other NBs could be used to assay if ELF3 co-localizes in known sub-nuclear structures. 

For example, the spliceosome has been found to form a NB (Lorkovic et al., 2004). The 

YFP-ELF3C NBs were found to be different from the ones of YFP-ELF3, suggesting 
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that they are different sub-nuclear structures. The YFP-ELF3C line could be used for 

the isolation of additional proteins co-localizing within YFP-ELF3 NBs. For this, 

YFP-ELF3 plant material could be cross-linked, and then, the YFP tag could be used to 

isolate YFP-ELF3C complex. Proteins contained in such complex could be identified by 

mass-spectrometry. Overall, such experiments could assist to determine if clock and 

light-signaling protein localize in a sub-nuclear structure where clock- and 

light-transcriptional regulation may take place. 

5.2.3 ELF3-ELF4 as transcriptional repressors 

The mechanism of ELF4 stabilization of ELF3 nuclear pool is analogous to what 

has been described for the three essential complexes BMAL-CLK, CYC-CLK, and the 

WCC, in other clock systems (Cheng et al., 2002; Kondratov et al., 2003; Hung et al., 

2009). However, ELF3-ELF4 complex seems to mediate transcriptional repression, 

whereas the other three complexes are mediate transcriptional activation. ELF3 

associates to PRR9 and this correlates with repression of PRR9 transcript 

accumulation (Figures 3.11 and 3.12). Consistently, both ELF3-OX and prr9 loss of 

function led to circadian-period lengthening, whereas elf3-12 and PRR9-OX led to 

circadian-period shortening. Since PRR9-OX retains circadian rhythms, the high levels 

of PRR9 found in elf3, elf4 and lux mutants (Kolmos et al., 2009; Dixon et al., 2011; 

Helfer et al., 2011) do not explain alone their arrhythmicity phenotypes. One important 

genetic test would be to generate elf3 prr9 double mutant and compared their circadian 

phenotypes to elf3. It could be expected that elf3 prr9 mutant displays arrhythmicity, 

but the levels of CCA1 and LHY increase compared to those of elf3. Moreover, ELF3 

has been found to be required for GI targeted degradation, and hence, high levels of GI 

in elf3 mutants may be partially responsible for its clock arrest. Generating elf3 gi 

double mutant could genetically test this possibility. It would be expected that high 

levels of TOC1 protein in the absence of GI, would lead to clock arrest in these double 

mutants. Finally, generating the elf3 prr9 gi triple mutant would reduce the clock 

network to the core loop by affecting the morning and evening loops, and the 

ELF3-ELF4-LUX complex. Testing circadian function in this triple mutant could 

determine the importance of multiple feed-back loops for circadian function. 

Other targets of ELF3-ELF4 and LUX complex could be mis-regulated in their 

corresponding null alleles. Notably, I did not find association of ELF3 to the PRR7 

promoter, consistent with a recent report (Dixon et al., 2011). In addition, LUX 

association to the PRR7 promoter was not found (Helfer et al., 2011). Other 
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transcriptional target of ELF3 could be identified by the isolation of ELF3-DNA 

complexes by ChIP, followed by DNA sequencing [ChIP-Seq, (Kaufmann et al., 2010)] 

or DNA hybridization to Arabidopsis arrays [ChIP-ChIP, (Kaufmann et al., 2010)]. 

Additionally, a complementation line of ELF3 fused to the glucocorticoid receptor 

(ELF3-GR) could be used to identify direct targets of ELF3 transcriptional regulation 

(Schena et al., 1991). ELF3-GR would be constrained in the cytoplasm until application 

of dexomethasone. For the experiment, ELF3-GR plants could be treated with a 

protein-synthesis inhibitor and dexomethasone. Changes in gene expression after 

ELF3 nuclear action could be identified by microarray hybridization of RNA-seq. Genes 

up or down-regulated would be the direct targets of ELF3 action. 

Arabidopsis clock components can often act as transcriptional activators and 

repressors. In section 5.1.6, I discussed such a dual role for CCA1. It is unknown if 

ELF3 can also act as a transcriptional activator. elf3 mutants display 

arrhythmic-marginal levels of LHY expression. In my experiments, I observed rhythmic 

low levels of LHY:LUC in elf3-12, elf4-1 ELF3-OX and YFP-ELF3MC. Hence, ELF3 

could mediate both rhythmicity and total transcript accumulation of LHY. To test this 

hypothesis, ELF3 association to LHY promoter could be tested. 

5.2.4 Mechanism of cooperative LUX and ELF3 action 

Both ELF3 and LUX associate to the Conserved Region 1 of the PRR9 

promoter, and both associations correlate to transcriptional repression of PRR9. 

Moreover, both ELF3-OX and LUX-OX could bypass the circadian disfunction of elf4. 

LUX-OX could not restore elf3 arrhythmicity phenotype. It remains to be determined 

whether ELF3-OX could restore lux phenotype. Since there is not a lux null allele in Ws 

background, transgenic lines expressing an antisense microRNA (amirLUX) were 

generated both in both in the wild type and ELF3-OX backgrounds (Figure 5.6A). 

Preliminary characterization of LHY:LUC rhythms support a cooperative role of LUX 

and ELF3 to sustain rhythmicity of LHY:LUC (Figure 5.6). The reduction of LUX levels 

by amirLUX in the wild type led to a reduction in the periodicity and the amplitude of 

LHY:LUC (Figure 5.6 C). This phenotype resembled that of elf3-12 (Figure 4.2), 

suggesting that low levels of LUX lead to an attenuated ELF3 function. Recently, it was 

reported that LUX repress its own expression by association to a LBS present in its 

promoter. In ELF3-OX a down-regulation of LUX transcript was found (Figure 5.6B). 

This is consistent with a cooperative-repressive action of ELF3 and LUX. In the 

ELF3-OX amirLUX double-transgenic the oscillations of LHY became arrhythmic with 
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an increase in LHY LUC (Figure 5.6D). This suggests that LUX is required for ELF3-OX 

function. Further characterization of these amirLUX lines will assist to characterize 

ELF3-LUX genetic interaction. 
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Figure 5.6. Understanding LUX-ELF3 cooperative action.  
a, sequence of LUX antisense microRNA (amirLUX). 
b, LUX expression relative to Wt of two independent amirLUX lines in the wild type, and 
in the ELF3-OX background. Tissue samples for RNA extraction were collected at ZT 8. 
c and d, free-running profile of LHY:LUC in (c) Wt and two Wt amirLUX lines, and (b) in 
the Wt, ELF3-OX ,and two ELF3-OX amirLUX lines (d)  

It was expected that ELF3 could physically associate to LUX. This interaction 

could not be detected in a Y2-H assay (data not shown). However, my results together 

the observation that LUX and ELF3 associate to the same region of the PRR9 

promoter [Figure 3.12, (Helfer et al., 2011)], strongly suggest that ELF3 and LUX could 

interact in planta. Transgenic resources generated here could test this. Since 

YFP-ELF3MC line led to complementation of elf3 circadian arrhythmicity, it is likely that 

ELF3 LUX-binding-domain in ELF3 is contained within this ELF3MC region. To test this 

possibility, co-immunoprecipitation experiments could be performed with LUX, 
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ELF3MC, and different ELF3MC sub-fragments. Within the ELF3MC fragment there is 

a highly conserved proline-rich region (Figure 4.4). Such proline-rich regions have been 

found to mediate interaction with GARP transcription factors (Tamai et al., 2002). It is 

tempting to speculate that the proline-rich region of ELF3 mediates association with 

LUX. 

The hierarchy of ELF3-ELF4-LUX complex formation could be tested within the 

PRR9 promoter (Figure 5.2). The combination of ChIP experiments with the 

quantification of PRR9 circadian transcript-accumulation could correlate the hierarchy 

of ELF3-ELF4-LUX complex assembly to in the repression of PRR9 expression. If 

ELF4 affects ELF3 recruitment to the PRR9 promoter, a reduced association of ELF3 

would be expected in the elf4 (Figure 5.2); this would correlate with higher levels of 

PRR9. If ELF3 requires LUX to associate to the PRR9 promoter, a reduced association 

would be expected in the presence of low levels of LUX in ELF3-OX amirLUX lines; this 

also would be correlated with higher levels of PRR9. In my model, LUX association to 

the PRR9 promoter does not depend on ELF3 and ELF4 (Figure 5.2); this could be 

tested in the elf3 YPF-LUX and elf4 YFP-LUX lines, respectively. Since LUX requires 

ELF3 for circadian function, high levels of PRR9 would be expected in elf3 YPF-LUX. 

5.2.5 ELF3 biochemical activity 

The enzymatic activity of ELF3 remains unknown. ELF3 associates with the 

PRR9 promoter and it is required for LUX action. Hence, ELF3 could be act as a 

transcriptional co-repressor. ELF3 has a glutamine rich region within its C-terminus 

[Figure 4.4, (Hicks et al., 2001)], and the ELF3C domain was found to be required for 

circadian function (Figure 3.7). In animal circadian systems, the core component CLK 

has a glutamine-rich region that is required for its HAT activity (Doi et al., 2006). 

However, a HAT activity of ELF3 is not expected since ELF3 seems to be involved in 

transcriptional repression. ELF3 essential role could lead to the recruitment of 

chromatin remodeling complexes to the PRR9 promoter. 

Recently, histone methylation function has been linked to circadian function in 

Arabidopsis. JMD5 encodes for a histone methyltransferase, and it is co-expressed 

with ELF3 at dusk (Jones et al., 2010). jmd5 mutants displayed a weak light-dependent 

short-periodicity phenotype (Jones et al., 2010). ELF3 could associate with JMD5 to 

mediate transcriptional repression at dusk. This scenario could be tested by examine 

ELF3-JMD5 physical interaction and JMD5 association to the PRR9 promoter. 
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Additionally, co-localization studies of ELF3 and members of chromatin remodeling 

complexes could be performed.  

5.2.6 Towards a mechanism for Aschoff’s rule 

The functional relevance of ELF3-phyB interaction has not been determined 

(Carre, 2002). In my thesis, I have found that ELF3 associated to phyB through ELF3N 

domain (Figure 3.8), and that this domain was not required for ELF3 circadian function 

(Figure 3.7). I proposed a hypothesis where phyB-ELF3 binding attenuates ELF3 

action on lengthening circadian periodicity. This hypothesis could provide one 

mechanism for Aschoff’s rule in Arabidopsis. To physiologically expand on this, the 

free-running period of YFP-ELF3, YFP-ELF3MC, and elf3-12 under increasing 

intensities of Rc, Bc and Rc+Bc could be compared. For this, fluence-rate curves could 

be constructed.  

One biochemical mechanism for Aschoff’s rule could be found in the context of 

transcriptional regulation at the PRR9 locus. On one hand, PRR9 expression is 

repressed by ELF3-ELF4 complex. ELF3-OX, ELF4-OX and prr9 displayed long-period 

rhythms [Figure 3.2, (Ito et al., 2003)]. On the other hand, PRR9 expression is 

activated by light through a phyB-dependent process (Ito et al., 2003; Ito et al., 2005). 

PRR9-OX and elf3-12 both displayed short-periodicity phenotypes [(Matsushika et al., 

2002a), Figure 4.2]. Moreover, the elf3-12 short period phenotype was light-dependent 

and was enhanced by PHYB-OX (Figure 4.3). Hence, phyB might activate PRR9 

expression by direct interaction with ELF3 and subsequent inactivation of ELF3-ELF3 

repressor complex. This acceleration would thus be by repressing a repressor. To test 

this scenario, ChIP experiments could be performed with YFP-ELF3 and YFP-ELF3MC 

lines at subjective night (zt ≈14-16), comparing association to PRR9 promoter in the 

darkness or under extended light. After some hours in DD (zt ≈14-16), phyB action 

would be marginal, and hence YFP-ELF3 would efficiently bind to PRR9 promoter. In 

extended light, phyB action would persist, and this would be seen as a reduced 

YFP-ELF3 association to the PRR9 promoter. If YFP-ELF3MC can not be repressed by 

phyB, there would not be a difference in its association to the PRR9 promoter in DD or 

under extended light. 

5.2.7 ELF4-phyB competition for ELF3 

I have proposed a mechanism where ELF4 and phyB compete for binding to 

ELF3 (Figure 5.3), and this leads to modulation of ELF3 action. This could be tested by 
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co-immunoprecipitation experiments where ELF3-phyB or ELF3-ELF4 would be 

expressed at constant levels, and ELF4 and phyB levels would be gradually increased, 

respectively. If ELF4 interferes with ELF3-phyB binding, their association would be 

reduced by ELF4 in a dose-dependent fashion. Conversely, ELF4-ELF3 interaction 

could be reduced by phyB in a similar fashion. Weak alleles of elf3, such as elf3-12 and 

elf3-218, and weak alleles of elf4 (Kolmos et al., 2009) could be tested in these 

experiments to see how they affect ELF4-phyB competition. In this line, it was reported 

that toc1 weak alleles diminished the interaction with PRR5 and ZTL (Wang et al., 

2010). Isolation of ELF3 alleles defective in phyB interaction would be very interesting. 

For example, elf3-212 could be such an allele, since it encodes a residue-change in the 

ELF3N domain, and it displayed long-period rhythms (Figures 4.5 and Table 4.1). 

The timing ELF3-phyB interaction within the circadian day has not been 

determined. PHYB and ELF3 transcript accumulation is circadian regulated with the 

highest expression at subjective day and at dusk, respectively (Covington et al., 2001; 

Toth et al., 2001). phyB NB formation was circadian regulated and preceded the dawn 

light-on signal (Kircher et al., 1999). ELF3 protein-abundance is rhythmic and it is 

highest at zt14-16 (Liu et al., 2001). ELF3 was found to bind both inactive (Pr) and 

active (Pfr) form of phyB (Kolmos, 2007). Hence, ELF3 could conceptually bind phyB 

both in the nucleus (phyB Pfr) and in the cytoplasm (phyB Pr). If phyB interferes with 

ELF3 repression of PRR9, a nuclear interaction would be expected. This could be 

tested by co-immnunoprecipitation of ELF3-phyB complex in nuclear extracts collected 

at different times of the day. An ELF3-phyB interaction would be expected both at dusk 

and at dawn, when both proteins are present in the nucleus. A cytoplasmic ELF3-phyB 

complex could restrict ELF3 action in the nucleus. This could be tested by 

co-immnunoprecipitation of ELF3-phyB complex in cytosolic fractions collected at 

different times of the day. The identification of a temporal dynamics of ELF3-phyB 

binding in both cytoplasm and nucleus would be useful to understand the repressive 

role of phyB on ELF3 action. 
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Period and phase estimates from elf3 TILLING lines. Figures 4.7 to 4.12, and Table 4.2 



 

 

 



Appendix 1 

- 126 - 

App1 Table 1  Period and phase values of GI:LUC for elf3-TILLING lines under LD to LL. 

LD to LL Circadian Phase (h)

elf3 allele Mean SEM Difference Mean SEM Difference

201 ▬ ▬ ▬ ▬ ▬ ▬
202 ▬ ▬ ▬ ▬ ▬ ▬
203 ▬ ▬ ▬ ▬ ▬ ▬
204 26.84 0.20 -0.07 12.36 0.69 2.35
205 26.72 0.21 -0.19 11.95 0.64 1.94
206 ▬ ▬ ▬ ▬ ▬ ▬
207 ▬ ▬ ▬ ▬ ▬ ▬
208 ▬ ▬ ▬ ▬ ▬ ▬
209 ▬ ▬ ▬ ▬ ▬ ▬
210 25.59 0.19 -1.32 11.86 0.66 1.85
211 26.04 0.16 -0.87 11.70 0.48 1.69
212 26.73 0.23 0.59 11.47 0.64 -1.18
213 27.03 0.19 0.12 11.83 0.46 1.82
214 26.30 0.19 -0.61 11.61 0.47 1.60
215 ▬ ▬ ▬ ▬ ▬ ▬
216 26.58 0.22 -0.33 11.22 0.50 1.21
217 26.78 0.28 -0.13 12.30 0.80 2.29
218 25.86 0.28 -1.05 12.62 0.67 2.61
219 27.57 0.21 0.66 9.62 0.41 -0.40
220 27.01 0.19 0.10 11.52 0.61 1.51
221 ▬ ▬ ▬ ▬ ▬ ▬
222 ▬ ▬ ▬ ▬ ▬ ▬
223 ▬ ▬ ▬ ▬ ▬ ▬
224 27.29 0.22 0.38 10.94 0.69 0.93
225
226 27.10 0.23 0.19 10.70 0.56 0.69
227 26.68 0.26 -0.23 10.44 0.60 0.43
228 26.52 0.23 -0.39 11.50 0.53 1.49
229 ▬ ▬ ▬ ▬ ▬ ▬
230 ▬ ▬ ▬ ▬ ▬ ▬
231 27.17 0.25 0.26 11.92 0.61 1.91

er105 26.91 0.20 10.01 0.60
col0 26.14 0.30 12.65 0.63

Period (h)

arrythmic arrythmic

 
For this experiment plants were entrained for 7 days under LD cycles at constant temperature, 
and then circadian rhythms were assayed under LL. Period and phase mean values were 
calculated by averaging two independent experiments. SEM, pooled standard error of the mean 
pooled from the two experiments. Difference indicates deviation from wild type values: Col0 was 
used as wild type for line elf3-212, and er-105 was used as wild type for the rest of the lines. 
Underlined values indicate statistically significant differences (pvalue < 0.05). ▬ indicates not 
determined. Color code defines position of residue change within ELF3 domains: ELF3N (pink), 
ELF3M (green),and ELF3C (blue). From Figure 4.7. 
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App1 Table 2 Period and phase values of GI:LUC for elf3-TILLING lines under WC to LL. 

WC to LL Circadian Phase (h)

elf3 allele Mean SEM Difference Mean SEM Difference

201 ▬ ▬ ▬ ▬ ▬ ▬
202 ▬ ▬ ▬ ▬ ▬ ▬
203 ▬ ▬ ▬ ▬ ▬ ▬
204 26.82 0.25 0.48 15.02 0.19 0.61
205 26.23 0.13 -0.11 15.57 0.30 1.16
206 ▬ ▬ ▬ ▬ ▬ ▬
207 ▬ ▬ ▬ ▬ ▬ ▬
208 ▬ ▬ ▬ ▬ ▬ ▬
209 ▬ ▬ ▬ ▬ ▬ ▬
210 25.76 0.26 -0.58 14.50 0.28 0.09
211 26.09 0.18 -0.25 14.90 0.31 0.49
212 26.63 0.18 0.64 14.86 0.33 -0.09
213 26.28 0.14 -0.07 16.03 0.72 1.62
214 26.37 0.17 0.03 15.08 0.26 0.67
215 ▬ ▬ ▬ ▬ ▬ ▬
216 26.56 0.19 0.21 14.94 0.26 0.53
217 26.42 0.24 0.08 13.54 0.33 -0.87
218 25.93 0.26 -0.41 14.98 0.56 0.57
219 26.85 0.18 0.51 14.86 0.33 0.45
220 26.53 0.18 0.19 15.38 0.26 0.97
221 ▬ ▬ ▬ ▬ ▬ ▬
222 ▬ ▬ ▬ ▬ ▬ ▬
223 ▬ ▬ ▬ ▬ ▬ ▬
224 26.81 0.21 0.47 15.77 0.28 1.36
225
226 26.58 0.23 0.24 14.16 0.37 -0.25
227 26.37 0.27 0.03 14.40 0.26 -0.01
228 26.71 0.31 0.36 14.48 0.31 0.07
229 ▬ ▬ ▬ ▬ ▬ ▬
230 ▬ ▬ ▬ ▬ ▬ ▬
231 26.46 0.24 0.11 15.18 0.29 0.77

er105 26.34 0.20 14.41 0.29
col0 25.99 0.17 14.95 0.21

Period (h)

arrythmic arrythmic

 
For this experiment plants were entrained for 7 days under WC cycles under constant light, and 
then circadian rhythms were assayed under LL. Period and phase mean values were calculated 
by averaging two independent experiments. SEM, pooled standard error of the mean pooled 
from the two experiments. Difference indicates deviation from wild type values: Col0 was used 
as wild type for line elf3-212, and er-105 was used as wild type for the rest of the lines. 
Underlined values indicate statistically significant differences (pvalue < 0.05). ▬ indicates not 
determined. Color code defines position of residue change within ELF3 domains: ELF3N (pink), 
ELF3M (green),and ELF3C (blue). From Figure 4.8. 
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App1 Table 3 Period and phase values of GI:LUC for elf3-TILLING lines under LD to DD. 

LD to DD Circadian Phase (h)

elf3 allele Mean SEM Difference Mean SEM Difference

201 27.31 0.44 -0.04 12.46 0.95 0.45
202 26.80 0.41 -0.55 11.97 1.47 -0.04
203 ▬ ▬ ▬ ▬ ▬ ▬
204 26.93 0.35 -0.43 10.97 0.97 -1.05
205 26.51 0.25 -0.85 12.90 0.94 0.89
206 ▬ ▬ ▬ ▬ ▬ ▬
207 ▬ ▬ ▬ ▬ ▬ ▬
208 26.76 0.31 -0.60 12.75 1.00 0.73
209 27.11 0.21 -0.24 13.03 0.95 1.01
210 ▬ ▬ ▬ ▬ ▬ ▬
211 27.22 0.22 0.28 11.98 0.34 -0.04
212 27.05 0.32 -0.31 12.38 0.82 -1.04
213 26.83 0.25 -0.52 11.94 0.86 -0.08
214 ▬ ▬ ▬ ▬ ▬ ▬
215 27.06 0.18 -0.30 10.25 0.63 -1.77
216 ▬ ▬ ▬ ▬ ▬ ▬
217 ▬ ▬ ▬ ▬ ▬ ▬
218 26.84 0.39 -0.51 11.04 0.91 -0.98
219 27.11 0.24 -0.24 10.79 0.63 -1.23
220 27.63 0.25 0.28 10.17 0.60 -1.85
221 26.76 0.31 -0.59 12.59 1.02 0.57
222 27.97 0.36 0.62 11.90 1.07 -0.12
223 27.71 0.23 0.35 11.86 0.88 -0.16
224 27.29 0.29 -0.07 12.92 1.03 0.90
225
226 26.76 0.28 -0.59 14.97 1.00 2.95
227 27.02 0.25 -0.34 12.45 1.01 0.43
228 ▬ ▬ ▬ ▬ ▬ ▬
229 ▬ ▬ ▬ ▬ ▬ ▬
230 ▬ ▬ ▬ ▬ ▬ ▬
231 27.02 0.48 -0.34 13.91 1.21 1.90

er105 27.35 0.31 12.02 1.08
col0 26.94 0.26 13.42 0.95

arrythmic

Period (h)

arrythmic

 
For this experiment plants were entrained for 7 days under LD cycles at constant temperature, 
and then circadian rhythms were assayed in DD. Period and phase mean values were 
calculated by averaging two independent experiments. SEM, pooled standard error of the mean 
pooled from the two experiments. Difference indicates deviation from wild type values: Col0 was 
used as wild type for line elf3-212, and er-105 was used as wild type for the rest of the lines. 
Underlined values indicate statistically significant differences (pvalue < 0.05). ▬ indicates not 
determined. Color code defines position of residue change within ELF3 domains: ELF3N (pink), 
ELF3M (green),and ELF3C (blue). From Figure 4.9. 
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App1 Table 4 Period and phase values of GI:LUC for elf3-TILLING lines under WC to DD. 

WC to DD Circadian Phase (h)

elf3 allele Mean SEM Difference Mean SEM Difference

201 27.65 0.35 0.01 14.01 0.71 2.34
202 27.37 0.25 -0.26 12.08 0.84 0.41
203 ▬ ▬ ▬ ▬ ▬ ▬
204 27.17 0.26 -0.47 12.66 0.92 0.98
205 27.07 0.22 -0.56 13.05 0.66 1.38
206 ▬ ▬ ▬ ▬ ▬ ▬
207 ▬ ▬ ▬ ▬ ▬ ▬
208 27.20 0.21 -0.43 12.00 0.74 0.33
209 26.86 0.21 -0.78 12.64 0.79 0.97
210 ▬ ▬ ▬ ▬ ▬ ▬
211 28.14 0.30 0.51 11.86 0.81 0.19
212 27.20 0.22 0.00 11.17 1.13 -0.52
213 27.14 0.20 -0.49 13.11 0.74 1.44
214 ▬ ▬ ▬ ▬ ▬ ▬
215 26.91 0.29 -0.72 13.26 0.77 1.59
216 ▬ ▬ ▬ ▬ ▬ ▬
217 ▬ ▬ ▬ ▬ ▬ ▬
218 26.49 0.29 -1.14 14.22 0.78 2.55
219 27.34 0.20 -0.30 13.39 0.59 1.72
220 27.06 0.24 -0.58 11.83 0.73 0.16
221 28.20 0.26 0.57 10.59 0.65 -1.09
222 28.05 0.25 0.41 11.60 0.64 -0.07
223 27.35 0.26 -0.29 13.58 0.75 1.91
224 27.91 0.20 0.28 11.19 0.60 -0.48
225
226 26.78 0.26 -0.86 14.45 0.81 2.78
227 27.06 0.09 -0.57 13.17 0.81 1.50
228 ▬ ▬ ▬ ▬ ▬ ▬
229 ▬ ▬ ▬ ▬ ▬ ▬
230 ▬ ▬ ▬ ▬ ▬ ▬
231 26.72 0.33 -0.92 13.67 1.03 2.00

er105 27.63 0.31 11.67 0.88
col0 27.20 0.23 11.69 0.50

arrythmic

Period (h)

arrythmic

 
For this experiment plants were entrained for 7 days under WC cycles under constant light, and 
then circadian rhythms were assayed in DD. Period and phase mean values were calculated by 
averaging two independent experiments. SEM, pooled standard error of the mean pooled from 
the two experiments. Difference indicates deviation from wild type values: Col0 was used as 
wild type for line elf3-212, and er-105 was used as wild type for the rest of the lines. Underlined 
values indicate statistically significant differences (pvalue < 0.05). ▬ indicates not determined. 
Color code defines position of residue change within ELF3 domains: ELF3N (pink), ELF3M 
(green),and ELF3C (blue). From Figure 4.10. 
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App1 Table 5 Period and phase values of GI:LUC for elf3-TILLING lines under LD to Rc. 

Rc Circadian Phase (h)

elf3 allele Mean SEM Difference Mean SEM Difference

201 27.68 0.27 -0.19 12.53 1.00 0.95
202 27.34 0.28 -0.53 10.30 0.68 -1.28
203 27.37 0.18 -0.51 10.98 0.48 -0.60
204 27.71 0.25 -0.16 11.31 0.65 -0.27
205 27.89 0.22 0.01 11.42 0.72 -0.16
206 27.73 0.29 -0.15 11.71 0.73 0.13
207 27.93 0.25 0.05 10.20 0.64 -1.38
208 27.76 0.30 -0.12 11.42 0.74 -0.16
209 27.25 0.25 -0.63 12.05 0.77 0.48
210 27.51 0.32 -0.37 11.07 0.80 -0.51
211 28.27 0.21 0.40 9.48 0.56 -2.10
212 27.58 0.28 0.11 12.46 0.73 0.34
213 27.31 0.26 -0.57 11.78 0.68 0.20
214 27.21 0.24 -0.67 11.43 0.87 -0.15
215 27.52 0.26 -0.36 10.88 0.68 -0.70
216 27.61 0.23 -0.26 12.19 0.70 0.61
217 28.01 0.27 0.13 9.82 0.59 -1.76
218 26.83 0.25 -1.05 11.97 0.63 0.40
219 27.42 0.25 -0.45 12.13 0.83 0.56
220 27.33 0.20 -0.55 11.68 0.68 0.10
221 27.98 0.27 0.10 10.80 0.81 -0.78
222 28.07 0.24 0.19 10.77 0.68 -0.81
223 27.32 0.21 -0.56 11.79 0.50 0.21
224 27.83 0.23 -0.05 10.66 0.64 -0.92
225
226 27.73 0.21 -0.15 10.74 0.50 -0.84
227 27.36 0.28 -0.51 10.60 0.63 -0.98
228 27.36 0.20 -0.52 11.07 0.56 -0.51
229 27.15 0.19 -0.73 11.96 0.72 0.38
230 27.66 0.24 -0.22 11.86 0.74 0.28
231 28.38 0.19 0.51 10.68 0.55 -0.90

er105 27.88 0.31 11.58 0.65
col0 27.47 0.38 11.85 0.91

arrythmic

Period (h)

arrythmic

 
For this experiment plants were entrained for 7 days under LD cycles at constant temperature, 
and then circadian rhythms were assayed under Rc. Period and phase mean values were 
calculated by averaging two independent experiments. SEM, pooled standard error of the mean 
pooled from the two experiments. Difference indicates deviation from wild type values: Col0 was 
used as wild type for line elf3-212, and er-105 was used as wild type for the rest of the lines. 
Underlined values indicate statistically significant differences (pvalue < 0.05). Color code 
defines position of residue change within ELF3 domains: ELF3N (pink), ELF3M (green),and 
ELF3C (blue). From Figure 4.11. 
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App1 Table 6 Period and phase values of GI:LUC for elf3-TILLING lines under LD to Bc. 

Bc Circadian Phase (h)

elf3 allele Mean SEM Difference Mean SEM Difference

201 24.17 0.15 -0.78 16.42 0.37 -0.23
202 24.49 0.14 -0.46 14.85 0.29 -1.80
203 24.44 0.21 -0.51 17.59 0.46 0.94
204 24.50 0.15 -0.45 17.2 0.44 0.55
205 24.85 0.22 -0.10 17.11 0.31 0.46
206 24.87 0.2 -0.08 16.55 0.38 -0.10
207 24.09 0.13 -0.86 17.14 0.39 0.49
208 24.72 0.25 -0.23 16.13 0.42 -0.52
209 23.89 0.13 -1.06 17.46 0.54 0.81
210 23.92 0.15 -1.03 15.99 0.34 -0.66
211 24.21 0.14 -0.74 16.01 0.31 -0.64
212 25.38 0.25 1.40 16.3 0.48 -1.63
213 24.84 0.29 -0.11 16.86 0.52 0.21
214 24.53 0.21 -0.42 16.96 0.72 0.31
215 24.95 0.26 0.00 16.64 0.61 -0.01
216 25.62 0.18 0.67 16.89 0.5 0.24
217 24.35 0.13 -0.60 15.49 0.52 -1.16
218 23.68 0.26 -1.27 16.59 0.77 -0.06
219 25.80 0.32 0.85 16.12 0.66 -0.53
220 25.55 0.22 0.60 15.8 0.45 -0.85
221 24.89 0.22 -0.06 15.95 0.35 -0.70
222 25.15 0.24 0.20 16.47 0.59 -0.18
223 25.53 0.28 0.58 15.65 0.62 -1.00
224 25.43 0.28 0.48 16.44 0.73 -0.21
225
226 ▬ ▬ ▬ ▬ ▬ ▬
227 ▬ ▬ ▬ ▬ ▬ ▬
228 ▬ ▬ ▬ ▬ ▬ ▬
229 24.89 0.18 -0.06 15.22 0.61 -1.43
230 24.44 0.32 -0.51 15.98 0.58 -0.67
231 24.50 0.31 -0.45 17.63 0.75 0.98

er105 24.95 0.28 16.65 0.69
col-0 23.98 0.21 17.93 0.37

arrythmic

Period (h)

arrythmic

 
For this experiment plants were entrained for 7 days under LD cycles at constant temperature, 
and then circadian rhythms were assayed under Bc. SEM, standard error of the mean. 
Difference indicates deviation from wild type values: Col0 was used as wild type for line elf3-
212, and er-105 was used as wild type for the rest of the lines. Underlined values indicate 
statistically significant differences (pvalue < 0.05). ▬ indicates not determined. Color code 
defines position of residue change within ELF3 domains: ELF3N (pink), ELF3M (green), and 
ELF3C (blue). From Figure 4.12. 
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