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Abstract 

The radionuclides 71,72,73,74As, 68Ge/68Ga and 76,77,80mBr are gaining considerable 

interest in nuclear medicine. A method for the separation of no-carrier-added arsenic 

radionuclides from the bulk amount of proton-irradiated GeO2 target as well as from 

coproduced radiogallium was developed. The extraction of radioarsenic by different organic 

solvents from acid solutions containing alkali iodide was studied and optimized. The 

influence of the concentration of various acids (HCl, HClO4, HNO3, HBr, H2SO4) as well as 

of KI was studied using cyclohexane. The practical application of the optimized procedure in 

the production of 71As and 72As is demonstrated. The batch yields achieved were in the range 

of 75–84% of the theoretical values. 

The radiochemical separation of radiogallium from radiogermanium was studied using 

ion exchange chromatography (Amberlite IR-120) and solvent extraction (Aliquat 336 in o-

xylene). At first optimized methods for the separation of no-carrier-added 68Ge/69Ge formed 

via the natGa(p,xn)69Ge process in a Ga2O3 target and for  n.c.a. 67Ga formed via the  
natZn(p,xn)67Ga  reaction in a Zn target were developed. Using those radionuclides as tracers 

several factors affecting the separation of radiogallium from radiogermanium were studied 

and for each procedure the optimum conditions were determined. The solvent extraction using 

Aliquat 336 was found to be more suitable and was adapted to the separation of n.c.a. 68Ga 

from its parent n.c.a. 68Ge. The quality of the product thus obtained is discussed. 

The separation of no-carrier-added radiobromine and no-carrier-added radiogallium 

from proton irradiated ZnSe target was studied in detail. The adsorption behaviour of n.c.a. 

radiobromine, n.c.a. radiogallium, zinc and selenium towards the cation-exchange resin 

Amberlyst 15, in H+ form, and towards the anion-exchange resin Dowex 1X10 in Cl- and OH- 

forms, was investigated. The elution of n.c.a. radiobromine and n.c.a. radiogallium was 

studied using different solvents. Additionally separation of n.c.a. radiobromine was also done 

via solvent extraction using TOA in o-xylene. Finally an optimized procedure applicable to 

the production of 77Br and 67Ga was developed, and the quality control of the products was 

done. 

The nuclear reaction cross section of the Auger electron emitting radionuclide 80mBr 

(T1/2 =4.4 h), was determined for its production using enriched 80Se targets. Thin 80Se samples 

were irradiated with incident protons of energies up to 18 MeV and the induced radioactivity 

was measured via nondestructive γ-ray spectrometery, allowing the determination and 

extension of the excitation function of the 80Se(p,n)80mBr reaction. The possible thick target 

yield was calculated and the energy range for production is discussed, especially with regard 

to the yield and radionuclidic purity of the produced radionuclide. 

 



Kurzzusammenfassung 

Die Radionuklide 71,72,73,74As, 68Ge/68Ga und 76,77,80mBr gewinnen großes Interesse in der 

Nuklearmedizin. Ein Verfahren zur Abtrennung von nicht-geträgerten Arsen-Radionukliden 

aus den großen Mengen des mit Protonenbestrahlte GeO2-Targets sowie aus koproduzierten 

Radiogalliumisotopen wurde entwickelt. Die Gewinnung von Radioarsen mittels 

verschiedener organischer Lösungsmitteln aus sauren Lösungen unter Zusatz von Alkalijodid 

wurde untersucht und optimiert. Der Einfluss der Konzentration verschiedener Säuren (HCl, 

HClO4, HNO3, HBr, H2SO4) sowie des KI wurde auf die Extraktion mit Cyclohexan 

untersucht. Die praktische Anwendung des optimierten Verfahrens bei der Produktion von 
71As und 72As wurde demonstriert. Die Gesamtausbeuten lagen im Bereich von 75-84% der 

theoretischen Werte.  

Die radiochemische Trennung von Radiogallium aus Radiogermanium wurde mittels 

Ionenaustausch-Chromatographie (Amberlite IR-120) und Solventextraktion mit Aliquat 336 

in o-Xylol untersucht. Dazu wurden zunächst der Radiotracer 69Ge aus einem bestrahlten 

Ga2O3-Target und des 67Ga aus einem Zn-Target abgetrennt. Sie wurden durch die 

Kernreaktion natGa (p,xn)69 Ge bzw natZn (p,xn)67Ga. hergestellt. Mehrere Faktoren, die  die 

Trennung von Radiogallium aus Radiogermanium beeinflussen wurden untersucht und für 

jedes Verfahren werden die optimalen Bedingungen ermittelt. Die Lösungsmittelextraktion 

mit Aliquat 336 erwies sich als besser geeignet und wurde deshalb zur Trennung von 68Ga aus 

dem Mutternuklid 68Ge herangezogen. Die Qualität des so erhaltenen Produkts wird 

diskutiert. 

Die Trennung von nicht-geträgertem Radiobrom und Radiogallium aus dem bestrahlten 

ZnSe-Target wurde entwickelt. Dazu wurde das Adsorptionsverhalten von Radiobrom, 

Radiogallium, Zink und von Selen auf dem Kationenaustauscher Amberlyst 15, in H+ Form 

sowie dem Anionenaustauscher Dowex 1x10 in Cl- und OH- Formen, untersucht. Die Elution 

des  Radiobroms und des Radiogalliums wurde mit Hilfe verschiedener Lösungsmittel 

verfolgt. Zusätzlich wurde die Trennung von Radiobrom über die Lösungsmittelextraktion 

mit TOA in o-Xylol durchgeführt. Schließlich  wurde ein optimiertes Verfahren zur 

Herstellung von 77Br und 67Ga entwickelt, und die Qualitätskontrolle der Produkte wurde 

durchgeführt.  

Die Kernreaktionsdaten zur Produktion des Auger-Elektronen-emittierenden 

Radionuklides 80mBr (T1/2 = 4,4 h) wurden unter Anwendung des angereicherten 80Se als 

Targetmaterial bestimmt. Dünne 80Se- Proben wurden mit einfallenden Protonen mit Energien 

bis zu 18 MeV bestrahlt und die induzierte Radioaktivität wurde durch zerstörungsfreie γ-

Spektroskopie gemessen, so dass die Bestimmung und Erweiterung der Anregungsfunktion 

der Kernreaktion 80Se(p,n)80mBr erfolgen konnte. Die integrale Ausbeute wurde berechnet und 

die geeigneten Energiebereiche für die Produktion wurden ermittelt, insbesondere im 

Hinblick auf die Ausbeute und die radionuklidische Reinheit des produzierten Radionuklids. 
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1. Introduction  
 

1.1 Discovery of Radioactivity 

Radioactivity is the process of spontaneous decay and transformation of unstable atomic 

nuclei, which is accompanied by the emission of charged particles and/or electromagnetic 

radiation. Radioactivity was discovered by Henri Becquerel in 1896 in Paris, while 

investigating the radiation emitted by uranium minerals, one year after the discovery of X-

rays by W.C. Roentgen. He found that photographic plates were blackened in the absence of 

light, if they were in contact with certain minerals. Two years later (1898), Marie Curie in 

France and G. C. Schmidt in Germany discovered similar properties in thorium. Marie Curie 

found differences in the radioactivity of uranium and thorium and concluded that these 

elements must contain unknown radioactive elements. Together with her husband, Pierre 

Curie, she discovered polonium in 1898 and radium later in the same year. Radioactivity is a 

property of matter and for the detection of radioactive substances suitable detectors are 

needed, e.g. Geiger-Müller counters or photographic emulsions.  

The naturally occurring radioactive substances were the only ones available for study 

until 1934. In January of that, year I. Curie and F. Joliot announced that boron and aluminum 

could be made radioactive by bombardment with α-ray from polonium. The positron had been 

discovered only two years earlier by C.D. Anderson as a component of the cosmic radiation.  

A number of laboratories quickly found that positrons could be produced in light elements by 

α-ray bombardment. Much earlier in 1919 Rutherford had shown nuclear transmutations by α-

particle bombardment, and the new phenomenon of induced radioactivity was therefore 

quickly understood in terms of the production of new unstable nuclei.  

At the time, that artificial radioactivity was discovered several laboratories had 

developed and put into operation devices for the acceleration of hydrogen ions and helium 

ions to energies at which nuclear transmutations could occur.  Furthermore, the discovery of 

the neutron in 1932 and the isolation of deuterium in 1933 made available two additional 

bombarding particles that turned out to be especially useful for the production of induced 

radioactivity.  About the same time, Ernest Lawrence built the first working cyclotron in 1931 

capable of accelerating protons, deuterons, or helium ions (alpha particles) to energies which 

were enough to penetrate atomic nuclei and thereby produce numerous stable and radioactive 
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isotopes that would find many peaceful applications in improving the wellbeing of humanity 

all over the world.  By 1940 the cyclotron developed by Lawrence and his coworkers would 

produce artificially as many as 223 radioactive isotopes, many of which would prove to be of 

immediate and immense value in medicine and studies in the biological sciences. The 

discovery of nuclear fission by O. Hahn and F. Strassmann gave further strong impetus to the 

study of new radioactive products. A second major source of artificial radionuclides has 

become available since the development of the first successful atomic pile chain reactor in 

1942. Reactor-produced radionuclides became available for public distribution since 1946. 

The subsequent development of nuclear reactors opened the way for their widespread 

applications in such diverse fields as chemistry, physics, biology, medicine, agriculture and 

engineering. Charts and tabulations of the properties of radioactive species are available. 

There are many books dealing with the radioactivity and nuclear reactions in detail (Loveland 

et al., 2006; Choppin et al., 2002; Lieser, 2001). 

 

1.2 Nuclear Reaction 

When two nuclei approach each other, there are various possibilities to interact with 

each other, depending on the kinetic energy of the accelerated nucleus. Those interactions can 

be divided into scattering processes and nuclear reactions. Generally, the interacting nuclei 

are classified as the target nucleus and the projectile. If the kinetic energy of the projectile is 

too low to penetrate the target nucleus, it will be scattered elastically or inelastically, thereby 

transferring excitation energy to the target nucleus in the latter case. If the energy of the 

interacting nucleus is high enough, a nuclear reaction may occur resulting in a change of the 

atomic and/or mass number of the target nucleus. Consider the following reaction (see Fig. 

1.1). 

 

 

 

 

 

 

 

 

Fig. 1.1: Schematic representation of a nuclear reaction. 
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where X is the stable target nuclide (at rest), a is an accelerated particle (projectile), Y is the 

product radionuclide, b is the particle or photon emitted, and Q is the energy released or 

absorbed. Two important characteristics of nuclear reactions are: 

� The minimum projectile energy required to induce such a nuclear reaction 

� The probability that a reaction will proceed 

As the projectile is slowed down when traversing the matter, the latter characteristic should be 

known as a function of the projectile energy.  

 

1.2.1 Q-Value and Threshold Energy 

As mentioned above, the Q-value is the energy released or absorbed by one single 

nuclear reaction. It is related to the difference between the resting masses of the reactants and 

products as given in Eq. (1.2).  

                                              
2)]()[( cmMmMQ bYaX +−+=                                                 1.2 

where Mx is the mass of the target nuclide (at rest), ma the mass of the projectile, MY the mass 

of the radionuclide formed and mb the mass of the particle emitted.  

A nuclear reaction can be exoergic (Q > 0), i.e. accompanied by liberation of energy or 

endoergic (Q < 0), i.e. absorption of energy is needed to start it. For an endoergic reaction (Q 

< 0) the bombarding particle should have a minimum energy value which is slightly higher 

than -Q. This is characterized by the threshold energy, which is the minimum kinetic energy 

of the colliding particles above which the reaction becomes possible from the energy point of 

view. Note that the threshold energy, Ethr, always exceeds the reaction energy Q, where it is 

given by the following equation: 

                                                     








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x

a
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M

m
QE 1
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1.2.2 Coulomb Barrier 

The Coulomb barrier determines the minimum energy needed for a charged particle to 

induce a nuclear reaction. The Coulombic repulsive force between the target nucleus and the 

charged particle dominates at large distances and increases when the charged particle 

approaches the target nucleus. At some particular distance, the attractive nuclear force 

balances the Coulomb repulsive force. Due to the Coulomb potential between the projectile 

and the target nucleus, additional energy should be added to the projectile energy, namely Ec. 

This energy depends on the charge of the projectile (Zae) and of the target nucleus (Zxe) 
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where Ro=1.2 x 10-13 cm, and A is the mass number 

There is a certain probability that the incident charged particle is able to penetrate the 

Coulomb barrier even if Ea < Ec. This phenomenon is called tunneling effect  and is explained 

by quantum mechanics. In general, a reaction with Q < 0 occurs if the bombarding particle 

has at least a starting energy Ethr or Ec, whichever is higher in the laboratory system. 

 

1.2.3 Nuclear Reaction Cross Section 

The nuclear reaction cross section represents the probability with which a projectile and 

a target nucleus interact according to a specific reaction channel, and is comparable with the 

rate constant of a bimolecular chemical reaction. To derive simple formula of the reaction 

cross-section, consider the general equation for a binuclear reaction 

                                                        A + x → B + y                                                                  1.5           

The production rate of the nuclide B is given by 

                                                       A
B N

dt

dN
Φ= σ                                                               1.6 

 where σ is the cross-section of the reaction, Φ is the flux density of the projectiles, and NA is 

the number of atoms of the target nuclide A. The cross section is expressed in cm2 or barns 

(=10-24cm2). This originates from the simple picture that the probability for a reaction between 

the target nucleus and the incident projectile particle is proportional to the geometric cross-

section that the target nucleus presents to a beam of charge particles.  The cross-section 

strongly depends on the incident particle energy as will be shown later. 

 

1.2.4 Excitation Function  

The excitation function indicates the absolute reaction cross-section as a function of the 

incident energy of the projectile. For charged particle induced reactions, where the projectiles 

need additional kinetic energy to overcome the potential barrier, the shape of the excitation 

function normally shows an increasing trend, reaching a maximum and then an asymptotic 

decline with the increasing energy.  

The more commonly used technique for the determination of the excitation function is 

known as the ‘’ stacked-foil’’ or ‘’stacked-pellet’’ technique (Weinreich et al., 1974; Qaim et 

al., 1977); in which, a stack of thin target samples with monitor and absorber foils is 

irradiated, and the samples are measured individually. In Figure 1.2 a schematic view of a 
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stack of foils used for irradiation can be seen. Cross-section determination requires absolute 

activity measurement, absolute beam intensity monitoring and absolute energy measurement 

of the incident charged particles. 

 

 

 

 

 

 

 

Fig. 1.2 : Irradiation of thin samples via the stacked-foil technique. 

  

The absolute activity is calculated after measuring the count rate of each activated sample. By 

applying different corrections, (see experimental section) the absolute activity is obtained. 

From the measured absolute radioactivity, the cross-section is then obtained using the well-

known activation formula:                                                                                                   

                                                    
)1( Bt

X
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eHN

A
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σ
−−Φ

=                                                        1.7 

where, AEOB is the activity of the produced radionuclide, Ф the flux of the incident particles 

(number of particles/sec), Nx the number of target atoms/cm2, H the percentage of target 

isotope in the element, σ the cross-section of the reaction (cm2), λ the decay constant of the 

resulting nuclei (sec-1)  and tB is the irradiation time (sec). 

 

1.2.5 Nuclear Reaction Yield 

The yield of a nuclear reaction is defined as the number of the product nuclei formed in 

the nuclear reaction. It is customary to express the number of radioactive nuclei in terms of 

the activity, and the number of incident particles in terms of the charge. Thus, the yield can be 

given as activity per Coulomb, in units of GBq/C. 

The differential yield describes the production yield in a thin target, where the energy 

degradation can be described as an infinitesimal interval dE. In order to calculate the possible 

production yield in a thick target, the latter is considered to be a sum of thin targets. This way 

the yield is calculated by integrating the relevant differential yields over the energy range 

covered in the thick target, leading to the so-called integral yield (Y) of an irradiation 

Beam 
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Collimator Beam stop 
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(Eq.1.8). 
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 where   E1= incident energy                                       E2= exit energy 

             (dE/dρx)-1 = stopping power 

 

1.3 Production of Radionuclides  

Radionuclides can be produced by various routes, with the most common of these being 

the bombardment of the starting material or target by either neutrons or charged particles.  

Neutron bombardments are usually performed in the intense neutron flux inside a nuclear 

reactor. Charged particle bombardments are usually performed by accelerating ions in an 

accelerator (e.g. cyclotron) and directing the resulting beam onto a suitable target. The 

emphasis in this thesis is on cyclotron production of radionuclides. 

 

1.3.1 Production of Radionuclides Using Reactors 

In reactor production of radioisotopes, the most commonly used nuclear routes are (n,γ), 

(n,fission) and (n,charged particles) processes. The (n,γ) reaction has generally a high cross 

section at thermal neutron energies, so that the yield of the product is rather high (Qaim,  

2010). However, a serious drawback of this process is the low specific radioactivity (i.e. the 

activity per unit mass of the element) which makes the radioisotope less suitable for medical 

application. Although the specific radioactivity can be improved through various methods 

(Qaim 2001a), this drawback generally remains. The fission process is a very suitable method 

to produce a large number of radionuclides in a no-carrier-added form. The chemical process 

involved, however, is rather extensive. The (n,p) and (n,α) reaction cross-sections are 

generally low; these processes are therefore used to produce only a few radioisotopes in the 

light mass element region.  Since most therapeutic radionuclides are neutron rich β--emitters, 

they are reactor produced.  
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1.3.2 Production of Radionuclides Using Cyclotrons 

The various types of accelerators offer the possibility of applying a great variety of 

projectiles of different energies. The most frequently used projectiles are protons, deuterons 

and α-particles. Neutrons may be produced indirectly by nuclear reactions, γ-rays are 

generated as Bremsstrahlung in electron accelerators, and heavy ions are available in heavy 

ion accelerators. The most common charged-particle accelerator used for the production of 

radionuclides is the cyclotron. These machines accelerate light particles at energies that upon 

striking suitable targets can induce nuclear reactions producing radionuclides with extremely 

high specific activity (activity per unit mass of the element). Today a large number of 

cyclotrons are used worldwide for medical radioisotope production. Many small cyclotrons 

have been installed in hospital environments and are employed extensively for preparation of 

short-lived radionuclides with very high specific activities for direct use on site. The great 

advantage of accelerator produced radionuclides is the fact that the primary radionuclide of 

interest is usually a different element from that of the target, thus allowing for its chemical 

separation from the target material. This separation leads to a product of high specific activity. 

Cyclotrons can be classified according to their maximum energy of acceleration, the 

type of accelerated particles and, consequently, the type of radionuclides that can be 

produced. Some terminological classification was given to commercial cyclotrons, etc. Other 

classification refers to the type of the accelerated charge as negative ion or positive ion 

machines. Table 1.1 gives categories of cyclotrons used for radionuclide production and their 

maximum energy of acceleration. 

 

1.3.3 Radionuclide Generators  

A radionuclide generator is a device for effective radiochemical separation of a short-

lived daughter radionuclide formed by the decay of a long-lived parent radionuclide. The goal 

is to obtain the daughter in a form having the required radionuclidic and radiochemical purity. 

For practical reasons, most radionuclide generator systems that are useful for medical 

applications involve secular equilibrium, where the parent radionuclide has a half-life 

significantly longer than that of the daughter. Thus, the separation of the short-lived 

radionuclide can be repeated  specifically on a periodic basis. 
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Table 1.1: Types of accelerators used in radionuclide production. (Qaim, 2001b; Qaim, 2003). 

 

Classification 

 

 

Characteristics 

 

Energy 

[MeV] 
Major radionuclides produced 

Level I 
Single particle* 

(d) 
< 4 15O 

Level II 

 

Single particle 

(p) 
≤ 11 11C, 13N, 15O,18F 

Level III 

 

Single  or two particle 

(p,d) 

≤ 20 

 

11C, 13N, 15O,18F 

(123I, 67Ga, 111In) 

Level IV 

 

Single or multiple 

particle 

(p, d, 3He,4He) 

≤ 40 

 

38K, 73Se, 75,77Br,123I, 81Rb,(81Kr), 67Ga, 
111In, 201Tl, 22Na, 57Co, 44Ti, 68Ge 

Level V 

 

Single or multiple 

particle 

(p, d, 3He,4He) 

 

≤ 100 

 

 

28Mg, 72Se (72As), 82Sr(82Rb), 117mSn,123I 

 

Level VI 

 

Single particle 

(p) 

≤ 200 

 

26Al, 32Si, 44Ti, 67Cu, 68Ge(68Ga), 
82Sr(82Rb), 109Cd, 95mTc, etc 

*A small linear two particle accelerator (p and d) has also been suggested. 

 

Most commonly used radionuclide generator systems are based on a strong adsorption 

of the longer-lived parent radionuclide on an immobilized phase under the condition that the 

formed shorter-lived daughter isotope can easily be removed. As separation basis, column 

chromatography, liquid-liquid extraction, gas chromatography or other techniques can be 

applied. Since conventional separation methods are based on differences between chemical 

properties of the elements, sufficient chemical difference between mother and daughter 

radionuclides is an essential requirement. Although many parent/daughter pairs have been 

evaluated as radionuclide generator systems, only a few generators are currently available in 

routine clinical and research use. These are 99Mo/99mTc, 90Sr/90Y and 188W/188Re in the case of 

reactor produced systems, while 68Ge/68Ga and 82Sr/82Rb regarding cyclotron produced 

systems.  
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1.4 Radionuclides in Medicine 

A large variety of accelerator, reactor and generator produced isotopes are utilized for 

diagnostic and therapeutic treatments. General requirements of the decay mode of the 

radionuclides are dictated by the conception of diagnosis or therapy, whereas the adequacy of 

the half-life depends mainly on the pharmacology of the tracer. Localization and tracking of 

radiopharmaceuticals in vivo is performed by single photon emission computed tomography 

(SPECT) as well as by positron emission tomography (PET). The nuclear decay data of 

radionuclides help to decide whether they should be used for therapeutic or diagnostic 

purposes.  

 

1.4.1 Radiotherapy 

Radiation therapy has gained an important place in medicine.  It is aimed to deliver the 

therapeutic doses of ionizing radiation to specific disease sites. This involves the use of 

external beams of electrons, x-rays, high- energy γ-rays or hadrons (neutrons, protons, heavy 

ions, etc.). In addition to this external radiation therapy, some radioisotopes are used 

internally to achieve the therapeutic effect. This involves introducing a radioisotope in a given 

part of the body (e.g. joints, organ, tumor, etc.). Examples are 90Y, 32P, 131I and 192Ir. For an 

effective radionuclide therapy a high Linear Energy Transfer (LET) is essential to provide 

high absorbed dose in specific disease sites, whereas the exposure of the normal tissue 

remains as low as possible. The most widely used therapeutic radionuclides are β- emitters. 

They provide relatively long penetration range depending on the particle energy and are 

particularly important for solid tumours with a high heterogeneity. The β-emitters yield more 

homogenous dose distribution even if the tracer is heterogeneously distributed within the 

target tissue (Zalutsky, 2003). 

The introduction of radiation emitters takes place mechanically through injection of 

conglomerates or colloids or as solids in the form of seeds or stents. This form of therapy is 

known as brachytherapy. The use of biomedical pathways to deliver a therapeutic 

radioisotope to a specific organ is termed as endoradiotherapy. This type of radiotherapy is a 

unique cancer treatment modality, although there are also several associated problems, such 

as the exact range of the ionizing radiation, the in vivo stability of the radiotherapeutical, the 

possibility of immuno chemical changes, etc. (Qaim, 2001c).  
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1.4.2 Radionuclides in Medical Diagnosis 

Radionuclides find manifold application in emission tomography for medical diagnosis. 

The major criteria for diagnostic use are: (Qaim, 2001b) 

• Suitable physical properties, i.e. high detection efficiency for the radionuclide, 

compatible with the lowest possible radiation dose to the patient 

• Suitable biochemical properties, especially organ selectivity and compatibility with the 

bio-kinetics. 

As far as physical properties are concerned, the half-life should be short and match the 

biochemical process under investigation (between a few minutes and a few hours). In general, 

the diagnostic radioisotopes are classified into two groups, namely γ-emitters (e.g. 67Ga (T1/2= 

3.26 d), 99mTc (T1/2= 6.0 h ), 111In (T1/2= 2.8 d), 123I (T1/2= 13.2 h), 201Tl (T1/2= 3.06 d), etc.) 

and β+ emitters (e.g. 11C (T1/2= 20.4 min), 13N (T1/2= 10.0 min), 15O (T1/2= 2.0 min), 18F (T1/2= 

109.6 min), 82Rb (T1/2= 1.25 min) etc.).  

If the radioisotope emits a single γ-ray, it can be applied in Single Photon Emission 

Computed Tomography (SPECT); in the case of β
+ emitters, the use of Positron Emission 

Tomography (PET) is very advantageous. The two techniques (SPECT and PET) are often 

collectively termed as emission tomography (Qaim, 2001b). Both techniques are used for 

imaging tumours and following up metabolisms in human organs. The PET camera is based 

on the simultaneous detection of the two γ-rays, each of energy 511 keV, resulting from the 

positron annihilation of the injected radionuclide in the target organ. The SPECT camera 

detects photons of suitable energy emitted from the injected radionuclide.  

In addition to the production and application of the routinely used diagnostic and 

therapeutic radionuclides, considerable efforts have been devoted in recent years to the 

development of novel longer-lived positron emitters, e.g. 64Cu (T1/2= 12.7 h), 73Se (T1/2= 7.15 

h), 124I (T1/2= 4.17 d), etc. and therapeutic radionuclides like 103Pd (T1/2= 16.99 d), 186Re (T1/2= 

3.7 d), etc. The emphasis in the present thesis is on radiochemical work related to the 

development of some further diagnostic and therapeutic radionuclides. 

 

1.5 Radiochemical Separation Methods 

The processing of activated targets involves various aspects of purification and isolation 

of radionuclides produced via nuclear reactions. The chemical separation process is designed 

to permit isolation of the purified radionuclide in a form suitable for its intended application, 

as well as recovery of the enriched target material for reuse. The radiochemical separation 

scheme essentially consists of one or more of the conventional chemical separation methods, 
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such as distillation, precipitation, extraction or chromatography.The speed with which such 

separations have to be performed depends most importantly upon the half-life of the product 

radionuclide. Some of the commonly used techniques are discussed below. 

 

1.5.1 Precipitation 

Separations, which are based upon precipitation techniques, rely upon the different 

solubility of the target material and product radionuclide in a selected solvent system. 

Precipitation is most frequently used at an early step to reduce the total mass of the material, 

which has to be manipulated in subsequent operations. Most commonly, the target material, 

which is present in the largest mass, is precipitated and removed by filtration or centrifugation 

while the product radionuclide remains in solution. While precipitation techniques are quite 

useful for removing the bulk target material from the small quantities of the product 

radionuclide, the selectivity of such separations are often inadequate for achieving the 

required chemical, radiochemical and radionuclidic purities. In addition, the product 

radionuclide is often adsorbed upon the surface or included within the structure of the 

precipitate and substantial loss of radioactivity can occur. 

 

1.5.2 Volatilization  

Radiochemical processing of activated targets by means of volatilization techniques, 

such as distillation or sublimation can be used to advantage in situations where the product 

radionuclide is a volatile at high temperature or when it can be readily converted to a volatile 

derivative.  

 

1.5.3 Solvent Extraction 

  Solvent extraction separation is based upon the partitioning of solutes between two 

immiscible solvent phases. Solvent extraction is a relatively simple and rapid technique which 

can achieve very high selectivity. The distribution coefficient Kd of the solute is defined as the 

ratio of the total concentration of the substance in one phase to its total concentration in the 

other phase, usually measured in equilibrium 

aqorgd AAK ]/[][=                                                         1.9 

The distribution coefficient represents the equilibrium constant of this process. For practical 

purposes, it is often more popular to use the percentage extraction, (sometimes named the 

extraction factor % E), which is given by 
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1.5.4 Chromatography 

Chromatographic separation depends upon the different distribution of solutes between 

two distinct phases, one stationary and the other mobile. Various chromatography systems, 

e.g. ion exchange, adsorption, reverse phase, etc. have been developed. In this work ion 

exchange and thin layer chromatography were utilized, and are discussed below in more 

detail. 

 

1.5.4.1 Principles of ion exchange chromatography 

Ion exchange chromatography is a process in which ions, electrostatically bound to 

functional groups contained within a matrix, exchange with mobile ions from an external 

solution. Anions are involved in the exchange when the functional groups are positively 

charged, and conversely, cations are involved when they are negatively charged. By taking 

advantage of the fact that, under certain conditions, ion exchange medium has a greater 

affinity for certain ionic species than for others, a separation of these species is possible. 

Depending on the type of the functional group, ion exchangers can be divided into several 

types: weak acidic, weak basic, strong acidic and strong basic. Equilibrium in ion exchange 

can be described in terms of the following: 

 

 Separation Factor  

The separation factor α is given by the ratio of the distribution coefficients, A

dK  and 

B

dK , of two different elements, A and B, that were determined under the same experimental 

conditions. It can be defined as follows: 

A

d

B

dB

A
K

K
=α                            1.11 

where A and B represent the two different elements of interest in the separation process. 

 

Distribution Coefficient 

The distribution coefficient is calculated as the ratio of the concentration of the solute in 

the stationary phase to the concentration of the solute in the mobile phase. It can be expressed 

as follows. 
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3

=dK    1.12 

The magnitude of Kd is governed by the relative affinity of the solute for the two phases. 

Those solutes interacting more strongly with the stationary phase will exhibit a larger 

distribution coefficient and will be retained longer in the chromatographic system. 

 

Ion Exchange Capacity 

The term ‘ion exchange capacity’ describes the total available exchange capacity of a 

resin, as described by the number of functional groups on it. The value is constant for a given 

ion exchange material and is generally given as milliequivalents per gram (meq/g), based on 

the dry weight of the material in a given form (such as H+ or Cl-). This number can be used to 

compare different resins or to calculate the total amount of resin to be added during a batch 

exchange process. The numbers quoted in the literature vary widely for different resins. 

 

Number of Theoretical Plates 

The plate model supposes that the chromatographic column contains a large number of 

separate layers, called theoretical plates. Separate equilibrations of the sample between the 

stationary and mobile phase occur in these "plates". The solution moves down the column by 

transfer of equilibrated mobile phase from one plate to the next. They serve as a way of 

measuring column efficiency, either by stating the number of theoretical plates in a column, N 

(the more plates the better), or by stating the plate height; the Height Equivalent to a 

Theoretical Plate (HETP). 

If the length of the column is L, then the HETP is 

 HETP = L / N                                                  1.13 

The number of theoretical plates that a real column possesses can be found by examining a 

chromatographic peak after elution; 

                    Number of theoretical plates = 5.55 * (Retention time / Peak width)2             1.14 

 

1.5.4.2 Thin layer chromatography 

In thin layer chromatography (TLC), the mobile phase is also a solvent, and the 

stationary phase is a thin layer of finely divided solid, such as silica gel or alumina, supported 

on glass or aluminum. Thin layer chromatography is similar to paper chromatography in that 

it involves spotting the mixture on the plate and the solvent (mobile phase) rises up the plate 

in the chromatography tank. Because the distance travelled by a substance relative to the 
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distance travelled by the solvent front depends upon the solubility and thus on the molecular 

structure of the substance, TLC can be used to identify substances as well as to separate them. 

The relationship between the distance travelled by the solvent front and the substance is 

usually expressed as the retention factor Rf. Its value can be calculated as: 

                                           
frontsolvent by   travelleddistance

substanceby   travelleddistance
=fR                                    1.15 

In particular, the various chemical forms of the radionuclide (i.e. speciation) are often 

characterized by TLC. 

 

1.6 The Radionuclides 
71,72,73,74

As 

1.6.1 Properties and Importance of Arsenic Radionuclides 

Arsenic has several radionuclides of interest for medical or environmental application. 

Its chemical properties are similar to those of nitrogen and phosphorus, both of which are 

common biologically active molecules (Tolmachev and Lundqvist, 2001). Arsenic forms 

stable covalent bonds with carbon and sulfur. These favorable biochemical properties enable 

the synthesis of biologically active molecules (Chattopadhyay et al., 2007). The decay 

properties of some interesting radioactive arsenic isotopes are summarized in Table 1.2. 

The radionuclide 71As decays by 68% through electron capture (see Table 1.2) and has a 

positron emission rate of 32%. The low energy positron (0.81 MeV) emitted by this 

radionuclide is very suitable for positron emission tomography while the 175 keV γ-ray is 

well suited for either planar or tomographic single photon imaging (Beard and Cuninghame, 

1965; Billinghurst  et al., 1990).   

The radionuclide 72As is a positron emitting arsenic isotope, with properties suitable for 

application in 72As-labelled PET radiopharmaceuticals. It has a positron emission rate of 77 

%. Although the positron emission is accompanied by the emission of photons of 834 keV 

(79.5%), 630 keV (7.9%), 1461 keV (1.1%) and others (< 0.5%), the long physical half-life of 

26 hours may render 72As a PET radionuclide of choice for the quantitative imaging of 

biochemical and physiological processes with longer biological half-lives, e.g. immuno-

imaging and receptor mapping (Jennewein et al., 2005). In those cases, the half-life of 72As is 

commensurate with the radio-pharmacological requirements resulting from the relatively slow 

localization kinetics of the labelled species.  
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Table 1.2: Decay properties of some important radioactive arsenic isotopes* and their most 

relevant production reactions. 

Radionuclide Half- life Production route 
Q- Value 

[MeV] 

Decay mode 

(%) 

γ-ray  

[keV] (%) 

71As 65.28 h 

72Ge(p,2n)71As 
73Ge(p,3n)71As 
74Ge(p,4n)71As 
76Ge(p,6n)71As 

-13.7 

-20.3 

-30.5 

- 46.5 

β+ (32), 

EC (68) 
175 82 

72As 26.01 h 

72Ge(p,n)72As 
73Ge(p,2n)72As 
74Ge(p,3n)72As 
76Ge(p,5n)72As 

- 5.1 

- 11.9 

- 22.1 

- 38.1 

β+ (77), 

EC (23) 

834 

630 

79.5 

7.9 

 

73As 

 

80.30 d 

73Ge(p,n)73As 
74Ge(p,2n)73As 
76Ge(p,4n)73As 

-1.1 

- 11.3 

- 27.3 

EC (100) 53.4 10 

74As 17.8 d 

74Ge(p,n)74As 
76Ge(p,3n)74As 

- 3.3 

- 19.3 

β- (32.1), 

β+ (30.9), 

EC (37.0) 

596 

635 

59 

15.4 

*Taken from Firestone and Ekström, 2004. 

 

The radionuclide 73As has a half-life of 80.3 d and decays exclusively via electron 

capture, emitting only a γ-ray of 53.4 keV. Because of the long half-life and soft emitted 

radiation, it is mainly applied as a tracer for environmental sciences (Guin et al., 1997; Spahn 

et al., 2007a).  

The radionuclide 74As is also a positron emitter, but has a much longer half-life (T1/2 = 

17.8 d) than 72As. It has a positron emission rate of 30.9 % with a low positron energy of Eβ+ 

= 440 keV and an electron emission rate of 32.1 % and Eβ
-
 = 137 keV.  74As was one of the 

first isotopes used in the very preliminary stages of PET in the 1950s and 1960s (Jennewein et 

al., 2005) called positrocephalography at that time. Due to its long half-life, it is more 

appropriate for animal use than human use, but could also provide a useful tool for the study 

of long-lasting metabolic processes, like antibody-antigen interactions or, in general, long 
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term pharmacokinetics of developmental drugs. Recent advances in using 74As labelled 

antibodies directed against the apoptotic marker phophatidylserine (PS) in a Dunning R2337 

AT1 prostate cancer model (Jennewein et al., 2004a) clearly demonstrate the potential of this 

nuclide of arsenic. 
 

1.6.2 Production Routes  

The radionuclides 71-74As can be produced via a variety of nuclear reaction pathways. 

The most relevant proton induced nuclear reactions contributing to their formation and the 

respective Q-values are listed in Table 1.2. The various routes of nuclear reactions can be 

followed while observing the chart of nuclides (Fig. 1.3). 

 

 

Fig. 1.3: Relevant part of the ‟Karlsruher Nuklidkarte” (Magill et al., 2007). 

 

The radionuclide 72As is generally obtained via the generator 70Ge(α,2n)72Se → 72As 

(Rösch and Knapp, 2003). All arsenic isotopes mentioned above can be produced in clinically 

sufficient amounts by (p,n)- or (d,n)- reactions on enriched germanium targets using a low 

energy cyclotron.  Thus 72As can also be produced directly in high yields via the 
72Ge(p,n)72As reaction at small-sized cyclotrons (Basile et al., 1981). More recently (Spahn et 

al., 2007a; Spahn et al., 2007b) studied excitation functions of the reactions natGe(p,xn)71-74As 

up to 100 MeV. Fig. 1.4 gives the excitation functions and integral yields for the formation of 
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71As, 72As, 73As and 74As in proton-induced reactions on natGe. Based on those data the 

theoretical yields of radioarsenic production were calculated and compared with the 

experimental yields determined in this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 1.4: Excitation functions and 

integral yields of 71As, 72As, 73As and 
74As in proton-induced reactions on 
natGe (Spahn et al., 2007a).  
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1.6.3 Chemical Separation  

Various methods for the separation of germanium and arsenic have been reported. They 

include dry distillation (Tolmachev and Lundqvist, 2001), solvent extraction (Beard and 

Cuninghame, 1965; Ward et al., 1970; Billinghurst  et al., 1990; Chattopadhyay et al., 2007), 

ion exchange (Pacey and Ford, 1981; Guin et al., 1998; Jahn, 2009) and thin layer 

chromatography (Maki and Murakami, 1974; Pacey and Ford, 1981). The review article by 

(Mirzadeh and Lambrecht, 1996) gives an account of the different radiochemical separation 

methods of germanium. In particular the solvent extraction technique has proven to be very 

useful and several effective systems have been worked out. An important consideration in all 

the separations is the speciation of arsenic since it could exist as As(III) or As(V), or as a 

mixture of both, upon dissolution of the irradiated target, which may be of crucial significance 

for any solvent extraction system. 

As(III) can be extracted from > 8 M HCl into benzene or into carbon tetrachloride 

(Beard and  Lyerly, 1961; Korkisch and Feik, 1967; Forehand et al., 1976; Hubert, 1983; 

Azarez et al., 1985; Chappell et al., 1995). Methylisobutylketone extracts 91% of As(III) and 

28% of As(V) from a mixture of 8 N HCl +2 N H2SO4. As(III) is also extracted from HF 

solutions by ether and from HI solutions by chloroform (Ward et al., 1970) while arsenic (V) 

is not  extracted. Prior to extraction, however, arsenic (V) can be reduced with potassium 

iodide to As(III) and then extracted from the iodide solution (Tanaka and Takagi, 1969; Byrne 

and  Gorenc, 1972;  Byrne, 1972;  Maher, 1981; Suzuki et al., 1986; Donaldson and Wang, 

1986; Palanivelu et al., 1992; Rashid et al., 1992). The solvent extraction of arsenic (V) was 

investigated using heptane containing ultrafine magnetite particles and hydrophobic 

ammonium salt (Wakui et al., 2002) with best results from aqueous solutions with a pH 

ranging between 2 and 7. More recently, (Jennewein et al., 2005) described a method to 

separate no-carrier-added arsenic triiodide, [77As]AsI3, from irradiated GeO2 dissolved in a 

hydrofluoric acid medium using a polystyrene-based solid-phase extraction system. 

It has been shown (Chappell et al. 1995) that in the presence of an excess of hydrochloric 

acid chlorination of arsenic occurs, yielding arsenic trichloride and arsenic pentachloride. 

Arsenic trichloride is a covalent molecule while arsenic pentachloride forms complex ions in 

solution. Thus the trivalent arsenic can be extracted into an organic phase such as chloroform, 

cyclohexane or benzene, while arsenic pentachloride is excluded owing to its ionic properties. 

The extraction of As(III) and Ge(IV) depends on the concentration of hydrochloric acid as 

well as of potassium iodide (Tanaka and Takagi, 1969). The method was used for the 

extraction of micro amounts of As and Ge from different environmental matrices. The aim of 
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the present work was to adapt that method to the separation of no-carrier-added (n.c.a) 

radioarsenic from a GeO2 bulk target. In this respect optimization experiments on the 

extraction of radioarsenic were essential under various conditions involving different acids 

and organic solvents. 

 

1.7 The Radionuclide 
68

Ge 

1.7.1. Importance of 
68

Ge 

 The radionuclide 68Ge (T1/2 = 270.8 d) decays to 68Ga (T1/2 =  67.63 min) by electron 

capture.  The latter is a positron emitter and gets quickly in equilibrium with the parent 

nuclide. The first application of 68Ge in equilibrium with the daughter 68Ga was as a long-

lived positron source for the attenuation correction and calibration of PET scanners. 
68Ge(68Ga) has been used as a positron source in positron annihilation studies in nuclear 

physics and in industrial metal radiography (Naidoo et al., 2002). Currently, interest is 

growing in the use of 68Ge as the parent radionuclide for the preparation of 68Ge/68Ga 

generators (cf. Rösch and Filosofov, 2010). Recently the use of 68Ge/68Ga radionuclide 

generator system in nuclear medicine has attracted interest because of the significant potential 

for PET imaging using 68Ga labelled radiopharmaceuticals (see section 1.8). 

 

1.7.2 Production Routes and Target Processing 

The radionuclide 68Ge can be produced via a variety of nuclear reactions, all using 

charged particle irradiation. The most relevant processes are listed in Table 1.3, categorized 

according to the type of the particle utilized. The excitation functions for 69,71Ga(p,xn)68Ge 

reactions have been reported in the literature (Porile et al., 1963). Horiguchi et al. (1983) 

provided excitation functions and thick target yields for the Ge(p,pxn)68Ge reactions and 

compared them with those of the Ga(p,xn)68Ge and 66Zn(α,2n)68Ge reactions. For the 

Ga(p,xn) production routes, potentially useful target compounds include Ga2O3 (melting point 

1900 oC) and Ga4Ni alloy ( melting point 900 oC) (Loc’h et al., 1982). Mixtures of Ga metal 

and Ga2O3 have been used, as has been also Ga2O (Naidoo et al., 2002).  However, the Ga 

metal (melting point 39 oC) itself is also used as a target, usually encapsulated in Nb 

containers. Corrosion resistant Nb allows effective water cooling of the target. 
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             Table 1.3: Overview* of the most relevant nuclear reactions yielding 68Ge.  

Radionuclide 

(T1/2) 

Decay mode 

(%) 
Production route 

Q- Value 

[MeV] 

  

69Ga(p,2n)68Ge 
natGa(p,xn)68Ge 

-11.201 

-11.201 to -28.5 

68Ge 

      (270.8 d) 
EC (100) 

natGe(p,pxn)68Ge 
66Zn(α,2n)68Ge 

-19.7 to -70.8 

-15.637 

  natZn(3He,xn) 68Ge 
-2.112 to 

-12.310. 

              *Taken from Firestone and Ekström, 2004. 

  

The most effective route of 68Ge production appears to be the proton irradiation of Ga 

targets. The high cross-section values of the (p,2n) reaction allow irradiation of natural Ga 

without isotopic enrichment of 69Ga at medium proton energies of between 20 and 30 MeV. 

In addition, if protons of higher energies are available, the (p,4n) process on 71Ga contributes 

to the production yield. High beam intensities in the range of 100 µA or more are required to 

produce batch activities of 37 GBq of 68Ge. As the number of accelerators with the above 

features is limited worldwide, the number of 68Ge production sites is also limited. The 

recommended cross-section curve and the corresponding yield are illustrated in Fig.1.5. 

 

Fig. 1.5: left: Evaluated cross section of the natGa(p,x)68Ge reaction,  right: Integral yield of 

the natGa(p,x)68Ge reaction, calculated from the evaluated cross sections (Qaim et al., 2001). 
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1.7.3 Chemical Separation 

Several articles describe in detail a variety of chemical methods for the separation of 
68Ge. The principal methods include distillation of 68Ge (Mirzadeh  et al., 1981; Gleason, 

1960), ion exchange chromatography (Loc’h et al., 1982; Naidoo et al., 2002), and liquid-

liquid extraction (Kopecky et al., 1973; Pao et al., 1981; Fassbender et al., 2005). The solvent 

extraction technique using carbon tetrachloride is known to be one of the most widely used 

methods for the isolation of carrier-free 68Ge (Kopecky et al., 1973).  One of the most 

selective methods for separating germanium, however, is the extraction of GeCl4 by nonpolar 

organic solvents from strong acidic chloride solutions (Meinken et al., 2005). For Ga/Nb 

systems, 68Ge is extracted into CCl4 after dissolution of the target in 12 M H2SO4 (with the aid 

of HCl and H2O2). 
68Ge is back-extracted into 0.05 N HCl and evaporated to the appropriate 

volume. For Ga4Ni targets, a semi-automated processing, consisting of electrochemical target 

dissolution, is used. Following extraction of 68Ge from 9.0-9.5 M HCl into CCl4, the 68Ge is 

back-extracted into water (Loc’h et al., 1982). Barong and Yinsong (1992) reported on the 

dissolution of Ga2O3 in concentrated H2SO4 solution, followed by liquid-liquid extraction of 
68Ge in H2SO4-HCl and H2SO4-KI systems. Aardaneh et al. (2006) used benzene and 

carbontetrachloride for the separation of 68Ge from 9 M H2SO4-0.3 M HCl system. In our 

work, the extraction of 68Ge from H2SO4-HCl system was studied using toluene and 

chloroform as organic solvents. The effect of various H2SO4 and HCl concentrations was 

investigated with both organic solvents. 

 

1.8 The Radionuclides 
66,67,68

Ga  

1.8.1 Properties and Importance of Radionuclides of Gallium 

The chemistry of Ga is like that of its Group III homologues aluminum and indium. The 

Ga3+ ion is classified as a hard acid, bonding most strongly to highly ionic, non-polarizable 

Lewis bases.  As a result, its chelate chemistry is dominated by ligands containing oxygen and 

nitrogen donor atoms. Gallium behaves in the human body in a similar way as the ferric iron. 

The three radionuclides 66Ga, 67Ga and 68Ga are widely used in the field of nuclear medicine, 

commonly as a trivalent citrate compound imaging, but are also valuable agents in the 

detection and localization of certain neoplasms and inflammatory lesions.  

The decay data of these gallium radioisotopes are given in Table 1.4.  66Ga (T1/2= 9.4 h) 

has been proposed for application in PET. It has been used in the radiolabelling of blood cells 

and albumin colloids for various diagnostic purposes (Ellis and Sharma, 1999). 67Ga (T1/2= 
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3.2 d), which decays by electron capture and emission of γ-rays, is widely used as a single 

photon marker for detecting the presence of malignancy and diagnosis of inflammatory 

diseases (Kakavand et al., 2010). 

 

Table 1. 4: Decay data* and some of the production routes of 66,67,68Ga using Zn target.  

Nuclide T1/2 
Production 

route 

Q- Value 

[MeV] 

Mode of decay 

(%) 

γ-ray 

[keV] (%) 

66
Ga 9.4 h 

66Zn(p,n)66Ga 
67Zn(p,2n)66Ga 
68Zn(p,3n)66Ga 

-5.957 

-13.009 

-23.207 

EC (44) 

β+ (56) 

833.5 

1039 
5.9 
37 

67
Ga 3.26 d 

67Zn(p,n)67Ga 
68Zn(p,2n)67Ga 

-1.782 

-11.98 
EC (100) 93.3 

184.6 
39.2 
21.2 

68
Ga 

67.63 

min 

68Zn(p,n)68Ga 
70Zn(p,3n)68Ga 

-3.703 

-19.401 

EC (12) 

β + (88) 
1077 3 

*Taken from Firestone  and Ekström, 2004. 

 

The radionuclide 67Ga has found numerous applications in nuclear medicine. It is used 

to investigate tumoural proliferation in peripheral nerve sheaths (Shanthly and Thakur, 2006), 

in the management of Hodgkins disease (Anderson et al., 1983) and elsewhere. No-carrier-

added (n.c.a) 67Ga can be accumulated in certain viable primary and metastatic tumours, as 

well as in focal sites of infection.  

The radionuclide 68Ga is gaining considerable interest in nuclear medicine, especially 

for use in positron emission tomography (PET).  It is best obtained via a 68Ge-68Ga generator 

system.  The parent radionuclide 68Ge has a long half-life of 270.82 days and decays 100 % 

by electron capture to the short-lived daughter 68Ga (t1/2 = 67.63 min) which decays mainly by 

positron mission (β+ = 88 %, EC = 12 %) and therefore is suitable for PET imaging.  The 
68Ge/68Ga generator system has an advantage in diagnosis, because milking of 68Ga from 68Ge 

allows preparing various kinds of chemical compounds at a hospital without a medical 

cyclotron. 68Ga-based imaging agents have been investigated in connection with the study of 

pulmonary, myocardial and cerebral perfusion, renal and hepatobiliary function, in the 

detection of blood-brain barrier defect, as well as to image tumour, brain and bone (Green and 

Welch, 1989). Furthermore, 68Ga is employed for transmission measurements for encoding 

calibration and normalization of detector efficiencies of PET scanners. 
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1.8.2  Production Routes and Target 

The radionuclides 66,67Ga are produced by irradiating thick copper or zinc targets with 

lighter projectiles like protons, deuterons or α-particles in a cyclotron. Many authors (Bonardi 

and Birattari, 1983; Kopecky, 1990; Szelecsényi et al., 1998; Hermanne et al., 1999; Gul,  

2001; Szelecsényi  et al., 2003; Tárkányi et al., 2005; Uddin et al., 2007; Al-Saleh et al., 

2007; Wachter et al., 2008) studied experimentally or theoretically the production of 66,67Ga in 

irradiation of zinc target with protons.  Table 1.4 shows the production of 66Ga, 67Ga and 68Ga 

via various nuclear reactions with a proton beam, which can also be followed using the 

nuclide chart of radionuclides shown in Fig.1.3. 

Nagame et al. (1978) produced 67Ga by bombardment of natural zinc with alpha 

particles.  The n.c.a. 65Zn and 66,67,68Ga were simultaneously produced by activation of thick 

copper target with a 50 MeV α-particle beam (Lahiri et al., 1997). Nayak and Lahiri (2001) 

developed an alternative method for the production of 66,67Ga radionuclides by irradiating 

naturally occurring monoisotopic cobalt metal with heavy ions like 11B or 12C. The yields 

were, however, very low. 

 The most important route for the production of 68Ga is the decay from the parent 68Ge. 

 

1.8.3 Separation Methods  

1.8.3.1 Separation methods of 
66,67

Ga  

Numerous methods have been attempted to separate 66,67Ga from zinc targets such as 

anion exchange chromatography (Papardells et al., 1984; Környel et al., 1986; Tárkányi et al., 

1990; Das et al., 1997; El-Azony et al., 2003; Sabet et al., 2006), solvent extraction 

(Nachtrieb and Fryxell, 1949), and precipitation (Sadeghi and Mokhtari, 2010).  

According to the literature, both anion and cation exchange resins have been used for 

the separation of 67Ga from zinc targets. Környel et al. (1986), for example, used a long 

column (20 cm) containing a modified Dowex 1 anion exchanger resin in 6 M HCl medium 

for the separation of 67Ga from the Zn target. A Dowex 50W-X2 cation exchange resin was 

employed (Tárkányi et al., 1990) for the separation of 67Ga from Zn and Cu with a good yield 

and in a short time (1 hour). The 67Ga was eluted by 4 M HCl that needs to be evaporated for 

further processing of 67Ga citrate preparation. 67Ga was separated from zinc and copper target 

materials using anion-exchanger (Dowex 21k) and 0.1 M citrate buffer at pH 6 (El-Azony et 

al., 2003) in citrate solution in a high yield (80.65 %) and can be directly used for medical 

application. 
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A number of organic adsorbents of Amberlite XAD series have been extensively 

studied by Brits and Strelow (1990) for separation of 67Ga from a Zn target. It was concluded 

that the use of XAD-7 and 7 M HCl was most efficient for the separation (Aardaneh and 

Shirazi, 2005). A solvent extraction system using diisopropyl ether / 7 M HCl has also been 

used successfully for the separation (Nachtrieb and Fryxell, 1949; Brown, 1971). Sadeghi and 

Mokhtari (2010) studied the separation of 67Ga from Zn and Cu by a precipitation method. A 

characteristic feature of Ga(III) hydroxide is that it is amphoteric, meaning it is soluble in 

both acidic and basic solution. Above pH = 9.6 the gallate ion Ga(OH)4
- forms and 

redissolves. This allows an efficient and rapid separation of Ga from Zn and Cu by 

precipitating Zn as Zn(OH)2 and Cu as Cu(OH)2. 

In this work a longer-lived tracer of gallium was needed for optimization studies on the 

separation of n.c.a. 68Ga from the 68Ge/68Ga generator system. The separation of n.c.a. 67Ga 

from a proton irradiated zinc target using anion exchange (Amberlite CG-400-II Cl- form and 

Dowex 50WX8 H+ form) and solvent extraction processes was aimed at. Furthermore, the 

solvent extraction process using diisopropyl ether was also considered worth investigating. 

 

1.8.3.2 Separation methods of 
68
Ga from parent 

68
Ge 

Several 68Ge/68Ga generator systems have been developed over the past several years.  

They included a large number of methods for the separation of 68Ga,  e. g.  ion-exchange 

chromatography with inorganic and organic adsorbents or synthetic resins in diluted acid or 

alkaline media (Greene and Tucker, 1961; Carlton and Hayes, 1971; Dmitriev et al., 1972; 

Ehrhardt and Welch, 1978; Neirinckx and Davis, 1980; Schumacher  et al., 1981; Neirinckx  

et al., 1982; Lambrecht et al., 1983; McElvany  et al., 1984; Ambe, 1988; Egamediv  et al., 

2000; Cheng et al., 2000; Nakayama  et al., 2002; Nakayama  et al., 2003; Velikyan et al., 

2004; Rösch et al., 2006; Konstantin  et al., 2007; Sadeghi et al., 2009) and solvent extraction 

(Egamediev et al., 2001; Fassbender et al., 2007; Bokhari et al., 2009). Gleason (1960) 

described the first generator which utilized extraction by acetylacetone buffered solution with 

cyclohexane. The first series of new or improved generators have been regularly described 

since 1961 by Greene and Tucker, who proposed the first chromatographic generator which 

consisted of the parent 68Ge adsorbed onto an alumina column. The inorganic supporting 

materials used for the adsorption of 68Ge were Al2O3, Sb2O5, ZrO2, TiO2, Fe(OH)3 and SnO2. 

The eluents used for the elution of 68Ga were so far diluted EDTA, HCl and HNO3 or NaOH.  

Among these studies, Loc’h et al. (1982) have defined a very promising commercially 

available generator of ionic 68Ga based on elution from tin dioxide with 1 N HCl, with special 
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regard to the simplicity of the operation. A 68Ge/86Ga generator consisting of an alumina 

column eluted with diluted sodium hydroxide to yield 68Ga as the gallate ion has also been 

described (Lewis and Camin, 1981). Sadeghi et al. (1992) studied the separation of 68Ga from 

proton irradiated 68Zn using cation exchange resin (BIO-Rad AG 50W) and used a solvent 

extraction method to achieve high purity 68Ga. 

The 68Ge/68Ga radionuclide generator systems available today are not necessarily 

optimally designed for direct application in making diagnostic products for human use. The 

eluate from the commercial generator still contains measurable levels of long-lived 68Ge. In 

addition, the rather large volume and the relatively high concentration of hydrochloric acid in 

many cases prevent direct use for labelling reactions. Furthermore, labelling yields and 

specific activities might not reach the maximum values due to the presence of metallic 

impurities. For example, significant amounts of Zn(II) are generated from the decay of 68Ga. 

In the case of fresh generators, the amount of stable 71Ga generated from the 71Ge decay may 

be up to one order of magnitude higher than the amount of stable 68Zn generated. In addition, 

Ti(IV) or other residuals from the generator column material and Fe(III) are present in the 

eluate. All these metallic impurities will adversely affect the 68Ga labelling yields as well as 

the specific activity of the labelled product. Thus, dedicated procedures for processing the 

eluate from the radionuclide generator, including the labelling and purification of the 68Ga 

radiopharmaceutical need to be developed. Several approaches to further processing of the 

generator derived 68Ga(III) are described in the literature.  

Using tracer studies, two methods of separation of radiogallium from radiogermanium 

were aimed to be developed in the present work.  The first method is based on an anion-

exchange solvent extraction using the strong anion exchanger Aliquat 336 

(trioctylmethylammonium chloride) in o-xylene and hydrochloric acid, while the second 

involves cation-exchange column chromatography using the strong cation exchanger 

Amberlite IR-120.  
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1.9 The Radionuclides  
75,76,77,80m

Br 

1.9.1 Properties and Importance of Bromine Radioisotopes  

The chemistry of bromine is very similar to that of iodine and the physical properties 

such as electro-negativity or van der Waals radius are between those of fluorine and iodine. 

There is a growing interest in the use of radionuclides of bromine in nuclear medicine because 

of their suitable nuclear and chemical characteristics. Table 1.5 gives the decay data of some 

medically interesting radioisotopes of bromine (cf. Firestone and Ekström, 2004).  

 

Table 1.5: Nuclear data* of some radiobromines. 

Nuclide T1/2  Nuclear reaction 

 

Q- Value 

[MeV] 

 

Mode of 

decay 

(%) 

γ-ray  

   [keV]          (%) 

75Br 1.5  h 

76Se(p,2n)75Br 
77Se(p, 3n)75Br 

74Se(d,n)75Br 
75As(3He,3n)75Br 
78Kr(p,4He)75Br 

-14.966 

-22.386 

1.99 

-13.18 

-0.176 

EC (24) 

β+ (76) 

141  

286.6  
6.6 
88 

76Br 16.2 h 

76Se(p,n)76Br 
77Se(p,2n)76Br 

75As(3He,2n)76Br 
natBr(p,xn)76Kr→ 76Br 

 

76Se(3He,3n)76Kr→76Br 

-5.74 

-13.16 

-3.95 

-32.05 to  

-50.01 

-15.52 

EC (42) 

β+ (58) 

 

559  

657  

1853.7 

  

74 

15.9 

14.7 

77Br 57.4 h 

77Se(p,n)77Br 
78Se(p,2n)77Br 

75As(4He,2n)77Br 
79Br(d,4n)77Kr→ 77Br 

-2.17 

-12.64 

-13.51 

-25.05 

EC (99) 
238.9  

520 
23 
22.4 

80mBr 4.42 h 

80Se(p,n)80mBr 
natSe(p,xn)80mBr 

-2.65 

-2.65 to 

 -18.63 

IT(100) 37 40 

*Taken from Firestone and Ekström, 2004. 

 

The C-Br bond has a binding energy which is 40-60 kJ/mol (10-15 kJ/mol higher than 

that of the corresponding C-I bond) and is therefore more stable (Coenen et al, 1983; Maziere 

and Loc’h, 1986). For this reason bromine is sometimes preferable to iodine for labelling. An 

additional advantage is that bromide ions, when they are released from the labelled compound 

by some cause, will not be localized in the thyroid. Bromine radioisotopes may also be used 

in nuclear medicine as inorganic anions, e.g. for estimation of extracellular fluid volumes 
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(Janssen et al 1980). The high nucleophilicity of bromide bears advantages in synthesis of 

radiolabelled compounds, and n.c.a. products via interhalogen-exchange can be obtained 

easily (Maziere and Loc’h, 1986; Coenen et al., 1983). Further, it can rather easily be 

oxidized in situ, thus facilitating n.c.a. electrophilic substitution reactions in vinyl and aryl 

positions (Coenen et al., 1986).  

Bromine-75 decays with 76 % positron emission and 24% electron capture. The positron 

end point energy is 1.7 MeV, and there are several gamma rays, with the most prominent 

being at 286.5 keV. Bromine-75 decays to 75Se, which has a 120 day half-life and several 

gamma rays in the 100–300 keV range. This contributes to the overall dosimetry of the 75Br-

containing radiotracers. Among the neutron deficient bromine isotopes 75Br is of special 

interest and has found application in labelling of some biomolecules for use in positron 

emission tomography (Qaim and Stöcklin, 1993).  

Bromine-76 decays with both positron emission (58%) and electron capture. The half-

life ( 16.2 h) allows radiotracers to be used that have accumulation times of one or two days. 

The high end point energy of the positron emitted may affect the positron emission image to 

some extent. Over the last decade the available γ-cameras were mostly suitable for the low 

energy γ-rays of 123I rather than for the higher energy γ-rays of the bromine isotopes 

(Tárkányi et al., 1993). Therefore, more efforts have been devoted to the production of 123I. 

Recently, through the development of PET and high-energy γ-ray cameras, bromine isotopes 

have received some more attention.   

Bromine-77 has a half-life of 57 h and decays nearly exclusively (99.3%) by electron 

capture, with prominent gamma rays at 239.0 and 520.7 keV, and several low intensity 

gamma rays, varying in energy from 238 to 820 keV. Its half-life is suitable for long term 

physiological investigations using Single Photon Emission Computed Tomography (SPECT). 

Furthermore, the Auger electrons emitted in the decay of 77Br are of some therapeutic interest. 

In addition to its direct uses as a labeling agent, 77Br is also of promising utility as the 

generator of its very short-lived daughter 77mSe (Grant et al., 1981). This isomeric state decays 

to stable 77Se with 17.45 s half-life and a γ-ray ideal for imaging with the Anger camera (162 

KeV), but without the emission of any primary particulate radiation. Its intensity is, however, 

very low. 

The radioisotope 80mBr (4.4 h) appears to be suitable for therapeutic purposes due to its decay 

by converted internal transition which involves the release of about seven Auger electrons per 

decay. 80mBr is attractive in the treatment of steroid hormone positive cancers since its half-

life is very well matched to the biology of estrogen receptor (ER) (Mease et al., 1991). 
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1.9.2 Production Routes and Target 

The various techniques of preparation of the neutron deficient radioisotopes of bromine 

have been extensively reviewed (Waters et al., 1973; Nunn and Waters, 1975; Nozaki et al., 

1979; Blessing et al., 1982; Qaim and Stöcklin, 1983; Blessing and Qaim, 1984; Kovács et 

al., 1985; Qaim, 1986; Gallano and Tilbury, 1998; Tolmachev et al., 1998; Hassan et al., 

2004; Spahn et al., 2009). The bromine isotopes are obtained by irradiating stable arsenic, 

selenium, krypton or bromine targets with charged particles. As these four elements possess 1 

to 6 stable isotopes the choice of the transmutation reaction that can be used is large. The 

variety of possible production routes can be followed in the chart of nuclides (Fig. 1.4). 

 An arsenic target has to be irradiated with 3He or 4He ions to allow the production of 
75,76,77Br. As natural arsenic has only one stable isotope, the number of interfering nuclear 

reactions is limited. Proton irradiation of a selenium target gives easy access to bromine 

isotopes (Waters et al., 1973; Nozaki et al., 1979; Nunn and Waters, 1975); however, natural 

selenium has six stable isotopes, and consequently a high yield of a radionuclidically pure 

product necessitates the use of an enriched target (Kovács et al., 1985; Hassan et al., 2004; 

Spahn et al., 2009). In particular the route 80Se(p,n)80mBr needs to be investigated since so far 

it was not studied for the production of 80mBr. 

A bromine target irradiated with deuterons or protons can be used to prepare radioactive 

isotopes of krypton which decay to 75Br, 76Br or 77Br (Qaim, 1977; Nozaki  et al., 1979; Qaim 

and Weinreich, 1981; Maziere and Loc’h, 1986; Tarkányi et al., 1993) (see Fig. 1.3). Also, a 

krypton target bombarded by protons or deutrons can be theoretically used to produce 75Br or 
76Br . 

The highest yield of 75Br is obtained using the 76Se(p,2n)75Br reaction on enriched 76Se 

(Kovács et al., 1985; Vaalburg et al., 1985). Although proton induced reactions give higher 

yields for 77Br production, the 75As(α, 2n)77Br reaction has been used most commonly (cf. 

Blessing and Qaim, 1984), due to the more advantageous properties of an arsenic target 

(Gallano and Tilbury, 1998). An overview of the nuclear reactions useful for the production 

of radiobromines is given in Table 1.5.  

 

1.9.3 Chemical Separation  

For the radiochemical separation of radiobromine from an arsenic or selenium target, 

possible contamination by nonradioactive bromine from reagents and laboratory atmosphere 

should always be considered. The following three methods have been reported: 
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 (1) Dry distillation and thermochromatography (Janssen et al., 1980; Blessing et al., 

1982; Blessing and Qaim, 1984; Kovács et al., 1985; Vaalburg et al., 1985; Tolmachev et al., 

1998; Wachsmuth et al., 2000)  

(2) Distillation from a solution (Helus, 1970; Nunn and Waters, 1975; Iofa et al., 1975; 

Alfassi and Helus, 1983) and 

 (3) Co-precipitation and subsequent removal of cations by ion exchange (Nozaki et al., 

1979; Ballaux et al., 1967; Norton et al., 1978; Madhusudhan et al., 1979; Grant et al., 1981; 

Broden and Skarnemark, 1981).  

Several methods for dry distillation of bromine isotopes are described in the literature. 

Janssen et al. (1980) used an enriched target with the composition of Na2SeO3.88 0.38Na2O for 

the production of 77Br.  The possibility of a dry distillation technique for both a carrier-free 

separation of 77Br from irradiated enriched selenium targets and a quantitative recovery of the 

selenium is discussed. Dry distillation methods were applied for the production of 75Br 

(Vaalburg et al., 1985). Radiochemical yields of about 40-52 % were obtained.  The dry 

distillation at 300 oC is convenient since the same target can be reused without involving any 

reprocessing. Radiobromine was separated from Cu2Se by dry distillation at 1473 K and 

collected 80-95 % on platinum wool pretreated with CaCl2 (Vaalburg et al., 1985). 

Radiochemical analysis showed the radiobromine to be Br- for 95% and BrO- for 5 %. The 

total loss of selenide after irradiation and distillation was found to be less than 0.1 %. The 

isolation of radiokrypton from KBr pellets irradiated with protons and Na2Se pellets irradiated 

with 3He particles was done (Jong et al., 1979).  The 79Br(p,xn)76,77Kr reaction leads to high 

yields of 76Br and 77Br compared to other direct and indirect methods, with high specific 

activities. Radiobromine was separated from a Cu3As target (Blessing et al., 1982) without 

adding any carrier via dry distillation at 950 oC. Arsenic and selenium distill only negligibly 

and condense at the end of the quartz tube near the oven. The radiochemical yield of this 

distillation process was reported to be ˃90 %.   

Thermochromatography was used for separation of radiobromine from irradiated Cu3As 

alloy (Blessing and Qaim, 1984). The application of thermal chromatography in conjunction 

with dry distillation allowed the separation of selenium-free 76Br from a Cu2Se target enriched 

in 76Se (Tolmachev et al., 1998). The target remains intact with only minor loss of material 

(1% per run) and is directly ready for the next irradiation.  Bromine-76 is separated with an 

efficiency of 65-75 % within 60-75 min.  

The distillation of radiobromine from selenium after dissolution of the target in 

concentrated nitric acid (Iofa and Sevast’yanov, 1975) gives low yields (40% in 2 hours) of 
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bromine and a distillate which contains a high concentration of dissolved oxides of nitrogen. 

The H2SO4-K2Cr207 distillation method used by (Helus, 1970; Nunn and Waters, 1975) for 

the separation of 77Br from arsenic targets was unsuccessful when applied to selenium targets. 

Nozaki et al. (1979) tried various methods to obtain carrier- free 77Br in neutral salt free water 

from arsenic and selenium targets. Ballaux et al. (1967) reported the separation of 82Br formed 

in the neutron activation analysis of high purity selenium. The irradiated Se was dissolved in 

nitric acid, carrier bromide was added, and silver bromide precipitated.  A procedure for the 

synthesis and isolation of 77Br for nuclear medicine research has been developed at LASL (for 

review cf. Qaim, 1986). Metallic Mo targets are irradiated at LAMPF with medium energy 

protons at high beam current. Following dissolution, volatilization, volatile radiobromine was 

quantitatively precipitated as AgX (96% average yield). The ensuring cation exchange 

column gave an average yield of 95% for that step, for an overall, cumulative radiobromine 

recovery of 91.7 % which is completely free of all other radioactive species with the 

exception of small levels of 76Br and 82Br. 

A silver chloride co-precipitation and ion exchange separation method was described 

for the carrier-free isolation of 77Br bromide from isotopically enriched 77Se targets following 

dissolution of the irradiated 77Se in nitric acid (Norton et al., 1978).  A cation exchange (AG 

50W-X8) procedure was devised to remove the silver and yield a dilute hydrochloric acid 

solution containing 90 % of the 77Br precipitated as bromide.  Broden et al. (1981) developed 

fast on-line chemical separation procedures delivering pure fractions of short-lived Zr-, Nb-, 

Tc-, Br-, and I- isotopes from complex reaction product mixtures using the multistage solvent 

extraction system ‘SISAK 2’ in combination with a gas-jet recoil transport system. An 

improved method for production of >100 mCi of 77Br with the 78Se(p,2n)77Br nuclear reaction 

using a water-cooled target containing encapsulated metallic 78Se or a Pb78Se alloy was 

developed (Madhusudhan et al., 1979). The 77Br was separated with ~98% radiochemical 

yield and a radionuclidic purity of 98.9%.  

In the present work the separation of no-carrier-added radiobromine and no-carrier-

added radiogallium from an irradiated ZnSe target was aimed at.  
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2. Aims and Objectives of the Present Work 
 

The radionuclides 71-74As, 68Ge/68Ga and 76,77,80mBr are important for application, 

especially in nuclear medicine. The radionuclides 71,72,74As are suitable for positron emission 

tomography, while the radionuclide 73As is mainly applied as a tracer for environmental 

studies. The radionuclide 68Ga finds considerable interest in nuclear medicine, especially for 

use in positron emission tomography (PET). Its availability via the 68Ge/68Ga generator 

system is of great advantage, because periodic milking of 68Ga from 68Ge allows preparation 

of various kinds of chemical compounds at a hospital on routine basis. Recently, through 

further development of PET and high-energy γ-ray cameras, the bromine isotopes have 

received some more attention. This thesis deals with these radionuclides and their production 

methods. In particular, it covers some nuclear data measurements and novel radiochemical 

separation methods. 

The present work had four major objectives: 

(1) Development of a radiochemical separation method for no-carrier-added arsenic 

radionuclides from bulk amount of GeO2 target irradiated with protons. The speciation of 

radioarsenic produced, viz. the ratio of As(III) to As(V), needs to be determined. The 

extraction of radioarsenic by different organic solvents from acid solutions of various 

concentrations containing alkali iodide should be studied and optimized. The practical 

application of the optimized procedure in the production of 71As and 72As, including 

quantitative assay of the yield and purity, should be demonstrated. 

 

(2) Development of a novel separation route for 68Ge/68Ga generator system. At first the 

radiotracers 69Ge and 67Ga should be prepared in pure forms for tracer studies. The 

radiotracer 68Ge should be separated from proton irradiated Ga2O3 via liquid-liquid 

extraction, using H2SO4-HCl/ toluene system.  The various parameters affecting the 

extraction process via toluene should be optimized.   

For the separation of n.c.a. 67Ga from a proton-irradiated zinc target anion exchange and 

solvent extraction processes should be investigated and optimized. 
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 Using the no-carrier-added longer lived tracers, viz. 69Ge and 67Ga, the radiochemical 

separation of radiogallium from radiogermanium should be studied using ion exchange 

chromatography (Amberlite IR-120) and solvent extraction (Aliquat 336 in o-xylene). Both 

Amberlite IR-120 and Aliquat 336 in o-xylene have not been used before for separations 

involving radiogallium and radiogermanium. The novel optimized method should then be 

applied to the separation of 68Ga from its parent 68Ge and the quality of the final product 

should be ascertained. 

 

(3) Development of a separation scheme for n.c.a. radiobromine and n.c.a. radiogallium from a 

proton-irradiated ZnSe target. The adsorption behaviour of n.c.a. radiobromine, n.c.a. 

radiogallium, zinc and selenium towards the cation-exchange resin Amberlyst 15, in H+ 

form, and towards the anion-exchange resin Dowex 1x10 in Cl- and OH- forms should be 

studied. The separation of radiobromine should also be tested via solvent extraction using 

TOA in o-xylene. The optimium separation scheme should be applied to the production of 
77Br and 67Ga from the same target. 

 

(4) The formation of the Auger electron emitter 80mBr (T1/2= 4.4 h) through the 
80Se(p,n)80mBr reaction should be investigated up to 18 MeV using enriched 80Se targets, 

allowing a determination of the excitation function of the reaction. The expected thick 

target yield should be calculated.  
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3. Experimental 
 

3.1 Chemicals and Reagents 

All chemicals purchased were of high purity. Aluminium and copper foils (99.99 % 

pure) of natural isotopic composition and thickness between 10 and 100 µm, which were 

employed as beam monitor and/or absorber foils in cyclotron irradiations, were supplied by 

Goodfellow, UK. Germanium (IV) oxide (99.999%) was purchased from Strem Chemicals 

Inc., Germany.  Gallium(III)-oxide (99.99%) and zinc selenide powder (corn size 5 µm, 99.99 

%) were purchased from Sigma-Aldrich Co., Germany. GeO2, Ga2O3 and ZnSe were used as 

target materials in proton irradiations at the cyclotron. 

Concentrated nitric acid (65 %), hydrochloric acid (37%), sulphuric acid (98 %), acetic 

acid (98 %) and other reagents like potassium iodide, sodium hydroxide, hydrogen peroxide, 

zinc sulphate and ammonium chloride were supplied by Fluka AG, and Sigma-Aldrich Co, 

Germany. They were of analytical grade. 

Organic solvents like toluene, o-xylene, benzene, carbontetrachloride, n-hexane, 

cyclohexanone, liquid anion exchangers like Aliquat 336 (trioctylmethyl ammonium chloride) 

and  tri-octyl amine, and strongly acidic cation exchange resins Amberlite IR-120 ( H+ form, 

20-50 mesh) resin, Amberlyst 15 (H+ form, 20-50 mesh) and Dowex 1x10 ( Cl- form, 200-400 

mesh) were purchased from Merck, Germany. Diisopropylether was obtained from Fluka AG, 

Germany.  

 

3.2 Irradiation Experiments 

 

3.2.1 Irradiation Facilities 

The irradiations were performed at the Baby Cyclotron BC1710 (Fig 3.1) and at the 

injector cyclotron of the Cooler Synchrotron COSY (Fig 3.2), both at the Forschungszentrum 

Jülich GmbH. The incident proton energy used in irradiations at the BC1710 was 17 MeV. Its 

target system includes an  external irradiation facility, as shown in Fig. 3.1. For irradiations 

with proton energies up to 45 MeV the injector of COSY was used. The target system at the 

injector consists of an internal irradiation facility, a sketch of which is shown in Fig. 3.2. The 

irradiation beam is extracted with a tungsten septum. The energy adjustment in the target was 

done by introducing degrader foils into the stack.  The beam current used was about 250 to 
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500 nA and the usual irradiation time was about 1 hour. During the bombardment the targets 

were cooled at the back by circulating water. Fig. 3.3 shows the target holder, in which the 

stack and/or Al capsule containing the pressed target material is placed. This holder consists 

of an Al body and an adjustable stack holder. 

 

 

 

 

Fig. 3.1: The Baby cyclotron BC1710 and its remotely controlled target, Autochanger (Japan- 

Steel Works, Ltd), installed at the INM-5. 

 

 

 

 

 

 

 

 

 

 

                 

 

 

Fig. 3.2: Photograph of the Jülich Isochronous Cyclotron (JULIC) used as injector for COSY, 

and sketch of the target set-up inside the cyclotron chamber for irradiations. 
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Fig. 3.3: Target holder for irradiation of samples at the injector of  COSY 

 

3.2.2 Stacked-foil Irradiation Technique 

The stacked-foil technique was used for irradiations of samples for production and cross 

section measurements. A combination of target samples with monitor and absorber foils 

enables the adjustment of different projectile energies in the individual samples (see section 

1.2.4). 

 

 3.2.3 Determination of Charged Particle Flux 

The individual charged particle flux during different irradiation experiments was 

measured via beam integrators at Farady cups, which are available at the cyclotrons used.  In 

addition, in all experiments monitor foils were inserted to estimate the beam current.  

The proton beam currents were generally determined using Cu foils, utilizing the 

nuclear reactions natCu(p,xn)62,63Zn. For high energies the cross sections of the natCu(p,xn) 

processes are rather low; so the use of Ni monitor foils was more advantageous using 
natNi(p,x)57Ni reaction. Figs. 3.4, 3.5 and 3.6 show the monitor excitation functions, from 

which the reaction cross section at a particular projectile energy was taken. The fluxes were 

calculated using the absolute activity induced in the monitor foils.    
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Fig. 3.4: Excitation function of the natCu(p,x)62Zn reaction, taken from IAEA-

TECDOC-1211, for the determination of the proton flux. 

 

Fig. 3.5: Excitation function of the natCu(p,x)63Zn reaction, taken from IAEA-

TECDOC-1211, for the determination of the proton flux. 
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Fig. 3.6: Excitation function of the natNi(p,x)57Ni reaction, taken from IAEA-

TECDOC-1211, for the determination of the proton flux. 

 

3.3 Target Preparation 

Materials like Al, Ti, Cu, Mo, Ag and Au are commercially available as high purity foils 

of various thicknesses.  In other cases, several techniques can be used to prepare thin samples. 

These are; mechanical pressing, sedimentation of a suspension, electro-deposition, 

evaporation, or sputtering. Some of these techniques like sedimentation and mechanical 

pressing are used only for materials in a powder form. The others can be used for any form of 

materials, depending on their chemical and physical behaviors. The preparation of enriched 

isotope samples needs considerable precautions due to their high cost, and their availability 

only in small quantities. Uniformity of the prepared sample is a crucial parameter in cross-

section work. In general, the calculation of energy degradation is more accurate in case of 

homogenous thin foils. 
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3.3.1 Preparation of Targets via Mechanical Pressing 

For the preparation of GeO2, Ga2O3, ZnSe samples, pellets of different thicknesses were 

pressed using high-purity materials at 10 tons/cm2. Fig 3.7 shows the real photo and 

construction of the tool used for this purpose. It was made of stainless-steel. It consists of two 

cylinders; one of them is used as a base, with a big central hole, in which the second cylinder 

can be inserted. The second cylinder also involves a central hole with 10 mm diameter 

through which the rod of 10 mm diameter passes. The pressed pellet was placed into an Al 

capsule for production of radionuclide. 

 

 

 

 

 

 

 

 

 

Fig. 3.7: Pressing device used for sample preparation 

 

3.3.2 Preparation of Zn Targets via Electrodeposition 

The radionuclide 67Ga was produced using the natZn(p,xn)67Ga nuclear reaction. Zinc 

targets used for this purpose were prepared by electrodeposition using a stirring anode. The 

electrolytic solution used for zinc deposition was prepared by dissolving 3-5 g of ZnSO4 in 

distilled water (50 mL). A copper cathode and a platinum anode were used. The electrolytic 

cell takes 10 ml of solution. The voltage was adjusted to 5.5 V and the current to 150 mA.  

The applied current decreased during electrodeposition process due to the decrease in the 

conductivity of the solution as the zinc layer grew. A layer of 200-300 mg of zinc was 

obtained, depending on the time of electrodeposition, anode stirring and solution temperature. 

Fig. 3.8 represents the cell used for electrodeposition (cf. Mushtaq and Qaim, 1990).  
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Fig. 3.8:  Electrodeposition cell with stirring Pt anode (Mushtaq and Qaim, 1990) 

 

3.3.3 Preparation of Thin Targets via Sedimentation using Enriched 
80

Se 

For the preparation of thin targets needed in the investigation of the 80Se(p,n)80mBr 

reaction, the sedimentation technique was applied (Rösch et al. 1993), using a sedimentation 

cell made of Teflon, as it is shown in Figure 3.9. Aluminium foils of 100 µm thickness 

(99.5% pure) were used as backings. The foil was fixed and the enriched 80Se (99.9 %) 

material to be sedimented was transferred on top in the form of a suspension. The solvent was 

slowly evaporated, leading to the formation of thin layers attached to the backing foil. The 

homogeneity of the sample was verified using either a microscope or a strong magnifying lens 

(LUXO Deutschland GmbH). The deposited layer was carefully covered with an aluminium 

foil of 10 µm thickness for protection.  

 

 

  

 

 

 

 

 

Fig. 3.9:  Scheme and picture of a sedimentation cell 
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3.4 Determination of Radioactivity 

 

3.4.1 γ-ray Spectrometery 

To determine the radioactivity of each radionuclide, γ-ray spectrometery with a high 

purity germanium (HPGe) detector was used. The detector was shielded from the background 

radiation by a lead cylinder with an inner layer of copper to reduce gamma-ray scattering. The 

software Gamma Vision (Version 6.06, EG&G Ortec) was used for peak area analysis.  The 

program applies Gaussian fittings to the peaks of interest, whose search was done manually.     

There are several factors that affect the detection accuracy of the radiation. Among them 

the detector efficiency, is most important. It represents the probability with which an emitted 

particle or photon is detected in the counter. The efficiency includes the geometrical aspect, 

indicating the probability that the emitted radiation reaches the detector, as well as the 

physical aspects within the counting volume of the detector. Measurement of the absolute 

photo-peak detection efficiency at different distance as a function of energy was carried out 

with certified γ-ray standard sources of 133Ba, 137Cs, 154Eu, 60Co. In Fig. 3.10 an example of 

the correlation of counting efficiency and γ-ray energy can be observed.  

In addition, the use of standard sources allows the determination of the dead time (TD), 

which refers to the time interval in which the associated electronics are busy and cannot 

record any incoming pulses. As the activity increases the count rate increases and more 

fractional loss occurs. Therefore the source to detector distance should be optimized 

according to minimum dead time and suitable count rate. 

The other two important factors are the pile-up and random coincidence. In this case the 

probability of summing up coincidence pulses is higher than the result from randomly emitted 

photons. The summing loss depends mainly on the source to detector distance and the 

detector size. In random coincidence, it is possible at high count rate that two pulses are 

detected simultaneously and recorded as one pulse.  The distance of each sample to the 

detector was between 10 and 50 cm, so that the dead time was always lower than 5 % and the 

loss in count rate due to coincidence effects could be neglected. 
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Fig. 3.10: Absolute efficiency fitted curves of a HPGe γ-ray detector for 

two different source to-detector-distances. 

 

While counting 72As (T1/2= 26.01 h), the formation of 72Ga(T1/2=14.1 h) via (p,αn) and 

(p,2p3n) processes on 76Ge had to be taken into consideration, because of its interference with 

both the significant γ-lines of 72As. 

For measurement on 80mBr, emitting only a low energy γ-ray of 37.1 keV, a well 

calibrated thin HPGe SLP-detector (EG&G Ortec) was used, which consisted of an active 

layer of diameter of 3.2 cm, a depth of 1.3 cm and a thick 0.03 mm Be window. Concerning 

the detection of 77Br, the possibility of interference caused by coproduced 77As had to be 

considered. This was taken into account by analysing the rather weak 297.2 keV γ-ray of 77Br, 

which is not shared by its isobar, in addition to the two main γ-rays of energies 239.0 keV and 

520.6 keV. Within the limits of uncertainty, no 77As activity was detected.  

The radioactivity of the monitor reaction products 62Zn (T1/2= 9.26 h; Eγ= 596.7 keV; Iγ 

= 25.7 %), 63Zn (T1/2= 38.1 min; Eγ= 669.76 keV; Iγ= 8.4 %; Eγ=962.17 keV, Iγ = 6.6 %) and 

and 57Ni (T1/2=  35.6 h; Eγ= 127.16 keV; Iγ= 16.7 %; Eγ= 1377.63 keV, Iγ = 81.7 %) was 

determined via standard gamma ray spectrometry. 
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3.5 Radiochemical Separation of Radioarsenic from GeO2 

The GeO2 pellet was irradiated at the injector of COSY (see above). The radionuclides 

of arsenic formed were 71As, 72As, 73As and 74As. In addition, the radionuclides 69Ge (T1/2 

=1.63 d) and 67Ga (T1/2 = 3.26 d) useful for tracer studies were also formed.  

 

3.5.1 Target Dissolution 

Dissolution of the irradiated GeO2 pellet in concentrated or dilute HCl was avoided 

because of the potential formation of volatile GeCl4. At first a stock solution of the activated 

sample was prepared by dissolving the pellet (1 g) with gentle heating in 250 mL H2O to 

avoid possible interferences from K+ ions or KCl. This solution was used for studying the 

effects of KI-concentration, as well as those of various acids and organic solvents. Later the 

target (1 g) was dissolved in 20 mL of 2 M KOH solution at room temperature to make the 

dissolution faster and to achieve the solution in a small volume. The alkaline solution was 

thereafter acidified with HCl and used for further studies.  

 

3.5.2 Determination of the As(III)/ As(V) Ratio 

The As(III)/ As(V) ratio after dissolution of the target in H2O was determined by thin 

layer chromatography (TLC) (Jahn, 2009). A 20 µL aliquot of the respective solution was 

spotted about 1 cm from the end of a Si-60 thin layer on Al plate. The plate was developed for 

10 min in a mixture of 0.01 M aqueous NaHC4H4O6 /CH3OH solution in a ratio of 3/1 as 

mobile phase. After drying in open air, the locations of the origin, As(III), As(V) and the front 

on the developed plate were identified by electronic autoradiography (Instant-Imager, Packard 

Instruments Company). The retention factor was determined using the equation: 

                               
frontsolvent by   travelleddistance

substanceby   travelleddistance
=fR                                                   3.1 

The retention factors (Rf) of 0.6 and 0.9 were used to specify As(III) and As(V), 

respectively (Jahn, 2009). In order to examine the radionuclidic purity of these species, the 

radioactivity of the corresponding zone was assayed using gamma ray spectrometry.  

 

3.5.3 Development of Radioarsenic Separation 

3.5.3.1 Solvent extraction of radioarsenic in presence of bulk germanium 

The radiochemical separation of n.c.a. radioarsenic from n.c.a. radiogallium and bulk 

Ge was carried out via solvent extraction from acid media using organic solvents. The 
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predominant radionuclides generated in the target, i.e. 71,72,74As, 69Ge and 67Ga (see above) 

were used to achieve complete balance of the separation process. Several optimization 

experiments were performed to determine the optimum conditions for separation and recovery 

of arsenic radionuclides which are described in detail below. In general, for extraction 10 mL 

each of organic and aqueous phases were shaked for 1 min in a 25 mL separatory funnel. 

After separation 5 mL of each phase were taken and the activity of the radionuclides in both 

phases was determined by γ-ray spectrometry; therefrom the radiochemical yield was 

calculated. All experiments were carried out at room temperature.  

After the optimization process to find the optimum separation conditions, using several 

fractions of the whole target, the extraction of radioarsenic was also studied after removal of 

the bulk amount of germanium. 

 

3.5.3.1.1 Effect of acidity and iodide concentration  

At first the extraction of radioarsenic by cyclohexane from an aqueous solution of the 

target acidified with hydrochloric acid (containing bulk germanium) was investigated to study 

the effect of pH. The HCl concentration was varied stepwise from 4 to 9 M without adding 

KI, and then from 2 to 7 M with varying KI concentrations (0.1, 0.5 and 1.0 M). Thereafter 

the effect of KI concentration up to 1.0 M in steps of 0.1 M was studied at 5 M HCl in detail. 

The use of KBr instead of KI was also tested, but there was no extraction of radioarsenic from 

5 M HCl and 1 M KBr.  

 

3.5.3.1.2 Effect of various acids 

 Besides HCl, the extraction of As with cyclohexane was investigated using the acids 

HClO4, HNO3, HBr, and H2SO4, each of them 5 M at 1 M KI concentration.  

 

3.5.3.1.3 Effect of organic solvents 

With the optimized conditions, i.e, 1 M KI and 5 M HCl, the effect of the organic 

solvents cyclohexane, chloroform, toluene, heptane and diethyl ether on the extraction 

capability was studied. 

 

3.5.3.1.4 Back extraction of arsenic 

The back extraction of radioarsenic from the cyclohexane into the aqueous phase was 

investigated using different media, namely 7 M ammonia, 0.1 - 2 M HCl, 0.1 -2 M NaOH, 

water and 0.1% H2O2.  
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3.5.3.2 Extraction of radioarsenic after removal of bulk germanium 

For precipitation of the bulk GeO2 matrix the irradiated target (1 g) was dissolved in 20 

mL of 2 M aqueous KOH and the pH of the solution was carefully adjusted to  7 - 8 with a 

minimum volume of concentrated HCl. At this pH, Ge was precipitated as hydrated GeO2, 

which was removed from the solution by filtration using a 0.2 µm filter paper. The filtrate and 

the precipitate were then subjected to gamma ray spectrometry. After acidification of the 

filtrate up to a concentration of 5 M HCl, and adjusting to 1 M KI, the radioarsenic was 

extracted with cyclohexane as described above. Depending on the results obtained, a series of 

experiments was done on the solution obtained after precipitation to decrease the content of 

germanium. The extraction of radioarsenic and germanium was studied by decreasing the 

amount of KI to 0.5 M and at various HCl concentrations. 

 

3.5.3.3 Optimized procedure for separation of radioarsenic 

The GeO2 target was dissolved in 20 mL of 2 M KOH and the radioarsenic was extracted 

after acidification of the solution with HCl. A selective extraction, consisting of extraction of 

radioarsenic by cyclohexane followed by a re-extraction in the aqueous medium, was 

developed and optimized. 

  

3.5.4 Production and Quality Control of 
71

As and 
72

As 

The optimized separation method was used in the production of 71As and 72As via 

proton irradiation of GeO2. Two GeO2 targets, each of them weighing about 1 g, were 

irradiated, in a row for one hour at a beam current of 1 µA. The proton energy range in the 

first target was Ep= 44 → 28.5 MeV, and in the second Ep= 25.8 → 0 MeV. The proton 

energy degradation within the stack was calculated using the program STACK, which is 

based on the range-energy relationship described by Williamson et al. (1966). Table 3.1 gives 

a stack calculation for GeO2. The exact proton flux was determined as described earlier. The 

separation of radioarsenic from the irradiated germanium dioxide via solvent extraction was 

done as follows.  

The irradiated target was dissolved in 10 mL of 2 M KOH and the radioarsenic was 

extracted with cyclohexane  from that solution after acidification to 4.75 M HCl and adjusting 

the KI concentration to 0.5 M. The radioarsenic was back-extracted into 10 mL of an aqueous 

0.1 % H2O2 solution. Traces of co-extracted germanium were extracted with cyclohexane 

after adding 10 µL (30 %) H2O2 solutions and making HCl concentration as 9.2 M. 
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Table 3.1: Results of the calculation of energy degradation within the GeO2 sample using the 

computer code STACK. 

 Projectile data        

 Type 
Atomic no. of 

projectile 
Molar weight 

Primary energy 

[MeV] 
  

 H 1 1.0079 45   

Target 
Atomic no. 

of target 

Molar 

weight 
Thickness 

Average 

energy 
Energy in Energy out 

Energy 

absorption 

    [g/mol] [g/cm2] [MeV] [MeV] [MeV] [MeV] 

Cu 29 63.546 7.926E-03 44.97 45.00 44.93 0.07 

Al 13 26.98154 5.402E-02 44.64 44.93 44.36 0.57 

Ge 32 72.59 1.015E-01 43.93 44.36 43.49 0.86 

O 8 15.9994 4.474E-02 43.22 43.49 42.95 0.54 

Ge 32 72.59 1.015E-01 42.51 42.95 42.07 0.88 

O 8 15.9994 4.474E-02 41.79 42.07 41.51 0.56 

Ge 32 72.59 1.015E-01 41.06 41.51 40.60 0.91 

O 8 15.9994 4.474E-02 40.32 40.60 40.03 0.57 

Ge 32 72.59 1.015E-01 39.57 40.03 39.10 0.93 
O 8 15.9994 4.474E-02 38.81 39.10 38.51 0.59 

Ge 32 72.59 1.015E-01 38.03 38.51 37.55 0.96 

O 8 15.9994 4.474E-02 37.25 37.55 36.94 0.61 

Ge 32 72.59 1.015E-01 36.45 36.94 35.95 0.99 
O 8 15.9994 4.474E-02 35.64 35.95 35.32 0.63 

Ge 32 72.59 1.015E-01 34.81 35.32 34.30 1.03 

O 8 15.9994 4.474E-02 33.97 34.30 33.64 0.65 

Ge 32 72.59 1.015E-01 33.11 33.64 32.58 1.06 
O 8 15.9994 4.474E-02 32.24 32.58 31.90 0.68 

Ge 32 72.59 1.015E-01 31.34 31.90 30.79 1.11 

O 8 15.9994 4.474E-02 30.43 30.79 30.08 0.71 

Ge 32 72.59 1.015E-01 29.50 30.08 28.92 1.16 
O 8 15.9994 4.474E-02 28.54 28.92 28.17 0.75 

Al 13 26.98154 5.402E-02 27.75 28.17 27.34 0.83 

Cu 29 63.546 7.963E-03 27.29 27.34 27.24 0.10 

Al 13 26.98154 5.402E-02 26.81 27.24 26.39 0.85 

Ge 32 72.59 9.588E-02 25.78 26.39 25.18 1.21 

O 8 15.9994 4.227E-02 24.78 25.18 24.38 0.79 

Ge 32 72.59 9.588E-02 23.74 24.38 23.09 1.29 
O 8 15.9994 4.227E-02 22.67 23.09 22.24 0.85 

Ge 32 72.59 9.588E-02 21.55 22.24 20.86 1.39 

O 8 15.9994 4.227E-02 20.39 20.86 19.93 0.93 

Ge 32 72.59 9.588E-02 19.17 19.93 18.42 1.51 
O 8 15.9994 4.227E-02 17.90 18.42 17.39 1.03 

Ge 32 72.59 9.588E-02 16.54 17.39 15.70 1.69 

O 8 15.9994 4.227E-02 15.11 15.70 14.52 1.18 

Ge 32 72.59 9.588E-02 13.54 14.52 12.56 1.96 

O 8 15.9994 4.227E-02 11.85 12.56 11.13 1.43 

Ge 32 72.59 9.588E-02 9.89 11.13 8.66 2.47 

O 8 15.9994 4.227E-02 7.65 8.66 6.64 2.02 

Ge 32 72.59 9.588E-02 4.47 6.64 2.29 4.35 

O 8 15.9994 4.227E-02 1.15 2.29 0.00 2.29 

Al 13 26.98154 5.402E-02 0.00 0.00 0.00 0.00 
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Experimental and theoretical radionuclidic yields were compared and the radionuclidic 

impurities with the separated radioarsenic were determined using γ-ray spectrometry. The 

chemical impurities in the separated radioarsenic solution were detected by ICP-MS after the 

decay of the radionuclides (Elan 6100 at the Central Department for Chemical Analysis of the 

Forschungszentrum Jülich).  

 

3.6 Radiochemical Separation of  Radiogermanium  from Irradiated Ga2O3 

The radionuclides 68Ge (T1/2 =270.8 d), 69Ge (T1/2 = 1.63 d), 67Ga (T1/2 = 3.26 d) and 
68Ga (T1/2 = 67.63 min) were produced by the proton irradiation of Ga2O3. Several 

optimization studies were carried out using 69Ge and 67Ga as tracers, both of them were 

formed in 45 MeV proton-irradiation of natGa via the nuclear reactions 69Ga(p,n)69Ge and 
69Ga(p,p2n)67Ga, respectively. The n.c.a. 68Ge and 69Ge mixture was separated from the 

Ga2O3 target via solvent extraction. For the determination of the distribution coefficients and 

the optimization studies a stock solution of the activated sample was prepared by dissolving 

the irradiated matrix in 20 mL of 8 M H2SO4 with heating for 30 min.  

 

3.6.1 Effect of H2SO4 and HCl Concentration on the Extraction of Radiogermanium 

The effect of H2SO4 concentration in the range of 6 to 14 M on the separation of 

radiogermanium from proton irradiated Ga2O3 with and without the presence of different 

concentrations of HCl was studied using toluene. The Kd value were determined. After 

extraction, 68Ge/69Ge was back extracted into H2O. Separation of 68Ge/69Ge mixture from the 

irradiated Ga2O3 using chloroform at different sulphuric acid concentration was also 

investigated at 0.4 M HCl. A 5 mL aliquot was taken from each phase and measured using γ-

ray spectrometry to calculate the distribution of radigermanium and gallium between the 

aqueous and organic phases. 

 

3.6.2 Optimized Procedure for Radiogermanium Separation  

The optimized procedure for the separation of radiogermanium consisted of the 

following:  Proton irradiated Ga2O3 was dissolved in 8 M H2SO4 and HCl was added to reach 

a concentration of 0.4 M. It was then shacken with 10 mL of toluene for 2 min. 

Radiogermanium was extracted in toluene while gallium remained in the aqueous phase. 

Thereafter radiogermanium was back-extracted from toluene into 10 mL H2O. 
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3.6.3 Production and Quality Control of 
68

Ge 

To test the radiochemical separation yield of radiogermanium, production experiments 

were performed following the optimized separation scheme, and the resulting yield was 

compared with the theoretical one. A Ga2O3 pellet was irradiated with protons, in the energy 

range Ep= 31→ 15.6 MeV.  Table 3.2 gives an example of the calculation performed for the 

required target thickness for degradation of proton beam from 31 to 15.6 MeV. The incident 

proton energy of 45 MeV was degraded to the desired energy by Al absorber foils. After 

dissolution of the irradiated target in 8 M H2SO4, and addition of 0.4 M HCl, 
68Ge (n.c.a.) was 

separated with toluene and back extracted into water.  

The theoretical yield for the certain energy range was taken from the calculated literature  

values (see section 1.7.2),. The separation yield of radiogermanium from the proton irradiated 

Ga2O3 was determined by a comparison of the practical yield of the separated 

radiogermanium with the calculated theoretical yield.  The radionuclidic purity of the 

separated radiogermanium was determined by γ-ray spectrometry. The chemical impurities in 

the separated radiogermanium solution were detected after the decay of the radionuclides by 

ICP-MS (Elan 6100). 

 

Table 3.2: Calculation of the required thickness of Ga2O3 to degrade the proton energy from 

31 to 15.6 MeV and loss in yield at a given beam current compared with a pure Ga target. 

 Composition R  (mg/cm
2
) 

32OGaR  Loss of yield 

Ga (74 %) 935.1 
8.666

26.0

1.935

74.01

32

+=
OGaR

 67.0)74.0(
1.935

5.846
=  

O (26%) 666.8 5.846
32
=OGaR  

33 % loss in yield at a 

given beam current 

 

3.7 Radiochemical Separation of Radiogallium from Radiogermanium    

For optimization studies on the separation of n.c.a. 68Ga from a mixture of 68Ge and 
69Ge, a longer-lived tracer of gallium, e.g. 67Ga (T1/2= 3.26 d), was also needed. It was 

produced by the natZn(p.x)67Ga nuclear reaction on natural zinc. 

 

3.7.1 Separation of  n.c.a. 
67

Ga from Irradiated Zinc Target  for Tracer Use 

The electroplated natZn target was irradiated with 17 MeV prtons at the Baby Cyclotron 

(BC1710). A stock solution was preparead by dissolving the irradiated target in HCl, the Cu 
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backing is not dissolved under this conditions and taken out of the solution, evaporation to 

almost dryness and dissolution in water. The radiochemical separation of n.c.a. 67Ga from 

zinc was done via solvent extraction and anion exchange chromatography. Distribution 

coefficients of 67Ga and zinc on anion exchange resin Amberlite CG-400-II (Cl- form, 200-

400 mesh) at various HCl concentrations were studied (see below). For solvent extraction, 

diisopropylether was used. The organic and aqueous phases were transferred to a separatory 

funnel and shaken for 2 min.  The effect of various HCl concentrations (3-10 M) on the 

extraction of radiogallium from zinc target was studied. After optimizing the extraction 

condition, 67Ga was back-extracted by shaking with 10 mL of H2O for 2 min. The solution 

was evaporated to almost dryness and the residue dissolved in 5 mL H2O.  The purity of 67Ga 

was ascertained by the absence of 65Zn via γ-ray spectroscopy.  

 

3.7.2 Cation Exchange Separation of Radiogallium from Radiogermanium 

Batch experiments: The separation of radiogallium from the 68Ge/69Ge in admixture was 

carried out using the strong cation-exchanger Amberlite IR-120, which is a gel type strongly 

acidic cation exchange resin of the sulfonated polystyrene type. As aqueous phase, HCl was 

used. The distribution coefficient (Kd) was calculated using the equation, given below: 

                                              
eluent of mL Activity /

adsorbent of g Activity /
=dK

                                                 

3.2     

In each experiment, 100 mg anion-exchanger was placed in a vial (15 mL) with 10 mL of 

HCl of different concentrations containing n.c.a. radiogallium and n.c.a. 68Ge/69Ge. After 

shaking for 60 minutes (this time was found to be sufficient to reach the equilibrium), the 

phases were left to settle down; 5 mL of the aqueous phase was pipetted out, and measured by 

γ-ray spectrometry. 

Column experiments: A glass column (1 cm in diameter, 24 cm high) was packed with 

Amberlite IR-120 (H+ form) and washed with 0.5 M HCl immediately prior to use. A 500 µL 

portion of the solution containing n.c.a 68Ge/69Ge was taken and 200 µL of a solution of n.c.a 
67Ga was added. The two solutions were mixed and hydrochloric acid was added to achieve a 

concentration of 0.5 M in a total volume of 10 mL. Then this mixture was loaded on to the 

column. According to the results of the Kd measurements, the column was then rinsed with 

150 mL of 0.5 M HCl at a flow rate of 3 mL/min. Under these conditions all the activity of 

radiogallium was adsorbed on the resin and n.c.a. 68Ge/69Ge are eluted. The elution process 

was continued till no 67Ga was detected in the eluate. The elution profiles of radiogallium and 
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radiogermanium as a function of eluted volumes were measured. 3 M HCl were used to elute 

radiogallium, the eluted fractions were then counted using a HPGe detector.  

 

3.7.3 Solvent Extraction Separation of Radiogallium from Radiogermanium     

The separation of radiogallium from radiogermanium via solvent extraction was also 

investigated. The solution was prepared as described above, transferred to a separatory funnel 

and shaken for 2 min with 10 mL of 0.1 M Aliquat 336 in an organic solvent. After 

disengagement, both aqueous and organic phases were investigated by γ-ray spectrometry, for  
67Ga and 69Ge, in order to calculate their distribution coefficients. Various solvents, like o-

xylene, carbon tetrachloride, benzene, n-hexane, and cyclohexanone were tested as diluents. 

The phase to volume ratio was kept at 1:1 to eliminate the problem of emulsification. Back 

extraction of radiogallium and radiogermanium from 0.1 M Aliquat 336 in o-xylene was 

studied with different concentrations of HCl (0, 0.5, 3, 4 M), 0.5 M H2SO4 and 0.5 M KOH.  

 

3.7.4 Optimized Procedure for Separation and Quality Control of 
68

Ga  

The separation of the daughter n.c.a.68Ga from the parent 68Ge was done using the 

optimized procedure. The parent 68Ge was acidified to 3 M HCl and n.c.a.68Ga was separated 

via 0.1 M aliquat 336 in o-xylene. Traces of 68Ge were back extracted from the organic phase 

by 3 M HCl (two times) while n.c.a.68Ga  was back extracted by 0.5 M KOH.  

The separation yield of the daughter n.c.a.68Ga from the parent 68Ge was determined by 

a comparison of the activity of the separated n.c.a.68Ga to the total activity before separation. 

The latter was determined non-destructivitly via γ-ray spectrometry prior to separation.  The 

chemical impurities in the separated 68Ga solution were detected after the decay of the 

radionuclides by ICP-MS. 

 

3.8 Separation of Radiobromine and Radiogallium from Irradiated ZnSe Target 

The target material ZnSe in the form of powder was pressed under a pressure of 10 

tons /cm2 to a 13-mm diameter pellet (see above). After putting this pellet in an Al capsule, it 

was irradiated at the injector of COSY with 45 MeV protons. The radionuclides 75Br (T1/2 = 

1.5h), 76Br (T1/2 = 16.2 h), 77Br (T1/2 =57 h), 67Ga (T1/2 = 3.26 d), 65Zn (T1/2 = 244.26 d) and 
75Se (T1/2 = 119.64 d) were formed. 
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3.8.1 Dissolution of ZnSe Target 

The dissolution of ZnSe (250 mg) was investigated using HCl, HNO3, and different 

concentrations of KOH. In the case of HCl, the sample was not completely dissolved even 

after addition of H2O2. ZnSe was dissolved very easily in conc. HNO3 (4 mL). For KOH at 

least 10 mL of 10 M KOH and heating was needed to complete dissolution within 1 hour.  So 

the sample was dissolved in conc. HNO3 and 10 M KOH in the beginning to optimize the 

separation process. The dissolution of the sample in 10 M KOH proved to be the best. 

 

3.8.2 Anion and Cation Exchange Studies  

A series of experiments was done to study the effect of different concentrations of HCl, 

HNO3, and KOH as the aqueous phase on the distribution coefficients (Kd) of no-carrier- 

added radiobromine, n.c.a. radiogallium, zinc and selenium on both Amberlyst 15 and Dowex 

1x10 resin as solid phase. Amberlyst 15 resin is a strong acid cation exchanger, H+-form, 20-

50 mesh, while Dowex 1x10 resin is a strong base anion exchanger, Cl- form, 200-400 mesh. 

In case of Amberlyst 15, we used it in the H+ form, while Dowex 1x10 was washed with 

water and KOH to transfer it to OH- form. 100 mg of pre-treated resin and 10 ml of aqueous 

phase were shaken for 60 min. The phases were left to settle and then 5 mL of an aqueous 

phase was pipetted out for counting by γ-ray spectrometry. The distribution coefficients (Kd) 

were determined using Eq. 3.2. 

Resin preparation; The resin (20 g of Dowex 1x10) was washed with 100 mL of 1 mol 

L-1 hydrochloric acid followed by extensive rinsing with de-ionized water to neutral pH. 

Conversion to the hydroxide form was achieved by washing with 100 mL of 1 mol L-1 

potassium hydroxide solution. After washing with de-ionized water the resin was dried 

overnight at 40 oC. 

 The effect of chloride ion concentration in the solution on the adsorption of 

radiobromine, radiogallium, zinc and selenium was studied.  NH4Cl was added to the aqueous 

phase to increase the chloride concentration, while the solid phase consisted of Dowex 1x10. 

The effect of sulfate ion concentration in the solution on the adsorption of radionuclides under 

investigation was studied, as well. For this propose Na2SO4 was added to the aqueous phase 

in order to increase the sulfate concentration, while the solid phase was Dowex 1x10.  

 

Column chromatography experiments; A glass column (1cm in diameter, 6 cm high) was 

packed with Dowex 1x10 (3 g) and conditioned first with KOH in case of radiobromine 
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adsorption. In this work, 0.2 M H2SO4, tetra octyl methyl ammonium chloride in o-xylene 

have been used to find the optimum elution conditions. The column was then rinsed with 1 M 

KOH at a flow rate 1±0.2 mL/min. The solution containing the active sample 10 M KOH was 

diluted first to 1 M KOH and loaded onto the column. At this molarity all the radiobromine 

was adsorbed on the resin while radiogallium, zinc and selenium were not. 100 mL of 1 M 

KOH and 50 mL H2O were passed through the column. Radiobromine was then eluted with 

100 mL of 0.2 M H2SO4, and the eluted fractions were then counted. The elution profiles of 

radiobromine, radiogallium, zinc and selenium as a function of eluted volumes were 

measured.  Comparison was made at the elution of bromine with 50 mM trioctyl methyl 

ammonium chloride in o-xylene.   

The residue solution after adsorption of bromine contains radiogallium, zinc and 

selenium. Two experimental conditions were studied to separate radiogallium from Zn and 

Se; the first by dissolving 4 M NH4Cl in a residue solution.  For this, the sample was put into 

a Dowex 1x10 column (3 g, 6 cm height, Cl- form) preconditioned with NH4Cl. Under these 

conditions radiogallium was adsorbed while zinc and selenium were not. Then radiogallium 

was eluted with 0.1 M HCl. In case of the second experimental set up the residue solution was 

acidified up to 9 M HCl concentration. The column was first preconditioned by passing 

through 9 M HCl. The residue solution at 9 M HCl was passed through the column. For 

elution of zinc and selenium 9 M HCl was then passed through the column followed by 0.1 M 

HCl to elute radiogallium. Comparison of the two eluted conditions was done. 

 

3.8.3 Separation of Radiobromine via Solvent Extraction  

The solvent extraction of n.c.a. radiobromine and n.c.a. radiogallium using 

Trioctylamine (TOA) dissolved in o-xylene was done. The extraction solutions of desired 

concentrations were prepared by adding calculated amounts of TOA to xylene.  In order to 

study the separation and extraction of radiobromine, about 10 mL of HNO3 solution of a 

particular concentration containing measured activities were shaken with equal volume of 

TOA solution of a desired concentration for about 2 min. The effect of HNO3 (0.1 -15 M) 

concentration on the extraction process of radiobromine was investigated using 0.7 M TOA in 

xylene.  Different concentrations of TOA in o-xylene at 1 M HNO3 were used to study the 

effect of TOA on the extraction process. Back extraction of radiobromine from the organic 

phase was studied with 0.5 and 1 M KOH. 
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3.8.4 Optimized Procedure for Separation of Radiobromine and Radiogallium 

The procedure for the separation of radiobromine and radiogallium via anion exchange 

was optimized. After the dissolution of the ZnSe target in 10 M KOH, the solution was 

diluted to 1 M KOH, and passed through the anion exchange resin (Dowex 1x10 column 

preconditioned with 1 M KOH). Elution was done with 1 M KOH to remove radiogallium, 

zinc and selenium whereas radiobromine was adsorbed on the column. Then, the 

radiobromine was eluted using 0.2 M H2SO4. For separation of radiogallium, NH4Cl was 

dissolved in the residue solution and its concentration made 4 M. The solution was then 

passed through the Dowex 1x10 column in chloride form, preconditioned with 4 M NH4Cl.  

Radiogallium was adsorbed while zinc and selenium were eluted. Radiogallium was then 

eluted with 0.1 M HCl. 

 

3.8.5 Quality Control of 
76,77

Br and 
66,67

Ga 

The radionuclides 75Se and 65Zn formed in the irradiated target were used to measure 

the contamination of the solution with Se and zinc. The optimized separation method was 

used in the production of 76,77Br and 66,67Ga via proton irradiation of ZnSe target. A 260 mg 

ZnSe pellet was irradiated with Ep= 17→10 MeV protons for 1 hour at a beam current of 2 

µA.  

The separation yield of radiobromine and radiogallium was determined by a 

comparison of the practical yields of the separated radiobromine and radiogallium with the 

theoretical yields.  The radionuclidic purity of the separated radiobromine and radiogallium 

was determined by γ-ray spectrometry. The chemical impurities in the separated solutions 

were detected after the decay of the radionuclides by ICP-MS (Elan 6100). 

 

3.9 Study of the 
80

Se(p,n)
80m

Br Reaction 

For production of the Auger electron emitting radionuclide 80mBr, cross sections were 

determined for the nuclear process 80Se(p,n)80mBr from threshold up to 18 MeV. Thin targets 

of enriched 80Se powder, used in irradiations, were prepared by utilizing the sedimentation 

technique, as described earlier (section 3.3.3).  The samples were irradiated in a stacked-foil 

arrangement together with different monitor Cu foils at the Compact Cyclotron CV 28 of the 

Forschungszentrum Jülich. The proton energy degradation within the stack was calculated 

using the computer code STACK as described above.  
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3.9.1 Determination of the Absolute Activity 

The measured radioactivity of all samples and monitor foils was converted to the 

radioactivity at the end of bombardment (EOB). The basis for the determination of the 

radioactivity from the measured γ-ray spectra is the counted number of decay incidents, 

represented by the peak area P of the specific γ-ray energy. This peak area is summed over 

the period of the measuring time Tlive, thus the radioactive decay of the analysed sample 

during this time has to be considered and a corresponding decay correction has to be made. 

Therefore, for the calculation of the absolute radioactivity A at the beginning of the 

measurement, equation 3.2 is supplemented with the appropriate decay term.  

                                                               )1( liveT
eI

P
A λ

γε
λ

−−
=

                                                

3.2 

The dead time correction was included automatically in the registration of the 

measurement time. Due to the relatively large distance between the sample and the detector, 

the correction for coincidence effects could be neglected. The radioactivity AEOB at the end of 

bombardment can then be calculated according to the equation of the radioactive decay. 

                                                         

t

EOB eAA λ.=
                                                       3.3 

t = time until beginning of measurement 

 

3.9.2 Calculation of Nuclear Reaction Cross Section 

From the experimentally determined absolute activity of the product at the end of 

bombardment (EOB), and the proton flux deduced via monitor reactions, the reaction cross 

section was calculated at each effective proton energy using the well known activation 

equation. Based on the known half-life (T1/2), the bombardment time (tB), the number of 

nuclei of the target element (NX) in the sample and the abundance of the target isotope in the 

target element (H), the reaction cross section was calculated by reformulating the activation 

equation as follows. 

                                                    

1
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3.4 

The projectile flux Φ was deduced from the measured radioactivity at EOB produced in the 

monitor foils. 
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3.9.3 Yield of the Produced Radionuclide 

The produced quantity of the radionuclide is characterized by the yield value, which is 

calculated using the cross section data of the reaction. As the incident beam propagates 

through several thin foils in a row, its energy decreases due to the stopping powers of the 

materials involved. The reaction cross section in this case within the target includes an 

interval of values varying with the energy degradation. For the calculation of the yield, firstly 

the whole target thickness is divided into intervals of 1 MeV absorbed energy, which are 

considered as separate targets of the same material in cascade positions. The computer code 

STACK was used to calculate the thickness of selenium target in g/cm2 corresponding to each 

energy step through all the energy range. Table 3.3 gives the calculations to degrade the 

energy from 18 to 1 MeV, in 1 MeV steps. The cross section values were taken from the 

experimental excitation function of the reaction, which was determined in this work.  

 

The yield (in Bq) was then calculated using the following equation: 

                                                   dEE
dpx

dE
e

M

HN
Y

E

E
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1
2

1
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−

− ∫ 







−Φ=                              3.5 

where NA = Avogadro number, H = abundance of the target isotope in the target element, M = 

atomic weight of the target element, Φ = beam current, (dE/d(px) = stopping power, σ(E) = 

cross section at the mean energy E of each interval,  λ = decay constant of the product 

radionuclide,  t = irradiation time 

The value obtained by calculating the produced activity at each energy interval using 

the activation formula is called partial yield (differential yield). A summation over the whole 

energy range absorbed within the target results in a value known as the integral yield or thick 

target yield. From the resulting yields, it was possible to calculate the expected yield of a 

radioisotope over a certain range of energy by subtracting the integral yield at the end point 

from that at the starting point.  
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Table 3.3: Calculation of 80Se thickness that degrades the proton energy in 1 

MeV steps over the energy range 18 → 1 MeV using the computer code STACK. 

Projectile data       

Type 
Atomic no. of 

projectile 
Molar weight  

Primary energy 

[MeV]   

H 1 1.0079  18   

Target 

Atomic 

no. of 

target 

Molar 

weight 

Calculated 

thickness 

Average 

energy 

Energy 

in 
Energy out 

Energy 

absorption 

    [g/mol] [g/cm
2
] [MeV] [MeV] [MeV] [MeV] 

Se 34 80 6.236E-02 17.50 18.00 17.00 1.00 

Se 34 80 5.919E-02 16.50 17.00 16.00 1.00 

Se 34 80 5.665E-02 15.50 16.00 15.00 1.00 

Se 34 80 5.405E-02 14.50 15.00 14.00 1.00 

Se 34 80 5.106E-02 13.50 14.00 13.00 1.00 

Se 34 80 4.859E-02 12.50 13.00 12.00 1.00 

Se 34 80 4.534E-02 11.50 12.00 11.00 1.00 

Se 34 80 4.261E-02 10.50 11.00 10.00 1.00 

Se 34 80 3.976E-02 9.50 10.00 9.00 1.00 

Se 34 80 3.638E-02 8.50 9.00 8.01 1.00 

Se 34 80 3.352E-02 7.50 8.01 7.00 1.00 

Se 34 80 3.014E-02 6.50 7.00 6.01 1.00 

Se 34 80 2.702E-02 5.50 6.01 5.00 1.00 

Se 34 80 2.344E-02 4.50 5.00 4.00 1.00 

Se 34 80 1.982E-02 3.51 4.00 3.01 1.00 

Se 34 80 1.614E-02 2.51 3.01 2.01 1.00 

Se 34 80 1.221E-02 1.51 2.01 1.01 1.00 

 

 

3.9.4 Determination of Uncertainties  

The total uncertainty of the measured cross section was obtained by combining all the 

individual uncertainties in quadrature. In general the major uncertainties were associated with 

proton flux, γ-ray detector efficiency and peak area analysis. The sources of uncertainty can 

affect the calculated cross section values directly, or indirectly. For example, homogeneity of 

the prepared sample is not expressed by a certain parameter in the formula of the cross section 

but is considered as a source of error in calculated mass per cm2. It also affects the 

degradation of energy within the stack and consequently contributes to the uncertainty of the 

estimated energy at every sample. The uncertainty can be classified also as random and 

systematic uncertainty. The random uncertainty expresses the random errors in experimental 

work, which are caused by unknown and unpredictable changes in the experiment. These 
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changes may occur in the measuring instruments or in the environmental conditions. The 

systematic uncertainty expresses the error which is found in all the experiments. It may occur 

because there may be something wrong with the instrument or its data handling system, or 

because the experimenter wrongly uses the instrument. The systematic uncertainty is for 

example, in beam current, γ-ray detector efficiency, isotopic enrichment etc. The most 

significant uncertainties and their estimated magnitudes are summarized in Table 3.4. 

 

Table 3.4: The estimated uncertainties in cross-section 

calculation. 

Individual uncertainties Magnitude [%] 

Target mass 0.1 

Target homogeneity 3 – 7 

Isotopic enrichment 0.5- 1 

Target area 0.5 – 1 

γ-ray detector efficiency 2 – 5 

Peak area and counting statistics 3 – 8 

γ-ray abundance 1- 3 

Irradiation time ˂1 

Beam current 

(Monitor reaction) 
8 - 10 

 Total = 11 – 16 % 
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4. Results and Discussion 

4.1 Separation of Radioarsenic from Irradiated Germanium Oxide Targets 

Although a few methods for separation of arsenic radionuclides from germanium oxide 

target have been reported [see section 1.6.3], there is still need for new methods that provide 

high yields of radioarsenic with low radionuclidic and chemical impurities. In the present 

work the production and radiochemical separation of arsenic isotopes was carried out using 
natGeO2 as target material; however, for production of an individual arsenic radionuclide in 

high radionuclidic purity, isotopically enriched germanium targets would be needed. 

In this section radiochemical separation of radioarsenic (71As, 72As, 73As and 74As) from 

irradiated germanium oxide, as well as from radiogallium was studied and optimized using 

solvent extraction from acid solutions containing alkali iodide. A γ-ray spectrum of the 

germanium dioxide target irradiated with 45 MeV protons is illustrated in Fig. 4.1. Besides 

the radionuclides of arsenic, the radionuclides 69Ge and 67Ga were also produced; they were 

used as tracers for determination of Ge and Ga in the experiments. 
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Fig. 4.1: Gamma-ray spectrum of a GeO2 target irradiated with 45 MeV protons. 
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4.1.1 Determination of the As(III)/ As(V) Ratio 

After dissolution of the proton irradiated GeO2 in pure water, the produced radioarsenic 

will be present in the form of As(III) and As(V).  The ratio As(III)/As(V) was determined by 

thin layer chromatography (TLC), identifying the species by their retention factors and γ-ray 

spectra as described in section 3.5.2. Fig. 4.2 shows the radiochromatogram obtained using an 

Instant-Imager. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2: Radiochromatogram of no-carrier added As(III) and As(V) developed with a mixture 

of 0.01 M NaHC4H4O6 / CH3OH in the ratio of 3 : 1 and using Si-60 phase thin layer plate. 

(A) Activity profile of a typical sample, (B) Image of TLC plate showing distribution of the 

activity at three spots; the starting point and the front end are marked on the right side.  

 

Fig. 4.2 (A) shows the image of a TLC plate and the presence of radioactivity at three 

spots: the first spot was the origin point, the second was As(III) (containing some 

radioactivity of Ge and Ga) and the third was As(V) (also containing some radioactivity of Ge 

and Ga). Fig. 4.2(B) displays the activity profile of radioarsenic. The exact amount of 

radioactivity of As, Ge and Ga at each spot was determined using a HPGe detector.  Table 4.1 

shows the percentage of radioarsenic, radiogallium and germanium in each zone. The 

retention factors Rf = 0.6 and Rf = 0.9 were used to identify As(III) and As(V), respectively  

(Jahn, 2009). It was found that the ratio of As(III) /As(V) was 35/60, while Ge was found to 

be nearly evenly distributed in the two spots at Rf = 0.6 and 0.9. In contrast, Ga was found to 
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remain mostly at the origin; its amount decreased with the distance. Thus, for the extraction of 

radioarsenic it is better to use an oxidizing or reducing agent to transfer radioarsenic to one 

significant oxidation state, as is explained below.  

 

Table 4.1: Relative ratios of radioactivities of As, Ge and Ga 

in various zones after TLC separation. 

 As [%] Ge [%] Ga [%] 

Origin point 4.6 6.2 83.2 

As(III) zone 35.4 47.1 13.0 

As(V) zone 60.0 47.0 3.8 

 100 100 100 

 

 

4.1.2 Solvent Extraction of Radioarsenic in Presence of Bulk Germanium 

The solvent extraction behaviour of radioarsenic from proton irradiated GeO2 via 

cyclohexane in the presence of bulk germanium was investigated. The effects of various 

parameters were studied. 

 

4.1.2.1 Effect of acidity and iodide concentration 

Since the extraction of As(III) and Ge(IV) depends on the concentration of hydrochloric 

acid as well as of potassium iodide (Tanaka and Takagi, 1969),  extraction studies were 

performed with cyclohexane by varying the concentrations of HCl and KI.  

 The results on the extraction of radioarsenic(III) with increasing HCl concentration are 

shown in Fig. 4.3. Without KI, radioarsenic was not extracted at low HCl concentration but 

the extraction rate of radioarsenic and Ge increased with the acid concentration, reaching 

values of 14 % and 95.8 %, respectively, at 9 M HCl. In this case radioarsenic and germanium 

were extracted as AsCl3 and GeCl4. Radioarsenic cannot be extracted with cyclohexane from 

a solution of irradiated target at high HCl concentration without co-extracting big amounts of 

germanium, while it was not extracted at low concentration of acid. Both the oxidation states 

of arsenic are found in that case, leading to very low extraction of radioarsenic because about 

60 % of the radioarsenic is present in the oxidation state As(V) [section 4.1.1], which is not 

equally transferred into the organic phase. It is known that arsenic trichloride is a covalent 
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molecule while arsenic pentachloride probably exists as a complex ion.  If this is the case, 

then it is quite obvious that the trivalent arsenic can be extracted into an organic phase, while 

arsenic pentachloride is excluded owing to its ionic properties (Chappell et al., 1995).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3: Effect of hydrochloric acid concentration on the extraction of 

radioarsenic by cyclohexane using 0.0, 0.1, 0.5 and 1 M KI as salting out agent. 

 

 The extraction of radioarsenic by the aromatic hydrocarbon (cyclohexane) probably 

takes place through hydration, solvation or hydration-ionic association type mechanisms. It 

can be assumed that hydrochloric acid forms adducts with the aromatic hydrocarbon (Rashid 

et al., 1992). They assumed that AsCl3 is extracted through replacement of HCl in the organic 

phase to give a complex of the type AsCl3.nH2O in benzene, where n=0, 1, or 2, depending on 

the acidity of the aqueous phase. On the other hand, Ge, which occurs in the form of various 

hydrated germinates after dissolution, is extractable with cyclohexane as GeCl4 from aqueous 

media containing excess molecular HCl.    

                                      GeO2(H2O)x + 4 HCl ↔ GeCl4 + (x+2)H2O                                    4.1 
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GeCl4 is practically insoluble in concentrated HCl and due to its own low polarity 

moves readily into non-polar phases (Fassbender et al., 2005). 

 

By adding KI to the acid solution the extraction of radioarsenic into cyclohexane 

improved with the increasing KI concentration. Radioarsenic (III) was extracted as the iodide 

while germanium may be extracted into cyclohexane to a considerable extent as its chloride 

with a small amount of the iodide (Tanaka and Takagi, 1969). KI has three functions: to 

reduce As(V) to As(III) , to form AsI3, and to act as salting out agent. The concentration of 

hydrochloric acid also has a significant effect on the reduction of arsenate to arsenite. 

Literature suggests that reduction by potassium iodide as reducing agent requires the 

concentration of hydrochloric acid to be at least 1 M. Enhancement of extraction with 

potassium iodide could be due to the increased formation of extractable arsenic iodide 

complexes, since iodide complex formation is thermodynamically more favoured than 

chloride. This is partly because of the basic nature of the iodide ion and its relatively low 

charge density and resulting smaller enthalpy changes in aqueous hydration (Rashid et al., 

1992).  

The extractability of radioarsenic by cyclohexane increased with increasing acid 

strength in the presence of KI. The maximum extraction of up to 98 % is already achieved 

with 5 M HCl in presence of 1 M KI. At higher hydrochloric acid concentrations the 

extraction of radioarsenic is still high but two problems arise; firstly, germanium is co-

extracted with radioarsenic, and secondly, a precipitate of potassium halide is formed which 

affects the separation process. The results shown in Fig. 4.3 are comparable to those reported 

by Tanaka and Takagi (1969) using sulphuric acid. 

 In Fig. 4.4 the dependence of extraction of radioarsenic and germanium on KI 

concentration is shown. Maximum extraction was achieved at KI concentrations of > 0.7 M.  

Germanium was also extracted in some traces. It can be seen that the extraction of Ge can be 

avoided by using low concentrations of HCl and KI. For example, the extraction of 

radiogermanium with 1 M KI and 4 M HCl was only 1 % but with 6 M HCl it increased to 

42.4 %. Thus the optimum condition for the separation of radioarsenic emerged as 5 M HCl 

and 1 M KI at that conditions 2.3 % of Ge was co-extracted. Gallium was not co-extracted 

with radioarsenic under all conditions studied, even with high concentrations of acid and 

iodide. Using KBr instead of KI, no extraction of radioarsenic from 5 M HCl and 1 M KBr 

could be observed.  
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Fig. 4.4: Effect of KI concentration on the extraction of radioarsenic and 

germanium with cyclohexane from solutions of irradiated GeO2 target at 5 M HCl. 

 

 

4.1.2.2 Effect of different acids  

Various acids were tried in the separation of radioarsenic with cyclohexane. The results 

are summarized in Table 4.2. When using HClO4 and HBr, the extraction of radioarsenic was 

high, but germanium was also extracted in high amounts, while the extraction of radiogallium 

was negligible. The extraction of radioarsenic from nitric acid solutions under identical 

conditions was found to be very low (< 3 %).  In HNO3, KI can not reduce As(V) to As(III) 

but HNO3 oxidize As(III) to As(V), which was not extracted under these conditions.  A dark 

pink colour in both organic and aqueous phases was noted, probably due to the oxidation of 

iodide to iodine (Rashid et al., 1992). In the case of H2SO4 also a high extraction yield was 

found but the results were not reproducible. The latter two acids are therefore not listed in 

Table 4.2; nor were they considered in further experiments. 
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Table 4.2: Effect of acids on the extraction of radioarsenic 

and bulk germanium using cyclohexane from solutions of 5 

M acid and 1 M KI. 

Acid [5M] Radioarsenic [%] Germanium [%] 

HCl 97.8±0.5 2.3±0.8 

HClO4 93.2±3.5 32.3±0.5 

HBr 96±1 94±2 

             No Ga activity was detected in the organic phase. 

 

4.1.2.3 Effect of different organic solvents 

Extractions were performed under optimum conditions (1 M KI and 5 M HCl), but using 

different organic solvents, namely; cyclohexane, chloroform, toluene, heptane, and diethyl 

ether. The results are compared in Table 4.3. The extraction of radioarsenic was high in all 

investigated solvents. However, the extraction of germanium was also appreciable, except for 

cyclohexane and heptane. Radiogallium was extracted by about 1% while using chloroform, 

and by 85.4 % in the case of diethylether.  No 67Ga was detected in case of cyclohexane, 

toluene and heptane. Thus, the best organic solvent for radioarsenic extraction was found to 

be cyclohexane.  

 

Table 4.3: Extraction of radioarsenic and bulk germanium by different organic solvents 

from solutions with concentrations of 5 M HCl and 1 M KI. 

 

Solvent Radioarsenic [%] Germanium [%] Radiogallium [%] 

Cyclohexane 97.8±0.5 2.3±0.8 -- 

Chloroform 99.1±0.5 25.6±3 1±0.5 

Toluene 99.3±0.3 21.8±2 -- 

Heptane 95.6±0.2 5.6±1 -- 

Diethylether 98.2±0.5 72.6±2 85.4±2 
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Figure 4.5 shows the extraction of radioarsenic by cyclohexane, toluene, and chloroform 

at different HCl concentrations and 1 M KI. The three organic solvents show the same 

behaviour regarding the extraction of radioarsenic. The problem with toluene and chloroform 

was that the germanium was co-extracted with radioarsenic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5: The extraction of radioarsenic by various organic solvents at 1 M KI and 

different HCl concentrations. 

 

4.1.2.4 Back extraction of radioarsenic 

The back-extraction of radioarsenic from cyclohexane using various concentrations of 

HCl and NaOH was studied. It was found that the back-extraction was nearly constant while 

increasing HCl or NaOH concentration. In each case the back-extraction of radioarsenic from 

cyclohexane was about 90 % and that of germanium about 80 %. The back-extraction was 

better in water, resulting in values of about 95 %, and increasing up to 98 % by addition of 

about 100 µl of H2O2 (30 %) to the water (1 % v/v H2O2 solution). The results obtained are 

summarized in Table 4.4. In the case of pure water all the extracted germanium was 

unfortunately also back extracted with radioarsenic. In the presence of H2O2, however, the 

back extraction of germanium was considerably reduced.  
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Table 4.4: Back-extraction of n.c.a. radioarsenic from 

cyclohexane using different concentrations of H2O2. 

H2O2  [%] Radioarsenic  [%] 

0.0 95.0 ± 2 

0.1 97.6 ± 2 

0.5 98.1 ± 1 

1.0 98.2 ± 1 

 

4.1.3 Study of Extraction of Radioarsenic after Removal of Bulk Germanium 

A precipitation method was used to remove bulk of germanium before extraction of 

n.c.a. radioarsenic. Germanium was precipitated as hydrated GeO2 (Chattopadhyay et al., 

2007) after dissociation of the sparingly soluble tetrahydroxide species, which has limited 

solubility, with Ksp=2.39x10-45. 

                                                       Ge(OH)4 → GeO2 + 2H2O                                              4.2 

More than 85 % of the germanium activity was precipitated after neutralization of the 

basic solution with concentrated hydrochloric acid containing nearly 5 % of the radioactive 

arsenic. Thus about 95 % of the radioarsenic and less than 15 % of germanium were found in 

the filtrate.  

The extraction of radioarsenic at a concentration of 5 M HCl and 1 M KI was nearly 99 

% and that of germanium 6.5 % of the amount in the filtrate. This result showed that the 

overall extraction procedure leads to quantitative separation of radioarsenic containing only 

about 1 % of total germanium. After precipitation of bulk germanium the percentage of the 

remaining germanium extracted with radioarsenic from the solution increased. This may be 

due to the presence of KCl which was formed during the neutralisation process. Palanivelu et 

al. (1992) postulated that the presence of sodium chloride as a salting-out agent affected the 

extraction process. Depending on the results obtained on extraction of radioarsenic after 

precipitation, a series of experiments was done to decrease the amount of germanium in the 

extracted radioarsenic fraction upon Ge precipitation. Tables 4.5 and 4.6 show the results 

obtained using 0.5 M KI and different HCl concentrations. By decreasing the HCl 

concentration the extraction of radioarsenic and germanium decreased. The optimum 

extraction of radioarsenic occurred from a solution of 4.75 M HCl and 0.5 M KI. 
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Table 4.5: Extraction of radioarsenic and germanium 

from 0.5 M KI and various HCl concentrations using 

cyclohexane. 

HCl [M] Radioarsenic [%] Germanium [%] 

4 40.4 ± 3 0.95 ± 0.4 

4.75 85.3 ± 3 1.3 ± 0.5 

5.3 97.5 ± 2 3.4 ± 1 

 

Table 4.6: Extraction of radioarsenic and germanium from 4.75 HCl and 0.5 M KI 

with cyclohexane. 

 Radioarsenic [%] Germanium [%] 

First extraction 85.3  ± 3 1.3 ± 0.5 

Second extraction 12.9 ± 3 0.8 ± 0.3 

Overall both extraction processes 98.2 ±  1 2.1 ±  0.5 

Over all precipitation-extraction 92 ± 2 0.29 ± 0.1 

 

Two extraction steps were found to be sufficient to extract about 98 % of radioarsenic 

and 2 % of the germanium. From this result the overall extraction yield of radioarsenic was 

calculated as 89 % and the product contained less than 0.3 % of the germanium. 

Fig. 4.6 represents the flow sheet of the complete process for the separation of 

radioarsenic from proton irradiated GeO2 by solvent extraction using cyclohexane. The 

disadvantages of this process are (a) the first use of the precipitation process leads to about 5-

10 % loss of radioarsenic depending on the conditions, and (b) after the precipitation the 

amount of germanium found in the end product is still too high. 
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Fig. 4.6: Flow sheet of the separation process of radioarsenic from a GeO2 target by solvent 

extraction using cyclohexane (after precipitation of the bulk target material). 

 

4.1.4 Extraction of Radioarsenic from  Alkaline Solution  

The separation process consisted of the following: the radioarsenic was extracted from a 

solution composed of 0.5 M KI and 4.74 M HCl using cyclohexane. In this case more than 99 

% of radioarsenic and 1.4 % of Ge was extracted. The presence of potassium chloride as a 

salting-out agent increased the extraction of radioarsenic. The radioarsenic was back-extracted 

using 0.1 % H2O2 solution, 10 µL of 30 % H2O2 was added to ensure that all radioarsenic(III) 

was oxidized to the oxidation state (V). Finally, the remaining germanium was removed from 

the solution at 9.2 M HCl using cyclohexane. After the completion of this process more than 
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95% of radioarsenic and nearly 0.001% of germanium were extracted. Thus, by using this 

separation scheme radioarsenic could be obtained in high yield and purity. 

 

4.1.5 Comparison of Investigated Separation Methods  

From the results obtained on the two methods used for the separation of no-carrier-

added radioarsenic from irradiated natGe targets, it was apparent that the separation of  As/Ge 

system using cyclohexane without precipitation of Ge is favourable than using cyclohexane 

after precipitation of Ge for getting the activity in a shorter time with high efficiency without 

a lot of loss of radioarsenic. 

 

4.1.6 Optimized Conditions for Separation of Radioarsenic  

Based on the information gained through the experiments described above, the 

following optimized method of separation of radioarsenic was adopted. A flow sheet of the 

optimized separation method is given in Fig.4.7. The target was dissolved in 2 M KOH and 

the radioarsenic was extracted directly from that solution after acidification to 4.75 M HCl 

and 0.5 M KI without precipitation of germanium. A second selective-extraction led to high 

purity radioarsenic. 

The extraction of radioarsenic was done at first from 4.75 M HCl and 0.5 M KI with 

cyclohexane whereby > 99 % of radioarsenic and 1.4 % of Ge were extracted. After back- 

extraction of radioarsenic into 10 mL of 0.1 % H2O2 solution, another 10 µL of 30 % H2O2 

solution were added to ensure that all As(III) was oxidized to As(V). Then in a second step, 

HCl was added to a concentration of 9.2 M and the accompanying trace germanium was 

extracted into cyclohexane while the radioarsenic remained in the acid solution (95 % of 

radioarsenic and only about 0.001% of germanium remained in the aqueous HCl solution).  

 

4.1.7 Radiochemical Yield and Quality Control of 
71

As and 
72

As 

The above described optimized method of separation of n.c.a. radioarsenic was used in 

the production of 71As and 72As via proton irradiation of GeO2. A comparison of the practical 

yield with the theoretical yield was done. The thick target yields of 71As and 72As from a 

GeO2 target for the energy ranges effective in the experiments were calculated using the data 

of Spahn et al. (2007) (see section 1.6.2) on the excitation functions of the natGe(p,x)71,72As 

reactions. 
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Fig. 4.7: Flow sheet of the optimized method of separation of n.c.a. radioarsenic 

from the irradiated GeO2 target. 

 

It was found that the experimental yields of 72As over the two energy ranges amounted 

to 76.0 and 83.8 % of the theoretical values, respectively, while the experimental yields of 
71As amounted to 74.6 and 78.0 % of the theoretical values, respectively. The inactive 

impurities were Ge and K at a level of <10 µg and < 6 µg, respectively. 

The results are summarized in Table 4.7. As Spahn et al. (2007) concluded, neither 71As 

nor 72As, i.e., the two radionuclides of interest for PET studies, can be produced in large yield 

and high isotopic purity via the (p,xn) reactions on natGe. The radionuclide 72As is more 

dominant. For better production, a highly enriched 72Ge target would be advantageous; the 
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yield of 72As would considerably increase, and the isotopic impurities would decrease 

accordingly. Considering the various factors affecting the experimental yields (uncertainty in 

the beam current measurement, radiation damage effect, loss in radiochemical separation, 

etc.), an experimental yield of 74.6 - 83.8 % of the theoretical value, as found in this work, 

suggests that the production process followed is satisfactory. 



 

71 
 

 

Table 4.7: Thick target yields of 71As, 72As and associated radionuclidic impurities, after separation from a proton irradiated GeO2 target. 

Energy range 

[MeV] 
Radionuclide 

Theoretical yield 

of radionuclide at 

EOB [MBq/µAh] 

Experimental yield 

of radionuclide at 

EOB [MBq/µAh] 

Experimental/

Theoretical 

[%] 

Composition of 

radioarsenic 

[%] 

Non-isotopic 

radionuclidic 

impurities 

[%] 

Chemical 

impurity 

44 → 28.5* 

71As 

 

72As 

21 

 

118.9 

15.7 

 

90.3 

74.8 

 

76.0 

 
71As 14.6  

69Ge < 0.001 

 

67Ga ** 

Ge < 10 µg 

 

K< 6 µg 

 
72As 84  

 
73As 0.2  

 
74As 1.3  

25.5 → 0* 

71As 

 
72As 

29.5 

 

94.5 

23.0 

 

79.2 

78.0 

 

83.8 

 
71As 21.9  

69Ge < 0.001 

 

67Ga ** 

Ge<10 µg 

 

K< 6 µg 

 
72As 75.3  

 
73As 0.8  

 
74As 2  

 

* At both energy ranges the dominating product is 72As. This is due to the use of natGe as target material. 

** No Ga activity was detected. 
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4.2 Separation of n.c.a. 
68

Ge/
69

Ge from irradiated Ga2O3 Targets 

Radiochemical separation of n.c.a. 68Ge/69Ge from proton irradiated Ga2O3 was studied 

via liquid-liquid extraction using H2SO4-HCl/CCl4 system [see section 1.7.3], but further 

detailed investigations using another less dangerous organic solvents are necessary. Fig. 4.8 

shows the γ-ray spectrum of the radionuclides produced in the irradiation of a Ga2O3 target 

with 45 MeV protons at the injector of COSY. The radionuclides 67Ga and 69Ge, produced 

during the irradiation, were used as tracers in extraction studies. The radionuclide 65Zn was 

also present. The nuclear reactions responsible for the production of 65Zn are 69Ga(p,αn)65Zn 

and 69Ga(p,2p3n)65Zn.  

The irradiated material was dissolved in H2SO4 and various parameters affecting the 

extraction with toluene were optimized. 
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Fig. 4.8: Gamma-ray spectrum of a Ga2O3 target irradiated with 45 MeV protons. 

 

4.2.1 Effect of HCl Concentration 

The effect of varying HCl concentration on the extraction of n.c.a. 68Ge/69Ge using 

toluene was investigated at 10 M H2SO4. Fig. 4.9 represents the results obtained. Without 
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addition of HCl, the extraction of n.c.a. radiogermanium was negligible; at HCl 

concentrations above 0.2 M, however, the extraction of radiogermanium increased 

tremendously, reaching values of about 100%. The HCl the germanium is probably 

transformed to GeCl4 which is extracted in toluene due to its own low polarity. No 65Zn 

activity was found in the separated radiogermanium solution.  
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Fig. 4.9: Extraction of n.c.a. radiogermanium with toluene in the presence of various 

HCl concentrations at 10 M H2SO4. 

 

4.2.2 Effect of H2SO4 Concentration 

To an aliquot of the solution with varying H2SO4 concentration, HCl was added and its 

concentration adjusted to 0.4 M. The extraction of radiogermanium was then studied using 

toluene. The distribution coefficients of both 67Ga and 69Ge were measured and the results are 

shown in Fig. 4.10. Obviously, the extraction of radiogermanium increases with increasing 

H2SO4 concentration, the maximum reaching between 8 and 10 M H2SO4. With further 

increase of H2SO4 concentration, the extraction of radiogermanium decreased. Gallium was 

co-extracted with radiogermanium at high concentration of H2SO4 and decreased with 
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decreasing acid concentration. From a solution of 8.0 M H2SO4 and 0.4 M HCl the maximum 

extraction occurred and n.c.a. 69Ge was separated very well from gallium with high yield. 

GeCl4 is readily hydrolyzed, and Ge is thus conveniently back-extracted into water. About 

98±2 % of radiogermanium was back-extracted from toluene into water. No 65Zn activity was 

found in the separated radiogermanium solution.  
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Fig. 4.10: The effect of H2SO4 concentration on distribution coefficients of no- carrier- 

added 69Ge and carrier-added 67Ga in the presence of 0.4 M HCl using toluene. 

 

4.2.3 Extraction of Radiogermanium in Chloroform 

Fig. 4.11 gives the distribution coefficients of n.c.a. radiogermanium and gallium at 

various H2SO4 concentrations in the presence of 0.4 M HCl and chloroform. The extraction of 

radiogermanium  increased with increasing H2SO4 concentration, and became constant after 8 

M H2SO4, reaching a value of about 99 ± 1 %.  The extraction of gallium, however, remained 

small, though with chloroform more gallium was co-extracted than with toluene. 
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Fig. 4.11: Effect of H2SO4 concentration on distribution coefficients of no- carrier- 

added 69Ge and carrier-added 67Ga in the presence of 0.4 M HCl using chloroform. 

 

4.2.4 Optimized Conditions for Separation of Radiogermanium 

A flow sheet of the optimized method of separation of no-carrier-added 

radiogermanium from proton irradiated Ga2O3 target is given in Fig. 4.12. The optimum 

method of n.c.a. 68Ge/ 69Ge tracer production thus consisted of the irradiation of Ga2O3 with 

31 MeV protons for 1 h, dissolution of the irradiated material in 8 M H2SO4, addition of 0.4 

M HCl and extraction in toluene. Thereby 96.3±2 % of the radiogermanium was extracted 

into the organic phase. The radioactivity was back extracted in the aqueous phase by simply 

treating the organic phase with water (yield ≈ 99.4 %). Neither 67Ga nor 65Zn activity was 

found in the separated radiogermanium solution.  
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Fig. 4.12: Flow sheet of the separation method of 68Ge from Ga2O3. 

 

4.2.5 Production and Quality Control of 
68

Ge 

The optimized separation method elaborated above was used practically in the 

production of n.c.a. 68Ge via the natGa(p,x) 68Ge reaction. The results are summarized in Table 

4.8.  The separated n.c.a. 68Ge was of high radionuclidic purity. It was advantageous to carry 

out the separation of 68Ge after one month so that 69Ge and 67Ga had decayed out. 65Zn which 

is produced during irradiation of Ga2O3 was not detected by γ-ray spectrometry. The only 

inactive impurity was Ga at a level of < 6 µg.  Fig. 4.13 reproduces the gamma-ray spectrum 

after separation of 68Ge/69Ge from proton irradiated Ga2O3 under optimal conditions as 

described in section 3.6.3. No radiogallium and 65Zn were detected in the separated solution. 

A comparison of the practical yield with the theoretical yield was done. We calculated 

the thick target yields of 68Ge from a Ga2O3 target for the respective energy ranges used in the 

experiments utilizing the data of Qaim et al. (2001) on the excitation function of the 
natGa(p,x)68Ge process. The experimental yield of 68Ge amounted to 83 ± 4 % of the 

theoretical value. Considering the various factors affecting the experimental yields 

(uncertainty in the beam current measurement, radiation damage effect, loss in radiochemical 

separation, etc.), an experimental yield of 83±4 % of the theoretical value, as found in this 

work, suggests that the production process followed is satisfactory. 
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Fig. 4.13: Gamma-ray spectrum of the separated radiogermanium from 

proton irradiated Ga2O3 under optimized conditions. 

 

Table 4.8: Thick target yield of 68Ge and associated radionuclidic impurities after separation 

from proton irradiated Ga2O3 target. 

Nuclear process 
Energy range 

[MeV] 

Theoretical yield of 

radionuclide at EOB 

[MBq/µAh] 

Batch yield of 

radionuclide at 

EOB [MBq/µAh] 

Experimental

/Theoretical 

[%] 

Chemical 

impurity 

 

natGa(p,xn)68Ge 31→15.6 0.94 0.78 ± 0.04 83±4 Ga< 6 µg 
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4.3 Isolation of 
67

Ga Tracer from Irradiated Zinc Targets 

 
 For optimization studies on the separation of n.c.a. 68Ga from the 68Ge/68Ga generator 

system, a longer lived tracer of gallium was needed. The radionuclide 67Ga (T1/2 =3.2 d) was 

produced by the natZn(p.x)67Ga nuclear reaction on natural zinc. In this section the separation 

of n.c.a. 67Ga from a proton irradiated zinc target using anion exchange and solvent extraction 

processes is described. The distribution coefficients of radiogallium and zinc on the anion 

exchange resin Amberlite CG-400-II (Cl- form), and the cation exchange resin Dowex 50Wx8 

(H+ form) were determined. A solvent extraction process using diisopropylether was also 

investigated. Figs. 4.14 and 4.15 show the gamma-ray spectra of Zn targets irradiated with 17 

MeV protons at the Baby Cyclotron BC1710, exhibting the distinctive γ-ray peaks of 66,67Ga 

and 65Zn. The 1115 keV γ-ray peak of 65Zn is rather masked in Fig. 4.14. However, it 

becomes very distinct after some decay of the 9 h 66Ga (see Fig. 4.15). 
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Fig. 4.14: Gamma-ray spectrum of electroplated zinc target irradiated with 17 MeV 

protons at the BC1710 Baby Cyclotron of the Forschungszentrum Jülich GmbH. 
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Fig. 4.15: Gamma-ray spectrum of electroplated zinc target irradiated with 17 

MeV protons after some decay of 66Ga. 

 

4.3.1 Anion and Cation Exchange Studies  

4.3.1.1 Effect of hydrochloric acid concentration on the anion exchange process 

The effect of HCl concentration (1-12 M) on the adsorption behaviour of 67Ga and Zn 

on the anion exchange resin Amberlite CG-400-II (Cl- form) is represented in Fig. 4.16. 

Radiogallium was adsorbed on the resin and its adsorption increased with the increasing HCl 

concentration. In contrast, zinc was only partly adsorbed, and at all HCl concentrations the 

value remained nearly constant.   

At low HCl concentrations the distribution coefficient of radiogallium was low due to 

the formation of cationic species Ga3+. At higher concentrations of HCl radiogallium begins 

to form anionic species like [GaCl4]
-. The Zn occurs as Zn2+ and ZnCl+ at low concentrations 

of the acid but forms [ZnCl4]
2- at higher HCl concentrations (Marcus, 1967). 
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Fig. 4.16: Distribution coefficients of radiogallium and zinc at various 

concentrations of HCl on anion exchange resin Amberlite CG-400-II, Cl- form. 

 

4.3.1.2 Effect of hydrochloric acid concentration on cation exchange process 

The absorption behaviour of 67Ga and Zn on the cation exchanger resin Dowex 50Wx8 

(H+ form) at various HCl concentrations was investigated. The results are summarized in Fig. 

4.17. It was observed that both of them are adsorbed at very low concentration of HCl, and 

this adsorption decreased with the increasing HCl concentration up to 2 M HCl.  This can be 

attributed to the formation of cationic species of both Ga and Zn at a low concentration of 

HCl (see 4.3.1.1). The adsorption behaviour of radiogallium at low acid concentration is 

stronger than in case of zinc, which could be concluded from the distribution coefficient 

values [Kd]. At HCl range 2-12 M, radiogallium and zinc were not retained on the cation 

exchanger resin used, because both of them form anionic species at high HCl concentrations 

as explained in section 4.3.1.1. 
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Fig. 4.17: Distribution coefficients of radiogallium and zinc at various concentrations 

of HCl on the cation exchange resin Dowex 50Wx8, H+ form. 

 

From the investigation described above, it is clear that both radiogallium and zinc are 

strongly retained on the cation exchange resin, while in case of anion exchange resin used the 

adsorption of radiogallium was high but that of zinc was lower. However, the amounts of 

remaining zinc on the resin were still significant. Thus the separation of radiogallium and zinc 

by the two exchange resins used is not possible. 

 

4.3.2 Solvent Extraction Studies  

The solvent extraction process was studied for the separation of 67Ga from irradiated 

zinc using diisopropylether. Various parameters were investigated to determine the optimum 

conditions for the extraction process.  

The distribution of radiogallium between ether and aqueous phase for various 

concentrations of hydrochloric acid is shown in Fig. 4.18.  It was found that the Kd value of 
67Ga increased with the HCl concentration up to 7-8 M, and then decreased by further 

increase of HCl.   
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Fig. 4.18: Distribution coefficient of radiogallium in solvent extraction with 

diisopropylether at various HCl concentrations. 

 

These results agree with those of other authors (e.g. Nachtrieb and Fryxell 1949; Brown, 

1971). It has long been recognized that radiogallium is readily extracted from strongly acidic 

chloride solutions.  The presence of HCl promotes the formation of HGaCl4 extracted by 

solvation but, above 6 M acidity, competition with acid extraction reduces the recovery of 

gallium (Mihaylov and Distin, 1992). Depending on gallium and chloride levels, a third phase 

may be formed at 8-9 M acid, which is related to the solubility of the gallium complex in 

isopropylether. No 65Zn was detected over the HCl concentration range studied except at 3 

and 4 M HCl, where about 1 % was detected in the organic phase. This may be due to the 

formation of ZnCl2 species. 
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4.3.3 Optimized Method for Separation of Radiogallium 

No-carrier-added 67Ga was separated from a proton irradiated zinc target using 

diisopropylether at 7 M HCl.  Under these conditions n.c.a 67Ga was extracted by 98.3 % 

while Zn remained in the aqueous phase.  Fig. 4.19 shows the flow sheet of the separation 

method of 67Ga from an irradiated zinc target. In the final product, the absence of 65Zn was 

confirmed by γ-spectrometry. The n.c.a. 67Ga was back-extracted from the organic phase to 

water very easily. The aqueous solution was evaporated and dissolved again in water. It 

contained pure no-carrier-added 66,67Ga. After a decay time of about 3 days, the only 

radioactive isotope was 67Ga. 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig. 4.19: Flow sheet of the separation method of 66,67Ga from an irradiated zinc target. 

 

The results obtained in this section provided more confidence to the methods used for 

the separation of the radiotracer 67Ga of the required quality. Furthermore, some comparative 

studies established the superiority of the solvent extraction technique.  
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4.4 Separation of 
68

Ga from Parent 
68

Ge 

Several 68Ge/68Ga generator systems have been developed over the past few years.  The 

systems available today are not necessarily optimal [section 1.8.3.2]. So further investigations 

appear to be useful. 

The separation of radiogallium from radiogermanium was studied using anion exchange 

chromatography and liquid-liquid extraction method. Various parameters were investigated to 

optimize the separation process. The studies were performed using the radiotracers 69Ge and 
67Ga. About 500 µL of the separated n.c.a. 68Ge/69Ge solution and 200 µL of 67Ga solution 

were used in each experiment.  The 68Ge/69Ge (n.c.a.) solution was obtained by separation 

from an irradiated Ga2O3 target using toluene (see section 4.2), while 67Ga solution was 

obtained by separation from a proton irradiated zinc target using solvent extraction (see 

section 4.3). The optimized separation method was then applied for the separation of 68Ga 

from parent 68Ge. 

 

4.4.1 Optimization Studies on the Separation via Solvent Extraction 

A series of solvent extraction experiments using Aliquat 336 (trioctylmethylammonium 

chloride) as liquid anion exchanger were conducted to determine the optimum conditions for 

the separation of radiogallium from radiogermanium.  

 

4.4.1.1 Effect of HCl concentration 

The influence of various HCl concentrations on the extraction of radiogallium and 

radiogermanium by Aliquat 336 (trioctylmethylammonium chloride) in o-xylene was 

investigated and the results are given in Fig. 4.20. The extraction of radiogallium and 

radiogermanium increased by increasing the HCl concentration, reaching a plateau at 2 M and 

7 M, respectively.  Thus an efficient extraction of radiogallium with 0.1 M Aliquat 336 in o-

xylene requires an acid concentration of at least 2 M. It was extracted as tetrachlorogallate 

[GaCl4]
- into quaternary ammonium salt by anion exchange (Mihaylov and Distin, 1992) 

according to: 

                                  
−− +↔+ ClNGaClRRNClRRGaCl orgOrg ,4

/
3

/
34                            4.3 
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Fig. 4.20: Effect of HCl concentration on the extraction of radiogallium and 

radiogermanium using 0.1 M Aliquat 336 in o-xylene. 

 

The extraction of radiogermanium increased with increase in HCl concentration, since 

germanium forms anionic chloro-complexes at high concentrations of hydrochloric acid 

(Mirzadeh and Lambrecht, 1996). 

 

In general, a negatively charged metal complex can be extracted according to the equation;  

                     −−++−+− +↔+ pLorgMLRNHorgLpRNHML p

n

p

p

p

n )()()(                               4.4 

where M = gallium or germanium 

A priori, it must be assumed that the aqueous phase contains all the stepwise 

complexes nz

nML − . Thus the distribution ratio is  
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The distribution of the compared M depends on both the free amine salt in the organic 

phase and the concentration of free L- in the aqueous phase, until all elements in the aqueous 

phase are bound in the p

nML−  complex 

The results of this work suggest that the optimum condition for the separation of 

radiogallium from radiogermanium is an HCl concentration of 3 mol/L; at this acid 

concentration the extraction of radiogallium was 98.7±2 % and the co-extraction of 

radiogermanium about 3.2±0.5 %. 

 

4.4.1.2 Effect of diluents 

Various organic solvents, namely o-xylene, carbon tetrachloride, benzene, n-hexane, and 

cyclohexanone were tested to study the effect of varying nature of the organic diluent on the 

separation of radiogallium and radiogermanium with Aliquat 336. The organic phase diluents 

can influence the extraction process because both physical and chemical interactions exist 

between diluents and extractants. Extraction studies were carried out using 0.1 M Aliquat 336 

in one of these solvents as the organic phase and 3 M HCl solution as the aqueous phase; the 

results are given in Table 4.9.  

 

Table 4.9: Effect of various diluents on the extraction of radiogallium and 

radiogermanium from 3 M HCl using 0.1 M Aliquat 336. 

Organic solvent Radiogermanium [%] Radiogallium [%] 

o-Xylene 3.2 ± 0.5 98.7 ±1 

Carbon tetrachloride 97.2 ± 1 1.7 ± 0.5 

Benzene 3 ± 1 99.2 ± 1 

n-Hexane 2.8 ± 0.5 98.9 ± 1 

Cyclohexanone 14 ± 1 97.3 ± 2 

 

It was observed that in the case of carbon tetrachloride the extraction of radiogallium 

was very low (about 2 %) while extraction of radiogermanium was about 97 %. It is better to 
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use CCl4 for the separation of radiogermanium from gallium. Using cyclohexanone, 

radiogallium was extracted to about 97 % but with high co-extraction of radiogermanium 

(about 14 %).  As apparent from the data, the extraction of radiogallium is higher (about 99 

%) and co-extraction of radiogermanium is lower (about 3 %) and comparable in benzene, o-

xylene, and n-hexane. In all other studies o-xylene was used as a diluent throughout the work.  

 

4.4.1.3 Back extraction of radiogallium 

After extraction, radiogallium and traces of radiogermanium were back-extracted from 

the organic phase (0.1 M Aliquat 336 in o-xylene) using different mineral acids and alkalis. 

Table 4.10 represents the results obtained.  

 

Table 4.10: Effect of different stripping agents on the back-extraction of 

radiogermanium and radiogallium from Aliquat 336 in o-xylene. 

Stripping Agent Radiogermanium [%] Radiogallium [%] 

0.5 M HCl 98.5 ± 1 18.2 ± 1 

3  M HCl 96.4 ± 2 0.1 ± 0.05 

4  M HCl 95.4 ± 2 0.01 ± 0.005 

0.5 M H2SO4 97.1 ± 1 3.6 ± 0.5 

0.5 M KOH 96.7 ± 2 98.8 ± 1 

 

Back-extraction experiments involving different concentrations of HCl as stripping 

solution revealed that the degree of back-extraction of radiogallium increased with the 

decreasing concentration of HCl. At 3 and 4 M HCl, radiogallium was not back-extracted; 

only radiogermanium was back-extracted. Sahoo (1991) reported that germanium was 

separated from gallium by a judicious choice of stripping agents. Both radiogallium and 

radiogermanium were back-extracted with 0.5 M KOH. From the above investigations, it was 

concluded that radiogermanium was back-extracted with 3 M HCl  with 96.4±2 % yield while 

radiogallium was  still extracted as chloro-complexes in the organic phase, and later back-

extracted by 0.5 M KOH  with  a yield of 98±2 %. 
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4.4.2 Optimization Studies on the Separation via Cation – Exchange Chromatography 

The adsorption behaviours of radiogallium and radiogermanium on the cation- exchange 

column (Amberlite IR-120) were studied in detail. The dependence of the distribution 

coefficients (Kd values) for n.c.a. 67Ga and n.c.a. 68Ge/69Ge on the HCl concentrations was 

investigated and the results obtained are given in Fig. 4.21.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.21: Distribution coefficients of no-carrier-added 67Ga and 69Ge on Amberlite 

IR-120 as a function of HCl concentration.  

 

The results show that radiogallium is adsorbed on the resin at low HCl concentration (< 

1 M) with declining tendency as the HCl concentration increases up to 2 M. This can be 

attributed to the formation of cationic species of radiogallium at low concentration of HCl 

(see above). By increasing the concentration of HCl from 2 to 10 M, radiogallium was not 

retained on the used exchanger, possibly due to the formation of anionic [67GaCl4]
-.  On the 

other hand, radiogermanium is weakly adsorbed at low acid concentration but is retained at 

high HCl concentration. Ge exists in negatively-charged chlorogermanium complexes which 

show the expected low absorptivity toward cation exchanger. However, as shown in Fig. 4.21, 

in stronger HCl solutions, the distribution coefficient of germanium increases rapidly. This is 
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not unexpected since at high acid concentrations the germanium distribution constant is 

hampered by the serious loss of volatile germanium chloride. Nelson and Michelson (1966) 

observed nearly the same behaviour in case of germanium with cation exchanger but in HBr 

medium. The adsorption of negatively charged halocomplexes of germanium on a cation 

exchanger is a phenomenon that is not clearly understood (Mirzadeh and Lambrecht, 1996). 

Depending on the distribution coefficient [Kd] values obtained, the elution profiles of 

radiogermanium and radiogallium were measured in the column experiment. About 500 µL of 

the separated n.c.a. 68Ge/69Ge solution and 200 µL of 67Ga solution were applied. The mixture 

was loaded onto a glass column containing Amberlite IR-120 resin after adjusting to 0.5 M 

HCl. The results are shown in Fig. 4.22. At low HCl of 0.5 M concentration, radiogermanium 

was instantly eluted and runs through the column during the loading process. Later, about 80 

% of the radiogallium activity could be eluted by 80 mL of 3 M HCl. No 69Ge was detected 

by γ-spectrometry in this eluted solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.22: Elution profiles of 67Ga and 69Ge with 0.5 and 3 M HCl from a column packed 

with Amberlite IR120. Fraction volume, 20 mL; flow rate, 3 mL/min. Elution started 

directly after loading the activity on the column. 
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4.4.3 Comparison of Investigated Separation Methods   

The data on the separation of radiogallium via solvent extraction and cation exchange 

methods, obtained under the optimized conditions of the two processes, (sections 4.4.1 and 

4.4.2) are summarized in Table 4.11.  A comparison of the two methods investigated in this 

work reveals that the radiochemical separation using 0.1 M Aliquat 336 in o-xylene is  

advantageous than that using the strong cation-exchanger Amberlite IR120: the efficiency of 

the separation is higher, the time needed is shorter, and the final volume is smaller.  

 

Table 4.11: Comparison of separation methods for no-carrier-added radiogallium 

from parent radiogermanium. 

Parameter Aliquat 336 in o-xylene Amberlite IR120 

Efficiency of separation [%] > 95 80 

Time of separation 15 min 2 h 

Volume of product solution 10 mL 80 mL 

Chemical form of the 
activity after separation 

Hydroxide Chloride 

 

4.4.4 Application of the Optimized Method to 
68

Ge / 
68

Ga Separation 

A summary of the radiochemical procedure with the optimized conditions for separation 

of no-carrier-added radiogallium from parent radiogermanium is schematically presented in 

Fig. 4.23. The solution containing radiogermanium (parent) was adjusted to 3 M HCl and an 

extraction using 0.1 M Aliquat 336 in o-xylene was carried out. After shaking for 2 min, 98.7 

% of radiogallium was extracted from the parent radiogermanium. About 3.2 % of 

radiogermanium was co-extracted. To remove these traces of radiogermanium, which co-

extracted with the radiogallium, the organic phase was shaken with 3 M HCl solution (two 

times) and then the radiogallium was back-extracted using  0.5 M KOH with a yield of 99.2 

%.  
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Fig. 4.23: Flow sheet of the separation method of 68Ga from parent 68Ge. 

 

4.4.5 Production and Quality Control of 
68

Ga 

The radiochemical procedure developed leads to the separation of radiochemically pure 

no- carrier-added 68Ga radionuclide. The recovery yield of 68Ga was found to be 95.2 % with 

high radionuclidic purity. Less than 0.008 % of 68Ge was detected in the final separated 

solution via gamma-ray spectrometry. To decrease the amount of 68Ge  further, the back-

extraction of 68Ge with 3 M HCl solution was repeated  two or three times before n.c.a. 68Ga 

was finally back-extracted with 0.5 M KOH.  Fig. 4.24 shows the γ-ray spectrum of 68Ga after 

separation from the parent 68Ge under optimum conditions.  
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Fig. 4.24: Gamma-ray spectrum of 68Ga after separation from parent the 68Ge. 
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4.5 Separation of n.c.a. Radiobromine and n.c.a. Radiogallium from Irradiated ZnSe 

Targets 

Several methods for isolation of bromine isotopes are described in the literature but 

none of those methods make use of ion exchange chromatography [section 1.9.3].  In the 

present work the separation of no-carrier-added radiobromine and no-carrier-added 

radiogallium from an irradiated ZnSe target is developed using ion exchange chromatography. 

ZnSe is a good heat conductor and it is potentially a good target material for producing 

radiobromine. In this work ZnSe of natural abundance was chosen as material for the 

developmental studies. Thus bromine and selenium radioisotopes were formed in the 

interaction of protons with Se and several radioisotopes of gallium and zinc were formed from 

Zn. Fig. 4.25 reproduces the γ–ray spectrum of ZnSe target irradiated with 45 MeV protons at 

the injector of COSY. For production of an individual bromine radionuclide in high 

radionuclidic purity, of course isotopically enriched targets would be needed. 
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Fig. 4.25: Gamma-ray spectrum of ZnSe target irradiated with 45 MeV protons at injector of 

COSY. 
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In order to determine the radiochemical purity of the separation processes, the two 

radionuclides 65Zn and 75Se were used to analyse the fractions of zinc and selenium target 

material in each experiment. The radionuclide 65Zn was formed by two nuclear reactions on 
66Zn, namely 66Zn(p,pn)65Zn and 66Zn(p,2n)65Ga→65Zn. 75Se was produced by 76Se(p,pn)75Se 

and 76Se(p,2n)75Br→75Se nuclear reactions. Finally, an optimized procedure for the 

production of 77Br and 67Ga was developed, and quality control of the products was done. 

 

4.5.1 Cation Exchange Studies 

4.5.1.1 Effect of HNO3 and HCl concentrations 

Various concentrations of HNO3 (0.1 -13 M)  and of HCl (0.5-10 M) were used to study 

the effect of nitric  and hydrochloric acid concentrations on the adsorption of n.c.a. 

radiobromine, n.c.a. radiogallium, zinc and selenium on the cation exchange resin Amberlyst 

15, in H+ form, as described before in section 3.8.2.  Figs. 4.26 and 4.27 illustrate the results 

obtained.  There was no significant adsorption of n.c.a. radiobromine and selenium on this 

resin at any acid concentration studied. This is attributed to the formation of anionic species 

like bromide and selenide/selenite in case of n.c.a. radiobromine and selenium, respectively, 

which are not adsorbed on the cation exchange resin. In both acids, i.e. HNO3 and HCl, n.c.a. 

radiogallium was strongly adsorbed at very low concentrations ˂1 M, increasing with 

decreasing molarity of acid, but its adsorption was stronger in case of nitric acid than in case 

of hydrochloric acid. After 1 M of HNO3 or HCl there was no further adsorption of n.c.a. 

radiogallium with the increasing acid concentration. 

The adsorption of n.c.a. radiogallium at low acid concentrations is due to the formation 

of cationic Ga3+ species, while with the increasing acid concentration, n.c.a. radiogallium 

forms anionic species [GaCl4]
- in case of hydrochloric acid, and  may be [Ga(NO3)4]

- in case 

of nitric acid. Zinc was adsorbed on the resin in HNO3 and HCl at very low concentrations 

because it forms cationic Zn2+ species. Its adsorption decreased with the increasing 

concentration of acids due to the formation of anionic species [ZnCl4]
2- with HCl and may be 

[Zn(NO3)4]
2- with HNO3. 

From the above results, it is concluded that n.c.a.  radiogallium and zinc were adsorbed 

at very low concentrations of both acids while n.c.a. radiobromine and selenium were not. It is 

not possible to separate n.c.a. radiogallium using the conditions described above, due to the 

co-adsorption of traces of zinc with it. 
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Fig. 4.26: Distribution coefficients of no-carrier-added radiobromine, no-carrier-added 

radiogallium, zinc and selenium at various HCl concentrations on cation exchange resin 

Amberlyst 15, H+ form. The above curve shows the whole HCl range while the lower one from 

0.3-1 M HCl. 



  Chapter 4                                                                                            Results and Discussion                                                                                                                          

96 
 

0 2 4 6 8 10 12 14

0

1000

2000

3000

4000

5000

6000

7000

8000

 HNO
3
 concentration [M]

D
is

tr
ib

u
ti

o
n

 c
o
ef

fi
ci

en
t 

[K
d
]

 

 

 
77

Br

 [
75

Se]Se

 
67

Ga

 [
65

Zn]Zn

0.0 0.2 0.4 0.6 0.8 1.0

0

1000

2000

3000

4000

5000

6000

7000

8000

 

 

D
is

tr
ib

u
ti

o
n

 c
o
ef

fi
ci

en
t 

[K
d
]

HNO
3
 concentration [M]

 
77

Br

 [
75

Se]Se

 
67

Ga

 [
65

Zn]Zn

Fig. 4.27: Distribution coefficients of no-carrier-added radiobromine, no-carrier-added 

radiogallium, zinc and selenium at various HNO3 concentrations on cation exchange resin 

Amberlyst 15. The above curve shows the whole HNO3 range while the lower one from 0.1-1 

M HNO3. 
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4.5.2 Anion Exchange Studies 

The distribution behaviours of no-carrier-added radiobromine, no-carrier-added radio- 

gallium, zinc and selenium on the anion exchange resin (Dowex 1X10, Cl- and OH- form) 

were investigated under different conditions as described in section 2.8.2.    

 

4.5.2.1 Effect of KOH concentration  

The effect of various KOH concentrations (0.1 -10 M) on the adsorption behaviour of 

the above mentioned elements on the anion exchange resin was studied. Fig. 4.28 illustrates 

the results obtained. It was observed that the n.c.a. radiobromine is adsorbed at low KOH 

concentrations. The Kd value was about 400 at 0.1 M; thereafter the adsorption decreased with 

increasing concentration of KOH up to 1 M and then remained nearly constant. This is due to 

the fact that bromine occurs as anion species Br- at low KOH concentrations, while with 

increasing concentrations hypo-halite ions BrO- are formed according to the eq. 4.6. Hypo-

halite ions in warm concentrated alkaline solution disproportionate to halate [BrO3
 ]- and 

halide ion (Kleinberg and Cowan, 1960). 

                                      OHKOXKXKOHX 22 2 ++↔+                                             4.6 

Radiogallium (n.c.a.) was not adsorbed on the anion exchange resin in KOH over the 

whole pH range studied. This is attributed to the formation of intermediate activated species 

such as K+Ga(OH)3.OH- at KOH level below 1 M, or K+
2Ga(OH)3 at high potassium levels 

(Mihaylov and Distin, 1992), according to the next equation, valid for low potassium 

hydroxide concentration,  

                         −+−+ →← OHOHGaKOHGaK
K

K ],)([])([ 34
2

1                                4.7 

At higher concentration of potassium hydroxide it is,  

       
−++−++ +→←+ OHOHGaKKOHGaKK

k

k ])([.])([ 34
2

1                     4.8 

Selenium and zinc were adsorbed at very low concentration and the adsorption 

decreased with the increasing KOH concentration up to 0.8 M. With further increase, no 

adsorption of both elements was observed. The adsorption of zinc at low KOH concentrations 

is based on the formation of [Zn(OH)4]
2-. Hirsch and Portock (1970) reported that Zn(II)  is 

one of the cations (at high pH) forming anionic hydroxide complexes which are not absorbed 

into the anion resin to any great extent.  In case of selenium, anion species Se2- and [SeO3]
2- 

are formed at low KOH concentrations.   
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Fig. 4.28: Distribution coefficient of no-carrier-added radiobromine, no-carrier-added 

radiogallium, zinc and selenium at various concentrations of  KOH on anion exchange resin 

Dowex 1x10. The upper curve shows the 1-10 M KOH range while the lower one the 0.1-1 M 

KOH range. 
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By dissolution with excess KOH, selenium was converted to selenide/selenite mixture 

according to equation 4.9. Nevertheless, both selenide/selenite did not undergo ion exchange 

reaction with OH- at high KOH concentrations; thus, no appreciable adsorption was observed.                           

                   OHSeOKSeKSeKOH 2322 3236 ++→+                              4.9 

 

4.5.2.2 Effect of HNO3 concentration 

Different concentrations of HNO3 (0.1 -13 M) were used to study the adsorption of 

n.c.a. radiobromine, n.c.a. radiogallium, zinc and selenium. Fig. 4.29 shows that at low HNO3 

concentrations, n.c.a. radiobromine is adsorbed significantly less than in case of KOH. The Kd 

value was about 180 at 0.1 M concentration. Thereafter the adsorption of n.c.a. radiobromine 

decreased with the increasing HNO3 concentration. This may be attributed to the competition 

between bromide and nitrate ions. Radiogallium (n.c.a.) was slightly adsorbed at very low 

concentration but the adsorption decreased at high concentrations of nitric acid. Zinc was 

slightly adsorbed at higher concentration of nitric acid. Selenium was not adsorbed from nitric 

acid.    Faris and Buchanan (1964) reported that gallium, zinc and selenium were not adsorbed 

on strongly basic anion exchanger Dowex 1x10 from 0.1 -14 M HNO3.                                                

                                      

4.5.2.3 Effect of HCl concentration 

The effect of HCl concentration (0.5-10 M) on the adsorption behaviour of n.c.a. 

radiobromine and n.c.a. radiogallium and zinc is shown in Fig. 4.30. The n.c.a. radiobromine 

is not adsorbed from HCl under conditions studied. Radiogallium was strongly adsorbed and 

its adsorption increased with increasing HCl concentration, due to the formation of anionic 

species [GaCl4]
-. The zinc adsorption increased with increasing acidity and reached a 

maximum at about 4 M HCl, then decreasing with higher concentrations. Zinc adsorption 

from HCl medium is attributed to the formation of strong anionic complexes [ZnCl4]
2- 

(Marcus, 1967).  

From the distribution coefficient (Kd) values investigated in sections 4.5.2.1, 4.5.2.2. and 

4.5.2.3, it is concluded that the optimum conditions for n.c.a. radiobromine separation were 

after dissolution of ZnSe target in KOH. The n.c.a. radiobromine was adsorbed at 1 M KOH 

using anion exchange Dowex 1x10 while the other elements were not.  
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Fig. 4.29: Distribution coefficient of no-carrier-added radiobromine, no-carrier-added 

radiogallium, zinc and selenium at various concentration of  HNO3 on anion exchange resin 

Dowex 1x10 , the upper curve shows results for 1-13 M HNO3 while the lower one for 0.1-1 

M HNO3. 
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Fig. 4.30: Distribution coefficient of no-carrier-added radiobromine, no-carrier-added 

radiogallium, zinc and selenium on anion exchange resin Dowex 1x10 at various 

concentrations of  HCl. The above digram shows all elements studied, while the lower one 

only the Zn adsorption behaviour. 
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4.5.2.4 Effect of concentration of chloride and sulfate ions  

The influence of varying Cl- and SO4
-2 concentrations added to 1 M KOH solution on 

the Kd values of the investigated elements on the anion exchanger Dowex 1x10 was studied as 

explained in section 2.8.3 and the results obtained are shown in Figs. 4.31 and 4.32.  It is seen 

that Kd values do not remain constant under the conditions studied; they change depending on 

the concentrations of Cl- and SO4
-2 ions. The n.c.a. radiobromine was slightly adsorbed at low 

concentrations of both ions and its adsorption decreased with increasing Cl- and SO4
-2 

concentrations. In case of Cl-, (Fig. 4.31) the distribution coefficient values of n.c.a. 

radiobromine decrease to reach about 3 while in case of sulfate (Fig. 4.32) the values are still 

high (around 70) with increasing sulfate ions up to 2 M. The decrease in adsorption was 

attributed to the competition between bromide and chloride and sulfate anions, which 

appeared to be more significant in the case of chloride than in the case of sulfate.  Zinc and 

selenium show the same behaviour as the n.c.a. radiobromine but to a lesser extent. 

Radiogallium (n.c.a.) adsorption increased by increasing both chloride and sulfate anion 

concentrations. Radiogallium may form with chloride and sulfate complex anions which can 

be adsorbed on the anion exchanger. 

From the results obtained, it is concluded that n.c.a. radiogallium can be separated from 

the other elements under investigation by increasing the chloride strength using HCl or 

NH4Cl.  
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Fig. 4.31: Distribution coefficient of no-carrier-added radiobromine, no-carrier-added 

radiogallium, zinc and selenium at various concentrations of  NH4Cl  on anion exchange resin 

Dowex 1x10. The above diagram shows the full Kd range while the lower one shows the 

adsorption behaviour of elements at lower Kd scale. 
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Fig. 4.32: Distribution coefficients of no-carrier-added radiobromine, no-carrier-added 

radiogallium, zinc and selenium at various concentrations of (NH4)2SO4 on anion exchange 

resin Dowex 1x10. 

 

4.5.3 Elution of n.c.a. Radiobromine 

From the above mentioned experiments it is evident that n.c.a. radiobromine is strongly 

adsorbed on the Dowex 1x10 resin at low KOH concentration (Fig. 4.28), while n.c.a. 

radiogallium, zinc and selenium are weakly adsorbed and run through the column during the 

loading process.  Several reagents for the elution of n.c.a. radiobromine like tetroctyl methyl 

ammonium chloride (TOMAC) in o-xylene and 0.2 M H2SO4 were used as described in 

section 2.8.4. The separation profiles are shown in Figs. 4.33 and 4.34.  By using 1 M KOH 

as a mobile phase, n.c.a. radiogallium, zinc and selenium were removed. Some of the 

selenium got precipitated on the top of the column.  In case of tetra octyl methyl ammonium 

chloride in o-xylene, the elution of n.c.a. radiobromine was about 95±2 % of the loaded 

sample. The problem in this case was that 12±2 % of the selenium on the top of the column 

was eluted with the n.c.a. radiobromine.  
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Fig. 4.33: Elution curves for no-carrier-added radiobromine, no-carrier-added radiogallium, 

zinc and selenium using Dowex 1x10 resin with a flow rate of 1±0.2 mL/min. 

 

When using 0.2 M H2SO4 for the n.c.a. radiobromine elution, 50 mL of H2O were used 

for washing the column before change from alkaline to acidic. The elution curve of n.c.a. 

radiobromine is shown in Fig. 4.34. More than 95 ±2 % of n.c.a. radiobromine was obtained 

in 50 mL of 0.2 M H2SO4. Before evaporation, an excess of KOH was added to form K*Br 

and to avoid any loss of radiobromine. As described in section 3.8.4, during evaporation 

process a K2SO4 precipitate appeared, resulting in about 1-4 % loss of n.c.a. radiobromine.  At 

the end, K*Br in high purity was obtained. No 67Ga was found in radiobromine solution. From 

the above results, it was concluded that 0.2 M H2SO4 is the best for the elution. The overall 

yield of no-carrier-added radiobromine was more than 92 ±2 % with high purity. 
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Fig. 4.34: Elution curves for no-carrier-added radiobromine, no-carrier-added radiogallium, 

and zinc and selenium from Dowex 1x10 resin with flow rate of 1±0.2 mL/min of various 

eluting agents. 

 

4.5.4 Elution of n.c.a. Radiogallium 

After the separation of no-carrier-added radiobromine, the eluted solution in 1 M KOH 

contains no-carrier-added radiogallium, zinc and selenium. Two methods were used to elute 

n.c.a. radiogallium; the first by acidifying the solution up to 9 M HCl and passing through a 

column filled with Dowex 1x10, Cl- form. The elution profile (Fig. 4.35) shows that with 9 M 

HCl selenium was eluted completely in 80 mL while n.c.a. radiogallium was adsorbed and 

zinc is eluted slowly and increased by using conc. HCl. No-carrier-added radiogallium was 

eluted with 0.5 M HCl. However, the produced n.c.a. radiogallium still contained about 0.3 %  

of zinc, i.e. it was not of high purity.  
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Fig. 4.35: Elution curves for no-carrier-added radiobromine, no-carrier-added radiogallium, 

zinc and selenium using Dowex 1x10 resin with a flow rate of 1±0.2 mL/min of various 

eluting agents. 

The second method was based on increasing the chloride ion strength by dissolving 

NH4Cl  in the residue solution (60 mL of 1 M KOH) to reach 4 M after separation of n.c.a. 

radiobromine. Then the sample was passed through the column filled with Dowex 1x10, Cl- 

form.  Radiogallium (n.c.a.) was adsorbed while zinc and selenium were eluted by 4 M NH4Cl 

solution. Thereafter, radiogallium (n.c.a.) was eluted by 0.1 M HCl. More than 96±3 % of 

n.c.a. radiogallium loaded on the column was obtained in 40 mL. The radionuclides 65Zn< 

0.008 %  and 75Se < 0.0004 % were detected in the radiogallium solution. The elution profile 

is shown in Fig. 4.36. 
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Fig. 4.36: Elution curves for no-carrier-added radiogallium, zinc and selenium on Dowex 

1x10 resin, Cl- form, with a flow rate of 1±0.2 mL/min of two different eluting agents. 

 

4.5.5 Solvent Extraction Studies 

A series of solvent extraction experiments on the recovery of n.c.a. radiobromine, 

n.c.a. radiogallium, zinc and selenium using 0.7 M trioctylamine dissolved in o-xylene with 

varying concentration of nitric acid, ranging from 0.1 M to 14 M, were conducted to deduce 

the optimum conditions (see section 3.8.5).  The species formed upon equilibration of an 

amine solution with nitric acid is thought to be R3NH+NO3
-. Equilibrium of this salt with the 

ion solution then extracts anion which replaces the nitrate ion. Fig. 4.37 represents the effect 

of HNO3 concentration on the extraction process.  The extraction of radiobromine decreased 

from about 84 % to 40 % on increasing the concentration of HNO3 to 14 M. This was 

attributed to the competition with nitric acid extraction. The nitric acid tends to dissolve in the 

organic phase formed by the amine dissolved in o-xylene, the ratio (HNO3) org/ (TOA) org 

being more than one at relatively low aqueous HNO3 concentrations (Bertocci and Rolandi, 
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1961). This ratio increases linearly with HNO3 concentration and is independent of the 

organic amine concentration. Equally, there are changes in the organic phase conditions at 

high acidities because of the formation of the [H(NO3)2]
- ion, so that the n.c.a. radiobromine-

amine equilibrium may be in competition with the extraction of excess acid into the organic 

phase by the process 

                                )(233)(3)(33 )(.. orgaqorg NOHNHRHNONONHR ⇔+                                 4.9 

 Zinc and gallium were not extracted under these conditions whereas a very small 

amount of selenium (around 1 %) was extracted.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.37: Extraction yield of no-carrier-added radiobromine into TOA in o-xylene at various 

concentrations of HNO3. 

 

Back-extraction of n.c.a. radiobromine from organic phase was investigated with 0.5 

and 1 M KOH; about 92.6 and 89.1 %  of the activity, respectively, was obtained.   

The effect of various concentrations of TOA in o-xylene was studied at 1 M HNO3. The 

results obtained are shown in Fig. 4.38. Apparently, the TOA concentration in o-xylene has 

no effect on the extraction of no-carrier-added radiobromine. A molarity of 0.5 M of TOA in 

o-xylene was considered to be optimum for the no-carrier-added radiobromine extraction.  
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Fig. 4.38: Extraction yield of no-carrier-added radiobromine using various 

concentrations of TOA in o-xylene at 1 M HNO3. 

 

The optimum separation conditions were thus 1 M HNO3 and 0.5 M TOA in o-xylene. 

The overall separation yield of the no-carrier-added radiobromine was about 67 % in 

combination with 0.5 % co-extracted selenium. 

 

4.5.6 Separation of n.c.a. Radiobromine and n.c.a. Radiogallium via an Optimized Ion 

Exchange Procedure 

The flow sheet of the optimized method of separation of no-carrier-added radiobromine 

and no-carrier-added radiogallium from a ZnSe target is given in Fig. 4.39. The irradiated 

ZnSe was dissolved in 10 KOH, diluted to 1 M KOH, and then passed through a column filled 

with Dowex 1x10, OH- form. Radiobromine (n.c.a.) was adsorbed while n.c.a. radiogallium, 

zinc and selenium were eluted with 1 M KOH. Radiobromine (n.c.a.) was recovered by 0.2 M 

H2SO4, followed by addition of 1 M KOH, evaporation and filtration (see section 3.8.6). 

Finally K*Br solution was obtained containing about 93±3 % of the no-carrier-added 

radiobromine loaded on to the column.   
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Fig. 4.39: Flow sheet of method of separation of no-carrier-added radiobromine and no-

carrier-added radiogallium from the irradiated ZnSe target. 
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The chloride strength in the solution residue, which contained no-carrier-added 

radiogallium, zinc and selenium, was increased to 4 M by adding NH4Cl, and then loaded on 

to Dowex 1x10, (Cl- form) column. Radiogallium (n.c.a.) was adsorbed while zinc and 

selenium were eluted with 4 M NH4Cl.  About 94±2 % of the no-carrier-added radiogallium 

loaded on the column was then eluted with 0.1 M HCl.  This eluate was evaporated and 

finally dissolved in H2O.  

 

4.5.7 Quality Control of n.c.a. Radiobromine and n.c.a. Radiogallium  

The production and quality control of no-carrier-added radiobromine and no-carrier-

added radiogallium were investigated with the emphasis to show that both radionuclides are 

suitable for use in nuclear medicine. For that propose, 250 mg of ZnSe was pressed to a pellet 

and irradiated at the Baby Cyclotron with 17 MeV protons at 1 µA current. The optimized 

separation method elaborated above was applied in the production of 76Br, 77Br, 66Ga and 67Ga 

via the natSe(p,x)76,77Br and natZn(p,x)66,67Ga nuclear reactions, respectively.  75Br and 80mBr 

were not determined because both of them have short half-lives and decayed out before the 

separation was done. 

A comparison of the practical yield with the theoretical yield was done. We calculated 

the thick target yields of 76Br, 77Br, 66Ga and 67Ga from a ZnSe target for the respective energy 

ranges used in the experiments based on the corresponding cross-sections given by El-Azony 

et al. (2009) for radiobromine and Al-Saleh et al. (2007) for radiogallium. The experimental 

yields of 76Br, 77Br amounted to 80±4 % of the theoretical values while for 66Ga and 67Ga they 

amounted to 78±3 % of the theoretical values.  

The radionuclidic purity of the finally isolated no-carrier-added radiobromine and no-

carrier-added radiogallium was checked by high-resolution Ge(Li) detector γ-ray 

spectroscopy. Table. 4.12 shows a summary of production results of 76Br, 77Br, 66Ga and 67Ga 

as well as the associated radionuclidic and chemical impurities, after separation from a proton 

irradiated ZnSe target. The radionuclides 65Zn (< 0.002 %) and 75Se (< 0.0007 %) were 

detected in the case of n.c.a. radiobromine while 65Zn (< 0.008 %)  and 75Se (< 0.0004 %)  

were detected in n.c.a. radiogallium. The inactive impurities were Zn and Se at a level of < 2 

µg and < 1 µg, respectively, in radiobromine solution and at a level of < 9 µg and < 0.5 µg, 

respectively, in 67Ga solution. 
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Table 4.12: Thick target yields of 76Br, 77Br, 66Ga and 67Ga and associated radionuclidic impurities, after separation from a proton 

irradiated ZnSe target. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
* No 67Ga was detected in radiobromine fraction. 

** No radiobromine was detected in radiogallium fraction. 

 

Energy range 

[MeV] 
Radionuclide 

Theoretical yield 

of radionuclide at 

EOB [MBq/µAh] 

Experimental  yield 

of radionuclide at 

EOB [MBq/µAh] 

Experimental 

yield 

[%] 

Radionuclidic 

impurities 

[%] 

Chemical 

impurity 

 

17 →10  

 
 

76Br 
77Br 

17.3 

7.5 

13.4 

6.1 

77.5 

81.3 

 

65Zn< 0.002* 
75Se < 0.0007 

Zn < 2 µg 

Se < 1 µg 

 

 

 

67Ga  4.2 3.3 78.6 

 65Zn< 0.008** 
75Se < 0.0004 

Zn <  9 µg 

Se<  0.5 µg   
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4.6 Study of the  
80

Se(p,n)
80m

Br  Nuclear Reaction  

80mBr (T1/2 = 4.4 h) can be produced in small amounts via the 79Br(n,γ) reaction in a 

nuclear reactor, but the specific activity is very low. Owing to its potential in nuclear 

medicine, especially in Auger electron therapy, the nuclear reaction cross section for its 

formation in no-carrier-added form was determined as a function of proton energy using 

enriched 80Se targets. Several authors determined its cross section previously but only in a 

small energy range or using natural selenium. Thin samples were irradiated in the stacked-foil 

arrangement, covering an energy range up to 18 MeV. The radioactivity of 80mBr was 

determined by counting the weak 37 keV γ-ray using a special low-energy γ-ray spectrometer. 

The possible thick target yield was calculated.  The ground state 80Br (T1/2 = 17.6  min) is a β- 

emitter and is not of much interest. Its formation was investigated by some other authors and 

its excitation function is almost as that of 80mBr (Blaser et al., 1951; Levkovskij, 1991), but it 

was not determined in this work. 

 

4.6.1 Excitation Function of the Reaction  
80

Se(p,n)
80m

Br  

The measured cross section data are given in Table 4.13, together with their 

corresponding uncertainties. The excitation function for the formation of 80mBr using enriched 
80Se target material is given in Fig. 4.40. 

 

Table 4.13: Measured cross sections for the 

formation of 80mBr via the 80Se(p,n)80mBr 

reaction. 

Proton energy 

[MeV] 

Cross section 

[mb] 

7.4 ± 0.4 203 ± 31 

8.7 ± 0.4 320 ± 48 

10.1 ± 0.4 384 ± 58 

11.3 ± 0.3 356 ± 53 

11.7 ± 0.3 431 ±65 

13.1 ± 0.3 253 ± 38 

13.3 ± 0.3 306 ± 46 
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14.4 ± 0.3 172 ± 26 

15.2 ± 0.3 99 ± 15 

15.7 ± 0.3 147 ± 22 

16.8 ± 0.3 66 ± 10 

18.5 ± 0.3 72 ± 11 

 

Fig. 4.40: Experimentally determined reaction cross sections for the formation of 80mBr using 

enriched 80Se target material together with the data from the literature. 

 

In the low energy range up to about 7 MeV some old cross section data (Blaser et al., 

1951) were found; the newest, however, are the data reported by Levkovskij in 1991, which 

are shown in Fig. 4.40 after downwards adjustment by 20 % according to the study of Takács 

et al., (2002), who showed that those results were based on incorrect cross sections of the used 

Mo monitor foils.  In fact, no measurement detail has been given in that work, so that the 

authenticity of data cannot be ascertained. Our cross section values, nonetheless, agree rather 

well with Levkovskij’s data: only a slight deviation at higher energies is observed.  The data 
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of El-Azony et al. (2009), which were obtained using natural material, also agree with our 

new measurements if normalized to a theoretical 100 % enrichment. A possible contribution 

resulting from the (p,3n) reaction on 82Se (9.4 %) can be neglected within the investigated 

energy range. In the low energy range up to 6.5 MeV the data of Blaser et al. (1951), obtained 

using a Geiger counter, show a remarkably good agreement with our results. Our results on 

enriched 80Se, if normalized to natSe as target agree well with the recently published 

measurement of El-Azony et al. on the natSe(p,n)80mBr reaction. 

 

4.6.2 Integral Yield and Radionuclidic Purity 

Based on the excitation function presented in this work, the yields for the production of 
80mBr using enriched Se target were calculated. The numerical values of the differential and 

integral yields are given in Table 4.14. Fig. 4.41 represents the calculated integral yield as a 

function of projectile energy.  

 

Fig. 4.41: Calculated integral yield of  80mBr  based on the determined excitation function (eye 

guide) of the proton induced nuclear reaction presented in this work.  
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Table 4.14: Calculated Differential and Integral Yield for the 

formation of 80mBr via the 80Se(p,n)80mBr reaction. 

Proton energy 

[MeV] 

Differential Yield 

[MBq/µA h] 

Integral Yield 

[MBq/µA h] 

17.50 25.3 ± 3.8 841.8 ± 126.3 

16.50 30.2 ± 4.5 816.5 ± 122.5 

15.50 39.6 ± 5.9 786.3 ± 117.9 

14.50 56.8 ± 8.5 746.7 ± 112.0 

13.50 80.3 ±12.0 689.9 ± 103.5 

12.50 106.9 ± 16.0 609.6 ± 91.4 

11.50 118.4 ± 17.8 502.7 ± 75.4 

10.50 117.7 ± 17.7 384.4 ± 57.7 

9.50 99.8 ± 15.0 266.7 ± 40.0 

8.50 75.2 ± 11.3 166.9 ± 25.0 

7.50 48.1 ± 7.2 91.7 ± 13.7 

6.50 28.1 ± 4.2 43.6 ± 6.5 

5.50 12.2 ± 1.8 15.5 ± 2.3 

4.50 3.2 ± 0.5 3.3 ± 0.5 

3.50 0.1 ± 0.0 0.1 ± 0.0 

 

The possible radionuclide yield amounts to about 800 MBq µA-1h-1 using an incident 

proton energy of 16 MeV.  Furthermore, the measurements have shown that this nuclear 

reaction is ideally suitable for production at a small cyclotrons, which by now can be found in 

many medical facilities; allowing an efficient production of this promising radionuclide. If 

enriched 80Se is used as target material, no relevant radioactive co-products are produced via 

this production route. El-Azony et al. calculated a production yield of about 450 MBq µA-1h-1 

in the energy range of up to 15 MeV. By extrapolating the yield from natSe to 100 % 80Se, this 

value agrees with the 80Se(p,n)80mBr reaction yield obtained in this work using enriched target 

material.  
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5. Summary 

Radionuclides are widely used as radiotracers for online investigations in many fields. 

For instance, radiotracers are applied in diagnostic medicine, clinical chemistry, molecular 

biology, technological and industrial processes, and in research in natural and life sciences. 

Radionuclides are also used as pure radiation sources. Each radionuclide application sets its 

requirements as to source strength, radiation type, associated energies, half-life and/or 

character as a chemical element. The production of radionuclides is carried out using nuclear 

reactors as well as cyclotrons. The reactor-produced radionuclides are generally neutron 

excess nuclides. They mostly decay by ß- emission. The cyclotron produced radionuclides are 

often neutron deficient and decay mainly by EC or β+ emission. They are especially suitable 

for diagnostic studies. In this work the production methods of some radionuclides (71, 72, 73, 74As, 

68Ge/68Ga, 76,77,80mBr) were studied and optimized. The emphasis was on radiochemical separations. 

A method for the separation of no-carrier-added arsenic radionuclides from bulk 

amounts of irradiated germanium oxide (GeO2) target was developed. After dissolution of the 

target  the ratio of As(III) to As(V) was determined by thin layer chromatography (TLC) in a 

mixture of  NaHC4H4O6/CH3OH in the ratio of 3/1 and using a Si-60 phase thin layer plate. 

The extraction of radioarsenic by different organic solvents from acid solutions containing 

alkali iodide was then studied and optimized.  The influence of the concentration of various 

acids (HCl, HClO4, HNO3, HBr, H2SO4) as well as of KI was studied using cyclohexane.  The 

extraction of radioarsenic with various organic solvents (chloroform, toluene, heptane, 

dietheyl ether) was investigated at 1 M KI and different HCl concentrations, with and without 

precipitation of the bulk of germanium. The optimum separation of radioarsenic was achieved 

using cyclohexane with 4.75 M HCl and 0.5 M KI and its back-extraction with a 0.1 % H2O2 

solution. The extraction leads to high purity radioarsenic containing no radiogallium, with an 

overall radiochemical yield of 93 ± 3 %. From the irradiated germanium, 0.001 % was found 

to be co-extracted with the radioarsenic. The practical application of the optimized procedure 

in the production of 71As and 72As, via the natGe(p,xn)-reactions at 45 MeV proton enegy, was 

demonstrated and batch yields achieved were in the range of 75 to 84 % of the theoretical 

values. 

A method was developed for the radiochemical separation of n.c.a. 68Ge from proton 

irradiated Ga2O3 via liquid-liquid extraction using H2SO4-HCl/ toluene system. The irradiated 

Ga2O3 was dissolved in H2SO4 and various parameters affecting the extraction  of 
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radiogermanium were studied. The effect of sulfuric acid and hydrochloric acid concentration 

on the extraction process was also investigated. For comparision the extraction of 

radiogermanium by chloroform was also studied. The 8 M H2SO4 – 0.4 M HCl / toluene 

solvent extraction system was successfully used for the no-carrier added separation of 68Ge 

from Ga2O3. The optimized separation method was used practically in the production of n.c.a. 
68Ge of high radionuclidic purity via the natGa(p,x) 68Ge reaction. It was advantageous to carry 

out the separation of 68Ge after one month so that 69Ge and 67Ga had decayed out. No 

radiogallium and 65Zn were detected in the separated solution. The experimental yield of 68Ge 

amounted to 83 ± 4 % of the theoretical value.  

For optimization studies on the separation of n.c.a. 68Ga from the 68Ge generator system, 

a suitable tracer for germanium and a longer lived tracer of gallium were  needed. The 

germanium tracer used was 69Ge (T1/2= 1.63 d) and it was prepared via the same method as 

described above for 68Ge. The radionuclide 67Ga (T1/2 =3.26 d) was used as tracer for gallium. 

It was produced by the natZn(p.x)67Ga nuclear reaction on natural zinc. The separation of n.c.a. 
67Ga from a proton irradiated zinc target was studied using anion exchange and solvent 

extraction processes. The distribution coefficients of radiogallium and zinc on the anion 

exchange resin Amberlite CG-400-II (Cl- form) and the cation exchange resin Dowex 50Wx8 

(H+ form) were determined. Both radiogallium and zinc were strongly retained on the two 

resins and a separation was not possible. So the emphasis was shifted to solvent extraction 

studies using diisopropylether. Various parameters were investigated. Thus, no-carrier-added 
67Ga was separated from a proton irradiated zinc target after 3 days using diisopropylether at 7 

M HCl.  The extraction yield of n.c.a 67Ga was 98.3 % while Zn remained in the aqueous 

phase.  The n.c.a. 67Ga was back-extracted from the organic phase into water very easily.  The 

aqueous solution was evaporated and dissolved again in water. It contained pure no-carrier-

added 67Ga.  

The radiochemical separation of n.c.a. radiogallium (67Ga) from n.c.a. radiogermanium 

(69Ge) was studied using ion exchange chromatography (Amberlite IR-120) and solvent 

extraction (Aliquat 336 in o-xylene). A series of solvent extraction experiments using Aliquat 

336 (trioctylmethylammonium chloride) as liquid anion exchanger were conducted. The 

influence of various HCl concentrations on the extraction of radiogallium and 

radiogermanium by Aliquat 336 (trioctylmethylammonium chloride) in o-xylene was 

investigated. It was found that the separation using Aliquat 336 in o-xylene is better than that 

using Amberlite IR-120 (cation-exchanger): the efficiency of separation is higher, the time 

needed is shorter, the final volume smaller. In actual practice, the solution containing 
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radiogermanium (parent) and radiogallium (daughter) in equilibrium, was adjusted to 3 M 

HCl and extraction using 0.1 M Aliquat 336 in o-xylene was carried out. After shaking for 2 

min, 98.7 % of radiogallium was extracted from the parent radiogermanium. About 3.2 % of 

radiogermanium was co-extracted. To remove these traces of radiogermanium the organic 

phase was shaken with 3 M HCl solution (two times) and then the radiogallium was back-

extracted using  0.5 M KOH with a yield of 99.2 %. The radiochemical procedure developed 

leads to a satisfactory separation of the generator-produced no-carrier-added  68Ga. The 

recovery yield of 68Ga was found to be 95.2 % with high radionuclidic purity. Less than 0.008 

% of 68Ge was detected in the final separated solution via gamma-ray spectrometry. To 

decrease the amount of 68Ge  further, the back-extraction of 68Ge with 3 M HCl solution was 

repeated  two or three times before n.c.a. 68Ga was finally back-extracted with 0.5 M KOH. 

The separation of no-carrier-added radiobromine and no-carrier-added radiogallium 

from an irradiated ZnSe target was also studied. The adsorption behaviours of n.c.a. 

radiobromine, n.c.a. radiogallium, zinc and selenium towards the cation-exchange resin 

Amberlyst 15, in H+ form, and towards the anion-exchange resin Dowex 1x10 in Cl- and OH- 

forms, were investigated and the elution of n.c.a. radiobromine and n.c.a. radiogallium was 

studied using different solvents. Additionally separation of n.c.a. radiobromine was also done 

via solvent extraction using TOA in o-xylene.   

The radiobromine was strongly adsorbed on the Dowex 1x10 resin at a low KOH 

concentration, while n.c.a. radiogallium, zinc and selenium were weakly adsorbed and ran 

through the column during the loading process. Several reagents for the elution of n.c.a. 

radiobromine like tetroctyl methyl ammonium chloride in o-xylene and 0.2 M H2SO4 were 

used. After the separation of no-carrier-added radiobromine, the eluted solution in 1 M KOH 

contained no-carrier-added radiogallium, zinc and selenium. Two methods were used to 

separate n.c.a. radiogallium; the first by acidifying the solution up to 9 M HCl and passing 

through a column filled with Dowex 1x10, Cl- form. The second method was based on 

increasing the chloride ion strength by dissolving the residue in 4 M NH4Cl after separation of 

n.c.a. radiobromine. Then the sample was passed through the column filled with Dowex 1x10, 

Cl- form. The optimized methods of separation of no-carrier-added radiobromine and no-

carrier-added radiogallium were then applied in the real practice. The irradiated ZnSe was 

dissolved in 10 KOH, diluted to 1 M KOH, and then passed through a column filled with 

Dowex 1x10, OH- form. Radiobromine (n.c.a.) was adsorbed while n.c.a. radiogallium, zinc 

and selenium were eluted. The radiobromine (n.c.a.) was then recovered by 0.2 M H2SO4, 

followed by addition of KOH, evaporation and filtration. Finally K*Br solution was obtained 
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containing about 93±3 % of the no-carrier-added radiobromine loaded onto the column.  The 

chloride strength in the solution residue, which contained no-carrier-added radiogallium, zinc 

and selenium, was  thereafter increased to 4 M by adding NH4Cl, and then loaded onto 

Dowex 1x10, Cl- form, column. Radiogallium (n.c.a.) was adsorbed while zinc and selenium 

were not.  About 94±2 % of the no-carrier-added radiogallium loaded on the column were 

then eluted with 0.1 M HCl.  This eluate was evaporated and finally dissolved in H2O. Using 

this method no-carrier-added radiobromine and no-carrier-added radiogallium could be 

obtained in high purity.  The optimized separation method elaborated above was applied in 

the production of 76Br, 77Br, 66Ga and 67Ga via the natSe(p,x)76,77Br and natZn(p,x)66,67Ga 

nuclear reactions, respectively. The experimental yield of 76Br and 77Br amounted to 80±4 % 

of the theoretical value while that of 66Ga and 67Ga  was found to be 78±2 % of the theoretical 

value. The radionuclides 65Zn (< 0.002 %) and 75Se (< 0.0007 %) were detected in the case of 

n.c.a. radiobromine while 65Zn (< 0.008 %)  and 75Se (< 0.0004 %)  were detected in n.c.a. 

radiogallium. 

The nuclear reaction cross section for the formation of the Auger electron emitting 

radionuclide 80mBr (T1/2=4.4 h) was determined as a function of proton energy using enriched 
80Se targets. Thin 80Se samples were prepared by the sedimentation technique and irradiated 

with incident protons of energies up to 18 MeV in a stacked-foil arrangment. The induced 

radioactivity was measured using a special low-energy γ-ray spectrometer. The measurements 

allowed the determination and extension of the excitation function of the 80Se(p,n)80mBr 

reaction. The possible thick target yield was then calculated.  The production of 80mBr via the 
80Se(p,n) process can be done with good efficiency and high purity at a small cyclotron. The 

yield of 80mBr amounts to about 800 MBq µA-1 h-1 using an incident proton energy of 16 

MeV. 
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