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Abstract

The search for methods to create and maintain entanglement has led to the idea
of environmentally induced entanglement. Roughly speaking, the usually detri-
mental effect of coupling a non-interacting bipartite system to an environment
is turned into an advantage by using the environment to mediate an indirect
interaction, which can result in entanglement of the two parts of the system
under certain conditions. Of course, care has to be taken to properly evaluate
the conflicting influences of the environment. Only if the indirect interaction
overcompensates for the decoherence, entanglement creation can be expected.

It has been suggested that entanglement creation can be achieved in bosonic
heat baths even over finite spatial separations with only a moderate polynomial
decay of entanglement with distance. In this work, we look more closely at
the distance dependence, for the first time employing an oscillator model that
is both exactly solvable and includes dissipation. We numerically prove that
entanglement creation is, in fact, extremely distance-sensitive and it is not
possible to entangle objects which are further apart than approximately their
own size.

Additionally, we suggest an approach how to mitigate the distance depen-
dence. It comes at the cost of geometrically modifying the bath modes by
imposing physical boundary conditions resulting in a gap in the spectrum.
This is implemented by placing the system inside of an infinitely long super-
conducting cavity. An experimental implementation of this could be feasible.



Zusammenfassung

Die Suche nach Möglichkeiten Verschränkung zu erzeugen und zu erhalten
brachte die Idee der umgebungsinduzierten Verschränkung hervor. Grob gesagt
wird die normalerweise hinderliche Auswirkung der Kopplung eines zweige-
teilten Systems an eine Umgebung in einen Vorteil verwandelt, indem über die
Umgebung eine indirekte Wechselwirkung vermittelt wird, die unter bestimm-
ten Voraussetzungen zu einer Verschränkung der beiden Systemteile führen
kann. Natürlich müssen die gegensätzlichen Einflüsse der Umgebung sorgfältig
betrachtet werden. Nur wenn die indirekte Wechselwirkung stärker ist als die
Dekohärenz kann man eine Entstehung von Verschränkung erwarten.

Bei der Untersuchung über das Abstandsverhalten von Verschränkungser-
zeugung wurde bisher ein polynomieller Abfall der Verschränkung mit dem
Abstand gefunden, der endliche Abstände zwischen den zu verschränkenden
Teilsystemen zulassen würde. In dieser Arbeit wird die Abstandsabhängig
genauer untersucht. Dabei wird erstmals ein exakt lösbares Oszillatormodell
verwendet, welches auch Dissipation berücksichtigt. Numerisch kann gezeigt
werden, dass im Gegensatz zu vorherigen Ergebnissen die Verschränkungser-
zeugung sehr stark vom Abstand abhängt und dass es nicht möglich ist, Objekte
über eine weitere Entfernung zu verschränken als einen Abstand, der in etwa
ihrer eigenen Ausdehnung entspricht.

Zusätzlich wird ein neuer Ansatz vorgeschlagen, in dem die Abstandsabhän-
gigkeit geringer ausfällt. Dieser beinhaltet den zusätzlichen Aufwand, dass die
Badmoden durch physikalische Randbedingungen geometrisch eingeschränkt
werden, so dass eine Lücke im Spektrum entsteht. Das wird bewerkstelligt
durch die Platzierung des Systems in einer unendlich langen supraleitenden
Kavität. Eine experimentelle Implementierung könnte durchführbar sein.
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1. Introduction

The problem treated in this thesis is located at the intersection of open quan-
tum systems and quantum information theory. Compared to the time span
the theory of quantum mechanics has been known, these fields of research
have only been established relatively recently, but have already yielded many
fascinating results. Open quantum systems are used to consistently model dissi-
pation and decoherence [JZK+

03]. Quantum information theory has improved
our knowledge about quantum correlations and has brought forward quan-
tum information processing (QIP), which includes such ideas as the quantum
computer and the already commercially viable quantum cryptography [NC00].

Entanglement is a quantity measuring quantum correlations and plays an
important role in QIP as a resource. Therefore, creating and preserving entan-
glement is a crucial task. Unfortunately, the study of open quantum systems
teaches us that preserving entanglement is extremely difficult, because even tiny
interactions with the environment can destroy entanglement very efficiently.

Surprisingly, Braun [Bra02] provided theoretical arguments suggesting that
two non-interacting quantum systems coupled to a common thermal bath
can also become entangled, because the environment mediates an indirect
interaction. He later substantiated his claims by showing that a finite spatial
separation between the two systems does not destroy the effect [Bra05]. Such a
scheme would be very helpful, since it would not require full unitary control
over the system and a coupling to the environment would actually be beneficial.

Despite looking counterintuitive, Braun’s results are widely accepted and
followed in the scientific community [BFP03, STP06, CL07, HB08, PR08, Isa08,
XSS08, FNGM09, MNBF09, CP09, ASH09, LSF10, RBK11]. Since Braun uses
a rather simple model, we decided to investigate the problem more closely
employing a model which is more realistic and includes dissipation as well
as a spatial separation, yet which can be solved exactly. Our findings do not
support the results of Braun, but suggest a strong distance dependence instead.
We claim that the effect does not persist over distances larger than the spatial
extent of the objects to be entangled.
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1. Introduction

As a model, we consider two harmonic oscillators representing the quantum
mechanical systems to be entangled, which are bilinearly coupled to bosonic
modes at different spatial positions but not to each other. With bosonic modes
many different types of baths can be modelled, including photons, phonons and
many effective baths, however, with the exception of spin baths. Because we use
an oscillator model, exact solutions are possible, at least with some numerical
effort.

The harmonic oscillators can, of course, be thought of as particles trapped in
a potential that is approximated as quadratic at low energies, but at very low
energies they can also be viewed as two-state systems, since the oscillators will
be dynamically truncated to their two lowest levels.

We first give an introduction on the topic of entanglement in chapter two and
then proceed to introduce entanglement measures. In the following, we give an
overview over Gaussian states of quantum mechanical systems and how their
entanglement can be determined.

In the third chapter, we define a model of two harmonic oscillators coupled to
a bosonic modes, which is solved formally using a quantum Langevin equation
approach.

The fourth chapter contains a presentation of numerical results for the entan-
glement that can be generated by a free bosonic bath. Both long-term asymptotic
states are examined as well as the full time development. The chapter concludes
with a discussion of the overall maximum of the entanglement and its depen-
dence on the parameters involved, most importantly the spatial separation of
the two oscillators.

While the free bath is a quite general case, more special situations can also
be considered. As an example, in the fifth chapter we calculate the behavior
of the system inside of a cavity, which has the form of a tube with a quadratic
cross-section. This imposes boundary conditions on the bath modes, resulting
in a drastic modification of the coupling spectral density. The entanglement
generation capabilities are then compared to the case of a free bath.

In the conclusion in chapter six we summarize our results and compare them
to other works concerned with the topic of entanglement creation in bosonic
environments.
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2. Concepts

Although it [entanglement] is usually fragile to
the environment, it is robust against conceptual
and mathematical tools.

([HHHH09])

2.1. Entanglement

2.1.1. Fundamental Aspects

The theory of quantum mechanics was very successful from its beginning, yet it
included some unusual properties, which were met with scepticism. Most fa-
mously, the thought experiment given by Einstein, Podolsky, and Rosen [EPR35]
in 1935 leads to the conclusion that the quantum mechanical wave function
cannot describe physical reality completely if one assumes the principle of local
realism. The authors were unwilling to accept a quantum mechanical feature
which Schrödinger called entanglement later in the same year [Sch35]: If two
particles have interacted in the past so that they have to be described by a joint
wave function, a measurement on one of them influences the measurement
outcomes of the other particle, even after the particles have been separated
spatially. To put it in a different way: Full knowledge of the whole system does
not necessarily give you full knowledge of its parts. Some attempts were made
to fix this seeming deficiency with local hidden variable models, but none were
successful.

It took 30 years, until Bell showed that, in fact, all local hidden variable
theories are incompatible with the predictions of quantum mechanics [Bel64]
and derived an inequality which can be used to verify experimentally that
quantum mechanics violates locality. It took some more time until it was
attempted to actually perform such an experiment [FC72]. The most well known
one is by Alain Aspect [AGR82] using entangled photons. While theoretically,
there still remain some loopholes for local hidden variables mainly due to
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2. Concepts

detector inefficiencies, all experiments have confirmed quantum mechanics, and
the loopholes are expected to be closed soon.

It is important to stress that the type of non-locality inherent to quantum
mechanics is not at odds with special relativity. The correlations due to en-
tanglement are not strong enough to allow information transfer, i.e. they are
non-signaling. Therefore, quantum mechanics adheres to the restriction of spe-
cial relativity that no information can be transmitted faster than the speed of
light. In fact, it is possible to construct even more non-local correlations than
quantum mechanics allows, which are non-signaling. The most non-local corre-
lations possible are implemented by the Popescu-Rohrlich non-local box [PR94].

Entanglement also plays a central role in the mechanism of decoherence,
which is crucial for our understanding of the quantum to classical transition.
Zeh [Zeh70] and Zurek [Zur81] have started the modern discussion about this
issue. The observation, that quantum states are very fragile and quickly start
to behave classically, can be explained by taking into account interactions with
environmental degrees of freedom. Quantum states become entangled with the
(much larger) environment and lose their internal entanglement in that process.
More precisely, entanglement within the system is destroyed by entanglement
with environmental degrees of freedom.

At the level of qubits the principle of monogamy of entanglement forbids a
qubit that is maximally entangled with another qubit to be correlated at all
with a third qubit [KW04]. In the same way, two qubits, each of which is
maximally entangled with the environment, cannot themselves be entangled.
Since the environment has a much larger dimension, already a small amount
of entanglement with individual environmental degrees of freedom has a very
pronounced effect.

Of course, decoherence does not solve the measurement problem. It only
describes a seeming wave function collapse. Still, it remains an open question
whether the wave function really collapses at some point eventually or not. In
the first case, a yet to be discovered mechanism has to provide non-unitary
dynamics for the collapse. In the second case, no collapse occurs ever, leading
to a many-worlds interpretation of quantum mechanics.

2.1.2. Formal Definition of Entanglement

Entanglement exists only relative to a given partition of a quantum system.
It does not make sense to ask about entanglement contained in a system as
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2.1. Entanglement

a whole. While it is possible to consider more than two subsystems, I will
restrict myself to the case of a bipartite quantum system with Hilbert space
H = HA ⊗ HB. The definition of entanglement is negative: A pure state

|ψ〉 ∈ HA ⊗ HB

of the composite system is entangled if it is not separable. The state is separable
if it can be written as a product state

|ψ〉 = |ψA〉 ⊗ |ψB〉 (2.1)

with |ψA〉 ∈ HA and |ψB〉 ∈ HB being state vectors of the subsystems.
A mixed state ρ is separable if it can be written as a convex combination of

product states [Wer89]
ρ = ∑

i
piρ

A
i ⊗ ρB

i (2.2)

with pi ≥ 0 and ∑i p = 1.
Unfortunately, the above definition is unhelpful if the task is to decide whether

a mixed given state is entangled or not. In fact, classifying an unknown mixed
state turns out to be a computationally hard problem in the general case [Gur03].
Criteria which give partial answers are introduced in section 2.1.5.

2.1.3. Relations to other Concepts

In non-rigorous treatments the terms entanglement, non-locality, and non-classi-
cality are often used synonymously. Here, I want to point out that they are not
equivalent (but also not disjunct). Quantum correlations can be looked at from
slightly different angles.

The non-existence of a local hidden variable description of a state is called
non-locality and is demonstrated by the violation of bell inequalities. Surpris-
ingly, some mixed entangled states actually do admit a local hidden variable
description [Wer89]. In this case, however, it is possible to transform the state
into one that violates Bell inequalities by local operations [Pop95]. It is also
remarkable that maximally non-local states are almost1 always not maximally
entangled [MS07].

It is confusing that the term non-locality is sometimes also used in an infor-
mation theoretic sense, which has little to do with hidden local variables. A

1except for the two qubit case
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2. Concepts

state is informationally non-local if not all of the information contained in the
state can be distilled by local operations [HHH+

05]. A similar notion is to
associate non-locality with local indistinguishability [BDF+

99].
All information about a classical state can be extracted by local measurements

and without perturbing it. This is not possible for most separable mixed states.
Ollivier and Zurek have introduced quantum discord [OZ01], which vanishes
for all classical states. In quantum computing an exponential speedup can
sometimes be achieved with very little entanglement and a non-zero quantum
discord [DV07].

2.1.4. Entanglement as a Resource

The concept of entanglement has gained increasing attention over the past
decade because of its importance as an operational resource in quantum infor-
mation processing and quantum computing.

Ekert [Eke91] introduced a quantum cryptography protocol based on entangle-
ment. The two distant parties share entangled states. As the first step, they
ensure that the states are indeed entangled and then they distill a key from
them. The security of the key is guaranteed, because a maximally entangled
state cannot be correlated (even classically) to a third system. In practice, it is
possible to guarantee security even if the entanglement is not perfect.

By Holevo’s bound, the maximum amount of classical information that can
be encoded in a qubit is one classical bit. However, with the help of pre-shared
entanglement this can be extended to two bits by a protocol called quantum
dense coding [BW92].

Pre-shared entanglement can also be used to teleport an unknown quantum
state to a remote location using only classical communication [BBC+

93]. The
original state is destroyed in order not to violate the quantum no-cloning
theorem.

By entanglement swapping [YS92] particles that never directly interact can be
entangled. This can be used to build a quantum repeater for entanglement
distribution over long distances. Such a device is necessary to overcome the
distance limit set by fiber loss.

In classical information theory the communication complexity of functions is
investigated by determining the minimal amount of bits of communication
necessary between distant parties in order to jointly compute the value of
the function from the input values, which are distributed among the parties.

6



2.1. Entanglement

Surprisingly, pre-shared entangled states can reduce the number of necessary
classical bits in certain cases [CB97].

Entangled cluster states are the basis of the one-way quantum computer, which
is universal [RB01]. Any quantum computation can be performed by single
spin measurements on a cluster state. During the process the entanglement
is gradually reduced or “used up”. However, maximally entangled states are
not optimal because they tend to turn into a much less entangled state after
measuring one qubit [BR01].

Entanglement is often claimed to be the reason for the speed-up in quantum
computing. While this is certainly true for pure states [Vid03], it is not clear
for mixed states. In fact, examples can be given which exhibit an exponential
speed-up over all known classical algorithms but use only states with little
or no entanglement [DV07]. Jozsa and Linden [JL03] suggest that it is more
appropriate to attribute the power of quantum computing to the fact that an
exponential amount of parameters is strictly necessary to describe the involved
states mathematically.

2.1.5. Entanglement Criteria

The definition of entanglement cannot be used to answer the question whether
a given state is entangled or not, but sufficient criteria can be developed. Again,
I will only consider the bipartite case.

For pure states, the answer can easily be given by constructing the Schmidt
decomposition, which can be done explicitly by performing a singular value
decomposition. Given two Hilbert spaces HA and HB with dimensions n and
m, respectively, and a state |ψ〉 ∈ HA ⊗ HB one can always find orthonormal
vectors {|ψA

1 〉, |ψA
2 〉, . . . , |ψA

n } ⊂ HA and {|ψB
1 〉, |ψB

2 〉, . . . , |ψB
m} ⊂ HB so that

|ψ〉 =
m

∑
i=1

αi|ψA
i 〉 ⊗ |ψB

i 〉 , αi ≥ 0 , ∑
i

α2
i = 1 .

The number of αi which are non-zero is called the Schmidt rank r. It can now be
seen from the definition of separability (2.1) that |ψ〉 is entangled if and only if
r > 1.

All separable pure states have the property that they will stay pure if one of
the parts is traced out. Therefore, entanglement can be checked by calculating
the purity of the reduced state, which is strictly smaller than unity for all

7



2. Concepts

entangled states:

Tr(TrB |ψ〉〈ψ|)2 < 1 ⇔ |ψ〉 is entangled.

For mixed states the situation is more complicated. As already mentioned,
the general problem of deciding whether a mixed state is separable is NP-
hard. Fortunately, useful criteria exist which can be calculated quickly and are
able to detect entanglement in many important cases. Here I present only the
widely used Peres-Horodecki or positive partial transpose (PPT) criterion [Per96,
HHH96].

Again, we have a bipartite Hilbert space H = HA ⊗ HB and two bases span-
ning the factor spaces {|ψA

1 〉, |ψA
2 〉, . . . , |ψA

N} ⊂ HA and {|ψB
1 〉, |ψB

2 〉, . . . , |ψB
M} ⊂

HB, which can be chosen arbitrarily. The matrix elements of the density matrix
are given by

ρmµnν = 〈ψA
m ⊗ ψB

µ |ρ|ψA
n ⊗ ψB

ν 〉 .

Then the partial transpose of ρ with respect to B is defined by transposing the
indices µ and ν only

ρTB
mµnν = ρmνnµ .

A different way of expressing the same operation is to write ρ as an N × N
matrix of M×M matrices Anm

ρ =

A11 · · · A1N
... . . . ...

AN1 · · · ANN

 .

Partially transposing ρ with respect to B amounts to transposing all matrices
Anm

ρTB =

AT
11 · · · AT

1N
... . . . ...

AT
N1 · · · AT

NN

 .

It is easy to see that separable states will stay valid density matrices under
partial transposition by looking at the definition of Werner (2.2).

In the same way, ρ can be partially transposed with respect to A, but conclu-
sions about entanglement are independent of which subsystem is transposed.

The Peres-Horodecki (or PPT) criterion states that if ρTB is not a positive matrix,
ρ is entangled. This criterion for entanglement is sufficient, but not necessary.

8



2.1. Entanglement

However, if the dimension of ρ is less than six, it is both necessary and sufficient.
All entangled states that are not detected by the criterion are denoted as bound
entangled states, because it has been shown that no entanglement can be distilled
from them by local operations [HHH98].

2.1.6. Entanglement Measures

Since entanglement is regarded as a resource, it is desirable not only to detect
its presence, but also to quantify it. The decision problem is easy for pure
states and difficult for mixed states. Obviously, this property generalizes to the
quantification problem.

For pure states the von Neumann entropy S(ρ) = −Tr(ρ log2 ρ) of the re-
duced density matrix of either subsystem is the unique23 [PR97] measure of
entanglement called entropy of entanglement [BBPS96]

E(ψ) := S(TrA |ψ〉〈ψ|) = S(TrB |ψ〉〈ψ|) .

Many mixed state measures reduce to the entropy of entanglement on pure
states.

For mixed states it is not possible to define a unique measure. Different mea-
sures impose different orderings of the states, which can be interpreted as the
existence of different “types” of entanglement [HHHH09]. Good entanglement
measures should be monotonous under local operations and classical communi-
cation (LOCC) as has first been demanded by Bennett et al. [BDSW96], because
entanglement by definition cannot be increased by LOCC. The operationally
defined measures entanglement cost EC and distillable entanglement ED fulfill this
axiom. EC and ED are complementary in the sense that EC is the number of Bell
pairs that are needed to create a given state by LOCC, and ED is the number
of Bell pairs that can be distilled out of a given state by LOCC2. It is always
ED ≤ EC and on pure states ED = EC.

The number of mixed state measures is quite large, most of them are either
defined by their distance D to the set of separable states S

E(ρ) = inf
σ∈S
D(ρ, σ)

2In the limit of infinitely many copies of the state.
3It becomes unique by only imposing that it does not increase under local operations.

9



2. Concepts

or by the convex roof extension [Uhl98] of a pure state measure

E(ρ) = inf
pi,ψi

∑
i

piE(ψi) , ρ = ∑
i

pi|ψi〉〈ψi| , pi ≤ 1 , ∑
i

pi = 1 .

In the first case, a suitable distance measure D has to be chosen.
Entanglement measures are hard to evaluate. The only exception is neg-

ativity which was introduced by Życzkowski et al. [ZHSL98] and Vidal and
Werner [VW02]. It is based on the PPT criterion and indicates “how much”
a partially transposed state ρTB violates positivity. The absolute value of all
negative eigenvalues of ρTB are summed up. This can be conveniently written
as

N (ρ) =
‖ρTB‖1 − 1

2
,

with ‖ρ‖1 = Tr
√

ρρ† being the trace norm. N is a LOCC monotone. A slight
variation called logarithmic negativity, which is essentially the logarithm of the
quantity defined above, is even more useful

EN (ρ) = log2 ‖ρTB‖1 ≡ log2(2N (ρ) + 1)/2 . (2.3)

It is additionally additive and an upper bound of the distillable entangle-
ment ED.

Logarithmic negativity does not reduce to the entropy of entanglement on
pure states. Nevertheless, due to the advantage of being easily calculable, it is
the measure of choice in this work.

2.2. Continuous Variable Systems

2.2.1. Motivation

The previous sections are applicable to finite dimensional systems. Without
doubt, the two-state (“qubit”) system is the most popular physical system in
quantum information theory. However, many ideas of how to implement various
steps of quantum information processing make use of infinite dimensional
systems, most importantly coherent states of light. Even if the use of continuous
variables is not the natural description of a system, it sometimes turns out
that infinite dimensional systems are easier to treat than two-dimensional ones.
The dissipative oscillator is exactly solvable, whereas the dissipative two-state

10



2.2. Continuous Variable Systems

(spin-boson) model is not. At low temperatures the oscillator model effectively
reduces to a two-state system. Therefore, one can expect conclusions drawn
from solving an oscillator model in this limit to be valid for the two-state case
as well [SH04].

2.2.2. Gaussian States and the Covariance Matrix

An n-mode continuous variable system is described by 2n canonical operators
q̂1, . . . , q̂n and p̂1, . . . , p̂n. They can be combined into a vector ξ̂

ξ̂ = (q̂1, . . . , q̂n, p̂1, . . . , p̂n)T .

We also define a corresponding c-number vector

ξ = (q1, . . . , qn, p1, . . . , pn)T ≡ (q, p)T .

A state of the system can be specified by the density matrix

ρ(q, q′) = 〈q|ρ|q′〉 ,

which determines the expectation values of all observables. The Wigner func-
tion W is obtained by applying the Wigner transformation to the density ma-
trix [Wig32]

W(ξ) =
1

(2πh̄)n

∫
dx1 . . . dxn ρ(q− x/2, q + x/2)eipT x/h̄ , (2.4)

which is a quasi-probability distribution over phase space. It equally determines
the expectation values of observables, but unlike a real probability distribution
it can assume negative values. Fourier transforming the Wigner function leads
to the characteristic function

χ(ξ) =
∫

d2nη W(η)eiξTη = Tr(ρWξ) ,

where Wξ = eiξT ξ̂ is the phase space displacement (or Weyl) operator [Wey27].
A state is a Gaussian state if its characteristic function is a Gaussian function

χ(ξ) = e−
1
4 ξTCξ+dTξ .

11



2. Concepts

Cµν = 〈{ξ̂µ, ξ̂ν}〉 ≡ Tr[(ξ̂µξ̂ν + ξ̂νξ̂µ)ρ] is the covariance matrix collecting the
second moments. As any covariance matrix, C is positive-semidefinite C ≥ 0.
We will see in the next section that C has to fulfill more stringent relations to be
a valid quantum mechanical covariance matrix, however.

By phase space translations of individual modes, the displacement vector d
can always be set to zero. This does not affect entanglement. Therefore, we will
assume d = 0 in the following. Since the covariance matrix is real, symmetric,
and defines a Gaussian state completely, only n(n + 1)/2 real numbers are
required to describe it. By restricting oneself to Gaussian states, still many
states are covered that can be created easily in experiments. This includes vacua,
as well as coherent, thermal, and squeezed states.

The purity µ of a Gaussian state is given by the determinant of the covariance
matrix C

µ = Tr ρ2 =
∫

d2nξ W(ξ)2 =
1√

det C
,

where µ = 1 corresponds to a pure state. Therefore, C describes a pure state if
and only if det C = 1.

2.2.3. Uncertainty Relations

Correlations in quantum mechanics are restricted by uncertainty relations.
The familiar inequality ∆x∆p ≥ h̄/2 is not strong enough to characterize the
covariance matrix C. We are going to derive the full generalized uncertainty
relations in this section (see [SMD94]).

Let us define the symplectic form

σ =
(

0 1n
−1n 0

)
, σ−1 = σT = −σ ,

which can be used to write the canonical commutation relations as (h̄ = 1)

[ξ̂µ, ξ̂ν] = iσµν .

The operator matrix ξ̂ ξ̂T has the entries

(ξ̂ ξ̂T)µν = ξ̂µξ̂ν =
1
2
{ξ̂µ, ξ̂ν}+

i
2

σµν

12



2.2. Continuous Variable Systems

with the expectation values

Tr(ρ(ξ̂ ξ̂T)µν) =
1
2

Cµν +
i
2

σµν .

Furthermore, we consider the vector c = (c1, . . . , c2n) and use it to define the
operator

Ŷ = cT ξ̂ = c1q̂1 + . . . + c2n p̂n .

Then Ŷ†Ŷ is obviously a positive operator and Tr(ρŶ†Ŷ) ≥ 0 is a positive
number for all c ∈ C2n. This can be rewritten as

Tr(ρŶ†Ŷ) = c† Tr(ρξ̂ξ̂T)c ≥ 0 ∀c ∈ C2n .

The last statement is equivalent to Tr(ρξ̂ξ̂T) being a positive matrix, or in other
words

C + iσ ≥ 0 , (2.5)

which are the generalized uncertainty relations the covariance matrix C has to
fulfill to be physical.

2.2.4. Separability

The PPT criterion from section 2.1.5 can now be applied to the continuous
variable case in a very simple way [Sim00]. From the definition of the Wigner
transformation (2.4) it follows immediately that transposing the density matrix
is equivalent to time reversing the Wigner function

ρ→ ρT

W(q, p)→W(q,−p) .

Partial transposition is then equivalent to partial time reversal, i.e. only the
impulses belonging to one subsystem are multiplied by −1. For example, in the
two-mode bipartite case this gives

W(q1, q2, p1, p2)→W(q1, q2, p1,−p2) .

The covariance matrix C transforms accordingly by reversing the sign of all
entries containing exactly one p of the subsystem. In the two-mode case this
amounts to conjugating C with the matrix

P = diag(1, 1, 1,−1) , CTB = PCP .

13



2. Concepts

Instead of checking whether the partially transposed density matrix ρTB is still
a valid density matrix, we require the partially time reversed covariance matrix
CTB to fulfill the uncertainty relations CTB + iσ ≥ 0 as a necessary criterion for
separability. Conversely, a violation of the uncertainty relations is sufficient
for entanglement. Similarly to the finite dimensional case, for two modes the
criterion is both necessary and sufficient [Sim00].

2.2.5. Symplectic Eigenvalues

By Williamson’s theorem [Wil36], there exists a real symplectic matrix S ∈
Sp(2n, R) which diagonalizes C by a symplectic transformation

STCS = D = diag(λ1, . . . , λn, λ1, . . . , λn) ,

where λ1, . . . , λn are the symplectic eigenvalues of C. The transformation is called
normal-mode decomposition. Conjugating the symplectic form σ by a symplectic
matrix S leaves it invariant by definition, so C + iσ transforms as

ST(C + iσ)S = D + iσ =



λ1 i
. . . . . .

λn i
−i λ1

. . . . . .
−i λn


.

The positivity of C + iσ is preserved, because the transformation is non-singular
(it is a matrix congruence). Reading off the eigenvalues of D + iσ, we obtain
the spectrum λi ± 1. This allows the uncertainty relations (2.5) be reformulated
as [SMD94]

λi ≥ 1 .

Conveniently, simple expressions can be given to calculate the symplectic
eigenvalues of an arbitrary covariance matrix C, without having to find the
diagonalizing symplectic transformation S first [VW02]. We will discuss two
possibilities here. The symplectic eigenvalues are the absolute values of the
eigenvalues of

iσC ,

14



2.2. Continuous Variable Systems

or the positive square roots of the eigenvalues of

−σCσC .

Both statements can be proven by looking at the matrix

σD =



λ1
. . .

λn
−λ1

. . .
−λn


.

It has the eigenvalues ±iλi. Since a similarity transformation does not change
the eigenvalues, we see by writing

σD = σSTCS = S−1(σC)S

that σC has the same eigenvalues, this proves the first statement. The second
one can be shown by applying the same consideration to the matrix −(σD)2,
which has the eigenvalues λ2

i

σDσD = σSTCSσSTCS = S−1σCSS−1σCS = S−1(σCσC)S .

2.2.6. Logarithmic Negativity

The main advantage of using logarithmic negativity as an entanglement measure
is its easy computability. Fortunately, this property generalizes to the infinite
dimensional case. A simple formula for the logarithmic negativity EN of a
continuous variable system can be given in terms of the symplectic eigenvalues
of its partially time reversed covariance matrix CTB .

Following the derivation in [VW02], we note that the computation of the trace
norm (2.3) is simplified by applying the normal-mode decomposition to CTB . In
the Hilbert space description, the state is turned into a product state. Hence, the
contribution to the trace norm can be calculated separately for each oscillator,
resulting in a sum over all modes i = 1, . . . , n. Each summand depends only on
the single symplectic eigenvalue λ̃i corresponding to the mode i

EN =
n

∑
i=1

log2 ‖ρi‖1 ,
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2. Concepts

where ρi is the density matrix of a single oscillator Gaussian state with the 2× 2
covariance matrix diag(λ̃i, λ̃i). Now, the only remaining task is to calculate
log2 ‖ρi‖1. For this we introduce a general Gaussian state

ρi = (1− zi)
∞

∑
m=0

zm
i |m〉〈m| ,

where |m〉 is the usual number basis and −1 < zi < 1. Negative zi correspond
to unphysical states, which occur after partially transposing an entangled state.
Calculating the trace norm is straightforward

‖ρi‖1 = Tr
√

ρiρ
†
i

= Tr
(
(1− zi)

∞

∑
m
|zi|m|m〉〈m|

)
= (1− zi)

∞

∑
m
|zi|m

=
1− zi

1− |zi| .

Since the covariance matrix is diagonal, the symplectic eigenvalue is equal to
the expectation values of 2q̂2 and 2p̂2

λ̃i = 2〈q̂2〉 = 2〈 p̂2〉
= 2 Tr

(
ρi

1
2
(q̂2 + p̂2)

)
= 2(1− zi)

∞

∑
m

zm
i

(
m +

1
2

)
=

2
1− zi

+ 1 .

Solving for zi gives

zi =
λ̃i − 1
λ̃i + 1

and plugging this result into the expression for the trace norm completes the
calculation

‖ρi‖1 =

{
1 if λ̃i > 1 ,
1/λ̃i if λ̃i < 1 .

16
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Finally, we are able to write down the formula for the logarithmic negativity

EN = −
n

∑
i=1

log2(min(1, λ̃i)) ,

where λ̃1, . . . , λ̃n are the symplectic eigenvalues of CTB .

2.3. Dissipation and Quantum Mechanics

For a long time it remained unclear how to properly model dissipation in a
quantum mechanical system. In most real physical systems it obviously plays a
significant role, but the Schrödinger equation is unable to describe it due to its
unitarity. Any ad hoc modifications of the Schrödinger dynamics, which were
constructed to yield known dissipative behavior in the classical limit, have been
shown to be inconsistent. In the quantum regime they clearly lead to incorrect
results [Wei08].

The only viable approach is the system-plus-reservoir concept. The quantum
system is modeled as the system of interest combined with a large, often infinite
number of reservoir modes. The dynamics of the whole system are always
unitary, guaranteeing valid quantum behavior. At some point, the degrees of
freedom of the reservoir are simply disregarded. In this way, energy can be “lost”
by transferring it from the system to the reservoir. Of course, a finite number
of reservoir modes leads to a finite recurrence time, so for truly irreversible
dynamics an infinite number of modes is necessary. However, a finite number
of modes still gives correct results for sufficiently short times.

At this point it should be clear that dissipation is modeled in a similar way as
decoherence (section 2.1.1). In fact, these notions are often used synonymously.
Strictly speaking, however, they have a slightly different meaning. While dissi-
pation denotes the irreversible loss of energy to the environment, decoherence
signifies the loss of quantum coherence between different parts of the system,
which is possible without any dissipation.

Two possible choices to determine the time evolution are either to work in
the density matrix formalism or in the Heisenberg picture. In the first case
one arrives at a quantum master equation, which describes the dynamics of the
reduced density matrix. In the second case the dynamics of the system operators
are given by a quantum Langevin equation [Sen60, Mor65, FKM65].
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2. Concepts

Formally, both approaches are equivalent, but in practice most approxima-
tions are easier to apply to the master equation. The most popular approxima-
tion is the Lindblad master equation [Lin76, GKS76]. Because it is local in time, it
can be easily solved. It is a completely positive map, which means that it mani-
festly has valid reduced density matrices as solutions for all initial conditions.
It is widely used and quite successful in NMR and quantum optics. Since it is
based on second order perturbation theory, the rotating-wave approximation,
and the Born-Markov approximation, it is only valid in the weak coupling limit
and only if the dynamical time scale of the environment is much shorter than
the time scale of the system.

A third powerful approach to open quantum systems is the the Feynman-
Vernon influence functional method [FV63]. It has given rise to numerous ana-
lytical and numerical results, which go beyond the capabilities of the usual
Lindblad master equation [Wei08].

One more method that should be mentioned is the Nakajima-Zwanzig pro-
jection operator technique [Nak58, Zwa60], which was later developed into the
time convolution-less projection operator method by Shibata et al. [STH77] (see
also [BP02]).

The main focus of this work will be on the quantum Langevin equation
method applied to a two-oscillator extension of the Caldeira-Leggett model. The
Caldeira-Leggett model was originally introduced by Ullersma [Ull66] and later
generalized by Zwanzig [Zwa73] as well as by Caldeira and Leggett [CL83a]
(who employed the influence functional method). The Langevin method is
limited to bilinear interactions, but in that case it allows for finding exact
solutions with relatively little effort.
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3. Modelling Dissipation with
Quantum Langevin Equations

3.1. Introduction

Modeling dissipation with oscillators has a long history. Some of the origins
have been introduced in the previous chapter. Instead of directly writing down
a Hamiltonian with infinitely many oscillators, we will start with a model
used by Dekker [Dek85], Yurke [Yur86], and Unruh and Zurek [UZ89]. The
position of an oscillator is coupled to the velocity of a quantum field. This
results in a manifestly positive Hamiltonian (no “runaway” solutions). In this
way, we can provide a clean and straightforward derivation of the quantum
Langevin equation. Another advantage of this approach is that the quantum
field inherently respects causality, so we do not need to worry about this.

Comparing with the Caldeira-Leggett model with a bilinear amplitude cou-
pling, it turns out that both models are equivalent and can be transformed into
each other by a Legendre transformation. However, a so called “counter-term”
has to be added to the Hamiltonian of the Caldeira-Leggett model by hand,
which appears naturally starting from the model by Dekker.

We will see that the Quantum Langevin Equation turns into an integro-
differential equation over the real numbers for the special case of Gaussian
states. The solution of this will be presented in later chapters.

3.2. Lagrangian

We extend the Lagrangian from [UZ89] to include two identical oscillators
Q1 and Q2 at the positions d/2 and −d/2, respectively, coupled to a three-
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3. Modelling Dissipation with Quantum Langevin Equations

dimensional free scalar field φ,

L =
1
2 ∑

i=1,2
M(Q̇2

i −Ω2
0Q2

i ) +
1
2

∫
d3x(φ̇2 − (∇φ)2)

−
∫

d3x φ̇(x)
[

f
(∣∣∣x− d

2

∣∣∣)Q1 + f
(∣∣∣x +

d
2

∣∣∣)Q2

]
,

where f (x), sharply peaked around x = 0, determines the coupling of the
oscillators to the field. The results in this section have been developed in
collaboration with Friedemann Queisser [Que11].

Later, we will also consider the case of a one-dimensional field. Whenever
the one-dimensional expressions differ significantly from the three-dimensional
ones, this will be pointed out. Not all differences can be encapsulated in the
spectral density of the coupling as it can be done for systems with no spatial
extension.

The total energy is clearly always positive, because the velocity coupling
cancels out when writing down the energy

E =
1
2

∫
d3x(φ̇2 + (∇φ)2) +

1
2 ∑

i=1,2
M(Q̇2

i + Ω2
0Q2

i ) ≥ 0 .

Equivalently, one can say that the field does not renormalize the mass of the
system oscillators.

Decomposing the field into eigenmodes, where k is a wave vector k ∈ 2π
L Z3,

we obtain
φ(x) =

1√
V

∑
k

φkeikx ,

and V = L3 is the quantization volume. Then, the field part of the Lagrangian
turns into

Lbath =
1
2 ∑

k
(φ̇kφ̇−k − k2φkφ−k)

and the interaction part into

Lint = −∑
k

gk(φ̇keikd/2Q1 + e−ikd/2Q2) ,

where the gk are the Fourier coefficients of the coupling function f (x). In one
dimension the summation is over one dimensional modes with one dimensional
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3.3. Hamiltonian

wave vectors k ∈ 2π
L Z and the quantization volume is V = L. To simplify

notation we use the bold face symbol k even if the wave vector is just a single
number.

To facilitate the interpretation as a harmonic oscillator model, masses can
be reintroduced by c = 1, ωk = k, φk → √mkφk, and gk → gk/

√
mk. The full

Lagrangian then reads

L = ∑
i=1,2

1
2
(MQ̇2

i −MΩ2
0Q2

i )

+ ∑
k

1
2
(mkφ̇kφ̇−k −mkω2

k φkφ−k)− gkφ̇k(Q1eikd/2 + Q2e−ikd/2) .

3.3. Hamiltonian

We now switch to the Hamiltonian formalism by considering the generalized
momenta

πk =
∂L
∂φ̇k

= mkφ̇−k − gk(Q1eikd/2 + Q2e−ikd/2)

Pi =
∂L
∂Q̇i

= MQ̇i .

While the transformations of the system and the bath part are standard, in the
interaction part an additional term is generated, which is generally referred to
as the counter-term [DC06]

H = ∑
i=1,2

( P2
i

2M
+

1
2

MΩ2
0Q2

i

)
+ ∑

k

[πkπ−k

2mk
+

1
2

mkω2
k φkφ−k

+
gk
mk

πk(Q1e−ikd/2 + Q2eikd/2) +
g2

k
2mk

(Q2
1 + Q2

2 + 2Q1Q2 cos(kd))︸ ︷︷ ︸
counter-term

]
.

Finally, the canonical transformation πk → ωkφ̃k, φk → π̃k/ωk with the rescal-
ing gk → gk/ωk (for a cleaner notation the tilde will be immediately dropped
again) leads to the Hamiltonian with bilinear amplitude coupling which is
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familiar from the Caldeira-Leggett model

H = ∑
i=1,2

( P2
i

2M
+

1
2

MΩ2
0Q2

i

)
+ ∑

k

[πkπ−k

2mk
+

1
2

mkω2
k φkφ−k

+
gk
mk

φk(Q1e−ikd/2 + Q2eikd/2) +
g2

k
2mkω2

k
(Q2

1 + Q2
2 + 2Q1Q2 cos(kd))

]
.

As already mentioned, the counter-term occurs naturally in the derivation and
cannot simply be dropped without introducing unwanted side effects. We will
see that it cancels out later and leads to causality preserving Quantum Langevin
Equations (QLEs).

3.4. Quantum Langevin Equations

Building on this Hamiltonian, the first steps towards the full time evolution of
the Heisenberg operators Qi(t) can be pursued by elementary means [FK87].
We write down the Heisenberg equations of motion

Q̇1/2(t) =
1
M

P1/2(t)

Ṗ1/2(t) = −MΩ2
0Q1/2(t)

−∑
k

[ g2
k

mkω2
k
(Q1/2(t) + Q2/1(t) cos(kd)) + gkφk(t)e∓ikd/2

]
(3.1)

and

φ̇k =
1

mk
π−k

π̇−k(t) = −ωkφk(t)− gk
mk

(
Q1(t)eikd/2 + Q2(t)e−ikd/2

)
.

The equations for the bath degrees of freedom φk can be solved using standard
Laplace transform techniques, which leads to the expression

φk(t) =

√
1

2mkωk
(bke−iωkt + b†

−keiωkt)

− gk
mkωk

∫ t

0
dt′ sin(ωk(t− t′))

(
Q1(t′)eikd/2 + Q2(t′)e−ikd/2

)
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where bk, b†
k are the standard creation and annihilation operators defined by

φk(0) =

√
h̄

2mkωk
(bk + b†

−k)

πk(0) = −i

√
h̄mkωk

2
(bk − b†

−k) .

The solution can be substituted into (3.1). Bringing all system operators to the
left side and all bath operators to the right side, we have

Q̈1/2(t) + Ω2
0Q1/2(t) + ∑

k

g2
k

Mmkω2
k

[(
Q1/2(t) + Q2/1(t) cos(kd)

)
−ωk

∫ t

0
dt′ sin(ωk(t− t′))

(
Q1/2(t′) + Q2/1(t′)e∓ikd

)]
= B1/2(t) ,

with the abbreviations

B1/2(t) = −∑
k

√
g2

k h̄
2M2mkωk

e∓ikd/2(bke−iωkt + b†
−keiωkt) ,

where the index 1 corresponds to the negative sign in the exponent and the
index 2 to the positive sign. Now, we can rewrite the integral using the identity

d
dt

∫ t

0
dt′ cos(ωk(t− t′))Q1/2(t′)

= −ωk

∫ t

0
dt′ sin(ωk(t− t′))Q1/2(t′) + Q1/2(t) .

Note that due to the identity

∑
k

cos(kd) f (k) =
1
2 ∑

k
(eikd + e−ikd) f (k) = ∑

k
e±ikd f (k) ,

the additional term produced here exactly cancels the counter term

Q̈1/2(t) + Ω2
0Q1/2(t) + ∑

k

g2
k

Mmkω2
k

· d
dt

∫ t

0
dt′ cos(ωk(t− t′))

(
Q1/2(t′) + Q2/1(t′)e∓ikd

)
= B1/2(t) .
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The remaining step to arrive at the QLEs is to take the continuum limit of bath
modes characterized by the coupling spectral density [CL83b]

J(ω) = ∑
k

g2
k

2Mmkωk
δ(ω−ωk) . (3.2)

In theoretical works the spectral density is usually used to define the coupling
constants gk, because most physical situations can be mapped onto a spectral
density of the form J(ω) ∝ ωs, where s < 1 is called a sub-ohmic environment,
s = 1 is an ohmic environment, and s > 1 super-ohmic. In this way, it is possible
to cover all relevant cases without having to specify the underlying model in
detail. Of course, in reality it is the other way around: The coupling constants
gk are fixed and the spectral density J(ω) follows from them.

For a three-dimensional bath, the angles can be integrated out∫
R3

dk e±ikd f (k) = 4π
∫ ∞

0
dk

sin(kd)
kd

k2 f (k) .

A one-dimensional bath leads to∫ ∞

−∞
dk e±ikr f (k) = 2

∫ ∞

0
dk cos(kd) f (k) .

With the coupling spectral density, we also introduce the position r dependent
damping kernel Γr(t) [Mor65] (see also [BP02]) by

Γr(t) = ∑
k

g2
k

Mmkω2
k

cos(wkt)e−ikr

=


2
∫ ∞

0
dω

J(ω)
ω

cos(ωt) cos(ωr) for a 1D bath

2
∫ ∞

0
dω

J(ω)
ω

cos(ωt)
sin(ωr)

ωr
for a 3D bath.

(3.3)

Close inspection of the damping kernel Γr(t) reveals that it is always strongly
peaked around t = r independently of the exact form of J(ω) (see figure 3.1
and 3.2). This ensures that the oscillators feel the influence of each other only
after a time r/c (c = 1) has passed. Finally, we have

Q̈1/2(t) + Ω2
0Q1/2(t)

+
d
dt

∫ t

0
dt′
(

Γ0(t− t′)Q1/2(t′) + Γd(t− t′)Q2/1(t′)
)

= B1/2(t) ,
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Figure 3.1.: Damping kernel for a free one-dimensional bath with a spectral
density of the form J(ω) ∝ ω e−ω/(10Ω0) and r = 1.
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Figure 3.2.: Damping kernel for a free three-dimensional bath with a spectral
density of the form J(ω) ∝ ω3 e−ω/(10Ω0) and r = 1.

which can be written in the more compact form

ẏ(t) +Zy(t) +
d
dt

∫ t

0
dt′ Γ(t− t′)y(t′) = B(t) , (3.4)

where y = (Q1, Q2, Q̇1, Q̇2), B = (0, 0, B1, B2), and

Z =


0 0 −1 0
0 0 0 −1

Ω2
0 0 0 0

0 Ω2
0 0 0

 , Γ(t) =


0 0 0 0
0 0 0 0

Γ0(t) Γd(t) 0 0
Γd(t) Γ0(t) 0 0

 .

There is a clear classical interpretation of the dynamics at hand: The two
oscillators are coupled via a retarded, bath-mediated interaction and are subject
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3. Modelling Dissipation with Quantum Langevin Equations

to friction as well as a stochastic driving force. As promised before, due to the
retardation by the peaked Γd(t), this equation does not violate causality.

The solution y(t) of (3.4) for initial y(0) and inhomogeneity B(t) is

y(t) = G(t)y(0) +
∫ t

0
dt′ G(t− t′)B(t′) ,

where the Green’s function G(t) solves the homogeneous part of (3.4). The
matrix G(t) has real entries and its time evolution is given by the solution of
the corresponding classical equations of motion.

The matter is simplified enormously by restricting oneself to Gaussian states
of the system. This is still exact, because Gaussian states are preserved by the
quadratic Hamiltonian [SSM88]. We then only need the time evolution of the
covariance matrix, which is given by

Clm = 〈ylym + ymyl〉ρS ≡ Tr[(ylym + ymyl)ρS] .

We assume that the system and bath are initially in a factorizing state ρSB =
ρS ⊗ ρT with ρT being a thermal state of the bath with temperature T. The time
evolution of the covariance matrix C(t) can then be expressed as

C(t) = G(t)C(0)G(t)† +
∫ t

0
dt′
∫ t

0
dt′′G(t− t′)K(t′ − t′′)G(t− t′′)† . (3.5)

Here, C(0) is the initial covariance matrix of the system, corresponding to ρs,
and the matrix K(t) = 2〈{B(t)B(0)†}〉ρT contains the bosonic bath correlations.
The only non-vanishing entries are K34(t) = K43(t) = Kd(t) and K33(t) =
K44(t) = K0(t) with

Kr(t) =


2
∫ ∞

0
dω J(ω) coth

( ω

2T

)
cos(ωt) cos(ωr) for a 1D bath

2
∫ ∞

0
dω J(ω) coth

( ω

2T

)
cos(ωt)

sin(ωr)
ωr

for a 3D bath,
(3.6)

which are obtained via a standard calculation.
The important point is that we have turned the operator valued QLE into

an integro-differential equation over the real numbers that only requires the
solutions of the classical equations of motion. While there is still some work
remaining, it is now possible to calculate the exact open dynamics of the
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3.4. Quantum Langevin Equations

covariance matrix with some numerical effort. This is what we are going to do
in the next chapters.

As a last remark it shall be noted that upon changing the coordinates Q1 and
Q2 to center of mass Qc = Q1 + Q2 and relative position Qr = Q1 − Q2, it is
easy to see that for d = 0 only the center of mass motion is damped, whereas
the relative motion is not

Q̈c(t) + Ω2
0Qc(t) + 2

d
dt

∫ t

0
dt′Γ0(t− t′)Qc(t′) = B1(t) + B2(t)

Q̈r(t) + Ω2
0Qr = B1(t)− B2(t) .

The degree of freedom of the relative motion therefore acts as a kind of de-
coherence free subspace. This has already been noticed by Hörhammer and
Büttner [HB08] and deemed unrealistic. While they artificially added damping
to the relative motion, our model always includes damping for d > 0.
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4. Free Space Environment

4.1. Introduction

In this chapter we will discuss solutions of the model introduced in the previous
chapter. The environment in this model is a free scalar field, which might also
be thought of as a simplified description of electromagnetic vacuum modes
interacting with the system oscillators via the dipole approximation.

First, we will present a class of coupling spectral densities which cover most
common real physical cases. Then, we will calculate the asymptotic state of
the system in equilibrium with the environment in order to determine the
amount of entanglement that is contained in it. Finally, we will also present the
full time evolution of the entanglement of the system, because the amount of
entanglement during the evolution can be larger than in the equilibrium state.

4.2. Coupling Spectral Density

In general, the coupling spectral density of an environment is typically assumed
to be of the form

J(ω) =
2
π

γω

(
ω

Ωc

)s−1

e−ω/Ωc . (4.1)

In the case s = 1, the limit Ωc → ∞ leads to Ohmic damping with the damping
constant γ. The damping kernel Γr(t) turns into a δ-peak and the QLE can be
written as a delay differential equation (DDE) [BP02, Zel06]

Q̈1/2(t) + Ω2
0Q1/2(t) + 2γQ1/2(t) + 2γQ2/1(t− d) = B1/2(t) .

This, however, results in unphysical divergence of some of the observables, as
for example the mean kinetic energy [BP02]. Therefore, we will not discuss it
further and consider only finite Ωc.
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4. Free Space Environment

Since the spectral density is defined by a summation over frequencies (3.2),
but a three-dimensional bath contains a summation over all wave vectors k and
not just scalar wave numbers k, we need to think about how this can be mapped
onto each other. A simple strategy is to demand that the total coupling strength
remains the same

∑
k≥0

g̃2
k

!= ∑
k

g2
k ,

where the gk and g̃k are the coupling constants defined in the previous chapter.
Taking the continuum limit and integrating out the angles gives

⇒
∫ Ωc

0
dω ωs = 4πc

∫ Ωc

0
dω ωs+2

⇒ c ∝
1

Ω2
c

.

Thus, the only difference that matters between one and three dimensions is the
increase in the power of ω by two

J3D(ω) ∝ J1D(ω)
(

ω

Ωc

)2

.

The proportionality constant only depends on s and can be absorbed into the
coupling γ.

As soon as the systems has a spatial extension d > 0, not all of the differences
between different dimensions can be captured by adjusting the spectral density.
This leads to the two different expressions for the damping kernel (3.3) and the
bath correlations (3.6).

For an ohmic one-dimensional environment we will also consider a Drude
cut-off

J(ω) =
2
π

γω
Ω2

c
Ω2

c + ω2 , (4.2)

which will enable us to find an analytic expression for the ultra-short time
evolution of the entanglement.

The cut-off frequency Ωc is a property of the coupling mechanism rather
than the bath. Typically, the coupling strength |gk| drops steeply when the
wavelength λ = 2π|k|−1 falls below the system size l. Therefore, a good order
of magnitude estimate is λ ∼ l, which is equivalent to Ωc ∼ 2πc/l.
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4.3. Long-term Asymptotic Entanglement

If it exists, the asymptotic state t→ ∞ can be calculated by taking the Fourier
transform of the Langevin equation (3.4) [GZ04], from which we have dropped
the quickly decaying term y(0)Γ(t). The QLE

ẏ(t) +Zy(t) +
∫ t

−∞
dt′ θ(t− t′)Γ(t− t′)ẏ(t′) = B(t)

is transformed into the algebraic equation

−iωy(ω) +Zy(ω)− iωR(ω)y(ω) = B(ω)

with the matrix R(ω) defined by

Γ̃(ω) =
1
2

∫ ∞

−∞
dt eiωtΓ(t)

R(ω) =
∫ ∞

0
dt eiωtΓ(t) = Γ̃(ω) +

i
π

P
∫ ∞

−∞
dω′ Γ̃(ω′)

ω′ −ω
,

where P denotes the principal value. The Fourier transformation of Γ(t) can-
cels with the integration over ω, so that the matrix elements Γ̃r(ω) of Γ̃(ω)
(corresponding to the elements Γr(t) of Γ(t)) are simply given by

Γ̃r(ω) =
π

M
J(|ω|)
|ω| cos(ωr) .

The equilibrium equal time correlation function of the system can then be
expressed in terms of the matrix

F (ω) = (−iω +Z − iωR(ω))−1

for a one-dimensional bath as the integral

〈{yi(0), yj(0)}〉 = 4 ∑
k,l∈{3,4}

∫ ∞

0
dωFik(ω)Fjl(−ω)J(ω) coth

( ω

2T

)
cos(ωdδkl) ,

which can be evaluated numerically. For a three-dimensional bath cos(ωd) is
replaced by sin(ωd)/(ωd) as before. The above procedure only leads to valid
results if a unique asymptotic state actually exists. This is the case for a generic
bath in free space and d > 0.
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4. Free Space Environment

Alternatively, it is possible to find the asymptotic state of the model with a
Drude cut-off by applying a Laplace transformation f (s) =

∫ ∞
0 dt e−ts f (t) to

the QLE

ẏ(t) +Zy(t) +
∫ t

0
dt′ Γ(t− t′)ẏ(t′) = B(t) .

which results in the algebraic equation

sy(s)− y(0) +Zy(s) + sΓ(s)y(s) = B(s) .

It should be noted that the Laplace transformation is better suited to solve dif-
ferential equations with initial value conditions than the Fourier transformation,
since the lower boundary of the integral is at t = 0. Solving the equation gives

y(s) = (sI +Z + sΓ(s))−1(y(0) + B(s)) ,

from which it follows that the Laplace transformation of the Green’s function G̃
is given by

G̃(s) = (sI +Z + sΓ(s))−1 .

The asymptotic covariance matrix can be read off of equation (3.5). The first
term, which depends on the initial conditions, necessarily has to decay if an
asymptotic state exists, which leaves only

C(∞) =
∫ ∞

0
dt′
∫ ∞

0
dt′′G(t− t′)K(t′ − t′′)G(t− t′′)† .

The bath correlator K(t) (3.6) contains an oscillating factor cos(ωt), which can
be expanded into exponential functions. One can readily see that the above
expression is equivalent to

Cij(∞) = 2 ∑
k,l∈{3,4}

∫ ∞

o
dω (G̃ik(iω)G̃jk(−iω) + G̃ik(−iω)G̃jk(iω))

· J(ω) coth
( ω

2T

)
cos(ωdδkl) .

The advantage of this approach is that for a Drude cut-off G̃(s) can be calculated
analytically and only one numerical integration remains. G̃(s) is a complicated
and long expression, which is printed in appendix A. It is based on the damping
kernel

Γr(t) =
8
π

γ
∫ ∞

0
dω

Ω2
c

Ω2
c + ω2 cos(ωt) cos(ωr)

= γΩc
(
e−|r+t|Ωc + e−|r−t|Ωc

)
,
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which has the Laplace transformation

Γr(s) = 2γΩc
e−rsΩc − e−rΩc s

Ω2
c − s2 .

4.3.1. One-Dimensional Bath

In this section we will present numerical results for the asymptotic state of two
oscillators coupled to the modes of a free one-dimensional bath. We assume
the oscillators to be identical (m = 1, Ω0 = 1). The remaining parameters are
the cut-off frequency Ωc, the coupling constant γ, distance d, and temperature
T. Frequencies are measured in units of Ω0, distances in units of c/Ω0, and
temperatures in units of h̄Ω0/kB.

For a one-dimensional bath we have calculated the asymptotic entanglement
EN for a Drude cut-off (4.2) and an exponential cut-off with s = 1 (4.1). In
the following plots the results for the Drude cut-off are drawn in gray, for the
exponential cut-off in black. Both cut-offs lead to a very similar behavior. In
figure 4.1 we see that the asymptotic entanglement decreases strictly monotoni-
cally with distance and vanishes at some critical distance dmax. The value of the
entanglement EN generally decreases with decreasing coupling γ, increasing
cut-off Ωc, or increasing temperature T.

The remaining plots show the dependence of dmax on the parameters of our
model. Most importantly, we see in figure 4.2 that dmax is inversely proportional
to the cut-off frequency Ωc with a proportionality constant of the order of one.

In figure 4.3 we see the dependence on temperature. As expected dmax is
reduced with increasing temperature. In fact, above a certain threshold there is
no entanglement to be found, even at zero distance. Decreasing the coupling γ

reduces the temperature threshold.
Apart from influencing the temperature threshold the maximal distance dmax

only depends marginally on the coupling strength γ, as can be seen in figure 4.4.
This can be explained by the fact that γ controls both the entanglement and the
decoherence. The effects seem to approximately balance out.

This concludes our discussion of a one-dimension bath and we will now
proceed to a three-dimensional one.
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Figure 4.1.: Asymptotic entanglement as a function of distance d for a one
dimensional bath. The first plot shows the dependence on the
coupling strength γ, the second plot the dependence on the cut-off
frequency Ωc, and the third on the temperature T. The entanglement
drops to zero at a maximal distance dmax. The Drude cut-off is
shown in gray and the exponential cut-off with s = 1 in black.
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Figure 4.2.: Maximal distance dmax as a function of the inverse cut-off frequency
1/Ωc. The Drude cut-off is shown in gray and the exponential
cut-off with s = 1 in black.
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Figure 4.3.: Maximal distance dmax as a function of temperature T. The Drude
cut-off is shown in gray and the exponential cut-off with s = 1 in
black.
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Figure 4.4.: Maximal distance dmax as a function of the coupling strength γ. The
Drude cut-off is shown in gray and the exponential cut-off with
s = 1 in black.
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4.3.2. Three-Dimensional Bath

In figures 4.5, 4.6, 4.7, and 4.8 exactly the same parameter ranges are plotted
(in black) for a three-dimensional bath as in the previous chapter for a one-
dimensional bath. The qualitative behavior is the same as before, however,
the entanglement EN as well as the maximal distance dmax is reduced by
approximately one order of magnitude.

The reason for this decrease is the previously discussed change of the spectral
parameter s from 1 to 3. This can be seen by comparing the three-dimensional
results with the one-dimensional ones, where s has also been increased to 3.
These are plotted in gray and show a very similar behavior. This leads us to
conclude that the slightly different form of the damping kernel (3.3) and the
bath-correlator (3.6) in one and three dimensions do not have a major influence
on the entanglement. Only the spectral parameter s is relevant.

4.4. Entanglement Dynamics

4.4.1. Full Numerical Solution

In this section we will present a numerical solution of the entanglement dynam-
ics. In equation (3.5) we have already written down the formal solution, which
still requires two more steps to obtain the final result. First, the Green’s function
G(t) has to be calculated. It is the solution of the homogeneous part of (3.4). This
is difficult to obtain, because it amounts to solving an integro-differential equa-
tion. Second, the inhomogeneous part has to be integrated, which also requires
some numerical effort, because it involves a two-dimensional integration.

The first step is tackled by using the algorithm by Wilkie and Wong [WW08],
which will be explained in more detail in appendix B. It numerically calculates
the time dependent matrix G(t), which is stored in memory as a set of inter-
polation functions using splines. The main idea is that the integro-differential
equation is discretized into a large set of coupled ordinary differential equations
(ODEs), which can be solved using a standard ODE solver.

In step two, equation (3.5) is evaluated by nesting two one-dimensional
integrations based on standard algorithms. Since the bath correlator also is
not available in a closed analytic form, in fact, three numerical integrations
have to be nested. This makes the calculation computationally very expensive.
Typically, a single run over the maximum time range used in the following
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Figure 4.5.: Asymptotic entanglement as a function of distance d for a three-
dimensional bath. The first plot shows the dependence on the
coupling strength γ, the second plot the dependence on the cut-off
frequency Ωc, and the third on the temperature T. The entanglement
drops to zero at a maximal distance dmax. The three-dimensional
bath with s = 3 is shown in black and the one-dimensional bath
with exponential cut-off and s = 3 is shown in gray.
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Figure 4.6.: Maximal distance dmax as a function of the inverse cut-off frequency
1/Ωc. The three-dimensional bath with s = 3 is shown in black
and the one-dimensional bath with exponential cut-off and s = 3
is shown in gray. The gaps in the plots are due to non-converging
numerics. In all cases dmax smoothly goes to zero for Ωc → ∞.
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Figure 4.7.: Maximal distance dmax as a function of temperature T. The three-
dimensional bath with s = 3 is shown in black and the one-di-
mensional bath with exponential cut-off and s = 3 is shown in
gray.
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Figure 4.8.: Maximal distance dmax as a function of the coupling strength γ.
The three-dimensional bath with s = 3 is shown in black and the
one-dimensional bath with exponential cut-off and s = 3 is shown
in gray.
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figures (tmax = 205/Ω0) with a given set of parameters takes a couple of days
to complete (on an Intel E8500 CPU). Whereas we now have the full covariance
matrix available, which for Gaussian states allows the calculation of the time
evolution of any observable, we will only talk about the entanglement in the
following. The entanglement is measured by the logarithmic negativity as
discussed in section 2.2.6.

As the initial state of the two system oscillators we will choose their ground
state, which has the covariance matrix (h̄, m, Ω0 = 1)

C(0) = diag(1, 1, 1, 1) .

Slightly more general initial states are discussed in section 4.4.4.
Again, we consider one- and three-dimensional baths. In figure 4.9 we

compare the Drude cut-off in gray with the exponential cut-off (s = 1) in black
for the one-dimensional bath. Figure 4.10 shows the one-dimensional bath with
exponential cut-off (s = 3) in gray and the three-dimensional bath (s = 3) in
black.

In both figures the top plot shows a larger time range and the bottom plot
shows the same curves zoomed into the first peak visible at the left side of the
top plot. As for the asymptotic entanglement, the value of the entanglement at
a given time strictly decreases with increasing distance. The large change of the
entanglement on a short time scale at the beginning of the time evolution is the
result of the sudden switch-on of the coupling between the system oscillators
and the bath. This initial kick is considered again in section 4.4.3.

At intermediate times the dynamics consist of oscillations, which can in-
clude so-called sudden-death and revival of the entanglement [YE04, FT06, MS06,
SKR06, YE06, BFC07]. The oscillations are damped and converge to the equi-
librium value discussed in the previous sections, which are indicated by the
dotted horizontal lines.

Exactly as for the asymptotic entanglement, we see that the exact form of
the cut-off is not very important. The most notable difference between the
examined cases is caused by the value of the spectral parameter s.

It remains to be examined how the dynamics depend on the parameters
coupling strength γ, cut-off Ωc, and temperature T. Figures 4.11 to 4.18 contain
corresponding plots. The first four figures show the one-dimensional bath and
the remaining four figures show the three-dimensional bath. Since the effect
of changes in the parameters qualitatively is the same for the one- and the
three-dimensional case, we will discuss both at the same time.
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Figure 4.9.: Time evolution of the entanglement EN for different distances d.
The first plot shows the long-term evolution as it approaches the
equilibrium value which is indicated by the horizontal dotted lines.
The second plot zooms into to the first maximum seen on the left
side of the first plot. The one-dimensional bath with exponential
cut-off (s = 1) is drawn in black and the Drude cut-off in gray. The
parameters are temperature T = 0, coupling γ = 1 Ω0, and cut-off
Ωc = 10 Ω0.
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Figure 4.10.: Same plots as in figure 4.9, but showing the three-dimensional bath
with s = 3 in black and the one-dimensional bath with exponential
cut-off and s = 3 in gray. Only one solid line is shown here,
because for d = 0 the three- and the one-dimensional bath are
identical.

45



4. Free Space Environment

Figure 4.11 and 4.15 show that reducing the coupling strength γ by one or
two orders of magnitude reduces the amount of entanglement approximately
proportionally. However, it is important to note that the distance dependence of
the entanglement is not influenced significantly.

The distance dependence is influenced considerably by the cut-off frequency
Ωc as can be seen in figures 4.12 and 4.16. A similar behavior as for the
asymptotic value, which has been discussed in the previous section, can be seen
for the whole dynamical evolution. The larger the cut-off, the sharper is the
drop of the entanglement with distance.

Finally, the effect of non-zero temperature is displayed in figures 4.13, 4.14,
4.17, and 4.18. Unlike in the other figures, here, only one cut-off is drawn in
each plot and the T = 0 case is drawn in gray for comparison. Clearly, the
short-term dynamics are not influenced by the temperature. In the long term a
rising temperature reduces the amount of entanglement in the system.

4.4.2. Short-Term Approximation

For a one-dimensional bath with Drude cut-off it is possible to write down the
Laplace transformation of the homogeneous solution in analytical from (see
appendix A). This enables us to make an analytical short-term approximation
with the help of the Tauber and Abel theorem [Gol62]: Writing a Laplace
transformed function F(s) as a series with the coefficients an

F(s) =
∞

∑
n=1

ans−n

it will look like

f (t) =
∞

∑
n=1

antn−1

(n− 1)!

in the time domain. We can thus arrive at a second order expansion in time t by
calculating a1, a2, and a3 from the Laplace transformation. This can be achieved
by taking the limits

lim
s→∞

sF(s) = a1 ,

lim
s→∞

(
s2F(s)− sa1

)
= a2 ,

and lim
s→∞

(
s3F(s)− s2a1 − sa2

)
= a3 .
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Figure 4.11.: Time evolution of the entanglement EN for different distances d
and coupling constants γ. Otherwise the same parameters as in
figure 4.9 are used. The exponential cut-off with s = 1 is shown in
black and the Drude cut-off is shown in gray.
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Figure 4.12.: Time evolution of the entanglement EN for different distances d
and cut-off frequencies Ωc. Otherwise the same parameters as in
figure 4.9 are used. The exponential cut-off with s = 1 is shown in
black and the Drude cut-off is shown in gray.
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Figure 4.13.: Time evolution of the entanglement EN for different distances
d and temperatures T. Otherwise the same parameters as in
figure 4.9 are used. The Drude cut-off is shown in black. The gray
curves show the behavior at T = 0 for comparison.
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Figure 4.14.: Time evolution of the entanglement EN for different distances
d and temperatures T. Otherwise the same parameters as in
figure 4.9 are used. The exponential cut-off is shown in black. The
gray curves show the behavior at T = 0 for comparison.
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Figure 4.15.: Time evolution of the entanglement EN for different distances d
and coupling constants γ. Otherwise the same parameters as in
figure 4.9 are used. The three-dimensional bath with exponential
cut-off and s = 3 is shown in black and the one-dimensional bath
with exponential cut-off and s = 3 is shown in gray.
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Figure 4.16.: Time evolution of the entanglement EN for different distances d
and cut-off frequencies Ωc. Otherwise the same parameters as in
figure 4.9 are used. The three-dimensional bath with exponential
cut-off and s = 3 is shown in black and the one-dimensional bath
with exponential cut-off and s = 3 is shown in gray.
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Figure 4.17.: Time evolution of the entanglement EN for different distances
d and temperatures T. Otherwise the same parameters as in
figure 4.9 are used. The one-dimensional bath with exponential
cut-off and s = 3 is shown in black. The gray curves show the
behavior at T = 0 for comparison.
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Figure 4.18.: Time evolution of the entanglement EN for different distances
d and temperatures T. Otherwise the same parameters as in
figure 4.9 are used. The three-dimensional bath with exponential
cut-off and s = 3 is shown in black. The gray curves show the
behavior at T = 0 for comparison.
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The resulting second order expression can be plugged into equation (3.5), which
finally leads to the logarithmic negativity

EN (t) =
2γΩce−Ωcr

log(2)
t +

γΩ2
c(2 log(Ωc) + 2 log(t) + 2γEuler − 3)

π log(2)
t2 +O(t3) ,

(4.3)
where γEuler = 0.577 . . . is Euler’s constant. A comparison between the analyti-
cal expression and the numerical results is shown in figure 4.19 for very short
times.

4.4.3. The Initial Kick

We have observed very fast dynamics at the beginning of the time evolution in
the previous section. This phenomenon is usually termed “initial kick”, “initial
slip”, or “initial jolt” [HPZ92]. It is caused by the fact that we start with a
factorizing initial state and then suddenly turn on the interaction between the
system oscillators and the thermal bath.

In order to answer the question whether the initial kick can be observed in a
real physical system, the different timescales involved have to be considered.
All systems suitable for quantum information processing must be externally
controllable, i.e. the interaction can be turned on and off. This means that
the assumption of an initially uncorrelated state is viable, however, we can
not expect that the interaction can be turned on infinitely fast, which gives us
the first time scale, the switch-on time τ. The second time-scale is the inverse
frequency of the fastest modes in the bath, which is fixed by the inverse cut-off
1/Ωc.

In the case τ � 1/Ωc the kick exists and appears as calculated here. On
the other hand, if τ � 1/Ωc, the initial kick will be weakened, generally
decreasing the amount of entanglement. Nevertheless, the results for t� τ can
be considered correct.

If one is interested in the regime τ � 1/Ωc it also possible to remove the
initial kick completely. The Langevin equation approach can still be pursued by
separating the initial kick from the other terms resulting only in few additional
complications [Hä97, HI05]. The main step is rewriting the integral in the
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QLE (3.4)

d
dt

∫ t

0
dt′ Γ(t− t′)y(t′) =

∫ t

0
dt′
[
Γ̇(t− t′)y(t′)

]
+ Γ(0)y(t)

=
∫ t

0
dt′
[
Γ(t− t′)ẏ(t′)

]
+ Γ(t)y(0)︸ ︷︷ ︸

initial kick

.

This produces a term which depends on the initial positions of the system
oscillators and decays exponentially with time. It can be moved to the right
hand side

ẏ(t) +Zy(t) +
∫ t

0
dt′ Γ(t− t′)ẏ(t′) = B(t)− Γ(t)y(0) = B̃(t) ,

and then be absorbed in a new shifted bath operator B̃(t). This new bath
operator is not stationary if averaged with respect to the usual thermal state
ρT, but we can correct for this by using a shifted Gaussian state ρ̃T instead.
However, the new bath operator B̃(t) by definition is not independent of the
system operators any longer

〈{yi(t), B̃j(t)}〉 6= 0 .

This leads to new terms in equation (3.5). The problem still remains solvable
with only a little more effort, but we have not followed that path, because we
believe that including the initial kick is correct in our case. The current state of
affairs concerning the initial kick and its removal is summarized by Fleming et
al. [FRH10].

4.4.4. Maximal Entanglement

If we want to conclusively rule out the possibility of efficient entanglement
generation in free thermal baths, we have to show that the maximal value of
the entanglement during the entire time evolution is too small to be of practical
use. While we will not be able to strictly prove this, we strongly believe that it
is indeed the case and will provide some arguments here.

First let us start with the Drude cut-off in one dimension. When increasing
the distance, only the first two maxima at the beginning survive (cf. figure 4.9).
The second maximum is the global maximum for intermediate distances and
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vanishes at a certain maximal distance dmax. The behavior of dmax is depicted in
figure 4.20. As in the asymptotic case, it is approximately proportional to 1/Ωc
and does not significantly depend on γ. The step in the curves is caused by a
shift in the position of the second maximum from t ∼ 2× d/c to t ∼ d/c.

The analysis of the behavior of the first maximum is greatly simplified by the
availability of the analytical short time approximation (section 4.4.2). It can be
seen from the formula (4.3) that it decays exponentially in the distance d and
cut-off Ωc.

In the other cases the second maximum behaves similarly to the one-dimen-
sional bath and s = 1 (figure 4.20 and 4.21). The first maximum, however,
is difficult to treat numerically and no analytical solution is available. While
we have not succeeded to numerically determine the type of decay, we still
claim that it will be exponential with distance. The reason being that on a
fundamental level entanglement can only be created by interaction. All the
entanglement we see before the time r/c has passed must already have been
present in the bath. Because the entanglement in the bath is known to decay
exponentially with distance [SW85], we conclude that all cases behave similarly
to the analytic result we have obtained for the Drude cut-off.

Finally, we discuss the effect of squeezing the initial state of the system
oscillators. It is parameterized by the single mode squeezing parameter a,
which is simply the ratio of the variances of the initial state

C(0) = diag(1/a, 1/a, a, a) .

The uncertainty relations are unchanged, since the product 〈x2〉〈p2〉 remains
the same, however, the energy increases.

Based on numerical investigations, we see that squeezing can also increase
the amount of entanglement, but does not significantly influence the distance
at which the second maximum (one-dimensional Drude cut-off and exponen-
tial cut-off with s = 1) vanishes. The value of the first maximum increases
proportionally with 1/a.

4.5. Conclusion

We have discussed the entanglement of the long-term asymptotic state and the
dynamical time evolution of a system of two harmonic oscillators coupled to
a free bosonic bath. The asymptotic state exhibits a critical distance dmax, at
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which the entanglement vanishes and which is proportional to 1/Ωc with a
proportionality constant of O(1). For the time evolution we also find a critical
distance, at which the entanglement vanishes except for a peak exponentially
decaying in r at the beginning of the time evolution due to the initial kick. It
is also approximately proportional to 1/Ωc with a proportionality constant of
O(1).

As we have argued in section 4.2, Ωc is given by the system size. Therefore,
we can conclude that the environment does not entangle two quantum mechanical
systems if they are further apart than a distance comparable to their own size. Due to
this, the effect of environmentally generated entanglement in a free bath is not
useful in practice.
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Figure 4.19.: Short-term evolution of the entanglement of the one-dimensional
bath with Drude cut-off. The numerical data is shown in black and
the analytical approximation in gray. The same parameters as in
figure 4.9 are used.
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Figure 4.20.: Dependence of the maximal entanglement on the cut-off Ωc and the
coupling γ for the one-dimensional bath with exponential cut-off
and s = 1 in black. The Drude cut-off is shown in gray. The steep
ascent in the middle coincides with the time of occurrence of the
maximal entanglement moving from t ∼ 2× d/c (1/Ωc . 0.5/Ω0)
to t ∼ d/c (1/Ω & 0.5/Ω0).
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Figure 4.21.: Dependence of the maximal entanglement on the cut-off Ωc and
the coupling γ for the three-dimensional bath with exponential cut-
off and s = 3 in black. The one-dimensional bath with exponential
cut-off and s = 3 is shown in gray.
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5.1. Introduction

So far we have treated free baths in different dimensions. Now, we are going to
look at a geometrical constraint that drastically changes the coupling spectral
density. We place the oscillators inside of a tube of infinite length with super-
conducting walls and a quadratic cross section of side length a (see figure 5.1).

a

a L→ ∞
e3

e2 e1

Figure 5.1.: Infinitely long tube of width a with super-conducting walls. The
direction e1 points along the tube, whereas directions e2 and e3
span the cross section surface.

The walls impose a boundary condition on the possible environmental modes
inside of the tube, which quantizes the transverse directions with the largest
possible wavelength being a/2. This imposes a lower cut-off ω0 = 2

√
2πc/a on

the environmental frequencies. At the frequency of every allowed transverse
excitation the coupling spectral density exhibits an integrable square root
divergency, which is shown below.

As an approximation for low temperatures we are only going to consider
the lowest transverse excitation in the tube. This leads to a coupling spectral
density with only one divergency at the frequency ω0.

In this situation most of the spectral weight is distributed close to the lower
cut-off ω0. This is very different from a free bath, where most of the spectral
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weight is close to the upper cut-off. We have seen that increasing the upper
cut-off reduces the amount of entanglement. Therefore, we have reason to
expect more entanglement in an environment with a peak at low frequencies.

5.2. Coupling Spectral Density

Now, we are going to derive the exact form of the coupling spectral density of a
quasi one-dimensional system in a tube. First, let us review how to rewrite the
summation over wave vectors as a scalar integral over frequencies for a cubic
box with side length L

∑
k

(. . .) = 2
(

L
2π

)3 ∫ ∞

0
dω

4πω2

c3 (. . .) . (5.1)

Going through the factors on the right hand side from left to right, the 2 is due
to the two different polarizations of photons, the La2/(2π)3 is the quantization
volume, 4πω2 is the result of integrating out the angles and c3 is due to the
relation ω = c |k|.

By (5.1) we can write for the coupling spectral density

∑
k

|gk|2
2mkωk

δ(ω−ωk) = 2
(

L
2π

)3 ∫ ∞

0
dω′ 4πω′2

2mω′c3 |gω′ |2 δ(ω′ −ω)

=
(

L
2π

)3 4πω

mc3 |gω|2 !=
2
π

mγω

(
ω

Ωc

)s−1

e−ω/Ωc .

Comparing both sides, the coupling constants are read off as

⇒ |gω|2 =
4πm2γc3

L3

(
ω

Ωc

)s−1

e−ω/Ωc . (5.2)

For a tube as described in section 5.1, we need to split the wave vector k into
its components k1, k2, and k3 ∈ Z \ {0}

k =
2πk1

L
e1 +

2π

a
(k2e2 + k3e3) .

Only the k1 component can approximated by an integral due to the large length
of the tube in this direction. For this, we need to make a change of variables
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k1 → |k| = k which induces a new line element

⇒ k1 =
L

2π

√
|k|2 − 4π2

a2 (k2
2 + k2

3)

⇒ dk1 =
L

2π

k dk√
k2 − 4π2

a2 (k2
2 + k2

3)
.

Again, we rewrite the sum over the wave vectors into an integral, but this time
only for the k1 component. At the same time we will examine what happens to
an additional term eikr as it occurs in the damping kernel (3.3) and in the bath
correlator (3.6). We assume that r ‖ e1

∑
k

|gk|2
2mkωk

δ(ω−ωk) eikr

= 2 · 8
∞

∑
k1,k2,k3=1

|gk|2
2mkωk

δ(ω−ωk) cos(kr)

= 16
∞

∑
k2,k3=1

∫ ∞

0
dk1
|gk|2

2mkωk
δ(ω−ωk) cos(k1r1)

= 16

4πc
a (k2

2+k2
3)<ω2

∑
k2,k3=1

L
2π

∫ ∞

0
dk

k |gk|2 cos
(

r1

√
k2 − 4π2

a2 (k2
2 + k2

3)
)

2mkωk

√
k2 − 4π2

a2 (k2
2 + k2

3)
δ(ω−ωk) .

Switching the integration from wave vectors to frequencies ω = ck and employ-
ing (5.2), we have

= 8

ω2
0

2 (k2
2+k2

3)<ω2

∑
k2,k3=1

L
2πc

∫ ∞

0
dω′
|gω′ |2 cos

(
r1

√
ω′2 − 4π2

a2 (k2
2 + k2

3)
)

m
√

ω′2 − 4π2c2

a2 (k2
2 + k2

3)
δ(ω−ω′)

=

ω2
0

2 (k2
2+k2

3)<ω2

∑
k2,k3=1

4L
πc

|gω|2 cos
(

r1

√
ω2 − 4π2

a2 (k2
2 + k2

3)
)

m
√

ω2 − 4π2c2

a2 (k2
2 + k2

3)

=

ω2
0

2 (k2
2+k2

3)<ω2

∑
k2,k3=1

16mγc2

a2

cos
(

r1

√
ω2 − 4π2

a2 (k2
2 + k2

3)
)

√
ω2 − 4π2c2

a2 (k2
2 + k2

3)

(
ω

Ωc

)s−1

e−ω/Ωc .
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At low temperatures the first excitation is the most important one. For this
reason we approximate the sum over k2 and k3 by its first term k2, k3 = 1 only.
We also replace all occurrences of a by ω0 = 2

√
2πc/a. Then the coupling

spectral density (r = 0) is

J(ω > ω0) =
2mγω2

0

π2
√

ω2 −ω2
0

(
ω

Ωc

)s−1

e−ω/Ωc . (5.3)

In the damping kernel

Γr(t) = ∑
k

g2
k

Mmkω2
k

cos(wkt)e−ikr = 4
∫ ∞

0
dω

J(ω)
ω

cos(ωt) cos(r
√

ω2 −ω2
0)

and the bath correlator

Kr(t) = 4
∫ ∞

0
dω J(ω) coth

( ω

2T

)
cos(ωt) cos(r

√
ω2 −ω2

0) ,

the term eikr turns into a factor cos(r
√

ω2 −ω2
0).

As a final step, we check that we can recover the free case by considering all
excitations, taking the limit a→ ∞, and making k2, k3 continuous. We obtain

ω2
0

2 (k2
2+k2

3)<ω2

∑
k2,k3=1

2mγω2
0

π2
√

ω2 − ω2
0

2 (k2
2 + k2

3)

(
ω

Ωc

)s−1

e−ω/Ωc

→ 2mγω2
0

π2

∫∫ ω2
0

2 (k2
2+k2

3)<ω2

0

1√
ω2 − ω2

0
2 (k2

2 + k2
3)

(
ω

Ωc

)s−1

e−ω/Ωc dk2 dk3

=
2mγω2

0
π2

∫ √2 ω
ω0

0
dr
∫ π

2

0
dϕ

r√
ω2 − ω2

0
2 r2

(
ω

Ωc

)s−1

e−ω/Ωc

=
2mγω2

0
π2

π

2
2

ω

ω2
0

(
ω

Ωc

)s−1

e−ω/Ωc =
2
π

mωγ

(
ω

Ωc

)s−1

e−ω/Ωc ,

which is the free coupling spectral density.
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5.3. Results

5.3. Results

Apart from the fact that some special care has to be taken of the singularity in
the coupling spectral density, exactly the same numerical code as for the free
bath can be used to determine the time evolution of the entanglement of the
two system oscillators inside of a cavity. Some details of how the singularity is
handled are covered in appendix B. In this chapter we will only treat the time
evolution.

All the results are shown in figures 5.2 to 5.9 on the following pages. They
are displayed as two-dimensional density plots, in which the x-axis denotes the
time t and the y-axis denotes the distance d. The value of the entanglement
is encoded in levels of gray as depicted by the scale on the right hand side
of the plots. To aid the eye, the area, in which the entanglement is exactly
zero, is separated from the area, in which the entanglement is non-zero, by a
continuous black line. In some areas the numerical algorithm did not produce
valid results due to convergence problems and running time constraints. These
are filled with a crosshatch pattern. The plots are organized in the following
way: Figures 5.2 to 5.4 contain the results for a coupling constant of the value
γ = 0.1 Ω0, figures 5.5 to 5.7 for γ = 0.01 Ω0, and figures 5.8 to 5.9 for γ = Ω0.
In each of the sets the frequency of the divergency is increased stepwise from
slightly below the system oscillator frequency Ω0 to slightly above Ω0.

As the initial state we use a (separable) squeezed state with a = 10 as defined
in section 4.4.4, because the additional energy contained in it enhances the
amount of entanglement that can occur during the evolution.

The effect of entanglement creation is most pronounced if the divergency of
the coupling spectral density ω0 is close to the oscillator frequency Ω0. If ω0
is smaller than Ω0, the range over which entanglement is generated increases,
but the total amount is smaller. On the other hand, if ω0 is slightly larger than
Ω0, the range decreases, but the amount of entanglement generated for small
distances increases.

Varying the coupling strength γ reveals that smaller coupling strengths lead to
smoother dynamics with less oscillations. Also it takes longer for entanglement
to build up. Increasing the coupling strength, on the other hand, increases the
amplitude of the oscillations and leads to a quicker appearance of entanglement.

As expected, increasing the temperature of the bath decreases the produced
entanglement as shown in figure 5.9.
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5. Cavity Environment

Figure 5.2.: Dynamics of the entanglement for γ = 0.1 Ω0. The crosshatch
pattern covers areas with no results.
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5.3. Results

Figure 5.3.: Dynamics of the entanglement for γ = 0.1 Ω0. The crosshatch
pattern covers areas with no results.
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5. Cavity Environment

Figure 5.4.: Dynamics of the entanglement for γ = 0.1 Ω0. The crosshatch
pattern covers areas with no results.
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5.3. Results

Figure 5.5.: Dynamics of the entanglement for γ = 0.01 Ω0. The crosshatch
pattern covers areas with no results.
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5. Cavity Environment

Figure 5.6.: Dynamics of the entanglement for γ = 0.01 Ω0. The crosshatch
pattern covers areas with no results.
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5.3. Results

Figure 5.7.: Dynamics of the entanglement for γ = 0.01 Ω0. The crosshatch
pattern covers areas with no results.
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5. Cavity Environment

Figure 5.8.: Dynamics of the entanglement for γ = Ω0. The crosshatch pattern
covers areas with no results.
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5.3. Results

Figure 5.9.: Dynamics of the entanglement for γ = Ω0. The crosshatch pattern
covers areas with no results.
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5. Cavity Environment

Figure 5.10.: Dynamics of the entanglement at finite temperature (γ = 0.1 Ω0,
ω0 = Ω0). The crosshatch pattern covers areas with no results.
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5.4. Comparison with an Approximation

In his PhD thesis [Que11] Friedemann Queisser has examined an approximation
to the model presented here. It is based on the idea that the large peak in the
coupling spectral density can be replaced by two harmonic coupling oscillators,
one representing the symmetric modes and one representing the anti-symmetric
modes. Their coupling strength is denoted by gω0 . The effect of the modes
in the coupling spectral density which are further away from the peak is
combined into a free bath interacting with the system oscillators in Born-
Markov-approximation with a coupling strength of γ. He is able to derive a
distance dependent relation between the two coupling constants gω0 and γ. This
enables us to directly compare the results, because the same set of parameters
is used as in this work.

As shown in figures 5.11 and 5.12 the qualitative agreement is very good. The
largest amount of entanglement creation can be seen for ω0 being close to Ω0
and increasing the coupling strength γ increases the amount of oscillation of
the entanglement as well decreasing the distance over which entanglement is
created.

5.5. Conclusion

We claim that, contrary to the free bath (cf. figure 5.13), in the cavity practicable
amounts of entanglement are created by coupling the two system oscillators to
the bath even over large distances. The situation is different than in the free
bath, due to the divergency in the coupling spectral density. A single frequency
dominates the spectrum, which then mediates an indirect interaction between
the system oscillators stronger than the decoherence effect caused by the other
bath modes.

Clearly, entanglement is only created after the time t > d/c has passed, which
preserves causality. Only at very short distances this can be violated due to bath
intrinsic entanglement. The robustness of the qualitative behavior under the
approximation of Friedemann Queisser supports this statement. The possibility
of an experimental implementation of this effect remains subject to further
work.
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5. Cavity Environment

Figure 5.11.: Time evolution of the entanglement in the approximation of the
cavity environment by Friedemann Queisser [Que11]. Parameters:
γ = 0.02 Ω0, Ωc = 5 Ω0, T = 0.01 Ω0, a = 5 Ω0, s = 1. Figures
included with permission of the author.
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5.5. Conclusion

Figure 5.12.: Time evolution of the entanglement in the approximation of the
cavity environment by Friedemann Queisser [Que11]. Parameters:
Ω0 = ω0, Ωc = 5 Ω0, T = 0.01 Ω0, a = 5 Ω0, s = 1. Figures
included with permission of the author.
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5. Cavity Environment

Figure 5.13.: Time evolution of the entanglement in a free bath as presented in
the previous chapter. Here, the entanglement evolution is shown
in the form of a density plot for better comparison with the results
presented in this chapter. The parameters are the same as in
figure 4.9. Due to the comparably large scale and the coarse-
grained resolution, the first large peak for the three-dimensional
bath (bottom plot) is not visible.
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6. Summary and Conclusion

We calculate the entanglement dynamics of two harmonic oscillators coupled
to a common bosonic environment. The calculation is exact, fully taking into
account all non-Markovian and retardation effects. Also, no rotating wave
approximation is performed. Two different cases are considered. The first one
is the general case of a free bath of one and three dimensions as well as ohmic
and super-ohmic coupling spectral densities. The second one is the special case
of a restricted geometry with the bath modes contained in an infinitely long
tube with a square-shaped cross-section.

We numerically determine a relation between the size of the individual
oscillators and the maximal separation dmax at which entanglement seizes to
be generated by the free bath. It is shown that they are proportional with a
proportionality constant of O(1), i.e. that the two oscillators effectively have to
be touching each other. Due to this, we claim that environmentally induced
interaction does not have any advantages over direct coupling. Apparently,
entanglement cannot be obtained “for free”.

The situation can be different, however, if the coupling spectral density is
modified, for example by a geometrical restriction imposed on the bosonic
modes by a super-conducting cavity. Here, a peak at a single frequency domi-
nates the spectral density, mediating a long-range coherent interaction. We find
that significant amounts of entanglement are created over distances larger than
the size of the individual systems even for finite temperatures. Whether the
effect can be observed experimentally for the type of bath we have implemented
in this work remains to be investigated. A different experimental approach to
modify the coupling spectral density is presented in [KMJ+10].

Sparked by the initial idea of entanglement generation by Braun in 2002 [Bra02]
quite a number of authors have published positive results for two-level sys-
tems [BFP03, BF06a, STP06, CL07, FNGM09, RBK11] and harmonic oscilla-
tors [BF06b, HB08, PR08, Isa08, XSS08, LSF10] with no spatial separation. These
works qualitatively agree with our results in the limit separation distance d→ 0,
but we find that the results for this limit do not extend to significant finite
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6. Summary and Conclusion

distances.
Less publications have tried to include spatial separation in their calcula-

tions [BF05, STP07, MNBF09, CP09, ASH09], but all employ various kinds of
approximations and disagree with our result. One of the first was also by Daniel
Braun [Bra05], who predicts entanglement generation over arbitrarily large dis-
tances with only a polynomial decay. However, the model is dissipation-less,
therefore possessing a non-local conserved observable, which we believe is the
reason for the contradictory result. Another model with a non-local conserved
observable has been checked by Friedemann Queisser [Que11] to also contradict
our fully dissipative model. The only work we are aware of, which tries to
correct the flaws found in the above mentioned publications, is by Fleming et
al. [FCAH10]. There, the even stronger statement is made that for two-state
systems embedded in a common bath no asymptotic entanglement can be
found, regardless of the distance d.

In conclusion, this work dispels a common misunderstanding about the
possibility of entanglement generation in bosonic baths. We also propose a new
approach to create entanglement over finite distances, which can be useful for
various quantum informational tasks.

82



A. Laplace Transformation of the
Green’s Function

The Laplace transformation of the Green’s function G̃(s) is a rather complicated
expression which is also not very instructive. It is printed here for reference

G̃(s) =
1
D


G1 G2 G3 G4
G2 G1 G4 G3
G5 G6 G7 G8
G6 G5 G8 G7

 .

All matrix elements

G1 = s3 +
2γΩcs2

Ωc + s
+ Ω2

0s

G2 =
2e−dsγΩ2

c s2

s2 −Ω2
c
− 2e−ΩcdγΩcs3

s2 −Ω2
c

G3 = Ω2
0 + s2 +

2γΩcs
Ωc + s

G4 =
2e−dsγΩ2

c s
s2 −Ω2

c
− 2e−ΩcdγΩcs2

s2 −Ω2
c

G5 =
4γ2Ω2

c s2 (e−Ωcds− e−dsΩc
)2

(s2 −Ω2
c)

2 −
(

Ω2
0 +

2γΩcs
Ωc + s

)2

+ s
(
−sΩ2

0 −
2γΩcs2

Ωc + s

)
G6 =

2e−dsγΩ2
c s3

s2 −Ω2
c
− 2e−ΩcdγΩcs4

s2 −Ω2
c

G7 = s3 +
2γΩcs2

Ωc + s
+ Ω2

0s

G8 =
2e−dsγΩ2

c s2

s2 −Ω2
c
− 2e−ΩcdγΩcs3

s2 −Ω2
c
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A. Laplace Transformation of the Green’s Function

have the same denominator

D = −4γ2Ω2
c s4e−2Ωcd

(s2 −Ω2
c)

2 +
4γ2Ω2

c s2

(Ωc + s)2 −
4γ2Ω4

c s2e−2ds

(s2 −Ω2
c)

2

+
8γ2Ω3

c s3e−Ωcd−ds

(s2 −Ω2
c)

2 +
4γΩ2

0Ωcs
Ωc + s

+
4γΩcs3

Ωc + s
+ Ω4

0 + 2Ω2
0s2 + s4 .
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B. Numerical Algorithms

First attempts to solve equation (3.4) were made with the Durbin formula
[Dur74]. The Laplace transformation of the solution has to be known analytically
for this approach to be feasible, which limits it to a Drude cut-off. Massive
improvements of the run-time could be achieved by implementing the epsilon
acceleration described in [PH84]. Still, the limitation to the Drude cut-off
remained.

Subsequently, switching to the algorithm of Wilkie and Wong [WW08], which
we will restate in this appendix, removed this restriction and enabled the use
of any cut-off function. The algorithm can be employed to solve generalized
Langevin equations (GLEs) of the type

Ẋj(t) = aj(X, t)−
∫ t

0
dt′ γj(t− t′)bj(X(t′), t′) + f j(t) ,

where j = 1, . . . , N, X = (X1, . . . , XN), aj(X, t) and bj(X, t) are some arbitrary
functions, γj(t− t′) is the memory kernel and f j is the noise term. Of course, it
is also possible to trivially include multiple memory kernels per equation due
to the linearity of the integral.

Now, a helper function is defined

λj(t, u) =
∫ t

0
dt′ γj(t− t′ + u)bj(X(t′), t′) , (B.1)

which can be used to rewrite the GLE as

Ẋj(t) = aj(X, t)− λj(t, 0) + f j(t) .

Equation (B.1) is the solution of the ordinary differential equation

λ̇j(t, u) = γj(u)bj(X(t), t) +
∂λj(t, u)

∂u
,
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B. Numerical Algorithms

which can be turned into an equation algebraic in u via the Fourier transforma-
tion Λj(t, s) = 1√

2π

∫ ∞
−∞ du e−iusλj(t, u)

Λ̇j(t, s) = Λj(s)bj(X(t), t) + isΛj(t, s) .

Finally, discretizing the inverse Fourier transformation on a grid sj(k) =
(−ngrid

j + k− 1)smax
j /ngrid

j for k = 1, . . . , 2ngrid
j + 1 with ∆sj = smax

j /ngrid
j leads

to

λj(t, 0) =
1√
2π

∫ ∞

−∞
ds Λj(t, s) ≈ ∆sj√

2π

2ngrid
j +1

∑
k=1

Λj(t, sj(k)) .

The boxed equations form a coupled system of 2ngrid
j + 1 ordinary differential

equations (ODEs), which can be reduced to ngrid
j + 1 equations if γj(t) is real

and symmetric. Now, we have transformed the problem of solving the GLE
into one that can be tackled by standard algorithms.

More specifically, in our case we have N = 4 and the equations

Ẋ1(t) = X3(t)
Ẋ2(t) = X4(t)

Ẋ3(t) = −Ω2
0X1 − λ̇1(t, 0)

Ẋ4(t) = −Ω2
0X2 − λ̇2(t, 0) ,

as well as the equations

Λ̇1(t, s) = Γ(s)X1 + Γd(s)X2 + isΛ1(t, s)
Λ̇2(t, s) = Γ(s)X2 + Γd(s)X1 + isΛ2(t, s) .

The free bath is calculated on a grid of size ngrid = 10000 and smax = 10 Ωc.
These values are the same for all equations. Thus, we drop the index j on
smax and ngrid. Integrating the coupled ODEs can be achieved easily by the
algorithms included in the GNU Scientific Library (GSL) [Gou09], which are
very fast and feature automatic error estimation and choice of step size.

For the tube a regular grid is not optimal due to the singularity in the spectral
coupling density. We use a grid with points distributed according to the formula

s(k) =
smax −ω0

(ngrid)2
· k2 + ω0 ,
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where k = 1, . . . , ngrid. The now k-dependent grid spacing is then given by

∆s(k) =
2k

(ngrid)2
(smax −ω0) .

This allows for sufficient convergence properties with similar grid sizes as for
the case of the free bath.
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