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Abstract. This thesis concerns dependence issues arising from nonpara-
metric change-point analysis based on weighted approximations. We will
establish new approximation results under strong mixing conditions. Based
on coupling methods, approximations for weighted tied-down partial sum
processes by standardized Brownian bridge processes will be derived. More-
over, we will present some new “backward” strong invariance principles for
linear processes with strongly mixing errors. As a consequence, we are able
to establish Darling-Erdős type limit theorems for weighted tied-down par-
tial sum processes within a financial time series framework.

Zusammenfassung. Die vorliegende Arbeit behandelt gewisse Proble-
me, die in der nicht-parametrischen Strukturbruch Analyse, basierend auf
gewichteten Approximationen, unter stochastischen Abhängigkeiten auftre-
ten. Es werden unter starken Mischungsbedingungen neue Approximatio-
nen entwickelt. Unter Anwendung von Kopplungsmethoden, werden Ap-
proximationen für gewichtete “Tied-down” Partialsummenprozesse durch
standardisierte Brown’sche Brücken-Prozesse hergeleitet. Zusätzlich werden
neue “rückwärts gerichtete” starke Invarianzprinzipien für lineare Prozesse
mit stark mischenden Fehlern präsentiert. Unter Annahmen, wie sie in der
Analyse von Finanzzeitreihen üblich sind, erhalten wir Darling-Erdős Grenz-
wertsätze für gewichtete “Tied-down” Partialsummenprozesse.
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Introduction

Suppose that X1, . . . , Xn are independent random variables with mean
µi (i = 1, . . . , n) and we are interested to test the “no change in the mean”
null hypothesis

H0 : µ1 = · · · = µn

against the “at most one change-point” alternative

H1n(k) : µ1 = · · · = µk 6= µk+1 = · · · = µn,

where µ1, . . . , µk and µk+1, . . . , µn are unknown. Assuming in a first
stage that the possible change-point k is known, the first requirement for
an ad hoc decision procedure is the invariance under a common shift in
location of all observation. Since the chronologically ordered observations
split up into two subsamples, such an invariant decision procedure can be
based on the standardized difference between the sample mean of the first k

observations and the sample mean of the last n−k observations. However,
the change-point k is unknown in many applications. Then the maximally
selected version of this standardized ad hoc statistic is a reasonable choice
for testing H0 against the alternative HA = ∪k∈[1,n)H1n(k). One would
reject the “no change” hypothesis if the standardized max-type statistic

σ−1 max
1≤k<n

(
n

k(n− k)

)1/2 ∣∣∣∣S(k)− k

n
S(n)

∣∣∣∣
is large in a certain sense, where S(k) denotes the k-th partial sum and
σ2 is the common variance. Assuming in a second stage independent and
identically distributed random variables, under H0, it turns out that the
asymptotic behavior of this test statistic is also invariant under changes
in the underlying distribution. This invariance property is a consequence
of Donsker’s invariance principle applied to the constrained version of the
max-type statistic, i.e., for each fixed value 0 < ε < 1/2, we have

σ−1 max
εn≤k≤(1−ε)n

(
n

k(n− k)

)1/2 ∣∣∣∣S(k)− k

n
S(n)

∣∣∣∣ D→ sup
ε≤t≤1−ε

|B(t)|√
t(1− t)

,

as n→∞, where {B(t), 0 ≤ t ≤ 1} denotes a Brownian bridge process.
Observe that ε = 0 is excluded above due to a local limit theorem for the

vii



viii INTRODUCTION

Brownian bridge process. This constrained version seems reasonable under
the assumption that no early or late change occurs within the sample of
chronologically ordered observations. Given a fixed level of significance, the
critical value can be derived asymptotically from tail approximations of the
limit distribution due to Vostrikova [106] and Miller and Siegmund [83].

But on the other hand the constrained version neglects an increasing
amount of early and late observations as the sample size increases. The
drawbacks of the constrained statistics are obvious and these to overcome is
an area of application for the weighted approximation theory.

Let Zn be the tied-down partial sum process defined by

Zn(t) =

{
S (b(n+ 1)tc)− b(n+1)tc

n S(n) , 0 ≤ t < 1;

0 , t = 1.

In order to detect early and also late changes, one would choose a nonnega-
tive weight function q(t) on (0, 1) that increases in a neighborhood of zero
and decreases in a neighborhood of one. Szyszkowicz [102] established under
a finite second moment assumption weighted sup-norm versions of Donsker’s
theorem for the tied-down partial sum process. Using strong approximation
results from Major [78], she also obtained convergence-in-probability ver-
sions, that is, a construction of Brownian bridge processes, such that

sup
0<t<1

∣∣∣∣Zn(t)√
n

− σBn(t)
∣∣∣∣
/
q(t) = oP (1) (n→∞)

holds if and only if∫ 1

0

1
t(1− t)

exp
(
− cq2(t)
t(1− t)

)
dt <∞ for all c > 0.

With a view towards our further dependent data studies in this thesis, it
is important to notice that the construction above can be viewed as a cou-
pling method: The sequence {Xn, n ≥ 1} is redefined, without chang-
ing its distribution, together with a sequence of Brownian bridge processes
{Bn(t), 0 ≤ t ≤ 1} on a common probability space (Ω,F , P ),

The weight function q(t) = (t(1− t))1/2, which corresponds to the stan-
dardized tied-down partial sum statistic, is still excluded above. Csörgő and
Horváth [24] established approximations by standardized Brownian bridge
processes of the form∣∣∣∣∣ sup

1
n
≤t≤1− 1

n

|Bn(t)|
(t(1− t))1/2

− σ−1 sup
1
n
≤t≤1− 1

n

(
n

nt(n− nt)

)1/2

|Zn(t)|

∣∣∣∣∣
and derived, via using Strassen’s invariance principle for the law of the
iterated logarithm, the approximation rate oP ((log log n)1/2), as n →
∞. Moreover, assuming only slightly stronger moment conditions, they



INTRODUCTION ix

strengthened the approximation rate considerably. From these approxima-
tion results they derived further asymptotics for critical rejection regions
which are designed for small sample sizes. Furthermore, in light of the
classical invariance-principle-based results by Darling and Erdős [27], the
following extreme value asymptotic holds: Let E and E′ be independent
random variables satisfying P [E ≤ y] = P [E′ ≤ y] = exp {− exp (−y)} for
each real y and consider the functions

A(x) = (2 log x)1/2 and D(x) = 2 log x+
1
2

log log x− 1
2

log π,

then, as n→∞,

A (log n) sup
1
n
≤t≤1− 1

n

(
n

σ2nt(n− nt)

)1/2

|Zn(t)| −D (log n) D→ E ∨ E′.

The Darling-Erdős type limit theorems for the standardized tied-down
partial sum process opened the scope for a variety of applications in change-
point analysis. Especially in the dependent data context, researchers focus
on the further development of these methods towards tests for structural
breaks in time series models. In Chapter 1 we will present an overview of
the related dependence concepts.

Since the Darling-Erdős type limit theorems are mainly derived via
invariance-principle-based techniques, the extensions to strong mixing con-
ditions are numerous and find applications in change-analysis of temperature
data, river flow data and financial time series. Although the standardized
Brownian bridge type approximations have promising features with respect
to small sample sizes, these kind of approximations are regarded less in the
literature. The main reasons are the involved constructions which rely heav-
ily on independence assumptions. Using coupling methods, we will develop
throughout Chapter 2 and Chapter 3 these approximation results within a
strong mixing framework.

Considering dependence conditions beyond strong mixing conditions, it
turns out that even the standard strong-invariance-principle-based approach
may fail to establish Darling-Erdős type limit theorems for weighted tied-
down partial sum processes. These problems typically arise when dealing
with linear processes with dependent errors. Using representation and cou-
pling methods, we will establish throughout Chapter 4 and Chapter 5 new
“backward“ invariance principles to cope the difficulties. Finally, we will
discuss further applications within a financial time series context.

Acknowledgements. For help and advice, I thank my teacher Profes-
sor Josef G. Steinebach. This work is dedicated to my parents, Rosita and
Josef Schmitz, for their support through all the years.





CHAPTER 1

Strong Mixing Conditions and Time Series

In the first section we will discuss the strong mixing property of linear
processes. The topics of the second section concern the absolute regular-
ity condition and geometric ergodicity of time series models allowing for
conditional heteroscedasticity.

1.1. Strongly Mixing Linear Processes

Let B denote the Borel σ-field on the real line R. Throughout all
chapters let N = {1, 2, . . . } and Z = {0,±1,±2, . . . }. Let {Xk, k ≥ 1}
be a one-sided sequence of real-valued random variables. Without chang-
ing its probability distribution the one-sided sequence can be redefined on(
RN,BN, P

)
, where the measure P is constructed via Kolmogorov’s ex-

istence theorem so that for each ω = {ωk, k ≥ 1} ∈ RN the projec-
tions Xk (ω) = ωk have the right (joint) distribution. Suppose the one-
sided sequence is stationary. Then the unilateral shift {ωk, k ≥ 1} 7→
{ωk+1, k ≥ 1} is measure preserving and the sequence is called ergodic
if the unilateral shift is ergodic. Similarly, a one-sided stationary sequence
can be embedded in a two-sided stationary sequence on the probability space(
RZ,BZ, P

)
and the bilateral shift

T : RZ → RZ {ωk, k ∈ Z} 7→ {ωk+1, k ∈ Z}

is a measure preserving Borel isomorphism. The two-sided extension is called
ergodic if the bilateral shift T is ergodic. The mapping T is ergodic if
and only if for all A and B ∈ BZ

n−1
n∑

k=1

P
(
A ∩ T−kB

)
→ P (A)P (B) (n→∞),

cf. e.g. Rosenblatt [91, p. 95, Corollary 4]. Moreover, according to Billings-
ley [10, Problem 24.2], it suffices to consider only sets A and B from
the generating π-system of BZ. That is to say ergodicity depends only
on the finite dimensional distributions and the bilateral shift is ergodic if
the unilateral shift is ergodic. The stationary two-sided extension is called
mixing (in the ergodic sense) if

P
(
A ∩ T−nB

)
→ P (A)P (B) (n→∞)

1



2 1. STRONG MIXING CONDITIONS AND TIME SERIES

for all A and B ∈ BZ. Mixing (in the ergodic sense) clearly implies
ergodicity.

We now introduce the strong mixing condition due to Rosenblatt [90].
Suppose a probability space (Ω,F , P ). Let the measure of dependence
between two σ-fields A and B ⊂ F be

α (A,B) = sup
A∈A,B∈B

|P (A ∩B)− P (A)P (B)| .

Let {Xk, k ∈ Z} be a two-sided sequence of random variables on (Ω,A, P ).
For −∞ ≤ J < L ≤ ∞ define FL

J = σ (Xk, J ≤ k ≤ L), i.e. the σ-field
generated by the family {Xk, J ≤ k ≤ L}. For each n ∈ N define the
dependence (mixing) coefficient α(n) by

α(n) = sup
−∞<J<∞

α
(
FJ
−∞,F∞

J+n

)
.

The sequence {Xk, k ∈ Z} is said to be strongly mixing (α-mixing) if

lim
n→∞

α(n) = 0.

For a one-sided sequence {Xk, k ≥ 1} one can define α(n) by

α(n) = sup
1≤J<∞

α
(
FJ

1 ,F∞
J+n

)
.

Suppose a strictly stationary two-sided sequence {Xk, k ∈ Z}. The strong
mixing condition is satisfied if limn→∞ α(n) = 0, where

α(n) = α
(
F0
−∞,F∞

n

)
and the sequence is ergodic. To prove ergodicity, redefine the sequence with-
out changing its distribution on the space

(
RZ,BZ, P

)
. Using Billingsley

[10, Problem 24.2], it suffices to consider only sets A and B from the
generating π-system of BZ with A ∈ F i

−∞ and B ∈ F∞
j for some i and

j ∈ Z. This implies for n ∈ N large enough:∣∣P (A ∩ T−nB
)
− P (A)P (B)

∣∣ ≤ α (j − i+ n) .

For a converse statement involving the notion of uniform ergodicity we refer
to the recent contribution of Bradley [16]. We conclude with a remark
claimed in Bradley [13, p. 170], which will be useful in the proof of Lemma
2.1.3.

Remark. If a one-sided strictly stationary sequence is strongly mixing
with mixing coefficients α(n), so is the two-sided strictly stationary exten-
sion with the same mixing coefficients.

The proof of the remark is based on the following approximation of
measure argument: For a fixed ε > 0 and a set A ∈ BZ we can find an ap-
proximating set Aε from the generating π-system such that P (A∆Aε) < ε.
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The shift is measure preserving. Thus we can find an appropriate transla-
tion of the approximating set, i.e. there exist k and ` ∈ N such that
T−kAε ∈ F `

0 and the mixing property of the one-sided sequence applies.
For more properties of strong mixing conditions (plural) we refer to

Bradley [14] and the references therein.
The rest of this section is devoted to linear processes. Let {ξk, k ∈ Z}

be a sequence of independent and identically distributed random variables
with Eξ1 = 0 and 0 < Eξ21 = σ2 < ∞. We define the two-sided linear
process by

Xn =
∞∑

k=−∞
akξn−k (n = 0,±1,±2, . . . ),

where the sequence of real weights {ak, k ∈ Z} satisfies∑
k∈Z

a2
k <∞.

The series converges with probability one by making use of Kolmogorov’s
series theorem, see [103, Theorem 3.11]. Hence, {Xn, n ∈ Z} is a stationary
and ergodic process, see [10, Theorem 36.4].

Suppose that the two-sided linear process is generated by centered nor-
mal random variables ξk. Then {Xn, n ∈ Z} is a (discrete) Gaussian
process, i.e. a stationary process such that the finite-dimensional joint dis-
tributions are centered and normal. Since the Gaussian distribution is de-
termined by mean and covariance matrix, the covariance function ρ(k) =
EXnXn+k, defined on the integers k, describes the whole process. More-
over, from ρ(k) = ρ(−k) and due to positive semi-definiteness of the co-
variance function in the Gaussian case, there exists a uniquely determined
spectral distribution function F on the circle satisfying

ρ(k) =
∫

[−π,π]
exp{ikν}F (dν),

which follows from Herglotz’s theorem, cf. e.g. Brockwell and Davis [18].
The connection between Gaussian processes and linear processes admits

a converse statement.

Example 1.1. Consider a discrete Gaussian process. If the spectral dis-
tribution function is absolute continuous with spectral density f , then there
is a representation of the process as linear process in terms of independent
normal random variables.

The representation follows via using the Fourier coefficients of the square
integrable function

√
f as weights, cf. Varadhan [103, p. 148].
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A stationary process with covariance function ρ(k) is called a “short-
memory” process if

∞∑
k=1

|ρ(k)| <∞

holds. In this case, cf. e.g. [45, Theorem 2.11], there exists a spectral
density function and it is given by

f(ν) =
1

2π

∑
k∈Z

ρ(k) exp{−ikν}.

We refer to [45, Section 2.5] for an introduction to so-called “long-memory”
processes. Consider the partial sums S(n) =

∑n
i=1Xi (n = 1, 2, , . . . ) of

a stationary “short-memory” process. Since

VarS(n) = nρ(0) + 2
n∑

k=2

(n− k + 1)ρ(k),

the so-called “long-run” variance limn→∞ n−1VarS(n) exists. Moreover,
see [72, Chapter 2], if the spectral density is continuous at ν = 0 then

VarS(n) = 2πf(0)n+ o(n) (n→∞).

Towards this end, let us consider autoregressive moving average (ARMA)
time series. The backshift operator B has the property BXn = Xn−1 and
Bξn = ξn−1. The ARMA(p, q) sequence {Xn, n ∈ Z} is defined as the
stationary solution of

φ (B)Xn = θ (B) ξn,

where φ(x) and θ(x) are polynomials of degree p and q ∈ {0, 1, . . . }
and the constant term of both polynomials is assumed to be one.

Example 1.2. If E log+ (|ξ1|) <∞ and φ(x) has no zeros of absolute
value one , then there is a stationary ARMA solution. This solution has
a representation as linear process and is ergodic.

Proof. Consider the Laurent expansion of θ(z)
φ(z) , i.e. there is some

0 < ε < 1 such that

θ(z)
φ(z)

=
∞∑

k=−∞
akz

k, 1− ε < |z| < 1 + ε.

Thus the weights are of geometric order, i.e. |ak| = O
(
ρk
1

)
(k → +∞)

for some 0 < ρ1 < 1. Similarly, |ak| = O
(
ρk
2

)
(k → −∞) for some

ρ2 > 1. Using Berkes et al. [7, Lemma 2.2], the series
∑∞

k=0 |ξn−k|ρk
1 and∑∞

k=0 |ξn+k|ρ−k
2 converge with probability one. �
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In classical time series analysis, mainly the weak type stationarity con-
ditions are of interest. In particular, given a second order stationary white
noise {ξn, n ∈ Z}, the ARMA equation admits a causal (one-sided) repre-
sentation in terms of the white noise variables if φ(z) 6= 0 for all complex z

satisfying |z| ≤ 1, see [18, Theorem 3.1.1]. This is called a causal moving
average representation. However, under the condition of the last example,
as a consequence of the (two-sided) moving average representation, an appli-
cation of Brockwell and Davis [18, Theorem 4.4.2] yields the spectral density
of the ARMA process:

fX(λ) =
σ2

2π
|θ (exp{−iλ}))|2

|φ (exp{−iλ}))|2
(−π ≤ λ ≤ π).

Compared with the moment condition in the last example to assure a
stationary ARMA solution on an independent and identically distributed
noise sequence, we need slightly higher moments to establish the strong
mixing property for ARMA time series and linear processes, respectively.
Consider the linear process

Xn =
∞∑

k=−∞
akξn−k (n = 0,±1,±2, . . . )

and assume that there is a constant δ > 0, such that E|ξ1|δ < ∞ and if
δ ≥ 1 that Eξ1 = 0. Let ρ = min{1, δ} and suppose∑

k∈Z
|ak|ρ <∞.

Let the operator A on the space of bounded two-sided sequences (equipped
with the sup-norm) defined by

(Ax)i =
∑
k∈Z

ai−kxk.

Let us assume that there is a bounded linear operator K such that

AK = I.

Suppose further that the density of ξ1 satisfies∫
R
|f (y + x)− f (y)| dy ≤ C0 |x| ,

where C0 > 0 a constant. Then the two-sided process is strongly mixing.
In particular, in terms of the even mixing coefficients and for k sufficiently
large, the following holds:

αX(2k) ≤ C1

{ ∞∑
m=k

d
1

1+δ

m,δ

}
∨

{ ∞∑
m=k

L(dm,2)

}
,



6 1. STRONG MIXING CONDITIONS AND TIME SERIES

where L(u) = {u[1 ∨ | log u|]}1/2 and dm,µ =
∑

|j|>m |aj |µ (µ > 0) and
C1 > 0 is a constant. This result is due to Doukhan [33, Chapter 2.3.1].
Therein, Doukhan generalizes the results of Gorodetskii [52] from one-sided
processes to linear random fields on Zd. The two-sided case stated above
follows from the case d = 1, see [33, Chapter 2.3.1, Theorem 1]. Rosenblatt
[92, Theorem 4.4.1] proved the case d = 1 separately. Moreover, Rosenblatt
[92, p. 51] pointed out that if the transfer function ν 7→ A (exp(−iν)) of the
linear filter A has no zeros, then there exists a bounded operator K and
the invertibility condition, in terms of AK = I, is fulfilled. This follows
via Wiener’s theorem, cf. Zygmund [112, Theorem VI.5.2]. More sufficient
conditions are discussed in [33, pp. 76-77].

1.2. Absolute Regularity and Time Series

Let {Xk, k ∈ Z} be a sequence of random variables on (Ω,A, P )
with values in a polish space (S,S). For −∞ ≤ J < L ≤ ∞ de-
fine FL

J = σ (Xk, J ≤ k ≤ L), i.e. the σ-field generated by the family
{Xk, J ≤ k ≤ L}. The sequence {Xk, k ∈ Z} obeys the absolute regular-
ity condition if

β(n) = sup
k∈Z

E

[
sup

A∈Fk
−∞

∣∣P (A|F∞
k+n

)
− P (A)

∣∣]→ 0

as n → ∞. This condition was proposed by A.N. Kolmogorov under the
name strong regularity, see Volkonskii and Rozanov [104, p. 179]. Philipp
[87, p. 231] remarked explicitely that the supremum is measurable since in
a Polish space it is sufficient to extend the supremum only over countably
many sets A. The absolute regularity condition can be expressed in terms
of the total variation distance, cf. Volkonskii and Rozanov [105, Section 4],
i.e. let P (k,n) denote the product measure on Fk

−∞ ⊗ F∞
k+n defined by

P (k,n) (A×B) = P (A)P (B) for A ∈ Fk
−∞, B ∈ F∞

k+n then

β(n) = sup
k∈Z

sup
C∈F0

−∞⊗F∞n

∣∣∣P (C)− P (k,n) (C)
∣∣∣ .

We refer to Pollard [88, pp. 59-60] for a definition of the total variation dis-
tance and its connection with the total variation norm, see also Elstrodt [44,
Satz VII.1.9]. With a view towards coupling methods, Berbee [4, Chapter
4.4] introduced the equivalent total variation norm condition as a measure of
dependence for a stationary sequence under the name weak Bernoulli. The
stationary sequence {Xk, k ∈ Z} is said to be weak Bernoulli if in terms
of the total variation norm

β(n) =
1
2

∥∥PX0,Y n − PX0 ⊗ PY n

∥∥
TV

→ 0
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as n → ∞, where X0 = (. . . , X−1, X0) and Y n = (Xn, Xn+1, . . . ). He
also introduced a Cesaro weak Bernoulli version. The equivalence of weak
Bernoulli and absolute regularity is proved in Berbee [4, Proposition 4.1.1].
There are several other equivalent characterization , cf. e.g. Doukhan [33]
and Bradley [15, Theorem 3.29]. We conclude with two statements of Bulin-
ski and Shashkin [19, Lemma A.17] baring the idea behind the equivalences
mentioned so far. Consider two polish spaces (Si,Si) (i = 1, 2) and let
ξ and η be random elements on a common probability space, taking their
values in S1 and S2, respectively. Then the function β : S2 → R defined
by

β(y) =
1
2
‖Pξ|η=y − Pξ‖TV , y ∈ S2,

is measurable in y. Moreover,∫
S2

β(y)Pη(dy) =
1
2
‖Pξ,η − Pξ ⊗ Pη‖TV .

Similar to the α-mixing condition, Bradley [13] introduced the β-mixing
condition via a measure of dependence between two σ-fields without any
a priori separability conditions. Consider the probability space (Ω,F , P ).
Let the measure of dependence between two sub-σ-fields A and B ⊂ F
be

β (A,B) = sup
1
2

I∑
i=1

J∑
j=1

|P (Ai ∩Bj)− P (Ai)P (Bj)| ,

where the supremum ranges over all pairs of partitions {A1, . . . , AI} and
{B1, . . . , BJ} of Ω into finitely measurable sets, such that Ai ∈ A for
each i and Bj ∈ B for each j.

Let {Xk, k ∈ Z} be a two-sided sequence of random variables on
(Ω,F , P ). For −∞ ≤ J < L ≤ ∞ define FL

J = σ (Xk, J ≤ k ≤ L),
i.e. the σ-field generated by the family {Xk, J ≤ k ≤ L}. For each n ∈ N
define the dependence (mixing) coefficient β(n) by

β(n) = sup
−∞<J<∞

β
(
FJ
−∞,F∞

J+n

)
.

The sequence {Xk, k ∈ Z} is said to be absolutely regular (β-mixing) if

lim
n→∞

β(n) = 0.

For a one-sided sequence {Xk, k ≥ 1} one can define β(n) by

β(n) = sup
1≤J<∞

β
(
FJ

1 ,F∞
J+n

)
.

Suppose a strictly stationary two-sided sequence {Xk, k ∈ Z}. The β-
mixing condition is satisfied if limn→∞ β(n) = 0, where

β(n) = β
(
F0
−∞,F∞

n

)
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In the case of random variables with values in a polish space the β-mixing
condition coincides with the absolute regularity condition, see Bradley [15,
Proposition 3.22]. By the definition it follows that β-mixing implies α-
mixing. Finally, the following is true.

Remark. If a one-sided strictly stationary sequence is β-mixing with
mixing coefficients β(n), so is the two-sided strictly stationary extension
with the same mixing coefficients.

The next part of this section concerns Markov chains. Consider a time-
homogeneous Markov process with state space X and with stationary (one-
step) transition probability function π(·, ·). For a fixed initial probability
measure µ on (X ,F) let

Pµ (A0 × · · · ×An) =∫
A0

µ (dx0)
∫

A1

π (x0, dx1) · · ·
∫

An−1

π (xn−2, dxn−1)π (xn−1, An)

Then the chain can be represented on
(
XN,FN, Pµ

)
with the theorem of

Ionescu-Tulcea, cf. e.g. Rosenblatt [91, Appendix 3]. Higher step transition
probabilities can be generated from the one-step’s recursively via

π(n+1) (x,A) =
∫
π(n) (x, dy)π (y,A) .

Let us restrict on the real line as state space. The measure µ is called
invariant with respect to the transition probability π(·, ·) if∫

µ(dx)π(x,A) = µ (A) .

Then we get a consistent family on finite product sets and via Kolmogorov’s
existence theorem we can set up the chain on

(
RZ,BZ, Pµ

)
. Then the shift

operator T is a one-to-one mapping of the product space onto itself and
T , T−1 are measurable and preserve the measure Pµ. This (two-sided)
stationary process is called stationary Markov chain. It is called ergodic if
the shift operator is ergodic with respect to Pµ.

As an example consider the autoregressive model

Xn+1 = f (Xn) + ξn+1,

where {ξk, k ∈ Z} is a sequence of independent, identically distributed
random variables. Then the transition probability distribution is given by
the regular conditional distribution, i.e.

π (xn, (∞, y]) = P (Xn+1 ≤ y|Xn = xn)
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and if G denotes the distribution function of ξ1 we have

P (Xn+1 ≤ y|Xn = xn) = G (y − f (xn)) .

As a special case consider the discrete Ornstein-Uhlenbeck process, that is
an autoregression with centered normal errors.

Example 1.3. Let |ρ| < 1 and consider

Xn+1 = ρXn + ξn+1, n = 1, 2, . . . ,

where each ξn is a centered normal random variable with variance σ2. The
invariant measure is normal with mean zero and variance σ2/

(
1− ρ2

)
, cf.

Varadhan [103, Example 6.1].

A strictly stationary Markov chain is said to satisfy “geometric ergodic-
ity” if there exist measurable functions a : R → (0,∞) and c : R → (0,∞)
such that the following holds for µ− a.s. x ∈ R:∣∣∣π(n) (x,B)− µ (B)

∣∣∣ ≤ a(x) exp {−c(x)n}

for all n ∈ N and B ∈ B.
A strictly stationary Markov chain satisfies “geometric ergodicity” if and

only if the Markov chain is β-mixing with β(n) → 0 at least exponentially
fast as n → ∞, cf. Bradley [14, Theorem 3.7]. Further references on
the connection between ergodicity conditions for Markov chains and mixing
conditions can be found in Bradley [15, Chapter 7.19].

Example 1.4. The discrete Ornstein-Uhlenbeck is β-mixing.

Proof. By Varadhan [103, Example 6.1] the n-step transition prob-
ability πn(x, ·) is a normal distribution with mean ρnx and variance
σ2
∑n−1

k=0 ρ
2k. Since the invariant measure is normal with mean zero and

variance σ2/
(
1− ρ2

)
, we apply the inequality in [36, p. 83] and derive an

absolute constant C such that for every Borel set B

|P (Xn ∈ B|X0 = x)− µ(B)| ≤ C(2 + x) exp {−| ln ρ|n} .

�

In the last example we are able to compute the invariant measure and
check the definition. Observe that in time series models defined by recur-
rence equations an approach based on one-step transitions would be more
convenient. Among others, Meyn and Tweedie [82] developed within an
operator-theoretic framework so-called drift criteria for geometric ergodic-
ity. These criteria are defined by the one-step transition function and in
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terms of so-called test functions. They introduced the drift operator ∆ for
any non-negative measurable (test) function V by

∆V (x) :=
∫
π(x, dy)V (y)− V (x), x ∈ X .

Typically, see [82, p. 376], the geometric drift conditions are of the form:
There exists a test function V : X → [1,∞], a set C ⊂ X and constants
β > 0, b <∞, such that

∆V (x) ≤ −βV (x) + bI{C}(x), x ∈ X .

In applications, one chooses V (x) = 1 + |x|s, where s is determined
by the moment assumptions on the process. These criteria are a common
approach to check mixing properties for d-dimensional time series given by
stochastic recurrence equations, i.e. Xk = Ak−1Xk + Bk with random
coefficient d × d-matrices Ak−1. It turns out that a variety of time-series
models can be “embedded” in these kind of stochastic recurrence equation
above. We refer to Basrak et al. [3] and Carrasco and Chen [20] for an
exposition of stochastic recurrence equation and their (mixing) properties
and the embedding of so-called GARCH time series which find applications
in modeling of financial time series.

Let {ηk, k ∈ Z} be a sequence of independent and identically distrib-
uted random variables with mean zero and variance one. The probabil-
ity distribution of η1 has a continuous density and the density is posi-
tive on the whole real line. Let Fk−1 denote the sigma field generated
by the family {. . . , ηk−2, ηk−1}. Carrasco and Chen [20] considered the
augmented GARCH(1, 1) model, introduced by Duan [34] for modeling sto-
chastic volatilities, defined by{

εk = σkηk,

Λ
(
σ2

k

)
= c (ek) Λ

(
σ2

k−1

)
+ g (ek) ,

where σk is measurable with respect to Fk−1 for every k ∈ Z; Λ(·), c(·)
and g(·) are continuous real-valued function and each ek is a measurable
function of ηk−1, such that

|c(0)| < 1, E |c (ek)|s < 1 and E |g (ek)|s <∞

is satisfied for some integer s ≥ 1. Carrasco and Chen [20] established
geometric ergodicity for the Markov process {Λ (σk) , k ≥ 1}. Precisely, if
Λ(·) is increasing and continuous with domain [0,∞) and σ2

0 is initialized
from the invariant measure, then {σk, k ≥ 1} and {εk, k ≥ 1} are strictly
stationary and β-mixing with exponential decay, cf. [20, Proposition 5].

Aue et al. [1] proved that certain logarithmic moment conditions are
necessary and sufficient for the existence of a strictly stationary solution.
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Moreover, Francq and Zaköıan [47] established geometric ergodicity under
low moment assumptions allowing even for distributions which are a mixture
of an absolutely continuous component and finitely many Dirac measures.





CHAPTER 2

Limit Theorems for Weighted Partial Sums

In the first section we will establish further Darling-Erdős type limit
theorems for weighted tied-down sums of α-mixing random variables. In
the second section we will derive a convergence-in-probability limit theorem
for the running maximum of weighted tied-down sums. The proof is based
on coupling methods for β-mixing random variables.

2.1. Darling-Erdős Limit Theorems

Darling and Erdős [27, Theorem 1] derived an extreme value distribution
for max1≤k≤n k

−1/2S(k), as n→∞, where S(k) denotes the k-th partial
sum of independent and identically distributed random variables with mean
zero and variance one.

Following their method of proof, we first consider a sequence of stan-
dard normal random variables {Xk, k ≥ 1} and we let {V (t), t ≥ 0} be
an Ornstein-Uhlenbeck process, i.e. a stationary Gaussian process with
EV (t) = 0 and EV (t)V (s) = exp (− |t− s| /2). Comparing the covariance
functions yields

{
k−1/2S(k), k ≥ 1

} D= {V (log k) , k ≥ 1}. Darling and
Erdős [27, Section 3] established an asymptotic relation for the maximum
of the Ornstein-Uhlenbeck process over a discrete set, i.e. max1≤k≤n V (k).
They also derived a subsequent result for the maximum of the absolute
value, i.e. max1≤k≤n |V (k)|. Throughout this chapter let

A(x) = (2 log x)1/2 (2.1.1)

and

D∗(x) = 2 log x+
1
2

log log x− 1
2

log (4π) . (2.1.2)

Moreover, let E be a random variable with Gumbel type extreme value
distribution function, i.e.

P [E ≤ y] = exp {− exp (−y)} , −∞ < y <∞. (2.1.3)

The asymptotic relation for the maximum over a discrete set has the follow-
ing continuous time variant.

A (T ) max
0≤t≤T

V (t)−D∗ (T ) D→ E (T →∞). (2.1.4)

13
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Csörgő and Révész [26, Remark 1.9.1] pointed out that this limit theorem
is implicitly contained in [27]. Nevertheless, it can also be viewed as a
particular case of Leadbetter et al. [66, Theorem 12.3.5], where the extreme
value asymptotic is established for the class of stationary normal processes
with zero mean and covariance function r (τ) satisfying

r (τ) = 1− C |τ |α + o (|τ |α) (τ → 0) ,

for some constants C > 0 and 0 < α ≤ 2. Within this class of stationary
normal processes, Bickel and Rosenblatt [9, Theorem A1] established the
asymptotical independence of

A (T ) max
0≤t≤T

V (t)−D∗ (T ) and −A (T ) min
0≤t≤T

V (t) +D∗ (T )

as T →∞. Moreover, they proved

−A (T ) min
0≤t≤T

V (t) +D∗ (T ) D→ E (T →∞). (2.1.5)

This implies the corresponding limit theorem for the running supremum
of the absolute value, cf. Bickel and Rosenblatt [9, Corollary A1]. For
another approach, we refer to Horvath [57, Lemma 2.1] for a continuous
time variant for the running supremum of the absolute value. Therein a
Darling-Erdős type limit theorem for the maximum of the norm of a d-
dimensional Ornstein-Uhlenbeck process is established. This result reduces
in the one-dimensional case, i.e. d = 1, to

A (T ) max
0≤t≤T

|V (t)| −D∗ (T ) D→ E ∨ E′ (T →∞), (2.1.6)

where E′ and E are independent and identically distributed random
variables with Gumbel type extreme value distribution.

Having first established the extreme value asymptotics in the Gaussian
case, Darling and Erdős [27] proved in a second step, under the assumption
of a finite third moment, the following classical limit theorems:

A (log n) max
1≤k≤n

S(k)√
k
−D∗ (log n) D→ E (2.1.7)

and

A (log n) max
1≤k≤n

|S(k)|√
k

−D∗ (log n) D→ E ∨ E′. (2.1.8)

Moreover, they claimed that the corresponding limit theorems for the par-
tial sums can be established assuming less than a finite third moment con-
dition. The optimal moment condition was derived by Einmahl [41] in the
case of independent random variables. For an exposition of the invariance-
principle-based methods established in [27] and its further developments to
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self-normalized Darling-Erdős type limit theorem, we refer to Csörgő [22,
pp. 535-538].

With a view towards dependent sequences, Einmahl and Mason [43, p.
438] pointed out that Darling-Erdős limit theorems can be derived, when-
ever the partial sum process {S(k), k ≥ 1} can be redefined on a suitable
probability space, together with a standard Wiener process {W (t), t ≥ 0},
such that

S(n)−W (n) = o
(
n1/2 (log log n)−1/2

)
a.s. (n→∞).

On the one hand, in the independent and identically distributed case this
rate of approximation is connected with a moment condition which is slightly
stronger than a finite second moment. For instance, Breiman [17] established
the rate under E(|X1| log+ log+(|X1|))2 <∞, using the Skorohod represen-
tation. Einmahl [40] provided vector-valued refinements based on a different
method.

On the other hand, in the dependent case the rate o(n1/2(log log n)−1/2)
allows for only mild restrictions on the strong mixing coefficient. This is our
motivation to study the interplay between decay of the mixing coefficients
and Darling-Erdős type limit theorem for weighted tied-down partial sums
more precisely. We will first employ the following strong approximation re-
sult for strongly mixing random variables due to Bradley [12] which imposes
only a logarithmic decay of the mixing coefficients.

Assumption B. Let {Xk, k ≥ 1} be a strictly stationary sequence of
centered real-valued random variables with

EX2
1 <∞ and VarS(n) →∞ (n→∞). (2.1.9)

Suppose δ > 0 and λ > 1 + 3/δ are real numbers such that

sup
n∈N

(VarS(n))−(2+δ)/2E |S(n)|2+δ <∞ (2.1.10)

and

α(n) = o
(

(log n)−λ
)

(n→∞). (2.1.11)

Theorem (see Bradley (1983, Theorem 4)). If Assumption B holds,
then the sequence {S(k), k ≥ 1} can be redefined on another probability
space, together with a Wiener process {W (t), t ≥ 0}, such that

S(n)− σW (n) = o
(
n1/2 (log log n)−1/2

)
a.s. (n→∞), (2.1.12)

where 0 < limn→∞ n−1VarS(n) = σ2 <∞.

We will follow the approach of Einmahl and Mason [43] and we will es-
tablish Darling-Erdős limit theorems for the standardized tied-down partial



16 2. LIMIT THEOREMS FOR WEIGHTED PARTIAL SUMS

sum process {Gn(k), 1 ≤ k < n} via the strong approximation results in
[12]. We introduce the following notation. Let

Gn(k) =
(

n

k(n− k)

)1/2

Tn(k), 1 ≤ k < n, (2.1.13)

and

Tn(k) = S(k)− k

n
S(n), 1 ≤ k ≤ n. (2.1.14)

From heuristic reasonings it seems clear that the Darling-Erdős limit the-
orem applies if the maximum of Gn(k) ranges only over the “small” or
over the “large” indices k. In the following theorem we derive a general
asymptotic to separate the “small” from the “large” area more precisely.

Theorem 2.1.1. Suppose that Assumption B holds. Let {ck, k ≥ 1} be
a sequence for which cn ≤ n− 1 and cn ↑ ∞ (n→∞). If

A (log n)
√
cn log log n = o

(√
n
)

(n→∞) (2.1.15)

and
log log cn
log log n

→ 1 (n→∞) (2.1.16)

are satisfied, then, as n→∞,

A (log cn)
1
σ

max
1≤k≤cn

|Gn(k)| −D∗ (log cn) D→ E ∨ E′ (2.1.17)

and

A (log cn)
1
σ

max
n−cn≤k≤n−1

|Gn(k)| −D∗ (log cn) D→ E ∨ E′, (2.1.18)

where E′ and E are independent and identically Gumbel distributed
random variables and limn→∞ n−1VarS(n) = σ2.

As a consequence of the main result above, we are able to derive the
following Darling-Erdős limit theorems.

Theorem 2.1.2. If Assumption B holds, then we have, as n→∞,

A (log n)
1
σ

max
1≤k≤ n

log n

|Gn(k)| −D∗ (log n) D→ E ∨ E′ (2.1.19)

and

A (log n)
1
σ

max
n− n

log n
≤k≤n−1

|Gn(k)| −D∗ (log n) D→ E ∨ E′, (2.1.20)

where E′ and E are independent and identically Gumbel distributed
random variables and limn→∞ n−1VarS(n) = σ2.
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As a consequence of the extreme value asymptotic above, we are able to
derive the following convergence-in-probability limit theorems.

Theorem 2.1.3. Suppose that Assumption B holds. Let 0 < ε < 1 and
put ck = exp (log k)ε (k = 1, 2, . . . ). Then we have, as n→∞,

(log log n)−1/2 max
1≤k≤cn

|Gn(k)| P→ σε1/2 (2.1.21)

and

(log log n)−1/2 max
n−cn≤k≤n−1

|Gn(k)| P→ σε1/2, (2.1.22)

where limn→∞ n−1VarS(n) = σ2.

We established certain precise asymptotics if the maximum of Gn(k)
ranges only over the “small” or over the “large” indices k. In light of The-
orem 2.1.2, it seems natural to study also the asymptotics for the “middle”
section. Even at the cost of a polynomial decay of the mixing coefficients,
we need considerably stronger rates than in (2.1.12). We will employ the fol-
lowing one-dimensional version of a general result due to Kuelbs and Philipp
[65].

Assumption K. Let {Xk, k ≥ 1} be a strictly stationary sequence of
centered real-valued random variables with

EX2
1 <∞ and VarS(n) →∞ (n→∞). (2.1.23)

Suppose 0 < δ ≤ 1 and 0 < ε ≤ 1/4 are real numbers such that

E |X1|2+δ <∞ (2.1.24)

and

α(n) = O
(
n−(1+ε)(1+2/δ)

)
(n→∞). (2.1.25)

Theorem (see Kuelbs and Philipp (1980, Theorem 4)). If Assumption
K holds, then the sequence {S(k), k ≥ 1} can be redefined on another
probability space, together with a Wiener process {W (t), t ≥ 0}, such that

S(n)− σW (n) = O
(
n

1
2
−λ
)

a.s. (n→∞) (2.1.26)

for some λ > 0 and 0 ≤ σ2 < ∞ together with limn→∞ n−1VarS(n) =
σ2.

In the independent case it was claimed by Horvath [57, display (3.22)]
that the maximum of Gn(k), ranging only over the “middle” section as
below, is of order OP (log log log n). Here we state the exact extreme value
asymptotic in the strongly mixing case.
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Theorem 2.1.4. If Assumption K holds, then we have, as n→∞,

A (2 log ((log n)− 1))
1
σ

max
n

log n
≤k≤n− n

log n

|Gn(k)|

−D∗ (2 log ((log n)− 1)) D→ E ∨ E′, (2.1.27)

where E′ and E are independent and identically Gumbel distributed
random variables and limn→∞ n−1VarS(n) = σ2.

As a consequence of Theorem 2.1.4, we are able to derive the extreme
value asymptotic for the maximum of Gn(k) ranging over {1, . . . , n− 1}.
The following result is implicitly contained in Horvath [57] and Davis et. al.
[32].

Theorem 2.1.5. Suppose that Assumption K holds. Let

D(x) = 2 log x+
1
2

log log x− 1
2

log π. (2.1.28)

Then we have, as n→∞,

A (log n)
1
σ

max
1≤k≤n−1

|Gn(k)| −D (log n) D→ E ∨ E′, (2.1.29)

where E′ and E are independent and identically Gumbel distributed
random variables and limn→∞ n−1VarS(n) = σ2.

The rest of this section concerns the proof of the theorems. The proofs
of the main results are based on a series of lemmas. We first derive some
uniform approximation results and certain uniform “backward” invariance
principles which are of independent interest.

Lemma 2.1.1. Suppose that Assumption B holds. Let {ck, k ≥ 1} and
{dk, k ≥ 1} be two sequences with cn ≤ dn and cn ↑ ∞ (n→∞). Then
the sequence {S(k), k ≥ 1} can be redefined on another probability space,
together with a Wiener process {W (t), t ≥ 0}, such that, as n→∞,

max
cn≤k≤dn

|S(k)− σW (k)|√
k

= oP

(
(log log cn)−1/2

)
, (2.1.30)

where limn→∞ n−1VarS(n) = σ2.

Proof. Since cn ≤ dn and cn ↑ ∞ (n → ∞), an application of
Bradley [12, Theorem 4] implies

max
cn≤k≤dn

(
log log k

k

)1/2

|S(k)− σW (k)| = o (1) a.s. (n→∞).

For each ε > 0, we derive

lim
n→∞

P

[
(log log cn)1/2 max

cn≤k≤dn

|S(k)− σW (k)|√
k

> ε

]
= 0.
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�

Lemma 2.1.2. Suppose that Assumption B holds. Let {ak, k ≥ 1} and
{dk, k ≥ 1} be two sequences with 0 < an ↓ 0 and dn ↑ ∞ (n → ∞).
Then the sequence {S(k), k ≥ 1} can be redefined on another probability
space, together with a Wiener process {W (t), t ≥ 0}, such that, as n →
∞,

an max
1≤k≤dn

|S(k)− σW (k)|√
k

= oP (1) , (2.1.31)

where limn→∞ n−1VarS(n) = σ2.

Proof. Consider the sequence {ck, k ≥ 1} defined by

ck = log (min {dk, 1/ak}) (k = 1, 2, . . . ) .

Obviously, we have

cn ≤ dn, cn ↑ ∞ and an
√
cn → 0 (n→∞).

For each ε > 0, we have

P

[
an max

1≤k≤cn

|W (k)| > ε

]
≤ a2

ncn
ε2

,

where Kolmogorov’s inequality, cf. e.g. Révész [89, Theorem 2.1.1], was
applied. Whence

lim
n→∞

P

[
an max

1≤k≤cn

|W (k)|√
k

> ε

]
= 0. (2.1.32)

Moreover, using the maximal inequality in Bradley [12, display (4.4)], we
obtain a nonnegative constant C(ε), such that

P

[
an max

1≤k≤cn

|S(k)| > ε

]
≤ C(ε) (

√
cnan)2+δ .

Thus

lim
n→∞

P

[
an max

1≤k≤cn

|S(k)|√
k

> ε

]
= 0 (2.1.33)

and the assertion flows from (2.1.32), (2.1.33) together with Lemma 2.1.1.
�

Lemma 2.1.3. Suppose that Assumption B holds. Let {ck, k ≥ 1} and
{dk, k ≥ 1} be two sequences with 1 ≤ cn ≤ dn ≤ n − 1 and n −
dn ↑ ∞ (n → ∞). Then the sequence {S(k), k ≥ 1} can be rede-
fined on another probability space together with a sequence of Wiener process
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{Wn(t), t ≥ 0}, such that, as n→∞,

max
cn≤k≤dn

(
log log (n− k)

n− k

)1/2

|S(n)− S(k)− σWn(n− k)| = oP (1)

(2.1.34)

where limn→∞ n−1VarS(n) = σ2.

Proof. Extend the strictly stationary process {Xk, k ≥ 1} as two-
sided process {X ′

k, −∞ < k <∞} (say), which is again strictly station-
ary and strongly mixing with the same mixing coefficients, see Chapter 1.1
above. For each fixed n ∈ N, using Lemma 2.1.1, we can redefine the one-
sided process

{
X ′

n+1−`, ` ≥ 1
}

on another probability space (Ω1,A1, P1)
as

{
X ′
−`, ` ≥ 1

}
(say), together with one Wiener process, such that for

each ε > 0,

lim
n→∞

P1

[
max

n−dn≤k≤n−cn

(
log log k

k

)1/2
∣∣∣∣∣

k∑
`=1

X ′
−` −W (k)

∣∣∣∣∣ > ε

]
= 0.

Consider the following law on the Borel sets of the polish space Rn×D[0, n]

L

({
k∑

`=1

X ′
−`, 1 ≤ k ≤ n

}
, {W (t), 0 ≤ t ≤ n}

)
.

Since {
k∑

`=1

X ′
−`, 1 ≤ k ≤ n

}
D=

{
k∑

`=1

Xn+1−`, 1 ≤ k ≤ n

}
,

an application of Lemma 1 in Billingsley [11, Section 21] yields, for each
n ∈ N, a Wiener process {Wn(t), 0 ≤ t ≤ n} on the initial probability
space (suitably enlarged), such that{

k∑
`=1

Xn+1−` −Wn(k), 1 ≤ k ≤ n

}
D=

{
k∑

`=1

X ′
−` −W (k), 1 ≤ k ≤ n

}
.

This implies

lim
n→∞

P

[
max

n−dn≤k≤n−cn

(
log log k

k

)1/2
∣∣∣∣∣

k∑
`=1

Xn+1−` −Wn(k)

∣∣∣∣∣ > ε

]
= 0.

The assertion follows from the observation

max
n−dn≤k≤n−cn

(
log log k

k

)1/2
∣∣∣∣∣

k∑
`=1

Xn+1−` −Wn(k)

∣∣∣∣∣
= max

cn≤k≤dn

(
log log(n− k)

n− k

)1/2
∣∣∣∣∣
n−k∑
`=1

Xn+1−` −Wn(n− k)

∣∣∣∣∣ .
�
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Lemma 2.1.4. Suppose that Assumption B holds. Let {ak, k ≥ 1} and
{ck, k ≥ 1} be two sequences with an ↓ 0 and n − cn ↑ ∞ (n → ∞).
Then the sequence {S(k), k ≥ 1} can be redefined on another probability
space, together with a sequence of Wiener process {Wn(t), t ≥ 0}, such
that, as n→∞,

an max
cn≤k≤n−1

|S(n)− S(k)− σWn(n− k)|√
n− k

= oP (1) , (2.1.35)

where limn→∞ n−1VarS(n) = σ2.

Proof. Consider the sequence {dk, k ≥ 1} defined by

dk = k − log (min {k − ck, 1/ak}) (k = 1, 2, . . . ) .

Obviously, we have

cn ≤ dn, n− dn ↑ ∞ and an

√
n− dn → 0 (n→∞)

By Lemma 2.1.3

an max
cn≤k≤dn

|S(n)− S(k)− σWn(n− k)|√
n− k

= oP (1) (n→∞). (2.1.36)

Using the maximal inequality in Bradley [12, display (4.4)], we have

lim
n→∞

P

[
an max

dn≤k≤n−1

|S(n)− S(k)|√
n− k

> ε

]

= lim
n→∞

P

an max
1≤k≤n−dn

∣∣∣∑k
l=1X−`

∣∣∣
√
k

> ε

 = 0. (2.1.37)

Moreover, via using Kolmogorov’s inequality, cf. e.g. Révész [89, Theorem
2.1.1], we have

lim
n→∞

P

[
an max

dn≤k≤n−1

|Wn(n− k)|√
n− k

> ε

]
= lim

n→∞
P

[
an max

1≤k≤n−dn

|W (k)|√
k

> ε

]
= 0. (2.1.38)

The assertion flows from (2.1.36), (2.1.37) and (2.1.38). �

Lemma 2.1.5. Suppose that Assumption B holds. Let {ak, k ≥ 1} and
{ck, k ≥ 1} be two sequences with an ↑ ∞ and cn ↑ ∞ (n→∞). If

an

√
cn log log n = o

(√
n
)

(n→∞), (2.1.39)

then

an max
1≤k≤cn

∣∣∣∣∣∣
1
kS(k)− 1

n−k (S(n)− S(k))√
1
k + 1

n−k

− S(k)√
k

∣∣∣∣∣∣ = oP (1) (2.1.40)

as n→∞.
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Proof. By Lemma 2.1.2, we have

ancn
n

max
1≤k≤cn

|S(k)−W (k)|√
k

= oP (1),

and via Darling and Erdős [27, Theorem 2], i.e. (2.1.8), we derive, similarly
as in Durrett [36, Exercise 2.3], that

(2 log log cn)−1/2 max
1≤k≤cn

|W (k)|√
k

P
→ 1 (2.1.41)

holds, as n→∞. Since (2.1.39) implies

ancn
√

log log cn = o(n) (n→∞),

we have
ancn
n

max
1≤k≤cn

|W (k)|√
k

= oP (1),

which in turn implies

ancn
n

max
1≤k≤cn

|S(k)|√
k

= oP (1).

Moreover, consider f(t) =
√

1− t (0 < t < 1). Since f(0) = 1, the
mean value theorem yields

max
1≤k≤cn

∣∣∣∣∣∣ 1
√
k
√

1
k + 1

n−k

− 1

∣∣∣∣∣∣ = max
1≤k≤cn

∣∣∣∣f (kn
)
− f(0)

∣∣∣∣
≤ cn

n
sup

0<s< cn
n

1
2
√

1− s
.

We arrive at

an max
1≤k≤cn

∣∣∣∣∣∣
1
kS(k)√
1
k + 1

n−k

− 1√
k
S(k)

∣∣∣∣∣∣ = oP (1) (n→∞). (2.1.42)

Towards this end, consider the inequality

an max
1≤k≤cn

1√
1
k + 1

n−k

|S(n)− S(k)|
n− k

≤
an
√
cn√
n

max
1≤k≤cn

|S(n)− S(k)|√
n− k

together with

an
√
cn√
n

max
1≤k≤cn

|S(n)− S(k)−Wn(n− k)|√
n− k

= oP (1),
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where Lemma 2.1.4 was applied. Since

P

[
an
√
cn√
n

max
1≤k≤cn

|Wn(n− k)|√
n− k

> ε

]
≤ P

[
max

n−cn≤k≤n−1

|W (k)|√
k log log k

>
ε
√
n

an
√
cn log log n

]
,

an application of the iterated logarithm via using (2.1.39), yields

an max
1≤k≤cn

1√
1
k + 1

n−k

|S(n)− S(k)|
n− k

= oP (1) (2.1.43)

as n→∞. Now (2.1.42) and (2.1.43) imply (2.1.40). �

Lemma 2.1.6. Suppose that Assumption B holds. Let {ak, k ≥ 1} and
{ck, k ≥ 1} be two sequences with an ↑ ∞ and cn ↑ ∞ (n→∞). If

an

√
cn log log n = o

(√
n
)

(n→∞), (2.1.44)

then

an max
n−cn≤k≤n−1

∣∣∣∣∣∣
∣∣∣ 1kS(k)− 1

n−k (S(n)− S(k))
∣∣∣√

1
k + 1

n−k

− |S(n)− S(k)|√
n− k

∣∣∣∣∣∣ = oP (1)

(2.1.45)
as n→∞.

Proof. Consider f(t) =
√

1− t (0 < t < 1). Since f(0) = 1, the
mean value theorem yields

max
n−cn≤k≤n−1

∣∣∣∣∣∣ 1
√
n− k

√
1
k + 1

n−k

− 1

∣∣∣∣∣∣ = max
n−cn≤k≤n−1

∣∣∣∣∣
√
k

n
− 1

∣∣∣∣∣
≤ max

1
n
≤s≤ cn

n

|f(s)− f(0)|

≤ cn
n

max
0<s≤ cn

n

1
2
√

1− s
.

Therefore

an max
n−cn≤k≤n−1

∣∣∣∣∣∣
∣∣∣ 1
n−k (S(n)− S(k))

∣∣∣√
1
k + 1

n−k

− |S(n)− S(k)|√
n− k

∣∣∣∣∣∣
= O

(ancn
n

)
max

n−cn≤k≤n−1

|S(n)− S(k)|√
n− k

.

By Lemma 2.1.4, we have

ancn
n

max
n−cn≤k≤n−1

|S(n)− S(k)−Wn(n− k)|√
n− k

= oP (1)
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and, via using (2.1.41) and (2.1.44), the following is true

lim
n→∞

P

[
ancn
n

max
n−cn≤k≤n−1

|Wn(n− k)|√
n− k

> ε

]
= lim

n→∞
P

[
max

1≤k≤cn

|W (k)|√
k

>
εn

ancn

]
= 0.

This implies

an max
n−cn≤k≤n−1

∣∣∣∣∣∣
1

n−k |S(n)− S(k)|√
1
k + 1

n−k

− |S(n)− S(k)|√
n− k

∣∣∣∣∣∣ = oP (1) (2.1.46)

as n→∞. Next, consider the inequality

an max
n−cn≤k≤n−1

1√
1
k + 1

n−k

|S(k)|
k

= an max
n−cn≤k≤n−1

(
1− k

n

)1/2 |S(k)|√
k

≤
an
√
cn√
n

max
n−cn≤k≤n−1

|S(k)|√
k
.

Observe
an
√
cn√
n

max
n−cn≤k≤n−1

|S(k)−W (k)|√
k

= oP (1),

where Lemma 2.1.2 was applied. Moreover, for each ε > 0, the following
is true

P

[
an
√
cn√
n

max
n−cn≤k≤n−1

|W (k)|√
k

> ε

]
≤ P

[
an
√
cn log log n√

n
max

n−cn≤k≤n−1

|W (k)|√
k log log k

> ε

]
,

which in turn, via using the law of the iterated logarithm and (2.1.44), yields

an
√
cn√
n

max
n−cn≤k≤n−1

|W (k)|√
k

= oP (1).

Hence

an max
n−cn≤k≤n−1

1√
1
k + 1

n−k

|S(k)|
k

= oP (1) (2.1.47)

as n→∞. Finally, (2.1.45) flows from (2.1.46) and (2.1.47). �

Lemma 2.1.7. Suppose that Assumption B holds. Let {ck, k ≥ 1} be a
sequence with cn ↑ ∞ (n→∞). If

log log cn
log log n

→ 1 (n→∞), (2.1.48)
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then, as n→∞,

A (log cn)
1
σ

max
1≤k≤cn

|S(k)|√
k

−D∗ (log cn) D→ E ∨ E′ (2.1.49)

where E′ and E are independent and identically Gumbel distributed
random variables and limn→∞ n−1VarS(n) = σ2.

Proof. By Lemma 2.1.2, we have

max
1≤k≤cn

|S(k)− σW (k)|√
k

= o
(

(log log cn)1/2
)
.

Therefore, via using (2.1.41) and (2.1.48),

(2 log log n)−1/2 max
1≤k≤cn

|S(k)|√
k

P→ σ (2.1.50)

Let 0 < ε < 1 and put un = exp (log n)ε. Obviously,

log log un

log log n
= ε. (2.1.51)

Whence

(2 log log n)−1/2 max
1≤k≤un

|S(k)|√
k

P→ σ
√
ε (2.1.52)

as n→∞. Therefore, from (2.1.50) and (2.1.52),

lim
n→∞

P

[
max

1≤k≤un

|S(k)|√
k

≥ max
1≤k≤cn

|S(k)|√
k

]
= 0 (2.1.53)

and similarly, we have

lim
n→∞

P

[
max

1≤k≤un

|W (k)|√
k

≥ max
1≤k≤cn

|W (k)|√
k

]
= 0. (2.1.54)

In light of (2.1.51), we can assume un < cn. Therefore, via using (2.1.53),
(2.1.54) and Lemma 2.1.1, we have∣∣∣∣ max

1≤k≤cn

|S(k)|√
k

− max
1≤k≤cn

σ |W (k)|√
k

∣∣∣∣ = oP

(
(log log n)−1/2

)
and the assertion flows from Darling and Erdős [27, Theorem 2], i.e. (2.1.8),
that is

A (log cn) max
1≤k≤cn

|W (k)|√
k

−D∗ (log cn) D→ E ∨ E′

as n→∞. �

Lemma 2.1.8. Suppose that Assumption B holds. Let {ck, k ≥ 1} be a
sequence with cn ≤ n− 1 and cn ↑ ∞ (n→∞). If

log log cn
log log n

→ 1 (n→∞), (2.1.55)
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then, as n→∞,

A (log cn)
1
σ

max
n−cn≤k≤n−1

|S(n)− S(k)|√
n− k

−D∗ (log cn) D→ E ∨ E′ (2.1.56)

where E′ and E are independent and identically Gumbel distributed
random variables and limn→∞ n−1VarS(n) = σ2.

Proof. By Lemma 2.1.4, we have

max
n−cn≤k≤n−1

|S(n)− S(k)− σWn(n− k)|√
n− k

= oP

(
(log log cn)1/2

)
.

Since

max
n−cn≤k≤n−1

|Wn(n− k)|√
n− k

D= max
1≤k≤cn

|W (k)|√
k

, (2.1.57)

we have, via using (2.1.41) and (2.1.55),

(log log n)−1/2 max
n−cn≤k≤n−1

|S(n)− S(k)|√
n− k

P→ σ (2.1.58)

Let 0 < ε < 1 and put un = exp (log n)ε. Whence

(log log n)−1/2 max
n−un≤k≤n−1

|S(n)− S(k)|√
n− k

P→ σ
√
ε. (2.1.59)

Therefore, via (2.1.58) and (2.1.59), we have

lim
n→∞

P

[
max

n−un≤k≤n−1

|S(n)− S(k)|√
n− k

≥ max
n−cn≤k≤n−1

|S(n)− S(k)|√
n− k

]
= 0

(2.1.60)

and similarly

lim
n→∞

P

[
max

n−un≤k≤n−1

|Wn(n− k)|√
n− k

≥ max
n−cn≤k≤n−1

|Wn(n− k)|√
n− k

]
= 0.

(2.1.61)

In light of (2.1.51), we can assume n− cn < n− un. Therefore, via using
(2.1.60), (2.1.61) and Lemma 2.1.3, we have∣∣∣∣ max

n−cn≤k≤n−1

|S(n)− S(k)|√
n− k

− max
n−cn≤k≤n−1

σ |Wn(n− k)|√
n− k

∣∣∣∣
= oP

(
(log log n)−1/2

)
and the assertion flows from (2.1.57) and Darling and Erdős [27, Theorem
2], i.e. (2.1.8), that is,

A (log cn) max
1≤k≤cn

|W (k)|√
k

−D∗ (log cn) D→ E ∨ E′

as n→∞. �
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proof of Theorem 2.1.1. In light of (2.1.13) and (2.1.14), we imme-
diately derive the decomposition

Gn(k) =
1
kS(k)− 1

n−k (S(n)− S(k))√
1
k + 1

n−k

(k = 1, . . . , n− 1). (2.1.62)

Therefore, putting together Lemma 2.1.5, Lemma 2.1.6, Lemma 2.1.7 and
Lemma 2.1.8 we obtain (2.1.17) and (2.1.18). �

proof of Theorem 2.1.2. As a consequence of Theorem 2.1.1, we
have, as n→∞,

A (log (n/ log n))
1
σ

max
1≤k≤cn

|Gn(k)| −D∗ (log (n/ log n)) D→ E ∨ E′ (2.1.63)

and

A (log (n/ log n))
1
σ

max
n−cn≤k≤n−1

|Gn(k)| −D∗ (log (n/ log n)) D→ E ∨ E′.

(2.1.64)

Moreover, similarly as in (2.1.41), we derive, as n→∞,

(2 log log (n/ log n))−1/2 max
1≤k≤ n

log n

|Gn(k)| P→ σ (2.1.65)

and

(2 log log (n/ log n))−1/2 max
n− n

log n
≤k≤n−1

|Gn(k)| P→ σ. (2.1.66)

Letting n→∞, we obtain

(A (log (n/ log n))−A (log n)) (2 log log (n/ log n))1/2 = o(1) (2.1.67)

and

D∗ (log n)−D∗ (log (n/ log n)) = o(1). (2.1.68)

Concerning the former statement (2.1.67), consider the expression

log log (n/ log n)− log (1− (log log n/ log n)) = log log n.

Whence, from (2.1.1) we have

(A (log (n/ log n))−A (log n))A (log (n/ log n))

=
(
−
√

1− εn + 1
)

(2 log log (n/ log n)) ,

where
εn = log (1− (log log n/ log n)) / log log (n/ log n) .

Therefore, for some 0 < ξn < εn, the mean value theorem implies

(A (log (n/ log n))−A (log n))A (log (n/ log n))

= (1− ξn)−1/2 εn (log log (n/ log n)) .
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This yields (2.1.67). Moreover, (2.1.68) is an immediate consequence of
(2.1.2). Towards this end, the assertions (2.1.19) and (2.1.20) follow from
(2.1.63) - (2.1.68), via using Slutsky’s theorem, cf. e.g. Pollard [88, p.
175]. �

proof of Theorem 2.1.3. In light of (2.1.62), we derive the first as-
sertion from Lemma 2.1.40 and (2.1.52). Similarly, the second assertion
flows from Lemma 2.1.45 and (2.1.59). �

proof of Theorem 2.1.4. Let an = n/ log n. If n ≥ exp{1}, then

sup
an≤t≤n−an

|W (btc)−W (t)| ≤ sup
an≤t≤n−an

sup
0≤s≤log n

|W (t)−W (t+ s)| .

Therefore, via using Hanson and Russo [56, display (3.10b)], we have

sup
an≤t≤n−an

|W (btc)−W (t)| = O (log n) a.s. (n→∞),

which implies, via Kuelbs and Philipp [65, Theorem 4],

sup
an≤t≤n−an

|S( t )−σW (t)|
btc

1
2
−λ

= o (1) a.s. (n→∞),

for some 0 < λ < 1/2. Therefore

n−1/2 sup
an≤t≤n−an

|S(t)− σW (t)|(
btc
n

(
1− btc

n

))1/2
= o

(
n−λ (log n)1/2

)
(2.1.69)

and

n−1/2 sup
an≤t≤n−an

(
[t]
n

)1/2
|S(n)− σW (n)|(

1− btc
n

)1/2
= o

(
n−λ (log n)1/2

)
. (2.1.70)

hold almost surely as n → ∞. Observe that scaling properties of the
Wiener process imply

n−1/2 sup
an≤t≤n−an

∣∣∣W (t)− btc
n W (n)

∣∣∣(
btc
n

(
1− btc

n

))1/2

D= sup
1

log n
≤t≤1− 1

log n

∣∣∣W (t)− bntc
n W (1)

∣∣∣(
bntc
n

(
1− bntc

n

))1/2
.

Next, consider f(t) = (t(1− t))−1/2 (0 < t < 1) with derivative

f ′(t) =
2t− 1

2 (t(1− t))3/2
(0 < t < 1).
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Let
rn(y) = (ny − bntc) /n.

The law of the iterated logarithm at zero, cf. e.g. Csörgő and Révész [26,
Theorem 1.3.3], and the mean value theorem imply that

(log log log n)−1/2 sup
1

log n
≤t≤ 1

2

|W (t)| |f (y)− f (y − rn(y))| = O

(
log n
n

)
and

sup
1
2
≤t≤1− 1

log n

|W (t)| |f (y)− f (y − rn(y))| = O

(
(log n)3/2

n

)

hold almost surely as n→∞. Next, consider g(t) = (t/(1− t))1/2 (0 <
t < 1) with derivative

g′(t) =
t1/2

2 (1− t)5/2
(0 < t < 1).

Since

sup
1
2
≤t≤1− 1

log n

|g (y)− g (y + rn(y))| = O

(
(log n)5/2

n

)
(n→∞),

we finally derive that∣∣∣∣∣ sup
1

log n
≤t≤1− 1

log n

∣∣∣W (t)− [nt]
n W (1)

∣∣∣(
[nt]
n

(
1− [nt]

n

))1/2

− sup
1

log n
≤t≤1− 1

log n

|W (t)− tW (1)|
(t(1− t))1/2

∣∣∣∣∣ = O

(
(log n)5/2

n

)
(2.1.71)

holds almost surely as n→∞. Towards this end, from Csörgő and Révész
[26, display (1.9.7)]{

W (t)− tW (1)

(t(1− t))1/2
, 0 < t < 1

}
D=
{
V

(
log

t

1− t

)
, 0 < t < 1

}
, (2.1.72)

where {V (t) , −∞ < t <∞} denotes an Ornstein-Uhlenbeck process with
covariance EV (t)V (s) = exp (− |t− s| /2). Since the Ornstein-Uhlenbeck
process is strictly stationary, we derive

sup
1

log n
≤y≤1− 1

log n

|W (y)− yW (1)|√
y(1− y)

D= sup
0<s<2 log((log n)−1)

|V (s)| . (2.1.73)

In light of (2.1.69)-(2.1.73), an application of (2.1.6) yields (2.1.27). �
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proof of Theorem 2.1.5. Since Theorem 2.1.4 implies

max
n

log n
≤k≤n− n

log n

|Gn(k)| = OP (log log log n) (n→∞),

it suffices to prove

lim
n→∞

P

[
max

{
max

1≤k≤n/ log n
|Gn(k)| , max

n−(n/ log n)≤k≤n−1
|Gn(k)|

}

≤ (y +D (log n)) /A (log n)

]
= exp {−2 exp {−y}} .

We claim that Assumption K is stronger than Assumption B. Suppose As-
sumption K holds. Letting δ0 = εδ/8, Kuelbs and Philipp [65, Lemma 2.4]
implies

n−1VarS(n) → σ2 (n→∞),

and from Kuelbs and Philipp [65, Lemma 2.5], which is attributed to Sotres
and Ghosh [98], together with Serfling [94, Theorem B] we have

sup
n∈N

n−(1+δ0/2)E |S(n)|2+δ0 <∞

which implies assumption (2.1.10). Therefore, the assumptions of [12, The-
orem 4] are fulfilled, hence Assumption B. As a consequence, we can apply
Lemma 2.1.5 and Lemma 2.1.6 and it suffices to prove

lim
n→∞

P

[
max

{
max

1≤k≤n/ log n

|S(k)|√
k
, max
n−(n/ log n)≤k≤n−1

|S(n)− S(k)|√
n− k

}

≤ (y +D (log n)) /A (log n)

]
= exp {−2 exp {−y}} .

Observe that the distance between S(k) and S(n) − S(k) in terms of
indices is n − 2(n/ log n). Hence, in light of the α-mixing property it
suffices to prove

lim
n→∞

P

[
max

1≤k≤n/ log n

|S(k)|√
k

≤ (y +D (log n)) /A (log n)

]

× P

[
max

n−(n/ log n)≤k≤n−1

|S(n)− S(k)|√
n− k

≤ (y +D (log n)) /A (log n)

]
= exp {−2 exp {−y}} .
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By Theorem 2.1.1

P

[
A (log n)

1
σ

max
1≤k≤n/ log n

|S(k)|√
k

−D∗ (log n) ≤ y + log 2
]

→ exp {− exp {−y}} (n→∞)

and

P

[
A (log n)

1
σ

max
n−(n/ log n)≤k≤n−1

|S(n)− S(k)|√
n− k

−D∗ (log n) ≤ y + log 2
]

→ exp {− exp {−y}} (n→∞).

Noticing (2.1.2) and (2.1.28), the assertion flows from the observation

D (log n) = D∗ (log n)− log 2.

�

2.2. Limit Theorems via Coupling Methods

For further applications in the next chapter we are interested in the
growth rate of the running maximum of weighted tied-down partial sum
processes. We immediately derive from Theorem 2.1.5 the following limit
theorem.

(log log n)−1/2 max
1≤k≤n−1

(
n

k(n− k)

)1/2 ∣∣∣∣S(k)− k

n
S(n)

∣∣∣∣ P→ σ, (2.2.1)

as n → ∞, where σ2 = limn→∞ n−1VarS(n). This convergence-in-
probability result holds under a polynomial decay of the strong mixing co-
efficient, which is Assumption K. Therefore it is natural to ask, whether it
holds also under less restrictive mixing assumptions. In particular, we are
interested to establish the limit theorem under Assumption B, i.e. assum-
ing only a logarithmic decay of the strong mixing coefficient. The proof of
the result will be based on so-called “coupling methods”.

Let S and T be uncountable, complete and separable metric spaces.
Given a probability space (Ω,A, P ), let X be a measurable mapping from
Ω to S. Then, in the sense of Lindvall [73], the quadruple (Ω,A, P,X)
is called random element in the space (S,S), where S denotes the
Borel σ-field. The phrase “coupling” of two probability measures refers to
constructions where both measures are represented as two random variables
on a joint probability space. With a view towards invariance principles,
Pollard [88, Chapter 10] provides a discussion of several different coupling
results, including “Tusnády’s Lemma” and the “Strassen-Dudley Theorem”
among others.
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Definition (see Lindvall (1992)). A coupling of two random elements
(Ω,A, P,X) and (Ω′,A′, P ′, X ′) in the space (S,S) and (T, T ), re-
spectively, is a random element (Ω̂, Â, P̂ , (X̂, X̂ ′)) in (S×T,S ⊗T ) such
that

X̂
D= X and X̂ ′ D= X ′.

A probability space (Ω,A, P ) can be extended with a uniformly
distributed random variable U . That is a new product space (Ω,A, P )⊗(
[0, 1],B, λ1

)
, where λ1 denotes the Lebesgue measure on the unit interval

and the random variable U is the projection on the second coordinate.
Then every random element X (say) on the original space is stochastically
independent of U with respect to P ⊗ λ1. We will keep the notation
(Ω,A, P ) for the extended probability space.

The following construction was already used in the proof of Lemma 2.1.3
to establish a “backward” approximation result.

Lemma (see Billingsley (1999, Section 21, Lemma 1)). Consider a ran-
dom element (Ω,A, P,X) in (S,S). Suppose ν is a probability measure
on S × T with marginal measure µ on S, i.e. µ(·) = ν(· × T ), and
L(X) = µ. Then the probability space (Ω,A, P ) can be extended with
a uniformly distributed random variable U and there is a random element
(Ω,A, P, Y ), such that Y is a function of (X,U) and L(X,Y ) = ν.

Since ν determines the marginal measures, this construction can be
viewed as coupling. A similar representation appeared already in Skorokhod
[97]. The lemma stated by Billingsley can also be viewed as a part of Berbee’s
extension lemma.

Lemma (see Berbee (1980, Extension Lemma 4.2.4)). Consider a ran-
dom element (Ω,A, P,X) in (S,S). Suppose ν is a probability measure
on S × T with marginal measure µ on S, i.e. µ(·) = ν(· × T ), and
L(X) = µ. Then the probability space (Ω,A, P ) can be extended with
a uniformly distributed random variable U and there is a random element
(Ω,A, P, Y ), such that Y is a function of (X,U) and L(X,Y ) = ν. The
construction of Y does not affect the dependence structure, in the sense
that

PZ|X,Y = PZ|X

for any random element (Ω,A, P, Z) on the original space with values in
a polish space.

Using his extension lemma and coupling results due to Schwarz [93],
Berbee derived the following result.
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Lemma (see Berbee (1979, Corollary 4.2.5)). Consider a random ele-
ment (Ω,A, P, (X,Y )) in (S × T,S ⊗ T ). Then the probability space
(Ω,A, P ) can be extended with a uniformly distributed random variable U

and there is a random element (Ω,A, P, Y ′), such that Y ′ is a function of
(X,Y, U) and is independent of X and with distribution L(Y ′) = L(Y ),
and such that

P
[
Y 6= Y ′] = β (σ(X), σ(Y ))

where β denotes the measure of dependence with respect to β-mixing.

We refer to Lindvall [73] for an account of coupling methods appearing
in the different branches of probability theory. Related references and re-
cent contributions concerning coupling methods with a view towards mixing
conditions are stated in Merlevède and Peligrad [81]. Among the coupling
results concerning strong mixing conditions, Berbee’s lemma is the appro-
priate tool for our efforts. As a consequence we can not abstain from an
additional β-mixing condition in the next theorem. But no rate of conver-
gence is required for β(n). Let us restate Assumption B, i.e. the set of
assumptions of Bradley [12, Theorem 4].

Assumption B. Let {Xk, k ≥ 1} be a strictly stationary sequence of
centered real-valued random variables with

EX2
1 <∞ and VarS(n) →∞ (n→∞). (2.2.2)

Suppose δ > 0 and λ > 1 + 3/δ are real numbers such that

sup
n∈N

(VarS(n))−(2+δ)/2E |S(n)|2+δ <∞ (2.2.3)

and

α(n) = o
(

(log n)−λ
)

(n→∞). (2.2.4)

Let us state the result on the growth rate of the running maximum of
weighted tied-down partial sum processes.

Theorem 2.2.1. Suppose that Assumption B holds. Suppose further
that {Xk, k ≥ 1} is β-mixing, i.e. β(n) ↓ 0 (n → ∞). Then the
sequence {Xk, k ≥ 1} can be redefined without changing its distribution on
an extended version of the initial probability space together with a sequence
of Brownian bridge process {Bn(t), 0 ≤ t ≤ 1}, such that∣∣∣∣∣ max

1≤k≤n

(
n

k(n− k)

)1/2 ∣∣∣∣S(k)− k

n
S(n)

∣∣∣∣− σ sup
1
n
≤t≤1− 1

n

|Bn (t)|
(t(1− t))1/2

∣∣∣∣∣
= oP

(
(log log n)1/2

)
(n→∞). (2.2.5)
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and

(log log n)−1/2 max
1≤k≤n−1

(
n

k(n− k)

)1/2 ∣∣∣∣S(k)− k

n
S(n)

∣∣∣∣ P→ σ, (2.2.6)

where σ2 = limn→∞ n−1VarS(n).

In the proof we will use the following notation. As defined in (2.1.13)
and (2.1.14), we let

Gn(k) = (n/(k(n− k)))1/2 (S(k)− (k/n)S(n)).

In a first step of the proof we need to replace the partial sum process S(k)
with a modified version S̃n(k) which allows for a coupling argument. Let
{bk, k ≥ 1} be a sequence with 1 ≤ bn ≤ n/2. For each k ∈ {1, . . . , n}
let

S̃n(k) = S (b(n/2)− bnc ∧ k) + S(k)− S ((b(n/2) + bnc − 1) ∧ k) . (2.2.7)

Note that k ∈ {1, . . . , b(n/2)− bnc} implies S̃n(k) = S(k).
Secondly, using strong approximations from Bradley [12], the newly de-

fined partial sum process will be approximated with suitably discrete time
processes {B̃n (k) , 1 ≤ k ≤ n}, defined as follows: For each n, we will
construct two Wiener processes {W1n(t), t ≥ 0} and {W2n(t), t ≥ 0}.
Then for each k ∈ {1, . . . , bn/2c} we let

B̃n (k) = W1n(k)− (k/n) (W1n (bn/2c) +W2n (bn/2c)) (2.2.8)

and for each k ∈ {bn/2c+ 1, . . . , n}

B̃n (k)

= −W2n(n− k) + (1− (k/n)) (W1n (bn/2c) +W2n (bn/2c)) . (2.2.9)

In a third step, similar to the Brownian bridge approximations established
by Csörgő and Horváth [24], we will switch from B̃n(k) to the continuous
versions Bn(t), where for each n ≥ 2 and 1/n ≤ t ≤ 1/2

Bn (t) = W1n(nt)− t (W1n (n/2) +W2n (n/2)) (2.2.10)

and for 1/2 ≤ t ≤ 1− (1/n)

Bn (t) = −W2n(n− nt) + (1− t) (W1n (n/2) +W2n (n/2)) . (2.2.11)

Finally, in the proof of Theorem 2.2.1 we will show that the coupling argu-
ment applied on (2.2.7) carries over through (2.2.8) -(2.2.11) and yields the
supremum of a standardized Brownian bridge process. The proof is based
on a series of lemmas.
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Lemma 2.2.1. Suppose that Assumption B holds. Let {bk, k ≥ 1} be a
sequence for which 1 ≤ bn ≤ n

2 , bn ↑ ∞ and bn
n ↓ 0 (n→∞). Then

n1/2

∣∣∣∣∣ max
1≤k≤bn

2
c
|Gn(k)| − max

1≤k≤bn
2
−bnc

|Gn(k)|

∣∣∣∣∣
= OP

(
(bn log log bn)1/2

)
(n→∞) (2.2.12)

and

n1/2

∣∣∣∣∣ max
bn

2
c+1≤k≤n−1

|Gn(k)| − max
bn

2
+bnc≤k≤n−1

|Gn(k)|

∣∣∣∣∣
= OP

(
(bn log log bn)1/2

)
(n→∞). (2.2.13)

Proof. Let γn be the integer-valued random variable defined by

γn = min
{
` ∈ {1, . . . , n− 1}

∣∣∣ |Gn (`)| = max
1≤k≤n−1

|Gn(k)|
}
. (2.2.14)

Put

Jn =
{
bn

2
− bnc+ 1, . . . , bn

2
+ bnc − 1

}
and (2.2.15)

In = {1, . . . , n− 1} \ Jn. (2.2.16)

Then the equality
|Gn (γn)| −max

k∈In

|Gn(k)| = 0.

is true on the event {γn ∈ I(n)}. Now we put

k0 = bn
2
− bnc (2.2.17)

and observe that the inequality∣∣∣∣|Gn (γn)| −max
k∈In

|Gn(k)|
∣∣∣∣ = |Gn (γn)| −max

k∈In

|Gn(k)|

≤ |Gn (γn)| − |Gn (k0)|

is true on the event {γn ∈ Jn}. To prove assertions (2.2.12) and (2.2.13),
it suffices to prove that

n1/2 max
k∈Jn

∣∣∣∣∣
(

n

k(n− k)

)1/2(
S (k0) + (S(k)− S (k0))− k

n
S(n)

)

−
(

n

k0 (n− k0)

)1/2(
S (k0)− k0

n
S(n)

) ∣∣∣∣∣ (2.2.18)

is of order OP ((bn log log bn)1/2) (n→∞).
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Consider the function f(t) = (t (1− t))−1/2 (0 < t < 1). Since
f ′(1/2) = 0, the mean value theorem implies

nmax
k∈Jn

∣∣∣∣∣
(
k

n

(
1− k

n

))−1/2

−
(
k0

n

(
1− k0

n

))−1/2
∣∣∣∣∣ = o (bn) . (2.2.19)

Similar arguments yield

nmax
k∈Jn

∣∣∣∣∣kn
(
k

n

(
1− k

n

))−1/2

− k0

n

(
k0

n

(
1− k0

n

))−1/2
∣∣∣∣∣ = O (bn) .

(2.2.20)

By stationarity

max
k∈Jn

|S(k)− S (k0)| D= max
1≤k≤2bn−1

|S(k)| .

Therefore, via

max
1≤k≤2bn−1

|S(k)|

≤ (2bn)1/2 max
1≤k≤2bn−1

|S(k)− σW (k)|√
k

+ (2bn)1/2 max
1≤k≤2bn−1

|σW (k)|√
k

,

we arrive at

max
k∈Jn

|S(k)− S (k0)| = OP

(
(bn log log bn)1/2

)
,

where Darling and Erdős [27, Theorem 1] was applied, i.e.

(2 log log bn)−1/2 max
1≤k≤2bn−1

|W (k)|√
k

P→ 1.

Moreover, from

lim
n→∞

max
k∈Jn

(
k

n

(
1− k

n

))−1/2

= 2,

we arrive at

n1/2 max
k∈Jn

(
n

k(n− k)

)1/2

|S(k)− S (k0)| = OP

(
(bn log log bn)1/2

)
.

(2.2.21)

Towards this end, from (2.2.19), (2.2.20) and (2.2.21), noticing S (k0) /
√
n =

OP (1) (n→∞), expression (2.2.18) is of order OP ((bn log log bn)1/2), as
n→∞. This implies (2.2.12) and (2.2.13). �
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Lemma 2.2.2. Suppose that Assumption B holds. Let {bk, k ≥ 1} be a
sequence for which 1 ≤ bn ≤ n

2 , bn ↑ ∞ and bn
n ↓ 0 (n→∞). Then

max
1≤k≤bn

2
−bnc

∣∣∣∣∣|Gn(k)| −
(

n

k(n− k)

)1/2 ∣∣∣∣S(k)− k

n
S̃(n)

∣∣∣∣
∣∣∣∣∣

= OP

(
b1/2
n

)
(n→∞) (2.2.22)

and

max
bn

2
+bnc≤k≤n−1

∣∣∣∣∣|Gn(k)| −
(

n

k(n− k)

)1/2 ∣∣∣∣S̃(k)− k

n
S̃(n)

∣∣∣∣
∣∣∣∣∣

= OP

(
b1/2
n

)
(n→∞). (2.2.23)

Proof. Put

Jn =
{
bn

2
− bnc+ 1, . . . , bn

2
+ bnc − 1

}
and (2.2.24)

In = {1, . . . , n− 1} \ Jn. (2.2.25)

Then

lim
n→∞

max
k∈In

k

n

(
n

k(n− k)

)1/2

= 1. (2.2.26)

By (2.2.7) and stationarity

S(n)− S̃n(n) D= S
(
bn

2
+ bnc − bn

2
− bnc − 1

)
. (2.2.27)

Since
(
bn

2 + bnc − bn
2 − bnc − 1

)
∼ 2bn (n → ∞), via using Bradley [12,

Theorem 4], i.e. (2.1.30), we have

S
(
bn

2
+ bnc − bn

2
− bnc − 1

)
= σW (2bn) + oP

(
b1/2
n

)
. (2.2.28)

By (2.2.7), for each k ∈
{

1, . . . , bn
2 − bnc

}
, we have S̃n(k) = S(k). There-

fore (2.2.22) flows from (2.2.26)- (2.2.28). Moreover, by (2.2.27), (2.2.28)
and (2.2.7) we also have

max
bn

2
+bnc≤k≤n−1

∣∣∣S(k)− S̃(k)
∣∣∣ = OP

(
b1/2
n

)
. (2.2.29)

Observe

lim
n→∞

max
bn

2
+bnc≤k≤n−1

(
n

k(n− k)

)1/2

= 1. (2.2.30)

Assertion (2.2.23) follows from (2.2.29) and (2.2.30). �
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Lemma 2.2.3. Suppose that Assumption B holds. Let {bk, k ≥ 1} be a
sequence for which 1 ≤ bn ≤ n

2 , bn ↑ ∞ and bn
n ↓ 0 (n→∞). Then, for

each n ∈ N, we can find two Wiener processes
{
W1n(t), 0 ≤ t ≤ bn

2 − bnc
}

and
{
W2n(t), 0 ≤ t ≤ bn

2 − bnc
}

on a possibly different probability space
which supports the following construction

n−1/2 max
1≤k≤bn

2
−bnc

|S(k)− σW1n(k)|(
k
n

(
1− k

n

))1/2
= oP

(
(log log n)1/2

)
(2.2.31)

and

n−1/2 max
1≤k≤bn

2
−bnc

∣∣∣S̃n(n)− σW1n

(
bn

2 − bnc
)
− σW2n

(
bn

2 − bnc
) ∣∣∣(

n
k

(
1− k

n

))1/2

= oP

(
(log log n)1/2

)
(n→∞), (2.2.32)

where σ2 = limn→∞ n−1VarS(n).

Proof. Observe

lim
n→∞

max
1≤k≤bn

2
−bnc

(
1− k

n

)−1/2

=
√

2.

Therefore, from (2.1.31) we have

max
1≤k≤bn

2
−bnc

(
n

n− k

)1/2 |S(k)− σW1n(k)|√
k

= oP

(
(log log n)1/2

)
. (2.2.33)

This implies (2.2.31). Similarly, from

lim
n→∞

max
1≤k≤bn

2
−bnc

(
k

n− k

)1/2

= 1

we have

max
1≤k≤bn

2
−bnc

(
k

n− k

)1/2

∣∣∣S̃n

(
bn

2 − bnc
)
− σW1n

(
bn

2 − bnc
)∣∣∣

√
n

= oP

(
(log log n)1/2

)
(n→∞). (2.2.34)

Moreover, from (2.1.35)

max
bn

2
+bnc≤k≤n−1

|S(n)− S(k)− σW2n (n− k)|√
n− k

= oP

(
(log log n)1/2

)
.

Whence

max
1≤k≤bn

2
−bnc

(
k

n− k

)1/2

∣∣∣S̃n(n)− S
(
bn

2 − bnc
)
− σW2n

(
n− bn

2 + bnc+ 1
)∣∣∣

√
n

= oP

(
(log log n)1/2

)
(n→∞). (2.2.35)
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Choose a sequence 1 ≤ `n ≤ bn
2 −bnc such that n

`n
↑ ∞ (n→∞). Then,

via Csörgő and Révész [26, display (1.2.3)], we have

n−1/2
∣∣∣W (

n− bn
2

+ bnc+ 1
)
−W

(
bn

2
− bnc+ 1

)∣∣∣ = OP

(
`n/

√
n
)
.

(2.2.36)

If `n = o
(√

n (n log log n)−1/2
)

(n → ∞), assertion (2.2.32) flows from
(2.2.34) - (2.2.36). �

Lemma 2.2.4. Suppose that Assumption B holds. Let {bk, k ≥ 1} be a
sequence for which 1 ≤ bn ≤ n

2 , bn ↑ ∞ and bn
n ↓ 0 (n→∞). Then, for

each n ∈ N, we can find two Wiener processes
{
W1n(t), 0 ≤ t ≤ bn

2 − bnc
}

and
{
W2n(t), 0 ≤ t ≤ bn

2 − bnc
}

on a possibly different probability space
which supports the following construction

n−1/2 max
bn

2
+bnc≤k≤n−1

|S(n)− S(k)− σW2n(n− k)|(
k
n

(
1− k

n

))1/2

= oP

(
(log log n)1/2

)
(n→∞) (2.2.37)

and

n−1/2 max
bn

2
+bnc≤k≤n−1

∣∣∣S̃n(n)−W1n

(
bn

2 − bnc
)
−W2n

(
bn

2 − bnc+ 1
)∣∣∣(

k
n

)1/2 (
1− k

n

)−1/2

= oP

(
(log log n)1/2

)
(n→∞), (2.2.38)

where σ2 = limn→∞ n−1VarS(n).

Remark. The expressions (2.2.37) and (2.2.38) are motivated by the
decomposition

S̃n(k)− k

n
S̃n(n) = − (S(n)− S(k)) +

(
1− k

n

)
S̃n(n),

where bn
2 + bnc ≤ k ≤ n− 1.

Proof. Since

lim
n→∞

max
bn

2
+bnc≤k≤n−1

(
k

n

)−1/2

=
√

2,

we have, via using (2.1.35),

max
bn

2
+bnc≤k≤n−1

(n
k

)1/2 |S(n)− S(k)− σW2n(n− k)|√
n− k

= oP

(
(log log n)1/2

)
.
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This implies (2.2.37). Similarly, we have

max
bn

2
+bnc≤k≤n−1

(
n− k

k

)1/2
∣∣S (bn

2 − bnc
)
− σW1n

(
bn

2 − bnc
)∣∣

√
n

= oP (1) ,

where

lim
n→∞

max
bn

2
+bnc≤k≤n−1

(
k

n− k

)−1/2

= 1

was applied. Moreover, similarly to the proof of (2.2.32),

max
bn

2
+bnc≤k<n

(
n− k

k

)1/2

∣∣∣S̃(n)− S
(
bn

2 − bnc
)
− σW2n

(
bn

2 − bnc
)∣∣∣

√
n

is of order oP (1) (n→∞), whence (2.2.38). �

Lemma 2.2.5. Suppose that Assumption B holds. Let {bk, k ≥ 1} be
a sequence for which 1 ≤ bn ≤ n

2 , bn ↑ ∞ and bn
n ↓ 0 (n → ∞). Let

{W (t), t ≥ 0} be a standard Wiener process. Then

max
1≤k≤bn

2
−bnc

∣∣W (
bn

2 − bnc
)
−W

(
bn

2 c
)∣∣(

k
n

)−1/2 (
1− k

n

)1/2
= O

(
(bn log (n/bn))1/2

)
(2.2.39)

and

max
bn

2
+bnc≤k<n

∣∣W (
bn

2 − bnc
)
−W

(
bn

2 c
)∣∣(

k
n

)1/2 (
1− k

n

)−1/2
= O

(
(bn log (n/bn))1/2

)
(2.2.40)

almost surely as n→∞.

Proof. We observe that

lim
n→∞

max
1≤k≤bn

2
−bnc

k

n− k
= lim

n→∞
max

bn
2
+bnc≤k≤n−1

n− k

k
= 1.

By Csörgő and Révész [26, display (1.2.4)]

sup
1≤t≤n−bn

sup
0≤s≤bn

|W (t)−W (t+ s)| = O
(

(bn log (n/bn))1/2
)

almost surely as n→∞. Both assertions follow immediately. �

Lemma 2.2.6. Suppose that Assumption B holds. Let the process
{B̃n (k) , 1 ≤ k ≤ n} be as defined in (2.2.8) and (2.2.9). Let {bk, k ≥ 1}
be a sequence for which 1 ≤ bn ≤ n

2 , bn ↑ ∞ and bn
n ↓ 0 (n → ∞).

Then ∣∣∣∣∣∣ max
1≤k≤bn

2
−bnc

∣∣∣B̃n (k)
∣∣∣(

k
n

(
1− k

n

))1/2
− max

1≤k≤bn
2
c

∣∣∣B̃n (k)
∣∣∣(

k
n

(
1− k

n

))1/2

∣∣∣∣∣∣
= OP

(
(bn log log(n/bn))1/2

)
(n→∞). (2.2.41)
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Proof. Let γn ∈ {1, . . . , bn/2c} be the integer-valued random variable
defined by

γn = min

{
` :

∣∣∣B̃n (`)
∣∣∣(

`
n

(
1− `

n

))1/2
= max

1≤k≤bn
2
−bnc

∣∣∣B̃n (k)
∣∣∣(

k
n

(
1− k

n

))1/2

}
.

Then, on the event
{
γn ∈

{
1, . . . , bn

2 − bnc
}}

the equality(
n

γn(n− γn)

)1/2 ∣∣∣B̃n (γn)
∣∣∣− max

1≤k≤bn
2
−bnc

(
n

k(n− k)

)1/2 ∣∣∣B̃n (k)
∣∣∣ = 0

is true. Now we put

k0 = bn
2
− bnc

and observe that the inequality

0 ≤
(

n

γn(n− γn)

)1/2 ∣∣∣B̃n (γn)
∣∣∣− max

1≤k≤bn
2
−bnc

(
n

k(n− k)

)1/2 ∣∣∣B̃n (k)
∣∣∣

≤
(

n

γn(n− γn)

)1/2 ∣∣∣B̃n (`)
∣∣∣− ( n

k0(n− k0)

)1/2 ∣∣∣B̃n (k0)
∣∣∣

is true on the event
{
γn ∈

{
bn

2 − bnc+ 1, . . . , bn
2 c
}}

. In order to establish
(2.2.41) it suffices to prove

max
bn

2
−bnc+1≤k≤bn

2
c

∣∣∣∣∣∣∣
∣∣∣B̃n (k)

∣∣∣(
k
n

(
1− k

n

))1/2
−

∣∣∣B̃n (k0)
∣∣∣(

k0
n

(
1− k0

n

))1/2

∣∣∣∣∣∣∣
= OP

(
(bn log log(n/bn))1/2

)
. (2.2.42)

Analogously to (2.2.19), we have

|W (k0)| max
bn

2
−bnc+1≤k≤bn

2
c

∣∣∣∣∣
(

n

k(n− k)

)1/2

−
(

n

k0 (n− k0)

)1/2
∣∣∣∣∣

= OP

(
bn
n

)
, (2.2.43)

where W (k0) /
√
n = OP (1) (n→∞) was applied. Similarly to (2.2.20),

we have∣∣∣W (
bn

2
c
)∣∣∣ max

bn
2
−bnc+1≤k≤bn

2
c

∣∣∣∣∣kn
(

n

k(n− k)

)1/2

− k0

n

(
n

k0 (n− k0)

)1/2
∣∣∣∣∣

= OP

(
bn
n

)
. (2.2.44)
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By scaling properties of the Wiener process

n−1/2 max
bn

2
−bnc+1≤k≤bn

2
c
|W (k)−W (k0)| D= max

1≤k≤bn
2
c−bn

2
−bnc

∣∣∣∣W (
k

n

)∣∣∣∣ .
Moreover, by the law of the iterated logarithm at zero, cf. e.g. Csörgő and
Révész [26, display (1.3.10)], we have

n1/2 sup
1
n
≤t≤ bn

n

|W (t)| = OP

(
(bn log log (n/bn))1/2

)
.

Thus, via

lim
n→∞

max
bn

2
−bnc+1≤k≤bn

2
c

(
k

n

(
1− k

n

))−1/2

= 2,

we arrive at

n1/2 max
bn

2
−bnc+1≤k≤bn

2
c

(
n

k(n− k)

)1/2

|W (k)−W (k0)|

= OP

(
(bn log log (n/bn))1/2

)
. (2.2.45)

Assertion (2.2.42) follows from (2.2.43) - (2.2.45). �

Lemma 2.2.7. Suppose that Assumption B holds. Let the process
{B̃n (k) , 1 ≤ k ≤ n} be as defined in (2.2.8) and (2.2.9). Let {bk, k ≥ 1}
be a sequence for which 1 ≤ bn ≤ n

2 , bn ↑ ∞ and bn
n ↓ 0 (n → ∞).

Then ∣∣∣∣∣∣ max
bn

2
+bnc≤k≤n−1

∣∣∣B̃n (k)
∣∣∣(

k
n

(
1− k

n

))1/2
− max
bn

2
c+1≤k≤n−1

∣∣∣B̃n (k)
∣∣∣(

k
n

(
1− k

n

))1/2

∣∣∣∣∣∣
= OP

(
(bn log log(n/bn))1/2

)
(n→∞). (2.2.46)

Proof. Let γn ∈
{
bn

2 c+ 1, . . . , n− 1
}

be the integer-valued random
variable defined by

γn = min

` :

∣∣∣B̃n (`)
∣∣∣(

`
n

(
1− `

n

))1/2
= max

bn
2
c+1≤k≤n−1

∣∣∣B̃n (k)
∣∣∣(

k
n

(
1− k

n

))1/2

 .

Then, on the event
{
γn ∈

{
bn

2 + bnc ≤ k ≤ n− 1
}}

the equality(
n

γn(n− γn)

)1/2 ∣∣∣B̃n (γn)
∣∣∣

− max
bn

2
+bnc≤k≤n−1

(
n

k(n− k)

)1/2 ∣∣∣B̃n (k)
∣∣∣ = 0

is true. Now we put
k0 = bn

2
+ bnc
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and observe that the inequality

0 ≤
(

n

γn(n− γn)

)1/2 ∣∣∣B̃n (γn)
∣∣∣

− max
bn

2
+bnc≤k≤n−1

(
n

k(n− k)

)1/2 ∣∣∣B̃n (k)
∣∣∣

≤
(

n

γn(n− γn)

)1/2 ∣∣∣B̃n (γn)
∣∣∣− ( n

k0(n− k0)

)1/2 ∣∣∣B̃n (k0)
∣∣∣ .

is true on the event
{
γn ∈

{
bn

2 c+ 1, . . . , bn
2 + bnc − 1

}}
. In order to es-

tablish (2.2.46) it suffices to prove

max
bn

2
c+1≤k≤bn

2
+bnc−1

∣∣∣∣∣∣∣
∣∣∣B̃n (k)

∣∣∣(
k
n

(
1− k

n

))1/2
−

∣∣∣B̃n (k0)
∣∣∣(

k0
n

(
1− k0

n

))1/2

∣∣∣∣∣∣∣
= OP

(
(bn log log (n/bn))1/2

)
. (2.2.47)

Analogously to (2.2.19), we have

|W (n− k0)| max
bn

2
c+1≤k≤bn

2
+bnc−1

∣∣∣∣∣
(

n

k(n− k)

)1/2

−
(

n

k0 (n− k0)

)1/2
∣∣∣∣∣

= OP

(
b

n

)
, (2.2.48)

where W (n− k0) /
√
n = OP (1) (n → ∞) was applied. Similarly to

(2.2.20), we have∣∣∣W (
bn

2
c
)∣∣∣ max

bn
2
c+1≤k≤bn

2
+bnc−1

∣∣∣∣∣
(

1− k

n

)(
n

k(n− k)

)1/2

−
(

1− k0

n

)(
n

k0 (n− k0)

)1/2
∣∣∣∣∣ = OP

(
b

n

)
. (2.2.49)

By scaling properties of the Wiener process

n−1/2 max
bn

2
c+1≤k≤bn

2
+bnc−1

|W (n− k0)−W (n− k)|

D= max
1≤k≤bn

2
+bnc−bn

2
c−1

∣∣∣∣W (
k

n

)∣∣∣∣ .
Moreover, by the law of the iterated logarithm at zero, cf. e.g. Csörgő and
Révész [26, display (1.3.10)], we have

n1/2 sup
1
n
≤t≤ b

n

|W (t)| = OP

(
(bn log log (n/bn))1/2

)
.
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Thus, via

lim
n→∞

max
bn

2
c+1≤k≤bn

2
+bnc−1

(
k

n

(
1− k

n

))−1/2

= 2,

we arrive at

n1/2 max
bn

2
c+1≤k≤bn

2
+bnc−1

(
n

k(n− k)

)1/2 ∣∣∣W (k)−W
(
bn

2
+ bnc

)∣∣∣
= OP

(
(bn log log (n/bn))1/2

)
(2.2.50)

Therefore (2.2.47) follows from (2.2.48) - (2.2.50). �

Lemma 2.2.8. Suppose that Assumption B holds. Let the process
{B̃n (k) , 1 ≤ k ≤ n} be as defined in (2.2.8) - (2.2.9) and let the process
{Bn (t) , 1

n ≤ t ≤ n−1
n } be as defined in (2.2.10) - (2.2.11). Then∣∣∣∣∣ max

1≤k≤bn
2
c

(
n

k(n− k)

)1/2 ∣∣∣B̃n (k)
∣∣∣− sup

1
n
≤t≤ 1

2

(
n

nt(n− nt)

)1/2

|Bn (t)|

∣∣∣∣∣
= oP

(
(log log n)1/2

)
(n→∞). (2.2.51)

Proof. Observe

max
1≤k≤bn

2
c
|W1n(k)| = sup

1
n
≤t≤ 1

2

|W1n (bntc)|

and

sup
1
n
≤t≤ 1

2

(
bntc
n

(
1− bntc

n

))−1/2

= n (n− 1)−1/2 .

Moreover,

sup
1
n
≤t≤ 1

2

|W1n (bntc)−W1n (nt)| = sup
1
n
≤t≤ 1

2

|W1n (bntc)−W1n (bntc+ rn(t))| .

where 0 ≤ rn(t) < 1. Thus

sup
1
n
≤t≤ 1

2

|W1n (bntc)−W1n (nt)| ≤ sup
1≤t≤n−`n

sup
0≤s≤`n

|W1n (t+ s)−W1n (t)| .

Let {`n, n ≥ 1} be a sequence for which `n ↑ ∞. Then via Hanson and
Russo [56, Display (3.12b)] we arrive at

sup
1
n
≤t≤ 1

2

(
n

bntc(n− bntc)

)1/2

|W1n (bntc)−W1n (nt)| = OP (`n) (2.2.52)

as n→∞. Given some Wiener process, consider the random variable

∆n(t) =

∣∣∣∣∣
(

n

bntc(n− bntc)

)1/2

W (nt)−
(

n

nt(n− nt)

)1/2

W (nt)

∣∣∣∣∣ .
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There exists some event A satisfying P (A) = 1, so that for every ω ∈ A
we can find 1

n ≤ tn(ω) ≤ 1
2 , such that∣∣∣∣∣∆n (tn) (ω)− sup

1
n
≤t≤ 1

2

∆n(t)(ω)

∣∣∣∣∣ < ε,

where tn(ω) depends on ε > 0. Therefore, in order to establish that
sup1/n≤t≤1/2 ∆n(t) = o((log log n)1/2) holds almost surely as n → ∞, it
suffices to prove the following claim.

CLAIM. For each sequence {tn, n ≥ 1}, satisfying 1
n ≤ tn ≤ 1

2 ,

∆n (tn) = o
(

(log log n)1/2
)

a.s. (2.2.53)

holds as n→∞.

proof of claim. Consider first the case that {tn, n ≥ 1} is bounded
away from zero, i.e. lim infn→∞ tn > ε0 for some 0 < ε0 < 1/2. Then

∆n (tn) ≤ sup
ε0≤t≤ 1

2

|W (nt)|√
n

∣∣∣∣∣
(
bntc
n

(
1− bntc

n

))−1/2

− (t(1− t))−1/2

∣∣∣∣∣ .
Since bntc

n = t− rn(t)
n , where 0 ≤ rn(t) < 1, we have, as n→∞,

sup
ε0≤t≤ 1

2

∣∣∣∣∣
(
bntc
n

(
1− bntc

n

))−1/2

− (t(1− t))−1/2

∣∣∣∣∣
≤ sup

ε0≤t≤ 1
2

∣∣∣∣∣
(
t− rn(t)

n

(
1− t− rn(t)

n

))−1/2

− (t(1− t))−1/2

∣∣∣∣∣ = o(1).

The functional law of the iterated logarithm, cf. e.g. Csörgő and Révész
[26, Display (1.3.2)], implies ∆n (tn) = o((log log n)1/2) almost surely as
n→∞.

Secondly, since {tn, n ≥ 1} is bounded by hypothesis, it remains to
consider lim infn→∞ tn = 0. In light of the first case, we can assume
limn→∞ tn = 0 and tn = sn

n .
Let us consider the case 1 ≤ sn ≤ s <∞. Then

∆n (tn) =
|W (sn)|√

n

∣∣∣∣∣
(
bsnc
n

(
1− bsnc

n

))−1/2

−
(sn

n

(
1− sn

n

))−1/2
∣∣∣∣∣

=
|W (sn)|√

n

∣∣∣g (sn

n
− rn
n

)
− g

(sn

n

)∣∣∣ ,
where g(t) = (t(1 − t))−1/2 and 0 ≤ rn < 1. Since g′(t) = −1

2(t(1 −
t))−3/2(1− 2t), an application of the mean value theorem implies

∆n (tn) ≤ |W (sn)| (sn − rn)−3/2 = O(1) a.s. (n→∞).
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Finally, suppose tn = sn
n and lim supn→∞ sn = ∞. In light of the

preceding case we can assume sn ↑ ∞ and sn
n ↓ 0 (n → ∞). Similarly,

we have

∆n (tn) ≤ |W (sn)|
n1/2

∣∣g′ ( sn
n − rn

n

)∣∣
n

≤ |W (sn)|
(sn log log sn)1/2

(log log sn)1/2

sn
.

This completes the proof of the claim (2.2.53). �

Towards this end, similarly to (2.2.52)

sup
1
n
≤t≤ 1

2

(
bntc
n

)(
n

bntc(n− bntc)

)1/2

|W1n (bntc)−W1n (nt)|

= OP

(
`n√
n

)
(n→∞). (2.2.54)

Consider

sup
1
n
≤t≤ 1

2

∣∣∣∣∣
(
bntc
n

)1/2(
1− bntc

n

)−1/2

−
(

t

1− t

)1/2
∣∣∣∣∣

= sup
1
n
≤t≤ 1

2

∣∣∣∣h(t− rn(t)
n

)
− h(t)

∣∣∣∣ ,
where h(t) = (t/(1− t))1/2 and 0 ≤ rn < 1. Since h′(t) = (1− t)−2, an
application of the mean value theorem yields

n−1/2 sup
1
n
≤t≤ 1

2

∣∣∣W1n

(n
2

)∣∣∣ ∣∣∣∣∣
(
bntc
n

)1/2(
1− bntc

n

)−1/2

−
(

t

1− t

)1/2
∣∣∣∣∣

≤ 4n−3/2
∣∣∣W1n

(n
2

)∣∣∣ . (2.2.55)

The assertions follows from (2.2.52) - (2.2.55). �

Lemma 2.2.9. Suppose that Assumption B holds. Let the process
{B̃n (k) , 1 ≤ k ≤ n} be as defined in (2.2.8) - (2.2.9) and let the process
{Bn (t) , 1

n ≤ t ≤ n−1
n } be as defined in (2.2.10) - (2.2.11). Then∣∣∣∣∣ max

bn
2
c≤k≤n−1

(
n

k(n− k)

)1/2 ∣∣∣B̃n (k)
∣∣∣− sup

1
2
≤t≤1− 1

n

(
n

nt(n− nt)

)1/2

|Bn (t)|

∣∣∣∣∣
= oP

(
(log log n)1/2

)
(n→∞). (2.2.56)
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Proof. Let {`k, k ≥ 1} be a sequence for which `n ↑ ∞ and `n =
o((log log n)1/2) (n→∞). Then, similarly to (2.2.52), we have

sup
1
2
≤t≤1− 1

n

(
n

bntc(n− bntc)

)1/2

|W2n (n− bntc)−W2n (n− nt)| = OP (`n)

(2.2.57)

as n→∞. Given some Wiener process, consider the random variable

∆n(t) =

∣∣∣∣∣
(

n

bntc(n− bntc)

)1/2

W (n− nt)−
(

n

nt(n− nt)

)1/2

W (n− nt)

∣∣∣∣∣
There exists some event A satisfying P (A) = 1, so that for every ω ∈ A
we can find 1

2 ≤ tn(ω) ≤ 1− 1
n , such that∣∣∣∣∣∆n (tn) (ω)− sup

1
2
≤t≤1− 1

n

∆n(t)(ω)

∣∣∣∣∣ < ε,

where tn(ω) depends on ε > 0. Therefore, in order to establish that
sup1/2≤t≤(n−1)/n ∆n(t) = o((log log n)1/2) holds almost surely as n → ∞,
it suffices to prove the following claim.

CLAIM. For each sequence {tn, n ≥ 1}, satisfying 1
2 ≤ tn ≤ 1− 1

n ,

∆n (tn) = o
(

(log log n)1/2
)

a.s. (2.2.58)

holds as n→∞.

proof of claim. Consider first the case that {tn, n ≥ 1} is bounded
away from one, i.e. 1

2 ≤ lim supn→∞ tn ≤ 1 − ε0, for some 0 < ε0 < 1/2.
Then

∆n (tn)

≤ sup
1
2
≤t≤1−ε0

|W (n− nt)|√
n

∣∣∣∣∣
(
bntc
n

(
1− bntc

n

))−1/2

− (t (1− t))−1/2

∣∣∣∣∣ .
Since bntc

n = t− rn(t)
n , where 0 ≤ rn(t) < 1, we have, as n→∞,

sup
1
2
≤t≤1−ε0

∣∣∣∣∣
(
bntc
n

(
1− bntc

n

))−1/2

− (t(1− t))−1/2

∣∣∣∣∣
≤ sup

1
2
≤t≤1−ε0

∣∣∣∣∣
(
t− rn(t)

n

(
1− t− rn(t)

n

))−1/2

− (t(1− t))−1/2

∣∣∣∣∣ = o(1).

The functional law of the iterated logarithm, cf. e.g. Csörgő and Révész
[26, Display (1.3.2)], implies ∆n (tn) = o((log log n)1/2) almost surely as
n→∞.
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Secondly, it remains to consider lim supn→∞ tn = 1. In light of the first
case, we can assume limn→∞ tn = 1 and tn = 1− sn

n .
Let us consider the case 1 ≤ sn ≤ s <∞. Then

∆n (tn)

=
|W (sn)|√

n

∣∣∣∣∣
(
bn− snc

n

(
1− bn− snc

n

))−1/2

−
((

1− sn

n

) sn

n

)−1/2
∣∣∣∣∣

=
|W (sn)|√

n

∣∣∣g (sn

n
− rn
n

)
− g

(sn

n

)∣∣∣ ,
where g(t) = (t(1 − t))−1/2 and 0 ≤ rn < 1. Since g′(t) = −1

2(t(1 −
t))−3/2(1− 2t), an application of the mean value theorem implies

∆n (tn) ≤ |W (sn)| (sn − rn)−3/2 = O(1) a.s. (n→∞).

Finally, suppose tn = 1− sn
n and lim supn→∞ sn = ∞. In light of the

preceding case we can assume sn ↑ ∞ and sn
n ↓ 0 (n → ∞). Similarly,

we have

∆n (tn) ≤ |W (sn)|
n1/2

∣∣g′ ( sn
n − rn

n

)∣∣
n

≤ |W (sn)|
(sn log log sn)1/2

(log log sn)1/2

sn
.

This completes the proof of the claim (2.2.58). �

Similar to (2.2.54) and (2.2.55) we have

n−1/2 sup
1
2
≤t≤1− 1

n

∣∣∣∣∣∣∣
W2n

(
bn

2 c
) (

1− bntc
n

)
(
bntc
n

(
1− bntc

n

))1/2
−W2n

(n
2

)(1− t

t

)1/2

∣∣∣∣∣∣∣ = OP (`n)

(2.2.59)

as n→∞. The assertion follows from (2.2.57) - (2.2.59). �

proof of theorem 2.2.1. For each n ∈ N, let

Jn =
{
bn

2
− bnc+ 1, . . . , bn

2
+ bnc − 1

}
and (2.2.60)

In = {1, . . . , n− 1} \ Jn. (2.2.61)

Consider the random vectors

V1n =
(
X1, . . . , Xbn

2
−bnc

)
and V2n =

(
Xbn

2
+bnc, . . . , Xn

)
. (2.2.62)
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We extend the initial probability space with three uniformly distributed
random variables U∗, Ui (i = 1, 2), with two standard normal ran-
dom variables Ni (i = 1, 2) and with two Brownian bridge processes
{Bi(t), 0 ≤ t ≤ 1} (i = 1, 2).

CLAIM 1. We can construct two Wiener processes{
W1n(t), 0 ≤ t ≤ n

2

}
and

{
W2n(t), 0 ≤ t ≤ n

2

}
(2.2.63)

on the extended probability space, such that Win is a measurable function
of (Ui, Vin, Ni, Bi) (i = 1, 2) and∣∣∣∣∣max

k∈In

|Gn(k)| − σ sup
1
n
≤t≤1− 1

n

(
n

nt(n− nt)

)1/2

|Bn (t)|

∣∣∣∣∣
= oP

(
(log log n)1/2

)
(n→∞). (2.2.64)

proof of claim 1. In light of Lemma 2.2.3 - Lemma 2.2.5, an appli-
cation of Billingsley [11, Lemma 21.1] yields two Wiener processes{

W1n(t), 0 ≤ t ≤ bn
2
− bnc

}
and

{
W2n(t), 0 ≤ t ≤ bn

2
− bnc

}
on the extended probability space, such that Win is a measurable function
of (Ui, Vin) (i = 1, 2) and∣∣∣∣∣max

k∈In

(
n

k(n− k)

)1/2 ∣∣∣∣S̃n(k)− k

n
S̃n(n)

∣∣∣∣− σmax
k∈In

(
n

k(n− k)

)1/2 ∣∣∣B̃n(k)
∣∣∣∣∣∣∣∣

= oP

(
(log log n)1/2

)
(n→∞). (2.2.65)

For each s ∈ [bn
2 − bnc, n

2 ] let

Win(s) =Win

(
bn

2
− bnc

)
+

s− bn
2 − bnc√

n
2 − bn

2 − bnc
Ni

+
√
n

2
− bn

2
− bncBi

(
s− bn

2 − bnc
n
2 − bn

2 − bnc

)
(i = 1, 2). (2.2.66)

By this definition, cf. e.g. Csörgő and Révész [26, Proposition 1.4.1], we
constitute two Wiener processes{

W1n(t), 0 ≤ t ≤ n

2

}
and

{
W2n(t), 0 ≤ t ≤ n

2

}
on the initial probability space such that Win is a measurable function of
{Ui, Vin, Ni, Bi} (i = 1, 2). Therefore∣∣∣∣∣max

k∈In

|Gn(k)| − σ max
1≤k≤n−1

(
n

k(n− k)

)1/2 ∣∣∣B̃n(k)
∣∣∣∣∣∣∣∣

= oP

(
(log log n)1/2

)
(n→∞), (2.2.67)
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where Lemma 2.2.2, Lemma 2.2.6 and Lemma 2.2.7 were applied. The claim
(2.2.64) follows via Lemma 2.2.8 and Lemma 2.2.9. �

CLAIM 2. We can construct a random vector V ∗
2n, such that

V ∗
2n is independent of V1n and V ∗

2n
D= V2n. (2.2.68)

Moreover, we can construct a Wiener process
{
W ∗

2n(t), 0 ≤ t ≤ n
2

}
, such

that W ∗
2n is a measurable function of (U2, V

∗
2n, N2, B2) and∣∣∣∣∣max

k∈In

|Gn(k)| − σ sup
1
n
≤t≤1− 1

n

(
n

nt(n− nt)

)1/2

|B∗
n (t)|

∣∣∣∣∣
= oP

(
(log log n)1/2

)
(n→∞), (2.2.69)

where B∗
n is defined as function of W1n and W ∗

2n as in (2.2.10) and
(2.2.11).

proof of claim 2. By Berbee [4, Corollary 4.2.5] there exists a ran-
dom vector V ∗

2n, such that V ∗
2n is a measurable function of (V1n, V2n, U

∗)
and (2.2.68) is satisfied. Moreover

P [V2n 6= V ∗
2n] = β (σ (V1n) , σ (V2n)) . (2.2.70)

Towards this end, we introduce the coupled version of S̃n(n). Let S̃∗n(k) =
S(k), k ∈

{
1, . . . , bn

2 − bnc
}

, and for each k ∈
{
bn

2 + bnc, . . . , n
}

we put

S̃∗n(k) = S
(
bn

2
− bnc

)
+

k−bn
2
+bnc+1∑

`=1

π`V
∗(2)
n , (2.2.71)

where π` denotes the `-th projection. Hence, as in the proof of Lemma
(2.2.2),

max
k∈In

∣∣∣∣∣|Gn(k)| −
(

n

k(n− k)

)1/2 ∣∣∣∣S̃∗n(k)− k

n
S̃∗n(n)

∣∣∣∣
∣∣∣∣∣ = OP

(
b1/2
n

)
(2.2.72)

is true on the event
{
V

(2)
n = V

∗(2)
n

}
. Since β (σ (V1n) , σ (V2n)) ≤ 2bn, the

β-mixing condition applies and we have

lim
n→∞

P [V2n 6= V ∗
2n] = 0. (2.2.73)

Whence

max
k∈In

∣∣∣∣∣|Gn(k)| −
(

n

k(n− k)

)1/2 ∣∣∣∣S̃∗n(k)− k

n
S̃∗n(n)

∣∣∣∣
∣∣∣∣∣ = OP

(
b1/2
n

)
. (2.2.74)

The claim (2.2.69) follows along the lines in the proof of CLAIM 1 with V2n

replaced by V ∗
2n. �
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Let bn = log log log n, then both claims together with Lemma 2.2.1
yield ∣∣∣∣∣ max

1≤k≤n
|Gn(k)| − σ sup

1
n
≤t≤1− 1

n

(
n

nt(n− nt)

)1/2

|B∗
n (t)|

∣∣∣∣∣
= oP

(
(log log n)1/2

)
(n→∞). (2.2.75)

Since W1n is a measurable function of {U1, V1n, N1, B1} and W ∗
2n is a

measurable function of {U2, V
∗
2n, N2, B2}, both Wiener processes are inde-

pendent. Consequently, the process
{
n−1/2B∗

n(t), 0 ≤ t ≤ 1
}

is a Brownian
bridge. Similarly as in Csörgő and Horváth [24, Theorem A.4.2], using the
representation as strictly stationary Ornstein-Uhlenbeck process, cf. e.g.
(2.1.72), the assertion follows from (2.1.6). �





CHAPTER 3

Limit Theorems in Change-Point Analysis

In the first section we will establish the limit distribution for a max-type
test statistic via proving a Darling-Erdős type limit theorem. In particular,
we will present a new approximation for weighted tied-down sums of mixing
random variables by a sequence of standardized Brownian bridge processes.
In the second section we will discuss asymptotical results for possible rejec-
tion regions.

3.1. Quasi-Likelihood Approach

Suppose that X1, . . . , Xn are independent and identically distributed
random variables with common distribution Pθ, where θ ∈ Θ. Further-
more, we will assume that each Pθ is absolutely continuous with respect
to a common σ-finite measure λ, so that pθ denotes the density of Pθ

with respect to λ. The likelihood function is defined by

Ln(θ) =
n∏

i=1

p (xi, θ) (3.1.1)

and is the joint probability density of the observations x1, . . . , xn as a
function of θ, cf. Lehmann and Romano [69, p. 503].

Within this general setup, someone wishes to test for a parameter change,
i.e. the null hypothesis

H0 : θ1 = · · · = θn ∈ Θ0 ⊂ Θ (3.1.2)

versus the alternative

H1n(k) : θ1 = · · · = θk 6= θk+1 = · · · = θn, (3.1.3)

where θ1, . . . , θk ∈ Θ0 and θk+1, . . . , θn ∈ Θ1 ⊂ Θ \Θ0 are unknown. If k

is known, one can consider the likelihood ratio statistic −2 log Λk, where

Λk = sup
θ∈Θ0

Ln (θ)
/

sup
(θ,τ)∈Θ0×Θ1

k∏
i=1

p (xi, θ)
n∏

i=k+1

p (xi, τ) . (3.1.4)

53
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If θ̂k and τ̂k are maximum likelihood estimators for θ and τ , then

Λk = Ln

(
θ̂n

)/ k∏
i=1

p
(
xi, θ̂k

) n∏
i=k+1

p (xi, τ̂k) , (3.1.5)

cf. e.g. Lehmann and Romano [69, p. 513]. Nevertheless, in the so-called at
most one change-point (AMOC) model the change-point k is usually as-
sumed to be unknown. Therefore it is natural to use the maximally selected
likelihood ratio and reject H0, if

max
1≤k≤n

(−2 log Λk) (3.1.6)

is large. Csörgő and Horváth [24, Chapter 1] established weighted approxi-
mations for max1≤k≤n (−2 log Λk) under rather general regularity assump-
tions.

Let us consider the AMOC model for a possible change in the mean µ

of real-valued normal observations. If the variance σ2 is assumed to be
known, then

max
1≤k<n

(−2 log Λk) = max
1≤k<n

1
σ2

(
kX̂k + (n− k)X̌k − nX̂n

)
, (3.1.7)

where X̂k and X̌k are the maximum likelihood estimators for the mean
based on {X1, . . . , Xk} and {Xk+1, . . . , Xn}, respectively. Therefore

max
1≤k<n

(−2 log Λk) = max
1≤k<n

n

σ2k(n− k)

(
S(k)− k

n
S(n)

)2

, (3.1.8)

where S(k) =
∑k

i=1Xi.
Davis et. al. [31] derived the limit distribution of (3.1.8) via proving a

Darling-Erdős type limit theorem, i.e.

A (log n) max
1≤k<n

(−2 log Λk)1/2 −D∗ (log n) D→ E ∨ E′, (3.1.9)

where E′ and E are independent and identically distributed random
variables with Gumbel type extreme value distribution, see (2.1.3), and
A(x), D∗(x) are defined in (2.1.1) and (2.1.2), respectively. Moreover, if
the variance is unknown and considered as nuisance parameter, then Csörgő
and Horváth [24, p. 31] proved that the maximally selected likelihood ratio
is large if and only if

max
1≤k<n

1
σ̂k

(
n

k(n− k)

)1/2 ∣∣∣∣S(k)− k

n
S(n)

∣∣∣∣ (3.1.10)

is large, where

σ̂2
k = n−1

(
k∑

i=1

(
Xi − X̂k

)2
+

n∑
i=k+1

(
Xi − X̌k

)2)
. (3.1.11)
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Horvath [57] considered changes in mean and variance, that is, in the
parameter vector (µ, σ2) of normal observations. From an asymptotic view-
point the maximally selected likelihood ratio is then similar to (3.1.8), see
[57, display (3.27)]. As a consequence of his invariance-principle-based ap-
proach, Horvath [57] pointed out that the assumption of normal observations
can be dropped. In particular, he applied multivariate strong approximation
results due to Einmahl [42] and established a Darling-Erdős type limit the-
orem for the maximum of the norm of a d-dimensional Ornstein-Uhlenbeck
process.

Motivated by the parametric AMOC model of Worsley [108] and with
a view towards a non-parametric approach, Gombay and Horváth [51] con-
sidered the statistic

max
1≤k<n

kg
(
X̂k

)
+ (n− k)g

(
X̌k

)
− ng

(
X̂n

)
, (3.1.12)

where the function g satisfies a mild smoothness condition. It turns out
that (3.1.8) is a special case of (3.1.12). For related results we refer to
Csörgő and Horváth [24, Theorem 1.4.1].

Recently, Ling [74] contributes a general approach for testing parameter
stability in time series yt, generated by the model

yt = f (θ, Yt−1, εt) (t = 0,±1,±2, . . . ), (3.1.13)

where f is a known function, θ is a d-dimensional parameter vector,
{εt, t = 0,±1,±2, . . . } is a sequence of independent and identically distrib-
uted errors and Yt is the infinite-dimensional vector (. . . , yt−1, yt). In
a first step, Ling [74] considered a known change-point k ∈ [1, n) and
introduced so-called objective function Ln and L1n to estimate the time-
series parameters θ0 and θ1 from the subsamples {y1, . . . , yk} and
{yk+1, . . . , yn}, respectively, i.e.

Ln (k, θ0) =
k∑

t=1

l (θ0, Yt) and L1n (k, θ1) =
n∑

t=k+1

l (θ1, Yt) , (3.1.14)

where l (θ, Yt) is almost surely three times differentiable with respect
to θ. Assuming minor regularity assumptions, these estimating func-
tions allow for standard estimation methods, see e.g. [28, Chapter 16 &
17], and quasi-likelihood estimates for the unknown time-series parameters
θ0 and θ1. Let Dt (θ) = ∂lt (θ) /∂θ, where lt (θ) = l (θ, Yt). Fur-
thermore let Pt (θ) = −∂2lt (θ) /∂θ∂θ′. Denote Σ = E [Pt (θ0)] and
Ω = E [Dt (θ0)D′

t (θ0)]. Suppose θ̂n(k) and θ̂1n(k) are the maximizers of
the two objective functions on Θ. It seems reasonable to choose a Wald
type test statistic based on θ̂n(k)− θ̂1n(k) for testing the no change null hy-
pothesis H0 against the change-point alternative H1n(k), i.e. (3.1.3). We



56 3. LIMIT THEOREMS IN CHANGE-POINT ANALYSIS

refer to [28, Definition 21.1] for a definition of the Wald test. Under the un-
known change-point assumption, Ling [74] proposed a maximally selected
Wald type test statistic, i.e. max1≤k<nWn(k) for testing H0 against
∪k∈[1,n)H1n(k). In order to establish the limit distribution of the max-
type test statistic, it was shown that max1≤k<nWn(k) is asymptotically
equivalent, in a certain sense, to the following expression (see [74, display
(6.9)]):

max
log n≤k≤n−log n

∣∣∣∣k(n− k)
n

[
θ̂n(k)− θ̂1n(k)

]′
ΣΩ−1Σ

[
θ̂n(k)− θ̂1n(k)

]∣∣∣∣ .
Moreover, let

ξn(k) =
(
k(n− k)

n

)1/2
[

1
k

k∑
t=1

Dt (θ0)− 1
n− k

n∑
t=k+1

Dt (θ0)

]
. (3.1.15)

Since ∂L1n

(
k, θ̂1n(k)

)
/∂θ = 0, Ling derived via using Taylor expansions

max
log n≤k≤n−log n

∣∣Wn(k)− ξ′n(k)Ω−1ξ′n(k)
∣∣ = oP (1). (3.1.16)

In light of (3.1.15), the expression maxlog n≤k≤n−log n ξ
′
n(k)Ω−1ξn(k) can

be viewed as a vector-valued version of (3.1.8). This suggests that the
maximally selected Wald type statistics obeys an extreme value asymptotic.
Assuming that the quasi score functions Dt (θ0) form a vector-valued mar-
tingale difference sequence, Ling proved a Darling-Erdős type limit theorem
via using multidimensional strong invariance principles due to Eberlein [37],
i.e., for some δ > 0,

k∑
t=1

Dt (θ0)−
k∑

t=1

G1t = O
(
k1/2−δ

)
(3.1.17)

holds almost surely as k →∞, where {G1t, t = 1, 2, . . . } are independent
identically d-dimensional normal vectors with covariance matrix Ω. More-
over, approximations for the second partial sum in (3.1.15) were derived
with new “backward” invariance principles, i.e.

−1∑
t=−k

Dt (θ0)−
k∑

t=1

G2t = O
(
k1/2−δ

)
a.s. (k →∞). (3.1.18)

In order to establish (3.1.18), it was additionally assumed that Dt (θ0)
obeys the so-called near-epoch dependence (NED) condition, in the sense of
McLeish [79]. We refer to Chapter 5 for related results involving the NED
condition.

Davis et. al. [32] studied the AMOC model for parameter changes in
autoregressive time series models, satisfying the α-mixing condition, with a
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quasi likelihood approach. Based on results in [57], they proved a Darling-
Erdős limit theorem for a vector-valued version of the maximally selected
(quasi) likelihood ratio statistic (3.1.10). In particular, they employed strong
approximation results, similar to (3.1.17), for strongly mixing random vec-
tors due to Kuelbs and Philipp [65, Theorem 4]. Since in the strongly mixing
case the time reversed process is still strongly mixing, the backward version
as in (3.1.18) follows immediately from the “forward” invariance principle.
The crucial point is that Kuelbs and Philipp [65, Theorem 4] assumed a
polynomial decay of the strong mixing coefficients.

In conclusion we see that maximally selected (quasi) likelihood ratio
tests and max-type Wald tests for the AMOC model result into expressions
as in (3.1.10). This is our motivation to study further asymptotic properties
of statistics based on weighted tied-down partial sums of dependent random
variables. In the same context, Csörgő [22, p. 535] pointed out: “Studying
the asymptotic behaviour of these statistics is clearly of interest[...]”.

With the aim to meet the requirements of an interesting study, we will
drop the main assumption in Davis et. al. [32], that is, the polynomial de-
cay of the strong mixing coefficients. We point out that our Theorem 2.1.5
is closely related to the main result of Davis et. al. [32]. In both results
the invariance-principle-based constructions rely heavily on the polynomial
decay of the strong mixing coefficients because it guarantees a sharp ap-
proximation rate in the invariance principle due to Kuelbs and Philipp [65,
Theorem 4].

Under the logarithmic decay of the strong mixing coefficients we will es-
tablish a different invariance-principle-based construction below. Moreover,
we will show that the weighted tied-down partial sum process can be ap-
proximated by a sequence of standardized Brownian bridge processes which
in turn implies a Darling-Erdős type limit theorem for the test statistic. We
point out that in the independent case these kind of approximations are
originally due to Csörgő and Horváth [24].

The construction here employs also coupling arguments as in the proof
of our Theorem 2.2.1. This is somewhat different from the constructions
in [24], established under independence assumptions. As a consequence we
can not abstain from an additional β-mixing condition in the next theo-
rem. However, no rate of convergence is required for β(n). Let us restate
Assumption B, i.e. the set of assumptions of Bradley [12, Theorem 4].

Assumption B. Let {Xk, k ≥ 1} be a strictly stationary sequence of
centered real-valued random variables with

EX2
1 <∞ and VarS(n) →∞ (n→∞).



58 3. LIMIT THEOREMS IN CHANGE-POINT ANALYSIS

Suppose δ > 0 and λ > 1 + 3/δ are real numbers such that

sup
n∈N

(VarS(n))−(2+δ)/2E |S(n)|2+δ <∞

and

α(n) = o
(

(log n)−λ
)

(n→∞).

Let us state the weighted approximation result.

Theorem 3.1.1. Suppose that Assumption B holds. Suppose further
that {Xk, k ≥ 1} is β-mixing, i.e. β(n) ↓ 0 (n → ∞). Let an =
bexp (log n)εc (n = 1, 2, . . . ) for some 0 < ε < 1. Then the sequence
{Xk, k ≥ 1} can be redefined, without changing its distribution, on an ex-
tended version of the initial probability space together with a sequence of
Brownian bridge process {Bn(t), 0 ≤ t ≤ 1}, such that∣∣∣∣∣ max

an≤k≤n−an

(
n

k(n− k)

)1/2 ∣∣∣∣S(k)− k

n
S(n)

∣∣∣∣− σ sup
an
n
≤t≤1−an

n

|Bn (t)|
(t(1− t))1/2

∣∣∣∣∣
= oP

(
(log log n)−1/2

)
(n→∞), (3.1.19)

where σ2 = limn→∞ n−1VarS(n).

In light of the “tail behavior” (Theorem 2.1.3) and the “overall behavior”
(Theorem 2.2.1) of the running maximum, we are able to prove via Theorem
3.1.1 the following result.

Theorem 3.1.2. Suppose that Assumption B holds. Suppose further
that {Xk, k ≥ 1} is β-mixing, i.e. β(n) ↓ 0 (n → ∞). Then the
sequence {Xk, k ≥ 1} can be redefined, without changing its distribution, on
an extended version of the initial probability space together with a sequence
of Brownian bridge process {Bn(t), 0 ≤ t ≤ 1}, such that∣∣∣∣∣ max

1≤k≤n−1

(
n

k(n− k)

)1/2 ∣∣∣∣S(k)− k

n
S(n)

∣∣∣∣− σ sup
1
n
≤t≤1− 1

n

|Bn (t)|
(t(1− t))1/2

∣∣∣∣∣
= oP

(
(log log n)−1/2

)
(n→∞), (3.1.20)

where σ2 = limn→∞ n−1VarS(n).

As a consequence we are able to prove the extreme value asymptotic.

Theorem 3.1.3. Suppose that Assumption B holds. Suppose further that
{Xk, k ≥ 1} is β-mixing, i.e. β(n) ↓ 0 (n→∞). Let

A(x) = (2 log n)1/2 and

D(x) = 2 log x+
1
2

log log x− 1
2

log π.
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Then we have, as n→∞,

A (log n)
1
σ

max
1≤k≤n−1

(
n

k(n− k)

)1/2 ∣∣∣∣S(k)− k

n
S(n)

∣∣∣∣−D (log n) D→ E ∨ E′,

(3.1.21)

where E and E′ are independent identically Gumbel distributed random
variables and σ2 = limn→∞ n−1VarS(n).

The proof of Theorem 3.1.1 derives the rate oP ((log log n)−1/2) mainly
along the pattern in the proof of Theorem 2.2.1 and its preparatory series of
lemmas. See the remarks following Theorem 2.2.1 for abbreviations and no-
tations. We will employ a similar coupling method. The proofs of Theorem
3.1.2 and Theorem 3.1.3 will be given at the very end of this section.

Lemma 3.1.1. Suppose that Assumption B holds. Let {bk, k ≥ 1} be a
sequence for which 1 ≤ bn ≤ n

2 , bn ↑ ∞ and bn
n ↓ 0 (n→∞). Then

n1/2

∣∣∣∣∣ max
an≤k≤bn

2
c
|Gn(k)| − max

an≤k≤bn
2
−bnc

|Gn(k)|

∣∣∣∣∣
= OP

(
(bn log log bn)1/2

)
(n→∞) (3.1.22)

and

n1/2

∣∣∣∣∣ max
bn

2
c+1≤k≤n−an

|Gn(k)| − max
bn

2
+bnc≤k≤n−an

|Gn(k)|

∣∣∣∣∣
= OP

(
(bn log log bn)1/2

)
(n→∞). (3.1.23)

Proof. Follow the pattern in the proof of Lemma 2.2.1. �

Lemma 3.1.2. Suppose that Assumption B holds. Let {bk, k ≥ 1} be a
sequence for which 1 ≤ bn ≤ n

2 , bn ↑ ∞ and bn
n ↓ 0 (n→∞). Then

max
an≤k≤bn

2
−bnc

∣∣∣∣∣|Gn(k)| −
(

n

k(n− k)

)1/2 ∣∣∣∣S(k)− k

n
S̃(n)

∣∣∣∣
∣∣∣∣∣

= OP

((
bn
an

)1/2
)

(n→∞) (3.1.24)

and

max
bn

2
+bnc≤k≤n−an

∣∣∣∣∣|Gn(k)| −
(

n

k(n− k)

)1/2 ∣∣∣∣S̃(k)− k

n
S̃(n)

∣∣∣∣
∣∣∣∣∣

= OP

((
bn
an

)1/2
)

(n→∞). (3.1.25)
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Proof. Put

Jn =
{
bn

2
− bnc+ 1, . . . , bn

2
+ bnc − 1

}
and let

Kn = {an, . . . , n− an} \ Jn.

Since

max
k∈Kn

k

n

(
n

k(n− k)

)1/2

= O
(
a−1/2

n

)
(n→∞),

both assertions follow along the pattern in the proof of Lemma 2.2.2. �

Lemma 3.1.3. Suppose that Assumption B holds. Let {bk, k ≥ 1} be a
sequence for which 1 ≤ bn ≤ n

2 , bn ↑ ∞ and bn
n ↓ 0 (n→∞). Then, for

each n ∈ N, we can find two Wiener processes
{
W1n(t), 0 ≤ t ≤ bn

2 − bnc
}

and
{
W2n(t), 0 ≤ t ≤ bn

2 − bnc
}

on a possibly different probability space
which supports the following construction

n−1/2 max
an≤k≤bn

2
−bnc

|S(k)− σW1n(k)|(
k
n

(
1− k

n

))1/2
= oP

(
(log log n)−1/2

)
(3.1.26)

and

n−1/2 max
an≤k≤bn

2
−bnc

∣∣∣S̃(n)− σW1n

(
bn

2 − bnc
)
− σW2n

(
bn

2 − bnc
) ∣∣∣(

n
k

(
1− k

n

))1/2

= oP

(
(log log n)−1/2

)
(n→∞), (3.1.27)

where σ2 = limn→∞ n−1VarS(n).

Proof. Both assertions follow along the lines of the proof of Lemma
2.2.3 together with the approximation results Lemma 2.1.1 and Lemma
2.1.3. �

Lemma 3.1.4. Suppose that Assumption B holds. Let {bk, k ≥ 1} be a
sequence for which 1 ≤ bn ≤ n

2 , bn ↑ ∞ and bn
n ↓ 0 (n→∞). Then, for

each n ∈ N, we can find two Wiener processes
{
W1n(t), 0 ≤ t ≤ bn

2 − bnc
}

and
{
W2n(t), 0 ≤ t ≤ bn

2 − bnc
}

on a possibly different probability space
which supports the following construction

n−1/2 max
bn

2
+bnc≤k≤n−an

|S(n)− S(k)− σW2n(n− k)|(
k
n

(
1− k

n

))1/2

= oP

(
(log log n)−1/2

)
(n→∞) (3.1.28)
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and

n−1/2 max
bn

2
+bnc≤k≤n−an

∣∣∣S̃(n)−W1n

(
bn

2 − bnc
)
−W2n

(
bn

2 − bnc+ 1
)∣∣∣(

k
n

)1/2 (
1− k

n

)−1/2

= oP

(
(log log n)−1/2

)
(n→∞), (3.1.29)

where σ2 = limn→∞ n−1VarS(n).

Proof. Both assertions follow along the lines of the proof of Lemma
2.2.4 together with the approximation results Lemma 2.1.1 and Lemma
2.1.3. �

Lemma 3.1.5. Suppose that Assumption B holds. Let {bk, k ≥ 1} be
a sequence for which 1 ≤ bn ≤ n

2 , bn ↑ ∞ and bn
n ↓ 0 (n → ∞). Let

{W (t), t ≥ 0} be a standard Wiener process. Then

max
an≤k≤bn

2
−bnc

∣∣W (
bn

2 − bnc
)
−W

(
bn

2 c
)∣∣(

k
n

)−1/2 (
1− k

n

)1/2
= O

(
(bn log (n/bn))1/2

)
(3.1.30)

and

max
bn

2
+bnc≤k≤n−an

∣∣W (
bn

2 − bnc
)
−W

(
bn

2 c
)∣∣(

k
n

)1/2 (
1− k

n

)−1/2
= O

(
(bn log (n/bn))1/2

)
(3.1.31)

almost surely as n→∞.

Proof. The proof follows the lines in the proof of Lemma 2.2.5. �

Lemma 3.1.6. Suppose that Assumption B holds and let the process
{B̃n (k) , 1 ≤ k ≤ n} be as defined in (2.2.8) and (2.2.9). Let {bk, k ≥ 1}
be a sequence for which 1 ≤ bn ≤ n

2 , bn ↑ ∞ and bn
n ↓ 0 (n → ∞).

Then ∣∣∣∣∣∣ max
an≤k≤bn

2
−bnc

∣∣∣B̃n (k)
∣∣∣(

k
n

(
1− k

n

))1/2
− max

an≤k≤bn
2
c

∣∣∣B̃n (k)
∣∣∣(

k
n

(
1− k

n

))1/2

∣∣∣∣∣∣
= OP

(
(bn log log(n/bn))1/2

)
(n→∞). (3.1.32)

Proof. The proof follows the lines in the proof of Lemma 2.2.6. �

Lemma 3.1.7. Suppose that Assumption B holds and let the process
{B̃n (k) , 1 ≤ k ≤ n} be as defined in (2.2.8) and (2.2.9). Let {bk, k ≥ 1}
be a sequence for which 1 ≤ bn ≤ n

2 , bn ↑ ∞ and bn
n ↓ 0 (n → ∞).
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Then ∣∣∣∣∣∣ max
bn

2
+bnc≤k≤n−an

∣∣∣B̃n (k)
∣∣∣(

k
n

(
1− k

n

))1/2
− max
bn

2
c+1≤k≤n−an

∣∣∣B̃n (k)
∣∣∣(

k
n

(
1− k

n

))1/2

∣∣∣∣∣∣
= OP

(
(bn log log(n/bn))1/2

)
(n→∞). (3.1.33)

Proof. The proof follows the lines in the proof of Lemma 2.2.7. �

Lemma 3.1.8. Suppose that Assumption B holds and let the processes
{B̃n (k) , 1 ≤ k ≤ n} and {Bn (t) , 1

n ≤ t ≤ n−1
n } as in (2.2.8) - (2.2.9)

and (2.2.10) - (2.2.11), respectively. Then∣∣∣∣∣ max
an≤k≤bn

2
c

(
n

k(n− k)

)1/2 ∣∣∣B̃n (k)
∣∣∣− sup

an
n
≤t≤ 1

2

(
n

nt(n− nt)

)1/2

|Bn (t)|

∣∣∣∣∣
= oP

(
(log log n)1/2

)
(n→∞). (3.1.34)

Proof. Observe

max
an≤k≤bn

2
c
|W1n(k)| = sup

an
n
≤t≤ 1

2

|W1n (bntc)|

and

sup
an
n
≤t≤ 1

2

(
bntc
n

(
1− bntc

n

))−1/2

= O
(
a−1/2

n

)
(n→∞).

Moreover,

sup
an
n
≤t≤ 1

2

|W1n (bntc)−W1n (nt)| = sup
an
n
≤t≤ 1

2

|W1n (bntc)−W1n (bntc+ rn(t))| .

where 0 ≤ rn(t) < 1. Thus

sup
an
n
≤t≤ 1

2

|W1n (bntc)−W1n (nt)| ≤ sup
1≤t≤n−`n

sup
0≤s≤`n

|W1n (t+ s)−W1n (t)| .

Let {`n, n ≥ 1} be a sequence for which `n ↑ ∞. Then via Hanson and
Russo [56, Display (3.12b)] we arrive at

sup
an
n
≤t≤ 1

2

(
n

bntc(n− bntc)

)1/2

|W1n (bntc)−W1n (nt)| = OP

(
`n
an

)
(3.1.35)

as n→∞. Given some Wiener process, consider the random variable

∆n(t) =

∣∣∣∣∣
(

n

bntc(n− bntc)

)1/2

W (nt)−
(

n

nt(n− nt)

)1/2

W (nt)

∣∣∣∣∣ .
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There exists some event A satisfying P (A) = 1, so that for every ω ∈ A
we can find an

n ≤ tn(ω) ≤ 1
2 , such that

(log log n)1/2

∣∣∣∣∣∆n (tn) (ω)− sup
an
n
≤t≤ 1

2

∆n(t)(ω)

∣∣∣∣∣ < ε,

where tn(ω) depends on ε > 0. Therefore, in order to establish that
supan/n≤t≤1/2 ∆n(t) = o((log log n)−1/2) holds almost surely as n→∞, it
suffices to prove the following claim.

CLAIM. For each sequence {tn, n ≥ 1}, satisfying an
n ≤ tn ≤ 1

2 ,

∆n (tn) = o
(

(log log n)−1/2
)

a.s. (3.1.36)

holds as n→∞.

proof of claim. Consider first the case that {tn, n ≥ 1} is bounded
away from zero, i.e. lim infn→∞ tn > ε0 for some 0 < ε0 < 1/2. Then

∆n (tn) ≤ sup
ε0≤t≤ 1

2

|W (nt)|√
n

∣∣∣∣∣
(
bntc
n

(
1− bntc

n

))−1/2

− (t(1− t))−1/2

∣∣∣∣∣ .
Since bntc

n = t− rn(t)
n , where 0 ≤ rn(t) < 1, we have, as n→∞,

sup
ε0≤t≤ 1

2

∣∣∣∣∣
(
bntc
n

(
1− bntc

n

))−1/2

− (t(1− t))−1/2

∣∣∣∣∣
≤ sup

ε0≤t≤ 1
2

∣∣∣∣∣
(
t− rn(t)

n

(
1− t− rn(t)

n

))−1/2

− (t(1− t))−1/2

∣∣∣∣∣
≤ sup

ε0≤t≤ 1
2

∣∣∣∣g(t− rn(t)
n

)
− g (t)

∣∣∣∣ ,
where g(t) = (t(1 − t))−1/2 and 0 ≤ rn < 1. Since g′(t) = −1

2(t(1 −
t))−3/2(1− 2t), an application of the mean value theorem implies

∆n (tn) ≤ sup
ε0≤t≤ 1

2

|W (nt)|√
n

sup
ε0≤t≤ 1

2

g′(t)
n

.

The functional law of the iterated logarithm, cf. e.g. Csörgő and Révész
[26, display (1.3.2)], implies ∆n (tn) = o((log log n)−1/2) almost surely as
n→∞.

Secondly, since {tn, n ≥ 1} is bounded by hypothesis, it remains to
consider lim infn→∞ tn = 0. In light of the first case, we can assume
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limn→∞ tn = 0 and tn = sn
n , where an ≤ sn ≤ n/2. Similarly, we have

∆n (tn) ≤ |W (sn)|
n1/2

∣∣g′ ( sn
n − rn

n

)∣∣
n

≤ |W (sn)|
(sn log log sn)1/2

(log log sn)1/2

sn

≤ |W (sn)|
(sn log log sn)1/2

(log log sn)1/2

an
.

This completes the proof of the claim (3.1.36). �

Towards this end, similarly as in (3.1.35)

sup
an
n
≤t≤ 1

2

(
bntc
n

)(
n

bntc(n− bntc)

)1/2

|W1n (bntc)−W1n (nt)|

= OP

(
`n√
n

)
(n→∞). (3.1.37)

Consider

sup
an
n
≤t≤ 1

2

∣∣∣∣∣
(
bntc
n

)1/2(
1− bntc

n

)−1/2

−
(

t

1− t

)1/2
∣∣∣∣∣

= sup
an
n
≤t≤ 1

2

∣∣∣∣h(t− rn(t)
n

)
− h(t)

∣∣∣∣ ,
where h(t) = (t/(1− t))1/2 and 0 ≤ rn < 1. Since h′(t) = (1− t)−2, an
application of the mean value theorem yields

n−1/2 sup
an
n
≤t≤ 1

2

∣∣∣W1n

(n
2

)∣∣∣ ∣∣∣∣∣
(
bntc
n

)1/2(
1− bntc

n

)−1/2

−
(

t

1− t

)1/2
∣∣∣∣∣

≤ 4n−3/2
∣∣∣W1n

(n
2

)∣∣∣ . (3.1.38)

The assertions follows from (3.1.35) - (3.1.38). �

Lemma 3.1.9. Suppose that Assumption B holds and let the processes
{B̃n (k) , 1 ≤ k ≤ n} and {Bn (t) , 1

n ≤ t ≤ n−1
n } as in (2.2.8) - (2.2.9)

and (2.2.10) - (2.2.11) respectively. Then∣∣∣∣∣ max
bn

2
c≤k≤n−an

(
n

k(n− k)

)1/2 ∣∣∣B̃n (k)
∣∣∣− sup

1
2
≤t≤1−an

n

(
n

nt(n− nt)

)1/2

|Bn (t)|

∣∣∣∣∣
= oP

(
(log log n)−1/2

)
(n→∞). (3.1.39)
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Proof. Let {`k, k ≥ 1} be a sequence for which `n ↑ ∞. Similarly
as in (3.1.35), we have

sup
1
2
≤t≤1−an

n

(
n

bntc(n− bntc)

)1/2

|W2n (n− bntc)−W2n (n− nt)|

= OP

(
`n√
an

)
(3.1.40)

as n→∞. Given some Wiener process, consider the random variable

∆n(t) =

∣∣∣∣∣
(

n

bntc(n− bntc)

)1/2

W (n− nt)−
(

n

nt(n− nt)

)1/2

W (n− nt)

∣∣∣∣∣
There exists some event A satisfying P (A) = 1, so that for every ω ∈ A
we can find 1

2 ≤ tn(ω) ≤ 1− 1
n , such that

(log log n)1/2

∣∣∣∣∣∆n (tn) (ω)− sup
1
2
≤t≤1−an

n

∆n(t)(ω)

∣∣∣∣∣ < ε,

where tn(ω) depends on ε > 0. Therefore, in order to establish that
sup1/2≤t≤(n−an)/n ∆n(t) = o((log log n)−1/2) holds almost surely as n→∞,
it suffices to prove the following claim.

CLAIM. For each sequence {tn, n ≥ 1}, satisfying 1
2 ≤ tn ≤ 1− an

n ,

∆n (tn) = o
(

(log log n)−1/2
)

a.s. (3.1.41)

holds as n→∞.

proof of claim. Consider first the case that {tn, n ≥ 1} is bounded
away from one, i.e. 1

2 ≤ lim supn→∞ tn ≤ 1 − ε0, for some 0 < ε0 < 1/2.
Then

∆n (tn) ≤ sup
1
2
≤t≤1−ε0

|W (n− nt)|√
n

∣∣∣∣∣
(
bntc
n

(
1− bntc

n

))−1/2

− (t (1− t))−1/2

∣∣∣∣∣
Since bntc

n = t− rn(t)
n , where 0 ≤ rn(t) < 1, we have, as n→∞,

sup
1
2
≤t≤1−ε0

∣∣∣∣∣
(
bntc
n

(
1− bntc

n

))−1/2

− (t(1− t))−1/2

∣∣∣∣∣
≤ sup

1
2
≤t≤1−ε0

∣∣∣∣∣
(
t− rn(t)

n

(
1− t− rn(t)

n

))−1/2

− (t(1− t))−1/2

∣∣∣∣∣
≤ sup

1
2
≤t≤1−ε0

∣∣∣∣g(t− rn(t)
n

)
− g (t)

∣∣∣∣ ,
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where g(t) = (t(1 − t))−1/2 and 0 ≤ rn < 1. Since g′(t) = −1
2(t(1 −

t))−3/2(1− 2t), an application of the mean value theorem implies

∆n (tn) ≤ sup
1
2
≤t≤1−ε0

|W (n− nt)|√
n

sup
1
2
≤t≤1−ε0

g′(t)
n

.

The functional law of the iterated logarithm, cf. e.g. Csörgő and Révész
[26, display (1.3.2)], implies ∆n (tn) = o((log log n)−1/2) almost surely as
n→∞.

It remains to consider lim supn→∞ tn = 1. In light of the first case, we
can assume limn→∞ tn = 1 and tn = 1− sn

n , where 1
2 ≤ 1− sn

n ≤ 1− an
n .

Similarly, we have

∆n (tn) ≤ |W (sn)|
n1/2

∣∣g′ ( sn
n − rn

n

)∣∣
n

≤ |W (sn)|
(sn log log sn)1/2

(log log sn)1/2

sn

≤ |W (sn)|
(sn log log sn)1/2

(log log sn)1/2

an
.

This completes the proof of the claim (3.1.41). �

Towards this end, similarly as in (3.1.40)

n−1/2 sup
1
2
≤t≤1−an

n

∣∣W2n

(
bn

2 c
)
−W2n

(
n
2

)∣∣(
bntc
n

)1/2 (
1− bntc

n

)−1/2

= OP

(
`n√
n

)
(n→∞). (3.1.42)

Observe

sup
1
2
≤t≤1−an

n

∣∣∣∣∣
(
bntc
n

)1/2(
1− bntc

n

)−1/2

−
(

1− t

t

)1/2
∣∣∣∣∣

= sup
1
2
≤t≤1−an

n

∣∣∣∣h(t− rn(t)
n

)
− h(t)

∣∣∣∣ ,
where h(t) = ((1 − t)/t))1/2 and 0 ≤ rn < 1. Since h′(t) = −t−2, an
application of the mean value theorem yields

n−1/2 sup
1
2
≤t≤1−an

n

∣∣∣W2n

(n
2

)∣∣∣ ∣∣∣∣∣
(
bntc
n

)1/2(
1− bntc

n

)−1/2

−
(

1− t

t

)1/2
∣∣∣∣∣

≤
∣∣W2n

(
n
2

)∣∣
n3/2

sup
1
2
≤t≤1−an

n

∣∣h′ (t)∣∣ . (3.1.43)

The assertions follows from (3.1.40) - (3.1.43). �
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proof of theorem 3.1.1. Let

Jn =
{
bn

2
− bnc+ 1, . . . , bn

2
+ bnc − 1

}
and (3.1.44)

Kn = {an, . . . , n− an} \ Jn. (3.1.45)

Consider the random vectors

V1n =
(
Xan , . . . , Xbn

2
−bnc

)
and V2n =

(
Xbn

2
+bnc, . . . , Xn−an

)
. (3.1.46)

We extend the initial probability space with three uniformly distributed
random variables U∗, Ui (i = 1, 2), with two standard normal ran-
dom variables Ni (i = 1, 2) and with two Brownian bridge processes
{Bi(t), 0 ≤ t ≤ 1} (i = 1, 2).

CLAIM 1. We can construct two Wiener processes{
W1n(t), 0 ≤ t ≤ n

2

}
and

{
W2n(t), 0 ≤ t ≤ n

2

}
(3.1.47)

on the extended probability space, such that Win is a measurable function
of (Ui, Vin, Ni, Bi) (i = 1, 2) and∣∣∣∣∣max

k∈Kn

|Gn(k)| − σ sup
an
n
≤t≤1−an

n

(
n

nt(n− nt)

)1/2

|Bn (t)|

∣∣∣∣∣
= oP

(
(log log n)−1/2

)
(n→∞). (3.1.48)

proof of claim 1. In light of Lemma 3.1.3 - Lemma 3.1.5, an appli-
cation of Billingsley [11, Lemma 21.1] yields two Wiener processes{

W1n(t), 0 ≤ t ≤ bn
2
− bnc

}
and

{
W2n(t), 0 ≤ t ≤ bn

2
− bnc

}
on the extended probability space, such that Win is a measurable function
of (Ui, Vin) (i = 1, 2) and∣∣∣∣∣max

k∈Kn

(
n

k(n− k)

)1/2 ∣∣∣∣S̃n(k)− k

n
S̃n(n)

∣∣∣∣− σ max
k∈Kn

(
n

k(n− k)

)1/2 ∣∣∣B̃n(k)
∣∣∣∣∣∣∣∣

= oP

(
(log log n)−1/2

)
(n→∞). (3.1.49)

For each s ∈ [bn
2 − bnc, n

2 ] let

Win(s) =Win

(
bn

2
− bnc

)
+

s− bn
2 − bnc√

n
2 − bn

2 − bnc
Ni

+
√
n

2
− bn

2
− bncBi

(
s− bn

2 − bnc
n
2 − bn

2 − bnc

)
(i = 1, 2). (3.1.50)
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By this definition, cf. e.g. Csörgő and Révész [26, Proposition 1.4.1], we
constitute two Wiener processes{

W1n(t), 0 ≤ t ≤ n

2

}
and

{
W2n(t), 0 ≤ t ≤ n

2

}
on the initial probability space such that Win is a measurable function of
{Ui, Vin, Ni, Bi} (i = 1, 2). Therefore∣∣∣∣∣max

k∈Kn

|Gn(k)| − σ max
an≤k≤n−an

(
n

k(n− k)

)1/2 ∣∣∣B̃n(k)
∣∣∣∣∣∣∣∣

= oP

(
(log log n)−1/2

)
(n→∞), (3.1.51)

where Lemma 3.1.2, Lemma 3.1.6 and Lemma 3.1.7 were applied. The claim
(3.1.48) follows via Lemma 3.1.8 and Lemma 3.1.9. �

CLAIM 2. We can construct a random vector V ∗
2n, such that

V ∗
2n is independent of V1n and V ∗

2n
D= V2n. (3.1.52)

Moreover, we can construct a Wiener process
{
W ∗

2n(t), 0 ≤ t ≤ n
2

}
, such

that W ∗
2n is a measurable function of (U2, V

∗
2n, N2, B2) and∣∣∣∣∣max

k∈Kn

|Gn(k)| − σ sup
an
n
≤t≤1−an

n

(
n

nt(n− nt)

)1/2

|B∗
n (t)|

∣∣∣∣∣
= oP

(
(log log n)−1/2

)
(n→∞), (3.1.53)

where B∗
n is defined as function of W1n and W ∗

2n as in (2.2.10) and
(2.2.11).

proof of claim 2. By Berbee [4, Corollary 4.2.5] there exists a ran-
dom vector V ∗

2n, such that V ∗
2n is a measurable function of (V1n, V2n, U

∗)
and (3.1.52) is satisfied. Moreover

P [V2n 6= V ∗
2n] = β (σ (V1n) , σ (V2n)) . (3.1.54)

Towards this end, we introduce the coupled version of S̃n(k). Let S̃∗n(k) =
S(k), k ∈

{
an, . . . , bn

2 − bnc
}

, and for each k ∈
{
bn

2 + bnc, . . . , n− an

}
we put

S̃∗n(k) = S
(
bn

2
− bnc

)
+

k−bn
2
+bnc+1∑

`=1

π`V
∗(2)
n , (3.1.55)



3.1. QUASI-LIKELIHOOD APPROACH 69

where π` denotes the `-th projection. Hence, as in the proof of Lemma
3.1.2,

max
k∈Kn

∣∣∣∣∣|Gn(k)| −
(

n

k(n− k)

)1/2 ∣∣∣∣S̃∗n(k)− k

n
S̃∗n(n)

∣∣∣∣
∣∣∣∣∣ = OP

((
bn
an

)1/2
)

(3.1.56)

is true on the event
{
V

(2)
n = V

∗(2)
n

}
. Since β (σ (V1n) , σ (V2n)) ≤ 2bn, the

β-mixing condition applies and we have

lim
n→∞

P [V2n 6= V ∗
2n] = 0. (3.1.57)

Whence

max
k∈Kn

∣∣∣∣∣|Gn(k)| −
(

n

k(n− k)

)1/2 ∣∣∣∣S̃∗n(k)− k

n
S̃∗n(n)

∣∣∣∣
∣∣∣∣∣ = OP

((
bn
an

)1/2
)
.

(3.1.58)

The claim (3.1.53) follows along the lines in the proof of CLAIM 1 with V2n

replaced by V ∗
2n. �

Let bn = log log log n, then both claims together with Lemma 3.1.1
yield ∣∣∣∣∣ max

an≤k≤n−an

|Gn(k)| − σ sup
an
n
≤t≤1−an

n

(
n

nt(n− nt)

)1/2

|B∗
n (t)|

∣∣∣∣∣
= oP

(
(log log n)−1/2

)
(n→∞). (3.1.59)

Since W1n is a measurable function of {U1, V1n, N1, B1} and W ∗
2n is a

measurable function of {U2, V
∗
2n, N2, B2}, both Wiener processes are inde-

pendent. Consequently, the process
{
n−1/2B∗

n(t), 0 ≤ t ≤ 1
}

is a Brownian
bridge. Similarly as in Csörgő and Horváth [24, Theorem A.4.2], using the
representation as strictly stationary Ornstein-Uhlenbeck process, cf. e.g.
(2.1.72), the assertion follows from (2.1.6). �

proof of theorem 3.1.2. Using Theorem 2.1.3, Theorem 2.2.1 and
Theorem 3.1.1, we can follow the pattern in the proof of Csörgő and Horváth
[24, Theorem A.4.2], that is, the proof of [24, display (A.4.37)]. �

proof of theorem 3.1.3. Using Theorem 3.1.2 together with expres-
sion (2.1.72), the assertion follows along the lines in the proof of Csörgő and
Horváth [24, Theorem A.3.1]. �
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3.2. Asymptotics for Rejection Regions

Let Zn be the tied-down partial sum process in D[0, 1], defined by

Zn(t) =

n−1/2
(
S (b(n+ 1)tc)− b(n+1)tc

n S(n)
)

, 0 ≤ t < 1;

0 , t = 1,
(3.2.1)

where S(k) denotes the k-th partial sum and S(0) = 0. Under Assumption
B, an application of the invariance principle of Bradley [12, Theorem 4]
implies the weak convergence of Zn, that is

Zn
D[0,1]−→ B0 (n→∞), (3.2.2)

where {B0(t), 0 ≤ t ≤ 1} denotes a Brownian bridge process. Moreover,
similarly as in the proofs of Lemma 2.1.1 - Lemma 2.1.4, we can extend the
probability space with two sequences of Wiener processes {Win(t), t ≥ 0}
(i = 1, 2), such that, as n→∞,

max
1≤k≤n

|S(k)− σW1n(k)|√
k

= OP (1) (3.2.3)

and

max
1≤k≤n−1

|S(n)− S(k)− σW2n(n− k)|√
n− k

= OP (1), (3.2.4)

where limn→∞ n−1VarS(n) = σ2. Consider strictly positive functions
q(t) on (0, 1) that increase in a neighborhood of zero and decrease in a
neighborhood of one, such that the following condition is fulfilled:∫ 1

0

1
t(1− t)

exp
(
− cq2(t)
t(1− t)

)
dt <∞ for all c > 0. (3.2.5)

In light of (3.2.1) - (3.2.5), we can follow the construction method given in
Horvath [58, Theorem A.1] and we derive a sequence of Brownian bridges
{Bn(t), 0 ≤ t ≤ 1}, such that

sup
0<t<1

|Zn(t)− σBn(t)|
q(t)

= oP (1) (n→∞). (3.2.6)

We point out that both Wiener processes in (3.2.3) and (3.2.4) are not
assumed to be independent of one another.

Horvath [58] employed his basic result, i.e. [58, Theorem A.1], for
testing changes in the mean of linear processes satisfying the strong mix-
ing condition. From a converse statement in [58, Theorem A.1] it fol-
lows that a Brownian bridge approximation as in (3.2.6) is not possible
for q(t) = (t(1 − t))1/2. Nevertheless, in the standardized case, that is
q(t) = (t(1− t))1/2, Horváth established truncation arguments to find two
independent Wiener processes and derived a Darling-Erdős limit theorem.
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Kirch [63, Remark 3.3.1] pointed out that the latter extreme value as-
ymptotic for linear processes still holds even without any mixing conditions.
[63, Theorem 3.3.2] rests upon the so-called “Beveridge-Nelson” decomposi-
tion, i.e. the partial sums of linear processes can be decomposed as partial
sums of the independent noise variables and negligible remainder terms.

Recently, under strong mixing conditions, Hušková et al. [60] derived re-
lated limit theorems for testing changes in the parameters of autoregressive
time series based on partial sums of weighted residuals. In particular, they
considered weight functions q(t) = (t(1− t))α, where α ∈ [0, 1/2). More-
over, in the case α = 1/2, they derived a Darling-Erdős limit theorem using
arguments as in Davis et. al. [32], where a kind of asymptotic independence
holds due to the mixing assumption.

Similarly as in [60, Theorem 2.2], the following holds under Assumption
B, for every 0 < ε < 1, as n→∞,

sup
ε<t<1−ε

|Zn(t)|
(σ2t(1− t))1/2

D→ sup
ε<t<1−ε

|Bn(t)|
(t(1− t))1/2

. (3.2.7)

On the one hand the truncated version above seems reasonable under the
assumption that no early or late change occurs within the sample of chrono-
logically ordered observations. But on the other hand an increasing amount
of early and late observations is neglected as the sample size increases.

In light of the related references and results mentioned in [60] and other
sources, we believe that our approximation in Theorem 3.1.2 by standard-
ized Brownian bridge processes based on coupling methods under mixing
assumptions is novel. We point out that in the independent case these kind
of approximations are originally due to Csörgő and Horváth [24], see also
Csörgő [22, Remark 25].

Since we derived Theorem 3.1.2 under a logarithmic decay of the mixing
coefficients, the approximation rate in (3.1.20) can not attain the rates in
the corresponding result for independent random variables, see Csörgő and
Horváth [24, Theorem 1.3.2]. Nevertheless, our rate is strong enough to
produce asymptotical results for rejection regions. The following statements
generalize Csörgő and Horváth [24, Corollary 1.3.1 ] to the mixing case.
Given a fixed level 0 < α < 1, consider the quantiles

zn = zn (α)

= sup

{
x : P

[
max

1≤k<n

(
n

k(n− k)

)1/2 ∣∣∣∣S(k)− k

n
S(n)

∣∣∣∣ ≤ x

]
≤ 1− α

}
(3.2.8)
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and

un = un (α) = sup

{
x : P

[
sup

1
n
≤t≤1− 1

n

|B(t)|√
t(1− t)

≤ x

]
= 1− α

}
. (3.2.9)

Similarly as in [24, Corollary 1.3.1 ], Theorem 3.1.2 and Theorem 3.1.3
imply:

lim
n→∞

P

[
max

1≤k<n

(
n

k(n− k)

)1/2 ∣∣∣∣S(k)− k

n
S(n)

∣∣∣∣ > un

]
= α (3.2.10)

and

zn (α)− un (α) = o
(

(log log n)−1/2
)

(n→∞). (3.2.11)

Recently, Gombay [50] presented a change-point test for changes in simple
linear regression models with weakly dependent errors and derived less con-
servative critical values via using (3.2.9) instead of using the critical values
obtained from the extreme value distribution. Assuming that the errors are
described by linear processes on an independent noise, her approach rests
upon results due to Berkes et al. [6]. Therein, the approximations are estab-
lished with the so-called “Beveridge-Nelson” decomposition for partial sums
of linear processes. No mixing assumptions are required. However, the rates
of the standardized Brownian bridge type approximation given in [50, p.
69] can not attain the rates in Csörgő and Horváth [24, Theorem 1.3.2] and
are slightly slower than ours in Theorem 3.1.2. Critical values are obtained
from (3.2.9) via tail approximations due to Vostrikova [106]. We refer also
to Miller and Siegmund [83, Appendix] for related tail approximations.



CHAPTER 4

Strong Approximations for Partial Sums

In the first section we will discuss certain invariance principles for inde-
pendent random variables. We will derive a variant of a strong approxima-
tion result of Shao [95] for independent, not necessarily identically distrib-
uted random variables. In the second section we will establish an invariance
principle for the law of the iterated logarithm for linear processes with de-
pendent errors. This result will be based on our variant of Shao’s embedding
result. It will be shown that the approximation can be improved via using
a strong approximation result due to Einmahl [39].

4.1. Approximations of Sums of Independent R.V.

Let {Xn, n ≥ 1} be a sequence of independent and identically distrib-
uted random variables on a probability space (Ω,A, P ) with zero means
and σ2 = EX2

1 for some constant 0 < σ2 <∞. Let Φ be the standard
normal distribution function. The central limit theorem says that the stan-
dardized partial sums Sn =

∑n
k=1Xk converge in distribution, i.e. for all

t ∈ R we have

lim
n→∞

P
[
n−1/2Sn ≤ tσ

]
= Φ(t).

Our first example is a convergence-in-probability version.

Example 4.1. Let {Xn, n ≥ 1} be a sequence of independent, iden-
tically distributed random variables on a probability space (Ω,A, P ) with
zero mean and EX2

1 = σ2 for some constant 0 < σ2 < ∞. Suppose
there exists on the same (Ω,A, P ) another random variable U , uniformly
distributed over [0, 1], such that U and {Xn, n ≥ 1} are independent.
Then there exists an double array of rowwise independent standard normal
random variables {Ynk, 1 ≤ k ≤ n} on the same (Ω,A, P ), such that

n∑
k=1

Xk − σ
n∑

k=1

Ynk = oP

(
n1/2

)
(n→∞).

Proof. Let

σ̄2
n = EX2

1I
{
|X1| <

√
n
}
− E2X1I

{
|X1| <

√
n
}

73
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and
Fn(t) = P

[
n−1/2Sn ≤ tσ̄n

]
, t ∈ R.

The quantile function F−1
n is defined by

F−1
n (u) = inf {x : u ≤ Fn (x)} , 0 < u < 1.

Suppose another probability space (Ω1,A1, P1) together with two indepen-
dent, uniformly distributed random variables U0 and U1. For every δ > 0
we have

P1

[∣∣σ̄nF
−1
n (U0)− σΦ−1 (U0)

∣∣ > δ
]

≤ P1

[∣∣σ̄nΦ−1 (U0)− σΦ−1 (U0)
∣∣ > δ/2

]
+ P1

[
σ̄n

∣∣F−1
n (U0)− Φ−1 (U0)

∣∣ > δ/2
]

= I1 + I2.

By dominated convergence σ̄2
n → σ2 (n→∞) and

I1 = P1

[∣∣Φ−1 (U0)
∣∣ > δ/ (2 |σ̄n − σ|)

]
→ 0 (n→∞).

Let Z = Φ−1 (U0) and observe

I2 ≤ P1 [Φ (Z) > Fn (δ/(2σ̄n) + Z)] + P1 [Fn (Z − δ/(2σ̄n)) > Φ (Z)]

= J1 + J2.

Let 0 < ε < 1. Moreover, we set

∆n = inf
{

Φ (δ/(2σ̄n) + z)− Φ(z), z ∈
[
Φ−1(ε/2),−Φ−1(ε/2)

]}
Using the mean value theorem we get ∆n > 0. Since σ̄2

n → σ2 > 0, we
have ∆ = infn∈N ∆n > 0. Via

J1 = P1 [Φ (δ/(2σ̄n) + Z)− Φ (Z) < Φ (δ/(2σ̄n) + Z)− Fn (δ/(2σ̄n) + Z)] ,

we arrive at

J1 ≤ P1

[
∆ < Φ (δ/(2σ̄n) + Z)− Fn (δ/(2σ̄n) + Z) ,

Z ∈
[
Φ−1(ε/2),−Φ−1(ε/2)

] ]
+ ε.

By the central limit theorem and Slutsky’s lemma Fn(t) → Φ(t) (n →
∞) for all t ∈ R. This implies, cf. e.g. Durrett [36, Exercise 2.6],
supt∈R |Fn(t) − Φ(t)| → 0. Since ε > 0 can be as small as we wish, we
have, as n→∞,

J1 → 0

and similarly J2 → 0. Therefore

lim
n→∞

P1

[∣∣√nσ̄nF
−1
n (U0)−

√
nσΦ−1 (U0)

∣∣ > δ
√
n
]

= 0.

Finally, we construct a deconvolution of
√
nΦ−1 (U0) on the initial proba-

bility space. Suppose for each n ∈ N another probability space supporting
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a sequence ζ1, . . . , ζn of independent standard normal random variables.
Let

L

(
{ζk, 1 ≤ k ≤ n} ,

n∑
k=1

ζk

)
be the corresponding law on the Borel sets of Rn × R. Obviously

L

(
n∑

k=1

ζk

)
= L

(√
nΦ−1 (U0)

)
.

Therefore, via using Billingsley [11, Lemma 21.1], there exists on (Ω1,A1, P1)
a random element ηn, taking values in Rn and which is a measurable func-
tion of

√
nΦ−1 (U0) and U1, such that

L

(
{ζk, 1 ≤ k ≤ n} ,

n∑
k=1

ζk

)
= L

(
η,
√
nΦ−1 (U0)

)
.

This implies that ηn = (ηn1, . . . , ηnn) is an n-dimensional standard normal
vector satisfying

√
nΦ−1 (U0) =

n∑
k=1

ηnk P1 − a.s.

With the same construction as above, there exists on (Ω,A, P ) a sequence
Yn1, . . . , Ynn of independent standard normal random variables, being mea-
surable functions of U and (X1, . . . , Xn), such that

L
(√
nσ̄nF

−1
n (U0) , ηn

)
= L

(
n∑

k=1

Xk, {Y1n, . . . , Ynn}

)
.

Observe that
∑n

k=1Xk and
∑n

k=1 Ynk have the same joint distribution as√
nσ̄nF

−1
n (U0) and

√
nσΦ−1 (U0). �

The construction of the approximating normal sequences on the initial
probability space in the proof above is motivated by the method in Billings-
ley [11, p. 215]. The quantile function techniques used in the proof above
can be found in Gänssler and Stute [49, Kapitel 10]. Therein quantile func-
tion techniques are used to prove an invariance principle for the law of the
iterated logarithm.

Major [78] pointed out that the functional central limit theorem and
Strassen’s invariance principle for the law of the iterated logarithm are easy
consequences of the following strong approximation result.

Theorem (Major (1979)). Let {Xn, n ≥ 1} be a sequence of indepen-
dent, identically distributed random variables with zero mean and EX2

1 = σ2

for some constant 0 < σ2 <∞. There exists a probability space supporting
{Xn, n ≥ 1} together with a sequence of independent, identically distributed
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standard normal random variables {Yn, n ≥ 1} and a numerical sequence{
σ2

n, n ≥ 1
}

satisfying

σ2
n → σ2 (n→∞),

such that
n∑

k=1

Xk −
n∑

k=1

σkYk = o
(
n1/2

)
a.s. (n→∞).

As an example we will use Csörgő-Révész estimates for increments of a
Wiener process to derive the following invariance principle for the law of the
iterated logarithm. Strassen [100, Theorem 2] originally proved a functional
version of the invariance principle for the law of the iterated logarithm.

Example 4.2. Let {Xn, n ≥ 1} be a sequence of independent iden-
tically distributed random variables with zero mean and EX2

1 = σ2 for
some constant 0 < σ2 < ∞. There exists a probability space supporting
{Xn, n ≥ 1} together with a Wiener process {W (t), t ≥ 0}, such that

S(n)−W (σn)√
n log log n

= o (1) a.s. (n→∞).

Proof. The construction of Major [78] yields a sequence of approxi-
mating normal random variables {Yn, n ≥ 1} and a numerical sequence{
σ2

n, n ≥ 1
}

. Let

L ({Xk, k ≥ 1} , {σkYk, k ≥ 1})

be the corresponding law on the Borel sets of the polish space R∞ × R∞.
We can assume σ2

n → 1. Furthermore, we put s0 = 0 and sk =∑k
i=1 σi (k = 1, 2, . . . ). Let {W (t), t ≥ 0} be a standard Wiener process

on another (irrelevant) probability space and let

L ({W (sk)−W (sk−1) , k ≥ 1} , {W (t), t ≥ 0})

be the corresponding law on the Borel sets of the polish space R∞×C[0,∞).
Since disjunct increments of a Wiener process are independent, we get

L ({σkYk, k ≥ 1}) = L ({W (sk)−W (sk−1) , k ≥ 1}) .

Therefore, via using Berkes and Philipp [5, Lemma A1], we can redefine
{Xn, n ≥ 1} together with {W (t), t ≥ 0} on a common probability space,
such that

n∑
k=1

Xk −W (sn) = o
(
n1/2

)
a.s. (n→∞).
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Let an = sn − n. We have

sup
−|an|≤s≤|an|

|W (n− s)−W (n)| ≤ sup
0≤s≤|an|

|W (n+ s)−W (n)|

+ sup
0≤s≤|an|

|W (n− an + s)−W (n)|

= I1 + I2.

By display (1.2.3) of Csörgő and Révész [26, Theorem 1.2.1], we have

I1 = o
(√

n log log n
)

a.s.,

where (an/n) log (n/an) → 0 (n→∞) was applied. Moreover,

I2 ≤ sup
0≤s≤|an|

|W ((n− an) + s)−W ((n− an))|

+ |W (n− an)−W ((n− an) + an)|
≤ 2 sup

0≤t≤n−|an|
sup

0≤s≤|an|
|W (t+ s)−W (t)|

Now display (1.2.4) of Csörgő and Révész [26, Theorem 1.2.1], implies

I2 = o
(√

n log log n
)

a.s.

Therefore we get

sup
−|an|≤s≤|an|

|W (n− s)−W (n)| = o
(√

n log log n
)

a.s.

�

The next example states that the result of Major [78] even implies a
convergence-in-probability version of Donsker’s invariance principle.

Example 4.3. Let {Xn, n ≥ 1} be a sequence of independent iden-
tically distributed random variables with zero mean and EX2

1 = σ2 for
some constant 0 < σ2 < ∞. There exists a probability space supporting
{Xn, n ≥ 1} together with a sequence of independent identically distributed
standard normal random variables {Yn, n ≥ 1}, such that

n−1/2 sup
0<t<1

∣∣∣∣∣∣
[nt]∑
k=1

Xk − σ

[nt]∑
k=1

Yk

∣∣∣∣∣∣ = oP (1) (n→∞).

Proof. Let 0 < δ < 1. Using Major [78], we have

n−1/2 sup
δ≤t<1

∣∣∣∣∣∣
[nt]∑
k=1

(Xk − σkYk)

∣∣∣∣∣∣ = o (1) a.s. (n→∞)
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As a consequence of the Hàjek-Rényi inequality, cf. e.g. Petrov [85, Theorem
2.5 ], we have

n−1/2 sup
1/n≤t<δ

∣∣∣∣∣∣
[nt]∑
k=1

(Xk − σkYk)

∣∣∣∣∣∣ = OP (1) sup
1/n≤t<δ

√
t (n→∞).

Since n−1
∑n

k=1 (σk − σ)2 → 0, an application of Lévy’s inequality, cf. e.g.
Petrov [85], yields

n−1/2 sup
0<t<1

∣∣∣∣∣∣
[nt]∑
k=1

(σk − σ)Yk

∣∣∣∣∣∣ = oP (1) (n→∞).

Since δ > 0 can be as small as we wish, the assertion follows. �

If the probability space also contains a sequence of independent Brown-
ian bridges, the construction in Csörgő and Révész [26, Proposition 1.4.1]
yields a Wiener process {W (t), t ≥ 0}, such that

∑̀
k=1

Yk = W (`) (` = 1, 2, . . . )

holds almost surely. Then, via using Csörgő-Révész estimates for the incre-
ments of a Wiener process, we have

n−1/2 sup
0<t<1

|S(nt)− σW (nt)| = oP (1) (n→∞).

Remark. An alternative approximation method for independent random
variables with finite second moments which implies Strassen’s invariance
principle in the law of the iterated logarithm and also a convergence-in-
probability version of Donsker’s invariance principle is due to Einmahl [41,
Section 3].

Given a probability law µ on the real line with distribution function
Fµ, the left-continuous inverse is defined by

F−1
µ (p) = inf {x ∈ R | Fµ(x) ≥ p} , p ∈ (0, 1).

Consider a Wiener process {W (t), t ≥ 0}. A stopping time T embeds the
law µ into the Wiener process if L (W (T )) = µ.

Example 4.4. For each fixed and real a consider the distribution func-
tion Fa(x) = I {x ≥ a}. Suppose U is a uniformly distributed random
variable with values in (0, 1). If U is independent from the Wiener process
{W (t), t ≥ 0}, then the random variable

Ta = inf
{
t ≥ 0 |W (t) = F−1

a (U)
}
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embeds the discrete probability measure Fa into the Wiener process. But
Ta is not integrable in general.

Proof. The left-continuous inverse of the point mass is constant, i.e.,
for all p ∈ (0, 1), F−1

a (p) = a. Hence

P [W (Ta) ≤ x] = I {x ≥ a}

which yields the first assertion. Moreover, we have

Ta = inf {t ≥ 0 |W (t) = a} a.s.

Therefore, ET0 = 0. But if a > 0, the passage time is not integrable, i.e
ETa = ∞, cf. e.g. Karatzas and Shreve [62, Remark 8.3]. �

The example above is motivated by an example due to J.L. Doob of a
nonintegrable stopping time which embeds every given law, see Ob lój [84,
p. 331].

Skorokhod [96] introduced the representation of a whole random walk∑n
i=1Xi, consisting of independent and identically distributed random vari-

ables, as a randomly stopped Wiener process W (τn). Since this so-called
“Skorokhod representation” constructs a family of integrable stopping times,
it has become one of the main tools to establish invariance principles.

Freedman [48] proved the “Skorokhod representation” via representing a
given distribution function F on the real line with mean zero as an average
of two-point, mean zero distributions.

Theorem (Freedman(1971, Lemma 108)). For each u > 0 and v > 0,
let G(u, v) the distribution function which assigns measure 1 to the two
points {−u, v} and has mean zero; and let G(0, 0) be the distribution
function assigning mass 1 to the point 0. Then there exists a probability
space (Ξ,Σ,m) with nonnegative random variables U and V such that:
U = 0 iff V = 0 and

F (x) =
∫

t∈Ξ
G (U(t), V (t)) (x)m(dt).

One can choose Ξ as interval and Σ as the Borel subsets of Ξ.

Freedman embeds F by defining the stopping time to be the least t

with W (t) /∈ (U, V ). The random walk can be represented on a suitably
enriched probability space.

Theorem (“Skorokhod representation”, Freedman(1971, p. 73)). Let
{W (t), t ≥ 0} be a Wiener process on the probability space (Ω,F , P ).
Suppose (U1, V1), (U2, V2), . . . are independent and identically distributed
random vectors on (Ω,F , P ), independent of {W (t), t ≥ 0}. For all
n ∈ N, suppose Un ≥ 0 and Vn ≥ 0 and Un = 0 iff Vn = 0,
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and EG(Un, Vn)) = F . Then there are nonnegative random variables
τ1 ≤ τ2 ≤ . . . on (Ω,F , P ) such that

(1) τ1, τ2− τ1, τ3− τ2, . . . are independent, identically distributed and
finite;

(2) Eτ1 =
∫∞
−∞ x2F (dx);

(3) W (τ1),W (τ2) −W (τ1),W (τ3) −W (τ2), . . . are independent and
identically distributed and

(4) W (τ1) has distribution function F .

See Ob lój [84, Chapter 3] for a discussion of the slight differences between
the constructions of Skorokhod [96], Freedman [48] and others.

Strassen [101] established the invariance principle with rate for mar-
tingales via using the martingale generalization of the “Skorokhod repre-
sentation.” Philipp and Stout [86] established martingale approximations
and blocking techniques as general method to derive almost sure invariance
principles for sequences of weakly dependent random variables via using
the “Skorokhod-Strassen representation” and its refinements. For instance,
Bradley [12] used the “embedding” results of Jain et al [61] to establish
a strong invariance principle under the strong mixing condition. Recently,
Balan and Zamfirescu [2] established a strong approximation result for mix-
ing sequences with infinite variance. Their approach rests upon a refinement
of the “Skorokhod-Strassen representation” due to Shao [95]. One main tool
in the proof of Shao’s refinement are Csörgő-Révész type increment results
for the Wiener process due to Hanson and Russo [56].

As an example and for further use, we will prove a variant of Shao [95,
Theorem 2.1] for independent, not necessarily identically distributed random
variables.

Theorem 4.1.1. Suppose there exists on the same (Ω,A, P ) an uni-
formly distributed random variable U , independent from the infinite se-
quence {Xk, k ≥ 1} of independent random variables with zero means and

∞∑
k

a−ν
k E |Xk|2ν <∞ (4.1.1)

holds for some 1 ≤ ν ≤ 2 and a nondecreasing sequence {ak, k ≥ 1} with
0 < an ↑ ∞ (n → ∞). Let bn = E (

∑n
k=1Xk)2 and assume that for

some positive and finite constants C1, C2 and n0 the following is satisfied

C1 <
bn
an

< C2 (4.1.2)
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for all n > n0. Then there exists a Wiener process {W (t), t ≥ 0} such
that, as n→∞,

S(n)−W (bn) = o
(√

an log log an

)
a.s. (4.1.3)

Remark. Recognizing Shao [95, Theorem 2.1], one might expect an ad-
ditional logarithmic term log (bn/an) in the rate. The proof will show that
this logarithmic term vanishes due to the extra condition on the fraction
bn/an. Since Hanson and Russo [56] established upper bounds for certain
weighted increments, the crucial point in the proof of the approximation is
to derive the small-“oh” rate.

Proof. Using the “Skorokhod-Strassen representation”, cf. e.g. Hall
and Heyde [53, Theorem A.1], there exists on another probability space
(Ω1,A1, P1) a sequence {τk, k ≥ 1} of independent nonnegative random
variables and a Wiener process {W (t), t ≥ 0} such that

Eτ r
k ≤ CrE |Xk|2r 1 ≤ r ≤ ν (4.1.4)

for some positive constant Cr depending on r only. Moreover,

L ({Sn, n ≥ 1}) = L

({
W

(
n∑

k=1

τk

)
, n ≥ 1

})
(4.1.5)

and Eτk = EX2
k . Hence

|Eτk|ν = ‖Xk‖2ν
2 ≤ ‖Xk‖2ν

2ν . (4.1.6)

By (4.1.4)

E |τk − Eτk|ν ≤ 2νCνE |Xk|2ν + 2ν |Eτk|ν . (4.1.7)

Now (4.1.6) and (4.1.7), together with (4.1.1) yields
∞∑

k=1

a−ν
k E |τk − Eτk|ν <∞. (4.1.8)

By a generalized Kolmogorov three-series theorem from Petrov [85, Theorem
6.4, Assumption (a)] and Kronecker’s lemma, we have

n∑
k=1

τk −
n∑

k=1

Eτk = o (an) a.s. (n→∞). (4.1.9)

Thus there is a measurable set A ∈ A1 with P1(A) = 1 and a sequence
of nonnegative random variables {cn, n ≥ 1} such that

1
an

∣∣∣∣∣
n∑

k=1

τk(ω)−
n∑

k=1

Eτk

∣∣∣∣∣ ≤ cn(ω) (4.1.10)
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for all ω ∈ A and cn(ω) → 0 (n→∞). Choose finite random variables
dn > 0 so that for each ω ∈ A

dn(ω) ≥ cn(ω), dn(ω) ↓ 0 but andn(ω) ↑ ∞ (n→∞). (4.1.11)

Thus for each ω ∈ A

−andn(ω) ≤
n∑

k=1

τk(ω)− bn ≤ andn(ω) (4.1.12)

Since andn(ω) ↑ ∞ and we are interested in the almost sure growth rate
of the increment W (bn + (

∑n
k=1 τk − bn))−W (bn) as n→∞ in terms of

an only, it suffices to fix a deterministic sequence dn > 0 so that

dn ↓ 0 and andn ↑ ∞ (n→∞) (4.1.13)

and consider the increment sup−dnan≤s≤dnan
|W (bn + s)−W (bn)|. Observe

sup
−dnan≤s≤dnan

|W (bn + s)−W (bn)|

≤ sup
0≤s≤dnan

|W (bn + s)−W (bn)|

+ sup
0≤s≤dnan

|W (bn − cnan + s)−W (bn)|

= I1 + I2. (4.1.14)

By display (3.10b) of Hanson and Russo [56, Theorem 3.2A] we have

I1 = O

(√
dnan

(
log
(

bn
dnan

+ 1
)

+ log log (dnan)
))

a.s. (4.1.15)

Next, observe that by (4.1.2)

dn log
(

bn
dnan

+ 1
)

log log an
→ 0 (4.1.16)

and

dn log log (dnan)
log log an

= dn +
dn log

(
1 + log dn

log an

)
log log an

→ 0 (4.1.17)

as n→∞. Therefore we arrive at

I1 = o
(√

an log log an

)
a.s. (4.1.18)

Next, we have

I2 ≤ sup
0≤s≤dnan

|W (bn − dnan + s)−W (bn − dnan)|

+ |W (bn − dnan + dnan)−W (bn − dnan)|
≤ 2 sup

0≤s≤dnan

|W (bn − dnan + s)−W (bn − dnan)| . (4.1.19)
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By display (3.10b) of Hanson and Russo [56, Theorem 3.2A] we have

I2 = O

(√
dnan

(
log
(

bn
dnan

)
+ log log (dnan)

))
a.s. (4.1.20)

Similarly, we get

I2 = o
(√

an log log an

)
a.s. (4.1.21)

By (4.1.18) and (4.1.21) we have

W

(
n∑

k=1

τk

)
−W (bn) = o

(√
an log log an

)
a.s. (n→∞). (4.1.22)

Consider the following law on the polish space RN ×D[0,∞)

ν = L

({
W

(
n∑

k=1

τk

)
, k ≥ 1

}
, {W (t) , t ≥ 0}

)
(4.1.23)

Therefore, Billingsley [11, Lemma 21.1] together with (4.1.5) yields a Wiener
process {W0 (t) , t ≥ 0} on (Ω,A, P ) being a function of {Xk, k ≥ 1}
and U and having the correct joint distribution, i.e.

L ({Sn, n ≥ 1} , {W0 (t) , t ≥ 0}) = ν. (4.1.24)

hence
n∑

k=1

Xk −W0 (bn) = o
(√

an log log an

)
P − a.s. (n→∞). (4.1.25)

�

On the one hand it is known that certain rates of strong approximation
results which are based on the “Skorokhod representation” cannot be im-
proved any further with this method, cf. Csörgő and Révész [26, p. 95].
The so-called “Hungarian construction” with its “Csörgő-Révész quantile
transformation” and “Komlós-Major-Tusnády-Theorems” are powerful tech-
niques to obtain optimal rates, see Csörgő and Révész [25] and Komlós et
al. [64]. We refer to Csörgő and Horváth [23] for an introduction and fur-
ther development of these important results. Lifshits [71, p. 3] pointed out
that the “KMT-construction” provides estimates for the approximation of∑n

i=1Xi with a partial sum of n Gaussian random variables for each fixed
n. In order to get asymptotic results as n → ∞, this technicality can be
remedied by the construction of a suitable common probability space, see
Lifshits [71, Corollary 2.3]. On the other hand, “Skorokhod’s representa-
tion” embeds the whole partial sum process in one Wiener process directly.

It is known that the “Skorokhod representation” is limited to prove
strong invariance theorems for multidimensional random vectors, see e.g.
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Mathematical Review MR515811 written by M. Csörgő. Concerning the
independent case, we refer to Zaitsev [111] for a recent contribution and an
overview on multidimensional extension of the “KMT-construction”. Con-
cerning the dependent case, the coupling results of Berkes and Philipp [5]
are seminal for the approximation of weakly dependent random vectors. We
refer to Bulinski and Shashkin [19] for a recent application and an elabo-
rated proof of a version of the coupling technique due to Berkes and Philipp
[5].

One tool used in the proof of the approximation theorems of Berkes and
Philipp [5] is the so-called “Strassen-Dudley Theorem”. We refer to Dudley
[35] for an exposition of the origins and developments of this important
result. Suppose two probability measures ν and µ on the Borel σ-field
of a polish space (S, d). If the two measures are “close” with respect to
the Prohorov distance, then, according to the “Strassen-Dudley Theorem”,
there exists a probability measure τ on the Borel σ-field of S × S with
marginals ν and µ; and the measure τ concentrates the mass closely
around the diagonal of S × S. In terms of random variables, there exists
a vector (X,Y ) with prescribed marginals such that d(X,Y ) is small.

As an example we use a one-dimensional version of “Yurinskii’s estimate”
due to Pollard [88] and derive, via using the “Strassen-Dudley Theorem”, a
convergence-in-probability invariance principle with rate. Reworking Chap-
ter 10.4 in Pollard [88] we can extract the following estimate.

Theorem (“Yurinskii’s estimate”). Let X1, . . . , Xn be independent
random variables with zero means. Let Γn :=

∑n
k=1E|Xk|3 < ∞ and Tn

be a normal random variable with zero mean and variance ES2
n. Then for

every δ > 0 satisfying

Γn ≤ e−1δ3 (4.1.26)

and every Borel set A of R the following inequality holds

P [Sn ∈ A] ≤P [Tn ∈ A3δ] (4.1.27)

+
90Γn

δ3 (1− e−1)
(
1 + | log(δ3/Γn)|

)
, (4.1.28)

where A3δ is the closed set {x ∈ R : |x− y| ≤ 3δ for some y ∈ A} .

Remark. Pollard [88, p. 245] attributes “Yurinskii’s estimate” above to
Yurinskii [110]. Moreover, Pollard remarked that the proof of the estimate
in [88] is close to a method established by Le Cam [67].

Example 4.5. Suppose there exists on the same (Ω,A, P ) an uniformly
distributed random variable U independent from the sequence {Xk, k ≥ 1}
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of independent random variables with zero means and EX2
k = 1 (k ≥ 1).

Assume that for some s ∈ (2, 3) the following two statements are true:

sup
1≤n<∞

1
n

n∑
k=1

E |Xk|s I {|Xk|s ≤ k} <∞ (4.1.29)

and
∞∑

k=1

1
k2/s

E |Xk|2 I {|Xk|s > k} <∞ (4.1.30)

Then there exists a double array of rowwise independent standard normal
random variables {Ynk, 1 ≤ k ≤ n} on the same probability space such
that, as n→∞,

n∑
k=1

Xk −
n∑

k=1

Ynk = OP

(
n1/s

)
. (4.1.31)

This example is related to the results of Einmahl [39]. Therein invari-
ance principle for independent random vectors satisfying Lindeberg type
conditions are established. Moreover, the choice of the approximation rate
n1/s in (4.1.31) is related to the optimal approximation construction given
by Major [77] in case of independent, identically distributed random vari-
ables with no third moment. The truncation arguments in the proof of the
example are motivated by truncation methods in Einmahl [38, Kapitel 3].

Proof. Let

X̄k = XkI
{
|Xk| ≤ H−1 (k)

}
, (4.1.32)

where H−1 denotes the inverse of H(t) = ts, t ≥ 0. Put

X̃k = X̄k − EX̄k and σ2
k = EX̃2

k . (4.1.33)

Since 1/t is non-increasing as t→∞, we obtain

1
H−1 (k)

E
∣∣Xk − X̄k

∣∣ =
1

H−1 (k)
E |Xk|2

1
|Xk|

I {H (|Xk|) > k}

≤ 1
k2/s

E |Xk|2 I {H (|Xk|) > k} . (4.1.34)

Therefore by (4.1.30), as n→∞,
n∑

k=1

E
∣∣Xk − X̄k

∣∣ = O
(
H−1 (n)

)
. (4.1.35)

Moreover, since
∣∣EX̄k

∣∣ =
∣∣EXk − EX̄k

∣∣, we have similarly to (4.1.34)
n∑

k=1

∣∣EX̄k

∣∣ = O
(
H−1 (n)

)
. (4.1.36)
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From (4.1.35), (4.1.36) together with Markov’s inequality, we have

Sn − S̃n :=
n∑

k=1

Xk −
n∑

k=1

X̃k = OP

(
H−1 (n)

)
. (4.1.37)

Let

Γn :=
n∑

k=1

E|X̃k|3 and δn := (3M)1/3 n1/s, (4.1.38)

where

M = 16 sup
1≤n<∞

1
n

n∑
k=1

E |Xk|s I {|Xk|s ≤ k} <∞. (4.1.39)

From Jensen inequality

E|X̃k|3 ≤ 8E
∣∣X̄k

∣∣3 + 8
∣∣EX̄k

∣∣3 ≤ 16E
∣∣X̄k

∣∣3 . (4.1.40)

Hence

Γn ≤ 16
n∑

k=1

E|Xk|s|Xk|3−sI {|Xk|s ≤ k}

≤ 16
n∑

k=1

k(3−s)/sE|Xk|sI {|Xk|s ≤ k}

≤Mn3/se−13 = δ3ne
−1. (4.1.41)

Thus, from (4.1.26) and (4.1.27), for each normal random variable Tn with
variance ES̃2

n and each Borel set A of R and δ ≥ δn we have

P [S̃n ∈ A] ≤P [Tn ∈ A3δ] (4.1.42)

+
90Γn

δ3 (1− e−1)
(
1 + | log(δ3/Γn)|

)
. (4.1.43)

Using the Strassen-Dudley theorem, cf. Dudley [35], for each δ ≥ δn there
is a law νδ

1 on B ⊗ B with margins

νδ
1 (· × R) = L

(
S̃n

)
and νδ

1 (R× ·) = L (Tn) (4.1.44)

satisfying

νδ
1{(s, t) : |s− t| > 3δ} ≤ 90

1− e−1
δ−3Γn

(
1 + | log(δ3/Γn)|

)
. (4.1.45)

We will construct a deconvolution of Tn on the initial probability space.
Starting from νδ

1 , the following construction depends on δ ≥ δn, hence
on n. Thus, we can construct another probability space (Ω2n,A2n, P2n)
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together with P2n-independent standard normal random variables y1, . . . , yn

and define the measure ν2n on B ⊗ Bn by

ν2n = L

(
n∑

k=1

σkyk, {y1, . . . , yn}

)
. (4.1.46)

Since

νδ
1 (R× ·) = ν2n (· × Rn) , (4.1.47)

we can glue together νδ
1 and ν2n via an application of Berkes and Philipp

[5, Lemma A1]. This yields a law ν3n on B ⊗ B ⊗ Bn satisfying

νδ
1 = ν3n (· × · × Rn) and ν3n (R× · × ·) = ν2n. (4.1.48)

Observe

L
(
S̃n

)
= ν3n (· × R× Rn) , (4.1.49)

whence, via using Billingsley [11, Lemma 21.1], there is an n-dimensional
random vector Yn = (Yn1, . . . ,Ynn), on the initial probability space
(Ω,A, P ) being a measurable function of

(
X̃1, . . . , X̃n, U

)
, such that

L

(
n∑

k=1

σkYnk,Yn

)
= ν3n (R× · × ·) (4.1.50)

and with joint law

L

(
S̃n,

n∑
k=1

σkYnk

)
= νδ

1 (4.1.51)

i.e.

P

[∣∣∣∣∣
n∑

k=1

X̃k −
n∑

k=1

σkYnk

∣∣∣∣∣ > 3δ

]

≤ 90Γn

δ3 (1− e−1)
(
1 + | log(δ3/Γn)|

)
. (4.1.52)

For each n, set δ = (4M)1/3H−1(n). Then, putting together (4.1.38),
(4.1.41) and (4.1.52) we have

n∑
k=1

X̃k −
n∑

k=1

σkYnk = OP

(
H−1 (n)

)
. (4.1.53)

Towards this end we have

(1− σn)2 =
|σn − 1|
σn + 1

∣∣σ2
n − 1

∣∣
≤
(

1 +
2

σn + 1

) ∣∣σ2
n − 1

∣∣ ≤ 3
∣∣σ2

n − 1
∣∣ . (4.1.54)
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For each t > 0 an application of the Chebyshev inequality gives

P

[∣∣∣∣∣
n∑

k=1

σkYnk −
n∑

k=1

Ynk

∣∣∣∣∣ > tH−1 (n)

]

≤ 1
(tH−1 (n))2

n∑
k=1

EY 2
nk (1− σk)2

≤ 3
(tH−1 (n))2

n∑
k=1

∣∣σ2
k − 1

∣∣ . (4.1.55)

From

E
(
Xn − X̄n

)2 = EX2
n − EX̄2

n (4.1.56)

and (
EX̄n

)2 ≤ (E ∣∣Xn − X̄n

∣∣)2 (4.1.57)

together with

1− σ2
n = EX2

n − EX̄2
n +

(
EX̄n

)2 (4.1.58)

an application of the Cauchy-Schwarz inequality implies∣∣1− σ2
n

∣∣ ≤ E
(
Xn − X̄n

)2 +
(
E
∣∣Xn − X̄n

∣∣)2
≤ 2E |Xn|2 I {H (|Xn|) > n} . (4.1.59)

Therefore

1
(H−1 (n))2

n∑
k=1

∣∣1− σ2
k

∣∣
≤

n∑
k=1

1
k2/s

E |Xk|2 I {H (|Xk|) > k} . (4.1.60)

Therefore, by (4.1.30) and (4.1.55), we obtain, as n→∞,
n∑

k=1

σkYnk −
n∑

k=1

Ynk = OP

(
H−1 (n)

)
. (4.1.61)

The assertion flows from (4.1.37), (4.1.53) and (4.1.61). �

Einmahl [39] proved an inequality for the so-called “δ-distance” between
two probability measures on Cd[0, 1], that is, the space of all continuous
and Rd-valued functions on [0, 1]. Using the “Strassen-Dudley Theorem”,
several strong approximation results for partial sums of independent not
necessarily identically distributed random vectors were derived. These par-
ticular results from Einmahl [39] are crucial tools in the strong invariance
principles for stationary vector-valued processes recently established by Liu
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and Lin [76]. Here, we focus on the one-dimensional version of one of Ein-
mahl’s multidimensional results.

Theorem (Einmahl 1987, Theorem 2). Let {Xn, n ≥ 1} be a sequence
of independent random variables with zero means and EX2

n = σ2
n, n ∈ N,

for some constants σ2
n > 0. Assume that for some s ∈ (2, 4) the following

two statements are true:
∞∑

k=1

a−s
k E |Xk|s I {|Xk| ≤ ak} <∞ (4.1.62)

and
∞∑

k=1

a−2
k E |Xk|2 I {|Xk| > ak} <∞, (4.1.63)

where {ak, k ≥ 1} is a positive and monotone increasing sequence. Then
a construction of independent standard normal random variables Y1, Y2, . . .

is possible such that, as n→∞,
n∑

k=1

Xk −
n∑

k=1

σkYk = o (an) almost surely. (4.1.64)

This version implies the following invariance principle, whose multidi-
mensional version was used by Liu and Lin [76] to prove strong invariance
principles for stationary vector-valued processes.

Theorem (Due to Einmahl 1987). Let {Xn, n ≥ 1} be a sequence of
independent random variables with zero means and EX2

n = σ2
n, n ∈ N, for

some constants σ2
n > 0. Assume that for some s ∈ (2, 4) the following

statement is true:
∞∑

k=1

a−s
k E |Xk|s <∞. (4.1.65)

where {ak, k ≥ 1} is a positive and monotone increasing sequence. Then
a construction of independent standard normal random variables Y1, Y2, . . .

is possible such that, as n→∞,
n∑

k=1

Xk −
n∑

k=1

σkYk = o (an) almost surely. (4.1.66)

Moreover, Einmahl [39, p. 84] remarked that conditions (4.1.62) and
(4.1.63) are fulfilled, if

∞∑
k=1

1
H (ak)

EH (|Xk|) <∞, (4.1.67)

where H : [0,∞) → [0,∞) is a continuous function, such that t−2H(t)
is non-decreasing and t−4+rH(t) is non-increasing for some r > 0.



90 4. STRONG APPROXIMATIONS FOR PARTIAL SUMS

One can verify that (4.1.65) implies (4.1.62) and (4.1.63). But (4.1.67)
is not sufficient in general. Let us consider an easy counterexample: suppose
that independent identically distributed random variables X1, X2, . . . with
zero means and E |X1|s < ∞ for some s ∈ (2, 4) and some Φ ∈ ΦC

satisfy:

EΦ (|X1|s) <∞,

where ΦC will denote the set of all nonnegative, continuous and monotone
increasing functions Φ on [0,∞), satisfying:

∞∑
n=1

1
Φ(n)

<∞.

Now, let ak = k1/s and H(t) = Φ (ts), then (4.1.67) is fulfilled.
Moreover, since t2/H(t) is decreasing as t→∞, we have

a−2
k E |Xk|2 I {|Xk| > ak}

= k−2/sEΦ (|X1|s)
|X1|2

H (|X1|)
I {|Xk| > ak}

≤ 1
Φ (k)

EH (|X1|) .

Hence (4.1.63) is also satisfied. But from the inequality

E |X1|s I {|X1|s ≤ k} ≥ E |X1|s I {|X1|s ≤ 1} ,

condition (4.1.62) can not hold.
Moreover, this easy counterexample indicates that even under a stronger

moment condition, e.g. E |X1|s log2 (|X1|s + 1) < ∞, that is Φ(t) =
t log2(t + 1), it is not possible to derive rate an = n1/s in the almost
sure invariance principle from Einmahl [39, Theorem 2]. Nevertheless, as
an example we will show that in a convergence-in-probability version of the
invariance principle these rates can be attained. The example is based on
the following construction.

Theorem (Einmahl (1987, Proposition 1, (3.3))). Let X1, . . . , Xn be
independent random variables with zero means and variance EX2

k = σ2
k. If

E |Xk|s <∞ for some 2 < s < 4 then, for any given δ > 0, one can re-
define the finite sequence on another probability space (Ω1,A1, P1) together
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with independent standard normal random variables Y1, . . . , Yn such that

P1

[
max

1≤`≤n

∣∣∣∣∣∑̀
k=1

Xk −
∑̀
k=1

σkYk

∣∣∣∣∣ > C1δ

]

≤ C2

δs

n∑
k=1

E |Xk|s I {|Xk| ≤ δ}

+
C2

δ2

n∑
k=1

E|Xk|2I
{
|Xk|2 > δ

}
. (4.1.68)

where C1 and C2 are positive constants depending on s only.

Example 4.6. Suppose there exists on the same (Ω,A, P ) an uniformly
distributed random variable U independent from the sequence {Xk, k ≥ 1}
of independent random variables with zero means and EX2

k = 1 (k ≥ 1).
Assume that for some s ∈ (2, 3) the following two statements are true:

sup
1≤n<∞

1
n

n∑
k=1

E |Xk|s I {|Xk|s ≤ k} <∞ (4.1.69)

and
∞∑

k=1

1
k2/s

E |Xk|2 I {|Xk|s > k} <∞ (4.1.70)

Then there exists a double array of rowwise independent standard normal
random variables {Ynk, 1 ≤ k ≤ n} on the same probability space is pos-
sible such that, as n→∞,

max
1≤`≤n

∣∣∣ ∑̀
k=1

Xk −
∑̀
k=1

Ynk

∣∣∣ = OP

(
n1/s

)
. (4.1.71)

Remark. Suppose a sequence {Xk, k ≥ 1} and some Φ ∈ ΦC sat-
isfying sup1≤k<∞EΦ (|Xk|s) < ∞, then conditions (4.1.69) and (4.1.70)
are fulfilled.

The truncation arguments in the proof of the example are motivated by
truncation methods in Einmahl [38, Kapitel 3].

Proof of Remark. The inequality

E |Xk|s I {|Xk|s ≤ k}

≤ EΦ (|Xk|s)
|Xk|s

Φ (|Xk|s)
≤ const. EΦ (|Xk|s)
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implies (4.1.69). And since t/φ
(
ts/2
)

is decreasing as t→∞, we have

E |Xk|2 I {|Xk|s > k}

= EΦ (|Xk|s)
|Xk|2

Φ
((

|Xk|2
)s/2

)I {|Xk|s > k}

≤ k2/s

Φ(k)
EΦ (|Xk|s)

hence (4.1.70) is fulfilled. �

Proof. Let

X̄k = XkI
{
|Xk| ≤ H−1 (k)

}
, (4.1.72)

where H−1 denotes the inverse of H(t) = ts, t ≥ 0. Put

X̃k = X̄k − EX̄k and σ2
k = EX̃2

k . (4.1.73)

Similarly to the proof of Example 4.5 we have, via using a Kolmogorov type
inequality, cf. e.g. Hall and Heyde [53, Corollary 2.1],

max
1≤k≤n

∣∣∣Sk − S̃k

∣∣∣ = OP

(
H−1 (n)

)
. (4.1.74)

Using Einmahl [39, Proposition 1] one can redefine the sequence X̃1, . . . , X̃n

on another probability space (Ω1,A1, P1) together with independent stan-
dard normal random variables Y1, . . . , Yn such that for some positive con-
stants C1 and C2 and any given t > 0:

P1

[
max

1≤`≤n

∣∣∣∣∣∑̀
k=1

X̃k −
∑̀
k=1

σkYk

∣∣∣∣∣ > C1tH
−1 (n)

]

≤ C2

H(t)n

n∑
k=1

EH(|X̃k|)I{|X̃k| ≤ tH−1 (n)}

+
C2

(tH−1 (n))2

n∑
k=1

E|X̃k|2I{|X̃k| > tH−1 (n)}

= I1 + I2. (4.1.75)

From the inequality

EH(|X̃k|) ≤ H(2)EH(|X̄k|) +H(2)H
(
E|X̄k|

)
, (4.1.76)

we obtain, via Jensen’s inequality,

I1 ≤
C3

H(t)n

n∑
k=1

EH(|X̄k|). (4.1.77)
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Since t2/H(t) is non-increasing as t→∞, we obtain

I2 ≤
C2

H(t)n

n∑
k=1

EH(|X̃k|)

≤ C3

H(t)n

n∑
k=1

EH(|X̄k|). (4.1.78)

It follows that

P1

[
max

1≤`≤n

∣∣∣∣∣∑̀
k=1

X̃k −
∑̀
k=1

σkYk

∣∣∣∣∣ > C1tH
−1 (n)

]
≤ C3

H(t)n

n∑
k=1

EH(|X̄k|).

(4.1.79)

By (4.1.69), we get, as n→∞,

max
1≤`≤n

∣∣∣∣∣∑̀
k=1

X̃k −
∑̀
k=1

σkYk

∣∣∣∣∣ = OP1

(
H−1 (n)

)
. (4.1.80)

Using the same construction as in the proof of Example 4.5 we can construct
a double array of rowwise independent standard normal random variables
{Ynk, 1 ≤ k ≤ n} on the initial probability space such that

max
1≤`≤n

∣∣∣∣∣∑̀
k=1

X̃k −
∑̀
k=1

σkYnk

∣∣∣∣∣ = OP

(
H−1 (n)

)
. (4.1.81)

Towards this end, observe

(1− σn)2 =
|σn − 1|
σn + 1

∣∣σ2
n − 1

∣∣
≤
(

1 +
2

σn + 1

) ∣∣σ2
n − 1

∣∣ ≤ 3
∣∣σ2

n − 1
∣∣ . (4.1.82)

An application of the Chebyshev inequality gives, for each t > 0,

P

[∣∣∣∣∣
n∑

k=1

σkYnk −
n∑

k=1

Ynk

∣∣∣∣∣ > tH−1 (n)

]

≤ 1
(tH−1 (n))2

n∑
k=1

EY 2
nk (1− σk)2

≤ 3
(tH−1 (n))2

n∑
k=1

∣∣σ2
k − 1

∣∣ . (4.1.83)

From

E
(
Xn − X̄n

)2 = EX2
n − EX̄2

n (4.1.84)
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and (
EX̄n

)2 ≤ (E ∣∣Xn − X̄n

∣∣)2 (4.1.85)

together with

1− σ2
n = EX2

n − EX̄2
n +

(
EX̄n

)2 (4.1.86)

an application of the Cauchy-Schwarz inequality implies∣∣1− σ2
n

∣∣ ≤ E
(
Xn − X̄n

)2 +
(
E
∣∣Xn − X̄n

∣∣)2
≤ 2E |Xn|2 I {H (|Xn|) > n} . (4.1.87)

This implies

1
(H−1 (n))2

n∑
k=1

∣∣1− σ2
k

∣∣
≤

n∑
k=1

1
k2/s

E |Xk|2 I {H (|Xk|) > k} . (4.1.88)

Therefore, by (4.1.70) and Levy’s inequality, cf. e.g. Petrov [85, Theorem
2.2], we obtain

P

[
max

1≤`≤n

∣∣∣∣∣∑̀
k=1

σkYnk −
∑̀
k=1

Ynk

∣∣∣∣∣ > tH−1 (n)

]

≤ 2P

[∣∣∣∣∣
n∑

k=1

σkYnk −
n∑

k=1

Ynk

∣∣∣∣∣ > tH−1 (n)

]
≤ C4t

−2 (4.1.89)

for some positive constant C4. Hence

max
1≤`≤n

∣∣∣∣∣∑̀
k=1

σkYnk −
∑̀
k=1

Ynk

∣∣∣∣∣ = OP

(
H−1 (n)

)
. (4.1.90)

The assertion flows from (4.1.74), (4.1.81) and (4.1.90). �

4.2. Strong Approximations for Linear Processes

Philipp and Stout [86] established martingale approximations and block-
ing techniques as general method to derive almost sure invariance principles
for sequences of weakly dependent random variables. This methodology
was seminal for the theory of strong approximations for dependent random
variables, cf. Lin and Lu [72, Part III] for an account. Recently, Wu [109]
presented a kind of new version of martingale approximation as a tool to
prove strong approximation results for dependent random variables. Liu
and Lin [76] developed an approximation by partial sums of m-dependent
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random vectors. Here we will use an approximation by mixingales, see Ap-
pendix A, together with the blocking argument of Aue et al. [1] to establish
a strong approximation for linear processes with dependent errors. We will
show that the dependent blocks can be approximated by independent ones
via a coupling result due to Bradley [12].

Theorem (Bradley (1983, Theorem 3)). Suppose X and Y are
random variables taking their values on S and R, respectively, where S is
a Borel space; suppose U is a uniform-[0, 1] random variable independent of
(X,Y ); and suppose q and γ are positive numbers such that q ≤ ‖Y ‖γ <

∞. Then there exists a real-valued random variable Y ∗ = f(X,Y, U) where
f is a measurable function from S × R × [0, 1] into R, such that Y ∗

is independent from X; the probability distributions of Y ∗ and Y are
identical and

P [|Y ∗ − Y | ≥ q] ≤ 18 (‖Y ‖γ/q)
γ/(2γ+1) (α (σ (X) , σ (Y )))2γ/(2γ+1) .

We refer to Bradley [12], Doukhan [33, Section 1.2.1] and Merlevède
and Peligrad [81] for a broad discussion of this coupling result and related
contributions. Concerning coupling methods see also Chapter 2.2 above.

Let us turn to the approximation theorem. Here we consider the follow-
ing model: Let {ηk, k ∈ Z} be a sequence of independent and identically
distributed random variables with mean zero and Fk−1 denotes the σ-
algebra generated by the family {. . . , ηk−2, ηk−1}. We consider dependent
errors

εk = σkηk, k ∈ Z, (4.2.1)

where σk is measurable with respect to Fk−1 for every k ∈ Z.
We assume that {εk, k ∈ Z} is a strictly stationary and strongly mixing

sequence, i.e α(n) → 0 (n→∞).
Under these considerations the sequence {yk, k ≥ 1} is defined as sta-

tionary solution of the autoregressive scheme

yk = φyk−1 + εk, k = 1, 2, . . . , (4.2.2)

where −1 < φ < 1 is a fixed parameter.
Our assumptions on the dependent errors are fulfilled for geometrically

ergodic and strictly stationary augmented GARCH processes, see Chaper 1
above.

The main result is an invariance principle for the law of the iterated
logarithm.

Theorem 4.2.1. Assume that (4.2.1) and (4.2.2) hold, {ηk, k ∈ Z} is
a sequence of independent and identically distributed random variables with
mean zero and {εk, k ∈ Z} is a strictly stationary and strongly mixing
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sequence, such that α(n) = O (θn) (n → ∞) for some 0 < θ < 1
and E |ε1|r < ∞ for some r > 2. Then we can redefine the sequence
{yk, k ≥ 1} without changing its distribution on a new probability space
together with a Wiener process {W (t), t ≥ 0} such that∣∣∑n

`=1 y` − Γ1/2W (n)
∣∣

√
n log log n

→ 0 a.s. (n→∞), (4.2.3)

where Γ = (1− φ2)−1Eε21 + (2φEε21)/((1 + φ)(1− φ)2).

Since this result is based on Theorem 4.1.1, which is essentially a rep-
resentation for partial sums in the sense of Skorokhod-Strassen, the strong
approximation above can be regarded as Strassen type almost sure invari-
ance principle.

Using a stronger approximation result due to Einmahl [39], which was
already employed by Liu and Lin [76], we can improve the rate of approxi-
mation under the same assumptions.

Theorem 4.2.2. Assume that (4.2.1) and (4.2.2) hold, {ηk, k ∈ Z} is
a sequence of independent and identically distributed random variables with
mean zero and {εk, k ∈ Z} is a strictly stationary and strongly mixing
sequence, such that α(n) = O (θn) (n → ∞) for some 0 < θ < 1
and E |ε1|r < ∞ for some r > 2. Then we can redefine the sequence
{yk, k ≥ 1} without changing its distribution on a new probability space
together with a Wiener process {W (t), t ≥ 0} such that∣∣∣∣∣

n∑
`=1

y` − Γ1/2W (n)

∣∣∣∣∣� n
1
2
−κ0 a.s. (n→∞), (4.2.4)

where Γ = (1−φ2)−1Eε21 +(2φEε21)/((1+φ)(1−φ)2) and κ0 is a constant
depending on r only.

Remark. If 2 < r ≤ 4, one can put η = 3 in the proof and derive that
for each 0 < κ < 1− 2/r the rate of approximation in (4.2.4) is O(n

1
2
−κ

6 )
almost surely as n→∞. If r > 4, one can put η = 3 in the proof and
derive that the order obeys O(n

5
12
√

log n) almost surely as n→∞.

The proof of both theorems will use two essential features from the
method of Aue et al. [1]. In order to approximate

∑n
`=1 y`, it suffices to

consider truncated versions ỹ` defined by

ỹk =
kρ∑

`=0

φ`εk−` for some fixed ρ, (0 < ρ < 1). (4.2.5)

The resulting sequence ỹ1, ỹ2 . . . is then merged into a sequence of consec-
utive “blocks” X1, Y1, X2, Y2, . . . . Following the method in Aue et al. [1],
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we introduce “big” blocks

Xk =
(k+1)η−(k+2)τ∑

`=kη

ỹ` (k = 1, 2, . . . ) (4.2.6)

and “small” blocks

Yk =
(k+1)η−1∑

`=(k+1)η−(k+2)τ+1

ỹ` (k = 1, 2, . . . ), (4.2.7)

where η, ρ and τ are nonnegative constants such that

τ < η − 1, 1 + ρ < η and ηρ < τ. (4.2.8)

The proofs are based on a series of lemmas.

Lemma 4.2.1. For each 0 < ρ < 1 let the sequence {ỹk, k ≥ 1} be
defined as in (4.2.5). Then for all k ≥ 1, m ≥ 0

‖E (ỹk|Fk−m)‖r ≤ φm ‖ε1‖r

1− φ
. (4.2.9)

Remark. The inequality implies that the sequence {(ỹk,Fk) , k ≥ 1} is
an Lr-mixingale (see Appendix A) with respect to the filtration {Fk, k ≥ 1},
where Fk denotes the σ-algebra generated by the family {. . . , ηk−1, ηk}.

Proof. If ` ≥ m, then σk−` and ηk−` are measurable with respect
to Fk−m. Hence

E (σk−`ηk−`|Fk−m) = σk−`ηk−` a.s.

Next, consider the case 0 ≤ ` ≤ m − 1. The sigma-algebra generated by
ηk−` is independent from Fk−m. This implies

E (σk−`ηk−`|Fk−m) = E (σk−`E (ηk−`|Fk−l−1) |Fk−m) = 0 a.s.

We obtain for m ≤ kρ that

E (ỹk|Fk−m) =
kρ∑

`=m

φ`εk−` a.s.,

and E (ỹk|Fk−m) = 0 if kρ < m. Thus, Minkowski’s inequality implies
the assertion. �

Lemma 4.2.2. For each 0 < ρ < 1 let the sequence {ỹk, k ≥ 1} be
defined as in (4.2.5). Then

P

[
max

1≤j<∞

∣∣∣∣∣
j∑

k=1

yk −
j∑

k=1

ỹk

∣∣∣∣∣ <∞

]
= 1. (4.2.10)
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Proof. The assertion follows from∥∥∥ max
1≤j<∞

∣∣∣∣∣
j∑

k=1

(yk − ỹk)

∣∣∣∣∣ ∥∥∥r
≤ ‖ε1‖r

∞∑
k=1

∞∑
`=kρ+1

|φ|` ,

where Minkowski’s inequality was applied. The right-hand side series con-
verges due to Cauchy’s condensation test, i.e.

2k exp
{

2kρ ln |φ|
}

=
(

2 exp
{

2kρk−1 ln |φ|
})k

≤ (2 exp {−1})k

implies
∞∑

k=1

|φ|k
ρ

<∞ if ρ > 0 and 0 < |φ| < 1. (4.2.11)

�

Lemma 4.2.3. Let η, ρ and τ be nonnegative constants satisfying
(4.2.8). Let the sequence {Xk, k ≥ 1} be defined as in (4.2.6). Then there
exists some k0 > 0 such that for all k ≥ k0

α (σ (X1, . . . , Xk−1) , σ (Xk)) ≤ αε (kτ ) . (4.2.12)

Proof. Observe that Xk is a function gk (say) of a finite subset of
{εk, k ≥ 1}. By (4.2.6), in terms of indices, the last one is (k+1)η−(k+2)τ .
We claim that kη−kηρ is the first one. It suffices to establish the inequality

kη − kηρ < (k + 1)η − (k + 2)τ − ((k + 1)η − (k + 2)τ )ρ , (4.2.13)

which is equivalent to

kηρ

((
1 +

1
k

)η

− (k + 2)ρ

kη

)ρ

− kηρ + (k + 2)τ < (k + 1)η − (k)η.

Since the right-hand side is asymptotically equivalent to ηkη−1 (k →∞),
the claim flows from (4.2.8). Therefore, for some k0 > 0, the following
representation holds for all k ≥ k0

Xk = gk

(
εkη−kηρ , . . . , ε(k+1)η−(k+2)τ

)
.

This implies the desired time lag difference between Xk−1 and Xk, i.e.
(k + 1)τ − kηρ. �

Lemma 4.2.4. Let η, ρ and τ be nonnegative constants satisfying
(4.2.8). Let the sequence {Yk, k ≥ 1} be defined as in (4.2.7). Then there
exists some k0 > 0 such that for all k ≥ k0

α (σ (Y1, . . . , Yk−1) , σ (Yk)) ≤ αε

(
kη−1

)
. (4.2.14)
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Proof. Observe that Yk is a function gk (say) of a finite subset of
{εk, k ≥ 1}. By (4.2.7), in terms of indices, the last one is (k + 1)η − 1.
We claim that (k + 1)η − (k + 2)τ + 1 − ((k + 1)η − (k + 2)τ + 1)ρ is the
first one. It suffices to establish the inequality

(k + 1)η − (k + 2)τ + 1− ((k + 1)η − (k + 2)τ + 1)ρ

< (k + 1)η − 1− ((k + 1)η − 1)ρ , (4.2.15)

which is equivalent to

((k + 1)η − 1)ρ − ((k + 1)η − (k + 2)τ + 1)ρ < (k + 2)τ − 2.

The claim flows from (4.2.8). Therefore, for some k0 > 0, the following
representation holds for all k ≥ k0

Yk = gk

(
ε(k+1)η−(k+2)τ+1−((k+1)η−(k+2)τ+1)ρ , . . . , ε(k+1)η−1

)
.

This implies the time lag difference between Yk−1 and Yk is (k+1)η−(k+
2)τ +1−kη +1 which is asymptotically equivalent to ηkη−1 (k →∞). �

Lemma 4.2.5. For each 0 < ρ < 1 let the sequence {ỹk, k ≥ 1} be
defined as in (4.2.5). Then there are positive constants C1, C2, n0 and m0,
such that

C1m ≤ E

(
n+m∑

k=n+1

ỹk

)2

≤ C2m (4.2.16)

holds for all n ≥ n0 and m ≥ m0.

Proof. For each k ≥ 1, by monotone convergence and Cauchy-Schwarz
inequality

E
∞∑

i,j=0

φi+j |ε1−iεk−j | <∞.

Therefore, noticing that {εk, k ∈ Z} are strictly stationary martingale
differences, we have

Ey1yk =
∞∑
i=0

φ2i+k−1Eε21. (4.2.17)

Moreover, strict stationarity of {yk, k ∈ Z} yields

E

(
n+m∑

`=n+1

y`

)2

= mEy2
1 + 2

m∑
`=2

(m− `+ 1)Ey1y` (4.2.18)
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and via dominated convergence

lim
m→∞

1
m
E

(
n+m∑

`=n+1

y`

)2

= Ey2
1 + 2

∞∑
`=2

Ey1y`

=
Eε21

1− φ2
+

2φEε21
(1 + φ)(1− φ)2

> 0 (4.2.19)

Finally, an application of the Cauchy-Schwarz inequality implies∣∣∣∣∣∣E
(

n+m∑
`=n+1

y`

)2

− E

(
n+m∑

`=n+1

ỹ`

)2
∣∣∣∣∣∣

≤
n+m∑

k=n+1

n+m∑
`=n+1

∞∑
i=kρ+1

∞∑
j=`ρ+1

φi+j ‖ε1‖2
2

≤
∞∑

k,`=n+1

∞∑
i=kρ+1

∞∑
j=`ρ+1

φi+j ‖ε1‖2
2 → 0 (n→∞). (4.2.20)

Via using (4.2.19) and (4.2.20), we find n0 and m0 such that (4.2.16)
holds. �

Lemma 4.2.6. Let η, ρ and τ be nonnegative constants satisfying
(4.2.8). Let the sequence {Xk, k ≥ 1} be defined as in (4.2.6). Then there
exist nonnegative constants C3, C4, C5, C6 and k0 > 0 such that for all
k ≥ k0

C3k
η−1 ≤ EX2

k ≤ C4k
η−1 and (4.2.21)

C5k
η ≤ E

(
k∑

`=1

X`

)2

≤ C6k
η. (4.2.22)

Proof. Observe that the order of ỹ-summands of Xk obeys

((k + 1)η − (k + 2)τ − kη + 1) ∼ ηkη−1 (k →∞). (4.2.23)

Thus both inequalities in (4.2.21) follow from (4.2.16). Since {εk, k ∈ Z} is
a martingale difference sequence, {Xk, k ≥ 1} is a sequence of uncorrelated
random variables. Hence

C3

k∑
`=1

`η−1 ≤ E

(
k∑

`=1

X`

)2

≤ C4

k∑
`=1

`η−1.

We claim limk→∞ k−η
∑k

`=1 `
η−1 exists and is nonnegative. Since
k∑

`=1

(`/k)η−1 ≤ k,
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the sequence is bounded. Since

(k + 1)−η
k+1∑
`=1

`η−1 − k−η
k∑

`=1

`η−1

=
((

k

k + 1

)η

+
1

k + 1
− 1
)
k−η

k∑
`=1

`η−1,

the difference is negative because η > 1 implies the strict inequality(
k

k+1

)η
< k

k+1 . Whence the sequence is monotonically nondecreasing. This
proves the claim and implies (4.2.22). �

Lemma 4.2.7. Let η, ρ and τ be nonnegative constants satisfying
(4.2.8). Let the sequence {Yk, k ≥ 1} be defined as in (4.2.7). Then there
exist nonnegative constants C7, C8, C8, C10 and k0 > 0 such that for all
k ≥ k0

C7k
τ ≤ EY 2

k ≤ C8k
τ and (4.2.24)

C9k
τ+1 ≤ E

(
k∑

`=1

Y`

)2

≤ C10k
τ+1. (4.2.25)

Proof. Observe that the order of

ỹ-summands of Yk is (k + 2)τ − 1. (4.2.26)

The proof of (4.2.24) and (4.2.25) mimics the proof of Lemma 4.2.6. �

Lemma 4.2.8. Let η, ρ and τ be nonnegative constants satisfying
(4.2.8). Let the sequences {Xk, k ≥ 1} and {Yk, k ≥ 1} be defined as in
(4.2.6) and (4.2.7). Then there exist nonnegative constants C11, C12 and
k0 > 0 such that for all k ≥ k0

‖Xk‖r ≤ C11k
(η−1)/2 and (4.2.27)

‖Yk‖r ≤ C12k
τ/2. (4.2.28)

Proof. Putting together (4.2.23), (4.2.26) and Lemma 4.2.1, the asser-
tions follow from Theorem A.1. �

Lemma 4.2.9. Let η, ρ and τ be nonnegative constants satisfying
(4.2.8). For each 0 < ρ < 1 let the sequence {ỹk, k ≥ 1} be defined as in
(4.2.5). Put Nk = (k + 1)η (k = 1, 2, . . . ). Then

max
Nk<n≤Nk+1

∣∣∣∣∣
n∑

`=1

ỹ` −
Nk∑
`=1

ỹ`

∣∣∣∣∣ = O
(
kη/2

)
a.s. (k →∞). (4.2.29)
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Proof. Let {ak, k ≥ 1} be a nonnegative and nondecreasing sequence.
Lemma 4.2.1 together with Theorem A.1 imply

P

 max
Nk<n≤Nk+1

∣∣∣∣∣∣
n∑

`=Nk+1

ỹ`

∣∣∣∣∣∣ > ak

 ≤ ∥∥∥ max
Nk<n≤Nk+1

∣∣∣∣∣∣
n∑

`=Nk+1

ỹ`

∣∣∣∣∣∣
∥∥∥r

r

/
ar

k

≤ C

(
Nk+1 −Nk

a2
k

)r/2

,

for some nonnegative constant C. Moreover, via using the mean value
theorem, the right-hand side of the inequality is asymptotically equivalent
to C

(
ηkη−1/a2

k

)r/2 (k → ∞). Since r/2 > 1, let ak = kη/2, and the
Borel-Cantelli lemma yields the assertion. �

Corollary 4.2.1. Let η, ρ and τ be nonnegative constants satisfying
(4.2.8). For each 0 < ρ < 1 let the sequence {ỹk, k ≥ 1} be defined as in
(4.2.5). Put Nk = (k + 1)η (k = 1, 2, . . . ). If 0 < κ < 1− 2/r, then

max
Nk<n≤Nk+1

∣∣∣∣∣
n∑

`=1

ỹ` −
Nk∑
`=1

ỹ`

∣∣∣∣∣ = O
(
k(η−κ)/2

)
a.s. (k →∞). (4.2.30)

Proof. Let {ak, k ≥ 1} be a nonnegative and nondecreasing sequence.
Lemma 4.2.1 together with Theorem A.1 imply

P

 max
Nk<n≤Nk+1

∣∣∣∣∣∣
n∑

`=Nk+1

ỹ`

∣∣∣∣∣∣ > ak

 ≤ ∥∥∥ max
Nk<n≤Nk+1

∣∣∣∣∣∣
n∑

`=Nk+1

ỹ`

∣∣∣∣∣∣
∥∥∥r

r

/
ar

k

≤ C

(
Nk+1 −Nk

a2
k

)r/2

,

for some nonnegative constant C. Moreover, via using the mean value
theorem, the right-hand side of the inequality is asymptotically equivalent
to C

(
ηkη−1/a2

k

)r/2 (k →∞). Let ak = k(η−κ)/2, then (1− κ)r/2 > 1
and the Borel-Cantelli Lemma yields the assertion. �

The next lemma is an analogue of Aue et al. [1, Lemma 5.13].

Lemma 4.2.10. Let η, ρ and τ be nonnegative constants satisfying
(4.2.8). For each 0 < ρ < 1 let the sequence {ỹk, k ≥ 1} be defined as in
(4.2.5). Let Nk = (k + 1)η (k = 1, 2, . . . ) and put

RX(k) = E

(
k∑

`=1

X`

)2

and RY (k) = E

(
k∑

`=1

Y`

)2

; (4.2.31)

Tn = E

(
n∑

`=1

y`

)2

and T̃n = E

(
n∑

`=1

ỹ`

)2

. (4.2.32)
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Then there exist nonnegative constants C13, C14, C15 and k0 > 0 such
that for all k ≥ k0 and Nk < n ≤ Nk+1∣∣∣T̃Nk

−RX(k)
∣∣∣ ≤ C13R

1/2
X (k)R1/2

Y (k), (4.2.33)

∣∣∣T̃n − T̃Nk

∣∣∣ ≤ C14k
(2η−1)/2 and (4.2.34)

∣∣∣Tn − T̃n

∣∣∣ ≤ C15n
1/2. (4.2.35)

Proof. Observe
Nk∑
`=1

ỹ` = X1 + Y1 + · · ·+Xk + Yk + ỹNk
. (4.2.36)

Furthermore∣∣‖ỹNk
‖2 − ‖yNk

‖2

∣∣ ≤ ∞∑
i=Nρ

k +1

φi ‖εNk−i‖2 <∞. (4.2.37)

Since εNk−i
D= ε1 and yNk

D= y1, we derive∥∥∥∥∥
Nk∑
`=1

ỹ` −
k∑

`=1

X`

∥∥∥∥∥
2

≤ R
1/2
Y (k) + C, (4.2.38)

for some nonnegative and finite constant C. Hence∣∣∣T̃ 1/2
Nk

−R
1/2
X (k)

∣∣∣ ≤ R
1/2
Y (k) + C. (4.2.39)

Moreover, by (4.2.36), we have∣∣∣T̃ 1/2
Nk

+R
1/2
X (k)

∣∣∣ ≤ 2R1/2
X (k) +R

1/2
Y (k) + C. (4.2.40)

Combining (4.2.39) and (4.2.40) with (4.2.22) and (4.2.25) we derive for
some k0 and for each k ≥ k0∣∣∣T̃ 1/2

Nk
−R

1/2
X (k)

∣∣∣ ∣∣∣T̃ 1/2
Nk

+R
1/2
X (k)

∣∣∣ ≤ C14R
1/2
X (k)R1/2

Y (k), (4.2.41)

where τ + 1 < η was applied. (4.2.41) implies (4.2.33). Concerning the
second assertion, observe∣∣∣T̃ 1/2

n − T̃
1/2
Nk

∣∣∣ ≤ ∥∥∥ max
Nk<n≤Nk+1

∣∣∣∣∣∣
n∑

`=Nk+1

ỹ`

∣∣∣∣∣∣
∥∥∥

2
and (4.2.42)

∣∣∣T̃ 1/2
n + T̃

1/2
Nk

∣∣∣ ≤ 2T̃ 1/2
Nk

+
∥∥∥ max

Nk<n≤Nk+1

∣∣∣∣∣∣
n∑

`=Nk+1

ỹ`

∣∣∣∣∣∣
∥∥∥

2
. (4.2.43)
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Putting together Lemma 4.2.1 with Theorem A.1, we obtain from (4.2.42)
and (4.2.43), for some k0 and for each k ≥ k0,∣∣∣T̃ 1/2

n − T̃
1/2
Nk

∣∣∣ ≤ Ck(η−1)/2 and (4.2.44)

∣∣∣T̃ 1/2
n + T̃

1/2
Nk

∣∣∣ ≤ Ckη/2. (4.2.45)

Combining (4.2.44) and (4.2.45) yields (4.2.34). Finally, (4.2.35) is a direct
consequence of (4.2.20). �

Lemma 4.2.11. Let the sequence {Xk, k ≥ 1} be defined as in (4.2.6).
There exists a sequence {X∗

k , k ≥ 1} of independent random variables so
that L(Xk) = L(X∗

k) and

k∑
`=1

X` −
k∑

`=1

X∗
` = O

(
R

1/2
X (k)

)
a.s. (k →∞), (4.2.46)

where RX(k) is defined as in (4.2.31).

Proof. It follows from (4.2.21) and Cauchy-Schwarz inequality that
there exists some k0 > 0 such that for all k ≥ k0

Ck(η−1)/2 ≤ ‖Xk‖2 ≤ ‖Xk‖r , (4.2.47)

where C is some positive constant. Hence

Ck
η
2
−1 ≤ ‖Xk‖r . (4.2.48)

Next, we can enrich the probability space with a sequence {Uk, k ≥ 1}
of independent, uniformly distributed random variables and we can apply
Bradley [12, Theorem 3], i.e. for each k ≥ k0 we can construct a random
variables X∗

k being a measurable functions of (X1, . . . , Xk, Uk) with the
same distribution as Xk and independent of (X1, . . . , Xk−1) and

P
[
|Xk −X∗

k | > Ck
η
2
−1
]
≤ 18

(
‖Xk‖r

Ck
η
2
−1
α2

k

)r/(2r+1)

,

where αk = α (σ (X1, . . . , Xk−1) , σ (Xk)). By (4.2.12) and (4.2.27),

P
[
|Xk −X∗

k | > Ck
η
2
−1
]
≤ C

(
k1/4θkτ

)2r/(2r+1)
.

Thus {X∗
k , k ≥ 1} is a sequence of independent random variables and it

follows from the Borel-Cantelli lemma that for almost surely all ω∣∣∣∣∣
k∑

`=1

X`(ω)−
k∑

`=1

X∗
` (ω)

∣∣∣∣∣ = c(ω) +
k∑

`=1

`
η
2
−1,

where c(ω) ≥ 0 is finite. Finally, (4.2.22) yields the assertion. �
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Corollary 4.2.2. Let the sequence {Xk, k ≥ 1} be defined as in
(4.2.6). If κ > 0, then there exists a sequence {X∗

k , k ≥ 1} of inde-
pendent random variables so that L(Xk) = L(X∗

k) and

k∑
`=1

X` −
k∑

`=1

X∗
` = O

(
k(η−κ)/2

)
a.s. (k →∞). (4.2.49)

Proof. It follows from (4.2.21) and Cauchy-Schwarz inequality that
there exists some k0 > 0 such that for all k ≥ k0

Ck(η−1)/2 ≤ ‖Xk‖2 ≤ ‖Xk‖r , (4.2.50)

where C is some positive constant. Hence

Ck
η−κ

2
−1 ≤ Ck

η
2
−1 ≤ ‖Xk‖r . (4.2.51)

Next, we can enrich the probability space with a sequence {Uk, k ≥ 1}
of independent uniformly distributed random variables and we can apply
Bradley [12, Theorem 3], i.e. for each k ≥ k0 we can construct a random
variables X∗

k being a measurable functions of (X1, . . . , Xk, Uk) with the
same distribution as Xk and independent of (X1, . . . , Xk−1) and

P
[
|Xk −X∗

k | > Ck
η−κ

2
−1
]
≤ 18

(
‖Xk‖r

Ck
η−κ

2
−1
α2

k

)r/(2r+1)

,

where αk = α (σ (X1, . . . , Xk−1) , σ (Xk)). By (4.2.12) and (4.2.27),

P
[
|Xk −X∗

k | > Ck
η−κ

2
−1
]
≤ C

(
k

1+κ
4 θkτ

)2r/(2r+1)
.

Thus {X∗
k , k ≥ 1} is a sequence of independent random variables and it

follows from the Borel-Cantelli lemma that we have for almost surely all ω∣∣∣∣∣
k∑

`=1

X`(ω)−
k∑

`=1

X∗
` (ω)

∣∣∣∣∣ = c(ω) +
k∑

`=1

`
η−κ

2
−1,

where c(ω) ≥ 0 is finite. �

Lemma 4.2.12. Let the sequence {Yk, k ≥ 1} be defined as in (4.2.7).
There exists a sequence {Y ∗

k , k ≥ 1} of independent random variables so
that L(Yk) = L(Y ∗

k ) and

k∑
`=1

Y` −
k∑

`=1

Y ∗
` = O

(
R

1/2
Y (k)

)
a.s. (k →∞), (4.2.52)

where RY (k) is defined as in (4.2.31).
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Proof. It follows from (4.2.24) and the Cauchy-Schwarz inequality that
there exists some k0 > 0 such that for all k ≥ k0

Ckτ/2 ≤ ‖Yk‖2 ≤ ‖Yk‖r , (4.2.53)

where C is some positive constant. Hence

Ck
τ−1
2 ≤ ‖Yk‖r . (4.2.54)

Next, we can enrich the probability space with a sequence {Uk, k ≥ 1}
of independent, uniformly distributed random variables and we can apply
Bradley [12, Theorem 3], i.e. for each k ≥ k0 we can construct a random
variables Y ∗

k being a measurable functions of (Y1, . . . , Yk, Uk) with the
same distribution as Yk and independent of (Y1, . . . , Yk−1) and

P
[
|Yk − Y ∗

k | > Ck
τ−1
2

]
≤ 18

(
‖Yk‖r

Ck
τ−1
2

α2
k

)r/(2r+1)

,

where αk = α (σ (Y1, . . . , Yk−1) , σ (Yk)). By (4.2.14) and (4.2.28),

P
[
|Yk − Y ∗

k | > Ck
τ−1
2

]
≤ C

(
k1/4θkη−1

)2r/(2r+1)
.

Thus {Y ∗
k , k ≥ 1} is a sequence of independent random variables and it

follows from the Borel-Cantelli lemma that we have for almost surely all ω∣∣∣∣∣
k∑

`=1

Y`(ω)−
k∑

`=1

Y ∗
` (ω)

∣∣∣∣∣ = c(ω) +
k∑

`=1

`
τ−1
2 ,

where c(ω) ≥ 0 is finite. Finally, (4.2.25) yields the assertion. �

Corollary 4.2.3. Let the sequence {Yk, k ≥ 1} as in (4.2.7). If
κ > 0, then there exists a sequence {Y ∗

k , k ≥ 1} of independent random
variables so that L(Yk) = L(Y ∗

k ) and

k∑
`=1

Y` −
k∑

`=1

Y ∗
` = O

(
k(τ−κ+1)/2

)
a.s. (k →∞). (4.2.55)

Proof. It follows from (4.2.24) and Cauchy-Schwarz inequality that
there exists some k0 > 0 such that for all k ≥ k0

Ckτ/2 ≤ ‖Yk‖2 ≤ ‖Yk‖r , (4.2.56)

where C is some positive constant. Hence

Ck(τ−κ−1)/2 ≤ Ck
τ−1
2 ≤ ‖Yk‖r . (4.2.57)

Next, we can enrich the probability space with a sequence {Uk, k ≥ 1}
of independent, uniformly distributed random variables and we can apply
Bradley [12, Theorem 3], i.e. for each k ≥ k0 we can construct a random
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variables Y ∗
k being a measurable functions of (Y1, . . . , Yk, Uk) with the

same distribution as Yk and independent of (Y1, . . . , Yk−1) and

P
[
|Yk − Y ∗

k | > Ck
τ−κ−1

2

]
≤ 18

(
‖Yk‖r

Ck
τ−κ−1

2

α2
k

)r/(2r+1)

,

where αk = α (σ (Y1, . . . , Yk−1) , σ (Yk)). By (4.2.14) and (4.2.28),

P
[
|Yk − Y ∗

k | > Ck
τ−κ−1

2

]
≤ C

(
k

1+κ
4 θkη−1

)2r/(2r+1)
.

Thus {Y ∗
k , k ≥ 1} is a sequence of independent random variables and it

follows from the Borel-Cantelli lemma that we have for almost surely all ω∣∣∣∣∣
k∑

`=1

Y`(ω)−
k∑

`=1

Y ∗
` (ω)

∣∣∣∣∣ = c(ω) +
k∑

`=1

`
τ−κ−1

2 ,

where c(ω) ≥ 0 is finite. �

Lemma 4.2.13. Let η, ρ and τ be nonnegative constants satisfying
(4.2.8). For each 0 < ρ < 1 let the sequence {ỹk, k ≥ 1} be defined as in
(4.2.5). Let Nk = (k + 1)η. Then we can redefine the sequence {ỹk, k ≥ 1}
without changing its distribution on a new probability space together with a
Wiener process {W (t), t ≥ 0} such that, as k →∞,

Nk∑
`=1

ỹ` −W (RX(k)) = o
(

(RX(k)L2RX(k))1/2
)

a.s., (4.2.58)

where RX(k) is defined as in (4.2.31) and Ln = log n and L2n = logLn.

Proof. Observe
Nk∑
`=1

ỹ` = X1 + Y1 + · · ·+Xk + Yk + ỹNk
. (4.2.59)

Furthermore∣∣‖ỹNk
‖2 − ‖yNk

‖2

∣∣ ≤ ∞∑
i=Nρ

k +1

φi ‖εNk−i‖2 <∞. (4.2.60)

Since ‖εNk−i‖2 = ‖ε1‖2, ‖yNk
‖2 = ‖y1‖2 and η > 1, an application of the

Borel-Cantelli lemma implies

P
[
|ỹNk

| > kη/2, i.o.
]

= 0. (4.2.61)

Hence, as k →∞,

|ỹNk
| = o

(
(RX(k)L2RX(k))1/2

)
a.s. (4.2.62)
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Observing (4.2.25) and τ + 1 < η, we derive from (4.2.46) and (4.2.52)

Nk∑
`=1

ỹ` −
k∑

`=1

X∗
` −

k∑
`=1

Y ∗
` = o

(
(RX(k)L2RX(k))1/2

)
a.s. (4.2.63)

By (4.2.27) and (4.2.28)
∞∑

k=1

k−ηr/2E|Xk|r <∞ (4.2.64)

and
∞∑

k=1

k−(τ+1)r/2E|Yk|r <∞, (4.2.65)

where r/2 > 1 was applied. Moreover, by (4.2.22) and (4.2.25)

C5 ≤ k−ηRX(k) = k−ηRX∗(k) ≤ C6 (4.2.66)

and

C9 ≤ k−(τ+1)RY (k) = k−(τ+1)RY ∗(k) ≤ C10. (4.2.67)

Therefore an application of Theorem 4.1.1 yields two Wiener processes
{W1(t), t ≥ 0} and {W2(t), t ≥ 0} such that

k∑
`=1

X∗
` −W1 (RX(k)) = o

(
(RX(k)L2RX(k))1/2

)
a.s., (4.2.68)

and
k∑

`=1

Y ∗
` −W2 (RY (k)) = o

(
(RY (k)L2RY (k))1/2

)
a.s. (4.2.69)

as k →∞. Using Petrov [85, Theorem 6.17], we have

W2 (RY (k)) = o
((
RY (k)L2RY (k)

)1/2
)

a.s. (k →∞). (4.2.70)

Since

lim
k→∞

(
RY (k)L2RY (k)

)
/ (RX(k)L2RX(k)) = 0, (4.2.71)

the assertion follows immediately from (4.2.63),(4.2.68) and (4.2.69). �

Corollary 4.2.4. Let η, ρ and τ be nonnegative constants satisfying
(4.2.8). For each 0 < ρ < 1 let the sequence {ỹk, k ≥ 1} be defined as
in (4.2.5). Let Nk = (k + 1)η. If 0 < κ < (η − 1) ∧ (1 − 2/r) and
0 < τ < η − 1− κ then we can redefine the sequence {ỹk, k ≥ 1} without
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changing its distribution on a new probability space together with a Wiener
process {W (t), t ≥ 0} such that, as k →∞,

Nk∑
`=1

ỹ` −W (RX(k)) = O
(
k(η−κ)/2

)
a.s., (4.2.72)

where RX(k) is defined as in (4.2.31) and Ln = log n and L2n = logLn.

Proof. Observe
Nk∑
`=1

ỹ` = X1 + Y1 + · · ·+Xk + Yk + ỹNk
. (4.2.73)

Furthermore∣∣‖ỹNk
‖2 − ‖yNk

‖2

∣∣ ≤ ∞∑
i=Nρ

k +1

φi ‖εNk−i‖2 <∞. (4.2.74)

Since ‖εNk−i‖2 = ‖ε1‖2, ‖yNk
‖2 = ‖y1‖2 and 0 < κ < η−1, an application

of the Borel-Cantelli lemma implies

P
[
|ỹNk

| > k(η−κ)/2, i.o.
]

= 0. (4.2.75)

Hence, as k →∞,

|ỹNk
| = O

(
k(η−κ)/2

)
a.s. (4.2.76)

Since τ + 1 < η, we derive from (4.2.49) and (4.2.55)

Nk∑
`=1

ỹ` −
k∑

`=1

X∗
` −

k∑
`=1

Y ∗
` = O

(
k(η−κ)/2

)
a.s. (4.2.77)

By (4.2.27) and (4.2.28)
∞∑

k=1

k−(η−κ)r/2E|Xk|r <∞ (4.2.78)

and
∞∑

k=1

k−(τ−κ+1)r/2E|Yk|r <∞, (4.2.79)

where (1− κ)r/2 > 1 was applied. Therefore from (4.1.66), i.e. Einmahl’s
result, there are two sequences of independent, standard normal random
variables {Z1k, k ≥ 1} and {Z2k, k ≥ 1} such that

k∑
`=1

X∗
` −

k∑
`=1

‖X`‖2Z1` = o
(
k(η−κ)/2

)
a.s., (4.2.80)
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and
k∑

`=1

Y ∗
` −

k∑
`=1

‖Y`‖2Z2` = o
(
k(τ+1−κ)/2

)
a.s. (4.2.81)

as k →∞. Using Csörgő and Révész [26, Proposition 1.4.1] we can interpo-
late the sum of normal random variables with independent Brownian bridge
processes. This construction yields two Wiener processes {W1(t), t ≥ 0}
and {W2(t), t ≥ 0} such that

k∑
`=1

X∗
` −W1 (RX(k)) = o

(
k(η−κ)/2

)
a.s., (4.2.82)

and
k∑

`=1

Y ∗
` −W2 (RY (k)) = o

(
k(τ+1−κ)/2

)
a.s. (4.2.83)

as k →∞. Using Petrov [85, Theorem 6.17], we have

W2 (RY (k)) = o
((
RY (k)L2RY (k)

)1/2
)

a.s. (k →∞). (4.2.84)

Since τ + 1 < η − κ,

lim
k→∞

(
RY (k)L2RY (k)

)
/k(η−κ) = 0, (4.2.85)

the assertion follows immediately from (4.2.77), (4.2.82) and (4.2.83). �

proof of Theorem 4.2.1. Put Nk = (k + 1)η (k = 1, 2, . . . ) and let
Nk < n ≤ Nk+1. By (4.2.29)

I1k =
n∑

`=1

ỹ` −
Nk∑
`=1

ỹ` � kη/2 a.s. (k →∞). (4.2.86)

Since

Nk < n ≤ Nk+1 implies k ∼ n1/η (n→∞), (4.2.87)

we have

I1n � n1/2 a.s. (n→∞). (4.2.88)

By (4.2.58) and (4.2.22)

I2k =
Nk∑
`=1

ỹ` −W (RX(k)) = o
(

(kηL2k
η)1/2

)
a.s., (4.2.89)

which implies

I2n = o
(

(nL2n)1/2
)

a.s. (n→∞). (4.2.90)
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We need to estimate the remaining increments. Consider a nonnegative and
nondecreasing sequence {ak, k ≥ 1}. Then for each t ≥ ak

sup
−ak≤s≤ak

|W (t+ s)−W (t)|

≤ sup
0≤s≤ak

|W (t+ s)−W (t)|

+ sup
0≤s≤ak

|W (t− ak + s)−W (t)|

≤ sup
0≤s≤ak

|W (t+ s)−W (t)|

+ sup
0≤s≤ak

|W (t− ak + s)−W (t− ak)|

+ |W (t− ak + ak)−W (t− ak)|
≤ sup

0≤s≤ak

|W (t+ s)−W (t)|

+ 2 sup
0≤s≤ak

|W (t− ak + s)−W (t− ak)| .

Hence for another nonnegative and nondecreasing sequence {bk, k ≥ 1} for
which bk ≥ ak, we have

sup
−ak≤s≤ak

|W (bk + s)−W (bk)|

≤ 3 sup
0≤t≤bk

sup
0≤s≤ak

|W (t+ s)−W (t)| . (4.2.91)

Therefore, using Hanson and Russo [56, display (3.10b)], the increment

I3k =
∣∣∣W (RX(k))−W

(
RX(k) +

(
T̃Nk

−RX(k)
))∣∣∣

is almost surely bounded, as k →∞, by

I3k �
(
k

η+τ+1
2

(
L
(
k

η−τ−1
2 + 1

)
+ L2k

η+τ+1
2

)) 1
2
, (4.2.92)

where (4.2.22), (4.2.25) and (4.2.33) was applied. Observe that (4.2.8), i.e

τ < η − 1, 1 + ρ < η and ηρ < τ,

remains true under the additional assumption

τ + 1 < η − 1. (4.2.93)

Fix τ > 0, let η > 2 and choose ρ sufficiently small. Hence

I3n �
(
k

2η−1
2

(
L
(
k

η
2 + 1

)
+ L2k

η
)) 1

2

=
(
n

1− 1
2η

(
L
(
n

1
2 + 1

)
+ L2n

)) 1
2

= n
1
2
− 1

4η

(
L
(
n

1
2 + 1

)
+ L2n

) 1
2

a.s. (n→∞).
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Next

I4k =
∣∣∣W (

T̃Nk

)
−W

(
T̃n

)∣∣∣ (4.2.94)

is almost surely bounded, as k →∞, by

I4k �
(
k

2η−1
2

(
L
(
k

1
2 + 1

)
+ L2k

2η−1
2

)) 1
2
, (4.2.95)

where (4.2.16) and (4.2.34) was applied. Therefore

I4n �
(
k

2η−1
2

(
L
(
k

1
2 + 1

)
+ L2k

2η−1
2

)) 1
2

= n
1
2
− 1

4η

(
L
(
n

1
2η + 1

)
+ L2n

1− 1
2η

) 1
2

a.s. (n→∞). (4.2.96)

Finally,

I5n =
∣∣∣W1

(
T̃n

)
−W1 (Tn)

∣∣∣
is almost surely bounded, as n→∞, by

I5n �
(

18n
1
2

(
L
(
n

1
2 + 1

)
+ L2n

1
2

)) 1
2
, (4.2.97)

where (4.2.35) was applied. Next, from (4.2.19)

Γ = lim
n→∞

1
n
Tn =

Eε21
1− φ2

+
2φEε21

(1 + φ)(1− φ)2
. (4.2.98)

Towards this end, observe that via (4.2.17) and (4.2.18)

Tn − nΓ

= 2‖ε1‖2
2

n∑
`=2

(n− `+ 1)
φ`−1

1− φ2
− 2φ‖ε1‖2

2n

(1 + φ)(1− φ)2

=
2‖ε1‖2

2

(1− φ)2

(
n∑

`=2

(n− `+ 1)φ`−1 − n

∞∑
`=2

φ`−1

)

=
2‖ε1‖2

2

(1− φ)2

(
−

n∑
`=2

(`− 1)φ`−1 − n

∞∑
`=n+1

φ`−1

)
(4.2.99)

Hence, for every λ > 0

|Tn − nΓ| = o
(
nλ
)

(n→∞). (4.2.100)

Together with (4.2.10) we arrive at
n∑

`=1

y` −W (nΓ) = o
(

(nL2n)1/2
)

a.s. (n→∞). (4.2.101)

�
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proof of Theorem 4.2.1. Put Nk = (k + 1)η (k = 1, 2, . . . ) and let
Nk < n ≤ Nk+1. By (4.2.30)

I1k =
n∑

`=1

ỹ` −
Nk∑
`=1

ỹ` � k
η−κ

2 a.s. (k →∞). (4.2.102)

Since

Nk < n ≤ Nk+1 implies k ∼ n1/η (n→∞), (4.2.103)

we have

I1n � n
1
2
− κ

2η a.s. (n→∞). (4.2.104)

By (4.2.72)

I2k =
Nk∑
`=1

ỹ` −W (RX(k)) � k
η−κ

2 a.s., (4.2.105)

which implies

I2n � n
1
2
− κ

2η a.s. (n→∞). (4.2.106)

These two estimates for the increments I1n and I2n together with the
remaining increments, which are estimated exactly along the lines in the
proof of Theorem 4.2.1, we derive assertion (4.2.4). �





CHAPTER 5

Time-Reversibility and Invariance

In this chapter we will consider linear processes with dependent errors.
In the first section we will derive a new “backward” strong approximation
results. In the second section we will discuss some applications of these
approximations in change-point analysis. In particular, we will further de-
velop the range of applicability of certain weighted change-point statistics
with respect to structural breaks in financial time series.

5.1. Reversed Approximations

A stationary process {Xk, k ∈ Z} is said to be time-reversible, in the
sense of Cheng [21], if for each n ∈ N and integers k1 < · · · < kn the vectors
(Xk1 , . . . , Xkn) and (X−k1 , . . . , X−kn) have the same distribution. This
condition is fulfilled for sequences of independent and identically distributed
random variables. Cheng [21] established necessary and sufficient conditions
for stationary Gaussian linear processes to be time-reversible, see also [18,
p. 546] for related references. As a consequence of time-reversibility: large
sample properties established for the (forward) partial sum process hold in
the same way for the “backward” version {

∑n
k=1X−k, n ≥ 1}. However,

Brockwell and Davis [18, p. 546] argued convincingly that in certain appli-
cations a Gaussian framework is too limited.

Reversed partial sums appear in change-point analysis in the context of
cumulative sum (CUSUM) statistics within the at most one change-point
model (AMOC). For instance, given a sample of length n, the so-called
CUSUM statistic n−1/2(S(k) − k

nS(n)) can be decomposed as a sum of
forward and backward sums, i.e.

Tn(k) =
(

1− k

n

) ∑k
`=1X`√
n

− k

n

∑n
`=k+1X`√

n
(1 ≤ k < n).

Observe that under strict stationarity, for each fixed n,{
n∑

`=k+1

X`, k = n− 1, . . . , 1

}
D=

{
k∑

`=1

X−`, k = 1, . . . , n− 1

}
.

The decomposition above is essential when dealing with weighted versions
of the CUSUM. These weighted versions with weight function g (say) arise

115
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from a (quasi) maximum-likelihood approach under the AMOC alternative,
see Chaper 3 above. Depending on the particular choice of g, the limiting
distribution of sup0<t<1 |Tn(nt)|/g(nt) can not be derived from a weak con-
vergence of Tn(nt) in the space D[0, 1]. Although finite-dimensional limit
distributions may exists, it turns out that, in certain cases, the usual tight-
ness conditions fail to hold. This can be remedied by a suitable renormal-
ization and proving a Darling-Erdős limit theorem. To pursue this approach
weighted Brownian bridge type approximations in the sense of Csörgő and
Horváth [23, Chapter 5.1] are essential, and hence, especially in the case
of dependent observations, strong invariance principles for backward sums
become necessary.

Horvath et al. [59] considered multivariate dependent observations. They
studied the asymptotic behavior of weighted CUSUM statistics under the
no-change null hypothesis and derived consistency results under the AMOC
alternative. In particular, they considered m-dependent observation, that
is, two observations are independent if their time lag exceeds m. Due
to this kind of asymptotic independence, they were able to establish the
approximation for the “backward” sum with a Gaussian process G (say),
i.e. max(n/2)≤k<n |

∑n
`=k+1X` −G(n− k)|/

√
n− k is “small”, as n→∞,

(cf. ibid. display (4.10)). Moreover, a Brownian bridge type approximation
in the sense of [24] was derived.

Davis et. al. [32] consider the AMOC model for parameter changes in
autoregressive time series models. Since they worked in a strongly mixing
framework and the reversed process is still strongly mixing, it suffices to
assume conditions such that a strong (forward) invariance principle due to
Kuelbs and Philipp [65] is valid. In Csörgő and Horváth [24, Theorem 4.1.3]
similar arguments concerning the backward approximation are implicitly
used (loc. cit. display (4.1.52)). They studied at most one location change
in the model X` = µ`+e`, where the noise process {e`, ` ≥ 1} is a strongly
mixing (one-sided) linear process e` =

∑∞
j=0 ajε`−j on an independent

and identically distributed error sequence, requiring appropriate smoothness
condition on the density function of ε1.

Recently, this particular location AMOC model was studied again in
Berkes et al. [6]. Therein strong forward and backward approximations are
established without imposing mixing condition on the linear process, hence
without any restrictions on the density function of the underlying error se-
quence. Their approach rests upon the so-called “Beveridge-Nelson” decom-
position for partial sums of linear processes which reduces the partial sums
to a sum of (independent) errors and negligible remainder terms. Thus they
were able to derive the strong approximations via using “Komlós-Major-
Tusnády” results (loc. cit. displays (3.2), (3.7)). Nevertheless, compared
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with the latter mixing approach, this approach is more restrictive with re-
spect to possible weight sequences {a`, ` ≥ 1} whose admission is stated in
terms of summability conditions. Further strong approximation results for
sums of linear processes based on “KMT-construction” are derived in Wu
[109, Proposition 2] under rather general summability conditions.

Ling [74] regarded the issue of “backward” limit theorems for depen-
dent sequences as a phenomena on its own. He then established, within a
general dependence framework, new “backward” versions of a strong law of
large numbers and a strong invariance principle. The latter one holds for
vector-valued martingale difference sequences satisfying a near-epoch depen-
dence (NED) condition. This approach is based on forward and reversed
martingale approximations and strong approximations due to Eberlein [37].
Although his method is quite different from our blocking and coupling ap-
proach below, we also need an additional NED condition. Moreover, in
order to pursue the proof of the main result, this additional NED condition
enables us to prove a backward maximal inequality .

Within a general dependence situation, beyond the scope of [21] and even
beyond mixing conditions, the NED condition seems to be indispensable to
assure an approximately kind of time-reversibility, which in turn guarantees
strong “backward” approximations. In conclusion we believe that our result
is the only contribution towards Ling’s new direction so far.

The near-epoch dependence concept was originally introduced in a “func-
tions of mixing processes” context, see McLeish [79], to prove limit theo-
rems for dependent “heterogeneous” processes. For instance, [79, Section
3] proved strong laws of large numbers and Billingsley [11, Section 19] es-
tablished a functional central limit theorem (FCLT). See also Davidson [29]
for a comprehensive exposition. In a time series context, when dealing with
an underlying independent white noise process, the NED condition is used
implicitly or explicitly to prove limit theorems. For instance, Berkes et al.
[8] proved a FCLT for augmented GARCH models based on Billingsley’s
FCLT. In addition, Ling and Li [75, Theorem 3.2] obtained a generalized
version of Billingsley’s result. Recently, Davidson [30] derived conditions for
a broad class of non-linear time series models to obey the NED property
and conditions for a FCLT.

For further use we formalize, in the manner of [74], what is meant for
a sequence to be near-epoch dependent on an underlying independent se-
quence.

Let (Ω,F , P ) denote a probability space on which there is a sequence of
independent random variables {ηk, −∞ < k <∞}. For each integer k and
m ≥ 0, let Fkm be the σ-algebra generated by the family {ηk−m, . . . , ηk}
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and Fk = σ (. . . , ηk−1, ηk). Suppose {Xk, −∞ < k <∞} is a sequence
of Fk-measurable random variables.

Definition. The sequence {(Xk,Fk) , −∞ < k <∞} is said to be
Lr-NED in terms of {ηk, −∞ < k <∞}, if sup−∞<k<∞ ‖Xk‖r < ∞
(r ≥ 1), and, for sequences of finite nonnegative constants ck and ψm,
where ψm ↓ 0 (m→∞), we have for all integers k and m ≥ 0

‖Xk − E [Xk|Fkm]‖r ≤ ckψm.

Here we consider the following model: Let {ηk, k ∈ Z} be a sequence
of independent random variables with mean zero and Fk−1 denotes the σ-
algebra generated by the family {. . . , ηk−2, ηk−1}. We consider dependent
errors

εk = σkηk, k ∈ Z, (5.1.1)

where σk is measurable with respect to Fk−1 for every k ∈ Z.
We assume that {εk, k ∈ Z} is Lr-NED in terms of {ηk, k ∈ Z} for

some r > 2, i.e.

‖εk − E [εk|ηk−m, . . . , ηk]‖r ≤ ckψk. (5.1.2)

Under these considerations the sequence {yk, k ≥ 1} is defined as solution
of the autoregressive scheme

yk = φyk−1 + εk, k = 1, 2, . . . , (5.1.3)

where −1 < φ < 1 is a fixed parameter.
Before we turn to the reversed invariance principle, we state a “back-

ward” maximal inequality for “truncated” versions of the solution of the
autoregressive scheme.

Theorem 5.1.1. Assume that (5.1.1), (5.1.2) and (5.1.3) hold. Let
ỹ−k =

∑kρ

`=0 φ
`ε−k−` (k = 1, 2, . . . ) for some ρ > 0. If

∑∞
k=0 ψk < ∞,

then for each integers m,n, satisfying 1 ≤ m ≤ n, we have

∥∥∥ max
m≤j≤n

∣∣∣∣∣
j∑

i=m

ỹ−i

∣∣∣∣∣ ∥∥∥r
≤ C1

∞∑
k=0

ψk

n−m+1∑
i=1

k∧(i+m−1)ρ∑
`=0

φ`ck−`

21/2

,

(5.1.4)

where C1 is a nonnegative constant.

Let us state the set of assumptions for the reversed approximation result.

Assumption A. Suppose that (5.1.1) holds and {ηk, k ∈ Z} is a se-
quence of independent, identically distributed random variables with mean
zero; (5.1.2) is satisfied for some r > 2 with supk∈Z ck < ∞ and
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k=0 ψk < ∞. Further, assume that {εk, k ∈ Z} is a strictly station-

ary and strongly mixing sequence, such that α(n) = O (θn) (n→∞) for
some 0 < θ < 1; and {yk, k ≥ 1} is defined as strictly stationary solution
of (5.1.3).

Let us state the reversed approximation results.

Theorem 5.1.2. If Assumption A holds, then we can redefine the se-
quence {y−k, k ≥ 1} without changing its distribution on a new probability
space together with a Wiener process {W (t), t ≥ 0} such that∣∣∣∣∣

n∑
`=1

y−` − Γ1/2W (n)

∣∣∣∣∣� n
1
2
−κ0 a.s. (n→∞), (5.1.5)

where Γ = (1−φ2)−1Eε21 +(2φEε21)/((1+φ)(1−φ)2) and κ0 is a constant
depending on r only.

Remark. If 2 < r ≤ 4, one can put η = 3 in the proof and derive that
for each 0 < κ < 1− 2/r the rate of approximation in (5.1.5) is O(n

1
2
−κ

6 )
almost surely as n→∞. If r > 4, one can put η = 3 in the proof and
derive that the order obeys O(n

5
12
√

log n) almost surely as n→∞.

The proof of the theorem will use two essential features from the method
of Aue et al. [1]. In order to approximate

∑n
`=1 y−`, it suffices to consider

truncated versions ỹ−` defined by

ỹ−k =
kρ∑

`=0

φ`ε−k−` for some fixed ρ, (0 < ρ < 1). (5.1.6)

The resulting sequence . . . , ỹ−2, ỹ−1 is then merged into a sequence of
consecutive “blocks” . . . , Y−2, X−2, Y−1, X−1. Following the method in
Aue et al. [1], we introduce “big” blocks

X−k =
(k+1)η−(k+2)τ∑

`=kη

ỹ−` (k = 1, 2, . . . ) (5.1.7)

and “small” blocks

Y−k =
(k+1)η−1∑

`=(k+1)η−(k+2)τ+1

ỹ−` (k = 1, 2, . . . ), (5.1.8)

where η, ρ and τ are nonnegative constants so that

τ < η − 1, 1 + ρ < η and ηρ < τ. (5.1.9)

The proof is based on a series of lemmas.



120 5. TIME-REVERSIBILITY AND INVARIANCE

Lemma 5.1.1. Let η, ρ and τ be nonnegative constants satisfying
(5.1.9). Let the sequence {X−k, k ≥ 1} be defined as in (5.1.7). Then
there exists some k0 > 0 such that for all k ≥ k0

α
(
σ (X−k) , σ

(
X−(k−1), . . . , X−1

)
,
)
≤ αε (kτ ) . (5.1.10)

Proof. Observe that X−k is a function gk (say) of a finite subset
of {ε−k, k ≥ 1}. By (5.1.7), in terms of indices, since kη < (k + 1)η −
(k + 2)τ , the last index is −kη. We claim that −((k + 1)η − (k + 2)τ −
((k + 1)η − (k + 2)τ )ρ) is the first one. It suffices to establish the inequality

kη − kηρ < (k + 1)η − (k + 2)τ − ((k + 1)η − (k + 2)τ )ρ ,

which flows from the proof of (4.2.13). Therefore, for some k0 > 0, the
following representation holds for all k ≥ k0

X−k = gk

(
ε−((k+1)η−(k+2)τ−((k+1)η−(k+2)τ )ρ), . . . , ε−kη

)
.

This implies the desired time lag difference between X−k and X−(k−1),
i.e. (k + 1)τ + kηρ ∼ kτ . �

Lemma 5.1.2. Let η, ρ and τ be nonnegative constants satisfying
(5.1.9). Let the sequence {Y−k, k ≥ 1} be defined as in (5.1.8). Then there
exists some k0 > 0 such that for all k ≥ k0

α
(
σ (Y−k) , σ

(
Y−(k−1), . . . , Y−1

)
,
)
≤ αε

(
kη−1

)
. (5.1.11)

Proof. Observe that Y−k is a function gk (say) of a finite subset of
{ε−k, k ≥ 1}. By (5.1.8), in terms of indices, the last one is −((k+1)η−1).
We claim that −((k+ 1)η − 1− ((k + 1)η − 1)ρ) is the first one. It suffices
to establish the inequality

(k + 1)η − (k + 2)τ + 1− ((k + 1)η − (k + 2)τ + 1)ρ

< (k + 1)η − 1− ((k + 1)η − 1)ρ ,

which flows from the proof of (4.2.15).Therefore, for some k0 > 0, the
following representation holds for all k ≥ k0

Y−k = gk

(
ε−((k+1)η−1−((k+1)η−1)ρ), . . . , ε−((k+1)η−1)

)
.

This implies that the time lag difference between Y−k and Y−(k−1) is
(k + 1)η − 1 − kη − 1 − (kη − 1)ρ which is asymptotically equivalent to
ηkη−1 (k →∞). �

proof of Theorem 5.1.1. Let {Gi, i ≥ 1} be the sequence of in-
creasing σ-algebras, i.e. Gi ⊂ Gi+1, defined by

Gi = σ (η−i, η−i+1, . . . ) (i = 1, 2, . . . ). (5.1.12)
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We will represent the conditional expectation E [X|Gi] by Ei [X]. Observe
that, for each fixed i ≥ 1,

{(Ei+n [ỹ−i] , Gi+n) , n ≥ 1} (5.1.13)

is an uniformly integrable martingale. Hence the martingale convergence
theorem implies

Ei+n [ỹ−i] → E∞ [ỹ−i] a.s. (n→∞). (5.1.14)

Moreover, using Minkowski’s inequality and the NED property, we have

‖Ei+n [ỹ−i]− ỹ−i‖r

≤
iρ∧n∑
`=0

φ` ‖Ei+`+n−` [ε−i−`]− ε−i−`‖r

≤
iρ∧n∑
`=0

φ`c−i−`ψn−`, (5.1.15)

which implies

‖Ei+n [ỹ−i]− ỹ−i‖r → 0 (n→∞). (5.1.16)

Therefore, using Elstrodt [44, Korollar VI.2.7], which J. Elstrodt attributes
to Weyl [107], there exists some subsequence {nk, k ≥ 1} so that

Ei+nk
[ỹ−i] → ỹ−i a.s. (k →∞). (5.1.17)

Combining (5.1.14) and (5.1.17) we arrive at

Ei+n [ỹ−i] → ỹ−i a.s. (n→∞). (5.1.18)

Observe that, for each fixed i ≥ 1,

{(Ei−m−1 [ỹ−i] , Gi−m) , m ≥ 1} (5.1.19)

is a reverse martingale. Nevertheless, if m ≥ i, then

Ei−m−1 [ỹ−i] = 0 a.s. (5.1.20)

Since

ỹ−i =
n∑

k=−m

Ei+k [ỹ−i]− Ei+k−1 [ỹ−i] = Ei+n [ỹ−i]− Ei−m−1 [ỹ−i] ,

(5.1.21)

we have from (5.1.18) and (5.1.20) the series representation

ỹ−i =
∞∑

k=−∞
Ei+k [ỹ−i]− Ei+k−1 [ỹ−i] a.s. (5.1.22)
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Similar to the proof of Theorem A.1, an application of Minkowski’s inequal-
ity together with (5.1.22) yields

∥∥∥ max
m≤j≤n

∣∣∣∣∣
j∑

i=m

ỹ−i

∣∣∣∣∣ ∥∥∥r
≤

∞∑
k=−∞

∥∥∥ max
m≤j≤n

∣∣∣∣∣
j∑

i=m

Ei+k [ỹ−i]− Ei+k−1 [ỹ−i]

∣∣∣∣∣ ∥∥∥r
.

(5.1.23)

Adjusting indices, for each fixed k we have

∥∥∥ max
m≤j≤n

∣∣∣∣∣
j∑

i=m

Ei+k [ỹ−i]− Ei+k−1 [ỹ−i]

∣∣∣∣∣ ∥∥∥r

=
∥∥∥ max

1≤j≤n−m+1

∣∣∣∣∣
j∑

i=1

Ei+m−1+k

[
ỹ−(i+m−1)

]
− Ei+m−1+k−1

[
ỹ−(i+m−1)

]∣∣∣∣∣ ∥∥∥r
.

(5.1.24)

Observe that for each fixed k,m{(
Ei+m−1+k

[
ỹ−(i+m−1)

]
− Ei+m−1+k−1

[
ỹ−(i+m−1)

]
,Gi+m−1+k

)
, i ≥ 1

}
(5.1.25)

is a martingale difference sequence. Similar to the proof of Theorem A.1, a
combination of the inequalities of Doob, Burkeholder and Minkowski yields

∥∥∥ max
1≤j≤n−m+1

∣∣∣∣∣
j∑

i=1

Ei+m−1+k

[
ỹ−(i+m−1)

]
− Ei+m−1+k−1

[
ỹ−(i+m−1)

]∣∣∣∣∣ ∥∥∥r

≤ C0

(
n−m+1∑

i=1

∥∥∥Ei+m−1+k

[
ỹ−(i+m−1)

]
− Ei+m−1+k−1

[
ỹ−(i+m−1)

] ∥∥∥2

r

)1/2

,

(5.1.26)

where C0 is a nonnegative constant. Obviously, for k < 0

Ei+m−1+k

[
ỹ−(i+m−1)

]
= 0 a.s. (5.1.27)

and for k > 0 via NED property∥∥∥ỹ−(i+m−1) − Ei+m−1+k

[
ỹ−(i+m−1)

] ∥∥∥
r

≤
k∧(i+m−1)ρ∑

`=0

φ`
∥∥∥ε−(i+m−1) − Ei+m−1+k

[
ε−(i+m−1)

] ∥∥∥
r

≤
k∧(i+m−1)ρ∑

`=0

φ`ck−`ψk. (5.1.28)
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Since ∥∥∥Ei+m−1+k

[
ỹ−(i+m−1)

]
− Ei+m−1+k−1

[
ỹ−(i+m−1)

] ∥∥∥
r

≤
∥∥∥ỹ−(i+m−1) − Ei+m−1+k

[
ỹ−(i+m−1)

] ∥∥∥
r

+
∥∥∥ỹ−(i+m−1) − Ei+m−1+k−1

[
ỹ−(i+m−1)

] ∥∥∥
r
,

together with (5.1.23),(5.1.24), (5.1.26), (5.1.27) and (5.1.28) we arrive at
(5.1.4). �

proof of Theorem 5.1.2. Under Assumption A, for each integer m

and n satisfying 1 ≤ m ≤ n, Theorem 5.1.1 implies∥∥∥ max
m≤j≤n

∣∣∣∣∣
j∑

i=m

ỹ−i

∣∣∣∣∣ ∥∥∥r
≤ C1 (n−m)1/2 , (5.1.29)

where C1 is an absolute constant. Since the underlying error sequences are
strictly stationary, the maximal inequality (5.1.29) together with the block
estimates (5.1.10) and (5.1.11) are sufficient to derive the assertions via
following exactly the proof of Theorem 4.2.2 with yk, ỹk, Xk, Yk replaced
by y−k, ỹ−k, X−k and Y−k, respectively. �

.

5.2. Applications in Change-Point Analysis

In certain financial time series, for instance foreign exchange rates, one
usually observes Yt in discrete time points, for example daily closing prices
or daily exchange rates. Therefore it seems reasonable to choose a discrete
time series model {Yk, k ≥ 1}. Taking into account that the autocorrela-
tion coefficient is close to one at lag one, cf. e.g. [45, Chapter 4.2.7], it is
common practice to model returns of the observed time series. Typically,
logarithms of the return series are considered, i.e. yk = log Yk−log Yk−1. In
order to capture so-called stylized features like, for instance, heavy tails and
volatility clustering of financial return series, returns are modeled in form of
generalized autoregressive conditional heteroscedasticity (GARCH). Notice
that heavy tails, in the sense of Fan and Yao [45, p. 169], means heavier
tails than the tails of the normal distribution. They also remarked that the
finite second moment assumption for daily returns is widely accepted. Nev-
ertheless, Basrak et al. [3, p. 96] pointed out that for instance log-returns of
foreign exchange rates can have infinite fifth, fourth or even third moments.

Following the common practice to fit returns according to the random
walk hypothesis, Francq and Zaköıan [47, Section 5.2] considered the autore-
gressive model yk = φyk−1 + εk, where the errors belong to the GARCH
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class. This particular AR-GARCH model received attention in establishing
asymptotics under the unit-root hypothesis, i.e. φ = 1, for the Dickey-
Fuller test, see Francq and Zaköıan [47] and Berkes et al. [8, Example 3.3]
and the references therein.

Francq and Zaköıan [46] introduced a quasi-maximum likelihood esti-
mator for the parameter vector of autoregressive moving average time series
with GARCH errors, i.e. ARMA-GARCH models, and established its al-
most sure consistency. Based on their results, Lee and Song [68] used a
cumulative sum (CUSUM) type statistic to test structural stability of the
ARMA-GARCH model parameters. The limit distribution under the no-
change null hypothesis was derived via a functional central limit theorem
for martingales. With a view towards weighted CUSUM statistics, Aue et
al. [1] derived a strong approximation result for partial sums of (squared)
augmented GARCH observations. Motivated by the results in Csörgő and
Horváth [24], they discussed the following weighted CUSUM version

1√
n

max
1≤k≤n

(n
k

)α
∣∣∣∣∣

k∑
i=1

y2
i −

k

n

n∑
i=1

y2
i

∣∣∣∣∣ .
Suitably normalized, under the no-change null-hypothesis, the limiting dis-
tribution was shown to be sup0<t<1 |Bt|/tα, for each 0 ≤ α < 1/2, where
{B(t), 0 ≤ t ≤ 1} denotes a Brownian bridge process, cf. (ibid., Example
3.3). In contrast to the (unweighted) statistic in Lee and Song [68], this
weighted version has better power for detecting changes that occur rather
early in the observed sample.

As a first example we discuss the case α = 1/2, which is excluded above,
and consider the analogous version to detect rather late change-points in
AR(1)-GARCH(1,1) models under a low moment condition. Let us restate
the set of assumptions.

Assumption A. Suppose that (5.1.1) holds and {ηk, k ∈ Z} is a se-
quence of independent, identically distributed random variables with mean
zero; (5.1.2) is satisfied for some r > 2 with supk∈Z ck < ∞ and∑∞

k=0 ψk < ∞. Further assume that {εk, k ∈ Z} is a strictly station-
ary and strongly mixing sequence, such that α(n) = O (θn) (n→∞) for
some 0 < θ < 1; and {yk, k ≥ 1} is defined as strictly stationary solution
of (5.1.3).

Among the recent contributions, Francq and Zaköıan [47] established
geometric ergodicity for a class of GARCH(1, 1) models under a less restric-
tive moment condition. These models include the augmented GARCH class,
see Chapter 1 above. Under their setup the geometric decay of the strong
mixing coefficient is clearly satisfied. Hansen [55] established the Lr-NED
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(r > 1) property for GARCH(1, 1) models. Actually, in [55] a kind of geo-
metrically Lr-NED property, in the sense of [30], was established which is
sufficient for our efforts. Ling [74, Remark 3.1] verified also NED properties
in AR-GARCH models.

Theorem 5.2.1. Suppose Assumption A holds. Let

A(x) = (2 log x)1/2 ,

D∗(x) = 2 log x+
1
2

log log x− 1
2

log(4π) and

Tn(k) =
(

1− k

n

)−1/2
(

k∑
i=1

yi −
k

n

n∑
i=1

yi

)
(k = 1, . . . , n− 1).

Then we have, as n→∞,

A (log n) Γ−1/2 max
1≤k≤n−1

|Tn(k)|√
n

−D∗ (log n) D→ E, (5.2.1)

where E is a Gumbel distributed random variable and Γ = (1−φ2)−1Eε21 +
(2φEε21)/((1 + φ)(1− φ)2).

The next example concerns the detection of a structural break without
any prior information whether it occurs early or late within the observed
sample. Similar to the proof of the last statement, the backward approxi-
mations, i.e. Lemma 5.2.4 - Lemma 5.2.6, are crucial. In addition, a kind of
asymptotic independence between the early and late observations is estab-
lished in order to derive the following extreme-value asymptotic.

Theorem 5.2.2. Suppose Assumption A holds. Let

A(x) = (2 log x)1/2 ,

D(x) = 2 log x+
1
2

log log x− 1
2

log π and

Gn(k) =
(
k

n

(
1− k

n

))−1/2
(

k∑
i=1

yi −
k

n

n∑
i=1

yi

)
(k = 1, . . . , n− 1).

Then we have, as n→∞,

A (log n) Γ−1/2 max
1≤k≤n−1

|Gn(k)|√
n

−D (log n) D→ E ∨ E′, (5.2.2)

where E and E′ are independent and identically Gumbel distributed
random variables and Γ = (1− φ2)−1Eε21 + (2φEε21)/((1 + φ)(1− φ)2).

Remark. For an application of both results in practice an estimator
for the unknown parameter Γ is needed. The invariance-principle-based
approach of Steinebach [99] yields estimators which are suitable with respect
to the rate of convergence.
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The proof of the main results is based on a series of lemmas.

Lemma 5.2.1. Let {uk, k ≥ 1} be a sequence for which 1 ≤ un ≤ n−1.
Then for each ρ > 0, as n→∞,

max
n−un≤k≤n−1

∣∣∣∣∣∣
n∑

i=k+1

yi −
n∑

i=k+1

(n−i+1)ρ∑
`=0

φ`εi−`

∣∣∣∣∣∣ = O(1) a.s. (5.2.3)

Proof. The following estimate yields immediately the assertion. By
Minkowski’s inequality

∥∥∥ max
n−un≤k≤n−1

∣∣∣∣∣∣
n∑

i=k+1

yi −
n∑

i=k+1

(n−i+1)ρ∑
`=0

φ`εi−`

∣∣∣∣∣∣
∥∥∥

r

≤ ‖ε1‖r

n∑
i=n−un

∞∑
`=(n−i+1)ρ+1

|φ|` <∞, (5.2.4)

where the second inequality flows from

n∑
i=n−un

|φ|(n−i+1)ρ ≤
n∑

i=1

|φ|iρ <∞. (5.2.5)

�

Lemma 5.2.2. Let {uk, k ≥ 1} be a sequence for which 1 ≤ un ≤ n−1.
Then for each 0 < ρ < 1 and n = 1, 2, . . . we have

n∑
i=k+1

(n−i+1)ρ∑
`=0

φ`εi−`, k = n− 1, . . . , n− un


D=

{
k∑

i=1

ỹ−i, k = 1, . . . , un

}
. (5.2.6)

Proof. Since the errors form a stationary sequence, we have
n∑

i=k+1

(n−i+1)ρ∑
`=0

φ`εi−`, k = n− 1, . . . , n− un


D=


n∑

i=k+1

(n−i+1)ρ∑
`=0

φ`εi−`−n−1, k = n− 1, . . . , n− un

 . (5.2.7)
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Hence, rephrasing the right-hand side, we have{
k∑

i=1

iρ∑
`=0

φ`ε−1−`, k = 1, . . . , un

}

=

{
k∑

i=1

ỹ−i, k = 1, . . . , un

}
, (5.2.8)

where {ỹ−k, k ≥ 1} are the truncated versions as defined in (5.1.6). �

Lemma 5.2.3. For each 0 < ρ < 1 let the sequence {ỹ−k, k ≥ 1} be
defined as in (5.1.6). Then

P

[
max

1≤j<∞

∣∣∣∣∣
j∑

k=1

y−k −
j∑

k=1

ỹ−k

∣∣∣∣∣ <∞

]
= 1. (5.2.9)

Proof. Follow the same pattern as in the proof of (4.2.10). �

Lemma 5.2.4. Let {uk, k ≥ 1} and {vk, k ≥ 1} be sequences for which
1 ≤ n−un ≤ vn and n−vn ↑ ∞ (n→∞). Then, for each 0 < ρ < 1, we
can enrich the probability space with a uniformly distributed random variable
U , such that, as n→∞,

max
n−un≤k≤vn

(
log log(n− k)

n− k

)1/2
∣∣∣∣∣

n∑
i=k+1

yi − Γ1/2W2n(n− k)

∣∣∣∣∣ = oP (1),

(5.2.10)

where, for each n, the Wiener process {W2n(t), 0 ≤ t ≤ un} is a measur-
able function of

{
εn−un+1−uρ

n
, . . . , εn, U

}
.

Proof. We apply Theorem 5.1.2, that is, we can redefine the sequence
{y`, l ≥ 1} on a possibly different probability space together with a Wiener
process, such that∣∣∣∣∣

n∑
`=1

y−` − Γ1/2W (n)

∣∣∣∣∣� n
1
2
−κ0 a.s. (n→∞). (5.2.11)

Lemma 5.2.3 yields immediately∣∣∣∣∣
n∑

`=1

ỹ−` − Γ1/2W (n)

∣∣∣∣∣� n
1
2
−κ0 a.s. (n→∞). (5.2.12)

This strong approximation result constitutes a law on the Borel sets of Run×
C[0, un], i.e.

L

({
k∑

`=1

ỹ−`, k = 1, . . . , un

}
, {W (t), t ∈ [0, un]}

)
. (5.2.13)



128 5. TIME-REVERSIBILITY AND INVARIANCE

In light of Lemma 5.2.2 we can apply Billingsley [11, Lemma 21.1], see
also Chapter 2.2 above, that is, we enrich the probability space with a
uniformly distributed random variable U and we can construct a sequence
of approximating Wiener processes W2n (say) on the initial probability
space, such that, for each n ∈ N,

n∑
i=k+1

(n−i+1)ρ∑
`=0

φ`εi−` − Γ1/2W2n(n− k), k = n− 1, . . . , n− un


D=

{
n−k∑
`=1

ỹ−` − Γ1/2W (n− k), k = n− 1, . . . , n− un

}
. (5.2.14)

This implies

max
n−un≤k≤vn

(
log log(n− k)

n− k

)1/2
∣∣∣∣∣∣

n∑
i=k+1

(n−i+1)ρ∑
`=0

φ`εi−` − Γ1/2W2n(n− k)

∣∣∣∣∣∣
= oP (1) (n→∞), (5.2.15)

The application of [11, Lemma 21.1] rests upon the observation that the
approximating Wiener process {W (t), t ∈ [0, un]} is a random element
in the polish space C[0, un] and upon the fact that C[0, un] is Borel
isomorphic to [0, 1], cf. e.g. Dudley [35, Theorem 13.1.1] and [11, p. 212].
As a consequence of the coupling construction of [11, Lemma 21.1], which
involves the Borel isomorphism and regular conditional distributions, each
random element W2n is a measurable function of U and

n∑
i=k+1

(n−i+1)ρ∑
`=0

φ`εi−`, k = n− 1, . . . , n− un

 (5.2.16)

Since the latter vector is measurable with respect to
{
εn−un+1−uρ

n
, . . . , εn

}
,

the assertion follows via an application of Lemma 5.2.1. �

Lemma 5.2.5. Let {uk, k ≥ 1} be a sequence for which 1 ≤ un ≤ n−1
and un ↑ ∞ (n → ∞). Then, for each 0 < ρ < 1, we can enrich
the probability space with a uniformly distributed random variable U , such
that, as n→∞,

max
n−un≤k≤n−1

∣∣∑n
i=k+1 yi − Γ1/2W2n(n− k)

∣∣
√
n− k

= oP

(
(log log n)1/2

)
, (5.2.17)

where, for each n, the Wiener process {W2n(t), 0 ≤ t ≤ un} is a measur-
able function of

{
εn−un+1−uρ

n
, . . . , εn, U

}
.
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Proof. Choose a sequence {vk, k ≥ 1} such that n−un ≤ vn ≤ n−1
and

n− vn ↑ ∞ and (log log n)−1/2√n− vn ↓ 0 (n→∞). (5.2.18)

By Lemma 5.2.4, we have

max
n−un≤k≤vn

∣∣∑n
i=k+1 yi − Γ1/2W2n(n− k)

∣∣
√
n− k

= oP

(
(log log n)1/2

)
(5.2.19)

as n→∞. Using (4.2.10) and (4.2.9) together with the maximal inequality
in Theorem A.1, we derive for each ε > 0

lim
n→∞

P

[
(log log n)−1/2 max

vn≤k≤n−1

∣∣∑n
i=k+1 yi

∣∣
√
n− k

> ε

]
= 0. (5.2.20)

�

Lemma 5.2.6. For each 0 < ρ < 1 we can enrich the probability space
with a uniformly distributed random variable U , such that, as n→∞,∣∣∣ max

n− n
log n

≤k≤n−1

∣∣∑n
i=k+1 yi

∣∣
√
n− k

− max
n− n

log n
≤k≤n−1

∣∣Γ1/2W2n(n− k)
∣∣

√
n− k

∣∣∣
= oP

(
(log log n)−1/2

)
, (5.2.21)

where, for each n, the Wiener process {W2n(t), 0 ≤ t ≤ n/ log n} is a
measurable function of

{
εn−(n/ log n)+1−(n/ log n)ρ , . . . , εn, U

}
.

Proof. Follow the pattern in the proof of Lemma 2.1.8 via using Lemma
5.2.4 and Lemma 5.2.5. �

With similar arguments, via using the approximation of Theorem 5.1.2
only, we derive the following approximation.

Lemma 5.2.7. For each 0 < ρ < 1 we can enrich the probability space
with a uniformly distributed random variable V , such that, as n→∞,∣∣∣ max

1≤k≤ n
log n

∣∣∣∑k
i=1 yi

∣∣∣
√
k

− max
1≤k≤ n

log n

∣∣Γ1/2W1n(k)
∣∣

√
k

∣∣∣
= oP

(
(log log n)−1/2

)
, (5.2.22)

where, for each n, the Wiener process {W1n(t), 0 ≤ t ≤ n/ log n} is a
measurable function of

{
ε1, . . . , εn/ log n, V

}
.

proof of Theorem 5.2.1. Consider the decomposition

Tn(k)√
n

=
(

1− k

n

)1/2 S(k)√
n
−
(
k

n

)
S(n)− S(k)√

n− k
, (5.2.23)
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where S(k) denotes the k-th partial sum. Using Theorem 4.2.2 we arrive
at

max
1≤k≤n/ log n

∣∣∣∣∣ |Tn(k)|√
n

−
(

1− k

n

)1/2 |S(k)|√
n

∣∣∣∣∣ = OP

(
(log n)−1

)
. (5.2.24)

Therefore

A (log n) Γ−1/2 max
1≤k≤n/ log n

|Tn(k)|√
n

−D (log n) P→ −∞. (5.2.25)

Since the law of the iterated logarithm at zero implies

sup
1/ log n≤t≤1−(1/ log n)

|W (t)|√
t

= OP

(
(log log log n)1/2

)
, (5.2.26)

an application of (5.2.10) together with scaling properties of the Wiener
process yields

max
n/ log n≤k≤n−(n/ log n)

|Tn(k)|√
n

= OP

(
(log log log n)1/2

)
. (5.2.27)

Hence

A (log n) Γ−1/2 max
n/ log n≤k≤n−(n/ log n)

|Tn(k)|√
n

−D (log n) P→ −∞. (5.2.28)

By (5.2.17), we have

max
n−(n/ log n)≤k≤n−1

(
1− k

n

)
|S(n)− S(k)|√

n− k
= OP

(
(log log n)1/2

log n

)
. (5.2.29)

Hence

max
n−(n/ log n)≤k≤n−1

∣∣∣∣ |Tn(k)|√
n

− |S(n)− S(k)|√
n− k

∣∣∣∣ = OP

(
(log log n)1/2

log n

)
.

(5.2.30)

The final assertion follows by standard arguments as in the proof of Theorem
2.1.2 via using (5.2.21). �

proof of Theorem 5.2.2. Using Theorem 5.1.2 and following the pat-
tern in the proof of Theorem 2.1.4, we derive

max
n

log n
≤k≤n− n

log n

|Gn(k)| = OP (log log log n) (n→∞). (5.2.31)
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Therefore, using Lemma 5.2.6 and Lemma 5.2.7 and reproving (2.1.40) and
(2.1.45), it suffices to prove

lim
n→∞

P

[
max

{
max

1≤k≤n/ log n
|W1n(k)| , max

n−(n/ log n)≤k≤n−1
|W2n(n− k)|

}

≤ (y +D (log n)) /A (log n)

]
= exp {−2 exp {−y}} . (5.2.32)

Observe the construction of the approximating Wiener processes in Lemma
5.2.6 and Lemma 5.2.7. Since the error sequence is α-mixing, it suffices to
prove

lim
n→∞

P

[
max

1≤k≤n/ log n

|W1n(k)|√
k

≤ (y +D (log n)) /A (log n)

]

× P

[
max

n−(n/ log n)≤k≤n−1

|W2n(n− k)|√
n− k

≤ (y +D (log n)) /A (log n)

]
= exp {−2 exp {−y}} . (5.2.33)

The final assertion follows now by the same arguments as in the proof of
Theorem 2.1.5. �





APPENDIX A

Maximal Inequalities for Mixingales

A mixingale sequence can be viewed as an asymptotic equivalent of a
martingale difference sequence. Let (Ω,F , P ) denote a probability space
on which there is a sequence of random variables {Xk, −∞ ≤ k ≤ ∞}. Let
{Fk, −∞ ≤ k ≤ ∞} be a sequence of sub-σ-algebras which are increasing
in k. We will represent the conditional expectation E [X|Fk] by EkX.

Definition A.1. The sequence {(Xk,Fk) , k ≥ 1} is an Lr-mixingale
(r ≥ 1) if, for sequences of finite nonnegative constants cn and ψm where
ψm ↓ 0 (m→∞), we have for all n ≥ 1, m ≥ 0

‖En−mXn‖r ≤ cnψm and ‖Xn − En+mXn‖r ≤ cnψm. (A.1)

McLeish [79] originally introduced L2-mixingales and presented a tele-
scoping sum representation which is valid in Lr for Lr-mixingales (r ≥ 1).
Observing that {(Ei−n−1Xi,Fi−n) , n ≥ 1} is a reversed martingale, the
reversed martingale convergence theorem implies

Ei−n−1Xi → E−∞Xi a.s. (n→∞).

Since ‖E−∞Xi‖r ≤ ciψm for all m, and hence is 0. Moreover,
{(Ei+mXi,Fi+m) , m ≥ 1} is a uniformly integrable martingale. The mar-
tingale convergence theorem yields

Ei+mXi → E∞Xi a.s. (m→∞),

and by the mixingale property Xi = E+∞Xi almost surely for all n.
Therefore, for each i ≥ 1, the telescoping sum

Xi =
n∑

k=−m

Ei−kXi − Ei−k−1Xi = Ei+mXi − Ei−n−1Xi

yields the following representation

Xi =
∞∑

k=−∞
Ei−kXi − Ei−k−1Xi a.s. (A.2)

which is a crucial tool in the proof of McLeish’s L2-mixingale analogue of
Doob’s inequality.
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Hansen [54] contributes a maximal inequality for Lr-mixingales (r > 1).
Recently, Meng and Ling [80, Remark 2] raised doubts whether Hansen’s
maximal inequality is true for 1 < r < 2 or not. They proved, via using
estimates by Li [70], another maximal inequality for triangular Lr-mixingale
arrays (1 < r ≤ 2). Here, we will present a direct proof, mainly along the
lines of Hansen [54] via using a standard convexity inequality, to estimate
‖maxm≤j≤n |

∑j
i=mXi|‖r. For m = 1 our estimates coincide with the

aforementioned results.

Theorem A.1. Let the sequence {(Xk,Fk) , k ≥ 1} be an Lr-mixing-
ale (r ≥ 1) such that

∑∞
k=0 ψk <∞. If 1 < r < 2, then there exists a

finite constant C1, such that for all n ≥ 1 and 1 ≤ m ≤ n,∥∥∥ max
m≤j≤n

∣∣∣∣∣
j∑

i=m

Xi

∣∣∣∣∣ ∥∥∥r
≤ C1

∞∑
k=0

ψk

(
n∑

i=m

cri

)1/r

(A.3)

and, if r ≥ 2, ∥∥∥ max
m≤j≤n

∣∣∣∣∣
j∑

i=m

Xi

∣∣∣∣∣ ∥∥∥r
≤ C1

∞∑
k=0

ψk

(
n∑

i=m

c2i

)1/2

. (A.4)

Proof. For each i ≥ 1 and integer k let

Xki = Ei−kXi − Ei−k−1Xi. (A.5)

Moreover, put Sj =
∑j

i=1Xi. From (A.2) and Minkowski’s inequality we
have

‖ max
m≤j≤n

|Sj − Sm−1| ‖r ≤
∞∑

k=−∞

∥∥∥ max
m≤j≤n

∣∣∣∣∣
j∑

i=m

Xki

∣∣∣∣∣ ∥∥∥r
. (A.6)

The sequence {(Xk,i+m−1,Fi+m−1−k) , i ≥ 1} is a martingale difference
sequence. Since maxm≤j≤n

∑j
i=mXki = max1≤j≤n−m+1

∑j
i=1Xk,i+m−1,

an application of Doob’s inequality yields

∞∑
k=−∞

∥∥∥ max
m≤j≤n

∣∣∣∣∣
j∑

i=m

Xki

∣∣∣∣∣ ∥∥∥r
≤ r

r − 1

∞∑
k=−∞

∥∥∥ n−m+1∑
i=1

Xk,i+m−1

∥∥∥
r
. (A.7)

From Burkholder’s inequality, cf. e.g. Hall and Heyde [53, Theorem 2.10],
we arrive via (A.6) and (A.7) at

‖ max
m≤j≤n

|Sj − Sm−1| ‖r ≤ 18r
(

r

r − 1

)1/2 ∞∑
k=−∞

(∥∥∥ n−m+1∑
i=1

X2
k,i+m−1

∥∥∥r/2

r/2

)1/r

(A.8)
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Consider the case r ≥ 2. We derive from (A.8) via an application of
Minkowski’s inequality

‖ max
m≤j≤n

|Sj − Sm−1| ‖r ≤ C0

∞∑
k=−∞

(
n−m+1∑

i=1

‖Xk,i+m−1‖2
r

)1/2

, (A.9)

where C0 = 18r (r/(r − 1))1/2. Observe, from (A.1) and (A.5), for k ≥ 0

‖Xk,i+m−1‖r ≤ ‖Ei+m−1−kXi+m−1‖r

+ ‖Ei+m−1−k−1Xi+m−1‖r ≤ 2ci+m−1ψk (A.10)

and for k < 0

‖Xk,i+m−1‖r ≤ ‖Xi+m−1 − Ei+m−1−kXi+m−1‖r

+ ‖Xi+m−1 − Ei+m−1−k−1Xi+m−1‖r

≤ 2ci+m−1ψ|k|. (A.11)

Hence, we have

‖ max
m≤j≤n

|Sj − Sm−1| ‖r ≤ 4C0

∞∑
k=0

ψk

(
n∑

i=m

c2i

)1/2

, (A.12)

which yields (A.4). Towards this end, consider the case 1 < r < 2. Since
2/r > 1, the convexity inequality( n−m+1∑

i=1

(|Xk,i+m−1|r)2/r
)r/2

≤
n−m+1∑

i=1

|Xk,i+m−1|r a.s. (A.13)

holds. We derive via (A.8) and (A.13)

‖ max
m≤j≤n

|Sj − Sm−1| ‖r ≤ C0

∞∑
k=−∞

(
E

n−m+1∑
i=1

|Xk,i+m−1|r
)1/r

. (A.14)

Finally, we arrive via (A.10) and (A.11) at

‖ max
m≤j≤n

|Sj − Sm−1| ‖r ≤ 4C0

∞∑
k=0

ψk

(
n∑

i=m

cri

)1/r

, (A.15)

where C0 = 18r (r/(r − 1))1/2. This implies (A.3) �
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statistics. Canad. J. Statist. 30, 493–556 (2002).
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