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1  INTRODUCTION 

All living organisms are made up of cells. Organisms that exist as single cells are 

called unicellular while those made of a group of cells are referred to as multicellular. In 

multicellular organisms, most cells are surrounded by a complex network of non-cellular 

material ‘ExtraCellularMatrix’ (ECM). In humans, the ECM accounts for more than 80% 

of the total body mass whereas the cell content constitutes only 20%. The ECM is 

composed of three major classes of biomolecules. The first and predominant class is 

comprised of structural proteins such as collagen and elastin. Proteoglycans and 

specialized non-collagenous proteins like fibrillin, fibronectin and laminin form the 

second and third category of ECM molecules. The focus of this study is on the members 

of the first class of proteins, the collagens. 

 

1.1 Collagen 

The word collagen was derived from the Greek word ‘kolla’ which means ‘glue 

producer.’ Collagens are the most abundant proteins in the human body constituting 

about 30% of its protein mass. They provide the major organic component with 90% of 

dry mass in bone and 60% in cartilage. Hence, these proteins offer the structural 

framework of bone and cartilage and are responsible for shape and biomechanical 

properties such as resistance to pressure, torsion and tension. The defining feature of a 

collagen molecule is the sequence motif XaaYaaGly. In 1954, Ramachandran and Kartha 

first proposed the three-stranded helical model for collagens (Ramachandran & Kartha, 

1954) that was later improved to give the generally accepted supercoiled triple helical 

structure (Rich and Vrick, 1961, Ramachandran et al., 1967 and Fraser et al., 1979).  It is 

now known that the collagen structure is made up of three parallel polypeptide strands in 

a left-handed, polyproline II-type (PPII) helical conformation, which then coil around 

each other with a one-residue stagger to form a right-handed triple helix (Figure 1.1). The 

tight packing of PPII helices within the triple helix requires that every third residue is a 

Gly, resulting in a XaaYaaGly repeat, where Xaa and Yaa can be any amino acid 

(Shoulders & Raines, 2009). In 1994, Berman and colleagues (Bella et al., 1994) reported 

the first high-resolution crystal structure of a triple-helical collagen-related peptide (CRP) 
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(Figure 1.1a). This structure confirmed the existence of inter-strand N-H(Gly)…O=C(Xaa) 

hydrogen bonds (Figure 1.1c,d) and provided additional insights into the Cα-

H(Gly/Yaa)…O=C(Xaa/Gly) hydrogen bonds that could likewise stabilize the triple helix (Bella 

& Berman, 1996). Owing to this structural framework, all collagens, or rather 

collagenous domains, possess the unique XaaYaaGly repeat. 

 

   
 

1.2 Classification of collagens 

The vertebrate family of collagens is encoded by more than 43 genes, which yield 

at least 28 distinct trimeric collagens (Shoulders & Raines, 2009; Veit et al., 2006). Most 

collagens form supramolecular assemblies and depending on the structure of these 

assemblies, the collagen superfamily can be divided into several subfamilies such as fibril 

forming, network forming, anchoring fibril forming, FACITs (Fibril-associated collagens 

with interrupted triple helices), MACITs (Membrane associated collagens with 

interrupted triple helices) and MULTIPLEXINs (Multiple triple helix domains and 

interruptions) (Figure 1.2 & Table 1.1). In addition, there is also a group of highly 

heterogenous proteins that contain collagenous domains but are not considered as 

collagens as they do not primarily fulfil a structural function. The subcomponent C1q of 

complement, a C1q-like factor, adiponectin, at least eight collectins and three ficolins,  

Figure 1.1 Overview of the collagen 
triple helix. (a) First high-resolution 
crystal structure of a collagen triple helix, 
formed by (ProHypGly)4-(ProHypAla)5 
[PDB-1cag] (Bella et al., 1994). (b) View 
down the axis of a (ProProGly)10 triple 
helix [PDB-1k6f] with the three strands 
depicted in space-filling, ball-and-stick, 
and ribbon representation (Berisio et al., 
2002). (c) Ball-and-stick image of a 
segment of collagen triple helix [PDB-
1cag], highlighting the ladder of inter-
strand hydrogen bonds. (d) Stagger of 
the three strands in the segment in panel 
c. Adapted from (Shoulders & Raines, 
2009) 
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Figure 1.2 Members of the collagen superfamily and their known supramolecular 
assemblies. The collagen superfamily can be divided into nine families on the basis of the 
supramolecular assemblies and other features of its members: (a) fibril-forming collagens; (b) 
fibril-associated collagens with interrupted triple helices (FACITs) located on the surface of 
fibrils, and structurally related collagens; (c) collagens forming hexagonal networks; (d) the 
family of type IV collagens located in basement membranes; (e) type VI collagen, which forms 
beaded filaments; (f) type VII collagen, which forms anchoring fibrils for basement membranes; 
(g) collagens with transmembrane domains; and (h) the family of type XV and XVIII collagens. 
The supramolecular assemblies of families (g) and (h) are unknown and are therefore not 
shown in this figure. The polypeptide chains found in the 28 collagen types are encoded by 43 
genes in total (shown in blue), each molecule consisting of three polypeptide chains that can be 
either identical or different. An additional highly heterogenous group (i) within the superfamily 
comprises proteins that possess collagenous domains but have not been defined as collagens. 
Some of these (i) proteins could also be defined as collagens, although they do not have a 
structural function. The collagen domains are shown in purple, the N and C-terminal non-
collagenous domains are in dark pink, and the non-collagenous domains interrupting the triple 
helix in light blue, short interruptions of a few amino acids are not shown. For 
acetylcholinesterase, the catalytic domain (shown in green) and the tail structure are products of 
separate genes. Adapted from: (Myllyharju & Kivirikko, 2004) Abbreviation: PM, plasma 
membrane. 
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Type Class Composition Distribution Pathology 

I Fibrillar α1[I]2α2[I] Abundant and widespread: dermis, 
bone, tendon, ligament 

OI, Ehlers–Danlos syndrome, 
osteoporosis 

II Fibrillar α1[II]3 Cartilage, vitreous Osteoarthrosis, chondrodysplasias 

III Fibrillar α1[III]3 Skin, blood vessels, intestine Ehlers-Danlos syndrome, arterial 
aneurysms 

α1[IV]2α2[IV] 

α3[IV]α4[IV]α5[IV] IV Network 

α5[IV]2α6[IV] 

Basement membranes Alport syndrome 

α1[V]3 

α1[V]2α2[V] V Fibrillar 

α1[V]α2[V]α3[V] 

Widespread: bone, dermis, cornea, 
placenta Ehlers-Danlos syndrome 

VI Network α1[VI]α2[VI] 
α3[VI] 

Widespread: bone, cartilage, cornea, 
dermis 

Bethlem myopathy and Ullrich 
congenital muscular dystrophy 

VII Anchoring 
fibrils α1[VII]2α2[VII] Dermis, bladder Epidermolysis bullosa acquisita 

α1[VIII]3 

α2[VIII]3 VIII Network 

α1[VIII]2α2[VIII] 

Widespread: dermis, brain, heart, 
kidney Fuchs endothelial corneal dystrophy 

IX FACIT α1[IX]α2[IX]α3[IX] Cartilage, cornea, vitreous Osteoarthrosis, multiple epiphyseal 
dysplasia 

X Network α1[X]3 Cartilage Chondrodysplasia 

XI Fibrillar α1[XI]α2[XI]α3[XI] Cartilage, intervertebral disc Chondrodysplasia, osteoarthrosis 

XII FACIT α1[XII]3 Dermis, tendon — 

XIII MACIT — Endothelial cells, dermis, eye, heart — 

XIV FACIT α1[XIV]3 Widespread: bone, dermis, cartilage — 

XV MULTIPLEXIN — Capillaries, testis, kidney, heart — 

XVI FACIT — Dermis, kidney — 

XVII MACIT α1[XVII]3 Hemidesmosomes in epithelia Generalized atrophic epidermolysis 
bullosa 

XVIII MULTIPLEXIN — Basement membrane, liver Knobloch syndrome 

XIX FACIT — Basement membrane — 

XX FACIT — Cornea (chick) — 

XXI FACIT — Stomach, kidney — 

XXII FACIT — Tissue junctions — 

XXIII MACIT — Heart, retina — 

XXIV Fibrillar — Bone, cornea — 

XXV MACIT — Brain, heart, testis Amyloid formation? 

XXVI FACIT — Testis, ovary — 

XXVII Fibrillar — Cartilage — 

XXVIII — — Dermis, sciatic nerve Neurodegenerative disease? 

Table 1.1 Distribution, composition and pathology of vertebrate collagens.  
Modified from (Shoulders & Raines, 2009) 
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acetylcholinesterase, three macrophage receptors, ectodysplasin, two EMILINs (elastic 

fiber-associated glycoproteins and a src- homologous-collagen protein) (Figure 1.2i) (Lu 

et al., 2002; Franzke et al., 2003; Myllyharju & Kivirikko, 2001) fall in this category. 

However, the largest group of collagens is formed by the classical fibril forming and 

FACIT collagens. Some collagens have a very restricted tissue distribution while others 

are ubiquitously present in almost every tissue. A summary of different collagen types, 

their distribution and pathology is given in Table 1.1 (Shoulders & Raines, 2009). 

Although the three polypeptide chains in the triple helix of each collagen type can be 

identical, heterotrimeric helices are more prevalent. Moreover, collagen fibrils often 

consist of more than one collagen type.  For example, collagen I fibrils contain small 

amounts of collagen III, V and XII, whereas the collagen II fibrils contain collagen IX 

and XI. Besides this, collagen V can also form hybrid molecules with collagen XI, i.e. the 

α1(XI) and α2(V) chains can be present in the same heterotrimeric collagen molecule 

(Myllyharju & Kivirikko, 2004). Some mature collagens also possess non-collagenous 

domains in addition to the actual triple helical collagen domains.  

 

1.3 Von Willebrand factor A like domain (VWA) 

The von Willebrand factor is a large multimeric glycoprotein that is found in blood 

plasma, platelet α-granules and sub-endothelial connective tissue. In von Willebrand 

factor, the type A domain (VWA) is the prototype for a protein superfamily. The VWA  

 

         
domain is found in various plasma proteins, e.g. complement factors B, C2, CR3 and 

CR4, integrins (I-domains), matrilins, collagen VI, VII, XII, XIV, XXI and XXII and 

Figure 1.3 Structure of the vWF A3 domain. 
Ribbon drawing with the cysteine bridge that links 
the N-  and C-terminal parts of the molecule shown 
in ball-and-stick representation. Loop segments 
that contribute residues to the potential ion-binding 
site are coloured green, α helices are blue and β 
strands red. (Huizinga et al., 1997) 
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other extracellular proteins (Whittaker & Hynes, 2002). Some intracellular proteins, like 

the copines, were also identified as members of the family (Tomsig and Creutz, 2002). 

Proteins that contain a VWA domain are involved in numerous biological events such as 

cell adhesion, migration, homing, pattern formation and signal transduction by interacting 

with a large array of ligands (Colombatti et al., 1993). The typical domain is made up of 

about 200 amino acid residues and adopts a classic α/β Rossmann fold that is stabilized 

by cysteine derived disulfide bonds (Figure 1.3). The domain often contains a highly 

conserved DxSxSxnTxnD sequence motif, also referred to as metal ion dependent 

adhesion site (MIDAS) at its surface (Bienkowska et al., 1997; Huizinga et al., 1997; Lee 

et al., 1995; Sadler, 1998).   

 

1.4 Collagen VI 

Collagen VI is an extracellular matrix protein that is present in almost all connective 

tissues and is known to form a structurally unique microfibrillar network in close 

association with basement membranes. It was previously called ‘short-chain collagen’, 

‘high molecular weight aggregate’ or ‘intima collagen’ (Chung et al., 1976; Furthmayr et 

al., 1983). Chung et al., (1976) first isolated collagen VI from human aortic intima after 

limited pepsin digestion. Thereafter several groups isolated collagen VI in slightly 

different ways from human and bovine placenta (Jander et al., 1981; Furuto & Miller, 

1981; Furuto & Miller, 1980; Odermatt et al., 1983; Jander et al., 1983). Collagen VI was 

 
 

 
Figure 1.4 Domain structures of the collagen VI chains. The domain composition of the 
collagen VI α1, α2 and α3 chains. The N and C terminal globular domains to the collagenous 
domain are numbered as in (Chu et al., 1988) 
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long thought to be composed of only three different polypeptide chains α1(VI), α2(VI) 

and α3(VI). In humans, the α1(VI) and α2(VI) chains are encoded by two genes 

COL6A1 and COL6A2 that are arranged in a head to tail fashion on chromosome 21q22.3 

(NT_011515) and are separated by 150 kb of genomic DNA (Heiskanen et al., 1995). 

The α3(VI) chain is encoded by COL6A3, mapped to chromosome 2q37 (NT_005120) 

(Weil et al., 1988). Similarly, the α1(VI) and α2(VI) chains in mouse are encoded by two 

genes Col6a1 and Col6a2 that are located on chromosome 10, 41.1cM, while the Col6a3 

is situated on chromosome 1, 53.9cM. The collagen VI genes are known to be highly 

polymorphic and more than 25 non-synonymous polymorphic amino acid changes have 

been described to date (Pan et al., 2003; Lampe et al., 2005). The collagen VI α1 and α2 

chain each have a molecular mass of about 120 kDa while the collagen VI α3 chain has a 

mass of 260 kDa. All three collagen VI chains contain two C-terminal VWA domains, 

whereas at the N-terminus the α1 and α2 chains carry only one but the α3 chain has ten 

VWA domains (Chu et al., 1989; Chu et al., 1990) (Figure 1.4). In addition, the collagen 

VI α3 chain contains a unique domain with similarities to salivary gland proteins, a short 

proline rich repeat, a fibronectin type III repeat and a bovine pancreatic trypsin 

inhibitor/Kunitz family of serine protease inhibitor domain (Kunitz domain) at the C-

terminus (Chu et al., 1989). Unlike the classical collagen molecules, the triple helical 

collagenous domain of collagen VI is short and about 335-336 amino acid residues long. 

Another noticeable feature in the collagenous domain of collagen VI is the presence of 

RGD motifs. A total of 13 RGD sites could be detected in all the three collagen VI α1, 

α2 and α3 chains (Chu et al., 1988; Saitta et al., 1991). Collagen VI is known to anchor 

large interstitial structures such as nerves, blood vessels and collagen fibrils into the 

surrounding connective tissue. It is also involved in cell migration and differentiation and 

may play a role in bridging the cells with extracellular matrix. 

 

1.4.1 Alternative splicing of collagen VI 

COL6A1 consists of 37 exons (35 coding) with a single promoter and produces a single 

transcript encoding a protein of 1021 amino acids while COL6A2 is described to possess 

30 exons (29 coding) and two different promoters. It has also been shown that COL6A2 

produces multiple alternatively spliced mRNAs which differ in the 5’- and 3’- 
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untranslated regions as well as in the 3’- coding part producing at least three collagen VI 

α2 variants with distinct carboxy termini but retaining the same domain architecture. The 

COL6A3 gene comprises of 44 exons (43 coding) and is known to undergo extensive 

alternative splicing primarily at the N- terminal globular domains in a tissue specific 

manner, particularly in humans and mouse but not in chicken. However, the three most 

abundant transcripts lack the N10 and N9 domains but contain N8/N7/N6, N8/N6 or N6 

domains. In mouse, transcripts containing the N10 domain are the least abundant in all 

tissues studied. There are also reports showing the presence of transcripts lacking a large 

part of N3 domain and also transcripts lacking the entire N5 domain (Dziadek et al., 

2002). 

 

1.4.2 Macromolecular assembly of collagen VI 

 The assembly of collagen VI is a complex multistep process. Several hypotheses 

have been postulated, however the most widely accepted model is deduced from 

 

 
Figure 1.5 Schematic model of the collagen VI assembly.  
NH2 (red) and COOH (blue) are the amino and carboxy terminal end of the N- and C-terminal 
globular domains respectively. The letter ‘C’ represents the cysteine bridges between the 
collagenous domain and globular domains. Based on (Furthmayr et al., 1983) and (Zhang et al., 
2002). 
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extensive biochemical and rotary shadowing electron microscopy experiments. The three 

genetically distinct collagen VI subunits α1, α2 and α3 form a triple helical monomer 

followed by a staggered assembly into disulfide bonded antiparallel dimers. Electron 

microscopic studies on isolated dimers suggested that they pack with a molecular overlap 

of ∼75 nm leaving non-overlapping single molecular ends of ∼30 nm (Furthmayr et al., 

1983). Subsequently, the dimers align to form tetramers that are also stabilized by 

disulfide bonds (Figure 1.5). The tetramers are then secreted outside the cell to form long 

molecular chains known as microfibrils that have a beaded repeat of 105nm (Figure 1.6) 

(Furthmayr et al., 1983; Chu et al., 1988). Several mutational studies suggest that the 

collagen VI triple helix folds from the C to the N-terminus, with folding being nucleated 

by C-terminal Gly-Xaa-Yaa triplets with a high proportion of prolines in Y position 

which have the potential of being hydroxylated by prolyl-4-hydroxylase (Lamande et al., 

2002). The single cysteine residue located in the triple helical domain of the collagen VI 

α1 or α2 chain is known to interact with a cysteine residue in the C-terminal globular 

domain and is thought to be responsible for the assembly/stability of dimers (Figure 1.5) 

(Colombatti et al., 1995; Furthmayr et al., 1983; Chu et al., 1988).  In addition, the 

cysteine residue in the triple helical domain of the collagen VI α3 chain appears to be 

involved in tetramer formation and stability. Negative staining electron microscopic 

studies together with the identification of positions of hydrophobic patches along and 

around the triple helix of the monomers suggest that the dimers are further stabilized by 

supercoiling of the overlapping triple helices (Furthmayr et al., 1983). The role of the N-

terminally extended region containing N10-N6 domains of the collagen VI α3 chain that 

is highly prone to the alternative splicing in the assembly of collagen VI microfibrils is 

not clear. Transfection experiments suggested that these domains are not required for 

Figure 1.6 Electron micrograph 
of collagen VI microfibrils. 
Double staining with gold particles 
of different sizes located 
complexes of biglycan (white 
arrow, small gold) and matrilin-1 
(black arrow, large gold) between 
collagen VI microfibrils and striated 
collagen II fibrils. (Wiberg et al., 
2003) 



   1 INTRODUCTION 

 10 

either dimer or tetramer formation in the assembly of collagen VI (Lamande et al., 

1998b; Fitzgerald et al., 2001). 

 

1.4.3 Interaction partners of collagen VI 

It has been shown that collagen VI interacts with several other extracellular matrix 

components, including collagen I (Bonaldo et al., 1990), II (Bidanset et al., 1992) and 

XIV (Brown et al., 1994), perlecan (Tillet et al., 1994), tenascin-X (Minamitani et al., 

2004b; Minamitani et al., 2004a), and the microfibril associated glycoprotein MAGP1 

(Finnis & Gibson, 1997) as well as at the cell surface with α1β1 integrin (Loeser, 1997). 

The N-terminal globular domains of the collagen VI molecule bind to small leucine-rich 

repeat proteoglycans like decorin and biglycan, which in turn interact with matrilins, 

mediating contacts to further binding partners (Wiberg et al., 2003; Wiberg et al., 2001). 

Collagen VI also interacts with other matrix constituents such as hyaluronan, heparan 

sulfate and NG-2 proteoglycans via its N-terminal domains (Burg et al., 1996; Specks et 

al., 1992).  

 

1.4.4 Human disorders associated with collagen VI 

As collagen VI is one of the important extracellular matrix components maintaining the 

structural integrity of skeletal muscle, mutations in the genes encoding any of the three 

collagen VI α1, α2 and α3 chains have been shown to cause serious muscular disorders. 

The two major diseases associated with collagen VI in humans are Bethlem myopathy 

(MIM 158810) and Ullrich congenital muscular dystrophy (MIM 254090). 

 

1.4.4.1 Bethlem Myopathy (BM) 

In 1976, Bethlem and van Wijngaarden discovered an autosomal dominantly inherited 

muscular disorder in 28 individuals of three Dutch pedigrees (Bethlem & Wijngaarden, 

1976). It is characterized by the combination of proximal muscle weakness and variable 

contractures affecting most frequently the long finger flexors, elbows and ankles. The 

onset of BM may be prenatal (characterized by decreased fetal movements), neonatal 

(hypotonia or torticollis), in early childhood (delayed motor milestones, muscle weakness 

and contractures), or in adulthood (proximal weakness or Achilles tendon or long finger 
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flexor contractures). Respiratory involvement is rare and seems to be related to more 

severe muscle weakness in later life. In most cases, the condition is slowly progressive 

and more than two thirds of the patients over 50 years of age require aids for ambulation, 

especially outdoors. In some BM patients, unusual skin features including follicular 

hyperkeratosis and keloid formation or “cigarette paper” scarring may be present (Pepe et 

al., 2002b). BM may resemble Emery-Dreifuss muscular dystrophy (EMD), particularly 

when a rigid spine is present (Pepe et al., 2002a; Pepe et al., 2002b). However, it can be 

well differentiated from EMD and other similar pathologies such as sarcoglycanopathy, 

calpainopathy and dysferlinopathy by immunohistochemical (western blotting and 

immunohistochemistry) testing on muscle biopsies. The histopathological features of a 

typical BM muscle biopsy are non-specifically myopathic but usually consist of marked 

variation in muscle fiber diameter with possible increase of fatty tissue and occasional 

necrotic or dystrophic fibers (Bethlem & Wijngaarden, 1976; Merlini et al., 1994).   

 Various mutations disrupting the Gly-Xaa-Yaa motif of the triple helical domain 

in COL6A1, COL6A2 or COL6A3 have been identified in BM patients (Pepe et al., 

1999a; Scacheri et al., 2002; Lampe et al., 2005). In general, the mutations towards the 

N-terminal region of the triple helix induce kinks in the tetramers, reducing their ability 

to form microfibrils and also exerting a dominant negative effect (Lamande et al., 2002). 

The second most frequent group of mutations in BM are the splice site mutations that 

result in the skipping of COL6A1 exon 14 leading to the in-frame deletion of 18 amino 

acids from the triple helical domain (Pepe et al., 1999b; Pan et al., 2003; Lampe et al., 

2005; Pepe et al., 1999a; Jobsis et al., 1996; Lamande et al., 1999). As a consequence, 

the short collagen VI α1 chains may form intracellular monomers but are unable to 

assemble into dimers and tetramers due to the lack of a unique cysteine residue resulting 

in half of the normal amount of collagen VI being deposited. Studies on some splice site 

mutations such as in the C1 domain of COL6A2 suggested that the pathogenicity is due to 

nonsense mediated mRNA decay (Lamande et al., 1998a; Vanegas et al., 2002). 

Considering the highly polymorphic nature of the collagen VI genes, the pathogenicity of 

missense mutations within the triple helical domain, without confirmatory evidence, has 

to be interpreted with caution (Pan et al., 2003; Lampe et al., 2005).  
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1.4.4.2 Ullrich Congenital Muscular Dystrophy (UCMD) 

The disease was first described by Ullrich in 1930 and displays an autosomal recessive 

inheritance and a recognizable pattern of symptoms. The hallmarks of UCMD are muscle 

weakness of early onset with proximal joint contractures and striking hyperelasticity of 

the distal joints. Posteriorly protruding calcanei are commonly seen. Due to the profound 

weakness, most of the children either never achieve the ability to walk independently or 

walk independently for short periods only (Mercuri et al., 2002; Voit, 1998). With 

progression of the disease a development of spinal rigidity and scoliosis as well as 

variable proximal contractures can be seen. On the other hand, the distal hyperlaxity can 

give way to marked long finger flexion contractures and tight Achilles tendons. 

Respiratory failure in the first or second decade is a common cause of death unless 

treated with nocturnal respiratory support. However, cardiac involvement has not been 

reported to date (Pepe et al., 2002a; Mercuri et al., 2002) and intelligence is normal in 

these individuals. Other distinctive features observed in UCMD patients are congenital 

hip dislocations (Furukawa & Toyokura, 1977; Mercuri et al., 2002) and a transient 

kyphotic deformity at birth as well as follicular hyperkeratosis over the extensor surfaces 

of upper and lower limbs, soft velvety skin on the palms and soles and the tendency to 

keloid or ‘cigarette paper’ scar formation (Mercuri et al., 2004).  

 In UCMD patients, most of the mutations reported appear to result in premature 

termination codons and follow the well-known nonsense mediated mRNA decay thereby 

lacking the mutated chain. The premature termination codons occur either by direct 

introduction of a stop codon at the genomic level (Lampe et al., 2005; Demir et al., 2002) 

or through frameshift inducing genomic deletions (Lampe et al., 2005; Higuchi et al., 

2001), insertions (Camacho Vanegas et al., 2001), duplications (Lampe et al., 2005) and 

splice changes (Camacho Vanegas et al., 2001; Ishikawa et al., 2002). Similar to BM 

patients, missense mutations substituting glycine in the triple helical Gly-Xaa-Yaa motif 

were observed in UCMD patients (Lampe et al., 2005). 

 It has to be noted that although BM and UCMD were originally described as 

separate entities, they share similarities in both the mutation prone regions and 

pathogenesis of the disease. Today, it becomes more and more evident that the two 

myopathies are different forms of the same disease that varies in their severity. 
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1.4.4.3 Ossification of the Posterior Longitudinal Ligament (OPLL)  

A recent genome-wide linkage and linkage disequilibrium analyses identified COL6A1, 

as the locus for Ossification of the Posterior Longitudinal Ligament (OPLL) of the spine 

(Tanaka et al., 2003). OPLL is a subset of bone-forming diseases that is characterized by 

an ectopic ossification in the spinal ligaments (Tanaka et al., 2003). However, except for 

the genetic linkage, there is neither biochemical nor immunological evidence suggesting 

that collagen VI is the cause of the disease. 

 

1.4.4.4 Diffuse Idiopathic Skeletal Hyperostosis (DISH) 

DISH is also a skeletal hyperostotic disease and is related to OPLL. It is characterized by 

ligamentous ossification of the anterolateral side of the spine (Tsukahara et al., 2005). 

The COL6A1 was identified as a susceptible gene in DISH patients from Japan but not in 

the DISH patients from the Czech Republic. As OPLL and DISH share commonality in 

the disease, some of the DISH patients exhibit OPLL. However, there was a strong allelic 

association with the same SNP in DISH patients without OPLL suggesting that DISH is 

also clearly associated with COL6A1 (Tsukahara et al., 2005). 

 

1.4.4.5 Osteoarthritis (OA) 

It has been shown that collagen VI is a minor component of normal human cartilage and 

the amount of type VI collagen epitopes increases significantly during early stages of 

osteoarthritis (Swoboda et al., 1998). Collagen VI was shown to be expressed in a zone 

specific pattern in knee osteoarthritic cartilage (Pullig et al., 1999). However, due to the 

high interindividual variability, collagen VI is not very precise in the diagnosis of early 

osteoarthritic lesions when used as the only marker (Swoboda et al., 1999). 

 

1.4.5 Animal models of collagen VI myopathies 

Bonaldo and colleagues generated a mouse model where the Col6a1 gene is specifically 

inactivated by targeted gene disruption (Bonaldo et al., 1998).  Due to the lack of mRNA, 

Col6a1 -/- mice do not synthesize a collagen VI α1 polypeptide. As a consequence, no 

triple helical collagen VI molecules are deposited in the extracellular matrix (Bonaldo et 

al., 1998). Although there are no obvious phenotypic consequences, histological signs of 
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myopathy were detected in skeletal muscle of both homo- and heterozygous mutant 

animals. A major difference between the human and the mouse pathologies was the 

preferred location of lesions: extensor muscles of limbs in Bethlem myopathy and 

diaphragm and auxiliary respiratory muscles in the knockout mice. However, the distinct 

pattern of dystrophic changes in the two species has been attributed to the different 

obligatory respiratory work rate per unit mass (~5 times lower in human), a condition 

which would make the respiratory muscles of the mouse more prone to mechanical 

damage than the limb ones (Stedman et al., 1991). A recent analysis of this model 

showed a mitochondrial dysfunction as the origin of the pathogenesis of the myopathic 

phenotype. Interestingly, the ultrastructural muscle defects are partially reversible with 

the drug cyclosporin A that influences the mitochondrial pore complex (Irwin et al., 

2003).  

 

1.4.6 Cell attachment activity of collagen VI 

Several members of the collagen family have been identified as strong cell attachment 

substrates and collagen VI is no exception. Several cell types, including fibroblasts and 

tumors cells, were able to attach and spread on substrates of pepsin-solubilized or intact 

collagen VI (Aumailley et al., 1989). The interactions of the unfolded chains were 

inhibited by low concentrations of synthetic RGD peptides while the binding of cells to 

pepsin-solubilized collagen VI was more than 20-fold less sensitive to these peptides 

suggesting that the attachment is dependent on the RGD motif (Aumailley et al., 1989; 

Pfaff et al., 1993). Antibody inhibition, affinity chromatography and/or ligand binding 

studies suggested that the binding of the triple helical substrate is mediated by α1β1 and 

α2β1 integrins whereas binding to denatured substrates is mediated by β1 and β3 

integrins. It was also shown that the cell adhesion is strictly dependent on the divalent 

cations Mg2+ and Mn2+ (Gailit & Ruoslahti, 1988; Pfaff et al., 1993). An independent 

study suggested that β1 integrin dependent cell attachment and spreading is mediated by 

NG2 proteoglycan (Tillet et al., 2002). Collagen VI was shown to be a strong adhesive 

substrate for various hematopoietic cell lines and light-density bone marrow mononuclear 

cells (Klein et al., 1995). However, the adhesive site seems to be restricted to the triple 

helical domain as individual collagen VI chains were not active in the attachment assays 
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(Klein et al., 1995). The binding could be completely abolished by heparin, indicating 

that membrane-bound heparan sulfate might be involved in the binding process (Klein et 

al., 1995). 

  

1.5. Collagen XXVIII 

The most recent member of the collagen superfamily was identified by screening the EST 

database and subsequently characterized as an authentic tissue component (Veit et al., 

2006). The human and mouse collagen XXVIII genes map to syntenic regions on 

chromosomes 7 (7p21.3) and 6(6A1) respectively. The exon/intron organization of the 

two genes is very similar and the genes contain 34 exons coding for the translated part of 

the mRNA (Figure 1.7). The mature secreted protein in human and mouse has a 

calculated Mr of 113,917 and 116,414 or 116,095, respectively. The collagenous domain 

is about 528 amino acids long and contains 12 GXG and four GXXXXG imperfections 

that are uniformly distributed along the sequence. It has one VWA domain on either side 

of the triple helical collagenous domain. Besides this, it has one unique domain and a 

domain related to the bovine pancreatic trypsin inhibitor/Kunitz family of serine protease 

inhibitors at the C-terminus. Collagen XXVIII has a quite restricted tissue distribution 

and is present at dorsal root ganglia with strong expression in the peripheral nerve fibers, 

which is unusual for a collagen. In addition, a staining was seen in parts of the sciatic 

nerve of an adult mouse. 

 

           
Figure 1.7 Structure of collagen XXVIII gene in human and mouse. The exons are numbered 
and marked with straight lines. The domain boundaries and their coding exons are shown below. 
 

 Collagen XXVIII is not only a new collagen but also forms a separate subgroup, 

as it cannot clearly be assigned to any known collagen subgroup. Although it has some 
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similarities to collagen VI, it is very unlikely that heterotrimeric molecules can be formed 

together with collagen VI chains due to the long collagenous domain of collagen XXVIII. 

Although there are so far not any disease-causing mutations associated with collagen 

XXVIII, based on the available expression data it could be a potential target for 

neurodegenerative diseases.  

 

1.6 Aims of the thesis 

Despite of the fact that many UCMD and BM patients display no mutations in the known 

collagen VI chains, there were no reports pointing to the existence of additional collagen 

VI chains. The identification of the three novel COL6 genes could provide insight into 

the pathogenesis of collagen VI associated disorders. At the same time this discovery 

raises the complexity in the macromolecular assembly of collagen VI. Therefore, it was 

important to provide in depth knowledge on the characteristic features of these new 

chains.  

The primary aims of my dissertation were:  

1. To analyze the characteristic features of gene and protein sequences of new 

collagen VI chains in mouse and human  

2. To examine the gene and protein expression as well as the localization of the new 

chains in mouse and human  

3. To study the fate of the new chains in the collagen VI α1 deficient mouse model 

and in human UCMD and BM patients.  

 

Collagen XXVIII, another recently identified novel collagen forms a separate subgroup 

within the collagen superfamily. On the basis of its predominant expression in the nerve 

tissue, it was proposed that collagen XXVIII may play a role in neurodegenerative 

diseases but there has been no mouse model available in which the hypothesis could be 

tested and the role of collagen XXVIII studied.  

An additional aim of my dissertation was therefore:  

4. To generate a mouse model that allows the study of collagen XXVIII function.
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2 RESULTS 

2.1 NOVEL COLLAGEN VI CHAINS 

In a screen of the mouse and human genomic databases with collagen and matrilin 

sequences as queries, three genes that code for new VWA domain-containing collagens 

were identified. Because of their high homology to the α3 chain of collagen VI and their 

location in the genome, these were designated as the α4, α5 and α6 chains of collagen 

VI. The occurrence and nature of these new collagen VI chains in mouse and human were 

here studied in detail. 

 

2.1.1 Cloning, gene and protein structure of new collagen VI chains 

The new collagen VI genes in mouse and human were cloned and the sequences 

deposited in the databases. All the three new chains share sequence similarity with the 

collagen VI α3 chain. The gene and domain structures of the new chains are conserved 

and resemble the collagen VI α3 chain. 

 

2.1.1.1 Cloning of cDNAs coding for new mouse collagen VI chains 

The mouse cDNAs for the collagen VI α4,  α5 and α6 chains were cloned as overlapping 

partial clones by RT-PCR, using primers deduced from the genomic sequences, and 

sequenced.  

 The cloned mouse collagen VI α4 cDNA of 7084 bp (accession numbers 

AM231151-AM231153) contains an open reading frame of 6927 bp encoding a protein 

consisting of 2309 amino acid residues including a signal peptide of 22 residues which is 

predicted by a method using neural networks and/or hidden Markov models 

(Emanuelsson et al., 2007). The mature secreted protein has a calculated Mr of 248,389 

(Figure 2.1). At least nine EST clones exist that extend 207 bp in the 3’-ends. In addition, 

a partial RIKEN cDNA clone (AK159050) extends 1219 bp and also contains an 

ATTAAA polyadenylation signal at its 3’-end, indicating the presence of different 3’-

UTRs.  
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The cloned mouse collagen VI α5 chain cDNA of 8298 bp (accession numbers 

AM748256-AM748258) contains an open reading frame of 7920 bp, encoding a protein 

consisting of 2640 amino acid residues including a signal peptide of 18 residues 

(Emanuelsson et al., 2007). The mature secreted protein has a calculated Mr of 287,502 

(Figure 2.1). A partial RIKEN clone (AK134435) extends 751 bp at the 3’-end but does 

not contain a polyadenylation signal. 

 The cloned mouse collagen VI α6 chain cDNA of 7097 bp (accession numbers 

AM748259-AM748262) contains an open reading frame of 6795 bp, encoding a protein 

consisting of 2265 amino acid residues including a signal peptide of 18 residues 

(Emanuelsson et al., 2007). The mature secreted protein has a calculated Mr of 244,260 

(Figure 2.1). 

 

2.1.1.2 Cloning of cDNAs coding for new human collagen VI chains 

The human cDNAs for the collagen VI α5 and α6 chains were cloned as overlapping 

partial clones by RT-PCR, using primers deduced from the genomic sequences, and 

sequenced (accession numbers AM774225-AM774227 and AM906078- AM906084).  

 The cloned human collagen VI α5 chain cDNA contains an open reading frame of 

7771 bp encoding a protein consisting of 2590 amino acid residues including a signal 

peptide of 18 residues (Emanuelsson et al., 2007). The mature secreted protein has a 

calculated Mr of 287,165 (Figure 2.2).  

 The cloned human collagen VI α6 chain cDNA contains an open reading frame of 

6789 bp encoding a protein consisting of 2263 amino acid residues including a signal 

peptide of 19 residues (Emanuelsson et al., 2007). The mature secreted protein has a 

calculated Mr of 247,187 (Figure 2.2).  

 It should be noted that a functional gene coding for COL6A4 does not exist in 

humans (see Figure 2.6 and section 2.1.16.1). 

 

2.1.1.3 Domain architecture of the new chains 

The domain structure of the new chains is very similar to that of the collagen VI α3 chain 

(Figure 2.3). Therefore, the existing nomenclature for the already known collagen VI 

chains (Chu et al., 1990) was extended to the new chains. The domains N-terminal to the 
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collagenous domain are designated with N and the domains C-terminal of the collagenous 

domain with C. Numbering starts at the collagenous domain. At the N-terminus, all three 

mature proteins contain seven VWA domains (N7-N1) followed by a 336 amino acid 

residues long collagen triple helical domain (Figure 2.3). Towards the C-terminus they 

have two VWA domains (C1-C2) that are followed by a unique sequence, C3, that in the 

new α6 chain also represents the C-terminus. In mouse, the α4 chain carries a short 

stretch of 17 amino acid residues at the very C-terminus (C4) that resembles a truncated 

bovine pancreatic trypsin inhibitor/Kunitz family of serine protease inhibitor domain 

(Figure 2.4A). Interestingly, when searching the genomic databases exons coding for a  

 

 
Figure 2.3 Domain structures of the new collagen VI chains compared with the collagen VI 
α1, α2 and α3 chains. VWA domain, von Willebrand factor A domain, Kunitz domain, Kunitz 
family of serine protease inhibitors domain. The numbering of the domains was according to Chu 
et al., 1976, and only represents the order of the domains in each chain. The dashed line 
indicates the absence of the duplication of the second VWA domain and the unique domain in all 
the collagen VI chains except the collagen VI α5 chain. 
 
 

complete Kunitz domain could be identified at this position for ortholog genes of several 

species. Only in mouse and rat the sequences contain a premature stop codon, indicating 

that except for in mouse and rat, a full Kunitz domain is present at the C-terminus of the 

collagen VI α4 chain. In the α5 chain the C-terminus is formed by a third VWA domain 

(C4) followed by another unique domain (C5). According to the sequence similarity the 

C4 domain of collagen VI α5 groups up with the C2 domain of the other chains.  
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Figure 2.4 Amino acid alignment of collagen VI Kunitz domains in different species (A), 
collagenous domains from the different collagen VI chains in mouse (B), the C-terminal 
part of the unique domains (C) and VWA domains containing the metal ion-dependent 
adhesion site motif in mouse (D). The sequences for the Kunitz domains of rhesus monkey, 
dog and rat were deduced from genomic sequences. The sequences were aligned by CLUSTAL 
X using the default parameters. The residues forming the trypsin interaction site in the original 
bovine pancreatic trypsin inhibitor (BPTI) (Perona et al., 1993) are marked with (#), the cysteine 
residues with asterisks and the RGD sequences with dots. Imperfections in the collagenous 
domains are boxed and numbered I1-I4. The conserved metal ion-dependent adhesion site (Lee 
et al., 1995) and the conserved hydrophobic moieties (Perkins et al., 1994) are denoted with (▼) 
and (Φ), respectively. 
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Similarly, the C5 domain of collagen VI α5 pairs up with the C3 domain of α3, α4 and 

α6 chains leaving the C2 and C3 domain as a distinct branch (Figure 2.1). A major 

difference between the new chains and the collagen VI α3 chain is the presence of three  

 

  
Figure 2.5 Phylogenetic trees of the collagenous domains (A and B) and VWA domains (C 
and D) of collagen VI. The sequences of the collagenous domains of all six collagen VI chains in 
mouse were aligned using CLUSTAL X. The trees were constructed using the programs 
PROTEIN DISTANCE, NEAREST NEIGHBOUR and CONSENSE (A and C) and PROTEIN 
PARSIMONY and CONSENSE (B and D) of the PHYLIP package version 3.66. Bootstrap 
analyses using 100 replicates were performed to show the significance. The numbers indicate the 
statistical weight of the individual branches. The collagenous domain of the collagen II α1 chain 
(cIIα1) (A and B) and VWA3 domain of AMACO (C and D) were used as outgroups. 
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additional VWA domains at the N-terminal end of the α3 chain (Figure 2.3). 

Interestingly, a splice variant of the collagen VI α3 chain lacks the first, the second and 

the fourth VWA domain  (AAC23667) and thereby contains seven N-terminal VWA 

domains similar to the new chains. The overall identity at the amino acid level is highest 

between the α5 and α6 chains (44.7%) and lowest between the α4 and α5 chains 

(28.0%). The overall identity of the three new chains and the α3 chain varies between 

25.9% and 26.7%. 

 

2.1.1.4 Analysis of the collagenous domains 

The 336-amino-acid residue long collagenous domains have exactly the same size as that 

of the collagen VI α3 chain (Figure 2.4B). The identity between the collagenous domain 

of the α3 chain and those in the α4, α5 and α6 chains is 53.3%, 49.1% and 51.8%, 

respectively. A cysteine residue that is also present in the collagenous domain of the 

collagen VI α3 chain and appears to be involved in tetramer formation and stability 

(Lampe & Bushby, 2005) is conserved in all new chains. The locations of the two 

imperfections in the Gly-X-Y repeat found in the collagen VI α3 chain are conserved in 

all new chains, while the α5 and α6 chains have additional imperfections. In both these 

chains a glycine residue in a Gly-X-Y repeat close to the C-terminus of the collagenous 

domain is replaced by a leucine or a valine residue, respectively, introducing another 

imperfection. Interestingly, the position coincides with an imperfection found in the α1 

and α2 chains. In addition, in the collagen VI α5 and α6 chains an imperfection is 

present at the center of the collagenous domains where one or two glycine residues of 

Gly-X-Y repeats are lacking, respectively.  

In contrast to the collagenous domain of the collagen VI α3 chain, which contains 

five potentially integrin-binding RGD sequences, in each of the new chains only one 

RGD motif is present. In the collagen VI α4 and α6 chains the motif is found at exactly 

the same position where an RGD is present also in the collagen VI α3 chain (Figure 

2.4B). The content of proline or hydroxyproline in the X and Y positions is lower (17.4-

20.5%) than in the fibril forming collagen I α1 or collagen II α1 chains (Persikov et al., 

2005). N- and C-terminal of the collagenous domains several cysteine residues are 
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present, which might form intermolecular disulfide bridges that enhance the stability of 

the trimeric collagens. In phylogenetic analyses using protein distance and protein 

parsimony, the collagenous domains of the α3, α4, α5 and α6 chains group in one clade 

(Figure 2.5A&B). 

 

2.1.1.5 Analysis of the VWA domains 

Out of the 28 VWA domains present in the new collagen VI chains, the MIDAS (metal 

ion-dependent adhesion site, D-x-S-x-S-x-nT-x-nD) motif is fully conserved only in eight 

of them (Figure 2.4D). Sequence alignment of the VWA domains of the new chains with 

their counterparts present in the collagen VI α1-α3 chains highlights the homology 

(Figure 2.4D and Appendix Fig. 1). The highest sequence identity between two VWA 

domains of the new chains is 92.1% for α5N7 and α6N7. High identity values were also 

obtained for the α5N4 and α6N4 (64.5%), α5N5 and α6N5 (51.9%), α5C2 and α6C3 

(52.9%), α5C1 and α6C1 (50.5%) and α5N1 and α6N1 (50.3%). Among the various 

VWA domains found in the collagen VI α1-α3 chains, the  N10 domain of the collagen 

VI α3 chain shows the highest identity value to the N7 domain of the α4 chain (39.5%). 

Similar identity values were obtained for α3N9 and  α4N7 (34.7%) and α3C1 and  α4C1 

(34.5%). Identity values between the α3 chain VWA domains and α5 and α6 chain VWA 

domains are not higher than 28.4 and 28.9%, respectively. The identity between the 

VWA domains of the new chains and those of the collagen VI α1 and α2 chains is 

always lower than 24.0%. In phylogenetic analyses using protein distance and protein 

parsimony, all the VWA domains of the α5 and α6 chains pair up together (Figure 

2.5C&D). The C-terminal VWA domains of the α3, α4, α5 and α6 chains group to a 

distinct branch in which the C1 domains are in one subbranch and the C2 domains and 

the C4 domain of the α5 chain are in another. Similarly, the N1 domains of the α3, α4, 

α5 and α6 chains all cluster together (Figure 2.5C&D). 

 

2.1.1.6 Analysis of the unique domains 

The unique sequences at the C-terminal end follow directly after the second C-terminal 

VWA domains (C2). In the collagen VI α5 chain a second unique domain is present C-
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terminal of the C4 domain. The unique domains are 99-111 amino acid residues long. 

The unique domain of the α4 chain and the first unique domain of the α5 chain as well as 

the second unique domain of the α5 chain and the unique domain of the α6 chain share 

some pairwise similarity, 31.6% and 26.1%, respectively. However, a stretch of 15 amino 

acid residues at the beginning of each domain is highly identical in all four unique 

domains and has a cysteine residue at the end (Figure 2.4C). Interestingly, the unique 

sequence of the collagen VI α3 chain, C-terminal to the C2 domain, also shares some 

homology to the unique domains of the new chains, most clearly in the C-terminal 

portions, and particularly the cysteine residue is conserved (Figure 2.4C). Interestingly, 

shortly after the highly homologous stretch an RGD motif is present in both the α4 chain 

and the first unique domain of the α5 chain while it is missing in the α6 chain, in the 

second unique domain of the α5 chain and in the α3 chain (Figure 2.4C). In addition to 

the single RGD motifs present in each of the collagenous domains, these two RGD motifs 

are the only ones found in the new collagen VI chains. An RGD motif is lacking in the 

unique domain of the collagen VI α3 chain. BLAST searches with the unique sequences 

revealed some weak homologies to intracellular proteins like the REST corepressor 1 (α4 

35/83 (42%)), ubiquitin D (α5C3 22/32 (68%)), protein tyrosine phosphatase (α5C5, 

34/71 (47%)) and dynein cytoplasmic 2 heavy chain 1 (α6 26/60 (43%)). 

 

2.1.1.7 Structure of the new collagen VI genes 

In mouse, the new collagen VI chains map to chromosome 9 (9F1) (Figure 2.7). The 

genomic sequences are completely contained in the public databases (NT_039477 and 

NW_001030918).  The three new genes lay head to tail in tandem orientation on the 

minus strand. The Pik3r4 gene and the Mirn135a1 gene are located downstream and 

upstream of the new collagen genes respectively. The exons were identified by flanking 

consensus splice signals and by comparison with the respective cDNAs.  The exon/intron 

organization of the three genes is very similar (Figure 2.7 and Appendix Tab. 1,2,3) 

regarding size, exon and intron length and codon phase. The Col6a4 and Col6a5 genes 

are 112 kb and the Col6a6 gene is 104 kb long. They consist of 38, 44, and 37 exons, 

respectively, that code for the translated part of the mRNA (Figure 2.8). The first exon in 

each gene completely encodes the 5’ untranslated region. All second exons code for the 
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signal peptide sequence followed by six exons coding for the first six VWA-domains 

(N7-N2), whereas the VWA domain N1 is encoded by three exons. The collagenous 

domains are encoded by exons 12 - 30. Interestingly, intron 24 of the α4 gene is a GC-

AG type intron. Exons 31 and 32 code for short spacer regions. The VWA domains C1 

and C2 are encoded by exons 33/34 and 35, respectively. The structures of the three 

genes differ at the 3’-end. In Col6a4 the unique sequence is encoded by two exons 

followed by a last exon coding for the truncated Kunitz domain and the 3’-UTR. In 

Col6a6 the last two exons code for the unique domain and 3’-UTR. In case of Col6a5,   

 

 
Figure 2.6 Loci for COL6A4, COL6A5 and COL6A6 genes in the genomes of man, rhesus 
monkey and mouse. The orientation of the genes is indicated by arrows.  The neighboring 
genes of the new chains are indicated for comparison. 
 

the unique domain between the VWA domains C2 and C4 is encoded by two exons 

followed by the exon coding for the additional VWA domain C4. As in Col6a6 the last 

two exons of Col6a5 code for the unique domain and 3’UTR. Although there is only 

partial homology between the unique domains of the new collagen chains, each unique 

domain is encoded by two exons where the first exon is always about 95 bp and the 

second is about 200 bp long, pointing to the likelihood of a common ancestor. The 

orthologs of the new mouse genes map to human chromosome 3q21 (Figure 2.6). The 

tandem orientation of the genes is conserved, but the gene coding for the α4 chain is 
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broken into two pieces and the 5’ region of the gene is located at 3p24.3. Only the region 

downstream of the new collagen VI genes, coding for PIK3R4, is in synteny in man and 

mouse. The breakpoint resembles the large scale pericentric inversion that occurred in the 

common ancestor of the African apes and is present in modern human chromosome 3 as 

well as in the chimpanzee and gorilla orthologs, but not in orangutan or old world 

monkeys (Muzny et al., 2006). In contrast to Rhesus macaque, the COL6A4 in humans is 

   
Figure 2.7 Organization of the murine COL6A4, COL6A5 and COL6A6 genes. The structure 
of Col6a4 (A), Col6a5 (B) and Col6a6 (C) genes in mouse with respect to their coding regions. 
The numbers indicate the positions of exons. 
 

interrupted after the first exon coding for the collagenous domain. For both parts of the 

gene, EST clones can be found in the databases. However, due to the presence of stop 

codons that are distributed over the sequence, both parts of the human COL6A4 are likely 

to be transcribed non-processed pseudogenes. In contrast to the mouse collagen VI α5 
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gene, COL6A5 in man contains an additional intron in the 3’UTR that by alternative 

splicing leads to three different C-termini. Full-length proteins of 2526, 2614 or 2615 

amino acid residues would result (Appendix Fig. 2). 

 

2.1.1.8 Human collagen VI α5 and α6 chains 

The human collagen VI α5 chain has an identity of 73.1% at the amino acid level to the 

mouse ortholog (Appendix Fig. 2). The variations are not evenly distributed over the 

sequence. A 32 amino acid long proline-rich stretch at the C-terminus of N7 is missing in 

man and the unique domains are highly divergent. In addition, at two positions in the C-

terminal part an amino acid residue is deleted and at three positions an amino acid residue 

is inserted into the human α5 chain. Most of the cysteine residues are conserved, but 

there is an additional cysteine present in the collagenous domain of the human α5 chain. 

However, the cysteine codon resembles an SNP (rs1497312) leading to a non-

synonymous exchange to a serine codon. The positions and sizes of the imperfections in 

the collagenous domain are identical to those in mouse, whereas the RGD motif in the 

collagenous domain of the α5 chain is lost. Instead there is a new RGD motif at the N-

terminus of the collagenous domain. The two RGD motifs present in the unique domain 

of mouse are also missing in man. Another SNP (rs11355796) that resembles the deletion 

of a thymidine at the C-terminus forms a premature stop codon, leading to a full-length 

protein of 2590 residues (Appendix Fig. 2). No information is available on the population 

frequency, but both variants are found in the TRACES-WGS database. Interestingly, in 

the alternative Celera assembly of the human genome the deletion is present, whereas the 

thymidine is found in the reference assembly, leading to a longer protein. The human 

collagen VI α6 chain has an identity of 83.4% at the amino acid level to the mouse 

ortholog and only the last 30 amino acids at the C-terminus show some differences 

(Appendix Fig. 3). The positions of the signal peptide cleavage site, the RGD motif and 

all cysteine residues in the mature protein are completely conserved. 

 

2.1.1.9 Alternative splicing  

In mouse, two different splice variants of the collagen VI α4 mRNA leading to premature 

stop codons can be deduced from EST clones. First, the ESTs AU023415 and BG068629 
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contain a stop codon in an alternative exon following the exon coding for the N4 domain. 

If translated, it would lead to a protein containing only the first four VWA domains. A 

second splice variant was detected in the three EST clones BX520360, AI427280 and 

W48310. Here, an alternative splice donor site in exon 35 coding for the C2 domain and  

                              

 
Figure 2.8 Alternative splicing in the new collagen VI genes of mouse. The position of the 
ESTs derived from the Col6a4 (A) and Col6a6 (B) genes are given in green. “//” indicates that the 
N-terminus is not shown or unknown. 
 

an alternative splice acceptor site in exon 37 coding for the unique domain is used. Due 

to a shift in codon phase, the new exon codes for a different frame and contains a stop 

codon 101 bp downstream of the alternate splice site. If translated, it would lead to a 

protein that lacks nearly half of the C2 domain and the unique domain (Figure 2.8). 

Interestingly, the alternative splice site contains a non-canonical GC-AG motif.  

A RIKEN cDNA clone coding for the collagen VI α6 chain (AK054356) shows 

alternative splicing in the 5’UTR, indicating the presence of two different promoters. 

Interestingly, due to additional alternative splicing of exon 6 a much shorter open reading 

frame occurs that would generate a protein that contains only the first six VWA domains 

and lacks the seventh VWA domain, the collagenous domain and the C-terminal non-

collagenous domains (Figure 2.8). 

 

2.1.2 Expression analysis of new collagen VI chains  

The gene expression of new collagen VI chains was examined in a panel of newborn and 

adult mouse tissues. Specific polyclonal antibodies against human and mouse collagen VI 

chains were generated and their protein expression was analyzed. The new chains exhibit 

restricted and differential expression patterns in selected tissues of both man and mouse. 

 



                                                                                                                     2 RESULTS 

 

 31 

2.1.2.1 Analysis of mRNA of the new collagen VI genes in mouse 

To determine the length of the new collagen VI chain mRNAs northern hybridization was 

performed with total RNA or mRNA. The mRNA coding for the α6 chain could be easily 

detected as a 9.6 kb band in total RNA derived from lung of newborn mice (Figure 2.9A). 

The messages coding for the α5 and α4 chains could be detected in purified mRNA  

      
derived from sternum of 4-week-old mice and from lung of newborn mice, respectively. 

The length of the α4 chain mRNA is 8.4 kb and that of the α5 chain mRNA is 9.4 kb. 

RT-PCR was performed to screen the tissue distribution of the new collagen VI chains 

(Figure 2.9) and mRNA for the α5 and α6 chains could be detected in lung, heart, 

kidney, muscle, brain, intestine, skin, femur and sternum of newborn mice. In addition, 

Figure 2.9 Northern blot (A) and RT-
PCR (B and C) analysis of the new 
mouse collagen VI chain mRNA 
species. Northern hybridization was 
performed for the collagen VI α4 and 
α6 chains with 5 µg of total RNA from 
lung of newborn mice and for the α5 
chain with 1 µg of poly(A)+ RNA from 
sternum of 4-week-old mice. Probes 
were generated using primers α4m8 
and α4m9 for the α4 chain, α5m2 and 
α5m7 for the α5 chain and α6m6 and 
α6m10 for the α6 chain (ref. Materials 
and methods). Position of the size 
markers are indicated on the left (A). 
RT-PCR analysis was performed using 
the primer pair α4m6 and α4m7 for the 
α4 chain, α5m4 and α5m5 for the α5 
chain and α6m2 and α6m9 for the α6 
chain (ref. Table 4.1, in Materials and 
Methods). Template RNA was isolated 
from newborn (upper panel) and adult 
mice (lower panel). The 1kb ladder was 
used as a reference. 
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α6 chain mRNA could be detected in calvaria of newborn mice. The α4 chain mRNA 

shows a more restricted tissue distribution and could be detected in lung, kidney, brain, 

intestine, skin, sternum and weakly in calvaria of newborn mice (Figure 2.9B). In adult 

mice, most of the α4 chain expression is lost and RT-PCR showed only a signal in ovary 

and very weakly in spleen. In contrast, the α5 chain is widely expressed also in adult 

mice and mRNA could be detected in lung, heart, kidney, spleen, muscle, ovary, uterus, 

brain, skin, liver and sternum, whereas the α6 chain was more restricted and could be 

detected in lung, heart, muscle, ovary, brain, liver and sternum of adult mice (Figure 

2.9C). 

 

2.1.2.2 Preparation and evaluation of collagen VI specific antibodies 

In order to study the protein expression of the new collagen VI chains by 

immunohistochemistry and western blot, a panel of collagen VI specific antibodies was 

generated using recombinant mouse and human protein fragments as antigens in rabbit 

and guinea pig (ref. Table 4.3 in Material and Methods). In addition to antibodies raised 

against the novel collagen VI chains, specific antibodies against the already known 

collagen VI α3 chain were generated, as no such antibody was commercially available. 

The recombinant protein fragments representing mouse collagen VI α3 (N10-N4), α4 

(N6-N3), α5 (α5a (N3) & α5b (N6-N2)) and α6 (N6-N2) domains were used as antigens 

for antibody production. Specific antibodies against the recombinant protein fragments 

for human collagen VI α3 (N4-N1), α5 (N6-N2) and α6 (N6-N2) chains were also 

generated. The antisera from both rabbit and guinea pig were further affinity purified 

against the respective protein fragments used as immunogen. The specificity and titer of 

each antiserum was tested using Enzyme Linked Immunosorbent Assay (ELISA). All 

antisera showed a specific reactivity against their corresponding mouse and human 

recombinant protein fragment antigens (Figure 2.10 & 2.11). The two mouse collagen VI 

α4 and α6 chain antisera that were generated in rabbit and guinea pig showed similar 

titers whereas the preimmune sera from the same animals did not react with their 

respective antigens (Figure 2.10B&E). For the collagen VI α5 chain, two distinct 
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antigens, one consisting of a single VWA domain (α5a) and the other of five VWA 

domains (α5b) were used for immunization (ref. Table 4.3 in Material and Methods). 

 
The antigen α5a was used to immunize two independent rabbits R1 and R2. Interestingly, 

both antisera had almost the same titer (Figure 2.10C). The second collagen VI α5 chain 

antigen (α5b) yielded a reasonably good antibody titer from rabbit but not from guinea 
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pig (Figure 2.10D). Therefore, the collagen VI α5a antiserum was used for the following 

experiments unless otherwise mentioned.  

  
 Similarly, antisera against human collagen VI chains were also generated and 

tested for their specificity by ELISA. The human collagen VI α3 and α5 chain antisera, 

raised in both rabbit and guinea pig, had a high titer (Figure 2.11). The antibody against 

the human collagen VI α6 chain raised in guinea pig had a lower titer than the other 

antisera but was sufficiently reactive for use in immunohistochemical and biochemical 

assays. 

 

2.1.2.3 Analysis of antibody cross-reactivity between the collagen VI chains 

As the new collagen VI chains share sequence similarities with the collagen VI α3 chain 

and with each other, it was important to analyze the cross-reactivity of the affinity 

purified antisera with the various collagen VI chains. Therefore, the recombi nant antigen 

proteins were coated onto ELISA plates and the panel of collagen VI antisera was tested. 
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The antisera raised against the murine recombinant proteins were highly specific and did 

not show significant cross-reactivity at dilutions beyond 1/500  (Figure 2.12).  

 
Figure 2.12 ELISA showing the cross-reactivity of antisera raised against different mouse 
collagen VI chains. ELISA plates were coated with recombinant mouse collagen VI α3 (A), α4 
(B), α5 (C) and α6 (C) protein fragments before applying the corresponding antisera. R and G, 
affinity purified antibodies from rabbit and guinea pig for the respective chains. All antisera 
showed specificity and lacked cross-reactivity with other chains. m, mouse, Neg cont, negative 
control. 
 
 Surprisingly, all collagen VI antisera raised against the human chains showed 

more pronounced cross-reactivity. For instance, when a recombinant human collagen VI 

α3 fragment was coated onto an ELISA plate and detected with α3, α5 and α6 chain 

antisera, there was a significant reaction with the α5 and α6 chain antisera at a dilution of 

1/100 (Figure 2.13A). Since the human recombinant proteins carry a double Strep-tag, in 

contrast to the mouse recombinant proteins that carry a single Strep-tag, the observed 

cross reactions are likely to be due to antigenic determinants present in the double Strep- 

tag. Therefore, a dot blot was performed where the recombinant human collagen VI 
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α3,α5 and α6 chain proteins were dotted together with a Strep-tagged protein marker and 

independently detected with the human collagen VI and Strep tag antisera (Figure 2.13B). 

Each antibody detected not only its antigen protein, but also the two other chains and the 

Strep-tag marker protein. However, the Strep-tag antibody was not able to detect the 

recombinant α6 chain fragment suggesting that its tag was either cleaved or not 

accessible. Therefore, also the human α3 and α5 chain antisera failed to detect the 

 
Figure 2.13 Cross-reactivity of antisera raised against different human collagen VI chains. 
A) ELISA assay. ELISA plates were coated with recombinant human collagen VI α3 protein 
fragment and detected with the panel of human collagen VI antisera. PIR, preimmune serum from 
rabbit, R and G, affinity purified rabbit and guinea pig antibodies. B&C) Dot blot assay. B) Each 
row was dotted with the recombinant human collagen VI α3 (a), α5 (b), α6 (c) and Strep-tagged 
protein marker (d). Each column was detected with the human collagen VI specific antisera hα3, 
hα5, hα6 and a Strep antiserum as indicated in the top of each column. C) The recombinant 
protein fragments were spotted and detected with a collagen VI α6 antiserum. mat, matrilin 3 
VWA domain; M, Strep-tagged protein marker; nc1, sonic hedgehog (negative control 1) and nc2, 
water (negative control 2). 
 

recombinant α6 chain fragments. In order to assess the reactivity of the human collagen 

VI α6 chain antisera against Strep-tag containing proteins, the collagen VI α3 and 

α5chains and control proteins that either contain a Strep-tag or a different tag were tested 

(Figure 2.13C). The mouse collagen VI α4 chain fragment and the matrilin 3 VWA 

domain that carry a single Strep-tag as well as the human collagen VI α3 and α5 chain 

fragments were detected by the human collagen VI α6 chain antiserum, whereas an N-

terminal fragment of sonic hedgehog lacking a Strep-tag did not give a signal with the α6 

chain antiserum. (Figure 2.13C). This indicates that the observed cross-reactivity is only 
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against the artificial Strep tag. Therefore, these antisera could be used for 

immunohistochemical and western blot analyses of biopsies or tissue extracts. 

 

2.1.2.4 Collagen VI preparations from newborn mice contain the new chains 

If the new collagen VI chains assemble with known collagen VI chains, they should be 

present in conventional collagen VI preparations. Thus native collagen VI was isolated  

   
Figure 2.14 Analysis of collagen VI purified from newborn mice. Carcasses of newborn mice 
were natively extracted and collagen VI was isolated by molecular sieve column chromatography 
as previously described (Colombatti et al., 1989). The proteins were submitted to SDS-PAGE with 
prior reduction on 4-12% polyacrylamide gradient gels. (A) Coomassie brilliant blue stained gel. 
(B) Immunoblot of the same preparation with specific antibodies against collagen VI (α1,α2,α3), 
the collagen VI α1 chain and the new collagen VI α4, α5 and α6 chains. (in collaboration with Paolo 
Bonaldo, Padova) 
 
 
from newborn mouse carcasses (Colombatti et al., 1989). A Coomassie brilliant blue 

staining of the isolated collagen VI preparation on a reduced polyacrylamide gel showed 

the α1 and α2 chains running below 180 kDa and a smear running above 220 kDa, 

probably representing variants of α3 chains and new chains (Figure 2.14A). The nature of 

the bands was confirmed by immunoblot (Figure 2.14B). All three new chains were 

detected under reducing conditions as major bands running above the 220 kDa marker 

(Figure 2.14B), consistent with their calculated molecular masses. For the collagen VI α4 

and α5 chains additional lower migrating bands were detected (Figure 2.14B), indicating 

alternative splicing or proteolytic processing. The weak smear with lower mobility seen 

for the α4 chain could indicate the presence of non-reducible cross-linked molecules. 
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2.1.2.5 Immunohistochemical analysis of the expression of the new chains in mouse  

The mRNA expression profile of the new collagen VI chains obtained by RT-PCR 

suggested that the α5 chain is widely distributed in both newborn and adult mouse 

tissues. On the other hand, α4 and α6 chains showed a restricted expression in adult but 

not in newborn mouse tissues (Figure 2.9). In order to determine the exact localization of 

the new collagen VI chains, extensive immunohistochemical studies with the panel of 

specific antisera raised against mouse collagen VI chains were performed on both 

newborn and adult mouse tissue cryosections. 

 

2.1.2.5.1 Collagen VI chain expression in skeletal and cardiac muscle 

Immunostaining on longitudinal sections of adult mouse skeletal muscle showed that the  

 

 
Figure 2.15 Immunohistochemical analysis of skeletal muscle from adult mouse. Frozen 
sections were incubated with affinity-purified collagen VI α3 (A, D and G), α4 (B), α5 (E) and α6 
(H) antisera followed by AlexaFluor 488 (green) and 546 (red) secondary antibodies. The overlay 
of the α4(C), α5(F) and α6(I) chains with α3 is shown for comparison. Collagen VI α3 and α6 
were strongly expressed in both endomysial and perimysial connective tissue. α5 was strongly 
present in the perimysial regions and weakly expressed in endomysium. Both α5 and α6 show 
partial co-localization with α3. Arrows point to selected regions that are exclusively positive for 
either the collagen VI α5 or α6 chain. The collagen VI α4 chain was completely absent in skeletal 
muscle. Scale bar, 100 µm. 
 

collagen VI α3 chain is widely expressed in the extracellular matrix surrounding the 

skeletal muscle cells or fibers (Figure 2.15). It is present in both endomysium and 
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perimysium of muscle cells. The collagen VI α6 chain is present at similar locations and 

partially co-localizes with the collagen VI α3 chain. The collagen VI α5 chain showed a 

strong expression in the perimysium but was sparse in the endomysium of skeletal 

muscle fibers. Similarly, the collagen VI α6 chain exhibits a partial co-localization with 

the α3 chain. Interestingly, the collagen VI α5 and α6 chains are either exclusively or 

less expressed in some distinct regions (Figure 2.15). However, the expression of the 

collagen VI α6 chain is stronger than that of the collagen VI α5 chain. In contrast, the 

collagen VI α4 chain is completely absent in the skeletal muscle of adult mouse.  

 

                        
Figure 2.16 Immunohistochemical analysis of skeletal muscle from newborn mouse. Frozen 
sections were incubated with affinity-purified collagen VI α3 (A, D and G), α4 (B), α5 (E) and α6 
(H) antisera followed by AlexaFluor 488 (green) and 546 (red) secondary antibodies. The overlay 
of the α4(C), α5(F) and α6(I) chains with α3 is shown for comparison. The antiserum against α6 
chain stained endomysial structures but not the perimysium and mostly co-localized with α3. α5 
was weakly present and α4 was absent in the newborn mouse skeletal muscle. Arrows point to 
selected regions that are exclusively positive for the collagen VI α6 chain. Scale bar, 100 µm. 
 

The expression of the new chains in the skeletal muscle of newborn mice differs slightly 

from that in adult mice (Figure 2.16). The collagen VI α5 chain shows a weaker 

expression and the collagen VI α6 chain is abundant in the endomysium but not in the 

perimysium and mostly coincides with where the collagen VI α3 chain is expressed 

(Figure 2.16). The collagen VI α4 chain is not expressed also in newborn mice.  

 



                                                                                                                     2 RESULTS 

 

 40 

             
Figure 2.17 Immunohistochemical analysis of cardiac muscle from adult mouse. Frozen 
sections were incubated with affinity-purified collagen VI α3 (A, D and G), α4 (B), α5 (E) and α6 
(H) antisera followed by AlexaFluor 488 (green) and 546 (red) secondary antibodies. The overlay 
of the α4(C), α5(F) and α6(I) chains with α3 is shown for comparison. α3 and α6 chains are 
widely present in the connective tissue of muscle fibers and show partial co-localization. The 
collagen VI α5 chain was weakly expressed and α4 was absent in the cardiac muscle of adult 
mice. Scale bar, 100 µm. 
 
 
 

                        
Figure 2.18 Immunohistochemical analysis of cardiac muscle from newborn mouse. Frozen 
sections were incubated with affinity-purified collagen VI α3 (A, D and G), α4 (B), α5 (E) and α6 
(H) antisera followed by AlexaFluor 488 (green) and 546 (red) secondary antibodies. The overlay 
of the α4(C), α5(F) and α6(I) chains with α3 is shown for comparison. α3 and α6 chains are 
widely present in the connective tissue of muscle fibers and show partial co-localization. The 
collagen VI α5 and α4 chains are absent in the cardiac muscle of newborn mice. 100 µm. 
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 On sections from both newborn and adult mouse hearts, the collagen VI α3 and 

α6 chains are strongly expressed in the muscle fibers. In contrast, the α5 chain is weakly 

expressed in adult and absent in newborn mouse hearts. Similar to in skeletal muscle, 

there is no expression of the collagen VI α4 chain (Figure 2.17 & 2.18). 

 

2.1.2.5.2 Collagen VI chain expression in smooth muscle 

Sections of newborn and adult intestine, a tissue that contains layers of smooth muscle,  

 

                
Figure 2.19 Immunohistochemical analysis of intestine from adult mouse. Frozen sections 
were incubated with affinity-purified collagen VI α3 (A, D and G), α4 (B), α5 (E) and α6 (H) 
antisera followed by AlexaFluor 488 (green) and 546 (red) secondary antibodies. The overlay of 
the α4(C), α5(F) and α6(I) chains with α3 is shown for comparison. For orientation, an intestinal 
section was stained with H&E (J). A schematic view (K) depicts the different layers of intestine. 
α3 is widely distributed in all layers of intestine. The collagen VI α4 chain is expressed in the 
submucosal, mucosal and villi regions. The α5 chain is strongly expressed in the mucosal layer 
and weakly present in villi. The collagen VI α6 chain is not expressed in the intestine.  S, 
sclerosa, ML, muscular layer, SM, sub-mucosal layer, M, mucosal layer, V, villi regions.   Scale 
bar, 100 µm. 
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were stained with the panel of collagen VI specific antibodies. The collagen VI α3 chain 

is widely expressed in the inner mucosal layer especially in the villi or papillary mucosal 

projections towards the lumen, the sub-mucosal connective tissue and the muscularis 

layer of outer longitudinal and inner circular smooth muscle of adult intestine (Figure 

2.19). On the contrary, the collagen VI α4 chain is completely absent in the muscularis 

layer but abundant in the sub-mucosal and mucosal layers. It shows strong expression in 

the lining of villi regions, which occupies the major part of the inner mucosal layer and 

finely co-localizes with the collagen VI α3 chain. The collagen VI α5 chain showed 

prominent expression in the mucosal layer and distinctly co-localizes with collagen VI 

α3. However, it is not as strongly expressed as the collagen VI α4 chain. Moreover, it 

exhibits a gradient of decreasing expression towards the lumen. Interestingly, the 

collagen VI α6 chain that is present in both cardiac and skeletal muscle is absent in the 

intestinal smooth muscle tissue of adult mice. 

 

                    
Figure 2.20 Immunohistochemical analysis of intestine from newborn mouse. Frozen 
sections were incubated with affinity-purified collagen VI α3 (A, D and G), α4 (B), α5 (E) and α6 
(H) antisera followed by AlexaFluor 488 (green) and 546 (red) secondary antibodies. The overlay 
of the α4(C), α5(F) and α6(I) chains with α3 is shown for comparison. The α3 chain is widely 
distributed in all layers of intestine. The collagen VI α4 chain is expressed in the submucosal, 
mucosal and villi regions. The α5 chain is strongly expressed in the mucosal layer and weakly 
present in villi. The collagen VI α6 chain is absent in the newborn intestine. Scale bar, 100 µm. 
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 The expression and distribution of the new chains in the intestinal smooth muscle 

of newborn mouse is similar to that in adult mice (Figure 2.20).  

 

2.1.2.5.3 Collagen VI chain expression in kidney 

Particularly selective and restricted expression pattern of the new collagen VI chains is 

seen in kidney. In sections of adult mouse kidney, the collagen VI α3 chain is widely 

distributed in the cortical (Figure 2.21) and medullar (not shown) regions. The capillary 

 
 

              
Figure 2.21 Immunohistochemical analysis of kidney glomeruli from adult mouse. Frozen 
sections were incubated with affinity-purified collagen VI α3 (A, D and G), α4 (B), α5 (E) and α6 
(H) antisera followed by AlexaFluor 488 (green) and 546 (red) secondary antibodies. The overlay 
of the α4(C), α5(F) and α6(I) chains with α3 is shown for comparison. The α5 chain is restricted 
to glomeruli and partially co-localizes with the α3 chain. The collagen VI α4 chain stains weakly in 
glomeruli while the α6 chain shows no expression. For orientation, a kidney section was stained 
with H&E (J and K). G, glomerulus, PCT, proximal convoluted tubules, and CX, cortex. Scale bar, 
50 µm. 
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tuft/glomerulus and proximal convoluted tubules were labeled by the collagen VI α3 

chain antiserum. Interestingly, the collagen VI α4 and α5 chains are highly restricted to 

the glomeruli where they are associated with basement membranes and do not completely 

co-localize with the collagen VI α3 chain. The expression of the collagen VI α5 chain is 

stronger and more specific when compared to the collagen VI α4 chain. The collagen VI 

α6 chain is completely absent in the cortical region and glomeruli (Figure 2.21). Collagen 

VI α3 is also strongly present in the kidney capsule. Here, the collagen VI α5 chain 

partially co-localizes with the α3 chain (not shown). In addition, the collagen VI α4 and 

α6 chains are weakly expressed in adult kidney capsule (not shown). 

 

2.1.2.5.4 Collagen VI expression in mouse reproductive organs 

Another striking differential and selective expression of the new collagen VI chains can 

be observed in the reproductive tissues of adult mice: ovary and testis. In sections of adult 

mouse ovary, the collagen VI α3 chain is present almost throughout the ovary. It is 

expressed in parts of the cortical and medulla regions of the ovary. The collagen VI α4 

chain is primarily seen in the cortical layer of the ovary, particularly in the capsule-like 

structures or in the connective tissue surrounding the follicles, referred to as theca, which 

also contribute to the wall of the follicle. In addition, it is expressed in parts of the 

vascular medulla region of the ovary. Interestingly, the staining for the collagen VI α4 

chain in ovary mostly co-localizes with that for the collagen VI α3 chain (Figure 2.22). 

The collagen VI α3 and α4 chains are also co-expressed in the outer connective tissue 

layer of the ovary, the tunica albuginea. On the other hand, the collagen VI α5 chain is 

only present in the stroma between follicles in the cortical region of the ovary and co-

localizes with the collagen VI α3 chain. It is completely absent from the follicular 

granulosa or theca cells. Taken together, the expression patterns of the collagen VI α4 

and α5 chains in ovary are complementary (Figure 2.22). In adult mouse testis, the 

collagen VI α3 and α4 chains are widely expressed and completely co-localize. Both 

chains are expressed in the peripheral surrounding layer of testis, the tunica albuginea, 

which is a fibrous connective tissue primarily made up of collagens. In addition, both 
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Figure 2.22 Immunohistochemical analysis of adult mouse ovary. Frozen sections were 
incubated with affinity-purified collagen VI α3 (A, D and G), α4 (B), α5 (E) and α6 (H) antisera 
followed by AlexaFluor 488 (green) and 546 (red) secondary antibodies. The overlay of α4(C), 
α5(F) and α6(I) with the α3 chain is shown for comparison. For orientation, a section of the ovary 
was stained with H&E (J and K). The α3 chain is widely distributed in tunica albuginea, cortical 
stroma and follicular granulosa or theca cells. The collagen VI α4 chain shows strong expression 
in the follicular granulosa and a weak expression in cortical stroma. The α5 chain antiserum 
stains predominantly in the cortical stroma and not in the follicular granulosa. The α6 chain is 
absent in ovary. M, medulla, TA, Tunica albuginea, TH, theca cells, C, cortical stroma. Scale bar, 
100 µm 
  
 

chains are significantly present in the thin loose fibrous connective tissue surrounding the 

seminiferous tubules (Figure 2.23). In contrast, the  collagen VI α5 chain is present in the 

tunica albuginea where it clearly co-localizes with the collagen VI α3 chain but is absent 

in the connective tissue of seminiferous tubules. The collagen VI α6 chain was only 

weakly present in the tunica albuginea but is clearly not expressed in the tissue 

surrounding seminiferous tubules (Figure 2.23). 
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Figure 2.23 Immunohistochemical analysis of adult mouse testis. Frozen testis sections were 
incubated with affinity-purified collagen VI α3 (A, D and G), α4 (B), α5 (E) and α6 (H) antisera 
followed by AlexaFluor 488 (green) and 546 (red) secondary antibodies. The overlay of α4(C), 
α5(F) and α6(I) with the α3 chain is shown for comparison. For orientation, a section of the testis 
was stained with H&E (J). The collagen VI α3 and α4 chains show strong expression and co-
localize in tunica albuginea and in the loose connective tissue surrounding the seminiferous 
tubules. The α5 chain is restricted to tunica albuginea and co-localizes with the α3 chain. A very 
weak staining for the collagen VI α6 chain is observed at the tunica albuginea. TA, tunica 
albuginea, ST, seminiferous tubules. Scale bar, 100 µm.  
  

 
2.1.2.5.5 Collagen VI chain expression in skin 

In skin, the new collagen VI chains show differences in the expression patterns between 

newborn and adult stages. The collagen VI α3 chain is widely distributed. It is present at 

the dermal-epidermal junction, throughout the dermis and also in the subcutaneous 
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muscular layer below the dermis. It is also expressed surrounding the blood vessels and 

hair follicles, but it is absent in the epidermis. Interestingly, the collagen VI α5 chain 

shows a restricted and specific staining surrounding the small blood vessels of the  

 

               

 
Figure 2.24 Immunohistochemical analysis of adult mouse skin. Frozen skin sections were 
incubated with affinity-purified collagen VI α3 (A, D and G), α4 (B), α5 (E) and α6 (H) antisera 
followed by AlexaFluor 488 (green) and 546 (red) secondary antibodies. The overlay of α4(C), 
α5(F) and α6(I) with the α3 chain is shown for comparison. For orientation, a consecutive section 
was stained with DAPI (J). The α3 chain is widely distributed in the dermis but absent in the 
epidermis. The collagen VI α4 shows a weak, patchy staining in the dermis. The weak staining of 
the epidermis is not specific. The α5 chain shows restricted expression around the blood vessels 
(arrows) and a patchy expression, probably at nerves or macrophages, in the papillary dermis. 
The collagen VI α6 chain is absent in adult skin. E, epidermis, BM, basement membrane, D, 
dermis, SC, subcutaneous muscle layer. Scale bar, 100 µm 
 

papillary dermis (Figure 2.24). Besides this, the α5 chain displays a patchy expression 

most probably representing nerves or macrophages in the dermis of adult skin. In all 



                                                                                                                     2 RESULTS 

 

 48 

regions it partially co-localizes with the widely expressed collagen VI α3 chain (Figure 

2.24). The collagen VI α4 chain is very weakly present in the dermal region of adult 

mouse skin. None of the new chains are found in the basement membranes of the skin. 

The collagen VI α6 chain is completely absent in adult skin. However, the situation is  

 

 
Figure 2.25 Immunohistochemical analysis of newborn mouse skin. Frozen skin sections 
were incubated with affinity-purified collagen VI α3 (A, D and G), α4 (B), α5 (E) and α6 (H) 
antisera followed by AlexaFluor 488 (green) and 546 (red) secondary antibodies. The overlay of 
α4(C), α5(F) and α6(I) with the α3 chain is shown for comparison. The collagen VI α6 chain is 
present in the muscular layer below the newborn skin and co-localizes with the α3 chain. No 
expression of the new collagen VI chains was observed in the epidermis, the dermal epidermal 
basement membrane and dermis. Scale bar, 100 µm 
 
 

completely different in newborn mice. The skin of a newborn mouse is absolutely devoid 

of the new collagen VI chains whereas the collagen VI α3 chain is present throughout the 

dermis and in the basement membranes of skin. Nevertheless, the collagen VI α6 chain is 

predominantly present in the muscle layer below the dermis and partially co-localizes 

with the collagen VI α3 chain (Figure 2.25). 

 

2.1.2.5.6 The new collagen VI chains are absent in cartilage 

The collagen VI α3 chain shows a very distinct and prominent expression in various 

layers of the growth plate of femur (thigh bone). It is weakly expressed in the resting 
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zone and stronger in the proliferating and hypertrophic cartilage. However, none of the 

new collagen chains is present in the growth plate. Interestingly, the α5 and α6 chains 

together with the α3 chain show a specific expression, probably in a ligament (Figure 

2.26). In sagittal sections of a newborn mouse, the collagen VI α3 chain is broadly  

 

 
Figure 2.26 Immunohistochemical analysis of newborn mouse knee cartilage Frozen 
sections were incubated with affinity-purified collagen VI α3 (A, D and G), α4 (B), α5 (E) and α6 
(H) antisera followed by AlexaFluor 488 (green) and 546 (red) secondary antibodies. The overlay 
of α4(C), α5(F) and α6(I) with the α3 chain is shown for comparison. The collagen VI α4, α5 and 
α6 chains are completely absent in the cartilage while the collagen VI α3 chain is weakly 
expressed in resting zone and strongly present in proliferating and hypertrophic zones. α5 and α6 
chains show specific staining in the ligament that connects the muscle and bone. Scale bar, 
100µm 
 
 

expressed in the intervertebral discs of fibrocartilage. Similar to in the knee cartilage, the 

new collagen VI chains are not present in the intervertebral fibrocartilage (not shown). 

 

2.1.3 Fate of the new collagen VI chains in the Col6a1 null mice  

The immunohistochemical analysis of the expression of the new collagen VI chains 

showed that they can occur together with α3 chain at specific sites. On the other hand the 

new chains are also present at sites where the α3 chain is not expressed. Based on 

structural information, it is likely that the new chains replace the α3 chain in collagen VI 

assemblies. The assembly of collagen VI containing α1, α2 and α3 chains has been 
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studied in detail. Triple helical molecules are not formed in Col6a1 knockout mice 

leading to a complete absence of collagen VI in these mice (Bonaldo et al., 1998). 

Therefore the expression of the new chains was studied in the knockout mice.  

   

 
Figure 2.27 Immunohistochemical analysis of wild type and Col6a1 knockout mouse. 
Immunohistochemistry was performed on frozen sections from mouse quadriceps femoris muscle 
(A–H) and small intestine (I–L) from wild type (wt) (A–D and I–K) or Col6a1 knockout mice (ko) 
(E–H and L). Sections were incubated with the affinity-purified antisera against the collagen VI α4 
(B, F, J, and L),  α5 (C and G), and α6 (D and H) chains, human collagen VI from placenta 
(detecting the classical collagen VI chains α1, α2 and α3; A, E, and I) and laminin 332 (K), 
followed by an AlexaFluor (green, A–H), AlexaFluor 546 (red, I and K), or AlexaFluor 488 (green, 
J and L) conjugated secondary antibodies. Antibodies against the classical collagen VI chains 
(α1α2α3) and the α5 and α6 chains, but not such against the α4 chain, strongly stained the 
extracellular matrix surrounding the muscle fibers of wild type (A–D) mice. In small intestine, 
antibodies against classical collagen VI (α1α2α3) (I) and antibodies against the collagen VI α4 
chain show co-staining with those against the basement membrane marker laminin-332 (K). In 
collagen VI α1 chain-deficient mice, staining for the new collagen VI chains is absent (L). Nuclei 
were counterstained with DAPI (blue, A–H and L). Scale bar is 100 µm.  
 
 

Immunohistochemical staining on adult quadriceps femoris skeletal muscle of Col6a1 

deficient mice revealed that the α5 and α6 chains as well as the α3 chain are completely 

absent indicating a participation of the α1 chain in the assembly of collagen VI molecules 

containing the α5 and α6 chains (Figure 2.27). As there is no expression of the collagen 

VI α4 chain in skeletal muscle (See Figure 2.1), intestinal sections from the wild type and 

Col6a1 deficient mice were tested. In the wild type intestine, the collagen VI α4 chain 

co-localizes with laminin 332 which is a marker for basement membrane structures. 
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Similar to the collagen VI α5 and α6 chains, the α4 chain is completely absent in the 

collagen VI α1 knockout mice. This confirms that all the new chains require Col6a1 to 

form a triple-helical monomer. Furthermore, the absence of collagen VI α5 and α6 in 

Col6a1 knockout mice was confirmed by immunoblot analysis of diaphragm extracts 

  

                  
 

(Figure 2.27). For wild type mice, incubation with antibodies specific for either the 

collagen VI α5 or α6 chain resulted in clearly identifiable bands above 220 kDa. When 

the same method was applied to diaphragm from collagen VI α1 chain deficient mice, no 

bands were detected, supporting the results from the immunohistochemical analysis. A 

GAPDH specific antibody was also used on the same extracts as a control to compare the 

total protein content of both wild type and knockout tissue extracts (Figure 2.28). 

 

2.1.4 Expression of new collagen VI chains in man  

As described earlier, only the genes coding for the collagen VI α5 and α6 chains have 

remained intact in humans (see 2.1.7) while the gene coding for the collagen VI α4 chain 

Figure 2.28 Immunoblot analysis of 
collagen VI α5 and α6 chains in wild 
type and collagen VI α1 chain 
deficient mouse diaphragm extracts. 
Diaphragm muscle of adult wild type 
(wt) and collagen VI α1 chain deficient 
mice (ko) were extracted with lysis 
buffer. The proteins were submitted to 
SDS-PAGE with prior reduction on a 4-
12% polyacrylamide gradient gel, 
transferred to a membrane and 
immunostained with specific antibodies 
against the collagen VI α1, α5 and α6 
chains or glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) (In 
collaboration with Paolo Bonaldo, Padova). 
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was transformed to a pseudogene as a consequence of a large pericentric inversion in 

chromosome 3 (see 2.1.7). Therefore only the expression of the collagen VI α5 and α6 

chains was studied. Affinity purified polyclonal antibodies that are specific to human 

collagen VI chains were used in sections of skeletal muscle and skin biopsies (in 

collaboration with Patrizia Sabatelli, Bologna). Although collagen VI is ubiquitously 

expressed, the main reason behind selecting these tissues was the clinical phenotypes 

associated with mutations in collagen VI genes in humans.  

 

2.1.4.1 Expression in human skeletal muscle 

Immunostaining on cryosections from healthy human skeletal muscle showed a 

prominent expression of the collagen VI α5 chain in the myotendinous junction (Figure 

2.29A) that co-localizes well with the laminin α2 chain (Figure 2.29B). In contrast, the 

 

         
Figure 2.29 Immunohistochemical analysis of human skeletal muscle. Frozen sections were 
incubated with affinity purified collagen VI α5 (A&B) and α6 antisera (C) followed by AlexaFluor 
488 (green) and 546 (red) secondary antibodies. The collagen VI α5 chain is strongly expressed 
in the myotendinous junctions (A) and co-localizes with the laminin α2 chain (B). The collagen VI 
α6 chain shows a broad distribution in both perimysium and endomysium of human skeletal 
muscle (C). Nuclei are stained with DAPI (blue). 
 
collagen VI α6 chain is abundant and widely present in both perimysium and 

endomysium of the human skeletal muscle fibers (Figure 2.29C). 

 

2.1.4.2 Expression in human skin 

Immunofluorescence microscopy of normal skin sections labeled with monoclonal 

antibodies against the collagen VI α3 chain showed expression throughout the dermis 
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(Figure 2.30A,D), while labeling with polyclonal antibodies against human collagen VI 

α5 and α6 chains revealed a more restricted expression pattern. Collagen VI α5 is mainly 

expressed in the narrow zone of the papillary dermis (Figure 2.30B,E) just below the 

dermal-epidermal junction. Here the expression of collagen VI α6 is much weaker and 

discontinuous (Figure 2.30C,F). In contrast, the α5 and α6 chains were both strongly  

      
Figure 2.30 Immunohistochemical analysis of human skin. Frozen skin sections from a 
healthy donor with a monoclonal antibody against the collagen VI α3 chain (A,D) or polyclonal 
antibodies against the collagen VI α5 (B,E) or α6 chain (C,F) (red). Sections were double labeled 
with an antibody against laminin α5 (green), as a marker of basement membranes. Collagen VI 
α3 shows a broad distribution in the papillary and reticular dermis, including vasculature and 
nerves, and hypodermis. In contrast, the collagen VI α5 chain is localized in the papillary dermis, 
close to dermal-epidermal junction, and around some vessels of the reticular dermis. The α6 
chain appears around the vessels of the papillary and reticular dermis, with a weaker and 
discontinuous labeling below the dermal-epidermal junction. A, B, C and D, E, F are at the same 
magnification. Bar, 100 µm  
 
expressed around blood vessels at the interface between the papillary and reticular 

dermis, but not around the annexes in the deeper layers of the skin (Figure 2.30B,C). This 

pattern was confirmed by double labeling with antibodies against laminin α5, used as a 

marker for basement membranes (Figure 2.30). 

 

2.1.5 The role of new collagen VI chains in human diseases. 

A variety of pathological conditions have been linked to collagen VI and the disease 

association of the genes coding for the α1, α2 and α3 chains has been thoroughly studied 
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(Lampe & Bushby, 2005). In addition recent studies showed the association of the 

COL6A5 and COL6A4 genes to atopic dermatitis (Söderhall et al., 2007) and knee 

osteoarthritis (Miyamoto et al., 2008), respectively. As the lack of deposition of the new 

chains in the Col6a1 knockout mouse show a close association with the expression of 

collagen VI α1 chain, the new chains may play a role also in the etiology of COL6A1, 

COL6A2 and COL6A3 linked diseases. Collagen VI is known to be primarily associated 

with muscular dystrophies such as Ullrich congenital muscular dystrophy and Bethlem 

myopathy. These patients have been shown to carry mutations in either of the genes 

coding for the collagen VI α1, α2 and α3 chains. Nevertheless, there are significant 

numbers of UCMD and BM patients in whom no mutation was detected in the old 

collagen VI genes.  

 

2.1.5.1 Association to muscular dystrophies 

A preliminary immunohistochemical analysis of human skeletal muscle biopsies from 

collagen VI deficient patients with UCMD phenotype who do not carry mutations in any 

of the three collagen VI α1, α2 and α3 chains revealed that the collagen VI α6 chain 

expression is remarkably reduced in endomysium (Figure 2.31) (in collaboration with 

Patrizia Sabatelli, Bologna). Nevertheless, the perimysium staining of collagen VI α6 

could still be seen in both the patients N49 and N50. While in depth expression analysis 

of collagen VI α5 and α6 in UCMD and BM patients is underway, an initial attempt to 

  

 
identify mutations in both the collagen VI α5 and α6 genes in patients suffering from 

UCMD and BM did not yield positive results (in collaboration with Volker Straub, 

Figure 2.31 Immunohisto-chemical 
analysis  of the collagen VI α6 chain 
in UCMD patients. Frozen sections of 
human skeletal muscle from two 
patients, N49 and N50 with UCMD 
phenotype but no mutation in COL6A1, 
COL6A2 and COL6A3 genes was 
stained with collagen VI α6. The 
expression of α6 was reduced in the 
perimysium of muscle fibers compared 
to Figure 2.29C. The nuclei are stained 
with DAPI (blue). 
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Newcastle and Patrizia Sabatelli, Bologna). However, this analysis needs to be extended 

also to patients carrying mutations in the old collagen VI genes, because additional 

mutations in the new genes modulate the severity of the disease.  

 

2.1.5.2 Analysis of skin of patients with COL6A1, -A2 and -A3 mutations 

BM and UCMD patients display distinct skin phenotypes in addition to the muscular 

defects. As the new chains are also expressed in skin, biopsies from four UCMD patients 

carrying mutations in the three genes (one in COL6A1, two in COL6A2 and one on 

COL6A3) and one BM mutation with a recessive mutation in COL6A3 were analyzed to 

assess whether the mutations in COL6A1, COL6A2, and COL6A3 may effect the 

secretion and localization of the collagen VI α5 and α6 chains and thereby contribute to 

the observed phenotypes such as keloid scarring, cigarette paper skin or keratosis pilaris 

(in collaboration with Patrizia Sabatelli, Bologna). Immunofluorescence analysis with a  

 

           
Figure 2.32 Immunostaining for collagen VI α3 in skin of normal controls and of UCMD and 
BM patients. Analysis of collagen VI in skin sections of four UCMD patients carrying mutations in 
COL6A1 (UCMD-A1), COL6A2 (UCMD-A2a and UCMD-A2b) and COL6A3 (UCMD-A3) and one 
BM patient with a homozygous mutation in the COL6A3 gene (BM-A3), compared with a healthy 
donor (CTRL). Staining was performed with antibodies against collagen VI α3 (green) and laminin 
α5 (red). The merged images show a reduced expression of collagen VI α3, ranging from mild 
(UCMD-A2a) to moderate (UCMD-A1 and UCMD-A3) or severe (UCMD-A2b and BM-A3). Bar, 
100 µm. 
 
monoclonal antibody against collagen VI α3 showed a collagen VI deficiency in the skin 

of all patients, ranging from moderate to severe (Figure 2.32). Immunostaining with the 
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Figure 2.33 Immunostaining for collagen VI α5 in skin of normal controls and of UCMD and 
BM patients. Staining was performed with antibodies against collagen VI α5 (green) and laminin 
α5 (red). The nuclei are stained with DAPI (blue). The collagen VI α5 chain was reduced in 
UCMD-A1, UCMD-A2a and UCMD-A2b, but normally expressed in UCMD-A3 and BM-A3 (A). 
Staining with collagen VI α5 (green) and laminin α5 (red) or collagen VI α3 (red), in UCMD-A1 
and UCMD-A2b (B). Anomalous roundish deposits (arrows) that stain for collagen VI α5 are seen 
at the epidermal-dermal interface, just below the basement membrane while collagen VI α3 was 
absent within these deposits (arrows). Bars, 100 µm. 
 
 

             
Figure 2.34 Immunostaining for collagen VI α6 in skin of healthy controls and of UCMD and 
BM patients. Staining was performed with antibodies against collagen VI α6 (red) and laminin α5 
(green). The nuclei are stained with DAPI (blue). The collagen VI α6 chain was reduced in 
UCMD-A1 and normally expressed in UCMD-A2a. A wide distribution of α6 was observed in the 
papillary dermis of UCMD-A2b, UCMD-A3 and BM-A3 patients, Bars, 100 µm. 
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collagen VI α5 chain antibody showed altered expression in the papillary dermis of the 

patients with mutations in COL6A1 or COL6A2. In the patient UCMD-A1 the α5 chain 

was markedly reduced at the papillary dermis and around blood vessels (Figure 2.33). 

Interestingly, the impact on the expression of the α5 chain varied in patients carrying 

different compound heterozygous mutations in COL6A2. While in the patient UCMD-

A2a the signal for the α5 chain was evenly reduced, in patient UCMD-A2b the intensity 

of labeling was decreased in some areas of the papillary dermis both at the dermal-

epidermal junction and around the vessels (Figure 2.33). In contrast, patients UCMD-A3 

and BM-A3 that carry mutations in COL6A3 showed a collagen VI α5 chain staining of 

normal intensity, however it appeared more widely distributed in both patients and 

particularly in UCMD-A3 (Figure 2.33). Moreover, in patients UCMD-A1 and UCMD-

A2b double labelling for the collagen VI α3 and α5 chains revealed the presence of 

roundish deposits containing only the α5 chain (Figure 2.33B). These deposits, usually 

detected close to the basement membrane of the dermal-epidermal junction, showed an 

irregular shape and the diameter was variable, ranging from 0.5 to 20 µm. The α6 chain 

immunolabeling was markedly reduced in patient UCMD-A1, but largely unaffected in 

patients carrying mutations in COL6A2 and COL6A3 (Figure 2.34). However, it appeared 

more widely distributed in patients carrying mutations in COL6A3. In contrast, the 

roundish deposits were not labeled with the antibody for the α6 chain and were absent 

from normal skin (not shown).  

 

2.1.5.3 Association to knee osteoarthritis 

While the characterization of the new collagen VI chains was underway, Miyamoto and 

colleagues identified the 5’ part of the split COL6A4 gene (see section 2.1.2) on 

chromosome 3p24.3 to be associated with a susceptiblity for knee osteoarthritis. They 

named the gene DVWA (Dual von Willebrand factor A domain) as it contains exons 

coding for the N-terminal VWA domains of COL6A4. However, they were unable to 

recognize the real nature of the locus although the bioinformatic analysis yielded an 

ambiguous result. A FASTA similarity search of the DVWA/COL6A4 sequence with the 

murine collagen VI α4 chain sequence revealed a 72% identity between the two 

sequences at the amino acid level (Appendix Fig. 3). However, only 49% of the amino 



                                                                                                                     2 RESULTS 

 

 58 

acid sequence forming the first (N7) and 75% of that forming the second VWA domain 

(N6) are present in the published DVWA sequence (Figure 2.35). Analysis of the exon- 

 

  

       
 
Figure 2.35 Comparison of the 5’ regions of the murine and the human COL6A4/DVWA 
genes. Exons in the proposed human DVWA gene are depicted in black and their splicing is 
indicated by lines. Translated exons are shown as filled, untranslated exons as open boxes. 
Additional exons of the human COL6A4 gene are depicted in red. Asterisks mark exons in 
COL6A4/DVWA that contain at least one stop codon. The position of EST clones derived from the 
DVWA/COL6A4 locus are given in green. The predicted domain structures of the collagen VI α4 
chain and the proposed DVWA protein are given between the gene structures. SP, signal 
peptide, N7-N1, N-terminal VWA domains, COL, collagenous domain, C1 and C2, C-terminal 
VWA domains, C3, unique domain and C4, Kunitz domain. Domains that are encoded by 
downstream exons are dashed. The red bar indicates the open reading frame of the truncated 
human COL6A4. Blue arrows mark the positions of the polymorphisms linked to knee 
osteoarthritis. 
 

intron organisation of COL6A4 (DVWA) revealed that the first exon is located just 266 bp 

5’ of the neighboring CAPN7 gene (Figure 2.35). In the published DVWA cDNA 

sequence the first exon is spliced to an exon that is orthologous to the third exon of the 

murine Col6a4 gene. The DVWA cDNA lacks the corresponding second exon coding for 

the signal peptide. However, the reading frame for a complete VWA domain is 

maintained in the third exon and therefore the proposed reading frame for DVWA starts at 

a conserved methionine residue that corresponds to a methionine residue in the most N-

terminal VWA domain (N7) of the collagen VI α4 chain (Appendix Fig. 4). At the DNA 

level the next exon of DVWA is 82% identical to the corresponding fourth exon of murine 

Col6a4, coding for the VWA domain N6. However, due to the insertion of an adenine at 

position 1280 a frameshift occurs that leads to a premature stop codon at position 1332 

(Appendix Fig. 5). Interestingly, the only polymorphism that shows global association 
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with knee osteoarthritis (Meulenbelt et al., 2009), the cysteine 260 to tyrosine 

polymorphism, is located within in the frameshifted sequence close to the C-terminus, 

whereas the tyrosine 169 to asparagine polymorphism is located in the truncated N6 

 

 

                      
 
Figure 2.36 Human collagen VI α4 chain. A) Amino acid alignment of human and mouse collagen 
VI α4 chains. The amino acid sequence of the human collagen VI α4 chain (α4H) was deduced 
from the cDNA sequence deposited in the database under accession number FN394065, the 
partial murine sequence (α4M) is from the database, accession number A2AX52. Vertical arrows 
mark the potential signal peptide cleavage sites. Horizontal arrows indicate the boundaries of the 
domains N6 and N7 and of DVWA as depicted in Fig. 1B. An open arrow indicates the position of 
the frameshift. The residues forming the conserved metal ion-dependent adhesion sites are 
denoted with dots. B) RT-PCR analysis of the COL6A4/DVWA mRNA was performed using 
primer pairs BK417 and BK425. Template RNA was isolated from primary human chondrocytes 
(1-7), human cartilage (8-11) and HEK293 cells (12). All cartilage donors were of european origin. 
Lanes 9 and 10 show RTPCRs performed on different RNA preparations obtained from the same 
donor. C, negative control. RT-PCR for actin was used to control cDNA quality. The 1kb ladder 
(M) from GIBCO BRL was used as a reference. 
 

domain. As all collagens need a signal peptide to enter the secretory pathway, the lack of 

a sequence coding for a signal peptide in the DVWA cDNA is unlikely. Indeed, in a 

search for an exon downstream of exon 1 in COL6A4 (DVWA), the signal peptide 

sequence coding exon could be identified. It corresponds to the murine exon 2, which in 
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addition contains a putative splice site 13 bp upstream of the AUG codon (Appendix Fig. 

6). Several human EST clones could be identified that code for the N-terminal VWA 

domains of the collagen VI α4 chain, however similar to the published DVWA cDNA 

none of these contained the putative signal peptide coding sequence (Figure 2.35). 

Therefore RT-PCR was performed to clone the predicted signal peptide coding cDNA, 

using primers deduced from the genomic sequence. The signal-peptide-containing 

collagen VI α4 chain sequence could be amplified from the human embryonic kidney cell 

line HEK293 (Figure 2.36). The protein coding sequence comprises exons 2-4 (Figure 

2.36) and as in the published DVWA cDNA the frameshift in the fourth exon leads to a 

premature stop codon (Fig. 2.36A). The cloned human α4 cDNA of 1269 bp (Appendix 

Fig. 7; accession number FN394065) contains an open reading frame of 1155 bp, 

encoding a protein consisting of 385 amino acid residues preceded by a signal peptide of 

18 residues, as predicted by a method using neural networks or hidden Markov models 

(Bendtsen et al. 2004). The mature secreted protein has a calculated Mr of 40,564 and 

contains only the complete most N-terminal VWA domain (N7) and, as DVWA, a 

truncated VWA domain N6. Interestingly, although we were able to amplify cDNA 

transcribed from the 3’ part of the split gene (not shown), we were not able to amplify the 

5’ COL6A4/DVWA cDNA from human cartilage or primary human chondrocytes (Figure 

2.36B). cDNA starting from the non-coding exon 1 of DVWA could also not be 

amplified from human HEK293 cells.  

 

 

2.2 TARGETING OF THE COLLAGEN XXVIII GENE IN MOUSE 

Recently, collagen XXVIII, similar to collagen VI in that it contains VWA domains N 

and C terminal of the collagenous domain, was identified. However, only its gene 

structure and tissue distribution is known (Veit et al., 2006). Collagen XXVIII shows a 

very specific expression close to the basement membranes in dorsal root ganglia and 

peripheral nerves (Veit et al., 2006). To study the function of collagen XXVIII the 

generation of a knockout mouse was initiated.  
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2.2.1 Strategy for the construction of the Col28a1 knockout targeting vector 

The mouse Col28a1 is located on chromosome 6A1 and contains 34 exons that are spread 

over a length of 195 kb. The exon 0 encodes the 5’ untranslated region whereas the exon 

1 codes for the signal peptide sequence. The N-terminal VWA domain is encoded by 

exon 2 and exon 3 (see Figure 1.7).  The strategy was to insert a stop codon into exon 2 

so that only a short unstable truncated version of collagen XXVIII is produced. The final 

targeting vector was constructed in two steps (Figure 2.37). In the first step a preliminary 

targeting vector was made with a selection cassette containing the neomycin resistance 

gene flanked by FLP recognition sequences and thymidine kinase gene sequences for 

positive and negative selections respectively. A reporter gene, PALP (Placental ALkaline  

        
 
Figure 2.37 Schematic representation of the Col28a1 knockout strategy.  The 5’ homology 
arms (red) and two short 3’ homology arms (blue) were cloned together with the selection 
cassette before proceeding to recombineering. After recombineering, the final targeting vector 
containing the long 3’ homology arm of around 8.41 kb was incorporated where the final targeting 
vector was then transfected to ES cells that contain the wild type collagen XXVIII allele to 
generate a mutant or recombinant allele. The mutated exon 2 is represented in yellow. TK, 
thymidine kinase. A, preliminary targeting vector. B, final targeting vector, C, wild type allele, D, 
targeted allele, 
  
Phosphatase), that later allows tracing the expression of the targeted gene by an internal 

ribosomal entry site, IRES, is inserted upstream of the neomycin resistance gene. The 

cloned 5’ homology arm is about 1.26 kb and contains the complete first exon and a part 
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of the second exon. On the other hand, the final 3’ homology arm is about 8.4 kb and 

consists of a remaining part of the second, complete third and fourth exons. However, 

initially two short fragments (~500 bp) from either side of the intended 8.4 kb long 3’ 

homology arm were joined and inserted into the 3’ end of the cassette. The second step 

was to introduce the preliminary targeting vector into DH10B cells that contain a BAC 

clone with the collagen XXVIII gene. In this step, as a result of homologous 

recombination (recombineering), the region (~7.4 kb) between the two short fragments 

was retrieved from the BAC-DNA into the preliminary targeting vector. In order to 

confirm the integrity of the final targeting vector, it was subjected to several restriction 

digestion analyses with enzymes NheI and EcoRI (Appendix Fig. 8).  

 

2.2.2 ES-cell transfection and screening for positive clones 

Homologous recombination was used to modify the mouse chromosome 6 A1 encoded 

Col28a1 gene locus. The final targeting vector was linearized by use of an restriction site 

with AscI that is present downstream to the 3’ homology arm and then transfected into 

the embryonic stem (ES) cells V6.5, derived from the 129xC57BL/6 mouse strain. Upon  

 

       
Figure 2.38 Screening of ES cells. The isolated embryonic stem cell clones were tested for the 
5’ and 3’ integration of the targeting vector using PCR (A) and Southern hybridization (B) 
respectively. The presence of selection cassette in both the ES cell clones was confirmed with 
neo probe (C). In panel A, three independent agarose gels were selected to show the positive 
clones. In panel B, lane 1, control (wild type ES cell DNA); lane 2, and 3 are ES cell clones #151, 
and #248 respectively.  m, 1 kb ladder. cntl, positive control (targeting vector). 
 

the homologous recombination of the introduced final targeting vector DNA and the 

C57BL/6 genomic DNA, the ES cells were grown under G418 and gancyclovir selection 

markers. Around 300 ES cell clones that survived the selection were isolated, cultured 



                                                                                                                     2 RESULTS 

 

 63 

and screened initially for the integration of the 5’ homology arm with PCR probes 

(Figure 2.38A). Only two out of 300 clones (#151 and #248) gave a positive signal at the 

expected size, which corroborated the insertion of 5’ end of the targeting vector (Figure 

2.38A). The genomic DNA from the two clones were isolated and subjected to restriction 

digest with BsrGI followed by Southern hybridization with the 3’ probe to verify the 

integration of the 3’ end of the targeting vector (Figure 2.38B). The targeted allele should 

run at a size of 12 kb while the wild type allele should run at 16.7 kb. Both the ES cell 

clones (#151 and #248) prominently contain both the wild type as well as targeted allele. 

Similarly, the integrity of the neo-cassette was confirmed by HindIII digestion of ES cell 

DNA followed by a southern hybridization with neo-probe. The expected band for the 

integration of neo-cassette was around 6 kb. As expected, the wild type ES cell DNA 

does not show any signal but both the clones show a band at the respective size 

confirming the presence of the neo-cassette (Figure 2.38C).  

 

2.2.3 Generation of chimeric mice 

As both the ES cell clones #151 and #248 were completely positive for the integration of 

neo-cassette, 5’ and 3’ homology arms, these ES cell clones were independently injected 

into CB20 blastocysts and subsequently implanted into the uterus of pseudo-pregnant 

foster mice strain. However, despite of several attempts, the mice that received #248 ES 

cell clones did not become pregnant. The mice that received #151 ES cell clones 

 

             
Figure 2.39 Chimeric mice generated from engineered ES cell DNA. A representative of the 
three chimeric mice (65%) is shown. Snap shot from side view (left) and top view (right). 
 

conceived and gave birth to several pups. However, only three viable chimeric male mice 

(65%, 60% and 25%) resulted (Figure 2.39). These were used for analyzing the germ-line 

transmission of the targeted allele. 
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2.2.4 Examining the germ-line transmission of the targeted gene 

In order to generate a heterozygous mutant mouse for Col28a1 gene, the three viable 

chimeric male mice were backcrossed with C57BL/6 female mice. The tail biopsies of 

their progeny were analyzed by PCR with neo and 5’ probes. A total of seven litters from 

each male chimeric mouse were tested to observe the germline transmission of the 

targetted allele. A representative genotyping analysis from one litter is shown (Appendix 

Fig. 9). However, the targeted allele did not enter the germline.  
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3. DISCUSSION 

3.1  COLLAGEN VI 

Collagen VI is unique within the large family of collagenous proteins in that it can form 

abundant microfibrils in a variety of extracellular matrices. It was first identified as a 

collagen of probable basement membrane origin occurring in several tissues (Chung et 

al., 1976). Collagen VI serves as a substrate for cell attachment and anchors the 

meshwork that connects collagen fibers, nerves and blood vessels to the surrounding 

matrix (Keene et al., 1988; Bonaldo et al., 1990). For about three decades, collagen VI 

was considered to contain triple helical monomers made up from three different α1, α2 

and α3 polypeptide chains. This study describes the identification and biochemical 

characterization of yet another three collagen VI chains, α4, α5 and α6, that appear to 

serve as alternatives to the α3 chain. The detection of new collagen VI chains raised the 

question why these have not been detected earlier as components of collagen VI 

assemblies. Indeed, several studies gave results that could be explained by the existence 

of the new chains. For instance, a heterogeneity in the α3 chains produced by different 

cell lines was observed by immunoprecipitation using polyclonal antibodies (Colombatti 

et al., 1995). It was also reported that the ratio between the α1/α2 chains and the α3 

chain may differ depending on the proliferative state of cells (Kielty et al., 1990) or the 

culture system in which cells are grown (Hatamochi et al., 1989). The in silico and 

biochemical characterization of the new chains presented here widens our understanding 

of collagen VI and the variability of this multifunctional protein. 

 

3.1.1 Gene structure and evolution of new chains 

In mouse, the three new genes are arranged in tandem on chromosome 9 and were 

numbered according to their appearance from 5’ to 3’ on the coding strand. These genes 

have previously only been incompletely annotated or incorrectly predicted by conceptual 

translation or gene prediction programs. Moreover, the three new chains possess a similar 

gene structure. Interestingly, the mouse collagen VI α1 and α2 genes are also arranged in 

tandem on chromosome 21 (Weil et al., 1988) and have similar gene structures. 
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However, the new genes structurally resemble the collagen VI α3 gene, which is present 

on chromosome 2, rather than Col6a1 and Col6a2. The close relationship between the α3 

chain and the new chains is reflected in the almost identical exon/intron organization of 

the portions of the respective genes encoding the collagenous domains. Among the 19 

coding exons, the exon lengths and the number of the exons coding for collagenous 

domain are the same with the exception of the last exon. Although the lengths of the N- 

and C-terminal globular domains of the new chains vary among themselves and also 

compared to the α3 chain, their overall structure is still conserved pointing to the 

importance of the globular domains in collagen VI function. Interestingly, the major 

splice variants of the collagen VI α3 mRNA code for only seven N-terminal VWA 

domains, similar to the major variants of the new chains (Dziadek et al., 2002). The 

sequences and the domain structures of the new chains show that they have evolved as 

the consequence of a series of gene duplications originating from their common ancestor, 

the collagen VI α3 gene. Probably the first duplication gave rise to the α4 chain, as this 

chain still carries a C-terminal Kunitz domain. The tandem orientation of the new 

collagen VI genes indicates that the α5 and α6 genes resulted from sequential duplication 

of the α4 gene. Furthermore, the sequence identity of 95% at the DNA level of the N7 

domains of the α5 and α6 chains supports the likelihood of their sequential duplication. 

Moreover, another duplication of exons coding for the VWA and unique domains 

occurred exclusively in the C-terminal region of the collagen VI α5 gene, which suggests 

that the α5 chain has been more extensively modified than the other new chains. From 

sequence analysis, it is quite evident that the collagen VI α1 and α2 chains must have 

originated from a gene duplication (Francomano et al., 1991). Therefore, the six chains in 

collagen VI are a result of duplications from two common ancestral genes 

(Col6a1/Col6a2 precursor and Col6a3). Moreover, also these genes possess a certain 

similarity in sequence and gene structure at the collagenous domain indicating that they 

may have a common ancestor.  

 Also collagen IV consists of six genetically distinct chains. In this case, the six 

genes evolved through three consecutive gene duplications, probably from a common 

ancestral gene (Khoshnoodi et al., 2008). However, although the six genes may have 

their own common ancestor both in case of collagen IV and collagen VI, the collagen IV 
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genes are more closely related than the collagen VI ones. The collagen IV genes occur in 

three pairs on different chromosomes (Khoshnoodi et al., 2008). The collagen VI genes 

are present in head to tail orientation, whereas in case of collagen IV a head to head 

arrangement is found. This allows sharing a common promoter in the middle, directing 

the bidirectional transcription of the two genes (Heikkila & Soininen, 1996). However, in 

order to allow a differential expression of COL4A5 and COL4A6, alternative promoters 

may be used (Oohashi et al., 1994; Sugimoto et al., 1994; Zhou & Reeders, 1996; Zhou 

et al., 1993). In contrast, the collagen VI genes have uni-directional promoters.  

 A preliminary analysis of the vertebrate genomic databases shows that only one of 

the new collagen VI genes is present in Danio rerio and Gallus gallus while all the three 

new genes are found in mammals like Bos taurus, Canis familiaris or Equus caballus. As 

most mammals possess all three genes, the sequential duplication could be a rather novel 

event in evolution. In humans the new genes are present on a very interesting part of 

chromosome 3 where a large pericentric inversion occurred after the division between 

Homininae and Ponginae (Muzny et al., 2006). The 3’ breakpoint of the inversion is 

located within COL6A4 and leads to its inactivation. Although both parts of COL6A4 are 

still present and can be easily identified by their sequence, both have become transcribed 

non-processed pseudogenes. Thereby Homininae have become natural COL6A4 

knockouts (Figure 2.6). However, the collagen VI α5 and α6 chains are still intact in 

humans. This raises the question if one of the remaining genes, COL6A5 or COL6A6, has 

taken over the function of COL6A4. The major structural difference between the collagen 

VI α4 chain and the α5 and α6 chains is at the C-terminus, where the fibronectin type III 

domain and the Kunitz domain occur only in the α4 chain. However, comparing human 

and mouse collagen VI α5 and α6 chains, the α5 chain diverges especially at the C-

terminus, which in addition shows alternative splicing and could represent an adaptation 

to a need to replace the α4 chain in Homininae.  

  

3.1.2 Molecular assembly and interactions of new collagen VI chains 

The present model of collagen VI assembly includes only the α1, α2 and α3 chains 

which assemble intracellularly from heterotrimeric monomers into dimers and tetramers, 

that are then secreted to form extracellular beaded filaments by interactions of their non-
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collagenous domains (Furthmayr et al., 1983). There is good evidence that α3 chain 

expression is essential for the formation of functional collagen VI molecules, as human 

SaOS-2 cells that are deficient for the α3 chain do not produce triple helical collagen VI 

(Lamande et al., 1998b). Although the length of the collagenous domain of the collagen 

VI α1 chain is identical to those of the new chains and the α2 chain is only one amino 

acid residue shorter, there are other criteria that clearly show the closest relationship of 

the new chains with the α3 chain. First, the exact position of the single cysteine residue 

within the collagenous domain is conserved in the α3, α4, α5 and α6 chains. In the α3 

chain this cysteine appears to be involved in tetramer formation and stability (Lampe & 

Bushby, 2005). The α1 and α2 chains also contain one cysteine each, but these are at a 

different position and it has been suggested that they are involved in the stabilization of 

the supercoil that is formed during antiparallel dimer formation (Chu et al., 1988). 

Second, it has also been proposed that the supercoiled dimer is partially stabilized by ion 

pairs between different segments along the supercoil (Knupp & Squire, 2001). In the α1, 

α2, α3 chain heterotrimer the supercoiled part of the α1 chain carries a high negative net 

charge, while that of the α3 chain has a high positive net charge and that of the α2 is 

close to neutral. All three new chains carry a positive net charge that is even higher than 

that of the α3 chain. In addition, the positions of the two imperfections present in the α3 

chain, giving the supercoil a clearly segmented character (Knupp & Squire, 2001), are 

conserved. Third, phylogenetic analyses based on the collagenous domains, using protein 

distance and protein parsimony methods, clusters the new chains to the collagen VI α3 

chain, whereas the α1 and α2 chains form a different branch (Figure 2.5). Together, these 

data indicate that the new chains may substitute for the α3 chain probably forming 

α1α2α4, α1α2α5 and α1α2α6 heterotrimers.  

 Besides the collagenous domains, all three new chains contain N- and C-terminal 

globular domains that are similar to those of the old chains. However, the domain 

structure of the new chains most closely resembles that of the α3 chain. Similar to in the 

collagen VI α3 chain, the major part of the globular domain in the new chains is made up 

by VWA domains. A detailed bioinformatic analysis of the distribution and evolution of 

VWA domains showed the existence of ∼200 VWA domain coding exons in the human 
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genome (Whittaker & Hynes, 2002). The collagen VI chains alone contribute 46 VWA 

domains and collagen VI could be considered the prototype member of the VWA domain 

containing protein superfamily. The VWA domain is known to participate in protein-

protein, cell-cell and cell-matrix interactions. A variety of such interactions involving the 

VWA domain have been identified for collagen VI. Interestingly, in a phylogenetic 

analysis of all VWA domains of collagen VI, only the C1, C2 and N1 domains of the new 

chains cluster together with the respective domains of the α3 chain, suggesting that these 

domains are crucial and could potentially play a similar role as in the α3 chain. In 

contrast, the corresponding domains of the α1 and α2 chains cluster together. Similar to 

for many other collagens, the assembly of collagen VI starts from the C-terminal ends 

where specific interactions between the VWA domains C1 direct the stoichiometric 

assembly of chains into a triple helical molecule (Lamande et al., 2002). However, for the 

initiation of monomer formation the C-terminal domain does not necessarily need to be a 

VWA domain. For instance, the structurally distinct C-terminal non-collagenous (NC1) 

domains of both collagen VIII and X have been shown to be critical for chain association 

(Marks et al., 1999; Illidge et al., 1998). In collagen VI, the C1 domain of the α3 chain is 

known to be crucial for monomer formation (Ball et al., 2001). All three new chains 

share a high sequence similarity at the C1 domains (∼62%) that possess exactly the same 

size and are flanked by conserved cysteine residues, which might be important for 

assembly. Moreover, they form a single cluster together with the α3 chain in the 

phylogenetic trees (Figure 2.5). In addition, the C1 domain of the collagen VI α1 chain is 

also known to interact with the C-terminal domain (NC1) of collagen IV, thereby 

anchoring the endothelial basement membrane around blood vessels and nerves. 

Interestingly, the highly similar α2 chain C1 domain does not show any interaction (Kuo 

et al., 1997). In contrast, this domain appears to be essential for higher assemblies such as 

dimers and tetramers. There is no involvement of the C2 domain of the α3 chain in dimer 

and tetramer formation. In phylogenetic analyses the C2 domains of the α4, α5 and α6 

chains cluster together with that of the α3 chain in a single branch suggesting that they 

may have similar functions (Figure 2.5).  

Expression analysis in SaOS2 cells of human collagen VI α3 cDNAs that do not 

encode N-terminal domains demonstrated that the N6-N10 domains are neither crucial 
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for the assembly of collagen VI monomers, dimers or tetramers nor for their extracellular 

assembly. However, it was shown that the N5 domain of the collagen VI α3 chain is 

critical for the extracellular assembly into microfibrils (Fitzgerald et al., 2001; Lamande 

et al., 2006). The exact region or sequence signatures within the N5 domain that are 

responsible for the microfibril formation are not known. Therefore, based on the 

sequence information alone, it is not possible to identify which domains in the new 

chains play a similar role to the N5 domain of the α3 chain.  

The VWA domains N9, N7 and N3 of the α3 chain showed binding to heparin 

that was abolished already by moderate salt concentrations (Specks et al., 1992). 

However, it was not possible to identify the corresponding domains in the new chains on 

the basis of sequence information. Also, a stretch of eight N-terminal globular domains 

(N9-N2) showed strong binding to hyaluronan and required denaturing agents for full 

dissociation suggesting that the interaction is not simply ionic but conformation 

dependent (Specks et al., 1992). Although the specific region of interaction is not known, 

as the new chains possess seven VWA domains at their N-termini, hyaluronan could 

potentially be an interaction partner. The unique domain of the new chains (C3) is only 

partially conserved as compared to the α3 chain. However, a conserved cysteine residue 

that is present in the α3 chain is seen in all the new chains. Although the role of this 

cysteine residue is not yet clear, based on the positional conservation it could be involved 

in forming stable disulfide bonds during the assembly. Interestingly, 4-6 residues 

removed from the cysteine residue, a RGD motif is present in both the α4 and α5 chains 

that is missing in the α3 chain. Although collagen VI is known to bind to cells, this 

affinity appears to be restricted to the collagenous domains (Aumailley et al., 1991; 

Aumailley et al., 1989; Pfaff et al., 1993; Klein et al., 1995).  This could mean that the 

new α4 and α5 chains differ in their cell attachment activity compared to the collagen VI 

α3 chain. The C-terminal domain C5 resembling a Kunitz domain was found to play a 

critical role in microfibril assembly (Lamande et al., 2006). Only the α4 chain contains a 

clearly homologous C5 domain. Interestingly, the Kunitz domain is truncated in mouse 

and rat, but the N-terminal part, which contains the trypsin interaction site in the original 

bovine pancreatic trypsin inhibitor (Perona et al., 1993), is still present in the truncated 
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molecules and could serve as an interaction module. Collagen XXVIII also contains a 

Kunitz domain and shares similarity with collagen VI in carrying N- and C-terminal 

VWA domains (Veit et al., 2006). However, the collagenous domain of collagen XXVIII 

is long and remains unique due to the high number of imperfections as compared to 

collagen VI. The collagen VI α5 and α6 chains lack a Kunitz domain, which may 

indicate differences in the assembly of α5- and α6-chain-containing microfibrils. Indeed, 

it will be interesting to study the process by which the collagen VI fibrils of different 

chain composition assemble. For instance, do the fibrils contain α1, α2 and only one of 

the four related α3, α4, α5 and α6 chains or are also mixed assemblies possible? The 

latter alternative would lead to a very high number of possible permutations. 

The participation of the new chains in collagen VI assembly was studied in the 

Col6a1 knockout mouse. It was earlier shown that the absence of the α1 chain blocks 

secretion of the α2 and α3 chains (Bonaldo et al., 1998), indicating that the α1 chain is 

essential for the assembly of collagen VI molecules. Immunohistochemical and western 

blot analyses showed that also the new chains are completely absent in Col6a1 deficient 

mice (Figure 2.27 and 2.28). This means that the α1 chain is a prerequisite also for their 

secretion and rules out the possibility that new chains can form homotrimers. Moreover, 

the fact that they can replace the α3 chain explains why the new collagen VI chains are 

expressed in the regions where the α3 chain is absent. These observations strongly 

indicate that the new chains assemble in a similar manner as proposed for the α1, α2 and 

α3 chain-containing collagen VI. In contrast to the results presented here, Fitzgerald and 

colleagues found that only the mouse α4 chain, but not the α5 or α6 chains assemble 

with the human α1 and α2 chains when transfected into SaOS2 cells (Fitzgerald et al., 

2008). Interestingly, although a functional collagen VI α4 chain is lacking in humans, the 

human α1 and α2 chains were able to assemble with the mouse collagen VI α4 chain. In 

contrast, although both the α5 (N5-C1) and α6 (N7-C2) chain constructs used in their 

study contained the C1 domain, which is critical for assembly, they did not form trimers. 

As both constructs lacked domains, this could point a possible role of these in the 

assembly. From automated electron tomography it was calculated that about ten VWA 

domains are present in the N-terminal globular domain of the collagen VI heterotrimer 
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purified from bovine nuchal ligament or aorta, while six domains were found for the C-

terminal part (Baldock et al., 2003). Alternative splicing of the α3 chain mRNA (Dziadek 

et al., 2002) could explain that less than the 12 expected VWA domains are present when 

the full-length α3 chain is assembled. Nevertheless, nine N-terminal VWA domains and 

six or seven C-terminal domains would be present in assembly forms containing one of 

the new collagen chains, which is close to the calculated numbers. While assembly of 

other heterotrimeric collagen types mostly involves recognition between two or three 

different α chains, assembly of collagen VI molecules requires selection among six 

different α chains similar to in the assembly of collagen IV. Theoretically these six 

chains could form 106 different combinations including six homotrimers and 100 

heterotrimers. However, in case of collagen IV only three heterotrimers (α1α1α2, 

α3α4α5 and α5α5α6) have been identified, pointing to remarkably specific chain 

interactions (Borza et al., 2001; Boutaud et al., 2000; Hudson et al., 1994). In contrast to 

in collagen IV, only one heterotrimer (α1α2α3) and no homotrimers have so far been 

unambiguously identified in collagen VI.  

 

3.1.3 Differential and restricted expression of the new chains 

In order to study the expression and localization of new chains in mouse and human 

tissues, specific antibodies that detect each of the new chains had to be generated. 

Although the recombinant expression of one VWA domain in bacteria often leads to a 

correctly folded protein suited for the generation of specific antisera (Dumas et al., 2004), 

we used an eukaryotic expression system to achieve not only correctly folded but also 

appropriately post-translationally modified proteins. In addition, we mostly made 

antigens containing a stretch of four or five VWA domains to enhance specificity of the 

generated antibodies. The domains were carefully selected on the basis of their sequence 

identity with other collagen VI chains. VWA domains that possess high sequence identity 

were excluded to avoid cross-reactivity. For instance, the N7 domain of the collagen VI 

α5 and α6 chains share a sequence identity of about 92.1% at the protein level, which 

could lead to the production of cross-reacting antibodies. We initially produced His-

tagged collagen VI fragments, but later employed the Strep-tag that binds more tightly to 
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affinity matrices. The recombinant antigens were used to immunize both rabbits and 

guinea pigs to allow co-staining. Indeed, the affinity purified antisera against the mouse 

collagen VI α3, α4, α5 and α6 chains showed no cross-reactivity. Despite of the 

sequence similarity between mouse and human collagen VI chains, antisera raised against 

the mouse α5 chain did not cross-react with the human α5 chain (not shown). In contrast, 

the mouse α6 antiserum reacted with the human α6 chain. The reason could be that the 

sequence identity between mouse and human is lower in the α5 chains than in the α6 

chains. In particular, the domains used for the generation of α5 chain antisera (N6-N2)  

are only 73% identical in contrast to 86% for the corresponding α6 domains (N6-N2). 

For these reasons we needed to generate also a separate set of antisera against the human 

chains. We now used the novel double Strep-tag to affinity purify the human collagen VI 

fragments. With this system the tagged proteins can be harvested directly from serum-

containing medium with high yields. However, when used for immunization of rabbits 

and guinea pigs, the antisera against human collagen VI chains showed a cross-reactivity 

due to significant titer for the double Strep-tag. Nevertheless, they could be used for 

immunohistochemistry and western blots of human tissue sections and extracts as these 

do not contain any Strep-tag antigens.  

All three new chains could be detected in collagen VI preparations from newborn 

mouse carcasses. A Coomassie stained gel showed distinct α1 and α2 bands and a very 

heterogenous group of bands above 220 kDa (Figure 2.13A). Most likely, this group of 

bands is comprised by splice variants of the α3 chain as well as the new collagen VI 

chains. All the new chains were identified in this mixed preparation by immunoblots 

using affinity-purified antibodies. This demonstrates that all three new chains are 

expressed and translated in vivo. The presence of bands above the expected size for the 

full length α4 chain under reducing conditions indicates the presence of non-reducible 

crosslinks involving the α4 chain. In addition, antibodies against the α4 and α5 chains 

detected lower bands indicating either alternatively spliced isoforms or proteolytic 

processing.  

The immunohistochemical analysis of mouse tissues revealed that the new chains 

have a very specific and narrow tissue distribution, which is in contrast to the broadly 
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distributed collagen VI α3 chain. Immunostaining with the affinity purified antibodies on 

three different muscle types from both newborn and adult mice revealed that the 

expression of the new chains does not change significantly over age. However, the new 

chains show variation in their expression pattern. The collagen VI α4 chain is 

predominantly associated with basement membrane structures in the smooth muscle of 

intestine, but absent in both skeletal and cardiac muscle of adult mice. In contrast, the 

collagen VI α6 chain is abundantly present in both perimysial and epimysial basement 

membrane structures of skeletal and cardiac muscle, but does not show expression in 

smooth muscle. Although the α5 chain is present in all three muscle types, the expression 

in skeletal and cardiac muscle is relatively weak compared to that of the α6 chain in adult 

mice. In newborn skeletal muscle, the collagen VI α6 chain is restricted mainly to the 

endomysium. Interestingly, the new chains are only partially co-localized with the 

collagen VI α3 chain. In the specific regions where the new chains are exclusively 

present they may replace the α3 chain and assemble together with the collagen VI α1 and 

α2 chains. Similar to in muscle, there is a partial co-localization of the α4 and α5 chains 

with the collagen VI α3 chain in kidney, eye and oesophagus (not shown). The collagen 

VI α4 and α5 chains are present in adult mouse testis and this is the only tissue that 

exhibits an absolute co-localization with the α3 chain. The collagen VI α5 chain is 

specifically associated with basement membranes surrounding the nerves and blood 

vessels in the dermis. However, the α4 and α6 chains do not show specific staining at 

those sites. This differential and restricted distribution of the new collagen VI chains 

indicates that they may have tissue specific functions allowing a modulation of collagen 

VI properties. The new chains appear to be less abundant than the α3 chain. This could 

partially explain why the new chains were not identified earlier when analysis was 

mainly performed at the protein level. In contrast to the α3 chain, the new chains are not 

expressed in articular cartilage and fibrocartilage suggesting that they do not play a role 

in the pathogenesis of cartilage associated disorders such as osteoarthritis and 

chondrodysplasias. In contrast to our results from mouse, Fitzgerald and colleagues 

reported that the α6 chain is present in human articular cartilage and localized to the 

territorial matrix (Fitzgerald et al., 2008). This could point to the differences in the tissue 
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distribution between man and mouse. Taken together, the results from 

immunohistochemistry show that the new chains are closely associated with basement 

membrane structures in several tissues pointing to a potential role in anchoring epithelia, 

nerves and blood vessels to the extracellular matrix.  

   

3.1.4 Significance of the new chains in human disease 

There is clear evidence for a role of collagen VI in the etiology of Bethlem myopathy 

(BM) and Ullrich congenital muscular dystrophy (UCMD). A variety of disease causing 

mutations have been identified in the collagen VI α1, α2 and α3 genes (Lampe & 

Bushby, 2005). Interestingly, patients have also been described which have phenotypes 

typical of BM or UCMD, but where mutations in the collagen VI α1, α2 and α3 chains 

could not be detected (Baker et al., 2005; Lucioli et al., 2005; Lampe et al., 2005). In 

man, the new collagen VI α5 and α6 chains show specific expression in myotendinous 

junctions as well as in perimysium and endomysium of skeletal muscle. However, similar 

to in mouse, the collagen VI α6 chain is more abundantly present in human skeletal 

muscle than the collagen VI α5 chain. Indeed, a recent analysis of skeletal muscle 

biopsies of two patients with an UCMD phenotype who do not have mutations in the 

COL6A1, COL6A2 and COL6A3 genes yielded promising results. In both patients, there 

was a dramatic reduction in expression of the collagen VI α6 chain in the perimysium, 

which could indicate that also mutations in the new collagen VI chains may cause 

muscular dystrophy. Genome sequencing to identify these mutations is under progress 

and it is reasonable to test a larger cohort of patients suffering from BM and UCMD of 

unclear etiology for mutations in the new genes.  

Besides the muscle phenotype, BM and UCMD patients develop skin 

abnormalities such as keratosis pilaris or keloid scarring. As the new chains are expressed 

in skin, their potential contribution to the skin phenotypes was studied in selected patients 

carrying mutations in the α1, α2 and α3 chains. As a byproduct, information on the 

assembly of collagen VI was obtained. The lack of an obvious defect in secretion or 

assembly of the α5 and α6 chains in patients with mutations in the α3 chain shows that 

the deposition of these is not dependent on the presence of α3 and that the new chains 
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may instead substitute for α3 by the formation of α1α2α5 or α1α2α6 heterotrimers. 

Interestingly, in the UCMD-A3 and BM-A3 patients the α5 and α6 chain staining was 

more widely distributed than in normal skin. This indicates that substitution of the α3 

chain by the α5 and/or α6 chains may alter the assembly or distribution of collagen VI 

containing microfibrils. The strongly reduced expression of the α5 and α6 chains in the 

UCMD-A1 patient carrying a dominant mutation in the COL6A1 gene matches the 

complete lack of the new collagen VI chains in Col6a1 knockout mice. However, as seen 

in two UCMD patients that carry different compound heterozygous mutations in the 

COL6A2 gene, the impact on the expression of the collagen VI α5 and α6 chains is 

highly dependent on the nature of the actual mutations. Patient UCMD-A2a carries a 

nonsense mutation in COL6A2 exon 12, coding for a part of the triple helical domain, and 

a mutation in COL6A2 intron 8 leading to a mixture of normally spliced transcripts and 

transcripts with retention of the entire intron 8, and containing an in-frame premature stop 

codon. Interestingly, the expression of the α3 and α5 chains is clearly reduced whereas 

the α6 chain remained unaffected. Due to the strong reduction of the α2 chain in this 

patient, the α2 chain concentration may become rate limiting in the triple helix formation. 

Possibly, the α6 chain is preferred to the α3 and α5 chains in this situation. Similarly, in 

the UCMD-A2b patient, staining for the α3 and α5 chain is reduced and the α6 chain is 

unaffected. This patient has two different splice site mutations in the COL6A2 gene, 

leading to frameshifts either within the triple helical domain or just downstream of the 

triple helical domain but including cysteine residues that are important for the triple helix 

formation. It is therefore uncertain if any proper triple helix can be formed. Interestingly, 

as in the UCMD-A1 patient, roundish deposits are seen, usually close to the basement 

membrane of the dermal-epidermal junction. These could represent aggregates of a 

smaller proportion of the collagen VI α5 chain, which are secreted but not properly 

assembled into microfibrils. However, it is not clear why such structures were not seen 

for the α6 chain and why they were also not detected in the UCMD-A2a patient. Most 

likely, the mutations in the COL6A1 and COL6A2 genes impair the assembly, so that 

either collagen VI molecules are not formed at all or the formation of collagen VI 

microfibrils in the extracellular space fails. On the other hand, the α6 chain is expressed 
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to a lesser extent at the dermal-epidermal junction, where ring-formed structures are 

detected. 

In a recent linkage study, the human COL6A5 gene was associated with the very 

common skin disease atopic dermatitis and designated COL29A1 (Söderhall et al., 2007). 

The published protein sequence is, except for a single amino acid exchange, identical to 

the third potential splice variant presented here. A variety of nonsynonymous coding 

SNPs were described, but none could explain the association of COL6A5 with atopic 

dermatitis on its own. It was therefore proposed that several variants or combinations 

associated with the most common haplotype of COL6A5 are involved in the etiology of 

the disease. In addition, a strongly maternal transmission pattern was found, which could 

be due either to imprinting or to maternal effects through an interaction of the child's 

genotype with the maternal environment during prenatal life. Another susceptibility locus 

for atopic dermatitis was linked to 3p24-22 (Bradley et al., 2002; Bischof et al., 2006), 

which is exactly the breakpoint area where the 5’ part of the COL6A4 pseudogene is 

located. It could be that the mechanism leading to atopic dermatitis is more complex and 

that the expression of the non-processed α4 chain pseudogenes by a yet unknown 

mechanism influences α5 chain expression. The maternal transmission pattern could 

point to such a mechanism. A number of pseudogenes have been described where gene 

conversion between a functional copy of a gene and a neighboring pseudogene causes 

disease (Bischof et al., 2006). However, in the present case the mechanism is likely to be 

more complex. 

The newly identified locus for atopic dermatitis in COL6A5 could correlate to 

another susceptibility locus on chromosome 21p21 found in a Swedish patient cohort, 

which may contain a susceptibility gene modulating the severity of atopic dermatitis 

especially in combination with asthma (Bu et al., 2006). Both 21p21 and 3p24 have also 

been described as asthma susceptibility loci (Ober et al., 1998). Interestingly, COL6A1 

and COL6A2 are located on 21p21, which could point to a more general role of collagen 

VI in the development of atopic dermatitis or asthma.  

The tissue distribution of the collagen VI α5 chain that is presented here is in 

clear contrast to Söderhäll et al., where the collagen VI α5 chain (COL29A1) was found 
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to be located in the epidermis (Söderhäll et al., 2007). The reason for this discrepancy is 

not clear. However, there is no other literature evidence for the presence of collagen VI in 

the epidermis. Generally, only a few collagens are located in the epidermis, e.g. collagen 

XXIII (Koch et al., 2006). As the lack of the new collagen VI chains in the Col6a1 

knockout mouse clearly indicates that they assemble together with the α1 chain and, 

probably, the α2 chain to form heterotrimers, an exclusive presence of the collagen VI α5 

chain in the epidermis would be surprising. It should be noted that Söderhäll et al. 

detected the collagen VI α5 chain in epidermis with an antiserum that was raised against 

a short peptide sequence. It is likely that the linear epitope of the peptide does not yield 

an antibody that detects conformational epitopes, as it is needed for successful 

immunolocalization on tissue sections, and the epidermal staining by the peptide antibody 

could therefore be an artifact. In contrast, the antiserum used in this study was raised 

against a large portion of the N-terminal, non-triple helical domain of the collagen VI α5 

chain (N2–N6), expressed in a eukaryotic system to ensure correct folding and purified 

under native conditions. In addition, the antiserum was affinity-purified against the 

protein that was used for immunization. The specific staining in a narrow zone just below 

the basement membrane, which is reminiscent of that of matrilin-2 (Piecha et al., 2002), 

AMACO (Gebauer et al., 2009) or tenascin C (Latijnhouwers et al., 2000), points to a 

specialized function of the collagen VI α5 chain in this zone of the papillary dermis, 

which is important for the resistance to tensile stress. Nevertheless, the α5 chain may 

play a role in the maintenance of the barrier function of the skin, as indicated by the 

observation of polymorphisms in the COL6A5 gene that were found to be linked to atopic 

dermatitis (Söderhäll et al., 2007) or atopy (Castro-Giner et al., 2009). However, the 

mechanism by which the α5 chain contributes to the barrier function would be different 

from the earlier proposed loss of epidermal integrity in the outer epidermis of atopic 

dermatitis patients (Söderhäll et al., 2007). Perhaps, the presence of collagen VI 

microfibrils containing the α5 chain close to the basement membrane and around the 

vessel walls in the papillary dermis is important to prevent the diffusion of antigens or the 

migration of inflammatory cells. The collagen VI α6 chain, which is mainly expressed 

around vessels of the papillary and reticular dermis, could also play a role in the proposed 

barrier function. However, due to the differences in the localization of the two chains, 
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they most likely have different functions in skin. Interestingly, the collagen VI α5 and α6 

chains in adult mouse skin exhibit a different expression pattern. Unlike to in humans, the 

papillary dermis of mouse skin is not stained by the collagen VI α5 chain specific 

antibody whereas the staining surrounding the blood vessels is seen both in man and 

mouse. In contrast to in humans, the collagen VI α6 chain is completely absent in adult 

mouse skin. This suggests that the new chains may have different roles in skin of man 

and mouse. 

In addition to the linkage of COL6A5 to atopic dermatitis, recently the 

chromosomal region 3p24.3 in humans that resembles the 5’ part of the split COL6A4 

gene was identified as a susceptiblity locus for knee osteoarthritis in Japanese and 

Chinese patients (Miyamoto et al 2008). The authors proposed that a gene designated as 

DVWA (Dual von Willebrand factor A domain) located in the associated region codes for 

a novel protein containing two VWA domains without a signal peptide sequence. 

Furthermore, they proposed that a recombinantly overexpressed DVWA/COL6A4 binds 

to tubulin suggesting a mechanism for disease modulation (Miyamoto et al., 2008). The 

DVWA sequence unequivocally resembles sequences of the collagen VI α4 pseudogene. 

Although, they could show the presence of DVWA/COL6A4 transcripts in the human 

cartilage, it is quite unlikely that the proposed DVWA/COL6A4 cDNA is translated into a 

functional protein since truncated VWA domains have not been described to form a 

stable folded protein. Furthermore, point mutations that affect conserved residues within 

the β -sheets of the single VWA domain of matrilin-3 cause the protein to misfold and 

prevent its secretion from the rER, both in vitro and in vivo (Otten et al., 2005; Cotterill 

et al., 2005). The truncated VWA1 of DVWA lacks the region where the first three out of 

five conserved residues in the MIDAS motif are located, only VWA2 contains the full 

consensus. Nevertheless, it cannot be excluded that if the protein is synthesized in the 

cytoplasm, a novel stable fold is created. However, the presence of such an intracellular 

protein would need to be demonstrated in vivo, either by specific antibodies directed 

against DVWA/COL6A4 or by more direct methods like mass spectrometry. The 

presence of an aberrant mRNA alone does not support the conclusion that the mRNA is 

translated into a folded protein, despite the fact that it could be recombinantly expressed 

in eukaryotic and prokaryotic cells. It should be noted that the cDNA constructs used for 
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recombinant expression and β-tubulin interaction studies lacked the large 5’UTR of the 

DVWA/COL6A4 mRNA (Miyamoto et al., 2008). Moreover, it was not possible to 

amplify the 5’ part of COL6A4/DVWA cDNA from either human cartilage specimens of 

patients of European origin or from their cultured chondrocytes. In addition, a large 

replication study and meta-analyses of DVWA/COL6A4 locus in a European population 

found no association to hip osteoarthritis and a significant heterogeneity with regard to 

knee osteoarthritis (Meulenbelt et al., 2009). Another independent meta analyses study 

also found significant heterogeneity in the DVWA/COL6A4 locus for knee osteoarthritis 

between UK and Asian populations (Valdes et al., 2009). Therefore, the effect of DVWA 

amino acid changes on tubulin binding is unlikely to influence the risk of OA in 

caucasians (Valdes et al., 2009). The reason for the differences between the European 

and Asian populations could be due to the presence of a dominant allelic frequency in the 

tested sample size that can be minimized by increasing the sample size. In addition, it is 

also possible that the differences are due to environmental influences or genetic 

background differences between the two tested groups. The presence of a disease locus in 

the interrupted COL6A4 gene at the genome breakpoint in chromosome 3p24.3 could be a 

consequence of the evolutionary rearrangement and is reminiscent to the linkage of atopic 

dermatitis close to the other genomic breakpoint of chromosome 3.  

However, it could well be that other yet not well characterized diseases are linked 

to the new collagen VI genes. Immunohistochemical analyses of glomeruli from the 

patients of diabetic glomerulosclerosis (GS) suggest that the collagen VI deposition is 

altered at various stages of disease (Nerlich et al., 1994). The uninterrupted staining 

along the glomerular basement membrane in normal glomeruli was discontinous in 

diffusely sclerotic glomeruli. In contrast, the collagen VI deposition was increased in 

nodular GS and evenly distributed throughout the nodular lesion. A comparison of 

immunohistochemical analysis with clinical parameters of diabetic nephropathy 

suggested that increased collagen VI deposition may be an indicator of the irreversible 

remodeling of glomerular matrix to nodular GS which is associated with functional 

insufficiency (Nerlich et al., 1994). Interestingly, the expression of collagen VI α5 in 

kidney is quite restricted to the glomeruli structures. In contrast, the collagen VI α6 chain 

is absent in kidney glomeruli. Based on the distinct and specific localization of the α5 
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chain in the glomeruli, it is tempting to speculate that the collagen VI α5 chain could play 

a role in diabetic nephropathy.  

Moreover, the strong expression of the new chains in ovary and testis raises the 

question if mutations could lead to infertility. It would be interesting to monitor the 

expression of new chains in the genital organs in UCMD and BM patients, even though 

infertility in such patients has not been described in the literature. 

The discovery of three new collagen VI chains will have a great impact in 

understanding the structure, assembly and function of collagen VI. Further biochemical 

characterization of the new collagen VI chains and their roles in the development of 

inherited diseases will contribute to the knowledge of extracellular matrix function and 

pathology. 

 

3.2 COLLAGEN XXVIII   

Recently, another novel VWA domain containing collagen that is capable of 

forming homotrimeric molecules was identified and designated as collagen XXVIII (Veit 

et al., 2006). In mouse, the Col28a1 gene is present on chromosome 6A1. The protein 

was found to be specifically associated with basement membranes in the peripheral 

nervous system. However, the functional role of collagen XXVIII is still unknown. 

Therefore, the inactivation of this gene in mouse embryonic stem cells via homologous 

recombination was initiated. In order to speed up the process of generating a targeting 

vector, BAC recombineering was employed (Copeland et al., 2001). As the Col28a1 gene 

has only a single start codon in the first exon, the second exon was selected for targeting. 

In order to eliminate the random insertions of the targeting vector, a negative selection 

with gancyclovir was performed while selecting the transfected ES cells. The integration 

of the 3’ arm was confirmed by Southern blots. However, Southern blots with two 

different probes for the 5’ integration did not work well. Since the 5’ end of the gene has 

AT rich repeat sequences, there was less possibility to design further probes in this 

region. Therefore, the 5’ integration was tested by PCR with one primer specific for the 

targeting vector and the other for the wild type allelic region. The positive ES cells clones 
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when injected into the blastocyst of pseudopregnant mouse gave rise to chimeric mice of 

variable percentage. However, when the chimeras were further backcrossed with 

C57BL/6 mice to generate a heterozygote allele for the targeted Col28a1 gene, there was 

no germline transmission observed in the F1 generation of chimeras for eight litters. 

Germline transmission depends on the quality of ES cells used, but the V6.5 cells are 

known to function well in this regard. However, the cell culture conditions used may 

have introduced problems. For instance, long intervals between passaging the cells to 

new feeder layers may result in undesirable changes in ES cells (Doetschman et al., 

1985).  ES cells that lose their ability to differentiate in vitro when cultured without 

feeder layers may become incapable of differentiating in vivo (Doetschman et al., 1985). 

Therefore the targeting vector will be used to transfect new ES cell clones for further 

attempts to generate a knockout mouse for Col28a1 gene. 
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4. MATERIALS AND METHODS 

4.1  MATERIALS 

The materials/chemicals used in this study were purchased from the following 

companies unless otherwise mentioned.  

 

Biozyme (Oldendorf)      FLUKA (Milwaukee, USA)  

GERBU (Gaiberg)      GibcoBRL (Paisley, Scotland)  

NEB (New England Biolabs, Beverly, USA)  Qiagen (Hilden) 

SERVA (Heidelberg)      Sigma (Deisenhofen)  

 

 

4.1.1 General solutions and buffers 

  
6x DNA loading dye  0.25% (w/v) Bromophenol blue and/or Xylene cyanol 
    70% (v/v) Glycerol 
 
10x RNA loading dye  50% Glycerol 
    1 mM EDTA (pH 8.0)  
    0.4% Bromophenol blue 
      
1x TAE   40 mM Tris 
    20 mM Acetic acid 
    1 mM EDTA 
 
1x SDS loading buffer 63 mM Tris HCl 
    10% (v/v) Glycerol 
    2% (w/v) SDS 
    0.0025% (w/v) Bromophenol blue 
    pH 6.8  
 
SDS-PAGE    200 mM Glycine 
running buffer   0.1% (w/v) SDS 
    0.04% (w/v) Bromophenol blue 
    62.5 mM Tris/HCl 
    pH 6.8 
 
20x SSC   3 M NaCl 
    0.3 M Sodium citrate 
    pH 7.0   
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1x PBS   140 mM NaCl 
    10 mM KCl 
    8 mM Na2HPO4 
    2 mM KH2PO4 
    pH 7.4 
 
1x TBS   150 mM NaCl 
    50 mM Tris/HCl 
    pH 7.4 
 

4.1.2 Bacterial media and strains 
 
 LB-Medium      LB-Agar 

 1.0% (w/v) Bacto-tryptone   1.5% (w/v) Agar in LB-medium 
 0.5% (w/v) Bacto-yeast extract   
 1.0% (w/v) NaCl 
 
 Bacterial strains 

 DH5α (Invitrogen) 
 Genotype: F- φ80lacZΔM15 Δ(lacZYA-argF)U169 deoR recA1 endA1 
   hsdR17(rk-, mk+) phoA supE44 thi-1 gyrA96 relA1 λ- 
 
 DH10B (Invitrogen) 
 Genotype: F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 
 recA1 endA1 araD139 Δ(ara, leu)7697 galU galK λ- rpsL nupG 
 

4.1.3 Nucleic acid and protein standards 

 Protein standard marker: Broad range marker (NEB) 
     Prestained broad range marker (NEB) 
 
 DNA standard marker: 1 kb ladder (Life Technologies) 
 
 RNA standard marker: 0.24-9.5 kb (GIBCO-BRL) 
 

 
4.1.4 Oligonucleotide primers 
 

Table 4.1 Primers used for mouse collagen VI chains 

Name Oligonucleotide sequence Designation / 
Purpose 

α3m1(f) 5'-AAAGCTAGCACAACAGCATGGAGATGTCAAAA-3' Recombinant protein 
α3m2(r) 5'-TATCTCGAGCTGTGAGGTTAGAGTGGTGATG-3' Recombinant protein 
α4m1(f) 5-TGAGGGATGAGGACAAGGAG-3' AM231151 
α4m2(r) 5-AAGGTAGGAAGCAGGTGTAGAC-3' AM231151 
α4m3(f) 5-TTCCTTCCAGAGAAGGGCAG-3' AM231152 
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α4m4(r) 5-ACATTTCCCACCCCGATAG-3' AM231152 
α4m5(f) 5-GCAGCATCAAACCCAACGAC-3' AM231153 
α4m6(r) 5-GCCTACACCATGTCTCACACTC-3' AM231153, RT-PCR 
α4m7(f) 5-TCGCATTATTCGTGCTCGCC-3' RT-PCR 
α4m8(f) 5-CAGAGGATTGTCTGCAGGG-3' Northern probe 
α4m9(r) 5-GCGGAAAGGCTGGGTAAATG-3' Northern probe 
α4m10(f) 5-CAATGCTAGCGCGTGCTCAGAAGCATCCCCGG-3' Recombinant protein 
α4m11(r) 5'-CAATAGATCTCAGGAGCAGATGTCCCGAATG-3' Recombinant protein 
α5m1(f) 5'-CAGGAACCCAGCAGCGAG-3' AM748256 

α5m2(r) 5'-CCCACAGCTCTGGCAAATTTC-3' AM748256, 
Northern probe 

α5m3(f) 5'-TTCCTTTGTGATGGCTCTGAC-3' AM748257 
α5m4(r) 5'-GTGTGTCTCCCCTCTCTAACTC-3' AM748257, RT-PCR 
α5m5(f) 5'-GCTCAGTGATTGACAGCTTCC-3' AM748258, RT-PCR 
α5m6(r) 5'-TCTTCTTTTGGCAGGCACTCAC-3' AM748258 
α5m7(f) 5'-ATGAACCTCACCATCCACTTG-3' Northern probe 
α5m8(f) 5'-AATGCTAGCTGCAAGAGGATCGAACTCTTA-3' Recombinant protein 
α5m9(r) 5'-AATGGATCCTCACTCTTGTGAATTATTACACAGAG-3' Recombinant protein 
α5m10(f) 5'-CAATGCTAGCTCCCTTTCCCACCTCTTGC-3' Recombinant protein 
α5m11(r) 5'-CAATCTCGAGATTGGCTTTCCCACAGCTCTG-3' Recombinant protein 
α6m1(f) 5'-CGTGGAGAGCAGCATTCATC-3' AM748259 
α6m2(r) 5'-CCAACAGGAACACCACATCAG-3' AM748259, RT-PCR 
α6m3(f) 5'-CAATGCTAGCTGGCCCCGAGTACGCAG-3' AM748260 
α6m4(r) 5'-CAATCTCGAGATTGCTCTCACCACCTGAGG-3' AM748260 
α6m5(f) 5'-TGTCAGCCAGTGTCTGTAACTC-3' AM748261 

α6m6(r) 5'-AAAGAGGGCATACCCATGAC-3' AM748261,  
Northern probe 

α6m7(f) 5'-AAGAAAGAGTCCCTACGAGCC-3' AM748262 
α6m8(r) 5'-TGGTGAGCAGCCCAGTTAAG-3' AM748262 
α6m9(f) 5'-TTCCTCAGCCTACAACCTG-3' RT-PCR 
α6m10(f) 5'-ATCCGCTTCTCAGATGCCTAC-3' Northern probe 
α6m11(f) 5'-CAATGCTAGCTGGCCCCGAGTACGCAG-3' Recombinant protein 
α6m12(r) 5'-CAATCTCGAGATTGCTCTCACCACCTGAGG-3' Recombinant protein 

f, forward; r, reverse; m, mouse; restriction sites are indicated in bold 
 

 

Table 4.2 Primers used for human collagen VI chains 

Name Oligonucleotide sequence Designation / 
Purpose 

α3h1(f) 5'-AATACTAGTAGCAAGCGAGACATTCTG-3' Recombinant protein 
α3h2(r) 5'-AATCTCGAGTCACAAAACTTGCTCGCTCAG-3' Recombinant protein 
α5h1(f) 5'-TGAAACAAAGCCAGCAAACAG-3' AM906078 
α5h2(r) 5'-CAAAGCATCAAAGTTCTGCC-3' AM906078 
α5h3(f) 5'-TATGGCAGCAGAAGAGCAC-3' AM906079 
α5h4(r) 5'-TCCCTGCCATACCCTCAAGTTC-3' AM906079 
α5h5(f) 5'-ACACTGGAGGGAACACCTACAC-3' AM906080 
α5h6(r) 5'-TGTGTCCTCTGCTGCCTTTC-3' AM906080 
α5h7(f) 5'-GAATCATCCGTGAAATCTGCC-3' AM906081 
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α5h8(r) 5'-AAACACAGCAACTCTCCTCAC-3' AM906081 
α5h9(f) 5'-AAAACACGGGACATCATCAC-3' AM906082 
α5h10(r) 5'-AAGCATCTATGAGGAAAGCCAC-3' AM906082 
α5h11(f) 5'-CACATCCAGACTTCCTTCCAAC-3' AM906083 
α5h12(r) 5'-CCCTGTCATTTACCACAGTACC-3' AM906083 
α5h13(f) 5'-CCCAAAGAGTAGGAAGTGATGAG-3' AM906084 
α5h14(r) 5'-GAAATGTTAGGGTCACCCCAG-3' AM906084 
α5h15(f) 5'-AATGCTAGCCACTTCCCCATATCCTG-3' Recombinant protein 
α5h16(r) 5'-AATGGATCCTCAATTGGTTTTCCCACAGCTC-3' Recombinant protein 
α6h1(f) 5'-ATTTGAAGTTGAAGATTTTTCAGGTC AM774225 
α6h2(r) 5'-TCATCAGCATACTTCAGAGCC AM774225 
α6h3(f) 5'-TGTTTGGCTCCAATGTCACC AM774226 
α6h4(r) 5'-TGCCATCTCCTCCAATGCAC AM774226 
α6h5(f) 5'-GCCTGAATGCCCTCATAAC AM774227 
α6h6(r) 5'-TGACCATAACAGGAAAGACAGAC AM774227 
α6h7(f) 5'-AATGCTAGCATGAGGGTTGGCCTTGTGGCC-3' Recombinant protein 
α6h8(r) 5'-AATGGATCCTCAGTTGCTTTCACCCGCTGTGG-3' Recombinant protein 

f, forward; r, reverse; h, human, restriction sites are indicated in bold 
 

Table 4.3 Primers used for mouse collagen XXVIII gene knockout 
Name Oligonucleotide sequence Purpose 
α1m1(f) 5'-GAAGCGGCCGCGGATCCCACTACAGATGGTTGTG-3' 5’homology arm 
α1m2(r) 5'-AAAGCTAGCCAATTAAATTCAGAGACTTGACC-3' 5’homology arm 
α1m3(f) 5'-ATAAGGCCGGCCTACTATTGAGTGACCCAACACT-3' 3’homology arm (1) 
α1m4(r) 5'-AAAACGCGTTGCAAGTCTGAATTTTAAAGTAT-3' 3’homology arm (1) 
α1m5(f) 5'-AAAACGCGTGTTGTTTAGCTTATTACATTAAG-3' 3’homology arm (2) 
α1m6(r) 5'-TTTGGCGCGCCATAGGAGACCTTGGAGTTTTAAC-3' 3’homology arm (2) 
α1m7(f) 5'-AAGCTTCCTGCTGCCTGCTATTTG-3' Southern probe (5’) 
α1m8(r) 5'-CTTCATCAGGTTCCACAGTGGAAC-3' Southern probe (5’) 
α1m9(f) 5'-TAATAATAACAACTAGTGATAGTG-3' Southern probe (3’) 
α1m10(r) 5'-ACAGGACCTCTTTCTCCAGTTTCTCC-3' Southern probe (3’) 

α1m11(f) 5'-CCCTTGGCTGCTCTCGGACTCC-3' Southern probe, 
Screening* (Neo) 

α1m12(r) 5'-CCAGCCTCTGAGCCCAGAAAGC-3' Southern probe, 
Screening* (Neo) 

α1m13(f) 5'-CATCACATTACAATTCCTTAGAAACC-3' Screening* (5’) 
α1m14(r) 5'-GATCAGCTAGATCTTCAGGATCTGC-3' Screening* (5’) 
f, forward; r, reverse; m, mouse, restriction sites are indicated in bold, ‘*’ represents 

the primers used for screening of tail biopsies 
 

 

4.1.5 Restriction enzymes (NEB)  

  AscI   BamHI   BglII   
  BsrGI   EcoRI   FseI  
  HindIII   MluI   NheI   
  NotI   SpeI   XhoI   
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4.1.6 Antibodies 
 
 

Table 4.3 Primary antibodies  

Origin Name Antigen WB / ELISA Host IF 
Mouse (sm) α3(VI) N10-N4 1:2000 Rabbit 1:500 
Mouse (sm) α3(VI) N10-N4 1:2000 Guinea pig 1:500 
Mouse (sm) α4(VI) N6-N3 1:2000 Rabbit 1:500 
Mouse (sm) α4(VI) N6-N3 1:2000 Guinea pig 1:500 
Mouse (sm) α5a(VI) N3 1:2000 Rabbit 1:200 
Mouse (sm) α5b(VI) N6-N2 1:1000 Rabbit 1:50 
Mouse (sm)  α5b(VI) N6-N2 1:1000 Guinea pig 1:50 
Mouse (sm) α6(VI) N6-N2 1:2000 Rabbit 1:500 
Mouse (sm) α6(VI) N6-N2 1:2000 Guinea pig 1:500 
Human (sm) α3(VI) N4-N1 1:2000 Rabbit 1:500 
Human (sm) α3(VI) N4-N1 1:2000 Guinea pig 1:500 
Human (sm) α5(VI) N6-N2 1:2000 Rabbit 1:500 
Human (sm) α5(VI) N6-N2 1:2000 Guinea pig 1:500 
Human (sm) α6(VI) N6-N2 1:1000 Rabbit 1:200 
Human (sm) α6(VI) N6-N2 1:1000 Guinea pig 1:200 
Human (ca)* Laminin α5  Laminin - Mouse 1:2000 
Human (ca)* Laminin α2  Merosin - Mouse 1:2000 

sm, self made (affinity purified polyclonal); ca, commercially available 
(Chemicon); * indicates monoclonal antibody, WB, Western blot; ELISA, 

Enzyme-linked immunosorbent assay; IF, Immunofluorescence 
 

 

 

Table 4.4 Secondary antibodies  

Source Conjugate Provider Applied Dilution 
Rabbit IgG HRP Dako WB/ELISA 1:2000 
Guinea pig IgG HRP Dako WB/ELISA 1:2000 
Rabbit IgG Alexa 546 Molecular probes IF 1:2000 
Guinea pig IgG Alexa 488 Molecular probes IF 1:2000 
Mouse IgG FITC Dako IF 1:2000 
Mouse IgG TRITC Dako IF 1.2000 

NB 1:15000 Anti-Digoxigenin AP Roche SB 1:20000 
IgG, Immunoglobulin G; AP, Alkaline phosphatase; HRP, Horse radish 

peroxidase; FITC, Fluorescein isothiocyanate isomer 1;  
TRITC, Tetramethylorhodamine isothiocyanate isomer R; WB, Western blot; 

ELISA, Enzyme-linked immunosorbent assay; IF, Immunofluorescence;  
SB, Southern blot; NB, Northern blot 
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4.2 MOLECULAR BIOLOGY METHODS 

4.2.1 Culture and storage of bacteria 

A single colony from a LB-Agar plate was inoculated in 8 ml of sterile LB medium 

(with or without antibiotics) and incubated under 200-220 rpm shaking at 37 oC in an 

incubator (Heraeus, Type B5050 E, Heraeus Instruments) overnight. When required, 

the bacterial cells were preserved in 25% (v/v) glycerol and stored at -80 oC. 

 

4.2.2 Preparation of competent cells  

The overnight culture (1 ml) was inoculated in 100 ml of LB media and allowed to 

grow at 37 oC incubator until the A600 reached 0.5-0.6. The culture was cooled in an 

ice/water slurry for 20 min and centrifuged at 4 oC for 10 min at 3500 rpm. The cells 

were resuspended in 1/10 of original volume of TSS buffer and snap-frozen in liquid 

nitrogen in 100 µl aliquots. The aliquots were stored at -80 oC. 

  TSS- Buffer 

  85% (v/v)  LB-Medium 
  10% (w/v)  PEG 8000 
  5% (v/v)  DMSO 
  50mM   MgCl2 
 

4.2.3 Bacterial transformation 

The plasmid/ligation reaction mixture (10-100 ng DNA)  were added to one aliquot of 

competent E. coli cells and gently mixed. The cells were incubated on ice for 30 min 

and then heat shocked for 1 min at 42 oC without shaking. The tubes were 

immediately transferred to ice and incubated for 2 min. 50-500 µl of LB-Medium 

were added and the tubes were shaken at 37 oC for 45 min. The transformation 

mixture (50-100 µl) was spread on LB-Agar plates containing antibiotics at the 

appropriate concentration. The plates were incubated for 5-10 min at RT, then 

inverted and incubated overnight at 37 oC  

 

4.2.4 Isolation of plasmid DNA 

Isolated single colonies from the transformation were inoculated into 8 ml of LB 

media containing the appropriate antibiotic. After overnight culture at 37 oC, the cells 

were centrifuged at 5000 rpm at 4 oC for 10 min. The plasmid DNA from the bacterial 

cultures was purified using Qiagen Plasmid Mini Prep Kit. 
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4.2.5 Determining of DNA concentration 

The plasmid DNA concentration was determined by measuring the absorbance at 260 

nm (A260) in a spectrophotometer. For reliable DNA quantification, A260 readings 

should lie between 0.1 and 1.0. An absorbance of 1 unit at 260 nm corresponds to 50 

µg plasmid DNA per ml (A260 = 1 ⇒ 50 µg/ml). The measurements were made at 

neutral pH (Tris-HCl, pH 7.0). For a relatively pure DNA, the ratio of A260/A280 

should be 1.8-2.0. 

 For purified PCR products or DNA fragments extracted from agarose gels, the 

DNA concentration was estimated from agarose gels after ethidium bromide staining. 

 

4.2.6 Agarose gel electophoresis 

0.7 – 2.0% (w/v) agarose (Seakem) gels in TAE buffer were prepared by heating in a 

microwave oven for about 2 min. After cooling at RT for 5 min, ethidium bromide to 

a final concentration of 0.5 ug/ml was added and properly mixed. Then the gel was 

poured slowly into the tank without any bubbles. The combs were selected depending 

upon the volume of the sample and inserted into the gel. The samples were mixed 

with 1xDNA-loading buffer and loaded onto the gel. A standard DNA molecular 

marker was also loaded onto the gel. The gels were run at 4-8 Volt/cm with 1xTAE 

buffer and visualized under UV-light.  

 

4.2.7 Gel-elution of DNA fragments 

Elution of DNA fragments was performed with the Qiagen Gel-extraction kit 

according to the manufacturers instructions. The agarose gels were run at low voltage 

for efficient separation of DNA fragments without smearing. The fragments were 

excised quickly with a sharp scalpel under low-strength UV-light to limit DNA 

damage. 

 

4.2.8 Polymerase chain reaction (PCR) 

Polymerase chain reactions were performed either on a cDNAs from mouse tissues or 

on plasmid DNAs. The PCR reaction mixture was prepared using the standard 

procedure and the PCR buffer in the reaction was varied depending upon the enzyme 

used.  After preparing the mixture, the PCR was performed with a standard cycler 

program. The annealing and the extension temperatures were varied depending upon 
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the melting temperature of primers and the length of the expected PCR product. The 

amplified products were visualized by running the samples on an agarose gel. 

 
 Standard reaction mixture 

 10-100 ng DNA 
 1 µM  Forward primer (10 µM) 
 1 µM  Reverse primer (10 µM) 
 200 µM dNTP Mix (2.5 mM) 
 1x  PCR buffer (10x AmpliTaq buffer (Perkin Almer) 
   10x Expand HF buffer, 10x Long Expand buffer 3 (Roche)) 
 2.5 U  Polymerase (Amplitaq (Perkin Almer) Expand HF enzyme mix 
   Long expand PCR system (Roche) 
 and made up to a desired final volume with MilliQ H20 
  
 Cycler program 

 1. Initial hold   94 oC  2-5 min 1x 
 2. Denaturation  94 oC  30 sec 
 3. Annealing  48-65 oC 30 sec  25-40x (Steps 2-4) 
 4. Extension  68-72 oC 60 sec 
 5. Final extension 72 oC  7 min  1x  
 
 
4.2.9 Restriction digestion of DNA 

The plasmid DNA or PCR products were digested using several restriction enzymes 

provided by New England BioLabs. After preparing the reaction mixture the tubes 

were briefly spun and incubated at 37 oC for 2 h to overnight. The digested products 

were purified using PCR-purification kit from Qiagen.  

   
  Reaction mixture 

  1.0 µg   DNA 
  2.0 µl  10x Restriction enzyme buffer 
  0.2 µl  100x BSA (NEB) (if necessary) 
  2-10U  Restriction enzyme 
  made up to final volume of 20 µl with H2O  
 

4.2.10 Ligation of DNA 

The digested plasmid DNA and the PCR product (insert) with compatible ends were 

ligated using the Rapid DNA ligation kit from Qiagen. The vector to insert molar ratio 

was between 1:1 and 1:10. After preparing the reaction mixture the tubes were 

incubated for 10 min at RT and used for transformation. 
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  Reaction mixture 
 
  2 µl   Plasmid DNA 
  1 µl  Insert 
  2 µl  5x Rapid ligation buffer 
  0.5 µl  T4-DNA Ligase (Fermentas) 
  made up to final volume of 10 µl with H2O  
 

4.2.11 DNA sequencing and analysis 

The DNA sequencing was performed at the core facility of Center for Molecular 

Medicine, University of Cologne. The PCR product (50-100 ng) or plasmid DNA 

(200-400 ng) with specific sequencing primers (1 µM) was used. The sequencing 

result were analyzed using the 4Peaks software. 

(http://mekentosj.com/science/4peaks/) 

 

 

4.2.12 DNA precipitation 

The plasmid DNA (targeting vector) was digested with AscI in 300 µl reaction 

volume at 37 oC overnight. The volume was raised to 500 µl with Tris-HCl (pH 8.0), 

1 ml chloroform was added, the sample vigorously vortexed and centrifuged at 5000 

rpm for 5 min.  The upper aqueous phase was transferred to a separate tube, sodium 

acetate (pH 5.2) to a final concentration of 0.3 M and with 2 volumes of ethanol were 

added and the sample kept at -80 oC for 30 min. The solution was centrifuged at 

13000 rpm for 15 min and washed twice with 70 % ethanol. The ethanol traces were 

removed, the pellet air dried for 5-10 min, resuspended in TE and quantified with a 

spectrophotometer.  

  

4.2.13 Isolation of total RNA 

Total RNA was isolated from both newborn and adult tissues using Trizol 

(Invitrogen). The tissue samples were homogenized in 1 ml of TRIZOL reagent per 

50 to 100 mg of tissue. The sample volume did not exceed 10% of the volume of 

TRIZOL reagent used for the homogenization. 0.2 ml chloroform was added per 1 ml 

of TRIZOL reagent. The tubes were tightly capped and vortexed vigorously for 15 sec 

and incubated at RT for 2 to 3 min. The tubes were centrifuged at 12,000 x g for 15 

min at 2 to 8 oC. The upper aqueous phase containing RNA was transferred carefully 

without disturbing the interphase into fresh tube. The RNA was precipitated by 
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mixing with isopropanol (1:2). The tubes were incubated at 15 to 30 oC for 10 min 

and centrifuged at 12,000 x g for 10 min at 2 to 4 oC. The supernatant was completely 

removed from the pellet. The RNA pellet was washed once with 1 ml of 75% ethanol. 

The tubes were mixed by vortexing and centrifuged at 7,500 x g for 5 min at 2 to 8 
oC. The washing procedure was repeated once. The ethanol traces were removed and 

the RNA pellet air-dried for 5-10 min. The RNA pellet was not completely dried to 

maintain its solubility. The RNA was dissolved in DEPC-treated water and quantified 

by spectrophotometer. 

  

4.2.14 Synthesis of cDNA 

The cDNA was prepared in a 20 µl reaction volume from total RNA of newborn and 

adult mouse tissues. The following components were added in a nuclease free 

microcentrifuge tube.  

 1 µl  Oligo (dT)12-18 (500 µg/ml)  
 x µl  1 ng – 5 µg of total RNA 
 1 µl  dNTP (10 µM) 
 

The final volume was made up to 12 µl with distilled water and the mixture was 

heated to 65 oC for 5 min and immediately chilled on ice. After brief centrifugation  

 4 µl  5x Strand buffer 
 2 µl  0.1 M DTT 
 1 µl  RNase OUT (40 U/µl) 
 
were added and gently mixed and incubated at 42 oC for 2 min. 1 µl (200 U) of 

SuperScript II RT were added and the mixture was incubated at 42 oC for 50 min. The 

reaction was inactivated by heating at 70 oC for 15 min.  

 

4.2.15. Northern blot 

The vectors containing the probes were linearized with either HindIII or BamHI. The 

digested products were purified using the Qiagen gel extraction kit. 

 
4.2.15.1 DIG labeling of RNA 

The purified template DNA (1 µg) was added to a sterile, RNase-free reaction vial 

and sterile RNase-free DMPC treated water was added to make the total sample 

volume up to 13 µl. On ice the following reagents were added.  
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  Reagent    Volume 

  10x dNTP labeling mixture  2µl 
  10x Transcription buffer  2µl 
  RNase inhibitor   1µl 
  RNA polymerase T3 or T7  2µl 
 
The reagents were gently mixed and briefly centrifuged before incubating for 2 h at 

37 oC. 2 µl of RNase-free DNaseI was added and incubated for 15 min at 37 oC to 

remove the template DNA. The reaction was stopped with 2 µl of 0.2 M EDTA (pH 

8.0). The RNA was incubated with 4M LiCl and absolute ethanol at -20 oC for 30 min 

and precipitated for 15 min at 4 oC. The pellet was washed with 50 µl of 70% ethanol 

and dissolved in 100 µl of MilliQ H2O before storing at -20 oC. 

 

4.2.15.2 Estimation of labeled RNA 

The labeling efficiency was estimated by running the samples on a 1% agarose gel. 

Before loading, 5 µl of RNA loading dye and 0.5 µl of 5xMOPS was added to 5 µl of 

RNA solution and the samples were heated for 10 min at 100 oC and immediately 

cooled on ice. A DNA ladder (1 kb) was used to estimate the RNA concentration.  

 

4.2.15.3 Formaldehyde gels 

Agarose (0.9-1.2%) were dissolved in water and the solution was cooled to 65 oC. 

Formaldehyde and 10xMOPS buffer were added to a final concentration of 0.8% and 

1x respectively. Total RNA (5-10 µg) or mRNA (1-3 µg) was incubated at 65 oC for 

20 min after mixing with 14.5 µl mix (see below). The solution was cooled on ice for 

2 min and 2 µl of loading buffer and 0.5 µl of ethidium bromide solution were added. 

The entire sample volume and also 5 µl of RNA ladder were loaded on the 

formaldehyde gel. The gels were run at 5V/cm. After electrophoresis, the gels were 

incubated twice in 20x SSC for 15 min and transferred onto the Roche Nylon 

membrane with 20x SSC using a vaccum blotter for 2 h at 55 mbar. The blot was 

fixed under UV and processed for hybridization. 

  
    Mix 

    1 µl 10x MOPS 
    3.5 µl Formaldehyde 
    10 µl Formamide 
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4.2.15.4 Blotting 

The membrane was pre-hybridized with RocheEasyHyb for 1 h at 68 oC. The DIG-

labeled RNA (20-50 ng) was denatured for 10 min at 100 oC in 30 µl of H2O and 

rapidly cooled on ice-water. The labeled probe was added to pre-heated hybridizing 

solution (BBR) and incubated overnight at 68 oC with gentle agitation. The membrane 

was washed twice with 2x SSC/0.1% SDS for 5 min at RT followed by two more 

washes with 0.1x SSC/0.1% SDS for 15 min at 68 oC. The membrane was incubated 

for 2 min in buffer I containing 0.3 % Tween-20 and blocked with 1x BBR in buffer I 

for 30 min. The membrane was incubated with anti-DIG-AP antibody in blocking 

solution for 30 min and washed twice for 15 min with buffer I containing 0.3% 

Tween-20. The membrane was incubated in detection buffer for 5 min and about 20 

drops of CDP-star substrate was added for 5 min. The signals were visualized by 

exposing a film for 15-30 min.  

 
RNA dilution buffer  10xMOPS 

50% MilliQ H2O  0.2 M MOPS (N-Morpholino propane sulfonic acid)   
30% 20xSSC  80 mM Sodium acetate 
20% Formaldehyde  10 mM EDTA (pH 8.0) 
 
Buffer I    Buffer II    Buffer III 

100 mM  Tris (pH 7.5) 1% Boehringer blocking reagent 100 mM Tris 
150 mM  NaCl   50 µg ss-DNA in buffer I  100 mM NaCl 
         50mM MgCl2 
         pH 9.5 
 
Running buffer  Detection buffer   BBR 

1x MOPS   100 mM Tris    10% Blocking 
0.8% Formaldehyde  0.1 M NaCl    reagent in maleic 
    pH 9.5     acid buffer 
   

     

4.2.16 Southern blot 

The evaluation of 3’ end and neo cassette insertion in the targeted ES cell clones was 

performed on digested ES cell DNA using Southern blot. 

  
4.2.16.1 DIG-labeling of DNA 

The PCR probes for the 5’, 3’ and neo selection cassette were labeled using the PCR-

DIG probe synthesis kit (Roche).  
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   Reaction mixture 

   5 µl  PCR buffer 
   5 µl  DIG-labeling mix 
   1 µl  Forward primer (10 µM) 
   1 µl  Reverse primer (10 µM) 
   1 µl  Template  
   0.75 µl  Enzyme mix 
   made up to final volume of 50 µl with H2O. 

After preparing the reaction mixture, a standard PCR program chosen according to the 

annealing temperature of the primers and the length of the product was used for 

labeling the probes. The labeled probes were analyzed on an agarose gel. The DIG-

labeled probe should be larger than the unlabeled probe due to the tagging 

 

 

4.2.16.2 Agarose gel electrophoresis and blotting 

The targeted ES cell DNA was digested with BsrGI (3’ probe) and HindIII (Neo 

probe) at 37 oC overnight and separated on a 1% agarose gel. The gel was depurinated 

with 0.125 M HCl for 10 min followed by slight rinse in water. It was then denatured 

twice with 0.5 M NaOH/1.5 M NaCl for 15 min followed by a slight rinse in water 

each time. The gel was neutralized twice with 0.5 M Tris/1.5 M NaCl (pH 7.5) for 15 

min and blotted onto the Roti Nylon Plus membrane (Roth) with a vaccum blotter in 

20x SSC and cross-linked to the membrane under UV light. After rinsing with 2x 

SSC, the membrane was prehybridized in 1x BBR for at least 1 h at 42 oC with 

approximate 20 ml/100 cm2 membrane. The DIG labeled DNA probe (10-20 ng/ml 

hybridization solution) was denatured by boiling for 10 min and rapid cooling on ice 

water. At least 3.5 ml of hybridization solution/100 cm2 membrane were added and 

the probe hybridized at 42 oC overnight. The membrane was washed twice under 

constant shaking for 5 min with 2x SSC/0.1% SDS and twice for 15 min with 0.5x 

SSC/0.1% SDS. For detection, the membrane was incubated for 2 min with maleic 

acid buffer/0.3% Tween 20, blocked for 30 min with 1x BBR in maleic acid buffer 

and the anti-DIG-AP antibody was applied in blocking solution and incubated for 30 

min at RT. The membrane was washed again two times for 15 min with maleic acid 

buffer/0.3% Tween 20, incubated in detection buffer for 5 min followed by adding 

CDP-star substrate (10-30 drops depending upon the membrane size) for 5 min and a 

film exposed for 10-15 min. 
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 Maleic acid buffer   10x BBR (Blocking reagent) 

 100 mM Maleic acid  10 % (w/v) BBR in Maleic acid buffer 
 150 mM NaCl 
 pH 7.5 
   
 Detection buffer 

 100 mM Tris 
 200 mM NaCl 
 pH 9.5 
 

4.2.17 Isolation of genomic DNA from mouse tails 

To analyze the germline transmission of the targeted col28a1 allele by PCR, the 

genomic DNA was prepared from the mouse tail biopsies. 600 µl of lysis buffer and 

10 µl proteinase K (10 mg/ml) solution were added to each tail biopsy. The tubes 

were incubated overnight at 55 oC to allow efficient proteinase K digestion. The 

debris was removed by centrifuging at 13,000 rpm for 5 min, 700 µl isopropanol were 

added to the supernatant and the sample centrifuged at 13,000 rpm for 20 min. The 

pellet was washed in 70% ethanol. After final centrifugation, the pellet was air dried 

for 10-20 min, resuspended in TE buffer and solubilized overnight at 55 oC.  

 
 Lysis buffer     TE  

 50 mM  Tris-HCl (pH 8.0)  10 mM   Tris-HCl (pH 8.0) 
 50 mM  EDTA (pH 8.0)  1 mM  EDTA 
 0.5%  SDS 
 

 

4.2.18 Isolation of genomic DNA from ES cells 

ES cells grown in 48 well plates were used for preparing genomic DNA. After 

removing the media, the cells were washed once with PBS. 400 µl lysis buffer was 

added to each well, the plates sealed with parafilm and the cells incubated at 55 oC 

overnight to allow efficient proteinase K digestion. The lysate was transferred to a 

sterile tube, 800 µl isopropanol added to the supernatant and the sample centrifuged at 

13,000 rpm for 20 min. The pellet was washed in 70% ethanol. After final 

centrifugation, the pellet was air dried for 10-20 min, resuspended in TE buffer and 

solubilized overnight at 55 oC. Quantification of DNA was performed with a 

Nanodrop photometer (Thermo Scientific). 
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   Lysis buffer 

   50 mM  Tris-HCl (pH 8.5) 
   5 mM  EDTA 
   200 mM  NaCl 
   0.2%   SDS 
   1 mg/ml Proteinase K (Qiagen) 
 
 

4.3 BIOCHEMICAL METHODS 

4.3.1 Affinity purification of His-tagged proteins 

2 ml of Ni-NTA superflow were equilibrated in a column with 2 CV (column 

volumes) of wash buffer under gravity flow. Before applying the cell culture 

supernatants to the column, these were centrifuged at 4 oC, 10,000 rpm for 30 min 

followed by filtering through Whatman filter paper to remove any protein aggregates. 

The cell supernatant was then loaded onto the Ni-NTA column. In order to ensure 

proper binding the loading was repeated twice. The column was washed with 10 CV 

and proteins were eluted with varying concentrations of imidazole; 10 mM, 20 mM, 

50 mM, 80 mM, 100 mM and 200 mM.  

  
  Wash buffer    Elution buffer 

  50 mM  Tris-HCl  1 M Imidazole in wash buffer 
  150 mM NaCl 
  pH 7.5 
 

 

4.3.2 Affinity purification of Strep-tagged proteins 

A 2 ml Strep-Tactin Sepharose column was equilibrated with 2 CV of wash buffer 

under gravity flow. Before applying the cell culture supernatants to the column, these 

were centrifuged at 4 oC, 10,000 rpm for 30 min followed by filtering through 

Whatman filter paper to remove any protein aggregates. The cell supernatant was then 

loaded onto the Ni-NTA column. In order to ensure proper binding the loading was 

repeated twice. The column was washed with 20 CV and proteins were eluted with 20 

ml elution buffer. The column was regenerated by washing with 3 CV of regeneration 

buffer. The column activity status was monitored by change in color from yellow to 

red. The column was washed and stored in wash buffer at 4 oC. 
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Wash buffer   Elution buffer  Regeneration buffer  

100 mM Tris  2.5 mM Desthiobiotin  100 mM Tris 
150 mM  NaCl  in wash buffer   1 mM   HABA 
pH 8.0 
 
 
4.3.3 Ligand coupling and affinity purification of antibodies 

Before coupling, the recombinant proteins were dialyzed three times against coupling 

buffer at 4 oC. For activation, 150 mg of CNBr-Sepharose were incubated with 1 ml 1 

mM HCl. The treatment was repeated five times and the activated beads added to the 

coupling solution containing the ligand and immediately vortexed to avoid cross-

linking of beads. The mixture was incubated for 1 h at RT or overnight at 4 oC under 

shaking, centrifuged at 1000 rpm at RT and the pellet washed twice with 2 ml of 

coupling buffer. Remaining active groups were blocked by washing with 0.1 M Tris-

HCl buffer, pH 8.0, for 2 h. The coupled CNBr-Sepharose column was washed with 3 

CV of 0.1 M Tris-HCl buffer, pH 8.0, and at least with three cycles of 10 CV with 

regeneration buffer I followed by a 10 CV with regeneration buffer II. 

 The antiserum (10 ml) was centrifuged at 13,000 rpm for 1 h at 4 oC and 

diluted with PBS or 10mM Tris-HCl (pH 7.5) at a ratio 1:1 before loading onto the 

column. The flowthrough was recycled over the column at least three times or 

overnight for efficient binding of the antibodies. The column was washed with 5 CV 

of 10 mM Tris-HCl (pH 7.5) followed by TBS and the antibodies were eluted in 1 ml 

fractions with either high pH (Elution buffer I) or low pH (Elution buffer II). In both 

cases, the pH of the eluate was set to neutral by adding Tris-HCl, pH 8.0. The A280nm 

was measured and the solution was dialyzed against TBS. The antibody titer was 

analyzed using ELISA.  The column was regenerated by washing with three cycles of 

alternating pH buffers followed by equilibration in 10 mM Tris-HCl (pH 7.5). 

 
Coupling buffer  Regeneration buffer I Regeneration buffer II 

0.1 M NaHCO3   0.1 M Sodium acetate  0.1 M Tris-HCl 
0.5 M NaCl   0.5 M NaCl   0.5 M NaCl 
pH 8.3    pH 4.0    pH 8.0 
 

Elution buffer I  Elution buffer II 

0.1 M Triethylamine  0.1 M Glycine 
0.15 M NaCl   pH 2.5 
pH 11.5 
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4.3.4 SDS-polyacrylamide gel electrophoresis 

The recombinant proteins or tissue extracts were separated by SDS polyacrylamide 

gel electrophoresis using Laemmli discontinuous gels (Laemmli, 1970). The resolving 

gel (pH 8.8) was casted followed by a stacking gel (pH 6.8) in glass plates of 10 cm x 

7.5 cm and spacers of 0.5 cm thickness. The acrylamide concentration was adjusted 

according to the requirement. The samples were loaded after mixing with the sample 

buffer. DTT or β-mercaptoethanol was added when the samples were to be reduced.  

Resolving gel (10%)    Stacking gel (4%) 

12.3 ml    H2O     3 ml      H2O 
7.5 ml     1.5 M Tris-HCl (pH 8.8)  1.25 ml    0.5 M Tris-HCl (pH 6.8)  
150 µl     20% SDS    25 µl     20% SDS 
9.9 ml      Acrylamide/Bis-acrylamide 670 µl      Acrylamide/Bis-acrylamide 
     (30%/0.8%)           (30%/0.8%) 
150 µl      10% APS    250 µl      10% APS 
20 µl      TEMED    5 µl      TEMED 
 

Sample buffer (5x)    Running buffer 

10% (w/v)     SDS    25 mM  Tris-HCl 
10 mM          DTT/β-mercaptoethanol 200 mM Glycine 
20%           Glycerol    0.1% (w/v) SDS 
0.2 M           Tris-HCl (pH 6.8) 
0.05% (w/v)  Bromophenol blue 
 

4.3.5 Coomassie staining 

The resolved proteins were visualized by staining the gel with Coomassie Brilliant 

Blue (CBB) solution at RT with gentle agitation for at least 60 min. Then, the staining 

solution was removed and destaining solution was added. The gel was destained at 

RT with gentle agitation with at least two changes of destaining solution until protein 

bands were clearly visible. 

 
 Coomassie brilliant blue solution   Destaining solution 
 0.1% w/v Coomassie brilliant blue R250  7% v/v Acetic acid 
 50% v/v Ethanol     20% v/v Ethanol 
 10% v/v Acetic acid 
 filter the solution before use        

 

4.3.6 Western blotting 

SDS-PAGE gels were blotted onto a nitrocellulose membrane (Protran BA45, 

Schleicher Schüll) using a Tankblot (Hoefer TE 22 Mighty Small Transphor Tank 
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Transfer Unit) apparatus at 4 oC under 400 mA for 2 h or at 100 mA overnight with 

the blotting buffer. After the transfer, the membrane was stained for 2 min in Ponceau 

S (Serva) in order to visualize the efficiency of transfer. Excess stain was removed by 

rinsing the membrane in water. The membrane was washed with TBS for 2 min to 

remove the Ponceau-S, blocked with 5% milk powder in TBS for 1 h at RT and the 

appropriate primary antibody, diluted in 1% milk powder in TBS, was applied. After 

incubating for 1 h at RT under constant shaking, the membrane was washed three 

times with TBS-T for 5 min each and the appropriate secondary antibody was applied 

for 1 h at RT. The membrane was washed three times with TBS-T for 5 min each and 

once in TBS, incubated in ECL solution (Enhanced chemiluminescence) for 2-3 min 

and a film exposed for 1 min or more depending on the background to signal ratio. 

  
Blotting buffer   ECL-Solution 

50 mM Boric acid (pH 8.5)  333 µl  3 M Tris-HCl (pH 8.5) 
10% (v/v) Methanol   22 µl  90 mM p-Coumaric acid 
     50 µl  250 mM Luminol 
     3 µl  30% (v/v) H2O2 

     10 ml  H2O  
 

4.3.7 Enzyme Linked Immunosorbent Assay (ELISA)  

The recombinant proteins were dialyzed against TBS and coated onto ELISA plates at 

a concentration of 500 ng/well. A minimum of 50 µl was used to ensure even coating 

of the recombinant protein. The plates were incubated overnight at 4 oC and washed 

three times with a minimum volume of 400 µl of TBS-T per well. 55 µl of the 

blocking solution was applied to each well and the plates incubated at RT for 2 h. 

After removal of the blocking solution, 50 µl of primary antibody solution was added. 

The antibodies were diluted 1:10, 1:100, 1:500, 1:1000, 1:2000, 1:5000, 1:10,000, 

1:100,000 in 1% milk powder in TBS. The plates were incubated for 1 h at RT under 

shaking and washed three times with TBS-T. The secondary antibody (conjugated 

with HRP) was added to each well and incubated at RT for 1 h. After washing four 

times with TBS-T and twice with distilled water, 50 µl of the developing solution 

(substrate) was added to each well and the plates kept in the dark 10-90 min. The 

appearance of blue color was monitored. As soon as the negative control started 

developing blue colour, the stop solution (10% H2SO4) was added and A450 was 

measured. 
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 TBS-T     Blocking solution 

 0.05% (v/v) Tween 20  in  5% (w/v) Milk powder in  
 1xTBS     1xTBS 
      
 Developing solution 

 1 ml  Sodium acetate/Citric acid (pH 6.0) 
 62.5 µl  3,3’-5,5’-Tetramethylbenzidine (10 mg/ml in DMSO) 
 
 
4.4 CELL BIOLOGY METHODS 

4.4.1 Culture and expansion of cells 

The overexpression of recombinant proteins was performed in HEK-293-EBNA cells 

(Invitrogen) which are derived from human embryonic kidney cells. These cells 

contain a neomycin resistance gene, which can be selected with Geneticin (G418), 

and the EBNA gene for episomal replication of the pCEP-Pu vectors used here. The 

cells were cultured at 37 oC and 5% CO2 in standard culture medium. For selection, 

the medium was supplemented with 0.5 µg/ml of puromycin. The cells were grown in 

10 cm cell culture dishes. Confluent cells were detached by 0.25% trypsin and 2 mM 

EDTA (T/E) at 37 oC for 5 min followed by neutralizing with DMEM/F12 medium 

corresponding to at least 5 times the volume of trypsin solution. The cells were 

expanded to triple flasks (2:1) for large-scale culture.  

  
   Standard cell culture medium 

   500 ml  DMEM/F12 (1:1) (Invitrogen) 
   50 ml  FCS (Fetal calf serum) (10%) 
   5 ml   Glutamine (2 mM) (Gibco BRL) 
   5 ml   Penicillin/Streptomycin (Gibco BRL) 
   

 

4.4.2 Cell storage 

When the cells attained 80% confluency they were washed, trypsinized and pelleted at 

4000xg for 5 min. 1 ml of freezing medium was added per 10 cm plate and the cells 

resuspended before aliquoting into the cryotubes. The cryotubes were placed in an 

isopropanol containing cryo-freezing box (Nalgene) for 24 h at -80 oC and stored in 

liquid nitrogen for longer periods.  
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   Freezing medium 

   10% FCS 
   10% DMSO 
   in standard culture medium 
  
 

4.4.3 Stable transfection of cells 

The cells were transfected using FuGene6 (Roche). Cells were grown to 50-70% 

confluency and the medium was changed just before the transfection. 6 µl of FuGene 

6 was directly added to 94 µl of serum free medium in a sterile tube and incubated for 

5 min at RT. 3 µg of plasmid DNA was added to a second tube, the diluted FuGene 6 

mix dropwise added, gently mixed and incubated for 15 min at RT. The mixture was 

dropwise added to the cells and gently swirled. 24 h after transfection, fresh standard 

medium containing puromycin was added and the selection continued to attain stable 

transfection.  

 

4.4.4 Large-scale cell culture 

For each construct, the stably transfected cells were expanded to four triple flasks. 

When the cells were confluent, serum free medium containing puromycin was added. 

The medium was changed every 2-3 days and the supernatant stored at 4 oC or -20 oC 

after adding 0.02% (w/v) sodium azide to avoid bacterial contamination.  

 

4.4.5 ES cell culture 

4.4.5.1 Expansion of ES cells 

Prior to ES cell culture, Embryonic Mouse Feeder cells (EMF1) were thawed and 

cultured on a 10 cm plate. The EMF1 cells were inactivated by using Mitomycin (70 

µl/10ml) for 2-3 h. The 24-well or 6-well plate surface was treated with gelatine (0.1 

% in PBS) for 20 min and washed twice with PBS. The EMF1 cells were trypsinized 

for 5 min FCS containing media was added and by pipette up and down a single cell 

suspension was achieved. The EMF1 cells were centrifuged, resuspended in 

DMEM/FCS and plated on either 24-well or 6-well plates. The following day, they 

were washed twice with ES cell medium and finally resuspended in 300 µl medium. 

The ES cells were thawed and transferred to a 15 ml Falcon tube containing 13 ml 

pre-warmed ES cell medium. The cells were centrifuged at 700 rpm for 8 min and the 

supernatant carefully discarded. The pellet was resuspended in 300 µl ES cell 
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medium, added to the EMF1 cells and finally 400 µl of fresh media was added to 

evenly distribute the cells.  

  
  ES cell culture media (KO media) 

  500ml  Knockout DMEM 
  6ml  Glutamine (200mM) 
  2.5ml  Penicillin/Streptomycin 
  90ml  Serum replacement 
  6ml  Sodium pyruvate 
  6ml  Non-essential amino acids (NEAA) 
  7µl  β-mercaptoethanol 
  100µl  LIF 
 
 
4.4.5.2 Transfection of ES cells via electroporation 

The medium of the ES cells was changed four hours prior to transfection to ensure 

that the cells pass mitosis during the transfection event, since incorporation of DNA 

via homologous recombination is only possible in the M-phase. For transfection of 1 

x 107 ES cells, 40 µg of targeting vector DNA was used. The purifed DNA that was 

linearized with Asc I was resuspended in 400 µl RPMI (transfection buffer). The ES 

cells were washed twice with 12 ml PBS and trypsinated for 5 min at 37 °C. The 

trypsin digestion was stopped by adding 5 ml ES medium. The cells were centrifuged 

for 5 min at 1000 rpm, the supernatant discarded and the cell pellet resuspended in 

400 µl RPMI buffer. DNA and ES cells were mixed and transferred into an 

electroporation cuvette. The transfection was performed in an electroporator at 500 µF 

and 240 mV. For regeneration, the cells were incubated for 10 min at RT. Afterwards 

the cells were resuspended in 40 ml ES medium and distributed onto plates of 

mitomycin-treated EF3 feeder cells. 

 

4.4.5.3. Positive and negative selection of ES cell clones 

For the enhancement of homologously recombined cells, the transfected ES cells were 

subjected to positive and negative selection. For positive selection, the neomycin 

analog, G418, was used. It binds to the 80S ribosomal subunit and thus inhibits 

translation in eukaryotic cells. Only those cells, which have the neo resistance gene 

stably, integrated into their genome survive. The nucleoside analog gancyclovir was 

used as a negative selection marker. A viral thymidine kinase is capable to transform 

gancyclovir into a nucleotide monophosphate, following conversion into a nucleotide 
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triphosphate by cellular kinases. Integration of this nucleotide triphosphate into a 

DNA strand during replication stops elongation. The targeting vector contains the 

gene for the Herpes simplex virus-derived thymidine kinase (HSV-tk). Since the 

HSV-tk gene is located outside the recombination site, the gene is integrated into the 

genome only in case of random integration and not in case of homologous 

recombination. For this reason only homologously recombined clones, which do not 

contain the gene for the thymidine kinase, are able to grow in gancyclovir containing 

medium. The positive G418 (250 µg/ml) selection was started 48 hours after 

transfection. The negative selection with a gancyclovir (2 µM) was started on the fifth 

day. During 9-10 days of selection, the medium was changed daily. 

 

4.4.5.4 Picking of ES cell clones 

ES cell clones, which were not differentiated and maintained during selection, were 

isolated 8-10 days after transfection. The cells were washed on the 10 cm plate and 

immersed in 10 ml of chilled PBS under a stereo-binocular microscope, single clones 

were picked and transferred into the wells of a round-bottom 96 well plate filled with 

25 µl 1 x trypsin. To pick clones, the pipette was adjusted to 40 µl and the tip placed 

directly in front of a clone. With a slight forward movement, the clone was picked. 

Picking of clones from one 96 well plate was performed within 30 minutes to prevent 

damage of picked clones by trypsin. The entire 96 well plate was then incubated for 5 

min at 37°C and the trypsin digestion stopped by adding 100 µl ES medium, each 

well thus containing a total volume of 165 µl (40 µl 1x PBS, 25 µl trypsin, 100 µl ES 

medium). After thorough resuspension, 50 µl transferred onto each of three new 

flatbottom 96 well plates coated with mitomycin-treated EF cells, resulting in 

triplicates of each clone. The plates were cultivated in an incubator and the medium 

changed daily. 

 

4.4.5.5 Freezing and passage of ES cell clones 

After cultivation of the isolated ES cell clones for 2-3 days, the cells were washed 

with 150 µl 2x PBS and detached from the plate by adding 150 µl 2x trypsin solution 

and incubated for 10 min at 37 °C. The trypsin reaction was stopped by adding 25 µl 

of trypsin inhibitor (5 mg/ml) followed by 700 µl of KO medium. Subsequently, a 

single cell suspension was generated by repeated up and down pipetting and 500 µl of 

cell suspension was transferred into a freezing vial. 500 µl of freezing medium was 
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added and the vials were kept in cryobox at -80 °C for 24 h and eventually stored in 

liquid nitrogen. For DNA isolation, the remaining ES cells (150 µl) were transferred 

to 48 well plates and cultured till confluent. 

 

  2x Freezing medium 

  25 ml KO-medium 
  15 ml Serum replacement 
  10 ml DMSO 
 

4.4.5.6 Preparation of ES cells for injection into blastocysts 

The ES cells of one 10 cm plate were cultivated for three days prior to injection. On 

the day of the injection, cells were washed once with PBS and detached from the plate 

with trypsin. The cells were centrifuged for 5 min at 1000 rpm and plated on a 10 cm 

dish that was coated with gelatine. After 35-40 min the supernatant was transferred 

into a 15 ml Falcon tube. Since EMF1 cells settle down faster than ES cells, after 35-

40 minutes EMF1 cells were attached to the bottom of the plate, while the ES cells 

were still floating in the supernatant. The ES cells were centrifuged for 5 min at 1000 

rpm, resuspended in 0.5 ml chilled injection medium and stored on ice until injection 

into blastocysts. 

 

4.5 HISTOLOGICAL METHODS 

4.5.1 Cryosectioning 

Freshly dissected tissues from newborn and adult mice were immersed in a plate 

containing tissue-embedding medium, Tissue Tek (Sakura), for a couple of minutes. 

The tissue was carefully placed in the desired orientation in a cryomold containing 

Tissue Tek without bubbles and the mold finally completely filled with Tissue Tek. 

The tubes were labeled and the tissue immediately frozen on a metal block that was 

already submerged in liquid nitrogen. The frozen tissues were stored at -80 oC. 

Sections were made with a Leica Cryotome (CM3050) at -20 oC. The thickness of all 

sections was 7 µm. After sectioning the sections were stored at -20 oC. 

 

4.5.2 Immunofluorescent staining 

The cryosections were left at RT for about 1 h and then incubated in PBS to remove 

the Tissue Tek. The edges of the specimen were marked with a wax marker pen. The 
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sections were fixed with 2% paraformaldehyde in PBS for 10 min and washed three 

times in PBS or TBS for 5 min each. The sections were incubated with freshly 

prepared hyaluronidase solution (50 U/ml hyaluronidase in HB) for 30 min at 37 oC, 

washed twice with TBS for 5 min each and blocked with 5% BSA in 0.1% Triton in 

TBS at RT. The primary antibody was applied at the required dilution in 1% 

BSA/TBS for 1 h at RT. The sections were washed three times for 5 min each in wash 

buffer and the specific secondary antibody diluted in 1% BSA/TBS was applied and 

kept in dark for 1 h as the fluorescent antibodies are light sensitive. After washing 

three times with wash buffer for 5 min each, the slides were kept in water for 5 min. 

5-6 drops of Dako fluorescent mounting medium were added, the cover slip slowly 

mounted without trapping bubbles and the slides kept at 4 oC overnight. 

 
 Hyaluronidase buffer (HB)   Wash buffer 

 0.1 M NaH2PO4    0.1% Triton in 1x TBS 
 0.1 M Sodium acetate 
 pH 5.0 (adjust with acetic acid) 
 

 

4.5.3 H&E staining 

The cryosections were left at RT for about 15 min, and then washed in TBS for 5 min. 

The sections were kept in filtrated haematoxylin for 3 min and rinsed shortly in tap 

water, quickly immersed in HCl-alcohol and rinsed in tap water for 5-10 min. The 

sections were shortly rinsed in water followed by a 3-5 min incubation in eosin. The 

sections were rinsed carefully with water and shortly immersed in 70% ethanol, 

followed by 80% and 96% ethanol for 3 min each. The sections were rinsed twice in 

either isopropanol or 100 % ethanol and twice in xylol. The sections were covered 

with DPX. 

  

Haematoxylin solution (1 lt)     HCl-alcohol (100 ml) 

1 g  Haematoxylin (dissolve first)   0.5 ml Conc. HCl  
200 mg  NaIO3     70% Ethanol 
50 g  KAl(SO4)2 
Shake till the solution turn blue-violet and then add  Eosin solution 
50 g  Chloralhydrate [Cl3CCH(OH)2]  1% (w/v)  Eosin in  
1 g   Citric acid     ethanol 
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4.6 GENETIC METHODS 

4.6.1 Recombineering (In vivo cloning) 

The 3’ homology arm of the targeting vector was cloned using recombineering. 

Recombineering or recombinant engineering is a powerful method for fast and 

effective construction of vectors for subsequent manipulation of the mouse genome. 

This method is based on homologous recombination in E. coli using recombination 

proteins provided from the λ phage. The bacterial strains that are used in 

recombineering are modified in such a way that they contain a defective λ prophage  

 

                
 
 

in their genome. The modified bacterial strains include DY380/SW102, 

EL250/SW105 and EL350/SW106. The phage genes of interest exo, bet and gam are 

transcribed from the λPL promoter. This promoter is repressed by the temperature 

sensitive repressor cI857 at 32oC and derepressed (the repressor is inactive) at 42oC. 

Therefore, when the bacterial strain containing this prophage is kept at 32oC, no 

recombination proteins are produced. However after a brief heat shock at 42 oC, a 

sufficient number of recombinant proteins are produced. Exo is 5’ – 3’exonuclease 

that can create single stranded overhangs on linear DNA. On the other hand, bet 

Figure 4.1 Schematic 
representation of in vivo 
cloning. In vivo cloning uses two 
linear DNAs - a vector and a 
target DNA - which carry 
stretches of homology to each 
other at their ends. Both linear 
DNAs are electroporated into 
competent cells to allow 
homologous recombination 
between them, thereby repairing 
the plasmid DNA by closing the 
circle. (amp, ampicillin resistance 
gene; ori, origin of replication). 
adapted from Copeland et al., 
Nature Reviews Genetics; 2001. 
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protects these overhangs and assists in the subsequent recombination process whereas 

gam prevents degradation of linear DNA by inhibiting E. coli RecBCD protein.  

 Upon the introduction of a linear DNA (PCR product, oligo, etc.) with 

sufficient homology in the 5' and 3' ends to a target DNA molecule that is already 

present in the bacteria (plasmid, BAC, or the bacterial genome itself) by 

electroporation, the introduced DNA can be modified by exo and bet and undergo 

homologous recombination with the target molecule.  

 The method has several advantages over the classical genetic engineering. For 

instance, it is independent of restriction sites, allows high flexibility, has no size limit 

and causes no unwanted mutations.  

 
 
4.7 BIOINFORMATIC PROGRAMS AND SERVERS 

 
Genomic databases   Mouse (Build 37.1) 
    Human (Build 37.1) 
    Rhesus macaque (Build 1.1) 
    Cattle (Build 3.1) 
    Horse (EquCab 2.1) 
    Dog (Build 2.1) 
    Chicken (Build 2.1) 
    Zebrafish (Zv7)  
     
Signal peptide prediction SignalP v3.1 (http://www.cbs.dtu.dk/services/SignalP) 
 
Protein parameters  Expasy ProtParam  
    (http://www.expasy.ch/tools/protparam.html) 
 
Domain prediction servers SMART (http://smart.embl-heidelberg.de/) 
 
Alignment programs  ClustalX v1.81  
    Boxshade v3.21      
    (http://www.ch.embnet.org/software/BOX_form.html) 
    Jalview (http://www.jalview.org/) 
 
Phylogenetic program  Phylip v3.66 
 
Graphical software  Vector NTI (Invitrogen) 
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5 ABSTRACT 

 
 

Collagen VI and collagen XXVIII are two extracellular matrix proteins that belong to the 

superfamily of von Willebrand Factor A (VWA) domain containing molecules. Earlier 

studies on collagen VI indicated that this widely distributed protein is composed of α1, 

α2 and α3 polypeptide chains, which form a microfibrillar network in close association 

with basement membranes in muscle and other tissues. In contrast, an initial study on 

collagen XXVIII reported that it forms a homotrimer and has a very restricted 

localization at specific basement membranes of peripheral nerves.  

 In this dissertation, the identification and characterization of three novel collagen 

VI chains, α4, α5 and α6, that show similarity to the collagen VI α3 chain is described. 

The genes coding for the new chains are arranged in tandem on mouse chromosome 9. 

The proteins contain seven N-terminal VWA domains followed by a collagenous domain, 

two C-terminal VWA domains and a unique domain. In addition the collagen VI α4 

chain carries a Kunitz domain at the C-terminus whereas the collagen VI α5 chain 

contains an additional VWA domain and unique domain. The lengths of the collagenous 

domains and the positions of the structurally important cysteine residues are identical in 

the collagen VI α3, α4, α5 and α6 chains. In mouse, the new chains show a very 

restricted and differential expression mainly associated with basement membranes. They 

are sometimes detected in regions where the collagen VI α3 chain is not expressed, 

suggesting that the α3 chain is not required for their assembly. Analysis of the collagen 

VI α1 chain deficient mouse strain, confirmed that the new chains require the α1 chain 

and may substitute for the α3 chain, probably forming α1α2α4, α1α2α5 and α1α2α6 

heterotrimers. In humans, only the genes coding for the collagen VI α5 and α6 chains are 

preserved. The COL6A4 gene has been inactivated due to large pericentric inversion on 

chromosome 3 that split the gene in two pieces and transformed it into two non-processed 

pseudogenes. In humans, the collagen VI α5 and α6 chains are present in close 

association with the basement membranes of skeletal muscle and skin. Ullrich Congenital 

Muscular Dystrophy (UCMD) and Bethlem Myopathy (BM) patients carrying mutations 
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in COL6A1, COL6A2 and COL6A3 show also skin phenotypes like keloid scarring or 

keratosis pilaris. Immunohistochemical analysis of the new chains in the skin of UCMD 

and BM patients showed a disturbed staining pattern only when the COL6A1 or COL6A2 

genes are affected. This indicates that the new chains may substitute for the collagen VI 

α3 chain forming α1α2α5 and α1α2α6 heterotrimers. However the exact role of new 

chains for the development of skin phenotypes in myopathy patients remains to be 

elucidated. 

 The functional role of collagen XXVIII is not known. Therefore, the inactivation 

of the Col28a1 gene in mouse was initiated. A targeting vector disrupting the exon 2 of 

Col28a1 was generated in vitro, followed by ES cell targeting in vivo. Positive ES clones 

were injected into blastocysts and transferred to surrogate mothers, which resulted in a 

chimeric mice carrying both the wild type and the targeted allele. However, the targeted 

allele did so far not enter the germline. 
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6 ZUSAMMENFASSUNG 

 
 
Kollagen VI und Kollagen XXVIII sind Mitglieder einer Superfamilie von Proteinen der 

extrazellulären Matrix, die von Willebrand Faktor A (VWA) Domänen enthalten. Das 

weit verbreitete Kollagen VI besteht aus je einer α1, α2, und α3 Polypeptidkette und 

bildet ein Netzwerk aus Mikrofibrillen, das in enger Verbindung mit Basalmembranen im 

Muskel und anderen Geweben steht. Im Gegensatz dazu bildet Kollagen XXVIII 

Homotimere und zeichnet sich durch eine sehr begrenzte Lokalisierung an 

Basalmembranen peripherer Nerven aus. 

 

In dieser Dissertation wird die Identifizierung und Charakterisierung von drei neuen 

Kollagen VI Ketten, α4, α5, und α6, beschrieben, die strukturelle Ähnlichkeit zur 

Kollagen VI α3 Kette aufweisen. Die für die neuen Ketten kodierenden Gene liegen im 

Genom der Maus hintereinander auf Chromosom 9. Die Proteine bestehen aus sieben N-

terminalen VWA Domänen, gefolgt von einer kollagenen Domäne, zwei C-terminalen 

Domänen und einer uniquen Domäne. Die Kollagen VI α4 Kette enthält zusätzlich eine 

Kunitz Domäne am C-Terminus, wohingegen die Kollagen VI α5 Kette eine zusätzliche 

VWA Domäne und eine weitere unique Domäne enthält. Die Längen der kollagenen 

Domänen sowie die Positionen der strukturell wichtigen Cysteinreste sind identisch in 

den Kollagen VI α3, α4, α5 und α6 Ketten. In der Maus zeigen die neuen Ketten eine 

sehr limitierte und unterschiedliche Expression, die meist mit Basalmembranen assoziert 

ist. Manchmal wurden die neuen Ketten in Regionen beobachtet, in denen die Kollagen 

VI α3 Kette nicht exprimiert ist, was darauf schließen lässt, dass Kollagen VI auch ohne 

die α3 Kette aufgebaut sein kann. Die Analyse eines Kollagen VI α1 defizienten 

Mausstamms bestätigte, dass auch die neuen Ketten die α 1 Kette zur Assemblierung 

eines Trimers benötigen und eventuell die α3 Kette ersetzen, wahrscheinlich um 

Heterotrimere bestehend α1, α2 und entweder α4, α5 oder α6 zu bilden. Beim Menschen 

sind nur die Gene erhalten, die für die Kollagen VI α5 und α6 Kette kodieren. Das 

COL6A4 Gen wurde durch eine große perizentrische Inversion des Chromosoms 3 

inaktiviert. Hierbei wurde das Gen in zwei Hälften gespalten und in zwei nicht-
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prozessierte Pseudogene umgewandelt. Beim Menschen konnten die Kollagen VI α5 und 

α6 Ketten in Verbindung mit Basalmembranen im Muskel und in der Haut nachgewiesen 

werden. Mutationen in COL6A1, COL6A2 oder COL6A3 führen beim Menschen zu 

kongenitaler Muskelschwäche vom Typ Ullrich (UCMD) oder zu Bethlem-Myopathie 

(BM). Patienten zeigen u.a. Hautphänotypen, wie überschießende Narbenbildung oder 

Reibeisenhaut. Die immunhistochemische Analyse der neuen Ketten in der Haut von 

UCMD und BM Patienten zeigte nur dann ein verändertes Färbemuster, wenn die 

COL6A1 oder COL6A2 Gene mutiert waren. Dies deutet ebenfalls darauf hin, dass die 

neuen Ketten die Kollagen VI α3 Kette ersetzen und dabei Heterotrimere bestehend aus 

α1, α2, und α5 bzw. α6 bilden könnten. Die Aufklärung der Rolle der neuen Ketten bei 

der Entstehung der Hautphänotypen bei Patienten mit Muskelschwäche bedarf in Zukunft 

weiterer Untersuchungen. 

 

Die funktionelle Bedeutung von Kollagen XXVIII ist bisher völlig unbekannt. Daher 

sollten in der vorliegenden Arbeit Vorraussetzungen geschaffen werde, um das Col28a1 

Gen in der Maus zu inaktivieren. Zunächst wurde ein Targeting Vektor hergestellt, in 

dem das Exon 2 des Col28a1 Gens unterbrochen wurde, um transgene ES-Zellen zu 

generieren. Positive ES-Zellklone wurden bereits in Blastocysten injiziert, die dann in 

scheinschwangere Mäuse transferiert wurden. Die daraus resultierenden chimären 

Nachkommen trugen sowohl das Wildtypallel als auch das Transgen. Bisher konnten 

allerdings keine Nachkommen generiert werden, die das Transgen in der Keimbahn 

trugen. 
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 APPENDIX 

 
Appendix Fig. 1 Amino acid alignment of murine collagen VI VWA domains. The sequences 
were aligned by CLUSTAL X using the default parameters. The conserved metal ion dependent 
adhesion site and the conserved hydrophobic moieties are denoted with (*) and (Φ), respectively. 
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Appendix Fig. 2 Alignment of amino acid sequences of human and murine collagen VI α5 
chains. The mouse sequence is shown in the upper lines. The different C-termini of the human 
collagen VI α5 chain are given in the last four lines. Sequence (1) contains a premature stop 
codon due to SNP rs1497312. Sequence (2) is based on the AM906083 sequence. Sequence (3) 
represents EU085556 and sequence (4) is based on the human lung cDNA clone AK123718. The 
arrow marks the potential signal peptide cleavage sites and the dots mark the RGD sequence. 
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Appendix Fig. 3 Alignment of amino acid sequences of human and murine collagen VI α6 
chains. The mouse sequence is shown in the upper lines. The arrow marks the potential signal 
peptide cleavage sites and the dots mark the RGD sequence 
 
 
 
 
          .....CREA SVGDIVFLVH NSINPQHAHS  
 
  VRNFLYILAN SLQVGRDNIR VGLAQYSDTP TSEFLLSVYH RKGDVLKHIR  
 
  GLQFKPGGNR MGQALQFILE HHFREGAGSR ASQGVPQVAV VVSSGLTEDH  
 
  IREPAEALRR AGILVYAIGV KDASQAELRE ISSSPKDNFT FFVPNFPGLP  
 
  GLAQKLRPEL CSTLGKAAQY TERESP.... 
 
Appendix Fig. 4 Open reading frame of the second exon of the human DVWA gene. The 
proposed amino acid sequence of DVWA is given in bold face. 
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Appendix Fig. 5 Alignment of DNA sequences of the third exon of the human DVWA gene 
and the corresponding fourth exon of the murine Col6a4 gene. The inserted adenine is 
marked by an arrowhead. A filled square indicates the position of the nucleotide that is involved in 
the cysteine to tyrosine polymorphism. The premature stop codon of DVWA is marked by 
asterisks. The numbers are according to accession numbers AM231151 (mouse) and AB299979 
(human). 
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Appendix Fig. 6 Alignment of DNA and protein sequences of the proposed exon of the human 
DVWA gene coding for the signal peptide sequence together with neighboring intron sequences 
and the respective second exon of the murine Col6a4 gene. Arrowheads indicate the signal 
peptide cleavage sites. The signal peptide sequences were predicted by a method using neural 
networks or hidden Markov models. It should be noted that the position of the cleavage site is 
different between man and mouse and that the human sequence had a lower prediction score. 
This could be the consequence of a three base pair deletion in the vicinity of the proposed 
cleavage site. 
 
 

             
Appendix Fig. 7 Sequence of the human collagen VI α4 chain cDNA. The amino acid 
sequence is given below. The inserted adenine (nt 1114) that leads to the frameshift is shaded in 
black. The sequence was deposited in the database under accession number FN394065. 
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Appendix Fig. 9 Screening the progeny of chimeras. A) Control for the quality of template DNA 
with COMP primers. B) Screening with the 5’ homology arm primers (see Table 4.3 in Materials 
and methods). Neg. Cnt, negative control and Pos. Cnt, positive control. 
 
 
 
 
 
 

Appendix Fig. 8 Restriction enzyme digest of the 
targeting vector with NheI (A) and EcoRI (B)  
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Exon   Sizea Splice donor Intron Size Splice acceptor 
Codon 
phase 

Amino acid 
interrupted 

1 5' UTR   TAGGGgtaggtg 1 13701 ttctctctagGAT     

2 
5' 
UTR/SigPep 89 GATTGgtaatac 2 2319 tcttttgaagTCT 1 Val 

3 N7 603 TCCAGgtaacg 3 2485 ttctttacagCGT 1 Ala 
4 N6 588 GAAAAgtaagc 4 1441 ttacttttagAGT 1 Lys 
5 N5 609 AGAAGgtaagt 5 2263 tggttttcagAAT 1 Glu 
6 N4 645 GGAAGgtagga 6 3521 cattggccagGCT 1 Gly 
7 N3 546 AGAGAgtaaga 7 640 cgccccccagACT 1 Asn 
8 N2 555 CCAAGgtgagt 8 3544 attttcaaagGCT 1 Gly 
9 N1 335 TGAAGgtactg 9 1212 tgttccccagGTC 0 Lys/Val 
10 N1 79 CAGAGgtaagc 10 1012 cattttgaagGGC 1 Gly 
11 N1 146 AACTCgtgagt 11 190 tgtgtttcagGAC 0 Leu/Asp 
12 col1 93 AGCAGgtaaga 12 2606 gttttctcagGGA 0 Gln/Gly 
13 col2 54 ACCACgtgagt 13 5676 ttcttcacagGGA 0 His/Gly 
14 col3 72 CTAAGgtaagt 14 1774 ataatttcagGGA 0 Lys/Gly 
15 col4 27 AGAAGgtagga 15 2072 cctttccgcagGGC 0 Lys/Gly 
16 col5 45 AACAGgtatgg 16 3436 cttttcctagGGC 0 Gln/Gly 
17 col6 54 GTCGGgtaaaa 17 3070 gtaatttaagGGC 0 Arg/Gly 
18 col7 63 ATCCGgtgagt 18 454 gttttctcagGGG 0 Pro/Gly 
19 col8 66 ATCAGgtaaga 19 6589 tttatttcagGGA 0 Gln/Gly 
20 col9 54 CTCGGgtaggt 20 137 gtgctcttagGGG 0 Arg/Gly 
21 col10 36 TGAAGgtcagt 21 3726 acttctgcagGGT 0 Lys/Gly 
22 col11 63 CACAGgttgta 22 1714 tttggaacagGGA 0 Gln/Gly 
23 col12 63 CCCAGgtaggt 23 1671 atcattgcagGGG 0 Gln/Gly 
24 col13 63 TGAAGgcgagt 24 902 ctattaaaagGGA 0 Lys/Gly 
25 col14 63 AGCCTgtaagt 25 2566 atttttttagGGT 0 Pro/Gly 
26 col15 51 GGAAGgtgagc 26 2072 ctgaccctagGGT 0 Lys/Gly 
27 col16 36 TGCAAgtaaga 27 101 ccttgttaagGGA 0 Gln/Gly 
28 col17 63 AGAGGgtaaga 28 1135 ttcattatagGGC 0 Arg/Gly 
29 col18 63 AAATGgtaatg 29 1514 ttctttccagGGC 0 Met/Gly 
30 col19 36 GGACGgtaggt 30 1321 ctctctacagCCT 0 Thr/Pro 
31 spacer 37 CTGCCgtgagt 31 2602 tcccttccagCTT 1 Pro 
32 spacer 12 AACAGgtaaat 32 84 ccgtgtcaagGTA 1 Gly 
33 C1 494 GGCTGgtatgt 33 10034 gttgaactagGTG 0 Leu/Val 
34 C1 91 CTATGgtaaga 34 2283 ttcttgccagACA 1 Asp 
35 C2 684 AAATAgtgagt 35 2,990 ttactttcagGTG 1 Ser 
36 C3 97 AAGAGgtgagc 36 992 tttcctgcagGTT 2 Arg 
37 C3 212 CCACGgtgagc 37 5086 ttgcttgcagGTC 1 Gly 
38 C4 53            

 
Appendix Tab. 1 Splice junction sites in the murine Col6a4 gene. Exon sequences are in 
upper case and intron sequences are in lower case letters. The GC-AG intron is in bold. aThe 
lengths of the 5’ and 3’ UTRs are not included. 
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Exon   Sizea Splice donor Intron Size Splice acceptor 
Codon 
phase 

Amino acid 
interrupted 

1 5' UTR   TCTTGgtaagt 1 12125 tccttttcagAAT     
2 5' UTR/SigPep 67 CCCAGgtacca 2 2236 tattgtgcagGGC 1 Gly 
3 N7 696 GACAGgtagga 3 5046 gtctccacagTTC 1 Val 
4 N6 633 AACCGgtatgt 4 2299 tcctttttagGCT 1 Gly 
5 N5 561 AAAAGgtaaga 5 2493 tcccaaacagGAT 1 Gly 
6 N4 556 GCATGgtaagt 6 2471 ttctttttcagATT 1 Asp 
7 N3 576 AGAGAgtaagc 7 2142 tctgttccagCTT 1 Thr 
8 N2 576 AGCCAgtgagt 8 1941 tggtctccagATT 1 Asn 
9 N1 341 GCCAGgtatac 9 99 ctttctgtagGTT 0 Gln/Val 
10 N1 82 AGCAGgtaatg 10 2241 tattaactagGAC 1 Gly 
11 N1 143 ACCTGgtgagt 11 2186 ctctctctagGGA 0 Leu/Gly 
12 col1 93 CAAAGgtgctg 12 2676 ttcctcctagGGT 0 Lys/Gly 
13 col2 54 ACCCTgtaagt 13 2473 cacttcttagGGA 0 Pro/Gly 
14 col3 72 AAAAGgtaagc 14 301 tcttttgcagGGA 0 Glu/Gly 
15 col4 27 CTCAGgtattg 15 129 catcccttagGGG 0 Gln/Gly 
16 col5 45 AAGAAgtgagc 16 91 gtttgtttagGGA 0 Glu/Gly 
17 col6 54 ATCAGgtaact 17 2476 tctttttcagGGT 0 Gln/Gly 
18 col7 63 ATCCCgtaagt 18 1293 tatctcctagGGT 0 Pro/Gly 
19 col8 66 GACAAgtaatt 19 396 gtggttctagGGG 0 Gln/Gly 
20 col9 54 GCAGGgtaagt 20 3484 ggtgtttcagGGA 0 Arg/Gly 
21 col10 36 CCTCAgtaagt 21 1000 tgttcattagGGG 0 Ser/Gly 
22 col11 62 CACAGgtatgc 22 1496 caacaaaaagGGA 0 Gln/Gly 
23 col12 63 CTCAGgtgagt 23 950 ttattttcagGGT 0 Gln/Gly 
24 col13 63 GAAAGgtaaac 24 1814 ctctgtctagGGG 0 Lys/Gly 
25 col14 63 AGCAGgtatga 25 2705 gtacttgcagGGA 0 Gln/Gly 
26 col15 51 TTAAGgtaaat 26 101 aaaatttcagGGC 0 Lys/Gly 
27 col16 36 AGAAGgtgagg 27 1679 atgtgatcagGGT 0 Lys/Gly 
28 col17 63 TGACTgtaagt 28 1675 ttcttttcagCTC 0 Thr/Leu 
29 col18 63 GGAGAgtgagt 29 2937 ccccccttagGGT 0 Arg/Gly 
30 col19 36 ATTCCgtatgt 30 105 aactttccagCCC 0 Ser/Pro 
31 spacer 31 CAGCCgtgagt 31 1749 ctctccccagCCT 1 Pro 
32 spacer 12 GAAAGgtgagt 32 990 attttcacagACA 1 Asp 
33 C1 488 TTGGGgtaaga 33 6200 ttcactgcagTTT 0 Gly/Phe 
34 C1 90 CTATGgtaaga 34 518 gcatttttagACA 1 Asp 
35 C2 657 CAGACgtaagt 35 2782 ccctccgtagGCG 1 Arg 
36 C3 91 CTCAGgtgggt 36 2552 cttcatctagATT 2 Arg 
37 C3 209 TTCTGgtaagc 37 10953 tctgttgcagAAC 1 Glu 
38 C4 690 CAGACgtaagt 38 1300 ctgtctccagGTG 1 Arg 
39 C5 97 GCATTgtgagt 39 686 ttcatcccagACT 2 Leu 
40 C5 233 ACAAGgtagtc 40 4492 tgctttacagATG 1 Asp 

41 spacer/3' UTR 17            
 
Appendix Tab. 2 Splice junction sites in the murine Col6a5 gene. Exon sequences are in 
upper case and intron sequences are in lower case letters. aThe lengths of the 5’ and 3’ UTRs are 
not included. 
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Exon   Sizea Splice donor Intron Size Splice acceptor 
Codon 
phase 

Amino acid 
interrupted 

1 5' UTR   GCACGgtaagt 1   tgcccttcagCTT     
2 5' UTR/SigPep 61 TTCTGgtaaga 2 2618 tgattctatagGCC 1 Gly 
3 N7 598 AGAAGgtgggt 3 1428 ccccacacagCCT 1 Ala 
4 N6 621 ATCTGgtaaag 4 1164 tccatttcagCCT 1 Ala 
5 N5 561 AGAAGgtagga 5 733 tcccacacagCCT 1 Ala 
6 N4 558 TGAAGgtgagc 6 2491 tccttttcagAAT 1 Glu 
7 N3 576 AGTTGgtaagg 7 2710 ctctctgtagATT 1 Asp 
8 N2 573 GAGCAgttaag 8 6720 tggatcctagATT 1 Asn 
9 N1 344 GGAAGgtaatg 9 98 cctaccctagGTG 0 Lys/Val 
10 N1 79 GGAAGgtactg 10 4110 tgttgaacagGCC 1 Gly 
11 N1 155 AACTAgtaagt 11 1242 ttccccgaagATC 0 Leu/Ile 
12 col1 93 AAAAGgtgact 12 1319 tttttttcagGGA 0 Lys/Gly 
13 col2 54 TTGCTgtaagt 13 1687 ttttcctcagGGA 0 Ala/Gly 
14 col3 72 CTAAGgtaagg 14 102 ccattttcagGGA 0 Lys/Gly 
15 col4 27 AAGAGgtaatg 15 2467 gtctctgcagGGT 0 Glu/Gly 
16 col5 45 AACAGgtacaa 16 91 cattttctagGGT 0 Gln/Gly 
17 col6 54 CTCAGgtaaag 17 1270 ttaactttagGGA 0 Gln/Gly 
18 col7 63 ATCCGgtaagt 18 5250 ctctttttagGGA 0 Pro/Gly 
19 col8 66 GACAAgtaatt 19 1543 cctctggcagGGC 0 Gln/Gly 
20 col9 54 AGATGgtaaga 20 8036 tttgttttagGTA 0 Met/Val 
21 col10 36 CACAGgtcagt 21 926 ctcatcacagGGA 0 Gln/Gly 
22 col11 63 CGCAGgtatcc 22 1788 atgcatttagGGT 0 Gln/Gly 
23 col12 63 CTCAGgtacgt 23 4072 ttcattccagGGG 0 Gln/Gly 
24 col13 63 ACAAAgtaggt 24 3903 tgttggacagGGA 0 Lys/Gly 
25 col14 63 TGCAGgtgggt 25 1024 ttgcttgcagGGT 0 Gln/Gly 
26 col15 51 CAAAGgtaagt 26 2811 ttgatggcagGGG 0 Lys/Gly 
27 col16 36 TGAAGgtacgt 27 1406 attcatttagGGT 0 Lys/Gly 
28 col17 63 AAACGgtaagc 28 6119 ctgctttgagGTA 0 Thr/Val 
29 col18 63 GGAAGgtaagt 29 1316 cctttcctagGGT 0 Lys/Gly 
30 col19 36 TTTCCgtatgt 30 110 tgaactgcagACA 0 Ser/Thr 
31 spacer 37 CAGTCgtaagt 31 5590 tcctccccagCTG 1 Pro 
32 spacer 12 ACATGgtgagt 32 2912 tgtctttcagGAA 1 Gly 
33 C1 494 TTTCAgtaagc 33 6796 cttcttccagATT 0 Ser/Ile 
34 C1 97 CTATGgtgaga 34 2865 tggtttgcagATC 1 Asp 
35 C2 672 CAGGCgtaagt 35 2854 ctctttctagATG 1 His 
36 C3 94 CGAAGgtatgt 36 6011 tgttgtgcagCTT 2 Ser 
37 C3/3' UTR 202            

 
Appendix Tab. 3 Splice junction sites in the murine Col6a6 gene. Exon sequences are in 
upper case and intron sequences are in lower case letters. aThe lengths of the 5’ and 3’ UTRs are 
not included. 
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