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2010

vorgelegt
von

Dipl.-Math. oec., MSc Sandra Caterina Gaißer

aus

Stuttgart



ii

Referent: Prof. Dr. Friedrich Schmid, Universität zu Köln
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Chapter 1

Introduction

Concepts of association or dependence play a central role when considering multiple
random sources in statistical models as they describe the relationship between two or
more random variables. Several questions are of relevance in this context:

1. How can association be measured and detected in empirical data?

2. How can association between random variables be modeled in general?

3. Which estimation and statistical test procedures are available?

Especially in financial applications, the analysis and modeling of association has gained
a lot of attention recently and is subject to an increasing research activity. We mention
multivariate portfolio theory, risk analysis and management, valuation, hedging, and
pricing of complex financial instruments such as basket default options. In particular,
the concept of copulas has proven to be useful in those fields of application and re-
search. Before going into detail as far as the modeling and measurement of association
by means of copulas is concerned, we briefly describe the role of association within
some of the aforementioned fields.

Within portfolio theory, prominent concepts such as the Mean-Variance Markowitz
model (Markowitz (1987)), the Capital Asset Pricing Model (CAPM), and the Ar-
bitrage Pricing Theory (APT) (see e.g. Elton et al. (2010)) make use of Pearson’s
correlation coefficient as a measure of association between the asset returns in order
to determine an optimal portfolio choice for a given utility function. In this context,
Pearson’s correlation coefficient has proven to be a tractable measure while offering an
appealing way to describe association between multivariate normally distributed asset
returns. The latter distributional assumption, however, is essential for the applicabil-
ity of Pearson’s correlation coefficient as a measure of association, as we will explain
below. Pearson’s correlation coefficient is also frequently used in the context of risk
measurement and management of multivariate asset portfolios. This can partly be put
down to the fact that the common risk measure Value-at-Risk (VaR) may be expressed
as a simple function of the correlation matrix of the multivariate normally distributed
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asset returns in the underlying portfolio, representing a coherent risk measure in this
case. In particular, the one-factor portfolio model proposed in Pillar I of the regulatory
Basel II framework (cf. Basel Committee on Banking Supervision (2006)) makes use
of an elegant relationship between the correlation structure of the underlying portfolio
and the VaR. We further recall the widely used methodology by RiskMetrics (1996)
for measuring market risk, which is based on the assumption of normally distributed
returns and the VaR concept. In particular, weighted averages of past observations are
used here to forecast and estimate volatility and correlation.

Many researchers and practitioners have extended the above and many other appli-
cations to more general concepts of association than Pearson’s correlation coefficient.
The reasons for those extensions are numerous. For example, Pearson’s correlation
coefficient is known to be sensitive towards extreme events and, thus, more robust
measures of association such as trimmed correlation coefficients have been suggested
(see e.g. Maronna et al. (2006)). Further, Pearson’s correlation coefficient measures
the degree of linear association between two random variables. Usually, however, this
does not sufficiently describe association between non-normally or, more generally, non-
elliptically distributed random variables (related pitfalls are discussed in Embrechts et
al. (2002)). In particular, the concept of correlation does not exist for very heavy-tailed
distributions such as alpha-stable distributions where the second moments do not ex-
ist (see e.g. Rachev and Mittnik (2000)). In addition, we mention complex non-linear
financial products such as basket default options where the correlation coefficient as
a second-order approximation to association represents a less adequate measure (cf.
Laurent and Gregory (2005) and references therein). Another extension of the cor-
relation coefficient, which measures association between two random variables only,
refers to the simultaneous measurement of association between more than two random
variables as described by their multivariate distribution function. This type of multi-
variate measures of association will be developed and investigated in the present thesis.

Amongst those various extensions, the concept of copulas has proven to be the most
general and sophisticated concept of describing and modeling association or dependence
between the components of a random vector (see e.g. Joe (1997) and Nelsen (2006) for
a detailed overview of copulas). Copula techniques are also frequently applied in the
quantitative finance literature, we mention Patton (2002), Embrechts et al. (2003),
McNeil et al. (2005), Savu and Trede (2008), and Giacomini et al. (2009). Copulas split
the multivariate distribution function of a random vector into the univariate marginal
distribution functions and the dependence structure represented by the copula. In
particular, the copula is invariant with respect to strictly increasing transformations of
the components of the random vector. Commonly, it is precisely this property which
justifies to call the copula the dependence structure of a random vector. Naturally,
measures of association or dependence should be a functional of the copula only. The
most prominent measures of this type are Spearman’s rho and Kendall’s tau. Especially
the former measure will be the subject of several analyses and results in this thesis.
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Outline and summary

The main aim of this dissertation is the modeling, the estimation and the statisti-
cal inference of multivariate versions of copula-based measures of association such as
Spearman’s rho. Special focus is put on the analysis of the statistical properties of
related estimators as well as the derivation of statistical hypothesis tests. The latter
may be used to verify specific modeling assumptions on the one hand. On the other
hand, statistical tests are developed to test whether association changes over time or
whether it differs between random sources such as multivariate asset returns. Only a
few statistical tests of those types exist for multivariate measures of association in the
copula framework. This thesis addresses this gap and illustrates the theoretical results
with applications to financial data. Further, several simulation studies are carried out
to investigate the performance of the proposed estimators or statistical hypothesis tests.

All theoretical results in this thesis on the modeling and measuring of association
between several random variables use the concept of copulas. In fact, copulas allow
to study the dependence structure of a multivariate random vector irrespective of its
univariate marginal distribution functions. We consider measures of association which
depend on the copula of the underlying random vector only and are invariant with re-
spect to the marginal distribution functions. As a direct functional of the copula, non-
parametric estimators for those measures are obtained based on the so called empirical
copula, which is derived from the multivariate empirical distribution function. Statis-
tical inference for these measures is established using recent results on the asymptotic
weak convergence of the empirical copula process, also for serially dependent observa-
tions. The derived results and hypothesis tests are mainly of nonparametric nature and
may thus be applied in very general settings. Only weak assumptions on the distribu-
tion function, such as continuity of the marginal distributions and continuous partial
differentiability of the copula, are made.

One aspect in this thesis is the measurement of multivariate association. As out-
lined above, measures of multivariate association are naturally based on the copula of
the underlying random vector. Various copula-based measures have been proposed in
the literature. For example, Wolff (1980) introduces a class of multivariate measures of
association which is based on the L1- and L∞-norms of the difference between the cop-
ula and the independence copula (see also Fernández-Fernández and González-Barrios
(2004)). Other authors generalize existing bivariate measures of association to the mul-
tivariate case. For example, multivariate extensions of Spearman’s rho are considered
by Nelsen (1996) and Schmid and Schmidt (2006, 2007a, 2007b). Blomqvist’s beta is
generalized by Úbeda-Flores (2005) and Schmid and Schmidt (2007c), whereas a mul-
tivariate version of Gini’s Gamma is proposed by Behboodian et al. (2007). Further,
Joe (1990) and Nelsen (1996) discuss multivariate generalizations of Kendall’s tau. A
multivariate version of Spearman’s footrule is considered by Genest et al. (2010). Joe
(1989a, 1989b) investigates multivariate measures which are based on the Kullback-
Leibler mutual information. Most of these measures have the often undesirable prop-
erty that they may be zero even though the components of the underlying random
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vector are not stochastically independent. In chapter 3 of this thesis, we propose a
multivariate version of the bivariate measure Hoeffding’s Phi-Square which takes the
value zero if and only if the components of the random vector are stochastically in-
dependent. It is based on a Cramér-von Mises functional and is of importance in the
context of tests for (multivariate) stochastic independence. In particular, it is a direct
functional of the copula only. The asymptotic distribution of a nonparametric estima-
tor for Hoeffding’s Phi-Square is established for the case of independent observations
as well as of dependent observations from a strictly stationary strong mixing sequence.

Another important topic of this thesis is the derivation of a weighted version for
Spearman’s rho, which is addressed in chapter 4. A shared feature of such weighted
statistics is to allocate different, non-identical weights to the observations. In a time-
dynamic context, for example, different weights are put on past observations to model
the evolving correlation over time. A popular representative of this type of weighted
statistics is the Exponentially Weighted Moving Average (EWMA) model, introduced
by RiskMetrics (1996). Based on observations Xt−n+1, ...Xt and Yt−n+1, . . . , Yt, respec-
tively, the estimator for the (linear) correlation at time t is here given by

rt =

∑n
j=1 λ

j−1(Xt−j+1 − X̄)(Yt−j+1 − Ȳ )
√∑n

j=1 λ
j−1(Xt−j+1 − X̄)2

√∑n
j=1 λ

j−1(Yt−j+1 − Ȳ )2
(1.1)

with X̄ = 1/n
∑n

i=j Xt−j+1 and Ȳ = 1/n
∑n

j=1 Yt−j+1 and decay factor 0 < λ < 1. The
decay factor λ determines the relative weight which is assigned to each observation. In
contrast to a simple moving average model based on equally weighted observations (i.e.,
with λ = 1), the above estimator reacts faster to (sudden) changes of the correlation as
higher weight is allocated to more recent observations. The RiskMetrics methodology
is based on the assumption that the underlying multivariate distribution is (condition-
ally) normally distributed. As outlined above, other concepts of association than linear
correlation are more appropriate when the underlying distributions are non-elliptical.
This motivates the introduction of a weighted estimator for the copula-based measure
Spearman’s rho. As the estimation of Spearman’s rho is based on the ranks of the
observations, the proposed weighted estimator places different weights to the ranks of
the observations and not to the observations themselves, as e.g. in the EWMA model.
The asymptotic distribution of this estimator is derived from the weak convergence of
weighted empirical processes. Those results allow, for example, to test for significant
changes of Spearman’s rho over time. A generalization to the multivariate case is also
considered.

An assumption frequently made in many financial and statistical models is that
pairwise correlations between the underlying random variables are equal. For exam-
ple, the one-factor portfolio model used in the Basel II framework (BCBS (2006)),
which determines the minimum capital requirements for credit risk, is based on the
assumption that the asset returns between any two obligors have the same correlation.
Engle and Kelly (2009) consider equal pairwise correlations in the context of dynamic
conditional correlation modeling. They describe further applications in collateralized
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debt obligation (CDO) pricing, derivative trading, and portfolio choice. Another field
of research where the assumption of equal pairwise correlations plays a central role
is the interclass correlation modeling, which is applied within the analysis of familial
data. The latter investigates the degree of resemblance between family members and is
subject to increasing research activity, see e.g. Helu and Naik (2006), Seo et al. (2006),
Naik and Helu (2007), and Wu et al. (2009) and references therein. The assumption of
equal pairwise correlations can be verified utilizing adequate statistical tests. Various
tests for the null hypothesis of equal linear Pearson’s correlation coefficients (or equi
linear-correlation) in a multivariate normally distributed random vector have been in-
vestigated e.g. by Bartlett (1950, 1951), Anderson (1963), Lawley (1963), and Aitkin
et al. (1968). Due to the aforementioned shortcomings of Pearson’s correlation coef-
ficient, it is natural to study alternative measures of association such as Spearman’s
rho. In chapter 5, we develop four (asymptotic) tests for the null hypothesis of equi
Spearman’s rank-correlation, i.e., that all pairwise Spearman’s rho coefficients in a
multivariate random vector are equal. The proposed tests for equi rank-correlation
are nonparametric and can be applied without further assumptions on the marginal
distributions except their continuity. As demonstrated, the proposed tests may also
be applied in the context of multivariate distribution modeling. All tests are easy to
implement and can be performed with low computational complexity. A simulation
study to investigate the power of the tests identifies especially two tests showing a
good performance for all considered dimensions and copula models. The test setting
also allows the derivation of a test for stochastic independence based on all distinct
pairwise Spearman’s rho coefficients.

As mentioned before, the analysis of the association in a portfolio of risky assets has
attracted increasing interest over the last decade. First, the globalizing and interdepen-
dence of financial markets require a thorough portfolio risk modeling and management,
which can quickly react to changing market situations. This is particularly important
when market conditions deteriorate and the association between asset returns increases
– which is also known as the ‘correlation breakdown’, see e.g. Karolyi and Stulz (1996),
Campbell et al. (2002), Bae et al. (2003), Patel (2005), Rodriguez (2007) or Bartram
et al. (2007). Simultaneously, the rising awareness of modeling the association in a
portfolio may certainly be put down to the recent market turbulence in the entire fi-
nancial sector. Further, the internal model approach in the context of the regulatory
Basel II framework allows banks to use their own portfolio risk models for determining
the amount of regulatory capital to be maintained. Hence, a proper understanding
of the portfolio’s cross correlation structure and diversification may be essential to
preserve the financial stability of a bank on the one hand. On the other hand, increas-
ing association between financial asset returns may also lead to increasing association
between banks’ trading results and, thus, to the risk of simultaneous large losses at
several banks. A comprehensive analysis of the association between the banks’ trading
results may give information about the systemic fragility of the financial system. From
a supervisory perspective, we develop two test procedures in chapter 6 to analyze the
association between the trading results of a hypothetical portfolio of banks both over
time and across banks. In particular, we use Spearman’s rho to quantify the association
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in this supervisory portfolio. Several theoretical results on the asymptotic behavior of
the difference of two Spearman’s rho coefficients - either between two different samples
or for different points in time - form the basis for the formulation of the two test proce-
dures. On the one hand, a time-dynamic two-step test procedure, which is partly based
on a nonparametric control chart for Spearman’s rho, is designed to detect significant
long-term level changes of Spearman’s rho. On the other hand, we propose a statistical
hypothesis test for significant differences between two Spearman’s rho coefficients of
different samples by taking into account all respective lower-dimensional Spearman’s
rho coefficients. This test can be used to simultaneously identify those groups of banks
that show significant changes of association around some specific point in time. The
theoretical results are applied to real profits and loss data and corresponding Value-
at-Risk estimates of eleven German banks which had a regulatory approved internal
market-risk model during the years 2001 to 2006. Our empirical study of the super-
visory portfolio identifies significant changes in the level of Spearman’s rho at three
time points during the observation period. At two of those time points the second test
procedure reveals a significant change in association for all sub-portfolios comprising
more than eight banks. The proposed methods are general and can be applied to any
series of multivariate asset returns in finance where the assumption of independent
standardized returns holds.

Detailed outline

Chapter 2 deals with the statistical modeling and measurement of multivariate as-
sociation. We start by describing several properties of association in financial data
by introducing different statistical tools and concepts to measure and detect associa-
tion. The concept of copulas is introduced in section 2.2.1 and several properties of
copulas are presented. In section 2.2.2, we discuss the nonparametric estimation of
copulas based on the empirical copula. The weak convergence of the empirical copula
process is investigated for both independent and serially dependent observations from
strictly stationary strong mixing sequences. We further give a brief introduction to
the nonparametric bootstrap which can be used to approximate the distribution of the
empirical copula process. After introducing several concepts of multivariate associa-
tion such as concordance or positive dependence in section 2.3.1, section 2.3.2 discusses
important properties of multivariate measures of association. Finally, we introduce the
(bivariate) copula-based measures of association Spearman’s rho, Kendall’s tau, and
Blomqvist’s beta, describe how they can be generalized to the multivariate case, and
address their estimation based on the empirical copula in section 2.3.3.

A multivariate version of the measure of association Hoeffding’s Phi-Square is dis-
cussed in chapter 3. Some of its analytical properties are investigated in section 3.2. We
give the explicit value of multivariate Hoeffding’s Phi-Square for some copulas of simple
form and describe a simulation algorithm to approximate its value when the copula is
of a more complicated form. In section 3.3, a nonparametric estimator for multivari-
ate Hoeffding’s Phi-Square based on the empirical copula is derived. We establish its



13

asymptotic behavior both in the case of independent observations and dependent ob-
servations from strictly stationary strong mixing sequences. The asymptotic variance
can consistently be estimated by means of a nonparametric (moving block) bootstrap
method. We show how the estimator can be adapted to account for small sample sizes.
Section 3.4 finally illustrates the applicability of multivariate Hoeffding’s Phi-Square
to financial data by using it to analyze financial contagion related to the bankruptcy
of Lehman Brothers Inc. in September 2008.

In chapter 4, a weighted nonparametric estimator for multivariate Spearman’s rho
is proposed and its statistical properties are investigated. After providing relevant
definitions and background material in section 4.1, the weighted estimator for multi-
variate Spearman’s rho is introduced in section 4.2. It is derived from the ordinary
nonparametric estimator of Spearman’s rho based on the empirical copula by allocat-
ing nonidentical weights to the ranks (section 4.2.1). In section 4.2.2, we first establish
the weak convergence of the weighted empirical copula process under minimal condi-
tions on the weights, which is deduced from the weak convergence properties of general
weighted empirical processes. In a second step, the asymptotic behavior of the weighted
estimator for Spearman’s rho is derived. A bootstrap procedure is described to esti-
mate the asymptotic variance of this estimator. Section 4.3 deals with the application
of the weighted estimator for evaluating Spearman’s rho over time while placing more
weight to recent observations. Several weighting schemes for this purpose are discussed.
Finally, the theoretical results are applied to the analysis of association between equity
return series of several international banks in section 4.4.

Chapter 5 addresses the statistical testing of the null hypothesis of equi-rank cor-
relation, i.e., that all pairwise Spearman’s rho coefficients in a multivariate random
vector are equal. After providing relevant definitions and some preliminary results on
Spearman’s rho in section 5.1, four (asymptotic) nonparametric hypothesis tests for
equi rank-correlation are derived in section 5.2. We establish their asymptotic distri-
bution based on empirical process theory. We show that a nonparametric bootstrap
method to determine unknown parameters or critical values works. Further, a brief
overview of the existing literature on tests for equi linear-correlation is given in section
5.3. The results of a simulation study carried out to investigate the power of the tests
are discussed in section 5.4. They are compared to the classical test for equal linear
Pearson’s correlation coefficients developed by Lawley (1963). Section 5.5 briefly dis-
cusses the derivation of a test for stochastic independence based on Spearman’s rho
before the applicability of the four tests for equi-rank correlation to financial data is
demonstrated in section 5.6.

Finally, the last chapter of this thesis, chapter 6, is devoted to the statistical analysis
of association in a supervisory portfolio of banks both over time and across banks. After
a short motivation in section 6.1, an introduction to the basic theory of control charts is
given in section 6.2. The relevant theoretical results on the difference of two Spearman’s
rho coefficients both over time and across different samples are established in section
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6.3. In particular, the test procedure for detecting significant long-term level changes
of Spearman’s rho is developed in section 6.3.1. The statistical test procedure designed
to analyze the statistical properties of multiple Spearman’s rho coefficients is derived
in 6.3.2. Section 6.4 states relevant definitions and assumptions for the analysis of the
supervisory portfolio. The theoretical findings are applied to real profits and loss data
and corresponding Value-at-Risk estimates of eleven German banks in section 6.5.



Chapter 2

Statistical modeling and
measurement of association

2.1 Association in financial data

As outlined in the previous chapter, the notion of association plays a central role in
many applications in financial theory. In the following, we describe some aspects of
detecting and measuring association in financial data by using different statistical con-
cepts. Throughout this section, our analysis is based on daily equity (log-) return series
from the six international banks BNP Paribas (BNP), Commerzbank (COBA), Bar-
clays (BARC), HSBC, Bank of America (BOA), and Citigroup (CITI) from May 1997
to April 2010.

Figure 2.1 shows a scatter plot matrix for the return series of all pairs of banks.
The distinct scatter plots give a first impression of the degree and type of association
between the return series. In particular, they show that association in financial data
is quite different. This observation is confirmed by figure 2.2, which provides contour
plots of the empirical densities of two selected pairs of banks. Whereas the level curves
of the empirical density in the right panel of figure 2.2 are rather elliptic, the level
curves in the left panel have a quite different shape.

The most common measure to quantify the degree of association between two ran-
dom variables is Pearson’s linear correlation coefficient. For the d-dimensional random
vector X = (X1, . . . ,Xd) whose components are assumed to have nonzero finite vari-
ances, the linear correlation coefficient between Xi and Xj is defined as

rij = rXi,Xj
=

Cov(Xi,Xj)√
V ar(Xi)

√
V ar(Xj)

. (2.1)

Further, the d × d matrix R = (rij)1≤i,j≤d is called the linear correlation matrix of
the random vector X. The linear correlation coefficient measures the degree of linear
association between the random variables Xi and Xj. In particular, it can be shown
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Figure 2.1: Bivariate scatter plots for the daily return series of the banks BNP, COBA,
BARC, HSBC, BOA, and CITI for the observation period May 1997 to April 2010.

that |rXi,Xj
| = 1 if and only if Xi = aXj + b almost surely with a ∈ IR \ {0}, b ∈ IR,

i.e., if there exists a perfect positive or negative linear functional relationship between
the random variables. Otherwise, −1 < rXi,Xj

< 1. The linear correlation coefficient
is invariant with respect to strictly increasing linear transformations of the margins of
X, i.e.,

raXi+b,cXj+d = sign(ac)rXi,Xj
,

with a, c ∈ IR \ {0}, b, d ∈ IR, and sign(x) = 1 if x > 0 and sign(x) = −1 if x < 0;
cf. Embrechts et al. (2003). Figure 2.3 shows the estimated evolution of the linear
correlation coefficient between the returns of selected pairs of banks. In general, the
degree of association between the return series (as e.g. measured by linear correlation)
can largely differ. Further, association between financial asset returns is not constant
but may change over time.
The linear correlation coefficient is frequently used to measure the amount of associa-
tion between two random variables since it is quite tractable from a user perspective and
has numerous applications; cf. chapter 1. It represents the natural measure of associa-
tion between random variables with a joint normal or elliptical distribution (provided
the second moments exist). As already mentioned in the previous chapter, the linear
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Figure 2.2: Contour plots of the empirical density of the daily returns of the banks
BOA and COBA (left panel) and CITI and BOA (right panel) for the observation
period May 1997 to April 2010.
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Figure 2.3: Estimated evolution of the linear correlation coefficient between the daily
returns of selected pairs of banks for the observation period May 1997 to April 2010,
based on a moving window with window size 250.

correlation coefficient is a less appropriate measure of association between two random
variables if the underlying distribution is non-elliptical. The theory of copulas allows
for a more sophisticated modeling of the dependence structure instead. For example,
consider the QQ-Plots in figure 2.4 which graphically compare the empirical quantiles
of the returns of banks BNP and BOA with the (theoretical) quantiles of a normal
distribution. Together with figure 2.2 (left panel), they give strong evidence that the
distributions of the two return series are of different tail behavior. In the context of
multivariate distribution modeling, note that all marginal distribution functions of a
multivariate elliptical distribution have the same shape (except location and scaling).
Copulas allow for the construction of multivariate distribution functions having differ-
ent marginal distribution functions.
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Figure 2.4: QQ-Plots of daily returns of banks BNP and BOA for the observation
period May 1997 to April 2010.

As discussed before, measures of association such as Spearman’s rho and Kendall’s
tau represent alternatives to the linear correlation coefficient (see section 2.3.3 for their
definition). In contrast to the latter, those measures solely depend on the copula of the
underlying random variables and are invariant with respect to the marginal distribu-
tions. Figure 2.5 provides contour plots of the empirical densities of realizations from
two differently distributed bivariate random vectors. Their distributions have differ-
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Figure 2.5: Left panel: Contour plot of the empirical density of 10, 000 realizations
of a random vector (X1,X2) having an equi-correlated Gaussian copula and equally
exponentially distributed marginal distributions. Right panel: Contour plot of the
empirical density of 10, 000 realizations of a random vector (Y1, Y2) having a Clayton
copula and equally exponentially distributed marginal distributions.

ent copulas though identical exponentially distributed marginal distribution functions.
Though the plots imply that the association between the components of the random
vectors differs, this is not reflected by the value of the linear correlation coefficient,
which is almost the same in both samples (see table 2.1). For comparison, we addition-
ally give the corresponding values of Spearman’s rho and Kendall’s tau. In contrast
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Table 2.1: Estimated values of the linear correlation coefficient, Spearman’s rho, and
Kendall’s tau of the realizations of the two random vectors (X1,X2) and (Y1, Y2) as
described in figure 2.5.

Linear correlation Spearman’s rho Kendall’s tau

(X1,X2) 0.246 0.293 0.198
(Y1, Y2) 0.243 0.403 0.279

to the linear correlation coefficient, both measures indicate a quantitative difference in
the degree of association between the components of the random vectors.

Beside the adequate measurement of association between financial asset returns, it
is also of interest to analyze and study diversification effects in a portfolio, especially in
portfolio theory. For example, it is important to a portfolio manager how the diversifi-
cation in a portfolio changes if one or several assets are replaced. Such diversification
effects can be measured using multivariate versions of Spearman’s rho and Kendall’s
tau. For illustration, figure 2.6 shows the evolution of Spearman’s rho and Kendall’s
tau between the daily returns of two portfolios of five banks each, where the second
portfolio results from the first by substituting one bank by another. It becomes appar-
ent that the degree of association in the two distinct portfolios differs in several time
periods.
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Figure 2.6: Estimated evolution of five-dimensional Spearman’s rho (left panel) and
Kendall’s tau (right panel) of the daily returns of banks COBA, BARC, HSBC, BOA,
and CITI (solid) and of the daily returns of banks BNP, COBA, BARC, HSBC, and
BOA (dotted) for the observation period May 1997 to April 2010.

Measures of association such as Spearman’s rho or Kendall’s tau quantify the de-
gree of association between the components of a random vector as determined by its
entire distribution function. Another important dependence concept, which we briefly
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mention for completeness, is tail dependence. Tail dependence is used in the mod-
eling and measurement of association between extreme values such as e.g. extremely
negative asset returns and plays a role in financial theory; cf. Joe (1997). In contrast
to the mentioned measures of association, measures for tail dependence focus on the
tail of the distribution function. For example, the coefficient of upper tail dependence
of two random variables X and Y with continuous distribution functions F and G,
respectively, is defined as

λU = lim
u→1−

IP(Y > G−1(u)|X > F−1(u)),

provided that the limit λU ∈ (0, 1] exists. If λU = 0, then X and Y are said to be
asymptotically independent in the upper tail. It can be shown that the tail dependence
coefficient is a functional of the copula of the underlying random vector.

2.2 Modeling multivariate association - the concept of

copulas

Copulas provide a way to analyze the relationship between a multivariate distribu-
tion function and its univariate marginal distribution functions. The notion of copulas
has been introduced by Sklar (1959) who showed that copulas are functions which
bind or join univariate distribution functions to obtain multivariate distribution func-
tions. In fact, copulas themselves are multivariate distribution functions with univariate
marginal distributions being uniform on the interval [0, 1]. The study of copulas is of
interest in many fields of research and application. In probability and statistics, copu-
las play an important role basically for the following two reasons: They can be used to
construct multivariate distribution functions by modeling each univariate marginal dis-
tribution function and the copula separately. Further, copulas allow for a sophisticated
analysis and modeling of the association between random variables. Especially in the
fields of financial and actuarial sciences, copulas have gained in immense importance
over the last two decades as they have opened up many new possibilities to consider
association between risky assets.

2.2.1 Definition, properties, and examples

We start with the definition of copulas (see Nelsen (2006), p. 10). Note that although
the term copula was established by Sklar (1959), many basic results on copulas can be
find earlier in the literature, e.g. in the papers by Hoeffding (see Fisher and Sen (1994)
for his collected works).

Definition 2.2.1 Let C : [0, 1]d → [0, 1] be a d-dimensional distribution function on
[0, 1]d. Then C is called a copula if it has uniformly distributed univariate marginal
distribution functions on the interval [0, 1].

It immediately follows that all k-dimensional margins of a d-dimensional copula are
again copula functions, 2 ≤ k ≤ d.
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The next theorem gives the representation of a multivariate distribution function in
terms of its univariate marginal distribution functions and the copula.

Theorem 2.2.2 (Sklar’s theorem) Let F be a d-dimensional distribution function
with univariate marginal distribution functions F1, . . . , Fd. Then there exists a d-
dimensional copula C such that for all x = (x1, . . . , xd) in R

d,

F (x1, . . . , xd) = C{F1(x1), . . . , Fn(xd)}. (2.2)

If F1, . . . , Fd are continuous, then C is unique.
Contrary, if C is a d-dimensional copula and F1, . . . , Fd are univariate distribution
functions, then the right-hand side of (2.2) is a d-dimensional distribution function
with univariate marginal distribution functions F1, . . . , Fd.

The proof is given in Sklar (1959). It follows from Sklar’s theorem that a multivariate
distribution function can be separated into the univariate (continuous) marginal dis-
tribution functions and the multivariate dependence structure, which is represented by
the copula. Deheuvels (1978) refers to copulas as ’dependence functions’.
For a univariate distribution function G, we define the generalized inverse of G as
G−1(u) = inf{x ∈ IR ∪ {∞}|G(x) ≥ u} for all u ∈ (0, 1] and G−1(0) = sup{x ∈
IR ∪ {−∞}|G(x) = 0}.

Corollary 2.2.3 Let F be a d-dimensional distribution function with univariate marginal
distribution functions F1, . . . , Fd and corresponding copula C satisfying (2.2). Assum-
ing that F1, . . . , Fd are continuous, an explicit representation of C is given by

C(u1, . . . , ud) = F{F−1
1 (u1), . . . , F

−1
d (ud)}, u = (u1, . . . , ud) ∈ [0, 1]d. (2.3)

This result is a direct consequence from theorem 2.2.2 and is important for the con-
struction of copulas from multivariate distributions. If not stated otherwise, we always
assume that the univariate marginal distribution functions F1, . . . , Fd are continuous.

Remarks.

1. According to theorem 2.2.7 in Nelsen (2006), the partial derivatives DiC(u) =
∂C(u)/∂ui of C exist for almost all ui, i = 1, . . . , d. As shown in section 2.2.2,
weak convergence of the empirical copula process can be established under mini-
mal conditions on those partial derivatives.

2. If a d-dimensional random vector X = (X1, . . . ,Xd), defined on some probability
space (Ω,F , IP), has distribution function F with univariate marginal distribution
functions F1, . . . , Fd, we also call C as determined by (2.2) the copula of X. It is
denoted by CX or CX1,...,Xd

if necessary.

If the marginal distribution functions F1, . . . , Fd of F are continuous, the transfor-
mation Xi → Fi(Xi) is referred to as probability-integral transformation to uniformity
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since Ui = Fi(Xi) ∼ U(0, 1) in this case , i = 1, . . . d. As implied by (2.2), the copula
C (of X having distribution function F ) represents the distribution function of the
random vector U = (U1, . . . , Ud) and coincides with the copula of the latter random
vector. Therefore, many probabilistic investigations concerning copulas can be reduced
to the uniform case (see e.g. the proofs of theorems 2.2.8 and 5.2.2 in sections 2.2.2 and
5.2.1, respectively).

We further denote by C the survival function of the random vector U = (U1, . . . , Ud)
whose distribution function is the copula C, i.e.,

C(u) = IP(U > u) = IP(U1 > u1, . . . , Ud > ud) for all u ∈ [0, 1]d. (2.4)

The survival copula is defined as

C̆(u) = IP(U > 1 − u), (2.5)

where 1 − u = (1 − u1, . . . , 1 − ud). The copula C is said to be radially symmetric if,
and only if, it equals its survival copula, i.e.

C(u) = IP(U ≤ u) = IP(U > 1 − u) = C̆(u) for all u ∈ [0, 1]d. (2.6)

Every copula is further bounded in the sense that the so called Fréchet-Hoeffding-
bounds inequality holds (see e.g. theorem 2.10.12 in Nelsen (2006)): For a d-dimensional
copula C, we have

W (u) ≤ C(u) ≤M(u) for every u ∈ [0, 1]d, (2.7)

with functions M and W , defined on [0, 1]d as

M(u1, . . . , ud) = min{u1, . . . , ud}
W (u1, . . . , ud) = max{u1 + · · · + ud − d+ 1, 0}.

The upper bound function M is a d-dimensional copula for all dimensions d ≥ 2 and is
known as the comonotonic copula. If the random vector X has copula M, each of the
random variables X1, . . . ,Xd can (almost surely) be represented as strictly increasing
function of any of the others. The copula M is also said to describe perfect positive
dependence.
In contrast, the lower bound function W is only a copula for dimension d = 2 and is
also referred to as the countermonotonic copula in this case. It represents the copula
of the bivariate random vector (X1,X2) if there exists a strictly decreasing relationship
between X1 and X2. Here, the copula W describes the case of perfect negative depen-
dence. According to theorem 2.10.13 in Nelsen (2006), there exists for any d > 2 and
for any u ∈ [0, 1]d a d-dimensional copula C⋆ such that C⋆(u) = W (u). The function W
in (2.7) represents thus the ’best-possible’ lower bound and every dependence structure
represented by the copula always lies between those two extreme cases. The fact that
W fails to be a copula if d > 2 is also closely related to the absence of the concept of
perfect negative dependence in this case: For example, if the bivariate random vectors
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(X1,X2) and (X2,X3) are perfectly negatively dependent, respectively, then (X1,X3)
is perfectly positively dependent and, thus, a three-dimensional perfectly negatively
dependent random vector does not exist.

Another important copula is the independence copula Π , defined on [0, 1]d as

Π (u1, . . . , ud) = u1 · . . . · ud.

Being a copula for all d ≥ 2, it describes the dependence structure of stochastically
independent random variables X1, . . . ,Xd.

The behavior of copulas with respect to strictly monotone transformations is es-
tablished in the next theorem. Let therefore βk be a strictly monotone transformation
of the kth component Xk of the random vector X whose domain contains the range of
Xk, denoted by RanXk.

Theorem 2.2.4 Let X = (X1, . . . ,Xd) be a d-dimensional random vector with dis-
tribution function F, continuous marginal distribution functions Fi, i = 1, . . . , d, and
copula CX1,...,Xd

.

(i) If β1, . . . , βd are strictly increasing on RanX1, . . . , RanXd, respectively, then

CX1,...,Xd
(u) = Cβ1(X1),...,βd(Xd)(u), u ∈ [0, 1]d.

(ii) Assume that β1, . . . , βd are strictly monotone on RanX1, . . . , RanXd, respectively,
and let βk be strictly decreasing for some k, without loss of generality let k = 1.
Then, for all u = (u1, . . . , ud) ∈ [0, 1]d,

Cβ1(X1),...,βd(Xd)(u1, . . . , ud) = Cβ2(X2),...,βd(Xd)(u2, . . . , ud)

−CX1,β2(X2),...,βd(Xd)(1 − u1, u2, . . . , ud).

For the proof, we refer the reader to Embrechts et al. (2003). Part (i) of the theorem
implies that the copula is invariant with respect to strictly increasing transformations
of the components of X. This behavior together with theorem 2.2.2 forms the basis for
the role of copulas in the study of multivariate association. According to Schweizer
and Wolff (1981), the copula describes precisely those properties of a joint distribution
function which do not change under strictly increasing transformations of the margins.
This property is also referred to as ’scale-invariance’ since the study of multivariate
association based on copulas is, hence, independent of the scale of the margins. Natu-
rally, this is a desirable property of (multivariate) measures of association.
Suppose for the time being that all transformations βi, i = 1, . . . , d, in theorem 2.2.4
are strictly decreasing. Applying part (ii) recursively, we obtain the following relation-
ship between the survival copula/survival function and the copula, which we use e.g.
in chapter 4:

Cβ1(X1),...,βd(Xd)(1 − u) =
∑

A⊆Sd

(−1)|A|C(u(A)) = C̆(1 − u) = C(u), (2.8)
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where Sd = {1, . . . , d} and, in general, u(A) = (u
(A)
1 , . . . , u

(A)
d ) corresponds to the d-

dimensional vector u through u
(A)
j = uj if j ∈ A and u

(A)
j = 1 otherwise for all sets

A ⊆ Sd with cardinality 0 ≤ |A| ≤ d. Note that, if A = {i1, . . . , i|A|}, we also write

u(i1,...,i|A|) instead of u(A). The first identity on the left-hand side of formula (2.8) is
also studied in Wolff (1980), theorem 2. In particular, it holds that Cβ1(X1),...,βd(Xd) is
independent of the particular choice of the transformations βi, i = 1, . . . , d. For the rep-
resentation of C̆ and C in terms of the copula, see also Cherubini et al.(2004), chapter 4.

For more results and background reading on copulas, consult the monographs by
Joe (1997) and Nelsen (2006). Regarding their application in finance and risk manage-
ment, good references are Embrechts et al. (2003), Cherubini et al. (2004), and McNeil
et al. (2005). Let us complete this section by briefly discussing two well-known families
of copulas, the elliptical and the Archimedean copulas.

Elliptical Copulas. Elliptical copulas are the copulas of the class of elliptical
distributions (see Fang et al. (1990) for a discussion of elliptical distributions) and are
constructed according to equation (2.3). In the following, we list two important exam-
ples.

Examples. (i) The family of the d-dimensional Gaussian copulas is defined as

CG(u1, . . . , ud;K)

=

∫ Φ−1(u1)

−∞
· · ·
∫ Φ−1(ud)

−∞
(2π)−

d
2 det(K)−

1
2 exp

(
− 1

2
x

′
K−1x

)
dxd . . . dx1, (2.9)

with d × d correlation matrix K = (κij)i,j=1,...,d and function Φ denoting the distri-
bution function of the univariate standard normal distribution with generalized in-
verse function Φ−1. The Gaussian copula CG is called equi-correlated if K = K(κ) =
κ1d1

′
d + (1− κ)Id with parameter κ satisfying −1/(d− 1) < κ < 1. For general k ∈ IN,

Ik denotes the k-dimensional identity matrix and 1k and 0k correspond to the k-
dimensional vectors which solely consist of ones or zeroes, respectively.
(ii) The family of d-dimensional t-copulas is given by

Ct(u1, . . . , ud;K, ν) = tν,K{t−1
ν (u1), . . . , t

−1
ν (ud)}, (2.10)

where tν,K denotes the multivariate t-distribution with ν degrees of freedom, location
vector zero and correlation matrix K = (κij) (assuming ν > 2) and corresponding
univariate marginal distribution function tν with generalized inverse function t−1

ν .

Random number generation for elliptical copulas is e.g. described in Embrechts et
al. (2003), p. 26-27.
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Archimedean Copulas. Consider a continuous and strictly decreasing function
φ : [0, 1] → [0,∞] such that φ(1) = 0. The function C given by

C(u, v) = φ[−1]{φ(u) + φ(v)} (2.11)

is a bivariate Archimedean copula if and only if φ is convex; cf. Nelsen (2006), chapter
4. Here, the function φ[−1] denotes the pseudo-inverse of φ, defined by

φ[−1](t) =

{
φ−1(t) for 0 ≤ t ≤ φ(0)

0 for φ(0) ≤ t ≤ ∞

The function φ is called the generator of the copula C. If φ(0) = ∞, the generator φ is
is said to be strict and φ[−1] = φ−1.
The approach in formula (2.11) can naturally be extended to d (d ≥ 2) dimensions by
imposing additional assumptions on φ. With continuous, strictly decreasing function φ
such that φ(1) = 0 and φ(0) = ∞, a d-dimensional Archimedean copula is given by

C(u1, . . . , ud) = φ−1{φ(u1) + · · · + φ(ud)}

if and only if the inverse φ−1 is completely monotone on [0,∞), i.e., if it has derivatives

of all orders which alternate in sign; formally, (−1)k dk

dtk
φ−1(t) ≥ 0 for all t ≥ 0 and all

k ∈ IN.

Examples. (i) Let φ(t) = (− ln t)θ, θ ≥ 1, which generates the d-dimensional
Gumbel family

CGu(u1, . . . , ud; θ) = exp [−{(− ln u1)
θ + · · · + (− lnud)

θ}1/θ]. (2.12)

(ii) With φ(t) = (t−θ)/θ, θ > 0, we obtain the d-dimensional Clayton family

CCl(u1, . . . , ud; θ) = (u−θ
1 + · · · + u−θ

d − d+ 1)−1/θ. (2.13)

A statistical hypothesis test based on the copula-based measure of association
Spearman’s rho (cf. section 2.3.3) which can be used to verify whether the choice of an
Archimedean copula is appropriate in multivariate distribution modeling is discussed
in chapter 5. In general, there exist several methods to generate random numbers from
a given Archimedean copula; if needed, we use the method proposed by Marshall and
Olkin (1988). For the discussion of the general class of hierarchical Archimedean cop-
ulas and related random number generation, we refer to Savu and Trede (2008) and
Hofert (2008).

2.2.2 Statistical inference: The empirical copula (process)

Depending on the assumptions made on the joint and the univariate marginal distri-
bution functions, we distinguish three general methods for the estimation of copula
functions: parametric, semiparametric and nonparametric methods. The parametric
and semi-parametric estimation approaches are usually based on maximum-likelihood
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methods, we mention Genest and Rivest (1993), Genest et al.(1995), Joe and Xu (1996),
Joe (2005), Chen and Fan (2006), and Kim et al.(2007). For an overview see also Malev-
ergne and Sornette (2005), chapter 5. In this thesis, we solely consider nonparametric
estimation methods for which the joint and the marginal distribution functions are
assumed to be unknown. In particular, this method is not exposed to possible misspec-
ifications of the underlying distributions, see Charpentier et al. (2007) for related pit-
falls. Nonparametric estimation of copulas was first considered by Rüschendorf (1976)
and Deheuvels (1979) who proposed the so called empirical copula as a nonparametric
estimator.

Nonparametric estimation

Consider the d-dimensional random vector X with distribution function F, continuous
univariate marginal distribution functions Fi, i = 1, . . . , d, and copula C. Assume that
F, C, and Fi are completely unknown and let X1, . . . ,Xn be a random sample from X.
The empirical copula is built in two steps. First, every univariate marginal distribution
function Fi is estimated by its univariate empirical distribution function, i.e.,

F̂i,n(x) =
1

n

n∑

j=1

1{Xij≤x} for i = 1, . . . , d and x ∈ R.

The estimated marginal distribution functions are then used to obtain the so called
pseudo-observations Ûij,n = F̂i,n(Xij) with Ûj,n = (Û1j,n, ..., Ûdj,n) for i = 1, ..., d, j =
1, ..., n. Finally, an estimate of the copula C is given by the empirical distribution func-
tion of the sample Û1,n, . . . , Ûn,n. The latter is typically called the empirical copula and
was introduced by Deheuvels (1979) under the name ’empirical dependence function’.

Definition 2.2.5 Let X be a d-dimensional random vector with distribution function
F, continuous univariate marginal distribution functions Fi, i = 1, . . . , d, and copula C.
Based on a random sample X1, . . . ,Xn from X, the empirical copula is defined as

Ĉn(u) =
1

n

n∑

j=1

d∏

i=1

1
{Ûij,n≤ui}

, for u ∈ [0, 1]d, (2.14)

with Ûij,n as introduced above.

Since Ûij,n = 1/n(rank of Xij in Xi1, ...,Xin), the empirical copula represents a rank-
based estimator for the copula C, i.e., only the (normalized) ranks of the observations
are included in the estimation. According to definition 2.2.1, the empirical copula itself
is a copula. In particular, it is invariant under strictly increasing transformations of the
margins (cf. theorem 2.2.4, part (i)) due to the invariance property of the ranks with
respect to such transformations. According to Genest and Favre (2007), the ranks as-
sociated with the random sample X1, . . . ,Xn are the statistics that retain the greatest
amount of information among all statistics fulfilling this invariance property. For fixed
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n, we sometimes suppress the subindex and refer to the pseudo-observations Ûij,n as

Ûij if it is clear from the context.

Weak convergence of the empirical copula process
√
n(Ĉn − C) can be established

using the functional delta-method, which is introduced next. Note that this technique
is also frequently applied in several theoretical considerations later in this thesis, see
e.g. the proofs of theorems 4.2.2 and 5.2.2 in sections 4.2.2 and 5.2.1, respectively.

Functional delta-method and Hadamard differentiability

The classical delta-method represents an important technique for deducing the asymp-
totic distribution of a sequence of transformed random vectors from the asymptotic
behavior of the underlying sequence. Let ℓ∞([0, 1]d) be the space of the collection of all
uniformly bounded real-valued functions defined on [0, 1]d, equipped with the uniform
metric m defined as

m(f1, f2) = sup
t∈[0,1]d

|f1(t) − f2(t)|, f1, f2 ∈ ℓ∞([0, 1]d). (2.15)

Assuming that every sample path u → (Ĉn(u))(ω) of the empirical copula Ĉn is a
bounded function on [0, 1]d, the empirical copula can be viewed as the following map:

Ĉn : Ω × [0, 1]d → ℓ∞([0, 1]d),

i.e. as a random map taking values in the function space ℓ∞([0, 1]d). In this context,
a general version of the delta-method addressing the weak convergence of stochastic
processes is needed. This functional delta-method is based on the notion of Hadamard
differentiability. Let D and E be two metrizable, topological spaces (i.e. vector spaces
for which addition and scalar multiplication are continuous operations).

Definition 2.2.6 (Hadamard differentiability) A map φ : Dφ ⊂ D → E is called
Hadamard-differentiable at θ ∈ Dφ if there exists a continuous linear map φ′θ : D → E

such that
φ(θ + tnhn) − φ(θ)

tn
−→ φ′θ(h), n→ ∞, (2.16)

for all converging sequences tn → 0 and hn → h such that θ + tnhn ∈ Dφ for every n.
If φ′θ exists on a subset D0 ⊂ D only and h ∈ D0, the map φ is said to be Hadamard-
differentiable tangentially to D0.

The function φ′θ is called the Hadamard derivative of the map φ at θ ∈ Dφ. Thereby,
the set Dφ can be any arbitrary subset of D. For h ∈ D0, the derivative φ′θ(h) represents
a first order Taylor approximation evaluated at the point θ in direction h. Note that
the derivative φ′θ is a continuous function for fixed θ, what does not imply that φ′θ is
also continuous in θ. For maps φ : Dφ ⊂ IRm → IRk, Hadamard differentiability is
equivalent to the usual type of differentiability.
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Theorem 2.2.7 (Functional delta-method) Let φ : Dφ ⊂ D → E be Hadamard-

differentiable at θ tangentially to D0. Let Xn : Ωn → Dφ be maps with rn(Xn − θ)
w→ X

for some sequence of constants rn → ∞, where X is separable and takes its values in
D0. Then

rn{φ(Xn) − φ(θ)} w−→ φ′θ(X).

with Hadamard derivative φ′θ of φ at θ.

A Borel-measurable map X : Ω → D0 is separable if there is a separable, measurable
set having probability one under the distribution of X, see van der Vaart and Wellner
(1996), p. 17. For a detailed discussion of Hadamard differentiability and related results,
we refer to section 3.9 in van der Vaart and Wellner (1996).

Weak convergence of the empirical copula process

Weak convergence of the empirical copula process
√
n(Ĉn−C) has been investigated e.g.

by Rüschendorf (1976), Gänßler and Stute (1987), van der Vaart and Wellner (1996),
and Tsukahara (2005). The following version is established in Fermanian et al. (2004).

Theorem 2.2.8 Let X1, . . . ,Xn be a random sample from the d-dimensional random
vector X with distribution function F, continuous univariate marginal distribution func-
tions F1, . . . , Fd, and copula C. Under the assumption that the i-th partial derivatives
DiC(u) of C exist and are continuous for i = 1, . . . , d, we have

√
n{Ĉn(u) − C(u)} w−→ GC(u).

Weak convergence takes place in ℓ∞([0, 1]d) and

GC(u) = BC(u) −
d∑

i=1

DiC(u)BC(u(i)). (2.17)

The vector u(i) denotes the vector where all coordinates, except the ith coordinate of u,
are replaced by 1. The process BC is a tight centered Gaussian process on [0, 1]d with
covariance function

E{BC(u)BC(v)} = C(u ∧ v) −C(u)C(v),

i.e., BC is a d-dimensional Brownian bridge.

For a definition of tightness, see remark 3 on page 32.
Proof of theorem 2.2.8. We outline the single steps of the theorem’s proof, which uses
the functional delta-method (see theorem 2.2.7).
(i) Let

F̂n(x) =
1

n

n∑

j=1

d∏

i=1

1{Xij≤xi}, x = (x1, . . . , xd) ∈ ĪR
d
, (2.18)
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be the empirical distribution function of the random sample X1, . . . ,Xn. Standard re-
sults from empirical process theory (see example 2.1.3 in van der Vaart and Wellner
(1996)) imply weak convergence of the corresponding empirical process

√
n(F̂n − F )

to a d-dimensional Brownian bridge BF with covariance function E{BF (x)BF (y)} =

F (x ∧ y) − F (x)F (y) in ℓ∞(ĪR
d
).

(ii) According to van der Vaart and Wellner (1996), p. 389, the copula C of the distri-

bution function F can be represented as a map φ : D(ĪR
d
) → ℓ∞([0, 1]d) of F via

C(u) = φ(F )(u) = F{F−1
1 (u1), . . . , F

−1
d (ud)}, u ∈ [0, 1]d. (2.19)

In general, the space D(ĪR
d
) comprises all real-valued cadlag functions and the space

C(ĪR
d
) all continuous real-valued functions on ĪR

d
. Both function spaces are equipped

with the uniform metric m as defined in (2.15). When inserting the empirical distri-
bution function F̂n into (2.19), we obtain the following nonparametric estimator of the
copula C :

C̃n(u) = φ(F̂n)(u) = F̂n{F̂−1
1,n(u1), . . . , F̂

−1
d,n(ud)}. (2.20)

(iii) For fixed 0 < p < q < 1 suppose for the time being that the Fi are continuously dif-
ferentiable on the intervals [F−1

i (p)−ε, F−1
i (q)+ε] for some ε > 0 with strictly positive

derivatives fi, i = 1, . . . , d, and that all partial derivatives ∂F/∂xi, i = 1, . . . , d of F exist
and are continuous on the product of these intervals. According to lemma 3.9.28 in van
der Vaart and Wellner (1996)), it then follows that the map φ in (2.19) is Hadamard-

differentiable at F tangentially to C(ĪR
d
) as a map from D(ĪR

d
) to ℓ∞([p, q]d). To show

this, it is used that φ can be decomposed as

φ : F
φ1−→ (F,F1, . . . , Fd)

φ2−→ (F,F−1
1 , . . . , F−1

d )
φ3−→ F ◦ (F−1

1 , . . . , F−1
d ).

The first map φ1 is Hadamard-differentiable at F tangentially to C(ĪR
d
) as it is linear

and continuous. Its derivative has the form

φ′1,F (h)(x1, . . . , xd) = (h(x1, . . . , xd), h(x1,∞, . . . ,∞), . . . , h(∞, . . . ,∞, xd)).

In particular, note that φ′1,F (h) = φ1(h) for all h ∈ C(ĪR
d
).

Further, the second map φ2 is Hadamard-differentiable at (F,F1, . . . , Fd) tangentially

to C(ĪR
d
) × C([a1, b1]) × · · · × C([ad, bd]) according to lemma 3.9.23, part (i), in van

der Vaart and Wellner (1996) where [ai, bi] = [F−1
i (p) − ε, F−1

i (q) + ε], i = 1, . . . , d. Its
derivative is given by

φ′2,(F,F1,...,Fd)(h, h1, . . . , hd)(x, u1, . . . , ud)

=

(
h(x),−

(
h1

f1

)
◦ F−1

1 (u1), . . . ,−
(
hd

fd

)
◦ F−1

d (ud)

)
.

The composition map φ3 is Hadamard-differentiable at (F,F−1
1 , . . . , F−1

d ) tangentially

to C(ĪR
d
)×C([p, q])×· · ·×C([p, q]) (lemma 3.9.27 in van der Vaart and Wellner (1996))
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with derivative

φ′
3,(F,F−1

1 ,...,F−1
d

)
(h, g)(u) = g ◦ (F−1

1 , . . . , F−1
d )(u)

+

(
∂F

∂x1
{F−1

1 (u1), . . . , F
−1
d (ud)}, . . . ,

∂F

∂xd
{F−1

1 (u1), . . . , F
−1
d (ud)}

)
· h(u)

Finally, Hadamard differentiability of the map φ follows by an application of the chain
rule for Hadamard-differentiable functions (lemma 3.9.3 in van der Vaart and Wellner
(1996)).
(iv) As a consequence of the functional delta-method (theorem 2.2.7), the process√
n(C̃n −C) thus converges weakly in ℓ∞([p, q])d to the Gaussian process φ′F (BF ) with

φ′F (h)(u) = φ′
3,(F,F−1

1 ,...,F−1
d

)
[φ′2,(F,F1,...,Fd){φ′1,F (h)}](u)

= h{F−1
1 (u1), . . . , F

−1
d (ud)}

−
d∑

i=1

∂F

∂xi
{F−1

1 (u1), . . . , F
−1
d (ud)}

h{∞, . . . ,∞, F−1
i (ui),∞, . . . ,∞}

fi{F−1
i (ui)}

,

(2.21)

cf. van der Vaart and Wellner (1996).
(v) According to Fermanian et al. (2004), it is possible to confine the above analysis to
the case when all marginal distributions are uniform on [0, 1] by eventually considering
the transformed random variables Uij = Fi(Xij) with Uj = (U1j , . . . , Udj) for i =
1, . . . , d and j = 1, . . . , n (cf. discussions in section 2.2). Namely, with F ⋆ = C being
the distribution function of the random vectors Uj , j = 1, . . . n and F̂ ⋆ the associated
empirical distribution function, it can be shown that (lemma 1 in Fermanian et al.
(2004)) √

n(C̃n −C) =
√
n{φ(F̂ ) − φ(F )} =

√
n{φ(F̂ ⋆) − φ(F ⋆)},

with map φ as in equation (2.19). By doing so, the above result in (iv) can be extended
to obtain weak convergence of

√
n(C̃n − C) in the space ℓ∞([0, 1])d. Note that the

assumption of existing continuous partial derivatives of the copula, as required in the
theorem, is sufficient to yield this weak convergence. Moreover, the limiting process in
equation (2.21) then coincides with the limiting process GC as given in the theorem,
cf. formula (2.17).
(vi) Since finally

sup
{0≤u1,...,ud≤1}

|C̃n(u1, . . . , ud) − Ĉn(u1, . . . , ud)| = O

(
1

n

)
, (2.22)

weak convergence of the process
√
n(C̃n−C) implies weak convergence of the empirical

copula process
√
n(Ĉn − C), as given in the theorem, to the same Gaussian by an

application of Slutsky’s theorem. This completes the proof. �

Remark. The application of the probability-integral transformation to uniformity
yields compact support of the joint and marginal distribution functions of the trans-
formed random variables. In this case, continuous partial differentiability of their joint
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distribution function F ⋆ = C is sufficient to obtain Hadamard differentiability of the
inverse functions of the marginal distributions in (iii)(cf. lemma 3.9.23 part (ii), in van
der Vaart and Wellner (1996) in connection with lemma 2 in Fermanian et al. (2004)).
We proceed similarly in the proof of theorem 5.2.2 in section 5.2.1.

The nonparametric estimation of the survival function (see (2.4)), which we consider
in chapter 4, can be established analogously. The following result is discussed and
proven in Schmid and Schmidt (2007a).

Theorem 2.2.9 Let X1, . . . ,Xn be a random sample from the d-dimensional ran-
dom vector X with distribution function F, continuous marginal distribution functions
F1, . . . , Fd, and copula C. Using the same notation as in theorem 2.2.8, a nonparametric
estimator for C is given by

Ĉn(u) =
1

n

n∑

j=1

d∏

i=1

1
{Ûij,n>ui}

, for u ∈ [0, 1]d. (2.23)

Under the additional assumption that the i-th partial derivatives DiC(u) of C exist and
are continuous for i = 1, . . . , d, we have

√
n{Ĉn(u) − C(u)} w−→ GC(u),

in ℓ∞([0, 1]d). Further,

GC(u) = BC(u) −
d∑

i=1

DiC(u)BC(u(i)), (2.24)

with Brownian Bridge BC as defined in theorem 2.2.8. The process BC is a tight centered
Gaussian process on [0, 1]d with covariance function

E{BC(u)BC(v)} = C(u ∨ v) − C(u)C(v).

Let us complement the above results with some additional remarks.

Remarks.

1. Analogously to (2.20), we may define another version of the empirical survival
function by

C̃n(u) = F̂n{F̂−1
1,n(u1), . . . , F̂

−1
d,n(ud)} =

1

n

n∑

j=1

d∏

i=1

1{Xij>F̂−1
i,n (ui)}

, u ∈ [0, 1]d,
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with F̂n being the survival version of the empirical distribution function F̂n as
given in (2.18), i.e.

F̂n(x) =
1

n

n∑

j=1

d∏

i=1

1{Xij>xi}, x = (x1, . . . , xd) ∈ IRd.

We have sup{u∈[0,1]d} |C̃n(u) − Ĉn(u)| = O (1/n) .

2. Both Ĉn and Ĉn are strongly consistent estimators for C and C, respectively, see
Schmid and Schmidt (2007c), p. 8.

3. The process BC is tight if for every ε > 0 there exists a compact set K such that

IP(BC /∈ K) < ε.

Thus, tightness of BC and BC implies tightness of GC and GC , respectively.

The covariance structure of the limiting process GC depends on the unknown copula
C and can only be calculated explicitly for some special copulas. For example, if C = Π ,
direct calculations yield (see e.g. Genest et al. (2007), proposition 2.1)

Cov{GC(u),GC(v)} = Π (u ∧ v) + Π (u)Π (v)

(
d− 1 −

d∑

i=1

ui ∧ vi

uivi

)
. (2.25)

The nonparametric bootstrap

In general, however, the covariance structure is of complicated form and has to be
estimated adequately. In this context, Fermanian et al. (2004) show that the bootstrap
methodology can be used to estimate the asymptotic distribution of the empirical cop-
ula process

√
n(Ĉn−C). The bootstrap was introduced by Efron (1979) and represents

a computer-intensive method to estimate or approximate the (unknown) distribution
and related functionals such as the mean or the standard error of a given statistic.
It has gained significant importance over the last decades, mainly due to the rapidly
increasing computer capacities. Before giving the result of Fermanian et al. (2004) in
theorem 2.2.10 below, let us briefly describe the general concept of the bootstrap ex-
emplarily for the estimation of the variance of a given statistic (cf. Shao and Tu (1995),
chapter 2).
For the time being, let (Xj)j=1,...,n be a random sample from an unknown d-dimensional
distribution function F and let Sn = Sn(X1, . . . ,Xn) be a statistic whose variance,
given by

σ2
S = V ar(Sn) =

∫ {
Sn(x1, . . . ,xn) −

∫
Sn(y1, . . . ,yn)d

n∏

i=1

F (yi)

}2

d

n∏

i=1

F (xi),

shall be estimated. If F were known, the variance of Sn could be approximated us-
ing Monte-Carlo simulation by repeatedly drawing observations from F. The idea of
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Efron’s bootstrap now is to substitute the unknown distribution function F by an ad-
equate estimator. If no further assumptions on F are made, a natural (and sufficient)
estimator of F is given by the empirical distribution function F̂n of the random sample
(Xj)j=1,...,n, see (2.18). Hence, replacing F by F̂n in the above equation yields the
bootstrap variance estimator of σ2

S , given by

vBoot =

∫ {
Sn(x1, . . . ,xn) −

∫
Sn(y1, . . . ,yn)d

n∏

i=1

F̂n(yi)

}2

d

n∏

i=1

F̂n(xi)

=V ar(Sn(XB
1 , . . . ,X

B
n )|X1, . . . ,Xn), (2.26)

where the bootstrap sample XB
1 , . . . ,X

B
n denotes an (i.i.d) random sample of size n

from F̂n. Shao and Tu (1995) call the estimator in (2.26) the theoretical form of the
bootstrap variance estimator. In general, such theoretical bootstrap estimators are of
complicated form and difficult to evaluate. Therefore, a second step is carried out in
practice which relies on the approximation of the theoretical bootstrap estimators, here
of vBoot, by Monte-Carlo simulation. Since - in contrast to F - the empirical distribution
function F̂n is known, we can independently draw bootstrap samples (Xb

1, . . . ,X
b
n), b =

1, . . . ,K, of size n from the empirical distribution function F̂n (given the original sample
X1, . . . ,Xn), compute the corresponding value Sb

n = Sn(Xb
1, . . . ,X

b
n) of the statistic and

approximate vBoot by the sample variance of those values as follows:

v
(K)
Boot =

1

K

K∑

b=1

(
Sb

n − 1

K

K∑

s=1

Ss
n

)2

.

By the strong law of large numbers, it then follows that

vBoot = limK→∞v
(K)
Boot a.s.

Note that instead of defining the bootstrap sample (Xb
1, . . . ,X

b
n) as a random sample

from F̂n, we can equivalently say that the bootstrap sample (Xb
1, . . . ,X

b
n) is a random

sample of size n drawn with replacement from the original sample (Xj)j=1,...,n; the
bootstrap sample thus represents a resampled version from (Xj)j=1,...,n.

Remarks.

1. The bootstrap methodology can also be used to estimate the entire (unknown)
distribution of a given statistic. In our example above, an approximation of the
distribution of Sn is given by the empirical distribution function of the values
Sb

n = Sn(Xb
1, . . . ,X

b
n), b = 1, . . . ,K. As a by-product, confidence intervals for

unknown parameters of the statistic’s distribution or associated critical values
in the context of hypothesis testing can be obtained by reading off the empiri-
cal quantiles of the bootstrap distribution (see also chapter 5). While a number
of K = 250 bootstrap replications is usually considered large enough to yield
adequate estimates of the variance/standard error of a statistic, the number of
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bootstrap replications when used for estimating a distribution must be consid-
erably larger; according to Efron and Tibshirani (1993), a number of at least
K = 2500 is more appropriate in this case.

2. The bootstrap method described above is referred to as the nonparametric boot-
strap since no parametric assumptions on the distribution function F are made.
If F belongs to a parametric model, for instance F = Fθ with θ being a vector of
unknown parameters, the parametric bootstrap method is commonly applied. In
this case, θ is first estimated by an appropriate estimator θ̂n calculated from the
original observations and the bootstrap samples are then drawn from F

θ̂n
.

3. Shao and Tu (1995) regard the bootstrap as a mixture of two techniques, the
substitution principle (or ’plug-in principle’ according to Efron and Tibshirani
(1993)) and a numerical approximation. The substitution principle represents a
general estimation approach which, for estimating a distribution function F or
related functionals, uses the empirical distribution function F̂n of a random sam-
ple (Xj)j=1,...,n from F as surrogate. For example, the sample mean 1/n

∑n
j=1 Xj

as estimator for the mean µF of F corresponds exactly to the expectation of the
random variable X (having distribution function F ) taken with respect to F̂n.

For an introduction to the bootstrap, see Efron and Tibshirani (1993); for a detailed
treatment of the bootstrap theory we refer to the monograph by Shao and Tu (1995).

The study of the bootstrapped empirical copula process is of interest as many statis-
tics, which are considered in this thesis, can be written as a functional of the empirical
copula. The related asymptotic behavior can be deduced from the weak convergence
properties of the bootstrapped empirical copula process. Given the bootstrap sample
(XB

j )j=1,...,n which is obtained by sampling with replacement from (Xj)j=1,...,n, denote

by ĈB
n the bootstrap version of the empirical copula, i.e., the empirical copula calculated

from (XB
j )j=1,...,n according to equation (2.14). Fermanian et al. (2004) show that the

nonparametric bootstrap works, i.e., that the (conditional) distribution of
√
n(ĈB

n −Ĉn)
is an asymptotically consistent estimator of the distribution of

√
n(Ĉn − C).

Theorem 2.2.10 Let (XB
j )j=1,...,n denote the bootstrap sample which is obtained by

sampling from (Xj)j=1,...,n with replacement and let ĈB
n be its associated empirical

copula calculated according to formula (2.14). Under the assumptions of theorem 2.2.8,
the sequence

√
n(ĈB

n −Ĉn) converges weakly in ℓ∞([0, 1]d) to the same limiting Gaussian
process as the sequence

√
n(Ĉn − C) in probability.

The proof (see Fermanian et al. (2004)) is based on related results by van der Vaart and
Wellner (1996) concerning the weak convergence of the bootstrap for general empirical
processes. Note that a similar result for the empirical survival function follows from
the above theorem by applying the continuous mapping theorem and using relationship
(2.8) between the copula and the survival function.
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For the applications discussed in this thesis, the nonparametric bootstrap yields sat-
isfactory estimation results. Note that there exist more advanced bootstrap methods
such as the weighted or the wild bootstrap, see e.g. Barbe and Bertail (1995) and
Davidson and Flachaire (2001).
We also mention another popular resampling method, the (nonparametric) jackknife.
Each jackknife sample deletes exactly one observation at a time from the original sam-
ple (Xj)j=1,...,n and is thus based on n determined samples in contrast to the bootstrap.
The performance of the jackknife to estimate the variance of an asymptotically normally
distributed statistic is explored in chapter 3 by means of a simulation study.

Weak convergence of the empirical copula process for dependent observa-
tions

While the nonparametric estimation of the copula for independent observations is well
developed in the literature, statistical inference for the copula on the basis of (time-)
dependent observations has only been investigated recently. For the sake of complete-
ness, we briefly address the weak convergence properties of the empirical copula process
in such a context. Note that, in general, there exist various concepts to describe and
quantify temporal dependence, see e.g. Dedecker et al. (2007) for an overview. Our fo-
cus here will be on strong mixing sequences (see Bradley (2005) and references therein).

For this purpose, consider the strictly stationary sequence {Xj = (X1j , . . . ,Xdj)}j∈Z

of d-dimensional random vectors, being defined on some probability space (Ω,F , IP),
with distribution function F, continuous univariate marginal distribution functions
Fi, i = 1 . . . , d, and copula C. Suppose A and B are two σ-fields included in F and
define

α(A,B) = sup
A∈A,B∈B

|IP(A ∩B) − IP(A)IP(B)|.

The mixing coefficient αX associated with the sequence {Xj}j∈Z is then given by

αX(r) = sup
s≥0

α(Fs,Fs+r), (2.27)

where Ft = σ{Xj , j ≤ t} and F t = σ{Xj , j ≥ t} denote the σ-fields generated by
Xj, j ≤ t, and Xj, j ≥ t, respectively.

Definition 2.2.11 Let αX be the mixing coefficient associated with the strictly station-
ary sequence {Xj}j∈Z as given in (2.27). If

αX(r) → 0 for r → ∞,

the process {Xj}j∈Z is said to be strong mixing.

Assume that our observations are realizations of the sample X1, . . . ,Xn. Analogously
to above, the copula C is estimated by the empirical copula calculated according to
formula (2.14). The following theorem establishes weak convergence of the empirical
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copula process under additional assumptions on the strong mixing coefficient. Note that
Fermanian and Scaillet (2003) investigate the asymptotic properties of the smoothed
empirical copula in this setting.

Theorem 2.2.12 Let X1, . . . ,Xn be observations from the strictly stationary strong
mixing sequence {Xj}j∈Z with coefficient αX satisfying αX(r) = O(r−a) for some a > 1.
If the i-th partial derivatives DiC(u) of C exist and are continuous for i = 1, ..., d, we
have √

n{Ĉn(u) − C(u)} w−→ G
⋆(u)

in ℓ∞([0, 1]d). The process G
⋆ has the form

G
⋆(u) = B

⋆(u) −
d∑

i=1

DiC(u)B⋆(u(i)), (2.28)

with tight centered Gaussian process B
⋆ in [0, 1]d having covariance function

E{B⋆(u)B⋆(v)} =
∑

j∈Z

E
[
{1{U0≤u} − C(u)}{1{Uj≤v} − C(v)}

]
,

where Uj = (F1(X1j), . . . , Fd(Xdj)), j ∈ Z.

Proof. Weak convergence of
√
n(Ĉn−C) is established analogously as in the proof of the-

orem 2.2.8 (cf. Fermanian et al. (2004) and Dedecker et al. (2007)) using the functional
delta-method (theorem 2.2.7). We thus outline the single steps only briefly. As in the
aforementioned proof, we can confine ourselves to the case where the marginal distribu-
tions Fi of F, i = 1, . . . , d, are uniform distributions on [0, 1] and thus, F has compact
support [0, 1]d, by considering the random variables Uij = Fi(Xij), i = 1, . . . , d, j =
1, . . . , n. Further, the functional delta-method is applied based on representation (2.19)
of the copula C as Hadamard-differentiable map φ of its distribution function F. Rio
(2000) shows that under the above assumptions on the mixing coefficient αX, it holds
that √

n{F̂n(u) − F (u)} w−→ B
⋆(u)

in ℓ∞([0, 1]d) with tight centered Gaussian process B
⋆. Hence, an application of the

functional delta-method yields the weak convergence of
√
n{φ(F̂n)− φ(F )} to the pro-

cess φ′F (B∗) = G
⋆ where φ′F denotes the derivative of φ at F. Since

sup
u∈[0,1]d

|φ(F̂n)(u) − Ĉn(u)| = O

(
1

n

)
, (2.29)

cf. equation (2.22), apply Slutsky’s theorem to conclude the proof. �

In contrast to the case of independent observations (cf. theorem 2.2.8), the co-
variance structure of the limiting process G

⋆ in a strong mixing context depends not
only on the copula C, but also on the joint distribution of the random vectors U0 and
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Uj , j ∈ Z. Further, G
⋆ is tight since B

⋆ is tight.
Similar results can also be established for β-mixing and weakly dependent sequences
of random vectors, see Dedecker et al. (2007) and Doukhan et al. (2009). Note that
the nonparametric bootstrap, as introduced in the previous section, is less adequate
to estimate the asymptotic covariance structure of the empirical copula process in a
(time-) dependent setting as it does not take into account the temporal dependence
structure of the observations. In this context, several modified bootstrap approaches
have been proposed in the literature such as the (moving) block bootstrap, which we
properly introduce in chapter 3. In this section, we also apply the latter theorem to
multivariate financial time series most of which are well known to exhibit temporal
dependencies such as autocorrelation.

2.3 Measuring multivariate association

The aim of this section is to introduce and discuss some important measures and
concepts of multivariate association. All of them share the desirable property of scale-
invariance, which, as discussed in section 2.2.1, allows the analysis of multivariate
association between the components of a multivariate random vector irrespective of
their scale. In the light of theorem 2.2.4, part (i), these concepts and measures can all
be represented and described in terms of the copula of the random vector.
For a comprehensive discussion and overview of the following and many further prop-
erties, concepts, and measures of association, we refer to Joe (1997) and Nelsen (2006).

2.3.1 Concordance, positive dependence, and comonotonicity

Consider two d-dimensional random vectors X and Y (d ≥ 2) having distribution
function FX and FY with copula CX and CY, respectively, and suppose our aim is
to compare the degree of association between the components of X and those of Y.
This could be done e.g. by some measure of multivariate association which assigns
a single number to X and Y or to their copulas, respectively. In some situations,
however, it is of interest to assess whether the components of X are more dependent
than those of Y according to some dependence ordering. Due to (2.2) and provided
that the marginal distribution functions of X and Y are continuous, such orderings
can be formulated using the copula of the random vectors. The following ordering is
referred to as concordance ordering (cf. Joe (1997)):

Definition 2.3.1 Given two d-dimensional random vectors X and Y with distribution
functions FX and FY and continuous marginal distribution functions, respectively. As-
suming X has copula CX and Y has copula CY, we say that CX is smaller than CY

(or CY is larger than CX) if

CX(u) ≤ CY(u) and CX(u) ≤ CY(u) for all u ∈ [0, 1]d. (2.30)

In short, we write CX ≺ CY(CY ≻ CX).
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If CX ≺ CY, we also say that CY is more concordant than CX (or CX is less concordant
than CY). According to Joe (1997), (2.30) intuitively means that the components of Y
are more likely to be simultaneously large (or small) than those of X. The concordance
ordering is a partial ordering as not every pair of copulas can be compared in this way.
For dimension d = 2, (2.30) reduces to

CX(u1, u2) ≤ CY(u1, u2) for all u1, u2 ∈ [0, 1],

since CX(u1, u2) ≤ CY(u1, u2) if and only if CX(u1, u2) ≤ CY(u1, u2) (cf. Embrechts
et al. (2003)). Sets of desirable axioms and properties for a bivariate or multivariate
dependence ordering are discussed in Joe (1997).

Remark. Note that (2.30) must hold pointwise, i.e., for each u ∈ [0, 1]d, which is
usually stronger than comparing the association between the components of X and Y
based on a single measure of multivariate association.

Closely related to multivariate concordance is the concept of positive and negative
(orthant) dependence; see definition 5.6.1 in Nelsen (2006).

Definition 2.3.2 Let X = (X1, . . . ,Xd) be a d-dimensional random vector with dis-
tribution function F, continuous univariate marginal distribution functions and copula
C.

1. X is positively lower orthant dependent if

C(u) ≥ Π (u) for all u ∈ [0, 1]d. (2.31)

2. X is positively upper orthant dependent if

C(u) ≥ Π (u) for all u ∈ [0, 1]d. (2.32)

3. X is positively orthant dependent if both (2.31) and (2.32) hold.

Negative lower orthant dependence, negative upper orthant dependence, and nega-
tive orthant dependence are defined analogously by replacing ’≥’ with ’≤’ in equations
(2.31) and (2.32). For dimension d = 2, positive (negative) upper and lower dependence
are the same. Having quadrants rather than orthants in this case, we say that X =
(X1,X2) is positively (negatively) quadrant dependent if C(u1, u2) ≥ (≤)Π (u1, u2) for
all (u1, u2) ∈ [0, 1]2.
Positive orthant dependence of X intuitively means that the probability that its com-
ponents take on large (or small) values simultaneously is at least as large as it would
be if the components of X were independent; see Nelsen (2006). The relationship to
multivariate concordance in definition 2.3.1 is straightforward: X is positively orthant
dependent if and only if Π ≺ C.
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Recall the Fréchet-Hoeffding bounds inequality in equation (2.7). It states that
C(u) ≤ M(u),u ∈ [0, 1]d, for any copula C with M being the comonotonic copula.
In view of definition 2.3.2, the random vector X having copula M is thus the most
positively lower orthant dependent random vector and the copula of any random vector
being positively lower orthant dependent lies between the copulas M and Π . Note
further that, for dimension d = 2, comonotonicity is the strongest form of concordance
and positive (quadrant) dependence, see also related discussions in Embrechts et al.
(2002).

2.3.2 Properties of measures of multivariate association

A measure of multivariate association quantifies the degree of association between the
components of a d-dimensional (d ≥ 2) random vector X with distribution function F
and copula C. We think of it as a map

δ : F → IR,

where F is a set of d-dimensional distribution functions. Desirable properties of bivari-
ate measures of association are well-established and have been discussed e.g. by Rényi
(1959), Lancaster (1963), Schweizer and Wolff (1981), and Scarsini (1984). However,
the extension of those properties to the multivariate case is not always straightforward
as the study of multivariate association is generally more complex. An example is the
fact that - in contrast to perfect positive dependence - the notion of perfect negative
dependence does not generalize to the multivariate case (cf. related discussions in sec-
tion 2.2.1). Several aspects of multivariate measures of association, in particular of
measures of concordance, are discussed in Wolff (1980), Joe (1990), Dolati and Úbeda-
Flores (2006), and Taylor (2007).
In the following, we confine ourselves to giving a selection of various properties of mea-
sures of multivariate association, which are considered desirable in the literature. This
list, however, is not intended to be exhaustive.

In the bivariate case, Scarsini (1984) proposes a set of properties to characterize
measures of association which are referred to as bivariate measures of concordance.
Definitions for multivariate measures of concordance are given in Dolati and Úbeda-
Flores (2006) and Taylor (2007). Amongst others, those measures fulfill the following
properties (cf. Schmidt (2007)):

P1. δ is well-defined for every d-dimensional X with continuous margins Xi and is
solely determined by the copula C of X,

P2. −1 ≤ δX ≤ 1 and δX = 1 if C = M ,

P3. δX = δπ(X) for any permutation π of the components of X,

P4. if X has stochastically independent components (i.e., C = Π ), then δX = 0,

P5. if X has copula CX and Y copula CY such that CX ≺ CY, then δX ≤ δY,
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P6. if (Xn)n∈IN is a sequence of random vectors with copulas Cn and limn→∞Cn(u) =
C(u) for all u ∈ [0, 1]d and some copula C of the random vector X, then
limn→∞ δXn = δX.

Hence, measures of concordance are increasing with respect to the concordance ordering
introduced in definition 2.3.1 according to property P5.
Note that a measure of concordance may be zero even though the components of the
random vector X are not stochastically independent. In many applications, however,
it would be desirable that the converse of P4 holds, too. In this context, the following
properties for multivariate measures of association are considered (see Rényi (1959)
and Wolff (1980)):

P2′. 0 ≤ δX ≤ 1,

P4′. δX = 0 ⇐⇒ X has stochastically independent components (i.e., C = Π ),

P7. δX = 1 ⇐⇒ C = M for d ≥ 3, and δX = 1 ⇐⇒ C = M or C = W if d = 2.

If the marginal distributions of X are continuous, there exist multivariate measures
satisfying the properties P1, P2′, P3, P4′, P6, and P7 (cf. chapter 3). While measures
of concordance attain their extreme values if the copula is either M or W, the former
measures of association have their extremes if the copula is Π (stochastic independence)
or M (comonotonicity) for dimension d ≥ 3. For dimension d = 2, they attain the max-
imal value of one for perfect (positive and negative) dependence, i.e., if C is either M
orW. In this case, Lancaster (1963) refers to those measures as measures of dependence.

Properties P2 and P7 imply that, if each component of X is almost surely a strictly
increasing function of any of the others, then δX = 1 as X possess copula M in this case.
Further, if β1, . . . , βd are strictly increasing functions on the range of Xi, i = 1, . . . , d,
then δβ1(X1),...,βd(Xd) = δX according to property P1 together with theorem 2.2.4, part
(i), i.e., the measures inherit the invariance property of the copula under strictly in-
creasing transformations of the margins.

Further properties of measures of multivariate association may be of interest such
as e.g. the behavior under strictly monotone transformations of the margins or if an
additional independent component is added to X. A comprehensive overview and dis-
cussion of properties and characteristics of multivariate measures of association is given
in Schmid et al. (2010). In addition to the aforementioned reference, we refer e.g. to
Nelsen (1996, 1998, 2002) for a detailed discussion of (multivariate) measures of as-
sociation and measures of concordance; for further properties of bivariate measures of
association, see also Embrechts et al. (2002). Several well-known measures of concor-
dance are discussed in section 2.3.3; a multivariate measure of association satisfying
properties P1, P2′, P3, P4′, P6, and P7 is proposed in chapter 3.
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2.3.3 Spearman’s rho, Kendall’s tau, and Blomqvist’s beta

In this section, we discuss three well-known measures of association, Spearman’s rho,
Kendall’s tau, and Blomqvist’s beta, and describe how they can be generalized to the
multivariate case; cf. Schmid et al. (2010). We thereby focus on those multivariate
versions which are based on the multivariate dependence structure as represented by
the d-dimensional copula of X. Nonparametric estimation and statistical inference for
those measures based on the empirical copula is discussed. Since their population
versions can be written in terms of the copula of the random vector, the related sample
versions represent functionals of the empirical copula and the asymptotic theory can
be deduced from the asymptotic behavior of the empirical copula process (cf. theorem
2.2.8).
Note that another type of multivariate measures is given by the average of all (distinct)
pairwise bivariate measures.

Spearman’s rho

Spearman’s rank correlation coefficient (or Spearman’s rho) was first studied by Spear-
man (1904) and represents one of the best-known measures to quantify the degree
of association between two random variables. For the two random variables X1 and
X2 with bivariate distribution function F and continuous univariate margins F1, F2,
bivariate Spearman’s rho is defined as

ρ =
Cov{F1(X1), F2(X2)}√

V ar{F1(X1)}
√
V ar{F2(X2)}

. (2.33)

Assuming X1 and X2 have copula C, this is equivalent to

ρ =

∫ 1
0

∫ 1
0 u1u2dC(u1, u2) −

(
1
2

)2
(

1
12

) = 12

∫ 1

0

∫ 1

0
C (u1, u2) du1du2 − 3

=

∫
[0,1]2 C(u1, u2) du1du2 −

∫
[0,1]2 Π (u1, u2) du1du2∫

[0,1]2 M(u1, u2) du1du2 −
∫
[0,1]2 Π (u1, u2) du1du2

, (2.34)

since
∫
[0,1]2 M(u1, u2) du1du2 = 1/3 and

∫
[0,1]2 Π(u1, u2) du1du2 = 1/4. Hence, ρ can

be interpreted as the normalized average difference between the copula C and the
independence copula Π .
Multivariate extensions of Spearman’s rho and their estimation have been discussed
e.g. by Ruymgaart and van Zuijlen (1978), Wolff (1980), Joe (1990), Nelsen (1996),
Stepanova (2003), and Schmid and Schmidt (2007a). Schmid and Schmidt (2007b)
further suggest a related class of multivariate measures of tail dependence based on
conditional versions of (multivariate) Spearman’s rho. Motivated by equation (2.34),
the following multivariate version of ρ can be derived

ρ1 =

∫
[0,1]d C(u)du −

∫
[0,1]d Π (u)du

∫
[0,1]d M(u)du −

∫
[0,1]d Π (u)du

= hρ(d)

{
2d

∫

[0,1]d
C(u)du − 1

}
, (2.35)
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with hρ(d) = (d+ 1)/{2d − (d+ 1)}. Using that

∫
[0,1]2 C(u1, u2) du1du2 −

∫
[0,1]2 Π (u1, u2) du1du2∫

[0,1]2 M(u1, u2) du1du2 −
∫
[0,1]2 Π (u1, u2) du1du2

=

∫
[0,1]2 u1u2 dC(u1, u2) −

∫
[0,1]2 u1u2 dΠ (u1, u2)∫

[0,1]2 u1u2 dM(u1, u2) −
∫
[0,1]2 u1u2 dΠ (u1, u2)

,

another multivariate version of Spearman’s rho can be similarly defined, which is given
by

ρ2 =

∫
[0,1]d Π (u)dC(u) −

∫
[0,1]d Π (u)dΠ (u)

∫
[0,1]d Π (u)dM(u) −

∫
[0,1]d Π (u)dΠ (u)

= hρ(d)

{
2d

∫

[0,1]d
Π (u)dC(u) − 1

}
.

(2.36)
Nelsen (1996) derives the two versions ρ1 and ρ2 from the concept of upper and lower
(orthant) dependence; see definition 2.3.2. Recall that the copula C is positively (neg-
atively) lower orthant dependent if C(u) ≥ (≤) Π (u) for all u ∈ [0, 1]d. Hence, ρ1 can
be regarded as a multivariate measure based on the concept of average lower orthant
dependence. In a similar fashion, ρ2 can be viewed as a multivariate measure derived
from the concept of average upper orthant dependence since

∫
[0,1]d Π (u)dC(u) −

∫
[0,1]d Π (u)dΠ (u)

∫
[0,1]d Π (u)dM(u) −

∫
[0,1]d Π (u)dΠ (u)

=

∫
[0,1]d C(u)dΠ (u) −

∫
[0,1]d Π (u)dΠ (u)

∫
[0,1]d M(u)dΠ (u) −

∫
[0,1]d Π (u)dΠ (u)

,

(2.37)

and C is positively (negatively) upper orthant dependent if C(u) ≥ (≤) Π (u), u ∈
[0, 1]d, with C and Π being the survival functions of C and Π , respectively; see (2.4).
Note that equation (2.37) follows from the fact that, for any two d-dimensional copulas
C1 and C2 with U1 ∼ C1 and U2 ∼ C2, it holds that

∫

[0,1]d
C1(u)dC2(u) =

∫

[0,1]d
IP(U1 < u)dC2(u) = IP(U1 < U2) = IP(U2 > U1)

=

∫

[0,1]d
IP(U2 > u)dC1(u) =

∫

[0,1]d
C2(u)dC1(u). (2.38)

In particular, ρ1 and ρ2 are the same if the copula C is radially symmetric. Nelsen
(1996) further considers the average of the two versions, i.e.,

ρ3 =
ρ1 + ρ2

2
, (2.39)

which also serves as a basis for our analysis of weighted multivariate measures of asso-
ciation in chapter 4. For d = 2, the three versions coincide and reduce to Spearman’s
rho as given in (2.34).
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Statistical inference for ρi, i = 1, 2, based on the empirical copula is investigated in
Schmid and Schmidt (2007a). When replacing the copula C with the empirical copula
Ĉn (see definition 2.2.5), the following nonparametric estimators for ρi, i = 1, 2, are
obtained:

ρ̂1,n = hρ(d)
{

2d

∫

[0,1]d
Ĉn(u)du − 1

}
= hρ(d)

{2d

n

n∑

j=1

d∏

i=1

(1 − Ûij,n) − 1
}
,(2.40)

ρ̂2,n = hρ(d)
{

2d

∫

[0,1]d
Π(u) dĈn(u) − 1

}
= hρ(d)

{2d

n

n∑

j=1

d∏

i=1

Ûij,n − 1
}
.

Under the assumptions of the theorems 2.2.8 and 2.2.9, it can be shown that

√
n (ρ̂i,n − ρi)

d−→ Zi ∼ N(0, σ2
i ), n→ ∞, i = 1, 2.

with

σ2
1 = 22dhρ(d)

2

∫

[0,1]d

∫

[0,1]d
E
{

GC(u)GC(v)
}
dudv,

σ2
2 = 22dhρ(d)

2

∫

[0,1]d

∫

[0,1]d
E
{

GC(u)GC(v)
}
dudv,

and Gaussian processes GC and GC as defined in the aforementioned theorems. Asymp-
totic normality of ρ̂3,n = (ρ̂1,n + ρ̂2,n)/2 can analogously be established based on the

joint weak convergence of the process
√
n(Ĉn − C, Ĉn − C), see also chapter 4. If the

copula C is radially symmetric, it follows that σ2
1 = σ2

2. For a few copulas of simple
form, the asymptotic variances can be explicitly computed, e.g. in the case of stochastic
independence (i.e. C = Π ) Schmid and Schmidt (2007a) obtain

σ2
1 = σ2

2 =
(d+ 1)2(3(4/3)d − d− 3)

3(1 + d− 2d)2
.

As shown in Schmid and Schmidt (2006), the asymptotic variances can consistently
be estimated by the nonparametric bootstrap otherwise (cf. section 2.2.2). Statisti-
cal hypothesis tests for the equality of all pairwise Spearman’s rho coefficients in a
multivariate random vector are developed in chapter 5. Stepanova (2003) and Quessy
(2009) investigate statistical hypothesis tests for stochastic independence based on var-
ious multivariate versions of Spearman’s rho with regard to their asymptotic relative
efficiency.

Kendall’s tau

Consider the independent and identically distributed bivariate random vectors (X1,X2)
and (Y1, Y2) with distribution function F. The population version of Kendall’s tau is
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defined as the probability of concordance minus the probability of discordance (see
Kendall (1938)):

τ = IP {(X1 − Y1) (X2 − Y2) > 0} − IP {(X1 − Y1) (X2 − Y2) < 0} . (2.41)

If F has the bivariate copula C, this is equal to

τ = 4

∫

[0,1]2
C(u, v)dC(u, v) − 1, (2.42)

see e.g. Nelsen (2006). Multivariate versions of Kendall’s tau are discussed in Nelsen
(1996, 2002), Joe (1990), and Taylor (2007). Formula (2.42) implies the following
multivariate version:

τ =
1

2d−1 − 1

{
2d

∫

[0,1]d
C(u)dC(u) − 1

}
. (2.43)

A natural nonparametric estimator of τ is given by

τ̂n =
1

2d−1 − 1

{
2d

∫

[0,1]d
Ĉn(u)dĈn(u) − 1

}

=
1

2d−1 − 1





2d

n2

n∑

j=1

n∑

k=1

d∏

i=1

1
{Ûij,n≤Ûik,n}

− 1



 ,

with empirical copula Ĉn. Nonparametric estimation and statistical inference for τ
based on the empirical copula process is the focus of an ongoing work. For further
nonparametric statistical analysis of Kendall’s tau, which is also frequently considered
in the context of tests for stochastic independence, we refer to Barbe et al. (1996),
Genest et al. (2002) and references therein.

Blomqvist’s beta

A simple measure of association which is commonly referred to as Blomqvist’s beta or
the medial correlation coefficient was suggested by Blomqvist (1950). With X1 and
X2 being two continuous random variables having medians x̃1 and x̃2, its population
version is given by

β = IP {(X1 − x̃1) (X2 − x̃2) > 0} − IP {(X1 − x̃1) (X2 − x̃2) < 0} .

It can be expressed in terms of the copula C of (X1,X2) via

β = 2IP {(X1 − x̃1) (X2 − x̃2) > 0} − 1 = 4C (1/2, 1/2) − 1

=
C (1/2, 1/2) − Π(1/2, 1/2) +C (1/2, 1/2) − Π(1/2, 1/2)

M (1/2, 1/2) − Π(1/2, 1/2) +M (1/2, 1/2) − Π(1/2, 1/2)
. (2.44)
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Various extensions of Blomqvist’s beta to the multivariate case have been considered in
Joe (1990), Nelsen (2002), Taskinen et al.(2005), Úbeda-Flores (2005), and Schmid and
Schmidt (2007c). The following multivariate version is motivated by equation (2.44):

β =
C (1/2) − Π(1/2) + C (1/2) − Π (1/2)

M (1/2) − Π(1/2) +M (1/2) − Π(1/2)

= hβ(d)
{
C (1/2) +C (1/2) − 21−d

}
, (2.45)

with hβ(d) := 2d−1/(2d−1 − 1) and 1/2 := (1/2, . . . , 1/2).

A nonparametric estimator of β is given by

β̂n = hβ(d)
{
Ĉn (1/2) + Ĉn (1/2) − 21−d

}
,

when replacing the copula and its survival function by their empirical counterparts,
see equations (2.14) and (2.23). Under the assumptions of theorems 2.2.8 and 2.2.9,
Schmid and Schmidt (2007c) show that

√
n(β̂n − β)

d−→ Z ∼ N(0, σ2), n→ ∞..

The variance σ2 is given by σ2 = hβ(d)2E[{GC(1/2) + GC(1/2)}2] with Gaussian pro-
cesses GC and GC as defined in the aforementioned theorems. Note that the asymptotic
variance can be estimated by the nonparametric bootstrap as described in section 2.2.2,
see also Schmid and Schmidt (2007c).

All multivariate measures of association discussed above satisfy properties P1-P6
as defined in the previous section. In the bivariate case, those measures represent mea-
sures of concordance according to the definition of Scarsini (1984). In contrast to the
linear correlation coefficient, they quantify the degree of monotone association between
the components of the random vector in the bivariate case. Their sample versions are
based on the ranks of the observations in accordance with the invariance with respect
to strictly increasing transformations of the margins.
Note that the asymptotic behavior of the above statistics can alternatively be derived
using U-statistics; see e.g. Joe (1990) and Stepanova (2003). For background reading
on the theory of U-statistics, consult the monograph by Lee (1990).
We refer to Schmid et al. (2010) and references therein for a more detailed overview of
properties of the above measures as well as for other types of measures of multivariate
association such as tail dependence or information-based measures. Multivariate ex-
tensions of the (copula-based) measures of association Spearman’s footrule and Gini’s
gamma are investigated in Genest et al. (2010) and Behboodian et al. (2007).
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Chapter 3

A multivariate version of
Hoeffding’s Phi-Square

A multivariate measure of association is proposed, which extends the bivariate copula-
based measure Phi-Square introduced by Hoeffding (1940). We discuss its analytical
properties and calculate its explicit value for some copulas of simple form; a simulation
procedure to approximate its value is provided otherwise. A nonparametric estimator
for multivariate Phi-Square is derived and its asymptotic behavior is established based
on the weak convergence of the empirical copula process both in the case of indepen-
dent observations and dependent observations from strictly stationary strong mixing
sequences. The asymptotic variance of the estimator can be estimated by means of
nonparametric bootstrap methods. For illustration, the theoretical results are applied to
financial asset return data.

3.1 Preliminaries

Hoeffding (1940) suggests the following measure Φ2 to quantify the degree of association
between the components of a bivariate random vector X = (X1,X2) with copula C :

Φ2 =90

∫

[0,1]2
{C(u1, u2) − Π (u1, u2)}2 du1du2, (3.1)

with Π being the independence copula. This measure solely depends on the copula
C of the random vector. It is also referred to as ’dependence index’ since it attains
its lower bound if the random variables X1 and X2 are stochastically independent and
its upper bound in the case of perfect (positive and negative) dependence, i.e., if there
exists a strictly monotone functional relationship between X1 and X2 (cf. section 2.3.2).

In this chapter, we suggest a multivariate version of bivariate Hoeffding’s Phi-
Square as given in (3.1); cf. Gaißer et al. (2010). Like in the bivariate case, this
multivariate version is based on a L2-type distance between the graphs of the copula C
of a d-dimensional random vector X = (X1, . . . ,Xd) and the independence copula Π .
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Multivariate Hoeffding’s Phi-Square offers a set of properties which are advantageous
for many applications. For example, it is zero if and only if the components of X
are stochastically independent. This leads to the construction of statistical tests for
multivariate stochastic independence based on Hoeffding’s Phi-Square (cf. Genest et
al. (2007)). It attains its maximal value in the case of comonotonicity, i.e., when the
copula equals the upper Fréchet-Hoeffding bound M. The concept of comonotonicity
is of interest, e.g., in actuarial science or finance (see Dhaene et al. (2002a, 2002b)).

A nonparametric estimator Φ̂2
n of multivariate Hoeffding’s Phi-Square can be ob-

tained based on the empirical copula. The calculation of the estimator is of low compu-
tational complexity, even for large dimension d. Its asymptotic behavior can be derived
from the weak convergence of the empirical copula process (theorem 2.2.8). In par-
ticular if C 6= Π , asymptotic normality of

√
n(Φ̂2

n − Φ2) can be established using the
functional delta-method (theorem 2.2.7). When C = Π , the asymptotic distribution
of

√
nΦ̂2

n is degenerate. In this case, it can be shown that nΦ̂2
n has a non-degenerate

limiting distribution. Since it is well-known that financial return series exhibit serial
dependencies, we generalize our approach to the case of dependent observations from
strictly stationary strong mixing sequences using the weak convergence properties of
the empirical copula process in this setting; see theorem 2.2.12. For such (time-) de-
pendent observations, the application of the ordinary nonparametric bootstrap is no
longer appropriate to estimate the unknown asymptotic variance of multivariate Ho-
effding’s Phi-Square as discussed in section 2.2.2. Therefore, we show that the block
bootstrap, which was introduced by Künsch (1989) to account for temporal dependence
between the observations, can be used instead. This result is deduced from the asymp-
totic behavior of bootstrapped empirical processes of strictly stationary strong mixing
sequences; see Radulović (2002) for an overview. In particular, it enables the construc-
tion of (asymptotic) confidence intervals or of simple hypothesis tests for multivariate
Hoeffding’s Phi-Square.

3.2 Multivariate Hoeffding’s Phi-Square

Let X be a d-dimension random vector with distribution function F, continuous uni-
variate marginal distribution functions Fi, i = 1, . . . , d, and copula C. Motivated by
(3.1), we define a multivariate version of Φ2 by

Φ2 := Φ2(C) = h(d)

∫

[0,1]d
{C(u) − Π (u)}2 du, (3.2)

with normalization factor

h(d) =

[∫

[0,1]d
{M(u) − Π (u)}2 du

]−1

, (3.3)

whose explicit form is calculated later in this section. For dimension d = 2, it fol-
lows that h(d) = 90 and Φ2 reduces to bivariate Hoeffding’s Phi-Square as introduced
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in (3.1). In particular, Φ2 represents a Hadamard-differentiable map on the subset of
l∞([0, 1]d) for which the integral on the right-hand side of equation (3.2) is well-defined.
This relationship is used in section 3.3 where the statistical properties of Φ2 are derived
using the functional delta-method (see proof of theorem 3.3.1). If C is the copula of
the random vector X, we also refer to Φ2 as Φ2

X.
The measure Φ2 is one example for a multivariate measure of association which satisfy
the properties P1, P2′, P3, P4′, P6, and P7 introduced in section 2.3.2. In particu-
lar, it measures association between the components of X via the squared L2-distance
between the copula and the independence copula and, thus, only takes non-negative
values. Some of the aforementioned properties of Φ2 are discussed in more detail next.

Stochastic independence: The measure Φ2 fulfills the important property P4′ :

Φ2 = 0 if and only if C = Π ,

i.e., a measure’s value of 0 implies stochastic independence between the components
of the random vector X in contrast to, e.g., multivariate measures of concordance; cf.
section 2.3.2.

Normalization: In order to motivate the choice of h(d) as normalization factor in
equation (3.2), we calculate the value of the defining integral for the lower and upper
Fréchet-Hoeffding bounds, respectively. For C = M, we have

h(d)−1 =

∫

[0,1]d
{M(u) − Π (u)}2 du =

2

(d+ 1)(d+ 2)
− 1

2d

d!
d∏

i=0

(
i+

1

2

) +

(
1

3

)d

,

(3.4)

and for C = W, we obtain

g(d)−1 =

∫

[0,1]d
{W (u) − Π (u)}2 du =

2

(d+ 2)!
− 2

d∑

i=0

(
d

i

)
(−1)i

1

(d+ 1 + i)!
+

(
1

3

)d

.

(3.5)

The calculations are outlined in section 3.5.1. Both expressions converge to zero as
dimension d tends to infinity. In particular, for d ≥ 3,

h(d)−1 − g(d)−1 =
2

(d+ 1)(d + 2)
− 1

2d

d!
d∏

i=0

(
i+

1

2

) − 2

(d+ 2)!

+2

d∑

i=0

(
d

i

)
(−1)i

1

(d+ 1 + i)!

=
2d! + 2

(d+ 2)!
− 1

2d

d!
d∏

i=0

(
i+

1

2

) + 2

d∑

i=2

(
d

i

)
(−1)i

1

(d+ 1 + i)!
(3.6)
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≥ 2d! + 2

(d+ 2)!
− 1

2d

d!
d∏

i=0

(
i+

1

2

) , (3.7)

since the last term in equation (3.6) is non-negative for all d ≥ 3. Likewise, it can be
shown by induction that the expression in equation (3.7) is non-negative in this case.
Since h(2)−1 = g(2)−1, we thus obtain that

h(d)−1 ≥ g(d)−1 for all d ≥ 2,

such that the range of Φ2 as defined in (3.2) is restricted to the interval [0, 1]. That is,

0 ≤ Φ2 ≤ 1 for all d ≥ 2,

and property P2′ is fulfilled.

Comonotonicity: Further, property P7 is satisfied, i.e.,

Φ2 = 1 ⇐⇒ C = M for d ≥ 3, and Φ2 = 1 ⇐⇒ C = M or C = W for d = 2,

since g(2) = h(2) = 90.

Remark. In view of property P7, bivariate Hoeffding’s Phi-Square represents a
measure for strictly monotone functional dependence (cf. section 3.1). In consequence,
the measure’s value of one also implies that the random variables X1 and X2 are
completely dependent, i.e., that there exists a one-to-one function ψ (which is not nec-
essarily monotone) such that IP(X2 = ψ(X1)) = 1 (cf. Hoeffding (1942) and Lancaster
(1963)). However, the converse does not hold. That is, the value of bivariate Ho-
effding’s Phi-Square can be made arbitrarily small for completely dependent random
variables. For example, two random variables X1 and X2 are completely dependent if
their copula is a shuffle of M. According to Nelsen (2006), theorem 3.2.2, however, we
find shuffles of M which (uniformly) approximate the independence copula arbitrarily
closely (see also Mikusinski (1992)).

Continuity: If {Cm}m∈N is a sequence of copulas such that Cm(u) → C(u) for all
u ∈ [0, 1]d and some copula C, then Φ2(Cm) → Φ2(C) as a direct consequence of the
dominated convergence theorem; cf. property P6.

Invariance with respect to permutations: For every permutation π of the
components of X we have Φ2

X = Φ2
π(X) according to Fubini’s theorem; cf. property P3.

As mentioned in section 2.3.2, further properties of a measure of multivariate asso-
ciation may be of interest:

Monotonicity: For copulas C1 and C2 with Π (u) ≤ C1(u) ≤ C2(u) ≤ M(u)
for all u ∈ [0, 1]d, we have Φ2(C1) ≤ Φ2(C2). For copulas C3 and C4 such that
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W (u) ≤ C3(u) ≤ C4(u) ≤ Π (u) for all u ∈ [0, 1]d, it follows that Φ2(C3) ≥ Φ2(C4).
This property has also been investigated by Yanagimoto (1970) in the bivariate case.

Behavior with respect to strictly monotone transformations: The behavior
of Φ2 with respect to strictly monotone transformations of one or several components
of X is given in the next proposition.

Proposition 3.2.1 Let X be a d-dimensional random vector with distribution function
F, continuous univariate marginal distribution functions F1, . . . , Fd, and copula C.

(i) For dimension d ≥ 2, Φ2
X is invariant with regard to strictly increasing transfor-

mations of one or several components of X.

(ii) For dimension d = 2, Φ2
X is invariant under strictly decreasing transformations

of one or both components of X.
For d ≥ 3, let βk be a strictly decreasing transformation of the kth component
Xk of X, k ∈ {1, . . . , d}, and let βk(X) = (X1, . . . ,Xk−1, βk(Xk),Xk+1, . . . ,Xd)
denote the transformed random vector. Then, Φ2

X = Φ2
βk(X) if one of the following

two conditions holds:

• (X1, . . . ,Xk−1,Xk+1, . . . ,Xd) is stochastically independent of Xk, or

• X1, . . . ,Xk−1,Xk+1, . . . ,Xd are mutually stochastically independent.

The proof is outlined in section 3.5.3. Note that if part (ii) of the above proposition is
not satisfied, equality of Φ2

X and Φ2
αk(X) does not hold in general for d ≥ 3.

Irreducibility: Let C be the set of all |I|-dimensional marginal copulas CI of C
where I ⊂ {1, . . . , d} with cardinality 2 ≤ |I| ≤ d−1. For every dimension d and copula
C, Φ2(C) cannot be expressed as a function of the lower-dimensional Hoeffdings’ Phi-
Squares {Φ2(CI)}CI∈C . A simple example is given by the Farlie-Gumbel-Morgenstern
copula, which is defined as

C(u1, ..., ud) =

d∏

i=1

ui + θ

{
d∏

i=1

ui(1 − ui)

}
, |θ| ≤ 1. (3.8)

Here, every marginal copulaCI of C equals the independence copula for which Φ2(CI) =
0 for all CI ∈ C and for all |θ| ≤ 1. However, Φ2(C) 6= 0 for θ 6= 0.

Adding an independent components: The behavior of Hoeffding’s Phi-Square
in the case that an independent component is added to the d-dimensional random vector
X is investigated next. This may be of interest in portfolio theory when an additional
asset is included in the portfolio. Let Xd+1 be a random variable which is independent
of X. Multivariate Hoeffding’s Phi-Square of the (d + 1)-dimensional random vector
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(X,Xd+1) with copula C̃(u1, . . . , ud+1) = C(u1, . . . , ud)ud+1 has then the form:

Φ2
(X,Xd+1)

= h(d+ 1)

∫ 1

0

∫

[0,1]d

{
C(u)ud+1 −

d∏

i=1

uiud+1

}2

dudud+1

=
1

3

h(d+ 1)

h(d)


h(d)

∫

[0,1]d

{
C(u) −

d∏

i=1

ui

}2

du




=
1

3

h(d+ 1)

h(d)
Φ2

X.

Hence, Hoeffding’s Phi-Square changes by a multiplicative factor only which solely
depends on the dimension d of X and which can be determined explicitly (cf. equation
(3.4)). Direct calculations further yield that

∣∣∣∣
h(d+ 1)

h(d)

∣∣∣∣ < 3 for all d ≥ 2 and lim
d→∞

{
1

3

h(d+ 1)

h(d)

}
=

1

3
,

implying that Φ2
(X,Xd+1) < Φ2

X for all d ≥ 2 and that Φ2
(X,Xd+1)

approximates Φ2
X/3 for

large dimension d.

Examples: (i) For the d-dimensional Farlie-Gumbel-Morgenstern copula (equation
(3.8)), we have

Φ2 = h(d)θ2

(
1

30

)d

, d ≥ 2.

In particular, Φ2 ≤ 1/10 for d ≥ 2.
(ii) Let C(u) = θM(u) + (1 − θ)Π (u) with 0 6 θ 6 1 for all u ∈ [0, 1]d. Then

Φ2 = θ2, d ≥ 2.

Hence, the value of Φ2 does not depend on the dimension d for this family of copulas.

Remark. The approach of Hoeffding (1940) to define bivariate measures of associa-
tion based on an adequate notion of distance between the copula and the independence
copula has been enhanced by Schweizer and Wolff (1981). In particular, they consider
bivariate measures of association based on the Lp-distance for p = 1 and p = ∞. For
the related multivariate case, we refer to Wolff (1980) and Fernández-Fernández and
González-Barrios (2004). Based on multivariate Hoeffding’s Phi-Square as defined in
(3.2), the following multivariate version for p = 2 can be defined:

Φ := Φ(C) = +
√

Φ2(C).

This measure can be interpreted as the normalized average distance between the cop-
ula C and the independence copula Π with respect to the L2-norm. Note that the
properties discussed above for Φ2 can similarly be established for Φ.



3.3 Statistical inference for multivariate Hoeffding’s Phi-Square 53

If the copula C is of a more complicated structure than in examples (i) and (ii),
the value of Φ2 needs to be determined by simulation. The following equivalent repre-
sentation of Φ2 is useful for this purpose:

Φ2 = h(d)

∫

[0,1]d
{C(u) − Π (u)}2 du = h(d)EΠ

[
{C(U) −Π (U)}2

]
, (3.9)

where the random vector U = (U1, . . . , Ud) is uniformly distributed on [0, 1]d with
stochastically independent components Ui, i = 1, . . . , d (which is indicated by the sub-
script Π ). Thus, an approximation of Φ2 is obtained by estimating the expectation on
the right-hand side of equation (3.9) consistently as follows:

ÊΠ

[
{C(U) − Π (U)}2

]
=

1

n

n∑

i=1

{C(Ui) − Π (Ui)}2 , (3.10)

with U1, . . . ,Un being independent and identically distributed Monte Carlo replica-
tions from U. For illustration we compute the approximated values of Φ2 and Φ for the
equi-correlated Gaussian copula with correlation matrix K = K(ρ) = ρ1d1

′
d +(1−ρ)Id

as defined in equation (2.9) for different choices of the parameter ρ and for dimensions
d = 2, d = 5, and d = 10; see figure 3.1.
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Figure 3.1: Approximated values of Φ2 (left panel) and Φ (right panel) in the case of a
d-dimensional equi-correlated Gaussian copula with parameter ρ for dimension d = 2
(solid line), d = 5 (dashed line), and d = 10 (dotted line); calculations are based on
n = 100, 000 Monte Carlo replications.

3.3 Statistical inference for multivariate Hoeffding’s Phi-

Square

Statistical inference for multivariate Hoeffding’s Phi-Square as introduced in formula
(3.2) is based on the empirical copula; see definition 2.2.5. We derive a nonparametric
estimator for multivariate Hoeffding’s Phi-Square and establish its asymptotic behavior
based on the weak convergence of the empirical copula process. After illustrating our
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approach on the basis of independent observations, we generalize it to the case of
dependent observations from strictly stationary strong mixing sequences.

3.3.1 Nonparametric estimation

Consider an (i.i.d.) random sample X1, . . . ,Xn from the d-dimensional random vector
X with distribution function F and copula C. We assume that both F and C as
well as the (continuous) univariate marginal distribution functions Fi, i = 1, . . . , d, are
completely unknown. A nonparametric estimator for Φ2 is then obtained by replacing
the copula C in formula (3.2) by the empirical copula Ĉn (see (2.14)) i.e.,

Φ̂2
n := Φ2(Ĉn) = h(d)

∫

[0,1]d

{
Ĉn(u) − Π (u)

}2
du. (3.11)

The estimator is based on a Cramér-von Mises statistic and can explicitly be determined
by

Φ̂2
n = h(d)

{( 1

n

)2
n∑

j=1

n∑

k=1

d∏

i=1

(1 − max{Ûij , Ûik}) −
2

n

(1

2

)d
n∑

j=1

d∏

i=1

(1 − Û2
ij) +

(1

3

)d}
.

(3.12)

The derivation is outlined in section 3.5.2. Obviously, an estimator for the alternative

measure Φ is given by Φ̂n = +

√
Φ̂2

n. Asymptotic normality of Φ̂2
n and Φ̂n can be

deduced from the asymptotic behavior of the empirical copula process (see theorem
2.2.8).

Theorem 3.3.1 Under the assumptions of theorem 2.2.8 and if C 6= Π , it follows that

√
n(Φ̂2

n − Φ2)
d−→ ZΦ2 (3.13)

where ZΦ2 ∼ N(0, σ2
Φ2) with

σ2
Φ2 = {2h(d)}2

∫

[0,1]d

∫

[0,1]d
{C(u) − Π (u)}E{GC(u)GC(v)}{C(v) − Π (v)}dudv,

(3.14)
and Gaussian process GC as defined in theorem 2.2.8, equation (2.17). Regarding the
alternative measure Φ, we have

√
n(Φ̂n − Φ)

d−→ ZΦ

with ZΦ ∼ N(0, σ2
Φ) and

σ2
Φ =

σ2
Φ2

4Φ2
= h(d)

∫
[0,1]d

∫
[0,1]d{C(u) − Π (u)}E{GC (u)GC(v)}{C(v) − Π (v)}dudv

∫
[0,1]d{C(u) − Π (u)}2du

.
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The proof is given in section 3.5.3. Note that the assumption C 6= Π guarantees
that the limiting random variable is non-degenerated as implied by the form of the
variance σ2

Φ2 . However, if C = Π , theorem 2.2.8 and an application of the continuous
mapping theorem yield

nΦ̂2
n

d−→ h(d)

∫

[0,1]d
{GΠ (u)}2du, as n→ ∞, (3.15)

with

E
[
h(d)

∫

[0,1]d
{GΠ (u)}2du

]
= h(d)

{(1

2

)d
−
(1

3

)d
− d

6

(1

3

)d−1}
.

The asymptotic distribution of Φ̂2
n when C = Π is important for the construction of

tests based on Hoeffding’s Phi-Square for stochastic independence between the compo-
nents of a multivariate random vector. In the bivariate setting, such tests have been
studied by Hoeffding (1948) and Blum et al. (1961). Regarding the multivariate case,
we mention Genest and Rémillard (2004) and Genest et al. (2007) who consider various
combinations of Cramér-von Mises statistics with special regard to their asymptotic
local efficiency. In our setting, a hypothesis test for H0 : C = Π against H1 : C 6= Π
is performed by rejecting H0 if the value of nΦ̂2

n exceeds the (1 − α)-quantile of the
limiting distribution in equation (3.15). The latter can be determined by simulation;
approximate critical values for the test statistic {h(d)}−1nΦ̂2

n are also provided in Gen-
est et al. (2007).

Remark. If the univariate marginal distribution functions Fi are known, Hoeffd-
ing’s Phi-Square can also be estimated using the theory of U-statistics (cf. the discus-
sions at the end of section 2.3.3). Consider the random variables Uij = Fi(Xij), i =
1, . . . , d, j = 1, . . . , n with Uj = (U1j , . . . , Udj) having distribution function C. Since

Φ2 = h(d)

∫

[0,1]d
{C(u) − Π (u)}2 du

=

∫

[0,1]d

∫

[0,1]d

∫

[0,1]d
h(d)

( d∏

i=1

1{xi≤ui} −
d∏

i=1

ui

)( d∏

i=1

1{yi≤ui} −
d∏

i=1

ui

)
dudC(x)dC(y),

an unbiased estimator of the latter based on the random sample U1, . . . ,Un is given
by the U-statistic

Un(ψ) =

(
n

2

)−1 ∑

1≤j<k≤n

ψ(Uj,Uk)

with kernel ψ of degree 2, defined by

ψ(x,y) = h(d)

∫

[0,1,]d

( d∏

i=1

1{xi≤ui} −
d∏

i=1

ui

)( d∏

i=1

1{yi≤ui} −
d∏

i=1

ui

)
du, x,y ∈ [0, 1]d.

Results from the theory of U-statistics (see, e.g., Chapter 3 in Lee (1990)) and standard
calculations yield that

√
n{Un(ψ) − Φ2} is asymptotically normally distributed with
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mean zero and variance

σ2
U =V ar{ψ1(X)}

=4{h(d)}2

∫

[0,1]d

∫

[0,1]d
{C(u) − Π (u)}{C(u ∧ v) − C(u)C(v)}{C(v) −Π (v)}dudv,

where ψ1(x) = E{ψ(X,Y)|X = x} with independent random vectors X,Y having
distribution function C. The asymptotic variance coincides with the asymptotic vari-
ance of

√
n(Φ̂2

n − Φ2) for known marginal distribution functions (cf. equation (3.14)).
In particular, Un(ψ) is degenerate when C = Π . The fact that both estimators have
the same asymptotic distribution in the case of known margins follows also from the
relationship

√
n(Φ̂2

n − Φ2) =
1

n3/2

n∑

j=1

ψ(Uj,Uj) +
√
n

{
n− 1

n
· Un(ψ) − Φ2

}

where the first term in the right equation converges to zero in probability for n → ∞.
In the case of unknown marginal distribution functions, the estimation of Φ2 by means
of U-statistics is more involved in comparison to the above approach based on the em-
pirical copula.

Now let us generalize the previous results to the case of a strong-mixing type of
temporal dependence between the observations; cf. section 2.2.2. Assume that {Xj =
(X1j , . . . ,Xdj)}j∈Z is a strictly stationary sequence of d-dimensional random vectors,
being defined on a probability space (Ω,F , IP), with distribution function F, continuous
univariate marginal distribution functions Fi, i = 1, . . . , d, and copula C. Let αX denote
the mixing coefficient of {Xj}j∈Z, which is given by (2.27). In particular, {Xj}j∈Z is
strong mixing if αX(r) → 0 for r → ∞ according to definition 2.2.11. We further
assume that our observations are realizations of the sample X1, . . . ,Xn and, as before,
we denote by Φ̂2

n the corresponding estimator for Hoeffding’s Phi-Square calculated
according to (3.12). Then, asymptotic normality of Φ̂2

n under additional assumptions
on the strong mixing coefficient can be obtained.

Theorem 3.3.2 Let X1, . . . ,Xn be observations from the strictly stationary strong
mixing sequence {Xj}j∈Z with mixing coefficient αX satisfying αX(r) = O(r−a) for
some a > 1. If the i-th partial derivatives DiC(u) of C exist and are continuous for
i = 1, . . . , d, and C 6= Π , we have

√
n(Φ̂2

n − Φ2)
d−→ ZΦ2 ∼ N(0, σ2

Φ2).

The variance is given by

σ2
Φ2 = {2h(d)}2

∫

[0,1]d

∫

[0,1]d
E
[
{C(u)−Π (u)}G⋆(u)G⋆(v){C(v)−Π (v)}

]
dudv (3.16)

with process G
⋆ as defined in theorem 2.2.12, equation (2.28).
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The result follows from the weak convergence of the empirical copula process for strictly
stationary strong mixing sequences to the tight Gaussian process G

⋆, as given in theo-
rem 2.2.12, by mimicking the proof of theorem 3.3.1. Note that, in contrast to the case
of independent observations (cf. equation (3.14)), the asymptotic variance of multivari-
ate Hoeffding’s Phi-Square in equation (3.16) depends also on the joint distribution
of U0 and Uj , j ∈ Z. Theorem 3.3.2 can be translated to sequences with temporal
dependence structures other than strong mixing using related results on the weak con-
vergence of empirical (copula) processes, see e.g. Arcones and Yu (1994), Dedecker et
al. (2007), and Doukhan et al. (2009).

As mentioned in section 2.2.2, the ordinary bootstrap, which draws with replace-
ment n single observations from the sample X1, . . . ,Xn, may be inappropriate to ap-
proximate the asymptotic variance of

√
n(Φ̂2

n − Φ2) in the case of dependent obser-
vations. Therefore, a modified bootstrap method, the (moving) block bootstrap, has
been proposed by Künsch (1989), which is briefly described in the following. Given the
sample X1, . . . ,Xn, we define blocks of size l, l < n, of consecutive observations by

Bs,l = {Xs+1, . . . ,Xs+l}, s = 0, . . . , n− l.

The block bootstrap draws with replacement k blocks from the blocksBs,l, s = 0, . . . , n−
l where we assume that n = kl (otherwise the last block is shortened). With S1, . . . , Sk

being independent and uniformly distributed random variables on {0, . . . , n − l}, the
bootstrap sample thus comprises those observations from X1, . . . ,Xn which are among
the k blocks BS1,l, . . . , BSk,l, i.e.,

XB
1 = XS1+1, . . . ,X

B
l = XS1+l,X

B
l+1 = XS2+1, . . . ,X

B
n = XSk+l.

The block length l is a function of n, i.e., l = l(n) with l(n) = o(n) and l(n) → ∞ as
n→ ∞. For a discussion regarding the choice of l(n), see Künsch (1989) and Bühlmann
and Künsch (1999). Denote by ĈB

n and F̂B
n the empirical copula and the empirical

distribution function of the block bootstrap sample XB
1 , . . . ,X

B
n , respectively, and let

Φ̂2,B
n be the corresponding estimator for Hoeffding’s Phi-Square. It follows that the

block bootstrap can be applied to estimate the asymptotic variance of
√
n(Φ̂2 − Φ2).

Proposition 3.3.3 Let (XB
j )j=1,...,n be the block bootstrap sample from (Xj)j=1,...,n,

which are observations of a strictly stationary, strong mixing sequence {Xj}j∈Z of d-
dimensional random vectors with distribution function F and copula C whose partial
derivatives exist and are continuous. Suppose further that, in probability,

√
n(ĈB

n −Ĉn)
converges weakly in ℓ∞([0, 1]d) to the same Gaussian limit as

√
n(Ĉn−C). If C 6= Π , the

sequences
√
n(Φ̂2

n−Φ2) and
√
n(Φ̂2,B

n − Φ̂2
n) then converge weakly to the same Gaussian

limit in probability.

The sequence
√
n(ĈB

n − Ĉn) converges weakly in probability to the same Gaussian
limit as

√
n(Ĉn − C) if the uniform empirical process

√
n(F̂B

n − F̂n) converges weakly
in probability to the same Gaussian limit as

√
n(F̂n − F ), provided that all partial

derivatives of the copula exist and are continuous. This can be seen as follows: Given
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the map φ as defined in (2.19) and due to equation (2.29), it is sufficient to show
that

√
n{φ(F̂B

n ) − φ(F̂n)} converges weakly in probability in ℓ∞([0, 1]d) to the process
φ′F (B⋆) with process B

⋆ as defined in theorem 2.2.12. An equivalent characterization
of this weak convergence property (cf. van der Vaart and Wellner (1996), section 3.6,
and Giné and Zinn (1990)) is that

sup
h∈BL1

∣∣∣E
(
h[
√
n{φ(F̂B

n ) − φ(F̂n)}]|X1, . . . ,Xn

)
− E[h{φ′F (B⋆)}]

∣∣∣ IP−→ 0, n→ ∞.

(3.17)
Here, BL1 is the set of all functions h : ℓ∞([0, 1]d) → [0, 1] such that |h(z1) −
h(z2)| ≤ m(z1, z2) for every z1, z2 ∈ ℓ∞([0, 1]d) with uniform metric m(f1, f2) =
supt∈[0,1]d |f1(t) − f2(t)| as given in (2.15). That formula (3.17) holds can be shown
similarly as in the proof of theorem 3.9.11 in van der Vaart and Wellner (1996) using
the Hadamard differentiability of the map φ at F.
The block bootstrap for empirical processes has been discussed in various settings and
for different dependence structures; for an overview see Radulović (2002) and references
therein. The following sufficient conditions for

√
n(F̂B

n − F̂n) to converge weakly (in the
space D([0, 1]d)) in probability to the appropriate Gaussian process for strong mixing
sequences are derived in Bühlmann (1993):

∞∑

r=0

(r + 1)16(d+1)α
1/2
X (r) <∞ and block length l(n) = O(n1/2−ε), ε > 0.

The results of a simulation study, which assesses the performance of the bootstrap
variance estimator, are presented in section 3.3.2.

Theorem 3.3.2 together with proposition 3.3.3 enables the calculation of an asymp-
totic (1 − α)-confidence interval for Hoeffding’s Phi-Square Φ2 ∈ (0, 1), given by

Φ̂2
n ± Φ−1

(
1 − α

2

)
σ̂B

Φ2
n
/
√
n.

Here, (σ̂B
Φ2

n
)2 denotes the consistent bootstrap variance estimator for σ2

Φ2 in (3.16),
obtained by the block bootstrap. Further, an asymptotic hypothesis test for

H0 : Φ2 = Φ2
0 against H1 : Φ2 6= Φ2

0, Φ2
0 ∈ (0, 1),

can be constructed by rejecting the null hypothesis at the confidence level α if

∣∣∣
√
n

(Φ̂2
n − Φ2

0)

σ̂B
Φ2

n

∣∣∣ > Φ−1
(
1 − α

2

)
.

Note that in the case Φ2
0 = 1, the copula corresponds to the upper Fréchet-Hoeffding

bound M which does not possess continuous first partial derivatives.

The above results can be extended to statistically analyze the difference of two
Hoeffding’s Phi-Squares. In a financial context, this may be of interest for assessing
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whether Hoeffding’s Phi-Square of one portfolio of financial assets significantly differs
from that of another portfolio (cf. section 3.4). Suppose Φ2

X and Φ2
Y are multivariate

Hoeffding’s Phi-Squares associated with the strictly stationary sequences {Xj}j∈Z and
{Yj}j∈Z of d-dimensional random vectors with distribution functions FX and FY, con-
tinuous marginal distribution functions, and copulas CX and CY, respectively. Since
the two sequences do not have to be necessarily independent, consider the sequence
{Zj = (Xj ,Yj)}j∈Z of 2d-dimensional random vectors with joint distribution function
FZ, continuous marginal distribution functions FZ,i, i = 1, . . . , 2d, and copula CZ such
that CZ(u, 1 . . . , 1) = CX(u) and CZ(1, . . . , 1,v) = CY(v) for all u,v ∈ [0, 1]d.

Theorem 3.3.4 Let Z1 = (X1,Y1), . . . ,Zn = (Xn,Yn) be observations of the strictly
stationary, strong mixing sequence {Zj = (Xj ,Yj)}j∈Z with strong mixing coefficient
αZ satisfying αZ(r) = O(r−a) for some a > 1. If the i-th partial derivatives of CZ exist
and are continuous for i = 1, . . . , 2d, and CX, CY 6= Π , we have

√
n
{

Φ̂2
X − Φ2

X − (Φ̂2
Y − Φ2

Y)
}

d−→W ∼ N(0, σ2) as n→ ∞, (3.18)

where σ2 = σ2
Φ2

X

+ σ2
Φ2

Y

− 2σΦ2
X

,Φ2
Y

with

σΦ2
X

,Φ2
Y

= {2h(d)}2

∫

[0,1]d

∫

[0,1]d
E
[
{CX(u)−Π (u)}G∗

X(u)G∗
Y(v){CY(v)−Π (v)}

]
dudv,

and σ2
Φ2

X

= σΦ2
X

,Φ2
X

and σ2
Φ2

Y

= σΦ2
Y

,Φ2
Y

(cf. equation (3.16)). The processes G
∗
X and

G
∗
Y are Gaussian processes on [0, 1]d as defined in theorem 2.2.12, equation (2.28).

The proof is outlined in section 3.5.3. Analogously to the discussion prior to theorem
3.3.4, an asymptotic confidence interval or a statistical hypothesis test for the difference
of two Hoeffding’s Phi-Squares can be formulated (cf. section 3.4). For example, under
the assumptions of theorem 3.3.4, an (asymptotic) hypothesis test for

H0 : Φ2
X = Φ2

Y against H1 : Φ2
X 6= Φ2

Y (3.19)

is constructed by rejecting H0 at level α if

∣∣∣
√
n

(Φ̂2
X − Φ̂2

Y)

σ̂B

∣∣∣ > Φ−1
(
1 − α

2

)
, (3.20)

with (σ̂B)2 being the consistent block bootstrap estimator of the variance σ2 of the lim-
iting variable W in equation (3.18), obtained by sampling from the sample Z1, . . . ,Zn.
In the special case where the sequences {Xj}j∈Z and {Yj}j∈Z are stochastically inde-
pendent, we have

√
n
{

Φ̂2
X − Φ2

X − (Φ̂2
Y − Φ2

Y)
}

d−→W ∼ N(0, σ2
Φ2

X

+ σ2
Φ2

Y

) as n→ ∞,

with σ2
Φ2

X

and σ2
Φ2

Y

as defined in theorem 3.3.4. An hypothesis test for the hypothesis

in (3.19) can be performed analogously.

Remark. The asymptotic distribution of Φ̂n in the case of a strong-mixing type of
temporal dependence can be established analogously to the proof of theorem 3.3.1.
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3.3.2 Small sample adjustments

The independence copula Π in the definition of h(d)−1Φ̂2
n in equation (3.11) can be

replaced by its discrete counterpart
∏d

i=1 Un(ui) in order to reduce the bias in finite
samples, where Un denotes the (univariate) distribution function of a random variable
uniformly distributed on the set { 1

n , . . . ,
n
n}. This has also been proposed by Genest

et al. (2007) in the context of tests for stochastic independence (cf. section 3.3.1). For
small samples, we additionally suggest to adjust the normalization factor h(d) in (3.11)
to ensure the normalization property of the estimator. In particular, we substitute h(d)
by the factor h(d, n), which is obtained by replacing in equation (3.3) the independence
copula with

∏d
i=1 Un(ui) and the upper Fréchet-Hoeffding bound M with its discrete

counterpart Mn(u) := min{Un(u1), . . . , Un(ud)}, the latter being an adequate upper
bound of the empirical copula for given sample size n. A small sample estimator for Φ2

is then given by

Φ̃2
n = h(d, n)

∫

[0,1]d

{
Ĉn(u) −

d∏

i=1

Un(ui)
}2
du (3.21)

with

h(d, n)−1 =

∫

[0,1]d

{
Mn(u) −

d∏

i=1

Un(ui)
}2
du.

We obtain

Φ̃2
n = h(d, n)

{( 1

n

)2
n∑

j=1

n∑

k=1

d∏

i=1

(1 − max{Ûij , Ûik})

− 2

n

(1

2

)d
n∑

j=1

d∏

i=1

{
1 − Û2

ij −
1 − Ûij

n

}
+
(1

3

)d{(n − 1)(2n − 1)

2n2

}d}
,

with

h(d, n)−1 =
( 1

n

)2
n∑

j=1

n∑

k=1

(
1 − max

{ j
n
,
k

n

})d

− 2

n

n∑

j=1

{n(n− 1) − j(j − 1)

2n2

}d
+
(1

3

)d{(n− 1)(2n − 1)

2n2

}d
.

The estimators Φ̃2
n and Φ̂2

n have the same asymptotic distribution, i.e., under the as-
sumptions of theorem 3.3.2 we have

√
n(Φ̃2

n − Φ2)
d−→ ZΦ2 ∼ N(0, σ2

Φ2).

This can be shown analogously to the proof of theorem 3.3.2 using the fact that
limn→∞

√
n{h(d, n) − h(d)} = 0. Accordingly, it follows that the bootstrap to esti-

mate the asymptotic variance of
√
n(Φ̃2

n − Φ2) works (cf. proposition 3.3.3).
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In order to investigate the finite sample performance of the block bootstrap for
estimating the asymptotic standard deviation σΦ2 of

√
n(Φ̃2

n −Φ2), a simulation study
is carried out. For comparative purposes, we additionally provide the correspond-
ing simulation results when using a nonparametric jackknife method to estimate the
unknown standard deviation; cf. section 2.2.2. For (time-) dependent observations,
Künsch (1989) introduces the delete-l jackknife which is based on systematically delet-
ing one block Bs,l of l consecutive observations each time from the original sample,

s = 0, . . . , n − l. Let Φ̃
2,(s)
n denote the estimator of Hoeffding’s Phi-Square calculated

from the original sample where we have deleted block Bs,l, s = 0, . . . , n− l, and define

Φ̃
2,(.)
n = (n− l+ 1)−1

∑n−l
s=0 Φ̃

2,(s)
n . The jackknife estimator of the standard deviation is

then given by

σ̂J =

√√√√ (n − l)2

nl(n− l + 1)

n−l∑

s=0

(
Φ̃

2,(s)
n − Φ̃

2,(.)
n

)2
.

We consider observations from an AR(1)-process with autoregressive coefficient β (cf.
table 3.2) based on the equi-correlated Gaussian copula as defined in (2.9) with cor-
relation matrix K = K(ρ) = ρ1d1

′
d + (1 − ρ)Id. To generate these observations, we

proceed as follows: Simulate n independent d-dimensional random variates Uj =
(Uj1, . . . , Ujd), j = 1, . . . , n, from the equi-correlated Gaussian copula with param-
eter ρ. Set εj = (Φ−1(Uj1), . . . ,Φ

−1(Ujd)), j = 1, . . . , n. A sample (Xj)j=1,...,n of
the AR(1)-process is then obtained by setting X1 = ε1 and completing the recursion
Xj = βXj−1+εj , j = 2, . . . , n. Additionally, we consider the case of independent obser-
vations from the equi-correlated Gaussian copula (cf. table 3.1). To ease comparison,
the block bootstrap is used in this case, too.

Tables 3.1 and 3.2 outline the simulation results for dimensions d = 2, 5, and 10,
sample sizes n = 50, 100, and 500, and different choices of the copula parameter ρ. The
calculations are based on 1, 000 Monte Carlo simulations of size n and 250 bootstrap
replications, respectively. For simplicity, we set the block length l = 5 in all simulations.
The autoregressive coefficient β of the AR(1)-process equals 0.5. The third column of
tables 3.1 and 3.2 shows an approximation to the true value of Φ2, which is calculated
from a sample of size 100, 000. Comparing the latter to m(Φ̃2

n) (column 4), we observe
a finite-sample bias which depends on the dimension d and the parameter choices,
and which decreases with increasing sample size. The standard deviation estimations
s(Φ̃2

n) and the empirical means of the block bootstrap estimations, m(σ̂B), as well as the
delete-l jackknife estimations, m(σ̂J), for the standard deviation are given in columns
5, 6, and 7. There is a good agreement between their values, especially for the sample
sizes n = 100 and n = 500, implying that the bootstrap and the jackknife procedure
to estimate the asymptotic standard deviation of

√
n(Φ̃2

n − Φ2) perform well for the
considered Gaussian copula models. Further, the standard error s of the bootstrap
standard deviation estimations is quite small (column 8) and slightly smaller than the
obtained jackknife estimates (column 9) in lower dimensions. For large sample size n,
however, the jackknife is of a higher computational complexity.
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Table 3.1: Gaussian copula (Independent observations). Simulation results for estimat-
ing the asymptotic standard deviation of

√
n(Φ̃2

n − Φ2) by means of the nonparametric block
bootstrap with block length l and the delete-l jackknife (for l = 5): The table shows the empir-
ical means m(·) and the empirical standard deviations s(·) of the respective estimates, which
are calculated based on 1, 000 Monte Carlo simulations of sample size n of a d-dimensional
equi-correlated Gaussian copula with parameter ρ and 250 bootstrap samples. The bootstrap
estimates are labeled by the superscript B, jackknife estimates by J.

ρ n Φ2 m(Φ̃2

n) s(Φ̃2

n) m(σ̂B) m(σ̂J ) s(σ̂B) s(σ̂J )

Dimension d=2
0.2 50 0.032 0.077 0.047 0.055 0.049 0.019 0.026

100 0.032 0.054 0.034 0.035 0.033 0.012 0.015
500 0.032 0.035 0.015 0.015 0.015 0.003 0.003

0.5 50 0.197 0.231 0.095 0.089 0.094 0.017 0.022
100 0.197 0.218 0.070 0.067 0.069 0.010 0.011
500 0.197 0.202 0.032 0.031 0.032 0.003 0.002

-0.1 50 0.008 0.056 0.035 0.047 0.037 0.015 0.021
100 0.008 0.032 0.021 0.026 0.022 0.010 0.012
500 0.008 0.013 0.008 0.008 0.008 0.003 0.003

Dimension d=5
0.2 50 0.028 0.044 0.023 0.026 0.022 0.010 0.010

100 0.028 0.036 0.016 0.017 0.015 0.005 0.005
500 0.028 0.030 0.007 0.007 0.007 0.001 0.001

0.5 50 0.191 0.208 0.065 0.063 0.062 0.013 0.014
100 0.191 0.202 0.048 0.045 0.046 0.007 0.008
500 0.191 0.196 0.022 0.021 0.021 0.002 0.002

-0.1 50 0.007 0.015 0.004 0.005 0.004 0.001 0.002
100 0.007 0.011 0.004 0.003 0.003 0.001 0.001
500 0.007 0.007 0.002 0.002 0.002 0.000 0.000

Dimension d=10
0.2 50 0.007 0.014 0.009 0.012 0.008 0.007 0.005

100 0.007 0.011 0.005 0.007 0.005 0.003 0.003
500 0.007 0.008 0.002 0.002 0.002 0.001 0.001

0.5 50 0.098 0.111 0.046 0.049 0.043 0.017 0.016
100 0.098 0.107 0.033 0.035 0.033 0.009 0.009
500 0.098 0.100 0.015 0.015 0.015 0.002 0.002

-0.1 50 0.001 0.001 0.000 0.000 0.000 0.000 0.000
100 0.001 0.001 0.000 0.000 0.000 0.000 0.000
500 0.001 0.001 0.000 0.000 0.000 0.000 0.000
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Table 3.2: Gaussian copula (dependent AR(1) observations). Simulation results for
estimating the asymptotic standard deviation of

√
n(Φ̃2

n − Φ2) by means of the nonparametric
block bootstrap with block length l and the delete-l jackknife (for l = 5): The table shows the
empirical means m(·) and the empirical standard deviations s(·) of the respective estimates,
which are calculated based on 1, 000 Monte Carlo simulations of sample size n of a d-dimensional
equi-correlated Gaussian copula with parameter ρ, AR(1)-processes with standard normal resid-
uals in each margin (with coefficient β = 0.5 for the first lag) and 250 bootstrap samples. The
bootstrap estimates are labeled by the superscript B, jackknife estimates by J.

ρ n Φ2 m(Φ̃2

n) s(Φ̃2

n) m(σ̂B) m(σ̂J ) s(σ̂B) s(σ̂J )

Dimension d=2
0.2 50 0.032 0.086 0.059 0.065 0.060 0.022 0.033

100 0.032 0.059 0.043 0.042 0.040 0.016 0.021
500 0.032 0.036 0.018 0.017 0.017 0.005 0.005

0.5 50 0.200 0.242 0.114 0.101 0.110 0.022 0.031
100 0.200 0.222 0.086 0.076 0.081 0.013 0.015
500 0.200 0.203 0.039 0.037 0.037 0.003 0.003

-0.1 50 0.008 0.067 0.045 0.058 0.050 0.019 0.029
100 0.008 0.037 0.025 0.032 0.028 0.012 0.016
500 0.008 0.014 0.010 0.010 0.009 0.004 0.005

Dimension d=5
0.2 50 0.028 0.047 0.031 0.030 0.026 0.014 0.016

100 0.028 0.039 0.020 0.020 0.019 0.008 0.008
500 0.028 0.031 0.009 0.008 0.008 0.002 0.002

0.5 50 0.192 0.212 0.082 0.072 0.074 0.019 0.023
100 0.192 0.205 0.057 0.053 0.054 0.010 0.011
500 0.192 0.196 0.026 0.025 0.025 0.003 0.002

-0.1 50 0.007 0.015 0.005 0.006 0.005 0.002 0.002
100 0.007 0.011 0.004 0.004 0.004 0.001 0.001
500 0.007 0.008 0.002 0.002 0.002 0.000 0.000

Dimension d=10
0.2 50 0.007 0.015 0.011 0.013 0.009 0.009 0.008

100 0.007 0.012 0.007 0.008 0.006 0.005 0.004
500 0.007 0.008 0.002 0.003 0.002 0.001 0.001

0.5 50 0.099 0.111 0.055 0.053 0.049 0.020 0.023
100 0.099 0.109 0.042 0.039 0.037 0.014 0.014
500 0.099 0.100 0.018 0.017 0.017 0.003 0.003

-0.1 50 0.001 0.001 0.000 0.000 0.000 0.000 0.000
100 0.001 0.001 0.000 0.000 0.000 0.000 0.000
500 0.001 0.001 0.000 0.000 0.000 0.000 0.000
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3.4 Empirical study

The theoretical results are applied to financial data. Specifically, we consider time
series of the four major S&P global sector indices Financials, Energy, Industrials, and
IT during the period from 1st January 2008 to 8th April 2009 with the aim to analyze
the association between their daily (log-)returns before and after the bankruptcy of
Lehman Brothers Inc.
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Figure 3.2: Evolution of the S&P global sector indices Financials, Energy, Industrials,
and IT with respect to their value on January 1, 2008 (left panel). Estimated evolution
of multivariate Hoeffding’s Phi-Square Φ̃2 of the four indices’ returns series, where the
estimation is based on a moving window approach with window size 50 (right panel).
The vertical line indicates the 15th of September 2008, the day of the bankruptcy of
Lehman Brothers Inc.

The evolution of the four indices over the considered time horizon is shown in
figure 3.2 (left panel). All series are plotted with respect to their value on January
1, 2008, to ease comparison. The vertical line indicates the 15th of September 2008,
the day of the bankruptcy of Lehman Brothers Inc. All series decrease in mid 2008
in the course of deteriorating financial markets; they decline especially sharply after
the bankruptcy of Lehman Brothers Inc. Table 3.3 reports the first four moments of
the daily returns of the four indices as well as the related results of the Jarque-Bera
(JB) test, calculated over the entire time horizon. In addition, the last two rows of
the table display the results of the Ljung-Box (LB) Q-statistics, computed from the
squared returns of the indices up to lag twenty. All return series show skewness and
excess kurtosis. The Jarque-Bera (JB) test rejects the null hypothesis of normality at
all standard levels of significance. Further, all squared returns show significant serial
correlation as indicated by the Ljung-Box (LB) test, which rejects the null hypothesis of
no serial correlation. We fit an ARMA(1,1)-t-GARCH(1,1) model to each return series
according to the methodology by Patton (2002) (see also section 4 for a more detailed
description of this approach). The model is not rejected by common goodness-of-fit
tests. The estimated parameters are consistent with the assumption of strong mixing
series (cf. Carrasco and Chen (2002)).
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Table 3.3: First four moments (in %) and results of the Jarque-Bera (JB) test, cal-
culated for the returns of the S&P indices, as well as results of the Ljung-Box (LB)
Q-statistics, calculated up to lag twenty from the squared returns.

Financials Energy Industrials IT

Mean -0.3140 -0.1732 -0.2213 -0.1637
Standard Deviation 3.1696 3.0553 2.1199 2.1037
Skewness 0.1490 -0.2462 -0.1139 0.1148
Kurtosis 5.2523 6.6540 4.8467 5.2024
JB statistics 71.1875 187.4846 47.7495 67.6229
JB p-values 0.0000 0.0000 0.0001 0.0000
LB Q-statistics 141.8456 447.6130 386.8856 266.6008
LB p-values 0.0000 0.0000 0.0000 0.0000

Figure 3.2 (right panel) shows the evolution of multivariate Hoeffding’s Phi-Square
of the indices’ returns, estimated on the basis of a moving window approach with
window size 50. Again, the vertical line indicates the day of Lehman’s bankruptcy.
We observe a sharp increase of Hoeffding’s Phi-Square after this date and, hence, an
increase of the association between the indices’ returns. In order to verify whether
this increase is statistically significant, we compare Hoeffding’s Phi-Square over two
distinct time periods before and after this date using the two-sample test discussed
after theorem 3.3.4. Note that the test by Genest and Rémillard (2004) (cf. section
3.3.1) rejects the null hypothesis of stochastic independence (i.e., C = Π ) with a p-value
of 0.0005 such that the latter test can be applied. We calculate the estimated values
(based on 250 bootstrap samples with block length l = 5) of Hoeffding’s Phi-Square
and the asymptotic variances and covariance as stated in theorem 3.3.4 for both time
periods which comprise n = 100 observations each:

Φ̃2
before = 0.1982,

Φ̃2
after = 0.7437,

(σ̃B
before)

2 = 0.1663,

(σ̃B
after)

2 = 0.2064,
σ̃B

before, after = −0.0287.

The choice of the block length l = 5 is motivated by the results of the simulation
study in section 3.3.2. The value of the test statistic in equation (3.20) is 8.3190 with
corresponding p-value 0.0000. Hence, we conclude that there has been a significant
increase in association between the returns of the four indices after the bankruptcy of
Lehman Brothers Inc.
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3.5 Calculations and proofs

3.5.1 Derivation of the functions h(d)−1 and g(d)−1

We calculate the explicit form of the functions h(d)−1 and g(d)−1, as stated in equations
(3.4) and (3.5). Regarding the function h(d)−1, we have

h(d)−1 =

∫

[0,1]d
{M(u) − Π (u)}2 du

=

∫

[0,1]d
{M(u)}2 du − 2

∫

[0,1]d
M(u)Π (u)du +

∫

[0,1]d
{Π (u)}2 du.

The first summand on the left-hand side of the above equation can be written as
∫

[0,1]d
{M(u)}2 du = E

(
[min{U1, . . . , Ud}]2

)
= E

(
X2
)

where U1, . . . , Ud are i.i.d. from U ∼ U(0, 1) and X = min{U1, ..., Ud}. Therefore,

E
(
X2
)

= d

∫ 1

0
x2(1 − x)d−1dx =

2

(d+ 1)(d + 2)
. (3.22)

For the second summand, we obtain

∫

[0,1]d
M(u)Π (u)du =

1

2d

∫

[0,1]d
min{u1, . . . , ud}

d∏

i=1

2uidu =
1

2d
E (min{V1, . . . , Vd})

=
1

2d
E(Y )

where V1, . . . , Vd are i.i.d. from V which has density fV (v) = 2v for 0 6 v 6 1 and
Y = min {V1, ..., Vd} . Thus,

1

2d
E(Y ) =

1

2d

∫ 1

0
xd(1 − x2)d−12xdx =

1

2d

∫ 1

0
(1 − x2)ddx =

1

2d

1

2

Γ(d+ 1)
√
π

Γ
(
d+ 1 + 1

2

)

=
1

2d

d!
d∏

i=0

(
i+ 1

2

) . (3.23)

Combining equations (3.22) and (3.23) and using that
∫
[0,1]d{Π (u)}2du = (1/3)d yields

the asserted form of h(d)−1.

Regarding the function g(d)−1 as defined in equation (3.5), we have

g(d)−1 =

∫

[0,1]d
{W (u) − Π (u)}2 du

=

∫

[0,1]d
{W (u)}2 du − 2

∫

[0,1]d
W (u)Π (u)du +

∫

[0,1]d
{Π (u)}2 du.
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For the first summand, it follows that

∫

[0,1]d
{W (u)}2 du =

1∫

0

. . .

1∫

d−2−
d−2∑

ui
i=1

1∫

d−1−
d−1∑

ui
i=1

(
d∑

i=1

ui − d+ 1

)2

dud . . . du2du1

=
2

(d+ 2)!
. (3.24)

Partial integration of the second term further yields

∫

[0,1]d
W (u)Π (u)du =

1∫

0

. . .

1∫

d−2−
d−2∑

ui
i=1

ud−1

1∫

d−1−
d−1∑

ui
i=1

ud

(
d∑

i=1

ui − d− 1

)
dud . . . du2du1

=

d∑

i=1

(
d

i

)
(−1)i

1

(d+ 1 + i)!
. (3.25)

Again, by combining equations (3.24) and (3.25) and using that
∫
[0,1]d{Π (u)}2du =

(1/3)d, we obtain the asserted form of g(d)−1.

3.5.2 Derivation of the estimator Φ̂2
n

We outline the derivation of the estimator Φ̂2
n as given in (3.12).

{h(d)}−1Φ̂2
n =

∫

[0,1]d

{
Ĉn(u) −

d∏

i=1

ui

}2
du

=

∫

[0,1]d

{ 1

n

n∑

j=1

( d∏

i=1

1{Ûij≤ui}
−

d∏

i=1

ui

)}2
du

=
( 1

n

)2
n∑

j=1

n∑

k=1

∫

[0,1]d

( d∏

i=1

1
{Ûij≤ui}

−
d∏

i=1

ui

)( d∏

i=1

1
{Ûik≤ui}

−
d∏

i=1

ui

)
du

=
( 1

n

)2
n∑

j=1

n∑

k=1

∫

[0,1]d

( d∏

i=1

1
{max{Ûij ,Ûik}≤ui}

+
d∏

i=1

u2
i

−
d∏

i=1

ui1{Ûij≤ui}
−

d∏

i=1

ui1{Ûik≤ui}

)
du

=
( 1

n

)2
n∑

j=1

n∑

k=1

d∏

i=1

(1 − max{Ûij , Ûik}) −
2

n

(1

2

)d
n∑

j=1

d∏

i=1

(1 − Û2
ij) +

(1

3

)d
.
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3.5.3 Proofs

Proof of Proposition 3.2.1. Let X be a d-dimensional random vector with copula C.
(i) According to theorem 2.2.4, part (i), the copula C is invariant under strictly in-
creasing transformations of one or several components of X for all d ≥ 2. As direct
functional of the copula, Φ2

X inherits this property.
(ii) Let βk be a strictly decreasing transformation of the kth component Xk of X,
k ∈ {1, . . . , d}, defined on the range of Xk. For dimension d = 2, we have

h(2)−1Φ2
(β1(X1),β2(X2)) =

∫

[0,1]2

{
C(β1(X1),β2(X2))(u1, u2) − Π (u1, u2)

}2
du1du2

=

∫

[0,1]2

{
C(X1,X2)(1, u2) − C(X1,β2(X2))(1 − u1, u2) − u1u2

}2
du1du2

=

∫

[0,1]2

{
u1 + u2 − 1 −C(X1,X2)(1 − u1, 1 − u2) − u1u2

}2
du1du2

=

∫

[0,1]2

{
1 − x+ 1 − y − 1 + C(X1,X2)(x, y) − (1 − x)(1 − y)

}2
dxdy

=

∫

[0,1]2

{
C(X1,X2)(x, y) − xy

}2
dxdy

= h(2)−1Φ2
X,

where the second equation follows from theorem 2.2.4, part (ii). For dimension d ≥ 3,
let βk(X) = (X1, . . . ,Xk−1, βk(Xk),Xk+1, . . . ,Xd) denote the random vector where the
kth component of X is transformed by the function βk. Without loss of generality set
k = 1. Consider

h(d)−1Φ2
β1(X) =

∫

[0,1]d

{
Cβ1(X)(u1, u2, . . . , ud) − Π (u1, u2, . . . , ud)

}2
du

=

∫

[0,1]d
{CX(1, u2, . . . , ud) − CX(1 − u1, u2, . . . , ud) − u1u2 · . . . · ud}2 du

=

∫

[0,1]d
[{CX(1, u2, . . . , ud) − u2 · . . . · ud}

−{CX(x, u2, . . . , ud) − xu2 · . . . · ud}]2 dxdu′ with u′ = (u2, . . . , ud)

=

∫

[0,1]d−1

{CX(1, u2, . . . , ud) − u2 · . . . · ud}2 du′

+

∫

[0,1]d
{CX(x, u2, . . . , ud) − xu2 · . . . · ud}2 dxdu′

−
∫

[0,1]d−1

[
{CX(1, u2, . . . , ud) − u2 · . . . · ud} ·

· {2
∫

[0,1]
CX(x, u2, . . . , ud)dx− u2 · . . . · ud}

]
du′. (3.26)
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According to equation (3.26), it holds that Φ2
β1(X) = Φ2

X if either

• CX(1, u2, . . . , ud) = u2 · . . . · ud, meaning that X2, . . . ,Xd are mutually stochasti-
cally independent, or

• CX(1, u2, . . . , ud) = 2
∫
[0,1]CX(x, u2, . . . , ud)dx, which is fulfilled if X1 is stochas-

tically independent of (X2, . . . ,Xd) since CX(x, u2, . . . , ud) = xCX(1, u2, . . . , ud)
in this case.

�

Proof of theorem 3.3.1. Note that Φ2 = ϕ(C) represents a Hadamard-differentiable
map ϕ on ℓ∞([0, 1]d) of the copula C. Its derivative ϕ′

C at C, a continuous linear map
on ℓ∞([0, 1]d), is given by

ϕ′
C(D) = 2h(d)

∫

[0,1]d
{C(u) − Π (u)}D(u)du,

which can be shown as follows: For all converging sequences tn → 0 and Dn → D such
that C + tnDn ∈ ℓ∞([0, 1]d) for every n, we have

ϕ(C + tnDn) − ϕ(C)

tn
=

h(d)
∫
[0,1]d{C(u) − Π (u) + tnDn(u)}2du

tn

−
h(d)

∫
[0,1]d{C(u) − Π (u)}2du

tn

=
2h(d)tn

∫
[0,1]d{C(u) −Π (u)}Dn(u)du + t2n

∫
[0,1]d D

2
n(u)du

tn

(3.27)

→ 2h(d)

∫

[0,1]d
{C(u) − Π (u)}D(u)du,

for n → ∞, since the second integral in equation (3.27) is bounded for all Dn. An
application of the functional delta-method given in theorem 2.2.7 together with theorem
2.2.8 then implies

√
n(Φ̂2 − Φ2) =

√
n{ϕ(Ĉn) − ϕ(C)} d−→ ϕ′

C(GC), (3.28)

where ϕ′
C(GC) = 2h(d)

∫
[0,1]d{C(u)−Π (u)}GC (u)du. Using the fact that GC is a tight

Gaussian process, lemma 3.9.8 in van der Vaart and Wellner (1996), p. 377, implies
that ZΦ2 = ϕ′

C(GC) is normally distributed with mean zero and variance σ2
Φ2 as stated

in the theorem. Another application of the delta-method to (3.28) yields the weak
convergence of

√
n{Φ(Ĉn) − Φ(C)} to the random variable ZΦ ∼ N(0, σ2

Φ).
�

Proof of theorem 3.3.4. Let ĈZ,n denote the empirical copula based on the sample
Z1, . . . ,Zn. Under the assumption of the theorem, weak convergence of the empirical
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copula process
√
n{ĈZ,n −CZ} to the tight Gaussian process G

⋆
Z in ℓ∞([0, 1]2d) follows

according to theorem 2.2.12. Since

(
Φ2

X

Φ2
Y

)
=

(
Φ2{CZ(u, 1 . . . , 1)}
Φ2{CZ(1, . . . , 1,v)}

)
= g(CZ),

the asymptotic behavior of (Φ̂2
X, Φ̂

2
Y)′ can be established analogously as in the proof of

theorem 3.3.1 using the Hadamard differentiability of the map g at CZ whose derivative
is denoted by g′CZ

. Hence,
√
n{(Φ̂2

X, Φ̂
2
Y)′− (Φ2

X,Φ
2
Y)′} converges in distribution to the

multivariate normally distributed random vector g′CZ
(G⋆

Z) given by

g′CZ
(G⋆

Z) =

( ∫
[0,1]d{CX(u) −Π (u)}G⋆

Z(u, 1 . . . , 1)du∫
[0,1]d{CY(v) − Π (v)}G⋆

Z(1, . . . , 1,v)dv

)
.

With G
⋆
X(u) = G

⋆
Z(u, 1 . . . , 1) and G

⋆
Y(v) = G

⋆
Z(1, . . . , 1,v), apply the continuous

mapping theorem to conclude the proof.
�



Chapter 4

Estimating multivariate
association based on weighted
observations

So far, a nonparametric estimator for Spearman’s rho was presented which is based on
the empirical copula where, in particular, all (normalized) ranks are weighted equally.
In this chapter, we discuss a more general nonparametric estimator which is obtained by
allocating different weights to the ranks. The asymptotic distribution of this estimator
is derived from the weak convergence properties of weighted empirical processes under
minimal conditions on the weights and on the copula. An important area of application
of those weighted estimators lies in the evaluation of Spearman’s rho over time while
assigning higher weight to more recent observations. In this context, we give examples
for possible weighting schemes. For illustration, the theoretical results are applied to
financial data.

4.1 Preliminaries

Let X = (X1,X2) be a bivariate random vector with distribution function F and con-
tinuous univariate marginal distribution functions F1, F2. Recall that bivariate Spear-
man’s rho is defined as the correlation coefficient of the transformed random variables
F1(X1) and F2(X2) (cf. equation (2.33)). The following version of a weighted estimator
is then motivated by the EWMA model from RiskMetrics (1996); see (1.1):

ρ̂ =

∑n
j=1 cj(R1j − n+1

2 )(R2j − n+1
2 )

√∑n
j=1 cj(R1j − n+1

2 )2
√∑n

j=1 cj(R2j − n+1
2 )2

,

where Rij, i = 1, 2, j = 1, . . . , n, refer to the ranks of the observations X1, . . . ,Xn

from X, i.e., Rij = (rank of Xij in Xi1, ...,Xin) and cj , j = 1, . . . , n, are general, non-
negative weights. The derivation of the statistical properties of the above estimator,
however, is complicated. Moreover, its generalization to the multivariate case is not
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straightforward. The weighted estimator considered in this paper is therefore based on
the representation of Spearman’s rho in terms of the copula C of X, i.e.,

ρ = 12

∫ 1

0

∫ 1

0
C (u1, u2) du1du2 − 3,

cf. equation (2.34). As discussed in section 2.3.3, a nonparametric estimator of Spear-
man’s rho as given above is obtained by replacing the copula with the empirical copula;
cf. (2.40). In particular, all (pseudo-) observations (or, equivalently, all normalized
ranks) thereby contribute with the equal weight 1/n to the estimation. Taking this
estimator as a starting point, we generalize it by allowing different weights for each
observation; cf. Gaißer (2010). Based on multivariate Spearman’s rho as given in sec-
tion 2.3.3, the weighted estimator can naturally be extended to the multivariate case.
The choice of the weights can be quite general such that different weighting schemes
are possible. Analogously to the well-known EWMA model by RiskMetrics (1996) (cf.
(1.1)), for example, an exponentially weighted estimator for multivariate Spearman’s
rho can be derived in a time-dynamic context where more weight is assigned to more
recent observations.

The asymptotic distribution of the proposed weighted estimator for Spearman’s rho
can be established under minimal conditions on the copula and the weights. In fact,
weighted Spearman’s rho can be written as a functional of two empirical processes: the
weighted counterpart of the empirical copula process and its survival function. The
asymptotic behavior of those processes can be deduced from the weak convergence
properties of weighted empirical processes, see e.g. Vanderzanden (1980), Shorack and
Wellner (1986), and Koul (2002). We further describe a weighted bootstrap method
to estimate the asymptotic variance of the proposed estimator. This enables, for ex-
ample, the formulation of statistical hypothesis tests based on weighted Spearman’s
rho as discussed in chapter 6. Similar weighted nonparametric estimators can also be
defined for other measures of association such as Kendall’s tau or Blomqvist’s beta as
introduced in section 2.3.3.

Various types of bivariate weighted rank correlation coefficients have already been
investigated in the literature. In contrast to our approach, most of those coefficients are
constructed in such a way that more weight is placed to higher ranks while, at the same
time, lower ranks bear less weight (or vice versa). They are, for example, applied in
situations where a certain number of objects is ranked by two independent sources and
interest lies in the consistency of top rankings while the disagreement in lower rankings
is less relevant. Examples are the comparison of two methods to determine talented
students or two methods to rank important documents. In this context, Iman and
Conover (1987) introduced a measure of top-down correlation based on Savage scores
while a weighted Kendall’s tau statistic has been studied by Shieh (1998). Further, Blest
(2000) proposed an alternative rank correlation measure which places more emphasis to
differences in the top ranks and which was reconsidered by Genest and Plante (2003).
We also refer to Pinto da Costa and Roque (2005) and Maturi and Abdelfattah (2008),
and Nikitin and Stepanova (2003) for tests for stochastic independence.
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Let X be a d-dimensional random vector with distribution function F, continuous
univariate marginal distribution functions Fi, i = 1, . . . , d, and copula C. Our analysis
is based on the version ρ3 of multivariate Spearman’s rho as introduced in equation
(2.39) though we will refer to it as ρ in the following to simplify notation. Recall its
definition

ρ =
ρ1 + ρ2

2
= hρ(d)

[
2d−1

{∫

[0,1]d
C(u)du +

∫

[0,1]d
Π (u)dC(u)

}
− 1

]

=hρ(d)

[
2d−1

{∫

[0,1]d
C(u)du +

∫

[0,1]d
C(u)du

}
− 1

]
, (4.1)

with hρ(d) = (d+1)/{2d − (d+1)}, survival function C of C (see (2.4)), and ρ1 and ρ2

as defined in (2.35) and (2.36), respectively. Note that the last equation follows from
equation (2.38). Based on a random sample X1, . . . ,Xn from X, an equally weighted
nonparametric estimator for ρ is given by

ρ̂n = hρ(d)

[
2d−1

{∫

[0,1]d
Ĉn(u)du +

∫

[0,1]d
Ĉn(u)du

}
− 1

]

= hρ(d)


2d−1

n

n∑

j=1

{
d∏

i=1

(1 − Ûij,n) +

d∏

i=1

Ûij,n

}
− 1


 , (4.2)

where Ĉn and Ĉn denote the empirical copula and the empirical survival function,
respectively, as defined in equations (2.14) and (2.23). As mentioned in section 2.3.3,
the asymptotic behavior of ρ̂n can be deduced from the (joint) weak convergence of

the empirical copula process
√
n(Ĉn − C) and its survival version

√
n(Ĉn − C). In

particular, asymptotic normality and consistency of
√
n(ρ̂n − ρ) can be established

though the proof is omitted here since this result follows as a special case from our
analysis in the following section (see theorem 4.2.6 in section 4.2.2).

4.2 Multivariate weighted Spearman’s rho

This sections derives a weighted nonparametric estimator for multivariate Spearman’s
rho. The asymptotic distribution of the estimator is established and a nonparametric
bootstrap method is described to estimate its asymptotic variance.

4.2.1 Weighted nonparametric estimation

In the defining equation (4.2) of the estimator ρ̂n, every (pseudo-)observation is weighted
equally, i.e., contributes with the equal weight 1/n to the estimation. We extend this
nonparametric estimator for multivariate Spearman’s rho by assigning nonidentical
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weights to the observations. Specifically, consider a triangular array of non-negative
constants cj,n, j = 1, . . . , n, with cn = (c1,n, . . . , cn,n)′ such that

n∑

l=1

cl,n = c′n1n and
n∑

l=1

c2l,n = c′ncn.

A weighted nonparametric estimator for ρ is then defined as

ρ̂c
n = hρ(d)


2d−1

n∑

j=1

cj,n
c′n1n

{
d∏

i=1

(1 − Ûij,n) +

d∏

i=1

Ûij,n

}
− 1


 . (4.3)

Without loss of generality, set c1,1 > 0 such that the estimator is well-defined. Hence,
in contrast to the estimator in (4.2), every observation is weighted in such a way that
the jth observation contributes with weight cj,n/c

′
n1n to the estimation, j = 1, . . . , n.

Naturally, the weights are normalized such that they sum up to 1, i.e.
∑n

j=1 cj,n/c
′
n1n =

1. Note that by setting cj,n = 1, we obtain the estimator ρ̂n as given in (4.2). By
introducing general weights, it is possible to assign more weight to those observations
which are considered to be more relevant or which are known to be more precise.
Several specific weighting schemes are discussed in section 4.3.

4.2.2 Asymptotic behavior

In order to derive the asymptotic behavior of the proposed estimator ρ̂c
n, we rewrite it

as

ρ̂c
n = hρ(d)


2d−1

n∑

j=1

cj,n
c′n1n

{
d∏

i=1

(1 − Ûij,n) +

d∏

i=1

Ûij,n

}
− 1




= hρ(d)

[
2d−1

{∫

[0,1]d
Ŵn(u)du +

∫

[0,1]d
Ŵ n(u)du

}
− 1

]
, (4.4)

with

Ŵn(u) =

n∑

j=1

cj,n
c′n1n

d∏

i=1

1{Ûij,n≤ui}
and Ŵ n(u) =

n∑

j=1

cj,n
c′n1n

d∏

i=1

1{Ûij,n>ui}
, u ∈ [0, 1]d .

(4.5)

The functions Ŵn and Ŵ n represent the weighted counterparts of the empirical copula

Ĉn and the empirical survival function Ĉn as defined in equations (2.14) and (2.23),
respectively. We therefore refer to these functions as weighted empirical copula and
weighted empirical survival function. Obviously, they coincide with the empirical cop-
ula and its survival function if cj,n = 1, j = 1, . . . , n. Note however that, in general, Ŵn

is not a copula.
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In view of equation (4.4), the asymptotic distribution of ρ̂c
n can be derived from the

joint asymptotic behavior of the weighted empirical copula and its survival function
analogously to the equally weighted case (cf. section 2.3.3). Weak convergence of the
weighted empirical copula process is established based on the weak convergence prop-
erties of weighted empirical processes, which has been considered in various settings
e.g. by Shorack and Wellner (1986) and Koul (2002) in the univariate case and Van-
derzanden (1980) and van der Vaart and Wellner (1996) in a multivariate context. The
following version forms the basis for the forthcoming results in this section. For this
purpose, an additional condition must be imposed on the sequence cj,n, j = 1, . . . , n, :

(C) max
{1≤j≤n}

c2j,n
c′ncn

−→ 0 for n→ ∞.

Theorem 4.2.1 Let X1, . . . ,Xn be a random sample from the d-dimensional random
vector X with distribution function F and continuous univariate marginal distribu-
tion functions Fi, i = 1, . . . , d. Consider the triangular array of non-negative constants
cj,n, j = 1, . . . , n, with cn = (c1,n, . . . , cn,n)′ and define the weighted empirical process
as

Vn(x) =

n∑

j=1

cj,n√
c′ncn

{
d∏

i=1

1{Xij≤xi} − F (x)

}
, x = (x1, . . . , xd) ∈ ĪR

d
. (4.6)

Under the assumption that condition (C) holds, we have

Vn(x)
w−→ BF (x). (4.7)

Weak convergence takes place in ℓ∞(ĪR
d
) and the process BF is a d-dimensional tight

centered Gaussian process with covariance function

E{BF (x)BF (y)} = F (x ∧ y) − F (x)F (y),

i.e., BF is a Brownian bridge.

Proof. The assertion follows from example 2.11.8 in van der Vaart and Wellner (1996)
provided that the sequence Vn converges marginally. Marginal convergence is given if
(Vn(x1), . . . , Vn(xk)) converges weakly for every finite subset of vectors x1, . . . ,xk ∈
[−∞,∞]d. This is proven via a multivariate version of the Lindeberg-Feller theorem
(see Araujo and Giné (1980), p. 41). For s = 1, . . . , k, set therefore

Z(j)
s,n =

cj,n√
c′ncn

{
d∏

i=1

1{Xij≤xis} − F (xs)

}
.

Then, E(Z
(j)
s,n) = 0 for all s = 1, . . . , k, and

n∑

j=1

E(Z(j)
s,n · Z(j)

r,n) = F (xs ∧ xr) − F (xs)F (xr) =: as,r, (4.8)
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for all n and 1 ≤ s, r ≤ k. For the vector (Z
(j)
1,n, . . . , Z

(j)
k,n) consider ‖Z(j)

n ‖2
2 =

∑k
l=1(Z

(j)
l,n )2

where ‖ · ‖2 denotes the Euclidian norm. We have ‖Z(j)
n ‖2

2 ≤ 4kc2j,n/c
′
ncn such that

∫

{‖Z
(j)
n ‖2>ε}

‖Z(j)
n ‖2

2 dIP → 0 as n→ ∞,

for every ε > 0 due to condition (C). Thus

(Vn(x1), . . . , Vn(xk))
d−→ N(0k, A) as n→ ∞,

with k× k-matrix A = (as,r)s,r=1,...,k whose elements as,r are given in formula (4.8). If
A is zero then (Vn(x1), . . . , Vn(xk)) converges to zero in probability as n → ∞. Since

convergence in ℓ∞(ĪR
d
) implies marginal convergence, it further follows that the limit

process BF of Vn must be a zero-mean Gaussian process with covariance function

E{BF (x)BF (y)} = F (x ∧ y) − F (x)F (y), x,y ∈ [−∞,∞]d.

This and tightness yield that BF is a d-dimensional Brownian bridge according to
lemma 1.5.3 in van der Vaart and Wellner (1996). �

In the light of theorem 4.2.1, the weighted empirical copula process is defined as

n∑

j=1

cj,n√
c′ncn

{
d∏

i=1

1{Ûij≤ui} − C(u)

}
, u ∈ [0, 1]d,

which can equivalently be written as

c′n1n√
c′ncn

n∑

j=1

cj,n
c′n1n

{
d∏

i=1

1{Ûij≤ui} − C(u)

}
= rn{Ŵn(u) − C(u)}, u ∈ [0, 1]d,

in terms of the weighted empirical copula Ŵn (see equation (4.5)) and with sequence
rn = c′n1n/

√
c′ncn. Note that rn → ∞ for n → ∞ as a consequence of theorem 4.2.1.

The following theorem establishes weak convergence of the weighted empirical copula
process.

Theorem 4.2.2 Let X1, . . . ,Xn be a random sample from the d-dimensional random
vector X with distribution function F, continuous univariate marginal distribution func-
tions Fi, i = 1, . . . , d, and copula C. Consider the triangular array of non-negative con-
stants cj,n, j = 1, . . . , n with cn = (c1,n, . . . , cn,n)′ which satisfy condition (C), and de-
fine rn = c′n1n/

√
c′ncn. Under the assumptions that the i-th partial derivatives DiC(u)

of C exist and are continuous for i = 1, . . . , d, and that rn/
√
n→ q ∈ [0, 1] for n→ ∞,

we have
rn {Ŵn(u) − C(u)} w−→ G

c
C(u)
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in ℓ∞([0, 1]d). The process G
c
C is a tight centered Gaussian process in [0, 1]d of the form

G
c
C(u) = BC(u) − q

d∑

i=1

DiC(u)BC(u(i)), (4.9)

where the process BC is d-dimensional tight centered Gaussian process on [0, 1]d with
covariance function

E{BC(u)BC(v)} = C(u ∧ v) − C(u)C(v),

i.e., BC is a Brownian bridge on [0, 1]d.

We give the proof of theorem 4.2.2 after the following lemma.

Lemma 4.2.3 Consider the following version of the weighted empirical copula

W̃n(u) = F̂ c
n {F̂−1

1,n(u1), . . . , F̂
−1
d,n(ud)}, u ∈ [0, 1]d, (4.10)

where

F̂ c
n(x) =

n∑

j=1

cj
c′n1n

d∏

i=1

1{Xij≤xi}, x ∈ IRd, (4.11)

denotes the weighted empirical counterpart of the distribution function F and cj,n is
defined in theorem 4.2.2. Then, for all u ∈ [0, 1]d,

W̃n(u) = Ŵn(u) +O

(
max

{1≤j≤n}

cj,n
c′n1n

)
.

In particular,

max
{1≤j≤n}

cj,n
c′n1n

−→ 0, as n→ ∞.

Proof. Let cj⋆,n = max{1≤j≤n} cj,n. Then,

sup
{0≤u1,...,ud≤1}

|W̃n(u1, . . . , ud) − Ŵn(u1, . . . , ud)|

≤ max
{1≤s1,...,sd≤n}

∣∣∣∣W̃n

(s1
n
, . . . ,

sd

n

)
− Ŵn

(
s1 − 1

n
, . . . ,

sd − 1

n

)∣∣∣∣

≤ d · cj⋆,n

c′n1n
.

Further,

cj⋆,n

c′n1n
=

cj⋆,n∑n
k=1 ck,n

=
c2j⋆,n∑n
k=1 c

2
k,n

·
∑n

k=1 c
2
k,n

cj⋆,n
∑n

k=1 ck,n
≤

c2j⋆,n∑n
k=1 c

2
k,n

→ 0, for n→ ∞,

due to condition (C), which completes the proof. �
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Proof of theorem 4.2.2. According to lemma 4.2.3 and using the same notation, we
have, for all u ∈ [0, 1]d,

rn{Ŵn(u) − C(u)} +O
(
cj⋆,n/

√
c′ncn

)
= rn{W̃n(u) − C(u)}, (4.12)

and, thus, we can confine ourselves to establishing weak convergence of the process
rn(W̃n − C) as a consequence of Slutsky’s theorem (see also proof of theorem 2.2.8).
Further, like in the aforementioned proof, it is possible to concentrate on the case
when the marginal distributions Fi, i = 1, . . . , d, are uniform distributions on [0, 1]
and thus F = C has compact support [0, 1]d by considering the random variables
Uij = Fi(Xij), i = 1, . . . , d, j = 1, . . . , n, with Uj = (U1j , . . . , Udj). Namely, with D

being the copula of the random vectors Uj , j = 1, . . . , n, and D̃n the associated weighted
empirical copula calculated according to (4.10), it can be shown that

rn{W̃n(u) − C(u)} = rn{D̃n(u) −D(u)}, for all u ∈ [0, 1]d,

analogously to lemma 1 in Fermanian et al.(2004)). Note, however, that we stick to the
previous notation for simplicity’s sake. We proceed similarly to the proof of theorem 2
in Schmid and Schmidt (2007a). Based on the following estimator

Wn(u) =
n∑

j=1

cj,n
c′n1n

d∏

i=1

1{Uij≤ui}, for u ∈ [0, 1]d, (4.13)

we can rewrite the weighted empirical copula process on the right-hand side of equation
(4.12) as follows:

rn{W̃n(u) − C(u)}

= rn{Wn(u) −C(u)} + rn{F (F̂−1
1,n(u1), . . . , F̂

−1
d,n(ud)) − C(u)} (4.14)

+
d∑

i=1

[
Hc

n{F−1
1 (u1), . . . , F

−1
i−1(ui−1), F̂

−1
i,n (ui), . . . , F̂

−1
d,n(ud)} (4.15)

− Hc
n{F−1

1 (u1), . . . , F
−1
i (ui), F̂

−1
i+1,n(ui+1), . . . , F̂

−1
d,n(ud)}

]
,

where Hc
n = rn(F̂ c

n−F ) denotes the weighted empirical process on [0, 1]d with weighted
empirical distribution function F̂ c

n as defined in formula (4.11). According to theorem
4.2.1, the process rn(W c

n −C) converges weakly in ℓ∞([0, 1]d) to a d-dimensional Brow-
nian bridge BC with covariance function E{BC(u)BC(v)} = C(u ∧ v) − C(u)C(v).
Recall that F = C. The asymptotic behavior of the second term in line (4.14) can be
derived by repeatedly applying the functional delta-method; see theorem 2.2.7. It uses
the following weak convergence result:

√
n(F̂1,n(u1) − F1(u1), . . . , F̂d,n(ud) − Fd(ud))

w−→ (BF1(u1), . . . ,BFd
(ud)), (4.16)

for n→ ∞. This follows from the fact that
√
n(F̂n −F ) converges weakly in ℓ∞([0, 1]d)

to a d-dimensional Brownian bridge BF with covariance function E{BF (u)BF (v)} =
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F (u ∧ v) − F (u)F (v) (see example 2.1.3 in van der Vaart and Wellner (1996)), which
implies marginal convergence. As outlined in the proof of theorem 2.2.8, the inverse
map, i.e., the map ϕ1 with

ϕ1{F1(u1), . . . , Fd(ud)} = (F−1
1 (u1), . . . , F

−1
d (ud)),

is Hadamard-differentiable at (F1, . . . , Fd) tangentially to C([0, 1])×· · ·×C([0, 1]) under
the assumption of continuous partial derivatives of C = F (lemma 3.9.23, part (ii), in
van der Vaart and Wellner (1996)). The derivative of ϕ1 has the form

ϕ′
1,F1,...,Fd

(h1, . . . , hd)(u1, . . . , ud) = (−h1(u1), . . . ,−hd(ud)), h1, . . . , hd ∈ C([0, 1]),

such that the functional delta-method together with formula (4.16) yields

√
n(F̂−1

1,n(u1) − F−1
1 (u1), . . . , F̂

−1
d,n(ud) − F−1

d (ud))
w−→ (−BF1(u1), . . . ,−BFd

(ud)),
(4.17)

as n→ ∞. Further note that the map ϕ2 with

ϕ2(F
−1
1 , . . . , F−1

d )(u1, . . . , ud) = F{F−1
1 (u1), . . . , F

−1
d (ud)}

is Hadamard-differentiable at (F−1
1 , . . . , F−1

d ) tangentially to C([0, 1]) × · · · × C([0, 1])
with derivative

ϕ′
2,F−1

1 ,...,F−1
d

(h1, . . . , hd)(u1, . . . , ud) =
d∑

i=1

∂F

∂xi
{F−1

1 (u1), . . . , F
−1
d (ud)} · hi(ui),

h1, . . . , hd ∈ C([0, 1]). Hence, the functional delta-method applied to formula (4.17)
together with Slutsky’s theorem finally yields that

rn{F (F̂−1
1,n(u1), . . . , F̂

−1
d,n(ud)) − C(u)}

=
rn√
n
·
√
n{F (F̂−1

1,n(u1), . . . , F̂
−1
d,n(ud)) − C(u)} w−→ −q

d∑

i=1

DiC(u)BC(u(i))

in ℓ∞([0, 1]d), using that F = C and, thus, BFi
(ui) = BC(u(i)). Regarding the third

term in line (4.15), we know from theorem 4.2.1 that Hc
n converges weakly to the Gaus-

sian process BC in ℓ∞([0, 1]d). Since BC is tight, it follows that Hc
n is asymptotically

tight according to theorem 1.5.4 in van der Vaart and Wellner (1996). Asymptotical
tightness further implies (theorem 1.5.7 of the latter reference) that Hc

n is asymptoti-
cally uniformly equicontinuous in probability, i.e. for every ε, η > 0 there exists a δ > 0
such that

lim sup
n

IP

{
sup

||u−v||<δ
|Hc

n(u) −Hc
n(v)| > ε

}
< η, (4.18)

with || · || referring to the Euclidean norm in [0, 1]d. As Fi, i = 1, . . . , d, is uniformly
distributed on [0, 1], it further holds that (see Csörgö (1983), corollary 1.4.1)

sup
{0≤u≤1}

|F̂−1
i,n (u) − F−1

i (u)| −→ 0, a.s., for n→ ∞. (4.19)
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Combining formulas (4.18) and (4.19) yields that the sum in line (4.15) converges to
zero in probability. Using almost surely convergent versions ofHc

n, apply an appropriate
continuous mapping theorem to conclude weak convergence of the weighted empirical
copula process. Finally, tightness of BC implies tightness of the process G

c
C . �

Remarks.

1. The fact that q = limn→∞ rn/
√
n ∈ [0, 1] can be seen as follows. On the one hand,

note that rn = c′n1n/
√

c′ncn can equivalently be written as rn = ||cn||1/||cn||2
where || · ||p denotes the p-norm in IRn, p = 1, 2. Then,

rn√
n

=
||cn||1√
n||cn||2

≤
√
n||cn||2√
n||cn||2

= 1 for all n,

using that ||y||1 ≤ √
n||y||2 for all y = (y1, . . . , yn) ∈ IRn, which can be shown by

induction.
On the other hand, consider the specific sequence of constants cj,n = 1/

√
j, j =

1, . . . , n. Since the harmonic series
∑∞

j=1 1/j tends to infinity, those constants
fulfill condition (C). Moreover,

n∑

j=1

1

j
≃ ln(n) + γ,

where γ refers to the Euler-Mascheroni constant; see e.g. Heuser (1998), p. 185.
Hence,

rn√
n

=

∑n
j=1 1/

√
j

√
n
√∑n

j=1 1/j
≃

√
n√

n(ln(n) + γ)
−→ 0, n→ ∞,

since the series
∑∞

j=1 1/
√
j = O(

√
n).

Hence, for q = 0, the limiting process of the weighted empirical copula process
coincides with the limiting process BC . For q = 1, the former coincides with the
limiting process GC of the ordinary empirical copula process; cf. theorem 2.2.8.

2. Note that for proving weak convergence of the weighted empirical copula process
we could not proceed in a similar way as for the empirical copula process (cf.
theorem 2.2.8), that is, using representation (2.19) as the starting point. The
reason is that, in contrast to the empirical copula, the weighted empirical copula
can no longer be represented as a map φ of the weighted empirical distribution
function F̂ c

n; cf. formulas (2.20) and (4.10).

A similar result as in theorem 4.2.2 can be obtained for the process rn(Ŵ n − C).

Theorem 4.2.4 Let X1, . . . ,Xn be a random sample from the d-dimensional ran-
dom vector X with distribution function F, continuous marginal distribution func-
tions F1, . . . , Fd, and copula C. Consider the triangular array of non-negative constants
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cj,n, j = 1, . . . , n with cn = (c1,n, . . . , cn,n)′ which satisfy condition (C), and define
rn = c′n1n/

√
c′ncn. Under the additional assumption that the i-th partial derivatives

DiC(u) of C exist and are continuous for i = 1, . . . , d, and that rn/
√
n→ q ∈ [0, 1] for

n→ ∞, it follows that

rn{Ŵ n(u) − C(u)} w−→ G
c
C
(u), n→ ∞,

in ℓ∞([0, 1]d) and G
c
C

has the form

G
c
C
(u) = BC(u) − q

d∑

i=1

DiC(u)BC(u(i)). (4.20)

with process BC as defined in theorem 4.2.2. The process BC is a d-dimensional tight
centered Gaussian process whose covariance function is given by

E{BC(u)BC(v)} = C(u ∨ v) − C(u)C(v).

Proof. Consider first the estimator

W n(u) =

n∑

j=1

cj
c′n1n

d∏

i=1

1{Uij>ui}, for u ∈ [0, 1]d.

with Uij = Fi(Xij), i = 1, . . . , d, j = 1, . . . , n. By using relationship (2.8) between the
copula C and the survival function C, i.e.,

C(u) =
∑

A⊆Sd

(−1)|A|C(u(A)),

with set Sd = {1, . . . , d}, the related empirical process rn(W n − C) can be written as
a linear, continuous function of the process rn(Wn − C) (cf. formula (4.13)) through

rn{Wn(u) − C(u)} =
∑

A⊆Sd

(−1)|A|rn{Wn(u(A)) − C(u(A))}.

The continuous mapping theorem together with theorem 4.2.1 yields the weak conver-
gence of rn{W n(u) − C(u)} in ℓ∞([0, 1]d) to the process

∑
A⊆Sd

(−1)|A|
BC(u(A))}. As

finite sum of tight Gaussian processes, this limiting process itself is a tight Gaussian
process. Since further

E[rn{W n(u) − C(u)}] = 0,

and

E[rn{W n(u) − C(u)}rn{W n(v) − C(v)}] = C(u ∨ v) − C(u)C(v), (4.21)
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for all n and u,v ∈ [0, 1]d, the limiting process is further a centered process with
covariance function as in (4.21), and we denote it by BC . By writing

rn{Ŵ n(u)−C(u)} +O(cj⋆,n/
√

c′ncn) = rn{F̂
c
(F̂−1

1,n(u1), . . . , F̂
−1
d,n(ud)) − C(u)}

= rn{W n(u) − C(u)} + rn{F (F̂−1
1,n(u1), . . . , F̂

−1
d,n(ud)) − C(u)}

+
d∑

i=1

[
H

c
n{F−1

1 (u1), . . . , F
−1
i−1(ui−1), F̂

−1
i,n (ui), . . . , F̂

−1
d,n(ud)}

− H
c
n{F−1

1 (u1), . . . , F
−1
i (ui), F̂

−1
i+1,n(ui+1), . . . , F̂

−1
d,n(ud)}

]
,

where H
c
n = rn(F̂

c

n − F ) with

F̂
c

n(x) =
n∑

j=1

cj
c′n1n

d∏

i=1

1{Xij>xi}, x ∈ IRd,

and carrying out the same steps as in the proof of theorem 4.2.2, the asserted weak
convergence follows (see also proof of theorem 2 in Schmid and Schmidt (2007a)). �

Note that, when setting cj,n = 1, j = 1, . . . , n, the convergence rate rn reduces to
√
n

and theorems 4.2.2 and 4.2.4 imply weak convergence of the ordinary empirical copula
process and its survival version, respectively, to the Gaussian processes GC and GC as
q = 1; see theorems 2.2.8 and 2.2.9.
The following corollary to theorems 4.2.2 and 4.2.4 characterizes the asymptotic be-

havior of the process rn(Ŵn − C, Ŵ n − C).

Corollary 4.2.5 Under the assumption of theorems 4.2.2 and 4.2.4, the vector rn{Ŵn−
C, Ŵ n − C} converges weakly in ℓ∞([0, 1]d) × ℓ∞([0, 1]d) to a vector (Gc

C ,G
c
C
) of cen-

tered Gaussian processes with G
c
C and G

c
C

as stated in formulas (4.9) and (4.20). Its
covariance structure is determined by the covariance structure of the vector (BC ,BC) of
tight centered Gaussian processes (as defined in theorems 4.2.2 and 4.2.4, respectively),
which is given by

E{BC(u)BC(v)} = C(u ∧ v) − C(u)C(v),

E{BC(u)BC(v)} = C(u ∨ v) − C(u)C(v),

E{BC(u)BC(v)} =
∑

A⊆Sd

(−1)|A|C(u ∧ v(A)) − C(u)C(v).

Proof. In a similar way as in the proof of theorem 4.2.4, joint weak convergence can be
established using the relationship

rn{Ŵ n(u) − C(u)} =
∑

A⊆Sd

(−1)|A|rn{Ŵn(u(A)) − C(u(A))}
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and applying the continuous mapping theorem together with theorem 4.2.2. Straight-
forward calculations yield the form of the covariance function. �

Now we are ready to establish asymptotic normality of rn(ρ̂c
n − ρ).

Theorem 4.2.6 Let X1, . . . ,Xn be a random sample from the d-dimensional random
vector X with distribution function F, copula C and continuous univariate marginal
distribution functions. Let further cl,n, l = 1, . . . , n with cn = (c1,n, . . . , cn,n)′ be a
triangular array of non-negative constants, and define rn = c′n1n/

√
c′ncn. Under the

assumption that condition (C) holds, all partial derivatives of C and C exist and are
continuous, and rn/

√
n→ q ∈ [0, 1] for n→ ∞, it follows that

rn(ρ̂c
n − ρ)

d−→ Z ∼ N(0, σ2), for n→ ∞, (4.22)

where the variance σ2 is given by

σ2 = {hρ(d)}222d−2

∫

[0,1]d

∫

[0,1]d
E
[
{Gc

C(u) + G
c
C
(u)}{Gc

C (v) + G
c
C
(v)}

]
dudv.

(4.23)

Proof. As a consequence of corollary 4.2.5, we obtain that

rn[Ŵn(u) − C(u) + {Ŵ n(u) − C(u)}] w−→ G
c
C(u) + G

c
C
(u)

in ℓ∞([0, 1]d). The sequence rn(ρ̂c
n − ρ) can be written as a continuous linear map of

the above process through

rn(ρ̂c
n − ρ) = hρ(d)2

d−1

∫

[0,1]d
rn

[
Ŵn(u) − C(u) + {Ŵ n(u) − C(u)}

]
du,

and, thus, converges to Z = hρ(d)2
d−1

∫
[0,1]d{Gc

C(u) + G
c
C
(u)}du by an application of

the continuous mapping theorem. The process G
c
C + G

c
C

is a tight Gaussian process
and, thus, Z is normally distributed with mean zero and variance as stated in the
theorem according to lemma 3.9.8 in van der Vaart and Wellner (1996), p. 377. �

Again, the asymptotic distribution of the ordinary estimator
√
n(ρ̂n − ρ), see (4.2), is

obtained by setting cj,n = 1, j = 1, . . . , n (and thus q = 1).
The asymptotic variance in (4.23) is generally of complicated form. Its structure how-
ever simplifies as follows if the copula C is radially symmetric, i.e., C(u) = C(1 −
u) for all u ∈ [0, 1]d; cf. equation (2.6).

Proposition 4.2.7 Let C be a radially symmetric copula. Under the assumptions of
theorem 4.2.6, the asymptotic variance σ2 has the form

σ2 = {hρ(d)}222d−1

(∫

[0,1]d

∫

[0,1]d
E
[
G

c
C(u){Gc

C(v) + G
c
C
(v)}

]
dudv

)
.
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Proof. If C is radially symmetric, the processes G
c
C(u) and G

c
C
(1 − u) are equally

distributed for all u ∈ [0, 1]d. This follows according to the same arguments as in the
proof of proposition 4 in Schmid and Schmidt (2007a). The asserted form of σ2 then
follows by direct calculations and adequate substitutions. �

For example if C = Π , we obtain

σ2 =
h(d)2

2

{(
4

3

)d

+

(
2

3

)d

− 2

}
.

In particular, the asymptotic variance does not depend on the parameter q in this
case. In particular, it coincides with the asymptotic variance of the ordinary estimator√
n(ρ̂n − ρ), i.e., if all constants cj,n are set to 1, j = 1, . . . , n. Note that this does not

hold for general copulas C.

If the copula C is of a more complicated structure, the asymptotic variance must be
estimated adequately. In the equally weighted case, i.e., if cj,n = 1 for all j = 1, . . . , n,
the nonparametric bootstrap as described in section 2.2.2 can be applied by indepen-
dently drawing bootstrap samples from the ordinary empirical distribution function
F̂n; see (2.18). For nonidentical (non-negative) constants cj,n, however, it is no longer
possible to sample from the ordinary empirical distribution function. Instead, the boot-
strap samples must be independently drawn from the weighted empirical distribution
function F̂ c

n of the original sample X1, . . . ,Xn as defined in (4.11); cf. Lahiri (1998).
Hence, based on K independent bootstrap samples Xb

1, . . . ,X
b
n, b = 1, . . . ,K, from F̂ c

n,
an estimator for the asymptotic variance in (4.23) is in practice given by

r2n · (σ̂c,B)2 =
1

K − 1

K∑

b=1

{
rnρ̂

c
n,(b) − rnρ̂c

n,(b)

}2
, (4.24)

where ρ̂c
n,(b) denotes the bootstrap replication of ρ̂c

n, calculated from the b-th bootstrap

sample, b = 1, . . . ,K, and rnρ̂
c
n,(b) = 1/K

∑K
b=1 rnρ̂

c
n,(b). The results of a simulation

study to assess the performance of the bootstrap variance estimator for a particular
weighting scheme are presented in section 4.3.

Remark. The relative efficiency provides a way to compare two estimator se-
quences, see e.g. van der Vaart (1998), chapter 8. If the two sequences have convergence
rate

√
n and are asymptotically normally distributed, the quotient of their asymptotic

variances can be used as a measure for their relative efficiency. The asymptotic distri-
bution of the weighted estimator ρ̂c

n when having convergence rate
√
n follows from an

application of Slutsky’s theorem; namely, according to theorem 4.2.6, we have

√
n(ρ̂c

n − ρ) =

√
n

rn
rn(ρ̂c

n − ρ)
d−→ Z ∼ N(0, σ2/q2), n → ∞, (4.25)
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where the weights must be chosen such that q = limn→∞ rn/
√
n ∈ (0, 1]. Hence, the

relative efficiency of the two estimator sequences rn(ρ̂c
n − ρ) and

√
n(ρ̂n − ρ) is

∫
[0,1]d

∫
[0,1]d E

[
{Gc

C(u) + G
c
C
(u)}{Gc

C(v) + G
c
C
(v)}

]
dudv

q2
∫
[0,1]d

∫
[0,1]d E

[
{GC(u) + GC(u)}{GC(v) + GC(v)}

]
dudv

,

with Gaussian process GC and GC as defined in equations (2.17) and (2.24), respec-
tively; see theorems 2.2.8 and 2.2.9. In particular, if C = Π , the relative efficiency of√
n(ρ̂c

n−ρ) with respect to the estimator
√
n(ρ̂n−ρ) is 1/q2 as the asymptotic variances

of rn(ρ̂c
n − ρ) and

√
n(ρ̂n − ρ) coincide in this case (see discussions after proposition

4.2.7), i.e., it only depends on the parameter q.

4.3 Time-dynamic weighted Spearman’s rho

As mentioned in section 4.1, an important area of application of the weighted nonpara-
metric estimator (4.3) lies in the evaluation of Spearman’s rho over time using weighted
averages of past observations. Two specific weighting schemes for this purpose are dis-
cussed next.

Exponentially weighted Spearman’s rho. Motivated by the EWMA model
from RiskMetrics (1996) (see (1.1)), an exponentially weighted estimator for multivari-
ate Spearman’s rho can be obtained by setting

cj,n = λj−1, j = 1, . . . , n, (4.26)

with decay factor 0 < λ < 1. With observations Xt−n+1, . . . ,Xt, we can think of them
as e.g. representing the returns of d financial assets in a portfolio, an exponentially
weighted estimator for multivariate Spearman’s rho at time t is given by

ρ̂c
n,t = hρ(d)


2d−1

n∑

j=1

λj−1

∑n
k=1 λ

k−1

{
d∏

i=1

(1 − Ûi(t−j+1),n) +
d∏

i=1

Ûi(t−j+1),n

}
− 1


 ,

(4.27)
with Ûi(t−j+1),n = 1/n(rank of Xij in Xi(t−n+1), ...,Xi(t)), i = 1, . . . , d, and j = 1, . . . , n.
Analogously to the EWMA model by RiskMetrics (1996), the weights decrease expo-
nentially such that more weight is assigned to the most recent observations. Hence,
it may react faster to changes in Spearman’s rho than the equally weighted estima-
tor with λ = 1. An appropriate value for the decay factor λ must be determined by
the statistician; naturally, its choice also depends on the dimension d. Note that in-
stead of the weights λj−1/

∑n
k=1 λ

k−1, it is also common to apply the weighting scheme
λj−1(1 − λ), j = 1, . . . , n, using that

n∑

k=1

λk−1 −→ 1

1 − λ
, n→ ∞.
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In this case, the following recursion can be obtained under the assumption of known
and constant marginal distribution functions F1, . . . , Fd, which may be of interest in
forecasting; cf. RiskMetrics (1996), p. 81. Note, however, that the correct specification
of the margins is often unknown in practice.

Lemma 4.3.1 Assume that the univariate marginal distributions Fi, i = 1, . . . , d, are
known and constant over time. Set cj,n/c

′
n1n = λj−1(1−λ), j = 1, . . . , n, with 0 < λ <

1. Based on those weights, let ρ̂c
n,t+1|t denote the forecasted value of Spearman’s rho for

time t+ 1, given information up to and including time t. Then,

ρ̂c
n,t+1|t = (1 − λ)hρ(d)2

d−1

{
d∏

i=1

(1 − Ui(t)) +

d∏

i=1

Ui(t)

}
+ λρ̂c

n,t|t−1,

with Ui(t−j+1) = Fi(Xi(t−j+1)), i = 1, . . . , d and j = 1, . . . , n.

Proof. The assertion can be shown analogously to RiskMetrics (1996), p. 82, by as-
suming that an infinite amount of data is available. We then have

ρ̂c
n,t+1|t = hρ(d)


2d−1(1 − λ)

∞∑

j=1

λj−1

{
d∏

i=1

(1 − Ui(t−j+1)) +

d∏

i=1

Ui(t−j+1)

}
− 1




= (1 − λ)hρ(d)2
d−1

{
d∏

i=1

(1 − Ui(t)) +
d∏

i=1

Ui(t)

}

+ λ(1 − λ)hρ(d)


2d−1

∞∑

j=1

λj−1

{
d∏

i=1

(1 − Ui(t−j)) +
d∏

i=1

Ui(t−j)

}
− 1




= (1 − λ)hρ(d)2
d−1

{
d∏

i=1

(1 − Ui(t)) +

d∏

i=1

Ui(t)

}
+ λρ̂c

n,t|t−1.

�

Polynomially weighted Spearman’s rho. Another possible choice of weights is

cj,n = jk, j = 1, . . . , n with k ∈ N. (4.28)

As in the previous example, this weighting scheme yields the allocation of a higher
weight to the most recent observations. The decrease in weights is now of polynomial
order and gets more pronounced with increasing parameter k. In particular if k is set
to 1, the weights decline linearly. Although the impact of past observations on the
estimation is in this case greater than for a larger value of k, we still place more impor-
tance on recent observations than we would if the ordinary estimator for multivariate
Spearman’s rho ρ̂n in (4.2) was used.

The differences in the above weighting schemes are illustrated in figure 4.1 together
with the equally weighted case where cj,n = 1 for all j = 1, . . . , n. In addition, figure
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4.2 provides a plot of the empirical copula Ĉn (see equation (2.14)) and the weighted

empirical copula Ŵn (see equation (4.5)) for sample size n = 10 and constants cj,n as
in formula (4.28) with k = 2.
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Figure 4.1: Different weighting schemes. Weights cj,n/c
′
n1n, j = 1, . . . , n, according

to formula (4.26) with λ = 0.96 (solid) and according to formula (4.28) with k = 2
(long-dashed) and k = 1 (dotted-dashed) together with the equally weighted case where
cj,n/c

′
n1n = 1/n (dashed) for sample size n = 100.

Figure 4.2: Empirical copula Ĉn (left panel) and weighted empirical copula Ŵn (right
panel) for n = 10 and constants cj,n according to formula (4.28) with k = 2.

In general, theorem 4.2.6 allows for the construction of statistical hypothesis tests
based on weighted multivariate Spearman’s rho. In a time-dynamic context, the latter
can be used to test for significant changes in Spearman’s rho over time; cf. chapter
6. Here, theorem 4.2.6 characterizes the (asymptotic) distribution of the weighted
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estimator under the null hypothesis, i.e., that Spearman’s rho is constant.
In this context, note that the constants cj,n = λj−1, j = 1, . . . , n in (4.26) for the
exponentially weighted Spearman’s rho do not fulfill condition (C) since

max
{1≤j≤n}

c2j,n
c′ncn

=
1∑n−1

k=0 λ
2k

−→ 1 − λ2, n→ ∞.

In contrast, it can be shown that the weights defined by cj,n = j or cj,n = j2, j =
1, . . . , n, (cf. formula (4.28)) fulfill condition (C). In particular, we have (cf. theorem
4.2.2)

q = lim
n→∞

rn√
n

= lim
n→∞

∑n
k=1 k/

√∑n
k=1 k

2

√
n

= lim
n→∞

√
6

2
·
√
n+ 1√
2n+ 1

=

√
3

2
,

and

q = lim
n→∞

rn√
n

= lim
n→∞

∑n
k=1 k

2/
√∑n

k=1 k
4

√
n

= lim
n→∞

√
30

6
·
√

2n2 + 3n− 1√
3n2 + 3n− 1

=

√
5

3
,

for these two weighting schemes.

Tables 4.1 and 4.2 show the results of a simulation study carried out to investigate
the finite-sample performance of the bootstrap estimator for the asymptotic standard
deviation of

√
n(ρ̂c

n − ρ); see the discussions at the end of the previous section. We
consider the d-dimensional equi-correlated Gaussian copula with correlation matrix
K(κ) = κ1d1

′
d + (1 − κ)Id with −1/(d − 1) < κ < 1 as defined in equation (2.9), and

the d-dimensional Clayton copula with parameter θ > 0 as given in equation (2.13).
Simulation results are provided for dimensions d = 2, 5, and 10, different parameter
choices and sample sizes n (see the first and second columns of the tables, respec-
tively). Further, we set cj,n = j2, j = 1, . . . , n, in all simulations. Specifically, column
three provides an approximation to the true value of d-dimensional Spearman’s rho
ρ for the specific copula model, which is calculated from one sample of size 500, 000.
Columns four and six of the tables show the empirical means m(ρ̂c

n) and the standard
deviation σ̂(ρ̂c

n) of the estimator ρ̂c
n with respect to 300 Monte-Carlo simulations of size

n. Note that, according to theorem 4.2.6, the estimator ρ̂c
n represents a consistent esti-

mator for ρ. The corresponding bootstrap estimates are contained in columns five and
seven and are based on 250 bootstrap replications, which are drawn with replacement
from each original sample: m(ρ̂c,B

n ) denotes the empirical mean of the estimator ρ̂c,B
n

and m(σ̂c,B) the empirical mean of the bootstrap estimator σ̂c,B; cf. equation (4.24). In
addition, column seven provides the standard deviation of the bootstrap estimator σ̂c,B

over 300 Monte-Carlo simulations. Finally, the bootstrap estimates for the standard
deviation σ as given in equation (4.25) are shown in column eight.
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Table 4.1: Gaussian copula. Simulation results for estimating the asymptotic standard
deviation of weighted Spearman’s rho ρ̂c

n based on cj,n = j2, j = 1, . . . , n, (cf. formula (4.28))
by means of the nonparametric bootstrap: The table shows the empirical mean m(·) and the
empirical standard deviation σ̂(·) of the respective estimates, which are calculated based on 300
Monte Carlo simulations of sample size n of a d-dimensional equi-correlated Gaussian copula
with parameter κ and 250 bootstrap samples. The bootstrap estimates are labeled by the
superscript B.

κ n ρ m(ρ̂c
n) m(ρ̂c,B

n ) σ̂(ρ̂c
n) m(σ̂c,B) σ̂(σ̂c,B) m(

√

n σ̂c,B)

Dimension d=2
0.2 100 .190 .196 .176 .135 .131 .011 1.313

500 .190 .190 .197 .058 .059 .003 1.313
1000 .190 .192 .192 .041 .042 .002 1.313

0.5 100 .482 .490 .470 .113 .117 .014 1.172
500 .482 .482 .484 .056 .052 .003 1.169
1000 .482 .482 .480 .037 .037 .002 1.173

-0.1 100 -.094 -.089 -.089 .142 .133 .011 1.326
500 -.094 -.096 -.094 .061 .060 .003 1.336
1000 -.094 -.097 -.092 .040 .042 .002 1.334

Dimension d=5
0.2 100 .160 .155 .148 .057 .053 .010 .527

500 .160 .161 .156 .026 .025 .002 .554
1000 .160 .160 .158 .016 .018 .001 .560

0.5 100 .439 .434 .420 .081 .075 .008 .754
500 .439 .441 .437 .035 .035 .002 .778
1000 .439 .439 .437 .026 .025 .001 .782

-0.1 100 -.070 -.069 -.066 .021 .021 .006 .206
500 -.070 -.069 -.070 .010 .009 .001 .206
1000 -.070 -.070 -.069 .007 .007 .001 .208

Dimension d=10
0.2 100 .063 .064 .061 .027 .022 .012 .221

500 .063 .062 .062 .012 .011 .003 .247
1000 .063 .062 .063 .008 .008 .001 .257

0.5 100 .285 .276 .259 .069 .062 .016 .619
500 .285 .284 .279 .030 .031 .004 .694
1000 .285 .284 .283 .022 .022 .002 .698

-0.1 100 -.009 -.009 -.009 .000 .000 .000 .002
500 -.009 -.009 -.009 .000 .000 .000 .002
1000 -.009 -.009 -.009 .000 .000 .000 .002
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Table 4.2: Clayton copula. Simulation results for estimating the asymptotic standard de-
viation of weighted Spearman’s rho ρ̂c

n based on cj,n = j2, j = 1, . . . , n, (cf. formula (4.28))
by means of the nonparametric bootstrap: The table shows the empirical mean m(·) and the
empirical standard deviation σ̂(·) of the respective estimates, which are calculated based on 300
Monte Carlo simulations of sample size n of a d-dimensional Clayton copula with parameter θ
and 250 bootstrap samples. The bootstrap estimates are labeled by the superscript B.

θ n ρ m(ρ̂c
n) m(ρ̂c,B

n ) σ̂(ρ̂c
n) m(σ̂c,B) σ̂(σ̂c,B) m(

√

n σ̂c,B)

Dimension d=2
0.1 100 .072 .071 .070 .135 .134 .010 1.338

500 .072 .072 .073 .063 .060 .003 1.346
1000 .072 .070 .074 .041 .043 .002 1.349

0.5 100 .293 .281 .279 .137 .130 .013 1.298
500 .293 .294 .295 .061 .058 .004 1.298
1000 .293 .297 .297 .041 .041 .002 1.302

1 100 .478 .474 .477 .131 .121 .014 1.208
500 .478 .477 .473 .052 .054 .004 1.212
1000 .478 .476 .478 .037 .038 .002 1.209

Dimension d=5
0.1 100 .057 .053 .053 .043 .041 .010 .407

500 .057 .058 .055 .019 .019 .003 .427
1000 .057 .057 .058 .014 .014 .001 .432

0.5 100 .256 .254 .246 .071 .066 .011 .661
500 .256 .256 .250 .031 .031 .003 .684
1000 .256 .258 .256 .022 .022 .001 .692

1 100 .437 .430 .416 .084 .078 .009 .784
500 .437 .434 .432 .035 .036 .002 .816
1000 .437 .438 .437 .026 .026 .001 .821

Dimension d=10
0.1 100 .016 .015 .015 .012 .008 .005 .084

500 .016 .015 .016 .005 .005 .002 .107
1000 .016 .016 .016 .004 .003 .001 .110

0.5 100 .132 .127 .123 .049 .041 .018 .414
500 .132 .132 .130 .023 .022 .005 .494
1000 .132 .131 .131 .016 .016 .003 .508

1 100 .299 .293 .275 .081 .069 .016 .691
500 .299 .292 .290 .036 .035 .004 .791
1000 .299 .295 .298 .025 .026 .002 .813
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Both m(ρ̂c
n) and m(ρ̂c,B

n ) exhibit a bias which clearly decreases with increasing sample
size. Further, their values are quite close to each other for large sample sizes, espe-
cially for n = 1, 000. This also applies to σ̂(ρ̂c

n) and m(σ̂c,B), whose values show a
great similarity, which suggests that the proposed bootstrap method performs well to
estimate the asymptotic variance of

√
n(ρ̂c

n − ρ) for the considered copula models and
weights. Further, the standard deviation of the bootstrap estimator σ̂c,B decreases
with increasing sample size.

4.4 Empirical study

To illustrate the properties of the proposed weighted estimator for multivariate Spear-
man’s rho, we apply the theoretical results to financial data. We consider time series of
daily equity (log-) returns of the four international banks BNP Paribas (BNP), Credit
Suisse Group (CS), Deutsche Bank (DBK), and Barclays (BARC) during the period
from May 1997 to April 2010 (cf. section 2.1).

Figure 4.3 shows the development of the equity prices of all four banks over the
considered time horizon, plotted with respect to their value on May 6, 1997. In gen-
eral, all series evolve similarly. While equity prices proved to be quite stable in the
first half of the observation period, they are much more volatile in the second half. In
particular, equity prices from all four banks clearly show a positive trend from the year
2003 onwards, having their peak in mid-2007. Thereafter, they decrease in the course
of the beginning financial crisis; especially after the bankruptcy of the investment bank
Lehman Brothers in September 2008 we observe a sharp decline. Those observations
are emphasized by the development of the series of corresponding daily (log-) returns,
which are exemplary provided for banks BARC and CS in figure 4.4. Indeed, the re-
turns of those banks are less volatile in the first years of the observation period while
exhibiting a phase of rather high volatility between the years 2008 and 2010. This
especially applies to bank BARC. In addition, table 4.3 provides the estimated first
four moments (in %) of the return series for all banks. While the returns of all four
banks show a non-negative skewness and excess kurtosis, the large estimated kurtosis of
bank BARC is particularly noticeable. This does not only go in line with the observed
rather high volatile behavior of its equity prices/returns from 2007 onwards, but can
also be partly put down to one event in January 2009 where ”shares in BARC have
jumped by more than 70% after the bank wrote an open letter to reassure investors of
its continuing good health”; see BBC News (2009).

In order to apply the theoretical results discussed in the previous section, which
are derived under the assumption of independent observations, the returns have to be
standardized adequately. Assume therefore that the return of bank i, i = 1, . . . 4, at
discrete time t is modeled by a random variable Xi,t. We proceed according to the
methodology proposed by Patton (2002) where the analysis identifies the following
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Figure 4.3: Evolution of equity prices of the four banks over the considered time horizon,
plotted with respect to their value on May 6, 1997.

ARMA(1,1)-t-GARCH(1,1) specification to model the return series (cf. chapter 3):

Xi,t =µi + φiXi,t−1 + ψiǫi,t−1 + ǫi,t (4.29)

σ2
i,t =ωi + βiσ

2
i,t−1 + αiǫ

2
i,t−1 (4.30)

√
νi

σ2
i,t(νi − 2)

· ǫi,t ∼ i.i.d. tνi
. (4.31)

The model assumes that the conditional variances σ2
i,t evolve according to a GARCH(1,1)

process, and that the (standardized) innovations are independent and identically dis-
tributed according to a Student’s t-distribution with νi degrees of freedom, i = 1, . . . , 4.
The unknown parameters of the above models are estimated by means of a Quasi-
Maximum Likelihood (QML) method (see table 4.4 in appendix 4.5). Figure 4.5 gives
the autocorrelation function of the squared standardized returns of all banks, which
exhibit only minor serial correlation; the same applies to the standardized returns them-
selves. In addition, table 4.5 in appendix 4.5 displays the results of the Ljung-Box (LB)
Q-statistics, computed from the squared returns up to lag twenty. The null hypothesis
of no serial correlation is not rejected for all series.

Figure 4.6 shows the evolution of weighted multivariate Spearman’s rho and ordi-
nary multivariate Spearman’s rho of the banks’ standardized returns during the years
2004 to 2009, calculated according to equations (4.3) and (4.2). The estimation is
based on a moving window approach with window size n = 250 while the constants cj,n
for weighted Spearman’s rho are either cj,n = j (left panel) or cj,n = j2, j = 1, . . . , n
(right panel); cf. formula (4.28). The differences between the weighted and the ordi-
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Figure 4.4: Evolution of (log-) returns of equity prices of the banks BARC (upper
panel) and CS (lower panel) over the considered time horizon.

Table 4.3: Estimated first four moments (in %) of all four banks.

Mean StDev Kurtosis Skewness

BNP 0.0242 2.4589 6.4136 0.0054
CS -0.0021 2.6860 8.0689 0.2995
DBK -0.0017 2.5861 9.9674 0.2402
BARC -0.0120 3.2290 40.6446 1.4632

nary Spearman’s rho are well identifiable. For example in June 2007, financial markets
went into a first turmoil caused by the problems of the investment bank Bear Stearns,
which led to an increase in correlation between the banks’ returns. Both weighted
estimators for Spearman’s rho capture this development while the equally weighted es-
timator takes longer to incorporate this course of events. In this example, the weighted
estimators give a more satisfactory estimate of the current value of Spearman’s rho.
Naturally, the weighted estimator in the right panel of figure 4.6 is more volatile than
the estimator in the left panel due to the nature of the weights.
Since both weighting schemes satisfy condition (C) defined in the previous section,
the asymptotic variance of the weighted estimators as derived in theorem 4.2.6 can be
estimated using the nonparametric bootstrap procedure described at the end of section
4.2. Specifically, we consider a time period of 100 observations before June 1, 2007,
and assume that Spearman’s rho does not change throughout this period. Further,
cj = j, j = 1, . . . , n. The value of ρ̂c

n and of its estimated asymptotic variance (as
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Figure 4.5: Autocorrelation function of the squared standardized returns of banks BNP,
CS, DBK, and BARC.
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Figure 4.6: Weighted multivariate Spearman’s rho ρ̂c
n (dotted) and multivariate Spear-

man’s rho ρ̂n (solid) of the standardized returns of the four banks for the years 2004 to
2009. The estimation is based on a moving window approach with window size n = 250
and weights cj,n = j (left panel) and cj,n = j2 (right panel), cf. formula (4.28).

stated in equation (4.25)) in this period are

ρ̂c
n = 0.54092 and

√
n σ̂c,B = 0.731011. (4.32)

For comparison, we additionally provide the corresponding values of the equally weighted
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estimator ρ̂n in (4.2):

ρ̂n = 0.565052 and
√
n σ̂B

n = 0.516593. (4.33)

In particular, the estimated asymptotic variance of ρ̂c
n is larger than that of ρ̂n as

a result of the different weighting schemes. Based on these estimates, an asymptotic
(1−α)-confidence interval for Spearman’s rho can be calculated. According to theorem
4.2.6, such a confidence interval is given by

ρ̂c
n ± Φ−1

(
1 − α

2

)
σ̂c,B/

√
n and ρ̂n ± Φ−1

(
1 − α

2

)
σ̂B/

√
n,

respectively. Figure 4.7 shows the evolution of weighted multivariate Spearman’s rho
and ordinary multivariate Spearman’s rho of the banks’ standardized returns during
the years 2007 to 2009 (based on a moving window with samples size 250) together
with the asymptotic 95%-confidence intervals for Spearman’s rho calculated from the
estimated values in (4.32) and (4.33). Naturally, the confidence interval based on the
weighted estimator is wider than that derived from the equally weighted estimator
due to the larger asymptotic variance of the former. Further, we can conclude that
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Figure 4.7: Weighted multivariate Spearman’s rho ρ̂c
n (dotted) and multivariate Spear-

man’s rho ρ̂n (solid) of the standardized returns of the banks for the years 2007 to 2009.
The estimation is based on a moving window approach with window size n = 250 and
weights cj,n = j; cf. formula (4.28). The horizontal lines indicate asymptotic 95%-
confidence intervals for Spearman’s rho calculated from the estimated values in (4.32)
(dotted lines) and (4.33) (solid lines), respectively, which are estimated from 100 ob-
servations before June 1, 2007.

Spearman’s rho significantly differs from the value of Spearman’s rho in the time period
of 100 observations before June 2007, if its estimated values lies outside the confidence
intervals. Hence, for both estimators we observe a significant change of Spearman’s rho
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in the course of the financial crisis. This change, however, is indicated much earlier by
the weighted estimator, suggesting anew that this estimator captures (sudden) changes
in Spearman’s rho more satisfactorily.

4.5 Appendix

The following table displays the estimation output when fitting ARMA(1,1)-t-GARCH(1,1)
models to the banks’ equity return series; cf. equations (4.29)–(4.31).

Table 4.4: Estimates of the coefficients and asymptotic standard errors for the banks’
equity returns according to equations (4.29)–(4.31).

BNP CS DBK BARC
Coeff. SE Coeff. SE Coeff. SE Coeff. SE

Const. (µi) 0.0177 0.0703 -0.0064 0.0334 -0.0072 0.0737 0.0001 9.7534
AR(1) (φi) -0.1416 0.2610 0.0961 0.4726 -0.1799 0.1547 0.2365 2.5108
MA(1) (ψi) 0.1643 0.2578 -0.0913 0.4621 0.2583 0.1445 -0.1735 2.6166
GARCH Const. (ωi) 0.0129 0.0061 0.0262 0.0111 0.0191 0.0105 0.0590 0.0233
Lag. Var. (βi) 0.9176 0.0100 0.8885 0.0137 0.8995 0.0133 0.8880 0.0214
Lag. Squ. Err. (αi) 0.0824 0.0092 0.1115 0.0125 0.1005 0.0118 0.1092 0.0211
D.o.F (νi) 6.6600 0.6603 6.4639 0.6057 7.4878 0.9363 7.6297 0.9406

The table below shows the output of the Ljung-Box (LB) test for the banks’ standard-
ized return series. A description of the results is given in section 4.4.

Table 4.5: Value of the test statistic and corresponding p-value of the Ljung-Box (LB)
test for the squared standardized returns, calculated up to lag twenty.

BNP CS DBK BARC

LB Q-statistics 15.6468 23.0311 11.3763 15.3863
LB p-values 0.7383 0.2873 0.9359 0.7539



Chapter 5

Testing equality of pairwise rank
correlations in a multivariate
random vector

In this chapter, we consider statistical tests for the hypothesis that all pairwise Spear-
man’s rank correlation coefficients in a multivariate random vector are equal. The
tests are nonparametric and their asymptotic distributions are derived based on the
asymptotic behavior of the empirical copula process. Only weak assumptions on the
distribution function, such as continuity of the marginal distributions and continuous
partial differentiability of the copula, are required for obtaining the results. A nonpara-
metric bootstrap method is suggested for either estimating unknown parameters of the
test statistics or for determining the associated critical values. We present a simulation
study in order to investigate the power of the proposed tests. The results are compared
to a classical parametric test for equal pairwise Pearson’s correlation coefficients in a
multivariate random vector. The general setting also allows the derivation of a test
for stochastic independence based on Spearman’s rho. The proposed tests are applied to
financial data.

5.1 Preliminaries

Let X be a d-dimensional random vector with distribution function F, continuous uni-
variate marginal distribution functions F1, . . . , Fd and copula C. Bivariate Spearman’s
rho of the components Xk and Xl of X is defined as

ρkl =
Cov{Fk(Xk), Fl(Xl)}√

V ar{Fk(Xk)}
√
V ar{Fl(Xl)}

= 12

∫ 1

0

∫ 1

0
Ckl(uk, ul)dukdul − 3, k, l ∈ {1, . . . , d}, (5.1)

cf. section 2.3.3. Here, the copula Ckl denotes the bivariate copula which corresponds
to the kth and lth margin of C, that is, Ckl(uk, ul) = C(u(k,l)). We develop four
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(asymptotic) tests for the null hypothesis of equi Spearman’s rank-correlation, i.e.,
that the pairwise Spearman’s rho coefficients between all (distinct) components of X
are equal; cf. Gaißer and Schmid (2010). Due to the symmetry of Spearman’s rho (i.e.
ρkl = ρlk for all k, l ∈ {1, . . . , d}) we can confine ourselves to testing the equality of
all m =

(d
2

)
bivariate Spearman’s rho coefficients ρkl with k < l and k, l ∈ {1, . . . , d}.

Hence, the null hypothesis of tests for equi rank-correlation is given by

H0 : ρ12 = ρ13 = · · · = ρd−1,d, (5.2)

against the alternative that at least two of the ρkl in (5.2) differ. By defining the
m-dimensional vector

ρ = (ρ12, ρ13, . . . , ρ1d, ρ23, . . . , ρd−1,d)
′, (5.3)

the hypothesis in (5.2) can alternatively be expressed as

H0 : ρ = ρ1m versus H1 : ρ 6= ρ1m (5.4)

with unspecified parameter ρ satisfying −1/(d − 1) < ρ < 1 according to part (i) of
proposition 5.7.1; see appendix 5.7.1.

Assume that neither F or C nor the marginal distribution functions Fi, i = 1, . . . , d,
of the random vector X are known and let X1, . . . ,Xn be a random sample from X. A
nonparametric estimator of ρ is given by the random vector

ρ̂n = (ρ̂12,n, ρ̂13,n, . . . , ρ̂d−1,d,n)′, (5.5)

with

ρ̂kl,n = 12

∫ 1

0

∫ 1

0
Ĉkl,n(uk, ul)dukdul − 3 =

12

n

n∑

j=1

(1 − Ûkj,n)(1 − Ûlj,n) − 3, k < l,

(5.6)

which is obtained by replacing the copula Ckl in equation (5.1) by the empirical copula
Ĉkl,n = Ĉn(u(k,l)) as defined in (2.14); cf. section 2.3.3. To keep notation simple, we
will refer to the i-th element, i = 1, . . . ,m, of the vectors ρ and ρ̂n, respectively, as
ρi and ρ̂i,n in the following. The next theorem establishes asymptotic normality of the
random vector ρ̂n and forms the basis for the forthcoming results on the tests of equi
rank-correlation.

Theorem 5.1.1 Consider the random sample (Xj)j=1,...,n from the d-dimensional ran-
dom vector X with joint distribution function F, continuous univariate marginal distri-
bution functions F1, . . . , Fd, and copula C. Under the assumption that the i-th partial
derivatives DiC(u) of C exist and are continuous for i = 1, . . . , d, we have

√
n (ρ̂n − ρ)

d−→ Z ∼ N(0m,Σ
asym) as n→ ∞.
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The elements Σasym
(k,l)(s,t) of Σasym are given by

Σasym
(k,l)(s,t) = 144

∫

[0,1]d

∫

[0,1]d
E{GC(u(k,l))GC(v(s,t))}dudv (5.7)

where k < l and s < t, and Gaussian process GC as defined in equation (2.17); cf.
theorem 2.2.8.

Proof. The assertion is based on the weak convergence of the empirical copula process√
n(Ĉn − C) to the Gaussian process GC (see theorem 2.2.8). Note that

√
n (ρ̂n − ρ) = g[

√
n {Ĉn(u) − C(u)}]

can be expressed as a linear and continuous map g : ℓ∞([0, 1]d) → IRm of the empirical
copula process. The weak convergence of

√
n (ρ̂n−ρ) to the random vector Z = g(GC)

follows according to the continuous mapping theorem. Using the fact that GC is a tight
Gaussian process, lemma 3.9.8 in van der Vaart and Wellner (1996), p. 377, implies that
Z is multivariate normally distributed with mean vector zero and covariance matrix
Σasym. In particular,

Σasym
(k,l)(s,t) = E

{
12

∫

[0,1]d
GC(u(k,l))du · 12

∫

[0,1]d
GC(v(s,t))dv

}

and an application of Fubini’s theorem yields the asserted form of Σasym
(k,l)(s,t). �

Observe that the process GC(u(k,l)) in equation (5.7) has the form

GC(u(k,l)) = BC(u(k,l)) −DkC(u(k,l))BC(u(k)) −DlC(u(k,l))BC(u(l)).

In particular, the covariance matrix Σasym of the limiting random vector Z depends on
the unknown copula C. In section 5.2, we make use of the nonparametric bootstrap as
described in section 2.2.2 to estimate it. This method has also been utilized by Schmid
and Schmidt (2006) in order to estimate the variance of a multivariate version of Spear-
man’s rho, cf. section 2.3.3. Even if the copula is known and although theorem 5.1.1
yields a closed-form expression for Σasym, the latter can only be calculated explicitly
for some special copulas (cf. Schmid and Schmidt (2007a)). For example if C is the
independence copula, i.e. C = Π , it can be shown that Σasym

(k,l)(k,l) = 1 and Σasym
(k,l)(s,t) = 0,

for all (k, l) 6= (s, t) and, hence, Σasym = Im.

Remark. Note that, in terms of the rank correlation matrix P = (ρkl)1≤k,l≤d of
X, hypothesis (5.2) is equivalent to the assertion that P = ρ1d1

′
d + (1 − ρ)Id with

unknown rank correlation coefficient ρ. It is well-known that a general matrix B of the
form B = r1d1

′
d +(1−r)Id with parameter r ∈ [−1, 1] is a Pearson’s correlation matrix

(i.e. there exists a d-dimensional random vector X with equal pairwise Pearson’s corre-
lation coefficients rij , i 6= j) if and only if −1/(d− 1) < r < 1. The range of ρ such that
a general matrix B = ρ1d1

′
d +(1− ρ)Id is a rank correlation matrix has been discussed
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in Embrechts et al. (2002) and is restated in proposition 5.7.1 (appendix 5.7.1) together
with a shorter proof.

The following test statistics for equi rank-correlation are all formulated in terms of
the random vector ρ̂n. They are thus nonparametric and their asymptotic distribution
under the null hypothesis of equi rank-correlation can be derived from the asymptotic
behavior of

√
n (ρ̂n−ρ). In particular, they can be applied without further assumptions

on the marginal distribution functions than continuity. We further give theoretical
proofs of the validity of the bootstrap procedures, which are used in the tests for either
estimating unknown parameters of the test statistics or for determining the associated
critical values.
Note that tests for equi rank-correlation also play a role for the choice of an appropriate
copula in multivariate distribution modeling, the latter being the central theme of many
works; see e.g. Fermanian (2005), Dobrić and Schmid (2007), Savu and Trede (2008),
and Genest et al. (2009). Since the bivariate Spearman’s rho coefficients of popular
copulas such as the multivariate Archimedean copulas (as introduced in section 2.2.1)
are equal, tests for equi rank-correlation can be used to verify this copula assumption.
Similar (asymptotic) statistical tests based on Kendall’s tau (see (2.43)) can be derived
once the asymptotic behavior of Kendall’s tau using the empirical copula process has
been established.

5.2 Statistical tests for equi rank-correlation

We introduce four nonparametric hypothesis tests for equi rank-correlation of a d-
dimensional random vector X with distribution function F and copula C.

5.2.1 Test statistics Tn,1 and Tn,2

Using the same notation as in the previous section, the random vector X is equi rank-
correlated if and only if the pairwise differences between ρi and ρi+1, i = 1, . . . ,m− 1,
are zero. Thus, a first test statistic for equi rank-correlation takes the form

Tn,1 =
n

m− 1

m−1∑

i=1

(ρ̂i,n − ρ̂i+1,n)2. (5.8)

Note that Tn,1 is not invariant in the sense that a permutation of the univariate margins
of X may lead to a different test statistic. Instead, it relies on the order of the Spear-
man’s rho coefficients as they are mapped to the vector ρ; cf. (5.3). This property is
less desirable as it may affect the power of the test (see also discussions in section 5.4.2).
The following test statistics are therefore invariant with respect to such permutations.
We define a second test statistic for equi rank-correlation by

Tn,2 =
n

m

m∑

i=1

(ρ̂i,n − ρ̂n)2, (5.9)
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with ρ̂n = 1/m
∑m

i=1 ρ̂i,n. It is based on another sufficient and necessary condition
for equi-rank correlation, namely that the variance of all coefficients ρi, i = 1, . . . ,m,
is zero. For both test statistics, we reject H0 in formula (5.4) for large values of
Tn,i, i = 1, 2, that is, Tn,i > ci with ci being an appropriate critical value. The next
theorem establishes their asymptotic null distribution.

Theorem 5.2.1 Let (Xj)j=1,...,n denote a random sample from the d-dimensional ran-
dom vector X with distribution function F, continuous univariate marginal distribution
functions F1, . . . , Fd, and copula C. Under the null hypothesis (5.4) and under the pre-
requisites of theorem 5.1.1 with the related notation, the test statistics Tn,i, i = 1, 2,
have limiting distributions, that is,

Tn,i
d−→Wi, for n→ ∞,

with non-degenerated random variables Wi, i = 1, 2. In particular, the Wi are in distri-
bution equivalent to a linear combination of independent χ2- distributed random vari-
ables :

W1 =

r∑

k=1

λkχ
2
νk

where the weights λk are the r distinct, non-zero eigenvalues of the matrix 1
m−1A

′AΣasym

with algebraic multiplicity νk. The (m− 1) ×m matrix A is defined as

A =




1 −1 0 0 . . . 0
0 1 −1 0 . . . 0
...

...
0 . . 0 1 −1 0
0 . . 0 0 1 −1



, (5.10)

and Σasym denotes the asymptotic covariance matrix of
√
n (ρ̂n−ρ), cf. theorem 5.1.1.

Further,

W2 =
r∑

k=1

δkχ
2
µk

where the weights δk are the r distinct, non-zero eigenvalues of the matrix BΣasym with
algebraic multiplicity µk and matrix B = 1

m(Im − 1
m1m1′

m).

Proof. Observe that both test statistics Tn,i, i = 1, 2, allow for a quadratic form repre-
sentation under H0. Namely, with matrix A as defined in formula (5.10),

Tn,1 =
n

m− 1

m−1∑

i=1

(ρ̂i,n − ρ̂i+1,n)2 =
1

m− 1
{
√
n(Aρ̂n −Aρ)}′{

√
n(Aρ̂n −Aρ)}

=
√
n(ρ̂n − ρ)′

1

m− 1
A′A

√
n(ρ̂n − ρ),
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since Aρ = 0m−1 under H0, and

Tn,2 =
n

m

m∑

i=1

(ρ̂i,n − ¯̂ρn)2 = nρ̂′
n

1

m
(Im − 1

m
1m1′

m)ρ̂n

= nρ̂′
n

1

m
(Im − 1

m
1m1′

m)ρ̂n − 2nρ̂′
n

1

m
(Im − 1

m
1m1′

m)ρ

+nρ′ 1

m
(Im − 1

m
1m1′

m)ρ (5.11)

=
√
n(ρ̂n − ρ)′

1

m
(Im − 1

m
1m1′

m)
√
n(ρ̂n − ρ), (5.12)

as the last two terms in equation (5.11) vanish under H0. An application of the con-
tinuous mapping theorem together with theorem 5.1.1 yields

Tn,1
d−→ Z′ 1

m− 1
A′AZ = W1 and Tn,2

d−→ Z′ 1

m
(Im − 1

m
1m1′

m)Z = W2

for n→ ∞ and Z ∼ N(0m,Σ
asym). The fact that the Wi, i = 1, 2, can be expressed as

weighted sums of independent χ2-distributed random variables is a direct consequence
of their representation as quadratic forms of normally distributed random vectors; see
e.g. Scheffé (1959), p. 418. �

Both limiting distributions depend on the asymptotic covariance matrix Σasym of√
n (ρ̂n − ρ) (see theorem 5.1.1) and their explicit form can only be determined for

some special copulas of simple structure. For example if C = Π , the weights λk and
δk are the eigenvalues of the matrices A′A and B, respectively, since Σasym = Im. In
particular, matrix B possesses the eigenvalues 1/m with algebraic multiplicity m − 1
and 0 with algebraic multiplicity 1. Hence in the case of stochastic independence, Tn,2

has asymptotically the same distribution as the random variable 1
mY where Y follows

a χ2-distribution with m − 1 degrees of freedom (cf. section 5.5). Instead of a direct
estimation of the quantiles/critical values of the limiting distributions of Tn,1 and Tn,2,
we make use of a bootstrap technique described in Bickel and Ren (2001).

We denote by Fd the set of all d-dimensional distribution functions. By writing
the vector ρ of the m bivariate Spearman’s rho coefficients as a function ρ(F ) of
F ∈ Fd (see proof of theorem 5.2.2 for a description of ρ(F )), consider the functionals
T1 : Fd → IRm−1 and T2 : Fd → IRm defined by

T1(F ) = Aρ(F ) and T2(F ) = ρ(F ) − 1′
mρ(F )

m
1m,

with matrix A given in formula (5.10). The null hypothesis of equi rank-correlation in
(5.4) can then equivalently be written as

H0,i : F ∈ F0,i = {G ∈ Fd : Ti(G) = 0} for i ∈ {1, 2}. (5.13)
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We reject H0,i whenever the values of the test statistics Tn,i, i = 1, 2, exceed a certain

critical value. Let F̂n be the empirical distribution function of the random sample
(Xj)j=1,...,n of the random vector X; see (2.18). Note that

Tn,1 = τ1{
√
nT1(F̂n)} and Tn,2 = τ2{

√
nT2(F̂n)}

with continuous functions τ1 : IRm−1 → IR+ and τ2 : IRm → IR+ defined by

τ1(t1, . . . , tm−1) =
1

m− 1

m−1∑

i=1

t2i and τ2(t1, . . . , tm) =
1

m

m∑

i=1

t2i .

Let F̂B
n denote the empirical distribution function of the bootstrap sample (XB

j )j=1,...,n

obtained by sampling from (Xj)j=1,...,n with replacement. We then use the quantiles
of the bootstrap distribution of

τi[
√
n{Ti(F̂

B
n ) − Ti(F̂n)}]

as critical values for the test statistics Tn,i, i = 1, 2. The next theorem shows that this
approach yields the asymptotically correct critical values (cf. theorem 2.1 in connection
with corollary 2.1 in Bickel and Ren (2001)).

Theorem 5.2.2 Consider the random sample (Xj)j=1,...,n from the d-dimensional ran-
dom vector X with distribution function F, continuous univariate marginal distribution
functions F1, . . . , Fd, and copula C. Let further (XB

j )j=1,...,n be the bootstrap sample

which is obtained by sampling from (Xj)j=1,...,n with replacement and suppose that cB,n
i,α

is the (1 − α)-quantile of the distribution of τi[
√
n{Ti(F̂

B
n ) − Ti(F̂n)}], i = 1, 2. Under

the assumption that the k-th partial derivatives DkC(u) of C exist and are continuous
for k = 1, . . . , d, we have that

(i) the test procedure based on Tn,i and critical value cB,n
i,α is asymptotically of size α,

i.e.,
IP(Tn,i > cB,n

i,α ) −→ α, n→ ∞,

if F ∈ F0,i, i = 1, 2, as defined in formula (5.13), and

(ii) the test procedure based on Tn,i and critical value cB,n
i,α is consistent, i.e.,

IP(Tn,i ≤ cB,n
i,α ) −→ 0, n→ ∞,

if F 6∈ F0,i, i = 1, 2.

Proof. For the proof of assertions (i) and (ii), we begin by showing that

√
n{Ti(F̂

B
n ) − Ti(F̂n)} (5.14)

converges weakly to the same limit as

√
n{Ti(F̂n) − Ti(F )} (5.15)
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in probability, i = 1, 2. To do so, we utilize the functional delta-method (theorem
2.2.7) that requires Hadamard differentiability of the map Ti. As usual, let ℓ∞([0, 1]d)
be the space of all uniformly bounded real-valued functions defined on [0, 1]d, equipped
with the uniform metric m(f1, f2) = supt∈[0,1]d |f1(t) − f2(t)|; cf. (2.15). Observe that
Ti, i = 1, 2, can be represented as composition of three maps:

Ti(F ) = hi ◦ g ◦ φ(F ).

The map φ : D(IR
d
) → ℓ∞([0, 1]d) transforms the d-dimensional distribution function

F into its copula function C and is defined by equation (2.19). The vector ρ of bivariate
Spearman’s rho coefficients can be represented as a map g : ℓ∞([0, 1]d) → IRm of the
copula C according to representation (5.1), i.e.,

g(C) = ρ = ρ(C).

Finally,

h1(ρ) = Aρ and h2(ρ) = ρ − 1′
mρ

m
1m.

The functions g and hi, i = 1, 2, are continuous and linear and, hence, Hadamard-
differentiable. Hadamard differentiability of φ as a map into ℓ∞([p, q]d) with 0 < p <
q < 1 is studied by van der Vaart and Wellner (1996) (lemma 3.9.28 in connection
with lemma 3.9.23) under certain assumptions on the joint and marginal distribution
functions of X; see also proof of theorem 2.2.8. As in the latter proof, it is possible to
concentrate on the case where the marginal distributions F1, . . . , Fd are uniform distri-
butions on [0, 1] and thus Hadamard differentiability of φ as a map into ℓ∞([0, 1]d) is
obtained given the imposed conditions on the copula (cf. Fermanian et al. (2004)). To
show this, some more notation is needed:
Consider the random vector U = (U1, . . . , Ud) of the random variables Uk = Fk(Xk), k =
1, . . . , d, with distribution function F ⋆ and marginal distribution functions F ⋆

k . Note

that F ⋆(u) = C(u) for all u ∈ [0, 1]d. Let F̂ ⋆
n be the empirical distribution function of

the random sample U1, . . . ,Un of U, and F̂ ⋆,B
n the empirical distribution function of

the bootstrap sample UB
1 , . . . ,U

B
n with UB

j = (F1(X
B
1j), . . . , Fd(X

B
dj )), j = 1, . . . , n.

Since φ(F )(u) = φ(F ⋆)(u) for all u ∈ [0, 1]d, we obtain that

Ti(F ) = hi[g{φ(F )}] = hi[g{φ(F ⋆)}] = Ti(F
⋆).

Analogously, it follows that Ti(F̂n) = Ti(F̂
⋆
n) and Ti(F̂

B
n ) = Ti(F̂

⋆,B
n ) as φ(F̂n)(u) =

φ(F̂ ⋆
n)(u) and φ(F̂B

n )(u) = φ(F̂ ⋆,B
n )(u) for all u ∈ [0, 1]d (The latter can be proven

along the same lines as in the proof of lemma 1 in Fermanian et al. (2004)).

Hence, weak convergence of
√
n{Ti(F̂

B
n )−Ti(F̂n)} and

√
n{Ti(F̂n)−Ti(F )} in equations

(5.14) and (5.15) is equivalent to weak convergence of

√
n{Ti(F̂

⋆,B
n ) − Ti(F̂

⋆
n)} and

√
n{Ti(F̂

⋆
n) − Ti(F

⋆)},

where F ⋆ has compact support [0, 1]d. We know that the empirical process
√
n(F̂ ⋆

n−F ⋆)
converges weakly in ℓ∞([0, 1]d) to a d-dimensional Brownian bridge BF ⋆ with covariance
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function E{BF ⋆(u)BF ⋆(v)} = F ⋆(u ∧ v) − F ⋆(u)F ⋆(v); cf. part (i) of the proof of
theorem 2.2.8. Note that BF ⋆ = BC . This yields that

√
n(F̂ ⋆,B

n − F̂ ⋆
n) converges weakly

to the same limit in probability due to theorem 3.6.1 in van der Vaart and Wellner
(1996), p. 347. According to our discussions above and under the assumption of the
theorem, the map φ is Hadamard-differentiable at C = F ⋆ as a map from D([0, 1]d)
(tangentially to C([0, 1]d), cf. proof of theorem 2.2.8). As before, the space C([0, 1]d)
comprises all continuous real-valued functions and the space D([0, 1]d) all real-valued
cadlag functions defined on [0, 1]d, both equipped with the uniform metric m as defined
in (2.15). As a consequence of the chain rule (lemma 3.9.27 in van der Vaart and
Wellner (1996), p. 388), Ti is Hadamard-differentiable with derivative ṪC,i, i = 1, 2.
An application of the functional delta-method together with theorem 3.9.11 in van der
Vaart and Wellner (1996) finally yields that, in probability,

√
n{Ti(F̂

⋆,B
n ) − Ti(F̂

⋆
n)}

converges weakly to the same limit ṪC,i(BC) as
√
n{Ti(F̂

⋆
n) − Ti(F

⋆)}, i = 1, 2.

Let GB
i,n be the distribution function of τi[

√
n{Ti(F̂

B
n ) − Ti(F̂n)}] and denote by Gi

the distribution function of the limit τi{ṪC,i(BC)} with corresponding (1−α)-quantile
ci,α, i = 1, 2. Since BC is a tight Gaussian process and ṪC,i is a continuous linear map
(as composition of continuous linear maps), the random vector ṪC,i(BC) is normally
distributed according to lemma 3.9.8 in van der Vaart and Wellner (1996). This implies
that τi{ṪC,i(BC)} is equivalent in distribution to a finite, weighted sum of independent
χ2-distributed random variables (cf. proof of theorem 5.2.1). Hence, Gi is a continuous
and strictly increasing distribution function on IR+, i = 1, 2. According to the above
weak convergence results and Polyá’s Theorem (see e.g. theorem 11.2.9 in Lehmann
and Romano (2005), p. 429) we then have that

sup
x∈IR+

|GB
i,n(x) −Gi(x)| → 0 n→ ∞,

as τi is a continuous function. This finally yields that cB,n
i,α converges to ci,α in proba-

bility (lemma 11.2.1 in Lehmann and Romano (2005)). Hence, if F ∈ F0,i, i = 1, 2,

IP(Tn,i > cB,n
i,α ) = IP(τi[

√
n{Ti(F̂n) − Ti(F )}] > cB,n

i,α )

= IP(τi[
√
n{Ti(F̂n) − Ti(F )}] > ci,α) + o(1)

→ 1 −Gi(ci,α) = α, n→ ∞,

and assertion (i) follows.
For the proof of assertion (ii), let ‖ · ‖ denote the Euclidean norm in IRm or IRm−1,
respectively. Since

√
n{Ti(F̂n)−Ti(F )} converges weakly in IRm or IRm−1, respectively,√

n{Ti(F̂n) − Ti(F )} =: Yn is uniformly tight (theorem 2.4 in van der Vaart (1998)),
i.e., for every ε > 0 there exists a constant M > 0 such that

sup
n

IP(‖ Yn ‖> M) < ε.
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For K > 0, we thus have

IP(‖
√
nTi(F̂n) ‖> K) = IP(‖ Yn +

√
nTi(F ) ‖> K)

= IP(‖ Yn +
√
nTi(F ) ‖> K | ‖ Yn ‖> M) IP(‖ Yn ‖> M)

+IP(‖ Yn +
√
nTi(F ) ‖> K | ‖ Yn ‖≤M) IP(‖ Yn ‖≤ M)

≥ IP(‖
√
nTi(F ) ‖ −M > K)(1 − ε).

Since Ti(F ) 6= 0 if F 6∈ F0,i, i = 1, 2, the last expression converges to 1 − ε for

n → ∞. Hence, ‖ √
nTi(F̂n) ‖ converges in probability to infinity as ε can be chosen

arbitrarily small. Due to the continuity of τi and the fact that τi(t) → ∞ as ‖ t ‖→ ∞,

assertion (ii) follows from cB,n
i,α

IP→ ci,α and an application of the continuous mapping
theorem. �

5.2.2 Test statistics Tn,3 and Tn,4

While in the previous section we made use of the nonparametric bootstrap to estimate
the critical values of the test statistics, both tests for equi rank-correlation discussed
next involve the estimation of the asymptotic covariance Σasym of the random vector√
n(ρ̂n−ρ) (cf. theorem 5.1.1) by means of the bootstrap. As above, let (XB

j )j=1,...,n be
the bootstrap sample which is obtained by sampling from (Xj)j=1,...,n with replacement
and denote by ρ̂B

n the corresponding estimator of the vector of pairwise Spearman’s rho
coefficients calculated according to (5.5). The bootstrap estimator for the asymptotic
covariance matrix Σasym is then given by

Σ̂B
n = n Cov(ρ̂B

n | X1, . . . ,Xn). (5.16)

Based on this estimator, the third test statistic Tn,3 for equi rank-correlation is similarly
constructed as the test statistic Tn,1 by using the fact that, under H0, Aρ = 0m−1 with
matrix A as defined in formula (5.10). It takes the form

Tn,3 = n(Aρ̂n)′(AΣ̂B
nA

′)−1(Aρ̂n), (5.17)

A further test statistic is given by

Tn,4 =
√
n
{

max
1≤j≤m

ρ̂j,n − min
1≤j≤m

ρ̂j,n

}
, (5.18)

which is based on the fact that, in the case of equi-rank correlation, the values of the
maximum and the minimum Spearman’s rho coefficients coincide.
Both test statistics posses a non-degenerated limiting distribution under the null hy-
pothesis as shown next.

Theorem 5.2.3 Consider the random sample (Xj)j=1,...,n from the d-dimensional ran-
dom vector X with distribution function F, continuous univariate marginal distribution
functions F1, . . . , Fd, and copula C. Let further (XB

j )j=1,...,n be the bootstrap sample

which is obtained by sampling from (Xj)j=1,...,n with replacement and denote by Σ̂B
n
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the bootstrap estimator for the asymptotic covariance matrix Σasym of
√
n(ρ̂n −ρ) (cf.

theorem 5.1.1), as given in equation (5.16). Under the assumption of theorem 5.1.1
and under the null hypothesis (5.4), we have that

Tn,i
d−→Wi, for n→ ∞,

with non-degenerated random variables Wi, i = 3, 4. In particular, W3 is distributed
according to a χ2-distribution with m− 1 degrees of freedom and W4 = max1≤j≤mZj −
min1≤j≤mZj with Z ∼ N(0m,Σ

asym).

Proof. As a by-product of the proof of theorem 5.2.2, it follows that, under the theo-
rem’s prerequisites, the sequence

√
n(ρ̂B

n − ρ̂n) converges weakly to the same Gaussian
limit as

√
n(ρ̂n−ρ) in probability. Since in addition the sequences {n(ρ̂B

k,n− ρ̂k,n)(ρ̂B
l,n−

ρ̂l,n)} for 1 ≤ k, l ≤ m are asymptotically uniformly integrable, consistency of Σ̂B
n is

obtained (cf. Shao and Tu (1995), p. 79).
Regarding the limiting behavior of Tn,3 under the null hypothesis, we then have that

Tn,3 = n(Aρ̂n)′(AΣ̂B
nA

′)−1(Aρ̂n)
d−→W3 ∼ χ2

m−1,

due to theorem 5.1.1 in connection with Slutsky’s theorem. In order to establish the
asymptotic distribution of Tn,4 under H0, observe that

Tn,4 =
√
n
{

max
1≤i≤m

ρ̂i,n − min
1≤i≤m

ρ̂i,n

}
= max

1≤i≤m
{
√
n(ρ̂i,n − ρ)} − min

1≤i≤m
{
√
n(ρ̂i,n − ρ)},

since ρ = ρ1m. Under H0, the test statistic Tn,4 can thus be represented as a continuous
map of the process

√
n(ρ̂n −ρ) and an application of the continuous mapping theorem

together with theorem 5.1.1 yields the convergence in distribution of Tn,4 to W4 as
stated in the theorem. �

We thus reject the null hypothesis at level α whenever Tn,3 > χ2
α,m−1, the (1 − α)-

quantile of the χ2-distribution with m − 1 degrees of freedom, or the value of Tn,4

exceeds the (1 − α)-quantile of the distribution of W4, respectively. Since the boot-
strap covariance estimator Σ̂B

n for Σasym does not depend on ρ, the respective quan-
tiles/critical values of Tn,4 can directly be determined by Monte Carlo simulation. Note
that the bootstrap technique by Bickel and Ren (2001), which we used in section 5.2.1
to determine the critical values of the test statistics Tn,1 and Tn,2, cannot be applied
here since the function h4(ρ) = max1≤j≤m ρj − min1≤j≤m ρj fails to be (Hadamard-)
differentiable (cf. proof of theorem 5.2.2).

Corollary 5.2.4 The test procedures based on Tn,3 and Tn,4 are asymptotically of size
α and consistent as n→ ∞.

Note that consistency is obtained since Tn,i → ∞ in probability if ρ 6= ρ1m, i = 3, 4.
For completeness, we briefly mention another straightforward test statistic for equi
rank-correlation which is equivalent to Tn,4 and defined as

Tn,5 =
√
nmax

i<j
|ρ̂i,n − ρ̂j,n|.
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Its asymptotic distribution can be derived similarly to Tn,4; however, it is computa-
tionally more complex as it involves the comparison of all distinct pairs of Spearman’s
rho coefficients.

As described in section 2.2.2, we approximate Σ̂B
n in practice by the sample covari-

ance matrix of K independent bootstrap samples from (Xj)j=1,...,n, i.e. (cf. Efron and
Tibshirani (1993))

nΣ̂(ρ̂B
n ) =

1

K − 1

K∑

b=1

{
√
nρ̂B

n,(b) −
√
nρ̂B

n,(b)}{
√
nρ̂B

n,(b) −
√
nρ̂B

n,(b)}′ (5.19)

where ρ̂B
n,(b) denotes the bootstrap replication of ρ̂n, which corresponds to the bth

bootstrap sample, b = 1, . . . ,K. The sum in formula (5.19) is applied element-wise.
Similarly as in section 4.3 of the previous chapter, tables 5.2 and 5.3 in appendix
5.7.2 display the results of a simulation study which investigates the finite-sample
performance of the bootstrap procedure. Specifically, we consider the d-dimensional
equi-correlated Gaussian copula with correlation matrix K(κ) = κ1d1

′
d +(1−κ)Id and

−1/(d − 1) < κ < 1, as defined in (2.9), and the d-dimensional Clayton copula with
parameter θ > 0, as given in (2.13). For dimensions d = 3, 5, and 10, different parameter
choices and sample sizes n (see the first and third column of tables 5.2 and 5.3), we
provide the empirical mean (denoted by m(·)), the sample covariance matrix (denoted
by Σ̂(·)), and the standard deviation (denoted by σ̂(·)) of the respective estimates.
The estimation is based on 300 Monte Carlo simulations of sample size n and 300
bootstrap samples, respectively, which have been drawn with replacement from each
original sample. We display the minimal and the maximal elements of the respective
estimated vectors (columns 5 and 6). Regarding the estimated matrices (columns 7 to
12), we show the minimum and the maximum of all diagonal and off-diagonal elements
separately (where the respective columns are headed by ’diag’ and ’odiag’). The second
column of tables 5.2 and 5.3 shows the true value of bivariate Spearman’s rho which
is constant for all bivariate margins. For the Gaussian copula this value is determined
using the following relationship between the parameters κij of the Gaussian copula and
the bivariate Spearman’s rho coefficients ρij (cf. McNeil et al. (2005), theorem 5.36, p.
215):

κij = 2 sin
(πρij

6

)
. (5.20)

For the Clayton copula, ρij is calculated numerically. Compared to m(ρ̂n) (column5)
and m(ρ̂B

n ) (column 6), there is a finite-sample bias observable which considerably de-
creases with increasing sample size. The covariance estimates nΣ̂(ρ̂n) and the empirical
means of the bootstrap covariance estimates m(nΣ̂(ρ̂B

n )) for Σasym are given in columns
7 to 10. Their values are close to each other what shows that the bootstrap procedure
performs well for the considered copulas. Further, the standard error of the bootstrap
covariance estimations (columns 11 and 12) decreases fast with increasing sample size.
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Remark. Note that the test setting described in section 5.1 can be generalized:
Instead of testing the null hypothesis H0 : ρ1 = ρ2 = · · · = ρm, only a subset of pairwise
Spearman’s rho coefficients {ρi, i ∈ I} with index set I ⊂ {1, . . . ,m} of the random
vector X could be tested for equality. The related test statistics are analogously de-
rived and their asymptotic distributions are established using the techniques discussed
previously. For example, this generalization may be of interest in the context of in-
terclass correlation models for familial data as mentioned in chapter 1. Within the
model of parent-sibling correlation (see Helu and Naik (2006)), one central assumption
is that the pairwise correlations of measurements between one parent and the children
are equal. Those correlation coefficients form a subset of the vector of pairwise corre-
lations between all family members. The assumption of their equality can be tested
(without further assumptions on the marginal distributions than continuity) using the
above tests for equal pairwise Spearman’s rho coefficients.

5.3 Classical tests for equi linear-correlation

In this section, we give an overview of the existing literature on parametric tests for
equi linear-correlation. Statistical tests for equi linear-correlation have been derived by
several authors under the assumption of multivariate normality. For the time being, let
X therefore be normally distributed with mean vector µ, covariance matrix S = (sij),
and linear correlation matrix R = (rij).
A likelihood ratio test for the null hypothesis of equi linear-correlation and equal vari-
ances

H0 : S = s2{(1 − r)Id + r1d1
′
d}

with unspecified variance s2 and linear correlation r is discussed in Wilks (1946). Based
on a random sample (Xj)j=1,...,n from X, he proposes the following test statistic

Sn,1 = −n ln

[
|Ŝn|

(ŝ2n)d(1 − r̂n)d−1{1 + (d− 1)r̂n}

]
(5.21)

with sample covariance matrix Ŝn = (ŝij,n). Estimates of s2 and r are

ŝ2n =
1

d

d∑

i=1

ŝii,n and r̂n =
1

d(d− 1)

∑

i6=j

ŝij,n/ŝ
2
n.

Under H0, Sn,1 is asymptotically χ2-distributed with d(d+1)/2− 2 degrees of freedom
and we reject H0 if Sn,1 > χ2

α,d(d+1)/2−2, the latter being the corresponding (1 − α)-
quantile. Regarding further tests for certain structures of the covariance matrix, we
refer to Wilks (1946), Arnold (1981), and Rencher (2002).
A likelihood ratio test for the less restrictive hypothesis of equal linear-correlation co-
efficients (regardless of the value of the variances), i.e., rij = r (i 6= j) with unspecified
r satisfying −1/(d − 1) < r < 1, is difficult to derive and no closed form solution
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is available; see Lawley (1963). Approximate likelihood ratio tests for equal linear-
correlation coefficients of a multivariate normal distribution have been developed by
several authors; we mention Bartlett (1950, 1951), Anderson (1963), and Aitkin et al.
(1968). Based on the sample correlation matrix R̂ = (r̂ij), Lawley (1963) considered
the statistic

Sn,2 =
n

λ̂2
n

{∑

i<j

(r̂ij,n − r̂n)2 − µ̂n

∑

k

(r̂k,n − r̂n)2
}

(5.22)

where r is estimated by

r̂n = 2
∑

j<k

r̂jk,n/{d(d − 1)},

and

λ̂n = 1 − r̂n, µ̂n = (d− 1)2(1 − λ̂2
n)/{d − (d− 2)λ̂2

n}, r̂k,n =
∑

i6=k

r̂ik,n/(d− 1).

According to the last mentioned author, the test statistic Sn,2 is - under H0 - asymp-
totically χ2-distributed with (d − 2)(d + 1)/2 degrees of freedom. Thus, we reject
the null hypothesis whenever the value of Sn,2 exceeds the (1 − α)-quantile of the χ2-
distribution with (d − 2)(d + 1)/2 degrees of freedom. Gleser (1968) shows that the
asymptotic null distribution of the above test statistic does not depend on the un-
known parameter r. The next section presents a simulation study where the latter test
for equi linear-correlation is taken as the benchmark for the four proposed tests for
equi rank-correlation derived in sections 5.2.1 and 5.2.2.

5.4 Simulation study

The following simulation study investigates and compares the power of the four pro-
posed tests Tn,i, i = 1, . . . , 4, of equi rank-correlation. We start with describing the
set of considered alternative hypothesis; thereafter, the simulation results are given in
section 5.4.2.

5.4.1 Modeling the set of alternative hypothesis

Consider them bivariate Spearman’s rho coefficients ρi, i = 1, . . . ,m, of a d-dimensional
random vector as defined in (5.3). The alternative to equi rank-correlation is that at
least two of the m bivariate Spearman’s rho coefficients ρi differ. Given the fact that
there are infinitely many sets of alternative hypothesis, we proceed as follows.

Three different types of common dependence structures are investigated within the
simulation study. First, the d-dimensional Gaussian copula is considered as defined in
formula (2.9) with the general correlation matrix K = (κij). For this copula, the set of
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alternative hypothesis is defined by the following formula: For fixed j ∈ IN and fixed
∆ ∈ IR,

ρi(k) = ρ
{

1 + k∆
( i− 1

m

)j}
, i = 1, . . . ,m, (5.23)

where ρ ∈ [−1, 1] and k = 0, 1, 2, . . . , kmax with kmax = max{s ∈ IN | |ρm(s)| ≤ 1}. The
case k = 0 corresponds to the null hypothesis of equi rank-correlation, i.e., all coeffi-
cients ρi(k) equal the parameter ρ. The difference between the bivariate Spearman’s
rho coefficients gets more pronounced the larger the parameter k is. In the simulation
study, each value of k corresponds to a point of the power curve. The corresponding
parameters of the Gaussian copula are determined using formula (5.20). For every k it
is verified beforehand whether K is a valid correlation matrix.
The difference between the Spearman’s rho coefficients is determined by the fixed pa-
rameter ∆ and the factor ( i−1

m )j . In particular, the difference increases with increasing
indices i and j. Note that kmax depends on the dimension d and, thus, on the total
number of pairwise Spearman’s rho coefficients. The set of alternative hypothesis de-
fined by formula (5.23) is illustrated in figure 5.1 for two different choices of j.
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Figure 5.1: The set of alternative hypothesis. Bivariate Spearman’s rho coefficients
ρi(k), k = 1, . . . , kmax, i = 1, . . . ,m, according to formula (5.23) for d = 5, ρ =
0.2, ∆ = 0.2, and j = 1 (left panel) and j = 3 (right panel).

The second copula is the t-copula with ν degrees of freedom and correlation ma-
trix K, as defined (2.10). Here, the set of alternative hypothesis is modeled as for the
Gaussian copula according to formula (5.23). Since no analytical formula similar to
(5.20) exists, the relationship between the parameters of the t-copula and Spearman’s
rho is determined numerically.

The third considered copula is a mixture of a Gaussian and a Clayton copula. It is
defined by the convex combination

C(u1, . . . , ud;K,λ, θ) = λCG(u1, . . . , ud;K) + (1 − λ)CCl(u1, . . . , ud; θ), (5.24)

with 0 ≤ λ ≤ 1, CG a Gaussian copula with correlation matrix K (see (2.9)), and CCl
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a Clayton copula with parameter θ as defined in (2.13). Here, the set of alternative
hypothesis is modeled by stepwise increasing the parameter λ. The case λ = 0 corre-
sponds to the null hypothesis of equi rank-correlation and each value of λ represents
a point on the simulated power curve. The parameters of the Gaussian copula are
chosen such that its associated bivariate Spearman’s rho coefficients ρi are all equal
to ρi(kmax) as implied by formula (5.23), i = 1, . . . ,m; the parameter of the Clayton
copula is determined such that all associated bivariate Spearman’s rho coefficients ρi

are equal to ρ (cf. formula (5.23)).

5.4.2 Simulation results

Lawley’s test on equi linear-correlation, based on the test statistic given by formula
(5.22), serves as a benchmark for the four tests on equi rank-correlation introduced
in sections 5.2.1 and 5.2.2. Figures 5.2, 5.3, and 5.4 show the power curves of those
tests together with the benchmark test for the three dependence structures and the
alternative hypothesis described in section 5.4.1. We illustrate the power of the tests
for the three dimensions d = 3, 5, and 10, and the following three different types of
marginal distributions: The standard normal, exponential, and Cauchy distribution,
which are light, semi-heavy, and heavy-tailed, respectively. Note that equal Pearson’s
correlation coefficients generally do not imply equal pairwise Spearman’s rho coeffi-
cients, and vice versa. We obtain equality of all Pearson’s correlation coefficients for
the considered dependence structures under the null hypothesis of equi rank-correlation
since all marginal distributions are of the same type.
Calculations are based on 10, 000 Monte-Carlo simulations of sample size n = 500. The
number of bootstrap replications is either 3, 000 for determining the critical values for
the tests based on Tn,1 and Tn,2 or 300 for estimating the (asymptotic) covariance ma-
trix Σasym regarding the test statistics Tn,3 and Tn,4. The determination of the critical
value of the test based on Tn,4 is further based on 3, 000 Monte Carlo samples. The
significance level α is set to 0.1. For modeling the alternative hypothesis as described
by formula (5.23), ρ is set to 0.2 and j = 1 in all simulations. The parameter ∆ is either
0.05 or 0.1, depending on the location on the curve. For clarity reasons, kmax is chosen
such that kmax = max{s ∈ IN | |ρm(s)| ≤ 0.6}. The power curve for the mixture of
a Gaussian and a Clayton copula, as defined in formula (5.24), is determined for each
value of λ = j/10, j = 0, . . . , 10. In order to allow for comparisons, all power curves are
further plotted as a function of the average ρ̄ of all pairwise Spearman’s rho coefficients
under the respective hypothesis.

The following observations can be made: Irrespective of the copula, the test based
on Tn,3 maintains its significance level only in dimension d = 3; the discrepancy gets
more pronounced with increasing dimension. Here, the approximation of the exact
distribution by the asymptotic χ2-distribution might be affected by the large number
of parameters to be estimated in the test statistic. For example, if the sample size is
set to n = 5, 000 (and all other quantities are left unchanged) the simulated size for
Tn,3 reduces to 0.34 for dimension d = 10 in the case of a Gaussian copula. Likewise,
the performance of the test can be improved by increasing the number of bootstrap
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Figure 5.2: Gaussian copula. Upper panel: Simulated power curves of Tn,1 (dotted-
dashed), Tn,2 (long-dashed), Tn,3 (solid), and Tn,4 (dashed). Lower panel: Simulated
power curves of Sn,2 for standard normal (solid), exponential (dashed), and Cauchy
(dotted-dashed) marginal distributions. The power curves are provided for dimension
d = 3, 5, 10 and plotted as a function of the average Spearman’s rho coefficients ρ̄;
calculations are based on 10, 000 independent Monte Carlo samples of size n = 500 of
a Gaussian copula with parameters according to formula (5.23). The significance level
α is set to 0.1.

replications for estimating the asymptotic covariance matrix Σasym : If, for example,
the number of bootstrap replications is 3, 000 the simulated size is 0.30 for the Gaus-
sian copula in dimension d = 10 and for sample size n = 500 (with all other quantities
being equal). By contrast, the tests based on Tn,1, Tn,2, and Tn,4 maintain their signif-
icance level for every dimension. However, in terms of its power, Tn,1 performs poorly
in higher dimensions, and is even outperformed by the other three tests for dimension
d = 3. This behavior in high dimensions can partly be put down to the specific choice
of the set of alternative hypothesis (as described in section 5.4.1). Since this test statis-
tic takes into account the order of the Spearman’s rho coefficients (cf. discussions in
section 5.2.2), the pairwise differences between ρi and ρi+1 and, thus, the value of the
test statistic decrease with increasing dimension under a given alternative. The power
of Tn,2, Tn,3, and Tn,4 is similar for dimension d = 3. For dimension d = 5, the power
curves of the tests based on Tn,2 and Tn,4 are quite close to each other while, for dimen-
sion d = 10, the test based on Tn,2 exhibits a slightly better power than Tn,4. In the
case of a Gaussian copula with standard normal margins, the former is even superior
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Figure 5.3: t-copula. Upper panel: Simulated power curves of Tn,1 (dotted-dashed),
Tn,2 (long-dashed), Tn,3 (solid), and Tn,4 (dashed). Lower panel: Simulated power
curves of Sn,2 for standard normal (solid), exponential (dashed), and Cauchy (dotted-
dashed) marginal distributions. The power curves are provided for dimension d =
3, 5, 10 and plotted as a function of the average Spearman’s rho coefficients ρ̄; calcu-
lations are based on 10, 000 independent Monte Carlo samples of size n = 500 of a
t-copula with parameters according to formula (5.23) and ν = 3. The significance level
α is set to 0.1.

to the classical test based on Sn,2 for dimension d = 10. Since the derivation of the
asymptotic distribution of Sn,2 is based on the assumption of multivariate normality,
the corresponding test performs well in this case. Otherwise, we often observe a bias
in its significance level, especially for dimension d = 10.
In order to investigate the behavior of Tn,1 under other alternative hypothesis, fig-
ure 5.5 displays the simulated power curves of the tests based on the test statistics
Tn,i, i = 1, . . . , 4, for the Gaussian copula and the alternative that only one Spearman’s
rho coefficient changes. In particular, the Spearman’s rho coefficients are modeled
according to

ρm(k) = ρ(1 + k∆) and ρi(k) = ρ i = 1, . . . ,m− 1, k = 1, . . . , kmax, (5.25)

with all other quantities as described above. For the considered copula model, it turns
out that - although the test based on Tn,1 is still outperformed by the other tests - the
difference in power between the tests has decreased, even in dimension d = 10.
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Figure 5.4: Mixture of Gaussian and Clayton copula. Upper panel: Simulated
power curves of Tn,1 (dotted-dashed), Tn,2 (long-dashed), Tn,3 (solid), and Tn,4 (dashed).
Lower panel: Simulated power curves of Sn,2 for standard normal (solid), exponential
(dashed), and Cauchy (dotted-dashed) marginal distributions. The power curves are
provided for dimension d = 3, 5, 10 and plotted as a function of the average Spearman’s
rho coefficients ρ̄; calculations are based on 10, 000 independent Monte Carlo samples
of size n = 500 of the mixture copula described in Section 5.4.1. The significance level
α is set to 0.1.

Altogether, the simulation study implies that test statistic Tn,2 and Tn,4 should be
favored in terms of statistical power over all other considered tests. In addition, the
latter is of lower computational complexity.

5.5 A test for stochastic independence

A simple test for stochastic independence of all components of a multivariate random
vector can directly be derived from the asymptotic behavior of ρ̂n established in the-
orem 5.1.1. Although it is not the main focus of this chapter, we briefly outline this
approach.

Consider a d-dimensional random vector X with joint distribution function F and
copula C and let (Xj)j=1,...,n denote a random sample from X. According to theorem
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Figure 5.5: Gaussian copula. Simulated power curves of Tn,1 (dotted-dashed), Tn,2

(long-dashed), Tn,3 (solid), and Tn,4 (dashed) for dimension d = 3, 5, 10 and plotted
as a function of the Spearman’s rho coefficient ρm. Calculations are based on 10, 000
independent Monte Carlo samples of size n = 500 of a Gaussian copula with parameters
according to formula (5.25). The significance level α is set to 0.1.

5.1.1, we have under the hypothesis of stochastic independence (i.e. C(u) = Π (u) for
all u ∈ [0, 1]d)

√
nρ̂n

d−→ Z ∼ N(0m, Im)

for n→ ∞. It follows that

n

m∑

i=1

ρ̂2
i,n

d−→W

where W has a χ2-distribution with m degrees of freedom. A test for stochastic inde-
pendence is thus performed by rejecting the null hypothesis of stochastic independence
if n

∑m
i=1 ρ̂

2
i,n > χ2

α,m, the corresponding (1 − α)-quantile of the χ2-distribution with
m degrees of freedom. This test is statistically tractable since no further unknown
parameters have to be estimated. It also complements the set of tests for stochas-
tic independence based on Spearman’s rho considered by Quessy (2009) who studied
asymptotic local efficiency. Regarding further rank tests for multivariate independence,
we refer to Genest and Rémillard (2004) and Genest et al.(2007) and references therein.

5.6 Empirical study

In this section, we apply the four proposed tests for equi rank-correlation to financial
data. The analysis is based on the same data as in section 4.4. We consider equity re-
turn series of the four banks BNP Paribas (BNP), Credit Suisse Group (CS), Deutsche
Bank (DBK), and Barclays (BARC) during the period from May 1997 to April 2010.
Since the above tests are derived under the assumption of independent observations,
we apply those to the banks’ standardized return series. A detailed description of the
standardization approach is given in the aforementioned section. In particular, the em-
pirical analysis indicates that all (squared) standardized returns contain minor serial
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correlation. Further empirical properties of the banks’ equity prices and (standardized)
returns are listed in section 4.4.

Figure 5.6 shows the evolution of all six pairwise Spearman’s rho coefficients of the
standardized return series from January 2003 to December 2006 calculated according to
(5.6), based on a moving window approach with window size 250. It becomes apparent
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Figure 5.6: Pairwise Spearman’s rho. Evolution of all six bivariate Spearman’s
rho coefficients of the standardized return series of BNP Paribas (BNP), Credit Su-
isse Group (CS), Deutsche Bank (DBK), and Barclays (BARC) from January 2003 to
December 2006, calculated according to (5.6). The vertical line indicates January 3rd,
2005. Calculations are based on a moving window approach with window size 250.

that, from year 2005 onwards, all six pairwise Spearman’s rho coefficients evolve closely
to each other. Before, especially in the year 2004, there is a considerable difference
observable. All in all, pairwise Spearman’s rho ranges from 0.2890 in September 2004
(between the banks CS and BARC) to 0.7083 in April 2003 (between the banks BNP
and DBK) during the considered time horizon. We apply the four proposed tests for
equi rank-correlation to two time periods before and after the 3rd January 2005, which
is indicated in figure 5.6 by the dotted vertical line. Both time periods comprise 250
observations. The output of all four tests is provided in table 5.1 where we give the
values of the test statistics and the corresponding p-values for both periods. It turns
out that, in the period before January 3rd, 2005 (period P1), the null hypothesis of equi
rank-correlation is rejected by all tests at a significance level of 10%. The tests based on
Tn,1 and Tn,2 thereby exhibit the smallest p-value rejecting the null hypothesis even at
a significance level of 1%. For the period after January 3rd, 2005 (period P2), the test
results are indifferent. For the tests based on Tn,i, i = 1, . . . , 3, the null hypothesis of
equi rank-correlation cannot be rejected at all standard significance levels. In contrast,
the test based on Tn,4 has a p-value of 0.0827, implying that the null hypothesis for Tn,4
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Table 5.1: Values of the test statistics Tn,i, i = 1, . . . , 4, and corresponding p-values
for the two periods before (period P1) and after (period P2) January 3rd, 2005, which
comprises 250 observations each. The number of bootstrap replications is chosen as
described in section 5.4.2.

Period P1 Period P2
test statistic p-value test statistic p-value

Tn,1 4.4368 0.0097 0.8155 0.3307
Tn,2 1.4982 0.0057 0.5513 0.1090
Tn,3 10.7700 0.0562 8.0250 0.1549
Tn,4 3.2778 0.0157 2.2963 0.0827

can be rejected at a significance level of 10%. In the light of our discussions at the end
of section 5.1, the use of an Archimedean copula to model the dependence structure
between the banks’ standardized returns in the first period seems thus less appropriate
according to the test results.

5.7 Appendix

5.7.1 Rank correlation coefficient ρ

Embrechts et al. (2002) discuss sufficient and necessary conditions on ρ such that the
matrix B = ρ1d1

′
d+(1−ρ)Id is a rank correlation matrix. Those conditions are restated

in the following proposition along with a shorter proof.

Proposition 5.7.1 Let X = (X1, ...,Xd) be a d-dimensional random vector with d ≥ 3.

1. If the random vector X is equi rank-correlated with rank correlation coefficient ρ,
then − 1

d−1 < ρ < 1.

2. If 6
π arcsin(

− 1
d−1

2 ) < ρ < 1, then there exists a random vector X which is equi
rank-correlated with rank correlation coefficient ρ.

Proof. 1. If the vector X is equi rank-correlated with rank correlation matrix
P = ρ1d1

′
d+(1−ρ)Id, then P is automatically a linear correlation matrix since bivariate

Spearman’s rho is defined as the linear correlation coefficient of the random variables
Fi(Xi), i = 1, . . . , d (cf. formula (5.1)); hence − 1

d−1 < ρ < 1.

2. Let 6
π arcsin(

− 1
d−1

2 ) < ρ < 1 and define r = 2 sin(ρπ
6 ). Then, there exists a random

vector X which is multivariate normally distributed with linear correlation matrix
R = r1d1

′
d + (1 − r)Id. Since, in this case, the relationship (5.20) holds, X is equi

rank-correlated with rank correlation coefficient ρ. �
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5.7.2 Simulation results referring to the estimation of the asymptotic
covariance matrix

The following two tables display the simulation results of the bootstrap procedure for
estimating the asymptotic variance/covariance of pairwise Spearman’s rho. A descrip-
tion of the results is given in Section 5.2.2.

Table 5.2: Gaussian copula. Simulation results related to the estimation of the asymptotic co-
variance matrix of the vector of bivariate Spearman’s rho coefficients ρ̂n (defined in section 5.1)
by means of the nonparametric bootstrap: Empirical means m(·), sample covariance matrices

Σ̂(·), and (element-wise) standard deviations σ̂(·) of the Spearman’s rho estimates. The latter
are based on 300 Monte Carlo simulations of sample size n of a d-dimensional equi-correlated
Gaussian copula with parameter κ and 300 bootstrap samples. The bootstrap estimates are
labeled by the superscript B. We display the minimal and the maximal element of the respec-
tive estimated vectors (columns 5 and 6). Regarding the estimated matrices (columns 7 to 12),
the minimum and the maximum of all diagonal (columns headed by ’diag’) and all off-diagonal
entries (columns headed by ’odiag’) are shown separately.

κ ρ n m(ρ̂n) m(ρ̂B
n ) nΣ̂(ρ̂n) m(nΣ̂(ρ̂B

n )) σ̂(nΣ̂(ρ̂B
n ))

diag odiag diag odiag diag odiag

Dimension d = 3
0.5 0.483 100 max .421 .416 .680 .281 .676 .246 .150 .100

min .413 .409 .634 .253 .656 .237 .146 .096
500 max .469 .468 .681 .259 .638 .238 .084 .061

min .468 .467 .595 .188 .635 .235 .077 .054
1000 max .477 .476 .674 .268 .641 .240 .068 .051

min .475 .474 .557 .216 .631 .233 .063 .047
0.2 0.191 100 max .133 .131 1.135 .332 .968 .165 .137 .144

min .123 .121 1.032 .268 .956 .153 .132 .136
500 max .182 .182 .988 .213 .946 .170 .096 .081

min .178 .177 .828 .111 .933 .156 .087 .077
1000 max .187 .187 .987 .169 .947 .164 .092 .069

min .183 .183 .903 .107 .933 .153 .089 .066
0 0 100 max -.054 -.055 1.005 .041 1.022 .002 .125 .149

min -.066 -.066 .862 -.042 1.020 -.008 .111 .139
500 max -.011 -.011 1.135 .059 1.005 .004 .094 .084

min -.015 -.015 .976 -.052 .999 -.005 .087 .081
1000 max -.004 -.004 1.074 -.020 1.005 .007 .087 .072

min -.008 -.008 .847 -.031 .990 -.001 .081 .066

Dimension d = 5
0.5 0.483 100 max .425 .420 .742 .281 .677 .252 .161 .107

min .414 .409 .581 .049 .654 .124 .139 .072
500 max .472 .471 .700 .280 .645 .240 .087 .061

min .467 .466 .560 .064 .630 .125 .071 .043
1000 max .479 .479 .699 .277 .637 .242 .072 .053

min .476 .475 .553 .073 .629 .127 .061 .040
0.2 0.191 100 max .137 .134 1.057 .269 .977 .174 .135 .150

min .119 .118 .834 -.018 .954 .034 .116 .104
500 max .182 .181 1.003 .255 .953 .171 .094 .084

min .174 .174 .869 -.061 .930 .044 .086 .068



120 Chapter 5. Testing equality of pairw. rank correl. in a multiv. random vector

Table 5.2: (continued)

κ ρ n m(ρ̂n) m(ρ̂B
n ) nΣ̂(ρ̂n) m(nΣ̂(ρ̂B

n )) σ̂(nΣ̂(ρ̂B
n ))

diag odiag diag odiag diag odiag

1000 max .187 .187 1.087 .242 .953 .168 .089 .073
min .183 .183 .856 -.081 .935 .040 .080 .057

0 0 100 max -.054 -.054 1.190 .182 1.022 .019 .123 .162
min -.069 -.069 .857 -.102 1.012 -.020 .108 .106

500 max -.009 -.009 1.189 .161 1.012 .008 .094 .089
min -.016 -.016 .891 -.140 .999 -.015 .085 .069

1000 max -.004 -.004 1.163 .149 1.011 .009 .091 .076
min -.008 -.008 .857 -.093 .994 -.006 .082 .063

Dimension d = 10
0.5 0.483 100 max .429 .424 .730 .330 .673 .257 .158 .109

min .412 .407 .515 .028 .649 .115 .134 .067
500 max .477 .476 .750 .355 .641 .246 .089 .062

min .468 .467 .504 .041 .622 .124 .074 .041
1000 max .480 .480 .813 .342 .641 .247 .076 .056

min .475 .474 .554 .061 .622 .126 .062 .038
0.2 0.191 100 max .139 .137 1.118 .305 .972 .177 .139 .150

min .120 .118 .766 -.132 .941 .028 .117 .097
500 max .182 .182 1.118 .294 .954 .173 .096 .089

min .174 .174 .770 -.136 .934 .035 .082 .061
1000 max .187 .187 1.126 .294 .952 .174 .094 .076

min .182 .181 .765 -.097 .932 .037 .080 .055
0 0 100 max -.049 -.049 1.214 .192 1.037 .025 .134 .168

min -.072 -.072 .846 -.179 1.005 -.024 .107 .104
500 max -.006 -.006 1.195 .181 1.016 .015 .097 .093

min -.017 -.017 .872 -.221 .991 -.012 .081 .065
1000 max -.003 -.003 1.217 .209 1.014 .011 .092 .080

min -.009 -.010 .854 -.195 .994 -.013 .078 .057
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Table 5.3: Clayton copula. Simulation results related to the estimation of the asymptotic co-
variance matrix of the vector of bivariate Spearman’s rho coefficients ρ̂n (defined in section 5.1)
by means of the nonparametric bootstrap: Empirical means m(·), sample covariance matrices

Σ̂(·), and (element-wise) standard deviations σ̂(·) of the Spearman’s rho estimates. The latter
are based on 300 Monte Carlo simulations of sample size n of a d-dimensional equi-correlated
Gaussian copula with parameter r and 300 bootstrap samples. The bootstrap estimates are
labeled by the superscript B. We display the minimal and the maximal element of the respec-
tive estimated vectors (columns 5 and 6). Regarding the estimated matrices (columns 7 to 12),
the minimum and the maximum of all diagonal (column headed by ’diag’) and all off-diagonal
entries (column headed by ’odiag’) are shown separately.

θ ρ n m(ρ̂n) m(ρ̂B
n ) nΣ̂(ρ̂n) m(nΣ̂(ρ̂B

n )) σ̂(nΣ̂(ρ̂B
n ))

diag odiag diag odiag diag odiag

Dimension d = 3
0.1 0.072 100 max .018 .017 .936 .106 1.023 .081 .120 .148

min .011 .010 .892 .048 1.017 .075 .115 .135
500 max .062 .062 1.005 .096 1.010 .076 .097 .087

min .054 .054 .915 .004 1.006 .069 .087 .080
1000 max .066 .066 1.015 .107 1.013 .074 .094 .075

min .065 .065 .973 .047 1.006 .067 .085 .070
0.5 0.294 100 max .229 .226 .944 .262 .930 .246 .147 .136

min .228 .225 .875 .170 .929 .229 .142 .130
500 max .286 .286 .974 .316 .915 .248 .097 .083

min .283 .283 .862 .246 .901 .240 .092 .077
1000 max .290 .290 1.070 .283 .903 .241 .085 .069

min .286 .286 .862 .172 .895 .239 .081 .064
2 0.682 100 max .623 .617 .398 .192 .421 .211 .135 .088

min .616 .611 .360 .162 .410 .199 .127 .082
500 max .670 .669 .423 .218 .397 .204 .068 .044

min .669 .668 .375 .209 .394 .199 .063 .042
1000 max .674 .673 .427 .230 .398 .204 .056 .038

min .673 .673 .364 .185 .393 .201 .049 .033

Dimension d = 5
0.1 0.072 100 max .016 .016 1.139 .174 1.025 .081 .128 .159

min .003 .002 .854 -.085 1.008 -.012 .113 .107
500 max .063 .063 1.136 .169 1.012 .082 .096 .091

min .055 .055 .909 -.128 .997 .003 .086 .069
1000 max .069 .069 1.149 .207 1.006 .077 .093 .077

min .064 .064 .803 -.049 .996 .000 .080 .062
0.5 0.294 100 max .248 .245 .969 .313 .937 .265 .154 .145

min .219 .216 .813 -.015 .907 .083 .135 .107
500 max .284 .284 .961 .273 .911 .246 .098 .082

min .279 .278 .806 -.021 .900 .088 .087 .065
1000 max .290 .290 .926 .325 .908 .242 .086 .071

min .287 .287 .751 -.004 .896 .088 .078 .056
2 0.682 100 max .628 .622 .467 .272 .418 .210 .142 .090

min .618 .612 .364 .125 .397 .120 .130 .057
500 max .670 .669 .451 .234 .402 .206 .072 .047

min .665 .664 .306 .078 .390 .123 .061 .032
1000 max .676 .676 .414 .237 .396 .205 .055 .038

min .674 .673 .370 .108 .388 .126 .049 .027
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Table 5.3: (continued)

θ ρ n m(ρ̂n) m(ρ̂B
n ) nΣ̂(ρ̂n) m(nΣ̂(ρ̂B

n )) σ̂(nΣ̂(ρ̂B
n ))

diag odiag diag odiag diag odiag

Dimension d = 10
0.1 0.072 100 max .029 .028 1.186 .266 1.045 .091 .132 .166

min -.004 -.004 .864 -.163 1.001 -.015 .109 .104
500 max .063 .062 1.201 .243 1.019 .084 .101 .095

min .052 .052 .854 -.171 .994 -.004 .081 .066
1000 max .068 .068 1.256 .279 1.017 .082 .094 .080

min .061 .061 .819 -.151 .994 -.003 .078 .058
0.5 0.294 100 max .236 .233 1.109 .389 .937 .250 .160 .152

min .220 .217 .777 -.047 .909 .073 .135 .101
500 max .287 .287 1.055 .403 .918 .251 .100 .088

min .279 .279 .736 -.084 .892 .084 .087 .061
1000 max .292 .292 1.017 .394 .911 .249 .089 .077

min .286 .285 .778 -.071 .893 .083 .075 .054
2 0.682 100 max .627 .621 .461 .278 .428 .215 .145 .094

min .612 .607 .323 .073 .396 .120 .121 .052
500 max .674 .673 .474 .275 .403 .208 .072 .048

min .666 .665 .339 .065 .383 .121 .058 .029
1000 max .678 .677 .464 .258 .397 .204 .057 .040

min .674 .673 .328 .077 .385 .122 .047 .026



Chapter 6

Time dynamic and hierarchical
dependence modeling of a
supervisory portfolio of banks

Taking the perspective of a supervisor, we develop two (asymptotic) statistical test pro-
cedures based on Spearman’s rho to analyze the association between the trading books of
eleven German banks, having a regulatory approved internal market risk model. Based
on real, clean profit and loss data and Value-at-Risk estimates of the eleven banks, we
thereby analyze the portfolio’s association both over time and across banks. On the
one hand, we consider a statistical hypothesis test which is designed to detect signif-
icant long-term level changes of the portfolio’s association over time. On the other
hand, a statistical hypothesis test is proposed to identify the distinct contributions of
sub-portfolios towards the overall level of association in a hierarchical manner. Since
Spearman’s rho is a copula-based measure of association, the tests are nonparametric
and invariant with respect to the marginal distribution functions.

6.1 Motivation

Association between financial asset returns changes over time; cf. section 2.1. Espe-
cially in the course of deteriorating financial market conditions, this association often
increases, which is referred to as the ’correlation breakdown’ (cf. chapter 1). Well-
established risk measures such as the Value-at-Risk however react quite sensitive to-
wards any changes of a portfolio’s correlation structure according to empirical studies;
see e.g. Duellmann et al. (2007). This may, for example, affect a bank’s internal cap-
ital planning which is usually based on Value-at-Risk measures. The internal capital
planning process refers to the determination of an adequate level of economic capital
for taking market risk or other risk positions. Further, the Basel II capital accord de-
scribes the framework under which banks can develop their own Value-at-Risk models
in order to determine the amount of regulatory capital to be maintained. Under the
assumption that the banks’ risk models work correctly, the supervisory authorities can
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assess the risk stemming from each single bank based on those Value-at-Risk estimates.
Increasing association between financial asset returns, however, may also impact the
extent of co-movement between the banks’ proprietary trading profits and losses (in
short: P&L), i.e., the correlation between the banks P&Ls may increase during deterio-
rating market conditions. This can lead to a rising systemic risk in the banking sector,
that is, to the risk of simultaneous large losses at several banks. The identification of
such a type of co-movement of the banks’ P&L is thus of interest to the supervisory
authorities as it gives information about the systemic fragility of the financial system.

In this chapter, we take the perspective of a supervisor. The supervisor aggregates
the respective bank trading portfolios into a hypothetical portfolio, the supervisory
portfolio, for analyzing its inherent systemic risk. In particular, we develop two (asymp-
totic) test procedures to analyze the association in the supervisory portfolio both over
time and across banks; cf. Gaißer et al. (2009). Regarding the time-dynamic analysis,
the interest lies in detecting long-term level shifts of association over time. Possible level
shifts should be detected as soon as new information arrives. We develop a two-step
test procedure which takes those aspects into account. Based on the concept of control
charts, the procedure is of sequential form. For an introduction to the theory of control
charts and for different control chart designs, we refer to Wieringa (1999) and Schmid
and Knoth (2000). There is a large literature on detecting structural changes in time
series, exemplarily we mention Pawlak et al. (2004) or Steland (2002) and Golosnoy
and Schmid (2007) who utilize control chart techniques in financial theory. In addition
to the time-dynamic aspect, a hypothesis test is developed to analyze the hierarchical
dependence structure of the supervisory portfolio at a specific point in time. This aims
at identifying those banks that significantly contribute to a change of the overall as-
sociation in the supervisory portfolio. In other words, this procedure simultaneously
determines those groups of banks that show significant changes of association. We use
Spearman’s rho in order to quantify the degree of association between the P&Ls of the
supervisory portfolio (cf. section 2.3.3) and thus, the two proposed test procedures are
based on Spearman’s rho. As Spearman’s rho is a direct functional of the copula, the
test procedures are derived from the weak convergence of the empirical copula process;
cf. theorem 2.2.8.

Our analysis is based on real, clean P&L data and corresponding Value-at-Risk
(VaR) estimates from eleven German banks having a regulatory approved internal
market-risk model. Those clean P&L data do not reflect the actual profits and losses
of a trading book since they are calculated under the assumption that the bank’s
trading book positions do not change within one day. However, they are often of more
advantage for such empirical studies than e.g. economic P&L data. In general, there
are only few studies working with real P&L data and VaR forecasts from such banks.
Berkowitz and O’Brien (2002) analyze the daily VaR forecasts and corresponding P&L
series of six large US banks to evaluate the performance of the banks’ VaR models while
Jaschke et al. (2003) provide a comparable analysis of VaR forecasts and P&L series of
13 German banks having a regulatory approved internal market model in the year 2001.
The present study is a sequel of the work by Memmel and Wehn (2006), who focus
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on the VaR estimation of a supervisory portfolio by using different cross-correlation
estimates under the assumption of multivariate normally distributed asset returns.

6.2 Control charts

We give a brief introduction to the concept of control charts in the following since the
test procedure for Spearman’s rho derived in section 6.3.1 is partly based on control-
chart techniques; see e.g. Wieringa (1999) and Schmid and Knoth (2000). Control
charts are an important tool of statistical process control (SPC). Being developed in
the 1920s by Shewhart (1931), they were genuinely applied in the context of quality
control management to improve processes in manufacturing and production. Mean-
while, they are used in many other fields, also in financial applications; we refer e.g.
to Steland (2002) and Golosnoy and Schmid (2007) for an application of control chart
techniques in the context of financial risk and portfolio analysis.

SPC applies statistical methods to control and monitor a given process with the
aim to detect significant structural changes e.g. in the form of significant changes of the
process’ location or its variability. In particular, the aim is to detect such changes as
soon as possible. In order to determine whether the process is in ’statistical control’ or
not, control charts are applied for monitoring the process. Based on observations from
the underlying process, the value of a summary statistic, the so called control statistic,
is calculated. These values of the control statistic are compared to so called control
limits which are determined in such a way that, as long as those values are within the
limits, it can be assumed that the process is in statistical control. In contrast, a value
of the control statistic being outside the control limits indicates that the process is out
of control. Wieringa (1999) refers to such points as out-of-control signals. A control
chart is a time plot of the values of the control statistic and the control limits; an
illustration is given in figure 6.1.

Remark. Shewhart (1931) originally distinguished between two components of
the process’ variation. On the one hand, the random, natural variation which has
common causes and cannot be tied down to specific influencing factors. This ’common-
cause variation’ is regarded as to some extent predictable. This means that, if the
process is subject to common-cause variation (or, if the process is in-control), it is
possible to determine limits to this variation based on past observations of the process.
In contrast, the process is subject to non-random, systematic variation (also ’special-
cause-variation’) if its variation exceeds those limits, i.e., the process is out-of-control.
This sort of variation can usually be put down to some specific source. Hence, control
charts serve to detect the variation in the process which may be due to ’special-cause-
variation’.

Two phases must be distinguished when working with control charts. In a first step,
the control chart has to be calibrated, i.e., the control limits have to be determined
adequately. This is usually done based on a so called ’pre-sample’, a sample of past
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Figure 6.1: Control chart. Control limits (dashed lines) and values of the control
statistic.

observations. Note that in order to obtain appropriate control limits, the pre-sample
must stem from the in-control process. The second step then comprises the actual
usage of the control chart to analyze and monitor the process by drawing sequentially
samples from it.

In their original forms, control charts are based on the assumption of independent
observations and are often referred to as classical control charts. Since in many areas
of application, however, this assumption is not fulfilled, the so called modified control
charts have been introduced which generalize the classical control charts to the case
of dependent observations; cf. Wieringa (1999) and Schmid and Knoth (2000). As
mentioned before, control chart designs further vary with respect to the process’ char-
acteristic to be monitored such as the location or the variation. In the following, we
give examples for classical control charts for the location of a process since they serve
as a basis for the forthcoming test procedure in section 6.3.1.

Classical control charts for the mean of normally distributed observations

Assume that, at discrete time t, the value of the process of interest is modeled by the
random variable Xt. The Xt are stochastically independent for all t. Further, it is often
assumed in the literature that Xt is normally distributed. In particular, Xt ∼ N(µ, σ2)
in the in-control state. Both µ and σ are assumed to be known. As described above,
they are usually estimated based on a pre-sample from the in-control process. Let
further Zt be the control statistic whose values are calculated based on observations
from {Xt}t∈Z.
Shewhart-type control charts. Here, the control statistic is defined as

Zt = Xt,
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i.e., it only depends on the currently observed value of the process Xt. It is concluded
that Xt is out-of-control at time t if

|Zt − µ| > cσ, (6.1)

where c denotes a pre-specified constant which determines the width of the control
limits. In particular, the values of the control statistic are compared to the control
limits of the form µ± cσ. Note that monitoring the process’ mean over time as in (6.1)
can be formulated as the following test setting; cf. Wieringa (1999). At each time t,
we test the hypothesis

H0 : E(Xt) = µ versus H1 : E(Xt) 6= µ,

where H0 is rejected if |Zt−µ| > cσ. The constant c can be determined using statistical
arguments based on the distribution of the control statistic. Setting the probability
of observing an out-of-control signal while the process is in-control to α, we obtain
the control limits µ ± z1−α\2σ with c = z1−α\2 being the (1 − α \ 2)-quantile of the
standard normal distribution. Note that Shewhart (1931) originally determined the
control limits due to economic considerations, setting c = 3.

EWMA control charts. In contrast to Shewhart-type control chart, the control
statistic of this chart is not only based on the current, but also on previous observations.
It is given by

Zt = (1 − λ)Zt−1 + λXt, t ≥ 1,

where the start value is usually chosen as the target value for the mean, i.e., z0 = µ,
and parameter λ ∈ (0, 1); cf. Schmid and Knoth (2000). If λ = 1, the Shewhart-type
control chart is obtained as a special case. Note that Zt can equivalently be written as

Zt = z0(1 − λ)t + λ

t∑

i=1

(1 − λt−i)Xi.

Thus, the parameter λ determines the weight given to the single observations which
declines exponentially. Therefore, these control charts are called exponentially weighted
moving average (in short: EWMA) control charts.

6.3 Time-dynamic and hierarchical testing for long-term

level changes of Spearman’s rho

This section develops two test procedures which are applied to analyze the supervisory
portfolio’s association both over time and across banks. Since the tests can be applied
more generally, the results are formulated in a general setting.

As mentioned in section 6.1, both procedures use multivariate Spearman’s rho to
measure the degree of association in the supervisory portfolio. Specifically, our analysis



128 Chapter 6. Time-dynam. and hierarch. dependence modeling

is based on the d-dimensional version ρ1 of Spearman’s rho which we refer to as ρd in
the following; cf. section 2.3.3. Recall that, for the d-dimensional random vector X =
(X1, . . . ,Xd) with distribution function F, continuous univariate marginal distribution
functions Fi, i = 1, . . . , d, and copula C, it is given by

ρd,X = hρ(d)
{

2d

∫

[0,1]d
C(u) du− 1

}
, (6.2)

with hρ(d) = (d + 1)/{2d − (d + 1)}. Note that if we think of X as representing the
returns of d assets in a portfolio, ρd quantifies the association between the asset returns
as determined by their copula. In the test procedures later, we also consider sub-
portfolios, i.e., we are interested in measuring the degree of association between only
those components Xi of X where i ∈ I with index set I ⊆ {1, . . . , d} and cardinality
2 ≤ I ≤ d. Analogously to formula (6.2), we define the |I|-dimensional Spearman’s rho
as

ρ|I| = hρ(|I|)
{

2|I|
∫

[0,1]|I|

Ci1,...,i|I|
(u) du − 1

}
, (6.3)

for I = {i1, . . . , i|I|}. Here, Ci1,...,i|I|
refers to the |I|-dimensional copula which corre-

sponds to the i1, . . . , i|I|-margin of C. Obviously, for I = Sd = {1, . . . , d}, ρ|I| = ρd.
Based on a random sample X1, . . . ,Xn from X, a nonparametric estimator for ρ|I|
can be obtained by replacing the copula Ci1,...,i|I|

in equation (6.3) by the empirical

copula Ĉi1,...,i|I|
(ui1 , . . . , u|I|) = Ĉ(u(I)); cf. definition 2.2.5. This yields the following

nonparametric estimator for ρ|I| :

ρ̂|I|,n = hρ(|I|)
{2|I|

n

n∑

j=1

[
(1 − Ûi1j,n) . . . (1 − Ûi|I|j,n)

]
− 1
}
. (6.4)

Obviously, the corresponding estimator for ρd follows by setting I = {1, . . . , d}.

We establish some theoretical results in the following which form the basis for the
forthcoming test procedures. The next theorem extends the results on the asymptotic
normality of multivariate Spearman’s rho (cf. section 2.3.3) to the difference of two
Spearman’s rhos. In a second step, a related result is shown for two vectors consisting
of multiple Spearman’s rho coefficients for various subsets I of {1, . . . , d}. Both results
are derived from the weak convergence of the empirical copula process

√
(Ĉn −C); cf.

theorem 2.2.8.

Theorem 6.3.1 Consider two stochastically independent random samples (Xs)s=1,...,n

and (Ys)s=1,...,m from the d-dimensional random vectors X and Y with distribution
functions FX and FY, continuous univariate marginal distribution functions and cop-
ulas CX and CY. Assume that the i-th partial derivatives of CX and CY exist and are
continuous for i = 1, . . . , d. Let J be the set of all subsets I of {1, . . . , d}. For A ⊆ J
with cardinality |A| = k, suppose that SA,n,X and SA,m,Y, respectively, denote the k-
dimensional random vectors of all sample versions ρ̂|I|,n,X and ρ̂|I|,m,Y of Spearman’s
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rho with I ∈ A, as calculated from the above random samples according to formula
(6.4). Let further ρA,X and ρA,Y be the corresponding vectors of the true values ρ|I|,X
and ρ|I|,Y of Spearman’s rho (cf. equation (6.3)). We denote by || · || an arbitrary

matrix norm on the space [−1, 1]k. Under the assumption that ρA,X = ρA,Y and with

m := m(n) such that
√
n/m(n) → c ∈ [0,∞) for n→ ∞, we have

(i) for each A ⊆ J with A being a single set I

√
n
(
ρ̂|I|,n,X − ρ̂|I|,m(n),Y

)
d−→ Z ∼ N(0, σ2) as n→ ∞. (6.5)

The variance has the form

σ2 = 22|I|hρ(|I|)2
∫

[0,1]d

∫

[0,1]d

[
E{GCX

(u(I))GCX
(v(I))}

+ c2E{GCY
(u(I))GCY

(v(I))}
]
dudv, (6.6)

with Gaussian process GCX
and GCY

as defined in equation (2.2.8), theorem
2.2.8.

(ii) Further, for each A ⊆ J, it follows that

√
n||SA,n,X − SA,m(n),Y|| d−→ W as n→ ∞,

with non-degenerated random variable W.

Proof. (i) Given the theorem’s prerequisites, theorem 2.2.8 and the continuous mapping
theorem yield that, for a single index set I,

√
n(ρ̂|I|,n,X − ρ|I|,X)

d−→WX ∼ N(0, σ2
X),

and √
m(n)(ρ̂|I|,m(n),Y − ρ|I|,Y)

d−→WY ∼ N(0, σ2
Y),

for n→ ∞, with

σ2
X = 22|I|h(|I|)2

∫

[0,1]d

∫

[0,1]d
E{GCX

(u(I))GCX
(v(I))}dudv,

and

σ2
Y = 22|I|h(|I|)2

∫

[0,1]d

∫

[0,1]d
E{GCY

(u(I))GCY
(v(I))}dudv,

respectively; cf. section 2.3.3. Under the assumption that ρ|I|,X = ρ|I|,Y, we have

√
n
(
ρ̂|I|,n,X−ρ̂|I|,m(n),Y

)
=

√
n
(
ρ̂|I|,n,X−ρ|I|,X

)
−

√
n√

m(n)

√
m(n)

(
ρ̂|I|,m(n),Y−ρ|I|,Y

)
,
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and the assertion follows by an application of Slutsky’s theorem and the fact that
ρ̂|I|,n,X and ρ̂|I|,n,Y are based on stochastically independent random samples.

(ii) Let Ĉn,X(u) and Ĉm,Y,u ∈ [0, 1]d, denote the empirical copula of the random
samples (Xl)l=1,...,n and (Yl)l=1,...,m, respectively, calculated according to (2.14); cf.
definition 2.2.5. For A ⊆ J with |A| = k and m = m(n), consider the k-dimensional
random vectors SA,n,X and SA,m(n),Y which can be represented as a linear map of the

empirical copulas Ĉn,X and Ĉm(n),Y into the k-dimensional Euclidean space IRk, respec-
tively. Thus, an application of the continuous mapping theorem together with theorem
2.2.8 yields the weak convergence of

√
n{SA,n,X−ρA,X} and

√
m(n){SA,m(n),Y−ρA,Y}

on the space IRk. Since, in addition, SA,n,X and SA,m(n),Y are based on independent
samples, joint weak convergence of

(√
n{SA,n,X − ρA,X},

√
m(n){SA,m(n),Y − ρA,Y}

)

on the product space IR2k is obtained for n → ∞. If ρA,X = ρA,Y, this implies that
√
n(SA,n,X − SA,n,Y) converges in IRk by an application of Slutsky’s theorem; cf. the

proof of part (i). Finally, the fact that the matrix-norm ||·|| is also a continuous mapping
from the space IRk into IR and another application of the continuous mapping theorem
yields the asserted result. �

Note that, if SA,n,X = (ρ̂|I1|,n,X, . . . , ρ̂|Ik|,n,X)′ and ρA,X = (ρ|I1|,X, . . . , ρ|Ik|,X)′ with A
consisting of the k sets I1, . . . ,Ik, |A| = k, we have

√
n(SA,n,X − ρA,X)

d−→ W ∼ N(0,Σ), n→ ∞,

where the elements of the (k × k)-dimensional matrix Σ are given by

Σi,j = 2|Ii|+|Ij |hρ(|Ii|)hρ(|Ij|)
∫

[0,1]d

∫

[0,1]d
E{GCX

(u(Ii))GCX
(v(Ij ))}dudv, 1 ≤ i, j ≤ k.

In particular, the sequence
√
n(SA,n,X−SA,m(n),Y) is under the assumptions of theorem

6.3.1 asymptotically multivariate normally distributed.

We use the nonparametric bootstrap method as described in section 2.2.2 to esti-
mate the distribution of the limiting variable W in theorem 6.3.1, part (ii), since this
distribution usually cannot be derived explicitly and also depends on the choice of the
matrix norm. That the nonparametric bootstrap works is shown in the next theorem.

Theorem 6.3.2 Let (XB
l )l=1,...,n and (YB

l )l=1,...,m be the bootstrap samples which are
obtained by sampling from the independent random samples (Xl)l=1,...,n and (Yl)l=1,...,m

with replacement, respectively. For A ⊆ J, let further SA,n,X, SA,m,Y be the vector of
sample versions of Spearman’s rho as given in theorem 6.3.1 and let SB

A,n,X, S
B
A,m,Y

denote the corresponding estimators calculated from the bootstrap samples (XB
l )l=1,...,n
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and (YB
l )l=1,...,m. Then, under the assumptions of theorem 6.3.1 and with m := m(n)

such that
√
n/m(n) → c ∈ [0,∞) for n→ ∞, the sequences

√
n||SB

A,n,X − SB
A,m(n),Y − (SA,n,X − SA,m(n),Y)||

converges weakly to the same limit as
√
n||SA,n,X − SA,m(n),Y|| in probability.

Proof. Let ĈB
n,X(u) and ĈB

m,Y(u),u ∈ [0, 1]d, denote the empirical copula of the boot-

strap random sample (XB
l )l=1,...,n and (YB

l )l=1,...,m, obtained by sampling from the in-
dependent random samples (Xl)l=1,...,n and (Yl)l=1,...,m with replacement, respectively.

According to theorem 2.2.10, the processes
√
n(ĈB

n,X−Ĉn,X) and
√
n(Ĉn,X−CX) as well

as
√
m(n)(ĈB

m(n),Y−Ĉm(n),Y) and
√
m(n)(Ĉm(n),Y−CY) converge weakly to the same

Gaussian limit in probability, respectively, for n→ ∞. An application of the continuous
mapping theorem then yields that

√
n{SB

A,n,X − SA,n,X} and
√
n{SA,n,X − ρA,X}, and

√
m(n){SB

A,m(n),Y−SA,m(n),Y} and
√
m(n){SA,m(n),Y−ρA,Y} converge in distribution

to the same limit, respectively, in probability. Under the assumption that ρA,X = ρA,Y,
the assertion follows according to the same reasoning as in the proof of theorem 6.3.1,
part (ii). �

In particular, if |A| = 1, it follows that the asymptotic variance of
√
n(ρ̂|I|,n,X −

ρ̂|I|,m(n),Y) in theorem 6.3.1, part (i), can be estimated using the nonparametric boot-
strap.

We will use a moving window to estimate Spearman’s rho over time. That is, an
estimator for Spearman’s rho ρt

|I|,X at time t is calculated based on (past) observations

Xt−n+1, . . . ,Xt from X according to equation (6.4). The following theorem investigates
the statistical properties of the difference of two Spearman’s rho coefficients evaluated
at two different points in time. To do so, we assume that an infinite amount of (inde-
pendent) observations from X is available.

Theorem 6.3.3 Consider the (i.i.d.) random sample (Xt)t∈Z from the d-dimensional
random vector X with distribution function F, copula C, and continuous univariate
marginal distribution functions. For an index set I ⊆ {1, . . . , d}, let ρ̂t

|I|,n denote the

estimator for Spearman’s rho at time t as defined in formula (6.4) based on a (equally
weighted) moving window of size n, i.e., calculated from the sample Xt−n+1, . . . ,Xt.
We then have

(i) for any fixed s ∈ IN with s < n,

n
(
ρ̂ t
|I|,n − ρ̂ t−s

|I|,n

)
d−→ Zt,s

|I| as n→ ∞, (6.7)

with non-degenerated, bounded and centered random variable Zt,s
|I|.
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(ii) Further, the limiting variables Zt,s
|I| and Zt−r,s

|I| are stochastically independent for
n > r > s > 0. In particular,

n2 Cov
(
ρ̂ t
|I|,n − ρ̂ t−s

|I|,n , ρ̂
t−r
|I|,n − ρ̂ t−r−s

|I|,n

)
−→ 0 as n→ ∞, (6.8)

for fixed r, s ∈ IN and n > r > s > 0.

Proof. (i) Due to the same reasoning as in the proof of theorem 2.2.8, we can confine
the analysis to the case where the marginal distribution functions Fi are uniform on
[0, 1]. Let F̂ t

n denote the d-dimensional empirical distribution function of the random
sample Xt−n+1, . . . ,Xt, t ∈ Z. For s < n, it holds that

n
{
F̂ t

n(u(I)) − F̂ t−s
n (u(I))

}

=

t∑

j=t−s+1

d∏

i=1
i∈I

1{Xij≤ui} −
t−n∑

j=t−n−s+1

d∏

i=1
i∈I

1{Xij≤ui}
d
= Y t,s(u(I)),u ∈ [0, 1]d, (6.9)

the distribution of the latter random variable being independent of n. Given the
Hadamard-differentiable map φ as defined in (2.19), an application of the functional
delta-method (theorem 2.2.7) yields

n
{
φ(F̂ t

n)(u(I)) − φ(F̂ t−s
n )(u(I))

}
d−→ φ′F (Y t,s)(u(I)), (6.10)

where φ′F denotes the Hadamard derivative of φ at F. With Ĉt
n denoting the empirical

copula of the random sample Xt−n+1, . . . ,Xt, t ∈ Z, calculated according to (2.14),
equation (2.22) then implies

n
{
Ĉt

n(u(I)) − Ĉt−s
n (u(I))

}
−→ φ′F (Y t,s)(u(I)).

Using that the difference ρ̂t
|I|,n − ρ̂t−s

|I|,n (s < n) can be written as

ρ̂t
|I|,n − ρ̂t−s

|I|,n = hρ(|I|)2|I|
∫

[0,1]d

{
Ĉt

n(u(I)) − Ĉt−s
n (u(I))

}
du,

an application of the continuous mapping theorem finally yields

n
(
ρ̂t
|I|,n − ρ̂t−s

|I|,n

)
d−→ hρ(|I|)2|I|

∫

[0,1]d
φ′(Y t,s)(u(I))du = Zt,s

|I|, n→ ∞. (6.11)

(ii) We start with proving that n{Ĉt
n(u(I)) − Ĉt−s

n (u(I))} is uniformly bounded in
u ∈ [0, 1]d for fixed s < n. Observe that

n
{
Ĉt

n(u(I)) − Ĉt−s
n (u(I))

}
=

t∑

j=t−s+1

d∏

i=1
i∈I

1{Û t
ij,n≤ui}

−

−
t−s∑

j=t−n+1

( d∏

i=1
i∈I

1{Û t
ij,n≤ui}

−
d∏

i=1
i∈I

1{Û t−s
ij,n≤ui}

)
−

t−n∑

j=t−s−n+1

d∏

i=1
i∈I

1{Û t−s
ij,n≤ui}

, (6.12)
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where Û t
ij,n = 1/n (rank of Xij in Xi(t−n+1), . . . ,Xit) with sample Xt−n+1, . . . ,Xt, and

Û t−s
ij,n = 1/n (rank of Xij in Xi(t−s−n+1), . . . ,Xi(t−s)), which are based on the sample

Xt−s−n+1, . . . ,Xt−s, respectively.
Note that the random variables Û t

ij,n and Û t−s
ij,n in the middle term of (6.12) deviate

by a maximum of s/n only since the underlying rank order statistics are based on the
(n − s − 1) common random variables Xt−n+1, . . . ,Xt−s for all i ∈ I. For each fixed
u ∈ [0, 1]d, there exists at most s index values j1, . . . , js ∈ {t − n + 1, . . . , t − s} for
which the middle term does not equal zero due to the bijective mapping of Û t

ij,n and

Û t−s
ij,n onto { 1

n , . . . ,
n
n}. Thus,

∣∣∣
t−s∑

j=t−n+1

( d∏

i=1
i∈I

1
{Û t

ij,n≤ui}
−

d∏

i=1
i∈I

1
{Û t−s

ij,n≤ui}

)∣∣∣ ≤ s (6.13)

for each u ∈ [0, 1]d. Including the other terms of formula (6.12) yields

|n{Ĉt
n(u(I)) − Ĉt−s

n (u(I))}| ≤ 3s,

and, consequently,
|n(ρ̂t

|I|,n − ρ̂t−s
|I|,n)| ≤ 3s2|I|hρ(|I|).

Thus, the bounded convergence theorem (see e.g. theorem 10.32 in Wheeden and Zyg-
mund (1977)) together with part (i) of theorem 6.3.3 yields

n2 Cov
(
ρ̂ t
|I|,n − ρ̂ t−s

|I|,n , ρ̂
t−r
|I|,n − ρ̂ t−r−s

|I|,n

)
−→ Cov

(
Zt,s
|I|, Z

t−r,s
|I|

)
.

Finally, formula (6.9) together with formula (6.10) shows that the limiting variables
Zt,s
|I| and Zt−r,s

|I| are stochastically independent and, thus, are uncorrelated for n > r >
s > 0. �

For the remainder of this section, we consider a sequence (Xt)t∈Z of d-dimensional
random vectors Xt = (Xt,1, . . . ,Xt,d) with distribution function Ft and continuous
univariate marginal distribution functions Ft,i, i = 1, . . . , d. According to theorem 2.2.2,
there exists a (unique) copula Ct such that

Ft(x) = Ct{Ft,1(x1), . . . , Ft,d(xd)},x ∈ IRd.

In particular, the dependence structure of Xt is described by the time-varying copula Ct.
For an application of time-varying copulas in the context of Value-at-Risk calculations,
see Giacomini et al. (2009). We further make the following assumption:

(A1) The random vectors Xt are stochastically independent for all t. Further, the con-
tinuous marginal distribution functions Ft,i are constant over time, i.e., Ft,i(x) =
Fi(x), x ∈ IR, for all i = 1, . . . , d, and all t.



134 Chapter 6. Time-dynam. and hierarch. dependence modeling

In general, it is difficult to perform hypothesis tests on the copula Ct when no further
structural assumptions on the copula are imposed. Since the presumption of a specific
parametric copula model would be too restrictive for our purposes, we assume that
Spearman’s rho determines the dependence structure of the random vectors by making
the additional assumption:

(A2) At any time t, the dependence structure is completely described by (an adequate
set of |I|-dimensional) Spearman’s rho (at time t).

Note that for the majority of parametric families of copulas, there exists a bijective rela-
tionship between the copula C and a set of |I|-dimensional Spearman’s rho coefficients
ρ|I|, which is illustrated by three examples.

1. Let C be a member of the two-dimensional Farlie-Gumbel-Morgenstern family of
copulas with parameter θ ∈ [−1, 1] as defined in (3.8). Then, bivariate Spearman’s
rho ρ of a random vector (X1,X2) having copula C equals θ/3 (see e.g. Nelsen
(2006), p.168).

2. If C is a d-dimensional Gaussian copula with correlation matrix K = (κij)i,j=1,...,d

(see (2.9)), it can be fully described by considering the
(d
2

)
-dimensional vector

of all bivariate Spearman’s rho coefficients ρij ,i < j; cf. (5.1). In particular,
relationship (5.20) holds.

3. Let C be a four-dimensional hierarchical Archimedean copula which is constructed
by coupling the two-dimensional Archimedean copulas C(1) and C(2), generated by
the (strict) generators φ(1) and φ(2), respectively, using a third (strict) generator
φ(3). Hence,

C(u1, u2, u3, u4) = C{C(1)(u1, u2), C(2)(u3, u4)}
= φ(3)

−1[φ(3) ◦ φ(1)
−1{φ(1)(u1) + φ(1)(u2)}

+φ(3) ◦ φ(2)
−1{φ(2)(u3) + φ(2)(u4)}]. (6.14)

The conditions which need to be fulfilled such that the function in (6.14) is a
copula function can be found in Joe (1997), section 4.2. For example, if φ(i), i =
1, 2, 3, are generators of the Gumbel copula (see (2.12)) with parameters θi ≥ 1,
then C is a copula if θ3 < θ1 and θ3 < θ2. The dependence structure of C is
completely described by the three-dimensional vector consisting of the pairwise
Spearman’s rho coefficients ρ(1) and ρ(2) corresponding to the marginal copulas
C(1) and C(2), respectively, and multivariate Spearman’s rho ρ4 as defined in
(6.2). We refer to Savu and Trede (2008) and Hofert (2008) for further examples
of hierarchical copulas and related estimation and simulation techniques.

With a view towards the test procedures derived in sections 6.3.1 and 6.3.2, theo-
rems 6.3.1 and 6.3.3 state the asymptotic distribution of the difference of two Spear-
man’s rho (for different samples or over time) under the assumption that Spearman’s
rho is constant. Note that all results established above can also be derived for other
multivariate versions of Spearman’s rho such as the average of distinct pairwise Spear-
man’s rho coefficients.
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6.3.1 Detecting long-term level changes of Spearman’s rho over time

This section elaborates a procedure to detect level changes in the portfolio dependence
over time using multivariate Spearman’s rho. Specifically, our interest lies in detecting
long-term level changes of Spearman’s rho which - in addition - should be indicated
as early as possible, i.e., as soon as new information has arrived. The procedure is of
sequential form and consists of two (consecutive) steps, which are illustrated in table
6.1. Being based on a control chart for Spearman’s rho (cf. section 6.2), Phase 1 se-
quentially monitors the series in order to detect level shifts of Spearman’s rho. As far
as long-term changes of Spearman’s rho are concerned, it acts like an early indication
or warning system. After having been signalled a shift in Spearman’s rho in Phase 1,
Phase 2 verifies whether a long-term rather than a short-term change is experienced;
naturally, further observations need to be awaited for this purpose. The procedure
in Phase 2 is therefore of static, retrospective form and can be regarded as a kind of
’dependence backtesting’.

Table 6.1: Setup of test procedure.

Test type Test procedure

Early indication system of Phase 1: Control chart for Spearman’s rho
change of Spearman’s rho

Detection of sustainable change Phase 2: ’Dependence-backtesting’
of Spearman’s rho

Let (Xt)t∈Z denote a sequence of d-dimensional random vectors with joint distri-
bution function Ft and copula Ct fulfilling assumption (A1) and (A2) as elaborated
before. For notational reasons, the description of the two phases is based on the |I|-
dimensional Spearman’s rho coefficient ρt

|I| for arbitrary index set I ⊆ {1, . . . , d}. Note
that the following elaborations could be generalized to the case of an adequate vector
of Spearman’s rho coefficients which should be considered otherwise; cf. assumption
(A2)(see also section 6.3.2). The corresponding series of estimators of Spearman’s rho
based on an equally weighted moving window of size n is denoted by (ρ̂ t

|I|,n)t∈Z.

Phase 1. In this phase, a nonparametric control chart for detecting level changes
in multivariate Spearman’s rho is developed; cf. section 6.2. Let us therefore assume
that, up to time t

′
, there are no changes in Spearman’s rho. Formally, ρ t

|I| = ρ for

fixed but unknown parameter ρ and for all t ≤ t
′
. We fix a lag parameter s ∈ IN, s < n,

which allows to choose the time frequency for monitoring Spearman’s rho (e.g. daily
or weekly). At each time t = t

′
+ ks, k = 1, 2, 3, . . . , we consider the hypothesis

H0,t : ρ t
|I| = ρ versus H1,t : ρ t

|I| 6= ρ. (6.15)

We thereby reject the null hypothesis at time t if

n (ρ̂ t
|I|,n − ρ̂ t−s

|I|,n) > c2 or n (ρ̂ t
|I|,n − ρ̂ t−s

|I|,n) < c1,
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with predefined constant c1 and c2.
Adopting the terminology of control charts, Yt := n(ρ̂ t

|I|,n−ρ̂
t−s
|I|,n) represents the control

statistic while the control limits are given by c1 and c2. The process ρ̂ t
|I|,n is ’in control’

as long as the null hypothesis is not rejected; if it is rejected (i.e., the control chart gives
a signal), it is concluded that the process is out of control. Note that Yt represents
an (asymptotically) unbiased estimator of n(ρt

|I| − ρt−s
|I| ) if the process is in control,

i.e., E(Yt) is asymptotically zero in this case. We thus concentrate on sequentially
monitoring the mean or the location of the process ρ̂ t

|I|,n. In particular, we reject the
null hypothesis if Yt exceeds or is less than the level c2 or c1, respectively. According
to theorem 6.3.3, part (i), Yt has a limiting distribution under the null hypothesis H0

in (6.15), that is, if the process is in control. For a given significance level, the control
limits ci, i = 1, 2, can be chosen as the respective quantiles of this distribution due to
the second part of theorem 6.3.3 (see also the remark at the end of this section).

Phase 2. The analysis in Phase 1 aims at identifying shifts in the level of Spear-
man’s rho. If, as from the supervisory perspective, the focus lies on detecting long-term,
sustaining (level) changes in portfolio dependence, a second phase is added subsequently
to the first phase. Thereby, we understand by a long-term change that, after the shift
indicated by Phase 1, Spearman’s rho stays at this level throughout a specified period.

Assume therefore that Phase 1 gives a signal at time t⋆ > t
′
. Based on further

n⋆ = n− s observations of the process, Phase 2 compares Spearman’s rho over distinct
time periods before and after t⋆. Specifically, we verify whether there is a significant
difference between Spearman’s rho calculated based on the periods [t⋆−n+1, t⋆−s] and
[t⋆ + 1, t⋆ + n⋆]. We further assume that Spearman’s rho does not change throughout
the latter period; cf. assumption (A2).
At t⋆, we then consider the hypothesis

H0 : ρt⋆+n⋆

|I| = ρt⋆−s
|I| versus H1 : ρt⋆+n⋆

|I| 6= ρt⋆−s
|I| .

In this context, the statistic

T =

√
n(ρ̂t⋆+n⋆

|I|,n⋆ − ρ̂t⋆−s
|I|,n⋆)

σ̂B
|I|

(6.16)

is under H0 asymptotically standard normally distributed according to theorem 6.3.1,
part (i). Here, (σ̂B

|I|)
2 represents the consistent bootstrap estimator for the asymptotic

variance of
√
n(ρ̂t⋆+n⋆

|I|,n⋆ − ρ̂t⋆−s
|I|,n⋆) as given in the latter theorem. We thus reject H0 at t⋆

at level α if |T | > z1−α/2, where z1−α/2 denotes the (1 − α/2)-quantile of the standard
normal distribution. Note that by excluding the time point t⋆ from the analysis and
choosing the window size n⋆, it is guaranteed that the above test is independent from
the test in Phase 1.



6.3 Time-dynam. and hierarch. testing for level changes of Spearman’s rho 137

Finally, it is concluded that ρ̂t
|I|,n is out-of-control at time t if

(B1) both tests of Phase 1 and Phase 2 reject the null hypothesis at time t and

(B2) the control statistic of Phase 1 and the test statistic T of Phase 2 have the same
sign.

We refer to such events fulfilling (B1) and (B2) simply as signals; an event in Phase 1
is called alarm in the following.

Remarks.

1. As outlined in section 6.2, the control limits c1 and c2 are estimated in a first step
based on a sample of past observations from the in-control process to calibrate
the control chart in Phase 1.

2. Using the differences ρ̂ t
|I|,n− ρ̂

t−s
|I|,n rather than the actual observations ρ̂t

|I|,n them-

selves as control statistic in Phase 1 (cf. the examples in section 6.2) offers several
advantages. First, the latter approach would yield control limits involving the
parameter ρ, leaving us with an additional parameter to estimate from the pre-
sample in order to set up the control chart. Further, note that the series ρ̂ t

|I|,n
exhibit a very high serial correlation. In the context of a sequential test, the
control limits therefore would have to be adapted and are generally more difficult
to determine (see e.g. Golosnoy and Schmid (2007) for the determination of the
control limits in this situation in a parametric context). In contrast, the second
part of theorem 6.3.3 states that the differences are (asymptotically) independent,
allowing to obtain the limits c1 and c2 by probabilistic considerations. For com-
pleteness, we refer to Pawlak et al. (2004) who mention another basic approach
where the control limits are determined subject to the size of a jump which shall
be identified with high probability.

3. In chapter 4, section 4.3, we develop an exponentially weighted estimator for
multivariate Spearman’s rho. In the light of the EWMA control charts described
in section 6.2, it would also be possible to design a control chart for detecting
level changes in Spearman’s rho using this weighted estimator for Spearman’s rho
as a control statistic.

6.3.2 Hierarchical testing

In contrast to the time-dynamic approach in the previous section, we consider a static
approach now which we refer to as hierarchical testing. By fixing a particular time
point t, the central question is whether there is a significant difference in the level of
Spearman’s rho before and after t. The approach differs from Phase 2 above insofar as
we now include all lower-dimensional Spearman’s rho coefficients into the analysis.
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As usual, let (Xt)t∈Z denote a sequence of d-dimensional random vectors with joint
distribution function Ft and copula Ct fulfilling assumption (A1) and (A2). For l ∈ IN
with 1 ≤ l ≤ d− 1, let A = A(l) be the set of all subsets I of the index set {1, . . . , d}
with cardinality |I| > l. We define by ρt

A the vector of all |I|-dimensional Spearman’s
rho coefficients ρt

|I| at time t ∈ Z with I ∈ A. An estimator of the latter is given by

ρ̂t
A,n based on samples Xt−n+1, . . . ,Xt in a moving window with window size n.

In order to detect whether there is a level change of Spearman’s rho at time t, we com-
pare the values of all |I|-dimensional Spearman’s rho coefficients with I ∈ A between
the adjacent and non-overlapping windows of fixed size n before and after t. Let us
therefore assume that, throughout both periods, Spearman’s rho does not change for
any I ∈ A, respectively (cf. assumption (A2)). We then consider the hypothesis

H0 : ρt−1
A = ρt+n−1

A versus H1 : ρt−1
A 6= ρt+n−1

A . (6.17)

Note that, for each I ∈ A, we would reject the null hypothesis of equal |I|-dimensional
Spearman’s rho in the respective time periods at level αI if |Qt

I,n| > z1−αI/2 with

Qt
I,n =

√
n(ρ̂t+n−1

|I|,n − ρ̂t−1
|I|,n)

σ̂B
|I|

.

Here, (σ̂B
I )2 represents the consistent bootstrap estimator of the variance of

√
n(ρ̂t+n−1

|I|,n −
ρ̂t−1
|I|,n) as given in theorem 6.3.2, part (i). The latter theorem implies that Qt

I,n is un-

der the null hypothesis (asymptotically) standard normally distributed (cf. also formula
(6.16)) since ρ̂t+n−1

|I|,n and ρ̂t−1
|I|,n are based on independent samples. The null hypothesis

in (6.17) is thus rejected at significance level βl if |Qt
I,n| > z1−αI/2 for some I ∈ A,

that is

IP
( ⋃

I∈A
|I|>l

{
|Qt

I,n| > z1−αI/2

})
= βl. (6.18)

The interrelationship between βl and α is complicated – however, it may be approx-
imated by Bonferroni’s method as carried out in section 6.5.4. For convenience, we
choose αI = α for all I and obtain

IP
( ⋃

I∈A
|I|>l

{
|Qt

I,n| > z1−α/2

})
= IP( sup

I∈A
|I|>l

|Qt
I,n| > z1−α/2) = βl

with sup{I∈A , |I|>l} |Qt
I,n| = max{I∈A , |I|>l} |Qt

I,n| as A is finite. Hence, a test statistic
for the null hypothesis in (6.17) is given by

max
{I∈A , |I|>l}

|Qt
I,n|,

which has a limiting distribution under the null hypothesis according to theorem 6.3.1
with

k = |A(l)| =

d∑

j=l
|I|=j

(
d

j

)
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and || · || being the maximum norm, i.e., ||t|| = max1≤j≤l |tj|, t ∈ IRk. By changing the
parameter l one can move from one portfolio’s hierarchy level to another one. Note
that for small hierarchical level l the power of the test will decrease due to a larger set
of Spearman’s rho coefficients included.

6.4 The standardized profits and losses of the supervisory
portfolio

This section states the relevant definitions and assumptions for the analysis of the su-
pervisory portfolio.

The daily clean P&L of the trading book of bank i, i ∈ {1, . . . , d}, at discrete time
t are modeled by a random variable Gt,i. Since we do not consider economic P&L,
we shortly refer to the Gt,i as the P&L. Suppose wt,i = (w1

t,i, . . . , w
m
t,i)

′
represents the

positions of bank i on m financial instruments whose corresponding prices at time t are
modeled by the random vector Pt = (P 1

t , . . . , P
m
t )

′
. Then Gt,i takes the form

Gt,i =
m∑

j=1

wj
t−1,i(P

j
t − P j

t−1), i = 1, . . . , d. (6.19)

A central objective of a bank’s internal risk model is to analyze and predict the future
P&L distribution of the trading book by taking all past information into account.
If the information flow available up to time t is modeled by the σ-algebra (Ft,i)t≥0,
i = 1, . . . , d, the interest thus lies in determining the conditional distribution function
of Gt,i, denoted by Ft,i(x) = IP(Gt,i ≤ x| Ft−1,i). If not stated otherwise, without loss
of generality we assume that Ft,i(x) has infinite support. The Value-at-Risk (VaR) at
confidence level α, Vt,i, is then obtained as the (1 − α)-quantile of Ft,i, i.e.

Vt,i = F−1
t,i (1 − α), i = 1, . . . , d. (6.20)

We consider data (Gt,i, Vt,i), i = 1, . . . , d, which arise within a regulatory approved
internal market-risk models. Hence, α is set to 0.99 in line with the supervisory re-
quirement for approval of internal market-risk models. Note that in this setting, VaR
is a negative number. For background reading on the VaR, we refer e.g. to Artzner et
al. (1999) and Jorion (2006).

The P&Ls are standardized by dividing each bank’s P&L by the respective VaR
forecast for that day:

St,i = −Gt,i

Vt,i
, i = 1, . . . , d, (6.21)

where St,i is commonly referred to as the standardized P&L or standardized returns
of bank i at time t. Assume that the random vector St = (St,1, . . . , St,d) represents the
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set of the banks’ standardized returns in the supervisory portfolio at time t. As shown
below, it is possible to concentrate on the modeling of St for our purposes.

Remark. The standardization in (6.21) is motivated by the following: If, condi-
tional on the information Ft−1,i, the Gt,i are normally distributed, i.e. Gt,i | Ft−1,i ∼
N(0, σ2

t,i), the standardized returns St,i take the form

St,i = −Gt,i/Vt,i = −{Φ−1(1 − α)}−1Gt,i/σt,i.

That is, the standardization is with respect to the P&L’s time-varying volatility in
this case and any temporal dependence of the Gt,i which is induced by a time-varying
volatility (e.g. if asset prices follow a GARCH model) is removed. The standardized re-
turns usually serve as a basis for the validation of a bank’s VaR model, see e.g. Jaschke
et al. (2003).

The standardized returns have (conditional) joint distribution function Ft,St(x) =
IP(St ≤ x| Gt−1) with continuous univariate marginal distribution functions Ft,St,i(x) =
IP(St,i ≤ x| Gt−1), i = 1, . . . , d. Here, the σ-algebra (Gt)t≥0 represents the information
flow available up to time t. Observe that, in general, Gt does not coincide with Ft,i,
i = 1, . . . , d. Further, Vt,i is Gt−1 measurable. In the following, we always consider
conditional distribution functions, taking with respect to the σ-algebra (Gt)t≥0 which
is in line with the perspective of a supervisor. However, we will omit the conditioning
for notational reasons. We assume that the standardized returns fulfill assumptions
(A1) and (A2) as elaborated in section 6.3. In particular, the distribution function of
St is described by

Ft,St(x) = CS
t {FSt,1(x1), . . . , FSt,d(xd)}, x ∈ IRd, (6.22)

with unique copula CS
t according to theorem 2.2.2.

Note that the standardization of the P&L in (6.21) does not change the dependence
structure between the banks’ P&Ls as shown in the next corollary.

Corollary 6.4.1 Suppose St has joint distribution function Ft,St with copula CS
t as in

(6.22) and assume that the Gt,i, defined in (6.19), have joint distribution Ft,Gt with
copula CG

t and continuous marginal distribution functions and infinite support. Then,
conditioned on the information up to time t− 1, CS

t = CG
t , i.e., the standardization of

Gt does not change the dependence structure represented by the copula CG
t .

Proof. Using the notation in (6.21) and the fact that Vt,i is strictly negative, the
transformation function βt,i(x) = −x/Vt,i is, conditioned on the information up to time
t− 1, strictly increasing. According to theorem 2.2.4, part (i), each copula is invariant
with respect to strictly increasing transformations of the marginal distributions. �

6.5 Empirical results

In this section, we apply the theoretical results established in section 6.3 to the stan-
dardized returns of the supervisory portfolio introduced in section 6.4. Our analysis is
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based on daily clean P&L data and VaR forecasts of the trading book of eleven German
banks which had a regulatory approved internal market risk model during the period
from January 2001 to December 2006. The data, which are available on a daily basis,
are maintained by the banks and reported in the Basel II framework to the supervisor;
altogether we have 1435 observations. According to regulations, the VaR forecasts are
calculated at a confidence level of 99% and for a one-day horizon.

6.5.1 Standardized returns

We start with some empirical properties of the standardized returns of the supervisory
portfolio; further empirical analysis of the banks’ individual standardized returns can
be found in Memmel and Wehn (2006) and Jaschke et al. (2003).
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Figure 6.2: Autocorrelation function of the squared standardized returns of each bank
of the supervisory portfolio.

The squared standardized returns contain only minor serial correlation; for illustra-
tion figure 6.2 gives the autocorrelation function across all banks. The same holds for
the standardized returns themselves, too. Thus, the assumption of serial independence
of the standardized returns (cf. assumption (A1)) can be justified. Note that this is
also consistent with the literature on volatility modeling; see Andersen et al. (2006) for
an overview. According to the reasoning in section 6.4, this underpins that the VaR
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models used by the banks work quite accurate over the considered data time horizon
(cf. Jaschke et al. (2003)).

Table 6.2 reports the first four moments of the distribution of the standardized
returns across all eleven banks. The results show that the kurtosis varies from bank
to bank, ranging from 3.79 to 13.39. In order to verify whether those differences are
statistically significant, we perform several pairwise tests on equal kurtosis, which are
based on a bootstrap procedure. More specifically, we draw (with replacement) a boot-
strap sample from St, t = 1, . . . , T, and determine for all pairs of banks the empirical
confidence interval for the difference in kurtosis; an extract is given in table 6.3. The
table shows that the difference in kurtosis of 32 out of 55 possible pairs of banks is
significantly different from zero. This gives evidence that the tail behavior of (at least
two) univariate standardized return distributions significantly differs. Thus, using the
theory of copulas to model the joint distribution function of the standardized returns
seems reasonable (see also the discussions in section 2.1).

Table 6.2: Descriptive statistics of the standardized returns for each bank of the su-
pervisory portfolio.

Bank Mean St. deviation Skewness Kurtosis

1 0.0419 0.3225 -0.2422 13.3883
2 0.084 0.3721 0.1502 4.3238
3 0.0115 0.3805 -0.1155 4.5387
4 0.0905 0.3796 0.0284 4.2795
5 0.0046 0.2728 -0.0657 4.5791
6 0.0141 0.3523 -0.0659 4.2136
7 -0.0012 0.2741 -0.1607 5.6778
8 0.0125 0.4344 -0.2966 6.638
9 -0.011 0.4363 -0.3023 8.3636
10 0.0256 0.2786 0.0639 3.7949
11 -0.0532 0.3199 -0.323 5.7466

6.5.2 Multivariate Spearman’s rho of the supervisory portfolio

Figure 6.3 (left panel) shows the evolution of multivariate Spearman’s of the standard-
ized returns of the supervisory portfolio. The estimation is based on a window size
of n = 150. In addition, the horizontal line illustrates (multivariate) Spearman’s rho
calculated for the entire observation period. The figure shows that Spearman’s rho
fluctuates over time: The situation of deteriorating financial markets after the events
of September 11 is accompanied by a steady increase in Spearman’s rho. This is in line
with the observations of high asset volatilities and correlations during this time period
and an increase in medium-term interest rates from October 2001 on (Jaschke et al.
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Table 6.3: 90% bootstrap confidence (ĉBl , ĉ
B
u ) intervals for the difference in kurtosis

for those pairs of banks where the difference is statistically different from 0, based on
10, 000 bootstrap replications.

Bank Bank ĉBl ĉBu Bank Bank ĉBl ĉBu

1 2 3.2529 13.8552 4 8 -5.1587 -0.1354
1 3 2.9961 13.6637 4 9 -6.2071 -1.6245
1 4 3.2552 13.9064 4 11 -2.4966 -0.3446
1 5 2.9149 13.6022 5 9 -5.771 -1.4653
1 6 3.3427 13.9024 5 10 0.0943 1.4968
1 7 1.8224 12.6234 5 11 -2.149 -0.1508
1 8 0.4997 12.1646 6 7 -2.6159 -0.3265
1 10 3.7619 14.3313 6 8 -5.1781 -0.2711
1 11 1.7493 12.4315 6 9 -6.1313 -1.7594
2 7 -2.5906 -0.1189 6 11 -2.3826 -0.6456
2 8 -5.1116 -0.1101 7 9 -4.9096 -0.0857
2 9 -6.1154 -1.5992 7 10 0.7575 3.0069
2 11 -2.4091 -0.335 8 10 0.7036 5.5623
3 9 -5.9475 -1.3387 9 10 2.2056 6.5528
3 11 -2.3295 -0.0193 9 11 0.1447 4.7268
4 7 -2.668 -0.1946 10 11 -2.8096 -1.0732

(2003)). After its first peak at the beginning of 2002, Spearman’s rho falls sharply.
Thereafter, a period of relatively low association in the portfolio is observable, which
was characterized by medium-term interest rates at an all-time low and stabilizing
markets. The year 2004 reveals a first steady, later sudden rise in Spearman’s rho to
its second peak in December 2004. During 2005, which proved to be a financial year of
rising markets, Spearman’s rho peaks off and remains relatively low for the rest of the
observation period.

Some developments are particularly noticeable, such as the sudden upwards move-
ment of Spearman’s rho on the 6 February 2002 or on the 13 October 2004. At those
two days, the P&L or standardized returns, respectively, of all banks in the portfolio
proved to be negative, i.e., all banks simultaneously realized losses. For comparison, we
provide in figure 6.3 (right panel) the average of all pairwise Spearman’s rho coefficients
(see also Memmel and Wehn (2006) for an analysis of the supervisory portfolio’s VaR
based on the average linear correlation coefficient). While multivariate Spearman’s rho
reacts sensitive to these days of simultaneous negative movements, the latter shows a
more gradual and steady increase and does not emphasize those extreme events. How-
ever, those events may be of particular interest to the supervisor in general - especially,
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Figure 6.3: Time-varying (dashed line) and cosntant (solid line) multivariate Spear-
man’s rho ρ̂11,S (left panel) and the average of all pairwise Spearman’s rho coefficients
(right panel) of the standardized returns of the supervisory portfolio, based on a moving
window of size n = 150.

as the simultaneous realization of losses across all banks only happened at altogether
four days during the observation period and those days revealed the highest losses.

6.5.3 Level changes of Spearman’s rho of the supervisory portfolio
over time

The time-dynamic test procedure proposed in section 6.3.1 is applied to the supervi-
sory portfolio, i.e., I = {1, . . . , d}. We further set s = 1 and thus focus on monitoring
Spearman’s rho of the supervisory portfolio on a daily basis.

The main motivation of the control chart design in Phase 1 is the fact that the first
differences of Spearman’s rho estimates ρ̂ t

d,n are (asymptotically) serially uncorrelated.
The sample autocorrelation functions of the original time series and the first differ-
ences are given in figure 6.4. For calibrating the control chart in Phase 1, we use the
first 150 observations of the series {n(ρ̂t

d,n − ρ̂t−1
d,n )} (denoted as pre-sample which is as-

sumed to be from the in-control process) in order to determine the control limits c1 and
c2, according to the procedure described in section 6.3.1 and with window size n = 150.

Estimates ĉ1 and ĉ2 of the control limits c1 and c2 are given as the empirical α/2-
and (1 − α/2)-quantiles of the pre-sample; the confidence level α is set to 0.05 in both
Phase 1 and Phase 2. The control chart of Phase 1 as well as the results of the test
procedure are given in figure 6.5. Here, ĉ1 and ĉ2 are −0.03962 and 0.28709, respec-
tively; altogether, we observe 241 alarms in Phase 1. Proceeding with Phase 2, where
the estimation of the bootstrap variance is based on 500 bootstrap replications, we
obtain two signals at time t = 308 and t = 1038. The corresponding values of the test
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Figure 6.4: Sample autocorrelation function of the time series of Spearman’s rho es-
timates ρ̂ t

d,n (upper panel) and of the first differences ρ̂t
d,n − ρ̂t−1

d,n (lower panel) of the
supervisory portfolio with window size n = 150.

statistic are provided in the table of figure 6.5. It becomes clear from figure 6.3 that
both signals occur at the respective global downward movements of Spearman’s rho at
the beginning of the years 2002 and 2005.

After an alarm has been triggered in Phase 1 and, thus, an early warning of level
change in Spearman’s rho has occurred, market relevant factors and events should be
analyzed around the time the alarm occurred in order to find a possible economic in-
terpretation for the shift in the portfolio’s association. As elaborated above, the next
observations (in our case 149 observations) shall then be awaited in Phase 2 in order
to test for a significant long-term level change of the portfolio’s association.

Note that by leaving the control limits unchanged throughout the whole period,
we would not use the information provided by the test procedure, i.e., that a signal
has occurred. Therefore we apply the test procedure anew - only this time, we recal-
ibrate the control chart of Phase 1 each time after a signal has been observed: The
control limits are re-estimated based on the 150 observations following (and including)
the signal and the chart is restarted. The corresponding output is given in figure 6.6.
We provide the corresponding control chart of Phase 1 together with the re-estimated
control limits whose values are explicitly given in the table. This time, 230 alarms are
obtained in Phase 1, leaving us with 3 signals in Phase 2. Hence, in addition to the
signals obtained from the control chart without recalibration, we observe a signal at
t = 755. As figure 6.6 shows, this new signal occurs at the global increase of Spearman’s
rho at the beginning of the year 2004.
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t date [ĉ1, ĉ2] n(ρ̂t
d,n − ρ̂t−1

d,n ) T p-value

308 12.04.2002 [−0.03962, 0.28709] -0.05490001 -2.73087 0.00632
1038 26.04.2005 [−0.03962, 0.28709] -0.08792838 -2.06398 0.03902

Figure 6.5: Upper panel: Control chart in Phase 1 of differences n(ρ̂t
d,n − ρ̂t−1

d,n ) with
the estimated control limits ĉ1 and ĉ2 (horizontal lines); lower panel: Summary of the
test statistics including those dates with significant signals. Here, T refers to the test
statistics given in (6.16). The results are based on α = 0.05, 500 bootstrap replications,
and window size n = 150.

Summarizing the above findings, a decrease in the portfolio’s association can be
observed in April 2002 which goes in line with the situation of improving financial
markets after the events of September 11. We further detect a significant rise in the
portfolio’s association between February 2004 and April 2005. This increase cannot
fully be explained by market events but requires a detailed analysis of the banks’
trading portfolios.

6.5.4 Hierarchical considerations for the supervisory portfolio

The hierarchical testing described in section 6.3.2 answers the question which groups of
banks of the supervisory portfolio show a significant change of Spearman’s rho around
a predefined time point when applied to its standardized returns.
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308 12.04.2002 [−0.03962, 0.28709] -0.05490001 -2.73087 0.00632
755 23.02.2004 [−0.04952, 0.11975] 0.18811689 2.74026 0.00614
1038 26.04.2005 [−0.01370, 0.12654] -0.08792838 -2.06398 0.03902
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Figure 6.6: Upper left panel: Control chart in Phase 1 of differences n(ρ̂t
d,n− ρ̂t−1

d,n ) with
the estimated control limits ĉ1 and ĉ2 (horizontal lines); upper right panel: multivariate
Spearman’s rho with signals (vertical lines); lower panel: Summary of the test statistics
including those dates with significant signals. Here, T refers to the test statistics given
in (6.16). The results are based on α = 0.05, 500 bootstrap replications, and window
size n = 150.

According to Bonferronis inequality, we have

IP
( ⋃

I∈A
|I|>l

{
|Qt

I,n| > z1−α/2

})
≤
∑

I∈A
|I|>l

IP(|Qt
I,n| > z1−α/2) = βl,

and we may choose α in such a way that

α

d∑

k=l
|I|=k

(
d

k

)
= βl,

and thus, α = βl/{2d−∑l−1
k=0

(
d
k

)
}. For the supervisory portfolio, we have d = 11 and we

set the overall test level βl to 0.1 and l = 8. Hence, α = 0.00149 and z1−α/2 = 3.176131,
in this case. Further, we concentrate on the three time points identified as level changes
of Spearman’s rho in the previous section, though any other time point might be pos-
sible, too.



148 Chapter 6. Time-dynam. and hierarch. dependence modeling

The value of the test statistic max{I∈J , |I|>8} |Qt
I,n| at those three time points is given

in table 6.4. It follows that the null hypothesis (6.17) is rejected at level β8 at time

Table 6.4: Results of the hierarchical test procedure of the supervisory portfolio at time
points t = 313 (19.04.2002), t = 755 (23.02.2004), and t = 1038 (26.04.2005) for l = 8.
Value of the test statistic max{I∈A, |I|>8} |Qt

I,n| for testing the overall null hypothesis
(6.17). Calculations are based on 500 bootstrap replications and β8 = 0.1.

t date max{I∈A, |I|>8} |Qt
I,n| z1−α/2

313 19.04.2002 4.53089 3.176131
755 23.02.2004 3.46422 3.176131
1038 26.04.2005 2.71896 3.176131

points t = 313 and t = 755. This implies that the association has significantly changed
in the period before and after those time points among the portfolios with dimension
greater than 8. By contrast, we cannot reject the null hypothesis at the time point
t = 1038.
For the time points t = 313 and t = 755, table 6.5 further provides all sub-portfolios
with dimension greater than 8 showing significant changes of Spearman’s rho at level
α. Altogether, there are 23 sub-portfolios of dimensions 9 and 10 at t = 313. The
9-dimensional sub-portfolio consisting of the banks 2, 3, 4, 5, 6, 7, 8, 10, and 11 possess
the smallest p-value. At t = 755, only sub-portfolios of dimension 9 show a significant
change in Spearman’s rho at level α. Here, the sub-portfolio consisting of the banks
1, 2, 3, 4, 6, 8, 9, 10, and 11 has the smallest p-value. For illustration, figure 6.7 shows
the evolution of Spearman’s rho of the sub-portfolio with the highest significant change
in Spearman’s rho at those two time points together with the sub-portfolio of the same
dimension having the largest p-value.
Note that, at t = 313, the two smallest banks, banks 1 and 9 (as measured in terms of
average VaR), appear considerably less often than any other bank; see table 6.5. This
may imply that the changes in association around t = 313 are mainly driven by the
larger banks.

The present findings of the hierarchical testing do not imply that there is no sig-
nificant change of Spearman’s rho at time point t = 1038; it only shows that there is
none among the sub-portfolios with dimension greater than 8. Further, the fact that
more than three times as many sub-portfolios with dimension greater than 8 show a
significant change in Spearman’s rho at t = 313 than at t = 755 might provide an
indication of the stability of the financial markets around that time. Financial markets
indeed showed a more volatile behavior in 2002 than at the beginning of 2004.
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Table 6.5: Output of the hierarchical testing for the supervisory portfolio at the time
points t = 313 (19.04.2002) and t = 755 (23.02.2004) for l = 8. Significant sub-portfolio
combinations I, corresponding value of the statistic Qt

I,n, and p-value. Calculations
are based on 500 bootstrap replications and βl = 0.1.

t=313 t=755

I Qt
I,n p-value I Qt

I,n p-value

1 2 3 4 5 6 7 8 10 11 -3.39774 0.00068 1 2 3 4 5 6 8 9 10 3.35484 0.00079
2 3 4 5 6 7 8 9 10 11 -3.82334 0.00013 1 2 3 4 5 6 9 10 11 3.36225 0.00077
1 2 3 4 5 6 7 8 9 -3.23098 0.00123 1 2 3 4 6 7 8 9 11 3.23002 0.00124
1 2 3 4 5 6 7 8 10 -4.25733 0.00002 1 2 3 4 6 8 9 10 11 3.46422 0.00053
1 2 3 4 5 6 7 10 11 -3.54487 0.00039 1 2 3 4 7 8 9 10 11 3.2428 0.00118
1 2 3 4 5 6 8 10 11 -3.60147 0.00032 2 3 4 5 6 8 9 10 11 3.28402 0.00102
1 2 3 4 5 7 8 10 11 -3.33302 0.00086 2 3 4 6 7 8 9 10 11 3.37724 0.00073
1 2 3 4 6 7 8 10 11 -4.00944 0.00006
1 2 3 5 6 7 8 10 11 -3.99211 0.00007
1 2 4 5 6 7 8 9 10 -3.29191 0.001
1 2 4 5 6 7 8 10 11 -4.25264 0.00002
1 2 5 6 7 8 9 10 11 -3.19147 0.00142
1 3 4 5 6 7 8 10 11 -3.67182 0.00024
2 3 4 5 6 7 8 9 10 -3.35125 0.0008
2 3 4 5 6 7 8 9 11 -3.77839 0.00016
2 3 4 5 6 7 8 10 11 -4.53089 0.00001
2 3 4 5 6 7 9 10 11 -3.66836 0.00024
2 3 4 5 6 8 9 10 11 -3.58624 0.00034
2 3 4 5 7 8 9 10 11 -3.29662 0.00098
2 3 4 6 7 8 9 10 11 -3.92365 0.00009
2 3 5 6 7 8 9 10 11 -3.9123 0.00009
2 4 5 6 7 8 9 10 11 -4.13888 0.00003
3 4 5 6 7 8 9 10 11 -3.6275 0.00029
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Figure 6.7: Development of Spearman’s rho of sub-portfolios. Left panel: Sub-
portfolio of banks 2, 3, 4, 5, 6, 7, 8, 10, and 11 (solid line) against sub-portfolio of banks
1, 2, 3, 4, 6, 7, 8, 9, and 11 (dotted line) with the vertical line representing the time point
t = 313 (19.04.2002); Right panel: Sub-portfolio of banks 1, 2, 3, 4, 6, 8, 9, 10, and 11
(solid line) against sub-portfolio of banks 1, 2, 3, 4, 5, 6, 7, 8, and 10 (dotted line) with
the vertical line representing the time point t = 755 (23.02.2004).
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