Characterization of the LATERAL SUPPRESSOR Promoter

 and the New Regulator of Axillary Meristem Formation ENHANCER OF LATERAL SUPPRESSOR 5Inaugural - Dissertation zur
Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

vorgelegt von
Bodo Raatz
aus Paderborn

Köln 2009

Die vorliegende Arbeit wurde am Max-Planck-Institut für Züchtungsforschung in der Abteilung für Pflanzenzüchtung und Genetik (Direktor Prof. Dr. Maarten Koornneef) angefertigt. Plant Breeding Research

Berichterstatter: Prof. Dr. Klaus Theres

Prof. Dr. Wolfgang Werr

Tag der mündlichen Prüfung: 17.11.2009
Table of contents

1. Introduction 1
1.1. Meristem activities shape the development of plant architecture. 1
1.1.1. Genetic regulation of meristem organization 1
1.1.2. Members of the GRAS Gene family control meristem initiation and organization 3
1.1.3. Regulators controlling lateral meristem development 5
1.1.4. Strategies to discover new regulators of AM initiation acting upstream of known genes 6
1.1.4.1. Previous work on the $L A S$ promoter 7
1.2. Transcriptional control of gene expression 9
1.2.1. Chromatin modifications and their role in plant development 10
1.2.1.1. Role of DNA and histone methylations in plants 11
1.2.1.2. Plant SET domain proteins 14
1.3. Aim of this work 15
2. Materials and Methods 17
2.1. Materials 17
2.1.1. Chemicals 17
2.1.2. Enzymes 17
2.1.3. Vectors 18
2.1.4. Antibiotics 18
2.1.5. Bacteria 18
2.1.6. Plant material 18
2.1.7. Oligonucleotides 19
2.1.8. Growth media and buffers 21
2.1.9. Software and databases 22
2.2. Methods 23
2.2.1. Incubation conditions for bacteria 23
2.2.2. Plant growth conditions 23
2.2.3. Crossing Arabidopsis plants 24
2.2.4. Isolation of DNA 24
2.2.5. Isolation of plasmid DNA 24
2.2.6. Purification of PCR products 24
2.2.7. Polymerase chain reaction (PCR) 25
2.2.8. Cloning of constructs 25
2.2.9. Sequencing 27
2.2.10. Transformation of bacteria 28
2.2.11. Transformation of Arabidopsis 28
2.2.12. Southern blot 28
2.2.13. GUS staining 28
2.2.14. Positional Cloning 29
2.2.14.1. CAPS marker 29
2.2.15. Isolation of RNA from plants 30
2.2.16. cDNA synthesis 30
2.2.17. Real-time PCR 30
Abbreviations 31
3. Results 33
3.1. Part 1: Characterization of the LATERAL SUPPRESSOR promoter 33
3.1.1. Deletion analysis of the $5^{\prime} L A S$ promoter 33
3.1.2. Phylogenetic promoter analysis 37
3.1.2.1. LAS orthologs in different species 37
3.1.2.2. Phylogenetic footprinting analysis of $L A S$ promoters 38
3.1.3. Tomato promoter sequences are functional in Arabidopsis 40
3.1.4. Determining the significance of selected promoter regions 43
3.1.5. Visualization of promoter activities by GUS stainings 47
3.2. Part II: Characterization of a new player of axillary meristem formation. 50
3.2.1. The enhancer of lateral suppressor 5 (eol5) mutant 51
3.2.2. Positional cloning of eol5 54
3.2.2.1. Rough mapping of eol5: problems and solutions 54
3.2.2.2. Fine mapping of eol5 55
3.2.2.3. Annotation of $C Z S$ 59
3.2.2.4. Confirmation of mapping results 64
3.2.3. Characterization of eol5 65
3.2.3.1. Analysis eol5 single mutant alleles 65
3.2.3.2. eol5 affects flowering time control 68
3.2.3.3. Phenotypic variability of eol5 mutants 71
3.2.4. CZS expression profile 72
3.2.4.1. $C Z S$ expression in mutant alleles 73
3.2.4.2. Expression analysis in eol5 mutants 75
3.2.5. Analysis of $C Z S$ homologs 80
3.2.6. Analysis of potential downstream factors of $C Z S$ 83
4. Discussion 87
4.1. Part I: Towards understanding the $L A S$ promoter 87
4.1.1. Visualization of $L A S$ expression by GUS analyses 87
4.1.2. LAS 3 'promoter alone is able to confer specific expression 88
4.1.3. Pinpointing important $L A S 3^{`}$ promoter regions 91
4.1.4. Relative importance of 5' and 3' promoter sequences 93
4.2. Part II: Cloning and characterization of the eol5 mutant 95
4.2.1. Positional cloning of eol5 96
4.2.1.1. Determining the correct $C Z S$ gene structure 96
4.2.1.2. Analysis of eol5 and $c z s$ mutant alleles reveals common defects 97
4.2.1.3. Complementation of eol5 mutants 98
4.2.1.4. Phenotypic variability of eol5. 99
4.2.2. Phenotypic analysis of $C Z S$ mutants reveals roles in different processes 100
4.2.3. Looking into the function of $C Z S$ 102
4.2.3.1. CZS expression analysis 103
4.2.3.2. Investigation of candidate targets of $C Z S$. 103
4.2.3.3. A method of action hypothesis for $C Z S$ 105
4.2.4. Findings from the analysis of $C Z S$ homologs 108
4.2.5. Putative biological role of interactions between floral induction pathways and AM formation control 109
5. Contributions of co-workers to this project 112
6. Literature 113
Abstract 120
Zusammenfassung 122
Danksagung Error! Bookmark not defined.
Erklärung 124
Lebenslauf Error! Bookmark not defined.

1. Introduction

1.1. Meristem activities shape the development of plant architecture

The postembryonic development of flowering plants is based on the activity of meristems, groups of pluripotent cells from which all organs develop. During embryogenesis two groups of meristematic cells are established, the shoot apical meristem (SAM) and the root apical meristem (RAM), giving rise to the major axis of growth.

The RAM will form the main root and later develop lateral roots originating from the pericycle. The SAM will give rise to all aerial structures of the plant, initiating at first leaf and subsequently flower primordia. Lateral meristems develop in the axils of leaves, thereby establishing new growth axis. The controlled outgrowth of these lateral meristems and further SAM activity leads to the vast diversity observable in plant architecture.

1.1.1. Genetic regulation of meristem organization

The SAM is laid out during embryogenesis and consists of a group of self sustaining pluripotent cells. Various genes act in concert to maintain the number and identity of the meristem cell population. Knotted-like homeobox (KNOX) genes keep cells in an undifferentiated state. One of these, SHOOT MERISTEMLESS (STM), is expressed in the Arabidopsis shoot apex and is required for meristem initiation and maintenance (Barton \& Poethig, 1993). Its vital importance can be deduced from stm mutants that fail to produce a SAM or true leaves.

The maintenance of the stem cell population relies on the WUS-CLV loop (Schoof et al., 2000). The homeodomain transcription factor WUSCHEL (WUS) is expressed in the organizing centre, specifying the overlaying cells as stem cells. These are marked by CLAVATA3 (CLV3) expression, a secreted protein expressed in stem cells, acting as a diffusible extracellular signal. The CLV signaling pathway also comprises the CLV1 CLV2 receptor kinase complex expressed overlapping with WUS. They negatively regulate WUS expression upon binding of their ligand CLV3. WUS on the other hand activates the CLV pathway completing the feedback loop controlling the stem cell population. Accordingly
wus mutants loose meristematic activity leading to a stop-and-go growth characterized by terminating and reinitiating of meristems, whereas clv mutants show enlarged meristems (Laux et al., 1996, Clark et al., 1993).

AMs are formed in the axils of leaf primordia. Leaf primordia initiate at the flanks of the SAM, in a spatially and temporally precisely controlled fashion. Early markers of incipient leaf primordia are auxin response maxima, in which auxin flux in the L1 layer is directed towards a convergence point and subsequently inwards, forming a reverse fountain (deduced from intracellular localization of PINFORMED 1, Benkova et al., 2003, Heisler et al., 2005). Other early markers of incipient primordia development are the absence of STM transcript and the expression of leaf identity genes like ASSYMMETRIC LEAVES 1 and AINTEGUMENTA (Byrne et al., 2000, Elliot et al., 1996).

At early stages in primordia development, preceding any morphological changes, genes involved in lateral meristem initiation like REGULATOR OF AXILLARY MERISTEMS 1 (RAX1), REGULATOR OF BRANCHING (ROB/bHLH140), CUP SHAPED COTYLEDON 1 (CUC1) and LATERAL SUPPRESSOR (LAS) are starting to be expressed at, or adjacent to, the position of forming primordia and later on at their adaxial side. Formation of new meristems can be linked to the activity of these proteins, as mutations in these genes show various defects in this process as described below.

At a later stage, around P16 in vegetative Columbia (Col) plants, lateral meristem development has progressed to a stage at which the meristematic marker STM shows a new focused expression (Greb et al., 2003). Establishment of expression domains of other markers of meristem identity like $W U S$ and $C L V$ indicates the formation of a new meristem, which will then commence formation of new leaf and flower primordia.

The exact mechanism promoting axillary meristem fate of a specific cell group is poorly understood. One of the required signals is presumably to keep cells in an undifferentiated state. The nature of the signals leading to new cell identities, that may originate from the primordia, the SAM, or organ boundaries, remain to be uncovered.

1.1.2. Members of the GRAS Gene family control meristem initiation and organization

The plant specific GRAS gene family has been shown to play a role in different developmental processes, from meristem maintenance to hormone signaling (Bolle, 2004). The family is named after the prominent members $\underline{G A I, ~} \underline{R} G \underline{A}$ and $\underline{S} C R$. Specific domains identifying GRAS proteins are a VHIID motif, roughly conserved in all members of the family, the two leucine-rich domains of approximately 100 AA residues length, and homologies near the C -terminus.

The GRAS proteins SCARECROW (SCR) and SHORT ROOT (SHR) are involved in root and shoot radial patterning. Mutants in either gene show, among a range of defects, that cortex and endodermis cell files are not properly established (Sabatini et al., 2003, Helariutta et al., 2000). SHR protein acts non-cell-autonomously and has been shown to upregulate and physically interact with SCR.

A mutation in the petunia gene HAIRY MERISTEM (HAM), which belongs to a different subfamily of GRAS genes, leads to the termination of the SAM and AMs. After cessation of meristem activity a layer of differentiated cells covers the tip of the shoot (Stuurman et al., 2002).

A triple mutant of the homologous Arabidopsis genes SCARECROW-LIKE 22 (SCL22), SCL27, and SCL6 also displays SAM termination and side shoot formation defects. It could be shown in Arabidopsis that the mutations lead to a loss of meristem organization and polarity, as cell groups with meristematic identity are found displaced in lower cell layers (Schulze, 2007). These genes are targeted by miR171, accordingly MIR171 overexpressor plants resemble scl22 scl27 scl6 mutants.

GRAS proteins also act as signal transducers of GA, a plant hormone involved in many developmental processes. GA acts mostly as a differentiation signal, effecting e.g. growth habit, floral development, flowering time and seed germination (Fleet \& Sun, 2005).
The DELLA-domain-containing proteins GAI, RGA, and RGA-LIKE 1-3 are negative regulators of GA response. In the presence of GA these proteins are degraded via the ubiquitin/proteasome pathway, resulting in the derepression of target genes and thereby triggering the GA response.

The Arabidopsis GRAS gene $L A S$ is an important regulator of AM development. The las mutant phenotype is characterized by a lack of AM formation during the vegetative phase, while side-shoots develop normally during the reproductive phase (Fig. 1A). During this work only the las-4 allele was used, which carries a 20 bp deletion 365 bp after the ATG, henceforward referred to as las. LAS is expressed in very specific band-shaped domains adaxial of initiating leaf primordia (Greb et al., 2003, Fig. 1C D). The expression domain coincides or lies closely adjacent to those cells, which will later give rise to AMs. As a close homolog of the DELLA domain proteins GAI, RGA, and RGL1-3, LAS may act on the same target genes. As $L A S$ does not contain a DELLA domain, it will not be degraded upon presence of GA. Hence, a possible function of $L A S$ could be to repress the GA response, which primarily means to keep cells in an undifferentiated state in presence of GA.

Figure 1. Phenotype and expression profile of $L A S$
A, B, axillary bud formation observed in rosettes of wt (A) and las (B) plants. White arrows point towards buds or barren axils, respectively.
C, longitudinal and D, transverse sections showing LAS mRNA accumulation pattern by in situ hybridization, in a 28 d old vegetative $\mathbf{C o l}$ (C) or Ler (D) plant. Pictures from Greb et al., (2003), bars $200 \mu \mathrm{~m}$.

1.1.3. Regulators controlling lateral meristem development

Next to the GRAS genes mentioned above, several R2R3 MYB genes have been shown to be involved in side shoot development. A mutation in the RAX1 gene results in defects in axillary meristem development during the vegetative phase (Müller et al., 2006). The triple mutant with the close paralogs rax2 and rax3 displays increased lateral meristem formation defects, also affecting cauline leaf axils. The lack of focused STM expression in the axils of later leaf primordia suggests that lateral meristem initiation is compromised early in development. Interestingly the rax mutants are aphenotypic in long day conditions, and mentioned defects only appear when plants have been grown in short days.

ROB/bHLH140 could also be shown to be a regulator of branching, similar to the maize and rice homologs BARREN STALK and LAX PANICLE. rob mutants show minor defects in AM initiation in the rosette but enhance the mutant phenotypes of las and raxl (Yang, 2007). In concert with the supposed role in aiding AM development, $R O B$ is expressed in specific expression domains adaxial of leaf primordia and $R O B$ overexpressing plants develop accessory side shoots. Experiments indicate that $R O B$ physically interacts with RAXI, which also shares the same expression domains (Yang, 2007).

Another group of genes that show specific expression domains in axils of leaf primordia are the NAC domain factors $C U C 1,2$, and 3. A loss of function of $C U C 3$ was reported to lead to defects in axillary meristem development (Raman et al., 2008). miR164 is a negative regulator of the close homologs CUC1 and 2 (Rhoades et al., 2002). miR164 overexpression enhances the cuc3 phenotype, revealing redundant functions, while a loss of miR164 function leads to accessory bud formation, interpreted as deregulated, elevated activity of lateral meristems (Raman et al., 2008).

The eol5 mutant was discovered in a screen, designed to find modifiers of the las-4 phenotype (Clarenz, 2004). las-4 mutant seeds were mutagenized with EMS and M2 populations were analyzed for alterations of las-4 phenotype. Two classes of mutants were isolated during this screen, the so called and enhancers of lateral suppressor (eol), in which the AM defects were extended into the cauline leaf axils, and the suppressors of lateral suppressor (sol), whose phenotype was modified to appear more similar to the wild-type (Clarenz, 2004, Raman, 2006).

This second-site mutagenesis screen was expected to identify mutations in genes that act in some way redundant with $L A S$, in the same or a different pathway. The limitations of a genetic screen are always lethal mutations and the redundancy of regulatory networks. A second-site screen is designed to partially overcome the problem of redundant factors that might mask low phenotypic changes of single mutants. As las constitutes a sensitized background, mutations could be detected, whose phenotypic changes would be too weak to be spotted in a screen in the wild-type background.
The eol5 mutant was discovered during this second-site mutagenesis screen, as it increases the las loss of function phenotype. When grown in short days, side shoot formation is strongly reduced in cauline leaf axils, while no enhancement of the las phenotype is observable in long day conditions. Additionally, the eol5 las double mutant is reported to accelerate flowering and to develop longer inflorescences (Schulze, 2007).

1.1.4. Strategies to discover new regulators of AM initiation acting upstream of known genes

In order to uncover the genetic network controlling a process like AM initiation, the first step undertaken is usually the analysis of mutants, either derived from screens designed to detect a specific mutant phenotype, or from fortuitous observations. These approaches led to the discovery of various genes involved in AM formation. The currently available information about the process is gathered from their characterizations and interaction studies.

Yet many players cannot be identified this way, due to lethality or to redundancy preventing observable phenotypic alterations in mutants. Applying methods like yeast twohybrid studies can identify interacting partners. Downstream targets are routinely soughtafter utilizing expression arrays, detecting transcript changes caused by mutations.

Identifying transcriptional upstream regulators binding to the promoter of an investigated gene, is a more challenging task and therefore less common. One way to address this problem is to devise entirely new screens, e.g. utilizing gene-of-interest reporter gene constructs, or looking for reversions of gain-of-function mutations. Other techniques like yeast one-hybrid studies or DNA affinity purification aim to identify proteins binding to a
specific promoter fragment. These techniques require knowledge of the promoter regions of the investigated gene. Understanding promoter structure and function can give valuable insight in the process the gene is involved in. Information about timing and position of binding proteins improves understanding of the genetic processes.

Computational methods are not "yet" universally useful in understanding promoters. Most approaches are based on transcription factor binding motifs, which have aided understanding in various cases (e.g. auxin responsive genes, Chapman \& Estelle, 2009). While some binding motifs are well described, others are either not known, or a description of protein-DNA interaction at a sequence level, based on single binding motifs, simply does not reflect the complexity of the underlying process (Florquin et al., 2005).

With reasonable knowledge of the investigated promoter regions, yeast one-hybrid experiments are a suitable choice to find upstream regulators (Li and Herskowitz, 1993). While broad promoter regions can be used to search for interacting factors, many studies indicate that repeats of short sequences are favorable to produce the desired results (Deplancke et al., 2004, BD Biosciences MATCHMAKER User Manual, 1998). Therefore a detailed promoter study, identifying the essential regions, is a suitable starting point to find upstream interactors and thereby increase understanding of the regulatory network.

In the case of $L A S$, upstream regulators are of special interest, as $L A S$ is expressed in specific domains, including or neighboring those cells that will later give rise to AMs, and whose cell fate is affected in las mutants. Hence it is plausible that the function of LAS might be largely regulated on transcript expression level. This emphasizes the importance of understanding the establishment of the specific RNA accumulation pattern, i.e. investigating the $L A S$ promoter and finding upstream regulators. Thus, promoter studies are applied to identify important elements that can later be utilized to find interacting factors by yeast one-hybrid experiments.

1.1.4.1. Previous work on the LAS promoter

Lateral suppressor (Ls) was first studied in tomato, displaying a similar lack of side shoot formation in the $l s$ mutant as described above for Arabidopsis. Additionally, defects occur during flower development, like a lack of petals and reduced flower numbers (Schumacher et al., 1999).

Complementation experiments showed that comparatively large promoter regions are necessary for gene function. 1411 bp of 5^{\prime} and 2667 bp of 3 ' regulatory sequences driving the $L s$ open reading frame (ORF) were found to be sufficient to produce a wild-type phenotype when transformed into the $l s$ mutant. In contrast, a shorter construct with only 570 bp of 3' sequences did not lead to complementation (Schumacher et al., 1999; Schmitt, 1999). The Ls gene was also shown to be functional in tomato, if the 3 ' regulatory sequences were in reverse orientation, a property typical for enhancer elements.

In order to individually complement the lack of AMs or the flower phenotype, transgenic constructs were produced, in which the 5' promoter was exchanged with the PLENA promoter, active in inflorescence meristems (Bradley et al., 1993), or with the CET4 promoter (Amaya et al., 1999), only active in the vegetative meristem. ls mutant plants transformed with these constructs exhibited no complementation. Only constructs carrying also the 3 `sequences of $L s$ were able to confer complementation, leading to restoration of both phenotypes, irrespective of the 5^{\prime} promoter (Gregor Schmitz, personal communication). This indicated that the 3 ' regulatory sequences are the decisive factor for a functional promoter.

Andrea Eicker (2005) showed that also in Arabidopsis the 3' promoter of LAS plays an important role. To identify important promoter regions, las Arabidopsis plants were transformed with numerous deletion constructs. In a first experiment constructs with 5 , sequences of varying length were analyzed, all including 4000 bp of 3 ' sequences of the LAS gene. Secondly, different sized 3' promoter fragments were examined for their ability to complement. (In the 5' promoter distances always refer to the ATG, while 3' promoter sizes are measured from the stop codon.)

Fig. 2 summarizes the deletion construct analysis results (Eicker, 2005), illustrating that 820 bp upstream and 3547 bp downstream of the $L A S$ gene are necessary for promoter function, whereas shortening of these sequences to 800 bp or 3133 bp respectively, resulted in the loss of complementation ability. These promoter regions shown to contain essential elements are depicted in red in Fig. 2. Additionally, partial complementation could be obtained, also with a short 3' region (488 bp), when using 2910 bp of 5' sequences, leading to $\sim 60 \%$ of rosette axils sustaining bud formation. These results indicate the presence of an enhancer element between 1447 and 2910 bp upstream of the ATG, which is partially redundant to the one downstream of the ORF.

Figure 2. Overview of relevant LAS promoter regions determined by deletion construct analysis.
LAS CDS is depicted in blue, UTRs in light blue, regions shown to contain essential promoter elements in red. Numbers above parentheses state distance in bp between the indicated regions and the start, respectively stop codon of the LAS ORF. Dashed parenthesis indicates region leading to partial complementation in the absence of long 3' sequences.

1.2. Transcriptional control of gene expression

Transcriptional activation of genes is dependent on gene promoters, regions of DNA that lead to spatially and temporally specific activation of mRNA formation. That means these sequences result in the assembly of a transcription initiation complex at the transcription start site (TSS). This contains the DNA Polymerase II (PolII), which is responsible for transcribing mRNAs and some small RNAs (Pedersen et al., 1999).

Promoters are commonly divided into 3 parts: the core promoter, the proximal, and the distal promoter (Abeel el al. 2008). The Core promoter usually extends 50 bp around the TSS and provides the platform to assemble the transcription initiation complex. In plants specific core promoter sequence elements seem less conserved than in animals. The most prominent is the TATA box, located $\sim 30 \mathrm{bp}$ upstream of the TSS, present at the TSS of \sim 30% of Arabidopsis genes (Molina \& Grotewold, 2005). Initiator elements (Inr) around the TSS have also been reported in several promoters (Shahmuradov et al., 2003). In general no sequence conservation was found that could be used to predict a large number of core promoters (Molina \& Grotewold, 2005). The lack of sequence conservation might be replaced by structural information, as Florquin et al., (2005) described different classes of core promoters, based on structural properties. Structural characteristics, like DNA bending properties, may affect positioning of nucleosomes, providing easier access of proteins to certain DNA elements, and histones may aid specific DNA binding proteins by providing binding platforms.

In order to initiate transcription, core promoters need additional elements that provide binding sites for proteins. The proximal promoter is usually considered to include a region
of a few hundred bp upstream of the TSS, containing various binding motifs for transcription factors. Eukaryotic promoters usually contain binding sites for several TFs that positively or negatively affect formation and activation of the transcription initiation complex (Pedersen et al., 1999).

Distal promoter elements can be localized at distance of several thousand bp and comprise additional regulatory elements named enhancers or silencers. Proteins binding to these elements are assumed to interact with proteins at the core or proximal promoter by looping of DNA. Enhancer or silencer elements can usually act independent of orientation and of their position ahead or behind the transcribed region of the gene. As all regulatory sequences behind the gene belong to the distal promoter, these regions will be referred to as 3 ' promoter in this work.

The actual activity of a promoter depends on different aspects. Obviously the number and location of motifs play an important part but only in combination with the composition of TFs present at a certain time. Proximal and distal promoters might also be defined by structural elements like DNA bending properties, influencing the nucleosome positioning and thereby TF binding stability. Another important factor is the chromatin state, limiting the accessibility of DNA to proteins, which is dependent on DNA methylation and histone modifications, as described below. (Pedersen et al., 2005).

1.2.1. Chromatin modifications and their role in plant development

Substantial parts of the genome are in a densely packed state called heterochromatin, in which DNA is inaccessible to TFs. Heterochromatin is inherited through cell divisions. While large parts of the heterochromatin, like telomeric and centromeric regions, remain in this state, other regions of densely packed chromatin can convert to euchromatin in response to developmental cues. Derepression of DNA by unfolding of chromatin is an important part of gene regulation (Pedersen et al., 1999). Chromatin state depends on chromatin marks, such as methylations of DNA and histones,

Histone and DNA methylation marks require further proteins that translate this information to induce heterochromatin formation. The HETEROCHROMATIN PROTEIN 1 (HP1), originally described in Drosophila, leads to heterochromatin formation and gene repression (Bannister et al., 2001). HP1-like proteins are found in most eukaryotes ranging from S. pombe (Swi6) to human (HP1h) and plants (LHP1) (Berger \& Gaudin, 2003).

The Arabidopsis gene TFL2 e.g. is an HP1 homolog that recognizes H3K9 K27 methylation, leading to the formation of inactive chromatin (Steimer et al., 2004). The $t f l 2$ mutant phenotype shares some similarities with the curly leaf (clf) mutant phenotype (see below), misexpressing homeotic genes and thus, appears to be one of the genes involved in translating histone methylation patterns into repressed chromatin state. Numerous other proteins can be expected to be involved in mediating chromatin condensation in response to heterochromatic methylation marks.

1.2.1.1. Role of DNA and histone methylations in plants

DNA methylation plays a major role in maintaining genome integrity. Accordingly transposons and other repeat elements comprise most of the methylated DNA (Chan et al., 2005). Transcribed regions are usually found to be, if at all, less methylated, e.g. shown for the CpG islands (regions of low CpG methylations) described in vertebrates. CpG islands have also been reported in Arabidopsis but do not seem to play a major role (Shamuradov et al., 2005).
So far DNA methylation has not been shown to play a role in plant development (Schubert et al., 2005). Mutants affected in DNA methylation occasionally show developmental phenotypes, like the AGAMUS (AG) and SUPERMAN mutants, but methylation of these loci has not been shown to play a role in vivo. An exception to this concept are the PHABULOSA and PHAVOLUTA genes, which can be methylated due to the regulation by the miR165 and miR166 (Bao et al., 2004).

Nucleosomes are the fundamental repeating units of chromatin, consisting of 146 bp of DNA wrapped around histones. Histones are subject to various modifications like acetylation, phosphorylation, methylation, ubiquitination, or sumoylation, which can be reversible and associated with regulation of individual genes (Völkel et al., 2007). Histone methylations belong to these reversible marks, acting as a cellular memory of transcriptional status, as they are heritable over cell divisions. Proteins that methylate
histones, and thereby affect chromatin state, play a role in many developmental processes like meristem maintenance, phase transition, and embryogenesis (Reyes, 2006).

One of the best studied epigenetic systems in eukaryotes is the Polycomb group (PcG) of proteins and their antagonists the Trithorax group proteins, which are involved in the maintenance of repressed and active transcriptional states, respectively (Bantignies \& Cavalli, 2006). These protein complexes produce epigenetic marks by methylating histones. The effect of histone marks depends on the number of methyl groups and the affected amino acids.
While H3K4 (Lysine 4 of Histone 3), H3K36, and H3K79 methylations are usually associated with expressed genes, H3K9, H3K27, and H4K20 methylations constitute repressive marks (Völkel et al., 2007). Complicating the histone code, lysine residues can carry one, two, or three methyl groups, linked to different enzymes and responses. In wildtype Arabidopsis, monomethyl H3K27 (meH3K27) and dimethyl H3K27 (me ${ }_{2} \mathrm{H} 3 \mathrm{~K} 27$) are concentrated preferentially in heterochromatin, whereas trimethyl H3K27 (me ${ }_{3} \mathrm{H} 3 \mathrm{~K} 27$) appears to be mostly euchromatic (Schubert et al., 2005).

PcG proteins mediate the cellular memory of transcriptional states over many cell divisions (Steimer et al., 2004). Conserved to their function in animals, PcG proteins elicit trimethylations of H3K27 on their direct target genes, which is correlated with stable, longterm repression (Farrona et al., 2008). The Arabidopsis genome contains several homologs of members of the conserved Polycomb Repressive Complex 2 (PRC2), well described in animals. The protein group comprises homologs of four genes, first described in Drosophila: Enhancer of Zeste (E[Z]), Suppressor of Zeste 12 (Su[z]12), Multicopy suppressor of Ira (MSI), and Extra sex combs (ESC). In Arabidopsis these proteins are represented in small gene families (Farrona et al., 2008).

E[Z] homologs contain a SET domain (Su(var)3-9, Enhancer-of-zeste, Trithorax), conferring histone methyl transferase (HMT) activity (Berger \& Gaudin, 2003). Known Arabidopsis homologs are MEDEA (MEA) involved in seed development (Grossniklaus et al., 1998, Luo et al., 1999), CURLY LEAF (CLF) and SWINGER (SWN), redundantly regulating leaf and floral development, and floral transition (Goodrich et al., 1997). $C L F, S W N$, and MEA show a large functional overlap, displaying mainly additive mutant effects. The swn mutation does not cause visible alterations alone but enhances the effect
of $c l f$ and mea mutants. However, there are also specific regulatory functions, e.g. a MEA containing PcG complex acts on PHERES 1 gene during seed development. Known targets for a CLF containing PcG repressive complex include the KNOX genes, which are found misexpressed in mutants (Schubert et al., 2005).
$\mathrm{Su}[\mathrm{z}] 12$ homologs are characterized by C 2 H 2 zinc finger motifs, assumed to confer unspecific DNA binding ability (Steimer et al., 2004). FERTILIZATION INDEPENDENT SEED 2 acts in a complex with MEA during seed development (Luo et al., 1999), while EMBRYONIC FLOWER 2 (EMF2) and VERNALIZATION 2 (VRN2) have been shown to affect floral transition (Yoshida et al., 2001, Gendall et al., 2001).

VRN2 has been described to implement stable repression of FLC after cold treatment. FLC is a negative regulator of floral induction, which is itself repressed by the vernalization pathway or the autonomous pathway to enable flowering (Farrona et al., 2008). FLC is strongly activated by FRIGIDA (FRI). As Col or Ler accessions do not possess an active FRI gene, vernalization is not required for flowering. Nevertheless, FLC levels influence floral induction as it is regulated by, and regulates, a large number of genes (Farrona et al., 2008). In wild-type plants, but not in vrn2 mutants, FLC remains repressed after vernalization (Schubert et al., 2005), however, vrn2 mutation does not affect flowering in Ler wild-type background (Gendall et al., 2001).
Mutations in the homologous EMF2 gene flower early under both long days and short days and lead to small, dwarfed plants, indicating participation in a different complex (Chanvivattana et al., 2004). Interestingly, emf2 vrn2 double mutants are not early flowering, showing otherwise additive, pleiotropic phenotypes (Schubert et al., 2005).

FERTILIZATION INDEPENDENT ENDOSPERM (FIE) is an ESC homolog, containing a characteristic WD40 repeat. FIE has been reported to repress floral homeotic genes (Schubert et al., 2005) and to be involved in seed development (Ohad et al., 1999, Chaudhury et al., 1997).
In animals, PRC2 complexes were shown to include the WD40 gene MSI. There are five homologs (MSII-5) in Arabidopsis, but so far no experimental data provides evidence that they are part of PcG complexes (Farrona et al., 2008).

1.2.1.2. Plant SET domain proteins

SET domain proteins form the largest group of lysine HMTs, having different functions in Arabidopsis (Berger \& Gaudin, 2003). SET domain proteins can be divided into seven families based on their conserved domains (Ng et al., 2007). The previously mentioned $C L F, S W N$, and MEA constitute the first family and are the best studied SET proteins, as they are part of the PRC2 homologs. Yet, in recent years also the remaining SET proteins, which have not been associated with these complexes, have attracted attention.

KRYPTONITE (KYP), the first HMT identified in plants, was shown to be involved in DNA methylation control (Berger \& Gaudin, 2003). kyp mutations cause a reduction of methylated H 3 K 9 , a loss of DNA methylation, and subsequently reduced gene silencing (Jackson et al., 2004). This indicates that KYP mediated methylation of histones results in DNA methylation.
Redundant functions have been reported for KYP/SUVH4 and its homologs SUVH5 and SUVH6, which together control activity of the DNA methyltransferase CMT3 (Ebbs et al., 2006).

CAROTENOID CHLOROPLAST REGULATORY 1 (CCR1/SDG8) is another SET domain protein, reported to be involved in plant development (Dong et al., 2008, Cazzonelli et al., 2009). ccrl mutants show increased outgrowth of lateral branches, possibly due to altered carotenoid composition.

Another SET domain protein belonging to the same subfamily as $K Y P$ is $C Z S$, named after its conserved protein domains $\underline{\mathrm{C}} 2 \mathrm{H} 2$ zinc finger and $\underline{\text { SET. CZS }}$ was identified by its interaction with SWP1, a SWIRM (Swi3p, Rsc8p, Moira) domain Polyamine oxidase (PAO)-like protein (Krichevsky et al., 2007). czs mutants, just like swpl mutants, show a mild delay in flowering correlated with an upregulation of FLC. Chromatin immunoprecipitation (ChIP) experiments showed that $\mathrm{me}_{2} \mathrm{H} 3 \mathrm{~K} 9$ and $\mathrm{me}_{2} \mathrm{H} 3 \mathrm{~K} 27$ marks at the $F L C$ locus are reduced, suggesting that a role of $C Z S$ may be to directly repress $F L C$ expression.
PAO containing co-repressor complexes have been shown to be transcriptional regulators in animals (Jepsen and Rosenfeld, 2002). They specifically silence neuronal genes in nonneuronal cells. In animals these complexes have been shown to contain LSD1 (lysinespecific demethylase 1), a protein containing a SWIRM domain and PAO domain that may
act as a histone H3 lysine demethylase, the TF REST (Repressor element 1), adapter proteins, histone deacetylases, and a SET domain HMT (Krichevsky et al., 2007b). A homologous complex may be present in plants, as another LSD1 homolog FLOWERING LOCUS D (FLD) represses $F L C$ by histone acetylation, as part of the alternative pathway of flowering regulation. A hypothesis is that $C Z S$ and $S W P 1$ act together in a PAO containing co-repressor complex, silencing target genes like FLC (Krichevsky et al., 2007b).

Studies of the close CZS/SUVR5 homologs SUVR4, SUVR1, and SUVR2 revealed that they locate to the nucleus, and that SUVR4 has an in vitro HMT activity, generating me ${ }_{2} \mathrm{H} 3 \mathrm{~K} 9$ with a substrate preference for monomethylated H3K9 (Thorstensen et al., 2006).

1.3. Aim of this work

The aim of this project was to obtain a deeper understanding of the process of AM initiation by first, analyzing the $L A S$ promoter and second, the characterization of a new regulator of AM initiation.

The LAS gene was chosen for a detailed promoter analysis because it is a key regulator in AM development. LAS is expressed in very specific domains adaxial of initiating primordia in - or very near to - those cells later giving rise to AMs. This indicates that LAS function might be largely dependant on transcription, emphasizing the importance of understanding the mRNA accumulation pattern, i.e. to understand the composition and localization of the regulatory sequence motifs. The promoter was analyzed by deletion constructs and in silico tools to identify important elements. Additionally, fusion constructs with other promoters were produced to elucidate the relevance of specific promoter regions, and promoter GUS fusions enabled direct visualization of the expression patterns of modified promoter assemblies. Information about position and importance of promoter elements can then be used in yeast one-hybrid studies to identify upstream regulators of $L A S$, which generate the specific expression pattern.

In a second approach, the gene underlying the eol5 mutant phenotype was to be identified and characterized. The eol5 mutant was previously obtained in a second-site mutagenesis screen and reported to enhance the phenotypic defect of las. A map based cloning strategy
was applied for the identification of the underlying gene. The subsequent goal was to characterize the eol5 and eol5 las mutant phenotype, particularly in regard to the effect on lateral meristem initiation, meristem maintenance, and flowering time.

To shed light on the function of the EOL5 gene, RNA expression changes in the mutant were analyzed by real-time PCR. Double mutants with known players in AM initiation were analyzed in order to position the gene function in known regulatory pathways. Furthermore, homologs of EOL5 were examined for defects in side shoot formation, in order to reveal a possible general role of HMT containing complexes.

2. Materials and Methods

2.1. Materials

2.1.1. Chemicals

The main sources of chemicals used in this work are the following:
Ambion, Austin, USA
Amersham Pharmacia Biotec, Braunscheig, Germany
Biozym, Hess. Oldendorf, Germany
Carl Roth GmbH, Karlsruhe, Germany
Invitrogen GmbH, Karlsruhe, Germany
MBI Fermentas GmbH, St. Leon-Rot, Germany
Merck KgaA, Darmstadt, Germany
New England BioLabs GmbH, Schwalbach/Taunus, Germany
Operon, Cologne, Germany
QIAGEN, Hilden, Germany
Roche, Basel, Switzerland
Sigma Chemical Co., St.Lois, USA

2.1.2. Enzymes

Enzymes used during this work were obtained from following suppliers:
Invitrogen GmbH , Karlsruhe, Germany
New England BioLabs GmbH, Schwalbach/Taunus, Germany
MBI Fermentas GmbH, St. Leon-Rot, Germany
Roche, Basel, Switzerland
Sigma Chemical Co., St.Lois, USA
Novagen, Toyobo, Japan.

2.1.3. Vectors

The following vectors were utilized during the course of this work.
pCR®-Blunt-II-TOPO®: Cloning of PCR products, Invitrogen.
pGEM4Z: Cloning by restriction sites and construct assembly, Promega GmbH, Mannheim, Germany.
pGPTVbar AscI: Binary vector for plant transformation (Überlacker \& Werr, 1996).

2.1.4. Antibiotics

Antibiotics during this work were used to select for transformed bacteria in the following final concentrations:

Ampicillin (Amp) $100 \mu \mathrm{~g} / \mathrm{L}$
Gentamycin (Gent) $50 \mu \mathrm{~g} / \mathrm{L}$
Kanamycin (Kan) $50 \mu \mathrm{~g} / \mathrm{L}$

2.1.5. Bacteria

The Escherichia Coli strain used for amplification of plasmid DNA was:
DH5 α (Hanahan, 1983): F- end A1 hsdR17 (rk-, mk+) gyrA96 relA1 supE44 L- recA1 80dlacZM15 Δ (lacZY AargF) U196

Plants were transformed using the following Agrobacterium tumefaciens strain:
GV3101: Virulence plasmid: pMP90 (Koncz und Schell, 1986)
Selection markers: Rifampicin, Gentamycin and Kanamycin.

2.1.6. Plant material

This work was carried out using the model plant Arabidopsis thaliana.
Table 1: Mutant alleles used in this work

Allele name	Allelic variation	Background	Source
las-4	deletion	Col	Greb et al., 2003
eol5	SNP	Col	Clarenz, 2004
Czs-1	T-DNA insertion	Col	SALK N661919
czs-2	T-DNA insertion	Col	GABI 500A10

rob-2	T-DNA insertion	Col	SALK N52476
mir164a-4	T-DNA insertion	Col	SM333570
mir164b-1	T-DNA insertion	Col	SALK N636105
mir164c	transposon insertion	Col	Baker et al., 2005
suvh1	T-DNA insertion	Col	SALK N859507
suvr1	T-DNA insertion	Col	SALK N860017
suvr3	T-DNA insertion	Col	SALK N662712
swn-7	T-DNA insertion	Col	SALK obtained from Daniel Schubert
clf-28	T-DNA insertion	Col	SALK obtained from Daniel
emf2-10	18 bp deletion, weak allele	Ws	Chanvivattana et al., 2004
vrn2-1	SNP	Cer	Gendall et al., 2001
swp1-1	T-DNA insertion	SALK N642477	
FRI FLC	active FRI introgressed from San Feliu-2 accession	Col / Sf-2	Searle et al., 2006

2.1.7. Oligonucleotides

Primers were mainly supplied by Invitrogen and Operon

Table 2: Oligonucleotides used in different subprojects

Genotyping and sequencing of plasmids
pGPTV-FOR4 pGPTVfor3 pGPTV-rev2 Plasmid-Forward
caagaccggcaacaggat aggacgtaacataagggactgac tccataaaaccgcccagtc cacgacgttgtaaaacgacggccag
pGPTV-FOR2 T-DNA-R pGPTVrev3 Plasmid-Reverse
aactgaaggcgggaaacgac caatacgcaaaccgcctctc gaagcttgcatgcctgcag cacacaggaaacagctatgaccatg
ggtcctaggtcctctccaaatgaa caacctgcaggaaaccagagtcttgtcttc atactcgagcaacttcatctctatccataaaactatgt atactcgaggtgaattttatttaattagtatcatttgc cagtgtatgcaaagaacagttc acctccgtcgtcttctttc agacctaaagagtcagcgaacc aacgagctcaaaccagagtcttgtcttctc ttgcccgggataaaacaaaaggggtgtgc tggttcgaacggcatcagaatctcaac gctcccgggtcatccgacaaatcg agaggtaccatttagggttttaggtg tttgagctcaattaattatatacatacacgagtaagc tcgcagagatcatcctctaaac tggcctaggtccaaagagaaggacaa

Mapping primers

cer429966 F cer429971_F cer44411A_F cer44411B_F cer445734_F

35S-F_Sacl
AtLs1411F_Sacl
AtLs1831F_Xhol
AtLs2135R AvrII
AtLs2593muR
AtLs3070R
AtLs3530F
AtLs4051R_SbfI
AtLs4940 F
AtLs5396F_BamHI
AtLs5614R_Xmal
AtLs5739R BamHI
AtLs6798R_Sbfl
AtLsREV
AtPI-1-R_AvrII
LAS-5UTR -6.2f
atgagctctctccacto
tgggagctccggcatcagaatctcaac
atactcgagaatgtaatgattcactttctaaaatcat tatcctaggccttacctgaaggtatattg tggttcgaaacaagaactagt aacacaattgacggcaatgg taggagctccaaaatcgtcccctcttctcc aatcctgcagggacgatttcaatcaatttag ctaactagtctaaggttagaggatgatc aatggatccttagggttagtgtcgacaga ccccccgggaatccctttttacccca ataggatcctataacataagtctaaataagcac aatcctgcaggtgatcacaaacttggatag gagacaaagaggacggtcac tctcctaggcttctctctctatctct cgcggatccggcatcagaatctcaac

35S-R_AvrlI AtLs7116R_Sbfl AtLs2019F_Xhol AtLs1631F_Xhol AtLs2599F
AtLs2349F
AtLs2952R
AtLs7116R Sacl AtLs5697F_Xmal AtLs1411F_BstBI AtLs5672R_Xmal AtLs6625F_KpnI AtPI-598-F_Sacl AtLs4975R AtLs3569_AvrII
ggctcttgagccgaagaaat tcgagagatgttgccatgag cggatcagaccgattcaaac gttgttgttcggttcggttt ttgcaccttgccatcatac
cer429966_R cer429971_R cer44411A_R cer44411B_R cer445734_R

acgtttcagaccttcgtcgt

cgtgattgttgtcgtcgatt ctccccaaaaagaaacgaca caccgggaaactaccagcta tgtcaaaacaaaatgacaatgc
cer445742_F cer44613B F cer44613F MASC02463F MASC02627F MASC02866F MASC02949F MASC03021F MASC07353F
ccggagccatcgtagaagta atcaatatgttgaaaaaagctacaccag aaaataatgggtggggaaatcg gagtgtcaaaggttacgggttct atgtggttgattcaaagggtg tagaatttccctgccaacatc gttttgaaagtccccggat actccgattccaaacacatca aagcattgctctgtttatcgtc
cer445742_R cer44613B_R cer44613R
MASC02463R
MASC02627R
MASC02866R
MASC02949R
MASC03021R
MASC07353R
tggtttccacaaaattcca cgccaccacaaatctccatc ttcgaaacacgttggaaaatgac gcttgaatggtttacacttgacag tgaaattgggaggaggattg gggcttgaagctgttgagac catggagctggtggtttagc ggtatgtgaaatgggtttggt ttcttcttctatagctttggtctc

Sequencing primers

at2g23347_F at2g23450_986F at2g23450-499F at2g23460_2077F at2g23460_648F at2g23460-670F at2g23520_1236F at2g23520-178F at2g23530_717F at2g23530-696R at2g23640_F at2g23700_1354F at2g23700-113F at2g23755-903F at2g23770_287F at2g23770-1254F at2g23780-671F at2g23790_1140F at2g23790_-301F at2g23800-F at2g23810_406 at2g23810-916F at2g23820_896F at2g23820-524F at2g23830_F at2g23834_F at2g23840_829F at2g23840-638F at2g23860_514F at2g23860-903F at2g23910_1134F at2g23910-219F at2g23920_F at2g23930_F at2g23950_1457F at2g23950-200F at2g23980_1509F at2g23980_160F at2g23980-1217F at2g23985_F at2g24030_18F at2g24030-1363F at2g24080_F atCLF2299_F atCLF3690_F atCLF-495_F atCLF800_F atlCK1_F atLBD10_-361_F atmiR831a_F atSAW2_1615_F atSAW2_2856_F atSAW2_361_F atSAW2_3992_F atSAW2_-898_F
cctgataaaagcagcgtcct tgtttgttggtggttcaatg ccactgggcacgtatcttct tatgagcaggagatgcgaaa ccgcagacgaaaggtaagaa aattcgacccottgacacac cttgacggattggttggtct tcttctcttccgtgaaagtcg agacttgtcaccaatgcaggt tctctcaagtcaattcaaatcca tctggtctaagttatcaaattccaa cggcattcaatcaagaaga cccaactaagagattcttcttcttc gattgatgaaccattgccata cccttctggtcaacaagtca tgtgaaataaatggtgcgtgt actaatcgatcggcgttcac tggggatggattgattgact tcacctctaccaacccgaac ccacgaaaagccgttaagtt ggagttgtcttgtggagagca ggctaaggtatgctttcaaac attgtcaagcttggctgcat tcaaaacgacatcgtgttaaat ttgcacgggttaaaagttga atacatgcctgccgaggac ttctcctacgggttcgttct caggttctgcaacttttgg taacaaagaatcggggcatc aaaaattcagcatttcattacatt ctcatttggtcaagattcaatg ttccaccggtcaatggatta tcaggattgtgaagcaggatt acaattggccgcattagaac tggtttatgtaatttgattttgtttg gcgtaggagagacattgcag gggcttgaaaccagcacata tggactcaaggtactcgcaaa ttcggcaacgattactctcc gacgccgtgattgtgtgtaa atggcgatacgacgagttc aaaaatcgttgaaattctcactt ttagcggtgtactgcggttt gagttgctgagcgagttcct tgctcctgaaacaacaacaaa tcgaaaagctgttgctgaaa catgggttttctggacagg aacgggaccactaaaacacg aaaaatgctaaagaatggggtat gttggggctcagtcatcatc aaacgaactaatcacttgaggttt tgtcagtggtacagtttcattgg cgcagcaacaacaacacttt tctcaaaggaaacacatgtatcataa atggtggtggttggttcat
at2g23347_R at2g23450_2505R at2g23450_1007R at2g23460_3620R at2g23460_2195R at2g23460_789R at2g23520_2775R at2g23520_1374R at2g23530_2232R at2g23530_848R at2g23640_R at2g23700_3258R at2g23700_1449R at2g23755_633R at2g23770_1987R at2g23770_405R at2g23780_997R at2g23790_2684R at2g23790_1250R at2g23800-R at2g23810_1856R at2g23810_618R at2g23820_2396R at2g23820_1018R at2g23830_R at2g23834_R at2g23840_2463F at2g23840_926R at2g23860_1954R at2g23860_739R at2g23910_2651R at2g23910_1282R at2g23920_R at2g23930_R at2g23950_2985R at2g23950_1506 at2g23980_2989R at2g23980_1610R at2g23980_260R at2g23985_R at2g24030_1543R at2g24030_137R at2g24080_R atCLF3857_R atCLF5170 R atCLF969_R atCLF2400_R atICK1_R atLBD10_1856_R atmiR831a_R atSAW2_2947_R atSAW2_4182_R atSAW2_1753_R atSAW2_5355_R atSAW2_441_R
agctcttgcacgaagttactg aacattgtggtactggttgaaaga cattgaaccaccaaacaaaca ccttggagccaatagaacca accccaagatttccagcag ccttccttcaggcatagaacc ttaccctccttccatttcca cacatccctcacttgagctg aacagagagggtcatgtcgaa ccatcgtcttctgcctgtaag gacacaggtaaagtcgaccaa aaccettcccaagacaatca tcgaattgtcgaacaccaga ggaactattgatcttccttcaagc tgaccaactccaacacaaca gtcgttagcaatggcgaaat gcatctatcaaccttaaagaatcaaa aatgatgccaaaagctcgtt cctccaccaccttctttga cgtccactgctacgtccata gaaccottcttcattatgtttgatg aaaggatcaaaaagctcaatctc ccgtgcaaaatcttgaaaca gacaaacttcacatcttcaaggatt gcaagagacatcgctaagagtg agaacaccgggatctcagaa cttcgaccgttgcatcttct gcttcaaactggcaacaaga tcgagacgatatagttgaaataatga cgagtttgctctggcaatc tcgtggatgcattgagatt gagcatgccacaactgtgat ttcaccacaacatcaaaaatga tcaaagcagtggatccagagta ttgctttcacaggacctcaa ccaaaacaaaatactttagacaacaaa ggaagcaatggcagactctc acctgcatgtttccaatgag gatgcttgcttccttgagc caattgggtgatgaatgttttg ggtctctctaatggcattggttat tgtctgaaaaagttgttgaactg aacacttagcaatgtcaaatcttca taagaaagctccccaaccag tagtgcgcgaatcaaatcag tctccttcgacccactacaga atcgctgggtgaacaacttc agcgttagggcggtaagat tcatttgcttgctttggttg tttcgtagtcttggataaaatcagc tgatgaataatgacagaagaaattg cattaaatatggtttgattgtttttg tcgcagtagtggttgtaccg tgttaataagtcgatcgggtacg gtggacggttccgatcata

CZS sequencing, genotyping, and cloning of constructs

at2g23740_1113F	ctgagtctccaatgcaacca
at2g23740_19F	agttggttcttgacgtggatg
at2g23740_2507F	tggtcgtttagtggatttgc
at2g23740_3847F	agctgtcgcagttcagtgtg
at2g23740_-1502F	tcgctaacataacctgcaca
at2g23740-185F	tgacttcgtatgtctgaaaatgc
at2g23740-AscIF	ataggcgcgcctcgctaacataacctgcaca
atCZS-156F	cttccgtgacctagcctttg
atCZS-1668F	cttcgtaacaaatttcgctga
atCZS-1668F_Ascl	ataggcgcgcccttcgtaacaaatttcgctga
atCZS-641R	ataaagtgggaacacgaaacaca
atCZS-929F	tacatgcccaaataccgatg

Real-time PCR primers

ANAC83_490F	atgcacgaatatcgcctctc
atCZScDNA_3938F	tcacagctgctcaccaaatc
atCZScDNA_510F	gaccagttcccttcagaggtt
AtLs3233F	atggcgatcttgattcgtt
AtPP2C_1543F	atgggaacagatgagcaacc
DRN_837F	gatcgctacgggaatttca
DRNL_732F	ccagagagcggtttcagac
FLCcDNA_4156F	agccaagaagaccgaactca
LB25_56F	acctttcttgttgcgatcc
miR164B_9F	agggcacgtgcattactagc
PP2A_F	taacgtggccaaaatgatgc
STM_2056F	tggagccgtcactacaaatg

Primers for genotyping mutants

atSWP1_934F	gtgatggtgttgaggcaatg
bHLH140-EcoRIfo	gatgaattcatggatgattcaatcttcgtagc
clf-28F	ctgccagttcaggaatggtt
emf2-10F	gccaggcattcctcttgtta
LB-T-DNA	tgaaaagaaaaaccaccccag
miR164A_171R	cacaaacaacgaagagctagtca
miR164B-263F	tgacataaacaacactcgcactt
miR164C-544F	aattacgtcgtgagggttgg
SWN_1539F	ggataagcagaataccgaggaa
VRN_2323F	tgcgttcattaagtaggcaaca

at2g23740_2649R
at2g23740-456F
at2g23740_3961R
at2g23740_5303R
at2g23740-61R
at2g23740 1220R
at2g23740_SbfIR
atCZS_182R
at2g23740_358R
atCZS 5378R Sbfl
atCZS 3168R
atCZS 5378R
atSWP1_1916R bHLH140-1931R clf-28R emf2-10R JL_202 miR164A-463F miR164B_196R miR164C 267R SWN_2422R
VRN_2523R
ANAC83 679R atCZS_4928R atCZS 795R AtLs3297R AtPP2C 1730R DRN_935R DRNL_832R FLC_4508R LB25_1296R miR164B_70R PP2A_R STM_2802R
ggctgccacaaggaatacac
cctgggtttgttgattggtc tgggaatctacacctcatgga tcaatccttccaaagagtttcaa tctgcaataagaacaggggaat ctgtgctatttcgccaacac atacctgcaggtcaatccttccaaagagtttcaa ggctcagaaggtgacgactc tttcgcacatcttattccagc atacctgcagggcttccatggttctgcaact gagcatctgttacgccatca gcttccatggttctgcaact
tcgttcttgttaccggctct tctcgggtgatctcttctcct cttcacaagcattatcccaaga ccaccgttgctctagggtta tgccatcttcaccagtctcc tttcttgatacccccactcg cagcccaacctaactctcca cctggttctcttctttcagca agtctgacgtgcatttacgc ccgcatatatacacgcatttg gttctccacaaccgcttggt gccgtttcctctggtttatg
ctggaacagagggcttgaac caaatttacattaaaacgcctgtttatc gaagggagctctctgcttgat ttgtaagcaaccccacaaca cattttataataacgctgcggacatctac cgtgaccggcttcatagg acacttgaaccctcgtcgtc aacacaaaaagtggagtaacaatca attgggacctcacgctttc aaggtcttttgtgtgtgttcaag

2.1.8. Growth media and buffers

Culture media used in this work were prepared as described by Sambrook \& Russell (2001). Agrobacterium tumefaciens was incubated in YEP medium (1 \% Pepton, 1 \% Yeast Extract, $0,5 \% \mathrm{NaCl}, 0,5 \%$ Saccharose). For growth on solid medium 1% agarose was added to LB or YEP media. All culture media and buffers were made with highly purified Milli-Q-water (Millipore Waters GmbH, Neu -Isenburg). When required, solutions were autoclaved for 20 min at $121^{\circ} \mathrm{C}$. For plants grown in sterile conditions, seeds were placed on MS Medium (Murashige and Skoog, 1962) with vitamins but without addition of sugar.

2.1.9. Software and databases

The following software tools were used in the course of this work:
Sequence processing, planning of cloning strategies and restriction analyses, annotation of genomic sequences, sequence alignments, and assembly and analysis of sequencing results were performed using the DNASTAR® software package.

Primers for PCR and sequencing were designed using primer3 online tool (Rozen \& Skaletsky (2000); http://primer3.sourceforge.net/).

NCBI (National Center for Biotechnology Information; http://www.ncbi.nlm.nih.gov/) database was used for BLAST analyses and acquiring sequences.

TAIR (The Arabidopsis Information Resource; www.arabidopsis.org) database was used to obtain DNA sequences and information about Arabidopsis genes.

GBrowse (Generic Genome Browser Version 1.70; http://gbrowse.arabidopsis.org/cgi bin/gbrowse/arabidopsis/) was used to visualize genomic sequences and aligned ESTs and high throughput transcriptome sequences.

SMART (a Simple Modular Architecture Research Tool; Schultz et al. (1998); http://smart.embl-heidelberg.de/) allows the identification and annotation of domain architectures of proteins.

TDNA express (Alonso et al. (2003); http://signal.salk.edu/cgi-bin/tdnaexpress) is a genome browser revealing locations of T-DNA insertions.

CREDO (Cis-Regulatory Element Detection Online, Hindemitt \& Mayer (2005), http://mips.helmholtz-muenchen.de/proj/regulomips/credo.htm) is a web-based tool for computational detection of conserved sequence motifs, integrating results from a variety of algorithms: AlignACE (Hughes et al., 2000), DIALIGN (Morgenstern, 1999), FootPrinter (Blanchette and Tompa, 2002), MEME (Bailey \& Elkan, 1994), and MotifSampler (Thijs et al., 2001).

FIMO (Find Individual Motif Occurrences; http://meme.sdsc.edu/meme/fimo-intro.html) uses motif information from MEME output files to compare these to further sequences.

BAR (Bio-Array Resource, Winter et al. (2007); http://www.bar.utoronto.ca/efp/cgibin/efpWeb.cgi,) provides an Arabidopsis browser for visualization of large-scale expression data.

Bioinformatics Toolkit (Dep. of Protein Evolution at the Max-Planck Institute for Developmental Biology, Tübingen, http://toolkit.tuebingen.mpg.de/t_coffee) was used for alignments and to construct phylogenetic trees.

UCSC Genome Browser on A. thaliana (Jan. 2004 Assembly at UCLA; http:// epigenomics.mcdb.ucla.edu/H3K9m2/, Bernatavichute et al., 2008) shows data of ChIP chip experiments, providing a high-resolution, genome-wide map of several H3 methylations and DNA methylations.

2.2. Methods

General molecular biology laboratory methods were carried out as described by Sambrook \& Russell (2001), unless otherwise stated.

2.2.1. Incubation conditions for bacteria

E. coli cultures were incubated on LB medium at $37^{\circ} \mathrm{C}$ over night (Sambrook \& Russell, 2001). Agrobacterium tumefaciens cultures were incubated on YEP medium at $28^{\circ} \mathrm{C}$ for 23 days with appropriate antibiotics.

2.2.2. Plant growth conditions

Arabidopsis seeds were stratified for 2-3 days at $4^{\circ} \mathrm{C}$ on soil before transfer to green house or growth chambers. For phenotyping, plants were grown in greenhouse conditions, in Grobanks (Mobylux GroBanks, CLF Plant Climatics, Emersacker, Germany), or Percival (Percival Scientific, Inc., Perry, USA) growth chambers. Plants were either grown in short days (8 h light, 16 h darkness) or long days (16 h light, 8 h darkness).

In greenhouse, short day conditions were achieved by covering benches after the 8 h of light period. During day time, additional artificial light was occasionally supplied. For long day conditions artificial light was supplied for up to 16 h a day. In Grobanks climate chambers temperature was $22^{\circ} \mathrm{C}$ during day and $17^{\circ} \mathrm{C}-18^{\circ} \mathrm{C}$ at night. In Percival growth chambers day and night temperatures were $22^{\circ} \mathrm{C}$ and $16^{\circ} \mathrm{C}$ respectively, temperatures
changed over a 15 min period. In both growth chambers red light (from light bulbs) was supplied for an extra 15 min before and after activation of fluorescent tubes.
For sterile growth seeds were surface sterilized () and placed on Agar plates. After stratification for 2 nights plates were transferred to Grobanks growth chambers.

2.2.3. Crossing Arabidopsis plants

Flowers from preferably young inflorescences were selected for crosses; usually the 2 - 3 oldest flowers of each inflorescence that had not yet opened. The inflorescence meristem, younger buds, and any open flowers were removed. Flower buds were opened with fine forceps, and sepals, petals, and stamens were removed. Fertilization with pollen from young flowers of the pollen donor was accomplished by dusting anthers of the pollen donor on the naked stigma. These were covered with plastic film for a few days to avoid desiccation. Seeds were harvested when siliques opened upon touching.

2.2.4. Isolation of DNA

DNA isolation of a small number of samples was accomplished using the quick protocol described by Edwards et al., (1991) with minor adaptations. $500 \mu 1$ of extraction buffer were used to which $150 \mu \mathrm{l}$ of 5 M KAc were added before the first centrifugation. Subsequently the supernatant was added to $400 \mu 1$ of isopropanol. Large scale DNA isolations for mapping, genotyping, and cloning were carried out using the DNeasy® 96 Plant Kit (Qiagen) with the BioSprint ${ }^{\circledR} 96$ automated workstation (Qiagen).

2.2.5. Isolation of plasmid DNA

Plasmid DNA from E. coli was isolated using the Plasmid Mini Kit (Qiagen).

2.2.6. Purification of PCR products

PCR products were cleaned using Quiaquick PCR Purification Kit (Qiagen).

2.2.7. Polymerase chain reaction (PCR)

Generally, PCR reactions were set up according to the following protocol: $5 \mu \mathrm{l} 10 \mathrm{xPCR}$ Buffer (Sambrook und Russel, 2001), $2 \mu \mathrm{l}$ of $50 \mathrm{mM} \mathrm{MgCl}, 0.5 \mu \mathrm{dNTP}(100 \mathrm{mM}), 0.3 \mu \mathrm{l}$ Taq-Polymerase, $1 \mu \mathrm{l}$ of each Primer $(10 \mu \mathrm{M})$, and $0.1-2.0 \mu \mathrm{l}$ of described DNA preparations as template, adding $\mathrm{H}_{2} \mathrm{O}$ to reach a reaction volume of 50μ. Taq polymerase was produced as described by Pluthero (1993). Reactions were generally carried out in the Mastercycler® epgradient (Eppendorf, Hamburg, Germany) using the following standard program. $94^{\circ} \mathrm{C}$ for $3 \mathrm{~min}, 35$ cycles of $94^{\circ} \mathrm{C}$ for $15 \mathrm{sec}, \sim 60^{\circ} \mathrm{C}$ for 30 sec , and $72^{\circ} \mathrm{C}$ for 1 $\mathrm{min} / \mathrm{kb}$ product, followed by 5 min at $72^{\circ} \mathrm{C}$.

PCRs for cloning and all problematic PCRs were carried out using the KOD hot start DNA polymerase (Novagen), using the following standard program. $94^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 35$ cycles of $94^{\circ} \mathrm{C}$ for $15 \mathrm{sec}, \sim 60^{\circ} \mathrm{C}$ for 30 sec , and $68^{\circ} \mathrm{C}$ for $30 \mathrm{sec} / \mathrm{kb}$ product, closing with 2 min at $72^{\circ} \mathrm{C}$.

2.2.8. Cloning of constructs

Restriction enzymes were used according to the manufacturer's instructions.
Prior to ligation linearized vectors were mostly dephosphorylated with Calf Intestine Alkaline Phosphatase (CIAP, MBI Fermentas) according to the manufacturer's instructions.

Ligations were carried out using T4 DNA Ligase (MBI Fermentas) according to the manufacturer's instructions.

TOPO cloning was performed utilizing the Zero Blunt® ${ }^{\circledR}$ TOPO® PCR Cloning Kit (Invitrogen) according to the manufacturer's instructions.

Constructs for plant transformation were assembled in pGEM4Z background and transferred into a binary plant transformation vector with pGPTVbar AscI background by cutting with AscI and SbfI and subsequent cloning of the insert into pBR51. Arrow " \Rightarrow " denotes the new name of the plasmid after transfer of insert into pBR51. Unless otherwise mentioned, PCR products were amplified from genomic DNA.
pBR51 (pGPTVbar AscI without GUS ORF): pGPTVbar AscI and pAE25 (pGEM4Z with AscI site; Eicker, 2005) were cut with AscI and SacI, mixed and ligated. pBR51 was selected for with Kanamycin.
pBR36 (\Rightarrow pBR37): Genomic LAS fragment was amplified from pES22 (Eicker, 2005) using AtLs1411F_SacI and AtLs7116R_SbfI primer pair. PCR product was cut with SstI and SbfI and cloned into pAE25 (pGEM4Z with AscI site; Eicker, 2005).
pBR23 (\Rightarrow pBR38): PCR products from AtLs3530F / AtLs5614R_XmaI and AtLs5697F_XmaI / AtLs7116R_SbfI primer pairs, both amplified from pES22, were cut with XmaI, ligated, and reamplified with AtLs3530F and AtLs7116R_SbfI primer pair. PCR product was cut with SpeI und SbfI and cloned into pBR36.
pBR24 (\Rightarrow pBR39): PCR product from AtLs3530F / AtLs6798R_SbfI primer pair, amplified from pES22, was cut with SpeI und SbfI and cloned into pBR36.
pBR26 (\Rightarrow pBR41): PCR product of 35S-F_SacI / 35S-R_AvrII (on pBAR35S, from Peter Huijser) and AtLs2135R_AvrII / AtLs2952R (on pES22,) primer pairs were cut with XmaJI, ligated, and reamplified. PCR product was cut with SstI and AgeI and cloned into pBR36.
pBR27 (\Rightarrow pBR42): PCR product of AtLs2599F and AtLs4051R_SbfI primer pair, amplified from pES22, was cut with AgeI and SbfI and cloned into pBR26.
pBR28 (\Rightarrow pBR43): PCR product of AtPI-598-F_SacI and AtPI-1-R_AvrII primer pair was cut with SstI and XmaJI and cloned into pBR26.
pBR29 (\Rightarrow pBR44): PCR product of AtLs2599F and AtLs4051R_SbfI primer pair, amplified from pES22, was cut with AgeI and SbfI and cloned into pBR28.
pBR30 (\Rightarrow pBR45): GUS ORF containing LAS UTRs was amplified by AtLs2135R_AvrII and AtLs4975R primer pair (on pES44, Fig. 11, from Andrea Eicker). PCR product was cut with XmaJI and SpeI and cloned into pBR26.
pBR31 (\Rightarrow pBR46) GUS ORF containing LAS UTRs was amplified by AtLs2135R_AvrII and AtLs4975R primer pair (on pES44, Fig. 11, from Andrea Eicker). PCR product was cut with XmaJI and SpeI and cloned into pBR28.
pBR32 (\Rightarrow pBR47): PCR product of AtLs1411F_SacI and AtLsREV primer pair, amplified from pES22, was cut with SstI and SmiI and ligated into pBR30.
pBR33 (\Rightarrow pBR48): PCR products of AtLs3530F / AtLs5614R_XmaI and AtLs5697F_XmaI / AtLs7116R_SbfI primer pairs, both amplified from pES22, were cut
with XmaI, ligated, and reamplified with AtLs3530F and AtLs7116R_SbfI primer pair. PCR product was cut with SpeI und SbfI and cloned into pBR32.
pBR34 (\Rightarrow pBR49): PCR products of AtLs7116R_SacI / AtLs5396F_BamHI and LAS5UTR -6.2f / AtLs2952R primer pairs, both amplified from pES22, were cut with BamHI, ligated, and reamplified with AtLs7116R_SacI and AtLs2952R primer pair. PCR product was cut with SstI and cloned into pBR27.
pBR54 (\Rightarrow pBR57): PCR product of AtLs1631F_XhoI and AtLs2952R primer pair was cut with XhoI and AgeI and cloned into pBR36.
pBR55 (\Rightarrow pBR58): PCR product of AtLs1831F_XhoI and AtLs2952R primer pair was cut with XhoI and AgeI and cloned into pBR36.
pBR56 (\Rightarrow pBR59): PCR product of AtLs2019F_XhoI and AtLs2952R primer pair was cut with XhoI and AgeI and cloned into pBR36.
pBR60 (\Rightarrow pBR61): PCR product of at2g23740-AscIF and at2g23740_2649R primer pair was cut with AscI and XmaI and cloned into pAE25 (pGEM4Z with AscI site; Eicker, 2005) forming pBR60I. PCR product of at2g23740_1113F and at2g23740_SbfIR primer pair was cloned into pCR-Blunt II-TOPO vector by topocloning forming pBR60F. pBR60I was cut with XmaI, PspXI, and SacI and ligated to pBR60F, which was cut with XmiI and PspXI. After ligation and transformation pBR60, containing the complete CZS ORF including 1502 bp upstream and 286 bp downstream sequences, was selected for with ampicillin. Positive clones were identified by colony PCR using T-DNA-R and at2g23740_3847F primers.

2.2.9. Sequencing

Sequencing reactions were carried out either on plasmid DNA or on PCR products treated with ExoSAP-IT® (USB Corporation, Cleveland, USA) according to manufacturer's instructions. Sequencing was carried out by the MPIZ service unit Automatic Isolation and Sequencing (ADIS) using Abi Prism 377 und 3700 sequencers (Applied Biosystem, Weierstadt) by means of BigDye-terminator chemistry.

2.2.10. Transformation of bacteria

Transformations E.coli with plasmid DNA was carried out via heat-shock treatment of chemical competent cells as described by Hanahan (1983).

In order to transform Agrobacterium, competent cells were mixed with $\sim 500 \mathrm{ng}$ of DNA and incubated for 5 min on ice, and subsequently in liquid nitrogen. After a heatshock for 5 \min at $37^{\circ} \mathrm{C}, 500 \mu \mathrm{l}$ of YEP medium was added and cells were incubated on a shaker at 28 ${ }^{\circ} \mathrm{C}$ for $1.5-3 \mathrm{~h}$. Subsequently, cells were plated out on solid YEP medium containing gentamycin and kanamycin.

2.2.11. Transformation of Arabidopsis

Transgenic plants were established using Agrobacterium-mediated transformation, following the floral dip method described by Clough and Bent (1998). To select for transgenic plants, T 1 seedlings were sprayed with $250 \mathrm{mg} / \mathrm{L}$ glufosinate (BASTA®, Hoechst) 2-3 times.

To sort out multicopy insertions in one locus, PCRs with outwards directed T-DNA border primers were carried out. If a PCR product could be generated the line was evicted, as this indicates T-DNA tandem insertions. Homozygous lines were selected by spraying T3 seedling populations with Basta.

2.2.12. Southern blot

To detect transgene sequences in genomic DNA alkali DNA blotting and subsequent radiolabeled detection was performed as described by Sambrook and Russell (2001). Blotting was performed using Hybond XL nylon membranes (Amersham Biosciences). A 482 nt radiolabeled probe targeted to the LAS 3' UTR was utilized to detect transgenic and endogenous DNA fragments in transformed plants.

2.2.13. GUS staining

GUS stainings were carried out as described by Sessions et al., (1999). Tissues were embedded in Paraplast+ (Kendall, Mansfield, USA) in the ASP300 tissue processor (Leica,

Wetzlar, Germany). Plant tissues were sectioned and dewaxed by changing through two consecutive 5 min steps of 100% xylol, two consecutive 5 min steps of 100% ethanol, 1 min steps of $90 \%, 70 \%, 50 \%$, and 30% ethanol and a 5 min wash step in water. Slides were immediately mounted in 30% glycerol and photographed through a brightfield microscope.

2.2.14. Positional Cloning

A mutation can be identified by map based cloning if it causes a significant and reliable aberration of phenotype. The first step is to cross the mutant with a different accession that can be distinguished on a genomic level by DNA markers. The F2 population of this cross is first analyzed on phenotypic level to distinguish the homozygous mutants from the phenotypically wild-type plants (segregation ratio for recessive mutations 1:3). Next, the genomes of these plants are analyzed by markers to determine which chromosomal area in each plant originates from which parent, resulting from the recombination events during meiosis. In Arabidopsis usually 4-5 markers per chromosome provide a sufficient information density for rough mapping. The position of the mutation is determined by comparing phenotypes and genotypes of each plant. In plants exhibiting a mutant phenotype, a marker close to the mutated gene will show an increased frequency of the mutated parent's allele, because the locus of the mutation has to be homozygous for this accession to produce this phenotype. Wild-type looking plants on the other hand will bear an increased frequency of the other parent's allele at this marker compared to the statistical expectation.

After the locus has been roughly mapped to a chromosomal area, more markers are applied in this region in the processes of fine mapping to narrow down the position of the mutation. Analysis of recombinants and matching phenotype and genotypes between markers should bring forth a small region including the gene of interest in which candidate genes can be selected and sequenced until the mutation causing the phenotypic deviation is found.

2.2.14.1. CAPS marker

The genotyping during fine mapping was accomplished utilizing mostly CAPS markers, which are available in large numbers for most chromosomal regions between Col and Ler.

PCR products were cut with the appropriate enzyme by adding $10 \mu 1$ of PCR to $10 \mu 1$ of master mix, containing $2 \mu \mathrm{l}$ of the appropriate restriction buffer, $0.5 \mu \mathrm{l}$ of enzyme, and 7.5 $\mu \mathrm{l}$ of $\mathrm{H}_{2} \mathrm{O}$, followed by incubation at (usually) $37^{\circ} \mathrm{C}$ for 1 h , and subsequent separation on a suitable agarose gel.

2.2.15. Isolation of RNA from plants

RNA was extracted using the RNeasy Plant Mini Kit (Qiagen) and eluted in $0.5 \times \mathrm{TE}$ buffer.

2.2.16. cDNA synthesis

For cDNA synthesis RNA was first subjected to DNase digestion using DNA-free ${ }^{\text {TM }}$ Kit DnaseI (Applied Biosystems / Ambion, Darmstadt, Germany), according to the manufacturer's protocol.

First strand cDNA was synthesized using the RevertAid ${ }^{\mathrm{TM}}$ H Minus First Strand cDNA Synthesis Kit (Fermentas) according to manufacturer's instructions. About $1 \mu \mathrm{~g}$ of RNA was used in a 20μ l reaction.

2.2.17. Real-time PCR

Quantitative real-time PCR was performed using the Power SYBR® Green PCR Master Mix kit, according to the manufacturer's instructions. The SYBR Green dye binds to double-stranded DNA, thereby providing a fluorescent signal that reflects the amount of double-stranded PCR product generated during the reaction. Real-time PCR reactions were carried out and monitored by the Mastercycler® ep realplex (Eppendorf). The relative expression was determined by the standard curve method (Applied Biosystems, User Bulletin \#2, 2001) and was normalized with the parallel measured expression of 2PPA (Czechowski et al., 2005).

Abbreviations

A	adenine
AA	amino acid
AM	Axillary meristem
BRC	BRANCHED
BC2F2	backcross two, following generation two
bHLH	basic helix loop helix
BLAST	Basic Local Alignment Search Tool
bp	base pair
CaMV	cauliflower mosaic virus
ChIP	chromatin immunoprecipitation
CLV	CLAVATA
Col	Columbia
CUC	CUP SHAPED COTYLEDONS
CZS	C2H2 ZIINC FINGER SET DOMAIN PROTEIN
DRN	DORNRÖSCHEN
DRNL	DORNRÖSCHEN-LIKE
E. coli	Escherichia coli
EBI	European Bioinformatics Institute
EMBL	European Molecular Biology Laboratory
EMF2	EMBRYONIC FLOWER 2
EST	expressed sequence tags
$F L D$	FLOWERING LOCUS D
FIMO	Find Individual Motif Occurrences
FLC	FOWERING LOCUS C
G	guanine
GA	gibberelic acid
GAI	GIBBERELIC ACID INSENSITIVE
GFP	green fluorescent protein
GUS	β-glucuronidase
HA	human influenza hemagglutinin
het	heterozygous
HMT	histone methyl transferase
hom	homozygous
H3K9	lysine nine on histone three
JGI	Joint Genome Institute
kb	kilo base pairs
KNOX	KNOTTED LIKE HOMEOBOX
$L A S$	LATERAL SUPPRESSOR
ld	long day
Ler	Landsberg
LFY	LEAFY
LN	natural logarithm
LOM	LOST MERISTEMS
Ls	Lateral suppressor from tomato

LSD	Lysine-specific demethylase
MEA	MEDEA
me $_{3} \mathrm{H} 3 \mathrm{~K} 9$	tri-methylated lysine nine of histone three
miR	micro RNA
MYB	protein domain first described in an avian myeloblastosis virus oncogene
NASC	Nottingham Arabidopsis Stock Centre
NCBI	National Center for Biotechnology Information
nt	nucleotide
ORF	open reading frame
PAO	Polyamine oxidase
PcG	Polycomb group
PEP1	PERPETUAL FLOWERING 1
PID	percent identity
PolII	RNA polymerase II
PRC2	Polycomb repressive complex 2
QTL	quantitative trait locus
RAX1	REGULATOR OF AXILLARY MERISTEMS
$R G A$	REPRESSOR OF gal-3
$R G L$	REPRESSOR OF gal-3-like
ROB	REGULATOR OF BRANCHING
R2R3	repeats 2 and 3 of the MYB domain
SAM	shoot apical meristem
SCL	SCARECROW_LIKE
SCR	SCARECROW
sd	short day
SET	$\underline{\text { Su(var)3-9, Enhancer-of-zeste, Trithorax }}$
SHR	SHORT ROOT
SMART	Simple Modular Architecture Research Tool
SNP	single nucleotide polymorphism
STD	standard deviation
STM	SHOOT MERISTEMLESS
SOC1	SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1
SUVH	Su (var) homologs
SUVR	Su (var) homologs
SWIRM	Swi3p, Rsc8p, Moira
SWP1	SWIRM DOMAIN PAO DOMAIN-LIKE PROTEIN 1
TAIR	The Arabidopsis Information Resource
T-DNA	transfer DNA
TF	transcription factor
TSS	transcription start site
UTR	untranslated region
VRN2	VERNALIZATION 2
Ws	Wassilewskija
wt	wild-type
WUS	WUSCHEL
YAB1	YABBY 1

3. Results

3.1. Part 1: Characterization of the LATERAL SUPPRESSOR promoter

Aerial architecture of flowering plants is based on the activities of axillary meristems (AM). Among various genes that have been reported to play a role in the initiation of these AMs, $L A S$ was shown to be a key regulator. $L A S$ is expressed in very specific band-shaped domains at the adaxial side of leaf primordia (Greb 2003, Fig. 1C, D). This LAS expression pattern is including or adjacent to those cells, which will later develop into meristems and which fail to do so in the las mutant. This suggests that the function of LAS may be largely regulated by its RNA accumulation pattern, leading to the important question of how these specific RNA expression domains are established.

To address this question, a promoter analysis to identify essential elements in the promoter of $L A S$ was initiated. Understanding promoter structure and function can give valuable insights into the process the gene is involved in. Detailed knowledge of the promoter is also a suitable starting point to find upstream interactors, e.g. by yeast one-hybrid experiments.

3.1.1. Deletion analysis of the 5' LAS promoter

Previous work on tomato and Arabidopsis has shown that large promoter regions are necessary for a functional $L A S / L s$ promoter. In Arabidopsis, first results indicated that 820 bp upstream and 3547 bp downstream of the $L A S$ gene are sufficient for complementation, whereas further shortening abolishes promoter activity (Eicker, 2005). Additionally, 2910 bp of 5' sequences are partially able to replace the 3 ' region (Fig. 2). (In the 5 ' promoter distances always refer to the ATG, while 3 ' promoter sizes are counted from the stop codon.).

Due to time constraints, the constructs pAE70 and pAE84, shown in Fig. 3, had not been analyzed in as much detail as the others mentioned. The complementation results were obtained by decapitation followed by examination of side shoot outgrowth. These lines
were now subjected to closer inspection by checking every leaf axil under the binocular microscope for the presence or absence of axillary buds. All constructs were analyzed in plants homozygous for the las-4 allele. As only the las-4 allele was used in this project it will henceforward be referred to as las.

Figure 3. Analysis of LAS promoter deletion constructs.
A, schematic diagram of constructs analyzed. ORF shown in blue, UTRs in light blue. Numbers indicate distances in the 5' region from the start codon, in the 3' region from the stop codon of LAS. B, analysis of bud formation in rosette leaf axils of plants transformed with constructs shown above and controls, grown for 6 weeks in sd before shift to Id. Every column represents one plant, every box one rosette leaf axil from youngest (top) to oldest. Green indicates an axillary bud, yellow an empty leaf axil, light green an axillary meristem.
pAE70 includes 800 bp of 5^{\prime} sequences in front of the ATG and a long 3' region of 4346 bp behind the stop codon (Fig. 3A). In pAE84, on the other hand, the $L A S$ gene is preceded by 820 bp , shown to be sufficient for complementation, but the 3' sequences are shortened to 3133 bp . The constructs pAE50 and pAE51, which have previously been reported to
confer complementation (Eicker, 2005), were analyzed as controls. They differ from pAE70 in the length of 5' sequences upstream of the $L A S$ gene containing 820 bp and 1447 bp respectively.

Analysis of four independent lines each of pAE50 and pAE51 revealed that plants transformed with these constructs indeed display a phenotype comparable to the wild-type, as shown in Fig. 3B. Out of six pAE70 lines examined, originating from 3 independent transformation events, only two could be unequivocally identified by PCR as carrying the complete pAE70 construct, whereas in the remaining lines some transgene sequences could not be amplified. Detailed phenotypic analyses of plants harboring the correct construct showed either partial or nearly complete complementation, one line differing only marginally in phenotype from pAE50 and pAE51 plants (Fig. 3). This indicated that the utilized promoter fragment still contains all essential elements. Four independent pAE84 lines completely resembled las mutants in phenotype (Fig. 3), thereby validating the presence of an important element between 3133 and 3547 bp in the 3 'region.

To determine the sequences necessary for the function of the LAS 5'promoter, a new set of deletion constructs was designed and analyzed for their ability to complement the las phenotype. The constructs pBR59, pBR58, and pBR57 include 212, 400, and 600 bp upstream of the ATG and 3550 bp of the 3 ' regulatory sequences (Fig. 4A).
las plants were transformed with these constructs and analyzed by southern blot hybridization to identify single copy lines. For some constructs no single copy lines could be found, hence, lines showing the least bands on the southern blot were chosen for analysis. Homozygous lines were identified by spraying T3 seedling populations with Basta. For pBR57 two, for pBR58 four, and for pBR59 three independent lines were analyzed. Lines carrying the same construct produced equal phenotypes, apart from one pBR58 line, which also exhibited minor leaf damages and growth retardations upon Basta spraying, indicating reduced transgene cassette activity.

Figure 4. Deletion construct analysis of the LAS 5' promoter.
A, schematic diagram of constructs analyzed. ORF shown in blue, UTRs in light blue. B, analysis of bud formation in rosette leaf axils of plants transformed with constructs shown above and control plants, grown for 6 weeks in sd before shift to ld. Every column represents one plant, every box one rosette leaf axil from youngest (top) to oldest. Green indicates an axillary bud, yellow an empty leaf axil, light green an axillary meristem.

The construct pBR57 led to a phenotype indistinguishable from the wild-type, while plants harboring the constructs pBR58 and pBR59 displayed very minor defects in AM initiation (Fig.4B). The mild phenotypic differences between pBR57 plants and the other lines indicated the presence of a promoter element of marginal importance situated between position 400 and 600 . Overall, no line manifests a strong reduction in AM initiation, illustrating that no essential 5' promoter element is localized ahead of the first $212 \mathrm{bp}, 95$
bp of which are transcribed 5^{\prime} UTR sequence. This corroborates the idea that 3 ' sequences are of major relevance for correct $L A S$ expression.

3.1.2. Phylogenetic promoter analysis

3.1.2.1. LAS orthologs in different species

Another method to identify important promoter elements is phylogenetic footprinting, i.e. comparing promoter sequences of orthologous genes from different species with the aim to detect conserved regions. Orthologs of the Arabidopsis LAS gene were identified using BLAST algorithms on various sequence databases (TAIR, NCBI, JGI, EMBL EBI). Sequences homologous to the $L A S$ protein sequence could be obtained from the close homolog Capsella rubella, more distantly related species like tomato and poplar, and also different monocots. Sequences from C. rubella and barley were described by Rossberg et al., (2001) and Eicker (2005), respectively.

LAS sequences of 11 species were aligned with Arabidopsis LAS using the ClustalW algorithm, and a neighbor joining tree was constructed, depicted in Fig. 5. The closest relatives of LAS in the Arabidopsis genome, the SCL28, 4, 7 and 26 genes (Bolle, 2004) as well as $S C R$ and GAI were also included as a comparison. The phylogenetic tree shows that all genes from the different species show more identity to $L A S$ than the closely related $S C L$ genes, indicating that the foreign genes are orthologs or co-orthologs of $L A S$.

All grasses shown here appear to have two co-orthologs of LAS that evolved before speciation of maize, barley and rice. Poplar has three LAS paralogs, all others only one. The $L A S$ alignment only roughly reflects the expected relationship of species based on their assumed evolutionary development. All grass genes form a separate clade, but asterids and rosids do not group together. This is not resolved by comparing only the considerably more conserved C-terminal halves. Nevertheless, the sequence comparison showed that there is a set of clear $L A S$ orthologs, whose regulatory sequences can be used for phylogenetic analyses.

Figure 5. Phylogenetic tree of LAS homologs.
Phylogenetic tree is based on an alignment of full length protein sequences. LAS homologs were aligned by Bioinformatics Toolkit using ClustalW algorithm (Thomson et al., 1994), shown is a neighbor joining tree using PID. Pt: Populus trichocarpa (poplar), Vv: Vitis vinifera (grape vine), Dc: Daucus carota, SI: Solanum lycopersicum (tomato), St: Solanum tuberosum (potato), Nt: Nicotiana tabacum, Cr: Capsella rubella, At: Arabidopsis thaliana, Os: Oryza sativa (rice), Zm: Zea mays (maize), Hv: Hordeum vulgare (barley), SCL: SCARECROW LIKE genes from Arabidopsis.

3.1.2.2. Phylogenetic footprinting analysis of LAS promoters

The available promoter regions of $L A S$ and its orthologous genes were compared using the Credo 1.1 CREDO software, a web-based tool for computational detection of conserved sequence motifs. It integrates different algorithms (AlignACE, DIALIGN, FootPrinter, MEME and MotifSampler, see materials and methods) to analyze noncoding sequences (Hindemitt \& Mayer, 2005).

Ample promoter sequences were available from: Arabidopsis, C. rubella, tomato, rice, barley, grapevine and poplar. A comparison of 5^{\prime} promoter sequences did not reveal any highly conserved elements. An analysis of 3 ' regions of tomato, Arabidopsis, and C. rubella resulted in the identification of two regions with noticeable homology, referred to as region A and B (Fig. 6). Numerous short, weakly conserved motifs that were detected all along the 3 ' sequences, appeared in the same order, indicating a general homology of these sequences (depicted as red dots in Fig. 6). Regions A and B, however, stand out as sharing homologies of high significance (Fig. 7).

Analyses including all available sequences revealed that region A is conserved in all investigated species (Fig. 7). High similarities extend over an 82 bp stretch (in

Arabidopsis) conserved in every species examined so far. In all cases it was found downstream of the LAS gene, however, in some species less conserved copies appear 5' of the gene as well (rice: MOC1, poplar: PtLAS2). The region A does not show any open reading frame as various out-of-frame deletions or insertions are found between species. A probe against this region did not show hybridization on an RNA blot (Gregor Schmitz, personal communication) and transcriptome analysis as described by Lister et al., (2008) did not reveal any transcript traces at the complete LAS locus, including the ORF (analysis of inflorescence tissue). This suggests that this sequence is not transcribed and the observed conservation may be due to a regulatory function. The region B was only found to be conserved in the 3' sequences shown in Fig. 6, and comprises two adjacent elements. Homologies are much less pronounced in region B than in region A, but as half of this region is deleted in pAE70, the longest non-complementing construct (Fig. 3), a role in promoter function is suggested.

Figure 6. Phylogenetic comparison of LAS 3' regions
LATERAL SUPPRESSOR ORFs and 3' promoter sequences from Arabidopsis (At), C. rubella (Cr) and tomato (SI). ORF shown in blue, red dots indicate homologous motifs as detected by CREDO software. Regions of higher homology A and B are highlighted in yellow. Numbers state distances from stop codon.

A phylogenetic footprinting analysis of 5`and 3`promoters of the genes LAS, CUC1, CUC3, ROB, DRN, and RAX1, which show similar expression profiles marking mostly incipient primordia and axils of primordia, discovered some motifs showing conservation between these sequences. However, comparing the resulting motif matrices showing the highest p-values with the available 3 ' regions of $L A S$ orthologs, using the FIMO software tool, no well conserved motifs are found. Thus, no elements in common have been found, which are clearly associated with mRNA expression in axils of leaf primordia.
In summary, phylogenetic footprinting revealed two conserved regions in the 3^{\prime} promoter. One of these shows high homologies in all investigated species, indicating that not only the $L A S$ gene but also its regulatory regions are highly conserved between species.

B

SLLAS TTTGAAAATTCATCAAATTAAATTTCGA-TAAGCGCAACATGACAAATATTTCTTAACGGAGATAGTA

Figure 7. Sequence alignment of $L A S 3^{\prime}$ promoter regions A and B of various species.
A, alignment of orthologous sequences of the identified promoter region A, aligned by Bioinformatics Toolkit using MUSCLE algorithm (Edgar, 2004). The following list shows abbreviations and the distances of depicted sequences from the stop codon of the respective LAS ortholog. At: Arabidopsis (2046bp), Cr: Capsella rubella (2356 bp), SI: Solanum Lycopersicum (tomato, 914 bp), Nt: Nicotiana tabacum (tobacco, 798 bp), Vv: Vitis vinifera (grape vine, 809 bp), Pt: Populus trichocarpa (poplar, PtLAS1: 1330 bp, PtLAS2: 644 bp, PtLAS3: 1299 bp), Cp: Carica papaya (1010 bp), Os: Oryza sativa (rice, MOC1: 1207 bp, OsLAS2: 1092 bp), Hv: Hordeum vulgare (barley, HvLAS1: 1103 bp, HvLAS2: 1567 bp). B, alignment of orthologous sequences of the promoter region B. Shown sequences appear in a distance oft 52 bp in Arabidopsis and 112 bp in tomato.

3.1.3. Tomato promoter sequences are functional in Arabidopsis

To test the hypothesis that the identified regions A and B are important regulatory sequences, and to further analyze the degree of conservation between species, a set of constructs containing tomato regulatory sequences behind the Arabidopsis LAS ORF was designed to drive LAS expression in Arabidopsis.

A genomic DNA fragment, harboring the Arabidopsis LAS ORF, as well as 2.9 kb of 5' sequence and 2.1 kb of 3 ' sequence, was previously shown to complement the tomato $l s$ phenotype, indicating that there is a high functional conservation between the two genes (Greb et al., 2003). This finding was substantiated by the complementation of the las mutant with the Arabidopsis LAS gene combined with 1798 bp of tomato 3' sequences
(Eicker, 2005). These promoter sequences were also shown to be functional when inserted in front of the gene.
As illustrated in Fig. 8A, tomato promoter 3'sequences were cloned behind the Arabidopsis LAS gene including the UTRs, 820 bp 5 ' and 488 bp 3 'sequences. The tomato promoter fragments are deficient either in the region A , half of region B or a larger promoter part including the complete region B . The pAE128 construct carries the tomato 3' sequences in reverse orientation in front of the $L A S$ gene to confirm the enhancer properties of this region. las mutants were transformed with these constructs and assessed for complementation. At least three independent transgenic lines each were analyzed barring pAE128, for which only one line could be established.

The construct pAE127 carrying 1306 bp of tomato 3 ' sequences led to a phenotype indistinguishable from the wild-type, demonstrating that this part of the tomato $L s$ promoter is able to drive LAS expression in Arabidopsis. Nevertheless regulatory sequences do not appear to be completely conserved, as pAE127 is able to confer complementation, even though it is lacking the second half of the region B . The noncomplementing construct pAE84, made up of comparable Arabidopsis sequences, is also lacking half the 3 'region B (in both cases the genomic sequences end in between the two aligned sequences shown in Fig. 7), indicating that this region in dispensable in tomato but not Arabidopsis sequences.

The constructs pAE123 and pAE125 confer only partial complementation of the las phenotype. pAE123 includes the largest 1728 bp tomato promoter fragment but is lacking the complete 3 ' region A, while pAE125 still contains this region, but is shortened down to 754 bp from the 3 ' end. The inability to confer complete complementation demonstrates that the missing regions are necessary for the tomato promoter to be completely functional. pAE128 plants display an almost wild-type phenotype, demonstrating that this tomato promoter fragment is functional independent of its position and of its orientation.

Figure 8. Tomato promoter sequences driving LAS gene expression in Arabidopsis
A, schematic diagram of constructs analyzed. LAS ORF shown in blue, UTRs in light blue, tomato sequences in red, promoter regions A and B in yellow; Arabidopsis promoter sequences in white. Black numbers indicate distances from AtLAS start and stop codon, respectively. Red numbers indicate distances in the tomato promoter between shown sequences and the Ls stop codon.
B, axillary bud formation in rosette leaf axils of plants transformed with constructs shown above. Each column represents one plant, every box one rosette leaf axil from youngest (top) to oldest. Green indicates an axillary bud, yellow an empty leaf axil, light green an axillary meristem.

3.1.4. Determining the significance of selected promoter regions

To verify the importance of the different promoter regions investigated so far, transgenic lines were established, in which defined parts of the LAS promoter were either deleted or modified. The hypothesis that the 5' promoter region is only required to provide basal and unspecific activity was investigated by replacing it with both a flower specific PISTILLATA (PI) promoter fragment and with a 35 S CaMV minimal promoter. These promoter assemblies contain the LAS gene including the UTRs in combination with either 3550 bp of 3' sequences, shown to be sufficient for complementation, or with insufficient 483 bp of 3' sequences, in order to examine the impact of this 3` region on $L A S$ expression (Fig. 9A). In order to determine the importance of the 3'regions A and B the constructs pBR 38 and pBR 39 were devised, in which either the region A is deleted or the construct ends just behind region B (Fig. 10A). pBR49 carries 820 bp of upstream sequences, a short insufficient downstream promoter, and additionally 1723 bp of 3 ' sequences in reverse orientation in front of the gene, including regions A and B. It was designed firstly to prove that the important 3 'regulatory elements have characteristics of enhancer elements, being independent of orientation and position in regard to the gene. Secondly, as this construct lacks the bp 483 to 1827 of the 3^{\prime} promoter, it can also reveal if this region plays an essential role in promoter function.

As mentioned in the previous chapter, identification of single copy lines by southern blot hybridizations was not successful for all lines. In these cases lines showing as few bands as possible on the southern blot were chosen for analysis. For constructs pBR38 and pBR49 four independent lines were analyzed, for pBR37, pBR39, pBR41, pBR42, and pBR44 three lines, for pBR43 two lines. Lines of the same construct displayed mostly consistent phenotypes, apart from one line of each pBR37 and pBR49 showing no complementation at all and one pBR41 line exhibiting complementation only in the lower rosette.

Figure 9. Analysis of LAS promoter swapping constructs.
A, Schematic diagram of the constructs analyzed. LAS ORF depicted in blue, UTRs in light blue, promoter regions A and B in yellow, -90 bp 35 S minimal promoter in green, 600 bp Pl promoter fragment in orange.
B, axillary bud formation in rosette leaf axils of populations transformed with constructs shown above, grown for 6 weeks in sd before shift to Id. Every column represents one plant, every box one rosette leaf axil starting from youngest (top) to oldest. Green indicates an axillary bud, yellow an empty leaf axil.
pBR43 carries a PI promoter fragment of 600 bp (Fig. 9A), which was shown to promote expression in flower primordia (Honma and Goto, 2000), but not in inflorescence meristems (Fig. 12C). In combination with the LAS 3' regions it activates the LAS gene sufficiently to confer full complementation, as the population shown in Fig. 9B was indistinguishable from wild-type plants.
pBR41 is merely equipped with a 90 bp 35 S minimal promoter (Benfey et al., 1989, Honma and Goto 2000) and also led to almost complete complementation, with plants
showing only mild defects in AM initiation. This demonstrates that no specific promoter elements are required in front of the TSS of the LAS gene, as long as the shown 3' sequences are present. The lack of side shoots seemed to be most pronounced in the middle of the rosette, whereas other promoter lines showing partial complementation tended to exhibit most empty axils in the oldest rosette leaves. This suggests a zonal variation in the activity of the -9035 S promoter, which is supported by a third analyzed pBR41 line grown at a later time point. Complementation was only partial but restricted to the lower rosette (data not shown).
The mostly complete complementations elicited by pBR 43 and pBR 41 constructs are contrasted by the lines transformed with the constructs pBR42 and pBR44, which are lacking a long 3 ' region. Plants carrying these constructs phenocopy las mutants, confirming that the LAS 3' regulatory sequences are essential for correct expression of LAS.

The pBR37 plasmid, carrying $820 \mathrm{bp} 5^{\prime}$ and $3547 \mathrm{bp} 3^{\prime}$ sequences, was designed as a positive control in the vector used for all constructs during this work and resembles a promoter assembly previously shown to confer complementation (Fig. 10). Accordingly plants transformed with pBR37 were indistinguishable from wild-type plants.

The pBR38 construct has an 83 bp deletion of the complete 3' region A starting from 2055 bp after the stop codon. Complementation ability of theses constructs is unaffected, as pBR38 plants shown in Fig. 10 did not differ significantly in phenotype from those carrying the pBR37 construct.
pBR39 contains 3239 bp of 3 'sequences, thus carrying a complete 3 'region B . That means it is 106 bp longer than the non-complementing construct pAE84, in which half the 3 ' region B is missing. Hence, complementation ability should be reconstituted if region B is the crucial element. Contrasting this expectation, Fig. 10 illustrates that pBR39 amends the las phenotype no more than pAE84 (Fig. 3), thereby narrowing down the location of the essential element required for promoter function to the region between 3239 bp and 3547 bp.

Figure 10. LAS promoter deletion analysis investigating specific regions.
A, Schematic diagram of the constructs analyzed. LAS ORF depicted in blue, UTRs in light blue, promoter regions A and B in yellow.
B, axillary bud formation in rosette leaf axils of populations transformed with constructs shown above, grown for 6 weeks in sd before shift to ld. Every column represents one plant, every box one rosette leaf axil starting from youngest (top) to oldest. Green indicates an axillary bud, yellow an empty leaf axil.
pBR49 led to a full restoration of the wild-type phenotype, which demonstrates that the 3 ' region is functional independent of location and orientation in respect to the LAS ORF (Fig. 10). This also demonstrates that the missing 3' sequences from bp 483 to 1827 do not contain any motifs of fundamental importance for promoter function.

3.1.5. Visualization of promoter activities by GUS stainings

The various modifications of the $L A S$ promoter led to altered gene expressions, resulting in the different degrees of complementation described above. To visualize the exact expression patterns leading to the various states of functionality of the $L A S$ gene, different promoter assemblies were combined with the GUS reporter gene.
pES44 contains ample $L A S$ promoter areas of over 4 kb upstream and nearly as much downstream of the reporter gene (Fig. 11). As shown in Fig. 12A, all other GUS constructs represent the promoter assemblies previously examined for complementation, depicted in Fig. 9 and Fig. 10. In every construct the GUS ORF is combined with the LAS UTRs to yield the identical expression pattern, as in the complementation experiments. Constructs pBR45 - 48 were analyzed in the las mutant background. For each of these constructs three to four independent lines were examined, some lines exhibited weaker signals but no deviating expression patterns.

Figure 11. LAS::GUS expression in wt and las plants.
A, schematic representation of pES44 construct. GUS ORF in violet, LAS UTRs in light blue, conserved regions A and B in yellow. B, GUS signals in vegetative apices conferred by pES44 in wt and las mutant plants. Bars: $200 \mu \mathrm{~m}$.

In plants transformed with the pES44construct, which contains large promoter regions, GUS signals appeared in the axils of leaves (Fig. 11A and B). The pattern resembled that determined by RNA in situ hybridization shown in Fig. 1C. Signal strength appeared similar in wild-type and las, although previous in situ hybridization studies indicated
reduced mRNA levels in the las mutant (Greb, 2003). Quantitative cDNA analysis confirms that LAS/las mRNA levels do not differ significantly between mutant and wildtype (see chapter 3.2.4.2).

GUS signal conferred by pBR47 (Fig. 12F) showed the same pattern as observed in pES44 plants or LAS RNA in situ hybridizations (Fig. 1). pBR47 contains all the LAS promoter regions shown to be sufficient for complementation (compare to pBR37, Fig. 10) and promotes expression in the axils of rosette leaves, cauline leaves, and flowers (Fig. 12F). Hence, the complementation that was shown using these promoter regions (Fig. 10) is associated with the endogenous $L A S$ expression pattern. Fig. 12H and I depict two early flower primordia in stage 3-4 (Smyth et al., 1990). At this stage the earliest GUS signals in flowers started to appear in the axils of sepals. Later on during flower development expression is found in boundary regions separating all organs. This includes expression between sepals and petals and between carpels, which has not been reported before (Fig. 12J).
pBR45 plants, carrying the same 35 S minimal 5' promoter as the partially complementing pBR41 line, showed GUS signals similar to the endogenous LAS expression in the axils of leaves, flowers, and in flowers (Fig. 12K). Additionally GUS signals were detected in the outer cell layers of the hypocotyl, more intense in the zone between hypocotyl and rosette, and strongly enhanced around emerging lateral organs, probably adventitious roots (Fig. 12O).

The PI 5' promoter in combination with the LAS 3' sequences produced a GUS expression pattern composed of both activities. Fig. 12L and N illustrate the $L A S$-like expression in the axils of leaves and flowers as well as between floral organs, explaining the complementation ability of pBR43 (Fig. 9). Fig. 12N represents a stage 9 flower clearly illustrating the expression between sepals and petals. The early stage 3 flower primordium in Fig. 12M, however, displayed a strong signal, which did not appear in pBR47 plants shown in Fig. 12H, I. Interestingly this expression also did not completely resemble the previously published expression pattern caused by the inserted 600 bp PI promoter fragment (Honma and Goto, 2000; Fig. 12C), but instead appeared similar to the expression pattern caused by a 500 bp fragment of PI (Fig. 12D). During later stamen development the GUS expression did not remain activated, as in both the 600 bp and 500
bp PI promoter lines (Fig. 12E), but instead vanished from stamens as observed in pBR47 plants.

Figure 12. GUS stainings of promoter deletion and promoter swapping constructs.
A, schematic representation of analyzed constructs. GUS ORF in violet, LAS UTRs in light blue, conserved regions A and B in yellow, -90 bp 35 S minimal promoter in green, 600 bp P/ promoter fragment in orange.
C-E, GUS expression generated by different $P / 5^{\prime}$ promoter fragments fused to the GUS gene. Pictures from Honma and Goto (2000), bars $100 \mu \mathrm{~m}$. F, H, I, J, GUS expression observed in pBR47
plants in the reproductive apex (F), two flower primordia (stage $3-4$) beginning to show signals in the axils of sepals (\mathbf{H}, \mathbf{I}), and in a stage 6 flower (\mathbf{J}). G, GUS signals in the reproductive apex of pBR48 plants. K, O, GUS expression generated by the pBR45 construct in a side shoot (K) and the hypocotyl (\mathbf{O}). L, M, N, GUS signals conferred by pBR46 in the reproductive apex (L), early stage 3 flower (M), stage 9-10 flower (N). Bars F, G, K, L, N $200 \mu \mathrm{~m}$; J $100 \mu \mathrm{~m}$; H, I, M, $50 \mu \mathrm{~m}$; O $500 \mu \mathrm{~m}$. Id grown plants out of the T2 generation were treated with Basta and harvested at a time around the onset of flowering.

The pBR48 plants (Fig. 12G) are lacking the promoter region A like pBR38 (Fig. 10). In line with the result that pBR39 plants complement the las phenotype, the GUS expression pattern was identical to the one observed in pBR47 plants, resembling the endogenous $L A S$ expression.

In summary, analysis of GUS lines revealed that all constructs harboring the LAS 3' sequences can confer an expression pattern similar to the known LAS mRNA accumulation pattern. In each case GUS signals were observed in small domains in the axils of rosette and cauline leaves and floral primordia and between floral organs. Only the constructs harboring a minimal 35 S promoter or a PI promoter fragment exhibited additional signals according to their own specificities.

3.2. Part II: Characterization of a new player of axillary meristem formation

In order to obtain a deeper understanding of AM initiation it is of major importance to discover more of the players involved in the genetic network controlling this process. An efficient technique to identify new factors is a genetic screen, searching mutagenized populations for mutants, in which side shoot development is perturbed. Following this strategy a screen, designed to identify modifiers of the las-4 phenotype, was set up as described by Oliver Clarenz (2004). las-4 mutant seeds were mutagenized with EMS and M2 populations analyzed for alterations of the las-4 phenotype. This led to the identification of numerous mutants named enhancers of lateral suppressor (eol), in which AM formation is compromised also in cauline leaf axils. This second-site mutagenesis screen is expected to produce mutants that act redundantly to las on the final process of AM initiation. An advantage of this las modifier screen is that it utilizes a background sensitized for AM formation defects. Therefore, it may also detect mutants that exhibit phenotypic deviations too weak to be spotted in a wild-type background.

3.2.1. The enhancer of lateral suppressor 5 (eol5) mutant

The eol5 mutant was identified in the las-4 second-site mutagenesis screen, for its strong reduction in side shoot development (Clarenz, 2004). Under short day conditions the amount of buds formed in cauline leaf axils was strongly decreased, up to a complete loss of axillary shoot formation (Fig. 13A - C). However, no phenotypic deviations were observed under long day conditions. Only after four weeks of growth under short days and subsequent shift to long days an effect of the eol5 mutation becomes observable, reaching full penetrance after about six weeks in short days (Clarenz 2004). The phenotypic severity is not only dependant on day length but also on growth conditions and other factors, for details see chapter 3.2.3.3.

During a detailed analysis of eol5 las plants, further phenotypic alterations were observed that had not been noticed in previous studies. The double mutant repeatedly exhibited defects in inflorescence meristem function, leading to defective floral primordia and flower development in a zonal fashion along the stem, as illustrated in Fig. 13A. Less pronounced defects led to malformed and infertile flowers, at other times floral primordia only produced reduced structures or appeared to be missing altogether (Fig. 13F and G).
Defective SAM function also manifested in a complete termination of meristem activity (Fig. 13I). When grown under short day conditions eol5 las plants showed these meristem arrests at varying frequencies. While in some populations up to 75% of plants terminated, this effect was not noticed at other times. Meristem arrests were never observed in parallel grown las plants. Termination occurred at a later stage of growth after bolting in short day conditions. This is clearly distinguishable from the normal halt of growth at the end of a plants life cycle, which takes place at a later time point, with some flowers arrested at different developmental stages remaining on the apex.

Figure 13. Phenotype of eol5 las double mutants.
A, growth habit of wt and eol5 las plants grown in sd. B to E, cauline leaf axils showing lateral shoot (B) as observed in wt or las plants, empty leaf axil (D) as seen in eol5 las plants, flower (D), and leaf (E) emerging from a leaf axil. White arrows point to affected axils. \mathbf{F} and \mathbf{G}, zones of defective floral primordia development, observed in eol5 las plants, at an earlier (\mathbf{F}) and later (\mathbf{G}) stage, leading to infertile flowers and barren stem segments. H, wt inflorescence with flower truss. \mathbf{I}, terminated eol5 las inflorescence. \mathbf{J} and \mathbf{K}, sections of late wt (\mathbf{J}) and terminated eol5 las (K)
inflorescence apices, harvested at same time point. Bars $100 \mu \mathrm{~m}$. \mathbf{L} and \mathbf{M}, fusions of rosette leaves in eol5 las plants. Rosettes are shown from below, the root and the lowest rosette leaves have been removed. Black arrows indicate fusions.

The terminal structures in eol5 las apices which ceased growth, ranged from fully developed flowers to reduced flowers, minute leaves, or pin like structures (Fig. 13I). Sections shown in Fig. 13J and K illustrate the cellular morphology of wild-type and terminated eol5 las inflorescences. Wild-type apices, measuring 40 to $80 \mu \mathrm{~m}$ in diameter, displayed floral primordia of different developmental stages and small meristematic cells in their expected positions. Terminated eol5 las shoot tips, on the other hand, ended growth with enlarged apices of 150 to $300 \mu \mathrm{~m}$ and mostly lacked small undifferentiated cells. Additionally, shoot tips are completely devoid of recognizable flower primordia, instead malformed structures, often made up of differentiated cells, were found adjacent to the termination site. The loss of meristematic identity indicates a role of EOL5, possibly in redundancy with $L A S$, in the maintenance of the main meristem.

The uppermost cauline leaves of eol5 las plants commonly harbored flowers instead of side shoots in their axils (Fig. 13D), occasionally leaves or other reduced structures (Fig. 13E). Formation of flowers in cauline leaf axils also occurs in las single mutants but less frequently, as can be seen e.g. in Fig. 23.

In addition, eol5 las mutant plants displayed fusions of rosette leaves as depicted in Fig. 13 L and M . The observed fusions merged the base of rosette leaves and occurred in the lower part of the rosette in almost all double mutants, whereas this was virtually never observed between pairs of leaves in las plants. In plants grown in short days at two different time points an average of $6.7 \pm 4.3(\mathrm{n}=11+4)$ leaves per plant were involved in such fusions. Under long day conditions this phenotype was also observable but less pronounced. 50% of the plants exhibited fusions, with $3.0 \pm 1.0(\mathrm{n}=10)$ leaves involved. This signifies that $E O L 5$, together with $L A S$, is also involved in organ separation.

3.2.2. Positional cloning of eol5

3.2.2.1. Rough mapping of eol5: problems and solutions

In order to identify the mutation causing the eol5 phenotype a map based cloning strategy was adopted, as described in chapter 2.2.14. The eol5 las double mutant was crossed to the Landsberg erecta (Ler) accession, to be able to utilize the number of known polymorphisms between Col and Ler. For rough mapping of the eol5 locus, the F2 population was phenotyped and genotyped, as reported by Schulze (2007).

The phenotyping proved to be the challenging element of the mapping process, since the F2 population did not show the segregation ratio of a recessive mutation. Apart from the expected phenotypes, many plants with intermediate levels of bud formation were observed, a problem persisting throughout the whole mapping effort. Nevertheless, rough mapping was carried out, genotyping those plants showing a strong eol5 las double mutant phenotype (Schulze, 2007). The analysis revealed a considerable increase in the Col allele frequency on chromosome II and a less pronounced one on chromosome V. This indicated that the eol5 locus is situated most likely on the lower arm of chromosome II.

Segregation of las-4 modifiers from the Ler background and their interaction with Col factors were assumed to be the main reason for the distorted segregation ratios and the appearance of intermediate phenotypes. Recent results suggest that also the penetrance of the mutant phenotype and environmental factors play a substantial role (see chapter 3.2.3.3). To facilitate fine mapping, a mapping population exhibiting an unambiguous segregation ratio in a homozygous las mutant background is required. For this purpose, a backcross strategy was applied, mainly to reduce the amount of Ler alleles in the background (Schulze 2007). A heterozygous F2 plant was backcrossed twice to the eol5 las mutant while retaining a Ler allele at the EOL5 locus. The F2 population of the second backcross (BC2F2) was used in this work to verify the rough mapping results and to initiate fine mapping. At later stages subsequent generations down to BC2F5 were utilized, as background segregation is reduced in these lines.

3.2.2.2. Fine mapping of eol5

Analysis of different BC2F2 populations showed that the problems with segregation ratios were all but solved by the conducted backerosses. Fig. 14C and D illustrate phenotypes obtained from two exemplary mapping populations segregating for eol5 in a homozygous las background. Many plants could not be classified as either eol5 las nor as las based on bud formation in cauline leaf axils, whereas control populations shown in Fig. 14A and B formed distinct groups. The population in Fig. 14C contained the expected number of eol5 las mutants but lacked the anticipated $3 / 4$ of las looking plants, whereas another population (Fig. 14D) produced many plants with las phenotype but no strong eol5 las mutants. Genotypic analysis of two markers, later on shown to enclose the eol5 locus, revealed that the eol5 las phenotype co-segregates to a large degree with the homozygous Col genotype, as indicated in Fig. 14C and D below the graphs. This verifies the rough mapping result, proving that the eol5 locus is situated in this region of chromosome II.

Figure 14. Axillary bud formation phenotypes of control and exemplary mapping populations.
A-D, axillary bud formation in cauline leaf axils presented as percentage of cauline leaf axils that support bud formation. X-axis shows the number of analyzed plants, every column representing one plant, ordered by percentage of bud formation. A, B, homozygous las (A) and eol5 las (B) control populations. C, D, two exemplary BC2F3 mapping populations. Below graphs genotypes of the respective plant above is stated for the markers MASC07353 and MASC02866. Red: homozygous Ler, yellow: heterozygous, blue: homozygous Col.

Yet numerous plants did not exhibit the phenotype that could be deduced from their genotype, some showing more, others less axillary buds. The first population (Fig. 14C) hints towards a dosage effect of EOL5, as mostly heterozygous plants display intermediate phenotypes but the population in Fig. 14D does not substantiate this idea. Indications for a
dosage effect were already reported earlier (Clarenz, 2004). Looking at many populations evidence for such an effect was found on multiple occasions but it never appeared to be reliably reproducible.

The variability of the phenotype poses a big challenge to fine mapping, which usually relies on the correct phenotyping of single plants. Consequently first fine mapping attempts yielded contradictory results. Plants harboring recombination breakpoints in the area of interest, between the markers MASC07353 and MASC02866, were phenotyped and genotyped, resulting in information on which side of the recombination event the mutation is located. Since classifying single plants as either wild-type or mutant, based on their phenotype, is largely prone to errors, as seen in Fig. 14C and D, the directional information produced extensive contradictions. Due to this problem the strategy was modified in a way that offspring populations of interesting recombinants were analyzed, to deduce the parental genotype regarding the eol5 mutation. Between 12 and 32 plants per population were analyzed, if possible utilizing later generations down to BC2F5 populations, to diminish the amount of segregating modifiers in the background. Following this strategy numerous offspring populations of recombinants were examined with a range of new markers, resulting in the positional information shown in Tab. 3 and Fig. 15.

Contradictions could not be eliminated, but reduced, pointing to a region between marker MASC02463 and MASC445742, which are most likely to enclose the mutation causing the eol5 phenotype (Tab. 3). Remaining contradictions arose from two lines (080455 and 080462), pointing towards an eol5 locus left of marker MASC02463, dissented by the positional information obtained from nine lines (080438 to 080057, Tab. 3). On the right side, only one line (080057) indicated that the mutation is right of the marker MASC445742, a position that is in disagreement with nine other lines (080047 to 080462). In between these two markers further contradictions could not be reliably resolved, so that a region of 256 kb , containing 64 annotated genes (Fig. 15), was taken into consideration to contain the eol5 locus.

Table 3. Positional information about the location of the eol5 locus obtained from fine mapping populations.
Analysis of markers in the chromosomal region investigated by fine mapping. Every row represents one plant, carrying a recombination in the region of interest, whose offspring populations have been examined for co-segregation of the eol 5 phenotype with shown segregating genetic markers.
Genotype at the respective markers is depicted by color. Turquoise = Col, yellow = heterozygous and orange = Ler, boxed genotypes have been determined by PCR, others inferred from neighboring markers.
The results shown in the second row denote, whether the offspring populations of this plant showed co-segregation of the eol5 las phenotype with the markers segregating in those populations. Derived from this information arrows are drawn pointing towards the expected location of causative mutation. As described above and in chapter 3.2.3.3, a plant's phenotype did not always reflect the genotype at the eol5 locus, thus, difficulties arose judging co-segregation in offspring populations. Strength of arrow indicates confidence in the stated decision on cosegregation.

Within this region the ORFs of 39 candidate genes were sequenced, obtaining $\geq 70 \mathrm{~kb}$ of sequence information. While the las parent line showed no polymorphism to the sequence available at the TAIR database, only one single mutation could be detected by sequencing the eol5 las double mutant. The single identified mutation is a G to A exchange in the gene at2g23740. According to the TAIR gene annotation the nucleotide exchange locates to the second exon and leads to a premature stop codon after AA 62, as illustrated in Fig. 16B.

Figure 15. Physical map of part of the lower arm of chromosome II
Physical map of the region of interest on chromosome II showing the positions of used markers. Parenthesis indicates the region in which the eol5 mutation is presumably located according to the fine mapping results.

In 2007 Krichevsky et al., published their work on the gene at2g23740 naming it $C Z S$, due to the conserved $\underline{\mathrm{C}} 2 \mathrm{H} 2$ zinc finger and SET domains. CZS presumably encodes a histone methyltransferase, a class of proteins involved in epigenetic control of chromatin state by the methylation of lysine residues of histones. The structure of the gene is shown in Fig. 16A and C, exhibiting homologies to four known protein domains. Next to three C2H2 zinc finger domains there is an N-terminal combination of a PreSET domain, a SET domain, and a PostSET domain, known to confer histone methyltransferase activity (Baumbusch et al., 2001).

CZS is described to be a negative transcriptional regulator, physically interacting with SWP1, a SWIRM PAO domain protein (Krichevsky et al, 2007). The T-DNA insertion allele $c z s-1$ shows a moderate delay in flowering time and a corresponding upregulation of $F L C$, accompanied by a decrease in H3K9 and H3K27 dimethylation of the FLC locus. As yet no reports indicate a role in meristem initiation or maintenance, nor is there an obvious connection to the described $C Z S$ function.

Figure 16. Gene structure of CZS.
A, intron-exon structure of CZS, ORF depicted in blue, UTRs in light blue, spaces in between indicate introns. Arrowheads point out positions of czs-1 and czs-2 T-DNA insertions in mutant alleles, arrow indicates position of SNP in eol5 allele. B, close up of sequence containing SNP detected in eol5 las plants. Nucleotide change highlighted in yellow, AA change leading to premature Stop codon at AA 63 boxed in red. C, protein sequence showing known protein domains, as predicted by SMART software tool.

3.2.2.3. Annotation of CZS

Krichevsky et al., (2007) published a cDNA sequence for CZS (GenBank accession number DQ104398), which deviates from the TAIR annotation in a way that a later start codon is suggested, leading to an 804 nt shorter ORF (Fig. 17A).

This reported ORF poses a problem to the fine mapping result of eol5 (chapter 3.2.2.2), because, according to this published sequence, the identified mutation would in fact not be in the ORF. Instead, it would locate, including the denoted introns, 1124 bp in front of the start codon (Fig. 17A). In such a position a mutation would most likely not cause a serious constraint to the function of $C Z S$, hence, not explain the eol5 phenotype.

In order to provide evidence supporting the TAIR annotation, an alignment of $C Z S$ to several mRNA derived sequences is shown in Fig. 17. Fig. 17D displays aligned ESTs from the TAIR data base. As ESTs are usually obtained by single Sanger sequencing reads from the ends of cDNAs, they only cover the 5 ' and 3 ' parts of $C Z S$, due to the large size of the mRNA. Nevertheless, the alignment confirms most of the annotated intron-exon
structure and attests that the 5 , end of the TAIR annotated mRNA is transcribed. Sequencing reads from the high throughput transcriptome sequencing (Lister et al., 2008) are aligned in Fig. 17E, also supporting the TAIR annotation. Transcript traces cover the whole gene, confirming transcription and intron-exon structure within the limits of the short read lengths.

Figure 17. CZS gene aligned to RNA derived sequences.
A, CZS Gene structure, ORF in blue, UTRs in light blue. B, Alignment of sequenced PCR products obtained from CDNA with one primer pair. C, alignment showing close-up of a 21 bp disagreement found between TAIR annotation and cDNA sequencing. D, Alignment of EST sequences and E, reads of high throughput transcriptome sequencing (Lister et al., 2008). Selection of sequences and alignment in D and E performed by GBrowse (TAIR).

In order to obtain cDNA sequence information of the complete 5' part of the gene, PCR products were amplified from a cDNA library using gene specific primers and subsequently sequenced. The alignment of some of the obtained sequences is shown in Fig.

17B, verifying that this part of the gene is transcribed. However minor deviations from the expected intron-exon structure were identified. Sequencing showed that the large exon 6 starts 21 bp earlier than annotated by TAIR, a region of the sequence that was not covered by EST data. Furthermore the first intron is frequently part of the extracted mRNA, as was already indicated by some EST reads, giving evidence for alternative splicing variants. As this intron lies in front of the start codon, its presence or absence does not affect the ORF. In summary all RNA derived sequences confirm the CZS mRNA sequence annotated by TAIR with the exception of the intron 5 - exon 6 border position..

Having shown that the CZS mRNA is indeed completely formed as annotated by TAIR, a protein alignment with homologous proteins from different species was generated to check for protein sequence conservation. Homologies at AA level provide evidence that this sequence is also translated. BLAST algorithms on databases NCBI, JGI, EMBL EBI, PlantGDB, etc., were used to find sequences homologous to the $C Z S$ protein sequence. Complete genomic sequences could be obtained from papaya, poplar lotus, grape vine, rice, Brachypodium dystachion and Physcomitrella, all, apart from Physcomitrella, showing the identical intron-exon structure. Additionally, mRNA sequences could be obtained for Ricinus communis and maize.

The alignment presented in Fig. 18 shows strong homologies between all sequences. Numerous domains, distributed along the whole protein, are well conserved, with most identities found near the N - and C-termini of the gene. The conservations also extend to the monocot species and even the distantly related Physcomitrella ortholog shares various domains with Arabidopsis CZS, even though it is clearly the least homologous sequence. The domain structure of CZS is unique in Arabidopsis (Baumbusch et al., 2001) and the protein seems to be plant specific. As illustrated in Fig. 16C, the highly conserved SET domains are localized at the C-terminus explaining the high conservation at the end of the gene. The conserved domain near the N-terminus (Fig. 18, AA 290 to 350) has not been described yet, but constitutes one of the most conserved motifs, showing strong homologies also in Physcomitrella.

	760	770	780	790	800	810	820	830	40	850	850	870	880	890	900															
atccpptc	 																													
											1010																			
Reczs RYL Yeok																														
	1050	1070	1080	1090	1100	1110	1120	1130	1140	1150	1160	1170	1180	1190	1200															
	pevktvemdas	TP3PV	Gacrdt	SLCGO		,			TRHL	Nsus30	cumb	FDHLW	Qhrave	drapru	bugo															

Figure 18. Protein sequence alignment of CZS orthologs.
CZS homologous sequences from various species were aligned by Bioinformatics Toolkit using MUSCLE algorithm (Edgar, 2004). Papaya sequence is missing the coding exon 4, poplar and papaya are missing the N -terminal ends due to incomplete sequencing effort. Protein start codons were often not known and have been inferred from alignments with AtCZS or OsCZS. At: Arabidopsis, Cp: Carica papaya, Pt: Populus trichocarpa (poplar), Lj: Lotus japonicus, Rc: Ricinus communis, Vv: Vitis vinifera (grape vine), Bd: Brachypodium dystachion, Zm: Zea mays, Os: Oryza sativa, Pp: Physcomitrella patens.

The strongly conserved domain near the N-terminus (Fig. 18, AA 290 to 350) is encoded on exon 2 and 3, thus not part of the ORF annotation published by Krichevsky et al., (2007). High conservation on protein sequence level provides a strong indication that this region is not only transcribed but also translated. Together with the data obtained from the alignments of mRNA derived sequences this provides proof that the mutation found in eol5 plants causes a nonsense codon near the start of the CZS ORF. Alignment analysis and cDNA sequencing resulted in a modified annotation of the CZS gene, comprising an ORF of 4149 nt , leading to a protein of 1383 AA.

3.2.2.4. Confirmation of mapping results

In order to confirm that EOL5 is allelic to $C Z S$ a complementation experiment was carried out. Krichevsky et al (2007) described that complementation of the czs-1 flowering phenotype was accomplished using a native promoter with 235 bp upstream and 119 bp downstream sequences, measured from 5' and 3' ends of the TAIR annotated mRNA, respectively.

A construct, containing the $C Z S$ gene including 1502 bp upstream and 286 bp downstream sequences ($p C Z S:: C Z S$) was cloned and tested for complementation. eol5 las double mutants were transformed with this construct and the T1 population phenotypically analyzed after selecting for transformants with Basta. As a control, a population of the same seed batch was evaluated, which was not treated with Basta, and therefore is very unlikely to contain transgenic plants.

Figure 19. Complementation of eol5 with pCZS::CZS
Phenotypic analysis of cauline leaf axils of eol5 las double mutant populations without (\mathbf{A}) and with (B) complementing $p C Z S:: C Z S$ construct. Populations are grown from T1 seeds 7 weeks in sd before shift to Id. A, untreated, hence unlikely to be transgenic. B, sprayed with Basta to select primary transformants. Each column represents one plant, every box one cauline leaf axil from youngest (top) to oldest (bottom). Green indicates an axillary bud, yellow an empty leaf axil, light green the following intermediate axillary structures: F: flower in axil, L: leaf in axil, LbF: tiny leaf between flowers.

The population selected for the presence of the $p C Z S:: C Z S$ construct was able to form significantly more side shoots in the cauline leaf axils than the control plants (Fig. 19). While only one plant completely resembled the described las phenotype, exhibiting no AM initiation defects in the cauline leaf axils, most plants displayed various empty leaf axils, indicating a partial complementation. Whether this is due to a partial activity of the
$p C Z S:: C Z S$ construct (caused by insufficient regulatory sequences or silencing effects), or merely a result of unusual growth conditions (Basta spraying, different tray type) can not be resolved here, as no las controls were grown in parallel. In comparison to other sowings a remarkably large proportion of axils was bearing abnormal structures (mostly flowers), pointing towards unusual growth conditions. In summary, complementation showed that the histone methyltransferase $C Z S$ is involved in the process of AM formation.

Another strategy to prove that a certain mutation is responsible for an observed aberration of phenotype is to examine different mutant alleles. Therefore, other CZS alleles in the las background were sought after. During the initial las second-site mutagenesis screen more than 30 eol mutant lines were selected (Clarenz, 2004). To check whether any of these are allelic to eol5, all available lines were sown and the $C Z S$ locus sequenced. Data for 21 eol lines could be obtained, but no mutations in $C Z S$ were found, indicating that other genes are affected in these mutant lines. An allelism test in order to analyze czs-1/eol5 plants in the las background has been initiated, the analysis of single mutants is described in the following chapter.

3.2.3. Characterization of eols

3.2.3.1. Analysis eol5 single mutant alleles

eol5 was so far only reported to cause phenotypic deviations from the wild-type in a double mutant combination with las (Clarenz, 2004; Schulze, 2007). To determine, whether the eol5 mutation alone causes any phenotypic abnormalities, eol5 las plants were crossed to the wild-type and F2 populations were examined in detail. Phenotypic analysis of backcross populations, as shown in Fig. 20, demonstrated that plants homozygous only for eol5 displayed a novel degree of bud formation, whereas wild-type plants and the las single and double mutants exhibited the previously described phenotypes. All eol5 plants showed a significant defect in AM formation, revealing a distinguishable eol5 single mutant phenotype. The reduction in the number of axillary buds varied in magnitude with different sowings. Defects seen in Fig. 20 are less pronounced than e.g. in Fig. 21 or Fig. 31, where even some cauline leaf axils are affected. The phenotype of eol5 heterozygous
plants, on the other hand, always appeared indistinguishable from the wild-type, as can be seen in Fig. 20 as well as in other backcross populations (data not shown).

Subsequent analysis of lines homozygous for the T-DNA insertion alleles $c z s-1$ and $c z s-2$ also revealed axillary bud formation defects, albeit less pronounced. Fig. 21 illustrates a mild increase in the number of barren axils compared to the wild-type, found in the lower rosette in both $c z s-1$ and czs-2 plants. The extent of AM initiation defects again differed between sowings, with T-DNA insertion lines shown in Fig. 30B or Fig. 31B displaying stronger phenotypic deviations. In all cases the eol5 mutant plants exhibited more extensive defects than czs-1 and czs-2 plants, indicating that $C Z S$ function is not completely lost in these alleles. Nevertheless, the same process is affected in all mutants, adding further proof that $C Z S$ is allelic to EOL5.

Figure 20. Phenotypic analysis of the F3 generation of an eol5 las X wt backcross population.
Analysis of axillary bud formation in an eol5 las X wt F 3 population, segregating for las and eol5. Four combinations of genotypes are grouped, as indicated above. Plants were grown in sd for 7 weeks, before shift to Id. Each column represents one plant, every box one leaf axil from youngest (top) to oldest. Green indicates an axillary bud, yellow an empty leaf axil, light green: flower in axil.

Figure 21. Phenotypic analysis of the effects of different czs mutant alleles
Analysis of axillary bud formation of plants homozygous for the different czs mutant alleles czs-1, czs-2, and eol5, genotypes indicated above. Last two blocks depict F1 populations from eol5 las X czs-1 and eol5 las X czs-2 crosses.
Plants were grown in sd for 7 weeks and subsequently shifted to Id. Each column represents one plant, every box one leaf axil from youngest (top) to oldest. Green indicates an axillary bud, yellow an empty leaf axil, light green the following intermediate structures: F: flower in axil, L: leaf in axil, m : meristem.

Having identified a distinct phenotype of eol5 single mutants, an allelism test could be carried out to confirm that EOL5 is allelic to CZS, without having to wait for double mutant generation. For this purpose, F1 plants of eol5 las double mutants crossed to czs-1 or $c z s-2$ plants were analyzed. If both, eol5 and $c z s$ mutations, lead to a loss of function of the same gene, the F1 generation should exhibit the same phenotype as the parents. F1 populations of crosses of eol5 las to czs-1 and csz-2 are defective in AM formation, confirming the allelism of CZS and EOL5 (Fig. 21). Their phenotypes resemble that of the T-DNA insertion lines, and are clearly discernable from eol5 plants. Similarly, mild phenotypic deviations in such F1 populations have been observed in two other growings
(data not shown). Hence, the $c z s-1$ and $c z s-2$ alleles appear to have a dominant effect over eol5.

The analysis of $c z s$ single mutants in long day conditions revealed that AM formation is also affected in this light regime. Phenotypic deviations appear weaker than in short days, but clearly distinguishable from the wild-type, with the strongest defects observed in eol5 plants and the mildest in czs-l plants (Fig. 22). Disregarding cotyledon axils, which are virtually always empty, wild-type exhibited an average of 0.7 ± 1.1 empty leaf axils in the rosette and the mutant alleles czs-1 $2.8 \pm 1.1, c z s-25.1 \pm 1.4$, and eol5 6.8 ± 2.0. The enhancement of the las phenotype by eol5 in long day conditions was minimal. las plants still formed 2.3 ± 0.7 buds in the rosette, eol5 las 1.6 ± 0.7 buds (Fig. 22), explaining why no phenotypic effect has so far been reported in long days. Furthermore, all czs mutants developed more rosette and cauline leaves than the respective wild-type or las populations (Fig. 22), the effect on flowering time is described in detail in the following chapter 3.2.3.2.

Figure 22. Analysis of different czs mutants under Id conditions.
Phenotypic analysis of axillary bud formation of indicated genotypes in Id conditions. Each column represents one plant, every box one cauline leaf axil from youngest (top) to oldest. Green indicates an axillary bud, yellow an empty leaf axil, c: cotyledon axil.

3.2.3.2. eol5 affects flowering time control

To investigate whether eol5 plants deviate from the wild-type in flowering time, mutants and control plants were grown in short day and long day conditions. Krichevsky et al. (2007) reported a moderate delay of flowering in the czs-l mutants and a corresponding upregulation of FLC. Recent work suggests that in Arabidopsis flowering time and side
shoot development defects are to some degree associated, with later flowering plants having stronger defects, possibly linked to the FLC locus (X. Huang, B. Schäfer, personal communications).

To assess the flowering time effect of eol5 under long day conditions, wild-type and las control populations were compared to $c z s-1, c z s-2, e o l 5$, and eol5 las double mutant plants. As shown in Fig. 23A a mutation in the CZS gene causes a delay in flowering of 3-4 days in all cases, while the las loss-of-function allele does not have an effect on flowering time. The flowering time delay corresponds to the number of formed leaves, illustrated in Fig. 23 B. All $c z s$ mutant lines produced 2-3 rosette leaves more than the respective control plants, whereas the eol5 allele seemed to have a stronger effect than the $c z s-2$ and $c z s-1$ alleles. Interestingly, also the number of cauline leaves was slightly elevated in all $c z s$ mutants.

Under short day conditions, however, eol5 does not have the same effect on floral induction. Two experiments were carried out to determine this, unfortunately both were flawed for different reasons. A first experiment, shown in Fig. 23C, compared different las and eol5 las lines. These data demonstrated, that the three double mutant lines flowered in fact earlier than the two las control populations. However, one las line formed less leaves than any double mutant or the other control plants. Even though this line did exhibit an odd growth habit and displayed unusually few leaves compared to the days to flowering, it cannot be definitely decided that the other las line represented the normal las growth habit. In another experiment a larger number of genotypes were compared. eol5 las plants were again the first to flower, but flowering times varied within these populations. Also some other populations displayed a high variability, the two wild-type populations e.g. exhibited extremely different behavior. A problem that occurred during the growth of these plants was that at a late stage plants suffered from growth inhibitions due to too much watering (Eddy et al., 2008), differing in extent between trays. This delimits comparability between lines and between groups within lines. Also flowering began 5-10 days later than in the first experiment (Fig. 23D). Another reason for the observed variation between lines of the same genotype may be that seed batches had not been harvested in parallel. Nevertheless, both experiments suggest that eol5 las plants are earlier flowering than las controls, hence, no indication was found that eol5 delays flowering in short days as it does in long days. Phenotypic analysis of cauline leaf bud formation in eol5 las plants showed mostly strong phenotypes in these populations (Fig. 23E, F). Apart from one outlier that also formed
many rosette buds ($7^{\text {th }}$ plant in Fig. 23E, population was not genotyped), plants producing more cauline leaf buds were to a higher proportion later flowering. This is a weak indication that a later or slower transition to flowering reduces the phenotypic effect of the eol5 mutation.

Figure 23. Flowering time analysis of czs mutants under Id and sd conditions.
\mathbf{A}, days to flowering (median value) and \mathbf{B}, leaf formation of populations grown in ld conditions. \mathbf{A}, $\mathrm{n}=14-16, B, \mathrm{n}=10 . C$, diagram showing days to flowering (blue) and rosette leaf number (plum) for two las lines and three eol5 las lines grown under sd.
D, development of initiation of flowering in eight populations of indicated genotypes. eol5 and first wt line $n=10$, all others $n=18-20$.
E, F, axillary bud formation in cauline leaf axils of eol5 las and las plants (same data set as in D), sorted by flowering times of depicted plants, from earliest (left) to latest. Each column represents one plant, every box one cauline leaf axil from youngest (top) to oldest. Green indicates an axillary bud, yellow an empty leaf axil, light green the following intermediate structures: F: flower in axil, L: leaf in axil.

3.2.3.3. Phenotypic variability of eol5 mutants

Throughout the project analysis of eol5 plants was obstructed by the variability of the eol5 phenotype. The penetrance of the eol5 las double mutants ranged from 100 to 0% empty cauline leaf axils, depending on growth conditions, genetic background composition and other factors. Exemplarily two populations are shown in Fig. 24A and B, both homozygous for las and segregating for eol5 (BC2F2 of backcross to las). They originate from the same seed batch and were grown at the same time in Grobanks or Percival growth chambers, respectively. Both fail to show a complete penetrance of the mutant phenotype, but while in the first population only one homozygous mutant does not show the expected phenotype there are four in the second population, which also contains various plants with an intermediate phenotype. Plants grown in Percival growth chambers flowered about 3 weeks later and generally displayed less pronounced alterations between mutant and wildtype. This indicates that environmental conditions play a decisive role in the occurrence of developmental defects, the candidates for which being light quality and quantity, temperature, airflow, humidity, etc.

Fig. 24C and D, and Fig. 24E and F, depict two mapping populations (BC2F4 of Ler cross), which have both been grown at two different time points each. Both segregate for eol5 as indicated by the marker shown below graphs. Branching defects of plants in Fig. 24C appeared very weak during the first growth, while even non-mutants displayed intermediate phenotypes during second growth (Fig. 24D). In the populations in Fig. 24E and F the co-segregation of the segregating marker with the eol5 phenotype was not visible in the first population but was suggested by the second one. Variations in the extent of phenotypic deviations were also observed for eol5 and czs-1 single mutants. Differences can be observed for eol5 plants between Fig. 20 and 21 and for $c z s-1$ plants between Fig. 21 and 31.

There appears to be no seasonal effect as there is no correlation between growing the plants in summer or winter and the magnitude AM defects. At some stage the soil or soil supplements were changed, causing severe growth problems to most plants. eol5 populations grown during this time generally exhibited more severe eol5 phenotypes, but also more phenotypic variation. Thus a certain stress level might increase the extent of AM initiation defects. Overall, many different factors, both genetic and environmental, appear to influence the degree of phenotypic alterations observed in czs mutants.

Figure 24. Variability of eol5 las phenotypes observed at different sowings.
A, B, phenotypic analysis of axillary bud formation in cauline leaf axils. Same seed batch of an eol5 las X las backcross F2 population, grown at the same time in a Grobanks (A) or Percival (B) growth chamber under sd until flowering. Marker indicates genotype at CZS locus: homozygous eol5 mutation: yellow, heterozygous: light grey, wt: dark grey, white: not determined.
C and D, BC2F4 mapping population (Ler cross) grown at two time points. Marker shown below cosegregates with eol5 mutation in Col background. Homozygous Col: blue, heterozygous: yellow, homozygous Ler: red. E and F, additional BC2F4 mapping population (Ler cross) grown at two time points.

3.2.4. CZS expression profile

Most factors that play an important role in AM development or meristem maintenance have a very defined expression pattern that can be correlated with their function (Schmitz \& Theres, 2005). SET domain proteins on the other side are generally expressed constitutively, even though there are also some examples of tissue specific expression (Springer et al., 2003, Venegas \& Avramova, 2001).

To determine the expression profile of $C Z S$, the relative amount of $C Z S$ transcript in different tissues was analyzed by real-time PCR. For this purpose RNA was extracted from different tissues of the plant and utilized for cDNA synthesis. The relative expression, determined by the standard curve method (Applied Biosystems, User Bulletin \#2, 2001), was normalized with the parallel measured expression of 2PPA (Czechowski et al., 2005). As illustrated in Fig. 25 the relative expression of $C Z S$ did not differ strongly between the investigated tissues. Only in case of the root and the stem samples all biological replicates displayed a minor downregulation, with a less than two-fold expression change. Overall, no clear tissue specific CZS mRNA accumulation could be observed, indicating constitutive expression.

Figure 25. Expression profile of CZS in different Arabidopsis tissues.
CZS expression shown in arbitrary units. Results for 2-3 biological replicates are shown in one color for the following tissues: vpb: main body of the vegetative plant without leaves and root harvested after 6 weeks in sd, vl: adult vegetative leaf (~leaf 10) after 6 weeks sd, sil: first fully extended silique, st: part of the lower bolt between nodes, cl: cauline leaf, fl: open flower, inf: inflorescence including apex and all unopened flowers, ipb: main body of the plant without leaves and root harvested after 6 weeks sd + 1 week ld, root: complete root harvested after 6 weeks sd + 1 week Id. Results are averages of 2 technical replicates, normalized with PP2A expression.

3.2.4.1. CZS expression in mutant alleles

To determine the amount of CZS mRNA in the different mutant alleles, the relative expression was determined by real-time PCR. For quantitative PCR analysis primer pairs are usually designed in the 3 ' region of mRNA sequences to avoid problems arising from inconsistent cDNA synthesis. In this case also a primer pair in the 5 ' end was utilized, to
measure mRNA quantities of different parts of the mRNA on either sides the of T-DNA insertions (Fig. 26A).
5، $3^{\text {© }}$
primer
primer

Figure 26. CZS mRNA expression in czs mutants.
A, positions of utilized real-time PCR primers and polymorphisms on the CZS mRNA. ORF is depicted in blue, UTRs in light blue, gaps indicate introns, primers are shown as black bars.
B, C CZS expression examined with 5^{\prime} primers (B) and 3^{\prime} primers (C), in up to three biological replicates of each genotype, displayed as LN2 fold change ($1=200 \%$ expression, $2=400 \%,-1=$ 50%, etc.). Values determined by standard curve method, every value represents average of two technical replicates, normalized with PP2A expression. RNA extracted from seedlings (roots and leaves removed) grown sterile for 14 days in sd.

The results obtained by amplifications with 5' primers, shown in Fig. 26B, indicate an upregulation of CZS mRNA in the czs-2 mutants, as all three biological replicates show considerably elevated expression levels compared to all other samples. czs-2 samples, as all others, exhibit a substantial variation between biological replicates. This is probably due to minor deviations during the delicate synthesis of a 3800 nt cDNA. The first biological replicate of eol5 e.g. displays largely reduced cDNA levels in the 5' end compared to the 3' end, which can only be explained with technical problems.

Results obtained using 3' primers are a lot more consistent between biological replicates. In $c z s-2$ plants $C Z S$ mRNA appears downregulated, in agreement with the expected termination of transcription due to the T-DNA insertion. In contrast, czs-1 plants display elevated mRNA levels, even in comparison to the start of the transcript. This indicates a promoter activity from the transgene, causing a higher relative expression in the 3 ' end in comparison to the 5^{\prime} end of the same gene. CZS mRNA production or stability does not appear to be affected in the eol5 mutants.

3.2.4.2. Expression analysis in eol5 mutants

Histone methyltransferases are assumed to regulate chromatin state, and thereby gene expression of genomic regions. This leads to the question of the target genes that are regulated by $C Z S$, and whose deregulation in czs mutants causes the observed phenotypes. Various players known to be involved in AM development were examined for histone methylations using the UCSC Genome Browser, which displays the results of genomewide ChIP chip experiments analyzing the distribution of various histone methylations. A large proportion of these genes were found to have methylated histones in their vicinity, as shown exemplarily for the me $3_{3} \mathrm{H} 3 \mathrm{~K} 27$ marks of $L A S$ or RAX1 in Fig. 27.

Figure 27. Traces of histone methylations on selected genes
Appearance of $\mathrm{me}_{3} \mathrm{H} 3 \mathrm{~K} 27$ histone marks shown as gray bars in a 5 kb window around selected genes, detected by ChIP chip analysis. Data taken from the UCSC Genome Browser (Bernatavichute et al., 2008). Green boxes indicate genes, arrows show direction of transcription.

As $C Z S$ was reported to be a negative regulator of transcription, thus, its method of action could in the simplest form be the repression of a negative regulator of AM initiation, leading to defects of AM formation in the $c z s$ mutant. As a matter of fact there are only very few known negative regulators of AM initiation, namely the MIR171 genes, the MIR164 genes and possibly DORNRÖSCHEN (DRN) and DORNRÖSCHEN-LIKE ($D R N L$). The $D R N$ overexpression allele $d r n-D$ leads to loss of SAM activity and defects in lateral bud formation (Kirch et al., 2003), and the drn drnl double mutant exhibited formation of accessory side shoots at a low frequency (data not shown). CLV genes also confer a negative regulation of meristems, but are not expressed near axillary meristem
initiation sites (Brand et al., 2002). MIR164B, DRN, and DRNL genes carry histone methylations according to the UCSC Genome Browser (Fig. 27), thus, represent targets for HMTs.

To identify genes directly or indirectly regulated by CZS, the relative expression of numerous candidate genes was analyzed in wild-type and mutant plants by real-time PCR. Primers were designed, when possible spanning intron-exon borders, in the 3 ' region of the mRNAs. The harvested adult tissue was the vegetative plant body without root or leaves after six weeks of growth in short days and one week induction in long days. At this time point the empty cauline leaf axils, observed in the eol5 las double mutant, are assumed to develop. Upon the discovery of a phenotype in the lower rosette of $c z s$ single mutants, another set of cDNAs was synthesized, using RNA harvested from two week short day grown seedlings, again after removal of leaves and roots.

STM mRNA was analyzed as a first candidate because las stm double mutants were reported by Oliver Clarenz (2004) to have a leave fusion phenotype, reminiscent to that shown in Fig. 13L. However, no significant alterations in relative expression were found between wild-type and czs mutant seedlings (Fig. 28A). The same was observed in adult tissue (data not shown). RAXI was considered a likely candidate, as the mutant phenotype was reported to be day length dependent, similar to the eol5 las phenotype. RAXI transcripts appeared mildly upregulated in most mutant samples (Fig. 28B). Biological replicates displayed some variability, hence, the observed expression increase averaging around 40% may not be considered significant. In adult tissues no altered expression could be observed (data not shown). Fig. 28C similarly shows a mild downregulation of MIR164B in adult eol5 las mutants compared to las samples, overshadowed by a substantial variability between biological replicates. Analysis of seedling samples did not reveal any significant differential regulation of MIR164B transcript levels between eol5 las and las mutants (Fig. 28D).

A clear effect could be observed for DRN. While mRNA abundance was two to four-fold reduced in adult eol5 las mutants, there were no major deviations between wild-type and las samples (Fig. 28E). DRNL transcript, on the other hand, was strongly reduced in las samples in comparison to wild-type, but only mildly further repressed in eol5 las double
mutants (Fig. 28F). Both, $D R N$ and $D R N L$ mRNA levels appeared unaffected by $c z s$ mutations in seedling samples (data not shown).

Figure 28. Real-time PCR analysis of candidate gene expression in czs mutants.
Relative expression of A. STM, B: RAX1, C-D MIR164B, E: DRN, F: DRNL, G-H: LAS. RNA was harvested from $\mathbf{C}, \mathbf{E}, \mathbf{F}, \mathbf{G}$: adult tissue (main body of the plant without leaves and root grown for six weeks in sd +1 week in Id) or A, B, D, H: seedlings (roots and leaves removed, grown sterile for 14 days in sd). Expression values were determined by standard curve method, normalized by 2PPA expression. Every value represents the average of two technical replicates.

To investigate a possible effect of $c z s$ mutations on the expression of $L A S$, mRNA levels were analyzed in adult and seedling tissue samples. No significant changes between las and eol5 las double mutants could be observed in either tissue (Fig. 28G and H). Comparing wild-type and las mutants no significant deviation in $L A S$ transcript were noted in adult tissue. The minor upregulation of $L A S$ compared to the wild-type in seedling samples does not exceed 40% expression change and may not be considered significant. These data are in line with the GUS expression results shown in Fig. 11B, exhibiting similar LAS promoter activity (visualized by pES44 construct) in las and wild-type plants.

The differential expression in czs mutants shown so far for $D R N$ and less reliably for RAX1, MIR164B, and DNRL, does not serve to explain the czs mutant phenotype, as transcript abundances do not deviate in the right direction. The Citovsky group carried out a microarray experiment using 14 day old czs-l seedlings (Krichevsky et al., 2007), of which the data were kindly provided. A list comprising 513 genes showing more than twofold expression changes was scanned for factors that may be involved in AM development, in order to select new candidates for real-time PCR analysis.

Three genes were chosen to confirm of the microarray results: LBD25 (LOB DOMAINCONTAINING PROTEIN 25, at3g27650), PP2C (PROTEIN PHOSPHATASE 2C, at3g51370), and ANAC83 (ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 83, at5g13180). Expression fold changes in $c z s-1$ mutants were reported to be: $L B D 25+2.58$, PP2C - 2.21, ANAC83 - 3.42. Real-time PCR analysis on seedling samples did not confirm these altered mRNA levels in czs-1 samples, nor did they reveal any significant deviations between the wild-type and czs-2 or eol5 alleles (Fig. 29A, B, C). LBD25 transcript appeared mildly upregulated in czs-2 samples, but not consistently in all $c z s$ mutants. The lack of reproducibility may be due to differences in tissues and growth conditions, as the seedlings used for the microarray were grown in long days and harvested completely.

Figure 29. Real-time PCR analysis of genes indicated to be misexpressed in czs mutants by microarray data.

Relative expression of A: LBD25, B: PP2C, C: ANAC83, D and E: FLC between wt and czs mutant alleles, shown as LN2 fold change.
RNA in was extracted from D: adult tissue (main body of the plant without leaves and root grown for six weeks in sd + 1 week in Id), or A, B, C, E: from seedlings (roots and leaves removed, grown sterile for 14 days in sd). Expression values determined by standard curve method, normalized by $2 P P A$ expression. Every value represents the average of two technical replicates.

The only gene, for which a differential expression based on real-time PCR data was published, is FLC (Krichevsky et al., 2007), reported to be four to five-fold upregulated in czs-1 seedlings. Analysis of $F L C$ transcript abundance in adult tissues only revealed large variations between biological replicates (Fig. 29D). As plants had been shifted to long days seven days prior, this may indicate that FLC mRNA levels undergo substantial changes during this time. Analysis of seedling tissue samples demonstrated a robust FLC upregulation in czs-1 and czs-2 plants. Transcript levels increased only by $\sim 50 \%$, but did so consistently in all biological replicates. The two available eol5 mutant samples, on the other hand, showed an inconsistent but decisive downregulation of FLC. This is contrasting the significant upregulation observed in eol5 las samples in comparison to las
single mutants, which clearly stated an eol5 induced increase of FLC transcript, comparable to the one observed in $c z s-1$ and $c z s-2$ samples. Whether this difference is biologically relevant or due to some technical error needs to be reinvestigated in new cDNA samples.

3.2.5. Analysis of CZS homologs

In order to investigate a possible general function of SET domain genes in AM formation, mutants of genes homologous to $C Z S$ were examined for defects in lateral bud formation. T-DNA insertion mutant lines were obtained of the closest CZS relative SUVR3 and of two further members of the same SET domain gene clade, SUVH1 and SUVR1. Ordered lines were designated as homozygous by NASC, but results may be prone to errors as these lines have not been genotyped yet due to time constraints. Patterns of axillary bud formation observed after growth in short days for 6 weeks and subsequent shift to long days were indistinguishable from the wild-type (Fig. 30A). This indicates that these genes have no strong functional homology with $C Z S$.

The best studied SET domain genes are the PcG genes: $C L F, S W N$, and $M E A$. clf and swn mutants were chosen for a first analysis, as they have previously been associated with the control of gene expression in meristematic tissues (Schubert et al., 2005). Based on the observation by Daniel Schubert that emf2 vrn2 double mutants display defects in AM formation, also these PcG genes were examined, as their gene products act in complexes with the SET domain proteins mentioned above. Plants were grown in short days for 7 weeks and subsequently shifted to long days to induce flowering.

As illustrated in Fig. 31B neither swn nor clf mutants exhibited a strong defect in lateral bud formation. In the lowest rosette leaf axils clf plants displayed more empty axils than wild-type plants, but this result might be due to the early flowering phenotype of $c l f$. As the wild-type plants were analyzed some weeks later several of the early leaves, whose axils often do not support bud formation, might have been lost due to senescence and subsequent rotting of leaves. Crossings to las plants have been initiated to analyze the effect in the sensitized las background.

Figure 30. Phenotypic analysis of homologs and interactors of CZS
A, analysis of lateral bud formation in rosette leaf axils of suvh1, suvr1, and suvr3 T-DNA insertion lines. Plants were grown for 6 weeks in sd and subsequently shifted to ld.
B, analysis of lateral bud formation in rosette and cauline leaf axils of swp1-1 and control plants. All populations shown in B displayed unusual growth habits, probably due to environmental conditions. Each column represents one plant, every box one leaf axil from youngest (top) to oldest. Green indicates an axillary bud, yellow an empty leaf axil, light green the following intermediate structures: F: flower, m: meristem.

In accordance with their name, emf2 plants flowered extremely early, developing into small, dwarfed plants with narrow leaves. About half of the rosette leaf axils appeared empty but the relevance of this is hard to judge, as there is no morphologically similar wild-type available. vrn2 plants shown in Fig. 31 exhibited a mild defect in AM development in the upper rosette and an interesting tendency to develop side shoots without subtending leaves, prior to flower formation. Unlike emf2 mutants, vrn2 plants were rather late flowering. After the shift to long days, flowers appeared ~ 1 week later than in wild-type Col control plants, though less leaves were formed overall. It has to be noted that the vrn2 mutant is in the Ler background, so this may be attributed to the different background. However, it is apparent that the vrn2 mutation does not have the
same effect on flowering as the emf2 mutation. Plants will be regrown in parallel to Ler wild-type controls to investigate this.

Figure 31. Lateral bud formation analysis of selected PcG mutants.
A, growth habit of wt Col, vrn2 (Ler background), and emf2 vrn2 (mixed background) plants.
B, analysis of axillary bud formation in populations with indicated mutant genotypes. Analysis of later cauline leaf axils emf2 vrn2 double mutants may contain errors, as tissues were in part very
small at time of examination. Question mark on top indicates that a larger, unknown number axils was present. Some plants also reverted back to vegetative development after formation of some flowers. Each column represents one plant, every box one leaf axil from youngest (top) to oldest. Green indicates an axillary bud, yellow an empty leaf axil, light green the following intermediate structures: F: flower in axil, L: leaf in axil, m: meristem. Dark red: shoot without subtending leaf, cot: cotyledon axil. Plants were grown for 7 weeks in sd before shift to ld.

Contrasting the single mutant phenotypes, emf2 vrn2 plants showed strong and distinct defects in AM development. As illustrated in Fig. 31 bud formation was only supported in the lower rosette and in some later cauline leave axils. Additionally, leaves appeared highly serrated in the double mutant. All analyses of rosettes during this project have been carried out shortly after bolting, because onset of senescence and subsequent rotting of older leaves soon makes analysis impossible. In the case of emf2 vrn 2 plants this meant that the uppermost cauline axils could not be properly analyzed. Due to the small size of organs the exact number of leaves could not be determined in all cases and differentiation between flowers and shoots may not always be correct. Additionally, in some inflorescences reversions to vegetative cauline leaf formation were observed after some flowers had formed.

The flowering time of emf 2 vrn 2 mutants is rather dependent on the definition of such, as bolting already started after about four weeks in short days, but subsequent formation of an extremely large number of cauline leaves (Fig. 31A) led to an actual appearance of flowers later than in the wild-type, which had in the meanwhile been shifted to long days.

CZS was shown to interact with SWP1 and mutations in both genes were reported to cause a similar delay in flowering (Krichevsky et al., 2007). A meaningful analysis of swpl plants was so far hampered by unusual growths habits, probably due to environmental factors. The results, shown in Fig. 30B, indicate minor defects in AM formation in swpl plants that are not clearly significant. In another growing swpl plants looked indistinguishable from czs-l plants, which on their part appeared indistinguishable from parallel grown wild-type plants. Repetition of this experiment has been initiated to confirm an effect on AM formation.

3.2.6. Analysis of potential downstream factors of $C Z S$

The bHLH gene $R O B$ was shown to be a regulator of AM formation (Yang, 2007). The loss-of-function mutant was reported to lack side shoot formation in the lower rosette and
$R O B$ expression was found to increase upon floral transition. To investigate a possible interaction with CZS a population homozygous for rob and segregating for eol5 was analyzed. rob plants from this population exhibited the previously described phenotype, while eol5 rob double mutants showed an intermediate phenotype compared to both parents (Fig. 32). This suggests some interaction between $C Z S$ and $R O B$, as phenotypes are not additive nor is one mutation epistatic to the other.

Figure 32. Phenotypic analysis of eol5 rob, eol5 mir164a mir164b mir164c and control plants.
Axillary bud formation analyzed in the rosette of eol5, rob, eol5 rob, and wt plants and of both rosette and cauline leaf axils of mir164a/b/c and eol5 mir164a/b/c plants. eol5 rob and rob plants were selected out of one population segregating for eol5. Also miR164 mutant plants were selected out of a population segregating for eol5.
Each column represents one plant, every box one leaf axil from youngest (top) to oldest. Green indicates an axillary bud, yellow an empty leaf axil, violet an accessory shoot, light green the following intermediate structures: F: flower in axil, m: meristem. Plants were grown for 6 weeks in sd before shift to Id.

The miR164 is a negative regulator of AMs as it targets the genes CUC1 and 2. Therefore, it is a possible target of $C Z S$, as derepression of miR164 could explain the czs mutant phenotype. miR164 is encoded by three genes and the triple mutant (mirl64abc) has been described by Raman et al., (2008) to form accessory side shoots in young rosette and most cauline leaf axils. To investigate a possible interaction with eol5, a mirl64 triple mutant population segregating for eol5 was examined. Triple and quadruple mutants shown in Fig. 32 have been selected from this population. While mirl64a/b/c and eol5 plants displayed the reported respectively previously shown phenotype, an intermediate level of AM alterations was observed in the quadruple mutant (Fig. 32). A reduced number of accessory shoots was found in the cauline leaf axils and barren leaf axils were observed in the lower rosette combining phenotypes of both parents. Since the eol5 mutant phenotype is not completely repressed, this indicates that $C Z S$ does not act via miR164.

As $F L C$ was shown to be deregulated in $c z s$ mutants and other works indicate a link between flowering time and AM formation, the effect of $F L C$ on AM development was directly investigated. For this purpose FRI FLC plants were examined, which carry an active FRI gene, introgressed from San Feliu-2 (Sf-2) accession (Searle et al., 2006). In comparison to Col plants FLC expression is strongly upregulated in this line, leading to a substantial delay of flowering. Plants were grown in short days for 6 weeks, subsequently shifted to long days, and analyzed about two weeks after. As most FRI FLC plants were not yet flowering at the time of analysis little information was obtained concerning the upper part of the rosette. The time of analysis was chosen to avoid loss of lower rosette axils due to senescence and subsequent rotting, taking place in older plants. As shown in Fig. 33 FRI FLC plants revealed a significant defect in AM formation in the lower part of the rosette in comparison to the wild-type. The leaf axils above the juvenile, primary leaves appeared most affected but few barren axils were also observed in the upper half of the rosette. This result suggests and involvement of $F L C$ in AM initiation acting as a negative regulator.

Figure 33. Analysis of lateral bud formation in FRI FLC rosette leaf axils.
Axillary bud formation in the rosettes of FRI FLC plants. Only rosette leaf axils are shown. Plants marked with "b" were bolting at the time of analysis, plants marked with "?" were still in the vegetative growth phase and possessed an unknown, higher number of rosette axils. Analysis of further axils was not feasible due to their small size. Plants were grown in sd for 6 weeks and subsequently shifted to ld. The latter two wt plants were not shifted, but had also initiated flowering at the time of analysis.
Each column represents one plant, every box one leaf axil from youngest (top) to oldest. Green indicates an axillary bud, yellow an empty leaf axil, light green: meristem.

4. Discussion

4.1. Part I: Towards understanding the LAS promoter

$L A S$ is a key regulator of AM initiation, as the loss of function mutant exhibits a lack of lateral bud formation during the vegetative growth phase. In order to understand how the specific $L A S$ expression pattern is generated, a study to characterize the $L A S$ promoter was initiated, to identify important elements and to investigate their contribution to the LAS expression profile. These data can provide a basis for later identification of upstream regulators using e.g. yeast one-hybrid studies.

4.1.1. Visualization of LAS expression by GUS analyses

Complementation of the las mutant in previous experiments demonstrated that 820 bp 5 , and 3547 bp 3 ' of the $L A S$ ORF are sufficient for complementation. The expression pattern conferred by these promoter regions was visualized by GUS stainings of plants carrying the pBR47 construct (Fig. 12F). Cuttings of apices confirmed that the mRNA accumulation profile resembles that known from RNA in situ hybridization studies (Fig. 1C, D), showing signals in the axils of leaves and flowers and in between floral organs. This is in accordance with the complementation observed in plants transformed with the pBR37 construct, carrying a genomic $L A S$ fragment with the same promoter regions (Fig. 10).

Fig. 11 illustrates that the activity of the $L A S$ promoter is alike in the wild-type and las mutant background. Greb et al., (2003), on the other hand, described observations from RNA in situ hybridization experiments that the $L A S$ transcript is reduced in las mutants. As GUS lines depicted in Fig. 11 originate from different transformation events, equal signal strength does not represent a strong argument, as the transgene insertion locus may alter expression strength. Real-time PCR, quantifying LAS/las cDNA levels at different growth stages (Fig. 28G, H) on the other hand, stated that mRNA levels do not differ significantly between wild-type and las mutants. Thus, it can be presumed that $L A S$ promoter activity is not altered between wild-type and las plants, signifying that GUS stainings shown in this work are not skewed by their las background.

The expression pattern of $L A S$ during later flower development is shown for the first time in Fig. 12H - J. LAS is expressed at all organ boundaries separating sepals, petals, stamens, and carpels, respectively, from their neighboring tissues. The observed expression domains may pose an explanation for the loss-of-petals phenotype observed in tomato $l s$ mutants, assuming that $L s$ mRNA accumulates in the same way as described in Arabidopsis. Even though petal primordia are initiated at the same time as stamens, they first remain minute and develop only later as the last of flower organs (Smyth et al., 1990). Hence, they may rely most on the function of $L s$ to keep cells in an undifferentiated state, required for later development. Therefore, petals are the flower organs expected to be most affected when $L s$ function is lost. In this case close inspection of $l s$ flowers should reveal petal primordia arrested at an early stage of development.

4.1.2. LAS 3'promoter alone is able to confer specific expression

A detailed analysis of plants carrying the pAE70 construct, performed in the course of this work, showed that, contrasting previous preliminary results, 800 bp upstream of the LAS ORF are sufficient for complementation in the presence of long 3' promoter regions. The importance of a reanalysis of this line was emphasized by results from additional constructs, featuring deletions of 60 and 100 bp around the area 800 bp upstream of the gene, which were able to confer complete complementation (data not shown). Initial phenotyping problems resulted from time constraints, due to which the line was not analyzed in detail at the time and problems with the construct integrity of some lines were not discovered.

Analysis of additional constructs carrying only 600,400 , or 212 bp ahead of the LAS ORF demonstrated that no essential promoter elements are located further upstream of the gene than 212 bp , as all constructs were able to confer complementation (Fig. 4). 95bp of this region are transcribed UTR, which leaves only 117 bp of proximal promoter sequences ahead of the TSS to initiate transcription. Complementation of the shortest construct (pBR59, Fig. 4) came as a surprise, as the T-DNA insertion line SALK_040683 was reported to phenocopy las mutant plants (Eicker, 2005). This line was described to carry a T-DNA insertion 696 bp upstream of the ATG, probably harboring a promoter deletion
from position -716 to -265 (Eicker, 2005). Thus, it was assumed that pBR59 would not exhibit any complementation ability, including less promoter sequences than this T-DNA insertion line. As sequencing of its $L A S$ ORF revealed no mutations, this line should by all current knowledge confer complementation. One hypothesis explaining such a result is TDNA induced silencing of surrounding regions.

Experiments in tomato showed that constructs bearing a flower specific PLENA 5, promoter, which is not active in vegetative axils, can confer complementation when combined with Ls 3' promoter sequences. These results corroborate the idea that the significant elements are located in the 3 ' region. To uncover whether the Arabidopsis 5' promoter contains any specific elements at all, it was exchanged with a $600 \mathrm{bp} P I$ promoter fragment (pBR43) or with a -9035 S CaMV minimal promoter (pBR 41), while retaining long 3 ' regulatory sequences.
Analysis of pBR41 plants yielded the striking result that even with the unspecific -90 35S sequences on the 5 ' side the promoter remains functional. Plants transformed with pBR41 nearly completely complemented the las phenotype (Fig. 9), demonstrating clearly that no specific elements upstream of the $L A S$ TSS are required. A similar construct without the 3 ' sequences, on the other hand, did not confer any complementation. Likewise, experiments in tomato demonstrated that complementation of the $l s$ mutant can also not be achieved using a complete 35 S promoter driving $L s$ (Schmitt, 1999), indicating that the specific expression conferred by the 3 ' region is essential for gene function. A GUS line carrying the same promoter assembly as pBR 41 showed patterns indistinguishable from pBR 47 (pBR45, Fig. 12K), revealing that the promoter does not only enable $L A S$ function but also confers the specific expression pattern as previously described for the endogenous promoter. This denotes that all important elements required for the establishment of the highly specific RNA accumulation profile are located in the 3' region of LAS.

Benfey et al., (1989) reported that the -9035 S promoter was active in the root, especially in the root tip, lateral roots, and in the pericycle, from which lateral roots develop. Expression of pBR45 in root tissue has not yet been analyzed, but signals are observed in outer cell layers of the hypocotyl, intensified around emerging structures that probably represent adventitious roots. This may indicate that the LAS 3' promoter is able to redirect 35S expression to lateral organ initiation sites, but this needs to be confirmed by a comparison to -9035 S GUS constructs without the LAS regulatory regions. The -90 35S minimal promoter also shows a differential activity in the rosette, as more bud formation
was observed in the lower half of pBR41 plants (Fig. 9). Another only partially complementing pBR41 line only formed lateral buds in the lower rosette (data not shown), a phenotype never observed in other partially complementing lines. This indicates that the usage of -9035 S sequences as a minimal promoter might not always be a good choice, depending on what developmental stage is investigated.

Complementation of the las mutant phenotype was also successful when replacing the 5, promoter with a 600 bp PI promoter fragment (pBR43, Fig. 9). Honma and Goto (2000) reported that this fragment induces specific expression only in floral primordia but not during the vegetative phase. Without the LAS 3' regulatory sequences, again, no complementation was achieved. Analysis of plants carrying a PI promoter GUS construct, including LAS 3' sequences, displayed all signals expected from an endogenous $L A S$ promoter, partially extended by PI derived activities. In the flower first signals appeared already in stage 2 flowers (Fig. 12 M) and had an intriguing similarity to the pattern shown by Honma and Goto (2000) for the 500 bp PI promoter fragment (Fig. 12 D). This points towards a restrictive activity of the LAS 3' regions, overwriting the information supplied by the PI element between bp 500 and 600 bp . A similar effect is observed at later stages of flower development, where the promoter does not remain active in developing stamens, as in all PI promoter constructs (Fig. 12 E), but is restricted to organ boundaries, similar to the endogenous LAS promoter (Fig. 12 N). This denotes that LAS 3' regulatory sequences induce additive and also restrictive alterations to the PI 5' promoter activity.

The promoter swapping experiments demonstrated that the $L A S$ promoter specificity can be determined by the 3 ' regulatory sequences alone. The importance of 3 ' sequences for promoter functions has previously been shown for the genes CLV3 and DRN. The weak clv3-3 allele e.g. carries a T-DNA insertion 175 bp downstream of the polyadenylation site (Fletcher et al., 1999), indicating the disruption/separation of an enhancer element. Brand et al., (2002) showed that the correct CLV3 expression pattern, known from RNA in situ hybridization studies, could only be generated in GUS experiments if downstream sequences were added. The same applies for the $D R N$ promoter, as complementation of the $d r n$ mutant can only be achieved by including 3 ' sequences (Wolfgang Werr, personal communication). Cis elements in 3^{\prime} regions of genes are usually not mentioned in general promoter descriptions and never considered in promoter prediction tools (Pedersen et al., 1999; Shamuradov et al., 2005; Molina \& Grotewold; 2005; Abeel et al., 2008). As an
example, Lee et al., (2006) reported an analysis of 61 root TF promoters by GFP constructs. Up to 3 kb of upstream sequences were used and resulted in an 80% match between observed GFP signals and mRNA accumulation pattern. The remaining 20% were assumed to be regulated by UTRs, introns, or on mRNA level. As promoter elements in the 3 ' region seem to appear more frequently than previously anticipated they should be included in the common concept of promoters and subsequently in in silico studies on this topic like promoter prediction tools.

4.1.3. Pinpointing important LAS 3' promoter regions

Phylogenetic footprinting revealed that 3 ' regions of various LAS orthologs share homologies in two regions termed region A and B (Fig. 6, Fig. 7). Alignment of region A of all available $L A S$ orthologs revealed astonishingly high sequence homologies for noncoding sequences of distantly related species. All orthologs investigated so far, including several monocots, display high identities in such a region downstream of the gene.
Nevertheless, the analysis of plants carrying the pBR38 construct (Fig. 10), in which the region A is deleted, discards the expectation that region A is of essential importance for promoter function. The examined plants show complete complementation of the las phenotype, just as GUS lines, carrying the same promoter composition (pBR48, Fig. 12G), display the wild-type-like, distinct expression pattern. Thus, the function of the region A remains enigmatic. The high conservation gives strong evidence that this region was subject to positive selection at the DNA sequence level during evolution, giving rise to the hypothesis that necessity for this element might have been lost very recently during evolution of Arabidopsis. The only indication that this sequence plays a role as a cis element comes from the analysis of tomato 3' regulatory sequences in Arabidopsis. A construct missing the region A confers only partial complementation (pAE123, Fig. 8), whereas a longer construct (pAE127) is able to fully complement the las phenotype (pAE127 lacks only the first conserved TGTCTTT element, pAE123 lacks another 70 bp , i.e. the complete region A). This may indicate that the Arabidopsis 3' sequence contains a redundant element between bp 488 and 3547 , which is able to mask the absence of region A, whereas in pAE123 plants, where the redundant Arabidopsis element and the tomato derived region A are missing, defects in side shoot formation are observed. Such a
redundancy, however, could not be detected on sequence level. Similarly unexplained is the molecular function of region A. The absence of an open reading frame, no indication for transcripts, and the constant appearance 3' of all LAS orthologs strongly support the notion that this is a cis-regulatory element. Nevertheless, conservation seems too high to be based on the binding of single TFs. A protein complex, whose binding requires all conserved residues, would have to comprise a large number of specific DNA binding factors, an assembly unprecedented for genes controlling meristematic activities.

Furthermore, no evidence could be found for a major function of the promoter region B, which shows homologies only between Arabidopsis, Capsella, and tomato. The noncomplementing construct pAE84 lacks half of the region B, while it is present entirely in the slightly larger construct pBR39. Nevertheless, pBR39 did not exhibit an increased complementation ability compared to pAE84, disproving the expectation that the lack of complementation displayed by pAE84 plants might be due to this sequence. This denotes that an essential promoter element must be located between 3239 bp and 3547 bp of the LAS 3' promoter, thereby narrowing down this region of interest from 414 bp to 318 bp , from now on referred to as region C.

In contrast to these results, tomato 3 ' regulatory sequences are able to confer complementation with shorter regions, not even including a complete region B . As illustrated in Fig. 8, pAE127 lacks half this region, just like pAE84 (in both cases the breakpoint is in between the two aligned sequences shown in Fig. 7). However, pAE127 confers full complementation, while pAE84 does not. Functionality of the tomato promoter in Arabidopsis demonstrates a strong conservation of non-coding, regulatory sequences between tomato and Arabidopsis but also denotes the different activities of these promoter sequences. In all examined cases the tomato sequences appeared to drive gene expression stronger than homologous Arabidopsis sequences, as comparable constructs with Arabidopsis sequences did not confer complementation. This indicates a different composition and arrangement of promoter elements in tomato regulatory sequences.

Analysis of plants carrying the pBR49 and pAE128 constructs (Fig. 8, Fig. 10) illustrated that the 3 ' sequences can function independent of their location and orientation in respect to the $L A S$ gene. In this light it seems even more intriguing that the conserved region A is in all cases found 3' of the LAS orthologs. The complementation observed in pBR49 plants
delivered additional information, namely that the 3 ' sequence from bp 483 to 1827 does not contain any essential elements, as it is missing in this construct.
In summary, the 3' promoter is alone able to induce a highly specific expression pattern, indistinguishable from the endogenous LAS expression, which is dependent on an enhancer-like element located between 3239 bp and 3547 bp downstream of the ORF.

4.1.4. Relative importance of 5' and 3' promoter sequences

5' sequences of the $L A S$ gene were shown to be replaceable with a -9035 S promoter, i.e. they do not contain any elements essential for promoter function, as long as ample 3 , regulatory sequences are present. Nevertheless, partial complementation, with about 60% of rosette leaf axils supporting bud formation, was reported without long 3 ' sequences, when 2910 bp of 5' promoter were used (Eicker, 2005). 1447 bp of 5' sequences, on the other hand, were insufficient to complement the las phenotype. In tomato a similar construct containing long 5 ' sequences did not confer any complementation (Schmitt, 1999), further corroborating that promoter elements in tomato are organized differently. However, the Arabidopsis promoter appears to have a cis element which is partially able to replace the 3' region, situated between 2910 and 1447 bp upstream of the LAS ORF (Fig. 34).

This is supported by data recently published by Goldshmidt et al., (2008), who describe complementation of las using a transactivation system, in which a ~ 3800 bp LAS promoter is driving expression of a $L A S$-GFP translational fusion protein. Even though complementation was reported, some empty axils are visible in a published picture of such a plant, leading to the assumption that also here complementation is only partial. Astonishingly the resulting expression pattern is comparable to the endogenous $L A S$ mRNA accumulation pattern, showing signals in the axils of flower primordia and sepals. The utilized regulatory sequences show no overlap with those used for e.g. pBR45, yet they result in the same specific expression pattern. This denotes that the redundancy between 5' and 3 ' cis elements extends to such a degree that both contain all elements necessary for specificity, while only overall activity is slightly decreased in the absence of downstream sequences.

A phylogenetic footprinting analysis of the 5^{\prime} sequence (bp 1447 - 2910) and region C produced various conserved motifs, as could be expected from the comparison of two sequences of this size. Further comparison of these identified motifs to promoter sequences of $L A S$ orthologs, using FIMO software, did not reveal any significant homologies.

Figure 34. Summary of current knowledge of the LAS promoter
LAS ORF is depicted in blue, UTRs in light blue, regions shown to contain essential promoter elements - functional also in absence of each other - in red. Numbers above parentheses state distances in bp of the indicated regions from the start, respectively stop codon of the LAS ORF. Dashed parenthesis indicates region leading to partial complementation in the absence of long 3' sequences. Grey parentheses indicate regions found not to contain essential elements.

In Fig. 34 the current knowledge about the $L A S$ promoter is summarized. The two regions, which can independent of each other confer some level of complementation, are depicted in red, sequences shown to be not essential are marked by grey parentheses. The data suggest that at least two copies a major promoter element are present upstream and downstream of the LAS ORF.

Another hypothesis states that the pattern is generated by the combined effect of redundant and frequently occurring binding sites, spread throughout all promoter regions and that any general activation of transcription in the presence of more or less any region surrounding the $L A S$ gene would result in the described distinct pattern. In initial $L A S$ promoter studies, a large promoter region was found to be necessary for correct LAS activity. After analysis of various deletion constructs no altered expression pattern could be detected. This contrasts analyses of e.g. the PI promoter, where sequential removal of promoter regions caused changes in expression, while different elements could be assigned to specific functions (see Fig. 12B - D, Honma \& Goto, 2000). The absence of such findings in the LAS promoter dissents the hypothesis of a larger number of dispersed elements. Also both regions of highest interest localize at a large distance from the TSS, suggesting a similar mode of action, pointing towards two confined arrangements of elements.

Overall, it seems likely, yet not proven, that the 5^{\prime} sequences (bp 1447-2910) and region C, which are necessary for complementation, also control the specificity of expression. On the further quest to identify upstream regulators of $L A S$, region C poses a good starting point for either yeast one-hybrid or DNA affinity purification experiments, as cisregulatory factors can be expected to bind here. In the case of $L A S$ presented in this work, promoter analysis contributes decisively to further analysis, as a standard yeast one-hybrid full promoter analysis, utilizing $1-2 \mathrm{~kb}$ upstream sequences (Deplancke et al., 2004), would most likely have failed to yield any relevant results.

4.2. Part II: Cloning and characterization of the eol5 mutant

During this work the gene underlying the eol5 phenotype could be identified by positional cloning to be CZS. eol5 was originally identified in a second-site mutagenesis screen in the las background, as it enhances the AM formation defect in las plants (Clarenz, 2004). Utilizing a second-site screen, in this case, led to the discovery of a gene that would have otherwise gone unnoticed, as the single mutant phenotype is too weak to be recognized in a conventional screen (Fig. 21).
CZS is a putative histone methyl transferase, shown to be involved in chromatin remodeling (Krichevsky et al., 2007). The importance of chromatin structure and epigenetic regulation for plant development is increasingly recognized in recent years (Steimer et al., 2004, Schubert et al., 2005, Reyes, 2006, Henderson \& Jacobsen, 2007). With CZS, epigenetic regulation enters the stage of AM regulation, a field currently dominated by TFs, as most known players involved in this process are assumed to bind to DNA and regulate transcription (Schmitz \& Theres, 2005). Involvement of chromatin remodelers in AM formation does not come as a surprise, as several genes controlling SAM function were reported to be regulated epigenetically (e.g. KNOX regulation by CLF and SWN, Chanvivattana et al., 2004). Nevertheless, control of the constantly, newly arising lateral meristems has so far not been shown to depend on chromatin state. $C Z S$ is a new regulator of this process and elucidating its mode of action may open the door to understanding a new level of the regulation of AM initiation

4.2.1. Positional cloning of eol5

4.2.1.1. Determining the correct CZS gene structure

Applying a map based cloning strategy, the position of the eol5 mutation could be located to a 256 kb region on the lower arm of chromosome II. Subsequent sequencing of 39 of 64 genes in this region revealed a mutation in the CZS gene (At2g23740). Following the identification of this mutation an annotation problem had to be resolved, as a $C Z S$ annotation previously published by Krichevsky et al., (2007) places the mutation outside the ORF, whereas, according to the information provided by TAIR, it leads to an early stop codon. CZS appears to have a history of incorrect annotations, since first EST based attempts predicted two gene models. This is probably due to the ample length of the mRNA. EST data, obtained by single Sanger reads, led to sequencing of the mRNA ends only, thus resulting in two gene models. The same problem persists for the orthologous gene in rice. The current RefSeq sequence annotates two genes in place of the CZS homolog shown in Fig. 18, yet the alignment with various orthologs supports the presence of one large gene. An alignment of the TAIR annotated sequence of $C Z S$ with mRNA sequences from different sources clearly demonstrated that the complete sequence is transcribed (Fig. 17). A protein alignment of various orthologs of CZS shows high homologies even in the N-terminal part of the protein, which is not included in the annotation reported by Krichevsky (2007). High conservation on protein level between distantly related species provides evidence that this sequence is transcribed, translated, and under evolutionary selective pressure.
The experimental evidence for the annotation presented by Krichevsky et al., (2007) is a "RACE" experiment, in which a gene specific reverse primer and a set of genomic forward primers, spaced 200-250 bp apart, were used to amplify PCR products from a cDNA library. The largest PCR product obtained was used to deduce the CZS ORF. Such an experimental approach is likely to fail to reveal the correct mRNA sequence, due to the 5 introns that precede the used reverse primer binding site. In summary, the CZS mRNA sequence was determined, confirming the TAIR data with the addition of an extra 21 bp ahead of exon 6 .

4.2.1.2. Analysis of eol5 and czs mutant alleles reveals common defects

The analysis of eol5 backcross populations disclosed a discernable eol5 single mutant phenotype, which had not been reported previously. A comparison of phenotypic deviations caused by eol5 and the T-DNA insertion alleles czs-1 and czs-2 showed defects in AM formation in all cases, supporting the result that EOL5 and CZS encode the same gene. However, AM defects appeared considerably more pronounced in eol5 plants (Fig. 21). Long day grown plants display the same tendency, with $c s z-1$ causing the weakest, and eol5 the strongest phenotypic deviations from the wild-type. Analysis of three segregating eol5 backcross populations (Fig. 21, others not shown) did not suggest background mutations of the EMS mutagenesis to be responsible for the enhanced phenotype, as no evidence of a second segregating gene affecting the phenotype was seen. Hence, it is assumed that, either in eol5 or in T-DNA insertion plants, truncated proteins are still produced, impacting on the phenotype.

Apparently an early stop codon at the beginning of the CZS gene poses a bigger obstacle for the development of AMs than a T-DNA insertion in the middle of the ORF, even though the insertions are localized well ahead of the conserved SET domain (Fig. 16C). That means either an N-terminal protein fragment or a protein originating from a downstream start codon exerts some kind of function. The next ATG after the SNP in eol5 still allows the generation of a 1260 AA protein, whereas proteins formed in $c z s-1$ and $c z s-2$ reach lengths of at least 906 and 502 AA , respectively.

An allelism test, analyzing F1 plants of eol5 las X czs-1 or czs-2 crosses, revealed that CZS and EOL5 are indeed allelic, as double heterozygous plants exhibited AM formation defects (Fig. 21). Since these plants rather resemble the T-DNA insertion lines than eol5 plants, the $c z s-1$ and $c z s-2$ alleles appear to have a dominant effect on the phenotype. This points towards an activity of truncated proteins in $c z s-1$ and $c z s-2$. Real-time PCR showed that the 3 ' region of $C Z S$ exhibits an eight fold expression difference between $c z s-1$ and czs-2 (Fig. 26B), making it implausible that a C-terminal protein fragment is responsible for the similar defects in $c z s-1$ and $c z s-2$. It seems more likely that a truncated protein, translated from the remaining 5' mRNA fragment, exerts a partial CZS function. This is surprising, as the SET domain, which is assumed to carry the major enzymatic function of producing methyl marks on histones, is not part of such a protein. The truncated CZS
fragment could stabilize a repressive complex, which may be able to exert redundant repressive functions, or not make use of the HMT activity in the first place. This hypothesis is in accordance with the slightly stronger phenotype of $c z s-2$ compared to $c z s$ 1 , observed particularly in long day conditions (Fig. 22), since the N -terminal fragment formed in czs-2 is shorter than in czs-1. However, it cannot be ruled out that a very closely linked second mutation in the eol5 mutant is enhancing the eol5 phenotype. Analysis of a new line carrying a T-DNA insertion in the second coding exon may solve this question.

4.2.1.3. Complementation of eol5 mutants

In order to show that eol5 is allelic to CZS, a complementation experiment was carried out using the native CZS promoter in the las background. Krichevsky et al., (2007) reported the complementation of the $c z s-1$ flowering time delay, using slightly shorter promoter sequences. Transgenic plants selected for the $p C Z S:: C Z S$ construct regained the ability to form side shoots in many cauline leaf axils in comparison to eol5 las control plants. However, complementation only appeared partial, as it did not phenocopy the known las single mutant phenotype. The incomplete complementation may be attributed to insufficient promoter sequences or other effects, like growth retardations due to Basta spraying. The experiment will be repeated also phenotyping Basta resistant las plants as controls (e.g. pBR44 or pBR47 lines), in order to clarify if complementation is complete or not. It also cannot be ruled out that a truncated protein exerts some function in eol5, e.g. actively perturbing a $C Z S$ containing repressive complex. If this is the case it may not be possible to fully complement an eol5 mutant. czs-1 plants transformed with the $p C Z S:: C Z S$ construct will also be investigated for complementation.

In summary it could be demonstrated that eol5 is a mutant allele of $C Z S$, by:
(1) map based cloning, (2) at least partial complementation using a $p C Z S:: C Z S$ construct, showing involvement in the same process, (3) similar defects in eol5, czs-1 and czs-2 mutants in AM initiation and in flowering time, (4) an allelism test revealing AM formation defects in F1 plants.

4.2.1.4. Phenotypic variability of eol5

The positional cloning of eol5 proved to be challenging due to the constant difficulties with the variability of the eol5 phenotype. Due to the incomplete penetrance of the eol5 mutant the phenotype often did not reflect the eol5 genotype. These problems also hampered mapping of other mutants obtained from this las second-site mutagenesis screen, eol5 is the first to be cloned.

A complete explanation for the observed variability in the eol5 las phenotype remains to be identified. Segregating modifiers from the Ler background or the initial EMS mutagenesis are likely to influence the phenotype, evidenced by rough mapping results from eol3 or eol5 (Clarenz, 2004; Schulze, 2007). The most variable phenotypes observed during this work have been noted in mapping populations originating from the Ler cross (e.g. Fig. 24 E), indicating that modifiers from Ler do play a role.

The first utilized eol5 las control plants, which had only been backcrossed once to las, always showed a strong mutant phenotype in every sowing (see controls in Fig. 14B). As this line was probably selected out of a segregating F2 population based on a strong phenotype, it may have accumulated a higher number of modifiers from the EMS mutagenesis enhancing the mutant phenotype. As this suggests the presence of such modifiers in the first double mutants, they would also be expected in the Ler cross. However, using later generations, in which most modifiers should not segregate any more, did not solve the problem of phenotypic variation. Between BC2F2 and BC2F5 generations no major improvement of segregation ratios or class discrimination could be observed. Hence, segregating modifiers do not serve as a complete explanation.
Environmental factors have been shown to play a role in the variability of the eol5 las phenotype. This was demonstrated by the day length dependent appearance of the eol5 las phenotype and also by the different phenotypes observed between populations originating from the same seed batch, grown in parallel in different growth chambers (Fig. 24C - F). Also eol5 and czs-1 single mutant populations varied in the extent of AM formation defects in different experiments (Fig. 20 and 21, Fig. 21 and 31). The exact effect of factors like light quality and quantity, temperature, watering, etc., can only be speculated about, as this question has not been addressed in experiments. In any way, not much can be changed to improve growth habits, since in Percival growth chambers environmental conditions are as controlled as feasible for such work. Problems with the cultivation soil causing general
growth inhibitions of Arabidopsis led to more intense but also more variable phenotypes, indicating that changing stress levels influence the phenotype.
Fig. 24A, B shows that also eol5 las X las backcross populations (BC2F2 from original mutant), without Ler background grown in one tray, display incomplete penetrance. Variable penetrance has been shown in many mutants (e.g. pinhead: Lynn et al., 1999; drn: Chandler et al., 2007). Currently no single explanation can resolve the question of the reason for the phenotypic variation.

4.2.2. Phenotypic analysis of CZS mutants reveals roles in different processes

The phenotype that led to the discovery of the eol5 mutant was the lack of axillary buds in cauline leaf axils, in addition to the lateral bud formation defects in the rosette due to las (Fig. 13A, C). In $c z s$ single mutants, on the other hand, mostly rosette leaves are affected. The tendency of upper cauline leaf axils in eol5 las plants to occasionally carry flowers or leaves instead of side shoots indicates that meristem identity is coupled with general lateral meristem activity. This may mean that a cell pool, which is not large or undifferentiated or in another way "meristematic" enough, will take up a determinate cell fate producing an organ instead of an indeterminate apical meristem. This is in accord with data reported by Laux et al., (1996).

The failure of axillary organs to correctly execute developmental programs is also evident in the zones of defective flower primordia formation (Fig. 13A, F, G). Flowers appear infertile, sometimes having deranged floral organs, in other cases floral primordia only form reduced structures or are absent. Distortions of phylotaxis occasionally observed in double mutants indicate defects already in SAM organization. eol5 las double mutants also exhibited terminations of the main meristem (Fig. 13I, K), affecting up to 75% of plants of a population, depending on growths conditions. A comparison of sections of terminated and wild-type apices revealed that most terminated apices were devoid of small undifferentiated cells or any organized meristem structure. The last lateral structures formed were often small, without any recognizable shape, consisting of large differentiated cells, pointing at a general loss of meristematic cell identity. LAS is not expressed in SAM, yet in tomato $l s$ mutants show terminations at a low frequency (G. Schmitz, personal
communication). Occurrence of SAM arrests has not yet been thoroughly investigated in $c s z$ single mutants, but so far such a phenotype has not been noticed. Thus, the exact contribution eol5 to this phenotype still has to be investigated. All described phenotypic alterations of SAM and lateral organ development are - again - dependent on growth conditions and were not noticed in all experiments.

Furthermore, detailed analyses of eol5 las plants revealed fusions between rosette leaves (Fig. 13L, M). Fusions appeared at the base of lower rosette leaves, with varying degrees, in one experiment affecting in average ~ 7 leaves per plant in short days, and half of that in long day conditions. A role in organ separation had previously been associated with las, as the mutant displays concaulescent fusions of lower cauline branches (Greb, 2003). These were not observed in eol5 las double mutants due to the lack of such lower cauline branches. Rosette leaf fusions have been reported from stm las double mutants (Clarenz, 2004), yet real-time PCR analysis did not reveal any decrease in STM transcript in eol5 mutants. Thus, other genes have to be deregulated in eol5 mutants, enhancing the organ fusion tendency of las, which is involved in organ boundary function.
Overall, CZS function appears to be necessary in meristems and all types of lateral organs, as leaves, flowers, and side shoots were shown to be affected. The function that is lost in czs mutants looks to be keeping cells in an undifferentiated state.

A role in a different aspect of plant development has previously been shown for czs-1 plants, which display a moderate delay in flowering. Analysis of long day grown plants revealed an increased time to flowering and a higher leaf number can be observed in all $c z s$ mutant alleles, also in the las background (Fig. 23A, B). The eol5 line exhibited more pronounced deviations in total leaf number than $c z s-1$ or $c z s-2$ (t -test: $\mathrm{p}=0.008$ and $\mathrm{p}=$ 0.179 , respectively), indicating that this result may be due to the same process as the AM formation defect. In contrast to the delay of flowering observed in long days, czs mutants grown to flowering in short day conditions rather displayed a converse effect (Fig. 23C, D).

This can be explained with the reported $F L C$ upregulation in $c z s-1$ plants (Krichevsky et al., 2007), which could be confirmed by real-time PCR. FLC is a floral repressor, which is itself negatively regulated by the vernalization pathway (e.g. VRN2) or by members of the autonomous pathway (e.g. FLD), to release repression of floral induction. Upregulation of $F L C$ in czs mutants explains the delay in flowering in long day conditions, which has been
shown in various other mutants in which FLC is derepressed (Simpson, 2004). However, flowering in short days is elicited by the GA-pathway, bypassing FLC regulation (Farrona et al., 2008), thereby explaining why $c z s$ mutants are not late flowering in short days. In summary, CZS could be shown to play role in the development of AMs and floral primordia, SAM maintenance, and control of floral transition.

4.2.3. Looking into the function of $C Z S$

In order to understand the occurrence of the different phenotypes caused by czs mutations, the mechanism of $C Z S$ function has to be investigated in more detail. Protein alignments show that CZS is strongly conserved, also in more distant related species like monocots and the moss Physcomitrella (Fig. 18). This implies that CZS performs an important function that is evolutionary conserved. The domain structure of $C Z S$ is unique and only appears in plants (Baumbusch et al., 2001). A protein alignment shows a highly conserved protein domain near the N-terminus (Fig. 18, AA 290 to 350), which, according to BLAST searches, is unique for this gene. No function could yet be assigned to this domain, evidence for its importance arises from the comparison of different $c z s$ alleles. Weaker phenotypes observed in $c z s-1$ and $c z s-2$ plants appear to be due to an N -terminal fragment of the CZS protein, which is not formed in eol5 plants. C2H2 zinc finger domains, of which three are found in CZS, may bind DNA, but are also known to confer protein protein interactions (SMART, Schultz et al., 1998), hence their exact role cannot be predicted. The molecular function of SET domains has been shown to be the methylation of histones, generating marks that induce changes in chromatin state. SUVR4, the closest CZS homolog investigated, was shown to have an in vitro HMT activity, generating $\mathrm{me}_{2} \mathrm{H} 3 \mathrm{~K} 9$ with a substrate preference for meH3K9 (Thorstensen et al., 2006).

CZS was shown to be a negative regulator of transcription by a reporter gene repression assay in transiently transformed Arabidopsis leaves (Krichevsky et al., 2007) and repressive histone marks at the $F L C$ locus were shown to be reduced in $c z s-1$. Due to the interaction with SWP1 (see chapter 1.2.1.2) the hypothesis was formulated that $C Z S$ is part of a co-suppressor complex (Krichevsky et al., 2007b).

This leads to the general concept that $C Z S$ generates negative histone marks on specific genes or regions, leading to their transcriptional repression. In the mutant, these genes are
deregulated, causing the multitude of phenotypic deviations. Therefore, they are assumed to include repressors of flowering and factors promoting differentiation in the vicinity of the SAM leading to problems in AM formation, primordia development and SAM maintenance. Since pleiotropic effects in eol5 las are not severe, deregulation is probably either very restricted to specific genes or generally of minor magnitude.

4.2.3.1. CZS expression analysis

As a starting point to elucidate $C Z S$ function the expression profile was analyzed, since a specific expression pattern may give hints to possible genetic interactors. Most SET domain genes are expressed constitutively (Springer et al., 2003), yet Baumbusch et al., (2001) could also show examples for tissue specific expression of Arabidopsis SET domain proteins of the same subfamily as $C Z S$. In case of $C Z S$, the BAR Arabidopsis eFP Browser, integrating micro array data from various experiments, shows constitutive, low expression, slightly reduced in leaves. In agreement with these data, real-time PCR analysis of nine different tissues did not reveal any differential accumulation of CZS transcript. The zones of phenotypic deviations observed in eol5 mutants: (1) single mutant phenotype in rosette, in combination with las in (2) cauline leaf axils and (3) SAM termination during flowering, suggest that $C Z S$ exerts its function during the complete postembryonic development of Arabidopsis. Since there is so far no evidence for a specific expression pattern of $C Z S$, the question arises how the rather specific phenotype is caused. A likely explanation is that the targets are dependant on other positive or negative regulators.

4.2.3.2. Investigation of candidate targets of CZS

The central question that needs to be addressed in order to elucidate the events taking place in $c z s$ mutants is, which genes are targeted by $C Z S$. The second-site mutagenesis screen is expected to identify mutants whose affected genes act in a parallel pathway to $L A S$ on the final output AM formation.

Various candidate genes were examined for expression changes in czs mutants. Differentiation signals, causing cells to loose meristematic activity, were considered the most likely targets, as their derepression in czs mutants might lead to the observed phenotypes. Only few factors promoting loss of meristem identity are known. miR164 and
miR171 repress CUC1 and 2 and SCL6, 22, and 27, respectively, genes which are necessary for correct meristem function. As miR171 genes do not show negative histone marks (UCSC Genome Browser), focus was first placed on miR164. Other putative promoters of differentiation are $D R N$ and $D R N L$, as the $D R N$ overexpressing line $d r n-D$ exhibits empty leaf axils, and accessory bud formation was observed in drn drnl double mutants at a low frequency (data not shown). RAXI was also considered a good candidate as phenotypic alterations in raxl plants are short day dependent and raxl has been shown to enhance the las phenotype (Müller, 2005). Unfortunately, the described upregulation of RAXI and the downregulation of MIR171, DRN, and DRNL (Fig. 28) represent the exact opposite of what would explain the czs mutant phenotype. Differentiation signals are expected to be derepressed and factors known to promote AM formation should be downregulated. In this light the observed altered expression levels may represent compensation effects of the plant trying to counter defects in lateral meristem development.
Interaction studies analyzing multiple mutants confirm that CZS does not act via miR164, as mirl64 and eol5 mutant phenotypes appeared additive (Fig. 32). eol5 rob double mutants on the other hand displayed intermediate phenotypes (Fig. 32). This result is puzzling as AM formation defects would be expected to be either additive, or the mutation causing the stronger phenotype should be epistatic, if both genes act in one pathway. Yet, double mutants exhibited fewer defects than the eol5 parent. Further investigations are necessary to provide an explanation for this result. A starting point will be to analyze a population segregating for rob, in order to compare plants with an identical, homozygous eol5 background.

Based on a microarray experiment that was carried out with czs-1 mutants, further candidates were chosen that might explain the mutant effects. However, mRNA level analysis of LBD25, PP2C, and ANAC83 did not reveal any differential expression contradicting the microarray results. This may be due to the different tissue (seedling including leaves and roots) and the different light regime (long day) used to obtain the microarray data. As CZS is involved in flowering time regulation, the $c z s$ mutation may cause different target gene expression levels in long days and short days, respectively. A new microarray experiment has been carried out using the RNA obtained from short day grown seedlings after removal of roots and leaves, data is currently being processed. A
further microarray, utilizing an HA tagged CZS protein for a ChIP chip experiment, is expected to reveal target loci of $C Z S$.
$F L C$ was reported to be upregulated in a microarray analysis of $s w p 1$ and $c z s-1$ mutants (Krichevsky et al., 2007). Derepression of FLC in czs-1 and czs-2 plants could be confirmed in 2 weeks short day grown seedling tissue by real-time PCR (Fig. 29E), even though differential expression was considerably less pronounced than published for long day grown seedlings (50% increase instead of 400%). Hence, CZS can be formally considered a new member of the autonomous pathway of floral induction, as it represses $F L C$ independent of day length conditions or vernalization.

A potential problem appeared in the real-time PCR results depicted in Fig. 29E, which indicate that $F L C$ is not upregulated in homozygous eol5 single mutants. This is in contrast to the results in the las background, in which eol5 plants show the same increase of FLC transcript as observed in the T-DNA insertion allele samples. In addition the flowering time delay in eol5 plants is similar, or even stronger, than in czs-1 or czs-2 mutants (Fig. $23 \mathrm{~A}, \mathrm{~B})$. Together with the high variation between the only two available biological eol5 replicates, this suggests that there might be a technical problem with these samples. The experiment will be repeated with new cDNAs to clarify this matter. Investigation of cDNAs obtained from adult tissues, harvested seven days after shift to long days, did not reveal an upregulation of $F L C$ in $c z s$ mutants. Instead an extremely high variability, also between biological replicates, was observed. This may reflect the big changes in FLC levels that occur at the time of floral transition (Searle et al., 2006). Whether FLC expression is still upregulated in $c z s$ mutants at later stages of plant growth, would have to be addressed by analyzing samples that have not been shifted to long days.

4.2.3.3. A method of action hypothesis for CZS

A mutation in the CZS gene leads to derepression of target genes, causing the described phenotypic alterations in AM initiation and flowering. FLC transcript could be shown to be upregulated in $c z s$ mutants by real-time PCR, thus constituting a direct or indirect target of CZS. Recent results suggest that the process of AM formation and flowering time control may be linked. Mutant analysis of yabl or raxl revealed that AM formation defects only appear in a short day dependent manner (Müller et al., 2006; Yang, 2007). Also crosses with different wild Arabidopsis accessions showed lateral bud formation failures coupled
to delayed floral transition, with QTL analyses indicating the involvement of $F R I$ and $F L C$ loci (X. Huang, B. Schäfer, personal communications). The resulting hypothesis is that $F L C$ controls both AM initiation and floral transition.

To test this idea, FRI overexpressing plants were analyzed. Because of a deletion in the FLC activator FRI, FLC levels are strongly reduced in Col (Johanson et al., 2000). In contrast, the FRI FLC line, carrying an introgression of the active FRI allele from the Sf-2 accession, has increased FLC levels. Analysis of FRI FLC plants revealed defects in lateral bud formation in the lower rosette (Fig. 33), suggesting an involvement of FLC in the process of AM formation in Arabidopsis.

Taking together all available data the question may be addressed: Can the hypothesized function of $F L C$ as a negative regulator of branching explain observed czs mutant phenotypes? The repressive factor causing the observed AM defects has to fulfill certain characteristics inferred from mutant phenotypes.
(1) Its level of activity is declining during growth in long days, as $c z s$ single mutants only exhibit defects in the lower half of the rosette (Fig. 22). Also eol5 las double mutants do not show defects in long days, indicating that the repressive factor is not active any more during cauline leaf development in long days.
(2) The repressive factor retains a certain activity during growth in short days and decreases after onset of flowering. This is deduced from the defects of eol5 plants, which are also observed in younger rosette leaf axils when grown in short days (Fig. 31B). Additionally, if eol5 las plants do develop buds leading to intermediate phenotypes, these usually appear in the uppermost cauline leaf axils (Fig. 19). Furthermore, in eol5 las populations flowering in short days, the later - or more slowly - flowering plants show a tendency to form more axillary buds (Fig. 23). Hence, after a slow transition to flowering the repressor may have reached lower levels when cauline leaves are formed.
(3) The repressive factor seems to decrease continuously during plant development, as phenotypic deviations in all conditions and zones tend to be stronger in older leaf axils. Also defects in flower development observed in eol5 las plants appear in the early phase of flower formation (Fig. 13A).

It has to be added that the extent of phenotypic deviations observed in eol5 las mutants is very weak when plants are shifted early. Full penetrance is only achieved when plants are shifted after 5-6 weeks (Clarenz, 2004). Yet eol5 single mutants do reveal defects in AM
formation during early plant growth. This information is not easily integrated into a model of repressor action and may be a result of slower floral induction in younger plants, leading to a downregulation of the repressor before cauline leaves are formed. However, this hypothesis requires experimental validation.

The description of this repressive factor is to a large degree in accord with previous knowledge about $F L C$. FLC activity is generally decreasing during the life of a plant. In long day conditions, FLC activity drops after some time (1-2 weeks depending on conditions and ecotype) below a threshold to release repression of floral activators (Searle et al., 2006). Schmid et al., (2003) demonstrated that FLC levels decrease after a shift to long days, which is also part of the postulated characteristics of the repressive factor.

On the other hand, FRI FLC lines display a much more delayed flowering than eol5 lines, yet side shoot defects are more pronounced in eol5. These results indicate that $F L C$ may cause part of the effect but cannot serve to explain the complete phenotypic alterations. Yet, matters are further complicated as $F L C$ is strongest expressed in the shoot apex (Searle et al., 2006) but also active in other parts of the plant. The function of FLC in leaves or in the apex is to some degree different, inhibiting flowering either by mainly repressing FT or SOC1 (Searle et al., 2006). Hence, a misexpression of FLC in the apex could still be alone causative for the observed effects on AMs, without causing a strong delay in flowering.
However, trying to explain all observed phenotypes with the actions of one factor surely does not reflect the complexity of the regulatory networks involved. FLC is currently believed to be regulated by more than 20 genes (Farrona et al., 2008). Additionally, there are four $F L C$ paralogs (Ratcliffe et al., 2003) and redundancy is also observed in many factors regulating, interacting with, or being regulated by $F L C$. In this light $F L C$ may be considered a place holder or an indicator for the complex activities of the network controlling flowering as well as AM development.
Not to forget that the involvement of other deregulated genes is equally likely, even though no candidates have been shown to be deregulated yet. Interactions of FLC and eol5 will be investigated in eol5 flc double mutants and eol5 FRI FLC plants. Vernalization experiments may also confirm the dependency of the eol5 phenotype on FLC.

4.2.4. Findings from the analysis of CZS homologs

In order to reveal a possible general role of SET domain proteins or SET containing complexes on branching, homologs of $C Z S$ were investigated. Mutations in the close CZS homologs SUVH1, SUVR1, and SUVR3 did not expose any defects in AM formation. So far no indications for a global role of these related SET domain genes could be found, supporting the idea of a unique function of $C Z S$, endorsed by the unique protein domain structure.

Mutant analysis of the interaction partner SWP1 gave indications for a weak AM formation defect, supporting a common function in a repressive complex. Crosses have been initiated to check whether a mutation in SWP1 also enhances las phenotype.

Furthermore, PcG complex mutants have been investigated for two reasons. Firstly, because CLF, SWN, and MEA are the most studied and understood SET domain proteins, and secondly, due to the observation by Daniel Schubert that vrn2 emf2 PcG mutants display axillary bud formation defects. Analysis of clf or swn single mutants did not disclose a specific role in AM development. vrn2 emf2 double mutants, on the other hand, displayed a strong AM formation defect, as bud formation is only supported in the lower rosette and some later cauline leaves (Fig. 31). This phenotype is somewhat reminiscent of filamentous flower mutants (Yang, 2007). fil-8 plants also show complete bud formation in the lower rosette and increasing defects in older leaf axils. This is in contrast to most other mutants, in which AM formation is compromised most in the lower rosette leaf axils.
emf 2 mutants flower very early leading to small, dwarfed plants (Chanvivattana et al., 2004), while vrn2 single mutants are rather late flowering. emf2 vrn2 double mutants display a combination of both single mutant phenotypes. Bolting starts later than in emf 2 plants but earlier than in the wild-type. Intriguingly, bolting and initiation of floral meristems appear uncoupled, demonstrated by the immense number of cauline leaves which are formed (Fig. 31).

A similar uncoupling has been reported from leafy (lfy) mutants (Schultz \& Haughn, 1991). LFY acts to confer floral identity in concert with SOC1, which is a direct target of FLC repression (Farrona et al., 2008). Since VRN2 has been shown to be necessary for the stable repression of $F L C$ upon vernalization, it is tempting to speculate that $V R N 2$ also negatively influences $F L C$ levels in non-vernalized Col plants. The vrn2 mutation was actually reported not to affect flowering in long days (Gendall et al., 2001), yet $F L C$ levels
may still be altered under shift conditions. This could serve to explain the moderate delay in flowering and the minor defects in AM formation in the rosette. In the emf 2 vern 2 double mutant, epigenetic regulation is further disrupted resulting in strong defects in AM formation and substantial difficulties in producing floral meristems. This again fits to the hypothesis of $F L C$ deregulation and subsequent $S O C 1$ repression.

The hypothesis of $F L C$ being the repressor active in $c z s$ mutants and also necessary for floral identity is also supported by the observation that plants shifted from short days to long days have more cauline leaves than long day grown plants. As described above, the repressor acting in $c z s$ mutants is downregulated during vegetative growth in long days. If this repressor is $F L C$ and $F L C$ is also involved in providing floral identity owing to SOC1 regulation, this would explain the low number of cauline leaves and absence of AM defects in these cauline leaf axils in long day grown plants. In this case more cauline leaves would be expected to form in eol5 mutants, which is observed in long days (Fig. 22, Fig. 23B), but not in shift conditions (Fig. 19, Fig. 20).

Preventing further overinterpretations, high FLC transcript abundance first has to be experimentally confirmed in $v r n 2$ and emf2 vrn2 mutants. As emf 2 vern 2 plants show a range of pleiotropic phenotypes many other factors are expected to be deregulated, thus, $F L C$ may only play a minor role in the observed phenotypic alterations. The presented "out of FLC theory" reducing the multitude of observed phenotypes down to one central regulatory factor, surely does not represent a full explanation. Rather, this first concept is to be expanded and modified and may be used as a starting point to develop hypotheses that can be experimentally validated.

4.2.5. Putative biological role of interactions between floral induction pathways and AM formation control

A correlation between late flowering and reduced AM formation has been reported on several occasions (Kalinina et al., 2002; Clarenz, 2004; Müller et al., 2006; Yang, 2007; Wang et al., 2009; B. Schäfer, personal communication; X. Huang, personal communication). Current results indicate that $F L C$ may be the missing link connecting AM
development and flowering time control. Hereupon the question arises why is flowering time and lateral bud initiation based on same genetic regulatory pathway?
Plants obviously require active development of axillary meristems upon flowering, as flowers are a type of axillary meristem (Long \& Barton, 2000), yet these processes represent an unlikely couple: on the one side flowering time a tightly regulated process with ample adaptive variations between accessions, as it is of vital importance for reproductive success. On the other side: the process of AM initiation, which does not respond to environmental cues and is not varying between accessions, as most wild-type Arabidopsis accessions form buds in all relevant axils.

Currently two hypotheses provide a possible explanation why flowering and AM formation are linked.

The first idea interprets this linkage as a relict from a previous perennial plant development. The perennial life history has arisen independently many times (Thomas et al., 2000) and occurs in different genera of the Brassicaceae (Beilstein et al., 2006). A recent study by Wang et al., (2009) showed that in Arabis alpina the FLC homolog PERPETUAL FLOWERING1 (PEPI) regulates flowering and lateral meristem development simultaneously. During vernalization PEP1 levels decrease causing first: transformation of all vegetative to floral meristems, and second: AM initiation in axils, in which previously no axillary shoot development was visible. These new meristems continue to grow vegetatively, thereby replacing those that switched to floral development, supplying new shoots for the next season. PEP1 levels increase again with time and the process reiterates upon the next vernalization event, generating new flowers and new lateral meristems. This connection, desired for perennial plants, may still be present in Arabidopsis, leading to the observed link between the two traits, mediated by FLC. The identification of a recent, perennial ancestor of Arabidopsis would provide support for this theory.

Another hypothesis is based on the concept that AM initiation is dependent on a general lateral meristem activity.

The idea originates from an observation from branched 1 (brcl) mutants, published by Aguilar-Martinez et al., (2007). brcl mutant plants show no apical dominance, as all lateral buds grow out, but also AMs are formed in axils where they do not appear in Col wild-type, like cotyledons and early true leaves. This indicates that AM initiation and bud
outgrowth are not, as previously assumed, separate mechanisms. This leads to the postulation of a "lateral meristem vigor", a force controlling AM initiation and the pace of bud development, as well as later bud outgrowth.

Such a lateral meristem vigor could provide an explanation for the las mutant phenotype, which exhibits AM initiation during reproductive development but not during vegetative phase. The main function of $L A S$ is probably to keep cells in a competent, undifferentiated state. Thereby, LAS could provide an extended time window for AM initiation in axil tissues. Lateral meristems formed during the vegetative phase have a low lateral meristem vigor, initiating and developing slowly. Hence, if the time window for this development is closed too early (as in las) axillary cells undergo differentiation and AM formation is aborted. The onset of flowering increases the pace of AM formation in Arabidopsis, leading to earlier and faster bud development and mostly immediate outgrowth. Therefore these meristems can be assigned a high lateral meristem vigor. As these fast growing meristems do not require a large time window for development they also develop in las mutant plants.

Upon transition to flowering Arabidopsis requires more active, quickly developing meristems in the axils of late rosette and cauline leaves, explaining why lateral meristem vigor may be under the control of factors regulating floral transition like FLC. As the lateral meristem vigor also promotes AM initiation this may serve to explain defects caused by the FLC overactivity in FRI FLC lines or czs mutants. In this light it seems conceivable that $C Z S$ may act as a repressor of $F L C$, thereby controlling floral transition and AM initiation at the same time.

5. Contributions of co-workers to this project

The construct pES44 was cloned by Elisabeth Schäfer, line selection and primary analysis was carried out by Andrea Eicker.
pAE50 and pAE51 have previously been analyzed in detail and were used here as controls (Eicker, 2005).
pAE70 and pAE84 were previously only roughly analyzed by decapitation, followed by examination of side shoot outgrowth (Eicker, 2005).
pAE123, pAE125, pAE127, and pAE128 were designed and cloned by Andrea Eicker, who also produced T1 plants.

6. Literature

Abeel, T., Saeys, Y., Bonnet, E., Rouze, P., and Van De Peer, Y. (2008). Generic eukaryotic core promoter prediction using structural features of DNA. Genome Research 18, 310-323.

Aguilar-Martínez, J.A., Poza-Carrion, C., and Cubas, P. (2007). Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19, 458-472.

Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H.M., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., and Ecker, J.R. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653-657.

Alvarez-Venegas, R., and Avramova, Z. (2001). Two Arabidopsis homologs of the animal trithorax genes: a new structural domain is a signature feature of the trithorax gene family. Gene 271, 215-221.

Amaya, I., Ratcliffe, O.J., and Bradley, D.J. (1999). Expression of CENTRORADIALIS (CEN) and CEN-like genes in tobacco reveals a conserved mechanism controlling phase change in diverse species. Plant Cell 11, 1405-1417.

Applied Biosystems (2001) User Bulletin \#2 ABI PRISM 7700 Sequence Detection System.
Bailey, T.L., and Elkan, C. (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings of the $8^{\text {th }}$ International Conference on Intelligent Systems for Molecular Biology 2, 2836.

Baker, C.C., Sieber, P., Wellmer, F., and Meyerowitz, E.M. (2005). The early extra petals1 mutant uncovers a role for MicroRNA miR164c in regulating petal number in Arabidopsis. Current Biology 15, 303-315.

Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O., Allshire, R.C., and Kouzarides, T. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120124.

Bao, N., Lye, K.W., and Barton, M.K. (2004). MicroRNA binding sites in Arabidopsis class IIIHD-ZIP mRNAs are required for methylation of the template chromosome. Developmental Cell 7, 653-662.

Barton, M.K., and Poethig, R.S. (1993). Formation of the shoot apical meristem in Arabidopsis thaliana - an analysis of development in the wild-type and in the shoot meristemless mutant. Development 119, 823-831.

Baumbusch, L.O., Thorstensen, T., Krauss, V., Fischer, A., Naumann, K., Assalkhou, R., Schulz, I., Reuter, G., and Aalen, R.B. (2001). The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucleic Acids Research 29, 43194333.

BD Biosciensces (1998) MATCHMAKER One-Hybrid System User Manual, Protocol \#1031-1 Version \# PR71132. Clontech laboratories, Inc.

Beilstein, M.A., Al-Shehbaz, I.A., and Kellogg, E.A. (2006). Brassicaceae phylogeny and trichome evolution. American Journal of Botany 93, 607-619.

Benfey, P.N., Ren, L., and Chua, N.H. (1989). The CaMV S-35 enhancer contains at least 2 domains which can confer different developmental and tissue-specific expression patterns. Embo Journal 8, 2195-2202.

Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertova, D., Jurgens, G., and Friml, J. (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591-602.

Berger, F., and Gaudin, V. (2003). Chromatin dynamics and Arabidopsis development. Chromosome Research 11, 277-304.

Bernatavichute, Y.V., Zhang, X., Cokus, S., Pellegrini, M., Jacobsen, S.E. (2008) Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS ONE. 9, 3156.

Blanchette, M., Schwikowski, B., and Tompa, M. (2002). Algorithms for phylogenetic footprinting. Journal of Computational Biology 9, 211-223.

Bolle, C. (2004). The role of GRAS proteins in plant signal transduction and development. Planta 218, 683-692.
Bradley, D., Carpenter, R., Sommer, H., Hartley, N., and Coen, E. (1993). Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of antirrhinum. Cell 72, 85-95.

Brand, U., Grunewald, M., Hobe, M., and Simon, R. (2002). Regulation of CLV3 expression by two homeobox genes in Arabidopsis. Plant Physiology 129, 565-575.

Busch, B. (2009) Genetic and molecular analysis of aerial plant architecture in tomato. Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch- Naturwissenschaftlichen Fakultät der Universität zu Köln.

Byrne, M.E., Barley, R., Curtis, M., Arroyo, J.M., Dunham, M., Hudson, A., and Martienssen, R.A. (2000). Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408, 967-971.

Cazzonelli, C.I., Cuttriss, A.J., Cossetto, S.B., Pye, W., Crisp, P., Whelan, J., Finnegan, E.J., Turnbull, C., and Pogson, B.J. (2009). Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. Plant Cell 21, 39-53.

Chan, S.W.L., Henderson, I.R., and Jacobsen, S.E. (2005). Gardening the genome: DNA methylation in Arabidopsis thaliana. Nature Reviews Genetics 6, 351-360.

Chandler, J.W., Cole, M., Flier, A., Grewe, B., and Werr, W. (2007). The AP2 transcription factors DORNRÖSCHEN and DORNRÖSCHEN-LIKE redundantly control Arabidopsis embryo patterning via interaction with PHAVOLUTA. Development 134, 1653-1662.

Chanvivattana, Y., Bishopp, A., Schubert, D., Stock, C., Moon, Y.H., Sung, Z.R., and Goodrich, J. (2004). Interaction of polycomb-group proteins controlling flowering in Arabidopsis. Development 131, 5263-5276.

Chapman E. J. and Estelle, M. (2009). Mechanism of Auxin-Regulated Gene Expression in Plants. Annu. Rev. Genet. 43, 265-85.

Chaudhury, A.M., Ming, L., Miller, C., Craig, S., Dennis, E.S., Peacock, W.J. (1997). Fertilization-independent seed development in Arabidopsis thaliana PNAS 94(8) 4223-4228.

Clarenz, O. (2004) Studien zur Rolle des LATERAL SUPPRESSOR-Gens bei der Initiation von Achselmeristemen: Analyse von Doppelmutanten und Charakterisierung von Modifikatoren des las-4-Phänotyps. InauguralDissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln.

Clark, S.E., Running, M.P., and Meyerowitz, E.M. (1993). Clavata1, a regulator of meristem and flower development in Arabidopsis. Development 119, 397-418.

Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16, 735-743.

Czechowski, T., Stitt, M., Altmann, T., Udvardi, M.K., and Scheible, W.R. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology 139, 5-17.

Deplancke, B., Dupuy, D., Vidal, M., and Walhout, A.J.M. (2004). A gateway-compatible yeast one-hybrid system. Genome Research 14, 2093-2101.

Dong, G.F., Ma, D.P., and Li, J.X. (2008). The histone methyltransferase SDG8 regulates shoot branching in Arabidopsis. Biochemical and Biophysical Research Communications 373, 659-664.

Ebbs, M.L., and Bender, J. (2006). Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase. Plant Cell 18, 1166-1176.

Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nuc. Acids Res., 32(5), 1792-1797.

Edwards, K., Johnstone, C., and Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research 19, 1349-1349.

Eicker, A. (2005) Studien zur Charakterisierung der regulatorischen Elemente des LATERAL SUPPRESSOR Gens in Arabidopsis thaliana. Inaugural-Dissertation zur Erlangung des Doktorgrades der MathematischNaturwissenschaftlichen Fakultät der Universität zu Köln.

Elliott, R.C., Betzner, A.S., Huttner, E., Oakes, M.P., Tucker, W.Q.J., Gerentes, D., Perez, P., and Smyth, D.R. (1996). AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8, 155-168.

Farrona, S., Coupland, G., and Turck, F. (2008). The impact of chromatin regulation on the floral transition. Seminars in Cell \& Developmental Biology 19, 560-573.

Fleet, C.M., and Sun, T.P. (2005). A DELLAcate balance: the role of gibberellin in plant morphogenesis. Current Opinion in Plant Biology 8, 77-85.

Fletcher, L.C., Brand, U., Running, M.P., Simon, R., and Meyerowitz, E.M. (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283, 1911-1914.

Florquin, K., Saeys, Y., Degroeve, S., Rouze, P., and Van de Peer, Y. (2005). Large-scale structural analysis of the core promoter in mammalian and plant genomes. Nucleic Acids Research 33, 4255-4264.

Gendall, A.R., Levy, Y.Y., Wilson, A., and Dean, C. (2001). The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107, 525-535.

Goldshmidt, A., Alvarez, J.P., Bowman, J.L., and Eshed, Y. (2008). Signals derived from YABBY gene activities in organ primordia regulate growth and partitioning of Arabidopsis shoot apical meristems. Plant Cell 20, 12171230.

Goodrich, J., Puangsomlee, P., Martin, M., Long, D., Meyerowitz, E.M., Coupland, G. (1997). A polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386 44-51.

Greb, T. (2003) Untersuchungen zur Rolle des Gens LATERAL SUPPRESSOR in der Seitentriebentwicklung von Arabidopsis thaliana H. und der Tomate (Lycopersicon esculentum M.). Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln.

Greb, T., Clarenz, O., Schafer, E., Muller, D., Herrero, R., Schmitz, G., and Theres, K. (2003). Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes \& Development 17, 1175-1187.

Grossniklaus, U., Vielle-Calzada, J.P., Hoeppner, M.A., Gagliano, W.B. (1998). Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280, 446-450.

Hanahan, D. (1983). Studies on Transformation of Escherichia coli with Plasmids. Journal of Molecular Biology 166, 557-580.

Heisler, M.G., Ohno, C., Das, P., Sieber, P., Reddy, G.V., Long, J.A., and Meyerowitz, E.M. (2005). Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Current Biology 15, 1899-1911.

Helariutta, Y., Fukaki, H., Wysocka-Diller, J., Nakajima, K., Jung, J., Sena, G., Hauser, M.T., and Benfey, P.N. (2000). The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101, 555-567.

Henderson, I.R., and Jacobsen, S.E. (2007). Epigenetic inheritance in plants. Nature 447, 418-424.

Hindemitt, T., and Mayer, K.F.X. (2005). CREDO: a web-based tool for computational detection of conserved sequence motifs in noncoding sequences. Bioinformatics 21, 4304-4306.

Honma, T., and Goto, K. (2000). The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete ciselements responsive to induction and maintenance signals. Development 127, 2021-2030.

Hughes, J.D., Estep, P.W., Tavazoie, S., and Church, G.M. (2000). Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. Journal of Molecular Biology 296, 1205-1214.

Jackson, J.P., Johnson, L., Jasencakova, Z., Zhang, X., PerezBurgos, L., Singh, P.B., Cheng, X.D., Schubert, I., Jenuwein, T., and Jacobsen, S.E. (2004). Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112, 308-315.

Jackson, J.P., Lindroth, A.M., Cao, X.F., and Jacobsen, S.E. (2002). Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556-560.

Jepsen, K., Rosenfeld, M.G., (2002). Biological roles and mechanistic actions of corepressor complexes. J Cell Sci 115, 689-98.

Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R., and Dean, C. (2000). Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290, 344-347.

Kalinina, A., Mihajlovic, N., and Grbic, V. (2002). Axillary meristem development in the branchless Zu-0 ecotype of Arabidopsis thaliana. Planta 215, 699-707.

Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., and Haussler, D. (2002). The human genome browser at UCSC. Genome Research 12, 996-1006.

Koncz, C., Schell, J. (1986). The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204, 383-396.

Krichevsky, A., Gutgarts, H., Kozlovsky, S.V., Tzfira, T., Sutton, A., Sternglanz, R., Mandel, G., and Citovsky, V. (2007). C2H2 zinc finger-SET histone methyltransferase is a plant-specific chromatin modifier. Developmental Biology 303, 259-269.

Krichevsky, A., Kozlovsky, S.V., Gutgarts, H., and Citovsky, V. (2007b). Arabidopsis co-repressor complexes containing polyamine oxidase-like proteins and plant-specific histone methyltransferases. Plant Signaling \& Behavior 2, 174-177.

Laux, T., Mayer, K.F.X., Berger, J., and Jurgens, G. (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122, 87-96.

Lee, J-Y., Colinas, J., Wang, J. Y., Mace, D., Ohler, U., Benfey, P. N. (2006). Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots. PNAS 15, 6055-6060.

Li, J.J., and Herskowitz, I. (1993). Isolation of ORC6, a component of the yeast origin recognition complex by a onehybrid system. Science 262, 1870-1874.

Lister, R., O'Malley, R.C., Tonti-Filippini, J., Gregory, B.D., Berry, C.C., Millar, A.H., and Ecker, J.R. (2008). Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523-536.

Long, J. and Barton, M.K. (2000). Initiation of Axillary and Floral Meristems in Arabidopsis. Developmental Biology 218, 341-353.

Luo, M., Bilodeau, P., Koltunow, A., Dennis, E.S., Peacock, W.J., Chaudhury, A.M. (1999). Genes controlling fertilizationindependent seed development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 96, 296-301.

Lynn, K., Fernandez, A., Aida, M., Sedbrook, J., Tasaka, M., Masson, P., and Barton, M.K. (1999). The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 126, 469-481.

Molina, C., and Grotewold, E. (2005). Genome wide analysis of Arabidopsis core promoters. BMC Genomics 6.
Morgenstern, B. (1999). DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics 15, 211-218.

Morgenstern, B., Prohaska, S.J., Pohler, D., and Stadler, P.F. (2006). Multiple sequence alignment with userdefined anchor points. Algorithms for Molecular Biology 1, 6.

Muller, D., Schmitz, G., and Theres, K. (2006). Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis. Plant Cell 18, 586-597.

Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15, 473-497.

Ng, D.W.K., Wang, T., Chandrasekharan, M.B., Aramayo, R., Kertbundit, S., and Hall, T.C. (2007). Plant SET domain-containing proteins: Structure, function and regulation. Biochimica Et Biophysica Acta-Gene Structure and Expression 1769, 316-329.

Ohad, N., Yadegari, R., Margossian, L., Hannon, M., Michaeli, D., Harada, J.J., Goldberg, R.B., Fischer, R.L. (1999). Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11, 407-416.

Pedersen, A.G., Baldi, P., Chauvin, Y., and Brunak, S. (1999). The biology of eukaryotic promoter prediction - a review. Computers \& Chemistry 23, 191-207.

Pluthero, F.G. (1993). Rapid purification of high-activity Taq DNA polymerase. Nucleic Acids Research 21, 4850-4851.
Raman, S. (2006) Genetic analysis of axillary meristem development in Arabidopsis: roles of MIR164, CUC1, CUC2, CUC3 and LAS, and identification of novel regulators. Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln. 101 p.

Raman, S., Greb, T., Peaucelle, A., Blein, T., Laufs, P., and Theres, K. (2008). Interplay of miR164, CUP-SHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana. Plant Journal 55, 65-76.

Ratcliffe, O.J., Kumimoto, R.W., Wong, B.J., and Riechmann, J.L. (2003). Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold. Plant Cell 15, 1159-1169.

Reyes, J.C. (2006). Chromatin modifiers that control plant development. Current Opinion in Plant Biology 9, 21-27.
Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P. (2002). Prediction of plant microRNA targets. Cell 110, 513-520.

Rozen, S., and Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology 132, 365-386.

Sabatini, S., Heidstra, R., Wildwater, M., and Scheres, B. (2003). SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes \& Development 17, 354-358.

Sambrook, J. and Russel, D.W. (2001) "Molecular Cloning: A Laboratory Manual," 3rd Edition. Cold Spring Harbor Laboratory Press, NY.

Schmid, M., Uhlenhaut, N.H., Godard, F., Demar, M., Bressan, R., Weigel, D., and Lohmann, J.U. (2003). Dissection of floral induction pathways using global expression analysis. Development 130, 6001-6012.

Schmitt, T. (1999) Isolierung und Charakterisierung des Lateral suppressor-Gens aus Lycopersicum esculentum M. Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln.

Schmitz, G., and Theres, K. (2005). Shoot and inflorescence branching. Current Opinion in Plant Biology 8, 506-511.
Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F.X., Jurgens, G., and Laux, T. (2000). The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635-644.

Schubert, D., Clarenz, O., and Goodrich, J. (2005). Epigenetic control of plant development by Polycomb-group proteins. Current Opinion in Plant Biology 8, 553-561.

Schubert, D., Primavesi, L., Bishopp, A., Roberts, G., Doonan, J., Jenuwein, T., and Goodrich, J. (2006). Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H 3 at lysine 27. Embo Journal 25, 4638-4649.

Schultz, E.A., and Haughn, G.W. (1991). LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3, 771-781.

Schultz, J., Milpetz, F., Bork, P., and Ponting, C.P. (1998). SMART, a simple modular architecture research tool: Identification of signaling domains. Proceedings of the National Academy of Sciences of the United States of America 95, 5857-5864.

Schulze, S. (2007) Charakterisierung HAIRY MERISTEM-ähnlicher Gene und Identifizierung neuer Regulatoren der Seitentriebentwicklung in Arabidopsis thaliana. Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

Schumacher, K. (1995) Markergestützte Klonierung von Kandidaten für das Lateral suppressor Gen der Tomate Lycopersicum esculentum M. Inaugural-Dissertation zur Erlangung des Doktorgrades der MathematischNaturwissenschaftlichen Fakultät der Universität zu Köln.

Schumacher, K., Schmitt, T., Rossberg, M., Schmitz, C., and Theres, K. (1999). The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proceedings of the National Academy of Sciences of the United States of America 96, 290-295.

Searle, I., He, Y.H., Turck, F., Vincent, C., Fornara, F., Krober, S., Amasino, R.A., and Coupland, G. (2006). The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes \& Development 20, 898-912.

Sessions, A., Weigel, D., and Yanofsky, M.F. (1999). The Arabidopsis thaliana MERISTEM LAYER 1 promoter specifies epidermal expression in meristems and young primordia. Plant Journal 20, 259-263.

Shahmuradov, I.A., Gammerman, A.J., Hancock, J.M., Bramley, P.M., and Solovyev, V.V. (2003). PlantProm: a database of plant promoter sequences. Nucleic Acids Research 31, 114-117.

Shahmuradov, I.A., Solovyev, V.V., and Gammerman, A.J. (2005). Plant promoter prediction with confidence estimation. Nucleic Acids Research 33, 1069-1076.

Simpson, G.G. (2004). The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Current Opinion in Plant Biology 7, 570-574.

Smyth, D.R., Bowman, J.L., and Meyerowitz, E.M. (1990). Early flower development in Arabidopsis. Plant Cell 2, 755-767.

Springer, N.M., Napoli, C.A., Selinger, D.A., Pandey, R., Cone, K.C., Chandler, V.L., Kaeppler, H.F., and Kaeppler, S.M. (2003). Comparative analysis of SET domain proteins in maize and Arabidopsis reveals multiple duplications preceding the divergence of monocots and dicots. Plant Physiology 132, 907-925.

Steimer, A., Schob, H., and Grossniklaus, U. (2004). Epigenetic control of plant development: new layers of complexity. Current Opinion in Plant Biology 7, 11-19.

Stuurman, J., Jaggi, F., and Kuhlemeier, C. (2002). Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells. Genes \& Development 16, 2213-2218.

Thijs, G., Lescot, M., Marchal, K., Rombauts, S., De Moor, B., Rouze, P., and Moreau, Y. (2001). A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling. Bioinformatics 17, 1113-1122.

Thomas, H., Thomas, H.M., and Ougham, H. (2000). Annuality, perenniality and cell death. Journal of Experimental Botany 51, 1781-1788.

Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673-4680.

Thorstensen, T., Fischer, A., Sandvik, S.V., Johnsen, S.S., Grini, P.E., Reuter, G., and Aalen, R.B. (2006). The Arabidopsis SUVR4 protein is a nucleolar histone methyltransferase with preference for monomethylated H3K9. Nucleic Acids Research 34, 5461-5470.

Uberlacker, B., and Werr, W. (1996). Vectors with rare-cutter restriction enzyme sites for expression of open reading frames in transgenic plants. Molecular Breeding 2, 293-295.

Völkel, P., and Angrand, P.O. (2007). The control of histone lysine methylation in epigenetic regulation. Biochimie 89, 1-20.

Wang, R.H., Farrona, S., Vincent, C., Joecker, A., Schoof, H., Turck, F., Alonso-Blanco, C., Coupland, G., and Albani, M.C. (2009). PEP1 regulates perennial flowering in Arabis alpina. Nature 459, 423-U138.

Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V., and Provart, N.J. (2007). An "electronic fluorescent pictograph" browser for exploring and analyzing large-scale biological data sets. PLoS One 2, e718.

Yang, F. (2007) Identification and characterization of interactors of RAX1 controlling shoot branching in Arabidopsis thaliana. Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln.

Yoshida, N., Yanai, Y., Chen, L., Kato, Y., Hiratsuka, J., Miwa, T, Sung, Z.R., Takahashi, S. (2001). EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. Plant Cell 13, 2471-2481.

Abstract

Aerial architecture of flowering plants is largely based on the activities of the shoot apical meristem and axillary meristems (AM), which are initiated in the axils of leaves. The LATERAL SUPPRESSOR (LAS) loss-of-function mutant is characterized by a lack AM development during the vegetative growth phase, identifying LAS as a key regulator of this process. LAS is expressed in a very specific band-shaped domain at the adaxial side of leaf primordia, the site of later formation of AMs. In order to understand how this specific expression pattern is established, and to be able to subsequently address the question which factors control $L A S$, the $L A S$ promoter was analyzed in detail in this work. Complementation of the las-4 phenotype with various promoter deletion constructs revealed that less than $117 \mathrm{bp} 5^{\prime}$, of the transcription start are necessary for gene function. However, the ability to complement is lost when constructs harbor less than 3547 bp of 3 , sequences. The importance of the 3 ' region is emphasized by results showing that complementation is still achieved if the 5^{\prime} promoter is replaced by a minimal 35 S promoter or a PISTILLATA (PI) promoter fragment, which does not confer expression in the apex. In both cases visualization of expression profiles using promoter GUS constructs showed specific expression in axils of leaves and flowers, alike the endogenous LAS promoter activity. In summary an LAS 3' promoter element, extending from bp 3239 to 3547 behind the ORF, was found to be necessary for complementation. It is tempting to speculate that it is this element, which causes the highly specific $L A S$ expression pattern.

A previous las-4 second site modifier screen led to the identification of the new regulator of AM development ENHANCER OF LATERAL SUPPRESSOR 5 (EOL5). The eol5 las-4 double mutant was identified owing to the lack of AM formation in cauline leaf axils. Additionally, eol5 las-4 plants could be shown to exhibit leaf fusions and defects in meristem maintenance and floral primordia development. The gene underlying the eol5 mutation could be identified by map based cloning as CZS, a putative histone methyl transferase, previously shown to be involved in the epigenetic regulation of FLOWERING LOCUS C (FLC) and displays a mild delay of flowering. Complementation with an endogenous $p C Z S:: C Z S$ construct led to a recovery of the ability to form axillary shoots in cauline leaf axils, likewise an allelism test showed that the T-DNA insertion alleles czs-1 and czs-2 are allelic to eol5. However, the single mutant phenotype of eol5 is more
pronounced, leading to a lack of AM formation in most rosette leaf axils, whereas czs-1 and $c z s-2$ plants only exhibited few barren axils in the lower rosette. Accordingly, the delay of flowering observed in long day conditions was most distinct in eol5 plants.

To address the question which genes are regulated by CZS, the expression of various candidates was compared between mutants and wild-type by real-time PCR. FLC could be shown to be upregulated in czs mutants. Analysis of FRI FLC plants, which strongly express $F L C$, revealed side shoot development defects, suggesting that $F L C$ is involved in the process of AM formation. This indicates that similar mechanisms regulate lateral meristem development and flowering, thus the AM initiation defects observed in czs mutants are likely to be caused by the upregulation of $F L C$.

Zusammenfassung

Die oberirdische Architektur von Samenpflanzen wird durch die Aktivitäten des Sprossapikalmeristems und der Achselmeristeme bestimmt, die in den Achseln aller Blätter angelegt werden. Die lateral suppressor (las)-Mutante in Arabidopsis ist gekennzeichnet durch das Ausbleiben der Achselmeristemanlage während der vegetativen Entwicklung. Dies zeigt, dass LAS eine zentrale Rolle in der Regulation von Lateralmeristemen spielt. LAS wird in einer sehr spezifischen Domäne an der adaxialen Seite von Blattprimordien exprimiert, wo später Achselmeristeme gebildet werden. Um zu verstehen wie dieses Expressionsmuster entsteht, und um später Regulatoren von LAS identifizieren zu können, wurde in dieser Arbeit eine detaillierte Promotoranalyse durchgeführt.
Eine Komplementation des las-4 Phänotyps mit verschiedenen PromotorDeletionskonstrukten zeigte, dass weniger als 117 bp im 5'-Bereich des Transkriptionsstarts für die Genfunktion notwendig sind. Es wurde jedoch keine Komplementationsfähigkeit mehr festgestellt, wenn die Konstrukte weniger als 3547 bp der 3'-Sequenzen enthielten. Die Bedeutung der 3'-Region wird dadurch verdeutlicht, dass eine Komplementation auch dann erreicht werden kann, wenn der 5'-Promotor vollständig durch einen 35S CaMV Minimalpromotor oder durch ein PISTILLATA (PI)Promotorfragment ersetzt wird, welche selbst keine Expression im Apex hervorrufen. In beiden Fällen zeigte eine Visualisierung des Expressionsprofils mittels Promotor-GUSKonstrukten eine spezifische Expression in den Achseln von Blättern und Blüten, vergleichbar mit der endogenen LAS-Promotoraktivität (RNA in situ Hybridisierung). Zusammenfassend konnte ein LAS-Promotorbereich identifiziert werden, der 3235 bis 3547 bp hinter dem offenen Leseraster des LAS-Gens liegt und für die Komplementationsfähigkeit notwendig ist. Die Vermutung liegt nahe, dass dieses Promotorelement, unabhängig von anderen Promotoren in der Umgebung, das spezifische $L A S$-Expressionsmuster hervorruft.

In einer früheren Durchmusterung einer Population mutagenisierter las-4-Pflanzen konnte der neue Regulator der AM-Entwicklung, ENHANCER OF LATERAL SUPPRESSOR 5 (EOL5), gefunden werden. Die eol5 las-4 Doppelmutante hat die Fähigkeit Seitentriebe in den Achseln von Stängelblättern anzulegen verloren und zeigt Fusionen von Blättern sowie

Defekte in der Erhaltung des Sprossapikalmeristems and der Bildung von Blütenprimordien. Das der eol5-Mutation zugrunde liegende Gen konnte durch markergestützte Kartierung als CZS identifiziert werden. Vorangegangene Arbeiten zeigten, dass CZS wahrscheinlich eine Histonmethyltransferase kodiert, die an der epigenetischen Regulation von FLOWERING LOCUS C (FLC) beteiligt ist.
Eine Transformation der eol5 las-4-Mutante mit einem pCZS::CZS-Konstrukt führte zu einer partiellen Komplementation des Defektes der Seitentriebbildung. Außerdem konnte in einem Allelietest festgestellt werden, dass eol5 und die T-DNA-Insertionsallele czs-1 und $c z s-2$ allelisch sind. Allerdings zeigte die eol5-Einzelmutante, mit dem Fehlen fast aller AM in der vegetativen Phase, einen deutlich stärker ausgeprägten Phänotyp als czs-1 und czs-2-Pflanzen, in denen nur einzelne Achseln im unteren Bereich der Blattrosette betroffen waren. Ebenso konnte in eol5-Pflanzen die deutlichste Verschiebung des Blühzeitpunktes beobachtet werden.
Um die Frage zu beantworten, welche Gene von CZS reguliert werden, wurde die Expression verschiedener Kandidatengene in Wildtyp und Mutanten mit Hilfe von Echtzeit-PCR verglichen. Hier konnte gezeigt werden, dass die FLC-Transkription in czsMutanten erhöht ist. Eine Analyse von FRI FLC-Pflanzen, in denen die FLC-Expression deutlich verstärkt ist, offenbarte Defekte in der Achselmeristemanlage, die belegen, dass FLC eine Rolle in der Achselmeristementwicklung spielt. Dies führt zu der Hypothese, dass die Lateralmeristementwicklung und die Regulation des Blühzeitpunktes einem gemeinsamen Mechanismus unterliegen. Daraus ergibt sich, dass die in czs-Mutanten beobachteten Defekte der AM-Initiation möglicherweise auf eine Deregulierung von FLC zurückzuführen sind.

Erklärung

Die vorliegende Arbeit wurde am Max-Planck-Institut für Züchtungsforschung in KölnVogelsang durchgeführt.

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Professor Dr. Klaus Theres betreut worden.

Köln, 4.10.2009

Bodo Raatz

