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1. Introduction 

1.1. Meristem activities shape the development of 

plant architecture  

The postembryonic development of flowering plants is based on the activity of meristems, 

groups of pluripotent cells from which all organs develop. During embryogenesis two 

groups of meristematic cells are established, the shoot apical meristem (SAM) and the root 

apical meristem (RAM), giving rise to the major axis of growth.  

The RAM will form the main root and later develop lateral roots originating from the 

pericycle. The SAM will give rise to all aerial structures of the plant, initiating at first leaf 

and subsequently flower primordia. Lateral meristems develop in the axils of leaves, 

thereby establishing new growth axis. The controlled outgrowth of these lateral meristems 

and further SAM activity leads to the vast diversity observable in plant architecture.  

1.1.1. Genetic regulation of meristem organization 

The SAM is laid out during embryogenesis and consists of a group of self sustaining 

pluripotent cells. Various genes act in concert to maintain the number and identity of the 

meristem cell population. Knotted-like homeobox (KNOX) genes keep cells in an 

undifferentiated state. One of these, SHOOT MERISTEMLESS (STM), is expressed in the 

Arabidopsis shoot apex and is required for meristem initiation and maintenance (Barton & 

Poethig, 1993). Its vital importance can be deduced from stm mutants that fail to produce a 

SAM or true leaves.  

The maintenance of the stem cell population relies on the WUS-CLV loop (Schoof et al., 

2000). The homeodomain transcription factor WUSCHEL (WUS) is expressed in the 

organizing centre, specifying the overlaying cells as stem cells. These are marked by 

CLAVATA3 (CLV3) expression, a secreted protein expressed in stem cells, acting as a 

diffusible extracellular signal. The CLV signaling pathway also comprises the CLV1 CLV2 

receptor kinase complex expressed overlapping with WUS. They negatively regulate WUS 

expression upon binding of their ligand CLV3. WUS on the other hand activates the CLV 

pathway completing the feedback loop controlling the stem cell population. Accordingly 
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wus mutants loose meristematic activity leading to a stop-and-go growth characterized by 

terminating and reinitiating of meristems, whereas clv mutants show enlarged meristems 

(Laux et al., 1996, Clark et al., 1993).  

 

AMs are formed in the axils of leaf primordia. Leaf primordia initiate at the flanks of the 

SAM, in a spatially and temporally precisely controlled fashion. Early markers of incipient 

leaf primordia are auxin response maxima, in which auxin flux in the L1 layer is directed 

towards a convergence point and subsequently inwards, forming a reverse fountain 

(deduced from intracellular localization of PINFORMED 1, Benkova et al., 2003, Heisler 

et al., 2005). Other early markers of incipient primordia development are the absence of 

STM transcript and the expression of leaf identity genes like ASSYMMETRIC LEAVES 1 

and AINTEGUMENTA (Byrne et al., 2000, Elliot et al., 1996).  

At early stages in primordia development, preceding any morphological changes, genes 

involved in lateral meristem initiation like REGULATOR OF AXILLARY MERISTEMS 1 

(RAX1), REGULATOR OF BRANCHING (ROB/bHLH140), CUP SHAPED COTYLEDON 

1 (CUC1) and LATERAL SUPPRESSOR (LAS) are starting to be expressed at, or adjacent 

to, the position of forming primordia and later on at their adaxial side. Formation of new 

meristems can be linked to the activity of these proteins, as mutations in these genes show 

various defects in this process as described below.  

 

At a later stage, around P16 in vegetative Columbia (Col) plants, lateral meristem 

development has progressed to a stage at which the meristematic marker STM shows a new 

focused expression (Greb et al., 2003). Establishment of expression domains of other 

markers of meristem identity like WUS and CLV indicates the formation of a new 

meristem, which will then commence formation of new leaf and flower primordia.  

The exact mechanism promoting axillary meristem fate of a specific cell group is poorly 

understood. One of the required signals is presumably to keep cells in an undifferentiated 

state. The nature of the signals leading to new cell identities, that may originate from the 

primordia, the SAM, or organ boundaries, remain to be uncovered. 
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1.1.2. Members of the GRAS Gene family control meristem 

initiation and organization  

The plant specific GRAS gene family has been shown to play a role in different 

developmental processes, from meristem maintenance to hormone signaling (Bolle, 2004). 

The family is named after the prominent members GAI, RGA and SCR. Specific domains 

identifying GRAS proteins are a VHIID motif, roughly conserved in all members of the 

family, the two leucine-rich domains of approximately 100 AA residues length, and 

homologies near the C-terminus.  

 

The GRAS proteins SCARECROW (SCR) and SHORT ROOT (SHR) are involved in root 

and shoot radial patterning. Mutants in either gene show, among a range of defects, that 

cortex and endodermis cell files are not properly established (Sabatini et al., 2003, 

Helariutta et al., 2000). SHR protein acts non–cell-autonomously and has been shown to 

upregulate and physically interact with SCR.  

 

A mutation in the petunia gene HAIRY MERISTEM (HAM), which belongs to a different 

subfamily of GRAS genes, leads to the termination of the SAM and AMs. After cessation 

of meristem activity a layer of differentiated cells covers the tip of the shoot (Stuurman et 

al., 2002).  

A triple mutant of the homologous Arabidopsis genes SCARECROW-LIKE 22 (SCL22), 

SCL27, and SCL6 also displays SAM termination and side shoot formation defects. It 

could be shown in Arabidopsis that the mutations lead to a loss of meristem organization 

and polarity, as cell groups with meristematic identity are found displaced in lower cell 

layers (Schulze, 2007). These genes are targeted by miR171, accordingly MIR171 

overexpressor plants resemble scl22 scl27 scl6 mutants.  

 

GRAS proteins also act as signal transducers of GA, a plant hormone involved in many 

developmental processes. GA acts mostly as a differentiation signal, effecting e.g. growth 

habit, floral development, flowering time and seed germination (Fleet & Sun, 2005).  

The DELLA-domain-containing proteins GAI, RGA, and RGA-LIKE 1-3 are negative 

regulators of GA response. In the presence of GA these proteins are degraded via the 

ubiquitin/proteasome pathway, resulting in the derepression of target genes and thereby 

triggering the GA response.  
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The Arabidopsis GRAS gene LAS is an important regulator of AM development. The las 

mutant phenotype is characterized by a lack of AM formation during the vegetative phase, 

while side-shoots develop normally during the reproductive phase (Fig. 1A). During this 

work only the las-4 allele was used, which carries a 20 bp deletion 365 bp after the ATG, 

henceforward referred to as las. LAS is expressed in very specific band-shaped domains 

adaxial of initiating leaf primordia (Greb et al., 2003, Fig. 1C D). The expression domain 

coincides or lies closely adjacent to those cells, which will later give rise to AMs. As a 

close homolog of the DELLA domain proteins GAI, RGA, and RGL1-3, LAS may act on 

the same target genes. As LAS does not contain a DELLA domain, it will not be degraded 

upon presence of GA. Hence, a possible function of LAS could be to repress the GA 

response, which primarily means to keep cells in an undifferentiated state in presence of 

GA.  

 

A B

C D

laslaswtwt

 
Figure 1. Phenotype and expression profile of LAS  

A, B, axillary bud formation observed in rosettes of wt (A) and las (B) plants. White arrows point 
towards buds or barren axils, respectively. 
C, longitudinal and D, transverse sections showing LAS mRNA accumulation pattern by in situ 
hybridization, in a 28 d old vegetative Col (C) or Ler (D) plant. Pictures from Greb et al., (2003), 
bars 200 µm.  
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1.1.3.  Regulators controlling lateral meristem developmen t 

Next to the GRAS genes mentioned above, several R2R3 MYB genes have been shown to 

be involved in side shoot development. A mutation in the RAX1 gene results in defects in 

axillary meristem development during the vegetative phase (Müller et al., 2006). The triple 

mutant with the close paralogs rax2 and rax3 displays increased lateral meristem formation 

defects, also affecting cauline leaf axils. The lack of focused STM expression in the axils of 

later leaf primordia suggests that lateral meristem initiation is compromised early in 

development. Interestingly the rax mutants are aphenotypic in long day conditions, and 

mentioned defects only appear when plants have been grown in short days.  

 

ROB/bHLH140 could also be shown to be a regulator of branching, similar to the maize 

and rice homologs BARREN STALK and LAX PANICLE. rob mutants show minor defects 

in AM initiation in the rosette but enhance the mutant phenotypes of las and rax1 (Yang, 

2007). In concert with the supposed role in aiding AM development, ROB is expressed in 

specific expression domains adaxial of leaf primordia and ROB overexpressing plants 

develop accessory side shoots. Experiments indicate that ROB physically interacts with 

RAX1, which also shares the same expression domains (Yang, 2007).  

 

Another group of genes that show specific expression domains in axils of leaf primordia 

are the NAC domain factors CUC1, 2, and 3. A loss of function of CUC3 was reported to 

lead to defects in axillary meristem development (Raman et al., 2008). miR164 is a 

negative regulator of the close homologs CUC1 and 2 (Rhoades et al., 2002). miR164 

overexpression enhances the cuc3 phenotype, revealing redundant functions, while a loss 

of miR164 function leads to accessory bud formation, interpreted as deregulated, elevated 

activity of lateral meristems (Raman et al., 2008).  

 

The eol5 mutant was discovered in a screen, designed to find modifiers of the las-4 

phenotype (Clarenz, 2004). las-4 mutant seeds were mutagenized with EMS and M2 

populations were analyzed for alterations of las-4 phenotype. Two classes of mutants were 

isolated during this screen, the so called and enhancers of lateral suppressor (eol), in 

which the AM defects were extended into the cauline leaf axils, and the suppressors of 

lateral suppressor (sol), whose phenotype was modified to appear more similar to the 

wild-type (Clarenz, 2004, Raman, 2006).  
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This second-site mutagenesis screen was expected to identify mutations in genes that act in 

some way redundant with LAS, in the same or a different pathway. The limitations of a 

genetic screen are always lethal mutations and the redundancy of regulatory networks. A 

second-site screen is designed to partially overcome the problem of redundant factors that 

might mask low phenotypic changes of single mutants. As las constitutes a sensitized 

background, mutations could be detected, whose phenotypic changes would be too weak to 

be spotted in a screen in the wild-type background.  

The eol5 mutant was discovered during this second-site mutagenesis screen, as it increases 

the las loss of function phenotype. When grown in short days, side shoot formation is 

strongly reduced in cauline leaf axils, while no enhancement of the las phenotype is 

observable in long day conditions. Additionally, the eol5 las double mutant is reported to 

accelerate flowering and to develop longer inflorescences (Schulze, 2007).  

1.1.4. Strategies to discover new regulators of AM initiat ion 

acting upstream of known genes 

In order to uncover the genetic network controlling a process like AM initiation, the first 

step undertaken is usually the analysis of mutants, either derived from screens designed to 

detect a specific mutant phenotype, or from fortuitous observations. These approaches led 

to the discovery of various genes involved in AM formation. The currently available 

information about the process is gathered from their characterizations and interaction 

studies.  

 

Yet many players cannot be identified this way, due to lethality or to redundancy 

preventing observable phenotypic alterations in mutants. Applying methods like yeast two-

hybrid studies can identify interacting partners. Downstream targets are routinely sought-

after utilizing expression arrays, detecting transcript changes caused by mutations.  

 

Identifying transcriptional upstream regulators binding to the promoter of an investigated 

gene, is a more challenging task and therefore less common. One way to address this 

problem is to devise entirely new screens, e.g. utilizing gene-of-interest reporter gene 

constructs, or looking for reversions of gain-of-function mutations. Other techniques like 

yeast one-hybrid studies or DNA affinity purification aim to identify proteins binding to a 
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specific promoter fragment. These techniques require knowledge of the promoter regions 

of the investigated gene. Understanding promoter structure and function can give valuable 

insight in the process the gene is involved in. Information about timing and position of 

binding proteins improves understanding of the genetic processes.  

Computational methods are not “yet” universally useful in understanding promoters. Most 

approaches are based on transcription factor binding motifs, which have aided 

understanding in various cases (e.g. auxin responsive genes, Chapman & Estelle, 2009). 

While some binding motifs are well described, others are either not known, or a description 

of protein-DNA interaction at a sequence level, based on single binding motifs, simply 

does not reflect the complexity of the underlying process (Florquin et al., 2005).  

With reasonable knowledge of the investigated promoter regions, yeast one-hybrid 

experiments are a suitable choice to find upstream regulators (Li and Herskowitz, 1993). 

While broad promoter regions can be used to search for interacting factors, many studies 

indicate that repeats of short sequences are favorable to produce the desired results 

(Deplancke et al., 2004, BD Biosciences MATCHMAKER User Manual, 1998). Therefore 

a detailed promoter study, identifying the essential regions, is a suitable starting point to 

find upstream interactors and thereby increase understanding of the regulatory network.  

 

In the case of LAS, upstream regulators are of special interest, as LAS is expressed in 

specific domains, including or neighboring those cells that will later give rise to AMs, and 

whose cell fate is affected in las mutants. Hence it is plausible that the function of LAS 

might be largely regulated on transcript expression level. This emphasizes the importance 

of understanding the establishment of the specific RNA accumulation pattern, i.e. 

investigating the LAS promoter and finding upstream regulators. Thus, promoter studies 

are applied to identify important elements that can later be utilized to find interacting 

factors by yeast one-hybrid experiments.  

1.1.4.1. Previous work on the LAS promoter 

Lateral suppressor (Ls) was first studied in tomato, displaying a similar lack of side shoot 

formation in the ls mutant as described above for Arabidopsis. Additionally, defects occur 

during flower development, like a lack of petals and reduced flower numbers (Schumacher 

et al., 1999).  
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Complementation experiments showed that comparatively large promoter regions are 

necessary for gene function. 1411 bp of 5’ and 2667 bp of 3’ regulatory sequences driving 

the Ls open reading frame (ORF) were found to be sufficient to produce a wild-type 

phenotype when transformed into the ls mutant. In contrast, a shorter construct with only 

570 bp of 3’ sequences did not lead to complementation (Schumacher et al., 1999; Schmitt, 

1999). The Ls gene was also shown to be functional in tomato, if the 3’ regulatory 

sequences were in reverse orientation, a property typical for enhancer elements.  

 

In order to individually complement the lack of AMs or the flower phenotype, transgenic 

constructs were produced, in which the 5’ promoter was exchanged with the PLENA 

promoter, active in inflorescence meristems (Bradley et al., 1993), or with the CET4 

promoter (Amaya et al., 1999), only active in the vegetative meristem. ls mutant plants 

transformed with these constructs exhibited no complementation. Only constructs carrying 

also the 3`sequences of Ls were able to confer complementation, leading to restoration of 

both phenotypes, irrespective of the 5’ promoter (Gregor Schmitz, personal 

communication). This indicated that the 3’ regulatory sequences are the decisive factor for 

a functional promoter.  

 

Andrea Eicker (2005) showed that also in Arabidopsis the 3’ promoter of LAS plays an 

important role. To identify important promoter regions, las Arabidopsis plants were 

transformed with numerous deletion constructs. In a first experiment constructs with 5’ 

sequences of varying length were analyzed, all including 4000 bp of 3’ sequences of the 

LAS gene. Secondly, different sized 3’ promoter fragments were examined for their ability 

to complement. (In the 5’ promoter distances always refer to the ATG, while 3’ promoter 

sizes are measured from the stop codon.)  

Fig. 2 summarizes the deletion construct analysis results (Eicker, 2005), illustrating that 

820 bp upstream and 3547 bp downstream of the LAS gene are necessary for promoter 

function, whereas shortening of these sequences to 800 bp or 3133 bp respectively, 

resulted in the loss of complementation ability. These promoter regions shown to contain 

essential elements are depicted in red in Fig. 2. Additionally, partial complementation 

could be obtained, also with a short 3’ region (488 bp), when using 2910 bp of 5’ 

sequences, leading to ~ 60 % of rosette axils sustaining bud formation. These results 

indicate the presence of an enhancer element between 1447 and 2910 bp upstream of the 

ATG, which is partially redundant to the one downstream of the ORF. 
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-4000 - 3000 - 2000 - 1000 - 0 0 1000 2000 3000 4000-4000 - 3000 - 2000 - 1000 - 0 0 1000 2000 3000 4000
LASLAS

2910 - 1447 820 - 800 3133 - 3547

 

 

Figure 2. Overview of relevant LAS promoter regions determined by deletion construct 

analysis. 

LAS CDS is depicted in blue, UTRs in light blue, regions shown to contain essential promoter 
elements in red. Numbers above parentheses state distance in bp between the indicated regions 
and the start, respectively stop codon of the LAS ORF. Dashed parenthesis indicates region 
leading to partial complementation in the absence of long 3’ sequences.  

1.2. Transcriptional control of gene expression 

Transcriptional activation of genes is dependent on gene promoters, regions of DNA that 

lead to spatially and temporally specific activation of mRNA formation. That means these 

sequences result in the assembly of a transcription initiation complex at the transcription 

start site (TSS). This contains the DNA Polymerase II (PolII), which is responsible for 

transcribing mRNAs and some small RNAs (Pedersen et al., 1999).  

Promoters are commonly divided into 3 parts: the core promoter, the proximal, and the 

distal promoter (Abeel el al. 2008). The Core promoter usually extends 50 bp around the 

TSS and provides the platform to assemble the transcription initiation complex. In plants 

specific core promoter sequence elements seem less conserved than in animals. The most 

prominent is the TATA box, located ~ 30 bp upstream of the TSS, present at the TSS of ~ 

30 % of Arabidopsis genes (Molina & Grotewold, 2005). Initiator elements (Inr) around 

the TSS have also been reported in several promoters (Shahmuradov et al., 2003). In 

general no sequence conservation was found that could be used to predict a large number 

of core promoters (Molina & Grotewold, 2005). The lack of sequence conservation might 

be replaced by structural information, as Florquin et al., (2005) described different classes 

of core promoters, based on structural properties. Structural characteristics, like DNA 

bending properties, may affect positioning of nucleosomes, providing easier access of 

proteins to certain DNA elements, and histones may aid specific DNA binding proteins by 

providing binding platforms.  

 

In order to initiate transcription, core promoters need additional elements that provide 

binding sites for proteins. The proximal promoter is usually considered to include a region 



Introduction 

10 

of a few hundred bp upstream of the TSS, containing various binding motifs for 

transcription factors. Eukaryotic promoters usually contain binding sites for several TFs 

that positively or negatively affect formation and activation of the transcription initiation 

complex (Pedersen et al., 1999).  

 

Distal promoter elements can be localized at distance of several thousand bp and comprise 

additional regulatory elements named enhancers or silencers. Proteins binding to these 

elements are assumed to interact with proteins at the core or proximal promoter by looping 

of DNA. Enhancer or silencer elements can usually act independent of orientation and of 

their position ahead or behind the transcribed region of the gene. As all regulatory 

sequences behind the gene belong to the distal promoter, these regions will be referred to 

as 3’ promoter in this work.  

 

The actual activity of a promoter depends on different aspects. Obviously the number and 

location of motifs play an important part but only in combination with the composition of 

TFs present at a certain time. Proximal and distal promoters might also be defined by 

structural elements like DNA bending properties, influencing the nucleosome positioning 

and thereby TF binding stability. Another important factor is the chromatin state, limiting 

the accessibility of DNA to proteins, which is dependent on DNA methylation and histone 

modifications, as described below. (Pedersen et al., 2005).  

1.2.1. Chromatin modifications and their role in plant 

development 

Substantial parts of the genome are in a densely packed state called heterochromatin, in 

which DNA is inaccessible to TFs. Heterochromatin is inherited through cell divisions. 

While large parts of the heterochromatin, like telomeric and centromeric regions, remain in 

this state, other regions of densely packed chromatin can convert to euchromatin in 

response to developmental cues. Derepression of DNA by unfolding of chromatin is an 

important part of gene regulation (Pedersen et al., 1999). Chromatin state depends on 

chromatin marks, such as methylations of DNA and histones,  
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Histone and DNA methylation marks require further proteins that translate this information 

to induce heterochromatin formation. The HETEROCHROMATIN PROTEIN 1 (HP1), 

originally described in Drosophila, leads to heterochromatin formation and gene repression 

(Bannister et al., 2001). HP1-like proteins are found in most eukaryotes ranging from S. 

pombe (Swi6) to human (HP1h) and plants (LHP1) (Berger & Gaudin, 2003).  

The Arabidopsis gene TFL2 e.g. is an HP1 homolog that recognizes H3K9 K27 

methylation, leading to the formation of inactive chromatin (Steimer et al., 2004). The tfl2 

mutant phenotype shares some similarities with the curly leaf (clf) mutant phenotype (see 

below), misexpressing homeotic genes and thus, appears to be one of the genes involved in 

translating histone methylation patterns into repressed chromatin state. Numerous other 

proteins can be expected to be involved in mediating chromatin condensation in response 

to heterochromatic methylation marks.  

1.2.1.1. Role of DNA and histone methylations in plants 

DNA methylation plays a major role in maintaining genome integrity. Accordingly 

transposons and other repeat elements comprise most of the methylated DNA (Chan et al., 

2005). Transcribed regions are usually found to be, if at all, less methylated, e.g. shown for 

the CpG islands (regions of low CpG methylations) described in vertebrates. CpG islands 

have also been reported in Arabidopsis but do not seem to play a major role (Shamuradov 

et al., 2005).  

So far DNA methylation has not been shown to play a role in plant development (Schubert 

et al., 2005). Mutants affected in DNA methylation occasionally show developmental 

phenotypes, like the AGAMUS (AG) and SUPERMAN  mutants, but methylation of these 

loci has not been shown to play a role in vivo. An exception to this concept are the 

PHABULOSA and PHAVOLUTA genes, which can be methylated due to the regulation by 

the miR165 and miR166 (Bao et al., 2004). 

 

Nucleosomes are the fundamental repeating units of chromatin, consisting of 146 bp of 

DNA wrapped around histones. Histones are subject to various modifications like 

acetylation, phosphorylation, methylation, ubiquitination, or sumoylation, which can be 

reversible and associated with regulation of individual genes (Völkel et al., 2007). Histone 

methylations belong to these reversible marks, acting as a cellular memory of 

transcriptional status, as they are heritable over cell divisions. Proteins that methylate 
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histones, and thereby affect chromatin state, play a role in many developmental processes 

like meristem maintenance, phase transition, and embryogenesis (Reyes, 2006).  

 

One of the best studied epigenetic systems in eukaryotes is the Polycomb group (PcG) of 

proteins and their antagonists the Trithorax group proteins, which are involved in the 

maintenance of repressed and active transcriptional states, respectively (Bantignies & 

Cavalli, 2006). These protein complexes produce epigenetic marks by methylating 

histones. The effect of histone marks depends on the number of methyl groups and the 

affected amino acids.  

While H3K4 (Lysine 4 of Histone 3), H3K36, and H3K79 methylations are usually 

associated with expressed genes, H3K9, H3K27, and H4K20 methylations constitute 

repressive marks (Völkel et al., 2007). Complicating the histone code, lysine residues can 

carry one, two, or three methyl groups, linked to different enzymes and responses. In wild-

type Arabidopsis, monomethyl H3K27 (meH3K27) and dimethyl H3K27 (me2H3K27) are 

concentrated preferentially in heterochromatin, whereas trimethyl H3K27 (me3H3K27) 

appears to be mostly euchromatic (Schubert et al., 2005).  

 

PcG proteins mediate the cellular memory of transcriptional states over many cell divisions 

(Steimer et al., 2004). Conserved to their function in animals, PcG proteins elicit tri-

methylations of H3K27 on their direct target genes, which is correlated with stable, long-

term repression (Farrona et al., 2008). The Arabidopsis genome contains several homologs 

of members of the conserved Polycomb Repressive Complex 2 (PRC2), well described in 

animals. The protein group comprises homologs of four genes, first described in 

Drosophila: Enhancer of Zeste (E[Z]), Suppressor of Zeste 12 (Su[z]12), Multicopy 

suppressor of Ira (MSI), and Extra sex combs (ESC). In Arabidopsis these proteins are 

represented in small gene families (Farrona et al., 2008).  

 

E[Z] homologs contain a SET domain (Su(var)3-9, Enhancer-of-zeste, Trithorax), 

conferring histone methyl transferase (HMT) activity (Berger & Gaudin, 2003). Known 

Arabidopsis homologs are MEDEA (MEA) involved in seed development (Grossniklaus et 

al., 1998, Luo et al., 1999), CURLY LEAF (CLF) and SWINGER (SWN), redundantly 

regulating leaf and floral development, and floral transition (Goodrich et al., 1997).  

CLF, SWN, and MEA show a large functional overlap, displaying mainly additive mutant 

effects. The swn mutation does not cause visible alterations alone but enhances the effect 
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of clf and mea mutants. However, there are also specific regulatory functions, e.g. a MEA 

containing PcG complex acts on PHERES 1 gene during seed development. Known targets 

for a CLF containing PcG repressive complex include the KNOX genes, which are found 

misexpressed in mutants (Schubert et al., 2005).  

 

Su[z]12 homologs are characterized by C2H2 zinc finger motifs, assumed to confer 

unspecific DNA binding ability (Steimer et al., 2004). FERTILIZATION INDEPENDENT 

SEED 2 acts in a complex with MEA during seed development (Luo et al., 1999), while 

EMBRYONIC FLOWER 2 (EMF2) and VERNALIZATION 2 (VRN2) have been shown 

to affect floral transition (Yoshida et al., 2001, Gendall et al., 2001).  

VRN2 has been described to implement stable repression of FLC after cold treatment. FLC 

is a negative regulator of floral induction, which is itself repressed by the vernalization 

pathway or the autonomous pathway to enable flowering (Farrona et al., 2008). FLC is 

strongly activated by FRIGIDA (FRI). As Col or Ler accessions do not possess an active 

FRI gene, vernalization is not required for flowering. Nevertheless, FLC levels influence 

floral induction as it is regulated by, and regulates, a large number of genes (Farrona et al., 

2008). In wild-type plants, but not in vrn2 mutants, FLC remains repressed after 

vernalization (Schubert et al., 2005), however, vrn2 mutation does not affect flowering in 

Ler wild-type background (Gendall et al., 2001).  

Mutations in the homologous EMF2 gene flower early under both long days and short days 

and lead to small, dwarfed plants, indicating participation in a different complex 

(Chanvivattana et al., 2004). Interestingly, emf2 vrn2 double mutants are not early 

flowering, showing otherwise additive, pleiotropic phenotypes (Schubert et al., 2005).  

 

FERTILIZATION INDEPENDENT ENDOSPERM (FIE) is an ESC homolog, containing a 

characteristic WD40 repeat. FIE has been reported to repress floral homeotic genes 

(Schubert et al., 2005) and to be involved in seed development (Ohad et al., 1999, 

Chaudhury et al., 1997).  

In animals, PRC2 complexes were shown to include the WD40 gene MSI. There are five 

homologs (MSI1-5) in Arabidopsis, but so far no experimental data provides evidence that 

they are part of PcG complexes (Farrona et al., 2008).  
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1.2.1.2. Plant SET domain proteins 

SET domain proteins form the largest group of lysine HMTs, having different functions in 

Arabidopsis (Berger & Gaudin, 2003). SET domain proteins can be divided into seven 

families based on their conserved domains (Ng et al., 2007). The previously mentioned 

CLF, SWN, and MEA constitute the first family and are the best studied SET proteins, as 

they are part of the PRC2 homologs. Yet, in recent years also the remaining SET proteins, 

which have not been associated with these complexes, have attracted attention.  

 

KRYPTONITE (KYP), the first HMT identified in plants, was shown to be involved in 

DNA methylation control (Berger & Gaudin, 2003). kyp mutations cause a reduction of 

methylated H3K9, a loss of DNA methylation, and subsequently reduced gene silencing 

(Jackson et al., 2004). This indicates that KYP mediated methylation of histones results in 

DNA methylation.  

Redundant functions have been reported for KYP/SUVH4 and its homologs SUVH5 and 

SUVH6, which together control activity of the DNA methyltransferase CMT3 (Ebbs et al., 

2006).  

CAROTENOID CHLOROPLAST REGULATORY 1 (CCR1/SDG8) is another SET domain 

protein, reported to be involved in plant development (Dong et al., 2008, Cazzonelli et al., 

2009). ccr1 mutants show increased outgrowth of lateral branches, possibly due to altered 

carotenoid composition.  

 

Another SET domain protein belonging to the same subfamily as KYP is CZS, named after 

its conserved protein domains C2H2 zinc finger and SET. CZS was identified by its 

interaction with SWP1, a SWIRM (Swi3p, Rsc8p, Moira) domain Polyamine oxidase 

(PAO)-like protein (Krichevsky et al., 2007). czs mutants, just like swp1 mutants, show a 

mild delay in flowering correlated with an upregulation of FLC. Chromatin 

immunoprecipitation (ChIP) experiments showed that me2H3K9 and me2H3K27 marks at 

the FLC locus are reduced, suggesting that a role of CZS may be to directly repress FLC 

expression.  

PAO containing co-repressor complexes have been shown to be transcriptional regulators 

in animals (Jepsen and Rosenfeld, 2002). They specifically silence neuronal genes in non-

neuronal cells. In animals these complexes have been shown to contain LSD1 (lysine-

specific demethylase 1), a protein containing a SWIRM domain and PAO domain that may 
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act as a histone H3 lysine demethylase, the TF REST (Repressor element 1), adapter 

proteins, histone deacetylases, and a SET domain HMT (Krichevsky et al., 2007b). A 

homologous complex may be present in plants, as another LSD1 homolog FLOWERING 

LOCUS D (FLD) represses FLC by histone acetylation, as part of the alternative pathway 

of flowering regulation. A hypothesis is that CZS and SWP1 act together in a PAO 

containing co-repressor complex, silencing target genes like FLC (Krichevsky et al., 

2007b).  

Studies of the close CZS/SUVR5 homologs SUVR4, SUVR1, and SUVR2 revealed that they 

locate to the nucleus, and that SUVR4 has an in vitro HMT activity, generating me2H3K9 

with a substrate preference for monomethylated H3K9 (Thorstensen et al., 2006).  

1.3. Aim of this work 

The aim of this project was to obtain a deeper understanding of the process of AM 

initiation by first, analyzing the LAS promoter and second, the characterization of a new 

regulator of AM initiation.  

 

The LAS gene was chosen for a detailed promoter analysis because it is a key regulator in 

AM development. LAS is expressed in very specific domains adaxial of initiating 

primordia in - or very near to - those cells later giving rise to AMs. This indicates that LAS 

function might be largely dependant on transcription, emphasizing the importance of 

understanding the mRNA accumulation pattern, i.e. to understand the composition and 

localization of the regulatory sequence motifs. The promoter was analyzed by deletion 

constructs and in silico tools to identify important elements. Additionally, fusion constructs 

with other promoters were produced to elucidate the relevance of specific promoter 

regions, and promoter GUS fusions enabled direct visualization of the expression patterns 

of modified promoter assemblies. Information about position and importance of promoter 

elements can then be used in yeast one-hybrid studies to identify upstream regulators of 

LAS, which generate the specific expression pattern.  

 

In a second approach, the gene underlying the eol5 mutant phenotype was to be identified 

and characterized. The eol5 mutant was previously obtained in a second-site mutagenesis 

screen and reported to enhance the phenotypic defect of las. A map based cloning strategy 
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was applied for the identification of the underlying gene. The subsequent goal was to 

characterize the eol5 and eol5 las mutant phenotype, particularly in regard to the effect on 

lateral meristem initiation, meristem maintenance, and flowering time.  

To shed light on the function of the EOL5 gene, RNA expression changes in the mutant 

were analyzed by real-time PCR. Double mutants with known players in AM initiation 

were analyzed in order to position the gene function in known regulatory pathways. 

Furthermore, homologs of EOL5 were examined for defects in side shoot formation, in 

order to reveal a possible general role of HMT containing complexes.  
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2. Materials and Methods 

2.1. Materials 

2.1.1. Chemicals 

The main sources of chemicals used in this work are the following:  

Ambion, Austin, USA 

Amersham Pharmacia Biotec, Braunscheig, Germany 

Biozym, Hess. Oldendorf, Germany 

Carl Roth GmbH, Karlsruhe, Germany 

Invitrogen GmbH, Karlsruhe, Germany 

MBI Fermentas GmbH, St. Leon-Rot, Germany 

Merck KgaA, Darmstadt, Germany 

New England BioLabs GmbH, Schwalbach/Taunus, Germany 

Operon, Cologne, Germany 

QIAGEN, Hilden, Germany 

Roche, Basel, Switzerland 

Sigma Chemical Co., St.Lois, USA 

2.1.2. Enzymes 

Enzymes used during this work were obtained from following suppliers: 

Invitrogen GmbH, Karlsruhe, Germany 

New England BioLabs GmbH, Schwalbach/Taunus, Germany 

MBI Fermentas GmbH, St. Leon-Rot, Germany 

Roche, Basel, Switzerland 

Sigma Chemical Co., St.Lois, USA  

Novagen, Toyobo, Japan.  
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2.1.3. Vectors 

The following vectors were utilized during the course of this work.  

pCR®-Blunt-II-TOPO®: Cloning of PCR products, Invitrogen. 

pGEM4Z: Cloning by restriction sites and construct assembly, Promega GmbH, 

Mannheim, Germany. 

pGPTVbar AscI: Binary vector for plant transformation (Überlacker & Werr, 1996). 

2.1.4. Antibiotics 

Antibiotics during this work were used to select for transformed bacteria in the following 

final concentrations:  

Ampicillin (Amp) 100 µg/L 

Gentamycin (Gent) 50 µg/L 

Kanamycin (Kan) 50 µg/L 

2.1.5. Bacteria 

The Escherichia Coli strain used for amplification of plasmid DNA was:  

DH5α (Hanahan, 1983): F- end A1 hsdR17 (rk-, mk+) gyrA96 relA1 supE44 L- recA1 

80dlacZM15 ∆ ( lacZY AargF) U196  

Plants were transformed using the following Agrobacterium tumefaciens strain:  

GV3101: Virulence plasmid: pMP90 (Koncz und Schell, 1986)  

Selection markers: Rifampicin, Gentamycin and Kanamycin.  

2.1.6. Plant material 

This work was carried out using the model plant Arabidopsis thaliana.  

Table 1: Mutant alleles used in this work 

Allele name Allelic variation  Background Source 

las-4 deletion Col Greb et al., 2003 

eol5 SNP Col Clarenz, 2004 

czs-1 T-DNA insertion Col SALK N661919 

czs-2 T-DNA insertion Col GABI 500A10 
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rob-2 T-DNA insertion Col SALK N52476 

mir164a-4 T-DNA insertion Col SM333570 

mir164b-1 T-DNA insertion Col SALK N636105 

mir164c transposon insertion Col Baker et al., 2005 

suvh1 T-DNA insertion Col SALK N859507 

suvr1 T-DNA insertion Col SALK N860017 

suvr3 T-DNA insertion Col SALK N662712 

swn-7 T-DNA insertion Col SALK obtained from Daniel 

Schubert 

clf-28 T-DNA insertion Col SALK obtained from Daniel 

Schubert 

emf2-10 18 bp deletion, weak allele Ws Chanvivattana et al., 2004 

vrn2-1 SNP Ler Gendall et al., 2001 

swp1-1 T-DNA insertion Col SALK N642477 

FRI FLC active FRI introgressed from 

San Feliu-2 accession  

Col / Sf-2 Searle et al., 2006 

2.1.7. Oligonucleotides 

Primers were mainly supplied by Invitrogen and Operon 
 
Table 2: Oligonucleotides used in different subproj ects 

Genotyping and sequencing of plasmids    
pGPTV-FOR4 caagaccggcaacaggat pGPTV-FOR2 aactgaaggcgggaaacgac 
pGPTVfor3 aggacgtaacataagggactgac T-DNA-R caatacgcaaaccgcctctc 
pGPTV-rev2 tccataaaaccgcccagtc pGPTVrev3 gaagcttgcatgcctgcag 
Plasmid-Forward cacgacgttgtaaaacgacggccag Plasmid-Reverse cacacaggaaacagctatgaccatg 

 
Genotyping and cloning of LAS constructs     
35S-F_SacI gatgagctctctccactgacgtaag 35S-R_AvrII ggtcctaggtcctctccaaatgaa 
AtLs1411F_SacI tgggagctccggcatcagaatctcaac AtLs7116R_SbfI caacctgcaggaaaccagagtcttgtcttc 
AtLs1831F_XhoI atactcgagaatgtaatgattcacttttctaaaatcat AtLs2019F_XhoI atactcgagcaacttcatctctatccataaaactatgt 
AtLs2135R_AvrII tatcctaggcctttacctgaaggtatattg AtLs1631F_XhoI atactcgaggtgaatttttatttaattagtatcatttgc 
AtLs2593muR tggttcgaaacaagaactagt AtLs2599F cagtgtatgcaaagaacagttc 
AtLs3070R aacacaattgacggcaatgg AtLs2349F acctccgtcgtcttcttttc 
AtLs3530F taggagctccaaaatcgtcccctcttctcc AtLs2952R agacctaaagagtcagcgaacc 
AtLs4051R_SbfI aatcctgcagggacgatttcaatcaatttag AtLs7116R_SacI aacgagctcaaaccagagtcttgtcttctc 
AtLs4940 F ctaactagtctaaggtttagaggatgatc AtLs5697F_XmaI ttgcccgggataaaacaaaagggtgtgc 
AtLs5396F_BamHI aatggatccttagggttagtgtcgacaga AtLs1411F_BstBI tggttcgaacggcatcagaatctcaac 
AtLs5614R_XmaI ccccccgggaatcccttttttacccca AtLs5672R_XmaI gctcccgggtcatccgacaaatcg 
AtLs5739R_BamHI ataggatcctataacataagtctaaataagcac AtLs6625F_KpnI agaggtaccatttagggttttaggtg 
AtLs6798R_SbfI aatcctgcaggtgatcacaaactttggatag AtPI-598-F_SacI tttgagctcaattaattatatacatacacgagtaagc 
AtLsREV gagacaaagaggacggtcac AtLs4975R tcgcagagatcatcctctaaac 
AtPI-1-R_AvrII tctcctaggctttctctctctatctct AtLs3569_AvrII tggcctaggtccaaagagaaggacaa 
LAS-5UTR -6.2f cgcggatccggcatcagaatctcaac  

 
Mapping primers    
cer429966_F ggctcttgagccgaagaaat cer429966_R acgtttcagaccttcgtcgt 
cer429971_F tcgagagatgttgccatgag cer429971_R cgtgattgttgtcgtcgatt 
cer44411A_F cggatcagaccgattcaaac cer44411A_R ctccccaaaaagaaacgaca 
cer44411B_F gttgttgttcggttcggttt cer44411B_R caccgggaaactaccagcta 
cer445734_F ttgcacctttgccatcatac cer445734_R tgtcaaaacaaaatgacaatgc 



Materials and Methods 

20 

cer445742_F ccggagccatcgtagaagta cer445742_R tggttttccacaaaattcca 
cer44613B_F atcaatatgttgaaaaagctacaccag cer44613B_R cgccaccacaaatctccatc 
cer44613F aaaataatgggtggggaaatcg cer44613R ttcgaaacacgttggaaaatgac 
MASC02463F gagtgtcaaaggttacgggttct MASC02463R gcttgaatggtttacacttgacag 
MASC02627F atgtggttgattcaaagggtg MASC02627R tgaaattgggaggaggattg 
MASC02866F tagaatttccctgccaacatc MASC02866R gggcttgaagctgttgagac 
MASC02949F gtttttgaaagtccccggat MASC02949R catggagctggtggtttagc 
MASC03021F actccgattccaaacacatca MASC03021R ggtatgtgaaatgggttttggt 
MASC07353F aagcattgctctgtttatcgtc MASC07353R ttcttcttctatagcttttggtctc 

 

Sequencing primers    
at2g23347_F cctgataaaagcagcgtcct at2g23347_R agctcctgcacgaagttactg 
at2g23450_986F tgtttgtttggtggttcaatg at2g23450_2505R aacattgtggtactggttgaaaga 
at2g23450-499F ccactgggcacgtatcttct at2g23450_1007R cattgaaccaccaaacaaaca 
at2g23460_2077F tatgagcaggagatgcgaaa at2g23460_3620R ccttggagccaatagaacca 
at2g23460_648F ccgcagacgaaaggtaagaa at2g23460_2195R accccaagatttccagcag 
at2g23460-670F aattcgaccccttgacacac at2g23460_789R ccttccttcaggcatagaacc 
at2g23520_1236F cttgacggattggttggtct at2g23520_2775R ttaccctccttccatttcca 
at2g23520-178F tcttctcttccgtgaaagtcg at2g23520_1374R cacatccctcacttgagctg 
at2g23530_717F agacttgtcaccaatgcaggt at2g23530_2232R aacagagagggtcatgtcgaa 
at2g23530-696R tctctcaagtcaattcaaatcca at2g23530_848R ccatcgtcttctgcctgtaag 
at2g23640_F tctggtctaagttatcaaattccaa at2g23640_R gacacaggtaaagtcgaccaa 
at2g23700_1354F cggcatttcaatcaagaaga at2g23700_3258R aacccttcccaagacaatca 
at2g23700-113F cccaactaagagattcttcttcttc at2g23700_1449R tcgaattgtcgaacaccaga 
at2g23755-903F gattgatgaaccatttgccata at2g23755_633R ggaactattgatcttccttcaagc 
at2g23770_287F cccttctggtcaacaagtca at2g23770_1987R tgaccaactccaacacaaca 
at2g23770-1254F tgtgaaataaatggtgcgtgt at2g23770_405R gtcgttagcaatggcgaaat 
at2g23780-671F actaatcgatcggcgttcac at2g23780_997R gcatctatcaaccttaaagaatcaaa 
at2g23790_1140F tggggatggattgattgact at2g23790_2684R aatgatgccaaaagctcgtt 
at2g23790_-301F tcacctctaccaacccgaac at2g23790_1250R cctccaccaccttcttttga 
at2g23800-F ccacgaaaagccgttaagtt at2g23800-R cgtccactgctacgtccata 
at2g23810_406 ggagttgtcttgtggagagca at2g23810_1856R gaacccttcttcattatgtttgatg 
at2g23810-916F ggctaaggtatgcttttcaaac at2g23810_618R aaaggatcaaaaagctcaatctc 
at2g23820_896F attgtcaagcttggctgcat at2g23820_2396R ccgtgcaaaatcttgaaaca 
at2g23820-524F tcaaaacgacatcgtgttaaat at2g23820_1018R gacaaacttcacatcttcaaggatt 
at2g23830_F ttgcacgggttaaaagttga at2g23830_R gcaagagacatcgctaagagtg 
at2g23834_F atacatgcctgccgaggac at2g23834_R agaacaccgggatctcagaa 
at2g23840_829F ttctcctacgggttcgttct at2g23840_2463F cttcgaccgttgcatcttct 
at2g23840-638F caggttctgcaactttttgg at2g23840_926R gcttcaaactggcaacaaga 
at2g23860_514F taacaaagaatcggggcatc at2g23860_1954R tcgagacgatatagttgaaataatga 
at2g23860-903F aaaaattcagcatttcattacattt at2g23860_739R cgagttttgctctggcaatc 
at2g23910_1134F ctcattttggtcaagattcaatg at2g23910_2651R tcgtggatgcatttgagatt 
at2g23910-219F ttccaccggtcaatggatta at2g23910_1282R gagcatgccacaactgtgat 
at2g23920_F tcaggattgtgaagcaggatt at2g23920_R ttcaccacaacatcaaaaatga 
at2g23930_F acaattggccgcattagaac at2g23930_R tcaaagcagtggatccagagta 
at2g23950_1457F tggtttatgtaatttgattttgtttg at2g23950 _2985R ttgctttcacaggacctcaa 
at2g23950-200F gcgtaggagagacattgcag at2g23950_1506 ccaaaacaaaatactttagacaacaaa 
at2g23980_1509F gggcttgaaaccagcacata at2g23980_2989R ggaagcaatggcagactctc 
at2g23980_160F tggactcaaggtactcgcaaa at2g23980_1610R acctgcatgtttccaatgag 
at2g23980-1217F ttcggcaacgattactctcc at2g23980_260R gatgctttgcttccttgagc 
at2g23985_F gacgccgtgattgtgtgtaa at2g23985_R caattgggtgatgaatgttttg 
at2g24030_18F atggcgatacgacgagtttc at2g24030_1543R ggtctctctaatggcattggttat 
at2g24030-1363F aaaaatcgtttgaaattctcactt at2g24030_137R tgtctgaaaaagttgttgaactg 
at2g24080_F ttagcggtgtactgcggttt at2g24080_R aacacttagcaatgtcaaatcttca 
atCLF2299_F gagttgctgagcgagttcct atCLF3857_R taagaaagctccccaaccag 
atCLF3690_F tgctcctgaaacaacaacaaa atCLF5170_R tagtgcgcgaatcaaatcag 
atCLF-495_F tcgaaaagctgttgctgaaa atCLF969_R tctccttcgacccactacaga 
atCLF800_F catgggtttttctggacagg atCLF2400_R atcgctgggtgaacaacttc 
atICK1_F aacgggaccactaaaacacg atICK1_R agcgtttagggcggtaagat 
atLBD10_-361_F aaaaatgctaaagaatggggtat atLBD10_1856_R tcatttgcttgctttggttg 
atmiR831a_F gttggggctcagtcatcatc atmiR831a_R tttcgtagtcttggataaaatcagc 
atSAW2_1615_F aaacgaactaatcacttgaggttt atSAW2_2947_R tgatgaataatgacagaagaaattg 
atSAW2_2856_F tgtcagtggtacagtttcattgg atSAW2_4182_R cattaaatatggttttgattgtttttg 
atSAW2_361_F cgcagcaacaacaacacttt atSAW2_1753_R tcgcagtagtggttgtaccg 
atSAW2_3992_F tctcaaaggaaacacatgtatcataa atSAW2_5355_R tgttaataagtcgatcgggtacg 
atSAW2_-898_F atggtggtggtttggttcat atSAW2_441_R gtggacggttccgatcata 
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CZS sequencing, genotyping, and cloning of constructs   
at2g23740_1113F ctgagtctccaatgcaacca at2g23740_2649R ggctgccacaaggaatacac 
at2g23740_19F agttggttcttgacgtggatg at2g23740-456F cctgggtttgttgattggtc 
at2g23740_2507F tggtcgtttagtggatttgc at2g23740_3961R tgggaatctacacctcatgga 
at2g23740_3847F agctgtcgcagttcagtgtg at2g23740_5303R tcaatccttccaaagagtttcaa 
at2g23740-1502F tcgctaacataacctgcaca at2g23740-61R tctgcaataagaacaggggaat 
at2g23740-185F tgacttcgtatgtctgaaaatgc at2g23740_1220R ctgtgctatttcgccaacac 
at2g23740-AscIF ataggcgcgcctcgctaacataacctgcaca at2g23740_SbfIR atacctgcaggtcaatccttccaaagagtttcaa 
atCZS-156F cttccgtgacctagcctttg atCZS_182R ggctcagaaggtgacgactc 
atCZS-1668F cttcgtaacaaattttcgctga at2g23740_358R tttcgcacatcttattccagc 
atCZS-1668F_AscI ataggcgcgcccttcgtaacaaattttcgctga atCZS_5378R_SbfI atacctgcagggcttccatggttctgcaact 
atCZS-641R ataaagtgggaacacgaaacaca atCZS_3168R gagcatctgttacgccatca 
atCZS-929F tacatgcccaaataccgatg atCZS_5378R gcttccatggttctgcaact 

 

Real-time PCR primers    
ANAC83_490F atgcacgaatatcgcctctc ANAC83_679R tcgttcttgttaccggctct 
atCZScDNA_3938F tcacagctgctcaccaaatc atCZS_4928R tctcgggtgatctcttctcct 
atCZScDNA_510F gaccagttcccttcagaggtt atCZS_795R cttcacaagcattatcccaaga 
AtLs3233F atggcgatctttgattcgtt AtLs3297R ccaccgttgctctagggtta 
AtPP2C_1543F atgggaacagatgagcaacc AtPP2C_1730R tgccatcttcaccagtctcc 
DRN_837F gatcgctacgggaattttca DRN_935R tttcttgatacccccactcg 
DRNL_732F ccagagagcggttttcagac DRNL_832R cagcccaacctaactctcca 
FLCcDNA_4156F agccaagaagaccgaactca FLC_4508R cctggttctcttctttcagca 
LB25_56F accttttcttgttgcgatcc LB25_1296R agtctgacgtgcatttacgc 
miR164B_9F agggcacgtgcattactagc miR164B_70R ccgcatatatacacgcatttg 
PP2A_F taacgtggccaaaatgatgc PP2A_R gttctccacaaccgcttggt 
STM_2056F tggagccgtcactacaaatg STM_2802R gccgtttcctctggtttatg 

 

Primers for genotyping mutants    
atSWP1_934F gtgatggtgttgaggcaatg atSWP1_1916R ctggaacagagggcttgaac 
bHLH140-EcoRIfo gatgaattcatggatgatttcaatcttcgtagc bHLH140-1931R caaatttacattaaaacgcctgtttatc 
clf-28F ctgccagttcaggaatggtt clf-28R gaagggagctctctgcttgat 
emf2-10F gccaggcattcctcttgtta emf2-10R ttgtaagcaaccccacaaca 
LB-T-DNA tgaaaagaaaaaccaccccag JL_202 cattttataataacgctgcggacatctac 
miR164A_171R cacaaacaacgaagagctagtca miR164A-463F cgtgaccggcttcatagg 
miR164B-263F tgacataaacaacactcgcactt miR164B_196R acacttgaaccctcgtcgtc 
miR164C-544F aattacgtcgtgagggttgg miR164C_267R aacacaaaaagtggagtaacaatca 
SWN_1539F ggataagcagaataccgaggaa SWN_2422R attgggacctcacgctttc 
VRN_2323F tgcgttcattaagtaggcaaca VRN_2523R aaggtctttttgtgtgtgttcaag 

 

2.1.8. Growth media and buffers 

Culture media used in this work were prepared as described by Sambrook & Russell 

(2001). Agrobacterium tumefaciens was incubated in YEP medium (1 % Pepton, 1 % 

Yeast Extract, 0,5 % NaCl, 0,5 % Saccharose). For growth on solid medium 1 % agarose 

was added to LB or YEP media. All culture media and buffers were made with highly 

purified Milli-Q-water (Millipore Waters GmbH, Neu -Isenburg). When required, solutions 

were autoclaved for 20 min at 121°C. For plants grown in sterile conditions, seeds were 

placed on MS Medium (Murashige and Skoog, 1962) with vitamins but without addition of 

sugar. 
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2.1.9. Software and databases 

The following software tools were used in the course of this work: 

Sequence processing, planning of cloning strategies and restriction analyses, annotation of 

genomic sequences, sequence alignments, and assembly and analysis of sequencing results 

were  performed using the DNASTAR® software package.  

Primers for PCR and sequencing were designed using primer3 online tool (Rozen & 

Skaletsky (2000); http://primer3.sourceforge.net/). 

NCBI (National Center for Biotechnology Information; http://www.ncbi.nlm.nih.gov/) 

database was used for BLAST analyses and acquiring sequences.  

TAIR (The Arabidopsis Information Resource; www.arabidopsis.org) database was used to 

obtain DNA sequences and information about Arabidopsis genes.  

GBrowse (Generic Genome Browser Version 1.70; http://gbrowse.arabidopsis.org/cgi -

bin/gbrowse/arabidopsis/) was used to visualize genomic sequences and aligned ESTs and 

high throughput transcriptome sequences.  

SMART (a Simple Modular Architecture Research Tool; Schultz et al. (1998); 

http://smart.embl-heidelberg.de/) allows the identification and annotation of domain 

architectures of proteins. 

TDNA express (Alonso et al. (2003); http://signal.salk.edu/cgi-bin/tdnaexpress) is a 

genome browser revealing locations of T-DNA insertions.  

CREDO (Cis-Regulatory Element Detection Online, Hindemitt & Mayer (2005), 

http://mips.helmholtz-muenchen.de/proj/regulomips/credo.htm) is a web-based tool for 

computational detection of conserved sequence motifs, integrating results from a variety of 

algorithms: AlignACE (Hughes et al., 2000), DIALIGN (Morgenstern, 1999), FootPrinter 

(Blanchette and Tompa, 2002), MEME (Bailey & Elkan, 1994), and MotifSampler (Thijs 

et al., 2001). 

FIMO (Find Individual Motif Occurrences; http://meme.sdsc.edu/meme/fimo-intro.html) 

uses motif information from MEME output files to compare these to further sequences. 

BAR (Bio-Array Resource, Winter et al. (2007); http://www.bar.utoronto.ca/efp/cgi-

bin/efpWeb.cgi,) provides an Arabidopsis browser for visualization of large-scale 

expression data.  
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Bioinformatics Toolkit (Dep. of Protein Evolution at the Max-Planck Institute for 

Developmental Biology, Tübingen, http://toolkit.tuebingen.mpg.de/t_coffee) was used for 

alignments and to construct phylogenetic trees.  

UCSC Genome Browser on A. thaliana (Jan. 2004 Assembly at UCLA; http:// 

epigenomics.mcdb.ucla.edu/H3K9m2/, Bernatavichute et al., 2008) shows data of ChIP 

chip experiments, providing a high-resolution, genome-wide map of several H3 

methylations and DNA methylations.  

 

2.2. Methods 

General molecular biology laboratory methods were carried out as described by Sambrook 

& Russell (2001), unless otherwise stated.  

2.2.1. Incubation conditions for bacteria 

E. coli cultures were incubated on LB medium at 37°C over night (Sambrook & Russell, 

2001). Agrobacterium tumefaciens cultures were incubated on YEP medium at 28°C for 2-

3 days with appropriate antibiotics. 

2.2.2. Plant growth conditions  

Arabidopsis seeds were stratified for 2-3 days at 4°C on soil before transfer to green house 

or growth chambers. For phenotyping, plants were grown in greenhouse conditions, in 

Grobanks (Mobylux GroBanks, CLF Plant Climatics, Emersacker, Germany), or Percival 

(Percival Scientific, Inc., Perry, USA) growth chambers. Plants were either grown in short 

days (8 h light, 16 h darkness) or long days (16 h light, 8 h darkness).  

In greenhouse, short day conditions were achieved by covering benches after the 8 h of 

light period. During day time, additional artificial light was occasionally supplied. For long 

day conditions artificial light was supplied for up to 16 h a day. In Grobanks climate 

chambers temperature was 22°C during day and 17°C - 18°C at night. In Percival growth 

chambers day and night temperatures were 22°C and 16°C respectively, temperatures 
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changed over a 15 min period. In both growth chambers red light (from light bulbs) was 

supplied for an extra 15 min before and after activation of fluorescent tubes.  

For sterile growth seeds were surface sterilized () and placed on Agar plates. After 

stratification for 2 nights plates were transferred to Grobanks growth chambers.   

2.2.3. Crossing Arabidopsis plants 

Flowers from preferably young inflorescences were selected for crosses; usually the 2 – 3 

oldest flowers of each inflorescence that had not yet opened. The inflorescence meristem, 

younger buds, and any open flowers were removed. Flower buds were opened with fine 

forceps, and sepals, petals, and stamens were removed. Fertilization with pollen from 

young flowers of the pollen donor was accomplished by dusting anthers of the pollen 

donor on the naked stigma. These were covered with plastic film for a few days to avoid 

desiccation. Seeds were harvested when siliques opened upon touching.  

2.2.4. Isolation of DNA 

DNA isolation of a small number of samples was accomplished using the quick protocol 

described by Edwards et al., (1991) with minor adaptations. 500 µl of extraction buffer 

were used to which 150 µl of 5M KAc were added before the first centrifugation. 

Subsequently the supernatant was added to 400 µl of isopropanol. Large scale DNA 

isolations for mapping, genotyping, and cloning were carried out using the DNeasy® 96 

Plant Kit (Qiagen) with the BioSprint® 96 automated workstation (Qiagen). 

2.2.5. Isolation of plasmid DNA 

Plasmid DNA from E. coli was isolated using the Plasmid Mini Kit (Qiagen).  

2.2.6. Purification of PCR products  

PCR products were cleaned using Quiaquick PCR Purification Kit (Qiagen).  
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2.2.7. Polymerase chain reaction (PCR) 

Generally, PCR reactions were set up according to the following protocol: 5 µl 10x PCR 

Buffer (Sambrook und Russel, 2001), 2 µl of 50 mM MgCl, 0.5 µl dNTP (100 mM), 0.3 µl 

Taq-Polymerase, 1 µl of each Primer (10 µM), and 0.1 – 2.0 µl of described DNA 

preparations as template, adding H2O to reach a reaction volume of 50 µl. Taq polymerase 

was produced as described by Pluthero (1993). Reactions were generally carried out in the 

Mastercycler® epgradient (Eppendorf, Hamburg, Germany) using the following standard 

program. 94°C for 3 min, 35 cycles of 94°C for 15 sec, ~ 60°C for 30 sec, and 72°C for 1 

min/kb product, followed by 5 min at 72°C.  

PCRs for cloning and all problematic PCRs were carried out using the KOD hot start DNA 

polymerase (Novagen), using the following standard program. 94°C for 2 min, 35 cycles of 

94°C for 15 sec, ~ 60°C for 30 sec, and 68°C for 30 sec/kb product, closing with 2 min at 

72°C.  

2.2.8. Cloning of constructs 

Restriction enzymes were used according to the manufacturer’s instructions.  

Prior to ligation linearized vectors were mostly dephosphorylated with Calf Intestine 

Alkaline Phosphatase (CIAP, MBI Fermentas) according to the manufacturer’s 

instructions.  

Ligations were carried out using T4 DNA Ligase (MBI Fermentas) according to the 

manufacturer’s instructions.  

TOPO cloning was performed utilizing the Zero Blunt® TOPO® PCR Cloning Kit 

(Invitrogen) according to the manufacturer’s instructions. 

 

Constructs for plant transformation were assembled in pGEM4Z background and 

transferred into a binary plant transformation vector with pGPTVbar AscI background by 

cutting with AscI and SbfI and subsequent cloning of the insert into pBR51. Arrow “⇒” 

denotes the new name of the plasmid after transfer of insert into pBR51. Unless otherwise 

mentioned, PCR products were amplified from genomic DNA.  
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pBR51 (pGPTVbar AscI without GUS ORF): pGPTVbar AscI and pAE25 (pGEM4Z with 

AscI site; Eicker, 2005) were cut with AscI and SacI, mixed and ligated. pBR51 was 

selected for with Kanamycin.  

pBR36 (⇒ pBR37): Genomic LAS fragment was amplified from pES22 (Eicker, 2005) 

using AtLs1411F_SacI and AtLs7116R_SbfI primer pair. PCR product was cut with SstI 

and SbfI and cloned into pAE25 (pGEM4Z with AscI site; Eicker, 2005).  

pBR23 (⇒ pBR38): PCR products from AtLs3530F / AtLs5614R_XmaI and 

AtLs5697F_XmaI / AtLs7116R_SbfI primer pairs, both amplified from pES22, were cut 

with XmaI, ligated, and reamplified with AtLs3530F and AtLs7116R_SbfI primer pair. 

PCR product was cut with SpeI und SbfI and cloned into pBR36.  

pBR24 (⇒ pBR39): PCR product from AtLs3530F / AtLs6798R_SbfI primer pair, 

amplified from pES22, was cut with SpeI und SbfI and cloned into pBR36.  

pBR26 (⇒ pBR41): PCR product of 35S-F_SacI / 35S-R_AvrII (on pBAR35S, from Peter 

Huijser) and AtLs2135R_AvrII / AtLs2952R (on pES22,) primer pairs were cut with 

XmaJI, ligated, and reamplified. PCR product was cut with SstI and AgeI and cloned into 

pBR36.  

pBR27 (⇒ pBR42): PCR product of AtLs2599F and AtLs4051R_SbfI primer pair, 

amplified from pES22, was cut with AgeI and SbfI and cloned into pBR26.  

pBR28 (⇒ pBR43): PCR product of AtPI-598-F_SacI and AtPI-1-R_AvrII primer pair 

was cut with SstI and XmaJI and cloned into pBR26.  

pBR29 (⇒ pBR44): PCR product of AtLs2599F and AtLs4051R_SbfI primer pair, 

amplified from pES22, was cut with AgeI and SbfI and cloned into pBR28. 

pBR30 (⇒ pBR45): GUS ORF containing LAS UTRs was amplified by AtLs2135R_AvrII 

and AtLs4975R primer pair (on pES44, Fig. 11, from Andrea Eicker). PCR product was 

cut with XmaJI and SpeI and cloned into pBR26. 

pBR31 (⇒ pBR46) GUS ORF containing LAS UTRs was amplified by AtLs2135R_AvrII 

and AtLs4975R primer pair (on pES44, Fig. 11, from Andrea Eicker). PCR product was 

cut with XmaJI and SpeI and cloned into pBR28.  

pBR32 (⇒ pBR47): PCR product of AtLs1411F_SacI and AtLsREV primer pair, 

amplified from pES22, was cut with SstI and SmiI and ligated into pBR30.  

pBR33 (⇒ pBR48): PCR products of AtLs3530F / AtLs5614R_XmaI and 

AtLs5697F_XmaI / AtLs7116R_SbfI primer pairs, both amplified from pES22, were cut 
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with XmaI, ligated, and reamplified with AtLs3530F and AtLs7116R_SbfI primer pair. 

PCR product was cut with SpeI und SbfI and cloned into pBR32.  

pBR34 (⇒ pBR49): PCR products of AtLs7116R_SacI / AtLs5396F_BamHI and LAS-

5UTR -6.2f / AtLs2952R primer pairs, both amplified from pES22, were cut with BamHI, 

ligated, and reamplified with AtLs7116R_SacI and AtLs2952R primer pair. PCR product 

was cut with SstI and cloned into pBR27.  

pBR54 (⇒ pBR57): PCR product of AtLs1631F_XhoI and AtLs2952R primer pair was cut 

with XhoI and AgeI and cloned into pBR36.  

pBR55 (⇒ pBR58): PCR product of AtLs1831F_XhoI and AtLs2952R primer pair was cut 

with XhoI and AgeI and cloned into pBR36.  

pBR56 (⇒ pBR59): PCR product of AtLs2019F_XhoI and AtLs2952R primer pair was cut 

with XhoI and AgeI and cloned into pBR36.  

pBR60 (⇒ pBR61): PCR product of at2g23740-AscIF and at2g23740_2649R primer pair 

was cut with AscI and XmaI and cloned into pAE25 (pGEM4Z with AscI site; Eicker, 

2005) forming pBR60I. PCR product of at2g23740_1113F and at2g23740_SbfIR primer 

pair was cloned into pCR-Blunt II-TOPO vector by topocloning forming pBR60F. pBR60I 

was cut with XmaI, PspXI, and SacI and ligated to pBR60F, which was cut with XmiI and 

PspXI. After ligation and transformation pBR60, containing the complete CZS ORF 

including 1502 bp upstream and 286 bp downstream sequences, was selected for with 

ampicillin. Positive clones were identified by colony PCR using T-DNA-R and 

at2g23740_3847F primers.  

2.2.9. Sequencing 

Sequencing reactions were carried out either on plasmid DNA or on PCR products treated 

with ExoSAP-IT® (USB Corporation, Cleveland, USA) according to manufacturer’s 

instructions. Sequencing was carried out by the MPIZ service unit Automatic Isolation and 

Sequencing (ADIS) using Abi Prism 377 und 3700 sequencers (Applied Biosystem, 

Weierstadt) by means of BigDye-terminator chemistry. 
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2.2.10. Transformation of bacteria 

Transformations E.coli with plasmid DNA was carried out via heat-shock treatment of 

chemical competent cells as described by Hanahan (1983).  

In order to transform Agrobacterium, competent cells were mixed with ~ 500 ng of DNA 

and incubated for 5 min on ice, and subsequently in liquid nitrogen. After a heatshock for 5 

min at 37°C, 500 µl of YEP medium was added and cells were incubated on a shaker at 28 

°C for 1.5 – 3 h. Subsequently, cells were plated out on solid YEP medium containing 

gentamycin and kanamycin.  

2.2.11. Transformation of Arabidopsis 

Transgenic plants were established using Agrobacterium-mediated transformation, 

following the floral dip method described by Clough and Bent (1998). To select for 

transgenic plants, T1 seedlings were sprayed with 250 mg/L glufosinate (BASTA®, 

Hoechst) 2 - 3 times.  

To sort out multicopy insertions in one locus, PCRs with outwards directed T-DNA border 

primers were carried out. If a PCR product could be generated the line was evicted, as this 

indicates T-DNA tandem insertions. Homozygous lines were selected by spraying T3 

seedling populations with Basta.  

2.2.12. Southern blot 

To detect transgene sequences in genomic DNA alkali DNA blotting and subsequent 

radiolabeled detection was performed as described by Sambrook and Russell (2001). 

Blotting was performed using Hybond XL nylon membranes (Amersham Biosciences). A 

482 nt radiolabeled probe targeted to the LAS 3’ UTR was utilized to detect transgenic and 

endogenous DNA fragments in transformed plants.  

2.2.13. GUS staining 

GUS stainings were carried out as described by Sessions et al., (1999). Tissues were 

embedded in Paraplast+ (Kendall, Mansfield, USA) in the ASP300 tissue processor (Leica, 
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Wetzlar, Germany). Plant tissues were sectioned and dewaxed by changing through two 

consecutive 5 min steps of 100 % xylol, two consecutive 5 min steps of 100 % ethanol, 1 

min steps of 90 %, 70 %, 50 %, and 30 % ethanol and a 5 min wash step in water. Slides 

were immediately mounted in 30% glycerol and photographed through a brightfield 

microscope. 

2.2.14. Positional Cloning 

A mutation can be identified by map based cloning if it causes a significant and reliable 

aberration of phenotype. The first step is to cross the mutant with a different accession that 

can be distinguished on a genomic level by DNA markers. The F2 population of this cross 

is first analyzed on phenotypic level to distinguish the homozygous mutants from the 

phenotypically wild-type plants (segregation ratio for recessive mutations 1:3). Next, the 

genomes of these plants are analyzed by markers to determine which chromosomal area in 

each plant originates from which parent, resulting from the recombination events during 

meiosis. In Arabidopsis usually 4-5 markers per chromosome provide a sufficient 

information density for rough mapping. The position of the mutation is determined by 

comparing phenotypes and genotypes of each plant. In plants exhibiting a mutant 

phenotype, a marker close to the mutated gene will show an increased frequency of the 

mutated parent’s allele, because the locus of the mutation has to be homozygous for this 

accession to produce this phenotype. Wild-type looking plants on the other hand will bear 

an increased frequency of the other parent’s allele at this marker compared to the statistical 

expectation.  

After the locus has been roughly mapped to a chromosomal area, more markers are applied 

in this region in the processes of fine mapping to narrow down the position of the 

mutation. Analysis of recombinants and matching phenotype and genotypes between 

markers should bring forth a small region including the gene of interest in which candidate 

genes can be selected and sequenced until the mutation causing the phenotypic deviation is 

found.  

2.2.14.1. CAPS marker 

The genotyping during fine mapping was accomplished utilizing mostly CAPS markers, 

which are available in large numbers for most chromosomal regions between Col and Ler. 
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PCR products were cut with the appropriate enzyme by adding 10 µl of PCR to 10 µl of 

master mix, containing 2 µl of the appropriate restriction buffer, 0.5 µl of enzyme, and 7.5 

µl of H2O, followed by incubation at (usually) 37°C for 1 h, and subsequent separation on 

a suitable agarose gel.  

2.2.15. Isolation of RNA from plants 

RNA was extracted using the RNeasy Plant Mini Kit (Qiagen) and eluted in 0.5 x TE 

buffer.  

2.2.16. cDNA synthesis 

For cDNA synthesis RNA was first subjected to DNase digestion using DNA-free™ Kit 

DnaseI (Applied Biosystems / Ambion, Darmstadt, Germany), according to the 

manufacturer’s protocol.  

First strand cDNA was synthesized using the RevertAid™ H Minus First Strand cDNA 

Synthesis Kit (Fermentas) according to manufacturer’s instructions. About 1 µg of RNA 

was used in a 20 µl reaction.  

2.2.17. Real-time PCR 

Quantitative real-time PCR was performed using the Power SYBR® Green PCR Master 

Mix kit, according to the manufacturer’s instructions. The SYBR Green dye binds to 

double-stranded DNA, thereby providing a fluorescent signal that reflects the amount of 

double-stranded PCR product generated during the reaction. Real-time PCR reactions were 

carried out and monitored by the Mastercycler® ep realplex (Eppendorf). The relative 

expression was determined by the standard curve method (Applied Biosystems, User 

Bulletin #2, 2001) and was normalized with the parallel measured expression of 2PPA 

(Czechowski et al., 2005).  
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Abbreviations 

A  adenine 
AA   amino acid 
AM  Axillary meristem 
BRC  BRANCHED 
BC2F2    backcross two, following generation two 
bHLH  basic helix loop helix 
BLAST  Basic Local Alignment Search Tool  
bp  base pair 
CaMV  cauliflower mosaic virus 
ChIP  chromatin immunoprecipitation 
CLV  CLAVATA 
Col  Columbia 
CUC  CUP SHAPED COTYLEDONS 
CZS  C2H2 ZINC FINGER SET DOMAIN PROTEIN 
DRN  DORNRÖSCHEN 
DRNL  DORNRÖSCHEN-LIKE 
E. coli  Escherichia coli 
EBI   European Bioinformatics Institute  
EMBL  European Molecular Biology Laboratory 
EMF2  EMBRYONIC FLOWER 2 
EST  expressed sequence tags 
FLD  FLOWERING LOCUS D 
FIMO  Find Individual Motif Occurrences 
FLC  FOWERING LOCUS C 
G  guanine 
GA   gibberelic acid 
GAI  GIBBERELIC ACID INSENSITIVE 
GFP  green fluorescent protein 
GUS  β-glucuronidase 
HA   human influenza hemagglutinin 
het  heterozygous 
HMT  histone methyl transferase 
hom  homozygous 
H3K9  lysine nine on histone three 
JGI    Joint Genome Institute 
kb  kilo base pairs 
KNOX  KNOTTED LIKE HOMEOBOX 
LAS  LATERAL SUPPRESSOR 
ld  long day 
Ler  Landsberg 
LFY  LEAFY 
LN   natural logarithm 
LOM  LOST MERISTEMS 
Ls  Lateral suppressor from tomato 
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LSD  Lysine-specific demethylase 
MEA  MEDEA 
me3H3K9 tri-methylated lysine nine of histone three 
miR  micro RNA 
MYB   protein domain first described in an avian myeloblastosis virus oncogene 
NASC  Nottingham Arabidopsis Stock Centre  
NCBI  National Center for Biotechnology Information 
nt  nucleotide 
ORF  open reading frame 
PAO   Polyamine oxidase 
PcG   Polycomb group 
PEP1  PERPETUAL FLOWERING 1 
PID  percent identity 
PolII  RNA polymerase II 
PRC2  Polycomb repressive complex 2  
QTL  quantitative trait locus 
RAX1  REGULATOR OF AXILLARY MERISTEMS 
RGA  REPRESSOR OF ga1-3 
RGL  REPRESSOR OF ga1-3-like 
ROB  REGULATOR OF BRANCHING 
R2R3   repeats 2 and 3 of the MYB domain 
SAM  shoot apical meristem 
SCL  SCARECROW_LIKE 
SCR  SCARECROW 
sd  short day 
SET  Su(var)3-9, Enhancer-of-zeste, Trithorax 
SHR  SHORT ROOT 
SMART Simple Modular Architecture Research Tool 
SNP  single nucleotide polymorphism 
STD  standard deviation 
STM  SHOOT MERISTEMLESS 
SOC1  SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 
SUVH  Su(var) homologs 
SUVR  Su(var) homologs 
SWIRM  Swi3p, Rsc8p, Moira 
SWP1  SWIRM DOMAIN PAO DOMAIN-LIKE PROTEIN 1 
TAIR  The Arabidopsis Information Resource 
T-DNA transfer DNA 
TF  transcription factor 
TSS  transcription start site 
UTR  untranslated region 
VRN2  VERNALIZATION 2 
Ws  Wassilewskija 
wt  wild-type 
WUS  WUSCHEL 
YAB1  YABBY 1 
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3. Results 

3.1. Part 1: Characterization of the LATERAL 

SUPPRESSOR promoter  

Aerial architecture of flowering plants is based on the activities of axillary meristems 

(AM). Among various genes that have been reported to play a role in the initiation of these 

AMs, LAS was shown to be a key regulator. LAS is expressed in very specific band-shaped 

domains at the adaxial side of leaf primordia (Greb 2003, Fig. 1C, D). This LAS expression 

pattern is including or adjacent to those cells, which will later develop into meristems and 

which fail to do so in the las mutant. This suggests that the function of LAS may be largely 

regulated by its RNA accumulation pattern, leading to the important question of how these 

specific RNA expression domains are established.  

To address this question, a promoter analysis to identify essential elements in the promoter 

of LAS was initiated. Understanding promoter structure and function can give valuable 

insights into the process the gene is involved in. Detailed knowledge of the promoter is 

also a suitable starting point to find upstream interactors, e.g. by yeast one-hybrid 

experiments.  

3.1.1. Deletion analysis of the 5’ LAS promoter  

Previous work on tomato and Arabidopsis has shown that large promoter regions are 

necessary for a functional LAS/Ls promoter. In Arabidopsis, first results indicated that 820 

bp upstream and 3547 bp downstream of the LAS gene are sufficient for complementation, 

whereas further shortening abolishes promoter activity (Eicker, 2005). Additionally, 2910 

bp of 5’ sequences are partially able to replace the 3’ region (Fig. 2). (In the 5’ promoter 

distances always refer to the ATG, while 3’ promoter sizes are counted from the stop 

codon.).  

 

Due to time constraints, the constructs pAE70 and pAE84, shown in Fig. 3, had not been 

analyzed in as much detail as the others mentioned. The complementation results were 

obtained by decapitation followed by examination of side shoot outgrowth. These lines 
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were now subjected to closer inspection by checking every leaf axil under the binocular 

microscope for the presence or absence of axillary buds. All constructs were analyzed in 

plants homozygous for the las-4 allele. As only the las-4 allele was used in this project it 

will henceforward be referred to as las.  
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Figure 3. Analysis of LAS promoter deletion constructs. 

A, schematic diagram of constructs analyzed. ORF shown in blue, UTRs in light blue. Numbers 
indicate distances in the 5’ region from the start codon, in the 3’ region from the stop codon of LAS. 
B, analysis of bud formation in rosette leaf axils of plants transformed with constructs shown above 
and controls, grown for 6 weeks in sd before shift to ld. Every column represents one plant, every 
box one rosette leaf axil from youngest (top) to oldest. Green indicates an axillary bud, yellow an 
empty leaf axil, light green an axillary meristem.  
 

pAE70 includes 800 bp of 5’ sequences in front of the ATG and a long 3’ region of 4346 

bp behind the stop codon (Fig. 3A). In pAE84, on the other hand, the LAS gene is preceded 

by 820 bp, shown to be sufficient for complementation, but the 3’ sequences are shortened 

to 3133 bp. The constructs pAE50 and pAE51, which have previously been reported to 
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confer complementation (Eicker, 2005), were analyzed as controls. They differ from 

pAE70 in the length of 5’ sequences upstream of the LAS gene containing 820 bp and 1447 

bp respectively.  

Analysis of four independent lines each of pAE50 and pAE51 revealed that plants 

transformed with these constructs indeed display a phenotype comparable to the wild-type, 

as shown in Fig. 3B. Out of six pAE70 lines examined, originating from 3 independent 

transformation events, only two could be unequivocally identified by PCR as carrying the 

complete pAE70 construct, whereas in the remaining lines some transgene sequences could 

not be amplified. Detailed phenotypic analyses of plants harboring the correct construct 

showed either partial or nearly complete complementation, one line differing only 

marginally in phenotype from pAE50 and pAE51 plants (Fig. 3). This indicated that the 

utilized promoter fragment still contains all essential elements. Four independent pAE84 

lines completely resembled las mutants in phenotype (Fig. 3), thereby validating the 

presence of an important element between 3133 and 3547 bp in the 3’region.  

 

To determine the sequences necessary for the function of the LAS 5’promoter, a new set of 

deletion constructs was designed and analyzed for their ability to complement the las 

phenotype. The constructs pBR59, pBR58, and pBR57 include 212, 400, and 600 bp 

upstream of the ATG and 3550 bp of the 3’ regulatory sequences (Fig. 4A).  

 

las plants were transformed with these constructs and analyzed by southern blot 

hybridization to identify single copy lines. For some constructs no single copy lines could 

be found, hence, lines showing the least bands on the southern blot were chosen for 

analysis. Homozygous lines were identified by spraying T3 seedling populations with 

Basta. For pBR57 two, for pBR58 four, and for pBR59 three independent lines were 

analyzed. Lines carrying the same construct produced equal phenotypes, apart from one 

pBR58 line, which also exhibited minor leaf damages and growth retardations upon Basta 

spraying, indicating reduced transgene cassette activity.  
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Figure 4. Deletion construct analysis of the LAS 5’ promoter.  

A, schematic diagram of constructs analyzed. ORF shown in blue, UTRs in light blue. B, analysis 
of bud formation in rosette leaf axils of plants transformed with constructs shown above and control 
plants, grown for 6 weeks in sd before shift to ld. Every column represents one plant, every box 
one rosette leaf axil from youngest (top) to oldest. Green indicates an axillary bud, yellow an empty 
leaf axil, light green an axillary meristem.  
 
The construct pBR57 led to a phenotype indistinguishable from the wild-type, while plants 

harboring the constructs pBR58 and pBR59 displayed very minor defects in AM initiation 

(Fig.4B). The mild phenotypic differences between pBR57 plants and the other lines 

indicated the presence of a promoter element of marginal importance situated between 

position 400 and 600. Overall, no line manifests a strong reduction in AM initiation, 

illustrating that no essential 5’ promoter element is localized ahead of the first 212 bp, 95 
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bp of which are transcribed 5’UTR sequence. This corroborates the idea that 3’ sequences 

are of major relevance for correct LAS expression.  

3.1.2. Phylogenetic promoter analysis 

3.1.2.1. LAS orthologs in different species 

Another method to identify important promoter elements is phylogenetic footprinting, i.e. 

comparing promoter sequences of orthologous genes from different species with the aim to 

detect conserved regions. Orthologs of the Arabidopsis LAS gene were identified using 

BLAST algorithms on various sequence databases (TAIR, NCBI, JGI, EMBL EBI). 

Sequences homologous to the LAS protein sequence could be obtained from the close 

homolog Capsella rubella, more distantly related species like tomato and poplar, and also 

different monocots. Sequences from C. rubella and barley were described by Rossberg et 

al., (2001) and Eicker (2005), respectively.  

LAS sequences of 11 species were aligned with Arabidopsis LAS using the ClustalW 

algorithm, and a neighbor joining tree was constructed, depicted in Fig. 5. The closest 

relatives of LAS in the Arabidopsis genome, the SCL28, 4, 7 and 26 genes (Bolle, 2004) as 

well as SCR and GAI were also included as a comparison. The phylogenetic tree shows that 

all genes from the different species show more identity to LAS than the closely related SCL 

genes, indicating that the foreign genes are orthologs or co-orthologs of LAS.  

 

All grasses shown here appear to have two co-orthologs of LAS that evolved before 

speciation of maize, barley and rice. Poplar has three LAS paralogs, all others only one. 

The LAS alignment only roughly reflects the expected relationship of species based on 

their assumed evolutionary development. All grass genes form a separate clade, but 

asterids and rosids do not group together. This is not resolved by comparing only the 

considerably more conserved C-terminal halves. Nevertheless, the sequence comparison 

showed that there is a set of clear LAS orthologs, whose regulatory sequences can be used 

for phylogenetic analyses. 
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Figure 5. Phylogenetic tree of LAS homologs.  

Phylogenetic tree is based on an alignment of full length protein sequences. LAS homologs were 
aligned by Bioinformatics Toolkit using ClustalW algorithm (Thomson et al., 1994), shown is a 
neighbor joining tree using PID. Pt: Populus trichocarpa (poplar), Vv: Vitis vinifera (grape vine), Dc: 
Daucus carota, Sl: Solanum lycopersicum (tomato), St: Solanum tuberosum (potato), Nt: Nicotiana 
tabacum, Cr: Capsella rubella, At: Arabidopsis thaliana, Os: Oryza sativa (rice), Zm: Zea mays 
(maize), Hv: Hordeum vulgare (barley), SCL: SCARECROW LIKE genes from Arabidopsis.  
 

3.1.2.2. Phylogenetic footprinting analysis of LAS promoters 

The available promoter regions of LAS and its orthologous genes were compared using the 

Credo 1.1 CREDO software, a web-based tool for computational detection of conserved 

sequence motifs. It integrates different algorithms (AlignACE, DIALIGN, FootPrinter, 

MEME and MotifSampler, see materials and methods) to analyze noncoding sequences 

(Hindemitt & Mayer, 2005).  

 

Ample promoter sequences were available from: Arabidopsis, C. rubella, tomato, rice, 

barley, grapevine and poplar. A comparison of 5’ promoter sequences did not reveal any 

highly conserved elements. An analysis of 3’ regions of tomato, Arabidopsis, and C. 

rubella resulted in the identification of two regions with noticeable homology, referred to 

as region A and B (Fig. 6). Numerous short, weakly conserved motifs that were detected 

all along the 3’ sequences, appeared in the same order, indicating a general homology of 

these sequences (depicted as red dots in Fig. 6). Regions A and B, however, stand out as 

sharing homologies of high significance (Fig. 7).  

 

Analyses including all available sequences revealed that region A is conserved in all 

investigated species (Fig. 7). High similarities extend over an 82 bp stretch (in 
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Arabidopsis) conserved in every species examined so far. In all cases it was found 

downstream of the LAS gene, however, in some species less conserved copies appear 5’ of 

the gene as well (rice: MOC1, poplar: PtLAS2). The region A does not show any open 

reading frame as various out-of-frame deletions or insertions are found between species. A 

probe against this region did not show hybridization on an RNA blot (Gregor Schmitz, 

personal communication) and transcriptome analysis as described by Lister et al., (2008) 

did not reveal any transcript traces at the complete LAS locus, including the ORF (analysis 

of inflorescence tissue). This suggests that this sequence is not transcribed and the 

observed conservation may be due to a regulatory function. The region B was only found 

to be conserved in the 3’ sequences shown in Fig. 6, and comprises two adjacent elements. 

Homologies are much less pronounced in region B than in region A, but as half of this 

region is deleted in pAE70, the longest non-complementing construct (Fig. 3), a role in 

promoter function is suggested.  

 

At LASAt LAS

region B

Cr LASCr LAS
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Figure 6. Phylogenetic comparison of LAS 3’ regions 

LATERAL SUPPRESSOR ORFs and 3’ promoter sequences from Arabidopsis (At), C. rubella (Cr) 
and tomato (Sl). ORF shown in blue, red dots indicate homologous motifs as detected by CREDO 
software. Regions of higher homology A and B are highlighted in yellow. Numbers state distances 
from stop codon.  
 

A phylogenetic footprinting analysis of 5`and 3`promoters of the genes LAS, CUC1, 

CUC3, ROB, DRN, and RAX1, which show similar expression profiles marking mostly 

incipient primordia and axils of primordia, discovered some motifs showing conservation 

between these sequences. However, comparing the resulting motif matrices showing the 

highest p-values with the available 3’ regions of LAS orthologs, using the FIMO software 

tool, no well conserved motifs are found. Thus, no elements in common have been found, 

which are clearly associated with mRNA expression in axils of leaf primordia.  

In summary, phylogenetic footprinting revealed two conserved regions in the 3’ promoter. 

One of these shows high homologies in all investigated species, indicating that not only the 

LAS gene but also its regulatory regions are highly conserved between species. 
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Figure 7. Sequence alignment of LAS 3’ promoter regions A and B of various species. 

A, alignment of orthologous sequences of the identified promoter region A, aligned by 
Bioinformatics Toolkit using MUSCLE algorithm (Edgar, 2004). The following list shows 
abbreviations and the distances of depicted sequences from the stop codon of the respective LAS 
ortholog. At: Arabidopsis (2046bp), Cr: Capsella rubella (2356 bp), Sl: Solanum Lycopersicum 
(tomato, 914 bp), Nt: Nicotiana tabacum (tobacco, 798 bp), Vv: Vitis vinifera (grape vine, 809 bp), 
Pt: Populus trichocarpa (poplar, PtLAS1: 1330 bp, PtLAS2: 644 bp, PtLAS3: 1299 bp), Cp: Carica 
papaya (1010 bp), Os: Oryza sativa (rice, MOC1: 1207 bp, OsLAS2: 1092 bp), Hv: Hordeum 
vulgare (barley, HvLAS1: 1103 bp, HvLAS2: 1567 bp). B, alignment of orthologous sequences of 
the promoter region B. Shown sequences appear in a distance oft 52 bp in Arabidopsis and 112 bp 
in tomato.  
 

3.1.3. Tomato promoter sequences are functional in 

Arabidopsis 

To test the hypothesis that the identified regions A and B are important regulatory 

sequences, and to further analyze the degree of conservation between species, a set of 

constructs containing tomato regulatory sequences behind the Arabidopsis LAS ORF was 

designed to drive LAS expression in Arabidopsis.  

A genomic DNA fragment, harboring the Arabidopsis LAS ORF, as well as  2.9 kb of 5’ 

sequence and 2.1 kb of 3’ sequence, was previously shown to complement the tomato ls 

phenotype, indicating that there is a high functional conservation between the two genes 

(Greb et al., 2003). This finding was substantiated by the complementation of the las 

mutant with the Arabidopsis LAS gene combined with 1798 bp of tomato 3’ sequences 

A 

B 
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(Eicker, 2005). These promoter sequences were also shown to be functional when inserted 

in front of the gene.  

As illustrated in Fig. 8A, tomato promoter 3´sequences were cloned behind the 

Arabidopsis LAS gene including the UTRs, 820 bp 5’ and 488 bp 3’sequences. The tomato 

promoter fragments are deficient either in the region A, half of region B or a larger 

promoter part including the complete region B. The pAE128 construct carries the tomato 

3’ sequences in reverse orientation in front of the LAS gene to confirm the enhancer 

properties of this region. las mutants were transformed with these constructs and assessed 

for complementation. At least three independent transgenic lines each were analyzed 

barring pAE128, for which only one line could be established. 

 

The construct pAE127 carrying 1306 bp of tomato 3’ sequences led to a phenotype 

indistinguishable from the wild-type, demonstrating that this part of the tomato Ls 

promoter is able to drive LAS expression in Arabidopsis. Nevertheless regulatory 

sequences do not appear to be completely conserved, as pAE127 is able to confer 

complementation, even though it is lacking the second half of the region B. The non-

complementing construct pAE84, made up of comparable Arabidopsis sequences, is also 

lacking half the 3’region B (in both cases the genomic sequences end in between the two 

aligned sequences shown in Fig. 7), indicating that this region in dispensable in tomato but 

not Arabidopsis sequences.  

 

The constructs pAE123 and pAE125 confer only partial complementation of the las 

phenotype. pAE123 includes the largest 1728 bp tomato promoter fragment but is lacking 

the complete 3’ region A, while pAE125 still contains this region, but is shortened down to 

754 bp from the 3’ end. The inability to confer complete complementation demonstrates 

that the missing regions are necessary for the tomato promoter to be completely functional. 

pAE128 plants display an almost wild-type phenotype, demonstrating that this tomato 

promoter fragment is functional independent of its position and of its orientation.  
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Figure 8. Tomato promoter sequences driving LAS gene expression in Arabidopsis 

A, schematic diagram of constructs analyzed. LAS ORF shown in blue, UTRs in light blue, tomato 
sequences in red, promoter regions A and B in yellow; Arabidopsis promoter sequences in white. 
Black numbers indicate distances from AtLAS start and stop codon, respectively. Red numbers 
indicate distances in the tomato promoter between shown sequences and the Ls stop codon.  
B, axillary bud formation in rosette leaf axils of plants transformed with constructs shown above. 
Each column represents one plant, every box one rosette leaf axil from youngest (top) to oldest. 
Green indicates an axillary bud, yellow an empty leaf axil, light green an axillary meristem.  
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3.1.4. Determining the significance of selected promoter 

regions 

To verify the importance of the different promoter regions investigated so far, transgenic 

lines were established, in which defined parts of the LAS promoter were either deleted or 

modified. The hypothesis that the 5’ promoter region is only required to provide basal and 

unspecific activity was investigated by replacing it with both a flower specific 

PISTILLATA (PI) promoter fragment and with a 35S CaMV minimal promoter. These 

promoter assemblies contain the LAS gene including the UTRs in combination with either 

3550 bp of 3’ sequences, shown to be sufficient for complementation, or with insufficient 

483 bp of 3’ sequences, in order to examine the impact of this 3` region on LAS expression 

(Fig. 9A). In order to determine the importance of the 3’regions A and B the constructs 

pBR38 and pBR39 were devised, in which either the region A is deleted or the construct 

ends just behind region B (Fig. 10A). pBR49 carries 820 bp of upstream sequences, a short 

insufficient downstream promoter, and additionally 1723 bp of 3’ sequences in reverse 

orientation in front of the gene, including regions A and B. It was designed firstly to prove 

that the important 3’regulatory elements have characteristics of enhancer elements, being 

independent of orientation and position in regard to the gene. Secondly, as this construct 

lacks the bp 483 to 1827 of the 3’ promoter, it can also reveal if this region plays an 

essential role in promoter function.  

 

As mentioned in the previous chapter, identification of single copy lines by southern blot 

hybridizations was not successful for all lines. In these cases lines showing as few bands as 

possible on the southern blot were chosen for analysis. For constructs pBR38 and pBR49 

four independent lines were analyzed, for pBR37, pBR39, pBR41, pBR42, and pBR44 

three lines, for pBR43 two lines. Lines of the same construct displayed mostly consistent 

phenotypes, apart from one line of each pBR37 and pBR49 showing no complementation 

at all and one pBR41 line exhibiting complementation only in the lower rosette.  
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Figure 9. Analysis of LAS promoter swapping constructs.  

A, Schematic diagram of the constructs analyzed. LAS ORF depicted in blue, UTRs in light blue, 
promoter regions A and B in yellow, -90 bp 35S minimal promoter in green, 600 bp PI promoter 
fragment in orange.  
B, axillary bud formation in rosette leaf axils of populations transformed with constructs shown 
above, grown for 6 weeks in sd before shift to ld. Every column represents one plant, every box 
one rosette leaf axil starting from youngest (top) to oldest. Green indicates an axillary bud, yellow 
an empty leaf axil.  
 

pBR43 carries a PI promoter fragment of 600 bp (Fig. 9A), which was shown to promote 

expression in flower primordia (Honma and Goto, 2000), but not in inflorescence 

meristems (Fig. 12C). In combination with the LAS 3’ regions it activates the LAS gene 

sufficiently to confer full complementation, as the population shown in Fig. 9B was 

indistinguishable from wild-type plants.  

pBR41 is merely equipped with a 90 bp 35S minimal promoter (Benfey et al., 1989, 

Honma and Goto 2000) and also led to almost complete complementation, with plants 
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showing only mild defects in AM initiation. This demonstrates that no specific promoter 

elements are required in front of the TSS of the LAS gene, as long as the shown 3’ 

sequences are present. The lack of side shoots seemed to be most pronounced in the middle 

of the rosette, whereas other promoter lines showing partial complementation tended to 

exhibit most empty axils in the oldest rosette leaves. This suggests a zonal variation in the 

activity of the -90 35S promoter, which is supported by a third analyzed pBR41 line grown 

at a later time point. Complementation was only partial but restricted to the lower rosette 

(data not shown).  

The mostly complete complementations elicited by pBR43 and pBR41 constructs are 

contrasted by the lines transformed with the constructs pBR42 and pBR44, which are 

lacking a long 3’ region. Plants carrying these constructs phenocopy las mutants, 

confirming that the LAS 3’ regulatory sequences are essential for correct expression of 

LAS.  

 

The pBR37 plasmid, carrying 820 bp 5’ and 3547 bp 3’ sequences, was designed as a 

positive control in the vector used for all constructs during this work and resembles a 

promoter assembly previously shown to confer complementation (Fig. 10). Accordingly 

plants transformed with pBR37 were indistinguishable from wild-type plants.  

The pBR38 construct has an 83 bp deletion of the complete 3’ region A starting from 2055 

bp after the stop codon. Complementation ability of theses constructs is unaffected, as 

pBR38 plants shown in Fig. 10 did not differ significantly in phenotype from those 

carrying the pBR37 construct.  

 

pBR39 contains 3239 bp of 3’sequences, thus carrying a complete 3’region B. That means 

it is 106 bp longer than the non-complementing construct pAE84, in which half the 3’ 

region B is missing. Hence, complementation ability should be reconstituted if region B is 

the crucial element. Contrasting this expectation, Fig. 10 illustrates that pBR39 amends the 

las phenotype no more than pAE84 (Fig. 3), thereby narrowing down the location of the 

essential element required for promoter function to the region between 3239 bp and 3547 

bp.  
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Figure 10. LAS promoter deletion analysis investigating specific regions. 

A, Schematic diagram of the constructs analyzed. LAS ORF depicted in blue, UTRs in light blue, 
promoter regions A and B in yellow.  
B, axillary bud formation in rosette leaf axils of populations transformed with constructs shown 
above, grown for 6 weeks in sd before shift to ld. Every column represents one plant, every box 
one rosette leaf axil starting from youngest (top) to oldest. Green indicates an axillary bud, yellow 
an empty leaf axil.  
 

pBR49 led to a full restoration of the wild-type phenotype, which demonstrates that the 3’ 

region is functional independent of location and orientation in respect to the LAS ORF 

(Fig. 10). This also demonstrates that the missing 3’ sequences from bp 483 to 1827 do not 

contain any motifs of fundamental importance for promoter function.  
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3.1.5. Visualization of promoter activities by GUS stainin gs 

The various modifications of the LAS promoter led to altered gene expressions, resulting in 

the different degrees of complementation described above. To visualize the exact 

expression patterns leading to the various states of functionality of the LAS gene, different 

promoter assemblies were combined with the GUS reporter gene.  

pES44 contains ample LAS promoter areas of over 4 kb upstream and nearly as much 

downstream of the reporter gene (Fig. 11). As shown in Fig. 12A, all other GUS constructs 

represent the promoter assemblies previously examined for complementation, depicted in 

Fig. 9 and Fig. 10. In every construct the GUS ORF is combined with the LAS UTRs to 

yield the identical expression pattern, as in the complementation experiments. Constructs 

pBR45 – 48 were analyzed in the las mutant background. For each of these constructs 

three to four independent lines were examined, some lines exhibited weaker signals but no 

deviating expression patterns.  

 

GUSGUS
3876

pES44

A

B

4029

wt las

 
Figure 11. LAS::GUS expression in wt and las plants. 

A, schematic representation of pES44 construct. GUS ORF in violet, LAS UTRs in light blue, 
conserved regions A and B in yellow. B, GUS signals in vegetative apices conferred by pES44 in 
wt and las mutant plants. Bars: 200µm.  
 

In plants transformed with the pES44construct, which contains large promoter regions, 

GUS signals appeared in the axils of leaves (Fig. 11A and B). The pattern resembled that 

determined by RNA in situ hybridization shown in Fig. 1C. Signal strength appeared 

similar in wild-type and las, although previous in situ hybridization studies indicated 
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reduced mRNA levels in the las mutant (Greb, 2003). Quantitative cDNA analysis 

confirms that LAS/las mRNA levels do not differ significantly between mutant and wild-

type (see chapter 3.2.4.2).  

 

GUS signal conferred by pBR47 (Fig. 12F) showed the same pattern as observed in pES44 

plants or LAS RNA in situ hybridizations (Fig. 1). pBR47 contains all the LAS promoter 

regions shown to be sufficient for complementation (compare to pBR37, Fig. 10) and 

promotes expression in the axils of rosette leaves, cauline leaves, and flowers (Fig. 12F). 

Hence, the complementation that was shown using these promoter regions (Fig. 10) is 

associated with the endogenous LAS expression pattern. Fig. 12H and I depict two early 

flower primordia in stage 3-4 (Smyth et al., 1990). At this stage the earliest GUS signals in 

flowers started to appear in the axils of sepals. Later on during flower development 

expression is found in boundary regions separating all organs. This includes expression 

between sepals and petals and between carpels, which has not been reported before (Fig. 

12J).  

 

pBR45 plants, carrying the same 35S minimal 5’ promoter as the partially complementing 

pBR41 line, showed GUS signals similar to the endogenous LAS expression in the axils of 

leaves, flowers, and in flowers (Fig. 12K). Additionally GUS signals were detected in the 

outer cell layers of the hypocotyl, more intense in the zone between hypocotyl and rosette, 

and strongly enhanced around emerging lateral organs, probably adventitious roots (Fig. 

12O).  

 

The PI 5’ promoter in combination with the LAS 3’ sequences produced a GUS expression 

pattern composed of both activities. Fig. 12L and N illustrate the LAS-like expression in 

the axils of leaves and flowers as well as between floral organs, explaining the 

complementation ability of pBR43 (Fig. 9). Fig. 12N represents a stage 9 flower clearly 

illustrating the expression between sepals and petals. The early stage 3 flower primordium 

in Fig. 12M, however, displayed a strong signal, which did not appear in pBR47 plants 

shown in Fig. 12H, I. Interestingly this expression also did not completely resemble the 

previously published expression pattern caused by the inserted 600 bp PI promoter 

fragment (Honma and Goto, 2000; Fig. 12C), but instead appeared similar to the 

expression pattern caused by a 500 bp fragment of PI (Fig. 12D). During later stamen 

development the GUS expression did not remain activated, as in both the 600 bp and 500 
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bp PI promoter lines (Fig. 12E), but instead vanished from stamens as observed in pBR47 

plants.  

A
pBR47

GUSGUS

pBR48

pBR46

GUSGUS
3547

pBR45

GUSGUS
820 3547

region A

GUSGUS
820 3547

region B

3547

-90 35S

pPI (600 bp)

700 bp pPI

pBR47

pBR45

pBR47

pBR47

pBR45

pBR46

pBR47pBR48

pBR46

pBR46

F

B C D E

G

I

H J

K L M

N

O

600 bp pPI 500 bp pPI

 
Figure 12. GUS stainings of promoter deletion and p romoter swapping constructs. 

A, schematic representation of analyzed constructs. GUS ORF in violet, LAS UTRs in light blue, 
conserved regions A and B in yellow, -90 bp 35S minimal promoter in green, 600 bp PI promoter 
fragment in orange. 
C - E, GUS expression generated by different PI 5’ promoter fragments fused to the GUS gene. 
Pictures from Honma and Goto (2000), bars 100µm. F, H, I, J, GUS expression observed in pBR47 
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plants in the reproductive apex (F), two flower primordia (stage 3 – 4) beginning to show signals in 
the axils of sepals (H, I), and in a stage 6 flower (J). G, GUS signals in the reproductive apex of 
pBR48 plants. K, O, GUS expression generated by the pBR45 construct in a side shoot (K) and the 
hypocotyl (O). L, M, N, GUS signals conferred by pBR46 in the reproductive apex (L), early stage 3 
flower (M), stage 9-10 flower (N). Bars F, G, K, L, N 200µm; J 100 µm; H, I, M, 50µm; O 500µm. ld 
grown plants out of the T2 generation were treated with Basta and harvested at a time around the 
onset of flowering.  
 
 

The pBR48 plants (Fig. 12G) are lacking the promoter region A like pBR38 (Fig. 10). In 

line with the result that pBR39 plants complement the las phenotype, the GUS expression 

pattern was identical to the one observed in pBR47 plants, resembling the endogenous LAS 

expression.  

In summary, analysis of GUS lines revealed that all constructs harboring the LAS 3’ 

sequences can confer an expression pattern similar to the known LAS mRNA accumulation 

pattern. In each case GUS signals were observed in small domains in the axils of rosette 

and cauline leaves and floral primordia and between floral organs. Only the constructs 

harboring a minimal 35S promoter or a PI promoter fragment exhibited additional signals 

according to their own specificities.  

 

3.2. Part II: Characterization of a new player of axilla ry 

meristem formation  

In order to obtain a deeper understanding of AM initiation it is of major importance to 

discover more of the players involved in the genetic network controlling this process. An 

efficient technique to identify new factors is a genetic screen, searching mutagenized 

populations for mutants, in which side shoot development is perturbed. Following this 

strategy a screen, designed to identify modifiers of the las-4 phenotype, was set up as 

described by Oliver Clarenz (2004). las-4 mutant seeds were mutagenized with EMS and 

M2 populations analyzed for alterations of the las-4 phenotype. This led to the 

identification of numerous mutants named enhancers of lateral suppressor (eol), in which 

AM formation is compromised also in cauline leaf axils. This second-site mutagenesis 

screen is expected to produce mutants that act redundantly to las on the final process of 

AM initiation. An advantage of this las modifier screen is that it utilizes a background 

sensitized for AM formation defects. Therefore, it may also detect mutants that exhibit 

phenotypic deviations too weak to be spotted in a wild-type background.  
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3.2.1. The enhancer of lateral suppressor 5 (eol5) mutant 

The eol5 mutant was identified in the las-4 second-site mutagenesis screen, for its strong 

reduction in side shoot development (Clarenz, 2004). Under short day conditions the 

amount of buds formed in cauline leaf axils was strongly decreased, up to a complete loss 

of axillary shoot formation (Fig. 13A - C). However, no phenotypic deviations were 

observed under long day conditions. Only after four weeks of growth under short days and 

subsequent shift to long days an effect of the eol5 mutation becomes observable, reaching 

full penetrance after about six weeks in short days (Clarenz 2004). The phenotypic severity 

is not only dependant on day length but also on growth conditions and other factors, for 

details see chapter 3.2.3.3.  

 

During a detailed analysis of eol5 las plants, further phenotypic alterations were observed 

that had not been noticed in previous studies. The double mutant repeatedly exhibited 

defects in inflorescence meristem function, leading to defective floral primordia and flower 

development in a zonal fashion along the stem, as illustrated in Fig. 13A. Less pronounced 

defects led to malformed and infertile flowers, at other times floral primordia only 

produced reduced structures or appeared to be missing altogether (Fig. 13F and G).  

Defective SAM function also manifested in a complete termination of meristem activity 

(Fig. 13I). When grown under short day conditions eol5 las plants showed these meristem 

arrests at varying frequencies. While in some populations up to 75 % of plants terminated, 

this effect was not noticed at other times. Meristem arrests were never observed in parallel 

grown las plants. Termination occurred at a later stage of growth after bolting in short day 

conditions. This is clearly distinguishable from the normal halt of growth at the end of a 

plants life cycle, which takes place at a later time point, with some flowers arrested at 

different developmental stages remaining on the apex.  
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Figure 13. Phenotype of eol5 las double mutants. 

A, growth habit of wt and eol5 las plants grown in sd. B to E, cauline leaf axils showing lateral 
shoot (B) as observed in wt or las plants, empty leaf axil (D) as seen in eol5 las plants, flower (D), 
and leaf (E) emerging from a leaf axil. White arrows point to affected axils. F and G, zones of 
defective floral primordia development, observed in eol5 las plants, at an earlier (F) and later (G) 
stage, leading to infertile flowers and barren stem segments. H, wt inflorescence with flower truss. 
I, terminated eol5 las inflorescence. J and K, sections of late wt (J) and terminated eol5 las (K) 
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inflorescence apices, harvested at same time point. Bars 100 µm. L and M, fusions of rosette 
leaves in eol5 las plants. Rosettes are shown from below, the root and the lowest rosette leaves 
have been removed. Black arrows indicate fusions.  
 
The terminal structures in eol5 las apices which ceased growth, ranged from fully 

developed flowers to reduced flowers, minute leaves, or pin like structures (Fig. 13I). 

Sections shown in Fig. 13J and K illustrate the cellular morphology of wild-type and 

terminated eol5 las inflorescences. Wild-type apices, measuring 40 to 80 µm in diameter, 

displayed floral primordia of different developmental stages and small meristematic cells 

in their expected positions. Terminated eol5 las shoot tips, on the other hand, ended growth 

with enlarged apices of 150 to 300 µm and mostly lacked small undifferentiated cells. 

Additionally, shoot tips are completely devoid of recognizable flower primordia, instead 

malformed structures, often made up of differentiated cells, were found adjacent to the 

termination site. The loss of meristematic identity indicates a role of EOL5, possibly in 

redundancy with LAS, in the maintenance of the main meristem.  

 

The uppermost cauline leaves of eol5 las plants commonly harbored flowers instead of 

side shoots in their axils (Fig. 13D), occasionally leaves or other reduced structures (Fig. 

13E). Formation of flowers in cauline leaf axils also occurs in las single mutants but less 

frequently, as can be seen e.g. in Fig. 23.   

 

In addition, eol5 las mutant plants displayed fusions of rosette leaves as depicted in Fig. 

13L and M. The observed fusions merged the base of rosette leaves and occurred in the 

lower part of the rosette in almost all double mutants, whereas this was virtually never 

observed between pairs of leaves in las plants. In plants grown in short days at two 

different time points an average of 6.7 ± 4.3 (n = 11+4) leaves per plant were involved in 

such fusions. Under long day conditions this phenotype was also observable but less 

pronounced. 50 % of the plants exhibited fusions, with 3.0 ± 1.0 (n = 10) leaves involved. 

This signifies that EOL5, together with LAS, is also involved in organ separation.  
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3.2.2. Positional cloning of eol5 

3.2.2.1. Rough mapping of eol5: problems and solutions 

In order to identify the mutation causing the eol5 phenotype a map based cloning strategy 

was adopted, as described in chapter 2.2.14. The eol5 las double mutant was crossed to the 

Landsberg erecta (Ler) accession, to be able to utilize the number of known 

polymorphisms between Col and Ler. For rough mapping of the eol5 locus, the F2 

population was phenotyped and genotyped, as reported by Schulze (2007). 

 

The phenotyping proved to be the challenging element of the mapping process, since the 

F2 population did not show the segregation ratio of a recessive mutation. Apart from the 

expected phenotypes, many plants with intermediate levels of bud formation were 

observed, a problem persisting throughout the whole mapping effort. Nevertheless, rough 

mapping was carried out, genotyping those plants showing a strong eol5 las double mutant 

phenotype (Schulze, 2007). The analysis revealed a considerable increase in the Col allele 

frequency on chromosome II and a less pronounced one on chromosome V. This indicated 

that the eol5 locus is situated most likely on the lower arm of chromosome II.  

Segregation of las-4 modifiers from the Ler background and their interaction with Col 

factors were assumed to be the main reason for the distorted segregation ratios and the 

appearance of intermediate phenotypes. Recent results suggest that also the penetrance of 

the mutant phenotype and environmental factors play a substantial role (see chapter 

3.2.3.3). To facilitate fine mapping, a mapping population exhibiting an unambiguous 

segregation ratio in a homozygous las mutant background is required. For this purpose, a 

backcross strategy was applied, mainly to reduce the amount of Ler alleles in the 

background (Schulze 2007). A heterozygous F2 plant was backcrossed twice to the eol5 

las mutant while retaining a Ler allele at the EOL5 locus. The F2 population of the second 

backcross (BC2F2) was used in this work to verify the rough mapping results and to 

initiate fine mapping. At later stages subsequent generations down to BC2F5 were utilized, 

as background segregation is reduced in these lines. 
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3.2.2.2. Fine mapping of eol5 

Analysis of different BC2F2 populations showed that the problems with segregation ratios 

were all but solved by the conducted backcrosses. Fig. 14C and D illustrate phenotypes 

obtained from two exemplary mapping populations segregating for eol5 in a homozygous 

las background. Many plants could not be classified as either eol5 las nor as las based on 

bud formation in cauline leaf axils, whereas control populations shown in Fig. 14A and B 

formed distinct groups. The population in Fig. 14C contained the expected number of eol5 

las mutants but lacked the anticipated ¾ of las looking plants, whereas another population 

(Fig. 14D) produced many plants with las phenotype but no strong eol5 las mutants. 

Genotypic analysis of two markers, later on shown to enclose the eol5 locus, revealed that 

the eol5 las phenotype co-segregates to a large degree with the homozygous Col genotype, 

as indicated in Fig. 14C and D below the graphs. This verifies the rough mapping result, 

proving that the eol5 locus is situated in this region of chromosome II.  
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Figure 14. Axillary bud formation phenotypes of con trol and exemplary mapping 

populations.  

A-D, axillary bud formation in cauline leaf axils presented as percentage of cauline leaf axils that 
support bud formation. X-axis shows the number of analyzed plants, every column representing 
one plant, ordered by percentage of bud formation. A, B, homozygous las (A) and eol5 las (B) 
control populations. C, D, two exemplary BC2F3 mapping populations. Below graphs genotypes of 
the respective plant above is stated for the markers MASC07353 and MASC02866. Red: 
homozygous Ler, yellow: heterozygous, blue: homozygous Col.  
 
Yet numerous plants did not exhibit the phenotype that could be deduced from their 

genotype, some showing more, others less axillary buds. The first population (Fig. 14C) 

hints towards a dosage effect of EOL5, as mostly heterozygous plants display intermediate 

phenotypes but the population in Fig. 14D does not substantiate this idea. Indications for a 
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dosage effect were already reported earlier (Clarenz, 2004). Looking at many populations 

evidence for such an effect was found on multiple occasions but it never appeared to be 

reliably reproducible.  

The variability of the phenotype poses a big challenge to fine mapping, which usually 

relies on the correct phenotyping of single plants. Consequently first fine mapping attempts 

yielded contradictory results. Plants harboring recombination breakpoints in the area of 

interest, between the markers MASC07353 and MASC02866, were phenotyped and 

genotyped, resulting in information on which side of the recombination event the mutation 

is located. Since classifying single plants as either wild-type or mutant, based on their 

phenotype, is largely prone to errors, as seen in Fig. 14C and D, the directional information 

produced extensive contradictions. Due to this problem the strategy was modified in a way 

that offspring populations of interesting recombinants were analyzed, to deduce the 

parental genotype regarding the eol5 mutation. Between 12 and 32 plants per population 

were analyzed, if possible utilizing later generations down to BC2F5 populations, to 

diminish the amount of segregating modifiers in the background. Following this strategy 

numerous offspring populations of recombinants were examined with a range of new 

markers, resulting in the positional information shown in Tab. 3 and Fig. 15.  

 

Contradictions could not be eliminated, but reduced, pointing to a region between marker 

MASC02463 and MASC445742, which are most likely to enclose the mutation causing the 

eol5 phenotype (Tab. 3). Remaining contradictions arose from two lines (080455 and 

080462), pointing towards an eol5 locus left of marker MASC02463, dissented by the 

positional information obtained from nine lines (080438 to 080057, Tab. 3). On the right 

side, only one line (080057) indicated that the mutation is right of the marker 

MASC445742, a position that is in disagreement with nine other lines (080047 to 080462). 

In between these two markers further contradictions could not be reliably resolved, so that 

a region of 256 kb, containing 64 annotated genes (Fig. 15), was taken into consideration 

to contain the eol5 locus.  
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Table 3. Positional information about the location of the eol5 locus obtained from fine 

mapping populations. 

Analysis of markers in the chromosomal region investigated by fine mapping. Every row represents 
one plant, carrying a recombination in the region of interest, whose offspring populations have 
been examined for co-segregation of the eol5 phenotype with shown segregating genetic markers.  
Genotype at the respective markers is depicted by color. Turquoise = Col, yellow = heterozygous 
and orange = Ler, boxed genotypes have been determined by PCR, others inferred from 
neighboring markers.  
The results shown in the second row denote, whether the offspring populations of this plant 
showed co-segregation of the eol5 las phenotype with the markers segregating in those 
populations. Derived from this information arrows are drawn pointing towards the expected location 
of causative mutation. As described above and in chapter 3.2.3.3, a plant’s phenotype did not 
always reflect the genotype at the eol5 locus, thus, difficulties arose judging co-segregation in 
offspring populations. Strength of arrow indicates confidence in the stated decision on co-
segregation.  
 

co-segregation 
of phenotype 
with 
segregating 
marker

Line No. MASC 
07353

cer
44613B

MASC 
03021

cer
44411B

cer
44411A

MASC 
02463

MASC 
02627

eol5 
SNP

cer
429971

cer
429966

cer
445734

cer
445742

MASC 
02866

MASC 
02949

marker 
identifier

9.571.370 9.703.420 9.907.469 9.922.301 9.940.501 9.958.101 10.068.141 10.098.401 10.102.503 10.134.530 10.175.400 10.214.310 10.291.250 10.940.330 position on 
chromosome II

080039 yes
080040 yes
080041 no
080048 yes
080049 no
080469 yes
080463 no 
080457 yes
080461 no 
080465 no 
080435 no 
080505 no 
080511 no 
080507 no 
080438 no 
080508 no 
080437 no
080506 yes
080514 no
080869 yes
080454 no
080690 no
080057 no
080053 yes
080459 no
080436 no
080440 yes 
080509 yes
080866 yes
080047 no
080512 no
080689 yes
080865 no
080867 no
080868 yes
080056 no
080455 no
080462 yes

co-segregation 
of phenotype 
with 
segregating 
marker

Line No. MASC 
07353

cer
44613B

MASC 
03021

cer
44411B

cer
44411A

MASC 
02463

MASC 
02627

eol5 
SNP

cer
429971

cer
429966

cer
445734

cer
445742

MASC 
02866

MASC 
02949

marker 
identifier

9.571.370 9.703.420 9.907.469 9.922.301 9.940.501 9.958.101 10.068.141 10.098.401 10.102.503 10.134.530 10.175.400 10.214.310 10.291.250 10.940.330 position on 
chromosome II

080039 yes
080040 yes
080041 no
080048 yes
080049 no
080469 yes
080463 no 
080457 yes
080461 no 
080465 no 
080435 no 
080505 no 
080511 no 
080507 no 
080438 no 
080508 no 
080437 no
080506 yes
080514 no
080869 yes
080454 no
080690 no
080057 no
080053 yes
080459 no
080436 no
080440 yes 
080509 yes
080866 yes
080047 no
080512 no
080689 yes
080865 no
080867 no
080868 yes
080056 no
080455 no
080462 yes  

 

Within this region the ORFs of 39 candidate genes were sequenced, obtaining ≥ 70 kb of 

sequence information. While the las parent line showed no polymorphism to the sequence 

available at the TAIR database, only one single mutation could be detected by sequencing 

the eol5 las double mutant. The single identified mutation is a G to A exchange in the gene 

at2g23740. According to the TAIR gene annotation the nucleotide exchange locates to the 

second exon and leads to a premature stop codon after AA 62, as illustrated in Fig. 16B.  
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Figure 15. Physical map of part of the lower arm of  chromosome II 

Physical map of the region of interest on chromosome II showing the positions of used markers. 
Parenthesis indicates the region in which the eol5 mutation is presumably located according to the 
fine mapping results.  
 

In 2007 Krichevsky et al., published their work on the gene at2g23740 naming it CZS, due 

to the conserved C2H2 zinc finger and SET domains. CZS presumably encodes a histone 

methyltransferase, a class of proteins involved in epigenetic control of chromatin state by 

the methylation of lysine residues of histones. The structure of the gene is shown in Fig. 

16A and C, exhibiting homologies to four known protein domains. Next to three C2H2 

zinc finger domains there is an N-terminal combination of a PreSET domain, a SET 

domain, and a PostSET domain, known to confer histone methyltransferase activity 

(Baumbusch et al., 2001).  

CZS is described to be a negative transcriptional regulator, physically interacting with 

SWP1, a SWIRM PAO domain protein (Krichevsky et al, 2007). The T-DNA insertion 

allele czs-1 shows a moderate delay in flowering time and a corresponding upregulation of 

FLC, accompanied by a decrease in H3K9 and H3K27 dimethylation of the FLC locus. As 

yet no reports indicate a role in meristem initiation or maintenance, nor is there an obvious 

connection to the described CZS function.  
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Figure 16. Gene structure of CZS.  

A, intron-exon structure of CZS, ORF depicted in blue, UTRs in light blue, spaces in between 
indicate introns. Arrowheads point out positions of czs-1 and czs-2 T-DNA insertions in mutant 
alleles, arrow indicates position of SNP in eol5 allele. B, close up of sequence containing SNP 
detected in eol5 las plants. Nucleotide change highlighted in yellow, AA change leading to 
premature Stop codon at AA 63 boxed in red. C, protein sequence showing known protein 
domains, as predicted by SMART software tool.  
 

3.2.2.3. Annotation of CZS  

Krichevsky et al., (2007) published a cDNA sequence for CZS (GenBank accession 

number DQ104398), which deviates from the TAIR annotation in a way that a later start 

codon is suggested, leading to an 804 nt shorter ORF (Fig. 17A).  

This reported ORF poses a problem to the fine mapping result of eol5 (chapter 3.2.2.2), 

because, according to this published sequence, the identified mutation would in fact not be 

in the ORF. Instead, it would locate, including the denoted introns, 1124 bp in front of the 

start codon (Fig. 17A). In such a position a mutation would most likely not cause a serious 

constraint to the function of CZS, hence, not explain the eol5 phenotype.  

 

In order to provide evidence supporting the TAIR annotation, an alignment of CZS to 

several mRNA derived sequences is shown in Fig. 17. Fig. 17D displays aligned ESTs 

from the TAIR data base. As ESTs are usually obtained by single Sanger sequencing reads 

from the ends of cDNAs, they only cover the 5’ and 3’ parts of CZS, due to the large size 

of the mRNA. Nevertheless, the alignment confirms most of the annotated intron-exon 
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structure and attests that the 5’ end of the TAIR annotated mRNA is transcribed. 

Sequencing reads from the high throughput transcriptome sequencing (Lister et al., 2008) 

are aligned in Fig. 17E, also supporting the TAIR annotation. Transcript traces cover the 

whole gene, confirming transcription and intron-exon structure within the limits of the 

short read lengths.  

 

D

E

B

A
cDNA PCR sequence

TAIR annotation
cDNA sequence

published start codonATG Stop

C

 
Figure 17. CZS gene aligned to RNA derived sequences. 

A, CZS Gene structure, ORF in blue, UTRs in light blue. B, Alignment of sequenced PCR products 
obtained from cDNA with one primer pair. C, alignment showing close-up of a 21 bp disagreement 
found between TAIR annotation and cDNA sequencing. D, Alignment of EST sequences and E, 
reads of high throughput transcriptome sequencing (Lister et al., 2008). Selection of sequences 
and alignment in D and E performed by GBrowse (TAIR). 
 

In order to obtain cDNA sequence information of the complete 5’ part of the gene, PCR 

products were amplified from a cDNA library using gene specific primers and 

subsequently sequenced. The alignment of some of the obtained sequences is shown in Fig. 
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17B, verifying that this part of the gene is transcribed. However minor deviations from the 

expected intron-exon structure were identified. Sequencing showed that the large exon 6 

starts 21 bp earlier than annotated by TAIR, a region of the sequence that was not covered 

by EST data. Furthermore the first intron is frequently part of the extracted mRNA, as was 

already indicated by some EST reads, giving evidence for alternative splicing variants. As 

this intron lies in front of the start codon, its presence or absence does not affect the ORF. 

In summary all RNA derived sequences confirm the CZS mRNA sequence annotated by 

TAIR with the exception of the intron 5 – exon 6 border position.. 

 
Having shown that the CZS mRNA is indeed completely formed as annotated by TAIR, a 

protein alignment with homologous proteins from different species was generated to check 

for protein sequence conservation. Homologies at AA level provide evidence that this 

sequence is also translated. BLAST algorithms on databases NCBI, JGI, EMBL EBI, 

PlantGDB, etc., were used to find sequences homologous to the CZS protein sequence. 

Complete genomic sequences could be obtained from papaya, poplar lotus, grape vine, 

rice, Brachypodium dystachion and Physcomitrella, all, apart from Physcomitrella, 

showing the identical intron-exon structure. Additionally, mRNA sequences could be 

obtained for Ricinus communis and maize. 

 

The alignment presented in Fig. 18 shows strong homologies between all sequences. 

Numerous domains, distributed along the whole protein, are well conserved, with most 

identities found near the N- and C-termini of the gene. The conservations also extend to the 

monocot species and even the distantly related Physcomitrella ortholog shares various 

domains with Arabidopsis CZS, even though it is clearly the least homologous sequence. 

The domain structure of CZS is unique in Arabidopsis (Baumbusch et al., 2001) and the 

protein seems to be plant specific. As illustrated in Fig. 16C, the highly conserved SET 

domains are localized at the C-terminus explaining the high conservation at the end of the 

gene. The conserved domain near the N-terminus (Fig. 18, AA 290 to 350) has not been 

described yet, but constitutes one of the most conserved motifs, showing strong 

homologies also in Physcomitrella.  
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Figure 18. Protein sequence alignment of CZS orthologs. 

CZS homologous sequences from various species were aligned by Bioinformatics Toolkit using 
MUSCLE algorithm (Edgar, 2004). Papaya sequence is missing the coding exon 4, poplar and 
papaya are missing the N-terminal ends due to incomplete sequencing effort. Protein start codons 
were often not known and have been inferred from alignments with AtCZS or OsCZS. At: 
Arabidopsis, Cp: Carica papaya, Pt: Populus trichocarpa (poplar), Lj: Lotus japonicus, Rc: Ricinus 
communis, Vv: Vitis vinifera (grape vine), Bd: Brachypodium dystachion, Zm: Zea mays, Os: Oryza 
sativa, Pp: Physcomitrella patens.  
 

The strongly conserved domain near the N-terminus (Fig. 18, AA 290 to 350) is encoded 

on exon 2 and 3, thus not part of the ORF annotation published by Krichevsky et al., 

(2007). High conservation on protein sequence level provides a strong indication that this 

region is not only transcribed but also translated. Together with the data obtained from the 

alignments of mRNA derived sequences this provides proof that the mutation found in eol5 

plants causes a nonsense codon near the start of the CZS ORF. Alignment analysis and 

cDNA sequencing resulted in a modified annotation of the CZS gene, comprising an ORF 

of 4149 nt, leading to a protein of 1383 AA.  

 



Results 

64 

3.2.2.4. Confirmation of mapping results 

In order to confirm that EOL5 is allelic to CZS a complementation experiment was carried 

out. Krichevsky et al (2007) described that complementation of the czs-1 flowering 

phenotype was accomplished using a native promoter with 235 bp upstream and 119 bp 

downstream sequences, measured from 5’ and 3’ ends of the TAIR annotated mRNA, 

respectively.  

A construct, containing the CZS gene including 1502 bp upstream and 286 bp downstream 

sequences (pCZS::CZS) was cloned and tested for complementation. eol5 las double 

mutants were transformed with this construct and the T1 population phenotypically 

analyzed after selecting for transformants with Basta. As a control, a population of the 

same seed batch was evaluated, which was not treated with Basta, and therefore is very 

unlikely to contain transgenic plants.  
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Figure 19. Complementation of eol5 with  pCZS::CZS 

Phenotypic analysis of cauline leaf axils of eol5 las double mutant populations without (A) and with 
(B) complementing pCZS::CZS construct. Populations are grown from T1 seeds 7 weeks in sd 
before shift to ld. A, untreated, hence unlikely to be transgenic. B, sprayed with Basta to select 
primary transformants. Each column represents one plant, every box one cauline leaf axil from 
youngest (top) to oldest (bottom). Green indicates an axillary bud, yellow an empty leaf axil, light 
green the following intermediate axillary structures: F: flower in axil, L: leaf in axil, LbF: tiny leaf 
between flowers.  
 
The population selected for the presence of the pCZS::CZS construct was able to form 

significantly more side shoots in the cauline leaf axils than the control plants (Fig. 19). 

While only one plant completely resembled the described las phenotype, exhibiting no AM 

initiation defects in the cauline leaf axils, most plants displayed various empty leaf axils, 

indicating a partial complementation. Whether this is due to a partial activity of the 
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pCZS::CZS construct (caused by insufficient regulatory sequences or silencing effects), or 

merely a result of unusual growth conditions (Basta spraying, different tray type) can not 

be resolved here, as no las controls were grown in parallel. In comparison to other sowings 

a remarkably large proportion of axils was bearing abnormal structures (mostly flowers), 

pointing towards unusual growth conditions. In summary, complementation showed that 

the histone methyltransferase CZS is involved in the process of AM formation.  

 

Another strategy to prove that a certain mutation is responsible for an observed aberration 

of phenotype is to examine different mutant alleles. Therefore, other CZS alleles in the las 

background were sought after. During the initial las second-site mutagenesis screen more 

than 30 eol mutant lines were selected (Clarenz, 2004). To check whether any of these are 

allelic to eol5, all available lines were sown and the CZS locus sequenced. Data for 21 eol 

lines could be obtained, but no mutations in CZS were found, indicating that other genes 

are affected in these mutant lines. An allelism test in order to analyze czs-1/eol5 plants in 

the las background has been initiated, the analysis of single mutants is described in the 

following chapter.  

3.2.3. Characterization of eol5 

3.2.3.1. Analysis eol5 single mutant alleles 

eol5 was so far only reported to cause phenotypic deviations from the wild-type in a 

double mutant combination with las (Clarenz, 2004; Schulze, 2007). To determine, 

whether the eol5 mutation alone causes any phenotypic abnormalities, eol5 las plants were 

crossed to the wild-type and F2 populations were examined in detail. Phenotypic analysis 

of backcross populations, as shown in Fig. 20, demonstrated that plants homozygous only 

for eol5 displayed a novel degree of bud formation, whereas wild-type plants and the las 

single and double mutants exhibited the previously described phenotypes. All eol5 plants 

showed a significant defect in AM formation, revealing a distinguishable eol5 single 

mutant phenotype. The reduction in the number of axillary buds varied in magnitude with 

different sowings. Defects seen in Fig. 20 are less pronounced than e.g. in Fig. 21 or Fig. 

31, where even some cauline leaf axils are affected. The phenotype of eol5 heterozygous 
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plants, on the other hand, always appeared indistinguishable from the wild-type, as can be 

seen in Fig. 20 as well as in other backcross populations (data not shown).  

Subsequent analysis of lines homozygous for the T-DNA insertion alleles czs-1 and czs-2 

also revealed axillary bud formation defects, albeit less pronounced. Fig. 21 illustrates a 

mild increase in the number of barren axils compared to the wild-type, found in the lower 

rosette in both czs-1 and czs-2 plants. The extent of AM initiation defects again differed 

between sowings, with T-DNA insertion lines shown in Fig. 30B or Fig. 31B displaying 

stronger phenotypic deviations. In all cases the eol5 mutant plants exhibited more 

extensive defects than czs-1 and czs-2 plants, indicating that CZS function is not 

completely lost in these alleles. Nevertheless, the same process is affected in all mutants, 

adding further proof that CZS is allelic to EOL5. 

 

 

 

Figure 20. Phenotypic analysis of the F3 

generation of an eol5 las X wt backcross 

population.  

Analysis of axillary bud formation in an eol5 las 
X wt F3 population, segregating for las and 
eol5. Four combinations of genotypes are 
grouped, as indicated above. Plants were 
grown in sd for 7 weeks, before shift to ld. Each 
column represents one plant, every box one 
leaf axil from youngest (top) to oldest. Green 
indicates an axillary bud, yellow an empty leaf 
axil, light green: flower in axil. 
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Figure 21. Phenotypic analysis of the effects of di fferent czs mutant alleles  

Analysis of axillary bud formation of plants homozygous for the different czs mutant alleles czs-1, 
czs-2, and eol5, genotypes indicated above. Last two blocks depict F1 populations from eol5 las X 
czs-1 and eol5 las X czs-2 crosses.  
Plants were grown in sd for 7 weeks and subsequently shifted to ld. Each column represents one 
plant, every box one leaf axil from youngest (top) to oldest. Green indicates an axillary bud, yellow 
an empty leaf axil, light green the following intermediate structures: F: flower in axil, L: leaf in axil, 
m: meristem.  
 
Having identified a distinct phenotype of eol5 single mutants, an allelism test could be 

carried out to confirm that EOL5 is allelic to CZS, without having to wait for double 

mutant generation. For this purpose, F1 plants of eol5 las double mutants crossed to czs-1 

or czs-2 plants were analyzed. If both, eol5 and czs mutations, lead to a loss of function of 

the same gene, the F1 generation should exhibit the same phenotype as the parents. F1 

populations of crosses of eol5 las to czs-1 and csz-2 are defective in AM formation, 

confirming the allelism of CZS and EOL5 (Fig. 21). Their phenotypes resemble that of the 

T-DNA insertion lines, and are clearly discernable from eol5 plants. Similarly, mild 

phenotypic deviations in such F1 populations have been observed in two other growings 
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(data not shown). Hence, the czs-1 and czs-2 alleles appear to have a dominant effect over 

eol5.  

 
The analysis of czs single mutants in long day conditions revealed that AM formation is 

also affected in this light regime. Phenotypic deviations appear weaker than in short days, 

but clearly distinguishable from the wild-type, with the strongest defects observed in eol5 

plants and the mildest in czs-1 plants (Fig. 22). Disregarding cotyledon axils, which are 

virtually always empty, wild-type exhibited an average of 0.7 ± 1.1 empty leaf axils in the 

rosette and the mutant alleles czs-1 2.8 ± 1.1, czs-2 5.1 ± 1.4, and eol5 6.8 ± 2.0. The 

enhancement of the las phenotype by eol5 in long day conditions was minimal. las plants 

still formed 2.3 ± 0.7 buds in the rosette, eol5 las 1.6 ± 0.7 buds (Fig. 22), explaining why 

no phenotypic effect has so far been reported in long days. Furthermore, all czs mutants 

developed more rosette and cauline leaves than the respective wild-type or las populations 

(Fig. 22), the effect on flowering time is described in detail in the following chapter 

3.2.3.2.  
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Figure 22. Analysis of different czs mutants under ld conditions. 

Phenotypic analysis of axillary bud formation of indicated genotypes in ld conditions. Each column 
represents one plant, every box one cauline leaf axil from youngest (top) to oldest. Green indicates 
an axillary bud, yellow an empty leaf axil, c: cotyledon axil.  
 

3.2.3.2. eol5 affects flowering time control 

To investigate whether eol5 plants deviate from the wild-type in flowering time, mutants 

and control plants were grown in short day and long day conditions. Krichevsky et al. 

(2007) reported a moderate delay of flowering in the czs-1 mutants and a corresponding 

upregulation of FLC. Recent work suggests that in Arabidopsis flowering time and side 
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shoot development defects are to some degree associated, with later flowering plants 

having stronger defects, possibly linked to the FLC locus (X. Huang, B. Schäfer, personal 

communications).  

 

To assess the flowering time effect of eol5 under long day conditions, wild-type and las 

control populations were compared to czs-1, czs-2, eol5, and eol5 las double mutant plants. 

As shown in Fig. 23A a mutation in the CZS gene causes a delay in flowering of 3 - 4 days 

in all cases, while the las loss-of-function allele does not have an effect on flowering time. 

The flowering time delay corresponds to the number of formed leaves, illustrated in Fig. 23 

B. All czs mutant lines produced 2-3 rosette leaves more than the respective control plants, 

whereas the eol5 allele seemed to have a stronger effect than the czs-2 and czs-1 alleles. 

Interestingly, also the number of cauline leaves was slightly elevated in all czs mutants.  

 

Under short day conditions, however, eol5 does not have the same effect on floral 

induction. Two experiments were carried out to determine this, unfortunately both were 

flawed for different reasons. A first experiment, shown in Fig. 23C, compared different las 

and eol5 las lines. These data demonstrated, that the three double mutant lines flowered in 

fact earlier than the two las control populations. However, one las line formed less leaves 

than any double mutant or the other control plants. Even though this line did exhibit an odd 

growth habit and displayed unusually few leaves compared to the days to flowering, it 

cannot be definitely decided that the other las line represented the normal las growth habit.  

In another experiment a larger number of genotypes were compared. eol5 las plants were 

again the first to flower, but flowering times varied within these populations. Also some 

other populations displayed a high variability, the two wild-type populations e.g. exhibited 

extremely different behavior. A problem that occurred during the growth of these plants 

was that at a late stage plants suffered from growth inhibitions due to too much watering 

(Eddy et al., 2008), differing in extent between trays. This delimits comparability between 

lines and between groups within lines. Also flowering began 5 - 10 days later than in the 

first experiment (Fig. 23D). Another reason for the observed variation between lines of the 

same genotype may be that seed batches had not been harvested in parallel. Nevertheless, 

both experiments suggest that eol5 las plants are earlier flowering than las controls, hence, 

no indication was found that eol5 delays flowering in short days as it does in long days.  

Phenotypic analysis of cauline leaf bud formation in eol5 las plants showed mostly strong 

phenotypes in these populations (Fig. 23E, F). Apart from one outlier that also formed 
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many rosette buds (7th plant in Fig. 23E, population was not genotyped), plants producing 

more cauline leaf buds were to a higher proportion later flowering. This is a weak 

indication that a later or slower transition to flowering reduces the phenotypic effect of the 

eol5 mutation.  

 

 

 

eol5 las
F

F F L

F F F F

F - F - F - - - +

F F F - F F - - - - - +

F - + F F - L L - - + - - - + F

F - F + + + - + F - - - - - - - F - - + F +

F - + - - + - - L - - - - - - - F - - F - - - - +

F - - - - - + - - - - - - - - - F - + - - + - - - F +

- - - - - - + - - - - - - - - - - - + - - + - - - + +

- + - - - - + - - - - - - - - - - - - - - + - - - + +

- + - - - - + - - - - - - - - - - - + - - + - - - - -

- - - - - - + - - - - - - - - - + - + - - + - - - + +

- L - - - - + - - - - - - - - - - - - - - + + - - + -

- - - - - - + - - - - - - - - - - - - - - + - - + + +

- - - - - - + - - - - - - - - - + - - - - + - - - - -

- - - - - - + - - - - - - - - - - - - - - - - - - - -

- - - - - - + - - - - - - - - - - - + - - + - - - - +

E F
+ + + +

+ + + + F + + + +

+ F + + + + + + + + F + + + + + + + + +

+ + + + F + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ - + + + + + + + + + + + + + + + + + + + + + + + + + + - + + + + +

+ + + L + L + + L + - + + + + - + + + - - + + + + + + + - + + + + +

+ - + - + - + + - + - + + + + - + + - - - + + + + + + + - - + + + -

las

0

5

10

15

20

25

wt czs-1 czs-2 eol5 las eol5 las

le
av

es
 a

t f
lo

w
er

in
g

cauline leaves

rosette leaves

34

35

36

37

38

39

40

41

wt czs-1 czs-2 eol5 las eol5 las

da
ys

 to
 fl

ow
er

45

50

55

60

65

70

las las eol5 eol5 eol5

days to flower

leaves at flowering

0

10

20

30

40

50

60

70

80

90

100

55 60 65 70 75 80 85 90 95
days to flower

%
 o

f p
la

nt
s 

flo
w

er
in

g

eol5 las
eol5 las
las
las
czs-1
eol5  
wt
wt

B

D

A

C

 

Figure 23. Flowering time analysis of czs mutants under ld and sd conditions. 

A, days to flowering (median value) and B, leaf formation of populations grown in ld conditions. A, 
n= 14-16, B, n= 10. C, diagram showing days to flowering (blue) and rosette leaf number (plum) for 
two las lines and three eol5 las lines grown under sd.  
D, development of initiation of flowering in eight populations of indicated genotypes. eol5 and first 
wt line n = 10, all others n = 18 – 20.  
E, F, axillary bud formation in cauline leaf axils of eol5 las and las plants (same data set as in D), 
sorted by flowering times of depicted plants, from earliest (left) to latest. Each column represents 
one plant, every box one cauline leaf axil from youngest (top) to oldest. Green indicates an axillary 
bud, yellow an empty leaf axil, light green the following intermediate structures: F: flower in axil, L: 
leaf in axil.  
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3.2.3.3. Phenotypic variability of eol5 mutants 

Throughout the project analysis of eol5 plants was obstructed by the variability of the eol5 

phenotype. The penetrance of the eol5 las double mutants ranged from 100 to 0 % empty 

cauline leaf axils, depending on growth conditions, genetic background composition and 

other factors. Exemplarily two populations are shown in Fig. 24A and B, both homozygous 

for las and segregating for eol5 (BC2F2 of backcross to las). They originate from the same 

seed batch and were grown at the same time in Grobanks or Percival growth chambers, 

respectively. Both fail to show a complete penetrance of the mutant phenotype, but while 

in the first population only one homozygous mutant does not show the expected phenotype 

there are four in the second population, which also contains various plants with an 

intermediate phenotype. Plants grown in Percival growth chambers flowered about 3 

weeks later and generally displayed less pronounced alterations between mutant and wild-

type. This indicates that environmental conditions play a decisive role in the occurrence of 

developmental defects, the candidates for which being light quality and quantity, 

temperature, airflow, humidity, etc. 

Fig. 24C and D, and Fig. 24E and F, depict two mapping populations (BC2F4 of Ler 

cross), which have both been grown at two different time points each. Both segregate for 

eol5 as indicated by the marker shown below graphs. Branching defects of plants in Fig. 

24C appeared very weak during the first growth, while even non-mutants displayed 

intermediate phenotypes during second growth (Fig. 24D). In the populations in Fig. 24E 

and F the co-segregation of the segregating marker with the eol5 phenotype was not visible 

in the first population but was suggested by the second one. Variations in the extent of 

phenotypic deviations were also observed for eol5 and czs-1 single mutants. Differences 

can be observed for eol5 plants between Fig. 20 and 21 and for czs-1 plants between Fig. 

21 and 31. 

 

There appears to be no seasonal effect as there is no correlation between growing the 

plants in summer or winter and the magnitude AM defects. At some stage the soil or soil 

supplements were changed, causing severe growth problems to most plants. eol5 

populations grown during this time generally exhibited more severe eol5 phenotypes, but 

also more phenotypic variation. Thus a certain stress level might increase the extent of AM 

initiation defects. Overall, many different factors, both genetic and environmental, appear 

to influence the degree of phenotypic alterations observed in czs mutants.  
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Figure 24. Variability of eol5 las phenotypes observed at different sowings. 

A, B, phenotypic analysis of axillary bud formation in cauline leaf axils. Same seed batch of an eol5 
las X las backcross F2 population, grown at the same time in a Grobanks (A) or Percival (B) 
growth chamber under sd until flowering. Marker indicates genotype at CZS locus: homozygous 
eol5 mutation: yellow, heterozygous: light grey, wt: dark grey, white: not determined. 
C and D, BC2F4 mapping population (Ler cross) grown at two time points. Marker shown below co-
segregates with eol5 mutation in Col background. Homozygous Col: blue, heterozygous: yellow, 
homozygous Ler: red. E and F, additional BC2F4 mapping population (Ler cross) grown at two time 
points.  
 

3.2.4. CZS expression profile 

Most factors that play an important role in AM development or meristem maintenance 

have a very defined expression pattern that can be correlated with their function (Schmitz 

& Theres, 2005). SET domain proteins on the other side are generally expressed 

constitutively, even though there are also some examples of tissue specific expression 

(Springer et al., 2003, Venegas & Avramova, 2001).  
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To determine the expression profile of CZS, the relative amount of CZS transcript in 

different tissues was analyzed by real-time PCR. For this purpose RNA was extracted from 

different tissues of the plant and utilized for cDNA synthesis. The relative expression, 

determined by the standard curve method (Applied Biosystems, User Bulletin #2, 2001), 

was normalized with the parallel measured expression of 2PPA (Czechowski et al., 2005).  

As illustrated in Fig. 25 the relative expression of CZS did not differ strongly between the 

investigated tissues. Only in case of the root and the stem samples all biological replicates 

displayed a minor downregulation, with a less than two-fold expression change. Overall, 

no clear tissue specific CZS mRNA accumulation could be observed, indicating 

constitutive expression.  
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Figure 25. Expression profile of  CZS in different Arabidopsis tissues. 

CZS expression shown in arbitrary units. Results for 2-3 biological replicates are shown in one 
color for the following tissues: vpb: main body of the vegetative plant without leaves and root 
harvested after 6 weeks in sd, vl: adult vegetative leaf (~leaf 10) after 6 weeks sd, sil: first fully 
extended silique, st: part of the lower bolt between nodes, cl: cauline leaf, fl: open flower, inf: 
inflorescence including apex and all unopened flowers, ipb: main body of the plant without leaves 
and root harvested after 6 weeks sd + 1 week ld, root: complete root harvested after 6 weeks sd + 
1 week ld. Results are averages of 2 technical replicates, normalized with PP2A expression.  
 

3.2.4.1. CZS expression in mutant alleles 

To determine the amount of CZS mRNA in the different mutant alleles, the relative 

expression was determined by real-time PCR. For quantitative PCR analysis primer pairs 

are usually designed in the 3’ region of mRNA sequences to avoid problems arising from 

inconsistent cDNA synthesis. In this case also a primer pair in the 5’ end was utilized, to 



Results 

74 

measure mRNA quantities of different parts of the mRNA on either sides the of T-DNA 

insertions (Fig. 26A).  
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Figure 26. CZS mRNA expression in czs mutants. 

A, positions of utilized real-time PCR primers and polymorphisms on the CZS mRNA. ORF is 
depicted in blue, UTRs in light blue, gaps indicate introns, primers are shown as black bars.  
B, C CZS expression examined with 5’ primers (B) and 3’ primers (C), in up to three biological 
replicates of each genotype, displayed as LN2 fold change (1 = 200% expression, 2 = 400%, -1 = 
50%, etc.). Values determined by standard curve method, every value represents average of two 
technical replicates, normalized with PP2A expression. RNA extracted from seedlings (roots and 
leaves removed) grown sterile for 14 days in sd. 
 
The results obtained by amplifications with 5’ primers, shown in Fig. 26B, indicate an 

upregulation of CZS mRNA in the czs-2 mutants, as all three biological replicates show 

considerably elevated expression levels compared to all other samples. czs-2 samples, as 

all others, exhibit a substantial variation between biological replicates. This is probably due 

to minor deviations during the delicate synthesis of a 3800 nt cDNA. The first biological 

replicate of eol5 e.g. displays largely reduced cDNA levels in the 5’ end compared to the 

3’ end, which can only be explained with technical problems.  

Results obtained using 3’ primers are a lot more consistent between biological replicates. 

In czs-2 plants CZS mRNA appears downregulated, in agreement with the expected 

termination of transcription due to the T-DNA insertion. In contrast, czs-1 plants display 

elevated mRNA levels, even in comparison to the start of the transcript. This indicates a 

promoter activity from the transgene, causing a higher relative expression in the 3’ end in 

comparison to the 5’ end of the same gene. CZS mRNA production or stability does not 

appear to be affected in the eol5 mutants.  
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3.2.4.2. Expression analysis in eol5 mutants 

Histone methyltransferases are assumed to regulate chromatin state, and thereby gene 

expression of genomic regions. This leads to the question of the target genes that are 

regulated by CZS, and whose deregulation in czs mutants causes the observed phenotypes. 

Various players known to be involved in AM development were examined for histone 

methylations using the UCSC Genome Browser, which displays the results of genome-

wide ChIP chip experiments analyzing the distribution of various histone methylations. A 

large proportion of these genes were found to have methylated histones in their vicinity, as 

shown exemplarily for the me3H3K27 marks of LAS or RAX1 in Fig. 27.  

 

 

DRNL

RAX1

DRN

MIR164B

LAS

 
Figure 27. Traces of histone methylations on select ed genes 

Appearance of me3H3K27 histone marks shown as gray bars in a 5 kb window around selected 
genes, detected by ChIP chip analysis. Data taken from the UCSC Genome Browser 
(Bernatavichute et al., 2008). Green boxes indicate genes, arrows show direction of transcription. 
 

As CZS was reported to be a negative regulator of transcription, thus, its method of action 

could in the simplest form be the repression of a negative regulator of AM initiation, 

leading to defects of AM formation in the czs mutant. As a matter of fact there are only 

very few known negative regulators of AM initiation, namely the MIR171 genes, the 

MIR164 genes and possibly DORNRÖSCHEN (DRN) and DORNRÖSCHEN-LIKE 

(DRNL). The DRN overexpression allele drn-D leads to loss of SAM activity and defects 

in lateral bud formation (Kirch et al., 2003), and the drn drnl double mutant exhibited 

formation of accessory side shoots at a low frequency (data not shown). CLV genes also 

confer a negative regulation of meristems, but are not expressed near axillary meristem 



Results 

76 

initiation sites (Brand et al., 2002). MIR164B, DRN, and DRNL genes carry histone 

methylations according to the UCSC Genome Browser (Fig. 27), thus, represent targets for 

HMTs.  

 

To identify genes directly or indirectly regulated by CZS, the relative expression of 

numerous candidate genes was analyzed in wild-type and mutant plants by real-time PCR. 

Primers were designed, when possible spanning intron-exon borders, in the 3’ region of the 

mRNAs. The harvested adult tissue was the vegetative plant body without root or leaves 

after six weeks of growth in short days and one week induction in long days. At this time 

point the empty cauline leaf axils, observed in the eol5 las double mutant, are assumed to 

develop. Upon the discovery of a phenotype in the lower rosette of czs single mutants, 

another set of cDNAs was synthesized, using RNA harvested from two week short day 

grown seedlings, again after removal of leaves and roots.  

 

STM mRNA was analyzed as a first candidate because las stm double mutants were 

reported by Oliver Clarenz (2004) to have a leave fusion phenotype, reminiscent to that 

shown in Fig. 13L. However, no significant alterations in relative expression were found 

between wild-type and czs mutant seedlings (Fig. 28A). The same was observed in adult 

tissue (data not shown). RAX1 was considered a likely candidate, as the mutant phenotype 

was reported to be day length dependent, similar to the eol5 las phenotype. RAX1 

transcripts appeared mildly upregulated in most mutant samples (Fig. 28B). Biological 

replicates displayed some variability, hence, the observed expression increase averaging 

around 40 % may not be considered significant. In adult tissues no altered expression could 

be observed (data not shown). Fig. 28C similarly shows a mild downregulation of 

MIR164B in adult eol5 las mutants compared to las samples, overshadowed by a 

substantial variability between biological replicates. Analysis of seedling samples did not 

reveal any significant differential regulation of MIR164B transcript levels between eol5 las 

and las mutants (Fig. 28D).  

 

A clear effect could be observed for DRN. While mRNA abundance was two to four-fold 

reduced in adult eol5 las mutants, there were no major deviations between wild-type and 

las samples (Fig. 28E). DRNL transcript, on the other hand, was strongly reduced in las 

samples in comparison to wild-type, but only mildly further repressed in eol5 las double 
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mutants (Fig. 28F). Both, DRN and DRNL mRNA levels appeared unaffected by czs 

mutations in seedling samples (data not shown).  
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Figure 28. Real-time PCR analysis of candidate gene  expression in czs mutants. 

Relative expression of A. STM, B: RAX1, C-D MIR164B, E: DRN, F: DRNL, G-H: LAS. RNA was 
harvested from C, E, F, G: adult tissue (main body of the plant without leaves and root grown for 
six weeks in sd + 1 week in ld) or A, B, D, H: seedlings (roots and leaves removed, grown sterile 
for 14 days in sd). Expression values were determined by standard curve method, normalized by 
2PPA expression. Every value represents the average of two technical replicates.  
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To investigate a possible effect of czs mutations on the expression of LAS, mRNA levels 

were analyzed in adult and seedling tissue samples. No significant changes between las 

and eol5 las double mutants could be observed in either tissue (Fig. 28G and H). 

Comparing wild-type and las mutants no significant deviation in LAS transcript were noted 

in adult tissue. The minor upregulation of LAS compared to the wild-type in seedling 

samples does not exceed 40 % expression change and may not be considered significant. 

These data are in line with the GUS expression results shown in Fig. 11B, exhibiting 

similar LAS promoter activity (visualized by pES44 construct) in las and wild-type plants.  

 

The differential expression in czs mutants shown so far for DRN and less reliably for 

RAX1, MIR164B, and DNRL, does not serve to explain the czs mutant phenotype, as 

transcript abundances do not deviate in the right direction. The Citovsky group carried out 

a microarray experiment using 14 day old czs-1 seedlings (Krichevsky et al., 2007), of 

which the data were kindly provided. A list comprising 513 genes showing more than two-

fold expression changes was scanned for factors that may be involved in AM development, 

in order to select new candidates for real-time PCR analysis.  

 
Three genes were chosen to confirm of the microarray results: LBD25 (LOB DOMAIN-

CONTAINING PROTEIN 25, at3g27650), PP2C (PROTEIN PHOSPHATASE 2C, 

at3g51370), and ANAC83 (ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 83, 

at5g13180). Expression fold changes in czs-1 mutants were reported to be: LBD25 + 2.58, 

PP2C – 2.21, ANAC83 – 3.42. Real-time PCR analysis on seedling samples did not 

confirm these altered mRNA levels in czs-1 samples, nor did they reveal any significant 

deviations between the wild-type and czs-2 or eol5 alleles (Fig. 29A, B, C). LBD25 

transcript appeared mildly upregulated in czs-2 samples, but not consistently in all czs 

mutants. The lack of reproducibility may be due to differences in tissues and growth 

conditions, as the seedlings used for the microarray were grown in long days and harvested 

completely.  
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Figure 29. Real-time PCR analysis of genes indicate d to be misexpressed in czs mutants by 
microarray data.  

Relative expression of A: LBD25, B: PP2C, C: ANAC83, D and E: FLC between wt and czs mutant 
alleles, shown as LN2 fold change.  
RNA in was extracted from D: adult tissue (main body of the plant without leaves and root grown 
for six weeks in sd + 1 week in ld), or A, B, C, E: from seedlings (roots and leaves removed, grown 
sterile for 14 days in sd). Expression values determined by standard curve method, normalized by 
2PPA expression. Every value represents the average of two technical replicates. 
 

The only gene, for which a differential expression based on real-time PCR data was 

published, is FLC (Krichevsky et al., 2007), reported to be four to five-fold upregulated in 

czs-1 seedlings. Analysis of FLC transcript abundance in adult tissues only revealed large 

variations between biological replicates (Fig. 29D). As plants had been shifted to long days 

seven days prior, this may indicate that FLC mRNA levels undergo substantial changes 

during this time. Analysis of seedling tissue samples demonstrated a robust FLC 

upregulation in czs-1 and czs-2 plants. Transcript levels increased only by ~ 50 %, but did 

so consistently in all biological replicates. The two available eol5 mutant samples, on the 

other hand, showed an inconsistent but decisive downregulation of FLC. This is 

contrasting the significant upregulation observed in eol5 las samples in comparison to las 
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single mutants, which clearly stated an eol5 induced increase of FLC transcript, 

comparable to the one observed in czs-1 and czs-2 samples. Whether this difference is 

biologically relevant or due to some technical error needs to be reinvestigated in new 

cDNA samples.  

3.2.5. Analysis of CZS homologs 

In order to investigate a possible general function of SET domain genes in AM formation, 

mutants of genes homologous to CZS were examined for defects in lateral bud formation. 

T-DNA insertion mutant lines were obtained of the closest CZS relative SUVR3 and of two 

further members of the same SET domain gene clade, SUVH1 and SUVR1. Ordered lines 

were designated as homozygous by NASC, but results may be prone to errors as these lines 

have not been genotyped yet due to time constraints. Patterns of axillary bud formation 

observed after growth in short days for 6 weeks and subsequent shift to long days were 

indistinguishable from the wild-type (Fig. 30A). This indicates that these genes have no 

strong functional homology with CZS.  

 

The best studied SET domain genes are the PcG genes: CLF, SWN, and MEA. clf and swn 

mutants were chosen for a first analysis, as they have previously been associated with the 

control of gene expression in meristematic tissues (Schubert et al., 2005). Based on the 

observation by Daniel Schubert that emf2 vrn2 double mutants display defects in AM 

formation, also these PcG genes were examined, as their gene products act in complexes 

with the SET domain proteins mentioned above. Plants were grown in short days for 7 

weeks and subsequently shifted to long days to induce flowering.  

As illustrated in Fig. 31B neither swn nor clf mutants exhibited a strong defect in lateral 

bud formation. In the lowest rosette leaf axils clf plants displayed more empty axils than 

wild-type plants, but this result might be due to the early flowering phenotype of clf. As the 

wild-type plants were analyzed some weeks later several of the early leaves, whose axils 

often do not support bud formation, might have been lost due to senescence and 

subsequent rotting of leaves. Crossings to las plants have been initiated to analyze the 

effect in the sensitized las background.  
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Figure 30. Phenotypic analysis of homologs and inte ractors of CZS 

A, analysis of lateral bud formation in rosette leaf axils of suvh1, suvr1, and suvr3 T-DNA insertion 
lines. Plants were grown for 6 weeks in sd and subsequently shifted to ld.  
B, analysis of lateral bud formation in rosette and cauline leaf axils of swp1-1 and control plants. All 
populations shown in B displayed unusual growth habits, probably due to environmental conditions. 
Each column represents one plant, every box one leaf axil from youngest (top) to oldest. Green 
indicates an axillary bud, yellow an empty leaf axil, light green the following intermediate structures: 
F: flower, m: meristem.  
 

In accordance with their name, emf2 plants flowered extremely early, developing into 

small, dwarfed plants with narrow leaves. About half of the rosette leaf axils appeared 

empty but the relevance of this is hard to judge, as there is no morphologically similar 

wild-type available. vrn2 plants shown in Fig. 31 exhibited a mild defect in AM 

development in the upper rosette and an interesting tendency to develop side shoots 

without subtending leaves, prior to flower formation. Unlike emf2 mutants, vrn2 plants 

were rather late flowering. After the shift to long days, flowers appeared ~ 1 week later 

than in wild-type Col control plants, though less leaves were formed overall. It has to be 

noted that the vrn2 mutant is in the Ler background, so this may be attributed to the 

different background. However, it is apparent that the vrn2 mutation does not have the 
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same effect on flowering as the emf2 mutation. Plants will be regrown in parallel to Ler 

wild-type controls to investigate this.  
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Figure 31. Lateral bud formation analysis of select ed PcG mutants. 

A, growth habit of wt Col, vrn2 (Ler background), and emf2 vrn2 (mixed background) plants.  
B, analysis of axillary bud formation in populations with indicated mutant genotypes. Analysis of 
later cauline leaf axils emf2 vrn2 double mutants may contain errors, as tissues were in part very 



Results 

83 

small at time of examination. Question mark on top indicates that a larger, unknown number axils 
was present. Some plants also reverted back to vegetative development after formation of some 
flowers. Each column represents one plant, every box one leaf axil from youngest (top) to oldest. 
Green indicates an axillary bud, yellow an empty leaf axil, light green the following intermediate 
structures: F: flower in axil, L: leaf in axil, m: meristem. Dark red: shoot without subtending leaf, cot: 
cotyledon axil. Plants were grown for 7 weeks in sd before shift to ld.  
 

Contrasting the single mutant phenotypes, emf2 vrn2 plants showed strong and distinct 

defects in AM development. As illustrated in Fig. 31 bud formation was only supported in 

the lower rosette and in some later cauline leave axils. Additionally, leaves appeared 

highly serrated in the double mutant. All analyses of rosettes during this project have been 

carried out shortly after bolting, because onset of senescence and subsequent rotting of 

older leaves soon makes analysis impossible. In the case of emf2 vrn2 plants this meant 

that the uppermost cauline axils could not be properly analyzed. Due to the small size of 

organs the exact number of leaves could not be determined in all cases and differentiation 

between flowers and shoots may not always be correct. Additionally, in some 

inflorescences reversions to vegetative cauline leaf formation were observed after some 

flowers had formed.  

The flowering time of emf2 vrn2 mutants is rather dependent on the definition of such, as 

bolting already started after about four weeks in short days, but subsequent formation of an 

extremely large number of cauline leaves (Fig. 31A) led to an actual appearance of flowers 

later than in the wild-type, which had in the meanwhile been shifted to long days.  

 

CZS was shown to interact with SWP1 and mutations in both genes were reported to cause 

a similar delay in flowering (Krichevsky et al., 2007). A meaningful analysis of swp1 

plants was so far hampered by unusual growths habits, probably due to environmental 

factors. The results, shown in Fig. 30B, indicate minor defects in AM formation in swp1 

plants that are not clearly significant. In another growing swp1 plants looked 

indistinguishable from czs-1 plants, which on their part appeared indistinguishable from 

parallel grown wild-type plants. Repetition of this experiment has been initiated to confirm 

an effect on AM formation.  

3.2.6. Analysis of potential downstream factors of CZS 

The bHLH gene ROB was shown to be a regulator of AM formation (Yang, 2007). The 

loss-of-function mutant was reported to lack side shoot formation in the lower rosette and 
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ROB expression was found to increase upon floral transition. To investigate a possible 

interaction with CZS a population homozygous for rob and segregating for eol5 was 

analyzed. rob plants from this population exhibited the previously described phenotype, 

while eol5 rob double mutants showed an intermediate phenotype compared to both 

parents (Fig. 32). This suggests some interaction between CZS and ROB, as phenotypes are 

not additive nor is one mutation epistatic to the other.  
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Figure 32. Phenotypic analysis of eol5 rob, eol5 mir164a mir164b mir164c and control 

plants. 

Axillary bud formation analyzed in the rosette of eol5, rob, eol5 rob, and wt plants and of both 
rosette and cauline leaf axils of mir164a/b/c and eol5 mir164a/b/c plants. eol5 rob and rob plants 
were selected out of one population segregating for eol5. Also miR164 mutant plants were selected 
out of a population segregating for eol5. 
Each column represents one plant, every box one leaf axil from youngest (top) to oldest. Green 
indicates an axillary bud, yellow an empty leaf axil, violet an accessory shoot, light green the 
following intermediate structures: F: flower in axil, m: meristem. Plants were grown for 6 weeks in 
sd before shift to ld.  
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The miR164 is a negative regulator of AMs as it targets the genes CUC1 and 2. Therefore, 

it is a possible target of CZS, as derepression of miR164 could explain the czs mutant 

phenotype. miR164 is encoded by three genes and the triple mutant (mir164a b c) has been 

described by Raman et al., (2008) to form accessory side shoots in young rosette and most 

cauline leaf axils. To investigate a possible interaction with eol5, a mir164 triple mutant 

population segregating for eol5 was examined. Triple and quadruple mutants shown in Fig. 

32 have been selected from this population. While mir164a/b/c and eol5 plants displayed 

the reported respectively previously shown phenotype, an intermediate level of AM 

alterations was observed in the quadruple mutant (Fig. 32). A reduced number of accessory 

shoots was found in the cauline leaf axils and barren leaf axils were observed in the lower 

rosette combining phenotypes of both parents. Since the eol5 mutant phenotype is not 

completely repressed, this indicates that CZS does not act via miR164.  

 

As FLC was shown to be deregulated in czs mutants and other works indicate a link 

between flowering time and AM formation, the effect of FLC on AM development was 

directly investigated. For this purpose FRI FLC plants were examined, which carry an 

active FRI gene, introgressed from San Feliu-2 (Sf-2) accession (Searle et al., 2006). In 

comparison to Col plants FLC expression is strongly upregulated in this line, leading to a 

substantial delay of flowering. Plants were grown in short days for 6 weeks, subsequently 

shifted to long days, and analyzed about two weeks after. As most FRI FLC plants were 

not yet flowering at the time of analysis little information was obtained concerning the 

upper part of the rosette. The time of analysis was chosen to avoid loss of lower rosette 

axils due to senescence and subsequent rotting, taking place in older plants. As shown in 

Fig. 33 FRI FLC plants revealed a significant defect in AM formation in the lower part of 

the rosette in comparison to the wild-type. The leaf axils above the juvenile, primary leaves 

appeared most affected but few barren axils were also observed in the upper half of the 

rosette. This result suggests and involvement of FLC in AM initiation acting as a negative 

regulator.  
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Figure 33. Analysis of lateral bud formation in FRI FLC rosette 

leaf axils.  

Axillary bud formation in the rosettes of FRI FLC plants. Only 
rosette leaf axils are shown. Plants marked with “b” were bolting at 
the time of analysis, plants marked with “?” were still in the 
vegetative growth phase and possessed an unknown, higher 
number of rosette axils. Analysis of further axils was not feasible 
due to their small size. Plants were grown in sd for 6 weeks and 
subsequently shifted to ld. The latter two wt plants were not shifted, 
but had also initiated flowering at the time of analysis.  
Each column represents one plant, every box one leaf axil from 
youngest (top) to oldest. Green indicates an axillary bud, yellow an 
empty leaf axil, light green: meristem.  
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4. Discussion 

4.1. Part I: Towards understanding the LAS promoter 

LAS is a key regulator of AM initiation, as the loss of function mutant exhibits a lack of 

lateral bud formation during the vegetative growth phase. In order to understand how the 

specific LAS expression pattern is generated, a study to characterize the LAS promoter was 

initiated, to identify important elements and to investigate their contribution to the LAS 

expression profile. These data can provide a basis for later identification of upstream 

regulators using e.g. yeast one-hybrid studies.  

4.1.1. Visualization of LAS expression by GUS analyses 

Complementation of the las mutant in previous experiments demonstrated that 820 bp 5’ 

and 3547 bp 3’ of the LAS ORF are sufficient for complementation. The expression pattern 

conferred by these promoter regions was visualized by GUS stainings of plants carrying 

the pBR47 construct (Fig. 12F). Cuttings of apices confirmed that the mRNA accumulation 

profile resembles that known from RNA in situ hybridization studies (Fig. 1C, D), showing 

signals in the axils of leaves and flowers and in between floral organs. This is in 

accordance with the complementation observed in plants transformed with the pBR37 

construct, carrying a genomic LAS fragment with the same promoter regions (Fig. 10).  

 

Fig. 11 illustrates that the activity of the LAS promoter is alike in the wild-type and las 

mutant background. Greb et al., (2003), on the other hand, described observations from 

RNA in situ hybridization experiments that the LAS transcript is reduced in las mutants. As 

GUS lines depicted in Fig. 11 originate from different transformation events, equal signal 

strength does not represent a strong argument, as the transgene insertion locus may alter 

expression strength. Real-time PCR, quantifying LAS/las cDNA levels at different growth 

stages (Fig. 28G, H) on the other hand, stated that mRNA levels do not differ significantly 

between wild-type and las mutants. Thus, it can be presumed that LAS promoter activity is 

not altered between wild-type and las plants, signifying that GUS stainings shown in this 

work are not skewed by their las background.  
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The expression pattern of LAS during later flower development is shown for the first time 

in Fig. 12H - J. LAS is expressed at all organ boundaries separating sepals, petals, stamens, 

and carpels, respectively, from their neighboring tissues. The observed expression domains 

may pose an explanation for the loss-of-petals phenotype observed in tomato ls mutants, 

assuming that Ls mRNA accumulates in the same way as described in Arabidopsis. Even 

though petal primordia are initiated at the same time as stamens, they first remain minute 

and develop only later as the last of flower organs (Smyth et al., 1990). Hence, they may 

rely most on the function of Ls to keep cells in an undifferentiated state, required for later 

development. Therefore, petals are the flower organs expected to be most affected when Ls 

function is lost. In this case close inspection of ls flowers should reveal petal primordia 

arrested at an early stage of development.  

4.1.2.  LAS 3`promoter alone is able to confer specific 

expression  

A detailed analysis of plants carrying the pAE70 construct, performed in the course of this 

work, showed that, contrasting previous preliminary results, 800 bp upstream of the LAS 

ORF are sufficient for complementation in the presence of long 3’ promoter regions. The 

importance of a reanalysis of this line was emphasized by results from additional 

constructs, featuring deletions of 60 and 100 bp around the area 800 bp upstream of the 

gene, which were able to confer complete complementation (data not shown). Initial 

phenotyping problems resulted from time constraints, due to which the line was not 

analyzed in detail at the time and problems with the construct integrity of some lines were 

not discovered.  

Analysis of additional constructs carrying only 600, 400, or 212 bp ahead of the LAS ORF 

demonstrated that no essential promoter elements are located further upstream of the gene 

than 212 bp, as all constructs were able to confer complementation (Fig. 4). 95bp of this 

region are transcribed UTR, which leaves only 117 bp of proximal promoter sequences 

ahead of the TSS to initiate transcription. Complementation of the shortest construct 

(pBR59, Fig. 4) came as a surprise, as the T-DNA insertion line SALK_040683 was 

reported to phenocopy las mutant plants (Eicker, 2005). This line was described to carry a 

T-DNA insertion 696 bp upstream of the ATG, probably harboring a promoter deletion 
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from position -716 to -265 (Eicker, 2005). Thus, it was assumed that pBR59 would not 

exhibit any complementation ability, including less promoter sequences than this T-DNA 

insertion line. As sequencing of its LAS ORF revealed no mutations, this line should by all 

current knowledge confer complementation. One hypothesis explaining such a result is T-

DNA induced silencing of surrounding regions.  

 

Experiments in tomato showed that constructs bearing a flower specific PLENA 5’ 

promoter, which is not active in vegetative axils, can confer complementation when 

combined with Ls 3’ promoter sequences. These results corroborate the idea that the 

significant elements are located in the 3’ region. To uncover whether the Arabidopsis 5’ 

promoter contains any specific elements at all, it was exchanged with a 600 bp PI promoter 

fragment (pBR43) or with a -90 35S CaMV minimal promoter (pBR41), while retaining 

long 3’ regulatory sequences.  

Analysis of pBR41 plants yielded the striking result that even with the unspecific -90 35S 

sequences on the 5’ side the promoter remains functional. Plants transformed with pBR41 

nearly completely complemented the las phenotype (Fig. 9), demonstrating clearly that no 

specific elements upstream of the LAS TSS are required. A similar construct without the 3’ 

sequences, on the other hand, did not confer any complementation. Likewise, experiments 

in tomato demonstrated that complementation of the ls mutant can also not be achieved 

using a complete 35S promoter driving Ls (Schmitt, 1999), indicating that the specific 

expression conferred by the 3’ region is essential for gene function. A GUS line carrying 

the same promoter assembly as pBR41 showed patterns indistinguishable from pBR47 

(pBR45, Fig. 12K), revealing that the promoter does not only enable LAS function but also 

confers the specific expression pattern as previously described for the endogenous 

promoter. This denotes that all important elements required for the establishment of the 

highly specific RNA accumulation profile are located in the 3’ region of LAS.  

Benfey et al., (1989) reported that the -90 35S promoter was active in the root, especially 

in the root tip, lateral roots, and in the pericycle, from which lateral roots develop. 

Expression of pBR45 in root tissue has not yet been analyzed, but signals are observed in 

outer cell layers of the hypocotyl, intensified around emerging structures that probably 

represent adventitious roots. This may indicate that the LAS 3’ promoter is able to redirect 

35S expression to lateral organ initiation sites, but this needs to be confirmed by a 

comparison to -90 35S GUS constructs without the LAS regulatory regions. The -90 35S 

minimal promoter also shows a differential activity in the rosette, as more bud formation 
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was observed in the lower half of pBR41 plants (Fig. 9). Another only partially 

complementing pBR41 line only formed lateral buds in the lower rosette (data not shown), 

a phenotype never observed in other partially complementing lines. This indicates that the 

usage of -90 35S sequences as a minimal promoter might not always be a good choice, 

depending on what developmental stage is investigated.  

 

Complementation of the las mutant phenotype was also successful when replacing the 5’ 

promoter with a 600 bp PI promoter fragment (pBR43, Fig. 9). Honma and Goto (2000) 

reported that this fragment induces specific expression only in floral primordia but not 

during the vegetative phase. Without the LAS 3’ regulatory sequences, again, no 

complementation was achieved. Analysis of plants carrying a PI promoter GUS construct, 

including LAS 3’ sequences, displayed all signals expected from an endogenous LAS 

promoter, partially extended by PI derived activities. In the flower first signals appeared 

already in stage 2 flowers (Fig. 12 M) and had an intriguing similarity to the pattern shown 

by Honma and Goto (2000) for the 500 bp PI promoter fragment (Fig. 12 D). This points 

towards a restrictive activity of the LAS 3’ regions, overwriting the information supplied by 

the PI element between bp 500 and 600 bp. A similar effect is observed at later stages of 

flower development, where the promoter does not remain active in developing stamens, as 

in all PI promoter constructs (Fig. 12 E), but is restricted to organ boundaries, similar to 

the endogenous LAS promoter (Fig. 12 N). This denotes that LAS 3’ regulatory sequences 

induce additive and also restrictive alterations to the PI 5’ promoter activity.  

 

The promoter swapping experiments demonstrated that the LAS promoter specificity can 

be determined by the 3’ regulatory sequences alone. The importance of 3’ sequences for 

promoter functions has previously been shown for the genes CLV3 and DRN. The weak 

clv3-3 allele e.g. carries a T-DNA insertion 175 bp downstream of the polyadenylation site 

(Fletcher et al., 1999), indicating the disruption/separation of an enhancer element. Brand 

et al., (2002) showed that the correct CLV3 expression pattern, known from RNA in situ 

hybridization studies, could only be generated in GUS experiments if downstream 

sequences were added. The same applies for the DRN promoter, as complementation of the 

drn mutant can only be achieved by including 3’ sequences (Wolfgang Werr, personal 

communication). Cis elements in 3’ regions of genes are usually not mentioned in general 

promoter descriptions and never considered in promoter prediction tools (Pedersen et al., 

1999; Shamuradov et al., 2005; Molina & Grotewold; 2005; Abeel et al., 2008). As an 
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example, Lee et al., (2006) reported an analysis of 61 root TF promoters by GFP 

constructs. Up to 3 kb of upstream sequences were used and resulted in an 80 % match 

between observed GFP signals and mRNA accumulation pattern. The remaining 20 % 

were assumed to be regulated by UTRs, introns, or on mRNA level. As promoter elements 

in the 3’ region seem to appear more frequently than previously anticipated they should be 

included in the common concept of promoters and subsequently in in silico studies on this 

topic like promoter prediction tools.  

4.1.3. Pinpointing important LAS 3` promoter regions 

Phylogenetic footprinting revealed that 3’ regions of various LAS orthologs share 

homologies in two regions termed region A and B (Fig. 6, Fig. 7). Alignment of region A 

of all available LAS orthologs revealed astonishingly high sequence homologies for 

noncoding sequences of distantly related species. All orthologs investigated so far, 

including several monocots, display high identities in such a region downstream of the 

gene.  

Nevertheless, the analysis of plants carrying the pBR38 construct (Fig. 10), in which the 

region A is deleted, discards the expectation that region A is of essential importance for 

promoter function. The examined plants show complete complementation of the las 

phenotype, just as GUS lines, carrying the same promoter composition (pBR48, Fig. 12G), 

display the wild-type-like, distinct expression pattern. Thus, the function of the region A 

remains enigmatic. The high conservation gives strong evidence that this region was 

subject to positive selection at the DNA sequence level during evolution, giving rise to the 

hypothesis that necessity for this element might have been lost very recently during 

evolution of Arabidopsis. The only indication that this sequence plays a role as a cis 

element comes from the analysis of tomato 3’ regulatory sequences in Arabidopsis. A 

construct missing the region A confers only partial complementation (pAE123, Fig. 8), 

whereas a longer construct (pAE127) is able to fully complement the las phenotype 

(pAE127 lacks only the first conserved TGTCTTT element, pAE123 lacks another 70 bp, 

i.e. the complete region A). This may indicate that the Arabidopsis 3’ sequence contains a 

redundant element between bp 488 and 3547, which is able to mask the absence of region 

A, whereas in pAE123 plants, where the redundant Arabidopsis element and the tomato 

derived region A are missing, defects in side shoot formation are observed. Such a 
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redundancy, however, could not be detected on sequence level. Similarly unexplained is 

the molecular function of region A. The absence of an open reading frame, no indication 

for transcripts, and the constant appearance 3’ of all LAS orthologs strongly support the 

notion that this is a cis-regulatory element. Nevertheless, conservation seems too high to be 

based on the binding of single TFs. A protein complex, whose binding requires all 

conserved residues, would have to comprise a large number of specific DNA binding 

factors, an assembly unprecedented for genes controlling meristematic activities.  

 

Furthermore, no evidence could be found for a major function of the promoter region B, 

which shows homologies only between Arabidopsis, Capsella, and tomato. The non-

complementing construct pAE84 lacks half of the region B, while it is present entirely in 

the slightly larger construct pBR39. Nevertheless, pBR39 did not exhibit an increased 

complementation ability compared to pAE84, disproving the expectation that the lack of 

complementation displayed by pAE84 plants might be due to this sequence. This denotes 

that an essential promoter element must be located between 3239 bp and 3547 bp of the 

LAS 3’ promoter, thereby narrowing down this region of interest from 414 bp to 318 bp, 

from now on referred to as region C.  

In contrast to these results, tomato 3’ regulatory sequences are able to confer 

complementation with shorter regions, not even including a complete region B. As 

illustrated in Fig. 8, pAE127 lacks half this region, just like pAE84 (in both cases the 

breakpoint is in between the two aligned sequences shown in Fig. 7). However, pAE127 

confers full complementation, while pAE84 does not. Functionality of the tomato promoter 

in Arabidopsis demonstrates a strong conservation of non-coding, regulatory sequences 

between tomato and Arabidopsis but also denotes the different activities of these promoter 

sequences. In all examined cases the tomato sequences appeared to drive gene expression 

stronger than homologous Arabidopsis sequences, as comparable constructs with 

Arabidopsis sequences did not confer complementation. This indicates a different 

composition and arrangement of promoter elements in tomato regulatory sequences.  

 

Analysis of plants carrying the pBR49 and pAE128 constructs (Fig. 8, Fig. 10) illustrated 

that the 3’ sequences can function independent of their location and orientation in respect 

to the LAS gene. In this light it seems even more intriguing that the conserved region A is 

in all cases found 3’ of the LAS orthologs. The complementation observed in pBR49 plants 
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delivered additional information, namely that the 3’ sequence from bp 483 to 1827 does 

not contain any essential elements, as it is missing in this construct.  

In summary, the 3’ promoter is alone able to induce a highly specific expression pattern, 

indistinguishable from the endogenous LAS expression, which is dependent on an 

enhancer-like element located between 3239 bp and 3547 bp downstream of the ORF.  

4.1.4. Relative importance of 5’ and 3’ promoter sequences  

5’ sequences of the LAS gene were shown to be replaceable with a -90 35S promoter, i.e. 

they do not contain any elements essential for promoter function, as long as ample 3’ 

regulatory sequences are present. Nevertheless, partial complementation, with about 60 % 

of rosette leaf axils supporting bud formation, was reported without long 3’ sequences, 

when 2910 bp of 5’ promoter were used (Eicker, 2005). 1447 bp of 5’ sequences, on the 

other hand, were insufficient to complement the las phenotype. In tomato a similar 

construct containing long 5’ sequences did not confer any complementation (Schmitt, 

1999), further corroborating that promoter elements in tomato are organized differently. 

However, the Arabidopsis promoter appears to have a cis element which is partially able to 

replace the 3’ region, situated between 2910 and 1447 bp upstream of the LAS ORF (Fig. 

34).  

 

This is supported by data recently published by Goldshmidt et al., (2008), who describe 

complementation of las using a transactivation system, in which a ~3800 bp LAS promoter 

is driving expression of a LAS-GFP translational fusion protein. Even though 

complementation was reported, some empty axils are visible in a published picture of such 

a plant, leading to the assumption that also here complementation is only partial. 

Astonishingly the resulting expression pattern is comparable to the endogenous LAS 

mRNA accumulation pattern, showing signals in the axils of flower primordia and sepals. 

The utilized regulatory sequences show no overlap with those used for e.g. pBR45, yet 

they result in the same specific expression pattern. This denotes that the redundancy 

between 5’ and 3’ cis elements extends to such a degree that both contain all elements 

necessary for specificity, while only overall activity is slightly decreased in the absence of 

downstream sequences.  
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A phylogenetic footprinting analysis of the 5’ sequence (bp 1447 – 2910) and region C 

produced various conserved motifs, as could be expected from the comparison of two 

sequences of this size. Further comparison of these identified motifs to promoter sequences 

of LAS orthologs, using FIMO software, did not reveal any significant homologies. 
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Figure 34. Summary of current knowledge of the LAS promoter 

LAS ORF is depicted in blue, UTRs in light blue, regions shown to contain essential promoter 
elements – functional also in absence of each other - in red. Numbers above parentheses state 
distances in bp of the indicated regions from the start, respectively stop codon of the LAS ORF. 
Dashed parenthesis indicates region leading to partial complementation in the absence of long 3’ 
sequences. Grey parentheses indicate regions found not to contain essential elements.  
 

In Fig. 34 the current knowledge about the LAS promoter is summarized. The two regions, 

which can independent of each other confer some level of complementation, are depicted 

in red, sequences shown to be not essential are marked by grey parentheses. The data 

suggest that at least two copies a major promoter element are present upstream and 

downstream of the LAS ORF.  

Another hypothesis states that the pattern is generated by the combined effect of redundant 

and frequently occurring binding sites, spread throughout all promoter regions and that any 

general activation of transcription in the presence of more or less any region surrounding 

the LAS gene would result in the described distinct pattern. In initial LAS promoter studies, 

a large promoter region was found to be necessary for correct LAS activity. After analysis 

of various deletion constructs no altered expression pattern could be detected. This 

contrasts analyses of e.g. the PI promoter, where sequential removal of promoter regions 

caused changes in expression, while different elements could be assigned to specific 

functions (see Fig. 12B – D, Honma & Goto, 2000). The absence of such findings in the 

LAS promoter dissents the hypothesis of a larger number of dispersed elements. Also both 

regions of highest interest localize at a large distance from the TSS, suggesting a similar 

mode of action, pointing towards two confined arrangements of elements.  
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Overall, it seems likely, yet not proven, that the 5’ sequences (bp 1447 – 2910) and region 

C, which are necessary for complementation, also control the specificity of expression. On 

the further quest to identify upstream regulators of LAS, region C poses a good starting 

point for either yeast one-hybrid or DNA affinity purification experiments, as cis-

regulatory factors can be expected to bind here. In the case of LAS presented in this work, 

promoter analysis contributes decisively to further analysis, as a standard yeast one-hybrid 

full promoter analysis, utilizing 1 - 2 kb upstream sequences (Deplancke et al., 2004), 

would most likely have failed to yield any relevant results.  

 

 

4.2. Part II: Cloning and characterization of the eol5 

mutant 

During this work the gene underlying the eol5 phenotype could be identified by positional 

cloning to be CZS. eol5 was originally identified in a second-site mutagenesis screen in the 

las background, as it enhances the AM formation defect in las plants (Clarenz, 2004). 

Utilizing a second-site screen, in this case, led to the discovery of a gene that would have 

otherwise gone unnoticed, as the single mutant phenotype is too weak to be recognized in a 

conventional screen (Fig. 21).  

CZS is a putative histone methyl transferase, shown to be involved in chromatin 

remodeling (Krichevsky et al., 2007). The importance of chromatin structure and 

epigenetic regulation for plant development is increasingly recognized in recent years 

(Steimer et al., 2004, Schubert et al., 2005, Reyes, 2006, Henderson & Jacobsen, 2007). 

With CZS, epigenetic regulation enters the stage of AM regulation, a field currently 

dominated by TFs, as most known players involved in this process are assumed to bind to 

DNA and regulate transcription (Schmitz & Theres, 2005). Involvement of chromatin 

remodelers in AM formation does not come as a surprise, as several genes controlling 

SAM function were reported to be regulated epigenetically (e.g. KNOX regulation by CLF 

and SWN, Chanvivattana et al., 2004). Nevertheless, control of the constantly, newly 

arising lateral meristems has so far not been shown to depend on chromatin state. CZS is a 

new regulator of this process and elucidating its mode of action may open the door to 

understanding a new level of the regulation of AM initiation  
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4.2.1. Positional cloning of eol5 

4.2.1.1. Determining the correct CZS gene structure 

Applying a map based cloning strategy, the position of the eol5 mutation could be located 

to a 256 kb region on the lower arm of chromosome II. Subsequent sequencing of 39 of 64 

genes in this region revealed a mutation in the CZS gene (At2g23740). Following the 

identification of this mutation an annotation problem had to be resolved, as a CZS 

annotation previously published by Krichevsky et al., (2007) places the mutation outside 

the ORF, whereas, according to the information provided by TAIR, it leads to an early stop 

codon. CZS appears to have a history of incorrect annotations, since first EST based 

attempts predicted two gene models. This is probably due to the ample length of the 

mRNA. EST data, obtained by single Sanger reads, led to sequencing of the mRNA ends 

only, thus resulting in two gene models. The same problem persists for the orthologous 

gene in rice. The current RefSeq sequence annotates two genes in place of the CZS 

homolog shown in Fig. 18, yet the alignment with various orthologs supports the presence 

of one large gene. An alignment of the TAIR annotated sequence of CZS with mRNA 

sequences from different sources clearly demonstrated that the complete sequence is 

transcribed (Fig. 17). A protein alignment of various orthologs of CZS shows high 

homologies even in the N-terminal part of the protein, which is not included in the 

annotation reported by Krichevsky (2007). High conservation on protein level between 

distantly related species provides evidence that this sequence is transcribed, translated, and 

under evolutionary selective pressure.  

The experimental evidence for the annotation presented by Krichevsky et al., (2007) is a 

“RACE” experiment, in which a gene specific reverse primer and a set of genomic forward 

primers, spaced 200-250 bp apart, were used to amplify PCR products from a cDNA 

library. The largest PCR product obtained was used to deduce the CZS ORF. Such an 

experimental approach is likely to fail to reveal the correct mRNA sequence, due to the 5 

introns that precede the used reverse primer binding site. In summary, the CZS mRNA 

sequence was determined, confirming the TAIR data with the addition of an extra 21 bp 

ahead of exon 6.  
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4.2.1.2. Analysis of eol5 and czs mutant alleles reveals common 

defects 

The analysis of eol5 backcross populations disclosed a discernable eol5 single mutant 

phenotype, which had not been reported previously. A comparison of phenotypic 

deviations caused by eol5 and the T-DNA insertion alleles czs-1 and czs-2 showed defects 

in AM formation in all cases, supporting the result that EOL5 and CZS encode the same 

gene. However, AM defects appeared considerably more pronounced in eol5 plants (Fig. 

21). Long day grown plants display the same tendency, with csz-1 causing the weakest, 

and eol5 the strongest phenotypic deviations from the wild-type. Analysis of three 

segregating eol5 backcross populations (Fig. 21, others not shown) did not suggest 

background mutations of the EMS mutagenesis to be responsible for the enhanced 

phenotype, as no evidence of a second segregating gene affecting the phenotype was seen. 

Hence, it is assumed that, either in eol5 or in T-DNA insertion plants, truncated proteins 

are still produced, impacting on the phenotype.  

Apparently an early stop codon at the beginning of the CZS gene poses a bigger obstacle 

for the development of AMs than a T-DNA insertion in the middle of the ORF, even 

though the insertions are localized well ahead of the conserved SET domain (Fig. 16C). 

That means either an N-terminal protein fragment or a protein originating from a 

downstream start codon exerts some kind of function. The next ATG after the SNP in eol5 

still allows the generation of a 1260 AA protein, whereas proteins formed in czs-1 and   

czs-2 reach lengths of at least 906 and 502 AA, respectively.  

 

An allelism test, analyzing F1 plants of eol5 las X czs-1 or czs-2 crosses, revealed that CZS 

and EOL5 are indeed allelic, as double heterozygous plants exhibited AM formation 

defects (Fig. 21). Since these plants rather resemble the T-DNA insertion lines than eol5 

plants, the czs-1 and czs-2 alleles appear to have a dominant effect on the phenotype. This 

points towards an activity of truncated proteins in czs-1 and czs-2. Real-time PCR showed 

that the 3’ region of CZS exhibits an eight fold expression difference between czs-1 and 

czs-2 (Fig. 26B), making it implausible that a C-terminal protein fragment is responsible 

for the similar defects in czs-1 and czs-2. It seems more likely that a truncated protein, 

translated from the remaining 5’ mRNA fragment, exerts a partial CZS function. This is 

surprising, as the SET domain, which is assumed to carry the major enzymatic function of 

producing methyl marks on histones, is not part of such a protein. The truncated CZS 
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fragment could stabilize a repressive complex, which may be able to exert redundant 

repressive functions, or not make use of the HMT activity in the first place. This 

hypothesis is in accordance with the slightly stronger phenotype of czs-2 compared to czs-

1, observed particularly in long day conditions (Fig. 22), since the N-terminal fragment 

formed in czs-2 is shorter than in czs-1. However, it cannot be ruled out that a very closely 

linked second mutation in the eol5 mutant is enhancing the eol5 phenotype. Analysis of a 

new line carrying a T-DNA insertion in the second coding exon may solve this question.  

4.2.1.3. Complementation of eol5 mutants  

In order to show that eol5 is allelic to CZS, a complementation experiment was carried out 

using the native CZS promoter in the las background. Krichevsky et al., (2007) reported 

the complementation of the czs-1 flowering time delay, using slightly shorter promoter 

sequences. Transgenic plants selected for the pCZS::CZS construct regained the ability to 

form side shoots in many cauline leaf axils in comparison to eol5 las control plants. 

However, complementation only appeared partial, as it did not phenocopy the known las 

single mutant phenotype. The incomplete complementation may be attributed to 

insufficient promoter sequences or other effects, like growth retardations due to Basta 

spraying. The experiment will be repeated also phenotyping Basta resistant las plants as 

controls (e.g. pBR44 or pBR47 lines), in order to clarify if complementation is complete or 

not. It also cannot be ruled out that a truncated protein exerts some function in eol5, e.g. 

actively perturbing a CZS containing repressive complex. If this is the case it may not be 

possible to fully complement an eol5 mutant. czs-1 plants transformed with the pCZS::CZS 

construct will also be investigated for complementation.  

 

In summary it could be demonstrated that eol5 is a mutant allele of CZS, by:  

(1) map based cloning, (2) at least partial complementation using a pCZS::CZS construct, 

showing involvement in the same process, (3) similar defects in eol5, czs-1 and czs-2 

mutants in AM initiation and in flowering time, (4) an allelism test revealing AM 

formation defects in F1 plants.  
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4.2.1.4. Phenotypic variability of eol5  

The positional cloning of eol5 proved to be challenging due to the constant difficulties with 

the variability of the eol5 phenotype. Due to the incomplete penetrance of the eol5 mutant 

the phenotype often did not reflect the eol5 genotype. These problems also hampered 

mapping of other mutants obtained from this las second-site mutagenesis screen, eol5 is 

the first to be cloned.  

 

A complete explanation for the observed variability in the eol5 las phenotype remains to be 

identified. Segregating modifiers from the Ler background or the initial EMS mutagenesis 

are likely to influence the phenotype, evidenced by rough mapping results from eol3 or 

eol5 (Clarenz, 2004; Schulze, 2007). The most variable phenotypes observed during this 

work have been noted in mapping populations originating from the Ler cross (e.g. Fig. 

24E), indicating that modifiers from Ler do play a role.  

The first utilized eol5 las control plants, which had only been backcrossed once to las, 

always showed a strong mutant phenotype in every sowing (see controls in Fig. 14B). As 

this line was probably selected out of a segregating F2 population based on a strong 

phenotype, it may have accumulated a higher number of modifiers from the EMS 

mutagenesis enhancing the mutant phenotype. As this suggests the presence of such 

modifiers in the first double mutants, they would also be expected in the Ler cross. 

However, using later generations, in which most modifiers should not segregate any more, 

did not solve the problem of phenotypic variation. Between BC2F2 and BC2F5 

generations no major improvement of segregation ratios or class discrimination could be 

observed. Hence, segregating modifiers do not serve as a complete explanation.  

Environmental factors have been shown to play a role in the variability of the eol5 las 

phenotype. This was demonstrated by the day length dependent appearance of the eol5 las 

phenotype and also by the different phenotypes observed between populations originating 

from the same seed batch, grown in parallel in different growth chambers (Fig. 24C - F). 

Also eol5 and czs-1 single mutant populations varied in the extent of AM formation defects 

in different experiments (Fig. 20 and 21, Fig. 21 and 31). The exact effect of factors like 

light quality and quantity, temperature, watering, etc., can only be speculated about, as this 

question has not been addressed in experiments. In any way, not much can be changed to 

improve growth habits, since in Percival growth chambers environmental conditions are as 

controlled as feasible for such work. Problems with the cultivation soil causing general 
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growth inhibitions of Arabidopsis led to more intense but also more variable phenotypes, 

indicating that changing stress levels influence the phenotype.  

Fig. 24A, B shows that also eol5 las X las backcross populations (BC2F2 from original 

mutant), without Ler background grown in one tray, display incomplete penetrance. 

Variable penetrance has been shown in many mutants (e.g. pinhead: Lynn et al., 1999; drn: 

Chandler et al., 2007). Currently no single explanation can resolve the question of the 

reason for the phenotypic variation.  

4.2.2.  Phenotypic analysis of CZS mutants reveals roles in 

different processes 

The phenotype that led to the discovery of the eol5 mutant was the lack of axillary buds in 

cauline leaf axils, in addition to the lateral bud formation defects in the rosette due to las 

(Fig. 13A, C). In czs single mutants, on the other hand, mostly rosette leaves are affected. 

The tendency of upper cauline leaf axils in eol5 las plants to occasionally carry flowers or 

leaves instead of side shoots indicates that meristem identity is coupled with general lateral 

meristem activity. This may mean that a cell pool, which is not large or undifferentiated or 

in another way “meristematic” enough, will take up a determinate cell fate producing an 

organ instead of an indeterminate apical meristem. This is in accord with data reported by 

Laux et al., (1996).  

 

The failure of axillary organs to correctly execute developmental programs is also evident 

in the zones of defective flower primordia formation (Fig. 13A, F, G). Flowers appear 

infertile, sometimes having deranged floral organs, in other cases floral primordia only 

form reduced structures or are absent. Distortions of phylotaxis occasionally observed in 

double mutants indicate defects already in SAM organization. eol5 las double mutants also 

exhibited terminations of the main meristem (Fig. 13I, K), affecting up to 75 % of plants of 

a population, depending on growths conditions. A comparison of sections of terminated 

and wild-type apices revealed that most terminated apices were devoid of small 

undifferentiated cells or any organized meristem structure. The last lateral structures 

formed were often small, without any recognizable shape, consisting of large differentiated 

cells, pointing at a general loss of meristematic cell identity. LAS is not expressed in SAM, 

yet in tomato ls mutants show terminations at a low frequency (G. Schmitz, personal 
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communication). Occurrence of SAM arrests has not yet been thoroughly investigated in 

csz single mutants, but so far such a phenotype has not been noticed. Thus, the exact 

contribution eol5 to this phenotype still has to be investigated. All described phenotypic 

alterations of SAM and lateral organ development are - again - dependent on growth 

conditions and were not noticed in all experiments.  

 

Furthermore, detailed analyses of eol5 las plants revealed fusions between rosette leaves 

(Fig. 13L, M). Fusions appeared at the base of lower rosette leaves, with varying degrees, 

in one experiment affecting in average ~ 7 leaves per plant in short days, and half of that in 

long day conditions. A role in organ separation had previously been associated with las, as 

the mutant displays concaulescent fusions of lower cauline branches (Greb, 2003). These 

were not observed in eol5 las double mutants due to the lack of such lower cauline 

branches. Rosette leaf fusions have been reported from stm las double mutants (Clarenz, 

2004), yet real-time PCR analysis did not reveal any decrease in STM transcript in eol5 

mutants. Thus, other genes have to be deregulated in eol5 mutants, enhancing the organ 

fusion tendency of las, which is involved in organ boundary function.  

Overall, CZS function appears to be necessary in meristems and all types of lateral organs, 

as leaves, flowers, and side shoots were shown to be affected. The function that is lost in 

czs mutants looks to be keeping cells in an undifferentiated state.  

 

A role in a different aspect of plant development has previously been shown for czs-1 

plants, which display a moderate delay in flowering. Analysis of long day grown plants 

revealed an increased time to flowering and a higher leaf number can be observed in all czs 

mutant alleles, also in the las background (Fig. 23A, B). The eol5 line exhibited more 

pronounced deviations in total leaf number than czs-1 or czs-2 (t-test: p = 0.008 and p = 

0.179, respectively), indicating that this result may be due to the same process as the AM 

formation defect. In contrast to the delay of flowering observed in long days, czs mutants 

grown to flowering in short day conditions rather displayed a converse effect (Fig. 23C, 

D).  

This can be explained with the reported FLC upregulation in czs-1 plants (Krichevsky et 

al., 2007), which could be confirmed by real-time PCR. FLC is a floral repressor, which is 

itself negatively regulated by the vernalization pathway (e.g. VRN2) or by members of the 

autonomous pathway (e.g. FLD), to release repression of floral induction. Upregulation of 

FLC in czs mutants explains the delay in flowering in long day conditions, which has been 
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shown in various other mutants in which FLC is derepressed (Simpson, 2004). However, 

flowering in short days is elicited by the GA-pathway, bypassing FLC regulation (Farrona 

et al., 2008), thereby explaining why czs mutants are not late flowering in short days. In 

summary, CZS could be shown to play role in the development of AMs and floral 

primordia, SAM maintenance, and control of floral transition.  

4.2.3. Looking into the function of CZS 

In order to understand the occurrence of the different phenotypes caused by czs mutations, 

the mechanism of CZS function has to be investigated in more detail. Protein alignments 

show that CZS is strongly conserved, also in more distant related species like monocots 

and the moss Physcomitrella (Fig. 18). This implies that CZS performs an important 

function that is evolutionary conserved. The domain structure of CZS is unique and only 

appears in plants (Baumbusch et al., 2001). A protein alignment shows a highly conserved 

protein domain near the N-terminus (Fig. 18, AA 290 to 350), which, according to BLAST 

searches, is unique for this gene. No function could yet be assigned to this domain, 

evidence for its importance arises from the comparison of different czs alleles. Weaker 

phenotypes observed in czs-1 and czs-2 plants appear to be due to an N-terminal fragment 

of the CZS protein, which is not formed in eol5 plants. C2H2 zinc finger domains, of 

which three are found in CZS, may bind DNA, but are also known to confer protein protein 

interactions (SMART, Schultz et al., 1998), hence their exact role cannot be predicted. The 

molecular function of SET domains has been shown to be the methylation of histones, 

generating marks that induce changes in chromatin state. SUVR4, the closest CZS homolog 

investigated, was shown to have an in vitro HMT activity, generating me2H3K9 with a 

substrate preference for meH3K9 (Thorstensen et al., 2006).  

CZS was shown to be a negative regulator of transcription by a reporter gene repression 

assay in transiently transformed Arabidopsis leaves (Krichevsky et al., 2007) and 

repressive histone marks at the FLC locus were shown to be reduced in czs-1. Due to the 

interaction with SWP1 (see chapter 1.2.1.2) the hypothesis was formulated that CZS is part 

of a co-suppressor complex (Krichevsky et al., 2007b).  

 

This leads to the general concept that CZS generates negative histone marks on specific 

genes or regions, leading to their transcriptional repression. In the mutant, these genes are 



Discussion 

103 

deregulated, causing the multitude of phenotypic deviations. Therefore, they are assumed 

to include repressors of flowering and factors promoting differentiation in the vicinity of 

the SAM leading to problems in AM formation, primordia development and SAM 

maintenance. Since pleiotropic effects in eol5 las are not severe, deregulation is probably 

either very restricted to specific genes or generally of minor magnitude.  

4.2.3.1. CZS expression analysis 

As a starting point to elucidate CZS function the expression profile was analyzed, since a 

specific expression pattern may give hints to possible genetic interactors. Most SET 

domain genes are expressed constitutively (Springer et al., 2003), yet Baumbusch et al., 

(2001) could also show examples for tissue specific expression of Arabidopsis SET 

domain proteins of the same subfamily as CZS. In case of CZS, the BAR Arabidopsis eFP 

Browser, integrating micro array data from various experiments, shows constitutive, low 

expression, slightly reduced in leaves. In agreement with these data, real-time PCR 

analysis of nine different tissues did not reveal any differential accumulation of CZS 

transcript. The zones of phenotypic deviations observed in eol5 mutants: (1) single mutant 

phenotype in rosette, in combination with las in (2) cauline leaf axils and (3) SAM 

termination during flowering, suggest that CZS exerts its function during the complete 

postembryonic development of Arabidopsis. Since there is so far no evidence for a specific 

expression pattern of CZS, the question arises how the rather specific phenotype is caused. 

A likely explanation is that the targets are dependant on other positive or negative 

regulators.  

4.2.3.2. Investigation of candidate targets of CZS 

The central question that needs to be addressed in order to elucidate the events taking place 

in czs mutants is, which genes are targeted by CZS. The second-site mutagenesis screen is 

expected to identify mutants whose affected genes act in a parallel pathway to LAS on the 

final output AM formation.  

Various candidate genes were examined for expression changes in czs mutants. 

Differentiation signals, causing cells to loose meristematic activity, were considered the 

most likely targets, as their derepression in czs mutants might lead to the observed 

phenotypes. Only few factors promoting loss of meristem identity are known. miR164 and 
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miR171 repress CUC1 and 2 and SCL6, 22, and 27, respectively, genes which are 

necessary for correct meristem function. As miR171 genes do not show negative histone 

marks (UCSC Genome Browser), focus was first placed on miR164. Other putative 

promoters of differentiation are DRN and DRNL, as the DRN overexpressing line drn-D 

exhibits empty leaf axils, and accessory bud formation was observed in drn drnl double 

mutants at a low frequency (data not shown). RAX1 was also considered a good candidate 

as phenotypic alterations in rax1 plants are short day dependent and rax1 has been shown 

to enhance the las phenotype (Müller, 2005). Unfortunately, the described upregulation of 

RAX1 and the downregulation of MIR171, DRN, and DRNL (Fig. 28) represent the exact 

opposite of what would explain the czs mutant phenotype. Differentiation signals are 

expected to be derepressed and factors known to promote AM formation should be 

downregulated. In this light the observed altered expression levels may represent 

compensation effects of the plant trying to counter defects in lateral meristem 

development.  

Interaction studies analyzing multiple mutants confirm that CZS does not act via miR164, 

as mir164 and eol5 mutant phenotypes appeared additive (Fig. 32). eol5 rob double 

mutants on the other hand displayed intermediate phenotypes (Fig. 32). This result is 

puzzling as AM formation defects would be expected to be either additive, or the mutation 

causing the stronger phenotype should be epistatic, if both genes act in one pathway. Yet, 

double mutants exhibited fewer defects than the eol5 parent. Further investigations are 

necessary to provide an explanation for this result. A starting point will be to analyze a 

population segregating for rob, in order to compare plants with an identical, homozygous 

eol5 background.  

 

Based on a microarray experiment that was carried out with czs-1 mutants, further 

candidates were chosen that might explain the mutant effects. However, mRNA level 

analysis of LBD25, PP2C, and ANAC83 did not reveal any differential expression 

contradicting the microarray results. This may be due to the different tissue (seedling 

including leaves and roots) and the different light regime (long day) used to obtain the 

microarray data. As CZS is involved in flowering time regulation, the czs mutation may 

cause different target gene expression levels in long days and short days, respectively. A 

new microarray experiment has been carried out using the RNA obtained from short day 

grown seedlings after removal of roots and leaves, data is currently being processed. A 
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further microarray, utilizing an HA tagged CZS protein for a ChIP chip experiment, is 

expected to reveal target loci of CZS.  

 

FLC was reported to be upregulated in a microarray analysis of swp1 and czs-1 mutants 

(Krichevsky et al., 2007). Derepression of FLC in czs-1 and czs-2 plants could be 

confirmed in 2 weeks short day grown seedling tissue by real-time PCR (Fig. 29E), even 

though differential expression was considerably less pronounced than published for long 

day grown seedlings (50 % increase instead of 400 %). Hence, CZS can be formally 

considered a new member of the autonomous pathway of floral induction, as it represses 

FLC independent of day length conditions or vernalization.  

A potential problem appeared in the real-time PCR results depicted in Fig. 29E, which 

indicate that FLC is not upregulated in homozygous eol5 single mutants. This is in contrast 

to the results in the las background, in which eol5 plants show the same increase of FLC 

transcript as observed in the T-DNA insertion allele samples. In addition the flowering 

time delay in eol5 plants is similar, or even stronger, than in czs-1 or czs-2 mutants (Fig. 

23A, B). Together with the high variation between the only two available biological eol5 

replicates, this suggests that there might be a technical problem with these samples. The 

experiment will be repeated with new cDNAs to clarify this matter. Investigation of 

cDNAs obtained from adult tissues, harvested seven days after shift to long days, did not 

reveal an upregulation of FLC in czs mutants. Instead an extremely high variability, also 

between biological replicates, was observed. This may reflect the big changes in FLC 

levels that occur at the time of floral transition (Searle et al., 2006). Whether FLC 

expression is still upregulated in czs mutants at later stages of plant growth, would have to 

be addressed by analyzing samples that have not been shifted to long days.  

4.2.3.3. A method of action hypothesis for CZS  

A mutation in the CZS gene leads to derepression of target genes, causing the described 

phenotypic alterations in AM initiation and flowering. FLC transcript could be shown to be 

upregulated in czs mutants by real-time PCR, thus constituting a direct or indirect target of 

CZS. Recent results suggest that the process of AM formation and flowering time control 

may be linked. Mutant analysis of yab1 or rax1 revealed that AM formation defects only 

appear in a short day dependent manner (Müller et al., 2006; Yang, 2007). Also crosses 

with different wild Arabidopsis accessions showed lateral bud formation failures coupled 
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to delayed floral transition, with QTL analyses indicating the involvement of FRI and FLC 

loci (X. Huang, B. Schäfer, personal communications). The resulting hypothesis is that 

FLC controls both AM initiation and floral transition.  

To test this idea, FRI overexpressing plants were analyzed. Because of a deletion in the 

FLC activator FRI, FLC levels are strongly reduced in Col (Johanson et al., 2000). In 

contrast, the FRI FLC line, carrying an introgression of the active FRI allele from the Sf-2 

accession, has increased FLC levels. Analysis of FRI FLC plants revealed defects in lateral 

bud formation in the lower rosette (Fig. 33), suggesting an involvement of FLC in the 

process of AM formation in Arabidopsis.  

 

Taking together all available data the question may be addressed: Can the hypothesized 

function of FLC as a negative regulator of branching explain observed czs mutant 

phenotypes? The repressive factor causing the observed AM defects has to fulfill certain 

characteristics inferred from mutant phenotypes.  

(1) Its level of activity is declining during growth in long days, as czs single mutants only 

exhibit defects in the lower half of the rosette (Fig. 22). Also eol5 las double mutants do 

not show defects in long days, indicating that the repressive factor is not active any more 

during cauline leaf development in long days.  

(2) The repressive factor retains a certain activity during growth in short days and 

decreases after onset of flowering. This is deduced from the defects of eol5 plants, which 

are also observed in younger rosette leaf axils when grown in short days (Fig. 31B). 

Additionally, if eol5 las plants do develop buds leading to intermediate phenotypes, these 

usually appear in the uppermost cauline leaf axils (Fig. 19). Furthermore, in eol5 las 

populations flowering in short days, the later - or more slowly - flowering plants show a 

tendency to form more axillary buds (Fig. 23). Hence, after a slow transition to flowering 

the repressor may have reached lower levels when cauline leaves are formed.  

(3) The repressive factor seems to decrease continuously during plant development, as 

phenotypic deviations in all conditions and zones tend to be stronger in older leaf axils. 

Also defects in flower development observed in eol5 las plants appear in the early phase of 

flower formation (Fig. 13A).  

 

It has to be added that the extent of phenotypic deviations observed in eol5 las mutants is 

very weak when plants are shifted early. Full penetrance is only achieved when plants are 

shifted after 5-6 weeks (Clarenz, 2004). Yet eol5 single mutants do reveal defects in AM 



Discussion 

107 

formation during early plant growth. This information is not easily integrated into a model 

of repressor action and may be a result of slower floral induction in younger plants, leading 

to a downregulation of the repressor before cauline leaves are formed. However, this 

hypothesis requires experimental validation.  

 

The description of this repressive factor is to a large degree in accord with previous 

knowledge about FLC. FLC activity is generally decreasing during the life of a plant. In 

long day conditions, FLC activity drops after some time (1-2 weeks depending on 

conditions and ecotype) below a threshold to release repression of floral activators (Searle 

et al., 2006). Schmid et al., (2003) demonstrated that FLC levels decrease after a shift to 

long days, which is also part of the postulated characteristics of the repressive factor.  

On the other hand, FRI FLC lines display a much more delayed flowering than eol5 lines, 

yet side shoot defects are more pronounced in eol5. These results indicate that FLC may 

cause part of the effect but cannot serve to explain the complete phenotypic alterations. 

Yet, matters are further complicated as FLC is strongest expressed in the shoot apex 

(Searle et al., 2006) but also active in other parts of the plant. The function of FLC in 

leaves or in the apex is to some degree different, inhibiting flowering either by mainly 

repressing FT or SOC1 (Searle et al., 2006). Hence, a misexpression of FLC in the apex 

could still be alone causative for the observed effects on AMs, without causing a strong 

delay in flowering.  

However, trying to explain all observed phenotypes with the actions of one factor surely 

does not reflect the complexity of the regulatory networks involved. FLC is currently 

believed to be regulated by more than 20 genes (Farrona et al., 2008). Additionally, there 

are four FLC paralogs (Ratcliffe et al., 2003) and redundancy is also observed in many 

factors regulating, interacting with, or being regulated by FLC. In this light FLC may be 

considered a place holder or an indicator for the complex activities of the network 

controlling flowering as well as AM development.  

Not to forget that the involvement of other deregulated genes is equally likely, even though 

no candidates have been shown to be deregulated yet. Interactions of FLC and eol5 will be 

investigated in eol5 flc double mutants and eol5 FRI FLC plants. Vernalization 

experiments may also confirm the dependency of the eol5 phenotype on FLC.  
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4.2.4. Findings from the analysis of CZS homologs  

In order to reveal a possible general role of SET domain proteins or SET containing 

complexes on branching, homologs of CZS were investigated. Mutations in the close CZS 

homologs SUVH1, SUVR1, and SUVR3 did not expose any defects in AM formation. So 

far no indications for a global role of these related SET domain genes could be found, 

supporting the idea of a unique function of CZS, endorsed by the unique protein domain 

structure.  

Mutant analysis of the interaction partner SWP1 gave indications for a weak AM formation 

defect, supporting a common function in a repressive complex. Crosses have been initiated 

to check whether a mutation in SWP1 also enhances las phenotype. 

 

Furthermore, PcG complex mutants have been investigated for two reasons. Firstly, 

because CLF, SWN, and MEA are the most studied and understood SET domain proteins, 

and secondly, due to the observation by Daniel Schubert that vrn2 emf2 PcG mutants 

display axillary bud formation defects. Analysis of clf or swn single mutants did not 

disclose a specific role in AM development. vrn2 emf2 double mutants, on the other hand, 

displayed a strong AM formation defect, as bud formation is only supported in the lower 

rosette and some later cauline leaves (Fig. 31). This phenotype is somewhat reminiscent of 

filamentous flower mutants (Yang, 2007). fil-8 plants also show complete bud formation in 

the lower rosette and increasing defects in older leaf axils. This is in contrast to most other 

mutants, in which AM formation is compromised most in the lower rosette leaf axils.  

emf2 mutants flower very early leading to small, dwarfed plants (Chanvivattana et al., 

2004), while vrn2 single mutants are rather late flowering. emf2 vrn2 double mutants 

display a combination of both single mutant phenotypes. Bolting starts later than in emf2 

plants but earlier than in the wild-type. Intriguingly, bolting and initiation of floral 

meristems appear uncoupled, demonstrated by the immense number of cauline leaves 

which are formed (Fig. 31).  

A similar uncoupling has been reported from leafy (lfy) mutants (Schultz & Haughn, 

1991). LFY acts to confer floral identity in concert with SOC1, which is a direct target of 

FLC repression (Farrona et al., 2008). Since VRN2 has been shown to be necessary for the 

stable repression of FLC upon vernalization, it is tempting to speculate that VRN2 also 

negatively influences FLC levels in non-vernalized Col plants. The vrn2 mutation was 

actually reported not to affect flowering in long days (Gendall et al., 2001), yet FLC levels 
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may still be altered under shift conditions. This could serve to explain the moderate delay 

in flowering and the minor defects in AM formation in the rosette. In the emf2 vern2 

double mutant, epigenetic regulation is further disrupted resulting in strong defects in AM 

formation and substantial difficulties in producing floral meristems. This again fits to the 

hypothesis of FLC deregulation and subsequent SOC1 repression.  

 

The hypothesis of FLC being the repressor active in czs mutants and also necessary for 

floral identity is also supported by the observation that plants shifted from short days to 

long days have more cauline leaves than long day grown plants. As described above, the 

repressor acting in czs mutants is downregulated during vegetative growth in long days. If 

this repressor is FLC and FLC is also involved in providing floral identity owing to SOC1 

regulation, this would explain the low number of cauline leaves and absence of AM defects 

in these cauline leaf axils in long day grown plants. In this case more cauline leaves would 

be expected to form in eol5 mutants, which is observed in long days (Fig. 22, Fig. 23B), 

but not in shift conditions (Fig. 19, Fig. 20).  

 

Preventing further overinterpretations, high FLC transcript abundance first has to be 

experimentally confirmed in vrn2 and emf2 vrn2 mutants. As emf2 vern2 plants show a 

range of pleiotropic phenotypes many other factors are expected to be deregulated, thus, 

FLC may only play a minor role in the observed phenotypic alterations. The presented “out 

of FLC theory” reducing the multitude of observed phenotypes down to one central 

regulatory factor, surely does not represent a full explanation. Rather, this first concept is 

to be expanded and modified and may be used as a starting point to develop hypotheses 

that can be experimentally validated.  

4.2.5. Putative biological role of interactions between fl oral 

induction pathways and AM formation control 

A correlation between late flowering and reduced AM formation has been reported on 

several occasions (Kalinina et al., 2002; Clarenz, 2004; Müller et al., 2006; Yang, 2007; 

Wang et al., 2009; B. Schäfer, personal communication; X. Huang, personal 

communication). Current results indicate that FLC may be the missing link connecting AM 
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development and flowering time control. Hereupon the question arises why is flowering 

time and lateral bud initiation based on same genetic regulatory pathway?  

Plants obviously require active development of axillary meristems upon flowering, as 

flowers are a type of axillary meristem (Long & Barton, 2000), yet these processes 

represent an unlikely couple: on the one side flowering time a tightly regulated process 

with ample adaptive variations between accessions, as it is of vital importance for 

reproductive success. On the other side: the process of AM initiation, which does not 

respond to environmental cues and is not varying between accessions, as most wild-type 

Arabidopsis accessions form buds in all relevant axils.  

 

Currently two hypotheses provide a possible explanation why flowering and AM formation 

are linked.  

The first idea interprets this linkage as a relict from a previous perennial plant 

development. The perennial life history has arisen independently many times (Thomas et 

al., 2000) and occurs in different genera of the Brassicaceae (Beilstein et al., 2006). A 

recent study by Wang et al., (2009) showed that in Arabis alpina the FLC homolog 

PERPETUAL FLOWERING1 (PEP1) regulates flowering and lateral meristem 

development simultaneously. During vernalization PEP1 levels decrease causing first: 

transformation of all vegetative to floral meristems, and second: AM initiation in axils, in 

which previously no axillary shoot development was visible. These new meristems 

continue to grow vegetatively, thereby replacing those that switched to floral development, 

supplying new shoots for the next season. PEP1 levels increase again with time and the 

process reiterates upon the next vernalization event, generating new flowers and new 

lateral meristems. This connection, desired for perennial plants, may still be present in 

Arabidopsis, leading to the observed link between the two traits, mediated by FLC. The 

identification of a recent, perennial ancestor of Arabidopsis would provide support for this 

theory.  

 

Another hypothesis is based on the concept that AM initiation is dependent on a general 

lateral meristem activity.  

The idea originates from an observation from branched 1 (brc1) mutants, published by 

Aguilar-Martinez et al., (2007). brc1 mutant plants show no apical dominance, as all 

lateral buds grow out, but also AMs are formed in axils where they do not appear in Col 

wild-type, like cotyledons and early true leaves. This indicates that AM initiation and bud 
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outgrowth are not, as previously assumed, separate mechanisms. This leads to the 

postulation of a “lateral meristem vigor”, a force controlling AM initiation and the pace of 

bud development, as well as later bud outgrowth.  

 

Such a lateral meristem vigor could provide an explanation for the las mutant phenotype, 

which exhibits AM initiation during reproductive development but not during vegetative 

phase. The main function of LAS is probably to keep cells in a competent, undifferentiated 

state. Thereby, LAS could provide an extended time window for AM initiation in axil 

tissues. Lateral meristems formed during the vegetative phase have a low lateral meristem 

vigor, initiating and developing slowly. Hence, if the time window for this development is 

closed too early (as in las) axillary cells undergo differentiation and AM formation is 

aborted. The onset of flowering increases the pace of AM formation in Arabidopsis, 

leading to earlier and faster bud development and mostly immediate outgrowth. Therefore 

these meristems can be assigned a high lateral meristem vigor. As these fast growing 

meristems do not require a large time window for development they also develop in las 

mutant plants.  

 

Upon transition to flowering Arabidopsis requires more active, quickly developing 

meristems in the axils of late rosette and cauline leaves, explaining why lateral meristem 

vigor may be under the control of factors regulating floral transition like FLC. As the 

lateral meristem vigor also promotes AM initiation this may serve to explain defects 

caused by the FLC overactivity in FRI FLC lines or czs mutants. In this light it seems 

conceivable that CZS may act as a repressor of FLC, thereby controlling floral transition 

and AM initiation at the same time.  
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5. Contributions of co-workers to this project 

The construct pES44 was cloned by Elisabeth Schäfer, line selection and primary analysis 

was carried out by Andrea Eicker.  

pAE50 and pAE51 have previously been analyzed in detail and were used here as controls 

(Eicker, 2005). 

pAE70 and pAE84 were previously only roughly analyzed by decapitation, followed by 

examination of side shoot outgrowth (Eicker, 2005).  

pAE123, pAE125, pAE127, and pAE128 were designed and cloned by Andrea Eicker, 

who also produced T1 plants.  
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Abstract 

Aerial architecture of flowering plants is largely based on the activities of the shoot apical 

meristem and axillary meristems (AM), which are initiated in the axils of leaves. The 

LATERAL SUPPRESSOR (LAS) loss-of-function mutant is characterized by a lack AM 

development during the vegetative growth phase, identifying LAS as a key regulator of this 

process. LAS is expressed in a very specific band-shaped domain at the adaxial side of leaf 

primordia, the site of later formation of AMs. In order to understand how this specific 

expression pattern is established, and to be able to subsequently address the question which 

factors control LAS, the LAS promoter was analyzed in detail in this work.  

Complementation of the las-4 phenotype with various promoter deletion constructs 

revealed that less than 117 bp 5’ of the transcription start are necessary for gene function. 

However, the ability to complement is lost when constructs harbor less than 3547 bp of 3’ 

sequences. The importance of the 3’ region is emphasized by results showing that 

complementation is still achieved if the 5’ promoter is replaced by a minimal 35S promoter 

or a PISTILLATA (PI) promoter fragment, which does not confer expression in the apex. In 

both cases visualization of expression profiles using promoter GUS constructs showed 

specific expression in axils of leaves and flowers, alike the endogenous LAS promoter 

activity. In summary an LAS 3’ promoter element, extending from bp 3239 to 3547 behind 

the ORF, was found to be necessary for complementation. It is tempting to speculate that it 

is this element, which causes the highly specific LAS expression pattern.  

 

A previous las-4 second site modifier screen led to the identification of the new regulator 

of AM development ENHANCER OF LATERAL SUPPRESSOR 5 (EOL5). The eol5 las-4 

double mutant was identified owing to the lack of AM formation in cauline leaf axils. 

Additionally, eol5 las-4 plants could be shown to exhibit leaf fusions and defects in 

meristem maintenance and floral primordia development. The gene underlying the eol5 

mutation could be identified by map based cloning as CZS, a putative histone methyl 

transferase, previously shown to be involved in the epigenetic regulation of FLOWERING 

LOCUS C (FLC) and displays a mild delay of flowering. Complementation with an 

endogenous pCZS::CZS construct led to a recovery of the ability to form axillary shoots in 

cauline leaf axils, likewise an allelism test showed that the T-DNA insertion alleles czs-1 

and czs-2 are allelic to eol5. However, the single mutant phenotype of eol5 is more 
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pronounced, leading to a lack of AM formation in most rosette leaf axils, whereas czs-1 

and czs-2 plants only exhibited few barren axils in the lower rosette. Accordingly, the 

delay of flowering observed in long day conditions was most distinct in eol5 plants.  

To address the question which genes are regulated by CZS, the expression of various 

candidates was compared between mutants and wild-type by real-time PCR. FLC could be 

shown to be upregulated in czs mutants. Analysis of FRI FLC plants, which strongly 

express FLC, revealed side shoot development defects, suggesting that FLC is involved in 

the process of AM formation. This indicates that similar mechanisms regulate lateral 

meristem development and flowering, thus the AM initiation defects observed in czs 

mutants are likely to be caused by the upregulation of FLC.  
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Zusammenfassung 

Die oberirdische Architektur von Samenpflanzen wird durch die Aktivitäten des 

Sprossapikalmeristems und der Achselmeristeme bestimmt, die in den Achseln aller 

Blätter angelegt werden. Die lateral suppressor (las)-Mutante in Arabidopsis ist 

gekennzeichnet durch das Ausbleiben der Achselmeristemanlage während der vegetativen 

Entwicklung. Dies zeigt, dass LAS eine zentrale Rolle in der Regulation von 

Lateralmeristemen spielt. LAS wird in einer sehr spezifischen Domäne an der adaxialen 

Seite von Blattprimordien exprimiert, wo später Achselmeristeme gebildet werden. Um zu 

verstehen wie dieses Expressionsmuster entsteht, und um später Regulatoren von LAS 

identifizieren zu können, wurde in dieser Arbeit eine detaillierte Promotoranalyse 

durchgeführt.  

Eine Komplementation des las-4 Phänotyps mit verschiedenen Promotor-

Deletionskonstrukten zeigte, dass weniger als 117 bp im 5’-Bereich des 

Transkriptionsstarts für die Genfunktion notwendig sind. Es wurde jedoch keine 

Komplementationsfähigkeit mehr festgestellt, wenn die Konstrukte weniger als 3547 bp 

der 3’-Sequenzen enthielten. Die Bedeutung der 3’-Region wird dadurch verdeutlicht, dass 

eine Komplementation auch dann erreicht werden kann, wenn der 5’-Promotor vollständig 

durch einen 35S CaMV Minimalpromotor oder durch ein PISTILLATA (PI)-

Promotorfragment ersetzt wird, welche selbst keine Expression im Apex hervorrufen. In 

beiden Fällen zeigte eine Visualisierung des Expressionsprofils mittels Promotor-GUS-

Konstrukten eine spezifische Expression in den Achseln von Blättern und Blüten, 

vergleichbar mit der endogenen LAS-Promotoraktivität (RNA in situ Hybridisierung). 

Zusammenfassend konnte ein LAS-Promotorbereich identifiziert werden, der 3235 bis 

3547 bp hinter dem offenen Leseraster des LAS-Gens liegt und für die 

Komplementationsfähigkeit notwendig ist. Die Vermutung liegt nahe, dass dieses 

Promotorelement, unabhängig von anderen Promotoren in der Umgebung, das spezifische 

LAS-Expressionsmuster hervorruft.  

 

In einer früheren Durchmusterung einer Population mutagenisierter las-4-Pflanzen konnte 

der neue Regulator der AM-Entwicklung, ENHANCER OF LATERAL SUPPRESSOR 5 

(EOL5), gefunden werden. Die eol5 las-4 Doppelmutante hat die Fähigkeit Seitentriebe in 

den Achseln von Stängelblättern anzulegen verloren und zeigt Fusionen von Blättern sowie 
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Defekte in der Erhaltung des Sprossapikalmeristems and der Bildung von 

Blütenprimordien. Das der eol5-Mutation zugrunde liegende Gen konnte durch 

markergestützte Kartierung als CZS identifiziert werden. Vorangegangene Arbeiten 

zeigten, dass CZS wahrscheinlich eine Histonmethyltransferase kodiert, die an der 

epigenetischen Regulation von FLOWERING LOCUS C (FLC) beteiligt ist.  

Eine Transformation der eol5 las-4-Mutante mit einem pCZS::CZS-Konstrukt führte zu 

einer partiellen Komplementation des Defektes der Seitentriebbildung. Außerdem konnte 

in einem Allelietest festgestellt werden, dass eol5 und die T-DNA-Insertionsallele czs-1 

und czs-2 allelisch sind. Allerdings zeigte die eol5-Einzelmutante, mit dem Fehlen fast 

aller AM in der vegetativen Phase, einen deutlich stärker ausgeprägten Phänotyp als czs-1 

und czs-2-Pflanzen, in denen nur einzelne Achseln im unteren Bereich der Blattrosette 

betroffen waren. Ebenso konnte in eol5-Pflanzen die deutlichste Verschiebung des 

Blühzeitpunktes beobachtet werden.  

Um die Frage zu beantworten, welche Gene von CZS reguliert werden, wurde die 

Expression verschiedener Kandidatengene in Wildtyp und Mutanten mit Hilfe von 

Echtzeit-PCR verglichen. Hier konnte gezeigt werden, dass die FLC-Transkription in czs-

Mutanten erhöht ist. Eine Analyse von FRI FLC-Pflanzen, in denen die FLC-Expression 

deutlich verstärkt ist, offenbarte Defekte in der Achselmeristemanlage, die belegen, dass 

FLC eine Rolle in der Achselmeristementwicklung spielt. Dies führt zu der Hypothese, 

dass die Lateralmeristementwicklung und die Regulation des Blühzeitpunktes einem 

gemeinsamen Mechanismus unterliegen. Daraus ergibt sich, dass die in czs-Mutanten 

beobachteten Defekte der AM-Initiation möglicherweise auf eine Deregulierung von FLC 

zurückzuführen sind.  
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