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1.1 INTRODUCTION 

Coastlines constitute the interface of marine and terrestrial environments. About 50 % of the 

human population lives within a distance of < 60 km to the coast (WOODROFFE 2003, BIRD 2008). 

Low-lying coastal regions below the 10 m contour line represent the living space for 10% of the 

human population (MCGRANAHAN et al. 2007, FITZGERALD et al. 2008). Within the context of the 

ongoing debate of global climate change, a minimum of 634 million people are therefore directly 

affected by the related coastal changes. Recently, the manifold effects of marine and coastal 

processes on human population have dramatically been demonstrated by devastating extreme 

wave events, such as the December 26th, 2004 Indian Ocean Tsunami (IOT) or hurricane Katrina 

in 2005. 

Since 1972, the UNESCO and the International Union of Geological Sciences (IUGS) operate and 

support numerous geo-scientific projects within the International Geological Correlation 

Programme (IGCP). According to the Homepage of the IGCP 495 Project “Quaternary Land-Ocean 

Interactions: Driving Mechanisms and Coastal Responses” (http://www.geography.dur.ac.uk/ 

projects/igcp495/AbouttheProject/NewChallenges/tabid/1775/Default.aspx), “Coastal change in 

the future will be driven by a combination of local, regional and global processes. [It is therefore 

important]…to better understand these processes, including defining the potential driving 

mechanisms behind future sea-level change and shoreline evolution […] at regional to local scales. 

This will include a focus on palaeo-extreme events, such as storm surges, tidal surges and 

tsunamis.” Therefore, in addition to the interaction of gradual sea level change and the related 

coastal response, one of the main objectives in coastal research is to decipher the contribution 

of extreme wave events to coastal change throughout time. 

The devastating effects of tsunami events on coastal configuration particularly are documented 

by the IOT (DAS GUPTA 2006, MAMO et al. 2009, PARIS et al. 2009, LIEW et al. 2010), which 

dramatically changed public awareness of tsunami hazards all over the world. However, the 

event not only showed the catastrophic wave-induced energy of tsunamis and its potential for 

destruction. In particular, it demonstrated the need for intensified geo-scientific research on 

tsunami events and on extreme wave events (MAMO et al. 2009). Comprehensive knowledge 

about comparable tsunami events in the past is necessary for the estimation of tsunami hazard 

in a distinct area and for effective coastal protection measures. Obviously, reliable information 

on frequency and magnitude of tsunamis are inevitable for an appropriate hazard assessment 

(BONDEVIK 2008). Besides the analysis of historical accounts, geo-scientific investigations on the 

imprint of extreme wave events on near-coast geological archives are considered as one of the 

most promising approaches in palaeo-tsunami and palaeo-event research, since they are capable 

of extending length and chronological resolution of the record well beyond that of the historical 

period (CISTERNAS et al. 2005, DOMINEY-HOWES et al. 2006, BAHLBURG & WEISS 2007, DONNELLY & 

WOODRUFF 2007, SATAKE & ATWATER 2007, MAMO et al. 2009). For the IOT, this fact has recently 

been demonstrated by MONECKE et al. (2008) and JANKAEW et al. (2008). In this context, the 

differentiation of different extreme wave events – usually storm and tsunami – still represents 

one of the main problems in palaeo-event research. Hence, geo-scientific investigations on event 

deposits promise to improve the available research toolkit (MAMO et al. 2009).  
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From a geomorphological point of view, coastlines are considered to be considerably young 

morphological features since they formed due to the global eustatic sea level rise after the last 

glacial maximum. Moreover, they are subject to continuous morphological changes depending 

on the interacting effects of their controlling mechanisms, such as sediment supply, sea level 

fluctuations and tectonic movements (WOODROFFE 2003, MORTON 2009). In addition, the 

occurrence of extreme wave events, such as winter storm surges, tropical cyclones and tsunamis, 

have induced considerable changes in coastal configuration, although affecting the coastline no 

longer than a few days or hours (e.g. ANDRADE 1992, COCH 1994, DAWSON 1994, MORTON & 

SALLENGER 2003, WOODROFFE 2003, WANG & HORWITZ 2007, CHOOWONG et al. 2009, LIEW et al. 2010). 

For instance, several devastating storm surges, such as the 2nd “Marcellusflut” in 1362 and the 

“Burchardiflut” in 1634, considerably changed coastal configuration (for instance the evolution 

of the Jadebusen) in northern Germany (BEHRE 2004, BIRD 2008). However, only exceptional storm 

surges are reported to involve the deposition of washover sediments in backbeach areas and/or 

the breakdown or movement of entire barrier beaches. From a geomorphological point of view, 

palaeo-tsunami and palaeo-event research is thus crucial not only in terms of hazard estimation 

– it is also important (i) to document event related changes in shoreline evolution, (ii) to 

understand coastal responses on extreme wave events, and (iii) to decipher the influence and 

morphodynamic effects of such events on coastal systems throughout time (GOFF et al. 2009, 

MAMO et al. 2009, PARIS et al. 2009, WONG 2009). 

During the last 8 years, comprehensive geo-scientific investigations on the evolution of coastal 

Akarnania (NW Greece) have been carried out, dealing with its palaeogeographical evolution and 

its geoarchaeological background (MAY 2006, VÖTT et al. 2006a, 2006b, 2006c, 2007b, 2007c, 

BROCKMÜLLER et al. 2007, MAY et al. 2008a, SCHRIEVER 2007). Within the course of these studies, 

investigations have been carried out in the Lefkada – Preveza coastal zone as well. Here, as also 

documented for numerous coastal areas in the Aegean (e.g. KRAFT et al. 1980, BRÜCKNER et al. 

2005, VOUVALIDIS et al. 2005) and western Greece (e.g. KRAFT et al. 1977, BESONEN 1997, MAY 2006, 

VÖTT 2006, 2007, VÖTT et al. 2007b, 2007c, ENGEL et al. 2009b), coastal morphology implies 

widespread palaeogeographical changes throughout time. However, the investigations revealed 

several anomalies in the sedimentary record which were related to the effects of extreme wave 

events. According to the investigations of VÖTT et al. (2006d, 2007a, 2008, 2009a, 2009b) and 

MAY et al. (2007, 2008b), the study area thus was also affected by extreme wave events which 

have contributed to the evolution of the present coastline. The interaction of long-term, gradual 

coastal processes and sudden, impulsive coastal changes during the coastal evolution, the latter 

representing singularities in the geomorphic system (SCHEIDEGGER 1994), and in particular the 

contribution of tsunami events to coastal changes in the study area is thus evident and worth 

analyzing. 

1.2 STUDY AREA 

1.2.1 TECTONIC SETTING 

The area between Lefkada Island and Preveza at the entrance to the Ambrakian Gulf (NW 

Greece) is exposed to the northern part of the Hellenic Arc (Fig. 1-1 a). Here, the Adriatic  
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microplate is subducted by the Aegean microplate, resulting in the formation of the 

accompanying Hellenic Trench and a typical volcanic arc in the Aegean Sea to the north. 

According to COCARD et al. (1999), the overriding Aegean microplate is moving south-westwards 

by 35 mm/yr. This motion is accompanied by a 30° clockwise rotation and a separation of the 

Akarnanian block from the Greek mainland (Fig. 1-1 b). In the study area, numerous fault lines 

result from the related high crustal stress and are responsible for the given topographical 

preconditions (Fig. 1-1 b). 

The Cefalonia transform fault (CF) and the Lefkada transform fault (LF), situated west of the 

Ionian Islands Cefalonia and Lefkada, connect this zone of subduction with an area of continent-

continent collision beginning off the southern epirotic coast (Fig. 1-1 a). The CF and the LF, as its 

northern prolongation, show a remarkably high seismic activity and have been responsible for 

numerous strong earthquakes during history (COCARD et al. 1999, LOUVARI et al. 1999, SACHPAZI et al. 

2000, PAPADOPOULOS et al. 2003, KARAKOSTAS et al. 2004, BENETATOS et al. 2005, KOKINOU et al. 2006). 

Therefore, the study area belongs to the seismically most active regions of the Mediterranean. 

According to SOLOVIEV (1990) and PAPAZACHOS & DIMITRIU (1991), it owns a high tsunamigenic 

potential. 

1.2.2 GEOGRAPHICAL CONTEXT 

From a topographical point of view, the study area comprises the coastal area between the 

northern point of Lefkada Island and the southern part of Aktium Headland (Fig. 1-2), situated in 

NW Greece. Lefkada Island is separated from the Greek mainland of Akarnania by the shallow 

lagoonal environment of the Lefkada Lagoon and the Sound of Lefkada. This shallow lagoonal 

environment is sealed off from the open Ionian Sea by an extended barrier beach system the 

base of which is made up of beachrock down to approximately 12 m below present mean sea 

level (b.s.l). To the north-east, the barrier beach forms a spit, extending into the southern part of 

the Bay of Aghios Nikolaos. Here, the recent beach ridge is shifted eastwards and thus separated 

from its beachrock base. This beachrock base – the so-called Plaka – is partly submerged and 

represents a reef-like palaeo-coastline (Fig. 1-2). To the north, the beachrock sequence is 

fragmented. However, it protects the Bay of Aghios Nikolaos from the open sea and considerably 

reduces wave energy.  

To the east, the Bay of Aghios Nikolaos is characterized by a funnel-like topography and a 

remarkable depression in its central part. The northern part of the Bay of Aghios Nikolaos is 

bordered by the south-western coast of Aktium Headland, which is surrounded by the Strait of 

Preveza to the north and the Ambrakian Gulf to the east. The Phoukias spit, an accretional sand 

spit, is situated in the south-western part of Aktium Headland (NW Greece). To the south, the 

spit extends several hundred meters into the Bay of Aghios Nikolaos. 

The Lefkada Lagoon is crossed by a narrow artificial channel of ~ 5 m water depth from north to 

south, which was excavated in the 19th and 20th centuries. Outside the channel, the lagoon is 

characterized by a water depth between 0.1 m and 0.7 m. Here, the depositional environment is 

quiescent and characterized by partly anoxic conditions and clayey to silty sediments. Shallow 

areas periodically fall dry related to wind and tidal conditions and represent mud flats exposed 

to subaerial conditions. The lagoon is sheltered from wave activity by the extensive barrier beach 
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of the Lefkada barrier beach system, which can be divided into a western (Gyrapetra barrier 

beach) and an eastern part (Aghia Mavra barrier beach, see Fig. 1-2). 

 

Fig. 1-2: Topographical overview of the Lefkada – Preveza coastal zone. The study area comprises the 
northern part of the Lagoon of Lefkada, the Bay of Aghios Nikolaos and the southern part of Aktium 
Headland [map based on Aster satellite image 2003 (USGS), TM 1:50.000 sheets Vonitsa & Lefkada 
(HMGS), bathymetrical chart Amvrakikos Gulf (HNHS) and SRTM elevation data (NASA)]. 

For the study area the occurrence of tropical cyclones can be excluded, although initial tropical 

cyclone-like generation of storm areas is theoretically possible (EMANUEL 2005). However, strong 

winds and storms are well known in the Mediterranean, but most storm surges apparently are 

triggered by the polar jet stream, periodically affecting the area during winter (see e.g. LIONELLO 
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et al. 2006). For this reason, wave intensity, if at all, comparable to tsunamis may only be 

attained by exceptionally large winter storms.  

1.3 STUDY AIMS  

For the eastern Mediterranean and, in particular, for the Ionian Sea and the study area, a high 

seismic activity and a resulting tsunamigenic potential is evident. For the study area, 

sedimentary imprints in near-coast geological archives must be expected and have already been 

documented by previous investigations. Tsunamis are thus assumed to have contributed to the 

coastal evolution. In the context of the main objectives of extreme wave event research, the 

distinguishability of event deposits in the geological record and the evaluation of event 

recurrence rates, the present dissertation aims  

(i) to document coastal changes and the palaeogeographical context in the Lefkada – Preveza 

coastal zone, 

(ii) to detect possible event layers in the sedimentary record,  

(iii) to determine the related hydrodynamic process (tsunami/storm) which induced the event 

deposits, and  

(iv) to date the encountered event deposits and main changes in the study area’s coastal 

configuration.  
 

Thereby, it attempts 
 

(v) to verify and to decipher the influence of extreme wave events on the coastal evolution, 

and  

(vi) to determine the main reasons for the coastal changes in the study area. 

In conclusion, this study thus contributes to the detection of extreme event deposits in near-

coast geological archives and their influence on coastal change. Moreover, it provides further 

geo-scientific evidence of extreme wave event deposits and may enhance the data pool of 

palaeo-tsunami deposits.  

1.4 PALAEO-EVENT RESEARCH 

1.4.1 TSUNAMI DEPOSITS IN THE GEOLOGICAL RECORD  

Tsunami and storm waves are characterized by different hydrodynamic regimes (WEISS et al. 

2008). The term „Tsunami“ is derived from the Japanese word for harbor wave and is equally 

used for seismic sea waves since 1963. Tsunamis are “water waves with long 

wavelengths…[that]…can travel for thousands of kilometers from the disturbance area where 

they have been created with a minimum loss of energy” (HELENE & YAMASHITA 2006:  855). They 

are generated by a sudden vertical movement of the whole water column or the quick 

replacement of large amounts of water (BRYANT 2001). In contrast to wind generated waves, 

tsunamis have wavelengths of up to several hundred kilometers and are characterized by 

periods – the time between the passing of two wave crests  – of 1.6 to 30 minutes (BRYANT 2001) 

or 10 to 120 minutes (DAS GUPTA 2006), respectively. Highest velocities can reach 160 to 250 m/s 
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in the open sea, but speed of wave propagation is reduced to 85 m/s in shelf regions and ca. 

10 m/s onshore due to the increasing ground friction of the rising subaqueous topography. Here, 

the resultant deceleration and the accompanied orbital flattening of the wave results in 

diminished wavelengths and increasing wave heights, whereas the periodicity is not affected. In 

contrast, storms typically comprise a storm surge with superimposed wind waves (WEISS et al. 

2008). Storms are indicated by smaller wave heights, shorter periods, higher frequency of 

inundation pulses and overall lower energy (SWITZER & JONES 2008a). The differences in the 

hydrodynamic characteristics of storm and tsunami are assumed to involve differences in the 

sedimentary record (BAHLBURG & WEISS 2007). 

First sedimentary studies about tsunami imprints in geological archives were carried out in the 

late 1980s (ATWATER 1987, DAWSON et al. 1988). Since then, two main types of extreme wave 

event deposits have been described: (i) fine grained allochthonous marine sediments found in 

near-coast geological archives, such as lagoons or coastal swamps (e.g. DAWSON et al. 1988, 

CLAGUE & BOBROWSKI 1994, BONDEVIK et al. 2005, ENGEL et al. 2009a, VÖTT et al. 2009a, 2009b), and 

(ii) wave-emplaced block deposits along rocky shorelines (e.g. NOTT 1997, 2003, MASTRONUZZI & 

SANSO 2000, SCHEFFERS & KELLETAT 2005, GOTO et al. 2007, 2009, SCHEFFERS & SCHEFFERS 2007, MAOUCHE 

et al. 2009). Submarine tsunami deposits have been described for instance by REINHARDT et al. 

(2006) and GOODMAN-TCHERNOV et al. (2009) from the coasts of Israel. The IOT considerably 

increased research on extreme wave events and numerous studies on both storm and tsunami 

events have been published (MAMO et al. 2009). However, in many cases the interpretation of 

palaeo-event deposits and the determination of the event source remains problematic, and only 

the marine origin and the high-energy nature of the deposit can be proved. Therefore, a vivid 

discussion on the distinguishability between tsunami and storm deposits in the geological record 

has evolved (e.g. NOTT 1997, 2003, NANAYAMA et al. 2000, SCHEFFERS & KELLETAT 2001, KORTEKAAS 2002, 

GOFF et al. 2004, WILLIAMS & HALL 2004, SCHEFFERS 2005, ROBINSON et al. 2006, KORTEKAAS & DAWSON 

2007, MORTON et al. 2007, 2008a, NANAYAMA 2008, SPISKE et al. 2008, SWITZER & JONES 2008a, 2008b, 

SWITZER & BURSTON 2010) and several authors summarized sedimentary characteristics of both 

storm and tsunami deposits existing to date (e.g. DOMINEY-HOWES et al. 2006, DAWSON & STEWART 

2007, KORTEKAAS & DAWSON 2007, MORTON et al. 2007, SUGAWARA et al. 2008, SWITZER & JONES 2008a, 

MAMO et al. 2009). 

Most depositional signatures in extreme wave event deposits have been found for both tsunami 

and storm deposits. Thus, if encountered in a potential event deposit, many sedimentary 

features are not capable to appropriately distinguish between tsunami and storm and do not 

represent independent, diagnostic criteria for the determination of the related hydrodynamic 

process (SWITZER & JONES 2008a). Nevertheless, according to MORTON et al. (2007) and KORTEKAAS & 

DAWSON (2007), rip-up clasts and/or mud clasts from the eroded underlying strata occur in 

tsunami deposits but have not been detected in most storm sediments. This is also true for mud 

drapes separating individual layers within an event deposit, which are interpreted to form due to 

decreasing flow velocities subsequent to a major inundation impulse during a tsunami event 

(MORTON et al. 2007, KORTEKAS & DAWSON 2007). Additionally, most storm deposits are reported to 

be characterized by a sequence of numerous thin layers or laminae, typically more than 15, 

consisting of sandy material and showing fining upward (normal grading) or coarsening upward 

(inverse grading) sequences. In contrast, considerably fewer subunits are reported from most 
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tsunami deposits (MORTON et al. 2007, SWITZER & JONES 2008a, WILLIAMS 2009, NICHOL et al. 2007, 

TUTTLE et al. 2004). More subunits and/or lamination within tsunami sediments for instance have 

been described by PARIS et al. (2007), who examined sediments of the IOT and attribute these 

findings to the effects of backwash and/or waning phases during the event. Recently, promising 

results also have been presented by REINHARDT et al. (2006) and DONATO et al. (2008), the latter 

investigating known tsunami and storm deposits from Oman and focusing on the macrofaunal 

and taphonomic characteristics of the sediments. According to these authors tsunami deposits 

considerably differ from storm deposits in (i) the percentage of mollusc fragments showing 

angular breaks, (ii) the percentage of rounded and/or reworked mollusc fragments and (iii) the 

percentage of articulated bivalves within the event deposit. DONATO et al. (2008, p. 209) states 

that “it is the collection of these characters, however, that is diagnostic of a tsunami deposit 

rather than any one of these variables alone”. 

In contrast, further depositional characteristics, such as sharp erosional contacts at the base of 

an event deposit, poor and/or well sorting, normal and inverse graded sequences, a thinning and 

fining landward of event deposits as well as ostracod, diatom and foraminifera assemblages are 

considered to only prove the event-induced origin of the sediment (KORTEKAAS & DAWSON 2007, 

MORTON et al. 2007, SWITZER & JONES 2008a), due to the fact that these characteristics are all a 

product of the marine source or the high energy nature of the sediment. However, according to 

SWITZER & JONES (2008a), storm related sandy washover deposits in backbarrier environments are 

often characterized by better sorting since the material is assumed to be solely of littoral origin. 

In contrast, tsunamigenic sediments appear mixed and poorly sorted in most cases, since 

tsunami also incorporate material from both the sublittoral and littoral zone. 

Distinguishing storm generated from tsunami generated sediments, particularly documented by 

recent investigations on sandy deposits accumulated during the IOT, is still problematic and 

“remains a serious challenge” (BRIDGE 2008: 94). A number of difficulties in the interpretation of 

event deposits remain (MORTON et al. 2007, SWITZER & JONES 2008a), since the characteristics of 

each tsunami and therefore its sedimentary imprint in the geological archive and/or its effects 

on coastal morphology depend on the regional setting, comprising bathymetry, shelf- and 

coastal topography or the amount and type of available sediment. These circumstances can vary 

considerably between each affected area. Therefore, a general comparison of tsunami deposits 

from different locations and their depositional characteristics has to be carefully implemented. 

Where possible, investigations on local modern analogues, such as the sedimentary traces of 

either storm or tsunami, may be carried out (ENGEL et al. in review). Moreover, a combination of 

different characteristics and “diagnostic” criteria for tsunami may allow to “positively attributing 

a sedimentary sequence to deposition by a tsunami” (MAMO et al. 2009: 268). However, (i) 

detailed sedimentary analysis of event deposits, comprising the implementation of as many 

empirical sedimentary signatures as possible, as well as their chronological interpretation, and (ii) 

comprehensive investigations on coastal geographies and the related geomorphologic and 

geomorphodynamic characteristics of the area of interest may help to better understand the 

main characteristics of extreme wave events and their imprints in geological archives and may 

improve their interpretation (SATAKE & ATWATER 2007, MAMO et al. 2009). 



Chapter 1 – Introduction and background 

10 

 

1.4.2 SEDIMENTARY EVIDENCE FOR TSUNAMIS WORLDWIDE AND IN THE EASTERN MEDITERRANEAN 

Apart from the ongoing debate about the distinguishability of event deposits in near-coast 

geological archives, several authors presented indication for tsunami and palaeo-tsunami events 

in numerous coastal areas of the world by the detection of related sediments in geological 

archives within the last decades (DAWSON & SHI 2000, KELLETAT & SCHEFFERS 2003), for instance 

along the circum-pacific coasts (e.g. NOTT 1997, CLAGUE et al. 2000, FUJIWARA et al. 2000, GOFF et al. 

2001, PINEGINA & BOURGEOIS 2001, DAVIES et al. 2003, GELFENBAUM & JAFFE 2003, KEATING et al. 2005, 

SWITZER et al. 2005, WALLNER 2008), the Caribbean (e.g. HEARTY 1997, SCHEFFERS 2003, SCHEFFERS et al. 

2005, ENGEL et al. 2009a, in review), or the Atlantic ocean and the western Mediterranean 

(DAWSON et al. 1995, HINDSON & ANDRADE 1999, LUQUE et al. 2002, SCHEFFERS & KELLETAT 2005, 

KORTEKAAS & DAWSON 2007, REICHERTER & BECKER-HEIDMANN 2009), and especially the IOT involved a 

large number of publications on the characteristics of tsunami deposits (e.g. BISHOP et al. 2005, 

SZCZUCINSKI et al 2005, BAHLBURG & WEISS 2007, CHOOWONG et al. 2007, GOTO et al. 2007, NARAYANA et 

al. 2007, HAWKES et al. 2007, PARIS et al. 2007, SRINIVASALU et al. 2007, MORTON et al. 2008b, FUJINO et 

al. 2009, JAGODZINSKI et al 2009, PARIS et al. 2009). 

 

Fig. 1-3: Topographical overview of the central and eastern Mediterranean with geo-scientific 
findings of tsunami deposits [map based on SRTM elevation data (NASA), WORTEL & SPAKMAN 2000, 
FACENNA et al. 2001]. 

For the eastern Mediterranean, VÖTT & MAY (2009) summarized geo-scientific evidence for 

tsunamis in the recent past (see Fig. 1-3). In Greece, sedimentary evidence for palaeo-tsunami 

events first was reported from the Aegean Sea and adjacent Islands. Especially the Santorini-
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eruption, dated to ~1600 BC, was subject to geological investigations and probable related 

tsunami deposits are reported from Crete (MINOURA et al. 2000, DOMINEY-HOWES et al. 2000b, 

MCCOY & HEIKEN 2000, SCHEFFERS & SCHEFFERS 2007, BRUINS et al. 2008) and the western coast of 

Turkey (MINOURA et al. 2000), partly associated to archaeological excavation sites and 

investigations. For the Santorini tsunami, evidence is brought also by REINHARDT et al. (2006) and 

GOODMAN-TCHERNOV et al. (2009) from the Levante. According to DOMINEY-HOWES et al. (2000a), the 

1956 tsunami in the southern Aegean Sea deposited imbricated pebbles on the island of 

Astypalaea.  

Recently, KORTEKAAS (2002) and KONTOPOULOS & AVRAMIDIS (2003) gave evidence for tsunamigenic 

sediments in the Corinthian Gulf, and SCHEFFERS et al. (2008) could provide findings for palaeo-

tsunami imprints from the southern and south-western Peloponnese. For the study area, VÖTT et 

al. (2006d, 2007a, 2008, 2009a, 2009b) and MAY et al. (2007, 2008b) presented manifold 

sedimentary evidence for tsunami influence. Several studies about tsunami induced changes of 

coastal morphology, such as boulder and block accumulations along rocky shorelines 

(MASTRONUZZI & SANSO 2000, 2004, SCICCHITANO et al. 2007), washover fans (GIANFREDA et al. 2001), 

and anomalies in near-coast geological archives (DE MARTINI et al. 2003, PANTOSTI et al. 2008) also 

exist for southern and south-eastern Italy. Nevertheless, the event source of these deposits is a 

matter of discussion.  

1.4.3 HISTORICAL REPORTS ON TSUNAMIS IN THE EASTERN MEDITERRANEAN 

Besides the detection of event deposits in the geological record, information about palaeo-

events is brought by historical reports. Ancient historians like Strabo and Tukydides report on 

natural hazards, such as earthquakes, floods or landslides, that occurred during or before their 

lifetimes and which had catastrophic effects on ancient population and settlements. Some of 

these events can be ascribed to tsunamis or at least point to related tsunami generation. The 

destruction of the famous ancient city of Helike (Gulf of Corinth), 373 BC, for example is 

attributed to a strong earthquake and an accompanying major tsunami event, and several 

further tsunami events, such as the earthquake-induced tsunami 365 AD southwest of Crete, are 

reported to have catastrophically affected the eastern Mediterranean coasts (STEFANAKIS 2006, 

SHAW et al. 2008, VÖTT & MAY 2009).  

Comparable historical sources and anthropogenic records provide information about palaeo-

tsunami events since 2500 or so years (PAPAZACHOS & DIMITRIU 1991). These records have been 

summarized in tsunami catalogues, which now represent a comprehensive tsunami database for 

the last 2.5 millennia and provide information about ca. 4000 tsunami events within the last 

2000 years (SCHEFFERS & KELLETAT 2003). 

For the study area, VÖTT et al. (2006d) and FLOTH (2008) summarized available palaeo-tsunami 

data by investigating global and regional tsunami catalogues of the National and Atmospheric 

Administration (NOAA, http://www.ngdc.noaa.gov/hazard/tsu_db.shtml), the National 

Observatory of Athens (NOA, http://www.gein.noa.gr/services/tsunami.htm), the Tsunami 

Laboratory Novosibirsk (TLN, http://tsun.sscc.ru/On_line_Cat.htm), PAPAZACHOS & PAPAZACHOU 

(1997) and SOLOVIEV et al. (2000). TINTI et al. (2001, 2004) compiled the historical tsunami data for 

the entire European area and for the Italian coasts. Disregarding their intensities and the given 
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differences in their reliability, tsunami reoccurrence rates of 8-11 years can be assumed for 

western Greece according to VÖTT et al. (2006d), SOLOVIEV et al. (2000) and SCHIELEIN et al. (2007). 

For the Ionian Sea and therefore also for the broader study area, the latter authors document 

the highest frequency of historical tsunami reports within the last 2500 years (Fig. 1-4). 

 

Fig. 1-4: Historical tsunami events reported for the Ionian Sea and the study area (red label). 
Reliability of the tsunami event based on SOLOVIEV et al. (2000): 1 - questionable, 2 - possible, 3 - 
probable, 4 - reliable, 5 - definite. Depicted data is based on global and regional tsunami catalogues 
(NOAA, NOA, TLN, PAPAZACHOS & PAPAZACHOU 1997, SOLOVIEV et al. 2000) and compilations carried 
out by VÖTT et al. (2006d) and FLOTH (2008). The increase in quality and quantity of the tradition of 
events during the last 200 – 300 years is due to a more accurate recording.  

1.5 STUDY OUTLINE 

For the study area, the interaction of long-term, gradual and episodic, impulsive coastal 

processes is evident. The contribution of extreme wave events to coastal change throughout 

time is not yet well understood and may also be underestimated. Consequently, geo-scientific 

research on the evolution of coastal areas has to consider both gradual and sudden processes. 

Chapter 1 introduces the scientific background of the study and serves to clarify the relevance of 

research on extreme wave events, in particular on tsunami, within the context of coastal change. 

Without knowledge about the continuous gradual coastal processes and related coastline 

changes, the detection and the interpretation of event deposits is difficult. In turn, when 

implementing geo-scientific studies on palaeo-event deposits, the interpretation of the 

sedimentary record demands a comprehensive understanding of its (palaeo-) geographical 

context. Since the geomorphological pattern of coastal areas stores comprehensive information 

about its geodynamic evolution and the contributing morphodynamic processes, the 

geomorphological inventory of the investigated area is introduced in Chapter 2. The related 

geomorphodynamic processes, their controlling mechanisms and their interacting effects on 

coastal evolution are discussed, and coastal changes are documented in order to decipher the 

palaeogeographical context of the study area. It thereby focuses on the main geological archives 

and serves as a precondition for the following chapters by establishing the geomorphological 

framework. In Chapter 3 and Chapter 4, detailed sedimentary and geomorphological 
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investigations on fine grained sediments found in coastal geo-archives in the study area are 

presented. The investigations intend to detect possible event layers and to verify and to 

decipher a possible influence of extreme wave events on the coastal evolution. A determination 

of the main reasons for the coastal changes is attempted. Moreover, the contribution and the 

interaction of gradual and sudden geomorphodynamic changes are discussed. Thereby, the 

study aims to determine the related hydrodynamic process (tsunami/storm) which induced the 

event deposits and the related coastal changes. Where possible, dating of the main coastal 

changes, the related morphodynamic processes and possible major extreme wave events is 

presented. In Chapter 5 block deposits found in the study area, representing the second category 

of extreme wave event deposits, are described and their high energy wave origin is discussed. 

Finally, the obtained results are combined in Chapter 6, providing a synthesis.  
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2.1 STUDY BACKGROUND 

Theoretically, the evolution of landscapes relates to the dynamic equilibrium between the 

contributing geomorphic processes which tend to create a state of natural balance between 

them (SCHEIDEGGER 1994). Since coastlines are subject to continuous morphological changes this is 

also true for coastal systems tending to adjust towards or oscillate around the formation of 

coastal equilibrium conditions over greater time periods. These time scales superimpose the 

natural variability of seasonal and episodic near-shore processes and involve an equilibrium 

morphology that changes over time (WOODROFFE 2003, FITZGERALD et al. 2008). After BIRD (2008) 

equilibrium conditions depend on the considered timescale and may be of cyclic or dynamic 

nature – while cyclic equilibrium is influenced by disturbances and the subsequent return to its 

original condition, dynamic equilibrium implies changes without losing the balance between its 

driving forces. However, the balancing trend can acyclically (and/or cyclically) be disturbed by 

alterations of these morphodynamic circumstances, forcing the coastal system to a recurrent 

reorganization. Besides the interacting effects of a number of operating morphodynamic 

processes, such as sediment supply, sea level evolution and/or tectonic subsidence or uplift, they 

are exposed to storm surges and tsunami (ORFORD et al. 1991, ANDRADE 1992, WOODROFFE & NASH 

1995, MORTON & SALLENGER 2003, WOODROFFE 2003, ANDRADE et al. 2004, DAVIDSON-ARNOTT 2005, 

FITZGERALD et al. 2008, MORTON 2009). These coastal hazards can be regarded as singularities in 

geomorphic systems since they abruptly change initial conditions and involve sudden changes in 

long term behavior (SCHEIDEGGER 1994). The effects of these extreme wave events may have 

considerable influences on the coastal geomorphic system (GOFF et al. 2009, MAMO et al. 2009, 

PARIS et al. 2009, WONG 2009, LIEW et al. 2010). Up to now, the contribution of extreme wave 

events to coastal change throughout time is not well understood and may also be 

underestimated. Consequently, geo-scientific research on the evolution of coastal areas has to 

consider both long-term and episodic, impulsive littoral processes. 

The morphological pattern of coastal areas stores comprehensive information about its 

geodynamic evolution and the contributing morphodynamic processes. Geo-scientific 

investigations thus have to consider the recent geomorphodynamic and geomorphological 

situation of a study area. In turn, when implementing geo-scientific studies on palaeo-event 

deposits, the interpretation of the sedimentary record demands a comprehensive understanding 

of its geographical context. Without knowledge about the continuous gradual coastal processes 

and related coastline changes, the interpretation and even the detection of event deposits is 

difficult. 

For the Lefkada – Preveza coastal zone, comprehensive coastal changes can be inferred. 

According to the investigations of VÖTT et al. (2006, 2007, 2008, 2009), the study area not only 

experienced widespread coastal changes – it was also repeatedly affected by extreme wave and 

in particular tsunami events, which contributed to the evolution of the present coastline. The 

interaction of gradual and sudden coastal processes is thus evident for the study area. Therefore, 

within the context of coastal change in the study area, this study aims (i) to map the 

geomorphological inventory of the different geodynamic processes in the investigated area, (ii) 

to deduce the related processes and their interacting effects on coastal evolution, and (iii) to 
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discuss the contribution of gradual, long-term and episodically occurring sudden changes in 

coastal evolution. 

2.2 STUDY AREA 

The study area (Fig. 2-1) comprises the coastal zone between the northern part of Lefkada Island, 

one of the Ionian Islands, and Aktium Headland, situated south of Preveza, NW Greece. Lefkada 

Island is separated from the Greek mainland of Akarnania by the shallow lagoonal environment 

of the Lefkada Lagoon and the Sound of Lefkada. To the north-west and north, the Lefkada 

Lagoon is sealed off from the open Ionian Sea by an extensive barrier beach system. This barrier 

beach system can be divided into a western (Gyrapetra barrier beach) and an eastern (Aghia 

Mavra barrier beach) part. To the north-east, the barrier beach is forming a spit, extending into 

the southern part of the Bay of Aghios Nikolaos. 

 

Fig. 2-1: Overview of the study area, comprising the northern part of the Lefkada Lagoon and the Bay 
of Aghios Nikolaos [map based on Aster satellite image 2003 (USGS), TM 1:50.000 sheets Vonitsa & 
Lefkada (HMGS), bathymetrical chart Amvrakikos Gulf (HNHS) and SRTM elevation data (NASA)]. 

The Bay of Aghios Nikolaos is separated from the open Ionian Sea by the remains of a 

comprehensive beachrock sequence, the so called Plaka, which is partly submerged and 

fragmented. Situated in direct prolongation of the Lefkada barrier beach spit, it most likely 

represents an older part of the spit system. However, it protects the Bay of Aghios Nikolaos from 

the open Ionian Sea and considerably reduces wave energy to its leeward side. To the east, the 

Bay of Aghios Nikolaos is characterized by a funnel-like topography. The northern part of the Bay 

of Aghios Nikolaos is bordered by southern Aktium Headland, which is surrounded by the Strait 
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of Preveza to the north and the Ambrakian Gulf to the east. Beginning in the southern part of 

Aktium Headland, the Phoukias sand spit stretches several hundred meters into the central part 

of the Bay of Aghios Nikolaos. 

Situated in the north-western part of Greece, the study area is exposed to the northern part of 

the Hellenic Arc (see also Fig. 1-1a, b) where the Adriatic microplate is subducted by the Aegean 

microplate. The Cefalonia transform fault (CF) and the Lefkada transform fault (LF), situated west 

of the Ionian Islands Cefalonia and Lefkada, connects this zone of subduction with an area of 

continent-continent collision beginning off the southern epirotic coast (Fig. 1-1a). The CF and the 

LF show a remarkably high seismic activity and have been responsible for numerous strong 

earthquakes during history (COCARD et al. 1999, LOUVARI et al. 1999, SACHPAZI et al. 2000, 

PAPADOPOULOS et al. 2003, BENETATOS et al. 2005). Therefore, the study area belongs to the 

seismically most active regions of the Mediterranean. According to PAPAZACHOS & DIMITRIU (1991) 

and SOLOVIEV (1990), it thus owns a high tsunamigenic potential. 

2.3 METHODS 

For the analysis of the geomorphological situation, the related geomorphodynamic processes 

and littoral morphodynamics, the visual interpretation of satellite images, combined with field 

observations, represents a powerful tool. For the southern study area, comprising the northern 

part of Lefkada Island and the Lefkada Lagoon, satellite images and photos from 1970 (Corona 

satellite image, USGS) and 2005 (Google Earth) as well as aerial photographs from 1945 and 

1985 (HMGS) were used for multitemporal interpretation. For the northern part of the study 

area, constituted by the Bay of Aghios Nikolaos and Aktium Headland, available satellite data 

comprised the years 1970 (Corona satellite image, USGS), 1985 (aerial photograph, HMGS) and 

2003 (Google Earth). Available satellite data was georeferenced using ArcGIS (ESRI) and Global 

Mapper software. Mapping of coastal changes and geomorphological features was carried out 

using ArcGIS. Additionally, two historical maps were used for the Lefkada area, documenting the 

coastal situation in 1864 (Royal British Hydrographic Office) and between 1905 - 1913 (VON 

MARÉES 1907, VON SEIDLITZ 1927). Geomorphological field survey was carried out along the 

shorelines of the study area during several summer field campaigns. Elevation transects were 

realized to study morphological characteristics of the Phoukias spit using a Leica SR 530 

differential GPS system.  

In order to investigate sublittoral and submarine morphology, scuba diving surveys were carried 

out along the Lefkada barrier beach system, along the Plaka and in the Bay of Aghios Nikolaos 

(scuba diving surveys were realized by R. Grapmayer and U. Ewelt). Underwater structures may 

also be detected in satellite images and aerial photographs since the intensity of submarine 

reflection depends on the characteristics of the seabed. Although no direct information about 

the sediment surface is available, seabed structures can be detected. Additionally, offshore 

geophysical studies were carried out in summer 2007 in cooperation with the Hellenic Centre for 

Marine Research (HCMR). Marine geophysical instrumentation during the campaign 

incorporated a side-scan sonar system and a boomer-type sub-bottom profiler (GeoAcoustics 

Ltd., GB), composed of a signal generator (GEM) and a catamaran type tow-fish. The latter is 

being pulled behind the vessel and floating on the sea surface, enabling the survey at very 
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shallow waters. The Boomer was operated at a frequency of 0.7-1.5 kHz, a signal energy of 

120 Joule and a firing rate of 250 milliseconds (4 times per second). Recording and processing 

was conducted with a Delph Seismic+ (Triton Elics Int., USA) acquisition and processing system. 

Sub-bottom profiling systems provide information of the subsurficial sedimentary structure, such 

as thickness of sub-bottom sediment layers and distribution of sedimentary boundaries. 

2.4 RESULTS 

2.4.1 GEOMORPHOLOGY 

The Lefkada barrier beach 

The Lagoon of Lefkada is separated from the Ionian Sea by an extensive barrier beach system, 

which is forming a spit stretching northwards into the southern part of the Bay of Aghios 

Nikolaos. The barrier beach system can be subdivided into a western (Gyrapetra barrier beach, 

west of the Aghia Mavra fortress) and an eastern part (Aghia Mavra barrier beach, east of the 

Aghia Mavra fortress) (see Fig. 2-1). Along the entire coastline, the barrier beach is mainly 

consisting of coarse sand and gravel, showing almost perfect rounding of components (Fig. 2-3b). 

Several DGPS elevation transects were carried out across the barrier beach. According to all 

elevation profiles (Fig. 2-2) the barrier beach is characterized by a steep seaward, swash-affected 

side and a slightly dipping landward side which is typical for numerous barrier beaches all over 

the world (WOODROFFE 2003, FITZGERALD et al. 2008). The top of the beach ridge is located at 

between ~20 - 40 m profile length, indicating a broad wave affected swash-zone (Fig. 2-3a, c). 

Generally, the top of the beach ridge was encountered between 3 and 4 m a.s.l., but elevations 

of up to 5 m a.s.l. were measured in the south-western part of the barrier. Transect 1, carried 

out in the western part of the Gyrapetra barrier beach system, is additionally characterized by a 

second elevation at ~160 - 180 m distance from the sea. Since the geomorphological character-

istics are comparable to the present ridge at ~40 m, the elevation may represent a former beach 

ridge, which was superimposed by the present barrier beach. These findings point to a westward 

shift of the coastline, documenting a local regression of the sea throughout time. 

In most parts, the recent beach ridge is, at its seaward side, continuously accompanied by 

beachrock which is covered by the present unconsolidated beach sediments (Fig. 2-3a, c) and 

dominates the sublittoral sea floor at most places. In the north-eastern part of the Aghia Mavra 

barrier beach system the present unconsolidated beach sediment is separated from the 

underlying beachrock (Plaka separation point, Fig. 2-1 and Fig. 2-3b). Here, the beachrock 

continues in north-eastern direction, forming the Plaka. The present barrier beach, in contrast, is 

shifting to the east and again turns north-eastwards after 200 m, where it proceeds parallel 

some 200 – 300 m to the east of the Plaka. 

Elevation transects 3 – 8 were carried out in the north-eastern part of the Aghia Mavra barrier 

beach system, in the vicinity of the Plaka separation point. Here, the barrier beach is 

characterized by a sequence of several ridges (Fig. 2-2). In contrast to transect 2 carried out in 

the south-western part of the Aghia Mavra barrier beach, overall height of the barrier does not 

exceed 3 m and the barrier beach appears more structured. In elevation transects 3 – 7, several 



Chapter 2 – Geomorphology and geomorphodynamics in the Lefkada – Preveza coastal zone 

30 

 

former beach ridges can be observed, pointing to the accretion of beach ridges during the 

evolution of the barrier. In transects 3 and 4, a well defined elevation at ~70 – 80 m distance 

from the sea characterizes the beach profile (ridge 1, red label). To the west, this former beach 

ridge is superimposed by a sequence of younger ridges the formation of which was related to a 

local regression of the sea. As illustrated in Fig. 2-2, ridge 1 cannot be followed in the northern 

transects 5 – 8. Instead, its crest is turning to the south-east where it disappears in the direction 

of the Canali Stretti fan structure. Here, the south-western margin of the fan is located in its 

south-eastern prolongation. 

 

Fig. 2-2: Elevation profiles along the Lefkada barrier beach. Transect 1 was conducted in the western 
part of the barrier beach (Gyrapetra barrier beach). Transects 2 – 8 were carried out in the eastern 
part of the barrier beach (Aghia Mavra barrier beach), transects 3 – 8 in the vicinity of the Plaka 
separation point. 

In contrast to ridge 1, at least two main younger ridges can continuously be identified in 

transects 3 – 7 (blue and black labels). Here, ridge 2 (blue label) is superimposed by the accretion 

of ridge 3 (black label) and some other, minor ridge structures. Ridge 1 and ridge 2 converge to 

the north and the topography is characterized by only one ridge crest in transect 8. In this part of 

the barrier beach system, the barrier is significantly narrower and less developed than in the 

other parts of the study area. 

Particularly the landward side of the south-western part of the Aghia Mavra beach ridge is paved 

with numerous small slab-formed sandstone pebbles (Fig. 2-3f-h). Their size is up to > 20 cm and 

all of the pebbles are indicated by edge rounding. The occurrence of the sandstone pebbles is 

restricted to the area between the southernmost washover-like structure and some 150 m south 

of the Plaka separation point. According to the well rounded edges, these slabs were shaped in 
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the sublittoral zone as well and must have been transported across the barrier beach by a 

washover event. In the north-eastern part of the Aghia Mavra barrier beach which is indicated 

by lower elevations, no pebbles were encountered. A comparable distribution is observed for 

larger dislocated beachrock blocks and slabs, which were found, partly imbricated, on top of the 

Aghia Mavra barrier beach system and which apparently origin from in-situ beachrock in the 

sublittoral and/or eulittoral zone (Fig. 2-3d, e).  

 

Fig. 2-3: a) Beach at the Gyrapetra barrier beach. Note wide swash zone and accompanying 
beachrock (inlay). b) In the north-eastern part of the Aghia Mavra barrier beach the present beach 
ridge is separated from the Plaka and proceeds some 200-300 m east. Inlay illustrates typical grain 
size and perfect rounding of components along the spit. c) Typical beach ridge at the Aghia Mavra 
barrier beach. Common storm drift line marked by white area. d) - h) Dislocated beachrock slabs and 
blocks (d, e) and rounded sandstone pebbles (f - h) found in and restricted to the south-western part 
of the Aghia Mavra barrier beach. 

These blocks must have been transported across the swash zone and on top of the beach ridge 

by wave action, pointing to larger washover events in the past. The occurrence of these 
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beachrock slabs and blocks is, comparable to the occurrence of the smaller sandstone pebbles, 

restricted to the south-western part of the Aghia Mavra barrier beach. 

 

Fig. 2-4: Sediment supply of the Lefkada barrier beach system: a) Landslide close to the western shore 
of Lefkada Island (white box). b) Landsat 5 TM satellite image (GLCF) of northern Lefkada Island and 
the study area showing intense sediment transport off western Lefkada. 

Several parts of the Lefkada barrier beach system are presently affected by coastal erosion. In 

particular, this is true for the very western part of the barrier beach, close to the northern tip of 

Lefkada Island. Here, the coastal road leading to Aghios Ioannis (see Fig. 2-1) is partly eroded and 

undercut by wave action. For the entire Lefkada barrier beach system, sediment supply is related 

to coastal erosion along the steep western and north-western shoreline of Lefkada Island. Here, 

besides the erosion of in-situ bedrock, sediment is provided by the accumulation of 

unconsolidated sediment due to recurring strong earthquakes along the Cefalonia and the 

Lefkada transform fault, which in turn cause extensive landslides and rock falls along the coast. 

According to the investigations of ROUSSAKIS et al. (2008), the coastal erosion is related to a 

decreasing sediment supply at the western Lefkada shore, which is the provenance area for the 

sediments accumulating along the Lefkada barrier beach system (Fig. 2-4). 

Washover structures along the Lefkada barrier beach  

Along the Lefkada barrier beach system, several lobe- or triangle-like geomorphological 

structures extend from the beach ridge into the Lagoon of Lefkada (Fig. 2-5). Fan-like structures 

stretching from barrier beaches into backbeach areas are generally interpreted as (i) washover 

fans, resulting from the flow of water and sediment (overwash) over the crest of the beach or (ii) 

scour fans, formed during breaching of the barrier beach (ANDRADE 1992, KRAUS 2003, DONNELLY et 

al. 2006, YULIANTO et al. 2007, GOFF et al. 2009). Consequently, these structures area assumed to 

result from sea water inundation during extreme wave events and the accompanied 

accumulation of sediments in the Lagoon of Lefkada.  

The most extensive fan structure is situated in the western part of the Lefkada Lagoon (Fig. 2-5, 

Gyra washover). Due to area calculations based on satellite images the subaerial fan surface 

extends over an area of ~390.000 m². However, it can be assumed that, together with the area 

lying below sea level, the Gyra fan comprises at least 660.000 m². For the fan structure situated 
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in the eastern part of the Lefkada Lagoon (Teki washover), a distinct calculation of the spatial 

dimensions is complicated due to anthropogenic modifications of the local morphology along 

the Canali Stretti (see Fig. 2-1). Nevertheless, its southern part is showing distinct lobe-like fan 

structures and comprises at least ~50.000 m². For the Canali Stretti fan structure in the north-

eastern part of the Lefkada Lagoon, an extension of ~19.000 m² can be assumed.  

 

Fig. 2-5: Location of washover- and/or scour fan structures along the Lefkada barrier beach system, 
reaching into the Lagoon of Lefkada [map based on Aerial Photo 1985 (HMGS)]. 

 

Fig. 2-6: The Canali Stretti fan as seen from the Lamia Mountain (a) and DGPS elevation transects 
carried out perpendicularly across the fan structure (b). As elevation profiles A - D show, the north-
eastern and south-western margins of the fan structure are characterized by distinct ridge-like 
elevations, extending from the present beach into the lagoonal area.  

On top of the Canali Stretti fan structure, four DGPS elevation profiles, crossing the fan in 

perpendicular direction from south-west to north-east, were conducted in order to document its 

morphological characteristics. As Fig. 2-6 shows, the fan structure exhibits a distinct topography, 

and several lobe-like structures within the washover fan can be observed. The westernmost 

elevation profiles (transect A and in particular transect B) illustrate at least three lobe-like 

elevation ridges, stretching perpendicular to the recent beach into the former Canali Stretti. In 

contrast, the morphology along elevation transects C and D is less pronounced. Here, due to the 
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backbarrier position and the semi terrestrial to lagoonal environment, the lobe-like ridges are 

partly buried by the (sub-) recent accumulation of fine grained sediments and marsh vegetation. 

Nevertheless, the southern and in particular the northern margin of the fan structure is 

characterized by south-east stretching ridges. 

The Plaka beachrock system 

In the north-eastern part of the Lagoon of Lefkada, the recent, unconsolidated beach ridge is 

separated from the underlying beachrock (Fig. 2-3b). Here, the beachrock basement continues in 

north-eastern direction forming the Plaka. The spit system is shifting to the east and proceeds in 

north-eastern direction, some 200 – 300 m east of the Plaka. To the north, the Plaka beachrock 

continues as a natural reef, although, in this part of the study area, it is fragmented and its 

surface is dipping below sea level. Nevertheless, the Plaka remains protect the Bay of Aghios 

Nikolaos from main wave action. 

Scuba diving transects, carried out along the Lefkada spit system and the Plaka, revealed the 

existence of in-situ lying beachrock west of the barrier system down to a depth of 12 m b.s.l. 

(Fig. 2-7c-g). Along the entire investigated area, the beachrock sequence shows numerous cracks 

and breaks and exhibits a considerable degree of fragmentation (Fig. 2-7c, d). Considering the 

high seismic activity within the study area, the fragmentation of the beachrock is most likely 

related to the effects of earthquakes. Several morphological indicators along these transects 

document the effects of (bio-) erosional processes, which are bound to the sea level (palaeo-

notch, Fig. 2-7e; rock pools or whirlpools, Fig. 2-7f).  

Beachrocks are hard, cemented coastal sedimentary formations consisting of beach sediments 

and are assumed to be formed by carbonate precipitation within the main body of beach 

sediments, mainly due to supersaturation and degassing of CO2 (KNIGHT 2007, VOUSDOUKAS et al. 

2007). Up to now, the determination of the precise position of a beachrock body with respect to 

the sea level is difficult. This uncertainty is even higher when considering the possibility of an 

event-induced origin of beachrock occurrences, as recently proposed by VÖTT & MAY (2009). The 

role of beachrock in sea level research is thus not yet satisfactory solved, and its potential use as 

a sea level indicator is limited (KNIGHT 2007, KELLETAT 2006). Nevertheless, beachrock remains are 

interpreted to trace former beaches and beach configurations since the beachrock is assumed to 

form within the body of the beach (BERNIER & DALONGEVILLE 1996, FOUACHE et al. 2005, KNIGHT 2007, 

VOUSDOUKAS et al. 2007). Found in different depths b.s.l. with clear signs of erosion, they prove 

the successive rise of local relative sea level and the accompanied formation, shifting and 

subsequent erosion of a comprehensive beachrock sequence. 

For the north-eastern part of the Lefkada Lagoon and the Bay of Aghios Nikolaos, at least three 

former coastline generations can be inferred from the satellite images, aerial photographs and 

bathymetric data (Fig. 2-7a, b). Coastline generation I, comparable to coastline generation II, is 

represented by submarine beachrock remains and follows the main branch of the Plaka 

approximately until the small island of Aghios Nikolaos. From here, it continues in northern 

direction at ~3 m b.s.l. 



Chapter 2 – Geomorphology and geomorphodynamics in the Lefkada – Preveza coastal zone 

35 

 

 



Chapter 2 – Geomorphology and geomorphodynamics in the Lefkada – Preveza coastal zone 

36 

 

Fig. 2-7 (previous page): Characteristics and occurrence of the extensive beachrock sequence. a) - b) 
Overview and former coastline generations as inferred from the interpretation of satellite images and 
aerial photographs [map based on Aster Satellite image 2003 (USGS) and aerial photos 1985 (HCMR)]. 
c)-g) Submarine morphological features of the beachrock sequence (all photos taken by R. Grapmayer 
and U. Ewelt): c)-d) In-situ beachrock between ~10 m – 5 m b.s.l. showing clear signs of erosion, e) 
submarine notch at ~7 m b.s.l., f) whirlpool eroded by wave-related currents at ~5 m b.s.l., g) 
horizontal layers of in-situ beachrock at ~4 m b.s.l. h)-i) Plaka surface in the western part of the Bay of 
Aghios Nikolaos. The beachrock platform is lying at around 0.20 m b.s.l. 

Coastline generation III is represented by the main branch of the Plaka (Fig. 2-7h) and is shifting 

in north-eastward direction, west of the small island of Aghios Nikolaos. After ~600 m, it again 

turns northwards and constitutes reef-like submarine elevations, such as the Skoupeloi Achilleos 

or the obelisk area. Its beachrock surface is located at approximately 0.20 m a.s.l. (Fig. 2-7i). 

Apparently, this coastline shift is associated to the evolution of the north-eastern spit system. 

The recent coastline is situated south-eastwards of the main Plaka branch and constitutes 

coastline generation IV. 

The Phoukias sand spit in southern Aktium Headland 

The beachrock remains of the Plaka protect the Bay of Aghios Nikolaos from the open Ionian Sea. 

In some parts, the beachrock basement has been destroyed and is missing, for instance between 

the Plaka remains of Skoupeloi Achilleos and the obelisk (see Fig. 2-1 and Fig. 2-7b). Here, the 

related wave refraction in the Bay of Aghios Nikolaos results in a distinct influence on the shape 

of the Phoukias spit formation.  

Particularly the northern part of the Phoukias sand spit shows pronounced morphological 

features. As documented in Fig. 2-8, several ridge-like structures can be observed and a simple 

relative succession and chronology of ridge evolution can be established by the visual 

interpretation of satellite images, aerial photographs and field observations. Two remarkable 

ridge generations can be distinguished. Considerable morphological differences between the 

two ridge generations can be inferred from the elevation profiles. For ridge generation I, at least 

two distinct ridges are identified (DGPS profile A-Al). This ridge generation appears wider than 

the second ridge generation (ridge generation II) and is characterized by a well defined elevation, 

ca. 50 m wide and 0.70 m high, compared to the surrounding area. Additionally, the 

northernmost ridge of ridge generation I is characterized by a relatively steep, seaward 

orientated slope, whereas the landward (northern) side of the ridge exhibits a gently dipping 

surface. The surface of the ridge is textured by several smaller ridge-like elevations, reminding of 

current-generated ripple marks or dunes. To the north, several washover structures extend from 

ridge generation I into the low lying flat of the Limni Saltini. The lobes of these fan structures dip 

in northern direction and are, due to the temporary flooding of the Limni Saltini, buried by 

younger sediments. The second ridge of ridge generation I, however, is indicated by similar 

characteristics. To the south-west, the ridges run perpendicular to the coastline and are affected 

by coastal erosion. 

Ridge generation II is attached to the south-eastern part of generation I and consists of a series 

of distinct elevations, up to 0.50 m high and 30 m wide, separated by narrow, low lying and 

swampy areas (DGPS profile B-Bl). In contrast to the ridges of ridge generation I, the ridges do 
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not show an asymmetrical shape in cross sections. At least five ridges can be identified due to 

the interpretation of satellite images and field data, and elevation of the swales is decreasing in 

seaward direction about 20 cm. The southernmost and thus youngest ridges encounter the 

coastline in a flat angle and are exposed to coastal erosion. To the south-east, the ridge 

morphology is worse pronounced. 

 

Fig. 2-8: DGPS transects carried out across the Phoukias sand spit. The northern part of the sand spit 
is characterized by two different ridge generations (A-Al, B-Bl). Transect C-Cl represents the middle 
part of the spit and crosses an active dune field.  

In the middle part of the spit system, an extensive dune field has formed on top of the spit’s 

surface. DGPS profile C-Cl illustrates the pronounced morphology of the dune system. The 

highest dunes reach elevations of up to 5 m a.s.l. and aeolian dynamics are still active. To the 

south and to the east, several smaller dunes have formed. Here, most of the dunes are 

characterized by vegetation cover and morphodynamic inactivity. However, dune accumulation 

must have started subsequent to the formation of the ridge generations and can be separated 

into several phases. 

The Bay of Aghios Nikolaos - offshore geophysical studies 

Several high resolution seismic (boomer) profiles were shot along the Lefkada barrier beach and 

in the Bay of Aghios Nikolaos (location of profiles depicted in Fig. 2-1). Fig. 2-9 illustrates seismic 

sub-bottom profiles A, B and C, carried out in the Bay of Aghios Nikolaos. Profile A is beginning 

west of the entrance to the Bay of Aghios Nikolaos and continuing towards the center of the Bay 

in eastern direction. Profile B is running parallel to and north of profile A. Profile C crosses profile 

A perpendicularly in its eastern part (see also Fig. 2-1). As the results show, sea floor topography 

is marked by a relatively monotonous, uniform surface in the inner Bay of Aghios Nikolaos, 

showing water depths of up to ~7.5 m b.s.l. Towards the west, the seafloor reaches ~4 m b.s.l. 

and is characterized by a pronounced morphology. Directly east of the submarine beachrock 

system represented by the Plaka remains at the entrance to the bay, the bathymetry is dipping 

towards the open Ionian Sea to around 10 m b.s.l. (transect B) and 7 m b.s.l. (transect A). 

Apparently, the area is characterized by a monotonous, uniform topography is restricted to the  
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Fig. 2-9: Selected “boomer” profiles carried out in the Bay of Aghios Nikolaos. Vertical units represent 
two-way-travel-time in milliseconds (right) and corresponding depth b.s.l. (left). Horizontal units 
indicate number of shots during profiling, which is equivalent to the profile length. For location of 
profiles see Fig. 2-1. 
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basin like structure in the central part of the Bay of Aghios Nikolaos (see also Fig. 2-1). Here, fine 

grained, horizontal deposition must be assumed. The pronounced morphology in the western 

parts of transects A and C can be traced in the aerial photos as well and may be explained by the 

occurrence of thick meadows of Posidonia sp., which characterize the sea floor in the area. 

According to all illustrated sub-bottom profiles, the sedimentary sequence in the Bay of Aghios 

Nikolaos can be separated into two main units. The lower thick bedded sequence most likely 

represents Pleistocene and possibly early Holocene sediments of different origin and structure. 

This lower sequence is covered by a thinner unit, characterized by a horizontal orientation of 

boundaries, interpreted as the relatively undisturbed late Holocene sedimentary sequence. The 

base of the upper unit is marked by a sharp erosional unconformity (Fig. 2-9), cutting the 

underlying sedimentary sequence at several locations. Due to its land- (transect A) and north-

eastward (transect C) dipping, it may not be interpreted as a normal transgressive unit due to 

sea level rise. 

The north-western part of transect B and the north-eastern part of transect C display strong 

reflecting sub-seabed formations which minimize the penetration signal. In transect C, the lower, 

thick-bedded Pleistocene sequence is characterized by bulge-like increasing depths of 

boundaries in its middle part. To the east, boundaries show a flexure-like downward orientated 

trend until they encounter the disturbance area. Here, the erosional unconformity on top of the 

lower sequence is dipping towards the disturbance area as well. The abrupt change in the 

seismic stratigraphy of both profiles is thus assumed to be related to vertical movements along 

fault lines, intersecting the whole study area. The upper sequence is indicated by horizontal 

bedding, pointing to reduced crustal movements during the time of its deposition. 

2.4.2 GEOMORPHODYNAMICS 

To the west and to the north, the Lefkada barrier beach system is exposed to the open Ionian 

Sea. It is influenced by intense and continuous wave activity and coastal currents, but it is also 

assumed to be affected by high-energy wave events. In order to estimate long-term coastal 

processes and coastal changes, (sub-) recent littoral morphodynamics are investigated by the 

interpretation of multitemporal satellite data, aerial photographs and historical maps. 

The Lefkada barrier beach  

In addition to the satellite images illustrated in Fig. 2-11, two historical maps illustrating the 

investigated area were analyzed and interpreted (Fig. 2-10). Fig. 2-10a represents a nautical map 

which was published by the Royal British Hydrographic Office and which is based on a 

bathymetrical survey carried out in 1864. The map depicted in Fig. 2-10b is based on 

topographical and geological investigations carried out by W. VON MARÉES between 1905 and 

1913.  

Although at least for the older map from 1864 a topographical accuracy cannot be inferred, 

several conclusions can be made concerning the coastal configuration around 150 years ago. For 

the south-western part of the Aghia Mavra barrier beach system, no remarkable changes are 

observed. In contrast, the north-eastern part of the Aghia Mavra barrier beach system north of 
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the Plaka separation point shows considerable changes – here, two former water passages can 

be assumed within the spit system, connecting the Canali Stretti with the lagoonal area east of 

the Plaka. A continuous spit system to the north of the Plaka separation point thus did not exist 

in the middle of the 19th century. In contrast, several island-like elevations are depicted in the 

map, most probably representing gravel bars or sand and gravel banks. In 1911, northward spit 

progradation had advanced several hundred meters (Fig. 2-10b). Only one narrow inlet to the 

Canali Stretti can be inferred from the map. The advancing spit shows typical, recurved haken-

like structures of sediment accretion. Moreover, spit progradation and sediment accretion can 

be assumed north of the narrow interrupting water passage. Here, the sand and/or gravel bars 

and banks depicted in the map from 1864 form secondary cells of the developing barrier beach. 

 

Fig. 2-10: Historical maps showing the eastern part of the Lefkada barrier beach system. a) Nautical 
map from 1864 (Royal British Hydrographic Office). b) Topographical map from 1905/1911 (VON 

MARÉES 1907, VON SEIDLITZ 1927). Differences in the north-eastern part of the Aghia Mavra barrier 
beach can be inferred, pointing to a re-establishment of coastal balance. 

Fig. 2-11 illustrates the coastal evolution of the north-eastern part of the Lefkada spit system for 

the period between 1945 and 2003. In this part of the spit, the recent beach is separated from 

the Plaka beachrock and proceeds 200-300 m east of the Plaka. Nevertheless, it shows high 

morphodynamic activity which is manifested in a distinct coastal longshore sediment drift, 

directed from south-west to north-east. For the meantime of 58 years, several main areas of 

accumulation and erosion can be detected along the spit (Fig. 2-11a, b). In the south-western 

part, at the point of detachment of the Plaka and the beach ridge, spit progradation of ~100 m 

can be observed due to continuous sediment accumulation. A comparable amount of sediment 

accumulation is documented from the very end of the spit in the north-eastern part. In contrast, 

sediment erosion along the investigated spit area is concentrated in the middle part of the spit. 

Here, along a distance of ~450 m, the coastline retreated up to 35 m. Assuming a comparable 

south-northward directed longshore current and a constant accumulation rate throughout time, 

a spit progradation of ~1.5 m/a can be deduced. 
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Regarding the spit evolution during the last 60 years, an accentuation of the morphological 

configuration can be observed in the south-western, a balancing, compensational trend in the 

north-eastern part of the investigated spit. Due to the constant sediment accumulation, the 

detachment area of the Plaka and the recent spit system has moved ~100 m to the north. 

Although the washover structures in the older map from 1864 are only rudimentarily indicated 

by lobe-like extensions from the barrier beach, it is assumed that all washover structures already 

existed in the middle of the 19th century. No changes of the washovers’ configuration and 

dimension are thus assumed during the last 150 years. Only for the northernmost structure, a 

different formation may be assumed since the lobe like structure is located approximately in the 

area of the gravel and/or sandbars and banks detected in 1864. 

Southern Aktium Headland 

North of the Limni Saltini’s outlet, (sub-) recent coastal erosion has formed a natural cliff, up to 

2 m high (Fig. 2-12a, c). Along the outcropping cliff a red soil can be observed, which developed 

in the upper part of a Pleistocene sedimentary sequence. At some places cemented marine 

and/or aeolian deposits crop out, which may correlate with upcoming aeolianite sequences near 

Preveza. The outcropping sandstone is eroded and the eroded components are transported 

southwards by littoral drift. (Sub-) recent sediment accumulation is restricted to the southern 

Phoukias spit and the area close to the outlet of the Limni Saltini. Here, the eroded Pleistocene 

sandstones are incorporated into the recent beach sediments (Fig. 2-12b). 

 

Fig. 2-12: The western shore of Aktium Headland: a) Active cliff about 400 m north of Limni Saltini’s 
outlet. Note outcropping and eroded aeolianite of Pleistocene age. b) Outcrop of intensely weathered 
Pleistocene sediments with well developed red soil. c) Aeolianite slabs from a) incorporated into the 
recent sandy beach sediments further south. d) Thin layer of Holocene beach sands covering the 
deeply weathered Pleistocene sequence. This boundary is dipping to the south. 

The morphodynamic activity of the Phoukias spit was estimated by investigating multitemporal 

aerial photos and satellite images. As Fig. 2-11 shows, morphodynamic activity led to both 

erosion and accumulation at the western coast of the spit during the last 50 years. In general, 

intense erosion can be observed in the northern part of the Phoukias spit and the adjacent 

coastline to the north. South of Limni Saltini’s outlet, in the northern and middle part of the 

Phoukias spit system several meters of the beach have been eroded between 1969 and 2003. 
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Towards the south, sediment accretion has shifted the coastline up to 30 m west- and 

southwards. Between 1969 and 1985, erosion of the southernmost spit area took place. As the 

southward progradation of the spit would hinder the use of the inner Bay of Aghios Nikolaos as a 

fishing harbour, the area most likely was dredged by the inhabitants. Subsequently, the very end 

of the spit again extended about 70 m to the south. 

Altogether, a north-south directed sediment transport can be determined, which is due to the 

coastal longshore drift. In this respect, the formation of ridge generation II in the northern spit 

area may be ascribed to similar longshore currents in the past. A relation between intense 

coastal erosion in the north and constant sediment accumulation in the Phoukias area is likely, 

which resulted in the accretion of beach ridges and a local regression of the sea. 

2.5 INTERPRETATION AND DISCUSSION 

Investigations on the study area’s geomorphology and geomorphodynamic activity document 

considerable coastal changes throughout time. At present, a state of coastal balance cannot be 

assumed for the sub-recent and present coastal configuration, as highly active gradual coastal 

processes point to a re-organization of the coastal configuration and a re-installation of coastal 

balance. From a conceptual point of view, cyclic or metastable equilibrium conditions can thus 

be deduced for the overall evolution of the Lefkada barrier beach system (see for instance 

WOODROFFE 2003, BIRD 2008). Based on the presented results, three major controls of coastal 

evolution and coastal morphodynamics may have contributed to the coastal changes in the 

study area, reflecting the complex interplay of (i) continuously (gradually) operating processes of 

long-term coastal (re-)adjustment, (ii) the participation of active tectonics, and (iii) the impact of 

high magnitude extreme wave events. The contribution and significance of these controlling 

mechanisms is discussed in the following. 

2.5.1  GRADUAL COASTAL PROCESSES 

The extensive beachrock system along the Lefkada barrier beach and at the western margin of 

the Bay of Aghios Nikolaos is interpreted to reflect the occurrence of former beaches and beach 

configurations (BERNIER & DALONGEVILLE 1996, FOUACHE et al. 2005, KNIGHT 2007, VOUSDOUKAS et al. 

2007). It documents the successive evolution of former beach ridge sequences in south-

northward direction and at least one, probably two or more former coastlines which formed due 

to the gradual sea level evolution and the related gradual process of coastal longshore drift and 

by coastal conditions close to a state of equilibrium. Although little is known about the evolution 

of the beachrock system, previous findings from the eastern Lefkada Lagoon suggest that the 

formation of the barrier beach system took place before the beginning of the 5th millennium BC 

(VÖTT et al. 2008). These authors carried out geomorphological investigations in the Lefkada 

coastal zone by analyzing several vibracores from the backbeach area and found lagoonal 

conditions at around 5300 cal BC in the Bay of Aghios Nikolaos as well as lagoonal deposition in 

the northern Lefkada Lagoon before ~4000 cal BC. These findings fit well to the evolution of 

numerous coastal areas, where the onset of dominating gradual littoral processes, such as the 

formation of barrier beach systems due to longshore drift or the progradation of fluvial deltas, is 

documented at around 5000 cal BC and is assumed to be related to the deceleration of eustatic 
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sea level rise (FAIRBANKS 1989, STANLEY & WARNE 1994, BRÜCKNER et al. 2005, VÖTT 2007, ENGEL et al. 

2009). It can be assumed that the establishment of a lagoonal environment in the Bay of Aghios 

Nikolaos was linked, due to gradual coastal processes, to the formation of one of the former 

coastlines which are now represented by the submarine beachrock remains.  

In the middle of the 19th century the north-eastern part of the Aghia Mavra barrier beach was 

characterized by a discontinuous configuration. Since then, it underwent a considerable 

reorganization, and spit formation due to gradual littoral drift and spit progradation of ~100 m 

within the last 50 years is documented. Assuming comparable progradation rates in the past, the 

evolution of a spit branch of 2 km length, comparable to the main branch of the Plaka, and 

1.3 km length, comparable to the recent spit branch, would thus require ~1300 years and ~850 

years, respectively. However, it can be assumed that sandbanks and sandbars attributed to the 

evolution of the north-eastern part of the Aghia Mavra spit system. The period of time of the 

spit’s formation thus may be considerably shorter. It can be assumed that this gradual process of 

longshore drift influenced the area for several hundred or even thousand years, although, 

however, no information about the consistency of sediment supply, accumulation processes and 

coastal erosion is available for a longer period of time. 

At least for the recent past, coastal erosion at the western part of the Lefkada barrier beach 

system caused by changing sediment supply at the western shore of Lefkada Island is 

documented by the investigations of ROUSSAKIS et al. (2008). For the evolution of barrier beach 

systems, sediment supply and the interaction of erosion and accumulation represents one 

dominant factor (ORFORD et al. 1991, WOODROFFE & NASH 1995, MORTON 2009), which may result in 

the segmentation, the re-assemblage and/or the breakdown of the barrier (ORFORD et al. 1991). 

Also for the Lefkada barrier beach system alterations of sediment supply along the western 

shore of Lefkada may involve geomorphological changes (ROUSSAKIS et al. 2008). In this context, 

the recurrent re-organization of the Lefkada barrier beach system may be linked to periodically 

and/or aperiodically occurring breakdowns due to changing sediment supply. Considering the 

state of coastal equilibrium which is assumed for the former Plaka coastline west of the Bay of 

Aghios Nikolaos, sediment supply is assumed to have been constant for a considerable period in 

the past. During this period, most probably comprising several hundreds or even thousand years, 

gradual modifications were not capable of disturbing the entire spit system. Comparable 

influence must be attributed to the effects of the gradual eustatic sea level evolution, generally 

causing a gradual adjustment of the coastline (MORTON 2009). 

At present, a high morphodynamic activity is documented for the Phoukias sand spit. In its 

northern part, morphology is dominated by two ridge generations. Due to the interpretation of 

the present morphological configuration, generation I was accumulated prior to generation II 

and coastal erosion took place subsequent to the formation of ridge generations I and II and is 

still going on. If attributed to common longshore processes, the formation of ridge generation I 

cannot be explained by the present coastal configuration, since it perpendicularly encounters 

the present coastline. Therefore, assuming a formation due to gradual, regular coastal processes, 

intense coastal erosion at the western shore of Aktium Headland and sediment accumulation 

and sediment accretion along the Phoukias sand spit are inferred and point to remarkable 

gradually induced coastal changes. However, morphological characteristics between the two 
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ridge generations are of considerable difference, and ridge generation I exhibits washover 

structures on its landward site. Different processes, such as the influence of extreme wave 

events, may thus have contributed to the formation of ridge generation I. 

Nevertheless, the onset of ridge formation in the Phoukias area is linked to a considerable 

disturbance of the coastal system. Altogether, a south-eastward shifting of the coastline is 

inferred throughout time. Since the beachrock system in the western part of the Bay of Aghios 

Nikolaos is interpreted to correspond to at least one former coastline generation, the area of the 

present Phoukias spit was situated, at that time, in a corresponding backbeach position. 

Consequently, the formation of the Phoukias spit must have taken place subsequent to the 

breakdown of the former coastline. 

Summarizing the presented findings, a considerably high gradual littoral morphodynamic activity 

is documented for the study area. This is true not only for the present situation – it is also 

assumed for several earlier periods of time, during which, for instance, the Plaka coastline 

evolved. Gradual coastal morphodynamic activity, comprising sediment erosion, transport and 

accumulation, is closely related to sediment supply and relative sea level rise. It is apparent for 

the entire Lefkada barrier beach system and the Phoukias sand spit and characterized the coastal 

system throughout time. 

2.5.2 TECTONICS  

In contrast to the gradually operating coastal processes, sudden tectonic uplift and/or 

subsidence due to strong earthquakes may exert a strong control on the coastal system. The 

existence of major fault lines in the study area is documented by the results of the offshore 

geophysical studies, indicating at least one fault line crossing the Bay of Aghios Nikolaos from 

south-east to north-west. Previous terrestrial geophysical investigations document fault lines 

along the eastern margin of the Lefkada Lagoon at the transition to the Plaghia peninsula. These 

fault lines can be assumed to extend in northern direction and cross the Aghia Mavra beach 

ridge system from north to south (VÖTT et al. 2008). They reflect the overall tectonic situation of 

the study area which is characterized by a system of fault lines, and crustal motions 

accompanied by rapid uplift or subsidence (EERI 2003, PAPADOPOULOS et al. 2003, PAPATHANASSIOU 

et al. 2005). 

Further evidence for tectonic uplift of the northern Lefkada area has been presented by VÖTT et 

al. (2009) who report on Lithophaga sp. boreholes and corals in ~12 m a.s.l. dated to the last 

interglacial sea level high stand and a possibly slightly uplifted Holocene notch at Aghios Ioannis. 

Moreover, VÖTT (2007) investigated submerged notches at the southern Plaghia peninsula 

documenting co-seismic subsidence in post-Roman times. Co-seismic subsidence may also have 

participated in the submergence of the mole of the Corinthians (MURRAY 1988) and the remains 

of a Hellenistic to Roman bridge (NÉGRIS 1904) in the inner Lefkada Sound. As shown by VÖTT 

(2007), the hereby indicated relative sea level rise of up to 3 m during the last 2500 years agrees 

with the relative sea level evolution of the adjacent coasts of Akarnania.  

Thereby, the contribution of tectonic controls such as (i) sudden tectonic uplift and/or 

subsidence or (ii) tectonic-related processes (e.g. liquefaction) on the coastal evolution in the 
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study area is evident and must be assumed to have resulted in more enduring disturbances of 

the coastal balance (NIXON et al. 2009, WONG 2009). Moreover, co-seismic uplift and/or 

subsidence is often accompanied by the occurrence of tsunami waves (ALTINOK et al. 2001, 

BOURGEOIS & JOHNSON 2001, KELSEY et al. 2002, CISTERNAS et al. 2005, MELTZNER et al. 2006)  

2.5.3 EXTREME WAVE EVENTS - TSUNAMIS 

The existence of washover and scour structures in the northern part of the Lefkada Lagoon 

documents the occurrence of strong storms and/or tsunami events in the study area. They have 

formed by the marine induced inundation of the Lagoon of Lefkada, which must have been 

accompanied by high transportation energy and considerable flow velocity of water masses. 

According to the interpretation of satellite images, aerial photos and historical maps it can be 

concluded that the washover structures have not been modified by younger events since about 

~150 years, and no additional washover structures have formed. Storm surges of common 

intensity with annually, decadal or even centennial recurrence intervals thus did not affect near 

coastal morphology within this period. This is also true for five tsunami events which are 

reported to have taken place within the last ~150 years. Therefore, only extreme wave events of 

exceptional intensity and very likely tsunamigenic origin are capable to significantly inundate the 

backbeach area, to alter near coastal morphology by the formation of washover or scour 

structures, and to leave considerable imprints in near coastal geological archives. 

The Gyra washover in the western Lagoon of Lefkada and the Teki washover structure in the 

eastern part of the Lefkada Lagoon comprise 660.000 m² and 158.000 m², respectively, and both 

washover structures stretch several hundred meters into the Lefkada Lagoon. Inundation 

distance has frequently been used as a diagnostic criterion to distinguish between a storm- or 

tsunami-induced origin of the washover (TUTTLE et al. 2004, KORTEKAAS & DAWSON 2007, MORTON et 

al. 2007, SWITZER & JONES 2008a, BAHLBURG 2008), and the maximum marine inundation distance 

and the lateral dimension of washover deposits are reported to be larger when induced by a 

tsunami event (MORTON et al. 2007). Comparable, storm-generated sizes of the inundated area 

have only been reported from coastal zones which are affected by tropical cyclones – for 

instance, in 2008 tropical cyclone Nargis flooded almost the entire Irrawaddy delta plain in 

Burma (BAHLBURG 2008). Therefore at least the Gyra washover in the western Lagoon of Lefkada 

and the Teki washover structure in the eastern part of the Lefkada Lagoon can be attributed to 

tsunami inundation. 

Specifically, for the Canali Stretti fan structure and the adjacent part of the barrier beach, DGPS 

transects document (i) ridge-like elevations at the fan’s lateral margins and (ii) the interruption 

of the oldest beach ridge of the eastwards lying barrier. From a geomorphological point of view, 

the breaching of barrier beaches involves the interruption of previously existing beach ridges 

and, in many cases, the accumulation of sediment in the prolongation of the breached inlet’s 

margins, which in turn represent the lateral limits of the scour fan (ANDRADE 1992, KRAUS 2003, 

GOFF et al. 2009). Considering the present morphology, the Canali Stretti fan structure represents 

a scour fan rather than a washover fan. The barrier beach was breached during an extreme wave 

event, involving the destruction of the oldest beach ridge, the opening of a water inlet and the 

formation of the scour fan in the lagoonal area to the east. Subsequently, the inlet was closed by 
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longshore sediment transport, which is represented by the existence of younger, continuous 

beach ridges. However, for this smaller and younger Canali Stretti fan, a storm induced origin 

may be considered as well. 

Finally, two different interpretations of the sharp landwards dipping erosional surface detected 

in the high resolution seismic profiles may be considered. First, it may be interpreted as a normal 

erosional surface which formed due to long term terrestrial conditions and erosion during the 

last glacial and the successive deposition of lagoonal and/or marine sediments above. Second, it 

may also mark an abrupt erosional event (personal comm. D. SAKELLARIOU 2010). Thus it may also 

reflect erosional effects induced by a tsunami entering the Bay of Aghios Nikolaos which would 

coincide with the presence of tsunami deposits on the surrounding land area (see also following 

Chapters 3 and 4). However, further evidence is needed to verify this interpretation. 

In summary, the presented findings show that coastal changes may be induced by both gradual 

and impulsive processes. However, the most extensive coastal changes in the Lefkada-Preveza 

coastal zone are assumed to be triggered by sudden, impulsive disturbances, such as co-seismic 

subsidence and/or extreme wave events, in particular tsunamis, whereas gradual changes are 

considered to be of minor importance. Thereby these results corroborate that extreme wave 

events are capable of disturbing and altering coastal configurations and coastal morphology 

(ANDRADE et al. 1992, BEHRE 2004, BIRD 2008, GOFF et al. 2008, MAMO et al. 2009). Although large 

parts of the coastal erosion which occurred during the 2004 Indian Ocean Tsunami were 

compensated by gradual coastal processes within a few years (CHOOWONG et al. 2009, WONG 2009, 

LIEW et al. 2010), the results from the study area show that more enduring disturbances of the 

coastal system can be expected for coastal systems characterized by barrier beaches. Here, large 

parts of the barrier beach and the former backbarrier lagoonal environments may disappear 

during the event (see also LIEW et al. 2010), particularly when accompanied by tectonic 

movements (WONG 2009). 

2.6 CONCLUSIONS 

Comprehensive investigations on the coastal morphology and (sub-) recent coastal 

morphodynamics have been carried out. As shown in detail, the results provide substantial 

information about the study area’s coastal evolution: 

a) For the study area, remarkable coastal changes are documented. Several former coastlines 

have been detected by the investigations on the beachrock system at the western margin of 

the Bay of Aghios Nikolaos. The most prominent palaeo-coastline generation is represented 

by the Plaka. 

b) At present, a considerably high morphodynamic activity and littoral dynamic is manifested 

for the Lefkada barrier beach system and the Phoukias sand spit. 

c) For several periods in time, the barrier beach coastline must have been in or close to a state 

of equilibrium, which can be described as a state of dynamic equilibrium over a distinct 

period of time. A state of a cyclic equilibrium may be inferred for the entire barrier system 

when considering the evolution based on a different time scale.  
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d) Several disturbances forced the system to a recurrent reorganization. For the barrier beach 

system, in particular for the north-eastern part, a temporary breakdown of the barrier 

beach is documented. The most recent disturbance must have taken place before the 

middle of the 19th century. Since then, the coastline is in a state of re-organisation. 

e) For south-western Aktium Headland, intense coastal erosion is inferred. The accumulation 

of the spit system went along with the coastal retreat to the north. Two different ridge 

generations indicate different geomorphodynamics and a different coastal configuration 

during their formation. 

f) The influence of tectonically induced vertical crustal movements is likely since several fault 

lines cross the barrier beach system. Moreover, the occurrence of extreme wave events is 

apparent, and tsunami frequency is similar or even higher compared to the frequency of 

exceptionally large storms. A contribution of episodic, impulsive controls to the documented 

coastal changes is more than likely (for detailed investigations see Chapters 3 and 4). 

g) Genetic morphology allows insight in the development of coastal systems. The coastal 

system is controlled by a number of influences. Considerable influence on the coastal 

evolution must be attributed to tectonic processes, to gradual coastal processes and to 

tsunami events. 

h) In general, coastal change may be controlled by impulsively occurring disturbances. These 

sudden disturbances may be represented by tectonics or extreme wave events. They may 

be described as geomorphic singularities, during which the initial conditions of the coastal 

system are cyclically or acyclically changed and the system is forced to re-establish a state of 

balance. Thus, the coastline is the result of recurring disturbances and subsequent masking 

and mimicking by gradual coastal evolution. 
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3.1 STUDY BACKGROUND 

With the beginning of the deceleration of eustatic sea level rise in the middle Holocene, gradual 

coastal change around the world was increasingly dominated by the interacting effects of 

sediment erosion and sediment supply, local tectonics and sediment compaction (FAIRBANKS 1989, 

STANLEY & WARNE 1994, BARD et al. 1996). In addition to gradual coastal processes, the occurrence 

of extreme wave events, such as storm surges, tropical cyclones and tsunami, has induced 

considerable changes in coastal configuration, although affecting the coastline no longer than a 

few days or hours. Remarkable shoreline modifications are reported from exceptional storm 

surges induced by tropical cyclones in numerous coastal areas around the world (COCH 1994, 

MORTON & SALLENGER 2003, WANG & HORWITZ 2007), comprising the deposition of washover 

sediments in the backbeach area, beach erosion and barrier breaching. However, in most cases 

the coastal changes during common storm activity are restricted to the beach area. The 

devastating effects of tsunami events on coastal configuration particularly are documented by 

the 2004 Indian Ocean Tsunami (MAMO et al. 2009, PARIS et al. 2009, LIEW et al. 2010), comprising 

the destruction and disappearance of barrier beaches and backbeach lagoons. Consequently, 

one of the main objectives in coastal research is to decipher the contribution of these extreme 

wave events to coastal change. In particular, the distinguishability of storm and tsunami deposits 

in the geological record turned out to be a major challenge in the research on extreme wave 

events (e.g. FOSTER et al. 1991, DAWSON 1996, NOTT 1997, NANAYAMA et al. 2000, SCHEFFERS & 

KELLETAT 2001, KORTEKAAS 2002, GOFF et al. 2004, WILLIAMS & HALL 2004, SWITZER et al. 2005, DOMINEY-

HOWES et al. 2006, DAWSON & STEWART 2007, KORTEKAAS & DAWSON 2007, MORTON ET AL. 2007, 

NANAYAMA 2008, SUGAWARA et al. 2008, SWITZER & JONES 2008a, 2008b, DONATO et al. 2008, MAMO et 

al. 2009), since it is important for an appropriate hazard assessment (MORTON et al. 2007, SATAKE 

& ATWATER 2007, MAMO et al. 2009). 

As documented for numerous coastal areas in western Greece and the Aegean (KRAFT et al. 1980, 

BESONEN 1997, VOUVALIDIS et al. 2005, MAY 2006, VÖTT 2007, VÖTT et al. 2007b, BRÜCKNER et al. in 

press, ENGEL et al. 2009), the coastal morphology in the Lefkada – Preveza area implies 

comprehensive palaeogeographical changes throughout time. Particularly the evolution of the 

Phoukias sand spit situated in the south-western part of Aktium Headland (Fig. 5-1) has been 

accompanied by extensive coastline changes (see Chapter 2). Since the Lefkada – Preveza area is 

prone to one of the most active seismic zones in the Mediterranean tsunamis represent a 

considerable threat in the study area (SOLOVIEV 1990, PAPAZACHOS & DIMITRIU 1991). Previous 

findings point to the influence of extreme wave events and in particular of tsunamis on the local 

coastal morphology (VÖTT et al. 2006, 2007a, 2008, 2009a, 2009b, MAY et al. 2007, 2008). 

Detailed geo-scientific investigations on (i) palaeo-event deposits in the sedimentary record and 

(ii) modern analogues, such as (sub) recent storm and tsunami deposits, help to better 

understand the main characteristics of extreme wave events and their imprints in geological 

archives. In turn, considering the (palaeo-) geographical context of the investigated area may 

help to improve the interpretation of extreme wave event deposits. The Phoukias sand spit 

represents an excellent geological archive – its sedimentary architecture stores information 

about its evolution and the evolution of the Bay of Aghios Nikolaos, which was accompanied by 

major coastal changes throughout time. Therefore, results of detailed sedimentary and 
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geomorphological investigations of the Phoukias sand spit are presented in this chapter. This 

study aims (i) to decipher the palaeogeographical context of the study area, (ii) to document 

coastal changes related to the Phoukias spit’s evolution, (iii) to determine the main reasons for 

the coastal changes and (iv) to verify and to decipher a possible influence of extreme wave 

events, in particular tsunamis, on the spit formation. 

3.2 STUDY AREA 

The Phoukias spit (Fig. 3-1), an accretional sand spit, is situated in the south-western part of 

Aktium Headland (NW Greece) (see also Fig. 1-2, Chapter 1). The northern part of Aktium 

Headland is separated from the Preveza area by the entrance to the Ambrakian Gulf, the so 

called Preveza Strait. To the south, the spit extends several hundred meters into the Bay of 

Aghios Nikolaos, a funnel like bay north-west of Lefkada. In its northern part, it is characterized 

by a sequence of beach ridge-like elevations. To the south, several dune fields, up to 8 m high, 

can be observed near the coast. 

 

Fig. 3-1: Overview of the study area with coring sites and main geomorphological features [map 
based on Aster satellite image 2003 (USGS), TM 1:50.000 sheet Vonitsa (HMGS), bathymetrical chart 
Amvrakikos Gulf (HNHS) and SRTM elevation data (NASA)]. 

The Bay of Aghios Nikolaos is separated from the open Ionian Sea by the remains of a palaeo-

coastline, the Plaka. This palaeo-coastline consists of beachrock, which is partly submerged, 

fragmented and, due to the effects of earthquakes, partly broken. However, it protects the Bay 
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of Aghios Nikolaos from the open Ionian Sea and considerably reduces wave energy to its 

leeward side (see also Chapter 1, Fig. 1-2). 

The area between Lefkada Island and Preveza is exposed to the northern part of the Hellenic Arc 

(see Fig. 1-1 a, b) where the Adriatic microplate is subducted by the Aegean microplate. The 

Cefalonia transform fault (CF) and the Lefkada transform fault (LF), situated west of the Ionian 

Islands Cefalonia and Lefkada, connects this zone of subduction with an area of continent-

continent collision beginning off the southern epirotic coast (see also Fig. 1-1a) and exhibit a 

remarkably high seismic activity (COCARD et al. 1999, LOUVARI et al. 1999, SACHPAZI et al. 2000, 

PAPADOPOULOS et al. 2003, BENETATOS et al. 2005, KOKINOU et al. 2006). The study area thus belongs 

to the seismically most active regions of the Mediterranean.  

3.3 METHODS 

In this paper, detailed results of 17 vibracores and two sediment profiles carried out at the 

Phoukias sand spit in south-western Aktium Headland are presented (Fig. 3-1, for core data see 

also appendix A, B, C and E). Supplementary field work comprised DGPS measurements. Vibra-

corings were performed by means of an Atlas Copco Cobra mk 1 corer and sediment cores of 

5 cm and 6 cm diameter. Sediment trenches were dug out in the northern part of the study area 

to follow the sedimentary stratigraphy, such as bedding structures, along several meters and to 

improve the idea of the internal sedimentary structure. Vibracore and sediment profiles were 

documented, recorded (colour, grain size and rounding, texture, carbonate content as 

recommended by Ad-hoc ARBEITSGRUPPE BODEN (2005), macrofaunal remains) and sampled in the 

field. Sedimentary and geochemical analyses were conducted in the laboratory. The air-dried 

and hand-pestled fine-grained fraction (< 2 mm) of the samples was analysed for Ca, Fe, Na, and 

K concentrations using atomic absorption spectrometry (Perkin Elmer A-Analyst 300) after 

digestion with concentrated HCl (37 %). CaCO3 was measured applying the Scheibler method. 

Loss on ignition (LOI) was determined by oven-drying at 105 °C for 12 h and ignition in a muffle 

furnace at 550 °C for 4 h (BECK et al. 1995). In order to support the stratigraphical interpretation 

and to characterize the sedimentary units, wet-sieve pipette analysis (KÖHN 1928) was carried 

out to investigate the grain size distribution of sediment cores AKT 35, AKT 35c, AKT 3, AKT 6, 

AKT 39 and AKT 42 as well as sediment profile AKT S2. Samples were pre-treated with H2O2 (30 %) 

and 0.5 n Na4P2O7 (55.7 g/l) to remove organic carbon and for aggregate dispersion. Processing 

of statistical values was carried out using GRADISTAT software (BLOTT & PYE 2001). Taphonomic 

investigations were carried out for core AKT 35 according to the analyses reported by DONATO et 

al. (2008). Macro- and microfaunal analyses were carried out for core AKT 35 in order to support 

textural and geochemical results, to verify the marine provenance of distinct sedimentary units 

and to determine sediment source areas. Samples (10 cm3) were pre-treated with H2O2 (30%) for 

dispersion and sieved to isolate fractions of 63–125, 125–200, 200–400 and > 400 μm. Content 

of foraminifera and ostracods was investigated under a binocular and recorded semi-

quantitatively, interpretation was mainly based on HANDL et al. (1999) and MURRAY (2006). 

For the chronological framework, organic material and mollusc remains taken from the sediment 

samples were dated by the 14C-AMS technique (Table 3-1). 14C-AMS ages were corrected for a 

marine reservoir effect of 400 years if necessary (REIMER & MCCORMAC 2002) using CALIB 6.0 
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software and the dataset of REIMER et al. (2009). For plant remains identified as sea weed in the 

field marine calibration was carried out when δ13C-values were determined to 15 ‰ ± 3 ‰ (see 

e.g. WALKER 2005). Additionally, optically stimulated luminescence (OSL) dating of quartz 

minerals was carried out for sediment sequences of vibracores AKT 3 and AKT 36 as well as for 

dune profile AKT 35D to improve chronostratigraphical information and to cross-check 14C-AMS 

ages (see also appendix D). To recover unbleached material for OSL samples from the vibracores, 

opaque PVC inliner cores were used. A parallel core was drilled and sampled for the 

determination of the dose rate. Sample preparation and luminescence measurements were 

carried out at the Marburg Luminescence Lab (MLL). First, samples were dry sieved. To remove 

carbonates, organic contents and clay samples were pre-treated with HCl (10 %), H2O2 (10 %) 

and Na2C2O4. The quartz fraction was isolated by density separation using heavy liquids. Etching 

of obtained quartz grains was conducted using HF (40%) acid. For dating, the single-aliquot 

regenerative-dose (SAR) protocol after MURRAY & WINTLE (2000) was applied. All measurements 

were carried out on a Risø TL/OSL DA 20 reader, equipped with a 90Sr/90Y beta source delivering 

0.1 Gy/s. The applicability of the SAR protocol was tested using dose-recovery and preheat-

plateau tests. Small and large aliquots of 2 mm (for vibracore samples) and 8 mm (dune profile) 

were used. The quartz grains were stimulated by blue LED light at wavelength of 470 ± 30 nm, 

and signals were recorded in UV range using a Hoya U-340 optical filter (transmission 330 ± 40 

nm). All aliquots were stimulated for 50 sec. at 125 °C. Following preheat plateau tests, the 

aliquots were heated at 260 °C (vibracore AKT 3b) and 240 °C (vibracore AKT 36b and dune 

profile AKT 35D) before optical stimulation. Finally, water content of the sediment sampled for 

OSL dating was estimated by analyzing loss of water in the laboratory and by interpreting signs 

of reduction and oxidation found within the sampled sediments (for detailed description of the 

OSL dating procedure see PREUSSER et al. 2008). The dose rate was estimated using high 

resolution gamma spectrometry and was carried out at the Faculty of Chemistry, Marburg 

University. 

3.4 RESULTS 

The investigated vibracores were drilled in different morphologic settings. In the ridge 

dominated northern part of the spit system, sediment profiles AKT S1 and AKT S2, vibracores 

AKT 39 – AKT 42 as well as vibracores AKT 3 and AKT 36 – AKT 38 were used for interpretation. 

To the northeast, vibracores AKT 5 and AKT 6 were conducted in a low lying and flat plain, which 

is temporarily flooded by the Limni Saltini and shows no pronounced elevations. In the middle 

and southern part of the spit, vibracores AKT 1, AKT 2, AKT 34, AKT 35 and AKT 50 as well as 

vibracores ANI 2 and ANI 14 were analyzed. 

In the following, two key profiles (vibracores AKT 35 and ANI 2) are described in detail. They 

represent a comprehensible and characteristic picture of the Phoukias spit’s sedimentary 

sequence. Based on these investigations, sediments of comparable or similar sedimentary and 

geochemical characteristics were summarized into nine stratigraphical units for all vibracores 

used in this study (Fig. 3-5). Therefore, they provide the basis for the interpretation of the 

sedimentary architecture of the Phoukias sand spit and reflect the evolution of the spit. 
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Fig. 3-2 (previous page): Sedimentary sequence and geochemical characteristics of vibracore profile 
AKT 35. The shell debris layer between 3.35 – 2.90 m b.s.l. marks the beginning of the marine 
sequence and is characterized by high carbonate contents, poor sorting and coarser grain size. Notes: 
b.s.l. – below mean sea level. a.s.l. – above mean sea level. s.l. – mean sea level. χ - mean grain size 
(µm). σ – sorting (standard deviation, µm). Grain size of cores is illustrated by different widths of core 
profile (1 – silty clay, 2 – clayey silt, 3 – sandy silt/silty sand, 4 – fine sand, 5 – fine and medium sand, 
6 – medium sand, 7 – medium and coarse sand, 8 – coarse sand, 9 - gravel). For legend see Fig. 3-4. 

3.4.1 STRATIGRAPHY OF VIBRACORES AKT 35 AND ANI 2 

Vibracore AKT 35 (Fig. 3-2) was drilled in the central part of the Phoukias sand spit, in direct 

vicinity of an active dune system and about 200 m from the sea (see also Fig. 3-1). In the 

southern part of the Phoukias sand spit, vibracore ANI 2 (Fig. 3-4) was carried out on top of the 

sand spit reaching into the Bay of Aghios Nikolaos. With a depth of 18 m b.s. it is the deepest 

drilling in the study area.  

Vibracore AKT 35 

The sedimentary sequence of core AKT 35 starts with clayey (5.65 – 4.44 m b.s.l., below mean 

sea level) and sandy (4.44 – 3.91 m b.s.l.) sediments. From 3.91 m - 3.60 m b.s.l., greenish-grey, 

slightly silty and clayey fine sand with in-situ plant remains occurs. Sediments are characterized 

by relatively high clay contents of more than 10 % (Fig. 3-3, AKT 35/14 – AKT 35/15, AKT 35/18) 

and relatively high values of LOI. Here, the sediment is free of carbonate. Sample AKT 35/16 

consists of very well sorted fine sand and shows clay contents of only ~6 %. Its geochemical 

characteristics are comparable to the surrounding sediments.  

 

Fig. 3-3: Results of grain size analysis carried out for samples of vibracore profile AKT 35. For samples 
with similar or comparable grain size distribution only one plot was depicted (depicted sample 
underlined). Notes: b.s.l. – below mean sea level. a.s.l. – above mean sea level. s.l. – mean sea level. χ 
- mean grain size (µm). σ – sorting (standard deviation, µm). 
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The following sedimentary unit (3.35 m – 2.90 m b.s.l.) starts with a sharp erosional contact at 

3.35 m b.s.l. The sediment mainly consists of grey sand with a high content of angular marine 

mollusc fragments. Articulated specimens were encountered as well. It is characterized by low 

LOI values and a high content of calcium carbonate. In contrast to all other sediments found for 

vibracore AKT 35, these sediments appear to be poorly sorted (Fig. 3-2 and Fig. 3-3, AKT 35/13). 

A clear fining-upward sequence can be identified at the transition to the overlying sediments. 

Moreover, small clasts of silty to clayey material could be detected, similar to the sediments 

from the underlying horizon. 

The subsequent sediments (Fig. 3-3, AKT 35/7 – AKT 35/12, 2.90 m b.s.l. – 0.39 m a.s.l., above 

mean sea level) are marked by high contents of fine sand (50 – 81 %) accompanied by minor 

parts of medium sand (~10 %) and coarse silt (4 – 10 %). Only samples AKT 35/9 and AKT 35/11 

show slightly higher contents of coarse silt and gravel. The sediments contain plant and sea 

weed and marine mollusc remains. Due to its overall good sorting and its high content of fine 

sand constant deposition in a morphodynamic regime of moderate energy is assumed. Above 

0.65 m b.s.l., the marine sands show, in contrast to the underlying unweathered marine 

sequence, a brownish colour and high values of the Fe/Na ratio.  

Increasing contents of medium sand (Fig. 3-3, 17 – 27 %, AKT 35/5 – AKT 35/6) are encountered 

above the well sorted, fine sandy sediments (0.39 m – 0.71 m a.s.l.). The upper part of this 

sequence shows considerably higher amount of silt and clay in samples AKT 35/3 and AKT 35/4 

(Fig. 3-3, 0.50 m – 0.71 m a.s.l.). Moreover, LOI values increase. Subsequently, samples AKT 35/1 

and AKT 35/2 mainly consist of well sorted medium sand and a minor part of fine sand (Fig. 3-3). 

In contrast to the underlying sequence, the sediment appears to be loose and dry and is 

characterized by low LOI values. Only few macroscopic mollusc remains were detected. 

Vibracore ANI 2 

At its base, vibracore ANI 2 begins with a sequence of homogenous clayey silt, containing few 

mollusc and plant remains (17.72 – 13.22 m b.s.l.). The sediments appear muddy and are of 

olive-grey colour. Geochemical parameters show high organic contents and low values of the 

Na/Fe ratio. Moreover, shell remains are significantly thinner than in the overlying sediments. At 

13.22 m b.s.l., a sudden change in geochemical parameters is accompanied by the occurrence of 

a shell debris layer (13.22 m – 12.98 m b.s.l.), showing a fining upward trend. The shell debris 

layer is separated from the underlying sediments by an erosional unconformity. 

Above, depositional circumstances considerably changed. The sedimentary sequence shows 

decreasing parts of clay and increasing parts of fine sand. An increasing number of marine 

mollusc remains, lower LOI values, a sudden increase in the Na/Fe-ratio, and sea weed was 

found (12.98 m – 11.11 m b.s.l.). Subsequently, a sequence of fine sandy to silty sediments 

follows. It shows a partly pronounced lamination and sea weed layers occur (11.11 m – 3.36 m 

b.s.l.). At 3.27 m b.s.l., lamination of the sediment stops and homogenous, well sorted fine sand 

is documented between 3.27 m – 1.85 m b.s.l. The following unit shows increasing contents of 

medium sand (1.65 m b.s.l. – 0.28 m a.s.l.). To the top, geochemical parameters point to a slight 

weathering of the sediments (0.24 m b.s.l. – 0.28 m a.s.l.). 
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Fig. 3-4 (previous page): Sedimentary sequence and geochemical characteristics of vibracore profile 
ANI 2 (see Fig. 3-1). In the lower part of the profile, geochemical characteristics considerably change 
subsequent to a normal graded shell debris layer, pointing to increased marine influence in the Bay of 
Aghios Nikolaos. The shell debris layer comprises sedimentary unit E. Notes: b.s.l. – below mean sea 
level. a.s.l. – above mean sea level. s.l. – mean sea level. Grain size of cores is illustrated by different 
widths of core profile (see caption of Fig. 3-2). 

3.4.2 GENERALIZATION AND INTERPRETATION OF SEDIMENTARY UNITS 

The sedimentary sequence of vibracores AKT 35 and ANI 2 is typical for the entire Phoukias sand 

spit. Although several minor differences between the vibracores exist, a generalization of the 

sedimentary sequence can be made (see Figs. 3-2 and 3-4). Thus, seven sedimentary units are 

summarized, each of them representing distinct sedimentary facies and depositional 

environments. The differentiation of the sedimentary units is based on their geochemical, 

sedimentary and visual characteristics (Fig. 3-5). 

Unit P 

The basal sedimentary sequence of vibracore AKT 35 is summarized in sedimentary unit P. 

Comparable sediments were found at the base of all investigated vibracores in the entire 

northern and middle part of the Phoukias sand spit. Due to its sedimentary and geochemical 

characteristics, unit P most likely represents intensely weathered pre-Holocene deposits of 

different origin. According to the abundant root-channels and plant remains, a former (semi-) 

terrestrial surface must have existed at least in some parts on top of this unit, which was 

accompanied by soil development and intense weathering. At most investigated sites, the top of 

this unit is marked by a clear erosional unconformity at the transition to the overlying deposits.  

Unit L 

In the southern part of the Phoukias sand spit, the base of the sedimentary sequence is 

comprised by sedimentary unit L instead of unit P, although vibracore profiles ANI 2 and ANI 14 

have coring depths of 18 m and 13 m b.s., respectively. The sedimentary and geochemical 

findings point to reduced salt water influence for unit L and suggest a brackish-lagoonal 

palaeoenvironment, characterised by quiescent depositional conditions. 

Unit M 

In particular the cores in the middle part of the Phoukias sand spit are characterized by a 

sequence of sediments of marine origin which are, in contrast to the sediments of unit E, well 

sorted, fine grained (mainly fine sand) and homogeneous. In some parts, sea weed layers occur 

and a distinct lamination was encountered. These findings point to overall increased salt water 

influence for unit M, representing sublittoral, marine depositional conditions of different water 

depths. In some cases, the sublittoral sands were exposed to weathering processes and show, in 

contrast to the underlying unweathered marine sequence, a brownish colour and high values of 

the Fe/Na ratio. 

Unit B 

On top of unit M, increasing contents of medium sand represent establishing littoral conditions 

at many coring sites of the study area. These sediments are summarized in unit B. In many cases, 
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in the upper part of this unit, higher parts of silt and clay were encountered (up to 20 %, e.g. 

samples AKT 35/3 and AKT 35/4, Fig. 3-3), evidencing soil formation. 

Unit S 

Unit S was not encountered in the key profiles AKT 35 and ANI 2 described above. However, in 

the northern part of the spit, sediments of unit E are covered by unit S, consisting of grey to 

brown, silty and clayey deposits. This unit is indicated by numerous plant- and root remains and 

exhibits clear signs of hydromorphy. In some parts, it contains minor parts of sand, most likely 

related to reworking of the underlying, sand-containing unit E. Accumulation of unit S is related 

to the temporary flooding of the area by the Limni Saltini.  

 

Fig. 3-5: Summarized characteristics of each sedimentary unit found in the study area. Each unit 
represents distinct depositional environments and sedimentary facies. Depicted spider diagrams 
abstract geochemical and textural characteristics. The high energy wave deposits of unit E clearly 
differ to all other units. Notes: σ – sorting (standard deviation). 

Unit D 

Unit D is restricted to the middle and southern part of the Phoukias sand spit, which is 

characterized by an extensive system of coastal dunes, up to 5 m high. It is found on top of units 
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M and B. This unit documents the deposition of dune related aeolian sediments, covering the 

littoral unit B. 

Unit E 

Unit E was encountered at numerous coring sites and consists, comparable to vibracore AKT 35, 

of a distinct shell debris layer. Typical characteristics for unit E are (i) a high content of angular 

marine mollusc fragments, (ii) low LOI values, (iii) a high content of calcium carbonate, and (iv) a 

heterogeneous grain size distribution consisting of sand and gravel. The overall poor sorting of 

the sediment is expressed in generally high standard deviations of grain size distribution. In most 

cases, unit E is separated from the underlying sediments by an erosional unconformity. A fining 

upward sequence characterizes the transition to the subsequent sedimentary unit. Unit E is 

different to all other units found within the stratigraphical sequence of the Phoukias spit (see Fig. 

3-5). At numerous locations, unit E represents the beginning of the marine sequence of the 

Phoukias sand spit. Its sedimentary characteristics clearly point to a rapid deposition, related to 

turbulent, high energy wave dynamics. Therefore, detailed investigations were carried out for 

this stratigraphical unit for vibracore AKT 35 and sediment profile AKT S2, situated in the 

northern part of the Phoukias spit (see Fig. 3-1). 

3.4.3 DETAILED INVESTIGATIONS ON EVENT UNIT E 

In order to characterize the sediments of the high energy unit E in detail, comprehensive 

investigations were carried out for sediment profile AKT S2 and vibracore profile AKT 35. At 

coring site AKT 35 unit E starts with a sharp erosional contact at 3.35 m b.s.l., at sediment profile 

AKT S2, situated in the northern part of the spit, at 0.46 m b.s.l. For both event units, 

sedimentary characteristics are similar. 

Macro- and microfaunal investigations on vibracore AKT 35 

For macro- and microfaunal studies, parallel core AKT 35b was sampled and sixteen samples 

were investigated for micro- and macrofaunal content. Results of microfaunal analyses 

(foraminifers and ostracodes) are illustrated in Fig. 3-6. The documented species point to a 

shallow marine origin of the sediment, and no certain source region could be detected 

throughout the sequence. However, the lower part of unit E (samples AKT 35/12 MF – AKT 35/10 

MF) is characterized by remarkably few findings of ostracod specimen in contrast to sediment 

samples AKT 35/3 MF – AKT 35/9 MF. For sample AKT 35/12 MF, only one individual of 

Callistocythere sp., Loxoconcha stellifera and Pontocythere rubra were found. For samples 

AKT 35/10 MF and AKT 35/11 MF, eight species with very low abundance were recovered from 

the sediment (Cyprideis torosa, Aurila arborescens, Aurila sp., Cytheretta adriatica, Loxoconcha 

bairdi, Loxoconcha stellifera, Loxoconcha sp., Paradoxostoma sp., Pontosythere rubra, 

Pontocythere sp., Urocythereis margaritifera, Xestoleberis dispar).  

As ostracod and foraminiferal communities best develop under continuous and constant 

environmental conditions, high morphodynamics and a short sedimentation period can be 

assumed for the deposition of the related sedimentary units. These findings point to an event-

induced origin. 
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Subsequently, abundance and diversity of detected species increase (AKT 35/9 MF – AKT 

35/3 MF), and especially in samples AKT 35/6 MF – AKT 35/3 MF ostracods are abundant. In and 

subsequent to sample AKT 35/7 MF, several juvenile specimens were encountered. Therefore, 

within the profile’s sequence, best environmental conditions for ostracod populations 

established during deposition of the upper 3 m of the profile, pointing to an autochthonous 

formation of the sediment. These results, from a geomorphodynamic point of view, suggest 

constant sublittoral depositional conditions in the upper part (above 3.00 m b.s.) of the marine 

unit of the profile. 

In contrast, no considerable changes in foraminiferal assemblages can be detected, and shallow 

water species dominate throughout the whole profile. As to the distribution of the macrofaunal 

remains found in the sediment samples, again no differences in the source region of the marine 

sedimentary units can be detected throughout the profile. Increasing counts of specimen can be 

observed within unit E and directly following samples which is due to the shell debris character 

of the unit. Dominating shells found for the entire marine sequence are Bittium latrellii, Hydrobia 

sp., Tricolia pullus and the sessile genera Vermetus sp., all of them indicating shallow marine to 

lagoonal environments. Species exclusively found in the high energy layer are Alvania discors, 

Ceritium vulgatum, Eulimella sp., Nassarius sp., Rissoa cf. variabilis, Trunculariopsis trunculus, 

Tricolia cf. tenius and Tricolia sp., Lucinella divaricata, Dosinia lupeus, Cerastoderma sp. and 

Venus verrucosa. 

Grain size distribution of unit E in vibracore AKT 35 

Samples taken from parallel core AKT 35c (Fig. 3-7) document detailed analysis of the grain size 

distribution and grain size trend found for sedimentary unit E. The event deposit (unit E) can be 

subdivided into two general sedimentary subunits. Samples AKT 35c/1 - AKT 35c/3 represent the 

lower, samples AKT 35c/4 – AKT 35c/6 the upper part of the layer. 

The lower part is characterized by a very heterogeneous grain size distribution, with high values 

of coarse material (> 2 mm, 20-30 %). In contrast to all other sedimentary units found for 

vibracore AKT 35 this points to a poor sorting during deposition (see also Fig. 3-2). Sample AKT 

35c/1 mainly consists of medium and fine sand with 29 % and 36 %, respectively. Additionally, it 

shows a relatively high content of clay. Towards the overlying unit M, a considerable decrease in 

coarse grain sizes is apparent in the upper part of unit E (AKT 35c/4), and the sediment passes 

into well sorted fine to medium sand above 3.10 m b.s.l. (AKT 35c/5 and AKT 35c/6). A clear 

fining upward sequence (normal grading) thus can be identified, comprising the upper part of 

unit E. 

Taphonomic investigations on shells of vibracore AKT 35 

For core AKT 35c, the shell content of the samples from unit E was investigated for taphonomic 

characteristics. For the analysis, shell remains of > 2 mm were studied using a binocular 

microscope. The shell remains were grouped and counted based on the following characteristics: 

disarticulated whole valve, fragmented valve, fragment with angular breaks (no edge rounding), 

fragment with edgeless breaks (edge rounding), encrustations, dissolution and boring holes 

(Fig. 3-8 and 3-9).  
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Fig. 3-7: Photography of the core section between 3.00 – 3.90 m b.s.l. of core AKT 35c, main 
sedimentary characteristics and detailed documentation of the event layer’s grain size distribution 
(samples AKT 35c/1-AKT35c/6). Position of grain size samples is marked by white boxes. Event unit E 
can be separated into two subunits – a lower subunit of heterogeneous grain size distribution, and an 
upper subunit, indicated by a fining upward sequence. Notes: b.s.l. – below mean sea level. a.s.l. – 
above mean sea level. s.l. – mean sea level. χ - mean grain size (µm). σ – sorting (standard deviation, 
µm). 

 

Fig. 3-8: Photographs of selected mollusc fragments with taphonomic characteristics used for 
classification (all Photos taken by T. Willershäuser). Pictures a), b), c) and d) illustrate edge-rounded 
mollusc fragments. Angular mollusc fragments are shown in e), f), g) and h). Within the event layer, 
up to 90 % of the fragments exhibit angular breaks and edges. 
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Sample AKT 35c/6 was not depicted in Fig. 3-9 due to its low shell debris content (n = 27). 

However, its taphonomic characteristics are similar to samples AKT 35c/1- AKT 35c/5. As a 

reference, sample AKT 35/11 was analyzed and compared to the samples from the high energy 

sediment layer. As Fig. 3-9 shows, all samples from unit E are characterized by a considerably 

high content of shell fragments (> 80 %) while the amount of whole valves is relatively low 

(< 20%). Moreover, 80 - 92 % of the investigated fragmented shell remains exhibit angular breaks 

and fracture surfaces as well as edges with sharp angles (Fig. 3-8 e-h). In contrast, only 8-20 % of 

the fragments show rounded or edgeless fracture surfaces (Fig. 3-8 a-d). In all samples, the 

amount of mollusc remains affected by dissolution does not exceed 10 %. The number of shell 

remains showing boring holes, encrustations and signs of dissolution is negligible. Due to the use 

of cores with 6 cm and 5 cm diameter, only limited sample material was available, and the 

content of articulated bivalves in the sediment may not be representative. Nevertheless, several 

articulated bivalves were found in unit E.  

 

Fig. 3-9: Taphonomic characteristics of samples AKT 35c/1-AKT 35c/5 and reference sample AKT 
35/11 (grey marked). x – Axis: 1 - articulated, 2 - whole valves, 3 - fragments (light grey: rounded 
breaks, dark grey: angular breaks), 4 - encrustations, 5 - dissolution and 6 - bore holes. A considerable 
difference in taphonomic characteristics can be observed between the samples of the assumed event 
layer and the sample from the sublittoral facies. 

Reference sample AKT 35/11 was taken from sedimentary unit M (2.04 m b.s.l.) and is assumed 

to represent regular, sublittoral depositional conditions of low energy. A considerable difference 

in taphonomic characteristics can be observed between the samples of the high energy layer and 

the sample from the sublittoral facies. As illustrated in Fig. 3-9 it is characterized, compared to 

samples AKT 35c/1- AKT 35c/5, by higher parts of whole valves (~30 %) and edge-rounded 

mollusc fragments (> 40 % of all mollusc fragments). Moreover, the content of mollusc remains 

showing signs of dissolution and bore holes is noticeably higher.  

Characteristics of event unit E in sediment profile AKT S2 

In the northern part of the spit, similar to the findings documented for vibracore AKT 35, a shell 

debris layer was encountered above an erosional unconformity between 0.46 m – 0.21 m b.s.l. in 

sediment profile AKT S2 (Fig. 3-11, see also Fig. 3-1). Inside the trench the sedimentary 
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stratigraphy is exposed along several meters. Although the depth of the shell debris layer is 

documented almost 3 m higher than in vibracore AKT 35, comparable findings have been 

observed.  

 

Fig. 3-10: Results of grain size analysis carried out for sediment profile AKT S2. The last two samples 
(grey background) represent examples of grain size analysis carried out for vibracores AKT 42 and AKT 
6, in the northern part of vibracore transect A. The event deposit of unit E can be followed several 
hundred meters into the Limni Saltini plain and is thinning landward. Notes: b.s.l. – below mean sea 
level. a.s.l. – above mean sea level. s.l. – mean sea level. χ - mean grain size (µm). σ – sorting 
(standard deviation, µm). 

Again, unit E can be subdivided into two general sedimentary units. The lower subunit (0.46 m – 

0.21 m b.s.l.) is represented by grain size samples AKT S 2/8 and AKT S 2/9 (Fig. 3-10) and 

consists of shell debris, gravel, very well rounded, and a sandy matrix. The grain size analyses 

document the poor sorting of the sediment and indicate a bimodal grain size distribution. The 

upper subunit (0.21 m b.s.l. – 0.81 m a.s.l.) begins with a sequence of very well rounded gravel 

surrounded by a sandy matrix. Here, the grain size distribution (AKT S 2/6 – AKT S 2/7) shows an 

unimodal pattern dominated by sediment > 2 mm (34 and 40 %) and coarse sand (25 and 23 %).  

Subsequently, the unit is characterized by decreasing gravel and increasing sand content 

(AKT S 2/3 – AKT S 2/5). The upper part of the unit (0.48 m – 0.81 m a.s.l., AKT S 2/1 and 

AKT S 2/2) consists of well sorted medium sand. Similar to the findings in vibracore AKT 35, the 

upper part is thus characterized by a clear fining upward sequence. Moreover, numerous 

articulated shells and abundant angular shell fragments were found within the sediment, which 

is comparable to the findings described for vibracore AKT 35 (see Fig. 3-3 and 3-7). In most cases, 

the articulated shells were filled with air or remains of fine grained, silty material of brown 

colour during excavation.  
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In the northern part of the spit, unit E constitutes the entire marine sequence covering the 

weathered former surface. As the results of the sediment cores carried out in this area show, 

unit E is thinning north- and landwards, respectively. Moreover, no gravelly sediments are found 

along the entire western shore of Aktium Headland. It is thus concluded that the provenance 

area of the deposits found in sediment profile AKT S2 is different to the transported sediment at 

the present western Aktium shore. 

 

Fig. 3-11: Photographs of sediment profile AKT S2 (a) and the encountered shell debris layer of unit E 
(b, d). The shell debris layer contains abundant mollusc fragments and (!) articulated bivalves. Picture 
c) illustrates air-filled articulated bivalves that were washed out of the shell debris unit during digging 
and float in the ground water. 

3.4.4 VIBRACORE TRANSECTS AND CHRONOSTRATIGRAPHICAL INTERPRETATION 

Based on the above presented results, the internal structure of the Phoukias sand spit is 

illustrated along four vibracore transects. A stratigraphical correlation between single cores, 

along the core transects as well as between the core transects is realized. Together with the 

available results of the 14C-AMS (Table 3-1) and the OSL datings (Table 3-2), a consistent 

chronostratigraphical picture of the spit formation is established. 

Vibracore transect A 

In the very northern part of the Phoukias sand spit, vibracore transect A (Fig. 3-12a) comprises, 

from south-west to north-east, vibracores AKT 39, AKT 40 and AKT 41, sediment profiles AKT S1 

and AKT S2 as well as vibracores AKT 42, AKT 6 and AKT 5.  

The stratigraphy described for sediment profile AKT S2, due to the findings in vibracores AKT 39, 

AKT 40, AKT 41 and AKT 42 was well as sediment profile AKT S1, can be assumed for the entire 

ridge-dominated south-western part of transect A, belonging to ridge generation I (see also 

Chapter 2). In the north-eastern part of transect A, vibracores AKT 42, AKT 6 and AKT 5 show a 

slightly different but comparable stratigraphical sequence. Vibracore AKT 6 was carried out in 

the adjacent low lying plain, ~100 m north of the northernmost ridge-like elevation. Here, the 

transition from the deeply weathered former surface (unit P) to the overlying coarse grained 

marine sequence (unit E) was detected at 0.41 m b.s.l. Unit E is thinner compared to sediment 

profile AKT S2 but consists of a shell debris layer, containing well rounded gravel and a sandy 
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matrix (sample AKT 6/3, Fig. 3-10), and a subsequent layer out of sand and gravel with mollusc 

fragments. Due to the temporary flooding of the site it is covered by the sediments of unit S. 

For vibracore AKT 42, situated between vibracore AKT 6 and sediment profile AKT S2, a similar 

sequence was found. As Fig. 3-10 shows, grain size distribution of sample AKT 42/4 is similar to 

the grain size distribution of the lower part of unit E in sediment profile AKT S2. Here, unit E 

shows a thickness of 87 cm (1.01 m – 0.14 m b.s.l.). At coring site AKT 5 (170 m northeast of AKT 

6, 270 m north of the northernmost ridge), a thin layer of marine origin, containing mollusc 

fragments, was encountered at 0.27 m – 0.20 m b.s.l. Within the lower part of the subsequent 

unit, well rounded isolated pieces of fine gravel were detected. Therefore, a northward and thus 

landward thinning of the event unit E described for sediment profile AKT S2 can be assumed, 

reaching at least 270 m inland. These findings clearly indicate the washover-character of the 

sequence and document its event induced origin. 

Tab. 3-1: 14C-AMS dating results used for the chronological interpretation of the stratigraphy.  
Notes: unid. plant remains - unidentified plant remains. artic. mollusc - articulated mollusc. Lab. No. – 
laboratory number, University of Erlangen-Nürnberg (ERL), University of Kiel (KIA), University of 
Utrecht (UTC). * - marine reservoir correction with 400 years of reservoir age. “;” - there are several 
possible age intervals because of multiple intersections with the calibration curve; oldest and 
youngest age depicted. 

Sample 
Depth 

(m b.s.l.) 
Lab. No. Sample description 

δ13C 
(ppm) 

14C age 
(BP) 

1σ max-min 
(cal BC/AD) 

2σ max-min 
(cal BC/AD) 

AKT 2/9 PR 1.60 KIA31674 unid. plant remains -5.18 4160 ± 31 2872; 2679 BC 2879-2632 BC 

AKT 3/5 PR 0.54 KIA34003 unid. plant remains -9.30 2880 ± 25 1113; 1012 BC 1188; 946 BC 

AKT 35/9 PR 1.11 KIA34004 unid. plant remains -15.20 1690 ± 25 *661-711 AD *636-763 AD 

AKT 35/12 M 2.51 KIA34005 articulated mollusc 1.34 2065 ± 30 *264-361 AD *228-416 AD 

AKT 35/15 PR 3.64 KIA34006 unid. plant remains -10.65 4275 ± 45 3000; 2780 BC 3019; 2703 BC 

AKT 37/11 PR 1.24 KIA34007 
unid. plant remains 

sea weed? 
-17.03 1840 ± 25 

132;214 AD 
*515-605 AD 

88; 240 AD 
*460-629 AD 

AKT 37/14 PR 2.04 KIA34008 unid. plant remains -7.36 3290 ± 25 1608; 1503 BC 1624-1503 BC 

AKT 38/8+ PR 1.65 KIA34009 unid. plant remains -9.06 3305 ± 25 1615; 1532 BC 1662; 1513 BC 

AKT S2/9 M 0.44 KIA39794 articulated mollusc 2,27 4200 ± 25 *2398-2290 BC *2447; 2239 BC 

AKT S2/9+ M 0.45 KIA39795 articulated mollusc -8,42 3495 ± 25 *1472-1403 BC *1506-1371 BC 

AKT S2/10 PR 0.54 KIA39793 unid. plant remains -13,25 3555 ± 35 1952;1783 BC 2015; 1772 BC 

ANI 2/7 PR 3.25 UTC13679 wood remains -24,80 113 ± 41 1688; 1926 AD 1676; 1954 AD 

ANI 2/12 PR 6.25 UTC13678 sea weed -18.00 1003 ± 46 *1314-1395 AD *1286-1430 AD 

ANI 2/16++ PR 10.00 ERL9794 sea weed -14,40 1499 ± 40 *825-943 AD *781-994 AD 

ANI 2/21+ PR 12.59 KIA39792 unid. plant remains -11.31 2250 ± 20 
384; 234 BC 
*50-122 AD 

390; 210 BC 
*9-149 AD 

ANI 2/22+ M 13.20 KIA39790 articulated mollusc -3,05 2450 ± 25 *190-101 BC *248-41 BC 

ANI 2/29 M 16.95 KIA39791 articulated mollusc -4,56 4225 ± 25 *2439-2341 BC *2462-2287 BC 

ANI 14/7+ PR 2.89 KIA31664 sea weed -13.83 1590 ± 29 *728-818 AD *700-874 AD 

ANI 14/11+ PR 4.88 KIA31665 sea weed -12.85 2170 ± 27 *131-221 AD *90-254 AD 

ANI 14/25 M 11.16 KIA31676 artic. Mytilus sp. -6.80 6745 ± 40 *5373-5280 BC *5426-5226 BC 

 

Along the ridge-dominated part of transect A, a well developed brown soil can be observed on 

top of the sedimentary sequence (see also Fig. 3-11). Due to the distinct formation of the related 

Ah and Bv soil horizons and the depth of related brunification and loamification, (i) a relatively 

long period of undisturbed subaerial weathering after deposition and (ii) a deposition of the 

sequence above sea level is assumed. The time of deposition of the sedimentary sequence thus 

must have occurred at least several hundred years ago, and no reworking occurred since then. 
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For sediment profile AKT S2, three samples were dated by 14C-AMS to obtain a chronological 

framework for the evolution of the sedimentary sequence. From the deeply weathered former 

surface of unit P, a plant remain was dated to 2015; 1772 cal BC (AKT S2/10 PR, Tab. 3-1). 

Moreover, two articulated bivalves (Cerastoderma glaucum) were taken from the subsequent 

shell debris layer of event unit E. Sample AKT S2/9 M (1.25m b.s.) yielded an age of 2447; 2239 

cal BC, sample AKT S2/9+ M (1.26 M b.s.) an age of 1506-1371 cal BC. For the latter sample, the 

δ13C-value points to an influence of fresh water on the shell’s carbonate composition, and an 

overestimation of the obtained age is likely (personal communication P.M. GROOTES 2009). 

Vibracore transect B 

Vibracore transect B (Fig. 3-12b) starts with vibracore AKT 3 and continues with corings AKT 36, 

AKT 38 and AKT 37 towards the south-west. The topography along transect B is characterized by 

a sequence of beach ridges, belonging to ridge generation II (see Chapter 2). Overall stratigraphy 

of transect B is comparable to the findings of vibracore transects A and C. Here, the former 

surface is dipping slightly towards the southeast to 1.31 m b.s.l. (AKT 36), 1.61 m b.s.l. (AKT 38) 

and 2.02 m b.s.l. (AKT 37). Its upper part is characterized by a clear erosional unconformity and, 

in most cases, followed by the sandy shell debris layer of event unit E. In all vibracores along 

transect B the following marine units represent submarine to littoral depositional conditions 

(unit M and B), and the accumulation of the sequence can be linked to the formation of ridge 

generation II (see also Chapter 2). 

Tab. 3-2: OSL datings of parallel cores AKT 3b, AKT 36b and sediment profile AKT 35D. Notes: b.s. – 
depth below surface, Gy – gray (j/kg), yrs – years before present. For radionuclide values and age-
depth plots see appendix D. 

Sample 
Depth 

(m b.s.) 
Equivalent dose 

(Gy) 
Doserate ± Error 

(Gy/ka ± Gy) 
Water 

content (%) 
Grain 

size (µm) 
OSL age 

(yrs) 
Error 

(+- yrs) 

AKT 3b OSL 1 0.56-0.64 1.14 ± 0.08 0.59 ± 0.08 5+-5 150-200 1930 240 

AKT 3b OSL 2 0.83-0.93 1.21 ± 0.07 0.56 ± 0.07 10+-5 150-200 2160 250 

AKT 3b OSL 3 1.35-1.45 1.52 ± 0.08 0.55 ± 0.07 10+-5 150-200 2770 310 

AKT 3b OSL 4 1.60-1.70 2.99 ± 0.21 1.31 ± 0.16 15+-5 125-180 2290 240 

AKT 3b OSL 7 2.45-2.50 129.3 ± 7.01 1.16 ± 0.16 10+-5 38-63 111000 13900 

AKT 3b OSL 8 2.80-2.95 109.34 ± 7.46 1.12 ± 0.17 10+-5 38-63 97500 12800 

AKT 36b OSL 1 0.56-0.65 1.69 ± 0.16 0.75 ± 0.13 5+-5 150-200 2250 320 

AKT 36b OSL 2 0.86-0.98 1.7 ± 0.06 0.71 ± 0.08 10+-5 125-180 2400 260 

AKT 36b OSL 3 1.55-1.64 1.53 ± 0.05 0.67 ± 0.07 10+-5 150-200 2280 240 

AKT 36b OSL 4 1.87-1.98 1.93 ± 0.1 0.77 ± 0.09 70+-5 125-180 2523 248 

AKT 36b OSL 5 2.72-2.79 1.61 ± 0.05 0.70 ± 0.06 85+-5 150-200 2290 190 

AKT 36b OSL 6 2.86-2.98 2.21 ± 0.11 0.72 ± 0.09 85+-5 38-63 3060 330 

AKT 36b OSL 7 3.50-3.61 65.66 ± 11.15 0.90 ± 0.23 10+-5 150-200 73090 13950 

AKT 36b OSL 8 3.86-3.98 81.19 ± 7.41 0.90 ± 0.14 10+-5 150-200 90370 11400 

AKT 35D OSL 1 2.10 0.28 ± 0.05 0.53 ± 0.14 5+-5 150-200 528 109 

AKT 35D OSL 2 1.70 0.37 ± 0.06 0.53 ± 0.15 5+-5 125-180 704 163 

AKT 35D OSL 3 1.20 0.37 ± 0.05 0.51 ± 0.12 5+-5 150-200 719 133 

AKT 35D OSL 4 0.70 0.17 ± 0.08 0.69 ± 0.47 5+-5 125-180 245 118 

AKT 35D OSL 5 0.45 0.32 ± 0.11 0.71 ± 0.35 5+-5 150-200 453 162 
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Altogether, four 14C-AMS datings exist for chronological interpretation of transect B. A plant 

remain found in core AKT 3, taken from right below the erosional unconformity, yielded an age 

of 1188; 946 cal BC (sample AKT  3/5 PR, 0.54 m b.s.l.). Two plant remains were taken from a 

comparable stratigraphical position (AKT 37/14 PR, 2.04 m b.s.l.; AKT 38/8+ PR, 1.65 m b.s.l.) and 

were dated to 1624-1503 cal BC and 1662; 1513 cal BC. From the overlying marine sequence, a 

plant remain (sample AKT 37/11 PR, 1.24 m b.s.l.) resulted in a terrestrial calibrated age of 88; 

240 cal AD (marine calibrated age 460-629 cal AD).  

OSL datings were carried out for parallel cores of vibracores AKT 3 and AKT 36 in order to 

crosscheck 14C-AMS dating results and obtain depositional ages for both the lower deeply 

weathered sedimentary unit as well as the upper marine sequence above the erosional 

unconformity. For both vibracores, OSL dating results prove a Pleistocene age of deposition of 

the deeply weathered unit below the erosional unconformity, yielding ages between 111.000 +- 

13.900 yrs. (AKT 3b OSL 7) and 73.090 +-13.950 yrs (AKT 36b OSL 8). Sedimentation of the 

marine unit at coring site AKT 3 took place between 2770 +-310 yrs (AKT 3b OSL 3) and 1930 +- 

240 yrs (AKT 3b OSL 1), at AKT 36 between 3060 +- 330 yrs (AKT 36b OSL 6) and 2250 +- 320 yrs 

(AKT 36b OSL 1) (see Table 3-2, appendix D). 

Vibracore transect C 

Along vibracore transect C (AKT 34, AKT 1, AKT 35 and AKT 50), a comparable stratigraphy to 

vibracore transects A and B was found (Fig. 3-13a). The erosional unconformity on top of the 

former surface can be followed along the entire transect and is overlain by event unit E. Towards 

the west, the depth of this boundary is increasing to 1.03 m b.s.l. (AKT 34), 1.90 m b.s.l. (AKT 1), 

3.35 m b.s.l. (AKT 35) and 5.10 m b.s.l. (AKT 50), documenting a westward dipping of the former 

surface. In contrast to the findings in vibracore transect B, the former surface shows a slightly 

steeper south-westward dipping. The well sorted sand of unit M is followed by coarser 

sediments of littoral unit B and, on top of unit B, aeolian unit D. A comparable succession is 

documented along the entire transect (Fig. 3-13a).  

At vibracore transect C, plant remains taken from vibracore profile AKT 35 at 3.64 m b.s.l., just 

below the erosional unconformity, were dated to 3019-2703 cal BC (AKT 35/15 PR, Table 3-1). 

Above, an articulated marine mollusc (228-416 cal AD, AKT 35/12 M, 2.51 m b.s.l., Table 3-1) and 

a sea weed remain taken from 1.11 m b.s.l. (636-763 cal AD, AKT 35/9 PR, Table 3-1) were dated 

by 14C-AMS. The terminus ad or post quem of ~ 2800 cal BC for the deposition of the event layer 

and the following marine sequence (sample AKT 35/15 PR, 3.64 m b.s.l., Table 3-1) is supported 

by the 14C-AMS dating result of sample AKT 2/9 PR (plant remain, 1.60 m b.s.l., Table 3-1), taken 

from core AKT 2 some 700 m north of site AKT 35. Sampled from a comparable stratigraphical 

position, it yielded an age of 2879-2632 cal BC.  

The uppermost unit (unit D) of vibracore AKT 35 corresponds to the formation of the adjacent 

dune field to the west. Here, sediment profile AKT 35 D was prepared some 100 m west of 

vibracore AKT 35, at the base of a major dune of 5 m elevation a.s.l. The profile was sampled for 

OSL dating and five OSL ages were obtained for the lower part of the dune. From a 

chronostratigraphical point of view, the profile can be divided into two units.  

 



Chapter 3 – Tsunami-induced coastal changes at Aktium Headland, NW-Greece 

75 

 

 

Fi
g

. 
3

-1
3

: 
Sc

h
em

a
ti

c 
ill

u
st

ra
-t

io
n

 
o

f 
vi

b
ra

co
re

 t
ra

n
se

ct
s 

C
 (

a
) 

a
n

d
 

D
 (

b
).

 A
va

ila
b

le
 1

4
C

-A
M

S-
d

a
ti

n
g

 
re

su
lt

s 
a

n
d

 
O

SL
 

a
g

es
 

a
re

 
in

te
g

ra
te

d
 i

n
to

 t
h

e 
p

ro
fi

le
s.

 F
o

r 

le
g

en
d

 s
ee

 F
ig

. 3
-4

.  



Chapter 3 – Tsunami-induced coastal changes at Aktium Headland, NW-Greece 

76 

 

Samples AKT 35 D-1, AKT 35 D-2 and AKT 35 D-3, taken from the lower part of the profile, show 

slightly older depositional ages of around 700 yrs than the above lying samples AKT 35 D-4 and 

AKT 35 D-5, showing ages of around 300 yrs (see also Tab. 3-2). 

Vibracore transect D 

In the southern part of the Phoukias sand spit, vibracore ANI 2 was drilled on top of the sand spit 

reaching into the Bay of Aghios Nikolaos. With a depth of 18 m b.s., it is the deepest drilling in 

the study area. Vibracore ANI 14 was brought down east of the extending sand spit close to the 

steep, westward dipping bedrock slope of southern Aktium Headland. Together with the results 

of transects B and C, the findings from coring sites ANI 2 and ANI 14 imply a dipping level of the 

former surface to the south and south-east and a subsurficial slope of the pre-Holocene 

topography.  

For vibracores ANI 2 and ANI 14 nine 14C-AMS datings exist for chronological interpretation. 

Sample ANI 2/29 M was taken from 16.95 m b.s.l. and proves brackish-lagoonal conditions at 

2462-2287 cal BC. An articulated mollusc sampled from the lower part of the shell debris layer 

(13.20 m b.s.l.) found in vibracore ANI 2 was dated to 238 - 41 cal BC (ANI 2/22+ M). It thus 

provides a terminus ad or post quem for the deposition of the shell debris layer and the increase 

of saltwater influence in the Bay of Aghios Nikolaos. Above the shell debris layer, at 12.59 m 

b.s.l., a plant remain was dated to 390; 210 cal BC (terrestrial calibrated) or 9-149 cal AD (marine 

calibrated, ANI 2/21+ PR). Sample ANI 2/16++ PR (sea weed) was taken from 10.00 m b.s.l. and 

yielded an age of 781-994 cal AD, and sea weed remains from 6.25 m b.s.l. (ANI 2/12+ PR) 

resulted in an age of 1286-1430 cal AD. The age of sample ANI 2/7+ PR (3.25 m b.s.l.) was 

determined to 1676; 1954 cal AD. From core ANI 14 an articulated mollusc (Mytilus sp.) was 

sampled at 11.16 m b.s.l. and yielded an age of 5426-5226 cal BC (ANI 14/25 M). At 4.88 m b.s.l. 

(ANI 14/11+ PR) and 2.89 m b.s.l. (ANI 14/7+ PR) sea weed remains resulted in an age of 90-254 

cal AD and 700-874 cal AD, respectively. 

3.5 INTERPRETATION AND DISCUSSION  

3.5.1 EVENT-INDUCED COASTAL CHANGES – EVIDENCE FOR TSUNAMI OR STORM? 

As shown by the presented results, distinct event layers, summarized in sedimentary unit E, 

were encountered within the sedimentary sequence of several vibracores and sediment profiles 

in the Phoukias sand spit. At some places, they intercalate sublittoral deposits of long-term 

morphodynamics; at other places they represent the beginning of the marine sedimentary 

sequence. For the event units E found in vibracore AKT 35 and sediment profile AKT S2 detailed 

investigations revealed similar sedimentary characteristics. Unit E is characterized by (i) a clear 

erosional unconformity at its base, (ii) rip-up-clasts from the underlying sedimentary unit, (iii) a 

heterogeneous, partly bimodal grain size distribution and a poor sorting, (iv) a shell debris layer 

in its lower part, which is indicated by a high content of angular mollusc fragments and 

numerous articulated molluscs, (v) allochthonous microfaunal assemblages, (vi) a fining upward 

sequence in its upper part, and (vii) a clear thinning landward sequence, in particular in the 

northern part of the Phoukias spit. Thus, unit E accumulated under high energy morphodynamics 
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and is assumed to be of extreme wave origin. In the following, a detailed discussion of the 

sedimentary characteristics found for the event layers is carried out to clarify its origin. The 

interpretation is mainly based on observations of tsunami and storm deposits found around the 

world. 

The documented sedimentary characteristics of unit E represent typical depositional signatures 

which are generally used for the determination and differentiation of extreme wave events in 

the geological record (KORTEKAAS & DAWSON 2007, MORTON et al. 2007, SWITZER & JONES 2008a, 

MAMO et al. 2009). However, several studies on extreme wave event deposits have shown that a 

number of these signatures occur in both tsunami and storm layers and only confirm the marine 

origin of the sediment (MORTON et al. 2007, SWITZER & JONES 2008a). Thus, if encountered in a 

potential event deposit, a single sedimentary feature is not capable to appropriately distinguish 

between tsunami and storm; i.e. an independent, diagnostic criterion for the determination of 

the related hydrodynamic process does not exist. 

The geochemical characteristics of an event deposit for instance may possibly not differ from the 

characteristics found for storm deposits or even for sublittoral sediments, accumulated due to 

constant low energy conditions. Nevertheless, the distribution of distinct elements within a 

sedimentary sequence provides useful information about the marine influence during its 

deposition and may trace marine inundation due to an extreme wave event in the geological 

record (see also CHAGUE-GOFF & GOFF 1999, 2002, FREITAS et al. 2003, NICHOL et al. 2007, VÖTT et al. 

2009a). This is true for vibracore profile ANI 2, where a considerable change in geochemical 

characteristics and facies of the sedimentary sequence is documented for the event-related and 

subsequent units.  

For the study area, microfaunal analyses have been carried out for core AKT 35. In general, the 

analysis of ostracod, diatom and foraminifera assemblages are capable of estimating the 

provenance of sediments and its palaeoenvironmental context (HAWKES et al. 2007, RUIZ et al. 

2010, MAMO et al. 2009). Open marine species, such as planktonic and/or shelf species, indicate 

washover events and therefore storm and/or tsunami inundation if found in sediments 

intercalating the sedimentary sequence in backbeach positions, such as lagoons or paralic 

swamps (SEDGWICK & DAVIS 2003, TUTTLE et al. 2004, KORTEKAAS & DAWSON 2007, WILLIAMS 2009). 

However, in many cases, the macro- and microfaunal content of these sediments only proves its 

marine origin, since the macro- and microfaunal content of an event deposit is a product of its 

source (SWITZER & JONES 2008a). The foraminiferal assemblage found for the event layer thus does 

not remarkably differ from the content of the subsequent well sorted sediments of sublittoral 

origin. Nevertheless, considerable differences are observed in the findings of ostracod 

communities. Here, only few single individuals could be documented in the event related units, 

pointing to a rapid sedimentation related to an extreme wave event. In contrast, the overlying 

units are indicated, as expected, by a well developed, autochthonous ostracod association, 

showing different states of growth as well as juvenile species. The establishment of sublittoral 

conditions related to constant, moderated morphodynamics is thus proved for the upper 3.0 m -

3.5 m of the core. 

In the study area, the base of unit E is associated with a sharp erosional contact at most 

investigated sites. Moreover, rip-up clasts were found in unit E at several coring sites. A sharp 
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contact to the underlying unit, which is in most cases represented by the former, pre-event soil 

and/or a lagoonal surface, is known from both tsunami and storm deposits (NANAYAMA et al. 2000, 

SEDGWICK & DAVIS 2003, HAWKES et al. 2007, SUGAWARA et al. 2008, WILLIAMS 2009). The occurrence 

of erosional unconformities, documenting intense erosion of the covered substrate, in most 

cases is linked to tsunami events, although reports on basal erosion during storm events exist as 

well (WANG & HORWITZ 2007, WILLIAMS 2009). The strong erosive effects of inundation during 

extreme wave events involve the detachment of fragments from the underlying material. These 

so called rip-up clasts are incorporated into the event deposit and are reported to be a 

prominent feature of tsunami sediments, since they are absent in most investigated storm 

deposits (MORTON et al. 2007, KORTEKAAS & DAWSON 2007). The presence of rip-up clasts in unit E, 

as documented for cores AKT 35 and AKT 39 for instance, thus favours the tsunamigenic origin of 

the event layer. Moreover, intense erosion of the underlying material of unit P is suggested by 

slightly higher parts of silt and clay found in the lower part of unit E in vibracore AKT 35 and 

sediment profile AKT S2. Comparable findings have been presented by KORTEKAAS & DAWSON 

(2007) who investigated event deposits of the 1755 AD Lisbon tsunami in SW Portugal. 

The lower part of the event deposit unit E is constituted by a shell debris layer. In general, shell 

debris layers may be ascribed to both tsunami and storm events (SEDGWICK & DAVIS 2003, FUJIWARA 

& KAMATAKI 2007, GUTIERRÉZ-MAS et al. 2009, VÖTT et al. 2009a, ENGEL et al. in review), but shell 

layers related to storm deposits are reported to be organized in thin laminae in most cases 

(MORTON et al. 2007). However, similar findings compared to the findings in the study area have 

been presented by NICHOL et al. (2007) from western New Zealand, who assume a tsunamigenic 

origin of a comparable shell debris unit. Moreover, the results of the taphonomic investigations 

show remarkable similarities compared to the investigations of DONATO et al. (2008), who carried 

out taphonomic analysis for known storm and tsunami deposits from the Sur Lagoon, Oman and 

Caesarea, Israel (see also REINHARDT et al. 2006). For vibracore AKT 35, considerable differences in 

the taphonomic characteristics of the samples from the event layer (unit E) and the reference 

sample from the assumed sublittoral unit (unit M) have been found. The shell content in the 

sediment taken from the assumed event layer was exposed to turbulent flow and high energy 

wave activity prevailed during deposition, and most of the shell remains from unit E were not 

exposed to marine abrasion and bio-destructive processes before their deposition. These 

findings suggest that a long period of reworking of most of the shell fragments from unit E, in 

contrast to unit M, can be excluded. Moreover, event unit E in sediment profile AKT S2 shows 

abundant articulated, air-filled molluscs, which were found in ex-situ position. It may be 

assumed that the articulated molluscs were alive during erosion, transport and deposition, 

pointing to a rapid, event-induced formation of the shell debris layer. Correlations between the 

lower part of unit E and the Oman tsunami layer (DONATO et al. 2008) are evident, although 

absolute values differ between the investigated sites. Though assemblages of articulated 

molluscs are known from storm deposits as well (e.g. BOYAJIAN & THAYER 1994), a tsunamigenic 

origin of unit E is assumed due to the abundant articulated molluscs and the remarkably high 

content of angular mollusc fragments within the sediment.  

The poor sorting of the unit and the normally graded transition to the subsequent unit indicating 

declining transport energy during the process of wave inundation clearly document the event 

character of the unit (see e.g. TUTTLE et al. 2004, HAWKES et al. 2007, KORTEKAAS & DAWSON 2007, 
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NICHOLS 2009, WILLIAMS 2009). In the north-western, ridge-dominated part of the spit, the event 

unit E constitutes the entire sedimentary sequence of the northernmost ridge of ridge 

generation I and can be followed up to ~300 m to the north (see Transect A, cores AKT 42, AKT 6, 

AKT 5). Unit E thus shows a typical thinning landward sequence. The washover-character of the 

unit is indicated by several fan-like structures as well, extending from the northern side of the 

older, northernmost ridge generation I. From both storm and tsunami deposits heterogeneous 

grain size distribution and graded sequences, normal and inverse, are reported (GELFENBAUM & 

JAFFE 2003, BAHLBURG & WEISS 2006, SUGAWARA et al. 2008, BESONEN et al. 2008, TUTTLE et al. 2004, 

SEDGWICK & DAVIS 2003, MOORE et al. 2006), and thinning landward sequences are known from 

both storm and tsunami inundation as well (NANAYAMA et al. 2000, MOORE et al. 2007, WILLIAMS 

2009). However, most storm deposits are characterized by a sequence of numerous thin layers 

or laminae, typically more than 15, consisting of sandy material and showing inverse or normal 

grading (MORTON et al. 2007, SWITZER & JONES 2008a, WILLIAMS 2009). In contrast, tsunami deposits 

generally consist of only few subunits (TUTTLE et al. 2004, HAWKES et al. 2007, MORTON et al. 2007, 

NICHOL et al. 2007, CHOOWONG et al. 2008, NANAYAMA 2008). However, investigations on 2004 

Indian Ocean tsunami deposits showed that lamination may also occur in tsunami deposits, 

especially when backwash deposits contribute to the sequence (PARIS et al. 2007, MORTON et al. 

2008). No indication for thin-layered lamination and/or numerous subunits, which would assume 

a storm origin, could be observed. A tsunamigenic origin is thus assumed. 

The deposition of unit E was accompanied by remarkable modifications of coastal configuration 

and considerable changes of coastal dynamics. It involved (i) the formation of ridge generation I 

and the related thinning landward unit in the northern part of the Phoukias spit, (ii) the 

subsequent coastal erosion to the north-west of the recent spit system which was accompanied 

by erosion of the western part of ridge generation I, (iii) the accumulation of ridge generation II 

in the central spit area, characterized by a local regression of the sea and (iv) the related 

formation of the Phoukias spit system, extending into the Bay of Aghios Nikolaos. Event unit E 

must have accumulated when the Plaka coastline became inactive. It is therefore assumed that 

the documented events contributed, at least partly, to the destruction of the former Plaka 

coastline. 

As described above, the formation of the ridges in the northern Phoukias area are assumed to be 

related to the inferred event. In general, the formation of near-coastal ridges is attributed to 

regressive and/or transgressive littoral dynamics, related to the local morphodynamics and the 

local relative sea level evolution. However, the stratigraphical architecture of ridge generation I, 

comprising (i) the distinct shell debris layer with articulated, air filled molluscs, (ii) the 

subsequent, clear fining upward sequence, and (iii) the fining landward sequence of both units, 

is not known to be a typical characteristic of beach ridge sediments. Due to the different 

morphology and the morphological arrangement of both ridge generations, a different dynamic 

and a different direction of currents must be assumed for the formation of ridge generation I, in 

contrast to the sequence of ridges comprising ridge generation II. In addition to these findings, 

the lower part of the fining upward sequence at sediment profile AKT S2 consists of perfectly 

rounded gravel. At present, the western shore of Aktium Headland and thus the provenance 

area of the Phoukias spit’s sediments is characterized, besides the eroded aeolianite slabs, by 

sandy deposits (see also Chapter 2). In contrast, the entire Lefkada barrier beach and most parts 
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of the beachrock remains are dominated by perfectly rounded gravel, and gravel must be 

assumed to have dominated grain size along the former Plaka coastline. Therefore it is assumed 

that the gravel compounds found in unit E of ridge generation I and the related thinning 

landward sequence represents reworked material of the former Plaka barrier coastline. Ridge 

generation I is thus assumed to have formed during the inferred tsunami event. Sediments 

released by the destruction of the Plaka barrier beach were incorporated into the ridges of 

generation I. 

According to VÖTT (2007) and MARKOVIC (2008), local relative sea level in the adjacent area never 

exceeded its present position during the Holocene. A relative sea level rise of ~ 2 - 3 m within the 

last 2000 years is evident for several coastal areas in the direct vicinity of the study area (VÖTT 

2007). The well developed soil on top of unit E in the northern part of the Phoukias spit (for 

instance at sediment profile AKT S2) and the overall weathering of the sequence under oxidizing 

circumstances proves that in this part of the study area unit E was accumulated well above sea 

level. For the event layers from the northern (AKT S2) and middle part (AKT 35) of the Phoukias 

sand spit a broad range of typical empirical signatures known from tsunami deposits is evident. 

Assuming a storm generated formation of the event layers, a higher frequency of comparable 

units should be expected in the geological record, since several strong winter storms apparently 

must have taken place within the depositional history of the spit system. Considering (i) the 

dimension of coastal changes which are assumed to be related to the accumulation of units E, (ii) 

the sedimentary characteristics of units E in AKT S2 and AKT 35, (iii) the absence of comparable 

units within the sedimentary record, at least one major tsunami event is documented for the 

study area. 

3.5.2 THE EVOLUTION OF THE PHOUKIAS SAND SPIT – EVIDENCE FOR TSUNAMI-INDUCED COASTAL CHANGES  

As discussed above, distinct event layers are documented within the Phoukias sand spit’s 

sedimentary architecture and summarized in unit E. Due to their sedimentary characteristics 

they are attributed to tsunami impact. A possible correlation and contemporaneous formation 

may be considered, for instance for event units E in core AKT 35 and sediment profile AKT S2.  

According to the available tsunami catalogues, the occurrence of more than one tsunami event 

in the study area within the considered period of time is likely. For the regarded period of time 

three tsunami events are reported from the Ionian Sea, all of them related to well known 

supraregional events which affected large parts of the eastern Mediterranean. These tsunami 

events are related to (i) the eruption of the Thera volcano (Santorini) at ~1650 cal BC, (ii) the 373 

cal BC earthquake in the Corinthian Gulf, and (iii) the 365 cal AD earthquake off western Crete 

(see also SOLOVIEV et al. 2000, STIROS 2001, STEFANAKIS 2006, VÖTT et al. 2006). According to VÖTT et 

al. (2006), several local tsunami events must be inferred to have taken place within the 

considered period of time. In addition to the tsunami catalogues, VÖTT et al. (2006, 2007a, 2008, 

2009a, 2009b) report on several late Holocene tsunami impacts on the Bay of Aghios Nikolaos 

and on the Lefkada Lagoon based on geo-scientific investigations. The best documented events 

are reported to have taken place at around or after ~1000 BC, at around or after ~300 BC, and at 

around or after ~400 AD. However, several further tsunami events are assumed to have affected 

the study area as well - in the Phoukias area for instance at around or after 2400 BC and at ~800 
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AD, in the Bay of Aghios Nikolaos at ~1000 AD. As to the distinct event layers of unit E, its 

formation may correspond to either the ~1000 cal BC, the 300 cal BC event or the 400 AD event, 

which are assumed by the authors to have affected the study area and the adjacent coastal 

zones. 

Tsunami induced coastal changes at ~1000 cal BC 

For the northern part of the Phoukias sand spit, the OSL dating results from transect B clearly 

show Pleistocene depositional ages of the sedimentary base of the spit system (unit P). 

Deposition of these sediments is assumed to have occurred during the last interglacial. Along 

vibracore transects A and B the transition of Pleistocene and Holocene sediments is marked by 

an erosional unconformity followed by tsunamigenic event unit E (for details see Chapter 3.4.3 

and Chapter 3.5.1). According to the available 14C-AMS ages (see Tab. 3-1), a former terrestrial 

surface persisted until at least ~1000 cal BC along transect B, involving the deep weathering of 

the Pleistocene sediments. Moreover, all 14C-AMS ages from the weathered surface represent 

termini ad or post quem for the deposition of event unit E and the onset of marine conditions.  

Along transect A, ridge generation I dominates the present morphology and is entirely 

constituted by event unit E. Since the articulated bivalves taken from event unit E were filled 

with air during excavation, it may be assumed (i) that the molluscs were alive during transport, (ii) 

that the obtained 14C-AMS ages represent depositional ages of the sedimentary unit and (iii) that 

the 14C-AMS ages, keeping in mind the marine reservoir effect, determine the date of the 

extreme wave event. However, the age of sample AKT S2/9 M (2447; 2239 cal BC) is several 

hundred years older than the plant remain taken from the underlying former surface (AKT S2/10 

PR, 2015; 1772 cal BC), documenting an age inversion. Together with the age of the second 

articulated mollusc (AKT S2/9+ M, 1506 - 1371 cal BC) it can thus not be assumed that the age of 

the dated articulated molluscs represent depositional ages of the sedimentary unit and the date 

of the corresponding event. Therefore, all dates represent termini post quem for the deposition 

of event unit E, and at least some of the articulated molluscs must have been already dead at the 

time they were eroded, transported and deposited. Assuming a major tsunami impact in the 

study area at around or shortly after 1000 cal BC as proposed by VÖTT et al. (2008), it is assumed 

that the deposition of unit E in the northern part of the Phoukias spit and the related formation 

of ridge generation I corresponds to this event. Moreover, coarse grained sediments of marine 

origin found in the Lake Voulkaria (JAHNS 2005, VÖTT et al. 2006, 2009b) may correspond to the 

same tsunami event.  

According to the OSL dating results, sedimentation of the marine unit at coring site AKT 3 took 

place between 2770 +-310 yrs (AKT 3b OSL 3) and 1930 +- 240 yrs (AKT 3b OSL 1), at AKT 36 

between 3060 +- 330 yrs (AKT 36b OSL 6) and 2250 +- 320 yrs (AKT 36b OSL 1). Generally, all OSL 

ages represent maximum ages of deposition, due to the fact that a possible overestimation of 

the age may occur from incomplete bleaching of the sediment during deposition. Due to 

different provenance areas of the investigated sediment, each sample may be indicated by 

different signal characteristics, resulting in different variations of the emitted signals and 

different error ranges. Further uncertainties may arise from radioactive imbalances and, from a 

methodological point of view, from the determination of the dose rate, which was performed by 
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sampling a parallel core. However, due to the characteristics of the samples, no indication for 

incomplete bleaching of the samples was found. Moreover, MURARI et al. (2007) report on pre-

depositional zeroing of the luminescence of tsunami laid sands from the 2004 Indian Ocean 

tsunami, which can be ascribed to constant reworking and bleaching of the near-surface sands 

mobilized during the event. The available OSL results are thus considered to be reliable. Since 

bleaching of the sediment during the process of sampling and preparation is excluded, an 

underestimation of the ages can be excluded either way. Therefore, the deposition of the marine 

units at coring site AKT 36 started around or after 3060 +- 330 yrs, at site AKT 3 around or after 

2770 +-310 yrs.  

As shown in Tab. 3-2, age inversions are within error ranges and dating results are consistent. 

According to these findings, the main period of deposition of the marine sequence can be limited 

to between ~3300 yrs and ~1700 yrs BP. Assuming a ~ 1000 cal BC event as proposed by the 

results of sediment profile AKT S2, the OSL ages represent the beginning of marine 

sedimentation which started immediately after the event and the related deposition of ridge 

generation I. The ridges of ridge generation II may have formed as a result of the event-induced 

ingression of the sea, and the onset of (i) erosion at the western shore of Aktium Headland, (ii) 

southward directed longshore drift, and (iii) littoral activity and ridge accretion in the northern 

Phoukias area.  

The 14C-AMS dating of sample AKT 37/11 PR (1.24 m b.s.l.) yielded a terrestrial calibrated age of 

88; 240 cal AD (marine calibrated age 460-629 cal AD). It proves that the upper part of the 

marine sequence, at least at coring site AKT 37, is younger than ~2000 yrs, which is generally 

supporting the presented OSL chronology. However, a slight change in morphodynamics may be 

inferred from coarser grain sizes which are associated to the plant remains of sample AKT 37/11 

PR. Thus, a post ~200 AD high-energy wave event, depending on the calibration, may also be 

considered to have influenced the stratigraphy of transect B.  

Regarding the error range of the OSL dating results, it may be interpreted that all datings show 

similar or at least comparable ages (see also appendix D). Therefore, similar or at least 

comparable depositional ages of ~2400 - 2200 yrs may be assumed for the entire marine 

sequence along transect B, which may be explained by either an event-induced accumulation of 

the entire sequence or a rapid accretion of ridge generation II due to longshore drift. As Table 3-

2 and appendix D shows, considerable differences exist (i) between the dose-rate of sample AKT 

3b OSL 4 (~1.31 gy/ka) and the dose-rates for samples AKT 3b OSL 1, AKT 3b OSL 2 and AKT 3b 

OSL 3 (~0.55 – 0.59 gy/ka) and (ii) between the radionuclide values (U, Th, K) of samples AKT 3b 

OSL 1 and AKT 3b OSL 2 and samples AKT 3b OSL 3, AKT 3b OSL 4 (see appendix D). These 

differences point to a different provenance of the lower and upper part of the marine sediments 

in profile AKT 3b and suggest a successive rather than a contemporaneous, episodic deposition 

of the entire sedimentary sequence. Moreover, a slight diminution of ages to the top is 

documented for the ages of core AKT 3b. Differences in the provenance area of the sediments 

comprising the stratigraphy of core AKT 36b must also be inferred from the differences in 

radionuclide values (see appendix D).  
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Tsunami induced coastal changes at around or after 300 cal BC 

In the southern part of the Phoukias spit, the rising sea level resulted, at least since mid-

Holocene, in the establishment of brackish-lagoonal conditions in the Bay of Aghios Nikolaos, 

while the former terrestrial surface persisted in the northern spit area. Up to now, little is known 

about the age and evolution of the Plaka remains, protecting the Bay of Aghios Nikolaos from 

the open Ionian Sea. However, the Plaka is assumed to represent a former shoreline (see also 

VÖTT et al. 2008; Chapter 2). The establishment of the lagoonal environment in the Bay of Aghios 

Nikolaos was linked to the formation of this former coastline. According to the 14C-AMS dating of 

sample ANI 14/25 M, taken from the base of vibracore ANI 14, lagoonal conditions have already 

been established at around 5426-5226 cal BC and are also documented around 2462-2287 cal BC 

(ANI 2/29 M). In the northern Lefkada Lagoon comparable results date the beginning of lagoonal 

conditions to the 5th millennium BC (VÖTT et al. 2006, see also Chapter 2). 

A considerable change in the sedimentary and geochemical characteristics of the sedimentary 

sequence at coring site ANI 2 is related to the deposition of the normal graded shell debris layer 

on top of the brackish-lagoonal sequence (13.10 – 13.22  b.s.l.). Above, marine influence on the 

Bay of Aghios Nikolaos must have significantly increased and considerable environmental 

changes are assumed to have taken place, which can only be explained by the breakdown of the 

Plaka coastline. These changes are documented, due to the geochemical investigations, by 

increased saltwater influence and the subsequent successive onset of higher morphodynamic 

activity. An articulated mollusc (Dosinia exoleta) was sampled from the event-related shell-

debris layer in ANI 2 (13.10 - 13.22 m b.s.l.) and yielded an age of 248-41 cal BC. Thus, event unit 

E is considered to have formed around or after 248-41 cal BC. These findings are supported by 

the 14C-AMS dating of sample ANI 2/21+ PR, taken some 50 cm above the shell debris layer, 

which yielded an terrestrial calibrated age of 390; 210 cal BC (marine calibrated age 9-149 cal 

AD]. The possibly slightly older age may be explained by a probable reworking of the plant 

material. A contribution of the inferred tsunami event at ~248-41 cal BC to the breakdown of the 

former Plaka coastline is likely. 

The inferred event at around or after 248-41 cal BC (ANI 2/22+ M) fit well to the findings of VÖTT 

el al. (2006, 2007a, 2008, 2009b), who present several indications for a high energy wave event 

at around or after ~ 300 cal BC in the investigated and adjacent area. At the western shore of the 

Lake Voulkaria, a wood fragment taken out of an event-related coarse-clastic layer of marine 

origin was dated to 405; 204 cal BC. This event layer most likely was deposited in and is 

restricted to the former Cleopatra channel, which connected the Bay of Aghios Nikolaos and the 

Lake Voulkaria during antiquity (see VÖTT et al. 2009b for detail). An extreme wave event 

producing coarse grained deposits at the western shore of the Lake Voulkaria apparently must 

have affected the investigated area in the southern part of the Phoukias spit. Moreover, 

previous findings from a small beach at the northern shore of the inner Bay of Aghios Nikolaos 

suggest a high energy wave impact after 557–395 cal BC and a subsequent reduction of wave 

dynamics in the Bay of Aghios Nikolaos (VÖTT et al. 2008). These findings may be explained by 

the inferred post 300 cal BC tsunami and the subsequently beginning advance of the Phoukias 

spit, which is corresponding to the beginning of increased morphodynamics at vibracore site ANI 

2 and involved the related wave protection in the inner part of the bay. 
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Marine conditions, due to the north-southward direction of sediment transport, continued for a 

longer period of time than in the northern part (Transects C and D). In vibracore transect D, the 

sedimentary sequence points to a successive, gradual change of coastal morphodynamics from 

wave-unaffected, clayey to silty units (deeper-water, distal to the spit front) to sand-dominated 

units (sublittoral and littoral, shallow water, proximal to the spit front). The related gradual shift 

of morphodynamic conditions is dated to the end of the first millennium AD and thus, typical for 

an advancing sand spit, post-dates the onset in the northern spit area. Afterwards, high 

sedimentation rates can be inferred at coring site ANI 2 which is expressed in successively 

increasing grain sizes and lamination of the sediments in the middle part of the core. Regarding 

the position of vibracore ANI 2, the deposition of this unit can be attributed to the advancing spit 

formation and its extension into the Bay of Aghios Nikolaos. At site ANI 14 datings do not show 

comparable high sedimentation rates. Here, due to the adjacent outcropping bedrock, littoral 

conditions took place after or at around ~800 cal AD (ANI 14/7+ PR). At the same time, shallow 

water conditions led to the deposition of the laminated unit in core ANI 2. In the very southern 

part of the spit, sediment accretion and spit formation, which formed the southern spit 

extension stretching into the Bay of Aghios Nikolaos proceeded during medieval and modern 

times and is still going on. 

According to VÖTT et al. (2007a), the changing morphodynamic conditions documented for cores 

ANI 2 and ANI 14 and especially the incipient occurrence of sea weed layers in the sedimentary 

record of core ANI 2 (above ~11 m b.s.l.) may also be related to a younger high energy wave 

event at around 300 cal AD, which involved the breakdown of the Plaka coastline. However, due 

to the sedimentary results presented in this study, increased marine influence and thus the 

breakdown of the Plaka coastline is assumed to have taken place earlier, at ~300 – 200 cal BC. 

The related change of environmental conditions was accompanied by a considerable increase in 

sediment accumulation rates and may also be responsible for the inferred changes of 

morphodynamic activity in cores ANI 2 and ANI 14. 

Evidence for a tsunami event from the central part of the Phoukias sand spit 

Further to the south, at transect C, the former terrestrial surface (unit P) persisted until at least 

~2700 cal BC (AKT 35/15 PR: 3019 –2703 cal BC, also AKT 2/9 PR: 2879-2632 cal BC). The ages 

serve as a termini ad or post quem for the deposition of tsunamigenic event unit E, which is 

unconformably covering unit P. For transect C, an articulated marine mollusc (AKT 35/12 M: 

228 – 416 cal AD) and a sea weed remain (AKT 35/9 PR: 636-763 cal AD), taken from a sequence 

of well sorted fine sand (unit M), point to regular sublittoral conditions since at least ~300 cal AD. 

The possibly similar age of the upper sample may be explained due to reworking of the plant 

remains. For the deposition of unit E, the age represents a terminus ante quem as well – the 

~300 cal BC event, which was found for the southern part of the spit, can be assumed to have 

triggered the deposition of the event unit E along vibracore transect C. Regarding the well sorted 

sand in the upper part of sediment profile AKT S2, which is interpreted to be part of the event 

unit, the exact determination of the upper limit of unit E in vibracore AKT 35 is difficult. It thus 

may be assumed that parts of the well sorted sand above the shell debris layer and the 

subsequent normal graded sequence also belong to event unit E. In this case, it may be possible 

that the obtained age of ~300 cal AD represents a terminus ad or post quem for unit E. A younger 
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event around or after 300 cal AD thus cannot be excluded to be responsible for the deposition of 

unit E at coring site AKT 35 and along vibracore transect C. However, the evolution of 

autochthonous ostracod associations at coring site AKT 35 is proved for the upper 3 m of the 

sedimentary sequence and is assumed to be related to the establishment of normal, sublittoral 

conditions. Indication of a developing autochthonous ostracod association can already be 

inferred from the increasing number of ostracod species found for the lower part of the well 

sorted fine sand. Moreover, taphonomic investigations document differences between the event 

unit E and the subsequent well sorted sands of unit M (sample AKT 35/11, ~3.39 m b.s./2.04 m 

b.s.l.). Thus, an event-related formation of the well sorted fine sand covering unit E must be 

doubted and a terminus ante quem of ~300 cal AD is assumed for the deposition of unit E.  

OSL datings of a dune profile close to vibracore AKT 35 in the western part of transect C suggest 

a maximum age of ~700 yrs for the presently active dune field in the middle part of the Phoukias 

sand spit. The lower part of the dune (AKT 35 D OSL-1, AKT 35 D OSL-2 and AKT 35 D OSL-3) 

seems to be slightly older than the upper part of the dune (AKT 35 D- OSL 4 and AKT 35 D- OSL 5), 

showing ages of around 300 yrs. Therefore it can be assumed that (i) dune formation started 

shortly before, around or after ~700 yrs, (ii) aeolian deposition, at least at site AKT 35 D, may be 

reactivated at around 300 yrs and (iii) marine conditions at transect C must have ended some 

time before 1300 AD (700 yrs), most likely due to the accretional formation of the Phoukias sand 

spit. 

 

According to the presented dating results, the Phoukias sand spit formed during the last ~3000 

years. Since the existence of the Plaka coastline would not allow the formation of an accretional 

sand spit in the lagoonal area to the east, the Phoukias sand spit did not exist at the time when 

the Plaka represented an active littoral system. Initiation of the spit’s formation must have taken 

place subsequent to the destruction of the Plaka and the related shifting of the coastline. It thus 

can be concluded, that the Plaka represented an active littoral system until at least and became 

inactive after ~1000 BC. Coastal configuration in the area of the Bay of Aghios Nikolaos thus 

must have considerably changed since middle Holocene.  

The succession of different facies within the sedimentary architecture of the Phoukias sand spit 

reflects its geomorphodynamic evolution. Distinct event units have been found in several 

investigated cores and sediment profiles and show comparable or even similar sedimentary 

characteristics, which point to a tsunamigenic origin (see Chapter 3.5.1). Therefore, the 

presented sedimentary sequence documents the interplay of both long-term morphodynamics 

and high-energy wave impacts. Due to the available dating results it must be assumed that at 

least two, probably three tsunami events contributed to the evolution of the Phoukias sand spit. 

Moreover, the presented findings indicate that at least one of the encountered tsunami events 

triggered the breakdown of the Plaka coastline. 

In this context, discrepancies exist between the northern and southern part of the spit; whereas 

dating results of core ANI 2 point to a breakdown of the Plaka coastline and a related increase of 

marine influence on the Bay of Aghios Nikolaos at around or after ~300 cal BC, the formation of 

ridge generation I in the northern part of the spit (sediment profile AKT S2 and adjacent cores) 

and therefore a first marine inundation of the Phoukias area and a related disturbance of the 
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Plaka coastline must have occurred at around 1000 cal BC. Although the formation of event unit 

E at coring site AKT 35 and vibracore transect C in the central part of the spit may be attributed 

to a post 300 cal AD event, the triggering event here may be the post 300 cal BC event as well. 

Further (later) sedimentary changes in the subsequent sedimentary sequence, such as the 

presence of shell-rich sands in the southern spit area (ANI 2 and ANI 14, AKT 37), must relate to 

past morphodynamic changes as well – whether these changes have been induced by long-term 

littoral processes, such as a changing sediment supply and gradual sediment accretion, by 

tectonic subsidence or by the short-term effects of storms and/or tsunami events, as proposed 

by Vött et al. (2008), cannot be clarified (see also Chapter 2). 

3.6 CONCLUSIONS 

Detailed geo-scientific investigations on the evolution of the Phoukias sand spit in SE Aktium 

Headland have been carried out. According to the presented results, the following can be 

concluded:  

a) The Phoukias sand spit in south-western Aktium Headland represents an excellent 

geological archive. Its sedimentary architecture and morphological pattern store 

comprehensive information about the evolution of the Bay of Aghios Nikolaos and the 

former, north-eastern part of the Lefkada barrier beach system. Both long-term 

morphodynamics and high-energy wave impacts contributed to the formation of the 

Phoukias sand spit. 

b) The study area was affected by remarkable coastal changes within the last 3000 years. 

Several phases of the coastal system’s evolution can be reconstructed. These coastal 

changes involved (i) the breakdown of the former Plaka coastline, (ii) the onset of (open) 

marine conditions in the Bay of Aghios Nikolaos, and (iii) the formation of the Phoukias sand 

spit.  

c) Within the stratigraphical sequence of the sand spit, distinct event layers were detected. A 

broad range of typical empirical signatures known to be characteristic for tsunami deposits 

is evident for the documented event units. A tsunamigenic origin of the investigated event 

layers is thus assumed.  

d) At several sites, event deposits mark the beginning of changing morphodynamics. Therefore, 

at least two, probably three tsunami events considerably contributed to the coastal changes 

in the study area. Tsunami events are assumed to have taken place at ~1000 cal BC, at ~300 

cal BC. A possible younger event occurred at ~ 300 cal AD.  

In general, it can be concluded that 

e) Comprehensive geo-scientific investigations and sedimentary analysis are important for the 

detection, the differentiation and the interpretation of event deposits. More studies on 

extreme wave event deposits are needed to improve knowledge and comparability. Apart 

from that, the palaeogeographical context helps to interpret the succession of the 

sedimentary sequence. Therefore, palaeo-event research should be linked to 

palaeoenvironmental investigations. 



Chapter 3 – Tsunami-induced coastal changes at Aktium Headland, NW-Greece 

87 

 

f) The dating of event deposits exhibits considerable difficulties. 14C-AMS-datings of organic 

material in most cases represent termini ante, ad or post quem for the deposition of event 

layers, depending on the stratigraphical relation the material was sampled. Numerous 

datings are thus needed to narrow the time of deposition of event layers. In this study, 

reliable OSL ages helped to establish a local chronology of the Phoukias spit’s sedimentary 

architecture. In combination with 14C-AMS datings, OSL datings of sediment cores provide 

useful information about the depositional ages of (event-related) marine sediments. 

However, several restrictions and difficulties remain, which are partly ascribed to 

methodological problems. 

g) Besides relative sea level evolution and gradual coastal processes, extreme wave events and 

in particular tsunami events are an important factor in coastal evolution and may contribute 

to coastal changes in general.  
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4.1 STUDY BACKGROUND 

Fan-shaped sedimentary structures extending from barrier beach systems into backbeach 

coastal lagoons or coastal lowlands are described from numerous parts all over the world and 

represent an important feature of coastal morphology. In most cases, they are interpreted as (i) 

washover fans, resulting from the flow of water and sediment (overwash) over the crest of the 

beach or (ii) scour fans, formed during breaching of the barrier beach (LEATHERMAN & WILLIAMS 

1977, ANDRADE 1992, KRAUS et al. 2002, DONNELLY et al. 2004, YULIANTO et al. 2007, GOFF et al. 2008, 

2009). Since they are exclusively induced by high energy extreme wave events, their formation is 

attributed to the occurrence of tsunami, tropical cyclones, such as hurricanes, or extra-tropical 

winter storm surges (e.g. ANDRADE 1992, DAWSON 1996, SALLENGER 2000, SEDGWICK & DAVIS 2003, 

ANDRADE et al. 2004, DONNELLY & WOODRUFF 2007, WANG & HORWITZ 2007, YULIANTO et al. 2007, 

SWITZER & JONES 2008a, GOFF et al. 2009, WILLIAMS 2009). During the recent past, the number of 

geo-scientific studies dealing with the sedimentary characteristics of washover structures and 

focussing on their event induced origin has increased (e.g. TUTTLE et al. 2004, MORTON et al. 2007, 

SWITZER & JONES 2008b, WILLIAMS 2009). However, in many cases, problems with the unambiguous 

determination of their origin remain, where only the sedimentary record or the morphological 

structure, but no historical reports of the event itself are available. The distinguishability of 

tsunami and storm in the geological record therefore constitutes the main challenge of extreme 

wave event research. Against this background, detailed sedimentary analysis and descriptions of 

palaeo-washover structures and their sedimentary composition are required. 

In this chapter, detailed sedimentary and geomorphological investigations of three washover 

structures in the northern Lagoon of Lefkada are presented. By means of a broad range of 

methods, detailed analyses of the washovers’ sedimentary sequence are documented. Thereby, 

this study aims to (i) date major washover events and (ii) to determine the related hydrodynamic 

process (tsunami/storm) which induced the washover structures.  

4.2 STUDY AREA 

The area between Lefkada Island and the Bay of Aghios Nikolaos (NW Greece) is characterized by 

a comprehensive barrier beach system, separating the shallow Lagoon of Lefkada and the 

Lefkada Sound from the open Ionian Sea. The base of this barrier system is made up of 

beachrock down to approximately 12 m below present mean sea level (b.s.l.). Along the spit 

system, several washover fan structures, up to ~1 km long, stretch from the beach into the 

Lagoon of Lefkada (see also Chapter 2). Towards the north, the recent beach ridge is shifted 

eastwards and separated from its beachrock base. This beachrock base, the so called Plaka, is 

partly submerged, fragmented and, due to the effects of earthquakes, partly broken. Here, the 

remains of the Plaka represent a reef-like palaeo-coastline, protecting the Bay of Aghios Nikolaos 

from the open sea (see also Chapter 2). 

The study area is exposed to the northern part of the subduction zone of the Hellenic Arc (Fig. 1a 

and 1b). To the north of the Hellenic Arc the Cefalonia transform fault (CF) and the Lefkada 

transform fault (LF) show a remarkably high seismic activity (COCARD et al. 1999, LOUVARI et al. 

1999, SACHPAZI et al. 2000, PAPADOPOULOS et al. 2003, BENETATOS et al. 2005). Therefore, the study 
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area belongs to the seismically most active regions of the Mediterranean and owns a high 

tsunamigenic potential (PAPAZACHOS & DIMITRIU 1991, SOLOVIEV 1990). 

 

Fig. 4-1: Overview of the study area, comprising the northern part of the Lefkada Lagoon and the 
Lefkada barrier beach system [map based on Aster Satellite Image 2003 (USGS), TM 1:50.000 sheets 
Lefkada & Vonitsa (HMGS), Bathymetrical charts Amvrakikos Gulf & Lefkada channel (HNHS) and  
SRTM elevation data (NASA)].  

4.3 METHODS 

Field work comprised 10 vibracorings performed by means of an Atlas Copco Cobra mk 1 coring 

device and sediment cores of 5 cm and 6 cm diameter (for core data see appendix A, C and E). 

Additionally, on top of the washover structures and in the adjacent lagoonal areas, 7 sediment 

cores were obtained by pushing plastic tubes, 2 m long and 5 cm diameter, into the sediment by 

hand. In order to determine exact elevation and position of the sediment profiles and coring 

sites, DGPS-measurements were carried out using a Leica SR 530 differential GPS system. 

Elevation transects were realized to study morphological characteristics of washover structures. 

Supplementary field work comprised terrestrial geomorphological mappings as well as the 

examination of sediment profiles. 

The vibracore and sediment profiles were documented, recorded (colour, grain size and 

rounding, texture, carbonate content as recommended by AD-HOC ARBEITSGRUPPE BODEN (2005), 

macrofaunal remains) and sampled in the field. Sedimentary, geochemical, macro- and 

microfaunal analyses were realized in the laboratory. Air-dried and hand-pestled fine-grained 
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fraction (< 2 mm) of samples were analysed for Ca, Fe, Na, and K concentrations using atomic 

absorption spectrometry (Perkin Elmer A-Analyst 300) after digesting with concentrated HCl 

(37 %). CaCO3 was measured following the Scheibler method. Loss on ignition (LOI) was 

determined by oven-drying at 105 °C for 12 h and ignition in a muffle furnace at 550 °C for 4 h 

(BECK et al. 1995). For core profile LEF 40, the anorganic element composition was determined 

using an ITRAX X-ray fluorescence (XRF) core scanner (Cox Analytical Systems). Semi-quantitative 

variations of elements from Al to U were analysed by scanning at 1 mm resolution and an 

exposure time of 20 sec. Presented count rates represent element amounts and an estimation of 

the relative concentrations in the sediment. Additionally, anorganic element composition was 

measured for selected core profiles (LEF 44, LEF 45, LEF 46 and LEF 50) by using a NITON XL3t 

900 X-ray fluorescence (XRF) hand held elemental analyzer (Thermo Scientific). Here, scanning 

resolution was between 1 mm and several centimetres, exposure time was 30 sec. 

Microfaunal analyses were carried out for cores LEF 21 and LEF 44 in order to support textural 

and geochemical results, to verify the marine provenance of distinct sedimentary units and to 

determine sediment source areas. Samples (10 cm3) were pre-treated with H2O2 (30%) for 

dispersion and wet-sieved to isolate fractions of 63–125, 125–200, 200–400 and > 400 μm (core 

LEF 21). For core LEF 44 samples were sieved trough sieves of 63 µm and 125 µm. The 

foraminiferal content was investigated under a binocular microscope and recorded semi-

quantitatively. At least 100 benthic forms were counted from each sample where sufficient 

concentrations were present. Any planktonic foraminifera encountered were additionally picked. 

Selected species were photographed using a JEOL JSM-6500F thermal field emission scanning 

microscope (FESEM). Identification of species was supported by original description and several 

key papers (AGIP 1982, CIMERMAN & LANGER 1991, SGARRELLA & MONCHARMONT ZEI 1993). 

Palaeoenvironmental interpretation of assemblages was inferred by a series of specific papers 

carried out on modern assemblages (e.g. SGARRELLA & MONCHARMONT ZEI 1993, MURRAY 2006). 

For the chronological framework, organic material and mollusc remains taken from the sediment 

cores were dated by the 14C-AMS technique (Table 4-1). 14C-AMS ages were corrected for a 

marine reservoir effect of 400 years if necessary (REIMER & MCCORMAC 2002) using CALIB 6.0 

software and the dataset of REIMER et al. (2009). For plant remains identified as sea weed in the 

field marine calibration was carried out when δ13C-values were determined to 15 ‰ ± 3 ‰ (see 

e.g. WALKER 2005).  

4.4 RESULTS 

4.4.1 THE LEFKADA WASHOVER SYSTEM 

The northern part of the Lagoon of Lefkada is characterized by several fan-like washover or scour 

structures. In this study, detailed investigations on three of these structures have been carried 

out. The Gyra washover fan is situated in the western part of the Lefkada Lagoon and represents, 

with an area of 390.000 m² (area a.s.l., above mean sea level) and 660.000 m² (area a.s.l. and 

b.s.l., below mean sea level), the most extensive washover structure in the study area (see also 

Chapter 2).  
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In the eastern part of the Lefkada Lagoon, about 1.3 km east of the Aghia Mavra fortification, 

west of the Teki castle and 1 km to the south-east of the recent spit branch, distinct lobe-like 

washover structures can be observed, reaching southwards into the eastern part of the Lagoon 

of Lefkada (Teki washover structure). As described in Chapter 2, the adjacent marshy plain is 

separated from the recent beach system by a narrow water channel, the former Canali Stretti. 

Directly to the south of the channel, a beach ridge-like elevation can be observed, which is 

adjusted parallel to the recent beach barrier spit and which is interpreted as dredged material 

taken from the former channel (see Fig. 4-1 overview, black marked). 

 

Fig. 4-2: Selected washover fan structures in the study area: a) The Gyra washover fan. On top of its 
subaerial surface, four sediment cores have been available for stratigraphical interpretation. 
Sediment cores LEF 46, LEF 47 and LEF 50 were conducted in the Lagoon of Lefkada. b) The Teki and 
Canali Stretti washover system seen from Lamia Mountain. At least two washover generations can be 
observed (W1 and W2). The formation of the ridge-like elevation to the east of the recent spit system 
most likely formed due to the (repeated) dredging of the Canali Stretti channel, especially subsequent 
to washover-events. c) The Canali Stretti scour fan seen from the Lamia Mountain. 

Along the north-eastern part of the Lefkada beach ridge system, to the north-east of the Aghia 

Mavra fortification, several washover structures extend from the recent barrier beach into the 

area of the former Canali Stretti in south-eastern direction. In this study, investigations on the 

Canali Stretti fan structure were carried out (Fig. 4-2c). The fan structure most likely formed due 

to a breaching of the barrier beach as deduced from geomorphological investigations (see 

Chapter 2).  
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In the following, three key cores from each of the investigated washover fans [core LEF 44 (Gyra 

fan), core LEF 21 (Teki fan), and core LEF 40 (Canali Stretti fan)] are described in detail. Each core 

consists of a succession of different facies representing different depositional conditions. These 

form the base for a stratigraphic correlation along vibracore transects. In combination with nine 
14C-AMS datings (Table 4-1), this ultimately leads to the interpretation of the sedimentary 

architecture and the establishment of a chronostratigraphic framework for the investigated 

washovers. 

4.4.2 THE GYRA FAN  

Stratigraphy of vibracore profile LEF 44 

Vibracore LEF 44 (Fig. 4-3, Fig. 4-4 and Fig. 4-5) was carried out in the middle part of the Gyra 

washover structure, about 250 m from the sea (see Fig. 4-1 and Fig 4-2). At its base, it consists of 

homogenous grey clayey silt, containing mollusc remains (1.37 – 0.93 m b.s.l.). These sediments 

are characterized by relatively low Ca- and Sr-, but high Fe-values, the latter indicating terrestrial 

influence during deposition.  

 

Fig. 4-3: Core section between 0.14 m and 1.32 m b.s.l. of vibracore LEF 44. On top of the lagoonal 
mud a coarse grained sequence of was found, comprising three different subunits (I, II, III). Interesting 
core sections are enlarged and main sedimentary characteristics depicted.  

At 0.93 m b.s.l. depositional conditions suddenly change. The lagoonal mud is followed by a 

coarse grained sequence, which can be subdivided into three subunits (I, II and III, see Fig. 4-3). 

From 0.93 – 0.86 m b.s.l., a shell debris layer, poorly sorted, was encountered (subunit I). Due to 

its shell debris content it can be described as a bioclastic layer. Its matrix consists of clayey silt 

with a considerable part of sand. Moreover, it contains abundant small black components, which 

are interpreted as heavy minerals. The top of the bioclastic unit, at the transition to the overlying 

subunit, is marked by a thin mud-layer (0.86 – 0.85 m b.s.l.). Subsequently, a massive layer of 

sand and gravel is documented between 0.85 and 0.40 m b.s.l. (subunit II) This sedimentary unit 
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is well separated from the underlying and overlying sediments and contains numerous mollusc 

remains. The gravel components, up to 2 cm, show a perfect grade of rounding. Based on the 

visual impression of the sediment, a bimodal grain size distribution is assumed. Several sea weed 

remains, but less shell debris and no heavy minerals were found in this layer. This unit is 

followed by a distinct gravel layer with a sandy matrix (0.40 – 0.24 m b.s.l., subunit III). Again, the 

gravel content is characterized by perfect rounding, but the size of the gravel compounds is 

considerably smaller compared to the underlying unit. For the coarse grained sequence entirely 

different geochemical characteristics are documented. The sequence is indicated by high Ca and 

Sr as well as low values of parameters indicating terrestrial influence, such as Fe, K and Ti. 

Increased values of the Sr/Fe ratio point to increased marine influence (see for instance VÖTT et 

al. 2002, NICHOL et al. 2007). Subsequently, the coarse grained sequence is covered by grey 

clayey silt, showing clear signs of hydromorphy and containing remains of roots and plants. 

These sediments represent the (sub-) recent, marshy depositional conditions.  

Macro- and microfaunal investigations on vibracore LEF 44 

In order to assess the provenance of the sedimentary units found for sediment profile LEF 44, 

detailed micropalaeontological analysis and macrofaunal observations were carried out for 

parallel cores LEF 44A and LEF 44B. Investigations were focused on the foraminiferal content of 

the sediments.  

Altogether 15 sediment samples were analyzed throughout the sedimentary sequence. Results 

are depicted in Fig. 4-4. The lagoonal unit at the base of the profile is represented by sediment 

samples LEF 44A-7 and LEF 44B-4, LEF 44B-5, LEF 44B-6, LEF 44B-7 and LEF 44B-8. In all samples, 

the foraminiferal assemblage is composed by Ammonia spp., Haynesina germanica, Haynesina 

depressula, Quinqueloculina spp. Affinetrina planciana and Aubignyna perlucida, indicating a low 

energy, quiescent palaeoenvironment with deposition of muddy sediments. Few specimens of 

Peneroplis pertusus possibly reflect the existence of the adjacent barrier beach system. The 

lowermost sample, LEF 44B-7, shows slightly increased contents of fine sand. Here, the 

occurrence of Peneroplis pertusus, Planorbulina mediterranensis and Cibicides lobatulus may 

indicate increased marine influence, possibly due to minor washover-related sea water 

inundation.  

With the beginning of subsequent coarse grained sedimentary sequence, an overall increased 

diversity in the foraminiferal assemblage is apparent. This is particularly true for the bioclastic 

unit at the base of the coarse grained sedimentary sequence, characterized by abundant shell 

debris, and the lower part of the subsequent massive sandy unit (see also Fig. 4-3, subunits I and 

II). Although the lagoonal species found in the samples below are still present, numerous 

additional benthic species appear in samples LEF 44A-6, LEF 44A-5 and LEF 44A-4 as well as LEF 

44B-3. Here, Peneroplis pertusus and Peneroplis planatus are dominant, and several other (in 

most cases epiphytic) marine species, such as Elphidium macellum, Elphidium crispum, 

Neocorbina posidonicola, Nubecularia lucifuga, Planorbulina mediterranensis, Sorites orbicularis, 

and Cibicides lobatulus (MURRAY 2006). Some taxa like Gaudryna sp., Uvigerina mediterranea and 

Cibicides refulgens have been found which are typical for shelf-bathyal environments of greater 

water depths (MURRAY 2006).  
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Moreover, the occurrence of planktonic tests, such as Globigerinoides sp., Neogloboquadrina sp. 

and Orbulina sp. point to an open-marine origin of the unit as well. Moreover, remains of sea 

urchins, fragments of bryozoa, a sponge spicule and several fibres of Posidonia sp. have been 

encountered, assuming a sublittoral provenance of the sediment. Altogether, a well preservation 

of the encountered foraminifera was observed. 

The upper part of the profile is characterized by massive units of sand and gravel, indicating a 

littoral origin of the sediment. These units are represented by samples LEF 44A-2, LEF 44A-3 and 

LEF 44B-2. Besides several shallow marine taxa also documented for the underlying units, the 

dominance of the littoral species Elphidium crispum and Cibicides lobatulus pointing to the 

sublittoral and/or littoral provenance of the sediment as well (see also BARBANO et al. 2009, 

MAMO et al. 2009). Here, in contrast to the underlying subunit, the brackish-lagoonal species 

recede. The marshy environment during deposition of the uppermost fine grained sediments is 

indicated by the occurrence of Haplofragmoides jeffreysi in sample LEF 44A-1. 

Coring site LEF 44 is situated in a backbeach position, ~200 m east of the current barrier beach. 

According to our findings, particularly the foraminiferal assemblage found for the lower part of 

the coarse grained deposits (subunit I and the lower part of subunit II, Fig. 4-3 and Fig. 4-4) is 

characterized by a mixture of different, partly open marine associations. An allochthonous origin 

of the deposit, related to a washover event, is thus manifested. 

Stratigraphy of the Gyra washover structure 

Vibracore transect A (Fig. 4-5b) comprises, from north-west to south-east, vibracores cores LEF 

44 and LEF 1, lagoonal cores LEF 46 and LEF 47 as well as vibracore LEF 18 and sediment profile 

LEF S1, which were carried out some 800 m east of coring site LEF 1 on top of a triangle like 

peninsula (see also Fig. 4-1 for locations). Vibracore LEF 1 was carried out in the eastern part of 

the Gyra washover fan and represents the deepest drilling of transect A. At the base of the 

profile, (sub-) littoral sediments indicate a westward shift of the coastline, characterized by well 

sorted fine sand, few mollusc and sea weed remains as well as a geochemical distribution 

indicative of a marine environment. At the very base, the marine sands are cemented to 

beachrock or a beachrock-like sequence and represent the lower limit of the investigations. The 

littoral sediments are covered by lagoonal mud, similar to the sediments described from the 

lower part of vibracore LEF 44 (1.37 – 0.93 m b.s.l., see also Fig. 4-3).  

Subsequently, the lagoonal mud is covered by the heterogeneous sequence of coarse grained 

sediments. Terrestrial indicators, such as the content of K, Fe and Ti show overall decreased 

values within the coarse deposits (see Fig. 4-5a). A contrary pattern is observed for the Ca- and 

Sr-values, indicating marine provenance (VÖTT et al. 2002, NICHOL et al. 2007). Within the coarse 

grained units above the lagoonal sediments considerably increased Ca- and Sr-contents are 

recognized. The lowermost section of the washover sequence represents a transitional horizon, 

which is indicated by a mixture of geochemical patterns reflecting both marine and terrestrial 

(lagoonal) environments. These findings are in good agreement with the results of the 

sedimentary and microfaunal analysis, which indicate (i) a mixing of different microfaunal 

associations and (ii) a mixture of autochthonous and allochthonous sediments.  
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For cores LEF 44 and LEF 1 a comparable succession of the coarse grained sedimentary sequence 

is documented. Due to the sedimentary and geochemical findings in lagoonal cores LEF 46 and 

LEF 47, carried out ~200 m south-east of coring site LEF 1, the coarse grained unit is thinning 

towards the east (Fig. 4-5a, b). Here, the lagoonal mud is covered by a sandy shell debris layer 

and a subsequent massive heterogeneous sand layer. The gravel unit found in cores LEF 1 and 

LEF 44 therefore most likely is restricted to the part of the subaerial washover structure which is 

lying above sea level. On top of the coarse material, fine grained sediments accumulated due to 

the current marshy (LEF 1 and LEF 44) or lagoonal environment (LEF 46 and LEF 47), which is, 

compared to the basal lagoonal unit, characterized by an analogue geochemical pattern (Fig. 4-

5a, b). 

About 800 m east of vibracore LEF 1, vibracore LEF 18 and sediment pit LEF S1 were carried out 

in the southern part of a triangular shaped peninsula (see also Fig. 4-1). Overall stratigraphy of 

vibracore LEF 18 is different from the findings encountered for the Gyra washover structure. 

Here, no lagoonal sequence was found at the base of the profile. In contrast, the lowermost part 

(3.64 - 1.04 m b.s.l.) is consisting of deeply weathered, well sorted silty fine sand. Towards the 

top of the unit (1.04 – 0.37 m b.s.l.), the content of silt and clay increases and clear signs of 

hydromorphy as well as the brown colour point to soil formation due to the existence of a 

former surface. Within the uppermost 20 cm of this unit, numerous ceramic fragments could be 

extracted from the sediment profiles. The former surface is separated from the subsequent 

sediments by a distinct erosional unconformity (0.37 m b.s.l.). Above this unconformity, a sand 

layer was found, containing numerous mollusc remains and gravel, showing perfect rounding 

(0.37 – 0.08 m b.s.l.). Again, due to the gravel content in the sediment, it must be assumed that 

the sediment is of sublittoral or littoral origin. Moreover, intraclasts consisting of sediment from 

the underlying unit could be found. These intraclasts are interpreted as rip-up clasts and point to 

erosion and high energy turbulent flow during deposition of the unit. The uppermost part of the 

profiles is characterized by the recent depositional conditions, showing abundant organic 

remains as well as root and plant fragments (0.08 m b.s.l. – 0.08 m a.s.l.). The massive sandy unit 

found at sites LEF 18 and LEF S1, on top of the deeply weathered former surface, is assumed to 

correspond to the massive sandy washover subunit II found in the sedimentary sequence of the 

Gyra washover fan.  

Vibracore transect B (Fig. 4-5c) comprises, from north-west to south-east, vibracore LEF 44, core 

LEF 45 and lagoonal core LEF 50 (see Fig. 4-1 for location). The sedimentary sequence of core 

LEF 45, carried out on the very southern point of the Gyra washover structure, is comparable to 

the sequence found in vibracore LEF 44 (Fig. 4-6). For the coarse grained unit above the lagoonal 

mud, again three subunits with comparable characteristics are separated (subunits I, II and III, 

Fig. 4-6). Here, after deposition of the uppermost gravel layer, lagoonal conditions reestablished 

at coring site LEF 45: the gravel unit is covered by clayey silt (0.31 – 0.13 m b.s.l.), slightly sandy, 

which contains abundant shell remains in its upper part, similar to the deposits at the recent 

lagoonal shore. This unit is comparable to lagoonal unit at the base of the profile. From 0.13 m 

b.s.l. - 0.05 m a.s.l., a peat-like layer out of organic remains and clayey silt was found, 

corresponding to marshy and thus to the current depositional conditions. 
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Fig. 4-5 (previous page): a) Sediment cores carried out on top of the Gyra washover with selected 
geochemical proxis Ca, Sr, Fe, and Sr/Fe ratio. Different sedimentary units are characterized by a 
distinct distribution of elements. The marked washover unit is characterized by high Sr- and Ca-values. 
For the lower part of the washover sequence, a mixing of deposits from different depositional 
environments is documented. b) and c) Coring transects A and B carried out for the Gyra washover 
fan. Three distinct subunits within the washover sediment can be separated in cores LEF 44, LEF 1, LEF 
45 and lagoonal core LEF 50. In lagoonal cores LEF 46 and LEF 47 only two subunits could be identified. 
The washover unit is characterized by a fining landward sequence (for legend see Fig. 4-7). 

At coring site LEF 50, situated some 200 m south of site LEF 45 in the Lagoon of Lefkada, the 

coarse grained sedimentary units (subunits I, II and III) described for cores LEF 44 and LEF 45 are 

considerably thinner. Here, the uppermost gravel unit is represented by a thin gravel-containing 

layer, ~1 cm thick. Nevertheless, a coarse grained, massive sandy sequence (0.51 – 0.35 m b.s.l.) 

accumulated on top of the lagoonal mud, which can be divided into two subunits – a lower 

subunit, consisting of sand and silt with shell debris and abundant heavy minerals (0.51 – 0.45 m 

b.s.l.) and a subsequent upper unit, showing less shell debris and less heavy minerals (0.45 – 

0.35 m b.s.l.). The uppermost 5 cm of the profile consist of silty sand and represent the 

reestablishment of the quiescent, lagoonal deposition. 

 

Fig. 4-6: Vibracore LEF 45, core section between 0.10 m a.s.l. and 1.27 m b.s.l. Comparable to core LEF 
44, on top of the lagoonal mud a coarse grained sequence of was found, comprising three different 
subunits (I, II, III). Interesting core sections are enlarged and main sedimentary characteristics 
depicted. 

The stratigraphical succession described for vibracore LEF 44 is clearly supported by the 

geochemical findings (Fig. 4-5a). The results show a remarkable difference between the 

washover deposits and the above and below lying deposits. Moreover, a similar geochemical 

pattern is recognized and allows a correlation of sedimentary units. 

For a chronological Interpretation of core LEF 1 and vibracore transect A, a sea weed remain (LEF 

1/4+ PR, Table 4-1) was sampled from 1.21 m b.s.l. It was dated by 14C-AMS-technique to 323-

514 cal AD. From the base of the coarse grained washover unit in sediment profile LEF S1, a 

mollusc test was dated to 498-300 cal BC (LEF S1/3 M, Table 4-1). Taken from the lowest part of 

the coarse grained sedimentary sequence above the lagoonal unit, the ages both represent 

termini ad or post quem for the deposition of the above lying washover sediments. Two 14C-AMS 

datings exist for vibracore transect B. Plant remains taken from the lagoonal sediments below 

washover units date to 509; 395 cal BC (LEF 44/10+ PR, 0.98 m b.s.l.) and 165-51 cal BC (LEF 45/9 

PR, 0.64 m b.s.l.). 
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Tab. 4-1: 14C-AMS dating results used for the chronological interpretation of the stratigraphy.  
Notes: unid. plant remains - unidentified plant remains. artic. – articulated mollusc. Lab. No. – 
laboratory number, University of Erlangen-Nürnberg (ERL), University of Kiel (KIA), University of 
California, Irvine (UCI), University of Utrecht (UTC). * - marine reservoir correction with 400 years of 
reservoir age. “;” - there are several possible age intervals because of multiple intersections with the 
calibration curve; oldest and youngest age depicted. 

Sample 
Depth 

(m b.s.l.) 
Lab. No. Sample description 

δ13C 
(ppm) 

14C age 
(BP) 

1σ max-min 
(cal BC/AD) 

2σ max-min 
(cal BC/AD) 

LEF 1/4+ PR 1.21 KIA28881 sea weed -15.9 1965 ± 25 *368-448 AD *323-514 AD 

LEF 2/7 M 2.38 UTC1369
1 

mollusc 0.3 2574 ± 37 *359-247 BC 
 

*382-192 BC 

LEF 2/14 M 5.53 UTC1369
0 

mollusc 0.0 6257 ± 37 *4803-4705 BC 
 

*4872-4666 BC 

LEF 4/5 PR 1.42 Erl-9053 sea weed -18.7 2093 ± 41 
168; 54 BC 

*194-324 AD 
342 BC; 0 AD 
*139-378 AD 

LEF 4/7 M 2.10 Erl-9054 artic. Dosinia exoleta -1.8 2709 ± 45 *517-385 BC *647-356 BC 

LEF 4/10 M 4.40 Erl-9799 artic. Macoma sp. 0.0 5104 ± 55 *3614-3470 BC 
 

*3624-3370 BC 

LEF 44/10+ PR 0.98 UCI73834 unid. plant remains - 2375 ± 15 481; 397 BC 509; 395 BC 

LEF 45/9 PR 0.64 UCI73835 unid. plant remains -9.9 2085 ± 15 155; 55 BC 165-51 BC 

LEF S1/3 M -0.29 KIA39788 mollusc test -7.93 2635 ± 30 *406-342 BC *498-300 BC 

4.4.3 THE TEKI FAN 

Stratigraphy of vibracore profile LEF 21 

Vibracore LEF 21 (Fig. 4-7) was carried out on top of the southernmost lobe of the Teki washover 

structure, some 820 m south-east of the present shoreline (Fig. 4-1 and 4-2). The base of 

vibracore profile LEF 21 begins with grey, well sorted fine sand of marine origin, containing 

minor parts of medium sand and mollusc remains (7.95 – 5.65 m b.s.l.) Between 5.65 –

 5.19 m b.s.l., a unit of marine sand and gravel, very well rounded, was encountered. This unit is 

covered by well sorted medium sand (5.19 - 4.51 m b.s.l.). Here, plant and root remains are 

documented.  

Subsequently, morphodynamic activity considerably decreased – above 4.51 m b.s.l clay and silt 

content increases and, according to the following unit out of grey clayey silt, lagoonal conditions 

established at coring site LEF 21 (4.51 – 1.39 m b.s.l.). Numerous plant and in-situ mollusc 

remains point to a swampy saltwater influenced environment. Compared to the underlying 

marine sediments, K- and Fe-values increase while the content of marine indicators, such as Na 

and Mg, recedes. Within the upper most part of the lagoonal unit, shell debris content 

considerably increases. 

On top of the lagoonal mud, a sand and shell debris layer was found which contained numerous 

mollusc fragments and appeared slightly laminated (1.39 – 0.90 m b.s.l.). The sand and shell 

debris unit is followed by relatively well sorted fine and medium sand (0.90 – 0.58 m b.s.l.). 

Subsequently, morphodynamic activity decreased, and silt content within the sediment increases 

(0.58 m b.s.l. - surface). Here, the sediment consists of grey clayey silt, showing signs of 

hydromorphy. A considerable amount of fine sand is documented, most likely due to 

bioturbation and reworking of the underlying sandy unit, occurring during tide-related flooding. 

Due to the current prevailing semiterrestrial, marshy environmental conditions, the upper part 

of the sequence is affected by subaerial weathering. 
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Microfaunal investigations on vibracore LEF 21 

For core LEF 21, microfaunal analyses were carried out for selected samples taken from the 

whole sedimentary sequence (Fig. 4-7, see also VÖTT et al. 2009a). The encountered ostracod and 

foraminifera species and genera are summarized in Fig. 4-3. Distinct differences in microfaunal 

assemblages can be observed between the fine-grained, lagoonal sediments and the coarse 

grained sedimentary units above and below.  

The autochtonous, lagoonal deposits are characterized by overall low abundances of counted 

species and a significantly lower bio-diversity (LEF 21/9 – LEF 21/6). Foraminiferal assemblages 

here are dominated by Ammonia beccarii and Elphidium sp., and fluctuations in salinity, oxygen 

content and acidity can be inferred from the investigations. However, for sample LEF 21/8, 

microfaunal assemblages point to a littoral, shallow marine environment, although sedimentary 

findings do not differ from the underlying and subsequent samples. An increased marine 

influence must be assumed for this part of the sedimentary sequence and may be explained by 

an extreme wave event, affecting the Lagoon of Lefkada (VÖTT et al. 2009a), or a temporary 

connection to the sea. Sample LEF 21/5 was taken from the sandy unit on top of the lagoonal 

mud and seems to represent a transition to the overlying unit. Overall microfaunal assemblage 

here points to shallow marine environmental conditions and an autochthonous community. Due 

to the prevailing occurrence of Ammonia beccarii in foraminiferal assemblages and a dominating 

ostracod association of Loxoconcha sp., Xestoleberis sp. and Leptocythere lagunae, a lagoonal 

environment still is assumed, but an at least episodical connection to the open Ionian Sea is 

likely (e.g. HANDL et al. 1999).  

In contrast to the lagoonal sediments below, a high bio-diversity and high abundances of 

encountered species in foraminiferal and ostracod assemblages is typical for the coarse grained 

units of the upper part of the sediment profile. As illustrated in Fig. 4-7 these coarse grained 

units, representing a higher morphodynamic activity during deposition, are mainly dominated by 

(open) marine species. In some samples deep water species such as Globulina sp. (e.g. LEF 21/3, 

LEF 21/4) occur as well (see for instance KAMINSKI et al 2002).  

According to MURRAY (1973, 2006), Cibicides lobatulus, Cibicides sp., Planorbulina sp. and also 

Elphidium crispum and Polymorphina sp. are of fully marine, partly littoral origin. Since these 

species are encountered inside the Sound of Lefkada and in sediments close to the present sea 

level, they clearly indicate an ex-situ, allochthonous assemblage. At least for the coarse grained 

units found in the upper part of the profile, on top of the lagoonal sequence, an allochthonous 

origin can thus be assumed. The uppermost two samples (LEF 21/2 and LEF 21/1) most likely 

represent reworked material from the underlying unit, which accumulated, due to the increasing 

silt content in the sediment, under reestablished lagoonal conditions. 

In contrast, the only sample taken from the lower coarse grained unit (8.00 – 4.46 m b.s.) 

containing abundant ostracod species is sample LEF 21/13 (6.70 – 6.55 m b.s.). For samples LEF 

21/14, LEF 21/11 and LEF 21/10, environmental conditions must have been inappropriate for the 

development of ostracod communities, most likely due to continuous wave dominated turbulent 

deposition. The microfaunal assemblages found in the lower part of the profile, characterized by 

marine sediments, thus do not point to a mixing of microfaunal associations. Most likely they are 

related to an autochthonous formation due to sublittoral or littoral conditions. 
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Fig. 4-7 (previous page): Sedimentary and geochemical characteristics of vibracore profile LEF 21 and 
results of microfaunal investigations. Comparable to the findings in cores LEF 44A and LEF 44B, a 
distinct increase of species diversity and abundance is documented for the washover sequence. Here, 
a mixture of foraminiferal assemblages is evident. Autochthonous assemblages are assumed for the 
lower sublittoral sands (LEF 21/13) and for the lagoonal sediments. Sample LEF 21/8 points to sea 
water inundation in the Lefkada Lagoon as well and may reflect an older extreme wave and washover 
event which affected the lagoonal environment. Grain size of cores is illustrated by different widths of 
core profile (1 – silty clay, 2 – clayey silt, 3 – sandy silt/silty sand, 4 – fine sand, 5 – fine and medium 
sand, 6 – medium sand, 7 – medium and coarse sand, 8 – coarse sand, 9 - gravel). 

Stratigraphy of the Teki washover system 

Fig. 4-8a illustrates a coring transect across the Teki washover. From north-east to south-west, 

coring sites LEF 2 and LEF 4 are situated in direct vicinity of the former Canali Stretti channel, on 

top of the ridge-like elevation to the south-east. Vibracore LEF 8 was conducted several hundred 

meters southwards of coring site LEF 4, in greater distance to the Canali Stretti. Additionally, 

vibracore LEF 21 was carried out at the southernmost point of the south-stretching washover 

lobe, reaching ~900 m into the Lagoon of Lefkada.  

Similar to the findings at coring site LEF 21, at the base of sediment profiles LEF 2, LEF 4 and LEF 

8 well sorted fine sand and/or gravel-rich sediments of marine origin are covered by muddy 

lagoonal deposits. On top of these sediments, coarse grained sediments accumulated along the 

entire transect. However, a correlation between the coring sites of this stratigraphical sequence 

is difficult due to its heterogeneity. Nevertheless, lagoonal conditions of low morphodynamic 

activity must have ended with the beginning of the coarse grained sequence. 

At coring site LEF 4, the lagoonal mud is covered by grey fine sand containing few gravel 

components, very well rounded as well as numerous mollusc remains (2.02 – 1.15 m b.s.l.). 

Above, sediments contain considerable parts of gravel, very well rounded, pointing to its littoral 

provenance (1.15 – 0.53 m b.s.l.). The uppermost layer is characterized by a fining upward trend 

(0.53 – 0.26 m b.s.l.). Regarding the position of coring site LEF 4 these units, similar to vibracore 

LEF 21, are of allochthonous origin and interpreted as washover sediments. Above, clayey to silty 

fine sand occurs (0.26 – 0.08 m b.s.l.), which is covered by gravel in a silty matrix (0.08 m b.s.l. – 

0.20 m a.s.l.). These two uppermost units most likely are due to anthropogenic dredging of the 

Canali Stretti channel.  

The sedimentary sequence of sediment profile LEF 8 is comparable to the findings at coring site 

LEF 4. Here, above the lagoonal mud, fine sand and silt was deposited (1.74 – 1.29 m b.s.l.). 

Comparable to coring site LEF 4, the sand contains few gravel components, well rounded, and 

numerous mollusc remains. Subsequently, a layer of fine and medium gravel was found, 

originating from sublittoral or littoral environments. The gravel unit is followed by fine and 

medium sand (1.24 - 0.46 m b.s.l.). These two units may correspond to the uppermost coarse 

grained unit described for coring site LEF 4. The top of the profile (0.46 m b.s.l. – 0.11 m a.s.l.) is 

made up of gravel, containing numerous mollusc remains and, in its lower part, a sandy matrix. 

At coring site LEF 2, subsequent to the lagoonal sediments, grey fine sand was encountered 

between 2.28 – 1.58 m b.s.l., containing few pieces of fine gravel, very well rounded. Due to its  
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Fig. 4-8 (previous page): Vibracore transect A across the Teki washover structure (a, washover 
generation I) and transect B across the Canali Stretti fan structure (b, generation II). Several subunits 
within the washover sequences can be separated. The washover units are characterized by a fining 
landward sequence. Due to anthropogenic dredging of the channel, an interpretation of the 
uppermost units is problematic. 

sedimentary characteristics, this unit can be correlated the lowermost, sandy part of the coarse 

grained sequence found in cores LEF 4 and LEF 8. Above, the coarse grained sequence is 

consisting of gravel, containing numerous mollusc fragments (1.58 – 1.21 m b.s.l.). The perfect 

rounding of the gravel components proves the littoral origin of the unit and points to an 

allochthonous origin. The gravel unit is covered by grey fine sand (1.21 – 0.59 m b.s.l.) and a 

layer of fine to medium gravel (0.59 – 0.50 m b.s.l.). The topmost unit out of fine sand is 

assumed to represent reworked material, which accumulated due to the present, marshy 

conditions and which is affected by brunification and initial soil development in its upper part. 

Altogether, the coarse grained sequence on top of the lagoonal mud can be divided into a lower 

(subunit I) and an upper part (subunit II). Subunit I comprises the massive, lower sandy units in 

cores LEF 2, LEF 4 and LEF 8, subunit II several gravel-rich layers in cores LEF 2, LEF 4 and LEF 8, 

which are partly fining upward. At sediment profile LEF 21, the sequence of coarser sediments 

covering the lagoonal mud shows two distinct units as well. Both units are characterized by a 

heterogeneous, allochthonous microfaunal association. Here, the topmost part of the lagoonal 

sequence is characterized by a different microfaunal assemblage and increasing sand and shell 

debris content (see Chapter 4.3.1).  

For a chronological interpretation of the vibracore transect, three 14C-AMS-datings are available 

for vibracore profile LEF 4. Additionally, two dating results exist for vibracore LEF 2 (see also 

Table 4-1). The 14C-AMS-datings of two articulated molluscs, taken from the lowermost part of 

the fine grained, lagoonal unit (LEF 2/14 M 5.53 m b.s.l.; LEF 4/10 M 4.40 m b.s.l.) document the 

onset of lagoonal conditions at 4872-4666 BC and 3624-3370 BC, respectively. At coring site LEF 

4, the end of the lagoonal deposition is dated to around or after 645; 355 cal BC (LEF 4/7 M, 2.10 

m b.s.l.), at coring site LEF 2 to around or after 382-192 cal BC (LEF 2/7 M, 2.38 m b.s.l.). 

Moreover, the subsequent sandy unit found in core LEF 4 (2.02-1.15 m b.s.l.) contained sea 

weed remains dated to 139-378 cal AD (LEF 4/5 PR, 1.40 m b.s.l.). However, due to the δ13C-

value of 18.7 ‰, also a terrestrial calibrated age of 342 BC; 0 AD may be considered but is not 

used for interpretation in this study. 

4.4.4 THE CANALI STRETTI FAN 

In contrast to the Gyra and the Teki washover fans, the Canali Stretti fan structure has been 

shown to be characterized by a much more pronounced morphology (see Chapter 2), which is 

additionally reflected in the DGPS transects A-D (Fig. 4-9). In combination with the interruption 

of the oldest beach ridge of the adjacent barrier beach system, these findings point to a 

breaching event of the adjacent barrier beach and the related formation of the fan (see also 

Chapter 2).  

Sediment profiles LEF 42 and LEF 40 were carried out on top of the Canali Stretti fan structure, 

core LEF 41 in south-eastern prolongation in the middle of the former Canali Stretti channel, 
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about 15 m south-east of coring site LEF 40. In Fig. 4-10a, the upper sections of cores LEF 40 and 

LEF 42 are illustrated. Fig. 4-8 b documents a coring transect along the coring sites LEF 42, LEF 40 

and LEF 41.  

 

Fig. 4-9: The Canali Stretti fan structure with coring sites and locations of DGPS transects. Transects 
A-D were carried out on top of the fan surface, crossing the fan structure from south-west to north-
east. Transects 3, 6 and 7 were conducted perpendicularly across the adjacent part of the barrier 
beach. As shown in Chapter 2, breaching of the barrier took place and involved (i) the interruption of 
the older ridge generation, (ii) the formation of the fan structure, and (iii) the subsequent closure of 
the breach by the accretion of younger ridges. 

Sediment profile LEF 42 was obtained in the middle of the washover structure and has a length 

of 1.52 m. At its base (1.52 – 0.41 m b.s.l.), it consists of grey sand, containing numerous marine 

mollusc remains, sea weed and few gravel components. Between 0.81 - 0.79 m b.s.l. and 0.95 - 

0.91 m b.s.l. the sand is intercalated by thin layers of fine gravel, originating from the (sub-) 

littoral zone west of the barrier beach. Several root remains were found in this unit. Between 

0.42 and 0.41 m b.s.l., a layer of plant remains was found. The unit is comparable to the sandy 

sediments covering the lagoonal mud at coring site LEF 4 and LEF 2 (Teki washover structure, 

Fig. 4-8a). 

At 0.41 m b.s.l., the thin layer of plant remains is abruptly covered by light grey sand. Here, no 

more root remains were encountered. At 0.39 m b.s.l., the thin sand layer is covered by the 

coarse-grained, gravelly sequence which can be divided into four subunits (see Fig. 4-10a). Its 

lower part (0.39 – 0.31 m b.s.l.) is made up of fine to medium gravel and has a sandy matrix. 

Above, between 0.31 – 0.24 m b.s.l., a unit of medium to coarse gravel was found. Here, the 

content of the sandy matrix decreases. From 0.24 – 0.17 m b.s.l., coarse sand, fine and medium 

gravel comprise subunit three. It is covered by another subunit, mainly consisting of medium 

gravel. At least the three lowermost subunits show a slight fining upward trend. Subsequently, 

the gravel unit is covered by brown-grey clayey silt (0.06 – 0.00 m b.s.l.), showing clear signs of 

hydromorphy and containing root- and plant remains. These fine grained, marshy sediments 

correspond to the current environmental and morphodynamic conditions and cover and flatten 

the lobe-like morphology of the fan. 

Overall stratigraphy of sediment profiles LEF 40 and LEF 41 is comparable to the sequence shown 

for profile LEF 42. For sediment core LEF 40, XRF measurements were carried out in order to 

determine geochemical characteristics of the sedimentary sequence. Selected geochemical 
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parameters are illustrated in Fig. 4-10b. The different sedimentary units found for core LEF 40 

can be clearly separated by the distribution of the depicted geochemical parameters, and each 

unit is characterized by different contents of elements.  

 

Fig. 4-10: a) Upper section of cores LEF 42 and LEF 40. The main gravel unit is consisting of four 
subunits, partly characterized by fining upward sequences. Below the main gravel unit sandy 
sediments were found, which are intercalated by at least two thin layers of coarse sand and fine 
gravel (LEF 40, e.g. 0.59 – 0.54 m b.s.l.). b) Sediment core LEF 40 and selected high-resolution proxies 
K, Fe, Ti, Sr, S and Ca. Different sedimentary units are characterized by a distinct distribution of 
elements. Besides the marked washover unit between 0.24 and 0.46 m b.s.l., two additional gravel-
rich units, ~5 cm thick, can be detected in the lower part of the profile, intercalating the Canali Stretti 
unit. These units most likely correspond to washover events as well. 

Similar to the findings in core LEF 42, two thin gravel units again intercalate the basal sandy unit 

(e.g. Fig. 4-10a, 0.59 – 0.54 m b.s.l., see also Fig. 4-8b). The main gravel unit is again separated 

into four subunits, and grain size distribution is comparable to the findings in sediment profile 
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LEF 42 (Fig. 4-10a). At the transition to the basal sandy unit, neither the layer of plant remains 

nor the subsequent sandy layer as described for core LEF 42 was encountered. Nevertheless, 

overall thickness of the coarse sequence is thinner (0.46 – 0.24 m b.s.l.). Within the coarse 

grained sequence, absolute values of rubidium (Rb), titanium (Ti), potassium (K) and iron (Fe) 

considerably decrease, allowing a clear differentiation between the above and below lying units. 

This is also true for the thin gravel layers found within the sandy unit at the profile’s base. As 

high values of these elements in general indicate a terrestrial depositional environment or at 

least terrestrial influence, the characteristic distribution can be explained by the increased 

marine and the related reduced terrestrial influence during washover events. However, the 

decrease of bulk Rb, Ti, K and Fe-values may also be caused by the coarser particle size (e.g. VÖTT 

et al. 2002). 

In contrast to the distribution of the elements characteristic for terrestrial sedimentation, a 

more heterogeneous distribution of the elements strontium (Sr), sulphur (S) and calcium (Ca), 

indicating marine influence, was detected. As Fig. 4-10b illustrates, S values are remarkably 

higher in the distinct washover unit compared to the above and below lying sedimentary units – 

including the thin gravel layers in the lower part of the profile. Moreover, the coarse grained 

sequence can be subdivided into a lower and an upper part, the latter showing lower S 

concentrations.  

In contrast to the detected S concentrations, the profile’s sequence is characterized by peaks of 

Ca values not only in the main gravelly unit but also in the two gravel layers intercalating the 

sandy unit at the base. Compared to the basal sandy unit the washover units are indicated by 

overall lower Sr abundances, although high Sr-contents in sediments generally point to increased 

marine influence. This fact may also be due to the increased particle size found for these units. In 

order to document a grain size independent distribution of selected elements, ratios of two 

elements have been calculated. As high K and Ti values point to increased terrestrial, high S and 

Sr values to increased marine influence, the K/S-ratio is assumed to represent grain size-

independent information about variations in marine and terrestrial input, respectively. 

According to the results of the K/S ratio, a definite increased marine input can be assumed for all 

gravelly washover units. Additionally, the values for the Ca/Sr ratio clearly show differences 

between the sedimentary units. Here, all washover units are indicated by higher values and a 

distinct differentiation from the remaining units is documented. 

Due to the adjacent Canali Stretti channel and the related frequent flooding of the coring site, 

the fine grained unit on top of the gravelly sequence shows an increasing thickness of 0.24 m. At 

coring site LEF 41, situated in the channel of the former Canali Stretti, the gravel unit was 

encountered between 0.23 – 0.13 m b.s.l. A subsequent anthropogenic disturbance of the 

sedimentary sequence, such as dredging in the former channel of Canali Stretti, is likely. 

4.5 INTERPRETATION AND DISCUSSION 

Along the Lefkada barrier beach system several major washover- and/or scour fan structures 

stretch into the Lagoon of Lefkada and represent important features of coastal morphology in 

the study area. In order to document their sedimentary architecture, chronological evolution 

and origin, altogether 14 sediment corings were investigated on top of and in direct vicinity of 
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the three main washover structures, ultimately providing comprehensive insight into the 

palaeogeographical evolution of the Lefkada coastal zone.  

4.5.1 THE WESTERN PART OF THE LEFKADA LAGOON  

The largest washover structure, the Gyra washover fan, is located in the western part of the 

Lagoon of Lefkada. At the base of the deepest corings, sediments of sublittoral or littoral origin 

were found. In all sediment profiles, the marine base is covered by a thick sequence of lagoonal 

mud, which is, due to the absence of coarse grained intercalating horizons, characterized by a 

relatively undisturbed sedimentation. According to these findings, (i) a local regression of the sea 

of at least 200 m and a related westward shifting of the Gyrapetra barrier beach, (ii) an 

accompanied establishment of lagoonal conditions east of the shifting barrier beach and (iii) a 

relatively long period of undisturbed lagoonal deposition is documented. 

In all sediment profiles, the lagoonal sequence is covered by a distinct coarse-grained unit of 

allochthonous, sublittoral and/or littoral origin. Generally, the deposition of this unit may be 

explained by (i) temporarily establishing littoral conditions or (ii) by an event-induced transport 

of littoral material into the Lagoon of Lefkada, originating from the barrier beach or the 

foreshore area. According to the above described findings, a local regression of the sea is 

assumed for the Gyrapetra region due to gradual shoreline migration. Moreover, the local 

morphology does not point to former beach ridges in the investigated area but clearly indicates a 

lobe-like washover structure, stretching into the Lefkada Lagoon. The formation of the coarse 

grained unit on top of the lagoonal mud thus cannot be explained by a temporary eastward 

shifting of the barrier beach and a related re-establishment of littoral conditions – in contrast, it 

must be explained by an extensive washover event, which inundated at least the western part of 

the Lefkada Lagoon (see also VÖTT et al. 2006). According to the results of the investigated 

sediment cores, the following characteristics of the washover unit can be summarized:  

(i) The sedimentary architecture of the main part of the washover structure can be 

subdivided into three sedimentary subunits. 

(ii) The lowermost subunit (subunit I) comprises a mixture of lagoonal mud, sand and shell 

debris. In several sediment cores, heavy minerals are abundant, and the base of the 

subunit is characterized by a noticeable accumulation of organic remains. According to the 

microfaunal investigations, a mixture of foraminiferal assemblages is documented. 

Numerous fully marine species as well as lagoonal species were encountered, indicating 

the open marine provenance of the unit. 

(iii) Subunit II consists of a massive layer of sand and gravel showing a heterogeneous, bimodal 

grain size distribution. Subunit III is represented by a distinct gravel layer, which is thinning 

towards the east. For both upper units, according to the perfectly rounded gravel 

compounds and the dominance of Elphidium macellum and Elphidium crispum in 

foraminiferal assemblages, a littoral provenance of the sediment is assumed.  

(iv) In the lagoonal core profiles, the washover sequence is mainly built up by two subunits. 

Here, the topmost gravel layer is < 1 cm. Grain size in both units is finer compared to the 

findings from the central part of the washover. An overall fining and thinning landward 

(eastward) sequence is thus evident for the washover sequence. 
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(v) Vibracore LEF 18 and sediment profile LEF S1 show a distinct washover unit as well, which 

is comparable to the massive sand layer in the middle of the Gyra fan washover sequence 

(subunit II). Here, the event deposit covers a palaeosol, in which numerous ceramic 

fragments have been encountered. Several rip-up clasts from the underlying sedimentary 

unit point to intense erosion during deposition. 

Numerous washover fans have been attributed to tsunami (ANDRADE 1992, GOFF ET AL. 2001, 

SWITZER et al. 2005, YULIANTO et al. 2007 GOFF et al. 2009) or extreme storm events (COCH 1994, 

MORTON & SALLENGER 2003, DONNELLY et al. 2004, WANG & HORWITZ 2007, WILLIAMS 2009), the latter 

in most cases reported from coastal zones affected by tropical cyclones. For the study area, the 

existence of tropical cyclones can be excluded and, besides tsunami, only exceptionally strong 

winter storms may theoretically have the energy to generate washover or breaching events 

along the Lefkada barrier beach system (see also WOODROFFE 2003: 461). 

The Gyra washover structure comprises ~600.000 m³ and extends more than 1 km from the 

recent barrier beach into the Lefkada Lagoon. As documented in Chapter 2, the washover 

structures have not been affected by modifications at least during the last 150 a. In many studies, 

the lateral extension of the washover structure is used as a diagnostic criterion for the 

differentiation between tsunami and storm (TUTTLE et al. 2004, MORTON et al. 2007, SUGAWARA et 

al. 2008). In general, tsunami washover structures are reported to exhibit larger dimensions than 

storm induced washover structures (MORTON et al. 2007). For regions affected by tropical 

cyclones, however, storm-generated water inundation is documented to have similar or at least 

comparable dimensions (e.g. BAHLBURG 2008), and a related sediment accumulation can be 

considered. Whether exceptionally large winter storms in the study area are capable of 

generating washover structures of comparable dimension must be doubted. This is especially 

true when considering the long period of time the washover structures remained unmodified. 

The marine origin of the washover sequence is clearly indicated by the microfaunal and 

sedimentary findings. For the Gyra washover fan, a distinct differentiation of three subunits (I, II 

and III, see Fig. 4-3) is evident, which can consistently be followed along the entire fan structure 

and is thinning landward. No fining upward sequence was found but instead, massive bedding of 

the two topmost units (subunits II and III) is documented, which is accompanied by a bimodal 

grain size distribution in the sandy layer (subunit II). These findings may point to multiple 

sediment sources (such as sublittoral and littoral environments) and are reported to be 

characteristic of several tsunami-induced deposits (e.g. FUJINO et al. 2008, SWITZER & JONES 2008a, 

MOORE et al. 2006). According to numerous findings all over the world, storm-induced washover 

systems are characterized by a number of thin layers and/or laminae, delta foreset stratification 

and subhorizontal, planar stratification with channel structures (LEATHERMAN & WILLIAMS 1977, 

SEDGWICK & DAVIS 2003, TUTTLE et al. 2004, KORTEKAAS & DAWSON 2007, MORTON et al. 2007, WILLIAMS 

2009). Lamination within tsunami deposits for instance have been described by PARIS et al. 

(2007), CHOOWONG et al. (2008) and MORTON et al. (2008), who examined sediments deposited by 

the 2004 Indian Ocean tsunami and attribute these findings to the effects of backwash and/or 

waning phases during the event. Due to the topographical circumstances in the Lagoon of 

Lefkada, intense backwash induced currents can be excluded for the investigated locations. 

However, fewer (typically not more than 3 - 5) subunits are documented from several other 
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tsunami deposits (NANAYAMA et al. 2000, BAHLBURG & WEISS 2007, HAWKES et al. 2007, MORTON et al. 

2007, SUGAWARA et al. 2008).  

Especially the lowermost subunit of the presented washover deposit (subunit I, Fig. 4-3 and 

Fig. 4-4) is indicated by a highly diverse foraminiferal assemblage and an increased number of 

species. Although numerous species of fully marine provenance have been encountered, the 

sediment here is still dominated by lagoonal species as well. A mixing of different microfaunal 

assemblages is thus documented, pointing to an allochthonous formation of the hosting 

sediment (HAWKES et al. 2007, MCMURTRY et al. 2007, RUIZ et al. 2010). Moreover, a mixing of 

different microfaunal assemblages is reported to be significant for tsunami deposits from 

numerous previous studies (DAWSON et al. 1995, ANDRADE et al. 1997, HINDSON & ANDRADE 1999, 

HINDSON et al. 1996, HAWKES et al. 2007, KORTEKAAS & DAWSON 2007, MCMURTY et al. 2007, MAMO et 

al. 2009, VÖTT et al. 2009a). 

Additionally, several planktonic species and species indicative of deeper water were found 

within subunit I of the washover sediment. In contrast, the subsequent units of massive sand 

and gravel show typical characteristics of a littoral foraminiferal assemblage. In general, open 

marine species such as planktonic and/or shelf species indicate washover events and therefore 

storm and/or tsunami inundation if found in sediments intercalating the sedimentary sequence 

in backbeach positions, such as lagoons or paralic swamps (e.g. DAWSON et al. 1995, ANDRADE et al. 

1997, TUTTLE et al. 2004, MAMO et al. 2009, RUIZ et al. 2010, WILLIAMS 2009). In many cases, 

comparable findings were used to support the tsunamigenic origin of sediments (DAWSON et al. 

1996, ANDRADE et al. 1997, HINDSON & ANDRADE 1999, UCHIDA et al. 2005, NANAYAMA & SHIGENO 2006, 

DAWSON & STEWART 2007, MAMO et al. 2009). However, the macro- and microfaunal content of 

these sediments only proves its marine origin, since the macro- and microfaunal content of an 

event deposit is a product of its source. 

A tsunami-induced washover event, in contrast to a storm induced event, would typically consist 

of few major impulses of sea water inundation, corresponding to the tsunami wave train. The 

characteristics of each flooding impulse considerably relate to several circumstances, such as 

near coastal bathymetry, slope of the coastal plain and shoreline morphology (MORTON et al. 

2007). Particularly observations during the 2004 Indian Ocean Tsunami showed that most of the 

sediments in a tsunami deposit origins from the littoral zone, the beach and the adjacent area 

(see also SATO et al. 1995, MORTON et al. 2007). According to the same authors, the first tsunami 

inundation pulse is commonly characterized by minor energy, which is related to limited 

inundation depth and distance (see also CHOOWONG et al. 2008). The lower bioclastic subunit thus 

may be explained by the first, minor flooding impulse of a tsunami event. Here, erosion, 

reworking and mixing of the underlying lagoonal mud and the minor sediment load from the 

inundating water took place. It can be assumed that the second and subsequent flooding 

impulses would be characterized by increased turbulence and suspension and/or sediment load 

in the water column than the first inundation impulse, triggering thicker deposits in the 

geological record. Comparable observations have been presented by CHOOWONG et al. (2008) 

who examined deposits of the 2004 Indian Ocean Tsunami, and by FUJIWARA & KAMATAKI (2007) 

from offshore tsunami sediments off Boso Peninsula, Japan. In the Gyra washover region the 

massive sand layer and the following gravel layer most likely correspond to inundation periods 
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related to waves from the middle of the tsunami wave train (such as waves 2, 3 or 4 during a 

tsunami event) and are characterized by a sublittoral and littoral provenance. 

Further evidence for a tsunamigenic origin of the washover event may be derived from the 

existence of the mud-layer found in vibracore profile LEF 44, 1-2 cm thick and situated directly 

above the bioclastic unit. Moreover, rip-up clasts from the underlying former terrestrial surface 

were encountered in the massive sandy unit at vibracore site LEF 18. In general, mud layers or 

mud drapes are interpreted to form due to decreasing flow velocities subsequent to a major 

inundation impulse during a tsunami event. As internal mud layers and intraclasts from the 

eroded underlying sediments are reported to be a physical attribute found in numerous tsunami 

and only few storm deposits (e.g. MORTON et al. 2007, KORTEKASS & DAWSON 2007, SPISKE 2009, 

WILLIAMS 2009), a tsunami event is considered to be responsible for the formation of the 

Gyrapetra washover. 

The sedimentary architecture of the Gyra fan structure is comprised of three distinct subunits. 

As has been shown above, a successive formation during one extreme wave event can be 

assumed. However, it may also be possible that several independent washover events 

contributed to the formation of the coarse grained sequence of subunits I, II and III. Due to the 

consistent morphology of the Gyra fan structure, a contemporaneous formation must be 

favoured. Moreover, no indication for intermittent soil formation, periods of subaerial 

weathering or periods of re-establishing lagoonal deposition was found on top of each subunit. 

Therefore, a successive deposition of the three subunits during one washover event is assumed, 

and each subunit corresponds to one inundation impulse during the event. 

As to the chronological interpretation of the washover event, plant remains were taken from the 

underlying lagoonal unit (LEF 44/10+ PR and LEF 45/9 PR). Since a stratigraphical relation and a 

contemporaneous formation of the washover sediment is assumed, the younger age of 165-51 

cal BC determines a terminus post quem for the deposition of the overlying washover sediments. 

Moreover, two 14C-AMS-datings are available for vibracore transect A (LEF 1/4+ PR: 323-

514 cal AD, LEF S1/3 M: 498-300 cal BC). Since the washover unit found in sediment core LEF 18 

and profile LEF S1 is assumed to correspond to the same event, the age of sample LEF S1/3 M 

supports, due to a possible reworking of the bivalve test, the age obtained from core LEF 1. 

Within the former surface below the related erosional unconformity, several ceramic fragments 

have been encountered. Unfortunately, no age determination was possible due to the small size 

of the fragments. Nevertheless, these findings do not disagree with the assumed age of the 

washover event. A major washover event, triggered by a tsunami, thus occurred around or after 

323-514 cal AD in the western part of the study area (see also VÖTT et al. 2006). Comparable to 

the findings of VÖTT et al. (2009b), who suggest tsunami related sediments at the south-western 

shore of the lake Voulkaria, the event may thus correspond to the well known eastern 

Mediterranean catastrophe at 365 AD (STIROS 2001, STEFANAKIS 2006).  

4.5.2 THE EASTERN PART OF THE LEFKADA LAGOON 

The coastal morphology in the eastern part of the Lefkada Lagoon is characterized by several 

fan-like washover structures as well. The so called Canali Stretti, a navigable channel leading 

from the central part of the Lagoon of Lefkada in north-eastern direction into the Bay of Aghios 
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Nikolaos, was used from antiquity until the beginning of the 19th century. At that time, 

particularly the washover dominated area was used to navigate across the Lefkada Sound. Since 

the construction of a navigable channel is most likely connected with dredging and overall 

maintenance, an anthropogenic influence on the existing morphology and stratigraphy has to be 

taken into account. Therefore, a careful interpretation of the sedimentary sequence and its 

chronological evolution is important. From a morphological point of view, the fan structures of 

the Teki fan and the considerably smaller Canali Stretti fan are assumed to correspond to at least 

two different washover generations (see also Chapter 2). At least for washover generation II, a 

formation during or subsequent to the use of the Canali Stretti channel can be assumed. 

Washover generation I 

In the north-eastern Lefkada Lagoon, open marine conditions persisted until the end of the 6th 

(Bay of Aghios Nikolaos) or the beginning of the 5th (northern Lefkada Lagoon) millennium BC 

and were followed, triggered by the formation of a barrier beach system to the north, by a long 

period of undisturbed quiescent lagoonal conditions (see also VÖTT et al. 2007). These findings 

are comparable to the evolution of numerous coastal areas, where the onset of dominating 

gradual littoral processes, such as the formation of barrier beach systems due to longshore drift 

or the progradation of fluvial deltas, is documented at around 5000 cal BC and is assumed to be 

related to the deceleration of eustatic sea level rise (FAIRBANKS 1989, BARD et al. 1996, STANLEY & 

WARNE 1994, WOODROFFE & NASH 1995, BRÜCKNER et al. 2005, VÖTT 2007, BRÜCKNER et al. in press, 

ENGEL et al. 2009). Thus, the north-eastern part of the Lefkada Lagoon was affected by a 

northward regression of the sea, which occurred sometime before ~4000 cal BC.  

At coring site LEF 21, microfaunal assemblages of the upper coarse grained units show a 

noticeably inhomogeneous spectrum and are assumed to be a mixture of different associations 

(Fig. 4-7, LEF 21/4 – LEF 21/1, above 1.30 m b.s.), which is comparable to the results documented 

for core LEF 44 in the Gyra region (see Fig. 4-4). The microfaunal investigations thus document 

an allochthonous origin of the marine sedimentary sequence found on top of the lagoonal mud. 

Regarding the location of coring site LEF 21, situated several hundred meters south of the barrier 

beach in the Lagoon of Lefkada, a formation due to a temporary establishment of regular 

sublittoral conditions must be excluded either way. The allochthonous coarse grained sequence 

found at coring site LEF 21 is interpreted to correlate with the coarse grained sequence 

encountered at all other drilling sites on top of the lagoonal sediments, comprising subunits I 

(lower sandy unit at sites LEF2, LEF 4 and LEF 8) and II (subsequent gravel rich layers). In all 

relevant cores, a comparable depth b.s.l. of the lower and upper limit of the sequence was found 

which may point to a contemporaneous formation.  

For subunit I, increasing silt contents to the south (coring site LEF 8) indicate reduced 

morphodynamics during its deposition and may represent a fining landward sequence. The 

following gravelly sequence of subunit II can be divided into a lower and upper part. At coring 

site LEF 4, the lower gravel layer shows a sandy matrix while the upper gravel layer is 

characterized by a normal graded sequence indicating an in-situ formation without 

anthropogenic influence. Given a stratigraphical correlation of the allochthonous units in the 

upper part of cores LEF 4 and LEF 8, the lowermost gravel layer is thinning landward. Moreover, 
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the upper normal graded gravel layer in core LEF 4 may correspond to the upper sandy layer in 

LEF 8. In this case, also a fining landward sequence is identified. However, the normal graded 

sequences within the coarse grained sedimentary sequence of subunit II indicate successive 

deposition of sediment load due to decreasing flow velocities (NICHOLS 2009). Since this flow-

related formation is characteristic for depositional processes occurring during washover events 

these findings point to an extreme wave event origin of the deposit (see also HAWKES et al. 2007, 

MORTON et al. 2007). Due to the perfect rounding of the gravel components, a littoral provenance 

of the sediment is indicated which is in good agreement with the allochthonous foraminiferal 

assemblage found in the upper part of core LEF 21. Together with the prevailing washover 

dominated morphology, the deposition of the coarse grained sediments on top of the lagoonal 

mud must be attributed to at least one washover event (washover generation I), inundating the 

area from northern direction and reaching southwards into the Sound of Lefkada. A definite 

determination of its originating process is difficult - however, due to the absence of tropical 

cyclones in the study area and the dimension of washover generation I, we assume a tsunami-

induced rather than a storm-induced origin for washover generation I. 

For the evolution of the coarse grained sequence of subunits I and II several interpretations may 

be considered. First, it may be assumed that the two subunits formed independently and 

represent a succession of two washover events. Second, it may be possible that only the upper, 

gravel containing subunit II represents event deposits – in that case, the underlying subunit I can 

be interpreted to correspond to a former part of the Canali Stretti channel, though water 

currents in the channel must have been considerably stronger than at present. Third, also a 

contemporaneous deposition of subunits I and II triggered by the same event may be considered. 

In the latter case, the sequence of subunit I and II can be compared to the succession of subunits 

found for the Gyra fan, which is interpreted to correspond to different inundation impulses 

during one single tsunami-induced washover event.  

Three 14C-AMS datings are available for a chronological interpretation of the coarse grained 

sequence comprised by subunits I and II. Given a washover independent evolution of the lower 

subunit I, for instance due to the existence of the former Canali Stretti channel at coring sites LEF 

2 and LEF 4 during antiquity, the 14C-AMS age of sample LEF 4/5 PR documents the existence of 

the channel at 139-378 cal AD (see also Fig. 4-8). According to VÖTT et al. (2009a) the period of 

time of its formation coincides with the early period of time the Canali Stretti channel was used 

to navigate across the Sound of Lefkada. The sandy unit on top of the lagoonal mud thus may be 

interpreted as related to the Canali Stretti channel and to have accumulated due to the onset of 

the Canali Stretti’s use in the middle of the 1st millennium BC. In this case, a washover event took 

place after 139-378 cal AD, involving the accumulation of, partly gravelly, subunit II and the 

allochthonous sandy sediments at coring site LEF 21. Alternatively, also a washover-induced 

formation of subunit I in cores LEF2, LEF 4 and LEF 8 as proposed by VÖTT et al. (2009a) may be 

taken into account. Assuming a contemporaneous, washover induced formation of this lower 

sandy subunit, a terminus ad or post quem for the washover event is determined to 139-378 cal 

AD as well. In either case, the extreme wave event, triggering the washover structure of 

generation I (Teki washover), may correlate to the tsunami event responsible for the Gyra 

washover system, which was determined to 323-514 cal AD (LEF 1/4+ PR) and may be related to 

the 365 AD Crete event (e.g. STIROS 2001, STEFANAKIS 2006). 
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Since a washover event, accumulating sand sheets at coring site LEF 21 and generating the 

washover lobes visible west of the Teki castle, must have affected the area of the former Canali 

Stretti channel as well, the re-use of the channel and the reconstitution of navigability across the 

Sound of Lefkada was only possible by dredging of the former channel area. Indeed, the 

navigability of the channel was interrupted several times between 500 BC and 200 AD 

(OBERHUMMER 1887, PARTSCH 1907, LEHMANN-HARTLEBEN 1923, see also VÖTT et al. 2009a). Along its 

southern shore, the shallow water channel is accompanied by a ridge-like elevation. This 

elevation is assumed to represent dredged material from the former Canali Stretti channel and 

indicates subsequent anthropogenic modifications of the backbeach morphology. 

Washover generation II 

The sedimentary sequence of the Canali Stretti fan structure (washover generation II) is well 

documented by the sediment profiles of cores LEF 42, LEF 40 and LEF 41. Here, the 

stratigraphical correlation allows a more detailed insight into the sedimentary architecture of 

the washover deposit and, comparable to the findings for the Gyra washover stratigraphy, a 

distinct stratigraphic correlation of the washover unit is possible. 

Breaching of the adjacent barrier beach is inferred from the geomorphological investigations 

(Chapter 4.4.4, see also Chapter 2). The Canali Stretti fan structure is thus assumed to represent 

a scour fan rather than a washover fan, induced by an extreme wave event (for comparable 

findings see e.g. ANDRADE 1992, KRAUS 2003, GOFF et al. 2009). Apparently, the morphology of the 

Canali Stretti fan is related to the gravel unit on top of the lower sandy sediments, consisting of 

four subunits which are thinning land- or south-eastward. Grain size composition of each subunit 

is dominated by medium to fine gravel, clearly documenting the flow-related transport and 

deposition of beach material into the backbeach area. The lowermost subunits found for core 

LEF 42 are characterized by a fining upward grain size distribution. These normal graded 

sequences within the sedimentary units indicate the extreme wave event induced formation of 

the deposit, since they prove a successive deposition of sediment load due to decreasing flow 

velocities (NICHOLS 2009, see also HAWKES et al. 2007, MORTON et al. 2007). The existence of only 

four subunits within the Canali Stretti fan sedimentary sequence favours a tsunamigenic origin of 

the deposits, since storm generated washover deposits commonly are characterized by 

numerous thin layers and/or laminae, delta foreset stratification and subhorizontal, planar 

stratification (TUTTLE et al. 2004, KORTEKAAS & DAWSON 2007, MORTON et al. 2007). In contrast to the 

findings from the Gyrapetra region, no mud drapes or rip-up clasts have been found within the 

sediment. Given that washover or breaching deposits are always a product of their source and 

the incorporation of intraclasts is related to the characteristics of the underlying sedimentary 

unit, the absence of rip-up clasts within the breaching deposit cannot be used as a diagnostic 

criterion for a storm origin. However, turbulence during the event and related erosion of the 

underlying unit is documented by the considerably increased sand content within the lowermost 

sedimentary subunit of the washover sequence. 

Below the washover sequence, sandy deposits were encountered, which are comparable to the 

lowermost sandy unit (subunit I) of the coarse grained sequence at coring sites LEF 2 and LEF 4, 

situated directly to the south of the Canali Stretti. At coring sites LEF 42 and LEF 40, several thin 
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layers of coarse sand and gravel intercalate this sandy sequence. These layers are characterized 

by fining upward sequences as well. It is thus assumed that they were formed due to extreme 

wave events, most probably related to the overwash of the adjacent barrier beach. According to 

the smaller grain size, their minor thickness and the existence of only one comprising unit, the 

intensity of these events must have been considerably lower compared to the major washover 

sequence described above.  

As documented, the geochemical pattern of core LEF 40 show distinct differences between all 

washover units and the above and below lying sediments. For instance, considerably higher 

CaCO3 contents are observed in the washover sediments, which is interpreted to be related to 

numerous macro- and microfaunal remains and/or limestone gravel components in the 

sediment. However, the results also imply differences between the lower, thin bedded washover 

units and the uppermost thick event sequence. Here, a different pattern is documented by the S 

concentrations, which are remarkably higher in the main washover unit. High S values may 

correspond to the incorporation of organic material and the post-depositional formation of 

sulphat-aggregates in the sediment. Formation of these aggregates may be also linked to 

evaporation formed under subaerial conditions. It can thus be assumed that the uppermost 

washover unit was, at least partly, deposited above sea level. The two smaller washover units 

intercalating the lower sandy unit in turn most likely accumulated below water level and were 

not thick enough to be subaerially exposed, and no post-depositional S compounds have formed. 

For the thin gravel beds in the lower part minor changes of the backbeach morphology are 

assumed, while the deposition of the thick washover unit involved the formation of the fan 

structure and thus subsequent changes in depositional and environmental conditions. However, 

comparable results were presented by ENGEL et al. (in review) from the Caribbean, who report on 

a coarse grained, S rich event deposit and assume a tsunamigenic origin of the unit. Additionally, 

different provenance areas of the sediments comprising the uppermost washover unit and the 

thinner washover units at the base may be reflected by the S-distribution (see also CHAGUE-GOFF 

et al. 1999, ANDRADE et al. 2003, NICHOL et al. 2007). 

As shown in Chapter 2, the formation of the Canali Stretti fan was related to a major disturbance 

of the north-eastern part of the Aghia Mavra barrier beach system and its temporary breakdown. 

However, the sedimentary and geochemical findings show that the breaching event and the 

formation of the Canali Stretti fan and, most likely, the disturbance and/or breakdown of the 

north-eastern part of the Aghia Mavra barrier beach system was triggered by an extreme wave 

event of high magnitude. Weather the lower intercalations were triggered by storm or tsunami 

events remains open. In either case, the magnitude of the related events was considerably lower. 

For washover generation II, no 14C-AMS results are available. At least relative chronological 

information is provided by the dating results of vibracore LEF 4 and the morphological 

interpretation of the two washover generations. Apparently, washover generation II is younger 

than washover generation I, which determines a post 139-378 cal AD formation. As documented 

in Chapter 2, the Canali Stretti fan structure is indicated in topographical maps from the middle 

of the 19th and the beginning of the 20th century. Therefore, the deposition of washover 

generation II took place before ~1850 cal AD. The formation of the Canali Stretti fan structure 

was related to a major disturbance of the coastal system, which must have occurred before the 
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middle of the 19th century. Due to the sedimentary findings, a tsunami-induced formation is 

favoured. According to the available tsunami catalogues, possible related tsunami events took 

place at 1723, 1820 and 1825 AD (see also Chapter 1, VÖTT et al. 2006). 

In a summary view, several similarities and differences were observed when comparing the 

different washover structures in the northern Lefkada Lagoon; first, the three washover fan 

structures differ in size and dimension. Moreover, only the smallest fan, the Canali Stretti fan, is 

characterized by a pronounced morphology. These differences may be explained by (i) different 

forming processes, e.g. the breaching or washover of the barrier beach, or (ii) a different age of 

the structure, which may involve an increased modification of the original morphology of older 

structures. For all washover structures, distinct subunits are documented. Three subunits were 

identified within the Gyra washover structure, up to five subunits within the Canali Stretti fan. 

For the Teki washover fan, at least two, probably three subunits can be separated. However, due 

to the 14C-AMS dating results, two event generations contributed to the present coastal 

morphology. The older washover event was responsible for the formation of the Gyra and the 

Teki washover structures and is assumed to correspond to the well known 365 AD event, which 

was triggered by the catastrophic earthquake off western Crete. Formation of the younger 

washover generation must have taken place before 1850 AD and may be triggered by younger 

extreme wave events, probably corresponding to tsunami as well. 

4.6 CONCLUSIONS 

Detailed sedimentary, geochemical and microfaunal investigations were carried out on three 

fan-shaped washover structures in the northern Lefkada Lagoon. All washover structures consist 

of allochthonous, sublittoral and/or littoral sediments which have been transported into the 

backbeach area by high-energy wave dynamics. According to the presented results, the following 

can be concluded: 

a) In the study area, washover and scour fan structures represent a prominent feature in 

coastal morphology. They are constituted of distinct event deposits determining the 

morphology of the structure. 

b) The Gyra washover fan is build up of three sedimentary subunits. Each subunit is indicated 

by different sedimentary characteristics. Sedimentary and microfaunal investigations point 

to a tsunami-induced rather than a storm-induced formation of the washover fan. It is 

assumed that the subunits correspond to three major inundation phases during one 

tsunami event. Sediment transport and related deposition was largest during flooding 

impulses in the middle part of the tsunami wave train. 

c) The formation of the Teki washover structure corresponds to an event induced flooding of 

the lagoonal area as well. A tsunamigenic formation of at least the upper allochthonous part 

of the sedimentary sequence is favoured. The navigability of the Canali Stretti during 

antiquity was interrupted by the corresponding washover event. 

d) The formation of the Gyra washover fan took place at around or after 349 – 533 cal AD. The 

major washover event triggering the Teki washover structure took place later than 157 – 

399 cal AD. Both washover structures therefore are assumed to be related to the same 
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tsunami event. The 365 cal AD earthquake off western Crete is considered as a possible 

triggering source, since the related tsunami affected large parts of the eastern 

Mediterranean. 

e) The smallest fan structure, the Canali Stretti fan, constitutes the youngest fan generation. It 

was triggered by a breaching event of the barrier beach. A tsunami-induced formation is 

favoured. Its formation was accompanied by a major disturbance of the coastal system, 

which must have occurred before the middle of the 19th century. Possible related tsunami 

events took place at 1723 AD, 1820 AD and 1825 AD. 

In general, it can be stated that 

f) Coring transects allow a comprehensive insight into the sedimentary architecture of 

washover structures, providing information about their origin. However, sediment trenches 

would allow studying the internal sedimentary structure in even more detail. Unfortunately, 

due to the high ground water level, trenches could not be carried out on top of the Gyra 

washover. 

g) According to the presented results, only few washover and/or breaching events 

considerably altered the morphological pattern of the study area. Although the related 

changes must have taken place within hours, the resultant morphological structures 

persisted over several hundred to thousand years. 
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5.1 STUDY BACKGROUND 

Dislocated blocks and boulders constitute a prominent feature of coastal morphology along 

rocky shorelines worldwide. Besides fine-grained allochthonous marine sediments found in near-

coast geological archives, those wave emplaced block deposits are attributed to extreme wave 

events, such as storm and/or tsunami (e.g. MASTRONUZZI & SANSO 2000, KELLETAT & SCHELLMANN 

2002, WOODROFFE 2003, NOTT 2004, SCHEFFERS et al. 2005, HALL et al. 2006, SCICCHITANO et al. 2007, 

SCHEFFERS et al. 2009a, SWITZER & BURSTON 2010). However, in many cases the determination of the 

event source remains problematic and only the high-energy nature of the deposit is evident. 

Therefore, a debate on the distinguishability between tsunami and storm deposits in the 

geological record has evolved (e.g. KORTEKAAS & DAWSON 2007, MORTON et al. 2007, SWITZER & JONES 

2008), and particularly the interpretation of block accumulations is a matter of intense 

discussion (e.g. NOTT 1997, SCHEFFERS & KELLETAT 2001; NOTT 2003a, 2003b, GOFF et al. 2004, 

WILLIAMS & HALL 2004, SCHEFFERS 2005; ROBINSON et al. 2006, MORTON et al. 2007, 2008, ROBINSON et 

al. 2008, SPISKE et al. 2008, SCHEFFERS et al 2009b, SWITZER & BURSTON 2009, MAY et al. in press). The 

application of hydraulic equations dealing with the wave energy necessary for the transportation 

of blocks, which may be helpful to estimate the event source and intensity, still exhibits 

considerable uncertainties (e.g. NOTT 1997, 2003a, 2003b, HANSOM et al. 2008, SWITZER & BURSTON 

2010, IMAMURA et al. 2008, GOTO et al. 2009b, 2010, BENNER et al. in press). Since the determination 

of the event source and the ability to distinguish between tsunami- and storm-origin is 

important in palaeo-event research, analytical studies are required to improve our 

understanding of the geomorphological and sedimentary fingerprints of the different kinds of 

extreme wave events. 

In this chapter, evidence of extreme wave-induced block accumulations of varying size found in 

different settings along the Lefkada barrier beach and its northern prolongation, the Plaka, is 

presented. Chronological aspects of the block movement and possible event sources are 

discussed. In contrast to tropical cyclones which can be excluded for the Mediterranean, the 

occurrence of tsunamis is likely due to the high seismic activity of the area (PAPAZACHOS & DIMITRIU 

1991, BENETATOS et al. 2005). Besides tsunami events, only exceptionally large winter storms may 

be capable of dislocating large boulders in the study area. 

5.2 STUDY AREA 

The study area (Fig. 5-1) comprises the coastal zone between Lefkada Island, one of the Ionian 

Islands, and Aktium Headland, situated south of Preveza, NW Greece. The area between Lefkada 

and the Bay of Aghios Nikolaos is characterized by a comprehensive barrier beach system, 

separating the shallow Lagoon of Lefkada and the Lefkada Sound from the open Ionian Sea. The 

base of this barrier system is made up of beachrock down to approximately 12 m below present 

mean sea level (b.s.l). Towards the north, the recent beach ridge is shifted eastwards and 

separated from its beachrock base. This beachrock base, the so-called Plaka, is partly submerged, 

and, situated in direct prolongation of the Lefkada barrier beach, represents an older part of the 

spit system. Here, the remains of the Plaka represent a reef-like palaeo-coastline protecting the 

Bay of Aghios Nikolaos from the open sea and reducing wave energy to its leeward side (Fig. 5-1). 

On top of and along the Plaka and the Aghia Mavra barrier beach, the eastern part of the 
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Lefkada barrier beach system, wave-dislocated blocks and boulders represent a prominent 

feature in coastal and submarine morphology. 

 

Fig. 5-1: Overview of the study area comprising the north-eastern part of the Lefkada barrier beach 
system, its northern prolongation, represented by the Plaka, and the Bay of Aghios Nikolaos [map 
based on Aster Satellite Image 2003 (USGS), Aerial photos 1985 & 1945 (HMGS), TM 1:50.000 sheets 
Lefkada & Vonitsa (HMGS), bathymetrical chart Amvrakikos Gulf (HNHS) and SRTM elevation data 
(NASA)]. Boxes mark sites of investigated block and boulder fields. 

Situated in the north-western part of Greece, the study area is exposed to the northern part of 

the Hellenic Arc (see also Fig. 1-1 a, b). Here, the Cefalonia transform fault (CF) and the Lefkada 

transform fault (LF) are part of a triple junction area, connecting this zone of subduction with an 

area of continent-continent collision beginning off the southern Epirotic coast. Due to the 

remarkably high seismic activity of the CF and the LF (COCARD et al. 1999, LOUVARI et al. 1999, 

SACHPAZI et al. 2000, PAPADOPOULOS et al. 2003, BENETATOS et al. 2005) the study area belongs to the 

seismically most active regions of the Mediterranean and owns a high tsunamigenic potential 

(PAPAZACHOS & DIMITRIU 1991, SOLOVIEV 1990).  
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5.3 METHODS 

During several field campaigns, geomorphological field surveys were carried out along the 

shorelines in the study area in order to document distribution and characteristics of block 

dislocation by extreme wave events. Investigated areas include the north-eastern part of the 

Lefkada barrier beach, the Plaka area and its northern prolongation, separating the Bay of Aghios 

Nikolaos from the open Ionian Sea. Survey was conducted along transects and subaqueous parts 

of the transects were studied by means of scuba diving. Geomorphological surveys along the 

subaerial part of the Plaka were conducted using a small motor boat. 

Block fields detected during the geomorphological survey were documented and partly 

measured. In the Plaka area, sizes of selected boulders were estimated based on measurements 

of the x-, y- and z-axes using a measuring tape. All blocks and boulders were examined for rock 

pools on their surfaces. For weight calculation of the boulders, samples were brought to the 

laboratory. Volume of the samples was measured using the Archimedes principle of water 

displacement, and rock density was calculated together with the sample’s weight. The weight of 

the boulders was extrapolated based on field measurements. For blocks and boulders where no 

samples were taken, rock density was estimated to ~2.2 g/cm³ (see also SCICCHITANO et al. 2007 

for eastern Italy). In order to compare subaqueous block findings with the fine-grained 

sedimentary record in the Bay of Aghios Nikolaos, underwater corings were performed during 

scuba dives by pushing or pounding plastic pipes into the sea floor (see also appendix A, C, E). 

For the chronological framework, organic material and mollusc remains taken from the sediment 

cores and from dislocated blocks were dated by 14C-AMS (Table 5-1). 14C-AMS ages were 

corrected for a marine reservoir effect of 400 years if necessary (REIMER & MCCORMAC 2002) using 

CALIB 6.0 software and the dataset of REIMER et al. (2009). 

Tab. 5-1: 14C-AMS dating results used for the chronological interpretation in this study.  
Notes: b.s.l. – below mean sea level; unid. plant remains - unidentified plant remains; artic mollusc. – 
articulated mollusc; Lab. No. – laboratory number, University of Erlangen-Nürnberg (ERL), University 
of Kiel (KIA); * - marine reservoir correction with 400 years of reservoir age; “;” - there are several 
possible age intervals because of multiple intersections with the calibration curve; oldest and 
youngest age depicted. 

Sample 
Depth 

(m b.s.l.) 
Lab. No. Sample description 

δ13C 
(ppm) 

14C age 
(BP) 

1σ max-min 
(cal BC/AD) 

2σ max-min 
(cal BC/AD) 

AKT 12/2+ PR 7.62 ERL9798 unidentified plant 
remains 

-13.2 585 ± 37 *1661;1802 AD *1634-1830 AD 

AKT 12/5 M 7.84 ERL9797 artic. Dosinia exoleta -1.6 2353 ± 50 *95 BC - 43 AD 
 

*166 BC-95 AD 

PRN 1 3.00 KIA39796 unid. mollusc remains 0.03 >1954 modern modern 

PRN 3 2.90 KIA39797 unid. mollusc remains 0.12 >1954 modern modern 

PRN 4 2.80 KIA39798 unid. mollusc remains 7.18 2215 ± 30 *91-185 AD *62-240 AD 

PRN 5 4.20 KIA39799 unid. mollusc remains 0.0 570 ± 20 *1688;1803 AD *1678-1816 AD 

5.4 RESULTS 

5.4.1 BLOCK TRANSPORT ALONG THE LEFKADA BARRIER BEACH 

In the study area, block transport was documented along the entire Lefkada barrier beach 

system. Here, isolated blocks and block fields were detected especially at the seaward side and 

on top of the beach ridge. Along the Aghia Mavra beach ridge complex, detailed 
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geomorphological surveys were carried out, including topographic DGPS measurements and 

morphometric analyses of dislocated beachrock slabs (see also VÖTT et al. 2008). 

In the recent littoral zone, a block field of several beachrock slabs was detected. In some parts, 

the assemblage shows imbrication and several beachrock slabs are tilted or even turned upside 

down, indicated by bio-erosive features on the current lower surface. The largest measured slab 

was 3 m long and 2 m wide. Blocks and slabs apparently were torn out of the in-situ beachrock, 

existing in direct vicinity of the block field. Moreover, numerous beachrock blocks and slabs 

were encountered on top of the beach ridge. Most blocks are characterized by tubeworms and 

abundant boreholes from marine boring mussels on their surface, indicating their marine 

provenance. At many places, blocks are at least partly embedded into the unconsolidated beach 

ridge deposits. On top of the beach ridge, situated at ~3.50 m a.s.l. and ~30 m from the present 

shoreline, three imbricated beachrock slabs were encountered. The uppermost slab contained a 

large ceramic fragment integrated into the beachrock during the process of cementation. The 

ceramic fragment was dated to Classical–Hellenistic times (personal comm. F. LANG 2006, C. 

MELISCH 2007) and represents a part of a well preserved roof tile.  

 

A block field in the southern part of the beach ridge was photographed in 2005, 2006 and 2008 

and photographs were compared in order to identify block dislocation due to common storm 

intensity. Results of the comparative analysis are depicted in Fig. 5-2 and show changes in the 

number of blocks, in the block assemblage and block distribution. However, the photos exhibit 

different perspectives, and a misinterpretation of the encountered changes may be considered 

due to the fact that some boulders may be covered by unconsolidated beach material. 

Nevertheless, particularly between 2006 and 2008, several smaller blocks accumulated at the 

seaward side of the beach ridge (yellow marked blocks, Fig. 5-2) in addition to the blocks existing 

Fig. 5-2: Photo comparison of a block field at 
the Aghia Mavra barrier beach. While a 
number of blocks and/or slabs remained at 
their position (red frame) several blocks have 
been removed, others have been added to the 
assemblage (blue: 05-06; yellow: 06-08). 
Blocks marked by arrows were unambiguously 
dislocated during the investigated period. At 
least for the smaller components in block fields 
along the Lefkada barrier beach system a 
storm induced dislocation is proved.  
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in 2006 (red and blue marked blocks, Fig. 5-2). Some of the blocks documented in 2006 have 

been moved as well (for instance block B). However, most of the blocks and in particular the 

larger blocks (blocks A, I, F) did not change position within the entire period of time. 

5.4.2 BOULDER TRANSPORT ALONG THE PLAKA SURFACE 

The Plaka represents the remains of a former coastline running in north-north-eastern direction 

protecting the Bay of Aghios Nikolaos from the open Ionian Sea. It is completely made up of in-

situ beachrock, which is, due to the seismo-tectonic activity of the area, fragmented and partly 

submerged (see also Chapter 2). 

On top of the Plaka surface, numerous dislocated beachrock slabs and boulders of different size 

were encountered. The beachrock slabs and boulders were broken from the in-situ lying Plaka, 

uplifted and transported several meters landward, before they remained at their present 

position. Most probably, the rock slabs and blocks originate from the Plaka front area. The Plaka 

remains and most probably several dislocated boulders on top of the Plaka have been quarried 

in the past. They are present in numerous walls of older buildings in the study area (VON SEIDLITZ 

1927: 366f., VÖTT et al. 2008). However, as illustrated in Fig. 5-3b, boulders and boulder fields 

concentrate on four main locations at present. 

Boulder field A consists of three main boulders. As Fig. 5-3e shows, the boulders are tilted and 

arranged in an imbrication train. Apparently, the westernmost boulder of the imbrication train is 

overturned, with the former surface facing downwards. This is indicated by well-developed rock 

pools found on the lower side of the block. According to our measurements it comprises ~14 m³ 

(xyz: 4.60 m x 3.50 m x 0.90 m). Due to calculations of the rock density, the weight of the 

boulder is estimated to ~30 t.  

Boulder field B (Fig. 5-3b, f) is situated about 200 m north of boulder field A. Several boulders lie 

on top of the Plaka surface or, partly submerged, eastwards of the main part of the Plaka. At 

location C, one isolated boulder was encountered (Fig. 5-3g). Compared to the westernmost 

boulder at block field A, the size of the boulder is similar or even larger. Again, the boulder 

seems to be overturned by extreme wave action. It is worth noting that the position of the 

boulders did not change between 2003 and 2009. 

Some 100 m north of the small island of Aghios Nikolaos, the Plaka trends to the east and is 

characterized by a broader surface, up to 100 m wide (Fig. 5-3b, h). Here, at least 6 major 

beachrock boulders and slabs constitute boulder field D. The beachrock slab depicted in Fig. 5-3j 

was calculated to around 5.5 m³ (xyz: 3.30 m x 3.10 m x 0.50 m) and ~12 t. As Fig. 5-3i shows, 

one major boulder broke into pieces during transportation or deposition, now forming two 

adjacent but isolated slabs of ~2 m³ (xyz: 1.90 m x 1.80 m x 0.65 m) and ~3 m³ (xyz: 2.10 m x 

2.00 m x 0.6 m) size, respectively.  

Assuming that the beachrock slab was intact before and at least during the initial phase of 

transportation, size and weight of the transported beachrock slab is estimated to around ~5 m³ 

and ~12 t.  
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Fig. 5-3 (previous page): Dislocated boulders on top of the platform-like Plaka surface (a, b). At 
present, most boulders are assembled in four main boulder fields (b). Some boulders have been 
overturned (e), some cracked (i) during the process of the transport or during the impact on the 
surface. For location of block fields see Fig. 5-1. 

5.4.3 UNDERWATER SURVEYS ALONG THE PLAKA 

Along two underwater transects, starting at the in-situ Plaka and reaching into the leeward area 

of the Bay of Aghios Nikolaos, numerous separate blocks und boulders east of the in-situ Plaka as 

well as ridges of isolated beachrock fragments down to 4 m water depth were discovered (Fig. 5-

5 and Fig. 5-6, see also see Fig. 5-1).  

Transect A 

Transect A, 60 m long, is the northernmost transect and was carried out on the leeward side of 

an in-situ lying, submerged part of the former Plaka coastline called Skoupeloi Achilleos, situated 

in the western part of the Bay of Aghios Nikolaos (see Fig. 5-1). Up to about 20 m east of the 

Plaka, numerous isolated boulders of up to 10 m3, some even 16 m3, were detected (Fig. 5-5a, b). 

These boulders must have been transported from the in-situ lying Plaka. The boulder depicted in 

Fig. 5-5a was fractured during the process of the transport and/or during the impact on the sea 

floor. At some places, the boulders are tilted and show distinct imbrication (Fig. 5-5b). The 

surface of the boulder depicted in Fig. 5-5c, found at 16 m transect length in ~4 m water depth, 

showed a former whirlpool or rockpool structure, now densely covered with marine organisms. 

Since whirlpool and rockpool structures form due to continuous wave-induced currents, the 

hosting beachrock boulder thus origins from the windward side of the in-situ Plaka and was 

transported across the Plaka.  

 

 
Fig. 5-4: Relation of block size and 
distance from the provenance 
area, found for the dislocated 
blocks and boulders along the 
Plaka surface and the underwater 
transects. The provenance area is 
assumed to be represented by the 
wave exposed western margin of 
the in-situ Plaka. For volume 
calculations see Fig. 5-3, Fig. 5-5 
and Fig. 5-6. 

A ridge of beachrock fragments, variable in size up to 1 m3, was found around 40 m east of the 

Plaka (Fig. 5-5d, e). The ridge, situated in ~3 m water depth, is about 20–30m long and several 

meters wide. Dislocated blocks, up to 50 cm large, could be traced as far as ~60 m east of the in-

situ Plaka along the transect (Fig. 5-5f). Without exception, the dislocated beachrock fragments 

are densely and homogeneously covered with algae and other marine organisms. Two mollusc 

remains were sampled from beachrock fragments found in the ridge at 40 m east of the in-situ 

Plaka. The samples were taken from the lower, downward facing surface of two beachrock slabs 
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which were partly embedded into the sandy seafloor. 14C-AMS datings of both molluscs resulted 

in modern ages meaning that the molluscs are younger than 1950 (see also Table 5-1).  

Fig. 5-4 illustrates the relation between distance and calculated volume of the dislocated 

boulders and blocks found along the underwater transects. The exponential-like increase of 

block and boulder volume with decreasing distance to the Plaka indicates that the Plaka 

represents the provenance area for the encountered blocks. An exponential decrease of wave-

induced transportation energy can be assumed on the leeward side of the Plaka. 

 

Fig. 5-5: Schematic profile of underwater transect A carried out east of Skoupeloi Achilleos (for 
location see Fig. 5-1). Photos illustrate a dislocated mega-block of ~10 m3 at 18 m (a), a ridge of 
numerous blocks at ~40 m and (c) isolated beachrock slabs, up to 50 cm long, at 60 m east of the in-
situ Plaka. 

Transect B 

Underwater transect B was carried out in the southern part of the Plaka, some 200 m north of 

the Plaka separation point. The transect starts at the southernmost block field A documented in 

Fig. 5-3e and stretches ~50 m into the lagoonal area to the east. About 10 m east of the in-situ 

Plaka, several isolated boulders of up to ~3 m³ were encountered (Fig. 5-6b). At 17 m profile 

length, size of dislocated boulders decreases to ~1.00 x 0.70 x 0.40 m maximum size (Fig. 5-6c), 

at around 25 m to < 1.00 m edge length (Fig. 5-6d, e). Here, the submarine surface is 

characterized by a block field with smaller beachrock blocks of up to 0.50 m length. The 
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abundance of blocks decreases to the east – at 45 m east of the in-situ Plaka, only isolated 

beachrock blocks of smaller size were documented (Fig. 5-6f).  

 

Fig. 5-6: Schematic profile of underwater transect B carried out east of the in-situ Plaka (for location 
see Fig. 5-1). Photos illustrate a dislocated mega-block of ~10 m3 at 18 m (a), a ridge of numerous 
blocks at ~40 m and (c) isolated beachrock slabs, up to 50 cm long, at 60 m east of the in-situ Plaka. 

Further underwater block deposits 

In the southern prolongation of the Skoupeloi Achilleos rise, in-situ beachrock remains were not 

encountered until the north-eastern tip of the Plaka, which is marked by an obelisk. For small 

fisher boats, this area is used as an entrance to the Bay of Aghios Nikolaos, since the reef-like 

beachrock barrier is missing here. Nevertheless, scuba diving surveys in this part of the Bay of 

Aghios Nikolaos revealed numerous huge beachrock plates and boulders, partly assembled to 

ramparts.  

The detection of these ridges documents the existence of a former continuous beachrock 

structure which closed off the Bay of Aghios Nikolaos from the Ionian Sea. The beachrock 

remains of Skoupeloi Achilleos represent a relic of this former barrier. Sample PRN 4, a boring 

mollusc remain, was taken from the lower, downward facing surface of one smaller beachrock 

slab found within the field of beachrock plates, some 150 m east of the entrance to the Bay of 

Aghios Nikolaos. Since the lower surface of the slab was embedded into the sandy seabed and 

the mollusc is assumed to have been alive before the transport and deposition of the slab, the 
14C-AMS age of the mollusc remains of 53 - 235 cal AD (PRN 4, see Table 5-1) is considered to 

provide a terminus ad or post quem for the deposition of the beachrock slab and, most likely, of 

the entire assemblage 
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In addition to the mollusc samples taken from the beachrock ridge in transect A (samples PRN 1, 

PRN 3) and the above presented sample PRN 4, a fourth mollusc sample was taken from a 

comparable position several hundred meters north of Skoupeloi Achilleos. Here, the age of the 

mollusc was determined to 1678 - 1816 cal AD. 

5.4.4 UNDERWATER CORES FROM THE BAY OF AGHIOS NIKOLAOS 

In the central part of the Bay of Aghios Nikolaos, some 1200 m east of the obelisk, a circular 

depression is documented (see Fig. 5-1). Here, the sea floor is descending to ~7.50 m b.s.l. Two 

sediment cores ANI 12 and ANI 13 were obtained from the center of the circular depression in 

order to detect possible changes in the depositional pattern of the Bay of Aghios Nikolaos which 

may be related to the documented block transport at the Plaka to the west.  

 

Sediment core ANI 12 has a profile length of 0.89 m, sediment core ANI 13 of 0.85 m. Distance 

between the coring sites is approximately 20 m. Both core profiles show a similar sedimentary 

sequence. The base of core ANI 12 (Fig. 5-7) is characterized by a unit of grey, homogeneous 

clayey silt (8.29 m – 7.83 m b.s.l.), representing undisturbed, lagoonal or shallow marine 

depositional conditions of low energy. The low energy sequence is covered by a heterogeneous 

 

 

Fig. 5-7: a) Schematic transect 
between the entrance of the Bay of 
Aghios Nikolaos and the depression in 
the center of the bay with coring sites 
ANI 12 and ANI 13. b) Underwater core 
ANI 12 with selected geochemical 
parameters. A distinct disturbance of 
the stratigraphical sequence was 
detected between 7.83 – 7.63 m b.s.l., 
which is expressed in increased sand 
contents and changing geochemical 
characteristics.  
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unit of silt, clay and fine sand (7.83 m – 7.63 m b.s.l.). Here, abundant shell debris and reworked 

(ex-situ) plant and/or root remains were found. Subsequently, the sandy unit is overlain by 

clayey to silty deposits, containing numerous root and plant remains found in in-situ position. 

Again, these sediments represent quiescent depositional conditions of a lagoonal environment.  

As Fig. 5-7 shows, the Na content within the sandy unit shows a remarkable increase and 

remains relatively high within the subsequent sediment of re-establishing quiescent 

sedimentation. Within the sandy layer of disturbance, carbonate contents show elevated values 

and LOI values decrease. A distinct disturbance of the quiescent depositional conditions is 

therefore documented for the central part of the Bay of Aghios Nikolaos which was related to 

the accumulation of a heterogeneous, sandy shell debris unit. 

An articulated specimen of Dosinia exoleta was found at 7.84 m b.s.l. and dated to 166 cal BC – 

95 cal AD by 14C-AMS technique. Taken from 1 cm below the intersecting sandy layer, it gives a 

terminus post quem for the disturbance of lagoonal sedimentation. Plant remains encountered 

directly above the sandy layer yielded and age of 1634–1830 cal AD (ANI 12/2+ PR, 7.62 m b.s.l.). 

5.5 INTERPRETATION AND DISCUSSION 

Fields of dislocated blocks and boulders are part of the entire coastline in the study area. All 

dislocated blocks and boulders derive from the comprehensive beachrock system, constituting 

the base of the Lefkada barrier beach, large parts of its foreshore area and the Plaka system to 

the north. In most cases, blocks and boulders are slab-shaped and were torn out of the in-situ 

beachrock, where (bio-) erosional processes weakened the beachrock structure. Rock density of 

dislocated blocks therefore can be estimated to ~2.00 – 2.50 g/cm³ for all transported blocks.  

5.5.1 THE ORIGIN OF BLOCK AND BOULDER FIELDS IN THE STUDY AREA 

On top of and in direct leeward vicinity of the Plaka, dislocated beachrock boulders are up to 

16 m³ of size and more. Here, boulders were torn out of the seaward side of the in-situ Plaka, 

uplifted and transported several tens of meters across the beachrock platform before they 

remained at their present position. The imbrication of the blocks proves their extreme wave-

generated displacement and deposition. Several boulders have been turned by wave action, 

indicated by rock pools at their lower surface, and some boulders have been broken during the 

transport. Moreover, at least for the cracked block found at block field D (Fig. 5-3i), a re-

dislocation subsequent to the initial block transport and deposition can be excluded, since the 

configuration of the two block parts apparently documents their original post-transport position. 

Most likely, a re-dislocation would have resulted in a modification of this position, and a 

successive, stepwise shift of the beachrock slab without a change in the blocks’ assemblage is 

unlikely. According to these findings, boulder transport occurred not only by a successive sliding 

motion across the Plaka platform – it must be assumed, that at least some boulders have been 

dislocated by floating, involving a disruption during their impact on the surface. Recurring field 

surveys document an unchanged position of the boulders during the last 6 years. This means 

that annually recurring winter storm activity of normal intensity does not shift or move the 

blocks, although, due to the low lying beachrock platform of the Plaka, most blocks are 

overflown by sea water and affected by wave action during winter storms (see also Fig. 5-3c). 
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Therefore, extreme wave events of exceptionally high intensity must be responsible for their 

dislocation. However, several authors refer to the importance of the pre-transport setting of 

dislocated boulders (e.g. NOTT 2003a, GOTO et al. 2009a, 2009b, BENNER et al. in press). A 

repeated transport of a boulder which is horizontally lying on top of the Plaka platform may 

require higher wave energies than its first disruption and dislocation from the seaward side of 

the in-situ Plaka. No information is available about the time of the boulders’ dislocation.  

A comparable pattern is documented by the underwater transects. Block deposits were 

encountered up to 60 m east of the in-situ Plaka and in up to 4 m water depth where they are 

not or little affected by regular wave action. The size of boulders in direct vicinity to the in-situ 

Plaka is comparable to the blocks found on top of the Plaka surface. Again, some of the blocks 

are indicated by impact-related cracks, and whirl- or rock pools point to a pre-transport wave- or 

sea level affected setting. The beachrock fragments and slabs comprising the ridges at ~30 – 

40 m east of the in-situ lying Plaka are densely and homogeneously covered with marine algae 

and other marine organisms. This fact excludes that they are continuously moved by normal 

wave action or storms of annually recurrence frequency or comparable intensity. Although 

marine colonisation is known to take place quite rapidly, it is assumed that a stepwise, 

successive formation by continuous storm activity of the ridge of dislocated beachrock slabs 

encountered in underwater transect A would produce an inhomogeneous organic cover, since 

the assemblage of beachrock plates would recurrently be altered and/or enlarged. However, a 

sliding or shifting transport of the beachrock slabs, which is assumed for the movement of 

similar sized blocks across the Lefkada barrier beach, can be excluded for the underwater 

findings, since the area between the in-situ Plaka and the ridge is marked by a basin-like 

topography of up to 4.50 m water depth. Therefore, a floating transport of the beachrock 

fragments over a distance of up to 40 m and more must be assumed, which is expected only for 

exceptionally large storms and in particular tsunamis. Consequently, block dislocation and ridge 

assemblage must have been triggered by exceptionally large high energy wave events during the 

late Holocene. 

Along the present Lefkada barrier beach, block fields and block deposits are characterized by 

considerably smaller block sizes. Most blocks were found on the seaward side and on top of the 

barrier beach and show maximum edge lengths of 1 m. Nevertheless, some beachrock slabs 

reach up to 1.50 m edge lengths. The comparison of photos taken from the same block field in 

2005, 2006 and 2008 show that the number of blocks within the block field increased over the 

investigated period of time, although several uncertainties, such as a possible misinterpretation 

due to unconsolidated beach material covering smaller blocks, must be considered. It is thus 

assumed that recurring winter storms of regular intensity are capable of transporting smaller 

blocks and beachrock slabs of up to 1 m edge length some 30 m from the strandline and up to 

~3 m on top of the beach ridge. However, also along the Lefkada barrier beach, the position of 

most of the blocks and in particular of the larger blocks has not been modified during the 

investigated period of time, and blocks remained at their position. This is also true for the 

beachrock slab hosting the ceramic fragment of Classical-Hellenistic times, which was found on 

the crest of the barrier beach. These findings prove that beachrock formation was in process 

during or after the 5th to 3rd centuries BC. Then, the beachrock was broken into plates and 

dislocated by marine water masses. For the dislocation of these blocks, extreme wave events of 
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decadal or even centennial intensity are required. Whether their transport was triggered by 

tsunami or storm events remains open – regarding the remarkable short recurrence rates of 

tsunami events in the study area and adjacencies (see Chapter 1, VÖTT et al. 2006, SCHIELEIN et al. 

2007), tsunami events are assumed to have contributed to the formation of these blocks as well. 

Several studies have documented block and boulder transport due to extreme storms. However, 

in most cases, these findings are reported from areas which are affected by tropical cyclones. In 

Jamaica, for instance, a large boulder of approximately 80 t was moved 2 m during hurricane 

Dean in 2007 (ROBINSON et al. 2008), and storm dislocated boulders for instance are reported 

from Kudaka, Japan (GOTO et al. 2009a, 54 t), Hawaii (NOORMETS et al. 2002, 96 t) and Bonaire 

(SCHEFFERS & SCHEFFERS 2006, 25 t). From the temperate zone, block dislocation by storms was for 

instance reported from the western and northern part of Europe (WILLIAMS & HALL 2004, 

ETIENNE & PARIS 2008, HANSOM & HALL 2009) where extra-tropical North Atlantic cyclones involve 

strong winds and extreme wave heights, due to the related long fetch of the waves. These 

findings unambiguously document that storm waves are capable to lift and transport large 

boulders of even significantly larger size. However, it must be considered that storm energy may 

be considerably lower in the study area compared to the above mentioned localities. In this 

context, further investigations on wave heights and wave intensities during storm events in the 

eastern Ionian Sea are required which may evaluate the application of hydraulic equations to 

estimate the wave energy necessary for the transportation of the boulders (e.g. following the 

approach of NOTT 1997, 2003a, 2003b, IMAMURA et al. 2008, GOTO et al. 2009a, 2009b, 2010, BENNER 

et al. in press). 

Due to the presented results, a floating transport of numerous of the dislocated blocks and 

boulders found on top of the Plaka surface and along the underwater transects must be 

assumed. Due to their considerably higher velocity, their greater inundation depth and the 

resulting increased drag and lift forces, the capability of tsunami waves to transport boulders, in 

particularly in by floating, is significantly higher (NOTT 2003a, BENNER et al. in press). As discussed 

in Chapters 3 and 4, investigations on the near coastal fine-grained geological record 

unambiguously indicate episodic high magnitude events of low frequency, and tsunami events 

are considered to have influenced the coastal evolution of the study area. Tsunami events are 

thus assumed to have contributed to the formation of boulder fields in the study area and are 

particularly considered to be responsible for dislocation of the larger boulders found on top of 

the Plaka and along the underwater transects. However, the influence of storms at least on the 

formation of block fields with smaller components along the Lefkada barrier beach is 

documented. Some block fields are assumed to be the product of several generations of extreme 

wave events, and both storms and tsunami may have contributed to their formation. Therefore, 

the occurrence of block fields and block assemblages in the study area is a product of both 

tsunami and storm. In this context, WOODROFFE (2003: 464) states that “it seems likely that 

similar morphology can result from several different causes (equifinality), and it will require 

further comparison to discriminate the cause of particular deposits”, which is particularly true 

for wave-dislocated boulder deposits along rocky shorelines. 
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5.5.2 CHRONOLOGICAL IMPLICATIONS 

For the study area and the adjacent coastal zone recurrent disturbances of the coastal system 

are documented by investigations on (i) the geomorphological and the geomorphodynamic 

situation (Chapter 2) and (ii) on the fine-grained sedimentary record in near-coast geological 

archives (Chapter 3 and Chapter 4). At least some of these disturbances are assumed to be 

triggered by tsunami events (see also VÖTT et al. 2006, 2007, 2008, 2009a, 2009b, MAY et al. 2007, 

2008). A number of findings point to the tsunami-induced breakdown of the former Plaka 

coastline and a subsequent reorganization of the coastline at ~1000 cal BC and/or ~300 cal BC. 

For the northern part of the Lefkada Lagoon, a major washover event has shown to be most 

likely of tsunamigenic origin and was dated to ~300 AD. Moreover, tsunami catalogues report on 

a number of tsunami events which affected the study area, particularly since the beginning of 

the 18th century. Thus, both historical reports and sedimentary findings evidence the recurring 

impact of tsunami on the study area by now.  

The 14C-AMS dating of a mollusc fragment sampled from the embedded lower surface of a 

beachrock slab found in the ridge east of the entrance of the Bay of Aghios Nikolaos yielded an 

age of 53 - 235 cal AD (PRN 4). Assuming the death of the mollusc as a consequence of its 

transport and its embedding into the sandy sea floor it can be assumed that the beachrock slab 

was dislocated to its present position at around or after 53 - 235 cal AD. However, the 

dislocation of the beachrock slab may have occurred considerably later than the obtained 14C-

AMS age of the colonising mollusc, since the mollusc may have been dead before. About 1000 m 

east of the ridge, the sedimentary sequence of the underwater corings ANI 12 and ANI 13 

document a distinct disturbance of depositional conditions in the central part of the Bay of 

Aghios Nikolaos. Here, quiescent, lagoon-like deposition is intercalated by a sandy layer which is 

characterized by shell debris and a considerably different geochemical pattern compared to the 

units above and below, and which must have accumulated after 166 cal BC - 46 cal AD (ANI 

12/5 M). Therefore, a contemporaneous dislocation of the beachrock slab or even the formation 

of the ridge of beachrock slabs some 1000 m west of the drilling sites can be assumed. Moreover, 

a comparable age is assumed for the two main washover structures dominating the present 

coastal morphology in the northern part of the Lagoon of Lefkada (see Chapter 4). From the 

adjacent southern part of the Phoukias spit, a shell rich event deposit intercalating lagoonal 

deposits was dated to around or after 238 – 39 cal BC (see Chapter 3). The disturbance 

documented in the sedimentary record of core ANI 12 thus may also be related to the deposition 

of the event deposit found in the sedimentary sequence of the southern Phoukias spit. However, 

due to the δ13C-value of ~7 ‰ of sample PRN 4, determination of the marine reservoir age may 

involve several uncertainties. Further comparable findings are needed to support the presented 

findings. The upper 14C-AMS dating sampled from core ANI 12 yielded an age of 1634–1830 cal 

AD (ANI 12/2+ PR) and most likely represent sub-recent root remains.  

Two fragments of colonising molluscs were sampled from the lower, sand-embedded side of two 

different beachrock plates which were found in the underwater block ridge east of Skoupeloi 

Achilleos. The samples were dated by 14C-AMS and resulted in modern ages. Assuming that the 

mollusc died as a consequence of the block’s transport and its embedding into the sea floor, the 

dislocation of the beachrock plates or at least of the two sampled plates took place after 1950. 
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However, it must also be considered that (i) dislocation of the beachrock plates occurred before 

1950, but the lower side of the sampled plates was not entirely embedded into the seafloor and 

molluscs could colonise the plates after 1950, or (ii) dislocation of the beachrock plates occurred 

before 1950, but position of the fragments changed after 1950. These considerations are also 

true for sample PRN 5, which was taken from the lower, sand-embedded side of a beachrock 

slab found in a comparable assemblage of beachrock slabs several hundred meters north of 

Skoupeloi Achilleos and yielded an 14C-AMS age of 1678 - 1816 cal AD. Younger events thus must 

also be considered to have triggered the dislocation of these beachrock slabs, and both tsunami 

and storm must be taken into account. 

For the largest boulders found on top of and in direct vicinity of the Plaka, no direct 

chronological information is available. Nevertheless, dislocation of these boulders must have 

taken place after the former Plaka coastline became inactive. According to the findings 

presented in Chapter 3, a first disturbance of this former coastline occurred at around or after 

1000 cal BC, though clear evidence for the breakdown of the barrier is documented not before 

~300 cal BC. Thus, the Plaka boulder fields are definitely younger than 1000 BC and most 

probably even younger than ~300 cal BC. A contribution of (i) the tsunami at around or after 

~300 AD triggering large washover fans in the Lefkada Lagoon (Chapter 4) and (ii) the extreme 

wave event involving the last major disturbance of the Lefkada barrier beach (Chapter 2) seems 

to be likely. 

5.6 CONCLUSIONS 

Within this study, subaerial and subaqueous investigations on boulder and block fields along the 

Lefkada barrier beach and the Plaka were carried out. Moreover, underwater corings were 

performed in order to link relate/link these coarse grained event deposits with the sedimentary 

record of fine grained, near-coast geological archives. According to the presented results, the 

following can be concluded: 

a) Transport of the larger boulders found on top of the Plaka surface and along the underwater 

transects occurred not only by a successive sliding motion across the Plaka platform. A 

floating transport is assumed for numerous of the dislocated blocks and boulders which 

favours a tsunamigenic origin. 

b) The position of the larger boulders on top of the Plaka surface remained unchanged during 

the last 6 years. Winter storm activity of normal intensity does not shift or move the blocks 

and only extreme wave events of exceptionally high intensity, in particular tsunami, are 

considered to be responsible for their dislocation. 

c) Recurring winter storms of regular, annual or decadal intensity are capable of transporting 

smaller blocks and beachrock slabs of up to 1 m edge length and contribute to the block 

fields along the present Lefkada barrier beach. 

d) For the formation of the block and boulder fields in the study area both tsunami and storm 

events must be taken into account. Present morphology is thus the result of an interrelation 

of both processes. 
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e) The Plaka boulder fields are younger than 1000 BC, most probably even younger than ~300 

cal BC. Block and boulder dislocation may be triggered by tsunami events which are inferred 

from investigations on fine grained offshore (this study) and near-coast (Chapters 3 and 4) 

geological archives in the study area. Older events occurred at ~300 BC and at ~300 AD. 

Additionally, younger extreme wave events, for instance the event which involved the most 

recent major disturbance of the Lefkada barrier beach system, must be assumed to have 

dislocated blocks and boulders. 

f) The question of determining and localizing the event source and the ability to distinguish 

between tsunami and storm origin is important in palaeo-event research; determining the 

forming process of palaeo-boulder and block fields along rocky shorelines remains a main 

challenge in extreme wave event research. However, the contribution of tsunami events to 

the boulder and block fields documented in this study is assumed.  

g) Further analytical studies are required to improve our understanding of the 

geomorphological and sedimentological fingerprints of the different kinds of extreme wave 

event deposits. For the investigated area, these studies may focus on chronological aspects 

of the boulder fields’ evolution, providing a link to the well documented fine-grained 

sedimentary record of near-coast geological archives. Additionally, investigations on the 

intensity of storm events in the Ionian Sea may be of particular interest. 
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6.1 MIDDLE HOLOCENE TO RECENT EVOLUTION OF THE LEFKADA – PREVEZA COASTAL 

ZONE 

A broad suite of geo-scientific investigations were carried out in the coastal zone between 

Lefkada and Preveza (NW Greece) comprising detailed investigations on (i) the coastal 

morphology and (sub-) recent coastal morphodynamics (Chapter 2), the sedimentary 

architecture of (ii) the Phoukias sand spit in SE Aktium Headland (Chapter 3) and (iii) three 

washover fan structures in the northern part of the Lefkada Lagoon (Chapter 4), and (iv) wave-

emplaced block and boulder deposits found in the study area (Chapter 5).  

Summarizing the results from these investigations (Fig 6-1), four major disturbances are 

recorded in the Lefkada-Preveza coastal zone since the middle to late Holocene. Evidence for a 

first disturbance is brought from the northern part of the Phoukias spit, where event layers point 

to a tsunamigenic inundation and the related formation of ridge structures at ~1000 cal BC. The 

deposition of the event layer involved the onset of the formation of the Phoukias sand spit in 

south-western Aktium Headland and a related remarkable erosion of the shoreline in western 

Aktium Headland, a reorganization of the north-eastern part of the Lefkada barrier beach system, 

and environmental changes of the Bay of Aghios Nikolaos, though still protected from major 

wave activity by the Plaka beachrock remains, to a shallow marine environment. Therefore, the 

inferred event must have been related to a first breakdown of the former Plaka barrier beach. 

From the southern part of the Phoukias spit, a second disturbance is detected in the 

stratigraphical record and dated to around or after ~300 cal BC. At least at that time, the Bay of 

Aghios Nikolaos came under definite marine influence and the breakdown of the Plaka coastline 

is evident. 

 

Fig. 6-1: Schematic illustration of the evolution of main coastal features in the Lefkada – Preveza area 
based on the findings presented in this study. Several landforms and coastal features in the study 
area are the result of repeated disturbances of the coastal system, triggered by tsunami (extreme 
wave) impact. Notes: dotted lines – possible or likely period of formation; continuous line – definite 
period of formation. 

The third major disturbing event relates to the two main washover structures in the northern 

part of the Lefkada Lagoon, representing the most prominent geomorphologic evidence of high-
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magnitude extreme wave events in the study area. According to their sedimentary composition 

and their dimension, a tsunamigenic origin is again the most plausible explanation for their 

formation. The available dating results point to a formation at around or after 300 cal AD. Thus, 

it seems reliable that coastal morphology in the study area was influenced by the supraregional 

effects of the 365 AD earthquake off western Crete, which involved tsunamigenic destruction in 

the entire eastern Mediterranean (e.g. STIROS 2001, STEFANAKIS 2006, PAPADIMITRIOU & KARAKOSTAS 

2008). For this event, comparable disturbing effects on the barrier beach system as well as 

imprints in the geological record of the Phoukias spit must be inferred – in fact, indication for a 

contemporaneous event-induced disturbance of the stratigraphical sequence was brought from 

the central part of the Bay of Aghios Nikolaos, but no unchallenged complementary sedimentary 

and chronological evidence was found in the Phoukias spit sedimentary record. Here, the 

available results rather point to an earlier major event at ~300 BC which was also inferred by 

previous findings from the adjacent coastal area (VÖTT et al. 2006, 2008). However, a relation of 

the two event deposits cannot be excluded, since both event deposits are interpreted to be 

accompanied by environmental changes and an increased marine influence in the Bay of Aghios 

Nikolaos. Further investigations, in particular on the local chronology of the sedimentary 

sequence, are needed to clarify possible analogies and to exclude dating uncertainties, such as 

reworking.  

An at least temporary breakdown of the north-eastern part of the Lefkada barrier beach took 

place during the younger history of the coastal evolution. It was related to the formation of the 

younger fan structures in the northern part of the Lefkada Lagoon. The smallest investigated fan 

structure, the Canali Stretti fan structure, was triggered by breaching of the barrier beach. This 

most recent major disturbance of the coastal system must have taken place before the middle of 

the 19th century. Since then, the coastal system is in a state of re-balancing and re-organization, 

which is manifested in a high morphodynamic activity during the recent past. Whether this 

disturbing event can be attributed to tsunami or storm impact remains unclear – the extreme 

wave event origin however is unequivocally manifested. Several younger tsunami events are 

mentioned in the available tsunami catalogues at 1723, 1820 and 1825 AD (e.g. SOLOVIEV et al. 

2000, VÖTT et al. 2006), and it is likely that one of these events contributed to the last major 

disturbance of the coastal system.  

According to the investigations on the block and boulder accumulations in the study area, a 

contribution of both tsunami and storm events is assumed for their formation. Comparable to 

numerous studies on block and boulder fields along rocky shorelines, the unequivocal 

determination of the triggering hydrodynamic process and the number of contributing events 

remains unclear. However, the documented floating transport of large boulders may point to a 

significant role of tsunami events in their formation, although the influence of storms of 

exceptionally high intensity is possible as well. According to the evolution of the coastal system, 

formation of the encountered block and boulder fields can be restricted to the last 3000, most 

probably 2300 years. A relation between the dislocation of single blocks and the documented 

tsunami-related disturbances of the coastal system may be inferred – the dating of transported 

beachrock slabs can be interpreted to correlate with the major event at ~300 AD and the 

inferred pre-1850 AD event.  
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6.2 SIGNIFICANCE OF EVENT DEPOSITS 

In the sedimentary record, the encountered event deposits exhibit both similarities and 

differences. In general, the event deposits were readily identifiable, since they mark significant 

anomalies within the sedimentary sequence. They are characterized by a number of 

characteristics commonly used (i) to determine the event induced origin on the one hand, and (ii) 

to discriminate between storm and tsunami deposits on the other hand. 

In a summary view, each of the different investigated sites is characterized by a distinct pattern 

of event deposits, providing a consistent picture of each site (Fig. 6-2). All encountered event 

deposits are indicated by several (up to five) subunits, and common sedimentary characteristics 

are for instance (a) fining up, thinning and fining landward sequences, (b) massive bedding, (c) 

shell debris layers with a high percentage of angular broken molluscs and (!) articulated bivalves, 

(d) mixed microfaunal assemblages, as documented for the Gyra and the Teki fan event deposit, 

and (e) rip-up clasts and/or mixing of the underlying strata within the base of the deposit. 

However, the appearance of these characteristics is strongly dependant on the pre-event 

environmental conditions – the occurrence of rip-up clasts for instance was observed in event 

deposits overlying former (semi)terrestrial surfaces with soil formation, while mixing and 

incorporation of sediments from the underlying strata was particularly encountered in event 

units covering lagoonal sediments. 

 

Fig. 6-2: Summary of main characteristics commonly used for the detection of event deposits in fine-
grained near-coast geological archives, found for the event deposits at different locations in this 
study.Notes: * - for the central Phoukias spit area abundance and diversity of ostracods is low in 
contrast to the foraminiferal assemblage. 

However, plausible conclusions concerning the event process and the provenance of the 

constituting sediments could be inferred for instance from the succession of sedimentary 

subunits comprising the Gyra fan. Here, the three different subunits are interpreted to 

correspond to three major inundation phases during one tsunami event. According to the 

presented results, sediment transport and related deposition was largest during flooding 

impulses in the middle part of the tsunami wave train. In a further step, these findings may 
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provide useful input for modeling approaches e.g. of inundation depths and distances, as already 

shown by FLOTH (2008) and FLOTH et al. (2009) for the study area. 

Between the event deposits from different locations considerable differences are documented – 

if any, only a careful stratigraphic correlation between the different sites can be realized. 

Apparently, these findings emphasize (i) the univocal relationship of event deposits and their 

local topographic setting and sedimentary environment, and (ii) the resultant difficulties in the 

application of significant, generally accepted distinguishing criteria, even in the same study area. 

In this context, the presented findings agree with several previous studies on extreme wave 

event deposits. Universally applicable criteria for the differentiation between storm and tsunami 

do not exist in fine-grained stratigraphies, since the characteristics of each investigated site 

ultimately determine the specific composition of the event deposit. Thus, besides the detailed 

analysis of as many sedimentary signatures as possible, a consistent determination of the 

originating process relies on further, additional information, such as the (palaeo-) geographical 

context, local geomorphologic characteristics and/or the existence of local modern analogues, 

which may provide further details on the differences of the different kinds of extreme wave 

events in the geological record. In this study, the distinct morphology of the washover fan 

structures represented such additional evidence and, in the case of the Canali Stretti breaching 

fan, helped to reliably determine the triggering process (see for instance MORTON et al. 2007, 

SWITZER & JONES 2008, SHIKI et al. 2008, ENGEL et al. in review). 

Comparable to the differentiation of event deposits, the physical dating of event deposits 

exhibits considerable difficulties. 14C-AMS datings of organic material in most cases represent 

termini ante, ad or post quem for the deposition of event layers, depending on the 

stratigraphical relation the material was sampled. Even the dating of air-filled, ex-situ articulated 

bivalves, as has been shown in Chapter 3, did not reflect depositional ages of the related event 

deposit. Numerous datings are thus needed to narrow the time of deposition of event layers. In 

this study, reliable OSL ages helped to establish a local chronology of the Phoukias spit’s 

sedimentary architecture. In combination with 14C-AMS datings, OSL datings of sediment cores 

provide useful information about the depositional ages of (event-related) marine sediments. 

However, several restrictions and difficulties remain, which are partly ascribed to 

methodological problems. 

In conclusion palaeo-event and palaeo-tsunami research relies on a number of geo-scientific 

investigations. Consistent results are in particular expected when combining sedimentological, 

microfaunal, geochronological and geochemical approaches with comprehensive 

geomorphological and palaeogeographical studies, geographical observations and actualistic 

principles. 

6.3 BROADER IMPLICATIONS FOR COASTAL EVOLUTIONARY CONCEPTS 

During the early (mid- to late Holocene) evolution of the coastal system, long-term gradual 

coastal processes involved the successive formation of the Lefkada barrier beach system, the 

evolution of the Lagoon of Lefkada and lagoonal conditions in the Bay of Aghios Nikolaos. These 

permanently operating processes were episodically affected by few but strong geomorphic crisis 

of high magnitude, involving distinct disturbances in the coastal system and impulsively initiating 
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major changes in the coastal evolution. For the entire Lefkada barrier beach system, cyclic 

equilibrium conditions may be inferred when considering the coastal evolution over a longer 

period of time (middle to late Holocene). Depending on the considered time scale, a state of 

dynamic equilibrium of steady gradual changes can be inferred for the barrier system over 

distinct periods of time (e.g. several hundred or thousand years) (e.g. Woodroffe 2003, Bird 

2008).  

At least four of these disturbances were identified in the fine-grained sedimentary record of the 

Phoukias spit and the northern Lefkada Lagoon. They are expressed in distinct event deposits 

found within the investigated sedimentary sequence. These event deposits mark the beginning 

of changing morphodynamics, allowing linking major impulses in the evolution of the coastal 

system with the stratigraphical record, and establishing a reliable timeframe for the triggering 

process of the disturbances. Although the influence of tectonically induced vertical crustal 

movements is likely in the study area, the event deposits reflect the influence of other 

episodically occurring impulses.  

With regard to the genetic interpretation of these event deposits, manifold lines of evidence was 

presented (see chapter 6.2) that major tsunami events contributed to repeated disturbances of 

the Lefkada barrier beach system and its recurring re-organization. More specifically, tsunami 

events are directly responsible for (i) the breakdown of the Plaka coastline, (ii) the deposition of 

block and boulder fields, (iii) the formation of ridge structures in the northern part of the 

Phoukias sand spit, (iv) the evolution of at least two washover generations in the Lefkada Lagoon, 

and (v) the disturbance and modification of the Lefkada barrier beach system, ultimately leading 

to severe changes of the coastal configuration. Additionally, these changes have likely invoked 

indirect and secondary processes involving (vi) the longer-term evolution of the Phoukias sand 

spit, and (vii) ongoing coastal erosion in western Aktium Headland.  

In conclusion, the present coastline in the Lefkada – Preveza area is the result of both long-term, 

gradual processes mimicking and masking episodically occurring, impulsive coastal changes, 

acting on different time scales. It is worth noting that many prominent geomorphological 

structures (landforms) formed within days or even hours during very few high magnitude events, 

but persisted over a period of several hundred or thousand years. These singularities or crisis in 

geomorphic systems (Scheidegger 1994, Paris et al. 2009) are thus interpreted to be capable to 

significantly contribute to coastal evolution in general. In this context, the type and degree of 

impact of a given high magnitude event on the coastal evolution strongly depends on the 

character of the affected coastline. For instance, a rapid recovery of numerous coastal areas and 

beaches was observed after the 2004 Indian Ocean Tsunami in Southeast Asia, whereas for 

coastal areas characterized by barrier beaches and associated backbarrier lagoons - such as the 

the Lefkada-Preveza coastal zone - effects must be considered to be stronger and long lasting 

(Liew et al. 2010) since the reorganization of the coastal configuration requires considerably 

longer periods.  

6.4 PERSPECTIVES 

The findings presented in this study are supported by previous findings from the adjacent coastal 

zone (VÖTT et al. 2006, 2007, 2008, 2009a, 2009b, MAY et al. 2007, 2008). In turn, the presented 
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results further and consolidate the previously presented findings. It has been shown that the 

Lefkada – Preveza coastal zone exhibits a considerable tsunami frequency. Tsunami events, 

besides the effects of tectonically induced crustal movements and long-term wave-generated 

sediment transport, turned out to be a major control of coastal change. Consequently, a distinct 

tsunami risk is apparent also for man and infrastructure. In this context, this study provides 

valuable basic information for the development of an appropriate hazard assessment. In the 

Mediterranean and particularly in Greece, public awareness is higher for earthquakes than for 

tsunami, although the potential of catastrophic tsunami events is evident and may be as high as 

it is in the Indian Ocean. The up to now neglected though urgent need for intensified focus on 

the tsunami threat and the installation of tsunami warning systems and warning centers recently 

was addressed by SYNOLAKIS (2008) in a noteworthy newspaper article. 

Apart from possible benefits concerning coastal hazard management and/or hazard assessment, 

the presented study contributes to the data pool of palaeo-event deposits, which may be of 

value for future research. Perspectively, further investigations may be considered to improve the 

data presented in this study. These investigations may comprise  

(i) sediment trenches on top of the washover structures and in the northern, ridge-

dominated part of the Phoukias sand spit. Although groundwater conditions hamper their 

realization at many locations, they would provide a closer insight into the sedimentary 

characteristics and structure of the event deposits.  

(ii) additional and deeper corings in the lagoonal parts of the study area, in particular in direct 

prolongation of the two main washover structures in the northern Lefkada Lagoon and in 

the central part of the Bay of Aghios Nikolaos. Further event layers can be expected within 

the sedimentary sequence and may be linked to the findings of VÖTT et al. (2009a, 2009b) 

from the inner part of the Sound of Lefkada, the Bay of Aghios Nikolaos and the Lake 

Voulkaria. 

(iii) intensified focus on the improvement of the chronological data base. The combined use of 

OSL and 14C-AMS datings at further locations may provide a more detailed chronological 

picture of the extreme wave event history in the study area.  

(iv) further studies on the evolution of the Plaka boulder fields, such as dating approaches as 

well as long-term surveys of the boulders’ position, the latter providing information about 

the effects of common wave intensities on block dislocation. Finally, studies on local 

analogues, such as known (sub) recent storm deposits, may help to further improve the 

reliability of the presented findings, to enlarge the data base of palaeo-event deposits and 

to enhance the knowledge about the effects of extreme wave events in the Lefkada – 

Preveza coastal zone. 

Moreover, the presented findings may be incorporated into a supraregional context – in the 

adjacent coastal zones, the detected events are assumed to have left imprints in geological 

archives as well. Further investigations on fine-grained near-coast geological archives along the 

western coasts of Greece, the coasts of northern Africa and eastern Italy are assumed to reveal 

comparable event layers and significant disturbances of the coastal system which can be linked 

to the findings presented in this study. 
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7  Summary 

Research on palaeo-tsunami and palaeo-extreme wave events aims to provide new data about 

former events and is of remarkable importance in the eastern Mediterranean. In general, coastal 

geomorphology and fine-grained near-coast geological archives store information about coastal 

changes over medium to long timescales, as well as short, episodic processes such as palaeo-

tsunami events. In the eastern Mediterranean and particularly for the Ionian Sea and the 

Lefkada – Preveza coastal zone (NW Greece), strong seismic activity and a high tsunamigenic 

potential are evident. Thus, comprehensive geo-scientific investigations were carried out in the 

Lefkada – Preveza coastal zone in order to decipher coastal change throughout time, and 

thereby detect, verify and date the influence of tsunami events on the coastal system and 

coastal evolution. Herein, particular focus was set on the distinguishability of event deposits in 

the geological record and the evaluation of event recurrence rates – an issue of major 

importance in extreme wave event research. 

In a first step, detailed analysis of the geomorphological and geomorphodynamic situation in the 

study area revealed several major disturbances of the coastal system, which mark episodically 

occurring major impulses of coastal evolution, entailing the recurrent reorganization of coastal 

balance. In a second step, comprehensive geo-scientific investigations on the main near-coast 

geological archives provided insight into the palaeogeographical evolution and the palaeo-event 

history of the Lefkada – Preveza area. In the sedimentary record of the Phoukias sand spit and 

the washover-dominated northern Lefkada Lagoon, distinct event deposits were identified. 

These event deposits provide a linkage to the inferred disturbances of the coastal system and 

allow the dating of the main impulses in coastal evolution. Detailed analyses of the event 

deposits - comprising sedimentological, microfaunal and geochemical investigations as well as 

the interpretation of the regional geomorphologic and geographic context - strongly suggest a 

tsunamigenic origin of the encountered event deposits, proving the significant impact of 

tsunamis on the coastal system. Moreover, numerous block and boulder fields were mapped 

along the coastline and equally point to the impact of high energy wave events. 

Altogether, four major tsunamigenic disturbances were identified throughout the late Holocene. 

These disturbances were dated to ~1000 BC, to at around or after 300 BC and, for the main 

washover structures in the northern Lagoon of Lefkada, to at around or after 300 AD, the latter 

event most likely triggered by the 365 AD earthquake off western Crete and the related tsunami. 

During the younger history of coastal evolution a fourth disturbance occurred sometime before 

1850 AD. In addition to the detected 365 AD event, the presented findings fit well to previous 

investigations in adjacent coastal zones.  

From a geomorphological and geomorphodynamic point of view, the major tsunami events 

involved the breakdown of former coastlines (the Plaka), the formation of the Phoukias sand spit 

and the onset of intense coastal erosion in western Aktium Headland. Moreover, the inferred 

tsunami events contributed to the formation of block and boulder fields, induced the evolution 

of ridge structures in the northern part of the Phoukias sand spit and triggered the formation of 

at least one, probably two washover generations in the northern Lefkada Lagoon. The episodic 

occurrence of tsunami events was thus responsible for the formation of major geomorphological 
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structures and modifications of the coastal system, which are recurrently masked and mimicked 

by long term, gradually operating coastal processes. These marked geomorphic changes provide 

clear evidence that tsunami-induced disturbances exert a major control on the evolution of the 

coastal system in the study area.  

In conclusion, this study presents new geo-scientific evidence of extreme wave event deposits 

and will thereby expand the regional and global data pool of palaeo-event and particularly 

palaeo-tsunami deposits. Moreover, it contributes to ongoing research concerned with the 

detection of extreme wave event deposits in near-coast geological archives, ultimately enabling 

an improved understanding of type and degree of their impact on the evolution of coastal 

systems.  
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8  Zusammenfassung 

Die Paläo-Event Forschung befasst sich mit der Erforschung von vergangenen extremen 

Wellenereignissen. In küstennahen geologischen Archiven werden sowohl stetig wirkende, 

graduelle Küstenprozesse also auch episodisch auftretende singuläre Ereignisse, wie z.B. Paläo-

Tsunamis, gespeichert. Der östliche Mediterranraum und insbesondere das Ionische Meer und 

das Küstengebiet zwischen Lefkada und Preveza (Nordwestgriechenland) sind durch eine starke 

seismisch-tektonische Aktivität gekennzeichnet, die ein hohes Risiko für die Entstehung von 

Tsunami-Ereignissen zur Folge hat.  

Vor dem Hintergrund der Hauptziele der Paläo-Event Forschung – der Unterscheidbarkeit von 

Tsunami und Sturmsedimenten im geologischen Archiv sowie der Berechnung von 

Wiederkehrwahrscheinlichkeiten solcher Ereignisse – wurden umfassende geowissenschaftliche 

Untersuchungen im Küstengebiet zwischen Lefkada und Preveza durchgeführt. Dabei war es das 

wesentliche Ziel, im Laufe der Zeit stattgefundene Küstenveränderungen nachzuvollziehen und 

mit Hinblick auf Tsunami-Ereignisse und deren Einfluss auf die Küstenentwicklung zu verifizieren, 

zu datieren und zu interpretieren. 

In einem ersten Schritt wurde dafür die lokale Geomorphologie und Geomorphodynamik 

detailliert untersucht. Die Resultate implizieren wiederholte Störungen und eine darauf folgende 

Reorganisation des Küstensystems, die episodisch auftretende bedeutende Impulse der 

Küstenentwicklung markieren. In einem weiteren Schritt wurden umfassende Untersuchungen 

der bedeutendsten küstennahen Geoarchive vorgenommen, die Rückschlüsse auf die 

paläogeographische Entwicklung und die Paläo-Event Vergangenheit des Arbeitsgebiets erlauben. 

Die Ergebnisse der Untersuchungen des Phoukias Sandhakens und der von Washoverstrukturen 

dominierten Lagune von Lefkada zeigen eindeutige Eventlagen in stratigraphischer Abfolge, die 

mit den bedeutenden Störungen in der Küstenentwicklung korreliert werden können und deren 

Datierung ermöglichen. Aufgrund der sedimentologischen, geochemischen und 

mikrofaunistischen Ergebnisse konnte unter Einbezug des lokalen geomorphologischen und 

geographischen Kontextes für die meisten der Eventlagen eine tsunamigene Entstehung 

abgeleitet werden. Darüber hinaus deutet die Existenz von wellenbewegten Großblöcken 

eindeutig auf den Einfluss von extremen Wellenereignissen hin. 

Insgesamt wurden im Rahmen dieser Arbeit vier bedeutende Tsunami-induzierte Störungen des 

untersuchten Küstensystems identifiziert. Ein erstes Event fand demnach um etwa 1000 v. Chr. 

statt, ein weiteres um oder kurze Zeit nach 300 v. Chr. Das verheerende Erdbeben 365 n. Chr., 

das im gesamten Ostmediterranraum für Tsunamis verantwortlich war, beeinflusste 

höchstwahrscheinlich auch das Küstengebiet um Lefkada und Preveza und führte dort zur 

Entstehung großflächiger Washoverstrukturen in der Lagune von Lefkada. Überdies wurde eine 

erhebliche Beeinflussung der Küste in jüngerer Zeit dokumentiert, die vor 1850 n. Chr von einem 

extremen Wellenereignis induziert worden sein muss.  

Aus geomorphodynamischer Sicht lässt sich festhalten, dass die identifizierten Paläo-Tsunamis 

zur Auflösung einer früheren Küstenlinie (der Plaka) beigetragen haben, sowie die Entstehung 

des Phoukias Sandhakens und die damit zusammenhängende Küstenerosion im Westen der 

Aktium Halbinsel induziert haben. Aus geomorphologischer Sicht haben Tsunamis zur 
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Entstehung von Blockfeldern beigetragen und werden mit der Entstehung von Strandwall-

ähnlichen Strukturen sowie mindestens zwei Washovergenerationen in Verbindung gebracht. 

Episodisch auftretende Tsunami-Ereignisse sind deshalb für die Entwicklung der 

Küstenmorphologie und Küstenkonfiguration im Bereich Lefkada – Preveza von entscheidender 

Bedeutung gewesen, die in der Folge immer wieder durch stetige, graduelle Küstenprozesse 

modifiziert wurden.  

Die vorliegende Arbeit präsentiert neue geowissenschaftliche Belege für extreme 

Wellenereignisse und erweitert damit den Datenpool von Paläo-Event und insbesondere von 

Paläo-Tsunami Ablagerungen. Die Arbeit leistet einen Beitrag zur Detektierung von extremen 

Wellenereignissen in küstennahen Geoarchiven und erlaubt Rückschlüsse auf deren Einfluss in 

der Küstenentwicklung. Letztlich trägt ein damit zusammenhängendes verbessertes Verständnis 

zur Unterscheidung von Eventlagen im geologischen Archiv und zur Abschätzung von 

küstennahen Riskien bei.  
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9  Περίληψη 

Στην Aνατολική Μεσόγειο, και ιδιαίτερα στην παράκτια ζώνη Λευκάδας – Πρέβεζας της ΝΔ 

Ελλάδας, η έντονη σεισμική δραστηριότητα της περιοχής έχει σαν επακόλουθο την παρουσία 

αυξημένου δυναμικού για τη δημιουργία τσουνάμι. Η έρευνα περιστατικών παλαιο-τσουνάμι 

και παλαιών ακραίων θαλάσσιων κυμάτων γενικότερα στοχεύει στον εντοπισμό σημαντικών 

πληροφοριών που σχετίζονται με παρελθόντα περιστατικά τοπικού χαρακτήρα, τα οποία όμως 

είναι ιδιαίτερα σημαντικά για ολόκληρη την περιοχή της ανατολικής Μεσογείου. Γενικά, η 

παράκτια μορφολογία και οι λεπτόκοκκοι παράκτιοι γεωλογικοί σχηματισμοί παρέχουν 

πληροφορίες σχετικά με τις μεταβολές που υφίστανται οι παράλιες περιοχές, για ενδιάμεσες 

έως μεγάλες χρονικές περιόδους, καθώς επίσης και μικρής διάρκειας γεγονότα (επεισόδια), 

όπως τα παλαιο-τσουνάμι.  

Στην παράκτια ζώνη Λευκάδας – Πρέβεζας, ιζηματογενή αποτυπώματα τσουνάμι σε παράκτιες 

γεωλογικές αποθέσεις έχουν ήδη καταγραφεί από προγενέστερες μελέτες. Στα πλαίσια αυτής 

της μελέτης παρελθόντων ακραίων θαλάσσιων κυμάτων, πραγματοποιήθηκε λεπτομερής 

γεωλογική διερεύνηση της παράκτιας ζώνης Λευκάδας – Πρέβεζας για τη διάκριση των 

αποθέσεων, που σχηματίστηκαν από τη δράση των παλαιο-τσουνάμι και την εκτίμηση του 

ρυθμού επανάληψής τους, με στόχο τον προσδιορισμό των παράκτιων μεταβολών με το 

πέρασμα του χρόνου, καθώς και τη χρονολόγηση και εξακρίβωση της επίδρασης των τσουνάμι 

στην εξέλιξη του αιγιαλού. 

Αρχικά, η εκτενής ανάλυση των γεωμορφολογικών και γεωμορφοδυναμικών χαρακτηριστικών 

αποκάλυψε την επανειλλημένη διαταραχή του παράκτιου συστήματος, η οποία είχε ως 

αποτέλεσμα την επαναλαμβανόμενη αναδιάρθρωση της παράκτιας ισορροπίας. Οι διαταραχές 

αποτυπώνουν τη σποραδικότητα των κύριων παραγόντων αναδιάρθρωσης της παράκτιας 

ισορροπίας. Στη συνέχεια, η αναλυτική γεωμορφολογική μελέτη των παράκτιων γεωλογικών 

αρχείων φανέρωσε την παλαιογεωγραφική εξέλιξη και την ιστορία των παλαιο-τσουνάμι στην 

περιοχή. Στους ιζηματογενής σχηματισμούς (αμμώδεις θίνες) του Φουκιά καθώς και στη βόρεια 

λιμνοθάλασσα της Λευκάδας προσδιορίσθηκαν ευδιάκριτες αποθέσεις παλαιο-τσουνάμι. Οι 

αποθέσεις αυτές μπορούν να συσχετισθούν με τις προαναφερθείσες διαταραχές του παράκτιου 

συστήματος και επιτρέπουν τη χρονολόγηση των κύριων παραγόντων εξέλιξης του αιγιαλού. Η 

λεπτομερής διερεύνηση των ιζημάτων, των απολιθωμάτων και των γεωχημικών 

χαρακτηριστικών των αποθέσεων των αποτυπωμένων περιστατικών παρέχουν ενδείξεις για την 

επίδραση των τσουνάμι στο παράκτιο σύστημα. Επίσης, η παρουσία συνεκτικών παράκτιων 

ψηφιτοπαγών με κροκάλες μεγάλων διαστάσεων που χαρτογραφήθηκαν κατά μήκος της 

ακτογραμμής της Πλάκας υποδηλώνει τον αντίκτυπο των επεισοδιακών παλαιο-ακραίων 

κυμάτων. 

Στο πλαίσιο αυτής της μελέτης, προσδιορίσθηκαν τέσσερις κύριες γεωλογικές διαταραχές στη 

διάρκεια του Ανώτερου Ολόκαινου. Οι διαταραχές αυτές χρονολογήθηκαν κατά προσέγγιση, η 

πρώτη στο ∼1000 π.Χ., η δεύτερη στο ∼300 π.Χ., η τρίτη, η οποία σχετίζεται με μηχανισμούς 

κατάκλυσης στη βόρεια λιμνοθάλασσα της Λευκάδας και τοποθετείται στο ∼300 μ.Χ. και η 

τελευταία, η οποία κατά πάσα πιθανότητα προκλήθηκε από τον ιστορικά καταγεγραμμένο 

σεισμό του 365 μ.Χ. στη δυτική Κρήτη και το σχετιζόμενο (με το σεισμό αυτό) τσουνάμι που 

ακολούθησε. 
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Από γεωμορφολογική και μορφοδυναμική άποψη, τα κύρια γεγονότα τσουνάμι συνέβαλλαν 

στην αποδόμηση της ακτογραμμής της Πλάκας, στο σχηματισμό των αμμωδών θινών του 

Φουκιά και στην απαρχή της έντονης διάβρωσης της ακτογραμμής δυτικά της χερσονήσου του 

Ακτίου. Επίσης, τα προαναφερθέντα περιστατικά συνέβαλλαν στo σχηματισμό παράκτιων 

συνεκτικών ψηφιτοπαγών με κροκάλες μεγάλων διαστάσεων, στο σχηματισμό υψωμάτων στο 

βόρειο τμήμα των θινών του Φουκιά και προκάλεσαν τη δημιουργία τουλάχιστον μίας, 

πιθανότατα και δεύτερης, κατάκλυσης της βόρειας λιμνοθάλασσας της Λευκάδας. Κατά 

συνέπεια, τα γεγονότα των τσουνάμι είχαν καθοριστική συνεισφορά στην παράκτια εξέλιξη της 

υπό μελέτη περιοχής. Αυτά τα σποραδικά περιστατικά δημιούργησαν τις κύριες 

γεωμορφολογικές δομές, οι οποίες συνεχώς συγκαλύπτονται και τροποποιούνται από 

μακροπρόθεσμες και σταδιακές παράκτιες διεργασίες. 

Συνοψίζοντας, αυτή η μελέτη συμβάλλει στην επισήμανση αποθέσεων ακραίων περιστατικών 

παλαιο-τσουνάμι σε παράκτιους γεωλογικούς σχηματισμούς και στην κατανόηση της επίδρασής 

τους στην εξέλιξη του αιγιαλού. Επιπροσθέτως, παρέχει περαιτέρω γεωλογικές ενδείξεις για 

αποθέσεις από περιστατικά ακραίων θαλάσσιων κυμάτων και κατ’ επέκταση εμπλουτίζει την 

υπάρχουσα βιβλιογραφία σχετικά με τις αποθέσεις παλαιο-τσουνάμι. 
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