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Chapter 1

Introduction

The classical propositional satisfiability problem (SAT) is a prominent prob-
lem, namely one of the first problems that have been proven to be NP-
complete [15]. Important areas where CNF-SAT plays a vital role are for-
mal verification [49], bounded model checking [14], and artificial intelligence.
SAT also plays a fundamental role in computational complexity theory and
in the theory of designing exact algorithms. Recently, the interest in design-
ing exact algorithms providing better upper time bounds than the trivial
ones for NP-complete problems and their NP-hard optimization counter-
parts has increased. In this context the investigation of exact algorithms
for testing the satisfiability of propositional formulas in conjunctive normal
form (CNF) is of particular significance. In addition, SAT is well known to
be a fundamental NP-complete problem appearing naturally or via reduc-
tion as the abstract core of many application-relevant problems. As over
the last years several powerful solvers for SAT have been developed, this is
of specific interest (cf. e.g. [33, 11]). In industrial applications the modelling
CNF formulas often are of a specific structure and therefore it would be
desirable to have fast algorithms for such instances. In this context it turns
out that after reducing many classical NP-complete problems to SAT, for-
mulas of a restricted structure are generated, namely formulas F = P ∧H of
a positive monotone 2-CNF part P and a Horn part H, called mixed Horn
formulas (MHF) according to [43]. Thus designing good algorithms for solv-
ing formulas of this special structure is worthwhile and of great importance.
As already shown in [43] graph colorability, problems for level graphs like
level-planarity test or the NP-hard crossing-minimization problem [45], can
be conveniently formulated in terms of MHF. One purpose of this thesis is
to provide a more systematical insight into MHF as destination class and
thus to illustrate that MHF has a central relevance in CNF. To that end
we provide, in chapter 2, straightforward reductions to MHF-SAT for some
prominent NP-complete problems, e.g. the Feedback Vertex Set, the Vertex
Cover, the Dominating Set and the Hitting Set problem can easily be en-
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coded as MHF.
Furthermore we consider restricted subclasses of MHF and show that they
are also NP-complete w.r.t. SAT.
In chapter 2 we also provide algorithms for some NP-complete subclasses of
MHF solving SAT significantly faster than in time O(( 3

√
3)n) = O(1.443n),

the currently best bound for solving unrestricted members of the class MHF
[43]. The first of these subclasses consists of formulas, where the Horn part
is negative monotone and the variable graph corresponding to the positive
2-CNF part P consists of disjoint triangles only. For this class we provide
an algorithm and give the running times for the cases that H is k-uniform,
for k ∈ {3, 4, 5, 6, 7, 8}. Looking at this subclass of MHF is motivated by the
fact that the analysis of an algorithm in [43] for solving unrestricted MHF
has its worst-case behaviour just for this class of formulas.
The other NP-complete subclass of MHF actually consists of infinitely many
subclasses with parameter k ≥ 3. For fixed k a worst-case bound of O(k

n
k )

is shown. For k = 4, 5, 10 the bases of the exponential growth are k
1
k ≈

1.41, 1.38, 1.259 resp., going to 1 with k tending to∞. While the class looks
artificial, the derivation of the running time deserves attention. In this case
enumerating minimal satisfying assignments of the Horn part of the input
formulas turns to be quite useful, whereas for unrestricted MHF and for the
first subclass mentioned above enumerating minimal satisfying assignments
of the 2-CNF part yields better bounds.
In addition, we consider mixed Horn formulas F = P ∧H ∈MHF for which
holds: H is negative monotone, |c| ≤ 3, for all c ∈ H, and P consists of pos-
itive monotone 2-clauses. We solve SAT in running time O(1.325n) for this
formula class by using the autarky principle. That means we can provide
a better running time than the so far best running time of O(p(n)· 1.427n)
by S. Kottler, M. Kaufmann and C. Sinz [29] for this class of mixed Horn
formulas. Afterwards we consider mixed Horn formulas F = P ∧H ∈MHF
for which holds: GP consists of disjoint triangles, edges and isolated vertices
and H consists of Horn clauses which have at most three literals but are not
necessarily negative monotone and V (P ) = V (H). We can solve SAT in
running time O(1.41n) for this formula class by applying the autarky prin-
ciple. Furthermore, we present an algorithm which solves SAT for mixed
Horn formulas with a linear, negative monotone and k-uniform Horn part
and a P part which consists of positive monotone and disjoint 2-clauses only.
Experimental results lead to the strong conjecture that its running time is
better than O(( 3

√
3)n), where n is the number of variables.

In chapter 2 we also treat some subclasses of MHF in P . As a matter of fact,
there is an interesting connection between MHF-SAT and unrestricted SAT
presented in [43]: If there is some α < 1

2 such that each MHF M = P ∧H,
where P has k ≤ 2n variables, can be solved in time O(‖M‖2αk), then there
is some β ≤ 2α < 1 such that SAT for an arbitrary CNF-formula F can be
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decided in time O(‖F‖2βn). Here ||F || denotes the length of F . Although
some progress has been made recently in finding non-trivial bounds for SAT
for arbitrary CNF formulas [17, 18], it would require a significant break-
through in our understanding of SAT to obtain upper time bounds of the
form O(2(1−ε)n), for some ε > 0.
Recently, the propositional satisfiability problem (SAT) was shown to be
NP-complete when restricted to the class of linear formulas in conjunctive
normal form (CNF) in [42]. By definition, each pair of distinct clauses of a
linear formula has at most one variable in common. Therefore, linear for-
mulas yield a direct generalization of linear hypergraphs [4]. Linear formulas
overlap only sparsely and there is some evidence that linear formulas form
the algorithmically hard kernel for CNF-SAT, making this class specifically
interesting especially regarding other variants of SAT.
In chapter 3 of this thesis, we investigate the computational complexity of
some well-known variants of SAT, namely, not-all-equal SAT (NAE-SAT)
and exact SAT (XSAT) restricted to linear CNF instances. Recall that de-
ciding NAE-SAT, for a CNF formula, means to test for the existence of a
truth assignment such that in each clause of the formula at least one literal
evaluates to true and at least one to false. For solving XSAT, exactly one
literal in each clause must evaluate to true and all others to false. Observe
that for CNF formulas where all clauses have exactly two literals XSAT
and NAE-SAT coincide. As shown in the seminal paper by Schaefer [47],
both NAE-SAT and XSAT are NP-complete for the unrestricted CNF class.
Whereas SAT gets trivial on monotone formulas, which by definition are
free of negated variables, NAE-SAT and XSAT are well-known to remain
NP-complete on that class. Note that monotone NAE-SAT coincides with
the prominent NP-complete hypergraph bicolorability problem (also known
as set splitting [21]); here the existence of a 2-coloring of the vertex set
has to be checked such that no hyperedge gets colored monochrome. More-
over, monotone XSAT is closely related to the well-known NP-complete
set partitioning problem (SPP) having many applications in combinatorial
optimization. Recall that SPP takes as input a setM of elements and a col-
lectionM of subsets of M . It asks for a subfamily T ofM such that each
element of M occurs in exactly one member of T . It is easy to see that the
monotone XSAT variant coincides with SPP when the clauses overtake the
roles of the elements in M and the variables are regarded as the members
of M in such a way that a variable contains all clauses in which it occurs.
Furthermore, monotone XSAT is also closely related to the well-known NP-
complete problem Exact Hitting Set [21] which has many applications in
combinatorial optimization.
The contributions of the present thesis are as the following: In chapter 3, we
show that NAE-SAT and XSAT are NP-complete for monotone and linear
formulas, where clauses have length greater or equal k, k ≥ 3.
Recall that Schaefer’s theorem in [47] classifies generalized satisfiability
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problems (including XSAT) w.r.t. their complexity. However, this dichotomy
theorem does not automatically apply if restrictions on the number of occur-
rences of variables in CNF formulas are given. E.g. in [32] it is shown that
whereas unrestricted k-SAT is NP-complete, for k ≥ 3, it behaves trivially
(i.e. all formulas are satisfiable) if each clause has length exactly k and no
variable occurs in more than f(k) clauses; it gets NP-complete if variables
are allowed to occur at most f(k)+1 times. Here f(k) asymptotically grows
as b2k/(e · k)c; this bound has meanwhile been improved by other authors.
In chapter 3, we also investigate the computational complexity of XSAT
restricted to some subclasses of linear formulas defined through bounding
the number of occurrences of variables. Here we prove the NP-completeness
of XSAT for CNF formulas which are l-regular meaning that every vari-
able occurs exactly l times, where l ≥ 3 is a fixed integer. On that basis
we can also prove the NP-completeness of XSAT for the subclass of linear
and l-regular formulas. This result transfers to the monotone case. More-
over, we provide an algorithm solving XSAT for the subclass of monotone,
linear and l-regular formulas faster than the so far best algorithm from J.
M. Byskov et al. for CNF-XSAT with a running time of O(20.2325n) [12].
Our algorithm works by consequently reducing the average clause length
of a formula whenever setting a variable to 1, until we either obtain a for-
mula with an average clause length of 2 or an x-model for this formula. If
an appropriate polynomial-time 2-SAT algorithm returns that the formula
is unsatisfiable, then we backtrack until either no backtracking is possible
or we have found an x-model. Using some connections to finite projective
planes we can also show that XSAT remains NP-complete for linear and
l-regular formulas which in addition are l-uniform (all clauses have the same
length l) whenever l = q + 1, where q is a prime power. Thus XSAT most
likely is NP-complete for the other values of l ≥ 3 too. In addition, we
are interested in exact linear formulas: here each pair of distinct clauses
has exactly one variable in common. We show that NAE-SAT is polyno-
mial-time decidable restricted to exact linear formulas. Reinterpreting this
result enables us to give a partial answer to a long-standing open question
as mentioned by T. Eiter in [20]: Classify the computational complexity of
the symmetrical intersecting unsatisfiability problem (SIM-UNSAT).
The complexity of XSAT on exact linear formulas turns out to be more dif-
ficult. In chapter 3 we show the NP-completeness of XSAT for monotone
and exact linear formulas which we can also establish for the subclass where
clauses have length at least k, k ≥ 3. This is somewhat surprising, since
both SAT and not-all-equal SAT are polynomial-time solvable for exact lin-
ear formulas [42]. However, a difficulty arises when one tries to transfer the
NP-completeness proof to the case when in addition all clauses are required
to have length exactly k, for arbitrary k ≥ 3. It might be possible that for
these classes XSAT is polynomial-time solvable, which so far we can only
show for k ∈ {3, 4, 5, 6}.
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Finally, this thesis is devoted to studying the problems SAT and #SAT
for a subclass of CNF-formulas whose variable-clause graph is k-outerplanar,
k ≥ 1. The variable-clause graph GF of a CNF-formula F is defined as fol-
lows: The vertex set of GF consists of the variables and clauses occurring
in F . If a variable x occurs in a clause c, then the vertices x and c are
joined by an edge. We consider formulas whose variable-clause graphs are
k-outerplanar. A graph is planar if it can be embedded in the plane so that
no two edges cross outside a vertex. An embedding of a graph G = (V,E)
is 1-outerplanar if it is planar and all vertices lie on the outer face. For
k ≥ 2, an embedding of a graph G = (V,E) is k-outerplanar if it is planar
and if all vertices on the outer face are deleted, then a (k − 1)-outerplanar
embedding of the resulting graph is obtained. A graph is k-outerplanar if it
has a k-outerplanar embedding. Formulas whose variable-clause graphs are
k-outerplanar are denoted k-outerplanar. As planar 3-SAT is NP-complete
according to D. Lichtenstein [34], the results described below are especially
significant.

In chapter 4 of this thesis, we show that SAT can be solved in linear
time for the 1-outerplanar formula class. Further we show that #SAT
for k-outerplanar CNF formulas with n variables can be solved in time
O(n1.7(2k+1)) using the separator theorem by Lipton and Tarjan [35], which
is in contrast to the #P -hardness of the problem on general formulas. For
unrestricted CNF formulas #SAT is known to be #P-complete [51]. In this
thesis we first use the separator theorem by Lipton and Tarjan always al-
lowing to partition an n-vertex set of a planar graph into exactly two sets
A and B of at most 2n/3 vertices each, plus a separator set C containing
O(n1/2) vertices, such that no vertex in A is adjacent to a vertex in B.
Thus this separation seems to be more appropriate for our purposes. For
1-outerplanar formulas whose variable-clause graph is either free of cycles or
consists of disjoint cycles without any chords we solve #SAT in linear time.
Moreover, we prove that every CNF-formula F consisting of n variables
whose variable-clause graph GF is a path has at most ψn+1 many different
truth assignments, where ψn+1 is the (n + 1)st Fibonacci number. In ad-
dition we prove in chapter 4 that #SAT for k-circular-levelplanar formulas
is solvable in time O(k· 16k(2/3)5.13·log2 kn5.13) by the separator theorem of
Lipton and Tarjan [35]. So the class of k-circular-levelplanar formulas is
fixed-parameter tractable with respect to the parameter k and thus belongs
to the class FPT (see e.g. [19]). While we need polynomial-time to solve
#SAT for a k-outerplanar formula F by the separator theorem of Lipton
and Tarjan, we can actually solve #SAT in linear time using the technique
of a nice tree decomposition of width at most 3k − 1 for the variable-clause
graph of a k-outerplanar formula, as introduced by H.L. Bodlaender and T.
Kloks in [7]. In [8] it is shown that the tree width of a k-outerplanar graph
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is at most 3k− 1, and if the tree width of a graph G is at most 3k− 1, then
a nice tree decomposition of width at most 3k − 1 can also be computed
in linear time. In chapter 4 we further present an algorithm which uses
dynamic programming bottom-up from the leaves to the root in a nice tree
decomposition of width at most 3k − 1 of GF to solve the #SAT problem
in linear time for a k-outerplanar formula F . Finally, we consider the class
of nested formulas defined by Knuth [27]. Using a graphical description of
these formulas by Kratochvil and Krivanek [31], we prove, in chapter 4, that
every nested formula belongs to the class of 2-outerplanar formulas. On that
basis we show that #SAT can be solved in time O(n8.5) by the separator
theorem of Lipton & Tarjan and in linear time by the nice tree decomposi-
tion technique.



Chapter 2

Mixed Horn Formulas

2.1 Classical NP-complete Problems Encoded as
MHF-SAT

In this section we provide reductions from some classical NP-complete prob-
lems to SAT and we will show that by complementing all literals of the cor-
responding SAT-instance F we obtain a mixed Horn instance F . The Graph
Colorability problem is already mentioned as an example of such a problem
in [43]. Yet there are many more NP-complete problems which can easily
be encoded into MHF-SAT. To demonstrate this, we explicitly transform
some classical NP-complete problems, [25], to MHF-SAT, for example the
Feedback Vertex Set, the Vertex Cover, the Hitting Set, the Dominating Set
problem. Inspecting the reductions of several further NP-complete problems
to SAT, as presented in [50], it turns out that most of them can easily be
transferred to the MHF form.
The following abbreviations for propositional formulas are helpful for our
reduction: The formula at most one (at least one) denotes that at most
one (at least one) literal of the argument is true:

at most one{l1, . . . , lx} :=
∧

1≤i<j≤x

(li ∨ lj)

at least one{l1, . . . , lx} := (l1 ∨ l2 ∨ . . . ∨ lx)

With these fomulas it is easy to define exactly one, which is true if, and
only if, exactly one of its arguments is true:

exactly one{l1, . . . , lx} := at most one{l1, . . . , lx} ∧ at least one{l1, . . . , lx}

We begin with the Feedback Vertex Set problem, which is defined as
follows:
INSTANCE: G = (V,A) a directed graph, k ≤ |V | positive integer.
QUESTION: Is there a set V ′ ⊆ V , |V ′| ≤ k, such that G − {V ′} has no
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directed circles?

The Feedback Vertex Set problem can be reduced to SAT as follows [50]:

X = {[v, i]|v ∈ V, 1 ≤ i ≤ |V |}

F =
∧

1≤i≤|V |

exactly one{[v, i]|v ∈ V } ∧
∧
v∈V

exactly one{[v, i]|1 ≤ i ≤ |V |}

∧
∧

(u,v)∈A

∧
k<i≤|V |

([u, i]⇒ at least one{[v, j]|1 ≤ j ≤ k, i < j ≤ |V |})

This reduction results from the fact that any directed acyclic graph (DAG)
admits a linear ordering of its vertices such that all arcs are directed from
left to right. The first two parts

∧
describe a one-to-one labelling of the

vertices, where the vertices with labels ≤ k are considered to build V ′. In
the last part

∧∧
the DAG property is checked for the reduced graph. The

existence of an edge between a vertex u with a label i > k and a vertex v with
a label j, where k < j < i, is not permissible. Let α be a satisfying truth
assignment of F . Then all the vertices v ∈ V , for which holds α([v, i]) = 1,
where 1 ≤ i ≤ k, belong to the Feedback Vertex Set V ′ and vice versa. Now
we will consider F and show that we can accomplish a reduction to a mixed
Horn instance. Let V = {v1, . . . , vn} then:

F =
∧

1≤i≤n

([v1, i] ∨ [v2, i] ∨ . . . ∨ [vn, i]) ∧
∧

1≤j<l≤n

([vj , i] ∨ [vl, i])


∧
∧
v∈V

([v, 1] ∨ [v, 2] ∨ . . . ∨ [v, n]) ∧
∧

1≤j<l≤n

([v, j] ∨ [v, l])


∧

∧
(u,v)∈A

∧
k<i≤n

([u, i] ∨ ([v, 1] ∨ [v, 2]

∨ . . . ∨ [v, k] ∨ [v, i+ 1] ∨ . . . ∨ [v, n]))

Complementing all literals in F we obtain F ∈ MHF:

F =
∧

1≤i≤n

∧
1≤j<l≤n

([vj , i] ∨ [vl, i]) ∧
∧
v∈V

∧
1≤j<l≤n

([v, j] ∨ [v, l])∧

∧
1≤i≤n

([v1, i] ∨ [v2, i] ∨ . . . ∨ [vn, i]) ∧
∧
v∈V

([v, 1] ∨ [v, 2] ∨ . . . ∨ [v, n])∧

∧
(u,v)∈A

∧
k<i≤n

([u, i] ∨ ([v, 1] ∨ [v, 2]

∨ . . . ∨ [v, k] ∨ [v, i+ 1] ∨ . . . ∨ [v, n]))
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We have:

P :=
∧

1≤i≤n

∧
1≤j<l≤n

([vj , i] ∨ [vl, i]) ∧
∧
v∈V

∧
1≤j<l≤n

([v, j] ∨ [v, l])

and

H :=
∧

1≤i≤n

([v1, i] ∨ [v2, i] ∨ . . . ∨ [vn, i]) ∧
∧
v∈V

([v, 1] ∨ [v, 2] ∨ . . . ∨ [v, n])∧

∧
(u,v)∈A

∧
k<i≤n

([u, i] ∨ ([v, 1] ∨ [v, 2] ∨ . . . ∨ [v, k]

∨ [v, i+ 1] ∨ . . . ∨ [v, n]))

Obviously F = P ∧H is a mixed Horn formula which is satisfying the fol-
lowing: Let α be a satisfying truth assignment of F , then all the vertices
v ∈ V belong to the FVS V ′, for which holds: α([v, i]) = 0, where 1 ≤ i ≤ k.
Similarly, we can provide a reduction from the Feedback Arc Set problem to
MHF-SAT. Recall that in the Feedback Arc Set problem instead of vertices
we consider arcs.

Next we move on to the Vertex Cover problem being defined as:
INSTANCE: Graph G = (V,E), positive integer k ≤ |V |.
QUESTION: Is there a set V ′ ⊆ V , |V ′| ≤ k, such that for all {u, v} ∈ E
we have {u, v} ∩ V ′ 6= ∅?
The Vertex Cover problem can be reduced to SAT as follows [50]:

X = {[v, i]|v ∈ V, 1 ≤ i ≤ k}

F =
∧

1≤i≤k

at most one{[v, i]|v ∈ V }

∧
∧

(u,v)∈E

at least one{[u, i], [v, i]|1 ≤ i ≤ k}

The first part
∧

implies that at most k vertices are chosen (literals [v, i] set
to true), and the second part

∧
verifies that the chosen vertex set is indeed

a vertex cover.
We now consider F and after some calculation we will assert that a reduction
to a mixed Horn instance is possible.
Let V = {v1, . . . , vn} then we obtain:

F =
∧

1≤i≤k

∧
1≤j<l≤n

([vj , i] ∨ [vl, i])

∧
∧

(u,v)∈E

([u, 1] ∨ [v, 1] ∨ [u, 2] ∨ [v, 2] ∨ . . . ∨ [u, k] ∨ [v, k])
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Complementing all literals in F we obtain F :

F =
∧

1≤i≤k

∧
1≤j<l≤n

([vj , i] ∨ [vl, i])

∧
∧

(u,v)∈E

([u, 1] ∨ [v, 1] ∨ [u, 2] ∨ [v, 2] ∨ . . . ∨ [u, k] ∨ [v, k])

For F we have: Let α be a satisfying truth assignment of F . Then all the
vertices belonging to the literals [v, i] to which 0 is assigned form the vertex
cover V ′. We set

P =
∧

1≤i≤k

∧
1≤j<l≤n

([vj , i] ∨ [vl, i])

and

H =
∧

(u,v)∈E

([u, 1] ∨ [v, 1] ∨ [u, 2] ∨ [v, 2] ∨ . . . ∨ [u, k] ∨ [v, k])

Obviously P is a positive monotone 2-CNF formula andH is a Horn formula.
Consequently the instance F = P ∧H belongs to the class MHF.
The Hitting Set problem can also be encoded into MHF-SAT. It is defined
as follows:
INSTANCE: Set C of subsets of a finite set S, a positive integer k ≤ |S|.
QUESTION: Is there a set S′ ⊆ S, |S′| ≤ k, such that for all c ∈ C we have
c ∩ S′ 6= ∅?

The Hitting Set problem can be transformed to SAT as follows [50]:

X = {[s, i]|s ∈ S, 1 ≤ i ≤ k}

F =
∧

1≤i≤k

at most one{[s, i]|s ∈ S} ∧
∧
c∈C

at least one{[s, i]|s ∈ c, 1 ≤ i ≤ k}

This is obviously a generalization of the Vertex Cover Problem, where |c| = 2
for all c ∈ C. The first part choses at most k elements from S which will
be part of S′. The second part verifies that this selection indeed is a hitting
set. From F we obtain:

F =
∧

1≤i≤k

∧
1≤j<l≤|S|

([sj , i] ∨ [sl, i])∧∧
c∈C

([s1, 1] ∨ . . . ∨ [s1, k] ∨ . . . ∨ [sc, 1] ∨ . . . ∨ [sc, k])

By s1, . . . s|c| we denote all elements of c, for an arbitrary c ∈ C. Comple-

menting all literals of F we obtain a mixed Horn formula F :

F =
∧

1≤i≤k

∧
1≤j<l≤|S|

([sj , i] ∨ [sl, i])∧∧
c∈C

([s1, 1] ∨ . . . ∨ [s1, k] ∨ . . . ∨ [sc, 1] ∨ . . . ∨ [sc, k])
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Obviously F = P ∧H is a mixed Horn formula, where

P :=
∧

1≤i≤k

∧
1≤j<l≤|S|

([sj , i] ∨ [sl, i])

is a positive monotone 2-CNF formula and

H :=
∧
c∈C

([s1, 1] ∨ . . . ∨ [s1, k] ∨ . . . ∨ [sc, 1] ∨ . . . ∨ [sc, k])

is a negative monotone Horn formula.
Now we consider the Dominating Set problem, which is defined as follows:
INSTANCE: Graph G = (V,E), a positive integer k ≤ |V |.
QUESTION: Is there a set V ′ ⊆ V , |V ′| ≤ k, such that for all v ∈ V we
have ({v} ∪N(v)) ∩ V ′ 6= ∅?

Transforming the Dominating Set problem to SAT can be accomplished as
follows [50]:

X = {[v, i]|v ∈ V, 1 ≤ i ≤ k}

F =
∧

1≤i≤k

at most one{[v, i]|v ∈ V }

∧
∧
v∈V

at least one{[w, i]|1 ≤ i ≤ k,w ∈ ({v} ∪N(v))}

The first
∧

assures that at most k vertices are selected, and the second
∧

verifies that the chosen vertex-set is a dominating set. We denote by N(v)
the set of all vertices which are adjacent to the vertex v. If F is satisfiable
and α is a model for F , then all the vertices belong to the dominating set
which correspond to the variables to which 1 is assigned according to α. Let
V = {v1, . . . , vn}. Then we obtain from F :

F =
∧

1≤i≤k

∧
1≤j<l≤n

([vj , i] ∨ [vl, i])

∧
∧
v∈V

([v, 1] ∨ . . . ∨ [v, k] ∨ [vN1 , 1] ∨ . . . ∨ [vN1 , k]∨

[vN2 , 1] . . . ∨ [vN2 , k] ∨ . . . ∨ [vNv , 1] . . . ∨ [vNv , k])

Let vN1 , . . . , vNv be all the vertices adjacent to v in G. Complementing all
literals of F we obtain F :

F =
∧

1≤i≤k

∧
1≤j<l≤n

([vj , i] ∨ [vl, i])

∧
∧
v∈V

([v, 1] ∨ . . . ∨ [v, k] ∨ [vN1 , 1] ∨ . . .∨

[vN1 , k] ∨ [vN2 , 1] . . . ∨ [vN2 , k] ∨ . . . ∨ [vNv , 1] . . . ∨ [vNv , k])
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We set

P :=
∧

1≤i≤k

∧
1≤j<l≤n

([vj , i] ∨ [vl, i])

and

H :=
∧
v∈V

([v, 1] ∨ . . . ∨ [v, k] ∨ [vN1 , 1]

∨ . . . ∨ [vN1 , k] ∨ [vN2 , 1] . . . ∨ [vN2 , k] ∨ . . . ∨ [vNv , 1] . . . ∨ [vNv , k])

Then P is a positive monotone 2-CNF formula andH is a negative monotone
Horn formula. Therefore F = P ∧H is a mixed Horn formula. Considering
any satisfying truth assignment of F all the vertices corresponding to the
variables to which 0 is assigned belong to the dominating set.

In [50] the Edge Dominating Set problem is reduced to the SAT-problem
as follows::
INSTANCE: Graph G = (V,E), a positive integer k ≤ |E|.
QUESTION: Is there a set E

′ ⊆ E, |E′ | ≤ k, such that for each e ∈ E an

f ∈ E′
exists with e ∩ f 6= ∅?

X = {[e, i]|e ∈ E, 1 ≤ i ≤ k} ∪ {[v]|v ∈ V }

F =
∧

1≤i≤k

at most one{[e, i]|e ∈ E}

∧
∧
v∈V

(([v])⇒ at least one{[e, i]|v ∈ e ∈ E, 1 ≤ i ≤ k})

∧
∧

{u,v}∈E

at least one{[u], [v]}

The first part chooses at most k edges, which are checked by the remaining
two parts to be an Edge Dominating Set. We denote with v ∈ e ∈ E all
edges e ∈ E which have v as one of their end points. We now consider F and
after some calculation we assert that a reduction to a mixed Horn instance
is possible.

F =
∧

1≤i≤k

∧
1≤j<l≤|E|

([ej , i] ∨ [el, i])

∧
∧
v∈V

([v] ∨ [e1, 1] ∨ . . . ∨ [e1, k] ∨ . . . ∨ [ev, 1] ∨ . . . ∨ [ev, k])

∧
∧

{u,v}∈E

([u] ∨ [v])

Let e1, . . . , ev be all the edges of E containing v, for an arbitrary v ∈ V .
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Negating all literals we obtain the following mixed Horn formula:

F =
∧

1≤i≤k

∧
1≤j<l≤|E|

([ej , i] ∨ [el, i])

∧
∧
v∈V

([v] ∨ [e1, 1] ∨ . . . ∨ [e1, k] ∨ . . . ∨ [ev, 1] ∨ . . . ∨ [ev, k])

∧
∧

{u,v}∈E

([u] ∨ [v])

Hence F = P ∧H, where

P =
∧

1≤i≤k

∧
1≤j<l≤|E|

([ej , i] ∨ [el, i])

consists of positive 2-clauses only and

H =
∧
v∈V

([v]∨ [e1, 1]∨ . . .∨ [e1, k]∨ . . .∨ [ev, 1]∨ . . .∨ [ev, k])
∧

{u,v}∈E

([u]∨ [v])

is a Horn formula. Hence F ∈MHF and therefore the Edge Dominating
Set Problem can be reduced to MHF-SAT.

Now we consider the Independent Set Problem, which is defined as
follows:

INSTANCE: Graph G = (V,E), a positive integer k > 0.
QUESTION: Is there a set V

′ ⊆ V , |V ′ | ≥ k, such that for all {u, v} ∈ E
holds:
{u, v} 6⊆ V ′

?

We can reduce the Independent Set Problem to the SAT-problem. In
[50], such a reduction is performed as follows:

X = {[v, i]|v ∈ V, 1 ≤ i ≤ k}

F =
∧

1≤i≤k

at least one{[v, i]|v ∈ V }

∧
∧

{u,v}∈E

at most one{[u, i], [v, i]|1 ≤ i ≤ k}

The first part
∧

chooses at least k vertices and the second part
∧

examines,
whether no pair of those vertices is adjacent. In case F has a satisfying
truth assignment α then all those vertices of V belong to the Independent
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Set, which correspond to the variables in X being set to 1 according to α.
Let V = {v1, . . . , vn}. Then we obtain for F :

F =
∧

1≤i≤k

([v1, i] ∨ [v2, i] ∨ . . . ∨ [vn, i]) ∧
∧

{u,v}∈E

∧
1≤j<l≤k

(([u, j] ∨ [v, l])

∧ ([u, j] ∨ [u, l]) ∧ ([v, j] ∨ [v, l]) ∧ ([v, j] ∨ [u, l]) ∧ ([u, j] ∨ [v, j]))

Negating all literals in F we obtain F :

F =
∧

1≤i≤k

([v1, i] ∨ [v2, i] ∨ . . . ∨ [vn, i]) ∧
∧

{u,v}∈E

∧
1≤j<l≤k

(([u, j] ∨ [v, l])

∧ ([v, j] ∨ [u, l]) ∧ ([u, j] ∨ [u, l]) ∧ ([v, j] ∨ [v, l]) ∧ ([u, j] ∨ [v, j]))

Then

P =
∧

{u,v}∈E

∧
1≤j<l≤k

(([u, j] ∨ [v, l]) ∧ ([v, j] ∨ [u, l])

∧ ([u, j] ∨ [u, l]) ∧ ([v, j] ∨ [v, l]) ∧ ([u, j] ∨ [v, j])

and

H =
∧

1≤i≤k

([v1, i] ∨ [v2, i] ∨ . . . ∨ [vn, i])

Evidently P is a positive monotone 2-CNF formula and H is a negative
monotone Horn formula. Thus F = P ∧ H is a mixed Horn formula for
which holds: All the vertices of V which correspond to the variables to
which 0 is assigned in a model for F belong to the Independent Set.

Next we consider the Minimum Maximal Matching problem, which is
defined as follows: INSTANCE: Graph G = (V,E), a positive integer k ≤
|E|.
QUESTION: Is there a set E

′ ⊆ E, |E′ | ≤ k, such that for all {u, v} ∈ E
holds: {u, v} ∩ V (E

′
) 6= ∅?

Let V (E
′
) denote all vertices occurring at the edges of E

′
. We can reduce

the Minimum Maximal Matching Problem to the SAT-problem. In [50]
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such a reduction is performed as follows:

X = {[e, i]|e ∈ E, 1 ≤ i ≤ k}

F =
∧

1≤i≤k

at most one{[e, i]|e ∈ E}

∧
e∩f 6=∅∧
e,f∈E

at most one{[e, i], [f, i]|1 ≤ i ≤ k}

∧
∧
e∈E

(none{[e, i]|1 ≤ i ≤ k} ⇒

at least one{[f, i]|1 ≤ i ≤ k, f ∈ E, e ∩ f 6= ∅})

The first two parts of the formula make sure that a matching of size at most
k is selected. The third part ensures that the chosen matching is indeed
maximal. For E = {e1, . . . , en} we obtain:

F =
∧

1≤i≤k

∧
1≤j<l≤n

([ej , i] ∨ [el, i])

∧
e∩f 6=∅∧
e,f∈E

∧
1≤j<l≤k

(([e, j] ∨ [f, l]) ∧ ([f, j] ∨ [e, l]) ∧ ([e, j] ∨ [e, l])

∧ ([f, j] ∨ [f, l]))

∧
e∩f 6=∅∧
e,f∈E

∧
1≤j≤k

([e, j] ∨ [f, j])

∧
∧
e∈E

(([e, 1] ∧ . . . ∧ [e, k]) ∨ [f1, 1] ∨ . . .∨

[f1, k] ∨ [f2, 1] ∨ . . . ∨ [f2, k] ∨ . . . ∨ [f|e|, 1] ∨ . . . ∨ [f|e|, k])

We designate with f1, . . . , f|e|, |e| ∈ N, all edges fi ∈ E, for which holds
e ∩ fi 6= ∅.
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Performing a further step yields:

F =
∧

1≤i≤k

∧
1≤j<l≤n

([ej , i] ∨ [el, i])

∧
e∩f 6=∅∧
e,f∈E

∧
1≤j<l≤k

(([e, j] ∨ [f, l]) ∧ ([f, j] ∨ [e, l]) ∧ ([e, j] ∨ [e, l])

∧ ([f, j] ∨ [f, l]))

∧
e∩f 6=∅∧
e,f∈E

∧
1≤j≤k

([e, j] ∨ [f, j])

∧
∧
e∈E

([e, 1] ∨ . . . ∨ [e, k] ∨ [f1, 1] ∨ . . .∨

[f1, k] ∨ [f2, 1] ∨ . . . ∨ [f2, k] ∨ . . . ∨ [f|e|, 1] ∨ . . . ∨ [f|e|, k])

Negating all literals of F we obtain F :

F =
∧

1≤i≤k

∧
1≤j<l≤n

([ej , i] ∨ [el, i])

∧
e∩f 6=∅∧
e,f∈E

∧
1≤j<l≤k

(([e, j] ∨ [f, l]) ∧ ([f, j] ∨ [e, l]) ∧ ([e, j] ∨ [e, l])

∧ ([f, j] ∨ [f, l]))

∧
e∩f 6=∅∧
e,f∈E

∧
1≤j≤k

([e, j] ∨ [f, j])

∧
∧
e∈E

([e, 1] ∨ . . . ∨ [e, k] ∨ [f1, 1] ∨ . . . ∨ [f1, k] ∨ [f2, 1] ∨ . . .∨

[f2, k] ∨ . . . ∨ [f|e|, 1] ∨ . . . ∨ [f|e|, k])

We define

P =
∧

1≤i≤k

∧
1≤j<l≤n

([ej , i] ∨ [el, i])

∧
e∩f 6=∅∧
e,f∈E

∧
1≤j<l≤k

(([e, j] ∨ [f, l]) ∧ ([f, j] ∨ [e, l]) ∧ ([e, j] ∨ [e, l])

∧ ([f, j] ∨ [f, l]))

∧
e∩f 6=∅∧
e,f∈E

∧
1≤j≤k

([e, j] ∨ [f, j])
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and

H =
∧
e∈E

([e, 1] ∨ . . . ∨ [e, k] ∨ ([f1, 1] ∨ . . . ∨ [f1, k]) ∨ [f2, 1] ∨ . . . ∨ [f2, k]

∨ . . . ∨ [f|e|, 1] ∨ . . . ∨ [f|e|, k])

Then P is a positive monotone 2-CNF formula and H is a negative mono-
tone Horn formula and thus F = P ∧H is a mixed Horn formula.

The Strong Connectivity Problem also belongs to the class MHF. It
is defined as follows:
INSTANCE: Directed graph G = (V,A).
QUESTION: Is G strongly connected?
A directed graph G is strongly connected if, and only if, for each two vertices
u, v of G there is a path from u to v and from v to u. Alternatively this can
also be characterised as follows: A digraph G is strongly connected if, and
only if, any fixed vertex v0 has all other vertices as both descendants and
ascendents. We can transform the Strong Connectivity Problem to the
SAT-problem as follows [50]:

X = {[i, v]| − (|V | − 1) ≤ i ≤ |V | − 1, v ∈ V }
F = ([0, v0]) ∧ none{[0, v]|v ∈ (V − {v0})}

∧
∧
v∈V

at least one{[i, v]|0 ≤ i ≤ |V | − 1}

∧
∧

0<i≤|V |−1

∧
v∈V

(([i, v])⇒ at least one{[j, w]|0 ≤ j < i, (w, v) ∈ A})

∧
∧
v∈V

at least one{[i, v]| − (|V | − 1) ≤ i ≤ 0}

∧
∧

−(|V |−1)≤i<0

∧
v∈V

(([i, v])⇒ at least one{[j, w]|i < j ≤ 0, (v, w) ∈ A})

The third and the fourth part of the above formula ensure all other vertices
as descendants, and the last two parts verify all other vertices as ascendants,
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both for the vertex v0 ∈ V . Considering F we obtain further:

F =([0, v0] ∧ [0, v1] ∧ . . . ∧ [0, vn−1]) ∧
∧
v∈V

([0, v] ∨ . . . ∨ [|V | − 1, v])

∧
∧

0<i≤|V |−1

∧
v∈V

([i, v] ∨ [0, w1] ∨ . . . ∨ [i− 1, w1]

∨ . . . ∨ [0, wv] ∨ . . . ∨ [i− 1, wv])

∧
∧
v∈V

([−(|V | − 1), v] ∨ . . . ∨ [0, v])

∧
∧

−(|V |−1)≤i<0

∧
v∈V

([i, v] ∨ [i+ 1, w
′
1] ∨ . . . ∨ [0, w

′
1]

∨ . . . ∨ [i+ 1, w
′
v] ∨ . . . ∨ [0, w

′
v])

Let v1, . . . , vn−1 be all vertices of V (without the vertex v0),

{w′
1, . . . , w

′
v} := {w ∈ V |(v, w) ∈ A}

and {w1, . . . , wv} := {w ∈ V |(w, v) ∈ A}, for a v ∈ V . Negating all literals
of F , we obtain F :

F =([0, v0] ∧ [0, v1] ∧ . . . ∧ [0, vn−1] ∧
∧
v∈V

([0, v] ∨ . . . ∨ [|V | − 1, v])

∧
∧

0<i≤|V |−1

∧
v∈V

([i, v] ∨ [0, w1] ∨ . . . ∨ [i− 1, w1]

∨ . . . ∨ [0, wv] ∨ . . . ∨ [i− 1, wv])

∧
∧
v∈V

([−(|V | − 1), v] ∨ . . . ∨ [0, v])

∧
∧

−(|V |−1)≤i<0

∧
v∈V

([i, v] ∨ [i+ 1, w
′
1] ∨ . . . ∨ [0, w

′
1]

∨ . . . ∨ [i+ 1, w′
v] ∨ . . . ∨ [0, w′

v])

As no clause of F has more than one positive literal, F is a Horn-formula
and thus belongs to the class MHF. Therefore we can encode each Strong
Connectivity Problem into a MHF-SAT instance.
In the same way, we can similarly show that nearly all NP-complete problems
introduced by Karp [25] have a natural and straightforward encoding as an
MHF-SAT problem. Some of these problems are listed below:

• Monochromatic Triangle problem

• Partition Into Cliques problem

• Set-Splitting problem
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• Maximum Leaf Spanning Tree problem

• Planar Subgraph problem

The number of Boolean variables in the resulting member of MHF is often
larger than the relevant instance size of the original problem, e.g. in the case
of the Feedback Vertex Set problem (FVS) n2 vs. n. However, solving the
MHF member by an up-to-date SAT solver is quite fast because of the large
number of 2-clauses which allow iterated unit resolution phases, in the case
of FVS of length n each time.

2.2 Some NP-complete Subclasses of MHF

This section is devoted to establishing NP-completeness of certain inter-
esting subclasses of MHF. The first class to consider consists of formulas
whose Horn clauses are k-uniform, which means they all have equal length
k, where k ≥ 3, and their 2-CNF part is positive monotone. We denote
this class by MHkF

+. Secondly, we consider the class MH−
k F

+ ⊂ MHkF
+

of mixed Horn formulas with a positive monotone 2-CNF part and nega-
tive monotone, k-uniform Horn clauses, k ≥ 3. Afterwards, we consider a
subclass of MH−

k F
+, for which additionally holds that the variable-graph

GP of the positive monotone 2-CNF part P consists of disjoint edges only.
We denote such a class of formulas by MH−

k F
d+. Finally, we consider the

class LMH−
k F

+ ⊂ MH−
k F

+ consisting of mixed Horn formulas of MH−
k F

+,
for which additionally holds that the Horn clauses are linear [42]. A CNF
formula F is called linear if

(1) F contains no pair of complementary unit clauses and

(2) for all c1, c2 ∈ F : c1 6= c2 we have |V (c1) ∩ V (c2)| ≤ 1.

Theorem 1. SAT is NP-complete for the following MHF subclasses: MHkF
+,

MH−
k F

+, MH−
k F

d+ and LMH−
k F

+, for k ≥ 3.

Proof. Note that the NP-completeness of all these MHF subclasses directly
follows from Schaefer’s theorem [47] because none of these subclasses is
properly contained in any tractable CNF class due to Schaefer’s theorem.
However, direct reductions are of interest per se. To that end, it is easy to
see that the encoding of k-colorability for graphs, k ≥ 3, to SAT directly
yields the NP-completeness of LMH−

k F
+ ⊂ MH−

k F
+ ⊂ MHkF

+. But this
connection to graph colorability does not hold for the class MH−

k F
d+, for

which we provide the following reduction: It is well known that the class
k-CNF, k ≥ 3, is NP-complete. Let F ∈ k-CNF be an arbitrary formula.
Then we can reduce F to a SAT-equivalent formula M̃F of the class MH−

k F
d+

in polynomial-time. The transformation is achieved in two main steps, the
first of which is referred to as MHF-reduction:
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1. Let V +(F ) ⊆ V (F ) be the set of all variables having a positive occurrence
in F . For each variable x ∈ V +(F ) we introduce a new variable yx 6∈ V (F )
and perform the following steps: We replace each positive occurrence of
x ∈ V +(F ) in the k-clauses by yx, for each x ∈ V +(F ). Let F ′ be the
resulting formula. Next we add the constraints yx ⇔ x, for all x ∈ V +(F ),
to F ′, equivalent to

(yx ⇔ x)⇔ ((yx ∨ x) ∧ (yx ∨ x))

yielding the new formula

MF = F ′ ∧
∧

x∈V +(F )

(yx ∨ x) ∧ (yx ∨ x)

Here F ′ only consists of Horn clauses of length k.
2. As formulas of each class MH−

k F
d+ are allowed to contain positive 2-

clauses only, butMF also contains the negative monotone 2-clauses (yx∨x),
for each x ∈ V +(F ), we add to each such negative 2-clause exactly (k − 2)
backbone variables zix and the formulas F i

x ∈ MH−
k F

d+, for i = 1, . . . , k− 2,
such that zix is a backbone variable of F i

x which has to be set to 1. All such
formulas F i

x, i = 1, . . . , k − 2, must be pairwise and also variable-disjoint
with F ′. Let i = 1, . . . k − 2, then an example of such a backbone-formula
is:

F i
x = (zix1 ∨ zix2) ∧ (zix3 ∨ zix4) ∧ (zix5 ∨ zix6) ∧ . . . ∧ (zix(2k−1) ∨ z

i
x2k)

∧ (zix1 ∨ zix3 ∨ . . . ∨ zix(2k−1)) ∧ . . . ∧ (zix2 ∨ zix4 ∨ . . . ∨ zix(2k−1))

The Horn part consists of 2k − 1 negative monotone k-clauses, where each
k-clause consists of the variables of a vertex cover of the positive monotone
2-CNF part (zi1 ∨ zi2) ∧ (zi3 ∨ zi4) ∧ (zi5 ∨ zi6) ∧ . . . ∧ (zi2k−1 ∨ zi2k). Since the

positive monotone 2-CNF part has altogether 2k negative monotone vertex
covers, but there are only 2k − 1 negative monotone k-clauses in the Horn
part, the formula F i

x is satisfiable and has k backbone-variables, which have
to be set to 1. We assume that the vertex cover which selects from each
positive 2-clause the variable with the odd index does not appear as nega-
tive Horn clause in F i

x. Therefore each variable of this clause is a backbone
variable of F i

x which has to be set to 1.

Finally we add the literals z1x, . . . , z
k−2
x , for x ∈ V +(F ) to each negative

monotone clause (yx∨x) ofMF , and gain (yx∨x∨z1x∨. . .∨zk−2
x ). Altogether
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we get

M̃F = F ′ ∧
∧

x∈V +(F )

(
(yx ∨ x ∨ z1x ∨ . . . ∨ zk−2

x ) ∧ F 1
x ∧ . . . ∧ F k−2

x

)
∧

∧
x∈V +(F )

(yx ∨ x) ∈ MH−
k F

d+

It holds that M̃F is satisfiable if, and only if, F is satisfiable: We assume that
F is satisfiable. Let α be a model of F , then we set all the variables, which
M̃F and F have in common, also according to α. Each newly introduced
variable yx (such that yx is equivalent to x) is set as follows: yx = 1−α(x).
Since the added backbone formulas F i

x are always satisfiable, M̃F is also

satisfiable. If F is unsatisfiable, we obviously cannot satisfy F ′ and M̃F

either.

2.3 Algorithms for SAT of Further Mixed Horn
Classes

In this section we consider some special classes of mixed Horn formulas, for
which SAT can be solved in a better running time than O(20.5284n). Let H
be k-uniform (k ≥ 3), negative and linear; assume that all m clauses of
H can be written as a sequence c1, . . . , cm, such that

• all literals can be enumerated such that either the last literal of ci
and the first literal of ci+1 are equal (i = 1, . . . ,m− 1)
or the clauses ci, ci+1 are variable-disjoint,

• no clause ci (i ∈ {2, . . . ,m − 1}) is allowed to share a variable with
any other clause except with ci−1 and ci+1 as stated above.

Then we say H has overlappings in boundary variables only. Note
that the first clause c1 and the last clause cm are also not allowed to share
a variable.
Example:

H = (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x4 ∨ x5 ∨ x6 ∨ x7) ∧ (x7 ∨ x8 ∨ x9 ∨ x10)

has overlappings in boundary variables only.
Each connected component of the incidence graph GH for H looks like in
Figure 1.

Definition 1. We consider formulas M = G∧H ∈ MHF with the following
properties:
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Figure 2.1: The incidence graph for
H = (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x4 ∨ x5 ∨ x6 ∨ x7) ∧ (x7 ∨ x8 ∨ x9 ∨ x10)

G consists of 2-clauses not necessarily positive monotone and H consists
of linear Horn clauses, for which holds: All clauses are negative monotone,
k-uniform, k ≥ 3, and there is an ordering c1, c2 . . . , c|H| of the clauses of H
and an ordering of all literals in each clause, such that H has overlappings in
boundary variables only. We denote this class by k-BLMHF (k-Boundary-
Linear mixed Horn formulas).

Example for a k-Boundary-Linear mixed Horn formula:

M =(x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x5 ∨ x6) ∧ (x7 ∨ x12) ∧ (x8 ∨ x11) ∧ (x10 ∨ x11)
∧ (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x4 ∨ x5 ∨ x6 ∨ x7)
∧ (x8 ∨ x9 ∨ x10 ∨ x11) ∧ (x11 ∨ x12 ∨ x13 ∨ x14)

Obviously M = G ∧H, where

G = (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x5 ∨ x6) ∧ (x7 ∨ x12) ∧ (x8 ∨ x11) ∧ (x10 ∨ x11)

and

H = (x1∨x2∨x3∨x4)∧(x4∨x5∨x6∨x7)∧(x8∨x9∨x10∨x11)∧(x11∨x12∨x13∨x14)

Note that H with this restriction belongs to a subclass of the class of
nested formulas studied by Knuth [27].

Theorem 2. SAT remains NP-complete for the class k-BLMHF, k ≥ 3.

Proof. We provide a polynomial-time reduction from k-CNF-SAT, which
is NP-complete to k-BLMHF-SAT, proving the NP-completeness of the lat-
ter. Let F ∈ k-CNF. First we perform the MHF-reduction step as in the
proof of Theorem 1 obtaining the corresponding formula MF

MF = F ′ ∧
∧

x∈V +(F )

(yx ∨ x) ∧ (yx ∨ x)
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Let the clauses of F ′ be labelled as follows: c1, c2, . . . , c|F ′|. Then we proceed
as follows:
At the beginning let i = 1, as long as i < |F ′| we consider ci. As long as ci
has a common variable z with cj , for some j ≥ i+ 1, we replace z in cj by
yz, yz not yet occurring in the set of variables of MF , and add the 2-clauses
(z ∨ yz) ∧ (yz ∨ z) to MF . Then we set i := i + 1. Let M ′

F be the final
resulting formula, thenM ′

F belongs to the class k-BLMHF (note the clauses
of H are pairwise disjoint) and obviously M ′

F is equivalent to F concerning
SAT and the transformation can be performed in polynomial-time.

Theorem 3. SAT for k-BLMHF, k ≥ 3, can be solved in time O(( k
√
k)n).

Proof. The following algorithm solves SAT for the class k-BLMHF in
time O(( k

√
k)n):

Algorithm for k-Boundary-linear MHF’s
INPUT: F = G ∧H belonging to the class k-BLMHF.
OUTPUT: A model for F , if F is satisfiable; nil, otherwise.
begin
1.)If V (G) ⊂ V (H) set all the variables in V (H)− V (G) to 0 until V (G) =
V (H).
2.) Compute all (minimal) Hitting Sets S1, S2, . . . , Sr of H.
3.) Set i = 1.
4.) while i ≤ r, do:

(a) Evaluate F by assigning 0 to all variables of Si, then solve the 2-
SAT search problem for the remaining part of G by a standard 2-SAT
algorithm in polynomial-time.

(b) If the assignment t at hand is a model for F , then the algorithm stops
with output t.

(c) Else undo the assignment of the last step and augment i := i+ 1.

5.) Return nil.
end

Correctness: The algorithm k-BLMHF verifies for each minimal hitting set
of H, whether the partial truth assignment resulting from setting all vari-
ables in the hitting set to 0 can be extended to a model of F by checking
the remaining 2-CNF part in linear time [2]. Since we consider only the
minimal hitting sets of H, we do not impose any restrictions concerning the
satisfiability of H. This is due to the fact that for each model of F the set
of all variables which are set to 0 either corresponds to a minimal hitting
set of H or contains a minimal hitting set of H itself.
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Analysis of the running time: Let F = G∧H ∈ k-BLMHF with n variables
and let V (G) = V (H). One can show that the number of minimal hitting
sets is maximal if the Horn part of F consists of disjoint clauses only. So
the running time of the algorithm k-BLMHF is dominated by this subclass
of k-BLMHF, for which the number of minimal hitting sets of H is kdn/ke,
yielding the running time O(p(n)( k

√
k)n), for a polynom p. As the sequence

( k
√
k)k∈N decreases monotonously with increasing k, we obtain a running

time better than 3n/3 for k ≥ 4.
Note that the algorithm has a fixed parameter tractable running time
of O(p(n)km/k), where m = |V (H)| and n = |V (G)| if V (H) ⊂ V (G).

Another NP-complete subclass of MHF we consider is the class MH−F
4

consisting of mixed Horn formulas M = P ∧ H with a negative monotone
Horn part H and a positive monotone 2-CNF part P for which holds that
the corresponding variable graph GP consists of disjoint triangles only. We
further demand that V (P ) = V (H). In case there is a variable x ∈ V (P )−
V (H) we set x to 1 and in case there is a variable x ∈ V (H)− V (P ) we set
x to 0.

Theorem 4. SAT remains NP-complete for the class MH−F4.

Proof. In Theorem 1 is shown that SAT remains NP-complete for
the class MH−

k F
d+. Now we provide a polynomial-time reduction from

MH−
k F

d+-SAT to MH−F4-SAT. Let F ∈ MH−
k F

d+ with a Horn part con-
sisting of negative monotone, k-uniform clauses and with a positive mono-
tone 2-CNF part P whose corresponding variables graph GP consists of
disjoint edges only, that is P looks as follows:

(x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x5 ∨ x6) ∧ . . . ∧ (xn−1 ∨ xn)

Then for each such (xi ∨ xi+1) ∈ P , i ∈ {1, . . . , n − 1} we introduce a
new variable yi,i+1 and add the two clauses (xi ∨ yi,i+1) and (xi+1 ∨ yi,i+1)

to P . Let P̃ be the resulting positive monotone 2-CNF formula. Then G
P̃

obviously consists of disjoint triangles only. Further, for each (xi∨xi+1) ∈ P ,
we add to H the following clauses each consisting of all variables of the same
triangle of P , but all negated: (xi∨xi+1∨yi,i+1) and obtain H̃. Now let F be

satisfiable and let α be a model of F , then in F̃ = P̃ ∧ H̃ we set all variables
which F and F̃ have in common according to α and set yi,i+1 = 1, for all
i ∈ {1, . . . , n− 1}. This way we satisfy all the newly added 2-clauses of the
P̃ part. The newly added 3-clauses (xi∨xi+1∨yi,i+1) of H̃ are also satisfied
because it suffices to set exactly one variable in each clause (xi ∨ xi+1) of P
to 1 so that we can set the other variable to 0 and hence also satisfy all the
newly added 3-clauses. If F is not satisfiable, F̃ cannot be satisfied either
because F ⊂ F̃ .

Formulas F = P ∧ H in MH−F4 have an unrestricted Horn part H
concerning the length of the clauses. So the natural question arises whether
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NP-completeness also holds for the subclass of MH−F4 where the Horn
clauses are k-uniform, for a k ≥ 3. Thus we next consider the classMH−

k F
4

of mixed Horn formulas, whose Horn part H is k-uniform, k ≥ 3, and
negative monotone. Further we demand that V (P ) = V (H). The following
Theorem states the NP-completeness for this class.

Theorem 5. SAT remains NP-complete for the class MH−
k F

4, k ≥ 3.

Proof. We provide a polynomial-time reduction from MH−
k F

d+-SAT,
which is NP-complete according to Theorem 1, to MH−

k F
4-SAT, proving

the NP-completeness of the latter. To that end let F ∈ MH−
k F

d+ be an
arbitrary formula. For each clause (xi∨xj) of P , xi, xj ∈ V (F ), we introduce
a new variable yi,j not yet occurring in V (F ) and add the two clauses (xi ∨
yi,j), (xj ∨ yi,j) to P. This way we obtain the positive monotone 2-CNF
formula P ′ whose corresponding graph GP ′ consists of disjoint triangles
only. For each newly introduced variable yi,j we add to H the following
three negative monotone k-clauses (for k ≥ 4):

(yi,j ∨ z1i,j,1 ∨ . . . ∨ z
k−1
i,j,1), (yi,j ∨ z1i,j,2 ∨ . . . ∨ z

k−1
i,j,2), (yi,j ∨ z1i,j,3 ∨ . . . ∨ z

k−1
i,j,3)

where the variables zpi,j,l, for p ∈ {1, . . . , k− 1}, l ∈ {1, 2, 3} are newly intro-
duced and pairwise different. Let H ′ be the resulting Horn part. To achieve
the condition V (P ′) = V (H ′) we add the clauses (zpi,j,1∨z

p
i,j,2), (z

p
i,j,1∨z

p
i,j,3),

(zpi,j,2 ∨ z
p
i,j,3) to P

′, for each p ∈ {1, . . . , k− 1} and obtain P ′′, whose corre-
sponding graph GP ′′ obviously still consists of disjoint triangles only.
In case k = 3 we add the following two clauses to H:

(yi,j ∨ zi,j,1 ∨ zi,j,2) ∧ (yi,j ∨ zi,j,1 ∨ zi,j,3)

and we add the following clauses to P ′:

(zi,j,1 ∨ zi,j,2) ∧ (zi,j,2 ∨ zi,j,3) ∧ (zi,j,1 ∨ zi,j,3)

Now we obviously have V (P ′′) = V (H ′). Additionally F ′ = P ′′ ∧H ′ is
satisfiable if, and only if, F is: Let F be satisfiable and let α be a model of
F , then we set all the variables which F and F ′ have in common according
to α and in each triangle (xi ∨ xj)∧ (xi, yi,j)∧ (xj , yi,j) of P ′ we set yi,j = 1
and hence satisfy P ′. In case k ≥ 4, we set z1i,j,1 = 0, z2i,j,2 = 0, z3i,j,3 = 0 and
hence satisfy the newly added clauses in H ′. We assign 1 to all the other
variables and this way also satisfy the newly introduced triangles in P ′′. In
case k = 3 we set zi,j,1 = 0 and zi,j,2 = zi,j,3 = 1 and also satisfy F ′. If F is
not satisfiable, F ′ is also unsatisfiable, because F ⊂ F ′.

The next result is quite significant as we can provide a better running
time than the so far best running time of O(p(n)· 1.427n) by S. Kottler, M.
Kaufmann and C. Sinz [29] for the class of mixed Horn formulas for which
additionally holds: H is negative monotone, |c| ≤ 3, for all c ∈ H, and P
consists of positive monotone 2-clauses.



26 Chapter 2. Mixed Horn Formulas

Theorem 6. We consider mixed Horn formulas F = P ∧ H ∈ MHF for
which additionally holds: H is negative monotone, |c| ≤ 3, for all c ∈ H,
and P consists of positive monotone 2-clauses. Then we can solve SAT in
running time O(1.325n) for this formula class.

Proof. The following algorithm has a running time of O(1.325n) for this
formula class.

Algorithm MH−≤3F
+

begin
As long as F contains a unit clause or a pure literal apply the following steps
1.)-3.).
1.) Apply the unit clause rule and the pure literal rule.
2.) Suppose that GP contains a disjoint triangle of 2-clauses (x∨ y), (y∨ z),
(x ∨ z) and H contains the clause (x ∨ y). Then any satisfying assignment
of F must set z = 1, hence recurse on F [z = 1].
3.) If F contains the clause (x∨y) and GP contains an isolated edge (x∨y),
i.e. neither x nor y appears in any other positive clauses, then recurse on
F − {(x ∨ y)}.
* Remark that F now contains no unit clauses, no pure literals, and no two
2-clauses of the form (x ∨ y), (x ∨ y).*
4.) If F contains a negative 2-clause, pick one, say (x∨u). Since no variable
is pure and H is negative monotone, there are positive 2-clauses (x∨ y) and
(u∨ v). Next we will do the following recursive calls, each with a number of
variables already assigned.

a) Clause (x ∨ y) is an isolated edge.
If x = 1, then u = 0 and v = 1. Furthermore, y is pure now and hence
we can also set y = 0. If x = 0, then y = 1.

b) Clause (x ∨ y) is not an isolated edge, for example let (y ∨w), w 6= x,
be also a clause of P .
If x = 1, then u = 0 and v = 1. Note that the variable y is not pure
now. If x = 0, then y = 1.

c) Clause (x∨y) belongs to a disjoint triangle (x∨y), (x∨z) and (y∨z).
If x = 1, then u = 0 and v = 1. If x = 0, then y = 1 = z.

d) Let y = v and (x ∨ y) ∧ (y ∨ u) be two clauses of P , which are not
necessarily disjoint in P .
If x = 0, then y = 1. If x = 1, then u = 0 and y = 1.

e) Let y = v and let the triangle (x∨ y), (u∨ y), (x∨u) be a part of GP ,
not disjoint in GP .
If x = 0, then y = 1 = u. If x = 1, then u = 0 and y = 1.
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f) If P also contains the clause (x∨u), which is obviously not an isolated
edge, then:
If x = 0, then y = 1 = u. If x = 1, then u = 0 and v = 1.

5.) Autarky principle: If F contains no negative 2-clause, we perform just
any branching: Pick a variable x and recurse on F [x = 0] and on F [x = 1].
end

Autarky guarantees that we will have to do the branching from step 5.)
no more than n times, where n is the number of variables of F , in the whole
recursion tree. Thus autarky implies that step 5.) does not significantly in-
fluence the running time. The running time is clearly dominated by step 4.)
and the number of recursive calls is bounded (up to a polynomial factor) by
T (n) ≤ T (n−2)+T (n−3); this term results from the cases b), d) in 4.). So
the running time is O(p(n)an), where a is the biggest root of a3− a− 1 = 0
and this is roughly 1.325.

The next result provides an improvement of the running timeO(poly(n)1.44n)
for the general mixed Horn formula class [43]. We present the algorithm
MH≤3F

+ whose running time is O(poly(n)1.41n) which is obviously better
than the running time O(poly(n)1.44n) of algorithm MHFSAT for unre-
stricted mixed Horn formulas by Porschen and Speckenmeyer in [43].

Theorem 7. Let us consider mixed Horn formulas F = P ∧ H ∈ MHF
for which holds: GP consists of disjoint triangles, edges and isolated vertices
and H consists of Horn clauses which have at most three literals, but are
not necessarily negative monotone. Further we demand that V (P ) = V (H).
Then we can solve SAT in running time O(1.41n) for this formula class.

Proof. The following algorithm has a running time of O(1.41n) for this
formula class.

Algorithm MH≤3F
+

begin
Setting-1-rule: Let y be a variable which we have just set to 1. Then we
have to differentiate the following two cases: If y is contained in a disjoint
edge (y ∨ z) of GP , we recurse on F [z = 0] and on F [z = 1]. If y is
contained in a triangle (y ∨ z)∧ (y ∨w)∧ (z ∨w) of GP , we have to recurse
on F [z = 0, w = 1], F [z = 1, w = 1] and on F [z = 1, w = 0].
As long as possible apply the following steps 1.)-3.)
1.) Apply the unit clause rule and the pure literal rule.
2.) Suppose that GP contains a disjoint triangle of 2-clauses

(x ∨ y) ∧ (y ∨ z) ∧ (x ∨ z)

and H contains the clause (x∨ y). Any satisfying assignment of F must set
z = 1, hence recurse on F [z = 1] by applying the setting-1-rule.
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3.) If F contains a negative 2-clause, pick one, say (x ∨ u).
3.1) If there is only an isolated edge in GP containing the variables x and u
(that is the variables x and u do not occur in any other clauses of P except
in (x ∨ u)), then we do the following recursive calls: If x = 0, we set u = 1.
If x = 1, we set u = 0.
3.2) Since V (P ) = V (H), there are positive 2-clauses (x ∨ y) and (u ∨ v).
Next we do the following recursive calls, each with a number of variables
already assigned.

a) The clauses (x ∨ y) and (u ∨ v) are isolated edges in GP .
If x = 1, then we recurse on F [v = 1, u = 0, y = 1] and on
F [v = 1, u = 0, y = 0]. If x = 0, then y = 1.

b) The clause (x ∨ y) is contained in a disjoint triangle (x ∨ y), (x ∨ z),
(y ∨ z) and the clause (u ∨ v) is an isolated edge in GP .
If x = 1, then we recurse on F [v = 1, u = 0, y = 1, z = 0],
F [v = 1, u = 0, y = 0, z = 1] and on F [v = 1, u = 0, y = 1, z = 1]. If
x = 0, then y = 1 = z.

c) The clause (x∨ y) belongs to a disjoint triangle (x∨ y), (x∨ z), (y∨ z)
and the clause (u∨v) also belongs to a disjoint triangle (u∨v), (v∨w),
(u ∨ w) in GP .
If x = 1, then we recurse on F [v = 1, u = 0, w = 1, y = 1, z = 0],
F [v = 1, u = 0, w = 1, y = 0, z = 1] and on
F [v = 1, u = 0, w = 1, y = 1, z = 1]. If x = 0, then y = 1 = z.

4.) If F contains a mixed 2-clause, pick one, say (x∨u). Since V (P ) = V (H),
there are positive 2-clauses (x∨y) and (u∨v) and we can proceed analogously
to step 3.).
5.) Autarky principle: If F contains no 2-clause, we perform just any branch-
ing: Pick a variable x and recurse on F [x = 0] and on F [x = 1] applying
the setting-1-rule.
end

The running time is clearly dominated by steps 3.1) and 3.2) and the
number of recursive calls is bounded (up to a polynomial factor) by

T (n) ≤ max{T (n−2)+2T (n−4), T (n−3)+3T (n−5), T (n−3)+3T (n−6), 2T (n−2)}

Obviously T (n) ≤ T (n − 2) + 2T (n − 4) = 2T (n − 2) and this term results from
3.1). So the running time is O(poly(n)an), where a is the biggest root of a2−2 = 0
and this is

√
2 = 1.41.

2.3.1 Algorithm MH−F
4

In this part of our thesis we present an algorithm solving SAT for formulas in
MH−F

4. The motivation for looking at this subclass of MHF has its source in the
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analysis of the algorithm MHFSAT in [43]. Solving unrestricted MHF has its worst-
case behaviour just for this class of formulas. The running time is stated below for
k-uniform Horn parts, for k ∈ {3, 4, 5, 6, 7, 8}. By backtracking variables of the
Horn part are set to 0 without violating P . To this end, at least two variables in
each triangle must be set to 1. When setting a variable x to 0 to satisfy a clause in
the Horn part, the other two variables of the triangle 4x must be set to 1. Clauses
of H that are satisfied are put on a stack. Variables set to 0 are stored in the set
V and those set to 1 are stored in the set W .
So the main idea of Algorithm MH−F

4 can be summarised as follows:

• Try to satisfy clauses of H by setting variables to 0.

• When a variable x is set to 0 then the other two variables of the triangle 4x

in P , to which x belongs, must immediately be set to 1.

• Reduce the original formula by removing all clauses from H containing the
variable which is set to 0 and put them on a stack. Further, remove all
variables which are set to 1 from the remaining clauses in H and put them
in the set W , the variables set to 0 put in V . Then, remove all clauses
(triangles) from P which are satisfied.

• If obtaining a contradiction then backtrack, i.e. go a step back (to where
the contradiction has not yet occurred), choose a different variable to set to
0 in H and now assign 1 to the variable which was set to 0 in the step before.

• If H and P are empty, then the formula is satisfiable.

• If one cannot backtrack anymore, meaning all possible combinations of setting
variables in H to 0 have been checked and no satisfying assignment has been
found, then the formula is not satisfiable.

Before presenting the algorithm we want to explain the way it works considering
the following example:
Let M = P ∧H, with P = 4a ∧4b ∧4c, where 4j corresponds to
(j1 ∨ j2) ∧ (j2 ∨ j3) ∧ (j1 ∨ j3), for j ∈ {a, b, c, } and

H =(a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b3 ∨ c2) ∧ (a3 ∨ b3 ∨ c1) ∧ (a2 ∨ b2 ∨ c3)
∧ (a1 ∨ b2 ∨ c1) ∧ (a3 ∨ b1 ∨ c2) ∧ (a3 ∨ c1 ∨ c2)

• Set a1 = 0. This satisfies the clauses (a1∨b1∨c1), (a1∨b2∨c1) of H; remove
them from H. As a1 = 0, then 4a implies: a2 = a3 = 1. The remaining
formula is: P = 4b ∧4c and

H = (b3 ∨ c2) ∧ (b3 ∨ c1) ∧ (b2 ∨ c3) ∧ (b1 ∨ c2) ∧ (c1 ∨ c2)

• Set b3 = 0. This satisfies the clauses (b3∨c2), (b3∨c1), remove them from H.
As b3 = 0, then 4b implies: b1 = b2 = 1. The remaining formula is: P = 4c

and H = (c3) ∧ (c2) ∧ (c1 ∨ c2).

• Unit clause rule: c3 = c2 = 0, but this violates 4c. Hence backtrack:

• Consider P = 4b ∧4c again and

H = (b3 ∨ c2) ∧ (b3 ∨ c1) ∧ (b2 ∨ c3) ∧ (b1 ∨ c2) ∧ (c1 ∨ c2)
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Now set b3 = 1 and c2 = 0 which implies c1 = c3 = 1 yielding: P = 4b,
H = (b3) ∧ (b2). Unit clause rule: b3 = b2 = 0 which is a contradiction to
b3 = 1. Hence backtrack:

• Consider the original formula and now set a1 = 1,
b1 = 0 =⇒ b2 = b3 = 1 obtaining: P = 4a ∧4c and

H = (a2 ∨ c2) ∧ (a3 ∨ c1) ∧ (a2 ∨ c3) ∧ (a1 ∨ c1) ∧ (a3 ∨ c1 ∨ c2)

• Set a2 = 0, which implies a1 = a3 = 1, yielding: P = 4c and

H = (c1) ∧ (c1) ∧ (c1 ∨ c2)

Unit clause rule: c1 = 0. This satisfies all clauses of H and by setting
c2 = c3 = 1, triangle 4c is also satisfied. Hence setting b1 = a2 = c1 = 0 and
the other variables to 1 satisfies M = P ∧H.

ALGORITHM MH−F
4

INPUT: Let a formula M = (P ∧H) ∈ MH−F
4 be given and let k be the number

of triangles in GP .
OUTPUT: M is satisfiable if there is a satisfying truth assignment for M . Else
M is not satisfiable.
begin
1.) Let H = c1 ∧ c2 ∧ ... ∧ ch, where |c1| ≤ . . . ≤ |ch|.
2.) Delete all clauses cj , for which there is a clause ci, (i < j), such that ci ⊂ cj .
3.) Delete all clauses ci of H, where V (4j) ⊂ V (ci), for a 4j ∈ GP .
4.) Set V := ∅, W := ∅, i := 1 and sH ← create.
5.) For all i = 1, . . . , h set a Pointer ∗ in front of the first literal in the clause ci:

(ci, ∗) = (∗xi1 ∨ . . . ∨ xim)

6.) Perform Procedure Backtrack(c1,∗).
end
Procedure Backtrack(ci,∗)
begin
1.) Set all variables of the unit clauses and save all variables to which 0 is assigned
in V and all variables assigned 1 in W . When assigning 0 to a variable x, search
for the triangle 4x ∈ GP also containing x and set the two other variables of 4x

to 1. If there are complementary unit clauses or another contradiction, then the
procedure stops and returns M is not satisfiable.
2.) If (ci, ∗) = (xi1 ∨ . . .∨ xil ∨ . . .∨ xim∗) and i = 1, then the procedure stops end
returns M is unsatisfiable.
3.) If (ci, ∗) = (xi1 ∨ . . . ∨ xil ∨ . . . ∨ xim∗) and i 6= 1, then perform the following
steps:

(a) Perform the operation popsH : Delete all the clauses from the stack, which
have been put there in the last procedure call, and insert them in the original
order into H.

(b) Delete all variables xi saved in V in the last procedure call from V and save
them in W after deleting the two other variables from 4xi from W .

(c) Verify, whether there are two variables of the same triangle saved in W . If

yes, then set the third variable of this triangle to 0 and save it in Ṽ .
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(d) Set the Pointer at the beginning of the clause ci:

ci := (∗xi1 ∨ . . . ∨ xil ∨ . . . ∨ xim)

(e) Call the Procedure Backtrack(ci−1,∗) .

4.) If (ci, ∗) = (xi1 ∨ . . . ∨ ∗xil ∨ . . . ∨ xim), then set j := il.
5.) As long as xj ∈W and j ≤ im, augment j: j = j + 1.
6.) If j = im + 1, then perform the same steps as in 3. a)-e).
7.) If xj /∈W and j ≤ im, then perform the following steps:

a) Set xj := 0;V := V ∪ {xj};W :=W ∪4xj ;

b) Set the Pointer in front of xj+1:

(ci, ∗) := (xi1 ∨ . . . ∨ xj ∨ ∗xj+1 ∨ . . . ∨ xim)

c) Delete all clauses from H, which contain xj and put them on stack sH :
sH := pushsH (Cxj ), where Cxj is the set of all remaining Horn clauses con-
taining the variable xj .

d) If H is empty, then the procedure stops and returns M is satisfiable.

e) If H is not empty, then call the Procedure Backtrack(ci+1,∗).

end

Note that the algorithm works for arbitrary negative Horn parts. Specifically for
l-uniform Horn parts, l ∈ N, l ≥ 2, a careful analysis of the running time of the
algorithm yields the following results:

Theorem 8. Algorithm MH−F
4 decides satisfiability of l-uniform formulas

M ∈ MH−F
4 over n variables in time

• O(1.336n), for l = 3.

• O(1.384n), for l = 4.

• O(1.397n), for l = 5.

• O(1.408n), for l = 6.

• O(1.433n), for l = 7.

• O(1.436n), for l = 8.

For l = 3 the running time is better than the so far best running time of
O(1.427n) [29], for mixed Horn formulas with an arbitrary 3-uniform Horn part.

Remark 1. For l = 3 a better running time of O(1.273n) can be achieved using a
clever branching strategy. However, it is not trivial how to extend this branching
algorithm to the cases l ≥ 4.

Proof. Correctness of Algorithm MH−F
4:

Let M = P ∧H be an arbitrary formula in MH−F
4 with V (P ) = V (H). As soon

as a variable xj ∈ V (M) is set to 0, the two other variables of 4xj (the triangle
to which xj belongs) are immediately set to 1. This way we do not violate the
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satisfiability of the P part because it is sufficient to set two variables of a triangle
to 1 to satisfy the triangle. The Horn part is satisfied if all its clauses are on the
stack sH and thus the Horn part is empty. We put a clause ci ∈ H on a stack if it
is satisfied by a variable which is set to 0. This is due to the fact that H is negative
monotone. For each clause ci we use a pointer · marking the one literal in ci for
which we have to check next whether assigning 0 (supposed it is not assigned to 1
yet) to its variable yields a model for F . As soon as a variable occurring in clause
ci ∈ H is set to 0, the pointer moves over to its next literal and ci itself is put on the
stack sH . If there is a clause cj ∈ H for which holds that the pointer is behind the
last literal in cj , then all variables of cj have already been saved in W and thus set
to 1. If j = 1, M is not satisfiable because in that case we have tested all possible
assignments with one variable of cj to 0 and none of them could yield a model for
M . If j 6= 1, then we have to change the current partial assignment, therefore we
backtrack: We take all the clauses already placed on stack sH in the last pushsH ()-
step, from the stack and include them in H again. From V we remove the variable
xp, belonging to the clause cj−1 ∈ H, which was saved in V in the last step and
save xp inW after having removed the two other variables fromW which belong to
the same triangle as xp. Now the pointer is behind the literal xp in front of xp+1, in
the clause cj−1 = (. . .∨xp∨·xp+1∨ . . .). In the next step the algorithm accordingly
checks whether xp+1 = 0 yields a model for M : We set the two other variables of
the triangle containing xp+1 to 1 and save them in W . Then we put all clauses of
H containing xp+1 on the stack sH in a fixed order by the command pushsH (cxp+1)
and remove them from H. Via this procedure we test all possible assignments
to 0 of variables to satisfy clauses in H without violating the satisfiability of P .
All in all Algorithm MH−F

4 works by using depth-first search: As soon as we
note a contradiction implying that the current partial assignment does not yield
a model for M , we backtrack, i.e. we undo the assignment of the last step and
check whether another assignment can satisfy the formula. Therefore Algorithm
MH−F

4 tests for all possible assignments whether they satisfy M and it outputs
M is not satisfiable, if none of them can satisfy M . If Algorithm MH−F

4 has
found a model for M then it outputs M is satisfiable.
Analysis of the running time:
In the following let l denote the length of clauses in H and k the number of triangles
in P , hence k = n/3, where n is the number of variables of a formula M = P ∧H ∈
MH−F

4. For this running time analysis we assume that the clauses of H and the
literals in each clause in H have a fixed order, for each formula M = P ∧ H ∈
MH−F

4.
Further, we denote with WHN l

k ⊂ MH−F
4 a class of worst-case formulas for

Algorithm MH−F
4 which are defined as follows.

The P part of the formulas M = P ∧H in WHNk
l consists of k triangles which are

designated with a, b, c, ..., where k ≥ d l2e. The Horn part H is negative monotone,
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l-uniform, for l ≥ 2, and has the following form:

(a1 ∨ a2 ∨ b1 ∨ b2 ∨ c1 ∨ c2 ∨ d1 ∨ d2 ∨ . . .)
(b1 ∨ b2 ∨ c1 ∨ c2 ∨ d1 ∨ d2 ∨ e1 ∨ e2 ∨ . . .)
(c1 ∨ c2 ∨ d1 ∨ d2 ∨ e1 ∨ e2 ∨ f1 ∨ f2 ∨ . . .)
(d1 ∨ d2 ∨ e1 ∨ e2 ∨ f1 ∨ f2 ∨ g1 ∨ g2 ∨ . . .)
(e1 ∨ e2 ∨ f1 ∨ f2 ∨ g1 ∨ g2 ∨ h1 ∨ h2 ∨ . . .)
...

We denote with a1, a2, a3 the variables of triangle a; by b1, b2, b3 the variables of
triangle b; by c1, c2, c3 the variables of triangle c and so forth. We assume that
there are altogether k triangles in P . If l is even, each clause of H has exactly
two variables from each of the l/2 many triangles. If l is odd, then each clause
of H contains exactly two variables from each of the (l − 1)/2 many triangles and
one variable from another triangle which we have not considered yet. Apart from
the first two all variables of clause ci ∈ H are also contained in clause ci+1. But
clause ci+1 additionally contains two other variables, either (in case l is even) from
a further triangle which we have not considered so far, or (in case l is odd) ci+1

contains one variable from the triangle of the last literal of clause ci and a further
variable from another triangle which we have not considered yet. We build the
first k many clauses according to this scheme. Note that to make the last clauses
l-uniform, for which there are no triangles left which were not already considered,
we have to ”fill up ” these with arbitrary variables that have not been used so far.
After building the first k many clauses of H this way further clauses are allowed
to be of arbitrary feature as long as they are negative monotone and l-uniform.
That means each formula belongs to the class WHNk

l for which holds that by
permutation of its Horn clauses we can achieve that its first k Horn clauses have
the feature described above.

We show that among all input formulas with a 3-uniform Horn part formulas of
the class WHNk

3 belong to the worst-case input formulas for Algorithm MH−F
4.

Inductively we prove for each l > 3, that formulas of WHNk
l belong to the worst-

case input formulas for Algorithm MH−F
4 concerning the running time.

As already described above the Horn part of formulas in WHNk
3 ⊂ MH−F

4 has
the following feature:

(a1 ∨ a2 ∨ b1)
(b1 ∨ b2 ∨ c1)
(c1 ∨ c2 ∨ d1)
(d1 ∨ d2 ∨ e1)
(e1 ∨ e2 ∨ x3)
...

Each clause ci ∈ H contains two variables of the same triangle and the third variable
belongs to another triangle not considered yet, so that the next clause ci+1 ∈ H also
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contains this third variable and additionally another variable of the same triangle.
This way we can construct the first k − 1 clauses. For constructing the kth clause
ck of H we choose the third variable in ck from the set of all variables which do not
appear in H yet and do not belong to the same triangle as the first two variables
of ck. The remaining clauses of the Horn part of a formula in class WHNk

3 may
have arbitrary features as long as they are negative monotone and 3-uniform.
In the following we assume for each formula in MH−F

4 that all its Horn clauses
and the literals in a Horn clause are enumerated and thus have a fixed order:
H = c1 ∧ c2 ∧ . . . ∧ c|H|.

According to the function of Algorithm MH−F
4 a search tree t belonging to a

formula M = P ∧ H ∈ MH−F
4 is constructed as follows: In the beginning we

introduce a dummy vertex w, which is the root of the search tree and whose sons
are the variables a1, a2, b1, b2,. . . of the first clause c1 = (a1∨a2∨b1∨b2∨ . . .) in H.
All vertices of t, apart from the root, are the variables which we set to 0, according
Algorithm MH−F

4, and we check whether this assignment yields a model for M .
As soon as a variable x is set to 0, the two other variable of the triangle to which
x belongs are set to 1 and saved in the set W . Clauses in H which contain a
variable that is already set to 0 have to be removed from H and put on the stack
sH . Afterwards, we consider the current first clause of H. Variables which are
already fixed to 1 are not allowed to appear as sons of a vertex in t. If the P part
of M contains k many triangles, then the depth of the search tree t is at most k.
We enumerate the sons of a vertex in t from left to right by 1, 2, 3. Regarding the
subtree whose root vertex is the second son, the variable which corresponds to the
first son vertex is set to 1 because searching for a model with its assignment to
0 is unsuccessful. As soon as two variables of the same triangle are set to 1, we
immediately assign 0 to the third variable. So, if the first two sons of a vertex x
belong to the same triangle, then we set the third variable of this triangle to 0 as
soon as we consider the subtree whose root vertex is the third son of x.

Definition 2. We call two formulas F1 and F2 isomorphic, if F1 and F2 have the
same clauses but in possibly different orders.

Definition 3. Let t be a search tree for Algorithm MH−F
4 and let F in MH−F

4

be a formula with a fixed order of its Horn clauses. We say F results from t, if
the following holds: Let all sons of a vertex in t establish a clause. Writing the
clauses occurring in t consecutively in a level from left to right and from upstairs
to downstairs we obtain F .

If there was a vertex with only two sons, then the corresponding clause would
consist of two literals only, but as we have 3-uniform Horn formulas, we can fill up
such clauses with an arbitrary literal. The only thing we have to take note of here is
that the third literal does not appear in the tree above as a vertex. Put differently
the tree structure should not be destroyed by the choice of the third literal.

Let k triangles be given. A maximal search tree for k triangles for Algorithm
MH−F

4 is a tree with the maximal number of leaves among all trees which we
obtain by setting exactly one variable to 0 in each triangle. The vertices of such a
tree symbolise the variables we set to 0 in the Algorithm MH−F

4.
Here we also have to take into account that as soon as a variable is set to 0

the two other variables of the same triangle must be set to 1. If the search from
a vertex in t was unsuccessful, we assign 1 to this vertex before considering the
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subtree whose root vertex is its brother vertex. If the first two sons of a vertex
in t correspond to variables of the same triangle, we set the third variable of this
triangle to 0 when treating the subtree whose root is the third son.

Example:

Consider the 4 triangles a, b, c, d and let M be a formula in WHN4
3 . We obtain

the following maximal search tree for Algorithm MH−F
4:

d1 d2

c1

d1 d2

c2 d1

b1

d1 d2

c1

d1 d2

c2 d1

b2

d1 d2

c1

a1

d1 d2

c1

d1 d2

c2 d1

b1

d1 d2

c1

d1 d2

c2 d1

b2

d1 d2

c1

a2

d1 d2

c1

d1 d2

c2 d1

b1

w

As soon as Algorithm MH−F
4 concluded that a model for M with the partial

assignment a1 = 0, a2 = 0 does not exist, it assigns a1 = a2 = 1, b1 = 0 and
considers the subtree with root vertex b1. We get a1 = a2 = 1 and thus we assign
a3 = 0. As b1 = a3 = 0 we only have k − 2 triangles left.

The following Theorem states that concerning the running time formulas in
WHNk

3 establish the worst-case formulas for Algorithm MH−F
4.

Theorem 9. The Horn part of a formula F which results from a maximal search
tree t for k triangles for Algorithm MH−F

4 is isomorph to the Horn part of a
formula in WHNk

3 .

We show the assertion of Theorem 9 by complete induction.
Proof. First we assume that in each clause the literals of the same triangle

are written side by side.
Beginning of the induction: k = 2. Consider the two triangles 4a and 4b. We
denote by a1, a2, a3 the variables of triangle a. The same also holds for triangle b.

In this case there are only two different (concerning their structure) maximal
search trees for Algorithm MH−F

4, namely:
1.)

b1 b2

a1

b1 b2

a2 b1

w

2.)
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b2 b3

a1

b2 b3

a2 b1

w

We obtain all other search trees for Algorithm MH−F
4 with five leaves by

either exchanging ai for bi or permutating the indices of the variables in a triangle.

The formula resulting from the first search tree has the following form:

(a1 ∨ a2 ∨ b1)
(b1 ∨ b2 ∨ a3)
...

Evidently this formula belongs to the class WHN2
3 .

The formula resulting from the second search tree has the following form:

(a1 ∨ a2 ∨ b1)
(b2 ∨ b3 ∨ a1)
(b2 ∨ b3 ∨ a2)
...

Obviously this formula is isomorphic to:

(b2 ∨ b3 ∨ a1)
(a1 ∨ a2 ∨ b1)
(b2 ∨ b3 ∨ a2)
...

Because of its structure this formula also belongs to WHN2
3 .

To clarify the idea of the induction step, we additionally consider the case k = 3.
Let the triangles 4a, 4b and 4c be given. We denote the variables of triangle a
with a1, a2, a3. The same also holds for triangles b and c. In this case we obtain two
(concerning their structure) different maximal search trees for AlgorithmMH−F

4:
3.)



2.3. Algorithms for SAT of Further Mixed Horn Classes 37

c1 c2

b1

c1 c2

b2 c1

a1

a2 a3

c1

a2 a3

c2 a2

b1

b2 b3

a2

b2 b3

a3

c1

w

4.)

c2 c3

b1

c2 c3

b2 c1

a1

a2 a3

c1

a2 a3

c2 a2

b1

b2 b3

a2

b2 b3

a3

c1

w

Note that we obtain all other maximal search trees for AlgorithmMH−F
4 with 14

leaves by permutation of the indices of the variables in a triangle or by exchanging
the variables a, b and c. The formula resulting from the third search tree is:

(a1 ∨ b1 ∨ c1)
(b1 ∨ b2 ∨ c1)
(c1 ∨ c2 ∨ a2)
(a2 ∨ a3 ∨ c2)
(c1 ∨ c2 ∨ a3)
(a2 ∨ a3 ∨ c3)
(b2 ∨ b3 ∨ a1)
...

By permutation of its clauses we obtain:

(b1 ∨ b2 ∨ c1)
(c1 ∨ c2 ∨ a2)
(a2 ∨ a3 ∨ c3)
...
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Because of its structure this formula belongs to the class WHN3
3 . The following

formula results from the fourth search tree:

(a1 ∨ b1 ∨ c1)
(b1 ∨ b2 ∨ c1)
(c1 ∨ c2 ∨ a2)
(a2 ∨ a3 ∨ c2)
(c2 ∨ c3 ∨ a3)
(a2 ∨ a3 ∨ b3)
(b2 ∨ b3 ∨ a1)
...

By permutation of its clauses we obtain:

(c2 ∨ c3 ∨ a3)
(a3 ∨ a2 ∨ b3)
(b3 ∨ b2 ∨ a1)
...

Obviously this formula belongs to the class WHN3
3 .

Induction step: k → k + 1.
The induction hypothesis is: For each maximal search tree for AlgorithmMH−F

4

for k triangles the resulting formula F is isomorphic to a formula in WHNk
3 . We

show that this also holds for k+1: Let 41,42, . . . ,4k+1 be k+1 many triangles.
We now construct a maximal search tree for k + 1 many triangles. We choose an
arbitrary i ∈ {1, . . . , k + 1} and assign 0 to one variable of 4i. Let us w.l.o.g.
assign 0 to i1 (and 1 to the two other variables of 4i). So the variables of triangle
i are fixed and we only have k triangles 41,42, . . . ,4i−1,4i+1, . . . ,4k+1 left for
the subtree whose root vertex is i1. Hence we can apply the induction hypothesis
on the k remaining triangles obtaining: For each maximal search tree for the k
triangles 41,42, . . . ,4i−1,4i+1, . . . ,4k+1 for Algorithm MH−F

4, the resulting

formula F̃ is isomorphic to a formula in WHNk
3 . W.l.o.g. let F̃ be isomorphic to



2.3. Algorithms for SAT of Further Mixed Horn Classes 39

the following formula in WHNk
3 :

((i+ 1)1 ∨ (i+ 1)2 ∨ (i+ 2)1)

. . .

(j1 ∨ j2 ∨ (j + 1)1)

((j + 1)1 ∨ (j + 1)2 ∨ (j + 2)1)

. . .

((k + 1)1 ∨ (k + 1)2 ∨ 11)

(11 ∨ 12 ∨ 21)

. . .

((i− 1)1 ∨ (i− 1)2 ∨ i3)

We choose a j ∈ {1, . . . , k+1} and set one of the three variables of4j to 0. W.l.o.g.
we assign j1 = 0 (and 1 to the two other variables of 4j), so that all variables of
4j are fixed and we have k many triangles 41,42, . . . ,4j−1,4j+1, . . . ,4k+1 left
for the subtree with root vertex j1. Note that now for triangle i holds: i1 = 1. We
assume that j 6= i. Now we can apply the induction hypothesis to the k remaining
triangles obtaining the following: The resulting formula F̂ , for each maximal search
tree for the triangles 41,42, . . . ,4j−1,4j+1, . . . ,4k+1, is isomorphic to a formula

in WHNk
3 . W.l.o.g. let F̂ be isomorphic to the following formula in WHNk

3 :

((j + 1)1 ∨ (j + 1)2 ∨ (j + 2)1)

. . .

((k + 1)1 ∨ (k + 1)2 ∨ 11)

(11 ∨ 12 ∨ 21)

. . .

((i− 2)1 ∨ (i− 2)2 ∨ (i− 1)1)

((i− 1)1 ∨ (i− 1)2 ∨ (i+ 1)2)

. . .

((j − 1)1 ∨ (j − 1)2 ∨ i2)
(i2 ∨ i3 ∨ j3)
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Composing the clauses of F̃ , F̂ we obtain:

(j1 ∨ j2 ∨ (j + 1)1)

((j + 1)1 ∨ (j + 1)2 ∨ (j + 2)1)

. . .

((k + 1)1 ∨ (k + 1)2 ∨ 11)

(11 ∨ 12 ∨ 21)

. . .

((i− 2)1 ∨ (i− 2)2 ∨ (i− 1)1)

((i− 1)1 ∨ (i− 1)2 ∨ (i+ 1)2)

. . .

((j − 1)1 ∨ (j − 1)2 ∨ i2)
(i2 ∨ i3 ∨ j3)

This is obviously a formula of WHNk+1
3 .

In case j = i we obtain a formula of class WHNk+1
3 by adding the clause

(i1 ∨ i2 ∨ (i+ 1)1)

to F̃ in front of its first clause:

(i1 ∨ i2 ∨ (i+ 1)1)

((i+ 1)1 ∨ (i+ 1)2 ∨ (i+ 2)1)

. . .

((k + 1)1 ∨ (k + 1)2 ∨ 11)

(11 ∨ 12 ∨ 21)

. . .

((i− 1)1 ∨ (i− 1)2 ∨ i3)

So the search tree for Algorithm MH−F
4 belonging to formulas in WHNk

3

is maximal and hence formulas of class WHNk
3 are the worst-case formulas for

Algorithm MH−F
4 concerning the running time. This results from the fact that

as soon as we have found a maximal search tree (concerning the number of its
leaves), the resulting formula F is isomorphic to a formula in WHNk

3 . Thus by a
permutation of its clauses we can transfer F to a formula in WHNk

3 . To calculate
the running time of Algorithm MH−F

4 for fomulas in MH−F
4 with l-uniform

Horn parts and k many triangles in P it therefore suffices to consider the class
WHNk

l because its formulas are the most difficult formulas for AlgorithmMH−F
4

concerning the running time.
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Calculating the number of leaves in the search tree for Algorithm MH−F
4 which

belongs to a formula in WHNk
3 yields the following results:

k = 2: 2k + 2k−2

k = 3: (2k + 2k−2) + 2k−2 = 2k + 2· 2k−2

k = 4: (2k + 2· 2k−2) + (2k−2 + 2k−4) = 2k + 3· 2k−2 + 2k−4

k = 5: (2k + 3· 2k−2 + 2k−4) + (2k−2 + 2· 2k−4 + 2k−4) = 2k + 4· 2k−2 + 3· 2k−4

k = 6: (2k + 4· 2k−2 + 3· 2k−4) + (2k−2 + 3· 2k−4 + 2k−6)

= (2k + 5· 2k−2 + 6· 2k−4 + 2k−6)

k = 7: (2k + 5· 2k−2 + 6· 2k−4 + 2k−6)︸ ︷︷ ︸
S1

+(2k−2 + 4· 2k−4 + 3· 2k−6)︸ ︷︷ ︸
S2

= 2k + 6· 2k−2 + 10· 2k−4 + 4· 2k−6

The number of leaves in the search tree for a formula of the class WHNk
3 corre-

sponds to the following polynomial:

pk(k) = 2k + (k − 1)2k−2 + 2k−2 + . . .+ cx· 2k−x + . . .+ .

For an arbitrary k we obtain pk(k) as follows: We consider pk−1(k−1), the polyno-
mial for k− 1 many triangles: Let pk−1(k− 1) = S1 +S2, where S1, S2 are the two
summands consisting of 2-powers each. Then pk−1(k) is the 2-polynomial, for k−1
triangles where the exponent of each 2-power is increased at 1. Then we obtain:
pk(k) = pk−1(k) + S−1

1 with S−1
1 meaning that the exponents of each 2-powers

occurring in S1 are reduced at 1.
Altogether we obtain the following for the coefficients of the 2-powers:

• 2k

• (k − 1)2k−2

• (
∑k−3

j1=1 j)2
k−4 = (k−3)(k−2)

2 2k−4 = O(k2· 2k)

•

(

k−5∑
j1=1

j1∑
j2=1

j2)2
k−6 =

1

2

k−5∑
j1=1

(j21 + j1)2
k−6

= (
(k − 5)(k − 4)

4
+

(k − 5)(k − 4)(2(k − 5) + 1)

12
)2k−6

= O(k3· 2k−6)

• ...

• (
∑k−(x−1)

j1=1

∑j1
j2=1 . . .

∑jx/2−2

jx/2−1=1m)2k−x, where x = 2, 4, 6 . . . ,

{
k, k even

k − 1, k odd

• ...

•

{
(k

2

8 + k
4 )2

2, if k is even

O(k3)23, if k is odd
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•

{
20, if k is even

(k+1
2 )21, if k is odd

Consequently we get:

2k + (k − 1)2k−2 + (
k−3∑
j1=1

j1)2
k−4 + (

k−5∑
j1=1

j1∑
j2=1

j2)2
k−6 + (

k−7∑
j1=1

j1∑
j2=1

j2∑
j3=1

j3)2
k−8

+ ...+ (

k−(x−1)∑
j1=1

j1∑
j2=1

. . .

jx/2−2∑
jx/2−1=1

jx/2−1)2
k−x + . . .

+

{
20, if k is even∑2

j1=1

∑j1
j2=1 . . .

∑j(k−5)/2

j(k−3)/2=1 j(k−3)/2)2
1, if k is odd

=2k + (k − 1)2k−2 + (
(k − 3)(k − 2)

2
)2k−4 + (

k−5∑
j1=1

(j1 + 1)j1
2

)2k−6

+ (

k−7∑
j1=1

j1∑
j2=1

j2∑
j3=1

j3)2
k−8 + . . .+ (

k−(x−1)∑
j1=1

j1∑
j2=1

. . .

jx/2−2∑
jx/2−1=1

jx/2−1)2
k−x

+ . . .+

{
20, if k is even

(k+1
2 )21, if k is odd

Proceeding we calculate the coefficient of 2k−x of the 2-polynomial:

(

k−(x−1)∑
j1=1

j1∑
j2=1

. . .

jx/2−3∑
jx/2−2=1

jx/2−2∑
jx/2−1=1

jx/2−1)2
k−x

≈ (

∫ k−(x−1)

j1=1

∫ j1

j2=1

. . .

∫ jx/2−3

jx/2−2=1

∫ jx/2−2

jx/2−1=1

jx/2−1 djx/2−1 . . . dj1)2
k−x

≈ (

∫ k−(x−1)

j1=0

∫ j1

j2=0

. . .

∫ jx/2−3

jx/2−2=0

∫ jx/2−2

jx/2−1=0

jx/2−1 djx/2−1 . . . dj1)2
k−x

= (

∫ k−(x−1)

j1=0

∫ j1

j2=0

. . .

∫ jx/2−3

jx/2−2=0

j2x/2−2

2
djx/2−2 . . . dj1)2

k−x

= (
1

2

1

3
. . .

1

x/2− 1

∫ k−(x−1)

j1=0

j
x/2−1
1 dj1)2

k−x

= (
1

2

1

3
. . .

1

x/2− 1

1

x/2
(k − x+ 1)x/2)2k−x

=
(k − x+ 1)x/2

(x/2)!
2k−x

To calculate the faculty we use Stirling’s formula:

(x/2)! ≈
√
2π
x

2
(
x/2

e
)

x
2 ≥ (

x/2

e
)

x
2
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Hence:

(k − x+ 1)x/2

(x/2)!
2k−x ≤ 2k−x((k − x+ 1)2e)x/2

x
x
2

= O

(
2k−x

(
(k − x)2e

x

) x
2

)
As x depends on k we set x = yk where 0 < y ≤ 1 resulting in:

O

(
2k−x

(
(k − x)2e

x

) x
2

)
= O

(2(1−y)

(
(1− y)2e

y

) y
2

)k


Further we calculate the maximum of the function

f(y) =

(
2(1−y)

(
(1− y)2e

y

) y
2

)k

for 0 < y ≤ 1. Obviously the maximum of f is at y = 0, 260209k so that
f(y) = 2, 3845586k. As a result the Algorithm MH−F

4 has a running time of
O(2, 3845586k) = O(1.336n), for a 3-uniform Horn part with n variables.

We now investigate the running time of Algorithm MH−F
4 for l = 4, 5, 6, 7, 8

and show that it has a better running time than O(3k) for k ≤ 4000. We again ex-
ploit the fact that Algorithm MH−F

4 has a worst-case running time for formulas
of class WHNk

l .

l = 4: Calculating the number of leaves in the search tree for Algorithm MH−F
4

belonging to a formula in WHNk
4 we get the following:

k = 2: 2k + 2k−1

k = 3: (2k + 2k−1) + 2k−1 = 2k + 2· 2k−1

k = 4: (2k + 2· 2k−1) + (2k−1 + 2k−2) = 2k + 3· 2k−1 + 2k−2

k = 5: (2k + 3· 2k−1 + 2k−2) + (2k−1 + 2· 2k−2) = 2k + 4· 2k−1 + 3· 2k−2

k = 6: (2k + 4· 2k−1 + 3· 2k−2) + (2k−1 + 3· 2k−2 + 2k−3)

= (2k + 5· 2k−1 + 6· 2k−2 + 2k−3)

k = 7: (2k + 5· 2k−1 + 6· 2k−2 + 2k−3)︸ ︷︷ ︸
S1

+(2k−1 + 4· 2k−2 + 3· 2k−3)︸ ︷︷ ︸
S2

= 2k + 6· 2k−1 + 10· 2k−2 + 4· 2k−3

k = 8: . . .

For an arbitrary k we obtain pk(k) as follows: We consider pk−1(k − 1), the 2-
polynomial for k − 1 many triangles: Let pk−1(k − 1) = S1 + S2, where S1, S2

are two summands whith each one consisting of 2-powers. Then pk−1(k) is the
2-polynomial, for k − 1 triangles, where the exponent of each 2-power is increased
at 1 and we obtain: pk(k) = pk−1(k) + S1. So for the coefficients of the 2-powers
we get the follwing:

• 2k

• (k − 1)2k−1



44 Chapter 2. Mixed Horn Formulas

• (
∑k−3

j1=1 j)2
k−2

• (
∑k−5

j1=1

∑j1
j2=1 j2)2

k−3

• ...

• (
∑k−(2x−1)

j1=1

∑j1
j2=1 . . .

∑jx−2

jx−1=1 jx−1)2
k−x, x = 1, 2, . . . ,

{
k/2, k even

(k + 1)/2, k odd

As already shown above we obtain:

(

k−(2x−1)∑
j1=1

j1∑
j2=1

. . .

jx−2∑
jx−1=1

jx−1)2
k−x ≈ (k − 2x+ 1)x

x!
2k−x

Subsequently we calculate the maximum of the function

fk(x) =
(k − 2x+ 1)x

x!
2k−x

where

x = 1, 2, 3, . . . ,

{
k/2, if k is even

(k + 1)/2, if k is odd

By using a computer program we determine the maximal summand cx· 2k−x of
pk(k) for k = 1, . . . , 4000 and obtain: cx· 2k−x ≤ 2.65k for k = 1, . . . , 4000. Thus
Algorithm MH−F

4 has a running time of O(2.65k) = O(1.384n) for formulas in
MH−F

4 with n variables and whose Horn clauses are 4-uniform.
l = 5:
Let p(k) be the 2-polynomial, which corresponds to the number of leaves in the
search tree for Algorithm MH−F

4 for formulas in WHNk
5 . Then we obtain:

k = 2: 2k + 2k−1

k = 3: (2k + 2k−1) + 2k−1 + 2k−3 = 2k + 2· 2k−1 + 2k−3

k = 4: (2k + 2· 2k−1 + 2k−3) + (2k−1 + 2k−2) + 2k−3

= 2k + 3· 2k−1 + 2k−2 + 2· 2k−3

k = 5: (2k + 3· 2k−1 + 2k−2 + 2· 2k−3)︸ ︷︷ ︸
S1

+(2k−1 + 2· 2k−2 + 2k−4)︸ ︷︷ ︸
S2

+(2k−3 + 2k−4)︸ ︷︷ ︸
S3

= 2k + 4· 2k−1 + 3· 2k−2 + 3· 2k−3+2· 2k−4

k = 6: . . .

For an arbitrary k we get pk(k) as follows: We consider pk−1(k−1), the 2-polynomial
for k − 1 many triangles: Let pk−1(k − 1) = S1 + S2 + S3, where S1, S2, S3 are
three summands, each of them also consisting of 2-powers. Then pk−1(k) is the
2-polynomial, for k − 1 many triangles, where we increase the exponent of each
2-power at 1. Then we obtain: pk(k) = pk−1(k) + S1 + S−1

2 , where S−1
2 means

that the exponents of all 2-powers occurring in S2 are reduced at 1. We get the
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following for the coefficients of the 2-powers:

→ 2k: 1

→ 2k: (k − 1)

→ 2k−2:
k−3∑
j=1

j

→ 2k−3:

k−5∑
j1=1

j1∑
j2=1

j2 +

k−2∑
j1=1

1

→ 2k−4:
k−7∑
j1=1

j1∑
j2=1

j2∑
j3

j3 + 2
k−4∑
j1=1

j1

→ 2k−5:
k−9∑
j1=1

j1∑
j2=1

j2∑
j3=1

j3∑
j4=1

j4 + 3
k−6∑
j1=1

j1∑
j2=1

j2

→ 2k−6:

k−11∑
j1=1

j1∑
j2=1

j2∑
j3=1

j3∑
j4=1

j4∑
j5=1

j5 + 4

k−8∑
j1=1

j1∑
j2=1

j2∑
j3=1

j3 +

k−5∑
j1=1

j1

→ 2k−7:
k−13∑
j1=1

j1∑
j2=1

j2∑
j3=1

j3∑
j4=1

j4∑
j5=1

j5∑
j6=1

j6 + 5
k−8∑
j1=1

j1∑
j2=1

j2∑
j3=1

j3∑
j4=1

j4 + 3
k−7∑
j1=1

j1∑
j2=1

j2

→ . . .

Generally we obtain:

• 2k

• (k − 1)2k−1

• (
∑k−3

j1=1 j)2
k−2

• (
∑k−5

j1=1

∑j1
j2=1 j2 + (k − 2))2k−3

• . . .

• (
∑k−(2x−1)

j1=1 . . .
∑jx−2

jx−1=1 jx−1+(x−2)(
∑k−(2x−4)

j1=1 . . .
∑jx−4

jx−3=1 jx−3)+
∑b(x+3)/3c

m=3[
(
∑x+4−3m

j1=1 . . .
∑

jm−2=1 jm−2)· (
∑k−2x+3m−2

j1=1 . . .
∑

jx+1−2m=1 jx+1−2m)
]
)2k−x,

where x = 1, 2, 3, . . . ,

{
k/2, if k is even

(k + 1)/2, if k is odd.
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We have:

(

k−(2x−1)∑
j1=1

. . .

jx−2∑
jx−1=1

jx−1 + (x− 2)

k−(2x−4)∑
j1=1

. . .

jx−4∑
jx−3=1

jx−3+

b(x+3)/3c∑
m=3

x+4−3m∑
j1=1

. . .
∑

jm−2=1

jm−2·
k−2x+3m−2∑

j1=1

. . .
∑

jx+1−2m=1

jx+1−2m

)2k−x

≈ (
(k − 2x+ 1)x

x!
+

(k − 2x+ 4)x−2

(x− 3)!
+

b(x+/3)c∑
m=3

[
(x+ 4− 3m)m−1

(m− 1)!
· (k − 2x+ 3m− 2)x+2−2m

(x+ 2− 2m)!

]
)2k−x

Hence we obtain the following for the running time of Algorithm MH−F
4:

O((
(k − 2x+ 1)x

x!
+

(k − 2x+ 4)x−2

(x− 3)!

+

b(x+/3)c∑
m=3

[
(x+ 4− 3m)m−1

(m− 1)!
· (k − 2x+ 3m− 2)x+2−2m

(x+ 2− 2m)!

]
)2k−x)

Let us consider the following function:

fk(x) : = (
(k − 2x+ 1)x

x!
+

(k − 2x+ 4)x−2

(x− 3)!

+

bx/2c−1∑
m=3

[
(x+ 4− 3m)m−1

(m− 1)!
· (k − 2x+ 3m− 2)x+2−2m

(x+ 2− 2m)!

]
)2k−x

For k = 1, . . . , 4000 we have calculated the maximum of fk(x),

for x = 1, 2, 3, . . . ,

{
k/2, if k is even

(k + 1)/2, if k is odd
by using a computer program with an

accuracy of 150 positions after decimal point. The result is that for a fixed k, the
maximum of fk is at x = b5k/21c. So for k = 1, . . . , 4000 we get: fk(x) ≤ 2.728k.
Thus O(2.728k) = O(1.397n) is the running time of Algorithm MH−F

4 for for-
mulas in MH−F

4 with n variables whose clauses in the Horn part are 5-uniform
and k ≤ 4000.

l = 6:
For an arbitrary k we obtain pk(k) as follows: We consider pk−1(k − 1), the 2-
polynomial for k−1 many triangles: Let pk−1(k−1) = S1+S2+S3, where S1, S2, S3

are the three summands, each one also consisting of 2-powers. Then pk−1(k) is the
2-polynomial for k − 1 many triangles, where we increase the exponent of each 2-
power at 1. Then we get pk(k) = pk−1(k)+S1+S2. Hence we obtain the following
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for the coefficients of the 2-powers:

→ 2k: 1

→ 2k: (k − 1)

→ 2k−2:
k−2∑
j=1

j

→ 2k−3:

k−4∑
j1=1

j1∑
j2=1

j2 +

k−4∑
j1=1

j1

→ 2k−4:
k−6∑
j1=1

j1∑
j2=1

j2∑
j3=1

j3 +
k−6∑
j1=1

j1∑
j2=1

j2 +
k−5∑
j1=1

j1

→ 2k−5:
k−8∑
j1=1

j1∑
j2=1

j2∑
j3=1

j3∑
j4=1

j4 ++
k−8∑
j1=1

j1∑
j2=1

j2∑
j3=1

j3 + 2
k−7∑
j1=1

j1∑
j2=1

j2∑
j3=1

j3

+

k−7∑
j1=1

j1∑
j2=1

j2

→ 2k−6:
k−10∑
j1=1

j1∑
j2=1

j2∑
j3=1

j3∑
j4=1

j4∑
j5=1

j5 +
k−10∑
j1=1

j1∑
j2=1

j2∑
j3=1

j3∑
j4=1

j4 + 3
k−9∑
j1=1

j1∑
j2=1

j2∑
j3=1

j3∑
j4=1

j4

+ 2
k−9∑
j1=1

j1∑
j2=1

j2∑
j3=1

j3 +
k−8∑
j1=1

j1∑
j2=1

j2∑
j3=1

j3

→ . . .

Generally we obtain the following for the coefficient of 2k−x, for an arbitrary

x = 1, 2, 3, . . . ,

{
k/2, if k is even

(k + 1)/2, if k is odd

k−(2x−2)∑
j1=1

. . .

jx−2∑
jx−1=1

jx−1 +

k−(2x−2)∑
j1=1

. . .

jx−3∑
jx−2=1

jx−2 + (x− 3)

k−(2x−3)∑
j1=1

. . .

jx−3∑
jx−2=1

jx−2

+ (x− 4)

k−(2x−3)∑
j1=1

. . .

jx−4∑
jx−3=1

jx−3

+
x−1∑
m=5

x−m∑
j1=1

. . .
∑

jd(m−4)/2e=1

jd(m−4)/2e·
k−2x+m−b(m−2)/2c∑

j1=1

. . .
∑

jx−(1+d(m−1)/2e)=1

jx−(1+d(m−1)/2e)


≈ (k − 2x+ 2)x

x!
+

(k − 2x+ 2)x−1

(x− 1)!
+ (x− 3)

(k − 2x+ 3)x−1

(x− 1)!
+ (x− 4)

(k − 2x+ 3)x−2

(x− 2)!

+
x−1∑
m=5

[
(x−m)b(m+1)/2c−1

(b(m+ 1)/2c − 1)!
· (k − 2x+m− b(m− 2)/2c)x−bm/2c

(x− bm/2c)!

]
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Let us define the following function:

gk(x) : =
(k − 2x+ 2)x

x!
+

(k − 2x+ 2)x−1

(x− 1)!
+ (x− 3)

(k − 2x+ 3)x−1

(x− 1)!

+ (x− 4)
(k − 2x+ 3)x−2

(x− 2)!

+

x−1∑
m=5

[
(x−m)b(m+1)/2c−1

(b(m+ 1)/2c − 1)!
· (k − 2x+m− b(m− 2)/2c)x−bm/2c

(x− bm/2c)!

]
For k = 1, . . . , 4000 we have computed the maximum of gk(x),

for x = 1, 2, 3, . . . ,

{
k/2, if k is even

(k + 1)/2, if k is odd
by using a computer program which

has an accuracy of 150 positions after decimal point: For k = 1, . . . , 4000 we ob-
tain: gk(x) ≤ 2, 79k. Hence O(2, 79k) = O(1.408n) is the running time of Algorithm
MH−F

4 for formulas in MH−F
4 with n variables, where k ≤ 4000 and whose

Horn clauses are 6-uniform.

l = 7:
The number of leaves in the search tree for Algorithm MH−F

4 for a formula in
WHNk

7 corresponds to the following 2-polynomial:

pk(k) = 2k + (k − 1)2k−1 + 2k−2 + . . .+ cx· 2k−x + . . .

Let k ∈ N, then we obtain pk(k) as follows:

k = 3: (2k + 2k−1) + 2k−1 + 2k−2 = (2k + 2· 2k−1 + 2k−2)

k = 4: (2k + 2· 2k−1 + 2k−2) + (2k−1 + 2k−2) + 2k−2 + 2k−4

= (2k + 3· 2k−1 + 3· 2k−2 + 2k−4)

k = 5: (2k + 3· 2k−1 + 3· 2k−2 + 2k−4) + (2k−1 + 2· 2k−2 + 2k−3) + (2k−2 + 2k−3)

+ 2k−4 = (2k + 4· 2k−1 + 6· 2k−2 + 2· 2k−3 + 2· 2k−4)

k = 6: (2k + 4· 2k−1 + 6· 2k−2 + 2· 2k−3 + 2· 2k−4)︸ ︷︷ ︸
S1

+ (2k−1 + 3· 2k−2 + 3· 2k−3 + 2k−5)︸ ︷︷ ︸
S2

+ (2k−2 + 2· 2k−3 + 2k−4)︸ ︷︷ ︸
S3

+(2k−4 + 2k−5)︸ ︷︷ ︸
S4

= (2k + 5· 2k−1 + 10· 2k−2 + 7· 2k−3 + 4· 2k−4 + 2· 2k−5)

. . .

For an arbitrary k we get pk(k) as follows: We consider pk−1(k−1), the 2-polynomial
for k− 1 many triangles: Let pk−1(k− 1) = S1+S2+S3+S4, where S1, . . . , S4 are
the four summands consisting of 2-powers each. Then pk−1(k) is the 2-polynomial,
for k − 1 triangles, where we increase the exponent of each 2-power at 1. Then we
gain pk(k) = pk−1(k) + S1 + S2 + S−1

3 . Here S−1
3 means that the exponents of all

2-powers occurring in S3 are reduced at 1. So we obtain the following running time
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for Algorithm MH−F
4: O(cx· 2k−x), where cx· 2k−x, for x = 1, . . . , b(k + 1)/2c,

is the biggest summand of the polynomial pk(k). By using a computer program
with an accuracy of 150 positions after decimal point we calculate the maximal
summand, for k = 1, . . . , 3000, cx· 2k−x of pk(k) and obtain: cx· 2k−x ≤ 2, 94k, for
k = 1, . . . , 3000. Hence O(2, 94k) = O(1.43n) is the running time of Algorithm
MH−F

4 for formulas in MH−F
4 with n variables, whose Horn clauses are 7-

uniform, for k ≤ 4000.
l = 8:
The number of leaves in the search tree for Algorithm MH−F

4 for a formula in
WHNk

8 corresponds to the following 2-polynomial:

pk(k) = 2k + (k − 1)2k−1 + 2k−2 + . . .+ cx· 2k−x + . . .

Let k ∈ N, then we obtain pk(k) as follows:

k = 3: (2k + 2k−1) + 2k−1 + 2k−2 = (2k + 2· 2k−1 + 2k−2)

k = 4: (2k + 2· 2k−1 + 2k−2) + (2k−1 + 2k−2) + 2k−2 + 2k−3

= (2k + 3· 2k−1 + 3· 2k−2 + 2k−3)

k = 5: (2k + 3· 2k−1 + 3· 2k−2 + 2k−3) + (2k−1 + 2· 2k−2 + 2k−3) + (2k−2 + 2k−3)

+ 2k−3 = (2k + 4· 2k−1 + 6· 2k−2 + 4· 2k−3

k = 6: (2k + 4· 2k−1 + 6· 2k−2 + 4· 2k−3)︸ ︷︷ ︸
S1

+(2k−1 + 3· 2k−2 + 3· 2k−3 + 2k−4)︸ ︷︷ ︸
S2

+ (2k−2 + 2· 2k−3 + 2k−4)︸ ︷︷ ︸
S3

+(2k−3 + 2k−4)︸ ︷︷ ︸
S4

= (2k + 5· 2k−1 + 10· 2k−2 + 10· 2k−3 + 3· 2k−4)

. . .

We consider pk−1(k − 1), the 2-polynomial for k − 1 many triangles: Let

pk−1(k − 1) = S1 + S2 + S3 + S4

where S1, . . . , S4 are the four summands, consisting of 2-powers each. Then pk−1(k)
is the 2-polynomial, for k − 1 triangles, where the exponent of each 2-power is
increased at 1. Next we get pk(k) = pk−1(k) + S1 + S2 + S3. So we obtain the
following running time for Algorithm MH−F

4: O(cx· 2k−x), where cx· 2k−x, for
x = 1, . . . , b(k + 1)/2c, is the biggest summand of polynomial pk(k). By using
a computer program with an accuracy of 150 positions after decimal point we
calculate the maximal summand cx· 2k−x of pk(k), for k = 1, . . . , 3000, and obtain:
cx· 2k−x ≤ 2, 9696k, for k = 1, . . . , 4000. Hence O(2, 9696k) = O(1.437n) is the
running time of Algorithm MH−F

4 for formulas in MH−F
4 with n variables,

whose Horn clauses are 8-uniform.

2.4 Mixed Horn Formulas with Linear Horn Part

In the following we consider the class LMHk
−F

d+ consisting of mixed Horn for-
mulas for which additionally holds: the Horn part consists of k-uniform, negative
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monotone, linear clauses and the positive monotone part P consists of pairwise
disjoint clauses in which each variable occurs only once.

Theorem 10. SAT remains NP-complete for the class LMHk
−F

d+.

Proof. In [42] it is shown that SAT remains NP-complete for the class
LCNF (= k) of k-uniform linear formulas. Now we provide a polynomial-time re-
duction from LCNF (= k)-SAT to LMHk

−F
d+-SAT proving the NP-completeness

of the latter. To that end let F be an arbitrary formula of the class LCNF(= k)
and let V (F ) = {x1, x2, . . . , xn} be the set of all variables of F . For all variables
xi ∈ V (F ) occurring positively in F we replace each positive occurrence of xi by
yxi with yxi /∈ V (F ) is a newly introduced variable, and add the positive monotone
2-clause (xi ∨ yxi) to F . Let F

′ be the resulting formula. Then F ′ = H ∧P , where
H consists of k-uniform, negative monotone, linear clauses and the P part consists
of positive monotone pairwise disjoint 2-clauses. Now suppose F is satisfiable. Let
α be a satisfying truth assignment for F . Then α′ is a satisfying truth assignment
for F ′ with α′ defined as follows:
For all i ∈ {1, . . . , n}: α′(xi) = α(xi)∧α′(yxi) = 1−α(xi). Since α′(yxi) = 1−α(xi)
all clauses of P are obviously satisfied because exactly one variable of each clause
of P is set to 1. The H-part is also satisfied, because α is a model for F .
Now assume F ′ is satisfiable and α′ is a model for F ′. Then α′ satisfies all k-clauses
in F , which are satisfied in F ′ by a xi, that is by xi = 0, for xi ∈ V (F ). Now let
c ∈ F be a k-clause in F whose corresponding clause c′ ∈ F ′ is satisfied by a yxj

that is by setting yxj = 0, for yxj ∈ V (F ′). Then the literal xj is contained in c
and hence xj = 1 satisfies c. Thus α can be defined as α′ restricted on the variables
set {x1, x2, . . . , xn}.

Next we analyse formulas of the class LMHk
−F

d+. Let F = P∧H ∈ LMHk
−F

d+.
We assume that no clause of H contains both variables of one and the same clause
of P , in other words each clause of H shares at most one variable with a clause
p ∈ P , for all p ∈ P . This results from the fact that it suffices to set exactly one
variable of each p ∈ P to 1, hence we can set the other variable to 0 and this way
satisfy all clauses in H which contain both variables of the same clause p ∈ P . The
special structure of the formula class LMHk

−F
d+ yields the following lemma.

Lemma 1. Let F ∈ LMHk
−F

d+ with n variables and k ≥ n/2. Then F is satisfi-
able.

Proof. Let F = P ∧H ∈ LMHk
−F

d+ and let n be the number of variables of
F . As the Horn part H is linear and k-uniform, the following inequality holds for

H according to [42]: |H| ≤ n(n−1)
k(k−1) .

Since k ≥ n/2, we obtain |H| ≤ 4(n−1)
n−2 and 4(n−1)

n−2 ≤ n/2, for n ≥ 10. So for n ≥ 10
we obtain |H| ≤ n/2 = |P |.

Next we consider two arbitrary clauses ci, cj of the Horn part. Let |V (ci)∪V (cj)|
be the number of all different variables contained in the clauses ci and cj . Because
of linearity of H we get:

|V (ci) ∪ V (cj)| ≥ k + (k − 1) ≥ n

2
+ (

n

2
− 1) = n− 1

So each pair of clauses in H contains at least n − 1 different variables. Now we
consider the following bipartite incidence graph GF for F : Let V (GF ) = V1∪V2 be
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the vertex set partition of GF , where V1 consists of all clauses of H and V2 consists
of all clauses of P . There is an edge between a vertex in V1 and a vertex in V2 if
the corresponding clause of H and the corresponding clause of P have a variable
in common. Since |H| ≤ n/2 = |P | and for each l ∈ {1, . . . , n/2} each l vertices in
V1 have at least l neighbours in V2 (because V2 contains exactly n/2 many vertices
and every two vertices of V1 already have n/2 many neighbours), we can apply the
classic Theorem of König-Hall [30, 23] for bipartite graphs stating that there exists
a matching in GF covering the component V1 of the vertex set. In terms of the
formula it means that we can uniquely assign a positive monotone 2-clause cP of
P to each Horn clause cH of H so that the one variable which cH and cP have in
common can be set to 0 to satisfy cH . We set the other variable of cP to 1 to satisfy
cP so that F is satisfied.

Lemma 2. Let F ∈ LMHk
−F

d+, n the number of variables of F and k = n/2− j,
for j ∈ {1, . . . , n/2− 3}.
If n ≥ max{2j + 5 +

√
16j + 17, 2j + 3 +

√
2j2 + 16j + 9}, then F is satisfiable.

Proof. Let F ∈ LMHk
−F

d+, let n be the number of variables of F and let
k = n/2− j, for j ∈ {1, . . . , n/2− 3}. As the Horn part H is linear and k-uniform,

the following inequality holds according to [42]: |H| ≤ n(n−1)
k(k−1) .

Since k = n/2− j, we obtain

|H| ≤ n(n− 1)

(n/2− j)(n/2− j − 1)

With the help of a computer program we calculate that for n ≥ 2j+5+
√
16j + 17

we obtain |H| ≤ n
2 . We prove that every k many arbitrary clauses of H contain at

least n− 1 many different variables:
Because of linearity of H the minimal number of variables contained in k different
clauses of H is:

k−1∑
l=0

(k − l) =
k−1∑
l=0

(n/2− j − l) = k(n/2− j)−
k−1∑
l=0

l = k(n/2− j)− k(k − 1)/2

Since k = n/2− j, we obtain:

k(n/2− j)− k(k − 1)/2 ≥ n⇔ (n/2− j)2 − (n/2− j)(n/4− j/2− 1/2) ≥ n

Again by using a computer program we calculate that for n ≥ 2j+3+
√
2j2 + 16j + 9

we obtain (n/2− j)2 − (n/2− j)(n/4− j/2− 1/2) ≥ n.
Now define x(j) := max{2j + 3 +

√
2j2 + 16j + 9, 2j + 5 +

√
16j + 17}. For

n ≥ x(j) each k many different clauses of H contain n different variables. So when
considering the bipartite incidence graph GF for F as defined in the proof of Lemma
1 (where the clauses of H are the vertices of GF on the one side of the vertex set
bipartition and the clauses of P are the vertices on the other side of the vertex set
bipartition of GF ) each k different clauses of H have n/2 many neighbours with
the clauses in P . It remains to prove that each l many clauses of H, for l < k,
contain at least 2l many variables and thus have at least l many neighbours in GF .
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Because of linearity, each l many clauses of H, for l < k, obviously contain at least∑l−1
i=0 (n/2− j − i) many variables. We obtain

l−1∑
i=0

(n/2− j − i) = l(n/2− j)− l(l − 1)/2

and further

l(n/2− j)− l(l − 1)/2 ≥ 2l⇔ n− 2j − l ≥ 3

As l < k = n/2 − j we get n − 2j − l > n − 2j − (n/2 − j) = n/2 − j. Thus
n− 2j − l > n/2− j and n/2− j ≥ 3⇔ n ≥ 2j +6. Obviously (2j +6) < x(j) ≤ n
and hence we obtain that each l many different clauses of H (for l < k) have at
least l many neighbours in GF , in case n ≥ x(j). So again we can apply the classic
Theorem of König-Hall for bipartite graphs stating that there exists a matching in
GF covering the component H of the vertex set [30, 23]. In terms of the formula,
this means we can uniquely assign a positive monotone 2-clause cP of P to each
Horn clause cH of H such that the variable which cH and cP have in common can
be set to 0 satisfying cH and the other variable of cP must be set to 1 to satisfy cP .
This way we can satisfy a formula F in LMHk

−F
d+with n ≥ x(j) many variables

and k = n/2− j.

Now we consider the class LMH−
k F

4 of mixed Horn formulas. For its positive
part P holds that the corresponding graph GP consists of disjoint triangles only and
its Horn part H is k-uniform, negative monotone and linear. Further we demand
that V (P ) = V (H). The following Theorem states the NP-completeness of this
class.

Theorem 11. SAT remains NP-complete for the class LMH−
k F

4

Proof. We provide a polynomial-time reduction from LMH−
k F

d+-SAT which
is NP-complete according to Theorem 10 to LMH−

k F
4-SAT, proving

NP-completeness of the latter. To that end let F = P ∧ H ∈ LMH−
k F

d+ be
an arbitrary formula and let k ≥ 4. For each clause (xi ∨ xj), xi, xj ∈ V (F ),
of P we introduce a new variable yi,j not yet occurring in V (F ) and add the two
clauses (xi∨yi,j), (xj∨yi,j) to P. This way we obtain the positive monotone 2-CNF
formula P ′ whose corresponding graph GP ′ consists of disjoint triangles only. For
each newly introduced variable yi,j we add the following three negative monotone,
linear k-clauses (for k ≥ 4) to H:

(yi,j ∨ z1i,j,1 ∨ . . . ∨ z
k−1
i,j,1), (yi,j ∨ z1i,j,2 ∨ . . . ∨ z

k−1
i,j,2), (yi,j ∨ z1i,j,3 ∨ . . . ∨ z

k−1
i,j,3)

where the variables zpi,j,l, for p ∈ {1, . . . , k−1}, l ∈ {1, 2, 3} are newly introduced and
pairwise different. LetH ′ be the resulting Horn part. Then, to achieve the condition
V (P ′) = V (H ′), we add the clauses (zpi,j,1 ∨ z

p
i,j,2), (z

p
i,j,1 ∨ z

p
i,j,3), (z

p
i,j,2 ∨ z

p
i,j,3),

for each p ∈ {1, . . . , k − 1}, to P ′ obtaining P ′′, whose corresponding graph GP ′′

obviously still consists of disjoint triangles only.
In case k = 3 we perform the following steps: For each clause (xi ∨ xj), xi, xj ∈
V (F ), of the P -part we introduce a new variable yi,j not yet occurring in V (F )
and add the two clauses (xi, yi,j), (xj , yi,j) to P . This way we obtain the positive
monotone 2-CNF formula P ′ whose corresponding graph GP ′ consists of disjoint
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triangles only. For each newly introduced variable yi,j we add the following negative
monotone, linear 3-clauses to H:

(yi,j ∨ zi,j,1 ∨ zi,j,2) ∧ (yi,j ∨ zi,j,3 ∨ zi,j,4) ∧ (zi,j,4 ∨ zi,j,5 ∨ zi,j,6)

Here the variables zi,j,l, for l ∈ {1, 2, 3, 4, 5, 6} are newly introduced and pair-
wise different. Let H ′ be the resulting Horn part, then H ′ is 3-uniform nega-
tive monotone and linear. Moreover we add to P ′ the following two triangles:
(zi,j,1∨zi,j,2),(zi,j,1∨zi,j,3),(zi,j,2∨zi,j,3) and (zi,j,4∨zi,j,5),(zi,j,5∨zi,j,6),(zi,j,4∨zi,j,6)
and obtain P ′′.
Now let F be satisfiable and α a model for F . We set all variables which F and
F ′ = P ′′ ∧ H ′ have in common according to α. In each new triangle (xi ∨ xj) ∧
(xi, yi,j) ∧ (xj , yi,j) of P ′ we set yi,j = 1 and hence satisfy P ′. In case k = 3, we
set zi,j,1 = zi,j,4 = 0 and zi,j,2 = zi,j,3 = zi,j,5 = zi,j,6 = 1 and satisfy all newly
introduced Horn clauses and triangles. In case k ≥ 4, we set z1i,j,1 = 0, z2i,j,2 = 0,

z3i,j,3 = 0 and hence satisfy the newly added clauses in H ′. Then we assign 1 to all
the other variables and in this way also satisfy the newly introduced triangles in
P ′′. Let F ′ be satisfiable. As F ⊂ F ′ and F ′ is satisfiable consequently F must be
satisfiable, too.

The computational complexity of mixed Horn formulas with a negative mono-
tone and exact linear Horn part also turns out to be a compelling question. Let
XLMH−F denote the class of mixed Horn formulas F = P ∧ H where the Horn
part is negative monotone and exact linear and P consists of positive monotone
2-clauses only. We obtain the following result for the complexity of this class.

Theorem 12. SAT remains NP-complete for the class XLMH−F .

Proof. We provide a polynomial-time reduction from LMH−
k F

d+-SAT to
XLMH−F -SAT. Let F = P ∧ H ∈ LMH−

k F
d+ be an arbitrary formula with

variable set V (F ) = {y1, . . . , yn}. If the Horn part H is already exact linear then
F ∈ XLMH−F and we are finished. Otherwise as long as there are two clauses
ci, cj which do not have a variable in common introduce a new variable xi,j not
yet occurring in V (F ) and enlarge ci and cj by xi,j . Let V ′ be the set of all these
newly introduced variables. After having enlarged each pair of disjoint clauses by a
newly introduced variable we obtain an exact linear and negative monotone Horn
part H ′. To provide SAT-equivalence to F we add to P , for each newly introduced
variable xi,j , the following 2-clauses: (y1 ∨ xi,j) ∧ (y2 ∨ xi,j) ∧ . . . ∧ (yn ∨ xi,j) and
also (xi,j ∨ xk,l), for each two newly introduced variables xk,l, xi,j ∈ V ′. Let P ′ be
the resulting positive monotone part and let F ′ = P ′ ∧H ′. F is satisfiable if, and
only if, F ′ is:
Let F be satisfiable with model α and set all the variables which F and F ′ have in
common according to α in F ′. We set all the other variables of F ′ to 1 and in this
way satisfy F ′. On the other hand suppose F is not satisfiable. To satisfy H ′ in F ′

at least one of the newly introduced variables must be set to 0 in F ′. But then P ′

implies that all the other variables of F ′ must be set to 1 which would not satisfy
further clauses of H ′ (assuming that H ′ has more than one clause). Hence all the
newly introduced variables in F ′ must be set to 1, but then F ′ reduces to F and
cannot be satisfied either.
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The so far best algorithm solving SAT for an arbitrary mixed Horn formula F =
P ∧H with n variables is the algorithm MHFSAT by Porschen and Speckenmeyer
[43] with a running time of O(20.5284n). Algorithm MHFSAT first calculates all
minimal vertex covers of P with P consisting of positive monotone 2-clauses only
and then checks for each minimal vertex cover whether the partial truth assignment
resulting by assigning 1 to all variables of a vertex cover can be extended to a model
for H. In case GP consists of disjoint edges only algorithm MHFSAT obviously
needs O(2n/2) running time. Below we present algorithm COUNT for formulas in
LMHk

−F
d+ which in contrast to algorithm MHFSAT does not work by calculating

all vertex covers of P but by excluding minimal vertex covers of P for each c ∈ H
and counting the number of all these excluded vertex covers for all c ∈ H. If this
number is < 2n/2 F is satisfiable, else F is unsatisfiable. The idea here is the
following: P has at most 2n/2 different minimal vertex covers. For each clause c of
H we determine all minimal vertex covers of P which are excluded by c because
setting all the variables of this minimal vertex cover to 1 would not satisfy c since
then all literals in c would be set to 0. Note that each clause of H excludes exactly
2n/2−k minimal vertex covers of P but it is possible that there are two clauses
ci, cj ∈ H such that ci as well as cj exclude one and the same minimal vertex cover
mc. So when adding the numbers of excluded minimal vertex covers by ci and cj we
have to keep in mind that we add mc only once instead of twice. It turns out to be
quite difficult to analytically count the number M of all excluded minimal vertex
covers by clauses of H. After having determined all excluded minimal vertex covers
for P , we count their numberM . IfM < 2n/2 then F has exactly 2n/2−M models:
We set all the variables of a minimal vertex cover of P , which is not excluded, to
1 and the remaining variables to 0 obtaining a model for F . In case M = 2n/2 the
formula is not satisfiable because we cannot satisfy P as no minimal vertex cover
of P yields a model for F .

There are some experimental results which lead to the strong conjecture that al-
gorithm COUNT works faster than algorithmMHFSAT for formulas in LMHk

−F
d+,

but unfortunately we are not able to prove this analytically. So the analysis of run-
ning time remains open for future work.

Algorithm COUNT

INPUT: F = P ∧H ∈ LMHk
−F

d+ with V (P ) = V (H) and there is no clause c ∈ H
for which there is a clause p ∈ P such that V (p) ⊂ V (c), that is no clause of H
contains both variables of one and the same clause in P . Let n be the number of
variables in F and let n/2 be the number of clauses of P .
OUTPUT: satisfiable, if F is satisfiable. Else unsatisfiable
begin

1. For each clause c ∈ H create a set Mc containing all minimal vertex covers
which are excluded by c:
Let c = (x1 ∨ x2 ∨ . . . ∨ xk), then each minimal vertex cover mc of Mc

contains the variables x1, x2, . . . , xk. Additionally each mc contains n
2 − k

further variables from the remaining clauses of P which do not contain one
of the variables x1, x2, . . . , xk. So each mc contains from each clause of P
exactly one variable. Hence |Mc| = 2n/2−k for each c ∈ H.

2. Let H = c1 ∧ c2 ∧ . . . ∧ c|H| and let M := ∅.
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3. For i = 1 to |H| do

(a) M :=M ∪Mci ;

(b) Check whether M contains one and the same element more than once
and remove all elements from M , which occur more than once in M
until each element occurs exactly once in M .

(c) If |M | = 2n/2 then return unsatisfiable.

4. If |M | < 2n/2 then return satisfiable.

end

2.5 Subclasses of MHF in P

This section is devoted to some interesting subclasses of MHF for which we can
solve SAT in polynomial-time. The first class to be considered consists of mixed
Horn formulas F = P ∧H with P being composed of disjoint, positive monotone
2-clauses only and H is negative monotone, k-uniform, for k ≥ 3, linear and has
overlappings in boundary variables only. Let k-BLMHF d+ denote such a class
of formulas. We show that we can solve SAT for formulas in k-BLMHF d+ in
polynomial-time as the following theorem states.

Theorem 13. Formulas of the class k-BLMHF d+, for k ≥ 3, are always satisfi-
able.

Proof. We assume that V (P ) = V (H), otherwise we set variables in V (P )−
V (H) to 1 and variables in V (H)− V (P ) to 0. The assertion of this Theorem di-
rectly follows from the classic Theorem of König-Hall for bipartite graphs [30, 23]:
Let F ∈ k-BLMHF d+ be an arbitrary formula. Then we consider the bipartite
incidence graph GF of F with vertex set partition V1 ∪ V2 where the clauses of H
are the vertices of V1 and the disjoint 2-clauses of P are the vertices of V2. There
is an edge between a vertex in V1 and a vertex in V2 if the corresponding clauses
ci ∈ H and pj ∈ P have at least one variable in common. Let n be the number
of variables in F then |V2| = n/2 and |V1| ≤ n−1

k−1 ≤
n
2 . Moreover, we obtain that

each i clauses of H, for all i ∈ {2, . . . , |H|}, contain at least i· (k − 1) + 1 different
variables. As k ≥ 3, this yields i· (k − 1) + 1 ≥ 2· i. Therefore in GF all i vertices
of V1 have at least i neighbours in V2, for all i ∈ {2, . . . , |H|}, because all i clauses
of H contain at least 2· i many different variables and all i 2-clauses in P contain
exactly 2· i different variables. Now we can apply the classic Theorem of König-
Hall for bipartite graphs stating that there exists a matching in GF covering the
component V1 of the vertex set [30, 23]. In terms of the formula this means we can
uniquely assign exactly one 2-clause pc ∈ P to each clause c of H. Setting the one
variable which c and pc share to 0 and the other variable of pc to 1, for all c ∈ H,
yields a model for F .

In the last section we have shown with Theorem 12 that SAT remains NP-
complete for formulas in XLMH−F . But does NP-completeness still hold for its
subclass, where the positive part P is supposed to consist of disjoint 2-clauses
only? To answer this question we consider the class XLMH−F

d+ ⊆ XLMH−F
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of formulas of the class XLMH−F for which additionally holds that the 2-clauses
of the positive monotone part P are pairwise disjoint. We obtain:

Theorem 14. Formulas of the class XLMH−F
d+ are always satisfiable.

Proof. Let F = P ∧H be an arbitrary formula in XLMH−F
d+. If a positive

monotone 2-clause pi ∈ P exists for each clause ci ∈ H such that V (pi) ⊂ V (ci), we
set all variables of an arbitrary minimal vertex cover Vi of GP , the variables graph
for P , to 1 and all the other variables to 0 obtaining a model for F . This results
from the fact that then in each clause pi ∈ P exactly one variable is set to 1 and the
other one is set to 0. In consequence each clause of H contains at least one variable
which is set to 0 because each clause of H contains both variables of a clause of P .
Now suppose H contains a clause c and for c no clause exists in P whose variables
both belong to c. Then we set all the variables of c to 0 and the remaining variables
of F to 1. As H is exact linear, every other clause of H shares exactly one variable
with c and is thus also satisfied because of negative monotonicity. As c does not
contain both variables of any clause in P , in every clause of P at most one vari-
able is now set to 0 and at least one variable is set to 1, hence P is also satisfied.

After considering the class XLMH−F
d+, it is now quite compelling to in-

vestigate whether the class of mixed Horn formulas XLMH−F
4 with a negative

monotone, exact linear and k-uniform Horn part, whose P part consists of disjont
triangles only is also polynomial-time solvable. So in the following we investigate
this class of formulas.

Theorem 15. Formulas in XLMH−F
4 are always satisfiable.

Proof. Let F = P ∧H be an arbitrary formula in XLMH−F
4.

1. If there is a clause c ∈ H which contains at most one variable of each triangle
4j ∈ P , we set all the variables of c to 0 and all the remaining variables to
1 and this way satisfy F : As H is exact linear each clause of H has exactly
one variable with c in common and is thus satisfied. As in each triangle of
P at most one variable is set to 0 and the others (at least two) are set to 1,
each triangle in P is also satisfied.

2. If there is no clause in H containing at most one variable of each triangle
4j ∈ P , then for each clause ci of H at least one triangle 4j must exist with
ci containing at least two variables of 4j . Note that if there is a clause c ∈ H
which contains all three variables of the same triangle in P . Then this clause
is always satisfiable as in each triangle exactly one variable has to be set to 0
and we can remove such a clause from H. In the following we assign all the
clauses of H which contain exactly two variables of triangle 4j to triangle
4j of P . Note that because of exact satisfiability of H at most three clauses
can be assigned to each triangle in P . Hence |H| ≤ n.

(a) If at most two clauses of H are assigned to each triangle of P then we
proceed as follows: In case no clause of H is assigned to a triangle in
P , we set one arbitrary variable of this triangle to 0 and the two other
variables to 1. In case exactly one clause cx = (x1∨x2∨ . . .) is assigned
to a triangle 4x = (x1 ∨ x2)∧ (x2 ∨ x3)∧ (x1 ∨ x3) in P , we set w.l.o.g.
x1 = 0 and x2 = x3 = 1 and this way satisfy the clause cx and 4x. In
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case exactly two clauses c1x = (x1∨x2∨ . . .) and c2x = (x1∨x3∨ . . .) are
assigned to a triangle 4x = (x1∨x2)∧ (x2∨x3)∧ (x1∨x3) in P , we set
the one variable which the two clauses of H and 4x have in common
to 0 and the other two variables of 4x to 1: x1 = 0, x2 = x3 = 1. This
way we obviously satisfy c1x, c

2
x and 4x.

(b) The difficult case is if there is a triangle 4x = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧
(x1 ∨ x3) in P to which three clauses of H are assigned, namely c1x =
(x1 ∨ x2 ∨ . . .), c2x = (x2 ∨ x3 ∨ . . .) and c3x = (x1 ∨ x3 ∨ . . .). As long as
there is such a triangle to which three clauses are assigned, we proceed
as follows:

• If one of the clauses cix, for i ∈ {1, 2, 3}, contains w.l.o.g. a variable
a1 belonging to the triangle 4a = (a1 ∨ a2) ∧ (a2 ∨ a3) ∧ (a1 ∨ a3)
for which holds that there is no clause of the form (a2 ∨ a3 ∨ . . .)
in H, then (let w.l.o.g. a1 be contained in c1x) we can set a1 = 0,
a2 = a3 = 1 and x3 = 0, x1 = x2 = 1 and this way satisfy the
clauses cix, for i ∈ {1, 2, 3}.
In the following we call the clause (a2 ∨ a3 ∨ . . .) a counter clause
for a1, if a1, a2, a3 are variables of the same triangle.

• If for each variable a1 occurring in one of the clauses cix, for i ∈
{1, 2, 3}, there is a counter clause (a2 ∨ a3 ∨ . . .) in H, then we
check whether one of these counter clauses (a2∨a3∨ . . .) contains a
variable b1 ∈ V (H) for which there is no counter-clause (b2∨b3∨. . .)
in H. In this case we set b1 = 0 and hence satisfy (a2∨a3∨ . . .) and
thus we can now set a1 = 0 and satisfy cix, for a i ∈ {1, 2, 3}. But
if there is also a counter clause (b2 ∨ b3 ∨ . . .) for each variable b1
occurring in the counter clauses (a2∨a3∨ . . .), then we check again
for each variable c1 occurring in the counter clauses (b2 ∨ b3 ∨ . . .)
whether c1 has a counter-clause (c2∨c3∨ . . .) in H. If so, we repeat
this procedure until we have found a variable without a counter
clause. As |H| ≤ n, the number of Horn clauses is bounded and
hence we can always find a variable without a counter clause which
we set to 0. Obviously this procedure needs polynomial-time.

So formulas of XLMH−F
4 are also always satisfiable.

Next we consider the class MH−dF
4 ⊂ MHF of mixed Horn formulas M =

P ∧ H whose Horn part H is negative monotone and consists of disjoint clauses
only and for whose positive 2-CNF part P holds that the corresponding graph GP

consists of disjoint triangles only. Further we demand that V (P ) = V (H). For
a better study we dissect the class MH−dF

4 ⊂ MHF into the three following
subclasses:

1. The Horn part H consists of negative monotone clauses of length ≥ 3, which
are pairwise disjoint. Let MH−dF

4
≥3 denote this subclass of MH−dF

4.

Theorem 16. Formulas of the class MH−dF
4
≥3 are always satisfiable.

Proof. The assertion of this Theorem directly follows from the classic
Theorem of König-Hall for bipartite graphs [30, 23]: Let F ∈ MH−dF

4
≥3 be

an arbitrary formula. We consider the bipartite incidence graphGF of F with
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vertex set partition V1 ∪V2 where the clauses of H are the vertices of V1 and
the triangles of GP are the vertices of V2. There is an edge between a vertex
in V1 and a vertex in V2, if the corresponding clause ci ∈ H and 4j ∈ P have
a variable in common. Let n be the number of variables in F then |V2| = n/3
and |V1| ≤ n/3. As the clauses of H are pairwise disjoint, we obtain that
each i vertices of V1 have at least i neighbours in V2, for all i ∈ {1, . . . , n/3}
because each i clauses of H contain at least 3· i different variables and every
i triangles in P contain exactly 3· i different variables. Now we can apply the
classic Theorem of König-Hall for bipartite graphs stating that there exists
a matching in GF covering the component V1 of the vertex set [30, 23]. In
terms of the formula that means we can uniquely assign exactly one triangle
4c to each clause c of H, setting the one variable which c and 4c share to 0
and the other two variables of4c to 1. This way we obtain a model for F .

2. The Horn part H consists of pairwise disjoint clauses of length < 3, let
MH−dF

4
<3 denote the class of such formulas. We additionally demand that

V (P ) = V (H).

Theorem 17. Formulas of the class MH−dF
4
<3 are not satisfiable.

Proof. Let F = (P ∧ H) ∈ MH−dF
4
<3 be an arbitrary formula, where

H = c1 ∧ c2 ∧ ... ∧ c|H| and let m be the number of disjoint triangles in GP .
Let n be the number of variables in F . Then 3m = n ≤ 2|H| leading to
m ≤ 2

3 |H|. To satisfy H we have to set at least one variable in each clause
of H to 0, that means we have to assign 0 to |H| many variables. But as we
always have more clauses in H than triangles in P the pigeonhole principle
implies that in order to satisfy H we have to set at least two variables to
0 in at least one triangle of P . This would violate the satisfiablility of P .
Consequently F is not satisfiable.

3. The Horn part H consists of monotone negative clauses and H has at least
one clause of length < 3 and at least one of length ≥ 3. Further we demand
that V (P ) = V (H). Let MH−dF

4
mxd denote the class of such formulas.

Theorem 18. SAT can be solved in polynomial-time for formulas in
MH−dF

4
mxd.

Proof. The following algorithm MXD solves SAT for the class MH−dF
4
mxd

in polynomial-time.
Let label(xj) denote a function which assigns the same label to all three
variables of a triangle of GP . Variables of different triangles are distinctively
labelled.

Algorithm MXD

INPUT: F ∈MH−dF
4
mxd.

OUTPUT: SATISFIABLE, if F is satisfiable, else UNSATISFIABLE.
begin
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(a) Assign to each variable x ∈ V (F ) a label, such that variables of the
same triangle get the same label and variables of different triangles get
different labels. Let label(x) denote the label of variable x ∈ V (F ).

(b) We arrange the clauses ofH in ascending order according to the number
of their literals: H = c1∧c2∧...∧c|H|, where |c1| ≤ . . . ≤ |c|H||. Clauses
of the same size and with the same labels are neighbours in this order.
Let ci = (xi1 ∨ . . . ∨ xim) and let k be the number of triangles in GP .

(c) We set Z := ∅.
(d) If k < |H| then output UNSATISFIABLE.

(e) For i := 1 to |H| do (*we consider the clause ci = (xi1 ∨ . . . ∨ xim)*)

i. For j := i1 to im do

• If label(xj) /∈ Z then Z := Z ∪ {label(xj)};
ii. If |Z| < i then UNSATISFIABLE; else i := i+ 1;

(f) F is SATISFIABLE

end

We need O(||F ||) running time to label all variables of F . The two For-loops
have a running time of O(|H||c|H||), where c|H| is the longest clause of H.
So O(||F ||) is the running time of algorithm MXD.
To prove the correctness of algorithm MXD, the pigeonhole principle consti-
tutes that in case F has more clauses in H than triangles in P , we cannot
satisfy F because the clauses of H are pairwise disjoint. Next, if the first i
clauses, for each i ∈ {1, . . . , |H|}, contain less than i many different labels
(which is equivalent to: the first i clauses of H have with less than i triangles
in GP variables in common), then we cannot satisfy F either because other-
wise at least two variables of one and the same triangle in P would have to
be set to 0. Else F is satisfiable which is a consequence from the König-Hall
Theorem [30, 23].

Remark 2. Note that algorithm MXD also works correctly when GP consists of
disjoint edges instead of triangles or of both disjoint edges and triangles.

Corollary 1. SAT can be solved in polynomial-time for the class MH−dF
4 of

formulas, whose Horn part H consists of pairwise disjoint and negative monotone
clauses and for whose positive monotone part P holds that the corresponding graph
GP consists of disjoint triangles only.

Now we consider a generalisation of the class MH−dF
4, namely the class

MHdF
4 of mixed Horn formulas, whose Horn part H consists of pairwise dis-

joint Horn clauses. These do not necessarily have to be negative monotone and
for their positive monotone part P also holds that the corresponding graph GP

consists of disjoint triangles only. We examine whether SAT is also solvable in
polynomial-time for this class. The next Theorem and its proof shed light on this
question.

Theorem 19. SAT can be solved in polynomial-time for formulas in MHdF
4.
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Proof. Let F = P ∧ H be an arbitrary formula in MHdF
4. Assuming H

is negative monotone we can apply algorithm MXD to F solving the SAT search
problem in polynomial-time for F . Else we set each variable x occurring positively
in H to 1 and evaluate the formula. In this way we obtain a negative monotone
Horn part H ′ consisting of pairwise disjoint clauses and a positive part P ′ such
that GP ′ consists of disjoint triangles and edges only. Note that by setting the
variables occurring positively in H to 1 we do not make any restrictions concerning
the satisfiabilty of F .
Finally we apply the algorithm MXD on F ′ := P ′ ∧ H ′ solving SAT for F ′ in
polynomial-time according to Theorem 2.

Next we treat the class MH−dF
d+ of mixed Horn formulas F = P ∧H, where

GP consists of disjoint edges and the negative monotone Horn part H of pairwise
disjoint clauses only. Further we demand V (P ) = V (H), else we set all variables in
V (P )−V (H) to 1 an all variables in V (H)−V (P ) to 0 not affecting the satisfiability.

Theorem 20. SAT can be solved in polynomial-time for the class MH−dF
d+.

Proof. Let F = (P ∧ H) ∈ MH−dF
d+ be an arbitrary formula. At first we

assign all unit clause variables and evaluate the formula such that all clauses of F
have at least length 2. If we obtain a contradiction such as an empty clause, then
F is unsatisfiable. As for all x ∈ V (F ) holds x occurs exactly once in P and exactly
once in H, we can otherwise conclude w(x) = 2 for all x ∈ V (F ). Thus we can
apply Lemma 6 from [42] stating that a formula in which each clause has length at
least k and each variable occurs at most j times is satisfiable if k ≥ j.

So far we have considered mixed Horn formulas with negative monotone and
pairwise disjoint Horn clauses. Now we investigate whether SAT is also polynomial-
time solvable for mixed Horn formulas whose Horn clauses are not pairwise disjoint.

Theorem 21. Let F = P ∧ H ∈ MH−F
4 and let k be the number of triangles

in GP . If each clause in H has length exactly l, l ≥ 2, and H contains more than(
3k
l

)
−
(
2k
l

)
many clauses, F = H ∧ P is unsatisfiable.

Proof. Let F = P ∧ H ∈ MH−F
4 where H is l-uniform and let k be the

number of triangles in GP . Since there are k triangles in GP , F has 3k variables.
The Horn part H is negative monotone and only has clauses of length l, thus H
contains at most

(
3k
l

)
many different l-clauses.

In each triangle of GP at most one variable can be set to 0 and the other variables
- at least two - of this triangle must be set to 1. To satisfy F in each clause of H
at least one variable must be set to 0. Setting at most one variable in each of the
k triangles to 0 yields at least 2k many variables which have to be set to 1. Thus
for each possible truth assignment which sets at most one variable of each trian-
gle to 0 and at least two variables to 1 we obtain at least

(
2k
l

)
many unsatisfiable

l-clauses among the
(
3k
l

)
many possible l-clauses. That means that each formula

F = P ∧H ∈MH−F
4 with a l-uniform Horn part for which holds |H| ≥

(
3k
l

)
−
(
2k
l

)
is unsatisfiable.

Lemma 3. Let F = P ∧ H ∈ MH−F
4, k the number of triangles in GP and

|ci| ≥ 2k + 1, for all ci ∈ H and i = 1, . . . , |H|. Then F is satisfiable.
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Proof. Let F = P ∧ H ∈ MH−F
4 with |ci| ≥ 2k + 1, for all ci ∈ H,

i = 1, . . . , |H|. For each ci ∈ H exists at least one triangle 4j ∈ GP , for one
j ∈ {1, . . . , k}, such that all variables of 4j are contained in ci. Therefore setting
exactly one arbitrary variable of each triangle to 0 and the other two variables to
1 yields a model for F .

Lemma 4. Let F = P ∧ H ∈ MH−F
4 and let k be the number of triangles in

GP . Further let |ci| = 2k for all clauses ci ∈ H, for i = 1, . . . , |H|. If |H| < 3k

then F = P ∧H is satisfiable.

Proof. Let F = P ∧ H ∈ MH−F
4 and let k be the number of triangles in

GP . As |ci| = 2k for all clauses ci ∈ H, at least one triangle 4j ∈ GP , for one
j ∈ {1, . . . , k}, exists for each clause ci ∈ H, such that at least two variables of 4j

occur in ci. W.l.o.g. we do not consider clauses ci ∈ H, for which there exists at
least one triangle 4j ∈ GP whose variables occur all in ci, because these clauses
are always satisfiable as shown in the proof of Lemma 3. Thus we assume that H
only consists of clauses for which holds that each of them shares with each triangle
of GP exactly two variables. Note that this is the only possible case because of the
condition |ci| = 2k, for all clauses ci ∈ H, for i = 1, . . . , |H|. There are altogether

exactly
(
3
2

)k
= 3k many different clauses with this property. Suppose H contains all

these possible 3k many clauses, then H is not satisfiable. This results from the fact
that in this case for each truth assignment which sets in each triangle exactly one
variable to 0 and the other two variables to 1 we obtain exactly one unsatisfiable
clause in H, namely the one consisting of all the variables set to 1. So, if |H| < 3k

we can easily find a model for H.

Theorem 22. Let F = P ∧H ∈MH−F
4 and let k ≥ 3 be the number of triangles

in GP . Further let |c| = 2k − 1 for all clauses c ∈ H. If |H| ≤ 2k, then F is
satisfiable.

Proof. We consider the proof for the worst-case |H| = 2k. W.l.o.g. we do not
consider clauses ci ∈ H with at least one triangle 4j ∈ GP existing whose variables
occur all in ci because these clauses are always satisfiable by setting an arbitrary
variable of 4j to 0.

Since |c| = 2k−1 for all c ∈ H, it follows that each clause of H contains at least
one variable from each of the k different triangles. There are altogether 3k many
different variables in F . The 2k many clauses of H contain altogether 2k(2k − 1)
many literals. It is 2k(2k − 1) ≥ 10k, for k ≥ 3. That means, that some of the 3k
different variables occur more than once in H, more precisely: In average case each

variable occurs 2k(2k−1)
3k = 2

3 (2k − 1) many times in H.

• If 2k ≡ 1 (mod 3):
Each of the 3k many different variables occurs either exactly 2

3 (2k− 1) times
in H or there is a variable x occurring more than 2

3 (2k − 1) times in H.
Obviously it is sufficient to have a variable x occurring at least 2

3 (2k − 1)
times in H to satisfy F because setting x to 0 (and the two other variables
of 4x to 1) satisfies at least 2

3 (2k − 1) many clauses of H and hence, after
evaluating the formula, only 2k − 2

3 (2k − 1) = 2
3k + 2

3 many clauses remain

in H. As ( 23k +
2
3 )− (k − 1) = −k

3 + 5
3 and for k ≥ 5 (note that for k = 3, 4



62 Chapter 2. Mixed Horn Formulas

is 2k 6≡ 1 (mod 3)) we obtain: −k
3 + 5

3 ≤ 0, it follows that by setting in
each of the < k − 1 many remaining clauses one variable of the k − 1 many
remaining triangles to 0 we can satisfy H. Due to the fact that each clause
of H contains at least one variable from each triangle of P we can uniquely
assign one triangle 4j to each remaining clause ch of H and set the one
variable which ch and 4j have in common to 0 and the two other variables
of 4j to 1. This way F is satisfied.

• If 2k 6≡ 1 (mod 3):
In this case there is a variable x which occurs in at least d 23 (2k − 1)e many
clauses and hence we can proceed as in the previous case.

The following corollary is a summary of the last results:

Corollary 2. Let M = P ∧H ∈MH−F
4 and let k ≥ 1 be the number of triangles

in GP , further let |ci| ≥ 2k − 1 for all i = 1, . . . , |H|. If |H| ≤ 2k then M is
satisfiable.



Chapter 3

Complexity of Linear
Not-All-Equal SAT and Exact
SAT Problems

Recently in [42] the propositional satisfiability problem (SAT) was shown to be NP-
complete when restricted to the class of linear formulas in conjunctive normal form
(CNF). Linear formulas yield a direct generalization of linear hypergraphs. There-
fore linear formulas overlap only sparsely and there is some evidence that they
form the algorithmically hard kernel for CNF-SAT, making this class specifically
attractive with regard to other variants of SAT, too. In this chapter we investigate
the computational complexity of some well-known variants of SAT, namely not-all-
equal SAT (NAE-SAT) and exact SAT (XSAT) restricted to linear CNF instances.
Recall that deciding NAE-SAT for a CNF formula means to test for the existence
of a truth assignment such that in each clause of the formula at least one literal
evaluates to true and at least one to false. For solving XSAT, exactly one literal
in each clause must evaluate to true and all others to false. Observe that for CNF
formulas where all clauses have exactly two literals XSAT and NAE-SAT coincide.
As shown in the seminal paper by Schaefer [47], both NAE-SAT and XSAT are NP-
complete for the unrestricted CNF class. Whereas SAT gets trivial on monotone
formulas, which by definition are free of negated variables, NAE-SAT and XSAT are
well known to remain NP-complete on that class. Note that monotone NAE-SAT
coincides with the prominent NP-complete hypergraph bicolorability problem (also
known as set splitting [21]). Moreover, monotone XSAT is closely related to the
well-known NP-complete set partition problem (SPP) having many applications in
combinatorial optimization. In addition, monotone XSAT is also closely related to
the well-known NP-complete problem Exact Hitting Set [21] having many applica-
tions in combinatorial optimization.
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3.1 NAE-SAT and XSAT-Complexity of Monotone
Linear Formulas

Our first aim is to prove that XSAT and NAE-SAT behave NP-complete for ar-
bitrary monotone linear CNF formulas. Recall that both XSAT and NAE-SAT
remain NP-complete when restricted to monotone CNF formulas.

Theorem 23. Both XSAT and NAE-SAT remain NP-complete when restricted to
the class LCNF+ of monotone linear formulas.

Proof. As mentioned in the introduction, monotone NAE-SAT coincides with
hypergraph bicolorability (which is the set splitting problem), and monotone XSAT
corresponds to the set partition problem, both being well-known NP-complete prob-
lems (see e.g. [21]).

We first consider the monotone XSAT case and provide a polynomial-time re-
duction from CNF+-XSAT to LCNF+-XSAT. We then show that it can also be
carried over to the second problem variant of interest, namely LCNF+-NAE-SAT.

To that end, we take an arbitrary instance C from CNF+. For each fixed
variable xi ∈ V (C) having r ≥ 2 occurrences in C, let say in the clauses cj1 , . . . , cjr
of C, we introduce the new variables yj1xi

, . . . , yjrxi
6∈ V (C), and we replace the

occurrence of xi in cjs with yjsxi
, for 1 ≤ s ≤ r. Moreover, we introduce an auxiliary

variable zxi also different from all variables. Finally, we add the following clauses
to the formula, independently for each tuple xi, zxi

, yj1xi
, . . . , yjrxi

, which is built for
each fixed xi ∈ V (C) such that all new variables (i.e. variables not in V (C)) are
pairwise distinct:

(∗) {xi, zxi} ∪
⋃

1≤s≤r

{yjsxi
, zxi}

Observe that the resulting formula C ′ obtained from C after termination of the
procedure just described is linear and positive monotone. The procedure runs
in polynomial-time O(n‖C‖) for n variables in V (C). It remains to verify that
C ∈ XSAT if and only if C ′ ∈ XSAT. Let T denote the whole added 2-CNF
formula generated according to (∗) which results after termination of the procedure
described above.

First we show that any x-model of C which assigns a fixed truth value to variable
xi, assigns the same value to all new variables yjsxi

, 1 ≤ s ≤ r, replacing xi in C ′.
Indeed, this is ensured by subformula T since, for each tuple xi, y

js
xi
, 1 ≤ s ≤ r, we

have the implications according to XSAT:

xi = 1 ⇒ zxi = 0 ⇒ yjsxi
= 1, 1 ≤ s ≤ r

xi = 0 ⇒ zxi = 1 ⇒ yjsxi
= 0, 1 ≤ s ≤ r

Conversely, according to T , any x-model of C ′ assigning a fixed truth value to one
of the new variables yjsxi

replacing xi must assign the same value to xi and also to
all other variables replacing xi altogether demonstrating the XSAT-equivalence of
xi ↔ yjsxi

, 1 ≤ s ≤ r.

yjsxi
= 1 ⇒ zxi = 0 ⇒ xi = 1, yjs′xi

= 1, 1 ≤ s′ 6= s ≤ r
yjsxi

= 0 ⇒ zxi = 1 ⇒ xi = 0, yjs′xi
= 0, 1 ≤ s′ 6= s ≤ r
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The last observation directly implies that C ∈ XSAT iff C ′ ∈ XSAT.

Finally, we have no problem to cover the NAE-SAT case by the argumentation
above because for the added 2-CNF part T NAE-SAT coincides with XSAT. Hence,
we have C ∈ NAE-SAT iff C ′ ∈ NAE-SAT finishing the proof.

Since for monotone CNF formulas NAE-SAT coincides with bicolorability of
hypergraphs, we immediately obtain:

Corollary 3. Bicolorability remains NP-complete when restricted to linear hyper-
graphs.

The reduction given above adds 2-clauses to a non-linear input formula forcing
all the newly-created variables to be assigned the same truth value in every model
of C ′. Therefore, if we consider the subclass LCNF+(≥ k) of LCNF+, for fixed
integer k ≥ 3, where each formula contains only clauses of length at least k, then
the reduction above does not work. Consequently, the question arises whether
XSAT restricted to LCNF+(≥ k) remains NP-complete, too. Before giving the
answer, we introduce some terminology and prove a useful Lemma.

Definition 4. (1) Let C be a satisfiable formula. A variable y ∈ V (C) is called a
backbone variable of C, if y has the same value in each model of C.

(2) Let C be an x-satisfiable formula. A variable y ∈ V (C) is called an x-
backbone variable of C, if y has the same value in each x-model of C.

It might be instructive to consider the following example: Let C be the
x-satisfiable formula:

C = {x1x2x5, x2x3, x1x3x4}

where, for simplicity, clauses are represented as strings of literals. The only x-
models of C obviously are: x1 = 0, x2 = 1, x3 = 0, x4 = 1, x5 = 0 and x1 = 0, x2 =
0, x3 = 1, x4 = 0, x5 = 1. For this reason x1 is an x-backbone variable.

Lemma 5. For each fixed k ≥ 3, we can efficiently construct a monotone k-uniform
linear formula C of O(k3) many variables and O(k2) many clauses such that C
contains at least k x-backbone variables that all must be assigned 0.

Proof. To construct the formula, we start with defining a first clause

c0 = {x, y1, . . . , yk−1}

Secondly we introduce a (k − 1)× (k − 1) variable matrix A = (aij)1≤i,j≤k−1, and
regard its rows as (k−1)-clauses. Enlarging each of these clauses with x yields k−1
additional k-clauses collected in set X having the property that X ∪ {c0} is linear.
Next we similarly build a set Y1 of k-clauses as follows: first take the transpose AT

of A then enlarge each of its rows with y1. Again X ∪ Y1 ∪ {c0} is a linear clause
set. Finally, let ÂT be the matrix obtained from AT by performing a cyclic shift
of i− 1 positions on the ith column of AT . We form a clause set Y2 enlarging the
rows of ÂT with y2, each. Recall that by construction each clause of X contains
variable x and each clause of Y1, Y2 contains y1, y2, respectively. Let C

′ denote the
formula obtained from {c0} ∪X ∪ Y1 ∪ Y2 by removing the last clause, referenced
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to as c, from Y2. For example, in case k = 4, C ′ (resp. c) looks as follows (omitting
set embraces and representing clauses as literal strings):

C ′ =

x y1 y2 y3
x a11 a12 a13
x a21 a22 a23
x a31 a32 a33
y1 a11 a21 a31
y1 a12 a22 a32
y1 a13 a23 a33
y2 a11 a23 a32
y2 a12 a21 a33

, c = y2 a13 a22 a31

Clearly C ′ has k + (k − 1)2 = O(k2) variables and 3(k − 1) = O(k) clauses. We
claim that C ′ has at least two x-backbone variables which both have to be set to
0. From this claim the assertion is implied as follows: We construct dk2 e many
variable-disjoint copies of C ′ resulting in formula C. C clearly is k-uniform, linear,
consists of O(k3) variables and O(k2) clauses. And C has at least 2 · dk2 e ≥ k
x-backbone variables which must be assigned 0.

So the claim remains to be settled: We show that C ′ ∈ XSAT and that each
x-model of C ′ assignes 0 to x and y1. First we show that neither x nor y1 can be
set to 1 by any x-model of C: Assume that x is set to 1 then all variables in A and
therefore also all variables in AT would be forced to 0 implying that y1 must also be
set to 1 x-contradicting the leading clause c0. An analogous argumentation shows
that y1 is an x-backbone variable with truth value 0. Next we claim that a (canon-
ical) x-model t for C ′ is provided by assigning 1 to all variables in the removed
clause c, and 0 to all other variables. Since C ′ ∪ {c} is linear no two variables of c
can occur in any clause of C ′. So, t assigns to 1 at most one literal in each clause
of C ′. Clearly, c0 and the remaining clauses of Y2 all contain y2 and therefore are
x-satisfied. Finally, by construction all k − 1 variables in c− {y2} are members of
A and also of AT . So as we have k− 1 variables in c−{y2} and exactly k− 1 rows
in A resp. AT , we have to distribute k− 1 variables on k− 1 rows in A resp. AT . It
follows that each row in A resp. AT must contain exactly one variable in c− {y2}.
Because of linearity it is also clear that no variable in c − {y2} can occur twice in
A resp. AT . Therefore all clauses in X and Y1 are x-satisfied finishing the proof.

Now we are able to prove:

Theorem 24. For each fixed k ≥ 3, XSAT remains NP-complete restricted to
LCNF+(≥ k).

Proof. For each fixed k ≥ 3, the basic idea here essentially is to perform the
reduction as shown in the proof of Theorem 23 from CNF+(≥ k)-XSAT thereby
padding the added 2-clauses by x-backbone variables sets such that they get k-
clauses and the XSAT status of the corresponding formulas is preserved.

More precisely, let Γk be the monotone k-uniform formula according to Lemma
5. For each added 2-clause form a copy of Γk such that all these copies are pairwise
variable disjoint. Enlarge each 2-clause with k − 2 of these x-backbone variables
stemming from the corresponding Γk-copy. Observe that all these padding for-
mulas Γk are already constructed as monotone formulas. Clearly, the resulting
formula is linear and k-uniform and is in XSAT iff the original formula is because
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all backbone variables always are assigned 0, and all Γk copies are x-satisfiable by
construction.

It is still an open question whether NAE-SAT restricted to LCNF+(≥ k), for
k ≥ 3, remains NP-complete, too. Before giving the answer, we again introduce
some terminology and then prove two useful Lemmas.

Definition 5. A formula is called minimally nae-unsatisfiable if it is nae-unsatis-
fiable but removing an arbitrary clause from it yields a nae-satisfiable formula. We
call a set U ⊆ L(C) of literals in a nae-satisfiable formula C a nae-backbone set, if
each nae-model of C sets the literals in U either all to 0 or all to 1.

Lemma 6. Given a formula C that is nae-unsatisfiable, then C contains a mini-
mally nae-unsatisfiable subformula C ′. Moreover, any clause c of C ′ forms a nae-
backbone set in C ′ − {c}.

Proof. First of all there must exist a nae-satisfiable subformula of C because
any single clause of it has this property. Suppose there exists no minimally nae-
unsatisfiable subformula of C, then each nae-unsatisfiable subformula of it has the
property that it contains a clause which can be removed and the resulting formula
remains nae-unsatisfiable. So, we inductively obtain a contradiction to the fact that
there are nae-satisfiable subformulas of C.

To prove the second assertion, let C be a minimally nae-unsatisfiable formula,
and C ′ := C − {c}, for arbitrary c ∈ C, then clearly C ′ is nae-satisfiable. We
claim that c is a nae-backbone set in C ′. First we observe that V (c) ⊆ V (C ′)
because otherwise there is a variable u ∈ V (c) not occurring in C ′. Evidently, we
can always set u in such a way that c is nae-satisfied in C yielding a contradiction.
Each nae-model of C ′ sets all literals in c either to 0 or all to 1, otherwise C would
be nae-satisfiable again yielding a contradiction. So c forms a nae-backbone set in
C ′.

Lemma 7. If there is a linear, k-uniform and unsatisfiable formula C, for which
additionally holds that each clause of C is either positive monotone or negative
monotone, there is a linear, k-uniform and positive monotone formula C ′ which is
not satisfiable concerning NAE-SAT.

Proof. Given an arbitrary CNF formula C, then it is easy to see that C ∈
NAE-SAT holds true if, and only if, C ∪Cγ ∈ SAT, where Cγ denotes the formula
obtained from C by complementing the literals of each clause in C. Now let C be a
linear, k-uniform and unsatisfiable formula for which additionally holds that each
clause of C is either positive monotone or negative monotone. As C is unsatisfiable
C ∪ Cγ is unsatisfiable as well according to NAE-SAT. Further we can arrange
C ∪ Cγ in C ′ ∪ (C ′)γ such that C ′ only contains the positive monotone clauses,
i.e. C ∪ Cγ = C ′ ∪ (C ′)γ . Hence C ′ is a linear, k-uniform and positive monotone
formula, which is obviously not satisfiable according to NAE-SAT.

Now for the NAE-SAT case we obtain the NP-completeness for LCNF+(≥ k) from
Schaefer‘s Theorem [47] as follows:
For each k ≥ 3 the class of linear, k-uniform formulas C, for which additionally
holds that each clause of C is either positive monotone or negative monotone, is
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NP-complete according to Schaefer‘s Theorem [47]. Let LCNF+,−(= k) denote
this class. Hence for each k ≥ 3 there is a formula F ∈ LCNF+,−(= k) which is
not satisfiable. So according to Lemma 7 there is a linear, k-uniform and positive
monotone formula C ′ which is not satisfiable concerning NAE-SAT for each k ≥ 3.
Hence this formula is specifically nae-unsatisfiable, and we can extract from it a nae-
satisfiable monotone formula Γk having a nae-backbone set of k variables according
to Lemma 6. Similarly performing the copy and padding steps as stated for the
XSAT case above yields the same result. Applying Lemma 6 we therefore obtain:

Theorem 25. For each k ≥ 3, NAE-SAT remains NP-complete when restricted to
LCNF+(≥ k).

Remark 3. Regarding the NAE-SAT case we are only able to find nae-unsatisfiable,
linear and positive monotone formulas with clause length at most 3 and 4. For
k = 3 the corresponding formula is given by the 3-block. For k = 4 the formula was
constructed on base of the scheme described in [41] using the SAT solver designed
in [11]. For each k ≥ 5 the problem remains open.

3.2 The linear, l-regular Formula Class

Theorem 26. NAE-SAT remains NP-complete when restricted to the class LCNFl
+

of monotone, linear and l-regular formulas.

Proof. According to Theorem 23 NAE-SAT is NP-complete for LCNF+. Thus
we provide a polynomial-time reduction from LCNF+-NAE-SAT to
LCNFl

+-NAE-SAT proving the NP-completeness of the latter. So, let C ∈ LCNF+

be an arbitrary formula. For each variable x ∈ V (C) with w(x) > l we introduce
w(x) − (l − 1) new, pairwise different variables yx1 , y

x
2 , . . . , y

x
w(x)−(l−1). Then the

first l−1 occurrences of x in C remain, but each further occurrence of x we replace
by a yxi , for i = 1, . . . , w(x)− (l− 1). This way we obtain a formula C ′ where each
variable occurs at most l times. To provide NAE-SAT-equivalence to C we now
add the following 2-clauses to C ′ for each of these x ∈ V (C) occurring more than l
times in C:
If w(x)− (l − 1) ≤ l we add the following 2-clauses to C ′ obtaining C ′′:

(x ∨ zx) ∧ (yx1 ∨ zx) ∧ . . . ∧ (yxw(x)−(l−1) ∨ z
x)

Let C be nae-satisfiable with x = 1 then zx = 0 and hence
yx1 = yx2 = . . . = yxw(x)−(l−1) = 1. If C is nae-satisfiable with x = 0, the newly

added 2-clauses imply zx = 1 and hence yx1 = yx2 = . . . = yxw(x)−(l−1) = 0. So C ′′

is nae-equivalent to C and obviously in this case all the variables occur at most l
times in C ′′.
If w(x)− (l − 1) > l, we add:

(x ∨ zx1 ) ∧ (yx1 ∨ zx1 ) ∧ . . . ∧ (yxl−1 ∨ zx1 ) ∧ (vx1 ∨ zx1 ) ∧ (vx1 ∨ zx2 ) ∧ (yxl ∨ zx2 )∧
(yxl+1 ∨ zx2 ) ∧ . . . ∧ (yx2l−2 ∨ zx2 ) ∧ (vx2 ∨ zx2 ) ∧ (vx2 ∨ zx3 ) ∧ (yx2l−1 ∨ zx3 ) ∧ . . .

If C is nae-satisfiable with x = 0 the newly added 2-clauses imply zx1 = 1 and
hence: yx1 = yx2 = . . . = yx(l−1) = 0, vx1 = 0, hence zx2 = 1 and finally yxi = 0, for all
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i ∈ {l, . . . , w(x)− (l− 1)}. If C is nae-satisfiable with x = 1 we also obtain yxi = 1,
for all i ∈ {1, . . . , w(x) − (l − 1)}. So C ′′ is nae-equivalent to C and obviously in
this case all the variables also occur at most l times in C ′′.
So we have transformed C to C ′′ such that C is equivalent to C ′′ according to
NAE-SAT and all the variables in C ′′ occur at most l times. Thus it remains to
transform C ′′ to a formula C ′′′ ∈ LCNFl

+ such that C is equivalent to C ′′′ according
to NAE-SAT. For this purpose we proceed as follows:
Let x ∈ C ′′ be a variable with w(x) < l. We add the following 2-clauses to C ′′:
(x∨dx1)∧(x∨dx2)∧. . .∧(x∨dxl−w(x)), where the variables d

x
i , for i ∈ {1, . . . , l−w(x)},

are not already occurring in V (C ′′) and are pairwise different. Further, to achieve
l-regularity for the variables dxi , for i = 1, . . . , l − w(x), we add the following 2-
clauses: (dxi ∨ax1)∧ (dxi ∨ax2)∧ . . .∧ (dxi ∨axl−1), for each i ∈ {1, . . . , l−w(x)}, where
the variables axj , for j ∈ {1, . . . , l − 1}, are not already occurring in V (C ′′) and
are pairwise different. Now w(dxi ) = l and w(axj ) = l − w(x), for j = 1, . . . , l − 1.
Hence we have to add further 2-clauses: (axj ∨ bx1) ∧ (axj ∨ bx2) ∧ . . . ∧ (axj ∨ bxw(x)),

where the variables bxi , for i ∈ {1, . . . , w(x)}, are not already occurring in V (C ′′)
and are pairwise different. So now each variable occurs exactly l times apart
from the bxi , for i = 1, . . . , w(x), which occur l − 1 times in the current for-
mula. Thus for each such bxi we add the following clauses to the current for-

mula: (bxi ∨ eb
x
i ) ∧ (eb

x
i ∨ f b

x
i

1 ∨ g
bxi
1 ) ∧ . . . ∧ (eb

x
i ∨ f b

x
i

l−1 ∨ g
bxi
l−1) ∧ (f

bxi
l ∨ g

bxi
l ). Now

w(bxi ) = w(eb
x
i ) = l, so it only remains to establish l-regularity of the variables g

bxi
j

and f
bxi
j , for j = 1, . . . , l. We can achieve this by adding in a final step the following

2-clauses: (f
bxi
1 ∨ g

bxi
j ) ∧ (f

bxi
2 ∨ g

bxi
j+1) ∧ . . . ∧ (f

bxi
l ∨ g

bxi
j+l−1), for each j ∈ {2, . . . , l},

where l + i = i, for i > 1. Let C ′′′ be the formula we obtain after having added
all these 2-clauses to C ′′. As the subformula consisting of all these 2-clauses added
to C ′′ is obviously always nae-satisfiable, C ′′ and C ′′′ are equivalent according to
NAE-SAT.

Theorem 27. SAT remains NP-complete when restricted to the class LCNFl of
linear and l-regular formulas.

Proof. It is a well known result that SAT is NP-complete when restricted to
the linear formula class LCNF. Let C ∈ LCNF be an arbitrary formula. If C is
l-regular, C ∈ LCNFl and we are done. Otherwise for each variable x ∈ V (C)
occurring more than l times in C we proceed as follows: Let cx1 , c

x
2 , . . . , c

x
w(x) be

all the clauses containing x, then we introduce new, pairwise different variables
yx1 , . . . , y

x
w(x) and replace the occurrence of x in cxi , for each i ∈ {1, . . . , w(x)}, by

yxi without affecting the polarity. Further, we add the following 2-clauses which
provide SAT equivalence of the variables yxi with x:

(x ∨ yx1 ) ∧ (yx1 ∨ yx2 ) ∨ (yx2 ∨ yx3 ) ∧ . . . ∧ (yxw(x)−1 ∨ yxw(x)) ∧ (yxw(x) ∨ x)

Let C ′ be the resulting formula. Obviously w(x) ≤ l, for all x ∈ V (C ′). To provide
l-regularity of the formula we now consider all the variables x ∈ V (C ′) for which
holds w(x) < l and proceed as follows: For each such variable x ∈ V (C ′) we add
the following 2-clauses to C ′:

(x ∨ zx1 ) ∧ (x ∨ zx2 ) ∧ . . . ∧ (x ∨ zxl−(w(x)))
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where zxi , for i ∈ {1, . . . , l − w(x)} are new, pairwise different variables not yet
occurring in V (C ′). Now w(x) = l, but to achieve l-regularity for zxi we have to
add further clauses: For each i ∈ {1, . . . , l − w(x)} we add:

(zxi ∨ ax1) ∧ (zxi ∨ ax2) ∧ . . . ∧ (zxi ∨ axl−1)

where axj , for j ∈ {1, . . . , l − 1} are new and pairwise different variables. We have
now achieved w(zxi ) = l, for all i ∈ {1, . . . , l−w(x)} but it still remains to establish
l-regularity for the axi , for i ∈ {1, . . . , l − 1} because now w(axi ) = l − w(x). Thus
we finally add (axi ∨ bx1)∧ (axi ∨ bx2)∧ . . .∧ (axi ∨ bxw(x)) with b

x
j , for j ∈ {1, . . . , w(x)},

new and pairwise different variables. The last clause we add to C ′ to establish
l-regularity is (bx1 ∨bx2 ∨ . . .∨bxw(x)). Let C

′′ be the formula that we get when adding

all these clauses to C ′. Obviously the resulting formula which consists of all these
newly added clauses to C ′ is always satisfiable no matter how x is set. Thus C and
C ′′ are SAT-equivalent.

3.3 XSAT on Linear Formulas with Regularity Con-
ditions

Recall that LCNF denotes the linear formula class, XLCNF the exact linear for-
mula class. Moreover, k − A, (≥ k) − A or (≤ k) − A denote formulas of the
class A ∈ {CNF,LCNF,XLCNF} for which additionally holds that their clauses
have length exactly k, at least k or at most k. Then the classes Al, A≥l or
A≤l contain formulas of the class A ∈ {CNF,LCNF,XLCNF}, for which addi-
tionally holds that all variables in these formulas occur exactly l times, at least l
times or at most l times. A+ denotes the positive monotone formulas of the class
A ∈ {CNF,LCNF,XLCNF}.

In this section we focus on the following classes:

CNF+ ⊃ k-CNF+ ⊃ k-CNF≤l
+ ⊃ k-CNF

l
+ ⊃ (≤ l)-LCNF≥l

+ ⊃ (≤ l)-LCNFl
+

CNF+ ⊃ CNFl
+ ⊃ LCNFl

+ ⊃ (≤ l)-LCNFl
+

Clearly, the same inclusion relations are also valid for the non-monotone coun-
terparts. For k ≤ 2 or l ≤ 2, all above classes behave polynomial-time solvable
regarding XSAT and also NAE-SAT, which is even the case for variable-weighted
optimisation versions of these problems [42].

For CNF+ and k-CNF+ the NP-completeness of XSAT is well known. For
LCNF+, k-LCNF+ and (≥ k)-LCNF+ the NP-completeness was shown in the last
section. For the remaining classes we prove the NP-completeness of XSAT in this
section. The next two results treat the non-linear case, which will be referred to
later.

Theorem 28. XSAT remains NP-complete for k-CNF≤l
+ and k-CNF≤l, k, l ≥ 3.

Proof. We provide a polynomial-time reduction from k-CNF+-XSAT (which

is NP-complete [21]) to k-CNF≤l
+ establishing NP-completeness of the latter and

thus of k-CNF≤l. To that end, let C be an arbitrary formula in k-CNF+. For
each x ∈ V (C) with wC(x) > l, we introduce p := wC(x) − (l − 1) new variables
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x1, x2, . . . , xp. Let the first l−1 occurrences of x remain unchanged and replace the
p remaining occurrences of x by the variables x1, x2, . . . , xp. Let C

′ be the resulting
formula. Next we introduce new, pairwise different variables aij , for i = 1, . . . , p,
j = 1, . . . , k−1, and add the following clauses to C ′ which ensure XSAT-equivalence
of the newly introduced variables x1, x2, . . . , xp with x.

(x ∨ a11 ∨ a12 ∨ . . . ∨ a1,k−1) ∧ (x1 ∨ a11 ∨ a12 ∨ . . . ∨ a1,k−1)

∧(x1 ∨ a21 ∨ a22 ∨ . . . ∨ a2,k−1) ∧ (x2 ∨ a21 ∨ a22 ∨ . . . ∨ a2,k−1)

∧ . . .
∧(xp−1 ∨ ap1 ∨ ap2 ∨ . . . ∨ ap,k−1) ∧ (xp ∨ ap1 ∨ ap2 ∨ . . . ∨ ap,k−1)

Hence C and C ′ are XSAT-equivalent, and obviously no variable occurs more than
l times in C ′.

Theorem 29. XSAT remains NP-complete for k-CNFl
+ and k-CNFl, k, l ≥ 3.

Proof. We provide a polynomial-time reduction from k-CNF≤l
+ -XSAT (which

is NP-complete) to k-CNFl
+-XSAT similar to the technique in [32]. Let C be an

arbitrary formula in k-CNF≤l
+ with variable set V (C) = {x1, . . . , xn}. We introduce

l pairwise variable-disjoint copies C1, . . . , Cl of C, such that the variables in Ci are
{xi1, . . . , xin}, for i = 1, . . . , l. For each xj ∈ V (C) with wC(xj) < l we construct
the formulas Dxj ,1, . . . , Dxj ,l−wC(xj) with

Dxj ,i =

l∧
r=1

(
xrj ∨ ai,1 ∨ . . . ∨ ai,k−1

)
for 1 ≤ i ≤ l − wC(xj). Note that ai,j occurs exactly l times in Dxj ,i and
nowhere else, for i = 1, . . . , l − wC(xj), j = 1, . . . , k − 1. Defining

C ′ =
l∧

i=1

Ci ∧
∧

xj∈V (C)

l−wC(xj)∧
i=1

Dxj ,i

we observe that xij occurs wC(xj) times in Ci and once in each Dxj ,i, for

i = 1, . . . , l−wC(xj). Thus each x
i
j occurs l times in C ′. So C ′ belongs to k-CNFl

+.
We show that C ∈ XSAT if and only if C ′ ∈ XSAT. Let C be x-satisfiable,

then we can use a fixed x-model t of C to x-satisfy the copies C1, . . . , Cl of C. If
t(xj) = 1 we also set xrj = 1, for r = 1, . . . , l, and ai,1 = . . . = ai,k−1 = 0 yielding
a x-model for Dxj ,i, for all xj ∈ V (C) and 1 ≤ i ≤ wC(xj). If t(xj) = 0 we assign
xij = 0, for i = 1, . . . , l and we set ai,1 = 1 as well as ai,2 = . . . = ai,k−1 = 0 yielding
a x-model for Dxj ,i, for all xj ∈ V (C) and 1 ≤ i ≤ wC(xj). The reverse direction
is obvious.
The situation is different from the SAT case where there are k and l, for k, l ≥ 3,

such that k-CNFl-SAT is polynomial-time solvable as mentioned in the introduction
[32]. Now we are able to pay attention to the linear and l-regular classes.

Theorem 30. XSAT remains NP-complete for LCNFl
+, and LCNFl, l ≥ 3.
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Proof. We provide a polynomial-time reduction from CNFl
+-XSAT (which

is NP-complete) to LCNFl
+-XSAT. Let C be an arbitrary formula in CNFl

+. Is
C is not linear, we proceed as follows for each variable xi ∈ V (C): Since each
fixed variable xi ∈ V (C) has exactly l occurrences in C, namely in the clauses
cj1 , . . . , cjl , we introduce a new variable yjsxi

6∈ V (C), for each such occurrence
2 ≤ s ≤ l, except for the first occurrence of xi in cj1 . Then we replace each
occurrence of xi in cjs (except in cj1) with y

js
xi
, for 2 ≤ s ≤ l. Let C ′ be the resulting

formula. Then C ′ is obviously linear, monotone and each variable occurs exactly
once in C ′. For each xi ∈ V (C), we introduce new, pairwise different variables
zxi
1 , . . . , z

xi

l−1 6∈ V (C ′). Next we add the following 2-clauses to C ′ providing XSAT-

equivalence of the variables xi, y
j2
xi
, . . . , yjlxi

:

Pxi =(xi ∨ zxi
1 ) ∧ (xi ∨ zxi

2 ) ∧ . . . ∧ (xi ∨ zxi

l−1)

∧(yj2xi
∨ zxi

1 ) ∧ (yj2xi
∨ zxi

2 ) ∧ . . . ∧ (yj2xi
∨ zxi

l−1)

∧(yj3xi
∨ zxi

1 ) ∧ (yj3xi
∨ zxi

2 ) ∧ . . . ∧ (yj3xi
∨ zxi

l−1)

∧ . . .
∧(yjlxi

∨ zxi
1 ) ∧ (yjlxi

∨ zxi
2 ) ∧ . . . ∧ (yjlxi

∨ zxi

l−1)

Observe that C ′′ :=
∧

xi∈V (C) Pxi∧C ′ is l-regular: wC′′(zxi
r ) = l, for r = 1, . . . , l−1,

wC′′(yjsxi
) = l, for s = 2, . . . , l, and wC′′(xi) = l, for each xi ∈ V (C). Since every

variable appears only once in C ′, C ′ is linear. Obviously P is linear; and the
variables zxi

1 , . . . , z
xi

l−1 do not occur in C ′, so P ∧C ′ = C ′′ is linear, too. C is XSAT-

equivalent with C ′′, because of the XSAT-equivalence of the variables xi, y
j2
xi
, . . . , yjlxi

and Pxi are always x-satisfiable, for all i.

Finding a concrete reduction for the NP-completeness proof of XSAT for
k-LCNFl

+ is a very complicated problem. We are only able to show NP-completeness

of XSAT for l-LCNFl, where l = q + 1 and q is a prime power. This is due to the
fact that we can exploit block formula patterns providing backbone-variables. A
k-block formula directly corresponds to a finite projective plane of order k−1. Un-
fortunately it is a hard open question to decide whether a projective plane exists
for a given k ∈ N [46]. However, it is a well known fact in combinatorics that for
prime power orders the corresponding projective planes can easily be computed.

Theorem 31. XSAT remains NP-complete for l-LCNFl, for l = q + 1, where q is
a prime power.

Proof. We provide a polynomial-time reduction from l-CNFl
+ to l-LCNFl, for

l = q + 1, where q is a prime power. Let C ∈ l-CNFl
+ be an arbitrary formula

and V (C) = {x1, x2, . . . , xn} the set of its variables. For each variable xi ∈ V (C)
we proceed like in the beginning of the proof of Theorem 30 obtaining the corre-
sponding formulas C ′ and P =

∧
xi∈V (C) Pxi . Next we enlarge each 2-clause of

P by exactly l − 2 many x-backbone variables all of which must be assigned to 0
and obtain l-clauses this way. The x-backbone variables are provided via l-block
formulas as follows: Each such l-block formula Bl is l-regular, l-uniform and exists
whenever l = q + 1, for q prime power [42]. Bl is not x-satisfiable but removing
an arbitrary clause of Bl yields a x-satisfiable formula, where the variables of the
removed clauses are x-backbone variables which have to be set to 1 [39]. Therefore
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we provide n(l−1)(l−2) many l-block formulas which are pairwise variable-disjoint.
Removing a clause of each of them in total yields n(l−1)(l−2)l distinct x-backbone
variables. Since in P we have n(l − 1)l many 2-clauses, each of which needs l − 2
variables to become an l-clause, this fits perfectly. Let P ′ be the formula obtained
from P this way. Then C ′′ := C ′ ∧ P ′ is l-regular and l-uniform by construction.
Moreover, C ′′ is x-satisfiable if, and only if, C is x-satisfiable because P provides the
XSAT-equivalence of the original variables with the replaced ones which is preserved
by P ′ through the x-backbone 0 variables. Note that C ′′ is non-monotone as we
have to negate the x-backbone variables when adding them to the clauses of P .

This result provides evidence that NP-completeness also holds for all values of
l ≥ 3. Unfortunately, the proof does not easily transfer to the monotone case due
to the fact that we have not been able to find suitable formulas providing backbone
variables which must be set to 0. However considering the monotone case we are
able to treat the following larger classes.

Theorem 32. XSAT is NP-complete for (≤ l)-LCNFl
+, (≤ l)-LCNFl, l ≥ 3.

Proof. We provide a polynomial time reduction from l-CNFl
+-XSAT (which

is NP-complete according to Theorem 29) to (≤ l)-LCNFl
+-XSAT. Let C be an

arbitrary formula in l-CNFl
+. If C is not linear, we proceed as in the begin-

ning of the proof of Theorem 30 obtaining the corresponding formulas C ′ and
P =

∧
xi∈V (C) Pxi . Again C ′′ :=

∧
xi∈V (C) Pxi ∧ C ′ is l-regular and linear by con-

struction. Moreover, each clause of C ′′ has a clause length of at most l, because
in C ′ each clause has a length of exactly l and P consists of 2-clauses only. C ′′ is
XSAT-equivalent with C which is ensured by P .

Remark 4. Note that XSAT also remains NP-complete for the class (≤ l)-LCNF≥l
+

and for (≤ l)-LCNF≥l, l ≥ 3.

3.4 An Algorithm Solving XSAT For LCNFl+

In this section we present an algorithm solving XSAT for the class LCNFl
+ running

faster than the so far best algorithm for XSAT by J. M. Byskov et al. [12]. Our
Algorithm AVRG uses backtracking and exploits the l-regularity of the formulas to
apply an average clause length argument. Let C ∈ LCNFl

+ be a formula with aver-
age clause length α. Then Algorithm AVRG works as follows: It searches a variable
x ∈ V (C) such that the formula C(x) consisting of all clauses containing x has a
clause legth ≥ α. Setting x = 1 and the other variables in the x-clauses to 0 we
obtain a formula C ′ with an average clause length α1 ≤ α. As long as the formula
is not empty and the average clause length of the remaining formula is still > 2
we search for a variable xi such that C(xi) has at least the current average clause
length. In case the formula is empty, we have found an x-model for C. If the aver-
age clause length of the current formula is ≤ 2, we can solve XSAT for this formula
in polynomial-time by applying a polynomial-time algorithm to this formula. If it
is not x-satisfiable, we backtrack: We undo the setting made in the last recursion
step such that the variable x which we have set to 1 before in the last recursion step
we now set to 0 and the other variables in the x-clauses we do not assign for now.
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If no backtracking is possible and no x-model has been found yet, C is unsatisfiable.

Algorithm AVRG
INPUT: C0 ∈ LCNFl

+ with the average clause length α0 = n·l
m , where n is the

number of variables and m the number of clauses of C0.
OUTPUT: an x-model, if C0 is x-satisfiable, C0 is not x-satisfiable, else.
begin

1. As long as the current formula is not empty do:

(a) Apply the unit clause rule.

(b) Calculate the average clause length αi of the current formula Ci.

(c) If the average clause length αi of the current formula Ci is ≤ 2:

• Solve XSAT for Ci by applying a polynomial-time 2-XSAT algo-
rithm.

• If the algorithm returns an x-model for Ci, then an x-model for
C0 is also found.

• Else backtrack: Let xi−1 be the variable which is now set to 1 and
for which holds that it has been set to 1 as last (of all the variables
of C0 which are also set to 1 actually). Add all xi−1-clauses which
we have deleted before to the current formula. Further undo the
assignment of variables which we have performed in the steps after
xi−1 was set to 1 and set xi−1 = 0. Note that now especially all the
variables in the xi−1-clauses (apart from xi−1) are not assigned.

• If no backtracking is possible and the formula is not empty yet
then return C0 is not x-satisfiable

(d) • Search for a variable xi ∈ V (Ci) of the current formula Ci, such
that the subformula Ci(xi), consisting of all the xi-clauses, has an
average clause length of at least αi.

• Set xi = 1 and all the other variables of C(xi) to 0.

• Remove Ci(xi) from Ci and also remove all the variables which are
set to 0 from the remaining clauses in Ci, obtaining the formula
Ci+1.

• If the formula Ci+1 is empty, then an x-model for C is found.

• If there is a contradiction now (e.g. an empty clause), backtrack
to the formula Ci and undo the setting of the variables in Ci(xi).
Instead, assign xi = 0 now. If no backtracking is possible, return
C0 is not x-satisfiable

end

In the following we analyse the running time of Algorithm AVRG for the
class LCNFl

+, which is NP-complete according to Theorem 30. Let C0 ∈ LCNFl
+

be an arbitrary formula with n variables and m clauses.
If l ≥ n, we obtain for all xi ∈ V (C0) that C0 has at least one unit clause (xi), this
is due to the pigeonhole principle. Hence we must set xi = 1, for all xi ∈ V (C0),
and thus cannot x-satisfy C0.

So in the following we assume 3 ≤ l < n. Let α0 := ||C0||
|C0| = n·l

m be the average
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clause length of C0. Let Ci be a subformula of C0 with the average clause length
αi. Then we can always find a variable x such that the subformula Ci(x) ⊂ Ci

consisting only of all x-clauses has the average clause length ≥ αi.
This is due to the following Theorem:

Theorem 33. Let C be a l-regular CNF formula and let α = ||C||
|C| be the average

clause length of C. Then there is a variable x ∈ V (C) such that α(x) ≥ α, where

α(x) = ||C(x)||
|C(x)| and C(x) is the subformula of C consisting of all clauses containing

x.

Before starting with the proof of Theorem 33 we first prove the following useful
Lemma:

Lemma 8. Let C be a CNF formula. Then

|C|·
∑
c∈C

|c|2 ≥ ||C||2 = α2|C|2

Here α = ||C||
|C| is the average clause length of C and ||C|| =

∑
c∈C |c|.

Proof. If C = ∅ then obviously the assertion of Lemma 8 is true. Now let
|C| ≥ 1, then for all c ∈ C there is a δc ∈ Z such that |c| = α+ δc and

∑
c∈C δc = 0.

Since δ2c ≥ 0 and 2αδc ≥ 0 we obtain

|C|·
∑
c∈C

|c|2 = |C|
∑
c∈C

(α2 + δ2c + 2αδc)

≥ |C|
∑
c∈C

α2

= |C|2α2 = ||C||2

Applying Lemma 8 we are now able to prove Theorem 33.

Proof. Since C is l-regular, we get |C(x)| = l and hence α(x) = ||C(x)||
l for

all x ∈ V (C). Suppose there is a l-regular formula C such that for all x ∈ V (C):
α(x) < α. It follows that

∑
x∈V (C) α(x) < α|V (C)| (*). Now it is

α(x) =
||C(x)||

l
=

∑
c∈C(x) |c|
l
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So we get

∑
x∈V (C)

α(x) =
∑

x∈V (C)

∑
c∈C(x) |c|
l

=

∑
x∈V (C)

∑
c∈C(x) |c|

l

=

∑
c∈C |c|

2

l
≥
L.8
||C||2

l|C|

=
||C||
|C|
||C||
l

= α· |V (C)|

Hence we obtain
∑

x∈V (C) α(x) ≥ α· |V (C)| which is a contradiction to (*). There-

fore at least one variable x ∈ V (C) with α(x) ≥ α must exist.

We consider a tree t whose number of leaves symbolises the number of back-
tracks and hence determines the running time of Algorithm AVRG. Let b0 be the
maximal number of branches in the 0th level of the tree and hence the maximal
number of variables set to 0 in the formula C0 such that the average clause length
of C0 is still > 2. Then we obtain for b0:

α0 − b0·l
m > 2 ⇔ b0 < (α0 − 2)ml . That means if b0 ≥ (α0 − 2)ml , then the

average clause length of C0 is ≤ 2. So the 0th level of t has at most b0 := (α0−2)ml
many branches. In the jth branch of level 0 exactly j variables are set to 0, for
j = 0, . . . , b0. To calculate the number of branches of the 1st level which are
adjacent to the ith node d0i of the 0th level, for i = 1, . . . , b0, we need to know how
many variables were set to 0 before in the 0th level along the path from the root
down to d0i . Let x0 ∈ {1, . . . , b0} denote the number of variables set to 0 in the
0th level. Then we define

α′
0(x0) = α0 −

x0· l
m

and

α1(x0) = α′
0(x0)−

l(l − 1)(α′(x0)− 1)

m− l
Note that α′

0(x0) denotes the average clause length of C0 after having set exactly x0
many variables to 0, for x0 ∈ {1, . . . , b0}. α1(x0) denotes the average clause length
after having set x0 many variables to 0, one variable y to 1 (which is altogether
occurring in l many clauses of average clause length α′

0(x0)) and all other variables
occurring in the y-clauses to 0. Now we are able to calculate the maximal number
of branches which are adjacent to a node in the 0th level:

b1(x0) = (α1(x0)− 2)
m− l
l

So b1(x0) is the maximal number of branches going out from a node in the 0th
level where at first x0 many variables are set to 0 in C0, for x0 ∈ {1, . . . , b0}. Next
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we calculate the number of branches going out from an arbitrary node di−1 of the
(i − 1)th level. Note that in order to do this we need to consider the path Pdi−1

from the root of the tree down to di−1 and also need to know xk, i.e. the number
of variables which are set to 0 in the kth level of Pdi−1, for all k = 0, 1, . . . , i− 1.
We obtain inductively:

bi(x0, x1, . . . , xi−1) = (αi(x0, x1, . . . , xi−1)− 2)
m− i· l

l

where

αi(x0, x1, . . . , xi−1) = α′
i−1(x0, x1, . . . xi−1)−

l(l − 1)(α′
i−1(x0, x1, . . . xi−1)− 1)

m− i· l

αi(x0, x1, . . . , xi−1) is the average clause length of the formula, where in the kth
level exactly xk many variables are set to 0 before having set a variable to 1, for
k = 0, 1, . . . , i− 1.

α′
i−1(x0, x1, . . . xi−1) = αi−1(x0, x1, . . . xi−2)−

xi−1· l
m− (i− 1)· l

α′
i−1(x0, x1, . . . xi−1) is the average clause length of the formula, where in the kth

level exactly xk many variables are set to 0 before setting a variable to 1, for
k = 0, 1, . . . , i− 2, and in the (i− 1)th level xi−1 many variables are set to 0 (and
no variable has been set to 1 here yet).

Let N(t) be the number of leaves in t then O(N(t)) is the running time of
Algorithm AVRG. Using a computer implementation which calculates the number
of leaves in t for different inputs of α0, l and n we compare N(t) with 20.2325n (see
Appendix, Experimental Results) and obtain that Algorithm AVRG asymptotically
performs much better for the class LCNFl

+ than the so far best algorithm from J.
M. Byskov et al. for CNF-XSAT with a running time of O(20.2325n) [12]. One can
also easily verify that the algorithm from J. M. Byskov et al. does not perform
better for the class LCNFl

+ than in O(20.2325n). So Algorithm AVRG has the so

far best running time for LCNFl
+ concerning XSAT.

Correctness of the algorithm AVRG:When setting a variable y ∈ V (F ) of a LCNF l
+

formula to 1, the algorithm immediately sets all other variables in the y-clauses to 0
and hence x-satisfies all y-clauses. After evaluating the current formula we obtain a
formula with l clauses less and the average clause length has diminished. Repeating
this process until we obtain a formula with an average length ≤ 2 we achieve that
we can solve XSAT in polynomial-time for the remaining formula. When obtaining
either a contradiction or not x-satisfiable, we go a step back and reverse the as-
signment of the last step. If we cannot go back anymore and no x-model has been
found yet,the formula obviously is not x-satisfiable.

The following theorem summarises our results:

Theorem 34. Algorithm AVRG has the so far best running time for LCNFl
+ con-

cerning XSAT.
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3.5 The Exact Linear Case

This section is devoted to a certain subclass of linear formulas, namely the exact
linear ones. Such formulas, as defined earlier, have the property to be linear, and
in addition the variable sets of each two distinct clauses have exactly one variable
in common. Exact linear formulas are quite small instances since the number of
clauses never exceeds the number of variables [38, 42]. In [42] it is shown that SAT
restricted to XLCNF is polynomial time solvable. In this section we show that this
also holds for NAE-SAT. To that end, we will use a result for the satisfiability
problem restricted to a certain CNF subclass published recently:

Theorem 35. [Theorem 3 in [44]] For C ∈ CNF, such that the variable sets of
each pair of clauses have exactly one or all members in common, SAT and moreover
#SAT can be decided, respectively solved, in polynomial-time.

Here as usual #Π denotes the counting version of a decision problem Π, search-
ing for the number of solutions that a given instance of Π has. On the basis of the
last theorem, we obtain:

Corollary 4. NAE-SAT restricted to exact linear formulas is polynomial-time solv-
able and moreover #NAE-SAT is polynomial-time solvable.

Proof. Given an arbitrary CNF formula C, it is easy to see that C ∈ NAE-SAT
holds true if, and only if, C ∪ Cγ ∈ SAT, where Cγ denotes the formula obtained
from C by complementing the literals of each clause in C. Now let C ∈ XLCNF
be arbitrarily chosen, then C ∪ Cγ is a formula such that each pair of clauses has
exactly one or all members in common. So, according to Theorem 35, we derive
that NAE-SAT is polynomial-time decidable (and solvable) for exact linear formu-
las. Moreover, it is easy to see that each fixed nae-model of C gives rise to a unique
SAT model of C ∪Cγ and vice versa. Hence the corresponding model spaces are in
1-to-1-correspondence implying that #NAE-SAT can be solved in polynomial-time
using of Theorem 35.

In 1996, T. Eiter [20] mentioned a problem called symmetrical intersecting
monotone UNSAT (SIM-UNSAT), which is computationally equivalent to a prob-
lem called IM-UNSAT that in turn forms the hard core of several interesting com-
binatorial problems arising in different areas. In [20] Eiter asks the question con-
cerning the computational complexity of SIM-UNSAT (resp. IM-UNSAT) which
has been open for 15 years, already in 1996. As far as we know this question has
not been answered so far. Instances of SIM-UNSAT have the form C ∪ Cγ , where
C is a set of pairwise intersecting monotone clauses. The task is to decide whether
such an instance is unsatisfiable. Observe that according the proof above, solving
NAE-SAT for exact linear formulas in polynomial-time means to solve SIM-UNSAT
in polynomial time restricted to the special case where the monotone clauses inter-
sect pairwise in exactly one variable. In that way, we have given a partial answer
to Eiter’s problem, however, the general case clearly remains open.

3.5.1 XSAT for Exact Linear Formula Classes

This section is mainly devoted to considering XSAT for exact linear formulas. Be-
sides proving the NP-completeness of XLCNF-XSAT we also provide polynomial-
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time subclasses. The next theorem describes a quite interesting result und its proof
is really complex.

Theorem 36. XSAT remains NP-complete for XLCNF+ and XLCNF.

Proof. We give a polynomial-time reduction from LCNF+-XSAT to XLCNF+-
XSAT. Let C = c1 ∧ c2 ∧ . . . ∧ cm ∈ LCNF+ be an arbitrary formula that is not
exact linear, otherwise we are done. As long as there is a pair of clauses ci, cj ∈ C,
i, j ∈ {1, . . . ,m} which do not share a variable, introduce a new variable z that
does not occur in the current formula and enlarge both ci and cj with the variable
z. The resulting formula C ′ obviously is exact linear. Let Z denote the collection
of all newly introduced variables this way. Next, we add at least m + 1 further
clauses collected in D whereas C ′ is modified to C̃ ′ so that the resulting formula
C ′′ := C̃ ′ ∧D stays exact linear and becomes XSAT-equivalent with C.
The construction of D and the modification of C ′ proceeds hand in hand: Initially,
D is empty. As long as there is a variable zi ∈ Z not occurring in any clause of D,
add a new clause d to D containing zi and a new distinguished variable u (which
is required to be contained in each clause of D). For each clause ci of the current
formula C ′ such that V (d)∩V (ci) = ∅ introduce a new variable wd,i and add it to
d and ci. Let W denote the collection of all these newly introduced variables..
When all variables in Z occur in D, but D still contains less than m + 1 clauses,
add sufficiently many new clauses to D each containing u. Each such new clause e
is filled-up by m new variables ye,1, . . . , ye,m such that ye,r is added to W and to
the rth clause of the current formula C ′, 1 ≤ r ≤ m. Finally, all newly introduced
variables in Z ∪W occur in D and in the final version C̃ ′ of C ′ and the formula is
exact linear.
Let C be x-satisfiable with x-model t. Obviously, t can be extended to all variables
of C ′′ by setting all newly introduced variables of W ∪ Z to 0 and u = 1. This
yields a x-model for C ′′. Conversely, let C be x-unsatisfiable, and assume that C ′′ is
x-satisfiable. Then C̃ ′ can only become x-satisfiable by setting at least one variable
x ∈ Z ∪W to 1. As each variable of Z ∪W also occurs in D, there must be a clause
di ∈ D with x ∈ di. Hence u = 0 in di, and thus, to x-satisfy D, there must be
exactly one variable from Z ∪W set to 1 in each of its clauses. As D has at least
m+ 1 clauses, at least m+ 1 distinct variables from Z ∪W must be set to 1 in D.
Since all these variables occur in C̃ ′, but C̃ ′ has exactly m clauses, the pigeonhole
principle implies that there is a clause in C̃ ′ containing at least two variables set to
1. This yields a contradiction, hence C ′′ is x-unsatisfiable, too.
To illustrate this reduction, consider the input formula

C = (x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x5 ∨ x6) ∧ (x1 ∨ x7 ∨ x8) ∈ LCNF+

At first we obtain C ′ by making the clauses of C exact linear introducing the new
variables Z = {z1, z2}:

C ′ =(x1 ∨ x2 ∨ x3 ∨ z1)
∧(x4 ∨ x5 ∨ x6 ∨ z1 ∨ z2)
∧(x1 ∨ x7 ∨ x8 ∨ z2)

Next we add clauses D = {d1, d2} each containing a fixed variable u so that all
variables in Z occur in the new clauses. To preserve the exact linearity we need to
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introduce new variables W = {w1, w2}:

(x1 ∨ x2 ∨ x3 ∨ z1 ∨ w2)

∧(x4 ∨ x5 ∨ x6 ∨ z1 ∨ z2)
∧(x1 ∨ x7 ∨ x8 ∨ z2 ∨ w1)

∧ (u ∨ z1 ∨ w1)︸ ︷︷ ︸
=:d1

∧ (u ∨ z2 ∨ w2)︸ ︷︷ ︸
=:d2

In this example D has only two clauses, so we have to add two more clauses d3, d4
to ensure XSAT-equivalence and preserve exact linearity, finally yielding
W = {w1, w2, y1, . . . , y6}, and:

C ′′ =(x1 ∨ x2 ∨ x3 ∨ z1 ∨ w2 ∨ y1 ∨ y4)
∧(x4 ∨ x5 ∨ x6 ∨ z1 ∨ z2 ∨ y2 ∨ y5)
∧(x1 ∨ x7 ∨ x8 ∨ z2 ∨ w1 ∨ y3 ∨ y6)
∧(u ∨ z1 ∨ w1)

∧(u ∨ z2 ∨ w2)

∧ (u ∨ y1 ∨ y2 ∨ y3)︸ ︷︷ ︸
=:d3

∧ (u ∨ y4 ∨ y5 ∨ y6)︸ ︷︷ ︸
=:d4

∈ XLCNF+

It is not hard to see that the result above sharpens the long-standing NP-hardness
result for clique packing of a graph maximizing the number of covered edges of Hell
and Kirkpatrick [24]. Recently Chataigner et al. have provided significant approx-
imation (hardness) results regarding the clique packing problem [13]. It could be
interesting to investigate in the future whether similar approximation results can
be gained for XSAT on (X)LCNF.

Next we are interested in XSAT for (≥ k)-XLCNF+, with k ≥ 3. To prove its
NP-completeness, we need to consider the class (≥ |C|)-LCNF+ consisting of all
monotone and linear formulas C such that each clause has at least length |C|.

Lemma 9. Every formula C in (≥ |C|)-LCNF+ is x-satisfiable.

Proof. Let C be a formula in (≥ |C|)-LCNF+ with m := |C| clauses and
assume there is a clause c0 ∈ C containing at least the variables x1, . . . , xm such
that wC(xi) ≥ 2, for 1 ≤ i ≤ m. Due to linearity this implies that there are clauses
ci, 1 ≤ i ≤ m, such that xi ∈ V (ci), thus |C| ≥ |{c0, c1, . . . , cm}| ≥ m+1 yielding a
contradiction. It follows that each clause c of C contains at least one literal which
occurs only once in C. Hence, setting exactly these variables to 1 x-satisfies C.

Let (k, |C| − 1)-LCNF+, k ≥ 3, denote the class of all monotone and linear
formulas C such that each clause has at least length k and at most length |C| − 1.
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According to Theorem 4 in [39] XSAT is NP-complete for (≥ k)-LCNF+, for each
fixed k ≥ 3. According to Lemma 9 (≥ |C|)-LCNF+ behaves trivially for XSAT.
Since XSAT is NP-complete for k-LCNF+ and k-LCNF+ ⊆ (k, |C| − 1)-LCNF+, it
follows that XSAT is NP-complete for (k, |C| − 1)-LCNF+, too.

We were not able to establish the NP-completeness for k-XLCNF+, i.e. uniform
formulas, regarding XSAT. However, on behalf of the NP-completeness of
(k, |C| − 1)-LCNF+-XSAT just shown, we can provide the next result by using the
same technique as in the proof of Theorem 36 starting with a formula in
(k, |C| − 1)-LCNF+.

Theorem 37. XSAT remains NP-complete for (≥ k)-XLCNF+, for each k ≥ 3.

Proof. We provide a polynomial-time reduction from
(k, |C|−1)-LCNF+-XSAT to (≥ k)−XLCNF+-XSAT establishing NP-completeness
of the latter. For this purpose let C ∈ (k, |C| − 1)-LCNF+ be an arbitrary input
formula: C = c1 ∧ c2 ∧ . . . ∧ c|C| and k ≤ |ci| ≤ |C| − 1 for all i ∈ {1, . . . , |C|}.
Hence k ≤ |C|−1. We procced as follows: If C is already exact linear, we are done.
Otherwise, as long as there is a pair of clauses ci, cj ∈ C, i, j ∈ {1, . . . , |C|} which
do not share a variable, we introduce a new variable zi /∈ V (C) not occurring in the
formula yet and enlarge the clauses ci and cj with the variable zi. Let C

′
be the re-

sulting formula. Obviously C ′ is exact linear and each clause in C ′ has length ≥ k.
Let Z = {z1, . . . , zp} = V (C ′)− V (C) be the set of all newly introduced variables.
We obtain: Each zi ∈ Z occurs exactly twice in C ′. To ensure XSAT-equivalent of
C and C ′ we add further clauses to C ′, which provide the XSAT-equivalence of C ′:
We add at least |C| + 1 clauses to C ′ and denote this new set of clauses with
D = {d1, . . . , dq}, where q ≥ |C|+1. A detailed construction of such a clause set D
is presented in the proof of Theorem 36. As di shares exactly one variable with each
clause of C ′ we obtain |di| = |C|+1, for each clause di, i ∈ {1, . . . , q}. Thus we have
|di| = |C|+ 1 > |C| − 1 ≥ k. Furthermore, u ∈ V (di), for all i ∈ {1, . . . , q}, where
u is a variable not yet occurring in C ′, so the newly introduced clauses are exact
linear. Hence C ′′ := C ′ ∧ d1 ∧ d2 ∧ . . . ∧ dq is positive monotone, exact linear and
XSAT equivalent to C as shown in the proof of Theorem 36. Further, as each clause
of C has at least length k and |di| ≥ k, C ′′ belongs to the class (≥ k)−XLCNF+.

3.5.2 XSAT for k-XLCNF+

In this section we consider the class k-XLCNF+ of k-uniform, exact linear and
positive monotone CNF formulas, for k ∈ N, k ≥ 2. Notice that for l > k the class
k-XLCNFl

+ is empty because of exact linearity and k-uniformity:
Suppose there is a k-uniform, l-regular, exact linear and positive monotone CNF
formula C which is not an empty formula for l > k. Then there is a variable
x ∈ V (C) which occurs in exactly l clauses c1, . . . , cl. The formula consisting only
of the clauses c1, . . . , cl is not l-regular; to make it l-regular we have to add further
clauses. But we cannot add a further clause cl+1 such that c1, . . . , cl, cl+1 are exact
linear and k-uniform, because cl+1 must share a variable with each of the clauses
c1, . . . , cl and hence cl+1 would have a length of at least l, where l > k which is a
contradiction to the k-uniformity of C. Therefore the class k-XLCNFl

+, for l > k,
is empty.
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As mentioned above, there are some difficulties in establishing the complexity of
XSAT for arbitrary k-uniform, exact linear formulas. We were not able to establish
the complexity of XSAT for these formulas. Instead we present the polynomial-
time solvability of XSAT for the k-uniform subclasses k-XLCNF+, where k ≤ 6.
For that purpose we introduce several lemmas.

Lemma 10. Let C ∈ k-XLCNF+. If there is a variable x ∈ V (C) with w(x) > k,
then x ∈ V (c), for all c ∈ C.

Proof. Suppose there is a clause ci ∈ C that does not contain x. Then ci must
share exactly one variable with every clause containing x. There are more than k
many clauses containing x, but ci is only k-uniform. Hence C has only clauses
which contain x.

Lemma 11. The class k-XLCNFk
+ is not x-satisfiable.

Proof. Let C ∈ k-XLCNFk
+. Then C is a k-block formula according to Lemma

20 in [39] and thus not x-satisfiable according to Lemma 3 in [39].

Lemma 12. Let C ∈ k-XLCNF+ and let x ∈ V (C) be a variable with w(x) = k−1
in C. Then C is x-satisfiable.

Proof. Let C ∈ k-XLCNF+ and x ∈ V (C) with w(x) = k−1. Let c1, . . . , ck−1

be the clauses containing x. We set x = 1 in c1, . . . , ck−1 and assign 0 to the other
variables in these clauses. This way we x-satisfy the clauses c1, . . . , ck−1 and re-
move them from the formula C. Now we consider the remaining clauses cj ∈
C −{c1, . . . , ck−1}, which satisfy V (cj)∩ (V (ci)− {x}) 6= ∅, for all i = 1, . . . , k− 1.
Hence each of the remaining clauses contains k−1 distinct variables already assigned
to 0. When we remove these from all of the remaining clauses cj ∈ C−{c1, . . . , ck−1}
the remaining formula consists of unit clauses only, and thus C is x-satisfiable.

Lemma 13. Let C ∈ k-XLCNF+ be a k-uniform, exact linear and positive mono-
tone CNF formula and let c ∈ C be a clause of C with w(x) = k for all x ∈ V (c).
Then C is not x-satisfiable.

Proof. Let c = (x1∨x2∨x3∨ . . .∨xk) ∈ C with w(xi) = k, for all i = 1, . . . , k.
We claim C has exactly 1 + k(k − 1) many clauses. Indeed, because of the exact
linearity of C every other clause of C must have exactly one variable with c in
common. Since each of the variables x1, . . . , xk occurs exactly k times, the for-
mula C must have the following structure: C only consists of the xi-clauses, for
a i ∈ {1, . . . , k}, i.e. there is no clause in C which does not contain the variable
xi, for a i ∈ {1, . . . , k}. Each xi-clause occurs exactly k times. Let n be the num-
ber of variables occurring in C. Altogether there are k many x1-clauses containing
1+k(k−1) different variables as a reason of linearity. Hence we get n ≥ 1+k(k−1).
Suppose n > 1+ k(k− 1). Then there exists a variable y in C not occurring in any
of the x1-clauses. As each clause of C must share exactly one variable with c, an
xj-clause c

′ must exist, for a j ∈ {2, . . . , k}, containing y. Now c′ has two literals,
namely xj , y and thus only k − 2 free positions left. But there are k − 1 further
x1-clauses with which c′ must share exactly one variable. This is a contradiction.
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Figure 3.1: Formula Graph GC

Hence n = 1 + k(k − 1) = |C| and according to Lemma 20 in [41] C is a k-block
formula und thus not x-satisfiable.

Lemma 14. Let C ∈ CNF with w(x) ≤ 2 for all x ∈ V (C). Then we can decide
XSAT for C in polynomial-time.

Proof. We construct a formula graph GC , such that C is x-satisfiable if, and
only if, GC has a perfect matching. Concerning this construction, we distinguish
two cases:

1. There is no clause in C containing a unique variable, then GC coincides with
the intersection graph of C. Usually the intersection graph is defined as
follows: The vertices of GC are the clauses of C: ci ∈ V (GC)⇔ ci ∈ C. We
connect two clause-vertices ci, cj by an edge if they share a variable. Each
edge is labelled with the corresponding intersection variable.

2. C contains unique variables. We make two copies of the intersection graph
and for each unique variable x we join the vertices corresponding to the
clauses containing x in either copy.

It is easy to see that C is x-satisfiable if, and only if, GC has a perfect matching.
It is obvious that this formula graph can be constructed in polynomial-time and
it is well known that a perfect matching can be found in polynomial-time. This
construction is illustrated in the following example:
Let C = {c1, c2, c3, c4} be a positive linear matching formula with clauses

c1 = {a1, b1, e1}, c2 = {a1, b2, e2, d1}, c3 = {b1, b2, e3, d2}, c4 = {e1, e2, e3}

The graph in Figure 3.1 corresponds to the formula C where the vertices of the
copy of the intersection graph are marked by ′. A perfect matching of GC as well
as the x-model of C is {b1, e2}.
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Theorem 38. Let C ∈ k-XLCNF+ with w(x) = 2 for all x ∈ V (C). If k is even,
C is not x-satisfiable. If k is odd, C is x-satisfiable.

Proof. We consider the intersection graph GC whose vertices are the clauses
of C. There is an edge between two clause vertices ci, cj if they have a variable xl
in common. We write exl

for the edge between ci and cj . Since C is exact linear,
i.e. each two clauses share a variable, our clause-graph is a complete graph. Now
the idea is that C is x-satisfiable if, and only if, GC has a perfect matching. Let
m be the number of clauses of C then GC has m vertices and resulting from exact
satisfiability m = 2 + (k − 1).

• If k is even, m is odd. Clearly a graph with an odd number of vertices cannot
have a perfect matching, thus we cannot x-satisfy C.

• Let k be odd, then m is even. Evidently, a complete graph with an even
number of vertices admits a perfect matching. LetM be the perfect matching
of GC . For each exi ∈M we set xi = 1 and assign 0 to all the other variables
not belonging to the edges in M .

Lemma 15. Let C ∈ k-XLCNF+ containing a clause c = (x1 ∨ x2 ∨ . . . ∨ xk) ∈ C
such that w(x1) = w(x2) = . . . = w(xk) = k − 2. Then we can decide XSAT for C
in polynomial-time.

Proof. Let C ∈ k-XLCNF+ and c1 = (x1 ∨ x2 ∨ . . . ∨ xk) ∈ C with

w(x1) = w(x2) = . . . = w(xk) = k − 2

XSAT-evaluating C according to the setting xi = 1, for any fixed i ∈ {1, . . . , k},
yields a formula C[xi] in 2-LCNF+ because of exact linearity and k-uniformity.
Therefore XSAT for C[xi] can be decided in linear-time [42]. Hence, in the worst-
case we have to check every such formula C[xi], 1 ≤ i ≤ k, yielding a polynomial-
time worst-case running time of O(k · ||C||).

Lemma 16. Let C ∈ k-XLCNF+ with at least k − 3, k ≥ 4, variables occurring
exactly k times in C and

k + (k − 1)(k − 4) < |C| < k + (k − 1)(k − 1)

Then we can decide XSAT for C in polynomial-time.

Proof. Let x1, x2 . . . , xk−3 be (k−3) distinct variables each occurring k times
in C and let w.l.o.g. c1 = (x1 ∨ x2 ∨ . . . ∨ xk−3 ∨ xk−2 ∨ xk−1 ∨ xk). It is left to
the reader to verify that because of exact linearity such a clause must exist. As
C has more than k + (k − 1)(k − 4) many clauses we obtain w(x) ≥ k − 3 for all
x ∈ V (C) − {xk−2, xk−1, xk}. Especially as C has more than k many clauses, we
cannot set xi = 1 for a i = 1, . . . , k−3 because then in one of the clauses of C all the
variables would be set to 0. Hence we set xi = 0 for all i = 1, . . . , k − 3. As C has
more than k+(k−1)(k−4) many clauses at least one clause cp = (xj∨y2∨ . . .∨yk),
j ∈ {k− 2, k− 1, k}, exists in C which is not a xi-clause, for a i = 1, . . . , k− 3. We
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obtain for cp that each variable yi ∈ V (cp)− {xj} occurs at least k− 2 times in C.
Setting yi to 1, for a i ∈ {2, . . . , k}, and all other variables in the yi-clauses to 0
yields a formula with a clause length ≤ 2 which we can solve in polynomial-time.
If yi = 1, for all i ∈ {2, . . . , k}, does not yield an x-model for C, we consider, if
existent, another xl-clause cq = (xl ∨ z2 ∨ . . . ∨ zk) for a l ∈ {k − 2, k − 1, k}, l 6= j.
As every variable zi ∈ V (cq)−{xl} occurs at least k− 2 times in C, setting zi = 1,
for a i ∈ {2, . . . , k}, and all the other variables in the zi-clauses to 0 yields a for-
mula with a clause length ≤ 2 for which we can solve XSAT in polynomial-time.
If again for all i ∈ {2, . . . , k} zi = 1 does not yield an x-model for C, then C is
not x-satisfiable. This is because if we assign xj = xl = 1, then c1 will contain
two variables which have to be set to 1 which is a contradiction. If there is no
such xl-clause for a l ∈ {k − 2, k − 1, k}, l 6= j, then we set xj = 1 and all the
other variables in the xj-clauses, especially in c1, to 0. Other variables from the
xj-clauses we set to 0 and delete these clauses. So we have (k − 1)(k − 3) clauses
left; let C ′ be the remaining formula. Setting a variable a ∈ V (C ′) to 1 (which
is not marked), yields (k − 2)(k − 3)(k − 4) literals which are set to 0 in C ′ as a
consequence because each variable occurs exactly k − 3 times in C ′ and the clause
length is k − 1. We have to distribute these (k − 2)(k − 3)(k − 4) literals onto
(k − 3)(k − 1) − (k − 3) = (k − 3)(k − 2) clauses which yields exactly k − 4 lit-
erals in average case that are set to 0 in each clause of C ′. That means in the
remaining formula C ′′ each clause has an average length of (k − 1) − (k − 4) = 3
literals. Now setting an arbitrary variable which is not marked in C ′′ to 1, yields
2· (k − 3)(k − 4) literals which have to be set to 0 as a consequence and C ′′ has
only (k − 1)(k − 3) − 2(k − 3) = (k − 3)2 clauses left. Hence the average clause

length is then 3− 2·(k−3)(k−4)
(k−3)2 = 3− 2·(k−4)

(k−3) ≤ 2 and this formula can be solved in

polynomial-time.

Let k ∈ N such that a k-block formula Bk exists and let C ∈ k-XLCNF+ be a
formula which is not a k-block formula. Then C can be embedded into a k-block
formula, if we can expand C by adding further clauses such that C becomes a
k-block formula, that is |C| = k + (k − 1)2. This is equivalent to the so called
Church-Rosser property.
A k-block formula Bk is not x-satisfiable but removing an arbitrary clause from Bk

yields a x-satisfiable formula F ⊂ Bk. By applying the following theorem we can
conclude that not every C ∈ k-XLCNF+, which is not a k-block formula (for k ∈ N
for which a k-block formula Bk exists) is x-satisfiable because it cannot always be
embedded into a k-block formula.

Theorem 39. Let k ∈ N be such that a k-block formula exists and let
C ∈ k-XLCNF+ such that w(x) ≤ k for all x ∈ V (C). Then C in general cannot be
embedded into a k-block formula. In other words generating k-block formulas does
not have the Church-Rosser property.

Proof. Consider the following counterexample for k = 5:
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C =(x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5)
(x1 ∨ x6 ∨ x7 ∨ x8 ∨ x9)
(x1 ∨ x10 ∨ x11 ∨ x12 ∨ x13)
(x1 ∨ x14 ∨ x15 ∨ x16 ∨ x17)
(x1 ∨ x18 ∨ x19 ∨ x20 ∨ x21)

(x2 ∨ x6 ∨ x10 ∨ x14 ∨ x18)
(x2 ∨ x7 ∨ x11 ∨ x15 ∨ x19)
(x2 ∨ x8 ∨ x12 ∨ x16 ∨ x20)
(x2 ∨ x9 ∨ x13 ∨ x17 ∨ x21)

(x3 ∨ x6 ∨ x11 ∨ x16 ∨ x21)
(x3 ∨ x7 ∨ x10 ∨ x17 ∨ x20)
(x3 ∨ x8 ∨ x13 ∨ x15 ∨ x18)
(x3 ∨ x9 ∨ x12 ∨ x14 ∨ x19)

Obviously C is not a 5-block formula and satisfies w(x) ≤ 5, for all x ∈ V (C). But
we cannot add another 5-uniform clause c to C such that C ∪ {c} remains exact
linear. On the other hand recall that a 5-block formula exists [43].

Consequently we are ready to establish:

Theorem 40. The classes k-XLCNF+, for k ∈ {1, 2, 3, 4, 5, 6}, can be x-solved in
polynomial-time.

Proof. Let C ∈ k-XLCNF+ be arbitrarily chosen. We set wC(x) := w(x)
since C is fixed, and provide a case analysis guided by k:

1. k = 3:

• If there is a variable x ∈ V (C) with w(x) ≥ 4, then x ∈ c, for all c ∈ C,
according to Lemma 10. In this case we set x = 1 and assign 0 to all
other variables in V (C) obtaining an x-model for C.

• If w(x) = 3, for all x ∈ V (C), then C is not x-satisfiable according to
Lemma 11.

• If there is a variable x ∈ V (C) with w(x) = 3 (but there is at least
one variable y ∈ V (C) which does not satisfy w(y) = 3) then we set all
variables occurring 3 times in C to 0, because setting such a variable
to 1 would yield a clause where all literals are set to 0, in case C has
more than 3 clauses. Let C ′ be the resulting formula, then each variable
occurs ≤ 2 times in C ′ and we can solve such a formula in polynomial-
time according to Lemma 14.
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• If w(x) ≤ 2, for all x ∈ V (C), then we can decide XSAT for C in
polynomial-time according to Lemma 14.

2. k = 4:

• If there is a variable x ∈ V (C) with w(x) ≥ 5, then x ∈ c, for all c ∈ C,
according to Lemma 10. In this case we set x = 1 and assign 0 to all
other variables in V (C) obtaining a x-model for C.

• If w(x) = 4, for all x ∈ V (C), C is not x-satisfiable according to Lemma
11.

• If there is at least one variable x ∈ V (C) with w(x) = 4 but there is
also at least one variable y ∈ V (C) which does not satisfy w(y) = 4),
we proceed as follows:
If C has no other clauses except the ones containing x, we set x = 1
and all other variables of V (C) to 0 and obtain an x-model for C. Else
we consider a clause c ∈ C that is not an x-clause.
Let c = (xi1 ∨ xi2 ∨ xi3 ∨ xi4) be such a clause. Then each variable
of c occurs at least twice in C because c must share a variable with
each of the four x-clauses and c is 4-uniform. Setting xij = 1, for one
j ∈ {1, 2, 3, 4}, yields a remaining formula where each clause has length
≤ 2 and for such a formula XSAT can be solved in polynomial-time.

• If there is a variable x ∈ V (C) with w(x) = 3, C is x-satisfiable accord-
ing to Theorem 12.

• If w(x) ≤ 2, for all x ∈ V (C), then we can decide XSAT for C in
polynomial-time according to Lemma 14.

3. k = 5:

• If there is a variable x ∈ V (C) with w(x) ≥ 6, then x ∈ c, for all c ∈ C,
according to Lemma 10. In this case we set x = 1 and assign 0 to all
other variables in V (C) obtaining a x-model for C.

• If w(x) = 5, for all x ∈ V (C), then C is not x-satisfiable according to
Lemma 11.

• If there is a variable x ∈ V (C) with w(x) = 4, then C is x-satisfiable
according to Theorem 12.

• As long as a variable x exists in V (C) occurring ≥ 3 times, we set
x = 1 and the other variables in all x-clauses to 0. Because of the
exact linearity the clause length of the resulting formula C ′ reduces to
≤ 2 and we can solve such a formula in polynomial-time. If C ′ is not
x-satisfiable, we undo the last assignment so that all variables of C are
unassigned again and consider another variable occurring ≥ 3 times in
C which we set to 1 (and the other variables in the same clauses to 0)
and check whether this setting x-satisfies C. After we have considered
all the variables occurring ≥ 3 times in C and have found out that
assigning 1 to any of them does not yield an x-model for C, we set all
the variables occurring ≥ 3 times in C to 0 and hence obtain a formula
C ′ where each variable occurs ≤ 2 times. Then we can solve XSAT for
C ′ in polynomial-time according to Lemma 14.
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• If w(x) ≤ 2, for all x ∈ V (C), we can decide XSAT for C in polynomial-
time according to Lemma 14.

4. k = 6: Let C ∈ 6-XLCNF+ be an arbitrary formula with variable set V (C).
We provide a case analysis guided by the number of occurrences of variables
in V (C).

• If there is a variable x ∈ V (C) with w(x) ≥ 7, then x ∈ c, for all c ∈ C,
according to Lemma 10. In this case we set x = 1 and assign 0 to all
the other variables in V (C). This way we get an x-model for C.

• If w(x) = 6, for all x ∈ V (C), then C is x-unsatisfiable according to
Lemma 11.

• If there is a variable x ∈ V (C) with w(x) = 5, then C is x-satisfiable
according to Lemma 12.

• If w(x) = 4, for all x ∈ V (C), then we can decide XSAT for C in
polynomial-time according to Lemma 15.

• If there is a variable x ∈ V (C) with w(x) = 6 as well as a variable
y ∈ V (C) with w(y) 6= 6 and C only consists of clauses containing x,
then we set x = 1 and all other variables in V (C) to 0 obtaining an
x-model for C.

• If there is a variable x ∈ V (C) with w(x) ≥ 4, then setting x to 1, and
all other variables in the clauses containing x to 0 yields a formula only
containing clauses of length ≤ 2. Such a formula can be checked for
XSAT in polynomial-time. This way we treat each variable z ∈ V (C)
with w(z) ≥ 4 until an x-model is found. In case we have not found an
x-model yet, we proceed as follows:

(a) If there is no variable x ∈ V (C) with w(x) = 3, we set all the
variables x with w(x) ≥ 4 to 0. Hence the resulting formula C ′

contains only variables occurring ≤ 2 times in C ′ and by using
Lemma 14 we can solve C ′ in polynomial time.

(b) If there is a variable x ∈ V (C) with w(x) = 3, then after having
set x to 1 and all other variables to 0 in the clauses containing x,
we obtain a formula C ′ which is in 3-LCNF+. If there is no further
variable occurring three times in C ′, we set all variables occurring
≥ 4 times to 0 and can decide x-satisfiability of C ′ in polynomial-
time according to Lemma 14. Otherwise, there is another variable y
with w(y) = 3 in C ′. Then we set y = 1 and to 0 all other variables
in the clauses containing y. Now all y-clauses are x-satisfied and
there are at most six clauses in the remaining formula that do not
share any variable with any of the clauses containing y. Hence all
clauses, except for at most six, do share at least one variable with
one clauses containing y. Since these variables are all set to 0,
the remaining formula only contains clauses of length two at most
(except for at most six clauses) which can be decided for XSAT in
polynomial-time.

• If w(x) ≤ 3, for all x ∈ V (C), and there is a variable x ∈ V (C) with
w(x) = 3 then we proceed as follow. After having set x to 1 and all
other variables in the clauses containing x to 0, the remaining formula
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C ′ is in 3-LCNF+. If all variables occur at most twice in C ′, then we
can decide x-satisfiability of C ′ in polynomial-time according to Lemma
14. Otherwise there is still a variable y with w(y) = 3 in C ′. In that
case we set y = 1 and all variables in the clauses containing y to 0. Now
all y-clauses are x-satisfied and there are at most six clauses which do
not share any variable with at least one of the y-clauses. Hence we can
decide XSAT in polynomial-time as above.

• If w(x) ≤ 2, for all x ∈ V (C), we can decide XSAT for C in polynomial-
time according to Lemma 14.

3.6 Connection to Combinatorial Optimization
Problems

Our results imply the NP-completeness for some subversions of the well-known
combinatorial optimization problems: Exact Hitting Set on linear hypergraphs, Set
Partitioning on linear hypergraphs and Exact Hitting Set on exact linear hyper-
graphs. A hypergraph is a pair H = (V,E) where V = V (H) is a finite set, the
vertex set and E = E(H) is a family of subsets of V the hyperedge set such that
for each x ∈ V there is an edge containing it. We call a hypergraph linear if each
two hyperedges have at most one variable in common and exact linear if each two
hyperedges have exactly one variable in common. Recall that Set Partitioning takes
as input a finite hypergraph with a vertex set M and a set of hyperedges M (i.e.
subsets of M). It asks for a subfamily T ofM such that each element of M occurs
in exactly one member of T . It is easy to see that monotone XSAT coincides with
Set Partitioning when the clauses take on the roles of vertices in M and the vari-
ables are regarded as the hyperedges inM in such a way that a variable contains
all clauses in which it occurs.
Exact Hitting Set, however, is nothing but monotone XSAT translated to the hy-
pergraph (or set system) language. Exact Hitting Set is the variant of the Hitting
Set problem in which each set must be hit by exactly one element of the Hitting
Set. The Hitting Set problem is defined as follows: Let H = (V,E) be a hypergraph
with vertex set V and hyperedge set E. Then a set S ⊂ V is called Hitting Set of
H if for all edges e ∈ E: S ∩ V (e) 6= ∅. Therefore, we directly obtain that Exact
Hitting Set remains NP-complete for linear, l-regular hypergraphs. And a simple
dualization argument implies that the same is true for Set Partitioning on that
specific class of hypergraphs.
Moreover, it easily follows that Exact Hitting Set is NP-complete for exact linear
hypergraphs. However, XLCNF+-XSAT cannot be reduced to Set Partitioning for
exact linear hypergraphs; here the dualization argument fails.

Corollary 5. • Exact Hitting Set on linear hypergraphs is NP-complete.

• Set Partitioning on linear hypergraphs is NP-complete.

• Exact Hitting Set on exact linear hypergraphs is NP-complete.
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Proof.

• We can reduce LCNF+-XSAT to Exact Hitting Set on linear hypergraphs in
polynomial-time.

• We can reduce LCNF+-XSAT to Set Partitioning on linear hypergraphs in
polynomial-time.

• We can reduce XLCNF+-XSAT to Exact Hitting Set on exact linear hyper-
graphs in polynomial-time.

Observe that Set Partitioning for exact linear hypergraphs is trivial in the sense
that it has no solution unless the input hypergraph consists of one hyperedge only.



Chapter 4

k-Outerplanar Formulas

4.1 An Algorithm Solving SAT for Outerplanar
Formulas in Linear Time

As already mentioned in the introduction SAT is NP-complete for the planar for-
mula class. The outerplanar formulas form a subclass of the planar formula class.
In this section we illustrate how SAT can be solved in linear time for the outerpla-
nar formula class. The algorithm presented for this purpose works by exploiting
the structure of outerplanar formulas. In the last section of this chapter we discuss
an algorithm which uses dynamic programming in a nice tree decomposition of the
corresponding variable-clause graph GF of an outerplanar formula F . Since the
treewidth of an outerplanar formula is 2, this algorithm also needs linear time to
solve SAT for an outerplanar formula. Nevertheless, as we are especially interested
in the structure of the variable-clause graphs of outerplanar formulas, we devote
this section to a longer algorithm which exploits a preceding detailled analysis of
the outerplanar formula class and thus illustrates the outerplanar formulas.

Definition 6. Let K be an outerplanar circle, then we call an edge inside K a
chord.

If K is an outerplanar circle with q variable vertices and q clause vertices, K
has obiously at most q − 2 many chords.

Let F = c1∧. . .∧cm be a CNF formula. In the following we consider F as a set of
its clauses, i.e. F = {c1, c2, . . . , cm} and call F a matched formula if |F ′| ≤ |V (F ′)|,
for every subset F ′ ⊂ F where |F | denotes the number of clauses in F . It is not
difficult to see that matched formulas are always satisfiable with respect to SAT.
To show this we consider the bipartite incidence graph GF = (V,E) of a mathcing
formula F with the vertex set partition V = V (F ) ∪ F , i.e. we partition V into
a set of clauses and a set of variables. The edge set E consists of edges between
variables and clauses: If a variable x is contained in a clause c, then there is an edge
between x and c. It is easy to see that every subset F ′ ⊆ F has the neighbourhood
N(F ′) = V (F ′) ⊆ V (F ) in GF . Because |F ′| ⊆ |V (F ′)| = |N(F ′)| for every subset
F ′ ⊆ F , we can apply the classical Theorem of Koenig-Hall [23, 30] for bipartite
graphs stating the existence of a matching in GF covering the component F of
the vertex set. In terms of the formula, this means that there is a set of variables,
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corresponding to the vertices of the matching edges so that each of them is assigned
uniquely to a clause of F sothat no clause is left out. Since these variables are all
distinct, the corresponding literals can independently be set to 1 yielding a model
of F . In the following, we denote with MAP the class of outerplanar formulas
which are matching formulas. As one can easily see, outerplanar formulas whose
variable-clause graphs consist of paths (each two of which are allowed to share a
vertex), disjoint circles and single vertices belong to the class MAP and thus are
solvable.

As shown in [43], each matched formula F with n variables is satisfiable and
a model can be found in O(

√
n||F ||) where ||F || denotes the sum of the length of

all clauses. So a model can be found in O(
√
n||F ||) for each formula F ∈ MAP

with n variables. But can a model for formulas of the class MAP also be found in
linear time? To answer this question we analyse the special structure of outerplanar
formulas.
To begin with, we fix some notation. Recall that a backbone variable x of a CNF
formula F has the same assignment in all models of F , that means either x = 0 or
x = 1 in all models of F .
Let K be an outerplanar circle with chords which are not allowed to cross inside the
circle. Omitting the chords we obtain the annulus of K which we denote by KR.
Let Ki be a circle then we denote the corresponding formula by Ci, the annulus
of Ki by Ki

R and its corresponding 2-CNF formula by Ci
R. When considering

the satisfiability of a circle Ki we mean the satisfiability of Ci. The next lemma
states that each backbone variable of a circle is also a backbone variable of the
corresponding annulus.

Lemma 17. Let Ki be a circle of GF with possible chords. Then we obtain: If x
is a backbone variable of Ki, then x is also a backbone variable of Ki

R.

Proof. Let Ci
R be the 2-CNF formula corresponding to Ki

R. Then for each
clause ciR of Ci

R there is exactly one clause ci of Ci such that V (ciR) ⊂ V (ci) be-
cause Ci

R results from Ci by shortening clauses of Ci. Thus each model of Ci
R is

obviously also a model of Ci. So let us assume that there is a backbone variable x
of Ci which is not a backbone variable of Ci

R, then there is a model of Ci
R in which

x is set to 1 and another in which x is set to 0. But each such model is also a model
of Ci and hence x is not a backbone variable of Ci which is a contradiction to the
assumption.

The following theorem gives a direct characterisation of a backbone variable
of an annulus KR and is thus very useful for our algorithm solving outerplanar
formulas.

Theorem 41. Let K be a circle of GF consisting of the variable vertices x1, . . . , xk
and the clause vertices c1, . . . , ck. Further let KR be the annulus of K. Then x1 is
a backbone variable of the 2-CNF formula CR corresponding to KR if, and only if,
we can obtain an implicational chain of the form

x1 ⇒ l(x2)⇒ l(x3)⇒ . . .⇒ l(xk)⇒ x1

or
x1 ⇒ l(x2)⇒ l(x3)⇒ . . .⇒ l(xk)⇒ x1

from CR.
Moreover KR has at most one backbone variable.
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Proof. Let KR be the annulus resulting from K by omitting possible chords.
Let x1, c1, x2, c2 . . . , xk, ck be the range of the vertices in clockwise direction. Omit-
ting the polarities of the variables we can write for each clause:

c1 = {x1, x2}, c2 = {x2, x3}, c3 = {x3, x4}, . . . , ck = {xk, x1}
Each 2-clause {xi, xi+1} corresponds to an implication xi ⇒ xi+1 or xi+1 ⇒ xi.

An implication has the value true if the premise is false or in case 1 ⇒ 1. Hence
the only case when the implication is always false is 1 ⇒ 0. Let us consider the
corresponding implication for each 2-clause: If we can build a single implicational
chain, e.g. x1 ⇒ . . . ⇒ x1, with all these k implications, then x1 is a backbone
variable. By setting x1 = 0 we would obtain the implication 0 ⇒ . . . ⇒ 1 which
is always true because the premise is false. By assigning x1 = 1 we obtain the
implication 1⇒ . . .⇒ 0 which is obviously false. Hence x1 = 0 is the only solution
for the implicational chain and thus x1 is a backbone variable for the 2-CNF formula
belonging to KR.

Next we show that if x1 is a backbone variable of KR, then the implicational
chain for x1 is either x1 ⇒ . . .⇒ x1 or x1 ⇒ . . .⇒ x1 for x1.

Suppose such an implicational chain does not exist, i.e. we have at least two
implicational chains x1 ⇒ . . . ⇒ xi and xi ⇒ . . . ⇒ x1 which we cannot compose
to a single implicational chain. In this case we can assign 0 as well as 1 to x1
to satisfy the formula belonging to KR: When setting x1 = 1 we have to assign
xi = 1. When assigning x1 = 0 we can assign 0 as well as 1 to x1 to satisfy the two
implicational chains.

Now let x1 be a backbone variable of KR and let x1 ⇒ . . .⇒ x1 be the implica-
tional chain. In consequence w have to assign x1 = 0 to satisfy KR. Suppose there
is another variable xi, 1 < i ≤ k on KR which is also a backbone variable of KR,
then, according to our previous considerations, we have two implicational chains
x1 ⇒ . . . ⇒ xi and xi ⇒ . . . ⇒ x1. But these chains can neither be composed to
the single implicational chain xi ⇒ . . .⇒ xi nor to xi ⇒ . . .⇒ xi. Hence xi cannot
be a backbone variable which is a contradiction to our assumption.

In the following we write xi
+(−)−→ cj , if there is a chord in K between the vertices

xi and ci and xi occurs positively (negatively) in cj .

Theorem 42. Let K be a circle (with possible chords) of the outerplanar variable-
clause graph GF belonging to the outerplanar formula F such that CR, the 2-CNF
formula belonging to KR, can be written as the following implicational chain

x1 ⇒ x2 ⇒ x3 ⇒ . . .⇒ xn ⇒ x1

i.e. x1 is a backbone variable of KR. Further we assume that no variables of KR

are assigned yet. If one of the following three cases occurs, then x1 is not a backbone
variable of the formula C corresponding to K.

1. K has a chord xi
+−→ cj, for 1 ≤ i < n, 1 < j ≤ n and i < j.

2. K has a chord xi
−−→ cj, for 1 < i ≤ n, 1 ≤ j < n and i > j.

3. K has a chord x1
−−→ cj, for 1 < j ≤ n.

We call these three cases the chords criterion. If none of these three cases occurs,
x1 is also a backbone variable of C.
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Proof.
As x1 is a backbone variable of CR in each model of CR the variable x1 has

the value 1 and as each model of CR is also a model of C we obtain a model of
C where x1 = 1. If K has no chords, we obtain CR = C and C corresponds to
the following implicational chain x1 ⇒ x2 ⇒ x3 ⇒ . . . ⇒ xn ⇒ x1. We can only
satisfy this implicational chain for x1 = 1, hence x1 is also a backbone variable of C.

1. If K has a chord xi
+−→ cj , for 1 ≤ i < n, 1 < j ≤ n and i < j, then the

following assignment is also a model for C:

• x1 = 0

• xk = 1, for 1 < k ≤ j
• xk = 0, for j < k ≤ n.

2. If K has a chord xi
−−→ cj , for 1 < i ≤ n, 1 ≤ j < n and i > j, then the

following assignment is also a model for C:

• x1 = 0

• xk = 1, for 1 < k ≤ j
• xk = 0, for j < k ≤ n.

3. If K has a chord x1
−−→ cj , for 1 < j ≤ n, then the following assignment is

also a model for C:

• x1 = 0

• xk = 1, for 1 < k ≤ j.
• xk = 0, for j < k ≤ n.

For the reason of completeness we also present the counterpart of the last the-
orem:

LetK be a circle (with possible chords) of the outerplanar variable-clause graph
GF of the outerplanar formula F such that the 2-CNF formula CR corresponding
to KR can be written as the following implicational chain

x1 ⇒ x2 ⇒ x3 ⇒ . . .⇒ xn ⇒ x1

meaning that x1 is a backbone variable of KR. Further, no variables of K are set
yet. If one of the following three cases occurs, then x1 is not a backbone variable
of the formula C belonging to K.

1. K has a chord xi
+−→ cj , for 1 ≤ i < n, 1 < j ≤ n and i < j.

2. K has a chord xi
−−→ cj , for 1 < i ≤ n, 1 ≤ j < n and i > j.

3. K has a chord x1
+−→ cj , for 1 < j ≤ n.
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Figure 4.1: Example for a circle component

If none of these three cases occurs, then x1 is also a backbone variable of C.

Let F be an outerplanar formula with the variable-clause graph GF and let
K1 and K2 be two circles of GF which share the variable vertex x only. Let x
be a backbone 1 variable of K1

R and a backbone 0 variable of K2
R. Then GF is

unsatisfiable if x remains a backbone variable of K1 as well as of K2. This follows
immediately from the definition of a backbone variable. We call such a situation a
backbone conflict. We call a connected component KK of an outerplanar graph GF

a circle-component if KK consists of circles for which holds that each two circles
are either disjoint or share a single vertex only or they are joined by a path.

For each circle-component KK we can create a superstructure graph BKK as
follows: The vertices of BKK are the circles of KK. If there is a circle K1 which
is joined with another circle K2 by a path in KK then there is an edge in BKK

between the vertices K1 and K2 corresponding to the path. If two circles K1

and K2 share a single variable (clause) vertex x (c) then there is an edge in BKK

between the vertices K1 and K2 labelled with x (c).
Note that because of the outerplanarity of GF the superstructure graph BKK must
be a tree. Now we present an algorithm solving SAT for outerplanar formulas in
linear time.
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Figure 4.2: Example for a superstructure graph

Algorithm ASP

INPUT: A formula F in conjunctive normal form with an outerplanar variable-
clause graph GF .
OUTPUT: A model if F is satisfiable and UNSATISFIABLE, else.

1. If F is a 2-CNF formula, we solve F by an appropriate linear-time 2-SAT
algorithm.

2. By an outerplanar embedding we determine the outerplanar variable-clause
graph GF belonging to F .

3. As long as there is a variable vertex xi in GF which is joined to only one
clause-vertex cj , we set xi such that it satisfies the clause cj : l(xi) = 1 in cj .

4. As long as there is a clause vertex cj in GF which is adjacent to only one
variable vertex xi, we set xi so that it satisfies cj : l(xi) = 1 in cj .

5. As long as GF has disjoint circles (with possible chords) we perform the
following for each of these circles: Let K1 be such a circle and let

x1 − c1 − x2 − c2 − x3 − c3 − . . .− xn − cn − x1

be all the vertices of K1 in clockwise direction. Then we assign xi such that
it satisfies ci, that is l(xi) = 1 in ci, for all i ∈ {1, . . . , n}.

6. If GF consists of m circles K1,K2, . . .Km only (there are no paths or other
outerplanar constructions in GF ) and each two circles are allowed to share
at most one vertex, then F is satisfiable: Let

xi1 − ci1 − xi2 − ci2 − xi3 − ci3 − . . .− xin − cin − xi1
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be the vertices of Ki in clockwise direction, for i = 1 . . . ,m. Then we set xik
such that l(xik) = 1 in cik, that means by the assignment of xik the clause cik
is satisfied, for i = 1, . . . ,m, k = 1, . . . , n. This way we obtain a model for
F .

7. If now the remaining graph GF consists of several circle-components, we solve
each circle-component KK by the procedure circle-component(KK).

8. If the procedure circle-component(KK) returns a model for each circle-
component, then the algorithm ASP also returns this model for F . If the
procedure circle-component(KK) cannot find a model for at least one
circle-component KK, then F is unsatisfiable and the algorithm ASP returns
UNSATISFIABLE.

Procedure circle-component(KK)
INPUT: A circle-component KK of the outerplanar variable-clause graph GF which
belongs to the outerplanar formula F .
OUTPUT: A model, if the CNF formula CKK corresponding to the graph KK is
satisfiable, UNSATISFIABLE, else.

1. We determine the superstructure tree BKK belonging to KK.

2. We perform the following for each circle K in KK:
Let KR be the annulus belonging to the circle K, then we write each 2-
clause (l(xi) ∨ l(xi+1)) which lies on KR as the corresponding implication
l(xi) ⇒ l(xi+1) or l(xi+1) ⇒ l(xi)and check whether we can build a single
implicational chain of all these implications. In case we can put all these
implications together to a single implicational chain w.l.o.g. x1 ⇒ . . . ⇒ x1
or x1 ⇒ . . .⇒ x1, i.e. x1 is a backbone variable of KR according to Theorem
41. Note that it is the only backbone variable of KR in this case.

3. For all circles K whose annulus KR has a backbone variable x1 we check with
help of Theorem 42 whether x1 also remains a backbone variable of K:
Let KR be the annulus with the backbone variable x1 and let

x1 ⇒ x2 ⇒ x3 ⇒ . . .⇒ xn ⇒ x1

be the respective implicational chain according to Theorem 41. Further let
x1 − c1 − x2 − c2 − x3 − c3 − . . .− xn − cn − x1 be the range of the vertices
on KR in clockwise direction. Then we obtain for each variable xi, i > 1: xi
occurs positively in ci−1, negatively in ci and x1 occurs positively in c1 and
cn on KR.
Next we check whether there is a chord xi

g−→ cj on K1 where g ∈ {+,−}
which satisfies one of the following three cases of the chords criterion:

(a) K1 has a chord xi
+−→ cj , where 1 ≤ i < n, 1 < j ≤ n and i < j.

(b) K1 has a chord xi
−−→ cj , where 1 < i ≤ n, 1 ≤ j < n and i > j.

(c) K1 has a chord x1
−−→ cj , where 1 < j ≤ n.

If none of these three cases occurs for any chord of the current circle K1,
then x1 is a backbone-variable for K1, too. Therefore we set x1 = 1.
We perform these steps until we have considered all the circles of KK and
found all the backbone variables.
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4. We assign all the backbone variables of KK such that they make it possible
to satisfy the formula.

5. If there are two circles K1 and K2 sharing a variable vertex x where x is a
backbone 1 variable of K1 and a backbone 0 variable of K2, then there is a
backbone conflict and hence KK is unsatisfiable. The procedure stops and
returns UNSATISFIABLE.

6. We start with considering the leaves of the tree BKK . As soon as we have
solved all the leaf-circles BK in BKK by procedure circle (BK), we con-
sider the father vertices VK for all BK and solve these again by procedure
circle (VK). In general, we do not solve a circle until we have solved all its
descendants in BKK by procedure circle. So beginning with the leaves in
BKK and as long as we have not reached the root of the tree yet, we check
whether we can apply the following steps:

• Let Ki be the current circle in BKK . If Ki is joined to its father V Ki

in BKK by an edge labelled with x, we proceed as follows:

– If x is already assigned (e.g as a possible backbone variable of
V Ki), then we check by the procedure circle (Ki), whether the
circle Ki can be satisfied with this assignment of x.

(a) If procedure circle (Ki) returns that Ki is unsatisfiable,
then the corresponding formula CKK of KK is unsatisfiable
and the procedure stops with the output UNSATISFIABLE.

(b) If the procedure circle (Ki) returns a model α for Ki, under
consideration of the assignment of x, then we set all variables
of Ki according to α. After having solved all the sibling-circles
GKi of Ki we solve V Ki, the father circle of Ki.

– If x is not assigned yet, we check by the procedure circle (Ki
x=1)

and procedure(Ki
x=0), whether K

i can be satisfied for x = 1 as
well as for x = 0.

(a) If Ki can be satisfied for x = 1 as well as for x = 0, we do not
fix x directly but first consider all the sibling-circles GKi of
Ki before considering the father V Ki of Ki.

(b) If w.l.o.g. Ki can only be satisfied for x = 1, we assign x =
1, solve all the sibling-circles of Ki and afterwards solve the
father V Ki of Ki. Note that x is already fixed to 1 when we
consider V Ki.

(c) If Ki cannot be satisfied for neither x = 1 nor x = 0, the
fromula CKK corresponding to KK is unsatisfiable and the
procedure stops with the output UNSATISFIABLE.

• Let Ki be the current circle of BKK . If Ki is joined to its father circle
V Ki in BKK by an edge labelled with the clause vertex c, then we
proceed as follows:

We check by procedure circle (Ki) whether Ki is satisfiable.

– If yes, particularly c is satisfied, hence we label c as satisfied in
V Ki.
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– If not, we consider V Ki after having applied procedure circle on
all its sibling-circles before.

• Let Ki be the current circle of BKK . If Ki is joined to its father circle
V Ki in BKK by an edge which corresponds to the path P between the
circles Ki and V Ki in KK, we proceed as follows:

– If Ki and its father-circle V Ki are joined by the path P = x1 −
c1 − x2 − c2 − . . . − xn − cn which shares the variable vertex x1
with Ki and the clause vertex cn with V Ki, then we proceed as
follows:

∗ We check whether Ki can be satisfied for x1 = 1 as well as
for x1 = 0 by procedure circle (Ki

x1=1) and by procedure
circle (Ki

x1=0). If K
i can be satisfied for x1 = 1 as well as for

x1 = 0, we set x1 so that its assignment satisfies c1. Further
we set x2 so that it satisfies c2. In general we set xi so that its
assignment satisfies ci, for i = 1, . . . , n. It follows that cn is
now satisfied in V Ki and thus we label cn as satisfied in V Ki.

∗ If w.l.o.g. Ki is only satisfiable for x1 = 1, we assign x1 = 1
and check whether x1 = 1 also satisfies c1. If so, we assign
xi so that its assignment satisfies the clause vertex ci of the
path P, for i = 2, . . . , n. Therefore, cn is now satisfied in V Ki

and thus we label cn as satisfied in V Ki. But if c1 cannot
be satisfied by x1 = 1, we assign xi+1 such that it satisfies
the clause ci for i = 1, . . . , n − 1. If xn occurs with the same
polarity in cn as in cn−1, we label cn as satisfied in V Ki.

∗ But if Ki cannot be satisfied for neither x1 = 0 nor x1 = 1,
then the procedure stops with the output UNSATISFIABLE.

– If the two circles Ki and its father circle V Ki are joined together
by the path

P = x1 − c1 − x2 − c2 − . . .− xn−1 − cn−1 − xn

such that P shares x1 with Ki and xn with V Ki, then we proceed
as follows:

∗ We check whether we can satisfy Ki for x1 = 1 as well as for
x1 = 0 by procedure circle (Ki

x1=1) and procedure circle
(Ki

x1=0). IfK
i can be satisfied for x1 = 1 as well as for x1 = 0,

we set x1 so that its assignment satisfies c1. Furthermore, we
set xi such that its assignment satisfies ci, for i = 1, . . . , n− 1.
Note that xn remains unassigned.

∗ If w.l.o.g. Ki is only satisfiable for x1 = 1, we set x1 = 1 and
check whether x1 = 1 also satisfies c1. If so, we set xi such
that it satisfies ci, for i = 2, . . . , n − 1. But if the assignment
x1 = 1 does not satisfy the clause c1, we set xi+1 such that its
assignment satisfies the clause ci, for all i = 1, . . . , n− 1. As a
result the variable xn has a fixed value in V Ki.

∗ If Ki cannot be satisfied for neither x1 = 1 nor x1 = 0, the
formula CKK corresponding to KK is unsatisfiable and the
procedure stops with the output UNSATISFIABLE.
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– If the two circles Ki and V Ki are joined together by the path

P = c1 − x1 − c2 − x2 − . . .− cn−1 − xn−1 − cn
which shares the clause vertex c1 with Ki and the clause vertex cn
with V Ki, we proceed as follows:

∗ We check by procedure circle (Ki) whether we can find a
model for Ki. If Ki is satisfiable, we set all the variables of Ki

according to the model. Further we set x1 such that it satisfies
c2. In general, we set xi such that its assignment satisfies ci+1,
for all i = 1, . . . , n−1. As a consequence the clause cn in V Ki

is now satisfied and we label cn as satisfied in V Ki.

∗ If procedure circle (Ki) returns UNSATISFIABLE, we set
x1 such that it satisfies the clause vertex c1. Further we check
whether this assignment of x1 satisfies the clause c2, that is
whether x1 occurs with the same polarity in c2 as in c1. If so,
we further set xi such that it satisfies ci+1, for all
i = 2, . . . , n − 1. But if the assignment of x1 does not sat-
isfy c2 because x1 occurs with different polarities in c1 and
in c2, we set x2 so that it satisfies the clause c2. Afterwards
we check whether this assignment of x2 also satisfies c3, i.e.
whether x2 occurs with the same polarity in c2 as in c3. If
so, then we further set xi such that it satisfies ci+1, for all
i = 3, . . . , n−1. Otherwise, we set x3 such that its assignment
satisfies the clause c3 and so forth. If xn−1 occurs with the
same polarity in the clause cn as in cn−1 then cn is also satis-
fied by the assignment of xn−1 and we label cn as satisfied in
V Ki. Otherwise V Ki remains unmodified by the path.

– If the two circles Ki and V Ki are joined together by the path

P = c1 − x1 − c2 − x2 − . . .− cn−1 − xn−1 − cn − xn
which shares the clause vertex c1 with Ki and the variable vertex
xn with V Ki then we proceed as follows:

∗ We check by procedure circle(Ki) whether Ki is satisfiable.
If so, we determine a model for Ki and set all the variables
of Ki according to this model. Further we set x1 such that
it satisfies the clause c2. Afterwards we set x2 such that it
satisfies c3 and generally we set xi such that it satisfies the
clause ci+1, for all i = 1, . . . , n − 1. Note that this does not
influence the variable xn which P shares with V Ki and so xn
remains unassigned.

∗ If procedure circle (Ki) returns UNSATISFIABLE, we set
x1 so that it satisfies the clause c1. Next we check whether
c2 is also satisfied by this assignment of x1. If so, we further
set xi such that it satisfies ci+1, for i = 2, . . . , n − 1. But if
this assignment of x1 does not satisfy c2, we set x2 such that
it satisfies c2 and check whether this assignment also satisfies
c3. If so, we further set xi so that it satisfies ci+1, for
i = 3, . . . , n − 1. Else we set x3 so that it satisfies c3 and so
forth until cn is satisfied.
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7. As soon as we have reached the root circle WK of BKK we check by proce-
dure circle (WK) whether WK is satisfiable.

• If WK is not satisfiable, the formula CKK corresponding to KK is not
satisfiable, either, and the procedure stops and the output UNSATIS-
FIABLE.

• If WK is satisfiable, we set all the variables of WK according to an
arbitrary model of WK. If all the other circles of BKK are satisfiable
and we have already found a model for all them, the procedure stops
and the output is a model for CKK .

• If WK is satisfiable and there is a circle Kj in BKK for which we have
not found a model yet, we proceed as follows for all these circles: (Note
that we only have to solve those circles Kj for which we have not fixed
a model yet in the first passage through the tree from the leaves up to
the root of the tree):
Beginning with the root circle we move down the tree BKK until we
have reached the leaves and have also found a model for all the leaves
(and hence a model for CKK) or until we have found a circle in BKK

which cannot be satisfied. In the latter case the procedure stops with
the output UNSATISFIABLE. We do not solve a circle Kj until we
have found a model for all its ancestors. For each such circle Kj with
father circle V Kj we proceed as follows:

• If Kj is joined to V Kj by an edge labelled with a variable vertex x,
then x is now fixed in Kj because of V Kj , w.l.o.g. let x = 0. As Kj

can be satisfied for x = 0 as well as for x = 1, we set all variables of Kj

according to the model which fixes x = 0.

• If Kj is joined to V Kj by an edge labelled with a clause vertex c, we
check by procedure circle (Kj − {c}), whether Kj − {c} is satisfi-
able. If not, then CKK is unsatisfiable and the procedure stops with
the output UNSATISFIABLE. Else the procedure circle (Kj − {c})
returns a model for Kj − {c} and we set all variables of Kj according
to this model and consider the next circle (in the range downstairs) in
BKK for which we have not determined a model yet.

procedure circle(Ki)

INPUT: A circle Ki with possible chords and possibly fixed variables.
OUTPUT: A model if CKi , the formula corresponding to Ki, is satisfiable and
UNSATISFIABLE, else.

1. All clauses which are labelled as satisfiable are invisible for the procedure
and not considered here.

2. As long as there is a variable vertex xi in K
i which is adjacent to only one

clause vertex cj , we set xi such that it satisfies the clause cj .

3. As long as there is a clause vertex cj in Ki which is adjacent to only one
variable vertex xi, we set xi such that it satisfies the clause cj .

4. If the 2-CNF formula corresponding to the annulus Ki
R of Ki is satisfiable,

then Ki is satisfiable, too, and each model for Ki
R is also a model for Ki.



102 Chapter 4. k-Outerplanar Formulas

5. First we fix an order for the vertices of Ki
R and determine a marker SM for

each chord S = xi −→ cj for which xi is not assigned yet. This marker
contains the following information:
Let xm ⇒ . . . ⇒ l(xi) resp. l(xi) ⇒ . . . ⇒ xp be the two possible impli-
cational chains for xi, where l(xi) ∈ {xi, xi}, then the marker remembers
whether there is a variable fixed to 1 in xm ⇒ . . . ⇒ l(xi) respectively to 0
in l(xi)⇒ . . .⇒ xp.

6. If the 2-CNF formula corresponding to Ki
R is not satisfiable, Ki

R satisfies one
of the two following cases:

(a) The 2-CNF formula contains a smallest false implicational chain e.g.
xk ⇒ . . .⇒ xk+l where xk = 1, xk+l = 0 is already fixed and xk+l 6= xk.
In this case Ki

R is not satisfiable. We assume that this is the only false
implicational chain on Ki

R. In order to test whether we can satisfy
Ki when taking the chords into consideration, we check if one of the
following cases occurs:

i. There is a no chord of the form xi
+(−)−→ cj , with k ≤ j ≤ k + l.

In this case Ki is unsatisfiable and the procedure stops with the
output UNSATISFIABLE.

ii. There is a chord of the form xi
+−→ cj , with k ≤ i < k + l,

k < j ≤ k + l and i < j.
In this case the following assignment enables a model for Ki:
xk = . . . = xj = 1 and xj+1 = . . . = xk+l = 0.

iii. There is a chord of the form xi
−−→ cj , with k < i ≤ k + l,

k ≤ j < k + l and i > j.
In this case the following assignment enables a model for Ki:
xk = . . . = xj = 1 and xj+1 = . . . = xk+l = 0.

iv. There is a chord of the form xi
+(−)−→ cj , with i < k or i > k + l

and k ≤ j ≤ k+ l and xi is already set to 1 (resp. to 0). Then the
following assignment enables a model for Ki:
xk = . . . = xj = 1 and xj+1 = . . . = xk+l = 0.

v. There is a chord of the form S = xi
+(−)−→ cj , with i < k or i > k+ l

and k ≤ j ≤ k + l and xi is not assigned yet. Then we proceed as
follows:

• If there is only one such chord, we set xi such that cj is satisfied
by the assignment of xi, then

xk = . . . = xj = 1, xj+1 = . . . = xk+l = 0

satisfies the clauses ck, . . . ck+l. Next we check with help of
the marker SM whether the current assignment of xi yields a
false implicational chain 1⇒ 0:

– The implicational chain xm ⇒ . . .⇒ l(xi) already contains
a variable set to 1, l(xi) = xi and xi = 0.

– The implicational chain xm ⇒ . . .⇒ l(xi) already contains
a variable set to 1, l(xi) = xi and xi = 1.
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– The implicational chain l(xi) ⇒ . . . ⇒ xp already contains
a variable set to 0, l(xi) = xi and xi = 1.

– The implicational chain l(xi) ⇒ . . . ⇒ xp already contains
a variable set to 0, l(xi) = xi and xi = 0.

If one of these cases occurs, the remaining 2-CNF formula can-
not be satisfied apart from xk ⇒ . . .⇒ xk+l because with the
current assignment of xi we obtain an additional false impli-
cational chain. If we can satisfy this chain applying (6a), then
Ki is satisfiable, else unsatisfiable.

• If there are several chords S = xi
+(−)−→ cj for which holds i < k

resp. i > k + l, k ≤ j ≤ k + l and xi is not fixed yet, we
perform the following for each such chord S as long as we have
not found a model for Ki yet:
We set xi = 1 (resp. xi = 0) and

xk = . . . = xj = 1, xj+1 = . . . = xk+l = 0

Then we check by means of the marker SM whether we obtain
a false implicational chain 1⇒ 0 by the assignment of xi:

– The implicational chain xm ⇒ . . .⇒ l(xi) already contains
a variable set to 1, l(xi) = xi and xi = 0.

– The implicational chain xm ⇒ . . .⇒ l(xi) already contains
a variable set to 1, l(xi) = xi and xi = 1.

– The implicational chain l(xi) ⇒ . . . ⇒ xp already contains
a variable set to 0, l(xi) = xi and xi = 1.

– The implicational chain l(xi) ⇒ . . . ⇒ xp already contains
a variable set to 0, l(xi) = xi and xi = 0.

If one of these cases occurs, the current assignment of xi yields
a false implicational chain as a consequence. If we can satisfy
this one by applying (6a), then Ki is satisfiable. If not, we
undo (release) the assignment of the variables xk, . . . xk+l and

test whether there is another chord xi
+(−)−→ cj , with i < k resp.

i > k + l and k ≤ j ≤ k + l where xi is not fixed yet, yielding
a model for Ki.

• If we have considered all the chords xi
+(−)−→ cj with i < k resp.

i > k + l and k ≤ j ≤ k + l, where xi is not fixed yet, and
have not found a model for Ki then Ki is unsatisfiable and
the procedure stops with the output UNSATISFIABLE.

(b) If Ki
R corresponds to x1 ⇒ . . . ⇒ x1 (resp. x1 ⇒ . . . ⇒ x1 ), x1 = 0

(resp. x1 = 1 ) is already fixed and there are no other smaller false
implicational chains on Ki

R, then we solve Ki as follows (w.l.o.g. let
x1 ⇒ . . .⇒ x1 and x1 = 0 be fixed): If Ki has no chords, it is unsatisfi-
able and the procedure stops with the output UNSATISFIABLE. Else

we check whether there is a chord of the form xi
+(−)−→ cj in Ki:

i. Let xi
+−→ cj be a chord on Ki, with i < j, where xi = 1 is already

fixed. Then the clause cj is satisfied by xi and as there are no false
implicational chains on Ki

R − {cj} the remaining 2-CNF formula
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on Ki
R−{cj} is satisfiable. We solve the formula corresponding to

Ki
R − {cj} by a linear 2-SAT algorithm.

ii. Let xi
−−→ cj be a chord, with i > j and xi = 0 is already fixed.

Then the clause cj is satisfied due to the assignment of xi and as
there are no false implicational chains on Ki

R−{cj} the remaining
2-CNF formula on Ki

R − {cj} is satisfiable. We solve the formula
corresponding to Ki

R − {cj} by a linear 2-SAT algorithm.

iii. Let x1
−−→ cj be the chord, with j > 1. Then the clause cj is satis-

fied by the assignment of x1 and as there are no false implicational
chains on Ki

R − {cj} the remaining 2-CNF formula on Ki
R − {cj}

is satisfiable. We solve the formula corresponding to Ki
R−{cj} by

a linear 2-SAT algorithm.

iv. If there is only one chord xi
+(−)−→ cj with i < j (i > j) where xi is

not fixed, we set xi so that it satisfies cj .
If there are several chords of this form, we perform the following
for each such chords:
We assign xi so that it satisfies cj and check whether this assign-
ment satisfies the remaining 2-CNF formula on Ki

R − {cj}. If so,
we have found a model for Ki. Otherwise, there is now a false
implicational chain, e.g. xi ⇒ . . . ⇒ xk, with xi = 1, xk = 0 or
xk ⇒ . . . ⇒ xi, with xi = 1, xk = 1. We check whether we can
solve it by applying (6a). If so, we have found a model. Else we
consider the next chord which satisfies (iv). If we have considered
all such chords and still have not found a model, thenKi is unsatis-
fiable and the procedure stops with the output UNSATISFIABLE.

Corollary 6. SAT is solvable in linear time for the outerplanar formula class.

Proof. Analysis of the running time:

• If GF consists of disjoint circles, circles which share a clause vertex only and
paths which may have a vertex in common (we assume that F has no unit
clauses), then F is a matched formula and thus satisfiable. Steps 1.) - 6.)
can obviously be performed in linear time.

• procedure circle(Ki): Let Ki be a circle with q clause vertices and q vari-
able vertices. Then Ki has at most q − 2 many chords. At first we solve
the 2-CNF formula corresponding to the annulus Ki

R. Obviously we need
O(q) time for this. If the 2-CNF formula corresponding to the annulus Ki

R

is satisfiable, the model for this formula is also a model for the formula cor-
responding to Ki.
If the 2-CNF formula is not satisfiable because there is a false implicational
chain, we take the chords into consideration and test whether we can find a
chord which has the property of one of the cases (ii)-(iv) of 5(a) in pro-
cedure circle(Ki). If the 2-CNF formula is not satisfiable as a result
of a false implicational chain xk ⇒ . . . ⇒ xk+l on the annulus Ki

R with
xk = 1, xk+l = 0 already fixed and xk+l 6= xk, then we check whether we can
find a chord which satisfies one of the cases (ii)-(iv) of 5(a) in procedure

circle(Ki). If not, we check for all chords xi
+(−)−→ cj with the property of
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case (v) in 5(a) whether by setting xi = 1 (resp. xi = 0) they provide a
satisfying assignment for Ki. As soon as we have found such a chord provid-
ing a model for Ki the procedure outputs this model. If Ki is unsatisfiable,
we perform this process recursively until we have considered all the chords
with the property of case (v) in 5(a) and have ascertained that none of them
provides a model for Ki. Then the procedure stops with the output UNSAT-
ISFIABLE. Hence we consider each chord at most once. Using markers we
need constant time to check for each chord whether by the assignment of the
chord variable we obtain a false implicational chain on the annulus. Since Ki

has at most q − 2 many chords we need O(q) running time to solve a circle
with q many variable and q many clause vertices. Case 5(b) of procedure
circle (Ki) also yields a running time of O(q) because in worst-case we have
to check all chords.

• procedure circle-component(KK):
For each circle-component KK we run through the superstructure tree BKK

at most twice, that is we consider each vertex of BKK at most twice: At first
we run from the leaves up to the root circle of the tree. In case the root circle
is satisfiable and we have not determined a model for each circle in BKK

yet, we run from the root down towards the leaves until we have either found
a model for all circles of KK or until we have encountered an unsatisfiable
circle in BKK . It follows that procedure circle() is called at most twice
for each circle of BKK .

As we can solve a circle K of q many variable and q many clause vertices
in O(q) running time, the running time for an outerplanar formula F of n
variables is O(n).

Proof of the correctness: We show that algorithm ASP outputs a satisfying
truth assignment for an outerplanar formula F in case F is satisfiable, and UN-
SATISFIABLE else.
Considering procedure circle component (KK):

First, we determine the backbone variables for all circles in KK. According to
Lemma (17) the backbone variable x1 of a circle K is a backbone variable of KR

and according to Theorem (41) x1 is a backbone variable of KR if, and only if, we
can obtain an implicational chain x1 ⇒ . . . ⇒ xn ⇒ x1 or x1 ⇒ . . . ⇒ xn ⇒ x1
from the 2-CNF formula corresponding to KR. Therefore it is sufficient to consider
the 2-CNF formula CR corresponding to the annulus KR in order to check whether
a circle K has a backbone variable or not because By Theorem (42) we obtain if
one of the following three cases occurs:

1. K has a chord xi
+−→ cj , where 1 ≤ i < n, 1 < j ≤ n and i < j.

2. K has a chord xi
−−→ cj , where 1 < i ≤ n, 1 ≤ j < n and i > j.

3. K has a chord x1
−−→ cj , where 1 < j ≤ n.

x1 is also a backbone variable for K.
Having found all the backbone variables we fix them because there is no other

possibility to set them to obtain a model for F . Obviously the assignment of the
backbone variables is no restriction for the satisfiability of the formula. If we have
discovered that two circles K1 and K2 share a variable x which is a backbone vari-
able of both circles but w.l.o.g. a backbone 0 variable for K1 and a backbone 1
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variable for K2, then we have a backbone conflict and thus F is not satisfiable,
hence algorithm ASP outputs UNSATISFIABLE.
If there is no backbone conflict in KK, we conctruct the superstructure tree BKK

for KK and starting with the leaves of BKK we call procedure (BK) for each
leaf BK. On the way up to the root circle WK of BKK we call for each circle K
procedure (K): If K is joined to its father circle VK by an edge labelled with a
variable vertex x, we call procedure circle (Kx=0) as well as procedure (Kx=1).
If w.l.o.g. only procedure (Kx=1) outputs a satisfying assignment, we fix x = 1
because x = 0 does not yield a model for F. If both procedure calls output a sat-
isfying truth assignment, we do not fix x yet because this would pose a restriction
on the father VK of K as we do not know yet whether VK can also be satisfied
for both values of x. Suppose VK is only satisfiable for x = 0 but we have already
fixed x = 1, procedure circle (V Kx=1) would output UNSATISFIABLE and this
would have consequences for all ancestors of VK in BKK .
If on our way from the leaves up to the root of the tree we have called procedure
circle (K) for a circle K which is joined to its father by an edge labelled with a
clause vertex c and the output is UNSATISFIABLE, then we do not consider the
father VK of K before having solved all its sibling circles and continue this way
until having reached the root circle WK. If the procedure circle (WK) outputs
a satisfying assignment for WK, we fix all the variables of WK according to this
satisfying assignment and move downstairs towards the leaves of the tree BKK .
When arriving at a circle K in BKK , its father VK must be satisfiable and all
variables of VK already fixed according to a model. Hence the clause c in K is now
satisfied and we can omit c from K and thus call procedure circle (K − {c}).
If procedure circle (K − {c}) outputs UNSATISFIABLE too, then K cannot be
satisfied and thus KK is unsatisfiable. In this case procedure circle-component
(KK) outputs UNSATISFIABLE.
In summary, we firstly fix for each circle the backbone variables. On the way from
the leaves up to the root we fix a variable only if its assignment does not pose a
restriction on the satisfiability of the remaining circles of the tree. That means we
only fix those variables for which only one assignment can possibly satisfy the circle
(or path) or whose assignment does not influence the variables of other circles. As
soon as we have reached the root circle WK and found a model for WK, we fix all
the variables of WK according to this model and consider all those circles on our
way downstairs for which we have not determined a model yet because either both
values have been possible for the variable x joining K with its father circle VK or
because procedure circle (K) returned UNSATISFIABLE. In the latter case K
was joined to its father VK by an edge labelled with the clause vertex c.
If for a circle K which is joined to its father VK by an edge labelled with a variable
vertex x we have not determined a model yet because there is a satisfying truth
assignment for x = 0 as well as for x = 1, then when moving downstairs in the tree
from the root to the leaves and arriving at K the variable x is fixed. Therefore we
decide for the one satisfying truth assignment where x has this fixed value. Thus
we do not need to call the procedure circle (K) once again. Hence, algorithm
ASP works correctly.
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Figure 4.3: A path with four variable-vertices

4.2 Solving the Counting Problem #SAT for Out-
erplanar Formulas by the Separator Theorem
of Lipton & Tarjan

In this section we provide a polynomial-time algorithm solving #SAT for outer-
planar formulas. The basic idea is a divide-and-conquer approach based on the
seminal separator theorem for planar graphs due to Lipton and Tarjan [35], which
for convenience is stated next:

Theorem 43 (
√
n-separator theorem). Let G be a planar graph of n vertices. The

vertex set of G can be partitioned into three sets A, B, C such that no edge joins a
vertex in A with a vertex in B; neither A nor B contains more than 2n/3 vertices,
and C contains no more than 2

√
2
√
n vertices.

We call C a separator set and the vertices contained in C the separator vertices.
It is well known that every outerplanar graph has a separator set of size two and
that such a separator set can be computed in linear time [8]. A useful variant of
the theorem above for the special case of outerplanar graphs is due to Maheshwari
et al. [36] stating that the separator set then has at most two vertices.

Let us emphasize some easy notions concerning circle-free graph patterns which
can be treated as special cases in our algorithm which is described below.

Definition 7. (1) A connected outerplanar graph G without circles is called a tree.
(2) Given a tree consisting of intersecting paths which satisfy the following con-
dition: Every two paths are only allowed to intersect in vertices corresponding to
variables. We then define the mainpath as an arbitrary fixed path of the tree.

Let P be a path consisting of n vertices and let α be a fixed satisfying truth
assignment over the variables x1, . . . , xn of P . We write M(xi = α(xi)) for the
number of all different satisfying truth assignments of P in which the variables
xi, . . . , xn are set according to α. The variables x1, . . . , xi−1 can be set arbitrarily
as long as P is satisfied. Similarly, we write M(xi = α(xi)) for the number of all
different satisfying truth assignments of P , where the variables xi+1, . . . , xn are set
according to α, xi = α(xi) and the variables x1, . . . , xi−1 can be assigned arbitrarily
as long as P is satisfied.

Next we consider an example to demonstrate the Procedure NumberPath(P )
which is used in our algorithm for the special case that a current formula corre-
sponds to a path. So, let P be the path illustrated in Figure 4.3. An edge between



108 Chapter 4. k-Outerplanar Formulas

a variable vertex xi and a clause vertex cj labelled with +(−) means that xi occurs
as a positive (negative) literal in cj . Let α be the following fixed truth assignment
for the variables x2, x3, x4: α(x2) = 1, α(x3) = 0, α(x4) = 0. Then we have:

• M(x2 = α(x2)) = 2 because the assignments x1 = 0, x2 = 1, x3 = 0, x4 = 0
as well as x1 = 1, x2 = 1, x3 = 0, x4 = 0 satisfy P .

• M(x2 = α(x2)) = 1 because for x2 = 0 we have only one single choice to set
x1 to satisfy P , namely: x1 = 0. Therefore the assignment

x1 = 0, x2 = 0, x3 = 0, x4 = 0

is the only possible assignment, so that the variables x3, x4 are set according
to α and x2 = α(x2).

• M(x3 = α(x3)) =M(x2 = α(x2))+M(x2 = α(x2)) = 2+1 = 3. In this case
there are three different satisfying truth assignments that force the variables
x3, x4 to be set according to α.

• M(x3 = α(x3)) = 2 because if we set x3 = 1 and x4 = 0, the assignment of x3
does not satisfy the clause c2. Thus we have to set variable x2 appropriately
to satisfy clause c2, namely: x2 = 1 = α(x2). There are altogether M(x2 =
α(x2)) = 2 satisfying truth assignments, which enforce the setting x2 = 1.

• M(x4 = α(x4)) =M(x3 = α(x3))+M(x3 = α(x3)) = 3+2 = 5. Accordingly,
there are altogether 5 different satisfying truth assignments which enforce the
setting of variable x4 according to α.

• M(x4 = α(x4)) = 2 because given x4 = 1, x4 does not satisfy the clause c3.
So we have to set x3 = 1 = α(x3). There are altogether M(x3 = α(x3)) = 2
satisfying assignments which enforce the setting x3 = 1.

• Altogether there are M(x4 = α(x4)) +M(x4 = α(x4)) = 5 + 2 = 7 truth
assignments which satisfy P .

Next we introduce an algorithm counting all models of outerplanar formulas
using a divide-and-conquer strategy based on the separator theorem mentioned
above. This algorithm works recursively using subprocedures when the graph of
the input formula is a tree:

Algorithm Number ASP (GF)

INPUT: An outerplanar formula F with graph GF .
OUTPUT: N(GF ) = Number of all satisfying truth assignments for F

BEGIN

1. As long as there is a clause-vertex cj in GF which is only adjacent to a
single variable-vertex xi we fix the value of xi such that cj is satisfied by
the assignment of xi and do the following:We eliminate all the clause-vertices
which are satisfied by the assignment of xi, then we eliminate the vertex xi
and all edges incident with the vertex xi from GF .

2. If there is a clause-vertex not adjacent to any variable-vertex (i.e. there is an
empty clause), the formula F is unsatisfiable and the procedure returns with
the output N(GF ) = 0. Else the algorithm proceeds with the next step.
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3. If GF is a path, F is satisfiable and we determine the number of all satisfying
assignments of GF by the Procedure NumberPath (GF ).

4. In case GF is a tree, we determine the number of all satisfying assignments
of GF by the Procedure NumberTree (GF ).

5. (a) Using the separator theorem we determine two vertices xi1 and cj1 so
that GF is partitioned into two subgraphs G1

F and G2
F . These two have

just the vertices xi1 and cj1 in common and neither of them contains
more than 2n

3 variable-vertices. Furthermore there is no edge joining a
vertex from G1

F − {xi1 , cj1} with a vertex from G2
F − {xi1 , cj1}.

(b) We derive G1
F (xi1 = 1) resp. G2

F (xi1 = 1) by eliminating all those
clause-vertices which are satisfied by the assignment xi1 = 1, the variable-
vertex xi1 and all edges incident with xi1 .

Equally we derive G1
F (xi1 = 0) resp. G2

F (xi1 = 0) by eliminating
(from G1

F resp. G2
F ) all the clause-vertices which are satisfied by the

assignment xi1 = 0, the vertex xi1 and all the edges incident with xi1 .
Further we obtain Gi

F (xi1 = 1) − {cj1} resp. Gi
F (xi1 = 0) − {cj1},

i = 1, 2, by eliminating the clause-vertex cj1 and all edges incident with
it from Gi

F (xi1 = 1) resp. Gi
F (xi1 = 0).

(c) Recursively we compute the number of all satisfying truth assignments
of
Gi

F (xi1 = 1), Gi
F (xi1 = 0), Gi

F (xi1 = 1)−{cj1} andGi
F (xi1 = 0)−{cj1},

for i = 1, 2, by:
Algorithm Number ASP(G1

F (xi1 = 1) ),
Algorithm Number ASP(G1

F (xi1 = 0) ),
Algorithm Number ASP(G2

F (xi1 = 1) ),
Algorithm Number ASP(G2

F (xi1 = 0) ),
Algorithm Number ASP(G1

F (xi1 = 1)− {cj1} ),
Algorithm Number ASP(G1

F (xi1 = 0)− {cj1} ),
Algorithm Number ASP(G2

F (xi1 = 1)− {cj1} ) and
Algorithm Number ASP(G2

F (xi1 = 0)− {cj1} ).

(d) Let N(GF ) be the number of all satisfying truth assignments of GF and
let N(Gi

F (xi1 = 1)) be the number of all satisfying truth assignments
of Gi

F (xi1 = 1), for i = 1, 2. Further let N(Gi
F (xi1 = 0)) be the

number of all satisfying truth assignments of Gi
F (xi1 = 0), for i = 1, 2.

Moreover let N(Gi
F (xi1 = 1)− {cj1}) resp. N(Gi

F (xi1 = 0)− {cj1}) be
the number of all satisfying truth assignments of Gi

F (xi1 = 1) − {cj1}
resp. Gi

F (xi1 = 0)− {cj1}, for i = 1, 2. Then we have:

N(GF ) = max{N(G1
F (xi1 = 1)− {cj1})·N(G2

F (xi1 = 1)),

N(G2
F (xi1 = 1)− {cj1})·N(G1

F (xi1 = 1))}
+max{N(G1

F (xi1 = 0)− {cj1})·N(G2
F (xi1 = 0)),

N(G2
F (xi1 = 0)− {cj1})·N(G1

F (xi1 = 0))}

Procedure NumberPath (P )
INPUT: A path P admitting n variable-vertices such that P begins and ends with



110 Chapter 4. k-Outerplanar Formulas

����

�
�
�
�
����

�
�
�
�

��
��
��
��
��
��
��
��

��

x

c

c
x

c
x1

1

2

2

3

3

xn

. . .

Figure 4.4: A path with n variable-vertices
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Figure 4.5: A tree.

a variable-vertex (cf. Figure 4.4).
OUTPUT: N(P ) = The number of all satisfying truth assignments of P .

1. Let α : {x2, . . . , xn} −→ {0, 1} be the following truth assignment for P : For
all i = 2, . . . , n

α(xi) =

{
1, if xi occurs in ci−1

0, if xi occurs in ci−1

α satisfies all clauses of P by definition. For satisfying P the value of the
variable x1 is not relevant, so we are allowed to set either x1 = 1, or x1 = 0.
Hence we have:

2. Initially holds: M(x2 = α(x2)) = 2 and M(x2 = α(x2)) = 1.

3. For i = 3 to n do

M(xi = α(xi)) =M(xi−1 = α(xi−1)) +M(xi−1 = α(xi−1)) and

M(xi = α(xi)) =


M(xi−1 = α(xi−1)), if xi−1 has the same

polarity in ci−1 as in ci−2

M(xi−1 = α(xi−1)), else.

4. N(P ) =M(xn = α(xn)) +M(xn = α(xn)).

Procedure NumberTree (B)
INPUT: A formula whose graph is a tree B (and not only a path) of n variable-
vertices (cf. Figure 4.5).
OUTPUT: N(B) := Number of all satisfying truth assignments of B.
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Figure 4.6: Every two paths may have only a variable-vertex in common

1. If B consists of paths which satisfy the following condition: Each pair of
distinct paths is only allowed to have a variable-vertex in common and there
is a variable-vertex xp in B which is adjacent to at least three clause-vertices.
An example is illustrated in Figure 4.6

On this premise we proceed in the following way: Let HP be the main-
path of B and let xp be a variable-vertex of the main path which is ad-
jacent to l ≥ 1 clause-vertices c1, . . . , cl that do not lie on HP and let α
be a satisfying truth assignment for HP . For every such variable-vertex xp
of the main path we proceed as follows: Let B1

xp
, . . . , Bl

xp
be all the sub-

trees of B which only intersect HP in the variable-vertex xp. We compute

them recursively by Algorithm Number ASP
(
Bi

xp=α(xp)

)
, and Algo-

rithm Number ASP
(
Bi

xp=α(xp)

)
, for i = 1, . . . , l. Let N

(
Bi

xp=α(xp)

)
resp. N

(
Bi

xp=α(xp)

)
be the number of all satisfying truth assignments of

Bi
xp=α(xp)

resp. Bi
xp=α(xp)

. By Algorithm Number ASP (HP ) which

calls Procedure NumberPath(HP ) we deal with the main path. As soon
as we reach xp, we get one of the following equations:

M (xp = α(xp)) =
[
M (xp−1 = α(xp−1)) +M

(
xp−1 = α(xp−1)

)]
·N
(
B1

xp=α(xp)

)
· . . . ·N

(
Bl

xp=α(xp)

)
or

M(xp = α(xp)) ={
M(xp−1 = α(xp−1))·N(B1

xp=α(xp)
)· . . . ·N(Bl

xp=α(xp)
);if xp−1 or x̄p−1 in cp−1 ∩ cp−2

M(xp−1 = α(xp−1))·N(B1
xp=α(xp)

)· . . . ·N(Bl
xp=α(xp)

);else.

2. If B contains a clause-vertex ci which is adjacent to k ≥ 3 variable-vertices
xi1 , . . . , xik , as illustrated in Figure 4.7, then we partition B into k subtrees
Bxi1

. . . , Bxik
such that every subtree is connected with the other k − i sub-

trees only by the clause-vertex ci. We write Bxij
for the subtree including

the vertex xij , for j = 1, . . . , k, without the clause-vertex ci. For every Bxij
,

for j = 1, . . . , k, we compute the number of all satisfying truth assignments
of Bxij

as follows:



112 Chapter 4. k-Outerplanar Formulas

��

����

�
�
�
� �
�
�
�����

����

�
�
�
���

��
��
��

����

��
��
��
��

��
�
�
�
�

�
�
�
�

��
��
��
���

�
�
�

��
��
��
��

�
�
�
�

c
x1 2x

i

x4

x
3

B B

B

x x

x

1
2

3

Bx
4

Figure 4.7: A clause-vertex adjacent to 4 variable-vertices

(a) If Bxij
is a path, we compute the number of all satisfying truth assign-

ments of Bxij
by Procedure NumberPath(Bxij

).

(b) If Bxij
is a tree and does not have a clause-vertex which is adjacent to

at least three variable-vertices, Bxij
has a variable-vertex xp, which is

adjacent to at least three clause-vertices. In this case we compute the
number of all models of Bxij

by applying (1.).

(c) If Bxij
has a clause-vertex which is adjacent to at least three variable-

vertices, then we compute the number of all models of Bxij
by applying

(2.).

(d) Let N(Bxij
) be the number of all models of Bxij

, for j = 1, . . . , k. Then

it holds:

N(B) = N(Bxi1
)· . . . ·N(Bxik

)−N(Bxi1¬ci)· . . . ·N(Bxik
¬ci)

Here N(Bxij
¬ci), for j = 1, . . . , k, denotes the number of all models

of Bxij
where the variable xij is set such that its assignment does not

satisfy the clause ci.

END

Remark 5. 1. The separator set in (5) may also consist of two variable-vertices
or two clause-vertices.

• If the separator set consists of two variable-vertices xi1 , xi2 , we have to
treat the following subgraphs:

Algorithm Number ASP(G1
F (xi1 = 1 ∧ xi2 = 1)),

Algorithm Number ASP(G1
F (xi1 = 0 ∧ xi2 = 1)),

Algorithm Number ASP(G1
F (xi1 = 1 ∧ xi2 = 0)),

Algorithm Number ASP(G1
F (xi1 = 0 ∧ xi2 = 0)),

Algorithm Number ASP(G2
F (xi1 = 1 ∧ xi2 = 1)),

Algorithm Number ASP(G2
F (xi1 = 0 ∧ xi2 = 1)),

Algorithm Number ASP(G2
F (xi1 = 1 ∧ xi2 = 0)) and

Algorithm Number ASP(G2
F (xi1 = 0 ∧ xi2 = 0)).

Let N(Gi
F (xi1 = δ1 ∧ xi2 = δ2)), for i = 1, 2 and δ1, δ2 ∈ {0, 1}, be

the number of all models of Gi
F (xi1 = δ1 ∧ xi2 = δ2). For N(GF ), the
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number of all models of GF , holds:

N(GF ) =N(G1
F (xi1 = 1 ∧ xi2 = 1))·N(G2

F (xi1 = 1 ∧ xi2 = 1))

+N(G1
F (xi1 = 0 ∧ xi2 = 1))·N(G2

F (xi1 = 0 ∧ xi2 = 1))

+N(G1
F (xi1 = 1 ∧ xi2 = 0))·N(G2

F (xi1 = 1 ∧ xi2 = 0))

+N(G1
F (xi1 = 0 ∧ xi2 = 0))·N(G2

F (xi1 = 0 ∧ xi2 = 0))

• If the separator set consists of two clause-vertices ci1 , ci2 , we have to
treat the following subgraphs:

Algorithm Number ASP(G1
F − {ci1}),

Algorithm Number ASP(G1
F − {ci1 , ci2}),

Algorithm Number ASP(G1
F − {ci2}),

Algorithm Number ASP(G1
F ),

Algorithm Number ASP(G2
F − {ci1}),

Algorithm Number ASP(G2
F − {ci1 , ci2}),

Algorithm Number ASP(G2
F − {ci2}) and

Algorithm Number ASP(G2
F ).

We get :

N(GF ) = max{N(G1
F − {ci1})·N(G2

F − {ci2}), N(G1
F − {ci1 , ci2})·N(G2

F ),

N(G1
F − {ci2})·N(G2

F − {ci1}), N(G1
F )·N(G2

F − {ci1 , ci2})}.

2. If we have a CNF formula F whose outerplanar graph GF has l > 1 connected
components Z1, . . . , Zl, we do the following:

We apply the Algorithm Number ASP on each single connected com-
ponent. Let N(Zi) be the number of all models of the component Zi, for
i = 1, . . . , l. Then N(F ) = N(Z1)·N(Z2)· . . . ·N(Zl) is the number of all
models of F .

The Algorithm Number ASP() previously described leads to:

Theorem 44. The counting problem #SAT for outerplanar formulas with n vari-
ables is solvable in time O(n5.13). For outerplanar formulas whose graph is either
free of circles or consists of disjoint circles without chords we can solve #SAT in
linear time.

Proof. We establish the theorem by proving the correctness and stated time
complexity of the Algorithm Number ASP() starting with the analysis of the run-
ning time: Let F be a CNF formula with n variables and a connected outerplanar
graph GF . If GF is a tree, thus free of circles, we can calculate the number of all
models of F in linear time. As we visit each vertex of GF only once in the Pro-
cedure NumberTree as well as in the Procedure NumberPath, each of the
two procedures takes linear running time. The same argument holds when GF con-
sists of pairwise disjoint circles without any chords because by setting an arbitrary
variable of a circle without any chords, we obtain a path.

If GF has circles, we treat GF recursively by the separator-theorem: We de-
termine two vertices xi1 and cj1 such that GF is partitioned in two subgraphs G1

F
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and G2
F which only have the two vertices xi1 and cj1 in common and it holds that

neither G1
F nor G2

F contain more than 2n
3 variable-vertices. Further there is no

edge connecting a vertex from G1
F − {xi1 , cj1} with a vertex from G2

F − {xi1 , cj1}.
From G1

F we get G1
F (xi1 = 1) (resp. G1

F (xi1 = 0)), by setting the variable xi1 = 1
(resp. xi1 = 0)in G1

F , eliminating all clauses, which are satisfied by the assignment
xi1 = 1 (resp. xi1 = 0) and further eliminating xi1 and all edges incident with xi1 .

Likewise we obtain the subgraphs G2
F (x1 = 1) and G2

F (x1 = 0) from G2
F .

Next we build G1
F (x1 = 1) − {cj1}, G2

F (x1 = 1) − {cj1}, G1
F (x1 = 0) − {cj1}

and G2
F (x1 = 0) − {cj1}, by eliminating the clause vertex cj1 from G1

F (xi1 = 1),
G2

F (xi1 = 1), G1
F (xi1 = 0) and G2

F (xi1 = 0), in case this one is not satisfied yet
through the setting of xi1 . Next we apply the Algorithm Number ASP to the
eight subgraphs:

Algorithm Number ASP(G1
F (xi1 = 1) ),

Algorithm Number ASP(G1
F (xi1 = 0) ),

Algorithm Number ASP(G2
F (xi1 = 1) ),

Algorithm Number ASP(G2
F (xi1 = 0) ),

Algorithm Number ASP(G1
F (xi1 = 1)− {cj1} ),

Algorithm Number ASP(G1
F (xi1 = 0)− {cj1} ),

Algorithm Number ASP(G2
F (xi1 = 1)− {cj1} ) and

Algorithm Number ASP(G2
F (xi1 = 0)− {cj1} ).

As soon as a subgraph is free of circles, we can compute the number of all its
models in linear time by the Procedure NumberTree (B) or by the Procedure
NumberPath (P).

Let T (n) be the running time to compute the number of all models of an
outerplanar formula with n variables. Then we obtain the following recurrence for
the running time:

T (1) = O(1)

T (n) = 8·T
(
2

3
n

)
+O(n) +O(1), n > 1

Since we can determine the separator set for an outerplanar graph in linear time,
we get O(n) for the running time to determine a separator.

At each step of the recursion we obtain eight new subgraphs, to which we apply
the Algorithm Number ASP(). As with every separation step the variable set
has diminishes to at most 2/3 of the variable set of the previous graph the recursion
tree has maximal depth l satisfying (2/3)ln = 1. Therefore we have:

l = log3/2(n) =
log2(n)

log2(3/2)

We need O(1) running time to combine the solutions of the different subgraphs.
Thus the solution of our recurrence is: T (n) = nlog3/2 8 = n5.13. Therefore T (n) =
O(n5.13) is the running time for #SAT for outerplanar formulas.

Now we consider the correctness of theAlgorithm Number ASP(). Concern-
ing Procedure NumberPath(P) we have the following invariant: M(xi = α(xi)),
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for i = 2, . . . , n, denotes the number of all models assigning the variables xi, . . . , xn
according to α and M(xi = α(xi)) denotes the number of all models assigning the
variables xi−1, . . . , xn according to α and xi = α(xi). Hence

N(P ) =M(xn = α(xn)) +M(xn = α(xn)

denotes the number of all models for the path P.
Concerning Procedure NumberTree(B) we similarly have the following in-

variant: If B is a tree for which holds that every two paths are only allowed to
have a variable-vertex in common, we consider the main path (HP) and apply the
Algorithm Number ASP(HP) to HP which then calls the Procedure Num-
berPath(HP) to apply to HP. For every variable xp of the main path which is
adjacent to l > 2 clause-vertices c1, . . . , cl we have the following invariant:

M(xp = α(xp)) =
[
M(xp−1 = α(xp−1)) +M(xp−1 = α(xp−1))

]
·N(B1

xp=α(xp)
)· . . . ·N(Bl

xp=α(xp)
)

and

M(xp = α(xp)) ={
M(xp−1 = α(xp−1))·N(B1

xp=α(xp)
)· . . . ·N(Bl

xp=α(xp)
);if xp−1 or x̄p−1 is in cp−1 ∩ cp−2

M(xp−1 = α(xp−1))·N(B1
xp=α(xp)

)· . . . ·N(Bl
xp=α(xp)

);else.

In other words we partition B into paths so that we only need to recursively treat
each single path by the Algorithm Number ASP and finally to combine the
number of the solutions of the common variables.

If B is a tree with a clause-vertex c which is adjacent to at least three variable-
vertices, then we partition B into k subtrees, where k is the number of the variable-
vertices which are adjacent to c, such that every two of the k subtrees have only
the vertex c in common. Then we remove c from every subtree and compute for
every subtree the number of all its models separately. Next we multiply all these
numbers and subtract the number of all truth assignments not satisfying c.

If GF is neither a path nor a tree, GF must have a circle. Then we treat GF

by the divide and conquer strategy using the separator theorem.

The next Theorem implicates that an upperbound for path formulas is provided
by the Fibonaccci numbers.

Theorem 45. Let F be an outerplanar CNF-formula consisting of n variables
whose graph GF is a path. Then F has at most

ψn+1 =
1√
5

(
φn+1 − (1− φ)n+1

)
many different satisfying truth assignments, where ψn+1 is the (n+1). th Fibonacci

number and φ = 1+
√
5

2 .

Proof. Let F be a CNF Formula with n variables whose graph GF is a path
P beginning and ending with a variable-vertex. Then F is satisfiable and F has the
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Figure 4.8: Pure literals path

largest possible number of truth assignments if it only consists of pure literals. An
example is illustrated in Figure 4.8.

We compute the number of all models of GF by the Procedure NumberPath
(GF ). Since every variable xi−1 occurs with the same polarity in ci−1 as in ci−2,
it holds:

M(xi = α(xi)) =M(xi−1 = α(xi−1))

We set ψ0 := 1. It holds M(x2 = α(x2)) = 1 =: ψ1, M(x2 = α(x2)) = 2 =: ψ2.
Further, we define: ψi := M(xi = α(xi)), for i = 1, . . . , n. We recursively obtain
for i = 3, . . . , n+ 1:

ψi =M(xi = α(xi)) =M(xi−1 = α(xi−1)) +M(xi−1 = α(xi−1))

=M(xi−1 = α(xi−1)) +M(xi−2 = α(xi−2))

= ψi−1 + ψi−2

Thus we obtain:

N(P ) =M(xn = α(xn)) +M(xn = α(xn))

=M(xn = α(xn)) +M(xn−1 = α(xn−1))

= ψn + ψn−1 = ψn+1

So F has
N(P ) = ψn+1

many satisfying truth assignments. The ψi, for i = 1, . . . , n + 1, are the famous
Fibonacci-numbers.
It is well known that ψn = φn−(1−φ)n√

5
, where φ = 1+

√
5

2 . Thus we get

N(P ) =
1√
5

(
φn+1 − (1− φ)n+1

)

Theorem 46. Let F be an outerplanar formula consisting of n variables whose
graph GF is a circle without any secants. Then F has at most

1√
5
(φn − (1− φ)n) + 1√

5

(
φn−2 − (1− φ)n−2

)
many different satisfying truth assignments.
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Figure 4.9: Pure literals circle

Proof. Let F be a CNF formula with n variables whose graph GF is a circle
without any chords. Then F is satisfiable and has the largest possible number of
truth assignments if it only consists of pure literals. An example is illustrated in
4.9. We set x1 = 1 resp. x1 = 0 and compute the number of all satisfying truth
assignments of GFx1=1 and GFx1=0 with the Algorithm Number ASP (GFx1=1)
and by the Algorithm Number ASP (GFx1=0) which calls the Procedure
NumberPath.
W.l.o.g. let x1 only occur as a positive literal in F . If we set x1 = 1, the clauses
c1 and cn are satisfied and we obtain a path P1 = x2 − c2 − . . . − cn−1 − xn with
n− 1 variables. According to Theorem 45 this path has exactly N(P1) = ψn many
satisfying truth assignments. We further set x1 = 0. With this assignment neither
the clause c1 nor the clause cn are satisfied. Thus we have to set the variable x2 so,
that its assignment satisfies the clause c1 and the variable xn so, that its assignment
satisfies the clause cn. Since every variable only occurs as a pure literal, the clauses
c2 and cn−1 are also satisfied by the assignment of x2 and xn. We remove these
and obtain a path P2 = x3 − c3 − . . .− xn−1 of n− 3 variables.
According to Theorem 45 this path has exactly N(P2) = ψn−2 many models. In
summary the number of models for F therefore is:

N(K) = N(P1) +N(P2) = ψn + ψn−2

4.3 The Case of k-Outerplanar Formulas and the
Separator Theorem of Lipton & Tarjan

Aiming to treat #SAT for CNF formulas with k-outerplanar graphs, for k ≥ 2, we
now extend the concepts of the previous section.

Definition 8. Let k-ASP be the class of CNF formulas with n variables whose
graph is k-outerplanar, for a k > 1.

A k-outerplanar graph can easily be partitioned into two subgraphs with at
most 2k common separator vertices as shown by B.S. Baker. This is a result of the
separator theorem of Lipton & Tarjan:

Lemma 18 ([3]). Let G be any n-vertex k-outerplanar graph. The vertices of G
can be partitioned into three sets A, B, C such that no edge joins a vertex in A with
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a vertex in B, neither A nor B contain more than 2n/3 vertices, and C contains
no more than 2k vertices. Such a separator set can be computed in linear time.

As we are interested in the number of all satisfying truth assignments of a k-
outerplanar CNF formula F , we consider the following algorithm, which solves our
problem:

Algorithm Number k-ASP (F)
INPUT: F ∈ k-ASP,
OUTPUT: N(F ) := number of all models for F .
BEGIN

1. If F is 1-outerplanar, we compute the number of all models of F by the
Algorithm Number ASP(F ).

2. As long as there is a clause-vertex cj in GF which is adjacent to only one
variable-vertex xi, we set xi so that its assignment satisfies the clause cj ,
and we simplify the formula by removing all the clause-vertices satisfied by
the assignment of xi. Further we remove the vertex xi and all edges incident
with it from GF .

3. If there is an isolated clause-vertex (i.e. an empty clause), the formula is
unsatisfiable and the procedure terminates with the output N(GF ) = 0.

4. • Let GF = (V (GF ), E) be the k-outerplanar graph of F . We determine
the separator set S = {x1, . . . , xl} of GF , l ≤ 2k such that the vertex
set V (GF ) of GF can be divided into three sets V1, V2 and S with the
following feature: There is no edge joining a vertex of V1 with a vertex
of V2 and |V1|, |V2| ≤ 2n

3 .

• Next we consider both subgraphs of GF which we obtain by adding
the separator vertices x1, . . . , xl to V1 resp. V2 and admitting all the
edges between those vertices which were present between those variables
in GF . We obtain: G1 := G(V1 ∪ {x1, . . . , xl}) and G2 := G(V2 ∪
{x1, . . . , xl}). Here V1∪{x1, . . . , xl} resp. V2∪{x1, . . . , xl} is the vertex
set of G1 resp. G2, and the edge set of G1 resp. G2 is E restricted
to V1 ∪ {x1, . . . , xl} resp. V2 ∪ {x1, . . . , xl}. Let F 1 and F 2 be the
subformulas of F whose graphs correspond to G1 resp. G2.

• Let φ1, . . . , φ2l be all distinct truth assignments for the variables x1, . . . , xl.
For each fixed φj , 1 ≤ j ≤ 2l, the number of all models of F i

φj(x1,...,xl)
,

for i = 1, 2, is computed by theAlgorithm Number k-ASP (F i
φj(x1,...,xl)

).

Here F i
φj(x1,...,xl)

denotes the evaluation of F i according to φj : All sat-

isfied clauses in Fi are removed from Fi. Furthermore the variables
x1, . . . , xl are removed from all remaining clauses.

• Let N(F i
φj(x1,...,xl)

) be the number of all models of F i
φj(x1,...,xl)

, for

i = 1, 2 and 1 ≤ j ≤ 2l. Then we have:

N(F ) =
2l∑
j=1

(
N(F 1

φj(x1,...,xl)
)·N(F 2

φj(x1,...,xl)
)
)

END
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Figure 4.10: A 7-circular-levelplanar graph

Remark 6. In the Algorithm Number k-ASP we assume that the separator set
S consists of variable vertices only but this is not necessarily always the case. In
case a clause vertex is contained in S we proceed as in Algorithm Number ASP
by extending it to l, l ≤ 2k, vertices.

Theorem 47. Algorithm Number k-ASP needs O(n1.7(2k+1)) time to compute
the number of all models for a k-outerplanar formula F with n variables, where
k ≥ 1 is a fixed integer.

Proof. Let T (n) be the running time needed to compute the number of all
models of an arbitrary k-outerplanar formula F (with a constant k) with n variables
by the separator theorem:

Then we obtain the following recurrence:

Tk(1) = O(1) (4.1)

Tk(n) = 22k+1Tk

(
2

3
n

)
+O(n) +O(22k+1), n > 1 (4.2)

For fixed values of k equation (4.2) above reduces to

Tk(n) = 22k+1Tk

(
2

3
n

)
+O(n)

whose solution

Tk(n) = O
(
nlog3/2(2

2k+1)
)
= O

(
n

2k+1
log2(3/2)

)
= O

(
n1.7(2k+1)

)
is obtained from the Master Theorem for recurrence equations. Thus it holds:
Tk(n) = T

′

k(n)− O(1) = O
(
n1.7(2k+1)

)
. Therefore the running time for #SAT for

k-outerplanar formulas is O(n1.7(2k+1)). That means, for constant k, #SAT for
k-outerplanar formulas is solvable in polynomial-time.

Next we consider an important subclass of the class of k-outerplanar formulas,
namely the class of k-circular-levelplanar formulas for which #SAT can be solved
faster.

Definition 9. Let G be a k-outerplanar graph that is constructed as follows: G
consists of k circles (free of secants apart from the smallest circle inside), which
are encapsulated into each other. Here edges do only exist between adjacent circles.
We call such a graph k-circular-levelplanar(see figure (4.10)).
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Figure 4.11: Separation of a 7-circular-levelplanar graph

Definition 10. We call a CNF formula F k-circular-levelplanar if its graph GF is
k-circular-levelplanar.

For this specific formula class we obtain the following:

Lemma 19. Let F be a k-circular-levelplanar formula. Then F is satisfiable.

Proof. In the first section we have already proven that a CNF formula whose
graph is a ring (that is a circle without secants) is always satisfiable. Accordingly,
we can satisfy each of the rings and the edges between the rings do not influence
the satisfiability.

Lemma 20. Let G be a k-circular-levelplanar graph consisting of n vertices. Then
the following holds: Partitioning G by a separator set of |S| = 2k, as shown in
figure 4.11, into two subgraphs G1 and G2, for which holds, that G1 as well as G2

do not have more than 2n/3 vertices and there is no edge joining a vertex from G1

with a vertex from G2, then G1, G2 are at most (dk/2e)-circular-levelplanar.

Proof. If we slice G such that every circle is being sliced at exactly two vertices
as depicted in Figure 4.11, then G is obviously partitioned into two subgraphs G1

and G2, that are at most (dk/2e)-circular-levelplanar.

The next theorem states that k-circular-levelplanar formulas can be solved faster
than k-outerplanar formulas.

Theorem 48. For k-circular-levelplanar formulas, where k ≥ 1, #SAT is solvable
in time O(k· 16k(2/3)5.13·log2 kn5.13). So the class of k-circular-levelplanar formulas
belongs to the class FPT.

Proof. Let F be a k-circular-levelplanar CNF formula with n variables. Then
we can solve #SAT for F faster using the Algorithm Number k-ASP.

Using Lemma 20 we get: In every separation step the level of the outerpla-
narity of F is bisected. After log2 k separation steps we have separated F into
1-outerplanar formulas and every one of them does not have more than (2/3)log2 kn
variables. Each of these formulas we can solve in O(((2/3)log2 kn)5.13) running time
according to Theorem 44.

After log2 k separation steps we have to treat

2· 22k· 2· 22(dk/2e)· 2· 22(dk/4e)· . . . · 2· 22·2 = O(k· 24k)
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many (dk/(2log2 k)e)-circular-levelplanar (that is 1-outerplanar) subformulas.
So we have O(k· 24k) many 1-outerplanar formulas and thus a running time

of O(k· 24k((2/3)log2 kn)5.13) = O(k· 16k(2/3)5.13·log2 kn5.13), to solve a k-circular-
levelplanar CNF formula with n variables.

Next we consider Knuth’s nested formulas for which SAT can be decided in
linear time [27]. We show that #SAT can be solved in polynomial-time O(n8.5) for
the class of nested formulas.

Definition 11 ([27]). Let X be a finite alphabet linearly ordered by <; we think of
the elements of X as boolean variables. The linear ordering of X can be extended
to a linear preordering of all its literals in a natural way if we simply disregard the
signs. If X = {a, b, c} has the usual alphabetic order, we have

a ≡ a < b ≡ b < c ≡ c

If σ and τ are literals, we write σ ≤ τ if σ < τ or σ ≡ τ .
We say that a clause C straddles C

′
if there are literals σ, τ in C and ψ

′
in C

′
, such

that:
σ < ψ

′
< τ

Two clauses overlap if they straddle each other. A set of clauses in which no two
clauses overlap is called nested. A nested formula is a CNF formula which consists
of nested clauses only. [27]

In [27] it has been proved that the class of nested formulas can be SAT-decided
in linear time:

Theorem 49 ([27]). Let F be a nested formula. Then SAT can be decided in linear
time for F .

For our purposes the next result, derived by J. Kratochvil and M. Krivanek,
turns out to be useful.

Lemma 21 ([31]). A formula F = c1 ∧ c2 ∧ . . .∧ cn is nested if the variables allow
an ordering X = {x1, x2, . . . , xm} such that the graph

GV
F = (X ∪ {c1, c2, . . . , cn}, {{x, ci};x ∈ ci or x ∈ ci}

∪{{xi, xi+1}; i = 1, 2, . . . ,m})

allows a noncrossing drawing in the plane so that the circle x1, x2, . . . xm bounds
the outer face.

As an example consider Figure 4.12. Obviously the graph GF of a nested for-
mula F which we obtain from GV

F by eliminating the edges between the variable-
vertices in GV

F is at most 2-outerplanar. This can easily be achieved by removing
all the vertices from the outer face of GF : Removing all the vertices of the outer
face particularly means removing all the variable-vertices and hence we have only
clause-vertices left. Since there is no edge between two clause-vertices the remain-
ing graph only consists of single vertices without any edges and is thus clearly
1-outerplanar.
Thus an arbitrary nested formula is at most 2-outerplanar and according to Theo-
rem (47) we have:

Corollary 7. The counting problem #SAT can be solved in time O(n8.5) for the
class of nested formulas with the separator theorem of Lipton and Tarjan.



122 Chapter 4. k-Outerplanar Formulas

�
�
�
�
������ �� �

�
�
�

��
��
��
��
�
�
�
�

��

�
�
�
�

�
�
�
�

��
x x x

4
xx

1 2 3
x

6

1
c

3cc
2

4
c

5

5
c

Figure 4.12: The graph of a nested formula

4.4 Solving #SAT for k-Outerplanar Formulas by
a Nice Tree Decomposition

Recently, tree decompositions of graphs have received considerable interest in prac-
tical applications. In this section we present an algorithm which solves the #SAT
problem for a k-outerplanar formula F in linear time by using the technique of a
nice tree decomposition of its variable-clause graph GF . Before we describe our
algorithm we introduce some notation.
Let G = (V,E) be a graph. A tree decomposition of G is a pair ({Xi|i ∈ I}, T ),
where each Xi, i ∈ I, is a subset of V , called a bag, and T is a tree with the elements
of I as nodes. The following three properties must hold:

1.
⋃

i∈I Xi = V .

2. For every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi.

3. For all i, j, k ∈ I, if j lies on the path between i and k in T , thenXi∩Xk ⊆ Xj .

The width of ({Xi|i ∈ I}, T ) equals max{|Xi||i ∈ I}− 1. The treewidth of G is the
minimum w such that G has a tree decomposition of width w [9].
To better illustrate this definition, we distribute the vertices of G on the bags Xi,
i ∈ I, which are the vertices of the tree T = (I, F ), such that the following holds:

• Each vertex of V is contained in at least one bag Xi, for a i ∈ I.

• The two vertices of each edge are together in at least one bag.

• For each vertex v ∈ V the bags containing it form a subtree of T .

A tree decomposition intuitively represents how close a graph G is to a tree. Bod-
laender observed that each k-outerplanar graph has a tree decomposition of width
at most 3k − 1 and his analysis implicitly leads to an O(kn) time algorithm for
computing such a tree decomposition [8].
A tree decomposition ({Xi|i ∈ I}, T ) with a particularly simple (and useful in
regard of dynamic programming, cf. [1, 9]) structure is given by the following defi-
nition.
A tree decomposition is called a nice tree decomposition if the following conditions
are satisfied: Every node i of the tree T has at most two children; if a node i has two
children j and j′, then Xi = Xj = Xj′ ; and if a node i has one child j, then either
|Xi| = |Xj |+1 and Xj ⊂ Xi or |Xi| = |Xj |−1 and Xi ⊂ Xj . More precisely, a nice
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tree decomposition for a graph G = (V,E), as introduced by H.L. Bodlaender and
T. Kloks in [7], is a tree decomposition (X,T ) of G with the following properties:

1. T is a rooted tree.

2. T has only four different types of nodes i:

• Leaf : i has no children, it is the leaf of the tree T .

• Join: i is a node with two children j, j′ and Xi = Xj = Xj′ .

• Forget: i is a node with only one child j such that Xi = Xj −{v}, for
some vertex v ∈ Xj .

• Introduce: i is a node with only one child j such that Xi = Xj ∪ {v},
for some vertex v /∈ Xj .

Note that in a nice tree decomposition T one can always achieve that |Xi| = 1 for
each leaf node i in T . Hence the bag Xi of each leaf node i consists of one vertex
only. Assume there is a leaf node i in T whose corresponding bag Xi contains two
vertices: Xi = {x1, x2}, then we can expand the tree T such that Xi1 = {x1} is
now the only child of Xi. Now i is an introduce node and i1 a leaf node in T whose
bag contains exactly one vertex. So, in the following we assume that the bag of
each leaf node in a nice tree decomposition contains exactly one vertex.
It is not hard to transform a given tree decomposition into a nice tree decomposition.
A tree decomposition of width w with n nodes can be converted into a nice tree
decomposition of width w with O(n) nodes in time O((n)· poly(k)) [26](Lemma
13.1.2, 13.1.3).

Now we are able to present an algorithm which solves the #SAT problem for
a k-outerplanar formula F in linear time by using a nice tree decomposition of its
variable-clause graph GF . Tree decomposition based algorithms usually proceed
in two phases. First, given some input graph, a tree decomposition of bounded
width is constructed. Second, one solves the given problem (such as #SAT) using
dynamic programming. Dynamic programming to solve the optimisation version of
a problem again proceeds in two phases: first bottom-up from the leaves to the root
and then top-down from the root to the leaves in order to construct the solution.
To do this two-phase dynamic programming, however, one has to store all dynamic
programming tables, each of them corresponding to a bag of the tree decomposi-
tion. Each bag Xi usually leads to a table that is exponential in its size [5]. Here
our sole interest lies in the decision version of the #SAT problem, so performing
only the first phase is sufficient, namely bottom-up from the leaves to the root, in
the dynamic programming of our algorithm.

Algorithm NTD
Input: k-outerplanar Formula F with n variables; its corresponding variable-clause
graph GF .
Output: Number of models of F , if F is satisfiable. Else: 0.
begin

1. Compute a nice tree decomposition ({Xi|i ∈ I}, T ) of GF of width w, where
w ≤ 3k − 1.

2. For each bag Xi, i ∈ I, compute all 2|Xi| assignments α of values 1 or 0 to
the vertices in Xi to gain all possible models for G[Xi], the subgraph of GF
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which is induced by the vertices in the bags of all descendants of i. Store all
the 2|Xi| assignments α for the vertices of Xi in a table Ai, for all i ∈ I.

3. For each assignment α in Ai consider a numerator ni(α) ∈ N that stores the
number of truth assignments for the vertices in G[Xi] such that the following
holds:

• If y ∈ Xi is a variable vertex, y is true iff α(y) = 1.

• If y ∈ Xi is a clause vertex, y is satisfied iff α(y) = 1.

• All the clauses in G[Xi] apart from the clauses in Xi are already satis-
fied.

4. Go bottom-up from the leaves to the root and for each node i in T adjust
the numerators of Ai as follows:

(a) In case i ∈ T is a leaf node with Xi = {y}, we obtain the following for
the numerator ni(α) belonging to an assignment α in Ai:

ni(α) =

{
1, if y is a variable vertex or a clause vertex with α(y) = 0

0, if y is a clause vertex and α(y) = 1.

(b) In case i ∈ T is a join node, then i has exactly two children j, j′ such
that Xi = Xj = Xj′ . For the numerator ni(α) of each truth assignment
α in Ai we obtain: ni(α) = nj(α)·nj′(α), where nj(α) resp. nj′(α) are
the numerators in Aj resp. Aj′ for the truth assignment α.

(c) In case i ∈ T is an introduce node, then Xi = Xj ∪ {y}, where j is the
only child of i and y /∈ Xj . Let α ∈ Ai be a truth assignment to the
vertices in Xi, then we have to distinguish the following two cases:

• If y is a clause vertex, then ni(α) = 0, if additionally:

– α(y) = 0 although the assignment α to the variable vertices in
Xi satisfies clause y.

– α(y) = 1 although the assignment α to the variable vertices in
Xi does not satisfy clause y.

Otherwise ni(α) = nj(β), where the assignment β assigns the same
truth values to the vertices in Xj as α.

• If y is a variable vertex, ni(α) = 0 if there is a clause vertex c for
which holds α(c) = 0, although α(y) satisfies c. Otherwise let Ci

be the set of all clause vertices in Xi which are satisfied by α(y)
alone. Then ni(α) is the sum of all numerators nj(β) in Aj , where
β assigns the same truth values as α to the vertices in Xj−Ci and
is free to assign any value to the vertices in Ci.

(d) In case i ∈ T is a forget node, that is Xi = Xj − {y}, where j is the
only child of Xi and y ∈ Xj , we have to distinguish the following two
cases:

• If y is a clause vertex, then ni(α) = 0, for all truth assignments α
in Ai that assign y = 0. Further, ni(α) = nj(β), where β assigns
the same values to the vertices in Xi as α and sets y = 1.



4.4. Solving #SAT for k-Outerplanar Formulas by a Nice Tree
Decomposition 125

• If y is a variable vertex, then for each numerator ni(α) of a truth
assignment α in Ai holds: ni(α) = nj(β) + nj(γ), where β, γ are
truth assignments in Aj which assign the same values as α to the
vertices in Xi and set β(y) = 1, γ(y) = 0.

5. Let r be the root of T , then G[Xr] = GF and we get the total number of
models for F by summing up all the numerators in Ar

end

Now, the analysis of the running time of Algorithm NTD is quite easily ac-
complished: Let F be a k-outerplanar formula, where k ∈ N is a constant, with
variable-clause graph GF and let n be the number of variables in F . Then we can
compute a nice tree decomposition ({Xi|i ∈ I}, T ) of GF of width w in linear time
[26](Lemma 13.1.2, 13.1.3), where w ≤ 3k − 1. There are O(n) nodes in T and
Algorithm NTD obviously needs constant time at each node of T , that is at each
Xi, i ∈ I, because each bag Xi has size ≤ 3k − 1. Hence the running time of
Algorithm NTD is O(n).

To prove the correctness of Algorithm NTD it is sufficient to prove the correctness
of the computation of the numerators ni(α), for each of the four different types of
nodes i in T . Note that every numerator ni(α) of a node i ∈ T and an arbitrary
assignment α to the vertices of Xi corresponds to the number of all possible assign-
ments to the variables in G[Xi], the subgraph of GF induced by all vertices in the
bags of all descendants of i, which do not belong to variables in Xi.

• In case i ∈ T is a leaf node with Xi = {y}, we have to distinguish the
following two cases: If y is a variable vertex, then α1, α2 are the only two
truth assignments, where α1(y) = 1 and α2(y) = 0. As there are no clauses
to satisfy we obtain ni(α1) = ni(α2) = 1 because both assignments are
possible. If y is a clause vertex, then let α1, α2 be two truth assignments,
where α1(y) = 1 and α2(y) = 0. As there are no variable vertices in Xi the
clause y is not satisfied yet, hence ni(α1) = 0 and ni(α2) = 1, because α2

assigns 0 to y.

• In case i ∈ T is a join node then it is possible that there are vertices in
G[Xj ] which do not occur in G[Xj′ ] and vice versa. Assume that there is
a vertex x in the subgraph G[Xj ], that does not occur in Xj . Then x does
not occur in any ancestor bag of Xj and not in G[Xj′ ], either, because for
each vertex x ∈ V (F ) the bags containing it form a subtree of T . Hence
the number of truth assignments consistent to α must be the product of the
corresponding numerators in Xj and in Xj′ , because we have to combine the
truth assignments of G[Xj ] and G[Xj′ ].

• In case i ∈ T is an introduce node, then Xi = Xj ∪ {y}, where j is the only
child of i and y /∈ Xj . Let α ∈ Ai be a truth assignment to the vertices in
Xi. Then we have to distinguish the following two cases:

– If y is a clause vertex, then ni(α) = 0, if:

∗ α(y) = 0, although the assignment α to the variable vertices in Xi

satisfies clause y.
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∗ α(y) = 1, although the assignment α to the variable vertices in Xi

does not satisfy clause y.

This is due to the fact that the clause y does not occur in any descendant
bag of Xi. So this condition is sufficient since the variables in G[Xj ]
have no influence on whether y is satisfied or not. Otherwise ni(α) =
nj(β), where β assigns the same truth values to the vertices in Xj as
α.

– If y is a variable vertex, then ni(α) = 0 if there is a clause vertex c for
which holds α(c) = 0, although α(y) satisfies c. Otherwise let Ci be the
set of all clause vertices in Xi which are satisfied by α(y) alone. Then
ni(α) is the sum of all numerators nj(β) in Aj , where β assigns the
same truth values to the vertices in Xj − Ci as α and is free to assign
any value to the vertices in Ci.
This results from the fact that the clause vertices in Ci are all satisfied
by α(y), that is the other variables in Xi have no influence on whether
or not the clauses in Ci are satisfied as long as y = α(y) is assigned.
This is why we are now free to assign any truth values to clauses in
Ci. Note that Ci may also be the empty set, in this case we obtain
ni(α) = nj(β), where β assigns the same truth values to the variables
in Xj as α.

• Assume i ∈ T is a forget node, i.e. Xi = Xj − {y}, where j is the only child
of Xi and y ∈ Xj . Then we have to distinguish the following two cases:

– If y is a clause vertex, then ni(α) = 0, for all truth assignments α in Ai

that assign y = 0. Further, ni(α) = nj(β), where β assigns the same
values as α to the vertices in Xi and sets y = 1.
As a consequence of the definition of a tree decomposition y does not
occur in any ancestor bag of Xj , thus y can only be satisfied by the vari-
able vertices in G[Xj ]. That is why we do not count truth assignments
α in Ai which do not satisfy the clause y. As Xi and Xj have the same
vertices apart from vertex y, we consider all truth assignments in Aj

which assign y = 1 and set the numerator of Ai equal to the numerator
of Aj for these assignments.

– If y is a variable vertex, then each numerator ni(α) of a truth assignment
α in Ai is the sum of two numerators of Aj : ni(α) = nj(β) + nj(γ),
where β, γ are truth assignments in Aj which assign the same values to
the vertices in Xi as α and β(y) = 1, γ(y) = 0.
This numeration is clear, since the variable vertex y does not occur in
any ancestor bag of Xi (that is y occurs only in G[Xj ]) as a consequence
of the definition of a tree decomposition and thus does not have any
influence on the satisfiability of clauses in Xi and on clauses in the
ancestor bags of Xi in T . Hence, for each assignment α of truth values
to the variables of Xi, we have to consider the assignments β and γ and
calculate the sum of their numerators.

Remark 7. By using a nice tree decomposition of the variable-clause GF of an out-
erplanar formula F we can also solve SAT for F in linear time. The corresponding
algorithm is much shorter than Algorithm ASP as presented in the first section of
this chapter, but does not exploit the structure of this formula class.
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Outlook and Open Problems

We have provided a more systematical insight into MHF as destination class and
thus illustrated that MHF has a central relevance in CNF. However, some chal-
lenging questions remain unanswered and should be investigated in the future. As
already mentioned in the introduction there is an interesting connection between
MHF-SAT and unrestricted SAT presented in [43]: If there is some α < 1

2 such
that each MHF M = P ∧H, where P has k ≤ 2n variables, can be solved in time
O(‖M‖2αk), then there is some β ≤ 2α < 1 such that SAT for an arbitrary CNF-
formula F can be decided in time O(‖F‖2βn). Here ||F || denotes the length of
F . Although, recently there has been some progress in finding non-trivial bounds
for SAT for arbitrary CNF formulas [17, 18], it would require a significant break-
through in our understanding of SAT to obtain upper time bounds of the form
O(2(1−ε)n), for some ε > 0. So the question remains whether an α < 1

2 exists such
that each MHF M = P ∧H, where P has k ≤ 2n variables, can be solved in time
O(‖M‖2αk).
A further question is whether there exists a better polynomial-time reduction from
CNF-SAT to MHF-SAT than the reduction presented in [43] where the number of
variables is doubled in worst-case. So, is there a clever polynomial-time reduction
from CNF-SAT to MHF-SAT for which the number of variables of an arbitrary CNF
formula F is n and the number of variables of its corresponding SAT-equivalent
formula F ′ ∈ MHF is < 2n in the worst-case? This problem appears extremely
challenging.
We have presented the algorithm COUNT which solves SAT for formulas in
LMHk

−F
d+. Experimental results lead to the strong conjecture that its running

time is better than O(( 3
√
3)n), where n is the number of variables. Unfortunately,

we were not able to analytically calculate its running time, so this continues to pose
a challenging task for future work.
The question whether SAT can be solved for unrestricted formulas in MHF faster
than in time O(( 3

√
3)n) should be analysed in the future, too.

In this thesis we have presented several polynomial-time MHF subclasses. So subse-
quently the question arises whether one can find further interesting polynomial-time
MHF subclasses which we have not considered yet.
We have only considered the satisfiability problem for MHF. Obviously MHF-
XSAT as well as MHF-NAE-SAT remain NP-complete as one can easily see by
applying the polynomial-time reduction presented in [43]. So from the point of
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view of exact algorithmics, it would be desirable to gain progress for XSAT re-
stricted to mixed Horn formulas beyond the so far best bound of O(20.2325·n), for
unrestricted CNF-XSAT over n variables, provided by Byskov et al. [12].

We have illustrated that SAT remains NP-complete for the class k-BLMHF,
k ≥ 3, and we have presented an algorithm which solves SAT for the class
k-BLMHF in time O(( k

√
k)n). The algorithm k-BLMHF verifies for each minimal

hitting set of H, whether the partial truth assignment, which results from setting
all variables in the hitting set to 0, can be extended to a model of F by checking
the remaining 2-CNF part in linear time [2]. The number of minimal hitting sets
is maximal if the Horn part of F consists of disjoint clauses only. So the running
time of the algorithm k-BLMHF is dominated by this subclass of k-BLMHF, for
which the number of minimal hitting sets of H is kdn/ke yielding the running time
O(p(n)( k

√
k)n), for a polynom p. Considering mixed Horn formulas where the Horn

part is negative monotone and linear the question arises whether we can find an
upper bound for the maximal number of minimal hitting sets of the Horn part
which is smaller than 3n/3 where n is the number of variables. If so we could adapt
algorithm k-BLMHF for these formulas and solve SAT faster than in O(3n/3).
Linear formulas overlap only sparsely and there is some evidence that linear formu-
las form the algorithmically hard kernel for CNF-SAT, making this class specifically
interesting for other variants of SAT, too. Nevertheless we were not able to prove
this hypothesis, so it remains another challenging task for the future to investigate
whether linear formulas indeed form the algorithmically hard kernel for CNF-SAT.
XSAT has been shown to be NP-complete when restricted to certain linear k-
uniform and l-regular CNF classes, for k, l ≥ 3. However the complexity status for
XSAT restricted to the classes k-LCNFl

+, for arbitrary values of k, l ≥ 3 is left open
for future work. Using some connections to finite projective planes we were able to
show that XSAT remains NP-complete for linear and l-regular formulas which in
addition are l-uniform whenever l = q + 1, where q is a prime power. Thus XSAT
is most likely NP-complete for the other values of l ≥ 3, too.
In [32] it is shown that whereas unrestricted k-SAT is NP-complete, for k ≥ 3, it
behaves trivially (i.e. all formulas are satisfiable) if each clause has length exactly
k and no variable occurs in more than f(k) clauses; it becomes NP-complete if
variables are allowed to occur at most f(k) + 1 times. Here f(k) asymptotically
grows as b2k/(e · k)c; meanwhile this bound has been improved by other authors.
Thus, one could investigate whether a similar result also exists for XSAT on LCNF.
Moreover, we have proven that NAE-SAT remains NP-complete for k-LCNF+ as
well as for LCNFl

+ so it would be desirable to investigate the computational com-

plexity of k-LCNFl
+-NAE-SAT, for k, l ≥ 3.

Finally from the point of view of exact algorithmics, it would be desirable to gain
progress for XSAT restricted to linear formulas beyond the so far best bound of
O(20.2325·n) for unrestricted CNF-XSAT over n variables, provided by Byskov et
al. [12]. Note that for NAE-SAT such progress seems to be hard to achieve since
NAE-SAT can be shown to be as hard as SAT itself for unrestricted CNF formulas
[28, 33]. It remains to investigate whether NAE-SAT or even SAT can be solved in
less than 2n steps for unrestricted linear formulas.
There are several other problems left open for future work. Concerning NAE-SAT
we were not able to find unsatisfiable, positive monotone, linear and k-uniform for-
mulas for k ≥ 5, which one could use as padding backbone formulas to prove the
NP-completeness of k-LCNF+-NAE-SAT. It seems to be a quite complex but also
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challenging combinatorial task to find such formulas.
In addition, we have shown that XSAT remains NP-complete for XLCNF+ and
XLCNF. It is not hard to see that this result sharpens the long-standing NP-
hardness result for clique packing of a graph maximizing the number of covered
edges of Hell and Kirkpatrick [24]. Recently Chataigner et al. have provided nice
approximation (hardness) results regarding the clique packing problem [13]. It
could be interesting to investigate in the future whether similar approximation re-
sults can be gained for XSAT on LCNF respectively XLCNF.
The complexity of XSAT restricted to k-uniform exact linear formulas, for k ≥ 7,
is left for future work. The same lack is present for the case where the number
of occurrences is bounded, meaning that the XSAT-complexity of XLCNFl

+ and

k-XLCNFl
+ are unsolved, for k, l ≥ 3.

Our results imply the NP-completeness for some subversions of the well-known
combinatorial optimization problems Set Partitioning and Exact Hitting Set on
regular and linear hypergraphs. Recall that Set Partitioning takes as input a finite
hypergraph with vertex set M and a set of hyperedges M (i.e. subsets of M). It
asks for a subfamily T of M such that each element of M occurs in exactly one
member of T . It is evident that monotone XSAT coincides with Set Partitioning
when the clauses overtake the roles of vertices in M and the variables are regarded
as the hyperedges inM so that a variable contains all clauses in which it occurs.
Exact Hitting Set, however, is nothing but monotone XSAT only translated to the
hypergraph (or set system) terminology. Therefore Exact Hitting Set remains NP-
complete for linear, l-regular hypergraphs. A simple dualization argument implies
the same for Set Partitioning on that specific class of hypergraphs.

SAT as well as NAE-SAT behave polynomial-time solvable on the exact linear
formula class. In 1996, T. Eiter [20] mentioned a problem called symmetrical inter-
secting monotone UNSAT (SIM-UNSAT), which is computationally equivalent to
a problem called IM-UNSAT that in turn forms the hard core of several interesting
combinatorial problems arising in different areas. In [20] Eiter poses the question
concerning the computational complexity of SIM-UNSAT (resp. IM-UNSAT) which
has been open for 15 years. As far as we know this question has not been answered
yet. Instances of SIM-UNSAT have the form C ∪ Cγ , where C is a set of pairwise
intersecting monotone clauses. The question is whether such an instance is unsatis-
fiable. Observe that solving NAE-SAT for exact linear formulas in polynomial-time
means to solve SIM-UNSAT in polynomial time restricted to the special case, where
the monotone clauses intersect pairwise in exactly one variable. In that respect, we
have given a partial answer to Eiter’s problem. However, the general case clearly
remains open.
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Appendix A

Notation and Definitions

Let CNF denote the set of duplicate-free conjunctive normal form formulas over
propositional variables x ∈ {0, 1}. A positive (negative) literal is a (negated) vari-
able. The complement of a literal l is its negation l̄. Each formula C ∈ CNF is
considered as a clause set, and each clause c ∈ C is represented as a literal set, so
we specifically do not allow that clauses contain a literal more than once. For a
formula C, clause c we denote the set of variables contained (neglecting negations)
in C resp. in c by V (C) resp. V (c). L(C) is the set of all literals in C.

The satisfiability problem (SAT) asks whether an input formula C ∈ CNF has
a model, that is a truth assignment t : V (C)→ {0, 1} assigning at least one literal
in each clause of C to 1. It is straightforward to extend a truth assignment to the
literal set L(C) (for which we will not introduce a distinct notion) as follows: If
x ∈ V (C) is assigned 1, then x, considered as a positive literal, is also assigned
1 and x is assigned 0. The counting problem #SAT asks how many models an
input formula C ∈ CNF has. If there is no truth assignment satisfying C then the
output should be 0, else, if C is satisfiable, then the exact number of satisfying
truth assignments should be the output.

A graph is planar if it can be embedded in the plane in such a way that its
edges intersect only at their endpoints. An embedding of a graph G = (V,E) is 1-
outerplanar (from now on simply outerplanar), if it is planar, and all vertices lie on
the exterior face. For k ≥ 2, an embedding of a graph G = (V,E) is k-outerplanar
if it is planar and if all vertices on the outer face are deleted, a (k− 1)-outerplanar
embedding of the resulting graph is obtained. A graph is called k-outerplanar if it
has a k-outerplanar embedding.

Given a CNF formula F with variable set V (F ) = {v1, . . . , vn} and clause
set C(F ) = {c1, . . . , cm}, we define the corresponding variable-clause graph GF as
follows: The vertex set of GF is V (GF ) = C(F ) ∪ V (F ), the edge set of GF is
E(GF ) = {{ci, vj} : vj ∈ ci ∨ vj ∈ ci}. We call F ∈ CNF k-outerplanar, for k ≥ 1,
if its variable-clause graph is k-outerplanar.
Formulas F = P ∧H of a positive monotone 2-CNF part P and a Horn part H are
called mixed Horn formulas (MHF).

Similarly, NAE-SAT (resp. XSAT) is the variant of SAT asking for a truth
assignment setting at least one (resp. exactly one) literal in each clause to 1 and
at least one (resp. all other) literal(s) to 0; such a truth assignment is called a
nae-model (resp. x-model). We assume throughout that clauses do not contain
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complemented pairs of literals such as x, x. This does not affect generality because
these clauses are always satisfiable w.r.t. to SAT and NAE-SAT and can be removed
from a formula.
A CNF formula C is called linear if C contains no pair of complementary unit
clauses and for all c1, c2 ∈ C : c1 6= c2 we have |V (c1)∩V (c2)| ≤ 1. C is called exact
linear if C is linear and we have |V (c1) ∩ V (c2)| = 1 for all c1, c2 ∈ C : c1 6= c2. A
positive monotone formula has no negated variables. A formula is k-uniform if all its
clauses have length exactly k. A CNF formula C is called l-regular, for l ∈ N, l ≥ 2 if
each variable of C occurs exactly l times in C. We denote with w(x), for a x ∈ V (C)
the number of clauses in C containing x. Hence each l-regular formula C can be
characterized by w(x) = l, for all x ∈ V (C). Let LCNF denote the linear formula
class, XLCNF the exact linear formula class. Further let k−A, (≥ k)−A or (≤ k)−A
denote formulas of the class A ∈ {CNF,LCNF,XLCNF} for which additionally
holds that their clauses have length exactly k, at least k or at most k. Then the
classes Al, A≥l or A≤l contain formulas of the class A ∈ {CNF,LCNF,XLCNF}, for
which additionally holds that all variables in these formulas occur exactly l times,
at least l times or at most l times. A+ denotes the positive monotone formulas of
the class A ∈ {CNF,LCNF,XLCNF}. Let C be a satisfiable formula. A variable
y ∈ V (C) is called a backbone variable of C if y has the same value in each model of
C. Let C be an x-satisfiable formula. A variable y ∈ V (C) is called an x-backbone
variable of C, if y has the same value in each x-model of C. We call a positive
monotone, k-uniform and exact linear formula, with the additional property that
it is k-regular, a k-block formula.
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Appendix B

Abbreviations of Some
Formula Classes

Abbreviation Explanation
MHF Mixed Horn formulas (MHF) F = P ∧H where P

consists of 2-clauses and H of Horn clauses.
MHkF

+ MHF with k-uniform Horn clauses and a positive monotone
P part.

MH−
k F

+ MHF with k-uniform, negative monotone Horn clauses
and a positive monotone P part.

MH−
k F

d+ MHF with k-uniform, negative monotone Horn clauses
and GP consists of disjoint edges only.

LMH−
k F

+ MHF with k-uniform, negative monotone and
linear Horn clauses and a positive monotone P part.

k-BLMHF k-Boundary-Linear mixed Horn formulas M = G ∧H ∈ MHF:
G consists of 2-clauses, H consists of linear Horn
clauses for which holds: All clauses are negative monotone,
k-uniform, k ≥ 3, and there is an ordering c1, c2 . . . , c|H|
of the clauses of H and an
ordering of all literals in each
clause, such that H has overlappings
in boundary variables only.

k-BLMHFd+ MHF where P consists of disjoint, positive monotone
2-clauses only and H is negative monotone,
k-uniform, for k ≥ 3, linear
and has overlappings in boundary variables only.

MH−F
4 MHF with a negative monotone Horn part H and a

positive monotone 2-CNF part P for which holds that the
corresponding variable graph GP consists of
disjoint triangles only.

MH−
k F

4 MHF whose Horn part H is k-uniform, k ≥ 3,
negative monotone and whose corresponding graph GP

consists of disjoint triangles only.
MH−dF

4 MHF whose Horn part H is negative monotone and consists
of disjoint clauses only and for whose positive 2-CNF part P
holds that the corresponding graph GP

consists of disjoint triangles only.
XLMH−F MHF where H is negative monotone, exact linear and

P consists of positive monotone 2-clauses only.
XLMH−F

d+ MHF where H is negative monotone, exact linear and
GP consists of disjoint edges only.

XLMH−F
4 MHF where H is negative monotone, exact linear and

GP consists of disjoint triangles only.
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Abbreviation Explanation
CNF Class of formulas in conjunctive normal form.
CNF+ Positive monotone CNF formulas.

CNFl
+ Positive monotone and l-regular CNF formulas.

k-CNF+ Positive monotone and k-uniform CNF formulas.

k-CNF≤l
+ Positive monotone and k-uniform CNF formulas

for which additionally holds: each variable occurs
≤ l times.

k-CNFl
+ Positive monotone, k-uniform and l-regular

CNF formulas.
LCNF Linear CNF formulas.

LCNFl
+ Linear, positive monotone and l-regular formulas.

(≤ l)-LCNF≥l
+ Positive monotone, linear formulas where each clause

has length ≤ l and each variables occurs ≥ l times.

(≤ l)-LCNFl
+ Positive monotone and l-regular linear formulas

whose clauses have all length ≤ l.
XLCNF Exact linear CNF fomulas.
XLCNF+ Exact linear and positive monotone CNF fomulas.
k-XLCNF Exact linear, k-uniform CNF fomulas.
k-XLCNF+ Exact linear, k-uniform and positive monotone

CNF fomulas.

XLCNFl Exact linear, l-regular CNF fomulas.

XLCNFl
+ Exact linear, l-regular and positive monotone

CNF fomulas.

k-XLCNFl Exact linear, l-regular and k-uniform CNF fomulas.

k-XLCNFl
+ Exact linear, l-regular, positive monotone and

k-uniform CNF fomulas.
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Abstract/Zusammenfassung

Abstract
The Boolean conjunctive normal form (CNF) satisfiability problem, called SAT for
short, gets as input a CNF formula and has to decide whether this formula admits a
satisfying truth assignment. As is well known, the remarkable result by S. Cook in
1971 established SAT as the first and genuine complete problem for the complexity
class NP [15]. Thus SAT resides at the heart of the NP 6= P conjecture of complexity
theory. In this thesis we consider SAT for a subclass of CNF, the so called Mixed
Horn formula class (MHF). A formula F ∈ MHF consists of a 2-CNF part P and
a Horn part H. We propose that MHF has a central relevance in CNF because
many prominent NP-complete problems, e.g. Feedback Vertex Set, Vertex Cover,
Dominating Set and Hitting Set, can easily be encoded as MHF. Furthermore, we
show that SAT remains NP-complete for some interesting subclasses of MHF. We
also provide algorithms for some of these subclasses solving SAT in a better running
time than O(20.5284n) = O(( 3

√
3)n) which is the best bound for MHF so far. One of

these subclasses consists of formulas, where the Horn part is negative monotone and
the variable graph corresponding to the positive 2-CNF part P consists of disjoint
triangles only. Regarding the other subclass consisting of certain k-uniform linear
mixed Horn formulas, we provide an algorithm solving SAT in time O(( k

√
k)n), for

k ≥ 4. Additionally, we consider mixed Horn formulas F = P∧H ∈MHF for which
holds: H is negative monotone, |c| ≤ 3, for all c ∈ H, and P consists of positive
monotone 2-clauses. We solve SAT in running time O(1.325n) for this formula class
by using the autarky principle, that means we can provide a better running time
than the so far best one of O(p(n)· 1.427n) by S. Kottler, M. Kaufmann and C.
Sinz [29] for this class of mixed Horn formulas. Afterwards we consider mixed Horn
formulas F = P ∧ H ∈ MHF for which holds: GP consists of disjoint triangles,
edges and isolated vertices and H consists of Horn clauses which have at most
three literals, but are not necessarily negative monotone and V (P ) = V (H). We
can solve SAT in running time O(1.41n) for this formula class by applying the
autarky principle.

Thereafter we consider some interesting subclasses of MHF for which SAT can
be solved in polynomial-time. Furthermore, we present an algorithm which solves
SAT for mixed Horn formulas with a linear, negative monotone and k-uniform Horn
part and a P part which consists of positive monotone and disjoint 2-clauses only.
Experimental results lead to the strong conjecture that its running time is better



138 Appendix C. Abstract/Zusammenfassung

than O(( 3
√
3)n), where n is the number of variables.

In addition, we investigate the computational complexity of some prominent vari-
ants of SAT, namely not-all-equal SAT (NAE-SAT) and exact SAT (XSAT) re-
stricted to the class of linear CNF formulas. Clauses of a linear formula pairwise
have at most one variable in common. We show that NAE-SAT and XSAT are
NP-complete for monotone and linear formulas where clauses have length greater
or equal k, k ≥ 3. We also prove the NP-completeness of XSAT for CNF formulas
which are l-regular meaning that every variable occurs exactly l times, where l ≥ 3
is a fixed integer. On that basis, we can provide the NP-completeness of XSAT
for the subclass of linear and l-regular formulas. This result is transferable to the
monotone case. Moreover, we provide an algorithm solving XSAT for the subclass
of monotone, linear and l-regular formulas faster than the so far best algorithm from
J. M. Byskov et al. for CNF-XSAT with a running time of O(20.2325n) [12]. Using
some connections to finite projective planes, we can also show that XSAT remains
NP-complete for linear and l-regular formulas that in addition are l-uniform when-
ever l = q + 1, where q is a prime power. Thus XSAT most likely is NP-complete
for the other values of l ≥ 3, too. Apart from that, we are interested in exact linear
formulas: Here each pair of distinct clauses has exactly one variable in common. We
show that NAE-SAT is polynomial-time decidable restricted to exact linear formu-
las. Reinterpreting this result enables us to give a partial answer to a long-standing
open question mentioned by T. Eiter in [20]: Classify the computational complex-
ity of the symmetrical intersecting unsatisfiability problem (SIM-UNSAT). Then we
show the NP-completeness of XSAT for monotone and exact linear formulas, which
we can also establish for the subclass of formulas whose clauses have length at least
k, k ≥ 3. This is somehow surprising since both SAT and not-all-equal SAT are
polynomial-time solvable for exact linear formulas [42]. However, for k ∈ {3, 4, 5, 6}
we can show that XSAT is polynomial-time solvable for the k-uniform, monotone
and exact linear formula class. An additional contribution of this thesis is the
investigation of the computational complexity of the counting problem #SAT for
k-outerplanar formulas, which in general is #P-complete. A CNF formula is called
k-outerplanar if its variable-clause graph has a k-outerplanar embedding. First of
all we provide an algorithm solving SAT in linear time for the 1-outerplanar formula
class. Thereafter we present an algorithm which also solves #SAT in linear time
for a given 1-outerplanar formula, whose graph has either no cycles or consists of
disjoint cycles without chords. For 1-outerplanar formulas over n variables whose
graphs may have cycles we solve #SAT in time O(n5.13) using the separator theo-
rem of Lipton & Tarjan [35]. More generally, we show that #SAT for k-outerplanar
graphs, k > 1, can be solved in time O(n1.7(2k+1)) with this prominent separator
theorem of Lipton & Tarjan. For formulas having a k-circular-levelplanar graph we
solve #SAT in time O(k· 16k· ( 23 )

5.13·log2 kn5.13) by the separator theorem of Lipton
& Tarjan establishing its fixed-parameter tractability with respect to the parameter
k. While we need polynomial-time to solve #SAT for a k-outerplanar formula F
using the separator theorem of Lipton and Tarjan, we can actually solve #SAT
in linear time using the technique of a nice tree decomposition of width at most
3k− 1 for the variable-clause graph of a k-outerplanar formula, as is introduced by
H.L. Bodlaender and T. Kloks in [7]. We present an algorithm which uses dynamic
programming bottom-up from the leaves to the root in a nice tree decomposition
of width at most 3k − 1 of GF to solve the #SAT problem in linear time for a
k-outerplanar formula F . Finally, we are able to solve #SAT for Knuth’s nested
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formulas in polynomial-time O(n8.5) by the separator theorem of Lipton & Tarjan
and in linear time by the nice tree decomposition technique.

Zusammenfassung
Bei dem Boole’schen Erfüllbarkeitsproblem für Formeln in konjunktiver Normal-
form (KNF), kurz SAT genannt, ist eine KNF Formel gegeben und man muss
entscheiden, ob diese Formel eine erfüllende Belegung besitzt. Wie bereits bekannt
ist, hat S. Cook in seinem bemerkenswerten Ergebnis von 1971 SAT als das erste
authentische Problem für die Klasse NP herauskristallisiert. In dieser Arbeit betra-
chten wir SAT für eine Teilklasse von KNF, die sogenannten Mixed-Horn-Formeln
(MHF). Eine Formel F ∈ MHF besteht aus einem 2-KNF Teil P und einem Horn
Teil H. Wir zeigen, dass MHF eine zentrale Rolle in KNF spielt, weil viele promi-
nente Probleme, wie z.B. Feedback Vertex Set, Vertex Cover, Dominating Set und
Hitting Set leicht als MHF kodiert werden können. Des Weiteren zeigen wir, dass
SAT für einige interessante Teilklassen von MHF NP-vollständig bleibt. Sodann
stellen wir Algorithmen für zwei solcher Teilklassen vor, die SAT in einer besseren
Laufzeit als O(20.5284n) = O(( 3

√
3)n) lösen, was soweit die beste Schranke für MHF

ist. Eine dieser Teilklassen besteht aus Formeln, bei denen der Horn Teil negativ
monoton ist und der zugehörige Variablengraph des entsprechenden positiv mono-
tonen 2-KNF-Teils P nur aus disjunkten Dreiecken besteht. Für die zweite Teilk-
lasse, die aus gewissen k-uniformen, linearen Mixed-Horn-Formeln besteht, geben
wir einen Algorithmus an, der SAT in Zeit O(( k

√
k)n) für k ≥ 4 löst. Zusätzlich

betrachten wir Mixed-Horn-Formeln F = P ∧H ∈ MHF , für die gilt: H ist neg-
ativ monoton, |c| ≤ 3, für alle c ∈ H, und P besteht nur aus positiven 2-Klauseln.
Wir können SAT in der Laufzeit O(1.325n) für diese Formelklasse lösen, indem wir
das Autarkie-Prinzip benutzen. Das bedeutet, wir erzielen eine bessere Laufzeit
als die bisher beste Laufzeit O(p(n)· 1.427n) von S. Kottler, M. Kaufmann und C.
Sinz [29] für diese Klasse von Mixed-Horn-Formeln. Anschließend widmen wir uns
denjenigen Mixed-Horn-Formeln F = P ∧ H ∈ MHF , für die gilt: GP besteht
aus disjunkten Dreiecken, Kanten und isolierten Knoten und H besteht aus Horn
Klauseln, die höchstens drei Literale besitzen, aber nicht notwendigerweise negativ
monoton sind. Ferner soll gelten V (P ) = V (H). Wir können SAT in der Laufzeit
O(1.41n) für diese Formelklasse lösen, indem wir ebenfalls das Autarkie-Prinzip
benutzen. Danach betrachten wir noch einige interessante Teilklassen von MHF,
für die wir SAT in Polynomzeit lösen können. Schließlich präsentieren wir einen
Algorithmus, der SAT für Mixed-Horn-Formeln mit einem linearen, negativ mono-
tonen und k-uniformen Horn-Teil und einem P -Teil, bestehend nur aus positiv
monotonen und disjunkten 2-Klauseln, löst. Experimentelle Ergebnisse führen zu
der starken Vermutung, dass dessen Laufzeit besser ist als O(( 3

√
3)n), wobei n die

Anzahl der Variablen einer solchen Formel bezeichnet. Als Nächstes erforschen
wir die Komplexität einiger prominenter Varianten von SAT, nämlich NAE-SAT
und XSAT, eingeschränkt auf die Klasse der linearen Formeln. Je zwei Klauseln
einer linearen Formel haben höchstens eine Variable gemeinsam. Wir zeigen, dass
NAE-SAT und XSAT für monotone und lineare Formeln, deren Klauseln länger
oder gleich k sind, k ≥ 3, NP-vollständig sind. Ferner beweisen wir, dass XSAT
für KNF-Formeln, die l-regulär sind, d.h. in denen jede Variable genau l Mal
vorkommt, wobei l ≥ 3 eine feste ganze Zahl ist, NP-vollständig ist. Darauf auf-
bauend können wir auch die NP-Vollständigkeit von XSAT für die Teilklasse der
linearen und l-regulären Formeln zeigen. Dieses Ergebnis ist auch auf den monoto-
nen Fall übertragbar. Ein weiteres Resultat dieser Arbeit ist ein Algorithmus, der
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XSAT für die Klasse der monotonen, linearen und l-regulären Formeln schneller
löst als der bis dato schnellste Algorithmus von J. M. Byskov für CNF-XSAT mit
einer Laufzeit von O(20.2325n) [12]. Indem wir einige Verbindungen zu den projek-
tiven Ebenen nutzen, können wir auch zeigen, dass XSAT NP-vollständig bleibt
für die Klasse der linearen und l-regulären Formeln, die zusätzlich l-uniform sind,
wobei l = q + 1 und q eine Primzahlpotenz ist. Daher ist es sehr wahrscheinlich,
dass XSAT auch NP-vollständig ist für alle anderen Werte von l ≥ 3. Wir inter-
essieren uns im Weiteren für die exakt linearen Formeln: Je zwei Klauseln haben
hier genau eine Variable gemeinsam. Wir zeigen, dass NAE-SAT für die Klasse
der exakt linearen Formeln in Polynomzeit gelöst werden kann. Wenn wir dieses
Ergebnis neu deuten, dann ermöglicht es uns eine teilweise Antwort auf eine lange
offen stehende Frage, die von T. Eiter in [20] gestellt worden ist: Klassifizieren der
Berechnungskomplexität des SIM-UNSAT-Problems.
Als nächstes zeigen wir die NP-Vollständigkeit von XSAT für monotone und exakt
lineare Formeln, deren Klauseln mindestens Länge k, k ≥ 3, haben. Dies ist ein
überraschendes Ergebnis, da sowohl SAT als auch NAE-SAT beide in Polynomzeit
für exakt lineare Formeln gelöst werden können [42]. Für k ∈ {3, 4, 5, 6} können
wir jedoch zeigen, dass XSAT für die k-uniformen, monotonen und exakt linearen
Formeln in Polynomzeit gelöst werden kann.
Ein zusätzlicher Beitrag dieser Arbeit ist die Untersuchung der Berechnungskom-
plexität des Aufzählungsproblems #SAT für die k-außenplanaren Formeln, das
im Allgemeinen #P-vollständig ist. Eine KNF-Formel heißt k-außenplanar, wenn
deren Variablen-Klauseln-Graph eine k-außenplanare Einbettung besitzt. Als Er-
stes stellen wir einen Algorithmus vor, der SAT für die 1-außenplanaren Formeln in
linearer Zeit löst. Dann präsentieren wir einen Algorithmus, welcher #SAT eben-
falls in linearer Zeit löst für eine 1-außenplanare Formel, deren Graph entweder
keine Kreise oder nur disjunkte Kreise ohne Sekanten besitzt. Für 1-außenplanare
Formeln mit n Variablen, deren Graphen auch Kreise enthalten können, lösen wir
#SAT in Zeit O(n5.13), indem wir das Separator-Theorem von Lipton & Tarjan [35]
benutzen. Allgemein zeigen wir, dass #SAT für k-außenplanare Graphen, k > 1,
mit Hilfe des bekannten Separator-Theorems von Lipton & Tarjan in der Laufzeit
O(n1.7(2k+1)) gelöst werden kann. Für Formeln, die einen k-zirkulär-levelplanaren
Graphen besitzen, lösen wir #SAT bereits in der Zeit O(k· 16k· ( 23 )

5.13·log2 kn5.13)
mit Hilfe des Separator-Theorems von Lipton & Tarjan und unterstreichen damit
deren Zugehörigkeit zu der Klasse FPT bezüglich des Parameters k. Während wir
#SAT für eine k-außenplanare Formel F mit Hilfe des Separator-Theorems von
Lipton & Tarjan in Polynomzeit lösen, können wir das Aufzählungsproblem #SAT
sogar schon in Linearzeit lösen mit Hilfe der Technik einer schönen Baumzerlegung
der Weite ≤ 3k−1 des Variablen-Klauseln Graphen einer k-außenplanaren Formel,
wie von H.L. Bodlaender und T. Kloks in [7] vorgestellt. Wir stellen einen Algorith-
mus vor, der mittels der dynamischen Programmierung von unten nach oben, d.h.
von den Blättern zu der Baumwurzel in einer schönen Baumzerlegung der Weite
≤ 3k − 1 von GF das Problem #SAT für eine k-außenplanare Formel F in Lin-
earzeit löst. Schließlich sind wir auch im Stande, #SAT für Knuths Nested Formeln
in Polynomzeit O(n8.5) (mit Hilfe des Separator-Theorems) und in Linearzeit (mit
Hilfe der Technik der Baumzerlegung) zu lösen.
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Shares

chapter section result my share

2 1 all results 100%
2 2 Theorem 1 90 %
2 3 all results 100%
2 4 all results 100%
2 5 all results 100%
3 1 all results 20%
3 2 Theorem 26 80%
3 2 Theorem 27 80%
3 3 Theorem 28 100%
3 3 Theorem 29 60%
3 3 Theorem 30 100%
3 3 Theorem 31 85%
3 3 Theorem 32 100%
3 4 all results 100%
3 5.1 Theorem 36 90%
3 5.1 Theorem 37 100%
3 5.2 Lemma 10-13 100%
3 5.2 Lemma 14 10%
3 5.2 Theorem 38 100%
3 5.2 Lemma 15, Lemma 16 100%
3 5.2 Theorem 39 70%
3 5.2 Theorem 40 100%
3 6 Corollary 5 30%
4 1 all results 70%
4 2 all results 100%
4 3 all results 100%
4 4 all results 100%
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Appendix G

Experimental Results

By using a computer program which was specially written for our purposes we have
calculated the difference N(t) − 20.2325n for distinct inputs of α0, l and n. Here
N(t) denotes the number of leaves in the tree t which simulates the recursion steps
of Algorithm AVRG (chapter 3, section 5).

α0 = 3, l = 3:
n=150 difference=-17179398398.91061333929788351626055
n=160 difference=-143419535138.8001205521540839746327
n=170 difference=-776190071366.6202699761889988944210
n=180 difference=-3947516748158.419126133287898188307
n=190 difference=-19840324816222.79086516798470544802
n=200 difference=-99481476731956.95013654501146593483

α0 = 3, l = 4:
n=50 difference=278022292.5522295645391465995353016
n=60 difference=278010766.0991868953422364758155183
n=70 difference=277950979.8273689245088223593602016
n=80 difference=277644913.9963886985982761991489793
n=90 difference=276090151.2723643789554605886980495
n=100 difference=268231379.6814312663771203845579025
n=110 difference=228632028.8617168466362781897388057
n=120 difference=29492451.45377333226130074088546429
n=130 difference=-970670518.7198511342917203855151021
n=140 difference=-5989765616.627850087034335582941807
n=150 difference=-31163532862.91061333929788351626055
n=160 difference=-157381399356.8001205521540839746327
n=170 difference=-790078836377.6202699761889988944210
n=180 difference=-3961165491203.419126133287898188307
n=190 difference=-19853185235592.79086516798470544802
n=200 difference=-99491747431200.95013654501146593483

α0 = 4, l = 4:
n=50 difference=-3048.447770435460853400464698400450
n=60 difference=-15423.90081310465776352418448166442
n=70 difference=-78155.17263107549117764063979836394
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n=80 difference=-394330.0036113014017238008510207278
n=90 difference=-1982861.727635621044539411301950486
n=100 difference=-9954998.318568733622879615442097512
n=110 difference=-49932295.13828315336372181026119430
n=120 difference=-250318789.5462266677386992591145357
n=130 difference=-1254603827.719851134291720385515102
n=140 difference=-6287280567.627850087034335582941807
n=150 difference=-31505582578.91061333929788351626055
n=160 difference=-157869626389.8001205521540839746327
n=170 difference=-791046121034.6202699761889988944210
n=180 difference=-3963699093749.419126133287898188307
n=190 difference=-19860842738872.79086516798470544802
n=200 difference=-99516154358120.95013654501146593483

α0 = 5, l = 4:
n=50 difference=24684949310.55222956453914659953530
n=60 difference=24684938128.09918689534223647581552
n=70 difference=24684879709.82736892450882235936020
n=80 difference=24684578822.99638869859827619914898
n=90 difference=24683043412.27236437895546058869805
n=100 difference=24675256690.68143126637712038455790
n=110 difference=24635921688.86171684663627818973881
n=120 difference=24437746423.45377333226130074088546
n=130 difference=23441077748.28014886570827961448490
n=140 difference=18434573138.37214991296566441705819
n=150 difference=-6694041613.910613339297883516260546
n=160 difference=-132750659955.8001205521540839746327
n=170 difference=-764874341816.6202699761889988944210
n=180 difference=-3933926027589.419126133287898188307
n=190 difference=-19818748898728.79086516798470544802
n=200 difference=-99431923675812.95013654501146593483

α0 = 6, l = 4:
n=50 difference=-2767.447770435460853400464698400450
n=60 difference=-14088.90081310465776352418448166442
n=70 difference=-73498.17263107549117764063979836394
n=80 difference=-377253.0036113014017238008510207278
n=90 difference=-1919700.727635621044539411301950486
n=100 difference=-9753082.318568733622879615442097512
n=110 difference=-49221307.13828315336372181026119430
n=120 difference=-247762812.5462266677386992591145357
n=130 difference=-1246512652.719851134291720385515102
n=140 difference=-6259169315.627850087034335582941807
n=150 difference=-31405394816.91061333929788351626055
n=160 difference=-157553815496.8001205521540839746327
n=170 difference=-789954696068.6202699761889988944210
n=180 difference=-3959823103831.419126133287898188307
n=190 difference=-19848646479432.79086516798470544802
n=200 difference=-99474096792694.95013654501146593483
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α0 = 7, l = 4:
n=50 difference=42335587649.55222956453914659953530
n=60 difference=42335576049.09918689534223647581552
n=70 difference=42335516073.82736892450882235936020
n=80 difference=42335207966.99638869859827619914898
n=90 difference=42333648049.27236437895546058869805
n=100 difference=42325779221.68143126637712038455790
n=110 difference=42286094032.86171684663627818973881
n=120 difference=42086737167.45377333226130074088546
n=130 difference=41086076851.28014886570827961448490
n=140 difference=36066089534.37214991296566441705819
n=150 difference=10883426546.08938666070211648373945
n=160 difference=-115356348788.8001205521540839746327
n=170 difference=-748100693525.6202699761889988944210
n=180 difference=-3919540003439.419126133287898188307
n=190 difference=-19812471510899.79086516798470544802
n=200 difference=-99453184849943.95013654501146593483

α0 = 8, l = 4:
n=50 difference=63247530366.55222956453914659953530
n=60 difference=63247518576.09918689534223647581552
n=70 difference=63247457660.82736892450882235936020
n=80 difference=63247147771.99638869859827619914898
n=90 difference=63245579072.27236437895546058869805
n=100 difference=63237671996.68143126637712038455790
n=110 difference=63197903396.86171684663627818973881
n=120 difference=62998179969.45377333226130074088546
n=130 difference=61996007328.28014886570827961448490
n=140 difference=56970039152.37214991296566441705819
n=150 difference=31772852551.08938666070211648373945
n=160 difference=-94524503560.80012055215408397463268
n=170 difference=-727490890499.6202699761889988944210
n=180 difference=-3899484929624.419126133287898188307
n=190 difference=-19794558270912.79086516798470544802
n=200 difference=-99443373521734.95013654501146593483

α0 = 9, l = 4:
n=50 difference=73058858537.55222956453914659953530
n=60 difference=73058846394.09918689534223647581552
n=70 difference=73058784834.82736892450882235936020
n=80 difference=73058471606.99638869859827619914898
n=90 difference=73056895042.27236437895546058869805
n=100 difference=73048954430.68143126637712038455790
n=110 difference=73009064476.86171684663627818973881
n=120 difference=72808995932.45377333226130074088546
n=130 difference=71805575341.28014886570827961448490
n=140 difference=66776045372.37214991296566441705819
n=150 difference=41566131134.08938666070211648373945
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n=160 difference=-84767870625.80012055215408397463268
n=170 difference=-717863479256.6202699761889988944210
n=180 difference=-3890232765562.419126133287898188307
n=190 difference=-19786613576177.79086516798470544802
n=200 difference=-99439873508303.95013654501146593483

α0 = 10, l = 4:
n=50 difference=76558871949.55222956453914659953530
n=60 difference=76558859736.09918689534223647581552
n=70 difference=76558797736.82736892450882235936020
n=80 difference=76558483600.99638869859827619914898
n=90 difference=76556901403.27236437895546058869805
n=100 difference=76548949013.68143126637712038455790
n=110 difference=76509031055.86171684663627818973881
n=120 difference=76308821573.45377333226130074088546
n=130 difference=75305063553.28014886570827961448490
n=140 difference=70273975967.37214991296566441705819
n=150 difference=45060279733.08938666070211648373945
n=160 difference=-81290087594.80012055215408397463268
n=170 difference=-714426191877.6202699761889988944210
n=180 difference=-3886962315112.419126133287898188307
n=190 difference=-19783762708507.79086516798470544802
n=200 difference=-99438070313374.95013654501146593483

α0 = 4, l = 5:
n=150 difference=-26104425008.91061333929788351626055
n=160 difference=-152462438276.8001205521540839746327
n=170 difference=-785622710276.6202699761889988944210
n=180 difference=-3958228195855.419126133287898188307
n=190 difference=-19855244428140.79086516798470544802
n=200 difference=-99510171719659.95013654501146593483

α0 = 5, l = 5:
n=150 difference=-27994293031.91061333929788351626055
n=160 difference=-154343623848.8001205521540839746327
n=170 difference=-787476877923.6202699761889988944210
n=180 difference=-3960005086488.419126133287898188307
n=190 difference=-19856783943635.79086516798470544802
n=200 difference=-99511032254194.95013654501146593483

α0 = 6, l = 5:
n=150 difference=-29410410581.91061333929788351626055
n=160 difference=-155763604464.8001205521540839746327
n=170 difference=-788909983971.6202699761889988944210
n=180 difference=-3961466954250.419126133287898188307
n=190 difference=-19858345376173.79086516798470544802
n=200 difference=-99512925158437.95013654501146593483

α0 = 7, l = 5:
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n=150 difference=-30164300960.91061333929788351626055
n=160 difference=-156523178598.8001205521540839746327
n=170 difference=-789685123957.6202699761889988944210
n=180 difference=-3962299176162.419126133287898188307
n=190 difference=-19859333619601.79086516798470544802
n=200 difference=-99514340190981.95013654501146593483

α0 = 8, l = 5:
n=150 difference=-30563855164.91061333929788351626055
n=160 difference=-156926544141.8001205521540839746327
n=170 difference=-790099506895.6202699761889988944210
n=180 difference=-3962745029772.419126133287898188307
n=190 difference=-19859869126271.79086516798470544802
n=200 difference=-99515092009943.95013654501146593483

α0 = 9, l = 5:
n=150 difference=-30754766558.91061333929788351626055
n=160 difference=-157120224513.8001205521540839746327
n=170 difference=-790299735179.6202699761889988944210
n=180 difference=-3962960660064.419126133287898188307
n=190 difference=-19860128051364.79086516798470544802
n=200 difference=-99515489960484.95013654501146593483

α0 = 10, l = 5:
n=150 difference=-30851721311.91061333929788351626055
n=160 difference=-157218058626.8001205521540839746327
n=170 difference=-790400431055.6202699761889988944210
n=180 difference=-3963070314152.419126133287898188307
n=190 difference=-19860257379251.79086516798470544802
n=200 difference=-99515680167816.95013654501146593483

α0 = 4, l = 6:
n=150 difference=-30944051253.91061333929788351626055
n=160 difference=-157310493731.8001205521540839746327
n=170 difference=-790493216942.6202699761889988944210
n=180 difference=-3963164158322.419126133287898188307
n=190 difference=-19860354213397.79086516798470544802
n=200 difference=-99515785553729.95013654501146593483

α0 = 5, l = 6:
n=150 difference=-31106998058.91061333929788351626055
n=160 difference=-157472403847.8001205521540839746327
n=170 difference=-790652385784.6202699761889988944210
n=180 difference=-3963316104939.419126133287898188307
n=190 difference=-19860487220768.79086516798470544802
n=200 difference=-99515869010798.95013654501146593483

α0 = 6, l = 6:
n=150 difference=-31240152067.91061333929788351626055
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n=160 difference=-157605964255.8001205521540839746327
n=170 difference=-790787014458.6202699761889988944210
n=180 difference=-3963453511804.419126133287898188307
n=190 difference=-19860631824783.79086516798470544802
n=200 difference=-99516032348580.95013654501146593483

α0 = 7, l = 6:
n=150 difference=-31315035367.91061333929788351626055
n=160 difference=-157681612913.8001205521540839746327
n=170 difference=-790864813449.6202699761889988944210
n=180 difference=-3963536534063.419126133287898188307
n=190 difference=-19860729426482.79086516798470544802
n=200 difference=-99516165343598.95013654501146593483

α0 = 8, l = 6:
n=150 difference=-31356343271.91061333929788351626055
n=160 difference=-157723444968.8001205521540839746327
n=170 difference=-790907917260.6202699761889988944210
n=180 difference=-3963582920373.419126133287898188307
n=190 difference=-19860783612939.79086516798470544802
n=200 difference=-99516239913552.95013654501146593483

α0 = 9, l = 6:
n=150 difference=-31377200535.91061333929788351626055
n=160 difference=-157744668086.8001205521540839746327
n=170 difference=-790929881942.6202699761889988944210
n=180 difference=-3963606893348.419126133287898188307
n=190 difference=-19860812335381.79086516798470544802
n=200 difference=-99516281019288.95013654501146593483

α0 = 10, l = 6:
n=150 difference=-31388726123.91061333929788351626055
n=160 difference=-157756349338.8001205521540839746327
n=170 difference=-790941969213.6202699761889988944210
n=180 difference=-3963620025836.419126133287898188307
n=190 difference=-19860827570484.79086516798470544802
n=200 difference=-99516301758034.95013654501146593483

α0 = 4, l = 7:
n=150 difference=-31403846695.91061333929788351626055
n=160 difference=-157771388987.8001205521540839746327
n=170 difference=-790956860387.6202699761889988944210
n=180 difference=-3963634566592.419126133287898188307
n=190 difference=-19860841417262.79086516798470544802
n=200 difference=-99516313961096.95013654501146593483

α0 = 5, l = 7:
n=150 difference=-31429676485.91061333929788351626055
n=160 difference=-157797017804.8001205521540839746327
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n=170 difference=-790981986333.6202699761889988944210
n=180 difference=-3963658520776.419126133287898188307
n=190 difference=-19860862493404.79086516798470544802
n=200 difference=-99516328361362.95013654501146593483

α0 = 6, l = 7:
n=150 difference=-31450386438.91061333929788351626055
n=160 difference=-157817834895.8001205521540839746327
n=170 difference=-791003038545.6202699761889988944210
n=180 difference=-3963680066720.419126133287898188307
n=190 difference=-19860885422836.79086516798470544802
n=200 difference=-99516354278186.95013654501146593483

α0 = 7, l = 7:
n=150 difference=-31463558929.91061333929788351626055
n=160 difference=-157831141570.8001205521540839746327
n=170 difference=-791016677702.6202699761889988944210
n=180 difference=-3963694561247.419126133287898188307
n=190 difference=-19860901691203.79086516798470544802
n=200 difference=-99516374949845.95013654501146593483

α0 = 8, l = 7:
n=150 difference=-31470828230.91061333929788351626055
n=160 difference=-157838529419.8001205521540839746327
n=170 difference=-791024364497.6202699761889988944210
n=180 difference=-3963702896139.419126133287898188307
n=190 difference=-19860911490605.79086516798470544802
n=200 difference=-99516388055991.95013654501146593483

α0 = 9, l = 7:
n=150 difference=-31474703568.91061333929788351626055
n=160 difference=-157842478470.8001205521540839746327
n=170 difference=-791028458343.6202699761889988944210
n=180 difference=-3963707329774.419126133287898188307
n=190 difference=-19860916773617.79086516798470544802
n=200 difference=-99516395275421.95013654501146593483

α0 = 10, l = 7:
n=150 difference=-31476965767.91061333929788351626055
n=160 difference=-157844779471.8001205521540839746327
n=170 difference=-791030843677.6202699761889988944210
n=180 difference=-3963709921083.419126133287898188307
n=190 difference=-19860919752854.79086516798470544802
n=200 difference=-99516399116894.95013654501146593483

α0 = 4, l = 8:
n=150 difference=-31480775309.91061333929788351626055
n=160 difference=-157848546612.8001205521540839746327
n=170 difference=-791034524137.6202699761889988944210
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n=180 difference=-3963713417660.419126133287898188307
n=190 difference=-19860922872400.79086516798470544802
n=200 difference=-99516401481601.95013654501146593483

α0 = 5, l = 8:
n=150 difference=-31486890858.91061333929788351626055
n=160 difference=-157854608561.8001205521540839746327
n=170 difference=-791040463447.6202699761889988944210
n=180 difference=-3963719084684.419126133287898188307
n=190 difference=-19860927934572.79086516798470544802
n=200 difference=-99516405192601.95013654501146593483

α0 = 6, l = 8:
n=150 difference=-31491789398.91061333929788351626055
n=160 difference=-157859538163.8001205521540839746327
n=170 difference=-791045464803.6202699761889988944210
n=180 difference=-3963724210737.419126133287898188307
n=190 difference=-19860933361187.79086516798470544802
n=200 difference=-99516411331658.95013654501146593483

α0 = 7, l = 8:
n=150 difference=-31494911828.91061333929788351626055
n=160 difference=-157862705101.8001205521540839746327
n=170 difference=-791048723320.6202699761889988944210
n=180 difference=-3963727703681.419126133287898188307
n=190 difference=-19860937293114.79086516798470544802
n=200 difference=-99516416218519.95013654501146593483

α0 = 8, l = 8:
n=150 difference=-31496782707.91061333929788351626055
n=160 difference=-157864605418.8001205521540839746327
n=170 difference=-791050689912.6202699761889988944210
n=180 difference=-3963729810566.419126133287898188307
n=190 difference=-19860939738682.79086516798470544802
n=200 difference=-99516419319706.95013654501146593483

α0 = 9, l = 8:
n=150 difference=-31497796996.91061333929788351626055
n=160 difference=-157865644244.8001205521540839746327
n=170 difference=-791051776182.6202699761889988944210
n=180 difference=-3963730987734.419126133287898188307
n=190 difference=-19860941131012.79086516798470544802
n=200 difference=-99516421174486.95013654501146593483

α0 = 10, l = 8:
n=150 difference=-31498418187.91061333929788351626055
n=160 difference=-157866277810.8001205521540839746327
n=170 difference=-791052438868.6202699761889988944210
n=180 difference=-3963731708297.419126133287898188307
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n=190 difference=-19860941942059.79086516798470544802
n=200 difference=-99516422178065.95013654501146593483

α0 = 4, l = 9:
n=150 difference=-31499667109.91061333929788351626055
n=160 difference=-157867504188.8001205521540839746327
n=170 difference=-791053622924.6202699761889988944210
n=180 difference=-3963732810494.419126133287898188307
n=190 difference=-19860942892625.79086516798470544802
n=200 difference=-99516422819638.95013654501146593483

α0 = 5, l = 9:
n=150 difference=-31501580598.91061333929788351626055
n=160 difference=-157869399269.8001205521540839746327
n=170 difference=-791055478913.6202699761889988944210
n=180 difference=-3963734585594.419126133287898188307
n=190 difference=-19860944489396.79086516798470544802
n=200 difference=-99516424053911.95013654501146593483

α0 = 6, l = 9:
n=150 difference=-31503156237.91061333929788351626055
n=160 difference=-157870984916.8001205521540839746327
n=170 difference=-791057084729.6202699761889988944210
n=180 difference=-3963736237414.419126133287898188307
n=190 difference=-19860946234659.79086516798470544802
n=200 difference=-99516425976355.95013654501146593483

α0 = 7, l = 9:
n=150 difference=-31504158624.91061333929788351626055
n=160 difference=-157872006407.8001205521540839746327
n=170 difference=-791058140900.6202699761889988944210
n=180 difference=-3963737361293.419126133287898188307
n=190 difference=-19860947504156.79086516798470544802
n=200 difference=-99516427546012.95013654501146593483

α0 = 8, l = 9:
n=150 difference=-31504760306.91061333929788351626055
n=160 difference=-157872619807.8001205521540839746327
n=170 difference=-791058780736.6202699761889988944210
n=180 difference=-3963738052228.419126133287898188307
n=190 difference=-19860948295419.79086516798470544802
n=200 difference=-99516428539263.95013654501146593483

α0 = 9, l = 9:
n=150 difference=-31505123997.91061333929788351626055
n=160 difference=-157872990394.8001205521540839746327
n=170 difference=-791059167083.6202699761889988944210
n=180 difference=-3963738471432.419126133287898188307
n=190 difference=-19860948773829.79086516798470544802
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n=200 difference=-99516429135920.95013654501146593483

α0 = 10, l = 9:
n=150 difference=-31505336950.91061333929788351626055
n=160 difference=-157873208230.8001205521540839746327
n=170 difference=-791059393041.6202699761889988944210
n=180 difference=-3963738715902.419126133287898188307
n=190 difference=-19860949058461.79086516798470544802
n=200 difference=-99516429496172.95013654501146593483

α0 = 4, l = 10:
n=150 difference=-31505842929.91061333929788351626055
n=160 difference=-157873702889.8001205521540839746327
n=170 difference=-791059866355.6202699761889988944210
n=180 difference=-3963739148386.419126133287898188307
n=190 difference=-19860949415169.79086516798470544802
n=200 difference=-99516429715210.95013654501146593483

α0 = 5, l = 10:
n=150 difference=-31506573113.91061333929788351626055
n=160 difference=-157874426149.8001205521540839746327
n=170 difference=-791060574553.6202699761889988944210
n=180 difference=-3963739826826.419126133287898188307
n=190 difference=-19860950035585.79086516798470544802
n=200 difference=-99516430218188.95013654501146593483

α0 = 6, l = 10:
n=150 difference=-31507161589.91061333929788351626055
n=160 difference=-157875020981.8001205521540839746327
n=170 difference=-791061180336.6202699761889988944210
n=180 difference=-3963740449297.419126133287898188307
n=190 difference=-19860950694671.79086516798470544802
n=200 difference=-99516430951533.95013654501146593483

α0 = 7, l = 10:
n=150 difference=-31507550054.91061333929788351626055
n=160 difference=-157875415861.8001205521540839746327
n=170 difference=-791061590814.6202699761889988944210
n=180 difference=-3963740889159.419126133287898188307
n=190 difference=-19860951183178.79086516798470544802
n=200 difference=-99516431537573.95013654501146593483

α0 = 8, l = 10:
n=150 difference=-31507789874.91061333929788351626055
n=160 difference=-157875659955.8001205521540839746327
n=170 difference=-791061843763.6202699761889988944210
n=180 difference=-3963741163304.419126133287898188307
n=190 difference=-19860951499497.79086516798470544802
n=200 difference=-99516431922984.95013654501146593483
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α0 = 9, l = 10:
n=150 difference=-31507930805.91061333929788351626055
n=160 difference=-157875805217.8001205521540839746327
n=170 difference=-791061995115.6202699761889988944210
n=180 difference=-3963741325696.419126133287898188307
n=190 difference=-19860951685299.79086516798470544802
n=200 difference=-99516432159689.95013654501146593483

α0 = 10, l = 10:
n=150 difference=-31508018957.91061333929788351626055
n=160 difference=-157875895988.8001205521540839746327
n=170 difference=-791062090200.6202699761889988944210
n=180 difference=-3963741427849.419126133287898188307
n=190 difference=-19860951799033.79086516798470544802
n=200 difference=-99516432298176.95013654501146593483



158 Appendix G. Experimental Results



Appendix H

Bibliography



160 Appendix H. Bibliography



Bibliography

[1] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, R. Niedermeier, Fixed pa-
rameter algorithms for dominating set and related problems on planar graphs,
Algorithmica 33(4) (2002), p. 461493.

[2] B. Aspvall, M. R. Plass, R.E. Tarjan, A linear-time algorithm for testing the
truth of certain quantified Boolean formulas, Inform. Process. Lett. 8 (1979)
p. 121-123.

[3] B.S. Baker, Approximation algorithms for NP-complete problems on planar
graphs, J. Assoc. Comput. Mach. 41 (1994), p. 153-180.

[4] C. Berge, Hypergraphs, North-Holland, Amsterdam, (1989).

[5] N. Betzler, R. Niedermeier, J. Uhlmann,Tree decompositions of graphs: Sav-
ing Memory in Dynamic Programming, Proc. CTW-04 (2004).

[6] D. Bienstock, C. L. Monma, On the complexity of embedding planar graphs
to minimize certain distance measures, Algorithmica 5 (1990), p.93-109.

[7] H. L. Bodlaender, T. Kloks, Efficient and constructive algorithms for the
pathwidth and treewidth of graphs, Journal of Algorithms 21 (1996), p. 358-
402.

[8] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth,
Theoretical Computer Science 209 (1998), p. 46-52.

[9] H. L. Bodlaender, Treewidth: Algorithmic techniques and results, Proceedings
22nd MFCS, Springer-Verlag LNCS 1295 (1997), p. 1936.

[10] H. L. Bodlaender, F. V. Fomin, Tree decompositions with small cost, Pro-
ceedings 8th SWAT, Springer-Verlag LNCS 2368 (2002), p. 378387.
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Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im
Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung
kenntlich gemacht habe; dass diese Dissertation noch keiner einer anderen Fakultät
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