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Abstract

Subject of this thesis is the asymptotic behaviour of the higher eigenvalues

of the p-Laplacian operator as p goes to 1. The limit setting depends only

on the geometry of the domain. In the particular case of a planar disc, it

is possible to show that the second eigenfunctions are nonradial if p is close

enough to 1. Moreover, it is shown that second eigenfunctions of −∆p can be

obtained as limit of least energy nodal solutions of a p-superlinear problem.

Zusammenfassung

Gegenstand dieser Dissertation ist das asymptotische Verhalten höherer

Eigenwerte des p-Laplace Operators für p gegen 1. Der Limes hängt nur von der

Geometrie des Gebietes ab. Im besonderen Fall einer Kreisscheibe, gelingt der

Nachweis, dass die zweiten Eigenfunktionen nicht radialsymmetrisch sind, falls

p nah genug an 1 liegt. Außerdem wird gezeigt, dass zweite Eigenfunktionen

von −∆p als Grenzwert von vorzeichenwechselnden Funktionen mit kleinster

Energie eines p-superlinearen Problems erhalten werden können.





”Considerate la vostra semenza:

fatti non foste a viver come bruti,

ma per seguir virtute e canoscenza”
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Introduction

Eigenvalue problems have been for many years an important part of the math-

ematical landscape. One of the most known and investigated is surely the

eigenvalue problem for the Laplacian operator:{
−∆u = λu in Ω

u = 0 on ∂Ω
(1)

where Ω ⊂ Rn is a bounded domain, and

∆ : u 7→
n∑

i=1

∂2u

∂x2
i

is the Laplacian operator. A real number λ is called eigenvalue if the equation

(1) admits a solution u 6≡ 0, which will be called eigenfunction. One could be

tempted to look for solutions directly in the function space C2(Ω) or C2(Ω) ∩
C(Ω), but this approach does not work. Instead, a common procedure is the

following:

• introduce the Sobolev space W 1,2
0 (Ω) as the subset of L2(Ω) consisting of

those function which admit weak partial derivatives in L2(Ω);

• define a weak solution of (1) as a function u ∈ W 1,2
0 (Ω) such that∫

Ω

∇u∇v = λ

∫
Ω

uv

for every v ∈ W 1,2
0 (Ω);

• find weak solutions of (1), usually by means of variational methods;

• investigate the regularity properties of weak solutions. If one can prove

that they belong to some Sobolev space whose order is high enough, then

the solutions are classical, that is, they belong to C2(Ω) ∩ C(Ω).

The eigenvalues of the Laplacian are given by a sequence

0 < λ1 < λ2 ≤ λ3 ≤ ...

1
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such that λk → +∞ as k →∞. Moreover, the eigenfunctions are analytic and

thus they are in particular classical solutions.

In some kind of applications - such as fluid dynamics, nonlinear elasticity

and glaciology - the following problem is of relevant interest:{
−∆pu = λ|u|p−2u in Ω

u = 0 on ∂Ω
(2)

where 1 < p < +∞ and

∆p : u 7→ div(|∇u|p−2∇u)

is the p-Laplacian operator. Remark that ∆2 = ∆. Problem (2) is structurally

different from (1), since the equation is nonlinear: if u and v solve the equation,

then u+ v needs not be a solution anymore. However, the problem is (p− 1)-

homogenous, which implies that if u is a solution, then also tu (t ∈ R) solves the

equation. Since (2) shares some of the properties of linear problems, it makes

sense to introduce the concept of eigenfunction also in this case - although

the idea must be necessarily interpreted in a generalized sense. One defines

an eigenfunction as a nontrivial weak solution u ∈ W 1,p
0 (Ω) of (2), that is a

function such that, for a fixed λ ∈ R (which will be again called eigenvalue),∫
Ω

|∇u|p−2∇u∇v = λ

∫
Ω

|u|p−2uv

for every v ∈ W 1,p
0 (Ω).

Most of the methods which one can use in the linear case do not find immediate

application to this problem. Nevertheless, it is possible to show the existence

of a sequence of eigenvalues

0 < λ1(p; Ω) < λ2(p; Ω) ≤ λ3(p; Ω) ≤ ...

such that λk(p; Ω) → +∞ as k → ∞. The eigenfunctions of the p-Laplacian

share many properties with those of the ordinary Laplacian: for instance, the

first eigenfunction has constant sign and is unique up to multiplication by a

nonzero constant. Eigenfunctions corresponding to higher eigenvalues must

be sign-changing, and in particular the second eigenfunction has exactly two

nodal domains. Moreover, the first eigenvalue is isolated, which means that

there does not exist any eigenvalue between λ1(p; Ω) and λ2(p; Ω).

The investigation of the higher eigenvalues of the p-Laplacian is however

far from being complete. One of the most interesting and difficult questions

is to understand if other eigenvalues exist, apart from the above mentioned
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sequence, if p 6= 2. Other properties of the eigenfunctions - for instance whether

they satisfy the so-called ”unique continuation property” - are still an open

problem. For a better understanding of all these issues it seems sensible to look

at the behaviour of eigenvalues and eigenfunctions in the limit cases p → 1

and p→ +∞. In the latter case Juutinen and Lindqvist could prove that

lim
p→+∞

λ1(p; Ω)
1
p = Λ1(Ω)

and

lim
p→+∞

λ2(p; Ω)
1
p = Λ2(Ω)

where

Λk(Ω)−1 := sup{r | there exist k disjoint balls of radius r contained in Ω}.

Moreover, the first (resp. the second) eigenfunctions converge uniformly to a

viscosity solution of {
FΛ(u,∇u,D2u) = 0 in Ω

u = 0 on ∂Ω

where

FΛ(s, ξ,X) =


min{|ξ| − Λs,−Xξ · ξ} if s > 0

−Xξ · ξ if s = 0

max{−Λs− |ξ|,−Xξ · ξ} if s < 0

for Λ = Λ1(Ω) (resp. Λ = Λ2(Ω)).

In the present thesis I focus on the case p → 1. The aim is to extend the

results found by Kawohl and Fridman, who showed that

lim
p→1

λ1(p; Ω) = h1(Ω)

where

h1(Ω) := inf
E⊂Ω

Per(E; Rn)

V (E)

is the so-called Cheeger constant. Here V (E) is the n-dimensional Lebesgue

measure of E, while Per(E; Rn) is the perimeter of E measured with respect

to Rn, defined in the sense of De Giorgi. I am able to show that a similar

result holds also for the second eigenvalue; namely, it will be shown that

lim
p→1

λ2(p; Ω) = h2(Ω)

where h2(Ω) is defined as

h2(Ω) := inf

{
λ ∈ R+

∣∣∣∣ ∃E1, E2 ⊂ Ω , E1 ∩ E2 = ∅ ,max
i=1,2

Per(Ei)

V (Ei)
≤ λ

}
.
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The geometrical properties of the sets for which h2(Ω) is attained are investi-

gated, and in particular I can compute the value of the constant when Ω is a

planar disc. As a consequence, it is possible to deduce the nonradiality of the

second eigenfunctions if p is sufficiently close to 1.

In the last chapter I show that it is possible to obtain second eigenfunctions

of the p-Laplacian as a limit of the following p-superlinear problem:{
−∆pu = λ|u|q−2u in Ω

u = 0 on ∂Ω
(3)

where 1 < p < q < p∗. Equation (3) admits a sign-changing solution of least

energy, whose limit as q → p is a second eigenfunction of −∆p.



Chapter 1

Multiple Cheeger sets

In this chapter we will introduce a geometrical problem which generalizes the

well-known Cheeger problem.

1.1 Some results on the Cheeger problem

Let Ω ⊂ Rn be an open bounded domain with Lipschitz boundary. Let us

define the Cheeger constant of Ω as

h1(Ω) := inf
E⊂Ω

Per(E; Rn)

V (E)

where Per(E; Rn) is the distributional perimeter of E measured in Rn (see De-

finition B.4), and V (E) is the volume of E, that is its n-dimensional Lebesgue

measure. A set for which the infimum is attained is called a Cheeger set for Ω.

For the sake of simplicity, in the following we will set Per(E) := Per(E; Rn).

Proposition 1.1. Let Ω ⊂ Rn be a bounded, open domain with boundary of

class Lipschitz. Then there exists at least one Cheeger set for Ω.

Proof. A proof is given in Appendix B (Proposition B.12).

Proposition 1.2. Let E ⊂ Rn a set of finite perimeter. Then there exists a

sequence of sets of finite perimeter {Ek}+∞
k=1 such that:

1. ∂Ek is smooth for every k;

2. Ek ⊂⊂ E for every k;

3. χEk
→ χE in L1

loc(Rn) as k → +∞;

4. Per(Ek) → Per(E) as k → +∞.

5
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Proof. The proof can be found in [45].

Proposition 1.3. The following equalities hold:

inf
E⊂Ω

Per(E)

V (E)
= inf

E⊂⊂Ω

Per(E)

V (E)
= inf

E⊂⊂Ω
∂E smooth

Per(E)

V (E)
.

Proof. It is clear that

inf
E⊂Ω

Per(E)

V (E)
≤ inf

E⊂⊂Ω

Per(E)

V (E)
≤ inf

E⊂⊂Ω
∂E smooth

Per(E)

V (E)
.

Let F be a Cheeger set for Ω; applying Proposition 1.2 we obtain

inf
E⊂⊂Ω

∂E smooth

Per(E)

V (E)
≤ Per(F )

V (F )
= inf

E⊂Ω

Per(E)

V (E)

so that the claim is proved.

In the following we will mention some geometric properties of Cheeger sets.

Proposition 1.4. Let E be a Cheeger set for Ω; then ∂E ∩ ∂Ω 6= ∅.

Proof. Let us suppose that this is not the case. Then E is compactly contained

in Ω, which means that there exists a number λ > 1 such that the set λE =

{λx |x ∈ E} is contained in Ω. But then

Per(λE)

V (λE)
=

1

λ

Per(E)

V (E)
<
Per(E)

V (E)

which contradicts the fact that E is a Cheeger set.

Proposition 1.5. Let E be a Cheeger set for Ω; then:

1. ∂E ∩ Ω is analytical, up to a singular set of Hausdorff dimension n− 8.

2. The mean curvature in every regular point of ∂E ∩ Ω is equal to h1(Ω).

3. Let x ∈ ∂E ∩ ∂Ω be a regular point for ∂Ω; then x is a regular point for

∂E.

Proof. The proof can be found in [30]. As a consequence, if ∂E meets ∂Ω in a

regular point of the latter, this must happen tangentially.

Proposition 1.6. Let Ω ⊂ Rn be a bounded, convex domain. Then there exists

a unique Cheeger set E for Ω. Moreover, E is convex.
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Proof. A proof of the existence of a convex Cheeger set can be found in [38,

Remark 10]. Uniqueness has been proved in [39] for the case n = 2, and in [1]

for general n and Ω of class C1,1.

Remark 1.7. The hypothesis of convexity can not be dropped: there are ex-

amples of star-shaped domains which admit infinitely many Cheeger sets (see

[48]). However, it was proved that ”almost all” bounded domains admit a

unique Cheeger set (see [17]).

Remark 1.8. If n = 2 and Ω is convex, then the Cheeger set is the union of

balls of suitable radius contained in Ω. This property holds no longer true in

higher dimensions (see [39]).

We will often make use of the following property.

Proposition 1.9. Let Ω ⊂ Rn be bounded, and let B ⊂ Rn be a ball such that

|B| = |Ω|. Then

h1(B) ≤ h1(Ω).

Proof. The proof is a consequence of the well-known isoperimetric property of

the ball (see for instance [21]). A quantitative version of this theorem is stated

in [26].

1.2 A continuity result for the Cheeger constant

In the following theorem we prove that h1(Ω) is continuous with respect to the

L1 convergence of sets, if we restrict ourselves to the class of convex subsets of

Rn.

Theorem 1.10. Let Ω,Ωk ⊂ Rn be bounded convex sets such that Ωk → Ω in

the L1-topology as k →∞. Suppose that there exist two bounded set D,F ⊂ Rn

such that D ⊂ Ω ⊂ F and D ⊂ Ωk ⊂ F for every k. Then, after possibly

passing to a subsequence,

h1(Ωk) → h1(Ω).

Proof. In order to prove the claim we will make use of the notion of Γ-

convergence (see Appendix C). Let Σk and Σ be the families of convex subsets

of Ωk and Ω respectively. Let us define the functionals

Φk(C) :=
Per(C)

V (C)
for C ∈ Σk

and

Φ(C) :=
Per(C)

V (C)
for C ∈ Σ.
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Notice that the elements of Σk and Σ are convex subsets of F , so that we can

actually define Φk and Φ on the family of convex subsets of F , endowed with

the metric inherited by the L1-convergence. Moreover, observe that

h1(Ωk) = inf
C∈Σk

Per(C)

V (C)

since every convex domain admits a convex Cheeger set (see Proposition 1.6).

We are now ready to prove the Γ-convergence of the functionals Φk to Φ.

liminf inequality. Let C ∈ Σ and Ck ∈ Σk such that Ck → C in the L1-

topology. Of course we have V (Ck) → V (C), while from the lower semiconti-

nuity of the perimeter (Proposition B.5) we obtain Per(C) ≤ lim inf
k→∞

Per(Ck).

In conclusion we get (see also Proposition A.3)

Φ(C) ≤ lim inf
k→∞

Φk(Ck).

limsup inequality. Let C ∈ Σ, and let us define Ck := C ∩Ωk. The sets Ck are

convex sets contained in Ωk, and are such that Ck → C in the L1-topology.

From [15, Lemma 4.4] one has Per(Ck) → Per(C), so that

Φ(C) = lim
k→∞

Φk(Ck).

Equicoercivity. Let C̃k be a convex Cheeger set for Ωk. From D ⊂ Ωk ⊂ F we

obtain

Per(C̃k)

V (C̃k)
≤ h1(D) ⇒ Per(C̃k) ≤ h1(D) · V (C̃k) ≤ h1(D) · V (F ).

So the characteristic functions of the sets C̃k are uniformly bounded in BV (F )

and hence they are contained in a compact set of L1(F ).

From the properties of the Γ-convergence we obtain that, after possibly passing

to a subsequence,

h1(Ωk) → h1(Ω)

and there exists a sequence of Cheeger sets C̃k for Ωk converging in the L1-

topology to a Cheeger set C̃ for Ω.
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1.3 Multiple Cheeger sets

Let Ω ⊂ Rn be an open bounded domain with Lipschitz boundary. We define,

for k ∈ N,

hk(Ω) := inf

{
λ ∈ R+

∣∣∣∣ ∃E1, ..., Ek ⊂ Ω , Ei ∩ Ej = ∅ for i 6= j,

max
i=1,...,k

Per(Ei)

V (Ei)
≤ λ

}
with the convention that

Per(E)

V (E)
= +∞

whenever V (E) = 0. We will call hk(Ω) the k-th Cheeger constant for Ω. Notice

that, for k = 1, we recover the definition of the Cheeger constant h1(Ω). By

Proposition 1.2 it is possible to take the infimum on sets compactly contained

in Ω, or even on sets compactly contained in Ω with smooth boundary.

Theorem 1.11. For every k, there exist k pairwise disjoint subsets E1, ..., Ek

contained in Ω such that

max
i=1,...,k

Per(Ei)

V (Ei)
≤ hk(Ω).

Proof. Let us consider minimizing sequences of pairwise disjoint sets E1,n, ..., Ek,n

for n = 1, 2, ..., corresponding to the value µn, where

µn = max
i=1,...,k

Per(Ei,n)

V (Ei,n)
.

Set χi,n = χEi,n
for i = 1, ..., k. Fix R as the radius of k equal disjoint balls of

fixed arbitrary volume V0 > 0 contained in Ω. We are going to show that we

can consider V (Ei,n) ≥ V0 for every i, n. Indeed, if we had V (E
bi,bn) < V0 for

some values of î and n̂, then by Proposition 1.9 we would surely have

Per(E
bi,bn)

V (E
bi,bn)

≥ h1(Br)

where Br is a ball with the same volume as V (E
bi,bn) and so of radius r < R.

As a consequence, µ
bn > h1(BR), which means that we can actually discard the

k-tuple of sets E1,bn, ..., Ek,bn. Because of the compact embedding of BV (Ω) in

L1(Ω) (see Theorem B.9), there exist E1, ..., Ek such that, up to a subsequence,

χi,n → χEi
almost everywhere on Ω. Moreover, V (Ei) ≥ V0 > 0. Denote with
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N the negligible set of non-convergence. From the lower semicontinuity of the

total variation (Theorem B.5), it follows that

Per(Ei)

V (Ei)
≤ hk(Ω)

for every i = 1, ..., k. We are going to show that the Ei are pairwise disjoint:

suppose i 6= j, then x ∈ Ei \ N ⇒ χEi
(x) = 1, which implies χi,n(x) = 1

definitely; this means χj,n(x) = 0 definitely, hence χEj
(x) = 0, that is x /∈

Ej \N . If x ∈ N , we can assign arbitrary values to the characteristic functions

(this does not affect the total variation). Hence we obtain the claim.

Definition 1.12. Any k-tuple of sets E1, ..., Ek as in Theorem 1.11 will be

called a k-tuple of multiple Cheeger sets. If k = 2, we will also speak of coupled

Cheeger sets.

Remark 1.13. The proof of the theorem shows that we can always consider a

minimizing sequence of k-tuples of sets for hk(Ω), where the volumes of the

sets are uniformly bounded from below.

Remark 1.14. Proceeding as in Proposition 1.4, one can show that at least one

of the minimizing sets must touch the boundary.

Let us define

Λk(Ω) := inf

{
1

r
| ∃ k disjoint balls B1, ..., Bk ⊂ Ω of radius r

}
.

According to [37], Λ1(Ω) and Λ2(Ω) are the first two eigenvalues of the ∞-

Laplacian, defined as

∆∞u := 〈D2u · ∇u, ∇u〉.

We are then able to state the following

Proposition 1.15.

hk(Ω) ≤ nΛk(Ω).

Proof. Fix ε > 0 and consider k disjoint balls B1, ..., Bk of radius (Λk(Ω)+ε)−1.

Then

hk(Ω) ≤ Per(B1)

V (B1)
=
nωnr

n−1

ωnrn
= n(Λk(Ω) + ε).

The claim follows letting ε tend to 0.

In the following we will give a different characterization of the higher Cheeger

constants.
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Remark 1.16. The constant hk(Ω) can also be defined as

hk(Ω) := inf

{
λ ∈ R+

∣∣∣∣ ∃E1, ..., Ek ⊂⊂ Ω , Ei ∩ Ej = ∅ for i 6= j,

Per(Ei)

V (Ei)
= λ for every i = 1, ..., k

}
.

This is a consequence of the following observation. If Per(E)
V (E)

< λ, it is possible

to find a subset F ⊂ E with Per(F )
V (F )

= λ by the following procedure: fix a point

x0 ∈ E and set R := sup{r > 0 |Br(x0) ⊂ E}. Set Er := E \ Br(x0); the

function

[0, R] 7→ Per(Er)

V (Er)
=
Per(E)− 2πr

V (E)− πr2

is then continuous with respect to r and monotonously increasing. One can

repeat the procedure with ER instead of E as often as wished, so that the

perimeter of the set obtained increases, while its volume tends to zero. This

yields the claim.

Proposition 1.17. Let Pk be the set of all partitions of Ω with k subsets

E1, ..., Ek. Then

hk(Ω) = inf
Pk

max
i=1,...,k

h1(Ei).

Proof. Set ĥk(Ω) := infPk
maxi=1,...,k h1(Ei). Let us suppose ĥk(Ω) < hk(Ω);

then there exists a partition E1, ..., Ek of Ω such that

max
i=1,...,k

h1(Ei) < hk(Ω)

which is a contradiction. Thus ĥk(Ω) ≥ hk(Ω). On the other hand, if C1, ..., Ck

are the sets realizing hk(Ω), then we can find a partition E1, ..., Ek of Ω with

the property that Ci ⊂ Ei for every i = 1, ..., k. Hence, for every i,

h1(Ei) ≤
Per(Ci)

V (Ci)
≤ hk(Ω)

and consequently

max
i=1,...,k

h1(Ei) ≤ hk(Ω)

that is

ĥk(Ω) ≤ hk(Ω)

which finally yields

ĥk(Ω) = hk(Ω).
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Remark 1.18. The proof of the proposition also states that there exists a par-

tition realizing ĥk(Ω); that is, we can also write

hk(Ω) = min
Pk

max
i=1,...,k

h1(Ei)

or also

hk(Ω) = min
Pk

max
i=1,...,k

min
C⊂Ei

Per(C)

V (C)

or also

hk(Ω) = min
Pk

max
i=1,...,k

min
u∈BV (Ei)

‖Du‖(Rn)

‖u‖1

.

Remark 1.19. The sets realizing hk(Ω) can be supposed to be connected. In-

deed, if E is disconnected, i.e. E = E1 ∪ E2, with E1 ∩ E2 = ∅, we have

Per(E)

V (E)
=
Per(E1) + Per(E2)

V (E1) + V (E2)
≥ min

{
Per(E1)

V (E1)
,
P er(E2)

V (E2)

}
.

This follows from Proposition A.4. So one connected component of E has a

lower or equal ratio perimeter/area. If E1 ∩ E2 = ∅, but E1 ∩ E2 6= ∅, we

modify E on a set of measure zero (this does not affect the total variation) to

get a connected set E ′ defined as

E ′ = E1 ∪ E2 ∪ (∂E1 ∩ ∂E2).

Theorem 1.20. There exist multiple Cheeger sets such that the part of their

boundary contained in Ω is a piecewise smooth hypersurface of piecewise con-

stant mean curvature.

Proof. We will give the proof for the case k = 2: let E1 and E2 be two coupled

Cheeger sets, which exist according to Theorem 1.11. Since E1 minimizes

perimeter (measured in Rn) in Ω \ E2 with a volume constraint, it will have

interior regularity according to [30]. More precisely, ∂E1 ∩ (Ω \ E2) is an

analytic hypersurface up to a singular set with Hausdorff dimension n − 8,

whose regular points have constant mean curvature. The same can be stated

for E2. Then we have to consider the possibly nonempty contact surface: also

in this case [30, Theorem 2] can be applied to state that the contact surface (if

it exists) enjoys the same regularity as the interior boundary of the two sets

and has constant mean curvature.

Definition 1.21. Let E1 and E2 be a pair of coupled Cheeger sets. The free

boundary of E1 is defined as ∂E1 ∩ (Ω \E2) (analogously for E2). The contact

surface between E1 and E2 is ∂E1 ∩ ∂E2 ∩ Ω.
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Theorem 1.22. It is possible to find two coupled Cheeger sets such that the

following holds. Suppose that ∂E1 ∩ ∂E2 6= ∅. Let us denote by c1 the mean

curvature of the free boundary of E1, by c2 the mean curvature of the free

boundary of E2, and by c3 the mean curvature of the contact surface, measured

from E1. Then the relation

c1 − c2 − 2c3 = 0 (1.1)

holds.

Proof. We follow [14, pp. 10-11]. Take x1 ∈ (∂E1 \ ∂E2) ∩ Ω, x2 ∈ (∂E2 \
∂E1)∩Ω and x3 ∈ ∂E1 ∩ ∂E2 ∩Ω. Suppose that the boundaries of E1 and E2

can be locally described by the graph of a function u defined in an open subset

ω = ω1∪ω2∪ω3 of Rn−1, where ω1, ω2 and ω3 are disjoint open neighborhoods

of x1, x2 and x3 respectively. For i = 1, 2, 3, let vi be a function defined in ωi

with compact support and such that the following conditions are satisfied:∫
ω1

v1 +

∫
ω3

v3 = 0, (1.2)

∫
ω2

v2 −
∫

ω3

v3 = 0. (1.3)

Since E1 and E2 are coupled Cheeger sets, we can suppose that u is such that∫
ω1∪ω3

√
1 + |∇u|2 ≤

∫
ω1∪ω3

√
1 + |∇u+ ε∇(v1 + v3)|2

and ∫
ω2∪ω3

√
1 + |∇u|2 ≤

∫
ω2∪ω3

√
1 + |∇u+ ε∇(v2 + v3)|2

for small ε > 0. It follows that

0 ≤
∫

ω1

∇u∇v1√
1 + |∇u|2

+

∫
ω2

∇u∇v2√
1 + |∇u|2

+ 2

∫
ω3

∇u∇v3√
1 + |∇u|2

=

= −
∫

ω1

div

(
∇u√

1 + |∇u|2

)
v1 −

∫
ω2

div

(
∇u√

1 + |∇u|2

)
v2−

−2

∫
ω3

div

(
∇u√

1 + |∇u|2

)
v3 = −c1

∫
ω1

v1 − c2

∫
ω2

v2 − 2c3

∫
ω3

v3.

Since also the functions −v1, −v2 and −v3 are admissible, it follows that

c1

∫
ω1

v1 + c2

∫
ω2

v2 + 2c3

∫
ω3

v3 = 0
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for arbitrary v1, v2, v3 satisfying the conditions (1.2) and (1.3); hence we obtain

c1 − c2 − 2c3 = 0.

Remark 1.23. The condition on the mean curvatures is similar to the one

given in [35] for the double bubble problem: find two regions in Rn which

enclose two given amounts of volume, such that they minimize the sum of

the surface measures. However, in that problem the quantity to minimize is

slightly different, so also the condition on the mean curvatures differs and reads

c1 − c2 − c3 = 0.

Proposition 1.24. Let Ω ⊂ R2 be a convex planar domain; then it is possible

to find two coupled Cheeger sets E1, E2 such that they satisfy condition (1.1)

in Theorem 1.22 and such that, if ∂E1 ∩ ∂E2 6= ∅, then their boundaries meet

tangentially.

Proof. We can suppose that c1, c2 ≥ 0; otherwise, since Ω is convex, it would

be possible to modify the sets suitably in order to decrease their perimeter and

increase their volume. As a consequence, at least one of the two sets (say E1)

is convex. Let us suppose that ∂E1 and ∂E2 meet each other in a non-smooth

way. Then one could consider the Cheeger set C1 of E1, which is convex and

has a C1 boundary, and then find a perimeter-minimizing set C2 in Ω \ C1

under the volume constraint |C2| = |E2|. The boundaries ∂C1 and ∂C2 will

meet tangentially as proved in [30]. Then one can apply again Theorem 1.22

to get the condition on the curvatures.

Proposition 1.25. Let Ω ⊂ Rn admit a unique Cheeger set. Then

h1(Ω) < h2(Ω).

Proof. Let us suppose that h1(Ω) = h2(Ω); then there exist two disjoint subsets

C1, C2 ⊂ Ω such that

max

{
Per(C1)

V (C1)
,
P er(C2)

V (C2)

}
= h1(Ω)

which means, by definition of h1(Ω),

Per(C1)

V (C1)
=
Per(C2)

V (C2)
= h1(Ω).

This is a contradiction to the uniqueness of the Cheeger set for Ω.
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Remark 1.26. It is worth noting that there exist nonconvex domains for which

h1(Ω) = h2(Ω); think for example of a ”barbell domain” made of two identical

rectangles connected by a thin pipe. To be more precise, consider the planar

set

Ω = {(0, 1)× (0, 2)} ∪ {[1, 2]× (0, ε)} ∪ {(2, 3)× (0, 2)}

where ε > 0 is small enough.

Proposition 1.27. Let us denote by ωn the volume of the unit ball in Rn.

Then

hk(Ω) ≥ n

(
kωn

|Ω|

) 1
n

.

Proof. Let E1, ..., Ek be a family of multiple Cheeger sets, so that

max
i=1,...,k

h1(Ei) ≤ hk(Ω).

The volume of each Ei can not be smaller than the volume of a ball with

Cheeger constant hk(Ω), which is exactly ωn

(
n

hk(Ω)

)n

. In fact, let B̃ be a ball

such that |Ei| = |B̃|, and B a ball such that h1(B) = hk(Ω); if |B̃| < |B| we

would have, applying Proposition 1.9,

hk(Ω) = h1(B) < h1(B̃) ≤ h1(Ei) ≤ hk(Ω)

which is a contradiction. So we obtain

kωn

(
n

hk(Ω)

)n

≤ |Ω| ⇒ hk(Ω) ≥ n

(
kωn

|Ω|

) 1
n

.

Corollary 1.28.

hk(Ω) → +∞

as k → +∞.

Remark 1.29. The lower bound in Proposition 1.27 for k = 1 follows directly

from Proposition 1.9, and is obviously optimal if Ω is a ball. For the higher

Cheeger constants, it can be easily seen that the estimate is optimal for the

union of k balls with equal radii. If we try to minimize hk(Ω) among connected

sets, it turns out that the infimum is the same (consider a family of k balls of

equal radii connected by thin strips whose width goes to 0). An interesting

question would be to minimize hk(Ω) among plane convex sets of given area.

If we focus on h2(Ω), it seems that a stadium (the convex hull of two tangent
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balls with both radii equal to R) is very near to be a minimizer; namely, it is

possible to show that
1.874

R
≤ h2(Ω) ≤ 1.912

R
.

The lower bound follows directly from Proposition 1.27. To obtain the upper

bound, one can note that the common tangent divides Ω into two equal convex

halves, whose Cheeger set E is given by the union of balls of constant radius

x ≤ R. E satisfies then the conditions

Per(E) = 4R + πR− 4x+ πx

V (E) =
1

2
πR2 + 2R2 − 2x2 +

1

2
πx2

and since it must be
Per(E)

V (E)
=

1

x

we get x = 0.523R. This yields the estimate from above. However, it should

be mentioned that the stadium does not minimize the second eigenvalue of the

Laplacian among convex planar domains, as proved in [32].

1.4 Coupled Cheeger sets for a planar disc

In this section we will determine the coupled Cheeger sets of a disc Ω ⊂ R2

with radius r. As a first step we will compute the Cheeger set E for a half-disc

Ω′ of same radius. According to the results in Section 1.1, the Cheeger set

must have the geometry shown in the picture.
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Figure 1.1: The candidate Cheeger set for a half-disc.
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We will denote by α the inner angle and by x the radius of the inner arc.

Thus we have the relation

(r − x) sinα = x

which gives the existence condition 0 ≤ x ≤ r
2
. Then

Per(E) = 2(r − x) cosα+ 2x
(π

2
+ α

)
+ r(π − 2α),

V (E) = x(r − x) cosα+ x2
(π

2
+ α

)
+
r2

2
(π − 2α).

Remember that α = arcsin
(

x
r−x

)
and cosα =

√
1−

(
x

r−x

)2
, since we consider

0 ≤ α ≤ π
2
. Numerical resolution of the equation

Per(E)

V (E)
=

1

x
(= possible h1(Ω

′))

gives, for r = 1,

x = 0.317028...

which means

h1(Ω
′) = 3.15429...

This is the best configuration with convex subsets to compute h2(Ω); indeed,

a convex partition of a convex set can be obtained only cutting the set with

hyperplanes (otherwise we would have a point of non-zero curvature which

gives convexity from one side but concavity from the other one). The Cheeger

sets of each of the two partitioning subsets are then convex. Conversely, two

convex subsets can be separated by a hyperplane thanks to the Hahn-Banach

Theorem. The Cheeger constant of a circular segment strictly contained in

a half-disc is then strictly higher, due to uniqueness reasons. So the above

configuration is the best among convex subsets of the disc.

Observe that the two coupled Cheeger sets E1 and E2 must have a contact

surface. If it was not the case, we can suppose without loss of generality that

Per(E1)

V (E1)
≤ Per(E2)

V (E2)

and that E1 is a Cheeger set for Ω \ E2. Notice that E2 is automatically

a Cheeger set for Ω \ E1. Due to the properties of Cheeger sets, the free

boundaries of E1 and E2 must be circular arcs which meet ∂Ω tangentially.

The only possibility is that E1 and E2 are discs, and the best configuration is
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given by to equal discs with radius r
2
, which is clearly not optimal for Ω.

We are going to prove that the contact surface can not be closed; if it was

the case, then one of the two coupled Cheeger sets, which we denote by E1,

would be a disc of radius r′ < r, as in Figure 1.2. The other set E2 will be

then contained in Ω \ E1. Suppose that E2 has a free boundary consisting of

arcs with constant curvature c2 ≥ 0. An easy computation shows that the

case c2 = 0 is never optimal; so we can suppose that the arcs have constant

curvature c2 > 0. Due to the fact that ∂E1 is the contact surface, these arcs can

not start on ∂Ω and end on ∂E1; the only possibility is that the free boundary

”encloses” E1 as the dashed line in Figure 1.2. But in this case, the choice

E2 = Ω \ E1 would give a lower ratio perimeter/area. So the optimal choice

is the pair consisting of E1 and its complement. By modifying r′ suitably, one

can easily convince himself that the optimal configuration is achieved when

the ratios perimeter/area of E1 and E2 are equal. This implies

Per(E1)

V (E1)
=
Per(E2)

V (E2)
⇒ 2

r′
=

2

r − r′
⇒ r′ =

r

2

which yields, for r = 1,

h1(E1) = h1(E2) = 4.

This gives a worse configuration than the one found before. As a consequence,

the contact surface can not be a closed line.

We will now use the regularity results about the coupled Cheeger sets; in

particular, by Remark 1.24 we can suppose that the boundary of each of the

two sets meets the boundary of the other set tangentially. Suppose that the

separating surface is an arc PQ with constant curvature c3. From the point

P two arcs of curvature c1 and c2 respectively will depart, in such a way that

the centres of curvature lie on the chord AB orthogonal to PQ and such that

P ∈ AB. Notice that we can suppose, without loss of generality, that c1,

c2 ≥ 0.
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Figure 1.2: The contact surface can not be closed.
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Let E1 be the ”candidate” Cheeger set containing the segment AP and such

that the curvature of its free boundary is c1; let E2 be the set containing the

segment PB and with curvature of the free boundary equal to c2. Without

loss of generality, we can suppose that AP ≤ PB. Let M be the middle point

of the segment AB. If P 6= M , it is impossible that c3 ≥ 0 (as in Figure 1.3);

indeed, since E1 would be a subset of a circular segment strictly contained in a

half-disc, this would contradict the fact that the configuration of the Cheeger

sets of the two half-discs is better. So it must be c3 < 0.
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Figure 1.4: The case c3 < 0.

Let C and D the centers of curvature of the free boundaries of E1 and E2

respectively, and E, F as in Figure 1.4 such that CP = EC and PD = DF .

Since c3 < 0, from Theorem 1.22 it must be c1 < c2, that is PC > PD. This

is impossible for geometrical reasons: indeed, take a point C ′ on AB such that

AC = C ′B; it follows PC ′ > PC > PD, which means that the point D must

lie between P and C ′. If E ′ is the intersection of the circle with the line OC ′,

it is clear that DF > C ′E ′. This is a contradiction because we would have

C ′E ′ = CE > DF > C ′E ′.

It follows that necessarily P = M . For symmetry reasons, this implies c1 = c2
and hence, again from Theorem 1.22, c3 = 0. So we recover the optimal

configuration consisting of the Cheeger sets of the two half-discs.



Chapter 2

Eigenvalues under Dirichlet

boundary condition

2.1 Introduction

Let Ω ⊂ Rn a bounded open domain with Lipschitz boundary. We are inter-

ested in the following nonlinear eigenvalue problem:{
−∆pu = λ|u|p−2u in Ω

u = 0 on ∂Ω
(2.1)

where λ ∈ R and ∆pu := div(|∇u|p−2∇u) is the p-Laplacian operator. A real

number λ is said to be an eigenvalue if there exists a function u ∈ W 1,p
0 (Ω)\{0}

(called eigenfunction) satisfying (2.1) in the weak sense, which means∫
Ω

|∇u|p−2∇u∇v = λ

∫
Ω

|u|p−2uv ∀ v ∈ W 1,p
0 (Ω).

For p = 2 we recover the well-known eigenvalue problem for the Laplacian:{
−∆u = λu in Ω

u = 0 on ∂Ω.
(2.2)

From standard results of linear functional analysis it is known that all eigen-

values of the Laplacian are given by a sequence {λk(2; Ω)}+∞
k=1 such that

λ1(2; Ω) < λ2(2; Ω) ≤ ... ≤ λk(2; Ω) → +∞.

In order to obtain the first eigenvalue one can use the direct method of Calculus

of Variations by minimizing the so-called Rayleigh quotient, which means

λ1(2; Ω) := inf
v∈W 1,2

0 (Ω)\{0}

∫
Ω
|∇v|2∫

Ω
|v|2

.

21
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In the case p 6= 2, the operator ∆p is no longer linear, so that it is impos-

sible to use techniques from linear functional analysis. In fact, if u and v are

two eigenfunctions associated to the same eigenvalue, then u + v need not be

necessarily an eigenfunction. However, for every c 6= 0, the function cu will

still be an eigenfunction. Somehow surprisingly, many of the results valid in

the linear case extend also to the p-Laplacian. Indeed, the first eigenvalue can

be obtained in an analogous way to the case p = 2:

λ1(p; Ω) := inf
v∈W 1,p

0 (Ω)\{0}

∫
Ω
|∇v|p∫

Ω
|v|p

.

We have the following

Proposition 2.1. Let u be an eigenfunction of the p-Laplacian associated to

λ ∈ R. Then u ∈ C1,α
loc (Ω) where α ∈ (0, 1) depends only on p and n.

Proof. The claim follows from the estimate

‖u‖∞ ≤ 4n · λ
n
p · ‖u‖1,

whose proof can be found in [44], and from the regularity results in [22].

Proposition 2.2. There exists, up to a nonzero multiplicative constant, one

and only one eigenfunction e1,p associated to λ1(p; Ω). Moreover, e1,p is of only

one sign and therefore it can be considered to be strictly positive in Ω.

Proof. Suppose that e1,p is a first eigenfunction of the p-Laplacian; observe

that, by Proposition 2.1, e1,p is in particular continuous. Since∫
Ω
|∇|e1,p||p∫
Ω
|e1,p|p

=

∫
Ω
|∇e1,p|p∫

Ω
|e1,p|p

then also the function v := |e1,p| will be a first eigenfunction. From Harnack’s

inequality it follows that v > 0 in Ω, which in turns implies that e1,p, due to

its continuity, is one-signed. Having this in mind, one can prove the simplicity

of e1,p following for instance the proof in [8].

λ1(p; Ω) is not the only eigenvalue of the p-Laplacian. Indeed, it is possible

to build a sequence of eigenvalues

λ1(p; Ω) < λ2(p; Ω) ≤ λ3(p; Ω) ≤ ... ≤ λk(p; Ω) → +∞

using the following minimax principle, as shown for instance in [27] and ex-

plained in Appendix D.
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Definition 2.3. Let X be a Banach space, A ⊂ X a closed, symmetric subset.

The Krasnoselskii genus γ(A) is defined as

γ(A) := min{m ∈ N | ∃ ϕ : A→ Rm \ {0}, ϕ is continuous and odd}.

Definition 2.4. We denote by Γk the set

Γk :=

{
A ⊂ W 1,p

0 (Ω)\{0}
∣∣∣∣A∩{‖u‖p = 1} is compact, A symmetric, γ(A) ≥ k

}
.

It is possible to prove that, for every k ∈ N, the following numbers are

eigenvalues:

λk(p; Ω) := inf
A∈Γk

max
u∈A

∫
Ω
|∇u|p∫

Ω
|u|p

.

In the literature they are sometimes called variational eigenvalues. It can be

easily seen that the two definitions of λ1(p; Ω) given so far coincide. It is still

an open question, whether other eigenvalues can exist. We mention that the

existence of nonvariational eigenvalues was proved in [9] for the problem{
−∆pu = λq|u|p−2u in Ω

∂u
∂n

= 0 on ∂Ω

for some q ∈ C1(Ω), q > 0, 1 < p 6= 2, in the case where Ω has a particular

shape (for instance a planar annulus).

We recall some results about higher eigenfunctions.

Proposition 2.5. Eigenfunctions associated to higher eigenvalues of the p-

Laplacian must be sign-changing.

Proof. A proof can be found in [43, Lemma 3.1].

Proposition 2.6. There does not exist any eigenvalue between λ1(p; Ω) and

λ2(p; Ω), which means that λ1(p; Ω) is isolated.

Proof. A proof can be found in [5].

The second eigenvalue has also the following mountain-pass characteriza-

tion, which turns out to be very useful in the numerical investigation of the

problem (see [33]).

Proposition 2.7. Let e1,p be a first eigenfunction of the p-Laplacian. Then

λ2(p; Ω) = inf
γ∈A

sup
u∈γ[0,1]

∫
Ω

|∇u|p

where

A := {γ ∈ C([0, 1];W 1,p
0 (Ω)) | ‖γ(t)‖p = 1, γ(0) = e1,p, γ(1) = −e1,p}.
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Proof. The proof can be found in [20, Corollary 3.2].

A nodal domain of a function u : Ω → R is a connected component of the

set {x ∈ Ω |u(x) 6= 0}. It is not known whether the zero set of an eigenfunction

of the p-Laplacian has Hausdorff dimension n− 1, or if it can be even an open

subset. The following result generalizes Courant’s nodal domain Theorem for

the eigenfunctions of the Laplacian.

Proposition 2.8. Let u be an eigenfunction associated to λk(p; Ω). Then u

has at most 2k − 2 nodal domains.

Proof. The proof can be found in [23, Theorem 3.3].

As an easy consequence of the previous proposition it follows that any

second eigenfunction has exactly two nodal domains.

2.2 A convergence result for higher eigenvalues

First of all we prove an approximation result for functions of bounded variation.

We will denote by BV (Ω) the space of functions of bounded variation on a

set Ω ⊂ Rn. If u ∈ BV (Ω), the symbol ‖Du‖(Ω) will stand for the total

variation of u measured in Ω (as defined in B.1), while ‖Du‖(Rn) will be the

total variation of u measured in Rn. It holds

‖Du‖(Rn) = ‖Du‖(Ω) +

∫
∂Ω

|u| dHn−1.

Theorem 2.9. Assume Ω ∈ Rn is bounded and ∂Ω is C1. Let u ∈ BV (Ω).

Then there exists a sequence {uk}∞k=1 ⊂ C∞(Ω), converging strictly to u.

Proof. By a known approximation result (see [25, Chapter 5, Theorem 2]) there

exists a sequence {vk}∞k=1 ⊂ C∞(Ω) ∩ BV (Ω) converging strictly to u. Every

vk belongs in particular to W 1,1(Ω), and so by [24, Section 5.3, Theorem 3]

there exists a sequence wk,m in C∞(Ω) converging to vk in W 1,1(Ω) as m→∞;

in particular, ‖Dwk,m‖(Ω) → ‖Dvk‖(Ω). By a diagonal procedure we obtain

the claim.

Remark 2.10. Since the trace operator is continuous from BV (Ω) (endowed

with the topology of the strict convergence) to L1(∂Ω;Hn−1) (see [6, Theorem

B.11]), the functions uk of the previous theorem are such that

‖Duk‖(Rn) → ‖Du‖(Rn).
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Theorem 2.11. Assume Ω ∈ Rn is bounded and ∂Ω is C2. Let u ∈ BV (Ω).

Then there exists a sequence {vk}∞k=1 ⊂ W 1,∞
0 (Ω), such that

vk → u in L1(Ω)

and

‖Dvk‖(Rn) → ‖Du‖(Rn)

as k →∞.

Proof. Set

dε(x) :=

{
ε−1dist(x, ∂Ω) if dist(x, ∂Ω) < ε

1 if dist(x, ∂Ω) ≥ ε.

Let uk be the approximating sequence in C∞(Ω) given by Theorem 2.9; the

claim will follow if we prove that every uk can be approximated by a sequence

in W 1,∞
0 (Ω) converging strictly in BV (Rn). To this end, fix w as such a uk

and set vε := wdε. Clearly, vε ∈ W 1,∞
0 (Ω) ∩ C(Ω). Moreover,

vε → w in L1(Ω)

as ε→ 0, so that

‖Dw‖(Rn) ≤ lim inf
ε→0

‖Dvε‖(Rn).

Then

‖Dvε‖(Rn) =

∫
Ω

|∇vε| =
∫

Ω

|∇(wdε)| =
∫

Ω

|w∇dε + dε∇w|

≤
∫

Ω

|w∇dε|+
∫

Ω

|dε∇w|.

Denote by Ωε the set

Ωε := {x ∈ Ω | dist(x, ∂Ω) < ε}.

Then we have

‖Dvε‖(Rn) ≤ 1

ε

∫
Ωε

|w|+ ‖∇w‖∞ · |Ω \ Ωε|+
∫

Ωε

|∇w|.

For ε→ 0 it follows (see also Lemma 3.1)

lim sup
ε→0

‖Dvε‖(Rn) ≤
∫

∂Ω

|w| dHn−1 +

∫
Ω

|∇w| = ‖Dw‖(Rn).

Hence

lim
ε→0

‖Dvε‖(Rn) = ‖Dw‖(Rn).
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Theorem 2.12. Let Ω have a boundary of class C2. Define the following

functional on L1(Ω)

Fp(u) :=

{
‖∇u‖p

p for u ∈ W 1,p
0 (Ω)

+∞ for u ∈ L1(Ω) \W 1,p
0 (Ω).

Then the functionals Fp Γ-converge in L1(Ω), as p→ 1, to the functional

F1(u) :=

{
‖Du‖(Rn) for u ∈ BV (Ω)

+∞ for u ∈ L1(Ω) \BV (Ω).

Proof. liminf inequality. Let up → u in L1(Ω). If only a finite number of

the up’s are in W 1,p
0 (Ω), then lim inf

p→1
Fp(up) = +∞ and there is nothing to

prove. If upj
∈ W

1,pj

0 (Ω) for a sequence, then u ∈ BV (Ω). From the lower

semicontinuity of the total variation it follows

‖Du‖ (Rn) ≤ lim inf
j→∞

‖Duj‖ (Rn) = lim inf
j→∞

∫
Ω

|∇uj|

≤ lim inf
j→∞

(∫
Ω

|∇uj|pj

) 1
pj

|Ω|
1

p′
j

≤ lim inf
j→∞

(∫
Ω

|∇uj|pj

)
+ |Ω| ·

p
−

p′j
pj

j

p′j



≤ lim inf
j→∞

∫
Ω

|∇uj|pj + lim sup
j→∞

|Ω| · p
−

p′j
pj

j

p′j


= lim inf

j→∞

∫
Ω

|∇uj|pj .

limsup inequality. First of all, if u = 0 the proof is trivial. Let us suppose in

the following u 6= 0. If u /∈ BV (Ω), there is nothing to prove. If u ∈ BV (Ω),

by Theorem 2.11 we can find a sequence of functions uk in W 1,∞
0 (Ω) such that
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uk → u in L1(Ω) and ‖Duk‖(Rn) → ‖Du‖(Rn). It follows that

‖Du‖(Rn) = lim
k→+∞

‖Duk‖(Rn) = lim
k→+∞

∫
Ω

|∇uk|

= lim
k→+∞

‖∇uk‖∞
∫

Ω

|∇uk|
‖∇uk‖∞

≥ lim sup
k→+∞

‖∇uk‖1−pk
∞

∫
Ω

|∇uk|pk

≥
(

lim inf
k→+∞

‖∇uk‖1−pk
∞

)(
lim sup

k→∞

∫
Ω

|∇uk|pk

)
.

If lim inf
k→∞

‖∇uk‖∞ = c > 0, we obtain

‖Du‖(Rn) ≥ lim sup
k→∞

∫
Ω

|∇uk|pk

which is the claim. If lim inf
k→∞

‖∇uk‖∞ = 0, we would have

‖Du‖(Rn) ≤ lim inf
k→∞

∫
Ω

|∇uk| ≤ lim inf
k→∞

‖∇uk‖∞ · |Ω| = 0

and thus u = 0, case which we ruled out.

Corollary 2.13. Let Ω have a boundary of class C2. Define

Fp(u) :=

{
‖∇u‖p for u ∈ W 1,p

0 (Ω)

+∞ for u ∈ L1(Ω) \W 1,p
0 (Ω).

Then the functionals Fp Γ-converge in L1(Ω), as p→ 1, to the functional

F1(u) :=

{
‖Du‖(Rn) for u ∈ BV (Ω)

+∞ for u ∈ L1(Ω) \BV (Ω).

Proof. The liminf inequality can also follow from the fact that lim inf anbn ≤
(lim inf an)(lim sup bn). Otherwise one can argue that lim an = lim apn

n as pn →
1.

Now we consider a slightly different family of functionals, where the space

W 1,p
0 (Ω) is replaced by W 1,p(Ω). We will show that the a very similar result

holds, where the quantity ‖Du‖(Rn) is substituted by ‖Du‖(Ω).

Proposition 2.14. Let Ω have a boundary of class C2. Define

Fp(u) :=

{
‖∇u‖p

p for u ∈ W 1,p(Ω)

+∞ for u ∈ L1(Ω) \W 1,p(Ω).
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Then the functionals Fp Γ-converge in L1(Ω), as p→ 1, to the functional

F1(u) :=

{
‖Du‖(Ω) for u ∈ BV (Ω)

+∞ for u ∈ L1(Ω) \BV (Ω).

Proof. liminf inequality. The same proof as in Theorem 2.12, with ‖Du‖(Ω)

instead of ‖Du‖(Rn).

limsup inequality. First of all, if u = const the proof is trivial. Let us suppose

in the following u 6= const. If u /∈ BV (Ω), there is nothing to prove. If

u ∈ BV (Ω), by Theorem 2.9 we can find a sequence of functions uk in W 1,∞(Ω)

such that uk → u in L1(Ω) and ‖Duk‖(Ω) → ‖Du‖(Ω). It follows that

‖Du‖(Ω) = lim
k→+∞

‖Duk‖(Ω) = lim
k→+∞

∫
Ω

|∇uk|

= lim
k→+∞

‖∇uk‖∞
∫

Ω

|∇uk|
‖∇uk‖∞

≥ lim sup
k→+∞

‖∇uk‖1−pk
∞

∫
Ω

|∇uk|pk

≥
(

lim inf
k→+∞

‖∇uk‖1−pk
∞

)(
lim sup

k→∞

∫
Ω

|∇uk|pk

)
.

If lim inf
k→∞

‖∇uk‖∞ = c > 0, we obtain

‖Du‖(Ω) ≥ lim sup
k→∞

∫
Ω

|∇uk|pk

which is the claim. If lim inf
k→∞

‖∇uk‖∞ = 0, we would have

‖Du‖(Ω) ≤ lim inf
k→∞

∫
Ω

|∇uk| ≤ lim inf ‖∇uk‖∞ · |Ω| = 0

and thus u = const, case which we ruled out.

Corollary 2.15. Let Ω have a boundary of class C2. Define

Fp(u) :=

{
‖∇u‖p for u ∈ W 1,p(Ω)

+∞ for u ∈ L1(Ω) \W 1,p(Ω).

Then the functionals Fp Γ-converge in L1(Ω), as p→ 1, to the functional

F1(u) :=

{
‖Du‖(Ω) for u ∈ BV (Ω)

+∞ for u ∈ L1(Ω) \BV (Ω).
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In the following we will prove the main result of this section. Our aim is to

modify slightly the results of [19], in order to adapt them to our setting. We

will consider the family of functionals

Fp(u) :=

{
‖∇u‖p for u ∈ W 1,p

0 (Ω)

+∞ for u ∈ L1(Ω) \W 1,p
0 (Ω)

with p > 1. Let us denote by F1 the functional defined as

F1(u) :=

{
‖Du‖(Rn) for u ∈ BV (Ω)

+∞ for u ∈ L1(Ω) \BV (Ω).

We also define, for p > 1,

Σk
p :=

{
A ⊂ W 1,p

0 (Ω)

∣∣∣∣A ⊂ {‖v‖p = 1}, symmetric, compact, γ(A) ≥ k

}
and

Σk
1 :=

{
A ⊂ BV (Ω)

∣∣∣∣A ⊂ {‖v‖1 = 1}, symmetric, compact, γ(A) ≥ k

}
.

Moreover it will be

Ks := {A ⊂ L1(Ω) |A symmetric, compact in L1(Ω)}.

It turns out that Σk
p ⊂ Ks, and the genus of a set in Σk

p is the same as the

genus as an element of Ks (see [19, Lemma 3.2]). We define, for p ≥ 1, the

following functional on Ks:

Jk
p (G) :=

{
supv∈G Fp(v) if G ∈ Σk

p

+∞ otherwise.

Again from [19] one has, for p > 1,

λk(p; Ω) = inf
G∈Ks

Jk
p (G).

Then we define

λk(1; Ω) := inf
G∈Ks

Jk
1 (G).

It is still not known whether the λk(1; Ω) can be considered as higher eigen-

values of the 1-Laplacian, defined formally as

∆1u := div

(
∇u
|∇u|

)
.

It is not clear neither what the eigenvalue equation should look like; however,

it was proved in [46] that there exists a sequence of eigenvalues obtained us-

ing abstract results of nonsmooth analysis which make use of the concept of
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Ljusternik-Schnirelman category.

In the following we will denote by dH the Hausdorff distance between two

compact sets E and F , defined as

dH(E,F ) := sup
x∈F

dist(x,E) + sup
y∈E

dist(y, F ).

It turns out that (Ks, dH) is a metric space.

Theorem 2.16.

lim
p→1

λk(p; Ω) = λk(1; Ω).

Proof. We will follow the scheme of [19, Theorem 3.3]. We divide the proof in

three steps.

Step 1. We prove that the family of functionals {Jk
p }1<p<p0 is equicoercive in

Ks for a p0 > 1. Let p < p0 and Gp ∈ Ks be such that Jk
p (Gp) ≤ C. By

definition of Jk
p we obtain the estimate

‖u‖W 1,1
0
≤ C|Ω|

p−1
p ≤ K

for every u ∈ Gp. By [19, Proposition 2.5] the sublevels {Jk
p ≤ C} are con-

tained in a common compact subset of (Ks, dH) for p < p0, so that the family

{Jk
p }1<p<p0 is equicoercive.

Step 2. We show the Γ-liminf estimate. Take G ∈ Ks and {Gp}p>1 such that

Gp → G in the Hausdorff topology. We want to prove that

Jk
1 (G) ≤ lim inf

p→1
Jk

p (Gp).

Without loss of generality, we may assume that there exists a constant C > 0

such that Jk
p (Gp) ≤ C for every p > 1. Let us first show that γ(G) ≥ k. By

[19, Proposition 2.4] there exists an open symmetric neighbourhood N of G

in L1(Ω) such that γ(N) = γ(G). We then infer from [19, Lemma 2.8] that

Gp ⊂ N ⊂ N for p near enough to 1. By the second property in [19, Remark

2.3], for such a p we get

k ≤ γ(Gp) ≤ γ(N) = γ(G).

Let now u ∈ G, by the sequential characterisation of the Hausdorff convergence

of compact sets, there exists a (generalised) sequence up ∈ Gp converging to u

in L1(Ω). By the Γ-liminf inequality for the functionals Fp we have

F1(u) ≤ lim inf
p→1

Fp(up) ≤ lim inf
p→1

(
sup
Gp

Fp

)
= lim inf

p→1
Jk

p (Gp).
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Taking the supremum on all u ∈ G we obtain the claim.

Step 3. It only remains to prove that

lim sup
p→1

(
inf

G∈Ks

Jk
p (G)

)
≤ inf

G∈Ks

Jk
1 (G).

Without loss of generality we can assume that inf
G∈Ks

Jk
1 (G) < +∞. Fix δ > 0,

and let G0 ∈ Ks be such that

inf
G∈Ks

Jk
1 (G) ≥ Jk

1 (G0)− δ.

Since G0 is compact in BV (Ω), by the compact embedding theorem G0 is also

compact in L1(Ω); so there exists a finite family {ui}i=1,...,m in G0 such that

G0 ⊂
m⋃

i=1

BL1(Ω)

(
ui,

δ

5

)
.

From the Γ-limsup inequality for Fp there exists, for every i = 1, ...,m, a family

{ui
p}p in L1(Ω) such that

ui
p → ui in L1(Ω)

and

Fp(u
i
p) → F1(u

i)

as p → 1. Taking p0 as in step 1, for any p ∈ (1, p0) we define Cp to be the

convex closure of the finite symmetric set {±ui
p | i = 1, ...,m}. We may assume

that Fp(u
i
p) < +∞ for any i and any p ∈ (1, p0), so that the finite dimensional

set Cp is a compact convex subset both of W 1,p
0 (Ω) and L1(Ω). We denote by

Qp the unique projection onto Cp for the L1-norm (with respect to which Cp

is compact) satisfying the property

‖Qp(v)‖ 2N
2N−1

= min
{
‖w‖ 2N

2N−1
: ‖w − v‖1 = min{‖v − w′‖1 : w′ ∈ Cp}

}
.

Moreover we notice that for any v ∈ G0 there exists i = 1, ...,m such that

‖v − ui‖1 ≤ δ
5
. Therefore

‖Qp(v)‖1 ≥ ‖ui
p‖1 − ‖Qp(u

i)− ui
p‖1 − ‖Qp(v)−Qp(u

i)‖1

≥ ‖ui
p‖1 − ‖ui − ui

p‖1 −
δ

5
.

Since ui
p → ui in L1(Ω), for p close enough to 1 we have

Qp(G0) ⊂ Cp \BL1(Ω)

(
0, 1− δ

2

)
.
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Moreover, the element Qp(G0) of Ks satisfies γ(Qp(G0)) ≥ k. Then consider

the functional ϕp : Qp(G0) → W 1,p
0 (Ω) defined as ϕp(v) := v

‖v‖p
and set, for

every p ∈ (0, p0),

Gp := ϕp(Qp(G0)).

Since ϕp is continuous on Qp(G0), Gp belongs to Σk
p (notice that it is finite-

dimensional). Moreover one has, for every v ∈ Qp(G0),

1− δ

2
≤ ‖v‖1 ≤ ‖v‖p|Ω|1−

1
p .

As a consequence we get

Jk
p (Gp) = sup

{
Fp

(
v

‖v‖p

)
| v ∈ Qp(G0)

}
≤ |Ω|1−

1
p

1− δ
2

sup{Fp(v) | v ∈ Qp(G0)}

≤ 2|Ω|1−
1
p

2− δ
sup{Fp(v) | v ∈ Cp}

=
2|Ω|1−

1
p

2− δ
max

i=1,...,m
{Fp(u

i
p)}.

Thus

lim sup
p→1

(
inf

G∈Ks

Jk
p (G)

)
≤ lim sup

p→1
Jk

p (Gp) ≤
2

2− δ

(
inf

G∈Ks

Jk
1 (G) + δ

)
.

The claim follows letting δ go to 0.

2.3 Continuity of λk(p; Ω) with respect to p

In [34] it was proved that the first two eigenvalues of the p-Laplacian are

continuous with respect to p. To show that also the higher eigenvalues are

continuous functions of p, a possibility could be to prove that eigenfunctions

corresponding to different eigenvalues are linearly independent, which is still

an open question. However, the result can be obtained as an application of

the results in [19].

Theorem 2.17. Let Ω have a boundary of class Lipschitz. Let p, q > 1. Define

Fq(u) :=

{
‖∇u‖q for u ∈ W 1,q

0 (Ω)

+∞ for u ∈ L1(Ω) \W 1,q
0 (Ω)

Then the functionals Fq Γ-converge in L1(Ω), as q → p+, to the functional Fp.
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Proof. liminf inequality. Let uq → u in L1(Ω) for q → p+; if lim inf
q→p+

Fq(uq) =

+∞ there is nothing to prove. If lim inf
q→p+

Fq(uq) = c < +∞ then the uq’s are

uniformly bounded in W 1,p
0 (Ω) by Hölder’s inequality; hence there exists a

sequence uqk
such that qk → p+ as k → ∞, lim

k→∞
Fqk

(uqk
) = c and uqk

⇀ u

weakly in W 1,p
0 (Ω). From the weak lower semicontinuity of the norm it follows∫

Ω

|∇u|p ≤ lim inf
k→∞

∫
Ω

|∇uqk
|p

≤ lim inf
k→∞

(∫
Ω

|∇uqk
|qk

) p
qk

|Ω|
qk−p

qk

≤ lim inf
k→∞

(∫
Ω

|∇uqk
|qk

) p
qk

· lim sup
k→∞

|Ω|
qk−p

qk

= lim inf
k→∞

(∫
Ω

|∇uqk
|qk

) p
qk

so that

Fp(u) ≤ lim inf
k→∞

Fqk
(uqk

) = lim inf
q→p+

Fq(uq).

limsup inequality. If u /∈ W 1,p
0 (Ω), there is nothing to prove. Let us suppose

u ∈ W 1,p
0 (Ω); if u = 0, simply take uk = 0. If u 6= 0, we can find a sequence

of functions uk in Cc(Ω) (and hence in W 1,∞
0 (Ω)) such that uk → u in the

W 1,p-norm. Set qk → p+. It follows that(∫
Ω

|∇u|p
) 1

p

= lim
k→+∞

(∫
Ω

|∇uk|p
) 1

p

= lim
k→+∞

‖∇uk‖∞
(∫

Ω

|∇uk|p

‖∇uk‖p
∞

) 1
p

≥ lim sup
k→+∞

‖∇uk‖∞
(∫

Ω

|∇uk|qk

‖∇uk‖qk
∞

) 1
p

≥ lim sup
k→+∞

(‖∇uk‖∞)
p−qk

p

(∫
Ω

|∇uk|qk

) 1
p

≥ lim inf
k→+∞

(‖∇uk‖∞)
p−qk

p · lim sup
k→∞

(∫
Ω

|∇uk|qk

) 1
p

.

If lim inf
k→∞

‖∇uk‖∞ = c > 0, we obtain

(∫
Ω

|∇u|p
) 1

p

≥ lim sup
k→∞

(∫
Ω

|∇uk|qk

) 1
p

= lim sup
k→∞

(∫
Ω

|∇uk|qk

) 1
qk

which is the claim. If lim inf
k→∞

‖∇uk‖∞ = 0, we would have, by the liminf
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inequality,(∫
Ω

|∇u|p
) 1

p

≤ lim inf
k→∞

(∫
Ω

|∇uk|qk

) 1
qk

≤ lim inf ‖∇uk‖∞ · |Ω|
1

qk = 0

and thus u = 0, case which we ruled out.

Theorem 2.18. For a Lipschitz domain Ω the eigenvalues λk(p; Ω) are con-

tinuous from the right with respect to p, that is

lim
q→p+

λk(q; Ω) = λk(p; Ω)

Proof. The theorem is a consequence of the results in [19, Theorem 3.3].

Theorem 2.19. Let Ω have a boundary of class Lipschitz. Let p, q > 1. Define

Fq(u) :=

{
‖∇u‖q for u ∈ W 1,q

0 (Ω)

+∞ for u ∈ L1(Ω) \W 1,q
0 (Ω).

Then the functionals Fq Γ-converge in L1(Ω), as q → p−, to the functional Fp.

Proof. liminf inequality. Let uq → u in L1(Ω) for q → p− and fix ε > 0; if

lim inf
q→p−

Fq(uq) = +∞ there is nothing to prove. If lim inf Fq(uq) = c < +∞

then the uq’s are uniformly bounded inW 1,p−ε
0 (Ω) by Hölder’s inequality; hence

there exists a sequence uqk
such that qk → p− as k → ∞, lim

k→∞
Fqk

(uqk
) = c

and uqk
⇀ u weakly in W 1,p−ε

0 (Ω). From the weak lower semicontinuity of the

norm it follows∫
Ω

|∇u|p−ε ≤ lim inf
k→∞

∫
Ω

|∇uqk
|p−ε

≤ lim inf
k→∞

(∫
Ω

|∇uqk
|qk

) p−ε
qk

|Ω|
qk−p+ε

qk

≤ lim inf
k→∞

(∫
Ω

|∇uqk
|qk

) p−ε
qk

· lim sup
k→∞

|Ω|
qk−p+ε

qk

= |Ω|
ε
p lim inf

k→∞

(∫
Ω

|∇uqk
|qk

) p−ε
qk

so that

Fp−ε(u) ≤ |Ω|
ε
p lim inf

k→∞
Fqk

(uqk
) = |Ω|

ε
p lim inf

q→p−
Fq(uq).
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Notice that the value lim inf
q→p−

Fq(uq) does not depend on the choice of the par-

ticular subsequence, and so does not depend on ε. Letting ε tend to 0, we

obtain

Fp(u) ≤ lim inf
k→∞

Fq(uq).

limsup inequality. Set qk → p−. If u /∈ W 1,p
0 (Ω), there is nothing to prove.

If u ∈ W 1,p
0 (Ω), then it belongs in particular to W 1,qk(Ω) for every k and so we

can simply consider the constant sequence uk := u for every k; then of course

Fp(u) = lim
k→∞

Fqk
(uk).

Theorem 2.20. For a Lipschitz domain Ω the eigenvalues λk(p; Ω) are con-

tinuous from the left with respect to p, that is

lim
q→p−

λk(q; Ω) = λk(p; Ω).

Proof. The theorem is a consequence of the results in [19, Theorem 3.3].

Theorem 2.21. For a Lipschitz domain Ω the eigenvalues λk(p; Ω) are con-

tinuous functions with respect to p.

Proof. The theorem is a consequence of Theorems 2.18 and 2.20.

2.4 The second eigenfunction

2.4.1 The second eigenvalue as p→ 1

Lemma 2.22. Let E ⊂ Rn be a set with Lipschitz boundary, and let Eε be,

for ε > 0, the ε-strip around E defined as

Eε := {x ∈ Rn \ E | dist(x, ∂E) < ε}.

Then

V (Eε) = εPer(E) + o(ε)

where o(ε)
ε
→ 0 as ε→ 0.

Proof. The proof can be found in [4].

Theorem 2.23.

lim sup
p→1

λ2(p; Ω) ≤ h2(Ω).
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Proof. Let C1, C2 ⊂⊂ Ω be two subsets such that C1 ∩ C2 = ∅, and

Per(C1)

V (C1)
,
P er(C2)

V (C2)
≤ h2(Ω) +

1

2k
.

It is possible to find E1, E2 with the property that, for i = 1, 2, Ei ⊂⊂ Ci,

∂Ei is smooth, and
Per(Ei)

V (Ei)
≤ h2(Ω) +

1

k
.

Let ε > 0, and let vi (i = 1, 2) be two functions such that: vi = 1 on Ei, vi = 0

outside a ε-neighbourhood of Ei, and |∇vi| = ε−1 on the ε-strip Eε
i outside Ei.

ε should be chosen in a way that (E1 ∪ Eε
1) ∩ (E2 ∪ Eε

2) = ∅. Set

A0 :=

{
αv1 + βv2

∣∣∣∣ |α|p + |β|p = 1

}
.

Then A0 ∈ Γ2 (see also [34, Lemma 2.1]). Thus we have

λ2(p; Ω) ≤ sup
u∈A0

∫
Ω
|∇u|p∫

Ω
|u|p

≤ sup
|α|p+|β|p=1

ε−p|α|pV (Eε
1) + ε−p|β|pV (Eε

2)

|α|pV (E1) + |β|pV (E2)

= sup
|α|p+|β|p=1

ε1−p|α|pPer(E1) + ε1−p|β|pPer(E2) + ε−po(ε)

|α|pV (E1) + |β|pV (E2)

≤ ε1−p

(
h2(Ω) +

1

k

)
+

ε−po(ε)

min {V (E1), V (E2)}
as we have

V (Eε
i ) = εPer(Ei) + o(ε)

where o(ε)
ε
→ 0 as ε → 0 (see Lemma 2.22). Note that the last inequality is

true because of Proposition A.4. If we send p→ 1, we obtain

lim sup
p→1

λ2(p; Ω) ≤ h2(Ω) +
1

k
+

ε−1o(ε)

min {V (E1), V (E2)}
and if ε→ 0

lim sup
p→1

λ2(p; Ω) ≤ h2(Ω) +
1

k
.

The claim follows if we send k → ∞. The fact that E1 and E2 depend from

k does not constitute a problem, since in any case we can estimate V (Ei)

uniformly from below, as a consequence of Proposition 1.9.

Remark 2.24. The theorem can be easily generalised to the k-th variational

eigenvalue obtaining

lim sup
p→1

λk(p; Ω) ≤ hk(Ω).
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Theorem 2.25. The following Cheeger-type inequality holds:

λ2(p; Ω) ≥
(
h2(Ω)

p

)p

.

Proof. Let e2,p be a second eigenfunction of the p-Laplacian. From [37] we

know that e2,p has exactly two nodal domains N1,p, N2,p. e2,p is also a first

eigenfunction on each of the two nodal domains; from Cheeger’s inequality it

follows, for i = 1, 2,

λ2(p; Ω) = λ1(p;Ni,p) ≥
(
h1(Ni,p)

p

)p

.

But as N1,p ∩N2,p = ∅, we have

max{h1(N1,p), h1(N2,p)} ≥ h2(Ω)

due to the definition of h2(Ω). So we obtain the claim.

Remark 2.26. It is worth noting that, if λ is an eigenvalue such that there

exists an associated eigenfunction with k nodal domains, then

λ ≥
(
hk(Ω)

p

)p

.

Theorem 2.27.

lim
p→1

λ2(p; Ω) = h2(Ω).

Proof. The claim follows easily from Theorems 2.23 and 2.25.

2.4.2 Nodal domains as p→ 1

In the following we prove a result about the asymptotic behaviour of the nodal

domains of second eigenfunctions as p→ 1 and draw some consequences about

the shape of the nodal line if Ω is a planar disc or a square.

Theorem 2.28. Let N1,p, N2,p the nodal domains of the second eigenfunction

of the p-Laplacian. Then

lim
p→1

max{h1(N1,p), h1(N2,p)} → h2(Ω).

Proof. By definition of h2(Ω) we have

h2(Ω) ≤ max{h1(N1,p), h1(N2,p)}.



38 CHAPTER 2. EIGENVALUES UNDER DIRICHLET CONDITION

It remains to prove that for every ε > 0, there exists p0 > 1 such that for every

1 < p < p0,

max{h1(N1,p), h1(N2,p)} ≤ h2(Ω) + ε.

Suppose that this is not the case; then there exists ε > 0 such that, without

loss of generality, h1(N1,pk
) > h2(Ω) + ε for a subsequence pk → 1. From

Cheeger’s inequality

λ2(pk; Ω) ≥
(
h1(N1,pk

)

pk

)pk

>

(
h2(Ω) + ε

pk

)pk

> h2(Ω) +
ε

2

for k large enough. But this contradicts the fact that lim
p→1

λ2(p; Ω) = h2(Ω).

Hence the claim follows.

Corollary 2.29. For p→ 1, the volume of each of the nodal sets is uniformly

bounded from below by ωn

(
n

2h2(Ω)

)n

.

Proof. From the preceding theorem there exists p0 > 1 such that, for every

1 < p < p0,

max{h1(N1,p), h1(N2,p)} ≤ 2h2(Ω).

Arguing as in Proposition 1.27, the volume of the nodal sets can not be smaller

than the volume of a ball with Cheeger constant 2h2(Ω), which is exactly

ωn

(
n

2h2(Ω)

)n

. Thus, for i = 1, 2,

|Ni,p| ≥ |B| = ωn

(
n

2h2(Ω)

)n

as claimed.

2.4.3 The second eigenfunction as p→ 1

We are now going to investigate the asymptotic behaviour of the second eigen-

function as p→ 1. First, we state some technical lemmas.

Lemma 2.30. Let Ω ⊂ Rn be a bounded set with Lipschitz boundary, pj → 1

as j → ∞ (pj ≥ 1), uj ∈ W
1,pj

0 (Ω) for every j, uj → u in L1(Ω) as j → ∞.

Then

‖Du‖ (Rn) ≤ lim inf
j→∞

∫
Ω

|∇uj|pj .
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Proof. Since ∂Ω is Lipschitz, the functions uj are in particular in BV (Rn).

Let us denote by p′j the exponent conjugate to pj; by Theorem B.5, Hölder’s

inequality and [24, page 622, letter d ] we have

‖Du‖ (Rn) ≤ lim inf
j→∞

‖Duj‖ (Rn) = lim inf
j→∞

∫
Ω

|∇uj|

≤ lim inf
j→∞

(∫
Ω

|∇uj|pj

) 1
pj

|Ω|
1

p′
j

≤ lim inf
j→∞

(∫
Ω

|∇uj|pj

)
+ |Ω| ·

p
−

p′j
pj

j

p′j



≤ lim inf
j→∞

∫
Ω

|∇uj|pj + lim sup
j→∞

|Ω| ·
p
−

p′j
pj

j

p′j

= lim inf
j→∞

∫
Ω

|∇uj|pj .

Lemma 2.31. Let Ω ⊂ Rn be a bounded set, pj → 1 as j → ∞ (pj ≥ 1),

0 < ‖uj‖L∞(Ω) ≤ c for every j (c > 0), u ∈ L1(Ω), and uj → u in L1(Ω) as

j →∞. Then

lim
j→∞

∫
Ω

|uj|pj =

∫
Ω

|u|.

Proof. Let us denote by p′j the exponent conjugate to pj. By Hölder’s inequality

and [24, page 622, letter d ], we have∫
Ω

|u| = lim
j→∞

∫
Ω

|uj| ≤ lim inf
j→∞

(∫
Ω

|uj|pj

) 1
pj

|Ω|
1

p′
j

≤ lim inf
j→∞

(∫
Ω

|uj|pj

)
+ |Ω| ·

p
−

p′j
pj

j

p′j



= lim inf
j→∞

∫
Ω

|uj|pj + lim sup
j→∞

|Ω| ·
p
−

p′j
pj

j

p′j

= lim inf
j→∞

∫
Ω

|uj|pj . (2.3)
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On the other hand from 0 < ‖uj‖L∞(Ω) ≤ c and pj ≥ 1 we have∫
Ω

|uj|
‖uj‖∞

≥
∫

Ω

(
|uj|
‖uj‖∞

)pj

so that

∫
Ω

|u| = lim
j→∞

∫
Ω

|uj| ≥ lim sup
j→∞

‖uj‖1−pj
∞ ·

∫
Ω

|uj|pj ≥ lim sup
j→∞

∫
Ω

|uj|pj .

The last equation and (2.3) end the proof.

Lemma 2.32. Let e2,p be a second eigenfunction of the p-Laplacian. Then

‖e2,p‖∞ ≤ 4n · λ2(p; Ω)
n
p · ‖e2,p‖1.

Proof. The proof can be found in [44].

Theorem 2.33. Let e2,p be second eigenfunctions of the p-Laplacian such that

‖e2,p‖p = 1. Then (after possibly passing to a subsequence) e2,p converge, as

p→ 1, in L1(Ω) and hence pointwise a.e. to a function u ∈ BV (Ω) such that

‖u‖1 = 1 and ‖Du‖(Rn) ≤ h2(Ω). Moreover, u can not be strictly positive or

strictly negative.

Proof. From Lemma 2.32 and Hölder’s inequality, e2,p are uniformly bounded

in L∞(Ω). Moreover, we have

‖De2,p‖ (Rn) =

∫
Ω

|∇e2,p| ≤
(∫

Ω

|∇e2,p|p
) 1

p

|Ω|
1
p′ = λ2(p; Ω)

1
p · |Ω|

1
p′

where p′ is the exponent conjugate to p. Since λ2(p; Ω) → h2(Ω), the functions

are uniformly bounded in BV (Ω); hence there exists a subsequence converging

in L1(Ω) to a function u ∈ BV (Ω). From Proposition B.5 we have

‖Du‖(Rn) ≤ lim inf
p→1

‖De2,p‖(Rn) ≤ lim inf
p→1

(∫
Ω

|∇e2,p|p
) 1

p

|Ω|
1
p′

= lim inf
p→1

λ2(p; Ω)
1
p · |Ω|

1
p′ = h2(Ω).

Finally, Lemma 2.31 yields ‖u‖1 = 1.

The fact that u can not be strictly positive or strictly negative is a consequence

of Corollary 2.29. Note that it is possible that ‖e−2,p‖1 → 0 as p→ 1 although

|{e2,p < 0}| is uniformly bounded away from zero.
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2.5 The cases of the disc and of the square

In this section we will apply the previously found results to the particular case

where the domain Ω ⊂ R2 is a disc or a square. In particular, we are able

to state that, if p is sufficiently close to 1, then every second eigenfunction

in a planar disc must be nonradial. Let us recall that the existence of radial

eigenfunctions was shown in [52]; in this case, one has to solve the ordinary

differential equation
−(rn−1|u′|p−2u′)′ = λrn−1|u|p−2u in (0,R)

u′(0) = 0

u(R) = 0

Let us mention that no result about the symmetry properties of the second

eigenfunction of the p-Laplacian seems to be known so far (except for the case

p = 2).

Proposition 2.34. Let Ω ⊂ R2 be a disc of radius R > 0. Then

lim
p→1

λ2(p; Ω) =
3.15429

R
.

Proof. The claim follows from Theorem 2.23 and the results in section 1.4.

Theorem 2.35. For p close to 1, the second eigenfunction of the p-Laplacian

in a disc Ω ⊂ R2 can not have a circular centered nodal domain. In particular,

it can not be radial.

Proof. Fix R = 1. From Proposition 2.34 there exists p0 > 1 such that

λ2(p; Ω) ≤ 3.5

for 1 < p < p0. Let us suppose that there exists a second eigenfunction of

the p-Laplacian whose nodal domains are a ball Br of radius r (0 < r < 1),

compactly contained in Ω, and A := Ω\Br. If we restrict ourselves to the case

p < 1.1, Cheeger’s inequality allows us to state that

λ2(p; Ω) ≥
(
h1(Br)

p

)p

=

(
2

rp

)p

≥
(

1.818

r

)p

≥ 1.818

r

and

λ2(p; Ω) ≥
(
h1(A)

p

)p

=

(
2

(1− r)p

)p

≥
(

1.818

1− r

)p

≥ 1.818

1− r
.

Then we have the following compatibility conditions:

1.818

r
≤ 3.5 ⇒ r ≥ 0.519
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and
1.818

1− r
≤ 3.5 ⇒ 1− r ≥ 0.519 ⇒ r ≤ 0.481

which are incompatible. Hence we obtain the claim.

Theorem 2.36. For p close to 1, the second eigenfunction of the p-Laplacian

in a square Ω can not have the diagonal as nodal line.

Proof. The proof is similar as in the preceding theorem. In fact, one notices

that, if the Ω = [−1, 1]2, the Cheeger constant of each rectangle obtained

cutting Ω along a cartesian axis is 2.842, while the Cheeger constant of the

triangle obtained cutting along the diagonal is 2.970.

2.6 The one-dimensional case

In the one-dimensional case (with Ω = (a, b)) the eigenvalue problem for the

p-Laplacian reads 
−(|u′|p−2u′)′ = λ|u|p−2u in (a, b)

u(a) = 0

u(b) = 0

It is known (see [44]) that the first eigenvalue is explicitly given by the

expression

λ1(p; (a, b)) = (p− 1)

(
2π

p(b− a) sin π
p

)p

and that

λk(p; (a, b)) = kpλ1(p; (a, b)).

The sequence {λk(p; (a, b))}+∞
k=1 exhausts the spectrum (see [10]). Moreover,

every eigenvalue is simple, and the eigenfunction ek,p associated to λk(p; (a, b))

has exactly k − 1 zeros in (a, b), which means that it has exactly k nodal

domains. Arguing as in the previous sections, one can obtain the following

”abstract” result:

Theorem 2.37. Let Ω = (a, b). Then

lim
p→1

λk(p; Ω) = hk(Ω).

The result can be actually obtained by direct calculation, once one observes

that

hk((a, b)) =
2k

b− a
.
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Indeed, the optimal configuration for hk((a, b)) is given by k disjoint intervals

I1, ..., Ik of equal length, so that Per(Ii) = 2 and V (Ii) = b−a
k

for every i =

1, ..., k.

2.7 Other results

Theorem 2.38. Let Ω ⊂ Rn be such that hk(Ω) < hk+j(Ω) for a j ∈ N. Then

there exists p0 > 1 such that every eigenfunction relative to the eigenvalue

λk(p; Ω) with p < p0 has at most k + j − 1 nodal domains.

Proof. Assume that there exists a sequence of values pm ↘ 1 for which the

eigenfunctions ek,pm corresponding to λk(pm; Ω) have at least k + j nodal do-

mains. Then, according to Remark 2.26 and Theorem 2.23, we would have

lim inf
pm→1

λk(pm; Ω) ≥ hk+j(Ω) > hk(Ω) ≥ lim sup
pm→1

λk(pm; Ω)

which is a contradiction. So we obtain the claim.

Proposition 2.39. Let Ω be of class C2,α. Let λ be an eigenvalue of the p-

Laplacian, and ep an associated eigenfunction such that ‖ep‖p = 1. Let M be

the maximum of
∣∣∣∂ep

∂ν

∣∣∣ on ∂Ω. Then

M ≥ h1(Ω)

[(p− 1) · c(Ω)]
1
p p(1− 1

p
)
.

Proof. M is well defined because, under these hypotheses, ep ∈ C1,β(Ω) for a

β ∈ (0, 1) (see [42]) and so ∂ep

∂ν
is continuous (∂Ω is compact). Then, by the

generalised Rellich identity (see [40]), we obtain

2p

p− 1

(
h1(Ω)

p

)p

≤ 2pλ

p− 1
≤Mp

∫
∂Ω

∂(r2)

∂ν
dHn−1 =: Mp c(Ω).

Corollary 2.40. Let Ω be of class C2,α. Let λ be an eigenvalue of the p-

Laplacian, and ep an associated eigenfunction. Then

max
x∈∂Ω

∣∣∣∣∂ep(x)

∂ν

∣∣∣∣→ +∞

as p→ 1.





Chapter 3

Extensions

The aim of this chapter is to show that the results previously found essentially

hold also when other differential operators are involved. Complete proofs of

the statements will not always be given; instead, it will be pointed out which

modifications are necessary in order to obtain the results.

3.1 The weighted problem

Let Ω ⊂ Rn be an open bounded domain with Lipschitz boundary. We consider

the problem {
−div(g|∇u|p−2∇u) = λf |u|p−2u in Ω

u = 0 on ∂Ω

where f ∈ C(Ω), g ∈ C1(Ω) are such that

0 < f0 ≤ f ≤ ‖f‖∞,

0 < g0 ≤ g ≤ ‖g‖∞.

We define the weighted volume

V f (E) :=

∫
E

f(x) dx

and the weighted perimeter (measured in Rn)

Perg(E) := ‖DχE(x)‖g(Rn)

(see also [16]) where

‖Du‖g(Rn) := sup

{∫
Rn

u(x) div (g(x)ϕ(x))

∣∣∣∣ϕ ∈ C∞c (Rn), |ϕ| ≤ 1

}
.

45
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The weighted Cheeger constants are defined as

hg,f
k (Ω) := inf

{
λ ∈ R

∣∣∣∣ ∃E1, ..., Ek ⊂⊂ Ω, Ei ∩ Ej = ∅ ∀ i 6= j,

∂Ei smooth ∀ i = 1, ...k, max
i=1,...,k

Perg(Ei)

V f (Ei)
≤ λ

}
.

Similarly to the case f ≡ 1, g ≡ 1, the following values are eigenvalues, as

proved in [41]:

λg,f
k (p; Ω) := inf

A∈Γw
k

max
u∈A

∫
Ω
g|∇u|p∫

Ω
f |u|p

where

Γw
k :=

{
A ⊂ W 1,p

0 (Ω) \ {0} | A ∩
{∫

Ω

f |u|p = 1

}
compact,

A symmetric, γ(A) ≥ k

}
.

Lemma 3.1. Let Ω ⊂ Rn be a bounded domain, D ⊂⊂ Ω be a subset with

boundary of class C2, and set

Dε : {x ∈ Ω \D | dist(x, ∂D) ≤ ε}.

Let g : Ω → R be a continuous function. Then

lim
ε→0

1

ε

∫
Dε

g(x) dx =

∫
∂D

g(x) dHn−1(x).

Proof. Fix ε̃ > 0. Since g is a uniformly continuous function, there exists a

δ > 0 such that |x − y| < δ implies |g(x) − g(y)| < ε̃ for every x, y ∈ Ω. Let

0 < ε ≤ δ. For every y ∈ Dε, let us denote by xy the projection of y on ∂D;

such a projection is unique provided ε is small enough. Then

1

ε

∣∣∣∣ ∫
Dε

g(y) dy −
∫

Dε

g(xy) dy

∣∣∣∣ ≤ ε̃ |Dε|
ε

.

From [4, Proposition 19] we can deduce that∫
Dε

g(xy) dy = (ε+ o(ε))

∫
∂D

g(x) dHn−1.

The claim follows easily letting ε tend to 0 if we recall that

lim
ε→0

|Dε|
ε

= Per(D).
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Lemma 3.2. Let g ∈ C0(Ω), D ⊂⊂ Ω such that ∂D is of class C2. Denote

with g(E) the mean value of g on E, and let Dε ⊂⊂ Ω be ε-strips around ∂D.

Then

g(Dε) → g(∂D)

as ε→ 0.

Proof. One has

g(Dε) =
1

|Dε|

∫
Dε

g(x) dx =
1

εPer(D) + o(ε)

∫
Dε

g(x) dx

=
1

Per(D) + ε−1o(ε)
· 1

ε

∫
Dε

g(x) dx.

From Lemma 3.1 we obtain

lim
ε→0

g(Dε) =
1

Per(D)

∫
D

g(x) dHn−1(x) = g(∂D).

Now we try to extend the approximation result proved in [45] to this setting.

We recall that we can define the weighted total variation as

‖Du‖g(Ω) := sup

{∫
Ω

u(x) div (g(x)ϕ(x))

∣∣∣∣ϕ ∈ C∞c (Ω), |ϕ| ≤ 1

}
(see [16]). The weighted total variation is L1-lower semicontinuous and a coarea

formula is available. One has to prove the passage in [45] from (2.28) to (2.29),

but this can be done using the following lemma.

Lemma 3.3. Let τ ≥ 0 be a test function defined on Rn such that τ(x) =

τ(|x|), τ(x) = 0 if |x| ≥ 1,
∫
τ(x) dx = 1. Set τh(x) := hnτ(hx) and ψh(x) :=

τh ? χΩ. Then

‖Dψh‖g(Rn) → ‖DχΩ‖g(Rn)

as h→∞.

Proof. Since τh → χΩ in L1
loc(Rn), we have

‖DχΩ‖g(Rn) ≤ lim inf
h→∞

‖Dψh‖g(Rn).

Moreover we have∫
Rn

ψh div (gϕ) =

∫
Rn

(τh ? χΩ) div (gϕ) =

∫
Rn

χΩ div (τh ? (gϕ))

=

∫
Rn

χΩ div (g(τh ? ϕ)) ≤ ‖DχΩ‖Φ(Rn)
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since

|τh ? ϕ(x)| ≤
∫

Rn

τh(x− y)|ϕ(y)| dy ≤
∫

Rn

τh(x− y) dy = 1.

So

lim sup
h→∞

‖Dψh‖g(Rn) ≤ ‖DχΩ‖g(Rn)

from which the claim follows.

In order to prove the desired result, we need to verify relation (3.21) in [45];

this can be proved as in [47], Appendix, knowing that if E is a set of finite

perimeter, there exists a sequence of smooth functions ψn approximating χE

in the strong topology, such that 0 ≤ ψn ≤ 1. See also the approximation

result in [36]. We are then able to state the following proposition.

Proposition 3.4. Let F ⊂ Ω be a set of finite perimeter. Then there exists a

sequence of smooth sets {Fh} such that: Fh ⊂⊂ F , χFh
→ χF , and Perg(Fh) →

Perg(F ) as h→∞.

Corollary 3.5. We have

hg,f
k (Ω) = inf

{
λ ∈ R

∣∣∣∣ ∃E1, ..., Ek ⊂ Ω , Ei ∩ Ej = ∅ ∀ 1 ≤ i, j ≤ k,

Perg(Ei)

V f (Ei)
≤ λ ∀ i = 1, ...k

}
.

Theorem 3.6. Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary.

Then

lim sup
p→1

λg,f
k (p; Ω) ≤ hg,f

k (Ω).

Proof. We give the proof for k = 2. It is possible to find E1, E2 with the

property that, for i = 1, 2, Ei ⊂⊂ Ω, ∂Ei is smooth, and

Per(Ei)

V (Ei)
≤ hg,f

2 (Ω) +
1

k
.

Let ε > 0, and let vi (i = 1, 2) be two functions such that: vi = 1 on Ei, vi = 0

outside a ε-neighbourhood of Ei, and |∇vi| = ε−1 on the ε-strip Eε
i outside Ei.

ε should be chosen in a way that (E1 ∪ Eε
1) ∩ (E2 ∪ Eε

2) = ∅. Set

A0 :=

{
αv1 + βv2

∣∣∣∣ |α|p + |β|p = 1

}
.
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Then A0 ∈ Γw
2 (see also [34, Lemma 2.1]). Thus we have

λg,f
2 (p; Ω) ≤ sup

u∈A0

∫
Ω
g|∇u|p∫

Ω
f |u|p

≤ sup
|α|p+|β|p=1

ε−p|α|pV g(Eε
1) + ε−p|β|pV g(Eε

2)

|α|pV f (E1) + |β|pV f (E2)

≤ sup
|α|p+|β|p=1

ε−p[|α|pg(Eε
1)V (Eε

1) + |β|pg(Eε
2)V (Eε

2)]

|α|pV f (E1) + |β|pV f (E2)

= sup
|α|p+|β|p=1

ε1−p[|α|pg(Eε
1)Per(E1) + |β|pg(Eε

2)Per(E2) + ε−1o(ε)]

|α|pV f (E1) + |β|pV f (E2)

≤ ε1−p

[
max
i=1,2

g(Eε
i )Per(Ei)

V f (Ei)
+

ε−1o(ε)

min {V f (E1), V f (E2)}

]
as we have from Lemma 2.22

V (Eε
i ) = εPer(Ei) + o(ε)

where o(ε)
ε
→ 0 as ε → 0. Note that the last inequality is true because of

Proposition A.4. If we send p→ 1, we obtain

lim sup
p→1

λg,f
2 (p; Ω) ≤ max

i=1,2

g(Eε
i )Per(Ei)

V f (Ei)
+

ε−1o(ε)

min {V f (E1), V f (E2)}

and if ε→ 0

lim sup
p→1

λ2(p; Ω) ≤ max
i=1,2

g(∂Ei)Per(Ei)

V f (Ei)
= max

i=1,2

Perg(Ei)

V f (Ei)
≤ hg,f

2 (Ω) +
1

k
.

The claim follows if we send k →∞. The fact that E1 and E2 depend from k

does not constitute a problem; in fact we can estimate V f (Ei) from below: if

it were V f (Ei) → 0 we would have

Perg(Ei)

V f (Ei)
≥ g0

‖f‖∞
Per(Ei)

V (Ei)
≥ g0

‖f‖∞
Per(Bi)

V (Bi)
=

g0

‖f‖∞
n

Ri

→ +∞

where Bi is a ball with radius Ri such that V (Bi) = V (Ei).

Theorem 3.7.

λg,f
1 (p; Ω) ≥

(
f0

‖g‖∞

) p
q

·

(
hg,f

1 (Ω)

p

)p

.

Proof. By means of the weighted Cavalieri principle and the weighted coarea

formula, which are available also in this case (see [16]), we generalize [38,
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Theorem 3] and obtain at the end the following inequality:

hg,f
1 (Ω) ≤

∫
Ω
g|∇w|∫

Ω
f |w|

≤ p

∫
Ω
g|v|p−1|∇v|∫

Ω
f |v|p

≤ p
(
∫

Ω
g|v|p)

1
q (
∫

Ω
g|∇v|p)

1
p

(
∫

Ω
f |v|p)

1
q (
∫

Ω
f |v|p)

1
p

≤ p
‖g‖

1
q
∞(
∫

Ω
|v|p)

1
q (
∫

Ω
g|∇v|p)

1
p

f
1
q

0 (
∫

Ω
|v|p)

1
q (
∫

Ω
f |v|p)

1
p

≤ p

(
‖g‖∞
f0

) 1
q (
∫

Ω
g|∇v|p)

1
p

(
∫

Ω
f |v|p)

1
p

.

We recall that Sard’s Theorem assures us that almost all of the level sets of a

smooth function have a smooth boundary.

Corollary 3.8.

lim
p→1

λg,f
1 (p; Ω) = hg,f

1 (Ω).

Remark 3.9. If g ≤ f we can also proceed as follows:

hg,f
1 (Ω) ≤

∫
Ω
g|∇w|∫

Ω
f |w|

≤ p

∫
Ω
g|v|p−1|∇v|∫

Ω
f |v|p

≤ p
(
∫

Ω
g|v|p)

1
q (
∫

Ω
g|∇v|p)

1
p∫

Ω
f |v|p

≤ p
(
∫

Ω
f |v|p)

1
q (
∫

Ω
g|∇v|p)

1
p∫

Ω
f |v|p

≤ p
(
∫

Ω
g|∇v|p)

1
p

(
∫

Ω
f |v|p)

1
p

to obtain

λg,f
1 (p; Ω) ≥

(
hg,f

1 (Ω)

p

)p

which is a better estimate in the case f0 < ‖g‖∞, which can occur even if

g ≤ f .

Remark 3.10. The proof of the existence of a function u ∈ BV (Ω) minimizing

the ratio
‖Dv‖g(Rn)∫

Ω
f |v|

among all functions v ∈ BV (Ω), as well as the existence of a weighted Cheeger

set for Ω (with the minimum of the ratio above equal to hg,f
1 (Ω)) can be found

in [16].

Remark 3.11. The first eigenfunction(s) of the weighted p-Laplacian can be

considered to be strictly positive; indeed, Harnack’s inequality is available

according to [51] or [49]; the results of those articles are in fact still valid if

one sets, using their notation,

A(x, u,∇u) = − 1

g0

div(g(x)|∇u|p−2∇u)
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and

B(x, u,∇u) =
1

g0

(f(x)|u|p−2u)

since g(x) ≥ g0 > 0.

Remark 3.12. Since f, g are positive and bounded from below and from above,

[43, Lemma 3.1] could be used to state that the first eigenvalue of the weighted

p-Laplacian is simple. From the same computations it follows (see the remark

following that Lemma) that the higher eigenfunctions have to change their

sign.

Theorem 3.13. The following inequality holds:

λg,f
2 (p; Ω) ≥

(
f0

‖g‖∞

) p
q

·

(
hg,f

2 (Ω)

p

)p

.

Proof. There exists a second eigenfunction eg,f
2 which admits at least two nodal

domains N1 and N2. One can then proceed as in the case f, g ≡ 1.

Corollary 3.14.

lim
p→1

λg,f
2 (p; Ω) = hg,f

2 (Ω).

3.2 The pseudo-p-Laplacian

It is worth mentioning that the results of the preceding chapter hold also for

the eigenvalue problem for the pseudo-p-Laplace operator, defined as

∆̃pu :=
n∑

i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi

∣∣∣∣p−2
∂u

∂xi

)
.

For n = 1 we have ∆̃pu = ∆pu, while ∆̃2u = ∆u for every n. The pseudo-p-

Laplacian admits a sequence of eigenvalues

λ̃1(p; Ω) < λ̃2(p; Ω) ≤ ... ≤ λ̃k(p; Ω) → +∞

which can be obtained by means of a minimax principle, similarly as for the

p-Laplacian. We define

‖Du‖1(Rn) := sup

{
n∑

i=1

∫
Ω

u
∂ϕi

∂xi

∣∣∣∣ϕi ∈ C∞
c (Ω; R), |ϕi| ≤ 1

}

= sup

{∫
Ω

u divϕ

∣∣∣∣ϕ ∈ C∞
c (Ω; Rn), ‖ϕ‖∞ ≤ 1

}
.
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The difference with the ordinary total variation is that there we required the

condition |ϕ| ≤ 1, i.e. ‖ϕ‖2 ≤ 1. By the equivalence of the norms in Rn we

have

‖Du‖(Rn) <∞⇔ ‖Du‖1(Rn) <∞.

For a set E ⊂ Ω we define

Per1(E) = Per1(E; Rn) := sup

{∫
Rn

χE divϕ

∣∣∣∣ϕ ∈ C∞
c (Ω; Rn), ‖ϕ‖∞ ≤ 1

}
and the Cheeger constant

h̃1(Ω) := inf
E⊂Ω

Per1(E; Rn)

V (E)
.

The L1-lower semicontinuity of ‖Du‖1 and the existence of a coarea formula

(see [2]) yield the existence of a minimizer for the Rayleigh quotient, as well

as the existence of a Cheeger set for every Ω ⊂ Rn. In [7, Theorem 3.7] it was

proved that

lim
p→1

λ̃1(p; Ω) = h̃1(Ω).

It is easily seen that the results of Chapter 2 can be extended also to this

setting. In the following we will only extend a useful approximation result for

Cheeger sets, which was proved in [45] in the standard case.

Lemma 3.15. Let τ ≥ 0 be a test function defined on Rn such that τ(x) =

τ(|x|), τ(x) = 0 if |x| ≥ 1,
∫
τ(x) dx = 1. Set τh(x) := hnτ(hx) and ψh(x) :=

τh ? χΩ. Then

‖Dψh‖1(Rn) → ‖DχΩ‖1(Rn)

as h→∞.

Proof. Since τh → χΩ in L1
loc(Rn), we have

‖DχΩ‖1(Rn) ≤ lim inf
h→∞

‖Dψh‖1(Rn).

Moreover we have∫
Rn

ψh divϕ =

∫
Rn

(τh ? χΩ) divϕ =

∫
Rn

χΩ div (τh ? ϕ) ≤ ‖DχΩ‖1(Rn)

since

‖τh ? ϕ(x)‖∞ ≤
∫

Rn

τh(x− y)‖ϕ(y)‖∞ dy ≤
∫

Rn

τh(x− y) dy = 1.

So

lim sup
h→∞

‖Dψh‖1(Rn) ≤ ‖DχΩ‖1(Rn)

from which the claim follows.
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Proposition 3.16. Let F ⊂ Ω be a set of finite perimeter. Then there exists a

sequence of smooth sets {Fh} such that: Fh ⊂⊂ F , χFh
→ χF , and Per1(Fh) →

Per1(F ) as h→∞.

Proof. The results in [45] about the approximation of Caccioppoli sets from

the inside can be extended also in this case, since the article makes use only

of the lower semicontinuity and of the coarea formula, which are available also

in this case. One modification is needed in (3.21): in this case it is possible to

use the results of [47, Appendix] by modifying the classical proof using Lemma

3.15. The same lemma is useful in order to prove the step between (2.28) and

(2.29).





Chapter 4

Lane-Emden problem and

Dirichlet eigenfunctions

Let Ω ⊂ Rn be a bounded domain. We consider the Lane-Emden equation for

the p-Laplacian, that is{
−∆pu = λ|u|q−2u in Ω

u = 0 on ∂Ω.
(4.1)

Here is λ > 0, 1 < p < q < p∗ (with p∗ = np
n−p

if p < n, and p∗ = +∞
otherwise). We are interested in the existence and the asymptotic behaviour,

as q → p, of the positive and sign-changing solutions with minimal energy.

It will be proved that, for suitable values of λ, such solutions converge to

eigenfunctions of the p-Laplacian.

The results of this chapter were obtained in collaboration with Christopher

Grumiau and have appeared in [31]. However, the proof of Proposition 4.9 is

given here in a simplified version obtained together with Fernando Charro.

We denote by ‖.‖ the norm in W 1,p
0 (Ω) defined as

‖u‖ =

(∫
Ω

|∇u|p
) 1

p

.

In order to simplify the notation, we will set λ1 := λ1(p; Ω) and λ2 := λ2(p; Ω).

4.1 Existence of solutions

Let us fix 1 < p < +∞ and p < q < p∗. We will prove the existence of at

least two non-trivial solutions to the Lane-Emden problem (4.1). In particular

we prove the existence of a ground state solution (non-trivial solution with

55
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minimum energy) and a least energy nodal solution (sign-changing solution

with minimum energy). We recall that the existence question in the case p = 2

and 1 < q < 2∗ was already studied in 1973 by Ambrosetti and Rabinowitz

in [3], where it was shown that the problem admits a positive ground state

solution. The existence of a sign-changing solution with minimal energy was

proved in [18] by Castro, Cossio and Neuberger in 1997.

We introduce the energy functional

ϕq(u) :=
1

p

∫
Ω

|∇u|p − λ

q

∫
Ω

|u|q

defined on W 1,p
0 (Ω). A function u is a solution of (4.1) if and only if it is

a critical point of ϕq. Remark that ϕq is a C2 functional for p ≥ 2 and C1

functional for 1 < p < 2.

Let us define the first variation of ϕq at u in direction v

dϕq(u)(v) :=

∫
Ω

|∇u|p−2∇u∇v − λ

∫
Ω

|u|q−2uv

and the Nehari manifold

Nq := {u ∈ W 1,p
0 (Ω) \ {0} | dϕq(u)(u) = 0}.

Clearly, all the non-trivial solutions belong to Nq. We will also make use of

the positive Nehari manifold

N+
q := {u ∈ Nq |u ≥ 0},

of the negative Nehari manifold

N−
q := {u ∈ Nq |u ≤ 0}

and of the nodal Nehari set

Mq := {u ∈ Nq |u+ ∈ N+
q , u

− ∈ N−
q },

where we defined the positive part u+ := max(0, u) and the negative part

u− := min(0, u).

Notice that by definition the functions belonging to Mq are sign-changing.

Moreover, all sign-changing solutions of the problem belong to Mq. The fol-

lowing results prove that ground state solutions are characterized by functions

minimizing the energy functional in Nq and least energy nodal solutions are

characterized by functions minimizing the energy functional in Mq.



4.1. EXISTENCE OF SOLUTIONS 57

Proposition 4.1. For every u ∈ W 1,p
0 (Ω) \ {0}, there exists one and only one

t∗q > 0 such that t∗qu ∈ Nq. Moreover,

ϕq(t
∗
qu) = max

t>0
ϕq(tu).

Proof. For u ∈ W 1,p
0 (Ω) \ {0}, we have

tu ∈ Nq ⇔
∫

Ω

|∇(tu)|p − λ

∫
Ω

|tu|q = 0 ⇔ tp
∫

Ω

|∇u|p − λtq
∫

Ω

|u|q = 0.

The last equation admits

t∗q :=

(∫
Ω
|∇u|p

λ
∫

Ω
|u|q

) 1
q−p

(4.2)

as unique positive solution. For t ≥ 0 we define

ψ(t) := ϕq(tu) =
1

p

∫
Ω

|∇(tu)|p − λ

q

∫
Ω

|tu|q =
tp

p

∫
Ω

|∇u|p − λtq

q

∫
Ω

|u|q.

We have

ψ′(t) = tp−1

∫
Ω

|∇u|p − λtq−1

∫
Ω

|u|q,

so that the only positive critical point is t = t∗q. Since ψ(0) = 0 and ψ(t) → −∞
as t→ +∞, t∗q must be a maximum point, which means

ϕq(t
∗
qu) = max

t>0
ϕq(tu).

By the previous result and since the support of u+ and u− are disjoint, we

obtain

Corollary 4.2. For every u ∈ W 1,p
0 (Ω)\{0}, the numbers t+q , t

−
q > 0 such that

t+q u
+ + t−q u

− ∈Mq are uniquely defined.

Proposition 4.3. The Nehari manifold Nq is closed in W 1,p
0 (Ω).

Proof. Since ϕq is of class C1, it is clear that Nq ∪ {0} is closed. So we must

prove that 0 is not an accumulation point for Nq; this follows from the fact

that the W 1,p
0 -norm of every function u ∈ Nq is uniformly bounded from below.

Indeed, from Sobolev’s embedding Theorem we have

‖∇v‖p ≥ C‖v‖q ∀ v ∈ W 1,p
0 (Ω).
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For v ∈ W 1,p
0 (Ω) \ {0} the unique positive multiplicative function t∗qv ∈ Nq

(with t∗q as in (4.2)) satisfies

‖∇(t∗qv)‖p ≥ C‖t∗qv‖q = C

(‖∇v‖p
p

λ‖v‖q
q

) 1
q−p

‖v‖q = Cλ−
1

q−p

(
‖∇v‖p

‖v‖q

) p
q−p

≥ C
q

q−pλ−
1

q−p .

The following result proves that we can compute the minimum of the energy

on the positive and negative Nehari manifold, and on the nodal Nehari set.

The idea for it is the same as the one used by Castro, Cossio and Neuberger

in [18].

Proposition 4.4. The infima

inf
u∈N+

q

ϕq(u), inf
u∈N−

q

ϕq(u), inf
u∈Mq

ϕq(u)

are attained.

Proof. We will give a proof only for Mq, since the arguments are the same for

N+
q and N−

q . Let us define c := inf
Mq

ϕq and consider {un}∞n=1 ⊂Mq such that

ϕq(un) → c. Since

ϕq(v) =

(
1

p
− 1

q

)
‖v‖

for any v ∈ Nq, we obtain that {un}∞n=1 is bounded in W 1,p
0 (Ω). So, up to a

subsequence, there exist u, v and w such that un ⇀ u, u+
n ⇀ v and u−n ⇀ w in

W 1,p
0 (Ω). By Sobolev’s embedding Theorem and as the functions u 7→ u+ and

u 7→ u− are continuous, we obtain that u+ = v and u− = w.

By Proposition 4.3, the Nehari manifold Nq is closed in W 1,p
0 (Ω). We obtain

that

λ

∫
Ω

|u+|q = λ lim
n→+∞

∫
Ω

|u+
n |q = lim

n→+∞

∥∥u+
n

∥∥p
> 0.

So u is a sign-changing function.

It remains to verify that u ∈Mq and un → u in W 1,p
0 (Ω). In fact, it suffices

to prove that u+
n → u+ and u−n → u− in W 1,p

0 (Ω). Suppose by contradiction

that this is not the case; without loss of generality, we can assume that u+
n

does not converge to u+. Then∥∥u+
∥∥p
< lim inf

n→+∞

∥∥u+
n

∥∥p
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(see [13, Proposition 3.30]), which implies that dϕq(u
+)(u+) < 0. So u+ does

not belong to the Nehari manifold. By Proposition 4.1, there exist 0 < α < 1

and 0 < β ≤ 1 such that αu+ + βu− belongs to Mq. In fact, we have

ϕq(αu
+ + βu−) < lim inf

n→+∞
(ϕq(αu

+
n ) + ϕq(βu

−
n )) ≤ lim inf

n→+∞
ϕq(un) = c,

which is a contradiction. So the minimum of the energy on Mq is attained in

u.

The following results show that the functions found in Proposition 4.4 are

solutions of the problem (4.1). Remark that, as the positive part and the

negative part of a solution belong to the Nehari manifold and as the energy

of the positive or negative part is strictly less than the energy of the solution,

we obtain that the functions which minimize energy on the positive Nehari

manifold or negative Nehari manifold are ground state solutions of the problem

(4.1). We will make use of the following lemma, also known as Miranda’s

theorem.

Lemma 4.5. Let B ⊂ Rn be a closed ball, let f : B → Rn be a continuous

function. If f points inside B on ∂B, then f possesses a zero in B.

Proof. A proof of this theorem can be found for instance in [24, Section 9.1].

Proposition 4.6. If uq ∈ Mq (resp. N+
q or N−

q ) is such that ϕq(uq) =

infu∈Mq ϕq(u) (resp. infu∈N+
q
ϕq(u) or infu∈N−

q
ϕq(u) ), then uq is a critical

point for ϕq.

Proof. We give the proof for Mq. The arguments are essentially the same for

the two other cases: we only need to think that a minimum on N+
q or N−

q

is a minimum on Nq. So, for the two other cases, we do not need that the

deformation used in the next part of the proof stays in the positive Nehari or

negative Nehari manifold.

Fix c := min
Mq

ϕq. Let us suppose that uq is not a critical point for ϕq. Since

ϕq is of class C1, it is possible to find a ball B with uq ∈ B and such that, for

ε > 0,

c− ε ≤ ϕq(u) ≤ c+ ε ∀ u ∈ B

and

‖ dϕq(u)‖(W 1,p
0 )

′ ≥ ε

2
∀ u ∈ B.
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Let us consider the quarter of a hyperplane π defined as

π := {αu+
q + βu−q |α, β > 0}.

Notice that, from Proposition 4.1, uq is the unique global maximum of ϕq on

π. By the deformation Lemma (see [28, Proposition 5.1.25]) there exists a

deformation Γ such that

1. ϕq(Γ(t, u)) < c for u ∈ B ∩ π and t ∈ [0, 1],

2. Γ(t, u) = u for u ∈ ∂B ∩ π and t ∈ [0, 1], and

3. ‖Γ(t, u)− u‖ ≤ 8t for u ∈ B ∩ π and t ∈ [0, 1].

Because of the compactness of B ∩ π, it is possible to find t∗ > 0 such that

Γ(t∗, u) is a sign-changing function for every u ∈ B ∩ π. Now we consider the

application ψ : π → R× R defined as

ψ : v 7→ ( dϕq(Γ(t∗, v)+)(Γ(t∗, v)+), dϕq(Γ(t∗, v)−)(Γ(t∗, v)−)).

Since Γ(t∗, v) = v on ∂B, we obtain that the vector field points inwards on

∂B. Using Lemma 4.5 we obtain that there exists w ∈ B ∩ π such that

Γ(t∗, w) ∈Mq. This is a contradiction because ϕq(Γ(t∗, w)) < c.

4.2 Convergence results

In this Section we study the asymptotic behaviour of ground state solutions

uq (resp. least energy nodal solutions) of the Problem (4.1) when q goes to p.

We prove that there exist suitable positive constants C1 and C2 such that

C1

(
λ1

λ

) 1
q−p

≤ ‖uq‖ ≤ C2

(
λ1

λ

) 1
q−p

if uq is a ground state solution, and

C1

(
λ2

λ

) 1
q−p

≤ ‖uq‖ ≤ C2

(
λ2

λ

) 1
q−p

if uq is a least energy nodal solution. We are able to state the following result.

Theorem 4.7. As q → p, the ground state solutions of Problem (4.1):

(i) diverge to infinity, up to a subsequence, if λ < λ1;

(ii) converge to a first eigenfunction of the p-Laplacian, up to a subsequence,

if λ = λ1;

(iii) converge to zero, up to a subsequence, if λ > λ1.
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Theorem 4.8. As q → p, the least energy nodal solutions of Problem (4.1):

(i) diverge to infinity, up to a subsequence, if λ < λ2;

(ii) converge to a second eigenfunction of the p-Laplacian, up to a subsequence,

if λ = λ2;

(iii) converge to zero, up to a subsequence, if λ > λ2.

We mention that the case λ < λ1 in Theorem 4.7 was already investigated

in [34].

Let us first remark that statements (i) and (iii) of Theorems 4.7 and 4.8 can

be derived from (ii) as follows. If vq is a ground state solution of (4.1) for

λ = λ1, then the function

uq :=

(
λ1

µ

) 1
q−p

vq

will be a ground state solution for λ = µ. So for λ < λ1, the function

uq =

(
λ1

λ

) 1
q−p

vq

goes to infinity as q → p, while for λ > λ1 it goes to zero. The proof of

Theorem 4.8 (i) and (iii) is virtually identical. It remains to consider the case

λ = λ1 for ground state solutions, and λ = λ2 for least energy nodal solutions.

Remark that the energy functional of problem (4.1) is given by

ϕq(u) :=
1

p

∫
Ω

|∇u|p − λ

q

∫
Ω

|u|q

where λ = λ1 (resp. λ2). We denote by Nλ,q the associated Nehari manifold

and Mλ,q the associated nodal Nehari set. The family {uq,1}q>p will denote

a family of ground state solutions for the problem (4.1) with λ = λ1, while

{uq,2}q>p will be a family of least energy nodal solutions for the same problem

with λ = λ2. We prove that, up to a subsequence, {uq,1}q>p (resp. {uq,2}q>p)

converge in Lp(Ω) to a first (resp. second) eigenfunction of −∆p.

Let us fix a first eigenfunction e1 and a second eigenfunction e2 of −∆p.

Proposition 4.9. The families {uq,1}q>p and {uq,2}q>p are uniformly bounded

in W 1,p
0 (Ω).

Proof. We give the proof only for the family {uq,2}q>p. The arguments are eas-

ier in the other case. As uq,2 belongs to the Nehari manifold, dϕq(uq,2)(uq,2) =
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0, which means ‖∇uq,2‖p
p = λ2‖uq,2‖q

q. On one hand we have(
1

p
− 1

q

)
‖∇uq,2‖p

p = ϕq(uq,2)

= inf
u∈Mq

ϕq(u)

≤ ϕq(t
+
q e

+
2 + t−q e

−
2 )

= ϕq(t
+
q e

+
2 ) + ϕq(t

−
q e

−
2 ).

On the other hand we have

ϕq(t
+
q e

+
2 ) =

1

p
(t+q )p‖∇e+2 ‖p

p −
λ2

q
(t+q )q‖e+2 ‖q

q =

(
1

p
− 1

q

)
(t+q )p‖∇e+2 ‖p

p

and analogously for ϕq(t
−
q e

−
2 ). So we obtain

‖∇uq,2‖p
p ≤ (t+q )p‖∇e+2 ‖p

p + (t−q )p‖∇e−2 ‖p
p

where

t+q =

(
‖∇e+2 ‖p

p

λ2‖e+2 ‖
q
q

) 1
q−p

=

(
‖e+2 ‖p

p

‖e+2 ‖
q
q

) 1
q−p

and similarly for t−q . By Hölder’s inequality one has

t+q ≤

(
|Ω|

q
p
−1‖e+2 ‖p

p

‖e+2 ‖
q
p

) 1
q−p

=
|Ω|

1
p

‖e+2 ‖p

.

Substituting we obtain

‖∇uq,2‖p
p ≤ 2 · λ2 · |Ω|

so that

‖∇uq,2‖p ≤ (2 · λ2 · |Ω|)
1
p .

The two following results prove that the sequence of ground state solutions

(resp. least energy nodal solutions) of problem (4.1) stays away from the zero

function.

Theorem 4.10. Let {uq,1}q>p be a family of ground state solutions of the

Lane-Emden problem (4.1) for λ = λ1. Then

lim inf
q→p

‖∇uq,1‖p > 0.
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Proof. Fix r > 0 such that p < r < p∗, and set s := r(q−p)
q(r−p)

. By interpolation of

Hölder’s inequality (see Proposition A.5) we obtain

‖uq,1‖p
q ≤ ‖uq,1‖p−ps

p ‖uq,1‖ps
r .

By definition of λ1 we have

λ1‖uq,1‖p
p ≤ ‖∇uq,1‖p

p.

On the other hand, since {uq,1}q>p belongs to the Nehari manifold Nq, we have

‖∇uq,1‖p
p = λ1‖uq,1‖q

q

and, since r < p∗, by Sobolev’s embedding Theorem, we know that there exists

a constant C such that

‖uq,1‖p
r ≤ C‖∇uq,1‖p

p.

So it follows that

‖∇uq,1‖p ≥ λ
−p+q−sq

pq−p2

1 C
− sq

pq−p2

which means, recalling the definition of s,

‖∇uq,1‖p ≥ λ
1

p−r

1 C
r

p(p−r) .

Since this estimate does not depend on q, we obtain the claim.

Theorem 4.11. Let {uq,2}q>p be a family of least energy nodal solutions of

the Lane-Emden problem (4.1) for λ = λ2. Then

lim inf
q→p

‖∇uq,2‖p > 0.

Proof. Since uq,2 is sign-changing we can write uq,2 = u+
q,2+u

−
q,2, with u+

q,2, u
−
q,2 6=

0. Define

A :=

{
v ∈ W 1,p

0 (Ω) \ {0}
∣∣∣∣ v = αu+

q,2 + βu−q,2, (α, β) 6= (0, 0)

}
.

It can be proved that A ∈ Γ2, where Γ2 is as in Definition 2.4. By definition

of λ2 we have

λ2 ≤ max
(α,β) 6=(0,0)

|α|p‖∇u+
q,2‖p

p + |β|p‖∇u−q,2‖p
p

|α|p‖u+
q,2‖

p
p + |β|p‖u−q,2‖

p
p

≤ max

{
‖∇u+

q,2‖p
p

‖u+
q,2‖

p
p
,
‖∇u−q,2‖p

p

‖u−q,2‖
p
p

}
.

The last inequality follows from Proposition A.4. Let us assume, without loss

of generality, that the maximum is attained for u+
q,2. Then we have

λ2‖u+
q,2‖p

p ≤ ‖∇u+
q,2‖p

p.
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Fix r > 0 such that p < r < p∗ and set s := r(q−p)
q(r−p)

. By interpolation of Hölder’s

inequality (see Proposition A.5) we obtain

‖u+
q,2‖p

q ≤ ‖u+
q,2‖p−ps

p ‖u+
q,2‖ps

r .

On the other hand, since {u+
q,2}q>p belongs to the Nehari manifold Nq, we have

‖∇u+
q,2‖p

p = λ2‖u+
q,2‖q

q

and since r < p∗ by Sobolev’s embedding Theorem we get

‖u+
q,2‖p

r ≤ C‖∇u+
q,2‖p

p.

So it follows that

‖∇u+
q,2‖p ≥ λ

−p+q−sq

pq−p2

2 C
− sq

pq−p2

and if we recall the definition of s

‖∇u+
q,2‖p ≥ λ

1
p−r

2 C
r

p(p−r) .

From the relation

‖∇uq,2‖p ≥ ‖∇u+
q,2‖p

and since the estimate does not depend on q we obtain the claim.

Theorem 4.12. Let {uq,1}q>p be a family of ground state solutions of the

Lane-Emden problem (4.1) for λ = λ1 (resp. {uq,2}q>p be a family of least

energy nodal solutions for λ = λ2). Then, up to a subsequence, uq,1 → u∗
(resp. uq,2 → u∗) in Lp(Ω) as q → p, where the function u∗ is a first (resp.

second) eigenfunction of the p-Laplacian.

Proof. We give the proof for the family of least energy nodal solutions. The

idea is the same for the family of ground state solutions. Let v ∈ W 1,p
0 (Ω).

Because of the uniform boundedness of the family {uq,2}q>p in W 1,p
0 (Ω), there

exists u∗ ∈ W 1,p
0 (Ω) such that uq,2 ⇀ u∗ in W 1,p

0 (Ω) and uq,2 → u∗ in Lp(Ω) for

q → p (up to a subsequence). By Lebesgue’s dominated convergence Theorem

we also have

|uq,2|q−2uq,2 → |u∗|p−2u∗ in Lp(Ω).

So ∫
Ω

|∇u∗|p−2∇u∗∇v = lim
q→p

∫
Ω

|∇uq,2|p−2∇uq,2∇v

= lim
q→p

λ2

∫
Ω

|uq,2|q−2uq,2v

= λ2

∫
Ω

|u∗|p−2u∗v.

By Theorem 4.11 u∗ 6= 0. Hence, u∗ is a second eigenfunction of −∆p.
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Inequalities

Proposition A.1. Let {an}, {bn} be sequences. Then

lim sup
n→∞

(anbn) ≥
(

lim inf
n→∞

an

)(
lim sup

n→∞
bn

)
.

Proof. Set a := lim inf
n→∞

an, b := lim sup
n→∞

bn. Let {bnk
} be a subsequence such

that bnk
→ b. Then

a ≤ lim inf
k→∞

ank
.

Let {an′k
} a subsequence of ank

such that an′k
→ a′ := lim inf

k→∞
ank

. Then bn′k → b

and

ab ≤ a′b =
(

lim
k→∞

an′k

)(
lim
k→∞

bn′k

)
= lim

k→∞

(
an′k

bn′k
)
≤ lim sup

n→∞
anbn.

Proposition A.2. Let {an}, {bn} be sequences. Then

lim inf
n→∞

(anbn) ≤
(

lim inf
n→∞

an

)(
lim sup

n→∞
bn

)
.

Proof. Set a := lim inf
n→∞

an, b := lim sup
n→∞

bn. Let {ank
} be a subsequence such

that ank
→ a. Then

b ≥ lim sup
k→∞

bnk
.

Let {bn′k} a subsequence of bnk
such that bn′k → b′ := lim sup

k→∞
bnk

. Then an′k
→ a

and

ab ≥ ab′ =
(

lim
k→∞

an′k

)(
lim
k→∞

bn′k

)
= lim

k→∞

(
an′k

bn′k
)
≥ lim inf

n→∞
anbn.
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Proposition A.3. Let {an}, {bn} be sequences such that an, bn ≥ 0. Then

lim infn→∞ an

limn→∞ bn
= lim inf

n→∞

an

bn
.

Proof. Set a := lim inf
n→∞

an, b := lim
n→∞

bn. Let {ank
} be a subsequence such that

ank
→ a. Then

lim inf
n→∞

an

bn
≤ lim inf

k→∞

ank

bnk

=
a

b
.

On the other side, set c := lim inf
n→∞

an

bn
, and let

{
ank

bnk

}
be a subsequence such

that
ank

bnk
→ c; then ank

→ bc. So

lim infn→∞ an

limn→∞ bn
≤ lim infk→∞ ank

b
=
bc

b
= c.

Proposition A.4. Let a, b, c, d > 0. Then

min

{
a

c
,
b

d

}
≤ a+ b

c+ d
≤ max

{
a

c
,
b

d

}
.

Proof. The claim follows from the fact that

a+ b

c+ d
≤ (≥)

a

c
⇔ ac+ bc ≤ (≥)ac+ ad⇔ b

d
≤ (≥)

a

c
.

Proposition A.5. Let Ω ⊂ Rn, 1 ≤ p ≤ q ≤ +∞, and let u ∈ Lp(Ω)∩Lq(Ω).

Then u ∈ Lr(Ω) for every r ∈ [p, q] and

‖u‖r ≤ ‖u‖α
p ‖u‖1−α

q

where 0 ≤ α ≤ 1 and
1

r
=
α

p
+

1− α

q
.

Proof. The proof can be found in [13, Chapter 4].
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Functions of bounded variation

The functions of bounded variation build a generalisation of Sobolev functions.

Most of the following results can be found in [29] or in [25].

Definition B.1. Let Ω ⊂ Rn an open set. The total variation ‖Du‖(Ω) of a

function u ∈ L1(Ω) is defined as

‖Du‖(Ω) := sup

{∫
Ω

u divϕ

∣∣∣∣ ϕ ∈ C∞
c (Ω; Rn) , |ϕ| ≤ 1

}
.

A function u ∈ L1(Ω) is said to have bounded total variation if ‖Du‖ (Ω) <∞.

This quantity can also be indicated by
∫

Ω
|Du| or ‖u‖TV .

We denote by BV (Ω) the space of function of bounded variation (also called

BV functions). For every u ∈ BV (Ω), we define

‖u‖BV (Ω) := ‖u‖1 + ‖Du‖ (Ω) (B.1)

Remark B.2. It is easy to see that ‖·‖BV (Ω) is a norm on the space BV (Ω).

Moreover, it can be shown that ‖Du‖ is a Radon measure on Ω, defining

‖Du‖(U) := sup

{∫
U

u divϕ

∣∣∣∣ϕ ∈ C∞
c (U ; Rn) , |ϕ| ≤ 1

}
where U is a subset of Ω.

Remark B.3. It can be shown that W 1,1(Ω) ⊂ BV (Ω), but W 1,1(Ω) 6= BV (Ω).

As a counterexample take for instance Ω = (0, 1) ⊂ R, E = (0, 1
2
), and u = χE.

Then clearly u ∈ L1(Ω) and if we take ϕ ∈ C∞
c ([0, 1]; R) with |ϕ| ≤ 1 we obtain∫ 1

0

χE ϕ
′ =

∫ 1
2

0

ϕ′ = ϕ

(
1

2

)
− ϕ(0) = ϕ

(
1

2

)
.

Taking the supremum on every admissible ϕ we have ‖Du‖ (Ω) = 1; hence

u ∈ BV (Ω). However, u /∈ W 1,1(Ω).
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We recall the following

Definition B.4. A Lebesgue-measurable subset E ⊂ Rn has finite perimeter

in Ω if

χE ∈ BV (Ω).

The quantity ‖DχE‖ (Ω) is called the perimeter of E in Ω and can also be

denoted by ‖∂E‖ (Ω).

For a set E with sufficiently smooth boundary (for instance of class Lip-

schitz) we have

‖∂E‖(Ω) = Hn−1(∂E)

where the symbol Hn−1 stands for the (n− 1)-dimensional Hausdorff measure.

Theorem B.5. (Semicontinuity of the total variation) Let Ω ∈ Rn an open

set, and {uk}∞k=1 a sequence of functions in BV (Ω), converging in L1
loc(Ω) to

a function u. Then u ∈ BV (Ω), and

‖Du‖ (Ω) ≤ lim inf
k→∞

‖Duk‖ (Ω).

Definition B.6. Let u, uk ∈ BV (Ω) (k = 1, ...). We say that the sequence

{uk}∞k=1 converges strictly to u if, as k →∞:

1. uk → u in L1(Ω) , and

2. ‖Duk‖ (Ω) → ‖Du‖ (Ω).

Remark B.7. It should be noted that BV-norm convergence implies strict con-

vergence, but the converse is in general not true.

Theorem B.8. Let u ∈ BV (Ω). Then there exists a sequence {uk}∞k=1 ⊂
C∞(Ω) ∩BV (Ω), converging strictly to u.

Theorem B.9. Let Ω ⊂ Rn be open and bounded, with ∂Ω of class Lipschitz.

Assume {uk}∞k=1 is a sequence in BV (Ω) satisfying

sup
k
‖uk‖BV (Ω) ≤M

for some M > 0 Then there exists a subsequence {ukj
}∞j=1 and a function

u ∈ BV (Ω) such that

ukj
→ u in L1(Ω)

as j →∞.
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Theorem B.10. (Coarea formula) Let u ∈ BV (Ω), and define

Et := {x ∈ Ω |u(x) > t}.

Then:

• Et has finite perimeter for almost every t ∈ R.

• ‖Du‖ (Ω) =
∫ +∞
−∞ ‖∂Et‖ (Ω) dt.

• Conversely, if u ∈ L1(Ω), and∫ +∞

−∞
‖∂Et‖ (Ω) dt <∞

then u ∈ BV (Ω).

We consider now two minimization problems. Let us define

λ1(Ω) := inf
u∈BV (Ω)

‖Du‖ (Rn)

‖u‖1

(B.2)

and

h(Ω) := inf
E⊂Ω

Per(E)

V (E)
(B.3)

as in Chapter 1. The connections between the two problems will be shown in

the next two theorems (see also [38])

Proposition B.11. Let Ω ⊂ Rn be a bounded, open domain with Lipschitz

boundary. Then there exists a function u ∈ BV (Ω) such that

‖Du‖ (Rn)

‖u‖1

= λ1(Ω).

Proof. Clearly, λ1(Ω) ≥ 0. Let {uk}∞k=1 be a minimizing sequence for (B.2).

Without loss of generality, we can suppose ‖uk‖1 = 1. For every k big enough

we have

‖Duk‖ (Rn) ≤ λ1(Ω) + 1.

It follows

‖uk‖BV (Ω) ≤ λ1(Ω) + 2.

According to Theorem B.9, there exists a subsequence (still denoted by {uk}),
such that there exists u ∈ BV (Ω) with

uk → u in L1(Ω).
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Using Theorem B.5 we get

λ1(Ω) ≤ ‖Du‖ (Rn) ≤ lim inf
k→∞

‖Duk‖ (Rn) = lim
k→∞

‖Duk‖ (Rn) = λ1(Ω)

⇒ ‖Du‖ (Rn) = λ1(Ω).

As ‖u‖1 = 1, we obtain the claim.

Proposition B.12. Let Ω ⊂ Rn be a bounded, open domain with Lipschitz

boundary. Then there exists a set E ⊂ Ω such that

Per(E)

V (E)
= h(Ω).

Moreover, λ1(Ω) = h(Ω).

Proof. We begin to observe that λ1(Ω) ≤ h(Ω): this is true, as h(Ω) can be

considered as the same infimum in (B.2), taken only on all the characteristic

functions of sets of finite perimeter in Ω (and ‖DχE‖ (Rn) = Per(E) according

to Definition B.4). Let u ∈ BV (Ω) be as in Theorem B.11; using the coarea

formula B.10 and Cavalieri’s principle we get

λ1(Ω) =
‖Du‖ (Rn)

‖u‖1

=

∫ +∞
−∞ ‖∂Et‖ (Rn) dt∫ +∞

−∞ V (Et) dt
=

∫ +∞
−∞ Per(Et) dt∫ +∞
−∞ V (Et) dt

hence ∫ +∞

−∞
[Per(Et)− λ1(Ω)V (Et)] dt = 0.

As λ1(Ω) ≤ h(Ω), we have

Per(Et)− λ1(Ω)V (Et) ≥ 0

for every t ∈ R Hence, for almost every t ∈ R, it must be

Per(Et)− λ1(Ω)V (Et) = 0

that is
Per(Et)

V (Et)
= λ1(Ω).

It follows

λ1(Ω) ≥ h(Ω) ⇒ λ1(Ω) = h(Ω)

as well as the existence of a minimizing set for (B.3).
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Γ-convergence

We will give in the following the basic definitions and results of Γ-convergence

of functionals; our reference text for this purpose will be [12].

Definition C.1. Let X be a metric space. We say that a sequence of functions

fj : X → [−∞,+∞] Γ-converges to f∞ : X → [−∞,+∞] if for every x ∈ X

we have:

(i) (liminf inequality) for every sequence {xj}∞j=1 converging to x we have

f∞(x) ≤ lim inf
j→+∞

fj(xj).

(ii) (limsup inequality) there exists a sequence {xj}∞j=1 converging to x such

that

f∞(x) ≥ lim sup
j→+∞

fj(xj).

The function f∞ is called the Γ-limit of {fj}, and we write

f∞ = Γ− limj→+∞fj.

The sequence {xj}∞j=1 is called a recovery sequence for x.

Remark C.2. Consider the case of a constant sequence fj = f for every j ∈ N;

if these sequence has a Γ-limit, but f is not lower semicontinuous, it can not

be true that f = Γ − limj→+∞fj ; in fact, by (i) in Definition C.1 we would

have, for every x ∈ X and for every xj → x,

f(x) ≤ lim inf
j→+∞

f(xj)

which contradicts the fact that f is not lower semicontinuous. So even for a

constant sequence the Γ-limit may differ from the pointwise limit.
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Remark C.3. If we have a continuous family of functions fp : X → [−∞,+∞],

p ∈ R, we can still define Γ-convergence by asking that, for every sequence of

indices {pj}∞j=1, pj → ∞, Definition C.1 holds for the sequence of functions

fpj
.

Definition C.4. A function f : X → [−∞,+∞] is coercive if for all t ∈ R the

set {f ≤ t} is precompact. A function f : X → [−∞,+∞] is mildly coercive

if there exists a non-empty compact set K such that inf
X
f = inf

K
f . A sequence

of functions fj : X → [−∞,+∞] (j ∈ N) is equi-mildly coercive if there exists

a non-empty compact set K such that inf
X
fj = inf

K
fj for all j.

We are now ready to state one of the main results about Γ-convergence.

Lemma C.5. Let fj,f∞ : X → [−∞,+∞] be functions. Then we have:

(i) if Definition C.1 (i) is satisfied for all x ∈ X, and K ⊂ X is a compact

set, then we have

inf
K
f∞ ≤ lim inf

j→+∞
inf
K
fj.

(ii) if Definition C.1 (ii) is satisfied for all x ∈ X, and U ⊂ X is an open set,

then we have

inf
U
f∞ ≥ lim sup

j→+∞
inf
U
fj.

Proof. (i) Let {x̃j}∞j=1 be a sequence such that lim inf
j→+∞

inf
K
fj = lim inf

j→+∞
fj(x̃j).

For the compactness of K we can extract a subsequence {x̃jk
}∞k=1 such that

x̃jk
→ x and

lim
k
fjk

(x̃jk
) = lim inf

j→+∞
inf
K
fj.

If we set

xj =

{
x̃jk

if j = jk
x if j 6= jk for every k

then

inf
K
f∞ ≤ f∞(x) ≤ lim inf

j→+∞
fj(xj) ≤ lim inf

k
fjk

(xjk
)

= lim
k
fjk

(x̃jk
) = lim inf

j→+∞
inf
K
fj (C.1)

as required.

(ii) Let δ > 0 be fixed, and let x ∈ U be such that f∞(x) ≤ inf
U
f∞ + δ. Then,

if {xj}∞j=1 is a recovery sequence for x, we have

inf
U
f∞ + δ ≥ f∞(x) ≥ lim sup

j→+∞
fj(xj) ≥ lim sup

j→+∞
inf
U
fj. (C.2)

The claim follows from the arbitrariness of δ.
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Theorem C.6. Let X be a metric space, let {fj}∞j=1 a sequence of equi-mildly

coercive functions on X, and let f∞ = Γ − limj→+∞ fj. Then min
X

f∞ exists,

and

min
X

f∞ = lim
j→+∞

inf
X
fj.

Moreover, if {xj}∞j=1 is a precompact subsequence such that lim
j→+∞

fj(xj) =

lim
j→+∞

inf
X
fj, then every limit of a subsequence of {xj}∞j=1 is a minimum point

for f∞.

Proof. The proof follows from Lemma C.5. Let x be as in the proof of Lemma

C.5 (i); then by (C.1) and (C.2) with U = X, and by the equi-mild coerciveness

condition we get

inf
X
f∞ ≤ inf

K
f∞ ≤ f∞(x) ≤ lim inf

j→+∞
inf
K
fj

= lim inf
j→+∞

inf
X
fj ≤ lim sup

j→+∞
inf
X
fj ≤ inf

X
f∞. (C.3)

As the first and the last terms coincide, we obtain the claim.





Appendix D

Nonlinear eigenvalues

Let X be a Banach space, A ⊂ X a closed, symmetric subset. The Krasnosel-

skii genus γ(A) is defined as

γ(A) := min{m ∈ N | ∃ ϕ : A→ Rm \ {0}, ϕ is continuous and odd}.

Let us denote by Γk the set

Γk :=

{
A ⊂ W 1,p

0 (Ω)\{0}
∣∣∣∣A∩{‖u‖p = 1} is compact, A symmetric, γ(A) ≥ k

}
and by Γ̃k the set

Γ̃k :=

{
A ⊂ W 1,p

0 (Ω) ∩ {‖u‖p = 1}
∣∣∣∣A is compact and symmetric, γ(A) ≥ k

}
.

We define for every k ∈ N the numbers

λk(p; Ω) := inf
A∈Γk

max
u∈A

∫
Ω
|∇u|p∫

Ω
|u|p

and

λ̃k(p; Ω) := inf
A∈eΓk

max
u∈A

∫
Ω

|∇u|p.

Proposition D.1. For every k ∈ N,

λk(p; Ω) = λ̃k(p; Ω).

Proof. It is clear that Γ̃k ⊂ Γk, so that λk(p; Ω) ≤ λ̃k(p; Ω). Let A ∈ Γk. Define

ϕ : W 1,p
0 (Ω) \ {0} → W 1,p

0 (Ω) \ {0} as

ϕ(u) =
u

‖u‖p

.
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Then Ã := ϕ(A) belongs to Γ̃k, and

max
u∈A

∫
Ω
|∇u|p∫

Ω
|u|p

= max
u∈ eA

∫
Ω

|∇u|p.

It follows λ̃k(p; Ω) ≤ λk(p; Ω) and hence the claim.

We now define

Γ̂k := {A ⊂ W 1,p
0 (Ω) \ {0} |A is compact , A symmetric , γ(A) ≥ k}

and

λ̂k(p; Ω) := inf
A∈bΓk

max
u∈A

∫
Ω
|∇u|p∫

Ω
|u|p

.

Proposition D.2. For every k ∈ N,

λk(p; Ω) = λ̃k(p; Ω) = λ̂k(p; Ω).

Proof. The claim follows from the Proposition D.1 and from the fact that

Γ̃k ⊂ Γ̂k ⊂ Γk which implies λk(p; Ω) ≤ λ̂k(p; Ω) ≤ λ̃k(p; Ω).

Now our aim will be to find critical points of the functional

F (u) :=

∫
Ω

|∇u|p

subject to the constraint G(u) = 1, where

G(u) :=

∫
Ω

|u|p.

By Lagrange’s multiplier rule it is clear that constrained critical points of F

are weak eigenfunctions of −∆p.

Definition D.3. Let X be a Banach space, M ⊂ X a C1 manifold, and let

c ∈ R. A functional F ∈ C1(M ; R) satisfies the Palais-Smale condition at level

c if every sequence {un} in M such that

• F (un) → c, and

• ‖dF (un)‖ → 0,

where dF is the differential of F , admits a converging subsequence (see [50]

for more details).

Remark D.4. The functional F defined above satisfies the Palais-Smale condi-

tion for every c ∈ R (see for instance [41]).
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The following proposition is a version of the deformation lemma useful in

the setting we are considering, and can be found in [11, Theorem 2.5].

Proposition D.5. Let X be a Banach space, G ∈ C1(X; R). Let M := G−1(1)

be a C1 manifold, F a C1 functional defined on a neighbourhood of M which

satisfies the Palais-Smale condition, and let c be a noncritical value of F . Then

there exists ε̂ > 0 such that for every ε < ε̂, there exists a homeomorphism

h : M →M such that:

• h(u) = u if F (u) 6∈ [c− ε̂, c+ ε̂];

• F (h(u)) ≤ F (u) for every u ∈M ;

• F (h(u)) ≤ c− ε if F (u) ≤ c+ ε;

• if M = −M and F (u) = F (−u) for every u ∈ M , then h(−u) = −h(u)
for every u ∈M .

Theorem D.6. For every k ∈ N, the numbers λk(p; Ω) are eigenvalues of the

p-Laplacian.

Proof. Fix ε > 0, and set

F (u) :=

∫
Ω

|∇u|p,

λk := λk(p; Ω), X := W 1,p
0 (Ω) \ {0} and

M :=

{
u ∈ X

∣∣∣∣ ∫
Ω

|u|p = 1

}
.

By definition, there exists a set Ck ∈ Γ̃k such that F (u) ≤ λk + ε for every

u ∈ Ck. Suppose that λk is not a critical value of F ; then by Proposition D.5

there exists a homeomorphism h : M →M such that

• h(−u) = −h(u) for every u ∈M ;

• F (h(u)) ≤ λk − ε if F (u) ≤ λk + ε.

In particular, the set C̃k := h(Ck) belongs to Γ̃k and is such that F (u) ≤ λk−ε
for every u ∈ C̃k, a contradiction. Hence λk is a critical point for F .
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quasilinear equations minimizing linear growth functionals. Birkhäuser,

2004.

[7] Marino Belloni, Vincenzo Ferone, and Bernd Kawohl. Isoperimetric in-

equalities, Wulff shape and related questions for strongly nonlinear elliptic

operators. Zeitschrift für Angewandte Mathematik und Physik, 54:771–

783, 2003.

[8] Marino Belloni and Bernd Kawohl. A direct uniqueness proof for equations

involving the p-Laplace operator. Manuscripta mathematica, 109:229–231,

2002.

[9] Paul A. Binding and Bryan P. Rynne. Variational and non-variational

eigenvalues of the p-Laplacian. Journal of Differential Equations, 244:24–

39, 2008.

79



80 BIBLIOGRAPHY

[10] Julian Fernandez Bonder and Juan Pablo Pinasco. Asymptotic behaviour

of the eigenvalues of the one-dimensional weighted p-Laplace operator.

Arkiv för Matematik, 41:267–280, 2003.

[11] Alexis Bonnet. A deformation lemma on a C1 manifold. Manuscripta

Mathematica, 81:339–359, 1993.

[12] Andrea Braides. Γ-convergence for beginners. Oxford University Press,

2002.
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