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Kurzfassung    

Kurzfassung 
 
Die vorliegende Dissertation befasst sich mit den Crinoiden des Mittel-Devons (U.-Eifelium 
bis U.-Givetium) der Eifeler Kalkmuldenzone (Linksrheinisches Schiefergebirge, 
Deutschland) sowie ergänzend mit mittel- und obergivetischen Crinoiden des 
Rechtsrheinischen Schiefergebirges. Untersucht wurden neu aufgesammelte Faunen und 
historische Kollektionen. Seit den klassischen Monographien des frühen 19. Jhdts. blieben die 
Eifelcrinoiden modern nahezu unbearbeitet. Sie werden in Standardwerken „Treatise on 
Invertebrate Paleontology” und „Fossil Crinoids” nur peripher berücksichtigt. Die Eifel ist 
ein globaler Paläodiversitäts-Hotspot mitteldevonischer Crinoiden. Aufgrund der hohen 
Diversität wird in dieser Arbeit von jeder der vier paläozoischen Unterklassen jeweils eine 
charakteristische „Mustergruppe” untersucht: 1. Die U.-Familie Cupressocrininae (U.-Klasse 
Cladida); 2. die Familie Hexacrinitidae (U.-Klasse Camerata); 3. die Gattung Stylocrinus (U.-
Klasse Disparida); 4. die Gattung Ammonicrinus (U.-Klasse Flexibilia). Insgesamt werden 
vier Familien, acht Gattungen und 66 Arten taxonomisch behandelt. 10 Arten werden neu 
beschrieben. Durch die exzellente körperliche Erhaltung teilweise autochthon überlieferter 
Skelette sowie ihres ökologisch-faziellen Rahmens, wurden wertvolle Erkenntnisse über die 
Paläodiversität, Paläobiologie und Paläoökologie der Eifelcrinoiden gewonnen: 
Regenerationsprozesse bei Cupressocrinitiden und Hexacrinitiden entsprechen dem im 
Rezenten beschriebenen Muster. Aufgrund ihrer wichtigeren Funktion wurde die 
Regeneration verletzter Armen im Gegensatz zu Kelchen morphologisch perfektioniert. Die 
generelle Kleinwüchsigkeit der Regenerativarme wurde bei Hexacrinites durch eine höhere 
Anzahl der Pinnulae in Hinblick auf den Nahrungserwerb ausgeglichen. Prä- und postmortale 
Skelettmodifikationen können durch das Vorhandensein oder Fehlen einer stereomalen 
Reaktion differenziert werden. Bei Cupressocrinitiden müssen genetisch angelegte Anomalien 
von extern bedingten Verletzungen und weiteren Wachstumsveränderungen unterschieden 
werden. Die Funktionsmorphologie von Ammonicrinus legt nahe, dass der Nahrungsstrom 
über einen Pumpmechanismus, nämlich dem aktiven Versteifen und Entspannen des 
Stielligaments, erzeugt wurde. Stylocrinus konnte seine Arme lateral verzahnen, um eine 
geschlossene Armkrone zu stabilisieren und hydrodynamisch turbulentere Habitate zu 
besiedeln. Hexacrinites bildete in hydrodynamisch turbulenten Environments schräge Kelche 
aus. Phylogenetische Trends bei Hexacrinites und Ammonicrinus deuten auf eine von 
räuberischen Organismen (platyceratide Gastropoden) gesteuerte Evolution hin. Biogen 
verursachte Skelettanomalien auf Hexacrinitiden-Kelchen können auf platyceratide 
Gastropoden zurückgeführt werden. Epizoen-Inkrustationen von Bryozoen, Microconchiden, 
Korallen und Poriferen erfolgten überwiegend postmortal. Im Gegensatz hierzu wuchs die 
Bryozoengattung Cyclopelta zu Lebzeiten um Cupressocrinitiden-Stiele. Kelchmorphotypen 
bei Stylocrinus wurden von ökologischen und faziellen Rahmenbedingungen gesteuert. Die 
stratigraphische Verbreitung mancher Taxa, z.B. bei Robustocrinites, ist Event-gesteuert. Dies 
hatte Auswirkungen auf die Fluktuation der Paläodiversität. Für den rheno-ardennischen 
Raum zeigt sich, dass die an karbonatische Flachwasserhabitate adaptierten, 
mitteldevonischen Crinoiden der Eifelkalkmulden die morphologisch filigranen Crinoiden 
tieferer Meeresbereiche des O.-Pragiums bis U.-Eifeliums, z.B. des Hunsrückschiefers, 
ablösten. Mit der Etablierung biostromaler Bildungen in der Eifel dominierte diese 
Assoziation bei sukzessiver Zunahme der Diversität und Individuenanzahl. Noch im U.-
Givetium brach die Paläodiversität vermutlich aufgrund des kontinuierlichen 
Meeresspiegelanstiegs drastisch ein („Lower Givetian Crinoid Decline”), obwohl sie 
außerhalb der Eifeler Kalkmuldenzone (Bergisches Land und Lahn-Dill Gebiet) bis in das O.-
Givetium zu verfolgen ist. Im Frasnium setzte eine von der U.-Klasse Camerata dominierte 
Crinoiden-Vergesellschaftung ein. Diese Melocrinites-Megaradialocrinus-Assoziation kann 
im rheno-ardennischen Raum bis zur Grenze Frasnium/Famennium verfolgt werden und wird 
abrupt durch eine geringdiverse Amabilicrinitiden-Assoziation abgelöst. Diese zeichnet sich 
bereits durch einen karbonischen Faunencharakter aus und ist die Reaktion auf das Frasnium-
Famennium-Event („Frasnian-Famennian Crinoid Decline”). 
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Abstract    

Abstract 
 
This doctoral thesis deals with crinoids from the Middle Devonian (U. Eifelian to L. Givetian) 
of the Eifel Synclines (western Rhenish Massif, Germany) and secondary with U. Eifelian to 
U. Givetian crinoids of the eastern Rhenish Massif. The study focuses on new recovered 
material and on material deposit in historical collections. Since the classic monographs of the 
early 19th century, crinoids are nearly unstudied in modern view. They are only periphery 
mentioned within the standard works “Treatise on Invertebrate Paleontology” and “Fossil 
Crinoids”. The Eifel has to be characterised as the global hotspot of Middle Devonian 
crinoids. Because of the high diversity, selected groups of each of the four occurring 
Palaeozoic subclasses are studied in the course of this work: 1. The subfamily 
Cupressocrininae (subclass Cladida); 2. the family Hexacrinitidae (subclass Camerata); 3. the 
genus Stylocrinus (subclass Disparida); 4. the genus Ammonicrinus (subclass Flexibilia). 
Altogether, four families, eight genera and 66 species are described taxonomically. 10 new 
species are erected newly. Based on the excellent three-dimensional preservation of the partly 
autochthon conserved skeletons and their ecological-/facial response, the Eifel crinoids gave 
important information about the palaeodiversity, palaeobiology and palaeoecology: 
Regeneration processes in cupressocrinitids and hexacrinitids correspond with that features 
defined for recent echinoderms. Because of their important functions, the regeneration of 
injured arms is more perfect than those of affected cups. Hexacrinites contra balanced the 
general smallness of the regenerative arms by an increased pinnulated surface. Pre- and 
postmortem skeletal modifications are distinguishable based on the presence or absence of a 
stereomatic response. In cupressocrinitids, obviously genetically modified anomalies must be 
separated from external caused skeletal modifications. The function morphology of 
Ammonicrinus indicates that the nutriment flow of several species was obviously enabled by 
an active ligament pumping mechanism of the stem via slowly stiffening and relaxing of their 
mutable connective tissues under ionic balance. The arms of Stylocrinus shows internally 
inclined edges adjoining laterally with adjacent brachials in an interlocking network to 
stabilise the closed arm crown and may allow settling in hydrodynamic turbulent 
environments. The cups of Hexacrinites show sloping morphologies in turbulent 
environments. Hexacrinites and Ammonicrinus show phylogenetic trends that obviously 
evince a predator driven evolution (e.g. platyceratid gastropods). Biogenous caused skeletal 
modifications in hexacrinitid-cups can be attributed to platyceratid gastropods. Epizoan 
encrusting of bryozoans, microconchids, corals and poriferas mostly occurred postmortem, 
while the bryozoan genus Cyclopelta premortem encrusted the stems of cupressocrinitids. 
Stylocrinus-morphotypes are controlled by the ecological and facial framework. The 
stratigraphic distribution of several taxa, e.g. of Robustocrinites, was controlled by regional-
geological events. This have bearing on the fluctuation of the palaeodiversity: Within the 
Rheno-Ardennic Massif it can be shown that the Middle Devonian crinoids of the Eifel 
Synclines are linked to carbonatic shelf environments and displaced the crinoid associations 
of the U. Pragian to L. Eifelian, e.g. of the Hünsrückschiefer, which are adapted to deeper 
water habitats and show more filigree skeletal morphologies. With the establishment of 
biostromal developments, this association dominates up to the L. Givetian with successive 
increasing of the diversity and individual numbers. Within the L. Givetian, this 
palaeodiversity collapse presumably because of successive increasing of the sea level (“Lower 
Givetian Crinoid Decline”), although, outside the Eifel, this association can be traced up to 
the U. Givetian of the Bergisches Land and the Lahn-Dill region. With beginning of the 
Frasnian, a crinoid association, which is dominated by camerates, sets in and can be 
recognised within the Rheno-Ardennic Massif up to the Frasnian/Famennian boundary. This 
Melocrinites-Megaradialocrinus association was abruptly replaced by an extremely low 
diverse amabilicrinitid-dominated fauna, which already has a “Carboniferous character”, and 
is the response of the Frasnian-Famennian Event (“Frasnian-Famennian Crinoid Decline”).
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1—Introduction    

 

1.  INTRODUCTION 

 

Crinoids (phylum Echinodermata) from the Middle Devonian of the western 

Rhenish Massif, in particular of the Eifel Synclines (North Rhine-Westphalia and Rhineland-

Palatinate, western Germany), are studied. The crinoids were found in limy and marly 

sediments, including some clastic components that were deposited on the south-eastern shelf 

of the Old Red Continent (Fig. 1.1). The bulk of these crinoids came from the time slice 

between the base of the Eifelian (391.9 ± 3.4 Ma BP; KAUFMANN 2006) and the lowermost 

Lower Givetian (~ 388 Ma BP; adapted to KAUFMANN). For the purpose of faunal 

comparison, the taxa are compared to crinoid genera form the Eifelian to Upper Givetian 

(391.9 ± 3.4 to 383.7 ± 3.1 Ma BP; after KAUFMANN) of the eastern Rhenish Massif 

(Sauerland and Bergisches Land within North Rhine-Westphalia; Lahn-Dill Vicinity within 

Hesse, Germany). Selected taxa are discussed in their supraregional framework (Europe, N-

Africa, Asia and Australia). 

 

 

 

FIGURE 1.1—Palaeomap, showing likely continent and ocean location during the Middle Devonian (391.9 

± 3.4 to 383.7 ± 3.1 Ma BP; after KAUFMANN 2006), with Siberia, the Old Red Continent, Gondwana, the 

Panthalassa Ocean, the Rheic Ocean and the Proto- and Palaeotethys oceans. The approximate position of 

the Rheno-Ardennic Massif is marked by the red dot. Copyright by PROF. DR. RON BLAKEY, Northern 

Arizona University (permission granted to use in this study). 
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FUGURE 1.2—Geological overview of the Rhenish Massif (above), showing the studied areas (modified 

from KORN 2008, after WALTER 1995) and detailed view (below) of the Eifel Synclines (focus of study) 

[modified after STRUVE 1996a]. 
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1—Introduction    

 

This study focuses on skeletal features, mainly observed in recently discovered 

crinoids from field campaigns within the Eifel Synclines between April 2007 and April 2009, 

and on specimens deposited in historical collections. These are: The Forschungsinstitut und 

Naturmuseum Senckenberg (Frankfurt on the Main), the Naturhistorische Landessammlung, 

Museum Wiesbaden (both Hesse, Germany), the Institut für Geologie und Mineralogie der 

Universität zu Köln (Cologne), the Steinmann-Institut für Geologie, Mineralogie und 

Paläontologie der Rheinischen Friedrich-Wilhelms-Universität Bonn (both North Rhine-

Westphalia, Germany, the Museum für Naturkunde der Humboldt-Universität zu Berlin (city 

state of Berlin, Germany), the Geowissenschaftliches Zentrum der Universität Göttingen 

(Lower Saxony, Germany), the Laboratoire de Paléontologie de Brest (Université de 

Bretagne Occidentale) [Brest, France), the Pracownia Palezoologiczna Muzeum Ziemi 

(Warsaw, Poland), the Museum of Comparative Zoology (Agassiz-Museum), Harvard 

University (Cambridge, Massachusetts), the National Museum of Natural History 

(Smithsonian Institution) [Washington D.C., both U.S.A.), the Nanjing Institute of Geology 

and Palaeontology, Academia Sinica (Nanjing, China) and the Queensland Museum 

(Queensland, Australia). Furthermore, valuable private collections, recovered between 1980-

2009, were intensively studied and designated type material was deposited in museum 

collections. 

The fossils embedded in lime rocks or marls were mechanically dissected 

using preparatory needles, micro sand-streaming methods, as well as fine pneumatic probes. 

Anionic detergents (e.g. “Rewoquad”), caustic soda (NaOH) and acids (e.g. hydrochloric acid, 

HCL) were used for chemical preparation. Samples from weathered layers were washed over 

a 63-μm net. The residue >63 μm was analysed. Cleaned samples were studied via binocular- 

and scanning electron microscope analyses (SEM). Photographs of NH4Cl-whitened crinoids 

were arranged using digital image editing software. 

The Middle Devonian crinoids of the Eifel Synclines constitute one of the most 

classic Devonian faunas. By erecting numerous species, they were described in the famous 

monographs of the early-late 19th century (GOLDFUSS 1826-44; 1839; JAEKEL 1895; MÜLLER 

1855; RÖMER 1844; SCHULTZE 1866 and STEININGER 1848). A modern scientific revision 

utilising advanced taxonomic and stratigraphic concepts was lacking. In addition, the 

description of taxa characterised as identical is under compulsive regress of the International 

Code of Zoological Nomenclature (ICZN) and afflicted with increasing uncertainties. 

Therefore, historical collections are revised based on investigation and comprehension of 

unpublished new faunas and new fossil excavation campaigns. Spectacularly preserved 
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individuals are recognised within these new collections, which underlines the important 

position of the Eifel as one of the world’s most famous localities for Middle Devonian 

crinoids. Following a taxonomical revision, modern geobiological and palaeobiological 

studies are possible. They focus on diversity- and faunal-changes (“local extinctions”) within 

sedimentological sequences, related to lateral and vertical facies-changes, as well as events. In 

combination with facies-analyses, functionmorphological analyses of the highly specialised 

echinoderm skeletons allow aut- and synecological interpretations (e.g. substrate- and 

hydrodynamic dependency, sedimentological rate and trophic level). In contrast to the 

crinoids of the Ordovician-Silurian and of the Carboniferous, these analyses were lacking for 

the Middle Devonian crinoids of the Eifel. 

 

Within the Middle Devonian carbonate shallow shelf-environments were the 

habitats of a highly diverse echinoderm association. Amongst these, crinoids are of special 

interest, because in the Palaeozoic their skeletons were variously adapted to the hydrodynamic 

conditions (MEYER et al. 2002; BOHATÝ 2005a; 2006a), to the substrate (e.g. SEILACHER & 

MACCLINTOCK 2005) and to the trophic level (e.g. AUSICH 1980; MANNIFIELD & 

SEVASTOPULO 1998). Numerous groups of the sessile and vagile benthos, especially 

stromatoporoids, rugose and tabulate corals, brachiopods, bryozoans and trilobites are 

associated with the crinoids. 

The composition of the mesodermal echinoderm-skeleton is characterised by 

isolated ossicles, which are united by organic material. Postmorten disarticulation resulted in 

a poor preservation record and, accordingly, in a poor status of documentation compared to 

some other invertebrate-groups. In many cases, rich crinoid associations are only known from 

“fossil-Lagerstätten regions”. Focussing on crinoids, beyond or outside the Eifel the following 

regions have to be stressed in the Middle Devonian (Eifelian-Givetian): Bohemia (PROKOP 

1987), the Polish Holy Cross Mountains (GŁUCHOWSKI 1993), the Kuznez Basin 

(DUBATOLOVA 1964), Sibiria (DUBATOLOVA & YELTYSHEVA 1967), the western Yunnan 

Province of China (CHEN & YAO 1993; also see WEBSTER et al. in press), the Nothern Shan 

States of Burma (REED 1908) as well as Queensland (E-Australia) [JELL et al. 1988] and the 

State of New York (U.S.A.) [GOLDRING 1923]. Slightly older is the rich- but particularly 

endemic crinoid-fauna of the Upper Emsian La Vid Formation of the Kantabrian Mountains 

of N-Spain (BREIMER 1962). 
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Based on the famous monographs of the 19th century (see above), the Eifel was 

one of the world’s most classical regions where the research of fossil crinoids began. 

SCHULTZE (1866) first summarised the state of knowledge of these isolated earlier works. The 

taxa were systematised according to the former knowledge, without integrating them into the 

stratigraphic or facial framework. Shorter publications of KRAUSE (1927), WANNER (1942), 

SIEVERTS (1934), SIEVERTS-DORECK (1950; 1953; 1957; 1963), PRICK (1983) and HAUDE 

(2007) expanded that knowledge only slightly. The necessity of the herein presented study 

can furthermore be explained because the discovery of Middle Devonian crinoids focused on 

other parts of the world after publication of the classic monographs. Therefore, from a modern 

viewpoint, the crinoids from the Eifel have to be revised incorporating the views of modern 

palaeontology. This is particularly emphasised by the periphery mentions of the crinoids from 

the Eifel within the standard works Treatise on Invertebrate Paleontology (MOORE & 

TEICHERT 1978) and Fossil Crinoids (HESS et al. 1999). The herein presented work should 

contribute to this by interpreting and revising these marine invertebrates. 

Devonian taxa described in the 19th century constitute the foundation of all 

later studies, however, later taxonomic revisions, integration of taxa within the modern 

staratigraphic and facial framework of the Eifel Middle Devonian, and phylogenetic analyses 

are missing. 

More recently, privately published monographs of HAUSER (e.g. 1997; 2001) 

as well as single works of the author (see ‹http://www.devon-crinoiden.de›) are not 

comprehensive in scientific content, as exemplified by BOHATÝ (2005a-b; 2006a-c) and 

BOHATÝ & HERBIG (2007). Unfortunately, this also includes the voluminous plates in which 

numerous previously only lithographed taxa were photographed for the first time. 

Because of the deficient knowledge of the Middle Devonian crinoids from the 

Eifel, the region is, therefore, out of the focus of modern crinoid studies. Because of the 

binding concepts of priority and types (ICZN), this has consequences of passing down 

taxonomic errors of recognised or unrecognised Eifel-taxa into other regions which may be of 

significance for recognition of new taxa. As a consequence, e.g. the stratigraphic distributions 

and biostratigraphic applications of the taxa, gradients of the palaeodiversity in time and 

space as well as palaeogeographical relations and further derivative conclusions, such as sea 

level- and climate-changes, are still blurred. At this point, SCHRÖDER (e.g. 1995; 1997; 2001) 

has to be mentioned, exemplifying the taxonomic usefulness of taxonomic reappraisals. Based 

on the former “well known” described rugose corals, he pointed out several previously 

unidentified palaeogeographical relations to Morocco and N-America, expressed in faunal-

migrations during high sea-levels. 

 5



1—Introduction    

 

The state of the art of the knowledge about the invertebrates of the Middle 

Devonian Eifel Synclines is extremely heterogeneous. Only several key works that contribute 

to the Eifel palaeontological data base can be mentioned within the frame of this introduction. 

The brachiopods were intensively studied by STRUVE; a bibliography of the numerous 

publications is given in WEDDIGE & ZIEGLER (2000), and a compilation of the stratigraphic 

results in STRUVE (1996b). The rugose corals were revised by LÜTTE (e.g. 1984; 1987; 1990), 

COEN-AUBERT & LÜTTE (1990), SCHRÖDER (e.g. 1995; 1997; 2001) as well as SCHRÖDER & 

SALERNO (2001). Concerning tabulate corals, especially BYRA (1983) and BRÜHL (1999) have 

to be mentioned. The stratigraphic distribution of trilobites is based on several preliminary 

works of RICHTER & RICHTER and STRUVE, summarised in STRUVE (1996c). Recently, BASSE 

(2002; 2003; 2006) and BASSE & MÜLLER (2004) restudied the trilobites from the Eifel 

monographically. The bryozoans, also nearly undescribed until recently, are now in the focus 

of modern science (ERNST 2008; ERNST & SCHRÖDER 2007; ERNST & BOHATÝ, in press). 

The knowledge about the Devonian of the Eifel is recorded in an 

unmanageable number of palaeontological, stratigraphical and regional geological 

publications. Regarding stratigraphy and regional geology, the monograph of MEYER (1986) 

is the indispensable standard work; several important regional studies are also given in 

HEESEMANN & DAHM (1965). In the following, only a short summary of the most background 

important of the facies and lithostratigraphy is given. 

The carbonate Middle Devonian of the Eifel is only preserved within the “Eifel 

Limestone Synclinorium” (Fig. 1.3) because it can be interpret as N-S trending axial 

depression of the Rheno-Ardennic Massif. A palaeogeographic-facial interpretation is 

difficult to make based on the relic preservation. In general, the sedimentary input occurred 

from northern directions, respectively from the Old Red Continent (Fig. 1.1). The input 

accumulated from the Lower to the Upper Devonian with a retreating coastline toward the 

north. STRUVE (1961; 1963) proposed the first palaeogeographic reconstruction of the Eifel 

Middle Devonian and considered the depositional region as an isolated N-S trending basin 

surrounded by landmasses, which he denoted as “Eifel Sea Street”. WINTER (in MEYER et al. 

1977, p. 327; also see MEYER 1986, fig. 37) and FABER (1980) modified the actual 

palaeogeographic view (compare to MEYER 1986); in particular, the isolated 

palaeogeographic position of the depositional basin as well as the accentuation of distinctively 

developed boundaries in the form of barriers and islands is reinterpreted differently. 
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WINTER (in MEYER et al. 1977) defined three characteristic facies realms 

(facies types A-C; compare to Fig. 1.3 of this work), which are of considerable importance for 

the faunal-distribution and -associations. 

Facies type A, distinguished by clastic sediments, is developed within the 

northern Eifel Limestone Synclinorium. Carbonates are proportionally rare. In the northern 

part of the synclinorium, the sediments were not deposited under normal marine conditions. 

Normal marine conditions occurred toward the south. Southwards, the changeover to facies 

type C occurred. Type C is characterised by limestones and marls. Clastic components are 

sparse. Toward the south, the clay content increases, and type C facies passes into the clay-

rich facies of the Moselle Trough (= “Wissenbach Slate”). The third facies type (type B) is 

developed within the eastern part of the Eifel Limestone Synclinorium. It is characterised by 

pure, commonly biostromal limestones; marly as well as silty sediments are secondary. This 

facies characterise a shallow water realm and was positioned close to a shallow-marine barrier 

at the NE-Eifel (“Mid-Eifelian High” sensu WINTER in MEYER et al. 1977). For the Lower 

Eifelian, FABER (1980, p. 1122) characterised this shallow-marine realm as a two-phase 

carbonate platform, which was temporarily interrupted during regressive conditions. Toward 

the west, he interpreted a relatively undifferentiated open shelf, which is characterised by SW-

NE trending facies belts. 

This basic division of the facies types A-C applies at least to the Upper 

Eifelian (Junkerberg Formation; see Tab. 1.1), but because of transgressive or regressive 

phases within some time slices, it was modified by a lateral facies displacement or even 

termination of the facies boundaries. In the Upper Eifelian, with the beginning of the 

Freilingen Formation (Tab. 1.1), the facies differences become indistinct; facies type C was 

established all over the depositional area. In the Givetian, stromatoporoid coral biostromes 

extended all over the Eifel Sea. Accordingly, KREBS (1974) characterised the whole Eifel as a 

shelf lagoon, harboured by a southern barrier. 

PAPROTH & STRUVE (1982, fig. 4) distinguished between N-, W- and S-Eifel 

faunas based on faunal criteria; the ostiolata-Facies includes the W-Eifel and part of the S-

Eifel fauna. The justifications of these faunal regions were based on a long ranging thrust 

fault. The fauna of the N-Eifel correlates with facies Type A; the collectivity of the W- and S-

Eifel faunas is coeval with Facies types B-C, which is best approximated with the boundary of 

the ostiolata-Facies. 
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FIGURE 1.3—Idealised facies model of the Middle Devonian of the Eifel (modified from WINTER in 

MEYER et al. 1977). Facies type A, facies dominated by clastic input; Facies type B, facies characterised by 

carbonate platforms and biostromal reefs (including the Mid-Eifelian High); Facies type C, reduced clastic 

input and increasing limy facies. 

 

 

The most classic fossil localities of Gerolstein, Gees, Niederehe or Büdesheim 

are situated within the fossil-rich deposits of the Middle Devonian facies Type C of the 

middle and southern part of the Eifel. Consequently, the deposits within the Hillesheim 

Syncline were chosen as “Type Eifelian”, a reference-profile for all synclines, by STRUVE 
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(1982a). Then this lithostratigraphic standard division (HOTZ et al. 1955) had to be correlated 

with the other synclines – but in the face of numerous bio- and litho-facial differences, this is 

nearly an unsolvable challenge that blocks further studies concerning this matter, especially 

within the northern and southernmost Eifel. The erection of regional valid members reflects 

the complexity of the depositional realm, but leads to a bemusing number of in part 

uncorrelated formations, subformations and members sensu STRUVE (1961; 1992) not sensu 

STEININGER & PILLER (1999) [sic!; compare to BOHATÝ 2005b, p. 388]. Therefore, e.g. 

STRUVE tried to correlate the Middle Devonian sequences by using the biostratigraphical 

value of brachiopods (see compendium in STRUVE 1996d). A summary of the valid 

lithostratigraphic units is given in STRUVE (1996b). 

 

 

U. Devonian Frasneian
383.7 ± 3.1 Ma BP

Roßberg Mb.
Bellerophon-Kalk Mb.
Korallen-Brachiopoden-Kalk Mb.
Stringoc.-Korallen-Kalk Mb.
quadr.-ramosa-Kalk Mb.
caiqua-Kalk Mb.
Galgenberg Mb.
Ley Mb.
Binz Mb.
Meerbüsch Mb.
Forstberg Mb.
Marmorwand Mb.
Felschbach Mb.
Rech Mb.
Wotan Mb.
Zerberus Mb.
Olifant Mb.

388.1 ± 2.6 Ma BP Lahr Mb.
Hallert Mb.
Bohnert Mb.
Eilenberg Mb.
Giesdorf Mb.
Nims Mb.
Rechert Mb.
Hönselberg Mb.
Mussel Mb.
Klausbach Mb.

Niederehe Sub. Fm.
Wasen Mb.
Flesten Mb.
Köll Mb.
Bildstock Mb.
Hundsdell Mb.
Dankerath Mb.
Ahütte Mb.
Kirberg Mb.
Dorsel Mb.
Wolfenbach Mb.

391.9 ± 3.4 Ma BP

varcus

Conodont Zones

australis

kockelianus

kockelianus          
and ensensis

hemiansatus

U-Pb ID-TIMS ages

Stroheich Sub. Fm.

Zilsdorf Sub. Fm.

Grauberg Sub. Fm.

Heinzelt Sub. Fm.

Betterberg Sub. Fm.

patulus

paritus

costatus

Müllert Sub. Fm.

Loogh-Fm.

Ahbach Fm.
Maiweiler Sub. Fm.

Member

Cürten Fm.

Formation Subformation

Bolsdorf Fm.

Wallersheim Fm.

Dreimühlen Fm.

Rodert Fm.

Kerpen Fm.

Heisdorf Fm.

Freilingen Fm.

Junkerberg Fm.

Nohn Fm.

Lauch Fm.

Ahrdorf Fm.

Series Stage

E
ife

lia
n

G
iv

et
ia

n

M
id

dl
e 

D
ev

on
ia

n

L. Devonian Emsian

 

TABLE 1.1—Biostratigraphy of the Eifel (after STRUVE 1996b); U-Pb ID-TIMS ages after KAUFMANN (2006). 
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2  DETAILED OBJECTIVES 

 

Because of the high diversity of the Middle Devonian crinoids from the Eifel, 

only a selected family, subfamily or genus of each of the four occurring Palaeozoic subclasses 

are studied in the course of this work. Focussing on the palaeodiversity, palaeobiology and 

palaeoecology, these taxonomic units must exhibit particular potential for comprehensive 

palaeontological conclusions. Therefore, they must show a widespread stratigraphic and 

geographic distribution to reflect the ecological and facies context and to indicate 

morphologic respectively phylogenetic trends through the time. Alternatively, the taxa should 

show extraordinary skeletal features indicating palaeobiological adaptations respectively 

response to environmental constraints. The specific results obtained for each taxonomic unit 

have to be compared with published data to provide a modern view of the Middle Devonian 

crinoids from the Eifel and other regions of the Rheno-Ardennic Massif. 

 

The four selected groups are discussed in Chapter 1-4: 

 

 

Chapter 1 treats the subfamily Cupressocrininae (subclass Cladida) 

 

Cupressocrinitids are the most characteristic representatives of the Rhenish 

cladids. They were highly adapted to the biostrome-dominated facies realms of the Eifel and 

show a wide stratigraphic and geographic range. 

Based on the recognition of a new anatomical structure, the “exoplacoid layer” 

– a second endoskeleton layer, which is developed either mono- or multilamellar, 

cupressocrinitids were taxonomically revised by BOHATÝ (2005a). In this connection the 

family Cupressocrinitidae RÖMER, 1854 was subdivided into three genera – Cupressocrinites 

[with type species C. crassus GOLDFUSS (1831, p. 212)] – Abbreviatocrinites [with type 

species C. abbreviatus GOLDFUSS (1839, p. 333)] – and Robustocrinites [with type species C. 

scaber SCHULTZE (1866, pp. 25-26)]. These three genera were assigned to the subfamily 

Cupressocrininae BOHATÝ, 2006b, who recognised two subfamilies within the 

Cupressocrinitidae. Because Rhopalocrinus WACHSMUTH & SPRINGER, 1880 (previously 

included in the Cupressocrinitidae) clearly differs from the Cupressocrininae, the genus was 

 10



2—Detailed objectives    

 

designated the type of the subfamily Rhopalocrininae BOHATÝ, 2006b. But the taxonomical 

status of several genera and species are still afflicted with uncertainty. Furthermore, less is 

known about the palaeobiology and the palaeoecology of this group. 

Continuing studies herein deal with an extended taxonomy, skeletal 

regeneration patterns as well as pre- and postmortem ossicular modifications and epizoan 

encrustings. Furthermore, it should be elucidated, if varying palaeodiversity and stratigraphic 

distribution of the cupressocrinitids provide any response to regional geological events within 

the Eifel. 

 

 

Chapter 2 treats the family Hexacrinitidae (subclass Camerata) 

 

Hexacrinitids are cosmopolitan camerate crinoids (WEBSTER 2003). They are 

among the most characteristic representatives of the Rhenish camerates. The genus 

“Hexacrinites” AUSTIN & AUSTIN, 1843 exhibits highest abundance and diversity within the 

Eifel Synclines. Therefore, hexacrinitids are of particular interest for this study. 

The hitherto discussed species of “Hexacrinites” are in urgent need of a 

comprehensive taxonomical revision, because most obviously differ from the type species by 

previously unrecognised morphological features of the crown, which are described herein. In 

consequence, skeletal features will provide information on phylogenetic lineages and 

morphological changes, such as the development of spines, obviously as defence mechanism 

against predatory organisms. 

 

 

Chapter 3 treats the genus Stylocrinus (subclass Disparida) 

 

Isolated aboral cups of the genus Stylocrinus SANDBERGER & SANDBERGER, 

1856 are among the most frequent recoveries of disparids within the Lower Eifelian to Lower 

Givetian of the Eifel Synclines. The genus is also recovered from the Middle to Upper 

Devonian of Asia and Australia. But almost nothing is known about the crown-morphology 

and former taxonomic descriptions dealt with subspecific differentiation of this low diverse 

genus. Therefore, the taxonomical status of the species and subspecies has to be clarified 
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based on new fossil discoveries and study of specimens in historical collections. The analyses 

of new recovered material focus on unknown morphological features. Due to the abundance 

of specimens from the Eifel, this analysis also should propose information of pre- and 

postmortem ossicular modifications or encrustation by epizoans. 

 

 

Chapter 4 treats the genus Ammonicrinus (subclass Flexibilia) 

 

The genus Ammonicrinus SPRINGER, 1926b shows extraordinary skeletal 

features indicating palaeobiological adaptation as responses to environmental constraints. It is 

one of the most atypical Palaeozoic crinoids and distinguished by the synarthrial articulation 

of columnals with fulcra aligned and unequal ligamentary areas on either side of the fulcrum, 

which produced a planispirally coiled proximal column. Therefore, the enrolled 

Ammonicrinus does not correspond to the erect model of most stalked fossil crinoids, which 

were attached to the substrate by a diversely designed holdfast followed by an upright stem to 

elevate the food-gathering system, represented by the arms, above the sea floor (e.g. HESS et 

al. 1999). The genus is almost entirely known based on columnal descriptions. 

This study focuses on the mode of life of this atypical crinoid. It tries to clarify 

how ammonicrinids provided nutrient filtering without clogging the crown, while laying on 

soft-bottoms in still-water habitats. The reclined posture also bears the risk of direct contact 

with predatory benthic organisms that ammonicrinids obviously had to antagonise. 

 

 

Discussion and conclusion 

 

Within the last chapter of this study, the results of the previous chapters are 

combined and discussed in their greater context. For that reason they are compared with 

published data and complemented by own observations on other taxa of the four treated 

crinoid subclasses. This provides a comprehensive understanding within the Middle Devonian 

crinoids from the Eifel. It contributes to the general knowledge of Palaeozoic crinoids and 

their importance as indicators of palaeoecology and facies. 
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3. GENERAL PART 
 
3.1  CHAPTER I. CRINOIDEA, CLADIDA 
 

PRE- AND POSTMORTEM SKELETAL MODIFICATIONS OF THE 
CUPRESSOCRINITIDAE 

 
 
ABSTRACT—The discovery of new specimens and restudy of known collections resulted in 
revision of some members of the cladid crinoid family Cupressocrinidae. “Cupressocrinites 
gracilis” is generically separated from Cupressocrinites whereby “Procupressocrinus” is 
resurrected from synonomy and assigned to the Cupressocrinidae with C. gracilis GOLDFUSS, 
1831 as the type species. Studies of the SANDBERGER collection presuppose the revision of 
“Abbreviatocrinites abbreviatus altus” (= A. altus n. comb.1) and A. nodosus. Furthermore, 
the hitherto undetermined cupressocrinitids are described as Cupressocrinites ahuettensis n. 
sp.2 and Robustocrinites cataphractus n. sp.3 The event-controlled distribution of 
Robustocrinites is discussed and shows similarities to other crinoid genera within the Eifel 
region. Observed arm-regeneration in Robustocrinites, as well as the postmortem incurred 
ossicular-boring of an indeterminable organism and the skeletal-colonization by a trepostome 
bryozoan, are further observations of other pre- and postmortem ossicular modifications in 
cupressocrinitid skeletons. 
 
 
3.1.1  INTRODUCTION 
 

The famous Devonian crinoid genus Cupressocrinites GOLDFUSS, 1831 was 

revised based on the identification of a new anatomical structure, the mono or multilamellar 

exoplacoid layer sensu BOHATÝ (2005a). Further distinguishing features between the different 

morphologies of the cupressocrinitid crowns corroborates the generic differentiation of the 

Cupressocrinitidae RÖMER, 1854 by BOHATÝ (2005a, p. 212, tab. 1; 2006b, p. 153, tab. 1). 

Studies of the crowns of Rhopalocrinus gracilis (SCHULTZE, 1866) required a further 

differentiation of the family Cupressocrinitidae (see BOHATÝ 2006b). In contrast to other 

genera of the family, Rhopalocrinus WACHSMUTH & SPRINGER, 1880 is distinguished both by 

possession of an anal plate and a longer anal tube. Therefore, BOHATÝ (2006b) separated the 
                                                 
  1  = A. altus (SCHULTZE, 1866) sensu ICZN 
  2  = Cupressocrinites ahuettensis BOHATÝ, 2009 sensu ICZN 
  3  = Robustocrinites cataphractus BOHATÝ, 2009 sensu ICZN 
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genera Cupressocrinites, Abbreviatocrinites and Robustocrinites from Rhopalocrinus by 

erecting the subfamily Cupressocrininae BOHATÝ, 2006b, and Rhopalocrinus was assigned to 

the subfamily Rhopalocrininae BOHATÝ, 2006b. 

During this research the generic assignment of “Cupressocrinites gracilis” 

GOLDFUSS, 1831 (Fig. 3.1.1) agreed with that recognised by JAEKEL (1918, p. 82) when he 

designated “*C. gracilis” the type species of “Procupressocrinus” JAEKEL, 1918. 

Morphological differences (especially the long cup and the extremely long arms of P. gracilis 

contrasts with the flat cup, low brachials with w-shaped cross-section and the significant 

black-coloured skeleton of C. crassus) of the type species *C. crassus GOLDFUSS, 1831 (Fig. 

3.1.3) justified this separation. Furthermore, this is affirmed by the morphological comparison 

of Abbreviatocrinites and Robustocrinites. Both genera are distinguished from 

Procupressocrinus by characteristic crown morphology (compare BOHATÝ 2006b, pls. 1, 6-

7). Therefore, the genus name “Procupressocrinus”, previously specified as a junior synonym 

of Cupressocrinites (e.g. MOORE et al. 1978, pp. T657-T658) is resurrected as recognised by 

JAEKEL (1918). 

Studies of the crinoid-collection of the famous palaeontologists GUIDO & 

FRIDOLIN SANDBERGER, deposited at the Naturhistorische Landessammlung, Museum 

Wiesbaden, require the revision of “Abbreviatocrinites abbreviatus altus” and A. nodosus. 

“A. a. altus” was originally described as “Cupressocrinus abbreviatus var. 

alta” by SCHULTZE (1866, p. 21). The holotype (1866, pl. 2, fig. 2) [Fig. 3.1.2.9] of the 

subspecies is regarded here to define of the discrete species A. altus (SCHULTZE, 1866) n. 

comb.4 SCHULTZE assigned a second figured cupressocrinitid-crown (1866, pl. 2, fig. 2a) [Fig. 

3.1.2.5] to “C. a. var. alta” although the specimen clearly differs from the holotype by the 

development of a smaller crown with shorter arms composed of longer brachials. 

SCHULTZE’s fig. 2a is judged with the holotype of “Cupressocrinus nodosus” 

SANDBERGER & SANDBERGER, 1856 (Figs. 3.1.2.1-2), figured on their pl. 35, fig 5. 

SANDBERGER has priority. Herein, “C. nodosus” is revised as Abbreviatocrinites nodosus 

(SANDBERGER & SANDBERGER, 1856). 

Another specimen figured as “C. nodosus” (SANDBERGER & SANDBERGER, 

1856, pl. 35, fig. 5a) [Figs. 3.1.2.3-4] is distinguished from the holotype by the development 

of a wider and lower cup with a larger stem-insertion and is questionably assigned to A. 

geminatus BOHATÝ, 2005a. 

Isolated skeletal plates of two species discussed by BOHATÝ (2006b) were 

                                                 
  4  = A. altus (SCHULTZE, 1866) sensu ICZN 
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listed in open nomenclature. New specimens allow the naming of Cupressocrinites 

ahuettensis n. sp.5 and Robustocrinites cataphractus n. sp.6 

Stratigraphic and morphologic observations of Robustocrinites require further 

research. Thus, the stratigraphic distribution of the genus is limited by sedimentary events 

(Fig. 3.1.8). Fossil arms of the new species R. cataphractus represent pre- and postmortem 

ossicle modifications. The holotype exhibits one regenerated, smaller arm (Figs. 3.1.6.1, 

3.1.7.1). Another specimen is distinguished by a boring in the ossicle. Furthermore, this trace 

is encrusted by a trepostome bryozoan (Figs. 3.1.6.3, 3.1.7.2). Based on these cognitions, 

other skeletal anomalies on cupressocrinitids are classified as: 1, growth anomalies without 

external influences (Figs. 3.1.9.1-7); 2, growth anomalies without classifiable causes (Figs. 

3.1.9.8-15); 3, premortem ossicle anomalies as a reaction of external interferences (Figs. 

3.1.9.16-20); 4, pre- and postmortem borings and bite marks (Figs. 3.1.10.1-10); and 5, pre- 

and postmortem epizoan encrusting (Figs. 3.1.11.1-22). 

 

 

3.1.2  MATERIAL AND METHODS 

 

  Type specimens are deposited in the Forschungsinstitut und Naturmuseum 

Senckenberg, Frankfurt am Main, Germany (SMF) and the Naturhistorische 

Landessammlung, Museum Wiesbaden, Germany (NWNH). Additional original specimens are 

stored in the collections of the following institutions and museums: Institut für Geologie und 

Mineralogie der Universität zu Köln, Germany (GIK), Steinmann-Institut für Geologie, 

Mineralogie und Paläontologie der Rheinischen Friedrich-Wilhelms-Universität Bonn, 

Germany (IPB) and Museum of Comparative Zoology (Agassiz-Museum), Harvard 

University, Cambridge, Massachusetts, U.S.A. (MCZ). Other studied crinoids are deposited in 

private collections (abbreviations CREF, CRBG and R.L.) and are accessible through contact 

with the author. 

In addition to a detailed analysis of previously published data and original 

material, this study focuses on skeletal features, mainly observed in recently discovered 

crinoids. They were dissected using micro sand-streaming methods, as well as fine pneumatic 

probes and studied via binocular- and scanning electron microscope analyses (SEM). 

Photographs of NH4Cl-whitened crinoids were arranged using digital image editing software. 

                                                 
  5  = Cupressocrinites ahuettensis BOHATÝ, 2009 sensu ICZN 
 6  = Robustocrinites cataphractus BOHATÝ, 2009 sensu ICZN 
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Higher classification of crinoids followed is that of SIMMS & SEVASTOPULO 

(1993) as modified by MCINTOSH (2001) and WEBSTER et al. (2003). Morphologic 

dimensions are given in length and width as defined by WEBSTER & JELL (1999). 

The capitalization of the Givetian subdivisions follows BECKER (2005; 2007). 

 

 

3.1.3  SYSTEMATIC PALAEONTOLOGY 

 

3.1.3.1  Introduction 

 

The order Cladida MOORE & LAUDON, 1943 was originally subordinated to the 

Inadunata WACHSMUTH & SPRINGER, 1885 (see MOORE et al. 1978). After SIMMS & 

SEVASTOPULO (1993) recognised the polyphyletical status of the Inadunata, the order was 

discarded as a subclass. Because MCINTOSH (2001) pointed out the polyphyletic nature of the 

suborder Poteriocrinina JAEKEL, 1918, several poteriocrinitid taxa were transferred to the 

Cyathocrinida BATHER, 1899 by WEBSTER et al. (2003). Furthermore, WEBSTER et al. (1999) 

included the superfamily Cupressocrinitoidea in the Gasterocomoidea, both RÖMER, 1854, for 

reasons of phylogenetic relations. BOHATÝ (2005a) subdivided the family Cupressocrinitidae 

RÖMER, 1854 into three genera – Cupressocrinites [with type species *C. crassus GOLDFUSS 

(1831, p. 212)] – Abbreviatocrinites [with type species *C. abbreviatus GOLDFUSS (1839, p. 

333)] – and Robustocrinites [with type species *C. scaber SCHULTZE (1866, pp. 25-26)]. 

These three genera were assigned to the subfamily Cupressocrininae BOHATÝ, 2006b, who 

recognised two subfamilies within the Cupressocrinitidae. Because Rhopalocrinus 

WACHSMUTH & SPRINGER, 1880 (previously included in the Cupressocrinitidae) clearly 

differs from the Cupressocrinitidae, the genus was designated the type of the subfamily 

Rhopalocrininae BOHATÝ, 2006b. Further study has indicated “Cupressocrinites gracilis 

GOLDFUSS, 1831” belongs to a separate genus (see BOHATÝ 2005a, p. 213; 2006b, p. 161), 

whereby Procupressocrinus JAEKEL, 1918 has priority. Procupressocrinus gracilis 

(GOLDFUSS, 1831) and possibly (?)P. magnus (MILICINA, 1977) are assigned to JAEKEL’s 

genus. 
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3.1.3.2  Crinoid systematic 

 

3.1.3.2.1 Family Cupressocrinitidae 

 

Subclass Cladida MOORE & LAUDON, 1943 

Order Cyathocrinida BATHER, 1899 

Superfamily Gasterocomoidea RÖMER, 1854 

Family Cupressocrinitidae RÖMER, 1854 

 

Included subfamilies.—Cupressocrininae and Rhopalocrininae, both BOHATÝ, 

2006b. 

 

Diagnosis.—Distinguished by the robust crown with five atomous arms; 

primibrachials (“clavicular plate”) low and wide, without pinnules, further brachials pinnule-

bearing, with u- (Rhopalocrininae, Procupressocrinus and Robustocrinites), v- 

(Abbreviatocrinites) or w-shaped (Cupressocrinites) cross sections; aboral cup with 

(Abbreviatocrinites, Cupressocrinites and Procupressocrinus) or without pentamerous basal 

plate (Rhopalocrininae, Robustocrinites) composed of coalesced infrabasals, five basals and 

radials and either with (Rhopalocrininae) or without a single anal plate (Cupressocrininae); 

oral view dominated by the “consolidating apparatus” with a rounded mouth opening in the 

centre and an oval, eccentrically arranged anal opening, with (Rhopalocrininae) or without 

anal tube (Cupressocrininae); three (Abbreviatocrinites inflatus, A. sampelayoi) to four axial 

canals (all the rest of the taxa) around the central canal of the column; endoskeleton either 

with (Cupressocrininae) or without a second skeletal layer (Rhopalocrininae) – the mono- 

(Procupressocrinus, Cupressocrinites and Robustocrinites) or multilamellar exoplacoid layer 

(Abbreviatocrinites); colour of fossilised ossicles black (Cupressocrinites) or brownish to 

grey (all the rest of the taxa); preservation of original colour pattern (radiating double-lines) 

detected in Procupressocrinus gracilis. 

 

Occurrence.—Upper Ludlowian (Upper Silurian): Estland; Pragian (Lower 

Devonian): Australia; Emsian (Lower Devonian), Eifelian and Givetian (Middle Devonian): 

Germany; Eifelian and Givetian: Great Britain, Russia, Poland, Czech Republic, Morocco, 

China, N-Burma, Belgium and Spain; Famennian (Upper Devonian): Belgium and United 

States (supplemented after WEBSTER 2003). 
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3.1.3.2.2 Subfamily Cupressocrininae 

 

Subfamily Cupressocrininae BOHATÝ, 2006b 

 

Included genera and type species.—Cupressocrinites (*C. crassus GOLDFUSS, 

1831); Abbreviatocrinites (*C. abbreviatus GOLDFUSS, 1839); Robustocrinites (*C. scaber 

SCHULTZE, 1866) and Procupressocrinus (*C. gracilis GOLDFUSS, 1831). 

 

Diagnosis.—Crown ovate and low, cylindrical or lanceolate and elongate with 

five atomous arms; primibrachials (“clavicular plate”) low and wide, without pinnules, further 

brachials pinnule-bearing, with u- (Procupressocrinus, Robustocrinites), v- 

(Abbreviatocrinites) or w-shaped (Cupressocrinites) cross sections; aboral cup with 

(Abbreviatocrinites, Cupressocrinites and Procupressocrinus) or without pentamerous basal 

plate (Robustocrinites) composed of coalesced infrabasals, five basals and radials; oral view 

dominated by the “consolidating apparatus” with a rounded mouth opening in the centre and 

an oval, eccentrically arranged anal opening, without anal tube; three (Abbreviatocrinites 

inflatus, A. sampelayoi) to four axial canals (all the rest of the taxa) around the central canal 

of the column; endoskeleton with covering mono- (Procupressocrinus, Cupressocrinites and 

Robustocrinites) or multilamellar exoplacoid layer (Abbreviatocrinites); surfaces of plates 

unornamented to variously ornamented; colour of fossilised ossicles black (Cupressocrinites) 

or brownish to grey (all the rest of the taxa); preservation of original colour pattern (radiating 

double-lines) detected in Procupressocrinus gracilis. 

 

 

3.1.3.2.3 Genus Procupressocrinus 

 

Genus Procupressocrinus JAEKEL, 1918 

 

• Procupressocrinus JAEKEL, 1918, p. 82. 

 

Type species.—*Cupressocrinites gracilis GOLDFUSS (1831, p. 213; pl. 64, fig. 

5); the holotype (Fig. 3.1.1) is IPB-435b. 

 

Included species.—P. gracilis (GOLDFUSS, 1831) and (?)P. magnus (MILICINA, 

1977). 
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Diagnosis.—Crown slender, very long, lanceolate; atomous, narrow arms, 

primibrachials (“clavicular plate”) low and wide, without pinnules, followed by up to 40 

pinnule-bearing, narrow brachials with u- to rarely slightly w-shaped cross sections; aboral 

cup long and cone-shaped to low and globular, with a pentamerous basal plate composed of 

coalesced infrabasals, forming a long, cone-shaped base, five long basals and radials; oral 

view dominated by the “consolidating apparatus” with a small, rounded mouth opening in the 

centre and an oval, eccentrically arranged anal opening, without anal tube; four axial canals 

around the central canal of the narrow column; endoskeleton with covering monolamellar 

exoplacoid layer; surfaces of plates unornamented or typically microgranulated; preservation 

of original colour pattern (radiating double-lines) detected. 

 

Discussion.—According to JAEKEL (1918, p. 82), Procupressocrinus 

developed up to 30 brachials per arm. However, it is now recognised that the number of arm 

plates reaches up to 40 ossicles (compare DOHM 1930, pl. 1, fig. 1). 

 

 

3.1.3.2.4  Species Procupressocrinus gracilis 

 

Procupressocrinus gracilis (GOLDFUSS, 1831) 

Figs. 3.1.1, 3.1.9.11, 3.1.11.(?)1, 3.1.11.(?)3, 3.1.11.6, 3.1.11.(?)13, 3.1.11.(?)19, 3.1.11.(?)22 

 

• Cupressocrinites gracilis GOLDFUSS, 1831, p. 213; pl. 64, fig. 5. BOHATÝ, 2006b, pp. 151-

153, 156, 160-163, 165; figs. 5.1-3; pl. 6, figs. 1a-c, 2a-b, 3-4, 5a-c, 6-8 (cum syn.). 

• Procupressocrinus gracilis JAEKEL, 1918, p. 82. 

• “Dachsbergcrinites rotundatus n. gen. n. sp.” HAUSER, 2006b, PDF-publication (genus and 

species decided nomen nudum). 

• “Dachsbergcrinites rotundatus n. gen. n. sp.” HAUSER, 2007a, pp. 62-67 (= anomal 

morphotype of P. gracilis). 

 

Diagnosis.—A Procupressocrinus with a slender, very long and lanceolated 

crown (see BOHATÝ 2006b, pl. 6, figs. 6-8), narrow arms composed of up to 40 brachials with 

u- to rarely slightly w-shaped cross sections; aboral cup long, cone-shaped to funnel-like or 

with long infrabasals and basals, less common with low and globular cup (BOHATÝ 2006b, pl. 

6, figs. 1-4) and inflated “consolidating apparatus”; column narrow, with quadrangular to 
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slightly rounded cross section; surface of the skeleton microgranulated; preservation of 

original colour pattern (radiating double-lines) detected. 

 

Discussion.—Procupressocrinus gracilis clearly differs from the hitherto 

assigned genus Cupressocrinites. Especially are the differences with the type species *C. 

crassus (Fig. 3.1.3) distinctive and led to a generic separation by JAEKEL (1918, p. 82). His 

genus Procupressocrinus was rejected by the majority of authors (e.g. BATHER 1926, p. 41; 

MOORE et al. 1978, p. T658). The splitting of the family into the genera Abbreviatocrinites, 

Cupressocrinites and Robustocrinites is based on skeletal features and the overall morphology 

of the crowns (BOHATÝ 2005a; 2006b). In contrast to the multilamellar exoplacoid layer of 

genus Abbreviatocrinites, Procupressocrinus developed a monolamellar layer. Unlike in 

Procupressocrinus, Cupressocrinites developed lower cups, lower and wider brachials and 

significant black-coloured skeletons. Robustocrinites developed lower and bowl-shaped cups 

without an infrabasal plate as well as wider brachials. Therefore, P. gracilis was previously 

assigned to Cupressocrinites by BOHATÝ (2005a, p. 213; 2006b, p. 161). 

The genus name Procupressocrinus JAEKEL, 1918 has priority over the junior 

synonym “Dachsbergcrinites” sensu HAUSER (2007a). The junior synonym “D. rotundatus” 

HAUSER, 2007a clearly is a typical morphotype of P. gracilis with anomalously three instead 

of four peripheral axial canals – the most common variation among cupressocrinitids. [Note: 

The same crinoid, with a holotype deposited in a private collection (sic!), was introduced on a 

private webpage (HAUSER 2006b), which does not meet ICZN regulations for acceptable 

taxonomic names, and, therefore, “D. rotundatus HAUSER, 2006b” is considered nomen 

nudum (pers. information, G. D. WEBSTER; also see critical comments in BOHATÝ & HERBIG 

(2007, pp. 732-735)]. The transitions between the different morphologies of the cup, as well 

as variations within cupressocrinitids, were discussed in detail by BOHATÝ (2006b, pp. 160-

161). 

 

 

 

 

 

 

 
FIGURE 3.1.1—Procupressocrinus gracilis (GOLDFUSS, 1831), holotype (IPB.-435b). Scan of the original 

lithography after GOLDFUSS (1831, pl. 64, fig. 5), ~ x 1.5. 
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3.1.3.2.5 Genus Abbreviatocrinites 

 

Genus Abbreviatocrinites BOHATÝ, 2005a 

 

• pars Cupressocrinites GOLDFUSS, 1839, pp. 330-335. 

• Abbreviatocrinites n. gen. BOHATÝ, 2005a, p. 217. 

 

Type species.—*Cupressocrinites abbreviatus GOLDFUSS (1839, p. 333; pl. 30, 

fig. 4). 

 

Included species.—A. abbreviatus abbreviatus (GOLDFUSS, 1839); A. 

abbreviatus granulosus (SCHULTZE, 1866); A. altus (SCHULTZE, 1866) n. comb.7; A. assimilis 

(DUBATOLOVA, 1964); A. geminatus BOHATÝ, 2005a; A. gibber (BATHER, 1919); A. inflatus 

inflatus (SCHULTZE, 1866); A. inflatus depressus (HAUSER, 2001); A. inflatus convexus 

(HAUSER, 2001); A. inflatus cuneatus BOHATÝ, 2006b; A. nodosus (SANDBERGER & 

SANDBERGER, 1856); A. rectangularis (SCHMIDT, 1941); A. sampelayoi (ALMELA & REVILLA, 

1950); A. schreueri BOHATÝ, 2006b; A. tesserula (HAUSER, 1997); (?)A. townsendi (KÖNIG, 

1825) and A. urogali (RÖMER, 1850). 

 

Diagnosis.—Crown short, ovate or barrel-like; atomous arms, primibrachials 

(“clavicular plate”) low and wide, without pinnules, further brachials pinnule-bearing, with v-

shaped cross sections, brachials with central nodes (e.g. in A. abbreviatus), spine-like 

elongated multilamellar exobrachial layer (e.g. in A. geminatus), or distal most exobrachial 

laminae with central spine (A. nodosus); aboral cup bowl-shaped, typically flat and wide (e.g. 

in A. abbreviatus) or slightly longer (e.g. in A. inflatus cuneatus), with a pentamerous basal 

plate composed of coalesced infrabasals (slightly reduced in A. geminatus and A. tesserula), 

five basals and radials; oral view dominated by the “consolidating apparatus” with a rounded 

mouth opening in the centre and an oval, eccentrically arranged anal opening, without anal 

tube; three (A. inflatus, A. sampelayoi) to typically four axial canals (all the rest of the taxa) 

around the central canal of the column; endoskeleton with covering multilamellar exoplacoid 

layer; surfaces of plates almost unornamented (A. tesserula, A. urogali) or typically faceted 

and/or granulated at the exoplacoid margins. 

                                                 
 7  = A. altus (SCHULTZE, 1866) sensu ICZN 
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3.1.3.2.6 Species Abbreviatocrinites nodosus 

 

Abbreviatocrinites nodosus (SANDBERGER & SANDBERGER, 1856) 

Figs. 3.1.2.1-2, 3.1.2.5-8, 3.1.11.7-8, 3.1.11.20 

 

• pars Cupressocrinus nodosus SANDBERGER & SANDBERGER, 1856, p. 401; pl. 35, fig. 5 only 

(= holotype), non fig. 5a (= Abbreviatocrinites cf. A. geminatus BOHATÝ, 2005a), non figs. 

5b-c (= undeterminable cupressocrinitid columnals). 

• pars Cupressocrinites nodosus WEBSTER, 2003, SANDBERGER & SANDBERGER, 1850-1856, 

p. 401 only, non pl. 35, figs. 5a-5c (fig. 5a = Abbreviatocrinites cf. A. geminatus BOHATÝ, 

2005a, figs. 5b-c = undeterminable cupressocrinitid columnals). MAURER, 1875, p. 609. 

BASSLER & MOODEY 1943, p. 385. 

• pars Cupressocrinus abbreviatus var. alta SCHULTZE, 1866, p. 21; pl. 2, fig. 2a only, non 

fig. 2 [= Abbreviatocrinites altus (SCHULTZE, 1866) n. comb.8]. 

• Cupressocrinites abbreviatus var. alta MIESEN, 1971, pp. 14-15; pl. 2, fig. 5d; p. 57 

unnumbered figure directly below (?). 

• Cupressocrinites abbreviatus alta HAUSER, 1997, p. 63; pl. 10, figs. 4-5. 

• Cupressocrinites abbreviatus altus BASSLER & MOODEY, 1943, p. 384. HAUSER, 2001, p. 

149. 

• Cupressocrinites schlotheimi alta WEBSTER, 1973, p. 91. 

• Abbreviatocrinites abbreviatus altus BOHATÝ, 2005a, pp. 203, 206, 208, 212, 217. BOHATÝ, 

2006b, pp. 153, 163, 165; pl. 3, figs. 1a-c, 2a-b, 3. 

 

Diagnosis.—An Abbreviatocrinites with elongated, ovate crown, long cone-

shaped cup (rarely long bowl-shaped) with small insertion for stem and slender arms 

composed of few, long brachials (Figs. 3.1.2.5-8, 3.1.11.7); with nodes on proximal and 

middle brachials which are restricted to the centres of the plates, distal most skeletal layer of 

the multilamellar exobrachial laminae with central spine (Figs. 3.1.2.7-8). 

 

Holotype.—Partly preserved crown; NWNH-297 (Figs. 3.1.2.1-2). Original of 

SANDBERGER & SANDBERGER (1856, p. 401; pl. 35, fig. 5 only). The holotype was discovered 

at the “Roteisenstein” (lower Upper Givetian, upper Middle Devonian) of the “Grube 

Lahnstein” near Weilburg-Odersbach, NE of Limburg an der Lahn (SE-Rhenish Massif, 

Lahn-Dill Syncline, Germany). 
                                                 
 8  = Abbreviatocrinites altus (SCHULTZE, 1866) sensu ICZN 
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Other material examined.—MCZ-102980 (vidi), original of SCHULTZE (1866, 

pl. 2, fig. 2a) [Fig. 3.1.2.5]; CREF84-2 (LEUNISSEN collection) [Fig. 3.1.2.6]; CREF180-1 

(HEIN collection) [Figs. 3.1.2.7-8]; GIK-1938 (Figs. 3.1.11.7-8); GIK-1947 (Fig. 3.1.11.20) 

and CRBG7-1 (HEIN collection; unfigured). 

 

Occurrence.—Middle Devonian, Germany. Upper Middle Eifelian: Eifel 

(Junkerberg Formation of the Hillesheim and Prüm synclines), lower Middle Givetian: 

Bergisches Land (Büchel Formation of the Bergisch Gladbach-Paffrath Syncline, Rhenish 

Massif), lower Upper Givetian: Weilburg-Odersbach (“Roteisenstein” of the Lahn-Dill 

Syncline, SE-Rhenish Massif). 

 

Discussion.—A. nodosus was described by SANDBERGER & SANDBERGER 

(1856) referring to the figured holotype (1856, pl. 35, fig. 5 only) [Figs. 3.1.2.1-2]. The 

authors assigned an additional cupressocrinitid-cup to the species (pl. 35, fig. 5a) [Figs. 

3.1.2.3-4] that differs from A. nodosus. This theca, identified in the unlabelled SANDBERGER 

material, is most likely attributed to A. geminatus BOHATÝ, 2005a. 

Also the multilamellar exoplacoid layer of the Lahn-Dill A. nodosus is 

exiguous coarser, its overall morphology, especially of the arms, clearly corresponds with the 

Eifel material. Hitherto, the Eifel nodosus material was ascertained to refer to SCHULTZE’s 

lithography of “Cupressocrinus abbreviatus var. alta” (= A. altus) [1866, pl. 2, fig. 2a; see 

Fig. 3.1.2.5], although this crown clearly differs from the holotype of A. altus, which is 

figured on SCHULTZE’s pl. 2, fig. 2 only (Fig. 3.1.2.9). 

The holotype of A. altus, as well as two additional studied crinoids (Figs. 

3.1.2.10-11), is clearly different from A. nodosus. A. altus developed a larger crown with 

longer arms, composed of numerous wide, lower brachials. In contrast, A. nodosus is 

distinguished by a smaller crown, with a longer cup and slender arms with fewer (4-6) higher 

brachials per arm. SANDBERGER’s lithography seems to have an aborted distal crown. 

However, from the present study, it is evident that the three preserved arms are complete and 

consist of primibrachials (“clavicular plate”) as well as four subsequent pinnule-bearing 

brachials. 

Also, SANDBERGER’s original represents the youngest A. nodosus specimen; it 

is not the only Givetian evidence of this abbreviatocrinid species. Besides numerous cups and 

crowns from the upper Middle Eifelian of the Eifel, another aboral cup demonstrates its 

occurrence in the Givetian. That cup CRBG7-1 (HEIN collection, unfigured) was recovered 
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from an abandoned quarry at the “Schlade Valley”, near Bergisch-Gladbach (Bergisch 

Gladbach-Paffrath Syncline, Bergisches Land, Rhenish Massif, Germany) within the deposits 

of the Büchel Formation (lower Middle Givetian) [BOHATÝ & HERBIG in review]. 

In addition to A. nodosus, A. abbreviatus abbreviatus, A. geminatus and A. 

sampelayoi were identified in the SANDBERGER collection. Together with typical Upper 

Eifelian and Lower Givetian sphaerocrinids, stylocrinids, gasterocomids and hexacrinids, the 

studied crinoids document the youngest known Middle Devonian occurrences of the 

mentioned species within the Rhenish Massif (Germany). That fact does not reflect the actual 

stratigraphical and/or geographical distribution of the crinoids but is a result of the lithologic 

framework. Equivalent deposits to the upper Middle to lower Upper Givetian Lahn-Dill-strata 

are typically dominated by dolomite or “Massenkalk” within the Eifel and the Bergisches 

Land and yield only infrequent well-preserved macrofossils. 

 

             

FIGURE 3.1.2 (see p. 25)—1, Abbreviatocrinites nodosus (SANDBERGER & SANDBERGER, 1856), holotype, 

NWNH-297 – lateral view of the partly preserved crown, lithographed by SANDBERGER & SANDBERGER 

(1856, pl. 35, fig. 5 only); 2, Same view as 1, photograph of the holotype, x 1.6; 3, Abbreviatocrinites cf. 

A. geminatus BOHATÝ, 2005a, aboral view of the cup NWNH-408 – original lithography of SANDBERGER 

& SANDBERGER (1856, pl. 35, fig. 5a); 4, Same view as 3, photograph of the poorly preserved specimen, x 

1.2; 5, Abbreviatocrinites nodosus (SANDBERGER & SANDBERGER, 1856), lateral view of the crown MCZ-

102980, lithographed by SCHULTZE (1866, pl. 2, fig. 2a). Locality: “Prüm” (W-Rhenish Massif, Eifel, Prüm 

Syncline, Germany), stratigraphy (supposed): Junkerberg Formation (upper Middle Eifelian); 6, 

Abbreviatocrinites nodosus (SANDBERGER & SANDBERGER, 1856), CREF84-2 (LEUNISSEN collection) – 

lateral view of a compressed crown, encrusted by Microconchus sp. (arrows), x 1.7; 7, Abbreviatocrinites 

nodosus (SANDBERGER & SANDBERGER, 1856), CREF180-1 (Hein collection) – lateral-oral view of a 

consummate three-dimensional preserved crown; distal brachials with exobrachial-spines; proximal and 

middle arm plates with central nodes, composed of nodular-shaped exoplacoid laminae which are restricted 

to the centres of the brachials, x 1.7; 8, Same as 7, lateral view; one brachial is encrusted by a trepostome 

bryozoan (Eostenopora sp.) [framed], x 1.7; 9, Abbreviatocrinites altus (SCHULTZE, 1866) n. comb., lateral 

view of the holotype (MCZ-102979), lithographed by SCHULTZE (1866, pl. 2, fig. 2). Locality: “Prüm” 

(W-Rhenish Massif, Eifel, Prüm Syncline, Germany), stratigraphy (supposed): Uppermost part of the 

Ahbach Formation (lowermost Lower Givetian); 10, Abbreviatocrinites altus (SCHULTZE, 1866) n. comb., 

CREF16c-1 (HEIN collection) – lateral view of a partly preserved crown with thin plates and exoplacoid 

layer, x 1.1; 11, Abbreviatocrinites altus (SCHULTZE, 1866) n. comb. (SMF-75461) – lateral view of a 

partly preserved crown, x 0.9. 
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3.1.3.2.7 Species Abbreviatocrinites altus 

 

Abbreviatocrinites altus (SCHULTZE, 1866) n. comb.9 

Figs. 3.1.2.9-11 

 

• pars Cupressocrinus abbreviatus var. alta SCHULTZE, 1866, p. 21; pl. 2, fig. 2 only (= 

holotype), non fig. 2a [= Abbreviatocrinites nodosus (SANDBERGER & SANDBERGER, 1856)]. 

• Cupressocrinites schlotheimi var. alta SCHMIDT, 1941, p. 104. 

• Abbreviatocrinites geminatus BOHATÝ, 2006b, p. 174; pl. 4, figs. 3, 12. 

 

Diagnosis.—An Abbreviatocrinites distinguished by an elongate, ovate crown 

with spearhead-like shape of closed distal arms (SCHULTZE 1866, pl. 2, fig. 2) [Figs. 3.1.2.9-

11]; the wide arms are composed of numerous (10-15) wide brachials, which are covered by a 

straticulate, multilamellar exobrachial layer, without central nodules or spines; cup bowl-

shaped to patelliform; insertion of stem wide. 

 

Holotype.—Adult crown no. MCZ-102979 (vidi), original lithography by 

SCHULTZE (1866, pl. 2, fig. 2 only) [Fig. 3.1.2.9]. According to the original designation, the 

holotype was discovered at “Prüm”. Most likely, the crown was found within the upper part of 

the Ahbach Formation (lowermost Lower Givetian, Middle Devonian) in the vicinity of 

Rommersheim and Brühlborn, to the east of Prüm (Prüm Syncline, Eifel, Rhenish Massif, 

Germany). 

 

Other material examined.—Nos. SMF-75461 (Fig. 3.1.2.11) and CREF16c-1 

(HEIN collection) [Fig. 3.1.2.10]. 

 

Occurrence.—Stratum typicum of the type region (Prüm Syncline) and of the 

abandoned “Müllertchen Quarry”, S of Ahütte (Hillesheim Syncline, Eifel, Rhenish Massif, 

Germany). 

 

Discussion.—In addition to the adult holotype of A. altus (SCHULTZE 1866, pl. 

2, fig. 2) [Fig. 3.1.2.9], SCHULTZE assigned a second specimen, a juvenile crown, to the 

species (1866, pl. 2, fig. 2a) [Fig. 3.1.2.5]. After restudy of the SANDBERGER collection, this 

                                                 
 9  = Abbreviatocrinites altus (SCHULTZE, 1866) sensu ICZN 
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cupressocrinitid is assigned to A. nodosus. The few newly-discovered crowns (Figs. 3.1.2.10-

11), which are clearly associated with A. altus, were spuriously regarded as morphotypes of A. 

geminatus (BOHATÝ 2006b, p. 164; pl. 4, figs. 3, 12). The distinction of A. geminatus, A. 

nodosus and A. altus is based on the morphologic differences of the crowns: A. nodosus 

developed an ovate crown with a long cup and slender arms, composed of few, long brachials 

bearing central exobrachial-nodules (Figs. 3.1.2.1-2, 3.1.2.5-8, 3.1.11.7); A. altus is 

distinguished by a long crown with spearhead-like shape of closed distal arms (Figs. 3.1.2.9-

11) composed of numerous wide brachials, which are covered by a straticulate, multilamellar 

exobrachial layer, without central nodules; the massive exoplacoid layer of A. geminatus, 

especially the characteristic spine-like exobrachial layers (BOHATÝ 2006b, pl. 4, fig. 10), is 

the most conspicuous feature distinguishing A. nodosus and A. altus. 

 

 

3.1.3.2.8 Genus Cupressocrinites 

 

Genus Cupressocrinites GOLDFUSS, 1831 

 

• Cupressocrinites GOLDFUSS, 1831, p. 212. 

 

Type species.—*Cupressocrinites crassus GOLDFUSS (1831, p. 212; pl. 64, 

figs. 4a-i, 4k-m); the holotype (Fig. 3.1.3) is IPB-434a. 

 

Included species.—C. ahuettensis n. sp.10; C. crassus GOLDFUSS, 1831; C. 

dohmi HAUSER, 1997; C. elongatus GOLDFUSS, 1839; C. hieroglyphicus (SCHULTZE, 1866); 

C. longibrachialis POLYARNAYA, 1973; C. ornamentus BOHATÝ, 2006b and C. steiningeri 

BOHATÝ, 2006b. 

 

Diagnosis.—Crown cylindrical (C. crassus, C. elongatus) or lanceolate and 

elongate (C. dohmi, C. hieroglyphicus and C. longibrachialis); atomous arms, primibrachials 

(“clavicular plate”) low and wide, without pinnules, further brachials pinnule-bearing, with w-

shaped cross sections; aboral cup bowl-shaped, slightly flattened (in C. crassus, C. 

ornamentus, C. elongatus, C. steiningeri and, especially, in C. ahuettensis) or cone-shaped (in 

C. dohmi and C. hieroglyphicus), with one pentamerous plate composed of coalesced 

                                                 
 10  = C. ahuettensis BOHATÝ, 2009 sensu ICZN 
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infrabasals and five basals and radials; oral view dominated by the “consolidating apparatus” 

with a rounded mouth opening in the centre and an oval, eccentrically arranged anal opening, 

without anal tube; three (C. dohmi and C. hieroglyphicus) to typically four axial canals (all the 

rest of the taxa) around the central canal of the column; the crown-ossicles are covered by a 

monolamellar exoplacoid layer; plate surfaces unornamented (e.g. in C. crassus, C. 

steiningeri and C. dohmi), or decorated by pustules, tubercles and/or coalesced tubercles (as 

in C. elongatus) or fine and meander adornments (e.g. in C. hieroglyphicus, C. ornamentus); 

colour of unweathered fossil skeletons black. 

 

Discussion.—The isolated cup with lost exoplacoid layer, described by 

HAUSER (2007a, pp. 61-62) as “C. goldfussi” is a junior synonym of C. ornamentus. 

Therefore, the species, with a holotype deposited in a private collection (sic!), is not listed 

within the included species of the genus. [Note: The same crinoid was introduced on a private 

web-page (HAUSER 2006a), which does not meet ICZN regulations for acceptable taxonomic 

names, and, therefore, considered nomen nudum (pers. information, G. D. WEBSTER; also see 

critical comments in BOHATÝ & HERBIG (2007, pp. 732-735)]. 

 

 

3.1.3.2.9 Species Cupressocrinites crassus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 3.1.3—Cupressocrinites crassus GOLDFUSS, 1831, holotype (IPB.-434a). Scan of the original 

lithography, idealised and mirror-inverted by GOLDFUSS (1831, pl. 64, fig. 4), ~ x 1.5. 

 28



3.1―Chapter I. Crinoidea, Cladida    

 

Cupressocrinites crassus GOLDFUSS, 1831 

Figs. 3.1.3, 3.1.9.18-19, 3.1.10.9 

 

• Cupressocrinites crassus GOLDFUSS, 1831, p. 212; pl. 64, figs. 4a-i, 4k-m. 

• Cupressocrinites crassus BOHATÝ, 2006b, pp. 151-154, 156-158, 161, 164-165; pl. 10, figs. 

4, 7, 8a-b, 9-10 (cum syn.). 

 

Diagnosis.—A Cupressocrinites with cylindrical crown; arms composed as 

many as 20 low and wide brachials with distinctive w-shaped cross sections; cup low, bowl-

shaped; skeletal elements intensive black-coloured, unadorned. 

 

 

3.1.3.2.10 Species Cupressocrinites ahuettensis 

 

Cupressocrinites ahuettensis n. sp.11 

Figs. 3.1.4.1-2 

 

• Cupressocrinites n. sp. I BOHATÝ, 2006b, pp. 153, 156, 158-159, 165; fig. 2. 

 

Diagnosis.—A Cupressocrinites with a discoid, small cup and long arms, 

distal arm width only slightly narrower than proximal plates; brachials ternary wider than 

long, w-shaped in cross section. Surfaces of the skeletal elements without ornamentations. 

 

Description.—Crown elongated, cylindric. Cup 20mm wide and 5mm long; 

infrabasal plate very slender; the unornamented ossicles are covered by the thin-walled, 

monolamellar exoplacoid layer; proportion of cup diameter to length of crown 1:4.8. Arms of 

adult crown eight cm long (Fig. 3.1.4.1) composed of 14 brachials, proximalmost brachial 

5mm long and 18mm wide, distal plates slightly narrower; cross section of brachials w-

shaped, with externally bent fossal grooves of the proximal pinnular; length to width 

proportion of brachials 1:2.5-3.0. Further skeletal elements unknown. 

 

Etymology.—After the village Ahütte (northwestern Rhineland-Palatinate, 

southwestern Germany). 

                                                 
 11  = Cupressocrinites ahuettensis BOHATÝ, 2009 sensu ICZN 
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Holotype.—Isolated arm; SMF-75460 (Fig. 3.1.4.2). The holotype was 

discovered in the Olifant Member of the Ahbach Formation, lowermost Lower Givetian 

(Middle Devonian) of the abandoned “Müllertchen Quarry”, S of Ahütte (Hillesheim 

Syncline, Eifel, Rhenish Massif, Germany); UTM 50°20’05.41”N/6°46’16.81”E. 

 

Other material examined.—Partly preserved crown CREF11b (LEUNISSEN 

collection) [Fig. 3.1.4.1]. 

 

Occurrence.—Only in the type region. 

 

Discussion.—C. ahuettensis n. sp.12 is distinguished by the long arms and 

mainly by the dimensions of the distal plates that are only slightly narrower than the proximal 

ossicles. In proportion to the arm measurements, the cup of the new species is comparatively 

small. Those features clearly differentiate C. ahuettensis from the type species *C. crassus, 

which has eminently similar shaped cross sections of the arms. 

 

 

 

 
FIGURE 3.1.4—Cupressocrinites ahuettensis n. sp. 1, CREF11b (LEUNISSEN collection) – aboral view of 

the disarticulated, weathered exemplar, x 1.2; 2, Holotype, no. SMF-75460 – lateral view of a typical arm, 

x 1.1. 

                                                 
 12  = C. ahuettensis BOHATÝ, 2009 sensu ICZN 
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3.1.3.2.11 Genus Robustocrinites 

 

Genus Robustocrinites BOHATÝ, 2005a 

 

• pars Cupressocrinus SCHULTZE, 1866, pp. 14-26. 

• Robustocrinites n. gen. BOHATÝ, 2005a, pp. 213-214. 

 

Type species.—*Cupressocrinus scaber SCHULTZE (1866, pp. 25-26; pl. 1 figs. 

4, 4a-b); the holotype (Figs. 3.1.5.1-3) is MCZ-112662. 

 

Included species.—R. cataphractus n. sp.13; R. galeatus (HAUSER, 2001) and 

R. scaber (SCHULTZE, 1866). 

 

Diagnosis.—Crown long, elongated cylindrical; atomous arms, primibrachials 

(“clavicular plate”) low and wide, without pinnules, up to 20 further, pinnule-bearing 

brachials with u-shaped cross sections; aboral cup bowl-shaped with convex base, one plate 

composed of coalesced infrabasals is missing, with five basals and radials; oral view 

dominated by the “consolidating apparatus” with a small, rounded mouth opening in the 

centre and an oval, eccentrically arranged anal opening, without anal tube; four axial canals 

around the central canal of the column; the crown-ossicles are covered by a monolamellar 

exoplacoid layer; plate surfaces unornamented (R. galeatus), decorated by fine and meander-

like adornments (R. scaber) or adorned by roughly developed crinkles (R. cataphractus n. 

sp.14). 

 

 

3.1.3.2.12 Species Robustocrinites scaber 

 
FIGURE 3.1.5—Robustocrinites scaber 

(SCHULTZE, 1866), holotype, no. MCZ-

112662. Scan of the original lithography 

after SCHULTZE (1866, pl. 1, fig. 4). 1, 

Aboral-, 2, lateral-, 3, oral view, ~ x 1.4. 
 

                                                 
  13  = R. cataphractus BOHATÝ, 2009 sensu ICZN 
 14  = R. cataphractus BOHATÝ, 2009 sensu ICZN 
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Robustocrinites scaber (SCHULTZE, 1866) 

Figs. 3.1.5.1-3 

 

• Cupressocrinus scaber SCHULTZE, 1866, pp. 25-26; pl. 1, figs. 4a-b. 

• Robustocrinites scaber BOHATÝ, 2005a, pp. 206, 212-215, 217. 

• Robustocrinites scaber BOHATÝ, 2006b, pp. 153, 161-162, 165; pl. 7, figs. 3-4, 5a-b, 6 (cum 

syn.). 

• Cupressocrinites scaber HAUSER, 2007b, pl. 1, figs. 8-8a. 

 

Diagnosis.—A Robustocrinites with long, elongated cylindrical crown and a 

bowl-shaped aboral cup with convex base; the surface of the skeleton is variously ornamented 

with low and meander-like ridges and/or fine hieroglyphics. 

 

 

3.1.3.2.13 Species Robustocrinites cataphractus 

 

Robustocrinites cataphractus n. sp.15 

Figs. 3.1.6.1-4, 3.1.7.1-2 

 

•  (?)Cupressocrinites n. sp. II BOHATÝ, 2006b, pp. 153, 158-159, 165; fig. 3. 

 

Diagnosis.—A Robustocrinites with long, cylindrical crown and a bowl-

shaped aboral cup with convex base; crown-ossicles covered by a massive, monolamellar 

exoplacoid layer; surface of skeleton decorated by few, coarse crinkles that are predominantly 

oriented horizontally or in idealised x-shaped grooves. 

 

Description.—Adult crown 7.0cm long and 2.5cm wide. Cup bowl-shaped, 

wider than long; basals and radials (Figs. 3.1.6.2, 3.1.6.4) covered by irregular curly folded 

exoplacoid laminae; insertion of stem wide and laterally framed by the sculpturing of the 

exobasal layers. Arms maximally 6.0cm long and 1.3cm wide; up to 12 brachials per arm; 

brachials wider than long, maximally 1.3cm wide and 0.7cm long; five pinnules on each side 

of a single brachial; monolamellar exobrachial layer decorated with coarse crinkles, which 

predominantly run in horizontal or in idealised x-shaped grooves; the exobrachial layer of the 

                                                 
 15  = Robustocrinites cataphractus BOHATÝ, 2009 sensu ICZN 
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distal brachials is distinguished by blunt spines; primibrachials (“clavicular plate”) slender, 

without pinnules, surface of exoclavicular layer with rough, x-shaped ridges. Further skeletal 

elements not preserved. Colour of unweathered ossicles intensively dark-grey, weathered 

plates brownish. 

 

Etymology.—cataphractus (lat.): armoured, after the armament-like 

development of the massive crown-ossicles. 

 

Holotype.—Partly preserved crown; SMF-75459 (Figs. 3.1.6.1-2, 3.1.7.1). The 

holotype was discovered within the Nims Member of the lower part of the Grauberg 

Subformation, upper Junkerberg Formation, upper Middle Eifelian (Middle Devonian) at the 

northern slope of the western access route to the “Weinberg Quarry”, NW of Kerpen 

(Hillesheim Syncline, Eifel, Rhenish Massif, Germany); UTM 50°18’54.24”N/6°42’48.76”E. 

 

Other material examined.—One isolated arm plate (LUEKEN† collection, 

without repository-number, unfigured), specimen GIK-1924 (Figs. 3.1.6.3, 3.1.7.2) and GIK-

1925 (Fig. 3.1.6.4). 

 

Occurrence.—R. cataphractus n. sp.16 is restricted to the Hönselberg, Rechert 

and Nims members of the Junkerberg Formation (Fig. 3.1.8), although STRUVE et al. (1997, 

pp. 147-150; figs. 13-14) specified the type locality to be of Giesdorfian age. Contrary to this 

classification, carbonate microfacies-analysis and the biostratigraphic examination of the 

fossil assemblage, composed of a diverse spectrum of cladid crinoids (A. nodosus, R. gracilis 

as well as robustocrinids and gasterocomoids), rugose and tabulate corals, stromatoporoids 

and brachiopods [but not containing the Giesdorfian guide species Spinocyrtia (Spinocyrtia) 

ostiolata (SCHLOTHEIM, 1820)] demonstrates an older biostratigraphic positioning. Based on 

the correlation with more complete Eifel sections, this position is specified as Nimsian age. 

In addition to the type region, R. cataphractus was found at the following 

localities within the Eifel (Rhenish Massif, Germany): Housing subdivision “Wiesenweg”, 

southwestern Gondelsheim (Prüm Syncline), UTM 50°13’58.71”N/6°29’52.66”E; housing 

subdivision “Im Leimenpeschen”, southwestern Schwirzheim (Prüm Syncline), UTM 

50°13’47.89”N/6°31’17.50”E and southern slope of the access route to the Ahütte lime 

works, E of the country road “L10”, S of Üxheim/W of Ahütte (Hillesheim Syncline), UTM 

50°20’10.73”N/6°45’42.86”E. 

                                                 
 16  = R. cataphractus BOHATÝ, 2009 sensu ICZN 
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Discussion.—The distinctive ornamentation of R. cataphractus clearly 

separates this new species from R. scaber, which has considerably finer ornament. R. 

cataphractus developed wider diameters of the plate cross sections in comparison with R. 

scaber and especially with R. galeatus. Furthermore, the plates of the latter species are 

unsculptured. The arms of R. scaber and R. galeatus are longer than those of R. cataphractus. 

R. cataphractus was initially assigned to Cupressocrinites (BOHATÝ 2006b, p. 

159). The discovery of crowns verifies its affiliation to Robustocrinites. 

 

 

 
 

FIGURE 3.1.6—Robustocrinites cataphractus n. sp. 1, Holotype, SMF-75459 – lateral view of a partly 

preserved and weathered crown with one regenerated arm, x 2.1; 2, Same as 1, aboral view of the crown 

with one preserved radial plate, x 2.1; 3, GIK-1924 – lateral view of the adult arm-crown. The boring of an 

unknown organism is filled by a trepostome bryozoan (?Eostenopora sp.), x 2.2; 4, GIK-1925 – lateral 

view of a juvenile crown, x 2.4. 
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The holotype exhibits distinct skeletal regeneration with one regenerated, 

smaller brachial (Figs. 3.1.6.1, 3.1.7.1). This typical arm construction could be identified on 

one crown of C. ornamentus BOHATÝ, 2006b (p. 157; pl. 11, fig. 4b) [Fig. 3.1.9.20]. 

The skeleton GIK-1924 was probably attacked postmortem by a boring 

organism. A trepostome bryozoan (?Eostenopora sp.) secondarily filled the resulting 

depression (Figs. 3.1.6.3, 3.1.7.2). 

Further grows anomalies could be identified on different cupressocrinitid-

ossicles from the Middle Devonian of the Eifel. These observations, as well as the encrusting 

of the skeletal plates by various epizoans, are discussed below. 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 3.1.7—Robustocrinites cataphractus n. sp. 1, Diagrammatic sketch of the holotype; grey: The 

regenerated, smaller arm; white: Normal brachials; thin-dotted: Primibrachials (“clavicular plates”); 

hatched: Radials, x 1.9; 2, Sketch of specimen GIK-1924; dotted: The boring of an unknown organism is 

filled by a trepostome bryozoan (?Eostenopora sp.), x 1.4. 

 

 

3.1.4  REGIONAL GEOLOGICAL EVENTS AS A LIMITING FACTOR OF THE 

STRATIGRAPHIC DISTRIBUTION OF GENUS ROBUSTOCRINITES WITHIN THE 

EIFEL REGION 

 

The stratigraphic distribution of Robustocrinites within the Eifel is generally 

limited to the Eifelian (upper Lower to Upper Eifelian, see Fig. 3.1.8). R. galeatus first occurs 

at the boundary of the Nohn and Ahrdorf formations and has maximum abundance in the 
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Betterberg Subformation in the lower part of the Ahrdorf Formation. Increased sedimentation 

rate and the development of expanded mud grounds at the base of the Junkerberg Formation, 

resulted in a conspicuously retrogressive occurrence of robustocrinids within the Eifel region. 

This indentation correlates with the beginning and the durability of the “Klausbach Event” 

(see STRUVE 1992). During times of moderate sedimentary input, diverse populated hard- 

and/or firmgrounds were established between the Mussel and Nims members. Between the 

basal Hönselberg and the top of the Nims Member, the conditions for cupressocrinitids were 

apparently favourable. This observation is reflected in the high individual and species 

numbers. During this time interval, the species radiation of Robustocrinites occurred. R. 

scaber first occurred within the Mussel Member and has maximum abundance in the Rechert 

and Nims members. R. cataphractus is first recognised in the upper part of the Hönselberg 

Member and had its maximum abundance during the Nims Member in the lower Grauberg 

Subformation. All three species became extinct at the top of the Nims Member and, therewith, 

at the basis of the “otomari Event” (STRUVE et al. 1997). The otomari Event is a transgression 

that resulted in sedimentary changes within the Eifel region. Like the Klausbach Event at the 

base of the Junkerberg Formation, the otomari Event was not favourable for robustocrinids, as 

demonstrated for Bactrocrinites SCHNUR, 1849 (BOHATÝ 2005b). 
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FIGURE 3.1.8—Biostratigraphic distribution of genus Robustocrinites BOHATÝ, 2005a and regional 

geological events within the Eifel. 
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The morphology of robustocrinid crowns changed from the upper Lower to the 

Upper Eifelian. In the Lower Eifelian, slender crowns with long arms and undecorated plate 

surfaces dominated. These forms (R. galeatus) have a comparatively long stratigraphic 

duration. Crowns with a finely ornamented surface and slightly shorter arms (R. scaber) 

appeared in the Upper Eifelian. They had a shorter stratigraphic distribution in comparison to 

R. galeatus. R. cataphractus has the shortest stratigraphic occurrence, limited to the 

Rechert/Nims boundary interval. This species exhibits the lowest crown and the plate surface 

is ornamented by the coarsest sculpture. 

 

 

3.1.5  CLASSIFICATION OF PRE- AND POSTMORTEM OSSICULAR MODIFICATIONS OF 

THE CUPRESSOCRINITID SKELETONS 

 

3.1.5.1  Growth anomalies without recognisable external influences – “generic” 

abnormalities 

 

Growth anomalies without recognisable external influences are predominantly 

distinguished by the reduction of thecal or brachial-ossicles respectively by additional 

intermediary plates. These abnormalities could not be attributed to injuries or involved 

regeneration and are obviously “genetically modified anomalies” (BOHATÝ 2001). Most 

common are variances of the columnal axial canal (Figs. 3.1.9.5-7), which occurs at the rate 

of ~1:30 compared with regular grown axial canals (~1500 skeletons analysed). Further, 

individuals with additional (Figs. 3.1.9.4, 3.1.9.7) or a reduced number of ossicles (Fig. 

3.1.9.5) are recognised. Cupressocrinitids with a developed quadrangular or hexagonal 

symmetry (Figs. 3.1.9.1-3) are relatively rare and occur at several localities with an average 

rate of ~1:70 compared with regularly developed skeletons (~700 aboral cups and ~300 

crowns analysed). Due to the abundance of anomalously grown axial canals or symmetry 

aberrations within one fossil-horizon, the genetic basis of these interferences is assumed. In 

this case, the appropriative rates of detectable growth anomalies compared with normal 

individuals, could be higher than above-mentioned. 
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FIGURE 3.1.9 (legend p. 39) 
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FIGURE 3.1.9 (see p. 38)—Ossicular modifications observed in cupressocrinitids. 1-7, Growth anomalies 

without recognisable external influences – “genetic” abnormalities; 8-15, Growth anomalies without 

classifiable causes – without indications of external influences; 16-20, Premortem ossicular anomalies as a 

reaction of external interferences – “wound healing” and skeletal regeneration of thecal- or brachial 

injuries. 1, CREF34b-72 (PRESCHER collection) – aboral view of an anomalous cup of Abbreviatocrinites 

abbreviatus abbreviatus (GOLDFUSS, 1839) with quadrangular symmetry (lat. I-IV), x 1.2; 2, CREF33a-4 

(HEIN collection) – oral view of an anomalous cup of Cupressocrinites elongatus GOLDFUSS, 1839 with 

quadrangular symmetry (lat. I-IV), x 1.9; 3, CREF34a-1 (SCHREUER collection) – oral view of an 

anomalous crown of A. a. abbreviatus with irregularly developed hexagonal symmetry (lat. I-VI), x 1.2; 4, 

GIK-1926 – aboral view of an anomalous cup with additional plates (arrows) and accordingly misshaped 

basals, radials and infrabasal plate, x 1.0. 5, CREF98-57 (PRESCHER collection) – A. inflatus inflatus 

(SCHULTZE, 1866), anomalous cup with quadrangular radial- (lat. I-IV) and pentamerous basal-symmetry. 

The columnal axial channel is slit-like shaped (arrow), x 2.4; 6, CREF33a-5 (HEIN collection) – oblique 

lateral-aboral view of an anomalous cup of C. elongatus with three peripheral axial canals (arrow), x 1.2; 7, 

CREF34b-24 (PRESCHER collection) – aboral view of an anomalous cup of A. a. abbreviatus with six basals 

(lat. I-VI) and five peripheral axial canals (arrow), x 1.9; 8, CREF34a-153 (PRESCHER collection) – aboral 

view of an anomalous cup of A. a. abbreviatus with one missing basal plate; the imperfection is filled by an 

accordingly misshaped radial plate (arrow), x 1.2; 9, GIK-1927 – adult cup of A. a. abbreviatus with one 

swollen basal plate (framed). The surrounding region is lined with numerous small ossicles, x 0.9; 10, 

CREF116-77 (PRESCHER collection) – lateral view of an anomalous cup of C. dohmi HAUSER, 1997 with 

one additional interradial plate (arrow), x 3.9; 11, CREF34a-139 (PRESCHER collection) – anomalous cup 

of Procupressocrinus gracilis (GOLDFUSS, 1831) with one additional plate (arrow), x 2.4; 12, Lateral view 

of an anomalous cup of Abbreviatocrinites gibber (BATHER, 1919) [HEIN collection; no repository no.] – 

with one additional, rhomb-like plate (arrow). Locality: In the Senzeille region (Ardennes, Belgium), 

stratigraphy: Neuville Formation, Frasnian (lower Upper Devonian), x 1.8; 13, IPB-1267 – lateral view of a 

juvenile crown of Cupressocrinites crassus GOLDFUSS, 1831 with one additional arm plate (arrow), x 1.7; 

14, GIK-1928 – lateral view of two isolated brachials of A. a. abbreviatus with an abnomal exobrachial 

laminae (framed) covering the upper plate. This ossicle is covered by a single laminae with tubercled 

surface. The lower brachial is only covered by the regular basal laminae showing an undecorated surface; 

other exoplacoid layers sheared off, x 1.2; 15, GIK-1929 – isolated, misshapen brachial of 

Abbreviatocrinites geminatus BOHATÝ, 2005a with deformed multilamellar exobrachial layer, x 2.7; 16, 

CREF34b-159 (PRESCHER collection) – oblique lateral-aboral view of a cup of A. a. abbreviatus with a 

marginal positioned “wound healing” (framed), x 1.6; 17, CREF34a-126 (PRESCHER collection) – a cup of 

A. a. abbreviatus with a large “wound healing” distinguished by numerous regenerative-ossicles (framed), 

x 2.7; 18, CREF33a-6 (HEIN collection) – lateral-aboral view of an strongly misshaped cup of C. crassus, 

caused by a large surfaced “wound healing” (framed), x 1.7; 19, CREF33a-39 (PRESCHER collection) – 

lateral view of an strongly misshaped cup of C. crassus, caused by a large “wound healing” (framed), x 1.8; 

20, R.L.-3 (LEUNISSEN collection) – lateral view of a crown of C. ornamentus BOHATÝ, 2006b. One arm 

was separated and regenerated above the second regular brachial plate (framed); the two flanked arms 

distally nestle above the regenerated arm and afford the typical cupressocrinitid defensive or resting posture 

of the enclosed crown, x 1.1. 
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3.1.5.2 Growth anomalies without classifiable causes – without indications of 

external influences. 

 

  In some cases it is not possible to determine a cause for a growth anomaly. The 

figured individuals with one additional or missing plate (Figs. 3.1.9.8, 3.1.9.10-13), with an 

inexplicable ossicular-swelling (Fig. 3.1.9.9), or a modified exobrachial layer (Figs. 3.1.9.14-

15) are not recognisable as regeneration of the skeleton (Figs. 3.1.6.1, 3.1.7.1, 3.1.9.20), 

“wound healings” (Figs. 3.1.9.16-19), or as documented “generic” abnormalities (Figs. 

3.1.9.1-7). No direct evidence of predatory influences like borings or bite marks (compare 

Figs. 3.1.10.1-10) can be recognised. Therefore, these modifications are summarised as 

growth anomalies without classifiable causes – without indications of external influences. 

 

 

3.1.6  PREMORTEM OSSICULAR ANOMALIES AS A REACTION OF EXTERNAL 

INTERFERENCES – “WOUND HEALING” AND SKELETAL REGENERATION OF 

THECAL OR BRACHIAL INJURIES 

 

3.1.6.1 “Wound healing” 

 

Different sized anomalies in numerous small ossicles were recognised on ~5% 

of the studied cupressocrinitids (~700 aboral cups and ~300 crowns analysed). These 

anomalies are obviously “wound healings” of nonlethal injured individuals. Possible causes of 

these anomalies could be injuries caused by predators or possibly by impact-injuries with 

suspended clastic material. The affected regions may be small (Fig. 3.1.9.16) or large (Figs. 

3.1.9.17-19). The maxim observed injury affects up to 80% of the surface of the cup. 

 

 

3.1.6.2 Regeneration 

 

Regenerations of echinoderm skeletons was recently reconsidered by MOZZI et 

al. (2006), exemplified by the regenerative processes of the “Mediterranean Featherstar” 

Antedon mediterranea (LAMARCK, 1816). AMEMIYA & OJI (1992) described the crinoid 

regeneration processes. The regeneration in fossil crinoids was also discussed by GAHN & 

BAUMILLER (2005). For example, they showed arm regeneration of Rhodocrinites kirbyi 
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(WACHSMUTH & SPRINGER, 1889) and Dichocrinus cinctus MILLER & GURLEY, 1890. Direct 

interconnections between the increase of shell-breaking predators and the number of observed 

arm regenerations of nonlethal injured crinoids were recognised (GAHN & BAUMILLER 2005, 

pp. 151-164). Further, WEISSMÜLLER (1998) discussed arm regeneration of the Muschelkalk-

crinoid Encrinus liliiformis LAMARCK, 1801 as did MEYER & OJI (1993) for several Eocene 

metacrinitids. 

Arm regeneration in Devonian crinoids is recognised by the conditions 

specified by GAHN & BAUMILLER. At the juncture of the injury, the regenerated skeleton has 

either 1, the insertion of particularly small arms; or 2, the abrupt change in the magnitude of 

the arm-ossicles (2005, p. 156). The arms recognised as regenerated were all smaller than 

regularly developed arms (Figs. 3.1.6.1, 3.1.7.1, 3.1.9.20). Nevertheless, the arms of the 

relevant individuals are enclosed in the typical cupressocrinitid-like resting or avoidance 

posture, whereas the adjoining, normal longer arms closed about the smaller one and are 

tangent distally above the regenerated arm. 

 

 

3.1.7  PRE- AND POSTMORTEM BORINGS AND BITE MARKS 

 

3.1.7.1  Postmortem multi-borings 

 

  Almost 90% of ~50 analysed skeletons of C. elongatus were covered by 

borings (SIEVERTS-DORECK 1963; BOHATÝ 2001, p. 8; 2006b, pl. 10, figs. 1-3) [Fig. 

3.1.10.8]. More infrequently, specimens with multiple borings were identified on the crowns 

of C. crassus (2006b, pl. 10, fig. 8b) [Fig. 3.1.10.9]. Both species are covered by a thin and 

monolamellar exoplacoid layer, which apparently offered less resistance against boring 

organisms, in contrast to the multilamellar layers of Abbreviatocrinites. Generally, these 

borings were restricted to the non-embedded side of the relevant skeletons and trend in 

inordinated lines from the cup (or also from the preserved stem) and over one or several arms. 

Presumably, the borings occurred soon after death. The skeletons are articulated and covered 

by the unsheared exoplacoid layer on the one hand, but on the other, the borings are restricted 

to the non-embedded side of the crown. Platyceratid gastropods were discussed as a possible 

causer of the borings (SIEVERTS-DORECK 1963). This theory cannot be verified. 

Another type of multi-boring of an unknown organism is pictured in Figs. 

3.1.10.1 and 3.1.10.4. In this case, several annulus-like (?)borings resulted in a circular boring 
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with a raised central boss. Less probably, it is also possible that the partial ossicular-
ingrowing of e.g. an unpreserved microconchid valve caused the annulus-like depression. Due 
to an absence of stereomatic reaction of the bored abbreviatocrinid, it is not classifiable, 
whether the (?)borings occurred pre- or postmortem. 
 
 
3.1.7.2  Pre- and postmortem incurred single borings 
 
  Single borings are present on the ossicles of A. abbreviatus abbreviatus, A. 
geminatus and R. cataphractus. In abbreviatocrinids, they are normally restricted to the plates 
with sheared exoplacoid layers (Figs. 3.1.10.2-3) and, therefore, most likely occurred 
postmortem. The single boring of an unknown organism at the surface of the monolamellar 
exoplacoid layer, observed in one affected robustocrinid, is filled by a trepostome bryozoan 
(?Eostenopora sp.) [Figs. 3.1.6.3, 3.1.7.2]. Because the boring is positioned on the non-
embedded side of the crown and runs across several plate boundaries, it is assumed to have 
occurred postmortem. Fig. 3.1.10.6 shows a sheared multilamellar exobrachial layer of A. 
geminatus which was affected by a meander-like boring of an unknown organism. 

             
FIGURE 3.1.10 (see p. 42)—Borings [Figs. 1-4, 5(?), 6, 8-10] and bite marks (Fig. 7) on cupressocrinitids. 
1, GIK-1930 – aboral-lateral view of a partly preserved crown of Abbreviatocrinites abbreviatus 
abbreviatus (GOLDFUSS, 1839) with several annulus-like borings(?) [arrows], x 1.2; 2, Same as 1, lateral 
view of the opposite side shows a single-boring (arrow), x 1.5; 3, Same as 1-2, another single-boring 
(arrow) of a radial plate with an additional flange caused by an accessory, sixth basal plate (lat. VI), x 1.4; 
4, Same as 1-3, aboral view (x 1.1) of the additional basal plate (lat. VI) and of the annulus-like borings(?) 
[arrows], some of them enlarged (x 10.0); 5, CREF34b-1 (LEUNISSEN collection) – lateral-aboral view of 
an A. a. abbreviatus-cup (x 1.0) with a deep, oval single-boring(?) [enlarged x 3.5] of an unknown 
organism; 6, GIK-1931 – a sheared multilamellar exobrachial layer of Abbreviatocrinites geminatus 
BOHATÝ, 2005a with a meander-like boring of an unknown causer (framed), x 1.9; 7, CREF11c-1 
(LEUNISSEN collection) – lateral-aboral view of an A. a. abbreviatus-cup with a partly regenerated bite 
mark (framed) and visible stereomatic response in form of a small bordering bulge surrounding the hole. 
The most affected region of basal/radial threshold shows the typical stereomatic response by the 
development of numerous small regenerative-ossicles. The specimen is also encrusted by Microconchus sp. 
and indeterminable tabulate corals(?) [arrows], x 1.2; 8, GIK-1932 – lateral view of a partly preserved 
crown of Cupressocrinites elongatus GOLDFUSS, 1839 with numerous borings on the surface of the cup- 
and brachial-ossicles (framed), x 1.4; 9, IPB-1267 – lateral view of a juvenile crown of Cupressocrinites 
crassus GOLDFUSS, 1831 with numerous borings on the surface of the cup- and brachial-ossicles (framed), 
x 2.2; 10, GIK-1933 – cross section of the multilamellar exoplacoid layer of A. geminatus. The SEM-
picture shows a microendolithic bore trace which presumably was initially lined wih biogenic matter. 
Under subsequent ionic sulphide-surplus, the boring was secondary filled by marcasite crystal-
agglomerates. 
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BAUMILLER & MACURDA (1995) and BAUMILLER (1990; 1993) documented 

borings on Palaeozoic blastoids and crinoids. Also in this case, platyceratid gastropods were 

discussed as the possible borers. A significant bit of evidence for this theory is perhaps 

documented in the combined fossil evidence of a borehole, positioned next to a gastropod 

valve (BAUMILLER 1990). 

SEM-observations of thin cross-sections of the multilamellar exoplacoid layer 

of A. geminatus exhibits potentially premortem microendolithic borings. These meandering 

single borings have an average proportion of 20µm in width to 300µm length. They were 

presumably lined with biogenous matter and ultimately resulted in a secondary sulphide-ion 

surplus. Through this, the borings are lined with marcasite-crystal agglomerates (FeS2) [Fig. 

3.1.10.10]. Microendolithic borings could be observed in ~70% of the studied multilamellar 

exoplacoid layers, but in less than 20% of the basal, radial, or brachial plates (30 thin sections 

analysed). 

Fig. 3.1.10.5 presumably has a deep, oval (?)boring on the basal plate of A. 

abbreviatus. The visible stereomatic reaction in the form of an annulus-like swelling indicates 

that the single-boring occurred most likely premortem. But isolated placoderm teeth from the 

same location also permit the assumption that this trace may to the bite of a larger predator 

instead of a boring organism, like a gastropod with specialised radula. 

 

 

3.1.7.3  Premortem bite marks 

 

Bite marks at cupressocrinitids (Fig. 3.1.10.7) are rare and could be observed 

in less than 3% of the studied individuals (~1500 skeletons analysed). They are possibly 

attributed to cephalopods, placoderms or arthropods. Premortem bite marks are recognised as 

nonlethal injuries, because the bite marks are accompanied by “wound healings” (compare 

Figs. 3.1.10.7 and 3.1.9.16-19). 

 

 

3.1.8  PRE- AND POSTMORTEM INCURRED EPIZONAL ENCRUSTING 

 

The epibiontic encrusting of Devonian crinoids, exemplified by Upper Eifelian 

columnals, was recently discussed by GŁUCHOWSKI (2005). Bryozoa, Microconchida, 

Crinoidea, Tabulata, Rugosa and Stromatoporida are also identified on the crown-ossicles of 

cupressocrinitids. 
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3.1.8.1  Bryozoa 

 

3.1.8.1.1 “Cyclostome bryozoans” 

 

  “Cyclostome bryozoans” (Hederella sp.) apparently preferentially encrusted 

the crown-ossicles of Abbreviatocrinites nodosus. Unlike other cupressocrinitids, nearly 95% 

of the observed A. nodosus-skeletons from the Klausbach and Nims members (Fig. 3.1.8) bear 

encrustings (~80 skeletons analysed). The growth of the hederellids most likely occurred 

instantaneously postmortem, because some articulated crowns retain unsheared exoplacoid 

layers (Figs. 3.1.11.7-8). In contrast, the “cyclostome bryozoans” settled beyond the primary 

movable ossicle boundaries of the endoskeleton. Presumably, the hederellids had a rapid rate 

of growth. GŁUCHOWSKI (2005, figs. 4F-H) also documented the hederellid-encrusting of 

Upper Eifelian crinoid columnals. 

Hederella is presumably not a true bryozoan (pers. information, A. ERNST; also 

see WILSON & TAYLOR 2001). TAYLOR & WILSON (2007) favoured a close relationship with 

phoronids, tentatively interpreting hederelloids as colonial, phoronid-like invertebrates with 

retractable lophophores. Along with microconchids and cornulitids, hederelloids may have 

been part of a mid-Palaeozoic acme of lophophorate “worms”. 

 

 

3.1.8.1.2 Trepostome bryozoans 

 

One brachial of a completely preserved A. nodosus crown (Fig. 3.1.2.8), one 

cup of an also entire Abbreviatocrinites schreueri crown (Fig. 3.1.11.4) and one theca of P. 

gracilis (Fig. 3.1.11.6) were encrusted postmortem by trepostome bryozoans (?Eostenopora 

sp.). The boring trace of an affected Robustocrinites arm is also populated by (?)Eostenopora 

sp. (Figs. 3.1.6.3, 3.1.7.2); in this case, the colony settled in a non-exposed position. 

 

 

3.1.8.1.3 Fenestrate bryozoans 

 

  Especially within the uppermost Ahbach Formation (lowermost Lower 

Givetian) of the “Wotan Quarry” (Hillesheim Syncline, Eifel, Rhenish Massif, Germany), 

several longer stems of A. geminatus and P. gracilis (Fig. 3.1.11.1) were found encrusted by 
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fenestrate bryozoans. The length of the overgrown columnals as well as some observed 

embedding patterns of bryozoans located underneath the attached stem, allows the 

presumption of a premortem settlement (compare BOHATÝ 2005a, fig. 3B). In contrast, some 

shorter stem fragments or other disarticulated cupressocrinitid-ossicles (Fig. 3.1.11.2) were 

usually encrusted postmortem. This assumption is based on the entire enclosure of some 

skeletal elements. 

Similarly holdfasts of most likely rhomboporid bryozoans attached to the 

columnals of Schyschcatocrinus creber DUBATOLOVA, 1975, as reported by GŁUCHOWSKI 

(2005, figs. 3A-B). GŁUCHOWSKI indicated that the bryozoans lived attached to the 

fragmented dead stems that lay horizontally on the sea floor. 

Strong evidence for the settlement of a living stem of C. hieroglyphicus is 

given in Figs. 3.1.11.16-18. The example is encrusted by the holdfast of a fenestrate bryozoan 

(Cyclopelta sp.) that grows all around the column without contact to the crenularium. The 

reticulate bryozoan colony surrounded the stem, whereas the dissepiments built concentric 

rings characteristic for this genus. 

 

 

3.1.8.2  Crinoidea 

 

3.1.8.2.1 Cladida 

 

One observed cup of A. abbreviatus abbreviatus (Fig. 3.1.11.9) as well as one 

isolated radial and arm plate of A. geminatus were encrusted by the holdfasts of other cladid 

crinoids (?P. gracilis). The roots settled postmortem on the shearing of the multilamelar 

exoplacoid layer (Fig. 3.1.11.9), at the interior of a radial plate (Fig. 3.1.11.22), or at the 

multilamellar exobrachial layer of an isolated brachial (Fig. 3.1.11.13). This association was 

observed on less than 3% of the studied crinoids (~1500 skeletons analysed). 

GŁUCHOWSKI (2005, p. 322) documented the postmortem encrusting of several 

small crinoid holdfasts attached to Upper Eifelian crinoid columnals. 

Various attachments of crinoid juveniles to living or dead adults are known 

from the Silurian to the Mississippian (see MEYER & AUSICH 1983). Coiling stems, modified 

discoid holdfasts on the columns of crinoid hosts as well as dendritic holdfasts distributed on 

all sides of the column were reported from Silurian strata by FRANZÉN (1977) and PETERS & 

BORK (1998). 
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3.1.8.3  (?)Lophophorata 

 

3.1.8.3.1 Microconchida 

 

Microconchids with unstructured or ornamented valves encrusted the ossicles 

of nearly 40% of the studied cupressocrinitids (~1500 skeletons analysed). It is remarkable, 

that larger individuals are rare and isolated (compare BOHATÝ 2006b, pl. 5, fig. 8), whereas 

numerous smaller microconchids encrusted the crinoids (Figs. 3.1.2.6, 3.1.11.7-8). Most 

likely, the colonisation occurred immediately postmortem, before shearing of the exoplacoid 

layers and ossicle disarticulation. 

The single-species encrusting of microconchids on the columnals of 

Tantalocrinus scutellus LE MENN, 1985 and Schyschcatocrinus creber DUBATOLOVA, 1975, 

represent additional settlement examples (GŁUCHOWSKI 2005, p. 323; figs. 5I-L). 

 

 

3.1.8.4  Anthozoa 

 

3.1.8.4.1 Tabulata 

 

The predominantly postmortem settlement of tabulate corals was recognised on 

5-10% of the studied cupressocrinitids (~1500 skeletons analysed). The most common 

epibiontic tabulates were auloporids like Aulopora cf. A. serpens minor (GOLDFUSS, 1829) 

[Figs. 3.1.11.5, 3.1.11.7, 3.1.11.20] and A. cf. A. s. serpens (GOLDFUSS, 1829) [Fig. 

3.1.11.11], settling on isolated crown-ossicles, completely preserved cups of A. geminatus and 

on the crowns of A. nodosus. Fig. 3.1.11.20 shows a completely overgrown cup of A. 

nodosus. 

Furthermore, one cup of A. a. abbreviatus with an encrusting favositid coral 

(Favosites cf. F. goldfussi D'ORBIGNY, 1850) was found within the lower part of the Loogh 

Formation (Lower Givetian) in the “Wotan Quarry” (Hillesheim Syncline) [Fig. 3.1.11.12]. 

GŁUCHOWSKI (2005) documented small colonies of Favosites sp. attached to Pentagonostipes 

petaloides MOORE & JEFFORDS, 1968 and Tantalocrinus scutellus LE MENN, 1985 and 

discussed the possible growth along the axis of the upright stalk of a living host. Favositids 

that lived attached to living crinoid hosts have also been reported from the Upper Silurian 

(HALLECK 1973; BRETT & ECKERT 1982; PETERS & BORK 1998), Lower Devonian (GALLE 

1978; GALLE & PROKOP 2000) and Lower Carboniferous (compare MEYER & AUSICH 1983). 
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FIGURE 3.1.11 (see p. 48)—Epibiontic encrusting of cupressocrinitid-skeletons. 1, GIK-1934 – 

undetermined fenestrate bryozoans attached to a longer part of the stem of Procupressocrinus gracilis 

(GOLDFUSS, 1831) [?]. Partly reconstructed (dashed lines) accordingly to the preserved imprint, x 1.3; 2, 

GIK-1935-ex-PAgA12.4 – the holdfast of an undetermined fenestrate bryozoan (arrow) encrusted the 

cracked arm plate of Abbreviatocrinites geminatus BOHATÝ, 2005a, x 1.3; 3, GIK-1936 – the rugose coral 

Glossophyllum soetenicum (SCHLÜTER, 1885) [arrow] encrusting the stem of P. gracilis (?), x 1.4; 4, 

CREF84-1 (LEUNISSEN collection) – aboral view of a cup of Abbreviatocrinites schreueri BOHATÝ, 2006b, 

encrusted by a trepostome bryozoan (?Eostenopora sp.), x 1.8; 5, GIK-1937-ex-PAgA12.17 – arm plate of 

A. geminatus with preserved multilamellar exoplacoid layer, encrusted by the tabulate coral Aulopora cf. A. 

serpens minor (GOLDFUSS, 1829) [arrow], x 1.8; 6, CREF33a-9 (HEIN collection) – lateral view of a P. 

gracilis-cup, the specimen is completely overgrown by a trepostome bryozoan (?Eostenopora sp.), x 1.5; 7, 

GIK-1938 – lateral view of a closed crown of Abbreviatocrinites nodosus (SANDBERGER & SANDBERGER, 

1856) encrusted by an epibiontic tabulate coral Aulopora cf. A. serpens minor (see framing at the centre 

above), Hederella sp. (framing, centre below) and Microconchus sp. (arrows), x 1.4; 8, Same specimen as 

7, oblique lateral-aboral view of the cup with encrusted hederellids (framed) and microconchids (arrows), x 

1.4; 9, GIK-1939-ex-PAgA11.8 – cup of Abbreviatocrinites abbreviatus abbreviatus (GOLDFUSS, 1839) 

with sheared exoplacoid layer. The specimen is infested by a cupressocrinitid holdfast (?P. gracilis) 

[arrow], x 1.4; 10, GIK-1940 – aboral view of a cup of A. a. abbreviatus, completely encrusted by 

indeterminable stromatoporoids, x 0.8; 11, CREF34c-8 (SCHREUER collection) – lateral-aboral view of an 

A. geminatus-cup, infested by the tabulate coral Aulopora cf. A. serpens serpens (GOLDFUSS, 1829) 

[arrow], x 1.2; 12, GIK-1941 – aboral view of a cup of A. a. abbreviatus. One basal is encrusted by a 

favositid coral (Favosites cf. F. goldfussi D'ORBIGNY, 1850) [framed], x 0.9; 13, GIK-1942 – lateral view 

of an isolated arm plate of A. geminatus. The preserved multilamellar exoplacoid layer is encrusted by the 

holdfast of P. gracilis (?) [arrow], x 1.4; 14, GIK-1943 – lateral view of an isolated arm plate of A. 

geminatus with preserved multilamellar exoplacoid layer. The exemplar is encrusted by the rugose coral 

Thamnophyllum caespitosum (GOLDFUSS, 1826) [arrow], x 2.1; 15, GIK-1944 – lateral view of a fractured 

arm plate of A. geminatus. The exemplar is encrusted by the rugose coral T. caespitosum (arrow), x 1.8; 16-

18, GIK-1945– SEM-pictures of an isolated stem-ossicle of Cupressocrinites hieroglyphicus (SCHULTZE, 

1866) [16-17, lateral view; 18, axial view with three peripheral canals and intact partition walls to the 

central-canal, showing a quartering subdivision]. The segment is entirely encrusted by the holdfast of a 

fenestrate bryozoan (Cyclopelta sp.) growing all around the ossicle, x 5.1; 19, GIK-1946 – a stem of P. 

gracilis (?), infested by the epibiontic rugose coral T. caespitosum (arrow), x 1.4; 20, GIK-1947 – aboral 

view of an A. nodosus-cup. The specimen is completely encrusted by the tabulate coral Aulopora cf. A. s. 

minor, x 1.2; 21, GIK-1948 – aboral view of a cup of A. a. abbreviatus. The specimen is completely 

encrusted by stromatoporoids and tabulate corals and also by an indeterminable juvenile stadium of a 

rugose coral, x 0.9; 22, GIK-1949-ex-PAgA12.2 – interior side of an isolated radial plate of A. geminatus. 

The plate is infested by the holdfast of P. gracilis (?), x 1.2. 

 49



3.1―Chapter I. Crinoidea, Cladida    

 

Other tabulate corals (e.g. Antholites, Cladochonus and Emmonsia) associated 
with living crinoids are known from Devonian–Mississippian strata (GŁUCHOWSKI 2005, p. 
319; also see MEYER & AUSICH 1983; POWERS & AUSICH 1990 and DONOVAN & LEWIS 
1999). 
 
 
3.1.8.4.2 Rugosa 
 

Within the Ahbach and Loogh formations (Eifelian/Givetian threshold) in the 
“Wotan Quarry” (Hillesheim Syncline), rugose corals settled on disarticulated 
cupressocrinitid stems and isolated ossicles, including Glossophyllum soetenicum (SCHLÜTER, 
1885) [Fig. 3.1.11.3] and Thamnophyllum caespitosum (GOLDFUSS, 1826) [Figs. 3.1.11.14-15, 
3.1.11.19]. The additional recovery of a completely overgrown theca (stromatoporoid 
suffusions, see below) documents a further epibiontic settlement by an indeterminable 
juvenile stadium of a rugose coral (see encircling in Fig. 3.1.11.21). All settlements occurred 
postmortem. 

GŁUCHOWSKI (2005, pp. 317-319) detected the premortem encrustings of the 
rugose coral (?)Adradosia sp. on Schyschcatocrinus creber by the stereomic response of the 
crinoid. 
 
 
3.1.8.5  (?)Porifera 
 
3.1.8.5.1 Stromatoporida 
 

Some non-disarticulated cups of A. a. abbreviatus were completely encrusted 
by indeterminable stromatoporoid suffusions (Figs. 3.1.11.10, 3.1.11.21). These encrustings 
could be settled again by chaetetids, tabulate and rugose corals, microconchids and bryozoans. 
 
 
3.1.9   DISCUSSION 
 

With intensive fossil collecting within the Eifel synclines, hitherto undescribed 
members of the subfamily Cupressocrininae were determined. Also, research on several 
classical collections, especially of the SANDBERGER collection at the NWNH, added 
significantly to the revision of the Cupressocrinitidae. 
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Biostratigraphical distributions were also studied. As one result it is 

demonstrated, that Robustocrinites was limited to regional geological events as was 

Bactrocrinites within the Rhenish Massif (Germany) [compare BOHATÝ 2005b]. Furthermore, 

the SANDBERGER cupressocrinitids from the Lahn-Dill Syncline had a longer stratigraphical 

range of A. nodosus, A. a. abbreviatus, A. geminatus and A. sampelayoi than previously 

known. 

Ossicular-modifications recognised on the subfamily Cupressocrininae were 

predominantly classified on the basis of pertinent literature. 

According to the diagnostic features of GAHN & BAUMILLER (2005), arm 

regeneration could be identified by the insertion of particularly small arms and/or abrupt 

changes in the magnitude of the arm-ossicles. Regeneration in the cupressocrinitid arm is 

presumably superior to the cup regeneration. Whereas a regenerated arm is smaller, the 

brachial is nearly as perfectly shaped as the primary one. The regeneration of the cup mostly 

leads to distorted cups. This difference may be attributed to the significant arm functions of 

ingestion and reproduction. In opposition, the thecal-ossicles were mainly responsible for the 

soft body protection. This basic function does not require “perfect shapes”. 

Studied growth anomalies without recognisable external influences are 

distinguished by the reduction of thecal or brachial-ossicles respectively by additional small 

plates. These anomalies are not attributed to injuries and are considered genetically modified 

anomalies. The majority of these thecal anomalies are equivalent to similarly modified 

specimens of other crinoid-subclasses. The most common anomalies in cupressocrinitids are 

modified peripheral axial canals of the stem. This observation is similar to other 

Gasterocomoidea, which were distinguished by three to four peripheral axial canals. 

Borings and bite marks were mostly identified as pre- or postmortem incurred 

events, whereas the causers are predominantly unknown. Different borings of crinoid 

skeletons were previously described by SIEVERTS-DORECK (1963), BAUMILLER & MACURDA 

(1995) and BAUMILLER (1990; 1993). Although these traces were associated with platyceratid 

gastropods, definite proof of this theory is still missing. The typical marks on effected 

crinoids (e.g. observed in the camerate family Hexacrinitidae WACHSMUTH & SPRINGER, 

1885) from the Middle Devonian of the Eifel have other patterns that will be discussed in a 

separate publication. 

Most of the recently described epibionts on Devonian crinoid columnals 

(GŁUCHOWSKI 2005) could also be observed on Middle Devonian cupressocrinitid skeletons 

from the Rhenish Massif. In this connection, especially the encrusting of articulated cups and 
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of completely preserved crowns is remarkable. This fact requires either high growth 

accelerations of the epibionts or an immediate microbial cladding related to a possible 

ossicular preservation. 

The majority of the epibiontic encrustations most were probably postmortem. 

Only a few examples of individuals that were potentially premortem encrusted were observed. 

This is confirmed by encrusting of the fenestrate holdfast growing around the entire column 

without contact to the crenularium. 

The preserved or sheared exoplacoid layer of the subfamily Cupressocrininae 

provide information about pre- or postmortem settling of the different epizoans. Therefore, in 

addition to the taxonomic relevance of the second skeletal layer, this feature provides insight 

on the facies (BOHATÝ 2005a) and the ecological conditions. 

 

 

3.1.10  APPENDIX 

 

3.1.10.1 The fossil localities and stratigraphic positions of the studied crinoids 

 

NWNH-297 and -408, Locality: “Grube Lahnstein” near Weilburg-Odersbach, NE of 

Limburg an der Lahn (Lahn-Dill Syncline, SE-Rhenish Massif, Germany), 

stratigraphy: Upper Givetian “Roteisenstein”. 

SMF-75459, Locality: N-slope of the western access route to the abandoned “Weinberg 

Quarry”, NW of Kerpen (Hillesheim Syncline, Eifel, Rhenish Massif, 

Germany), stratigraphy: Nims Member of the lower Grauberg Subformation, 

upper Junkerberg Formation (upper Middle Eifelian). 

SMF-75460, Locality: Abandoned “Müllertchen Quarry”, S of Ahütte (Hillesheim Syncline, 

Eifel, Rhenish Massif, Germany), stratigraphy: upper Olifant Member of the 

lower Müllert Subformation, upper Ahbach Formation (lowermost Lower 

Givetian). 

SMF-75461, Locality: Rommersheim (Prüm Syncline, Eifel, Rhenish Massif, Germany), 

stratigraphy: Olifant Member of the lower Müllert Subformation, Ahbach 

Formation (lowermost Lower Givetian). 

IPB-434a, -435b and -1267, Locality: Pelm, E of Gerolstein (Gerolstein Syncline, Eifel, 

Rhenish Massif, Germany), stratigraphy: Hustley Member of the upper Loogh 

Formation (Lower Givetian). 
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GIK-1924, -1938 and -1947, Locality: SW-housing subdivision area of village Gondelsheim 

(Prüm Syncline, Eifel, Rhenish Massif, Germany), stratigraphy: Nims Member 

of the lower Grauberg Subformation, upper Junkerberg Formation (upper 

Middle Eifelian). 

GIK-1925, Locality: S-slope of the access route to the Ahütte lime works, E of country road 

“L10”, S of Üxheim / W of Ahütte (Hillesheim Syncline, Eifel, Rhenish 

Massif, Germany), stratigraphy: Uppermost Rechert Member of the upper 

Heinzelt Subformation, middle Junkerberg Formation (upper Middle Eifelian). 

GIK-1926, -1927, -1930, -1939-ex-PAgA11.8 and -1940, Locality: “Wotan Quarry” near 

Ahütte, SE of Üxheim (Hillesheim Syncline, Eifel, Rhenish Massif, Germany), 

stratigraphy: Upper Wotan Member of the lower Loogh Formation (Lower 

Givetian). 

GIK-1928, Locality: Commercial area, NE of Blankenheim (Blankenheim Syncline, Eifel, 

Rhenish Massif, Germany), stratigraphy: Uppermost Bohnert Member of the 

upper Freilingen Formation (Upper Eifelian). 

GIK-1929, -1931, -1933, -1934, -1935-ex-PAgA12.4, -1936, -1937-ex-PAgA12.17, -1942, -

1943, -1944, -1946 and -1949-ex-PAgA12.2, Locality: “Wotan Quarry” near 

Ahütte, SE of Üxheim (Hillesheim Syncline, Eifel, Rhenish Massif, Germany), 

stratigraphy: Lowermost Zerberus Member of the upper Müllert Subformation, 

upper Ahbach Formation (lowermost Lower Givetian). 

GIK-1932, Locality: Dasberg, E of Gerolstein (Gerolstein Syncline, Eifel, Rhenish Massif, 

Germany), stratigraphy: Hustley Member of the upper Loogh Formation 

(Lower Givetian). 

GIK-1941 and -1948, Locality: “Wotan Quarry” near Ahütte, SE of Üxheim (Hillesheim 

Syncline, Eifel, Rhenish Massif, Germany), stratigraphy: Lower Wotan 

Member of the lower Loogh Formation (Lower Givetian). 

GIK-1945, Locality: NE-slope of the access pathway to the abandoned “Müllertchen Quarry”, 

south of Ahütte (Hillesheim Syncline, Eifel, Rhenish Massif, Germany), 

stratigraphy: Lahr Member of the upper Maiweiler Subformation, Ahbach 

Formation (Eifelian/Givetian threshold). 

CREF11b, Locality: Abandoned “Müllertchen Quarry”, south of Ahütte (Hillesheim Syncline, 

Eifel, Rhenish Massif, Germany), stratigraphy: Olifant Member of the lower 

Müllert Subformation, Ahbach Formation (lowermost Lower Givetian). 
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CREF11c, Locality: “Müllertchen Quarry”, stratigraphy: Lowermost Zerberus Member of the 
upper Müllert Subformation, upper Ahbach Formation (lowermost Lower 
Givetian). 

CREF16c, Locality: Rommersheim (Prüm Syncline, Eifel, Rhenish Massif, Germany), 
stratigraphy: Olifant Member of the lower Müllert Subformation, Ahbach 
Formation (lowermost Lower Givetian). 

CREF33a, Locality: NE-slope of the railway cut, 400 m east of railway station Gerolstein 
(Eifel, Gerolstein Syncline, Rhenish Massif, Germany), stratigraphy: Hustley 
Member of the upper Loogh Formation (Lower Givetian). 

CREF34a, Locality: “Wotan Quarry” near Ahütte, SE of Üxheim (Hillesheim Syncline, Eifel, 
Rhenish Massif, Germany), stratigraphy: Lower Wotan Member of the lower 
Loogh Formation (Lower Givetian). 

CREF34b, Locality: “Wotan Quarry” near Ahütte, SE of Üxheim (Hillesheim Syncline, Eifel, 
Rhenish Massif, Germany), stratigraphy: Upper Wotan Member of the lower 
Loogh Formation (Lower Givetian). 

CREF34c, Locality: “Wotan Quarry” near Ahütte, SE of Üxheim (Hillesheim Syncline, Eifel, 
Rhenish Massif, Germany), stratigraphy: Lowermost Zerberus Member of the 
upper Müllert Subformation, upper Ahbach Formation (lowermost Lower 
Givetian). 

CREF84, Locality: Gondelsheim (Prüm Syncline, Eifel, Rhenish Massif, Germany), 
stratigraphy: Klausbach Member of the lowermost Heinzelt Subformation, 
lowermost Junkerberg Formation (upper Middle Eifelian). 

CREF98, Locality: SW-housing subdivision of village Schwirzheim, SE of Gondelsheim 
(Prüm Syncline, Eifel, Rhenish Massif, Germany), stratigraphy: Hönselberg 
Member of the Heinzelt Subformation, Junkerberg Formation (upper Middle 
Eifelian). 

CREF116, Locality: Weinsheim, N of the “Niesenberg” (Prüm Syncline, Eifel, Rhenish 
Massif, Germany), stratigraphy: Upper Rech Member of the upper Loogh 
Formation (Lower Givetian). 

CREF180, Locality: SW-housing subdivision of village Gondelsheim (Prüm Syncline, Eifel, 
Rhenish Massif, Germany), stratigraphy: Nims Member of the lower Grauberg 
Subformation, upper Junkerberg Formation (upper Middle Eifelian). 

CRBG7, Locality: Abandoned quarry at the “Schlade Valley”, near Bergisch-Gladbach 
(Bergisch Gladbach-Paffrath Syncline, Bergisches Land, Rhenish Massif, 
Germany), stratigraphy: Upper Büchel Formation (lower Middle Givetian). 

R.L.-3, Locality: Bou Dib, Nothern-Maider, Jebel Issimour (Morocco), stratigraphy: Lower 
Eifelian. 
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3.2  CHAPTER II. CRINOIDEA, CAMERATA 

 

REVISION OF THE HEXACRINITIDAE BASED ON A CLASSICAL 

LOWER GIVETIAN CRINOID DEPOSIT (GEROLSTEIN, 

EIFEL/GERMANY) 

 

 

ABSTRACT—The classic Lower Givetian crinoid occurrence of the northeastern slope of the 

railway cut near the station of Gerolstein (northwestern Rhineland-Palatinate, westernmost 

Germany) is famous for yielding an outstanding diversity of the monobathrid camerate family 

Hexacrinitidae. Following a short palaeogeographical and stratigraphical introduction of the 

Gerolstein Syncline (Eifel, Rhenish Massif), the previously described “Hexacrinites” species 

of this locality are revised. They clearly differ from the type species *Platycrinus 

interscapularis (genus Hexacrinites) by the development of uniserial arms, longer aboral cups 

and other morphological criteria, like a single posterior interradial plate. Therefore, most of 

the Eifel species are assigned to the genus Megaradialocrinus (with *Megaradialocrinus 

conicus as its type species), which is herein transferred to superfamily Hexacrinitoidea and 

family Hexacrinitidae. The extent of morphological differences among other hexacrinitids is 

discussed and may define further intergeneric differentiation. Five new species are described: 

Megaradialocrinus aliculatus n. sp.1, (?)M. bulbiformis n. sp.2, M. piriculaformis n. sp.3, M. 

theissi n. sp.4 and M. winteri n. sp.5 The homonym “Hexacrinites magnificus” sensu HAUSER 

(2007a) is renamed: Megaradialocrinus globohirsutus n. nov.6 

 

 

3.2.1  INTRODUCTION 

 

The famous Middle Devonian crinoid localities of Gerolstein (Gerolstein 

Syncline, Eifel, Rhenish Massif, westernmost Germany) [Fig. 3.2.1.1] include several famous 

deposits of Middle Devonian macrofossils. In addition to corals, stromatoporoids, bryozoans, 

brachiopods, gastropods, trilobites, cephalopods and placoderms, the diverse spectrum of 

                                                 
1  = Megaradialocrinus aliculatus BOHATÝ, in press sensu ICZN 
2  = (?)M. bulbiformis BOHATÝ, in press sensu ICZN 
3  = M. piriculaformis BOHATÝ, in press sensu ICZN 
4  = M. theissi BOHATÝ, in press sensu ICZN 
5  = M. winteri BOHATÝ, in press sensu ICZN 
6  = Megaradialocrinus globohirsutus BOHATÝ, in press sensu ICZN 
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mostly well- preserved crinoids is appreciable. At the northeastern slope of the railway cut 

near the station of Gerolstein [NESG], camerate crinoids of the family Hexacrinitidae 

WACHSMUTH & SPRINGER, 1885 occur in high diversity and abundance. Well-preserved 

aboral cups of the genus Megaradialocrinus CHEN & YAO (1993, pp. 56-57; figs. 32a-b; pl. 

12, figs. 9a-b) are especially abundant within the marly sediments of the Hustley Member 

(uppermost Loogh Formation, Lower Givetian) at this locality, which is near the type locality 

of the Hustley Member sensu WINTER (1965) [Tab. 3.2.1.2]. 

 

 

3.2.2  PALAEOGEOGRAPHICAL SETTING 

 

Within the central European Variscan fold belt, the Rhenish Massif and the 

Ardennes are separated by a north-south trending axial depression, the “Eifel Limestone 

Synclinorium”. Deposits of the Middle Devonian and, in part, of the Upper Devonian are 

preserved within the synclines, and the anticlines between them are the Lower Devonian 

strata. The Eifel Limestone Synclinorium is bordered in the northwest and north by the older 

Palaeozoic “Stavelot-Venn Massif” and in the northeast by the “Mechernich Triassic Bight” 

(Fig. 3.2.1.1). The eastern boundary is characterised by the western limb of the “Siegerland-

Eifel Anticlinorium”. The southern boundary is the older Lower Devonian of the 

“Manderscheid Anticlinorium”, in which the “Trier Triassic Bight” is adjacent to the south 

(Fig. 3.2.1.1). 

The Devonian marine realm of the Eifel was bordered in the north by the “Old 

Red Continent”, which was the source area for the clastic sedimentary input. The sedimentary 

input accumulated from the Lower to the Upper Devonian with a retreating coastline toward 

the north. Because of massive sedimentary input during the Lower Devonian, essentially only 

clastic sediments were deposited. With the beginning of the Middle Devonian, carbonate 

sedimentation occurred in the area of the later Eifel Limestone Synclinorium as well as to the 

north of the Venn Massif in the Ardennes. The Moselle area, the deepest and most distal part 

of the sedimentary basin, is characterised by fine-grained siliciclastic sediments. In this 

palaeogeographical setting a lithostratigraphic/facies trichotomy of the Devonian sequence 

occurs in the region north of the “Venn Anticline”, the extent of the Eifel Limestone 

Synclinorium and the “Moselle Trough” (MEYER 1986). 

W. STRUVE (1961; 1963) proposed the first palaeogeographic reconstruction of 

the Eifel Middle Devonian. He considered the depositional region as an isolated north-south 
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trending basin surrounded by landmasses, which he denoted as “Eifel Sea Street”. 

Reef growth occurred to the west of the eastern mainland called “Istaevonia” 

(= “Siegen Block”) and on the “Middle Eifel Barrier” (“Krömmelbein Structure” of STRUVE 

1961, p. 98). The so called “Manderscheid Barrier” was positioned to the south and connected 

the land of Istaevonia with the mainland of “Arduennia” in the west and separated the 

comparative shallow Eifel Sea from the deeper Moselle Trough to the south. STRUVE also 

presumed that a huge island, on the Venn Massif, divided the Eifel Sea Street in the 

northwest. 

FIGURE 3.2.1—1, Geological sketch of the Middle Devonian Eifel Limestone Synclinorium (after WALTER 

1995); legend: Sö. S., Sötenich Syncline; Bl. S., Blankenheim Syncline; R. S., Rohr Syncline; Do. S., 

Dollendorf Syncline; S. S., Schneifel Syncline; A. S., Ahrdorf Syncline; Hi. S., Hillesheim Syncline; Pr. 

S., Prüm Syncline; Ge. S., Gerolstein Syncline; SW. S., Salmerwald Syncline; light grey, Lower 

Devonian; dark grey, Middle Devonian; white, post Palaeozoic strata. 2, Idealised facies model of the 

Middle Devonian of the Eifel according to WINTER (1977); type A, facies dominated by clastic input; type 

B, facies characterised by carbonate platforms and biostromal reefs; type C, reduced clastic input and 

increasing limy facies. 
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STRUVE (1961; 1963) provided an important foundation for all later 

palaeogeographical work. Today, particularly, the isolated palaeogeographic position of the 

depositional basin as well as the accentuation of distinctively developed boundaries in the 

form of barriers and islands is reinterpreted differently. Research within the Venn area has 

shown that the Middle Devonian of the Aachen area (northwest of the Eifel Limestone 

Synclinorium) is dominated by coarse clastic material up to the Middle Givetian. This 

sequence was interpreted as coastal sedimentation along the southern edge of the “Brabant 

Massif” (KASIG & NEUMANN-MAHLKAU 1969, p. 381). The finer clastical sediments of the 

Eifelian in the northern part of the Eifel Limestone Synclinorium document a gradual ablation 

of the coast toward the Limestone Synclinorium. Therefore, STRUVE’s island cores are no 

longer necessary. Researches within the “Manderscheid Barrier” (KREBS 1970) to the south of 

the Salmerwald Syncline demonstrate a transition between a carbonate and a fine-grained 

siliciclastic facies without an intervening barrier. An explanation for this may be the 

topography of the sea bottom, perhaps a distal ramp. According to STRUVE (1961; 1963), the 

west coast of Istaevonia was dominated by a carbonate platform or respectively by a reef 

barrier. Admittedly, within the eastern part of the Eifel Limestone Synclinorium, there is no 

evidence of any siliciclastic input. Also because of palaeotectonic reasons, an emergent area 

that would correspond with the Siegerland Block is implausible. 

The current palaeogeography and facies model of the Middle Devonian of the 

Eifel, especially of the Eifelian, was initially developed by WINTER (in MEYER, STOLTIDIS & 

WINTER 1977, p. 327), who defined three characteristic facies realms (facies types A-C) [see 

Fig. 3.2.1.2]. Facies type A, distinguished by clastic sediments, is developed within the 

northern Eifel Limestone Synclinorium. Carbonates are proportionally rare. In the northern 

part of the synclinorium, the sediments were not deposited under normal marine conditions. 

Normal marine conditions occurred toward the south. At about the axis of the Dollendorf 

Syncline, the changeover to facies type C occurred. Type C is characterised by limestones and 

marls. Clastic components are sparse. Toward the south, the clay content increases, and type 

C facies passes into the clay rich facies of the Moselle Trough (= “Wissenbach Slate”). The 

third facies type (type B) is developed within the eastern part of the Eifel Limestone 

Synclinorium. It is characterised by pure, commonly biostromal limestones; marly as well as 

silty sediments are secondary. This facies type characterises a shallow water area, which lay 

close to a shallow water barrier at the eastern Eifel. Type B facies dominates the eastern parts 

of the Salmerwald, Gerolstein, Hillesheim, Ahrdorf and Sötenich synclines, as well as parts of 

the Rohr and the middle and eastern part of the Blankenheim synclines. This basic division of 
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facies types applies at least to the Junkerberg Formation (Eifelian), but within some time 

slices, it was modified, e.g. at the Niederehe Subformation, biostromal beds were established 

nearly at the complete northern Eifel sea area during a transgression. Alternatively, facies type 

A expanded toward the south during times of low sea level. In this case, sedimentation within 

the upper part of the Nohn Formation and the Junkerberg Formation was dominated by clastic 

input. Beginning with the Freilingen Formation (Upper Eifelian), facies differences disappear. 

Because of a transgression, facies type C was established all over the depositional area. In the 

Givetian, stromatoporoid coral biostromes extended all over the Eifel Sea. 

By accentuating the validity of the three facies types, FABER (1980, p. 112) 

modified WINTER’s model. FABER differentiated two palaeogeographical situations within the 

Lower Eifelian: (a) A relatively undifferentiated open shelf, which is characterised by 

southwest-northeast trending facies belts; (b) a carbonate platform, which was developed 

twice within the eastern part of the Limestone Synclinorium, while the western synclinorium 

was still dominated by “normal” shelf sedimentation. Thus, a second structural control 

developed, trending north-south. In the Lower Givetian, the whole Eifel region was bounded 

by a tectonic high within the southern part of the synclinorium (KREBS 1974). 

 

 

3.2.3 STRATIGRAPHY: “TYPE EIFELIAN” VS. REGIONAL STRATIGRAPHIC 

DENOMINATION OF THE GEROLSTEIN SYNCLINE 

 

The Middle Devonian sequence of the Eifel is subdivided into several 

formations, subformations and members (Tab. 3.2.1.1), which are separated by lithological as 

well as faunal criteria. The reference profile is the so called “Type Eifelian Profile” within the 

Hillesheim Syncline (STRUVE 1982a; STRUVE & WERNER 1982). Because of the facies 

complexity within the Limestone Synclinorium (see above), several members have a 

restricted regional extent and detailed stratigraphic nomenclature differ from the Type 

Eifelian. 

The Gerolstein Syncline, from which the crinoids described here were 

discovered, is dominated by Lower Givetian deposits, which clearly differ from the Type 

Eifelian area. Therefore, several local members of the Loogh and Cürten formations were 

established by WINTER (1965) [Tab. 3.2.1.2]. He also differentiated Gerolstein southwestern 

from a northeastern regional facies, whose differences were clearly visible at the times of the 

Cürten Formation. 
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The Lower Givetian of the Gerolstein Syncline is represented by poorly 

exposed strata of the uppermost Ahbach Formation and by the lime-marl successions of the 

overlying Loogh and Cürten formations, which together with younger dolomitised formations 

(Tab. 3.2.1.1-2) dominate the syncline. 

The base of the Loogh Formation is distinguished by the Dachsberg Member 

(Tab. 3.2.1.2) with homogeneous limestones with sparsely preserved macrofossils (WINTER 

1965). These limestones were deposited under quiet conditions (1965, p. 307). According to 

WINTER (1965, p. 289), the Dachsberg Member is restricted to the southwest of the Gerolstein 

Syncline. Increasing shallowing of the sedimentation area led to incipient biostromal growth 

and, therefore, to facies differentiation, characterising the Baarley Member of WINTER (1965, 

pp. 289-290). Massive trochite dominated limestones and “matrix limestones” characterise the 

member. Regular limestone and marl interbedded strata increase toward the boundary of the 

Hustley Member (1965, pp. 290-292) and represent a temporary decrease in sedimentation, 

which was limited by the new appearance of stromatoporoid coral biostromes that distinguish 

Hustley Member. These biostromes with partly limy and partly marly deposits lead to a 

maximal facies differentiation at this time. 
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Formations

Members of the               
Type Eifelian within the 

Hillesheim Syncline           
(sensu STRUVE 1982a)

regional valid Members of the 
Loogh Formation within the 

Gerolstein Syncline              
(sensu WINTER 1965)

Gerolstein       
SW facies

Gerolstein       
NE faciesRodert Fm.

Hustley Mb.

Meerbüsch Mb.

Forstberg Mb.

Felschbach Mb.

Marmorwand Mb.

Bungerberg Mb.

 
TABLE 3.2.1—The lowermost Lower Givetian stratigraphy of the “Type Eifelian Profile” sensu STRUVE 

(1982a) [1] and comparison with the regional valid Member of the Cürten and Loogh formations (grey) 

within the Gerolstein SW and NE facies (after WINTER 1965) [2]. 
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The type locality of the Hustley Member is close to the NESG and, thus, next 

to the crinoid localities discussed here. The Hustley Member is generally dominated by 

encrinitic limestones of minor thicknesses, limestone banks, massive “matrix limestones” and 

greenish to brighter ochre or brownish marls. Because of the lateral facies interfingering, all 

rock types were developed side by side. In the study area, local marl packages of several 

meters are interrupted by isolated stromatoporoid coral biostromes. The biostromes locally 

interfinger with limestone banks or limestone marl interbedded strata. A diverse 

macroinvertebrate fauna was recovered, especially within the marly sediments, including the 

hexacrinitid species described in the present study. 

From the base to the top of the Loogh Formation, continuous facies 

complications, increase of biostromal developments and a successive shallowing of the sea 

are recorded. This corresponds with the increase in the number of the species and individuals 

(WINTER 1965, p. 309). 

In contrast to the Loogh Formation, the overlying Cürten Formation in the 

southwestern part of the Gerolstein Syncline can be compared to the Type Eifelian. However, 

because of distinctive facies peculiarities within the northeastern part of the Gerolstein 

Syncline, WINTER (1965, pp. 292-304) defined a restructuring of the Cürten Formation in this 

region (Tab. 3.2.1.2). 

He attributed the northeast/southwest differentiation of the Cürten Formation 

mainly to a lack of the typical limestone-marl interbedded strata (Felschbach and Forstbach 

members) in the southwestern part of the Gerolstein Syncline within the northeast. He 

discussed two possible reasons: 1, the different characteristics could be an evidence for a 

suspected sedimentary adjournment in the northeast; 2, the Felschbach and Forstbach 

members of the northeastern part could be developed in a Hustley- and/or Meerbüsch-like 

facies. 

 

 

3.2.4  FACIES REFLECTING OF THE PRESERVED CRINOID ASSOCIATIONS 

 

The facies complexity of the Lower Givetian deposits in the Gerolstein 

Syncline is also reflected in the preserved crinoid associations of the Loogh Formation. The 

higher hydrodynamic turbulence within the biostromal habitats led to a congregation of 

crinoids with robust skeletons, like cupressocrinitids (BOHATÝ 2005a; 2006b) and some 

gasterocomoids (BOHATÝ 2006a). Habitats dominated by lower hydrodynamic turbulence 
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were mainly populated by hexacrinitids, rhipidocrinids and eucalyptocrinids. This simplified 

model must commonly be modified where facies intergrade. Some localities at the NESG are 

dominated by numerous lateral facies interfingering (see above), which leads to a 

commingling of the crinoid associations at the marginal areas. However, for practical 

purposes, WINTER’s facies and stratigraphic differentiation can also be traced with crinoids. 

 

 

3.2.5  CRINOID FAUNA 

 

The crinoid fauna at the NESG is dominated by Megaradialocrinus elongatus 

(GOLDFUSS, 1839) n. comb.7; Eucalyptocrinites rosaceus GOLDFUSS, 1831; Rhipidocrinus 

crenatus (GOLDFUSS, 1831); Abbreviatocrinites abbreviatus (GOLDFUSS, 1839); A. inflatus 

(SCHULTZE, 1866) and Cupressocrinites crassus GOLDFUSS, 1831, as reported by BOHATÝ 

(2006e, p. 263). The locality is most famous for an outstanding diversity of the monobathrid 

camerate genus Megaradialocrinus, which clearly dominates the crinoid association. Other 

hexacrinitid genera are comparatively rare. The most frequent Hexacrinites is H. 

pateraeformis (SCHULTZE, 1866). The bulk of the recorded crinoids consist of isolated aboral 

cups. Likewise, the new species described below are known only from excellently preserved, 

isolated aboral cups. 

 

 

3.2.6  MATERIAL AND METHODS 

 

  Type specimens are deposited in the Forschungsinstitut und Naturmuseum 

Senckenberg, Frankfurt am Main, Germany (SMF), the Steinmann-Institut für Geologie, 

Mineralogie und Paläontologie der Rheinischen Friedrich-Wilhelms-Universität Bonn, 

Germany (IPB) and the Nanjing Institute of Geology and Palaeontology, Academia Sinica, 

Nanjing, China (NIGP). Additional original specimens from the ancient collections are stored 

in the following institutions and museums: Institut für Geologie und Mineralogie der 

Universität zu Köln, Germany (GIK) and the Museum für Naturkunde der Humboldt-

Universität zu Berlin, Germany (MB.E.). Other studied crinoids are deposited in private 

collections (abbreviations CREF and CR.L) and are accessible through contact with the 

author. 

                                                 
7  = Megaradialocrinus elongatus (GOLDFUSS, 1839) sensu ICZN 
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In addition to a detailed analysis of previously published data and original 

material, this study focuses on skeletal features, mainly observed in recently discovered 

crinoids. They were prepared using micro sand-streaming methods, as well as fine pneumatic 

probes, and studied with a binocular microscope. Photographs of NH4Cl whitened crinoids 

were arranged using digital image editing software. 

Crinoid descriptive terms follows MOORE & TEICHERT (1978) with the 

following exception: measurement terms follow WEBSTER & JELL (1999). The capitalisation 

of the Givetian subdivisions follows BECKER (2005; 2007). 

 

 

3.2.7  SYSTEMATIC PALAEONTOLOGY 

 

3.2.7.1  Crinoid systematic 

 

3.2.7.1.1 Family Hexacrinitidae 

 

Subclass Camerata WACHSMUTH & SPRINGER, 1885 

Order Monobathrida MOORE & LAUDON, 1943 

Suborder Compsocrinina UBAGHS, 1978 

Superfamily Hexacrinitoidea WACHSMUTH & SPRINGER, 1885 

Family Hexacrinitidae WACHSMUTH & SPRINGER, 1885 

 

Diagnosis.—Aboral cup medium cone- to bowl-shaped, with low to 

moderately high tegmen; basals three, subequal; primanal generally of approximately same 

size as radials or narrower; tegmen stout, composed of small to medium sized plates, orals and 

ambulacrals commonly distinct; anal opening directly through tegmen or at end of short tube; 

primibrachials typically not incorporated in aboral cup but commonly joined with interradial 

tegminal plates; tegmen typically inflated, rarely flat, with one (e.g. in Megaradialocrinus) or 

typically two (e.g. in Hexacrinites) posterior interradial plates below the subcentral anal 

opening; arms two in each ray, branching; uniserial (e.g. in Megaradialocrinus) or biserial 

(e.g. in Hexacrinites); column circular in cross section with single subcircular to pentalobate 

axial canal (modified after UBAGHS 1978, p. T473). 
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New assigned genera.—(pers. information, G. D. WEBSTER; also see WEBSTER 

et al. in press): Megaradialocrinus (type species *M. conicus) sensu CHEN & YAO (1993, pp. 

56-57, 90; figs. 32a-b; pl. 12, figs. 9a-b) from Middle Devonian of the Heyuanzhai Formation 

(China, western Yunnan Province). 
 

 

3.2.7.1.2 Genus Hexacrinites 
 

 

 

 

FIGURE 3.2.2—Hexacrinites aboral cups. 1-3, No. CR.L-1 (col. HEIDELBERGER), Hexacrinites 

interscapularis (PHILLIPS, 1841) from the Givetian of Villmar (Lahn Syncline, eastern Rhenish Massif), 

basals slightly compressed. 1, Left anterolateral view of B ray, rest of biserial arms preserved in A ray 

(encircled), x 1.3; 2, Detail of biserial arms preserved in A ray, x 3.1; 3, Oral view, proximal biserial arms 

encircled, x 1.1; 4, No. MB.E.-2429, Hexacrinites pateraeformis (SCHULTZE, 1866) from the Hustley 

Member (upper Loogh Formation, Lower Givetian) of the northeastern slope of the railway cut near the 

station of Gerolstein (Gerolstein, Gerolstein Syncline, Eifel, Rhenish Massif), lateral view of BA interray 

with rest of biserial arms preserved in B and A ray (encircled), x 1.8. 
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Genus Hexacrinites AUSTIN & AUSTIN, 1843 

 

Type species.—*Platycrinus interscapularis PHILLIPS, 1841 (Figs. 3.2.2.1-3). 

 

Occurrence.—After reporting the second Famennian Hexacrinites, “H. 

persiaensis” WEBSTER et al., 2007 [= (?)M. persiaensis n. comb.8] from Iran, the authors 

reassigned the Silurian (Niagaran) species, “H. carinatus” STRIMPLE, 1963, to genus 

Oehlerticrinus LE MENN, 1975 (non “Olertecrinus” sensu WEBSTER et al.). The second 

Silurian species, “Hexacrinites adaensis STRIMPLE, 1952”, respectively “Oehlerticrinus 

adaensis (STRIMPLE, 1952) n. comb.” sensu WEBSTER et al. (2007) [non “Olertecrinus 

adaensis” (2007, p. 1104)], is herein reassigned to genus Megaradialocrinus. 

The Carboniferous “H. carboniferus YAKOVLEV & IVANOV, 1956” was placed 

in the genus Ivanovaecrinus by ARENDT (1983), and “H. mississippiensis LANE & 

SEVASTOPULO, 1986” presumably does not belong to the genus. Therefore, Hexacrinites is 

solely Devonian (pers. information, G. C. MCINTOSH). Cosmopolitan (WEBSTER 2003). 

 

Diagnosis.—Crown wide and long; aboral cup wide and bowl-shaped, 

composed of three typically wider than long basals, forming a very low, wide and bowl-

shaped basal circlet and five “spadeblade-shaped” radials (see BOHATÝ 2008, p. 17; figs. 4a-

i), which are narrower than the primanal; primibrachials reduced in some species and may be 

concealed by the first secundibrachials which rest directly on radials; anus subcentral or 

marginal on tegmen; tegmen wide, composed of pentagonal and/or hexagonal plates, with 

typically two posterior interradial plates below the subcentral anal opening; free biserial arms 

(Figs. 3.2.2.1-3), branching, two in each ray, bearing ramuli, arms either directly biserial from 

the first secundibrachial or in higher secundibrachials after a few uniserial secundibrachials; 

the distal-most brachials of biserial arms are uniserial, becoming biserial as the arm lengthen; 

column circular in cross section, smooth or with external sculpturing or spines, with single 

subcircular to pentalobate axial canal. 

 

Species included.— (?)Hexacrinites antares PROKOP, 1982 [isolated radials]; 

(?)H. ariel PROKOP, 1982 [isolated radials]; (?)H. bacca (SCHULTZE, 1866) [a hitherto 

unconsidered younger synonym is “Hexacrinites eifeliensis” HAUSER, 2004; compare HAUSER 

                                                 
8  = (?)M. persiaensis (WEBSTER et al., 2007) sensu ICZN 
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(2001, pl. 4; figs. 1, 1a-b) and HAUSER (2004, p. 24; textfig. 19; pl. 2, fig. 12)]; (?)H. 

brownlawi JELL & JELL, 1999 [ornament very similar to Arthroacantha mamelonifera 

(THOMAS, 1924)]; H. granifer (RÖMER, 1852); H. interscapularis (PHILLIPS, 1841) [a 

hitherto unconsidered younger synonym (compare to WEBSTER 2003) is Hexacrinites 

depressus (AUSTIN & AUSTIN, 1845), compare to WHIDBORNE (1895, p. 190)]; H. 

pateraeformis (SCHULTZE, 1866) [a hitherto unconsidered younger synonym is “H. 

magnificus” sensu QUENSTEDT (1866, p. 740; fig. 153); therefore, “H. magnificus” sensu 

HAUSER (2006c, published on private web-page = nomen nudum; 2007a, p. 13; figs. 4a-c) is 

an invalid homonym sensu ICZN article 10.6. and, herein, renamed as Megaradialocrinus 

globohirsutus n. nov.9]; (?)H. rosthorni (CHARLESWORTH in FRECH, 1914); H. stellaris 

(RÖMER, 1851) [possibly, a younger synonym of H. interscapularis (study in progress)]; H. 

symmetricus (QUENSTEDT, 1866); H. websteri HAUSER, 2001 [a hitherto unconsidered 

younger synonym is “Hexacrinites johannesmuelleri” sensu HAUSER (2004; compare 2004, p. 

32; figs. 33 with 31) with a privately published “holotype” deposited in private collection 

(sic!)]; (?)H. yeltyschewae MILICINA, 1989. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.2.3—Hexacrinites pateraeformis (SCHULTZE, 1866), aboral cups from the Hustley Member 

(Loogh Formation, lowermost Lower Givetian) of the northeastern slope of the railway cut near the station 

of Gerolstein (Gerolstein Syncline, Eifel, Rhenish Massif). 1, No. GIK-1950 (field-no. CREF33a-HEIN-10) 

with a favositid coral encrusted on CB interray (arrow), posterior view of the primanal, x 1.5; 2, No. GIK-

1951 (field-no. CREF33a-HEIN-11), right anterolateral view of E ray, x 2.6. 

                                                 
9  = Megaradialocrinus globohirsutus BOHATÝ, in press sensu ICZN 
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Genera and species excluded from genus Hexacrinites, not assigned to the 

genus Megaradialocrinus.—“Hexacrinites carinatus” STRIMPLE, 1963 = Oehlerticrinus 

carinatus (STRIMPLE, 1952) n. comb. sensu WEBSTER et al. (2007) [non “Olertecrinus” 

carinatus sensu WEBSTER et al. (2007, p. 1104)]. “Hexacrintes prescheri” HAUSER, 2001 = 

“H. prescher” sensu HAUSER (2004, appendix, p. 38) = Arthroacantha sp. 

HAUSER (2008, p. 32; figs. 72-73; pl. 1, fig. 6) established the species 

“Hexacrinites hosticus” based on a single, atypical aboral cup, deposited in the private 

collection of Mr. HARALD PRESCHER (Kerpen Horrem, Germany). Contrary to the statement 

of HAUSER (2008, p. 32) that this crinoid is available for scientific purposes, Mr. PRESCHER 

briefed the author that he does not know about HAUSER’s assessment and that this fossil is not 

available for this sort of private publication. It is, therefore, taxonomically not available and 

decided nomen nudum. 

 

 

3.2.7.2   Hexacrinites species from the Gerolstein railroad property 

 

3.2.7.2.1 Species Hexacrinites pateraeformis 

 

Hexacrinites pateraeformis (SCHULTZE, 1866) 

Figs. 3.2.2.4, 3.2.3.1-2 

 

• Hexacrinites pateraeformis (SCHULTZE, 1867). BASSLER & MOODEY, 1943, p. 510. 

YAKOVLEV, 1964, p. 60; fig. 72. MIESEN, 1971, p. 41; figs. 58, 58a-e; 61, unnumbered 

figures below right and left. WEBSTER, 1973, p. 148. HAUSER, 1997, p. 13. HAUSER, 2001, 

p. 12; fig. 8; pp. 145, 195. WEBSTER, 2003, internet edition of the Bibliography and Index of 

Palaeozoic crinoids (cum syn.). 

• Hexacrinus pateraeformis. SCHULTZE, 1866, pp. 87-884; pl. 10, figs. 4, 4a-e. QUENSTEDT, 

1866, p. 565. BATHER in LANKESTER, 1900, p. 159; fig. 72. YAKOVLEV, 1930, p. 907; pl. 1, 

figs. 1a-b. BASSLER & MOODEY, 1943, p. 510. 

• Hexacrinites pateriformis (SCHULTZE, 1867). HAUSER, 1997, pp. 156-157, 229-230, 256; 

pls. 54, figs. 3-5; 55, figs. (?)1, 2-3. 

• Hexacrinus magnificus. QUENSTEDT, 1866, p. 740; fig. 153. QUENSTEDT, 1876, p. 565; pl. 
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109, figs. 67, 67D-U. non “H. magnificus” sensu HAUSER (2006c, published on private web-

page = nomen nudum (vidi); 2007a, p. 13; figs. 4a-c = invalid homonym sensu ICZN article 

10.6., herein renamed as Megaradialocrinus globohirsutus n. nov.10]. 

• Hexacrinus hieroglyphicus. QUENSTEDT, 1876, p. 565; pl. 109, figs. 68, 68d. non 

“Platycrinites hieroglyphicus” = Hexacrinites hieroglyphicus (GOLDFUSS, 1839) = valid 

species sensu BOHATÝ & HERBIG (2007). 

• “Triplaricrinites exsculptus GOLDFUSS”. Mentioned via SCHULTZE, 1866, pp. 87-88 = 

unfigured H. pateraeformis basals. 

 

Diagnosis.—Crown wide, with bowl-shaped aboral cup, plates very large, 

“spadeblade-shaped” radials (Figs. 3.2.2.4, 3.2.3.1-2) and bowl-shaped basal circlet; plate 

sculpturing minor to distinctive meandering crinkles and hieroglyphic impressions, 

characteristic plate boundaries are uneven and intermesh with each other; radial facet 

corrigated; tegmen flat, composed of numerous pentagonal to hexagonal plates; with two 

posterior interradials below the subcentral anal opening; arms biserial (Fig. 3.2.2.4), 

branching heterotomous; stem facet shallowly impressed, no flange; column circular in cross 

section, with single axial canal, subcircular to pentalobate in cross section. 

 

 

3.2.7.2.2 Species (?)Hexacrinites bacca 

 

(?)Hexacrinites bacca (SCHULTZE, 1866) 

for lithographs and photos see SCHULTZE (1866, pl. 10, figs. 5, 5a-c) 

and HAUSER (2001, pl. 4, figs. 1, 1a-b) 

 

• Hexacrinites bacca (SCHULTZE, 1867). BASSLER & MOODEY, 1943, p. 507. MIESEN, 1971, 

p. 43; figs. 59, 59a-c. HAUSER, 1997, pp. 141-142. HAUSER, 2001, pp. 29-30; fig. 21; pl. 4, 

figs. 1, 1a-b. WEBSTER, 2003, internet edition of the Bibliography and Index of Palaeozoic 

crinoids (cum syn.). 

• Hexacrinus bacca. SCHULTZE, 1866, p. 83; pl. 10, figs. 5, 5a-c. BASSLER & MOODEY, 1943, 

p. 507. 

                                                 
10  = Megaradialocrinus globohirsutus BOHATÝ, in press sensu ICZN 
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• “Hexacrinites eifeliensis”. HAUSER, 2004, p. 24; fig. 19; pl. 2, fig. 12 [compare HAUSER 

2001, p. 29; fig. 21; pl. 4, figs. 1, 1a-b (vidi) and HAUSER 2004, p. 24; fig. 19; pl. 2, fig. 12]. 

 

Diagnosis.—A Hexacrinites with small and comparatively low, “capsule-

shaped” aboral cup (see HAUSER 2001, pl. 4, fig. 1; SCHULTZE 1866, pl. 10, fig. 5), composed 

of a very low, “cloverleaf-shaped” basal circlet (see HAUSER 2001, pl. 4, fig. 1b) with small 

stem impression in the centre and nearly quadrangular radials, which are arranged at right 

angles to the basal circlet; radials and primanal sculpturing few strongly developed tubercles 

and bulges at the raised plate margins that are strongly protruding toward the lateral exterior; 

arm facets oval in cross section; flat tegmen composed of numerous smooth, mostly 

pentagonal with some hexagonal plates; with two posterior interradial plates below the 

subcentral anal opening (see SCHULTZE 1866, pl. 10, fig. 5); column circular in cross section, 

with single pentalobate axial canal. 

 

 

3.2.7.3  Genus Megaradialocrinus and its species from the Gerolstein railroad 

property 

 

3.2.7.3.1 Genus Megaradialocrinus 

 

Genus Megaradialocrinus CHEN & YAO, 1993 

 

Type species.—*Megaradialocrinus conicus CHEN & YAO, 1993. 

 

The holotype of M. conicus (no. NIGP-346) was discovered within the 

Heyuanzhai Formation of the Upper Eifelian or Givetian of Heyuanzhai, Shidian County 

(China). For photos see CHEN & YAO (1993, pl. 12, figs. 9a-b) and WEBSTER et al. (in press, 

figs. 7k-m). 

 

Remark.—The valid genus name Megaradialocrinus is herein declared to have 

priority over “Subhexacrinites”. Genus “Subhexacrinites” was established by HAUSER (2004) 

for two wholly different crinoid species from the Eifel. In 1997 the author described an 

 69



3.2―Chapter II. Crinoidea, Camerata    

 

apparently new “Hexacrinites” as “*H. gerolsteiniensis HAUSER, 1997” (vidi), which he 

defined as the type species of his new genus “Subhexacrinites” in 2004. After studying the 

holotypes (Figs. 3.2.4.1-2), it is clear that species “S. gerolsteiniensis” is a typical 

“Hexacrinites brevis” [*Platycrinites brevis sensu GOLDFUSS (1839, p. 346; pl. 32, figs. 2a-

b)] with a (?)platyceratid trace on the radial circlet, wrongly interpreted as laterally positioned 

anal opening (HAUSER 2004, p. 18). Therefore, “S. gerolsteiniensis” is declared a subjective 

younger synonym of “H. brevis”. 

By separating several species (including “H. brevis”) from Hexacrinites, 

HAUSER’s genus name would have priority if not “Subhexacrinites” is herein been declared as 

junior synonym of the valid older genus name Megaradialocrinus sensu CHEN & YAO (1993) 

[pers. information, G. C. MCINTOSH; G. D. WEBSTER; O. KRAUS]. This is particularly affirmed 

by the similar aboral cup proportions of Megaradialocrinus conicus and (?)M. piriformis 

(SCHULTZE, 1866) n. comb.11 New findings of (?)M. piriformis crowns, with uniserial and 

heterotomously divided arms, support both hexacrinitids. The arms of Hexacrinites are 

biserial. However, the still unknown arms of CHEN & YAO’s type species need to validate 

these findings. 

Note that HAUSER’s second species “Subhexacrinites rommersheimensis 

HAUSER, 2004” [with a privately published “holotype” deposited in private collection (sic!)] 

does not belong to the Hexacrinitidae and has to be reappraised after deposition in a museum 

collection. 

 

 

 

 

 

FIGURE 3.2.4—Megaradialocrinus brevis (GOLDFUSS, 1839) n. comb., isolated aboral cups. 1, No. MB.E.-

2579, the cast of the inaccessible original (sic!) of “Hexacrinites gerolsteiniensis HAUSER, 1997” 

respectively “Subhexacrinites gerolsteiniensis HAUSER, 2004”, anterior view of A ray, x 3.6; the aboral cup 

is concordant with the studied holotype, no. IPB-1319 (2) of “Hexacrinites brevis” [*Platycrinites brevis 

sensu GOLDFUSS (1839, p. 346, pl. 32, figs. 2a-b)] = Megaradialocrinus brevis (GOLDFUSS, 1839) n. 

comb., left posterior view of C ray and primanal, x 4.3. 

                                                 
11  = (?)M. piriformis (SCHULTZE, 1866) sensu ICZN 
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Species included.—(?)Megaradialocrinus aberrans (WHIDBORNE, 1889) n. 

comb.12; M. adaensis (STRIMPLE, 1952) n. comb.13 [non “Olertecrinus” (= Oehlerticrinus) 

adaensis (STRIMPLE, 1952) n. comb. sensu WEBSTER et al. (2007, p. 1104)]; M. aliculatus n. 

sp.14; M. anaglypticus (GOLDFUSS, 1839) n. comb.15; M. angulosus (VON KOENEN, 1886) n. 

comb.16; M. brevis (GOLDFUSS, 1839) n. comb.17; (?)M. buchi (RÖMER, 1843) n. comb.18; 

(?)M. bulbiformis n. sp.19; M. callosus (SCHULTZE, 1866) n. comb.20; (?)M. campaniformis 

(BOHATÝ, 2008) n. comb.21; (?)M. chenae (WEBSTER & BECKER, 2009) n. comb.22; (?)M. 

chirnsidensis (JELL, 1999) n. comb.23; M. confragosus (DUBATOLOVA, 1964) n. comb.24; 

M. conicus CHEN & YAO, 1993; M. crispus (QUENSTEDT, 1861) n. comb.25 [non “H. 

crispus” sensu DUBATOLOVA (1964, p. 34; pl. 4, figs. 3-4) = M. prokopi n. comb.26 (n. nov. 

sensu BOHATÝ 2006c); for detailed descriptions of M. crispus and M. prokopi see BOHATÝ 

(2006c); hitherto unconsidered younger synonyms of M. crispus are: “Hexacrinites 

ludwigschultzei” HAUSER, 2004 and “Hexacrinites frondosus” sensu HAUSER (2004), compare 

to BOHATÝ (2006c, pp. 474-480)]; M. echinatus (SANDBERGER & SANDBERGER, 1856) n. 

comb.27; M. elongatus (GOLDFUSS, 1839) n. comb.28 [hitherto unconsidered younger 

synonyms are: “Hexacrinites planus” sensu HAUSER (2005a, published on private web-page = 

nomen nudum; 2007a, p. 6; pl. 1, fig. 1, given without diagnosis/description/differentiation, 

therefore a nomen nudum sensu ICZN; “holotype” deposited in private collection sic!) and 

“Hexacrinites breimeri” sensu HAUSER (2006d, published on private web-page = nomen 

nudum; 2007b, p. 31; fig. 4]; M. exsculptus (GOLDFUSS, 1839) n. comb.29; (?)M. faniensis 

(MAILLIEUX, 1940) n. comb.30; M. frechi (CHARLESWORTH, 1914) n. comb.31; M. gibbosus 

(BERGOUGNIOUX, 1939) n. comb.32 [a hitherto unconsidered younger synonym is 

“Hexacrinites donarius” HAUSER, 1999 (compare HAUSER 1999, pls. 19, fig. 5; 20, fig. 4)]; 
                                                 

12  = (?)Megaradialocrinus aberrans (WHIDBORNE, 1889) sensu ICZN 
13  = M. adaensis (STRIMPLE, 1952) sensu ICZN 
14  = M. aliculatus BOHATÝ, in press sensu ICZN 
15  = M. anaglypticus (GOLDFUSS, 1839) sensu ICZN 
16  = M. angulosus (VON KOENEN, 1886) sensu ICZN 
17  = M. brevis (GOLDFUSS, 1839) sensu ICZN 
18  = (?)M. buchi (RÖMER, 1843) sensu ICZN 
19  = (?)M. bulbiformis BOHATÝ, in press sensu ICZN 
20  = M. callosus (SCHULTZE, 1866) sensu ICZN 
21  = (?)M. campaniformis (BOHATÝ, 2008) sensu ICZN 
 22  = (?)M. chenae (WEBSTER & BECKER) sensu ICZN 
23  = (?)M. chirnsidensis (JELL, 1999) sensu ICZN 
24  = M. confragosus (DUBATOLOVA, 1964) sensu ICZN 
25  = M. crispus (QUENSTEDT, 1861) sensu ICZN 
26  = M. prokopi (BOHATÝ, 2006c) sensu ICZN 
27  = M. echinatus (SANDBERGER & SANDBERGER, 1856) sensu ICZN 
28  = M. elongatus (GOLDFUSS, 1839) sensu ICZN 
29  = M. exsculptus (GOLDFUSS, 1839) sensu ICZN 
30  = (?)M. faniensis (MAILLIEUX, 1940) sensu ICZN 
31  = M. frechi (CHARLESWORTH, 1914) sensu ICZN 
32  = M. gibbosus (BERGOUGNIOUX, 1939) sensu ICZN 
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M. globohirsutus n. nov.33; (?)M. granuliferus (RÖMER, 1844) n. comb.34 [hitherto 

unconsidered younger synonyms are: “Hexacrinus granulifer” sensu SANDBERGER & 

SANDBERGER (1856), “Hexacrinites microglyphicus” (WHIDBORNE, 1889) and “H. vicarii” 

(WHIDBORNE, 1889), compare RÖMER (1844, p. 63; pl. 3, fig. 4) and SANDBERGER & 

SANDBERGER (1856, p. 397; pl. 35, fig. 9) with WHIDBORNE (1889, p. 79) and WHIDBORNE 

(1895, pp. 196-197; pl. 23, figs. 1-1a, 2-2a)]; M. heidelbergeri (BOHATÝ, 2008) n. comb.35; 

M. heinorum (BOHATÝ, 2006d) n. comb.36; M. hieroglyphicus (GOLFUSS, 1839) n. comb.37 

[for detailed description and synonymy see BOHATÝ & HERBIG (2007, p. 734)]; (?)M. humei 

(SPRINGER, 1926a) n. comb.38; (?)M. infundibulum (VON KOENEN, 1886) n. comb.39; (?)M. 

inhospitalis (SCHMIDT, 1934) n. comb.40 [atypical form; further studies are necessary]; M. 

invitabilis (DUBATOLOVA, 1964) n. comb.41; M. iowensis (THOMAS, 1924) n. comb.42; (?)M. 

leai (LYON, 1869) n. comb.43; M. limbatus (MÜLLER, 1856) n. comb.44; M. lobatus 

(MÜLLER, 1857) n. comb.45; (?)M. macrotatus (AUSTIN & AUSTIN, 1845) n. comb.46 [a 

hitherto unconsidered younger synonym is “Hexacrinites taluxaiensis” sensu HAUSER (2006d, 

published on private web-page = nomen nudum; 2007b, p. 32; fig. 8; compare to the typical 

(?)M. macrotatus morphotype in WHIDBORNE 1895, pl. 22, fig. 4)]; M. marginatus 

(SCHULTZE, 1866) n. comb.47 [for detailed description and synonymy see BOHATÝ & HERBIG 

(2007, pp. 734-735)]; M. minor (DEWALQUE in FRAIPONT, 1884) n. comb.48 [hitherto 

unconsidered younger synonyms are: “Hexacrinites compactus” HAUSER, 1999; 

“Hexacrinites gosseleti” HAUSER, 1999; “Hexacrinites schnuri” HAUSER, 1999 and 

“Hexacrinites senzeilleianus” HAUSER, 1999, (compare HAUSER 1999, pls. 19, fig. 1; 21, fig. 

2; 22, fig. 2). Aboral cup CRBR6-40 figured in HAUSER (1999, pl. 19, fig. 4) as “H. 

compactus n. sp.” and in the same work (pl. 21, fig. 7) as “H. glosseti n sp.” (sic!)]; M. mui 

(XU, 1963) n. comb.49; (?)M. neuvilleanus (HAUSER, 2003) n. comb.50; (?)M. nitidus 

                                                 
33  = M. globohirsutus BOHATÝ, in press sensu ICZN 
34  = (?)M. granuliferus (RÖMER, 1844) sensu ICZN 
35  = M. heidelbergeri (BOHATÝ, 2008) sensu ICZN 
36  = M. heinorum (BOHATÝ, 2006d) sensu ICZN 
37  = M. hieroglyphicus (GOLFUSS, 1839) sensu ICZN 
38  = (?)M. humei (SPRINGER, 1926a) sensu ICZN 
39  = (?)M. infundibulum (VON KOENEN, 1886) sensu ICZN 
40  = (?)M. inhospitalis (SCHMIDT, 1934) sensu ICZN 
41  = M. invitabilis (DUBATOLOVA, 1964) sensu ICZN 
42  = M. iowensis (THOMAS, 1924) sensu ICZN 
43  = (?)M. leai (LYON, 1869) sensu ICZN 
44  = M. limbatus (MÜLLER, 1856) sensu ICZN 
45  = M. lobatus (MÜLLER, 1857) sensu ICZN 
46  = (?)M. macrotatus (AUSTIN & AUSTIN, 1845) sensu ICZN 
47  = M. marginatus (SCHULTZE, 1866) sensu ICZN 
48  = M. minor (DEWALQUE in FRAIPONT, 1884) sensu ICZN 
49  = M. mui (XU, 1963) sensu ICZN 
50  = (?)M. neuvilleanus (HAUSER, 2003) sensu ICZN 
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(HAUSER, 2002) n. comb.51 [privately published “holotype” deposited in private collection 

(sic!)]; M. nodifer (SCHULTZE, 1866) n. comb.52; M. occidentalis (WACHSMUTH & 

SPRINGER, 1897) n. comb.53; M. ornatus (GOLDFUSS, 1839) n. comb.54; (?)M. 

pentangularis (AUSTIN & AUSTIN, 1845) n. comb.55; (?)M. perarmatus (WHIDBORNE, 1889) 

n. comb.56; (?)M. persiaensis (WEBSTER et al., 2007) n. comb.57; M. piriculaformis n. sp.58; 

(?)M. piriformis (SCHULTZE, 1866) n. comb.59; M. prokopi (BOHATÝ, 2006c) n. comb.60; M. 

rigel (PROKOP, 1982) n. comb.61; M. spinosus (MÜLLER, 1856) n. comb.62; M. theissi n. 

sp.63; M. thomasbeckeri (HAUSER, 2004) n. comb.64; (?)M. trélonensis (HAUSER, 2003) n. 

comb.65; M. triradiatus (SCHULTZE, 1866) n. comb.66; M. tuberculatus (VON KOENEN, 

1886) n. comb.67 [hitherto unconsidered younger synonyms are: “Hexacrinites ardennicus” 

HAUSER, 1999 and “Hexacrinites ubaghsi” sensu HAUSER (1999, pl. 24, fig. 2 and 2a not the 

same aboral cup, as wrongly indicated by the author)]; M. turritus (BOHATÝ, 2006e) n. 

comb.68; M. unterthalensis (BOHATÝ, 2006d) n. comb.69; M. ventricosus (GOLDFUSS, 1831) 

n. comb.70; (?)M. verrucosus (DEWALQUE, 1884) n. comb.71 [hitherto unconsidered younger 

synonyms are: “Hexacrinites sartenaeri” HAUSER, 1999, compare HAUSER (1999, pl. 23, figs. 

1 and 7) and “Hexacrinites koeneni” = (?)M. verrucosus aboral cup with lost basals; oral 

view, figured in HAUSER (1999, pl. 25, fig. 5a) concordant with HAUSER (1999, pl. 23, fig. 

1a)]; (?)M. villmarensis (BOHATÝ, 2008) n. comb.72; M. winteri n. sp.73; M. yui (XU, 1963) 

n. comb.74 
 

 

                                                 
51  = (?)M. nitidus (HAUSER, 2002) sensu ICZN 
52  = M. nodifer (SCHULTZE, 1866) sensu ICZN 
53  = M. occidentalis (WACHSMUTH & SPRINGER, 1897) sensu ICZN 
54  = M. ornatus (GOLDFUSS, 1839) sensu ICZN 
55  = (?)M. pentangularis (AUSTIN & AUSTIN, 1845) sensu ICZN 
56  = (?)M. perarmatus (WHIDBORNE, 1889) sensu ICZN 
57  = (?)M. persiaensis (WEBSTER et al., 2007) sensu ICZN 
58  = M. piriculaformis BOHATÝ, in press sensu ICZN 
59  = (?)M. piriformis (SCHULTZE, 1866) sensu ICZN 
60  = M. prokopi (BOHATÝ, 2006c) sensu ICZN 
61  = M. rigel (PROKOP, 1982) sensu ICZN 
62  = M. spinosus (MÜLLER, 1856) sensu ICZN 
63  = M. theissi BOHATÝ, in press sensu ICZN 
64  = M. thomasbeckeri (HAUSER, 2004) sensu ICZN 
65  = (?)M. trélonensis (HAUSER, 2003) sensu ICZN 
66  = M. triradiatus (SCHULTZE, 1866) sensu ICZN 
67  = M. tuberculatus (VON KOENEN, 1886) sensu ICZN 
68  = M. turritus (BOHATÝ, 2006e) sensu ICZN 
69  = M. unterthalensis (BOHATÝ, 2006d) sensu ICZN 
70  = M. ventricosus (GOLDFUSS, 1831) sensu ICZN 
71  = (?)M. verrucosus (DEWALQUE, 1884) sensu ICZN 
72  = (?)M. villmarensis (BOHATÝ, 2008) sensu ICZN 
73  = M. winteri BOHATÝ, in press sensu ICZN 
74  = M. yui (XU, 1963) sensu ICZN 

 73



3.2―Chapter II. Crinoidea, Camerata    

 

Occurrence.—The genus is almost restricted to the Devonian except of one 

Silurian species, “Hexacrinites adaensis STRIMPLE, 1952”, respectively “Oehlerticrinus 

adaensis (STRIMPLE, 1952) n. comb.” sensu WEBSTER et al. (2007) [non “Olertecrinus 

adaensis” (2007, p. 1104)], from the Niagaran (Henryhouse Formation, upper part of Decatur 

Limestone) of Tennessee (Oklahoma, U.S.A.), which is herein reassigned to genus 

Megaradialocrinus. Cosmopolitan (WEBSTER 2003). 

 

Diagnosis (emend.).—Crown short or elongated and long; aboral cup 

composed of three subequal basals followed by six plates within radial circlet (primanal 

generally somewhat narrower than radials), plates rarely smooth, typical moderately or 

strongly sculptured; aboral cup cylindrical to moderately inverted coniform, long or short; 

first primibrachials axillary and so reduced in some species as to be concealed by first 

secundibrachials, which rest directly on radials; anus subcentral or marginal on tegmen; 

tegmen flat or moderately to strongly inflated, typically composed of moderately to strongly 

convex polygonal plates (modified proximal ambulacral plates) and either convex or flat 

polygonal orals, with single posterior interradial plate below the subcentral anal opening; free 

arms strictly uniserial, two rami in each ray, either straight- or moderately to strongly zigzag 

(see models, Figs. 3.2.8.1-5); rami branching heterotomously with somewhat narrower, 

bilateral and unbranched ramules, number and length of ramules variable; two primibrachials, 

primibrachial 1 greatly reduced and covered by the axillary primibrachial 2, brachials 

typically wide and U-shaped, compound, possessing two (bipinnulated) to rarely four pinnules 

each except on typically asymmetrical to nearly symmetrical, pentagonal or, rarely, triangular 

axillaries (Fig. 3.2.8.4); number of brachials and axillaries variable; column circular in cross 

section, smooth or with external sculpturing or spines, with single axial canal, subcircular or 

pentalobate in cross section. 

 

Differentiation analysis.—In contrast to Megaradialocrinus, Hexacrinites 

developed wide, bowl-shaped aboral cups. The wide tegmen, with typically two instead of 

one posterior interradial plate below the subcentral anal opening, is composed of numerous, 

mostly flat pentagonal and/or hexagonal plates, in contrast to the fewer, mostly convex plates 

of Megaradialocrinus. The specimens assigned herein to Megaradialocrinus are also 

distinguished by uniserial arms. Hexacrinites developed biserial arms either directly from the 

first secundibrachial or in higher secundibrachials after a few uniserial secundibrachials; the 

distal-most brachials of biserial arms are uniserial, becoming biserial as the arm lengthens. 
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Remarks.—A model of known variations of the arms of Megaradialocrinus is 

illustrated in Figs. 3.2.8.1-5. It has to be noted that HAUSER (2008, p. 30; fig. 66) wrongly 

interpreted those “Hexacrinites” with regularly five uniserial arms (= Megaradialocrinus) as a 

genus with four arms and one additional branch, which is only developed in the distal-most 

part of the right rami in C, B, E and D rays. The latter mistake is presumably based on one 

anomalous M. brevis crown, which was taken as a model in SCHULTZE (1866, p. 71; fig. 14). 

This developmental anomaly is recognised in one crown of M. marginatus (see left rami in B 

ray of the crown figured in BOHATÝ & HERBIG 2007, p. 733; fig. 4) with one regenerated, 

smaller and irregularly branched arm. Obviously, the disadvantage of smaller regenerated 

arms is counterbalanced by additional branching and, therefore, by an increased pinnulated 

surface. 

 

Megaradialocrinus species from the Gerolstein railroad property.—The 

following listing is an overview of the previously poorly documented Megaradialocrinus 

species at the NESG and their synonyms; ordered by their abundance – from the most 

common species M. elongatus to the rarer taxa. 

 

 

3.2.7.3.2 Species Megaradialocrinus elongatus 

 

Megaradialocrinus elongatus (GOLDFUSS, 1839) n. comb.75 

Figs. 3.2.5.1-10 

 

• Hexacrinites elongatus (GOLDFUSS, 1839). BASSLER & MOODEY, 1943, p. 508. MIESEN, 

1971, p. 39; figs. 54, 54a-g, non fig. 54h (= M. cf. exsculptus n. comb.76); p. 59, the two 

upper figures (unnumbered). WEBSTER, 1973, p. 148. HAUSER, 1997, pp. 144-145; pls. 45, 

figs. 2-5, non fig. 1 (= M. exsculptus n. comb.77); 46, figs. 1-6; 47, figs. 1-4. HAUSER, 2001, 

pls. 8, fig. 3; 25, fig. 1. WEBSTER, 2003, internet edition of the Bibliography and Index of 

Palaeozoic crinoids (cum syn.). 

                                                 
75  = Megaradialocrinus elongatus (GOLDFUSS, 1839) sensu ICZN 
76  = M. cf. exsculptus (GOLDFUSS, 1839) sensu ICZN 
77  = M. exsculptus (GOLDFUSS, 1839) sensu ICZN 

 75



3.2―Chapter II. Crinoidea, Camerata    

 

• vidi Platycrinites elongatus. GOLDFUSS, 1839, p. 345; pl. 32, figs. 1a-c. BASSLER & 

MOODEY, 1943, p. 508. 

• Platycrinus elongatus (GOLDFUSS, 1839). BRONN, 1848, p. 993. D’ORBIGNY, 1850, p. 156. 

DUJARDIN & HUPÉ, 1862, p. 155. 

• Hexacrinus elongatus (GOLDFUSS, 1839). SCHULTZE, 1866, p. 74; pl. 9, figs. 4, 4a-i. ZITTEL, 

1880, pp. 332, 365; figs. 227, 253a-c. QUENSTEDT, 1885, p. 953; pl. 76, fig. 19. ZITTEL, 

1895, pp. 119, 128; figs. 230a-b, 242a-c. BEYER, 1896, p. 89; pl. 3, fig. 77. ZITTEL, 1903, p. 

130; figs. 242a-b. GÜRICH, 1909, p. 109; pl. 33, figs. 6a-c. BASSLER & MOODEY, 1943, p. 

508. SIEVERTS-DORECK, 1950, p. 80; figs. 1a-c. WEBSTER, 1973, p. 148. 

• “Hexacrinites planus” HAUSER, 2005a [published on private web-page = nomen nudum; 

2007a, p. 6; pl. 1, fig. 8, given without diagnosis/description/differentiation, therefore 

decided nomen nudum sensu ICZN; (“holotype” deposited in private collection sic!)]. 

• “Hexacrinites breimeri” sensu HAUSER [2006d, published on private web-page = nomen 

nudum (sic!); 2007b, p. 31; fig. 4]. 

 

Diagnosis.—A Megaradialocrinus with an elongated, cylindrical crown and 

long, mostly inverted coniform-shaped aboral cup (Figs. 3.2.5.1-4), rarely low and bowl-

shaped; very rarely, the cup is sloping in the CD interray or in the A ray direction (Figs. 

3.2.5.9-10; also see SIEVERTS-DORECK (1950, p. 81; figs. 1a-c); basal circlet inverted 

coniform, composed of three basal plates nearly as long as wide, with a smooth stem 

impression surrounded by tripartite basal flanges; radials five, long and somewhat wider than 

the primanal, surface of plates moderately sculptured by low ridges or sparsely anastomosing 

ridges; tegmen either with convex plates (Figs. 3.2.5.4, 3.2.5.10) or with flat orals (Fig. 

3.2.5.2) and convex inflated proximal ambulacra and madreporite plates (this results in all 

transitions between convex and inflated tegmen); with a single posterior interradial plate 

below the subcentral anal opening; anus opening marginal of tegmen, sometimes surrounded 

by short and blunt spines; free strictly uniserial arms, two long rami in each ray, straight-lined 

(see model, Fig. 3.2.8.1); numerous rami branching heterotomously with slender and 

relatively short, bilateral and unbranched ramules; two primibrachials, primibrachial 1 greatly 

reduced and covered by the axillary primibrachial 2, brachials low and wide, U-shaped, 

compound, possessing (?)two pinnules each (bipinnulated) except on asymmetrical and 

pentagonal axillaries; column circular in cross section, with single pentalobate axial canal. 
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3.2.7.3.3 Species Megaradialocrinus marginatus 

 

Megaradialocrinus marginatus (SCHULTZE, 1866) n. comb.78 

Figs. 3.2.5.11-13 

 

• Hexacrinites marginatus (SCHULTZE, 1866). HAUSER, 2001, p. 11; fig. 7. BOHATÝ & 

HERBIG, 2007, pp. 731-736; figs. 1, 2A-C, 4, 6A-C, 7A-K (cum syn.). WEBSTER, 2003 

(pars), Hexacrinites marginatus, internet edition of the Bibliography and Index of 

Palaeozoic crinoids. 

• Hexacrinus ornatus marginatus. SCHULTZE, 1866, p. 82; figs. 9, 9a-b (referring to the figure 

at the top of the plate). BASSLER & MOODEY, 1943, p. 510. 

• Hexacrinites ornatus marginatus (SCHULTZE, 1866). BASSLER & MOODEY, 1943, p. 510. 

• Hexacrinites marginata (SCHULTZE, 1866). HAUSER, 1997, pp. 152-153. HAUSER, 2001, p. 

194. 

• sic! vidi Hexacrinites aff. marginata (SCHULTZE, 1866). HAUSER, 1997, pl. 53, fig. 4 (= 

holotype of M. hieroglyphicus n. comb.79). 

• sic! Hexacrinites hieroglyphicus (GOLDFUSS, 1839). HAUSER, 2004, p. 28; fig. 26 (= 

holotype of M. marginatus n. comb.80). 

• Hexacrinus exculptus (GOLDF.). DOHM, 1976, p. 36; fig. 25. 

 

Diagnosis.—Crown (BOHATÝ & HERBIG 2007, p. 733; fig. 4) elongate, 

approximately cylindrical; aboral cup slightly longer than wide; five radials, all longer than 

wide, bordered by external, sometimes slightly sculptured bulges protruding toward the 

exterior, centre of radials always concave and smooth (Figs. 3.2.5.11-13); primanal either 

analogous to radials or with small, elongate, “bead-shaped” spike (2007, p. 735; fig. 7); basals 

wider than long and lower than radials, either shaped like radials or planar; tegmen 

moderately inflated; with a single posterior interradial plate below the subcentral anal 

opening; free strictly uniserial arms, two rami in each ray, zigzag; rami branching 

heterotomously with long, bilateral, unbranched and long ramules, nearly as wide as rami; 

two primibrachials, primibrachial 1 greatly reduced and covered by the axillary primibrachial 

                                                 
78  = Megaradialocrinus marginatus (SCHULTZE, 1866) sensu ICZN 
79  = M. hieroglyphicus (GOLDFUSS, 1839) sensu ICZN 
80  = M. marginatus (SCHULTZE, 1866) sensu ICZN 
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2, brachials low, wide and U-shaped, compound, possessing two [to (?)four] pinnules each 

except on characteristically small, symmetrical and triangular axillaries (see model, Fig. 

3.2.8.4), which are surrounded by three hexagonal brachials; column circular in cross section, 

with single pentalobate axial canal; colour of plates black, only in strongly weathered aboral 

cups brownish (2007, pp. 734-735). 

 

 

3.2.7.3.4 Species Megaradialocrinus brevis 

 

Megaradialocrinus brevis (GOLDFUSS, 1839) n. comb.81 

Figs. 3.2.4.1-2, 3.2.5.14-24, (?)3.2.5.25 

 

• Hexacrinites brevis (GOLDFUSS, 1839). BASSLER & MOODEY, 1943, p. 507. MIESEN, 1971, 

p. 43; figs. 61, 61a-c. HAUSER, 1997, p. 142; pl. 43, figs. 1-7; non pl. 44, fig. 1 (= 

Megaradialocrinus indet.). HAUSER, 2001, pl. 9, fig. 6. WEBSTER, 2003, internet edition of 

the Bibliography and Index of Palaeozoic crinoids (cum syn.). 

• vidi *Platycrinites brevis. GOLDFUSS, 1839, p. 346; pl. 32, figs. 2a-b. BASSLER & MOODEY, 

1943, p. 507. 

• Platycrinus brevis (GOLDFUSS, 1839). BRONN, 1848, p. 993. DUJARDIN & HUPÉ, 1862, p. 

155. 

• Hexacrinus brevis (GOLDFUSS, 1839). SANDBERGER & SANDBERGER, 1856, p. 398; pl. 35, 

figs. 11-11a. SCHULTZE, 1866, p. 79; pl. 10, figs. 7, 7a-c. HOLZAPFEL, 1895, p. 302. 

BASSLER & MOODEY, 1943, p. 507. 

• vidi “Hexacrinites gerolsteiniensis”. HAUSER, 1997, pp. 147-148; fig. 44; pl. 49, fig. 1 (= 

juvenile aboral cup of M. brevis n. comb.82 with a (?)platyceratid trace at the radial circlet). 

• vidi “Subhexacrinites gerolsteiniensis”. HAUSER, 2004, pp. 17-22; fig. 17; pl. 1, fig. 5 (= 

juvenile aboral cup of M. brevis n. comb.83 with a (?)platyceratid trace at the radial circlet). 

• (?)Hexacrinites brevis (GOLDFUSS 1839). BOHATÝ, 2008, pp. 10-11; figs. 1a-b. 

 

Diagnosis.—A Megaradialocrinus with a low crown (see HAUSER 1997, pl. 

43, figs. 1, 4-7) and a small and low aboral cup [Figs. 3.2.4.1-2, 3.2.5.14-24, (?)3.2.5.25], 

composed of three low and wide basals, five slightly longer than wide radials with maximal 

width near the radial facet and primanal with maximal width toward the basal circlet; plates 
                                                 

81  = Megaradialocrinus brevis (GOLDFUSS, 1839) sensu ICZN 
82  = M. brevis (GOLDFUSS, 1839) sensu ICZN 
83  = M. brevis (GOLDFUSS, 1839) sensu ICZN 
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mostly smooth, in some cases, especially the lower regions of the radials, slightly projecting 

bulges or a few, low tubercles; stem impression relatively wide, impressed and sometimes 

surrounded by ring-shaped basal flanges; tegmen inflated (Figs. 3.2.5.18-20), composed of 

smooth, very convex plates; with a single posterior interradial plate below the subcentral anal 

opening; free strictly uniserial arms, two rami in each ray, zigzag (see model, Fig. 3.2.8.3); 

rami branching heterotomous with long, somewhat narrower, bilateral and unbranched 

ramules; two primibrachials, primibrachial 1 greatly reduced and covered by the axillary 

primibrachial 2, brachials wide and U-shaped, compound, possessing two pinnules each 

(bipinnulated) except on asymmetrical and pentagonal axillaries; column circular in cross 

section, with single pentalobate axial canal. 

 

 

3.2.7.3.5 Species Megaradialocrinus ornatus 

 

Megaradialocrinus ornatus (GOLDFUSS, 1839) n. comb.84 

Figs. 3.2.5.26, 3.2.6.20 

 

• Hexacrinites ornatus (GOLDFUSS, 1839). BASSLER & MOODEY, 1943, p. 510. MIESEN, 1971, 

p. 35; figs. 48, 48a-c, 48c2, 48f; non p. 63, unnumbered figure below right (= M. cf. 

exsculptus n. comb.85). HAUSER, 1997, p. 154; pl. 52, fig. 1. HAUSER, 2001, pls. 5, fig. 1; 9, 

fig. 2; 25, figs. 3-(?)3a [= M. aff. hieroglyphicus n. comb.86]. WEBSTER, 2003, internet 

edition of the Bibliography and Index of Palaeozoic crinoids (cum syn.). HAUSER, 2004, p. 

30; fig. 29. 

• Platycrinites ornatus. GOLDFUSS, 1839, p. 347. BASSLER & MOODEY, 1943, p. 510. 

Platycrinus ornatus (GOLDFUSS, 1839). BRONN, 1848, p. 993. DUJARDIN & HUPÉ, 1862, p. 

155. 

• Hexacrinus ornatus (GOLDFUSS, 1839). SCHULTZE, 1866, p. 82; pl. 8, figs. 4, 4a-f; 10, fig. 9. 

HOLZAPFEL, 1895, p. 302. BEYER, 1896, p. 89; pl. 3, fig. 78. BASSLER & MOODEY, 1943, p. 

510. 

• sic! vidi Hexacrinites exsculptus (GOLDF., 1838). HAUSER, 1997, pl. 52, fig. 6 (= lectotype 

of M. ornatus n. comb.87). 

• (?)Hexacrinites ornatus (GOLDFUSS, 1839). BOHATÝ, 2008, p. 12; fig. 2e. 

                                                 
84  = Megaradialocrinus ornatus (GOLDFUSS, 1839) sensu ICZN 
85  = M. cf. exsculptus (GOLDFUSS, 1839) sensu ICZN 
86  = M. aff. hieroglyphicus (GOLDFUSS, 1839) sensu ICZN 
87  = M. ornatus (GOLDFUSS, 1839) sensu ICZN 
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FIGURE 3.2.5 (legend p. 81) 

 
 

 80



3.2―Chapter II. Crinoidea, Camerata    

 

FIGURE 3.2.5 (see p. 80)—Megaradialocrinus aboral cups from the Hustley Member (Loogh Formation, 

lowermost Lower Givetian) of the northeastern slope of the railway cut near the station of Gerolstein 

(Gerolstein Syncline, Eifel, Rhenish Massif) [1-12, 17-25], from the Hustley Member of Pelm, to the east 

of Gerolstein [13-16], and from the Baarley Member (Loogh Formation, lowermost Lower Givetian) of the 

“Mühlenwäldchen”, SW-Gerolstein [26]. 1-10, Megaradialocrinus elongatus (GOLDFUSS, 1839) n. comb. 

1, No. GIK-1952 (field-no. CREF33a-HEIN-12), right posterior view of D ray, x 1.9; 2, No. GIK-1953 

(field-no. CREF33a-Hein-13), left anterolateral view of B ray, x 1.5; 3, No. GIK-1954 (field-no. CREF33a-

HEIN-14), right anterolateral view of E ray, showing preserved lowermost part of uniserial arms (encircled), 

x 1.6; 4, No. GIK-1955 (field-no. CREF33a-HEIN-15), right anterolateral view of E ray, showing inflated 

tegmen and proximal part of stem preserved, x 1.6; 5, No. GIK-1956 (field-no. CREF33a-HEIN-16), lateral 

view of an abnormal aboral cup, with one shortened radial plate within DE interray, x 1.6; 6, No. GIK-1957 

(field-no. CREF33a-HEIN-17), lateral view of an abnormal aboral cup, with three additional plates within 

CB interray, x 1.7; 7, No. GIK-1958 (field-no. CREF33a-HEIN-18), left anterolateral view of an abnormal 

aboral cup, radial B horizontal divided, x 2.4; 8, No. GIK-1959 (field-no. CREF33a-HEIN-19), lateral view 

of an abnormal, juvenile aboral cup, with one additional plate intercalated within CB interray, x 3.1; 9, No. 

GIK-1960 (field-no. CREF33a-HEIN-20), lateral view of CB interray, the aboral cup is sloping in anal 

direction, x 1.4; 10, No. GIK-1961 (field-no. CREF33a-HEIN-21), lateral view of ED interray, the low 

aboral cup, showing inflated tegmen, is sloping in anal direction, x 1.3; 11-13, Megaradialocrinus 

marginatus (SCHULTZE, 1866) n. comb.; 11, No. GIK-1962 (field-no. CREF33a-PRESCHER), aboral left 

anterolateral view of stem impression and E ray of aboral cup, x 1.8; 12, No. GIK-1963 (field-no. 

CREF33a-BOHATÝ-41), posterior view of primanal and posterior interradial plate (arrow) of aboral cup, x 

2.0; 13, No. IPB-BOHATÝ-2, left anterolateral view of E ray, showing external bulges protruding toward the 

exterior, thus resulting in lowered and smooth centre of radials and basals, x 2.7; 14-24, Megaradialocrinus 

brevis (GOLDFUSS, 1839) n. comb. 14-16, Holotype, no. IPB-1319, right posterior view of D ray (14); left 

posterior view of C ray and primanal (15); aboral view (16), x 3.7; 17, No. GIK-1964 (field-no. CREF33a-

HEIN-22), right posterior view of D ray, x 3.4; 18-21, No. GIK-1965 (field-no. CREF33a-HEIN-23), aboral 

cup with preserved tegmen; lateral view of AE interray (18); posterior view of primanal and posterior 

interradial plate (arrow) [19]; oral view (20); aboral view (21), x 2.5; 22, No. GIK-1966 (field-no. 

CREF33a-HEIN-24), posterior view of primanal, x 4.0; 23, No. GIK-1967 (field-no. CREF33a-HEIN-25), 

lateral view of AE interray, x 2.4; 24, No. GIK-1968 (field-no. CREF33a-HEIN-26), lateral view of DE 

interray, x 4.2; 25, No. GIK-1969 (field-no. CREF33a-HEIN-27), Megaradialocrinus cf. brevis (GOLDFUSS, 

1839) n. comb., low and ornamented morphotype(?), anterior view of A ray, x 3.2; 26, No. GIK-1970 

(field-no. CREF41-BOHATÝ-1), Megaradialocrinus ornatus (GOLDFUSS, 1839) n. comb., left anterolateral 

view of B ray, x 1.4. 
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Diagnosis.—A Megaradialocrinus with a low crown and a low bowl-shaped 

aboral cup, composed of three low, wider than long basals and five radials nearly as long as 

wide, and somewhat wider than the primanal; plates very convex and bulbous with typically 

three very coarse radiating ridges at the radial surface (Figs. 3.2.5.26, 3.2.6.20) and low 

tubercles at the basal surface; stem impression wide, impressed; arms heterotomously 

branching after the proximal branch, free strictly uniserial arms, short and small; two rami in 

each ray, zigzag arrangement of brachials; rami branching heterotomously with moderately 

long, somewhat narrower, bilateral and unbranched ramules; two primibrachials, 

primibrachial 1 greatly reduced and covered by the axillary primibrachial 2, brachials wide 

and U-shaped, compound, possessing (?)two pinnules each (bipinnulated) except on 

asymmetrical and pentagonal axillaries; column circular in cross section, with single 

pentalobate axial canal; tegmen and posterior interradial plate unknown. 

 

 

3.2.7.3.6 Species Megaradialocrinus exsculptus 

 

Megaradialocrinus exsculptus (GOLDFUSS, 1839) n. comb.88 

Figs. 3.2.6.1-3 

 

• Hexacrinites exsculptus (GOLDFUSS, 1839). BASSLER & MOODEY, 1943, p. 508. MIESEN, 

1971, p. 37; figs. 51, 51a-d, non figs. 51e-g (= M. aliculatus n. sp.89). HAUSER, 1997, p. 145; 

pls. 47, figs. 5-6; 48, figs. 2-4, (?)5, 6; 52, figs. 2, non fig. 4 (= M. aliculatus n. sp.90), (?)5 

[= M. aff. aliculatus n. sp.91], non fig. 6 [= lectotype of M. ornatus n. comb.92 (sic!)]. 

HAUSER, 2001, pls. 6, fig. 2; 8, figs. 5-5a. WEBSTER, 2003 (pars), Hexacrinites exsculptus, 

internet edition of the Bibliography and Index of Palaeozoic crinoids. HAUSER, 2004, p. 30; 

fig. 30. 

• vidi Platycrinites exsculptus. GOLDFUSS, 1839, p. 347; pl. 32, figs. 3a-c. BASSLER & 

MOODEY, 1943, p. 508. 

• Platycrinus exsculptus (GOLDFUSS, 1839). BRONN, 1848, p. 993. DUJARDIN & HUPÉ, 1862, 

p. 155. 
• Hexacrinus exsculptus (GOLDFUSS, 1839). SCHULTZE, 1866, pp. 77-78; pl. 9, figs. 2, 2b-c, 

                                                 
88  = Megaradialocrinus exsculptus (GOLDFUSS, 1839) sensu ICZN 
89  = M. aliculatus BOHATÝ, in press sensu ICZN 
90  = M. aliculatus BOHATÝ, in press sensu ICZN 
91  = M. aff. aliculatus BOHATÝ, in press sensu ICZN 
92  = M. ornatus (GOLDFUSS, 1839) sensu ICZN 
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non figs. 2d-f (= M. aliculatus n. sp.93), 2g-(?)2h [= M. cf. exsculptus n. comb.94]. 
QUENSTEDT, 1885, p. 952; pl. 76, fig. 18. HOLZAPFEL, 1895, p. 302. PAECKELMANN, 1913, 
p. 335. BASSLER & MOODEY, 1943, p. 508. 

• non Hexacrinus exsculptus GF. sp. STEINMANN, 1903, p 175; figs. 241A-B. STEINMANN, 
1907, p. 195; figs. 276A-B. STEINMANN & DÖDERLEIN, 1890, p. 160; figs. 160A-B (= M. 
aliculatus n. sp.95). 

• Hexacrinites elongatus GOLDF. MIESEN, 1971, p. 39; fig. 54h (= M. cf. exsculptus n. 
comb.96). 

• Hexacrinites cf. elongatus (GOLDF., 1838). HAUSER, 1997, pl. 45, fig. 1. 
• Hexacrinites sp. (ornatus?). MIESEN, 1971, p. 63, unnumbered figure below right (= M. cf. 

exsculptus n. comb.97). 
 

Diagnosis.—A Megaradialocrinus with a low and slightly cone-shaped crown, 
composed of a large inverted coniform aboral cup (Figs. 3.2.6.1-3), widest lateral radius of the 
cup within the uppermost radial circlet; typically with long radials or rarely low and bowl-
shaped; three basals, wider than long, the five radials nearly as long as wide; radials and the 
wider primanal are rarely smooth, typically with anastomising ridges and/or bulges, coarse 
ridges may parallel plate boundaries; impression of stem relatively wide and slightly 
impressed; tegmen high and inflated (Figs. 3.2.6.1-3), with a single, elongated and “rod-
shaped” posterior interradial plate (see HAUSER 1997, pl. 48, fig. 3) below the subcentral anal 
opening; relatively slender arms with heterotomous branching after the proximal branch, free 
strictly uniserial arms, short and small; two rami in each ray, zigzag arrangement of brachials; 
rami branching heterotomously with moderately long, slender, bilateral and unbranched 
ramules; two primibrachials, primibrachial 1 greatly reduced and covered by the axillary 
primibrachial 2, brachials wide and U-shaped, compound, possessing (?)two pinnules each 
(bipinnulated) except on asymmetrical and pentagonal axillaries; plates brownish. 
 
 
3.2.7.3.7 Species Megaradialocrinus winteri 
 

Megaradialocrinus winteri n. sp.98 
Figs. 3.2.6.21-26 

(for synonymy and description see 3.2.7.4.2) 
                                                 

93  = M. aliculatus BOHATÝ, in press sensu ICZN 
94  = M. cf. exsculptus (GOLDFUSS, 1839) sensu ICZN 
95  = M. aliculatus BOHATÝ, in press sensu ICZN 
96  = M. cf. exsculptus (GOLDFUSS, 1839) sensu ICZN 
97  = M. cf. exsculptus (GOLDFUSS, 1839) sensu ICZN 
98  = Megaradialocrinus winteri BOHATÝ, in press sensu ICZN 
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FIGURE 3.2.6 (legend p. 85) 

 
 

 84



3.2―Chapter II. Crinoidea, Camerata    

 

FIGURE 3.2.6 (see p. 84)—Megaradialocrinus aboral cups from the Hustley Member (Loogh Formation, 

lowermost Lower Givetian) of the northeastern slope of the railway cut near the station of Gerolstein 

(Gerolstein Syncline, Eifel, Rhenish Massif) [2, 4-16, 21-26], from the Eifelian/Givetian threshold of 

Kerpen (Hillesheim Syncline, Eifel) [1, 17], from the Hustley Member of Berlingen (Gerolstein Syncline) 

[3] and from the Baarley Member (Loogh Formation, lowermost Lower Givetian) of the 

“Mühlenwäldchen”, SW-Gerolstein [18-20]. 1-3, Megaradialocrinus exsculptus (GOLDFUSS, 1839) n. 

comb. 1, No. GIK-1971, anterior view of A ray, typical low morphotype, x 1.2; 2, No. GIK-1972 (field-no. 

CREF33a-HEIN-43), left anterolateral view of B ray, typical long morphotype, x 1.1; 3, No. GIK-1973 

(field-no. CREF38-HEIN-1), anterior view of A ray, typical long morphotype, x 1.1; 4-7, 

Megaradialocrinus aliculatus n. sp. 4, No. GIK-1974 (field-no. CREF33a-HEIN-28), lateral view of BA 

interray, x 1.8; 5, Holotype, no. SMF-75473, anterior view of A ray, x 1.1; 6, No. GIK-1975 (field-no. 

CREF33a-HEIN-29), right anterolateral view of E ray of the strongly ornamented aboral cup, x 1.6; 7, No. 

GIK-1976 (field-no. CREF33a-HEIN-30), left posterior view of primanal with posterior interradial plate 

(arrow) and C ray, showing external bulges protruding toward the exterior, thus resulting in lowered plate 

centres, x 1.3; 8-11, Megaradialocrinus anaglypticus (GOLDFUSS, 1839) n. comb. 8, No. GIK-1977 (field-

no. CREF33a-HEIN-31), lateral view of EA interray, x 1.4; 9, No. GIK-1978 (field-no. CREF33a-HEIN-32), 

right anterolateral view of E ray, x 1.2; 10, No. GIK-1979 (field-no. CREF33a-HEIN-33), left posterior 

view of C ray, x 1.3; 11, No. GIK-1980 (field-no. CREF33a-HEIN-34), lateral view of AE interray, x 2.0; 

12-15, Megaradialocrinus turritus (BOHATÝ, 2006e) n. comb. 12, Holotype, no. MB.E.-2364, anterior 

view of A ray, x 1.2; 13, No. GIK-1981 (field-no. CREF33a-turritus-HEIN-2), inverted coniform aboral 

cup, proximal part of uniserial arms preserved (encircled), left anterolateral view of EA interray, x 1.4; 14, 

No. GIK-1982 (field-no. CREF33a-turritus-HEIN-3), aboral cup with well preserved ornamentation, left 

lateral view with E and D ray, x 1.3; 15, No. GIK-1983 (field-no. CREF33a-turritus-HEIN-4), left 

anterolateral view of EA interray, x 1.6; 16-17, (?)Megaradialocrinus piriformis (SCHULTZE, 1866) n. 

comb.; 16, No. GIK-1984 (field-no. CREF33a-HEIN-35), lateral view of primanal and C ray, x 1.5; 17, No. 

GIK-1985, right anterolateral view of E ray, x 1.1; 18-19, Megaradialocrinus hieroglyphicus (GOLDFUSS, 

1839) n. comb. Holotype, no. IPB-GOLDFUSS-1317, aboral view of stem impression and DE interray (18) 

and left anterolateral view of E ray (19) of the strongly weathered aboral cup, radials ornamented by 

radiating bulges, x 1.4; 20, No. CREF41-1 (col. JANKE), Megaradialocrinus ornatus (GOLDFUSS, 1839) n. 

comb. with affinities to M. hieroglyphicus (GOLDFUSS, 1839) n. comb., anterior view of A ray, x 1.4; 21-

26, Megaradialocrinus winteri n. sp.; 21, No. GIK-1986 (field-no. CREF33a-HEIN-36) with lost 

primibrachials, lateral view of DE interray, x 1.8; 22, No. GIK-1987 (field-no. CREF33a-HEIN-37) with 

preserved primibrachials, lateral view of DE interray, x 2.2; 23, Holotype, no. SMF-75474, lateral view of 

CB interray, x 1.5; 24-26, No. GIK-1988 (field-no. CREF33a-HEIN-38) with preserved primibrachials and 

tegmen, anterior view of A ray (24); oral view (25); aboral view (26), x 2.1. 
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3.2.7.3.8 Species Megaradialocrinus anaglypticus 

 

Megaradialocrinus anaglypticus (GOLDFUSS, 1839) n. comb.99 

Figs. 3.2.6.8-11 

 

• Hexacrinites anaglypticus (GOLDFUSS, 1839). BASSLER & MOODEY, 1943, p. 507. MIESEN, 

1971, p. 33; figs. 44-44a, (?)44c, 45a, non fig. 44b (= M. crispus n. comb.100); non p. 35; 

figs. 45, 45b-c (= M. crispus n. comb.101); 60, unnumbered figure above left. MURRAY, 

1990, p. 185; figs. 7.4.4A-B. HAUSER, 1997, pp. 139-141; pls. 40, figs. 1-5; 41, figs. 1-6; 

42, figs. 1-2, non figs. 3-6 (= M. crispus n. comb.102). HAUSER, 2001, non p. 11; fig. 5, non 

figs. 4, 6 (= M. crispus n. comb.103); pls. 8, fig. 1; 25, figs. 2-2a. WEBSTER, 2003 (pars) 

Hexacrinites anaglypticus, internet edition of the Bibliography and Index of Palaeozoic 

crinoids. 

• vidi Platycrinites anaglypticus. GOLDFUSS, 1839, p. 348; pl. 32, fig. 4. BASSLER & 

MOODEY, 1943, p. 507. SPRENG & PARKS, 1953, p. 594; figs. 1e, h. WEBSTER, 1977, p. 96. 

SMITH, 1985, p. 166; pl. 7.4.4. WEBSTER, 1988, p. 94. 

• Platycrinus anaglypticus (GOLDFUSS, 1839). BRONN, 1848, p. 993. DUJARDIN & HUPÉ, 

1862, p. 155. 

• Hexacrinus anaglypticus (GOLDFUSS, 1839). SCHULTZE, 1866, pp. 72-74; pl. 8, figs. 1, 1a-b, 

1h, non figs. 1c-g, 1i (= M. crispus n. comb.104). WILSON, 1916, p. 510; pl. 3, figs. 5-6. 

WANNER, 1943, p. 37; unnum. fig. p. 37. BASSLER & MOODEY, 1943, p. 507. WEBSTER, 

1977, p. 96. 

• Hexacrinus anaglypticus var. granulosa. SCHULTZE, 1866, p. 73; pl. 8, fig. 1h. BASSLER & 

MOODEY, 1943, p. 507. 

• Hexacrinites anaglypticus granulosa (SCHULTZE, 1867). HAUSER, 1997, p. 139. 

• non Hexacrinites anaglypticus aff. granulosa (SCHULTZE, 1867). HAUSER, 1997, p. 139; pl. 

42, figs. 3-4 (= M. crispus n. comb.105). 

• Hexacrinites anaglypticus granulosus (SCHULTZE, 1866). BASSLER & MOODEY, 1943, p. 

507. HAUSER, 2001, p. 11; fig. 5. WEBSTER, 2003, internet edition of the Bibliography and 

Index of Palaeozoic crinoids (cum syn.). 

                                                 
99  = Megaradialocrinus anaglypticus (GOLDFUSS, 1839) sensu ICZN 
100  = M. crispus (QUENSTEDT, 1861) sensu ICZN 
101  = M. crispus (QUENSTEDT, 1861) sensu ICZN 
102  = M. crispus (QUENSTEDT, 1861) sensu ICZN 
103  = M. crispus (QUENSTEDT, 1861) sensu ICZN 
104  = M. crispus (QUENSTEDT, 1861) sensu ICZN 
105  = M. crispus (QUENSTEDT, 1861) sensu ICZN 
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Diagnosis.—A Megaradialocrinus with long, inverted coniform aboral cup 

(Figs. 3.2.6.8-11); basal circlet inverted coniform, composed of three slightly wider than long 

basals, with a smooth stem impression surrounded by tripartite basal flanges; radials five, long 

and somewhat wider than the primanal, surface of plates sculptured by mostly horizontal 

depressions or slightly meandering ridges and intermediary tubercles at the radial centres (Fig. 

3.2.6.9); tegmen flat, composed of numerous plates, which are sculptured with low, generally 

irregularly arranged tubercles and/or spines; with a single posterior interradial plate below the 

subcentral anal opening; column circular in cross section, with single pentalobate axial canal; 

arms unknown. 

 

 

3.2.7.3.9 Species Megaradialocrinus turritus 

 

Megaradialocrinus turritus (BOHATÝ, 2006e) n. comb.106 

Figs. 3.2.6.12-15 

 

• vidi Hexacrinites turritus. BOHATÝ, 2006e, figs 2, 6.1-6.11 (cum syn.). 

• Hexacrinites triradiatus (SCHULTZE, 1867). HAUSER, 1997, pls. 53, fig. 6 [= holotype of M. 

turritus (BOHATÝ, 2006e) n. comb.107 (vidi)]; 54, figs. 1-2. 

• vidi Hexacrinites thomasbeckeri. HAUSER, 2004, pl. 2, figs. 7-8. 

 

Diagnosis.—Crown (BOHATÝ 2006e, p. 264; fig. 2) slender; aboral cup longer 

than wide, conical to “tower-shaped” (Figs. 3.2.6.12-15); basal circlet inverted coniform, 

composed of three slightly wider than long basals, with a smooth stem impression; radials 

five, long and somewhat wider than the primanal; plates sculptured with low, generally 

irregularly arranged tubercles, very infrequently (especially in juvenile aboral cups) the plates 

are sculptured with discontinuous low and irregularly arranged nodes to sinuous ridges and 

tubercles forming extremely faint lines parallel to plate edges on radials and/or lines parallel 

to the proximal sutures of radials; free strictly uniserial arms, two rami in each ray, nearly 

straight- to slightly zigzag; rami branching heterotomously with somewhat narrower, bilateral 

and unbranched ramules; two primibrachials, primibrachial 1 greatly reduced and covered by 

the axillary primibrachial 2, brachials three to four times wider than long, ornamented with 
                                                 

106  = Megaradialocrinus turritus (BOHATÝ, 2006e) sensu ICZN 
107  = M. turritus (BOHATÝ, 2006e) sensu ICZN 
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fine granules (see 2006, p. 264; fig. 2), U-shaped and compound, possessing (?)two pinnules 

each (bipinnulated) except on asymmetrical and pentagonal axillaries; column circular in 

cross section, with single pentalobate axial canal and sculptured with regularly arranged 

tubercles; tegmen and posterior interradial plate unknown. 

 

 

3.2.7.3.10 Species (?)Megaradialocrinus piriformis 

 

(?)Megaradialocrinus piriformis (SCHULTZE, 1866) n. comb.108 

Figs. 3.2.6.16-17 

 

• Hexacrinites piriformis (SCHULTZE, 1867). BASSLER & MOODEY, 1943, p. 510. WEBSTER, 

1973, p. 148. WEBSTER, 2003, internet edition of the Bibliography and Index of Palaeozoic 

crinoids (cum syn.). 

• Hexacrinites piriformis (SCHULTZE, 1866). HAUSER, 2001, p. 36; figs. 26; pl. 7, fig. 3. 

• Hexacrinus piriformis. SCHULTZE, 1866, pp. 76-77. BASSLER & MOODEY, 1943, p. 510. 

• Hexacrinus pyriformis. SCHULTZE, 1866, pl. 10, figs. 1, 1a-b, (?)1c. 

• Hexacrinites pyriformis (SCHULTZE, 1867). MIESEN, 1971, p. 39; figs. 55, 55a-b, (?)55c. 

HAUSER, 1997, p. 161; pl. 52, fig. 8. 

 

Diagnosis.—A large (?)Megaradialocrinus with a presumably long crown, and 

an elongated “pear-shaped” aboral cup (Figs. 3.2.6.16-17); basal circlet long and inverted 

coniform, composed of three basal plates nearly as long as wide; radial circlet composed of 

long radials and a somewhat narrower primanal, all slightly longer than wide, radial circlet 

inflated toward the lateral exterior; plates either smooth or typically microgranulated, 

sometimes slightly facetted parallel to the plate edges; stem impression moderately impressed; 

free strictly uniserial arms, two zigzagged rami in each ray; rami branching heterotomously 

with bilateral and unbranched ramules; two primibrachials, primibrachial 1 greatly reduced 

and covered by the axillary primibrachial 2, brachials U-shaped, compound, possessing 

(?)two pinnules each (bipinnulated) except on asymmetrical axillaries; column circular in 

cross section, with single pentalobate axial canal; tegmen and posterior interradial plate 

unknown. 
 
                                                 

108  = (?)Megaradialocrinus piriformis (SCHULTZE, 1866) sensu ICZN 
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3.2.7.3.11 Species Megaradialocrinus hieroglyphicus 

 

Megaradialocrinus hieroglyphicus (GOLDFUSS, 1839) n. comb.109 

Figs. 3.2.6.18-19 

 

• Hexacrinites hieroglyphicus (GOLDFUSS, 1839). HAUSER, 2004, pp. 27-31; figs. 24-25, 27-

28; pl. 2, figs. 2a-b, 3; non p. 28; fig. 26 [= holotype of M. marginatus (SCHULTZE, 1866) n. 

comb.110 (sic!)]. BOHATÝ & HERBIG, 2007, pp. 731-735; figs. 3A-C, 5A-H. 

• vidi Platycrinites hieroglyphicus. GOLDFUSS, 1839, p. 344; pl. 31, figs. 9a-b. BRONN, 1848, 

p. 993. D’OEBIGUY, 1850, p. 103. DUJARDIN & HUPÉ, 1862, p. 152. BASSLER & MOODEY, 

1943, p. 621. WEBSTER, 2003, internet edition of the Bibliography and Index of Palaeozoic 

crinoids, pars Platycrinites hieroglyphicus. 

• non Hexacrinus hieroglyphicus (GOLDFUSS, 1839). QUENSTEDT, 1876, pl. 109, fig. 68 [= 

Hexacrinites pateraeformis (SCHULTZE, 1866)]. 

• Hexacrinites marginata (SCHULTZE, 1866). HAUSER, 1997, pp. 152-153; pl. 50, figs. 7-8. 

(fig. 8 = oral view of fig. 7, not of fig. 6 as given in the explanation). 

• sic! vidi Hexacrinites aff. marginata (SCHULTZE, 1866). HAUSER, 1997, pl. 53, fig. 4 [= 

holotype of M. hieroglyphicus (GOLDFUSS, 1839) n. comb.111]. 

• (?)Hexacrinites ornatus (G. A. GOLDFUSS, 1839). HAUSER, 2001, pl. 25, figs. (?)3-3a [= M. 

aff. hieroglyphicus (GOLDFUSS, 1839) n. comb.112]. 

• sic! vidi Hexacrinites (?)ornatus (GOLDFUSS, 1839). HAUSER, 1997, p. 213 [= holotype of 

M. hieroglyphicus (GOLDFUSS, 1839) n. comb.113]. 

• sic! vidi Hexacrinites sp. HAUSER, 2001, p. 183 [= holotype of M. hieroglyphicus 

(GOLDFUSS, 1839) n. comb.114]. 

 

Diagnosis.—A Megaradialocrinus with a massive aboral cup, composed of 

three wider than long basals, forming a low basal circlet and five radials nearly as long as 

wide, somewhat wider than the primanal; radials and primanal sculptured with four to six 

radiating ridges and rarely by variously formed minor ridges between, all plate sculpturing 

strongly protruding toward the exterior, especially in radials (Figs. 3.2.6.18-19); plate 

                                                 
109  = Megaradialocrinus hieroglyphicus (GOLDFUSS, 1839) sensu ICZN 
110  = M. marginatus (SCHULTZE, 1866) sensu ICZN 
111  = M. hieroglyphicus (GOLDFUSS, 1839) sensu ICZN 
112  = M. aff. hieroglyphicus (GOLDFUSS, 1839) sensu ICZN 
113  = M. hieroglyphicus (GOLDFUSS, 1839) sensu ICZN 
114  = M. hieroglyphicus (GOLDFUSS, 1839) sensu ICZN 
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boundaries impressed, which cover most of the central part of the radials; tegmen moderately 

inflated; with a single posterior interradial plate below the subcentral anal opening; plates 

brown or rarely grey (BOHATÝ & HERBIG 2007); stem impression relatively small and 

surrounded by the wide basis of the aboral cup; column circular in cross section, with single 

pentalobate axial canal; arms unknown. 

 

 

3.2.7.3.12 Species Megaradialocrinus aliculatus 

 

Megaradialocrinus aliculatus n. sp.115 

Figs. 3.2.6.4-7 

(for synonymy and description see 3.2.7.4.1) 

 

 

3.2.7.3.13 Species Megaradialocrinus limbatus 

 

Megaradialocrinus limbatus (MÜLLER, 1856) n. comb.116 

Figs. 3.2.7.1-4 

 

• Hexacrinites limbatus (MÜLLER, 1856). BASSLER & MOODEY, 1943, p. 509. MIESEN, 1971, 

p. 37; figs. 50, 50a-c. UBAGHS in MOORE & TEICHERT, 1978, p. T474; fig. 279, no. 1d. 

WEBSTER, 1986, p. 170. HAUSER, 1997, pp. 149-150; pl. 50, figs. 1-3. HAUSER, 2001, pl. 28, 

fig. 4. WEBSTER, 2003, internet edition of the Bibliography and Index of Palaeozoic crinoids 

(cum syn.). 

• Hexacrinus limbatus. MÜLLER, 1856, p. 354; pls. 1, figs. 5-9; 2, fig. 1. SCHULTZE, 1866, p. 

78; pl. 9, figs. 1, 1a-e. BASSLER & MOODEY, 1943, p. 509. 

• Hexacrinites cf. limbatus (J. MUELLER, 1856). HAUSER, 2001, pl. 28, fig. 3. 

 

Diagnosis.—A Megaradialocrinus with a long crown (compare to SCHULTZE 

1866, pl. 9, fig. 1) and a short “pear-shaped” aboral cup (Figs. 3.2.7.1-4), composed of three 

basals, lower than radials, forming a low inverted coniform basis and five radials longer than 

wide and somewhat wider than the primanal, radial circlet inflated toward the lateral exterior; 

plates smooth or sometimes slightly facetted parallel to the plate edges; tegmen less convex, 
                                                 

115  = Megaradialocrinus aliculatus BOHATÝ, in press sensu ICZN 
116  = Megaradialocrinus limbatus (MÜLLER, 1856) sensu ICZN 
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with a single, elongated and “rod-shaped” posterior interradial plate below the subcentral anal 

opening, with vertically arranged spines (most likely a defence against platyceratid 

gastropods, compare to Figs. 3.2.9.2-3) giving the plate a “cockscomb-shaped” surface (Figs. 

3.2.7.1-2, 3.2.7.4; also see model, Fig. 3.2.9.3); impression of stem moderately concave, 

typically surrounded by ring-shaped flange (Fig. 3.2.7.1); free strictly uniserial arms, two rami 

in each ray, zigzag (SCHULTZE 1866, pl. 9, fig. 1; also see model, Fig. 3.2.8.2); rami 

branching heterotomously with narrower, bilateral and unbranched ramules; two 

primibrachials, primibrachial 1 greatly reduced and covered by the axillary primibrachial 2, 

brachials wide and U-shaped, compound, possessing (?)two pinnules each (bipinnulated) 

except on asymmetrical and pentagonal axillaries; stem circular in cross section, smooth latus, 

without cirri, perforated by a small, single axial canal with pentalobate cross section. 

 

 

3.2.7.3.14 Species Megaradialocrinus piriculaformis 

 

Megaradialocrinus piriculaformis n. sp.117 

Figs. 3.2.7.5-7 

(for synonymy and description see 3.2.7.4.3) 

 

 

3.2.7.3.15 Species Megaradialocrinus lobatus 

 

Megaradialocrinus lobatus (MÜLLER, 1856) n. comb.118 

for lithography and photos see SCHULTZE (1866, pl. 10, figs. 6, 6a-c) 

and HAUSER (2001, pl. 12, figs. 1-1a) 

 

• Hexacrinites lobatus (MÜLLER, 1856). BASSLER & MOODEY, 1943, p. 509. MIESEN, 1971, p. 

43; figs. 60, 60a-c. POLYARNARYA, 1986, p. 79; unnum. pl., figs. 1, 3. WEBSTER, 1993, p. 

68. HAUSER, 1997, pp. 150-152. WEBSTER, 2003, internet edition of the Bibliography and 

Index of Palaeozoic crinoids (cum syn.). 

• vidi Hexacrinus lobatus. MÜLLER, 1857, p. 248; pl. 1, figs. 10-12. SCHULTZE, 1866, p. 84; 

pl. 10, figs. 6, 6a-c. QUENSTEDT, 1885, p. 953; pl. 76, fig. 21. BASSLER & MOODEY, 1943, p. 

509. 
                                                 

117  = Megaradialocrinus piriculaformis BOHATÝ, in press sensu ICZN 
118  = Megaradialocrinus lobatus (MÜLLER, 1856) sensu ICZN 
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• Hexacrinites cf. lobatus (MUELLER, 1856). HAUSER, 1997, pl. 50, figs. 5-6. 

• vidi Hexacrinites lobatus (L. SCHULTZE). HAUSER, 2001, pl. 12, figs. 1-1a [= holotype of M. 

lobatus (MÜLLER, 1856) n. comb.119; authorship wrongly assigned to DR. LUDWIG 

SCHULTZE]. 

 

Diagnosis.—A relatively small Megaradialocrinus with low bowl-shaped 

aboral cup, composed of three wide basals surrounding the small stem impression with 

irregularly developed nodes that project proximally – “lobe-shaped” – from basal plates 

(SCHULTZE 1866, pl. 10, figs. 6-6a) and five radials wider than long and somewhat wider than 

primanal, radials and primanal sculptured at the proximal sutures by “lobe-shaped” 

sculpturing or blunt spines, which strongly protrude toward the lateral or aboral exterior; arm 

facets small and laterally salient; massive tegmen, composed of few massive, convex 

modified ambulacral plates, very convex orals, and a characteristic “funnel-shaped” spine at 

the central tegminal plate (most likely a defence against platyceratid gastropods) [see HAUSER 

2001, pl. 12, figs. 1-1a], length of tegmen 50% of the complete length of aboral cup; with a 

single posterior interradial plate below the subcentral anal opening; stem circular in cross 

section, perforated by a small, single axial canal with pentalobate cross section; arms 

unknown. 

 

 

3.2.7.3.16 Species Megaradialocrinus callosus 

 

Megaradialocrinus callosus (SCHULTZE, 1866) n. comb.120 

Fig. 3.2.7.9 

 

• Hexacrinites callosus (SCHULTZE, 1867). BASSLER & MOODEY, 1943, p. 507. MIESEN, 1971, 

p. 39; figs. 52, 52a-e. HAUSER, 1997, pp. 143-144; non pl. 51, figs. 4-6 [= H. websteri 

HAUSER, 2001; also given as pl. 77, fig. 2, but there is no plate 77]. WEBSTER, 2003, 

internet edition of the Bibliography and Index of Palaeozoic crinoids (cum syn.). 

• Hexacrinus callosus. SCHULTZE, 1866, pp. 83-84; pl. 9, figs. 3, 3a-e. BASSLER & MOODEY, 

1943, p. 507. 

• non Hexacrinites cf. callosus (SCHULTZE, 1867). HAUSER, 1997, pl. 51, fig. 3. (= H. 

websteri HAUSER, 2001). 
                                                 

119  = M. lobatus (MÜLLER, 1856) sensu ICZN 
120  = Megaradialocrinus callosus (SCHULTZE, 1866) sensu ICZN 
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• Hexacrinites aff. callosus (SCHULTZE, 1867). HAUSER, 1997, pl. 44, fig. 2. 
• vidi non Hexacrinites sp. aff. Hexacrinites callosus (SCHULTZE, 1867). HAUSER, 1997, pl. 

53, fig. 1 (= Megaradialocrinus winteri n. sp.121). 
 

Diagnosis.—A relatively small Megaradialocrinus with a low bowl-shaped 
aboral cup, composed of massive plates: three very low basals, forming a low, wide “tyre-
shaped” basal circlet (Fig. 3.2.7.9) and five massive and wide radials, which are somewhat 
wider than primanal and longer than basals; radials and primanal forming a quadrangular 
outline in oral view, radials and primanal typically smooth, rarely adorned with blunt 
tubercles mostly at the proximal sutures of radials; impression of stem moderately impressed; 
stem circular in cross section, perforated by a small, single axial canal with pentalobate cross 
section; arms, tegmen and posterior interradial plate unknown. 
 
 
3.2.7.3.17 Species Megaradialocrinus crispus 
 

Megaradialocrinus crispus (QUENSTEDT, 1861) n. comb.122 
Figs. 3.2.7.10-12 

 
• Hexacrinites crispus (QUENSTEDT, 1861). BOHATÝ, 2006c, figs. 1a-d, 2a-d, 3a-f. WEBSTER, 

2003, internet edition of the Bibliography and Index of Palaeozoic crinoids (pars), non “H. 
crispus” sensu DUBATOLOVA (1964: p. 34; pl. 4, figs. 3-4) [= “Hexacrinites prokopi” n. nov. 
sensu BOHATÝ (2006c) = M. prokopi (BOHATÝ 2006c) n. comb.123]. 

• vidi Hexacrinus crispus QUENSTEDT, 1861, p. 327, unnum. woodcut. QUENSTEDT, 1876, p. 
562; pl. 109, fig. 58. QUENSTEDT, 1885, p. 952; fig. 357. BASSLER & MOODEY, 1943, p. 507. 

• Hexacrinus anaglypticus var. stellaris. SCHULTZE, 1866, pp. 72-74; pl. 8, figs. 1c-g. 
MIESEN, 1971, pls. 11, fig. 44b; 12, figs. 45b-c. 

• Hexacrinites anaglypticus stellaris HAUSER, 2001, p. 11; fig. 6. 
• Hexacrinites anaglypticus aff. stellaris (SCHULTZE, 1867). HAUSER, 1997, pp. 139-141; pl. 

42, fig. 6. 
• Hexacrinus anaglypticus var. frondosa (Platycrinus frondosus GOLDF. Mus. Bonn). 

SCHULTZE, 1866, pl. 8, fig. 1i. MIESEN, 1971, pl. 12, fig. 45. 
• vidi Hexacrinites anaglypticus aff. frondosa (SCHULTZE, 1867). HAUSER, 1997, pp. 139-

141; pl. 42, fig. 5. 
                                                 

121  = Megaradialocrinus winteri BOHATÝ, in press sensu ICZN 
122  = Megaradialocrinus crispus (QUENSTEDT, 1861) sensu ICZN 
123  = M. prokopi (BOHATÝ 2006c) sensu ICZN 
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• Hexacrinites anaglypticus frondosus (SCHULTZE, 1867). HAUSER, 2001, p. 11; fig. 4. 
• “Hexacrinites frondosus n. comb.” sensu HAUSER, 2004, pp. 26-27; figs. 20-21. 
• vidi Hexacrinites anaglypticus aff. granulosa (SCHULTZE, 1867). HAUSER, 1997, pp. 139-

141; pl. 42, figs. 3-4. 
• “Hexacrinites ludwigschultzei”. HAUSER, 2004, pp. 33-35; figs. 34-36 [compare HAUSER, 

2004, fig. 21 (“H. frondosus”) with fig. 34 (“H. ludwigschultzei”)]. 
 

Diagnosis.—Aboral cup wider than long, bowl-shaped, composed of three 
basals wider than long, forming a low and wide basal circlet and five radials nearly as long as 
wide, wider than the primanal and twice as long as the basals; all plates sculptured by 
irregular anastomosing ridges (QUENSTEDT 1861, p. 327; 1876, p. 562); structures either 
unoriented (Fig. 3.2.7.10) or slight to strong radiating ridges (QUENSTEDT 1876, pl. 109, fig. 
58; SCHULTZE 1866, pl. 8, fig. 1i) [Figs. 3.2.7.11-12]; tegmen moderately inflated, composed 
of numerous plates, which are sculptured by short spines and tubercles and a characteristic, 
single posterior interradial plate below the subcentral anal opening (see model, Fig. 3.2.9.2), 
with a massive spine at the surface (most likely a defence against platyceratid gastropods, 
compare to Figs. 3.2.9.2-3); impression of stem wide and moderately concave; stem circular 
in cross section, perforated by a small, single axial canal with pentalobate cross section; arms 
unknown. 
 
 
3.2.7.3.18 Species Megaradialocrinus theissi 
 

Megaradialocrinus theissi n. sp.124 
Figs. 3.2.7.13-17 

(for synonymy and description see 3.2.7.4.4) 
 
 
 
3.2.7.3.19 Species (?)Megaradialocrinus bulbiformis 
 

(?)Megaradialocrinus bulbiformis n. sp.125 
Figs. 3.2.7.8 

(for synonymy and description see 3.2.7.4.5) 
 
                                                 

124  = Megaradialocrinus theissi BOHATÝ, in press sensu ICZN 
125  = (?)Megaradialocrinus bulbiformis BOHATÝ, in press sensu ICZN 
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3.2.7.4  Description of new species 
 

3.2.7.4.1 Species Megaradialocrinus aliculatus 
 

Megaradialocrinus aliculatus n. sp.126 
Figs. 3.2.6.4-7 

 
• Hexacrinites exsculptus (GOLDFUSS, 1839). MIESEN, 1971, p. 37; figs. 51e-g. HAUSER, 

1997, pl. 52, figs. 4-(?)5 [= M. aff. aliculatus n. sp.127]. WEBSTER, 2003 (pars), Hexacrinites 

exsculptus, internet edition of the Bibliography and Index of Palaeozoic crinoids. 
• Hexacrinus exsculptus (GOLDFUSS, 1839). SCHULTZE, 1866, pl. 9, figs. 2d-f. 
• Hexacrinus exsculptus GF. sp. STEINMANN, 1903, p. 175; figs. 241A-B. STEINMANN, 1907, 

p. 195; figs. 276A-B. STEINMANN & DÖDERLEIN, 1890, p. 160; figs. 160A-B. 
 

Holotype.—Isolated aboral cup, no. SMF-75473, deposited in the 

Forschungsinstitut und Naturmuseum Senckenberg, Frankfurt/Main, Germany (Fig. 3.2.6.5). 
 

Other material examined.—Aboral cups nos. GIK-1974 (field-no. CREF33a-

HEIN-28) [Fig. 3.2.6.4], GIK-1975 (field-no. CREF33a-HEIN-29) [Fig. 3.2.6.6], GIK-1976 
(field-no. CREF33a-HEIN-30) [Fig. 3.2.6.7] and original of SCHULTZE (1866, pl. 9, figs. 2d-f) 
[unfigured]. 

 
Derivatio nominis.—After the shape of the conical tegmen with the central 

spine, giving an alicula-shaped appearance (alicula = tapered Roman headdress). 

 
Locus typicus.—Northeastern slope of the railway cut near the station of 

Gerolstein, Gerolstein Syncline, Eifel, (Rhenish Massif, northwestern Rhineland-Palatinate, 

westernmost Germany); topographic map (1:25.000) of the Landesvermessungsamt 
Rheinland-Pfalz: MTB 5706 Hillesheim r(25)477500/h(55)656375. 
 

Stratum typicum.—Hustley Member [equivalent to the Rech Member (HOTZ, 

KRÄUSEL & STRUVE 1955, p. 117) within Gerolstein Syncline (sensu WINTER 1965, p. 290)] 
of upper Loogh Formation, Lower Givetian (Middle Devonian; hemiansatus Conodont 

Biozone). 

                                                 
126  = Megaradialocrinus aliculatus BOHATÝ, in press sensu ICZN 
127  = M. aff. aliculatus BOHATÝ, in press sensu ICZN 
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Distribution.—Eifel; stratum typicum of the Hillesheim Syncline (village 

Kerpen) and Gerolstein Syncline (Gerolstein, Pelm and Berlingen). 

 

Diagnosis.—A Megaradialocrinus with globe-shaped aboral cup, composed of 

three wider than long basals, forming a low convex base and five typically slightly longer 

than wide radials, which are somewhat wider than the primanal; widest lateral radius within 

the equatorial region of the cup, tegmen long cone-shaped with central spine at the summit 

and a single, elongated and “rod-shaped” posterior interradial plate (Fig. 3.2.6.7) below the 

subcentral anal opening; free strictly uniserial arms, two rami in each ray, zigzag; rami 

branching heterotomously with long, bilateral, unbranched and long ramules, nearly as wide 

as rami; two primibrachials, primibrachial 1 greatly reduced and covered by the axillary 

primibrachial 2, brachials U-shaped, compound, possessing two [to (?)four] pinnules each 

except on axillaries; plates of unweathered skeleton dark grey to black; impression of stem 

wide and planar; stem circular in cross section, perforated by a small, single axial canal with 

pentalobate cross section. 

 

Measurements of the holotype (max. length/width in mm).—Aboral cup (with 

preserved tegmen): 28.0/21.5; basals: 8.0/13.0; radials: 13.0/10.0; primanal: 15.0/8.0; 

diameter of stem impression: 11.5; diameter of stem facet: 5.5. 

 

Description.—The globe-shaped aboral cup without preserved tegmen is 

slightly wider than long, with preserved tegmen longer than wide; longitudinal section 

elliptical to “egg-shaped” (Figs. 3.2.6.5, 3.2.6.7), widest lateral radius within the equatorial 

region of the aboral cup; basals wider than long, smooth or with horizontal ornament in the 

form of ring-shaped folds surrounding the wide planar stem impression (Fig. 3.2.6.6); radials 

longer than wide and convex toward the lateral exterior, typically sculptured by variously 

shaped ridges (Figs. 3.2.6.4, 3.2.6.6), which are mainly parallel to the proximal end of the 

radials, plate sutures impressed; the long tegmen is cone-shaped and characterised by a central 

spine at the distal end (most likely a defence against platyceratid gastropods) [Figs. 3.2.6.5, 

3.2.6.7], the orals and modified ambulacral plates protrude with spine-shaped ends toward the 

oral exterior, giving the depth of plates an idealised “drop-shaped” morphology (Figs. 3.2.6.4-

5, 3.2.6.7); with a single, elongated and “rod-shaped” posterior interradial plate (Fig. 3.2.6.7) 

below the subcentral anal opening; free strictly uniserial arms, two rami in each ray, zigzag; 

rami branching heterotomously with long, bilateral, unbranched and long ramules, nearly as 
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wide as rami; two primibrachials, primibrachial 1 greatly reduced and covered by the axillary 

primibrachial 2, brachials low, wide and U-shaped, compound, possessing two [to (?)four] 

pinnules each except on axillaries; the plates of the unweathered skeleton are dark grey to 

black; other skeletal elements unknown. 

 

Differentiation.—Megaradialocrinus aliculatus n. sp.128 is similar to M. 

ornatus n. comb.129 and M. exsculptus n. comb.130 M. ornatus developed a smaller and shorter 

aboral cup with a lower and wider basal circlet. The new species developed low and globe-

shaped aboral cups instead of long and conical cups as in M. exsculptus. The basals are lower 

than those of M. exsculptus. The widest lateral diameter of M. aliculatus is within the 

equatorial region of the aboral cup, whereas M. exsculptus has the widest region at the radial 

summit. The inverted cone-shaped tegmen of the new species is constructed by “drop-shaped” 

plates, forming inflated polygons, and a characteristic central spine at the distal top, which is 

not developed in the cupola-shaped tegmen of M. exsculptus. The unweathered crinoid plates 

are dark grey to black in contrast to the brownish plates of M. exsculptus [feature of certain 

taxonomic value, already described in cupressocrinitids, gasterocomids (BOHATÝ 2005a; 

2006a-b) and hexacrinitids (BOHATÝ & HERBIG 2007)]. 

 

 

3.2.7.4.2 Species Megaradialocrinus winteri 

 

Megaradialocrinus winteri n. sp.131 

Figs. 3.2.6.21-26 

 

• vidi Hexacrinites sp. aff. Hexacrinites callosus (SCHULTZE, 1867). HAUSER, 1997, pl. 53, 

fig. 1. 

 

Holotype.—Isolated aboral cup, no. SMF-75474, deposited in the 

Forschungsinstitut und Naturmuseum Senckenberg, Frankfurt/Main, Germany (Fig. 3.2.6.23). 

 

Other material examined.—Aboral cups nos. GIK-1986 (field-no. CREF33a-

                                                 
128  = Megaradialocrinus aliculatus BOHATÝ, in press sensu ICZN 
129  = M. ornatus (GOLDFUSS, 1839) sensu ICZN 
130  = M. exsculptus (GOLDFUSS, 1839) sensu ICZN 
131  = Megaradialocrinus winteri BOHATÝ, in press sensu ICZN 
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HEIN-36) [Fig. 3.2.6.21], GIK-1987 (field-no. CREF33a-HEIN-37) [Fig. 3.2.6.22], GIK-1988 

(field-no. CREF33a-HEIN-38) [Figs 3.2.6.24-26], CREF33a-81 (col. PRESCHER) [infested by a 

platyceratid gastropod, unfigured] and one isolated aboral cup as well as approx. 150 isolated 

radial plates from the uppermost Baarley Member (Loogh Formation, lowermost Lower 

Givetian) of the “Berlinger Bach” (to the west of Berlingen, Gerolstein Syncline, Eifel, 

Germany) [without repository, unfigured]. 

 

Derivatio nominis.—In honour of PROF. DR. JOSEF WINTER (Bad Orb; 

Professor Emeritus at the Johann Wolfgang Goethe-University, Frankfurt/Main), whose 

stratigraphical studies represents the fundamental groundwork of the Gerolstein Syncline. 

 

Locus typicus.—Northeastern slope of the railway cut near the station of 

Gerolstein, Gerolstein Syncline, Eifel, (Rhenish Massif, northwestern Rhineland-Palatinate, 

westernmost Germany); topographic map (1:25.000) of the Landesvermessungsamt 

Rheinland-Pfalz: MTB 5706 Hillesheim r(25)477500/h(55)656375. 

 

Stratum typicum.—Hustley Member [equivalent to the Rech Member (HOTZ, 

KRÄUSEL & STRUVE 1955, p. 117) within Gerolstein Syncline (sensu WINTER 1965, p. 290)] 

of upper part of Loogh Formation, Lower Givetian (Middle Devonian; hemiansatus Conodont 

Biozone). 

 

Distribution.—Eifel; Baarley and Hustley members of the lower and 

uppermost Loogh Formation (lowermost Lower Givetian) and Hustley Member of Gerolstein, 

Pelm and Berlingen (Gerolstein Syncline). 

 

Diagnosis.—A small Megaradialocrinus with low, bowl-shaped aboral cup, 

composed of three basals much wider than long, forming a low, wide and idealised 

“cloverleaf-shaped” basal circlet (Figs. 3.2.6.23, 3.2.6.26) and five radials wider than long, 

which are deeply notched by the radial facets; tegmen moderately inflated, composed of 

small, spinose plates with fine central spines at the distal top; with a single posterior 

interradial plate below the subcentral anal opening; free strictly uniserial arms, two rami in 

each ray, zigzag; rami branching heterotomous with somewhat narrower, bilateral and 

unbranched ramules; two primibrachials, primibrachial 1 greatly reduced and covered by the 

axillary primibrachial 2, brachials wide and U-shaped, compound, possessing two pinnules 
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each (bipinnulated) except on asymmetrical and pentagonal axillaries; impression of stem 

relatively wide; stem circular in cross section, perforated by a small, single axial canal with 

pentalobate cross section. 

 

Measurements of the holotype (max. length/width in mm).—Aboral cup 

(without tegmen): 9.5/15.0; basals: 3.5/8.0; radials: 7.0/8.5; primanal: 8.0/6.5; diameter of 

stem impression: 10.0; diameter of stem facet: 4.0. 

 

Description.—The small and low bowl-shaped aboral cup (Figs. 3.2.6.21-26) 

is wider than long without preserved tegmen, with tegmen nearly as long as wide; the very 

low and idealised “cloverleaf-shaped” basal circlet (Figs. 3.2.6.23, 3.2.6.26) is typically 

smooth or sculptured by two to three blunt tubercles; the radials are typically as long as wide 

or wider than long, with sculpturing at the proximal end of three blunt tubercles (Fig. 

3.2.6.24) that protrude aborally, in some specimens the centre tubercle is extended aborally, 

overhanging the radial/basal suture by forming triangular lowermost radial flanges; radials 

without greatly reduced primibrachials (Figs. 3.2.6.22, 3.2.6.24) deeply notched to the radial 

centres (Figs. 3.2.6.21, 3.2.6.23); the peaked and coniform tegmen (Figs. 3.2.6.24-25) is 

constructed by small spinose plates, giving the depth of plates an idealised “elongated 

lozenged” to “arrowhead-shaped” morphology, and fine-spinose orals at the centre, which is 

dominated by a characteristic corona of fine central spines at the distal top; with a single 

posterior interradial plate below the subcentral anal opening; free strictly uniserial arms, two 

rami in each ray, zigzag (see model, Fig. 3.2.8.3); rami branching heterotomously with 

somewhat narrower, bilateral and unbranched ramules; two primibrachials, primibrachial 1 

greatly reduced and covered by the axillary primibrachial 2, brachials wide and U-shaped, 

compound, possessing two pinnules each (bipinnulated) except on asymmetrical and 

pentagonal axillaries; other skeletal elements unknown. 

 

Differentiation.—Megaradialocrinus winteri n. sp.132 is similar to M. brevis n. 

comb.133 and M. lobatus n. comb.134 M. brevis developed convex tegminal plates instead of 

fine tuberculated plates with central spines at the top. The radials of M. brevis are not deeply 

notched as in M. winteri, and the insertions of the primibrachials are located closer to the 

tegmen, instead of central as in M. winteri. The horizontal outline of M. brevis is subcircular, 

                                                 
132  = Megaradialocrinus winteri BOHATÝ, in press sensu ICZN 
133  = M. brevis (GOLDFUSS, 1839) sensu ICZN 
134  = M. lobatus (MÜLLER, 1857) sensu ICZN 
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whereas M. winteri is rather angular. Confusion of mistaking the new species with M. lobatus 

is only possible when the massive tegmen of the latter is not preserved. In this case, the 

aborally overhanging lobes constructed by the basal circlet of M. lobatus affords a clear 

differentiation. 

 

 

3.2.7.4.3 Species Megaradialocrinus piriculaformis 

 

Megaradialocrinus piriculaformis n. sp.135 

Figs. 3.2.7.5-7 

 

• vidi Crinoide sp. indet. D [(?)Jugendform von Hexacrinites sp.]. HAUSER, 1997, pl. 39, fig. 

11. 

 

Holotype.—Isolated aboral cup, no. SMF-75475, deposited in the 

Forschungsinstitut und Naturmuseum Senckenberg, Frankfurt/Main, Germany (Fig. 3.2.7.6). 

 

Other material examined.—Aboral cups nos. GIK-1993 (field-no. CREF33a-

HEIN-42) [Fig. 3.2.7.5] and GIK-1994 (field-no. CREF32-PRESCHER-24) [Fig. 3.2.7.7]. 

 

Derivatio nominis.—After the shape of the small, pear-shaped aboral cup (lat. 

= piricula). 

 

Locus typicus.—Northeastern slope of the railway cut near the station of 

Gerolstein, Gerolstein Syncline, Eifel, (Rhenish Massif, northwestern Rhineland-Palatinate, 

westernmost Germany); topographic map (1:25.000) of the Landesvermessungsamt 

Rheinland-Pfalz: MTB 5706 Hillesheim r(25)477500/h(55)656375. 

 

Stratum typicum.—Hustley Member [equivalent to the Rech Member (HOTZ, 

KRÄUSEL & STRUVE 1955, p. 117) within Gerolstein Syncline (sensu WINTER 1965, p. 290)] 

of upper Loogh Formation, Lower Givetian (Middle Devonian; hemiansatus Conodont 

Biozone). 

 

Distribution.—So far restricted to the stratum typicum of the type locality. 

                                                 
135  = Megaradialocrinus piriculaformis BOHATÝ, in press sensu ICZN 
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Diagnosis.—A very small Megaradialocrinus with long, “pear-” to 
“mushroom-shaped” aboral cup (Figs. 3.2.7.5-7), composed of a slender, cylindrical basal 
circlet with three wider than long basals and an extended radial circlet, with five as long as 
wide radials, which are somewhat wider than the primanal; plates smooth; impression of stem 
moderately concave; stem circular in cross section, perforated by a small, single axial canal 
with pentalobate cross section. 
 

Measurements of the holotype (max. length/width in mm).—Aboral cup 
(without tegmen): 7.5/7.0 (incomplete); basals: 3.5/5.0; radials: 5.0/5.0; primanal: not 
preserved; diameter of stem impression: 3.5; diameter of stem facet: 2.5. 
 

Description.—The very small aboral cup is long and “pear-” to “mushroom-
shaped” (Figs. 3.2.7.5-7); juvenile cups are twice as long as wide and slender conical, adult 
cups without preserved tegmen are nearly as long as wide, with a slightly lower and widened 
basal circlet, composed of three wider than long basals; smooth basals either with (Figs. 
3.2.7.5, 3.2.7.7) or without (Fig. 3.2.7.6) smooth flange surrounding the slender stem 
impression, which is moderately impressed; the suture of basals and radials is positioned at 
the midlength of the cup; five radials, typically as long as wide, smooth with small brachial 
facets; the stem is circular in cross section and perforated by a small, single axial canal with 
pentalobate cross section; other skeletal elements unknown. 
 

Differentiation.—Megaradialocrinus piriculaformis n. sp.136 is similar to M. 
brevis n. comb.137 The knob-shaped radial circlet, the narrow stem impression and the length 
of the aboral cup clearly separate both hexacrinitids. Furthermore, the primanal of the new 
species does not extend above the radial circlet, as in M. brevis, and the brachial facets of M. 
piriculaformis are narrower than in M. brevis. Furthermore, the general morphology of the 
adult piriculaformis aboral cup bears resemblance with Mycocrinus boletus SCHULTZE, 1866. 
 
 
3.2.7.4.4 Species Megaradialocrinus theissi 
 

Megaradialocrinus theissi n. sp.138 
Figs. 3.2.7.13-17 

 
• vidi Hexacrinites exsculptus (GOLDF., 1838). HAUSER, 1997, pl. 52, fig. 7. 
                                                 

136  = Megaradialocrinus piriculaformis BOHATÝ, in press sensu ICZN 
137  = M. brevis (GOLDFUSS, 1839) sensu ICZN 
138  = Megaradialocrinus theissi BOHATÝ, in press sensu ICZN 
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Holotype.—Isolated aboral cup, no. SMF-75476, deposited in the 

Forschungsinstitut und Naturmuseum Senckenberg, Frankfurt/Main, Germany (Figs. 3.2.7.13-

16). 

 

Other material examined.—Aboral cup no. GIK-1999 (field-no. CREF33a-

PRESCHER-124) [Fig. 3.2.7.17]. 

 

Derivatio nominis.—In honour of DR. ANDREAS THEISS (Nackenheim), the 

discoverer and donator of the new species. 

 

Locus typicus.—Northeastern slope of the railway cut near the station of 

Gerolstein, Gerolstein Syncline, Eifel, (Rhenish Massif, northwestern Rhineland-Palatinate, 

westernmost Germany); topographic map (1:25.000) of the Landesvermessungsamt 

Rheinland-Pfalz: MTB 5706 Hillesheim r(25)477500/h(55)656375. 

 

Stratum typicum.—Hustley Member [equivalent to the Rech Member (HOTZ, 

KRÄUSEL & STRUVE 1955, p. 117) within Gerolstein Syncline (sensu WINTER 1965, p. 290)] 

of upper Loogh Formation, Lower Givetian (Middle Devonian; hemiansatus Conodont 

Biozone). 

 

Distribution.—So far restricted to the stratum typicum of the type locality. 

 

Diagnosis.—A Megaradialocrinus with nearly flat base, composed of three 

wider than long basals and five nearly as long as wide radial plates, which are somewhat 

wider than the primanal; all plates distinguished by irregular anastoming ridges and central 

depressions on radials; tegmen moderately inflated; single posterior interradial plate with a 

blunt spine at the surface below the subcentral anal opening; impression of stem moderately 

impressed; stem circular in cross section, perforated by a small, single axial canal with 

pentalobate cross section. 

 

Measurements of the holotype (max. length/width in mm).—Aboral cup (with 

preserved tegmen): 13.0/13.0; basals: 2.5/7.0; radials: 7.0/7.0; primanal: 8.0/4.5; diameter of 

stem impression: 9.0; diameter of stem facet: 3.5. 
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Description.—Aboral cup with preserved tegminal plates slightly longer than 

wide; the thick plates caused a “chunky” and “robust” shape; cup (Figs. 3.2.7.13-17) 

constructed by three thick basal plates, widely flanging laterally, forming flat basal circlet; 

five thick radial plates, nearly as long as wide, with wide deep notches in the central part of 

plates (Figs. 3.2.7.15-17); one primanal, slightly narrower than the radials; all plates 

sculpturing composed of low, irregularly arranged and narrow ridges; sculpturing of primanal 

somewhat radiating; the sutures are deeply impressed; stem impression circular in cross 

section, even and penetrated by a small axial canal with a subcircular to very small pentagonal 

lumen; free arms (not preserved), two in each ray, two primibrachials, primibrachial 1 wider 

than long, greatly reduced and covered by the axillary primibrachial 2 (Fig. 3.2.7.16) which is 

nearly as long as wide; tegmen (Fig. 3.2.7.13) moderately inflated, with four large and two 

small orals, flat and smooth; all orals with large surfaces and separated by modified 

ambulacral plates at the centre of the tegmen and a characteristic posterior interradial plate 

(Fig. 3.2.7.15) below the subcentral anal opening, with a blunt spine at the surface (most 

likely a defence against platyceratid gastropods); marginal positioned anal opening 

surrounded by a rosette of small plates; the stem is circular in cross section and perforated by 

a small, single axial canal with pentalobate cross section; unweathered plates brownish; 

further skeletal elements unknown. 

 

Differentiation.—Because of the depressions at the central part of the radials, 

the new M. theissi n. sp.139 is similar to M. marginatus n. comb.140, which developed longer 

basals and lacks plate ornamentation. The proportions of the aboral cup resemble M. prokopi 

(BOHATÝ, 2006c) n. comb.141, M. confragosus n. comb.142 and M. invitabilis n. comb.143 [both 

(DUBATOLOVA, 1964), described from the Early Devonian of the Kuznetsk Basin (Russia)] as 

well as to (?)M. macrotatus (AUSTIN & AUSTIN, 1845) n. comb.144 from the Middle Devonian 

of Wolborough (Great Britain). All species differ from M. theissi by the shape of the tegminal 

plates. Compared to the four taxa, M. theissi has thicker plates, more deeply impressed sutures 

and central depressions on the radials. Also, the basal circlet of H. theissi is lower and more 

circular. 
 

                                                 
139  = M. theissi BOHATÝ, in press sensu ICZN 
140  = M. marginatus (SCHULTZE, 1866) sensu ICZN 
141  = M. prokopi (BOHATÝ, 2006c) sensu ICZN 
142  = M. confragosus (DUBATOLOVA, 1964) sensu ICZN 
143  = M. invitabilis (DUBATOLOVA, 1964) sensu ICZN 
144  = (?)M. macrotatus (AUSTIN & AUSTIN, 1845) sensu ICZN 
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FIGURE 3.2.7 (legend p. 105) 
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FIGURE 3.2.7 (see p. 104)—Megaradialocrinus aboral cups from the Hustley Member (Loogh Formation, 

lowermost Lower Givetian) of the northeastern slope of the railway cut near the station of Gerolstein 

(Gerolstein Syncline, Eifel, Rhenish Massif) [1-3, 5-6, 8, 12-17], from the Hustley Member of Berlingen 

[4] and Pelm [7] (Gerolstein Syncline), from the Baarley Member (Loogh Formation, lowermost Lower 

Givetian) of the “Mühlenwäldchen”, SW-Gerolstein [9-11, 19-21] and from the lower Rech Member (upper 

Loogh Formation, Lower Givetian) of Berndorf (Hillesheim Syncline, Eifel) [18]. 1-4, Megaradialocrinus 

limbatus (MÜLLER, 1856) n. comb. 1, No. GIK-1989 (field-no. CREF33a-HEIN-39), right posterior view of 

D ray and primanal with “cockscomb-shaped” posterior interradial plate (arrow) of adult aboral cup, x 1.9; 

2, No. GIK-1990 (field-no. CREF33a-HEIN-40), posterior view of primanal with “cockscomb-shaped” 

posterior interradial plate (arrow) of the aboral cup with preserved tegmen, x 1.8; 3, No. GIK-1991 (field-

no. CREF33a-HEIN-41), juvenile aboral cup, right anterolateral view of E ray, x 2.9; 4, No. GIK-1992 

(field-no. CREF38-HEIN-2), adult aboral cup with inflated tegmen and morphological affinities to M. 

exsculptus (GOLDFUSS, 1839) n. comb., lateral view of primanal with “cockscomb-shaped” posterior 

interradial plate (arrow) and C ray, x 1.5; 5-7, Megaradialocrinus piriculaformis n. sp. 5, No. GIK-1993 

(field-no. CREF33a-HEIN-42), lateral view of C ray and primanal, x 3.9; 6, Holotype, no. SMF-75475, 

anterior view of A ray, x 2.7; 7, No. GIK-1994 (field-no. CREF32-PRESCHER-24), left posterior view of C 

ray, x 3.4; 8, No. SMF-75477, (?)Megaradialocrinus bulbiformis n. sp., holotype, left posterior view of 

primanal and C ray, x 1.6; 9, No. GIK-1995 (field-no. CREF41-BOHATÝ-2), Megaradialocrinus callosus 

(SCHULTZE, 1866) n. comb., posterior view of primanal, x 2.8; 10-12, Megaradialocrinus crispus 

(QUENSTEDT, 1861) n. comb. 10, No. GIK-1996 (field-no. CREF41-PRESCHER-5), showing irregularly 

arranged ornament, left anterolateral view of B ray, x 1.5; 11, No. GIK-1997 (field-no. CREF41-HEIN) with 

some aligned ornamentation, posterior view of primanal, x 1.6; 12, No. GIK-1998 (field-no. CREF33a-

BOHATÝ-41), the plates are ornamented by aligned wrinkles, left anterolateral view of E ray, x 2.1; 13-17, 

Megaradialocrinus theissi n. sp. 13-16, No. SMF-75476, holotype, showing irregular anastoming ridges of 

all plates and central depressions on radials; 13, Oral view, x 2.3; 14, Aboral view, x 2.3; 15, Posterior view 

of primanal and posterior interradial plate (arrow), x 2.5; 16, Lateral view of CB interray, x 2.6; 17, No. 

GIK-1999 (field-no. CREF33a-PRESCHER-124), posterior view of primanal and posterior interradial plate 

(arrow), x 2.1; 18-21, Megaradialocrinus globohirsutus n. nov. 18, No. GIK-2000 (field-no. CREF37b-

LEUNISSEN-0), partly preserved aboral cup with lost basal circlet, anterior view of A ray, x 2.1; 19-21, No. 

MB.E.-2362, holotype; 19, Posterior view of primanal, posterior interradial plate missing; 20, Right 

anterolateral view of E ray, x 1.9; 21, Aboral view, the basal circlet is encrusted by a trepostome bryozoan 

(arrow), x 1.5. 
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3.2.7.4.5 Species (?)Megaradialocrinus bulbiformis 

 

(?)Megaradialocrinus bulbiformis n. sp.145 

Fig. 3.2.7.8 

 

Holotype.—Isolated aboral cup, no. SMF-75477, deposited in the 

Forschungsinstitut und Naturmuseum Senckenberg, Frankfurt/Main, Germany (Fig. 3.2.7.8). 

 

Derivatio nominis.—After the bulbous aboral cup of the new species. 

 

Locus typicus.—Northeastern slope of the railway cut near the station of 

Gerolstein, Gerolstein Syncline, Eifel, (Rhenish Massif, northwestern Rhineland-Palatinate, 

westernmost Germany); topographic map (1:25.000) of the Landesvermessungsamt 

Rheinland-Pfalz: MTB 5706 Hillesheim r(25)477500/h(55)656375. 

 

Stratum typicum.—Hustley Member [equivalent to the Rech Member (HOTZ, 

KRÄUSEL & STRUVE 1955, p. 117) within Gerolstein Syncline (sensu WINTER 1965, p. 290)] 

of upper part of Loogh Formation, Lower Givetian (Middle Devonian; hemiansatus Conodont 

Biozone). 

 

Distribution.—One aboral cup from the stratum typicum of the locus typicus. 

 

Diagnosis.—A (?)Megaradialocrinus with “bulbous” aboral cup, composed of 

three slightly wider than long basals, forming an inverted coniform basal circlet with narrow 

base and five longer than wide radials, which are somewhat wider than the primanal; stem 

impression shallow; stem circular in cross section, perforated by a small, single axial canal 

with pentalobate cross section. 

 

Measurements of the holotype (max. length/width in mm).—Aboral cup 

(without tegmen): 19.0/19.0; basals: 10.0/13.0; radials: 10.0/8.0; primanal: 11.0/10.5; 

diameter of stem impression: 4.5; diameter of stem facet: 3.5. 

                                                 
145  = (?)Megaradialocrinus bulbiformis BOHATÝ, in press sensu ICZN 
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Description.—The bulbous aboral cup (Fig. 3.2.7.8) without preserved tegmen 

is as wide as long, the basal circlet is narrow and rapidly expanding toward the radial/basal 

articulation as the widest diameter of the cup; the long basal circlet is inverted coniform, the 

three basals are wider than long and sculptured by low, irregularly arranged crinkles and short 

ridges; the five radials are longer than wide and also sculptured by low crinkles and short 

ridges; radial facets relatively small; three brachials preserved, primibrachial 1 greatly 

reduced and covered by the primibrachial 2 and the axillary primibrachial 3; stem impression 

small and shallow with a narrow stem facet, surrounded by a moderately developed basal 

flange; stem circular in cross section, perforated by a small, single axial canal with 

pentalobate cross section; other skeletal elements unknown. 

 

Differentiation.—(?)Megaradialocrinus bulbiformis n. sp.146 is similar to (?)M. 

piriformis (SCHULTZE, 1866) n. comb.147 and M. limbatus (MÜLLER, 1856) n. comb.148 but 

differs in having a smaller basal circlet and stem impression and different plate sculpturing: 

low crinkles and short ridges in (?)M. bulbiformis vs. smooth or microgranular, sometimes 

slightly faceted plates in (?)M. piriformis and smooth or slightly faceted plates in M. limbatus. 

Furthermore, the new species is similar to M. conicus CHEN & YAO, 1993, but the coarser 

sculpturing (?)M. bulbiformis and the characteristic, uneven plate boundaries of M. conicus, 

which are intermeshed with each other, separate both crinoids. 

 

 

3.2.7.5   Renaming of the homonym “Hexacrinites magnificus HAUSER, 2007a” 

 

3.2.7.5.1 Species Megaradialocrinus globohirsutus 

 

Megaradialocrinus globohirsutus n. nov.149 

Figs. 3.2.7.18-21 

 

• vidi Hexacrinites sp. HAUSER, 1997, pl. 44, figs. 4-6. 

• vidi Hexacrinites magnificus n. sp. HAUSER, 2006c, published on private web-page, (does 
                                                 

146  = (?)Megaradialocrinus bulbiformis BOHATÝ, in press sensu ICZN 
147  = (?)M. piriformis (SCHULTZE, 1866) sensu ICZN 
148  = M. limbatus (MÜLLER, 1856) sensu ICZN 
149  = Megaradialocrinus globohirsutus BOHATÝ, in press sensu ICZN 
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not meet ICZN regulations for acceptable taxonomic names. Therefore, new name 

considered nomen nudum (pers. information, G. D. WEBSTER). 

• vidi Hexacrinites magnificus n. sp. HAUSER, 2007a, pl. 13, figs. 4a-c = invalid homonym of 

Hexacrinus magnificus QUENSTEDT, 1866, p. 740; fig. 153; 1876, p. 565; pl. 109, figs. 67, 

67D-U (ICZN article 10.6.). 

 

Holotype.—Isolated aboral cup, no. MB.E.-2362, deposited in the Museum für 

Naturkunde der Humboldt-Universität zu Berlin, Germany (Figs. 3.2.7.19-21). 

 

Other material examined.—Aboral cup no. GIK-2000 (field-no. CREF37-

LEUNISSEN-0) with lost basalia (Fig. 3.2.7.18) and one unfigured aboral cup (col. S. BIALAS); 

both from the lower Rech Member (upper Loogh Formation, Lower Givetian) of Berndorf 

(Hillesheim Syncline, Eifel, Germany). 

 

Derivatio nominis.—Combined, after the shape of the spheroidal aboral cup 

(lat. = globosus) and the fine acanthaceous tegmen (lat. = hirsutus). 

 

Locus typicus.—“Mühlenwäldchen”, SW-Gerolstein, Gerolstein Syncline, 

Eifel (Rhenish Massif, northwestern Rhineland-Palatinate, Germany); topographic map 

(1:25.000) of the Landesvermessungsamt Rheinland-Pfalz: MTB 5705 Gerolstein 

r(25)464000/h(55)651000. 

 

Stratum typicum.—Lower Baarley Member [equivalent to the uppermost 

Wotan Member (HOTZ, KRÄUSEL & STRUVE 1955) within Gerolstein Syncline (sensu WINTER 

1965)] of middle Loogh Formation, Lower Givetian (Middle Devonian; hemiansatus 

Conodont Biozone). 

 

Distribution.—So far restricted to the stratum typicum of the type locality. 

 

Diagnosis.—A low and spherical Megaradialocrinus with an extremely flat 

and wide base, composed of three more than five times wider than long basals and five 

slightly wider than long radials, which are three times wider than the narrow primanal; arm 

facets wide, occupying the majority of the radials (Figs. 3.2.7.18-20); tegmen inflated, 
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sculptured by numerous fine spines; single posterior interradial plate below the subcentral 

anal opening; stem impression wide and shallow; stem circular in cross section, perforated by 

a small, single axial canal with pentalobate cross section. 

 

Measurements of the holotype (max. length/width in mm).—Aboral cup (with 

preserved tegmen): 16.5/21.0; basals: 2.0/11.0; radials: 7.0/9.0; primanal: 7.0/3.0; diameter of 

stem impression: 14.0; diameter of stem facet: 4.0. 

 

Description.—Aboral cup with preserved tegminal plates wider than long, 

spherical; the thick plates caused a chunky and robust shape; cup (Figs. 3.2.7.19-21) 

constructed by three very flat basals, more than five times wider than long, form an extremely 

flat basal circlet (Fig. 3.2.7.21), plates sculpturing with irregularly arranged, low crinkles; five 

thick radial plates, slightly wider than long, with wide deep notches in the central part of 

plates, also sculptured by irregularly arranged, low crinkles; one primanal (Fig. 3.2.7.19), 

slender and three times narrower than the radials; stem impression (Fig. 3.2.7.21) circular in 

cross section, even and penetrated by a small axial canal with a very small pentagonal lumen; 

large arm facets (Figs. 3.2.7.18-20) protruding toward the lateral exterior, and positioned at 

the equatorial layer of the spheroidal aboral cup with preserved tegmen, taking two thirds of 

the radial area, “horseshoe-shaped”; tegmen (Figs. 3.2.7.18-20) inflated with fine spined orals 

and modified ambulacral plates, marginal positioned anal opening surrounded by the finest 

spines of the tegmen; single posterior interradial plate below the subcentral anal opening; 

further skeletal elements unknown. 

 

Differentiation.—M. globohirsutus n. nov.150 is similar to M. callosus n. 

comb.151 but distinguishable by the shape of the basal circlet and by the thickness of the 

radials and basals (extremely flat basal circlet and thinner plates in M. globohirsutus vs. a 

“tyre-shaped” basal circlet with massive plates in M. callosus). 

 

Remark.—Two basals and one brachial of the holotype are encrusted by a 

trepostome bryozoan. This postmortem encrustation was recently observed in cupressocrinitid 

skeletons (BOHATÝ 2009). 

                                                 
150  = M. globohirsutus BOHATÝ, in press sensu ICZN 
151  = M. callosus (SCHULTZE, 1866) sensu ICZN 
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3.2.8  DISCUSSION 

 

Statigraphically and geographically, hexacrinitids, in particular 

Megaradialocrinus and Hexacrinites, have to be designated as cosmopolitan camerate 

crinoids. Several species occur as rare components of the echinoderm association within some 

fossil localities; on the other hand, there are several localities that were dominated by either 

Megaradialocrinus or Hexacrinites. Especially the studied locality of the NESG, yields a very 

diverse Megaradialocrinus fauna. Therefore, the outcrop has to be classified as one of the 

world’s most famous Megaradialocrinus localities. In contrast, members of Hexacrinites are 

rare. This observation corresponds with other localities within the Eifel synclines and applies 

to the stratigraphic range from the lowermost Eifelian up to the lowermost Lower Givetian, 

with a maximum distribution from the upper Middle Eifelian to the Eifelian/Givetian 

threshold. A further Megaradialocrinus maximum is established within the Frasnian of the 

Belgian/French Ardennes (compare to WEBSTER et al. 2007). In contrast, the Givetian 

Hexacrinites type locality of Wolborough (Great Britain), as well as the Givetian outcrops of 

the Lahn-Dill area (south-eastern Rhenish Massif, Germany), are distinguished by both 

genera. 

  M. adaensis n. comb.152 is herein assigned to genus Megaradialocrinus; it is 

the oldest known species and, therefore, could possibly be the progenitor of the Devonian 

hexacrinitids. 

The intergeneric differentiation recognised here is mainly based on the 

morphologies of the hexacrinitid aboral cups and arms. Studies of preserved arms clearly 

support differentiation with uniserial (Megaradialocrinus) and primary or secondary biserial 

arms (Hexacrinites). This separation is affirmed by the visible difference of constantly wide 

and bowl-shaped aboral cups with flat, mostly pentagonal or hexagonal tegminal plates 

(Hexacrinites) and conical to elongate cups with few moderately to very convex tegminal 

plates (Megaradialocrinus). Furthermore, the separation is affirmed by the presence of a 

single (Megaradialocrinus) or of two posterior interradial plates below the subcentral anal 

opening (see models, Figs. 3.2.9.1-4). 

                                                 
152  = M. adaensis (STRIMPLE, 1952) sensu ICZN 

 110



3.2―Chapter II. Crinoidea, Camerata    

 

 

 
 

FIGURE 3.2.8—The five “morphological arm groups” of the bipinnulated Megaradialocrinus arms 

(pinnules not illustrated). 1, Straight-lined rami in each ray, the rami branch heterotomously with bilateral 

and unbranched, numerous and relatively short ramules (e.g. in M. elongatus); 2, The two straight rami are 

modified into slightly zigzagged rami (e.g. in M. limbatus); 3, Rami with a reduced number of longer 

ramules, the proximal ramules are nearly as long as the strongly zigzagged rami (e.g. in M. brevis); 4, A 

form with modified, triangular axillaries, which are surrounded by three hexagonal brachials (e.g. in M. 

marginatus); 5, Nearly orthogonal branching ramules (e.g. in M. gibbosus). Except of the number of 

primibrachials and the lateral partitions of several brachials, which are in contact with each other, this 

model shows similarity to the arm branching pattern of the Silurian-Eifelian monobathrid camerate genus 

Bogotacrinus SCHMIDT, 1937 (6) [modified from MCINTOSH 1987; Fig. 8e). 
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According to numerous observed transitional forms of the various aboral cup 

morphologies and the general variability of both genera, it is possible to differentiate certain 

“morphological aboral cup groups” that may belong to other genera outside of 

Megaradialocrinus and Hexacrinites (study in progress). For Megaradialocrinus these are 

(1.) an aliculatus-marginatus group with black coloured plates, massive and strongly 

sculptured plates and an inflated tegmen with very convex plates; (2.) a ventricosus-nodifer 

group with modified base (compare to SCHULTZE 1866, pl. 10, figs. 2, 3c-d); (3.) a brevis-

minor-unterthalensis-ornatus group with low aboral cups, wide base and wide stem 

impression; (4.) a conicus-piriformis-infundibulum-bulbiformis group with an inverted 

coniform basal circlet with a narrow base and a long, wide radial circlet; (5.) a macrotatus-

confragosus-prokopi-invitabilis group with moderately long aboral cups, wide base and 

massive, sculptured plates; (6.) a turritus-rigel group with “tower-shaped” aboral cups and 

granular sculpturing; and (7.) a gibbosus-nitidus-persiaensis group with ovoid and medium 

bowl-shaped aboral cups, with or without ornament. But the very gradual transitions between 

all these morphologies and, predominantly, the similar arms disallow a further differentiation 

at this time. Still unknown elements, like the arms and the tegmen of several rare species, 

which are so far only known from isolated aboral cups (even of the type species *M. conicus), 

could possibly result in alternative taxonomic assignments. Therefore, the generic names of 

several species are currently combined with a question mark. 

The few known Hexacrinitidae with preserved arms, herein assigned to genus 

Megaradialocrinus, allow the recognition of five “morphological arm groups”, i.e. of five 

branching modifications of the mostly bipinnulated arms (see models, Figs. 3.2.8.1-5). They 

indicate a phylogenetic lineage: (1.) the oldest form developed two straight-lined rami in each 

ray (Fig. 3.2.8.1); the rami branch heterotomously with bilateral and unbranched, numerous 

and relatively short ramules; (2.) in the second form, the two straight rami are modified into 

slightly zigzagged rami (Fig. 3.2.8.2); (3.) in a third step, the rami show a reduced number of 

longer ramules, the proximal ramules are nearly as long as the strongly zigzagged rami (Fig. 

3.2.8.3); (4.) the fourth form modified the typically asymmetrical and pentagonal axillaries to 

symmetrical and triangular ones, which are surrounded by three hexagonal brachials (Fig. 

3.2.8.4); (5.) the youngest form developed few nearly orthogonal branching ramules (Fig. 

3.2.8.5). 
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It has to be noted that except for the number of primibrachials and the lateral 

partitions of several brachials, which are in contact with each other, this model has similarity 

with the arm branching pattern of the dicyclic, monobathrid camerate crinoid genus 

Bogotacrinus SCHMIDT, 1937 (Silurian-Eifelian) [see MCINTOSH 1987; Fig. 3.2.8.6], which is 

the only genera known to the author which shows such a comparable type of branching. 

 

FIGURE 3.2.9—Sketches of the single posterior interradial plate modifications of genus Megaradialocrinus 

(1-3) and model of the two variously pentamerous to hexagonal shaped posterior interradial plates of genus 

Hexacrinites (4). 1, Posterior interradial plate with smooth and convex surface; 2, Posterior interradial plate 

with single spine (grey) [e.g. in M. crispus]; 3, Posterior interradial with a spate of “cockscomb-shaped” 

spines (grey) [e.g. in M. limbatus]. Figs. 2-3 possibly show a morphological defensive reaction in the form 

of developed endoskeletal-spines beyond the anal opening (Ω) that is most probably linked with the 

occurrence of platyceratid gastropods in the Eifelian/Givetian threshold of the Rhenish Massif. 
 

 

Megaradialocrinids from the Upper Eifelian up to the Frasnian show variously 

developed spines on the posterior interradial plate and on the tegminal plates. These 

developments are rare in younger megaradialocrinids. Most probably, these elements were 

developed as defence against platyceratid gastropods, which settled either lateral near the anal 

opening or on top of the tegmen. Within the Eifel, the diversity and frequency of vagile 

benthic predators like platyceratid gastropods increases during Middle and Upper Eifelian 

(own, unpublished data). The necessity to advance the crown protection could possibly be 

linked to this ecological circumstance, indicating a predator driven endoskeletal evolution. 
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3.3 CHAPTER III. CRINOIDEA, DISPARIDA 

 

REVISION OF THE DISPARID STYLOCRINUS FROM THE DEVONIAN OF 

EUROPE, ASIA AND AUSTRALIA 

 

 

ABSTRACT—The discovery of new specimens and restudy of known collections result in 

revision of the diagnosis and the stratigraphic distribution of the disparid crinoid genus 

Stylocrinus, known from the Middle and Upper Devonian of Europe, Asia and Australia. The 

consistent development of three basal plates, the atomous arms with internally inclined edges 

adjoining laterally with adjacent brachials in an interlocking network, and an apparently 

rudimentary pinnulation is recognised. The high ecophenotypic plasticity of the common S. 

tabulatus negates the validity of several former subspecies and demonstrates the general 

morphologic variability of the aboral cup proportions. This contrasts with the low 

morphological spectrum of rarer stylocrinid species. With exclusion of “S. elimatus” 

(Silurian) from Stylocrinus, the genus is limited to the Devonian. A neotype is proposed for 

the lost holotype of S. tabulatus. Stylocrinus prescheri n. sp.1 is described from the Eifelian to 

Givetian of Europe and Asia. The first evidence of the gastropod grazing trace fossil 

Radulichnus on a crinoid aboral cup (S. tabulatus), the postmortem incurred ossicular-boring 

of radial and basal plates, as well as the postmortem encrusting by a rugose coral are further 

observations on Stylocrinus aboral cups. 

 

 

3.3.1 INTRODUCTION 

 

 The Devonian crinoid genus Stylocrinus SANDBERGER & SANDBERGER, 1856 is 

characterised by relatively simple crown construction with eight plates within the monocyclic 

aboral cup (three basals and five radials) followed by five atomous arms. Isolated aboral cups 

have been reported from Europe (e.g. GOLDFUSS 1839; MÜLLER in ZEILER & WIRTGEN 1855; 

SANDBERGER & SANDBERGER 1849-1856 and SCHULTZE 1866), Asia (REED 1908; 

DUBATOLOVA 1971), and Australia (JELL & JELL 1999). SCHULTZE (1866) and SANDBERGER 

                                                 
1  = Stylocrinus prescheri BOHATÝ, in review sensu ICZN 
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& SANDBERGER (1849-1856) also described partly preserved crowns from Germany, where 

the genus is most abundant within the Eifelian and Givetian deposits of the Rhenish Massif 

(Eifel and Lahn-Dill vicinity). The Eifel Synclines contain the most famous localities of this 

low diverse but highly variable crinoid genus. 

 Since the nineteenth century, stylocrinids have been assigned to several genera, 

including “Platycrinites” (GOLDFUSS 1839), “Hexacrinus” (REED 1908), “Symbathocrinus” 

(MÜLLER in ZEILER & WIRTGEN 1855), or “Scytalocrinus” (WACHSMUTH & SPRINGER 1886). 

But the simple construction of the aboral cup allows an unquestioned identification defined by 

GOLDFUSS (1839, p. 345) and SANDBERGER & SANDBERGER (1856, pp. 399-400), with the 

exception of the arms, which were incorrectly described as “additional, elongated radials” by 

SANDBERGER & SANDBERGER. Following the revised diagnosis given herein, three species are 

recognised, S. tabulatus (GOLDFUSS, 1839), S. granulatus HAUSER, 1997 and S. prescheri n. 

sp.2, based on differences in the skeletal features and plate sculpturing. 

 S. tabulatus has high ecophenotypic plasticity expressed as morphological 

variability of the aboral cup. The length and width proportions of ca. 1500 aboral cups have 

been analysed and interpreted. As a result, “S. tabulatus altus” and “S. t. depressus”, both 

(MÜLLER in ZEILER & WIRTGEN, 1855), are rejected; therefore, the nominotypic subspecies 

“S. tabulatus tabulatus” is dissolved. 

 Rare crows (Figs. 3.3.1.1, 3.3.1.2-3, 3.3.1.5-6) and several isolated brachials 

(Figs. 3.3.4.1-14) represent an extraordinary construction of the atomous stylocrinid arms. 

They show internally inclined edges adjoining laterally with adjacent brachials in an 

interlocking network (Figs. 3.3.1.5-6), and an apparently rudimentary pinnulation (Figs. 

3.3.4.3, 3.3.4.5), arising from inordinately distributed lateral notches, which are diagonally 

positioned to each other. This construction possibly affords feeding without totally opening 

the arms in an unprotected position. 

Morphologic observations of stylocrinids require further research. One fossil 

aboral cup of S. tabulatus represents the first crinoid evidence of the radular grazing 

ichnogenus Radulichnus VOIGT, 1977 (Fig. 3.3.9). Isolated radial and basal plates have 

postmortem borings of unknown organisms (Figs. 3.3.8.1-9). Furthermore, other skeletal 

modifications, like an aboral cup with an additional fourth basal plate (Figs. 3.3.7.1-2) and the 

postmortem skeletal encrusting by a rugose coral (Fig. 3.3.10), are discussed. 

                                                 
2  = S. prescheri BOHATÝ, in review sensu ICZN 
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3.3.2  MATERIAL AND METHODS 

 

  Type specimens are deposited in the Forschungsinstitut und Naturmuseum 

Senckenberg, Frankfurt am Main, Germany (SMF), the Steinmann-Institut für Geologie, 

Mineralogie und Paläontologie der Rheinischen Friedrich-Wilhelms-Universität Bonn, 

Germany (IPB) and the Naturhistorische Landessammlung, Museum Wiesbaden, Germany 

(MWNH). Additional specimens are stored in the collections of the Institut für Geologie und 

Mineralogie der Universität zu Köln, Germany (GIK) and the Queensland Museum, 

Queensland (QMF). 

In addition to a detailed analysis of previously published data and original 

material, this study focuses on the endoskeletal morphology of the aboral cup and brachials, 

mainly observed in newly discovered crinoids from the Rhenish Massif. They were prepared 

using micro sand-streaming methods, as well as fine pneumatic probes, and studied via 

binocular and scanning electron microscope analyses (SEM). Photographs of NH4Cl-whitened 

crinoids were arranged using digital image editing software. 

Approximately 1500 aboral cups, one completely preserved and three partly 

preserved crowns, as well as one abnormal individual of S. tabulatus were analysed. 

Additionally, 35 aboral cups of S. granulatus and 25 aboral cups of S. prescheri n. sp.3 were 

studied. 

Higher classification of stylocrinids followed SIMMS & SEVASTOPULO (1993). 

Morphologic dimensions are given in length and width as defined by WEBSTER & JELL 

(1999). 

The capitalisation of the Givetian subdivisions follows BECKER (2005; 2007). 

 

 

3.3.3 GEOGRAPHICAL AND STRATIGRAPHICAL OCCURRENCES OF THE GENUS AND 

ASSIGNED SPECIES 

 

3.3.3.1 Europe 

 

 Europe.—European Stylocrinus occurrences are mainly located within the 

Eifelian to Givetian deposits of the Rhenish Massif (Germany). The most prolific localities 

are in the Eifel Synclines and in the vicinity of Lahn-Dill. 
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 Localities within the Eifel (Rhineland-Palatinate, Germany), especially the 

Middle Eifelian to lowermost Lower Givetian of the Hillesheim, Gerolstein and Prüm 

synclines yielded the highest recorded species diversity. While the generally common species 

S. tabulatus is geographically and stratigraphically widespread, the rarer species occurred 

locally within shorter time slices. S. tabulatus was recovered from the Nohn Formation 

(Lower Eifelian) to the Cürten Formation (Lower Givetian), whereas S. granulatus is limited 

to the Freilingen Formation (Eifelian) and S. prescheri n. sp.4 occurred at the 

Eifelian/Givetian boundary. 

 Within the vicinity of Lahn-Dill, stylocrinids occur in deposits younger than 

the Eifel. S. tabulatus and, rarer, S. prescheri n. sp.5 were found within the lowermost Middle 

Givetian “Roteisenstein” near Weilburg-Odersbach, NE of Limburg an der Lahn (Hesse, 

Germany). 

 

 

3.3.3.2 Asia 

 

 Asia.—REED (1908) reported an aboral cup of “Hexacrinus aff. pyriformis” 

from the Devonian of the Northern Shan States (Burma). The figured aboral cup (1908, p. 40; 

pl. 5, fig. 13) can clearly be assigned to S. tabulatus and is recognised as the first report of the 

genus from Asia. 

 Stylocrinids are also known from the Asian part of Russia. As documented by 

DUBATOLOVA (1971), the genus occurs within the Eifelian deposits of NE Salair, near 

Gur'evsk (Kemerowo, Siberia, Russia; western part of the central Kusbass). The figured 

aboral cups can be assigned to S. prescheri (1971, pl. 1, figs. 5a-b) and S. tabulatus (1971, pls. 

1, figs. 6a-b, 7a-b; 2, figs. 1a-c, 2a-b). 

 

 

3.3.3.3 Australia 

 

Australia.—JELL & JELL (1999) reported S. tabulatus aboral cups from the 

Frasnian part of the Sadler Limestone (lower Upper Devonian); this is the youngest report of 

the genus. The silicified aboral cup (1999, pp. 229-230; figs. 26A-D) was found SW of 

“Wade Knolls” in “Paddy’s Valley” of Western Australia. 

                                                 
4  = S. prescheri BOHATÝ, in review sensu ICZN 
5  = S. prescheri BOHATÝ, in review sensu ICZN 
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FIGURE 3.3.1.1-6—Stylocrinus tabulatus (GOLDFUSS, 1839), lateral views. 1, GIK-2001 (leg. LEUNISSEN), 

juvenile crown, part of stem preserved, x 6.2; 2-3, GIK-2003 (leg. PRESCHER), partly preserved crown, 

atomous arms showing internally inclined edges meeting laterally with adjacent brachials, x 4.3; 4, GIK-

2004 (leg. SCHREUER), aboral cup with preserved proximal arms, x 4.5; 5-6, MWNH-306a, original of 

SANDBERGER & SANDBERGER (1856, pl. 35, fig. 12a), figured as “Stylocrinus scaber, GOLDF. sp.”, partly 

preserved, juvenile crown, atomous arms showing internally inclined edges meeting laterally with adjacent 

brachials in an interlocking network, x 6.8. 
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3.3.4  SYSTEMATIC PALAEONTOLOGY 
 
3.3.4.1  Crinoid systematic 
 
3.3.4.1.1 Family Synbathocrinidae 
 

Subclass Disparida MOORE & LAUDON, 1943 
Superfamily Belemnocrinoidea MILLER, 1883 

Family Synbathocrinidae MILLER, 1889 
 
 
3.3.4.1.2 Genus Stylocrinus 
 

Genus Stylocrinus SANDBERGER & SANDBERGER, 1856 
 

Type species.—*Platycrinites tabulatus GOLDFUSS, 1839. 
 

Diagnosis.—Crown slender, long, and lanceolated (Fig. 3.3.1.1), with an 
unsculptured or typically pustulated surface (S. tabulatus, S. prescheri n. sp.6), or, rarely, 
sculptured by unoriented ridges, crinkles and tubercles (S. granulatus), sometimes moderately 
facetted parallel to the radial flanges (S. tabulatus, S. prescheri n. sp.7) [Figs. 3.3.2.6-7, 
3.3.2.12, 3.3.2.20, 3.3.3.1-3, 3.3.3.17, 3.3.6.1-4]; stem narrow, circular in cross section, with 
one central, pentalobate axial canal (Figs. 3.3.2.7, 3.3.2.14, 3.3.5.1-2); monocyclic aboral cup 
with highly variable morphology (Figs. 3.3.2.1-40), typically bowl shaped, frequently 
transitions between cone, bowl and globe shape (S. tabulatus, S. granulatus), but inverted 
“pear-shaped” in S. prescheri n. sp.8 (Figs. 3.3.6.1-16); aboral cup of S. tabulatus three times 
wider than long, as long as wide to three times longer than wide; aboral cup composed of 
three basals, forming a convex base, and five radials with plenary radial facets (Figs. 3.3.3.20-
23, 3.3.6.6, 3.3.6.15-16) [see “Remarks” below] with a distinct transverse ridge; atomous 
arms (Fig. 3.3.1.1); the brachials are rectilinear in external view; strongly convex transversely, 
straight longitudinally; internally inclined edges adjoined laterally with adjacent brachials in 
an interlocking network (Figs. 3.3.1.5-6); inordinately distributed notches occur laterally, 
diagonally positioned to each other (Figs. 3.3.4.2-5, 3.3.4.8-9, 3.3.4.14), bearing obviously 
rudimental arm appendage (Figs. 3.3.4.3, 3.3.4.5). 
                                                 

6  = S. prescheri BOHATÝ, in review sensu ICZN 
7  = S. prescheri BOHATÝ, in review sensu ICZN 
8  = S. prescheri BOHATÝ, in review sensu ICZN 

 119



3.3―Chapter III. Crinoidea, Disparida    

 

Occurrence.—Middle to Upper Devonian. Eifelian: Asia (Salair, Kemerowo, 

Siberia, Russia). Eifelian-Givetian: Europe (Germany). Frasnian: Western Australia. Slightly 

modified from WEBSTER (2003). 

The occurrence of Stylocrinus within the Silurian deposits of the United States 

(STRIMPLE 1963) is rejected based on the revised diagnosis herein (see “Remarks” below). 

 

Remarks.—The plenary radial facets of the disparid Stylocrinus corresponds 

with the features defined for cladids by WEBSTER (2007, pp. 325-328). 

The crinoid described by STRIMPLE (1963, pl. 1, figs. 6-8) as “Stylocrinus 

elimatus” (also see WEBSTER 1973, p. 247; 2003) does not belong to Stylocrinus. Presumably, 

“S. elimatus” belongs to the Pisocrinidae ANGELIN, 1878 (study in progress). In contrast to the 

Stylocrinus diagnosis of STRIMPLE (1963; also in MOORE et al. 1978, p. T560), the aboral cup 

of Stylocrinus possesses consistently three, not five, basal plates. This is a constant feature 

observed on each of the approximately 1500 aboral cups studied. 

The recently published drawing of a Stylocrinus model (see HAUSER 2008, p. 

25; fig. 48) is entirely incorrect. Wrongly, the model has (1.) a circular axial canal instead of a 

pentalobate one, (2.) five instead of three basals and (3.) the brachials lack the internally 

inclined edges adjoined laterally with adjacent brachials in an interlocking network (see 

“Revised diagnosis” below). 

Because POLYARNAYA (1986) designated “S. scaber” as junior synonym of 

“P.” tabulatus, the type species of Stylocrinus SANDBERGER & SANDBERGER, 1856 is 

*Platycrinites tabulatus GOLDFUSS, 1839 – not “*Stylocrinus scaber SANDBERGER & 

SANDBERGER, 1856”, as given in MOORE et al. (1978, p. T560) and HAUSER (2008, p. 25). 

 

 

3.3.4.1.3 Species Stylocrinus tabulatus 

 

Stylocrinus tabulatus (GOLDFUSS, 1839) 

Figs. 3.3.1.1-6, 3.3.2.1-40, 3.3.3.1-29, 3.3.4.1-14, 3.3.7.1-2, 3.3.8.1-9, 3.3.9, 3.3.10, 

3.3.11(centre) 

 

• Platycrinites tabulatus GOLDFUSS, 1839, p. 345. STEININGER, 1853, p. 37. QUENSTEDT, 

1885, p. 952; pl. 76, fig. 17. BASSLER & MOODEY, 1943, p. 692. POLYARNAYA, 1986, p. 77. 

WEBSTER, 1993, p. 113. WEBSTER, 2003. 
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• Platycrinus tabulatus (GOLDFUSS, 1839). BRONN, 1848, p. 993. QUENSTEDT, 1852, p. 618; 
pl. 54, figs. 25a-c. QUENSTEDT, 1876, pp. 557-559. DUJARDIN & HUPÉ, 1862, p. 152. 
WEBSTER, 2003. 

• Platycrinus tabulatus variatio alta (MÜLLER). QUENSTEDT, 1876, p. 558; pl. 109, fig. 47. 
• Platycrinus tabulatus variatio depressa (MÜLLER). QUENSTEDT, 1876, p. 558; pl. 109, fig. 

49. 
• Stylocrinus tabulatus (GOLDFUSS, 1839). WACHSMUTH & SPRINGER, 1886, p. 171 (95). 

BASSLER & MOODEY, 1943, p. 692. MIESEN, 1971, p. 5; pl. 4, fig. 9g (undescribed), non fig. 
9h (undescribed) [= S. granulatus HAUSER, 1997]. WEBSTER, 1993, p. 113. HAUSER, 1997, 
p. 96; pl. 70, fig. 5 (not pl. 70, figs. 1, 9 as given p. 96 sic!), non figs. 1-2 (= Phimocrinus 
laevis SCHULTZE, 1866). JELL & JELL, 1999, p. 229; fig. 26, nos. A-D. HAUSER, 2001, pp. 
134-137; pl. 13, figs. 5-6. WEBSTER, 2003. non HAUSER, 2008, p. 26; fig. 49 (= Stylocrinus 
prescheri n. sp.9) [described as “Stylocrinus tabulatus depressus MÜLLER in ZEILER & 

WIRTGEN, 1855” in HAUSER, 2008, pl. 1, fig. 5 sic!]. 
• Stylocrinus tabulatus (MÜLLER). MIESEN, 1974, p. 77; fig. 1, non figs. 1a (= S. granulatus 

HAUSER, 1997), 1b [= (?)S. prescheri n. sp.10]. 
• Stylocrinus tabulatus tabulatus (GOLDFUSS, 1839). DUBATOLOVA, 1971, p. 19; pl. 1, figs. 6-

8, non fig. 5 (= S. prescheri n. sp.11), non fig. 9 (= Crinoidea indet.). WEBSTER, 1977, p. 
162. WEBSTER, 2003. 

• Symbathocrinus tabulatus (GOLDFUSS, 1839). MÜLLER in ZEILER & WIRTGEN, 1855, p. 19; 
pl. 4, figs. 4-5. SCHULTZE, 1866, pp. 27-28; pl. 3, fig. 4h, non figs. 4c [= (?)S. prescheri n. 
sp.12], 4d, g (= Crinoidea indet.), 4e-f (= Eohalysiocrinus sp.), 4i (= S. granulatus HAUSER, 
1997). HOLZAPFEL, 1895, p. 300. BASSLER & MOODEY, 1943, p. 692. WEBSTER, 2003. 

• Stylocrinus scaber SANDBERGER & SANDBERGER, 1856, p. 400; pl. 35, fig. 12. QUENSTEDT, 
1876, p. 558; pl. 109, fig. 50. BASSLER & MOODEY, 1943, p. 692 (Platycrinites scaber 
GOLDFUSS, ms). MOORE et al., 1978, p. T561; fig. 353, nos. 2a-c. POLYARNAYA, 1986, p. 
77. WEBSTER, 1986, p. 293. WEBSTER, 1993, p. 113. WEBSTER, 2003. HAUSER, 2008, p. 25; 
fig. 46. 

• Symbathocrinus tabulatus var. alta MÜLLER in ZEILER & WIRTGEN, 1855, p. 19; pl. 6, fig. 5. 
SCHULTZE, 1866, p. 27; pl. 3, figs. 4, 4a-b. BASSLER & MOODEY, 1943, p. 692. 
POLYARNAYA, 1986, p. 77. WEBSTER, 1993, p. 113. WEBSTER, 2003. 

• Stylocrinus tabulatus var. alta (MÜLLER). MIESEN, 1971, pl. 3, figs. 9, 9a-b, non pl. 4, fig. 
9c [= (?)S. prescheri n. sp.13]. MIESEN, 1974, pl. 76, figs. 4, 4a-b. 

                                                 
9  = S. prescheri BOHATÝ, in review sensu ICZN 
10  = (?)S. prescheri BOHATÝ, in review sensu ICZN 
11  = S. prescheri BOHATÝ, in review sensu ICZN 
12  = (?)S. prescheri BOHATÝ, in review sensu ICZN 
13  = (?)S. prescheri BOHATÝ, in review sensu ICZN 
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• Stylocrinus tabulatus alta (MÜLLER, 1855). HAUSER, 1997, pp. 96, 98; pls. 70, figs. 6-7; 71, 

fig. 1. WEBSTER, 2003. 

• Stylocrinus tabulatus altus (MÜLLER, 1855). BASSLER & MOODEY, 1943, p. 692. 

POLYARNAYA, 1986, p. 77; unnum. pl., fig. 3; fig. 1. WEBSTER, 1993, p. 113. HAUSER, 

2001, p. 135. WEBSTER, 2003. 

• Scytalocrinus tabulatus var. alta (MÜLLER, 1855). WACHSMUTH & SPRINGER, 1886, p. 171 

(95). BASSLER & MOODEY, 1943, p. 692. WEBSTER, 2003. 

• Symbathocrinus tabulatus var. depressa MÜLLER in ZEILER & WIRTGEN, 1855, p. 19; pl. 6, 

fig. 4. SCHULTZE, 1866, pp. 28-29; pl. 3, figs. 5, 5a-b. BASSLER & MOODEY, 1943, p. 692. 

POLYARNAYA, 1986, p. 78. WEBSTER, 1993, p. 113. WEBSTER, 2003. 

• Stylocrinus tabulatus var. depressa (MÜLLER, 1855). WACHSMUTH & SPRINGER, 1886, p. 

171 (95) [pars]. BASSLER & MOODEY, 1943, p. 692. MIESEN, 1974, pl. 77, figs. 2 

(unnumbered), 2a-b. POLYARNAYA, 1986, p. 78. WEBSTER, 1993, p. 113. WEBSTER, 2003. 

• Stylocrinus var. depressa. MIESEN, 1971, pl. 4, figs. 10, 10a-b. 

• Stylocrinus tabulatus depressa (MÜLLER, 1855). HAUSER, 1997, p. 97; pl. 71, figs. 2, 8. 

HAUSER, 2001, p. 136. WEBSTER, 2003. 

• Stylocrinus tabulatus depressus (MÜLLER, 1855). BASSLER & MOODEY, 1943, p. 692 (pars). 

DUBATOLOVA, 1971, p. 21; non pl. 1, figs. 10-11 (= Crinoidea indet.); pl. 2, figs. 1-2. 

WEBSTER, 1977, p. 162. POLYARNAYA, 1986, p. 78; fig. 2; unnum. pl., fig. 2. WEBSTER, 

1993, p. 113. HAUSER, 2001, pp. 135-137; pl. 25, fig. 4. WEBSTER, 2003. non HAUSER, 

2008, pl. 1, fig. 5 (= S. prescheri n. sp.14) [described as “Stylocrinus tabulatus” in HAUSER, 

2008, p. 26; fig. 49 sic!]. 

• Hexacrinus aff. pyriformis (SCHULTZE). REED, 1908, p. 40; pl. 5, fig. 13. 

 

Occurrence.—As for genus. 

 

Proposed neotype.—Aboral cup, no IPB-BOHATÝ-10 (Fig. 3.3.2.27). 

 

Revised diagnosis.—Crown slender, long and lanceolated, with an 

unsculptured or typically pustulate or fine granulate surface, sometimes moderately faceted 

parallel to the radial flanges; stem narrow, circular in cross section, with one central, 

pentalobate axial canal; aboral cup with highly variable morphology regarding length and 

width proportions (Figs. 3.3.2.1-40), typically bowl shaped, frequently transitions between 

                                                 
14  = S. prescheri BOHATÝ, in review sensu ICZN 
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cone, bowl and globe shape; aboral cup three times wider than long, as long as wide to three 

times longer than wide, widest lateral radius of aboral cup at the radial facets; aboral cup 

composed of three basals, forming a convex base, and five radials with plenary radial facets 

with distinct transverse ridges; atomous arms; the brachials are rectilinear in external view; 

strongly convex transversely, straight longitudinally; internally inclined edges adjoin laterally 

with adjacent brachials in an interlocking network (Figs. 3.3.1.5-6); inordinately distributed 

notches occur laterally, diagonally positioned to each other (Figs. 3.3.4.2-5, 3.3.4.8-9, 

3.3.4.14), bearing obvious rudimental arm appendages (Figs. 3.3.4.3, 3.3.4.5). 

 

Type locality and stratigraphy.—Neither the type locality within the Eifel, nor 

the stratigraphy is given in the original description (GOLDFUSS 1939, p. 345). Therefore, data 

applies to the proposed neotype (Fig. 3.3.2.27): 

 

New type locality.—Slope of the former planned roadwork extension of federal 

road “B51”, south of Brühlborn, northeast of Rommersheim (Prüm Syncline, Eifel, Rhenish 

Massif, Germany); UTM 50°12’24.88’’N/6°27’38.58’’E. Stratigraphy: Nims Member of the 

lower Grauberg Subformation, upper part of the Junkerberg Formation, upper Middle Eifelian 

(Middle Devonian); kockelianus Conodont Biozone. 

 

Discussion.—The highly ecophenotypic plasticity and the resulting 

morphological variability of S. tabulatus aboral cups resulted in the subspecific differentiation 

by MÜLLER in ZEILER & WIRTGEN (1855). Due to the few known examples, “Symbathocrinus 

tabulatus var. alta” and “S. t. var. depressa” were established for short and long aboral cups. 

Analysis of approximately 1500 aboral cups demonstrates gradual transitions of length and 

width proportions. Therefore, both subspecies are combined with S. tabulatus, whereby the 

nominal subspecies “S. tabulatus tabulatus” is dissolved. JELL & JELL (1999, p. 229) assigned 

their stylocrinids [with length = width intermediate between altus (length > width) and 

depressus (width > length)] to the broader species concept. Disregarding the nominal 

subspecies S. t. tabulatus, the attempt of HAUSER (2001, p. 135) to interpret all with 

length > width as in S. tabulatus, and all the remainder as “S. t. depressus” is, therefore, 

irrelevant. This conclusion is affirmed by the identical brachials, the concordant plenary radial 

facets of all S. tabulatus morphotypes, and the same stem facet. Likewise the development of 

plate sculpturing and the irregularly arranged lateral depressions of the brachials may vary 

both  in  short  and  long  aboral  cups.  However,  it  should be noted, that several S. tabulatus 
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FIGURE 3.3.2. (legend p. 125) 
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localities yield a relatively constant spectrum of either short or long aboral cups, whereas 

other places, like the new type locality, has the broad spectrum of gradual transitions. 

Likewise, the dimensions are regionally different. Very abundant localities are dominated by 

smaller individuals. 

Especially in the upper Middle Eifelian in the vicinity of Gondelsheim (Prüm 

Syncline, Eifel, Rhenish Massif, Germany; UTM 50°13’58.95’’N/6°29’44.73’’E and 

eastward to 50°13’58.85’’N/6°29’52.50’’E), rarer findings of large specimens are 

characteristic. 

The atomous brachial construction, with interlocked lateral depressions, may 

support a sturdy resting or avoidance posture, which possibly affords heightened tolerance 

against hydrodynamic influences or predatory attacks. The lateral gearing of atomous arms is 

also known in Australian cupressocrinitids (compare to JELL et al. 1988, p. 394; fig. 26H). 

The strongly convex brachials have distributed notches, which occur laterally, 

diagonally positioned to each other (Figs. 3.3.4.2-5, 3.3.4.8-9, 3.3.4.14). These notches bear 

an obvious rudimentary arm appendage (Figs. 3.3.4.3, 3.3.4.5) that possibly could extend in a 

semiclosed arm-crown position and may have allowed feeding in a protected posture. 

 

             

FIGURE 3.3.2.1-40 (see p. 124)—Stylocrinus tabulatus (GOLDFUSS, 1839), the transitions between the 

different morphologies of the aboral cup and variations of plate sculpturing (1-17, 19-40, lateral; 18, aboral 

view). 1, GIK-2007, x 3.8; 2, GIK-2008, x 5.4; 3, GIK-2087, x 4.7; 4, GIK-2089, x 4.0; 5, GIK-2060, x 

3.2; 6, GIK-2076, x 3.2; 7, GIK-2090 (leg. SCHREUER), one stem-ossicle preserved, x 3.6; 8, GIK-2068, x 

3.7; 9, GIK-2092, x 6.7; 10, MWNH-306e, one stem-ossicle preserved, x 3.5; 11, GIK-2009, x 4.4; 12, 

GIK-2067, x 2.7; 13, GIK-2006, x 2.0; 14, GIK-2058 (leg. HEIN), one stem-ossicle preserved, x 2.6; 15, 

GIK-2091 (leg. HEIN), x 3.4; 16, GIK-2077, x 2.8; 17, GIK-2010, x 3.4; 18-19, GIK-2002 (leg. 

LEUNISSEN), aboral cup with a-typical narrow basis, x 4.0; 20, GIK-2059, x 3.6; 21, GIK-2093 (leg. 

SCHREUER), x 3.5; 22, GIK-2094 (leg. SCHREUER), x 3.5; 23, GIK-2063 (leg. SCHREUER), x 3.5; 24, GIK-

2064 (leg. SCHREUER), x 3.3; 25, GIK-2065 (leg. SCHREUER), x 3.8; 26, GIK-2095, x 3.8; 27, Proposed 

neotype, IPB-BOHATÝ-10, x 3.1; 28, GIK-2096 (leg. SCHREUER), x 3.4; 29, GIK-2098, x 2.9; 30, GIK-

2097 (leg. SCHREUER), x 4.2; 31, GIK-2099 (leg. SCHREUER), x 3.1; 32, GIK-2100 (leg. SCHREUER), x 3.1; 

33, GIK-2061, x 4.0; 34, GIK-2070, x 2.4; 35, GIK-2071, x 2.1; 36, GIK-2066 (leg. SCHREUER), x 2.8; 37, 

GIK-2101 (leg. SCHREUER), x 2.9; 38, GIK-2062 (leg. HEIN), part of stem preserved, x 2.7; 39, MWNH-

306f, x 4.5; 40, GIK-2088 (leg. HEIN), x 2.9. 
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FIGURE 3.3.3.1-29—Stylocrinus tabulatus (GOLDFUSS, 1839), isolated radials (1-24) and basals (25-29) in 

lateral (1-21, 23-28) and facetal views (22, 29). 1, GIK-2024, x 6.1; 2, GIK-2025, x 7.1; 3, GIK-2026, x 

5.3; 4, GIK-2027, x 5.6; 5, GIK-2028, x 6.3; 6, GIK-2029, x 5.4; 7, GIK-2030, x 8.2; 8, GIK-2031, x 6.1; 

9, GIK-2032, x 7.6; 10, GIK-2033, x 6.0; 11, GIK-2034, x 5.6; 12, GIK-2035, x 8.0; 13, GIK-2036, x 8.7; 

14, GIK-2037, x 5.6; 15, GIK-2038, x 8.6; 16, GIK-2039, x 8.1; 17, GIK-2040, x 5.2; 18, GIK-2041, x 8.3; 

19, GIK-2042, x 8.4; 20, GIK-2043, interior view, x 6.4; 21-22, GIK-2044, interior side and view of 

plenary radial facets, x 6.1/6.8; 23-24, GIK-2045, interior view, x 6.7/6.2; 25, GIK-2046, also figured in 

Fig. 3.3.8.4, x 7.5; 26, GIK-2047, interior view, x 7.2; 27, GIK-2048, x 7.6; 28-29, GIK-2049, x 6.4/10.4. 
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FIGURE 3.3.4.1-14—Stylocrinus tabulatus (GOLDFUSS, 1839), isolated brachials. 1, GIK-2018, lateral 

view, x 8.2; 2, GIK-2019, interior view showing inordinately distributed lateral notches (possibly for 

rudimental pinnulation?), which are diagonally positioned to each other, x 9.4; 3-4, GIK-2020, interior and 

facetal view, lateral notches and possibly one preserved rudimental pinnule(?) [upper right], x 7.4/7.7; 5, 

GIK-2012, interior view with well preserved lateral notches and one rudimental pinnule(?) [right centre], x 

7.8; 6, GIK-2021, lateral view, x 7.6; 7, GIK-2013, lateral view of a plate with well developed lateral 

notches, x 8.0; 8, GIK-2014, interior view of proximal brachials with well developed lateral notches, x 6.1; 

9, GIK-2015, interior view of proximal brachials with well developed lateral notches, x 5.7; 10-11, No. 

GIK-2022, lateral and lateral-facetal view of proximal plates, x 6.8/6.5; 12, GIK-2023, interior view of a 

weathered proximal plate, x 6.8; 13, GIK-2016, lateral view of a plate with well developed lateral notches, 

x 7.7; 14, GIK-2017, interior view, x 7.0. 
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3.3.4.1.4 Species Stylocrinus granulatus 

 

Stylocrinus granulatus HAUSER, 1997 

Figs. 3.3.5.1-4, 3.3.11(right) 

 

• Stylocrinus granulatus HAUSER, 1997, pp. 98-99; pl. 71, figs. 3-4. HAUSER, 2001, p. 193. 

• sic! Stylocrinus granulosa HAUSER, 1997, pp. 14, 98-99. 

• sic! Stylocrinus granulosus. HAUSER, 2001, pp. 137, 151. 

• Symbathocrinus tabulatus (GOLDFUSS). SCHULTZE, 1866, pl. 3, fig. 4i. 

• Stylocrinus tabulatus (GOLDFUSS, 1839). MIESEN, 1971, pl. 4, fig. 9h (undescribed). 

• Stylocrinus tabulatus (MÜLLER). MIESEN, 1974, p. 77; fig. 1a. 

 

Holotype.—Aboral cup, no. MB.E.-2580 (not MB.E.-2581 as wrongly given in 

HAUSER 1997, p. 98; pers. information, C. NEUMANN, Berlin). 

 

 

 

 
FIGURE 3.3.5.1-4—Stylocrinus granulatus 

HAUSER, 1997, isolated aboral cups in aboral (1-

2) and lateral view (3-4). 1, GIK-2074, showing 

pentalobate columnal axial canal and typical 

wide base, x 4.6; 2, GIK-2073, showing 

pentalobate columnal axial canal and typical 

wide base, x 5.4; 3, GIK-2072, plate sculpturing 

well preserved, x 4.3; 4; GIK-2075, x 3.7. 

 

 

 

 

Type locality and stratigraphy.—“Auf den Eichen”, northeast of Nollenbach 

(Hillesheim Syncline, Eifel, Rhenish Massif, Germany); UTM 

50°19’45.81’’N/6°44’38.33’’E. Stratigraphy: Bohnert Member of the upper part of the 

Freilingen Formation, Upper Eifelian (Middle Devonian); kockelianus/ensensis Conodont 

Biozone. 
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Diagnosis.—A Stylocrinus with a medium length cone shaped and monocyclic 

aboral cup with subhorizontal to slightly depressed and wide base with narrow stem 

impression (Figs. 3.3.5.1-4), all in all “flowerpot-like” (Fig. 3.3.5.4); aboral cup composed of 

three basals and five radials with plenary radial facets; plate boundaries notched; plates 

sculptured with rough, unaligned sculpturing (meandering crinkles and/or tubercles); widest 

lateral radius of aboral cup at the radial facet; stem narrow, circular in cross section, with one 

central, pentalobate axial canal. Arms, complete stem and holdfast unknown. 

 

Occurrence.—In addition to the type locality, this species is recovered from 

the same stratigraphic interval of the abandoned Weinberg Quarry near Kerpen (Hillesheim 

Syncline, Eifel, Rhenish Massif, Germany); UTM 50°18’54.47’’N/6°42’53.63’’E. 

 

Discussion.—This rare Stylocrinus is characterised by rough plate sculpturing 

and the wide base (Figs. 3.3.5.1-2). The new localities yield a relatively low diversity of 

aboral cup morphologies in comparison with the common S. tabulatus, which is rarely 

associated with relatively small individuals. S. granulatus is a very constant form with the 

shortest stratigraphical range of all known stylocrinids. The ecologically highly adapted 

species established after a regional event at the threshold of the Junkerberg and Freilingen 

formations of the upper Middle to Upper Eifelian (“otomari Event” sensu STRUVE et al. 1997 

– a transgression that resulted in sedimentary changes within the Eifel region). The 

occurrence of S. granulatus is strictly limited to the Bohnert Member (upper part of the 

Freilingen Formation, Upper Eifelian), apparently unable to avoid rapid sedimentary changes 

in the superposed Ahbach Formation (Eifelian/Givetian). 

 

 

3.3.4.1.5 Species Stylocrinus prescheri 

 

Stylocrinus prescheri n. sp.15 

Figs. 3.3.6.1-16, 3.3.11(left) 

 

• (?)Symbathocrinus tabulatus (MÜLLER). SCHULTZE, 1866, pl. 3, fig. 4c. 

• Stylocrinus tabulatus tabulatus (GOLDF.). DUBATOLOVA, 1971, pl. 1, figs. 5a-5. 

• (?)Stylocrinus tabulatus (MÜLLER). MIESEN, 1974, p. 77; fig. 1b. 

                                                 
15  = Stylocrinus prescheri BOHATÝ, in review sensu ICZN 
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• (?)Stylocrinus tabulatus var. alta (MÜLLER). MIESEN, 1971, pl. 4, fig. 9c. 

• sic! Stylocrinus tabulatus (GOLDFUSS, 1839). HAUSER, 2008, p. 26; fig. 49 [also figured on 

pl. 1, fig. 5, described as “Stylocrinus tabulatus depressus MÜLLER in ZEILER & WIRTGEN, 

1855”]. 

• sic! Stylocrinus tabulatus depressus (GOLDFUSS, 1839). HAUSER, 2008, pl. 1, fig. 5 [also 

figured on p. 26, fig. 49, described as Stylocrinus tabulatus GOLDFUSS, 1839]. 

 

Etymology.—In honour of Mr. HARALD PRESCHER (Kerpen-Horrem, 

Germany), the discoverer of the fossil layer at the type locality, who encouraged many aspects 

of my research. 

 

Holotype.—Aboral cup, no. SMF-75408 (Fig. 3.3.6.8). 

 

Type locality.—Slope of the former planned roadwork extension of federal 

road “B51”, south of Brühlborn, northeast of Rommersheim (Prüm Syncline, Eifel, Rhenish 

Massif, Germany); UTM 50°12’27.14’’N/6°27’37.45’’E. The locality corresponds with the 

locus typicus of the cladid crinoid Bactrocrinites porrectus BOHATÝ, 2005b, pp. 403, 406-

407. 

 

Stratigraphy.—Olifant Member of the lower part of the Müllert Subformation, 

Ahbach Formation (lowermost Lower Givetian, Middle Devonian); hemiansatus Conodont 

Biozone. 

 

Diagnosis.—A Stylocrinus with an inverted “pear-shaped” aboral cup (Figs. 

3.3.6.1-2), wider than long, composed of three basals, forming a convex base, and five radials 

with plenary radial facets, radials peltiform, with widest diameter at the lower edges, 

narrowing distally; the widest lateral radius of the aboral cup is close to the radial/basal 

boundary; radial circlet constricted (Figs. 3.3.6.5-6); stem narrow, circular in cross section, 

with one central, pentalobate axial canal. Arms, complete stem and root unknown. 

 

Measurements of the holotype (max. length/width in mm).—Aboral cup: 

9.0/13.0; basals: 5.3/9.0; radials: 5.5/6.0; diameter of stem impression: 5.0; diameter of stem 

facet: 2.5. 
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Description.—The aboral cup is inverted “pear-shaped” (Figs. 3.3.6.1-2), 

wider than long and has its widest lateral radius close to the radial/basal boundary. The stem 

impression is surrounded by a moderate concavity (Figs. 3.3.6.12), which is surrounded by 

the lower rims of the three unequal basals, which formed a wide and convex base. All basals 

are sculptured by irregularly or slightly aligned coarser granules (Figs. 3.3.6.3, 3.3.6.9). The 

proximal part of the aboral cup is nearly as long as the radial circlet. Radials peltiform, with 

the widest diameter at the basal/radial boundary, constricted distally and also sculptured by 

mostly irregular arranged granules, or sculpturing arcuately arranged, parallel to the lower 

flange of the radials. The radials of adult aboral cups have arcuate sculpturing below the 

plenary radial facets; distal to a projecting stage (Fig. 3.3.6.1). Stem narrow, circular in cross 

section and penetrated by a single, small and pentalobate axial canal. 

 

Differential diagnosis.—The inverted “pear-shaped” aboral cup clearly 

separates S. prescheri n. sp.16 from all morphotypes of S. tabulatus and S. granulatus. 

A simplified model of the characteristic aboral cup morphologies, 

differentiating the new species from S. tabulatus and S. granulatus, is given in Fig. 3.3.11. 

 

Occurrence.—Middle Devonian. Eifelian (Mamontovsk’i Member, 

Pesterevsk’i Limestone): NE Salair, near Gur’evsk (Kemerowo, Siberia, Russia; western part 

of the central Kusbass, Asia). Upper Eifelian (lower part of the Ahbach Formation) to 

lowermost Lower Givetian [upper part of the Ahbach Formation to (?)Loogh Formation]: 

Prüm (Brühlborn/Rommersheim vicinity) and Hillesheim synclines (Ahütte) [both Eifel, 

Rhenish Massif, Germany]. Lowermost Upper Givetian (“Roteisenstein”): “Grube Lahnstein” 

near Weilburg-Odersbach, NE of Limburg an der Lahn (Rhenish Massif, Lahn-Dill Syncline, 

Germany). 

 

Discussion.—At all known S. prescheri localities, this rare stylocrinid is 

associated with S. tabulatus; an association of S. prescheri n. sp.17 and S. granulatus was not 

observed. 

Within the Eifel Synclines, the new species is restricted to the 

Eifelian/Givetian boundary. The few localities within the Rhenish Massif yield a relatively 

low diversity of aboral cup morphologies in comparison with the more common S. tabulatus. 

                                                 
16  = S. prescheri BOHATÝ, in review sensu ICZN 
17  = S. prescheri BOHATÝ, in review sensu ICZN 
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FIGURE 3.3.6.1-16—Stylocrinus prescheri n. sp., isolated aboral cups. 1, GIK-2084 (leg. PRESCHER), 

lateral view of a very typical aboral cup, x 3.3; 2, GIK-2078, lateral view, x 3.6; 3, GIK-2080 (leg. 

LEUNISSEN), lateral view of a strongly sculptured aboral cup, x 3.5; 4, GIK-2081 (leg. SCHREUER), lateral 

view, x 4.6; 5, Same as 1, oral view, x 3.3; 6, GIK-2079 (leg. SCHREUER), oral view of a juvenile aboral 

cup, x 5.7; 7, GIK-2082 (leg. PRESCHER), lateral view, x 2.7; 8, Holotype, SMF-75408, lateral view of 

slightly compressed aboral cup, x 2.8; 9, GIK-2085 (leg. PRESCHER), lateral view, x 3.4; 10, GIK-2083 

(leg. PRESCHER), lateral view, x 3.9; 11, GIK-2086 (leg. PRESCHER), lateral view, x 5.0; 12-16, MWNH-

306b, unfigured original of SANDBERGER & SANDBERGER (1856), x 4.9 (12, aboral; 13, lateral; 14-15, 

lateral-oral and 16, oral view). 
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3.3.5 PRE- AND POSTMORTEM SKELETAL MODIFICATIONS OF STYLOCRINUS 
 
3.3.5.1  Premortem modifications 
 

Premortem modifications.—In spite of the very large number of aboral cups, 
and in contrast to camerate or especially to cladid crinoids, premortem skeletal modifications 
of the disparid Stylocrinus are extremely rare and observed on only two of approximately 
1500 individuals. 

The aboral cup no. GIK-2005 developed an anomalous, additional basal plate 
(Figs. 3.3.7.1-2). This kind of pathology was recently classified in cupressocrinitids as 
“growth anomaly without recognisable external influences” and were probably characterising 
‘‘genetic abnormalities” (BOHATÝ 2009, p. 53). 

The aboral cup no. GIK-2002 has an uncommon base with a narrow stem-
insertion (Figs. 3.3.2.18-19), which possibly is attributed to a skeletal (?)regeneration of the 
base. 

Skeletal anomalies in Devonian crinoids have recently been described in the 
cladid cupressocrinitids, gasterocomoids and bactrocrinids (BOHATÝ 2001; 2005a-b; 2006a-b; 
BOHATÝ & HERBIG in review), and in the camerate hexacrinitids (BOHATÝ 2001; 2006d-e; in 
press). An extensive discussion about pre- and postmortem skeletal modifications of the 
cupressocrinitid skeletons is given in BOHATÝ (2009). 
 

 
 

FIGURE 3.3.7.1-2—Stylocrinus tabulatus 

(GOLDFUSS, 1839), abnormal aboral cup, GIK-

2005 (leg. SCHREUER), with four basal plates. 1, 

lateral view; 2, aboral view, x 5.0. 

 
 

 
 
3.3.5.2  Postmortem modifications 
 

Postmortem modifications.—Postmortem skeletal modifications in the form of 
ossicular borings are common in stylocrinids. Almost 60% of the studied skeletons were 
penetrated   by   two  types  of  borings.  Figs.  3.3.8.1-3,  3.3.8.6-9  shows  rectilinear  or  less 
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FIGURE 3.3.8 (legend p. 135) 
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meandering, endolithic borings of unknown affinity. Most likely, they occur after the 

disarticulation of the aboral cup, because the origin of most of these traces is at the radial or 

basal plate margins. Figs. 3.3.8.4-5 shows radial and basal plates which were affected by 

surficial meandering borings of an unknown organism (possibly a boring Bryozoa or a 

Porifera). These types are rarer in comparison with the endolithic traces. Different pre- and 

postmortem borings occurred as single and multi-borings observed in cupressocrinitid 

skeletons described by BOHATÝ (2009). They differ from the stylocrinid traces, which are 

related to the undescribed borings on the isolated radials of Edriocrinus sp. (PROKOP & PETR, 

1995, pl. 1, figs. 1-16). The ossicles, especially the radials, of both species have very similar 

morphologies. 

One aboral cup of S. tabulatus represents the first non-platyceratid gastropod 

trace fossil observed on a crinoid skeleton and was identified as the radular grazing trace 

fossil ichnogenus Radulichnus VOIGT, 1977 (Fig. 3.3.9), recently detected on Eifelian 

Brachiopods from the Rhenish Massif (GRIGO, in review). These traces are attributed to the 

activity of polyplacophorid and patellid gastropods (VOIGT 1977), but their affinity remains 

unclear. 

One isolated S. tabulatus aboral cup was overgrown postmortem by a rugose 

coral, which attached to the plenary radial facets from oral direction with its root like basal 

extensions (no. GIK-2011; Fig. 3.3.10). The non-overgrown ossicles (radials and basals) 

remained articulated during the growth of the coral and, therefore, were probably enclosed by 

the sediment of the assumed soft-bottom. Also during the weathering processes of the coralite, 

the crinoid remained in good condition, while the former enclosing sediment was eroded. 

 

             

FIGURE 3.3.8.1-9 (see p. 134)—Stylocrinus tabulatus (GOLDFUSS, 1839), postmortem borings on isolated 

radials (1-3, 5-9) and on one basal plate (4). 1, GIK-2050, lateral view with one endolithic boring trace 

(enlarged), x 7.5; 2, GIK-2051, interior view with one endolithic boring trace (enlarged), x 9.3; 3, GIK-

2052, lateral view with one external(?) boring (enlarged) [compare to Fig. 6], x 7.4; 4, GIK-2046, also 

figured in Fig. 3.3.3.25, lateral view with one meandering boring trace (enlarged), x 9.1; 5, GIK-2053, 

lateral view of a fractured ossicle with one endolithic boring trace (enlarged), x 7.7; 6, GIK-2054, interior 

view with one external(?) boring trace (enlarged) [compare to Fig. 3], x 9.1; 7, GIK-2055, lateral view with 

one endolithic boring trace (enlarged), x 6.5; 8, GIK-2056, lateral view of a fractured ossicle with two 

endolithic boring traces (enlarged), x 9.2; 9, GIK-2057, interior and facetal views of an ossicle with 

numerous endolithic borings (enlarged) at the ossicular facets, x 8.3. 
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FIGURE 3.3.9—Stylocrinus tabulatus (GOLDFUSS, 1839), isolated, strongly weathered aboral cup GIK-

2069, representing the first crinoid-evidence of the radular grazing trace fossil ichnogenus Radulichnus 

VOIGT, 1977 on two radials (framed), x 9.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 3.3.10—Stylocrinus tabulatus (GOLDFUSS, 1839), isolated aboral cup, GIK-2011, x 1.1/4.0. The 

aboral cup was postmortem overgrown by a rugose coral. The base of the rugose also encrusted a tabulate 

coral. 
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3.3.6  DISCUSSION 

 

To give a résumé of the present study it has to be noted that the common taxa 

are distinguished by a high morphological variability of the aboral cup length/width 

proportions and plate sculpturing. The rarer species, S. granulatus and the new S. prescheri, 

are less variable regarding these morphological features. Also, former authors differentiated S. 

tabulatus into three subspecies (S. t. tabulatus, S. t. altus and S. t. depressus), the analysis of 

approximately 1500 aboral cups in varying between short and long aboral cups clearly 

demonstrate that the intraspecific morphological variability of the type species is a matter of 

its ecophenotypic plasticity. 

Within the Eifel, the stratigraphic distribution of the rarer taxa is confined to 

the Freilingen and Ahbach formations (Upper Eifelian), whereas S. tabulatus is known from 

the Lower, Middle and Upper Eifelian to the lowermost part of the Lower Givetian. The 

lowermost Upper Givetian S. tabulatus and S. prescheri findings in the Lahn Syncline are the 

youngest European occurrences. But the stylocrinids from Western Australia demonstrate that 

the genus is at least known from the lowermost part of the Lower Eifelian (Middle Devonian) 

to the Frasnian (Upper Devonian). 

 

 

FIGURE 3.3.11—Idealised sketches of the most characteristic morphological features, distinguishing 

Stylocrinus prescheri n. sp. (left), S. tabulatus (Goldfuss, 1839) [centre] and S. granulatus HAUSER, 1997 

(right). 
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S. granulatus has the shortest stratigraphical range of all known stylocrinids. 
The ecologically highly adapted species established after the “otomari Event” at the boundary 
of the Junkerberg and Freilingen formations (Upper Eifelian) and became extinct by the first 
change of the post-event facies with the beginning of the superposed Ahbach Formation 
(Eifelian/Givetian boundary). 

Several localities within the Eifel are distinguished by mass occurrences of S. 
tabulatus, as it was recognised within the Junkerberg Formation (Eifelian) of Schwirzheim 
and Rommersheim (Prüm Syncline, Eifel, Rhenish Massif, Germany). But the findings are 
nearly completely restricted to isolated aboral cups. Postmortal, the aboral cups were 
relatively robust in contrast to the mostly disarticulated brachials. Therefore, crowns are 
unique occurrences. The postmortal stability of the aboral cup is also confirmed by the 
overgrowth of an adult rugose coral, using the aboral cup as hard ground during its growth, 
without disarticulation of the stylocrinid. 

Considering the huge number of stylocrinid aboral cups, it is also remarkable 
that, contrary to cladid and camerate crinoids from the Eifel, only two abnormal individuals 
were recovered. 
 
 
3.3.7  APPENDIX 
 
3.3.7.1  The fossil localities and stratigraphy of the studied crinoids 
 
GIK-2001, Locality: Agricultural area, to the west of Schwirzheim (Prüm Syncline, Eifel, 

Rhenish Massif, Germany), UTM unknown. Stratigraphy: Hönselberg 
Member, upper part of the Heinzelt Subformation, Junkerberg Formation 
(upper Middle Eifelian, Middle Devonian). 

GIK-2002, Locality: Schwirzheim (Prüm Syncline, Eifel, Rhenish Massif, Germany), UTM 
unknown. Stratigraphy: Hönselberg Member, upper part of the Heinzelt 
Subformation, Junkerberg Formation (upper Middle Eifelian, Middle 
Devonian). 

GIK-2003, Locality: “Hartelstein”, NE-Schwirzheim (Prüm Syncline, Eifel, Rhenish Massif, 
Germany), UTM unknown. Stratigraphy: Hönselberg Member, upper part of 
the Heinzelt Subformation, Junkerberg Formation (upper Middle Eifelian, 
Middle Devonian). 

GIK-2004, Locality: Brühlborn (Prüm Syncline, Eifel, Rhenish Massif, Germany), UTM 
unknown. Stratigraphy: Klausbach Member, lowermost part of the Heinzelt 
Subformation, lowermost part of the Junkerberg Formation (upper Middle 
Eifelian, Middle Devonian). 

 138



3.3―Chapter III. Crinoidea, Disparida    

 

GIK-2005, Locality: Rommersheim (Prüm Syncline, Eifel, Rhenish Massif, Germany), UTM 
unknown. Stratigraphy: Klausbach Member, lowermost part of the Heinzelt 
Subformation, lowermost part of the Junkerberg Formation (upper Middle 
Eifelian, Middle Devonian). 

GIK-2006, Locality: SW-“Hönselberg”, to the east of Loogh, south of Niederehe (Hillesheim 
Syncline, Eifel, Rhenish Massif, Germany), UTM 
50°18’09.55’’N/6°44’51.65’’E. Stratigraphy: Eilenberg Member, lower part of 
the Freilingen Formation (Upper Eifelian, Middle Devonian). 

GIK-2007 to GIK-2010, Locality: Pelm, to the east of Gerolstein (Gerolstein Syncline, Eifel, 
Rhenish Massif, Germany), UTM unknown. Stratigraphy: Loogh Formation 
(Lower Givetian, Middle Devonian). 

GIK-2011 to GIK-2017, Locality: W-housing subdivision “Unterm Sportplatz” of village 
Schwirzheim (Prüm Syncline, Eifel, Rhenish Massif, Germany), UTM 
50°13’50.53’’N/6°31’08.72’’E. Stratigraphy: Hönselberg Member, upper part 
of the Heinzelt Subformation, Junkerberg Formation (upper Middle Eifelian, 
Middle Devonian). 

GIK-2018 to GIK-2057, – same as locality 16. 
GIK-2058, Locality: 600m SE of Ahrdorf (Ahrdorf Syncline, Eifel, Rhenish Massif, 

Germany), UTM unknown. Stratigraphy: Eilenberg Member, lower part of the 
Freilingen Formation (Upper Eifelian, Middle Devonian). 

GIK-2059 to GIK-2060, Locality: SW-housing subdivision of village Gondelsheim (Prüm 
Syncline, Eifel, Rhenish Massif, Germany), UTM 
50°13’58.85’’N/6°29’52.50’’E. Stratigraphy: Nims Member, lower part of the 
Grauberg Subformation, upper part of the Junkerberg Formation (upper Middle 
Eifelian, Middle Devonian). 

GIK-2061, Locality: E-Niederehe (Hillesheim Syncline, Eifel, Rhenish Massif, Germany), 
UTM 50°18’46.72’’N/6°46’13.74’’E. Stratigraphy: Klausbach Member, 
lowermost part of the Heinzelt Subformation, lowermost part of the Junkerberg 
Formation (upper Middle Eifelian, Middle Devonian). 

GIK-2062, Locality: W-industrial area, SE of Weinsheim (Prüm Syncline, Eifel, Rhenish 
Massif, Germany), UTM 50°13’32.14’’N/6°28’42.97’’E. Stratigraphy: Upper 
part of the Rech Member, upper part of the Loogh Formation (Lower Givetian, 
Middle Devonian). 

GIK-2063 to GIK-2066, Locality: SW-housing subdivision “Im Leimenpeschen” of village 
Schwirzheim (Prüm Syncline, Eifel, Rhenish Massif, Germany), UTM 
50°13’47.54’’N/6°31’17.35’’E. Stratigraphy: Hönselberg Member, upper part 
of the Heinzelt Subformation, Junkerberg Formation (upper Middle Eifelian, 
Middle Devonian). 
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GIK-2067 to GIK-2068, Locality: W-Gondelsheim (Prüm Syncline, Eifel, Rhenish Massif, 
Germany), UTM 50°14’03.31’’N/6°29’50.47’’E. Stratigraphy: Klausbach 

Member, lowermost part of the Heinzelt Subformation, lowermost part of the 
Junkerberg Formation (upper Middle Eifelian, Middle Devonian). 

GIK-2069 to GIK-2071, Locality: “Mühlenwäldchen”, SW-Gerolstein (Gerolstein Syncline, 
Eifel, Rhenish Massif, Germany), UTM 50°13’16.14’’N/6°39’01.00’’E. 

Stratigraphy: Baarley Member, lower part of the Loogh Formation (lowermost 
Lower Givetian, Middle Devonian). 

GIK-2072 to GIK-2074, Locality: Abandoned “Weinberg Quarry”, NW of Kerpen 

(Hillesheim Syncline, Eifel, Rhenish Massif, Germany), UTM 
50°18’54.47’’N/6°42’53.63’’E. Stratigraphy: Bohnert Member, upper part of 
the Freilingen Formation (Upper Eifelian, Middle Devonian). 

GIK-2075, Locality: “Auf den Eichen”, NE of Nollenbach (Hillesheim Syncline, Eifel, 
Rhenish Massif, Germany), UTM 50°19’45.81’’N/6°44’38.33’’E. 
Stratigraphy: Bohnert Member, upper part of the Freilingen Formation (Upper 

Eifelian, Middle Devonian). 
GIK-2076 to GIK-2077, Locality: Agricultural area, to the west of Gondelsheim (Prüm 

Syncline, Eifel, Rhenish Massif, Germany), UTM 

50°13’58.95’’N/6°29’44.73’’E. Stratigraphy: Nims Member, lower part of the 
Grauberg Subformation, upper part of the Junkerberg Formation (upper Middle 
Eifelian, Middle Devonian). 

GIK-2078 to GIK-2086, Locality: Slope of the former planed roadwork extension of federal 
road “B51”, south of Brühlborn, northeast of Rommersheim (Prüm Syncline, 
Eifel, Rhenish Massif, Germany), UTM 50°12’27.14’’N/6°27’37.45’’E. 

Stratigraphy: Olifant Member, lower part of the Müllert Subformation, Ahbach 
Formation (lowermost Lower Givetian, Middle Devonian). 

GIK-2087 to GIK-2101, Locality: Slope of the former planned roadwork extension of federal 

road “B51”, south of Brühlborn, northeast of Rommersheim (Prüm Syncline, 
Eifel, Rhenish Massif, Germany), UTM 50°12’24.88’’N/6°27’38.58’’E. 

Stratigraphy: Nims Member, lower part of the Grauberg Subformation, upper 

part of the Junkerberg Formation (upper Middle Eifelian, Middle Devonian). 
MWNH-306a to MWNH-306b; MWNH-306e to MWNH-306f, Locality: Weilburg-

Odersbach, NE of Limburg an der Lahn (Lahn-Dill Syncline, Rhenish Massif, 

Germany), UTM unknown. Stratigraphy: Lowermost part of the Middle 
Givetian (Middle Devonian) “Roteisenstein”. 

SMF-75408, – same as locality 20. 
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3.4 CHAPTER IV. CRINOIDEA, FLEXIBILIA 
 

NEW MODE OF LIFE INTERPRETATION AND REVISION OF THE 
IDIOSYNCRATIC LECANOCRINID GENUS AMMONICRINUS 
(CRINOIDEA, FLEXIBILIA) 

 
 
ABSTRACT—The mode of life of the idiosyncratic lecanocrinid Ammonicrinus (Flexibilia) is 
newly interpreted based on new material from the Middle Devonian of the Rhenish Massif 
(Eifel and Bergisches Land, Germany). Several species are defined as spined soft-bottom 
dwellers, feeding in still water through active ligament pumping of the stem via mutable 
connective tissues. These species show echinoid-like tubercles on the attachment and on the 
column, which bear movable spines. The intraspecific variability of the column is discussed 
for three facies-controlled morphotypes, herein classified as standard “exposed-” or “encased 
roller-type” and the rare “settler-type”. New specimens show floating transitions between 
different plate sculpturing and between those individuals with none or one to several 
columnals with herein termed “lateral columnal enclosure extensions” on the proximal-most, 
barrel-like dististele and the following mesistele, which is solely distinguished by these 
extensions. Based on this interpretation, A. kongieli is evaluated as a subjective junior 
synonym of A. sulcatus. The latter species is first recognised within the Eifel (Germany). “A. 
wachtbergensis”, from the Upper Eifelian of the Eifel, is declared a subjective junior 
synonym of A. doliiformis. The first complete specimen of A. kredreoletensis is described 
from the Lower Eifelian of Vireux-Molhain (southern Ardennes, France). Two new species 
are described: Ammonicrinus jankei n. sp.1 and A. leunissi n. sp.2 A functional morphologic 
trend of perfecting the crown-encasing by continuous modification of the lateral columnal 
enclosure extensions of the mesistele from the Eifelian to the Givetian, indicates a vagile 
benthic predator-driven evolution of ammonicrinids within the Eifel. The first known 
postmortem encrusting epizoans on ammonicrinid endoskeletons are reported. 
 
 
3.4.1  INTRODUCTION 
 
  The idiosyncratic and rarely known Devonian Ammonicrinus, a lecanocrinid 
flexible crinoid, was described by SPRINGER (1926b) and afterwards discussed in 
comparatively few publications [KRAUSE 1927; EHRENBERG 1930; WOLBURG 1938a, b; 

                                                 
1  = Ammonicrinus jankei BOHATÝ, submitted sensu ICZN 
2  = A. leunissi BOHATÝ, submitted sensu ICZN 
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WANNER 1943, 1954; UBAGHS 1952; YAKOVLEV & IVANOV 1956; KONGIEL 1958; 
PIOTROWSKI 1977; MOORE 1978; HAUDE 1981; GŁUCHOWSKI 1993; HOTCHKISS et al. 1999; 
LE MENN & JAOUEN 2003; HAUSER 2005b; HAUSER et al. 2009 and PROKOP 2009 (see 
“Remarks” below)], mainly from the Devonian deposits of Germany (Rhenish Massif) and 
Poland (Holy Cross Mountains). Ammonicrinus is distinguished by the synarthrial articulation 
on columnals with fulcra aligned and unequal ligmentary areas on either side of each fulcrum, 
which produced a planispirally coiled proximal column presumably serving a protective 
function. With the exception of two other Palaeozoic genera, Myelodactylus HALL, 1852 and 
Camptocrinus WACHSMUTH & SPRINGER, 1897, the enrolled Ammonicrinus (Figs. 3.4.5, 
3.4.7.1, 3.4.8) does not correspond to the erect model of most stalked crinoids, which were 
attached to the substrate by a diversely designed holdfast followed by an upright stem to 
elevate the food-gathering system, represented by the arms, above the sea-floor (e.g. HESS et 
al. 1999). 

The extremely modified stem of Ammonicrinus served more specialised 
functions. Besides the attachment, the modified stem provided protection and, presumably, 
the functional morphology of the stem was a possible nutrient water flow generator. These 
modifications lead to the most atypical evolutional model among crinoids by drastically 
changing a “normal” crinoid crown into a “plate-encased” individual (Figs. 3.4.3.8, 3.4.4.1). 
Accordingly, the genus is easily defined by the development of the spheroidal crown hidden 
in an enrolled stem, which was, according to new data, either lying on soft-bottoms with long 
mesi- and dististele, attached with its holdfast to hard objects like brachiopod valves (Figs. 
3.4.2.2, 3.4.2.5), corals or bryozoans (Figs. 3.4.5, 3.4.7.1-2; Pl. 3.4.1, Figs. 12-13; Pl. 3.4.2, 
Fig. 13), or settled completely on hard objects (e.g. brachiopods, see Fig. 3.4.8; Pl. 3.4.1, Fig. 
14) by strongly reducing the dististele. The stem is distinguished by the abrupt xenomorphic 
change between the distal barrel-shaped (dististele) and the middle and proximal columnals 
with lateral columnal enclosure extensions (mesistele, proxistele). 

 
In the following, the “Lateral Columnal Enclosure Extensions” are abbreviated 

as “LCEE”. 
 

Remarks: The privately published papers of HAUSER (2005b) and HAUSER et 
al. (2009) discussing Ammonicrinus contained errors. Striking in this context is his 
reconstruction of “A. wanneri” from isolated mesistele columnals from different individuals 
as a “circular sphere” (2005b, p. 34; pp. 38-39, figs. 5a-b). They are given no further 
consideration herein. 

The isolated columnals described as “A. bulbosus sp. n. (col.)” by PROKOP 
(2009, p. 162) are very similar to that isolated Lower Devonian ossicle, illustrated by 
HOTCHKISS et al. (1999, p. 331, fig. 2.21). These elements could not be distinguished from 
juvenile ossicles of A. sulcatus (compare to Figs. 3.4.9.13-16 of this work) and are in urgent 
need of further research based on more complete material that have to evidence the validity of 
“A. bulbosus”. Therefore, this species could not further be considered herein. 
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3.4.2  MODE OF LIFE – STATE OF THE ART 
 

The first report (SPRINGER 1926b) of Ammonicrinus dealt with crowns, 
enrolled in mesi- and proxistele and several isolated columnals of the mesistele (Figs. 3.4.1.1-
6). Ammonicrinus was recognised and classified as a true crinoid fossil from the Middle 
Devonian of the Prüm Syncline, in the vicinity of Locality 3 (Eifel, Rhenish Massif, 
Rhineland Palatinate, Germany). Because the dististele and the attachment were not 
preserved, SPRINGER’s interpretation of this remarkable new genus was mainly based on 
comparison with other enrolled forms, like Myelodactylus or Camptocrinus (1926b, p. 24). 
SPRINGER assigned his new genus to the Camerata and to the “Hexacrinidae” with its genus 
Arthroacantha WILLIAMS, 1883 (1926b, p. 24). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 3.4.1—The first Ammonicrinus figures of SPRINGER (1926b) and KRAUSE (1927). 1-2, A. wanneri 

(taken from 1926b, pl. 6, figs. 4b, 4a); 3-4, “A. wanneri” (= A. leunissi n. sp.) [1926b, pl. 6, figs. 5b, 5], 

Figs. 1-4 not to scale; 5, photograph of the holotype of A. wanneri (no. USNM-S2115); lateral view of 

coiled mesistele; connection between mesi- and dististele, dististele and attachment missing (see fracture 

surface at distal mesistele); 6, photograph of the SPRINGER original of “A. wanneri” (no. USNM-S2115, 

also; = A. leunissi n. sp.), lateral view of coiled mesistele; connection between mesi- and dististele, 

dististele and attachment missing (see fracture surface at distal mesistele); 7-8, “A. wanneri” (= A. 

doliiformis) [1927, pl. VIII, figs. 4, 2], Figs. 7-8 not to scale. [Scale bars = 1 cm] 
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It is herein recognised that SPRINGER figured three different species; (1) A. 

wanneri (1926b, pl. 6, figs. 4-4b; refigured in Figs. 3.4.1.1-2, 3.4.1.5 of the present work), (2) 

a species with a wider diameter of the coiled stem, herein described as A. leunissi n. sp.3 

(1926b, pl. 6, figs. 5-5b; refigured in Figs. 3.4.1.3-4, 3.4.1.6 of the present work) and (3) two 

isolated columnals from the mesistele of A. cf. sulcatus (1926b, pl. 6, fig. 6). 

Also, the second note of an Ammonicrinus specimen (KRAUSE 1927) was 

based on an enrolled crown, covered by the mesi- and proxistele. It was classified as “A. 

wanneri”, although the fossil differs from SPRINGER’s type material by its coiled, wide, 

barrel-shaped proxi- and mesistele (Figs. 3.4.1.7-8; Pl. 3.4.2, Figs. 15-18). KRAUSE (1927, p. 

454) interpreted the then known individuals as crinoids with free, unstalked and possibly 

planktonic adult life habits. 

The interpretation of a planktonic adult life style has to be rejected based on 

more complete specimens of the wider Ammonicrinus described by KRAUSE (1927) as “A. 

wanneri” from the Upper Eifelian of Sötenich (Sötenich Syncline, Eifel; locality 5) in 1927. 

Another species, A. doliiformis WOLBURG, 1938a, from the Selscheider Formation of locality 

11, was found attached to brachiopod valves via an attachment disc, which, furthermore, has 

an attached dististele. This dististele is similar to a “normal” crinoid stem (Figs. 3.4.2.1-2, 

3.4.2.5). 

Based on his discoveries, WOLBURG (1938a, p. 238) correctly negated the 

presumed planktonic mode of life and classified Ammonicrinus as a bottom-dweller that lived 

attached to hard objects. His reconstruction of A. doliiformis had the crown protruding toward 

the lateral-exterior, whereas the crinoid is lying exposed toward the assumed water current 

(Fig. 3.4.2.5). 
 

             
FIGURE 3.4.2 (see p. 145)—Casts of Ammonicrinus doliiformis WOLBURG, 1938a (not to scale). 1, Nearly 

complete specimen, attached to a brachiopod valve (right arrow), showing the characteristic triangular 

connection between mesi- and dististele (left arrow) and slightly compressed mesistele (1938a, pl. 17, fig. 

1); 2, detail view of the attachment disc (arrow), encrusting the brachiopod (taken from 1938a, pl. 18, fig. 

8); 3, detail view of the triangular connection between mesi- and dististele (arrow) [1938a, pl. 17, fig. 6a]; 

4, coiled, slightly compressed mesistele (1938a, pl. 17, fig. 4); 5, former assumed reconstruction of life 

mode, figured with a crown that protrudes toward the lateral-exterior (arrow) [1938a, p. 240, fig. 5]; 6, 

former assumed reconstruction of the crown (1938a, p. 233, fig. 4). 

                                                 
3  = A. leunissi BOHATÝ, submitted sensu ICZN 
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FIGURE 3.4.2 (legend p. 144) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By carefully excavating a preserved crown of “A. wanneri” from locality 8 (= 

A. jankei n. sp.4) UBAGHS (1952) demonstrated that the crown remained enclosed within the 

proximal-most part of the mesistele and the proxistele and did not protrude toward the lateral 

exterior while feeding (Figs. 3.4.3.4, 3.4.3.8-9). As interpreted here this solely applies to the 

younger ammonicrinids; but the oldest species, A. kredreoletensis, is not covered entirely by 

the LCEE; that possibly implies feeding in the current. UBAGHS also recognised the true plate 

diagram of the crown (Fig. 3.4.3.7) and recognised Ammonicrinus as a lecanocrinid Flexibilia 

(1952, p. 204). 

 

It is confirmed herein that his second radianal plate (1952, p. 205, fig. 1), or 

“supplementary plate” of WANNER (1954), is based on an anomaly, as already assumed by the 

latter author (1954, p. 235). 

                                                 
4  = A. jankei BOHATÝ, submitted sensu ICZN 
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FIGURE 3.4.3—First illustration of the actual plate diagram and definition of genus Ammonicrinus as 

lecanocrinidid Flexibilia by UBAGHS (1952) [not to scale]. 1-2, A. doliiformis (no. SMF-XXIII-165a), view 

of coiled mesistele (1) and of exposed proxistele (2) [taken from 1952, pl. 3, figs. 1, 3]; 3-9, Anomalous 

crown of “A. wanneri” (= holotype of A. jankei n. sp., no. SMF-XXIII-167a) coiled by the mesistele; view 

of the coiled mesistele (3) [1952, pl. 1, fig. 3]; partly excavated crown, showing radiating ridges on radials 

and one slightly lobe-like enlarged appendage (4) that possibly could support the lateral water respectively 

faecal-ejection (arrow) [1952, pl. 1, fig. 4]; excavated crown, the second “radianal plate” respectively 

“supplementary plate” (see arrows) is based on an anomaly (5-6) [1952, pl. 2, figs. 3, 2]; plate diagram (7), 

showing the two anomalous plates (arrows) [slightly modified after 1952, p. 205, fig. 1]; schematic drawing 

of the coiled specimen (8) and of the assumed living feeding position (9) [1952, p. 110, fig. 2; p. 223, fig. 

5]. 

 

 

Combining the concepts of UBAGHS with the most complete specimens from 

WOLBURG, PIOTROWSKI (1977, p. 208, fig. 2; p. 209, fig. 3) provides the best interpretation of 

the mode of life of Ammonicrinus (Figs. 3.4.4.1-2). He (1977, p. 208) assumed that the high 

specialisation of the stem provided a firm support in soft-bottom sediments and protection 

from water borne sediments. PIOTROWSKI also assumed that the crown was screened by an 
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external cover so that the food could be supplied into it only by currents parallel to the 

bottom. “The water carrying food was introduced into the central part of the stem through a 

furrow formed by distal parts of external cover and the outflow proceeded through umbilical 

openings. During feeding the arms were presumably resting on stem plates. The contortion of 

crown in relation to symmetry plane of stem could facilitate water circulation inside the 

external cover as water current was directed by contorted crown to umbilical opening” (1977, 

p. 209). PIOTROWSKI compared Ammonicrinus with the mode of life of other crinoids (e.g. 

calceocrinids MEEK & WORTHEN, 1869), which were adapted to filter food out of a horizontal 

bottom-water currents (1977, p. 209). 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.4.4—Schematic illustrations of Ammonicrinus sulcatus after PIOTROWSKI (1977) [not to scale]. 

1, Lateral cross section through the feeding crinoid (taken from 1977, p. 209, fig. 3); 2, former 

reconstruction of life time position (1977, p. 208, fig. 2). 

 

 

Carbonate microfacies analysis within several Ammonicrinus-localities of the 

Eifel (especially from locality 6) and the hydrodynamic interpretation of fragile but perfectly 

preserved bryozoans (see ERNST 2008), lead to the recognition of nearly still water close to 

the soft-bottoms, yielding a lack of the horizontal water current, assumed by PIOTROWSKI. 

Based on this recognition, the exigencies of a feeding method that supplemented 

PIOTROWSKI’s interpretation in detail, is proposed; a method that presupposes a self produced 

water flow. 
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3.4.3 PROPOSED LIFE INTERPRETATION – AMMONICRINUS AS A SPINED SOFT-

BOTTOM DWELLER FEEDING THROUGH ACTIVE “LIGAMENT PUMPING” 

 

The morphology of Ammonicrinus suggests a reclined life position displaying 

certain affinities to the disparid calceocrinids (see above). The calceocrinids combined a stem 

that lay on the sea-floor with an attachment disc, but had a free, non-hidden crown. The 

enrolled Ammonicrinus preferred settling within muddy habitats, a fact that must have made it 

particularly vulnerable to burial and clogging of the ambulacra by turbidity. As assumed for 

calceocrinids, Ammonicrinus could have disengaged the crown from accumulated sediment by 

opening it, but because of enrollment, the cleaning-mechanism needed to be effectively 

modified. 

The associated, diverse and abundant crinoid fauna displays well-developed 

tiering. Ammonicrinus escaped from food competition by settling and feeding directly on the 

soft-bottom. This life mode required a highly modified anatomical design compared to 

“normal” crinoids; the most important ecological constraint were: 

 

1. The direct contact with partly predaceous faunal elements of the vagile benthos. 

 

2.  Heightened tolerance against infiltration of turbidity – or an effective mechanism of 

actively out-pumping contaminants. 

 

3. Nutriment filtering within still water, which possibly requires a self-generated water flow. 

 

New data, based on the first discoveries of completely preserved ammonicrinid 

specimens from the uppermost Eifelian (Middle Devonian) of the Eifel (Rhenish Massif), 

including numerous crowns, enrolled in the proximal parts of the stem, demonstrate not only 

the variability in the proportions, but also different ossicule sculpturing. The recently 

discovered and obliquely preserved ammonicrinids from two localities within the Hillesheim 

and Prüm synclines (localities 3, 6) provide the first complete skeletons with preserved 

movable spines (Figs. 3.4.5, 3.4.7.1-2, 3.4.8; Pl. 3.4.1, Figs. 9-10, 14). These skeletal 

elements were attached to the ammonicrinid holdfast and stem via echinoid-like spine-

tubercles, as have been observed on several Palaeozoic crinoids such as Arthroacantha 

WILLIAMS, 1883. Several complete ammonicrinid skeletons, embedded in fine homogenous 

argillaceous limestones, were prepared using fine micro sand-streaming methods. Uncoiled 

individuals and numerous enrolled ammonicrinids were observed with preserved spines. A 
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protective function against predatory influences like platyceratid gastropods, arthropods or the 

epizonal encrustation of bryozoans, tabulate corals, chaetitids or microconchids (see Fig. 

3.4.10) is possible. 

Also the body-stabilisation in an effective living position is a conceivable 

morphological function of this newly discovered morphological feature. Concordant to this 

theory, the longest spines are laterally positioned, directed toward the soft-bottom and could 

stabilise the individual in a lateral direction or, also, could help keep the body from sinking 

into the soft substrate. 

The most studied and completely preserved ammonicrinids from the German 

Devonian were found essentially in the living position. The total skeletal surface is covered by 

spine-tubercles, previously considered as tubercled plate sculpturing (e.g. SPRINGER 1926b; 

PIOTROWSKI 1977). Whereupon the holdfast only bears few spines, an increasing density of 

spines is directly linked to the importance of safeguarding crinoid elements. Therefore, the 

highest density of spines is focused at the enclosed spheroidal crown, hidden in the enrolled 

stem. The involute proximal columnals also developed spine-tubercles, obviously losing the 

spines throughout the ontogenetic stages. The spines are clearly movable because several 

spined individuals were found with completely preserved mesisteles (e.g. Pl. 3.4.1, Fig. 1), 

indicating an extremely flexible connection between tubercles and spines. In all directions the 

spines are extended toward the exterior, while the laterally positioned spines are the longest 

and, in contrast, the elements in the centre of the columnals are the finest and shortest of the 

individual. 

 

It is important to note that the development of these spines is directly 

controlled by the ecological environment and combined with a herein recognised intraspecific 

variability of the ammonicrinid column (length and number of the barrel-shaped columnals of 

the dististele, with or without additional LCEE and an attachment disc or various formed 

radiating cirri). Therefore, the development of spines is not solely usable for taxonomical 

differentiation between the species, because it is recognised in several ammonicrinids, e.g. in 

A. sulcatus and A. leunissi n. sp.5 from the Eifel (localities 1-3, 6) as well as in A. doliiformis 

from the Eifel, the Bergisches Land and the Sauerland (localities 5, 10-11). Even within one 

species, the number of spines differs. Furthermore, the feature either composes the only, 

evenly distributed “ossicular adornment”, (compate to Figs. 3.4.9.5-6) or the spine-tubercles 

are unequally spaced on additional, “real plate sculpturings”, like unshaped nodes (compate to 

Figs. 3.4.9.1-4). 

                                                 
5  = A. leunissi BOHATÝ, submitted sensu ICZN 
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Two interpretations derive from the observation of the new skeletal feature of 

the spined endoskeleton: 

 

1.  Exterior protection: Distribution of the spines on the skeleton indicates that attacks from 

vagile benthic predators had to be more effectively repelled than those from swimming 

predators. This is affirmed by the macrofossil record, explicitly documented by numerous 

discoveries of platyceratid gastropod conchs, whereas remains of nectic predators 

(placoderms, cephalopods) are rarely found. Moreover, in-vivo encrustation by epizoans 

was effectively prevented. In contrast, the ossicles of associated stalked crinoids are 

variously bored and pre- and postmortem infested by diverse organisms. 

 

2.  Interior protection: The spinose pattern also efficiently protected the crown, which could 

be exposed by partial opening of the enrolled proximal stem. Fine spines served as a 

skeletal micromesh. Nutrient particles transported with a water flow could pass – either 

passively infiltrated or actively absorbed, whereas the penetration of potential predators or 

larger sediment particles was prevented from entering the vital crown elements. 

 

  As a soft-bottom dweller within non-turbulent muddy habitats, two further 

aspects need to be interpreted: 

 

1. The heightened tolerance against sedimentary material, respectively the circumvention of 

infiltering non-nutriment material. 

 

2. The question of the feeding mode under still water conditions. 

 

 Except of the oldest known ammonicrinid, A. kredreoletensis, which has a 

laterally uncovered cup implying a non-enrolled feeding position in the current (Fig. 3.4.6), 

the younger ammonicrinids (A. doliiformis, A. jankei n. sp.6, A. leunissi n. sp.7, A. sulcatus 

and A. wanneri) presumably lived enrolled on the muddy sea-floor. Therefore, the infiltration 

of sedimentary material had to be particularly antagonistic. Active, slow out-pumping of 

contaminants, possibly in conjunction with excretory products is assumed, based on the new 

anatomical observations. Vice versa, also the ingestion of nutrient particles within still water 

                                                 
6  = A. jankei BOHATÝ, submitted sensu ICZN 
7  = A. leunissi BOHATÝ, submitted sensu ICZN 
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calls for the generation of a biologically generated water flow and suggests the theory of an 

active, slow pumping mechanism. Alternating water pressure was generated in the interior of 

the enrolled proximal stem by rhythmic, bellow-like partial opening and closing of the base of 

the central mass. Active suction during opening created an ingesting water flow. It was 

funnelled in the “canal”, formed by the unspined interior of the proximal columnals, whose 

U-shaped flanks were constructed by the LCEE. Active ejection during closure resulted from 

overpressure. To minimise faecal recycling, the water ejection may have occurred laterally, 

feasibly at both lateral centres, which have “openings” (“umbilical openings” sensu 

PIOTROWSKI 1977, p. 209) [Fig. 3.4.5]. 
 

 
FIGURE 3.4.5—Reconstruction of a feeding “encased runner-type” of A. leunissi n. sp. (not to scale), 

attached to a tabulate coral (model); the spined specimen dwelled enrolled on the muddy sea-floor; 

alternating water pressure was obviously generated in the interior of the enrolled proximal stem globe by 

non-muscular, MCT-controlled, rhythmic, bellow-like partial opening and closing of the oblate sphere at its 

bottom (dashed arrow); active suction during opening created an ingesting water flow (see arrow on the 

left), which was funnelled in a “canal”, formed by the unspined interior of the columnals of the mesistele, 

whose U-shaped LCEE additionally formed a protection against immersive sediment; active ejection during 

closure resulted from overpressure; to minimise faecal recycling, the water ejection occurred supposably 

laterally, feasibly at both lateral centres, which accordingly show “openings” (see arrows on the right). 
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The key to the non-muscular pumping activity of the middle and proximal 

stem could possibly be delivered by the development of effective mutable connective tissues 

(MCT) at the articulations of the ossicles. However, this had to be done slowly (pers. 

information, W. I. AUSICH). MCT (see WILKIE 1984) has the special ability to convert from 

stiff to soft in an instant, under ionic balance control. It is well recognised within modern 

crinoid arms and cirri (BIRENHEIDE & MOTOKAWA 1994; BIRENHEIDE 1995; 1996; 

BIRENHEIDE et al. 2000; MOTOKAWA et al. 2004) and was also reported within crinoid stalks 

(WILKIE et al. 1993; 2004). Recently, HOLLIS & AUSICH (2008) described unusual column 

postures suggesting a highly flexibility of the stem of the Middle Devonian to Lower 

Mississippian crinoid genus Gilbertsocrinus PHILLIPS, 1836. The authors expected passive 

locking and unlocking of the mutable collagenous tissue and discussed the possibility of a 

“slow, weak contractile ability of the Gilbertsocrinus stalk” (2008, p. 138). 

 

 

3.4.4. THE SUBSTRATE-CONTROLLED MORPHOLOGICAL VARIABILITY OF THE 

DISTISTELE (DISTAL COLUMN AND HOLDFAST) 

 

The best and nearly completely preserved Ammonicrinus-specimens from the 

Rhenish Massif came from the Eifel synclines (localities 3, 6). These specimens and 

additional ammonicrinids from the Sauerland (locality 11; see WOLBURG 1938a and Figs. 

3.4.2.1-6 of the present work) and the Bergisches Land (locality 10) have substrate-controlled 

morphological variability of the dististele (distal column and holdfast). Together with the 

material from locality 12, three “morphological groups” are recognised: 

 

1. The “exposed roller-type”. These specimens predominantly have the general skeletal 

morphology, as illustrated in Fig. 3.4.6. This form is herein classified as an exposed roller-

type and is recognised only in the oldest studied ammonicrinid, A. kredreoletensis. This 

type is characterised by a laterally unprotected crown that possibly implies feeding in the 

current. The new recovered material indicates that the stem of A. kredreoletensis tapers as 

it approaches the crown, not in quite as many columnals perhaps, but similar to that of 

camptocrinids, and their crown elevated up from the substrate. Their elevation is not much 

but puts them above the sediment and into a possible low velocity current for feeding 

(pers. information, G. D. WEBSTER). Likewise, own unpublished myelodactylids from the 

Eifelian strata of the Eifel Synclines show a similar mode of life and are also attached to 

hard objects, like brachiopods (study in progress). 
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FIGURE 3.4.6—Reconstruction of a feeding “exposed runner-type” of A. kredreoletensis (not to scale), 

attached to a tabulate coral (model). The crown is laterally not covered by the LCEE and implies feeding in 

the current. The stem tapers as it approaches the crown, which was obviously elevated up from the 

substrate into a low velocity current for feeding. 

 

 

2. The “encased roller-type”. These specimens predominantly show the general skeletal 

morphology, as illustrated in Figs. 3.4.5, 3.4.7.1. This standard form is herein classified as 

encased roller-type and is recognised in all known ammonicrinids, except of A. 

kredreoletensis. The specimens are more or less enrolled; the LCEE of the proxistele and 

mesistele are followed by several barrel-like columnals of the dististele. The proxi- and 

mesistele skeleton laid on the soft-bottom, whereas the holdfast attached to hard objects, 

such as brachiopod valves (Figs. 3.4.2.2, 3.4.2.5), tabulate corals (Figs. 3.4.5, 3.4.7.1-2) or 

bryozoans (Pl. 3.4.1, Figs. 12-13; Pl. 3.4.2, Fig. 13). The hard object of attachment affects 

either the development of an attachment disc (Figs. 3.4.2.2, 3.4.2.5) or variously formed 

radiating cirri (see Figs. 3.4.5, 3.4.7.1-2; Pl. 3.4.1, Fig. 12). Both modes of attachment 

were observed in one species. 
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FIGURE 3.4.7—1, Reconstruction of an “encased runner-type” of A. leunissi n. sp. (not to scale), attached 

to a tabulate coral (model); the spined specimen dwelled enrolled on the muddy sea-floor; 2, the original 

(no. GIK-2102) from locality 6, showing slightly compressed proximal mesistele (scale bar = 1 cm). 

 

 

3. The “settler-type”. In addition to the predominant roller-types, rare discoveries of 
ammonicrinids with a reduced column length and columnal number of the dististele 
require further classification. They were mainly attached to empty brachiopod valves that 
laid on a soft-bottom. These ammonicrinids did not live partly enrolled on the sea-floor 
with the column, as recognised in the roller-types. The proximal part of the crinoid larval 
stage settled on top of the hard object (Fig. 3.4.8; Pl. 3.4.1, Fig. 14). This form is herein 
classified as the rare settler-type and is recognised in A. leunissi n. sp.8, A. sulcatus and A. 
wanneri. Elevated above the ground, this mode of life potentially allowed the animal to 
profit from a low water flow above the nearly still water condition at the bottom but below 
the “normal” tiering levels into which associated, “regular” crinoid groups [e.g. 
Abbreviatocrinites inflatus (SCHULTZE, 1866); A. sampelayoi (ALMELA & REVILLA, 
1950); Arthroacantha sp.] lifted their crowns for feeding. A question is why did not every 

                                                 
8  = A. leunissi BOHATÝ, submitted sensu ICZN 
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Ammonicrinus profit from this (1) savings of skeletal material and (2) hydrodynamically 
advantageous feeding position above the muddy sea-floor. Perhaps, this is do to the 
instability of the soft-bottom and the continuous input of fine sediment. Most brachiopod 
valves partially sink in or, respectively, became buried postmortem by sediment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 3.4.8—Reconstruction of a spined “settler-type” of A. leunissi n. sp. (not to scale), attached on a 

brachiopod brachial valve (Schizophoria sp.); the original (no. GIK-2103) from locality 6 is figured in Pl. 

3.4.1, Fig. 14. 

 
 
3.4.5  INTRA- VS. INTERSPECIFIC VARIABILITY OF THE PROXIMAL-MOST 

COLUMNALS OF THE DISTISTELE 
 

By studying the connection of the barrel-shaped columnals of the dististele and 
the mesistele, an interspecific morphological difference between A. doliiformis and other 
species (A. sulcatus, A. wanneri and A. leunissi n. sp.9) is recognised. A. doliiformis, a form 
that is only known as a roller-type, developed an uniformly constructed connection in the 
form of an idealised triangular-shaped, wide columnal-plate between the columnals of the 
mesistele, with a LCEE, and the barrel-like columnals of the dististele (Figs. 3.4.2.1, 3.4.2.3). 
In this connection, this species obviously has to be characterised as a relatively constant form, 
and it developed the most voluminous skeleton of all known ammonicrinids. The wide, 
triangular-shaped columnal-plate can be used for interspecific differentiation between A. 
doliiformis and the other species. 

                                                 
9  = A. leunissi BOHATÝ, submitted sensu ICZN 
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In contrast, A. sulcatus, A. wanneri and A. leunissi n. sp.10 had variously 
developed connections of the dististele and the mesistele. The distal-most columnal of the 
mesistele may exhibit an abrupt connection between those ossicles, distinguished by LCEE 
and the barrel-shaped columnals of the dististele by developing an elongated triangular-
shaped ossicle (rare) or a single barrel-like appendage toward the dististele (Figs. 3.4.9.8-10). 
However, this barrel-like appendage can also be duplicated and directed both, to the dististele 
and the mesistele (Figs. 3.4.9.11-12). Also a sequence of intermediate shaped ossicles is 
possible. 

The development of all morphologies obviously depends on the hardground on 
which the crinoids were attached. This intraspecific variability is recognised in A. sulcatus, A. 
wanneri and A. leunissi n. sp.11 – all species with the ability to exhibit the encased roller- or 
the settler-type. That recognition affected PIOTROWSKI’s interspecific separation of “A. 
kongieli” and A. sulcatus, which is mainly based on the development of either abrupt 
connection between columnals, distinguished by LCEE and barrel-like columnals or barrel-
like plates with extensions (1977, p. 214, tab. 3). Therefore, and because of the recognised 
intraspecific variability of the ossicular sculpturing, “A. kongieli” is declared a subjective 
junior synonym of A. sulcatus. 
 

             
FIGURE 3.4.9 (see p. 157)—Ammonicrinus sulcatus from locality 1 (1-8, 10-20) and 2 (9). 1-4, Facet views 
of nos. GIK-2104-2107, showing nodular tubercles and spine-tubercles on exterior flanks of the columnals 
of the mesistele; 5-6, facet view and view of the exterior flank of a specimen (no. GIK-2108), showing 
tubercles and spine-tubercles on exterior flank of the columnal of the mesistele; 7, facet view of a specimen 
(no. GIK-2109), showing tubercles and spine-tubercles on exterior flank of the columnal of the mesistele; 
8, facet view of a strongly sculptured columnal (no. GIK-2110) of the distal-most mesistele, showing 
connection to the dististele; 9, facet view of a columnal of the distal-most mesistele (no. GIK-2111), 
showing long LCEE and connection to the dististele; 10, facet view of a columnal of the distal-most 
mesistele (no. GIK-2112), showing relatively long LCEE and connection to the dististele; 11, interior view 
of a distal-most, barrel-like columnal of the mesistele (no. GIK-2113) with LCEE; 12, interior view of a 
distal-most, barrel-like columnal of the mesistele (no. GIK-2114), with partly preserved LCEE; 13, facet 
view of a juvenile distal columnal of the mesistele (no. GIK-2115) with nodular tubercles on exterior flank 
and on LCEE; 14-15, juvenile columnals of the proximal mesistele (nos. GIK-2116 and -2117) in facet 
view, showing well developed nodes on exterior flanks; 16, facet view of a juvenile distal columnal of the 
mesistele (no. GIK-2118) with nodular tubercles on exterior flank and on LCEE; 17-18, lateral view (17) 
and view of the exterior flank (18) of the partly preserved mesistele (no. GIK-2119); the specimen shows 
nodular tubercles, spine-tubercles and a few partly preserved spines (arrow); 19-20, facet view (19) and 
lateral view (20) of a cracked, coiled mesistele (no. GIK-2120), showing several tuberculated and concave 
ossicles of the cup (arrows). [Scale bars = 1 cm] 
                                                 

10  = A. leunissi BOHATÝ, submitted sensu ICZN 
11  = A. leunissi BOHATÝ, submitted sensu ICZN 

 156



3.4―Chapter IV. Crinoidea, Flexibilia    

 

 157

FIGURE 3.4.9 (legend p. 156) 

 

 

 

3.4.6 POSTMORTEM EPIZONAL ENCRUSTING 

 

 Especially the articulated or, typically, isolated ossicles from the localities 1-2 

have diverse, postmortem epifaunal encrustation, which infested nearly every hard object 

lying on – or settling within the soft or moderately stabilised, muddy firmground. The 

following groups are identified: 
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1. Brachiopoda. The A. doliiformis original of KRAUSE (1927; refigured in Figs. 3.4.1.7-8 

and Pl. 3.4.2, Figs. 15-18 of the present work) was infested by a (?)craniid brachiopod. 

The specimen settled on the exterior side of the former movable mesistele, on top of 

several spine-tubercles with lost spines. This is clear evidence of an immediate 

postmortem encrusting. 

 

2. Bryozoa. The following bryozoans were identified on skeletal remains of A. sulcatus: 

2.1 Trepostomata. One pluricolumnal and one isolated columnal of the mesistele (no. GIK-

2147, Fig. 3.4.10.1 and no. GIK-2149, Fig. 3.4.10.3) were postmortem encrusted by the 

trepostome bryozoan Leptotrypella VINASSA & REGNY, 1921. An additional pluricolumnal 

of the mesistele (no. GIK-2150, Fig. 3.4.10.4) was also postmortem encrusted by the 

trepostomate bryozoan, Eostenopora DUNCAN, 1939. Trepostome bryozoans recently 

were observed attached to the crown ossicles of the cladid crinoid family 

Cupressocrinitidae RÖMER, 1854 (compare to BOHATÝ 2009). One brachial of a 

completely preserved Abbreviatocrinites nodosus crown SANDBERGER & SANDBERGER, 

1856 (2009, fig. 2.8), one cup of an also entire A. schreueri crown BOHATÝ, 2006b (2009, 

fig. 11.4) and one theca of Procupressocrinus gracilis (GOLDFUSS, 1831) [2009, fig. 11.6] 

were encrusted postmortem by (?)Eostenopora sp. The boring trace of an affected arm of 

Robustocrinites cataphractus BOHATÝ, 2009 was also populated by (?)Eostenopora sp. 

(2009, figs. 6.3, 7.2). 

2.2 Cystoporata. The erect pluricolumnal of the distal mesistele (no. GIK-2148, Fig. 3.4.10.2) 

was encrusted by the cystoporate bryozoan Eridopora ULRICH, 1882. As strong evidence 

for a postmortem encrusting, the bryozoan encrusted the external and internal region of 

the ossicles. Another cystoporate bryozoan, Cyclotrypa ULRICH, 1896, is recognised on 

one columnal (no. GIK-2152, Fig. 3.4.10.6) and one pluricolumnal (no. GIK-2153, Fig. 

3.4.10.7) of the mesistele. 

2.3 Fenestrata. One isolated mesistele columnal (no. GIK-2155, Fig. 3.4.10.9) was encrusted 

postmortem by a holdfast of an undetermined fenestrate bryozoan. BOHATÝ (2009, fig. 

11.1) reported stems of Abbreviatocrinites geminatus BOHATÝ, 2005a and 

Procupressocrinus gracilis, which were encrusted by fenestrate bryozoans. The length of 

the overgrown pluricolumnals, as well as some observed embedding patterns of bryozoans 

located underneath the attached stem, allows the presumption of a premortem settlement 
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(compare to BOHATÝ, 2005a, fig. 3B). In contrast, some shorter stem fragments or other 

disarticulated cupressocrinid ossicles (see 2009, fig. 11.2) were usually encrusted 

postmortem. This assumption is based on the entire enclosure of some skeletal elements. 

Similarly, holdfasts of probable rhomboporid bryozoans attached to the columnals of 

Schyschcatocrinus creber DUBATOLOVA, 1975, as reported by GŁUCHOWSKI (2005, figs. 

3A-B). GŁUCHOWSKI indicated that the bryozoans lived attached to the fragmented dead 

stems that lay horizontally on the sea-floor. Strong evidence for the settlement of a living 

stem of Cupressocrinites hieroglyphicus (SCHULTZE, 1866) is given by BOHATÝ (2009, 

figs. 11.16-18). The example is encrusted by the holdfast of a fenestrate bryozoan 

(Cyclopelta sp.) that grows all around the column without contact to the crenularium. The 

reticulate bryozoan colony surrounded the stem, whereas the dissepiments built concentric 

rings characteristic for this genus. 

 

3. Microconchida. One isolated columnal of the mesistele of A. sulcatus (no. GIK-2155, Fig. 

3.4.10.8) was encrusted by two microconchid-valves, which settled postmortem at the 

facet region of the ossicle, below and above the crenularium. Microconchids with 

unstructured or sculptured valves frequently encrusted the ossicles of cupressocrinids 

from the Middle Devonian of the Eifel, as reported by BOHATÝ (2005a; 2006b; 2009). It is 

remarkable that larger individuals are rare and isolated (compare to 2006b, pl. 5, fig. 8), 

whereas numerous smaller microconchids encrusted the crinoids (see 2009, figs. 2.6, 11.7, 

11.8). As assumed for Ammonicrinus, the microconchid colonisation of the cupressocrinid 

remains occurred immediately postmortem. The single-species encrusting of 

microconchids on the columnals of Tantalocrinus scutellus LE MENN, 1985 and 

Schyschcatocrinus creber, represent additional settlement examples (GŁUCHOWSKI 2005, 

p. 323, figs. 5I-L). 

 

4. Crinoidea. The pluricolumnal of A. sulcatus (no. GIK-2151, Fig. 3.4.10.5) was encrusted 

postmortem by a crinoid holdfast, which settled on several tubercles with lost spines. 

Another A. sulcatus pluricolumnal (no. GIK-2150, Fig. 3.4.10.4) was encrusted 

postmortem by a trepostomate bryozoan, that was then infested by a small crinoid 

attachment disc. GŁUCHOWSKI (2005, p. 322) documented the postmortem encrusting of 

several small crinoid holdfasts attached to Upper Eifelian crinoid columnals. Various 
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attachments of crinoid juveniles to living or dead adults are known from the Silurian to the 

Mississippian (see MEYER & AUSICH 1983). Coiling stems, modified discoid holdfasts on 

the columns of crinoid hosts, as well as dendritic holdfasts distributed on all sides of the 

column, were reported from Silurian strata by FRANZÉN (1977) and PETERS & BORK 

(1998). Furthermore, BOHATÝ (2009) reported crinoid holdfasts attached to the crown 

ossicles of different cupressocrinids. One cup of Abbreviatocrinites abbreviatus 

abbreviatus (GOLDFUSS, 1839) [BOHATÝ, 2009, fig. 11.9] and one isolated radial and arm 

plate of A. geminatus were encrusted by the holdfasts of other cladid crinoids 

(?Procupressocrinus gracilis). 

 

5. Chaetitida. One weathered pluricolumnal of A. sulcatus was encrusted by Chaetitida indet. 

(unfigured material). The encrusting occurred postmortem, because the chaetitid settled on 

the external and internal regions of the ossicles. BOHATÝ (2009) mentioned A. a. 

abbreviatus cups, which were completely encrusted by indeterminable stromatoporoids. 

These encrustings were settled again by chaetetids. 

 

             

 

FIGURE 3.4.10 (see p. 161)—Postmortem epizoan encrusting on disarticulated columnals of Ammonicrinus 

sulcatus from locality 1 (1-7) and 2 (8-9). 1, View of external flanks of a pluricolumnal of the mesistele 

(no. GIK-2147), encrusted by a trepostomate bryozoan (?Leptrotrypella sp.) [arrows]; 2, internal view of a 

pluricolumnal of the distal-most mesistele (no. GIK-2148), encrusted by a cystoporate bryozoan 

(?Eridopora sp.) [arrows]; 3, facet view of an isolated, distal-most columnal of the mesistele (no. GIK-

2149), encrusted by a trepostomate bryozoan (?Leptrotrypella sp.) [arrows]; 4, view of external flanks of a 

pluricolumnal of the mesistele (no. GIK-2150), encrusted by a trepostomate bryozoan (?Eostenopora sp.) 

[arrows]; the bryozoan is infested by a crinoid attachment disc (see arrows in detail view); 5, view of 

external flanks of a pluricolumnal of the mesistele (no. GIK-2151), encrusted by a crinoid holdfast (arrow); 

6, facet view of an isolated columnal of the mesistele (no. GIK-2152), encrusted by a cystoporate bryozoan 

(?Cyclotrypa sp.) [arrows]; 7, facet view of a pluricolumnal of the mesistele (no. GIK-2153), encrusted by 

a cystoporate bryozoan (?Cyclotrypa sp.) [arrows]; 8, facet view of an isolated columnal of the mesistele 

(no. GIK-2154), encrusted by microconchid valves (see arrows in detail view); 9, facet view of an isolated 

columnal of the mesistele (no. GIK-2155), encrusted by a holdfast of a fenestrate bryozoan (arrow). [Scale 

bars = 1 cm] 
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FIGURE 3.4.10 (legend p. 160) 

 

 

3.4.7 CRINOID LOCALITIES AND STRATIGRAPHY 

 

Localities 1-8 (Eifel, Rhenish Massif, Germany) 

 

1. “Auf den Eichen”, NE of Nollenbach within the Hillesheim Syncline; UTM 

50°19’45.64”N/6°44’37.94”E. Stratigraphy: Bohnert Member of the Freilingen 

Formation, Upper Eifelian (Middle Devonian). 
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2. Abandoned “Weinberg Quarry”, E of Kerpen within the Hillesheim Syncline; UTM 
50°18’54.57”N/6°42’53.78”E. Stratigraphy: Bohnert Member of the Freilingen 

Formation, Upper Eifelian (Middle Devonian). 
 
3. Road cut, S Brühlborn within Prüm Syncline; UTM 50°12’27.14”N/6°27’37.45”E. 

Stratigraphy: Olifant Member of the Müllert Subformation, Ahbach Formation, Lower 

Givetian (Middle Devonian). 
 
4. N Niederehe within the Hillesheim Syncline; UTM 50°18’48.87”N/6°45’52.28”E. 

Stratigraphy: ?Eilenberg Member of the Freilingen Formation, Upper Eifelian (Middle 
Devonian). 

 

5.  “Wachtberg Quarry”, S Sötenich within the Sötenich Syncline; UTM 
50°31’18.00”N/6°33’31.34”E. Stratigraphy: ?Eilenberg Member of the Freilingen 
Formation, Upper Eifelian (Middle Devonian). 

 
6. Abandoned ‘‘Müllertchen Quarry”, S Ahütte within the Hillesheim Syncline; UTM 

50°20’05.37”N/6°46’16.77”E. Stratigraphy: Olifant Member of the lower Müllert 

Subformation, Ahbach Formation, Lower Givetian (Middle Devonian). 
 
7. Brook valley, E of Berlingen within the Gerolstein Syncline; UTM 

50°14’20.24”N/6°42’24.26”E. Stratigraphy: Hustley Member of the Loogh Formation, 
Lower Givetian (Middle Devonian). 

 

8. Hill range near the “Steineberg”, N of Kerpen, S of Flesten within the Hillesheim 
Syncline (UTM unknown). Stratigraphy: ?Freinilgen Formation, Upper Eifelian (Middle 
Devonian). 

 
9. Farmland SW of Gondelsheim within Prüm Syncline; UTM 

50°13’54.08”N/6°29’42.80”E. Stratigraphy: Eilenberg Member of the Freilingen 

Formation, Upper Eifelian (Middle Devonian). 
 
Locality 10 (Bergisches Land, Rhenish Massif, Germany) 

 
10  Lindlar-Hartegasse, N Lindlar (UTM unknown). Stratigraphy: Odershäuser Formation, 

Eifelian/Givetian threshold (Middle Devonian). 
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Locality 11 (Sauerland, Rhenish Massif, Germany) 

 

11 Plettenberg-Ohle at the Lenne river, SE of Werdohl, Märkischer Kreis, Sauerland (UTM 

unknown). Stratigraphy: “Selscheider Formation” sensu Wolburg (1938a, p. 230); more 

probable, the ammonicrinids came from the Odershäuser Formation of the 

Eifelian/Givetian threshold (Middle Devonian) [pers. information, M. BASSE]. 

 

Locality 12 (Vireux-Molhain, France) 

 

12 Vireux-Molhain, southern Ardennes, northern France, close to the Belgian border (UTM 

unknown). Stratigraphy: Lower Eifelian (Middle Devonian). 

 

 

3.4.8 MATERIAL AND METHODS 

 

  Type species are deposited in the Forschungsinstitut und Naturmuseum 

Senckenberg, Frankfurt am Main, Germany (SMF), the Institut für Geologie und Mineralogie 

der Universität zu Köln, Germany (GIK), the Museum für Naturkunde der Humboldt-

Universität zu Berlin, Germany (MB.E.), the Geowissenschaftliches Zentrum der Universität 

Göttingen, Germany (without repository-no.), the Laboratoire de Paléontologie de Brest 

(Université de Bretagne Occidentale), France (LPB), the National Museum of Natural History 

(Smithsonian Institution), Washington D.C., U.S.A. (USNM) and the Pracownia 

Palezoologiczna Muzeum Ziemi, Warsaw, Poland (MZ). 

 In addition to a detailed analysis of previously published data, this study 

focuses on new material, recently discovered within the Rhenish Massif. Specimens were 

cleaned and dissected using micro-sand streaming methods and studied with a binocular 

microscope. Photographs of NH4Cl whitened crinoids were arranged using digital image 

editing software. 

Crinoid descriptive terms follows MOORE & TEICHERT (1978) with the 

following exception: measurement terms follow WEBSTER & JELL (1999). 
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3.4.9 SYSTEMATIC PALAEONTOLOGY 
 
3.4.9.1  Introduction 
 

SPRINGER (1926b, p. 23) originally classified Ammonicrinus with its type 
species A. wanneri as a possible member of the subclass Camerata WACHSMUTH & SPRINGER, 
1885, family Hexacrinitidae WACHSMUTH & SPRINGER, 1885 (“Hexacrinidae” 1926b, p. 23) 
and mentioned the similarities to Camptocrinus. Both assumptions were confirmed by 
WOLBURG (1938a), who erected the species A. doliiformis. This assumption was rejected by 
BASSLER (1938) and MOORE & LAUDON (1943), who placed Ammonicrinus in the “subclass 
Inadunata”, family “Heterocrinidae” (BASSLER) or “Iocrinidae” (MOORE & LAUDON). 
UBAGHS (1952), who first dissected an A. wanneri crown from the surrounding stem and, 
therefore, was the first author to demonstrate that Ammonicrinus is a true member of class 
Crinoidea MILLER, 1821 (see WANNER 1954, p. 231). UBAGHS assigned the genus to the 
subclass Flexibilia ZITTEL, 1895, order Sagenocrinida SPRINGER, 1913 and “family 
Lecanocrinidae SPRINGER, 1913”, whereas WANNER (1954, p. 231) identified out the 
exceptional position of Ammonicrinus among the subclass because of its bent crown and the 
atrophy of the two anterior basals and hypertrophy of the anterior and left anterolateral radial 
plate. Within the Crinoid Treatise (see MOORE 1978), Ammonicrinus was finally assigned to 
the superfamily “Lecanocrinacea” (= Lecanocrinoidea SPRINGER, 1913 sensu ICZN) and 
family Calycocrinidae MOORE & STRIMPLE, 1973, characterising lecanocrinids with bilateral 
symmetry in the plane bisecting the CD interray and the A ray or AE interray, as well as 
crowns distinctly bent on the stem or the stem coiled around the crown (MOORE 1978, pp. 
T783-T784). 
 
 
3.4.9.2 Crinoid systematic 
 

Subclass Flexibilia ZITTEL, 1895 
Order Sagenocrinida SPRINGER, 1913 

Superfamily Lecanocrinoidea SPRINGER, 1913 
Family Calycocrinidae MOORE & STRIMPLE, 1973 

 
 
3.4.9.2.1  Genus Ammonicrinus 
 

Genus Ammonicrinus SPRINGER, 1926b 
 
• Ammonicrinus SPRINGER, 1926b, p. 22. 
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Occurrence.—Devonian. Pragian (Lower Devonian) of the Czech Republic 

(see HOTCHKISS et al. 1999, p. 331, fig. 2.21; PROKOP 2009); Upper Emsian (Lower 

Devonian) of the Armorican Massif (France); Lower Eifelian (Middle Devonian) of Vireux-

Molhain, southern Ardennes (France); Lower Eifelian to Lower (?Middle) Givetian (Middle 

Devonian) of the Holy Cross Mountains (Poland), the Rhenish Massif (Eifel, Sauerland and 

Bergisches Land, Germany), Cantabrian Mountains (Spain) and Morocco (material not 

figured herein). 

Because “Ammonicrinus? nordicus” sensu YAKOVLEV & IVANOV (1956), from 

the Carboniferous of the Donetz Basin (Russia), is herein excluded from Ammonicrinus sensu 

SPRINGER (1926b), the genus is restricted to the Lower and Middle Devonian (Pragian-

Givetian). 

 

Revised description.—The crown is short, rounded asymmetrically and 

incurved strongly in plane bisecting AE and CD interrays; the cup is either laterally 

uncovered by the mesistele (A. kredreoletensis), partly visible in lateral respectively radial 

view (A. doliiformis), or completely covered by the mesistele (A. leunissi n. sp.12); infrabasals 

reduced to 2 subequal, symmetrically disposed plates which are larger than any of the three 

basals adjoining them on posterior side (AB and EA basals lacking); A and E radials 

symmetrically disposed and distinctly larger than others, with margins of articular facets 

rather strongly curved; one single and rhombic radianal plate obliquely at left below C radial. 

The plates are either unsculptured (?A. kredreoletensis), sculptured with fine tubercles (A. 

doliiformis, A. leunissi n. sp.13, A. sulcatus, A. wanneri) or with radiating ridges on radials (A. 

jankei n. sp.14). A large anal X is positioned above CD basal and followed by several smaller 

anal plates. The arms are formed by wide, short and straight or laterally somewhat curved 

brachials, branching isotomously on primibrachials 6 to 8 with up to 10 secundibrachials in 

some branches, followed by at least some tertibrachials. The stem is distinguished by the 

abrupt xenomorphic change between the dististele, which is composed of more or less 

elongated and cylindrical to barrel-shaped columnals, the mesistele, composed of columnals 

with are herein termed “Lateral Columnal Enclosure Extensions” (LCEE) covering the crown, 

and the proxistele with smaller lateral extensions on columnals in relation to the mesistele; the 

dististele  is  either  long  and  composed  of  numerous   columnals   (“exposed  runner-type”, 
                                                 

12  = A. leunissi BOHATÝ, submitted sensu ICZN 
13  = A. leunissi BOHATÝ, submitted sensu ICZN 
14  = A. jankei BOHATÝ, submitted sensu ICZN 
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observed in A. kredreoletensis; “encased runner-type”, observed in all ammonicrinids, except 

of A. kredreoletensis), short and composed of only few columnals, or reduced (“settler-type”, 

recognised in A. leunissi n. sp.15, A. sulcatus and A. wanneri); the dististele can develop 

radiating cirri (rare, observed in A. leunissi n. sp.16) and the distal-most dististele is connected 

with a substrate-controlled holdfast, in form of an attachment disc or a variously formed 

holdfast composed of radiating cirri; the LCEE of the mesistele are either constantly equally 

developed (A. kredreoletensis, A. wanneri), composed of regularly or irregularly arranged 

columnals with longer and shorter extensions (A. jankei n. sp.17, A. sulcatus), or 

interconnected with several columnals with broadened LCEE that could interlock in coiled 

position and are combined with smaller, “regular” columnals (A. doliiformis, A. leunissi n. 

sp.18); the connection between dististele and mesistele is either constant, by the development 

of a triangular columnal (A. doliiformis) or variously formed with floating transitions between 

those individuals with none or one to several columnals with LCEE on the proximal-most, 

barrel-like dististele and the following mesistele, which is solely distinguished by LCEE 

(observed in A. leunissi n. sp.19, A. sulcatus and A. wanneri); the proxistele causes distinct 

impressions of columnals on cup. The axial canal is rarely tetralobate but typically 

pentalobate, with either five similar lumen or one lumen elongated (differences observed in 

one specimen). Ammonicrinus shows synarthrial articulation, with fulcra aligned and unequal 

ligmentary areas on either side of each fulcrum which produced the planispirally coiled 

proximal column covering the crown; shape of coiled stem narrow discoidal (A. wanneri), 

oblate spheroidal (A. leunissi n. sp.20, A. jankei n. sp.21), or wide barrel-shaped (A. doliiformis, 

A. sulcatus). The mesi- and dististele are covered by echinoid-like tubercles, which bear 

movable spines (recognised in A. doliiformis, A. leunissi n. sp.22, A. sulcatus and assumed in 

A. kredreoletensis and A. jankei n. sp.23), or mesistele sculptured by irregularly placed 

tubercles [e.g. in juvenile ossicles of A. sulcatus and in “A. bulbosus” sensu PROKOP (2009)], 

tubercles and additional spine-tubercles (A. sulcatus) or irregularly arranged ridges without 

tubercles on the exterior flanks (A. wanneri). 
                                                 

15  = A. leunissi BOHATÝ, submitted sensu ICZN 
16  = A. leunissi BOHATÝ, submitted sensu ICZN 
17  = A. jankei BOHATÝ, submitted sensu ICZN 
18  = A. leunissi BOHATÝ, submitted sensu ICZN 
19  = A. leunissi BOHATÝ, submitted sensu ICZN 
20  = A. leunissi BOHATÝ, submitted sensu ICZN 
21  = A. jankei BOHATÝ, submitted sensu ICZN 
22  = A. leunissi BOHATÝ, submitted sensu ICZN 
23  = A. jankei BOHATÝ, submitted sensu ICZN 
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3.4.9.2.2  Type species Ammonicrinus wanneri 

 

Type species: Ammonicrinus wanneri SPRINGER, 1926b 

Figs. 3.4.1.1-2, 3.4.1.5, 3.4.12.2; Pl. 3.4.2, Figs. 1-10 

 

• pars Ammonicrinus wanneri SPRINGER, 1926b, pp. 22-25, pl. 6, figs. 4-4b, only. 

• non Ammonicrinus wanneri SPRINGER, 1926b, pl. 6, figs. 5-5b = A. leunissi n. sp.24 

• non Ammonicrinus wanneri SPRINGER, 1926b, pl. 6, fig. 6 = A. cf. sulcatus. 

• non Ammonicrinus wanneri SPRINGER, WOLBURG 1938a, pl. 18, fig. 9. 

• non Ammonicrinus wanneri SPRINGER, WOLBURG 1938a, pl. 18, fig. 10 = A. leunissi n. sp.25 

• non Ammonicrinus wanneri SPRINGER, UBAGHS 1952, p. 210, fig. 2, pl. 1, figs. 1-7, pl. 2, 

figs. 1-7 = A. jankei n. sp.26 

• non Ammonicrinus wanneri SPRINGER, UBAGHS 1978, p. T78, fig. 57, nos. 6-7 = A. 

doliiformis, no. 8 = A. jankei n. sp.27 

• pars Ammonicrinus wanneri SPRINGER, MOORE 1978, p. T787, fig. 526, nos. 5a-c, only. 

• non Ammonicrinus wanneri SPRINGER, MOORE 1978, p. T787, fig. 526, nos. 5d-e = A. 

leunissi n. sp.28 

• pars Ammonicrinus wanneri SPRINGER, WEBSTER 2003, GSA-webpage, A. wanneri 

SPRINGER 1926b, pl. 6, figs. 4-4b, only. 

 

Holotype.—USNM-S2115 (SPRINGER 1926b, pl. 6, figs. 4-4b, only) [Figs. 

3.4.1.1-2, 3.4.1.5; also see colour photos of the SPRINGER-original on the webpage-search of 

the USNM Department of Paleobiology collection]. 

 

Locus typicus (assumed).—“Prüm”, within the Prüm Syncline, in the vicinity 

of Locality 3 (Eifel, Rhenish Massif, Rhineland Palatinate, Germany). 

 

Stratum typicum (assumed).—Uppermost Freilingen Formation (Upper 

Eifelian) or superposed Ahbach Formation (Eifelian/Givetian threshold, Middle Devonian). 

                                                 
24  = A. leunissi BOHATÝ, submitted sensu ICZN 
25  = A. leunissi BOHATÝ, submitted sensu ICZN 
26  = A. jankei BOHATÝ, submitted sensu ICZN 
27  = A. jankei BOHATÝ, submitted sensu ICZN 
28  = A. leunissi BOHATÝ, submitted sensu ICZN 
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Revised description.—Ammonicrinus wanneri shows fine tubercles on the cup 
ossicles. The stem is mainly distinguished by the characteristic mesistele, composed of 
columnals with long and relative regularly developed LCEE that nearly orthogonally protrude 
from both sides of the narrow columnals, forming a narrow discoidal coiled proximal column 
in closed position; mesistele composed of numerous columnals, which distally passes 
gradually into the dististele; several specimens show floating transitions between those 
individuals with none or one to several columnals with LCEE on the proximal-most, barrel-
like dististele and the following mesistele; dististele either long and composed of numerous 
columnals (“encased runner-type”), short and composed of only few columnals, or nearly 
reduced (“settler-type”); distal-most dististele connected with a substrate-controlled holdfast 
composed of radiating cirri; axial canal pentalobate; mesistele sculptured by irregularly 
positioned or oriented ridges, which, idealised, runs parallel to each other on the external 
flanks of the columnals; no spine-tubercles on the stem. 
 

Differentiation.—The mesistele of A. wanneri is composed of regularly 
developed columnals with narrow and long LCEE that protrude nearly orthogonally from both 
sides of the columnals, resulting in narrow discoidal coiled proximal column in closed 
position; the radials are partly visible in lateral view of the coiled stem. In A. leunissi n. sp.29 
the LCEE of the mesistele are shorter and interconnected with several columnals showing 
broadened extensions and combined with smaller, “regular” columnals that cover the cup 
completely; respectively, the radials are not visible in lateral view of the coiled stem. 
Additionally, the shape of the coiled stem is oblate spheroidal instead of discoidal. The 
columnals of the mesistele of A. wanneri are sculptured by tubercles, forming irregular ridges 
on the external flanks of the columnals; no spine-tubercles were observed. In contrast, A. 
leunissi n. sp.30 is a spined Ammonicrinus. 
 
 
3.4.9.2.3  Species Ammonicrinus sulcatus 
 

Ammonicrinus sulcatus KONGIEL, 1958 
Figs. 3.4.4.1-2, 3.4.9.1-20, 3.4.10.1-9, 3.4.12.3 

 
•  Ammonicrinus sulcatus KONGIEL, 1958, pp. 34-36, figs. 6a-b. 
•  Ammonicrinus sulcatus KONGIEL, PIOTROWSKI, 1977, pp. 211-213, p. 208, fig. 2, p. 211, 

fig. 4, p. 212, fig. 5B, p. 213, fig. 6, pl. 17, figs. 1a-c, 2a-c, 3-4, 5a-b, pl. 18, figs. 4, 5a-b, 6-
8, 10. 

                                                 
29  = A. leunissi BOHATÝ, submitted sensu ICZN 
30  = A. leunissi BOHATÝ, submitted sensu ICZN 
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•  Ammonicrinus kongieli PIOTROWSKI, 1977, pp. 213-215, pl. 18, figs. 1a-c, 2-3, 9, pl. 19, 

figs. 1, 2a-b, 3, 4a-b, 5, 6a-b, 7a-b, 8, 9a-b, 10 [not “pl. 18, figs 1-9” as indicated by 

PIOTROWSKI (1977, p. 213)]. 

•  Ammonicrinus sulcatus KONGIEL, UBAGHS 1978, p. T78, fig. 57, no. 9. 

•  Ammonicrinus sulcatus KONGIEL, WEBSTER 2003, GSA-webpage (cum syn.). 

•  Ammonicrinus sulcatus KONGIEL, LE MENN & JAOUEN 2003, p. 208, fig. 1A. 

•  cf. Ammonicrinus wanneri SPRINGER, 1926b, pl. 6, fig. 6 = A. cf. sulcatus. 

 

Holotype.—MZ-VIII-EP-1/1. 

 

Locus typicus.—Grzegorzowice-Skaly (Holy Cross Mountains, Poland). 

 

Stratum typicum.—Member XIV of the Givetian Skaly beds (Middle 

Devonian) [see PIOTROWSKI 1977, p. 213]. 

 

Revised description.—Ammonicrinus sulcatus is distinguished by the fine 

tubercles on the cup ossicles. The mesistele shows nearly linear and wide external flanks and 

relatively short LCEE; extensions of the mesistele composed of regularly or irregularly 

arranged columnals with longer and shorter extensions; adult mesistele “pseudo-tuberculated” 

by echinoid-like spine-tubercles and movable spines, or distinguished by additional, 

irregularly arranged, sometimes slightly meandering nodular tubercles bearing the spine-

tubercles; columnals of the juvenile mesistele with strongly tuberculated extensions and 

external flanks; dististele either medium long and composed of numerous columnals 

(“encased runner-type”), or short and composed of only few columnals, or nearly reduced 

(“settler-type”); the connection between disti- and mesistele is variously formed with floating 

transitions between those individuals with none (rare) or one to several columnals 

(characteristic) with laterally positioned enclosure extensions on the proximal-most, barrel-

like dististele and the following mesistele; the planispirally coiled, proximal column is 

relatively low, wide and barrel-shaped, due to the relatively short LCEE of the mesistele. 

 

Differentiation.—Ammonicrinus sulcatus is similar to A. leunissi n. sp.31 and, 
especially, to A. jankei n. sp.32 A. sulcatus developed characteristic and nearly linear external 

                                                 
31  = A. leunissi BOHATÝ, submitted sensu ICZN 
32  = A. jankei BOHATÝ, submitted sensu ICZN 
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flanks of the mesistele, showing short LCEE in contrast to the longer extensions of A. leunissi 
n. sp.33 Several cup ossicles of A. sulcatus show rudimentary radiating ridges that are not 

known in A. leunissi n. sp.34 but developed much stronger in A. jankei n. sp.35 Because of the 
longer extensions of the mesistele of A. jankei n. sp.36, the shape of the coiled stem is oblate 
spheroidal, rather than wide and barrel-shaped like in A. sulcatus. 
 

 
3.4.9.2.4  Species Ammonicrinus doliiformis 
 

Ammonicrinus doliiformis WOLBURG, 1938a (for 1937) 
Figs. 3.4.1.7-8, 3.4.2.1-6, 3.4.3.1-2, 3.4.12.4; Pl. 3.4.2, Figs. 11-18 

 

•  Ammonicrinus doliiformis WOLBURG, 1938a (for 1937), pp. 230-241, p. 231, fig. 1, p. 232, 
fig. 2, p. 233, figs. 3-4, p. 240, fig. 5, pl. 17, figs. 1-5, 6a-b, 7, pl. 18, figs. 1(?), 2a-b, 3-4, 5-
7(?), 8. 

•  Ammonicrinus wanneri SPRINGER, KRAUSE 1927, pl. VIII, figs. 1-6. 
•  Ammonicrinus doliiformis WOLBURG, UBAGHS 1952, pp. 216-218, pl. 3, figs. 1-5. 
• Ammonicrinus doliiformis WOLBURG, UBAGHS 1978, p. T64, fig. 44, no. 3. 

• Ammonicrinus wanneri SPRINGER, UBAGHS 1978, p. T78, fig. 57, nos. 6-7. 
•  Ammonicrinus doliiformis WOLBURG, WEBSTER 2003, GSA-webpage (cum syn.). 
•  vidi “Ammonicrinus wachtbergensis”, HAUSER 2005b, p. 4, fig. 1, pp. 23-25, figs. 15a-b, 

second unnumbered fig. below on p. 34, pl. 1, figs. 3a-c, + front and backside covers of 
private publication. 

 

Holotype.—Lost due to world war damages; one cast of the dististele of 
WOLBURG’s type material is deposited in the Geowissenschaftliches Zentrum der Universität 
Göttingen, Germany (without repository-no.). 

 

Locus typicus.—Locality 11. 
 

Stratum typicum.—“Selscheider Formation” sensu WOLBURG (1938a, p. 230); 
more probable, the type material came from the Odershäuser Formation of the 

Eifelian/Givetian threshold (Middle Devonian) [pers. information, M. BASSE]. 
                                                 

33  = A. leunissi BOHATÝ, submitted sensu ICZN 
34  = A. leunissi BOHATÝ, submitted sensu ICZN 
35  = A. jankei BOHATÝ, submitted sensu ICZN 
36  = A. jankei BOHATÝ, submitted sensu ICZN 
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Revised description.—Ammonicrinus doliiformis is distinguished by fine 

tubercles on the surface of the cup ossicles. The arms are relatively long and formed by 

medium wide, short and straight or laterally somewhat curved brachials. The dististele is long 

and composed of numerous columnals (“encased runner-type”), the distal-most dististele is 

connected with a substrate-controlled holdfast, typically in form of a relatively small 

attachment disc; the LCEE of the wide mesistele are composed of characteristic, regularly or 

irregularly (rare) arranged columnals with longer and shorter extensions. These are 

interconnected with several columnals with broadened extensions that could intermesh in a 

closed coiled position and are combined with smaller, “regular” columnals; connection 

between disti- and mesistele distinguished by a triangular columnal without extensions; 

columnals of the mesistele with long, less curved external flanks showing relatively thin cross 

sections; shape of coiled stem wide barrel-shaped; the cup is partly visible in lateral 

respectively radial view; mesi- and dististele covered by echinoid-like spine-tubercles, which 

bear movable spines. 

 

Differentiation.—Ammonicrinus doliiformis is similar to A. leunissi n. sp.37 

WOLBURG’s species has a wider diameter of the coiled stem and a characteristic connection 

between the disti- and mesistele, which is distinguished by a triangular columnal without 

extensions in opposition to the variously formed connection between the disti- and mesistele 

of A. leunissi n. sp.38 

 

Discussion.—After studying the holotype of “Ammonicrinus wachtbergensis 

HAUSER 2005b” (= original of KRAUSE 1927, figured as A. wanneri), it is clearly evident that 

the specimen is a typical adult and three dimensionally preserved A. doliiformis. The 

specimen came from the Eilenberg Member of the uppermost part of the Freilingen Formation 

(Upper Eifelian) of locality 5. This stratigraphic level is most famous for A. doliiformis and 

could be correlated with several localities within the Eifel (e.g. with the deposits of the 

Freilingen Formation of village Gondelsheim within the Prüm Syncline or with locality 4). 

Also the stratum typicum at the A. doliiformis type locality (locality 11, also see locality 10) 

correlates approximately with the Eifel findings. 

Therefore, “A. wachtbergensis HAUSER 2005b” is declared a subjective junior 

synonym of A. doliiformis. 

                                                 
37  = A. leunissi BOHATÝ, submitted sensu ICZN 
38  = A. leunissi BOHATÝ, submitted sensu ICZN 
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FIGURE 3.4.11—Ammonicrinus kredreoletensis (no. GIK-2121) from locality 12; lateral view of long 

mesistele, proxistele and huge cup (arrow) on matrix. [Scale bar = 1 cm] 

 

 

3.4.9.2.5  Species Ammonicrinus kredreoletensis 

 

Ammonicrinus kredreoletensis LE MENN & JAOUEN, 2003 

Figs. 3.4.6, 3.4.11, 3.4.12.1 

 

•  Ammonicrinus kredreoletensis LE MENN & JAOUEN, 2003, p. 207, pp. 210-211, p. 210, figs. 

4A-C. 

 

Holotype.—LPB-1073. 

 

Locus typicus.—Coupe de Kerdréolet, niveau K2, L´Hôpital-Camfrout, 

Département Finistère (Brittany, France). 

 

Stratum typicum.—Kerdréolet Formation, Emsian (Lower Devonian). 
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Revised descriptions.—Ammonicrinus kredreoletensis shows a subspherical 
crown with a relatively large cup in comparison to the narrow width of the mesistele; the cup 
is not covered laterally by the mesistele and is, therefore, clearly visible in lateral view; the 
ossicles of the cup are unsculptured(?). The mesistele is very long and composed of numerous 
columnals (“exposed runner-type”) that have nearly uncurved to slightly concave external 
flanks and thin cross sections; LCEE of the mesistele regularly arranged and very short, 
several columnals of the mesistele have very short and blunt lateral expansions on both lateral 
edges of the exterior flanks; connection between mesi- and dististele obviously distinguished 
by a narrow triangular columnal, which follows distally after the rapid narrowing of the 
columnals of the distal-most mesistele; dististele and attachment unknown; shape of coiled 
stem narrow discoidal; mesi- and dististele obviously covered by echinoid spine-tubercles, 
which presumably bear movable spines(?) [not preserved]. 
 

Differentiation.—The numerous columnals of the mesistele of Ammonicrinus 
kredreoletensis, the very short lateral expansions of the mesistele and the huge rounded crown 
clearly separates this species from all other ammonicrinids. 
 

Discussion.—As stated above, the cup of A. kredreoletensis is laterally not 
covered by the LCEE. That possibly implies feeding in the current (Fig. 3.4.6) and negates the 
internal, respectively pumping proposal assumed for the younger ammonicrinids described 
herein. Furthermore, the new recovered material indicates that the stem of A. kredreoletensis 
tapers as it approaches the crown, which was obviously elevated up from the substrate into a 
possible low velocity current for feeding. Therefore, A. kredreoletensis can be designated a 
morphological progenitor of the younger and encased ammonicrinids. 
 
 
3.4.9.2.6  Species Ammonicrinus leunissi 
 

Ammonicrinus leunissi n. sp.39 
Figs. 3.4.1.3-4, 3.4.1.6, 3.4.5, 3.4.7.1-2, 3.4.8; Pl. 3.4.1, Figs. 1-14 

 
• Ammonicrinus wanneri SPRINGER, 1926b, pl. 6, figs. 5-5b. 
• Ammonicrinus wanneri SPRINGER, WOLBURG 1938a (for 1937), pl. 18, fig. 10. 
• Ammonicrinus wanneri SPRINGER, MOORE 1978, p. T787, fig. 526, nos. 5d-e. 
•  pars Ammonicrinus wanneri SPRINGER, WEBSTER 2003, GSA-webpage, A. wanneri 

SPRINGER 1926b, pl. 6, figs. 5-5b, only. 

                                                 
39  = Ammonicrinus leunissi BOHATÝ, submitted sensu ICZN 
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Holotype.—USNM-S2115 (SPRINGER 1926b, pl. 6, figs. 5-5b, only) [Figs. 
3.4.1.3-4, 3.4.1.6; also see colour photos of the SPRINGER-original on the webpage-search of 
the USNM Department of Paleobiology collection]. 
 

Locus typicus (assumed).—“Prüm”, within the Prüm Syncline, in the 
surrounding of Locality 3 (Eifel, Rhenish Massif, Rhineland Palatinate, Germany). 
 

Stratum typicum (assumed).—Uppermost part of the Freilingen Formation 
(Upper Eifelian) or, more probable, superposed Ahbach Formation (Eifelian/Givetian 
threshold, Middle Devonian). Within the Eifel, the species shows its maximum distribution 
within the Olifant and Zerberus members of the Müllert Subformation, Ahbach Formation 
(lowermost Lower Givetian, Middle Devonian). 
 

Etymology.—The species is named after MR. ROBERT LEUNISSEN 
(Wollersheim), for his tremendous help in sampling of material for the present work. 
 

Diagnosis.—An Ammonicrinus, distinguished by fine tubercles on the surface 
of the cup ossicles; dististele either long and composed of numerous columnals (“encased 
runner-type”), short and composed of only few columnals, or nearly reduced (“settler-type”); 
dististele may develop branching cirri, distal-most dististele connected with a substrate-
controlled holdfast (attachment disc or variously formed holdfasts); LCEE of the mesistele 
interconnected with several columnals with broadened extensions and combined with smaller, 
“regular” columnals; connection between disti- and mesistele variously formed; axial canal 
pentalobate; shape of coiled stem oblate spheroidal; cup completely covered by the mesistele; 
mesistele, dististele and attachment spined. 
 

Description.—The crown is relatively small and distinguished by the short 
arms with short and wide brachials and the small cup, which is characterised by irregularly 
arranged, fine tubercles on the surface of all ossicles. The short and narrow proxistele causes 
distinct impressions of columnals on the cup and spine-tubercles are developed on the 
external flanks, obviously loosing spines throughout the ontogeny. These tubercles are well 
developed on the surface of the lateral and external flanks of the mesistele and have very 
movable spines that allowed coiling over the spined columnals. The LCEE of the mesistele 
are interconnected with several columnals with broadened extensions that could interlock in a 
coiled position and are combined with smaller, “regular” columnals. Columnals of the 
mesistele are less curved external flanks and medium long extensions. The connection 
between the dististele and the mesistele is variously formed, with floating transitions between 
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those individuals with none or one to several columnals with LCEE on the proximal-most, 
barrel-like dististele and the following mesistele, which is solely distinguished by these 
extensions. Dististele is either long and composed of numerous barrel-like columnals, 
developing the “runner-type”, or short and composed of only few or nearly reduced 
columnals, characterising the “settler-type”. Several examples with developed radiating cirri 
on the columnals of the dististele are known. The distal-most dististele is connected with an 
attachment disc (rare) or, typically, with a variously formed holdfast composed of radiating 
cirri. Columnal axial canal pentalobate. The shape of the coiled proximal “stem globe” 
(proxistele and proximal to middle or nearly complete mesistele), that completely covers the 
crown, is oblate spheroidal. 
 For dimensions of the studied material, see indication of size within the figure 
descriptions. 
 

Differentiation.—Ammonicrinus leunissi n. sp.40 differs from A. wanneri by 
the wider columnals of the mesistele, which have shorter LCEE in comparison with A. 
wanneri. The LCEE of the spined A. leunissi n. sp.41 are interconnected with several 
columnals with broadened extensions and combined with smaller, “regular” columnals. The 
unspined A. wanneri developed very long and fine extensions that protrude nearly 
orthogonally from both sides of the narrow columnals, forming a narrow discoidal coiled 
proximal column in closed position, which is oblate spheroidal in A. leunissi n. sp.42 
 
 
3.4.9.2.7  Species Ammonicrinus jankei 
 

Ammonicrinus jankei n. sp.43 
Figs. 3.4.3.3-9 

 
• Ammonicrinus wanneri SPRINGER, UBAGHS 1952, p. 210, fig. 2, pl. 1, figs. 1-7, pl. 2, figs. 1-

7. 
• Ammonicrinus wanneri SPRINGER, UBAGHS 1978, p. T78, fig. 57, no. 8. 
•  pars Ammonicrinus wanneri SPRINGER, WEBSTER 2003, GSA-webpage, A. wanneri 

SPRINGER 1926b, UBAGHS 1952, p. 210, fig. 2, pl. 1, figs. 1-7, pl. 2, figs. 1-7 and UBAGHS 
1978, p. T78, fig. 57, no. 8., only. 

 
                                                 

40  = Ammonicrinus leunissi BOHATÝ, submitted sensu ICZN 
41  = A. leunissi BOHATÝ, submitted sensu ICZN 
42  = A. leunissi BOHATÝ, submitted sensu ICZN 
43  = Ammonicrinus jankei BOHATÝ, submitted sensu ICZN 
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Holotype.—SMF-XXIII.165a. 

 

Locus typicus.—Locality 8. 

 

Stratum typicum.—“Rommersheim Formation” (UBAGHS 1952, p. 206) = 

Junkerberg Formation sensu HOTZ et al. (1955). My studies at the type locality suggest that 

the species came from the superjacent ?Freinilgen Formation (Upper Eifelian, Middle 

Devonian). 

 

Etymology.—The species is named after MR. EBERHARD JANKE (Elsdorf), for 

his help in sampling of material, especially from time-consuming washings, for this work. 

 

Diagnosis.—An Ammonicrinus, distinguished by a crown with a rhombic 

outline, unpustulated cup ossicles and radiating ridges on radials, radials convex and protrude 

conically toward the lateral-exterior; arms formed by very wide, V-shaped and medium short 

brachials; mesistele distinguished by irregularly arranged columnals with longer and shorter 

LCEE, which are relatively wide, columnals of the mesistele interconnected with several 

columnals having broadened extensions that could interlock in a coiled position and are 

combined with smaller, “regular” columnals, mesistele sculptured by irregular tubercles 

(several tubercles could possibly be spine-tubercles but spines not preserved); shape of coiled 

stem, covering the crown, oblate spheroidal; cup nearly completely covered by the mesistele. 

Other skeletal elements unknown. 

 

Description.—The crown is mainly distinguished by its shape that shows a 

characteristic rhombic outline in lateral-anal view, which is caused by the radials, which are 

convex and conical extend toward the lateral-exterior. The cup is nearly completely covered 

by the mesistele. The ossicles of the cup are consistently unpustulated, with up to six radiating 

ridges on radials. The lateral-most radials have a slightly lobe-like enlarged appendage that 

could possibly support the lateral water faecal-ejection. The short arms are formed by very 

wide and V-shaped brachials, which are nearly straight in proximal position; the distal 

brachials are somewhat curved laterally. The species developed one single rhombic radianal 

plate obliquely at left below the C radial, followed by a larger anal X and several smaller anal 

plates forming a short and curved tube that obviously channelled the faecal material toward 

that point from where the excrements could be ejected toward the lateral-exterior. The short 
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and narrow proxistele causes distinct impressions of columnals on the cup, proximal tube and 

subsequent arms. The mesistele is sculptured by irregularly arranged tubercles and is 

distinguished by irregularly arranged columnals with longer and shorter extensions, showing 

regular columnals that are interconnected with several columnals with broadened LCEE that 

could interlock in coiled position. Several tubercles could possibly be badly preserved spine-

tubercles (spines not preserved). Shape of the coiled stem that cover the crown is oblate 

spheroidal. The connection between disti- and mesistele, the morphology of the dististele and 

of the holdfast are unknown. 

 For dimensions of the studied material, see indication of size within the figure 

descriptions. 

 

Differentiation.—Ammonicrinus jankei n. sp.44 is similar to A. sulcatus. The 

species differs in several characteristic morphologies: A. sulcatus has fine tubercles on the cup 

ossicles and the radials are convex and protrude conically toward the lateral-exterior. The cup 

ossicles of A. jankei n. sp.45 are unpustulated but the radials have as many as six radiating 

ridges and each one has a slightly lobe-like enlarged appendage. The columnals of the 

mesistele of A. jankei n. sp.46 are thinner in cross section than those of A. sulcatus and show 

irregularly arranged nodular tubercles instead of finer columnal sculpturing observed in A. 

sulcatus. The planispirally coiled, proximal column of A. sulcatus is relatively low, wide and 

barrel-shaped, due to the relatively short extensions of the columnals of the mesistele. In 

opposition, the shape of the coiled stem that covers the crown of A. jankei n. sp.47 is oblate 

spheroidal. 

 

 

3.4.10 DISCUSSION 

 

 Because of the high variability of the substrate-controlled dististele and 

attachment that strongly affected the overall form of the endoskeleton, Ammonicrinus has to 

be characterised as a lecanocrinid distinguished by high morphologic plasticity. This is mainly 

expressed by the two recognised main forms, the roller- and the settler-type. As bottom-

                                                 
44  = Ammonicrinus jankei BOHATÝ, submitted sensu ICZN 
45  = A. jankei BOHATÝ, submitted sensu ICZN 
46  = A. jankei BOHATÝ, submitted sensu ICZN 
47  = A. jankei BOHATÝ, submitted sensu ICZN 
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dwellers on muddy firmgrounds or, in particular, on mud substrates, ammonicrinids benefit 

from this constructional plasticity, which affords anchoring on different hard objects that are 

lying on the soft-bottom. Radiating cirri, observed in few crinoids, could additionally stabilise 

the individuals. 

 Regarding the younger ammonicrinids from the Rhenish Massif, the presumed 

soft-bottom dwelling, especially in still water habitats, requires two main conditions: (1) It is 

apparently necessary to protect the crown by encasing it by the proximal mesistele. 

Furthermore, attacks from vagile benthic predators have to be anticipated with echinoid-like 

spines. (2) Active “stem pumping”, resulted in a self-generated water flow for feeding and 

out-pumping of excretory products as well as antagonising sedimentary material. This was 

possibly enabled by slowly stiffening and relaxation of mutable connective tissues of the 

mesi- and proxistele. However, it is important to note that this assumed ability doesn’t imply 

that every ammonicrinid imperatively feeds via “MCT-pumping”. In the same muddy still 

water habitats that were populated by the roller-type, the settler-type is recognised. This mode 

of life potentially profited from a low water flow above the nearly unmoved condition at the 

sediment water interface. Carbonate microfacies analysis within several Ammonicrinus-

localities of the Eifel indicated former muddy firmgrounds and moving water conditions in 

which ammonicrinids could passively benefit from water current. 

 Observations within the Eifel synclines indicate that the Ammonicrinus 

morphology of the coiling of the stem, respectively encasing of the crown, was brought to 

perfection during the Upper Eifelian. The oldest studied form, A. kredreoletensis, has a 

relative huge crown in relation to the narrow mesistele, which is composed of narrow, 

similarly shaped columnals with very short extensions. Thus, the crown is nearly unprotected 

laterally in the resting position of the crinoid and, especially, in the feeding position, which 

implies feeding in the current and has similarities to the feeding position of camptocrinids and 

myelodactylocrinids. Younger ammonicrinids encased the crown with modified columnals of 

the mesistele in a resting- but, herein assumed, also in a feeding position; A. wanneri 

lengthened the LCEE of the similarly shaped columnals of the mesistele, which encased the 

crown in the coiled position. The developments of smaller columnals of the mesistele, which 

are interconnected with regular ones, are an advanced or evolved step to afford increase 

lateral density of the coiled stem. This morphology is recognised in A. sulcatus. In A. 

doliiformis, the LCEE of the mesistele is composed of characteristically regularly or 

irregularly arranged columnals with longer and shorter extensions, which were interconnected 
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w

iled position. Especially within the Eifel and the Holy Cross Mountains, the 

diversity and frequency of vagile benthic predators like platyceratid gastropods increases 

during the Middle and Upper Eifelian reaching a maximum toward the Eifelian/Givetian 

boundary (own, unpublished data; see e.g. GAHN & BAUMILLER 2003 for Middle Devonian 

crinoid/platyceratid interactions). The necessity to increase the ammonicrinid crown 

protection could speculatively be linked

ith several columnals showing broadened convex and concave extensions that could 

interlock in co

 to this ecological circumstance. 

 

 

 

 

FIGURE 3.4.12—Schematic sketches of different LCEE of the mesistele in uncoiled (above) and coiled 

positions (below), indicating evolution of perfecting the crown-encasing in coiled position by modifying 

the extensions form Emsian to Givetian; 1, lateral view of A. kredreoletensis, showing similar shaped 

columnals with very short LCEE; thus, the crown is laterally nearly unprotected in coiled position; 2, 

lateral view of A. wanneri with lengthened LCEE of the similar shaped columnals, which lattice-like 

guarded the crown in coiled position; 3, lateral view of A. sulcatus, showing smaller columnals of the 

mesistele, which are interconnected with longer ones and afford lateral density of the coiled stem; 4, 

Lateral view of A. doliiformis, showing regularly or irregularly arranged columnals with longer and shorter 

LCEE, which were interconnected with several columnals showing broadened convex and concave 

extensions that could interlock in coiled position. 
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PLATE 3.4.1 (see p. 181) 

 

—Ammonicrinus leunissi n. sp. from locality 6 (1-5, 9-11, 14), 3 (6-7, 12-13) and 9 (8). 1, Lateral view of a 

specimen (no. GIK-2122) with lost spines, showing complete coiled mesistele and one preserved columnal 

of the dististele (arrow); 2, lateral-facet view of a specimen with lost spines (no. GIK-2123), showing 

coiled mesistele and proxistele; 3, view of the exterior columnal flanks of a slightly compressed specimen 

(no. GIK-2124) with lost spines, showing proxistele and mesistele with one distal-most, barrel-shaped 

columnal with LCEE (arrow); 4, view of the exterior columnal flanks of a weathered and compressed 

specimen (no. GIK-2125) with lost spines, showing part of the mesistele and proxistele and rest of 

disarticulated ossicles of the cup preserved; 5, lateral view of a partly preserved specimen (no. GIK-2126) 

with lost spines and well preserved spine-tubercles on the coiled mesistele; 6, view of the exterior columnal 

flanks of a partly preserved, coiled mesistele (no. GIK-2127) with lost spines and one radial plate preserved 

(arrow); 7, view of the exterior columnal flanks of a partly preserved, uncoiled mesistele (no. GIK-2128) 

with lost spines; 8, interior view of a partly preserved, coiled specimen (no. GIK-2129), showing rest of 

cup and impressions of the lost arms (arrow); 9, view of the exterior columnal flanks of an uncoiled 

specimen (GIK-2130) on matrix (“runner-type”), showing several preserved spines on partly preserved 

mesistele and dististele and developed radiating cirri on columnals of the dististele (arrow); 10, view of the 

exterior columnal flanks of a specimen on matrix (no. GIK-2131) with coiled proximal-most mesistele and 

proxistele and uncoiled distal column (“runner-type”) with one barrel-shaped columnal showing short 

LCEE (arrow on the right); the specimen shows numerous preserved spines on the mesistele; one radial 

plate is visible (arrow on the left); 11, like 10, aboral view of proxistele and base of cup; 12, isolated 

holdfast (no. GIK-2132) of the specimen, figured in Fig. 13; the holdfast is composed of radiating cirri 

attached to a fenestrate bryozoan (arrow); 13, like 12, view of the exterior columnal flanks of uncoiled 

mesistele on matrix (“runner-type”); 14, coiled specimen (no. GIK-2103), attached on a brachiopod 

brachial valve (Schizophoria sp.) [compare to reconstruction, figured in Fig. 3.4.8]; the specimen strongly 

reduced the dististele and settled with an attachment disc on the brachiopod (“settler-type”). [Scale bars = 1 

cm] 
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PLATE 3.4.1 (legend p. 180) 
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PLATE 3.4.2 (see p. 183) 

 

—Ammonicrinus wanneri from locality 3 (1-9) and from locality 7 (10); Ammonicrinus doliiformis from 

locality 9 (11-12), 10 (13), 4 (14) and 5 (15-18). 1, Lateral view of a partly preserved specimen (no. GIK-

2133) with coiled mesistele; 2, lateral view, respectively view of external columnal flanks of the coiled 

mesistele of a partly preserved specimen (no. GIK-2134) with one preserved, postulated cup ossicle 

(arrow); 3, view of external columnal flanks of the mesistele of a partly preserved specimen (no. GIK-

2135); 4, lateral view, respectively view of external columnal flanks of the coiled mesistele of a partly 

preserved specimen (no. GIK-2136), showing typical LCEE; 5, view of external columnal flanks of a 

nearly uncoiled mesistele (“runner-type”) [no. GIK-2137]; 6, view of external columnal flanks and LCEE 

of a slightly compressed, coiled mesistele (no. GIK-2138); 7, view of external columnal flanks of a nearly 

uncoiled mesistele (“runner-type”) [no. GIK-2139]; 8, view of external columnal flanks of the mesistele of 

a partly preserved specimen (no. GIK-2140); 9, view of external columnal flanks of a nearly uncoiled 

mesistele (“runner-type”) [no. GIK-2141]; 10, view of external columnal flanks of the coiled mesistele of a 

weathered specimen (no. GIK-2142) on matrix; 11, lateral view of a coiled specimen (no. GIK-2143) with 

lost dististele and cracked LCEE of the mesistele, exposing the coiled proxistele and several cup ossicles 

(arrow); 12, lateral view of a nearly completely coiled specimen (no. GIK-2144) with lost dististele and 

cracked LCEE of the mesistele, exposing distal-most part of the coiled proxistele and several cup ossicles 

(arrow); 13, view of external columnal flanks of a preserved, coiled mesistele (no. GIK-2145) on matrix; 

the imprint of the uncoiled distal mesistele (“runner-type”), of the dististele and of the holdfast, which is 

attached to a fenestrate bryozoan (imprint, see arrow), is traced by a dashed line; 14, facet view of a coiled, 

adult specimen (no. GIK-2146) with exposed distal part of the proxistele and disarticulated remains of the 

arms (arrows); 15, perfect, three dimensionally preserved, adult specimen (no. MB.E.-287, original of 

KRAUSE 1927), showing coiled mesistele in lateral view, dististele, attachment and spines missing; centres 

of tuberculated radials partly visible (arrow); the specimen is infested by a (?)craniid brachiopod (arrow on 

the left). 16. Like 15, opposite lateral view; centres of radials partly visible (arrow); 17; like 15-16, oblique 

lateral view; 18, Like 15-17, view of the external flanks of the mesistele (centre and upper part of the 

figure) and of the facet area of distal mesistele (below), showing wide barrel-shaped outline. [Scale bars = 1 

cm] 
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PLATE 3.4.2 (legend p. 182) 

 



4—Discussion and conclusion    

4.  DISCUSSION AND CONCLUSION 

 

4.1  PALAEODIVERSITY 

 

In the following, “Palaeodiversity” is mainly focussed on the number of taxa 

among the discussed genera. 

 

 

4.1.1  SUBCLASS CLADIDA 

 

Abbreviatocrinites with its species and subspecies, A. abbreviatus abbreviatus, 

A. inflatus inflatus, A. tesserula and A. cf. urogalli sensu BOHATÝ (2006b) occurs at the base 

of the Nohn Formation (Lower Eifelian), as do Robustocrinites with its oldest species R. 

galeatus and Procupressocrinus with P. gracilis (Tab. 4.1.1). This correlates with the 

establishment of the calcareous sedimentation at the base of the Middle Devonian within the 

Eifel Synclines. These occurrences coincided with the first proliferation of 

stromatoporoid/coral-biostromes in the upper part of the Lower Nohn Formation sensu 

KUCKELKORN (1925). 

Three of these oldest, Middle Devonian cupressocrinitids from the Eifel, A. a. 

abbreviatus, A. i. inflatus and P. gracilis, can be characterised as stratigraphically persisting 

taxa and can be traced up to the Cürten Formation (Lower Givetian) in the study area. 

After the negative influences of increased clastic sedimentation in the northern 

Eifel realm during the Upper Nohn Formation (HOTZ 1951), stromatoporoid/coral-biostromes 

re-established at the base of the Ahrdorf Formation. This correlates with the diversification of 

Abbreviatocrinites and Robustocrinites between the Bildstock Member of the lower Ahrdorf 

Formation and the boundary of the Nims and Giesdorf members. Peak diversification was 

positioned between the Klausbach Member and the border of the Nims and Giesdorf members 

of the Junkerberg Formation. Furthermore, the number of individuals of the monospecific 

Procupressocrinus increased between the Hönselberg Member and the boundary of the Nims 

and Giesdorf members (Tab. 4.1.1). 
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Between the Klausbach Member and the boundary of the Nims and Giesdorf 

members the palaeodiversity of the cupressocrinitid species doubled in comparison to the 

Nohn and Ahrdorf formations. Therefore, the first palaeodiversity radiation of cladids is 

positioned between the Ahrdorf and Freilingen formations (Fig. 4.1.1). This palaeodiversity 

abruptly declined in the uppermost Junkerberg Formation, with the beginning of the Giesdorf 

Member, in which nearly every group of the Middle Devonian crinoids of the Eifel is missing 

due to drastic facies changes associated with the “otomari Event” (compare to 4.3.2.3). 

Similarly, the absence of Robustocrinites within the Eifel Synclines coincided with the 

beginning of the Giesdorf Member (Chapter 3.1.4; Fig. 3.1.8). This resulted in a minimum of 

genera; nearly one third of the species of Abbreviatocrinites disappeared [A. nodosus and A. 

tesserula – A. cf. urogalli and A. schreueri already after the Bildstock Member respectively 

after the Klausbach Member, showing a last increasing of the species number of A. nodosus 

and A. tesserula below the Giesdorfian part of the Junkerberg Formation]; the frequency of P. 

gracilis also declined. 

The second and larges radiation of the cupressocrinitid palaeodiversity of the 

Eifel [between the Freilingen Formation (Upper Eifelian) and the lower Cürten Formation 

(Lower Givetian)], is positioned within the Ahbach Formation. Seven of nine species of 

Abbreviatocrinites, occurs in this time slice within the Freilingen Formation and are 

associated with P. gracilis. 

The first occurrence of Cupressocrinites is recognised in the Ahbach 

Formation at the Eifelian/Givetian boundary with five of eight species. This could possibly be 

correlated to a high sea-level in the course of a transgression during the “otomari Event” that 

presumably allowed faunal migrations (compare to 4.3.2.3). 

Except for the absence of the genus Robustocrinites, the remaining 

cupressocrinitids have their maximum diversity and abundance between the Ahbach 

Formation (Eifelian/Givetian) and Loogh Formation (lowermost Lower Givetium) [Tab. 

4.1.1]. The maximum of Abbreviatocrinites is within the Ahbach Formation and those of 

Cupressocrinites and Procupressocrinus are in the Loogh Formation. This correlates with the 

maximal facies differentiation of the Eifel (WINTER 1965). 

 

These results complement previously published data of the palaeodiversity 

development of other cladid crinoids from the Middle Devonian of the Eifel Synclines 

(BOHATÝ 2006a; HAUDE 2007) [Fig. 4.1.1]. In this context, the distribution of gasterocomoids 

(Gasterocoma, 10 species; Lecythocrinus, two species; Nanocrinus, two species; 

Scoliocrinus, two species; Tetrapleurocrinus, one species and Trapezocrinus, one species 
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with two subspecies in the Middle Devonian of the Eifel) correlates with the results presented 

herein (Fig. 4.1.1). Less distinct, the species-distribution of Bactrocrinites traces the pattern in 

Fig. 4.1.1 (BOHATÝ 2005b). This genus shows two maxima of the palaeodiversity, one within 

the Junkerberg Formation and one within the Ahbach Formation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.1.1—The palaeodiversity history of the studied cupressocrinitid species and comparison with 

other cladid crinoids of the family Gasterocomidae (after BOHATÝ 2006a, in consideration of the revision 

of HAUDE 2007) and genus Bactrocrinites (after BOHATÝ 2005b), showing maximal diversity in the 

Junkerberg and Ahbach formations (cupressocrinitids; bactrocrinids) – and in the Junkerberg and boundary 

of the Ahbach and Loogh formations (gasterocomoids). 

 

 

4.1.2  SUBCLASS CAMERATA 

 

In contrast to the cladids, the studied camerates have a different pattern of 

palaeodiversity with only one maximum (Fig. 4.1.2). In the Ahrdorf Formation 

Megaradialocrinus occurs with its oldest Eifel-species M. thomasbeckeri; the second oldest 

species, (?)M. granuliferus, occurs primarily in the Junkerberg Formation (Tab. 4.1.2). 

Hexacrinites occurs afterward with four species in the Freilingen Formation. This correlates 

with the further radiation of the species Megaradialocrinus, which occurs in the Freilingen 

Formation with eight taxa (Tab. 4.1.2). There is an increase from one to two species of 

Megaradialocrinus from the Ahrdorf to the Junkerberg formations. From the Junkerberg to 
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the Freilingen formations, there is an increase from one to two genera, as well as a five-fold 

increase of species. The radiation continued in the Ahbach Formation with 18 

Megaradialocrinus and six Hexacrinites species. In this time slice, Hexacrinites had his 

maximum palaeodiversity (Tab. 4.1.2). The maximum species richness of Megaradialocrinus 

followed in the superposed Loogh Formation with 22 species. This results in the maximum 

palaeodiversity of both genera with 25 co-occurring species within the Loogh Formation as 

figured in the curve-chart (Fig. 4.1.2). Because of the absence of Hexacrinites within the Eifel 

and the decrease of 11 Megaradialocrinus species, the diversity decreased in the Cürten 

Formation. 

The curve-chart shows each one single maximum of the palaeodiversity of 

Hexacrinitites and Megaradialocrinus between the Junkerberg and Cürten formations. The 

maximum of the curve of Hexacrinites lays within the Ahbach Formation and that of 

Megaradialocrinus in the Loogh Formation. Within the Eifel Synclines this pointed out a 

sharp increased and relatively continuously curve progression of the palaeodiversity between 

the Middle Eifelian and lowermost Lower Givetian. 
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According to own unpublished data, this pattern can also be verified by further 

camerates of the Eifel Synclines (e.g. genera Arthroacantha and Platyhexacrinus). 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.1.2—The distribution of the palaeodiversity of studied hexacrinitids and megaradialocrinids with 

each one single maximum of the palaeodiversity. The maximum of the curve of Hexacrinites lays within 

the Ahbach Formation and that of Megaradialocrinus in the Loogh Formation. 
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4.1.3  SUBCLASS DISPARIDA 
 

 Stylocrinus is among the most common and frequent articulated aboral cups 
collected within the Middle Devonian deposits of the Eifel Synclines. 
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(based on crowns and cups)                                                                         

Heisdorf Fm.

TABLE 4.1.3 —Stratigraphic distribution of the species of genus Stylocrinus  within the 
Middle Devonian of the Eifel.
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The oldest Stylocrinus from the Eifel, S. tabulatus, came form the Nohn 
Formation (Lower Eifelian) [Tab. 4.1.3]. From the Ahrdorf up to the upper Junkerberg 
formations, this species occurred in relatively constant abundance. Maximum abundance is 
between the Hönselberg and Nims members, after which it abruptly declines in the uppermost 
Junkerberg Formation (basis Giesdorf Member) [Tab. 4.1.3]. In the lower Freilingen 
Formation, the abundance of S. tabulatus rises abruptly again, and the first occurrence of a 
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second species (S. granulatus) is recognised. S. granulatus is restricted to the Freilingen 
Formation and had its maximum abundance in the Bohnert Member, which is the maximum 
abundance of genus Stylocrinus in the Eifel. 

With beginning of the Ahbach Formation the new S. prescheri first occurs and 
is restricted to this formation. This species has a maximum distribution in the upper (Lower 
Givetian) part of the formation (Olifant and Zerberus members of the Müllert Subformation) 
and is associated with the frequent S. tabulatus, which can be traced up to the Cürten 
Formation with relatively constant abundance. 

Stylocrinus mainly occurs between the Junkerberg and Loogh formations and 
has its maximum abundance between the Freilingen and Ahbach formations, as illustrated in 
Fig. 4.1.3. 

Including other unrevised disparids from the Eifel (e.g. genera Pisocrinus, 
Trichocrinus, Haplocrinites or Phimocrinus), the maximum distribution would be broadened 
to include the interval from the Ahrdorf and to the Cürten formations. 
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The single maximum of the Stylocrinus palaeodiversity (Fig. 4.1.3) contrasts 
with the two maxima demonstrated for cladids (Fig. 4.1.1). The cladid maximum is in 
younger Lower Givetian formations than for the disparid Stylocrinus. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

FIGURE 4.1.3—The distribution of the palaeodiversity of the studied disparid stylocrinid and the flexible 

ammonicrinid species, showing each one single maximum of the palaeodiversity. The maxima of the 

curves of Stylocrinus and Ammonicrinus (see Chapter 4.1.4) lay between the Freilingen and Ahbach 

formations. 
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4.1.4  SUBCLASS FLEXIBILIA 

 

Columnals are clearly identifiable for Ammonicrinus (subclass Flexibilia); they 

show the following distribution of the palaeodiversity within the Middle Devonian of the 

Eifel Synclines: 

Disarticulated ossicles of the mesi and dististele of A. wanneri are rare in the 

deposits of the upper Ahrdorf Formation (Tab. 4.1.4). As second taxa, A. jankei, first occurs 

in the lower Junkerberg Formation. Beginning in the Freilingen Formation, maximal 

diversification is recognised with the first appearance of A. doliiformis, A. leunissi and A. 

sulcatus. 
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light grey = minimum distribution, dark grey = maximum distribution of the genera within the Eifel                      
dashed = minimum distribution, bold = maximum distribution of the species within the Eifel                           

(based on ossicles of the mesi- and dististele and few crown elements)                                             

TABLE 4.1.4 —Stratigraphic distribution of the species of genus Ammonicrinus  within the 
Middle Devonian of the Eifel.
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The maximal diversification in the Freilingen Formation correlates with a 

successive increase in abundance in the upper part of the formation (Bohnert Member). All 

five species can be traced to the lower Ahbach Formation (Maiweiler Subformation), 

respectively up to the top of the Upper Eifelian. Afterward, A. jankei and A. sulcatus 

disappeared. The Lower Givetian part of the upper Ahbach Formation (Müllert Subformation) 

is dominated by A. leunissi and A. wanneri, and A. leunissi had its maximal abundance within 

the Müllert Subformation. Both species occurred up to the Loogh Formation (lowermost 

Lower Givetian), with a notable decrease in individual numbers, and A. doliiformis 

disappeared by the base of the Loogh Formation. 

No evidence of ammonicrinid remains could be found in the superposed 

Cürten Formation (Tab. 4.1.4). Therefore, Ammonicrinus has a single maximum 

palaeodiversity between the Junkerberg and the Loogh formations with a peak at the 

boundary of the Freilingen and Ahbach formations (Fig. 4.1.3). This pattern is similar to the 

disparid Stylocrinus but differs from those of the cladids and camerates (compare to Figs. 

4.1.1; 4.1.2). 

 

Further unstudied groups of flexibile crinoids from the Eifel Synclines would 

result in a similar distribution as Fig. 4.1.3. However, the curve maximum would be younger, 

because Eutaxocrinus and Dactylocrinus have a maximal distribution within the Loogh 

Formation (unpublished data). In contrast, lecanocrinid flexibiles (e.g. genera Lecanocrinus 

and Geroldicrinus) flourished between the Junkerberg and Ahbach formations. This would 

result in a more rapid rise of the diversity curve. 

 

 

4.1.5  THE GENERAL DEVELOPMENT OF THE CRINOID PALAEODIVERSITY WITHIN 

THE MIDDLE DEVONIAN OF THE EIFEL SYNCLINES 

 

Between the Nohn Formation (Lower Eifelium) and the Cürten Formation 

(Lower Givetian) of the Eifel Synclines crinoid palaeodiversity increased (Fig. 4.1.4). This 

conclusion is based on the analysis of 66 species from eight genera and correlates with the 

increase in the overall abundance. The diversification can be regarded (Fig. 4.1.4) as tripartite. 

Although less distinct, the curve for genera follow the same pattern. The first and minimal 
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maximum is in the Nohn and Ahrdorf formations with nine taxa. The second maximum began 

in the Junkerberg Formation, with an increase of nearly twice as many (i.e., 17 species). The 

third and highest maximum of diversity is between the boundary of the Freilingen and lower 

Cürten formations and has a maximum of 45 species. This is a five-fold increase in 

palaeodiversity in comparison with the first maximum and approximately a 2.6-times higher 

palaeodiversity than that of the second maximum (Fig. 4.1.4). This third and maximal phase 

of diversity abruptly declined in the Cürten Formation – a faunal collapse within the Eifel 

Synclines is, which is herein designated the “Lower Givetian Crinoid Decline” (Fig. 4.1.4) 

and discussed in 4.3.2.3. 
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FIGURE 4.1.4—The crinoid palaeodiversity of all studied genera and species within the Middle Devonian 

of the Eifel Synclines. The species-curve (blue) exemplifies a continuous rising of the palaeodiversity (see 

average linear), which is tripartite into three separated sections (1-3). The rising of the palaeodiversity 

mainly depend on the differentiation within the studied genera (pink). The small red arrow shows the 

position of the “otomari Event”, separating the maxima 2 and 3; the larger red arrow shows the position of 

the “Lower Givetian Crinoid Decline”, which abruptly declines the highest palaeodiversity (3) within the 

Eifel (compare to 4.3.2.3). 
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The almost complete disappearance of the crinoids in the Lower Givetian of 
the Eifel Synclines necessitated study of Givetian crinoids in adjacent sedimentation realms, 
in order to clarify whether the Lower Givetian Crinoid Decline is a local phenomenon and to 

understand the development of the crinoid fauna of the Middle Devonian shelf at the SE-
margin of the Old Red Continent (compare to Fig. 1.1 within the introduction of this work). 
Therefore, crinoids of the Bergisch Gladbach-Paffrath Syncline and the Lahn-Dill Syncline, 

namely the cladid cupressocrinitids and camerate hexacrinitids (Chapter 3.1.3.2.6; BOHATÝ, 
2006d; 2008; 2009; BOHATÝ & HERBIG in review) as well as further, the gasterocomoids and 
sphaerocrinids (BOHATÝ in prep.) are considered. Moreover, stylocrinids (Disparida; Chapter 

3.3.3.1; BOHATÝ in review) are known from the Lahn-Dill Syncline, taxocrinids occur in the 
Bergisch Gladbach-Paffrath Syncline (Flexibilia; BOHATÝ 2006d). 
 

 
4.1.6  FAUNAL ASSOCIATION AND PALAEODIVERSITY OF THE CRINOIDS FROM THE 

MIDDLE DEVONIAN OF THE RHENISH MASSIF 

 
Foreword: In the following, famous Devonian crinoid associations of the 

Rhenish Massif are compared; however, they actually derive from different facies realms (e.g. 

Rhenish or Hercynic facies). 
 
 

Lower Devonian 
 

In the Lower Devonian [Upper Siegenian (Upper Pragian) to end of Lower 

Emsian] approximately 63 crinoid species from 30 genera are known from the 
“Hunsrückschiefer”, exposed between Koblenz, Trier and Mainz (BARTELS et al. 1998; HESS 
1999; compare to Fig. 4.1.5). Characteristic pyritised fossils of the four crinoid subclasses are 

represented by the genera Codiacrinus, Imitatocrinus and Parisangulocrinus (Cladida); 
Calycanthocrinus and Triacrinus (Disparida); Hapalocrinus and Thallocrinus (Camerata) as 

well as Eutaxocrinus (Flexibilia). Furthermore, the “crinoids of the sandy Lower Devonian up 

to the Cultrijugatus-Zone”, summarised by SCHMIDT (1941) are also an important fauna. They 

occur at numerous localities along the western and eastern Rhenish Massif in a time slice 
between the Upper Siegenian (respectively Upper Pragian) to the Lower Eifelian. 125 species 

from 34 genera are discussed in this classic monograph, with most specimens preserved as 
hollow moulds. Especially characteristic are the camerate genera Ctenocrinus, Monstrocrinus 
and Orthocrinus as well as the cladid Eifelocrinus. 
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Middle Devonian 

 

Within the Eifel Synclines a crinoid association, which is dominated by the 

diplobathrid camerates Orthocrinus and Monstrocrinus, is recognised at the Emsian/Eifelian 

boundary (own, unpublished data). Between the Lower Eifelian and the lowermost Lower 

Givetian, this highly diverse and abundant crinoid association was established. 66 species 

from eight genera were studied in the course of this work – more taxa than the famous 

Hunsrückschiefer(!). Further, the total diversity of the Middle Devonian crinoids from the 

Eifel Synclines is much more (web-Index of HAUSER 2009: ca. 160 species from ca. 50 

genera; however note that this list of species and genera is in need of a taxonomic revision 

that follows the ICZN) [Fig. 4.1.5]. From an initial critical appraisal, my unpublished data 

indicates a still higher diversity. Considering the unrevised taxa, approximately 50 genera 

with more than 200 species are estimated. Therefore, the diversity is approximately 3.4-times 

higher than that of the Hunsrückschiefer. The HAUSER web-index indicates a crinoid 

palaeodiversity from the Eifel Synclines as approximately 1.3-times higher, but an initial 

appraisal of my data indicates a diversity 1.6-times higher than that of the “crinoids of the 

sandy Lower Devonian up to the Cultrijugatus-Zone” of SCHMIDT (1941). This impressively 

underlines the importance of the crinoids from the Eifel, whose most famous representives are 

cupressocrinitids and gasterocomoids (Cladida); hexacrinitids, Eucalyptocrinites and 

Rhipidocrinus (Camerata); Stylocrinus, Storthingocrinus and Haplocrinites (Disparida) as 

well as Eutaxocrinus and Ammonicrinus (Flexibilia). 

Hence the Eifel is the most diversified Middle Devonian crinoid region 

worldwide, whose research essential complement the comparable old, famous crinoid 

associations of Australia (e.g. JELL et al. 1988); Burma (REED 1908); China (e.g. CHEN & 

YAO 1993; also see WEBSTER et al. in press), Poland (e.g. GŁUCHOWSKI 1993); the Czech 

Republik (e.g. PROKOP & PETR 1993; 1995) or the U.S.A. (e.g. GOLDRING 1923). 

Between the Lower and the Upper Givetian strata of the Rhenish Massif 

crinoids are most abundant within the Bergisch Gladbach-Paffrather Syncline and the Lahn-

Dill Syncline. This fauna is less diverse and abundant than those of the Hunsrückschiefer and 

much less so in comparison with the Lower Eifelian to Lower Givetian fauna of the Eifel 

Synclines. A conservative estimate indicates 20 species (BOHATÝ 2006d; 2008; 2009; 

BOHATÝ in review; BOHATÝ & HERBIG in review). This could possibly be a result of the 

Lower Givetian Crinoid Decline (4.3.2.3) – perhaps as much as an eight-fold decrease and, 

according to own unpublished data, even a ten-fold lower palaeodiversity in comparison to 

the Lower Eifelian to Lower Givetian crinoid fauna of the Eifel Synclines. 
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Upper Devonian 

 

Upper Devonian (Frasnian) crinoids also occur within the Eifel, but they are 

restricted to the vicinity of the Prüm Syncline that yields the only preserved Upper Devonian 

deposits within the Eifel Synclines (MEYER 1986). In this connection, the famous Frasnian 

crinoid association of Wallersheim with 24 species from five genera (HAUSER 2002; compare 

to Fig. 4.1.5) were described. The camerates are represented by the highly diverse and 

abundant genus Melocrinitites, which is associated with the rarer genus Megaradialocrinus. 

The disparids are represented by Haplocrinites and Halysiocrinus, and the only flexibile is 

Dactylocrinus. Cladids are unknown. 

This Frasnian fauna differs from the Middle and Upper Givetian crinoid 

association of the Rhenish Massif in its taxonomical composition and the dominant taxa as 

well as in its lower diversity. Considering the so far published number of species of the 

Eifelian to Lower Givetian of the Eifel Synclines, the species number is about 6.7-times, 

under consideration of own unpublished data, even ca. 8.4-times lower. 

This association of Wallersheim, dominated by Melocrinites and 

Megaradioalocrinus, was described as part of an “atypical facies of the Büdesheimer 

Goniatitenschiefer” by HAUSER (2002). This appraisal cannot be followed herein, because the 

fossil-rich deposits are part of the rhenana Conodont Biozone that characterises the main part 

of the Oos Formation immediately below the base of the Büdesheim Formation (see GRIMM et 

al. 2008). Several goniatids, typical for the “Büdesheimer Goniatitenschiefer” (RÖMER 1854; 

KAYSER 1871), occurred at Wallersheim, as do the rare occurrences of the Oos guide-trilobite 

Bradocryphaeus supradevonicus (pers. information, H. PRESCHER) at Wallersheim, as well as 

characteristic melocrinids in Oos (own, unpublished data). This fauna indicates an upper 

Oosian age with a development differing from the type region near village Oos in lithological 

and facies aspects. However, this corresponds to the upper part of the “Ooser Plattenkalk” of 

MEYER (1986, p. 173). 

The crinoid association of Wallersheim is very similar to the comparably old 

Melocrinites-Megaradialocrinus-dominated association of the historical crinoid locality 

“Breiniger-Berg” near Aachen (NW Rhenish Massif) [own, unpublished data]. In addition, 

evidence of cladid crinoids is missing within this no longer accessible locality. 

Based on the faunal composition, both localities resemble that crinoid 

association of the Upper Frasnisn Neuville Formation of the Belgian/France Ardennes 
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(HAUSER 1999; 2003), which are also distinguished by a more diverse Melocrinites-

Megaradialocrinus-dominated fauna. These localities differ by the presence of the cladid 

species Abbreviatocrinites gibber, A. inflatus and A. sampelayoi that only was recognised in 

the Ardennes (HAUSER 1999; 2003). 

Within the Rheno-Ardennic Massif these Melocrinites-Megaradialocrinus-

dominated associations become abruptly distinct directly below the Frasnian/Famennian 

boundary. This is evidenced by crinoid recoveries from the Büdesheimer Goniatitenschiefer, 

which can be correlated approximately with the “Matagne Slate” of Belgian (MEYER 1986). 

At this juncture, pseudo-planktonic amabilicrinitids (WEBSTER et al. 2003), which are 

attached to drift-wood, were recovered and are associated with platycrinitids (pers. 

information, G. D. WEBSTER) [own, unpublished data; compare to Chapter 4.3.2.3]. The 

three(?) species indicate a “Carboniferous character” by morphological and taxonomical 

similarities to the described Lower Carboniferous fauna of the Rhenish Massif (e.g. of 

Wülfrath-Aprath, see HAUDE & THOMAS 1992) as well as to those of the Iran [WEBSTER et al. 

2003; including revisions of the amabilicrinitids (sic!) of HAUDE & THOMAS]. Unpublished 

data indicates an approximate 70-fold decrease in palaeodiversity of the Büdesheim crinoids 

in comparison to the crinoids from the Middle Devonian of the Eifel. This extremely low-

diverse fauna characterises the herein designated “Frasnian-Famennian Crinoid Decline” (Fig. 

4.1.5; see 4.3.2.3). 

With consideration of the different facies realms, five faunal groups are 

recognised in the Rheno-Ardennic Devonian (Fig. 4.1.5): 1, The Lower Devonian crinoids of 

the Hunsrückschiefer, which lived in Hercynic Facies; 2, the crinoids of the upper Lower 

Devonian to lowermost Middle Devonian, which lived in the sandy-clayey realm of the 

Rheinish Facies; 3a, the Middle Devonian crinoids of the Eifel Synclines, which lived in 

carbonate shelf realms of the Rhenish Facies and were limited within the Eifel by the Lower 

Givetian Crinoid Decline, but can be traced in low diversity and individual numbers within 

the eastern Rhenisch Massif (3b); 4, the Frasnian Melocrinites-Megaradialocrinus-dominated 

crinoid association of the deeper water and 5, the Upper Frasnian to Lower Famennian, 

pseudo-planktonic amabilicrinitid-dominated association of Büdesheim, associated with the 

“Kellwasser Crisis” [see e.g. SCHINDLER (1990) for this crisis]. 

Articulated crinoids are not known until the Devonian/Carboniferous boundary 

of the Rheno-Ardennic Massif. The most famous crinoid locality is Wülfrath-Aprath (see 

above). These Lower Carboniferous crinoids are not considered further herein. 
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FIGURE 4.1.5—The palaeodiversity of the five crinoid associations within the Rheno-Ardennic Devonian; 

published number of species = blue bars; estimated number of species based on own, unpublished data = 

orange bars. 1, Number of Lower Devonian crinoids of the Hunsrückschiefer, which lived in Hercynic 

Facies (after BARTELS et al. 1998 and HESS 1999: 63 species); 2, number of crinoids of the upper Lower 

Devonian to lowermost Middle Devonian, which lived in Rheinish (sandy-clayey) Facies (after SCHMIDT 

1941: 125 species); 3a, number of Middle Devonian crinoids of the Eifel Synclines (after HAUSER web-

index: 160 species; estimated number of species based on own, unpublished data: 200 species), which lived 

in carbonate shelf facies and were limited within the Eifel by the Lower Givetian Crinoid Decline; these 

can be traced in low diversity and abundance up to the Upper Givetian of the eastern Rhenish Massif (3b) 

[estimated number of species based on unpublished data: 20 species]; 4, number of the Frasnian 

Melocrinites-Megaradialocrinus-dominated crinoids of Wallersheim (after HAUSER 2002: 24 species); 5, 

number of Upper Frasnian to Lower Famennian, pseudo-planktonic amabilicrinitid-dominated crinoids of 

Büdesheim, associated with the “Kellwasser Crisis” (estimated number of species based on own, 

unpublished data: three species). Lower Givetian Crinoid Decline and Frasnian-Famennian Crinoid Decline 

are marked by red arrows. 
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4.2  PALAEOBIOLOGY 

 

4.2.1  PHYLOGENY AND ECOLOGY ADAPTATIONS RECOGNISED IN MORPHOLOGICAL 

TRENDS 

 

Several general morphological trends are recognised in the studied Middle 

Devonian crinoids from the Eifel Synclines. They can be categorised as the following: 1, 

morphological adaptations based on palaeoenvironmental changes – especially the increasing 

of biostromal developments within shallow-water realms; 2, morphological trends due to the 

increased occurrence of “predators” and 3, morphological adaptations based on the 

competition of habitat colonisation within ecological niches. In this connection it is possible 

to separate (1) chronological continuously trends, which characterised phylogenetical 

evolutions from (2) chronologically non-continuously trends that implies morphological 

adaptations to the ecological parameters. 

 

 

The increase in biostromal developments within shallow-water realms 

 

A successive establishment of biostromal facies within the shallow-water 

realm was recognised at the boundary of the Lower and Middle Devonian to the lower Cürten 

Formation (Lower Givetian) of the Eifel. This does not exclude the development of non-

biostromal facies realms, especially at the Eifelian/Givetian boundary (WINTER 1965). In 

general, the abundance of hydrodynamic turbulent environments increased within this time 

interval and led to an increased number of crinoid groups with compact, relatively robust 

skeletons, as exemplified in the cladid cupressocrinitids. This morphological trend is 

represented by the “faunal group 3a” (see 4.1.6; Fig. 4.1.5) and can be traced up to the Lower 

Givetian Crinoid Decline of the Eifel Synclines. It is also recognised at additional localities 

from the Rhenish Massif (Bergisch Gladbach-Paffrather Syncline; Lahn-Dill Syncline; 

“faunal group 3b”) up to the Upper Givetian. In contrast to the Middle Devonian crinoids of 

the Eifel Synclines, this trend is less apparent in the Frasnian Melocrinites-

Megaradialocrinus-dominated “faunal group 4” (compare to 4.1.6; Fig. 4.1.5) and was 

displaced below the Frasnian/Famennian boundary by the more filigree morphologies of the 

amabilicrinitid-dominated “faunal group 5” (4.1.6; Fig. 4.1.5) of Büdesheim. 
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The increased occurrence of “predators” 

 

Within the highly diverse palaeocommunities of the Upper Eifelian and the 

Eifelian/Givetian boundary, a significant predation pressure is assumed by the increased rate 

of platyceratid gastropods (Chapter 4.3.1.1) and placoderms, in comparison to the Lower to 

Middle Eifelian (own, unpublished data). This correlates with a morphological adaptation of 

the studied crinoid skeletons, which e.g. show effective protective mechanisms, like the 

accelerated development of spines (hexacrinitids, Chapter 3.2; Ammonicrinus, Chapter 3.4), a 

double layered endoskeleton (cupressocrinitids, Chapter 3.1), the “locking” of the arm-crown 

(Stylocrinus, Chapter 3.3) or the “enrolling” of the crown into the stem (Ammonicrinus, 

Chapter 3.4). Therefore, in many instance, predator-driven evolutions have to be assumed. 

 

 

The competition of habitat colonisation within ecological niches 

 

With the start of the carbonate sedimentation at the boundary of the Lower and 

Middle Devonian, the abundance and diversity of the epifaunal biota increased in the shallow-

water habitats of the Eifel (own, unpublished data). As diversity increased toward the Upper 

Eifelian, the maximum occurred near the Eifelian/Givetian boundary (WINTER 1965). This 

palaeodiversity trend also occurs in crinoids (Fig. 4.1.4). Therefore, an increased habitat-

population was recognised, and it is herein proposed that the crinoids presumably contra 

balanced this circumstance by morphological adaptations of the holdfast, the stem and of the 

crown. 

A general morphological plasticity of the holdfasts and stems was recognised 

in various facies realms of the Eifel. Variability occurs both intraspecifically and among taxa. 

Adaptation to the specific bottom conditions yielded attachment discs on hardgrounds and 

dendritic holdfasts on soft-bottoms. Similarly, crinoids with shorter and more compact 

columns typically occurred in turbulent environments, whereas those with longer and more 

filigree stems are present mainly in less turbulent habitats. These ecological controlled 

skeletal variabilities contrast with a recognised evolutional trend, which presumably 

demonstrate the necessity of settlement in different hydrodynamic levels, or in atypical 

hydrodynamic habitats. As a result, the regarding taxa occasionally show decided 
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morphological variances of the crown. An example for this are the cladid gasterocomoids 

(compare to BOHATÝ 2006a; HAUDE 2007), whose upright crown is characterised by five 

relatively filigree branching arms. They settled predominantly in less turbulent habitats, but 

presumably were forced to avoid into more turbulent environments due to an increased 

population-concurrence within their preferred ecological niches (BOHATÝ 2006a). This led to 

morphologically adaptations of the skeletons, like the sloping of the arm-crown, in 

combination with the reduction from five to four arms, which obviously allows covering at 

the bottom and, therefore, living in those turbulent environments. This morphological trend 

was recognised in several profiles within the Eifel, from the Eifelian up to the Givetian in 

genera Gasterocoma, Nanocrinus and Trapezocrinus (Chapter 4.3.2.2; Fig. 4.3.4). 

 

 

Morphological trends in the subclass Cladida 

 

The cupressocrinitids (BOHATÝ 2005a; 2006b; 2009; Chapter 3.1) have three 

continuous morphological trends: 1, a trend from four to three peripheral columnal axial 

canals; 2, a trend from longer to shorter arms and 3, only in robustocrinids, on trend from 

unsculptured plates with thin cross sections to sculptured ossicles with massive cross sections. 

Abbreviatocrinites and Cupressocrinites include species with both three and 

four peripheral columnal axial canals. Whereas the majority of older taxa are characterised by 

four canals (e.g. A. abbreviatus, C. ornamentus), rare occurrences of species that have three 

canals occurred between the Eifelian and the Givetian. In this connection, 61.5% of the 

Abbreviatocrinites-species show four, but in contrast only 38.5% three canals. In genus 

Cupressocrinites 75.0% have four but only 25.0% show three canals. Genus Robustocrinites, 

which is restricted to the Eifelian, invariably show four canals – likewise genus 

Procupressocrinus. Chronographically classified, the following distribution was recognised 

under consideration of all species: 25 species within the Middle Devonian of the Eifel show 

four canals; seven solely Eifelian, eight in the Eifelian and Givetian and three solely Givetian. 

In contrast to this the following species have three canals: None in the Eifelian; seven in the 

Eifelian and Givetian boundary interval; and none in the Givetian. Because no solely Eifelian 

species with three canals was recognised and this time slice was, therefore, dominated by 

those showing four canals, the consideration of the exclusive occurrence of 
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species with three canals (A. gibber, A. inflatus and A. sampelayoi) in younger formations 

outside the working scope, namely within the Frasnian of the Belgian/France Ardennes 

presumably indicates a morphological trend from older species with four to younger species 

with three canals (BOHATÝ 2006b; 2009). This obviously is an evolutional respectively 

phylogenetical trend (Fig. 4.2.1). 

The length of the crinoid arms is another morphological trend. Among the 25 

crupressocrinitid species in the Middle Devonian of the Eifel, eight species respectively 

32.0% have relatively long arms, and 17 species (68.0%) have rather short arms (BOHATÝ 

2006b, pls. 1-11). Chronographically through the Eifel strata, the following distribution was 

recognised: The Eifelian has four species with long but only three with shorter arms. Within 

the Eifelian and Givetian boundary sequence, only three species with long but 12 with shorter 

arms are known. In the youngest Givetian only one species with long but two with shorter 

arms have been found. This trend toward shorter arms corresponds to an increasing of 

biostromal developments (see above). Presumably, short and compact arms were an 

advantage in turbulent environments. Also this morphological trend apparently continuous in 

younger Devonian formations as recognised within the Frasnian of the Belgian/France 

Ardennes, where only cupressocrinitid species with relatively short arms were found (A. 

gibber, A. inflatus and A. sampelayoi; compare to BOHATÝ 2006b; 2009). 

The arm-shortening trend of Robustocrinites is linked to the development of 

wider brachial cross sections and monolamellar exoplacoid layer plate sculpturing (Chapter 

3.1.4; Fig. 3.1.8). The oldest species, R. galeatus (Hundsdell Member of the Nohn Formation 

to upper Nims Member of the Junkerberg Formation, Eifelian), has especially long arms and 

unsculptured plates with a thin cross section (BOHATÝ 2006b, pl. 7, fig. 2a). The second 

oldest species, R. scaber (Mussel to upper Nims members of the Junkerberg Formation), has 

shorter arms, wider ossicle cross sections and a fine plate sculpturing (2006b, pl. 7, fig. 3). 

The youngest species, R. cataphractus (Hönselberg to upper Nims members of the Junkerberg 

Formation), has the shortest arms of the genus, as well as massive plate cross sections and 

strongly sculptured ossicles (Chapter 3.1.3.2.13; Fig. 3.1.6). 

The biostratigraphical distribution of the three robustocrinids is illustrated in 

Fig. 3.1.8. 
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FIGURE 4.2.1—Distribution of cupressocrinitid species with four or three columnal axial canals and long or 

short arms. Data based on Tab. 4.1.1 under consideration of the three known Frasnian species (A. gibber, A. 

inflatus and A. sampelayoi) from the Belgian/France Ardennes. The linears indicated the general 

morphological trends that reduced those taxa with four axial canals and longer arms from the Eifelian to the 

Frasnian. 

 
 

Morphological trends in the subclass Camerata 

 

The camerates Hexacrinites and Megaradialocrinus (Chapter 3.2) have two 

morphological trends: 1, the first a stratigraphically discontinuous trend from less to more 

strongly sculptured/spinose crown ossicles, which presumably depended on the ecological 

framework; and 2, the second a stratigraphically continuous trend of the arm morphology. 

Especially in the Upper Eifelian, the Eifelian/Givetian boundary and the 

lowermost Lower Givetian (Freilingen to Loogh formations), both camerate genera have well-

sculptured, spinose plates (e.g., M. spinosus). This species occurred in the Freilingen 

Formation and is associated with strongly sculptured morphotypes of the Hexacrinites type 

species, H. interscapularis (*P. interscapularis). 

This general morphological trend of a successive increase in plate sculpturing 

in the Lower Eifelian through the lowermost Lower Givetian is recognised both inter- and 
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intraspecifically in several species of Hexacrinites and Megaradialocrinus. Presumably, this 

can be interpreted as a reaction of the rising of the palaeodiversity between the boundary of 

the Lower and Middle Devonian up to the Lower Givetian and was attended by the advanced 

colonisation of the ecological niches within the manifold facial realms (WINTER 1965). 

Fossil localities with strongly sculptured crinoids (e.g. spinose hexacrinitids), 

are characterised by a high abundance of platyceratid gastropods (Chapter 4.3.1.1). Less 

sculptured cups from younger formations of the Rhenish Massif (BOHATÝ 2008) indicates that 

this morphological trend cannot be interpreted as a phylogenetic trend but, rather, as 

adaptations to specific ecological conditions. 

In contrast, Megaradialocrinus has a continuous morphological trend in arm 

branching pattern that indicates a phylogenetical lineage: The oldest form had two straight-

lined rami in each ray and the youngest form developed zigzagged rami with few nearly 

orthogonal branching ramules, as detailed discussed in Chapter 3.2.8 (Fig. 3.2.8). 

 

 

Morphological trends in the subclass Disparida 

 

Similar to the camerate hexacrinitids, the disparid Stylocrinus has a 

stratigraphically discontinuously morphological trend of less to more strongly sculptured 

crown ossicles. This is demonstrate by the comparison of the less sculptured S. tabulatus 

(Chapter 3.3.4.1.3; Fig. 3.3.2) from the Lower Eifelian to the intensively sculptured S. 

granulatus (3.3.4.1.4; Fig. 3.3.5), with a first occurrence not until the Upper Eifelian. This 

species is associated with the strongly sculptured camerates M. spinosus and H. 

interscapularis (see above). In contrast, Stylocrinus cups from the Middle Givetian of the 

Lahn-Dill Syncline have less intensively sculptured ossicles. Intraspecific variability toward 

higher spinosity of the highly plastic S. tabulatus occurs in especially diverse 

palaeocommunities. This is a tendency for sculpturing in the Upper Eifelian and 

Eifelian/Givetian boundary than in the Lower Eifelian. 

In summary, the previous data indicate that, under consideration of the 

comparison with the camerate hexacrinitids, also the plate sculpturing of Stylocrinus have to 

be characterised as adaptation of special environmental conditions. 
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Morphological trends in the subclass Flexibilia 

 

The flexibile Ammonicrinus has a spectacular and stratigraphically continuous 

morphological trend from the Emsian to the Givetian, which clearly indicates a phylogenetic 

lineage (Chapter 3.4). The oldest studied form, A. kredreoletensis is characterised by a crown 

that is nearly unprotected laterally and not encased by the mesistele. Spines are also not 

present(?). The younger forms have strongly modified mesistele columnals, which allows 

complete encasement of the crown, and the skeleton developed movable spines. This trend 

may also indicate a predator-driven evolution. 

 

 

4.2.2  GROWTH ANOMALIES 

 

In the literature, “growth anomalies” have only been present previously as 

isolated illustrations (e.g. in HAUSER 1997). Only six publications treated anomalies of 

Middle Devonian crinoids in detail (MCINTOSH 1979; SIEVERTS-DORECK 1950; 1963; 

WANNER 1954 and BOHATÝ 2006a; 2009). 

 

 

Cladida 

 

 In the cladid cupressocrinitids growth anomalies could be categorised in two 

groups; these are: 1, Growth anomalies expressed externally (see Chapter 3.1.5.1) and 2, 

growth anomalies not expressed externally (Chapter 3.1.5.2). The most common growth 

anomaly not expressed externally is the cupressocrinitid columnal axial canal (Figs. 3.1.9.5-

7). In contrast, individuals with additional (Figs. 3.1.9.4, 3.1.9.7) or reduced number of 

ossicles (Fig. 3.1.9.5) or with quadrangular or hexagonal symmetry (Figs. 3.1.9.1-3) are 

visible externally. Because of the frequency of anomalously grown axial canals or symmetry 

aberrations among several localities, the genetic basis of these interferences is assumed (see 

detailed discussion in 3.1.5.1). 

 Individuals with a plate missing or added (Figs. 3.1.9.8, 3.1.9.10-13), with an 

inexplicable ossicular swelling (Fig. 3.1.9.9) or a modified exobrachial layer (Figs. 3.1.9.14-

15) are not recognisable as regeneration, “wound healings” or as documented “generic” 
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abnormalities, and no direct evidence of predatory influence can be recognised. Therefore, 

these modifications are summarised as growth anomalies without classifiable causes – 

without indications of external influences (Chapter 3.1.5.2). 

 

Skeletal growth anomalies in cupressocrinitids are relatively common. This 

conclusion also applies to additional groups in the superfamily Gasterocomoidea [e.g., as 

proven for Gasterocoma, Lecythocrinus, Nanocrinus and Tetrapleurocrinus (BOHATÝ 

2006a)]. Abnormalities were more common among gasterocomoids with four arms 

(Nanocrinus, Tetrapleurocrinus) or with four arms and sloping of the crowns (e.g. in 

Trapezocrinus), and abnormalities commonly occurred on the radial plate or anal region 

(BOHATÝ 2006a). 

Increased rates of anomalies were also recognised in the cladid bactrocrinids 

from the Middle Devonian of America (MCINTOSH 1979) that correspond to those recognised 

herein. Similar modifications were also identified in the Eifel (BOHATÝ 2005b, p. 399, figs. 

5a-b; p. 405, fig. 1b). 

 

 

Camerata 

 

The most common anomalies in the camerate hexacrinitids are similar to those 

of the gasterocomoids; including anomalies mostly affect the radial and anal regions. In this 

connection, e.g. the aboral cups, discussed in Chapter 3.2 have shortened radial plates (Fig. 

3.2.5.5), additional plates (Fig. 3.2.5.6), horizontally divided radials (Fig. 3.2.5.7) or 

additional intercalated plates (Fig. 3.2.5.8). However, these growth anomalies are relatively 

rare. In addition the following anomalies were also recognised: one cup of M. turritus with a 

vertically divided basal plate (BOHATÝ 2006e, fig. 6.4), One cup of M. crispus with two 

combined radials (BOHATÝ 2006c, fig. 3c), one cup of M. unterthalensis with one horizontally 

divided radial plate (BOHATÝ 2006d, fig. 3) and one cup of (?)M. granuliferus with the radial 

facet of two radials combined, resulting in an anomalous four-armed individual (BOHATÝ 

2008, fig. 3d). 

One type of skeletal modification was formerly considered a growth anomaly 

of a M. elongatus-cup (compare to SIEVERTS-DORECK 1950, p. 81; figs. 1a-c). New findings 

of those individuals (Chapter 3.2, Figs. 3.2.5.9-10) indicates a sloping in the CD interray or in 
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the A ray direction. This development maybe interpreted as an ecological adaptation of such 

individuals living in hydrodynamic more turbulent environments (see 4.3.2.2, Fig. 4.3.5). 

Relative to the cladids, growth anomalies in camerate crinoids are rare 

findings. Besides the hexacrinitids, only few abnormal specimens have been reported (see 

affected Melocrinites-cup with tetrahedral symmetry from the Frasnian of Wallersheim; 

HAUSER 2002, pl. 10, fig. 5). 

 

 

Disparida 

 

Considering the large number of stylocrinid aboral cups, it is remarkable that 

only two individuals of this genus with growth anomalies were recovered (Chapter 3.3.5). 

This contrasts sharply with the cladids and camerates. In the gasterocomoids (Nanocrinus and 

Trapezocrinus) nearly one of every 10 cups exhibit a growth anomaly, whereas approximately 

only one of 750 cups of the disparid Stylocrinus is affected. In another disparid, 

Storthingocrinus, isolated aboral cups are also very abundant but abnormalities are extremely 

rare (own, unpublished data). 

Examples of two Stylocrinus aboral cups with abnormalities are one aboral cup 

with an anomalous, additional basal plate (Chapter 3.3.5.1; Figs. 3.3.7.1-2); according to the 

cupressocrinitid-anomalies, this kind of pathology can be classified as a “growth anomaly 

without recognisable external influences” and could probably be characterised as ‘‘genetic 

abnormality”. The second aboral cup (Figs. 3.3.2.18-19) has an uncommon base with a 

narrow stem-insertion. However, this may be attributed to a skeletal (?)regeneration of the 

base (compare to 4.2.3). No growth abnormalities from other Middle Devonian disparids have 

been reported in the literature. 

 

 

Flexibilia 

 

Preservation of the crown of the flexible Ammonicrinus is rare, but no new 

abnormal specimens have been recovered (Chapter 3.4). However, the second radianal plate 

in the plate diagram of Ammonicrinus (UBAGHS 1952, p. 205, fig. 1) is based on an growth 

anomaly, as already assumed by WANNER (1954, p. 235). 
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4.2.3  REGENERATION PROCESSES 

 

 In contrast to growth anomalies, regeneration in fossil crinoids have been 

discussed intensively in the literature (see Chapter 3.1.6.2 for detailed bibliographical 

references). Especially the work of GAHN & BAUMILLER (2005) can be compared to the 

Middle Devonian crinoids of the Eifel Synclines. 

Evidence for regeneration in Middle Devonian crinoids is from cladids, 

camerates and, presumably, also from disparids. No evidence of regeneration has been 

identified among the flexibiles. 

 

 

Cladida 

 

Skeletal regeneration processes are recognised in the cladid cupressocrinitids 

(Chapter 3.1.6.2). It was possible to distinguish between “wound healings” (3.1.6.1) and “real 

regenerations” (3.1.6.2), e.g. indicated by reconstructions of lost arms. 

Different sized wound healings in numerous small ossicles were recognised 

and are obviously a response of nonlethal injured individuals. Possible causes of these wound 

healings could be injuries caused by predators or possibly impact material in the bedload (see 

affected cups in Chapter 3.1.5.1; Figs. 3.1.9.16-19). 

The recognition of “real regenerations” in the studied skeletons was mainly 

possible by transferring results of younger literature data (see above) to the crinoids of the 

Eifel and allowed the identification of regenerated arms. The cupressocrinitid arms herein 

recognised as regenerated were all smaller than regularly developed arms (Figs. 3.1.6.1; 

3.1.7.1; 3.1.9.20). Regeneration in the cupressocrinitid arms was presumably more common 

than the cup regeneration. Whereas a regenerated arm is smaller, the brachial is nearly as 

perfectly shaped as the original. The regeneration of the cup principally leads to distorted cup. 

 

 

Camerata 

 

Similarly, regeneration is recognised in camerates. Smaller and most probably 

regenerated arms also occurred in the hexacrinitids. This skeletal modification was also 

recognised in one crown of M. marginatus, with one regenerated, smaller and irregularly 
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branched arm (compare to “Remarks” in Chapter 3.2.7.3.1; also see left rami in B ray of the 

crown figured in BOHATÝ & HERBIG 2007, p. 733, fig. 4). It is most interesting that the 

disadvantage of the smaller regenerated arms is counterbalanced by additional branching and, 

therefore, by an increased pinnulated surface. 

 

 

Disparida 

 

In the disparid Stylocrinus one aboral cup (Figs. 3.3.2.18-19) has an 

uncommon base with a narrow stem insertion, which either can be attributed to a skeletal 

regeneration of the base or to a growth anomaly (compare to 4.2.2). Thus, regeneration is 

relatively rare among disparids, if it occurs at all. 

 

 

4.3  PALAEOECOLOGY 

 

4.3.1  SYNECOLOGY 

 

4.3.1.1  “Predators” 

 

In this study, extensive damage to an individual is inferred to have been the 

action of predators in the Middle Devonian of the Eifel region. Subsequently, regeneration 

demonstrated predation, but the lack of regeneration could be either the result of predation 

that was lethal or no predation at all. The cupressocrinitids exhibited the effects of predation 

relatively commonly (Chapter 3.1.7). However, only a few examples are known from 

individuals of the remaining groups, camerates, disparids and flexibles. 

 

 

Cladida 

 

Chapter 3.1.7 treats pre- and postmortem borings and bite marks on 

cupressocrinitid crown-ossicles, which partly could be classified. In this regard, it was 

possible to distinguish between pre- and postmortem borings due to the present or absent of 

regeneration response in the stereom. A summary of these results is given below: 
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 Postmortem multiple borings are frequent on the skeletons of C. elongatus 

(Chapter 3.1.7.1; Fig. 3.1.10.8) but less frequently in C. crassus (Fig. 3.1.10.9). Both species 

are covered by a thin and monolamellar exoplacoid layer, which apparently offered less 

resistance against boring organisms, in contrast to the multilamellar layers of 

Abbreviatocrinites. Platyceratid gastropods are discussed as a possible borer (SIEVERTS-

DORECK 1963) but this theory cannot be verified. 

 Pre- and postmortem incurred single borings are present on the ossicles of A. a. 

abbreviatus, A. geminatus and R. cataphractus but most of the mass occurred postmortem. 

One of these single boring traces is filled by a trepostome bryozoan (Figs. 3.1.6.3; 3.1.7.2). 

BAUMILLER & MACURDA (1995) and BAUMILLER (1990; 1993) documented borings on 

Palaeozoic blastoids and crinoids. Platyceratid gastropods were also discussed as the possible 

borers. 

 Fig. 3.1.10.5 presumably has a deep, oval boring on a basal plate of A. 

abbreviatus. The visible stereomatic reaction in the form of an annulus-like swelling indicates 

that the single boring occurred premortem. 

 Furthermore, SEM-observations of thin cross-sections of the multilamellar 

exoplacoid layer of A. geminatus exhibits potentially premortem microendolithic borings, 

which are lined with marcasite-crystal agglomerates (Fig. 3.1.10.10). 

Identifiable bite marks at cupressocrinitids (Fig. 3.1.10.7) are rare. They are 

possibly attributed to cephalopods, placoderms or arthropods. Premortem bite marks are 

recognised as nonlethal injuries, because they accompanied by “wound healings”. 

 

 

Camerata 

 

Platyceratid gastropods interacted with hexacrinitids. In this context, strongly 

sculptured calyx plates, such as in spinose hexacrinitids were commonly associated with 

numerous shells of platyceratid gastropods (own, unpublished data). These taxa have stout 

spines on the posterior interray plates below the anal openings or a central spine on top of the 

tegmen (Chapter 3.2.8; Fig. 3.2.9). 

Rare cup findings with attached platyceratids proved that these positions 

correspond to that positions were these gastropods attached the individuals, most likely for 

coprophages feeding (e.g. HESS et al. 1999, p. 56, fig. 63). This indicates a predator-driven 

evolution. Several isolated shells of platyceratid gastropods show such specific serrated 
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apertural margins (e.g. KEYES 1888, pl. 1) thus, after the puzzle principle, it was already 

possible to identify the according hexacrinitid-tegmen on species level(!) [own, unpublished 

data]. In some instance, a fossil lacks of a former attached platyceratid, but specific marks or 

stereomatic reactions indicate the former presence of a gastropod. These marks were caused 

mostly by the lip of the gastropod shell and have been discussed by KEYES (1888, pl. 1, fig. 

7). Such marks can also be identified in three Middle Devonian hexacrinitids from the Eifel 

(Figs. 4.3.1.1-2) and are frequent in the (also monobathrid) camerate Melocrinites from the 

Frasnian of the Belgian/France Ardennes (e.g. HAUSER 1999, pl. 12, fig. 1a). 

Certain abnormalities in Megaradialocrinus were probably caused by the lip of 

a gastropod shell. These are in the shape of an annulus as a deep trench with a central node or 

ridge (Fig. 4.3.1.3). These were incorrectly interpreted as “exceptional development of the 

anal region” by HAUSER (1997) and named “Subhexacrinites”, which is, herein, designated a 

junior synonym of Megaradialocrinus (see “Remark” in Chapter 3.2.7.3.1). 

 

 

 

 

 

 

 

 

FIGURE 4.3.1—Platyceratid traces on isolated Megaradialocrinus aboral cups from the lowermost Lower 

Givertian of the Gerolstein Syncline. 1, Oral view of M. elongatus with a platyceratid trace surrounding the 

anal opening (HEIN collection, no repository), x 2.4; 2, lateral view of M. elongatus with a platyceratid 

trace on the anal plate (HEIN collection, no repository), x 1.5; 3, lateral view of M. exsculptus, showing a 

annulus like trench with a central ridge coursed by a platyceratid gastropod (LEUNISSEN collection, no 

repository), x 1.8. 

 

 

Disparida 

 

Postmortem boring traces in stylocrinid skeletons (Chapter 3.3.5.2) are very 

similar to the borings on the isolated radials of Edriocrinus sp., figured by PROKOP & PETR 

(1995, pl. 1, figs. 1-16). Two types of borings are recognised: (1) A common rectilinear 
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mostly endolithic boring type of unknown affinity (Figs. 3.3.8.1-3, 3.3.8.6-9) and (2) a rare 

surficial and meandering boring, which possibly can be attributed to boring bryozoans and/or 

poriferas (Figs. 3.3.8.4-5). They are discussed in Chapter 3.3.5.2. 

One aboral cup of Stylocrinus tabulatus represents the first non-platyceratid 

gastropod trace fossil observed on a crinoid skeleton and was identified as the radular fossil 

ichnogenus Radulichnus (Fig. 3.3.9). The trace can be compared to recently detected 

gastropod grazing traces on Eifelian brachiopods (GRIGO, in review). These traces were 

attributed to the activity of polyplacophorid and patellid gastropods (VOIGT 1977), but their 

affinity remains unclear. 

 

 

Flexibilia 

 

Clear indications of “predators” could not be verified in the flexible genus 

Ammonicrinus. However, potential adaptation to avoid predation may exist (Chapter 3.4): The 

older taxa have spineless skeletons, and the younger forms have echinoid-like spines. 

 

 

4.3.1.2  Epibionts 

 

Epibionts on Palaeozoic crinoids were discussed in numerous publications (see 

Chapter 3.1.8 for literature data). But the majority of epizoans recognised herein were only 

described on isolated columnals (compare to GŁUCHOWSKI 2005). Within the Middle 

Devonian of the Eifel Synclines, epibionts occur on cups and crowns, which allowed 

differentiating between pre- and postmortem settlement and gave information about the rate 

of growth of the epizoans or their preferred hardground. 

 

 

Cladida 

 

Chapter 3.1.8 extensively discussed which epibionts settled pre- and/or 

postmortem on the studied cupressocrinitids (q.v.), and the majority of the epibiontic 

encrustations probably occurred postmortem. In summary, the following epibionts could be 

recognised: 
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Bryozoans (Chapter 3.1.8.1) are the most abundant epibionts on the skeletons 
of the Middle Devonian cupressocrinitids of the Rhenish Massif. These are: “Cyclostome 
bryozoans” (Hederella sp.) on Abbreviatocrinites nodosus and trepostome bryozoans 

(?Eostenopora sp.) on A. nodosus, A. schreueri and P. gracilis. The length of the columnals 
of A. geminatus and P. gracilis that are infested by fenestrate bryozoans (Fig. 3.1.11.1), as 
well as some embedding patterns of fenestrate bryozoans located underneath the attached 

stem, allows the presumption of a premortem settlement. Strong evidence for the settlement 
of a living stem of C. hieroglyphicus is given in Figs. 3.1.11.16-18. The example is encrusted 
by the holdfast of a fenestrate bryozoan (Cyclopelta sp.) that grows all around the column 

without contact to the crenularium. 
One observed cup of A. a. abbreviatus (Fig. 3.1.11.9) as well as one isolated 

radial and arm plate of A. geminatus have rare postmortem encrustings of the holdfasts of 

other cladid crinoids (?P. gracilis). 
Also postmortem encrustings of microconchid valves are common among 

cupressocrinitids (e.g. Fig. 3.1.11.8). 

The predominantly postmortem settlement of tabulate corals was recognised in 
a few cupressocrinitids. The most common epibiontic tabulates were auloporids, such as 
Aulopora cf. A. serpens minor (e.g. Fig. 3.1.11.5), A. cf. A. s. serpens (Fig. 3.1.11.11) and 

favositids (Favosites cf. F. goldfussi) [Fig. 3.1.11.12], settling on A. geminatus and A. 
nodosus. Fig. 3.1.11.20 shows a completely overgrown cup of A. nodosus. 

The rugose corals Glossophyllum soetenicum (Fig. 3.1.11.3) and 

Thamnophyllum caespitosum (e.g. Figs. 3.1.11.14-15) settled postmortem on disarticulated 
cupressocrinitid stems and isolated ossicles. 

Furthermore, indeterminable stromatoporoids completely encrusted some 

articulated cups of A. a. abbreviatus (e.g. Fig. 3.1.11.10). 
 
 

Camerata 

 
Similar to the cladid cupressocrinitids, hexacrinitids have postmortem 

settlement of diverse epibionts. But based on the lower number of examples, these were 
relatively rare. Examples include one aboral cup of Megaradialocrinus globohirsutus (Figs. 
3.2.7.19-21), which was postmortem encrusted by an undeterminable trepostome bryozoan. 

Another example of a postmortal encrustation is documented in an aboral cup of Hexacrinites 
pateraeformis, which was infested by the favositid coral Favosites cf. F. goldfussi (Fig. 

3.2.3.1). 
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Disparida 

 

In spite of the huge number of Stylocrinus cups discovered, only one example 

of an attached epibiont was observed. This stylocrinid was infested postmortem by an 

undeterminable rugose coral (Fig. 3.3.10). 

 

 

Flexibilia 

 

 Postmortem epizoan encrustation of isolated Ammonicrinus ossicles is 

discussed in Chapter 3.4.6. The following epibionts could be recognised: 

Most are encrusting of bryozoans on A. sulcatus columnals. In this connection, 

the trepostome genera Leptotrypella (e.g. Fig. 3.4.10.1), Eostenopora (Fig. 3.4.10.4), the 

cystoporate genera Eridopora (Fig. 3.4.10.2), Cyclotrypa (Figs. 3.4.10.6-7) and an 

indeterminate fenestrate holdfast (Fig. 3.4.10.9) are recognised. 

Further postmortal encrustation is relatively rare. These are a (?)craniid 

brachiopod on an A. doliiformis mesistele (e.g. Pl. 3.4.2, Fig. 15), microconchid-valves on one 

A. sulcatus-mesistele (Fig. 3.4.10.9), pluricolumnals of A. sulcatus encrusted by small crinoid 

holdfasts (Figs. 3.4.10.4-5) and, also on A. sulcatus, an undetermined chaetitid encrusting on 

the mesistele (unfigured). 

 

 

4.3.2  AUTECOLOGY 

 

4.3.2.1  Substrate dependency 

 

The substratum of the sea-floor had a significant influence on the skeletal 

morphologies of the studied crinoids. Because these elements were in direct contact to the 

substratum, this is especially true for the holdfasts and stems. Two general types could 

generally be separated: 

The first group settled on soft-bottoms and generally had shorter height. These 

either lay on the soft-bottom as creeping roots or runners along the substrate or penetrated the 
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substrate with an unbranched or moderately to strongly branched distal stem (see Figs. 

4.3.2.B; 4.3.3.A), whose distal stems mostly developed an increased rate of cirri. 

Furthermore, soft-bottoms could be penetrate by different types of anchors (e.g. AUSICH et al. 

1999, p. 14. fig. 20) or roots grown stepwise by successive accretion in the muddy sediment 

(1999, p. 6, fig. 8). 

The second group cemented with attachment discs to numerous types of 

hardgrounds (Fig. 4.3.3.B). However, on moderately stabilised firmgrounds a commingling of 

both groups is recognised. For example, mostly creeping roots or runners can lay along the 

substrate or between hard objects with up to several centimetres of horizontal stem anchored 

to the substrate by small finger- or lobe-like protrusions of the stereom, typically attached to 

corals or stromatoporoids with small attachment discs. Several of these protrusions also may 

penetrate secondary occurring soft-bottom lenses, which could local be developed between 

hard objects. 

The Middle Devonian crinoids of the Eifel Synclines had a highly variable 

potential of morphological adaptation. Nearly every crinoid studied had the capability to 

adapt their roots to the respective substrate (e.g. AUSICH et al. 1999, p. 6, fig. 8). 

Similarly, higher or shorter stems occurred within turbulent or less turbulent 

environments. This adaptability surely was one of the most essential reasons for the 

evolutionally success of the Middle Devonian crinoids that flourished within a manifold 

diversity of different facies realms and regarding bottom substrates (WINTER 1965). 

The development of the two general types, their transitions and the adaptability 

(see above) were almost comparably recognised in the studied cladids, camerates and 

disparids. Therefore, the substrate dependency of each group will not be discussed separately. 

In contrasts, the flexibile Ammonicrinus had a more specialised substrate dependency 

(Chapter 3.4). 

On numerous profiles within the Eifel Synclines (e.g. within the Eifelian and 

Lower Givetian of the Blankenheim, Hillesheim and Gerolstein synclines) these adaptated 

stems and holdfasts were not only profitable for the crinoids but also for biostromal growth of 

other faunal elements such as corals, stromatoporoids and bryozoans. The underlying strata of 

several localities dominated by biostromes were dominated by former soft-bottoms (Fig. 

4.3.2.A) that were often penetrated by branching holdfasts, thereby stabilising the sediment. 

These horizons (Fig. 4.3.2.B) may be designated a pioneer biostromal facies, which made it 

possible to be settled by additional faunal elements (algae, poriferas, corals and bryozoans). 
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FIGURE 4.3.2—An idealised section of the south-eastern wall of the abandoned “Roderath Quarry” 

(unpublished data; not to scale) within the Blankenheim Syncline as an example for bottom-stabilisation by 

crinoid holdfasts in the Eifelian of the Eifel. At the base, a carbonate mudstone indicates a former soft-

bottom (A). Abundance of crinoid components increases upwards and at the top of the unit first 

autochthonous crinoid roots crisscrossed the soft-bottom. The roots started to stabilise the substrate by 

forming local root-meshworks of the biostromal initial facies (B). They are associated with thamnoporid 

meadows, which secondarily stabilised the bottom through sediment baffling. Colonial rugose and tabulate 

corals as well as stromatoporoids grow on the stabilised crinoid-thamnoporid firmground (C). [Crinoids: 1, 

Eucalyptocrinites rosaceus; 2, Rhipidocrinus crenatus; 3, Megaradialocrinus brevis]. 

 
 

Substrate dependency of the flexibile Ammonicrinus 

 

Ammonicrinus skeletons from the Rhenish Massif show substrate-controlled 

morphological variability of the dististele (distal column and holdfast); the following 

“morphological groups” are recognised: 

The “exposed roller-type” (Chapter 3.4.4, Fig. 3.4.6) settled on firm- or 

hardground substrates and predominantly show the general skeletal morphology, as illustrated 

in Fig. 3.4.6. This type is characterised by a laterally unprotected crown that possibly implies 

feeding in the current. The new material indicates that the stem of A. kredreoletensis tapers as 
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it approaches the crown, not in quite as many columnals perhaps, but similar to that of 

camptocrinids and their crown elevates up from the substrates. 

The “encased roller-type” (Chapter 3.4.4, Fig. 3.4.7.1) settled on soft-bottoms. 

This is the “standard” Ammonicrinus and is recognised in all known ammonicrinids, except of 

A. kredreoletensis. These specimens have lateral columnal extensions in the proxistele and 

mesistele that encloses the crinoids when enrolled. These columnals are followed by several 

barrel-like columnals of the dististele. The proxi- and mesistele skeleton lay on the soft-

bottom, whereas the holdfast was attached to hard objects (brachiopod valves, tabulate corals 

or bryozoans). The attached hard object affects either the development of an attachment disc 

or various formed radiating cirri. 

In addition to the predominant occurrence of the roller-types, rare discoveries 

of ammonicrinids (A. leunissi n. sp., A. sulcatus and A. wanneri) with a reduced column 

length require further study. Mainly attached to dead brachiopod-valves, these 

ammonicrinids, which are “settler-types”, settling on top of the hard object (Chapter 3.4.4, 

Fig. 3.4.8). 

 

 

4.3.2.2  Hydrodynamic dependency 

 

The general trend of a successive establishment of biostromal shallow-water 

habitats from the boundary of the Lower to Middle Devonian up to the Lower Givetian 

correlates with the increased rate of hydrodynamically turbulent environments. This leads to 

the development of more compact, robust crinoids, exemplified in the cladid cupressocrinitids 

The Middle Devonian of the Eifel region has a mosaic of numerous small 

facies realms that were deposited with different levels of turbulence. Thus, it is possible to 

recognise characteristic crinoid associations that were adapted to either turbulent or less 

turbulent environments (see Chapter 3.2.4 for one example of the Lower Givetian). In this 

connection, the facies complexity of the lowermost Lower Givetian deposits (WINTER 1965) 

is also reflected in the preserved crinoid associations of the Loogh Formation. The higher 

turbulence within the biostromal habitats led to an association of crinoids with robust 

skeletons, like cupressocrinitids and some gasterocomoids. Habitats dominated by lower 

hydrodynamic turbulence were mainly populated by hexacrinitids, rhipidocrinids and 

eucalyptocrinids. This simplified model must be modified where facies intergrade. Some 

crinoid localities are dominated by numerous lateral facies interfingering, which leads to a 

commingling of the crinoid associations at the marginal areas. 
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Cladida 
 

In cupressocrinitids it was possible to recognise inter- and intraspecific 

adaptations of the holdfasts, stems and crowns to the hydrodynamic framework of facies. 
Abbreviatocrinids with relatively short and strong stems and short as well as robust arms, 
which are covered by a moderately developed multilamellar exoplacoid layer, predominantly 

populated turbulent habitats (Fig. 4.3.3.B), whereas abbreviatocrinids with long stems, longer 
arms and a spine-like tapered multilamellar exoplacoid layer preferred less turbulent 
environments (Fig. 4.3.3.A; also see BOHATÝ 2005a, p. 205, figs. 3a-b). Both groups were 

associated with Procupressocrinus gracilis that lived in higher or lower turbulence, although 
this species developed a “gracile” morphology with long stems and arms. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.3.3—Idealised section of the lowermost Lower Givetian of the “Wotan Quarry” within the 

Hillesheim Syncline (modified from BOHATÝ 2005a; not to scale). The hydrodynamically less turbulent 

environment (A) was populated by abbreviatocrinids with long stems and longer arms as well as spine-like 

tapered multilamellar exoplacoid layer (1, Abbreviatocrinites geminatus). The crinoids are anchored with 

branching roots in the soft-bottom substrate. The turbulent biostrome (B) was populated by 

abbreviatocrinids with relatively short and robust stems as well as short and robust arms covered by a 

moderately developed multilamellar exoplacoid layer (2, A. a. abbreviatus; 3, A. a. granulosus). The 

individuals developed various attachment discs on hard objects. Both groups were associated with the 

facies-persisting species Procupressocrinus gracilis (4). The blue arrow indicates the low to high 

turbulence. 
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Further examples indicating the hydrodynamic influence on cladid crinoid 
skeletons from the Eifel Synclines were the cladid gasterocomoids, whose predominantly 
upright crown is characterised by five relative filigree branching arms, mainly populated 
lower turbulent habitats. They were potentially forced to avoid into more turbulent 
environments because of the increasing rate of competitors within their preferred ecological 
niches (Chapter 4.2.1; BOHATÝ 2006a). A sloped radial circlet that inclined the crown was a 
morphological adaptation to facies in higher turbulence (Figs. 4.3.4.1-3). Moreover, the 
gasterocomoid genera Nanocrinus and Trapezocrinus (Fig. 4.3.4) and Tetrapleurocrinus have 
a reduction from five to four arms along this turbulence gradient. 

 
FIGURE 4.3.4—Hydrodynamical adaptations in the cup morphologies of the gasterocomoid genera 

Trapezocrinus (A) and Nanocrinus (B) recovered from the lowermost lower Givetian of one profile 

(compare to A-B of Fig. 4.3.3) within the “Wotan Quarry” (Hillesheim Syncline). The red line indicates 

strongly (1-2) to minor sloping (3-5) of the radial circlet as a morphological adaptation of low 

hydrodynamic (B) to turbulent hydrodynamic conditions (A). The blue arrow indicates the low to turbulent 

hydrodynamic gradient. [Crinoids: 1, no CREF34b-172 (PRESCHER collection), x 2.5; 2, no CREF34b-173 

(PRESCHER collection), x 2.7; 3, no CREF34c-28 (BOHATÝ collection), x 3.0; 4, no CREF34c-5 

(SCHREUER collection), x 3.3; 5, no CREF34c-7 (SCHREUER collection), x 2.7]. 

 
 
Camerata 
 

The sloping pattern recognised in cladid crinoids was also documented in the 
camerate hexacrinitid Megaradialocrinus elongatus (Chapter 4.2.2) and interpreted as a 
“growth anomaly” (Figs. 3.2.5.9-10; 4.3.5.1-2). However, this development is most probably 
an ecological/facial adaptation. Thus, individuals presumably lived in relatively turbulent 
conditions between biostromes. These slanted cups only occurred within biostromal deposits, 
whereas individuals of this species would develop “normal” upright crowns in less turbulent 
environments. 
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FIGURE 4.3.5—Hydrodynamical adaptations in the cup-morphologies of the hexacrinitid species 

Megaradialocrinus elongatus from the lowermost Lower Givetian of Gerolstein within the Gerolstein 

Syncline. The red line indicates strongly (1) to minor sloping (2) and unsloped radial circlet (3) as 

morphological adaptation of low hydrodynamic (3) to turbulent hydrodynamic (1-2). The blue arrow 

indicates the low to turbulent hydrodynamic. [Crinoids: 1, original of SIEVERTS-DORECK (1950, p. 81, figs. 

1a-c), x 1.8; 2, no GIK-1960, x 1.6; 3, no GIK-1953, x 1.6]. 

 
 

4.3.2.3  The influences of the events and faunal declines and the response of the 

Middle Devonian Crinoids from the Eifel 

 

Upper Eifelian: Klausbach Event and otomari Event 

 

The most significant events for crinoids of the Middle Devonian Eifel 

Synclines are the “Klausbach Event” (STRUVE 1992) and the “otomari Event” (STRUVE et al. 

1997). 

The Klausbach Event was a regional occurrence at the base of the Junkerberg 

Formation (Klausbach Member) that is characterised by a rapid increasing of sediment, 

limiting the Niederehe Subformation, which predominantly was dominated by biostromal 

developments and lower rates of sedimentation (STRUVE 1992; also see BOHATÝ 2005b, pp. 

392-393). 

The “otomari Event” was a transgression that resulted in sedimentary changes 

within the Eifel region and occurred in between the base of the Giesdorf and the Eilenberg 

members (STRUVE et al. 1997). 
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The response of the analysed crinoids 

 

The palaeodiversity of the studied cupressocrinitids, summarised in Chapter 

4.1.1 (Tab. 4.1.1), clearly traces the biogenic impacts of the Klausbach and otomari events. 

The otomari Event reduced the general palaeodiversity of Abbreviatocrinites. 

In contrast, the Klausbach Event had no impact. Moreover the species A. nodosus and, 

especially, A. schreueri flourished during this event and A. a. abbreviatus could be described 

a stratigraphically persisting species. Only A. tesserula had an apparently negative response of 

the event. 

Cupressocrinites, which populated within the Eifel after both events, thus 

possibly indicating a faunal migration. This pattern was already recognised after the otomari 

Event for rugose corals within the Rhenish Massif (SCHRÖDER 1997). 

Increased sedimentation rate and the development of expanded muddy 

substrates at the base of the Junkerberg Formation, resulted in a conspicuously decreased 

occurrence of Robustocrinites within the Eifel region (Chapter 3.1.4; Fig. 3.1.8). This loss 

correlates with the beginning of the Klausbach Event. During times of moderate siliciclastic 

input, diverse hardground and/or firmgrounds were established between the Mussel and Nims 

members. Between the basal Hönselberg and the top of the Nims members a species radiation 

of Robustocrinites occurred. All three recognised species became extinct at the top of the 

Nims Member and, therewith, at the basis of the otomari Event. 

Also Procupressocrinus responded to the otomari but not of the Klausbach 

Event (Tab. 4.1.1.1). 

This pattern of the cupressocrinitid palaeodiversity is illustrated in Fig. 4.1.1. 

The otomari Event is represented as a minimum of genera and species curves within the 

Freilingen Formation. Other cladid crinoids have the same response to the otomari Event, 

(Fig. 4.1.1). 

Responses of the Klausbach and otomari events are also recognised among 

camerates, disparids and flexibles: 

The hexacrinitids (Chapter 3.2) did not change palaeodiversity in response to 

the mentioned events (Tab. 4.1.2). However, similar to the cladid genus Cupressocrinites, the 

diversity and individual number rose after the otomari Event (compare Tabs. 4.1.1 and 4.1.2). 

Similarly, Stylocrinus and Ammonicrinus (Chapter 3.3 and 3.4) had a 

decreased abundance during the Giesdorf Member, but a rapid diversification after this 

member (Tabs. 4.1.3; 4.1.4). 
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 In summary of the influence of these events on Middle Devonian crinoids from 
the Eifel Synclines, the otomari Event acted negatively to the associations (see minimum of 
the curve within the Giesdorf Member; Fig. 4.1.4). In contrast, the Klausbach Event acted 

considerably less negatively for some species and some taxa flourished. The crinoids that 
flourished include the cladids Abbreviatocrinites nodosus, A. schreueri and Bactrocrinites 
tenuis (especially significant) [BOHATÝ 2005b]. Other echinoderm groups also flourished 

during the Klausbach Event. These are the echinoid Lepidocentrus muelleri and the blastoid 
Hyperoblastus eifeliensis, which are preserved locally in very abundant, monospecific mass 
occurrences. 

 
 
Crinoid faunal declines within the Eifel – Lower Givetian Crinoid Decline and Frasnian-

Famennian Crinoid Decline 
 
Lower Givetian Crinoid Decline 

 
The maximal palaeodiversity of the Middle Devonian crinoids from the Eifel 

Synclines is positioned between the Freilingen and lower Cürten formations (Chapter 4.1.5; 

Fig. 4.1.4). Thereafter, the palaeodiversity abruptly decreased, and this regional faunal break 
is herein designated the Lower Givetian Crinoid Decline (Chapters 4.1.5-6; Figs. 4.1.4; 4.1.5). 
The reasons for this decline are unexplained in most instances but it is presumably a reaction 

to eustatic increase in sea-level during the Givetian (JOHNSON et al. 1985; JOHNSON & 

SANDBERG 1988). Accordingly, it is possible that the sea-level was too high for the crinoids 
of the Eifel, which were highly adapted to shallow-water and biostromal facies (based on 

subjective faunal collecting). 
Poor facies condition for crinoids occurred in the Lower to Upper Givetian of 

the Rhenish Massif. However, this extinction cannot be explained as sampling bias due to 

unfavourable fossil preservation as a consequence of the incipient Massenkalk Facies with an 
increasing rate of dolomitisation (MEYER 1986), because even fossil-rich localities of the 

upper Cürten to Rodert formations document this biodiversity collapse. 

 
Frasnian-Famennian Crinoid Decline – a prospection 
 

Within the deposits of the “Büdesheimer Goniatitenschiefer” (RÖMER 1854; 
KAYSER 1871), which can approximately be correlated to the “Matagne Slate” of Belgian 
(MEYER 1986, p. 169), a clear faunal change occurred (compare to 4.1.6). Unpublished 
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pseudo-planktonic amabilicrinitids, which are attached to drift-woods, were recovered from 
these deposits and are associated with platycrinids. Pseudo-planktonic crinoids were 
important during the times of the “Kellwasser Crisis” [see SCHINDLER (1990) for this crisis] 

with their influence of the Devonian reef communities – I also note the (unpublished) 
correlations to the already described amabilicrinitids from the Upper Frasnian and Famennian 
of Morocco (WEBSTER et al. 2005; WEBSTER & BECKER 2009). 

These finding indicate a significant faunal change between the faunal “groups 

3a-b” and “4” to this amabilicrinitid-dominated “faunal group 5” (Chapter 4.1.6) and, 

therefore, has to be interpreted as reaction of the Frasnium/Famennium Extinction. This 

faunal change is herein designated the Frasnian-Famennian Crinoid Decline. 

Following GRIMM et al. (2008, p. 384) the Büdesheimer Goniatitenschiefer is 

part of the Büdesheim Formation and includes the two “Kellwasserkalk Horizons” (e.g. 

GEREKE 2007). These deposits exhibit a significant fauna of pyritised goniatids, orthocerids, 

brachiopods and gastropods, which are characterised by restricted growth (CLAUSEN 1966). 

This restricted growth begins abruptly and indicates drastically changes in the environment 

(MEYER 1986). Presumably, reducing bottom-waters increased and were followed by 

hydrosulphide-toxication, indicated by the abundance of pyrite (CLAUSEN 1966). 

The influence of the Frasnian/Famennian Event for the Devonian crinoids has 

been discussed in the literature. Following GŁUCHOWSKI (2002, p. 325), the Mid-Late 

Devonian crisis in crinoid evolution was one of the greatest in Phanaerozoic. It was first 

manifested globally be a drastic decrease in crinoid preservation during the early Famennian 

(GŁUCHOWSKI 2002). Despite later expansion of crinoid faunas (MAPLES et al. 1997), their 

differentiation remained at the lowest level for the entire Devonian. GŁUCHOWSKI (2002) 

proved that the low diversity of the Holy Cross Mountain Famennian crinoid assemblages 

(based on stem taxa) may be a consequence of the Frasnian/Famennian mass extinction. 

However, some studies of the calyx-based crinoid taxa diversity have shown that the major 

declines appear to coincide with the end of the Givetian (BAUMILLER 1994), and the 

“Frasnian/Famennian-extinction was a non-event for crinoids” (WEBSTER et al. 1998). This 

peculiar pattern, however, might be only a consequence of a preservation and/or regional bias 

(MCINTOSH 2001). 

Recent publications argue that this event was, at least for cladid crinoids, a 

non-event (WEBSTER in press). However, the camerate-dominated crinoid association 

(“faunal-group 4”; Chapter 4.1.6) of the Rheno-Ardennic Massif had a clear response which 

indicates the need for further studies. 
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5.  FUTURE RESEARCH 

 

To answer multiple open questions that result from the present thesis, further 

studies are required that have to be based on the systematical and taxonomical revisions 

herein. This arises from the high number of species, as given in the chapter “Discussion and 

conclusion”. It is mainly expressed in the contrast between the number of taxa, which are 

listed in the literature of the early 19th century as well as in amateur publications (~160 

species) that mostly infringe ICZN-guidelines, and a first critical estimation of ~200 species 

that are based on my own unpublished data and assuredly include numerous undescribed taxa. 

The upcoming version of the Crinoid Treatise is an inducement for this aim. 

Several of the conclusions reached herein concerning the palaeodiversity, 

palaeobiology and palaeoecology of the studied crinoids have to be more precisely refined. 

While e.g. the local influences of events (Klausbach Event, otomari Event) were adequately 

described in this thesis, indicated faunal migrations that obviously followed the otomari 

Event, should be analysed in detail to answer the questions from where- and in how many 

waves of immigration they came. These objectives have to consider data of other faunal 

groups, like the migration pattern of rugose corals (SCHRÖDER 1997). 

Also the controlling factors of regional faunal collapses (Lower Givetian 

Crinoid Decline, Frasnian-Famennian Crinoid Decline) have to be analysed in detail. It would 

be most interesting to determine if these faunal breaks also affected other benthic taxa like 

possibly bryozoans (pers. information, A. ERNST), and to verify to what extent the proposed 

explanation of a rising sea-level for the Lower Givetian Crinoid Decline, possibly forced the 

shallow-water adapted crinoids from the Eifel to escape into probably remaining shallow 

water habitats. These apparently existed within the vicinity of the Lahn-Dill Syncline in the 

eastern Rhenish Massif and were related to volcanic occurrences in terms of constricted 

“crinoid island-appearances”. The rising sea-level potentially delimited these low diverse 

associations and, furthermore, led to migration of the crinoids toward the Ardennes. This 

could be an explanation for the occurrences of several characteristic cladids and camerates 

from the Eifel within the Frasnian deposits of the Ardennes that could not be recovered from 

coeval strata of the Eifel Synclines. Therefore, studies have to be directed toward the 

comparison between the Givetian crinoid associations of the eastern Rhenish Massif and the 

Frasnian crinoid faunas of the western Rhenish Massif and the Ardennes. 
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Considering the postulate that the Frasnian/Famennian Event was a non-event 

for crinoids (e.g. WEBSTER et al. 1998; WEBSTER in press), an exiting research project would 

be the detailed analysis of the clearly evidenced response of the Frasnian Melocrinites-

Megaradialocrinus-dominated crinoid association from the Rheno-Ardennic Massif to this 

crisis, which is characterised by its replacement by an amabilicrinitid-dominated crinoid fauna 

with a “Carboniferous character”. Therefore, the Frasnian/Famennian crinoids of the Eifel and 

the Ardennes (Büdesheimer Goniatitenschiefer, Matagne Slate) should be analysed and 

compared to the amabilicrinitids from Morocco (WEBSTER et al. 2003; WEBSTER & BECKER 

2009) and Iran (WEBSTER et al. 2003). 

The amabilicrinitids from the Frasnian/Famennian boundary interval were 

often found attached to drift woods (pers. collections, unpublished data; WEBSTER et al. 2003) 

and, therefore, are considered to be pseudo-planktic. In contrast, the Lower Carboniferous 

amabilicrinitids of Wülfrath-Aprath (eastern Rhenish Massif; HAUDE & THOMAS 1992, as 

revised by WEBSTER et al. 2003) indicate a benthic mode of life. It requires further 

investigation to determine if these contrasting lifestyles might be linked to the Kellwasser 

Crisis and if this might indicate a high adaptability of these “Carboniferous pioneers” that 

displaced the Middle Devonian crinoid associations. 

 

The manifold results presented herein and the resulting, even more intriguing 

open questions show the long-time underestimated potential of crinoids for a better 

understanding of the complex, interdependent processes controlling evolutionary and 

palaeoecological changes in the Devonian World. 
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