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Zusammenfassung

Die vorliegende Arbeit besteht aus zwei Teilen. Der erste Teil beschäftigt
sich mit hyperbolischen Hubbard-Stratonovich-Transformationen. Solche
Transformationen werden z.B. im Bereich der ungeordneten Elektronensys-
teme benötigt, um nichtlineare Sigma-Modelle herzuleiten, die das Niederen-
ergieverhalten dieser Systeme beschreiben. Der mathematische Status hy-
perbolischer Hubbard-Stratonovich-Transformationen vom Pruisken-Schäfer-
Typ war lange ungeklärt. Kürzlich wurden zwei Spezialfälle, nämlich die
pseudounitärer und pseudoorthogonaler Symmetrie, bewiesen [10, 11, 12].
In dieser Arbeit wird nun der Fall einer allgemeinen (im wesentlichen halb-
einfachen) Symmetriegruppe bewiesen. Der Beweis ist anschaulich und zeigt
explizit den Zusammenhang mit Standard-Gauß-Integralen.

Im zweiten Teil wird eine eine neuartige Methode entwickelt, um wech-
selwirkende granular fermionische Systeme zu bosonisieren. Die Methode
ist nicht mit der bekannten Bosonisierung (1 + 1)-dimensionaler Systeme
verwandt, sondern eher im Bereich der kohärenten Zustände anzusiedeln.
Ein Zugang ist, die Grassmann-Pfadintegraldarstellung einer großkanon-
ischen Zustandssumme durch mehrfache Anwendung der Colour-Flavour-
Transformation in eine Form zu bringen, welche die Eliminierung der Grass-
mannvariablen erlaubt. Das Resulat ist ein Pfadintegral in generalisierten
kohärenten Zuständen mit speziellen Randbedingungen.
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Abstract

The present work consists of two parts. The first part deals with hyperbolic
Hubbard-Stratonovich transformations. Such transformations are used to
derive non-linear sigma models that describe the low energy behaviour of
disordered electron systems. For a long time the mathematical status of
hyperbolic Hubbard-Stratonovich transformations of Pruisken-Schäfer type
remained unclear. Only recently the two special cases of pseudounitary and
pseudoorthogonal symmetry were proven [10, 11, 12]. In this thesis we prove
the transformation for a general (essentially semisimple) symmetry group.
The proof is descriptive and shows explicitly the connection to the standard
Gaussian integrals.

In the second part we develop a novel method to bosonise granular
fermionic systems. The method is related to the method of coherent states.
In particular it is not based on the well known bosonisation of (1 + 1)-
dimensional systems. One approach is to use the colour-flavour transfor-
mation to transform the Grassmann path integral representation of a grand
canonical partition function in a way that allows to eliminate the Grassmann
variables. The result is a path integral in generalised coherent states with
special boundary conditions.
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Introduction

To obtain an adequate description of a physical system, and to compute
quantities of interest, it is often necessary to replace the microscopic degrees
of freedom of the system by physically more relevant ‘collective’ degrees of
freedom. Two prominent methods to introduce collective variables in the
field of many particle physics are Hubbard-Stratonovich transformations and
bosonisation. In this work we discuss special variants of both methods. The
first part of this work clarifies the mathematical status of a class of hyper-
bolic Hubbard-Stratonovich transformations, whereas in the second part a
new kind of bosonisation is developed. The focus of this work is rather on
methodology than on applications.

Let us start with a more detailed introduction to the first part of the
thesis. First, we explain where hyperbolic Hubbard-Stratonovich transfor-
mations are commonly used. A natural area of application of hyperbolic
Hubbard-Stratonovich transformations are disordered electron systems [1]
and their description in the form of non-compact non-linear sigma models.
The corresponding formalism was pioneered by Wegner [3], Schäfer & Weg-
ner [4], and Pruisken & Schäfer [5]. Efetov [2] developed the more rigorous
supersymmetry method, which avoids the use of the replica trick, to derive
(supersymmetric) non-linear sigma models. The supersymmetry method
has a wide range of applications [15]. Examples are the description of single
electron motion in a disordered or chaotic mesoscopic system [16], chaotic
scattering [6], and Anderson localisation [17]. Traditional derivations of
non-linear sigma models in the supersymmetry formalism rely crucially on
hyperbolic Hubbard-Stratonovich transformations. To describe what hy-
perbolic Hubbard-Stratonovich transformations are we briefly review the
case of (mathematically trivial) ordinary Hubbard-Stratonovich transfor-
mations. These transformations are frequently used throughout condensed
matter field theory. From a mathematical point of view such a Hubbard-
Stratonovich transformation consists of applying a Gaussian integral formula
backwards, i.e., introducing additional integrations. Such a scheme converts
a quartic interaction term in the original variables into a quadratic term
coupled linearly to the newly introduced integration variables. The word
‘hyperbolic’ indicates a non-compact symmetry group of the original sys-

v
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tem. In such a situation the standard Gaussian integral formula cannot be
applied due to issues of convergence.1 A solution to this problem was given
by Schäfer and Wegner [4]. They found a contour of integration for which
the Gaussian integral formula holds and convergence is guaranteed. Never-
theless the majority of the physics community uses a different contour sug-
gested by Pruisken and Schäfer [5] which, in contrast to the Schäfer-Wegner
solution, preserves the full symmetry of the original system. However, un-
til recently there existed no proof of the validity of the Pruisken-Schäfer
transformation. The main difficulty is that the Pruisken-Schäfer domain
has a boundary. This prevents an easy proof similar to the standard Gaus-
sian integral and to the Schäfer-Wegner domain. Recently, several cases of
the Pruisken-Schäfer transformation have been made rigorous by Fyodorov,
Wei and Zirnbauer. Fyodorov [10] gave a proof for pseudounitary symmetry
by using methods of semiclassical exactness. After that Fyodorov and Wei
[11] proved a variant of the Pruisken-Schäfer transformation for the case
of O(1, 1) and O(2, 1) symmetry by direct calculation, and proposed a re-
sult for the full O(p, q) case. They conjectured that the Gaussian integral
decomposes into differerent parts that have to be weighted with certain al-
ternating sign factors to obtain the right result. This conjecture indicates
that the Pruisken-Schäfer transformation for the pseudoorthogonal case is
not correct in its original form. Finally Fyodorov, Wei and Zirnbauer [12]
proved the conjecture by reducing the calculation to the O(1, 1) case and
showing explicitly that all relevant boundary contributions vanish.

The motivation for our work is twofold. First, we want to obtain a bet-
ter understanding of the somewhat mysterious alternating sign factors that
appear in the O(p, q) case, and second, we want to generalise the trans-
formation to more symmetry classes. The basic idea we follow is that in
some sense, the Pruisken-Schäfer domain should be a deformation of the
standard Gaussian domain. The problem of the boundary of the Pruisken-
Schäfer contour is overcome by extending it, such that the integral remains
unchanged and the boundary is moved to infinity. This leads to a proof
of a variant of the Pruisken-Schäfer transformation for a general symmetry
group. The proof shows that it is possible to deform the Pruisken-Schäfer
integration contour into the standard Gaussian contour without changing
the value of the integral. Actually the same can be done with the Schäfer-
Wegner contour.

The structure of chapter one is as follows: First we give a more detailed
motivation and a description of the convergence problems one encounters
when applying the Gaussian integral in case of a non-compact symmetry.
Next we discuss a two dimensional example that gives a road map for the
general proof. Then we state our result and give its proof. Finally we show
how to obtain the pseudounitary and pseudoorthogonal cases as special cases

1A detailed discussion of this issue is given at the beginning of chapter one.
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of the general result.

The second part of this work explores a new method of bosonisation
of granular fermionic systems. The terminology ‘granular fermionic’ indi-
cates the structure of a fermionic vector model. In the following we list
some examples: The well known Gross-Neveu models [22] and all fermionic
models having an orbital degeneracy are in this class. An exactly solvable
toy model is the Lipkin-Meshkov-Glick model [21]. A more complicated
example is the many orbital generalisation of the Hubbard-model. A class
of models which is currently intensively studied in mesoscopic physics are
arrays of quantum dots or granular metals [24]. Each quantum dot is de-
scribed by the universal Hamiltonian, which has a large orbital degeneracy
[23]. Note that granularity, or equivalently large orbital degeneracy, implies
the existence of a natural large N limit. Such large N limits are classical
limits. For Gross-Neveu models this was investigated by Berezin [33] and
for a much larger class of models by Yaffe [34]. In our work we will restrict
ourselves to discrete (lattice) models that have either orthogonal, unitary
or unitary symplectic symmetry. This contains all relevant possibilities for
the universal Hamiltonian [23]. The term ‘bosonisation’ does not refer to
the well known (non) Abelian bosonisation [19], which is limited to (1 + 1)
dimensional models, but rather to the natural geometric approach through
generalised coherent state path integrals [35, 36].2 It is interesting to note
that these path integrals lead to a generalised Holstein-Primakoff transfor-
mation [18].

The restriction to granular fermionic systems with a classical Lie group
as symmetry group gives access to powerful results from the theory of Howe
dual pairs [27, 28]. One important tool that relies on the theory of Howe
dual pairs is the colour-flavour transformation [29, 30]. Within our method
we put the available structure to use in the calculation of the grand canonical
partition function of a granular fermionic system. The result we obtain is a
path integral representation of the grand canonical partition function of the
granular fermionic system in terms of bosonic, i.e. commuting variables. The
representation is essentially a path integral in generalised coherent states
with certain boundary conditions. However, we cannot apply generalised
coherent states directly in this context, since this would yield a path integral
only for a subspace of Fock space.

The structure of the second part is as follows: We consecutively discuss
two different derivations of the bosonic path integral representation of the
grand canonical partition function. Furthermore we calculate the contribu-
tion of fluctuations in the semiclassical limit in terms of classical quantities.

2There have also been attempts to use coherent state path integrals for loop groups
[20] to bosonise (1 + 1) dimensional models.
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Chapter 1

Hyperbolic
Hubbard-Stratonovich
transformations

1.1 Motivation

Non-compact non-linear sigma models are important and extensively used
tools in the study of disordered electron systems. As mentioned in the
introduction, the corresponding formalism was pioneered by Wegner [3],
Schäfer & Wegner [4], and Pruisken & Schäfer [5]. Shortly afterwards Efetov
[2] improved the formalism. He developed the supersymmetry method to
derive non-linear sigma models. Many applications of the supersymmetry
method can be found in the textbook by Efetov [15].

There are different ways to derive non-linear sigma models from micro-
scopic models, for an introduction see [8]. The traditional approach is to use
a Hubbard-Stratonovich transformation, i.e., a transformation of the form

c0 e
−TrA2

=
∫

D
e−TrQ2−2iTrQA |dQ| , (1.1)

where c0 ∈ R. We leave the domain of integration D unspecified for now.
|dQ| denotes Lebesgue measure of a normed vector space.

Let us discuss the case of pseudoorthogonal symmetry O(p, q) as an ex-
ample. Then A is given by Aij =

∑N
a=1 Φa,iΦa,jsjj with s = Diag(1p,−1q)

and Φa,j ∈ R. The Φa,j represent the microscopic degrees of freedom. Us-
ing equation (1.1) and integrating out φ gives a description in terms of
the effective degrees of freedom Q. Thus the task is to find a domain of
integration D for which identity (1.1) holds and the term exp(−2iTrQA)
stays bounded. The latter allows to perform the Φ integrals after applying
identity (1.1). Note that the real matrices A fulfil the symmetry relation
A = sAts. A naive choice of the domain of integration D to keep the term

1



2 CHAPTER 1. HYPERBOLIC HS TRANSFORMATIONS

exp(−2iTrQA) bounded would be the domain of all real matrices satisfy-
ing Q = sQts. This choice of D is not valid since then the quadratic form
TrQ2 = TrQsQts is of indefinite sign.

Schäfer and Wegner [4] found a domain D=SW, and gave a proof that
it solves the problem. Nonetheless another domain D=PS was proposed
in later work by Pruisken and Schäfer [5]. Until recently the mathematical
status of identity (1.1) for D=PS was unclear. The main difficulty in proving
identity (1.1) for D=PS is that the PS domain has a boundary. This prevents
an easy proof by completing the square and shifting the contour as is possible
for the standard Gauss integral and for the SW domain. Nevertheless the
PS domain was used in most applications worked out by the mesoscopic
physics community. The reason might be that it inherits the full symmetry
of the domain of A matrices.

Recently Fyodorov, Wei and Zirnbauer [10, 11, 12] proved special cases
of the Pruisken-Schäfer transformation.

In the following we state the result for the O(p, q) case that was obtained
in [12]. Choose D as the subspace of matrices Q = sQts that can be diago-
nalised by an element of O(p, q). The domain D can be seen as the union of(
p+q
p

)
subdomains Dσ. The domains Dσ are labeled as follows. Up to a set

of measure zero Q ∈ D has p ‘space-like’ eigenvectors {vi}i≤p with vtisvi > 0
and q ‘time-like’ eigenvectors {vi}q<i≤p with vtisvi < 0. Again up to a set
of measure zero in D, the eigenvalues of Q can be arranged in decreasing
order. We translate this ordered sequence into a binary sequence by writing
the symbol ‘•’ for space-like and ‘◦’ for time-like eigenvalues.1 Furthermore,
let

|dQ| =
∏
i≤j

dQij (1.2)

denote flat integration measure on all domains Dσ, and let sgn(σ) be the
parity of the number of transpositions • ↔ ◦ needed to reduce the binary
sequence σ to the extremal form σ0 = • · · · • ◦ · · · ◦. Then the following
theorem [12] holds:

Theorem 1.1. There exists some choice of cutoff function Q 7→ χε(Q) (con-
verging pointwise to unity as ε → 0), and a unique choice of sign function
σ → sgn(σ) ∈ {±1} and a constant Cp,q such that

Cp,q lim
ε→0

∑
σ

sgn(σ)
∫

Dσ

e−TrQ2−2iTrAQχε(Q)|dQ| = e−TrA2
(1.3)

holds true for all matrices A = sAts with the positivity property As > 0.

The alternating sign factor was already conjectured in [11]. Note that in
the large N limit only one Dσ contributes to the results. Therefore earlier

1The properties of the domains Dσ are discussed in more detail in [12].
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works using (1.3) without the alternating sign lead to correct results in the
large N limit.

In this chapter we show a variant of theorem 1.1 for a general symmetry
group. The proof shows that it is possible to deform the Pruisken-Schäfer
(PS) integration contour into the standard Gaussian contour without chang-
ing the value of the integral. Actually the same can be done with the Schäfer-
Wegner (SW) contour. The problem of the boundary of PS is overcome by
extending the PS domain in a way that leaves the integral unchanged and
moves the boundary to infinity. The proof also demonstrates the origin of
the alternating sign factors in equation 1.3

For convenience of the reader, the main ideas of the proof are first il-
lustrated in a simple two dimensional example. Then we state the general
results and give their proof. Finally some applications are discussed. In
particular, it is discussed how the cases of pseudounitary and orthogonal
symmetry fit into the general setting.

1.2 Two dimensional example

As a first step towards a general theorem of hyperbolic Hubbard-Stratonovich
transformations, we discuss a two dimensional example. In this simplified
setting the general result and main ideas of its proof can be nicely illustrated.

First we have to fix the setting. Let {e1, e2} be a basis of C2 and
dqi(ej) = δij . D denotes the parametrisation of a two dimensional surface
in C2 and dq1 ∧ dq2 is a holomorphic two form on C2. Now consider the
simple Gaussian type integral identity∫

D
e−q

2
1+q2

2−2ia1q1+2ia2q2dq1 ∧ dq2 = iπe−a
2
1+a2

2 . (1.4)

At this stage a1 and a2 may be arbitrary complex numbers. In the following
we discuss different parametrisations of domains of integration D for which
the identity holds. Eventually this requires imposing additional restrictions
on a1 and a2. Since we are integrating differential forms, the domains of
integration must have an (inner) orientation. Note that we discern between
italic D and non italic D. The former denotes the parametrisation of the
domain D.

Euclidean domain of integration

Obviously identity (1.4) holds for the standard Euclidean domain of inte-
gration

Euclid : R2 → C
2

(r, s) 7→ r e1 + is e2 .
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ie2

e1

Figure 1.1: Standard Euclidean domain of integration.

e1

ie1

ie2

Figure 1.2: Schäfer-Wegner domain of integration.

Here the orientation comes from choosing an orientation on the domain of
definition R2 and declaring Euclid to be orientation preserving. Note that
the orientation of the two other domains of integration, which we discuss be-
low, will be choosen in the same way. The orientation of Euclid is indicated
by a sense of circulation in figure 1.1.

Schäfer-Wegner domain of integration

Demanding that ai ∈ R and that a1 > a2 ≥ 0, it can be checked by direct
calculation that identity (1.4) also holds for the Schäfer-Wegner family of
domains of integration, which is given by

SW : R2 → C
2

(r, s) 7→ r e1 − ib cosh(s) e1 − ib sinh(s) e2 ,

where b > 0.

Pruisken-Schäfer domain of integration

The Pruisken-Schäfer domain is given by

PS : R2 → R
2

(r, s) 7→ r cosh(s) e1 + r sinh(s) e2 . (1.5)
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e1

e2

Figure 1.3: Pruisken-Schäfer domain of integration. The orientation is in-
duced by the parametrisation (1.5).

Identity (1.4) holds for D = PS only in a regularised form. For |a1| > |a2|
and χε(~q) = exp(−εq2

2) it can be checked by direct calculation that

lim
ε→0

∫
D
e−q

2
1+q2

2−2ia1q1+2ia2q2χε(q)dq1 ∧ dq2 = iπe−a
2
1+a2

2 (1.6)

holds.
Note that by introducing a Minkowski scalar product B(~a, ~q) = a1q1 −

a2q2 with ~a = (a1, a2)t and ~q = (q1, q2)t, (1.6) can be rewritten to

lim
ε→0

∫
D
e−B(~q,~q)−2iB(~a,~q)χε(~q)dq = iπe−B(~a,~a) . (1.7)

Here we have used dq := dq1 ∧ dq2. B has an O(1, 1) symmetry group,
acting on R2. The Pruisken-Schäfer domain of integration is invariant under
the action of the group. In this case also the domain of ~a for which (1.6)
holds has this invariance. Both domains (for ~a and ~q) are given by forward
and backward lightcones as depicted in figure 1.3, or, put differently, by all
timelike vectors (B(~a,~a) > 0 and B(~q, ~q) > 0).

Moreover, in order for (1.6) to hold it is important that the upper and
lower cone (see figure 1.3) have opposite orientations. If one wants to inte-
grate Lebesgue measure |dq| rather than a differential form, (1.6) has to be
modified accordingly to a difference of integrals. Defining

g(~q,~a) := e−B(~q,~q)−2iB(~a,~q) ,

identity (1.6) can be reformulated as

lim
ε→0

∫
D+

g(~q,~a)χε(q)|dq| − lim
ε→0

∫
D−

g(~q,~a)χε(q)|dq| = iπe−a
2
1+a2

2 ,

where D+ stands for the upper and D− for the lower cone in figure 1.3.
It was already mentioned in the introduction that for more general cases

it is very difficult to prove identity (1.6) for the Pruisken-Schäfer domain by
direct calculation. The idea of the proof for the general case is now discussed
in the two dimensional case.
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Main idea of the proof

The main idea is to deform the PS domain into the Euclidean domain with-
out changing the value of the integral. As an easy example for such a
deformation scheme we can use the SW domain of integration. Consider the
deformation (or homotopy) given by

DSW : [0, 1]×R2 → C
2

(t, r, s) 7→ re1 + ib(1− t) cosh(s)e1 + ib sinh(s)e2 ,

which is just a smooth projection onto the plane spanned by e1 and ie2.
Note that DSW (t = 1) = Euclid and that the parametrisation given by
DSW is a nice integration chain. Hence, ∂DSW = Euclid − SW and we
can apply Stokes theorem:

0 =
∫
DSW

d (g(~q,~a)dq1 ∧ dq2)︸ ︷︷ ︸
=0

=
∫
∂DSW

g(~q,~a)dq1 ∧ dq2 .

Thus we have∫
SW

g(~q,~a)dq1 ∧ dq2 =
∫
Euclid

g(~q,~a)dq1 ∧ dq2 = iπe−B(~a,~a) . (1.8)

The PS domain has a boundary, which seems to prevent an analogous proof
of (1.6).

Proof

The following proof of (1.6) for a1 > a2 ≥ 0 mimics the proof of the higher
dimensional relatives of (1.6). Therefore the proof should be seen as a road
map for the more complicated proof in the next section.

A suitable parametrisation: A different parametrisation of the PS
domain is obviously given by

PS : [−1, 1]× R→ R2

(h, x) 7→ x(e1 + he2) .

The boundary operator ∂ gives a nonzero result on [−1, 1]. The other con-
tributions vanish since the integrals to be considered are exponentially con-
vergent for ε > 0. We therfore have ∂PS = PS(1)− PS(−1).

Extending the PS domain: Before deforming the PS domain, the
boundary problem has to be dealt with first. The idea is to attach half-
planes to the boundary lines spanned by e1 ± e2 as illustrated in figure 1.4.
Here it is again crucial that the upper and lower cone have opposite ori-
entations to allow the attachment of the halfplanes in a consistent way. A
parametrisation of the halfplanes is given by
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e1 + e2
e1 + e2

i(e1 + e2)

attach

Figure 1.4: Attaching halfplanes that do not contribute to the integral.

hp± : R+ ×R→ C
2

(h, x) 7→ ±xe± − ihe± ,

where e± = e1 ± e2. A good motivation for this special choice is that

dq1 ∧ dq2(e±, ie±) = idq1 ∧ dq2(e±, e±) = 0

and hence the halfplanes do not contribute to the integral. This is not
yet a completely rigorous argument since existence and convergence of the
integral still needs to be discussed. The extension of PS is defined as ePS :=
PS + hp+ + hp−, which is to be understood as a sum of integration chains.

Equivalence of PS and Euclid: The deformation is given by

DPS : [0, 1]× [−1, 1]×R→ R
2

(t, h, x) 7→ x(e1 + (1− t)he2) ,

Dhp± : [0, 1]×R+ ×R→ C
2

(t, h, x) 7→ ±x[e1 ± (1− t)e2]− ih[(1− t)e1 ± e2] ,

which defines then DePS = DPS+Dhp+ +Dhp−. For t = 1 the deformed
PS surface degenerates into a line and both halfplanes hp± are projected
into the plane spanned by e1 and ie2 as shown in figure 1.5. Note that
Dhp±(t = 1) : (h, x) 7→ ±xe1∓ ihe2. Thus we have DePS(t = 1) = Euclid.

Now, we want to apply Stokes’ theorem. We use ∂DePSε = Euclid −
DePS(ε), where DePSε := DePS|t∈[ε,1]. The idea is to deform Euclid, as
far as convergence of the integral allows, into PS:∫

DePS(ε)
g(~q,~a)dq = −

∫
DePSε

g(~q,~a)d(dq) +
∫
Euclid

g(~q,~a)dq

=
∫
Euclid

g(~q,~a)dq . (1.9)
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e1

ie2

Figure 1.5: Deformation of PS to Euclid. The two halfplanes are the (de-
formed) attached surfaces and the cones are deformed into the vertical line.

Next we have to discuss the limit ε→ 0 carefully.
First consider the PS part. Here, we may apply Fubini’s theorem and

perform the x integration first, since for ε > 0 the integral is exponentially
convergent. We define

IPS(ε, h) :=
√

π

1− h2(1− ε)2
e
− (a1−a2h(1−ε))2

1−h2(1−ε)2 .

Then we obtain

lim
ε→0

∫
DPS(ε)

g(~q,~a)dq = lim
ε→0

∫ 1

−1
dh IPS(ε, h) .

The limit limε→0 IPS(ε, h) is uniform, since (a1 − a2h(1 − ε))2 > 0 for 1 ≥
ε ≥ 0 and a1 > a2 ≥ 0. Thus the h integral and limε→0 commute.

In particular, this is also true if we replace IPS(ε, h) by

ĨPS(ε, h) :=
√

π

1− h2(1− ε)2
e
− (a1−a2h)2

1−h2(1−ε)2 .

Then we have the following series of equalities:

lim
ε→0

∫
DPS(ε)

g(~q,~a)dq =
∫ 1

−1
dh lim

ε→0
IPS(ε, h)

= lim
ε→0

∫ 1

−1
dh ĨPS(ε, h)

= lim
ε′→0

∫
PS

g(~q,~a)χε′(q)dq ,

where we shift the ε dependence of the domain of integration to the inte-
grand by introducing a regulating function χε′(q) = exp(−ε′q2

2). To be more
precise, we identify ε′ = 2ε− ε2.

It remains to show that the contribution from the hp± parts vanish. This
is done using similar arguments as above. Consider

lim
ε→0

∫
Dhp±(ε)

g(~q,~a)dq = lim
ε→0

∫ ∞
0

dh Ihp±(ε, h) ,
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where we define

Ihp±(ε, h) :=
√

π

1− (1− ε)2
e
− (±a1−(1−ε)a2)2

1−(1−ε)2 e−2h((1−ε)a1∓a2)e−h
2(2ε−ε2) .

The last two factors ensure exponential convergence in h. Hence the integral
exists and

lim
ε→0

Ihp±(ε, h) = 0

holds uniformly in h. Thus we can conclude that

lim
ε→0

∫
Dhp±(ε)

g(~q,~a)dq = 0 .

The proof is finished, since we now have

lim
ε→0

∫
DePS(ε)

g(~q,~a)dq = lim
ε→0

∫
PS

g(~q,~a)χε(q)dq . (1.10)

1.3 General setting and theorem

In this section we present our results in a rather general form. First, we
describe the setting and then we state our theorem. Let us note in advance
that appendix A contains a systematic discussion of the structures that are
used to formulate the theorem and its proof.

All constructions take place in gl(n,C), the space of all complex n ×
n matrices. The following results also apply to the case where gl(n,C)
is replaced by a complex Lie subalgebra of gl(n,C). Let s ∈ gl(n,C) be
hermitian with the property s2 = 1. s leads to two involutions2 θ(X) =
sXs−1 and γ(X) = −sX†s−1 on gl(n,C). In addition we assume that we
are given some involutions τi on gl(n,C), which commute with each other
and with θ and γ. Then we can define a subspace Q of gl(n,C) as

Q = {Q ∈ gl(n,C)|Q = −γ(Q) and ∀i : Q = σiτi(Q)} , (1.11)

where σi ∈ {±1} and the τi have to be such that s ∈ Q. The Lie algebra of
the relevant symmetry group of Q is given by3

g = {X ∈ gl(n,C)|X = γ(X) and ∀i : X = τi(X)} . (1.12)

The decomposition of Q into the plus and minus one eigenspaces of θ gives
a decomposition into the hermitian and antihermitian parts denoted by Q+

and Q−. Similarly θ gives the decomposition g = k⊕ p, where k is the plus
2In this context involution means an involutive automorphism of Lie algebra.
3See also section A.1.2 in appendix A.
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one eigenspace and p the minus one eigenspace. The commutation relations
of these spaces are4

[k, k] ⊂ k , [k, p] ⊂ p , [p, p] ⊂ k , [Q+,Q−] ⊂ p ,
[Q±,Q±] ⊂ k , [k,Q±] ⊂ Q± , [p,Q±] ⊂ Q∓ .

(1.13)

Then the parametrisation of the Pruisken-Schäfer domain is given by

PS : p⊕Q+ → Q
(Y,X) 7→ eYXe−Y . (1.14)

The parametrisation of the Euclidean domain is given by

Euclid : Q− ⊕Q+ → QC

(Y,X) 7→ X + iY ,

where QC = Q⊕ iQ. The parametrisation of the Schäfer-Wegner domain is
given by

SW : p⊕Q+ → QC (1.15)

(Y,X) 7→ X − ibeY se−Y , (1.16)

where b is a positive real number. The orientation for PS, Euclid and SW
is provided by choosing an orientation of the domain of definition. This
induces an orientation on the corresponding domain of integration.

Theorem 1.2. If in the setting above g is the direct sum5 of a semisimple
and an Abelian Lie algebra and A ∈ Q with As > 0, then

lim
ε→0

∫
PS

e−Tr(Q2)−2iTr(QA)χε(Q)dQ = c e−Tr(A2) (1.17)

holds. Here, χε(Q) = exp( ε4 Tr(Q − θQ)2) is a regulating function and dQ
denotes a constant volume form on Q. c ∈ C \ {0} is a constant that does
not depend on A.

The result will be proved by showing that the PS domain can first be
extended and then deformed into a standard Euclidean integration domain
without changing the value of the integral. Therefore we view DQ as holo-
morphic dimQ form onQC. In addition it will be shown that the SW domain
can also be deformed into this Euclidean integral. Hence the PS and SW
domains are contour deformations of the same simple Euclidean Gaussian
domain.

The following corollary is the analogue of corollary 1 in [12]:
4See section A.1.3 in appendix A.
5This means in particular that the semisimple and the Abelian part commute with

each other.
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Corollary 1.1. Let k⊕Q+ be the direct sum of a semisimple and an Abelian
Lie algebra and let h be a maximal Abelian subalgebra of Q+. Furthermore
let g be semisimple and define G = exp(p) exp(k)6. Then

lim
ε→0

∫
h

(∫
G
e−2iTr(gλg−1A)χε(gλg−1)|dg|

)
e−Trλ2

J ′(λ)|dλ| = c̃ e−Tr(A2) ,

holds, where

J ′(λ) =
∏

α∈Σ+(p⊕Q−,h)

α(λ)dα
∏

α∈Σ+(k⊕Q+,h)

|α(λ)dα | .

Σ+(V, h) denotes the sets of positive weights with respect to the adjoint action
of h with weight spaces in V .7 dα are the dimensions of the weight spaces.
|dg| denotes Haar measure on G and |dλ| denotes Lebesgue measure on the
vector space h. c̃ ∈ C \ {0} is a constant that does not depend on A.

The following corollary is the analogue of theorem 1 in [12]:

Corollary 1.2. If the parametrisation PS is nearly everywhere injective
and regular, then

lim
ε→0

∫
ImPS

e−Tr(Q2)−2iTr(QA) χε(Q) sgn(J ′(λ)) |dQ| = c̃′e−Tr(A2)

holds. ImPS denotes the image of PS and the mapping from ImPS to h

sending Q to λ is well defined up to a set of measure zero. |dQ| denotes
Lebesgue measure on Q. c̃′ ∈ C \ {0} is a constant that does not depend on
A.

1.4 Proof of the theorem

For simplicity we restrict ourselves to the case where g is semisimple. The
extension to the more general case is straightforward. The proof is divided
into three parts. The first part, 1.4.1, contains the derivation of a new
parametrisation of the PS domain, which makes its boundary visible in the
domain of definition. Decomposing this parametrisation suitably as a sum of
integration cells one obtains an adequate description of the boundary of the
PS domain. The second part of the proof, 1.4.2, deals with the extension of
the PS domain to a domain ePS without boundary. First we identify good
directions into which the PS domain can be extended. Then an extension
of PS that does not change the value of the integral is given. Finally in
section 1.4.3 we construct a deformation DePS of the extended PS domain
to the Euclidean domain. The deformation satisfies ∂DePS = Euclid−ePS.

6G is the unique analytic subgroup of GL(n, C) with Lie algebra g.
7See also section A.1.4 in appendix A.
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Essentially we want to make rigorous the following schematic application of
Stokes: ∫

PS
g(Q,A)dQ =

∫
ePS

g(Q,A)dQ

= −
∫
DePS

d(g(Q,A)dQ)︸ ︷︷ ︸
=0

+
∫
Euclid

g(Q,A)dQ ,

where we define g(Q,A) := e−Tr(Q2)−2iTr(QA). Note that the first term in
the second line is identically zero since g(Q,A) is holomorphic in Q. At this
point a warning is in order: In this form the upper expressions do not make
sense. In order for the integrals over PS, ePS and DePS to exist we have
to include some regularisation. This delicate issue is discussed in detail in
the last part of section 1.4.3.

1.4.1 A suitable parametrisation of the PS domain

First, we perform a series of reparametrisations to derive a more convenient
parametrisation which allows to use the geometric intuition from the two
dimensional example for the PS domain and its boundary. Finally we de-
compose the parametrisation into different parts, allowing the application of
Stokes’ theorem. In the following we use standard results from Lie theory.
A good reference is [14]. In addition appendix A gives a detailed description
of the constructions we use.

Reparametrisation I: Decomposition of p

The goal of the next three reparametrisations is to evaluate PS(Y,X) =
Ad(eY )X in more detail. Key to this is choosing a maximal Abelian sub-
algebra a in p, whose adjoint action on Q = Q+ ⊕Q− can be diagonalised
simultaneously.8 To begin with, we decompose the parameter space p to see
the algebra a. Therefore we define the compact group K := exp(k) and the
centraliser ZK(a) of a in K. Furthermore ao+ ⊂ a denotes the interior of a
fixed Weyl chamber.9 Consider the mapping

RI : ao+ ×K/ZK(a)→ p

(H, [k]) 7→ kHk−1 .

RI is obviously well defined. In appendix A.2.1 it is shown that RI is
injective and regular. Hence RI is a diffeomorphism onto. Note, that p \
Im(RI) is a set of measure zero since p = ∪k∈Kkak−1 10 and Im(RI) =
∪k∈Kk(a\∪α kerα)k−1 where α are the restricted roots with respect to a.11

8See section A.1.4 in appendix A.
9See [14] for a definition and properties of Weyl chambers.

10This standard result, which can be found in [14], is used without further explanation.
11See section A.1.4 in appendix A.
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To be precise we want to use the parametrisation

PS ◦RI : a+ ×K/ZK(a)×Q+ → Q

(H, [k], X) 7→ ekHk
−1
Xe−kHk

−1
.

The orientation of PS is given by an orientation of p ⊕ Q+. Declaring RI
to be orientation preserving induces an orientation on ao+×K/ZK(a)×Q+.
To keep the notation simple we call each new parametrisation again PS.

Reparametrisation II: Twisting K/ZK(a) and Q+

In this section we prepare further evaluation of the a action in the next
subsection. Consider the reparametrisation

RII : K ×ZK(a) Q+ → K/ZK(a)×Q+

[kz−1, zXz−1] 7→ ([k], kXk−1) .

Note that z ∈ ZK(a) in the expression [kz−1, zXz−1] indicates group actions
of ZK(a) on K and onQ+. These group actions are used to define the bundle
K ×ZK(a) Q+. The inverse of RII is given by

R−1
II : K/ZK(a)×Q+ → K ×ZK(a) Q+

([k], X) 7→ [k, k−1Xk] .

RII is obviously a diffeomorphism and therefore can be used as a reparametri-
sation to obtain

PS ◦RII : ao+ ×K ×ZK(a) Q+ → Q

(H, [kz, z−1Xz]) 7→ ekHk
−1
kXk−1e−kHk

−1

= keHXe−Hk−1

as new parametrisation.

Reparametrisation III: Decomposition of Q+

The weight decomposition of Q with respect to the adjoint action of a is
given by

Q = Q0 ⊕
⊕

α∈Σ+(Q,a)

(Qα ⊕Q−α) .

Here Σ+(Q, a) denotes the set of posive weights. Defining

Q+,α := Fixθ(Qα ⊕Q−α) and Q+,0 = Fixθ(Q0) ,
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we obtain the decomposition

Q+ = Q+,0 ⊕
⊕

α∈Σ+(Q,a)

Q+,α .

For more details and properties of this decomposition see appendix A.1.4.
Since ZK(a) is a subset ofK, and, by definition, commutes with the ad(a)

action on Q, the decomposition is compatible with the bundle structure of
K ×ZK(a) Q+. Again, the reparametrisation

RIII : a+ ×K ×ZK(a)

(
Q+,0 ⊕

⊕
α∈Σ+(Q,a)

Q+,α

)
→ a+ ×K ×ZK(a) Q+

(H, [kz, z−1Mz, z−1Xαz]) 7→
(
H,
[
kz, z−1

(
M +

∑
α∈Σ+(Q,a)

Xα

)
z
])

,

is an orientation preserving diffeomorphism.
We define a mapping φ : Q+ → Q− implicitly through

[H,Xα] = α(H)φ(Xα) and [H,φ(Xα)] = α(H)Xα (1.18)

for all H ∈ a. See also appendix A.1.3. Using (1.18) a short calculation
gives

ead(H)Xα = cosh(α(H))Xα + sinh(α(H))φ(Xα) .

Moreover, the parametrisation can be rewritten to

PS ◦RIII : a+ ×K ×ZK(a)

(
Q+,0 ⊕

⊕
α∈Σ+(Q,a)

Q+,α

)
→ Q

(H, [k,M,Xα])

7→ Ad(k)
[
M +

∑
α∈Σ+(Q,a)

[
cosh(α(H))Xα + sinh(α(H))φ(Xα)

]]
.

In the following PS ◦RIII is denoted simply by PS.

Reparametrisation IV: Transfer boundary to a+

As a motivation for the next reparametrisation of Q+,α one might imag-
ine the coordinate line belonging to λH ∈ a+ as a hyperbola. We want
to have a simple Euclidean picture of the situation. Thus we change our
parametrisation in a way that these coordinate lines are straight lines, see
figure 1.6. Most importantly such a reparametrisation simplifies the view
on the boundary of the PS domain, as is discussed in the next subsection.



1.4. PROOF OF THE THEOREM 15

Q+,α

Q−,α

Q+,α

Q−,α

Figure 1.6: Motivation for the third reparametrisation step. The dashed
lines are coordinate lines of λH ∈ a+.

Thus, the fourth reparametrisation we use is given by

RIV : a+ ×K×ZK(a)

(
Q+,0 ⊕

⊕
α∈Σ+(Q,a)

Q+,α

)
→ a+ ×K ×ZK(a)

(
Q+,0 ⊕

∑
α∈Σ+(Q,a)

Q+,α

)
(H, [k,M,Xα]) 7→

(
H,
[
k,M,

1
cosh(α(H))

Xα

])
,

which is also an orientation preserving diffeomorphism. We obtain

PS ◦RIV : a+ ×K ×ZK(a)

(
Q+,0 ⊕

⊕
α∈Σ+(Q,a)

Q+,α

)
→ Q

(H,[k,M,Xα]) 7→ Ad(k)
[
M +

∑
α∈Σ+(Q,a)

[
Xα + tanh(α(H))φ(Xα)

]]
,

(1.19)

which we again call PS in the following.

Boundary of the PS domain

In this subsection we explain why parametrisation (1.19) is useful to get an
intuition for the geometry and especially the boundary of the PS domain.
This discussion is not meant to be rigorous but motivates the next steps of
the proof.

The geometry can be described using Tr(XY †) as an Ad(K)-invariant
scalar product on Q. Thus for the moment we forget about the Ad(K)
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Q+,α

Q−α

Figure 1.7: Interior of the PS domain. The rest is generated by the K
action.

action and restrict ourselves to the inner part

iPS : a+ ×
(
Q+,0 ⊕

⊕
α∈Σ+(Q,a)

Q+,α

)
→ Q

(H,M,Xα) 7→M +
∑

α∈Σ+(Q,a)

[
Xα + tanh(α(H))φ(Xα)

]
.

Note that the different Q+,α and also Q−,α are all orthogonal to each other.
Hence we consider only one α ∈ Σ+(Q, a) at a time:

Xα + tanh(α(H))φ(Xα) ,

for which figure 1.7 is a good two dimensional picture. Except for the
additional presence of the Weyl group, figure 1.7 is in agreement with figure
1.3 of the two dimensional example.

It is clear that the boundary is reached when some α(H) goes to ±∞ and
hence tanh goes to ±1. To put it differently, the boundary of the domain of
integration can be reached through a limit in the parameter space a+. Note
that acting with K on the boundary, identified in the inner part of the PS
parametrisation, the full boundary is generated.

Since we want to get rid of the boundary by attaching halfplanes to the
PS domain, we want to give a parametrisation which reaches all boundary
points. This implies performing the limit explicitly and thus making the
boundary visible in the domain of definition.

Decomposition of the parametrisation PS

The problem we face is to perform the limit in a+ in a well defined way.
Therefore we have to discuss the weights α ∈ Σ+(Q, a) in more detail.

First note that α(H) might change sign on a+ since a+ is defined with
respect to the restricted roots β ∈ Σ(g, a). Within this subsection α will
always denote a weight in Σ+(Q, a).



1.4. PROOF OF THE THEOREM 17

The main idea is to decompose the PS parametrisation by decomposing
a+ into different cones on which sgn(α(H)) stays constant or α(H) goes to
zero for all α ∈ Σ+(Q, a).

The closures of the connected components of a+ \ ∪α ker(α) are pointed
polyhedral cones, whose edges lie in the intersections of hyperplanes defined
by the kernels of the weights in Σ+(Q, a). Let us consider one of these
pointed cones. It can also be defined as an intersection of halfspaces or as
non-negative linear combination of some generators Hi ∈ a. The generators
are the edges of the cone. In general the number of generators might be
greater than n := dim a. But each pointed cone can be triangulated (without
introducing new vertices) into simplicial cones, i.e., cones where the number
of generators equals dim a. See for example [13]. Now we fix triangulations
for each original pointed polyhedral cone. Thus we obtain a decomposition
of a+ into simplicial cones, which we denote by a+,c and

a+ =
⋃
c∈C

a+,c , (1.20)

where C is an index set for the different cones. Denote the generators/edges
of a+,c by Hi,c. Then we can represent H ∈ a+,c uniquely as

H =
n∑
i=1

hiHi,c (1.21)

with coefficients hi ∈ R+. The important thing is that the sign of all α on
a given simplicial cone stays constant. However it is still allowed that α
vanishes at the boundary of the simplicial cone. Thus we decompose our
parametrisation as follows:

PS =
∑
c∈C

PS|a+,c×K×ZK (a)(Q+,0⊕
L
α∈Σ+(Q,a)Q+,α) .

In the following we hide the index c of Hi,c and use the notation H =∑
i h

iHi for H ∈ a+ which implies the choice of Hi as described above. By
construction we then have hi ≥ 0.

Reparametrisation V: Making the boundary visible

To make the boundary visible in the domain of definition we define

aB,c =

{
n≡dim a∑
i=1

hiHi ∈ a+,c|∀i : 0 ≤ hi ≤ 1

}
.

and use the reparametrisation

RV,c : aoB,c → a+,c

n∑
i=1

hiHi 7→
n∑
i=1

hi

1− hi
Hi ,
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which is an (orientation preserving) diffeomorphism onto for each simplicial
cone. The reparametrisation is visualised in figure 1.8. Note that there is
an obvious diffeomorphism between [0, 1]n and aB,c. Defining for each cone
c ∈ C

PSc : [0, 1]n ×K ×ZK(a)

(
Q+,0 ⊕

⊕
α∈Σ+(Q,a)

Q+,α

)
→ Q

(hi,[k,M,Xα]) 7→

Ad(k)
[
M +

∑
α∈Σ+(Q,a)

(
Xα + tanh

(∑
i

hi

1− hi
α(Hi)

)
φ(Xα)

)]
, (1.22)

we have PS =
∑

c∈C PSc as an equation of integration chains. It is impor-
tant to keep in mind that [0, 1]n is essentially aB,c, which can be seen as a
truncated cone in a+.

In the following we want to give the notion ‘boundary of the PS domain’
a precise meaning. For integration cells, i.e., differentiable mappings defined
on a cube, the boundary operator ∂ is defined as usual. ∂ can also be applied
to integration chains, i.e. formal linear combinations of cells. In principle
we would have to decompose each PSc into cells to apply ∂. In the following
we argue that we can treat each PSc effectively as cell with the boundary
operator ∂ acting just on the [0, 1]n part of the domain of definition.

First we have to show that PSc can be extended to a neighbourhood
of [0, 1] on which it is still differentiable. This property is included in the
definition of an integration cell. It is needed to define the orientation of the
boundary. Let us first concentrate on the tanh term in the PSc parametri-
sation. Since

lim
hj→1

∂hj tanh
[ n∑
i=1

hi

1− hi
α(Hi)

]
= 0 , (1.23)

generalises to all higher (and mixed) partial derivatives, we extend PSc for
hi > 1 by setting it constant in that direction. To be more precise we define
for hi > 0

PSc(. . . , hi, . . . ) := PSc(. . . , 1, . . . ) .

For hi < 0 just analytically continue the parametrisation PSc. Using (1.23)
it can be easily shown that the extension of PSc to a neighbourhood of
[0, 1]n is differentiable.

Now we present an argument that we can treat each PSc effectively as
cell and that it is enough to let the boundary operator ∂ act on the [0, 1]n

part of the domain of definition. Since K is a closed compact manifold it
suffices to discuss boundary contributions arising from a decomposition of
Q+,0 ⊕

∑
α∈Σ+(Q,a)Q+,α into cells. Inspecting our parametrisation we see
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RV

Figure 1.8: su(2, 2) example for RV mapping aB on the left hand side to
a+ on the right side. In this example there is only one simplicial cone, i.e.
|C| = 1.

that going to infinity in the domain of definition implies going to infinity
in the domain of integration. In section 1.4.3 we show that the integrand
converges exponentially on this domain and hence all possible boundary
contributions vanish.

Only the part [0, 1]n, or equivalently, the part aB,c of the domain of
definition, leads to a nontrivial boundary. The boundary parts coinciding
with boundaries of a+ are of codimension at least two, and thus do not
contribute. For a detailed argument concerning this point see appendix
A.2.3.

1.4.2 Extending the PS domain

In this section we construct an extension of the PS domain that has no
relevant boundary. This means we have to attach additional domains to
the boundary of the PS domain. The idea is to attach a halfline to each
boundary point. The direction of this halfline should be a convergent one,
and it should also guarantee that the attached domain does not contribute
to the integral when integrated against f(Q) dQ. First we determine such a
direction, and then give a parametrisation of the attached domains. In the
following it is often convenient to view B(X,Y ) := Tr(XY ) as a bilinear
form on QC.

Good directions

We want to extend the PS domain from the boundary into an imaginary null
directions Ei. The terminology ‘null direction’ conveys two things. First Ei
is a null direction in the sense that B(Ei, Ei) = 0. And second the extension
in this direction does not contribute to the integral since the volume form
vanishes for these directions. Ei shall also be a convergent direction. It is
reasonable to expect that the term exp(−2iB(Q,A)) guarantees convergence
in this situation if

< [iB(Ad(k)Ei, A)] = <[iTr(s−1 Ad(k)EiAs)] > 0 . (1.24)
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In order for (1.24) to hold it suffices that isAd(k)Ei ≥ 0 and Ei 6= 0, since
As > 0 by assumption. For our definition of Ei below it is important that
for Y ∈ p

s−1eY se−Y = e−2Y > 0

holds. The natural choice for Ei is

Ei := −2i lim
t→∞

Ad(etHi)s
maxα∈Σ+(Q,a) e|α(tHi)|

. (1.25)

Note that ZK(a) acts trivially on Ei. Let us also mention again that we have
hidden the dependence of Hi on c ∈ C. Thus Ei also depends on c ∈ C.

It is instructive to give a more explicit form of Ei. Since s ∈ Q+ we have
the decomposition

s = Ms +
∑

α∈Σ+(Q,a)

Xs,α , (1.26)

where Ms ∈ Q+,0 and Xs,α ∈ Q+,α. A short calculation gives

Ad(eH)s = Ms +
∑

α∈Σ+(Q,a)

cosh(α(H))Xs,α + sinh(α(H))φ(Xs,α) .

This shows that the limit in (1.25) exists. In addition Ei 6= 0 because a →
Q−, H 7→ [H, s] is injective. The properties of this mapping are discussed in
detail in appendix A.1.3. Note also that Ei depends on the chosen simplicial
cone c, and that B(Ei, Ei) = 0. Most importantly inequality (1.24) holds
(even without taking the real part).

is−1Ei can be regarded as an orthogonal projection on the weight space
(in the vector space on to which g acts) with the largest eigenvalue with
respect to the eHi action.

Parametrisation of the extension

In this section we suggest an extension of the PS domain and then check
that it has all the desired properties. The extended PS domain (ePS) is
parametrised by

ePS : a+×K ×ZK(a)

(
Q+,0 ⊕

∑
α∈Σ+(Q,a)

Q+,α

)
→ QC

(H, [k,M,Xα]) 7→

Ad(k)
[
M +

∑
α∈Σ+(Q,a)

[
Xα + tanh

(∑
j

ξ(hj)α(Hj)
)
φ(Xα)

]

+
n∑
j=1

Θ(hj − 1)(hj − 1)Ej
]
,
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where we use

ξ(h) :=
{

h
1−h h < 1
∞ h ≥ 1

Θ is the step function. The attached surface starts as soon as some hi > 1.
The limit contained in the expression tanh(

∑
j ξ(h

j)α(Hj)) is well de-
fined because sgn(α(Hj)) is the same for all i with α(Hi) 6= 0. Note that
the mapping ePS is well defined since ZK(a) acts trivially on the Ei.

In the following we decompose the parametrisation ePS into different
pieces, which can be treated as integration cells. Remember that we al-
ready have the corresponding decomposition PS =

∑
c∈C PSc. For ePS the

situation is slightly more involved as we have to account explicitly for the
limit being taken, i.e., which hi are larger than one. The different possibil-
ities are characterised by subsets L ⊂ {1, 2, . . . , n = dim a}. The extended
parametrisation decomposes into several pieces ePSL,c. The situation is
visualised in figure 1.9. To be able to write down ePSL,c explicitly we define

ΣL,6= := {α ∈ Σ+(Q, a)|∃i ∈ L : α(Hi) 6= 0}

and

ΣL,= := {α ∈ Σ+(Q, a)|∀i ∈ L : α(Hi) = 0} .

Then we have for each L ⊂ {1, 2, . . . , n = dima} and c ∈ C

ePSL,c : [0, 1]n−|L| × [1,∞)|L| ×K ×ZK(a)

(
Q+,0 ⊕

∑
α∈Σ+(Q,a)

Q+,α

)
→ QC

(hi, [k,M,Xα]) 7→

Ad(k)
[
M +

∑
α∈ΣL, 6=

(Xα + sgn(α(Hi))φ(Xα))

+
∑

α∈ΣL,=

[
Xα + tanh

( n∑
j=1

ξ(hj)α(Hj)
)
φ(Xα)

]
+
∑
j∈L

(hj − 1)Ej
]
.

Next we present an argument that ePSL,c can be treated as an integration
cell and that the boundary operator ∂ only acts on [0, 1]n−|L| × [1,∞)|L|.
First we discuss the extension of ePSL,c to a neighbourhood of [0, 1]n−|L| ×
[1,∞)|L|. For i /∈ L and hi > 0 we define

ePSL,c(. . . , hi, . . . ) := ePSL,c(. . . , 1, . . . ) ,

and for hi < 0 or i ∈ L and hi < 1 we analytically continue the parametrisa-
tion ePSL,c. The boundary operator ∂ applied to ePSL,c is evaluated using
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H1

H2

L = ∅

L = {2}

L = {1}

L = {1, 2}

Figure 1.9: This figure shows a+ for g = su(2, 2). a+ is decomposed into
the domains of definition for the different mappings ePSL,c in a+ with L ⊂
{1, 2}.

exactly the same reasoning as for the PSc mappings. Thus ∂ acts only on
[0, 1]n−|L| × [1,∞)|L|. To see that

∂ePS =
∑
c∈C

∑
L⊂{1,2,...,n}

∂ePSL,c = 0

holds, note that the different integration cells ePSL,c fit together by def-
inition, i.e., the induced orientation on the boundaries between two neigh-
bouring cells is just opposite. In section A.2.3 in appendix A it is shown
that the contributions from ∂a+ are of codimension at least two. Thus a
contribution can only come from hi going to infinity, but the integral is
convergent and hence these terms do not contribute either.

To get some intuition for the situation it is useful to note that the
halflines which are glued to boundary points of the PS domain point into
a direction within ⊕α∈Σ(Q,a)iQα, and hence cannot coincide with tangent
vectors to PS which live in Q.

Extensions are nullsurfaces

Now we want to motivate that the extension does not contribute to the
integral. The following argument is not rigorous as it does not refer to
existence and convergence of the integrals involved.

The holomorphic volume form gives zero if two linearly dependent (over
C) vectors are inserted. Thus it is enough to show that we can find two
tangent vectors of the extension which are linearly dependent over C. Let
hj > 1, then one tangent vector is Ad(k)Ej(H). The latter can be expanded
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as follows:

Ej = −i
∑

α∈Σ{j},6=

eαj (Xs,α + sgn(α(Hj))φ(Xs,α)) , (1.27)

where eαj ∈ {0, 1}. Within the boundary parametrisation the following terms
are contained:

Ad(k)
∑

α∈Σ{j},6=

(Xα + sgn(α(Hj))φ(Xα)) .

It is clear that by differentiation in
∑

α∈Σ+(Q+,a)Q+,α in the direction of∑
α∈Σ{i}, 6=

eαi Xs,α we obtain a tangent vector parallel (over C) to Ad(k)Ei.
This implies that the volume form vanishes, and that the extension of PS
does not contribute to the integral. This argument does not incorporate
the function which is integrated, but only on the integration chain and the
volume form.

1.4.3 Equivalence of PS and Euclid

Finally we want to show that the integral over PS equals the integral over
Euclid. First we give a deformation of ePS into Euclid. Then we apply
Stokes’ theorem. To get the desired equation we first show the existence of
the appearing integrals with regularisation ε > 0. A careful discussion of
the limit ε going to zero yields the theorem.

Deformation of ePS into Euclid

The idea is to deform ePS into the subspace Q+ ⊕ i[p, s] of QC where B is
positive definite. Note that in appendix A.1.3 it is shown that [p, s] = Q−.
Along the deformation we have to show that the integral remains convergent,
so that no boundary terms at infinity are generated.

The deformation is given by

DePS : [0, 1]× a+ ×K ×ZK(a)

(
Q+,0 ⊕

∑
α∈Σ+(Q,a)

Q+,α

)
→ QC ,

(t,H,[k,M,Xα]) 7→

Ad(k)
[
M +

∑
α∈Σ+(Q,a)

(
Xα + (1− t) tanh

( n∑
j=1

ξ(hj)α(Hj)
)
φ(Xα)

)]
︸ ︷︷ ︸

Ξ

+ Ad(k)
[ n∑
j=1

Θ(hj − 1)(hj − 1)(Ej − tθ(Ej) + t∆Xs,j)
]

︸ ︷︷ ︸
Υ

, (1.28)
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where we use

∆Xs,i := −2
∑

α∈Σ+(Q,a)

α(Hi)iφ(Xs,α)− (Ei − θ(Ei)) .

Note also that DePS is well defined, since the involution θ commutes with
the action of the centraliser ZK(a). To proceed we decompose DePS simi-
larly as ePS:

DePSL,c : [0, 1]1+n−|L| × [1,∞)|L| ×K ×ZK(a)

(
Q+,0 ⊕

∑
α∈Σ+(Q,a)

Q+,α

)
→ QC

(t,hi, [k,M,Xα]) 7→ Ad(k)
[
M

+
∑

α∈ΣL, 6=

(Xα + (1− t) sgn(α(Hi))φ(Xα))

+
∑

α∈ΣL,=

[
Xα + (1− t) tanh

(∑
j

ξ(hj)α(Hj)
)
φ(Xα)

]
+
∑
j∈L

(hj − 1)(Ej − tθ(Ej) + t∆Xs,j)
]
.

Using similar reasoning as for ePSL,c each parametrisation DePSL,c can be
seen as integration cell with ∂ acting only on the [0, 1]1+n−|L| × [1,∞)|L|

part. In particular we have

∂DePS =
∑
c∈C

∑
L⊂{1,...,n}

∂DePSL,c = DePS(t = 1)−DePS(t = 0) ,

where we used in the last equality that the contributions from boundaries
of a+ vanish.12

Inspecting our previous arguments it is clear that for t ∈ [0, 1), DePSL,c(t)
are integration chains with the same properties as ePSL,c. For t = 1 and
L 6= {1, . . . , n} the parametrisation DePS(1) degenerates, i.e., for i /∈ L we
have ∂hiDePS(1) = 0. Hence we have the following equation for integration
chains:

DePS(1) =
∑
c∈C

DePS{1,...,n},c(1) .

In the following we establish the connection between DePS(1) and Euclid.
Therefore it is useful to introduce the mapping

ψ : Rn
+ → [1,∞)n

(. . . , hi, . . . ) 7→ (. . . , hi + 1, . . . ) .

12See section A.2.3 in appendix A.
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The precise statement we show is:

Euclid =
∑
c∈C

DePS{1,...,n},c(1) ◦ (ψ, id) ◦R−1
III ◦R

−1
II ◦R

−1
I ,

where id denotes the identity on K×ZK(a) (Q+,0⊕
∑

α∈Σ+(Q,a)Q+,α). Since
[p, s] = Q−, the following calculation suffices:

DePS(1, ψ(H), [k,M,Xα]) = Ad(k)
(
M +

∑
α∈Σ+(Q,a)

Xα − i
∑

α∈Σ+(Q,a),i

2hiα(Hi)φ(Xs,α)
)

= Ad(k)
(
M +

∑
α∈Σ+(Q,a)

Xα − 2i
∑

α∈Σ+(Q,a)

[H,Xs,α]
)

= Ad(k)
(
M +

∑
α∈Σ+(Q,a)

Xα

)
− 2iAd(k)[H, s]

= Ad(k)
(
M +

∑
α∈Σ+(Q,a)

Xα

)
− 2i[Ad(k)H, s]

= X − 2i[Y, s] .

In the third equality we use equation (1.26) and in the last line the reparametri-
sations RIII , RII and RI are understood to be undone.

Application of Stokes’ theorem

In our application of Stokes’ theorem we essentially want to use ∂DePS =
Euclid−ePS. To that end, note that the boundary operator ∂ acts only on
the [0, 1]1+n−|L|× [1,∞)|L| part of the domain of definition of DePSL,c. The
boundary parts coinciding with boundaries of a+ are again of codimension
two and do not contribute (see also appendix A.2.3). The only nonvanish-
ing contribution comes from t = 0 (ePS) and t = 1 (Euclid). Since we
want to postpone issues of convergence to the next two subsections, we use
∂DePSε = Euclid − DePS(ε), where DePSε := DePS|t∈[ε,1]. The idea is
to deform Euclid into PS as far as convergence of the integral allows, i.e.
we apply Stokes in the following way:∫

DePS(ε)
g(Q,A)dQ = −

∫
DePSε

d(g(Q,A)dQ)︸ ︷︷ ︸
=0

+
∫
Euclid

g(Q,A)dQ

=
∫
Euclid

g(Q,A)dQ .

Existence of the integral for ε > 0

In this subsection we show that the integral∫
DePS(ε)

g(Q,A)dQ
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exists for 1 ≥ ε > 0. The limit ε → 0 requires more care and is dis-
cussed in the next subsection. Thus we have to evaluate the terms in the
exponent of g(Q,A) in more detail. To this end we note some useful re-
lations that are derived in section A.1.5 in appendix A. For Xα ∈ Q+,α,
X,X ′ ∈

⊕
α∈Σ+(Q,a)Q+α hold:

B(Xα, Xβ) = −B(φ(Xα), φ(Xβ)) = δα,βB(Xα, Xα) , (1.29)
B(X,X ′) = −B(φ(X), φ(X ′)) , (1.30)

B(Xα ± φ(Xα), Xβ ± φ(Xβ)) = 0 , (1.31)
B(Xα + φ(Xα), Xβ − φ(Xβ)) = δα,β2B(Xα, Xα) . (1.32)

For ε > 0 it suffices to discuss the B(Q,Q) term. Referring to (1.28),
B(Ξ,Ξ) can be rewritten to

−B(Ξ,Ξ)

= Tr(M2) +
∑

α∈Σ+(Q,a)

Tr
[(
Xα + (1− ε) tanh

[∑
j

ξ(hj)α(Hj)
]
φ(Xα)

)2]
=

(1.29)
B(M,M) +

∑
α∈Σ+(Q,a)

B(Xα, Xα)
(

1− (1− ε)2 tanh2
[∑

j

ξ(hj)α(Hj)
])
.

For hi ∈ [0, 1] this term guarantees convergence of the integral. The cross
term B(Ξ,Υ) is imaginary and therefore leads only to a phase factor.

Before we turn to B(Υ,Υ) let us make two observations. First note that
B(Ei, Ej) = 0, which can be seen from∑
α∈Σ{j},{i}, 6=

eαi e
α
j B(Xs,α + sgn(α(Hi))φ(Xs,α), Xs,α + sgn(α(Hj))φ(Xs,α))

=
(1.31)

0 , (1.33)

where we define Σ{j},{i}, 6= := Σ{i},6= ∩Σ{j}, 6=. For the equality (1.33) we use
sgn(α(Hi)) = sgn(α(Hj)). Second we have that

Ej − εθ(Ej) + ε∆Xs,j = (1− ε)Ej − ε
∑

α∈Σ+(Q,a)

α(Hj)iφ(Xs,α)

holds. Since B(·, ·) is negative definite on on Q−, the following computation
is enough to show B(Υ,Υ) > 0 for ε ∈ (0, 1] and thus convergence in the hi

directions for all Xα ∈ Q+,α:

B
(
− i
∑

α∈Σ+(Q,a)

α(Hj)φ(Xs,α), Ei
)

=
(1.27)

−
∑

α,β∈Σ+(Q,a)

eβi sgn(β(Hi))α(Hj)B(φ(Xs,α), φ(Xs,β))

= −
∑

α∈Σ+(Q,a)

eαi |α(Hj)|B(φ(Xs,α), φ(Xs,α)) > 0 .
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Thus we conclude that the integral over DePS(ε) exists for ε > 0.

Existence of limε→0

We first show for |L| > 0 that

lim
ε→0

∫
DePSL,c(ε)

g(Q,A)dQ = 0 . (1.34)

The reason for this result is a very general one. The convergence of the in-
tegral at the boundary of PS is brought about by an oscillatory term along
the boundary. In our case, integrating along the boundary lines yields es-
sentially a regularised delta distribution. Our parametrisation is well suited
to show this mechanism explicitly. Using DePS(ε), we pull back dQ to
a+×K×ZK(a)Q+. Choosing an appropriate set of charts and a decomposi-
tion of unity it is enough for our argument to consider integrals over finitely
many subsets a+×Ui×Q+, with Ui ⊂ K/ZK(a). Here, it is important that
K/ZK(a) is compact. Then the integration is decomposed into an outer
part over a+ ×K/ZK(a), and an inner part over Q+. This is possible since
the integrals are exponentially convergent (ε > 0), and Fubini’s theorem can
be applied. The Q+ integrations are essentially Gaussian times a polyno-
mial coming from the Jacobian. We show that it is possible to perform the
limit ε → 0 after doing the inner Gaussian integrations. In the following
Einstein’s summation convention is in place. Schematically, the Gaussian
integrations over Q+ for each simplicial cone c ∈ C are of the form

IL,c(ε,H, [k]) := e−h
ig̃i

∫
RdimQ+

∏
l

dxl e−(xl)2fl−2ixlgl P ,

where g̃i(ε, [k]), fl(ε, hi, [k]) and gl(ε, hi, [k]) are functions of [k] ∈ K/ZK(a), ε
and H = hiHi ∈ a+ to be specified later on. P is a polynomial in ε, xl, hi,[k]
and ∂r tanh(ξ(hi)α(Hi)), where ∂r represents arbitrary partial derivatives
with respect to hi. Note that i = 1, . . . ,dim a and l = 1, . . . ,dimQ+. Now
it is possible to introduce source terms, and to perform the integral

IL,c(ε,H, [k]) = e−h
ig̃i P ′(∂jl|jl=0

, . . . )
∫
dxle−fl(x

l)2−2ixl(gl+jl)

= e−h
ig̃i P ′′(∂jl|jl=0

, . . . )
∏
l

√
π

fl
e
− (gl+jl)

2

fl

= e−h
ig̃i P ′′′(

1
fl
, . . . )

∏
l

√
π

fl
e
−
g2
l
fl , (1.35)

where primes just indicate that these are different polynomials, and the dots
represent a dependence on ε, hi,[k] and ∂r tanh(ξ(hi)α(Hi)). We will show
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that for ε = 0 we have f1 = 0 and g1 6= 0. Furthermore we show that fl ≥ 0
and gl ∈ R for all l. Then the exponential dominates the polynomial, and
(1.35) is zero for ε = 0. In addition we show that g̃i > 0, and hence the
remaining integrals over a+ are convergent.

Thus the issue of convergence is reduced to a discussion of the functions
g̃i, fl and gl. g̃i is read off from

2iB(Υ, A) = (hi − 1 + ε)g̃i ,

which gives

g̃i = 2iθ(hi − 1)B(Ad(k)(Ei − εθ(Ei) + ε∆Xs,i), A) .

Remembering inequality (1.24) we conclude that g̃i > 0 for small enough ε.
In the following we restrict ourselves to the Q+,α integrations, since the

integrations over Q+,0 are trivially convergent. The functions fl and gl
depend on the choice of basis of Q+. For a good choice, inequality (1.24)
is important. Let ΠQ+ denote the orthogonal projection onto Q+, then we
choose j ∈ L and define

X1 := iΠQ+(Ej) =
∑

α∈Σ{j},6=

eαjXs,α (1.36)

as the first basis vector, and extend this to an orthonormal basis of⊕α(Hj,c)6=0Q+,α,
which fixes the first m basis vectors. Extend this to an orthonormal basis of
Q+ that respects the root decomposition for the root spaces with α(Hj) = 0.
For all Xl and Xl′ we have the equality

B(Xl + φ(Xl), Xl′ + φ(Xl′)) = 0 .

This is important as it makes B(Ξ,Ξ) proportional to δl,l′ , i.e. that the
Gaussian integrals are diagonal. We read off

fl =
∑

α∈Σ{l}, 6=

eαl |B(Xs,α, Xs,α)|
(
1− (1− ε)2 tanh2(ξ(hi)α(Hi))

)
.

In particular we have for l = 1:

f1 = ε(2− ε)B(X1, X1) .

Similarly it is easy to check that the g′′l defined by

−2B(Ξ,Υ) = −2ixlg′′l

vanish in the limit (ε = 0 and hl ≥ 1) or are identically zero. Therefore we
neglect g′′l in the following. Now, we turn to 2iB(Q,A). B(Ξ, A) contains
xl only linearly and thus we define

−2iB(Ξ, A) = −2ixlg′l ,
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which gives

g′l =
∑

α∈Σ{l},6=

eαl B(Xs,α + (1− ε) tanh(ξ(hi)α(Hi))φ(Xs,α), k−1Ak) ,

and gl = g′l + g′′l . This leads to

lim
ε→0

g1 = B(−iEj ,Ad(k−1)A) < 0 .

Putting everything together we obtain that

lim
ε→0

IL,c(ε,H, [k]) = 0 .

In particular
∫
a+,L,c

IL,c(ε,H, [k]) is a bounded function, and the limit limε→0 IL,c(ε,H, [k])
is uniform. Thus the limit commutes with the outer integrals. Hence the
discussion of IL,c(ε,H, [k]) directly yields the existence of the limit.

Reaching PS

The information about IL,c(ε,H, [k]) helps us finish the proof with the fol-
lowing two equations:

lim
ε→0

∫
DePS(ε)

g(Q,A)dQ = lim
ε→0

∫
P
c∈C DePS∅,c(ε)

g(Q,A)dQ

= lim
ε→0

∫
PS

g(Q,A)χε(Q)dQ .

The first equality sign holds since the contributions of all attached surfaces
|L| > 0 vanish. For the last equality sign it is important to note that for∑

c∈C DePS∅,c(ε) only the ε contained in the B(Ξ,Ξ) term is important. All
other ε can be set to zero even before executing the Gaussian integrations.
This procedure affects the terms B(Ξ,Υ) and B(Q,A). The last equality
holds by identifying χε′ = exp(+ ε′

4 Tr(Q− θQ)2) and ε′ = 2ε− ε2.

Remark 1.1. To obtain the theorem when g = k⊕ p is the direct sum of a
semisimple and an Abelian Lie algebra, let a′ ⊕ a denote a maximal Abelian
subalgebra of p and replace a+ by a′ × a+ and H by H ′ + H everywhere in
the proof. In addition let k′ denote the semisimple part of k and replace k by
k′ everywhere in the proof.

Remark 1.2. It is possible to choose different regularisation functions χε.
Nevertheless, the choice made here seems natural, as it has the highest in-
variance possible.

Remark 1.3. The convergence properties can be seen quite clearly in the
discussion of Ic(ε,H, [k]). The convergence is not uniform in A. To have
uniform convergence, we need As > δ for fixed δ > 0.
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Remark 1.4. In applications with As ≥ 0, one has to substitute A by A+δs.
For fixed δ > 0 this gives uniform convergence in A.

Remark 1.5. In the proof, we do not have to require that the extensions of
PS are nullsurfaces. However, this idea is needed as a guiding principle for
finding the extension.

1.4.4 Equivalence of SW and Euclid

Let us note that the SW domain and the validity of the corresponding hy-
perbolic Hubbard-Stratonovich transformation is discussed in detail in [7].
Nevertheless we give a different proof by deforming SW into Euclid. Us-
ing some of the constructions of the proof for the PS transformation this
deformation can be stated very explicitely.

First we briefly discuss convergence of the Gaussian integral over

SW : p⊕Q+ → QC

(Y,X) 7→ X − ibeY se−Y .

For X ∈ Q+ and Y ∈ p we have that B(X,X) > 0 and

B(ibeY se−Y , ibeY se−Y ) = −b2B(s, s)

is constant. Furthermore B(X, ibeY se−Y ) is purely imaginary and

−iB(−ibeY se−Y , A) = −bTr(e−2YAs) < 0

yields convergence in the p directions.
To see the properties of SW more explicitely we use the reparametrisa-

tion RI and the decomposition of s to obtain:

SW ◦RI : a+ ×K/ZK(a)×Q+ → QC

(H, [k], X) 7→X − ibAd(k)
[
Ms+∑

α∈Σ+(Q,a)

[cosh(α(H))Xs,α + sinh(α(H))φ(Xs,α)]
]
.

(1.37)

Since the image of the boundary of a+ is again of codimension at least two,
the parametrisation (1.37) clearly shows that ∂SW = 0.

A suitable deformation is given by

DSW : [0, 1]× a+ ×K/ZK(a)×Q+ → QC

(t,H, [k], X) 7→ X − ibAd(k)
[
(1− t)Ms+∑

α∈Σ+(Q,a)

[(cosh((1− t)α(H))− 1)Xs,α +
sinh((1− t)α(H))

1− t
φ(Xs,α)]

]
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Note that DSW (t = 0) = SW and DSW (1, H, [k], X) = X + i[kHk−1, s].
Since [p, s] = Q− we obtain DSW (1) = Euclid.

To complete the argument we show that the integral over DSW is con-
vergent. Therefore note that

B(Q,Q) =B(X,X)︸ ︷︷ ︸
>0

+
∑

α∈Σ+(Q,a)

(2t− t2)
sinh2((1− t)α(H))

(1− t)2
B(Xs,α, Xs,α)︸ ︷︷ ︸

>0

+ . . . ,

where the dots represent unimportant terms. These are terms which are
purely imaginary, terms which are linear in sinh and all terms containing
Ms. Thus we have convergence for t > 0. For t = 0 convergence is generated
by the B(Q,A) term, as discussed above for the SW parametrisation.

1.4.5 Different representations of the integral

In this section we discuss different possibilities to represent the integral over
the PS domain. In particular we want to derive corollary 1.1 and 1.2.

Assume that k⊕Q+ is the direct sum of an Abelian and a semisimple Lie
algebra. Then choose a maximal Abelian subalgebra h of Q+ and let h =
h′ ⊕ ã be the corresponding decomposition into the Abelian and semisimple
part. Then we have the following reparametrisation:

R̃ : p×K/ZK(ã)× ão+ × h′ → p⊕Q+

(Y, [k], H̃, J ′) 7→ Y + k(H̃ +H ′)k−1 .

If g is semisimple we can use Cartan decomposition to define a semisimple
Lie group as G := epK. This yields the reparametrisation

R : G/ZK(ã)× ão+ × h′ → p⊕Q+

(eY [k], H̃,H ′) 7→ Y + k(H̃ +H ′)k−1 .

The parametrisation of the PS domain which is most frequently used in
the literature, is

PS ◦R : G/ZK(ã)× ão+ × h′ → Q
([g], H̃,H ′) 7→ g(H̃ +H ′)g−1 .

In the following we present a derivation of corollary 1.1. This is done in a
detailed way that clearly exhibits the origin and form of J ′ in 1.1. In section
A.2.2 we show that the pullback of dQ by PS ◦R is given by

(PS ◦R)∗dQ = ∆(H̃ +H ′) dµ([g]) ∧ dH ,
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where dµ([g]) is a left invariant volume form on G/ZK(ã) and ∆ is given by

∆(H̃ +H ′) =
∏

α∈Σ+(p⊕Q−,h)

α(H̃ +H ′)dα ·
∏

α∈Σ+(k⊕Q+,h)

α(H̃)dα . (1.38)

This needs further explanation: dα denotes the dimension of the weight
space corresponding to α. The weights α(H̃ +H ′) are real since [H̃ +H ′, ·]
is hermitian with respect to Tr(XY †). Furthermore α(H ′) = 0 for α ∈
Σ+(k⊕Q+, h).

It is important that ∆ differs from J ′ in corollary 1.1 only by taking the
modulus of the weights in Σ+(k⊕Q+, h). But the roots α ∈ Σ+(k⊕Q+, h)
are positive when evaluated on ão+. Therefore we have the following equality:∫

PS◦R
f(Q) dQ =

∫
id
f(g(H̃ +H ′)g−1) · J ′(H̃ +H ′) dµ([g]) ∧ dH ,

where id denotes the identity on G/ZK(ã) × ão+ × h′. Now it is possible to
replace the volume form dµ([g]) by the left invariant measure |dµ([g])| and
dH by Lebesgue measure |dH| on h:∫

PS◦R

f(Q) dQ =
∫

G/ZK(ã)×ão+×h′

f(g(H̃ +H ′)g−1) · J ′(H̃ +H ′) |dµ([g])||dH| .

Replacing G/ZK(ã) by G introduces only a constant factor c′ ∈ R \ {0}:
c′ ∈ R \ {0} :∫

PS◦R

f(Q) dQ = c′
∫

G×ão+×h′

f(g(H̃ +H ′)g−1) · J ′(H̃ +H ′) |dµ(g)||dH| ,

where |dµ(g)| denotes the invariant measure on G. Since now |dµ(g)| is in
particular right invariant we can use that the action of the Weyl group on
ã+ generates ã. To exploit this property we need that J ′ is also invariant
under the action of the Weyl group. Recall that J ′ is given by

J ′(λ) =
∏

α∈Σ+(p⊕Q−,h)

α(λ)dα
∏

α∈Σ+(k⊕Q+,h)

|α(λ)dα | .

The second factor is trivially invariant, whereas for the first factor an addi-
tional argument is needed. Therefore note that we used s to define a notion
of positivity for the weights α ∈ Σ+(p⊕Q−, h). Since s is Ad(K) invariant
we conclude that the action of the Weyl group only permutes the weights in
Σ+(p⊕Q−, h) and hence it is invariant. Thus we have∫

PS◦R

f(Q) dQ = c′′
∫

G×h

f(g(H̃ +H ′)g−1) · J ′(H̃ +H ′) |dµ(g)||dH| ,
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where c′′ ∈ R{0} is a constant. Setting f = g · χε we obtain corollary 1.1.
If PS is nearly everywhere injective and regular, then so is PS ◦R. This

allows application of the change of variable theorem, which yields corollary
1.2.

1.5 Examples

1.5.1 U(p, q) symmetry

This case has been proven by Fyodorov [10] using different methods. The
general theorem (1.2) can by applied by choosing gl(p + q,C) as complex
Lie algebra and defining s = Diag(1q,−1p). No additional involutions τi are
needed. In this setting, the maximal Abelian subalgebra h ⊂ Q+ is given
by the real diagonal matrices. In addition we have

k⊕Q+ = {x ∈ gl(n,C)|X = sXs} and p⊕Q− = {x ∈ gl(n,C)|X = −sXs}

In the following λ := Diag(λ1, . . . , λp+q) ∈ h denotes a real diagonal matrix.
The weights are given by fi − fj where i 6= j and fi(λ) = λi. The corre-
sponding weight spaces are given by the matrix Eij , which is nonzero only
in the i, jth entry. Thus every weight has a two dimensional weight space,
i.e., complex one dimensional. Thus we have

J ′(λ) =
∏
i<j

|λi − λj |2 .

1.5.2 O(p, q) symmetry

This case has been proven by Fyodorov, Wei and Zirnbauer [12]. In addi-
tion to the involutions of the pseudounitary setting we have an involution
τ1(X) = −sXts and σ1 = −1. The additional involution just requires all
matrices to be real. Therefore the weight spaces are now one dimensional,
and give rise to non trivial signs:

J ′(λ) =
∏

α∈Σ+(p⊕Q−,h)

α(λ)
∏

α∈Σ+(k⊕Q+,h)

|α(λ)|

=
∏

i≤p<j≤p+q
(λii − λjj)

∏
i<j≤p,p<i<j≤p+q

|λi − λj |

=
∏
i<j

|λi − λj |
p∏
i=1

p+q∏
j=p+1

sgn(λi − λj) ,

which is precisely corollary one in [12].
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1.5.3 Two dimensional case

The two dimensional example considered at the beginning of the chapter
can also be put into the general framework. Consider the O(1, 1) case,
and require all matrices to be traceless. This means exchanging gl(2,C) by
sl(2,C). Then all relevant spaces are:

Q+ = R
(

1 0
0 −1

)
, Q− = R

(
0 1
−1 0

)
,

p = R
(

0 1
1 0

)
, k = {0} .

Hence there are only two roots ±(f1 − f2) ∈ Σ(p⊕Q−, h), and J ′ contains
only one factor. But this factor is vital since it yields a nontrivial sign.
Identifying

e1 =
1√
2

(
1 0
0 −1

)
and e2 =

1√
2

(
0 1
−1 0

)
,

we obtain that B(ei, ej) = Tr(eiej) = (−1)i+1δij .

1.5.4 Simple system of interacting bosons

In the following we sketch a simple application of a hyperbolic Hubbard-
Stratonovich transformation in the context of interacting bosons. Let a†

and a denote bosonic creation and annihilation operators and define charge
and pair annihilation operators:

Q :=
N∑
i=1

a†iai and P :=
N∑
i=1

aiai .

Then we consider the simple interaction Hamiltonian given by

Ĥint = eQ2 − bP †P ,

which has to satisfy the stability condition e > b. Using boson coherent
states, and neglecting normal ordering terms for the moment, the Hamilto-
nian is given by

Hint(z̄, z) = e

(
N∑
i=1

z̄izi

)
− b

(
N∑
i=1

z̄iz̄i

)(
N∑
i=1

zizi

)
.

Introducing the matrix

A(z̄, z) :=
1√
2

(√
e
∑N

i=1 z̄izi
√
b
∑N

i=1 z̄iz̄i√
b
∑N

i=1 zizi −
√
e
∑N

i=1 z̄izi

)
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the interaction Hamiltonian is equal to:

Hint(z̄, z) = TrA(z̄, z)2 .

The stability condition translates to As > 0, with s = Diag(1,−1). Fur-
thermore, A satisfies the symmetry relations A = sA†s and A = −ΩtAtΩ,
with

Ω =
(

0 1
−1 0

)
.

Let us now state how this fits into the general setting of theorem 1.2: Choose
sl(2,C) as complex Lie algebra and the additional involution τ1(X) = −ΩtXtΩ,
with σ1 = 1. The relevant spaces are

k = iR
(

1 0
0 −1

)
, p = R

(
0 1
1 0

)
+ iR

(
0 1
−1 0

)
,

Q+ = R
(

1 0
0 −1

)
, Q− = R

(
0 1
−1 0

)
+ iR

(
0 1
1 0

)
.

Now it is possible to apply theorem 1.2 to decouple the interaction term in
the boson coherent state path integral representation of the partition func-
tion of the system. Note however that we have to make the usual continuum
approximation that z̄(t) is complex conjugate to z(t).13 After the applica-
tion of theorem 1.2 the z and z̄ integrations can be performed. We do not
proceed any further in this direction, since the intention was only to illus-
trate a possible application to many body systems with bosonic degrees of
freedom.

13This is an approximation since z(t) and z̄(t) stem from neighbouring time steps in the
discrete time path integral.
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Chapter 2

Bosonisation of granular
fermionic systems

In this chapter we derive a bosonic path integral representation of the grand
canonical partition function of a granular fermionic system.1 In the following
we give an overview of the organisation of this chapter.

In section 2.2 we give a derivation of the bosonic path integral represen-
tation of the grand canonical partition function of a granular fermionic sys-
tem starting from a Grassmann coherent state path integral representation
of the grand canonical partition function. Then colour-flavour transforma-
tion is applied iteratively for each time step, which leads to a factorisation
of the Grassmann integrals. Integrating out the Grassmann variables leads
to the bosonic path integral representation. In section 2.3 we give another
derivation based on a suitably enlarged Fock space. In this larger Fock space
generalised coherent states can be used to obtain the result. Finally in sec-
tion 2.4 we calculate the contribution of fluctuations in the semiclassical
limit. Essentially this amounts to calculate the fluctuation determinant for
generalised coherent state path integrals. To the best of our knowledge there
exists no derivation for the general case. We do the calculation in discrete
time using a method invented by Forman [32].

2.1 Granular bosonisation via colour-flavour trans-
formation

In the first subsection we fix the setting and discuss three different symme-
try classes. Furthermore we state a colour-flavour transformation for each
symmetry class. This transformation is used in the next section to decou-
ple the time evolution within the Grassmann coherent state path integral,

1For a detailed description of the context and the motivation for this chapter see the
second part of the introduction.

37
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i.e. to convert the ‘normalisation factors’ exp(−
∑

k ψ̄kψk) into expressions
containing only pairs ψ̄kψ̄k,ψkψk and ψ̄kψk−1, that are invariants of the cor-
responding group.2 In the third subsection we integrate out the Grassmann
variables. This leads to an effective action which allows a formal continuum
limit.

2.1.1 Setting and symmetry classes

Our starting point is the discrete time Grassmann functional integral repre-
sentation of the grand canonical partition function [35]:

Tr(exp(−βĤ)) = lim
M→∞

∫
DM (ψ̄, ψ) exp(−SM [ψ̄, ψ]) , (2.1)

where Ĥ denotes the Hamiltonian of the granular system. Note that we
absorb the chemical potential into the Hamiltonian to simplify notation.
The discrete time action SM is given by

−SM [ψ̄, ψ] = −
M−1∑
k=0

ψ̄kψk +
M∑
k=1

ψ̄kψk−1 −
β

M

M∑
k=1

H
(
ψ̄k, ψk−1

)
, (2.2)

with antiperiodic boundary conditions ψ̄M = −ψ̄0. Let us first hide the time
step index. The remaining index structure is given by

ψ̄ = (ψ̄1
1, ..., ψ̄

i
α, ..., ψ̄

N ′
Ne)

ψ = (ψ1
1, ..., ψ

i
α, ..., ψ

N ′
Ne)

t .

The upper indices are called internal and the lower external. To distinguish
between external and time indices the former are denoted by greek and the
latter by latin letters. If the internal or external indices are not explicitly
shown, they are summed over. Internal indices will not be denoted by t so
there is no confusion with transposition.

The Hamiltonian is required to have a unitary, orthogonal or unitary
symplectic symmetry. This has the consequence that the Hamiltonian is a
polynomial in the generators of the Howe dual group (see appendix B.2.4
and theorem B.1). The generators are exactly the bilinear invariants of the
symmetry group K ∈ {U(N ′),O(N ′),USp(N ′)}. See table 2.1 for a list of
fermionic Howe dual pairs (K,G). Let k ∈ K, then the group action is given
by

ψ̄j 7→ ψ̄jk
−1 ≡ ψ̄j(1Ne ⊗ k−1) =

N ′∑
i=1

ψ̄ij,αk
−1
im

ψl 7→ kψl ≡ (1Ne ⊗ k)ψl =
N ′∑
i=1

kmiψ
i
l,α , (2.3)

2Here the index structure has been suppressed deliberately. It will be presented in
detail in the next section.
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SO(2N) K G H

N = (p+ q)Ni U(Ni) U(p+ q) U(p)×U(q)
N = NeNi O(Ni) SO(2Ne) U(Ne)
N = 2NeNi USp(2Ni) USp(2Ne) U(Ne)

Table 2.1: (K,G) denotes a Fermionic Howe dual pair.

with time indices j and l. In the following we discuss the situation for each
symmetry group. In the case of unitary symmetry we set N ′ = Ni. The
quadratic invariants of U(Ni) are given by

ψ̄αψβ =
Ni∑
i=1

ψ̄iαψ
i
β .

This corresponds to the special case of unitary Howe dual pairs where p = Ne

and q = 0 (see table 2.1). We restrict ourselves to this case since we are not
aware of a physical system that requires an arbitrary p and q. However the
following constructions readily generalise to the case of arbitrary p and q.
For orthogonal symmetry we set N ′ = Ni and the invariants are given by

ψ̄αψβ =
Ni∑
i=1

ψ̄iαψ
i
β , ψ

t
αψβ =

Ni∑
i=1

ψiαψ
i
β and ψ̄tαψ̄β =

Ni∑
i=1

ψ̄iαψ̄
i
β .

Moreover, for unitary symplectic symmetry we set N ′ = 2Ni. The upper
index i is seen as a composite index (i, s), with s = ±1. The invariants are
given by

ψ̄αψβ =
Ni∑
i=1

∑
s=±1

ψ̄i,sα ψ
i,s
β , ψtαJ

′ψβ =
Ni∑
i=1

∑
s=±1

ψi,sα sψ
i,−s
β

and ψ̄tαJ
′ψ̄β =

Ni∑
i=1

∑
s=±1

ψ̄i,sα sψ̄
i,−s
β ,

and J ′ is the symplectic unit acting on the upper indices. Note that for
k ∈ USp(2Ni) we have ktJ ′ = J ′k−1.

We need some preparations to be able to state the colour-flavour trans-
formations, which we want to use in the next section. First we define

Ψ̄ :=
(
ψ̄j ψtl

)
Ψ :=

(
ψj
ψ̄tl

)
for fixed time indices j and l. The colour-flavour transformations for the
three different symmetry classes are derived in appendix B.2.4. In the fol-
lowing we just state without derivation all objects that are needed to define
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the colour-flavour transformation. In our application of the colour-flavour
transformation we consider two neighbouring time steps. For this reason we
have take twice as many degrees of freedom into account in the application
of the colour-flavour transformation. Therefore we use the colour-flavour
transformation corresponding to the groups summarised in table 2.2 instead
of the ones in table 2.1. In addition we need a complex vector space W

SO(2N) K G H

N = 2NeNi U(Ni) U(2Ne) U(Ne)×U(Ne)
N = 2NeNi O(Ni) SO(4Ne) U(2Ne)
N = 4NeNi USp(2Ni) USp(4Ne) U(2Ne)

Table 2.2: List of Howe dual pairs needed for the colour-flavour transforma-
tions we use.

and the measure dµ(Z†e , Ze) defined in table 2.3. W gives a parametrisation

K W f(Z†e , Ze)
U(Ni) {Ze ∈W2Ne |sZes = −Ze} det−Ne(1 + Z†eZe)
O(Ni) W2Ne det−2Ne(1 + Z†eZe)

USp(2Ni) {Ze ∈W2Ne |sZes = −Ze, JZeJ t = Ze} det−Ne(1 + Z†eZe)

Table 2.3: Wn := {Ze ∈ End(Cn)|Zte = −Ze}, s = 1Ne ⊗ σz and J =
i1Ne ⊗ σy. W parametrises the coset space G/H. Let dw denote Lebesgue
measure on W then we define dµ(Z†e , Ze) := f(Z†e , Ze)dw.

of the coset space G/H, and dµ(Z†e , Ze) denotes the left invariant measure.
Now, we can state the colour-flavour transformation:∫

K
dk exp

[
Ψ̄
(
k 0
0 k−1t

)
Ψ
]

=
∫
W
dµ(Z†e , Ze) det−Ni/2(1 + Z†eZe) exp

[
1
2

Ψ̄ZΨ̄t +
1
2

ΨtZ†Ψ
]
,

(2.4)

where Z := Ze ⊗ 1Ni and Ze ∈ W . We need for the derivation of granular
bosonisation that Z commutes with k.

2.1.2 Application of the colour-flavour transformation

In this section we promote the global symmetry (2.3) of the Hamiltonian
to a local one, which leads to a factorisation of the Grassmann integrals.
We proceed iteratively, i.e., for one time step after the other. First we
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introduce an average over the symmetry group, and then we apply colour-
flavour transformation.

First step: We perform transformation (2.3) for j = 1 and l = 0 in the
discrete time path integral representation and average over K. The corre-
sponding integration variable is called k1. Only the first two summands in
the first term in (2.2) are affected by this transformation. The two sum-
mands are given by

−ψ̄1k
−1
1 ψ1 − ψ̄0k1ψ0 =

(
−ψ̄0 ψt1

)(k1 0
0 k−1

1
t

)(
ψ0

ψ̄t1

)
.

The right hand side above is exactly the left hand side of the colour-flavour
transformation (2.4). Applying (2.4) yields

1
2
(
−ψ̄0 ψt1

)
Z1

(
−ψ̄t0
ψ1

)
+

1
2
(
ψt0 ψ̄1

)
Z†1

(
ψ0

ψ̄t1

)
. (2.5)

Next we use the well known identity

f(ξ̄) =
∫

dη̄dη e−η̄η+ξ̄ηf(η̄) (2.6)

to change the term ψ̄1ψ0 to −η̄1η1 + ψ̄1η1 + η̄1ψ0. Adding this to (2.5) we
obtain

1
2
(
−ψ̄0 ψt1

)
Z1

(
−ψ̄t0
ψ1

)
+

1
2
(
η̄1 ηt1 ψt0 ψ̄1

)(−J σ3

−σ3 Z†1

)
η̄t1
η1

ψ0

ψ̄t1

 . (2.7)

The transformation η̄1 7→ −η̄1 brings the second term to a more convenient
form. In the last step we will make a similar transformation that compen-
sates signs factors which might arise from the first transformation. The first
term in (2.7) is dealt with in the next step.

Second step: Now we do the transformation (2.3) for j = 2 and l =
1 and average over K with integration variable k2. This transformation
changes the first term in (2.7) and the term −ψ̄2ψ2 in (2.2) into

1
2
(
−ψ̄0 (k2ψ1)t

)
Z1

(
−ψ̄t0
k2ψ1

)
− ψ̄2k

−1
2 ψ2

=
1
2
(
−ψ̄0k2 ψt1

)
Z1

(
−kt2ψ̄t0
ψ1

)
− ψ̄2k

−1
2 ψ2 .

Using (2.6) to decouple −ψ̄0k2 gives

−η̄2η2 − ψ̄0k2η2 +
1
2
(
η̄2 ψt1

)
Z1

(
η̄t2
ψ1

)
− ψ̄2k

−1
2 ψ2

= −η̄2η2 +
(
−ψ̄0 ψt2

)(k2 0
0 k−1

2
t

)(
η2

ψ̄t2

)
+

1
2
(
η̄2 ψt1

)
Z1

(
η̄t2
ψ1

)



42 CHAPTER 2. BOSONISATION OF GRANULAR SYSTEMS

Now colour-flavour transformation can be applied:

1
2
(
ηt2 ψ̄2

)
Z†2

(
η2

ψ̄t2

)
+

1
2
(
η̄2 ψt1

)
Z1

(
η̄t2
ψ1

)
− η̄2η2

+
1
2
(
−ψ̄0 ψt2

)
Z2

(
−ψ̄t0
ψ2

)
.

The term in the second line will be treated in step three. Combining the
other terms with ψ̄2ψ1 we obtain

1
2
(
η̄2 ψt1 ηt2 ψ̄2

)(Z1 −1
1 Z†2

)
η̄t2
ψ1

η2

ψ̄t2

 .

Third step: Now we have nearly the same starting point as in step two,
and we can iterate the procedure until step M − 1.

Last (Mth) step: Our starting point is

1
2
(
−ψ̄0 ψtM−1

)
ZM−1

(
−ψ̄t0
ψM−1

)
+ ψ̄MψM−1

=
1
2
(
ψ̄M ψtM−1

)
ZM−1

(
ψ̄M
ψM−1

)
+ ψ̄tMψM−1 ,

where we have used that ψ̄M = −ψ̄0. These are the antiperiodic boundary
conditions that arise in the Grassmann coherent state representation of the
trace. Application of identity (2.6) yields

1
2
(
ψ̄M ψtM−1

)
ZM−1

(
ψ̄tM
ψM−1

)
− η̄MηM + ψ̄MηM + η̄MψM−1 ,

which can be written as

1
2
(
ψ̄M ψtM−1 ηtM η̄M

)(ZM−1 σ3

−σ3 J

)
ψ̄tM
ψtM−1

ηM
η̄tM

 .

As in the first step, we can make an additional transformation ηM 7→ −ηM .
Thus we have obtained a path integral representation which allows a fac-
torisation of the Grassmann integrals. We have introduced new Grassmann
variables η and η̄ and new bosonic variables Z and Z†. Note that the path
integral representation is local in discrete time. However at this stage it is
not clear how to perform the (formal) continuum limit M → ∞. Obtain-
ing such a continuum limit is the aim of the next section. To simplify the
notation we set Z0 = J and Z†M = J† = −J .
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2.1.3 Effective Hamiltonian and the continuum limit

In the last section the time evolution of the Grassmann variables was de-
coupled at the expense of introducing new fields. In this section we want
to integrate out the Grassmann variables to obtain an effective Hamiltonian
in the new fields. Therefore we define the mean value of a function F (ξ) of
Grassmann variables ξ as

〈F 〉X =
∫

dξe
1
2
ξtXξF (ξ)∫

dξe
1
2
ξtXξ

.

In this situation we have the following Wick theorem for Grassmann vari-
ables:

〈exp(χξ)〉X = exp
(
−1

2
χtX−1χ

)
.

Let us first define

Xk :=
(
Zk−1 −1
1 Z†k

)
as an important building block. To this end note the basic Gaussian integral∫

dξ e
1
2
ξtXkξ = det1/2(1+ Z†kZk−1) ,

and the useful identity

X−1
k =

(
Zk−1 −1
1 Z†k

)−1

=

(
(1+ Z†kZk−1)−1Z†k (1+ Z†kZk−1)−1

−(1+ Zk−1Z
†
k)
−1 Zk−1(1+ Z†kZk−1)−1

)
.

Now, integrating out the Grassmann variables yields∫
DMµ(Z†, Z)

det1/2(1+ Z†1J) det1/2(1+ J†ZM−1)

det1/2(1+ Z†1Z1)
M−1∏
k=2

det1/2(1+ Z†kZk−1)

det1/2(1+ Z†kZk)

(
1− β

M
〈H〉Xk

)
,

where we defined

DMµ(Z†, Z) :=
M−1∏
k=1

dµ(Z†k, Zk) .

Recalling Z†M = J† and Z0 = J , we obtain

Tr exp(−βĤ) = lim
M→∞

∫
DMµ(Z†, Z) exp(−SM [Z†, Z])
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with

−SM [Z†, Z] =
1
2

tr ln(1 + Z†MZM−1) +
1
2

M−1∑
k=1

tr ln
1 + Z†kZk−1

1+ Z†kZk

− β

M

∑
k

〈H〉Xk .

This expression allows for a formal continuum limit. Defining

H(Z†, Z) := 〈H〉“Z −1
1 Z†

”
the continuum limit of SM [Z†, Z] can be identified as

−S[Z†, Z] =
Ni

2
tr(ln(1+ Z†(β)Z(β))

− Ni

2

∫ β

0
dτ tr(Z†∂τZ(1+ Z†Z))−

∫ β

0
dτH(Z†, Z) . (2.8)

The boundary conditions are Z(0) = J and Z† = J†. Variation of (2.8)
leads to the following saddle point equations

∂τZ
† =

2
Ni

(1+ Z†Z)(∂ZtH)(1+ ZZ†)

∂τZ = − 2
Ni

(1 + ZZ†)(∂Z̄H)(1+ Z†Z) .

Let us summarise what we have achieved so far: We have obtained a path
integral representation of the grand canonical partition function in terms
of purely bosonic variables. We use the word ‘granular bosonisation’ for
this way of representing a grand canonical partition function of a granular
fermionic system. The representation closely resembles generalised coherent
state path integrals [35] with rather strange boundary conditions and a
classical limit that is controlled by Ni.

In the next section the connection to generalised coherent state path
integral is made precise. This connection sheds some light on the origin and
physical meaning of the boundary conditions. Furthermore we make contact
with the large body of literature concerning coherent states and semiclassical
limits.

2.2 Fock space approach to granular bosonisation

In the previous section we obtained a path integral description in bosonic
variables of the grand canonical partition function of a granular fermionic
system. In particular, the representation suggests that the large Ni limit is
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a classical limit, and that the classical phase space is G/H. However, it is
not so clear how to interpret a classical state Z and the boundary conditions
in terms of the original system. The aim of this section is to propose an
answer to these questions. In addition, this leads to a different derivation
of the path integral representation.

Let us first give a rough motivation for the course of action we take: The
path integral representation of the last section is very similar to well known
generalised coherent state path integrals. Such coherent states are used in
the derivation of colour-flavour transformation to represent the projector P
in appendix B.2.4. These coherent states come with a Fock space containing
twice as many fermions as the original system. This Fock space can be seen
as the tensor product of two copies of the original Fock space of our system.
We will take the view that one is the state space of our system and the other
is an ancilla system. The details are discussed in subsection 2.2.1. Granular
bosonisation is derived and discussed in subsection 2.2.2.

2.2.1 Coherent states and a semiclassical limit

The Fock space of system and ancilla system is generated by fermionic
creation and annihilation operators ciα

† and ciα, with α = 1, . . . , 2Ne and
i = 1, . . . , N ′. Let |0〉 denote the vacuum state. The state space of the sys-
tem HS is generated by creation operators with α ≤ Ne, and the state space
HA of the ancilla system is generated by creation operators with α > Ne.
The coherent states are defined as

|Z〉 := exp

∑
α,β,i

ciα
†
Zαβc

i
β
†

 |0〉 .
Z is an element of the complex vector space W defined in table 2.3 for each
symmetry class. In addition we know that

P =
∫
W

dµ(Z†, Z)
〈Z|Z〉

|Z〉〈Z|

projects onto the space of states I0 which are invariant with respect to the
symmetry group K. In the following we will work only with the subspace I0.
It is well known that in this setting the limit of large Ni is a classical limit
[33, 34]. This implies that expectation values factorise, and the Schrödinger
equation becomes Hamiltons equation of motion. The phase space is G/H,
which comes with a natural symplectic structure. The heuristic way to see
this is to use P as a representation of unity on I0 to obtain a path integral
representation. Let us stress again that this representation of P is only
possible since I0 carries an irreducible representation of G. This follows
from the fact that we consider Howe dual pairs (K,G). Next we define the
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reduced density matrix of pure states |Z〉:

ρ(Z†, Z) = TrHA

(
|Z〉〈Z|
〈Z|Z〉

)
.

The expectation value of an observable As of the system in state ρ(Z†, Z)
is given by

TrHS (Asρ(Z†, Z)) =
Tr(As ⊗ 1HA |Z〉〈Z|)

〈Z|Z〉
=
〈Z|As ⊗ 1HA |Z〉

〈Z|Z〉
.

2.2.2 Derivation of granular bosonisation

The key to the derivation of granular bosonisation is hidden in the bound-
ary conditions of the path integral representation in the last section. The
boundary conditions are Z(0) = J and Z†(β) = J†. This motivates a further
investigation of |J〉. An easy calculation shows that

ρ(J†, J) =
1HS

dimHS
.

Thus, in the state |J〉 system and ancilla system are entangled in such a way
that the reduced density gives uniform weight to all states. Such a state
is called maximally entangled state. Now, the grand canonical partition
function is given by

TrS(e−βĤ) = dimHS TrS(e−βĤρ(J†, J)) = 〈J |e−βĤ ⊗ 1HA |J〉 .

Since Ĥ has K as a symmetry group its action leaves I0 invariant. Therefore
we can use P as a resolution of unity to derive a path integral representation.

To interpret the states Z in the path integral let us first summarise
the results of the above. The combined system has a well defined classical
limit and its phase space is given by the coset space G/H. For each point
Z in phase space there exists a coherent state |Z〉. The state |Z〉 can be
interpreted in terms of the original system as a reduced density matrix
ρ(Z†, Z). The boundary condition Z(0) = J corresponds to a state of the
joint system whose reduced density matrix is the state of maximal entropy
for the system.

2.3 Contributions of fluctuations

In this section we calculate the contributions of fluctuations to the semiclas-
sical limit of the partition function. In essence this implies the calculation
of a fluctuation determinant. Although a rather general result by Kochetov
[40] can be applied to our case, we make some effort to rederive it from the
discrete time definition of a generalised coherent state path integral. The



2.3. CONTRIBUTIONS OF FLUCTUATIONS 47

reasons for this approach are as follows: First, to the best of our knowledge
no derivation of the result is available. Only the special case of the spin path
integral is treated in [40, 41]. And even this derivation had to be improved
in [42]. Second, there are subtleties involved in the semiclassical limit of
generalised coherent state path integrals which are not well known. Third,
the method we use seems to be relatively unknown and deserves a detailed
exposition.

First we explain some of the subtleties to be dealt with and point to some
references. After that we state the precise setting and the result. Finally
we use Forman’s method to derive the contributions of fluctuations.

2.3.1 Subtleties concerning the evaluation of coherent state
path integrals

Calculating the contribution of fluctuations is in principle straightforward:
After determining the saddlepoint, i.e., the solution of the classical equa-
tions of motion, we calculate the second variation of the action, perform the
corresponding gaussian integral, and finally compute the determinant which
is produced.

In the case of generalised coherent state path integrals there are some
obstacles to this scheme. First of all the quantum problem imposes bound-
ary conditions for Z(0) and Z†(T ). But a classical solution is already fully
determined by only one of these conditions. Two solutions have been pro-
posed to the ‘problem of overspecification’. The first, suggested by Faddeev
[38], is to take Z and Z† as independent variables. The second solution,
proposed by Klauder [37], consists of adding a small second order derivative
term. We follow the first suggestion. This means that even in real time, the
solutions Z(t) and Z†(t) of the classical equations of motions are in general
not complex conjugate to each other. These solutions can be reached via a
contour deformation into a larger (complexified) space, which is obtained by
making Z and Z† independent. This leads to a problem when calculating
the second variation, since the variation should take place in some surface
within the enlarged space. When this issue is ignored the result turns out
to be correct only up to a phase factor.

Let us first give a short review of the relevant results for the spin path
integral. Note that for the spin path integral Z is just a complex number.
Solari [39] calculated the fluctuation determinant for the spin path integral
using the discrete time action. He discovered an additional phase factor
which had been previously overlooked. A few years later this factor was
rediscovered by Kochetov [41]. He calculated the fluctuations for the spin
path integral from the continuous action. In [40] Kochetov suggests a result
for arbitrary generalised spin coherent states. His derivation for the spin
path integral was extended and improved by Stone et al. [42].

For the path integral of a canonical degree of freedom the situation is
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similar. We refer to an exhaustive discussion by Baranger et al. [43], where
the fluctuation determinant is calculated in discrete time.

There are only very few discussions of the contribution of fluctuations in
the case of more general coherent state path integrals. As noted above there
is the statement of a result without proof by Kochetov [40]. In addition there
is work by Ribeiro et al. [44]. They derive the fluctuation determinant for a
spin coupled to a canonical degree of freedom in discrete time. Their method
is rather cumbersome and not tailored for higher dimensional generalisation.
In fact their result is a special case of the result by Kochetov.

The situation can be summarised as follows: for a spin and a canonical
degree of freedom the contributions of fluctuations is well understood. Nev-
ertheless for the case of arbitrary generalised coherent states a clear deriva-
tion confirming the result of Kochetov [40] is still lacking. In the following
we provide such a derivation using context and notation of the discussion of
granular bosonisation.

2.3.2 Setting and result

The generalised coherent states we used in the Fock space approach to gran-
ular bosonisation are points in a Kähler manifolds. See for example the
review [26] for an overview of the topic. For our purposes it is not necessary
to elaborate on these structures. However the objects we introduce and the
way we perform the calculations are motivated by the available structure.

To make the notation easier we define

F (Z̄, Z) := det(1 + Z†Z) . (2.9)

Note that lnF is called the Kähler potential. Furthermore we introduce
composite indices α = (a1, a2) such that Zα := Za1a2 . In the following
we use Einstein summation convention, summation over a composite index
implies summation over its two subindices. Nevertheless, k still denotes the
time steps, whereas the greek indices correspond to the composite indices.
The metric is given by

gαβ̄ := ∂Zα∂Z̄β lnF .

Here we have to distinguish between indices belonging to Z or to Z̄. Indices
belonging to Z̄ are written with a bar whenever confusion might otherwise
arise. Then, an easy calculation confirms that the volume element is given
by the determinant of the metric as it should. The inverse of the metric gαγ̄

is defined by gαβ̄g
αγ̄ = δγ̄

β̄
. Using (2.9) the continuous action (2.8) can be

rewritten as

−S =
Ni

4
[
lnF (Z̄(β), Z(β)) + lnF (Z̄(0), Z(0))

]
+
Ni

4

∫ β

0
dτ
(
∂Z̄β lnF ∂τ Z̄β − ∂Zα lnF ∂τZα

)
−
∫ β

0
dτH .
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In the following we state what the contributions of fluctuations look like.
We derive the result in the next subsection using the discrete time represen-
tation.

Theorem 2.1. The fluctutation determinant with respect to (2.8) is given
by

c ·
[det(∂Z(0)∂Z̄(β)2S/Ni)

g1/2(β)g1/2(0)

]1/2

e
1

2Ni

R β
0 dτ [∂Zβ

“
gβγ̄∂Z̄γH

”
+∂Z̄β (gγβ̄∂ZγH)]

,

where c ∈ C is a proportionality constant that can be fixed by setting β = 0.

Remark 2.1. The unusual exponential factor is called Solari-Kochetov phase
in the literature (although, in general, it is not a phase factor).

2.3.3 Derivation using Forman’s method

To be sure that the result does not depend on a specific regularisation, we
calculate the fluctuation determinant using the discretisation given by the
problem. Our result confirms a suggestion by Kochetov [40]. We use For-
man’s method to calculate the determinant. Using the notation introduced
in the last subsection, the action is given by

−S =
Ni

2

M−1∑
k=1

ln
F (Z̄k, Zk−1)
F (Z̄k, Zk)

+
Ni

2
lnF (Z̄M , ZM−1)− β

M

M∑
k=1

H(Z̄k, Zk−1) .

In the following we use the notation Fk,l = F (Z̄k, Zl) andHk := H(Z̄k, Zk−1).
Hence, the second derivatives evaluate to

Ak,αβ = −∂Zk,α∂Zk,β2S/Ni = ∂Zk,α∂Zk,β

(
ln
Fk+1,k

Fk,k
− 2β
NiM

Hk+1

)
Bk,ᾱβ̄ = −∂Z̄k,α∂Z̄k,β2S/Ni = ∂Z̄k,α∂Z̄k,β

(
ln
Fk,k−1

Fk,k
− 2β
NiM

Hk

)
Ck,αβ̄ = −∂Zk,α∂Z̄k,β2S/Ni = ∂Zk,α∂Z̄k,β (−1) lnFk,k = −gαβ̄

Dk,αβ̄ = −∂Zk−1,α
∂Z̄k,β2S/Ni = ∂Zk−1,α

∂Z̄k,β

(
lnFk,k−1 −

2β
NiM

Hk

)
.

In particular, the Hessian of 2S/Ni is given by

Q :=



AM−1 −gM−1

−gM−1 BM−1 DM−1

DM−1 AM−2 −gM−2

. . .
D2 A1 −g1

−g1 B1


.
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Integrating the fluctuations gives a contribution proportional to Det−1/2Q.
Next we combine the volume factor coming from the measure with Det−1/2Q.
Therefore we define

gk,αβ̄ := ∂Zk,α∂Z̄k,β lnF (Zk, Z̄k) .

For the kth time step the volume factor is given by det(gk,αβ̄). Defining the
blockdiagonal matrix

R := BlockDiag(−gM−1, gM−1, . . . ,−g1, g1) , (2.10)

the contribution from the measure can be written as Det1/2R. This leads
to the definition of LA := R−1Q. Setting A′k := g−1

k Ak and similarly for B,
C and D we have

LA =



−A′M−1 1
−1 B′M−1 D′M−1

−D′M−1 −A′M−2 1
. . .
−D′2 −A′1 1

−1 B′1


.

In addition, we define the matrix

L :=



−D′M −A′M−1 1
−1 B′M−1 D′M−1

−D′M−1 −A′M−2 1
. . .
−D′2 −A′1 1

−1 B′1 D′0


.

Next, we view L and LA as matrix representations of finite difference opera-
tors on the vectorspace V of functions that live on the links of the time lat-
tice. The set of links is indexed by N := {1, 3, . . . ,M}, and the vector space
of functions is defined as V := {f : N → C2N2

e }. Furthermore, let eα, eᾱ
denote an orthonormal basis of CN2

e ×CN2
e with respect to a scalar product

〈·, ·〉. We define a basis fZα,i, fZ̄α,i of V which satisfies fZα,i(j) = eαδi,j and
fZ̄α,i(j) = eᾱδi,j . Demanding that this basis is orthonormal defines a scalar
product on V . Now, we view L in the obvious way as the matrix represen-
tation of a linear operator on V with respect to the given basis. In addition
we can define the subspace A = {f ∈ V |〈eᾱ, f(M)〉 = 0 = 〈eα, f(1)〉}. Let
πA : V → A be the orthogonal projection onto A. Then, it can be easily
checked that LA = πALπA. Thus we see that the matrix LA, of which we
want to calculate the determinant, corresponds to a finite difference operator
on V with certain boundary conditions imposed.
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Forman’s theorem

Forman’s theorem [32] can be formulated as follows:

Theorem 2.2. Let V be a finite dimensional Euclidean or Hermitian vector
space and let L : V → V denote a linear mapping with kernel K ⊂ V .
Moreover, let C ⊂ V be a subspace of V with the property V = C ⊕ K.
Define a restriction of L via LA := πALπA : A → A where A ⊂ V , and πA
is the orthogonal projection onto A. Let ρCK : V → K, v 7→ ρCK(v) denote the
projection operator onto K with respect to the decomposition V = C ⊕ K.
Furthermore A⊥ denotes the orthogonal complement of A within V . Finally,
vol(V ) = vol(A⊥)∧vol(A) = vol(C)∧vol(C⊥) denote the volume forms that
are used to calculate the determinants. In this situation one has:

DetLA = det(πA⊥ρ
C
K : C⊥ → A⊥)
×Det(L : C → Image(L)) Det(πA : Image(L)→ A) .

(2.11)

The theorem is useful if DetL : C → Image(L) and the kernel of L are
easy to compute.

Application of Forman’s theorem

Now we proceed by using Forman’s method to calculate Det(LA). For this
we have to define the remaining objects. In particular, C is given by C =
{f ∈ V |f(M) = 0}. To define the volume forms we introduce the notation
fZ,k := fZ1,k ∧ · · · ∧ fZN ,k, and similar for fZ̄,k. Then the volume forms are

vol(A) = fZ̄,1 ∧ · · · ∧ fZ,M ,

vol(A⊥) = fZ,1 ∧ fZ̄,M ,

vol(C) = fZ,1 ∧ · · · ∧ fZ,M−1 ,

vol(C⊥) = fZ,M ∧ fZ̄,M ,

vol(V ) = vol(A⊥) ∧ vol(A) = vol(C) ∧ vol(C⊥) .

Note that we have Image(L) = A and hence Det(πA : Image(L) → A) = 1.
Our choice of C renders the matrix representation of L : C → Im(L) lower
triangular. The matrix is given by

1
B′M−1 D′M−1

−D′M−1 −A′M−2 1
. . .
−D′2 −A′1 1

−1 B′1 D′0


,
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and Det(L : C → Im(L)) is simply the product of the determinants of the
blockmatrices on the diagonal:

lim
M→∞

M−1∏
k=0

det(D′k) = lim
M→∞

M−1∏
k=0

det
(
δαβ −

2β
NiM

∂Zβ

(
gαγ̄∂Z̄γH

))

= lim
M→∞

M−1∏
k=0

(
1− β

M

2
Ni
∂Zβ

(
gβγ̄∂Z̄γH

))

= exp
(
− 2
Ni

∫ β

0
dτ ∂Zβ

(
gβγ̄∂Z̄γH

))
.

This is already part of the Solari-Kochetov phase, the other part comes from
the determinants of the projection operators.

It remains to calculate det(πA⊥ρCK : C⊥ → A⊥). For that we assume
that V = C ⊕K holds. To compute the determinant, which is defined with
respect to the given volume forms, we have to calculate the images of the
basis vectors of C⊥ under πA⊥ ◦ ρCK . For f ∈ C⊥ and f̃ := ρCK(f) ∈ K it
follows that

f̃(M) = f(M) . (2.12)

Thus ρCK can be seen as the identification of an element f̃ in the kernel of L
with its initial condition f(M).

The image of fZα,M is given by

kZα := kZαZβ (1)fZβ ,1 + kZα
Z̄β

(M)fZ̄β ,M

:= πA⊥ ◦ ρCK(fZα,M )

= kZαZβ (1)fZβ ,1 ,

where we have used that we have by definition of ρCK that

kZα(M) = fZα,M (M) = eα

⇒ kZα
Z̄β

(M) = 0 .

And similarly the image of fZ̄α,M is given by

kZ̄α := kZ̄αZβ (1)fZβ ,1 + kZ̄α
Z̄β

(M)fZ̄β ,M

:= πA⊥ ◦ ρCK(fZ̄α,M )

= kZ̄αZβ (1)fZβ ,1 + fZ̄α,M .
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Now the determinant can be read off from

det(πA⊥ ◦ ρCK : C⊥ → A⊥)vol(A⊥)

= (πA⊥ ◦ ρCK : C⊥ → A⊥)∗vol(C⊥)

=
∏
α

kZαZβ (1)fZβ ,1 ∧
∏
α

(kZ̄αZβ (1)fZβ ,1 + fZ̄α,M )

= det(kZαZβ (1))vol(A⊥) .

We now put everything together to obtain

lim
M→∞

DetLA = det(k̃ZαZβ (0)) exp
(
− 2
Ni

∫ β

0
dτ ∂Zβ

(
gβγ̄∂Z̄γH

))
, (2.13)

where k̃Zα(0) = limM→∞ k
Zα(1). The strategy of the next three subsections

will be to connect k̃ZαZβ (0) to the continuous action. To that end we first
calculate the continuum limit of L.

Continuum limit of L

To obtain the continuum limit of L we have to calculate the matrix entries
up to first order in β/M . We begin with a rather detailed calculation for
Ak:

−(g−1
k Ak)ᾱβ = gᾱγk Ak,γβ ≈

2β
NiM

∂Zβ
(
gᾱγ∂ZγH

)
,

where we used that

ln
Fk+1,k

Fk,k
≈ ∂Z̄k,δ lnFk,k ∆Z̄k+1,δ

and

gᾱγ∂Zγ∂Zβ∂Z̄δ lnF ∂τ Z̄δ = − 2
Ni

(
∂Zβg

ᾱγ
)
∂ZγH .

Similar calculations yield:

(g−1
k Bk)αβ̄ ≈ −

2β
NiM

∂Z̄β

(
gαγ̄∂Z̄γH

)
,

(g−1
k Dk)αβ ≈ δαβ −

2β
NiM

∂Zβ

(
gαγ̄∂Z̄γH

)
,

(g−1
k−1Dk)ᾱβ̄ ≈ δᾱβ̄ −

2β
NiM

∂Z̄β
(
gᾱγ∂ZγH

)
.

Up to a factor −β/M this leads to the first order differential operator

L̃ :=

(
2
Ni
∂Z̄γ (gαβ̄∂Z̄βH) δγα∂τ + 2

Ni
∂Zγ (gαβ̄∂Z̄βH)

δγ̄
β̄
∂τ − 2

Ni
∂Z̄γ (gαβ̄∂ZαH) − 2

Ni
∂Zγ (gαβ̄∂ZαH)

)
.
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To make the connection with the continuous action (2.8) we consider its first
variation, including variation of the boundary values. This leads to

δS =
Ni

2

[
∂Z̄β lnF (β)δZ̄β + ∂Zα lnF (0)δZα(0)

]
+
Ni

2

∫ β

0
dτδZα

(
∂Zα∂Z̄β lnF ∂τ Z̄β − ∂ZαH

)
− Ni

2

∫ β

0
dτδZ̄β

(
∂Z̄β∂Zα lnF ∂τZα + ∂Z̄βH

)
. (2.14)

The equations of motion are

∂τ Z̄γ =
2
Ni
gαγ̄∂ZαH

∂τZγ = − 2
Ni
gγβ̄∂Z̄βH .

In particular, the linearised equations of motion are given by

L̃

(
δZ̄γ
δZγ

)
= 0 .

Next we view k̃ZαZβ as an element of the kernel of L̃. This allows us to relate

k̃ZαZβ (0) to solutions of the classical equations of motion and in particular to
the action of these solutions.

Relating k̃ZαZβ (0) to classical solutions

The kernel of L̃ is spanned by ∂Zα(0)(Zγ(t)eγ+Z̄γ(t)eγ̄) and ∂Z̄α(β)(Zγ(t)eγ+
Z̄γ(t)eγ̄), where Z(t) and Z̄(t) are solutions of the classical equations of
motion, which are seen as functions of their initial values Z(0) and Z̄(β).

We are interested in the special element that fulfils k̃Zα(β) = eα. It can
be written as (no summation convention)

k̃Zα(t) =
∑
γ

(∂Zα(0)Zγ(β))−1∂Zα(0)(Zγ(t)eγ + Z̄γ(t)eγ̄) .

In the last step we express det(k̃ZαZβ (0)) by second derivatives of the action.
Therefore consider

∂Zα(0)∂Z̄β(β)2S/Ni = ∂Zα(0)

(
∂Z̄β lnF

∣∣
Z=Z(β),Z̄=Z̄(β)

)
=
(
∂Zγ∂Z̄β lnF

) ∣∣
Z=Z(β),Z̄=Z̄(β)

∂Zα(0)Zγ(β)

= gγβ̄(β) ∂Zα(0)Zγ(β)

⇒ ∂Zα(0)Zδ(β) = gδβ̄(β)∂Zα(0)∂Z̄β(β)2S/Ni ,
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where we used (2.14). This leads to

k̃ZαZδ (0) = (∂Zα(0)Zδ(β))−1 =
(
gδβ̄(β)∂Zα(0)∂Z̄β(β)2S/Ni

)−1
.

Hence we have

lim
M→∞

detLA = det
(
gδβ̄(β)∂Zα(0)∂Z̄β(β)2S/Ni

)−1

× exp
(
− 2
Ni

∫ β

0
dτ ∂Zβ

(
gβγ̄∂Z̄γH

))
.

After some additional manipulations we obtain the symmetrised version of
the inverse square root of the determinant

lim
M→∞

det−1/2(LA) =
[det(∂Z(0)∂Z̄(β)2S/Ni)

g1/2(β)g1/2(0)

]1/2

× exp
(

1
2Ni

∫ β

0
dτ [∂Zβ (gβγ̄∂Z̄γH) + ∂Z̄β (gγβ̄∂ZγH)]

)
, (2.15)

which is precisely the statement (2.1).
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Conclusion

In the first chapter we proved a general version of the Pruisken-Schäfer
hyperbolic Hubbard-Stratonovich transformation. Previous results concern-
ing pseudounitary and pseudoorthogonal symmetry are obtained as special
cases. The method of the proof also shows why the transformation holds:
The Pruisken-Schäfer domain can be seen as a deformation of the standard
Gaussian domain of integration. Thus the transformation is valid, since the
integrand is holomorphic and the domain of integration can be deformed
without changing the value of the integral. Deformation of the domain of
integration requires integration of chains against forms. In this setting, the
alternating sign factors appearing in the pseudoorthogonal case have a nat-
ural explanation. More precisely, we find that the alternating sign factors
are induced by the sign of the product of all weights in Σ+(p⊕Q−, h).

Apart from the Pruisken-Schäfer transformation we also considered the
well-established Schäfer-Wegner transformation. We showed that the latter
is also a deformation of the standard Gaussian domain.

To sum up, the first chapter yields a unified view on the different Hubbard-
Stratonovich identities, and our result allows to rigorously apply the Pruisken-
Schäfer transformation. Using these transformation implies in particular the
possibility of obtaining results beyond the large N limit.

In the second chapter we developed a path integral representation of
the grand canonical partition function for an interacting granular fermionic
system in terms of bosonic variables. In particular, we have discussed two
different derivations of this representation. The first derivation uses the
colour-flavour transformation and the time discrete Grassmann path in-
tegral, whereas the second derivation illuminates the structure of the un-
derlying Hilbert spaces. Furthermore we have computed contributions of
quadratic fluctuations to the large N limit in terms of the corresponding
classical system. The result, concerning the contributions of fluctuations,
applies to a wide class of generalised coherent state path integrals. An in-
teresting prospect for the future is to establish applications of the novel
bosonisation method developed in chapter two.
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Appendix A

Techniques needed in
chapter one

A.1 Basic constructions and useful relations

A.1.1 Setting

To make the appendix self contained we repeat the setting of theorem 1.2.
For any hermitian s ∈ gl(n,C), with s2 = 1, we have two involutions θ(X) =
sXs−1 and γ(X) = −sX†s−1 on gl(n,C). Let τi be additional involutions
on gl(n,C), which have to commute with each other and with θ and γ. This
leads to the definition

Q := {Q ∈ gl(n,C)|Q = −γ(Q) and ∀i : Q = σiτi(Q)} ,

where σi ∈ {±1}, and the τi have to be such that s ∈ Q.

A.1.2 Symmetries of Q

Define a Lie algebra

g := {X ∈ gl(n,C)|X = γ(X) and ∀i : X = τi(X)} ,

and let τ be either τi or γ. For X ∈ g and X ′ ∈ Q, the basic calculation

τ([X,X ′]) = [τ(X), τ(X ′)] = [X, τ(X ′)]

shows that g is the Lie algebra of the symmetry group of Q.

A.1.3 Commutation relations

The decomposition of Q into the plus and minus one eigenspaces of θ gives
a decomposition into the hermitian and antihermitian parts denoted by Q+

and Q−. Similarly, θ gives the decomposition g = k⊕ p, where k is the plus
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one eigenspace and p the minus one eigenspace. This leads to the following
commmutation relations:

[k, k] ⊂ k , [k, p] ⊂ p , [p, p] ⊂ k , [Q+,Q−] ⊂ p ,
[Q±,Q±] ⊂ k , [k,Q±] ⊂ Q± , [p,Q±] ⊂ Q∓ .

(A.1)

Defining

f : p⊕Q− → p⊕Q−

X 7→ 1
2

[X, s] ,

it is easy to check that the inverse is given by

f−1 : p⊕Q− → p⊕Q−

X 7→ 1
2

[X, s−1] .

In particular we have

f(p) = Q− and f(Q−) = p . (A.2)

Note that we always have s ∈ Q+.

A.1.4 Decompositions

For H,X, Y ∈ gl(n,C) with H = H† we have

Tr([H,X]Y †) = Tr(X[Y †, H]) = Tr(X([H,Y ])†) .

This shows that [H, ·] is hermitian with respect to Tr(XY †), which is a
hermitian scalar product on the space of complex matrices. Hence [H, ·] has
real eigenvalues, and the corresponding eigenspaces are orthogonal. In the
following we choose sets of commuting hermitian matrices, and diagonalise
the commutator or adjoint action simultaneously.

Decomposition of g

The first set we consider is a maximal Abelian subalgebra a of p. We consider
the adjoint action of a on g. This leads to the decomposition

g = g0 ⊕
⊕

α∈Σ(g,a)

gα .

In this setting the eigenvalues α are called roots. The set of roots is denoted
by Σ(g, a). For Z ∈ gα and H ∈ a we have

[H, θ(Z)] = −θ([H,Z]) = −α(H)θ(Z) ,
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and hence θ(gα) = g−α. This shows that

g±,α := Fix±θ(gα ⊕ g−α) (A.3)

is well defined. Choosing Ho ∈ a with α(Ho) 6= 0 for all α, we have a notion
of positivity for the roots α. Let Σ+(g, a) denote the set of positive roots.
Then we have the decomposition

g = g0 ⊕
⊕

α∈Σ+(g,a)

(gα ⊕ g−α) . (A.4)

Note that g0 = ZK(a)⊕ a. Furthermore we can also define a mapping φ as

φ : gα ⊕ g−α → gα ⊕ g−α

Z + Z ′ 7→ 1
α(Ho)

[Ho, Z + Z ′] = Z − Z ′ , (A.5)

which has the properties

φ ◦ φ = id and φ(g±,α) = g∓,α . (A.6)

The mapping φ obviously extends to a mapping on
⊕

α∈Σ+(g,a) (gα ⊕ g−α).
Furthermore for X ∈ g±,α and H ∈ a we have

[H,X] = α(H)φ(X) and [H,φ(X)] = α(H)X . (A.7)

In addition we define orthogonal projections

π±,α : g→ g±,α . (A.8)

Next we discuss additional decompositions. For each decomposition we de-
fine the appropriate mappings φ and π±,α. Although they are also called φ
and π±,α, it is always clear from the context which mapping is meant.

Decomposition of Q

Next, we consider the adjoint action of a on Q, which gives us the decom-
position

Q = Q0 ⊕
⊕

α∈Σ+(Q,a)

(Qα ⊕Q−α) . (A.9)

Using the same reasoning as above we obtain that

Q±,α := Fix±θ(Qα ⊕Q−α) ⊂ Q± (A.10)
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is well defined. The same is true for Q±,0 := Fix±θ(Q0) ⊂ Q±. Choosing
Ho ∈ a with α(Ho) 6= 0 for all α ∈ Σ(Q, a), we again have a notion of
positivity. Hence we have the decompositions

Q± = Q±,0 ⊕
⊕

α∈Σ+(Q,a)

Q±,α . (A.11)

Now we can define

φ : Qα ⊕Q−α → Qα ⊕Q−α

Z + Z ′ 7→ 1
α(Ho)

[Ho, Z + Z ′] = Z − Z ′ . (A.12)

Note that φ satisfies the corresponding relations to (A.6) and (A.7). In
addition we define orthogonal projections πα:

π±,α : Q → Q±,α . (A.13)

Decomposition of k⊕Q+

Secondly, we choose a maximal Abelian subalgebra h of Q+ such that s ∈ h

and consider its adjoint action on

g̃ := k⊕Q+ . (A.14)

Similar to the above we obtain the decomposition

g̃ = Zk(h)⊕ h⊕
⊕

α∈Σ+(g̃,h)

(g̃α ⊕ g̃−α) . (A.15)

In addition we define the mapping φ as

φ : g̃α ⊕ g̃−α → g̃α ⊕ g̃−α

Z + Z ′ 7→ 1
α(Ho)

[Ho, Z + Z ′] = Z − Z ′ . (A.16)

Note that H0 is of course choosen such that α(H0) 6= 0 for all α ∈ Σ(g̃, h)
and φ satisfies the analogous relations to (A.6) and (A.7). Defining

g̃±,α := Fix±γ(g̃α ⊕ g̃−α) (A.17)

the orthogonal projection operators are denoted by

π±,α : g̃→ g̃±,α . (A.18)
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Decomposition of p⊕Q−

Next we consider the adjoint action of h on

Q̃ := p⊕Q− . (A.19)

In the following we list the analogous definitions and objects: The decom-
position of Q̃ is given by

Q̃ =
⊕

α∈Σ+(Q̃,h)

(Q̃α ⊕ Q̃−α) . (A.20)

Note that, using s ∈ h and (A.2), it can be easily checked that Q̃0 is trivial.
Since we have α(s) 6= 0 for all α it is useful to use s to obtain a notion of
positivity for the weights. This special choice implies in particular that the
property α > 0 is invariant under the action of the Weyl group, since s is
Ad(K) invariant. Furthermore we define

Q̃±,α := Fix±γ(Q̃α ⊕ Q̃−α) , (A.21)

and

φ : Q̃α ⊕ Q̃−α → Q̃α ⊕ Q̃−α

Z + Z ′ 7→ 1
α(s)

[s, Z + Z ′] = Z − Z ′ , (A.22)

which satisfies the corresponding relations to (A.6) and (A.7). In addition
we define

Q̃±,α := Fix±γ(Q̃α ⊕ Q̃−α) (A.23)

and the orthogonal projections

π±,α : Q̃ → Q̃±,α . (A.24)

A.1.5 Orthogonality relations

We discuss orthogonality with respect to Tr(XY †). In particular we are
interested in the corresponding relations for B(X,Y ) = Tr(XY ). A typical
argument for X ∈ k and Y ∈ p goes as follows:

B(X,Y ) = Tr(XY †) = Tr(sXssY †s) = −Tr(XY †) = 0 . (A.25)

The same holds for X ∈ Q+⊕Y ∈ Q−. This implies that the decompositions
g = k ⊕ p and Q = Q+ ⊕ Q− are orthogonal. The following relations for
Xα ∈ Q+,α, X,X ′ ∈

⊕
α>0Q+α hold:

a) B(Xα, Xβ) = −B(φ(Xα), φ(Xβ)) = δα,βB(Xα, Xα)
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b) B(X,X ′) = −B(φ(X), φ(X ′))

c) B(Xα ± φ(Xα), Xβ ± φ(Xβ)) = 0

d) B(Xα + φ(Xα), Xβ − φ(Xβ)) = δα,β2B(Xα, Xα) .

Indeed, note that Xα ± φ(Xα) ∈ Q±α, and that for X,Y ∈ Q Tr(XY †) =
Tr(Xθ(Y )) holds. This immediately gives c). Using (A.25), gives a) and
hence d). b) is an immediate consequence of a).

A.2 Three additional arguments

A.2.1 Reparametrisation RI

Here we want to show thatRI is injective and regular. Note thatNK(a)/ZK(a)
is the Weyl group, which acts simply transitive on the Weyl chambers [14].
Let H ∈ ao+ and k ∈ K, then we have

kHk−1 = k′H ′k′−1

⇔ k′−1kH(k′−1k)−1 = H ′ .

This shows that k̃ := k′−1k ∈ NK(a) and thus k̃ = wz with w in the
Weyl group and z ∈ ZK(a). It follows that wHw−1 = H ′, which implies
that w = 1, H = H ′, and hence [k̃] = [1]. This proves injectivity. The
differential is given by

d(kHk−1) = Ad(k)
(
[k−1dk,H] + dH

)
= Ad(k)

 ∑
α∈Σ+(g,a)

α(H) π−,α ◦ φ(k−1dk) + dH

 .

All α(H) 6= 0, and hence the differential has full rank.

A.2.2 Pullback of dQ

In this subsection we use

PS ◦R : G/ZK(ã)× ão+ × h′ → Q
([g], H̃,H ′) 7→ g(H̃ +H ′)g−1 .

to pullback the constant volume form dQ on Q. In the following we use the
notation and the constructions of section A.1.4. Consider the adjoint action
of h on

g⊕Q = g̃⊕ Q̃ ,
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which leads to the decomposition

Q = h⊕
⊕

α∈Σ+(g̃,h)

g̃−,α ⊕
⊕

α∈Σ+(Q̃,h)

Q̃−,α . (A.26)

The corresponding set of weights is given by

Σ+ := Σ+(g̃, h) ∪ Σ+(Q̃, h) .

For α ∈ Σ+ we define a basis {eα,i} of g̃−,α and Q̃−,α. Note that i ∈
{1, . . . , dα}, where dα denotes the dimension of the corresponding weight
space of α. Furthermore let dH denote a constant volume form on h. Now
we can compute (PS ◦R)∗dQ:

(PS ◦R)∗dQ

= dQ[Ad(g)([g−1dg, H̃ +H ′] + dH̃ + dH ′)]

= dQ[
∑
α∈Σ+

α(H̃ +H ′)φ ◦ π+,α(g−1dg) + dH̃ + dH ′]

=
∏
α∈Σ+

α(H̃ +H ′)dα
∧
α∈Σ

dα∧
i=1

[
deα,i ◦ φ ◦ π+,α(g−1dg)

]
∧ dH

=: ∆(H̃ +H ′) dµ([g]) ∧ dH . (A.27)

The first equality in (A.27) is obtained by elementary calculation. For the
second equality we have used equations (A.20), (A.15) and (A.26) and the
fact that det(exp([X, ·])) = 1 for X ∈ g. The third equality just uses the
basis {eα,i} we defined above. Note that comparison of the second and the
last line in (A.27) shows that dµ([g]) is a left invariant volume form on
G/ZK(ã).

Note that α(H̃ +H ′) ∈ R, since [H̃ +H ′, ·] is hermitian with respect to
Tr(XY †). For α ∈ Σk⊕Q+ we have α(H ′) = 0. Therefore we obtain:

∆(H̃ +H ′) =
∏

α∈Σp⊕Q− ,α>0

α(H̃ +H ′)dα ·
∏

α∈Σk⊕Q+
,α>0

α(H̃)dα .

A.2.3 Contributions from ∂a+

Here we give the detailed argument showing the contributions from ∂a+ are
irrelevant for PS, ePS and DePS, since they are at least of codimension
two. In doing so we recall the argument for the well definedness of these
parametrisations.

Let Hi ∈ a+,c ∩ ∂a+ be an edge of a+. We show that the restriction
of PSc to the domain of definition with hi = 0 yields a domain of at least
codimension two. It is well known that the dimension of the isotropy group
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of a changes at the boundary of a+. In particular dimZK({
∑

j 6=i h
jHj}) >

dimZK(a). This can be seen from the fact that to each face of the boundary
of the Weyl chamber there is associated a restricted root α with root space
gα and α(

∑
j 6=i h

jHj) = 0. The group generated by Fixθ(gα ⊕ g−α) leaves
the face invariant, and Fixθ(gα ⊕ g−α) 6⊂ Zk(a). If we restrict PS ◦ RI to
such a face of a+, we can replace K/ZK(a) by the lower dimensional space
K/ZK,i, with ZK,i := ZK({

∑
j 6=i h

jHj}) without changing the image of the
parametrisation. In fact the eigenspace decomposition of Q with respect to a

restricts to an eigenspace decomposition with respect to the smaller algebra
{
∑

j 6=i h
jHj}. Hence all parametrisations restrict to parametrisations where

the quotient group is ZK,i. This completes the argument for PSc.
For ePS we have to argue that the analogous restriction is well defined.

For that it is enough to note that for X ∈ Lie(Zk,i) we have [X,Ej ] = 0
if j 6= i. The analogous restriction of DePS is well defined for the same
reason. Thus we see that for both ePS and DePS the contributions from
∂a+ are of codimension at least two.



Appendix B

Techniques needed in
chapter two

A major tool of chapter two are generalised coherent states. These coher-
ent states are built using group representations on fermionic Fock space.
All groups representations we consider are subgroups of the large group of
canonical transformations of fermionic Fock space. A second ingredient is a
theorem by Howe on dual groups within the group of canonical transforma-
tions. This theorem leads us to the colour-flavour transformation.

Everything stated in this appendix is well known. Coherent states are
discussed extensively in Perelomov [25]. Howe pairs are discussed in [27, 28].
The colour-flavour transformation is discussed in [29, 30]. Since the material
is spread over different articles, and to introduce the notation we are using
in chapter two, we develop the necessary constructions explicitly. However,
some mathematical theorems are stated without proof.

B.1 Canonical transformations of fermionic Fock
space

Our first aim is to construct group actions on fermionic Fock space. Denote
the creation operators and annihilation operators by c†n and cn. Then we can
use the anticommutator to define a bilinear form by 〈·, ·〉 := {·, ·}. Since c†n
and cn satisfy canonical anticommutation relations (CAR), the basis defined
by

vi :=
1√
2

(ci + c†i )

vN+i :=
i√
2

(ci − c†i )

67
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is orthonormal with respect to 〈·, ·〉. It is easy to check that

〈[vivj , vk], vl〉 = −〈vk, [vivj , vl]〉

holds. Therefore [vivj , ·] generates infinitesimal isometries of 〈·, ·〉 and thus
canonical transformations. For an antisymmetric matrix Z with complex
entries the following identities may also easily be checked:

Zij [vivj , vk] = 2viZik ,

[viZijvj , vkZ̃klvl] = vi

(
[Z, Z̃]

)ij
vj .

The last line gives a Lie-algebra isomorphism from so(2N,C) to the vec-
torspace generated by vivj with the commutator as a Lie-bracket and the
algebraic structure from the anticommutator {·, ·}. Next we transform to
the natural basis given directly by creation and annihilation operators. In
order to do this we have to split up Z into N ×N blocks

Z =
(

A′ B′

−B′t D′

)
,

where A′ and D′ are antisymmetric and B′ is an arbitrary complex matrix.
Then we have

vtZv =
1
2

(c†c)
(
A′ +D′ + iB′ + iB′t A′ −D′ − iB′ + iB′t

A′ −D′ + iB′ − iB′t A′ +D′ − iB′ − iB′t
)

( c
c† )

=:
1
2

(c†c)
(
A B
C −At

)
( c
c† ) =:

1
2

(c†c)M ( c
c† ) =: M̂,

where A is an arbitrary complex matrix, whereas B and C are antisymmetric
complex matrices. This is equivalent to the condition M = −ΣxM

tΣx, with
Σx := σx ⊗ 1N . The set of M matrices is a Lie algebra isomorphic to
so(2N,C) and the mappingˆ: M 7→ M̂ is a Lie algebra isomorphism.

The commutator action of M̂ on the creation and annihilation operators
is given by

[M̂, (c†c)] = (c†c)
(
A B
C −At

)
and thus we have

exp(M̂)(c†c) exp(−M̂) = exp([M̂, ·])(c†c) = (c†c) exp(M) .

Demanding that the canonical transformations respect (c†)† = c implies
that M = −M †. Hence Z has to be real and the corresponding Lie algebra
is so(N,R). Exponentiating the Lie algebra representation M̂ leads to a
unitary representation of the spin group Spin(N), which is a double covering
of the special orthogonal group.
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B.1.1 Matrix elements

Denote by 〈ψ| and |ψ〉 standard fermionic coherent states. In the following
we calculate the matrix element 〈ψ| exp(M̂)|ψ〉. To proceed we decompose

g :=
(
a b
c d

)
:= exp(M)

and then lift the decomposition to a decomposition of ĝ := exp(M̂). If D is
invertible the Gaussian decomposition of g is given by

g =
(
1 bd−1

0 1

)(
a− bd−1c 0

0 d

)(
1 0

d−1c 1

)
=: g1 g2 g3 .

The single factors however live in the complex orthogonal group defined by
{g ∈ GL(N,C)|gtΣxg = Σx}. Defining

M1 :=
(

0 bd−1

0 0

)
and M2 :=

(
0 0

d−1c 0

)
we have g1 = exp(M1) and g3 = exp(M3). Hence, defining ĝ1 := exp(M̂1),
ĝ3 := exp(M̂3) and ĝ2 := ĝ−1

1 ĝĝ−1
3 , we obtain the decomposition ĝ = ĝ1ĝ2ĝ3.

Note that π(ĝ2) = g2, where π denotes the covering homomorphism. As-
suming that there exists a matrix M2 such that ĝ2 = σ exp M̂2, with σ being
either plus or minus one, it is easy to show that

〈ψ| exp(M̂)|ψ〉 = 〈ψ|ĝ1ĝ2ĝ3|ψ〉

= σDet1/2(d) e
1
2
ψ̄bd−1ψ̄e

1
2
ψd−1cψe−ψd

−1ψ̄ (B.1)

holds. In addition we have

〈ψ| exp(M̂)|0〉 = σDet1/2(d)e
1
2
ψ̄bd−1ψ̄ .

Using that g−1 = g† we obtain

〈0| exp(−M̂)|ψ〉 = σDet1/2(d†)e
1
2
ψ(bd−1)†ψ ,

and dd† = (1 + (bd−1)†bd−1)−1. Defining Z := bd−1 we have

〈ψ| exp(M̂)|0〉〈0| exp(−M̂)|ψ〉 = Det1/2(1 + Z†Z)e
1
2
ψ̄Zψ̄e

1
2
ψZ†ψ . (B.2)

It is important to note that the matrix elements (B.1) and (B.2) only depend
on g and not on ĝ. Furthermore, there is no non-analyticity hidden in Det1/2

since Z is antisymmetric and

Det1/2(1 + Z†Z) = Pf
(
Z −1
1 Z†

)
.

Pf denotes the Pfaffian.
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B.2 Fermionic Howe pairs and colour-flavour trans-
formation

A fermionic Howe dual pair (G,K) is a pair of two subgroups G and K of
SO(2N) that centralise each other. In the bosonic case it becomes important
to demand in addition that the pair is reductive. The mathematical theory
of these pairs is developed in [28] and physical applications are given in [27].
We formulate a basic theorem on dual pairs in our context.

Theorem B.1. Let (G,K) be a fermionic Howe dual pair and Ĥ be the
Hamiltonian of a granular fermionic system, i.e., Ĥ is a polynomial in cre-
ation and annihilation operators and has a classical symmetry group K.
Then Ĥ is a polynomial in the generators of G. In particular the quadratic
invariants of K are the generators of G.

The fermionic pairs are listed in table B.1. H denotes the subgroup of G

SO(2N) K G H

N = (p+ q)Ni U(Ni) U(p+ q) U(p)×U(q)
N = NeNi O(Ni) SO(2Ne) U(Ne)
N = 2NeNi USp(2Ni) USp(2Ne) U(Ne)

Table B.1: Fermionic Howe pairs

which leaves the vacuum state |0〉 invariant. It is known from [27, 28] that
there are two different representations for the projector onto the subspace
of states which are invariant under the K action, i.e. k̂|v〉 = ρ(k)|v〉 for
k ∈ K. Here ρ is a one dimensional representation of G. The different
representations for the projector P are

P =
∫
K
dk ρ(k̂−1) k̂ =

∫
G
dg ĝ|0〉〈0|ĝ−1 .

In the following we will evaluate 〈ψ|P |ψ〉 for the different representations
for each of the three fermionic Howe dual pairs. Note that we will extend
the notation of the previous section appropriately. Lie algebra elements of
Lie(G) are denoted by Me and elements of Lie(K) are denoted by Mi and
so on. Note that Mi/e inherits symmetry properties of M ∈ so(2N), which
we do not state explicitely in the following. Only the additional symmetries
are discussed. Eventually an additional two by two substructure requires
introducing a ± index.
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B.2.1 U(p + q)⊗ U(Ni)

In the following we state how to realise u(p + q) and u(Ni) as commuting
subalgebras of so(2(p+ q)Ni). u(p+ q) is given by matrices of the form

Me :=


Ae+ 0 0 Be+

0 Ae− −Bt
e+ 0

0 B̄e+ −Ate+ 0
−B†e+ 0 0 −Ate−

⊗ 1Ni ,
where Ae+ is a p× p matrix and Ae− is a q × q matrix. u(N) is realised by

Mi :=


1p ⊗Ai 0 0 0

0 −1q ⊗Ati 0 0
0 0 −1p ⊗Ati 0
0 0 0 1q ⊗Ai

 .

There are no additional symmetry requirements beyond the ones the matri-
ces inherit from so(2(p+ q)N). To evaluate the matrix elements (B.1) and
(B.2), define u := exp(Ai) and

g :=
(
ae be
ce de

)
:= exp

(
Ae+ Be+
−B†e+ −Ate−

)
.

Next we calculate exp(Me). To this end it is useful that

exp
(
Ae− −Bt

e+

B̄e+ −Ate+

)
=
(

0 1

1 0

)
k̄

(
0 1

1 0

)
holds. Then we can read off

exp(Me) =


ae 0 0 be
0 d̄e c̄e 0
0 b̄e āe 0
ce 0 0 de

⊗ 1Ni .
Hence we have

Z = Ze ⊗ 1Ni =
(

0 bed
−1
e

c̄eā
−1
e 0

)
⊗ 1Ni .

In particular Z is antisymmetric, which implies that the right hand side only
depends on Z+ := bed

−1
e . Thus we have∫

U(Ni)
du eψ̄ũψ =

∫
U(p+q)

dk DetNi/2(1 + Z†eZe) e
1
2
ψ̄Zψ̄e

1
2
ψZ†ψ

=
∫

U(p+q)
dk DetNi(1 + Z†+Z+) eψ̄+Z+⊗1Ni ψ̄−eψ−Z

†
+⊗1Niψ+ , (B.3)



72 APPENDIX B. TECHNIQUES NEEDED IN CHAPTER TWO

where

ũ =
(
1p ⊗ u 0

0 1q ⊗ ū

)
.

In fact the set of Z+ matrices is a parametrisation of the quotient space
U(p+ q)/U(p)×U(q). However for our purpose it is not necessary to know
the exact form of the induced measure dµ(Z†, Z).

B.2.2 SO(2Ne)×O(Ni)

In the following we state how to realise so(2Ne) and o(Ni) as commuting
subalgebras of so(2NeNi). so(2Ne) is given by matrices

Me :=
(
Ae Be
−B̄e −Ate

)
⊗ 1Ni

and o(Ni) is given by

Mi := 1Ni ⊗
(
Ai 0
0 −Ati

)
,

where the entries of Ai have to be real. Defining o := exp(Ai) and

O :=
(
ae be
ce de

)
:= exp

(
Ae Be
−B̄e −Ate

)
the formulas for the matrix elements (B.1) and (B.2) yield∫

O(Ni)
do eψ̄1Ne⊗oψ =

∫
SO(2Ne)

dO DetNi/2(1 + Z†eZe)e
1
2
ψ̄Zψ̄e

1
2
ψZ†ψ , (B.4)

where Z = Ze ⊗ 1Ni and Ze = bed
−1
e = −Zte parametrises the coset space

SO(2Ne)/U(Ne).

B.2.3 USp(2Ni)× USp(2Ne)

In the following we state how to realise usp(2Ni) and usp(2Ne) as commuting
subalgebras of so(4NiNe). usp(2Ni) is given by

Mi := 1Ne ⊗


Ai Bi 0 0
−B̄i −Ati 0 0

0 0 −Ati B̄i
0 0 −Bi Ai

 ,

where Bi is symmetric. usp(2Ne) is given by

Me :=


Ae 0 0 Be
0 Ae −Be 0
0 B̄e −Ate 0
−B̄e 0 0 −Ate

⊗ 1Ni ,
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where Be is symmetric. A short calculation shows that these two subalgebras
indeed commute. Defining

s = exp
(
Ai Bi
−B̄i −Ati

)
and S =

(
ae be
ce de

)
= exp

(
Ae Be
Ce −Ate

)
and noting that

exp
(
Ae −Be
B̄e −Ate

)
=
(

0 1

1 0

)
S̄

(
0 1

1 0

)
,

we can read off

exp(Me) =


ae 0 0 be
0 d̄e c̄e 0
0 b̄e āe 0
ce 0 0 de

⊗ 1Ni .
Hence we have

Z = Ze ⊗ 1Ni =
(

0 bed
−1
e

c̄eā
−1
e 0

)
⊗ 1Ni .

It can be easily checked that JZeJ t = Ze and sZes = −Ze. The formulas
for the matrix elements (B.1) and (B.2) yield∫

USp(2Ni)
ds eψ̄(1Ne⊗s)ψ =

∫
USp(2Ne)

dS DetNi/2(1 + Z†eZe) e
1
2
ψ̄Zψ̄e

1
2
ψZ†ψ .

(B.5)

B.2.4 Invariant measure on G/H

In this subsection we want to simplify the right hand side of the colour-
flavour transformation. To this end we want to use the following version of
Fubini’s theorem: ∫

G
dgf(g) =

∫
G/H

d(gH)
∫
H
dhf(gh) . (B.6)

Here, d(gH) denotes the invariant measure on the coset space G/H, where
H is a (closed and connected) subgroup of G. Since we are here dealing
with a simpler situation than in the last section, we simplify our notation
accordingly. For an element g ∈ G we write

g =
(
a b
c d

)
,

and we define Z := bd−1. We will show that Z parametrises the coset space
G/H up to a set of measure zero and construct a left invariant measure
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dµ(Z†, Z). Here, Z differs from the matrix defined in the previous section.
Note that left invariance and normalisation uniquely determine the measure
d(gH). In our case the H integration is trivial, since the integrand only
depends on Z. In the following we treat the three different fermionic Howe
pairs simultaneously. We define s = Diag(1k,−1l). For the first Howe pair
set k = p and l = q and for the other two set k = l = Ne.

Symmetry class V1 V2

unitary Wp,q Wq,p

orthogonal {Z ∈WNe,Ne |Zt = −Z} {Z ∈WNe,Ne |Zt = −Z}
unitary symplectic {Z ∈WNe,Ne |Zt = Z} {Z ∈WNe,Ne |Zt = Z}

Table B.2: Wk,l := Hom(Cl,Ck) is used. The different symmetries of Z =
bd−1 and the corresponding vectorspace for each of the three settings is
defined.

Then it is clear that Ad(G)s is isomorphic to G/H. Note that for g ∈ G
we have

Ad(g)s ≡
(
a b
c d

)
s

(
a b
c d

)−1

=
(

1 bd−1

ca−1 1

)
s

(
1 bd−1

ca−1 1

)−1

.

It can be checked that bd−1 = −(ca−1)†. Hence Z = bd−1 parametrises
Ad(G)s and thus G/H. For the construction of the left invariant measure
on G/H we have to consider the adjoint action of G on Ad(G)s. Here it is
convenient to consider first the adjoint action on

f(Z, Z̃) :=
(

1 Z

Z̃ 1

)
s

(
1 Z

Z̃ 1

)−1

with Z ∈ V1 and Z̃ ∈ V2. It induces an action on V1 and V2. We have

Ad(g)f(Z, Z̃) = f(ρ1
g(Z), ρ2

g(Z̃)) ,

where ρ1 and ρ2 are given by

ρ1
g(Z) := (aZ + b)(cZ + d)−1

ρ2
g(Z̃) := −(c− dZ̃)(a− bZ̃)−1 .

Note that ρ1 gives the left action on G/H in the parametrisation given by the
coordinates Z = bd−1. Moreover we can define a bilinear form Tr(df ⊗ df)1,

1It is convenient to show invariance of the unsymmetrised bilinear form and to postpone
(anti)symmetrisation.



B.2. FERMIONIC HOWE PAIRS AND CFT 75

where d denote the outer derivative. It is invariant since

ρ∗g Tr(df ⊗ df) = Tr(d(f ◦ ρg)⊗ d(f ◦ ρg)) = Tr(Ad(g)[df ⊗ df ])

= Tr(df ⊗ df) .

Defining v := (1 − ZZ̃)−1 and w = (1 − Z̃Z)−1 a simple calculation shows
that

Tr(df ⊗ df)/4 = −Tr(wdZ̃ ⊗ vdZ)− Tr(vdZ ⊗ wdZ̃) .

Since s commutes with the differential of ρg, we can define an invariant two
form as

ω̃(Z,Z̃)(X,Y ) :=
1
4

Tr(df ⊗ df)(Z,Z̃)(sX, Y )

= Tr(vdZ̃ ⊗ wdZ)− Tr(wdZ ⊗ vZ̃)(X,Y )

= Tr(vdZ̃ ∧ wdZ)(X,Y ) .

Next we restrict ourselves to the subspace Z̃ = −Z†. This is compatible with
the group action since ρ2

g(−Z†) = −[ρ1
g(Z)]†. Hence we have an invariant

(symplectic) two form given by:

ωZ := ω̃Z,−Z† |V×V

with V := {(Z,−Z†)|Z ∈ V1}. The two form ω leads to the (nontrivial)
invariant volume form

dµ(Z†, Z) := c ωn = Det−2Ne(1 + Z†Z)
∧
i,j

dZ†ij
∧
i,j

dZij , (B.7)

where c is a normalisation constant and n = dimCV1.
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