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  Abstract 

 

Abstract 
The i-AAA protease Yme1 is a highly conserved ATP-dependent AAA (ATPase Associated 

with various cellular Activites) protease anchored to the inner mitochondrial membrane 

where it mediates protein quality surveillance that is crucial for cell survival. In yeast, 

deletion of YME1 is associated with pleitropic phenotypes. However, the few known 

proteolytic substrates and interaction partners of the i-AAA protease cannot explain the 

molecular basis of these phenotypes. Therefore, different approaches were used to define 

the function of the i-AAA protease. First, affinity purification of a proteolytic inactive variant 

of Yme1 working as a substrate trap was employed and led to the identification of eight 

novel Yme1-interacting proteins that localise to different submitochondrial compartments. 

Subsequent analysis revealed that two interactors, Mcr1 and Mpm1, represent new 

proteolytic substrates of the i-AAA protease. Hence, additional functions of the i-AAA 

protease should be responsible for the other identified interactions. Second, insights into 

processes that require the function of the i-AAA protease were obtained by a synthetic 

genetic array (SGA) approach using an assorted library of 96 non-essential mitochondrial 

gene deletions. 34 identified synthetic lethal interaction potentially link Yme1 to new 

functions like mitochondrial morphology, protein processing and lipid metabolism. Finally, the 

synthetic lethal interaction of IMP1 and YME1 was analysed by a high copy suppressor 

screening. This interaction is of particular interest, as all substrates of the Imp1 catalytic 

subunit of the IMP processing peptidase could be co-purified with the i-AAA protease. The 

identified suppressor Pgk1, a key enzyme in glycolysis and gluconeogenesis, suggests a 

severe impairment of Δyme1Δimp1 cells in energy metabolism.  

Moreover, in this thesis the substrate recognition by the i-AAA protease was examined by 

mutational analysis. Recently, two substrate binding regions have been identified within 

Yme1: the CH-(C-terminal helices) and the NH-(N-terminal helices) region. In contrast to the 

NH-region, the molecular mechanism of substrate binding to the CH-region has not been 

studied so far. Here, the CH-region was not only identified to have a role in substrate binding 

and transfer to the proteolytic cavity, but also for the stabilisation of the i-AAA protease 

complex.  

Taken together, novel substrates and interaction partners of the i-AAA protease were 

identified, pointing to additional functions of Yme1 independent of its proteolytic activity. As 

only few approaches have addressed the function of the i-AAA protease in higher eukaryotes 

so far, it will be interesting to examine the relevance of these findings for mammals.  
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1 Introduction 

 

1.1  Cellular compartmentation  

The concept of eukaryotic compartmentation enables the segregation of specific biochemical 

reactions to distinct environments for the purpose of biochemical efficiency and restricted 

dispersion of intermediate reaction products. This is of particular importance for subsequent 

conversions of substrates, accomplished during metabolic processes and proteolytic events. 

Local enrichments are either achieved by formation of complexes that cluster specific sets of 

enzymes or enclosure of reactions by membranes resulting in defined aqueous 

environments. While prokaryotic cells do not show enclosed membrane structures, 

eukaryotic cells comprise a complex intracellular compartmentalisation. One of these 

intracellular compartments is the mitochondrium. Mitochondria, as chloroplasts, are 

surrounded by two membranes which, according to the endosymbiotic theory, originate from 

invasion of a α-proteobacterium into a primordial eukaryotic cell (Wallace, 2007). These two 

membranes configure four mitochondrial subcompartments: Outer mitochondrial membrane, 

intermembrane space, inner mitochondrial membrane and the matrix space. Within the 

mitochondria, fundamental cellular processes are conducted which render this organelle 

essential for most eukaryotic cells. In fact, several diseases are associated with defects in 

mitochondria (Chan, 2006; Lin and Beal, 2006; Wallace, 2007) underlining the essential 

function of this organelle. Consequently, maintenance of mitochondrial integrity and function 

is crucial for an eukaryotic cell. It is therefore not surprising, that the inherited proteolytic 

quality control system of mitochondrial ancestors is conserved (Koppen and Langer, 2007) 

and that a number of accessory defence systems have evolved (Tatsuta and Langer, 2008). 

 

1.2  Metabolic requirements of mitochondria  

Mitochondria do not only adapt their activity to different physiological demands, but they are 

in addition able to modulate their subcellular distribution to local cellular requirements. The 

later is accomplished by the formation of a reticulated mitochondrial network which 

responses to cellular needs by constant fission and fusion events, thereby optimising 

mitochondrial performance (Cerveny et al., 2007; Detmer and Chan, 2007; Hoppins et al., 

2007). The most prominent metabolic reactions within mitochondria of S. cerevisiae are the 

citric acid cycle (also known as TCA or Krebs cycle), the process of oxidative phosphorylation 
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and the biosynthesis of amino acids (in mammals also β-oxidation of fatty acids). Moreover, 

mitochondria are the site of heme and Fe/S cluster biosynthesis (Hamza, 2006; Lill and 

Muhlenhoff, 2006; Lill and Muhlenhoff, 2008) and involved in the intermediary metabolism, 

calcium homeostasis and apoptosis (Chan, 2006; McBride et al., 2006). The maintenance of 

all of these processes is crucial for the survival of an organism.  

 

1.2.1  Role of mitochondria for the cellular energy metabolism  

Under aerobic conditions, mitochondria can serve as the major site of ATP production of the 

cell, harbouring the constituents of the citric acid cycle and the oxidative phosphorylation 

within the matrix space and the inner mitochondrial membrane, respectively. The 

mitochondria dependent energy production is also called respiration. Conversely, in the 

absence of oxygen cells undergo fermentation, a process that does not require the function 

of mitochondria. Glucose is the main source of energy utilised in both processes. However, 

yeast and other eukaryotic cells do not strictly depend on the availability of glucose; they are 

able to adapt their metabolic system to different carbon sources, but only under aerobic 

conditions. In the presence of glucose, most energy is generated by cytosolic glycolysis. Only 

upon utilisation of non-fermentable carbon sources, such as glycerol or lactate, the 

mitochondrial oxidative metabolism is fully activated. Non-fermentable carbon sources 

usually need to be remodeled before they can serve as a source of energy. Such enzymatic 

activities are partially present within mitochondria. Glycerol is processed within the cytosol to 

glycerol-3-phosphate by Gut1 (Pavlik et al., 1993). After glycerol-3-phosphate is internalised 

into mitochondria, it is converted into dihydroxy-acetate-phosphate (DAH-phosphate) that 

can enter the cytosolic glycolysis or gluconeogenesis processes (Sprague and Cronan, 1977). 

The mitochondrial enzyme producing DAH-phosphate is known as glycerol 3-phosphate 

dehydrogenase, Gut2, and is localized to the inner mitochondrial membrane (Rijken et al., 

2007; Ronnow and Kielland-Brandt, 1993). Lactate, another non-fermentable carbon source, 

is converted within the mitochondria to pyruvate that can enter glycolysis or 

gluconeogenesis.  Within yeast mitochondria, one L-lactate dehydrogenase (cytochrome b2) 

Cyb2 (Lodi and Ferrero, 1993) and two D-lactate dehydrogenase, Dld1 and Dld2 

(Chelstowska et al., 1999; Rojo et al., 1998) are present. In addition, mitochondria contain 

enzymes that are able to connect different metabolic pathways. One important 

representative is the multienzyme pyruvate dehydrogenase complex that resides in the 

matrix space of mitochondria. The enzyme is composed of two E1 proteins Pda1 and Pdb1, 

the E2 core protein Lat1, the E3 protein Lpd1 and the protein X component Pdx1 (Pronk et 

al., 1996). The important function of this mitochondrial complex is the oxidative 
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decarboxylation of internalised pyruvate into acetyl CoA and CO2, thereby linking glycolysis 

to the citric acid cycle. In general, the citric acid cycle is responsible for the complete 

conversion of nutrients, thus producing NADH and FADH2 molecules that are utilised during 

oxidative phosphorylation, as well as GTP. Furthermore, biosynthetic components, like amino 

acids, relevant for diverse cellular elements are initialised via the citric acid cycle.  

Therefore, the mitochondria do not only present the most efficient site of cellular ATP 

production, but are also involved in utilisation of alternative carbon sources. In addition, 

pathways within the mitochondria enable the supply/allocation of components originally used 

for energy production in the biogenesis of diverse cellular constituents like amino acid, fatty 

acids and heme (porphyrine) precursors.  

 

1.2.2  Mitochondrial lipids and ergosterol  

Although mitochondrial functions have been analysed extensively over the past decades, the 

role of lipids within this organelle has only more recently attracted the attention of research. 

Just like proteins, lipids are also important for the biogenesis and maintenance of 

mitochondria. In respect to cellular lipid supply, mitochondria are of particular interest, as 

they are involved in the biogenesis of some lipid species (Voelker, 2004). Yeast mitochondria 

usually comprise glycerophospholipids (phospholipids) and to a lower extent the yeast 

specific sterol ergosterol (Zinser and Daum, 1995). However, in contrast to other cellular 

membranes no sphingolipids are found in mitochondrial membranes.  

Commonly, phospholipids are composed of a phosphatidic acid element that is attached to 

variable head groups. The phosphatidic acid element contains a glycerol backbone which 

attaches to one phosphate and two fatty acids through ester bonds (Fig. 1.1). The variable 

head groups of phospholipids include choline, ethanolamine, serine, inositol and glycerol 

(van Meer et al., 2008). A phospholipid exclusively present within mitochondria is cardiolipin 

(Jakovcic et al., 1971). In contrast to other phospholipids, cardiolipin is a 

polyglycerophospholipid and contains two phosphatidic acid moieties that are linked via a 

glycerol bridge and harbour altogether four fatty acids (Fig. 1.1) (Schlame, 2008). 

The two most abundant phospholipids within yeast mitochondria are phosphatidyl-

ethanolamine (PE) and phosphatidycholine (PC) (Zinser and Daum, 1995). Whereas PC is 

only imported into mitochondria, PE can also be generated within mitochondria. The inner 

mitochondrial membrane protein Psd1 produces the majority of cellular PE by conversion of 

phosphatidyserine (PS) to PE (Clancey et al., 1993). Alternatively PE is produced from PS at 

the golgi-apparatus by Psd2 (Trotter and Voelker, 1995). Both PE and PC can also be 

synthesised via the Kennedy-pathway (Kent, 1995). However, the PE and PC species 
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synthesised through this pathway make only minor contributions to mitochondrial 

phospholipids (Birner et al., 2001). Another cellular compartment essential for the biogenesis 

of phospholipids is a specialised fraction of the endoplasmic reticulum (ER) called the MAM 

(mitochondria associated membrane) fraction. Here, the two MAM proteins Pem1 and Pem2 

are required for conversion of PE to PC (Zinser et al., 1991). Furthermore, Cds1 produces 

CDP-diacylglycerol (CDP-DAG) from phosphatidic acid (PA) that is required for the generation 

of phosphatidylserine (PS) and phosphatidylinositol (PI) in the MAMs (Achleitner et al., 1999; 

Gaigg et al., 1995). Cds1 is also present in the inner mitochondrial membrane where it plays 

a role in the production of cardiolipin (Kuchler et al., 1986). PA is synthesised in 

mitochondria by a two-step acylation of glycerol-3-phosphate at the outer membrane of 

mitochondria (Athenstaedt and Daum, 1999).  

Cardiolipin (CL) is the third most abundant phospholipid (14,6%) present in mitochondria. 

Unlike PE and PC, CL is enriched in the inner mitochondrial membrane and not distributed 

equally between the two mitochondrial membranes (Schlame, 2008). Consistently, the 

synthesis of cardiolipin takes place in the inner membrane of mitochondria. After CDP-DAG is 

produced by Cds1, it is further processed by Pgs1 to phosphatidylglycerolphosphate (PGP) 

(Chang et al., 1998). Then, dephosphorylation occurs by a still unknown enzyme. The 

resulting phosphatidylglycerol (PG) is converted by the cardiolipin synthase, Crd1, to CL 

(Chang et al., 1998; Tuller et al., 1998). In addition, so-called remodelling processes 

postsynthetically modify the acylchain composition of CL. One enzyme responsible for such 

remodelling is the transacetylase Taz1 that is localised to the inner leaflet of the outer 

mitochondrial membrane (Claypool et al., 2006). Interest in the functional role of Taz1 has 

increased when frequent mutations in the human homolog have been identified in patients 

suffering from Barth Syndrome (Bione et al., 1996). In yeast, CL is also required for a variety 

of cellular functions like ageing, apoptosis, mitochondrial protein import, mitochondrial 

bioenergetics, translational regulation and cell wall biosynthesis (Joshi et al., 2008). 

Although phospholipids produced in mitochondria are often transferred to different sites 

within the cell before they can fulfil their function, not much is known about the exact 

transport mechanisms of these lipids within and from mitochondria. It is conceivable that 

most phospholipids laterally diffuse through membrane continuities. Further, Met30 has been 

demonstrated to be required for transport of PS from MAMs into mitochondria (Choi et al., 

2006). Thus, distinct transport molecules might exist. In general, most membrane transports 

are facilitated by the vesicular transport system. However, mitochondria are not connected 

to this system and might thus have different mechanisms for the allocation of these 

phospholipids to the rest of the cell. The unique lipid composition of mitochondria could have 

resulted from the detachment of the organelle form the vesicular transport system. Instead 
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of depending on the internalisation of certain lipid species, the mitochondria might rather 

rely on the lipids produced by themselves. 

 

 

 

Another lipid found in mitochondria but originating from synthesis in the ER is ergosterol. 

Sterols are composed of a cholestane basis to which different site chains can be attached at 

the C-17 residue (Fig. 1.1) (Moss, 1989). Biosynthesis of ergosterol is a fairly complex 

procedure that involves 22 different enzymatic activities (Daum et al., 1998). The 

biosynthetic pathway of ergosterol formation can be split into two parts. The first part, 

commonly called the mevalonate or isoprenoid pathway, is initiated with two acetyl CoA 

molecules that are processed to farnesyl pyrophosphate. In the second part of ergosterol 

biosynthesis, farnesyl pyrophosphate is converted to ergosterol. Deletions of the enzymes 

required for the earlier step of the ergosterol biosynthesis are lethal. Conversely, the 

absence of the enzymes facilitating the last eight steps is not lethal, although the produced 

intermediates cannot substitute for ergosterol (Daum et al., 1998). The reason for this 

discrepancy is not understood. Most steps within the biosynthetic pathway of ergosterol are 

performed within the ER (Zinser et al., 1993) and only a subset of enzymatic activities is 

found in mitochondria. Erg10, an acetoacetyl CoA thiolase facilitating the first step of the 

ergosterol biosynthesis, is localised to both the cytoplasm and mitochondria (Kornblatt and 

Rudney, 1971). Additionally, the two outer mitochondrial membrane proteins Ncp1 and Mcr1 

are involved in the reduction of the cytochrome P450 family member Erg11 (Lamb et al., 

1999; Sutter and Loper, 1989), for which an ER localisation is proposed (Ott et al., 2005). 

Hence, no direct participation of mitochondria in ergosterol biosynthesis is evident. 

Nevertheless, ergosterol biosynthesis requires molecular oxygen and is thus depending on 

the mitochondrial heme production regulating the molecular oxygen content of the cell. The 

Figure 1.1 Lipid components within mitochondria. (A) Glycerophospholipids.  The 
glycerol backbone is bound to two variable fatty acids (R1 and R2) and a phosphate. Variable 
headgroup are choline, ethanolamine, serine, inositol and glycerol. (B) Polyglycero-
phospholipids. Two glycerol backbones are linked with two phosphates by a glycerol bridge 
between the two phosphate moieties. Four variable fatty acids can be attached here. The 
predominant polyglycerophospholipid in mitochondria is cardiolipin.  (C) Sterols. Ergosterol, 
the sterol found in yeast like S. cerevisiae, is shown.  
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oxygen dependent steps in the ergosterol biosynthesis are the epoxidation of squalene and 

the desaturation and demethylation of lanosterol (Hata et al., 1981; Lorenz et al., 1986). As 

a result, yeast is only able to produce ergosterol under aerobic conditions. Under anaerobic 

conditions, however, yeast is sterol auxotroph and depends on the exogenous supply of this 

essential cellular compound (Lewis et al., 1985; Lorenz and Parks, 1991). Accordingly, 

uptake mechanisms of ergosterol have been identified (Fig. 1.2). This uptake depends on an 

impaired heme biosynthesis and is hence restricted to anaerobic conditions, a phenomenon 

also referred to as ‘aerobic sterol exclusion’ (Lorenz et al., 1986) that is not well understood. 

Consequently, under aerobic conditions ergosterol is synthesised endogenously and no 

uptake is possible, whereas under anaerobic conditions endogenous synthesis is impaired 

and the essential uptake of exogenous ergosterol is induced via the transcription factor Ucp2 

(Crowley et al., 1998). Resulting expression of Pdr11 and Aus1, two ATP-binding cassette 

transporters, leads to the ATP-dependent uptake of the exogenous ergosterol (Wilcox et al., 

2002) and thereby ensures cell survival. 

Ergosterol is unequally distributed throughout different membranes and the incorporation of 

sterol intermediates is not favoured (Daum et al., 1998). Ergosterol is most abundant in the 

plasma membrane and in secretory particles (Zinser and Daum, 1995). Further, lipid 

particles, microsomes and the inner membrane of mitochondria contain ergosterol (Schneiter 

et al., 1999). Surprisingly, the site of ergosterol biosynthesis, the ER, contains a relatively 

low ergosterol content implying an efficient postsynthetic depletion and trafficking of the 

sterol to a distinct location (Fig. 1.2). Ergosterol resides in cellular compartments in form of 

free ergosterol (plasma membrane). Another form of ergosterol, steryl ester, resembles the 

storage form of ergosterol and its intermediates and is predominantly found together with 

triacylglycerol (TAG) in lipid particles (Czabany et al., 2007; Czabany et al., 2008). 

Conversion of ergosterol and its intermediates to the storable ester form is achieved by Are1 

and Are2 at the expense of acetyl CoA (Zweytick et al., 2000). Stored steryl ester are 

mobilised upon requirement by the action of the steryl ester hydrolases Tgl1, Yeh1 and Yeh2 

(Köffel et al., 2005; Wagner et al., 2009). As hydrolysis of steryl esters occurs at different 

cellular localisations, a role of lipid particles in trafficking of ergosterol cannot be excluded. 

However, the major sterol trafficking between the ER and the plasma membrane has been 

demonstrated to occur via vesicular or non-vesicular pathways (Raychaudhuri and Prinz, 

2006; Sullivan et al., 2006). In the non-vesicular pathway, translocation of sterols from the 

ER to the plasma membrane is based on the decreased chemical potential of sterol after its 

binding to other kinds of lipids within the plasma membrane.  As these sterol moieties are 

not able to diffuse within the gradient between the sterol rich plasma membrane and the 

sterol poor ER, successive incorporation of ergosterol into the already sterol enriched 
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compartment is achieved. The non-vesicular pathway was identified in experiments utilising 

Brefeldin A for disruption of the vesicular pathway where no impairment of sterol trafficking 

was obvious (Baumann et al., 2005). Within this pathway, oxysterol binding proteins (OSH) 

are responsible for the transport of sterols through the hydrophilic environment (Beh et al., 

2009; Wang et al., 2005). Additional lipid transfer proteins have been identified in mammals 

(Prinz, 2007). In yeast, additional factors are found to influence the cellular distribution of 

sterols. Altered intracellular sterol is observed in the absence of Arv1, Ptc1 and Plc1 (Fei et 

al., 2008; Tinkelenberg et al., 2000). Their exact function, however, is not understood.  

 

 

 

 

As mitochondria are not connected to the vesicular transport system of the cell, import of 

sterols into the organelle must also be achieved by a non-vesicular pathway. In yeast, no 

components involved in this process have been identified yet. The movement of sterols 

between the inner and outer mitochondrial membrane has in any case been shown to 

depend on the presence of ATP and the membrane potential (Tuller and Daum, 1995). In 

Figure 1.2 Uptake and trafficking of cellular ergosterol. Uptake of exogenous sterol in 
yeast is only facilitated under anaerobic conditions by the two ATP-binding cassette 
transporters Aus1 and Pdr11 localised to the plasma membrane (PM). Under aerobic 
conditions the supply of ergosterol is restricted to intracellular synthesis, a phenomenon called 
“aerobic sterol exclusion”. The major site of sterol synthesis is the endoplasmic reticulum 
(ER). Ergosterol trafficking occurs over vesicular and non-vesicular pathways. The later 
involves the action of oxysterol binding proteins (OSH). Both trafficking pathways mainly 
mediate the translocation of ergosterol between ER and PM. The mechanism by which 
ergosterol is transported to mitochondria (M) is, however, not understood. Storage of 
ergosterol and intermediates in their steryl ester form is mediated by Are1 and Are2 which 
compose lipid particles (LP) in the ER. PM, plasma membrane; ER, endoplasmic reticulum; M, 
mitochondria; LP, lipid particle; OSH, oxysterol binding proteins. 
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contrast, adrenal mammalian tissue contains two mitochondrial outer membrane proteins 

responsible for sterol transport into mitochondria. The peripheral benzodiazepine receptor 

(PBR) contains a cholesterol binding domain and is highly expressed in steroidogenic cells 

(Papadopoulos et al., 1997; Papadopoulos et al., 1997). The steroid acute regulatory protein 

(STAR) mediates the translocation of cholesterol from the outer mitochondrial membrane to 

the inner mitochondrial membrane (Miller, 2007). The exact mode of action by which STAR 

facilitates sterol transport is still under debate.  

Although sterols represent extremely expensive metabolic components, they account for a 

substantial amount of the cellular lipids. As cells acquiesce the complexity and cost of sterol 

biosynthesis, the function of sterols must be crucial for the viability of eukaryotic cells, and 

irreplaceable by any other cellular lipid component (Parks et al., 1995). Most studies defining 

the role of sterol in eukaryotic membranes have been performed in yeast. Here, ergosterol 

functions in bulk membrane formation influencing the rigidity and permeability of the 

membrane (Abe and Hiraki, 2009; Kleinhans et al., 1979; Lees et al., 1979). In this line, 

sterols participate in the formation of detergent resistant membranes (DRM) (Cerneus et al., 

1993). Ergosterol is implicated in a variety of other function in yeast, that will not be 

discussed in detail here. Moreover, a function in membrane packing of phospholipids by the 

mammalian sterol cholesterol is described (Ikonen, 2008; McConnell and Radhakrishnan, 

2003). Further, coinciding ergosterol has a protective effect against phospholipid 

peroxidation (Wiseman et al., 1993; Wiseman et al., 1993) occurring for example upon 

stroke.  

Most of the proposed functions of ergosterol are based on the analysis of the plasma 

membrane moiety of this lipid. However, similar roles in sorting and organisation by 

ergosterol may be expected in mitochondria where the majority of lipid is represented by 

phospholipids. One proposed regulatory role of ergosterol is the maintenance and/or 

biogenesis of mitochondrial morphology (Altmann and Westermann, 2005). Whether the 

underlying events leading to the disturbed mitochondrial morphology are based on 

alterations of mitochondrial or cellular ergosterol levels is not clear. The exact function of 

ergosterol in mitochondria remains up to date unknown. In contrast, mammalian cells are 

depending on mitochondria for the synthesis of steroids (steroidogenesis). For this purpose, 

conversion of internalised cholesterol to pregnenolone, the rate limiting step of 

steroidogenesis, is achieved by the action of cytochrome P450scc (CPY11A1) (Miller, 2007). 

The STAR lipid transfer proteins play a crucial role in this process by delivering cholesterol 

from the outer to the inner mitochondrial membrane. The essential role of this mitochondrial 

process is evident in mammals that suffer from congenital lipoid adrenal hyperplasia that is 

associated with mutations in STAR or P450scc (Miller, 1997; Yang et al., 1993). Additional 
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metabolic reactions are performed on internalised 11-decorticosterone (DOC) and 11-

deoxycortisol (DOCHL). Nevertheless, other functions of mitochondrial sterol in mammals 

and in yeast remain to be elucidated, as well as the mitochondrial transport of sterols in 

yeast. 

 

1.3  Proteolytic systems controlling mitochondrial 

maintenance  

Different lines of defence assuring the integrity of mitochondria have evolved (Tatsuta and 

Langer, 2008). On tissue level, cells with damaged mitochondria can undergo apoptosis to 

prevent for example subsequent damage of adjacent cells. On an organellar level, the 

mitochondrial integrity can be controlled by complete removal of damaged organelles by 

mitophagy (Kim et al., 2007), an autophagy related process. This event will lead to the 

turnover of the ~1000 known mitochondrial proteins (Mootha et al., 2003; Sickmann et al., 

2003; Taylor et al., 2003). A more economic process is the restoration of function by fusion 

of damaged mitochondria with intact neighbouring mitochondria (Detmer and Chan, 2007). 

Mitochondria display a dynamic network structure that is subjected to constant fission and 

fusion events accomplished by intricate molecular machines (Hoppins et al., 2007). Although 

restoring mitochondrial function, the fusion process does not ensure removal of damaged 

structures and does not explain the different turnover rates seen for mitochondrial proteins 

(Augustin et al., 2005; Russell et al., 1980). Hence, a different defence system has to exist 

on the level of mitochondria. Indeed, mitochondria contain an elaborate proteolytic system 

distributed throughout the different compartments of the organelle (Koppen and Langer, 

2007). In S. cerevisiae, as well as in higher eukaryotes, this system is mainly built up by 

ATP-dependent proteases and oligopeptidases (Fig. 1.3). Representative of the yeast ATP-

dependent proteases are Pim1 that acts together with Hsp78 (Röttgers et al., 2002) and the 

two AAA-proteases, the i-AAA and the m-AAA protease (Van Dyck and Langer, 1999). Yeast 

oligopeptidases are Mop112 and Prd1. In general, the term oligopeptidases refers to the 

ability of those peptidases to degrade peptides that result from degradation of polypeptides 

by other proteases further to amino acids (Desautels and Goldberg, 1982; Young et al., 

2001). In case of Mop112 and Prd1 this protease is predominantly the i-AAA protease 

(Kambacheld et al., 2005).  
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Furthermore, peptide export has been described for yeast mitochondria depending on the 

ABC-transporter Mdl1 (Young et al., 2001) that is localised to the inner mitochondrial 

membrane. A signalling function of released peptides on nuclear gene expression of 

mitochondrial genes has been proposed (Arnold et al., 2006; Young et al., 2001). Within the 

mitochondria Mdl1 transports peptides from the matrix site to the intermembrane space, 

where both Mop112 and Prd1 reside. Therefore, the complete breakdown of cleaved 

mitochondrial targeting sequences and other peptides originally generated in the matrix 

space by the two oligopeptidases is plausible (Kambacheld et al., 2005; Moberg et al., 2003; 

Stahl et al., 2002). As deletion of both oligopeptidases is associated with mild phenotypes 

(Kambacheld et al., 2005), the two oligopeptidases might not be essential for breakdown of 

the vast majority of peptides generated by processing of mitochondrial targeting sequences 

in the matrix. Besides, peptides in the intermembrane space can be released freely and 

additional matrix oligopeptidases might exist. Furthermore, the two oligopeptidases are 

connected to the quality control of mitochondrial proteins since turnover occurs for 5% to 

10% of all mitochondrial proteins (Augustin et al., 2005; Kambacheld et al., 2005). 

Moreover, yeast contains the metallopeptidase Oma1, an integral inner membrane protein 

Figure 1.3 The proteolytic system of mitochondria in S. cerevisiae. Two classes of 
peptidases can be distinguished within mitochondria: ATP-dependent proteases and oligo-
peptidases. Additional peptidases like Oma1 exist. Both ATP-dependent proteases and the 
metallopeptidase Oma1 generate peptides within the mitochondrial matrix space (M) that are 
either directly released over the inner mitochondrial membrane (IM) into the intermembrane 
space (IMS) via the peptide transporter Mdl1 or are degraded further to amino acids by a so 
far unknown peptidase. Peptides can also be generated within the intermembrane space by 
the i-AAA protease. Then, peptides can either be released from mitochondria through the 
outer mitochondrial membrane (OM) or their breakdown to amino acids is facilitated by 
Mop112 and Prd1. See text for details.  
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with a catalytic site that is facing the matrix space (Käser et al., 2003). Oma1 shows 

overlapping function with the m-AAA protease in quality control of inner membrane proteins 

by cleavage of misfolded polytopic membrane proteins at multiple sites (Käser et al., 2003). 

In higher eukaryotes, an additional intermembrane space serine proteases exist, HtrA2 (Omi) 

(Hegde et al., 2002). Diseases are not only related to mutations within the respective genes 

of HtrA2, but the serine protease has been linked to Parkinson disease (Martins et al., 2004; 

Plun-Favreau et al., 2007). Besides, mutations within the human ortholog of the m-AAA 

protease cause an autosomal recessive form of hereditary spastic paraplegia (HSP) (Casari et 

al., 1998). In conclusion, a concerted working mode of all proteases, the ATP-dependent 

proteases, oligopeptidases and other proteasese like Oma1 or HtrA will facilitate quality 

surveillance within the mitochondria and therefore assures their function and maintenance. 

 

1.4  ATP-dependent proteases  

ATP-dependent proteases are conserved from bacteria to man. In eukaryotes, ATP-

dependent proteases are required for a variety of cellular processes (Ogura and Wilkinson, 

2001; Tucker and Sallai, 2007). In Escherichia coli four of ATP-dependent proteases, Lon, 

FtsH, Clp and HslUV can be distinguished (Gottesman, 2003). ATP-dependent proteases are 

members of the AAA+ (ATPases associated with various cellular activities) family of Walker 

type P-loop ATPases (Ammelburg et al., 2006; Hanson and Whiteheart, 2005). Proteins 

belonging to that class are characterised by the presence of a homologous ATPase domain 

referred to as AAA domain and function as molecular chaperones. The AAA domain is often 

accompanied by a proteolytic domain responsible for subsequent degradation of the 

unfolded substrate. Depending on the type of protease, the AAA domain and the proteolytic 

domain are expressed as one or two polypeptide chains. Furthermore, different proteolytic 

classes of the ATP-dependent proteases are described: Lon and Clp proteases for example 

represent serine proteases (Van Dyck et al., 1994; Wang et al., 1997), whereas FtsH is a 

metalloprotease (Tomoyasu et al., 1993). The functional protease is usually assembled into a 

hexameric or heptameric core ring structure that buries the proteolytic sites inside a 

proteolytic chamber (Sauer et al., 2004; Schmidt et al., 1999; Zwickl et al., 2000). This kind 

of assembly produces a high local density of proteolytic sites beneficial for substrate 

degradation, but also restricts the access to the proteolytic site and thereby restrains 

proteolysis by the ATP-dependent proteases (Prakash and Matouschek, 2004; Sauer et al., 

2004; Schmidt et al., 1999; Singh et al., 2000). Moreover, functions independent of the 
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proteolytic activity have been indicated for the AAA domains of ATP-dependent proteases 

(Suzuki et al., 1997; Tatsuta et al., 2007). 

 

1.4.1  AAA+-proteases  

The active form of AAA+-proteases is established by assembly of their subunits into a 

hexameric or heptameric ring structure (Hanson and Whiteheart, 2005; Schmidt et al., 

1999). This ring shaped structure creates an inner proteolytic cavity and is required for a 

coordinated function of AAA domains (Ishikawa et al., 2004; Kim and Kim, 2003; Wang et 

al., 2001; Xia et al., 2004; Zhang et al., 2000). In general, the AAA domain of each oligomer 

contributes the following functional key elements: the Walker A and B motif, the sensor-1 

and sensor-2 motif and the arginine finger (Hanson and Whiteheart, 2005; Tucker and Sallai, 

2007). Within the protein sequence of a subclass of the AAA+-proteases, the so-called AAA 

proteases, the sensor-1 motif and the arginine finger are mapped to the highly conserved 

region, called the second region of homology (SRH) (Lupas and Martin, 2002) (Fig. 1.4). 

Functionally, the Walker A motif is required for binding of ATP by directly interacting with the 

phosphate moiety of ATP (Neuwald et al., 1999). The bound ATP is then subsequently 

hydrolysed to ADP by residues of the Walker B motif, where an asparte coordinates the 

essential Mg2+ ion while a glutamate activates a water molecule for the nucleophilic attack 

(Hanson and Whiteheart, 2005; Iyer et al., 2004). Sensor-1 and sensor-2 motif, as well as 

the arginine finger, also play a role in ATP binding and hydrolysis (Hanson and Whiteheart, 

2005; Hishida et al., 2004; Karata et al., 1999; Ogura et al., 2004). For the action of the 

arginine finger and the sensor-2 motif, the formation of the ring structure is essential, 

because only in this configuration these elements are able to protrude into the ATPase 

domain of the neighbouring subunit and contact the bound nucleotide (Ogura et al., 2004). 

The universal function of the AAA domain is the implementation of energy derived from ATP 

hydrolysis into a conformational change of the molecule, driving substrate unfolding and 

translocation (Martin et al., 2008). Apparently, not just hydrolysis of ATP, but also binding 

and release of the nucleotide seem to generate the driving force for the conformational 

change (Wang et al., 2001). Different modes of ATP hydrolysis within the ring structure are 

discussed (Martin et al., 2005; Moffitt et al., 2009; Ogura and Wilkinson, 2001). 

The concept of a proteolytic chamber also enables selective and entire degradation of 

substrates by AAA+-protease. Depending on the type of AAA+-protease the proteolytic 

chamber is either exclusively built up of the proteolytic domain or a participation of the AAA 

domain in the formation of the chamber is seen (Bieniossek et al., 2006). 
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Furthermore, the specific properties of prokaryotic Clp, Lon and FtsH proteases are 

introduced here, as orthologs of these proteases are found in mitochondria (Chapter 1.4.3). 

The caseinolytic protease ClpP resembles only a proteolytic subunit that is found to assemble 

with variable AAA subunits (mostly ClpA and ClpX) to different AAA+-protease constellations 

(Yu and Houry, 2007). Both Lon and FtsH proteases express the proteolytic and the AAA 

subunit in one polypeptide chain. All three proteases assemble into ring structures and a 

substrate entry and degradation mechanism similar to that of other AAA+-proteases is 

conceivable. Distinct structural features of Lon are the amino terminal N-domain and the 

proposed substrate sensor and disriminatroy domain (SSD) (Licht and Lee, 2008). FtsH 

proteases contain an SRH domain and are therefore the only AAA protease of the three 

compared AAA+-proteases (Lupas and Martin, 2002). Moreover, FtsH proteases are integral 

membrane protein with two transmembrane domains situated within the N-terminal region 

of the protein adjacent to the AAA domain (Ito and Akiyama, 2005). The membrane bound 

state of FtsH proteases raises the question of how substrates are recognised and degraded. 

Substrate binding and translocation are crucial processes for the functionality of all AAA+-

proteases and will be addressed in the following paragraph. 

 

 

 

1.4.2  Recognition and handling of substrate by AAA+-proteases  

Substrate engagement by the different AAA+-proteases occurs by a certain substrate 

recognition motif on the substrate, over an adaptor protein of the protease or to a specific 

site within the protease. Then, binding and hydrolysis of ATP will induce conformational 

changes that lead to an unfolding of the substrate. Finally, translocation of the substrate will 

Figure 1.4 Structure of AAA protease domains and their orientation relative to the 
membrane. Conserved domains and motifs are indicated on the left side. Domains of the 
FtsH protease are projected into the predicted hexameric structure based on the crystal 
structure of Thermus thermophilus (Suno et al., 2006). ND, N-terminal domain; TM, 
transmembrane region; AAA, AAA domain; NH, N-terminal helix; WA, Walker A motif; YVG, central 
pore loop; WB, Walker B motif; SRH, second region of homology; PD, proteolytic domain; HEXGH, 
proteolytic center; CH, C-terminal helix; M, membrane. The figure is adapted from (Graef et al., 
2008). 
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enable its subsequent degradation within the proteolytic cavity. The proposed rate limiting 

steps during the whole process are the unfolding and translocation of the substrate 

(Kenniston et al., 2003). 

Here, the mechanism for substrate engagement of prokaryotic Clp, Lon and FtsH are 

described. Recognition elements within the substrate mediate its first contact with the 

protease. Accordingly, terminal or internal consensus sequences have been identified in Clp 

and FtsH substrates. One of the best characterised consensus sequences is the ssrA tag. It 

consists of 11 amino acids that are added C-terminally to proteins that are arrested during 

translation (Gottesman, 2003; Keiler et al., 1996). Sequence comparison of additional Clp 

substrates allowed the identification of five terminal recognition elements (Flynn et al., 

2003). Also, latent terminal recognition sequences are known; for example the LexA 

repressor generates new C-terminal and N-terminal ends by an autocatalytic process that 

serve as recognition sequences for ClpXP (Neher et al., 2003). A consensus sequence has 

not been identified for Lon proteases, but substrate engagement is also initiated within 

certain recognition elements (Nishii et al., 2002; Ondrovicova et al., 2005; von Janowsky et 

al., 2005). Further, internal sequences can act as recognition elements for substrates 

engagement by the Clp and FtsH proteases under certain conditions (Hoskins et al., 2002; 

Okuno et al., 2006). Protease adaptor proteins are best known for Clp proteases, were the 

AAA subunit (ClpA or ClpX) has to be connected to the proteolytic subunit ClpP to form the 

functional AAA+-protease (Yu and Houry, 2007). The function of the AAA+-protease ClpAP is 

inhibited by ClpS (Guo et al., 2002; Zeth et al., 2002); in contrast ClpXP function is 

stimulated by SspB (Bolon et al., 2004; Levchenko et al., 2000). Functional stimulation of 

FtsH is achieved by the DnaK/DnaJ/GroE chaperone system (Tatsuta et al., 2000). No such 

adaptors are known for bacterial Lon. Lastly, substrate engagement can be influenced by 

recognition elements within the protease itself. Within the Clp proteases the substrate 

recognition elements are localised to the AAA subunits, ClpA or ClpX. Both proteins harbour 

an accessory N-terminal domain (N-domain) that is activated upon assembly of the ring-like 

structure. Zn2+ binding elements of one subunit have to dimerise with the element in the 

adjacent subunit (Hinnerwisch et al., 2005; Singh et al., 2001; Wojtyra et al., 2003; Xia et 

al., 2004). Moreover, an involvement of the central pore structure of the AAA domain in 

substrate binding is suggested (Hinnerwisch et al., 2005). Within the sequence of FtsH 

substrate binding element have not been identified.  

One striking feature of AAA+-proteases is their ability to unfold a bound substrate with the 

help of the AAA domain prior to its degradation by the proteolytic domain. This process is 

referred to as ‘protein unfolding-coupled translocation’ and is based on studies in HslUV 

(Wang et al., 2001; Wang et al., 2001). A threading mode of substrate translocation is 
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proposed in which local denaturation of the substrate protein is caused by a pulling force 

that originates from conformational changes of the AAA domain induced by ATP hydrolysis. 

Crucial for this process are conserved residues (XVG) within a loop structure that resides in 

the pore of the AAA domain of the AAA+-proteases (Wang et al., 2001). In respect to 

substrate unfolding, an intriguing property of FtsH proteases is their capability to extract 

polypeptide chains from the lipid bilayer for degradation (Ito and Akiyama, 2005). However, 

the unfoldase activity of FtsH has been shown to be limited (Herman et al., 2003). Hence, 

AAA+-proteases have not only developed efficient systems for substrate engagement but 

also for substrate translocation.  

 

1.4.3  Mitochondrial AAA+-proteases 

Mitochondria contain representatives of Clp, Lon and FtsH proteases of which here the 

respective yeast proteins are described. Mcx1 is a ClpX homolog that is localised to the 

matrix space of mitochondria (Fig.1.1), where it is proposed to function as a chaperone (Van 

Dyck et al., 1998) as no ClpP homologs are present in yeast mitochondria. Additional studies, 

however, reveal only a minor impact of Mcx1 on the aggregation and disaggregation of 

proteins (von Janowsky et al., 2006).  

Pim1 belongs to the Lon family of proteases and resides within the matrix space of 

mitochondria (Suzuki et al., 1994; Van Dyck et al., 1994; Wagner et al., 1994) were it forms 

a heptameric ring structure (Stahlberg et al., 1999). Most substrates are subjected to Pim1 

degradation after exposure of denatured protein segments (Ondrovicova et al., 2005; von 

Janowsky et al., 2005). Subsequent degradation depends on the substrates solubility that is 

assured by the assisting chaperone Hsp78 under heat stress (Röttgers et al., 2002; von 

Janowsky et al., 2006). A function of Pim1 is the quality control of mitochondrial matrix 

proteins under stress conditions like heat stress or oxidative damage (Bota and Davies, 

2002). However, this function does not directly explain the loss of respiration of a Δpim1 

strain (Suzuki et al., 1994). Elucidation of this phenotype is provided by the potential 

function of Pim1 in mtDNA maintenance that might be based on the non-selective binding of 

mitochondrial Lon proteases to DNA (Liu et al., 2004). 

Two FtsH family members are present within the inner membrane of yeast mitochondria: the 

i-AAA proteases active in the intermembrane space and the m-AAA proteases active in the 

matrix space (Fig.1.3). Based on structural analysis of bacterial homologs, both proteases 

constitute a typical barrel-shaped membrane embedded ring structure of an FtsH protease 

and exhibit a narrow axial pore and a proteolytic cavity (Ito and Akiyama, 2005). A unique 

attribute of the m-AAA protease is the formation of a hetero-oligmeric assembly of two 
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closely related subunits, Yta10 and Yta12. In contrast, the i-AAA protease comprises only 

one subunit, Yme1. Similar to other FtsH proteases, both the i-AAA and m-AAA protease 

harbour an HEXGH motif typical for members of the M41 family of metallopeptidase 

(Rawlings and Barrett, 1995). Within the proteolytic center of FtsH the two histidines 

coordinate the Zn2+ metal ion together with a structurally proximal aspartate residue 

(Bieniossek et al., 2006). Nucleophilic cleavage of the peptide bonds is facilitated by 

activation of a water molecule by the glutamate residue. In addition, the ability of FtsH 

proteases to extract proteins from a lipid bilayer is conserved for the i- and m-AAA protease. 

First, both proteases are capable of degrading integral membrane proteins that expose at 

least an unfolded 20 amino acid segment on either site of the inner mitochondrial membrane 

(Leonhard et al., 2000); moreover, direct evidence for a membrane dislocation mechanism of 

the m-AAA protease was recently provided (Tatsuta et al., 2007). Though, the molecular 

details of this dislocation mechanism are elusive, they point to a crucial role of the 

transmembrane domains of the proteases (Korbel et al., 2004). Elements within the 

substrate sequence responsible for its binding to the protease seem to be only characterised 

by their unfolding state representing a rather degenerate strategy of substrate recognition. 

Within the sequence of the protease the already mentioned distinct regions, the NH- and CH-

region, seem to regulate efficient, but specific binding of substrates to the i-AAA proteases.  

 

1.4.4  Substrate recognition by the i-AAA-proteases  

A sophisticated substrate recognition system is responsible for defined degradation of 

substrates by AAA proteases in mitochondria. Plainly relying on unstructured, exposed 

sequence elements of the substrate, the AAA proteases appear to be able to identify specific 

substrates. This is of particular importance as both AAA proteases are ATP-dependent 

proteases which are to a certain extent able to actively unfold substrates which might enable 

unselective and potentially harmful proteolysis. On the other hand, mitochondrial AAA 

proteases are embedded into the lipid bilayer and hence, restricted in their orientation 

toward a substrate protein. Therefore, substrate recognition by these proteases most likely 

requires a substantially different mechanism than the one described for their soluble 

counterparts.  

Within the structure of the i-AAA protease two distinct substrate binding sites have been 

identified: the NH-(N-terminal helices) region, located at the surface of the AAA domain, and 

the CH-(C-terminal helices) region, exposed at the surface of the proteolytic domain and by 

that on top of the cylindrical structure of the i-AAA protease (Graef et al., 2008) (Fig. 1.5). 

The ~ 40 amino acid long NH-region is positioned in close proximity to the inner 
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mitochondrial membrane, making it an ideal element to encounter substrates protruding 

from the membrane. Structurally, it consists of helical structure build up by highly negatively 

charged amino acids that are required for substrate binding to this region (Graef and Langer, 

2006). The independent/autonomous action of the NH-region in substrate binding is 

supported by in vitro studies of C-terminally truncated Yme1 molecules (Leonhard et al., 

1999). Within the process of degradation, substrates are reported to first bind to the NH-

region, before they are encountered by the central pore loops to be subsequently transferred 

to the proteolytic center (Graef and Langer, 2006).   

The second substrate binding site the CH-region appears more suitable for binding of soluble 

substrates to the i-AAA protease, as it is located rather distantly from the inner mitochondrial 

membrane. The structure of the CH-region is built up by three helices the α-16, α-17 and α-

18 helix of Yme1 at the top and side of the catalytic chamber of the i-AAA protease (Graef et 

al., 2007). In respect to substrate binding and degradation, two different mechanisms are 

described for the CH-region, a CH-dependent and a CH-independent mechanism.  

 

 

As an example, the degradation of cytochrome c oxidase 2 (Cox2) is described which can 

take place in a CH-dependent as well as in a CH-independent manner. CH-independent 

degradation of Cox2 is observed for fully folded Cox2 where the NH-region serves as a 

backup for initial substrate binding site (Graef et al., 2007). Any interference with the folding 

status of Cox2 renders its degradation CH-dependent (Graef et al., 2007). So, whether the 

degradation of a substrate occurs in a CH-dependent or CH-independent manner seems to 

be influenced by the folding state of a substrate and its localisation relative to the 

membrane. In this line, soluble or peripherally attached substrate proteins are thought to be 

degraded in a CH-dependent manner, whereas substrates proteins that are completely 

Figure 1.5 Initial substrate binding sites of the i-AAA protease. (A) Within the 
cylindrical structure of the AAA protease (grey) the substrate binding sites are exposed in a 
lattice like assembly at the outer surface of the protease. The NH-region (blue) resides at the 
surface of the AAA domain, whereas the CH-region (green) is part of the proteolytic domain. 
(B) Open structure revealing the relative position of CH-region (green), NH-region (blue) and 
the proteolytic center (red). Here the different domains within the crystal structure of the 
related AAA protease of Thermotoga maritima are shown (U. Baumann personal 
communication). PD, proteolytic domain; AAA, AAA domain; NH, N-terminal helices; CH, C-
terminal helices, PC, proteolytic center. 
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folded and tightly attached or inserted into the membrane might be degraded CH-

independent. The exact mechanism determining the CH-dependent or CH-independent 

degradation of a substrate remains elusive. Autonomous substrate binding to the CH-region 

has been determined by in vitro binding studies (Graef et al., 2007).  

Although the existence of two independent substrate binding sites might have evolved to 

achieve an enhanced recognition of substrates with different properties, the relevance of 

these two binding sites within the degradation process is far from being understood. During 

degradation, substrates first have to bind to the protease before being encountered by the 

central pore loops for further translocation to the inner cavity for degradation. For the NH-

region such a mechanism is already implied (Graef and Langer, 2006). In contrast, there is 

no evidence for substrate translocation from the CH-region to the central pore loops. As the 

CH- region is situated rather distant to the central pore loops substrates might first bind to 

the NH-region before they are encountered by the central pore loops. Alternatively, 

additional substrate entry pathways to the proteolytic center could exist for substrates that 

are bound to this region. Therefore, analysis of substrate transition mechanisms after 

binding of substrates to the CH-region is awaited. The fact that the i-AAA protease is 

membrane embedded could again make the mechanism more complicated in comparison to 

soluble AAA proteases. 

 

1.4.5  Functions of the i- and m-AAA proteases in mitochondria  

Various functions have been described for the two mitochondrial AAA proteases (Fig. 1.6). 

Both the i-AAA and the m-AAA protease are required for mitochondrial protein quality 

surveillance of inner membrane proteins (Leonhard et al., 2000) on which they show 

overlapping function. One argument for this overlap of function is the synthetic lethality seen 

for simultaneous deletion of both proteases (Lemaire et al., 2000; Leonhard et al., 2000) 

that is also underlining the essential role of the proteases for cellular function. Moreover, the 

presence of either of the proteases is demonstrated to be sufficient for complete degradation 

of a certain substrate protein (Leonhard et al., 2000). Furthermore, prohibitins are found to 

assemble with the m-AAA protease into a high molecular weight complex in the inner 

mitochondrial membrane, where they negatively regulate the quality control function of the 

m-AAA protease (Steglich et al., 1999). 

In addition to its quality control function, the m-AAA protease is involved in the processing of 

nuclearly encoded mitochondrial proteins (Esser et al., 2002; Nolden et al., 2005). One such 

mitochondrial protein is MrpL32, a subunit of the large particle of the mitochondrial 

ribosome. After mitochondrial import of MrpL32, the m-AAA protease processes the protein 
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to its mature form and by that allows the completion of a functional mitochondrial ribosome 

formation. Why the proteolytic action of the m-AAA protease on MrpL32 does not lead to 

complete degradation of the protein remains to be elucidated. The function of the m-AAA 

protease in processing of MrpL32 explains the respiratory deficiency of a strain depleted of 

the m-AAA protease subunits, as a lack of mitochondrial translation results in a loss of 

respiratory complexes (Nolden et al., 2005). 

 

 

 

Moreover, membrane dislocation events are demonstrated for the m-AAA protease (Tatsuta 

et al., 2007). The m-AAA protease is required for maturation of cytochrome c peroxidase 

Figure 1.6 Versatile functions of the i- and m-AAA proteases of mitochondria. (A) 
Quality control surveillance. Misfolded polypeptides are degraded to peptides after their 
dislocation from the membrane. The membrane topology of substrates determines the 
involvement of either i-AAA (red) or m-AAA protease (blue) which exert overlapping substrate 
specificity (Leonhard et al., 2000). (B) Protein processing. The m-AAA protease mediates 
processing of nuclear encoded mitochondrial proteins resulting in their activation (Esser et al., 
2002; Nolden et al., 2005). Maturation of the ribosomal protein MrpL32 by the m-AAA protease 
enables ribosomal assembly within mitochondria (Nolden et al., 2005). (C) Membrane 
dislocation. Ccp1 is dislocated by the m-AAA protease in an ATP-dependent manner allowing its 
intramembrane cleavage by the rhomboid protease Pcp1 (Tatsuta et al., 2007). (D) Protein 
import. The i-AAA protease is required for import of heterologously expressed, mammalian 
PNPase into the mitochondrial intermembrane space (Rainey et al., 2006). OM, outer 
mitochondrial membrane; IMS, intermembrane space; IM, inner mitochondrial membrane; M, 
matrix space. The figure is adapted from (Graef et al., 2008). 
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(Ccp1) (Esser et al., 2002), a reactive oxygen scavenger in the intermembrane space that 

contains a bipartite import sequence for its posttranslational import into mitochondria (Kaput 

et al., 1982). Upon import into mitochondria, Ccp1 is matured by subsequent action of the 

m-AAA protease and the ATP-dependent rhomboid protease Pcp1 (Esser et al., 2002; 

Tatsuta et al., 2007). This process strictly depends on the presence of the m-AAA protease, 

as intramembrane cleavage by Pcp1 can only occur after membrane dislocation of Ccp1 by 

the m-AAA protease which renders the cleavage site of Ccp1 accessible for Pcp1 (Tatsuta et 

al., 2007). Also for the i-AAA protease a non-proteolytic function is suggested. Mitochondrial 

import of mammalian PNPase expressed heterologously in yeast requires the i-AAA protease 

(Rainey et al., 2006). PNPase binding to the i-AAA protease subunit Yme1 promotes the 

translocation of PNPase across the outer mitochondrial membrane. This function is impaired 

if the proteolytic activity of Yme1 is inhibited, although Yme1 is not able to degrade PNPase 

under these conditions. Whether the action of Yme1 in import of PNPase resembles the 

membrane dislocation event seen for the m-AAA protease in case of Ccp1 remains unclear at 

this point.  

Thus, additional functions independent of the proteolytic activity of the mitochondrial AAA 

proteases have been identified (Graef et al., 2008) highlighting the relevance of these 

proteases for additional mitochondrial processes involving housekeeping and regulatory roles 

during mitochondrial biogenesis. Nevertheless, they are required for quality control of 

mitochondrial membrane proteins. Therefore, combination of the activity of Pim1 and the 

two AAA proteases defines an elaborate system of mitochondrial quality control that assures 

maintenance of mitochondrial function. 

 

1.4.6  The conserved i-AAA protease Yme1  

The i-AAA protease is best studied in the yeast S. cerevisiae. Here, the homo-oligomer is 

composed of Yme1 subunits that assemble into a proposed hexameric structure localised to 

the inner mitochondrial membrane with their catalytic domains facing the intermembrane 

space (Leonhard et al., 1999). Unexpectedly, analysis of the complex by gelfiltration 

experiment and blue native gel electrophoresis reveals a complex size that does not 

resemble an assembly of only six subunits. It is therefore conceivable that other components 

are involved in the assembly of the native complex. Two proteins influencing the complex 

size of the i-AAA protease are the yeast specific adaptors Mgr1 and Mgr3 (Dunn et al., 

2008). The complex size of the i-AAA protease is reduced in the absence of either MGR1 or 

MGR3 and degradation of model substrates is decreased. However, both proteins are not 

shown to be involved in degradation of the substrate Cox2 and their deletion resembles only 
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one of the known Δyme1 phenotypes, the dependence on mitochondrial DNA (mtDNA) 

(Dunn et al., 2006). In general, the deletion of YME1 is connected to pleiotrophic 

phenotypes. The already noted dependence of cells on mtDNA in the absence of Yme1 is 

also described as ‘petite negative’ phenotype (Chen and Clark-Walker, 1999; Thorsness and 

Fox, 1993). Furthermore, Δyme1 cells are respiratory incompetent at elevated temperature 

and not able to grown on glucose-rich medium at lower temperature (Thorsness et al., 

1993). Deletion of YME1 also induces an aberrant mitochondrial morphology and an 

increased mitochondrial turnover via the vacuole which also results in transfer of mtDNA to 

the nucleus (Campbell et al., 1994; Campbell and Thorsness, 1998; Thorsness and Fox, 

1993). More recently, the function of Yme1 has been linked to ergosterol and longevity. 

Δyme1 cells are deficient for uptake of ergosterol under anaerobic growth condition (Reiner 

et al., 2006). As ergosterol biosynthesis requires molecular oxygen uptake of ergosterol is 

essential under those conditions (Parks et al., 1995). The connection of Yme1 to longevity is 

based on studies monitoring the replicative lifespan of cells in the absence of YME1 (Francis 

et al., 2007; Palermo et al., 2007). Further, YME1 is deleted in life-extending mutants of 

which many show a decreased cytosolic protein synthesis (Wang et al., 2008). The resulting 

double mutants exhibit a loss of extended lifespan, linking the function of Yme1 to a role in 

longevity.  

 

 

 

According to the vast number of phenotypes associated with the loss of the i-AAA protease, 

this protein, although present within mitochondria, participates in many cellular processes. 

Nonetheless, the described phenotypes cannot be directly linked to so far identified 

mitochondrial interaction partners (Mgr1 and Mgr3) or proteolytic substrates of the i-AAA 

Table 1.1 Homology of Yme1 orthologs.  Yme1 orthologs exists in Homo sapiens, Mus 
musculus, Rattus norvegicus, Caenorhabditis elegans, Schizosaccharomyces pompe and 
Canadida alibicans. There respective protein names and relative homology to Yme1 from S. 
cerevisiae are depicted here. Source: BIOBASE Knowledge Library.  

Species Name 

% identity to

S. cerevisiae Yme1 

H. sapiens YME1L1 52% 

M. musculus Yme1l1 51.8% 

R. norvegicus Yme1l1 51.8% 

C. elegans M03C11.5 51.6% 

S. pombe SPCC965.04c 47.8% 

C. albicans YME1 67.3% 
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protease. Besides Cox2 (Leonhard et al., 1996; Nakai et al., 1995; Pearce and Sherman, 

1995; Weber et al., 1996), the i-AAA protease is also involved in the degradation of Nde1 

(Augustin et al., 2005) and Phb1/2 (Kambacheld et al., 2005). Hence, in order to explain the 

molecular mechanisms causing the pleitropic phenotypes of a Δyme1 strain, the identification 

of additional interaction partners and substrates is required.  

Yme1 is expressed throughout the eukaryotic kingdom and described orthologs show a high 

sequence identity (Tab. 1.1), speaking for a general importance of the i-AAA protease in 

cellular function. The high degree of similarity is also supported by complementation studies 

of yeast, where expression of YME1L1 restored the respiratory deficiency of Δyme1 at 

elevated temperature (Shah et al., 2000). The human homolog YME1L1 has been 

demonstrated to process the mitochondrial fusion component OPA1 at a specific site 

(Griparic et al., 2007; Song et al., 2007). Furthermore, stabilisation of another OPA1 isoform 

is apparent upon downregulation of YME1L1, pointing to its degradation by the protease 

(Guillery et al., 2008). OPA1 is the human homolog of Mgm1. In yeast, processing of Mgm1 

is less complex and shown to be mediated by Pcp1 (Sesaki et al., 2006; Sesaki et al., 2003). 

Although yeast cells exhibit a mitochondrial morphology defect in the absence of Yme1, the 

i-AAA protease seems not to be involved in the processing of Mgm1 (Campbell et al., 1994). 

It would be interesting to see if other phenotypes found for the yeast homolog Yme1 can be 

observed in higher eukaryotes.  

 

1.5  Mitochondrial peptidases and mitochondrial protein 

import  

Mitochondrial processing peptidases are predominantly important for the cleavage of 

mitochondrial targeting sequences generating the active, matured form of a protein in 

different mitochondrial subcompartments (Koppen and Langer, 2007). Usually targeting 

sequences consist of 10-80 amino acids at the N-terminus of a protein. These sequences are 

rich in positively charged amino acids and are able to form amphipatic helical structures 

(Song et al., 1998). In addition, internal targeting sequences exist, but their nature remains 

largely elusive (Folsch et al., 1996). Further, bipartite import sequences can be found, that 

require that action of two peptidases for full maturation (Hartl et al., 1987). Prior to their 

processing, the respective precursor proteins have to be imported into mitochondria. The 

import of proteins into mitochondria is achieved by an elaborate system of translocases 

located in inner and outer mitochondrial membrane (reviewed in (Bolender et al., 2008; 

Neupert and Herrmann, 2007)) (Fig. 1.6).  
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Three major mitochondrial processing peptidases exist in the matrix space and the inner 

mitochondrial membrane of mitochondria (Gakh et al., 2002). Within the matrix space the 

peptidases MPP (mitochondrial processing peptidase) and MIP (mitochondrial intermediate 

peptidase) ensure maturation of imported precursor proteins (Hawlitschek et al., 1988; 

Kalousek et al., 1988; Yang et al., 1988). The yeast MPP peptidase is a hetero-dimer of Mas1 

and Mas2 that is essential for cell survival (Yaffe et al., 1985). The conserved 

metallopeptidase is highly homologous to non-catalytic subunits of the cytochrome c 

reductase (Gencic et al., 1991; Schulte et al., 1989). Therefore, it is not surprising that MPP 

is a bi-functional protein in some organisms (Glaser and Dessi, 1999). The monomeric 

metallopeptidase MIP is composed of Oct1 in yeast (Chew et al., 1996; Kalousek et al., 

1988) and requires octapeptides for the cleavage of precursor proteins (Isaya et al., 1992). 

The severe phenotypes associated with inactivation of the gene point to an important 

regulatory role of the peptidase (Isaya et al., 1994). The catalytic domain of the membrane 

Figure 1.6 The mitochondrial protein import machinery and its connection to 
mitochondrial processing peptidases in S. cerevisiae. After translocation of proteins 
through the TOM (translocase of the outer membrane) complex proteins enter different 
pathways. β-barrel proteins are assembled into the outer membrane (OM) by the action of the 
SAM (sorting and assembly machinery) and the MDM (mitochondrial distribution morphology) 
complex. Intermembrane space proteins can be oxidised and assembled by Mia40 
(mitochondrial intermembrane space import and assembly). Inner mitochondrial membrane 
and carrier proteins are translocated through the inner mitochondrial membrane (IM) and are 
assembled by the TIM23 or TIM22 (translocase of the inner membrane) complex, 
respectively. Import of matrix proteins is facilitated by the Tim23 complex. After import into 
the matrix (M) proteins are either translocated through the inner mitochondrial membrane via 
Oxa1 or are processed by MPP (mitochondrial processing peptidase) or MIP (mitochondrial 
intermediate peptidase). Proteins imported into the intermembrane space (IMS) are processed 
by IMP (inner membrane protease), Pcp1 or Atp23. 
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embedded hetero-oligomeric IMP complex is facing the intermembrane space (Pratje and 

Guiard, 1986; Schneider et al., 1991). The two catalytic subunits Imp1 and Imp2 contain 

serine peptidase specific dyads (Dalbey et al., 1997; Nunnari et al., 1993; Schneider et al., 

1994) and are homologous to bacterial leader peptidase and thylakoid processing peptidases 

(Behrens et al., 1991; Halpin et al., 1989). They are accompanied by the non-catalytic 

subunit Som1 (Bauerfeind et al., 1998; Esser et al., 1996) that is binding to Imp1 and might 

modulate its substrate specificity, as only a subset of Imp1 substrates is depending on the 

presence of Som1 in processing by the IMP peptidase (Jan et al., 2000; Liang et al., 2004). 

The IMP peptidase is required for processing of several nuclearly encoded proteins, as well 

as the mitochondrially encoded subunit 2 of cytochrome c oxidase (Cox2) (Burri et al., 2005; 

Esser et al., 2004). One intriguing characteristic of the IMP peptidase is the distinct substrate 

specificity of the two physically connected catalytic subunits Imp1 and Imp2 (Nunnari et al., 

1993) that is based on their ability to recognise different substrate cleavage sites (Luo et al., 

2006). However, substrate specific cleavage sites are not necessarily conserved, for example 

the cleavage site of the human NADH cytochrome c reductase does not resemble one 

described for the yeast homolog Mcr1 (Tomatsu et al., 1989).  

Besides those three processing peptidases, the mitochondrial rhomboid protease Pcp1 (Esser 

et al., 2002; Herlan et al., 2003), the m-AAA protease (Yta10/Yta12) (Esser et al., 2002; 

Nolden et al., 2005) and the metallopeptidase Atp23 (Osman et al., 2007; Zeng et al., 2007) 

have been shown to mediate the processing of specific precursor proteins. The membrane 

embedded serine peptidase Pcp1 is a member of the rhomboid protease family (Freeman, 

2008). Pcp1 is involved in processing of the reactive oxygen scavenger cytochrome c 

peroxidase (Ccp1) (Esser et al., 2002) and the dynamin like GTPase Mgm1 (Herlan et al., 

2003). The later is a component of the mitochondrial fusion machinery and links Pcp1 

function to mitochondrial morphogenesis. The conserved metallopeptidase Atp23 is required 

for assembly of the ATP synthase subunit Atp6. It facilitates not only its cleavage, but also 

its insertion into the membrane embedded FO-subunit of the ATP synthase (Osman et al., 

2007; Zeng et al., 2007). The m-AAA protease is required for maturation of Ccp1 and 

MrpL32 (Nolden et al., 2005; Tatsuta et al., 2007), and the general impairment of processing 

of MrpL32 explains the apparent phenotype in the absence of the m-AAA protease. 

Therefore, the processing function of the m-AAA protease is crucial for the cell.  
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1.6  Aims of the thesis 

The highly conserved ATP-dependent i-AAA protease Yme1 is a crucial player in the protein 

quality control system of mitochondria. Two distinct substrate binding sides within the i-AAA 

protease have been identified, the CH-region and the NH-region. Furthermore, substrates 

have been found to be degraded in a CH-dependent or CH-independent manner, always 

requiring the presence of the NH-region. Substrate binding to the NH-region could be shown 

to depend on the presence of negatively charged amino acids in a helical structure adjacent 

to the inner mitochondrial membrane. However, the molecular requirements of initial 

substrate recognition by the CH-region remain to be elucidated. To address this question the 

initial binding of substrates to distinct residues or areas within the CH-region of Yme1 will be 

examined by mutational analysis. In this respect, the identification of additional substrates 

will also be useful. 

The absence of a functional i-AAA protease Yme1 in yeast cells leads a broad range of 

severe defects including impaired respiratory growth and mitochondrial morphogenesis. 

However, the underlying molecular mechanisms are far from being understood, due to 

limited knowledge of its proteolytic substrates and interaction partners. In order to identify 

novel substrates or interaction partners, affinity purification of the endogenous i-AAA 

protease from the convenient yeast system will be performed. For this purpose, a proteolytic 

inactive but structurally intact variant of Yme1 will be used that specifically enriches for 

proteolytic substrates which might interact only transiently with the protease. In addition to 

this biochemical approach, a genetic approach will be applied. A synthetic genetic array 

(SGA) will be conducted for the identification of processes which require the function of the 

i-AAA protease. Here, the viability of double mutants with a deletion of the i-AAA protease 

Yme1 in combination with a deletion of another non-essential gene will be determined. In 

general, the loss of viability of a double mutant indicates the genetic interaction of the two 

deleted genes that act in related processes. Moreover, new functions of the i-AAA protease 

should be identified by the subsequent implementation of a high copy suppressor screening 

of a subset of determined synthetic lethal interaction of YME1. 

 

 



  Material and methods 

 26

2 Materials and Methods  

 

2.1  Molecular Biology Methods  

Standard procedures in molecular biology were performed according to compiled protocols 

(Sambrook and Russell, 2001). Used enzymes were purchased from NEB (New England 

Biolabs) and Roche. DNA purification kits were purchased from Macherey-Nagel. Suppliers 

for (the used) chemicals were Sigma, Merck and Roth unless stated otherwise.  

2.1.1  Yeast expression plasmid  

For functional analysis of the CH-region of Yme1, the plasmid pVT100U-Yme1 was used as 

template for mutagenesis by polymerase chain reaction (PCR) based on the “QuikChange 

side-directed mutagenesis kit” procedure (Stratagene). Degenerated primers (TL3174-

TL3193) allowed the exchange of two subsequent residues within the α-17 and α-18 helix of 

the CH-region of Yme1  for alanine or glycine:  K681G/K682G, E685A/L686G, H687A/R688A, 

L689G/A690G, Q681A/G692A, L693G/I694G, E695A/Y696A, A701G/I794G, H702H/E703A, 

and E705A/Q706A (for oligonucleotide sequences see Tab. 3). Truncations of the CH-region 

of Yme1 were generated by introducing nonsense mutations into two neighbouring codons. 

Yme1Δ709-747 was lacking all residues following the CH-region of Yme1 (TL4258/TL4259), the 

variant Yme1Δ698-747 did not include the α-18 helix of the CH-region (TL4592/4593), the 

variant Yme1Δ681-747 did not contain the α-18 helix of the CH-region (TL4594/4595), and the 

variant Yme1Δ651-747 did not include any part of the CH-region  (TL4596/4596).  

Purification of Yme1 was based on a hexahistidine (6HIS) tag that was fused to the N-

terminal or C-terminal end of the mature protein. For the variant harbouring a C-terminal 

6HIS tag, the YME1 coding sequence with the endogenous promoter is amplified from 

pRS314-Yme1 and pRS314-Yme1E541Q using the oligonucleotides TL2358 and TL2360 (Graef 

and Langer, 2006). The PCR fragment was cut with BglII (within the promoter region of 

YME1) and EcoRI and cloned into the BamHI and EcoRI restriction sites of pRS314. To 

introduce N-terminal 6HIS in between the mitochondrial targeting sequence and the mature 

version of the Yme1 protein (between Yme1E50 and Yme1K51), mutagenesis PCR was 

performed with pRS314-Yme1 and pRS314-Yme1E541Q (Graef and Langer, 2006). For 

galactose-based overexpression, the YME1 gene was amplified from genomic DNA using the 

oligonucleotides TL4261 and TL4263, cut with the restriction enzymes EcoRI and BglII and 

cloned into the EcoRI and BamHI restriction sites of pYX113. For constitutive 

overexpression, the MCR1 gene was cut after amplification from genomic DNA 
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(TL2644/TL2645) with EcoRI/XbaI and cloned into the EcoRI/NheI restriction sites of the 

TPI-promoter containing pXY142. Candidate genes for the suppression of the synthetic 

lethality of Δyme1Δimp1 cells, PGK1, YLR218c, PET54 and MIC14, were excised from the 

corresponding Yep13 library plasmid and cloned into YEplac181 to test the suppressive effect 

of the single gene expressed under its native promoter.  

 

Table 2.1 Yeast expression constructs used in this study. 

 

 

Plasmid Reference 

pVT100U-Yme1 (Klanner et al., 2001) 

pVT100U-Yme1K681G/K682G this study 

pVT100U-Yme1E685A/L686G this study 

pVT100U-Yme1H687A/R688A this study 

pVT100U-Yme1L689G/A690G this study 

pVT100U-Yme1Q691A/G692A this study 

pVT100U-Yme1L693G/I694G this study 

pVT100U-Yme1E695A/Y696A this study 

pVT100U-Yme1A701G/I704G this study 

pVT100U-Yme1H702A/E703A this study 

pVT100U-Yme1E705A/Q706A this study 

pVT100U-Yme1Δ709-747 this study 

pVT100U-Yme1Δ698-747 this study 

pVT100U-Yme1Δ681-747 this study  

pVT100U-Yme1Δ651-747 this study 

pVT100U-Yme1Δ52-198 unpublished, M. Graef  

pRS314 (Sikorski and Hieter, 1989) 

pRS314-Yme1 (Graef and Langer, 2006) 

pRS314-Yme1E541Q PhD thesis M. Graef 

pRS314-Yme1-6HIS this study 

pRS314-Yme1E541Q-6HIS this study 

pRS314-Yme1(1-50)-6HIS-Yme1(51-747) this study 

pRS314-Yme1(1-50)-6HIS-Yme1(51-747)-E541Q this study 

pXY113 Novagen 

pXY113-Yme1 this study 

pXY142 Novagen 

pYX142-Mcr1 this study 

YEplac181 (Gietz and Sugino, 1988) 
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2.1.2  Plasmids for in vitro transcription and translation  

For the generation of in vitro synthesised polypeptides, the pGEM4 vector system (Promega) 

was used. PCR-based insertion of the Kozak consensus sequence [(GCC)(A/G)CC ATG] 

preceding the start codon (Kozak, 1987) and restriction sites allowed cloning of the different 

genes into the pGEM4 vector. In vitro production of RNA was driven by the SP6-promoter for 

all used constructs.  

 

Table 2.2 List of plasmids for in vitro transcription and translation used in this study. 

Plasmid Reference 

pGEM4 Promega 

pGEM4-Phb1 (Kambacheld et al., 2005) 

pGEM4-Yme1 T. Langer 

pGEM4-IAP-1 (Klanner et al., 2001) 

pGEM4-YME1L1 G. Pellechia 

pGEM4-Yme1l1 J. Majczak  

pGEM4-Mcr1 this study 

pGEM4-Mpm1 this study 

pGEM4-Gep1 this study 

pGEM4-Qcr2 this study 

pGEM4-Pda1 this study 

pGEM4-Pdb1 this study 

 

Plasmid Reference 

YEplac181-GAL-Gep1-myc unpublished, C. Potting 

YEplac181-Pgk1 this study 

YEplac181-Ylr218c this study 

YEplac181-Pet54 this study 

YEplac181-Mic14 this study 

pFA6a-kanMX6 (Longtine et al., 1998) 

pFA6a-3HA-kanMX6 (Longtine et al., 1998) 

pAG25 (Goldstein and McCusker, 1999) 

pYM14 (Janke et al., 2004) 
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2.2  Cell biology methods  

2.2.1  Yeast strains and growth conditions  

All studies were performed in the yeast S. cerevisiae; all strains (Tab. 2.4) were derived from 

W303 (Thomas and Rothstein, 1989) or BY4743 (Brachmann et al., 1998). Growth of yeast 

strains was performed according to standard protocols in complete (YP) or synthetic (SC) 

media (Sherman, 2002) supplemented with 2% (w/v) glucose or galactose, as indicated. 

Additional supplements for complete media were 3% (v/v) glycerol (YPG), EtBr (25 µg/ml) 

and nystatin (50 U/ml). For isolation of mitochondria, yeast cells were grown in lactate 

medium (Tatsuta and Langer, 2007). Creation of PCR-based genomic integrations was based 

on homologous recombination strategies (Goldstein and McCusker, 1999; Janke et al., 2004; 

Longtine et al., 1998). Single deletion strains not listed in Table 2.4 were derived from the 

Euroscarf collection (Winzeler et al., 1999). Diploid double deletion strains were derived from 

crossings of Δyme1::NAT (YTE108) with single strains from the Euroscarf collection 

(Winzeler et al., 1999). 

 

Table 2.3 Oligonucleotides used in this study. 

Primer Description Sequence (5’- 3’) 

TL852 disruption of YME1 TTATAATACATTGTGGATAGAACGAAAACAGAGACGTGATAGATGCGTA 
CGCTGCAGGTCGAC 

TL853 disruption of YME1 TTGAGGTAGGTTCCTTCATACGTTTAACTTCTTAGAATAAAATCAATCGA 
TGAATTCGAGCTCG 

TL2214 disruption of MGR1 TCCTCCATTCCCTCTCCTTTTCCAATTACCGTAATAAAAGCGGATCCCCG 
GGTTAATTAA 

TL2358 cloning of YME1-
6HIS into pRS314 

GATCTTAGCATTGCGAATTCTTATTCAATGGTGATGGTGATGGTGTGCA
TTTAACATTGTAGGAA 

TL2359 cloning of YME1 
into pRS314 

TAGCATTCGAGCGGCTGTCT 

TL2378 disruption of MGR1 TTTAATATACGCACGGTACAACTAAGCAATCCGCAAAGACCTGATATCAT
CGATGAATTC 

TL2391 C-terminal HA-
tagging of GEP1 

AAATATTGACTTGTTTAGAGACGCATACAACCACGAAAATCGG 
ATCCCCGGGTTAATTAA 

TL2392 C-terminal HA-
tagging of GEP1 

GTAGTATGCAGTGCCATGCGGGATCAAGGAATTTGTATCTGAA 
TTCGAGCTCGTTTAAAC 

TL2630 disruption of IMP1 AATAAGACAGTGAATCATCCAACAGTGTACAATACCAGGGCGTACGCTG
CAGGT 

TL2631 disruption of IMP1 ATTGCGTATCGAACCGTCCCAGAAGGGCTTGTCAAAAATGATCGATGAA
TTCGAGCT 

TL2644 cloning of MCR1 GCACCGGAATTCCGGCCGCCATGTTTTCCAGATTATCCAG 

TL2645 cloning of MCR1 CGTCGCTCTAGAGCGTTAAAATTTGAAAACTTGGTCCTTGGAGTA 
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Primer Description Sequence (5’- 3’) 

TL2822 C-terminal tagging 
of MCR1 

GAACAATTTGGGCTACTCCAAGGACCAAGTTTTCAAATTTCGGATCCCC
GGGTTAATTAA 

TL2823 C-terminal tagging 
of MCR1 

GATCCGAAATTAAAAAAAATATCAATTACTTTCCTCCATGCCTGATATCA
TCGATGAATTC 

TL2824 C-terminal tagging 
of QCR2 

CGTCGGTGATGTTTCCAACTTGCCATATTTGGACGAATTGCGGATCCCC
GGGTTAATTAA 

TL2825 C-terminal tagging 
of QCR2 

ATTTGCCTTTAGTTTTTCGTTTTGTACAAATACTTTCCTCCTGATATCAT
CGATGAATTC 

TL3174 5’-yme1K681G/K682G 

mutagenesis primer 

CAAGAAGACTATTAACTGGGGGAAATGTTGAGCTACATAG 

TL3175 3’-yme1K681G/K682G 

mutagenesis primer 

CTATGTAGCTCAACATTTCCCCCAGTTAATAGTCTTCTTG 

TL3176 5’-yme1E685A/L686G 

mutagenesis primer 

CTCCAAGAAAAATGTTCGGGGACATAGACTTGCGCAAG 

TL3177 3’-yme1E685A/L686G 

mutagenesis primer 

CTTGCGCAAGTCTATGTCCCCGAACATTTTTCTTGGAG 

TL3178 5’-yme1H687A/R688A 

mutagenesis primer 

GAAAAATGTTGAGCTACGTCGACTTGCGCAAGGTCTTATTG 

TL3179 3’-yme1H687A/R688A 

mutagenesis primer 

CAATAAGACCTTGCGCAAGTCGACGTAGCTCAACATTTTTC 

TL3180 5’-yme1L689G/A690G 

mutagenesis primer 

GTTGAGCTACATAGAGGTGGGCAAGGTCTTATTGAATATG 

TL3181 3’-yme1L689G/A690G 

mutagenesis primer 

CATATTCAATAAGACCTTGCCCACCTCTATGTAGCTCAAC 

TL3182 5’-yme1Q691A/G692A 

mutagenesis primer 

 GCTACATAGACTTGCGCGACGTCTTATTGAATATGAAAC 

TL3183 3’-yme1Q691A/G692A 

mutagenesis primer 

GTTTCATATTCAATAAGACGTCGCGCAAGTCTATGTAGC 

TL3184 5’-yme1L693G/I694G 

mutagenesis primer 

CATAGACTTGCGCAAGGTGGTGGTGAATATGAAACTCTAG 

TL3185 3’-yme1L693G/I694G 

mutagenesis primer 

CTAGAGTTTCATATTCACCACCACCTTGCGCAAGTCTATG 

TL3186 5’- YME1E695A/Y696A 

mutagenesis primer 

GCGCAAGGTCTTATTCGACGTGAAACTCTAGATGC 

TL3187 3’-yme1E695A/Y696A 

mutagenesis primer 

GCATCTAGAGTTTCACGTCGAATAAGACCTTGCGC 

TL3188 5’-yme1A701G/I704G 
mutagenesis primer 

GAATATGAAACTCTAGATGGCCACGAAGGCGAACAAGTTTGTAAAG 

TL3189 3’-yme1A701G/I704G 

mutagenesis primer 

CTTTACAAACTTGTTCGCCTTCGTGGCCATCTAGAGTTTCATATTC 

TL3190 5’-yme1H702A/E703A 

mutagenesis primer 

GAAACTCTAGATGCCCGCCGAATCGAACAAGTTTGTAAAG 
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Primer Description Sequence (5’- 3’) 

TL3191 3’-yme1H702A/E703A 

mutagenesis primer 

CTTTACAAACTTGTTCGATTCGGCGGGCATCTAGAGTTTC 

TL3192 5’-yme1E705A/Q706A 

mutagenesis primer 

GATGCCCACGAAATCCGACGAGTTTGTAAAGGTTAATAG 

TL3193 3’-yme1E705A/Q706A 

mutagenesis primer 

CTATTAACCTTTACAAACTCGTCGGATTTCGTGGGCATC 

TL3819 5’-yme1E50-6HIS-K51 
mutagenesis primer 

GATCAAAGAAGTTCTACCGTTTTTATTCTGAACACCATCACCATCACCAT
AAGAATAGCGGTGAAATGCCTCCTAAGAAG 

TL3820 3’-yme1E50-6HIS-K51 

mutagenesis primer 

CTTCTTAGGAGGCATTTCACCGCTATTCTTATGGTGATGGTGATGGTGT 
TCAGAATAAAAACGGTAGAACTTCTTTGATC 

TL4252 cloning of GEP1 CCGGAATTCCGGGCGTGTCAAAAAAATGCTGTTTCCGTTGA 

TL4253 cloning of GEP1 CCGGAATTCCGGATGAACGTTTCAAAAATACTTG 

TL4254 cloning of MPM1 GCACCGGAATTCCGGCCGCCATGGGCTTTTATGAAGGCGATG 

TL4255 cloning of MPM1 CGCTCTAGAGCGCTAATTGTCTTCGTCAACACTCACCAC 

TL4258 5’- yme1Δ709-747 

mutagenesis primer 

CGAACAAGTTTGTAAAGGTTAATAACTGGACAAACTGAAAAC 

TL4259 3’- yme1Δ709-747 

mutagenesis primer 

GTTTTCAGTTTGTCCAGTTATTAACCTTTACAAACTTGTTCG 

TL4261 cloning of YME1 CGAAGATCTTCATCATGCATTTAACATTGTAGG 

TL4263 cloning of YME1  CCGGAATTCCGGATGAACGTTTCAAAAATACTTG 

TL4293 disruption of MPM1 GGACAAGAAAGACAAAGGAAACCGACAAACCGTTTACTCGATCGGATCC 
CCGGGTTAATTAA 

TL4294 C-terminal tagging 
of MPM1 

CCCCAGGTGAAGCATAAAGTGGTGAGTGTTGACGAAGACAATCGGATCC 
CCGGGTTAATTAA 

TL4295 C-terminal tagging 
and disruption of 
MPM1 

GCATATTGTGTAAGATATGAGTAAAAAAAGGAAACGAAAATATGTCCTG 
ATATCATCGATGAATTC 

TL4519 C-terminal tagging 
of PDA1 

GATACTTGGGACTTCAAAAAGCAAGGTTTTGCCTCTAGGGATCGGATCC 
CCGGGTTAATTAA 

TL4520 C-terminal tagging 
of PDA1 

CATGCGATCACAGCACTATTATTTTATTTTTCCTTACGATTTAAGAATTC 
GAGCTCGTTTAAAC 

TL4522 C-terminal tagging 
of PDB1 

CTCCAACCATCGTTAAAGCTGTCAAAGAAGTCTTGTCAATTGAACGGATC 
CCCGGGTTAATTAA 

TL4523 C-terminal tagging 
of PDB1 

CCCTATCTCCTTCTTTCTCTCCTTCCTATTGGATTGAAGTTTATGAATTC 
GAGCTCGTTTAAAC 

TL4592 5’- yme1Δ698-747 

mutagenesis primer 

CAAGGTCTTATTGAATATTAATAACTAGATGCCCACGAAATC 

TL4593 3’- yme1Δ698-747 

mutagenesis primer 

GATTTCGTGGGCATCTAGTTATTAATATTCAATAAGACCTTG 

TL4594 5’- yme1Δ681-747 

mutagenesis primer 

GAAGACTATTAACTAAGTAATAAGTTGAGCTACATAGAC 
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Primer Description Sequence (5’- 3’) 

TL4595 3’- yme1Δ681-747 

mutagenesis primer 

GTCTATGTAGCTCAACTTATTACTTAGTTAATAGTCTTC 

TL4596 5’- yme1Δ651-747 

mutagenesis primer 
CAGAAAATTGGGAATCTTGATAAAATAAGATTCGCGATATTGC 

TL4597 3’- yme1Δ651-747 

mutagenesis primer 

GCAATATCGCGAATCTTATTTTATCAAGATTCCCAATTTTCTG 

TL4824 cloning of PDA1 GCACCGGAATTCCGGCCGCCATGCTTGCTGCTTCATTCAAACG 

TL4825 cloning of PDA1 TCCCCCCGGGGGGATTAATCCCTAGAGGCAAAACCTTGC 

TL4826 cloning of PDB1 GCACCGGAATTCCGGCCGCCATGTTTTCCAGACTGCCAAC 

TL4827 cloning of PDB1 TCCCCCCGGGGGGATTATTCAATTGACAAGACTTCTTTG 

 

Table 2.4 Yeast strains used in this study. Strains are listed in order of appearance.   

# Name Genotype Reference 

 W303-1B MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 

(Thomas and 
Rothstein, 1989) 

YCK10 Δyme1::HIS MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 

(Klanner et al., 
2001) 

YTE45 Δyme1 + Yme1 MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pVT100U-Yme1 

this study 

YTE55 Δyme1 + 
Yme1K681G/K682G 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pVT100U-

Yme1K681G/K682G 

this study 

YTE56 Δyme1 + 
Yme1E685A/L686G 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pVT100U-Yme1E685A/L686G 

this study 

YTE57 Δyme1 + 
Yme1H687A/R688A 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pVT100U-

Yme1H687A/R688A 

this study 

YTE58 Δyme1 + 
Yme1L689G/A690G 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pVT100U-

Yme1L689G/A690G 

this study 

YTE59 Δyme1 + 
Yme1Q691A/G692A 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pVT100U-

Yme1Q691A/G692A 

this study 

YTE60 Δyme1 + 
Yme1L693G/I694G 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pVT100U-Yme1L693G/I694G 

this study 

YTE61 Δyme1 + 
Yme1E695A/Y696A 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pVT100U-Yme1E695A/Y696A 

this study 

YTE62 Δyme1 + 
Yme1A701G/I704G 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pVT100U-Yme1A701G/I704G 

this study 

YTE63 Δyme1 + 
Yme1H702A/E703A 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pVT100U-

Yme1H702A/E703A 

this study 
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# Name Genotype Reference 

YTE64 Δyme1 + 
Yme1E705A/Q706A 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pVT100U-

Yme1E705A/Q706A 

this study 

 Δsco1Δyme1 MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 sco1::KanMX6 yme1::HIS3MX6 

unpublished  
M. Graef 

YTE87 Δsco1Δyme1 + 
Yme1 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 sco1::KanMX6 yme1::HIS3MX6 + 

pVT100U-Yme1 

this study 

YTE 
71-80 

Δsco1Δyme1 +  
Yme1K681G/K682G 
-Yme1E705A/Q706A 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 sco1::KanMX6 yme1::HIS3MX6 + 

pVT100U-Yme1K681G/K682G - pVT100U-Yme1E705A/Q706A
 

this study 

YTE92 
 

Δyme1 + 
Yme1Δ709-747 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pVT100U-Yme1Δ709-747 

this study 

YTE132 Δyme1 + 
Yme1Δ698-747 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pVT100U-Yme1Δ698-747 

this study 

YTE133 Δyme1 + 
Yme1Δ681-747 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pVT100U-Yme1Δ681-747 

this study 

YTE134 Δyme1 + 
Yme1Δ651-747 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pVT100U-Yme1Δ651-747 

this study 

YTE93 Δsco1Δyme1 + 
Yme1Δ709-747 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 sco1::KanMX6 yme1::HIS3MX6 + 

pVT100U-Yme1Δ709-747 

this study 

YTE 
135-137 

Δsco1Δyme1 +  
Yme1Δ698-747 - 
Yme1Δ651-747 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 sco1::KanMX6 yme1::HIS3MX6  

+ pVT100U-Yme1Δ709-747 - pVT100U-Yme1Δ651-747 

this study 

YTE125 Δimp1Δyme1 MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 imp1::NAT yme1::HIS3MX6  

this study 

YTE 
138-142 

Δimp1Δyme1 + 
Yme1Δ709-747 – 
Yme1Δ651-747 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 imp1::NAT yme1::HIS3MX6  

+ pVT100U-Yme1Δ709-747 - pVT100U-Yme1Δ651-747 

this study 

 mas1ts MATa leu2 his3 phoC phoE mas1ts (Yaffe and Schatz, 
1984) 

YKO200 
  

Δyta10Δyta12 MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 

can1-100 yta10::HIS3MX6 yta12::KanMX6 
(Koppen et al., 

2007) 

YTE25 Δyme1 + 
Yme1 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pRS314-Yme1   

this study 

YTE26 
 

 Δyme1 + 
Yme1E541Q 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pRS314-Yme1E541Q   

this study 

YTE28  Δyme1 + 
Yme1-6HIS 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pRS314-Yme1-6HIS  

this study 

YTE29  Δyme1 + 
Yme1E541Q-6HIS 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pRS314-Yme1E541Q-6HIS 

this study 
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# Name Genotype Reference 

YTE88 Δyme1 + 
Yme1(1-50)-6HIS 
-Yme1(51-747) 

 MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6  

+ pRS314-Yme1(1-50)-6HIS-Yme1(51-747) 

this study 

YTE89 Δyme1 + 
Yme1(1-50)-6HIS 
-Yme1(51-747)-

E541Q 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6  

+ pRS314-Yme1(1-50)-6HIS-Yme1(51-747)-E541Q 

this study 

YTE36  Δyme1 + 
Yme1(Δ52-198) 

  MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pRS314-Yme1(Δ52-198) 

unpublished,  
M. Graef 

YTE39 W303-Qcr2-HA MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 QCR2-3HA (KanMX6) 

this study 

YTE40 Δyme1- 
Qcr2-HA 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 QCR2-3HA (KanMX6) 

this study 

YTE41 W303-Mcr1-HA MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 MCR1-3HA (KanMX6) 

this study 

YTE42 Δyme1- 
Mcr1-HA 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 MCR1-3HA (KanMX6) 

this study 

YTE98 W303-Gep1-HA MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 GEP1-6HA (KanMX6) 

this study 

YTE99 Δyme1- 
Gep1-HA 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 GEP1-6HA (KanMX6) 

this study 

YTE100 W303-Mpm1-
HA 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 MPM1-3HA (KanMX6) 

this study 

YTE101 Δyme1- 
Mpm1-HA 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 MPM1-3HA (KanMX6) 

this study 

YTE128 W303-Pda1-HA MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 PDA1-3HA (KanMX6) 

this study 

YTE129 Δyme1- 
Pda1-HA 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 PDA1-3HA (KanMX6) 

this study 

YTE130 W303-Pdb1-HA MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100  PDB1-3HA (KanMX6) 

this study 

YTE131 Δyme1- 
Pdb1-HA 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 PDB1-3HA (KanMX6) 

this study 

YTE105 Δyme1-Mpm1-
HA + Yme1E541Q 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 MPM1-3HA (KanMX6) 

+ pRS314-Yme1E541Q 

this study 

YTE106 Δyme1-Mcr1-
HA + Yme1E541Q 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 MCR1-3HA (KanMX6)  

+ pRS314-Yme1E541Q 

this study 

YTE107 Δyme1-Qcr2-
HA + Yme1E541Q 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 QCR2-3HA (KanMX6)  

+ pRS314-Yme1E541Q 

this study 
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2.2.2  Yeast genetic procedures  

DNA was introduced into yeast cell with the lithium acetate/single-stranded carrier 

DNA/polyethylene glycol method (Gietz and Woods, 2002).  The Synthetic Genetic Analysis 

(SGA) was accomplished as described previously (Tong et al., 2001). Confirmation of 

synthetic lethal interactions was achieved by sporulation and tetrad dissection. For the 

identification of high copy suppressors of the synthetic lethal interactions, a Yep13 high-copy 

# Name Genotype Reference 

YTE142 Δyme1-Mpm1-
HA + pYX113 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 MPM1-3HA (KanMX6) 

+ pYX113 

this study 

YTE143 Δyme1-Mcr1-
HA + pYX113 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 MCR1-3HA (KanMX6)  

+ pYX113 

this study  

YTE144 Δyme1-Mpm1-
HA 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 MPM1-3HA (KanMX6) 

+ pXY113-Yme1 

this study 

YTE145 Δyme1-Mcr1-
HA + Gal-Yme1 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 MCR1-3HA (KanMX6)  

+ pXY113-Yme1 

this study 

YTE146 W303 + 
pYX142 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 + pYX142 

this study 

YTE147 Δyme1 + 
pXY142 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pYX142 

this study 

YTE148 W303 + 
pYX142-Mcr1 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 + pYX142-Mcr1 

this study  

YTE149 Δyme1 + 
pXY142-Mcr1 

MATα ade2-1 his3-11,15 leu2,112 trp1-1 ura3-52 
can1-100 yme1::HIS3MX6 + pYX142-Mcr1 

this study 

YTE108 Δyme1::NAT MATα his3Δ1 leu2Δ0 lys3Δ0 ura3Δ0 
yme1::NAT 

this study 

YTE117 Δimp1Δyme1  
+ Yme1 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0, lys3Δ0 
imp1::KanMX, yme1::NAT + pVT100U-Yme1 

this study 

YTE150 Δimp1Δyme1  
+ YEplac181 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0, lys3Δ0 
imp1::KanMX, yme1::NAT + YEplac181 

this study 

YTE151 Δimp1Δyme1  
+ Pgk1 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0, lys3Δ0 
imp1::KanMX, yme1::NAT + YEplac181-Pgk1 

this study 

YTE152 Δimp1Δyme1  
+ Ylr218c 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0, lys3Δ0 
imp1::KanMX, yme1::NAT + YEplac181-Ylr218c 

this study 

YTE153 Δimp1Δyme1  
+ Pet54 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0, lys3Δ0 
imp1::KanMX, yme1::NAT + YEplac181-Pet54 

this study 

YTE154 Δimp1Δyme1  
+ Mic14 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0, lys3Δ0 
imp1::KanMX, yme1::NAT + YEplac181-Mic14 

this study 
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genomic library was employed. Double deletion strains harbouring a pVT100U-Yme1 plasmid 

were transformed with the library. After growth at 30°C on SD-Leu, plates were replicated 

onto plates containing 5’FOA (1 mg/ml) for counterselection of the pVT100U-Yme1 plasmid. 

Suppressing genes were identified through isolation of Yep13 plamids from yeast, 

transformation of the corresponding plasmids into E. coli cells and subsequent cloning of the 

single genes into the YEplac181. 

 

2.3  Biochemistry Methods  

2.3.1  Total protein isolation from S. cerevisiae  

Total protein samples were prepared by alkaline extraction (Yaffe and Schatz, 1984). 3 OD600 

units yeast cells were sedimented by centrifugation for 1 min at 16.000 g and washed once 

with 500µl H2O. The cell pellet was resuspended in 300 µl H2O and 50 µl of lysis buffer [1.85 

M NaOH, 7.4% (v/v) β-mercaptoethanol, 10 mM PSMF; 5% (v/v) ethanol] were added. After 

incubation for 10 min at 4°C, the total cellular proteins were precipitated with TCA (Tatsuta 

and Langer, 2007) and subjected to SDS-PAGE (Lämmli, 1970) and Western-Blot (Towbin et 

al., 1979). Precipitated cellular proteins corresponding to 0.2-0.3 OD600 units were used for 

SDS-PAGE. 

2.3.2  Preparation of cellular membranes from S. cerevisiae  

In order to prepare of cellular membranes, including the mitochondrial fraction, 10 OD600 

units yeast cells were harvested by centrifugation (1 min, 16.000 g, 4°C). After resuspending 

the cell pellet in 300 µl SHKCl buffer [0.6 M Sorbitol, 50 mM HEPES/KOH pH 7.4, 80 mM KCl,  

2 mM PMSF] and supplying the sample with 200 µl glass-beads (Ø 0.5 mm), cells were 

opened by five repetitive cycles of mixing (30 sec, Vortex) and cooling on ice (30 sec). 

Subsequent addition of 400 µl SHKCl buffer and centrifugation (3 min, 500 g, 4°C) allowed 

the removal of glass-beads and unbroken cells. The cellular membrane fraction was 

separated from the soluble fraction by centrifugation (20 min, 12.000 g, 4°C) and used for 

further analysis by SDS-PAGE (Lämmli, 1970) and Western blot (Towbin et al., 1979). When 

starting with 200 OD600 units yeast cells, 3 ml SHKCl and 3 g of glass-beads were used.   

 

2.3.3  Immunological detection of proteins  

All steps for immunological detection were performed in TBS buffer [10 mM Tris/HCl pH 7.4, 

150 mM NaCl].  Blocking of nitrocellulose and PVDF membrane was performed with 5% 

(w/v) milk powder dissolved in TBS.  For incubation with the protein-specific antiserum, 1% 
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(w/v) milk powder was added and for the incubation of horseradish-peroxidase coupled 

antibodies specific for different immunoglobulin Gs 5% (w/v) milk powder and a dilution of 

1:10.000 were used. The peroxidase activity on the membranes could be detected after 

incubation for 1 min with a 1:1 mixture of chemiluminescence reagents [solution 1: 100 mM 

Tris/HCl pH 8.5, 0.44 µg/ml luminol, 150 µg/ml p-coumaric acid; solution 2: 100 mM Tris/HCl 

pH 8.5, 1.8% (v/v) H2O2]. Emission signals were captured by exposure to light-sensitive X-

ray films (Super RX, Fuji).  

 

Table 2.5 Antibodies used in this study listed in order of appearance. 

Antisera  Epitope Dilution Reference 

α-Yme1 N-terminal peptide (amino acid 55-65) of 
Yme1 from S. cerevisiae 

1:10.000 (Leonhard et al., 1996) 

α-Cox2 whole protein of Cox2 from S. cerevisiae 1:1.000  

α-Tom40 C-terminal peptide of Tom40 from  
S. cerevisiae 

1:20.000  

α-Mge1 C-terminal peptide of  Mge1 from  
S. cerevisiae 

1:10.000 (Schneider et al., 1994) 

α-Cyb2 whole protein of Cyb2 from S. cerevisiae 1:2.000   

α-HA (3F10) YPYDVPDYA 1:3.000 Roche 

α-Mcr1 whole protein of Mcr1 from S. cerevisiae 1:2.000 (Hahne et al., 1994) 

α-Myc (9B11) EQKLISEEDL 1:1.000 Cell Signaling Technology 

 

2.3.4  Procedures employing S35-radiolabelled polypeptides  

In organello translation of mitochondrial translation products and in vitro transcription and 

translation of polypeptides were performed as previously described (Brandt, 1991; Tatsuta 

and Langer, 2007). TNT-based S35-radiolabelled polypeptides were produced using the 

TNT®-Sp6 Coupled Reticulocyte Lysate System according to the manufacturer’s protocols 

(Promega).  

 

2.3.4.1 In vitro MPP-cleavage assay  

Purification of recombinant MPP from E. coli expressing a single mRNA encoding α-MPP and  

an N-terminally hexahistidine-tagged β-MPP (vector pVG18) was operated as established 

(Luciano et al., 1997), using Ni-NTA sepharose (1 ml HiTrap™ Chelating HP column, GE 

Healthcare) connected to an FPLC/HPLC system (ÄKTA, GE Healthcare).   

In vitro cleavage by MPP was performed using 10% (v/v) of S35-radiolabelled precursor 

protein. Incubation at 30°C in cleavage buffer [20 mM HEPES/KOH pH 7.4, 50 mM NaCl, 1 
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mM ZnCl2, 5 mM MgCl2, 1 mM ATP, 24.4 µg purified MPP protein] was performed for 20 min. 

One third of the sample was subjected to SDS- PAGE (Lämmli, 1970) and Western blot 

(Towbin et al., 1979) followed by autoradiography.  

 

2.3.4.2 Import and import-chase of S35-radioalabled polypeptides 

into isolated mitochondria  

The import reaction was carried out as previously described (Tatsuta and Langer, 2007). 

Different percentages of S35-radiolabelled polypeptides were used for import reactions [3-5% 

(v/v) of total reaction]. For removal of non-imported S35-radiolabelled polypeptides final 

concentrations of 20 µg/µl (import) or 50 µg/µl (import-chase) trypsin were used; the import 

reaction was performed 10 min on ice and stopped by addition of STI (1 mg/ml final 

concentration) and subsequent incubation for 5 min on ice. Samples were separated by SDS-

PAGE (Lämmli, 1970) prior to analysis by Western blot (Towbin et al., 1979) and 

autoradiography. 

 

2.3.5  Co-immunoprecipitation  

For co-immunoprecipitation antibodies were coupled to Protein A Sepharose™ CL-4B (PAS) 

beads (GE Healthcare). Beads were equilibrated with wash buffer [150 mM KAc pH 7.4,  

30 mM Tris/HCl pH 7.4, 4 mM MgAc, 1 mM PMSF, 0,125% (w/v) DDM or 0,1% (w/v) 

digitonin. Separation of PAS-beads from the liquid phase was achieved by centrifugation (1 

min, 16.000 g, 4°C). To couple the antibody to the PAS-beads 12.5 µl antibody in 400 µl 

wash buffer were mixed 1 h at 4°C with 1 mg PAS-beads (ratio of PAS-beads to antibody 

was retained with increasing amounts of PAS beads). After removal of unbound antibody by 

two washing steps, PAS-beads were incubated with the protein lysate for 2 h at 4°C. 

Subsequent washing with wash buffer (twice) and 10 mM Tris/HCl pH 7.4 removed loosely 

bound material and detergent from the PAS-beads. Antibody and bound proteins were eluted 

by Laemmli buffer prior to analysis of the samples by SDS-PAGE (Lämmli, 1970) and 

Western blot (Towbin et al., 1979). 

Protein lysates of different purification procedures were used for precipitation. Solubilisation 

was performed in 150 mM KAc pH 7.4, 30 mM Tris/HCl pH 7.4, 4 mM MgAc, 1 mM PMSF, 

0,5% (w/v) DDM or 1% (w/v) digitonin. Isolated mitochondria (160 µg) were solubilised 

after in organello translation (Chapter 2.3.4) at a concentration of 5 mg/ml at 4°C and 

shaking at 1.400 rpm for 30 min. Crude cellular membrane samples from 200 OD600 units 

yeast cells were solubilised in 1.25 ml buffer at 4°C and 1.400 rpm for 30 min. For both 
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samples, separation of insoluble material was achieved by centrifugation (15 min, 18.000 g, 

4°C).  

For co-immunoprecipitations of Yme1, an antiserum directed against the N-terminal part of 

the protein was used (Leonhard et al., 1996). Co-immunoprecipitations of HA-tagged 

proteins were performed with Anti-HA High Affinity (clone 3F10, Roche). 

 

2.3.6  Blue native polyacrylamide gel electrophoresis (BN-PAGE) 

The principal of the blue native polyacrylamide gel electrophoresis (BN-PAGE) has been 

described previously (Schägger, 2001; Schägger and von Jagow, 1991). Samples for  

BN-PAGE were obtained by preparation of cellular membranes (Chapter 2.3.2) from 10 OD600 

units of yeast cells. The cellular membrane fraction was solubilised in 20 µl solubilisation 

buffer [50 mM NaCl, 5 mM 6-aminohexanoic acid, 50 mM imidazole/HCl pH 7.4, 50 mM KPi 

buffer pH 7.4, 10% (v/v) glycerol] containing 0.5% (w/v) DDM. Agitation for 20 min at 4°C 

and 1.400rpm was followed by centrifugation (15 min, 18.000 g, 4°C) to remove non- 

solubilised remnants. 18 µl of the solubilised sample were mixed with 2 µl of 2% (w/v) 

coomassie G-250 (in solubilisation buffer). The samples were separated at 4°C by BN-PAGE 

with a polyacrylamide concentration gradient ranging from 3 to 11% (w/v). Gels were run at 

50 V in deep blue cathode buffer [50 mM tricine, 7.5 mM imidazole, 0.02% (w/v) coomassie 

G-250] and anode buffer [25 mM imidazole/HCl pH 7.0] until the sample had completely 

entered the gel. Thereafter, the deep blue cathode buffer was replaced by cathode buffer 

without coomassie G-250 and the electrophoresis was continued for 3 h at 300 V.  Western 

blotting of proteins was performed with PVDF membranes that were beforehand equilibrated 

in methanol. Marker proteins were thyroglobulin (667 kDa) and ferritin (440 kDa). 

 

2.3.7  Ni-NTA affinity chromatography of mitochondrial extracts  

Isolated mitochondria from yeast strains harbouring a proteolytically inactive variant of the 

Yme1 protein containing a C-terminal (Yme1E541Q-6HIS) or N-terminal (Yme1(1-50)-6HIS -

Yme1(51-747)-E541Q) hexahistidine tag were subjected to Ni-NTA affinity chromatography. 

Purification was performed using Ni-NTA sepharose (1 ml HiTrap™ Chelating HP column) 

connected to an FPLC/HPLC system (ÄKTA). Mitochondria harbouring an inactive variant of 

Yme1 without hexahistidine tag (Yme1E541Q) served as a negative control for both 

purifications. For both, the C-terminally and the N-terminally tagged Yme1, the same buffer 

conditions were used for solubilisation [0.5% (w/v) DDM, 150 mM KAc pH 7.4, 30 mM 

Tris/HCl pH 7.4, 4 mM MgAc, 1x Complete w/o EDTA Proteinase-Inhibitor (Roche), 1 mM 

PMSF, 20 mM imidazole/HCl pH 7.4 – additionally 10% (v/v) glycerol for Yme1(1-50)-6HIS -
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Yme1(51-747)-E541Q]. Although the protein concentration during solubilisation was different (2.5 

mg/ml for Yme1E541Q-6HIS, 4 mg/ml for Yme1(1-50)-6HIS -Yme1(51-747)-E541Q), mitochondrial 

extracts were obtained with both conditions starting from 40 mg of isolated mitochondria. 

The affinity purification of both proteins was essentially the same, but optimised for the 

purification of Yme1(1-50)-6HIS-Yme1(51-747)-E541Q. Therefore, the used chromatography 

conditions will be described separately: for the Yme1E541Q-6HIS, loading was performed with 

20 mM imidazole at a flow rate of 1 ml/min. Then, the flow rate was set to 0.3 ml/min for all 

following steps. After washing with 10 CV (Column Volumes) of buffer containing 150 mM 

imidazole and 3 CV 175 mM imidazole washing, the Yme1 protein was eluted with 300 mM 

imidazole.  For Yme1(1-50)-6HIS-Yme1(51-747)-E541Q, the mitochondrial extract was loaded with 

an imidazole concentration of 100 mM and a flow rate of 0.3 ml/min. Subsequent washings 

with buffer containing  150 mM imidazole at a flow rate of 0.8 ml/min were followed by a 

linear increase of the imidazole concentration to 750 mM during 10 CV at a flow rate of 0.3 

ml/min. For both purifications the elution fractions containing the Yme1 proteins were 

pooled, subjected to TCA-precipitation (Tatsuta and Langer, 2007) and loaded on a 7-20% 

(w/v) gradient SDS-PAGE that was later stained with colloidal coomassie (Neuhoff et al., 

1990). PMF (peptide mass fingerprint) analysis of protein bands extracted from the  SDS-

PAGE was performed with the help of the  CMMC (Center for Molecular Medicine, University 

of Cologne, Stefan Müller and Julia Hommer) or the CECAD (Cologne Excellence Cluster on 

Cellular Stress Response and Aging-associated Disease, Tobias Lamkemeyer).  

 

2.3.8  Lipid analysis  

2.3.8.1 Lipid isolation  

Lipids were extracted from sphaeroplast or isolated mitochondria. For isolation of lipids from 

whole cells, a preincubation with DTT buffer [13 mM DTT (dithiothreitol), 100 mM Tris/HCl 

ph 7.4] and lysis buffer [1,2 M sorbitol, 20 mM KPi pH 7.4, 1,7 mg/g (weight) lyticase] 

produced sphaeroplasts. 25 mg sphaeroplasts or 1 mg isolated mitochondria in 50 µl SEM 

buffer [250 mM sucrose, 10 mM MOPS pH 7.2, 1 mM EDTA] were mixed with 1.5 ml 

chloroform:methanol [2:1 (v/v)] and incubated at RT and 1.600 rpm for 60 min. 

Subsequently, 300 µl of H2O were added and the sample was mixed for 60 sec on a Vortex 

mixer. The aqueous and the solvent phase were separated by centrifugation (5 min, 200 g, 

RT). The solvent phase was washed twice with 250 µl H2O:methanol [1:1 (v/v)] and dried 

under constant air stream. Lipids were dissolved in chloroform and the phospholipid 

concentration was determined as previously described (Rouser et al., 1970). 
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2.3.8.2 Thin Layer Chromatography (TLC)  

Loading of TLC plates (HPTLC Silica gel 60 F254, Merck) was performed with the Linomat 5 

(Camag) after activation with 1,8% (w/v) boric acid (in ethanol) (Vaden et al., 2005). The 

TLC plates were developed with cyclohexane:ethylacetate [3:1 (v/v)] using the Automatic 

Developing Chamber (Camag). TLC plates were stained with 470 mM CuSO4 in 8,5% (v/v) o-

phosphoric acid followed by incubation at 180°C for 10 min. As marker lipids served 

ergosterol, cholesterol, cholesterylsterate and cholesterylpalmitate.  

 

2.3.9  Miscellaneous  

Isolation of mitochondria was accomplished according to compiled protocols (Tatsuta and 

Langer, 2007).  
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3 Results 

 

3.1  Initial substrate binding to the CH-region of the  

i-AAA protease Yme1  

The i-AAA protease is an ATP-dependent protease composed of Yme1 subunits that are 

inserted into the inner membrane of mitochondria. Previous characterisation of substrate 

interaction with the i-AAA protease demonstrated a dependence of substrate binding and 

degradation on the surface exposed CH- and NH-region of the i-AAA protease (Graef and 

Langer, 2006; Graef et al., 2007). The NH-region is part of the AAA domain of Yme1, which 

is required for its proteolytic activity and hence the in vivo function of the protease (Graef 

and Langer, 2006). Structurally the CH-region is composed of three α-helices that situate at 

the top and side of the catalytic chamber facing the intermembrane space (Fig. 3.1) (Graef 

et al., 2007). The role of the CH-region is more complex, as two different modes of substrate 

binding and degradation can be distinguished: a CH-dependent and a CH-independent. A 

CH-independent mechanism of binding and degradation is shown for the assembled 

cytochrome c oxidase subunit 2 (Cox2), where both processes occur via the NH-region. In 

contrast, non assembled Cox2 is bound and degraded in a CH-dependent manner (Graef et 

al., 2007). As one of the major differences between the two forms of Cox2 is their relative 

localization within the membrane, and the proximity of the NH- and CH-region of Yme1 to 

the membrane varies, substrate binding to either site might be stimulated by the substrates’ 

distance to the membrane. Generally, the binding of substrates to the CH- or NH-region can 

occur independently from each other. 

Here, the possible requirement of distinct regions or residues within the CH-region of Yme1 

for the initial engagement of substrates was examined (Fig. 3.1). Up to date, only the 

requirement of the complete CH-region in binding and degradation of substrates has been 

analysed (Graef et al., 2007). It is hence not clear whether single residues or distinct areas 

within the CH-region are sufficient for binding of substrates to the i-AAA protease Yme1. 
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Further, the possible involvement of distinct areas or single residues in the progress of 

degradation by the protease was examined, as no exact mechanism of substrate 

transmission is described for substrates that are bound to the CH-region of the i-AAA 

protease Yme1.  The comparison of the mutants’ ability to bind and degrade substrates 

allows the identification of residues responsible for substrate transmission. For this purpose, 

pair wise point mutations were introduced into the α-17 and α-18 helices of the CH-region of 

Yme1 and the three helices building up the CH-region were subsequently removed using C-

terminal deletions.  

 

3.1.1  Mutational analysis of the α-17 and α-18 helices of the 

CH-region of Yme1 in regard to substrate binding and 

degradation  

The analysis of specific residues and their role in substrate binding and degradation is based 

on the introduction of pair wise mutations into the sequence of the α-17 and α-18 helices of 

the CH-region of Yme1. Generally, more or less uncharged amino acid residues were 

exchanged with glycine, whereas charged amino acids were replaced by alanine. Changing 

amino acid residues to either glycine or alanine produced the following CH-mutant variants 

of Yme1: α-17– Yme1K681G/682G, Yme1E685A/L686G, Yme1H687A/R688A, Yme1L689G/A690G, 

Yme1Q691A/G692A, Yme1L693G/I694G, Yme1E695A/Y696A; α-18– Yme1A701G/I704G, Yme1H702A/E703A, 

Yme1E705A/Q706A. The general activity of the Yme1 CH-mutants is reflected by their ability to 

complement known Δyme1 phenotypes – in the absence of YME1 cells are not able to grow 

Figure 3.1 CH-and NH-regions within the structure of the i-AAA protease Yme1. 
(A) Initial substrate binding sites of the i-AAA protease. NH- (N-terminal helices) and CH- (C-
terminal helices) substrate binding regions of the i-AAA protease form a lattice-like structure 
at the surface of the predicted proteolytic cylinder of AAA proteases. (B) Helices within the 
CH-region of the i-AAA protease. α-16 is positioned at the surface of the predicted proteolytic 
cylinder, whereas α-17 and α-18 build up a lateral aligning U-like structure.  Shown are the 
corresponding structures within the crystal structure of the related AAA protease of T. 
maritima (A) (U. Baumann, personal communication), T. thermophilus (B) FtsH (Suno et al., 
2006). 
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without mtDNA, on non-fermentable carbon source at elevated temperature and they show a 

drastically reduced fitness on glucose containing media at reduced temperature (Thorsness 

and Fox, 1993; Thorsness et al., 1993; Weber et al., 1995). Δyme1 cells containing a 

plasmid-derived wild type variant of Yme1 (endogenous promoter) can fully complement for 

the loss of the genomic deletion of YME1 which is not the case for expression of the 

proteolytic inactive variant of Yme1 (Leonhard et al., 1996; Weber et al., 1996). Thus, 

complementation of Δyme1 by the mutated variants of Yme1 reveals the general in vivo 

activity of the protein, however, it does not correlate with the substrate binding and 

degradation capacity of Yme1 CH-region hybrid variants (Graef et al., 2007). Further, the 

direct binding and degradation of Cox2 was monitored. Cox2 is one of the three 

mitochondrial encoded core subunits of the cytochrome c oxidase (COX) complex (Herrmann 

and Funes, 2005). If Cox2 is not assembled into the COX complex it is degraded in a Yme1 

dependent manner (Nakai et al., 1995; Pearce and Sherman, 1995; Weber et al., 1996). 

Therefore, the ability of CH-mutant variants of Yme1 to bind and degrade Cox2 gives a direct 

hint for a possible role of the mutated residues in substrate engagement by the i-AAA 

protease. 

 

3.1.1.1 In vivo activity of CH-mutant variants of Yme1  

To test the in vivo activity of the CH-mutant variants Δyme1 cells expressing Yme1K681G/682G, 

Yme1E685A/L686G, Yme1H687A/R688A, Yme1L689G/A690G, Yme1Q691A/G692A, Yme1L693G/I694G, 

Yme1E695A/Y696A, Yme1A701G/I704G, Yme1H702A/E703A and Yme1E705A/Q706A were grown on YPD, YPD 

containing EtBr or YPG. Addition of EtBr to the medium triggers the loss of mtDNA. An 

inability to grow under this condition is referred to as a petite negative phenotype (Chen and 

Clark-Walker, 1999). Loss of growth on YPG medium with glycerol as a non-fermentable 

carbon source reflects the respiratory competence of cells. Complementation of Δyme1 with 

Yme1 hybrid mutants does not support the strict dependence on the CH-region of Yme1 for 

in vivo function of the i-AAA protease (Graef et al., 2007). Therefore, no direct link of CH-

dependent binding and degradation to the in vivo activity of the i-AAA protease is obvious. 

Nevertheless, efficient substrate binding is important for the proteolytic function of the i-AAA 

protease within mitochondria, and the proteolytic function is known to be a required in vivo 

function of the i-AAA protease Yme1. Hence, testing the in vivo activity of the CH-mutant 

variants might give an idea about the effect the mutation has on degradation of bound 

substrates.  
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Expression of the wild type variant of Yme1 (Fig. 3.5) fully complemented the YME1 deletion. 

In case of the mutant Yme1 variants predominantly the exchanges to alanine were able to 

complement Δyme1 (Yme1H687A/R688A, Yme1Q691A/G692A, Yme1E695A/Y696A, Yme1H702A/E703A and 

Yme1E705A/Q706A), while the replacements by glycine (Yme1K681G/682G, Yme1E685A/L686G, 

Yme1L689G/A690G, Yme1L693G/I694G and Yme1A701G/I704G) did not (Fig. 3.2). To exclude that the 

difference seen for the mutants is only based on the helix stabilizing effect of alanine relative 

to glycine (Scott et al., 2007), reverse mutation to glycine instead of alanine have been 

performed for some mutants leading to similar results (data not shown). CH-mutant variants 

that were capable to complement Δyme1 referred to mutated amino acids within the helices 

α-17 and α-18 of Yme1 that are exposed to the outer surface of the complete molecule. In 

contrast, those CH-mutants that do not complement Δyme1 represent mutated residues that 

face the interior of the molecule. As such mutations can result in an impaired complex 

assembly that interferes with in vivo activity, the complex assembly of the Yme1 mutant 

variants is monitored by BN-PAGE (data not show). Besides Yme1E685A/L686G all Yme1 mutant 

variants showed an i-AAA protease complex, although the complexes of Yme1H687A/R688A and 

Yme1H702A/E703A run at lower molecular weight. Since Yme1H687A/R688A was active in vivo and 

Yme1H702A/E703A was not, the complexes formed in the respective strains might not represent 

the same assembly status of the i-AAA protease. For Yme1K681G/682G, Yme1L689G/A690G and 

Yme1L693G/I694G the absence of in vivo activity did not result from impaired complex formation 

of the i-AAA protease, and could therefore reflect a loss of function resulting from impaired 

substrate binding and degradation. All other introduced mutations (Yme1Q691A/G692A, 

Figure 3.2 In vivo activity of CH-mutant variants of the i-AAA protease Yme1. 
Δyme1 cells expressing different CH-mutant variants of Yme1 are grown on YPD medium, YPD 
medium containing EtBr (25 µg/ml) and YPG medium at elevated temperature for two or five 
days, respectively. The isogenic wild type and Δyme1 cells served as controls. 
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Yme1E695A/Y696A, Yme1H702A/E703A and Yme1E705A/Q706A) did interfere neither with in vivo activity 

nor with complex formation.  

 

3.1.1.2 Cox2 binding to Yme1 CH-mutant variants  

To directly monitor the effect of the CH-mutations on the binding of Cox2 co-

immunoprecipitation of Yme1 was performed after in organello translation of mitochondrial 

encoded proteins in the presence of 35S-methionine in isolated mitochondria. Under this 

conditions the binding and degradation of Cox2 was shown to be a CH-dependent process 

(Graef et al., 2007). The background signal for Cox2 in the negative control (Fig. 3.3; 

Δyme1) is due to the hydrophobicity of the protein. 

 

 

For the majority of the CH-mutant variants of Yme1 the binding to Cox2 was decreased, 

whereas for some mutants the capacity of binding was even increased when compared to 

wild type (W303, Fig. 3.3). In line with its lack of in vivo activity, Yme1E685A/L686G did not show 

binding of Cox2. The two mutants that showed a lower molecular weight complex of the i-

AAA protease (Yme1H687A/R688A and Yme1A701G/I704G) are reduced in their binding of Cox2, so 

the i-AAA protease complex formed is likely not fully functional. The fact that Yme1H687A/R688A 

restores Δyme1 is arguing against a complete loss of function of this mutant. For the 

Figure 3.3 Cox2 binding to CH-mutant variants of the i-AAA protease. Co-immuno-
precipitation of Yme1 from isolated mitochondria. After in organello translation of 
mitochondrial encoded proteins in the presence of 35S-methionin the samples were incubated 
at 37°C for 5 min. Then co-immunoprecipitation was performed with α-Yme1, precipitates 
were analysed for Yme1 (immunodetection) and Cox2 (autoradiography). Mitochondria were 
derived from Δyme1 cells expressing CH-mutant variants of Yme1. Mitochondria from isogenic 
wild type and Δyme1 served as controls. The relative percentage of Cox2 binding was 
normalised to the amount of Yme1 precipitated. The amount precipitated in the wild type was 
set to 100%. 
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mutants that assembled into an i-AAA protease complex, but did not show a 

complementation of Δyme1 (Yme1K681G/682G, Yme1L689G/A690G and Yme1L693G/I694G) no binding of 

Cox2 was seen. Thus, the alteration of in vivo activity correlates with a loss of substrate 

binding under CH-dependent conditions, but not with a defect of complex assembly. This 

stresses the role of substrate binding for the in vivo activity of the i-AAA protease. The 

mutations that were not affected in complex formation and in vivo complementation of 

Δyme1 (Yme1Q691A/G692A, Yme1E695A/Y696A, Yme1H702A/E703A and Yme1E705A/Q706A) showed even an 

increased binding to Cox2 in regard to CH-dependent degradation. As those mutations were 

introduced at the surface, relative to the complete i-AAA protease molecule, a direct effect of 

the mutation on the binding of substrates was expected. What kind of effect was achieved 

depends most likely on the mutation that was introduced. These experiments did not identify 

distinct areas or residues within the CH-region that are required for substrate binding of 

Yme1. It is therefore conceivable that the complete CH-region structure rather a specific 

amino acid residues play a role in substrate engagement by the i-AAA protease. 

 

3.1.1.3 Degradation of Cox2 in Δsco1Δyme1 harbouring CH-mutant 

variants of Yme1  

Interfering with the assembly of Cox2 into the COX complex leads to CH-dependent 

degradation of Cox2 (Graef et al., 2007).  Here, a Δsco1 background was used to render 

Cox2 degradation CH-dependent. Sco1 is, together with Cox17, responsible for the insertion 

of copper into the Cox2 molecule prior to its assembly into the COX complex (Cobine et al., 

2006; Herrmann and Funes, 2005). As copper binding is impaired in Δsco1, Cox2 does not 

assemble and is degraded by the i-AAA protease in a CH-dependent manner. Thus, the 

ability of CH-mutant variants of Yme1 to degrade Cox2 in a Δsco1 background directly 

reflects their proteolytic activity, as expression of wild type Yme1 in a Δsco1Δyme1 

background produces a Cox2 pattern similar to that of Δsco1 (Fig. 3.6).  

In general, binding is a prerequisite for degradation. Hence no degradation of Cox2 was 

found for the CH-mutant variants of Yme1 that did not bind Cox2 (Yme1K681G/682G, 

Yme1E685A/L686G, Yme1H687A/R688A, Yme1L689G/A690G, Yme1L693G/I694G and Yme1A701G/I704G). Similarly, 

most mutants that bound Cox2 also showed its degradation (Yme1Q691A/G692A, Yme1E695A/Y696A, 

Yme1H702A/E703A and Yme1E705A/Q706A). Amino acids required for binding and degradation within 

the CH-region are facing the interior of the i-AAA protease molecule. It therefore appears 

that mutations interfering with the orientation of the CH-region relative to the rest of the i-

AAA protease molecule produce Yme1 variants that have lost the ability to bind and degrade 

substrates. In contrast, mutations which affect the surface exposed residues of the CH-
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region do not hinder substrate binding and degradation. This again points to a requirement 

of the structural integrity and orientation of the Yme1 CH-region in substrate binding and 

degradation. Two mutants that behaved differently were Yme1H687A/R688A and Yme1Q691A/G692A. 

Yme1H687A/R688A showed in vivo activity although a lower molecular weight complex of the i-

AAA protease was formed, CH-dependent binding was reduced and no degradation of Cox2 

was evident. So, Yme1H687A/R688A has proteolytic activity although CH-dependent degradation 

of Cox2 is impaired. The Yme1Q691A/G692A mutation binds Cox2 but does not degrade it. This 

points to a function of the CH-region of Yme1 beyond substrate binding.  

 

 

 

 

Taken together these findings highlight the importance of both, the α-17 and α-18 helices of 

the CH-region in substrate binding and degradation by the i-AAA protease Yme1. Generally, 

the structural arrangement of helices α-17 and α-18 and their orientation relative to the rest 

of the i-AAA protease complex appears to be important as mutations interfering with them 

lead to a loss of substrate binding and degradation. In addition, the surface exposed area 

from Yme1691 to Yme1688 is important for the transfer of bound substrate to the site of 

degradation, the proteolytic cavity. 

 

3.1.2  Effects of C-terminal truncations of the CH-region of 

Yme1 on substrate degradation and complex formation of 

the i-AAA protease  

By introducing subsequent C-terminal deletions into the Yme1 protein the impact of the 

single helices within the CH-region of Yme1 and of the region following the CH-region was 

addressed. The truncations were produced by mutating Yme1709, Yme1698, Yme1681 and 

Figure 3.4 Cox2 degradation by CH-mutant variants of the i-AAA protease. Steady 
state level of Cox2 in Δsco1Δyme1 cells expressing CH-mutant variants of Yme1. Total cellular 
extracts were separated by SDS-PAGE, followed by immunological detection of Cox2. CH-
mutant variants were expressed in Δsco1Δyme1 cells. The isogenic wild type, Δyme1, Δsco1 
and Δsco1Δyme1 served as controls. Equal loading was assessed via staining of the western 
blots with ponceau S prior to immunodetection (data not shown). 
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Yme1651 to stop residues/codons, generating Yme1Δ709-747 (lacking the C-terminal part of 

Yme1 following the CH region), Yme1Δ698-747 (lacking helix α-18), Yme1Δ681-747 (lacking helix  

α-17) and Yme1Δ651-747 (lacking the CH-region). The analysis of the region following the CH-

region of Yme1 was included here to examine a potential regulatory role of this region on 

substrate binding to the CH-region. Acccording to the crystal structure of the related FtsH 

protein from T. thermophilius (Suno et al., 2006) this region is resolved as a flexible tail that 

might regulate substrate binding to the α-17 and α-18 helices within the CH-region of Yme1 

(Suno et al., 2006). In other available crystal structures this region is not defined, making it 

likely to be a flexible element.  

Here, the in vivo activity of C-terminal truncated Yme1 proteins was determined, as this 

activity is an indication for their proteolytic function. Further, the requirement of the single 

helices for substrate degradation was examined. As the degradation is depending on a 

functionally assembled i-AAA protease complex, the status of the hexameric structure of the 

i-AAA protease complex was assessed by native gelelectrophoresis. 

 

3.1.2.1 In vivo activity of C-terminal truncation mutants of Yme1  

Complementation of Δyme1 phenotypes was tested by growth on YDP, YDP containing EtBr  

(25 µg/ml) and YPG. Growth of Δyme1 cells expressing the Yme1 C-terminal truncation 

mutants Yme1Δ709-747, Yme1Δ698-747, Yme1Δ681-747 and Yme1Δ651-747 was compared to growth of 

Δyme1 cells expressing the wild type Yme1.  

 

 

 

All of the Yme1 C-terminal truncation mutants disturbing the helices of the CH-region 

showed a drastic reduction of in vivo activity of the corresponding Yme1 protein (Fig. 3.5). 

This is in line with the impact of mutations within both the α-17 and α-18 region of the CH-

Figure 3.5 In vivo activity of C-terminal truncation mutants of the i-AAA protease 
Yme1. Δyme1 cells expressing Yme1Δ709-747, Yme1Δ698-747, Yme1Δ681-747 and Yme1Δ651-747 were 
grown on YPD medium, YPD medium containing EtBr (25µg/ml) and YPG medium at elevated 
temperature for two or five days, respectively. The isogenic wild type, Δyme1 and Δyme1 cells 
expressing Yme1 served as controls. 
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region of Yme1 on the complementation of Δyme1 phenotypes (Fig. 3.2). There, mutants 

that did not show complementation of Δyme1 turned out to be impaired in substrate binding, 

and hence do not show CH-dependent proteolytic activity. In contrast, the C-terminal 

truncation mutant lacking only the C-terminal part of Yme1 that is following the CH-region 

(Yme1Δ709-747) showed no apparent effect on in vivo activity. Therefore, it is not clear from 

this result if the region following the CH-region of Yme1 has an impact on substrate binding 

by the CH-region. These results emphasise the essential role of the CH-region for Yme1 

function and also point to a minor relevance of the C-terminal region following the CH-

region. 

 

3.1.2.2 Degradation of Cox2 in Δsco1Δyme1 and Δimp1Δyme1 

harbouring C-terminal truncation mutants of Yme1  

Monitoring the CH-dependent degradation of Cox2 reveals the importance of the deleted 

amino acids for Cox2 binding and/or degradation. In addition to the already introduced 

Δsco1 Δyme1 mutants, Δimp1Δyme1 mutants were employed. Both mutations impair Cox2 

assembly and render Cox2 degradation CH-dependent, but IMP1 deletion affects Cox 

processing that occurs within a Sco1 preceding step of Cox2 assembly (Herrmann and Funes, 

2005). Imp1 is, together with Imp2 and Som1, part of the mitochondrial inner membrane 

peptidase complex (IMP) that processes the N-terminal part of Cox2 prior to the insertion of 

copper by Sco1 (Jan et al., 2000). Therefore, the assembly of Cox2 into the COX complex is 

disturbed in Δimp1 cells. 

 

 

Figure 3.6 Cox2 degradation by C-terminal deletion mutants of the i-AAA protease 
Yme1. (A) Steady state level of Cox2 in Δsco1Δyme1 background. Total cellular extracts 
were separated by SDS-PAGE, followed by immunological detection of Cox2. Yme1Δ709-747, 
Yme1Δ698-747, Yme1Δ681-747 and Yme1Δ651-747 were expressed in Δsco1Δyme1 cells. Δsco1 and 
Δsco1Δyme1 served as controls. (B) Similar conditions as in (A). Here the C-terminal deletion 
mutants were expressed in a Δimp1Δyme1 background. Respectively, Δimp1 and 
Δimp1Δyme1 served as controls. Equal loading was assessed via staining of the western blots 
with ponceau S prior to immunodetection (data not shown). 
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Consistent with the in vivo activity of the C-terminally truncated Yme1 variants only 

Yme1Δ709-74 was able to degrade Cox2 as wild type Yme1 (Fig. 3.6).  An even enhanced 

proteolysis by Yme1Δ709-74 could have argued for a restrictive role of this element in substrate 

binding by the CH-region of Yme1. As degradation of Cox2 by Yme1Δ709-74 is, if anything, 

reduced, such a mode is not obvious by comparison of steady state degradation levels. All 

the C-terminal truncation mutations lacking any helix of the CH-region were unable to 

degrade Cox2 (Fig. 3.6). Therefore, either none of the helices within the CH-region of Yme1 

is dispensable for substrate binding and subsequent degradation or changes to the structure 

of the CH-region lead to a destabilisation of the whole protease complex and thereby abolish 

the existence of a functional i-AAA protease.  

 

3.1.2.3 Complex formation of C-terminally truncated Yme1 mutants  

Complex assembly of the i-AAA protease is a prerequisite for its function and consistently, no 

in vivo activity is evident in Yme1 mutants that lack a functional i-AAA protease complex. 

The high-molecular weight complex of the i-AAA protease has a molecular mass larger than 

850 MDa (Leonhard et al., 1996). Factors known to influence the complex formation of the i-

AAA protease are the two previously described co-factors Mgr1 and Mgr3 (Dunn et al., 2006; 

Dunn et al., 2008). Deletions of MGR1 or MGR3 reduce this mass of the remaining Yme1 

complex. 

 

 

 

To assess the effect of C-terminal truncations of the Yme1 protein on the assembly of an i-

AAA protease complex, cellular membrane samples of Δyme1 cells expressing either wild 

type Yme1 or the four C-terminal truncations of Yme1 (Yme1Δ709-747, Yme1Δ698-747, Yme1Δ681-

Figure 3.7 Assembly of the i-AAA protease complex in C-terminally truncated Yme1 
mutants. Analysis of the i-AAA protease complex by BN-PAGE. Cellular membrane fraction 
from 10 OD600 units of Δyme1 cells expressing Yme1, Yme1Δ709-747, Yme1Δ698-747, Yme1Δ681-747 
or Yme1Δ651-747 were solubilised in 0,5% (w/v) DDM. The soluble extracts were analysed by 
BN-PAGE, western blot and subsequent immunological detection of Yme1. Soluble extracts 
from isogenic wild type and Δyme1 served as controls. 
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747 and Yme1Δ651-747) were separated by BN-PAGE (3-11%). Cellular membranes from W303 

and Δyme1 were prepared in parallel for control. Immunological detection of Yme1 revealed 

an absence of the i-AAA protease complex in all C-terminal truncations of helices of the CH-

region. Consequently their loss of in vivo activity and of the ability to degrade Cox2 

originates from their incompetence to assemble into a high molecular weight i-AAA protease 

complex. Conversely, the impaired substrate degradation of the CH-mutant variants of the α-

17 and α-18 helices of Yme1 was based on a lack of substrate binding (Fig. 3.3). The 

Yme1Δ709-747 mutant assembled like wild type Yme1. Taken together, the truncation of the C-

terminal part of Yme1 following the CH-region of Yme1 does not have any apparent effect 

on the function of Yme1, whereas any deletion of the helices of the CH-region of Yme1 

abolishes the function of Yme1 by destabilisation of the entire complex. This also implicates 

a function of the CH-region in complex formation and/or stabilisation. 
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3.2  Identification of binding partners of the i-AAA 

protease Yme1  

Currently only three native substrates, Cox2 (Leonhard et al., 1996; Nakai et al., 1995; 

Pearce and Sherman, 1995; Weber et al., 1996), Nde1 (Augustin et al., 2005) and Phb1/2 

(Kambacheld et al., 2005), as well as two interaction partners, namely Mgr1 (Dunn et al., 

2006) and Mgr3 (Dunn et al., 2008), have been identified for the i-AAA protease in yeast. 

However, the pleiotrophic phenotypes associated with an YME1 deletion cannot be explained 

by the loss of interaction with or the impaired degradation of any of these proteins. Hence, 

the identification and characterisation of potential interaction partners and novel substrate 

proteins is needed for a better understanding of the functions of the evolutionary conserved 

i-AAA protease Yme1 in mitochondria. So far, phenotypes associated with the deletion of 

YME1 point to a function in mitochondrial protein quality control (Thorsness et al., 1993; 

Weber et al., 1996), in survival of cells depleted of mtDNA (Thorsness and Fox, 1993), in 

longevity (Francis et al., 2007; Palermo et al., 2007; Wang et al., 2008) and in mitochondrial 

morphogenesis (Campbell and Thorsness, 1998). In order to identify physically interacting 

proteins two Yme1 variants were constructed that harbour an N- or C-terminal hexahistidine 

tag. Further, a proteolytic inactive variant of Yme1 carrying a mutation in the conserved 

HEXGH metal binding motif (E541Q) in the proteolytic domain of the i-AAA protease 

(Leonhard et al., 1996; Weber et al., 1996) was used to accumulate proteolytic substrates at 

the i-AAA protease complex. The substrate trap function is adapted from analogous 

purifications of substrates with a proteolytically inactive m-AAA protease variant (Nolden et 

al., 2005). To reduce possible protein contaminations from non-mitochondrial compartments, 

cellular fractions enriched for mitochondria served as starting material for affinity 

purification.  

 

3.2.1  Maturation of the i-AAA protease subunits Yme1 from 

different species  

Yme1 harbours a classical N-terminal import sequence that is processed upon mitochondrial 

import generating mature Yme1 (Leonhard et al., 1996). However, Yme1 processing has not 

been analysed in detail and neither the processing enzyme nor the N-terminal cleavage site 

are specified. In order to apply an N-terminal tag to the mature form of the Yme1 proteins, 

the determination of the cleavage site is required.  
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3.2.1.1 In vivo processing of Yme1 in mutants of different 

processing peptidases  

Specific processing peptidases are present within the different subcompartments of 

mitochondria (for review see (Koppen and Langer, 2007)). At least three different standard 

mitochondrial processing peptidases exist in yeast. In the intermembrane space, the 

membrane embedded mitochondrial inner membrane peptidase (IMP) is built up by Imp1, 

Imp2 and Som1 subunits (Jan et al., 2000). Here, only a possible involvement of Imp1 in the 

processing of Yme1 was tested, as Imp1 and Imp2 are known to occupy different substrate 

specificity. A deletion of IMP2 was not included in the analysis. As the cleaved  

N-terminal part of Yme1 resides in the matrix a similar localisation of the peptidase in charge 

is expected. The mitochondrial matrix processing peptidase (MPP) (Hawlitschek et al., 1988; 

Yang et al., 1988) and the mitochondrial intermediate peptidase (MIP) (Kalousek et al., 

1988) are located in the mitochondrial matrix. The heterodimer of MPP is composed of α-

MPP and β-MPP subunits that are represented in yeast by the proteins Mas2 and Mas1, 

respectively (Yang et al., 1988). MPP is the major processing peptidase of mitochondria 

(Gakh et al., 2002). MIP consists of Oct1 subunits and is responsible for the removal of eight 

amino acids (Isaya et al., 1994). Besides those three processing peptidases, the 

mitochondrial rhomboid protease Pcp1 (Esser et al., 2002; Herlan et al., 2003), the m-AAA 

protease (Yta10/Yta12) (Esser et al., 2002; Nolden et al., 2005) and the metallopeptidase 

Atp23 (Osman et al., 2007; Zeng et al., 2007) have been shown to mediate the processing 

of specific precursor proteins. Although no function in protein processing has been assigned 

so far, deletion strains of the yeast Lon protease Pim1 (Suzuki et al., 1994; Van Dyck et al., 

1994; Wagner et al., 1994), and the inner membrane protease Oma1, that is executing 

overlapping function with the m-AAA protease (Käser et al., 2003), were included in the 

analysis. In an initial experiment the presence of the Yme1 precursor was assessed in the 

absence of these peptidases under steady state conditions by immunoblotting (Fig. 3.8). 

Since MPP function is essential for cell survival, a temperature sensitive allele of Mas1 

(mas1ts) was employed (Yaffe et al., 1985). 
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Only the mas1ts mutant showed an accumulation of an Yme1 specific higher molecular 

weight form, likely corresponding to the precursor of Yme1 in western blot analysis of whole 

cell extracts. This form already appeared at permissive temperature, suggesting that 

processing of the Yme1 precursor form strictly depends on the presence of a functional MPP. 

The MPP protease has distinct recognition and cleavage motifs (Gakh et al., 2002) allowing 

the identification of the respective sequence in the i-AAA protease Yme1. 

 

3.2.1.2 Processing of in vitro translated 35S- radiolabelled Yme1 

orthologs by purified MPP  

An in vitro assay for the processing of 35S-radiolabelled polypeptides by purified MPP 

peptidase has been established (Luciano et al., 1997). In order to purify the peptidase, 

simultaneous expression of α-MPP and β-MPP subunits in E. coli and subsequent affinity 

purification of the assembled soluble MPP complex mediated by a hexahistidine tag were 

performed. 

 

 

Figure 3.9 In vitro processing of 35S-radiolabelled Yme1 orthologs. Processing of 35S-
radiolabelled Yme1 in the presence of purified MPP peptidase. Radiolabelled precursors of (A) 
Yme1, (B) N. crassa Iap-1, (C) human YME1L1 and (D) mouse Yme1l1 were derived from 
reticulocyte lysate based on in vitro translation in the presence of 35S methionine. 10% of 
radiolabelled precursor protein was incubated with (+) or without (-) purified MPP (24,4 µg) 
at 30°C for 20 min and analysed by autoradiography after SDS-PAGE and western blotting. 

Figure 3.8 In vivo processing of Yme1. Steady state level of Yme1 in extracts of 
Δyta10Δyta12, Δpim1, Δoct1, Δimp1, Δpcp1, Δoma1 and Δatp23 cells. For mas1ts cell extracts 
were analysed after growth at permissive or restrictive temperature. The protein samples are 
analysed by SDS-PAGE, western blot and subsequent immunological detection of Yme1 (α-
Yme1 directed against amino acids 55-65). Samples from isogenic wild type and Δyme1 serve 
as controls. 
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Consistent with the in vivo analysis, Yme1 was processed by purified MPP (Fig. 3.9A). 

Further, Yme1 orthologs from N. crassa (Iap-1), H. sapiens (YME1L1) and M. musculus 

(Yme1l1) were cleaved by purified MPP in vitro supporting a conserved mechanism of Yme1 

processing (Leonhard et al., 1996; Luciano et al., 1997; Shah et al., 2000; Weber et al., 

1996).  

 

3.2.1.3 In vivo activity of N-terminally tagged i-AAA protease  

Distinct recognition and cleavage motifs have been identified for the MPP peptidase, referred 

to as R-2 motif and R-3 motif (Gakh et al., 2002). Examination of the Yme1 sequence 

revealed an R-3 motif (K43FYRFY↓SEKN52). Accordingly, a hexahistindine tag was inserted 

after the residues E50 by site directed mutagenesis.  

 

 

 

The complementation of Δyme1 with the N-terminally tagged Yme1 proteins (Yme1(1-50)-

6HIS-Yme1(51-747)) permits growth rates comparable to wild type levels (Fig. 3.10). Thus, the 

N-terminal insertion of a hexahistidine tag does not interfere with the in vivo activity of the i-

AAA protease. Consistently, no complementation of Δyme1 is achieved by expression of a 

proteolytic inactive Yme1 variant, Yme1(1-50)-6HIS-Yme1(51-747)-E541Q (Leonhard et al., 1996; 

Weber et al., 1996). 

Similar results were obtained for the C-terminally hexahistidine tagged Yme1 variants (data 

not shown). Hence, introduced hexahistidine tags do not interfere with in vivo activity of 

Yme1 and can therefore be employed for co-purification of substrate proteins of the i-AAA 

protease. 

 

Figure 3.10 In vivo activity of N-terminally tagged Yme1. Δyme1 cells expressing 
Yme1(1-50)-6HIS-Yme1(51-747) or Yme1(1-50)-6HIS-Yme1(51-747)-E541Q are grown on YPD medium, 
YPD medium containing EtBr (25µg/ml) and YPG medium at elevated temperature for two or 
five days, respectively. The isogenic wild type and Δyme1 served as controls. 
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3.2.2  Affinity purification of a proteolytically inactive variant of 

Yme1  

Co-purification of potential substrate proteins together with the i-AAA protease was 

accomplished by proteolytic inactive Yme1 variants, Yme1E541Q, harbouring either a C-

terminal or N-terminal hexahistidine tag for affinity purification. The use of hexahistidine tags 

inserted at either side of the i-AAA protease, and therefore at either side of the inner 

mitochondrial membrane, originated from two aspects. First, a possible absence of substrate 

binding to the i-AAA protease due to interference with the tag is bypassed. Secondly, the C-

terminal tag is inserted close to the CH-region of Yme1 that is known to be important for 

substrate binding (Graef et al., 2007), so an influence of the tag on the substrate binding to 

this region is possible. As maintenance of the native status of the i-AAA protease is a 

prerequisite for efficient co-purification of substrates, the complex status of the different 

Yme1 variants under the solubilisation conditions used for purification was examined by gel 

filtration experiments (data not shown) and proved to be intact. The purification of Yme1 

was performed with mitochondria isolated from Δyme1 cells expressing Yme1E541Q, 

Yme1E541Q-6HIS or Yme1(1-50)-6HIS-Yme1(51-747)-E541Q grown on lactate medium. Mitochondrial 

extracts were produced by mild solubilisation with 0,5% (w/v) DDM at a protein 

concentration of 2,5 mg/ml (C-terminal 6HIS) or 4 mg/ml (N-terminal 6HIS). Hexahistidine 

tagged Yme1 variants were purified by NiNTA affinity chromatography. The resulting elution 

fractions (350 mM imidazol) were precipitated with TCA, separated by SDS-PAGE and stained 

with colloidal coomassie (Neuhoff et al., 1990). Prominent bands within the hexahistidine 

tagged samples were cut out and subjected to peptide mass fingerprint (PMF) analysis for 

identification of the respective proteins.  

The high background present in all purifications probably reflects unspecific binding of 

hydrophobic or histidine-rich proteins under the used mild purification conditions. The 

purification procedure allows strong enrichment of both tagged Yme1 variants,  

Yme1E514Q-6HIS and Yme1(1-50)-6HIS-Yme1(51-747)-E541Q (Fig. 3.11). Proteins co-purified with 

the hexahistidine tagged i-AAA protease are identified by comparison of the Yme1E514Q 

elution pattern with the pattern of elution fractions from hexahistidine tagged Yme1 proteins. 
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The co-purification of Phb1 and Mgr1 (Fig 3.11) was consistent with known physical 

interactions of Yme1 demonstrating the proof of principle (Dunn et al., 2006; Graef et al., 

2007). Mpm1 and the two forms of Mcr1 are co-purified with either variant of hexahistidine 

tagged Yme1. Mpm1 (mitochondrial peculiar membrane protein) is a mitochondrial 

membrane protein of unknown function (Inadome et al., 2001). MCR1 encodes for the two 

isoforms of the mitochondrial NADH-cytochrome b5 reductase (Hahne et al., 1994) and has 

been linked to ergosterol biosynthesis (Lamb et al., 1999) and to reduction of D-

erythroascorbyl free radicals (Lee et al., 2001); just recently the long form (34kDa) of Mcr1 

is demonstrated to be localised to mitochondria in a TOM (translocase of the outer 

membrane) -independent insertion mechanism (Meineke et al., 2008). Gep1, Gut2 and Cyb2 

are only co-purified with Yme1(1-50)-6HIS-Yme1(51-747)-E541Q . Gep1 (genetic interaction 

prohibtin 1) is genetically linked to prohibitins and regulates phosphatidylethanolamine (PE) 

Figure 3.11 Affinity purification of C-terminally and N-terminally tagged i-AAA 
protease. Mitochondria isolated from Δyme1 cells expressing either Yme1E541Q, Yme1E541Q-
6HIS or Yme1(1-50)-6HIS-Yme1(51-747)-E541Q grown on lactate medium were solubilised with 0,5% 
(w/v) DDM. Yme1 is purified from mitochondrial extracts using NiNTA affinity 
chromatography. Subsequent washing and elution with 350 mM imidazol are followed by TCA 
precipitation of the pooled elution fractions. The resulting protein samples are separated by 
SDS-PAGE and stained with colloidal coomassie. The indicated proteins were identified by 
peptide mass fingerprint (PMF). 
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levels and mitochondrial morphology (Osman et al., 2009). Gut2 is the mitochondrial 

glycerol-3-phosphate dehydrogenase important for the utilisation of glycerol under aerobic 

conditions (Rijken et al., 2007). Furthermore, Gut2 and Cyb2 are components of the 

glycerol-3-phosphate shuttle which balances the redox state between NAD and NADH under 

aerobic conditions (Grandier-Vazeille et al., 2001). The inter membrane space protein Cyb2 

(Cytochrome b2) is generally required for lactate utilisation (Guiard, 1985).  

Strikingly, Mcr1, Gut2 and Cyb2 are all substrates of the IMP peptidase. Together with the 

known physical interaction of Yme1 and Cox2, which is also an IMP substrate (Herrmann and 

Funes, 2005), all known substrates of the catalytic IMP subunit Imp1 show physical 

interaction with the i-AAA protease Yme1. Since Yme1 is not a substrate of Imp1 (Chapter 

3.2.1.1), the interaction of Yme1 with the Imp1 substrates is unlikely to be not mediated by 

Imp1 itself. Interestingly, all additionally co-purified proteins of Yme1E514Q-6HIS reside within 

the mitochondrial matrix. Qcr2 is one of the membrane bound core subunits of the ubiquinol 

cytochrome c reductase complex that is part of the mitochondrial inner membrane electron 

transport chain (Oudshoorn et al., 1987). The proteins Pda1 and Pdb1 built up the E1 

subunit of the pyruvate dehydrogenase (PDH) complex which catalyses the direct oxidative 

decarboxylation of pyruvate to acetyl-CoA (Miran et al., 1993; Steensma et al., 1990). The 

physical interaction of Yme1 with Pda1, Pdb1, Gut2 and Cyb2 suggests a function of Yme1 in 

mitochondrial energy metabolism. 

In following experiments the physical interactions of Yme1 with the Mcr1, Mpm1, Gep1, 

Qcr2, Pda1 and Pdb1 are further analysed and possible functions of these interactions are 

examined. 

 

3.2.3  Co-immunoprecipitation of Yme1 from strains harbouring 

HA-tagged versions of Yme1-interacting proteins  

In order to confirm the physical interaction of Yme1 with the initially identified Yme1-

interacting proteins co-immunoprecipitation experiments were conducted. Conditions for co-

immunprecipitations were essentially the same as the conditions applied for the affinity 

purification of Yme1, besides the fact that mainly cellular membrane fractions served as 

starting material. With the immunoprecipitation an enrichment of proteins that bind to a 

specific antibody is achieved. Depending on the conditions applied, co-purification of 

interaction partners is possible. Here, co-immunoprecipitations were performed for Yme1 

and the HA epitope. Respectively, initially identified interaction partners (Mcr1, Mpm1, Gep1, 

Qcr2, Pda1 and Pdb1) were tagged with three C-terminal HA epitopes for western blot 

analysis and/or purification.  
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First indications about the nature of interaction between Yme1 and the co-purified 

interaction partner were achieved by simultaneous co-immunoprecipitation of Yme1 and the 

proteolytic inactive variant Yme1E541Q. Co-immunoprecipitations of Yme1 from strains 

harbouring either Mpm1-HA or Qcr2-HA confirmed the interaction of Yme1 with both 

proteins (Fig. 3.12). The interaction of Yme1 with Qcr2 was weak and represented only ~ 

0,2% of the protein. These unefficient co-precipitations could indicate transient or dynamic 

interactions. For Mpm1, not only a co-precipitation with Yme1 was evident, there was also a 

clear difference of Mpm1 abundance depending on the presence of either Yme1 or Yme1E541Q 

in all samples monitored (Fig. 3.12A). Expression of the proteolytic inactive variant Yme1E541Q 

greatly enhances the steady state level of Mpm1, suggesting that the proteolytic function of 

Yme1 determines Mpm1 levels. Similarly, an accumulation of both forms of Mcr1 was 

obvious in mitochondria derived from Δyme1 and Δyme1 expressing Yme1E541Q compared to 

Mcr1 levels in Yme1 expressing cells (Fig. 3.12C). Here, also the co-precipitation of both 

forms of Mcr1 with Yme1 was restricted to Yme1E541Q, i.e. Mcr1 showed only a stable 

Figure 3.12 Co-immunoprecipitation of Yme1. (A+B) Cellular membranes are isolated 
from Δyme1 cells expressing plasmid encoded Yme1 or Yme1E541Q harbouring an HA tagged 
variant of either Mpm1 (A) or Qcr2 (B), respectively. After solubilisation with 0,5% (w/v) 
DDM, co-immunoprecipitation was conducted with α-Yme1 coupled to protein A sepharose 
beads. 1% of input and flow through (FT) and the complete precipitation (Yme1 or Yme1E541Q) 
sample were subjected to SDS-PAGE and western blot. The presence of Mpm1 and Qcr2 was 
examined by immunological detection using an α-HA antibody. (C) Mitochondria isolated from 
Δyme1 and Δyme1 cells expressing plasmid encoded Yme1 or Yme1E541Q were solubilised with 
0,5% (w/v) DDM prior to co-immunoprecipitation with α-Yme1 coupled to protein A sepharose 
beads. 1% of the insoluble fraction (PEL), input and flow through (FT) were loaded next to 
the complete precipitation sample (IP) on SDS-PAGE. The presence of Mcr1 is tested by 
immunological detection using α-Mcr1 after western blot analysis.
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interaction with the proteolytic inactive form of Yme1. Increased steady state levels and 

binding to the proteolytic inactive variant of Yme1 strongly suggest that Mcr1 and Mpm1 are 

novel substrate proteins of the i-AAA protease Yme1.  

 

 

 

Both, Pda1 and Pdb1 were co-precipitated with Yme1 (Fig. 3.13). The level of co-

precipitation was not influenced by the proteolytic status of Yme1, and no co-precipitation 

was possible from Δyme1 cellular membrane extracts (data not shown). Roughly 1% of total 

Pda1 (Fig. 3.13A) and 2% of total Pdb1 (Fig. 3.13B) (relative to 1% of total input) bound to 

Yme1. Since only a subfraction of the proteins interacts with Yme1 and the interaction is not 

influenced by the proteolytic status of the i-AAA protease, the interaction might reflect a 

transient or labile structural interplay of Yme1 on Pda1 and Pdb1. An additional higher 

molecular weight form of Pbd1 can be co-precipitated with Yme1 that might represent the 

precursor form of Pdb1. As an import function of Yme1 has been proposed (Rainey et al., 

2006), Yme1 might contribute to the import of Pdb1 precursor. Finally, the major form of 

Pdb1 interacting with Yme1 is the mature form. An interaction of Gep1 with Yme1 could not 

be confirmed by co-immunoprecipitation (data not shown). As a result of the low abundance 

of Gep1, an interaction with Yme1 might not be detectedable by co-immunoprecipitation.  

The physical interaction of the initially identified Yme1-interacting proteins could be verified 

for all candidates but Gep1 by co-precipitation with the i-AAA protease. However, the 

amount of protein interacting with Yme1 is low compared to the amount of protein present 

in the input sample (here only 1% of total). This could be expected as binding of Cox2 and 

Phb1, known substrates of Yme1, occurs with low affinity (Graef et al., 2007). Thus, Yme1 

either interacts only with a subfraction of those proteins or the interaction with Yme1 is 

transient. It is conceivable further that the interaction of a protein with Yme1 leads to its 

subsequent degradation.  

Figure 3.13 Co-immunoprecipitation of Yme1 and Pda1-HA/Pdb1-HA. Cellular 
membranes were isolated from W303 cells harbouring HA tagged variants of either Pda1 (A) 
or Pdb1 (B). After solubilisation with 0,5% (w/v) DDM co-immunoprecipitation was achieved 
with α-Yme1 or α-HA coupled to protein A sepharose beads. 1% of input and flow throughs 
(FT) and the complete precipitation samples (IP) were subjected to SDS-PAGE and western 
blot. The presence of Pda1 and Pdb was examined by immunological detection using α-HA. 
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3.2.4  Correlation of Δyme1 phenotypes to the phenotypes of 

Yme1-interacting proteins  

To investigate whether a loss of Yme1 function can be correlated to the function of Yme1-

interacting proteins, the growth phenotypes of a Δyme1 strain were compared to phenotypes 

of deletions of genes encoding for the identified Yme1-interacting proteins.  

 

 

 

None of the deletion mutants of Yme1-interacting proteins showed retarded growth on YPD 

medium at 15°C. Similarly, their growth on YPD medium containing EtBr could not be 

distinguished from wild type (Fig. 3.14). Only for the Δpda1 strain growth on YPD containing 

EtBr was mildly reduced, albeit not to the level of Δyme1. In contrary, a Δpda1 strain has 

even been reported to form petite positive colonies implying the tendency to lose mtDNA 

(Wenzel et al., 1992). Since Δpda1 shows only a mild phenotype on YPD containing EtBr 

strain specific differences have to be considered. The growth of most of the tested deletion 

mutants was effected on a non-fermentable carbon source at elevated temperature (YPG 

37°C). Strain harbouring GEP1 or MPM1 deletions were just slightly affected, whereas 

Δmcr1, Δqcr2, Δpda1 and Δpdb1 deletion strains showed no growth. While a mild phenotype 

of GEP1 deletion on YPG at 37°C has already been reported (Osman et al., 2009), no such 

phenotype is attributed to the Δmpm1 deletion strain. As Qcr2 is a core component of 

complex III of the respiratory chain, the loss of growth for the Δqcr2 deletion strain could be 

expected on a non-fermentable carbon source and is consistent with published data (di Rago 

et al., 1997). Growth defects on non-fermentable carbon source at elevated temperature 

have not been reported for the Δmcr1, Δpda1 and Δpdb1 deletion strains and cannot be 

reconciled with described functions of these proteins. Mcr1 has not been linked to a function 

Figure 3.14 Growth phenotypes of deletions of Yme1-interacting proteins. Δgep1, 
Δmcr1, Δmpm1, Δqcr2, Δpda1 and Δpdb1 cells were grown on YPD medium at 30°C or 15°C, 
on YPD medium containing EtBr (25 µg/ml) and on YPG medium at elevated temperature for 
two or five days, respectively. The isogenic wild type and Δyme1 served as controls. 
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during respiration. However, since Mcr1 has been identified as a NADH reductase, such a 

function is conceivable. Pda1 and Pdb1 affect steps in energy production that are rather 

connected to the presence of oxygen and the absence of respiration, and reactions of 

pyruvate during fermentation are linked to the pyruvate decarboxylase (Pronk et al., 1996). 

Nevertheless, analysis of Pda1 expression did not provide evidence for its repression during 

growth in the presence of ethanol (Wenzel et al., 1993). 

The phenotypes of gene deletions of Yme1-interacting proteins differ from the phenotypes 

displayed by Δyme1. Hence, the pleiotropic phenotypes of Δyme1 cannot be attributed to a 

changed or absent function of one of the identified Yme1-interacting proteins in the absence 

of Yme1.  

 

3.2.5  Effects of the i-AAA protease on Yme1-interacting 

proteins  

Different impacts of the i-AAA protease on the interaction between Yme1 and Yme1-

interacting proteins were analysed here. Initially, the influence of the presence and absence 

of Yme1 on the steady state levels of Yme1-interacting proteins was examined. Then, the 

possible role of Yme1 during import and/or biogenesis of these proteins was addressed. In 

addition, the Yme1 dependent degradation of the probable substrates Mpm1 and Mcr1 was 

monitored. 

  

3.2.5.1 Steady state levels of Yme1-interacting proteins in the 

presence or absence of Yme1  

The comparison of the steady state levels of Yme1-interacting proteins in wild type and 

Δyme1 cells can indicate whether these proteins are proteolytic substrates or structural 

interaction partners of the i-AAA protease. For example, an increased steady state level in 

the absence of Yme1 is consistent with a lack of turnover of a substrate protein and can also 

be observed for other identified substrates (Francis et al., 2007; Pearce and Sherman, 1995). 

On the other hand, missing structural support in the absence of the i-AAA protease can 

cause destabilisation of the Yme1-interacting protein and can lead to subsequent 

degradation, resulting in a decreased steady state level. Here, the steady state levels of HA-

tagged Yme1-interacting protein variants were analysed in whole cell extracts. 
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The protein level of mature Qcr2, Pda1, and Pdb1 was not changed by the deletion of YME1 

(Fig. 3.15). Interestingly, the precursor of Pda1 and Pbd1 accumulated in a Δyme1 

background. This might point to a role of Yme1 in efficient import or processing of these two 

matrix proteins, consistent with the reported requirement of Yme1 for protein import into the 

intermembrane space (Rainey et al., 2006). A negative effect of YME1 deletion was detected 

for the steady state level of Gep1-HA (Fig. 3.15). The Gep1 protein which is low abundant in 

wild type background was not detectable in a Δyme1 strain, although the genomic insertion 

of the HA-tag was verified (data not shown). Therefore, the presence of Yme1 is important 

for the continuance of Gep1 pointing to a structural interaction of both proteins or to a 

function of Yme1 in the biogenesis of Gep1. Mpm1 and Mcr1 responded to a deletion of 

YME1 with increased protein levels (Fig. 3.15). This accumulation and enhanced binding of 

the proteins to the proteolytic inactive variant of Yme1 support the idea that Mpm1 and Mcr1 

are novel substrates of the i-AAA protease Yme1. 

 

3.2.5.2 In organello import of in vitro translated Mcr1, Mpm1, Gep1 

and Qcr2 into isolated wild type and Δyme1 mitochondria  

As a function for Yme1 in import has been described (Rainey et al., 2006), the impact of an 

YME1 deletion on import and biogenesis of the Yme1-interacting proteins is tested. For this 

purpose, 35S-radiolabelled precursors of Mcr1, Mpm1, Gep1 and Qcr2 are imported into 

mitochondria isolated from wild type and Δyme1 cells, respectively.  

 

Figure 3.15 Expression levels of Mpm1, Gep1, Qcr2, Mcr1, Pda1 and Pdb1 in wild 
type and Δyme1 strains. Gep1, Mcr1, Mpm1, Qcr2, Pda1 and Pdb1 are harbouring a 
genomic C-terminal HA-tag in W303-wild type and Δyme1 background. Total protein extracts 
from 3 OD600 units cells grown on YPD were separated by SDS-PAGE. Subsequently western 
blotting and immunological detection using α-HA, α-Tom40 and α-Yme1 were performed. 
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The integrity of the mitochondria was controlled by the marker proteins Cyb2 

(intermembrane space) and Mge1 (matrix space). In intact mitochondria Cyb2 and Mge1 are 

insensitive to trypsin treatment. Disruption of the outer mitochondrial membrane by osmotic 

shock, however, renders intermembrane space proteins like Cyb2 trypsin sensitive. Since the 

inner membrane stays intact, the matrix protein Mge1 should not be affected by the 

combination of osmotic shock and trypsin treatment.  

The import of Qcr2 shows the dependence of efficient import on the membrane potential 

typical for a matrix protein (Fig. 3.16A). Unexpectedly, no lower molecular weight band 

corresponding to the mature protein is detectable in wild type or Δyme1 mitochondria. 

Further, Qcr2 displays a higher sensitivity to trypsin treatment upon osmotic shock in Δyme1 

mitochondria, pointing to a reduced import efficiency or impaired submitochondrial sorting of 

Qcr2 in Δyme1 mitochondria. However, a decrease in import of Qcr2 in Δyme1 is not 

reflected by a change in the steady state level in the absence of Yme1 (Fig. 3.15).  

Figure 3.16 In organello import of 35S-radiolabelled Mcr1, Mpm1, Gep1 and Qcr2 
into mitochondria isolated from wild type and Δyme1 strains. 35S-radiolabelled 
precursor proteins of (A) Qcr2, (B) Mcr1 (34 and 32kDa forms), (C) Gep1 and (D) Mpm1 
were imported into isolated mitochondria of wild type and Δyme1. Imports were done in the 
presence (+Δψ) and absence (-Δψ) of membrane potential (valinomycin, 10 µg/ml). Non 
imported proteins were digested by trypsin (20 µg/ml) treatment. Localisation of the imported 
protein was addressed by generation of mitoplasts by osmotic swelling (SW) in combination 
with trypsin treatment. After import and subsequent treatments isolated mitochondria or 
mitoplasts were subjected to SDS-PAGE and western blot and analysed by autoradiography. 
Immunological detection of Cyb2 and Mge1 was performed with α-Cyb2 and α-Mge1 
antibodies.  
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The import of Mcr1 and its processing to the smaller 32 kDa form of the protein was not 

affected by the absence of Yme1 (Fig. 3.16B). Gep1 has been identified as an 

intermembrane space protein (Osman et al., 2009). Here, the import and biogenesis of Gep1 

was proven to be not influenced by the absence of Yme1 (Fig. 3.16C). The in organello 

import of Mpm1 was very inefficient in wild type and Δyme1 mitochondria (Fig. 3.16D). The 

low level of trypsin resistant Mpm1 is imported independently of Δψ and Yme1, and is 

localised to either the intermembrane space or inner mitochondrial membrane. Thus, 

mitochondrial import of 35S-radiolabelled precursor proteins of Mcr1, Mpm1 and Gep1 is 

approximately equal in mitochondria isolated from W303-wild type or Δyme1. In case of 

Qcr2, the import efficiency or submitochondrial sorting is reduced in the absence of Yme1, 

but not abolished. If Qcr2 import and sorting is requiring a high mitochondrial membrane 

potential (Δψ), the lowered import efficiency of Qcr2 can be explained by the reduced Δψ of 

Δyme1 mitochondria (Kominsky et al., 2002; Nakai et al., 1995; Thorsness and Fox, 1993). 

Therefore, Yme1 is not essential for the import of any of the Yme1-interacting proteins, 

although this function could have explained, and might still do so for Qcr2, the transient 

binding of these proteins to the i-AAA protease.  

 

3.2.5.3 i-AAA protease dependent degradation of Mcr1, Mpm1 and 

Phb1  

Previous experiments showed accumulation of Mcr1 and Mpm1 steady state levels in the 

absence of Yme1. In addition, the binding of Mcr1 and Mpm1 to the i-AAA protease is greatly 

enhanced by proteolytic inactivation of the protease. Mcr1 and Mpm1 may therefore 

represent substrates of the i-AAA protease. Here, the Yme1 dependent degradation of Mcr1 

and Mpm1 is monitored. 

Within the in organello import chase experiments, the simultaneous import and chase of the 

known Yme1 substrate Phb1 was used as an internal control (Graef et al., 2007). Indeed, 

Phb1 is degraded in wild type (W303) mitochondria whereas it is stabilised in Δyme1 

mitochondria (Fig. 3.17A). Conversely, no degradation of Mcr1 (either forms: 32 and 34 kDa) 

and Mpm1 can be detected after import and chase in wild type mitochondria. Since the 

difference in degradation within wild type compared to Δyme1 provides the evidence for 

Yme1 to be the protease in charge, and no such difference can be seen due to the lack of 

degradation in wild type, no conclusion on the relation of Yme1 to Mgr1 and Mpm1 is 

possible.  
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Therefore, as an additional attempt the in vivo downregulation of Yme1 was used, where the 

galactose inducible expression of Yme1 (pYX113-Yme1) can be shut off by a switch to 

glucose. An advantage of this method is the possible analysis of long-termed adaptations 

that are not encountered by the in vitro assay. As depletion of pre-existing Yme1 proteins 

has to be considered different time points after shift from galactose to glucose were 

analysed. Δyme1 cells harbouring a genomically HA-tagged Mcr1 or Mpm1, respectively, 

containing either pYX113-Yme1 or pYX113, were grown over night in selective medium 

containing galactose (1% (w/v)). Then cells were shifted to rich medium containing glucose 

(2% (w/v)); samples were taken at 0, 4 and 8 h after carbon source shift. A gradual 

depletion of Yme1 occurs during the time course of the experiment (Fig. 3.17B). 

Interestingly, the depletion of Yme1 correlated with a significant accumulation of Mcr1 and 

Mpm1 (Fig. 3.17B). Furthermore, a somewhat different response of the two different 

isoforms of Mcr1 (short - 32 kDa and long - 34 kDa form) to downregulation of Yme1 was 

noticed. Although a compensatory upregulation of these proteins in the absence of Yme1 

cannot be excluded, increased steady state levels and, more importantly, increased binding 

to the proteolytic inactive variant of Yme1 suggest a Yme1 function for the degradation of 

Mcr1 and Mpm1. 

 

Figure 3.17 Analysis of a Yme1-dependent degradation of Mcr1, Mpm1 and Phb1. 
(A) 35S-radiolabelled precursor proteins of Phb1, Mcr1 and Mpm1 were imported into 
mitochondria isolated from wild type and Δyme1 cells. Imports were performed in the 
presence of membrane potential and non imported proteins were digested by trypsin (50 
µg/ml) treatment. After incubation of the samples for 0, 5, 10 and 20 min at 37°C isolated 
mitochondria were subjected to SDS-PAGE and western blot. Signals of 35S-radiolabelled 
proteins were obtained by autoradiography. (B) Δyme1 cells harbouring HA-tagged Mcr1 or 
Mpm1 and plasmid-derived expression of Yme1 under a GAL-promoter were grown on SD-Gal 
over night. Then cultures were shifted to YDP and 10 OD600 units cells were taken after 0, 4 
and 8 h. Prepared cellular membranes were separated on SDS-PAGE and analysed after 
western blot by immunological detection using α-HA, α-Yme1 and α-Tom40 antibodies. 
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3.2.5.4 In organello import of in vitro translated Pda1 and Pdb1 into 

isolated wild type and Δyme1 mitochondria 

In Δyme1 cells expressing Pda1-HA or Pdb1-HA, respectively, a slight accumulation of the 

precursor forms of the two proteins is visible. Since a role of Yme1 in import has been 

proposed (Rainey et al., 2006), the import of these two proteins is analysed in the absence 

of Yme1. To detect also the minor alterations of import in the absence of Yme1, different 

steps within the process of import of Pda1 and Pdb1 were monitored.  

 

 

 

Import of Pda1 and Pdb1 in mitochondria isolated from wild type and Δyme1 cells  revealed 

no difference for the import or maturation of Pda1 and Pdb1 (Fig. 3.18A+B). According to 

the accumulation of the precursor under steady state levels in the absence of Yme1, an 

effect of Yme1 on the import of both proteins would have been expected, keeping in mind 

that the maturation is not abolished in the absence of Yme1 but possibly only reduced or 

Figure 3.18 In organello import of 35S-radiolabelled Pda1 and Pdb1 into 
mitochondria derived from wild type and Δyme1 strains. (A+B) 35S-radiolabelled 
precursor proteins of Pda1 and Pdb1 were imported into mitochondria isolated from wild type 
and Δyme1 cells. Imports were performed in the presence (+Δψ) and absence (-Δψ) of 
membrane potential (valinomycin, 10 µg/ml). Non imported proteins were digested with 
trypsin (20 µg/ml). Localisation of the imported protein was addressed by generation of 
mitoplasts via osmotic swelling (SW) in combination with trypsin treatment. After import and 
subsequent treatments isolated mitochondria were subjected to SDS-PAGE and western blot. 
Signals of 35S-radiolabelled proteins were obtained by autoradiography. Immunological 
detection of Cyb2 and Mge1 was performed using α-Cyb2 and α-Mge1.  (C+D) Import of 35S-
radiolabelled precursor proteins of Pda1 and Pdb1 was stopped by depletion of Δψ 
(valinomycin) after 0, 2, 5, 10 and 20 min of import. Non imported proteins were digested by 
trypsin (20µg/ml) treatment. Samples are subjected to SDS-PAGE and western-blot. Signals of 
35S-radiolabelled proteins were obtained by autoradiography. Immunological detection was 
performed with α-Cyb2 and α-Mge1 antibodies. p indicates precursor, m the mature form of 
the protein. 
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slowed down. This aspect is addressed by analysis of different import steps (Fig. 3.18C+D). 

Also in this analysis no apparent effect of the absence of Yme1 on the import of Pda1 and 

Pdb1 is detected. Hence, the accumulation of Pda1 and Pdb1 precursor forms under steady 

state levels in the absence of Yme1 has a different origin. The precursor of Pdb1 shows an 

intermembrane space localisation, as it is depleted in mitoplast samples; therefore Yme1 

could possibly act on non imported Pdb1 fulfilling a clearance function in import. As Yme1 

apparently interacts with the mature form of Pda1 and Pdb1, additional functions of Yme1 

affecting the mature forms of Pda1 and Pdb1 have to exist. 

 

3.2.6  Variations in expression of Yme1-interacting proteins and 

their influence on Δyme1  

Changes in protein level of the Yme1-interacting proteins may influence the function of  

Yme1. For example, overexpression of proteins that show an increased steady state level 

upon depletion of Yme1 might also confer an increased fitness to a wild type strain, as 

expression of the proteins has an overall beneficial effect for the cell. Conversely, the 

overexpression could also be toxic, as a feedback mechanism that is induced upon depletion 

of Yme1 is not active in the presence of the protein. Therefore, it could be valuable to 

compare the consequences of alterations in the amount of Yme1-interacting proteins in wild 

type and Δyme1 cells. This is of particular interest for those Yme1-interacting proteins whose 

steady state level is changed upon depletion of Yme1.  

 

3.2.6.1 Effects of Gep1 overexpression in wild type and Δyme1 cells  

In the absence of Yme1 the steady state level of Gep1 is strongly reduced (Chapter 3.2.5.1). 

It is therefore conceivable that Gep1 interacts with Yme1 and is degraded in the absence of 

Yme1. Furthermore, overexpression of Gep1 is found to be toxic in wild type cells (Osman et 

al., 2009), indicating that tight regulation of Gep1 levels has to occur in the cell and a role of 

Yme1 in this process is conceivable. Therefore, the possible increased toxicity of 

overexpressed Gep1 in the absence of Yme1 was analysed. 
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Generally, an overexpression of Gep1-myc can be induced by growth on medium containing 

galactose as a carbon source. Possible differences due to unequal loading are addressed by 

immunological detection of Tom40 and Yme1 (Fig. 3.19A). Overexpression of Gep1 has a 

toxic effect on wild type cells (Osman et al., 2009) that was much more pronounced in 

Δyme1 cells (Fig. 3.19.B). This increased toxicity of Gep1 in the absence of Yme1 is 

consistent with the reduced steady state levels of Gep1 under the same conditions, if higher 

amounts of Gep1 would possibly be toxic in a Δyme1 background. Whether alterations of 

Gep1 in the absence of Yme1 refer to a lack of regulation of Gep1 by the i-AAA protease or if 

they solely reflect a destabilisation in the absence of a structural interaction partner remains 

elusive. Nevertheless, the strong effect of Gep1 overexpression in Δyme1 cells underlines the 

functional link between the two proteins. 

 

3.2.6.2 Overexpression of Mcr1 in wild type and Δyme1  

Accumulation of Mcr1 in Δyme1 may result from the lack of degradation by Yme1 or maybe  

is required to mask some of the defect caused by deletion of YME1. Alternatively, higher 

Mcr1 levels could also be responsible for some of the Δyme1 phenotypes. Therefore, the 

effect of overexpression of Mcr1 on the growth of wild type and Δyme1 cells (Thorsness and 

Fox, 1993; Thorsness et al., 1993; Weber et al., 1995) was examined.  

 

Figure 3.19 Overexpression of Gep1 in wild type and Δyme1 cells. (A) Wild type and 
Δyme1 cells harbouring YEplac181-GAL-Gep1-myc were grown in rich medium containing 
either 2% (w/v) galactose or glucose for 4 h. Cellular membranes were prepared and 
immunological detection of Gep1 was performed using α-Myc after SDS-PAGE and western 
blot. Equal loading was addressed using α-Tom40 and α-Yme1 antibodies (*- signal refers to 
a degradation band of Yme1). (B) Wild type and Δyme1 cells harbouring YEplac181-GAL-
Gep1-myc were grown on synthetic medium lacking leucine and containing galactose (2% 
(w/v)) for 3 days. Under similar conditions growth of wild type and Δyme1 cells without 
overexpression of Gep1 was comparable (date not shown). 
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To exclude an influence of the conferred leucine autotrophy, wild type and Δyme1 cells 

harbouring pXY142 are included in the analysis. Overexpression of Mcr1 compared to the 

endogenous protein level (pXY142) was modest in cellular membrane extracts of wild type 

and Δyme1.  The induction of Mcr1 is more prominent in wild type than in Δyme1 cells (Fig. 

3.20A). On the in vivo level no apparent effect of Mcr1 overexpression on growth of wild 

type cells was observed (Fig. 3.20B). Therefore, elevated Mcr1 protein levels in Δyme1 cells 

are not responsible for the phenotypes associated with the loss of YME1. Surprisingly, a 

beneficial effect of Mcr1 overexpression on Δyme1 growth is evident, although the overall 

protein amount of Mcr1 is not drastically changed by the modest overexpression of Mcr1. 

This partial restoration of Δyme1 growth by overexpression of Mcr1 points to a backup 

function of Mcr1 for some of the defects caused by the deletion of the i-AAA protease.   

 

3.2.7  Effects of Δyme1 on cellular ergosterol levels  

A possible role of Yme1 in cellular ergosterol distribution is suggested through the interaction 

of Yme1 with Mcr1 which is involved in ergosterol biosynthesis (Lamb et al., 1999) and by 

the abolished uptake of sterol in Δyme1 mutants grown under anaerobic conditions (Reiner 

et al., 2006). In general, ergosterol is most prominent in the plasma membrane (Zinser et 

al., 1991) and in yeast only some steps of the ergosterol biosynthesis are linked to 

mitochondria (Daum et al., 1998; Parks and Casey, 1995). Different aspects of the ergosterol 

biosynthesis and distribution are addressed by various methods. First, the effect of nystatin 

on growth is monitored. Nystatin is an antifungal drug that is binding to ergosterol within the 

plasma membrane and thereby leads to a disruption of the membrane and subsequent cell 

Figure 3.20 Overexpression of Mcr1 in wild type and Δyme1 cells. (A) Wild type and 
Δyme1 cells harbouring pYX142 or pYX142-Mcr1 were grown over night in rich medium 
containing 2% (w/v) glucose. Cellular membranes were prepared and immunological 
detection of Mcr1 was performed using α-Mcr1 after SDS-PAGE and western blot. Equal 
loading was assessed using α-Tom40 and α-Yme1 antibodies. (B) Wild type and Δyme1 cells 
harbouring pYX142 or pYX142-Mcr1 were grown on YPD at 15°C and 30°C, on YPD medium 
containing EtBr (25µg/ml) and on YPG medium at 37°C for three or five days.  
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death (Woods, 1971). Second, ergosterol levels in lipid samples from whole wild type and 

Δyme1 cells are compared to lipid levels in intracellular membrane fractions.  

 

 

 

When compared to wild type cells (W303 or BY47432) the growth of Δyme1 cells is reduced 

on full medium containing nystatin (50 U/ml) in both backgrounds tested (Fig. 3.21). This 

suggests that the amount of ergosterol within the plasma membrane of Δyme1 cells is 

increased. This is unexpected as Yme1 is a mitochondrial protein and yeast mitochondria are 

not directly involved in ergosterol distribution (Czabany et al., 2007; Sullivan et al., 2006) 

and biogenesis of ergosterol is predominantly taking place in the ER (Parks and Casey, 

1995). Nevertheless, ergosterol is present in the inner mitochondrial membrane (Voelker, 

2004; Zinser and Daum, 1995). As the influence of Yme1 on the Yme1-interacting proteins 

or vice versa is analysed here, growth defects of Yme1-interacting protein deletion strains in 

the presence of nystatin were assessed. However, none of the tested deletion strains of 

Yme1-interacting proteins (Δgep1, Δmcr1, Δmpm1, Δqcr2, Δpda1 and Δpdb1) showed 

reduced growth in the presence of nystatin. Similarly, overexpression of Mcr1 partially 

restored the growth defect observed for Δyme1 cells in the presence of nystatin, pointing to 

a general effect by which Mcr1 obviates the growth defects of Δyme1 cells.  

 

Figure 3.21 Growth phenotypes on YDP medium containing nystatin. (A) Wild type 
growth (W303 or BY4742) was compared to growth of Δyme1 cells on YPD containing 50 
U/ml nystatin after three days of incubation. (B) Growth of Yme1-interactor deletion strains 
on YDP containing nystatin. Δgep1, Δmcr1, Δmpm1, Δqcr2, Δpda1 and Δpdb1 cells were 
grown on YPD medium containing nystatin (50 U/ml) for three days. (C) Effect of Mcr1 
overexpression [Mcr1] on the nystatin phenotype of Δyme1. W303 and Δyme1 cells 
harbouring pYX142 or pYX142-Mcr1 were grown on YPD containing nystatin (50 U/ml) for 
three days.  
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When ergosterol levels of total lipid and membrane lipid samples isolated from wild type and 

Δyme1 cells were compared, no obvious difference was visible. Therefore, no conclusion 

about unequal ergosterol levels in different cellular fractions/subfractions of wild type and 

Δyme1 cells is possible by the thin layer chromatography approach utilised here.  

 

Figure 3.22 Ergosterol levels in total lipids and membrane lipid samples of wild 
type and Δyme1 cells. Lipids were isolated from total cell samples and intracellular 
membrane samples originating from the same culture of wild type and Δyme1 cells. After 
determination of phospholipid levels of the samples 5 nmol lipids were dissolved by thin layer 
chromatography (solvent phase: hexane:ethylacetate (3:1)). Standards for determination of 
the single bands dissolved were ergosterol (Erg), cholesterol (Chol), cholesterylsterate 
(CholESter) and cholesterylpalmitate (CholEPal). 
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3.3  Analysis of genetic interactions of the i-AAA 

protease Yme1  

The absence of the conserved i-AAA protease Yme1 is associated with a number of 

phenotypes in yeast. However, the molecular mechanism underlying these pleiotropic 

phenotypes is far from being understood. In order to identify processes that become 

essential in the absence of Yme1, a systematic genetic array (SGA) (Tong et al., 2001) was 

utilised. A deletion of YME1 is combined with a collection of individual non essential gene 

deletions associated with mitochondrial function (see attachment). The resulting double 

deletion strains that fail to grow reflect a synthetic lethal genetic interaction of YME1 and the 

respective deleted gene. Hence, according proteins of both genes are involved in related 

processes. Genetic interactors were listed and assigned to distinct functional classes. 

Furthermore, high copy suppressors of some synthetic lethal growth phenotypes were 

determined by application of a high copy suppressor screening to define new functions of the 

i-AAA protease.  

 

3.3.1  Analysis of genetic interactions of Δyme1 with a deletion 

library of assorted mitochondrial proteins  

The systematic genetic array (SGA) (Tong et al., 2001) was performed to gain new insights 

into processes that become essential in the absence of Yme1. The genetic interaction of an 

YME1 deletion was tested only for an assorted deletion library of non essential mitochondrial 

proteins that exhibit a general importance within the organelle or could have overlapping 

functions with the i-AAA protease. Altogether 96 gene deletions were tested for a loss of 

viability upon deletion of YME1 (see attachment). Within this library gene deletions of the 

two m-AAA protease subunits Yta10 and Yta12 as well as deletion of their regulatory 

complex partners Phb1 and Phb2 (Steglich et al., 1999) represent established synthetic lethal 

interactions of the i-AAA protease (Lemaire et al., 2000; Leonhard et al., 2000; Osman et al., 

2009) and serve as internal controls for assays (Tab. 3.1). 34 synthetic lethal interaction of 

YME1 were initially determined. Of these interactions only the synthetic lethal interactions of 

a TAZ1 deletion with anYME1 deletion was not verified by tetrade analysis. The designated 

synthetic lethality of theYME1 deletion together with deletion of MDM10, MDM31, PSD1 and 

CRD1 displayed a milder phenotype in the tetrade analysis and were therefore considered as 

synthetic sick. The remaining 29 initially identified synthetic lethal interactions were verified 

by tetrade dissection (Tab. 3.1). 
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In general, growth of a Δyme1 strain depends on the presence of mtDNA (Thorsness and 

Fox, 1993). Therefore, one possible explanation for the synthetic lethality of the combined 

deletion of YME1 and a gene XY may originate from a loss of mtDNA induced by the XY 

deletion. The potentially induced loss of mtDNA in the absence of a gene, that otherwise 

proved synthetic lethal interaction with YME1, was examined by the ability of the respective 

single mutants to grow on non-fermentable carbon source. This is based on the fact that 

components of the respiratory chain are encoded by the mtDNA. Hence, growth a on non-

fermentable carbon source requires the presence of mtDNA, and lack of mtDNA should result 

in an inability to grow on a non-fermentable carbon source. Of the 34 initially identified 

interacting library mutants 13 respective single mutants did not grow on non-fermentable 

carbon source pointing to the loss of mtDNA (Tab. 3.1) that would explain the synthetic 

lethality in the absence of YME1. However, additional effects contributing to the synthetic 

lethal interaction of Yme1 and those deletions that show a depletion of mtDNA cannot be 

completely/entirely excluded. Thus, of originally 34 identified synthetic lethal interactors of 

Yme1, 18 synthetic lethal interactions remained indefinable at this point.  

Finally, all synthetic lethal interactions are grouped into five functional classes, based on 

known protein functions of the corresponding interacting gene: Mitochondrial morphology, 

peptidases/processing, lipids, unknown and diverse (Tab. 3.1). 

Figure 3.23 Verification of the synthetic lethal interaction of YME1 and SAM37. 
Verification of the synthetic lethality of Δyme1 with Δxy exemplified by Δyme1Δsam37. (A) 
Tetrade dissection of Δyme1Δsam37 grown on YPD for five days. Distribution of wild type and 
deletion alleles was attributed by subsequent growth analysis on YPD containing either G418 
(250 µg/ml) or NAT (100 µg/ml) for three days. (B) Single deletions of the assorted library of 
non essential mitochondrial proteins were grown on YPD or YPG for three or five days, 
respectively.  
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Two major groups of genes known to affect mitochondrial morphology or to harbour 

peptidase activity show synthetic lethality with Δyme1. For the first group MMM1, MDM10, 

MDM12, MDM31, MDM32 and MDM38  show genetic interaction with YME1 and are, except 

for MDM38,  shown to genetically interact with each other (Dimmer et al., 2005). The other 

major class of synthetic lethal interactions ofYME1 consists of proteins that have either by 

themselves peptidase function or are involved in the regulation of peptidase function 

(Koppen and Langer, 2007; Steglich et al., 1999). Substrate overlapping functions are likely 

to be responsible for some of the synthetic lethal interactions in this group (Lemaire et al., 

2000; Leonhard et al., 2000), since Yme1 is also a peptidase. Further, lipid related genes are 

Table 3.1 Synthetic lethal interaction with the i-AAA protease.  Evaluation of synthetic 
lethal interactions found by SGA. Double deletions are verified by tetrade dissection: SL- 
synthetic lethality (dark - synthetic lethal, medium - synthetic sick). Intramitochondrial 
localisation: Loc. (OM - outer membrane, IMS - intermembrane space, IM - inner membrane, M 
- Matrix, “-“ - unknown).  Growth of single mutant on YPG: YPG (dark – growth, light - no 
growth). * known synthetic lethal interactions of the i-AAA protease (Lemaire et al., 2000; 
Leonhard et al., 2000; Osman et al., 2009). 

 
Gene ORF 
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Gene ORF 

SL Loc. 
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G

 

MMM1 YLL006w  IM/OM PSD1 YNL169c  IM  

MDM10 YAL010c  OM  CRD1 YDL142c  IM  

MDM31 YHR194w  IM  UPS1 YLR193c  IMS  

MDM32 YOR147w  IM  

Li
pi

ds
 

GEP4 YHR100c  -  

MDM38 YOL027c  IM  GEP8 YER093c-a  -  

FZO1 YBR179c  OM  YLR091w YLR091w  -  

M
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ph

ol
og
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MGM1 YOR211c  IM  U
n

kn
ow

n
 

YKR016w YKR016w  -  

ATP23 YNR020c  IMS  GEP3 YOR205c  M  

PCP1 YGR101w  IMS  QRI5 YLR204w  IM  

PIM1 YBL022c  M  HMI1 YOL095c  IM/M  

OMA1 YKR087c  IM  SAM37 YMR060c  OM  

OCT1 YKL134c  M  ATP10 YLR393w  IM  

IMP1 YMR150c  IM  ACO1 YLR304c  M  

YTA10* YER017c  IM  IFM1 YOL023w  M  

YTA12* YMR089c  IM  

 

D
iv
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se

 

COX11 YPL132w  IM  

PHB1* YGR132c  IM  

P
ep

ti
da

se
s/

P
ro

ce
ss

in
g 

PHB2* YGR231c  IM  
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synthetic lethal or sick with YME1. In addition, three undescribed genes and some genes 

involved in diverse processes are found to be synthetic lethal with YME1. Of all assigned 

groups some genes are already implicated to be synthetic lethality with prohibitins, described 

synthetic lethal interactors of YME1 (Tab. 3.1; e.g.HMI1) (Steglich et al., 1999). The genetic 

interactions of prohibitins have in turn been correlated with alterations in mitochondrial 

phospholipids levels (Osman et al., 2009). Hence, these synthetic lethal interactions point to 

a role of Yme1 in lipid metabolism. This is underlined by the just recently identified 

deregulated phospholipid levels in Δyme1 cells (Nebauer et al., 2007).  

To gain further insights into new processes that involve the function of the i-AAA protease, 

selected candidates showing synthetic lethal intereraction with Yme1 were analysed in more 

detail. 

3.3.1.1 Phenotypic analysis of Δyme1 synthetic lethal interactors  

Another way to correlate the function of two genes is a comparison of single deletion 

phenotypes, as deletion of genes involved in similar or overlapping processes are likely to 

exhibit same phenotypes. Therefore, phenotypes associated with the loss of YME1  

(Thorsness and Fox, 1993; Thorsness et al., 1993; Weber et al., 1995) (see Chapter 3.2.7) 

were analysed for single deletion strains of selected candidates that show synthetic lethal 

interaction with the i-AAA protease. Here the single deletions Δcox11, Δimp1, Δmdm38, 

Δups1 and Δgep8 were monitored and compared to Δyme1 phenotypes.    

 

 

 

Except for a retarded growth on non-fermentable carbon source at elevated temperature, 

Δgep8 and Δmdm38 cells do not resemble any of the Δyme1 phenotypes (Fig. 3.24). For 

Δups1 some slight effect can be seen on the growth on YPD medium containing either EtBr 

or nystatin and at decreased temperature. As a growth phenotype of Δups1 on YPD at 30°C 

Figure 3.24 Correlation of Δyme1 growth phenotypes with phenotypes of Δcox11, 
Δimp1, Δmdm38, Δups1 and Δgep8. Δcox11, Δimp1, Δmdm38, Δups1 and Δgep8 cells were 
grown on YPD 30°C or 15°C, on YPG at 37°C, on YPD containing EtBr (25 µg/ml) or nystatin   
(50 U/ml) for two to five days respectively. Wild type and Δyme1 served as controls.  
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is known (Sesaki et al., 2006), a correlation of this phenotype with the reduced growth 

under the related conditions tested cannot be excluded, especially as Δups1 shows no 

reduction of growth on non-fermentable carbon source at elevated temperature. For Δimp1 

and Δcox11 only a lack of growth on the non-fermentable carbon source at elevated 

temperature is apparent. Since both proteins are involved in the complex assembly of the 

respiratory chain such a phenotype is expected and will not correlate with the effect of an 

YME1 deletion. Therefore, none of the single deletions (Δcox11, Δimp1, Δmdm38, Δups1 and 

Δgep8) resemble the phenotypes associated with Δyme1. This, however, does not 

completely exclude a function of both genetic interactors in a similar pathway. 

 

3.3.2  High copy suppressor screening for synthetic lethal 

interactors of Yme1  

High copy suppressors were applied for some of the synthetic lethal interactions, namely 

double deletions of YME1 together with COX11, IMP1, MDM38, UPS1 and GEP8. The 

mitochondrially localised proteins encoded by these genes are related to different functions 

within the organelle. Cox11 is, together with Cox17, required for copper delivery to Cox1 

(Hiser et al., 2000). Imp1 is already introduced as one of the subunits of the IMP complex 

responsible for protein processing within the inter membrane space (Jan et al., 2000). The 

functions reported for Mdm38 are somewhat controversial. Its first characterisation links 

Mdm38 to mitochondrial morphology defects (Dimmer et al., 2002); additionally roles in 

K+/H+ exchange within mitochondrial membrane vesicles (Froschauer et al., 2005) and in 

export of the mitochondrial protein (Frazier et al., 2006) are described. Ups1 is required for 

processing and sorting of Mgm1 (Sesaki et al., 2006) and its deletion has just lately been 

related to aberrant cardiolipin (CL) levels (Osman et al., 2009). For the just recently entitled 

protein Gep8 no distinct function has been assigned so far (Osman et al., 2009). 

Since combination of Δyme1 with any mutation leading to the loss of mtDNA results in 

synthetic lethality corresponding single deletions (Δcox11, Δimp1, Δmdm38, Δups1 and 

Δgep8) of the six double deletions analysed by high copy suppressor screening are examined 

for the presence of mtDNA by growth on non-fermentable carbon source. However, none of 

the single mutants show loss of mtDNA (Tab. 3.1) as those mutants unable to grow on non-

fermentable carbon source (Δcox11 and Δimp1) show a role in complex assembly of the 

respiratory chain.  

Because all haploid double deletions by themselves are lethal (Fig. 3.25), viable strains 

expressing Yme1 from pVT100U-Yme1 are created by tetrade dissection.  
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All haploid double deletion strains harbouring the pVT100U-Yme1, were transformed with a 

yeast genomic library cloned into Yep13 (Daignan-Fornier et al., 1994). Subsequent selection 

on medium lacking leucine was followed by growth on medium without leucine and 

additionally containing 5’FOA (1 mg/mg) for counter selection of the pVT100U-Yme1. Growth 

of remaining colonies could then be attributed to the suppression of genomic fragments 

within the Yep13 plasmid as both the presence of the uracil resistance of pVT100U-Yme1 

and the haploid double deletion alone lead to a lethal phenotype. Through further analysis of 

the genomic fragment from Yep13 library plasmids suppressing the lethality of the haploid 

double deletions, the gene responsible for the suppression was identified. Finally, single 

genes were cloned and the suppressive effects of the single gene expressed under its 

endogenous promoter were tested. Comparison of the known functions of the three 

genetically interconnected genes might then explain the synthetic lethality of the haploid 

double deletion strains Δyme1Δcox11, Δyme1Δimp1, Δyme1Δmdm38, Δyme1Δups1 and 

 Δyme1Δgep8. Furthermore, the suppression of the single mutation of Δyme1, was 

determined. 

 

3.3.2.1 Identification of genes suppressing the synthetic lethality of 

Δyme1Δimp1  

Genes suppressing the synthetic lethality of Δyme1Δimp1 were identified after isolation of 

Yep13 library plasmids from Δyme1Δimp1 cells depleted of pVT100U-Yme1. Sequencing of 

Figure 3.25 Verification of the synthetic lethality of Δyme1Δcox11, Δyme1Δimp1, 
Δyme1Δmdm38, Δyme1Δups1 and  Δyme1Δgep8. Tetrades of diploid double deletions of 
(A) Δyme1Δcox11, (B) Δyme1Δimp1, (C) Δyme1Δmdm38, (D) Δyme1Δups1 and (E) 
Δyme1Δgep8 were dissected and synthetic lethality was verified for the haploid double 
deletions (squares). Respective haploid double deletion strains harbouring pVT100U-Yme1 
were created by the same procedure. 
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the respective Yep13 library plasmids identified the following open reading frame 

combinations: PGK1; CRP6 +YLR218c; PET54 + HSV2; MIC14 + RAD28. After cloning of 

individual genes into YEplac181 and transformation of the generated plasmids, suppression 

of Δyme1Δimp1 was tested for PGK1, YLR218c, PET54 and MIC14.  

 

 

 

The setup for the suppression test of the single genes is essentially the same as the one 

used for the identification of the Yep13 library construct suppressing Δyme1Δimp1. Only 

here the growth of colonies without counter selection for the pVT100U-Yme1 plasmid (SD-

LEU) was compared to those cells counter selected for the pVT100U-Yme1 (SD-LEU+5’FOA) 

(Fig. 3.26). Remaining growth of the negative control is based on residual growth of the cells 

that were only shifted to medium containing 5’FOA at this point. A suppression of the 

Δyme1Δimp1 associated growth defects could be observed upon expression of Pgk1, 

Ylr218c, Mic14 and the positive control Yme1. However, such an effect was not evident for 

Pet54. Pgk1 (3-phosphogylcerate-kinase) is a key enzyme in glycolysis and gluconeogenesis 

(Blake and Rice, 1981; Hitzeman et al., 1980). Cells deleted for YLR218c lack growth on non-

fermentable carbon source and exhibit a glycogen storage defect (Wilson et al., 2002). Mic14 

has been identified as one of the proteins that are depending on the Mia import pathway for 

their mitochondrial localisation (Gabriel et al., 2007), however no function has been assigned 

to Mic14. 

In conclusion, the known functions of the identified suppressors cannot be immediately 

linked to functions of Imp1 or Yme1, respectively. 

 

Figure 3.26 Suppression of Δyme1Δimp1 synthetic lethality by expression of 
suppressor. Δyme1Δimp1 cells harbouring either the empty plasmid (YEplac181) or the same 
plasmid containing Pgk1, Ylr218c, Pet54 or Mic14 were either grown on synthetic media 
containing 2% (w/v) glucose and lacking leucine (SD-LEU) or on synthetic media containing 2% 
(w/v) glucose, lacking leucine (SD-LEU) supplied with 5’FOA (1 mg/ml) for three or five days 
respectively. As a control Δyme1Δimp1 cells harbouring YEp13-Yme1 were included. 
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3.3.2.2 Suppression of Δyme1 phenotypes by suppressors of 

Δyme1Δimp1  

In order to understand whether the identified suppressor alleviates growth impairment of the 

Δyme1Δimp1 double mutant by suppression of the Δyme1 associated dysfunctions, 

YEplac181 plasmids containing suppressor genes were transformed into Δyme1. Then 

growth of the resulting Δyme1 strain harbouring YEplac181, Yep13-Yme1, YEplac181-Pgk1, 

YEplac181-Ylr218c, YEplac181-Pet54 and YEplac181-Mic14 was examined.   

 

 

The expression of the identified suppressors of the Δyme1Δimp1 double mutant did not 

suppress any of the tested growth defects of the Δyme1 strain (Fig. 3.27). Therefore, a 

suppression of the Δyme1Δimp1 double deletion is not caused by the suppression of Δyme1 

associated defects. Whether the suppression of Pgk1, Ylr218c and Mic14 restores only 

defects of a Δyme1Δimp1 double deletion or the defects caused by a Δimp1 single deletion 

remains to be examined. 

 

 

 

Figure 3.27 Suppression of Δyme1 phenotypes by suppressors of the Δyme1Δimp1 
double deletion. .Δyme1 cells harbouring YEplac181 containing Pgk1, Ylr218c, Pet54 or Mic14 
were grown on YPD 15°C, on YPG at 37°C, on YPD containing EtBr (25 µg/ml) or nystatin    (50 
U/ml) for two to five days respectively. Δyme1 harbouring the empty vector (YEplac181) and 
Δyme1 served as controls.  



 Discussion 

 82

4 Discussion 

4.1 Role of the CH-region of the i-AAA protease Yme1 in 

substrate binding  

Substrate recognition and binding are crucial events during substrate degradation by a 

protease. This is also true for the highly conserved mitochondrial i-AAA protease, a 

membrane embedded ATP-dependent metallopeptidase composed of Yme1 subunits. Two 

autonomous substrate binding regions have been identified for the i-AAA protease Yme1, the 

NH-and the CH-region. The NH-region is essential for the proteolytic function of the i-AAA 

protease, as mutagenesis of this region abolishes degradation of all tested substrates (Graef 

and Langer, 2006). Replacement of the yeast CH-region by an orthologous sequence reduces 

the in vivo activity of the i-AAA protease and its deletion alters the assembly of a functional  

i-AAA protease complex (Graef et al., 2007). Only degradation of some substrates 

dependents on the CH-region of the i-AAA protease and their CH-dependent degradation is 

shown to be also influence by the NH-region. However, substrates can bind independently to 

either of the two regions (Graef et al., 2007). Other substrates are degraded in a CH-

independent manner, solely requiring recognition by the NH-region. The parameters that 

determine CH-dependent or CH-independent degradation of a substrate are not understood 

so far. Two properties that potentially ascertain the CH-dependence of a substrate are its 

folding state and its association with the membrane.  

In order to understand the underlying molecular mechanisms in substrate engagement of 

the CH-region the importance of distinct residues or certain areas within the CH-region of 

Yme1 on substrate binding and degradation is assessed by mutational analysis.  

 

4.1.1 Initial substrate binding by the CH-region of the i-AAA 

protease Yme1  

The CH-region of the i-AAA protease Yme1 is composed of three helices, the α-16, α-17 and 

α-18 helix based on the crystal structures of the homologous FtsH protease from T. maritima 

(Bieniossek et al., 2006). All three helices are exposed at the apical and lateral side of the 

proteolytic domain of the i-AAA protease. However, the CH-region does not represent the C-

terminal end of Yme1, but 38 amino acids that follow the CH-region comprise the exact C-

terminal end of Yme1. These residues are only resolved in the crystal structure of T. 

thermophilus (Suno et al., 2006) (Fig. 4.1), where they reside within the cleft of the U-like 
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structure that is built up by the α-17 and α-18 helices of Yme1. This relative orientation to 

the CH-region points to a regulatory function of the flexible element separating substrate 

and the α-17 and α-18 helices. Deletion of this region, however, has no detectable influence 

on the proteolytic activity of the i-AAA protease (Fig. 3.6). The region is thus not essential 

for substrate degradation by the i-AAA protease Yme1. Consistently, in vitro experiments 

show binding of substrates to the purified CH-region lacking the C-terminal extension (Graef 

et al., 2007). Further, these amino acids within this C-terminal region do not show a high 

degree of similarity when compared to homologous proteins of Yme1 in higher eukaryotes 

(Tab. 1.1). Although the C-terminal region of Yme1 is not essential for proteolytic activity, a 

negative regulatory mode for substrate binding to the CH-region cannot be completely ruled 

out by this analysis. 

 

 

 

Analysis of pair wise mutations introduced into the helices α-17 and α-18 of Yme1 revealed a 

loss of substrate binding for those residues that might influence the overall fold of the CH-

region. In this respect, mutation of residues predicted to face the interior of the i-AAA 

protease complex did not prevent the binding of Cox2 (Fig. 3.3) and its subsequent 

degradation (Fig. 3.4). In contrast, mutation of residues localised to the surface of the 

protease enabled efficient, even increased, binding of Cox2 to the protease which was able 

to degrade Cox2 in a wild type like manner. However, the mutational analysis did not reveal 

Figure 4.1 Mutations within the CH-region of the i-AAA protease Yme1. (A) Initial 
substrate binding sites of the i-AAA protease. NH- (N-terminal helices) and CH- (C-terminal 
helices) substrate binding regions of the i-AAA protease form a lattice-like structure at the 
surface of the predicted proteolytic cylinder of AAA proteases. (B) Effect of mutations in the 
CH-region of the i-AAA protease Yme1. Mutation of amino acids leading to loss of substrate 
binding is indicated with light green, enhanced substrate binding with dark green. Amino acids 
involved in substrate binding, but when mutated impaired in degradation are highlighted in 
red. The corresponding structures within the crystal structure of the related AAA protease 
FtsH from T. thermophilus are shown (Suno et al., 2006). 
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surface exposed amino acids required for initial substrate binding. Only amino acids facing 

the interior of the i-AAA protease were affected in their ability to bind Cox2. This points to an 

essential structural integrity of the α-17 and α-18 helices for substrate binding consistent 

with the role of the complete CH-region in substrate binding. Hence, arranging the CH-region 

onto the i-AAA protease complex might result in more efficient binding of substrate. One 

should keep in mind that any structural information is based on crystal structures of bacterial 

FtsH proteases (Bieniossek et al., 2006; Suno et al., 2006).  

 

4.1.2 CH-dependent degradation of substrates by the i-AAA 

protease Yme1  

Within the analysis of CH-mutant variants of Yme1 two mutations were identified 

(Yme1H687A/R688A and Yme1Q691A/G692A) that showed binding (Yme1H687A/R688A only decreased) 

and impaired degradation of the substrate protein Cox2 (Fig. 3.3 and Fig. 3.4). Nevertheless, 

both mutants showed normal respiratory growth (Fig. 3.1), demonstrating proteolytic activity 

of the mutant i-AAA protease (Leonhard et al., 1996; Weber et al., 1996). Further, the 

restoration of proteolytic activity is also achieved by the lower molecular weight complex 

found for the assembled i-AAA protease complex of the Yme1H687A/R688A mutant. The 

identification of mutants that are able to bind but not to degrade a CH-dependent proteolytic 

substrate raises the possibility that the CH-region is relevant for transfer of the substrate to 

the proteolytic site of the i-AAA protease. This transfer of substrates from the CH-region is 

currently not understood. However, different models of substrate entry pathways exist for 

membrane embedded AAA proteases (Graef et al., 2008). Soluble AAA+-proteases mediate 

substrate engagement through the central pore of the AAA+ domain (Sauer et al., 2004). 

AAA proteases harbour a membrane adjacent AAA domain that complicates internalisation 

and transfer of substrate to the proteolytic chamber.  

The ‘threading model’ proposed entry of substrates to the proteolytic cavity through an 

opening between the membrane and the membrane adjacent surface of the AAA domain, 

leading to translocation through the central pore loops (Graef et al., 2008) (Fig. 4.2). This 

model is more suitable for membrane inserted proteins, as soluble substrate proteins cannot 

easily reach the central pore lying in close proximity to the membrane surface. Consistently, 

such a degradation mode rather accounts for substrates that bind to the NH-region of the 

protease. 
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In this regard, an epistatic analysis proved a mechanism where substrates first bind to the 

NH-region before they are transferred to the central pore loops for internalisation into the 

proteolytic chamber (Graef and Langer, 2006). Also a mode of action with initial substrate 

binding to the CH-region and subsequent transfer of the substrate to the NH-region is 

conceivable. In this scenario, the mutated CH-region would impair the transfer of substrate 

from the CH- to the NH-region. Within the structure of the CH-region the respective mutated 

residues are facing the surface of the molecule and are most likely important for direct 

substrate contact. Moreover, these CH-region residues do partially align with the NH-region 

of the i-AAA protease. Thus, a block of substrate transfer from CH to NH in these Yme1 CH-

mutant variants is possible.  

The second model for substrate entry into the proteolytic cavity suggests a lateral opening of 

the protease ring that is followed by vectorial transport of the substrate to the proteolytic 

chamber. Rearrangement of the protease ring leads to subsequent closure of the hexameric 

ring structure of the i-AAA protease (Graef et al., 2008) (Fig. 4.2). Such a mechanism has 

already been demonstrated for the double-stranded-DNA packaging motor of the 

bacteriophage ϕ29 (Moffitt et al., 2009). Accordingly, mutations in the CH-region which 

interfere with the degradation of the bound substrate would affect opening or closing of the 

protease ring. As the mutated residues are facing the surface of the i-AAA protease, their 

involvement in a process that requires intramolecular communication seems unlikely. 

Moreover, a complete inactivation of the protease would be expected when such a 

mechanism is impaired. On the contrary, the i-AAA protease of both Yme1 CH-mutant 

variants showed proteolytic activity, as both mutants were able to complement known 

Δyme1 phenotypes. Thus, the lateral opening model is not appealing for the i-AAA protease, 

Figure 4.2 Alternative substrate entry pathways of the i-AAA protease Yme1. 
Lateral opening model: The substrate enters the proteolytic cavity after lateral opening of the 
protease ring. Subsequently, it is transferred to the proteolytic center via vectorial transport, 
while the protease ring rearranges its closed conformation. Threading model: The substrate 
reaches the central pore through an opening between the membrane and the membrane 
adjacent site of the AAA domain. It can then enter the proteolytic cavity through the central 
pore. The figure is adapted from (Graef et al., 2008). 
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based on results found for the two mutants Yme1H687A/R688A and Yme1Q691A/G692A. However, 

although the two mutated amino acids might not have a role within the opening and closing 

process, a function of both in the vectorial transport of the substrate while the ring structure 

is opened is still possible. 

Generally, the intriguing characteristics of the two Yme1 CH-mutations, Yme1H687A/R688A and 

Yme1Q691A/G692A, that separate the processes of substrate binding and degradation but 

maintain proteolytic activity of the i-AAA protease suggest the existence of different 

pathways of CH-dependent substrate degradation by the i-AAA protease Yme1.  

 

4.1.3 Structural importance of the CH-region of Yme1  

Analysis of successive deletions of C-terminal parts of the i-AAA protease revealed a 

destabilisation of the i-AAA protease complex in mutants lacking any of the three helices that 

build up the CH-region. A complete deletion of the CH-region results in the formation of a 

complex with an apparent molecular weight of 200 kDa (Graef et al., 2007). The functional 

complex has a molecular mass larger than 850 kDa (Leonhard et al., 1996). The analysis of 

successive deletion of the CH-region refined the structural role of the CH-region to the single 

helices of the region. Hence, the single helices of the CH-region are not only important as a 

functional element, but have a potential function in organisation and stabilisation of the i-

AAA protease complex.  

Taken together, two new functions of the three helices of the i-AAA protease CH-region 

could be identified. First, the CH-region is involved in substrates transfer from the CH-region 

to the proteolytic site. Second, the integrity of the CH-region is required for the stability of 

the i-AAA protease complex. 

 

4.2 Processing of the i-AAA protease Yme1  

In order to identify the mitochondrial peptidase responsible for the maturation of Yme1, 

yeast cells lacking different mitochondrial peptidases were tested for the accumulation of the 

precursor form of Yme1. Only for cells harbouring a temperature sensitive allele of MAS1 the 

precursor form of Yme1 was appearing (Fig. 3.8). MAS1 encodes for the major mitochondrial 

processing peptidase MPP which resides in the matrix of mitochondria (Gakh et al., 2002; 

Leonhard et al., 1996). 

In vitro processing assays verified the cleavage of S35-radiolabeled Yme1 precursor by 

purified MPP. Furthermore, the processing of three Yme1 orthologs from N. crassa (Iap-1), 

H. sapiens (YME1L1) and M. musculus (Yme1l1) was addressed in the in vitro assay. All 
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three orthologs of Yme1 show processing by purified MPP (Fig. 3.9). As distinct recognition 

and cleavage motifs are assigned for MPP (Gakh et al., 2002), sequence analysis of all four 

Yme1 orthologs revealed the existence of putative R2- or R3-motifs (Tab. 4.1). 

 

 

 

One predicted MPP cleavage site is present in the sequence of Yme1 and YME1L1. Similarly, 

only one lower molecular weight form appeared for S35-radiolabeled Yme1 and YME1L1 after 

processing with purified MPP (Fig. 3.9). In contrast, Iap-1 and Yme1l1 harbour more then 

one predicted MPP cleavage site in their N-terminal region. Consistently, two lower molecular 

weight species were produced upon MPP cleavage of S35-radiolabeled Iap-1. If both forms 

represent the in vivo form of Iap-1 cannot be concluded from this approach. Cleavage of 

Yme1l1, however, only generated one lower molecular weight form. The size difference 

between the precursor and the mature form of Yme1l1 suggests that mature Yme1l1 is 

generated by processing at the second MPP cleavage site (Fig. 4.3). To determine whether 

the lower molecular weight forms generated by MPP cleavage of either of the Yme1 

orthologs represent the in vivo maturation of these proteins, additional analysis are awaited. 

Whether the lower molecular weight form of Yme1 indeed represents the mature form of the 

i-AAA protease was addressed analysing processing of an N-terminally tagged Yme1 variant. 

The integration of six histidines, inserted after Yme1E50, did not interfere with the in vivo 

activity of the i-AAA protease and the hexahistidine tag was still present after maturation of 

Yme1, as affinity purification of this Yme1 variant was possible (Fig. 3.11). Further, the 

molecular size of the N-terminally tagged Yme1 variant in cell extracts was comparable to 

the mature form and not to the precursor form of Yme1 (data not shown). Therefore, the 

Table 4.1 Sequence alignment of MPP processing sites in different Yme1 orthologs. 
The R2-motif of MPP is composed of xRx↓x(S/x), whereas the R3-motif of MPP has a slightly 
different arrangement: xRx(Y/x)↓(S/A/x)x. Respective sequence motifs of Yme1 and its 
orthologs from N. crassa (Iap-1), H. sapiens (YME1L1) and M. musculus (Yme1l1) are 
depicted here.  

Yme1 ortholog MPP motif 

Yme1 K43 FYRFY↓SEKN52 

Iap-1 L12 FRRSF↓SALM21 
N29 TLRSM↓STHQ38 

Q38 PGRIP↓SFFR47 

YME1L1 R157TRRLQ↓STSE166 

Yme1l1 K86 DKRVS↓SCWH95 

S116TLRSS↓SLYR125 
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consensus motif for MPP cleavage depicted in Fig. 4.3 represents the MPP cleavage site of 

Yme1.  

4.3 Novel interaction partners of the i-AAA protease 

Yme1  

Affinity purification of proteolytically inactive Yme1 allowed the identification of eight novel 

interaction partners of the i-AAA protease of which six have been analysed in more detail 

(Fig. 4.3). Co-purification of the known proteolytic substrate Phb1 (Graef et al., 2007) and 

the known interaction partner Mgr1 (Dunn et al., 2006) proved the general eligibility of the 

approach.  

 

 

 

Qcr2 and the two assembly partners Pda1 and Pdb1 are new interaction partners of Yme1 

localised to the mitochondrial matrix. In the intermembrane space, Mpm1, Gep1, Gut2, Cyb2 

and the short form of Mcr1 were identified as novel interaction partners of the i-AAA 

protease. Furthermore, the long from of Mcr1 localised to the outer mitochondrial membrane 

was found to interact with the i-AAA protease.  

Interestingly, three of the intermembrane space interaction partners (Cyb2, Gut2 and Mcr1) 

and the previously identified i-AAA protease substrate Cox2 (Graef et al., 2007) are 

Figure 4.3 Relative localisation of Yme1-interacting proteins. Substrates identified by 
affinity purification of the i-AAA protease Yme1. In the matrix space Qcr2 was identified which 
is part of complex III of the respiratory chain (circle). Further, Pda1 and Pdb1 showed 
interaction with Yme1. These two proteins build up the E1 subunit of the pyruvate 
dehydrogenase complex (circle). Gut2 is localised to the inner mitochondrial membrane and is 
required for glycerol utilisation. Mpm1, for which no function is assigned, also localises to the 
inner mitochondrial membrane. Cyb2 and the short form (s) of Mcr1 respresent soluble 
intermembrane space proteins. Cyb2 is reported to have a role in lactate utilisation. The long 
form (l) of Mcr1 resides in the outer mitochondrial membrane. Both forms are involved in 
ergosterol biogenesis and reduction of D-erythroascorbyl free radical. OM, outer mitochondrial 
membrane; IMS, intermembrane space; IM, inner mitochondrial membrane; M, matrix; circles, 
protein is part of a larger complex. 
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processed by the IMP peptidase. Even more intriguing these four proteins constitute the 

known set of substrates for the catalytic subunit Imp1 (Esser et al., 2004). However, no 

physical interaction of the i-AAA protease and Imp1 or one of the other subunits of the IMP 

peptidase (Imp2 or Som1) could be identified. Imp1 was further excluded to be the 

peptidase responsible for processing of Yme1, as described in Chapter 4.2. However, YME1 

and IMP1 show a synthetic lethal genetic interaction (Tab. 3.1), suggesting an overlapping 

function of both proteins in related processes. One probable reason for the interaction of the 

i-AAA protease with substrates of the IMP peptidase could be a clearance function by which 

accumulated precursor proteins are removed. However, no peptides corresponding to the N-

terminal targeting sequence were identified by PMF analysis of co-purified Cyb2 and Gut2 

(data not shown). Although this does not exclude that Yme1 interacts with the precursor 

form of those proteins, a more prominent interaction with the mature form of those two 

proteins points to a different role of the i-AAA protease. As those two proteins were not 

analysed in more detail, no final conclusion is possible. The other six interactions were 

analysed by co-immunoprecipitation. Although all other interactions of Yme1 with Yme1-

interacting proteins could be verified, the interaction of Yme1 and Gep1 was not detected in 

this assay. In this case, the low abundance of Gep1 together with an only transient 

interaction with Yme1 may explain why no interaction is detectable. Moreover, a potential 

role of the Yme1-interaction partners as assembly partners of the i-AAA protease was 

analysed (data not shown). However, no alterations of the i-AAA protease complex were 

observed in the absence of any of the six Yme1-interacting proteins. Subsequently, the 

nature of interaction between the Yme1-interacting proteins and the i-AAA protease was 

addressed, and a possible functional link of Yme1 and the newly identified interaction 

partners was analysed. 

  

4.3.1 Possible function of the i-AAA protease Yme1 in sorting 

and assembly of the mitochondrial proteins Qcr2, Pda1 

and Pdb1  

Three novel interaction partners of the i-AAA protease localised to the matrix site of 

mitochondria are Qcr2, Pda1 and Pdb1. These interaction partners were exclusively identified 

with the Yme1 variant harbouring the hexahistidine tag at the C-terminus (Fig. 3.11). 

Possibly, an interaction of these three proteins occurs with that part of the N-terminal 

domain of the i-AAA protease that is localised to the matrix. In line with this, the steady 

state levels of these proteins were not altered in the absence of Yme1 (Fig. 3.15). This 

supports the idea that these proteins do not represent proteolytic substrates of the i-AAA 
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protease. Similarly, no or only a slightly increased co-precipitation efficiency of these proteins 

was detected when co-immunoprecipitations of proteolytically inactive Yme1E541Q and Yme1 

were compared. Thus, the proteolytic activity of the i-AAA protease has no impact on these 

interaction partners, pointing to a role of Yme1 during import of the three proteins. 

Especially for Pda1 and Pdb1 such a function could be possible as both proteins showed a 

slight Yme1 dependent accumulation of their precursor form (Fig. 3.15) which was 

precipitated together with Yme1 (Fig. 3.13). In general, such an import function of the i-AAA 

protease has been described for the import of the heterologously expressed mammalian 

PNPase (Rainey et al., 2006). However, the absence of Yme1 had no apparent effect on the 

import of Pda1 and Pdb1 (Fig. 3.18). In contrast, Qcr2 was less efficiently imported into 

isolated mitochondria of Δyme1 cells compared to wild type. This may reflect a specific effect 

of Yme1 on Qcr2 or may be an indirect consequence of a deletion of YME1. Δyme1 cells 

conduct reduced activities of the respiratory chain and the F1FO-ATPase and thereby possess 

a reduced membrane potential across the inner mitochondrial membrane (Kominsky et al., 

2002; Nakai et al., 1995; Thorsness and Fox, 1993). As import of Qcr2 is depending on the 

membrane potential, the reduction of the membrane potential in Δyme1 mitochondria might 

also reduce the import efficiency of Qcr2. Alternatively, the sorting and assembly of Qcr2 

could be impaired in the absence of the i-AAA protease. However, such a function has not 

been shown for the i-AAA protease so far. The sorting or assembly process of Qcr2 could 

further be influenced by its phosphorylation as it is proposed for the assembly of the ATP 

synthase (Reinders et al., 2007). Phosphorylation is also described for Pda1, but not for 

Pdb1. Phosphorylation of Pda1 and Qcr2 could potentially affect their interaction with the i-

AAA protease. 

The significance of the interaction of Yme1 with either of the three matrix proteins remains 

unclear at this point. As deletion of YME1 does not influence the abundance of these 

proteins, phenotypes monitored in the absence of Yme1 cannot be explained by the loss or 

accumulation of these proteins. However, whether the interaction between Yme1 and these 

proteins is required for either function is not clear yet. The attempt to correlate the Δyme1 

associated phenotypes with the loss of either of these proteins did not provide insights into 

the functional relevance of the interaction of Yme1 and Qcr2, as well as the interaction of 

Yme1 with Pda1 and Pdb1. Thus, the nature of interaction between the i-AAA protease and 

Qcr2, Pda1 and Pdb1 remains to be established. 

The identification of Qcr2, Pda1 and Pdb1 as new interaction partners of the i-AAA protease 

suggests the existence of alternative functions of Yme1 in addition to proteolytic quality 

control. As all three interaction partners are involved in energy metabolism it is appealing to 

speculate on a regulatory function of the i-AAA proteins that modulates certain steps of the 
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energy metabolism within mitochondria. Furthermore, the identification of Pgk1, a key 

enzyme in glycolysis and gluconeogenesis, as a suppressor of the Δyme1Δimp1 synthetic 

lethality suggests a reduced cellular energy status in the absence of Yme1. In this line, 

depletion of the i-AAA protease was shown to induce the expression of genes responsible for 

energy metabolism and the biogenesis of the respiratory chain (Arnold et al., 2006), further 

supporting the idea of a function of the i-AAA protease in cellular energy metabolism. 

 

4.3.2 New substrates of the i-AAA protease: Mpm1 and Mcr1  

Mcr1 and Mpm1 represent proteolytic substrates of the i-AAA protease as indicated by their 

increased steady state level in the absence of Yme1 (Fig. 3.15). Co-precipitation of the two 

proteins was only evident when the proteolytic inactive variant of Yme1 was used (Fig. 

3.12). Therefore, the stability of the two interaction partners and the role of Yme1 in 

degradation of Mcr1 and Mpm1 was addressed by import chase experiments. However, no 

degradation of any of the two interaction partners was obvious after import into 

mitochondria isolated from wild type and the import chase in Δyme1 mitochondria was 

comparable (Fig. 3.17). Therefore, no conclusion about the role of the i-AAA protease in 

degradation of newly imported Mcr1 and Mpm1 was possible. Hence, an additional assay 

using an in vivo downregulation approach of Yme1 was applied. Here, an accumulation of 

the two proteins correlated with decreasing levels of Yme1 (Fig. 3.17) An increased 

transcription of both proteins in Δyme1 cells is not responsible for increased abundance of 

the proteins in the absence of the i-AAA protease (Arnold et al., 2006), suggesting a role of 

the i-AAA protease in the degradation of the two novel substrate proteins Mcr1 and Mpm1. 

As both proteins are not degraded under the same conditions employed for already known 

substrate proteins, the nature of interaction and degradation might be different. In contrast 

to Mcr1 and Mpm1, no accumulation is evident for the already known substrates Phb1 and 

Cox2 in a Δyme1 background (Graef et al., 2007), where additional factors are needed to 

provoke degradation. Furthermore, Phb1 and Cox2 were predominantly degraded by the i-

AAA protease in a largely unfolded or unassembled conformation. On the contrary, the two 

novel substrates Mcr1 and Mpm1 might not need unfolding for their degradation by Yme1. 

Since the i-AAA protease is a representative of the ATP-dependent AAA protease family for 

which an ‘unfoldase’ activity has been reported (Martin et al., 2008) an unfolded protein 

conformation is probably not strictly required for recognition and part of the general quality 

control function of the i-AAA protease. Thus, the new substrates Mcr1 and Mpm1 might be 

degraded in a regulatory manner by the i-AAA protease adjusting the protein levels to 

cellular requirements. In addition to the regulation of Mcr1 and Mpm1 levels by proteolysis, 
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the i-AAA protease could also restrict their mitochondrial abundance by a regulation of their 

import and/or maturation. As Mcr1 and Mpm1 show different import pathways this aspect 

will be discussed separately for each protein. 

Another interesting aspect of the identification of new substrates of the i-AAA protease is 

their functional integration into the already known pleiotropic phenotypes of Δyme1 cells. 

Mcr1 is described as an NADH cytochrome b5 reductase that is present in two different 

isoforms within mitochondria (Hahne et al., 1994). Processing of Mcr1 is achieved by the 

IMP1 processing peptidase. Recently, an alternative import mechanism for the sorting of the 

long, 34 kDa form of Mcr1 has been described that does not depend on the TOM complex 

(Meineke et al., 2008). However, although no key players of this mechanism have been 

identified so far and Yme1 has a suggested role in mitochondrial protein import (Rainey et 

al., 2006), an involvement of Yme1 in import of Mcr1 could be excluded (Fig. 3.16). In 

addition, no impaired processing of the long Mcr1 isoform could be observed in the absence 

of Yme1. Therefore, regulation of Mcr1 levels likely occurs after import and maturation of the 

protein. Functionally, Mcr1 is linked to ergosterol biosynthesis and plays a crucial role in the 

reduction of D-erythroascorbyl free radical in yeast (Lamb et al., 1999; Lee et al., 2001). 

Whether both isoforms of Mcr1 are important for these processes is unclear. Mammalian 

NADH cytochrome b5 reductase is dually localised to the ER and to mitochondria upon N-

myristolation (Colombo et al., 2005). As mammalian NADH cytochrome b5 reductase does 

not resemble the signal peptides of yeast Mcr1, a different sorting mechanism can be 

expected (Tomatsu et al., 1989). Nevertheless, the mammalian ortholog shows localisation 

to the mitochondria, strengthening the importance of Mcr1 for mitochondrial function. 

Indeed, Δmcr1 cells exhibited growth defects on non-fermentable carbon source at elevated 

temperature (Fig. 3.14), a phenotype that has also been described for Δyme1 cells. This 

correlation might point to some related functions of Mcr1 and Yme1. However, deletion of 

YME1 leads to an accumulation of Mcr1 that is in striking contrast to Δmcr1 cells. Therefore, 

the effect of overexpression of Mcr1 in wild type cells was monitored in parallel. Surprisingly, 

no effect of Mcr1 overexpression was seen in wild type cells, but in Δyme1 cells (Fig. 3.20). 

Here, overexpression of Mcr1 alleviated all Δyme1 associated phenotypes: impaired growth 

of Δyme1 cells on non-fermentable carbon source at elevated temperature, retarded growth 

on YPD at lower temperature and growth in the absence of mtDNA. It is thus conceivable, 

that the increased level of Mcr1 in Δyme1 cells does not plainly recapitulate the lack of 

degradation, but is actually beneficial for the cell and reduces defects caused by the loss of 

the i-AAA protease. The underlying molecular mechanisms are not clear and need further 

examination.  
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The other novel substrate Mpm1 is hardly described yet (Inadome et al., 2001). One name 

giving feature of the ‘mitochondrial peculiar membrane protein 1’ (Mpm1) is its co-

fractionation with the membrane fraction, although no prominent hydrophobic stretches are 

present in the sequence of Mpm1. It is further localised in mitochondria in an oligomeric 

form and no phenotypes have been associated with a deletion of MPM1 so far (Inadome et 

al., 2001). Also testing the growth conditions of Δyme1 phenotypes did not reveal strong 

defects in the absence of Mpm1 (Fig. 3.14). No defect of Δmpm1 cells was obvious in the 

absence of mtDNA or on glucose-rich medium at lower temperature. The growth on non-

fermentable carbon source at elevated temperature was reduced, albeit not to the level 

observed for Δyme1 cells. If anything, the growth of Δmpm1 on non-fermentable carbon 

source at elevated temperature was comparable to the deletion of GEP1, another newly 

identified interaction partner. Other features pointing to related functions of these two 

proteins are the postulated regulation of mitochondrial PE levels by Gep1 that is influencing 

the membrane composition (Osman et al., 2009) and the association of Mpm1 with 

detergent resistant membranes or comparable uncharacterized insoluble structures 

(Inadome et al., 2001). This could suggest a potential function of Mpm1 in either 

organisation or participation of distinct microdomains of the membrane. Concerning the 

interaction of Yme1 and Mpm1, no direct correlation of phenotypes associated with their 

deletion is possible. To further address the nature of interaction between those two proteins, 

an impairment of Mpm1 import or sorting in the absence of the i-AAA protease was analysed 

(Fig. 3.16). However, import of Mpm1 into mitochondria isolated from Δyme1 cells was 

comparable to its import into mitochondria isolated from wild type cells. Thus, the i-AAA 

protease is not important for the import and/or sorting of Mpm1 to the inner mitochondrial 

membrane, but promotes its degradation. 

Taken together, two novel substrates have been identified for the i-AAA protease, Mcr1 and 

Mpm1. Both proteins show direct interaction with Yme1 and are degraded in an Yme1 

dependent manner. Unlike for other described substrates, Mcr1 and Mpm1 might represent a 

new class of i-AAA protease substrates. Proteins of this class are not degraded for the 

purpose of quality control, but in a regulatory manner.  

 

4.3.3 The i-AAA protease Yme1 functionally interacts with Gep1  

Another newly identified interaction partner of the i-AAA protease is Gep1, although no 

independent verification of Gep1 and the i-AAA protease was possible. Gep1 is localised in 

the intermembrane space of mitochondria. Depletion of YME1 resulted in a reduced Gep1 

steady state level (Fig. 3.12), underlining the functional interaction of the two proteins. A 
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reduced protein level of Gep1 in the absence of Yme1 could be explained by different 

scenarios: Yme1 might stabilise Gep1 by direct physical interaction; or Yme1 could be 

involved in the biogenesis of Gep1. 

 

 

 

Analysis of the import of Gep1 into mitochondria isolated from Δyme1 cells, however, did not 

reveal any role of Yme1 during Gep1 biogenesis (Fig. 3.16). Further, no reduction of Gep1 

transcription could be identified in the absence of Yme1 (Arnold et al., 2006), pointing to a 

regulation of Gep1 expression on protein levels.  

Since Gep1 overexpression has been described to elicit toxic effects in wild type cells (Osman 

et al., 2009) and Gep1 steady state levels were reduced in Δyme1 cells, a potential increased 

sensitivity towards Gep1 overexpression in the absence of Yme1 was analysed. Indeed, cells 

lacking the i-AAA protease were more sensitive to Gep1 overexpression (Fig. 3.19). Hence, 

Yme1 could be responsible for the adjustment of Gep1 levels in mitochondria or a so far 

unknown Yme1 function can buffer toxic effects of Gep1 overexpression. Whether such a 

potential regulation is achieved by direct interaction of Yme1 with Gep1 or a different 

mechanism is not clear. Further, the sensitivity of Δyme1 cells to Gep1 overexpression 

strengthens the functional connection of the two proteins. 

Moreover, Gep1 has recently been linked to the regulation of mitochondrial PE levels and its 

overexpression results in a reduction of cardiolipin levels (Osman et al., 2009). The increased 

Yme1 
interaction 

partner 
localisation  steady state level 

in Δyme1 cells function 

Qcr2 IM/M not influenced core subunit of the ubiquinol 
cytochrome c reductase 

complex 

Pda1/Pdb1 M not influenced  E1 subunit of the pyruvate 
dehydrogenase complex  

Mcr1 (both 
isoforms) 

OM (long) 
IMS (short) 

increased required for ergosterol 
biosynthesis and reduction of 
D-erythroascorbyl free radical 

Mpm1 IMS/IM increased unknown 

Gep1 IMS/OM decreased organisation of mitochondrial 
phospholipids 

 
Table 4.2 Yme1-interacting proteins. Identified interaction partners of the i-AAA protease 
Yme1. Additional analysis determined Qcr2, Pda1 and Pdb1 as interaction partners whose 
function might be regulated by the action of the i-AAA protease, independent of its proteolytic 
activity. Mcr1 and Mpm1 represent substrates of the i-AAA protease and show increased 
steady state levels in the absence of the i-AAA protease. Furthermore, the i-AAA protease 
functionally interacts with Gep1, whose steady state level is decrease in Δyme1 cells. 
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sensitivity towards Gep1 overexpression of Δyme1 cells suggests a decreased tolerance of 

Δyme1 cells to reduction of mitochondrial cardiolipin levels. Therefore, possibly not the 

accumulation of the Gep1 protein might be toxic, but the induced alteration of the 

mitochondrial membrane. Similarly, a deletion of UPS1 in the absence of Yme1 results in a 

synthetic lethal phenotype. As deletion of UPS1 also reduces mitochondrial cardiolipin levels, 

the increased sensitivity of Δyme1 cells towards Gep1 overexpression does most likely 

originate from changes in mitochondrial phospholipid levels. The general connection of the  

i-AAA protease to cellular phospholipids will be discussed later in more detail.  

 

4.4 Genetic interaction of the i-AAA protease Yme1  

A synthetic genetic array (SGA) was conducted to identify processes that are essential in the 

absence of Yme1. Additional analysis of determined synthetic lethal interactions of YME1 

aimed at the identification of suppressors that would link the i-AAA protease to more precise 

functions. Increasing the knowledge about both, processes involving Yme1 and certain 

functions of Yme1, is of particular importance, as none of the described pleiotropic 

phenotypes associated with the deletion of Yme1 are explained by the known functions of 

the conserved i- AAA protease so far. 

 

4.4.1 Synthetic lethality of the i-AAA protease Yme1 – more 

than just an consequence of mtDNA loss  

An assorted library of 96 mitochondrial genes was tested for a potential synthetic lethal 

interaction with YME1. 34 of these gene deletions were identified to be synthetically sick or 

lethal with a deletion of YME1 (Fig. 4.4). For some of these synthetic lethal interactions, the 

possible origin of lethality could be linked to the loss of mtDNA, as the respective single 

mutant strains were unable to grow on non-fermentable carbon source, a growth condition 

that requires the presence of mtDNA. As Δyme1 cells are not able to tolerate the absence of 

mtDNA (Thorsness and Fox, 1993), combination of Δyme1 with a deletion triggering the loss 

of mtDNA will result in a lethal phenotype. However, the contribution of additional effects to 

the synthetic lethal interaction of the i-AAA protease and the respective gene inducing 

mtDNA loss cannot be excluded.  
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Notably, an upregulation of mRNA in the absence of Yme1 was found for some of the 

synthetic lethal interactors of the i-AAA protease (Arnold et al., 2006), namely MGM1, 

ATP23, PIM1, PSD1, QRI5, COX11 and IFM1. This is in line with the compensatory function 

of the pathways involving these proteins with pathways involving Yme1 and emphasises the 

action of both proteins in related processes. Consequently, the deletion of YME1 most likely 

results in an increased dependence on the synthetically lethal interactor for cellular survival. 

That such an induced expression was not found for all candidates or only one particular 

functional class highlights the requirement of i-AAA protease function for different processes. 

  

4.4.2 New implications for Yme1 function 

As a combined evaluation of all synthetic lethal interactions identified for the i-AAA protease 

is not yet possible, an implication of some potential functions of Yme1 based on the different 

functional groups classified is performed. 

Figure 4.4 Classification of synthetic lethal interactions of YME1. Evaluation of 
synthetic lethal interactions found by SGA. Verified synthetic lethal interactors of the i-AAA 
protease were grouped into functional classes: Mitochondrial morphology, processing, lipids, 
unknown and diverse. δ, single deletion strain does not grow on non-fermentable carbon 
source indicating the absence of mtDNA;*, respective deletion strain shows synthetic sick 
interaction with YME1; ‡, mRNA upregulated in Δyme1 (Arnold et al., 2006).  
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Depletion of Yme1 induces aberrant mitochondrial morphology (Campbell et al., 1994). 

However, up to date the reason for this defect has not been understood. Only components 

of the mitochondrial fusion machinery could be identified (Fzo1 and Mgm1) to be synthetic 

lethal with YME1. Moreover, Mgm1 expression is induced in the absence of Yme1 (Arnold et 

al., 2006) and the mammalian homolog of Yme1 is processing OPA1, the mammalian 

homolog of Mgm1 (Griparic et al., 2007; Song et al., 2007). Whether these results argue for 

a function of Yme1 in mitochondrial fusion is not clear yet, as fusion mutants are described 

to lose mtDNA (Hoppins et al., 2007) and will, hence, be synthetically lethal in combination 

with the petite negative depletion of the i-AAA protease. Further, the combination of mutants 

that exhibit defects in mitochondrial morphology might lead to the accumulation of severely 

aberrant mitochondrial structures interfering with cell survival. Such a scenario might be 

possible for the combination of Δyme1 with any of the genetically linked deletions of MMM1, 

MDM10, MDM12, MDM31 and MDM32 (Dimmer et al., 2005). For Mmm1, Mdm10 and 

Mdm12 an additional function in sorting of outer membrane proteins has been described 

(Bolender et al., 2008). Therefore, the synthetic lethality of these genes and YME1 may also 

originate from an accumulation of non imported proteins that impairs mitochondrial activity. 

No potential overlapping process is described for Mdm38 and Yme1, hence this synthetic 

lethal interaction is currently being analysed (Fig. 3.24).  

The next functional group links the function of the i-AAA protease to lipids. Two of the 

initially identified synthetic lethal interactions proved to be synthetically sick (Psd1 and Crd1). 

In addition, changes in the phospholipid levels of Δyme1 cells (Nebauer et al., 2007) also 

hint at a role of the i-AAA protease in lipid biogenesis or distribution. In this respect, the 

deletions of MMM1, MDM10, MDM31 and MDM32 revealed alteration of PE and/or CL levels 

(Osman et al., 2009). Therefore, also the synthetic lethal interaction of these genes in 

combination with Δyme1 could originate from changes in mitochondrial lipid levels, further 

pointing to a relevance of Yme1 for lipid metabolism. 

Synthetic lethal interactions of YME1 with components important for processing or 

degradation of mitochondrial proteins could be identified. This was expected, as one of the 

basic functions of the i-AAA protease is the quality control of mitochondrial membrane 

proteins and a similar phenotype based on this function has already been described by the 

synthetic lethal interaction of YME1 with a deletion of YTA10 or YTA12 encoding for either 

subunit of the m-AAA protease (Lemaire et al., 2000; Leonhard et al., 2000; Osman et al., 

2009). Moreover, some of the single deletions of these peptidases cause the loss of mtDNA 

that can also be responsible for the synthetic lethal interaction with YME1. Surprisingly, the 

Δpcp1 strain used in this screen still harboured mtDNA, although the absence of mtDNA is 

one of its reported phenotypes (Sesaki et al., 2003). Hence, the synthetic lethality of PCP1 
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and YME1 is caused by loss of a Pcp1 function in processes that do not have an influence on 

mtDNA maintenance. Similarly, different reasons might account for the other identified 

synthetic lethal interactor of YME1 referring to the depletion of a protein with mitochondrial 

peptidase activity.  

Furthermore, the i-AAA protease could be implicated to have a role in processes which are 

required for an efficient assembly of the respiratory chain. This is not surprising, as Δyme1 

cells exhibit a reduced membrane potential, and any additional alteration influencing the 

respiratory chain activity might lead to an elimination of the membrane potential generated 

across the inner mitochondrial membrane. Nonetheless, not all of the tested components 

responsible for the assembly of the respiratory chain exhibit a genetic interaction with YME1. 

As deletion of YME1 only leads to a reduction of mitochondrial membrane potential only a 

subset of the respiratory chain components might be influenced by the absence of the i-AAA 

protease. In the same line, the loss of respiratory chain assembly factors likely leads to an 

accumulation of assembly intermediates that could exhibit toxic effects. This effect might be 

more drastic in the absence of the i-AAA protease which has been shown to degrade non 

assembled Cox2 (Graef et al., 2007). Therefore, the assembly of certain respiratory chain 

components might be crucial in the absence of YME1. 

 

4.4.3 High copy suppressor screen of Δyme1Δimp1  

The genetic interaction of Yme1 and Imp1 is of particular interest in this context, as all 

known substrates of Imp1 have been identified as interaction partners of the i-AAA protease 

earlier (Fig. 3.11). In this line, the already proposed clearance function of Yme1 for 

precursor proteins processed by the IMP peptidase could account for the synthetic lethality, 

as accumulation of immature proteins could impair mitochondrial function. The 

accomplishment of a high copy suppressor screening of the Δyme1Δimp1 double mutant 

(Fig. 3.25) might enable the discovery of the origin of the Yme1 interaction with Imp1 

substrates. Moreover, the approach might ascertain new functions of the i-AAA protease 

independent from the detected physical interactions of Yme1. One identified suppressor, 

Pgk1, is a key enzyme of glycolysis and gluconeogenesis acting in the cytosol. 

Overexpression of Pgk1 rescues the synthetic lethality of a Δyme1Δimp1 double mutant (Fig. 

3.26). This points to an impairment of mitochondrial energy metabolism in Δyme1Δimp1 

double mutant cells that can possibly not any longer rely on the function of the respiratory 

chain, but are depending on an enhanced ATP production by glycolysis. Indeed, already the 

single mutant of IMP1 exhibits a petite phenotype and therefore depends on glycolysis for 

the production of ATP. Recently, a role of Pgk1 in suppression of apoptotic phenotypes has 



 Discussion 

 99

been identified in yeast (Mazzoni et al., 2009). There, a similar ATP related effect has been 

described that accounts for the suppression of apoptosis in the absence of the essential gene 

LSM4. Furthermore, the i-AAA protease was also linked to metabolic processes by the 

identification of two new interaction partners, Pda1 and Pdb1. Hence, a potential role of 

Yme1 in mitochondrial metabolic processes is likely. However, no suppression of the single 

deletion mutant of YME1 could be observed (Fig. 3.27). Thus, additional metabolic defects 

associated with the petite phenotype of the deletion of IMP1 exist. Whether Pgk1 suppresses 

either the single depletion of IMP1 or only the defects caused in the Δyme1Δimp1 double 

mutant is not clear yet. 

 

4.5 Impact of the i-AAA protease Yme1 on cellular and 

mitochondrial lipid levels  

Two classes of lipids are present in mitochondrial membranes of yeast, glycerophospholipids 

(phospholipids) and the yeast sterol ergosterol. Both are asymmetrically distributed between 

the inner and/or outer mitochondrial membrane (Zinser and Daum, 1995). Considering the 

high protein content of the inner mitochondrial membrane, such an organisation is probably 

crucial for mitochondrial functions. On the other hand, proteins have to be organised and 

controlled to ensure mitochondrial function. Therefore, mitochondria might not only rely on 

an efficient system for protein quality control surveillance, but might additionally depend on 

a modulatory lipid environment for the maintenance of their function. Similarly, the 

adjustment of distinct lipid environments can be important for protein quality control. Here, a 

possible link between lipid homeostasis and the i-AAA protease will be discussed.  

 

4.5.1 Depletion of Yme1 changes mitochondrial phospholipids 

levels  

Phospholipids are the dominant lipids in mitochondrial membranes. In contrast to 

phosphatidylethanolamine (PE) and phosphatidylcholine (PC) which are distributed more or 

less equally between both mitochondrial membranes, the mitochondria specific 

polyglycerophospholipid cardiolipin (CL) is predominantly present within the inner 

mitochondrial membrane. The preferential organisation of different proteins within the inner 

mitochondrial membrane might be linked to its lipid content. The IMP peptidase, for 

example, depends on the presence of phosphatidylserine (PS) for its function (Schneider et 

al., 1991), whereas one of its substrates, Gut2, was shown to require PC for its incorporation 
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into membranes (Rijken et al., 2007). Furthermore, Psd1 which is required for the conversion 

of phosphatidylserin (PS) to PE and Δpsd1 cells exhibit growth phenotypes on non-

fermentable carbon source, pointing to a role of PE in the organisation or biogenesis of the 

respiratory chain (Birner et al., 2003; Osman et al., 2009). 

Different connections to the mitochondrial phospholipids metabolism have been established 

for the i-AAA protease Yme1. Initially, the level of different phospholipids is reported to be 

altered upon depletion of Yme1 (Nebauer et al., 2007; Osman et al., 2009). The most 

prominent effect is the increase in PE levels monitored for Δyme1. This effect seems to 

depend on the carbon source. Additionally, a link of the i-AAA protease to phospholipids 

alterations could be identified within the analysis performed here. First, cells are more 

sensitive to Gep1 overexpression in the absence of Yme1. Second, deletion of UPS1 in a 

Δyme1 background results in a synthetic lethal phenotype. Both conditions, overexpression 

of Gep1 and deletion of UPS1, result in a reduction of CL levels. Therefore, it is tempting to 

speculate about an increased sensitivity to CL reduction in the absence of the i-AAA 

protease. In that line, a slight increase of CL can be observed upon deletion of YME1 which 

might partially counteract the increased sensitivity (Nebauer et al., 2007). A direct effect of 

CL on Yme1 function might exist, but has not been addressed so far.  

Therefore, an impairment of the inner mitochondrial membrane integrity, achieved by lipid 

alterations, is lethal in the absence of the i-AAA protease. Although no exact impact of lipid 

alterations is described so far, influences on the assembly of proteins into the lipid bilayer 

leading to their functional impairment are conceivable. In regard to Yme1, an impaired 

protein processing might lead to precursor accumulation which is toxic in the absence of the 

i-AAA protease. 

 

4.5.2 A potential influence of Yme1 on cellular ergosterol 

distribution  

Ergosterol is present in the inner mitochondrial membrane of yeast mitochondria. However, 

its function within the organelle has not been established. This is different in mammalian 

mitochondria where the rate limiting steps of steroidogenesis are conducted within this 

organelle (Miller, 2007). However, besides this function not much more is known about the 

relevance of sterols in mitochondrial membranes. Although ergosterol resides predominantly 

in the plasma membrane, mutants of the ergosterol biogenesis pathway exhibit 

mitochondrial morphology defects (Altmann and Westermann, 2005). This might either 

underline the essential membrane material function of ergosterol within the organelle, or 
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could further point to a role of ergosterol in organisation of mitochondrial membranes which 

might be important for the function of the mitochondrial fission and fusion machinery.  

With respect to the i-AAA protease, a reduced uptake of ergosterol under anaerobic 

conditions was reported (Reiner et al., 2006). In general, sterol uptake only becomes 

essential for a cell under anaerobic conditions, as its synthesis requires molecular oxygen 

that is usually provided in the form of heme by mitochondria. Under aerobic conditions a 

phenomenon called ‘aerobic sterol exclusion’ prevents the uptake of ergosterol from the 

medium. The phenomenon is thought to depend on the amount of ergosterol present within 

a cell, especially the plasma membrane. At this point a certain minimal threshold level is 

reached, uptake of ergosterol becomes possible. In this line, the amount of ergosterol 

present in the plasma membrane of Δyme1 cells was monitored, and based on the enhanced 

sensitivity of Δyme1 cells to nystatin shown to be increased. Nystatin binds to ergosterols in 

the plasma membrane resulting in its disruption and cell death. Enhanced sensitivity to 

nystatin therefore reflects an increased ergosterol content of the plasma membrane. It was 

somehow surprising that the mitochondrial i-AAA protease should influence the ergosterol 

level of the plasma membrane. However, an increased sensitivity of Δyme1 to nystatin does 

most likely not account for a general defect of the plasma membrane, as no synthetic lethal 

effects can be observed upon simultaneous deletion of components of the cell wall. Next, the 

overall content of ergosterol in the absence of Yme1 was compared to ergosterol levels in 

wild type. However, this analysis did not reveal any differences, neither in total lipid samples, 

nor in lipid samples of crude cellular membranes excluding the plasma membrane. Similarly, 

no change in ergosterol content could be observed in the absence of Arv1, a protein 

implicated in the intracellular distribution of ergosterol, although accumulation of free 

ergosterol was observed by immunofluorescence and nystatin sensitivity (Fei et al., 2008; 

Tinkelenberg et al., 2000). This effect was attributed to the presence of different ergosterol 

regulatory pathways that can to a certain extent substitute for one another to assure 

homeostasis of ergosterol levels and cell survival, respectively. Therefore, a more accurate 

function of the i-AAA protease in ergosterol distribution remains to be defined in yeast cells, 

where no protein regulating the organellar ergosterol distribution has been identified so far, 

making a potential role of Yme1 in this process highly interesting. In addition, the 

phenotypes observed for the mitochondrial morphology defect in Δyme1 and mammalian 

STAR-/- cells show some correlation, as both cells contain swollen mitochondria. In STAR-/- 

cells this effect can be clearly attributed to mitochondrial sterol exclusion (Ishii et al., 2002). 

Finally, the increased ergosterol in Δyme1 cells is intriguing, as reduced ergosterol levels are 

observed in cells depleted of intramitochondrial energy (Hunakova et al., 1997). A similar 

effect would thus be expected for Δyme1 cells that also show a reduced activity of the 
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mitochondrial F1FO-ATPase. Therefore, a more direct effect of the i-AAA protease on the 

cellular or mitochondrial ergosterol level is conceivable. 
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5 Zusammenfassung 

Die i-AAA Protease Yme1 ist eine hochkonservierte ATP-abhängige AAA (ATPase Associated 

with various cellular Activites) Protease, die in der inneren mitochondrialen Membran 

verankert ist und dort die Qualität der Proteine überwacht; dies ist entscheidend für das 

Überleben der Zelle. In Hefe ist eine Deletion des YME1 Gens mit pleiotropen Phänotypen 

assoziiert. Der molekulare Hintergrund dieser Phänotypen kann jedoch nicht mit den bislang 

bekannten proteolytischen Substraten und Interaktionspartner von Yme1 erklärt werden. 

Deshalb wurden im Rahmen dieser Arbeit verschiedene Ansätze angewandt, um die Funktion 

der i-AAA Protease genauer zu definieren. Zunächst wurden mit Hilfe von Affinitäts-

aufreinigung einer proteolytisch inaktiven Variante von Yme1, die als Substratfalle dient, acht 

neue Interaktionspartner aus unterschiedlichen mitochondrialen Subkompartimenten 

identifiziert. Zweien dieser Interaktionspartner, Mcr1 und Mpm1, wurde eine Rolle als 

proteolytisches Substrat der i-AAA Protease zugewiesen. Für weitere identifizierte 

Interaktionen sollten andere Funktionen der i-AAA Protease verantwortlich sein. Ferner 

wurde ein „synthetisch genetischer Array“ (SGA) mit 96 nicht-essentiellen mitochondrialen 

Gendeletionen verwendet, um Prozesse zu untersucht, welche auf die Funktion der i-AAA 

Protease angewiesen sind. 34 synthetisch letale Interaktionen stellten eine mögliche 

Verbindung von Yme1 zu neuen Funktionen, wie der mitochondrialen Morphology, der 

Prozessierung von Proteinen und dem Metabolismus von Lipiden her. Außerdem wurden 

Suppressoren der synthetisch letalen Interaktion von IMP1 und YME1 gesucht. Diese 

genetische Interaktion ist insofern von besonderem Interesse, da alle bekannten Substrate 

der katalytischen Untereinheit Imp1 der IMP Prozessierungs-Peptidase als Interaktions-

partner der i-AAA Protease identifiziert wurden. Dabei wurde ein entscheidendes Enzym der 

Glykolyse und Glukoneogenese, Pgk1, als Suppressor der Δyme1Δimp1 Doppelmutante 

gefunden. Dies deutet auf eine Beeinträchtigung des Energiemetabolismus in diesen Zellen 

hin. 

Darüber hinaus wurden in dieser Arbeit die Bedingungen der Substraterkennung der i-AAA 

Protease mit Hilfe von Mutationsanalysen untersucht. Kürzlich konnte die Existenz von zwei 

Substratbindestellen der i-AAA Protease gezeigt werden: die CH-(C-terminale Helices) und 

die NH-(N-terminale Helices) Region. Im Gegensatz zur NH-Region wurden bislang keine 

Untersuchungen zu molekularen Mechanismen der Substratbindung der CH-Region durch-

geführt. Hier konnte zusätzlich zur Signifikanz der CH-Region für die Substratbindung und  

-übermittlung, eine Funktion dieser Region in der Stabilisierung des i-AAA Proteasekomplexes 

identifiziert werden.  
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Im Rahmen dieser Arbeit wurden neue Substrate und Interaktionspartner der i-AAA Protease 

identifiziert, die auf die Existenz weiterer Funktionen von Yme1 hindeuten. Da nur wenige 

Erkenntnisse über die Funktion der i-AAA Protease in höheren Eukaryoten vorliegen, wird 

eine Analyse der Bedeutung der hier erlangten Befunde in Säugern interessant.  
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7 List of abbreviations 

AAA   “ATPases associated with a variety of cellular activities“ 
ADP/ATP  adenosine-5’-diphosphate/adenonsine-5’-triphosphate 
b   base 
BSA   bovine serum albumine 
C-/N-terminal   carboxy/amino terminal 
C-/N-terminus  carboxy/amino terminus 
DMSO   dimethyl sulfoxide 
DNA   deoxyribonucleic acid 
DTT   dithiothreitol 
EDTA   ethylene diamine tetraacetic acid 
Fig.   figure 
5’FOA   5’-fluoroorotic acid 
FPLC/HPLC  fast protein liquid chromatography/high performance liquid chrom. 
g   gramm 
g   gravity 
G418   antibiotic G418 
GFP   green fluorescent protein 
h/min/s  hour/minute/second 
HA   influenza hemagglutinin peptide 
HEPES   N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic-acid 
IgG   immunoglobulin G 
kb/kDa   kilobases/kilodalton 
M   molarity per liter 
MDa   megadalton 
mg/ml   milligram/milliliter 
mtDNA   mitochondrial DNA 
µg/µl   microgramm/mircoliter 
MOPS   3-(N-Morpholino)propanesulfonic acid 
mRNA   messenger RNA 
NAT   nourseothricin 
NADH   nicotinamide adenine dinucleotide 
nm   nanometer 
OD(600)  optical density at a wavelength of 600 nanometer 
PAGE   polyacrylamid gelelectrophoresis 
PCR   polymerase chain reaction 
PMF   peptide mass fingerprint 
PMSF   phenylmethanesulfonyl fluoride 
PVDF   polyvinylidenfluorid 
RNA   ribonucleic acid 
rpm   rounds per minute 
RT   room temperature 
SP6   bacteriophage SP6-specific RNA polymerase  
STI   soybean trypsin inhibitor 
Tab.   table 
TCA   trichloric acid 
Tris   tris(hydroxymethyl)aminomethane 
YP   yeast extract peptone 
V   voltage 
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8 Attachment 

Assorted library for Synthetic genetic analysis (SGA)  

Morphology 

components 

Peptidases Synthetic lethal 

with prohibitins 

Lipid related 

ORF Name ORF Name ORF Name ORF Name 

YLL006w 
YAL010c 
YOL009c 
YLR368w 
YHR194w 
YOR147w 
YDR393w 
YGL219c 
YKL053c- 
YOL027c 
YBR179c 
YOR211c 
YDR470c 
YLL001w 
YPL072w 

MMM1 
MDM10 
MDM12 
MDM30 
MDM31 
MDM32 
MDM33 
MDM34 
MDM35 
MDM38 
FZO1 
MGM1 
UGO1 
DNM1 
UBP16 
 
 
 

YNR020c 
YGR101w 
YBL022c 
YKR087c 
YKL134c 
YMR150c 
YMR035w 
YER017c 
YMR089c 
YPR024w 
YCL057w 
YDR430c 
YDL104c 
YNL239w 
YLR188w 
YPL270w 
 

ATP23 
PCP1 
PIM1 
OMA1 
OCT1 
IMP1 
IMP2  
YTA10 
YTA12 
YME1 
PRD1 
MOP112 
QRI7 
LAP3 
MDL1 
MDL2 
 
 
 

YER093c-a 
YGL057c 
YLR091w 
YMR293c 
YOR205c 
YMR187c 
YHR034c 
YLR204w 
YML061c 
YKR016w 
YMR224c 
YNL170w 
YOL095c 
YGR132c 
YGR231c 
 

GEP8 
YGL057c 
YLR091w 
YMR293c 
GEP3 
YMR187c 
PIH1 
QRI5 
PIF1 
YKR016w 
MRE11 
YNL170w 
HMI1 
PHB1 
PHB2 
 
 
 
 
 

YNL169c 
YGR170w 
YDL142c 
YPR140w 
YLR168c 
YDR185c 
YLR193c 
YHR100c 
 
YKL091c 
YNL231c 
YNL264c 
YLR380w 
YJL145w 
YMR008c 
YMR006c 
YOL011w 
YLR133w 
YGR007w 
YDR147w 

PSD1 
PSD2 
CRD1 
TAZ1 
GEP1 
YDR185c 
UPS1 
GEP4 
 
SFH1 
PDR16 
PDR17 
CSR1 
SFH5 
PLB1 
PLB2 
PLB3 
CKI1 
MUQ1 
EKI1 

    

Others 

 

Respiratory chain 

assemby 

Cell wall 

components 

Inositol related 

ORF Name ORF Name ORF Name ORF Name 

YDR258c 
YLR304c 
YMR072w 
YGR028w 
YGR033c 
YMR060c 
 

HSP78 
ACO1 
ABF2 
MSP1 
TIM21 
SAM37 
 
 
 

YER154w 
YHR051w 
YBR003w 
YLR393w 
YDR377w  
YKL016c 
YPL132w 
 
 

OXA1 
COX6 
COQ1 
ATP10 
ATP17 
ATP7 
COX11 
 

YLR342w 
YMR307w 
YER019w 
YJR100c 
YIL154c 
YOL023w 
YEL030w 

FKS1 
GAS1 
ISC1 
YJR100c 
IMP2' 
IFM1 
ECM10 
 
 

YJL153c 
YDR123c 
YOL108c 
YHL020c 
YJR073c 
YDL096c 
YDR360w 
YKR035c 
YLR338w 
YOL032w 
YPR044c 

INO1 
INO2 
INO4 
OPI1 
OPI3 
OPI6 
OPI7 
OPI8 
OPI9 
OPI10 
OPI11 
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