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SUMMARY

SUMMARY

In  Arabidopsis,  the  shoot  apical  meristem (SAM) homeostasis  is  finely  regulated by  the  WUSCHEL-
CLAVATA  antagonism.  WUSCHEL  (WUS) encodes  for  a  homeodomain  protein  essential  for  the  SAM 
maintenance  and  its  expression  marks  the  organizing  center  (OC).  On  the  other  hand,  the  interaction 
between the three  CLAVATA  (CLV) proteins, which all together code for a heterodimeric transmembrane 
leucin-rich  repeat (LRR) receptor like kinase (CLV1-2) and its specific ligand (CLV3), correctly restricts the 
WUS expression to the OC. In contrast to Arabidopsis, in maize two different  WUS orthologs and a single 
CLV1 ortholog, Thick tassel Dwarf1 (TD1), have been so far characterized. Like in Arabidopsis, the TD1 and 
ZmWUS2 expression domains overlap but, unlike Arabidopsis, their expression is detected in cells recruited 
for leaf primordia. Conversely,  ZmWUS1 is expressed within the SAM dome, not in a OC-type manner but 
rather in a dynamic fashion that always correlates to phytomer establishment. The expression of the single 
CLV1 ortholog TD1 does not overlap with ZmWUS1 expression domain, leaving an open question over the 
putative regulator of ZmWUS1 function. To answer this question, the closest TD1 paralogs were identified 
and their expression pattern elucidated. Unfortunately, none of the three maize candidate genes identified 
has shown the potential to regulate ZmWUS1 activity, indicating that none of the closest CLV1 relatives in 
maize are able to regulate ZmWUS1 activity.

WUSCHEL is the founding member of a large gene family, the WUSCHEL-related homeobox (WOX) genes, 
which appear to be involved in several aspects of plant development, from defining the organizers of the 
shoot  and  root  apical  meristems,  to  conferring  distinct  cell  fates  as  early  as  the  2-cell  stage  during 
Arabidopsis embryogenesis. The WOX gene family is present throughout the plant kingdom, from the most 
basal algae and land plants to the most evolved angiosperms. As the members of this gene family take part 
in key plant developmental aspects, it is intriguing to study the evolution of the WOX gene family. In this 
respect,  the  lycophyte  scenario  is  described  in  this  work,  in  which  both  Selaginella  kraussiana  and 
S.moellendorffii has been the object of study. As for moss Physcomitrella patens, also the Selaginella WOX 
genes belong to the WOX13-like clade. S.moellendorffii genome has nine putative WOX homeodomains, six 
of them grouping together in a S.moellendorffii specific WOX13 sister group, whereas only three WOX-like 
gene were identified by degenerate primer PCR in  S.kraussiana,  all  belonging to the  WOX13-like clade. 
Despite the expression analysis of the three S.kraussiana WOX13-like genes and their S.moellendorffii closer 
orthologs demonstrate their subfunctionalization and their high conservation through the Selaginellaceae 
evolution, the phylogenetic reconstruction is in favor of the presence of only a single ancestor WOX13-like 
gene before the separation of the lycophyte and euphyllophyte lineage, which was probably present from 
the dawn of the plant kingdom.
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ZUSAMMENFASSUNG

ZUSAMMENFASSUNG

In  Arabidopsis wird die Homöostase des Sproßapikalmeristems (SAM) durch den  WUSCHEL-CLAVATA-
Antagonismus reguliert.  WUSCHEL (WUS)  kodiert  für  ein  Homöodomänenprotein  das  essentiell  für  den 
Erhalt  des  SAM ist,  und dessen  Expression  das  Organisierende Zentrum (OC)  markiert.  Die  Interaktion 
zwischen  den  drei  CLAVATA-Proteinen  (CLV), die  zusammen für eine  heterodimere  Leucine-Rich-Repeat 
(LRR) rezeptorähnliche Kinase (CLV1-2) und deren spezifischen Liganden (CLV3) kodieren, beschränken die 
Expression von WUS auf das OC. Im Gegensatz zu Arabidopsis wurden in Mais zwei WUS-Orthologe und ein 
einzelnes  CLV1-Ortholog,  thick  tassel  dwarf1 (TD1)  charakterisiert.  Wie  in  Arabidopsis überlappen  die 
Expressionsdomänen von  ZmWUS2 und  TD1,  aber  im Gegensatz  zu  Arabidopsis werden beide Gene in 
Zellen exprimiert,  die  in  Blattprimordien rekrutiert  wurden.  ZmWUS1 wird  ebenfalls  nicht  in  einer  OC- 
ähnlichen Domäne exprimiert sondern hat im SAM ein hochdynamisches Expressionsmuster, das mit der 
Etablierung neuer Phytomere korreliert. Die Expression von ZmWUS1 überlappt nicht mit der des einzigen 
CLV1-Orthologs  TD1,  was  die Frage nach einem Regulator  der  ZmWUS1-Expression aufwirft.  Um diese 
Frage  zu  beantworten,  wurden  die  am  nächstverwandten  Paraloge  von  TD1 identifiziert  und  ihre 
Expressionsmuster untersucht. Leider konnte keines der drei Kandidatengene als potentieller Regulator von 
ZmWUS1 identifiziert werden, was auf einen Mechanismus der WUS-Regulation hinweist, der unabhängig 
von den nächsten Verwandten von CLV1 ist.

WUSCHEL ist  das Gründungsmitglied einer großen Genfamilie,  den  Wuschel-verwandten Homöobox-
Genem (WOX),  die  an einer  Vielzahl  von pflanzlichen Entwicklungsprozessen,  von der  Organisation  der 
Sproß-  und  Wurzelmeristeme  bis  zur  Determination  von  Zelltypen  bereits  ab  dem  2-Zell-Stadium  des 
Arabidopsis-Embryos, beteiligt sind. Die WOX-Genfamilie ist im ganzen Pflanzenreich verbreitet, von basalen 
einzelligen  Algen  bis  zu  hochentwickelten  Angiospermen.  Da  die  Mitglieder  der  Familie  zu  wichtigen 
Aspekten  der  Pflanzenentwicklung  beitragen,  ist  es  von  Interesse,  die  Evolution  dieser  Familie  zu 
untersuchen. In dieser Arbeit wurde der Stand der Entwicklung der  WOX-Gene in Lycophyten untersucht; 
hierbei wurden sowohl Selaginella moellendorffii als auch Selaginella kraussiana untersucht. Wie im Moos 
Physcomitrella patens gehören die  WOX-Gene aus Selaginella zur Gruppe der  WOX13-Gene. Das Genom 
von  S.moellendorffii enthält  9  WOX-Homöodomänen  von  denen  6  eine  für  S.moellendorffii spezifische 
Schwestergruppe zu WOX13-Genen bilden; in S.kraussiana dagegen konnten mittels PCR mit degenerierten 
Primern  nur  drei  Homöodomänen identifiziert  werden,  die  wie  die  übrigen  Gene  aus  S.moellendorffii, 
eindeutig  in  die  WOX13-Gruppe gehören.  Phylogenie  und Expressionsanalysen deuten darauf  hin,  dass 
Entstehung und Subfunktionalisierung dieser WOX13-Gene vor der Trennung der Linien beider Selaginella-
Spezies stattgefunden haben, jedoch zum Zeitpunkt der Trennung der Lycophyten und Euphyllophyten nur 
ein  gemeinsamen  WOX13-Vorläufer  vorhanden  war,  der  wahrscheinlich  schon  bei  der  Entstehung  des 
Pflanzenreichs existierte. 
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INTRODUCTION

INTRODUCTION

Plants grow and form new organs throughout their life cycle, while integrating developmental 

and  environmental  signals.  All  postembryonically  formed organs  and tissues  are  derived  from 

pluripotent stem cell  populations that lie in the growing tips of  the plant,  the shoot and root 

meristems. The cells located in the center of the meristem maintain an undifferentiated state, 

whereas  any  daughter  cell  that  is  displaced  from  the  niche  is  compelled  to  go  through  a 

differentiation program and is subsequently recruited for the formation of lateral organs. 

Meristems  are  already  established  during  embryogenesis.  In  the  model  plant  Arabidopsis  

thaliana,  the  fertilized  egg  cell  firstly  elongates  and  then divides  asymmetrically  to  form two 

daughter cells of different size and cytoplasmic densities. The apical daughter cell gives rise to the 

embryo proper, whereas the descendants of the basal daughter cell divide transversely to form the 

suspensor and its uppermost cell, the hypophysis (Mansfield et al., 1991). 

Already  at  the  eight-cell  stage,  four  regions  with  different  developmental  fates  can  be 

recognized  in  the  Arabidopsis  embryo:  (1)  the  apical  embryo  domain,  made  up  of  the  four 

uppermost cells, will  generate the shoot meristem and most of the cotyledons, (2) the central 

embryo domain, consisting of the cell tier just below, will form the hypocotyl and root, and will 

partially contribute to cotyledons and the root meristem, (3) the hypophysis, which will give rise to 

the distal portion of the root meristem, the quiescent center (QC) and the central root cap stem 

cells, and (4) the suspensor, which provides a connection to the mother tissue and nutrient supply 

during early embryogenesis (Mansfield et al., 1991; Mansfield and Briarty, 1991; also reviewed by 

Laux  et  al.,  2004).  The first  indication of  embryonic  shoot  meristem initiation  is  the  onset  of 
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WUSCHEL (WUS) expression in the four subepidermal apical cells of the 16-cell embryo (Mayer et  

al.,  1998).  Subsequently,  these cells  divide asymmetrically  several  times,  establishing the  WUS 

expression  domain  at  its  correct  position  within  the  developing  shoot  meristem.  Thus,  in 

Arabidopsis  the fate of the uppermost tier and the hypophysis are determined already at the 8-

cells stage and the shoot stem cell niche is established immediately after.

In contrast to Arabidopsis, where apical/basal polarity and radial organization are established 

by a stereotypic pattern of cell division planes in early embryogenesis, in the monocotyledonous 

model plant  Zea mays only the plane of the first division is predictable in the zygote (Randolph, 

1936), and it is oriented perpendicularly to the micropylar/chalazal axis, resulting in a small apical 

and a large basal cell. As in Arabidopsis, the latter will form the suspensor and the first will develop 

into the embryo proper by a sequence of irregular cell divisions, making impossible to trace future 

organs back to a defined cell  or group of cells (Randolph, 1936). Later, at the end of the pro-

embryo stage, the maize embryo acquires a club-shaped form with little differentiation, mainly 

large  vacuolated cells  in  the  suspensor  and cells  that  remain small  and with high cytoplasmic 

density in the upper embryo proper (Randolph, 1936; van Lammeren, 1986). Histologically, the 

shoot apical meristem (SAM) is first apparent as a group of densely packed cells located laterally on 

the adaxial side of transition stage embryo (Randolph, 1936), recognizable by the scutellum that 

protrudes on the opposite abaxial   and thereby breaks radial  symmetry.  Slightly later a clearly 

distinguishable second group of meristematic cells is detectable in the basal part of the embryo 

proper,  just  above  the  suspensor  (Randolph,  1936;  van  Lammeren,  1986),  and  begins  to 

differentiate  into the root  apical  meristem (RAM).  The SAM develops  protruding  from slightly 

below the apical tip. A notch on top of the SAM is the first sign of the coleoptile, which forms a ring 

of tissue enveloping the meristem, and later borders and protects the plumule during germination 

(Randolph, 1936; Abbe and Stein, 1954). In contrast to Arabidopsis, where only the two cotyledons 

are  established  during  embryogenesis,  the  maize  embryo  initiates  its  single  cotyledon  (the 

coleoptile) and up to six true leaves prior to seed dormancy. Newly formed leaf primordia will 

develop  as  the  coleoptile,  but  on  the  opposite  flank  compared  to  the  previously  established 

primordia, already displaying the distichous phyllotaxy typical of the adult plant. Also in maize, as 
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in  Arabidopsis, the stem cell niches fate is establòished early during embryo formation although 

the  cell  division  pattern  is  poorly  defined.  In  contrast  to  Arabidopsis,  during  monocot 

embryogenesis the SAM is established laterally and not in a central position, emphasizing a first 

difference between mono- and dicotyledonous shoot apical meristem development.

Another key difference between monocots and dicots involves the SAM architecture. Some 

peculiar  characteristics  mark  the  distinct  evolution  of  dicot  and  monocot  meristems.  In  dicot 

species, the SAM appears to have three layers, with a tunica comprising two clonal layers (L1 + L2) 

and the corpus commonly designated as the L3 layer (Szymkowiak and Sussex 1996; Evans and 

Barton 1997).  In contrast,  monocots such as maize have a single histologically apparent tunica 

layer  and the inner  corpus  (Abbe  et  al.  1951;  Steffensen 1968).  Moreover,  Arabidopsis  leaves 

originate from few founder cells specified in the meristem peripheral zone (Irish and Sussex 1992), 

whereas each maize leaf may be traced back to approximately 200 leaf founder cells recruited 

from the whole circumference of the shoot apex (Poethig, 1984). Despite the existing differences 

between mono- and dicotyledons, there is evidence that the SAM homeostasis regulatory system 

is conserved throughout angiosperms. Maize and rice ortholog of  Arabidopsis  genes act in the 

WUS-CLV pathway, such as the CLV1 orthologs THICK TASSEL DWARF1 (TD1; Bommert et al., 2005) 

and FLORAL ORGAN NUMBER1 (FON1; Suzaki et al., 2004) , or the CLV2 ortholog FASCIETED EAR2 

in maize (FEA2; Taguchi-Shiobara et al., 2001). Conserved WUS orthologs expression patterns have 

also been described in rice and maize (Nardmann and Werr, 2006). These studies suggest possible 

evolutionary conservation  of  the  WUS-CLV feedback  loop,  but  also highlight  major  differences 

between  monocots  and  dicots  in  terms  of  domain  patterning  of  genes  involved  in  SAM 

maintenance.

The  existing  differences  between  monocots  and  dicots  in  embryogenesis  and  adult  SAM 

development may be related to different expression of key genes involved in these crucial events. 

In this respect, both the WUSCHEL-related homeobox genes and the CLAVATA orthologs might be 

important  actors,  accounting  for  the  major  patterning differences  that  have led to such great 

divergence between the two angiosperm classes over evolutionary time. 
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1.1 Stem cells homeostasis in the shoot apical meristem

In  Arabidopsis,  expression  of  the  homeodomain  transcription  factor  WUSCHEL (WUS)  is 

required to maintain a functional shoot apical meristem, as emphasized by the loss-of-function 

mutation  at  the  WUSCHEL locus  that  causes  the  premature  termination  of  the  shoot  apical 

meristem after the production of few leaves due to the consumption of the stem cell population 

(Laux et al., 1996). WUS expression is detected in the organizing center (OC), a small group of cells 

situated just beneath the stem cells, and it is required to maintain the latter in an undifferentiated 

state, indicating the existence of a signaling pathway from the OC toward stem cells (Mayer et al., 

1998). In addition, the stem cells respond by expressing the secreted peptide  CLAVATA3 (CLV3) 

(Rojo et al., 2002), which probably interacts with CLAVATA1 (CLV1) and CLAVATA2 (CLV2). CLV1 is a 

transmembrane  receptor-like  kinase  composed  of  an  extracellular  leucine-rich  repeat  (LRR) 

domain,  with  putative  receptor  activity,  linked  via  a  single  transmembrane  domain  to  a 

cytoplasmatic Ser/Thr kinase domain (Clark et al., 1997). Although structurally similar to CLV1, with 

a LRR extracellular and a transmembrane domain, the  CLV2  protein lacks the intracellular kinase 

domain,  and  therefore  is  unable  to  transmit  the  signal  by  itself  (Jeong  et  al.,  1999).  CLV1  is 

expressed in the shoot meristem in a region comprising a subset of the central stem cell niche and 

the  inner  portion  of  the  OC  (Clark  et  al.,  1997),  surrounding  the  WUS expression  domain. 

Mutations involving the three  CLAVATA  loci  result  in an opposite phenotype compared to  wus 

mutants, with enlarged meristems and supernumerary floral organs (Clark et al., 1993; Clark et al., 

1995; Kayes and Clark, 1998). Moreover, the  WUS expression domain expands in the clv  mutant 

(Schoof  et al., 2000), suggesting a direct repression by CLV genes. The recent characterization of 

CORYNE  (CRN) adds a possible new player in the  CLV/WUS negative feedback loop and in SAM 

homeostasis.  Müller and co-authors (2008) reported that the  crn-1  mutation can suppress the 

CLV3 overexpression phenotype and  behaves similarly to  clv2  mutants, but not to  clv1  mutant. 

This suggests the possibility  of  parallel  pathways involving  CLV1  and,  independently,  CLV2/CRN 

complexes to trigger the  CLV3  signal. Overall, the interaction between the three  CLV genes and 
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CRN is  able  to  restrict  WUS expression  to the OC region,  within  the  CLV1 expression  domain 

(Schoof et al., 2000; Brand et al., 2000), establishing a negative feedback loop between the OC and 

the surrounding stem cell population and providing a mechanism by which stem cell homeostasis 

could be finely regulated.

Ultimately, SAM homeostasis depends on the correct and buffered balance between stem cell 

growth rate, which tends to increase cell number, and cells recruited into the formation of lateral 

organs, which in turn reduces the cell number. The KNOTTED1-like homeobox (KNOX) genes, such 

as  SHOOT MERISTEMLESS (STM) and  KNOTTED1  (KN1) from  Arabidopsis  and maize, respectively, 

are transcribed throughout the entire SAM dome (Long et al., 1996; Endrizzi et al., 1996), and their 

expression is downregulated in cells recruited to become the future primordia by the activity of 

the ARP genes (ASYMMETRIC LEAVES1,  ROUGH SHEATH2,  PHANTASTICA, orthologous genes from 

Arabidopsis, maize and  Anthirrinum, respectively; Waites  et al., 1998; Timmermans  et al., 1999; 

Tsiantis et al., 1999; Byrne et al., 2000). RS2 and AS1 interact with the chromatin-remodeling factor 

HIRA (Phelps-Durr et al., 2005) and with the LOB (Lateral Organ Boundaries) domain protein AS2 

(Xu et al., 2003; Phelps-Durr et al., 2005). Both RS2/AS1 and AS2 are able to bind KNOX promoter 

sequences (Guo et al., 2008) and may recruit HIRA to establish a repressive chromatin state that is 

stably inherited throughout organ development. Therefore, in plants the correct balance between 

stem cell population growth and recruitment of cells to form lateral organs is finely regulated and 

it involves different pathways which interact to maintain the correct SAM homeostasis.

In monocotyledons, the cloning and characterization of genes orthologous to the main actors 

in  WUS/CLV and  KNOX/ARP antagonisms  lead  to  the  idea  that  these  regulatory  pathways  are 

conserved  among  angiosperms.  In  maize,  thick  tassel  dwarf1 (td1) and  fasciated  ear2 (fea2) 

mutants display enlarged inflorescence and floral meristems, and their causal genes are orthologs 

to CLV1 and CLV2, respectively (Taguchi-Shiobara et al., 2001; Bommert et al., 2005). In rice, loss-

of-function mutants of FLORAL ORGAN NUMBER1 (FON1) and FON2 (Suzaki et al., 2004; Suzaki et  

al., 2006)  showed an increased number of floral organs due to enlarged floral meristems and to 

abnormal meristem determinacy similar to that seen in Arabidopsis clv mutants. Molecular cloning 

of FON1 revealed that it encodes a leucine-rich repeat receptor-like kinase that is orthologous to 
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CLV1 (Suzaki et al.,2004). These results indicate that components of the CLAVATA signaling pathway 

is conserved between grasses and Arabidopsis. However, differences between monocot and dicot 

CLV1  orthologs were also reported.  The most significant  is  the expression pattern of  TD1 and 

FON1. During the vegetative phase,  TD1 is expressed in leaf primordia and leaves but excluded 

from the SAM dome whereas CLV1 is expressed deeper inside the SAM, never in touch with lateral 

organ  primordia.  Moreover,  TD1 and  FON1 are expressed  in  all  layers  of  the  floral  meristem, 

whereas CLV1 is expressed in most cells of just the inner layer of the Arabidopsis floral meristems 

from stage 2 on (Clark  et  al.,  1997;  Suzaki  et  al.,  2004;  Bommert  et  al.,  2005).  Moreover,  clv 

mutants show defects in shoot, inflorescence, and floral meristem, whereas the vegetative SAMs in 

fon1 and  td1 mutants  are apparently normal. These facts suggest that other redundant factors 

regulating SAM activity might function during vegetative development in grasses.

Phylogenetic reconstructions unequivocally identified two potential  WUS orthologs in maize, 

ZmWUS1 and  ZmWUS2,  and  a  single  ortholog  in  rice,  OsWUS (Nardmann  and  Werr,  2006). 

Comparative expression analysis uncovered striking similarities between the two grasses but major 

differences  to  Arabidopsis.  During  the  reproductive  phase,  the  grass  WUS orthologs  exhibit 

meristem-specific expression patterns, though their transcripts are detected more broadly and are 

predominantly not restricted to an OC-type domain in different types of reproductive meristems. 

By contrast, during the vegetative phase, the expression patterns diverged strongly from those in 

Arabidopsis and  expression  of  WUS orthologs  correlates  with  the  specification  of  new  leaf 

primordia. ZmWUS1 expression appears close to the tip of the shoot in the center of the SAM at 

the height of the new leaf primordium (P0) and shifts basally until the new leaflet (P1) appears 

histologically, whereas  ZmWUS2 is primarily expressed in cells recruited for leaf primordia and is 

maximally expressed basal lateral leaf margins. In parallel,  OsWUS expression oscillates between 

apical and deeper layers in the center of the SAM but is constant in leaf primordia founder cells, 

indicating that the expression pattern of the single rice ortholog in the SAM center and periphery 

has been split between the two maize paralogs. Consistently, however, the expression of WUS and 

CLV1 orthologs has been recruited for the anlage of new leaf phytomers in the course of maize and 

rice evolution.
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Interestingly,  TD1  expression overlaps the expression domain of  ZmWUS2, as its  Arabidopsis  

ortholog CLV1 surrounds the OC WUS expressing cells, but it does not overlap ZmWUS1 expression 

in the SAM center. This apparent lack of regulation raises the question as to which is, if it does 

exist, the putative gene able to regulate of ZmWUS1 activity in maize. This work will try to answer 

this scientific question.

1.2 The WOX gene family

WUSCHEL  is the founding member of a large family of homeodomain-related genes that are 

present  from the  most  basal  land  plants,  bryophytes,  through  the  most  evolved  angiosperms 

(Nardmann and Werr, 2007).  WUSCHEL is known to play a major role in the establishment and 

maintenance of stem cell homeostasis in the shoot (Laux et al., 1996; Mayer et al., 1998) as do the 

Antirrhinum  homolog  ROSULATA  (Kieffer   et  al.,  2006)  and  the  Petunia  homolog  TERMINATOR 

(Stuurman et al., 2002), which suggests that its function could be conserved.

Like their most famous and studied relative, the WUSCHEL-related homeobox (WOX) genes so 

far characterized appear to be involved in several aspects of plant development. Analogously to 

the role played by WUS in the shoot stem cell niche organizer, its close relative WOX5 is specifically 

expressed  in  root  quiescent  center  (QC),  from  the  formation  of  the  hypophyseal  cell  during 

embryogenesis (Hacker et al., 2004). A wox5 mutant fails to maintain the abutting columella stem 

cells in an undifferentiated state, indicating that WOX5 is required for a signal from the QC in order 

to repress differentiation of the columella stem cells (Sarkar  et al.,  2007). Moreover, the same 

authors demonstrate that  WOX5  also function redundantly with  SCARECROW,  SHORTROOT  and 

PLETORA genes  to  repress  premature  differentiation  in  other  stem  cells  surrounding  the  QC. 

Therefore, the WOX5 role in the root QC appears analogous to that of WUS in the SAM OC, namely 

keeping the surrounding stem cell population in an undifferentiated state. Remarkably, promoter 

swap experiments have demonstrated that  WUS and  WOX5 are interchangeable between both 

stem cell niches, although they share homology only in conserved domains (Sarkar  et al., 2007), 

indicating that these genes do not provide shoot or root specific signals but rather a more general 
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signal that is able to maintain the organizers daughter cells in an undifferentiated state.

As  for  WOX5,  WUS can  also  fully  rescue  WOX3/PRS  defects  when  expressed  under  the 

WOX3/PRS promoter (Shimizu  et al., 2009).  WOX3/PRS, similar to its maize duplicated orthologs 

NARROW SHEATH1/2, is expressed in a restricted number of L1 cells at the lateral regions of flower 

primordia, floral organ primordia, and young leaf primordia. Furthermore, mutation in these loci 

causes the loss of lateral domains of lateral organs (Matsumoto and Okada, 2001;  Nardmann et  

al., 2004). Thus,  WOX3 is also involved in a key plant developmental process. Moreover, the fact 

that WUS can take over the WOX3 function suggests a similar meristematic fate acquired by cells 

expressing WOX3 homologous genes.

WOX2  and  WOX8/9  also highlight  the importance of  WOX genes during embryogenesis.  In 

Arabidopsis, the zygote expresses both WOX2 and WOX8 transcripts but their expression domains 

become separated after the first asymmetric zygotic division, probably providing each daughter 

cell with a specific transcription program, which confers them apical and basal fate, respectively 

(Hacker et al., 2004; Wu et al., 2007; Breuninger et al., 2008). A wox2 single mutant and a wox8 

wox9 double mutant display defects in cell division patterns during embryonic development. These 

defects,  given the extremely  precise stereotypic  cell  division pattern program occurring during 

Arabidopsis  embryonic  development,  causes  lethality  of  the  mutants.  The  wox2  cell  division 

phenotypes occur with low penetrance only in the apical lineage. The combination of wox2 with 

mutations in other closely related WOX genes, such as WOX1, WOX3/PRS and WOX5, enhances the 

shoot patterning defect, indicating that several  WOX  genes act coordinately in shoot patterning. 

However, only in the absence of WOX2 activity do WOX1, WOX3/PRS and WOX5 become essential 

for normal development of the apical lineage, suggesting  WOX2  is the key  WOX  gene for shoot 

patterning  (Breuninger et al., 2008). wox8 wox9 double mutant combinations display aberrant cell 

division throughout the embryo from the 2-cell stage onward, consistent with the loss of  WOX2 

expression in the apical cell and with a broader auxin maxima (Wu ey al., 2007; Breuninger et al., 

2008). This indicates that  WOX8/9  are upstream of  WOX2  apical-lineage specific expression and 

are crucial to establish correct auxin maxima during Arabidopsis embryogenesis. 

Apart from Arabidopsis, expression of several WOX genes, among which also WOX2 and WOX9 
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homologs, has also been detected in maize, suggesting that  WOX genes might play a conserved 

role  in  angiosperm embryogenesis  (Nardmann  et  al.,  2007).  However,  this  work  also revealed 

major differences between mono- and dicotyledons, such as the absence of WOX1/6/7 relatives in 

grasses,  the  functional  duplication  of  the  WOX3 and  WOX5 sub-clades  and  different  WOX4 

ortholog expression in maize compared to Arabidopsis (Nardmann et al., 2007). Moreover, there 

are  also new data regarding  WOX genes  function in species  other the maize  and  Arabidopsis. 

Recently,  the Petunia  WOX9  ortholog  EVERGREEN  (EVG),  which plays a  key role in the correct 

development of the cymose inflorescence in Petunia, has been described (Rebocho et al. 2008). In 

addition,  the  characterization  of  a  WOX11-like mutant  in  rice  emphasizes  its  requirement  in 

promoting crown root development (Zhao et al., 2009). Therefore, it appears that the WOX gene 

family members are involved in key developmental aspects, often via promoting meristematic cell 

fate.  

Due to the several facets of plant development in which the WOX genes are involved, it would 

be intriguing to pursue further research on up the WOX gene family evolution during the evolution 

of  the  plant  kingdom.  In  this  respect,  a  second  aspect  of  this  dissertation  will  deal  with  the 

evolution of the WOX gene family, with particular regard to the lycophyte clade.

1.3 Lycophytes in the context of plant evolution

The first evidence of plant ancestors moving onto land dates back to the mid-Ordovician, some 

470 million years ago (mya).  The combination of a decay-resistant cell  wall,  which implies the 

presence of sporopollenin, and a tetrahedral cellular configuration, which entails haploid meiotic 

production, renders the spores found in mid-Ordovician fossil  records a good evidence for the 

appearance of land plants (Gray, 1993). 

But the plant kingdom has a much longer story. Embryophytes (Figure 1) are clearly descended 

from a green algal-like ancestor (Smith, 1950). The green algae lineage originated as much as 1500 

mya (Yoon et al., 2004), and the divergence of land plants likely occurred 490-425 mya (Sanderson, 

2003). The prasinophytes, which consist of primitive appearing unicells representative of early-
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divergent algal clades (Fawley et al., 2000), occupy the most basal position of the green algal tree 

of life and are viewed as the form of cell most closely representing the first green alga (Lewis and 

McCourt, 2004) (Figure 1).  Ostreococcus tauri  and  Micromonas pusilla, whose genomes recently 

have  been  fully  sequenced  and  annotated  (Palenik  et  al.,  2007;  Worden  et  al.,  2009),  are 

prasinophytes of the order Mamiellales. Thereafter, the green algae have evolved into two major 

lineages.  The chlorophyte clade,  which comprises the classes Chlorophyceae, Ulvophyceae and 

Trebouxiophyceae (Figure 1), includes the majority of what have been traditionally called green 
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algae;  the charophyte lineage contains a  smaller  number of  green algal  taxa as geographically 

widespread and as familiar as other green algae. Despite the antiquity of their shared common 

ancestor, ribosomal DNA and many plastid and mitocondrial genes are recognizable as homologues 

in green algae and land plants and identify the charophytes, and the Charophyceae class among 

them, as the algal sister group to land plants (Karol et al., 2001; Turmel et al., 2003) (Figure 1).

Paleobotanical studies on the earliest known fossil evidence of terrestrial colonization by plants 

suggest the first appearing flora were liverwort-like plants (reviewed by Kenrick and Crane, 1997). 

Indeed, a large scale molecular analysis on bryophyte relationships resolves the liverworts as the 

most basal  group among land plants,  and the hornworts as the most likely sister group of the 

vascular  plants  (Qiu  et  al.,  2006),  thus  rendering  the  bryophytes  (liverworts,  mosses  and 

hornworts)  as  a  paraphyletic  group (Figure  1)  that  probably  separated  from the  tracheophyte 

lineage over 420 mya, based on the fossil  record for the first traces of prototracheal  elements 

(Edwards and Feehan, 1980).

Thus, mosses and vascular plants share a common ancestor with a bryophyte-like life cycle. 

This  implies  that,  before  the  separation  of  the  lycophyte  and euphyllophite  lineages,  the  late 

Silurian/early  Devonian  flora  (420-400  mya)  must  have  undergone  a  gradual  shift  from  a 

gametophyte-dominant to sporophyte-dominant life cycle, which are characteristic of briophytes 

and vascular plants, respectively. Indeed, the extinct genera  Aglaophyton  and  Nothia, for which 

fossil evidence has been found in sediments dated back to early Devonian, had a diplohaplontic life 

cycle  in  which  the  sporophyte  no  longer  greew  parasitically  on  the  gametophyte  but  rather 

independently  from it  (Kenrick,  2000).  Therefore,  these  two extinct  genera  could  represent  a 

possible link between bryophytes and tracheophytes. The gametophyte of modern vascular plants 

is highly reduced but, interestingly, some basal groups such the licophyte family Lycopodiaceae 

and  the  monylophyte  family  Ophioglossaceae  retain  vestiges  of  the  diplohaplontic  life  cycle 

(Kenrick, 1994).

Once plants had reached the land, they had to face the lack of water of the new environment 

and possible desiccation stresses. Most bryophytes avoid it by restricting their habitat to moist 

environments, or by drying out and putting their metabolism into a quiescent state until  more 
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water is available. On the other side, to reduce water loss, tracheophytes developed a waterproof 

outer cuticle layer (as some bryophytes also do). Since a complete covering would isolate land 

plants from CO2 in the atmosphere, in turn they have been compelled to evolve structures to 

maintain  vital  gas  exchange,  the stomata (Kenrick  and Crane,  1997).  Furthermore,  in  order to 

supply their photosynthetic apparatus with water, the early plants were forced to develop systems 

to transport water from the moist soil to the site of photosynthesis. Therefore, specialized water 

transport tissues soon evolved in the form of hydroids, tracheids, then secondary xylem, followed 

by an endodermis and ultimately vessels (Sperry, 2003). All these innovations, together with the 

appearance of branching sporophytes (Crane et al., 2004), were acquired after the divergence of 

bryophytes from the higher plant lineage but before the lycophyte-euphyllophyte divergence.  

   Since  the extant  lycophytes,  although they  are  the result  of  approximately  400 mya of 

independent evolution, retain most of the features of the trachephyte ancestor, including simple 

bifurcating meristems and naked sporangia (Banks, 2009), the establishing of a lycophyte plant 

model organism could provide new insight into the evolution of the earliest vascular plants. To this 

purpose, the genome sizes of several species of lycophytes ware surveyed in order to find the most 

suitable  lycophyte  species  for  a  genome  assembly  project,  and  Selaginella  moellendorffii  was 

identified as the best candidate (Wang et al., 2005).

The  phylum  Lycopodiophyta,  which  includes  the  three  extant  classes  Lycopodiopsida, 

Isoetopsida and Selaginellopsida, constitute a monophyletic plant group (Raubeson and Jansen, 

1992; Duff  and Nickrent,  1999; Qiu  et al.,  2007).  They differ from the other vascular plants in 

having mycrophylls, namely leaves that have only a singular vascular trace and no leaf gaps, rather 

than the much more complex megaphylls found in ferns and seed plants. Although the KNOX-ARP 

antagonism is involved in euphyllophyte as well  as in lycophyte leaf formation (Harrison  et al., 

2005),  the  differences  in  vasculature  architecture  and  the  fossil  evidence  suggesting  that  the 

common ancestor of lycophytes and fern/seed plants clades lacked any leaves has led to the belief 

that leaves evolved independently in these two lineage and that the KNOX-ARP interaction has 

been recruited at least twice independently during land plant evolution (Kenrick and Crane, 1997; 

Harrison  et al., 2005). Similarly, the root is widely considered to have evolved independently in 
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lycophyte  and  euphyllophyte  lineages  (Raven  and  Edwards,  2001),  emphasizing  how  similar 

structural  adaptation for  terrestrialization and,  in the case of leaves, also conserved molecular 

strategies, have been recruited in several independent lineages in the course of plant evolution. 

Therefore, a comparative study of lycophytes and euphyllophytes could elucidate developmental 

mechanisms, such as those governing the formation of microphyll/megaphyll anlage, which were 

probably already present in their common ancestor more then 400 mya.

As mentioned above, S.moellendorffii was chosen among lycophytes by the DOE Joint Genome 

Institute for a genome assembly project (http://genome.jgi-psf.org/Selmo1/ Selmo1.home.html). 

S.moellendorffii has a genome size of only ~110Mbp, which is the smallest genome size of any 

plant  reported (Wang  et  al.,  2005),  with the exception of  two species in the  Lentibulariaceae 

(Greilhuber  et al.,  2006).  Unfortunately,  S.moellendorffii has several  unfavorable characteristics 

that  hinder  its  use  as  a  model  organism.  It  is  reported  that  cultivated  specimens  lack  sexual 

reproduction  due  to  megosporangia  abortion  (Little  et  al.,  2007).  Moreover,  S.moellendorffii  

appears to have extreme susceptibility to elevated light intensity that causes the plants to turn red 

and  enter  a  kind  of  quiescent  stage  (J.A.Banks,  Purdue  University,  Indiana;  personal 

communication). 

Although it has been picked among  Selaginella  species by the genome sequencing program 

mostly because of its extremely small genome size, S.moellendorffii  has neither been extensively 

used in molecular biology nor botanically characterized until recently (Banks, 2009). On the other 

hand, another Selaginellaceae species, S.kraussiana, has been the object of several recent studies, 

making  it  a  reliable  model  organism suitable  for  developmental  investigations.  Moreover,  the 

Selaginellaceae family comprises the single genus Selaginella, which in turn includes approximately 

700 different species (Banks, 2009). A molecular phylogentic study by Korall and Kenrick (2004) 

demonstrated that rates of molecular evolution among  Selaginella species are remarkably high 

compared with those of angiosperm families. The same authors also characterized in detail the 

phylogenetic relationship among Selaginellaceae, revealing S.moellendorffii and S.kraussiana to be 

relatively distantly (Korall and Kenrick, 2002). Therefore, the parallel study of S.moellendorffii and 

S.kraussiana would enable the use of molecular biology tools in order to investigate the WOX gene 
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family evolution in the case where they are not serviceable on S.moellendorffii, and simultaneously 

to uncover possible differences peculiar of one or the other Selaginella species.

1.4 Aims of the work

The  dissertation  will  focus  on  two  distinct  aspects,  shoot  apical  meristem  homeostasis  in 

monocots and the evolution of the WOX gene family.

In an attempt to elucidate further monocot SAM homeostasis, this work will take advantage of 

both molecular biology and a genetic approach. Phylogenetic tools were used to find the best 

putative candidates able to regulate the ZmWUS1 activity in the maize SAM, and the transcripts 

expression patterns were analyzed. In addition, data from a ZmWUS2 mutator insertion line will be 

also discussed.

The second part of the dissertation will address WOX gene family evolution, especially focused 

on the lycophyte genus Selaginella. The work is centered on the identification of WOX-like genes in 

both S.kraussiana and S.moellendorffii and their expression pattern characterization, together with 

a extended analysis of the WOX13-like sub-clade.
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MATERIALS AND METHODS

2.1 Molecular biology methods

All  standard  molecular  biology  methodologies  were  performed  following  the  respective 

manufacturer protocols.

• Genomic DNA purification: Macherey-Nagel NucleoSpin® Plant II

• DNA purification of PCR products from agarose: Macherey-Nagel Nucleospin® Extract II

• Plasmid DNA purification: Macherey-Nagel Nucleospin® Plasmid

• RNA purification: Peqlab PeqGOLD plant RNA kit

• cDNA synthesis: Invitrogen SuperScript™ III Reverse transcriptase, primed with oligo(dT)12-18 

or random primers (Invitrogen), always preceded by 15-45' DNAse I (Roche) digestion at  

37°, followed by 10' inactivation step at 70°

• RACE (Rapid Amplification cDNA ends): Ambion Inc. FirstChoice® RLM-RACE kit

• Genome Walking: BD Bioscience Universal GenomeWalker™ kit

• DNA fragment cloning: Invitrogen TOPO TA Cloning® with pCR®II-TOPO® following the One 

Shot® chemical transformation protocol in the E.coli DH5α® strain

2.2 Oligonucleotides and PCR conditions

All  PCRs  were  performed  using  TaKaRa  LA  Taq™ or  Invitrogen  recombinant  Taq  DNA 

polimarases, following the manufacturer protocols. The optimal primer (Sigma-Aldrich Co.) pair Tm 

were always determined via gradient-PCR.
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Name Sequence 5' → 3' Comments

GSS1877 Fw2 GGGGCTTTGCTACTTGCACC GRMZM2G072569 
In situ hybridization 

probe
GSS1877 Re2 GCTGATGAGATCTGGAGGCG

GSS2672 Fw2 GTACGAGTTCATGCCCAACG GRMZM2G141517 
In situ hybridization 

probe
GSS2672 Re3 CGCTTCAACAGATTCATCAGC

GSS1729 Fw2 CGTCAAGTCCAACAACATCC GRMZM2G043584 
In situ hybridization 

probe
GSS1729 Re3 CGCTTCACTCAAAGAACAGG

DGWox13 all+SelCD Fw CIKCICRISARMGITGGASRCC 

Degenerate primer PCR 
on S.kraussiana 

DGWox13 SelAEG Fw CIGKICRISARMGITGGGMRCC 

DGWox13 SelFH Fw CICCICRISARMGITGGYTNCC 

DGWox13 all Re GMICKIGRYYTRTTYTGRAACC 

DGWox13 Sel Re TCICKIGRYYTRTTYTGRAACC 

DGWox13 SelAG Re TCICKIGRYYTRTTIGSRAACC 

JN7 CARATICARCARATIACIGC 

JN9 TGGAAYCCIACIAARGAICA 

DGWox9 Fw1 CCIAARCCACGITGGAAYCC 

DGWox9 Fw2 CCIAARCCIAGRTGGAAYCC 

DGWox9 Re TTYTGRAACCARTARAAIACRTT 

DGWox3 Fw TGGTGYCCIACICCIGARGCA 

DGWox4 Fw1 GGIACIACICGITGGAAYCC 

DGWox4 Fw2 GGIACIACIAGRTGGAAYCC 

WHOM Re GCYTTRTGRTTYTGRAACCARTARAA 

JN8 TGGAAYCCIACICCIGAICA 

SkWOX13A Fw1 CAGAGGATCAAAGAGATAACC
SkWOX13A 3'RACE

SkWOX13A Fw2 CACGGGCAAATCTCCGAGACC

SkWOX13B Fw1 GACACAACTCAAGATTTTAGAGG
SkWOX13B 3'RACE

SkWOX13B Fw2 GATTTGGCTAAACACGGTCCC

SkWOX13C Fw1 GCAACGGATCAAGGAGATCG
SkWOX13C 3'RACE

SkWOX13C Fw2 TACGGCGAGATCTCCGAGGCG
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SkKNOX1 Fw CAGTAGCATGCCTCCTCACC
Positive control

SkKNOX1 Re CGTGGTAAGTCCCAATCTCC

SmWOX13A Fw1 GCCTCTACGACGTTGGAATGG
SmWOX13A 3'RACE

SmWOX13A Fw2 GCGAGTGCGAGAGATCACGGC

SmWOX13B Fw1 CCACCACAAGCCAACGTCGC
SmWOX13B 3'RACE

SmWOX13B Fw2 GGATCAAGGAGATCACGAGC

SmWOX13C Fw1 GGCTGTTCGAGGAGGAGGGC SmWOX13C 3'RACE

SmWOX13C Fw2 GCTCGCCAAGGTGATGTTACG

SmWOX13C Fw3 GGCTCGAGCCAAGCGCAAGC

SmH3 Fw ATTTCTCAATGGCGCGTACC
Positive control

SmH3 Re TTCGTGTCCTCGAAAAGACC

SmWOX13A Fw6 GATTTTGGGATCGTGATGAGC SmWOX13A RT-PCR and 
in situ hybridization probeSmWOX13A Re1 GTCTTAGTTCGAGAGGACGACC

SmWOX13B Fw3 CTCCCTCCTCCCAATCTTCC SmWOX13B RT-PCR and 
in situ hybridization probeSmWOX13B Re2 GCAACCGTGTAGCTTCCACC

SmWOX13C Fw5 CGAGAATGCGGAGCCTGAGG SmWOX13C RT-PCR and 
in situ hybridization probeSmWOX13C Re1 GATTTTTTGTTACCTTGTTGAGG

SelKra13A Re2 TTATCTCTTTGATCCTCTGCCTGTTTGG 

Genome Walking

SelKra13C Re3 TCTCGCCGTATTGGACCAAGTCGGTTGC 

SelKra13B Re3 CGTAATCTCACTCACTCTCCTCTTATTTGG 

SkWOX13A Fw5 CCAGTGCAATGTCCTGTGGC 

SkWOX13A Re3 GGCATGTGGGGTGTTCCCGC 

SkWOX13A Re4 CCTCATGTCATGGTAAGAACTTGG 

SkWOX13C Fw3 TGGTTAAAATGTGTCGTAATGTCG 

SkWOX13C Re4 CGTAGTTTCGGACTTCGTTTGG 

SkHD2probe Fw CTGTTCTCCTCCAGCTCTGC Positive control for in  
situ hybridizationSkHD2probe Re GGAAGCACTCGACTTTCTGC 

SkWOX13B Fw4 CTTACCATCCTCATTACGGC SKWOX13B in situ  
hybridization probeSkWOX13B Re1 CGAGAAGGACACAAAAGTTG 

SkWOX13A Fw6 CCCTCCCTCTCGCCTCTTGAGC SKWOX13A in situ  
hybridization probeSkWOX13A Re5 CGTCGATTGGAAAAAGCTGTCC
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SkWOX13C GWFw7 CTAGAACGGCTCTTCAAGCAGGGAACCG SKWOX13C in situ  
hybridization probeSkWOX13C Re1 GCTCTAGTATAGAACATCAGCCCC

AtWOX13 Fw2 CCAAATTAGGAACTAAAATAACCG WOX13 genotyping

AtWOX13 genFw CCCATTTGGACGTGAAGTAGACAC

AtWOX13 Re2 TCAATTACCCATACACCAAAGTGA

AtWOX13 Fw1 TTTACCTTTCCTTCTACTCCCG
WOX13 RT-PCR

AtWOX13 Re1 TCACAAGACGATTCAACAATCC

AtGAPDH Fw ATGGCCGGGACTGGATTGTTTGCTG Arabidopsis RT-PCR 
positive controlAtGAPDH Re CACGATTTCTGAGCTGATTTCGCCA

ZmWUS2 genFw GCAGATCAGGATGCTGAAGG
ZmWUS2 Mu insertion 

lines genotyping
ZmWUS2 genRe3 GGAAGAGAGGGAGTGTCTCG

ZmWUS2 Mu GCCTCCATTTCGTCGAATC

Wobbles: A+C+T+G N
A+G R
C+T Y
A+C M
T+G K
C+G S
Desoxyinosin I

2.3 Non-radioactive in situ hybridization

The freshly excised plant material is firstly infiltrated in 4% paraformaldehyde solution (in PBS + 

0.1% Tween-20) under vacuum for at least 20', and anyway until the specimens sink, and then 

fixated o/n in the same solution. The day after the specimens undergo a dehydration procedure, as 

following:

• 50% Ethanol, 90', in ice

• 70% Ethanol, 90', in ice

• 85% Ethanol, 90', 4°

• 90% Ethanol, 90', 4°

• 100% Ethanol + 0.1 Eosin Y, 90', 4°
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• 100% Ethanol + 0.1 Eosin Y, o/n, 4°

The following day is  used to wash the excess of  Eosin Y and to prepare  the specimen for 

paraffin embedding.

• 100% Ethanol, 90', 4°

• 100% Ethanol, 60', RT

• 50% Ethanol: 50% Rotihistol, 60', RT

• 3x 100% Rotihistol, 60', RT

• 50% Rotihistol: 50% melted Paraplast Plus® (Sigma-Aldrich), o/n, 50°

The specimen are kept in liquid Paraplast Plus® (60°) for the next three days, and old Paraplast 

Plus® is exchanged at least twice a day with new one.

After solidification, the specimen have been oriented as preferred and subsequently sectioned 

using a Leica RM 2145 microtome. The sections were 7 µm in thickness.

The sections were then deparraffinized, dehydrated and prepared for hybridization as follows:

• 100% Rotihistol, 10'

• 100% Rotihistol, 10'

• 100% Ethanol, 1'

• 100% Ethanol, 1'

• 95% Ethanol, 1'

• 85% Ethanol, 1'

• 50% Ethanol, 1'

• 30% Ethanol, 1'

• dH2O, 1'

• 0.2M HCl, 10'

• dH2O, 5'

• PBS, 5'

• Pronase (0.125mg/ml; Sigma-Aldrich), 10'

• 0.2M Glycine in PBS, 10'
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• PBS, 2'

• 4% Paraformaldehyde in PBS, 10'

• 2x PBS, 2'

• acetic anhydride (1ml in 100ml of 0.1M triethanolammine), 10'

• PBS, 2'

• rapid dehydration with consecutive and increasing ethanol concentration solutions

To prepare the antisense probe, the DNA fragment of interest cloned into the pCR®II-TOPO 

vector was linearized by a single cut opposite to the T7 or Sp6 promoter chosen for  the RNA 

polymerization.

• 8.5 µl H2O

• 2.5 µl 10x transcription buffer

• 1 µl RNAse inhibitor

• 2,5 µl 5mM ATP

• 2,5 µl 5mM CTP

• 2,5 µl 5mM GTP

• 2,5 µl 1mM DIG-UTP

• 2 µl linearized plasmid

• 1 µl T7/Sp6 RNA polymerase

• 37°, 60-120'

To stop the polymerization, were added 75 µl of TMS buffer (0.01M Tris-HCl, 0,01 M MgCl2, 

0,05 M NaCl), 2 µl of 100mg/ml tRNA, and 1 µl of DNAse I (10U/µl), for 10' at 37°. In order to 

precipitate the RNA, 100 µl of 3.8 M ammonium acetate and 600 µl of ethanol were added. After 

at least 60' at -20°, the RNA was precipitated by a centrifugation step (10' at 14000 rpm). The 

pellet was washed with ice cold 70% ethanol/0.15 M NaCl and subjected to a centrifugation step as 

above. The RNA pellet was the dissolved in 50 µl of DEPC-treated water.
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In order to facilitate the penetration of the DIG-labeled probe, the length of this was reduced 

to approximately 150 bases as follows:

• 1 vol of carbonate buffer (0,08 M NaHCO3, 0,12 Na2CO3) was added to labeled probe RNA

• the probe was then hydolyzed at 60° for t min, where:

t=
L0−L f
k⋅L0⋅L f

L0 = starting length of probe RNA (in kb)

Lf = desired length of probe RNA (in kb)

k = rate constant (0.11 kb/min)

t = hydrolysis time in min

After hydrolysis, the probe RNA was purified by addition of 10 µl of acetic acid, 12 µl of sodium 

acetate 3 M, and 312 µl of ethanol, and kept for at least 60' at -20°. Then RNA was pelleted by 

14000 rpm centrifugation for  10',  supernatant  was  discarded and pellet  resuspended in  50 µl 

DEPC-treated water. Previous to each hybridization, the probe RNA specific activity was always 

analyzed via dot blot.

Probe at desired concentration was added to 1 vol formamide such that the finale volume is 16 

µl for each slide, heated at 80° for 2', and immediately put on ice. 80 µl of hybridization buffer 

were then added to the denaturized probe and spread over the slide. The hybridization buffer for 

24 slides was prepared as follows:

• 200 µl of 10x salts solution (3M NaCl, 0,1M Tris-HCl pH 6.8, 0.1M PBS, 0.05M EDTA)

• 800 µl formamide

• 400 µl 50% dextran sulfate

• 20 µl 100mg/ml tRNA

• 40 µl 50x Denhardt's (2g BSA, 2g Ficoll, 2gg Polyvynilpyrrolidone in 100ml H2O)

• 140 µl H2O
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Every  slide  was  then covered  with  a  Sigma Hybri-slip,  put  in  a  humid  chamber,  and  then 

incubated o/n at 50°.

After hybridization, the excess of probe was eliminated by three washing (15', 60', 60') steps 

with warmed (50°)  2x SSC/50% formamide. To remove the unhybridized probe, a RNAse step was 

also included (20  µg/ml  RNAse  A  in  NTE  buffer;  0.5M NaCl,  0.01M Tris-HCl,  1µM EDTA).  The 

subsequent step were performed:

• 0.1M Tris-HCl pH 7.5, 0.15M NaCl, 0.5% Boehringer-blocking reagent, 60'

• 0.1M Tris-HCl pH 7.5, 0.15M NaCl, 1% BSA, 0.3% Triton X 100, 60'

• 0.1M Tris-HCl pH 7.5, 0.15M NaCl, 1% BSA, 0.3% Triton X 100, anti-DIG antibodies coupled 

with alkaline phosphatase 1:3000

• 0.1M Tris-HCl pH 7.5, 0.15M NaCl, 0.3% Triton X 100, 4x 20'

• 0.1M Tris-HCl pH 7.5, 0.15M NaCl, 5'

• 0.1M Tris-HCl pH 9.5, 0.1M NaCl, 0.05M MgCl2, 5'

• 0.1M  Tris-HCl  pH  9.5,  0.1M  NaCl,  0.05M  MgCl2,  1,5  µl  NBT  and  1,5  µl  BCIP,  10% 

polyvynilalcohol, up to 3 days in dark

The developing reaction with NBT/BCIP can last  up to three days and was stopped by two 

washing steps in water for 5'.

The slide were then mounted with Entellan® new (Merck) and inspected with Nomarsky (DIC) 

optics on a Zeiss Axioskop microscope and captured by a Zeiss Axiocam coupled with it. 
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3. CLAVATA1 orthologs in maize

In  contrast  to  Arabidopsis,  where  WUS  expression  is  tightly  linked  to  the  SAM Organizing 

Center (OC), none of the grass  WUS orthologs displays a stable OC-type expression domain but 

they are rather related to the specification of new phytomers (Nardmann and Werr, 2006).

The  difference  between  Arabidopsis and grass  WUS orthologs in  terms  of  transcription 

domains acquires more relevance when correlated to the TD1/FON1 expression pattern in maize 

and rice (Bommert et al., 2005; Suzaki et al., 2004). Both TD1 and FON1 are expressed at the flank 

of  the  meristem  in  cells  recruited  into  the  leaf  primordia,  overlapping  the  ZmWUS2/OsWUS 

transcription domains.  In contrast,  TD1/FON1 transcripts  are absent in the center  of  the SAM, 

where ZmWUS1 and OsWUS can be transiently detected. Therefore, the CLV1 orthologs TD1 and 

FON1 probably act to antagonize ZmWUS2 and OsWUS activity in leaf primordia cells, but not the 

ZmWUS1 and OsWUS activity observed in the SAM. The absence of  TD1 and FON1 expression in 

the center of the shoot apex leads to the question of how ZmWUS1 and OsWUS activity within the 

SAM is controlled.

3.1. Phylogenetic analysis 

Assuming that WUS function and expression is under the control of CLV1-dependent signaling, 

it becomes obvious to look for close CLV1 orthologs in maize other then TD1, supposing them to be 

the best putative candidates able to regulate ZmWUS1 activity.
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To estimate phylogenetic relationships between CLV1-related receptor-like kinases, a screening 

of four fully sequenced genome species databases other then maize, namely  A.thalana,  Populus 

trichocarpa,  O.sativa and  Sorghum bicolor,  have been performed. The ten best hits from each 

TBLASTN results for the kinase domain primary sequence of CLV1 (Arabidopsis and Poplar), FON1 

(Rice) and  TD1 (Maize and Sorghum), were taken into a first raw analysis.  The putative kinase 

domains were identified from those sequences by similarity with the known kinase domain. These 

kinase  domains  were  aligned  then  using  the  CLUSTALW2  algorithm 

(http://www.ebi.ac.uk/Tools/clustalw2/). Subsequently, the most distant results from CLV1 and its 

closest  orthologs  were  discarded.  In  order  to  strengthen  the  analysis,  the  phylogeny  was 

constructed with the remaining 26 sequences using three different algorithms, namely maximum 

likelyhood  (PHYLIP  version  3.6,  Felsenstein  2005),  maximum  parsimony  and  neighbor  joining 

(MEGA 4, Tamura et al, 2007). The resulting phylogenies from each of the three methods has been 

tested with 1000 bootstrap replicates. Because of the different environment in which leucine-rich 

repeats  (LRR)  and  kinase  domains  are  embedded,  and  due  to  the  different  functions  (ligand-

binding and phosphorylation) they perform (Hunter, 1995), these two distinct domains might have 

been  subjected  to  different  evolutionary  forces.  To  evaluate  this  eventuality,  the  same 

phylogenetic analysis described above has been performed on the LRR domains. 

This phylogenetic reconstruction enables the analysis of possible differences among dicots and 

monocots and within the Poaceae family, by the comparison of one Bambusoideae species (Rice) 

and two Panicoideae grasses (maize and sorghum). Furthermore, since the entire Z.mays genome 

sequence has been completed only recently, the annotation process has not been completed yet 

(http://maizesequence.org/version.html  -  Release  3a.50,  December  2008).  Therefore,  the 

evaluation  of  putative  Z.mays candidates  against  S.bicolor CLV1 orthologs  might  help  to more 

deeply  understand  the  phylogeny  and  to  discriminate  between  real  differences  and  any 

annotation-caused artifacts.
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The  resulting  phylogenetic  reconstruction,  inferred  by  the  neighbor  joining  algorithm  and 

based on the kinase domain (Figure 2A) and the LRR-domain (Figure 2B), is shown. In both trees, 

CLV1 groups together with its orthologs OsFON1 and ZmTD1, and one gene each of P.thricocarpa 

and S.bicolor, highlighting a discrete CLV1-related clade (dark-grey box in Figures 2A and B), as well 

as a clear split between eudicot and monocot sequences within the clade. Closer to the  CLV1-

related group, a sister clade comprising Arabidopsis BAM1 and BAM2 occurs in both phylogenetic 

trees (light-grey box in Figure 2A and B). Within this sub-family there are three different maize LRR-

kinases, which create three small monocot-only sub-clades comprising one ortholog each from rice 

and sorghum. The genes BAM1, BAM2 and a PtBAMlike group together in a fourth, eudicot specific 

sub-clade. Phylogenies constructed with maximum parsimony and maximum likelihood algorithms 

gave  rise  to  similar  trees  with  the  same  topology.  Furthermore,  in  all  trees  the  phylogenetic 

reconstruction  was  supported  by  high  bootstrap  values  (appendix  A,  Figures  I-V),  with  one 

exception.  When  the  estimation  of  the  kinase  domain  phylogeny  has  been  performed  with 

maximum likelihood algorithm, the genes GRMZM2G168603 (highlighted in red) and Sb04g000920 

(highlighted in orange), originally used to root the tree due to their large evolutionary distance 

from  CLV1 relatives, moved within  CLV1-like clade (Figure 2D, appendix A, Figure VI). This maize 

gene was not considered for  further studies because it  is  clear  that its  position close to  CLV1 

relatives  is  unlikely  to  be real:  (1)  the  bootstrap value that  should support  GRMZM2G168603 

positioning in the maximum likelihood tree is poor, (2) the alignment among the kinase domain of 

the 26 sequences included in the phylogenetic analysis  shows clearly those two genes to be the 

most divergent among all (Figure 2C) and (3) it has been reported that maximum likelihood can 

become  strongly  biased  and  statistically  inconsistent  when  the  rates  at  which  sequence  sites 

evolve change non-identically  over time (Kolaczkowski  and Thornton,  2004),  and probably this 

might have been the case.

In  light  of  this  findings,  it  can  be assumed that  the  proposed phylogenetic  reconstruction 

should give  the best approximation of  the evolution of  the closest  CLV1 orthologs  in the five 

species under analysis. The clear dichotomy present between mono- and eudicot genes within all 

the sub-clades, as well as the concurrence between the gene trees and the known evolutionary 

distance among the screened species, strengthens the trees' validity. Furthermore, the molecular 
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evolutionary situation with respect to the WUS/CLV interaction in mono- and eudicot suggests a 

monocot-specific way to regulate a monocot-specific gene, ZmWUS1. Within the BAMs sub-clade, 

indeed,  a  monophyletic  monocot-specific  duplication  has  been  reconstructed,  as  well  as  a 

paraphyletic outgroup including single rice, maize and sorghum sequences.

With  this  in  mind,  the  presented  phylogeny  identified  the  genes  GRMZM2G072569, 

GRMZM2G141517 and GRMZM2G043584 as the most likely candidates for further studies. Due to 

their closer phylogentic relationship to Arabidopsis BAM1/2 genes, these three maize genes will be 

renamed BAM-like Receptor-like (BLR) kinase 1, BLR2 and BLR3, respectively.

3.2. ZmBLR1, ZmBLR2 and ZmBLR3 gene structure

The predicted coding sequences of the genes ZmBLR1, ZmBLR2 and ZmBLR3 are aligned against 

their orthologs in rice and Arabidopsis, as well as CLV1, TD1 and FON1 (Figure 3). As expected, all 

these genes share common features. The leucine-rich repeat domain is found in the N-terminal 

region of  all  proteins,  and it  contains 21 or  22 imperfect  tandem repeats  of  a  24 amino acid 

leucine-rich  motif,  arranged  in  a  single  block  (in  contrast  to  the  arrangement  of  other  LRRs 

domains in 2 or more discontinuous blocks, i.e. CLV2, BRI1; review by Shiu and Bleecker, 2001), as 

for  CLV1 closest orthologs.  The consensus sequence that can be compiled from this alignment 

involves leucines at  positions 1,  4,  6,  11 and 15,  the latter  often substituted by an isoleucine 

residue, an asparagine at position 9, a glycine at position 13 and a proline at position 16. Thus, the 

common  consensus  sequence  among  the  LRR  can  be  schematically  drawn  as 

LxxLxLxxNxLxGxI/LPx7-9,  which  do  not  differ  from the one already annotated for  CLV1 (Zhang, 

1998). The LRR extracellular domains are flanked in all genes by pairs of highly conserved spaced 

cysteines (red asterisks) and followed by putative transmembrane domains (underscored in dark 

blue) and the C-terminal intracellular serine/threonine kinase domains (underscored in red). All 

these genes have a single intron located in a conserved position within the kinase domain (black 

arrowhead).
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3.3. ZmBLR1, ZmBLR2 and ZmBLR3 expression patterns

3.3.1.    Zm  BLR1     expression  is  associated  with  the  growing  region  of  leaf   

primordia

The predicted  ZmBLR1 transcript is  3880bp in length,  containing an open reading frame of 

3102bp, that includes a single 462bp intron and encodes for 1034 amino acid predicted protein 

(Figure 4A, http://maizesequence.org/index.html). This gene is positioned on chromosome 1. To 

analyze finely the expression pattern of this candidate gene, an in-situ hybridization analysis with a 

697bp specific probe designed against the carboxy-terminus sequence of the gene was performed 

(underscored in pale orange in fig. 3A). 

Expression of the maize CLV1 ortholog ZmBLR1 is mainly focused on the apical tip of the newly 

established leaf primordia, either the primordium is discretely distinguishable beside the SAM (P2) 

or  it  is  still  protruding from the SAM flank  (P1)  (Figure  4B).  In  older  leaf  primordia,  the  gene 

transcripts  are  detected  in  the  vascular  bundles  (Figure  4B),  but  just  inside  the  growing  leaf 

(arrowhead  in  Figure  4B).  A  further  clarification  of  the  pattern  is  provided  by  cross-sections, 

depicted in Figure 3 (C-I). The signal within the P2 is more intense at the very primordial tip (Figure 

4D-E),  while it  wanes deeper in the shoot meristem (Figure 4F-I).  Opposite to P2,  at  the same 

height the SAM is losing is typical circular shape, the staining label the outgrowing P1 (Figure 4G-I), 

partially overlapping the ZmWOX3A/B expression (Nardmann et al., 2007). Furthermore, another 

expression pattern feature is evident in transverse view. In older leaves, the ZmBLR1 transcripts are 

detected not only in the vascular strands, but in lateral leaf margins as well (dark-gray arrowhead 

in fig. 3D-F). Notably, the latter feature resembles the ZmNS1/2 expression pattern (Nardmann et  

al., 2004). Then, the gene ZmBLR1 expression is associated with the meristematic active regions of 

the leaf primordia and it partially overlaps the expression of the four WOX3 orthologs in maize, 

ZmNS1/2 and ZmWOX3A/B.
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However, these expression patterns highlight the absence of  ZmBLR1 transcripts within the 

SAM, where  ZmWUS1 is  transcribed, leaving open the main question about the presence of a 

putative CLV1 ortholog able to regulate ZmWUS1 function.
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3.3.2.   Zm  BLR2     expression is associated with procambial cells  

The predicted gene ZmBLR2 is located on chromosome 7 and its mRNA is 3722bp in length. It 

codes  for  a  predicted protein  of  1037 amino acids,  split  by  a  single  257bp intron (Figure  5A, 

http://maizesequence.org/index.html).  As for  ZmBLR1,  the expression pattern of  the candidate 

gene  ZmBLR2  was analyzed via  in-situ hybridization with a 727bp specific probe against the C-

terminal region of the coding sequence (underscored in pale orange in Figure 5A).

From the in situ pictures depicted in Figures 4B and C, a transverse section at the height of P1 

anlage and a lateral median section respectively, it is easy to associate the expression pattern of 

ZmBLR2 with the typical monocot vascular system architecture, made up of parallel veins lying 

along the leaf proximodistal axis.  The expression pattern of gene  ZmBLR2 becomes more clear 

when singular vascular bundles are inspected. In Figures 5D-F are depicted vascular bundles stages 

I,  III  and  IV  (according  to  Sakaguchi  and  Fukuda,  2008).  In  its  early  developmental  stage, 

procambial cells differentiate in the middle layer of the leaf ground tissue. The bundle outermost 

cells  immediately  form the  circular  layer  that,  eventually,  differentiates  into the  final  vascular 

bundle sheet (Stage I, Figure 5D). Subsequently, a primary protoxylem vessel and phloem cells are 

juxtaposed at the adaxial and abaxial sides, respectively. After the primary protoxylem vessel has 

differentiated, an adjacent cell acquires the protoxylematic fate (Stage III, Figure 5E). Later, two 

metaxylem vessels start to differentiate to the side of to the protoxylem elements (Stage IV, Figure 

5F). Finally, protoxylem vessels collapse in the protoxylem lacuna, the vascular bundle sheet cells 

enlarge remarkably,  and the differentiation of the vascular bundle is complete. During vascular 

bundle  development,  the  procambial  cells  proliferate  in  the  middle  cell  layer  (Sakaguchi  and 

Fukuda, 2008). Bearing in mind the developmental stage of monocot vascular bundles (insets in 

Figure 5D-F) and comparing those with the expression patterns show by in situ hybridization with 

the  ZmBLR2 specific  probe,  the  correlation  between  ZmBLR2 expression  and  procambial  cells 

becomes clear.

33



CLAVATA1 ORTHOLOGS IN MAIZE

Unfortunately, as for  ZmBLR1,  ZmBLR2 expression is excluded from the SAM, thus ruling out 

the hypothesis that this gene might be a potential regulator of ZmWUS1 activity.

3.3.3.   ZmBLR3   is expressed in primary thickening meristems  

The gene ZmBLR3 is located on chromosome 1. After splicing of the single 559bp intron, the 

mature  transcript  is  translated  into  a  1002  amino  acid  predicted  protein  (Figure  6A, 

http://maizesequence.org/index.html). As for its close relatives,  in situ  hybridization analysis on 
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this gene has been performed using a 674 bp probe complementary to the end of the coding 

sequence, including part of the 3’ UTR (underscored in pale orange in Figure 6A). 

In lateral view, the ZmBLR3 transcripts are detectable just beneath the SAM dome and in the 

most  recently  formed leaf  primordium,  but  they are  excluded from the SAM dome itself.  the 

expression pattern then extends in a pyramid-like fashion that follows the insertion points of each 

leaf primordium on the stem (Figure 6B). In consecutive transverse sections, the expression of the 

gene  is  detectable  in  the  ground  tissue  of  the  newly  detached  leaf  primordia  (Figure  6C-E) 

whereas,  going deep in the meristem, the expression pattern acquires a  doughnut-like  shape, 

leaving a hole in expression where eventually the pith will form (Figure 6G-I). Moreover, the in situ 

hybridization staining never includes the most epidermal cell layers and shows some round gaps 

within the expression domain, which probably coincide with the vascular strands growing toward 

the leaf primordia (Figure 6I). 

Interestingly,  ZmBLR3 marks regions of the shoot meristem that will be responsible, later in 

development,  for  the growth in thickness of the plant.  As a monocot,  in maize the thickening 

growth does not depend on the secondary meristem activity but rather on a monocot peculiar 

primary  meristem,  the  primary  thickening  meristem  (PTM).  Indeed,  according  to  Esau  (1965, 

Figure 6J), the PTM is located beneath the leaf primordia. It produces rows of cells by periclinal 

divisions and its derivatives differentiate into ground parenchymatic cells traversed by procambial 

strands.  Therefore,  the  PMT  features  described  by  Esau  correspond  almost  entirely  with  the 

expression patterns shown by ZmBLR3.

As for the ZmBLR1 and ZmBLR2 expression patterns described above,  ZmBLR3 transcripts are 

excluded from the SAM, where ZmWUS1 is expressed. In summary, although each of the candidate 

genes identified by the proposed phylogenetic analysis has a clear and distinct expression pattern, 

probably  correlated  with  cell  types  which  keep  meristematic  activity,  none  of  them  overlap 

ZmWUS1’s expression domain.
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3.3.4.   Zm  BLR1  ,   Zm  BLR2   and   Zm  BLR3   expression in root  

Since AtBAM1/2 are expressed also in roots (DeYoung et al. 2006), the expression of the three 

candidate genes in maize primary root was investigated as well in order to complete the data set 

about their expression patterns during the vegetative phase. 

The  three  genes  under  study  show  different  expression  patterns.  ZmBLR1 has  a  peak  of 

expression  over  the  entire  quiescent  center  and  the  calyptrogen  (compare  Figure  7B  and  F), 

whereas a less intense signal is observed within the stele (Figure 7C and F). Although in lateral 

sections ZmBLR2 is expressed in the 4-5 outermost stele cell layers, corresponding to those which 

will develop into phloematic tissue (fig. 6G), in fact in transverse section the gene expression is 

excluded from the most central part of the stele, where the wider protoxylem vessels reside, and it 
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is non-continuous through the pericycle and its subtending cell layers (Figure 7D and its inset). This 

particular  expression pattern probably  prefigures  the future  phloem arches.  The expression of 

ZmBLR3 starts just above the quiescent center and is strong in the endoderm and pericycle cell 

layers  (Figure  7E  and H).  Notably,  the  primary  thickening  meristem is  not  restricted to  above 

ground meristem but  has  importance in roots  as  well,  where  it  is  known to cooperate in the 

production of a vascular network peripheral  to the central  cylinder, linking root,  stem and leaf 

vasculature  (Rudall,  1991).  Moreover,  a  study  on  A.cepa positioned the PTM in  root  between 

cortex and central  cylinder (DeMason,  1980),  and a more recent work identified pericycle and 

endoderm cell  layers as the source of meristematic activity involved in the monocotyledonous 

growth in thickness (De Menezes et al. 2005), the same region where ZmBLR3 expression has been 

found in maize roots. Additionally, De Menezes and co-authors believe that the endodermis could 

maintain  PTM  identity  in  stem  and  leaves,  mainly  in  the  innermost  ground  layer,  where  the 

expression of gene ZmBLR3 is found (Figure 6). Thus, ZmBLR3 might mark the PTM in roots as well 

as in shoots.
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4. ZmWUS2 insertion line

In order to better understand the SAM homeostasis in maize, a genetic approach was also 

followed. The Maize Target Mutagenesis DataBase (http://mtm.cshl.org/), which is a Robertson's 

Mu transposon insertions library stabilized by the using of a genetic inhibitor of Mu activity (May 

et al. 2003), was screened for transposon insertions in the maize genes WUS1 and WUS2, and an 

insertion  line  for  the  latter  was  present.  The  obtained lines,  termed MTM 48148,  48240  and 

48242, all carry a single Mu insertion in the gene ZmWUS2. By sequence analysis, the three lines 

have  Mu  inserted in the same position, more precisely 284bp downstream to the gene's start 

codon, only 5bp after the homeodomain (Figure 8A).

The  plants  homozygote  for  the  Mu insertion  were  apparently  non  phenotypic  and  their 

vegetative growth was not impaired, as well as their reproduction phase. Just in recent in-depth 

screening of possible phenotypes caused by the Mu insertion an interesting alteration was noticed. 

A wild-typic developing maize ear (Figure 8B) is characterized by a smooth apical inflorescence 

meristem (IM in Figure 8B), which produces several rows of short, determinate branches, termed 

spikelet-pair meristems (SPM in fugure 8B), which in turn divide to develop two spikelet meristems 

(SMs in Figure 8B) that further develop in the maize female flowers (Kiessekbach, 1949; Volbrecht 

et al, 2005). In  ZmWUS2  insertion lines, the inflorescence meristem appears bifurcated, split at 

least  into  two  major,  equally  growing  branches  that  are  still  apparently  capable  to  produce 

spikelet-pair  meristems  and  spikelet  meristems  (Figure  8C  and  D).  Interestingly,  ZmWUS2  is 

expressed predominantly in the L1 layer of the IM where it appears to have a unique contribution 

(Nardmann and Werr, 2006).
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Due to the peculiarity of the phenotype, and its very recent discovery, only a small population, 

namely 19 individuals, could be analyzed prior to phenotype loss due to ear maturation. All three 

analyzed  homozygote  plants  for  the  Mu insertion  in  the  gene  ZmWUS2  had this  female 

inflorescence specific phenotype, whereas it was never observed in the remaining 16 wild-typic 

and  heterozygotic  plants.  Obviously,  this  phenotypic  data  needs  to  be  reinforced  by  a  wider 

population analysis. Anyway, the fact that three homozygote plants out of three bears altered ear 

inflorescence meristem is a good indication that the  Mu insertion in the gene  ZmWUS2  is  the 

cause of the observed phenotype.
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5. Evolution of the WOX Gene Family 

The WOX gene family is involved in several plant developmental processes. These roles might 

be carried out via timing and orientation control of cell division planes, as demonstrated by the 

abnormal  apical  embryo development observed in the  wox2  mutant (Brueninger  et al.,  2008), 

through the control of cell cycle, as suggested by the WOX9/STIP mutant analysis in embryonic and 

adult tissues (Wu et al., 2005; Wu et al., 2007), or through interaction with auxins, as indicated by 

altered auxin maxima in wox8 wox9 embryos (Breuninger et al., 2008) or by the direct interaction 

of WUSCHEL with WSIP/TOPLESS (Kieffer et al., 2006), which plays a crucial role in mediating the 

inhibitory effect of IAA12/BDL  on ARF5/MP-regulated transcription (Szemenyei et al., 2008).  

Since the implication of WOX genes in a broad spectrum of developmental decisions is clear, it 

is intriguing to investigate the origin and evolution of this gene family. The recent completion of 

the  sequencing  projects  of  the  moss  Physcomitrella  patens  (Rensing  at  al.,  2008)  and  the 

Lycophyte Selaginella moellendorffii (http://genome.jgi-psf.org/Selmo1/Selmo1.home.html), which 

belong to the most basal plant kingdom divisions, have given a solid starting point to pursue this 

project further. Due to the breadth of the overall project, this study will focus on the evolution of 

the WOX gene family in two Selaginella species and initial characterization of possible Arabidopsis  

WOX13 mutants.

5.1. Identification of the most basal WOX clade

After  BLASTing  the  first-released  versions  of  both  P.patens  and  S.moellendorffii  genome 

databases using the highly conserved  WOX homeodomain, it became clear that the most basal 
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WOX clade corresponds with the  WOX13 branch. The evolutionary relationship among the WOX 

gene family, comprising all the known and putative genes discovered so far, was inferred by the 

comparison of 122 known and predicted homeodomain sequences. It shows three distinct clades 

(Figure  9):  (1)  a  modern  clade,  grouping  together  the  WUSCHEL  homologs  genes  from 

spermatophyte species and their closest orthologs WOX1/2/3/4/5/6; (2) a WOX9-like group which 

includes two S.moellendorffii predicted genes as well as angiosperm and gymnosperm genes that, 

in addition to the homeodomain, share a C-terminal conserved domain of unknown function; a 

clade including  WOX-like genes from both  P.patens  and  S.moellendorffii,  as  well  as  the unique 

42



RESULTS

WOX genes found in the genomes of the unicellular algae  Ostreococcus tauri  and  Micromonas 

pusilla, grouped together with spermatophyte WOX13-like genes. 

The screening of the S.moellendorffii genomic database helped identify the sequences of nine 

putative WOX homeodomains. However, one of the supposed WOX genes in the WOX9-like clade, 

initially named WOXB, cannot be considered as a WOX gene. Indeed, although the genomic data 

suggest a putative homeodomain, this gene's transcript lacks a stretch of amino acids within the 

homeodomain that putatively encodes for the first homeodomain  α-helix, as supported by both 

EST and RT-PCR data. Obviously, the lack of that helix would irremediably affect the functionality of 

the homeodomain itself. Therefore, the gene SmWOXB has been excluded from the phylogenetic 

analysis. In absence of WOXB, the phylogenetic algorithms move the other S.moellendorffii WOX9 

related gene into the WOX13 clade. This gene was then named SmWOX13C and has been further 

studied along with SmWOX13A and B.

5.2. The WOX13-like Genes in S.moellendorffii and S.kraussiana

In contrast to S.moellendorffii, there are little or no genomic data available for  S.kraussiana. 

Therefore, the potential WOX-like genes were first identified via degenerate primer PCR. Using the 

S.moellendorffii homeodomain sequences as templates, and comparing those to the known WOX 

genes,  the  most  conserved  sequences  that  could  be  used  as  anchor  points  within  the 

homeodomain were determined to design degenerate primers to survey the S.kraussiana genome. 

None of the primer combinations specific to the  WOX modern clade members or  WOX9  group 

produced  positive  results.  Similarly,  only  non-specific  amplicons  were  obtained  with  all  the 

possible  combinations  of  two  forward  and  three  reverse  primers  specific  for  the  predicted 

S.moellendorffii  outgroup  genes.  In  contrast,  the  WOX13 and  the  S.moellendorffii  WOX13-like 

specific  primers  amplified  three  putative  homeodomains.  This  suggests  that,  as  for 

S.moellendorffii, in the  S.kraussiana genome, and thus probably even among all Selaginellaceae, 

only  WOX13-like  genes  are  present.  On  the  other  hand,  if  the  expansion  of  WOX-like  genes 

observed in  S.moellendorffii,  which gave rise to a specific  S.moellendorffii  outgroup,  would be 

43



EVOLUTION OF THE WOX GENE FAMILY 

present  in  S.kraussiana as  well,  then  it  might  be  so  divergent  as  to  be  undetectable  by  a 

degenerate primer PCR strategy based upon S.moellendorffii sequences.

The phylogeny of the WOX13 clade, based on the homeodomain sequences as well as on the 

whole  coding  sequence  (reported  in  appendix  B),  is  shown  in  Figure  10.  In  both  trees,  the 

dichotomy between basal land plant/algae species and angiosperms is clearly distinguishable, as is 

the distinct separation within angiosperms between mono- and eudicotiledonous species. On the 

other hand, the evolution of  WOX genes within  Selaginella  (yellow and orange colored in Figure 

10) is less clear from the trees, which never show a discrete  Selaginella clade. Moreover, clades 
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that include Selaginella genes are often supported by low bootstrap values, reflecting uncertainty 

in their positions.

5.3. WOX13-like genes share unique features among the WOX gene 

family

A deeper WOX13 clade analysis revealed two evolutionarily conserved motifs present in all the 

WOX13-like genes annotated so far, in addition to highly conserved homeodomain (Figure 11). A 

domain  enriched  in  acidic  residues  (dark  blue  in  Figure  11),  conserved  in  P.patens  and  in 

angiosperms but not in three  Selaginella  genes (S.moellendorffi WOX13A,  S.kraussiana WOX13A 

and  B) or the genes  AtWOX10/14, lies right after the homeodomain. A second highly conserved 

motif (in red in Figure 11), present in almost all WOX13-like genes, was identified in the first exon, 

which also has a conserved glycine that marks the first intron splicing site (arrowhead in Figure 

11B). Conserved domains other then the homeodomain are quite uncommon among the  WOX 

gene family members. All the known genes belonging to the WOX9 sub-clade have a moderately 

conserved C-terminal domain (Hacker et al., 2004; Deveaux et al., 2008) but it is not as conserved 

as the WOX13 N-terminal domain. All  WOX genes apart from WOX13 share a short stretch of six 

amino acids, the WUSCHEL-box (Hacker et al., 2004). All closer WUS relatives also have an EAR-like 

domain composed of 6-8 residues at the C-terminus. Thus, the domains observed in the WOX13-

like genes are specific to and characterize this WOX gene family  clade.
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According to protein secondary structure prediction algorithms, the amino-terminal domain 

should fold  as  an  amphipathic  single  helix  or  perhaps  as  a  coiled  coil  domain.  Four  different 

algorithms, namely DSC (King and Stemberg, 1996), MLRC (Guermeur et al., 1999), PHD (Rost and 
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Sander, 1993) and PREDATOR (Frishman and Argos, 1996), predict with high probability that the 

amino-terminal  domain  primary  sequence  folds  in  a  helix  (compare  Figure  12A  and  B).  This 

putative  helix  might  have  an  amphipathic  nature  due  to  the  arrangement  of  the  amino  acid 

residues around the typical α-helix fold (Figure 12D). Furthermore, the program COILS (Lupas et al., 

1991) hypothesizes the amino terminal domain to be capable of folding as a coiled coil with more 
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than 70% probability (compare Figure 12 A to C). Therefore, the conserved amino-terminal domain 

possibly folds in a discrete three-dimensional structure never found in any known WOX gene other 

then WOX13s, which suggests the potential to establish specific protein-protein interactions.

5.4. WOX gene expression patterns in S.kraussiana

Different functional contributions of the S.kraussiana WOX genes became more clear after in  

situ hybridization  analysis  (Figure  13).  Longitudinal  sections  of  the  S.kraussiana SAM  shows 

SkWOX13A transcripts in the outgrowing microphylls primordia (black arrowheads in Figure 13A) 

and the meristem flanks (red arrowheads),  probably marking the merophytes of the outer two 

distal-most cells of SAM (Lyndon, 1998; Harrison  et al., 2007). Differently, when similar sections 

were screened for peaks of expression, SkWOX13A transcripts were found at the very apical tip of 

the minor shoot SAM (Figure 13B), where the apical initials should be (Harrison et al., 2007). The 

staining was  detectable  only  in  three sections  of  the  series,  marking that  specific  minor  SAM 

initial(s)  but  not  the  initials  of  the  other  two  visible  meristems  (appendix  Figure  VII).  This 

SkWOX13A  expression pattern was seen twice overall,  probably reflecting a  very  dynamic and 

transient expression and therefore hard to detect. Moreover, this staining was particularly intense 

and required a short staining-development reaction time to be detected, which was possibly not 

long enough for the enzymatic reaction to fully reproduce the pattern observed in Figure 13A, thus 

explaining why the previous SkWOX13A expression pattern is not visible in Figure 13B. 

Similar to its expression pattern in the SAM, the  SkWOX13A  expression pattern observed in 

median diagonal-longitudinal  section of  a developing strobilus coincides with the younger and 

incipient sporophylls primordia and the meristem flanks (Figure 13C, black and red arrowheads, 

respectively).  Moreover,  during  the reproductive  phase,  SkWOX13A expression  was detectable 

from the very early microsporangia developmental stages in both the tapetum and sporogenous 

mass as well as in the ligule (definitions according to Horner and Beltz, 1970), whereas later the 

expression is confined just to the tapetum.
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In contrast to SkWOX13A,  SkWOX13B signal was never detected during vegetative stages but 

exclusively  in  strobili.  During  the  reproductive  phase,  the  SkWOX13B  gene  appears  to  be 

transcribed solely in the very young stage of microsporangia development but not later,  when 

differentiated  tissues  within  the  microsporangia,  as  sporogenous  mass  and  tapetum,  can  be 

distinctly  visible  (Figure  13D).  SkWOX13B  expression  is  high  in  the  most  recently  formed 

microsporangia  and  detectable  also  in  the  slight  bulge  protruding  at  the  axil  of  a  sporophyll 

primordium, which is the position where sporangia usually are established (arrowhead in Figure 

13D). Moreover, a small group of cells stained on the flank of the meristem, possibly marking the 

future, and not yet histologically visible, sporangium primorda (arrow in Figure 13D).
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In  situ  hybridization  with  a  SkWOX13C specific  probe  yielded  a  mesophyll-associated 

expression pattern. As depicted in Figure 13E, the most distal portion of the shoot apical meristem 

is free of staining, whereas weak staining is detectable in the younger microphyll primordia. In the 

older expanding microphylls,  SkWOX13C transcripts are never found in both adaxial and abaxial 

epidermis but only in the mesophyll (inset in Figure 13E). No signal could be detected when in situ 

hybridization was performed on strobili sections.

5.5. WOX gene expression patterns in S.moellendorffii

The  S.moellendorffii  WOX  genes appear to behave similarly to their  S.kraussiana  orthologs. 

Diagonal-longitudinal sections of the  S.moellendorffii  SAM hybridized with a  SmWOX13A specific 

probe show expression of the gene in young microphyll primordia (black arrowheads in Figure 14A) 

and both lateral sides of the meristem (red arrowheads in Figure 14A), as for SkWOX13A (compare 

to Figure 13A). Likewise, SmWOX13A in situ hybridization on diagonal sections cut through strobili 

stains in developing sporangia, sporophylls and ligules (Figure 14B), and a better in-plane view of 

the strobilus apex shows the transcripts detected also in the earlier stages of development of both 

sporangia and sporophylls, besides a clear signal marking the flank of the meristem (inset in Figure 
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14B).  Thus,  the  expression  pattern  of  SmWOX13A resembles  that  observed  for  its  close 

S.kraussiana ortholog SkWOX13A. 

Although several attempts to obtain distinct expression patterns of the genes SmWOX13B and 

SmWOX13C were performed, none of them produced reliable patterns. Therefore the expression 

of these genes has been addressed via reverse transcriptase PCR.

RT-PCR  analysis  on  SmWOXs indicates  some  possible  analogies  with  their  S.kraussiana 

orthologs (Figure 14C). Indeed, the expression of  SkWOX13B was never found in vegetative SAM 

and,  similarly,  SkWOX13B  is  expressed  just  in  strobili  (Figure  13D).  Likewise,  expression  of 

SkWOX13C was never detectable in strobili and  SmWOX13C RT-PCR also shows no expression of 

the S.moellendorffii ortholog in strobili. 

Therefore,  the three  S.moellendorffii  WOX13-like genes probably share common expression 

patterns, and possibly the related function(s), with their S.kraussiana counterparts.
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6. AtWOX13 insertion line

 In Arabidopsis the WOX13 gene is encoded by the locus At4g35550. In order to understand the 

putative function(s) of WOX13-like genes, a screening for mutated alleles of the At4g35550 locus 

was performed. According to the TAIR website (www.arabidopsis.org) and the NCBI database, the 

GABI-Kat line 922B03 should carry a T-DNA insertion in the  WOX13 5'UTR, 7bp in front of the 

translation start codon. In fact, the sequence of the genotyping amplicon positioned the T-DNA 

insertion upstream of the annotated site by 176bp, 43bp before the supposed transcription start, 

therefore situated within the predicted core promoter of the gene (Figure 15A). Moreover, the T-

DNA insertion caused a 23bp deletion. Thus, although the insertion is outside the transcript, the T-

DNA could affect the WOX13 transcriptional process. To evaluate whether the T-DNA insertion may 

compromise the expression of WOX13 even if located inside the promoter instead of directly affect 

the  transcript  itself,  inflorescences  of  homozygote  plants  were  screened  for  the  presence  of 
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WOX13  transcripts  (Devaux  et  al.,  2008).  Unfortunately,  it  appeared  that  although  the  T-DNA 

insertion  should  affect  the  supposed  core  promoter  sequence,  the  expression  of  WOX13  is 

maintained in plants homozygote for the insertion (Figure 15B), which might also explain the lack 

of  phenotype  observed  in  the  line  922B03  compared to  published  wox13  mutant  phenotype 

(Devaux et al., 2008).

53



DISCUSSION

DISCUSSION

7.1.  The  CLAVATA1 phylogeny  identifies  three  LRR  receptor-like 

kinases closely related to TD1 in maize

To find the best candidate that might be able to control  ZmWUS1 activity in the SAM, the 

phylogeny of the closest  CLAVATA1 orthologs was reconstructed, taking advantage of four fully 

sequenced and annotated genomes, that could be compared with maize. The recent achievement 

of  the  complete  sequencing  of  the  maize  genome  does  not  substantially  alter  the  initial 

phylogenetic inference, except for the disappearance of a putative gene closely similar to ZmBLR1.  

Thus,  although  the  newest  maize  genome  release  slightly  modified  the  entry  sequences,  the 

topology of the phylogenetic tree did not differ from that obtained previously.

In order to strengthen the phylogenetic reconstruction, the evolutionary relationship among 

the CLV1 relatives was inferred with three different algorithms: neighbor joining, which relies on 

the  genetic  distance  between  the  analyzed  sequences,  namely  the  fraction  of  mismatches  at 

aligned  positions  (Saitou  and  Nei,  1987);  maximum  parsimony,  that  calculates  the  potential 

phylogenetic tree with the smallest total number of evolutionary events needed to explain the 

observed  sequence  data;  and  maximum  likelihood,  which  uses  standard  statistical  techniques 

coupled with a specific substitution model to assess the probability of a particular mutation, which 

evaluates the probability of  possible phylogentic  trees.  All  these methods have different weak 

points in inferring phylogenies. Neighbor joining is a greedy algorithm, that is the algorithm makes 

the local optimal choice at each stage with the hope to eventually find the global optimum, but 

54



DISCUSSION

this do not assure neighbor joining will certainly find the true tree topology (Gascuel and Steel, 

2006).  Maximum  parsimony  is  instead  prone  to  “long  branch  attraction”  (Felsenstein,  1978), 

whereas maximum likelihood becomes statistically inconsistent and converges to the wrong tree as 

the  amount  of  data  grows  when  heteretachous  genes  are  analyzed,  that  is  the  functional 

constrains  on  sites  in  a  gene  sequence  changes  through  time,  causing  shifts  in  site-specific 

evolutionary rates (Philippe and Lopez, 2001; Kolaczkowski and Thornton, 2004).

Although  these  differences  between  the  phylogenetic  algorithms  used,  the  phylogenies 

inferred by the three methods are highly similar overall and identical for the  CLV1 clade and its 

sister clade (appendix figure 1-6), with the exception of the tree inferred by maximum likelihood 

for the kinase domain data set. In this case, the sorghum gene Sb04g000920 and the maize model 

gene  GRMZM2G168603  switch from their position at the base of the tree to a sister branch of 

monocot  CLV1 orthologs (Figure 2D and appendix Figure VI). The poor bootstrap value and the 

marked divergence between these gene sequences and the rest of the kinase domains data set 

support the idea that the phylogenetic reconstruction from the maximum likelihood method was 

erroneous.

Interestingly, when the phylogeny was inferred from the LRRs domains data set, the topology 

of the trees did not vary considerably compared to those obtained from the analysis of kinase 

domains.  Although  the  gene  distances  computed  are  often  higher,  most  likely  reflecting  less 

conservation  in  the  LRRs  domain  compared  to  the  kinase  domain,  the  topology  of  the  trees 

identifies  in  both  cases  distinct  CLV1-like  and  BAM1/2-like  clades,  and  within  the  latter  three 

different sub-groups. Thus, the extracellular LRRs domain and the cytoplasmatic serine/threonine 

kinase domain probably co-evolved,  even if  at  different rates,  although they are embedded in 

distinct cellular compartments and they have to carry out different functions.

Within the BAM1/2 clade, several sub-clades are clearly distinguishable: a eudicot-specific sub-

clade comprising the  P.trichocarpa BAM-like  gene and  AtBAM1/2, its monophyletic sub-clade in 

which a monocot specific duplication occurred during evolution, and finally a monocot-specific 

outgroup. Three different maize genes sit within this clade and were chosen for further study in 
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order to evaluate whether a strong candidate could be found among them that is able to regulate 

ZmWUS1 activity within the maize meristem.

7.2.  None  of  the  closest  CLAVATA1 orthologs  appears  able  to 

regulate ZmWUS1 activity

As  expression  in  a  pattern similar  to  ZmWUS1 would  be suggestive  of  a  role  in  ZmWUS1 

regulation, the expression patterns of the three candidates genes ZmBLR1,  ZmBLR2 and  ZmBLR3 

were determined. Unfortunately,  none of  the candidates has  transcript  expression in the SAM 

dome as ZmWUS1.

ZmBLR1 is expressed mostly in the apical tip of young leaf primordia and in lateral domains of 

older leaves. In comparison, Arabidopsis BAM1 and BAM2 are widely expressed, with strong signal 

detected on the  meristem's  flanks,  in  a  pattern that  excludes  and surrounds  CLV1 expression 

(DeYoung  et al., 2006). Interestingly,  TD1 transcripts were detected in leaf primordia and leaves 

(Bommert  et  al.,  2005),  like  ZmBLR1,  whereas  CLV1 expression  is  found  in  SAM L3  layer, 

surrounding and overlapping the organizing center (Clark  et al., 1997). Then, BAMs expression is 

centrifugal compared to CLV1 and, similarly, ZmBLR1 gene is expressed centrifugal compared to the 

TD1 expression pattern, possibly highlighting once more the different concept of organizing center 

in  monocots  versus  dicots.  Although the  ZmBLR1  expression  might  overlap  with  ZmWOX3A/B 

expression in young leaf primordia (Nardmann et al., 2007) and with ZmNS1/2 expression in the 

lateral domain of leaves (Nardmann et al., 2004), there is no further support for this speculation, 

neither from BAM expression patterns that are unclear except for anthers (Hord et al., 2006), nor 

for  WOX3  patterns  in  Arabidopsis  that  appear  to  be  expressed  only  in  lateral  leaf  domains 

(Matsumoto and Okada, 2001).

As can be inferred by the phylogeny shown in Figure 2, the gene ZmBLR2 is a monocot specific 

duplication and its transcription is strictly correlated to procambial cells in vascular bundles (Figure 

5). Putative LRR-RLK proteins are required for differentiation events during vascular development 

(Clay and Nelson, 2002) and to regulate the correct cell division plane in order to achieve the exact 
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xylem and phloem positioning (Fisher and Turner, 2007). Several studies have also implicated CLE 

peptides in vascular development (reviewed by Fukuda et al., 2007). Thus, LRR-RLKs play a role in 

vascular development, and together with the strong correlation between ZmBLR2 expression and 

developing vascular bundles, it suggest that this gene might have a role in vascular development. 

The monocotyledonous vascular tissue arrangement gives rise to closed collateral bundles, which 

lack the stable cambium activity that allows secondary growth. This is in contrast to open collateral 

bundles, typical of eudicot species, which maintain cambium seasonal activity. Since procambial 

cells within monocot vascular strands do not share a common fate with their dicot counterparts, it 

might be that in maize the gene  ZmBLR2  has a role in defining this  monocot-specific vascular 

tissue. 

The CLV1 phylogeny positioned the gene ZmBLR3, and its closest rice and sorghum orthologs, 

in  a  branch  that  includes  only  monocotyledonous  genes,  and  the  ZmBLR3 expression  pattern 

supports  this  inference.  Indeed,  the  particular  expression  detected by  in  situ  hybridization  on 

maize shoot and root overlaps almost perfectly with the supposed primary thickening meristems 

(PTM) position. In this respect, the meristematic identity of all the tissue marked by TD1 and its 

closest orthologs in maize seems to be a common feature. Thus, the phylogeny supports a link for 

ZmBLR3  to  a  monocot-exclusive  meristem,  as  PTM  is,  and  on  the  other  hand  the  expression 

pattern of ZmBLR3 corroborates the grouping of this gene in a monocot-specific branch.

In summary, unfortunately none of the screened candidates show an expression domain that 

might overlap with  ZmWUS1  expression. So, is there a gene able to regulate  ZmWUS1 activity? 

And, if it does, which might this be?

CORYNE is  a  recently  characterized gene that  encodes  a  receptor  kinase involved in  shoot 

meristem  homeostasis  (Müller  et  al.,  2008).  Mutation  in  CRN phenocopies  CLAVATA mutant 

phenotypes and the genetic interaction between CRN and CLAVATA genes, together with the highly 

similar phenotypes of CLAVATA2 and CORYNE, led Müller and colleagues to postulate two parallel 

CLV3-perceiving pathways involving separately  CLV1 and  CLV2/CRN, the latter as a heterodimer. 

The root phenotype of sol2 mutant, which was later found to be a CORYNE allele, may support this 

theory (Miwa  et al.,  2008).  This mutant was isolated in a screen for suppressors of short  root 
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phenotype in transgenic plants constitutively overexpressing the  CLE19 gene, which is known to 

trigger the root meristem consumption through a CLV2-dependent pathway (Fiers et al. 2005). sol2 

mutant displays a very similar spectrum of sensitivity to  CLE peptides when compared to  clv2, 

whereas  clv1-4 and  clv1-6 mutations,  which are  a  CLV1 dominant-negative  and a weak allele, 

respectively,  display poor or  no root response to  CLE peptide treatment, suggesting functional 

similarities between CLAVATA2 and SOL2, and functional distinctions from CLAVATA1, in both root 

and  shoot  meristem  maintenance.  Moreover,  the  additive  effect,  rather  then  an  epistatic 

relationship, found in  td1/fea2 double mutants (Bommert  et al., 2004), further corroborates the 

assumption of separate but parallel pathways in shoot and inflorescence meristem homeostasis, 

also in monocotyledons. Therefore, a possible next attempt to isolate the putative regulator of 

ZmWUS1 activity should follow these new assumptions and screen for the closest maize CORYNE 

orthologs.

The phenotype observed in the ZmWUS2 Mu insertion line emphasizes another aspect of the 

WUSCHEL-CLAVATA antagonism  in  monocots  compared  to  dicots.  Indeed,  mutations  affecting 

either WUS or one of the three CLV genes in Arabidopsis lead to both vegetative and reproductive 

meristem defects (Clark  et  al., 1993; Clark  et  al., 1995; Laux  et al., 1996; Jeong  et al., 1999). In 

contrast, the described mutant td1 and fea2 of maize and fon1, fon2 and fon4 of rice show severe 

defects exclusively during reproductive phase, with only slightly increase in size of the vegetative 

meristem (Taguchi-Shiobara et al., 2001; Bommert et al, 2004; Suzaki et al., 2004; Chu et al., 2006; 

Moon et al., 2006; Suzaki et al., 2006). In this respect, the ZmWUS2 insertion line described do not 

show any visible defect during the vegetative stages, but consistently with td1 mutation, only the 

apical inflorescence meristem appears affected. Therefore, the ZmWUS2 mutant corroborates the 

assumption that  WUSCHEL  and  CLAVATA  interaction in monocots affects predominantly the ear 

development and only marginally the vegetative growth.  

The maize  CLAVATA1  orthologs identified and characterized for  transcript expression in this 

work deserve further study. Firstly, the phylogenetic relationship among CLAVATA1 closest relatives 

shows expansion  of  BAM-like  relatives  in  monocotyledonous  species  that  could correlate  with 
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developmental features typical of monocots. In this respect, investigation of possible phenotypes 

caused by mutations in these genes might help to understand the different evolutionary events 

that shaped extant monocotyledons. Secondly, both phylogeny and expression analysis highlight 

unique  features  of  each  gene,  suggesting  limited  functional  redundancy.  Finally,  the  ZmBLR3 

expression pattern is clearly related to meristematic tissue involved in monocotyledons primary 

thickening growth. A recent publication by Kashiwagi  et al.  (2008) demonstrates how, in rice, the 

stem diameter is potentially the most interesting target for increase lodging resistance. Lodging is 

the permanent displacement of cereal shoots from an upright position (Pinthus, 1973). It affects all 

cereals worldwide and causes a large reduction in grain yield (up to 80%) and quality (Fischer and 

Stapper,  1987;  Easson  et  al.,  1993).  Due  to  its  strict  correlation  with  the  primary  thickening 

meristem, mutants  analysis  of  the  gene  ZmBLR3 could  identify a  possible  target  for  increased 

lodging resistance breeding programs in cereals.

7.3. The WOX gene family ancestor was a WOX13-like gene

Embedded  inside  a  wider  project  devoted  to  the  investigation  of  the  WOX  gene  family 

evolution,  this  study  has  analyzed  the  lycophyte  scenario.  The  complete  annotation  of  the 

S.moellendorffi genome and the more extensive use of S.kraussiana as a molecular biology model 

organism were the basis which this study could be built on.  

The evolutionary relationship among the homeodomains of the  WOX  gene family members 

showed the unique presence of the bryophyte P.patens and unicellular algae O.tauri and M.pusilla  

WOX-like genes in the WOX13 clade. This clade also includes most of the S.moellendorffii WOX-like 

genes. Five S.moellendorffii WOX-like genes group together defining a sister clade to WOX13-like 

genes. Although the loss of other  WOX-like genes cannot be excluded, this finding identifies the 

WOX13-like group as the common ancestor of the whole WOX gene family.

The Mamiellales O.tauri and M.pusilla genomes annotations each contains one WOX-like gene. 

The order Mamiellales (prasinophyte) diverged very early in evolution from the chlorophyte clade, 

one of the two major lineage of  green algae, whereas the second,  named charophytes,  is  the 
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lineage that leads to land plants (Lewis and McCourt, 2004). Therefore, the common ancestor of 

prasinophytes and embryophytes must be traced back to the very base of algae phylogeny. Then, 

since  both  prasinophyte  and  embryophyte  genomes  have  at  least  one  WOX-like  gene,  it  is 

reasonable to suppose that their common ancestor, and thus the common ancestor of the plant 

kingdom as a whole, had at least one WOX-like gene.

Of the three known WOX-like genes present in the P.patens genome, PpWOXC transcripts were 

never found, thus supporting the idea that PpWOXC could be a pseudogene (Deveaux et al., 2008). 

PpWOXA  and  PpWOXB  are probably products of the genome duplication event which the moss 

P.patens underwent between 30 and 60 mya (Rensing et al., 2007), an inference supported by the 

high degree of sequence identity between PpWOXA and  PpWOXB that spreads throughout their 

entire coding sequence, rising to 92% (Reisewitz, unpublished data). Thus, probably the bryophyte 

lineage had a single WOX-like gene, like the sequenced genomes of prasinophytes. Therefore, it is 

probable that the most basal plant and algal lineages, as well as their common ancestor, had a 

unique WOX-like gene.

Going  from  bryophytes  toward  lycophytes,  the  WOX gene  family  possibly  underwent  an 

expansion from one to three different WOX13-like genes, or even more. In contrast to P.patens, in 

both S.moellendorffii and S.kraussiana, WOX13-like genes show limited sequence similarity outside 

of the three conserved domains, a common feature of all known WOX13 genes. The expansion in 

WOX gene number observed in the lycophyte lineage may be explained as the starting point of a 

gradual evolution toward the variety seen in the spermatophyte's  WOX modern clade, or by an 

independent  evolution  of  the  lycophyte  lineage  itself.  The  phylogenetic  reconstruction  of  the 

WOX13  subfamily  does  not  help  to  clarify  the  relationship  between  Selaginella and 

P.patens/O.tauri  WOX13,  since  none  of  the  Selaginella WOX13s  forms  a  sister  clade  to  the 

spermatophyte,  in  contrast  to  the  species  phylogeny.  Rather  they  are  located  within  various 

basally-branching  groups,  along  with  basal  plant  species  in  the  reconstructed  trees.  This  may 

suggest  that  Selaginella  WOX13-like  genes  have  evolutionary  distance  comparable  to 

P.patens/O.tauri  WOX13  genes when  compared  to  spermatophyte  relatives.  Besides,  the 

homeodomain,  the  acidic  domain and the amino-terminal  domain  are  WOX13  peculiar  motifs 
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always present in all WOX13, from the bryophyte P.patens to the eurosid Arabidopsis. Interestingly, 

the  genes  SkWOX13C  and  SmWOX13C,  the  only  ones  which  have  the  acidic  domain  besides 

SmWOX13A, lack the characteristic first exon and thereby miss the amino-terminal domain. On the 

other hand, both SmWOX13B and SkWOX13B have only the amino-terminal domain but they lack 

the acidic domain. Thus, during the evolution of the Selaginella lineage, the WOX genes probably 

have been duplicated, releasing evolutionary pressure and thereby permitting subfunctionalization 

of the amino-terminal and acidic domains between different genes, as happened in S.kraussiana 

and just partially in  S.moellendorffii.   In this respect, probably the expansion of the  WOX  genes 

observed in  Selaginella  results from 400 million years of independent and fast evolution of the 

lycophyte lineage, already demonstrated by Koral and Kenrick (2004), rather then depending on 

the gradual evolution of the WOX family in the direction of the WOX gene complexity observed in 

spermatophytes.

This suggests that tracheophytes common ancestor probably still had a single  WOX-like gene 

and therefore that the expansion of the  WOX gene family occurred later during euphyllophytes 

evolution, thus after the separation of the lycophyte lineage from the seed plant-leading lineage. 

Consistently, other transcription factors families showed a strong increase in gene number after 

the lycophytes-euphyllophytes divergence.  In angiosperms,  PEPB (phosphatydylethanolammine-

binding) proteins,  such as  FLOWERING LOCUS T  and  TERMINAL FLOWER 1,  are involved in the 

control of shoot meristem identity and flowering time (Bradley et al., 1997; Ohshima et al., 1997; 

Kardailsky  et al.,  1999; Kobayashi  et al.,  1999),  and form a highly conserved small gene family 

composed by six different genes in  Arabidopsis, that can be sub-grouped in three distinct clades 

(Kobayashi  et  al.,  1999).  A  deep  phylogenetic  analysis  involving  P.patens  and  S.moellendorffii  

revealed that the whole family derives from the duplication of a single clade, which likely occurred 

after the lycophytes divergence (Hedman  et al., 2009). A similar evolution pattern was followed 

also by the KNOX (Harrison et al., 2005; Sakakibara et al., 2008), HDIII-ZIP (Floyd et al., 2006) and 

DOF  (Moreno-Risueno  et al., 2007) gene families, which all show an expansion in gene number 

from basal to higher plant that starts after the separation of the lycophyte lineage. Therefore, the 

postulated WOX gene family onset of expansion during euphyllophytes evolution, but still limited 
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prior  to  tracheophytes  appearance,  seems to  be a  common evolutionary  process  followed by 

several plant transcription factor gene families.

7.4.  Selaginella  WOX  expression  patterns  have  been  conserved 

during Selaginellaceae evolution 

Although the expression pattern data on S.moellendorffii are incomplete, RT-PCR data obtained 

on different tissues suggest a conserved expression, and possibly function, of the three WOX genes 

present in both analyzed species. 

SmWOX13A and SkWOX13A appear to be expressed broadly. Their expression patterns always 

occur  in  cells  supposed  to  be  still  in  an  undifferentiated  and  active  cell  division  state,  as 

merophytes,  early  microphyll  primordia  and,  sole  of  the  reproductive  phase,  the  sporangia 

primordia from very early stages. In this respect, the strict correlation with meristematic cells is a 

common feature that  SmWOX13A and  SkWOX13A  share with the  WOX  modern clade members. 

Interestingly, a peak of  SkWOX13A  expression can be detected in a single apical cell of a minor 

branching SAM, probably in a dynamic and transient fashion. This expression could be related to 

the new establishment of the minor branching SAM, which depends on a single initial in contrast 

to the two initials sitting on the very tip of the major SAM (Harrison  et al., 2007). A hypothesis 

could be that this transient signal confers to the single marked cell the ability to divide, producing a 

daughter  cell  with  initial  fate  to  re-establish  the  usual  number  of  SAM initials  in  S.kraussina. 

Alternatively,  the transient expression of  SkWOX13A  might  mark the cell  that  will  acquire  the 

initials cell fate among all the cell field on the SAM distal portion. In any case,  SmWOX13A  and 

SkWOX13A do not appear to be constantly expressed in all SAM initials. 

RT-PCR demonstrated that  SmWOX13B is transcribed only in strobili.  Similarly,  SkWOX13B  is 

expressed only in the very early stages of sporangia anlage, possibly even before the sporangia is 

hystologically visible.  SmWOX13B and SkWOX13B demonstrate a clear subfunctionalization when 

compared to  SmWOX13A  and  SkWOX13A.  Moreover,  although the lack of functional  data, it  is 
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reasonable  to  speculate  over  SmWOX13B  and  SkWOX13B  function  as  directly  involved  in 

sporangial cell fate. Thus, these two closer homologs appears to share similar expression domains 

strongly related to sexual reproduction. 

SkWOX13C is  distinctly expressed in the mesophyll  cell  layer within the microphylls but no 

expression has been detected in strobili. Equally, RT-PCR data show expression of  SmWOX13C in 

root and shoot, but not in strobili. Interestingly, SkWOX13C does not have the N-terminal domain 

and its expression pattern does not coincide with actively dividing cells. Therefore, possibly the 

coiled-coil amino-terminal domain could be linked to the meristematic activity. As an alternative, 

as  both  SmWOX13B and  SkWOX13B  carry  just  the  amino-terminus,  whereas  SmWOX13C  and 

SkWOX13C homologs hold only the acidic domain, it could be possible that the amino-terminus 

and acidic domains have crucial function during reproductive and vegetative stages, respectively. 

Moreover,  those  functions  could  be  separated  over  different  genes  as  happened  during  the 

Selaginellaceae evolution.

Therefore, the three  WOX  genes present in both  Selaginella genomes analyzed have distinct 

expression patterns, often associated with developing organs where cell division occurs. Moreover, 

these expression domains appear to be conserved between the two species, indicating that their 

common ancestor probably already had three WOX genes with distinctive expression patterns and, 

possibly, functions.

This  study  on  the  lycophytes  S.moellendorffii  and  S.kraussiana further  substantiated  the 

hypothesis that the WOX13 clade is the most basal among the WOX gene family and the only WOX 

gene  present  in  basal  land  plants,  bryophytes  and  lycophytes.  Fossil  records  show  how  the 

common ancestor of euphyllophytes and lycophytes was a small and morphologically simple plant, 

with  terminal  sporangia  and  without  leaves  or  roots  (reviewed  by  Kenrick  and  Crane,  1997). 

Probably,  this extinct  plant group already held a  WOX-like gene prior to the divergence of the 

lycophyte and euphyllophyte lineages more then 400 million years ago.  Therefore,  in order to 
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follow  up  the  WOX  gene  family  evolution  to  better  understand  the  implications  for  plant 

developmental processes, it would be useful to study early euphyllophytes plants, such as ferns.

The  presence  of  two  distinct  highly  conserved  domains  besides  the  homeodomain  in  all 

WOX13 relatives,  prompts  the idea of  a  crucial  function for  them in a  highly  conserved plant 

process, common from the moss P.patens and to the most evolved mono- and eudicots. Moreover, 

the nature of these two domains, namely the putative coiled-coil and the acid domain, suggests a 

possible  protein-protein  interaction  for  WOX13s.  In  this  respect,  a  yeast  two-hybrid  screening 

would be the best tool to attempt to find whether interaction partner(s) do exist and what could 

they be.

Further  study  to  improve  our  knowledge  about  the  WOX  gene  family  would  help  us  in 

understanding,  at  least  in  part,  the  evolution  of  the  plant  kingdom and development  of  land 

plants, to whom all of us owe the Earth as we know it and our life.
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APPENDIX B: SEQUENCES

S.kraussiana WOX13A

• genomic locus  
tttaaaacgacctagctgcccctagagctgtttatggtaatagtttaaccggtgacacgtttagcaattctgtgttgtttacattatga
taatgtaaaaaaaaacgaaagaaacttgatcattcagcttctaatagaaatcgaagcgggaatacatttttcaggcgttctcgtcc
ttggcctcagtggctccttcctcctgcacattacaacacagaatgggcgtgtcagtgctatggagtgaacacagtacctgcatgtcc
gaggtccagagagtgagattgtcacgcaggagctgcatgatgagcgtgctgtccttgtaagactcctcaccgatggtgtccaactc
cgcgatcgcttcatcgaacgcctgcaatcgtaaaaatgagctgcaaagctgacacaaaacggacctgcttggcaaggctgcatgc
ccggtccggcgagttgaggatctcgtagtaaaacacggagaagttgagggcaagacccaggcggatggggtgcgtcggtgccag
ctccaccagtgcaatgtcctgtggcccagataaccatggtttatcaaagaacttcaatgttaacctgggcggacttgtatgcaacga
gggtgctctcggcggcctctttgcgttcagcgcccgtcttgaactccgccaagtagcggtggtaatcgcccttcattttgaggtagaa
cacgcgcgactcgcccgctggggccgatggcacgaggtgggcgtcgagcaggttgaggatgccggcgcagatggtggatagctc
cgactcaatccggccacggtactcccggatcatcgccacatgctcctcgtttcccttgctctcctcctcctgctcgatcgaggagacg
atcctccacgacgcccgccgcgccccgatcacgttcttgtacgccacggagagcaggttgcgctcctccacgctgagaccctccct
ggagcccgtcactaccttctccatgtactccaccatctcgtcgtagcgctctncccgctcggccagcttcgccatgtacacgctctctt
ccctcgtcatgttcaccgccgtcgccgccatggaaacactcactcaattagggcccgaggagtgagaatatacccgggcacattct
catcccggcacgagaatattggtgggtatattcctagctcggctcgccgttgagccgggaaaggcaacatttttttcttttccggggc
ccgtttggtcattccccttggtgcgcacgcacacgcgcgcacgggcgctgccgnttcgatccgcagtcgcgggaacaccccacatg
cccccacacatgcaccttatattcctcctctcgCCCTCCCTCTCGCCTCTTGAGCATGGTCGGCGCCTCATGAGC
TTTCGATCATATGGAACACTTGAGCATCCCGCAGCACCAGCTTCAGTTCGAGGACCGTGTCTTCGA
CGATGCTTCCTGGATTCATCAACAGCAACATCAGGCGCCAGTGGCCGAGCATCTGCTGGTCATGA
CTGAGGAGCAACTGGAGACTTTGAGAAGGCAAATCTCCGTCTATGCAACAATCTGTCAGCAGCT
GGCGGAGCAGCAGAAAGCCACGCTGAACGAGCAGCACCTCCAGCAACAGCAGCAGCATTGCTTC
TTCAATggtacatacatctctgcggtcacgcccaggcctcgcattttttgttttctttgcatgactgaaGCTGCAGGACTTCA
CGATCCAAGAGCCACTATCATGATGCACAAGTCGAGTTCAAGGCAGCGATGGACGCCCAGCCAG
AACCAGCTGCATATCCTTGAGCGCCTCTTCAAGCAAGGCAACGGTACTCCAAACAGGCAGAGGA
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TCAAAGAGATAACCTCCGAGCTGAGCCAGCACGGGCAAATCTCCGAGACCAACGTTTACAACTG
GTTCCAGAACCGGAAGGCCCGTGCCAAGAGGAAACAGAGGCACTTGGTTAGCTCTGCAGCTCAA
CTACAACAGCAGCAGCAGAAACAGCTTAAGCACACCGAGGCCGAATGCAGTTCTCCAAACGGCA
ACAGCAAGTCGAGGTTCAGTGAAGAACTCGAAGGCTCTTCCTCCGAaggtaagtgccttataatggtatcg
gattgtacaaaatgcatatatatgcacttcAGTGAGTCCGCAACAACAGCAATACTCGGTTGTTGTCTACAAT
GGCAAGGCTTGGAAGGTGAAACCCGGAAGACTGAACGTATGGAGCAACTTTGGTGACAAAGCA
ACACTGCTTGATCCGAGAGGACAGCTTTTTCCAATCGACGagtgtggtatgacttgccagcctctgcagccggg
tgcagcctatactgttgccgggtataagacatacttgcatgctaagcgttaagctgatactcttgtccctttgacttgttgttacagta
ccggcctcagcgatggcacattggattgtgcgtgttaacattgtcaaggcctcatgcaatggtatgtacgcaaccttggcaagtcca
aatgtgtcatttaaaccacttacttggagatagtgcagtcatatcacaaaccaagagccctttccagtttctgtatttggttcaagaa
aatccaagtcatctgaaagacccacacttgaaacctgaattcctggccaagttcttaccatgacatgaggagctatccgtatacag
tacgttccgaatccagtatacaacttgaaaggcccgtgcttccgaattgtttggatggcacaatctagagaacctgaatacggatat
ttgccatcagctcccggctgcatcttttgtatttgagtcttgacataatcgaagggaaggctgcatgcagacgcaaagaatccgga
aacagcactggcacctgcatagagccaggacccgtacttatgctgtacaagtccgcacctatcacggtttgcacctcgggcaagtt
gagcgactctctaaagaactctaggctctgatcgtaggacgcgagcatccccatattaagagccattgcacgcacaacagtcggt
ccagcacctttccaaagggccaaaactccctcgtctttggttattctgtagagtgcatgcaaagcgtttctgtagttcctcctctgtgc
agcaggtaatagagcatcggcttgcattctgatgagagctaaatcggcgggacttccgacagtcgccccgatagcaccagctg

• partial mRNA  
ccctccctctcgcctcttgagcatggtcggcgcctcatgagctttcgatcatatggaacacttgagcatcccgcagcaccagcttca
gttcgaggaccgtgtcttcgacgatgcttcctggattcatcaacagcaacatcaggcgccagtggccgagcatctgctggtcatga
ctgaggagcaactggagactttgagaaggcaaatctccgtctatgcaacaatctgtcagcagctggcggagcagcagaaagcca
cgctgaacgagcagcacctccagcaacagcagcagcattgcttcttcaatgctgcaggacttcacgatccaagagccactatcat
gatgcacaagtcgagttcaaggcagcgatggacgcccagccagaaccagctgcatatccttgagcgcctcttcaagcaaggcaa
cggtactccaaacaggcagaggatcaaagagataacctccgagctgagccagcacgggcaaatctccgagaccaacgtttacaa
ctggttccagaaccggaaggcccgtgccaagaggaaacagaggcacttggttagctctgcagctcaactacaacagcagcagca
gaaacagcttaagcacaccgaggccgaatgcagttctccaaacgacaacagcaagtcgaggttcagtgaagaactcgaaggctc
ttcctccgaagtgagtccgcaacaacagcaatactcggttgttgtctacaatggcaaggcttggaaggtgaaacccggaagactg
aacgtatggagcaactttggtgacaaagcaccactgcttgatccgagaggacagctttttccaatcgacg

• predicted protein  
MEHLSIPQHQLQFEDRVFDDASWIHQQQHQAPVAEHLLVMTEEQLETLRRQISVYATICQQLAEQQK
ATLNEQHLQQQQQHCFFNAAGLHDPRATIMMHKSSSRQRWTPSQNQLHILERLFKQGNGTPNRQRI
KEITSELSQHGQISETNVYNWFQNRKARAKRKQRHLVSSAAQLQQQQQKQLKHTEAECSSPNGNSKS
RFSEELEGSSSEVSPQQQQYSVVVYNGKAWKVKPGRLNVWSNFGDKATLLDPRGQLFPID
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S.kraussiana WOX13B

• genomic locus  
tttaaattttaagtaacaagtgttgagatgtataaaatgctacgaacagcgtagaactgtatagacaatgtaattattgttggatac
aaataacgatacgttaaaccgtatcatctatcgatctatcgtaattcttcaagaagttgctatgtaggcgcgggattagtggattga
taattgctcaaagtcaatcttagaatatttctccggaaaaaataaattgcgccggaggtggcatctttctggcattttcatatttctat
tcaatcacttgcacggcaagcaggctcgttgttgttgtaagcacgacgctgagcatcaatctcccgcgcacattcctcgcgattcct
cgcagtgacgcttccaggttcgaaaagatttccctcaagaagttcaatcaatcgcaacgtacgttacagatttcagagtcgtgtttg
ttctacaaaattaattagatcattgggtgtttttagatgatccctATGGAAACAGGGACGACGAGTTCTTCCTCATC
AGATGTAAATCCGCAGCTGATTGATCCAGATTCAAGCCTAGAGCGGCCAGCTTACCATCCTCATT
ACGGCGTGGTTATCACCCCCTACCAACTCCAACTCCTCAGGGATCAAATTGCAAGCTATGCAACCA
TCTGTTTGAAGCTGATAGACATGCACAAAGCATTGGTCAATGGTTACCATGGTAGTACCAATGGT
AACACCGAGGTTAACCATGGTAGGGTCCCTTACAACAACATGAGTGATGATCAGATGAGTGAAC
TTGAACGTGAAGGTGAACATGATCAAGGAAGGGTGATTAGCAGGAAGAAAAACTTGGTTAGTG
GTAGTGGTAATGGTAATCTAACCAAAGCAGGTACGACTAGGCACAGATGGACTCCAACTCAGAC
ACAACTCAAGATTTTAGAGGATTTATTTGGGGTTCATGGTATGAATAATACTCCAAATAAGAGGA
GAGTGAGTGAGATTACGGCAGATTTGGCTAAACACGGTCCCATTTCTGAGTCTAATGTCTCCAAC
TGGTTCCAGAATCGTAAGGCCAGGTATAGGCGACTCTTGAGGTCTTGAATTGATCAAATGAGCCA
ATGGACATTCCATAGTTTTTGTGTTTGTTTATACGTTTTTCTCTTTGATGAAAACAACTTTTGTGTCC
TTCTCGAC

• partial mRNA  
atggaaacagggacgacgagttcttcctcatcagatgtaaatccgcagctgattgatccagattcaagcctagagcggccagctta
ccatcctcattacggcgtggttatcaccccctaccaactccaactcctcagggatcaaattgcaagctatgcaaccatctgtttgaa
gctgatagacatgcacaaagcattggtcaatggttaccatggtagtaccaatggtaacaccgaggttaaccatggtagggtccctt
acaacaacatgagtgatgatcagatgagtgaacttgaacgtgaaggtgaacatgatcaaggaagggtgattagcaggaagaaa
aacttggttagtggtagtggtaatggtaatctaaccaaagcaggtacgactaggcacagatggactccaactcagacacaactca
agattttagaggatttatttggggttcatggtatgaataatactccaaataagaggagagtgagtgagattacggcagatttggct
aaacacggtcccatttctgagtctaatgtctccaactggttccagaatcgtaaggccaggtataggcgactcttgaggtcttgaatt
gatcaaatgagccaatggacattccatagtttttgtgtttgtttatacgtttttctctttgatgaaaacaacttttgtgtccttctcgac

• predicted protein  
METGTTSSSSSDVNPQLIDPDSSLERPAYHPHYGVVITPYQLQLLRDQIASYATICLKLIDMHKALVNGYH
GSTNGNTEVNHGRVPYNNMSDDQMSELEREGEHDQGRVISRKKNLVSGSGNGNLTKAGTTRHRWT
PTQTQLKILEDLFGVHGMNNTPNKRRVSEITADLAKHGPISESNVSNWFQNRKARYRRLLRS
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S.kraussiana WOX13C

• genomic locus  
• cagctggaagctgtcgcatggctgtacaatcacagtatacgagacgtatacacgacgctggttagctatactggtga

agatttctgcaagaagctgtccattctacgtagcagcctttcgcagtgcttgtccgagggacagggttgcatgaaccg
ggttgtgagggcctgtgatacggtggtaccatcggttgatggtgagcaatcggtttccagagtcgcggtactgctgttc
agttcgtctcggaaggattgcctcatcgttagaagcctggtgaccaaaatggtatggtcgcttgtggaagtggacgttg
gtaatggtgatggtaacgacgtcctggacgctgggttggacgctgtacacaaacatacaggtaacttggttaagcca
gtcgttaaacgtagttaaatgtaaactttggttaaaatgtgtcgtaatgtcgttaatgtagtagttaaacgtcgttaaagta
gtagttaaaagtctttaaactgccgtgttggttgttaagtagttaagcgtcttcgaacttatttaaatgtcgtttttatttagtag
ttaaaagtctttaaactaggtagttaaaccagttaaacgtcattgaacgaatctgaatgttcttcaagcgatagctagag
cagttaagtgtttttaaacatagttaacgttcgttaaaccaatgggttaagcgtcttcaaatgtgtcaaacacgtgtgacg
tagtttaacatcgttaaaactctgttaatccctactaaactacgttaaactcgcaggcattgacagggactccttgatcgt
tgacaccacgtttcgagacgttcattgcatgaaccatgcaacccgtgtttatacgatgatatgcaaaggcagcgacgt
cgagatcaaacctagttcatccatcgaagaagctctctggatttctctcgaggagctacgatcgaagtaagtgtcgat
gattcttccaagagattttttacgttctttagggctgaggctccgcttcttgaaacgtcgggttggggtgtcaatacggccg
aaggcatcgactacttccgtatacagcctctactcccaccgtactcgtctgggtaattgtatgttgtatactagacttttag
gtctcgtcggaaactgcaggaaggaaatcgagctccaaacgaagtccgaaactacggatatatcatgcgacgag
gaaaaacggtatgttttttcgctgatatttttcgatgtgatctgatgtttttggggtatttttttcaggcctgaagctgtggaact
ccagcaagtggctcttctcaagcaggcaagttttgtatcgtgcaatgtataacatcagataacatacgtacattgtatttt
gtgtaatcgatgttctacggttagggttgtgatttacctctttagggtctagggttatctgcctcttttagggtttaggtttaga
ggtgtatgatttagggttaggtctgatgataattggtttctgcagaacgaggagattagcgacactgcgaaggatgga
ATGGAGATGATTAGCTGGTCGAATCAGTCGCCGGATCCACAAGACCTACCGT
CGTCCCCGACGAACCCTTCTCCGGCGGTGACGCAGCCGAGGAAGCCGAGA
CACCGATGGACGCCGAGCCGGAACCACCTGAGCATTCTAGAACGGCTCTTC
AAGCAGGGAACCGGAACTCCAAACAAGCAACGGATCAAGGAGATCGCAAC
CGACTTGGTCCAATACGGCGAGATCTCCGAGGCGAATGTATACAACTGGTTC
CAGAACCGCAAGGCCAAGGAAAAGAAGCTCATGTCGCAGAGCGGCTCGGC
CCACCTCCGACACGACGGAGAGGCCGAGATCGAGGCCGTTGCTCCGAGGG
AAAAACGGCGCCGAATGGACATCGACGAGATCATCAACCCTCGGCCCTCGC
GTTTGAGTCagattggcttcagaaaattgacgttttttgtgatctcgttcatcttcgtgtgttcatttgtatttAGGAA
TTGGAGGGGGCGAAGAGTACCGTGAAAACGGAAGCTGACGTTGATCTAGAT
GAgcaggtaccctaccctaatcctaattttcctaacctaacctaaccctaaaacctgatctgggcttGCAGAAT
GCTGTGACCGAGGAGGGATCGCGGGATAACATTTGTGCAACCAACTTAGgggt
gcgtacccgttgaacgtctacttcataccattcgtcgttgtacatgcagtggagagaagtaggcatggtagctttcgcgt
ttattagttcgagggacgacggtggtaacccccgtcaagcgggaccactaaccgtgggatttgttcAGGGGAA
GGAGCGGCGTAGGAGCTTCTCAGAGACGGACGCCAAGCGTACGAAGACggta
tctatacacttgtacgaaaacatagcaaaatcgtggatttttttcaGGACGAAAACTGTGACGAGGAA
GAGGTGGACTTACTCTTGAAACTCAAAGACCCAGttcaggttcgtgaacagaaatttaggttt
agggtatagggttaaatatgccgatgttttttTTCAGGACTTGGACGAATTGTGCTTGCGAGGT
GGCTTGCCGATCCCGTTTTACAAGGTGCAATCGACTCCTCACAAATCAAgtagg
tacatggtattctacgttgtgggttttagcttcgcatatgtgattgcagCCCAGTATTTGTACACTGCTAC
GGTCCAGATTTGCACGCTGAGGAATGAGCGTTCCGCTGTAGGTACGCCTTCG
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GTGGATTATAATGAAGCAAAGGTGTCTGCCGCCTCTAGAATGCTAGGACGCC
TCTACCTTGAGAGGTCTCGACTATATAGCAATGCATGAGTGATGATTTCAGG
GGCTGATGTTCTATACTAGAGCTAACACGACTATTATTATTTGTTGGG

• partial mRNA  
atggagatgattagctggtcgaatcagtcgccggatccacaagacctaccgtcgtccccgacgaacccttctccggcggtgacgca
gccgaggaagccgagacaccgatggacgccgagccggaaccacctgagcattctagaacggctcttcaagcagggaaccggaa
ctccaaacaagcaacggatcaaggagatcgcaaccgacttggtccaatacggcgagatctccgaggcgaatgtatacaactggtt
ccagaaccgcaaggccaaggaaaagaagctcatgtcgcagagcggctcggcccacctccgacacgacggagaggccgagatc
gaggccgttgctccgagggaaaaacggcgccgaatggacatcgacgagatcatcaaccctcggccctcgcgtttgagtcaggaat
tggagggggcgaagagtaccgtgaaaacggaagctgacgttgatctagatgagcagaatgctgtgaccgaggagggatcgcgg
gataacatttgtgcaaccaacttagaggggaaggagcggcgtaggagcttctcagagacggacgccaagcgtacgaagacgga
cgaaaactgtgacgaggaagaggtggacttactcttgaaactcaaagacccagttcaggacttggacgaattgtgcttgcgaggt
ggcttgccgatcccgttttacaaggtgcaatcgactcctcacaaatcaacccagtatttgtacactgctacggtccagatttgcacg
ctgaggaatgagcgttccgctgtaggtacgccttcggtggattataatgaagcaaaggtgtctgccgcctctagaatgctaggacg
cctctaccttgagaggtctcgactatatagcaatgcatgagtgatgatttcaggggctgatgttctatactagagctaacacgacta
ttattatttgttgggaaaaaaaaaaaa

• predicted protein  
MEMISWSNQSPDPQDLPSSPTNPSPAVTQPRKPRHRWTPSRNHLSILERLFKQGTGTPNKQRIKEIAT
DLVQYGEISEANVYNWFQNRKAKEKKLMSQSGSAHLRHDGEAEIEAVAPREKRRRMDIDEIINPRPSRL
SQELEGAKSTVKTEADVDLDEQNAVTEEGSRDNICATNLEGKERRRSFSETDAKRTKTDENCDEEEVDLL
LKLKDPVQDLDELCLRGGLPIPFYKVQSTPHKSTQYLYTATVQICTLRNERSAVGTPSVDYNEAKVSAASR
MLGRLYLERSRLYSNA

S.moellendorffii WOX13A

• partial mRNA  
atggatcgacaggagaatcccaggtacagtaagaggctgcgagccaaggcggaggagaaatccccggtgaagcgcgagccgc
caaatgcggatgaaatcctcctccgctcggcgctggatcggccggaataccatccggattttgggatcgtgatgagcgcccagcag
ctggacgaattgcggcgccagatcgccgtctacgccacgatctgccagcagctggtggagatgcacaaggcgtcaatggcgaatc
ccaacggtatggtacttctagctctagaccaccgccgccatcgccgctaccgccgcccgtgaaagccaccactcgccagaggtgg
gcgcccagccaggcccaggtcaagctcctcgagagcctctacgacgttggaatggggacgccacacaagcagcgagtgcgaga
gatcacggcggagctcagccagcttgggccggtgaacgagtccaacgtttacaactggttccagaaccgaaaggccaggacgag
gaggaggaatcggcagcagccgagtgctctgggaggcctggagccacagaactttcctcacagggagctcgaggaggtggattc
ggaggtggacgccatggaaggtggtggtgctcgtgggtctccgggagtgttgaaaaggctcaagccagagggcgctggtccatc
aaccgagcacgctccacactccaacgcaagtctcctgtgacggtttttcgatgcagttcttcggcttgttttttttttttgttgttgctcg
aggacttatataccgaaattgtgcaggttctcggtcgtcctctcgaagtaagacaaaattttgcaaaaaaaaaaaaa

92



APPENDIX

• predicted protein  
MDRQENPRYSKRLRAKAEEKSPVKREPPNADEILLRSALDRPEYHPDFGIVMSAQQLDELRRQIAVYATI
CQQLVEMHKASMANPNGTSSFRPPPPSPLPPPVKATTRQRWAPSQAQVKLLESLYDVGMGTPHKQR
VREITAELSQLGPVNESNVYNWFQNRKARTRRRNRQQPSALGGLEPQNFPHRELEEVDSEVDAMEGG
GARGSPGVLKRLKPEGAGPSTEHAPHSNASLL

S.moellendorffii WOX13B

• partial mRNA  
atggaatcgatctggacggaggattcagctgccatggctgctgctgctgccgatgccgcgggcgtcgtcgtcgacgatgcgttcca
gatgcctcatttcctgctccctcctcccaatctccctcacaatttcgcgcaaagctgcctcgccaatcccgcgcaggtgatgaccgag
gagcagcttgagacgctgcggcgccagatttcggtctacgccacgatctgccagcagctcgtggagatgcacaaggcaacgatct
cacaccagcacacatacaatggtttgcttctcggccaccaatctcctgccatccaggactcgtctccaatgctcctgggaatccacc
acaagccaacgtcgcggcaaagatggacaccatcgcagaaccagctgaggatcctcgagaggctcttcaagcagggcaatggg
acgccaaaccggcaaaggatcaaggagatcacgagcgagctgagccagcacggccaaatctccgagaccaatgtctacaactg
gttccagaaccggaaggctcgagcaaagaggaagcaacgacacaacaatgcgaccccctccacgaccaccacctcctcgcagc
acaaggacgccgaatcggaagtggagaccgatggagatcactcgccggaagaaaagaggagcaaagtaagctcgtccacgcc
gcagcagcagctccagatggatcaaagcaacaccaccaccgaagcgattggtactcgctacgcggtcgtcatgctcaatggaaa
ggcctggaaagtaaaaccagggagaatcaacgtaaggagtaactttggagacaatgccgtgctgctagatccgagaggtcatgt
ggtggccacgagcgagcaaggcttgactttagatcctctacaacctggtggaagctacacggttgctgtgtgaataaattacaaca
aagaaccataaacaagagcattgatgtttga

• predicted protein  
MESIWTEDSAAMAAAAADAAGVVVDDAFQMPHFLLPPPNLPHNFAQSCLANPAQVMTEEQLETLR
RQISVYATICQQLVEMHKATISHQHTYNGLLLGHQSPAIQDSSPMLLGIHHKPTSRQRWTPSQNQLRIL
ERLFKQGNGTPNRQRIKEITSELSQHGQISETNVYNWFQNRKARAKRKQRHNNATPSTTTTSSQHKDA
ESEVETDGDHSPEEKRSKVSSSTPQQQLQMDQSNTTTEAIGTRYAVVMLNGKAWKVKPGRINVRSNF
GDNAVLLDPRGHVVATSEQGLTLDPLQPGGSYTVAV

S.moellendorffii WOX13C

• partial mRNA  
aacgagagattttttgttaccttgttgaggttcgggctgcgagaattccggaagaaacaaggtcccgtttggaggtgaagttgcgg
cggcgatcttggaggtggcgttggcttcgtggtgatggtggtggtggtggtgatggtgatcgagcttggatctcttgcctttggagtc
gacgtcggtgtctacctcggactcgccatcgttttgctgcatctgcttttgcttgcgcttggctcgagcctttcggttgtggaaccagtt
gtggacgttggcctccgtaacatcaccttggcgagcgagatccacggcgatctctttgatccgctgcttgttgatactgtcgccctcc
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tcctcgaacagccggacgagcatccggagctgctcctcgttcggtttccatcgaactttgacgacggcgggaggcaattcttgcaa
agcttgctgctgctgctgctggtaatggctttcctccat

• predicted protein  
MEESHYQQQQQQALQELPPAVVKVRWKPNEEQLRMLVRLFEEEGDSINKQRIKEIAVDLARQGDVTE
ANVHNWFHNRKARAKRKQKQMQQNDGESEVDTDVDSKGKRSKLDHHHHHHHHHHEANATSKIAA
ATSPPNGTLFLPEFSQPEPQQGNKKSLV
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