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Zusammenfassung 
 

Ein integraler Bestanteil der Evolution, die Entstehung von Arten, ist nicht im 

gleichen Mass verstanden wie andere Bereiche der Evolutionsbiologie. Da Speziation 

ein fundamentaler Prozess ist durch den die grosse Artenvielfalt der Erde ensteht, 

wäre es sehr wünschenswert ein besseres Verständnis dieses Prozesses zu gewinnen. 

Um dies zu erreichen müssen die molekularen Grundlagen des Speziationsprozesses 

im Detail erforscht werden. 

Diese Arbeit verfolgt zwei Ansätze um zum Verständnis des Speziazionsprozesses 

beizutragen: Ein Screen nach positiv selektierten, jungen Duplikaten, und eine 

tiefergehenede Analyse des potentiellen Speziationsgens Dnahc8. 

Junge Duplikate können, wenn sie in nur einer von zwei divergierenden Population 

unter positiver Selektion stehen, durch schnelle evolutionäre Entwicklung eine 

Inkompatiblität zwischen den beiden enstehenden Spezies erzeugen. Um 

Kandidatengene mit dieser Eigenschaft zu finden wurde eine Suche nach 

Mikrosatelliten durchgeführt die Spuren eines Selektionsereignisses aufweisen, einem 

sogenannten ‚selective sweep’. Dazu wurden Mikrosatelliten in der Nähe der Gene 

typisiert und auf reduzierte Variabilität untersucht. Mittels einer für diese Frage 

entwickelten Methode, der lnRH Statistik, wurden selective sweep Loci im Vergleich 

zwischen Spezies oder Populationen identifiziert. Das Ergebnis des Screens sind 13 

Kandidatenloci im (Sub)species Vergleich, und 15 im Vergleich zwischen den 

Populationen. Ein Vergleich zwischen den ermittelten lnRH Werten und der 

synonymen Substitutionsrate (KS) zeigt dass die jüngsten der duplizierten Gene nicht 

unter positiver Selektion zu stehen scheinen. 

Um zu testen ob das tatsächliche Duplikationsalter mit dem Alter welches auf der 

Basis der synonymen Subtitutionsraten angenommen wird korreliert, wurde für einen 

Teil der Duplikatpaare überprüft ob sie in verschiedenen Mausspezies vorhanden 

sind. In den meisten Fällen nimmt der KS Wert mit dem tatsächlichen Alter der 

Duplikation zu, drei Genpaare haben jedoch sehr geringe KS Werte die nicht zu ihrem 

Alter passen. Genkonversion könnte ein Grund für dieses Ergebnis sein. 

Es ist bekannt dass das Dnahc8 Gen Mus spretus und Mus mus domesticus 

reproduktiv voneinander isoliert. Es kodiert für ein axonemales Dyein Protein das am 
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Aufbau des Spermienflagellums beteiligt ist; demenstprechend haben hybride Tiere 

deformierte, immobilisiert Spermien. Für diese Arbeit wurde die gesamte kodierende 

Sequenz von Dnahc8 in sechs Mausspezies sequenziert, um die schon bekannte 

Sequenz aus M. m. domesticus zu ergänzen. Ausserdem wurden mehrere Exons für 

ein Populationssample von M. spretus, und das gesamte Gen von zehn M. m. 

domesticus Tieren sequeziert. Die Daten wurden mit verschiedenen Tests auf positive 

Selektion untersucht: Eine Art von Test basiert auf Polymorphismus Daten, die zweite 

auf der grössten Wahrscheinlichkeit für kodonbasierte Modelle die verschiedene 

Arten von Selekion erlauben. Es wurden Hinweise gefunden dass der Selektionsdruck 

auf Dnahc8 in der M. m. domesticus Linie relaxiert ist, es konnte jedoch mit keiner 

Methode positive Selektion nachgewiesen werden. 

Neben den Sequenzdaten wurde auch die Expression mittels quantitativer Echzeit 

PCR in acht Geweben von sieben Mausarten gemessen. Starke Unterschiede in der 

Expression zwischen M. spretus und M. m. domesticus wurden gefunden, Dnahc8 

wird in M. spretus achtfach niedriger exprimiert. Zusammengenommen weisen diese 

Resultate darauf hin dass der Grund für die Inkompatibilität in Hybriden eher in der 

Genregulation zu suchen ist als in der Aminosäuresequenz. 
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Abstract 
 

An integral part of evolution, the formation of species, is less well understood than 

other areas of evolutionary biology. Speciation is a fundamental process that creates 

the great diversity of species in the world, and a deeper insight into its mechanisms is 

highly desirable. To achieve this goal, the molecular basis of speciation must be 

elucidated and characterized in detail. 

This study uses two approaches to contribute to the understanding of the genetics of 

speciation: A screen for positively selected, young duplicated genes, and in depth 

analysis of a proposed ‘speciation gene’, Dnahc8. 

Young duplicated genes may be positively selected in only one of two diverging 

populations, and through rapid change create an incompatibility between the two 

emerging species. To find candidates of this type a microsatellite screen for selective 

sweeps is conducted, in which microsatellite loci close to the genes in question are 

typed and assayed for reduced variability. Using a measure developed for this 

problem, the lnRH statistic, subspecies or populations are compared, and selective 

sweep loci identified. The screen results in thirteen candidate sweep loci in 

(sub)species comparisons, and fifteen between populations of the same species. 

Furthermore, comparisons of lnRH values to synonymous substitution rates (KS) of 

genes show that the youngest duplicated genes of the set do not seem to be evolving 

under positive selection. 

To test whether the duplication time correlates with the divergence time estimated 

from the synonymous substitutions rate, a subset of duplicate pairs was tested for 

presence in different mouse species. For most duplicates, KS between copies increases 

with age, but three pairs have very low KS values that do not correspond to their age. 

Gene conversion is discussed as a possible explanation for this result. 

The Dnahc8 gene is already known to cause reproductive isolation between Mus 

spretus and Mus mus domesticus. It encodes an axonemal dynein protein that is 

involved in sperm tail formation, and hybrid animals have deformed, immotile sperm. 

Here, the entire coding sequence of Dnahc8 is determined of six mouse species in 

addition to the M. m. domesticus sequence already known. In addition, several exons 

are sequenced in a population sample of M. spretus and the full-length gene 

sequenced for ten M. m. domesticus. Tests for positive selection based on 
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polymorphism data and codon-based maximum likelihood methods are performed 

with this data. There is evidence that Dnahc8 may be evolving under relaxed 

constraint in the lineage of M. m. domesticus. However, no significant evidence for 

positive selection could be found using any method. In addition to the sequence data, 

quantitative real time PCR is used to measure the level of expression in eight tissues 

of seven mouse species. Large differences in expression pattern are identified between 

M. spretus and M. m. domesticus: Dnahc8 expression is eight fold lower in M. spretus 

testis compared to M. m. domesticus. Together these results suggest that the nature of 

the incompatibility caused by Dnahc8 may lie in gene regulation rather than 

differences in the amino acid sequence. 
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1 Introduction 
Most of the areas of the study of evolution have been developed to a great extent and 

in detail since Darwin laid the foundations for this research (Darwin 1859). This is not 

as true for one process in evolution that was and is a major mechanism in shaping the 

plant and animal world as we see it now: speciation. The character of the forces that 

drive one more or less homogenous group of organisms to split into two or more 

distinct groups have long been disputed, as the details of speciation events are not 

clear. As it is a very slow process, it can usually only be scrutinized in retrospect, and 

the very nature of species is often that they do not hybridize, making the usual genetic 

approaches to study molecular processes very difficult. 

There are also some theoretical problems: Even the term species can be defined in 

many different ways: based on phylogeny, morphology or reproductive status (Coyne, 

Orr et al. 1988). The most used and accepted of these definitions is the biological 

species concept, which describes species as “groups of actually or potentially 

interbreeding natural populations which are reproductively isolated from other such 

groups” (Mayr 1942). This focus on reproductive isolation as the most important and 

useful defining aspect of species has turned out to be true especially in the advent of 

population genetics. 

Reproductive isolation can be caused by either prezygotic or postzygotic effects. The 

former includes behavioral (e.g. mate recognition), mechanical (e.g. incompatible 

mating organs), and gametic (e.g. incompatibilities between egg and sperm) factors. 

Postzygotic isolation includes hybrid inviability and hybrid sterility. While 

postzygotic isolation in plants is often caused by polyploidy (Masterson 1994), in 

animals genic effects seem to play an more important role (Coyne and Orr 1998). 

Thus far, research on the genetics of speciation has focused on postzygotic isolation. 

While many advances have been made, there are still major questions that are debated 

when it comes to speciation. Many of these questions concern the importance of 

alternative mechanisms that probably both play a role, but to what extent is not 

known. For one, there is a lot of ongoing discussion whether mutations in cis or 

regulatory changes in trans contribute to evolution and speciation (Hoekstra and 

Coyne 2007).  
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There are quite a few studied examples of gene duplications that are involved in 

speciation, especially the ‘speciation genes’, but it is still not know how important the 

contribution of duplicated genes to speciation is. It seems reasonable to expect that 

duplication processes are often involved, as hybrid incompatibility genes often evolve 

rapidly, and redundant genes provide this freedom by lack of selective pressure. 

 

In this chapter I will summarize the current understanding of the genetics of 

speciation and examples of genes known to play a role in speciation and reproductive 

isolation, and the evolutionary relevance of gene duplication and the theories that 

have been developed. I will also review the methods of selection detection that are 

relevant to this work, and give an introduction to the house mouse as a model system. 

 

1.1 The genetics of speciation 

The conceptual difficulties with understanding how reproductive isolation could 

evolve through changes at a single locus were resolved with the independent 

realization by Bateson, Dobzhansky and Muller that two populations can become 

reproductively separated when two interacting genes are involved (Bateson and 

Mendel 1909; Dobzhansky 1937; Muller 1942); if novel alleles of both genes are 

fixed in the two populations the genes may not be able to interact normally when 

combined in hybrid offspring. This two locus model, termed the Dobzhansky Muller 

model, marked the start of the research of the genetic causes of speciation.  

The key to unraveling the many questions concerning speciation lies in understanding 

the molecular details involved in reproductive isolation. While it takes too long to 

observe the speciation process directly, it is possible to identify the genetic processes 

that maintain species boundaries. These hybrid incompatibility genes are commonly 

termed speciation genes (Orr and Presgraves 2000), although it is not clear if they 

contributed to the initial evolution of reproductive isolation. Thus far, four hybrid 

incompatibility genes have been identified (Orr, Masly et al. 2004). 

The first gene in this category that was identified confers hybrid sterility. Called 

Odysseus site homeobox (OdsH), it encodes a transcription factor with a homeobox 

domain which is expressed in testis tissue. Its effect was found in hybrids between the 

fruit fly species Drosophila simulans and Drosophila mauritiana, the hybrid males 

from this cross are sterile (Coyne and Charlesworth 1986; Ting, Tsaur et al. 1998). In 
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the sterile F1 males, OdsH seems to confer only to about 50% of the infertility 

phenotype, thus other factors must also be involved (Perez and Wu 1995; Ting, Tsaur 

et al. 1998). The effect also is only evident in young males, and diminishes as they get 

older, suggesting that OdsH may be involved in accelerating the maturation of sperm 

(Sun 2003). OdsH has been found to evolve rapidly under positive selection in one of 

the species, D. mauritiana, as has often been reported for testis specific genes (see 

(Ellegren and Parsch 2007) for review).The OdsH gene originated from a gene 

duplication of the ancestral gene Unc-4 (Sun, Ting et al. 2004), which is expressed in 

the embryonic stages and in neuronal tissue. After the duplication event, the 

expression of OdsH became confined to the testis. Thus, change in this hybrid sterility 

gene involved a duplication in addition to rapid evolution at the amino acid sequence 

level. 

While OdsH belongs to the class of the hybrid sterility genes, other genes have been 

found that cause inviability in hybrids. The first one analyzed in detail shows its 

effects in hybrid fish; progeny of a cross between Xiphophorus maculatus and X. 

helleri often develop fatal melanomas. The molecular cause of this phenotype has 

been traced to over expression of a receptor tyrosine kinase encoded on the X 

chromosome, Xmrk-2 (Wittbrodt, Adam et al. 1989; Schartl, Dimitrijevic et al. 1994). 

Overexpression of Xmrk-2 is the result of a Dobzhansky Muller incompatibility with 

another locus that represses its expression. Xmrk-2 is a partial copy of its paralog 

Xmrk-1, and additionally acquired mutations following duplication render the protein 

constitutively active (Gomez, Wellbrock et al. 2001). While the protein coding part 

comes from Xmrk-1, the regulatory sequence that controls its expression originates 

from a second gene. This promoter interacts with a repressor, thus Xmrk-2 has 

acquired a novel regulatory mechanism. The detrimental phenotype occurs in hybrids 

which do not have a functional allele of the repressor. 

Another hybrid inviability gene, hybrid male rescue (Hmr), has been found in crosses 

between Drosophila species. Hmr is a transcription factor located on the X 

chromosome. The hybrid lethality effect of Hmr is confined to male hybrids, which 

do not live beyond the transition from larval to pupal stage: females have reduced 

fertility and also become sensitive to high temperatures (Barbash, Roote et al. 2000). 

It has been shown that the dosage of Hmr is correlated with the strength of the 

inviability phenotype (Barbash, Roote et al. 2000; Orr and Irving 2000; Barbash, 

Siino et al. 2003). These effects show when D. melanogaster is crossed with one of its 
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sister species D. sechellia, D. simulans, or D. mauritiana, and there is evidence that 

Hmr has diverged at the sequence level between D. melanogasterand the latter three 

species. The large extent of divergence has been attributed to positive selection 

(Barbash, Awadalla et al. 2004). 

The fourth hybrid inviability gene discovered nucleoporin 96 (Nup96), could also be 

shown to have a period of evolution under positive selection in its history (Presgraves 

and Stephan 2007). The incompatibility involving Nup96 is again between D. 

melanogaster and D. simulans (Presgraves, Balagopalan et al. 2003). The protein is 

present in all eukaryotes from yeast to humans, and forms a part of the nuclear pore 

complex located in the nuclear membrane, which regulates the passage of 

macromolecules through the membrane.  

Although very limited, this set of four speciation genes allows drawing some 

preliminary conclusions about the genetic process of speciation. One of the unsolved 

questions concerning speciation is whether incompatibilities evolve neutrally or under 

selection. For all genes mentioned before positive selection could be shown, either 

recent or in the gene’s history. Additionally, all genes evolve very fast, and Hmr and 

Nup96 show evidence of adaptive protein evolution. It is not known in what way 

these adaptive processes relate to the species’ environmental conditions. Further, it 

has been postulated that functional constraint has to be relaxed in order to have such a 

rapid rate of sequence divergence (Wu and Ting 2004). One way this could be happen 

is through gene duplication. Indeed, duplication events during the evolution of OdsH 

and Xmrk-2 have contributed to the changes that cause them to act as ‘speciation 

genes’. 

Finally, despite the fact that all the genes show sequence divergence that may explain 

the incompatibilities, three of four genes are also directly involved in gene expression, 

with two being transcription factors. In the case of Xmrk-2 the change in expression 

seems to be the main contributor towards the hybrid lethality phenotype, while OdsH 

may cause hybrid infertility through regulating other genes (Michalak and Noor 

2004). 

This recent progress in identifying genetic causes of reproductive isolation is the first 

evidence for speciation mechanisms at the molecular level. Nonetheless these data are 

still rather limited, and more examples have to be analyzed in detail to draw 

conclusions. For one, more taxa should be investigated, as three of the four 

‘speciation genes’ summarized above are found in Drosophila. This ongoing research 
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is required to confirm and expand on the preliminary conclusions that are discussed 

today. 

 

1.2 Gene duplication 

Gene duplication is the major mechanism that enables the increase in complexity of 

organisms. The importance of duplication events was first mentioned in the 1930s 

(Haldane 1933; Muller 1935), but general acceptance of the role of duplication in 

evolution came through the ideas of Ohno (Ohno 1970). In his book he laid the 

theoretical groundwork, and postulated that novel genes can arise through copies of 

those already in existence. Extensive research on the mechanisms and effects of gene 

duplication events since that time has provided a more comprehensive understanding 

of this important type of evolutionary change.  

To be an important contributor to genome evolution, duplication events have to occur 

with some frequency. And indeed, Lynch and Conery’s analysis of several genome 

sequences comes to the conclusion that genes are copied at a rate of about 0.01 

duplications per gene per million years (Lynch and Conery 2000), or 0.009 

specifically for humans (Lynch and Conery 2003). 

This overall rate reflects three very different mechanisms by which genetic material is 

multiplied and moved around the genome contribute to that rate. Unequal crossing 

over during recombination leads to fragments duplicated in tandem, and the affected 

stretch of DNA may include one or more genes, or parts thereof. Segmental 

duplications are much larger, encompassing 1 kb to more than 200 kb, and do not 

always occur within just one chromosome (Samonte and Eichler 2002). The third and 

most dramatic mechanism is whole genome duplication; evidence for genome 

duplications is reported in a variety of taxa, among them yeast (Wolfe and Shields 

1997; Kellis, Birren et al. 2004; Scannell, Byrne et al. 2006), fish (Christoffels, Koh et 

al. 2004; Jaillon, Aury et al. 2004) and other vertebrates (Dehal and Boore 2005). 

The availability of whole genome sequences makes the large contribution of the 

duplication mechanisms to genome structure and organization hard to deny; for 

example it is estimated that over 60% of human genes came into existence through 

some kind of a duplication event (Li, Gu et al. 2001), and now form gene families or 

pairs. Segmental duplications larger than 1 kb and with high similarity (>90%) alone 

are thought to make up 4% of the genome (Zhang, Lu et al. 2005). Whole genome 
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duplication can be expected to have an even stronger effect on the genome, and 

indeed in yeast about 16% of the protein coding genes have a paralog (Seoighe and 

Wolfe 1999). But where do the duplicates of all the other genes go? 

This question leads to the fairly complex theories of the fate of duplicate genes after 

the fact. As with mutations, the mechanisms that create duplicate genes act more or 

less randomly, and evolutionary forces only influence the events thereafter. They have 

accumulated so many mutations over time that they can no longer be distinguished 

from other noncoding sequence. This pattern of “nonfunctionalization” is the most 

common outcome because mutations that are detrimental to gene function and fitness 

are much more common than those with a positive effect (Lynch and Walsh 1998; 

Lynch and Conery 2000; Harrison, Hegyi et al. 2002).  

There are three other possible fates for duplicate genes: (1) Conservation - the 

duplicate copy is retained, (2) Subfunctionalization – the gene copy is optimized to 

perform one of multiple functions of the original, and (3) neofunctionalization – the 

new copy acquires a completely new function. Different models proposed to explain 

the evolution of gene duplicates vary in terms of the frequency and importance of 

these three outcomes.  

The conservation of two or more identical open reading frames in one genome, 

without any one of them acquiring deleterious mutations, can only be explained by an 

advantage of producing a high amount of the protein encoded (Nowak, Boerlijst et al. 

1997). Examples of this include rRNA and histone genes. 

Subfunctionalization entails changes to the gene in the domain of protein function or 

expression. The latter may be a temporal or spatial difference in expression as 

compared to the original gene. For this subfunctionalization to occur the original gene 

does not have to change in the same timeframe as the copy. 

In contrast, in the duplication-degeneration-complementation (DCC) model (Force, 

Lynch et al. 1999), deleterious mutations in one gene copy result in selective pressure 

to maintain the duplicate. If these mutations occur in both genes simultaneously, but 

affect different subfunctions or promoters responsible for expression in different 

tissues, the genes are stabilized, as both become necessary for the organism. The 

model also applies both to cases of subfunctionalization and neofunctionalization. 

 

The third major model of gene duplication is the innovation, amplification and 

divergence model (Bergthorsson, Andersson et al. 2007). In this model, duplicated 
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Figure 1: Divergent silencing of 

duplicate genes contributes to 

reproductive isolation (Lynch 

2002). 

genes acquire a new function in addition to their main 

purpose. If this new function is beneficial an increased 

amount of gene product will be favorable, providing a 

possibility for stabilization of the duplication similar to 

the case of gene conservation. The redundant copy is 

positively selected, and may spread through the 

population. Under this selection pressure it can then 

gain mutations that make the subfunction more 

efficient, and turning it from the minor side effect that it 

represented in the mother gene into the major function 

of the copy. This recent model does not suffer some 

problems identified with earlier models, such as the fact 

that neofunctionalization is unlikely to occur under the 

DCC model. Also, the rate of duplication retention via 

the ‘mutation during nonfunctionality’ model is very 

low, because of loss due to drift and null mutations. 

Neofunctionalization has with good reason been thought to be much less likely than 

other forms of duplicate evolution (Lynch, O'Hely et al. 2001). Although less likely, 

there are several known examples of duplicate genes that have acquired a novel 

function. One example is the evolution of a RNAse A gene duplicate in the lineage of 

humans and old world monkeys which acquired an anti bacterial function that does 

not seem to require the ribonuclease activity (Rosenberg 1995; Zhang, Rosenberg et 

al. 1998). The authors of a recent study in Drosophila found a tandemly duplicated 

pair of transcription factors of the Polycomb group of proteins. There is evidence that 

strong positive selection drives neofunctionalization in one of the copies, despite the 

fact that they still share strong similarity (Beisswanger and Stephan 2008). 

 

Gene duplication enables fast evolutionary changes. For example, it was recently 

suggested that the puzzling result of an earlier experiment, which suggests that 

mutation happens faster at loci under selection (Cairns, Overbaugh et al. 1988), can be 

better explained through gene duplication events (Hendrickson, Slechta et al. 2002). 

The ability to adapt rapidly may be beneficial, such as when species encounter rapidly 

changing environmental conditions or invade a new habitat.In addition to facilitating 

fast adaptation, gene duplication can also lead to reproductive isolation, and thus 
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speciation (Lynch and Conery 2000). One model put forth by Lynch is displayed in 

Figure 1 (Lynch 2002). Given the high rate of duplicate birth and death mentioned 

earlier, it is quite likely that a species splits into two new species after a gene has, by 

chance, just been copied on another chromosome. With the nonfunctionalization rate 

being as high as it is, the two new species may each loose the other duplicate and 

retain one functional copy; with a probability of 0.5. This results is a form of 

postzygotic isolation, as one quarter of all gametes of hybrid offspring will lack the 

gene function completely. As this happens with more than one gene, and genes that 

are of vital importance, it may lead to complete reproductive isolation, and thus 

separate species. In fact, a hybrid incompatibility caused by the translocation of a 

gene to a different chromosome has recently been identified in Drosophila (Masly, 

Jones et al. 2006). The gene duplication must not necessarily take place before 

isolation, geographic or otherwise, duplication can also happen and be resolved in 

both populations independently. This is a very fast mechanism by which populations 

can become reproductively isolated on a genetic level, and it is theoretically 

independent of outside factors such as selection pressure.  

 

1.3 Selection 

Since the introduction of the neutral model (Kimura 1983), a major focus of 

evolutionary studies has been the attempt to track down evidence for positive 

selection in the genome. This line of research is important, because positive selection 

is the driving force of Darwinian evolution, but succeeding in it has proven difficult, 

since selection has to be distinguished from neutral processes including genetic drift 

and demographic effects. Two major approaches are used to detect positive selection 

from sequence data. 

The first set of methods for detecting selection relies on comparison between 

nonsynonymous mutations, which change the amino acid sequence of a protein and 

synonymous, or silent, mutations. Synonymous sites in coding sequences are assumed 

to evolve neutrally, and this ‘baseline’ rate of synonymous changes per synonymous 

site (KS) is compared to the nonsynonymous rate (KA). The ratio of those two values 

(KA/KS) is used to infer the type of evolutionary pressure the sequence is be under: A 

ratio of one implies the sequence evolves neutrally, a ratio greater than one indicates 

there is positive selection, and values below one signify negative or purifying 
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selection. As so often though the practice is much more complicated than the theory. 

Several different methods exist to calculate the values, incorporating various fine 

tuning techniques (Li, Wu et al. 1985; Nei and Gojobori 1986; Pamilo and Bianchi 

1993). The interpretation of KA/KS ratios is not straightforward, and has been shown 

not to work in all scenarios (Crandall, Kelsey et al. 1999). In addition, the use of 

KA/KS estimates for entire genes to infer selection is very conservative, as selection 

generally targets only a subset of amino acid sites in a gene. 

The most widely implemented method used to detect selection is the maximum 

likelihood approach implemented in the PAML package (Yang 2007). This approach 

involves comparison of various models that allow KA/KS ratios to vary among codon 

sites in the gene and/or among branches of a phylogenetic tree.  

While the KA/KS ratio methods may not be easy to implement, they have the great 

advantage that only one representative sequence of each species in the comparison is 

needed. The detection of positive selection based on sequence data and synonymous 

and nonsynonymous changes can also be achieved by contrasting those changes 

within and between species (McDonald and Kreitman 1991). The McDonald-

Kreitman test yields a simple table that can be assessed for significance using a Chi-

square test. 

 

The second major approach for detecting selection involves looking at the neutral 

variation around a gene or locus of interest. While noncoding areas of the genome are 

assumed to evolve neutrally, unless they are part of a promoter or enhancer, they may 

still be affected by positive selection events, in a manner dependent on the genomic 

distance to the selected locus. After a positive mutation occurs, the affected allele 

rises in frequency in the population, at a speed that depends on the selection 

coefficient. The variable of neutral sites near to the selected locus also become more 

common among individuals, an effect that has been termed ‘hitchhiking’ (Smith and 

Haigh 1974 ). If one can find sequence that is not under selection directly, but shows 

such a decreased variability in comparison to other sequences, it can be inferred that a 

linked site may have been under selection (Slatkin 1995). The length of this fraction 

of the genome with reduced variability depends on the selection coefficient and the 

recombination rate, the former being positively associated with the length, the latter 

negatively. Markers commonly used to detect sequence variability include single 

nucleotide polymorphisms (SNPs), and microsatellite loci. SNPs are more or less 
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uniformly distributed in the genome, and their 

mutation rate is constant (although it may differ 

between regions of the genome (Wolfe, Sharp et 

al. 1989)). 

Microsatellites have several advantages over 

SNPs in hitchhiking studies. The mutation rate, 

which is different for all individual 

microsatellites, is not one of them. However, it can 

be roughly predicted by the length of the repeat, 

and the microsatellites can be searched for in published genome sequences, without 

any population sequence data. Also, microsatellites mutate in discrete steps, according 

to the length of the repeated pattern (Ellegren 2004). This property makes analysis 

very straightforward, as only the length of a PCR fragment needs to be measured as 

opposed to sequencing, making it easier to study large amounts of individual animals 

and loci. However, as the microsatellite mutation rate depends on the type of repeat 

unit and total microsatellite length, different loci are not comparable. To circumvent 

this problem the same microsatellite locus is compared among different populations 

or species, thus independence from the mutation rate is gained (Schlötterer 2002). 

When analyzing the data of a given microsatellite locus in multiple individuals, two 

key values can be calculated: The variance in repeat number (V) as a measure for the 

variability of the locus (Goldstein and Clark 1995), and the expected heterozygosity 

(Nei 1978). If has been shown that, with data from two populations, the logarithm of 

the ratio between the two values for either V or H (lnRV and lnRH) follows a normal 

distribution, if the microsatellites evolve neutrally (Schlötterer 2002; Kauer, Dieringer 

et al. 2003). This makes it possible to detect loci within a dataset that depart from the 

expected null hypothesis, neutrality, with a defined probability. These extreme loci 

are likely linked to sites under selection. Using the heterozygosity seems to have a 

higher power due to the smaller variance for this parameter (Kauer, Dieringer et al. 

2003).  

In this study, methods based on both of the major approaches to detecting selection 

are utilized: a microsatellite survey is used in a large screen for duplicated genes 

under selection, and KA/KS measurements are used to evaluate the evolutionary 

dynamics of a candidate gene, Dnahc8, in greater detail. 

 

Figure 2: Schematic diagram depicting 

the neutral variability at a 'sweep' locus 
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1.4 Mouse model 

The house mouse is an excellent model organism for the study of evolution in general, 

and speciation in particular, for several reasons. 

First, it is one of the most widespread mammals, occurring nearly everywhere on the 

planet. Mus musculus has achieved this almost ubiquitous distribution through human 

activity; it is a commensal rodent, living in areas inhabited by humans. The 

colonization history of the mouse reflects this fact; it is thought to have originated in 

northern India (Guenet and Bonhomme 2003), and traveled from there following 

agriculturally active human settlement (Cucchi, Vigne et al. 2005). The phylogeny is 

well established, made possible through the good fossil record and extensive 

morphological data (Boursot, Auffray et al. 1993; Lundrigan, Jansa et al. 2002; 

Guenet and Bonhomme 2003). The so called Mus musculus subspecies group includes 

5 members (Figure 3).  

 
 

 

M. m. castaneus colonized the Asian continent eastward and is now found in 

Southeast Asia. M. m. domesticus and M. m. musculus both inhabit Europe, where 

their ranges meet, forming a north-south hybrid zone. These two subspecies arrived in 

Europe by different routes, M. m. musculus expanded north of India to Kazakhstan 

and colonized eastern Europe, while M. m. domesticus moved westward through Iran 

to the western Europe and northern Africa (Boursot, Auffray et al. 1993). The Mus 

musculus subspecies group is of special interest to speciation studies, because its 

members are very closely related, and their invasion of the world is understood in 

some detail. For this study, the Mus musculus group is ideal because it allows for two 

Figure 3: Phylogenetic tree for the subgenus Mus adapted from 

(Guenet and Bonhomme 2003). 

 



Introduction   

 13 

levels of comparison in the first part of this study: between the different subspecies, 

and between ancestral and derived populations within a subspecies.  

In addition to the M. musculus group, other mouse species provide part of the data 

used in this study. The closest relative to the house mouse is M. spretus, which occurs 

in sympatry with it in Spain and northern Africa. M. macedonicus’ range covers the 

Balkans to the Near East, while M. macedonicus is found in the area from eastern 

Austria into the Ukraine. The Indian subcontinent is the range of M. famulus, M. 

caroli as well as M. cookii are found in East Asia. 

Second, several practical aspects make the house mouse a convenient model system: 

They have a short generation time and are easy to keep under laboratory conditions. 

Wild individuals are not hard to catch in their habitat. For genetic studies the 

availability of the whole genome sequence is greatly advantageous, facilitating the use 

of a wide array of bioinformatics tools. The sequenced laboratory mouse strain is a 

genetic mixture between the three subspecies M. m. domesticus, M. m.musculus and 

M. m. castaneus, with the first providing the largest fraction of the genome (Wade, 

Kulbokas et al. 2002; Wade and Daly 2005). 

Finally, several loci have been found that confer hybrid incompatibility between 

house mouse (sub) species. These incompatibilities follow Haldane’s rule, that is, 

sterility is observed in males (the heterogametic sex). Hybrid sterility loci (Hst) have 

been identified in crosses between M. m. musculus and M. m. domesticus (including 

wild and laboratory strains), and between M. m. domesticus and M. spretus. 

Hybrid sterility 1 (Hst1) is responsible for an incompatibility between M. m. musculus 

and M. m. domesticus (in the form of the lab strain C57BL/6) and has been mapped to 

a region containing only two genes, which is located in the proximal region of 

chromosome 17, in the area defined by the t-haplotype inversions, which have been 

implicated in hybrid male sterility among other effects (see detailed explanation 

below) (Forejt, Vincek et al. 1991; Trachtulec, Mihola et al. 2005; Vyskocilova, 

Trachtulec et al. 2005). The candidate genes are the TATA-binding protein (Tbp) and 

proteasome subunit beta 1 (Psmb1), although no coding differences have been found 

in alleles of the strains involved (Trachtulec, Mihola et al. 2005). Hst1 is variable in 

both mouse species in nature, and only some allele combinations lead to male sterility 

(Forejt 1996; Vyskocilova, Trachtulec et al. 2005). 

Another hybrid sterility locus, named Hstx1, was also found in crosses of the mainly 

M. m. domesticus lab strain C57BL/6 and the M. m. musculus derived strain PWD/Ph. 
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As the name hints, the locus resides on the X chromosome. Introgressing the M. m. 

musculus allele into a M. m. domesticus background leads to abnormal sperm, lower 

sperm count, and lower testis weight in the male F1 animals. A QTL analysis showed 

that the Hstx1 factor alone is not responsible, one or more linked loci of M. m. 

musculus origin must also be present (Storchova, Gregorova et al. 2004). 

The other pair that has been studied for hybrid incompatibility effects, M. m. 

domesticus and M. spretus, is further along in the speciation process; individuals 

rarely hybridize in nature despite their overlap in range. All male F1 mice from this 

cross are sterile, but females are of normal fertility (Bonhomme, Martin et al. 1978). 

One locus implicated in this incompatibility lies close to the pseudoautosomal region 

of the X Chromosome and has been named Hst3 (Guenet, Nagamine et al. 1990). 

Closer analysis of this locus points to a possible chromosomal effect rather than a 

genic one, namely structural incompatibility of the X and Y chromosomes at their 

respective pseudoautosomal regions (Matsuda, Hirobe et al. 1991). 

A group of three tightly linked loci, Hst4, 5 and 6 have been found in the t-haplotype 

region of chromosome 17. These loci were found in a study that backcrossed M. 

spretus chromosome 17 into a M. m. domesticus background originally to survey the 

possible origin of the t-haplotype allele (Pilder, Hammer et al. 1991). One of these, 

Hst6, has been scrutinized in detail. 

The t-haplotype is a structural variant of chomosome 17 that features four large, non-

overlapping inversions which prevent recombination with the wild type alleles (Silver 

and Artzt 1981; Hammer, Schimenti et al. 1989). The t-haplotype does not follow 

mendelian inheritance, instead it shows transmission ratio distortion, where 90% of all 

male offspring inherit the t allele of Chromosome 17 from heterozygous +/t fathers 

(Hammer and Silver 1993). Nonetheless the frequency of the t allele in wild mouse 

populations is only about 20% (Ardlie and Silver 1996), the spread of the t-haplotype 

is kept at bay because homozygous males are sterile. While transmission ratio 

distortion and sterility are complex at the molecular level and still not fully 

understood, the t/t phenotype of deformed sperm seems to be the major contributor to 

male sterility. In particular, the motility of the sperm is affected by a flagellar 

waveform defect, a condition that was named “curlicue” (Olds-Clarke and Johnson 

1993). 

Although three of the four t-haplotype inversions are not inverted in respect to the M. 

spretus chromosome, M. m. domesticus mice heterozygous for the t-haplotype and 
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chromosome 17 from M. spretus are also sterile. This observation enabled a fine 

mapping strategy to be devised to uncover the sterility factor (Pilder, Hammer et al. 

1991; Samant, Fossella et al. 1999). This research revealed that t-haplotype M. m. 

domesticus both homozygous and heterozygous for the M. spretus allele of Hst6 are 

sterile. In both cases sperm motility was hindered by nonfunctional or even absent 

flagella, caused by defect assembly of flagellar structures in early stages of 

spermiogenesis (Phillips, Pilder et al. 1993; Pilder, Olds-Clarke et al. 1993). Further 

mapping narrowed the identity of Hst6 down to one candidate gene, Dnahc8 

(Fossella, Samant et al. 2000). Dnahc8 encodes a dynein heavy chain protein of 3480 

amino acids in length, encoded in 79 exons. Dnahc8 belongs to a large gene family 

present in a wide range of organisms. Its expression is testis specific in M. m. 

domesticus, but not in M. spretus, according to Samant et. al. (2002). Expression as 

well as translation take place before the process of spermatogenesis, fitting the 

hypothesis that it plays a part in formation of the sperm tail (Samant, Ogunkua et al. 

2002). 

The fact that the M. spretus allele of Dnahc8 is not functional in a M. m. domesticus 

background makes it a very good candidate for a “speciation gene”. In this study, 

population genetic data from M. m. domesticus are used to investigate the 

evolutionary dynamics of this candidate gene in detail. 
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1.5 Aims of this study 

The first part of this study aims to provide data on duplicated genes under selection in 

the mouse model system. Microsatellite loci in the vicinity of duplicates are amplified 

and the length allele identified in a large sample of different mouse subspecies and 

populations to find loci that show a signature of a selective sweep. Genes that show 

such a sweep signature in one subspecies or population are interesting because they 

may contribute to the speciation process by causing hybrid incompatibilities. 

The microsatellite screen makes some assumptions about duplicate gene pairs that 

will be tested in the second part. The presence of a duplicate can be tested through a 

PCR scheme, which is done for several mouse species. The data gathered in this 

process will make it possible to determine the age of a duplication event, and compare 

it to the age estimated by the KS value. Also, this test will show if the genes tested are 

present in all mouse species. 

While the first party of this study is a search for candidate genes, the third part 

focuses on one gene, Dnahc8. It has been shown to be a hybrid sterility gene in M. m. 

domesticus and M. spretus hybrids, but it is not known what the mechanism of this 

incompatibility is. To answer the question if the effect is caused by changes in the 

coding sequence or regulatory effects, sequence data and expression levels will be 

analyzed in several species.  
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2 A screen of duplicated genes for positive 
selection 

2.1 Introduction 

Duplicated genes have been implicated to play an important role in speciation, as they 

allow genes to gain new functions or regulative changes very quickly through lifting 

constraint. Such duplicates may develop this altered function only in one population 

of a species, giving rise to possible hybrid incompatibility. 

This study tries to detect duplicated genes that have undergone a selective sweep in 

subspecies or populations of the house mouse by analyzing the variability of 

microsatellite loci. 

 

2.2 Materials and Methods 

2.2.1 Search for duplicated genes and associated microsatellite loci 

Duplicated genes were searched in the available genome sequence for Mus muculus as 

provided by the EnsEMBL project (http://ensembl.org). The database release 31 was 

used for the search as described here. All genes are sorted into gene families in the 

EnsEMBL database, a feature that is computed by generating similarity data among 

all proteins through blastp, and then clustering the sequences with the help of the 

TRIBE-MCL algorithm (Enright, Van Dongen et al. 2002). A list of all genes with 

their family ID was downloaded via the EnsMart service, and filtered for those 

families that contained only two single genes. The number of gene pairs in the 

resulting list was 1628 (see digital supplement). A large number of duplicated genes 

would not be found with this method, as they are grouped in larger families. On the 

other hand, this study focuses on young duplicates, which are represented in the set of 

genes found, and for the purposes needed here a complete list of all recently 

duplicated genes is not needed. 

The next step in the analysis was the determination of the age of the duplication 

through the KS value. For all genes the protein and nucleotide sequences were 

downloaded from EnsEMBL. The protein sequences of duplicate pairs were aligned 

with the muscle software (Edgar 2004), and the nucleotide data was aligned 
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subsequently on the basis of the protein sequence alignment by means of the tranalign 

program, part of the EMBOSS package (Rice, Longden et al. 2000). This ensures the 

resulting nucleotide alignment does not contain codon shifts in any one sequence, 

which would render the calculation of synonymous and nonsynonymous replacements 

impossible. This calculation was performed with a software program that implements 

the method of W. H. Li (1993) to calculate KS and KA. 

To obtain a subset of gene duplicate pairs that can be presumed to have originated 

during or after the split that gave rise to the house mouse subspecies group, a cutoff 

value of KS < 0.1 was chosen. The calculation assumes a mutation rate of 2.1 x 10-8 

per base pair per generation (Nachman 1997), a generation time of 2 per year, and that 

the split occurred 0.5 – 1 million years ago (Guenet and Bonhomme 2003). 

 

For a subset of the genes, the duplication mechanism that led to their existence was 

determined. Retrotransposed genes have lost all introns in one of the copies, this was 

tested manually by visible inspection. Whether gene duplication was caused by a 

large scale segmental duplication was assessed by searching for the genes in question 

in the non human segmental duplication database as available on the internet 

(Cheung, Wilson et al. 2003). 

 

2.2.2 Microsatellite analysis 

2.2.2.1 Mouse population samples 

DNA from four mouse (sub)species, Mus. m. musculus, M. m. domesticus, M. m 

castaneus and M. spretus was used. For M. m. musculus genetic material from a 

Czech (35 individuals) and a Kazakh (36) population was available, the latter deemed 

the more ancestral one. The M. m. domesticus mice studied were caught in West 

Germany (37), the French Massiv Central (63) and Chicago in the USA (16). The M. 

m. castaneus subspecies was also represented in one ancestral population from India 

(46), and one presumably derived population from Taiwan (12). All Mus spretus mice 

originate from central Spain (46). 

The animals were caught according to a sampling scheme detailed by Ihle et. al. 

(2006), to minimize the number of inbred individuals in the sample. 
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2.2.2.2 Microsatellite selection and primer design 

To be able to draw conclusions from microsatellite allele patterns as to the evolution 

of genes, the repeat loci must be located in the vicinity of the gene, at a distance that 

is dependent on the selection coefficient and the local recombination rate, which, over 

time, breaks down the selective sweep pattern (Smith and Haigh 1974; Fay and Wu 

2000). Per default, a window of 10 kilobases around the gene was searched for 

suitable microsatellite loci. These loci were chosen on the basis of the repeat pattern, 

bi-, tri- and tetranucleotide repeat units in the range of 9 to 25 repeats. Other criteria 

were the uniformity of the pattern, and the possible PCR product of the locus: Loci 

whose repeat pattern contains irregularities mutate much slower that the total length 

would suggest, and there may be other repeats close by that make generation of a PCR 

product with just the desired locus impossible. Detection, filtering and generation of a 

primer pair for PCR was automated via a perl script, the software used for finding the 

microsatellites in sequence data was Tandem Repeat Finder (Benson 1999). The 

primer design was facilitated by the primer3 software (Rozen and Skaletsky 2000), 

with settings that aim at primers with a melting temperature of 60°C and a optimum 

length of 20 basepairs.  

The list of microsatellites and PCR primers that enclose them was checked by hand 

for suitable combinations. Six of these were grouped into a multiplex, two loci that 

differed in PCR product size by a few hundred basepairs were assigned the same of 

the three available fluorescent dyes. All primer sequences are available in supplement 

1. 

 

2.2.2.3 Microsatellite PCR and analysis 

All PCRs were done in a total volume of 10 μl, with ca. 20 ng genomic DNA as a 

template. The chemistry used was either EuroBio DNA Polymerase and the 

corresponding buffers, or the Qiagen Multiplex PCR kit (Hilden, Germany) as 

suggested in the instructions. The primer oligonucleotides were obtained from 

Metabion (Martinsried, Germany), and in a few cases from Sigma (Munich, 

Germany). The primers were labeled with the fluorescent dyes HEX, FAM and TET, 

enabling the analysis on an MegaBACE automated capillary sequencer (Amersham, 
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USA) for size determination. To this end the PCR reaction was diluted 1:20 and one 

μl was mixed with 15 μl water containing ET550 ROX size standard.  

 

2.2.2.4 Analysis of the microsatellite data 

Raw sequencer data was manually allele typed in the Genetic Profiler program 

(Amersham, USA). 

The program MS analyzer (Dieringer and Schlötterer 2003) was run on the raw data 

of the microsatellite allele sizes. It calculates various parameters, among them the 

heterozygosity and the variance in repeat number of each locus and population. The 

Hardy-Weinberg exact test was performed using the Genepop software (Rousset 

2008). 

An allele sharing tree was calculated with the program ‘neighbor’ available in the 

Phylip package (Felsenstein 1989) on the basis of distance data calculated by MS 

analyzer and visualized with the ‘tree explorer’ program, part of MEGA (Tamura, 

Dudley et al. 2007). 

To find selective sweep candidate loci, the lnRH values were calculated as a measure 

of relative variability levels, after Kauer et. al. (2003). The lnRH statistic when 

calculated for a range of neutrally evolving microsatellite loci follows a normal 

distribution. Thus, the values for all loci within a given comparison were Z-

transformed and tested whether they conformed to a normal distribution by the 

Shapiro Wilks test, performed in the Statistica software package (StatSoft, USA). The 

95% confidence interval for this data set ranges from -1.96 to 1.96, and values outside 

of this interval are significant at the 0.05 level. 

All raw data and input files used for MS analyzer are available in the digital 

supplement. 
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2.3 Results 

2.3.1 Properties of duplicated gene dataset 

Using the procedure detailed earlier, 1628 two-member gene families, or duplicate 

gene pairs, were found. The ratio of synonymous changes per synonymous site (KS) 

was calculated for all pairs, the distribution is shown in Figure 4.  

 

 
Figure 4: KS distribution of 1131 gene pairs 

 

The majority of the duplications are young, with a KS value of between 0 and 0.5. 

Another peak of duplication lies around a KS of 2. A linear accumulation of silent 

substitutions makes it possible to calculate the age of the duplication event (Lynch 

and Conery 2000). Assuming an average mutation rate of 4*10-9 per base pair per 

year in the mouse (Waterston, Lindblad-Toh et al. 2002), this translates to an age of 

these events of 250 Myr (2 / 4*10-9 / 2). (A similar rate, 3.06*10-9, has been found by 

Nachman et al. (Nachman 1997)). The same pattern, with many very young 

duplications and a peak of duplication at a more ancient time, was found in other 

studies using human gene families (Gu, Wang et al. 2002; Cotton and Page 2005). 

The time estimates of the wave of duplications are much higher than found here, 550 

and 500 Myr for both studies, respectively. However, the method used to infer age in 

these studies is fundamentally different from the one used above. In both cases 

neighbor-joining trees of gene families with sequence data in various vertebrate 

species are used to map duplication events to the vertebrate phylogeny. Using 
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speciation events, whose age is known from the fossil record, as calibration points the 

age of duplications is determined from the phylogenetic interval it falls into. 

 I found similar distribution patterns for the KS of duplicated genes in various 

mammal species, Xenopus, and chicken (data not shown). 

The origin of the subspecies is estimated to have occurred less than one million years 

ago, that of M. spretus less than two million years (Guenet and Bonhomme 2003). 

The so far unexplained phenomenon of the overrepresentation of genes in the age 

class around 250 Myr (KS of 2) does thus not affect the young duplicate pairs 

analyzed here. 

 

In order to restrict the analysis to young duplicates, only those with a KS of 0.1 (10 

Myr) or less were selected; this restriction reduces the dataset to 157 gene pairs, 

excluding genes with a KS value of zero. They were classified as retrotransposed or 

duplicated by other mechanisms through the absence or presence of introns in one of 

the genes. Of the 157 genes, 129 lack introns and thus likely arose through 

retrotransposition. A great majority of the retrotransposed genes are located on 

different chromosomes from their corresponding gene, as opposed to those pairs 

duplicated by other mechanisms (Table 1). 

 
Table 1: Chromosomal location of duplicate pairs by duplication mechanism 

 same chromosome different chromosome 
Retrotransposed 9 118 

Other dupl. mech. 12 10 
 

2.3.2 Microsatellite screen for selection 

Microsatellites with di-, tri-, and tetra-nucleotide repeats were selected for typing. The 

mean heterozygosity was compared among the types, to ensure no repeat type is much 

more monomorphic than others, making it unsuitable for selection tests (Figure 5). 

There are no significant differences between the heterozygosities when tested with an 

ANOVA (p = 0.2). 
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The heterozygosity was also averaged over the four different subspecies. The 

heterozygosity means over the subspecies show similar values, with Mus spretus 

having the least genetic variation (Figure 5), but the differences are not significant 

when tested with an ANOVA (p = 0.34).  

 

  
 

 

General population genetic parameters derived from the microsatellite data are 

presented in Table 2. The M. m. castaneus subspecies sample shows the highest 

heterozygosity as well as variance in repeat number, which is expected under the 

assumption that a large fraction of the animals from this subspecies represents the 

Figure 5: Mean heterozygosity of the different microsatellite repeat types. n is 36 

for di-, 8 for tri-, and 25 for the tetranucleotide repeats, all (sub)species data is 

pooled. 

 

Figure 6: Average expected heterozygosity for each of the subspecies. cas: M. m. 

castaneus; dom: M. m. domesticus; mus: M. m. musculus; SP: Mus spretus 
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most ancestral population, the one from India (46 of 58 total) (Din, Anand et al. 

1996). The expected heterozygosity is significantly higher than the observed 

heterozygosity in all but one case, as has been found previously in a similar study 

(Ihle, Ravaoarimanana et al. 2006). Ihle et. al. assume the reason for this difference is 

the social system of mice, which often inbreed within a deme. For this reason a 

similar sampling scheme was employed that aims to sample individual mice from 

single demes only, and the expected heterozygosity was used for further analysis, 

assuming all alleles are thus from a panmictic pool. 

 
Table 2: Population genetic parameters of the subspecies studied 

  Heterozygosity   

 No. of 
animals observed expected 

Hardy- 
Weinberg 

exact test p 

Variance in 
repeat number 

Avg. no. of 
alleles 

M. m. castaneus 58 0.47 0.69 <0.001 18.26 12.36 
M. m. domesticus 116 0.39 0.62 <0.001 10.34 9.16 
M. m. musculus 71 0.43 0.59 <0.001 9.94 8.75 

M. spretus 46 0.40 0.53 <0.001 8.35 7.22 
 

An allele sharing tree was calculated for all individuals which is shown in Figure 7. 

All subspecies are clearly separated in the tree, and all individuals are grouped into 

populations according to their geographic origin. 

 
 

 

Figure 7: Allele sharing tree based on 69 microsatellites in the four (sub)species. 
Black circles, Kazakhstan; green circles, Czech Republic; open triangles, India; 
turquoise open triangles, Taiwan; black squares, M. spretus; black triangles, 
France; red triangles, Germany; purple triangles. Chicago. 
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The trend that the more ancestral populations have the higher heterozygosity and 

variability is also evident on the population level. Table 3 shows that the populations 

from Kazakhstan and India have the highest heterozygosity, and India a noticeably 

high difference between the expected and observed value, while it is low for the 

Kazakhstan data as compared to the other populations. 

 
Table 3: Population genetic parameters of the populations studied 

  Heterozygosity   

 No. of 
animals observed expected 

Hardy- 
Weinberg 

exact test p 

Variance in 
repeat number 

Avg. no. of 
alleles 

Kazakhstan 36 0.47 0.54 <0.001 7.84 7.06 
Czech Republic 35 0.38 0.54 <0.001 8.44 5.66 

Chicago 16 0.39 0.52 <0.001 5.1 4.03 
France 63 0.41 0.58 <0.001 8.65 6.74 

Germany 37 0.38 0.58 <0.001 9.1 6.48 
India 46 0.48 0.69 <0.001 16.91 11.59 

Taiwan 12 0.40 0.53 <0.001 13.48 4.68 
M. spretus 46 0.40 0.53 <0.001 8.35 7.22 

 

2.3.3 Screen for selective sweeps 

Tests for selective sweeps at microsatellite loci close to genes were conducted at two 

levels: The (sub)species level and the population level within a subspecies. Table 4 

shows the results for the former set of comparisons. Unfortunately, most of the 

potential sweep loci will have to be further analyzed with a larger dataset, as the lnRH 

statistic presumes a normal distribution, but only the M. spretus – M. m. castaneus 

data is normally distributed as tested by the Shapiro-Wilk W test.  
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Table 4: Number of potential selective sweep loci found in (sub)species comparisons 

  No. of loci significant* in  

Comparison A - B 
No. of loci 

tested 
Population 

A 
Population 

B 
Shapiro-Wilk W, 

p 

M. castaneus - M. m. domesticus 69 2 2 
0.94852, 
0.00656 

M. m. castaneus - M. m. 
musculus 69 2 3 

0.91595, 
0.00020 

M. m. domesticus - M. m. 
musculus 69 1 3 

0.91690, 
0.00021 

M. spretus - M. m. castaneus 67 3 1 
0.97759, 
0.26728 

M. spretus - M. m. domesticus 66 4 1 
0.95646, 
0.02100 

M. spretus - M. m. musculus 66 4 3 
0.90603, 
0.00011 

 
*significance is determined by a z-value above or below the 95% confidence interval of -1.96 - 
1.96 
 
 
All the loci found significant according to the criteria detailed earlier are listed with 

their expected heterozygosity, based on which lnRH was calculated, and variance in 

repeat number data in Table 5.  
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Table 5: Detailed variance data for all loci tested significant in the (sub)species comparisons 

For the Ensembl IDs, the leading ENSMUSG was omitted. For calculations of lnRH with heterozygosity 
values of zero in either subspecies, one ‘dummy allele’ was introduced. Negative lnRH values indicate a 
selective sweep in the species named first. A * indicates p values also significant when Bonferroni 
correction is applied. 

Gene name 
Ensemb

l ID lnRH 
 

p expected heterozygosity 
variance in repeat 

number 
M. m. castaneus –  
M. m. domesticus   

 M. m. 
castaneus 

M. m. 
domesticus 

M. m. 
castaneus 

M. m. 
domesticus 

2310037I24Rik 22992 -2.577 0.00494 0.178 0.761 0.590 117.963 
n/a 47509 3.054 0.00131 0.714 0.011 240.452 4.096 

BC003885 53740 2.720 0.00326 0.647 0.000 53.368 0.000 
n/a 58676 -3.298 0.00048* 0.222 0.887 2.158 195.309 

M. m. castaneus –  
M. m. musculus   

 M. m. 
castaneus 

M. m. 
musculus 

M. m. 
castaneus 

M. m. 
musculus 

Ndufs3  05510 2.830 0.00233 0.723 0.000 73.222 0.000 
Mterf 40429 -2.952 0.00159 0.130 0.768 9.262 33.960 

Ndufs5 43062 2.640 0.00415 0.682 0.013 15.640 0.240 
BC003885 53740 2.523 0.00587 0.647 0.000 53.368 0.000 

n/a 58676 -3.475 0.00026* 0.222 0.895 2.158 156.425 
M. m. domesticus –  

M. m. musculus   
 M. m. 

domesticus 
M. m. 

musculus 
M. m. 

domesticus 
M. m. 

musculus 
Ndufs3  05510 3.800 0.00007* 0.758 0.000 37.306 0.000 

NM_025868 27081 -2.405 0.00798 0.315 0.850 1.797 79.991 
Ndufs5 43062 2.903 0.00187 0.547 0.013 2.315 0.240 
Ddx3x 60628 2.611 0.00453 0.466 0.000 0.933 0.000 

M. spretus –  
M. m. castaneus   

 
M. spretus 

M. m. 
castaneus M. spretus 

M. m. 
castaneus 

Ndufs3  05510 -2.012 0.02275 0.000 0.723 0.000 73.222 
2410127L17Rik 24726 -2.759 0.00289 0.000 0.872 0.000 221.225 

NM_025868 27081 -2.371 0.00889 0.044 0.866 0.504 619.262 
Mrps33 44111 2.664 0.00391 0.509 0.000 10.843 0.000 

M. spretus –  
M. m. domesticus   

 
M. spretus 

M. m. 
domesticus M. spretus 

M. m. 
domesticus 

Ndufs3  05510 -2.012 0.02275 0.000 0.758 0.000 37.306 
2410127L17Rik 24726 -2.759 0.00289 0.000 0.823 0.000 47.424 

n/a 43192 -1.971 0.02442 0.078 0.818 3.226 157.237 
n/a 48989 2.144 0.01618 0.486 0.000 15.557 0.000 
n/a 58676 -2.947 0.00164 0.000 0.887 0.000 195.309 

M. spretus – 
M. m. musculus   

 
M. spretus 

M. m. 
musculus M. spretus 

M. m. 
musculus 

2410127L17Rik 24726 -2.260 0.01191 0.000 0.685 0.000 12.547 
NM_025868 27081 -2.619 0.0044 0.044 0.850 0.504 79.991 

n/a 43192 -2.584 0.00480 0.078 0.885 3.226 153.498 
Mrps33 44111 2.124 0.017 0.509 0.000 10.843 0.000 

n/a 48989 2.077 0.01786 0.486 0.013 15.557 0.416 
n/a 58676 -3.254 0.00058* 0.000 0.895 0.000 156.425 

Ddx3x 60628 2.346 0.00939 0.609 0.000 44.546 0.000 
 
 
Some of the genes analyzed are not listed in the Ensembl database with a name or 

function, but where this information is available it is listed in Table 6. Seven of the 
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genes listed are not associated with a know function yet, while the others are of 

different functional categories. Three genes are mitochondrial proteins, one factor that 

is involved in transcription, and one NADH dehydrogenase mitochondrial precursor, 

Ndufs3. Interestingly, another NADH dehydrogenase enzyme, Ndufs5, appears on the 

list, which is not the duplicate of Ndufs3, but belongs to a different pair. 

 
Table 6: Detailed information of loci significant at the species level and the associated genes 

Name Ensembl 
ID Function Chomo-

some 
MS 
type 

No. of 
alleles 

copy/ 
org 

retro-
ransp. 

Ndufs3 05510 
NADH dehydrogenase iron-
sulfur protein 3, 
mitochondrial precursor 

2 CAC 13 org yes 

2310037I24
Rik 22992 Uncharacterized protein 

C12orf41 homolog 15 GA 13 org yes 

2410127L17
Rik 24726 Uncharacterized protein 

C9orf41 homolog 19 TTTA 13 org yes 

NM_025868 27081 RIKEN cDNA 2310042M24 
gene 17 TC 39 copy yes 

Mterf 40429 
Transcription termination 
factor, mitochondrial 
precursor 

5 TTTG 8 n/a no 

Ndufs5 43062 NADH dehydrogenase 
(ubiquinone) Fe-S protein 5 16 GT 11 copy yes 

n/a 43192 n/a 8 AGT 21 copy yes 

Mrps33 44111 Mitochondrial 28S 
ribosomal protein S33 7 TAC 5 copy yes 

n/a 47509 n/a 19 TCC 9 copy yes 
n/a 48989 n/a 5 CT 6 copy yes 

BC003885 53740 Probable ribosome 
biogenesis protein RLP24 18 TG 7 copy yes 

n/a 58676 n/a 1 AT 26 copy yes 

Ddx3x 60628 
DEAD/H (Asp-Glu-Ala-
Asp/His) box polypeptide 3, 
X-linked 

X CA 15 org yes 

 

Almost all gene pairs were duplicated via retrotransposition, which makes it possible 

to determine if the gene associated with the microsatellite locus tested is the copy or 

original. The copies number twice as many as the original genes among the ones 

listed, but this difference is not significant considering the total number of genes 

tested (χ2 test, χ2  = 0.804 ; df = 1; p = 0.37). 

No pattern is evident in the characteristics of microsatellite loci in the list, neither in 

the type of repeat unit, as all types from dinucleotides to tetranucleotides are present, 

nor in the total number of alleles, which varies from 5 to 26. 
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The same microsatellite dataset was also analyzed grouped by populations within a 

subspecies rather than by (sub)species. Populations that belong to one subspecies and 

could be seen as ancestral and derived were compared, except for the comparison of 

Germany and France populations, for which none can be classified as ancestral. The 

results in Table 7 show the same range of numbers for selective sweep loci found, 

between two and five in a comparison. The highest number, four loci, were detected 

in the American population from Chicago. In contrast to the dataset divided into 

(sub)species, the population’s distribution of lnRH values are closer to being normal 

distributions, for India – Taiwan and Chicago – Germany the Shapiro-Wilk W test is 

even far from significant. The India – Taiwan comparison also stands out with the 

least number of sweep candidate loci.  

 
Table 7: Number of potential selective sweep loci found in the different population comparisons 

  No. of loci significant* in  

Comparison A - B 
No. of loci 

tested Population A Population B Shapiro-Wilk W, p 
Kazakhstan - Czech Republic 68 3 2 0.96139, 0.03375 

Germany - France 69 1 3 0.96407, 0.04462 
India - Taiwan 67 0 1 0.98877, 0.80988 

Chicago - Germany 68 4 2 0.98033, 0.35803 
 
*significance is determined by a z-value above or below the 95% confidence interval of -1.96 - 
1.96 
 

Table 8 provides the detailed variability data for the single loci in the population 

comparisons. On the population level there are fewer potential sweep loci with just 

one detected allele than was the case among the subspecies.  
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Table 8: Detailed variability data for all loci tested significant in the population comparisons 

For the Ensembl IDs, the leading ENSMUSG was omitted. For calculations of lnRH with heterozygosity 
values of zero in either subspecies, one ‘dummy allele’ was introduced. Negative lnRH values indicate a 
selective sweep in the species named first. A * indicates p values also significant when Bonferroni 
corrected. 

Gene name 
Ensembl 

ID lnRH 
 

p 
expected 

 heterozygosity 
variance in repeat 

number 
Kazakhstan –  

Czech Republic   
 

Kazakhstan 
Czech 

Republic Kazakhstan 
Czech 

Republic 
0610010K06Rik 29633 3.441 0.00029* 0.901 0.318 149.326 12.469 

n/a 35253 -2.305 0.01072 0.000 0.373 0.000 2.985 
2310037I24Rik 22992 -2.670 0.00397 0.055 0.598 1.753 32.276 

Cox5b 37359 -2.151 0.01578 0.000 0.339 0.000 2.715 
n/a 39078 2.027 0.02275 0.851 0.523 656.709 1125.381 

Germany – 
 France   

 
Germany  France Germany  France 

Tfb2m 26492 2.910 0.00181 0.902 0.327 88.827 45.599 
NM_025868 27081 -2.903 0.00187 0.029 0.575 0.514 3.469 

1700066M21Rik 38323 2.503 0.00621 0.757 0.138 37.476 4.711 
Txndc14  50043 2.581 0.00494 0.847 0.715 53.594 18.297 
India –  
Taiwan   

 
India Taiwan India Taiwan 

n/a 46849 2.206 0.01355 0.855 0.000 111.813 0.000 
Chicago –  
Germany   

 
Chicago Germany Chicago Germany 

Gps1 25156 1.985 0.025 0.484 0.083 3.871 0.666 
Tfb2m 26492 -2.182 0.01463 0.469 0.902 31.840 88.827 
Ndufs5 43062 -2.011 0.02275 0.000 0.591 0.000 2.242 

n/a 53178 -2.041 0.02275 0.618 0.866 13.594 109.879 
EG627927  56815 2.070 0.02222 0.280 0.000 3.899 0.000 

Mrps36 57202 -1.965 0.02442 0.397 0.861 27.145 65.897 
        

 

The lnRH statistic works only on the basis of heterozygosity, thus the allele frequency 

spectrum gives additional information for the evaluation of a locus as a selective 

sweep candidate, as a significant lnRH test may be based on very few alleles in both 

populations. For all loci in the above table these distributions are shown in histograms 

in Figure 8. 

Three of the comparisons only rely on two alleles and a very uneven frequency 

distribution of these, and two further comparisons consider only three and four alleles, 

respectively. The distributions also show that in many cases the sweep allele is at the 

lower size range of the microsatellite. This is clearly the case in eight of the presented 

loci, only one locus does not follow this trend with the sweep allele in the midrange 

(ENSMUSG00000050043). 
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Figure 8: Histograms of allele frequency distribution of the loci listed in Table 8. 

 

The set genes associated with sweep candidates in the population comparisons is, as 

the species comparison set, not biased toward any chromosomes, and mostly consists 

of genes duplicated through retrotransposition. The trend seen previously that more 

copy genes are singled out with the microsatellite screen is reversed in this dataset, 

eight original genes are opposed to five copies. 

The microsatellites themselves also show no bias towards any one repeat unit type or 

a pattern in the number of alleles. 
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Table 9: Detailed information of loci significant at the population level and the associated genes 

Name Ensembl 
ID Function Chomo-

some 
MS 
type 

No. of 
alleles 

copy/ 
org retrotr. 

Gps1 25156 
COP9 signalosome 
complex subunit 1 
(Signalosome subunit 1) 

11 GTTT 9 org yes 

0610010K06
Rik 29633 RIKEN cDNA 0610010K06 

gene 6 ATAA 28 copy yes 

n/a 35253 n/a 13 AAAC 8 org yes 
2310037I24 

Rik 22992 Uncharacterized protein 
C12orf41 homolog 15 GA 13 org yes 

Tfb2m 26492 

Mitochondrial 
dimethyladenosine 
transferase 2, mitochondrial 
precursor 

1 AG 24 org yes 

NM_025868 27081 RIKEN cDNA 2310042M24 
gene 17 TC 39 copy yes 

Cox5b 37359 cytochrome c oxidase, 
subunit Vb 13 GTTT 8 copy yes 

1700066M21
Rik 38323 

Adult male testis cDNA, 
RIKEN full-length enriched 
library, clone:1700066M21 

1 TG 20 org yes 

n/a 39078 n/a 11 TATC 24 org yes 

Ndufs5 43062 NADH dehydrogenase 
(ubiquinone) Fe-S protein 5 16 GT 11 copy yes 

n/a 46849 n/a 4 GGAA 18 copy yes 

Txndc14 50043 
Thioredoxin domain-
containing protein 14 
precursor. 

2 AC 15 org yes 

n/a 53178 
Mitochondrial transcription 
termination factor-like 
precursor 

5 AC 25 n/a no 

EG627927 56815 predicted gene, EG627927 X TGT 6 n/a no 

Mrps36 57202 Mitochondrial 28S 
ribosomal protein S36 13 AC 23 org yes 

 

 

2.3.4 Age of duplicates in correlation to lnRH 

It can be assumed that duplicated genes do not experience positive selection right 

after the duplication event, as the theories outlined in the introduction predict. The age 

of a duplication can be estimated by measuring the divergence between both copies at 

neutral sites, for example by measuring the number of substitutions per silent site 

(KS). The KS can then be compared to the lnRH value of the associated microsatellite. 

Figure 9 shows scatter plots for these data for all (sub)species comparisons. 
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Figure 9: Scatterplots of lnRH values against KS for all (sub)species comparisons 

 

Two observations can me made from these plots: First, loci with a high lnRH (>|1.96|) 

are indeed not present in the range of KS < 0.005, where very recent duplicates would 

be expected. Second, there seems to be a slight difference between original and copy 

loci. While a linear correlation is significant in only one comparison, and there only in 

the copy set of loci, the slope of the regression line is consistently higher for the copy 

genes in all plots (see also Table 10).  
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Table 10: Linear correlation between lnRH and KS of datasets divided by origial and copy genes 

Comparison Copy/original r2 r p 
M. spretus - M. m. castaneus copy 0.0045 0.673 0.719 

 original 0.0001 0.0087 0.9642 
M. spretus - M. m. domesticus copy 0.0188 0.1372 0.4618 

 original 0.0007 -0.0261 0.8952 
M. spretus - M. m. musculus copy 0.035 0.187 0.3139 

 original 0.0042 0.065 0.7425 
M. m. castaneus - M. m. domesticus copy 0.0118 0.1087 0.5604 

 original 0.0279 0.167 0.3864 
M. m. castaneus - M. m. musculus copy 0.1269 0.3562 0.0492* 

 original 0.0011 0.0326 0.8668 
M. m. domesticus - M. m. musculus copy 0.0191 0.1381 0.4589 

 original 0 0.0027 0.9889 
 
     r = correlation coefficient, significant p values are marked with a * 
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2.4 Discussion 

 

The screening of duplicated genes with linked neutrally evolving microsatellite loci in 

this study attempts to gain insight into the number and patterns of positive selection 

on these genes. The focus on relatively young duplicates allows drawing conclusions 

of the role of these genes in speciation processes. The first step is the assembly of a 

dataset of duplicated genes in the mouse genome, and the selection of young 

duplicates. 

 

2.4.1 Duplicate genes dataset 

The distribution of KS in the set of genes extracted from the database shows a pattern 

found previously in other studies, and one that is reproduced in other species. There is 

an excess of very young duplicates that have not yet diverged, either to gain new 

functions or toward pseudogenization. A second peak in the distribution is caused by 

a large number of duplicates with a KS of about two that are retained in the mouse 

genome. It is not known why this is the case, it has been suggested that a whole 

genome duplication event may be responsible (Gu, Wang et al. 2002; Cotton and Page 

2005). Alternatively, a wave of retrotransposition could cause a similar pattern, as 

was found in primates, although at a much younger rate (Marques, Dupanloup et al. 

2005). While those two possibilities concern the generation of duplicate genes, a 

higher conservation during the timeframe in question would yield the same results, 

even if the rate of duplicate generation would not change. Both these possibilities 

could be resolved by categorizing the genes by their mode of duplication, as can be 

most easily achieved by separating retrotransposed from the other duplicates. If the 

age distribution would be found the same for genes duplicated by different 

mechanisms, it would be evidence toward the higher rate of retention, rather than a 

higher rate of duplicate generation. 

The age estimated here for this duplication wave is only half that found by the two 

previous studies of Gu et al. and Cotton and Page. The dataset used herein cannot be 

used to analyze duplication age with the methods of those authors, as they require 

data from several species whose phylogeny includes speciation events of known age. 

Thus this study is limited to an age estimation based on the rate of synonymous 
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substitutions as suggested by Lynch and Conery (2000). However, this method has 

several drawbacks: It requires an unbiased sample of duplicates; this may not be given 

in this study because only duplicates were selected that are not part of a larger gene 

family, which may cause the set to include more young duplicates. Another problem, 

especially for the estimation of the duplication peak, is that the estimation from KS 

suffers a large inaccuracy due to saturation of substitutions when KS > 1 (Long and 

Thornton 2001). These problems may explain the large difference in time estimates. 

 

The vast majority of the young duplicate genes singled out for further study lacks 

introns in one copy, and has therefore been duplicated by retrotransposition. There are 

no numbers for the frequency of retrotransposition as opposed to other mechanisms 

available in the literature for comparison, especially because in this study I only 

analyzed the youngest age class. However, it has been estimated that 1% of human 

DNA has been retrotransposed to new locations, and retrotransposons are very 

abundant in all mammal genomes (Pickeral, Makalowski et al. 2000), so it seems not 

unlikely that the resulting intronless genes are so abundant.  

 

The detection of selection at duplicated genes was performed by evaluating the 

variability of microsatellite loci located in close proximity. The dataset was examined 

for various properties to exclude possible bias. 

To widen the range of available loci close to the target genes, microsatellites of 

different repeat unit length were included. Different mutation rates of the repeat types 

could influence their variability, as slow mutating loci would not recover as fast from 

sweep events as fast mutation ones, and thus have a lower heterozygosity. However 

an ANOVA analysis of the heterozygosity shows it is not biased toward any repeat 

unit class. 

 

The heterozygosity is one of the population genetic parameters that can give hints to 

population history, and is relevant when looking evaluating the significance of 

selective sweeps.  

When compared among the four subspecies, M. m. castaneus shows the highest 

heterozygosity. As this subspecies includes the most ancestral population, the mice 

from India, this result fits the expectation. M. spretus has the least variable 

microsatellites, which may be caused by a late colonization of Spain from Africa and 
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a population bottleneck. An additional explanation for the reduced heterozygosity 

may be a technical one: All microsatellite loci were searched in the M. m. domesticus 

genome based on their length, as long microsatellites are more informative. This locus 

selection can however lead to an ascertainment bias, as most microsatellite have fewer 

repeat units than the 9 to 25 units in the dataset used here. As the loci mutate 

independently in either species or population after the split, selectively choosing large 

microsatellites from one species will reduce the mean size of these loci in the other 

species (Ellegren 1995; Zhu, Queller et al. 2000). This in turn would lower the 

estimate for heterozygosity, as shorter microsatellites are less polymorphic. 

Nonetheless, any of these differences are not significant as estimated with an 

ANOVA and may not impact sweep detection. 

The fact that the observed heterozygosity is always lower than the expected one has 

previously been explained with the mating structure of the house mouse (Ihle, 

Ravaoarimanana et al. 2006), which breeds in demes in which frequent inbreeding 

may occur (Berry and Bronson 1992).  

 

An allele sharing tree provides an overview over the relationships of the different 

populations that were typed. All subspecies are well separated, and as expected M. 

spretus is most distanced from the other species. All populations are also clearly 

separated from one another, with only one exception: The Taiwan population is part 

of the cluster of M. m. castaneus individuals from India, while clearly separated on an 

extended branch. 

 

On the population level the presumably more ancient populations also have higher 

heterozygosity, except for the Chicago population whose value lies in between the 

French and German M. m. domesticus. 

 

2.4.2 Microsatellite screen 

The lnRH statistic was also calculated on data from (sub)species as well as population 

level data. For the (sub)species comparisons, the statistical prerequisite of normally 

distributed data is only met in one species pair, M. spretus – M. m. castaneus. A 

dataset of neutrally evolving loci to compare against was not available for most of the 

subspecies studied here. So, while the loci listed for the other comparisons cannot be 



A screen of duplicated genes for positive selection   

 39 

called significant according to the lnRH statistic as published (Kauer, Dieringer et al. 

2003), they are nonetheless interesting candidates. The large difference in 

heterozygosity between the loci identified provides ample grounds for the assumption 

of non neutral evolution in the less variable subspecies. 

Another caveat in the lnRH method as used here is that it statistically involves 

multiple tests, as all loci are tested against each other. This results in a Type I error 

especially for very large datasets. These false positive data could be avoided by use of 

statistical procedures such as the Bonferroni correction, however these methods are 

very conservative, and would in turn introduce a large Type II error in the dataset 

(Schlötterer and Dieringer 2005). If applied to the dataset, four and one loci in the 

subspecies and population comparisons respecitvely remain significant (see Table 5, 

Table 8). However, as a screening approach aims for a maximum number of 

candidates, Bonferroni correction was omitted in this study. 

The highest number of loci with strongly reduced heterozygosity is found in M. 

spretus, where it is often reduced to zero. While this could mean that the selection 

pressure on these loci is very high, there is no reason to assume that it should be 

noticeably higher in M. spretus than the other species over the range of significant 

loci. The demographic effects outlined before may also play an important role, as 

bottlenecks in the colonization history can skew the results (Haddrill, Thornton et al. 

2005).  

The functional analysis of the genes of interest is hampered by the little information 

that is often available on the genes, especially the copies, which are often annotated 

only based on automatic computer analysis or EST matching. 

What immediately catches the eye is that the list contains four genes that encode 

proteins that localize to the mitochondrion. Two of these are closely related, the 

NADH dehydrogenases Ndufs3 and Ndufs5. Both belong to the large protein complex 

located on the inner mitochondrial membrane named ‘mitochondrial respiratory chain 

complex I’ and are involved in electron transport. Ndufs3 is a candidate sweep locus 

in M. m. musculus as well as in M. spretus, Ndufs5 also in M. m. musculus. 

Mterf is a transcription terminator factor active in the mitochondrion, which is active 

in transcription from the mtDNA, and also has functions in mtDNA synthesis 

(Hyvarinen, Pohjoismaki et al. 2007). Mrps33 is involved one step further, as a 

ribosomal protein it has a function in protein synthesis, but also in the mitochondrion. 

BC003885 also has a function connected to ribosomes, but on the biogenesis side. 
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The last annotated protein, Ddx3x, is a DNA helicase involved in DNA transport in 

and out of the nucleus. 

The copies outnumber the original genes in the list, but this result is not significant. 

There may be reason to expect more copies than originals to be under selection, as 

retrotransposed genes will have to acquire a promoter from another gene after being 

retrotransposed. It may thus be more likely that the copy would be positively selected 

in this case, as it provides a novel expression regulation. If the selected difference 

between the copies is confined to the functional sequence, neither of the copies is 

more likely to be positively selected. The data presented here, however, does not 

allow a final conclusion to be drawn. 

 

The lnRH statistic was also calculated for comparisons within subspecies, with the 

intent on comparing an ancestral and derived population. The lnRH values of two of 

the four comparisons are normally distributed, and two fall only slightly below the 

0.05 significance level for the Shapiro-Wilk test of normality. The Indian mouse 

population does not have any locus with strongly reduced heterozygosity when 

compared to the mice from Taiwan, and the reciprocal comparison yields only one. 

This may reflect that these two populations are not as well separated from each other, 

as was also seen in the microsatellite sharing tree. 

 

Microsatellite loci can become significant in an lnRH comparison even if they are 

present in only very few alleles, which makes it worth to look at the allele 

distribution. Indeed five loci are only represented by three or two alleles, which 

reduces the likelihood that the loci have undergone a selective sweep. 

Another very consistent patter concerns the loci with many alleles: The ‘sweep allele’ 

seems to be confined to the lower end of the size range in almost all cases. This is 

explained by the mutation characteristics of microsatellites: The mutation rate is 

inversely correlated to the number of repeats, and the more stable alleles are the 

smaller ones. 

 

The list of sweep candidate genes on the population level also contains mitochondrion 

associated genes: the aforementioned Ndufs5 and Mrps36, and additionally the gene 

Tfb2m, a transcription factor that regulates mitochondrial gene expression, and an 

nameless gene that is the duplicate of Mterf. Mterf is a mitochondrial transcriptional 
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termination factor and significant in the M. m. castaneus – M. m. musculus subspecies 

comparison, but on the population level its duplicate shows significance within M. m. 

domesticus, between the Chicago and German populations. 

 

As mentioned before, the evolutionary forces that act on duplicated genes change over 

time after the birth of the gene copy. To find out how the age of the duplication relates 

to the possible positive selection indicated by a high lnRH value, those two variables 

were plotted against each other. The KS between duplicates is used here to infer age, 

which may not be correct in all cases (see next chapter). 

No significant linear correlation was found between the two parameters for either 

original genes or the copies. Considering the models for gene duplication described 

earlier, it is not expected that a newly copied gene or its original counterpart is under 

positive selection right away, with the possible exception of the case that a higher 

expression level through two copies is positively selected. Indeed there are no genes 

with a high lnRH in the class of gene pairs with KS smaller than 0.01. 

Also, this study does not test whether the gene copies are functional, which would 

require additional experiments which test for transcription and translation of the genes 

in a way that can differentiate between copies. Experiments regarding the first step, 

transcription, have been performed in our group (Bilkovski 2006). The expression 

profiles of four gene pairs were assayed using the Pyrosequencing technique. In two 

of there pairs, no changes in expression level could be observed between gene copies. 

The two other gene copies though have tissue specific elevated expression levels as 

compared to their ancestors. One of the two is Ndufs5, which was found to be under 

selection in this study, its expression is high in the lungs and spleen. 

While expression is no proof that a gene is functional, it is a prerequisite, and 

especially tissue specific expression may be a basis for adaptation. To further pursue 

the question of functionality, the genes would have to be analyzed on the protein 

level. 

 

2.4.3 Conclusions 

In this study I attempt to find duplicated genes that underwent a selective sweep to 

infer positive selection. Genes among the young duplicates that come under positive 

selection in one mouse subspecies or population are likely to contribute to the 
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speciation process, if they gain a new function only in one population and degrade in 

the other. 

Such candidates for selective sweeps were found in all comparisons conducted with 

the criteria used. However, this screen can only provide candidates which show the 

greatest potential of positive selection among the loci tested. More experiments must 

be performed on these candidates to reach more definite conclusions for two reasons. 

The limited dataset analyzed here does not provide the statistical power to show 

selective sweeps with high reliability, especially because a comparison dataset of 

neutrally evolving loci is not available. Also, it was not tested if all of the genes in the 

study are active and expressed, or present in all species or populations. 

Nonetheless this screen provides a good basis for further study of duplicated genes in 

a speciation context in the house mouse model system. 
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3 Estimation of duplication age 

3.1 Introduction 

The composition of the list of genes to be analyzed in the previous chapter relies on 

the number of synonymous changes per synonymous site, KS, to estimate young 

duplicates. It is assumed that this value will correlate with the age of the duplication 

event, and increase in time dependent on the mutation rate. Another way to estimate 

the time at which the duplication event has taken place is to find out which mouse 

species has both gene copies. If some species do not have both, but more recent 

species do, the duplication event can be placed between two nodes of the species tree. 

In this study I will examine the relationship of KS and the duplication age estimated 

from absence and presence in different mouse species. 

 

3.2 Materials and methods 

3.2.1 Animal material 

All experiments are based on genomic DNA of several mouse species: M. caroli, M. 

famulus, M. macedonicus, M. specilegus, M. spretus, M. m. castaneus, M. m. 

molossinus, M. m. domesticus and M. m. musculus. In addition, a C57Bl6 inbred strain 

animal was used as a positive control.  

The three M. musculus subspecies are represented with three individuals each from 

different populations: M. m. domesticus with mice of the Germany, France and 

Chicago populations; M. m. musculus with mice from Kazakhstan and Czech 

Republic; M. m. castaneus with mice from India and Taiwan. Details about these 

populations are given in 2.2.2.1. M. spretus was also represented with three 

individuals, for all other species only one sample was available. 

Genomic DNA of M. caroli, M. famulus, M. macedonicus, M. spicilegus was 

provided by the GPIA laboratory in Montpellier. 

 

3.2.2 Selection of genes 

Duplicate gene pairs to test were selected form the dataset described in 2.3.1. They 

were picked based on their KS values, to include young and older duplicates, 20 genes 
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from the microsatellite screening dataset were tested, and 10 additional genes with a 

KS ranging from 0.16 to 1.38. All genes are retrotransposed, as it is necessary that no 

or little flanking sequence is copied from the original locus. 

 

3.2.3 PCR assay for absence or presence of genes 

To asses the time of origin of a duplication a PCR strategy was devised to detect 

whether a duplicated gene was present in the different mouse species. This strategy is 

based on the fact that retrotransposed genes are inserted randomly in the genome and 

the flanking sequence differs from the sequence surrounding the original gene. 

Figure 10 shows a schematic overview of the PCR primer design. Three primers are 

needed to obtain a result that includes a control if no duplicated gene is present in any 

species tested. As shown, one primer is placed in the region upstream of the gene, and 

another one in the gene itself. A successful amplification with this primer set yields a 

product of the size x as denoted in the figure. This product will not be amplified if the 

gene is not present; however, a third primer is added to the reaction, labeled rev K+ in 

Figure 10. This primer binds in the noncoding genomic sequence downstream of the 

putative duplicate, which results in a product of the length y1 plus y2, should the 

duplicate be absent. Primers were designed such that the amplicon generated by 

primers fwd and rev has a different size to the added y1 and y2 sizes. Theoretically, 

primers fwd and rev K+ may give a PCR product that includes the whole gene, but in 

practice this is unlikely due to the large size of the genes. 

 

 
Figure 10: PCR strategy to detect absence or presence of genes. Arrows denote primer binding regions. 

 

fwd rev rev K+ 

x 

y1 y2 

gene 



Estimation of duplication age   

 45 

For a subset of the primer sets, the forward primer was labeled with a fluorescent dye, 

fam or hex, to enable detection of the PCR products on a capillary sequencer. All 

primers are listed in supplement 2. 

All PCR reactions were carried out with the Qiagen (Hilden, Germany) Multiplex 

PCR Kit according to the instructions, primers were ordered from Metabion 

(Martinsried, Germany). 

 

3.2.4 Analysis of PCR assay 

PCR products were either analysed on an agarose gel, or were diluted and analyzed on 

a ABI 3730 capillary sequencer. In the latter case the resulting data files were 

analyzed with the GeneMarker program (SoftGenetics, State College PA, USA). 

The PCR results for each sample were classified into four categories: Those that 

yielded no product (no result), those with a product of size x (present), those with a 

product of size y1 plus y2 (absent), and inconclusive results (inconclusive). The latter 

category includes all samples in which both products were detected, or only products 

that differed from both the expected amplicon sizes.  

The gene was classified as present in a given species or subspecies when two of the 

three individual DNA samples available for the three M. musculus subspecies were 

assigned to the ‘present’ category. The same scheme was followed for the absence of 

the gene copy. 

To estimate the time of the duplication event, the duplication was mapped on the 

phylogenetic tree calculated by Guenet et. al. (2003).  

 

3.3 Results 

Not all genes tested yielded results that could be used to estimate the age of the 

duplication. Eleven sets of diagnostic PCR results were precise enough to be 

analyzed, the remainder did not yield any product or product of the wrong sizes in 

some or most of the species. If it was not possible for a number of the ancestral 

species to infer absence or presence, the dataset was discarded. Seven of the 

duplicates that could be analyzed were young genes from the microsatellite dataset, 

and four were of those with higher KS added to the analysis. The results for nine genes 

are shown in Figure 11 as colored labels on the phylogenetic tree. 
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The duplicates vary very much in their distribution among the species. Two are 

present only in M. m. domesticus, while others could be detected in all species. Two 

genes are not depicted in Figure 11, Ensembl genes ENSMUSG00000055936 and 

ENSMUSG0000006270, they were also found in all species.  

 
Table 11: KS value and age as estimated from absence and presence in the species 

Gene Ks est. age (mio years) 
ENSMUSG00000044111 0.00912 0.6 
ENSMUSG00000046153 0.0106 2.5 
ENSMUSG00000060552 0.016 >3 
ENSMUSG00000027081 0.01614 0.7 
ENSMUSG00000043062 0.0179 0.6 
ENSMUSG00000047509 0.01836 2 
ENSMUSG00000037359 0.02311 0.6 
ENSMUSG00000047168 0.16782 3 
ENSMUSG00000049635 0.20561 2 
ENSMUSG00000006270 1.261 >3 
ENSMUSG00000055936 0.615 >3 
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Figure 11: Absence or presence of retrotransposed genes in mouse species. The gene is present in species 

colored green, absent in those colored red. Blue signifies inconclusive data, black no data. Grey species were 

not available for testing. 

 

In Figure 12 the data is plotted in a scatter plot, two genes (ENSMUSG00000055936 

and ENSMUSG0000006270) with KS values higher than 0.6 are not included. The 

data points form three distinct groups; four genes of low KS cluster around 0.5 million 

years age, three of the same KS range are older by estimated age, and two genes with 

the much higher KS are an estimated three and two million years old. 
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The genes ENSMUSG00000055936 and ENSMUSG0000006270 have the highest KS 

values of the loci tested here, and are also found in all species, so the estimated age is 

higher than 3 million years. 

 
Figure 12: Plot of KS against the estimated duplication age for nine genes. 

 

Due to the low number of data points, and the difficulty in making judgments of the 

precision of the estimated duplication age, no statistical analysis was performed. It is 

nonetheless evident that three loci deviate from the expected linear correlation of age 

with KS. 

Some properties of those three genes are listed in Table 11. The name of the original 

genes are given, as the copies are not annotated with name. In all cases the original 

and retrotransposed genes are found on different chromosomes. 

 
Table 12: Details of three 'outlier' genes 

Gene Name or org. Chr. location org / copy Size of gene (bp) 
ENSMUSG00000060552 Ddx3x X / 6 168 
ENSMUSG00000046153 Ndufs3 2 / 11 792 
ENSMUSG00000047509 Lztfl1 9 / 19 900 
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3.4 Discussion 

The PCR assay method itself does not have a high rate of success. It is problematic 

because two of the primers bind in non coding sequence, and they have to bind in 

several different species for which no sequence data is available.  

The age estimates performed by placing the origin of a duplication between two nodes 

of the phylogenetic tree is not a precise method. The range of time between two nodes 

of the tree is large, and correct dating also depends on the accuracy of the divergence 

times calculated when constructing the phylogenetic tree. However, realistic time 

estimates in years are not necessary to compare the KS and duplication time 

relationship, as long as the values among lineages are consistent. 

Even without tests for statistical significance three gene copies stand out from the set 

tested. While they have the same KS as other genes in the set, they are present in many 

more or all species tested, and are thus old duplications. The expectation is that the 

synonymous sites should evolve linearly with time depending on the mutation rate, 

these genes do not fit that pattern. 

One reason for this could be gene conversion, an event during DNA repair that leads 

to DNA transfer from one locus to another homologous locus. The requirement for 

gene conversion seems to be a very high sequence similarity over a stretch of about 

200 bp in mammals, and the region affected is rarely larger than 1 kb in mammals 

(Chen, Cooper et al. 2007). Thus, the genomic size of the genes’ coding regions 

would allow for gene conversion. However, the retrotransposed gene copies studied 

here are not on homologous chromosomes. The vast majority of reported cases of 

gene conversion happen either between homologous chromosomes, or are 

intrachromosomal (Chen, Cooper et al. 2007). Interchromosomal gene conversion has 

been found only rarely, one example is the human von Willebrand factor gene (Gupta, 

Adamtziki et al. 2005). Even though rare, this type of gene conversion could explain 

the data. 

The percentage of genes that show the unusual pattern can not be estimated from the 

results here, as the method most likely introduces a bias towards gene copies that have 

not changed much in their history: If the reverse primer, which has been designed to 

fit sequence from M. m. domesticus, does not bind in the gene in more ancestral 

species, the data can not be used and is discarded. 
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To confirm these results and potentially make out characteristics shared by the genes 

that lie outside of the expected correlation more data is needed. But whatever the 

mechanism is, the fact that KS does not necessarily reflect the age of a duplication is 

important to regard in surveys that target young duplicates specifically, or try to make 

inferences from patterns or trends involving KS. 
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4 Analysis of Dnahc8 

4.1 Introduction 

Genes that cause hybrid incompatibility between different species have been termed 

‘speciation genes’. Only few of such genes are know, which makes it necessary to 

analyze more such examples in order to answer basic questions about speciation. One 

of these questions is whether the genetic incompatibilities are based on coding 

changes, or changes in expression. 

To answer this question for one hybrid incompatibility gene, Dnahc8, sequence based 

tests for positive selection and tests of expression in different species are conducted in 

this study. 

 

4.2 Materials and Methods 

4.2.1 Animal material 

 

Live mice of the species M. caroli, M. macedonicus and M. spicilegus were obtained 

from the GPIA laboratory at the University of Montepellier II. They are derived from 

wild animals and bred under laboratory conditions for several generations. The M. 

castaneus animal originates from Taiwan, also bred in the lab for several generations 

from mice provided by A. Yu, Taiwan University. The M. m. musculus mouse 

sequenced is of a population caught in Vienna. The population sample of M. m. 

domesticus mice consists of animals from western Germany (see Table 15), bred for 

one generation in the lab, with the exception of D3, D4, D6, TP 5.1 and TP17_2, 

which were taken directly from the wild. Care was taken to sample different demes 

when catching the mice, as described in (Ihle, Ravaoarimanana et al. 2006). 

The populations sample of M. spretus consists of mice trapped in the wild in central 

Spain, as described previously (2.2). 
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4.2.2 Sample preparation and Sequencing 

 

The Dnahc8 gene was sequenced in various mouse species and population samples. 

For the different mouse species as well as the M. m. domesticus population sample the 

whole gene or large parts thereof were sequenced, for the M. spretus population 

sample single exons were chosen for sequencing. Due to the large size and complex 

exon structure of the gene, in the first two cases the sequencing template was cDNA 

produced from RNA extracted from testis tissue. 

 

4.2.3 RNA and cDNA preparation 

 

Mice were killed through gassing with carbon dioxide in a closed container. The 

animals were then dissected with minimal time delays and the organs frozen in liquid 

nitrogen immediately after removal. 

Total RNA extraction was performed using Trizol reagent (Invitrogen, Carlsbad, 

USA) and LiCl precipitation after the manufacturer’s recommendations. RNA 

samples were dissolved in water and stored at -80ºC.  

For RNA to be used as a real time PCR template, a DNA digestion step was carried 

out, using the product DNA-free (Ambion, Austin, USA) as per the manufacturer’s 

manual. The RNA was controlled for degradation by analysis with an Agilent 

BioAnalyzer 2100 and the corresponding RNA Nano chip and kit (Agilent 

Technologies, Santa Clara, USA). 

Between 1 and 2 µg total RNA were transcribed into cDNA with the enzyme and 

reagents supplied in Invitrogen’s Superscript III kit, following the accompanying 

protocol. Random hexamer primers were chosen for the reactions (Fermentas, 

Vilnius, Lithuania).  

 

4.2.3.1 PCR amplification and sequencing 

For all PCR reactions the Multiplex PCR kit (Qiagen, Hilden, Germany) was 

employed. Cycling conditions were choosen to represent the manufacturers 

recommendations and standard protocols (Sambrook and Russell 2001). 
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To facilitate sequencing of the Dnahc8 gene with a minimum of PCR reactions, the 

gene sequence was subdivided into 5 regions of about 3 kb to be amplified. Sufficient 

primers were designed to bind within those fragments to enable gapless sequencing of 

the PCR products. All primer sequences can be found in supplement 3. The 

sequencing reaction was performed using the BigDye Terminator kit 3.1 (Applied 

Biosystems, Foster City, USA) according to the instructions provided, and then run on 

an ABI 3700 DNA sequencer. If any one sequencing reaction failed, another PCR was 

performed using appropriate primers to generate a smaller product for repeated 

sequencing. 

For all sequence editing and assembly the Codon Code Aligner software package 

(CodonCode Corp., Dedham, USA) was used. 

 
Table 13: Sequence data for different species 

Dnahc8 single individuals sequenced from cDNA 
Species Individual Origin bp sequenced % of gene 

M. m. musculus SPB 17.2 Vienna 14197 100 
M. m. castaneus tai 5.2b Taiwan 14197 100 
M. macedonicus XBS strain Bulgaria 12487 88 

M. spicilegus ZRU strain Ukraine 12509 88 
M. spretus 3.4a Spain 14197 100 
M. caroli KTK strain Thailand 12997 91 

 

As shown in Table 13 the Dnahc8 gene could not be sequenced fully in all species 

this was attempted for. Three species lack data, although this missing sequence is 

localized only at the 5’ and 3’ ends of the transcript, there are no gaps in the sequence 

obtained. 

 
Table 14: Sequence data from a M. spretus population sample 

Population sample sequencing in M. spretus 
Fragment No. of individuals bp sequenced bp coding sequence 

Exon 2 48 354 354 
Exon 50/51 48 424 282 

Exon 65 12 227 227 
Exon 78 48 293 195 

total - 1298 1058 
    

tsc2 48 269 0 
 

Table 14 lists the sequence data obtained from the DNA based sequencing of the M. 

spretus population sample. The Exon 50/51 fragment contains two exons and one 
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intron in one PCR product that was sequenced in one run. As a control, noncoding 

sequence from another region of chromosome 17 was sequenced, an intron of the tsc2 

gene. 

All single individual M. m. domesticus mice for which a large proportion of the gene 

was sequenced is shown in         Table 15. These sequence data do contain gaps, for 

some parts sequence could not be obtained due to problems in the PCR or sequencing 

reactions. 

 
        Table 15: Sequence data from a M. domesticus population sample 

Population sample sequencing in M. m. domesticus 
Individual origin bp sequenced % of gene 
TP3a_2 Germany 10797 76 
TP4a Germany 11155 79 
TP5.1 Germany 10767 76 

TP7/10_B Germany 10869 77 
TP17_2 Germany 11239 79 

D3 Germany 11047 78 
D5 Germany 11211 79 
D6 Germany 11087 78 

 

 

4.2.4 Polymorphism analysis 

Sequence diversity measures that were determined include π, which is based on the 

average pairwise difference between sequences (Tajima 1983) and θW, which is based 

on the number of segregating sites (Watterson 1975). The Tajima’s D statistic 

measures the difference between π and θW; negative values indicate an excess of rare 

mutations, a pattern consistent with a selective sweep, and positive values indicate an 

excess of high frequency mutations, consistent with balancing selection (Tajima 

1989).  

These data (π, θw and Tajima’s D) were calculated using the DnaSP program in 

version 4.20 (Rozas and Rozas 1999). To generate input files, the sequences were 

aligned with the muscle alignment program (Edgar 2004) at standard settings. In the 

case of the M. spretus exon sequences, all sequences were trimmed to restrict them to 

the coding parts. All sequences were converted to random haplotypes, by generating 

two copies, each with the corresponding base of a heterozygote base in the sequence. 
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For all analysis of divergence between M. spretus and M. m. domesticus the published 

Dnahc8 sequence (NCBI Refseq NM_013811) was used to represent the latter 

species. 

 

4.2.5 Phylogenetic tree 

A phylogenetic tree was calculated using Bayesian inference as implemented in the 

program MrBayes (Ronquist and Huelsenbeck 2003). The dataset described in Table 

13 was clipped to the shortest sequence in order to make the set homogenous in 

length. MrBayes was run using a GTR model, and a rate variation gamma distribution 

with a proportion of invariable sites; the default values for the priors were not 

changed. 

 

4.2.6 Detection of positive selection 

4.2.6.1 McDonald Kreitman Test 

The McDonald Kreitman test was performed on the M. m. domesticus population 

sample sequence data (Table 13). This test contrasts synonymous and 

nonsynonymous substitutions within and between species (McDonald and Kreitman 

1991) to detect traces of positive selection. Under the assumption that mutations are 

neutral, the ratio of the synonymous and nonsynonymous changes should remain 

constant over time. This is the null hypothesis, it is tested with a chi square test if the 

classes of polymorphisms are independent from another. 

The second species used for the test was M. spretus (individual 3.4a, bred for several 

generations in the lab from a wild mouse). The test was computed with the DnaSP 

program. 

 

4.2.6.2 KA/KS based methods of detecting positive selection 

The gene sequences from the various species studied were analyzed with respect to 

the synonymous (KA) and nonsynonymous (KS) substitution rates and the comparison 

among those rates. In order to analyze sequence data in this respect, alignments must 

be correctly representing the codon structure of the sequences. To achieve this, gene 
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sequences were translated to amino acid sequences in the correct reading frame 

through DnaSP. The alignment was calculated by muscle, and then applied to the 

DNA sequence data by the program tranalign, part of the EMBOSS package (Rice, 

Longden et al. 2000). 

All KA/KS calculations were performed using the yn00 program that is part of the 

PAML package and implements the method of Yang and Nielsen (Yang and Nielsen 

2000).  

Two maximum likelihood (ML) methods were employed to analyze all the sequences: 

The Method of Yang and Nielsen works by comparing two codon substitution 

models, one that is neutral and does not allow sites to have values for ω (= KA/KS) 

greater than one, and a selection model that does not restrict ω for a class of sites 

(Yang 1997; Yang, Nielsen et al. 2000). 

Models M1 and M2, and M7 and M8, respectively, were compared as implemented in 

the PAML 4 program (Yang 2007). M1 allows 2 ω site classes with ω0 < 1 estimated 

from the data or ω1 = 1, while M2 allows an additional ω value to be estimated from 

the data which may be >1. M7 fits ω to 10 site classes between 0 and 1 following a 

beta distribution, whereas M8 adds an additional site class which may be >1 to be 

estimated from the data. As these models are nested, the significance of the 

comparison can be evaluated using a likelihood ratio test.  

Furthermore, single lineages were tested for signatures of selection using branch 

models. Three different methods were used: A free ratios model, comparisons of 

model M0 to runs of the same model with foreground and background branches, and 

the branch-site model A. The free ratios model allows all branches to have a separate 

ω, it is compared to model M0 (Yang and Nielsen 1998). The degrees of freedom in 

the χ2 test used to compare these models depends on the number of branches tested, 

and was 10 in this case. The branch model was used in a way that allows two groups 

of branches to have a separate ω each, and can be compared to the same model with 

an invariable ω. Model M0 was used for this analysis, and a likelihood ratio test with 

one degree of freedom was applied. 

The ‘updated’ branch-site model A was utilized as described in (Zhang, Lu et al. 

2005). Here, two foreground and background models are compared, but in the null 

model one site class is fixed to ω = 1. As recommended in the PAML documentation, 

a χ2
 test with one degree of freedom was used to find significance. 
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4.2.7 Quantitative real time PCR and analysis 

Quantitative real time PCR (q-rtPCR) is a method to quantify cDNA through 

measurement of the DNA amount during the cycles of a PCR reaction.  

The SYBR Green method of rtPCR in the form of the QuantiFast SYBR Green PCR 

Kit (Qiagen, Hilden, Germany) was chosen to assay transcript abundance. Here, DNA 

amount is measured by the fluorescent marker SYBR Green, which intercalates into 

the double helix. 

Reactions of 10 μl total volume were set up as described in the accompanying manual, 

with primer concentrations of a final 1 pmol/ul. The template cDNA was diluted 

20fold before use in the reaction. The primers for Dnahc8 were designed to lie in 

regions without differences between the species assayed (see supplement for 

sequences). The regions amplified are shown in Table 16. The glyceraldehyd-3-

phosphate dehydrogenase gene (Gapdh) served as an endogenous control; the primers 

used here amplify a 158 bp fragment. Primer sequences are supplied in supplement 5. 

 
Table 16: Fragments amplified in rtPCR 

fragment name 
length 

(bp) 
position in gene (bp) 

hst2 6.7 2 131 1514 
affy2 131 13762 

5.1r/5.2f 140 11766 
 

All reactions were performed in triplicate and the values averaged across triplicates. 

In the case that the standard deviation for any triplicate set was above 0.3, one outlier 

value was removed to get a standard deviation lower that threshold. If the was not the 

case, the data point was omitted. The average CT value of the endogenous control was 

subtracted from the corresponding CT value of the Dnahc8 probes to yield the ΔCT 

value. 

For a visual overview, all expression level data were grouped into four categories (see 

results) according to the following ΔCT value ranges: <2 strong, 2-10 medium, 10-14 

weak, and >14 absent. 

Statistical tests such as ANOVA and Tukey’s HSD post hoc test were calculated with 

ΔCT as the dempendent variable. The calculations were performed with the Statistica 

software (StatSoft Inc, USA). 
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4.3 Results 

4.3.1 Phylogenetic tree 

To characterize the evolutionary dynamics of Dnahc8 within the genus Mus, the 

entire coding region was sequenced for several mouse species: Mus mus musculus, M. 

m. castaneus, M. macedonicus, M. spicilegus, M. spretus, and M. caroli. Published 

sequence data from M. m. domesticus were also included in the analysis (Fossella, 

Samant et al. 2000).  

To assess the relationship of the sequences between species, a phylogenetic tree was 

constructed using Bayesian inference. The resulting tree (Figure 13) shows the same 

topology as expected for the species involved as shown previously (Figure 3). This is 

also true for the relationship of M. spretus to M. caroli, if rat sequence is included as 

an outgroup in the tree calculation (data not shown). 

 

 
 

 

 

4.3.2 Nucleotide polymorphism  

To assess variability in Dnahc8, nucleotide polymorphism data were collected for a 

M. m. domesticus and a M. spretus population. Table 17 shows the summary data for 

5 concatenated exon sequences of Dnahc8 and a non coding control region (tsc2) 

from M. spretus for comparison. Two values of nucleotide diversity are reported: π 

which is based on average pairwise difference between sequences and θW, which is 

based on the number of segregating sites (Watterson 1975; Tajima 1983). Compared 

Figure 13: Phylogenetic tree generated with MrBayes using the 

Dnahc8 sequence data. 
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to the control region, the nucleotide diversity value π is high in Dnahc8, but both 

values are based on only a few segregating sites in the sequences. There are few 

nonsynonymous polymorphisms; only one was present in the 831 bp region analyzed.  

Tajima’s D statistic is calculated to detect deviations from neutral evolution; the value 

calculated here for Dnahc8 approaches significance, but the power of the test is 

reduced by the low number of synonymous segregating sites. The high value for D in 

both fragments sequenced suggests that there has been a decrease in population size, 

or balancing selection acting on both genes. Comparable population data is not 

available for other loci in M. spretus, thus it is not possible to speculate whether high 

values of D are the result of demography or selection.  

 
Table 17: Polymorphism data for M. spretus. π and θW are shown for synonymous and nonsynonymous sites. 

Concatenated data from five exons (see Table 14). 

     π per site θW per site Tajima’s D 

n (alleles) base- 
pairs 

segregating 
sites 

syn. poly- 
morphisms 

repl. poly-
morphisms syn nonsyn syn nonsyn syn 

Dnahc8 

92 831 4 3 1 0.00589 0.00026 0.00292 0.00031 1.8582 0.1 > p > 0.05 

tsc2 intron 

92 269 1 1 na 0.00181 
 

0.0073 
 1.7216 p > 0.1 

 
Table 18 shows an analysis of a subset of sequence data that is available for both M. 

spretus and M. m. domesticus. Both measures of nucleotide diversity are higher in M. 

m. domesticus than in M. spretus: π is about twice as high and θW is 4.5 times higher. 

While this subset of sequence data enables a direct comparison between the two 

species, it reduces the number of segregating sites on which calculations are based 

even more. Tajima’s D is slightly negative in M. m. domesticus as opposed to the 

positive value in M. spretus, although neither value is significantly different from 

zero. 
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Table 18: Comparison of polymorphism data from M. spretus and M. m. domesticus. Concatenated data 

from Dnahc8 exons 50, 51, 66 and 78 (see Table 14). 
      π per site θW (per site) Tajima's D 

 Chromosomes 
base- 
pairs 

segregating 
sites 

synonymous 
changes 

replacement 
changes 

syn nonsyn syn nonsyn syn 

M. domesticus 16 702 4 4 0 0.00672 0 0.00748 0 -0.31696 p > 0.1 

M. spretus 24 702 1 1 0 0.00325 0 0.00167 0 1.59613 p > 0.1 

 

 
Table 19: Polymorphism data for M. m. domesticus. Π and θ are shown for synonymous and 

nonsynonymous sites. 

     π per site θW (per site) Tajima's D 

Chromosomes basepairs 
segregating 

sites 
synonymous 

changes  
replacement 

changes syn nonsyn syn nonsyn syn 

16 9725 65 41 24 0.00579 0.0083 0.00566 0.00096 0.0999 p > 0.1 

 

For M. m. domesticus, more sequence data are available than for M. spretus, including 

a larger region of Dnahc8 sequenced in this study and sequence data from other loci 

from the literature.  

 

Table 19 shows polymorphism data for a large part of the Dnahc8 in a population 

sample of M. m. domesticus. Nucleotide diversity values, both π and θW, are similar to 

those observed for M. spretus (Table 17). These statistics were measured previously 

in populations of mice from the same areas in Germany and also France for several 

autosomal loci (6 genes, 3135 total basepairs) with values very much higher than the 

ones reportet here: 0.00126 and 0.0026 respectively (Baines and Harr 2007). 

However, these data were gathered from non coding sequence, a comparison even 

with synonymous variation may not be applicable.  

Tajima’s D statistic is slightly negative and not significantly different from zero. 

 

4.3.3 Divergence in functional regions 

The main focus of this study is the comparison of full sequences of Dnahc8 between 

M. m. domesticus and M. spretus. The identity between the Dnahc8 sequences 

between species is 98.6 % on the nucleotide level and 98.4 % on the amino acid level. 

The gene sequence in M. spretus is missing two complete codons, making the protein 
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lack serine 1036 and threonine 1061 of the M. m. domesticus ortholog. Table 20 lists 

divergence data for the full gene sequence as well as only the annotated functional 

domains. The overall nucleotide divergence (K) is 0.0138, and the KA/KS ratio is low 

(0.2671), consistent with purifying selection.  

Dnahc8 contains several domains that can be found in other proteins of its family, 

shown in Figure 14. At the N-terminus lies a proline rich domain 34 amino acids in 

size which has not been functionally characterized. The dynein heavy chain N-

terminal region 1 is thought to enable dimerization among dyneins, and thus may be 

important for the correct function of the protein (Habura, Tikhonenko et al. 1999; 

King 2000). The second N-terminal domain does not have any known function, while 

the ATPase domain is a member of the large superfamily of AAA+ proteins. These 

are ATPases which can give the energy gained by ATP hydrolysis off in the form of 

mechanical energy, and in the case of dynein facilitate the motor function of the 

protein. The heavy chain is common to all dynein proteins and can bind microtubules 

and also contains ATPase activity. 

 

 
Figure 14: Annotated protein domains in the Dnahc8 gene. 

 

Divergence data were compared among protein domains (Table 20Table 20). Both 

amino acid deletions in M. spretus do not lie within an annotated protein domain, but 

in a region of low hydrophobicity. While the divergence and KA/KS ratio are similar 

in the concatenated domain regions, single domains differ somewhat. The ATPase 

region and also the heavy chain domain have lower KA/KS ratios, which could be 

expected for such widespread and conserved parts of the protein. The N-terminal 

domain 1 stands out with a higher KA/KS ratio, which suggests there is less constraint 

on that part of the protein. 
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Table 20: Divergence (K) data between M. m. domesticus and M. spretus in annotated functional domains of 

Dnahc8. Data is shown for single domains as well as for all domains concatenated. 

 basepairs variable 
sites K syn. 

changes 
nonsyn. 
changes KA KS KA/KS 

whole gene 14190 196 0.0138 118 78 0.0078 0.0293 0.2671 
proline rich 132 1 0.00758 0 1 0.0221 0 na 
n-terminal 
domain 1 1680 28 0.01667 13 15 0.0125 0.0286 0.437 

n-terminal 
domain 2 1236 17 0.01375 10 7 0.0084 0.0259 0.3239 

ATPase 432 4 0.00926 4 0 0 0.039 0 
dynein heavy 

chain 2088 29 0.01389 23 6 0.0041 0.039 0.1046 

total domains 5568 79 0.01418 50 29 0.0072 0.0333 0.2175 

4.3.4 Tests for positive selection 

To test for positive selection on Dnahc8, codon based maximum likelihood methods 

were applied to the dataset including sequence data from various mouse species. Here 

the implementation of the method in the program PAML was used. 

For the site specific tests, models M1a and M2a, as well as M7 and M8 were 

compared and tested for significant differences with a χ2 test (Table 21). No evidence 

for positive selection could be found, the lnL values of the corresponding models are 

almost equal. 

 
Table 21: Results of site model comparisons in PAML. 

length (codons) ω overall Model lnL p 

4733 0.14793 M1a -22452.834 
1 

  M2a -22452.834 

  M7 -22452.829 
1 

  M8 -22452.828 

 

While no sites could be shown to have traces of selection among the group of mouse 

species, single branches may evolve under positive selection as compared to others. 

Branch models available in PAML are able to test this. The free ratio model estimates 

ω values for all branches in the tree, as shown in Figure 15. In the area of interest, the 

branch connecting M. caroli to the other species and the one at the base of M. m. 

castaneus and M. m. musculus have a higher ratio than most others. Whether those 

differences in ω are significant can be determined by comparing different models as 

follows. 
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Figure 15: Species tree with ω values obtained in a PAML free ratio model. Branch length correspond to ω, 

also given in labels. 

 

The first test in Table 22 is the free ratio model. It is compared to the standard model 

M0, which assumes a fixed ω over all branches. The difference is not significant, and 

it cannot be concluded that the lineages have different ω ratios. As big differences 

between lineages are required to get significance in the free ratio test, single branches 

or parts of the tree were also tested separately. Figure 16 shows a graphic overview of 

the comparisons performed, the corresponding data is given in Table 22. The main 

interest in this study lies on the question if the M. m. domesticus or M. spretus 

lineages evolve fast or under positive selection. To clarify this issue, PAML models 

with the branches leading to M. m. domesticus as the foreground branches were run 

and compared to the model that assumes only one ω. The same test was applied to the 

branch leading to M. spretus; all branches tested are labeled in the tree in Figure 16. 

The likelihood ratio test for branches A,B and C is highly significant, as it is for 

branches A and B when tested separately, which confirms that ω is significantly 

different from all other branches. The foreground ω for the combined three branches 

is 0.3057, branch A has the highest ω (0.5333) when tested separately in accordance 

with the high ω obtained for this branch in the free ratio model. The ω for branch D 

leading to M. spretus is not significantly different from the rest of the tree. 

Although the site model did not detect selection at any sites, it is possible that 

adaptive evolution occurred only during some time and only in single lineages. The 

branch-sites model tests this, and was run for the branches A, B and C. The results in 
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Table 23 show that likelihood ratio test is significant, but the ω in the foreground in 

the 2a and 2b classes is below one.  

 
Table 22: Results of branch model comparisons in PAML. 

 ω / selection parameters background ω foreground ω lnL p 

M 0 0.14793 - - -22461.7 
0.9955 

free ratio - - - -22423.8 
      

M 0 0.14793 - - -22461.7 
<0.0001 

branches ABC, M 0 - 0.1075 0.3057 -22450.4 
      

M 0 0.14793 - - -22461.7 
0.0061 

branch A, M 0 - 0.1387 0.5333 -22457.12 
      

M 0 0.14793 - - -22461.7 
0.0034 

branch B, M 0 - 0.1291 0.2726 -22457.5 
      

M 0 0.14793 - - -22461.7 
0.0583 

branch C, M 0 - 0.1406 0.2941 -22459.1 
      

M 0 0.14793 - - -22461.7 
0.6029 

branch D, M 0 - 0.1452 0.1703 -22461.6 
 
Note: Significant p values printed in bold. 

 
 
 
Table 23: Results of branch-sites model comparison. Site class ω not shown for null model. 

 site class 0 1 2a 2b lnL p 

sites branch model A,  
branches ABC 

proportion 0.30257 0.39934 0.12850 0.16959 
-24477.1 

<0.0001 
background ω 0.95189 1 0.95189 1 
foreground ω 0.95189 1 0.95189 0.95189 

sites branch model A1,  
branches ABC, null model  -23911.2 
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Figure 16: Illustration of the foreground branches used in PAML models. 

 

With population data available it is possible to calculate the McDonald-Kreitman test 

(McDonald and Kreitman 1991) as a second approach to detect adaptive evolution. 

This test compares the number of nonsynonymous and synonymous sites within and 

between species, and the results for a comparison of a M. m. domesticus population 

sample with M. spretus as the between species data are listed in Table 24. The test 

suggests positive selection if the ratio of nonsynonymous to synonymous substitutions 

is significantly lower within species than between, but this is not the case for the data 

analyzed here. 

 
Table 24: Results of McDonald-Kreitman test. 

 Divergent 
sites 

Polymorphic 
sites 

Nonsynonymous 30 31 
Synonymous 66 43 

Ratio 0.45 0.72 
Fishers exact test p 0.1968 
Notes: Population sample M. m. domesticus, n=20; 
compared with M. spretus, n=1. basepairs in test: 11217. 

 

4.3.5 Expression 

Expression levels of Dnahc8 were determined in eight tissues for seven mouse 

species. Expression results, using the Δct measure, are reported in Figure 17. The 

Dnahc8 transcript is most abundant in testis tissue in all species tested. The apparent 

strong expression value in M. m. musculus spleen is caused by an anomalous value in 

that tissue for the Gapdh housekeeping gene used for normalization, the ct value for 

Dnahc8 falls into the same range as the other spleen data (see supplementary data). 
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For all species, expression is significantly higher in testis than in all other tissues (p < 

0.05, ANOVA and Tukey HSD test). 

 
 

Table 25 reports the expression results, separated into four categories and color coded. 

The species are sorted according to their phylogenetic relationship (Figure 13). The 

changes in expression are consistent in some tissues; the expression in spleen and 

muscle is ‘medium’ in all three subspecies of the M. musculus group, but weak in all 

other species. M. macedonicus and M. spicilegus have the same expression profile and 

are closely related; together with M. spretus and M. caroli they don’t express Dnahc8 

more than weakly in any tissue other than testis. 

 
Table 25: Tabular representation of rtPCR results, grouped in 4 categories. 

 Liver Testis Kidney Brain Spleen Heart Muscle Lungs 
musculus weak strong weak  strong weak medium weak 
castaneus weak strong weak medium medium weak medium absent 

domesticus medium strong weak weak medium weak medium weak 
spicilegus absent strong absent weak weak absent medium absent 

macedonicus absent strong absent weak weak absent weak absent 
spretus weak strong medium weak weak absent weak absent 
caroli absent strong weak weak weak absent weak absent 

 

Figure 17: rtPCR for Dnahc8 in different tissues. Shown are Δct values, a higher value indicates lower 

expression. 
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In M. spretus, as in the other species, Dnahc8 expression seems to be mostly testis 

specific, but not as high as in M. m. domesticus. For further clarification of this 

comparison, several individuals from both species were tested in a further experiment; 

these data are shown in Figure 18.  

 

 
Figure 18: Dnahc8 expression in M. m. domesticus and M. spretus as Δct values. Data for two primer pairs 

are shown, hst and affy. Sample size n = 4 for spr, n = 5 for dom data points, respectively. Mann-Whitney U 

tests for both comparisons dom hst vs. spr hst and dom affy vs. spr affy p = 0.01430, respectively. 

 

 
Two different primer pairs were used to measure transcript abundance. Detected 

expression level differs between the two primer pairs tested, even in the same 

individual; the ΔC values obtained with the hst primer pair are about 4 cycles lower in 

both groups of individuals, indicating a much higher expression level than inferred 

from the affy primers. Nonetheless, the differences between species are highly 

significant for both primer sets used, and average about 3 ΔCT steps, corresponding to 

an eight fold higher expression in M. m. domesticus. 
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Discussion 

In this study, I analyzed sequence variation and expression of Dnahc8, a potential 

‘speciation gene’ with a well-characterized role in sperm motility, in a range of mouse 

(sub)species. To find out if coding changes might contribute to the incompatibility 

this sequence data was used to test for evidence of posititve selection. Additionally, 

expression levels in different mouse species were assayed to investigate the 

alternative possibility that regulative changes play an important part in the hybrid 

sterility. 

The phylogenetic tree that was constructed gives some information on the 

evolutionary history of Dnahc8. The topology of the tree is consistent with published 

phylogenetic relationships between mouse species (Lundrigan, Jansa et al. 2002). This 

indicates that the gene has not taken an evolutionary path that deviates very much 

from the species tree, as might be expected, for example, if there had been extensive 

introgression between species.  

 

4.3.6 No evidence for selection on Dnahc8 from population genetic 

data  

We compared patterns of polymorphism between Dnahc8 and other loci to investigate 

evidence for selection; drastically reduced variation or a significant Tajima’s D might 

indicate a recent selective sweep 

The interpretation of the M. spretus polymorphism data is hampered by the lack of 

comparison data from other loci for this species. The single locus sequenced for 

comparison, Tsc2, is not very long, and may also be under selection. Also for this 

reason, the high Tajima’s D, which approaches significance, can not be classified as 

being caused by balancing selection, because a population size decrease is an 

alternative explanation for this result. Although sequence data from additional loci are 

required to assess genome-wide patterns, the similarly high Tajima’s D value for Tsc2 

hints that a demographic effect is likely. (Tajima 1989). 

A more comprehensive data set was analyzed for M. m. domesticus; the entire coding 

sequence of Dnahc8 was determined here for 10 individuals and compared to 

published sequence data for 7 loci from the same populations (Baines and Harr 2007). 

Nucleotide diversity in Dnahc8 is about two times as high as for the 7 loci described 
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by Baines and Harr. A reason may be that the population I sequenced consists of mice 

from two populations analyzed separately in the previous study. All data presented 

here come from this combined set of individuals, thus diversity may be expected to be 

higher. Tajima’s D is close to zero, thus there is no evidence for positive selection 

from these population genetic data. One caveat in this approach is that the Baines and 

Harr data is based on noncoding sequence, which is compared to data from 

synonymous sites of coding region of Dnahc8, which may not be data of equal 

evolutionary constraint. 

 

4.3.7 Amino acid divergence in known functional regions of dnahc8 

To evaluate whether incompatibility could be caused by amino acid sequence 

divergence we compared divergence and KA/KS among annotated functional regions. 

In M. spretus, two amino acids of dnahc8 are deleted that are present in all other 

species sequenced. In a protein as large as dnahc8, the absence of a few amino acids 

may not have any impact on folding or function, especially as the deletions are not 

located in an annotated domain. The deletions are in a hydrophobic region, which 

suggests they lie within the protein structure, and may not contact interaction partners 

of the dynein chain. But as there is no detailed functional information available for 

this region of dnahc8, any inference of the potential functional consequences of these 

deletions remains speculative. 

Overall, the KA/KS ratio between M. m. domesticus and M. spretus is rather low, 

consistent with purifying selection on dnahc8. Comparing divergence among 

functional domains provides a more detailed picture of selection acting on dnahc8.  

Both the N-terminal domains have a ratio that is higher than the values for the overall 

gene sequence or any of the other domains, which indicates that they are less 

constrained. Unfortunately not much is known about the function of these domains, 

except that N-terminal domain 1 may be involved in dimerization, and is described as 

a flexible protein domain (Habura, Tikhonenko et al. 1999; King 2000). It is possible 

that the interaction is not so optimized as to require a very strict amino acid sequence, 

or that the interaction partner changed over time. Nothing is known of the function of 

the second N-terminal domain. 

The ATPase that is part of Dnahc8 belongs to the AAA+ family of protein domains. 

This family occurs in a wide variety of proteins in animals (Patel and Latterich 1998; 
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Frickey and Lupas 2004). It provides an integral part of the dynein function, 

mechanical movement through ATP hydrolysis, and is strongly conserved in dynein 

heavy chain proteins (Chapelin, Duriez et al. 1997). Thus, it is not surprising there are 

no amino acid replacements between M. spretus and M. m. domesticus in this highly 

conserved domain. Similarly, there is a low KA/KS ratio for the heavy chain domain, 

which also contains ATPase activity. 

 

4.3.8 Tests for positive selection based on nonsynonymous vs. 

synonymous substitution rates 

Two additional methods were applied to test for evidence of positive selection on 

dnahc8. Codon based maximum likelihood models were applied to test for positive 

selection acting on specific amino acid sites or in specific lineages. No evidence for 

positive selection was found using models allowing variation among sites. However, 

these comparisons test for repeated selection on codons in the whole species tree. As 

the sterility phenotype shows when M. spretus alleles are present in a M. m. 

domesticus background, selection could be taking place in only one of the involved 

lineages. The free ratio model indicated that the at least one of the branches leading to 

M. m. domesticus has a relatively high ω value. Additional model comparisons 

isolating these branches confirmed that the ratio for these branches is significantly 

different from the remaining tree. When all branches leading to M. m. domesticus are 

tested against the remainder of the tree, the average ω is higher than the background, 

but a value of 0.3057 does not indicate selection, but may provide some evidence for 

relaxed constraint as compared to M. spretus.  

The branch-sites model provides the possibility to find selection on only single 

lineages. It is significant difference with the branches leading to M. m. domesticus as 

foreground, but the ω is not higher than one, and the test does not provide evidence 

for positive selection. 

 

4.3.9 Expression 

Genetic incompatibility can not only be cause by changes in the amino acid sequence 

of a gene product, but also in differences in gene regulation and expression between 
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species. To test for such differences, expression was measured and compared among 

species. 

It has previously been reported that Dnahc8 is expressed in a testis specific manner in 

M. m. domesticus (Fossella, Samant et al. 2000). This result could be confirmed not 

only for M. m. domesticus, but also for all other species of mouse tested. There are no 

striking differences in expression among the other species tested, but the differences 

that are present seem to group according to the evolutionary tree of the mouse species. 

Whether the expression of Dnahc8 in the organs other than testis is functional in any 

way cannot be determined, but is not unlikely that a gene which is expressed in one 

tissue so much stronger has no essential function in the others. 

The finding here that Dnahc8 is expressed in M. spretus testis contradicts the results 

from Fossella et. al., which report little or no Dnahc8 expression in M. spretus testis 

based on northern blots. Here, expression of Dnahc8 in M. spretus testis was 

confirmed in a second rtPCR experiment with multiple individuals. One primer pair 

was chosen to bind in the area that served as a probe binding region in the northern 

blot experiments reported by Fossella et. al. to obtain comparable results. This 

experimental design rules out transcription effects such as alternative splicing as 

explanations for the contradicting results. Although there is evidence for Dnahc8 

expression in M. spretus testis tissue, there remains a significant difference in 

expression strength when compared to M. m. domesticus. Thus, differences in dnahc8 

expression between M. spretus and M. m. domesticus may be related to the sterility 

phenotype. 

Although results from both probes used here indicate a similar expression difference 

between M. m. domesticus and M. spretus, they show very different amplification 

levels in this experiment. This difference could stem from several causes. Primer 

binding, and thus amplification, may not be of the same efficiency for both pairs. 

Also, the two regions that served as templates are located far from each other, with 

the ‘hst’ region being located towards the 5’ end of the transcript. Throughout the 

effort to sequence the gene from cDNA, I noticed difficulties amplifying or 

sequencing the 5’ end of the transcript. It is possible that this part is degraded faster 

than the rest, or is not transcribed to DNA as efficiently during the cDNA synthesis 

reaction. If that were the case it would explain that the ‘hst’ rtPCR reports a lower 

amount of transcript than the ‘affy’ region that is located closer to the 3’ end. Despite 

these technical issues, both probes indicate a consistent difference in transcript 



Anaysis of Dnahc8   

 72 

amounts between M. spretus and M. m. domesticus. This difference in expression was 

independently confirmed by microarray experiments (data not shown). 

 

4.3.10 Conclusions with respect to speciation 

The incompatibility of the M. spretus Dnahc8 gene on the M. m. domesticus 

background that results in hybrid sterility may have its cause at one of two different 

levels: amino acid sequence divergence resulting in a change in protein function, or 

regulatory divergence resulting in a change in protein expression. 

Protein function could be affected in two aspects. For one, the M. spretus allele could 

have lost its function altogether. This option seems very unlikely, because in this case 

one would expect the sequence to acquire mutations, such as nonsense mutations, that 

indicate that the protein is not under selection anymore. Furthermore, it has previously 

been shown that the phenotype caused by the M. spretus allele of Dnahc8 in the M. m. 

domesticus background does not resemble a complete loss of axonemal dynein, but 

rather points to a disturbed flagellar developmental process (Phillips, Pilder et al. 

1993; Pilder, Olds-Clarke et al. 1993). The other possibility is that interactions with 

other proteins are disrupted by incompatible amino acid substitutions. The fact that 

the N-terminal domain 1, which is implicated in protein interactions, seems to be 

under more relaxed constraint that other parts of the protein may be evidence for this 

alternative. However, the amino acid sequence identity between both species is quite 

high, and no significant evidence for selection was found. Of course, such an 

incompatibility cannot be excluded, as it is possible that only few or even a single 

change in sequence could cause a large change in function (Hughes 2007). 

 

The regulation of expression is the second mechanism that could potentially cause the 

incompatibility. I found large quantitative differences in Dnahc8 expression between 

M. m. domesticus and M. spretus. The six-fold lower expression in M. spretus 

compared to M. m. domesticus may be enough to prevent correct assembly of the 

sperm tail in hybrids. Also, the time window of Dnahc8 expression is very specific 

during sperm development (Samant, Ogunkua et al. 2002); strong changes in 

quantitative expression, may reflect differences in temporal regulation which could 

lead to deleterious effects. 
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Lower levels of expression of Dnahc8 in M. spretus suggest this protein is not as 

essential as in other mouse species, and it has thus been down regulated in expression, 

for example due to pleiotropic effects, or another gene that has taken over its function. 

A possible reason for this may be a different mating system: M. spretus has recently 

been shown to have some behavioral characteristics of a monogamous species 

(Cassaing and Isaac 2007). Sperm motility is know to be an important factor in sperm 

competition (Burness, Casselman et al. 2004; Gage, Macfarlane et al. 2004), so in a 

monogamous system the selective pressure on this trait may be reduced. 

A third characteristic in which Dnahc8 may differ between the two species is 

alternative splicing. Dnahc8 consists of a very large number of exons, thus a large 

number of different splice variants is possible, and indeed different mRNA products 

have been found in the 129sv laboratory mouse strain (Samant, Ogunkua et al. 2002). 

 

In summary, it seems more likely that the hybrid sterility caused by Dnahc8 is based 

on regulation of the gene rather than changes in the amino acid sequence in light of 

the data gathered here. To show this conclusively, however, further experiments that 

can test the mechanism in detail are needed. 
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Supplement 1: Primer sequences for microsatellite loci 

Gene 
Repe

at 
unit 

Repe
at 

no. 
Primer 

fwd  Primer 
rev  

amplic
on 

length 
ENSMUSG000000

05510 CAC 15 5510 fwd F ATTGCTCGAAGCAAAG
AACC 5510 rev F GAGAGGCGCACAGGAAA

TAG 401 

ENSMUSG000000
20163 GAG 10.7 20163 fwd 

H 
TGCCCTGTCAGAGTGT

GTTC 
20163 rev 

H 
CTGTGCTACACTCGCTCT

GG 212 

ENSMUSG000000
21243 TTG 12.7 21243 fwd 

T 
TGTGGTTTGAGTCCTTT

TTGG 
21243 rev 

T 
CCTCCTAGCTCCAGGGA

GAG 183 

ENSMUSG000000
21520 TG 24.5 21520-2 

fwd T 
GCAGGAAGACAGAGG

TGAGG 
21520-2 

rev 
GCTACTCAAATCGTCCCA

GC 440 

ENSMUSG000000
21741 GA 22 21741-2 

fwd T 
AAACAACGTTCTGGCA

TTTG 
21741-2 

rev 
GCCACAGGCTTTCTGTAA

GG 159 

ENSMUSG000000
21953 ATTT 10 21953 fwd 

T 
GAGAGCCATCAAAAGG

CAAG 
21953 rev 

T 
TGCAATCCTATGCCCTCT

TC 191 

ENSMUSG000000
22427 AC 16.5 22427 fwd 

H 
GCTAGAGATGTGTGGC

GACC 
22427 rev 

H 
TCTGTTTCTGGGGCTTGA

AC 235 

ENSMUSG000000
22992 GA 14.5 22992 fwd 

H 
TAGAGCGTGAAGAAGA

GGGC 
22992 rev 

H 
AAGACTGACCAACATTCA

CGG 228 

ENSMUSG000000
24121 

ACA
T 13 24121 fwd 

T 
AACAATTGGCCTAGTG

GCAG 
24121 rev 

T 
CTTCTCTTTATCCCCAGC

CC 237 

ENSMUSG000000
24726 TTTA 13.5 24726 fwd 

T 
GCTTGAGTTTGGTCCT

CAGC 
24726 rev 

T 
CTGTTCCTCTCTGAGCCC

TG 239 

ENSMUSG000000
25156 

GTT
T 9.3 25156-2 

fwd F 
TTCCACACAATGAGTG

CTGAG 
25156-2 

rev F 
ACTCCATTCTCGCTGGTG

TC 305 

ENSMUSG000000
25245 

AAA
T 9.5 25245 fwd 

T 
ATGCCACTTGGACATC

ATGG 
25245 rev 

T 
TGAAAGCTGGTGTTGTGA

GC 399 

ENSMUSG000000
26492 AG 19 26492 fwd 

H 
CCCTCTTCCTGCACAG

AATC 
26492 rev 

H 
AGCATTATTCAAAGGCGT

GG 416 

ENSMUSG000000
26844 GA 22 26844-2 

fwd F 
CCAGGGAATACCCATG

TTTG 
26844-2 

rev 
AGGTCACCTGTCCAGTGA

GG 369 

ENSMUSG000000
27081 TC 12 27081 fwd 

T 
GGTTCCCAGTTGGTGA

TCTG 
27081 rev 

T 
GGGATGGTTTACAGTGCA

GG 230 

ENSMUSG000000
29633 CA 12 29633-2 

fwd T 
TGGGAAGATGGGTAGT

CCTG 
29633-2 

rev 
TGAAGCAGGAGGACATTG

TG 386 

ENSMUSG000000
29918 AC 11.5 29918 fwd 

H 
ATGTCTTGGAACCAAC

TCCC 
29918 rev 

H 
TATGCCTTCCTGGGACAC

TC 427 

ENSMUSG000000
32889 TG 16.5 32889 fwd 

F 
TCCACTTGAGGCACTG

TCAC 
31146 rev 

F 
ATTATGAATGGGGGTAGG

GC 241 

ENSMUSG000000
34102 

ATA
G 14.5 34102 fwd 

F 
ATAAAGCCTCATGCCC

ACAG 
32889 rev 

F 
AGCCAACATGTAGGGACT

GG 396 

ENSMUSG000000
34499 GT 17 34499 fwd 

H 
CTCCGTTCTCTCATTG

GAGC 
34499 rev 

H 
TGAGGTCAATCCCTGGAA

TC 160 

ENSMUSG000000
35253 

AAA
C 11 35253 fwd 

H 
ACAGAGACCAAAGCCC

AGTC 
35253 rev 

H 
TGGTTTACAAAAGCAGGC

AG 231 

ENSMUSG000000
35692 TG 17.5 35692-2 

fwd H 
TCAGTGTTTGGAAATG

ACTTGC 
35692-2 

rev H 
GCCTAGTTGGCCATCACT

G 247 

ENSMUSG000000
35796 AC 20.5 35796 fwd 

H 
TCCCTGGATCACACTT

GTTG 
35796 rev 

H 
TCAAAGTGTGGGTGTGTT

GG 444 

ENSMUSG000000
36427 TG 20.5 36427 fwd 

T 
AGATGCTTTCCATGTCT

GGC 
36427 rev 

T 
TCCGAATAACTGAAAGAG

AGCC 244 

ENSMUSG000000
37359 

GTT
T 11 37359 fwd 

F 
TGGTTTACAAAAGCAG

GCAG 
37359 rev 

F 
ACAGAGACCAAAGCCCA

GTC 231 

ENSMUSG000000
38323 TG 11.5 38323 fwd 

H 
TTATCCAGGTCTGGGC

TGTC 
38323 rev 

H 
GGAGAGAAGTTCAAGGC

CAG 442 

ENSMUSG000000
39078 

TAT
C 17.8 39078 fwd 

T 
TGAGATGGGATCTTGC

TGTG 
39078 rev 

T 
TGTGCAAAGGCGTAAGTT

TG 196 

ENSMUSG000000
40429 

TTT
G 9.8 40429 fwd 

T 
TGTCCATCTCCTTACCA

GCC 
40429 rev 

T 
AGAGAATGTTCAAGCCCA

CC 184 

ENSMUSG000000
40621 TG 21.5 40621 fwd 

H 
CAGCCCTTTCTCGTTT

CTTG 
40621 rev 

H 
ATGTAGCCCGTGCAGAAC

TC 184 

ENSMUSG000000
41274 TG 19 41274 fwd 

T 
GTGAGAGGTGCAGAA

GAGGC 
41274 rev 

T 
GAGGAATGCCAGACAGG

AAG 180 

ENSMUSG000000
41418 

AGA
T 15.3 41418 fwd 

T 
TGTCTACCAGGAAAAG

CCAAG 
41418 rev 

T 
TATTGGCCTGGAGTAAGC

AC 366 

ENSMUSG000000
43062 GT 16 43062 fwd 

F 
GAACAAGGGGATGAAT

GGTC 
43062 rev 

F 
GCCACACCCACACCTTTT

AC 435 

ENSMUSG000000
43192 AGT 19.3 43192 fwd 

T 
TGAATGACTTCCCCAC

AATG 
43192 rev 

T 
TTTCAACTCTGTGGAGGT

GG 353 

ENSMUSG000000 TAC 13.7 44111 fwd ATGGGGGACTTTTGGG 44111 rev TTTCCTAATTTCTCACTTT 177 
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44111 H ATAG H CTGAGG 

ENSMUSG000000
44792 GT 15.5 44792 fwd 

H 
TGCTCTCCTGGACAAC

AGTG 
44792 rev 

H 
CCAAAGAGCAAGACAAAG

CC 387 

ENSMUSG000000
44795 AT 10.5 44795 fwd 

F 
GAAGCTCCTGCTCTGA

CCTG 
44795 rev 

F 
GAGAGCGCCCTCAGTAAT

TG 413 

ENSMUSG000000
45122 

AGA
C 11.5 45122-2 

fwd T 
CTCCCTTCTGAGGTGA

CTGC 
45122-2 

rev 
TGGCCTGTCCTGGAACTT

AC 354 

ENSMUSG000000
45609 

TAG
A 10.8 45609 fwd 

H 
GCCTTCAGGAAGGTAC

CAAG 
45609 rev 

H 
ATTGTGAAAGTCAGGGCC

AC 422 

ENSMUSG000000
46153 CA 18 46153 fwd 

H 
CCCTGTATTTAATGCC

CAGC 
46153 rev 

H 
GCCAGCCTAAAACTGGTG

AG 213 

ENSMUSG000000
46687 TG 12 46687-2 

fwd F 
ATATGGTGTGTGGCCC

TGTC 
46687-2 

rev 
GGCTCAATGGCTAAGAGC

AC 242 

ENSMUSG000000
46836 TG 11 46836 fwd 

H 
TTTACATTCCGAGCAG

GGAG 
46836 rev 

H 
TTCTGCAAGTTGAGCTGT

GG 200 

ENSMUSG000000
46849 

GGA
A 12 46849 fwd 

H 
GACAAGAAGGAGAGG

GGGAG 
46849 rev 

H 
ATCTGGCCACTTTGCTGA

AG 398 

ENSMUSG000000
47016 AC 20 47016 fwd 

F 
CAATTGTGTGGGAAGC

AAAG 
47016 rev 

F 
TGTTGGGAAGATAACTGC

TGG 197 

ENSMUSG000000
47509 TCC 13.7 47509 fwd 

T 
TGTCCATCACAGCGCT

CTAC 
47509 rev 

T 
GAAAAGCAGCCTACGTCA

CC 236 

ENSMUSG000000
47776 

AGA
T 16.5 47776 fwd 

H 
GTCTAGCACATGTGGG

GCTC 
47776 rev 

H 
CCCTAGAGATCCCAAGAC

CC 419 

ENSMUSG000000
48989 CT 13.5 48989 fwd 

F 
GTGGTCTGAAAGAGAA

CGGC 
48989 rev 

F 
ATTTGGACTCTGTGGGCT

TG 370 

ENSMUSG000000
49916 AC 19 49916-2 

fwd T 
GCATGTACAAGGCATA

GGGC 
49916-2 

rev 
AATCTGTCATTCCTTCCC

CC 187 

ENSMUSG000000
50043 AC 19.5 50043 fwd 

T 
TCTCATGTCTCTGACCT

CCC 
50043 rev 

T 
CCTCATCATGCCAATCAC

AC 434 

ENSMUSG000000
50383 

AAA
C 11 50383 fwd 

F 
TGCCAATATTTAAGGA

GGGC 
50383 rev 

F 
TTACATCCACGGAGACCC

TG 218 

ENSMUSG000000
51116 TG 18.5 51116 fwd 

T 
GGTATTGCTGGACCTT

CTGG 
51116 rev 

T 
AACCCCATCTCCTCACTT

CC 224 

ENSMUSG000000
53178 AC 19 53178 fwd 

F 
GAGGATCCTGATGTTC

TGGG 
53178 rev 

F 
AGGATGGCATCTTCCTTG

C 377 

ENSMUSG000000
53740 TG 10 53740 fwd 

T 
CTTCTCAACGAAAGCC

CAAG 
53740 rev 

T 
TTGCTGCTCAAAGGTAAG

GG 443 

ENSMUSG000000
56369 ATTT 11 56369 fwd 

T 
TTATTGGCCCTCTGTT

GGAC 
56369 rev 

T 
TACCTTGAATGCACTGGC

AC 410 

ENSMUSG000000
56663 

TGT
C 10.5 56663 fwd 

H 
TCTCACTGTGGCACTT

TTGC 
56663 rev 

H 
GCTCAACCACCTGTAGCC

TC 235 

ENSMUSG000000
56815 TGT 10 56815 fwd 

F 
TCTCTGTAAGAAGCGC

CTGC 
56815 rev 

F 
TATGGCAGTTGCTCACCT

TG 195 

ENSMUSG000000
56836 ACA 9 56836 fwd 

F 
TTCTGGCCATCATAAG

GCTC 
56836 rev 

F 
AAAGTCCCAAGTTCTGCT

GG 155 

ENSMUSG000000
57202 AC 15 57202 fwd 

T 
TTTCCATGCTGATTGTG

GTG 
57202 rev 

T 
TGCTTTTAACTCAGGGGT

GG 434 

ENSMUSG000000
57744 

AAA
C 10.8 57744 fwd 

H 
TGGTGCTTGCTTTTAAT

CCC 
57744 rev 

H 
GGAATGCCAGCTCTTCAG

AC 434 

ENSMUSG000000
57762 

GAA
A 17 57762 fwd 

F 
AATGGCTCACAGAGTC

AGGG 
57762 rev 

F 
TATTTCCAGCCTTTGGCA

AC 384 

ENSMUSG000000
58676 AT 12 58676 fwd 

H 
GTCCTTCCCCATTCTC

CTTC 
58676 rev 

H 
TGCCACGTGGTGATTAGA

AC 385 

ENSMUSG000000
58805 

AAA
C 10.8 58805 fwd 

H 
CTCTGAGTTCAAAGCC

AGCC 
58805 rev 

H 
TTCTCACGTGGTGTGAAT

CC 240 

ENSMUSG000000
59070 CA 15.5 59070-2 

fwd H 
GGAAAAGGTTTAGGGC

CATC 
59070-2 

rev 
TATCTCTGCACATTGCCT

GC 242 

ENSMUSG000000
59422 

ATA
C 11.5 59422 fwd 

T 
AACAAACCCTCACTGC

CAAC 
59422 rev 

T 
CAAGAGCATGAGAAGGA

GGC 423 

ENSMUSG000000
59792 

AGA
C 20.8 59792 fwd 

T 
CCAGATGTGGACCATT

AGCC 
59792 rev 

T 
GGTGACAGATGGTAGGG

TGG 406 

ENSMUSG000000
60552 

ACA
T 9.3 60552 fwd 

F 
AAGGGCCTCTGGCTCT

CTAC 
60552 rev 

F 
TCCTTTTCCCAAGGAATC

AG 372 

ENSMUSG000000
60628 CA 11.5 60628 fwd 

F 
CTGCCCTGACTTCAAA

CCTC 
60628 rev 

F 
AACTGGATCCAAATTCAA

TTCC 248 

ENSMUSG000000
61518 TG 10.5 61518 fwd 

F 
TGGAGCATGTGAGTCT

GGTC 
61518 rev 

F 
TATGAAGAAGATGGCTCC

CG 399 

ENSMUSG000000
62884 AC 11.5 62884 fwd 

T 
AAGCAAAACTGGACTC

GCTC 
62884 rev 

T 
CAGGTTATTCCCATGGTT

TTG 222 
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gene fwd primer  rev primer  rev K+  presence absence 

ENSMUSG00000047016 ap-47016-fwd TTAAGGACGGGAAGCGAAC ap-47016-int CCACTGTAGCTGGCTGCATA ap-47016-rev GACAAGTCCCCAAACAGATGA 202 283 

ENSMUSG00000056369 ap-56369-fwd AGACCAGGGAGGGGAAACTA ap-56369-int AACACGTCCTGGTCTCCAAG ap-56369-rev GGAAAGACAGAGGGAGGAAGA 333 460 

ENSMUSG00000052825 ap-52825-fwd CGCTGATGCAAGAGCCTAGT ap-52825-int GCGTCCACGTCTTTTTCTTC ap-52825-rev GAAATGGTCAGGGCACACTT 287 343 

ENSMUSG00000045122 ap-45122-fwd AAAGGCTCCCCTGCTTTTAG ap-45122-int ATTCGGGGTTGTTCTTGATG ap-45122-rev CAGCACCCAGTTGAAGAAAA 309 378 

ENSMUSG00000021741 ap-21741-fwd CCCATTGGACTTGCAAACTT ap-21741-int CCACTTTCGAAAACCTTCCA ap-21741-rev GGAATATTTTCACCATGCCACT 264 324 

ENSMUSG00000044111 ap-44111-fwd TTGCTCCAGTAAGCACTTGG ap-44111-int CTGGCCACTTCACCAAAGAT ap-44111-rev GCAGGCTGTGAGATACACTCC 255 335 

ENSMUSG00000060389 ap-60389-fwd ATGCCCGATTAAATGCAAAT ap-60389-int TGTGGCTTCACTACCTGCAC ap-60389-rev CAAATCAGTGAATCCAAGAAGG 250 326 

ENSMUSG00000046687 ap-46687-fwd TCTAGGGAAAGCCGTTCTGA ap-46687-int TCCCTGGAGTCCGTGTAGTC ap-46687-rev GCTCCTCCCCATCCTTTTT 207 306 

ENSMUSG00000047509 ap-47509-fwd CCTTACGGGAGGGGTATGAT ap-47509-int GGTGAAAGTCTCCTCCACCA ap-47509-rev CTGCACTGAATGTGGATTGC 203 345 

ENSMUSG00000037359 ap-37359-fwd AATGGCCTGGGATTAAAGGT ap-37359-int CCAGTAGCCTGCTCCTCATC ap-37359-rev TGCAGTCATTGAAAACCTCCT 223 282 

ENSMUSG00000046849 46849-fwd AACACAAATAAATCAGTAGCCTTCC 46849-rev TCAGACTGAGCATTCGCTTC 46849-K+ AATTCTGCCAATCCATGAGC 153 448 

ENSMUSG00000046153 46153-fwd CCTGTGTGAGACAGCAACAG 46153-rev AAGAGCCCACGACAACAGAC 46153-K+ CAGAGCTGCTGACAACGAAG 160 529 

ENSMUSG00000059422 59422-fwd CACCCACCCATCTGTACCTG 59422-rev GAGAACTGCACCTCCACGTC 59422-K+ TGCAGACTCGCAATAGCTTC 214 320 

ENSMUSG00000035796 35796-fwd CAGGCAGATTTCTGAGTTCG 35796-rev CACCAACCTGCCCTAGTAGC 35796-K+ CCTGAGCGGGAGAAGTTTAG 175 328 

ENSMUSG00000060552 60552-fwd TTTTCTGGAGTACAGCTTCTTGAG 60552-rev CAGAATTGACACCTTGTGCAG 60552-K+ CTCACTTCCCTGGAGTCTGG 240 395 

ENSMUSG00000027081 27081-fwd TTGCCTTGGTTATGGTGTTC 27081-rev AGCAATCAGAGGCGCAAG 27081-K+ TGTTGCTGGGCTACAGAGTG 196 285 

ENSMUSG00000056836 56836-fwd GAACAATTGCCGGAGAGTTC 56836-rev CTTTACTGCATTGCCACCAC 56836-K+ GGAATGCACATTGTGGAAAA 154 194 

ENSMUSG00000020163 20163-fwd TGGGATATGATGGGAGAAGG 20163-rev ATGTAAGGCACCCAGTCCAG 20163-K+ CCTCCCTATGTGTGCATGTG 167 364 

ENSMUSG00000043062 43062-fwd TGAACAAATAAGGCGTCTGC 43062-rev GCGTTCTTGTAGGGCTGTTC 43062-K+ CCCCATGTTGTTCTCACTTG 170 344 

ENSMUSG00000047168 47168-fwd TACTGGGCTTGCTTCTGACC 47168-rev GGCGTTGGTATCTGCATAGG 47168-K+ GCCACATCAGACGGAGAAAT 169 119 

ENSMUSG00000049635 49635-fwd AACCAACCAACCACTTCTGC 49635-rev CTGCTTGGCCTCTTTCTCTG 49635-K+ CAGCCTCCTGTGCCATAAAT 197 561 

ENSMUSG00000021001 21001-fwd ATGATGCTGAGAGGAACTGG 21001-rev TCTTCATCTGGCTCCGATTC 21001-K+ CATGGACAGGACAAAGACGA 150 303 

ENSMUSG00000055936 55936-fwd CAGCCTGAAGGTGTATCAGC 55936-rev CTGGGACTTTCGTGGTCTTC 55936-K+ CTTCATCCTCCTCACCGAAA 179 536 

ENSMUSG00000036258 36258-fwd AGGAGGAGGAGGAGGAGAGG 36258-rev TGGAAGAGGTGCCAGAGC 36258-K+ CCACCCTCACTGGATGTGTT 250 350 

ENSMUSG00000020424 20424-fwd CGCCTCCTGCCTAGGTCTC 20424-rev GCAGGAAGAGCAGCTTGATG 20424-K+ GGACCAGGGACTTGTTCTGA 152 134 

ENSMUSG00000006270 06270-fwd GAGCTTAGGTGCTGCGTTG 06270-rev CGGACGTCCATTTTGTCTG 06270-K+ AGAGCAAAACAGCCCGAGTA 151 321 

ENSMUSG00000057777 57777-fwd GAGTGAAATTGGGGCTTCAG 57777-rev GTAAACCAGCTTGGCCTGAG 57777-K+ GTGACAATCACGCAAGCAAC 159 508 

ENSMUSG00000032058 32058-fwd AGCCGGCTGATTGGATTTAG 32058-rev GAGCGAATCGTCTCCATCTC 32058-K+ CATCCTCCTGCCTCAGTCTC 195 350 

ENSMUSG00000049026 49026-fwd AGGGGCACATATCAGTCTGG 49026-rev AAACTCCATGGCCTTTTTCC 49026-K+ GCGAACAGCTAAGGGATGAG 186 243 

Supplement 2: Primer for the absence or presence detection of duplicate genes 
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Supplement 3: PCR and sequencing primers for Dnahc8 

PCR and sequencing primers 
Name Sequence PCR product size Positon in transcript 

1 fwd ATCTTACTCCACAACCCCGC 
2916 

17 
1 rev TCCAAAACGGACTCAACCTC 2913 

2 fwd CCCAAAATGAAGAAGGTGGA 
2940 

2827 
2 rev CTTTGGCCATAACGGGAGTA 5747 

3 fwd ACCATTCAGCCACATCTTCC 
2875 

5629 
3 rev TGAAGTCTCCAGGCTTGTCC 8485 

4 fwd ATCAACGAATGGGGAGATCA 
3054 

8410 
4 rev CCTTGTCACCCACTTTCACC 11444 

5 fwd CCACAAATATTTCCGCACAC 
3091 

11305 
5 rev AGCACCTATCAGGCAGGAGA 14376 

 
Sequencing primers 

Name Sequence Position in transcript Remarks 

1.1 rev CCAACCCAAGCTTTTCTCCTAG 641  
1.2 fwd GCAAGATTTAGAGAAGCAAGGG 570  
1.2 rev GAAGGTGGACAATATCGACTTCTC 1171  
1.3 fwd AGCTTTAAACCAGTCCAAGCAG 1048  
1.3 rev TGTCACCTTGATGAATAATGACG 1677  
1.4 fwd GTGTCAGCCCCTCTATAACTACG 1558  
1.4 rev CCTGCTGGGAGGACAAGAT 2180  
1.5 fwd CATCTACCAGGGCATTAAGAAG 2035  
1.5 rev CGTCCAGCTTCATCTTTATCA 2637  
1.6 fwd ACAGAGCCTGGTTCAAGGAG 2535  
2.1 rev GGAAACGATGTCCTCTGACC 3450  
2.2 fwd ATGGAGGTCGACACCAATGA 3287  
2.2 rev TCTCAGTCAGGGAAGGGTTG 3907  
2.3 fwd AAGCTGGTGCTCCTCCTGT 3773  
2.3 rev ACCTTCACCGACTCAAGCAG 4412  
2.4 fwd GAGTCCGAAGGCGTTGAC 4304  
2.4 rev TATCCGATTCCACATCGAAC 4939  
2.5 fwd CAGGCGTTTCTGGACCTC 4811  
2.5 rev CTGATCACGTTGGGGTTCTC 5432  
3.1 rev GTGCATCCCAGGAACTCGT 6252  
3.2 fwd GACTTCGAGTGGCTGAAACAG 3158  
3.2 rev GCGCCAAGATAACATTTTCAA 6795  
3.3 fwd TCCTAACCATGAACCCTGGAT 6660  
3.3 rev CCTTTGGATTCATTCGCATC 7304  
3.4 fwd AGCGGTTCTGGGAAGACG 7211  
3.4 rev CAGCTTGTGGAGGTGGTC 7853  
3.5 fwd AGTCTCTCAATCTCCTGGAAGG 7791  
4.1 rev AGTGGGCTCCGGCATATCT 9043  
4.2 fwd GGTTTATAACTCCGGATGACGA 8919  
4.2 rev TATCAGGCCTTGGGTGATTT 9555  
4.3 fwd GATGAGGCGTTCCTGGAATA 9473  
4.3 rev ACCGCCAGTTCCTTCTCCT 10095  
4.4 fwd ATCAATGAACAAGCGGAACG 10001  
4.4 rev GCAAGTGTCCAGGAAAGCAG 10631  
4.5 fwd GACACAATCAACGAGGAAACTG 10529  
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4.5 rev GCAGAACATCGCCTACGAGT 10963  
4.6 fwd AATGGACCTGCTCAATGATG 10831  
5.1 rev CCATGGACTGGTCAAATAACTTC 11962  
5.2 fwd CAATACAGCTCAGGAGGAGTTC 11845  
5.2 rev TTTAGGATAACTGGCTCCGTGT 12489  
5.3 fwd AGACGCCCCAGAGGAAGAG 12343  
5.3 rev ACGGTGGAGTGCAGAAATG 12984  
5.4 fwd AAGGACATTCGCTGGGATCA 12904  
5.4 rev ATCAAGCGAGCTTTCACCTC 13541  
5.5 fwd AAGAGAGCGGTGGTGGTGT 13443  
5.5 rev GAAGCTGCGTGAAGAGAACC 14092  
5.6 fwd TCAGCTTTGGAAGAGGGTGT 13741  
1 fwd b CGTCTGAGTATCTTACTCCACAACC 9 alternative to 1 fwd 
1 fwd C ATGGAGTCTGAGGAAGGCAA 101 alternative to 1 fwd 

1.2 fwd B ATCCCAAACCTCCAGGAGAC 533 alternative to 1.2 fwd 
1.2 rev B GGCACTTCTCCTTCCTGGTA 761 alternative to 1.2 rev 
3.4 rev B GTGCTCCCAGTCACCGTAGT 8025 alternative to 3.4 rev 

KTH 5.5 fwd CGCGAGGCCATTGTCTACAG 13472 fits M. caroli sequence 
KTH 5.5 rev CTTCATTGTGGATGGTCACA 13948 fits M. caroli sequence 

 

Supplement 4: Primer sequences for Dnahc8 population sequencing in M. spretus 

M. spretus population sequencing  
Exon 2 710 bp 

dnahc8pop-2-fwd ATGGAGTCTGAGGAAGGCAA 
dnahc8pop-2-rev GACGGGCAATCCAAAATTAG 

Exon 50/51 630 bp 

dnahc8pop-51-52-fwd ATATGAGACCTCTCTGGTACGG 
dnahc8pop-51-52-rev CCTGTAATATCGGCCTCCAG 

Exon 66 373 bp 
dnahc8pop-66B-fwd ACCCCTTTCTCCATCTGACC 
dnahc8pop-66B-rev CTCCAGTTCCAGCAGCTACC 

Exon 79 519 bp 

dnahc8pop-79-fwd CTGGTGGACGACGAGTCTCT 
dnahc8pop-79-rev GGCCATGGACTGGTCAAATA 

 

Supplement 5: Primer sequences for q-rtPCR 

 

Primerset Primer 
forward Sequence forward Primer 

reverse Sequence reverse 
Produ

ct 
size 

Position 
on 

transcript 
5.2 fwd / 5.1 

rev 5.2 fwd CAATACAGCTCAGGAGGA
GTTC 5.1 rev CCATGGACTGGTCAAATAA

CTTC 140 11845 

affy 2 rt affy 2 
fwd 

GAGGCCTAACGTGTTCTGG
A 

rt affy 2 
rev 

GCAGGACTTCATTGTGGAT
G 131 13843 

hst6.7 2 hst6.7 2 
fwd 

GCACACGGGATACAGAAC
CT 

hst6.7 2 
rev 

GCTTTGCAGGCTGTTACCA
T 131 1595 
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Supplement 6: q-rtPCR data 

 

species tissue delta ct 
M. caroli spleen 11.5052 
M. caroli Testis 0.110946 
M. caroli muscle 13.2431 
M. caroli lung 19.02203 
M. caroli liver 17.07246 
M. caroli kidney 12.00723 
M. caroli brain 12.30637 
M. caroli heart 16.40481 

M. m. castaneus spleen 5.570852 
M. m. castaneus Testis -3.42652 
M. m. castaneus muscle 6.122243 
M. m. castaneus lung 14.94272 
M. m. castaneus liver 11.41355 
M. m. castaneus kidney 10.40619 
M. m. castaneus brain 7.617178 
M. m. castaneus heart 11.2407 
M. m. domesticus spleen 4.992377 
M. m. domesticus Testis -1.58354 
M. m. domesticus muscle 7.963969 
M. m. domesticus lung 12.75827 
M. m. domesticus liver 11.01173 
M. m. domesticus kidney 12.13095 
M. m. domesticus brain 11.20375 
M. m. domesticus heart 12.65582 
M. macedonicus spleen 9.496099 
M. macedonicus Testis -0.06297 
M. macedonicus muscle 10.92125 
M. macedonicus lung 17.73057 
M. macedonicus liver 15.53936 
M. macedonicus kidney 15.22774 
M. macedonicus brain 13.10955 
M. macedonicus heart 15.62266 
M. m. musculus spleen -2.64279 
M. m. musculus Testis -2.54107 
M. m. musculus muscle 4.368729 
M. m. musculus lung 13.93138 
M. m. musculus liver 11.55081 
M. m. musculus kidney 11.4616 
M. m. musculus brain 8.918091 
M. m. musculus heart 10.55628 

M. spicilegus spleen 8.49556 
M. spicilegus Testis -0.16851 
M. spicilegus muscle 9.892725 
M. spicilegus lung 16.49241 
M. spicilegus liver 15.66141 
M. spicilegus kidney 14.48556 
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M. spicilegus brain 13.4639 
M. spicilegus heart 14.97264 

M. spretus spleen 8.149102 
M. spretus Testis -0.32368 
M. spretus muscle 10.45092 
M. spretus lung 16.47874 
M. spretus liver 9.448132 
M. spretus kidney 6.077386 
M. spretus brain 12.77396 
M. spretus heart 14.44263 
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6.1 Digital supplement 

 

• Chapter 1 

o List of all duplicates with KS, KA, and KA/KS 

o List of all young duplicates with detail information 

o Microsatellite data 

 Microsatellite Analyzer input and ouput files for (sub)species 

and population data 

 Raw microsatellite data, .rsd files 

 

• Chapter 3 

o Sequences Dnahc8 

 Full gene sequences 

• Assemblies, Codon Code aligner format 

• Sequences, fasta format 

 Population samples 

• M. domesticus whole gene 

o Assemblies, Codon Code aligner format 

o Sequences and alignments, fasta format 

• M. spretus 

o Assemblies, Codon Code aligner format 

o Sequences and alignments, fasta format 

o Quantitative real time PCR raw data 
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