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1 Zusammenfassung 

Herzerkrankungen sind weltweit die Hauptursache für einen vorzeitigen Tod. 

Sowohl Gentransfer als auch zelluläre Therapien werden derzeit als neue 

Behandlungsmöglichkeiten für diese Erkrankungen entwickelt. 

Im ersten Teil dieser Arbeit sollte der AAV-vermittelte Gentransfer von Transgenen 

ins Herzgewebe von Donororganen, die anschließend transplantiert wurden, 

etabliert werden. Als Tiermodelle für die heterotopen Herztransplantationen 

wurden Sprague Dawley Ratten und Deutsche Landrasseschweine gewählt. rAAV 

Serotype 2, welcher für diesen Zweck als geeignet beschrieben wurde, wurde 

intracoronar entweder in das normotherme (n=3) oder hypotherme (n=3) Herz 

appliziert, welches anschließend in eine Empfängerratte transplantiert wurde. Der 

Gentransfer erfolgte mit einer besseren Effizienz in normotherme Herzen 

verglichen mit hypothermen Herzen. Trotz des erfolgreichen Transfers und der 

Nachweisbarkeit von Vektor-DNA in Gewebeproben 28 Tage nach Transplantation 

konnte jedoch weder Transgen-spezifische mRNA noch Proteinexpression 

detektiert werden. Zur Bestimmung potentieller Barrieren, welche die rAAV2-

vermittelte Transgenexpression in unserem Rattenmodell beeinträchtigen, wurden 

in vitro Analysen in Rattenaortenendothelzellen (RAECs) durchgeführt. Wir 

konnten Zelleintritt und intrazelluläres trafficking der viralen Partikel ebenso als 

inhibierende Faktoren ausschließen wie die Expression vom gewählten CMV 

Promotor. Die Applikation des Proteasomeninhibitors MG132 erhöhte die 

Transgenexpression jedoch signifikant für die Serotypen 1 und 2 (6-fach und 7.3-

fach). Ersterer war in unseren in vitro Experimenten der effizienteste Serotyp der 

analysierten 5 Serotypen (rAAV1 bis rAAV5). Da MG132 die Funktion der 

Proteasomen inhibitiert, könnte eine blockierte Vektordegradation die 

beobachteten Ergebnisse erklären. Darüberhinaus sind auch indirekte Effekte wie 

eine erhöhte Ubiquitinierung des Vektorkapsids denkbar, von der man annimmt, 

dass sie das sogenannte vector uncoating oder die Translokation in den Nucleus 

erleichtert (Duan et al., 2000; Yan et al., 2002). Des Weiteren konnte eine 

geringfügig eingeschränkte Fähigkeit zur Zweitstrangsynthese beobachtet werden. 

Diese wird benötigt, um das einzelsträngige DNA-Genom herkömmlich 

verwendeter AAV-Vektoren in einen transkribierbaren Doppelstrang zu 

verwandeln. Zusammenfassend muss man feststellen, dass sich die analysierten 

rAAV Serotypen als ungeeignete Gentransfervektoren für Rattenendothelzellen 
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erwiesen haben. Im Gegensatz dazu wurde in primären Rattencardiomyocyten in 

vitro eine deutlich höhere Transduktionseffizienz erzielt. Dies veranlasste uns, die 

vasoaktive Substanz Histamin in unserem heterotopen porcinen Transplantations-

modell anzuwenden, um in vivo sowohl Endothelzellen als auch Cardiomyocyten 

zu transduzieren. Interessanterweise zeigten in vitro Analysen porciner 

Aortenendothelzellen – im Gegensatz zu unseren erfolglosen Versuchen in 

RAECs – Transduktionseffizienzen von ca. 90 % mit rAAV2. Daher wurde dieser 

Serotyp zusammen mit Histamin in normotherme Herzen appliziert unter 

Verwendung des neuentwickelten in situ Langendorff Reperfusionssystems, 

welches eine verlängerte Rezirkulation des Vektors im Herzen erlaubte. In beiden 

Tieren konnte der Nachweis eines erfolgreichen Gentransfers anhand deutlich 

messbarer Transgen-DNA-Mengen erbracht werden. In einem der beiden Tiere 

wurde zudem funktionales Protein nachgewiesen. Dieses Schwein hatte zehnmal 

höhere Vektormengen erhalten. Dieser Vektor kodierte zudem für das Transgen 

Luciferase und wies eine self-complementary (Pseudo-Doppelstrang) 

Vektorgenom-Konformation auf. Im Gegensatz dazu wurde das Schwein, das 

keine Expression zeigte, mit einem Vektor behandelt, der für beta-Galaktosidase 

in einer Einzelstrang-Vektorgenom-Konformation kodierte. Obwohl weitere 

Experimente zur Bestimmung des Einflusses der drei Parameter (Vektormenge, 

Vektorgenom-Konformation und Wahl des Transgens), einzeln oder in 

Kombination, benötigt werden, konnten wir zeigen, dass ein rAAV2-vermittelter 

Gentransfer in porcines Herzgewebe im Rahmen eines (Xeno-) 

Transplantationsansatzes im Prinzip möglich ist. 

Im zweiten Teil meiner Arbeit wurde ein Protokoll zur effizienten Transduktion 

humaner CD34+ Zellen aus Nabelschnurblut etabliert. Derartige Protokolle 

ermöglichen eine Kombination von Zell- und Gentherapie, welche für ein breites 

Spektrum an Anwendungen vorteilhaft ist. Vergleiche der Serotypen 2, 3 und 5 

ermittelten rAAV2 als den effizientesten Serotyp in Zelleintritt und 

Transgenexpression. Der Zelleintritt von rAAV2 in CD34+ Zellen war abhängig von 

Heparansulfatproteoglycan, wie mithilfe von Kompetitionsexperimenten bestimmt 

wurde, und von α5β1 Integrin, was wir mittels einer Mutante für die Bindung des 

Rezeptors ermittelten. Interessanterweise waren nur auf vorexpandierten Zellen 

α5β1 Integrine nachweisbar. Dies erlaubt den Schluss, dass zumindest einige der 

kontroversen Berichte zur rAAV-vermittelten Transduktion von CD34+ Zellen auf 
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die verwendeten Kulturbedingungen zurückzuführen sind. Darüberhinaus ist die 

Synthese des Zweitstrangs in CD34+ Zellen beeinträchtigt, da nur die Zugabe von 

Vektoren mit Genomen in der self-complementary Konformation in erfolgreichen 

Transduktionen resultierte. Die ohnehin schon sehr effiziente Transduktion (61 %), 

die mit rAAV2 Vektoren mit self-complementary Genomen in vorexpandierten 

Zellen erzielt wurde, konnte signifikant (auf 86 %) durch die Zugabe von all-trans 

Retinsäure und dem Histon-Deacetylase-Inhibitor Trichostatin A erhöht werden. 

Darüberhinaus weisen unsere Ergebnisse darauf hin, dass Transduktionen mit 

rAAV nicht mit der Fähigkeit der CD34+ Zellen zur endothelialen Differenzierung 

interferieren. Zusammenfassend kann festgestellt werden, dass unter Verwendung 

des hier etablierten Protokolls CD34+ Zellen effizient mit rAAV2 transduziert 

werden können und sich rAAV2 somit als ein geeignetes Vektorsystem zur 

transienten Modifikation dieser Zellen  anbietet.  
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2 Abstract 

Heart diseases are the main cause of premature death in the population world-

wide. Gene transfer as well as cell-based therapies are currently developed as 

new treatment options. 

In the first part of this thesis, AAV-mediated gene transfer to deliver transgenes 

into heart tissue before transplantation ought to be established. As model system, 

the Sprague Dawley heterotopic rat model and the German Landrace pig model 

were chosen. rAAV serotype 2, described to be suited for this purpose, was 

intracoronarily delivered either in the normothermic (n=3) or hypothermic (n=3) 

hearts which were subsequently transplanted into a recipient rat. Gene transfer 

into normothermic hearts occurred with a better efficiency compared to 

hypothermic hearts. However, despite successful delivery and detection of vector 

DNA in tissue samples 28 d post transplantation, neither transgene-specific mRNA 

nor protein expression could be detected. To identify potential barriers that impair 

rAAV2-mediated transgene expression in our rat model, in vitro analyses in rat 

aortic endothelial cells (RAECs) were performed. We could exclude cell entry, 

intracellular trafficking of viral particles as well as expression from the chosen 

CMV promoter as inhibiting factors. However, application of the proteasome 

inhibitor MG132 significantly enhanced rAAV1- and rAAV2-mediated transgene 

expression (6-fold and 7.3-fold, respectively). The latter was in our hand the most 

efficient serotype in RAEC transduction among the serotypes rAAV1 to rAAV5. 

Since MG132 is a proteasome inhibitor blocking of vector degradation could be an 

explanation for the observed effect. Moreover, also indirect effects can be 

imagined like enhanced ubiquitination of the vector capsid, which is believed to 

facilitate vector uncoating or nuclear translocation of vector genomes (Duan et al., 

2000; Yan et al., 2002). Furthermore, we observed a certain, albeit rather minor, 

limitation in second-strand synthesis. This step is necessary for the generation of a 

double-stranded DNA as template for transcription of the commonly used single-

stranded DNA genome. In summary, the analyzed rAAV serotypes have been 

revealed as inappropriate gene transfer vectors in targeting of rat endothelial cells. 

In contrast, in primary rat cardiomyocytes in vitro a higher transduction efficiency 

was observed. Therefore, we decided to administer the vasoactive substance 

histamine in our heterotopic pig heart transplantation model in order to target 

cardiomyocytes in addition to endothelial cells. Interestingly, in vitro analyses of 
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porcine aortic endothelial cells revealed – in contrast to the unsuccessful attempts 

on RAECs – transduction efficiencies of about 90 % using rAAV2. Thus, this 

serotype was applied together with histamine into normothermic hearts using the 

newly developed in situ Langendorff reperfusion system which permitted 

prolonged recirculation of the vector in the heart. Transgene DNA detected in the 

graft of two transplanted animals displayed successful gene transfer. In one of the 

two animals functional protein was detected. This pig had received tenfold higher 

amounts of the vector which displayed a self-complementary vector genome 

conformation and encoded for the transgene luciferase. In contrast, the animal 

showing no expression was treated with a vector coding for beta-galactosidase in 

the single-stranded vector genome conformation. Although further experiments are 

needed to determine the influence of the three parameters (vector amount, vector 

genome conformation and choice of transgene) alone or in combination we could 

show that rAAV2-mediated gene delivery into the porcine heart tissue in a (xeno-) 

transplantation setting is in principle possible. 

In the second part of my thesis, a protocol for efficient transduction of human cord 

blood-derived CD34+ cells was established. Such protocols enable a combination 

of cell and gene therapy which is advantageous for a wide range of applications. 

Among the serotypes 2, 3 and 5, rAAV2 was identified as the most efficient 

serotype in cell entry and in transgene expression. Cell entry of rAAV2 into CD34+ 

cells was dependent on heparin sulfate proteoglycan as determined by 

competition experiments, and on α5β1  integrin as assessed by a receptor binding 

mutant. Interestingly, only pre-expanded cells displayed α5β1 integrin allowing to 

conclude that at least some of the contradictory reports on rAAV-mediated 

transduction of CD34+ cells are due to the applied cultivation conditions. 

Furthermore, CD34+ cells are impaired in second-strand synthesis as only 

administration of vectors encoding the transgene in a self-complementary vector 

conformation resulted in successful transductions. The already high transduction 

level (61 %) achieved with rAAV2 using self-complementary vector genomes and 

pre-expanded cells could be significantly enhanced up to 86 % by addition of all-

trans retinoic acid and the histone deacetylase inhibitor Trichostatin A. 

Furthermore, our results provide strong evidence that transductions by rAAV2 

vectors do not interfere with endothelial differentiation potential of CD34+ cells. 

Thus, an efficient protocol for rAAV2-mediated transduction of CD34+ cells was 
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established revealing that rAAV2 is an appropriate vector system for transient 

modification of this cell type. 
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3 Introduction 

3.1 Adeno-associated virus 

3.1.1 Classification of adeno-associated virus 

Adeno-associated viruses are classed into the Parvoviridae family. The 

Parvoviridae belong to the smallest known viruses (lat. parvus = small) consisting 

of a non-enveloped icosahedral capsid with a 

diameter of 18 to 26 nm and a linear single-

stranded DNA genome (Figure 1). The 

Parvoviridae comprises two subfamilies: the 

vertebrate-infecting Parvovirinae and the 

Densovirinae which infect insects. The subfamily of 

Parvovirinae is further divided into the three 

genera Parvo-, Erythro- and Dependovirus. AAV 

belongs to the latter genus. Erythrovirinae infect 

erythroid precursor cells, whereas Parvovirus B19 

is the only human pathogenic parvovirus and 

causes fifth disease (Erythema infectiosum) and 

complications during pregnancy (anemia, hydrops fetalis, abortions). Viruses 

belonging to the genus of Parvovirus are pathogenic for animals, examples are 

feline, canine and porcine parvovirus as well as minute virus of mice or aleutian 

mink disease virus. While erythro- and parvoviruses are autonomous viruses, 

dependoviruses require the presence of a helper virus like adenovirus (Ad), 

herpes simplex virus (HSV), vaccinia virus, human cytomegalovirus (HCMV) or 

papilloma virus (HPV) to undergo a productive life cycle (Atchison, Casto, and 

Hammon, 1965; McPherson, Rosenthal, and Rose, 1985; Richardson and 

Westphal, 1981; Schlehofer, Ehrbar, and zur Hausen, 1986). On the other hand, 

AAV seems to inhibit replication of helper viruses and also to interfere with 

malignant transformation induced by adenovirus, human or bovine papilloma virus 

(Heilbronn et al., 1990; Hermonat, 1992; Timpe, Verrill, and Trempe, 2006; You et 

al., 2006). Moreover, it was described that replication might be induced upon 

cellular genotoxic stress (Schlehofer, Ehrbar, and zur Hausen, 1986; Yakobson et 

al., 1989; Yakobson, Koch, and Winocour, 1987; Yalkinoglu et al., 1988). 

Figure 1: Atomic structure of AAV 

serotype 2 determined by X-ray 

chrystallography.  (Xie et al., 

2003) 
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Until now, 12 serotypes have been described. In the 1960’s, AAV was discovered 

as contaminant of simian Adenovirus 15 preparations by several groups (Atchison, 

Casto, and Hammon, 1965; Mayor et al., 1965; Melnick et al., 1965). AAV 

serotype 2 has been isolated out of simian Adenovirus type 12 and AAV3 out of 

Adenovirus type 7 preparations (Hoggan, Blacklow, and Rowe, 1966). AAV4 has 

been found in African green monkeys infected with simian adenovirus 15 (Parks et 

al., 1967). In contrast, AAV5 was isolated out of a human clinical sample, a penile 

condylomatous lesion (Bantel-Schaal and zur Hausen, 1984). This virus is less 

related to the other serotypes considering sequence homology and serology 

(Chiorini et al., 1999). AAV6 has originally been identified as contaminant of an 

Adenovirus 5 stock. Its close relatedness to AAV1 with a variation of only 6 amino 

acids in the capsid sequence points either to a natural variant of serotype 1 or to a 

recombination between AAV1 and AAV2 as origin of AAV6 (Rutledge, Halbert, and 

Russell, 1998; Xiao et al., 1999). Wilson’s group discovered the serotypes AAV7 

and AAV8 by PCR scanning for AAV sequence homologies in rhesus monkey 

tissues (Gao et al., 2002). The same group screened human tissues from various 

sources to detect latent AAV genomes and identified thereby a serologically 

different serotype, called AAV9 (Gao et al., 2004). Mori and colleagues isolated 

two new AAV variants out of cynomolgus monkey tissue designated AAV10 and 

AAV11 (Mori et al., 2004). Despite their isolation out of non-human primate 

tissues, these serotypes are also suited for transduction of human tissues (Gao et 

al., 2004). Recently, AAV serotype 12 has been identified in simian Adenovirus 18 

contaminated vervet monkey cells from ATCC stocks (Schmidt et al., 2006). 

Considering seroepidemiologic analyses, the serotypes AAV2, 3 and 5 are 

suggested to be endemic in humans (Gao et al., 2002). So far, AAV9 has only 

been found in human tissue. In contrast, monkeys are suggested to be the natural 

host for the serotypes 1, 4, 7 and 8 (Chiorini et al., 1997; Grimm and Kay, 2003; 

Xiao et al., 1999). AAV serotypes differ in their tropism. For example, AAV1 is 

appropriate for transduction of skeletal muscle or retina, whereas AAV5 is better 

suited for applications in the central nervous system or the lung as determined in 

mouse models (Auricchio et al., 2001; Davidson et al., 2000; Xiao et al., 1999; 

Zabner et al., 2000).  

Moreover, AAV variants have also been isolated out of species other than 

primates including cow, bird, sheep, snake, lizard and goat (Bossis and Chiorini, 
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2003; Clarke et al., 1979; Farkas et al., 2004; Jacobson et al., 1996; Olson et al., 

2004; Schmidt et al., 2004). So far, the best investigated AAV is the human 

serotype 2. 

3.1.2 Genome organization 

Wild type AAV contains a single-stranded DNA genome within an icosahedric 

capsid of 25 nm diameter. AAV serotype 2, the first serotype available as vector,  

has a genome size of 4680 nt with two open reading frames (ORFs) (Srivastava, 

Lusby, and Berns, 1983). These ORFs, encoding for the structural (cap; capsid) 

and non-structural proteins (rep; replication), are flanked by the inverted terminal 

repeats (ITRs) (Carter and Samulski, 2000) (Figure 2). This organization is 

conserved in all serotypes. The AAV2 genome contains three promoters (p5, p19, 

p40, describing their map position), but all transcripts share a common 

polyadenylation signal. 

The 145 nt (for AAV2) long ITRs form the 3’- and 5’-end of the genome and 

hybridize to hairpin-like structures. Within the ITR region a Rep binding site (RBS) 

and a terminal resolution site (TRS) important for nicking of duplex DNA by the 

large Rep proteins are located (Im and Muzyczka, 1990; McCarty et al., 1994). In 

addition, this region is crucial for site-specific integration events, rescue of the 

provirus and serves as origin of replication (Berns, 1990; Feng et al., 2006; 

Hauswirth and Berns, 1977; Labow and Berns, 1988; McLaughlin et al., 1988). 

Moreover, the ITRs are required for packaging of the viral genomes into the 

preformed capsid. 

The 5’-ORF encodes for four multifunctional, non-structural proteins named 

Rep78, Rep68, Rep52 and Rep40, according to their size (Lusby and Berns, 

1982). While the p5 promoter controls the expression of the larger transcripts 

(Rep78 and Rep68) the expression of the smaller proteins Rep52 and Rep40 is 

under the control of the p19 promoter. Rep68 and Rep40 are splice variants of 

their larger counterparts (Figure 2). The Rep proteins have numerous functions. 

The two larger Rep proteins which possess a nuclear localization signal at their C-

terminus are essential for replication, transcription and site-specific integration 

(Cassell and Weitzman, 2004). The smaller Rep proteins mediate accumulation 

and packaging of the viral genome into the preformed capsid in a helicase-

dependent manner (Dubielzig et al., 1999; King et al., 2001). While the Rep 
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proteins can act as transactivator of transcription of the three viral promoters in 

presence of helper virus, they can also repress transcription of the p5 and p19 

promoters in absence of helper virus (Kyostio et al., 1994; Pereira, McCarty, and 

Muzyczka, 1997). Moreover, the large Rep proteins can regulate the processing of 

the cap transcripts (Qiu and Pintel, 2002). 

 

 

 

Figure 2: Genome organization of AAV2. The AAV2 genome, flanked by the ITRs, spans 4680 nt 

divided into units of 100 nt. Shown are the three promoters p5, p19 and p40 at map position 5, 19 

and 40 and the polyadenylation signal (polyA) at position 96. The open reading frames are 

indicated by rectangles, translated regions in red or blue, untranslated regions by thin solid lines 

while introns are marked as nicks. The p5 promoter controls expression of the large Rep proteins 

(Rep78, Rep68), while the p19 promoter is responsible for the expression of the small Rep proteins 

(Rep52, Rep40). Rep68 and Rep40 are spliced variants of Rep78 and Rep52, respectively. The 

gene encoding for the capsid proteins VP1, VP2 and VP3 is controlled by the p40 promoter. (Figure 

kindly provided by N. Huttner) 

 

The three structural proteins VP1, VP2 and VP3 are situated in the 3’-ORF cap 

controlled by the p40 promoter. These three proteins form the 60 subunits of the 

viral capsid at a ratio of 1:1:8 (Kronenberg, Kleinschmidt, and Bottcher, 2001; 

Rose et al., 1971). All capsid proteins share a common C-terminus, but differ in 

their N-terminus. The efficiency of translation for VP1 is regulated by alternative 

splicing while translation of VP2 is initiated from an unusual initiation codon (ACG) 

(Becerra et al., 1988; Becerra et al., 1985). This is the reason for the 10-fold lower 

translation efficiency of VP2 compared to VP3 which is regulated by an AUG 
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initiation codon (Becerra et al., 1985). The molecular weight of the three capsid 

proteins is 90 kDa (VP1), 72 kDa (VP2) and 60 kDa (VP3). Considering the 

functions of the capsid proteins, VP1 seems to be essential for infectivity whereas 

VP3 is sufficient for capsid formation (Warrington et al., 2004). VP2 is proposed to 

be neither necessary for capsid formation nor for production of infectious particles 

(Lux et al., 2005; Warrington et al., 2004).  

Regarding phylogenetic relations between AAV2 and the other serotypes, a 

homology of 80 to 90 % was 

observed for AAV1, 3, 6 to 8 

and 10 in the amino acid 

sequence of VP1 (Gao et al., 

2002; Mori et al., 2004) (Figure 

3). AAV4 and AAV11 showed a   

60 % and 65 % homology to 

AAV2 VP1, respectively (Gao 

et al., 2004; Mori et al., 2004). 

AAV12’s closest relatives within 

the AAV family are AAV11 (84 

%) and AAV4 (78 %) (Schmidt 

et al., 2007). AAV5 is the most divergent serotype with only 58 % similarity 

compared to AAV2 VP1 (Bantel-Schaal et al., 1999). Additionally to the divergence 

of the capsid protein to the other serotypes, AAV5 contains an extra 

polyadenylation signal located within the intron thus producing mainly the 

unspliced Rep proteins Rep78 and Rep52 (Qiu et al., 2002). In general, 

homologies in the VP1 proteins are comparable to the phylogenetic results 

obtained by the nucleotide sequence (Grimm and Kay, 2003). About the recently 

described serotypes AAV9 to 12 only little is known so far. 

3.1.3 Infection biology of AAV 

A successful infection of cells by AAV is a multistep process including attachment, 

uptake, intracellular trafficking, nuclear translocation and replication of the virus 

(Figure 4). Its understanding is crucial to identify potential barriers in AAV infection 

that have to be overcome for its use as gene therapy vector. The current 

knowledge of AAV2 infection is described in detail in the following chapters. 

Figure 3: Phylogenetic analysis of the amino acid 

sequences of the capsid protein VP1. Modified scheme 

(grey) (Mori et al., 2004). 
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Figure 4: Infection pathway of AAV2 in HeLa cells. AAV2 touches the host cell several times and 

attaches to its primary receptor heparan sulfate proteoglycan (HSPG) and to the coreceptors 

fibroblast growth factor receptor 1 (FGFR-1) and the integrin αvβ5. The virus is internalized by 

receptor-mediated endocytosis into clathrin-coated vesicles in a dynamin-dependent way. The 

GTP-binding protein Rac1 is believed to be activated by integrin-binding and rearranges the 

cytoskeleton thus facilitating endosomal trafficking. Acidification of the endosomes leads to an 

escape of the AAV particles, maybe due to conformational changes. Viral uncoating takes place 

before or during nuclear entry. Also the exact mechanism of viral DNA import into the nucleus is yet 

unknown.(aa, amino acid)(Buning et al., 2003a) 
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3.1.3.1 Virus-cell interaction 

As Single Virus Tracing studies revealed, AAV2 contacts the cell membrane 

several times before it enters the cell (Seisenberger et al., 2001). For AAV2, the 

widely expressed cell surface receptor heparan sulfate proteoglycan (HSPG) has 

been identified as primary receptor (Summerford and Samulski, 1998). This 

contact is mediated by surface structures on the AAV capsid, namely the residues 

R484, R487, K532, R585 and R588 in the common VP3 region (Kern et al., 2003; 

Wu et al., 2000). Attachment to HSPG seems to induce a reversible structural 

change thus facilitating coreceptor binding and cell entry (Asokan et al., 2006). 

Surprisingly, some cell lines have been shown to take up virions even in the 

absence of HSPG (Duan et al., 1998b; Duan et al., 2000). Also AAV3 is suggested 

to use HSPG as primary receptor whereas the serotypes 1, 4, 5 and 6 bind to 

sialic acid (Rabinowitz et al., 2002). In 2006, Wu identified α2,3 and α2,6 sialic 

acids present on N-linked glycoproteins as primary receptors for AAV1 and AAV6 

(Wu et al., 2006). AAV4 and AAV5 both bind to α2,3 sialic acid, but differ in their 

linkage specificity. While AAV4 requires O-linked, AAV5 prefers N-linked α2,3 

sialic acids (Kaludov et al., 2001; Walters et al., 2001). Recently, the 37/67 kDa 

laminin receptor was proposed as a receptor for AAV8 (Akache et al., 2006). 

Interestingly, overexpression of this receptor rendered cells also more susceptible 

for transduction with AAV2, 3 and 9 proposing a role for laminin receptor for cell 

infection of these serotypes. For AAV12, recently published data point towards a 

HSPG and sialic acid independent entry mechanism (Schmidt et al., 2007). The 

primary receptors for AAV7 and 9 to 12 have yet to be determined. 

For efficient internalization, the additional binding to coreceptors is required. For 

AAV2, five secondary receptors have been proposed so far. Human fibroblast 

growth factor receptor 1 (FGFR-1), hepatocyte growth factor receptor (HGFR or c-

met) and laminin receptor seem to support virus:cell interaction (Akache et al., 

2006; Kashiwakura et al., 2005; Qing et al., 1999). On the other hand, the integrins 

αvβ5 and α5β1 are proposed as further coreceptors (Asokan et al., 2006; Sanlioglu 

et al., 2000; Summerford, Bartlett, and Samulski, 1999).  

For AAV3, FGFR-1 has been described as potential coreceptor (Blackburn, 

Steadman, and Johnson, 2006). Concerning AAV5, the platelet-derived growth 

factor receptor (PDGFR) was identified as secondary receptor (Di Pasquale et al., 

2003). It is conceivable that PDGFR might act alone as AAV5 receptor as it is a 
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sialo-proteoglycan containing oligosaccharides chains with sialic acids (Daniel et 

al., 1987; Hosang, 1988). 

3.1.3.2 Receptor-mediated endocytosis 

Following receptor binding and structural rearrangement, the virion enters the cell 

predominantly by receptor-mediated endocytosis in a dynamin-dependent manner 

(Bartlett, Wilcher, and Samulski, 2000; Duan et al., 1999; Hinshaw and Schmid, 

1995). Single Virus Tracing studies revealed that the uptake of virions occurs 

within 100 ms (Seisenberger et al., 2001). Clustering of αvβ5 integrins seems to 

facilitate localization of the virion into clathrin-coated pits (Bartlett, Wilcher, and 

Samulski, 2000). Also for AAV5, localization in clathrin-coated pits has been 

claimed despite usage of alternate receptors (sialic acid and/or PDGFR) (Bantel-

Schaal, Hub, and Kartenbeck, 2002). In addition, integrins interact with 

intracellular signalling molecules, e.g. Rac1, which support the internalization 

processes (Sanlioglu et al., 2000). Moreover, the activation of this small GTP-

binding molecule leads to a subsequent activation of the phosphatidylinositol-3 

kinase (PI3K) pathway which is involved in vesicular trafficking and rearrangement 

of microtubules and microfilaments (Kapeller and Cantley, 1994; Sanlioglu et al., 

2000). Interestingly, Rac1 and PI3K pathways are also crucial for internalization of 

adenovirus, a helper virus of AAV which is also located in clathrin-coated vesicles 

shortly after cell entry (Li et al., 1998). 

3.1.3.3 Endosomal processing and escape 

Even though details about the endosomal pathway used by AAV remain to be 

elucidated, it seems to be assured that trafficking of the virion-containing 

endosomes along the microtubules and microfilaments towards the nuclear area is 

essential for successful transduction (Bartlett, Wilcher, and Samulski, 2000; Douar 

et al., 2001). As Sanlioglu and colleagues described, application of nocodazole to 

depolymerize microtubules reduces perinuclear accumulation of AAV2 (Sanlioglu 

et al., 2000). Moreover, investigations on certain non-transduceable cell types 

revealed inefficient endosomal processing and nuclear trafficking as critical steps 

(Duan et al., 2000; Hansen, Qing, and Srivastava, 2001a). However, publications 

about intracellular processes remain controversial. While some groups postulate 

an escape from the early endosome, others observe a trafficking into the late 

endosomal compartment (Bartlett, Wilcher, and Samulski, 2000; Douar et al., 
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2001; Hansen, Qing, and Srivastava, 2001a; Xiao et al., 2002). For AAV2 and 

AAV5, also an accumulation in the Golgi compartment was stated (Bantel-Schaal, 

Hub, and Kartenbeck, 2002; Pajusola et al., 2002). 

To escape from the endosomes for trafficking to the nucleus, AAV requires 

endosomal acidification. This assumption is based on the observation that 

inhibition of acidification by bafilomycin A or ammonium chloride blocks 

transduction (Bartlett, Wilcher, and Samulski, 2000). It has been postulated that 

the progressively decreasing pH inside the endosomes induces a conformational 

change in the capsid leading to the exposure of a phospholipase A2 (PLA2) 

homology domain within the N-terminus of VP1 (Kronenberg et al., 2005; Sonntag 

et al., 2006). This domain is conserved among parvoviruses and required for 

infectivity (Girod et al., 2002). It is discussed to be involved in nuclear entry or, 

most likely, in endosomal escape (Girod et al., 2002; Sonntag et al., 2006). The 

importance of endosomal acidification is also known for other viruses, e.g. for 

rhabdovirus which exposes domains to facilitate membrane fusion or for 

adenovirus to disrupt the endosome (Marsh and Helenius, 1989). 

When released from the endosomes, as shown for AAV2 and AAV5, the capsids 

are a target for ubiquitination which usually serves as a signal for proteasomal 

degradation (Yan et al., 2002). Ubiquitin, however, also mediates proteasome-

independent functions (Mukhopadhyay and Riezman, 2007). Interestingly, addition 

of proteasome inhibitors, e.g. MG132, resulted in an enhancement of transgene 

expression in some cell lines transduced by the serotypes 1 to 5 and by AAV2 in 

mouse lungs in vivo (Douar et al., 2001; Duan et al., 2000; Hacker et al., 2005; 

Jennings et al., 2005; Yan et al., 2004). Though the mechanisms remain unclear, it 

has been suggested that proteasome inhibitors block capsid degradation, facilitate 

vector uncoating, lead to an increased perinuclear accumulation or translocation 

into the nucleus (Duan et al., 2000; Yan et al., 2002). 

3.1.3.4 Nuclear translocation  

Viral particles start to accumulate in the perinuclear area between 15 and 30 min 

post infection (p.i.) (Bartlett, Wilcher, and Samulski, 2000; Seisenberger et al., 

2001). Moreover, viral capsids can be detected in nuclear invaginations (Lux et al., 

2005; Seisenberger et al., 2001). In comparison to entry and intracellular 

trafficking, translocation of the virus into the nucleus is a comparably slow and 
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inefficient step (Lux et al., 2005). However, reports on intact viral particles within 

the nucleus have been published (Sanlioglu et al., 2000). 

 If viral uncoating occurs before or after entering the nucleus is still a 

controversially discussed question. Lux and colleagues reported that uncoating 

occurs before or during entry into the nucleus independently of the helper virus 

since at viral-to-cell ratios at which viral genomes could be detected within the 

nucleus. Signals for intact viral capsid were exclusively detected outside the 

nucleus in the perinuclear area or in nuclear invaginations (Lux et al., 2005). In 

presence of helper virus, however, the rare event of intranuclear localization of 

intact virals capsids is increased (Xiao et al., 2002). 

Moreover, it is still discussed whether AAV and/or AAV genomes enter the nucleus 

through the nuclear pore complex (NPC) or in a NPC-independent way (Hansen, 

Qing, and Srivastava, 2001b). However, several agents have been shown to 

enhance nuclear accumulation and gene expression of AAV including adenovirus 

as well as hydroxyurea and the previously mentioned proteasome inhibitors 

(Hansen, Qing, and Srivastava, 2001a; Jennings et al., 2005; Xiao et al., 2002).  

3.1.3.5 Latent and lytic life cycle of AAV 

The presence or absence of helper virus determines if AAV enters a lytic or latent 

life cycle. Lacking the helper viral functions, the virus latently infects cells by 

integrating into the genome. Integration occurs in dividing and, to a lesser extent, 

in non-dividing cells (Podsakoff, Wong, and Chatterjee, 1994; Russell, Miller, and 

Alexander, 1994). First, second-strand synthesis of the single-stranded virus 

genome and a basal expression of the Rep proteins are activated (Brister and 

Muzyczka, 2000; Redemann, Mendelson, and Carter, 1989). In presence of the 

large Rep proteins (Rep68, Rep78) and intact ITRs, integration occurs, although 

not exclusively, at the so-called AAVS1 site on the human chromosome 19 

(19q13.3-qter) (Kotin, Linden, and Berns, 1992; Kotin et al., 1990). The AAVS1 

locus resides a Rep binding element (RBS) and a terminal resolution site (TRS) 

equivalent to the AAV genome (Linden et al., 1996; Linden, Winocour, and Berns, 

1996; Weitzman et al., 1994). Usually, proviral sequences are integrated as viral 

concatemers in a head-to-tail conformation (Linden et al., 1996). The ability to 

integrate site-specifically into the human genome is unique among eukaryotic 

viruses and explains the attractivity of AAV as vector for gene therapy. Helper viral 
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superinfection can rescue the integrated provirus initiating a lytic, productive life 

cycle (Berns and Giraud, 1996). 

During virus replication, the 3’-OH end of the hairpin-like ITR may serve as primer 

for second-strand synthesis (Berns, 1990). The large Rep proteins unwind the ITR 

by their helicase activity which leads to exposure of the TRS which is nicked by 

the Rep endonuclease and enables complete synthesis of the second-strand by 

switching templates (Brister and Muzyczka, 2000; Im and Muzyczka, 1990; Ni et 

al., 1994). The single-stranded DNA is then converted into a parental duplex 

replicative form and production of viral progeny can proceed. 

3.1.4 Adenovirus-free AAV production and recombinant AAV vectors 
(rAAV) 

For the production of recombinant AAV (rAAV), the only viral elements required in 

cis are the ITRs while the two ORFs rep and cap are sufficient when provided in 

trans (helper plasmid) (Collaco, Cao, and Trempe, 1999). The deleted rep/cap 

sequences of the parental virus can then be replaced by marker or therapeutic 

genes resulting in the production of vectors which are unable to replicate even in 

presence of helper virus (Collaco, Cao, and Trempe, 1999). The flanking ITRs are 

necessary for packaging into the newly formed capsids. In general, rAAV is 

produced in a helper virus-free manner to avoid helper virus contaminations of 

vector preparations. The essential adenoviral genes VA, E2A and E4 have been 

cloned into an adenoviral helper plasmid and are provided in trans (Collaco, Cao, 

and Trempe, 1999; Grimm and Kleinschmidt, 1999; Xiao, Li, and Samulski, 1998). 

HEK293 cells which are commonly used for the production of viral particles are 

transgenic for the adenoviral genes E1a and E1b.  

The helper, vector and adenoviral plasmids are brought in HEK293 cells by triple 

transfection (Figure 5). 48h later, viral progeny can be isolated out of the cell 

lysates and purified by either CsCl or Iodixanol gradient ultracentrifugation 

(Hermens et al., 1999; Zolotukhin et al., 1999). AAV2 is appropiate for purification 

directly from crude lysates or from gradient purified fractions by heparin affinity 

chromatography (Zolotukhin et al., 1999). 

All serotypes can be produced as recombinant vectors as described above. 

Therefore, only the cap sequence of AAV2 has to be replaced by the serotype-
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specific cap. The ITRs as well as the rep ORF are typically derived from AAV2. 

This method is called pseudotyping or cross-packaging (Rabinowitz et al., 2002). 

 

 

Figure 5: Packaging of recombinant AAV vectors. HEK293 cells are transfected by 3 plasmids: A 

helper plasmid encoding for the rep and cap ORFs, a vector plasmid carrying the desired transgene 

flanked by the packaging sequences (ITRs) and an adenoviral helper plasmid to provide helper 

virus functions. After vector assembly, the cells are lysed and rAAV is purified, e.g. by 

ultracentrifugation. (Figure was kindly provided by H. Büning) 

 

Transduction efficiency in numerous cell lines has been reported to be limited by 

insufficient second-strand synthesis of the single-stranded (ss) DNA genome 

(Ferrari et al., 1996; Fisher et al., 1996). This step is necessary to obtain a double-

stranded DNA template for initiation of gene expression. Hence, McCarty and 

colleagues developed a pseudo double-stranded, self-complementary (sc) 

genome in order to overcome this limitation (McCarty, Monahan, and Samulski, 

2001). Their construct contains an extra copy of the palindromic terminal repeat 

thus enabling the DNA to re-fold and form a duplex DNA (Figure 6). Thereby, the 

requirement for host cell-mediated second-strand DNA synthesis can be 

circumvented and high transduction efficiencies are obtained in vitro and in vivo 

(Hacker et al., 2005; McCarty et al., 2003; Wang et al., 2003). Due to the duplex 

structure of the self-complementary genome conformation, its packaging capacity 

is limited to half of the single-stranded construct that is about 2.3 kb compared to 
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4.6 kb including ITRs. Therefore, self-complementary vectors are not suitable for 

larger transgenes. 

 

Figure 6: Single-stranded and self-complementary vector genome conformation. On the left side, 

the natural, single-stranded conformation of AAV is shown. On the right side, the same transgene 

cassette consisting of a CMV promoter-driven eGFP gene is depicted as a self-complementary 

DNA. An additional terminal repeat allows folding into a duplex DNA. (McCarty, Monahan, and 

Samulski, 2001) 

3.1.5 AAV as vector in gene therapy 

Gene therapy bases on the idea of introducing genetic material into an organism in 

order to cure or improve the status of a disease. In general, two different systems 

are applied, the viral and non-viral vectors. Whereas the viral systems include 

adeno-, retro-, vaccinia-, pox-, herpes simplex- and adeno-associated-viral 

vectors, the non-viral vector strategy uses naked DNA and lipid- or 

polyethylenglycol- (PEG) covered DNA (Gould and Favorov, 2003; Minato et al., 

2003; Omori et al., 2003).  

Ideally, gene therapeutical vectors should combine efficiency and safety. Unique 

for AAV is that no disease could be related to this virus despite its broad tissue 

tropism (Berns and Linden, 1995). The transduceability of various cell types 

including dividing as well as post-mitotic or quiescent cells and differentiated 

tissues such as brain, muscle, lung and liver, qualifies AAV for a wide range of 

applications (Alexander et al., 1996; Fisher et al., 1997; Flotte et al., 1993; Kaplitt 

et al., 1994; Kaplitt et al., 1996; Manno et al., 2006; Podsakoff, Wong, and 

Chatterjee, 1994). Moreover, AAV has also been shown to mediate long-term 

expression, e.g. in a muscle-directed trial where transgene expression sustained 

for more than four years in a canine hemophilia B model (Fisher et al., 1997; 

Herzog et al., 1999). As another important aspect, AAV does not need to integrate 

into the host genome in contrast to lenti- or retroviral vectors. Actually, vector 

genomes seem more likely to exist as episomes (Duan et al., 1998a; Nakai et al., 



Introduction 

 

20  

2001). Moreover, in presence of the large Rep proteins, AAV is able to integrate 

site-specifically into the human chromosome 19 thus minimizing the risk of 

insertional mutagenesis (Huttner et al., 2003; Kotin et al., 1990). By the 

development of high titer-reaching helpervirus-free production methods as well as 

improvements in purification this vector system has become even more attractive. 

As recombinant AAV vectors are gutless vectors, they are unable to replicate even 

in presence of helper virus (Samulski, Chang, and Shenk, 1987).  

In general, immunologic reactions to AAV are low. The importance of that aspect 

becomes evident when AAV is compared to adenovirus which elicits high immune 

responses (Raper et al., 2003; Zaiss et al., 2002). Apparently, AAV has only a 

minimal inflammatory potential and seems not to engage pattern recognition 

receptors like toll-like receptors (TLRs) mediating innate immune responses 

(Hensley and Amalfitano, 2007; Zaiss et al., 2002). The prevalence of antibodies 

against AAV2 due to natural infections is as high as 50 to 96 % in the human 

population. The amount of neutralizing antibodies varies from 18 to 68 % 

depending on age and ethnic group (Chirmule et al., 1999; Erles, Sebokova, and 

Schlehofer, 1999; Moskalenko et al., 2000). Animal experiments have confirmed 

that neutralizing antibodies have strong negative implications on transduction 

efficiency if the same serotype is reapplied (Scallan et al., 2006). Although human 

data are limited, at least for one patient in a clinical hemophilia B trial, neutralizing 

antibodies seem to account for the absence of transgene expression (Manno et 

al., 2006). Additionally, an anti-capsid response was observed.  

Disadvantages of the AAV vector system are its small genome size limiting the 

coding capacity for transgenes including ITRs to a maximum of 4.1 to 4.9 kb  and 

its broad tissue tropism interfering with a cell-specific in in vivo gene transfer 

(Dong, Fan, and Frizzell, 1996). 

For overcoming pre-existing immune reactions and off-target gene expression, 

several options are available. The use of serotypes other than AAV2 which show 

different tropisms and immune responses can be considered and  technology, 

respectively, are likely to cope with these limitations (Buning et al., 2003b; Grimm 

and Kay, 2003; Limberis and Wilson, 2006; Wu, Asokan, and Samulski, 2006). 

Furthermore, several strategies have been developed to overcome the size 
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limitation (Duan et al., 2001). Overall, AAV is a promising vector for gene therapy 

as assessed in clinical trials.  

Since the first gene therapy clinical trial in 1989, 1308 more studies have been 

initiated worldwide (http://www.wiley.co.uk/genmed/clinical/). The main focus for 

gene therapeutical applications is the treatment of cancer with 66.5 % clinical trials 

followed by cardiovascular (9.1 %) and monogenic (8.3 %) diseases. In most 

cases, adeno- (24.7 %) or retroviral (22.8 %) vectors find application, while AAV 

vectors are used only in 3.5 % of the approaches. In complete, 32 clinical trials 

involving AAV vectors are still open, whereas 14 are already closed. Currently, 

evaluation of safety of AAV as a vector system is of main interest in clinical trials. 

First published data dealt with the monogenic diseases cystic fibrosis and 

hemophilia B in gene therapy trials. Administration of the cystic fibrosis 

transmembrane conductance regulator (CFTR) as transgene on the nasal sinus 

and bronchial epithelium resulted in an improvement of pulmonary function and 

partial correction of hyperinflammatory responses and electrophysiological defects 

(Moss et al., 2004; Wagner et al., 1999; Wagner et al., 1998). AAV was approved 

to be safe in these clinical settings as well as in the treatment of hemophilia B by 

intramuscular or intrahepatic vector administration (Kay et al., 2000; Manno et al., 

2003; Manno et al., 2006). Evidences for transduction were found in all patients of 

the muscle-directed study and long-term expression of the therapeutic gene, 

coagulation factor IX (FIX), could be detected albeit at low levels. Highest vector 

amount administered into the hepatic artery resulted in therapeutic, but transient 

(<8 weeks) transgene expression levels.  

3.1.5.1 Gene therapy of ischemic cardiovascular diseases 

As mentioned above, cardiovascular diseases are a main target for human gene 

therapy. Despite considerable advances in conventional treatment strategies, 

heart diseases remain the prevalent cause of disability and premature death in the 

human population (17 million deaths per year) world-wide (World Health 

Organization 2008). Since organ regeneration, pharmacotherapy and invasive 

interventions are limited, alternative therapies are urgently needed. Currently, 

xenotransplantation, gene- and cell-based therapies are the focus of intense 

investigations. Most efforts in the latter two fields are made on the development of 

strategies to induce angiogenesis (vessel formation from pre-existing ones) and 

vasculogenesis (de novo vessel formation) (Khan, Sellke, and Laham, 2003; Melo 
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et al., 2004). Such therapies could be administered either for protection of 

myocardium at risk or for rescue after infarction (Khan, Sellke, and Laham, 2003). 

Investigations on the molecular and cellular basis of cardiac diseases have 

identified potential therapeutic genes. The promising therapeutic potential of 

angiogenic factors such as vascular endothelial growth factor (VEGF), fibroblast 

growth factor (FGF) or hepatocyte growth factor (HGF) has already been 

successfully demonstrated in clinical trials (Baumgartner et al., 1998; Grines et al., 

2003; Losordo et al., 2002; Morishita et al., 2004). Overexpression of 

cytoprotective genes like antioxidant genes (e.g. heme oxygenase 1 (HO-1)), 

survival genes (e.g. Bcl-2, HGF), genes encoding for heat shock proteins and anti-

inflammatory cytokines (e.g. IL-4, IL-10, IL-13, TGF-β) as well as inhibition of 

proapoptotic genes (e.g. Bad) might be useful in myocardial protection as 

described in various publications and reviewed by Melo and colleagues (Melo et 

al., 2005).  

Generally, gene transfer vectors are administered into the heart tissue by either of 

the two routes, intracoronary or intramyocardial. Injection into the myocard 

resulted in local transgene expression in a patchy pattern (French et al., 1994). In 

order to reach homogenous vector distribution, vector can be applied 

intracoronary. However, this procedure is limited by the short exposure time of the 

vector to the endothelium and fast systemic distribution. If transduction of the 

myocardium is desired, the vector has to overcome the endothelial barrier. 

Therefore, novel techniques have been developed to increase endothelial 

permeability and to prolong exposure time. Capillary-modulating substances like 

histamine, serotonin or VEGF as well as high intravascular pressure or ultrasound 

have been described to permeabilize the endothelial barrier (Beeri et al., 2002; 

Bekeredjian et al., 2003; Donahue et al., 1998; Logeart et al., 2001). As 

demonstrated in a rat model, simultaneous clamping of the pulmonary artery and 

the aorta allowed the adenoviral vector to recirculate in the coronaries over a short 

period of time and resulted in successful transgene expression (Hajjar et al., 

1998). Prolongation can also be reached by hypothermia or cardiac arrest (Ding et 

al., 2004; Iwanaga et al., 2004).  

On the other hand, direct targeting of the endothelium might be favourable in 

endothelial dysfunction which plays a pivotal role in atherosclerosis, coronary 
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artery disease and hypercholesterolemia. Under physiological conditions, the 

endothelium retains numerous prominent roles in maintaining vessel wall 

homeostasis such as regulation of angiogenesis, thrombolysis, leukocyte 

adhesion, platelet adhesion and aggregation (Cooke, 2000). Therefore, anti-

thrombotic, anti-adhesion (e.g. inhibition of intercellular adhesion molecule 1 

(ICAM-1)) or anti-inflammatory genes are considered as therapeutic targets in 

endothelial dysfunction and should preferentially be expressed by endothelial cells 

(Vassalli et al., 2003). In diseases associated with high oxidative stress, the 

overexpression of enzymes that act as anti-oxidants could be beneficial as shown 

in a rat postmyocardial infarction model using rAAV to deliver heme oxygenase 1 

(HO-1) delivery (Liu et al., 2006).  

AAV2 was reported to transduce endothelial cells in vitro and in vivo with low 

efficiency (Nicklin et al., 2001a; Pajusola et al., 2002). Besides AAV, also adeno-, 

retro- and lentiviruses have been used as gene therapy vectors for cardiac 

diseases. Additionally to the disadvantages discussed above, the potential of 

retroviruses is limited as they require dividing cells for efficient transduction, 

whereas lentiviruses are appropriate vectors for endothelial transduction (Byun et 

al., 2000; Sakoda et al., 2007). Adenovirus might provoque myocarditis in 

response to immune reactions and shows only short-term transgene expression 

(Calabrese and Thiene, 2003; Guzman et al., 1993). In targeting of the 

myocardium, comparative analyses of the AAV serotypes in mouse and non-

human primate models revealed the recently discovered AAV9 as the most 

efficient serotype (Pacak et al., 2006; Palomeque et al., 2007). 

Recently, the identification of stem cells capable of contributing to tissue 

regeneration has ignited significant interest in the possibility that cell therapy might 

be used therapeutically for repair of damaged myocardium. Thereby, the 

combination of cell- and gene-based therapies could result in even higher 

beneficial effects. This interesting field is discussed separately in chapter 3.2.3. 

Transplantations as potential therapy are limited primarily by donor organ shortage 

and the need for optimal tissue matching to minimize the risk of organ rejection. 

Nevertheless, organ recipients require life-long immunosuppression. Currently, 

researchers are determining the potential and limiting factors of porcine grafts 

which are functionally and physically closely related to human hearts. In 
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xenotransplantation and transplantation, gene therapy could allow the production 

of immunomodulatory proteins locally within the donor graft or the induction of 

donor-specific tolerance and other mechanisms preventing graft rejection (Chen, 

Sung, and Bromberg, 2002). Moreover, the identification of beneficial effectors 

could account for the generation of transgenic animals for xenotransplantation. 

Both, innate and adaptive immune reactions are responsible for organ rejection. 

The hyperacute rejection occurring within minutes is due to complement-

dependent reactions of pre-existing alloantibodies to blood group or major 

histocompatibility complex (MHC) antigens. As complement-regulatory molecules 

are working less efficient across species-barriers and recognize directly certain 

porcine oligosaccharides (e.g. αGal), this step is very problematic for xenografts. 

Nevertheless, the main mediators for acute organ rejection are T-cells. They can 

be either activated directly by donor antigen-presenting cells (APC) or indirectly by 

the recipient’s APCs which present phagozytosed non-self molecules to T-cells. 

Additionally, T-cells play an important role in chronic rejection processes caused 

by inflammatory vascular injury. Briefly, alloreactive T-cells infiltrate the graft and 

recruit inflammatory cells by cytokine release and stimulation of endothelial 

adhesion molecules. Gene therapeutical approaches encompass the inhibition of 

anti-graft responses and induction of graft protective mechanisms (Chen, Sung, 

and Bromberg, 2002). As already discussed above, delivery of genes encoding for 

anti-adhesive, anti-apoptotic, anti-inflammatory and antioxidant proteins might be 

useful in this regard as well. Moreover, blockage of specific functions of the 

adaptive immune system showed promising effects. For example, inhibition of the 

costimulatory signal (CD28-CD80/86) between APC and T-cell by expression of 

CTLA-4Ig prolongs cardiac graft survival using AAV as vector system (Chen et al., 

2003). Expression of immunomodulatory cytokines such as IL-4, IL-10, IL-13 and 

TGF-β resulted in prolonged allograft survival in various models (Chan et al., 2000; 

David et al., 2000; Ke et al., 2000; Ke et al., 2002). Another example is viral IL-10 

(vIL-10) which is encoded by the Epstein-Barr virus. It has the same properties like 

IL-10, but lacks T-cell immunostimulatory functions and has been shown to 

prolong heart survival time in an adenovirus-mediated vIL-10 rat transplantation 

model (Zuo et al., 2001).    
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3.2 Stem cells 

By definition, stem cells (SC) are undifferentiated cells able to generate new stem 

cells of identical differentiation potency or to produce cells that differentiate along a 

lineage pathway. The first of these two activities of stem cells is described as 

symmetric, the second as asymmetric division. Both types of cell divisions 

contribute to the homeostasis of the stem cell population within the stem cell 

niche, whereas asymmetric divisions are responsible for renewal of the respective, 

differentiated tissue. In the adult tissue, quiescent stem or progenitor cells are 

normally mobilized upon stimuli for physiological and pathological tissue 

regeneration. 

Stem cells can be divided into three different types depending on their 

developmental potential. Embryonic totipotent stem cells are able to differentiate 

into all embryonic and extra-embryonic cell types (e.g. placenta, umbilical cord) 

while pluripotent – the so-called embryonic stem cells – possess the ability to 

generate all tissues of an adult organism. Pluripotent cells give rise to the three 

types of germ layer stem cells for ecto-, endo- and mesoderm (Figure 7). As 

development proceeds the differentiation properties get more restricted. The 

multipotent stem cell gives rise to only a limited number of cell types of fully 

developed organs maintaining a steady-state homeostasis in the tissue. If only one 

terminally differentiated cell type can be generated, the cell is referred to as 

unipotent.  

Multipotent and unipotent cells are designated as somatic or adult stem cells and 

are present in tissues where terminally differentiated cells do not divide or have 

only a short life span. Indeed, long time it was believed that organs responding 

poorly to regenerative pressure (e.g. heart, brain) would not reside any stem cells. 

Then it turned out that even organs considered as post-mitotic were able to 

regenerate although at lower levels. Anyway, multipotent stem cells are more 

abundant in tissues with a high cell turnover rate such as epithelia, vasculature or 

blood and to a lesser extent in organs or tissues undergoing little self-renewal like 

the central nervous system or the myocard (Beltrami et al., 2003; Lemoli, 2005; 

Lois and Alvarez-Buylla, 1993; Oh et al., 2003). The best characterized multipotent 

cells are hematopoietic stem cells (HSC) which give rise to the entire blood 

lineages.  
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Figure 7: Postnatal stem and progenitor cells. SC, stem cell.  (Asahara and Kawamoto, 2004) 

3.2.1 Hematopoietic stem cells and endothelial progenitor cells 

Since blood cells have only a limited life span and essential functions like gas 

transport, immunity and other vital functions have to be maintained, a continuous 

production of new cells is needed. The hematopoietic stem cell (HSC) provides all 

the blood lineage cells and is well described. In the 1960’s first evidence for the 

existence of clonogenic cells able to generate myeloerythroid cells after bone 

marrow transplantation in lethally irradiated mice was given (Becker, Mc, and Till, 

1963; Wu et al., 1968).  

Regarding embryonic development hematopoietic and endothelial progenitor cells 

share a common mesodermal precursor called hemangioblast. These cells can be 

found in the extra embryonic yolk sac where they are accumulating in the so-called 

blood islands. In the inner part of these aggregates cells possess hematopoietic 

properties whereas the outer cells begin to form endothelial cells (EC) (Asahara 

and Kawamoto, 2004). These first developing vessels are marking the onset of 

vasculogenesis. Long time it was believed that this process only takes place 

during embryogenesis in contrast to angiogenesis, meaning the sprouting of new 

vessels out of pre-existing ones. Then, in 1997, Asahara and colleagues published 

the intriguing observation that CD34+ hematopoietic progenitor cells purified from 
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adults were able to differentiate ex vivo into the endothelial lineage (Asahara et al., 

1997). They were expressing a number of endothelial markers like Flk-1, Tie-2 and 

CD34 and were shown to incorporate into neovessels at ischemic sites. This 

subgroup of hematopoietic progenitor cells was named “endothelial progenitor 

cells” (EPC). In the following year, Rafii’s group showed that CD34+ cells cultured 

in presence of basic fibroblast growth factor, insulin-like growth factor-1 and 

vascular endothelial growth factor (VEGF) differentiated into endothelial cells as 

staining for von Willebrand Factor (vWF) and the incorporation of acetylated low-

density lipoprotein (Ac-LDL) proved (Shi et al., 1998). Even more interesting was 

the fact that after bone marrow transplantation in a canine animal model, donor 

“circulating bone marrow-derived endothelial cells” colonized a Dacron graft. This 

indicates that a CD34+ subpopulation can be mobilized to the circulation and 

populates prostheses.  

EPCs were described as positive for CD34 and for the endothelial marker vascular 

endothelial growth factor receptor 2 (VEGFR2) (Peichev et al., 2000). HSCs and 

postnatal EPCs share certain epitopes including Flk-1, Tie-2, CD133, Sca-1, c-Kit 

and CD34 which can also be found on mature endothelial cells (Hatzopoulos et al., 

1998). Further analysis revealed CD133 (also called AC133 or prominin), an 

orphan receptor, as a marker for more immature hematopoietic stem cells, 

because of its absence on mature endothelial cells and monocytic cells (Figure 8) 

(Peichev et al., 2000). Therefore it can be expected that CD133+VEGFR2+ cells 

may represent more likely the population of immature progenitor cells. 

Nevertheless, the ability to differentiate into the endothelial lineage and not 

preliminary the surface marker profile is defining the population of EPCs. Thus, the 

group of “EPCs” might range from stages of hemangioblast to fully differentiated 

ECs and also its putative precursors and stages of lineage differentiation remain to 

be investigated (Figure 8).  

Moreover, there are consolidating evidences also for myeloid cells as origin of 

EPCs. Hebbel and colleagues observed first that morphologically and functionally 

distinct endothelial cell subpopulations can be generated out of peripheral blood 

(Lin et al., 2000). CD14+/CD34- myeloid cells showed coexpression of endothelial 

markers and the ability to form tube-like structures in cell culture (Schmeisser et 

al., 2001). Even stronger evidence demonstrated in vivo experiments where ex 

vivo expanded CD14+ mononuclear cells were able to incorporate as endothelial 
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cells into newly formed vessels in a mouse hind limb model (Urbich et al., 2003). 

Thus, it can be concluded from these data that myeloid cells can differentiate (or 

transdifferentiate) into the endothelial lineage (Figure 8).  

 

 

 

Figure 8: Origin and differentiation of endothelial progenitor cells. Scheme depicts the potential 

origin and differentiation of EPCs from HSCs and nonhematopoietic cells. (Urbich and Dimmeler, 

2004) 

 

To further complicate that topic, several studies showed that stem cell populations 

beside the HSCs can generate endothelial cells (Figure 8). For example, Reyes 

and colleagues identified nonhematopoietic multipotent adult progenitor cells 

(MAPC) which copurified with the mesenchymal stem cells isolated out of the 

postnatal bone marrow. When the MAPCs (CD34-, CD133+, vascular endothelial 

cadherin– (VE-cadherin)) were cultured in presence of VEGF, expression of 

endothelial markers like CD34 and VE-cadherin were detected and the respective 
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MACs could be found in sites of neoangiogenesis in tumors (Reyes et al., 2002). 

Another cell type – the tissue-resident stem cell isolated out of the heart – has also 

been shown to give rise to endothelial cells (Beltrami et al., 2003). 

Different isolation methods and sources of CD34+ EPCs have been described so 

far (Asahara et al., 1997; Fan et al., 2003; Gehling et al., 2000; Hur et al., 2004; 

Lin et al., 2000; Reyes et al., 2002; Shi et al., 1998; Wijelath et al., 2004). CD34+ 

cells can be isolated either out of the bone marrow (BM), peripheral blood (PB) or 

umbilical cord blood (CB). The amount of HSCs in the PB is lower (around 0.1 %) 

compared to the CB and BM where about 1 % of the total mononuclear fraction is 

CD34+ (Hao et al., 1995; Kinniburgh and Russell, 1993; Sutherland et al., 1994). 

The fraction of circulating HSCs in the PB increases upon ischemia or under 

treatment with cytokines which are known to mobilize bone marrow-derived 

progenitors (Gill et al., 2001; Takahashi et al., 1999). Compared to the highly 

primitive populations of CD34+CD38- cells isolated out of BM, the cord blood-

derived cells show a much higher cloning efficiency, proliferate more rapidly upon 

cytokine stimulation and generate a higher number of progeny cells (Cardoso et 

al., 1993; Hao et al., 1995; Lu et al., 1993). For these reasons, CB is an ideal 

source for isolation of HSCs.  

3.2.2 Bone marrow stem cell niche, mobilization and homing 

Quiescence and activity of HSCs in their bone marrow niche are tightly regulated 

by the microenvironment. This is a necessity to maintain tissue homeostasis and 

to prevent exhaustion of the stem cell pool or tumor formation. Important 

components of the bone marrow stem cell niche are osteoblasts and stromal cells 

(Moore and Lemischka, 2006; Visnjic et al., 2001). The membrane-bound stem 

cell factor (SCF, c-Kit ligand, steel factor S1F) on stromal cells immobilizes HSCs 

by its SCF-receptor c-Kit. In general, adhesion between these two cell types is 

regulated by cytokines. Secretion of proteolytic enzymes like elastase, cathepsin 

G or matrix metalloproteinase (MMP) is playing a major role in this process. One 

important mechanism for the mobilization of stem cells is the cleavage of 

membrane-bound SCF by MMP9 which is induced by stromal cell-derived factor-1 

(SDF-1) thus diminishing chemoattraction to the bone marrow (Heissig et al., 

2002). Also other factors like vascular endothelial growth factor (VEGF) and 

granulocyte macrophage colony-stimulating factor (GM-CSF) have been shown to 
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augment EPC levels in the blood and promote neovascularization (Asahara et al., 

1999; Takahashi et al., 1999). Moreover, a number of proangiogenic factors 

including angiopoietin-1, placental growth factor and erythropoietin had similar 

effects (Dimmeler et al., 2001; Hattori et al., 2001; Hattori et al., 2002; Heeschen 

et al., 2003). Systemic treatment with HMG CoA reductase inhibitors (statins), 

estrogens, certain cytotoxic drugs (cyclophosphamide, hydroxyurea, 5-fluorouracil) 

and cytokines (e.g. G-CSF, GM-CSF, IL-11, IL-3, IL-8, SCF, Flt3L) as well as 

physical exercise enhanced HSC mobilization (Dimmeler et al., 2001; Iwakura et 

al., 2003; Laufs et al., 2004; Papayannopoulou et al., 2003). Incorporation of EPCs 

into newly formed vessels assumes not only EPC mobilization, but also a complex 

process composed of chemoattraction, adhesion, transmigration and finally 

differentiation into mature endothelial cells (Figure 9). The term “homing” which is 

often used in the context of stem cells comprises thereby the steps of adhesion, 

transmigration through the activated endothelium and migration to the target site. 

Besides homing to the ischemic or injured tissue also homing to the bone marrow 

occurs. This process which is far better understood than the homing to ischemic or 

injured tissue (Papayannopoulou, 2003). 

Physiologically, ischemia seems to be an important egress signal for EPCs from 

the bone marrow. As possible mechanisms, upregulation of VEGF and SDF-1 

have been proposed which could lead to induction of MMP9-mediated mobilization 

of EPCs (Aicher et al., 2003; Gill et al., 2001; Heissig et al., 2002; Takahashi et al., 

1999; Wysoczynski et al., 2005). It has also been shown that SDF-1 levels are 

enhanced during the first days after myocardial infarction (Askari et al., 2003). 

Moreover, the circulating EPCs are attracted by a SDF-1 and VEGF gradient to 

sites of ischemia or tissue injury (Shintani et al., 2001; Yamaguchi et al., 2003). 

Together with directly induced hypoxia-responsive genes, immune competent cells 

which are accumulating in the ischemic tissue may enhance the level of 

chemokines such as MCP-1 or interleukins to further recruit circulating EPCs 

(Fujiyama et al., 2003). Another probable homing signal could be given by 

necrosis through release of high mobility group box protein 1 (HMGB1). This 

chromatin-binding protein is mediating extracellular danger signals thus promoting 

homing of EPCs (Scaffidi, Misteli, and Bianchi, 2002). 

 



Introduction 

 

31  

 

 

Figure 9: Mechanisms of EPC homing and differentiation. Recruitment and incorporation of EPCs 

into ischemic tissues requires a coordinated multistep process including mobilization, 

chemoattraction, adhesion, transmigration, migration, tissue invasion and in situ differentiation. 

Factors that are proposed to regulate the distinct steps are indicated. (Urbich and Dimmeler, 2004) 

 

Adhesion and migration processes of diverse cell types including HSCs and 

leukocytes are controlled by integrins (Carlos and Harlan, 1994; Springer, 1994). 

This is, for example, a mechanism by which SDF-1 acts (De Falco et al., 2004). 

First step is the adhesion of HSCs to the activated endothelium. Integrins have 

been identified as potential mediators for homing as they are able to form cell-cell 

interactions (Chavakis et al., 2005; Soligo et al., 1990). In fact, there are evidences 

for the importance of different integrins depending on the target tissue (Scott, 

Priestley, and Papayannopoulou, 2003). Final attachment of embryonic progenitor 

cells to tumor endothelium was proposed to be mediated by P- and E-selectin and 

P-selectin glycoprotein ligand-1 (Vajkoczy et al., 2003). 

In contrast to homing into sites of ischemia, incorporation of EPCs into denuded 

arteries seems to be less dependent on cell-cell interaction and transmigration. 
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Instead, adhesion to the extracellular matrix via vitronectin receptors (αvβ3- and 

αvβ5-integrins) is a more important mechanism. This has also been shown in vivo 

by inhibiting vitronectin receptors using cyclic RGD peptides which blocked 

reendothelialization of injured carotid arteries (Walter et al., 2002). Furthermore, 

other sorts of integrins like the β1-subtype might play a role in adhesion to 

extracellular matrix proteins of denuded arteries (Fujiyama et al., 2003).  

Concerning migration and invasion through the endothelial monolayer to the site of 

ischemia little is known so far, but different proteases like cathepsins or 

metalloproteinases may take part in these processes. 

Mechanisms influencing differentiation of EPCs into endothelial cells also remain 

largely unknown. However, VEGF and its receptors have been shown to mediate 

endothelial differentiation in embryonic development (Ferrara et al., 1996; Fong et 

al., 1995; Shalaby et al., 1995). Also for various adult progenitor cells, this crucial 

role for VEGF in ex vivo endothelial differentiation could be approved (Dimmeler et 

al., 2001; Kalka et al., 2000).  

3.2.3 Therapeutic potentials of EPC transplantation and gene therapy 

CD34+ cells gained attention as a population of endothelial progenitor cells having 

the ability to self-renew, proliferate and differentiate into endothelial cells. 

Moreover, as hematopoietic stem cells they give rise to all blood cells thus being 

interesting for therapy of hematopoietic and autoimmune diseases. Especially, 

induction of neovascularization in sites of ischemia and reendothelialization after 

endothelial injury brought these cells into focus for the treatment of chronic heart 

disease and acute myocardial infarction. Increased mobilization of stem cells from 

the bone marrow stem cell niche and proliferation of these cells is an effective 

means to support self-regenerative processes (Figure 10). 
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Figure 10: Therapeutic application of EPCs for neovascularization. (Asahara and Kawamoto, 2004) 

 

In vivo expansion can be induced by application of growth factors, cytokines and 

pharmaceuticals like statins. Therapeutical success has been stated in several 

studies also in patients by treatment with VEGF (Kalka et al., 2000). Another 

possibility is the ex vivo expansion of CD34+ cells followed by transplantation. 

Asahara’s group published that transplantation of ex vivo expanded human CD34+ 

cells in a hind limb model of immunodeficient mice augmented blood flow and led 

to a 50 % reduction in autoamputation and limb necrosis (Asahara et al., 1999). In 

nude rat myocardial ischemia the positive effects of transplanted human CD34+ 

cells comprised their incorporation into neovessels and differentiation into 

endothelial cells, enhancement of neovascularization and prevention of fibrosis 

and ventricular dysfunction (Kawamoto et al., 2001). Most convincingly are 

currently ongoing clinical trials where ex vivo expanded progenitor cells are 

transplanted successfully into patients suffering from acute myocardial infarction 

(TOPCARE-AMI study) or chronic heart disease (TOPCARE-CHD study) 

improving different parameters pointing to heart regeneration (Assmus et al., 2007; 

Assmus et al., 2006a; Assmus et al., 2002; Assmus et al., 2006b; Britten et al., 

2003; Kissel et al., 2007; Schachinger et al., 2004; Schachinger et al., 2006a; 

Schachinger et al., 2006b; Schachinger et al., 2006c). The subsequently described 

strategy – together with ex vivo expansion – might be meaningful in patients where 

progenitor cell function is dysregulated like in hypercholesterolemia, type II 
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diabetes or in aged persons (Chauhan et al., 1996; Chen et al., 2004; Cosentino 

and Luscher, 1998; Heiss et al., 2005; Thum et al., 2007). Combination of cell- and 

gene-based strategies, e.g for the expression of angiogenic growth factors or 

genes favoring the differentiation along a certain lineage could improve the 

success of endothelial progenitor cell transplantation.  

Their easy accessibility and ex vivo expansion capability makes CD34+ cells an 

auspicious aim for gene therapy. Different approaches have already been made 

using adenovirus- (Ad), lentivirus-, retrovirus- or AAV-based vector systems as 

described (Evans et al., 1999; Iwaguro et al., 2002; Santat et al., 2005; Schmidt et 

al., 2002). First experiments report increased neovascularization and a 63.7 % 

reduction in limb necrosis and autoamputations after application of Ad-VEGF in a 

mouse hind limb model (Iwaguro et al., 2002). For curing different hematological 

disorders like X-linked severe combined immunodeficiency or adenosine 

deaminase deficiency, several clinical trials using retroviral vector systems to 

transduce CD34+ cells have been successful (Aiuti et al., 2002; Cavazzana-Calvo 

et al., 2000; Gaspar et al., 2006; Hacein-Bey-Abina et al., 2002). Also in two 

primate models, different clones of retrovirus-transduced CD34+ cells were still 

detectable in peripheral blood leukocytes after 33 months (Schmidt et al., 2002). 

Despite these promising results, retroviral vectors imply the risk of insertional 

mutagenesis (Hacein-Bey-Abina et al., 2003). In the case of AAV, a rarely 

integrating vector, transgene expression declines over time being ideal for 

purposes where only transient gene expression is required as for example in 

myocardial diseases (Nathwani et al., 2000). This makes the AAV2-based vector 

system an attractive alternative. However, published in vitro data concerning 

transduction of CD34+ cells by rAAV2 are conflicting. Transduction efficiencies are 

reported to vary from 0 % (Alexander, Russell, and Miller, 1997) to higher 

expression levels using high (multiplicity of infection (MOI) >106) or relatively low 

(MOI >100) vector to cell ratios (Chatterjee et al., 1999; Hargrove et al., 1997; 

Malik et al., 1997; Nathwani et al., 2000; Ponnazhagan et al., 1997; Zhou et al., 

1994). Different protocols for isolation and culturing of EPCs as well as differing 

vector production techniques, titration methods and applied vector amounts impair 

a direct comparison of results. So, prestimulation of EPCs with cytokines 

enhances AAV-mediated transgene expression while freshly isolated cells are 

resistant to transduction (Nathwani et al., 2000). Transduction efficiencies could be 
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enhanced from 10 to 51 % by using higher cytokine concentrations and addition of 

TNFα (MOI 106) (Nathwani et al., 2000). Early investigations reported 

transduceability of HSCs by rAAV, but using crude vector lysates (Fisher-Adams 

et al., 1996; Goodman et al., 1994; Zhou et al., 1994). These low purified 

preparations contain adenoviral contaminations which might persist in the vector 

preparation using Ad as helpervirus (Alexander, Russell, and Miller, 1997). 

Moreover, donor-depending differences in transgene expression have been 

reported varying from 0 to 80 % 48 h p.i. or 5 to 100 % in long-term culture-

initiating cells after 5 weeks (Chatterjee et al., 1999; Ponnazhagan et al., 1997). 

Nevertheless, transplantation of rAAV2-transduced CD34+ cells into immune-

deficient mice showed the potential to engraft. A certain amount of bone marrow 

cells was transgenic and remained stable as well as several blood cell lineages 

(Santat et al., 2005). Also in a rhesus monkey model a high amount of vector 

modified blood cells could be detected 15 months after transplantation 

demonstrating that transduction of CD34+ cells by rAAV leads to long-term 

expression of the transgene (Schimmenti et al., 1998). 

3.2.4 Aim of the study 

Despite considerable therapeutic advances heart diseases remain the main cause 

of premature death in the human population world-wide. Heart transplantation 

often represents the only possibility to rescue the patient, but this is limited by 

organ shortage and the risk of graft rejection. Due to recent improvements in 

vector technology and in identification of potential therapeutic genes for the 

treatment of heart diseases, gene therapeutical strategies have become an option. 

Another approach is presented by the use of stem and progenitor cells which has 

gained increasing attention. Endothelial progenitor cells, for example, have already 

been demonstrated to be promising tools to achieve revascularization in ischemic 

regions as they possess the ability to differentiate into endothelial cells and home 

to sites of ischemia. The combination of cell- and gene-based strategies offers 

clear advantages for certain applications as revascularization of ischemic sites, 

and is thus a topic of many pre- and clinical studies.  

Both parts of this thesis focus on heart diseases. The first part aimed to establish 

the rAAV-based gene transfer system for modification of heart tissue before 

transplantation. This included the identification of potential limitations for efficient 
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use of this system, and – if possible – the development of strategies for their 

solution. As heterotopic heart transplantation models served the Sprague Dawley 

rats as small and the German landrace piglets as large animal model. While the 

rodent model ought to be established to later allow a fast screening for transgenes 

which might prolong graft survival, the studies in pigs should be used as preclinical 

model. Firstly, conditions enabling vector entry without harming the graft had to be 

assessed. In this regard, efficiency of intracoronary vector delivery under 

normothermic and hypothermic conditions should be compared in the rat model 

and findings shall then be translated into the pig model.   

In the second part, a protocol for efficient rAAV-mediated transduction of CD34+ 

cells ought to be established. The great potential of these cells for the treatment of 

heart diseases is widely accepted. Furthermore, they are ideal targets for genetic 

modification as they can be isolated, cultivated ex vivo and reapplied into the 

patient where they home to ischemic regions. Since currently used vector systems 

bear – despite their efficiency – certain risks like insertional mutagenesis, rAAV is 

discussed as valid alternative. Thus, comparative analyses of different serotypes 

as well as single-stranded and self-complementary genome conformation ought to 

be performed. Furthermore, it should be determined which cellular receptors are 

engaged for vector entry. Since genetically modified CD34+ cells have to maintain 

their ability to differentiate into endothelial cells to be of use in the patient, a 

potential inhibitory effect of the rAAV-mediated gene transfer had to be excluded. 
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4 Results 

4.1 rAAV transfer into heart 

Numerous strategies for gene transfer into the heart have been developed. In 

most cases, investigators aimed to transduce the myocard either by direct 

intramyocardial injection or intracoronary delivery of the gene transfer vector (see 

also chapter 3.1.5.1). In the latter case, additional attempts are necessary to 

overcome the endothelial barrier. Successful examples are elevated vascular 

pressure or administration of capillary-modulating substances (e.g. histamine) to 

increase vascular permeability (Beeri et al., 2002; Donahue et al., 1998; Logeart et 

al., 2001). 

However, also the endothelium itself is a therapeutic target since it is an important 

determinant in endothelial dysfunction-associated disorders such as 

cardiovascular diseases (Cooke, 2000; Melo et al., 2004). Moreover, being the first 

donor-derived tissue encountered by the recipient’s circulating immune cells, the 

endothelium has major impact on successful organ transplantation and could thus 

serve as target for gene therapy to reduce graft rejection, e.g. graft arteriopathy 

(Vassalli et al., 2003) (for more details please refer to chapter 3.1.5.1).   

4.1.1 rAAV transfer into rodent heart 

4.1.1.1 Heterogenic rat heart transplantation 

Heart transplantation experiments with piglets are very time-consuming and 

complicated and large vector amounts are needed. Thus, a Sprague-Dawley rat 

heart transplantation model was established by our colleagues of the Department 

of Heart Surgery at the Ludwig-Maximillians University Munich aiming to use this 

model for a fast screening of potentially useful therapeutic genes transferred into 

the donor organ by rAAV-mediated gene transfer. Based on published results at 

the start of our project, which described successful applications of AAV2 vectors in 

rodent heart models we decided to use this serotype (Asfour et al., 2002; 

Hoshijima et al., 2002; Iwanaga et al., 2004; Li et al., 2003; Svensson et al., 1999). 

Firstly, we aimed to identify a transplantation technique allowing to transplant the 

heart as unharmed as possible providing at the same time the most feasible 

conditions for AAV-mediated gene transfer. Therefore, we compared the following 

techniques summarized in chapter 7.5.1: A) heart transplantations performed with 
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a non-beating, hypothermic heart after cardiac arrest by ice-cold cardioplegic 

solution and B) a beating heart at normothermia. Whereas hypothermia should 

preserve better from ischemic injury the low temperature may impair receptor-

mediated endocytosis of cell surface-bound AAV vectors. In contrast, 

normothermia might allow direct vector entry, but may harm the heart tissue. As 

depicted in Table 1, each group consisted of 3 animals. 

 

Operation technique Vector application Animal Vector amount 

normothermia intracoronary A1 5.2 x 10
11

 

   A2 3.4 x 10
11

 

   A3 8.5 x 10
11

 

      

hypothermia intracoronary B1 5.2 x 10
11

 

   B2 5.0 x 10
10

 

   B3 3.1 x 10
11

 

      

w/o transplantation systemic C1 5.2 x 10
11

 

   C2 3.0 x 10
11

 

        

  intramuscular M1 3.4 x 10
9
 

    M2 5.6 x 10
9
 

 

Table 1: Experimental scheme of heteropic rat heart transplantions. 2 groups consisting of 3 

animals were transplanted and rAAV2ssLacZ was applied intracoronary either into a normothermic, 

beating heart (A1-A3) or into a non-beating, hypothermic heart (B1-B3). In addition, two animals 

(C1 and C2) received rAAV2ssLacZ systemically via tail vein injection to determine the ability of 

rAAV2 vectors to target the heart. Moreover, the animals B2 and B3 received additionally a vector 

injection into skeletal muscle (M2 and M1, respectively) in order to control vector function. 

(rAAV2ssLacZ = AAV serotype 2 based vector encoding beta-galactosidase in the single-stranded 

vector genome conformation) 

 

For gene transfer, rAAV2 encoding for the transgene β-galactosidase (LacZ) in the 

commonly used single-stranded (ss) vector genome conformation was produced 

as described in 7.3.6.1, purified by iodixanal gradient centrifugation (7.3.6.2) and 

further by heparin affinity chromatography (7.3.6.3) to minimize inflammatory 

responses to vector preparation impurities. Before use, genomic titers of vector 

preparations were determined by qPCR (7.3.6.4). Subsequently, between 5 x 1010 

and 8.5 x 1011 DNA containing particles were applied into the coronaries of the 

grafts either in the normo- or hypothermia transplantation model (Table 1). In 



Results 

 

39  

addition, skeletal hind limb muscle injections and systemic application were 

performed to control vector function and to determine vector tropism for the heart 

tissue, respectively. 

To minimize organ rejection, all animals received Tacrolimus (0.3 mg/kg body 

weight) daily for immunosuppression. All rats recovered well from transplantation 

and showed palpable contractions of the graft. With exception of animal A2, all 

animals were healthy, behaved and ate normally until the time point of 

explantation. The rat A2 had to be explanted at day 22 while all other animals 

were sacrificed 28 d post transplantation. Transplanted heart, native heart and 

liver were harvested for histological analyses and extraction of DNA and mRNA. 

Only the transplanted heart was analyzed in the animal A2. From the systemically 

injected rats, also spleen and lung were analyzed. From the two animals (B3 and 

B2) receiving an additional injection of rAAV2 into the the left and right hind limb 

muscle, total DNA and mRNA were isolated from the sample M1 (animal B3), 

while sample M2 (animal B2) was analyzed histologically.  

4.1.1.1.1 Delivery of vector genomes into transplanted hearts 

Heart transplantations and vector applications were performed as described in the 

previous chapter. To determine the applicability of the AAV vector technology for 

genetic modification of heart transplants we first assessed the presence of vector 

genomes using the therefor established quantitative real-time PCR protocols 

(qPCR) as described in 7.2.8. Briefly, DNA was extracted from shock-frozen 

organs of rAAV- and non-treated animals. The Quantitect SYBR Green PCR Kit 

(Qiagen) was then used to analyze 100 ng DNA of each sample by qPCR. 

Additionally, negative controls only containing the elution buffer (Tris, 10 mM, pH 

8.0) (N1) or the PCR mix (N2) were included. The plasmid pZNL, the vector 

plasmid during rAAV packaging, served as positive control. For normalization, the 

housekeeping gene GAPDH was included to ensure that equal levels of DNA were 

used. PCR products were assayed by melting curve analyses and by agarose gel 

electrophoreses. Melting curve analyses showed no unspecific signals in the 

samples. The intensities of all GAPDH bands detected after electrophoretical 

separation and visualization were similar as expected from the values obtained by 

qPCR (qPCR data not shown) (Figure 11 A and B). Only in Figure 11 C, the 
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skeletal muscle probe M1 showed a stronger intensity of the band than the non-

transduced muscle sample.  

Quantification of vector-specific PCR products was not possible due to the low 

transgene DNA amounts in our samples. An increase in cycle numbers above 40 

resulted in measurable PCR products, but also in the untreated animals. Based on 

melting curve analysis and agarose gel electrophoresis specific transgene DNA 

was detected in the non-treated controls. Therefore, only presence or absence of 

transgene DNA could be determined in samples undergoing 40 PCR cycles by 

agarose gel electrophoresis. 

Amplification of LacZ genomes was clearly detectable in transplanted hearts 

(HTX) of the animals A1 and A2 (Figure 11 A). A3 only showed a faint band for 

LacZ (Figure 11 A). With exception of B2 (received the lowest vector amount), in 

all transplanted rat heart samples of group B LacZ amplification could be 

visualized (Figure 11 A).  In contrast, native heart samples (H) of transplanted rats 

were devoid of transgene DNA (Figure 11 A). However, vector DNA was 

detectable in the liver of A1, A3 and B1 and of both animals receiving systemic 

vector administration. While the latter result was expected from previous reports, 

the former reveals that rAAV was transported from the transplanted heart into 

other parts of the body. Following systemic vector administration (without heart 

transplantation; Figure 11 B), LacZ DNA could clearly be detected in the liver as 

already outlined, but also in the spleen of C1 and C2. Moreover, a faint band was 

visible in both lung samples. Neither of the two heart samples showed LacZ DNA 

in the heart after systemic vector delivery. Transgene DNA was detectable in 

skeletal muscle after vector injection (Figure 11 C).  

Vector genomes were neither detectable in untreated animals nor in PCR buffers 

while specific amplification products were obtained with pZNL which served as 

positive control.  

Thus, rAAV-mediated gene transfer into the transplanted heart was observed with 

both operation techniques revealing that vector entry in cells of the heart tissue is 

not impaired. However, the transplanted heart samples in the normothermia group 

showed better results in the amount of vector DNA (3/3 animals were positive) 

compared to the group of rats receiving vector upon hypothermia. In the latter 

group transgene DNA could be detected as faint bands in transplanted hearts (3/2 



Results 

 

41  

animals were positive). In contrast, no transgene DNA was measured in any of the 

systemically injected rats, revealing that rAAV2 does not possess a native tropism 

for this tissue. The liver tropism observed after systemic application is also obvious 

in the transplanted animals where vector genomes were detected in 50 % of the 

liver samples. 
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B 

 

 

C 

 

 

Figure 11: DNA analyses of rat organs. Total DNA was analyzed by qPCR for transgene (LacZ) 

and housekeeping gene (GAPDH) followed by agarose gel electrophoresis. Shown are 

representative pictures of 2 independent tissue extractions and 3 PCR runs. In (A), gel pictures of 

the 2 different groups receiving vectors in a transplantation model are depicted whereas results of 

animals with systemic vector application without transplantation are shown in (B). Intramuscularly 

injected samples are indicated in (C). Animal groups: N, negative animal; A, normothermia; B, 

hypothermia; C, systemic vector administration; M1, skeletal muscle after vector application; 

samples: H, native heart; HTX, transplanted heart; L, liver; K, kidney; S, spleen; Lu, lung; M, 

skeletal muscle; N1, negative control for DNA extraction; N2, non-template control for PCR; +, LacZ 

plasmid as positive control. 

 

 

 

 

 

LacZ 

GAPDH 

  M      M        N1     N2       + 

     N      M1         PCR controls 

LacZ
Z 

   H      L     K     S     Lu    H     L     K      S     Lu     H     L     K     S     Lu   N1  N2     + 

                N                                  C1                                  C2                   PCR controls 

GAPDH 



Results 

 

43  

4.1.1.1.2 Transgene mRNA expression cannot be detected in 
transplanted hearts 

Next, we determined the amount of transgene mRNA as assumption of a 

successful transport of the vector genomes into the nucleus and transgene 

transcription. The same animals described in the previous chapter were analyzed 

by qPCR.  

First, RNA was isolated by phenol / chloroform extraction (7.2.6). Potential DNA 

contaminations were removed by DNase I digest and cDNA was synthesized 

using oligo-dT primer and the Transcriptor First Strand cDNA Synthesis Kit 

(Roche) as explained in 7.2.7. Around 140 ng cDNA were analyzed by qPCR to 

determine if transgene expression has occurred. For normalization, expression of 

the housekeeping gene GAPDH was used. 

The level of specific cDNA was lower than the amount of transgene DNA. Thus, 

quantification of LacZ mRNA expression was impossible and conclusions could 

only be drawn after visualization of PCR products by agarose gel electrophoreses 

according to the previous chapter. Based on results obtained for the transgene 

DNA (4.1.1.1.1) which revealed the absence of transgene in native heart of all 

transplanted animals, only transplanted heart and liver were analyzed for mRNA. 

In the case of A2, only the transplanted heart was available as described before. 

B3 only showed detectable transgene DNA in the transplanted heart, thus liver 

was not analyzed. 

Synthesis of cDNA from isolated mRNA was successful as GAPDH products were 

detectable in all samples. However, as the basal levels for GAPDH activity differ 

between the analyzed organs, band intensities are only comparable between the 

respective tissue samples. Nevertheless, amplified cDNA for LacZ could not be 

detected in transplanted hearts or livers in group A and B. Regarding the 2 rats 

having received systemic vector injection, only the second animal (C2) showed a 

faint band indicating LacZ expression in the liver. In contrast, injection into skeletal 

muscle resulted in well detectable signals for transgene-specific cDNA revealing 

that our vector preparation is functional and rAAV2 genomes can in principle be 

expressed in rats.  
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Figure 12: Agarose gel electrophoreses of amplified cDNA. RNA was extracted by phenol / 

chloroform extraction and digested with DNase I. Reverse Transcription was performed by 

Transcriptor First Strand cDNA Synthesis Kit (Roche). Then, qPCR analyses were performed and 

products were analyzed by agarose gel electrophoreses. Representative pictures are depicted 

here. Animal groups: N, negative animal; A, normothermia; B, hypothermia; C, systemic vector 

administration; M1, skeletal muscle after vector application; samples: H, native heart; HTX, 

transplanted heart; L, liver; K, kidney; S, spleen; Lu, lung; M, skeletal muscle; N, non-template 

control for PCR; +, LacZ plasmid as positive control. 
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4.1.1.1.3 Beta-Galactosidase activity is not detectable in tissue 
sections of transplanted hearts 

After evaluation of transgene DNA in the animal groups introduced above, we 

determined if transgene expression has occurred in native heart, liver and in 

transplanted heart (HTX) of groups A and B, despite undetectable LacZ cDNA 

levels. Therefore, tissue sections were stained for X-Gal activity as described in 

7.4.1. As already mentioned in 4.1.1.1, only the transplanted heart was analyzed 

in the case of A2 as this animal was explanted after 22 d instead of 28 d. 

Additionally, as  positive control, we stained sections of a liver transduced with 

adenovirus coding for LacZ which was kindly provided by M. Odenthal (Institute of 

Pathology, Cologne). 

 

Figure 13: X-Gal and eosin stained tissue sections of rats receiving vector into the transplanted 

heart at normothermia. Organs were shock-frozen in isopentan and liquid nitrogen. The samples 

were prepared by cryotom tissue dissection and stained with X-Gal solution (2 d) and 0.5 % eosin 

solution (8 min). Shown are representative images of native heart, transplanted heart (HTX) and 

liver sections. Of animal A2, only HTX was available. In none of the samples, X-Gal activity was 

detected by microscope analyses (200x magnification; Olympus Vanox-S AH-2 microscope). 

A1 

A3 

A2 

native heart                    HTX            liver 
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Following explantation, the organs were put into isopentan to preserve tissue 

structure and were immediately shock-frozen in liquid nitrogen. Cryotom tissue 

dissection was perfomed in the Institute of Pathology (Cologne). Thereby, several 

sections of 3 different planes were collected, air-dried over night and stored at -80 

°C. Without thawing, the sections were fixed in 1.5 % glutaraldehyde and stained 

for 2 d in X-Gal solution. Tissue sections were counterstained with 0.5 % eosin 

solution (no counterstaining in B3 and skeletal muscle sections) before 

dehydration. Object slides were covered and X-Gal staining was determined by 

microscopy (Olympus Vanox-S AH-2 microscope) (7.4.1). 

 

 

Figure 14: X-Gal and eosin stained tissue sections of transplanted animals after vector application 

into the hypothermic heart. Explanted organs were directly frozen in isopentan and liquid nitrogen 

before preparing by cryotom tissue dissection. Sections were stained for X-Gal activity (2 d) and 

counterstained with eosin (0.5 %, 8 min) (excluding B3) and analyzed by microscopy (200x 

magnification; Olympus Vanox-S AH-2 microscope). Representative images are shown here. 

 

native heart                     HTX               liver 

B1 

B2 

B3 
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Microscope images of organs including vessels were analyzed for transgene 

expression in the endothelium. Neither the animals of the normothermic nor the 

hypothermic heart transplantation group showed X-Gal positive signals in any 

organ (Figure 13, Figure 14). A damaged morphological structure was visible in 

the transplanted heart of A2. Regarding the group that received a systemic vector 

administration into the tail vein, no positive staining for X-Gal could be detected in 

heart and liver despite detection of cDNA in the liver of C2 as depicted in 4.1.1.1.2  

(Figure 15). In contrast, intramuscular injection of rAAV2ssLacZ resulted in 

transgene expression and protein production (verifying cDNA analyses) since this 

tissue showed detectable β-Gal activity (blue color) as depicted in Figure 16. Also 

in our positive control, the adenovirus-transduced liver, positively stained cells 

were found while our non-treated controls were negative for X-Gal staining. 

 

 

Figure 15: X-Gal and eosin stained tissue sections of animals receiving vector via the tail vein 

(systemic application). Isopentan frozen liver and heart of 2 rats were analyzed for X-Gal activity 

and counterstained with eosin after organs were cryotom dissected. Shown are representative 

microscope images (200x magnification; Olympus Vanox-S AH-2 microscope). X-Gal could not be 

detected in any of the sections. 

 

 

C1 

C2 

native heart liver 
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Figure 16: X-Gal stained tissue sections of control animals. X-Gal activity was determined in 

skeletal muscle of a rat having received rAAV2 intramuscular injection and a non-transduced 

control animal (skeletal muscle, heart and liver). The positive control of an adenovirus-transduced 

liver was kindly provided by M. Odenthal. After shock-freezing and cryotom tissue dissection, the 

tissue sections were stained for X-Gal (2 d) and eosin (8 min; no counterstaining in muscle) and 

microscope images were taken (200x magnification; Olympus Vanox-S AH-2 microscope). X-Gal 

activity (blue signals) could be detected in vector injected muscle and the positive control of 

adenovirus-transduced liver. LacZ in the positive control did not retain a nuclear localization signal 

in contrast to our transgene construct, thus displaying a positive X-Gal staining within the 

cytoplasm.  

 

4.1.1.2 In vitro analyses of rAAV-mediated rat cell transduction 

Since rAAV2 vector administration in both heterotopic rat heart transplantation 

models did not result in measureable transgene expression although vector DNA 

could be detected, we aimed to identify limiting factors by in vitro analyses. As in 

vitro model for rAAV-mediated rat endothelial cell transduction, primary rat aortic 

endothelial cells (RAECs) were used. Cells were kindly provided by M. Seifert 

(Charité, Berlin).  

To reconfirm the endothelial character of the obtained RAECs the acetylated low-

density lipoprotein (AcLDL) uptake assay was performed. Briefly, the acetylated 

form of the LDL complex is unable to bind its receptor. Instead it is taken up by 

negative heart           negative liver    positive control (liver) 

 negative muscle         positive muscle 
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macrophages and endothelial cells by “scavenger” receptors specific for AcLDL. 

This method is routinely performed to identify endothelial cells. Representative 

images of fluorescence and light microscopy of AcLDL-treated RAECs are shown 

in Figure 17 demonstrating an efficient uptake of red fluorescence-labeled AcLDL 

in all cells, thereby confirming the endothelial character of the RAECs. 

 

Figure 17: Dil-AcLDL uptake of RAEC. RAECs were incubated in Dil-AcLDL containing medium for 

4 h. After washing and fixation, fluorescence (A) and light microscope (B) images were taken (200x; 

Zeiss Axiovert S100). 

 

4.1.1.2.1 AAV2 capsids are detectable in the cytoplasm and 
perinuclear area of RAECs 

Considering the presence of transgene DNA, but the absence of β-Gal activity in 

transplanted rat hearts, we first investigated if entry and intracellular transport of 

the vector might represent a limitation for endothelial cell transduction.  

According to results published by us and others rAAV2 particles accumulate in the 

perinuclear area (Bartlett, Wilcher, and Samulski, 2000; Lux et al., 2005). First 

particles are detectable 15 min p.i. and remain visible for at least 24 hours (Lux et 

al., 2005; Seisenberger et al., 2001). RAECs were transduced with a GOI of 5 x 

104 rAAV2ssGFP and fixed 4 h p.i.. They were stained with antibodies against 

intact AAV2 capsids (A20 antibody and a secondary RRX-labeled antibody) and 

the nuclear membrane (anti-Lamin B and a Cy5-labeled secondary antibody) and 

were analyzed by confocal laser scanning microscopy (LSM 510 Meta, Zeiss). As 

depicted in Figure 18 A, signals for intact AAV2 particles were detected within the 

cell. Although fluorescent signals may suggest the presence of AAV particles 

A B 
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within the nucleus, vertical sectioning revealed that vector particles were 

detectable in the perinuclear region, but not in the nucleus (Figure 18 A and B). 

The latter result is in line with our observation on HeLa cells, where entry of viral 

genomes, but not of intact capsids into the nucleus could be detected. Thus, it can 

be assumed that rAAV2 vectors entered RAECs which is consistent with our in 

vivo results, and are trafficked to the perinuclear area. 

 

Figure 18: Visualization of RAEC transduced with rAAV2. RAECs were transduced with a GOI of 5 

x 10
4
 rAAV2ssGFP and fixed 4 h p.i.. Nuclear membrane was stained by anti-lamin B (blue: Cy5-

labeled secondary antibody), while intact capsids were detected by A20 antibody (red: RRX-

conjugated secondary antibody). Analyses were performed by confocal microscopy (LSM 510 

Meta, Zeiss). Shown are representative confocal microscope images, one superimposed (A) and 

one image plane out of a z-stack stain of a horizontal section (0.2 µm). 

 

4.1.1.2.2 CMV promoter induces transgene expression after 
transfection 

Next, we investigated if lack of transgene expression in transplanted hearts might 

be due to inefficiency of the chosen strong viral CMV promoter. Therefore, two 

different plasmids both containing LacZ as transgene, but differing in the promoter 

were transfected into RAECs. We compared the endothelial cell-specific fms-like 

tyrosine kinase (FLT1) promoter described to mediate transgene expression in 

endothelial cells with “our” CMV promoter (Morishita, Johnson, and Williams, 

1995; Nicklin et al., 2001b). RAECs cultured in medium without penicillin and 

streptomycin were transfected with Lipofectamin 2000 and 0.8 µg plasmid DNA 

according to the manufacturer’s instructions. One day thereafter, the cells were 

A B 

 



Results 

 

51  

fixed and stained for 4 h with X-Gal solution, the substrate for β-galactosidase 

activity (LacZ). Light microscope pictures were taken with an Olympus Vanox-S 

AH-2 microscope. Representative images are shown in Figure 19. In both cases 

only marginal LacZ activity was detectable pointing towards a low transfectability 

of these cells at least with the chosen method. However, β-galactosidase activity 

was visualized with both constructs revealing that the CMV promoter is in principle 

able to express transgenes in RAECs. Moreover, repeated experiments showed 

no clear difference between CMV- (A) and FLT1-(B) driven transgene expression 

with regard to efficiency. 

  

 

Figure 19: Transfection of RAECs with pZNL or pMV10-FLT1. RAECs were transfected with 

plasmids (0.8 µg) coding for LacZ under the control of either a CMV promter (pZNL) (A) or a FLT1 

promoter (pMV10-FLT1) (B). The following day, cells were fixed and stained for LacZ activity for 4 

h. Pictures were taken with an Olympus Vanox-S AH-2 microscope. Figure C shows control cells 

transfected without DNA in the transfection mix. 

 

4.1.1.2.3 RAECs are poorly transduceable with AAV serotypes 1 to 
5, but show enhanced expression by administration of 
MG132 

As shown by experiments in the previous chapters, rAAV2 is able to enter RAECs 

and is transported to the perinuclear area. In addition, CMV promoter seems to be 

suited to control transgene expression in RAECs. Thus, we aimed to determine 

the efficiency of rAAV2-mediated transduction in RAECs. In order to identify a 

potentially more efficient serotype for transduction of these cells we included other 

serotypes, namely rAAV1 and rAAV3 to 5.  

Moreover, we were interested to investigate if second-strand synthesis may limit 

transduction efficiency as we and others have shown for cell lines as well as for 

primary cells (Hacker et al., 2005; McCarty et al., 2003; McCarty, Monahan, and 

Samulski, 2001; Wang et al., 2003). Therefore, we compared the five different 

A C B 
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serotypes for their efficiencies encoding the transgene cassette in the self-

complementary (sc) or the natural single-stranded genome conformation (ss). 

Furthermore, we assessed the effect of the proteasome inhibitor MG132 (also 

Carbobenzoxyl-L-leucyl-L-leucyl-Leucinal; Z-LLL) on AAV-mediated transduction 

of primary RAECs. Although the mechanism of action remains to be elucidated, 

the enhancement in transduction efficiency in vitro and in vivo has been reported 

in various cell types (Hacker et al., 2005; Nicklin et al., 2001a; Pajusola et al., 

2002; Yan et al., 2004). 

Briefly, cells were transduced with 5 x 104 genomic particles per cell (GOI) of 

rAAV1 to 5 encoding for ssGFP or scGFP vector genomes, respectively. The 

proteasome inhibitor MG132 (40 µM diluted in medium) or the solvent (DMSO) 

were applied at the time of transduction. Cells were washed intensely 3 times with 

PBS after 4 h. Flow cytometric analyses were performed 3 d p.i. (Figure 20). 

Comparisons between the serotypes identified rAAV1 as the most efficient 

serotype followed by rAAV2, whereas rAAV3, rAAV4 and rAAV5 showed only 

marginal GFP expression with a maximum of 1.5 ± 0.7 % (mean ± standard error 

of the mean (SEM)) for rAAV5scGFP. The ranking of the serotypes was consistent 

between the group of rAAV encoding for scGFP and for ssGFP as depicted in 

Figure 20 A and B. Nonetheless, the absolute values for transduction with rAAV1 

(16.6 ± 7.5 %) and rAAV2 (4.2 ± 0.7 %) scGFP vectors exceeded the efficiencies 

for rAAV1 (3.8 ± 2.0 %) and rAAV2 (2.3 ± 1.1 %) ssGFP vectors, respectively.  

Interestingly, administration of the proteasome inhibitor MG132 resulted in a 

significant enhancement of transgene expression for serotype 1 as well as for 

serotype 2. An increase of 6-fold for rAAV1ssGFP (23.0 ± 4.7 %) and of 7.3-fold 

for rAAV2ssGFP (16.8 ± 1.1 %) was measured after addition of MG132 (Figure 20 

A). Also, albeit less pronounced, an increase in transgene expression was 

observed for the vectors carrying self-complementary vector genomes, namely a 

2.8-fold enhancement with rAAV1 (46.5 ± 10.1 %) and a 4.4-fold with rAAV2 (18.4 

± 2.2 %) in presence of MG132. No significant enhancement of transgene 

expression was detected when combining rAAV3 to 5 transductions and the 

addition of proteasome inhibitors. 
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A 

 

B 

 

Figure 20: Transduction efficiency of rAAV1 to 5 (single-stranded and self-complementary vector 

genome conformation) in RAECs with and without MG132 treatment. RAECs were transduced with 

rAAV1 to 5 (GOI 5 x 10
4
) encoding either for GFP as transgene in either a single-stranded (ss) (A) 

or a self-complementary (sc) (B) vector genome conformation, respectively. Transduction was 

performed in presence or absence of 40 µM MG132. After 4 h of incubation, cells were washed and 

analyzed by flow cytometry 3 d p.i. Shown are the results (means + SEM) of 3 (rAAV3, rAAV4, 

rAAV5) and 6 (rAAV1, rAAV2) independent experiments. (A) *=P<0.002 (B) *=P<0.02. 
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4.1.1.2.4 Neonatal rat cardiomyocytes show highest transgene 
expression after transduction with rAAV1 and rAAV4 

As described in the previous chapters, the rAAV-mediated transduction efficiency 

in RAECs is rather low. Also in vivo no transgene expression was detectable in 

transplanted hearts (4.1.1.1.3). Alternatively, intramyocardial injection as well as 

enhancement of the vascular permeability has been reported to result in 

measureable transgene expression. In these cases, cardiomyocytes have been 

the target cell population thus being maybe a more suitable target for our 

application. 

In order to evaluate the most efficient serotype for transduction of rat cardiac 

muscle cells and to compare that result with transduction of rat aortic endothelial 

cells, we investigated rAAV1 to rAAV5 on neonatal rat cardiomyocytes. Neonatal 

rat cardiomyocytes were kindly provided by B. Bölck (University Hospital of 

Cologne), but due to cell shortage only 2 experiments could be performed. On the 

first day, cells were cultured in medium containing 10 % horse serum and 5 % 

FCS. The following day, the cells were transduced with rAAV1 to 5 carrying the 

single-stranded GFP (ssGFP) genome. A GOI of 104 was chosen due to the high 

cell number per well (6 x 105, 6-well) and the limiting amount of applicable vector 

volume. Cells were analyzed for GFP expression 3 d p.i. by flow cytometry (Figure 

21 A) and fluorescence microscopy (Figure 21 B). Regarding the mean 

percentage for transgene-expressing cells, rAAV1 and rAAV4 showed the highest 

transduction efficiencies with 17.7 ± 3.0 % (mean ± SEM) and 14.0 ± 2.7 %, 

respectively. The widely used serotype 2 only reached 4.1 ± 0.2 % whereas the 

serotypes 3 and 5 were even less efficient (rAAV3 2.6 ± 0.2 % and rAAV5 2.9 ± 

0.5 %). Representative pictures of non-transduced and transduced (with rAAV1 or 

rAAV4) neonatal rat cardiomyocytes are shown in Figure 21 B. GFP-positive cells 

could only be detected in rAAV1 and rAAV4 transduced cells. 
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Figure 21: Transduction efficiency of rAAV1 to 5 in neonatal rat cardiomyocytes. Primary neonatal 

rat cardiomyocytes were transduced with 10
4
 genomic particles per cell of rAAV2ssGFP. 

Transduction efficiency was evaluated 3 d p.i. by FACS analysis (A) and microscopy (B). In A, the 

results of 2 independent experiments are shown as mean + standard error of the mean (SEM). 

 

In Figure 22 transduction efficiencies of RAECs and primary rat cardiomyocytes 

were compared. Hence, mean values obtained for transduced cardiomyocytes 

were divided by the ones for RAECs as described in 4.1.1.2.3 and results are 

shown as fold change. Whereas rat cardiomyocytes have been transduced with 

rAAV1 to rAAV5ssGFP at a GOI of 104, RAECs received 5-fold higher vector 

amounts, but both flow cytometric analyses have been performed 3 d p.i.. As can 

be seen in Figure 22, more primary rat cardiomyocytes were successfully 

rAAV1 rAAV4 control 



Results 

 

56  

transduced compared to RAECs. Despite the 5 times lower vector amount applied 

on cardiomyocytes, 4.4-fold more cardiomyocytes than RAECs expressed GFP  

when rAAV1 was used and 1.8-fold more in the case of rAAV2. For the serotypes 

rAAV3 to rAAV5 an even higher fold change has been calculated as a 

consequence of the nearly background transgene expression in RAECs 

(maximum 0.4 % GFP expressing cells). Also in rat cardiomyocytes, transduction 

efficiencies using rAAV3 and rAAV5 were very low while rAAV4 resulted in 14 % 

transgene-expressing cells. 
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Figure 22: Comparison of transduction efficiencies between RAECs and primary rat 

cardiomyocytes. Shown are the fold changes of the mean transduction efficiencies of rat 

cardiomyocytes (GOI 10
4
) divided by the amount of transgene expressing RAECs (GOI 5x10

4
) 3d 

after transduction by the serotypes rAAV1 to rAAV5 encoding for ssGFP. The values are based on 

Figure 20 A and Figure 21 A.  

 

4.1.2 rAAV-mediated gene transfer into porcine heart 

4.1.2.1 Identification of the most suited serotype using PAECs as in vitro 
model 

Concerning the choice of the serotype, we did not rely on literature for the pig 

heterotopic heart transplantation experiments unlike for the rat model. Therefore, 

we first aimed to assess the most feasible serotype for this purpose as 

comparative studies in porcine cells have not been published. Porcine aortic 

endothelial cells (PAECs) were chosen as in vitro model to investigate rAAV-
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mediated transduction and potential intracellular barriers. PAECs were kindly 

provided by W. Kues (Institute of Farm Animal Genetics, Mariensee). 

Corresponding to chapter 4.1.1.2, we reconfirmed the endothelial character of the 

provided PAECs by the ability to take up the endothelial-specific marker Dil-

AcLDL. Therefore, PAECs were stained for 4 h with 1 µg/ml Dil-AcLDL in medium 

at 37 °C. After washing and fixing the cells for 15 min in 3 % paraformaldehyde, 

fluorescence and light microscope images were taken (200x magnification; Zeiss 

Axiovert S100). As can be seen in Figure 23, PAECs take up Dil-AcLDL efficiently 

thus confirming their endothelial character. 

 

Figure 23: Dil-AcLDL uptake of PAECs. PAECs were incubated in Dil-AcLDL for 4 h, washed and 

fixed in 3 % paraformaldehyde before fluorescence (A) and light microscope (B) images were taken 

(Zeiss Axiovert S100). 

 

4.1.2.1.1 PAECs are efficiently transduceable with rAAV2 

Endothelial cells are commonly described to be transduceable by AAV only at low 

efficiencies compared to HeLa cells and the human glioma cell line LN-229 

(Pajusola et al., 2002). In addition, comparative studies of different AAV serotypes 

in porcine endothelial cells are lacking. Therefore, we determined their 

permissiveness for the serotypes 1 to 5 and transduced PAECs with different 

amounts of the respective vectors (GOI 1 x 104, 5 x 104 or 1 x 105). Moreover, we 

investigated if second-strand synthesis of the natural single-stranded (ss) vector 

genome in PAECs impairs efficient transduction as published for other cell lines 

(McCarty et al., 2003). Thus, we compared transduction efficiencies of rAAV1 to 

rAAV5 vectors encoding for the transgene in the single-stranded or double-

stranded vector genome conformation, respectively. Transduction efficiency was 

A B 
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determind 3 d p.i. by flow cytometry and shown as mean + standard deviation in 

Figure 24. 
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Figure 24: Transduction of PAECs with rAAV1 to 5 carrying single-stranded (ss) or self-

complementary (sc) GFP genomes. For transduction 3 different vector-to-cell ratios (GOI of 10
4
, 5 x 

10
4
 or 10

5
) were used shown as differently colored bars. PAECs were transduced by the serotypes 

1 to 5 coding either for ssGFP or scGFP. The number of GFP-expressing cells was determined 3 d 

p.i. by FACS analysis and shown as mean + standard deviation. 

 

As can be clearly seen, rAAV2 is the most efficient serotype for PAEC 

transduction. Comparing the means after administration of 104 genomic particles 

per cell (GOI) of rAAV2, scGFP (67.0 ± 0.02 %) vectors showed 2 times higher 

values than ssGFP-containing (34.5 ± 0.4 %) particles. Use of 5 times higher 

vector amounts per cell further increased the number of transgene-expressing 

cells to 83.4 ± 1.4 % for ssGFP- and 89.5 ± 0.3 % for scGFP-encoding rAAV2 

vectors. These values changed minimally by administration of even higher vector 

concentrations (105 GOI) (ssGFP 88.4 ± 3.2 % and scGFP 87.6 ± 0.03 %) 

indicating saturation. 
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The serotypes 1 and 3 to 5 coding for ssGFP showed very low transduction 

efficiencies even at highest vector concentrations (GOI 105) (rAAV4 4.5 ± 0.1 %; 

rAAV5 6.1 ± 4.2 %). Also for scGFP vectors of the serotypes 3 and 4 only a low 

number of transduced cells could be detected with efficiencies of maximal 4.8 ± 

2.2 % for rAAV3 and 4.5 ± 2.8 % for rAAV4 at a GOI of 105. The second efficient 

scGFP-containing vector at this GOI with a transduction efficiency of 41.1 ± 0.1 % 

was rAAV5 which showed initially 5.2 ± 0.3 % transgene-expressing cells at a GOI 

of 104 and 34.9 ± 0.5 % (GOI 5 x 104). Also for rAAV1scGFP the number of 

transgene-expressing cells could be enhanced by use of higher GOIs, namely 

from 2.1 ± 0.6 % (GOI 104) to 26.2 ± 6.0 % (GOI 105). 

 

  rAAV1 rAAV2 rAAV3 rAAV4 rAAV5 

GOI 104 1.4 1.9 1.1 0.6 2.7 

GOI 5x104 8.3 1.1 2.5 0.7 14.8 

GOI 105 9.8 1 2.5 1 6.7 
 

Table 2: Transgene expression using scGFP compared to ssGFP vectors. Shown are the fold 

changes of the means of transduction efficiencies of scGFP vectors divided by the means of the 

ssGFP vectors of the respective serotype and vector amount. 

 

In conclusion, application of rAAV1scGFP and rAAV5scGFP vectors resulted in 

higher transduction efficiencies compared to the corresponding ssGFP vectors as 

shown in Table 2. For rAAV3 an up to 2.5-fold higher amount of GFP-expressing 

cells was obtained using rAAV3scGFP. In contrast, the generally low transgene 

expression after rAAV4ssGFP transduction was not enhanced by application of 

rAAV4scGFP. For rAAV2, an effect of vector genome conformation was only 

observable at a GOI of 104 as higher vector amounts resulted in maximal 

transduction efficiencies of around 90 %. In summary, serotype 2 showed the 

highest expression in PAECs.  

4.1.2.1.2 Visualization of rAAV2 capsids in the cytoplasm of PAECs 

By confocal microscopy, we aimed to visualize the highly efficient transduction of 

PAECs by rAAV2 (4.1.2.1.1). We were especially interested to compare these 

results with confocal images of the RAEC transduction which showed only low 

transgene expression (4.1.1.2.1 and 4.1.1.2.1). Therefore, PAECs were prepared 

like RAECs. Cells were transduced by rAAV2ssGFP at a GOI of 5 x 104 and fixed 
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4 h p.i.. Intact AAV2 vector capsids were stained with A20 antibody and RRX-

conjugated secondary antibody (red), while the nuclear membrane was visualized 

by anti-Lamin B and Cy5-conjugated secondary antibody (blue) staining.  

 

 

Figure 25: Visualization of PAEC transduction by rAAV2.  PAECs were transduced by a GOI of 5 x 

10
4
 rAAVssGFP and fixed 4 h p.i.. Intact capsids were stained with A20 antibody and RRX-

conjugated secondary antibody (red), whereas nuclear membrane was visualized by anti-Lamin B 

and Cy5-conjugated secondary antibody (blue). Shown are representative images of a 

superimposed (A) and a horizontal section (0.2 µm) (B) taken by confocal laser scanning 

microscopy (LSM 510 Meta, Zeiss). 

 

In the superimposed picture in Figure 25 A, large aggregates of vector signals 

were visible distributed all over the cell. A representative image of a vertical plane 

section is depicted in Figure 25 B and reveals that signals are located within the 

cytoplasm. This picture differs from the one obtained for RAECs and a perinuclear 

accumulation – as seen with other cell types – could not be detected. 

4.1.2.2 Heterogenic pig heart transplantation 

Despite the existence of small animal models, species-specific large animal 

models are needed for preclinical evaluation. Porcine hearts are physically and 

physiologically closely related to human hearts thus being ideal as xenografts. 

Moreover, pigs serve as preclinical models to develop gene therapy approaches 

for cardiovascular diseases or organ transplantations. Unfortunately, large animal 

models require huge vector amounts to achieve significant transduction. 

Heterotopic pig heart transplantations were performed by L. Burdorf and 

colleagues (Department of Heart Surgery, Ludwig-Maximillians-University Munich) 

B A 



Results 

 

61  

as described in 7.5.2. In order to prolong vector circulation in the heart after 

intracoronary vector application, an in situ Langendorff perfusion system was 

developed. Thus, the warmed and oxygenated blood containing the vector solution 

recirculated for about 40 min in the warm and beating heart enhancing the chance 

of vector entry as shown by our results obtained for the normothermic 

transplantation in the rat model. As immunosuppressive therapy the animals 

received 1.5 mg/kg body weight Tacrolimus per day. 

As rAAV2 was revealed as the most efficient serotype in in vitro experiments of 

PAECs, we used this serotype in vivo. Large vector amounts had to be produced 

by triple transfection of HEK293 cells. Cell lysates were purified by iodixanol 

gradient centrifugation followed by heparin affinity chromatography to further purify 

and additionally concentrate the vector preparation (7.3.6). Genomic titers have 

been determined by qPCR. 

In a first approach, we used 2 x 1012 genomic particles rAAV2ssLacZ, assessed 

the amount of vector genomes within the heart samples by qPCR and eventual 

transgene expression by X-Gal staining of cryosections. In a second experimental 

setting, we applied 2.3 x 1013 genomic particles of rAAV2scLuci. Also here, 

transgene DNA levels of the heart were analyzed by qPCR. Luciferase was 

evaluated by a luciferase detection assay. Both times histamine (100 µg in 10 ml 

volume over 4 min injected into the perfusion system) was administered to render 

vessels permeable thus allowing to overcome endothelial barrier and to transduce 

endothelial as well as cardiac muscle cells. This was in contrast to our rat 

transplantations where we focused on endothelial cells as target and observed 

that the transduction efficiency obtained for the endothelium is very limited in vivo 

as well as in vitro. However, the situation in the porcine model might be different 

as we observed a very efficient transduction (up to 90 %) of PAECs in vitro.  
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Figure 26: Dissection scheme for analysis of the transplanted porcine heart. As depicted, organ 

samples were taken form 4 different horizontal levels of the myocard (A). Mapping of the numbers 

are shown whereas left side of each level represents the ventral and right the dorsal part of the 

heart (B). The numbers 37 to 45 account for samples of the right ventricle (RV), whereas 25 to 36 

are taken from the septum region at the different planes. Samples of the left ventricle (LV) are 

divided into origin of outer (1 to 12) and inner (13 to 24) myocardial wall. 

 

The hearts were explanted after 21 d and dissected following the scheme depicted in  

Figure 26. Samples were taken from 4 different levels from the very superior part 

of the ventricle (level I) to the apex cordi (level IV). The right ventricular (RV) 

samples were numbered 37 to 45, the septum region 25 to 36 in respect to the 

level. Regarding the left ventricle (LV), samples were taken from the outer (1 to 

12) and inner (13 to 24) regions. For the first time, such a detailed and complete 

analysis of a vector perfused heart has been done as previous reports only 

analyzed the perfusion bed of the left anterior coronary (Kaspar et al., 2005; 

Raake et al., 2008). The main regions supplied by the coronaries correspond to 

the numbers 37, 39, 27 on level I, 40, 42 and 30 on level II and 43 and 45 on level 

III. Minor branches of the coronaries are located in the regions 7, 9, 11, 12 and 34 

of the levels III and IV.  

4.1.2.2.1 Successful vector delivery, but no transgene expression 
from single-stranded vector genomes in porcine heart 

The first animal had received 2 x 1012 rAAV2 encoding for β-galactosidase in a 

single-stranded vector genome conformation intracoronarily while connected for 

38 min to the in situ Langendorff perfusion system (7.5.2). Additionally, histamine 

(100 µg in 10 ml volume over 4 min) was infused to increase permeability of the 

vessel wall. 21 d after transplantation, native heart, kidney, spleen, lung and liver 

as well as the transplanted heart were explanted whereas the latter was dissected 

following the above described scheme (4.1.2.2). Total DNA was extracted (7.2.5) 

and 100 ng were analyzed by qPCR for the presence of vector genomes and 

porcine GAPDH which was used for normalization (7.2.8). In contrast to our results 

in the rat model where we could not quantify the amount of vector genomes, gene 

transfer efficiency could be quantified in the pig model. The PCR products were 

verified by melting curve analyses and agarose gel electrophoreses (data not 

shown). In Figure 27 the results of 2 independent qPCRs for both genes are 
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depicted as copy number per µl DNA solution ± standard deviation whereas 1 µl 

corresponds to 50 ng DNA.  

The highest background signal for samples of an untreated animal was 31 

copies/µl. In all samples obtained from the transplanted heart LacZ DNA was 

detectable exceeding our detection limit and varying from 146 ± 58 (sample 5) to 

26,147 ± 4,715 (sample 40) copies/µl. Of note, 66.7 % of the samples were in the 

range of 1,000 to 10,000 copies/µl.  

The outer parts of the left ventricle showed the lowest overall amount of vector 

DNA of all heart regions with an average copy number of 431 (146 ± 58 to 974 ± 

230) for levels I to III. Level IV showed higher values ranging from 1,988 ± 548 

(sample 11) to 14,484 ± 6871 (sample 12) copies/µl. Inner regions of the left 

ventricle tended to result in higher amounts of vector genomes, namely between 

739 ± 476 and 8,753 ± 1,857 copies/ µl.  

Within the septum area, all samples yielded between 1,000 and 10,000 copies/µl 

with a mean of 3,677 ± 2,085 copies/µl. Lowest amount of transgene DNA was 

measured in sample 32 (961 ± 131), while the highest value was detected in 

sample 31 (8,585 ± 2, 023). However, no preference for a certain dissection level 

could be determined. For each level, the first value (ventral part of the septum) 

was the highest, while means decreased more and more towards the dorsal parts 

(with exception of sample 32).  

The same tendencies could be seen in the right ventricle levels I and II. Thus, the 

vector DNA amounts detectable in the area neighbouring the septum in the ventral 

part was also in this case higher than the 2 other samples of the same plane. The 

highest values of all heart samples were measured in the right ventricle with 

26,147 ± 4,715 copies/µl for sample 40 and 19,503 ± 7,424 for number 44. 

Minimal transgene DNA amounts were detected in sample 39 with 989 ± 106 

copies/µl. The overall average copy number in the right ventricle was 8,324 ± 

8,766 copies/µl. 

Regarding extracardiac organs for determination of vector excess after 

transplantation, none of the analyzed organs exceeded the values for the negative 

control animal. Thus, no transduction could be measured in non-target tissues of 

the transplanted and rAAV-treated pig. 
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Figure 27: Distribution of vector genomes in the transplanted pig. The piglet received 2 x 10
12

 

genomic particles of rAAV2ssLacZ intracoronary and was explanted after 21 d. The control animal 

did not receive any vector. The amount of LacZ DNA in the respective heart regions (right ventricle; 

left ventricle; septum) and organs was determined by qPCR and normalized to GAPDH. Shown are 

the results of 2 independent PCR runs for each gene as transgene copy number per µl DNA (1 µl 

equals 50 ng DNA) (+ standard deviation). RV, right ventricle; LV, left ventricle. 

 

Additionally, tissue sections were performed by cryotom tissue dissection to 

investigate if transgene expression had occurred (M. Odenthal, Institute of 

Pathology, Cologne). The same protocol was used as described for rat heart 
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transplanted organs (4.1.1.1.3, 7.4.1). Briefly, sections were stained with X-Gal (2 

d), counterstained by 0.5 % eosin solution (8 min) and analyzed by light 

microscopy. Despite the detection of vector genomes, X-Gal activity could not be 

detected in any of the samples (data not shown).  

4.1.2.2.2 Successful vector delivery and transgene expression from  
self-complementary vector genomes in porcine heart 

Self-complementary (sc) vector genome conformation is known to enhance 

transgene expression in vitro and in vivo (McCarty et al., 2003). Also in PAECs, 

the efficiency of transgene expression by rAAV2scGFP was higher than for single-

stranded (ss) rAAV2 which was most obvious at lower vector-to-cell ratios 

(4.1.2.1.1). Therefore, we assayed if use of a sc vector would result in detectable 

transgene product levels in vivo. We chose luciferase (Luci) as transgene. Vector 

production, operation including use of Langendorff perfusion system (recirculation 

time 39 min), vector administration and histamine injection were performed as 

described in chapter 7.5.2. It was possible to produce rAAV2scLuci at high titers, 

thus 2.3 x 1013 genomic particles were administered. The organs were explanted 

21 d later and the heart was dissected following the scheme depicted in Figure 26. 

At first, DNA was extracted (7.2.5) and the level of transgene and housekeeping 

gene in 100 ng DNA by qPCR using the LightCycler Fast Start DNA Master SYBR 

Green I Kit (Roche) was evaluated as described in 7.2.8. PCRs were performed 2 

times independently. As the amount of luciferase was quantifiable, the level of 

luciferase DNA could be normalized to the porcine GAPDH gene as shown in 

Figure 28. The PCR products were verified by melting curve analysis and agarose 

gel electrophoresis (data not shown). Values are given as copy number/µl 

whereas 1 µl corresponds to 50 ng DNA. 

As can be seen in Figure 28, luciferase PCR did not result in transgene-specific 

background signals in organs of the control animal. 
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Figure 28: Distribution of vector genomes in the transplanted animal. The pig received 2.3 x 10
13

 

genomic particles of rAAV2 encoding luciferase in the self-complementary vector genome 

conformation intracoronary and was explanted after 21 d while the control animal was non-

transduced. The amount of transgene DNA in the septum, left and right ventricle and organs was 

determined by qPCR and normalized to the houskeeping gene GAPDH. Shown are the results of 2 

independent PCR runs for each gene as normalized transgene copies/µl DNA (1 µl corresponds to 

50 ng DNA) (+ standard deviation). RV, right ventricle; LV, left ventricle. 
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Evidently, luciferase DNA was detected in every sample albeit at different levels. 

The highest overall values were observed in the samples 12 and 24 of the left 

ventricle with 20,601 ± 335 copies/µl (mean ± standard deviation) and 28,985 ± 

197, respectively. Also the lowest transgene DNA amount was detected in this 

area with 136 ± 1 copies/µl in sample 4. No tendencies could be observed in the 

left ventricle regarding distribution of transgene DNA. In most cases (9 out of 12) 

the levels of luciferase DNA was higher in the inner regions compared to the outer 

counterparts. The highest values within the outer regions were measured in level 

IV (10,493 ± 9,215 copies/ µl; 852 ± 1211 for levels I to III). 

Within the septum region, in sample 33 the highest amount of luciferase DNA with 

15,281 ± 2,622 was detected, while sample 34 showed the lowest with 251 ± 14 

copies/µl. Within the level IV the average amount of transgene DNA was the 

lowest compared to the other levels. Nevertheless, mean luciferase DNA level in 

the septum (4,519) was higher than in the ventricular regions (left ventricle 3,262; 

right ventricle 1,343). 

As already stated, the lowest transgene DNA amount was detected in the right 

ventricle. The copy numbers ranged from 237 ± 149 (sample 41) to 2,935 ± 957 

(sample 43). 

Additionally to the ventricular and septum samples, 2 parts of the atrium were 

analyzed showing high transgene copy numbers with 15,541 ± 2,051 (atrium I) 

and 1,728 ± 742 copies/µl (atrium II). 

After confirming the existence of transgene DNA in the transplanted and 

transduced heart, we evaluated the presence of transgene product by luciferase 

detection assay (7.4.4). Therefore, the amount of protein per sample was 

determined by Bradford assay to allow normalization of the luciferase signal. 

Approximately 20 mg of tissue was homogenized in 400 µl lysis buffer (Renilla 

Luciferase Assay System, Promega) by ball mill, incubated for 1 h on ice and 

pelleted (30 min, 16,000 x g, 4 °C). 5 µl of the supernatant was measured by 

Bradford assay in an ELISA reader at a wavelenght of 595 nm 3 times 

independently (7.4.3). 
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Figure 29: Luciferase activity in transplanted porcine heart and other organs after intracoronary 

vector injection of rAAV2Luci or without vector treatment (control animal). The animal organs of the 

transduced and non-transduced pigs were explanted 21 d after transplantation and analyzed for 

luciferase activity. Protein amount was determined 3 times by Bradford assay for normalization of 

luciferase signal. Shown are the normalized results of 3 independent luciferase assays as relative 

change of relative light units (RLU) + standard deviation compared to the septum of the control 

animal. RV, right ventricle; LV, left ventricle. 
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For detection of luciferase activity 20 µl protein lysate was mixed with 100 µl assay 

buffer and 1 µl substrate (Renilla Luciferase Assay System, Promega) and 

measured by luminometer. Only a limited amount of samples was measured at 

once as chemiluminescence fades fast. The measurement was repeated 3 times 

independently. Normalization to total protein amount of 110 µg followed to allow 

comparison of relative light units (RLU). In Figure 29 the relative changes in RLU 

(mean ± standard deviation) in comparison to a sample obtained from the septum 

area of a transplanted, but non-treated pig are shown. 

Remarkably, all cardiac samples showed detectable luciferase activity. 

Interestingly, variances were immense reaching from 1.4-fold (± 0.1) (sample 41) 

to 215.0-fold (± 56.4) (sample 15). Sites of high expression were heterogeneously 

distributed. Whereby, the 3 samples showing the highest activity were located in 

the inner wall of the left ventricle (sample 15: 215.0 ± 56.4; sample 17: 53.1 ± 9.4; 

sample 24: 162.1 ± 17.4). The levels of the remaining samples of the inner 

ventricular region were similar to the outer regions. Regarding the outer part of the 

left ventricle, luciferase activity varied from 1.9 ± 0.3 fold to 29.5 ± 6.7 fold with a 

mean change of 13.1-fold.  

Also in the septum region, the luciferase activity ranged from 1.7 ± 0.1 fold 

(sample 31) to 34.8 ± 5.1 fold (sample 28) with an overall mean of 9.6-fold.  

In the right ventricle, only 2 out of 9 samples showed a more than 5-fold increase 

in luciferase activity, namely sample 39 with 15.7 ± 3.3 fold and sample 44 with 

26.8 ± 6.7 fold. 

Analyses of extracardiac organs revealed absence of detectable amounts of 

luciferase. The separately analyzed samples of the cardiac atrium showed an 

increase of 8.3 ± 1.3 fold for atrium I, but only a marginal change of 1.3 ± 0.8 fold 

for atrium II. 
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4.2 Establishment of rAAV-mediated gene transfer into CD34+ 

cells 

4.2.1 Second-strand synthesis is a limiting step in CD34+ cell 
transduction 

As already summarized in 3.2.3, publications on rAAV-mediated transduction of 

human CD34+ cells are hardly comparable due to differences in vector production, 

titration and applied vector amounts in addition to varying cell origin and isolation 

techniques. So far, only rAAV2 has been evaluated in human CD34+ cells, but with 

conflicting results regarding their transduction efficiencies. In this study we aimed 

to develop a protocol for efficient transduction of CD34+ cells by making use of the 

now available improvements in AAV vector technology. Thus, we compared rAAV2 

which is the most commonly used AAV serotype in ex vivo and in vivo gene 

transfer applications with rAAV3 known for its tropism for hematopoietic cells and 

rAAV5 which is the most divergent serotype for their applicability in CD34+ cell 

transduction (Bantel-Schaal et al., 1999; Chiorini et al., 1999; Handa et al., 2000; 

Lu, 2004). All three serotypes were produced as pseudotypes with single-stranded 

(ss) or self-complementary (sc) vector genomes by a helper virus-free packaging 

method to exclude any assistance of helper virus particles in transduction and to 

determine the role of vector genome conformation (McCarty, Monahan, and 

Samulski, 2001; Xiao, Li, and Samulski, 1998) (7.3.6.1, 7.3.6.2). As the various 

serotypes differ in their tropism, we did not use transducing titers for normalization 

of the vector preparations, but equal vector genomes per cell (GOI). The genomic 

titers of all rAAV vector preparations were determined by quantitative PCR and 

ranged between 6.6 x 1010 (rAAV5scGFP) and 1.1 x 1012 (rAAV2ssGFP) genomic 

particles/ml as shown in Table 3, thus revealing that all vectors could be produced 

with a reasonable efficiency (7.3.6.4) (Theiss et al., 2003). 
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rAAV3

1. preparation 2. preparation 1. preparation 1. preparation 2. preparation

ssGFP 4.9x10
11

1.1x10
12

8.6x10
11

3.1x10
11

scGFP 5.3x10
11

2.0x10
11

1.7x10
11

6.7x10
10

6.6x10
10

rAAV2 rAAV5

 

Table 3: Genomic titers of rAAV vector preparations. The serotypes rAAV2, rAAV3 and rAAV5 

encoding either for single-stranded (ss) or self-complementary (sc) GFP have been produced as 

described in chapter 7.3.6.1 and 7.3.6.2. Genomic titers were determined by qPCR and are 

indicated as vector genomes per ml. 

 

CD34+ cells were isolated out of cord blood by separating peripheral mononuclear 

cells by Ficoll-density gradient centrifugation and subsequent magnetic cell sorting 

for CD34 (Direct CD34 Progenitor Cell Isolation Kit, Miltenyi Biotech) as described 

in 7.3.7.1. After pre-expansion of the cells for 2 to 4 days in serum-free culture 

medium (Stem Span, CellSystems) containing Flt3-ligand (100 ng/ml), SCF (100 

ng/ml), IL-3 (20 ng/ml) and IL-6 (20 ng/ml), cells were transduced with a GOI of 

105 of rAAV2, rAAV3 or rAAV5 coding for GFP in a single-stranded or self-

complementary vector genome conformation. Cells were washed 3 h p.i. cultured 

for 3 additional days and assayed for transgene expression by flow cytometry. 

Results are shown in Figure 30 as mean + standard error of the mean (SEM) of 3 

(rAAV3, rAAV5) and 8 (rAAV2) experiments of different donors. 

As depicted in Figure 30, neither transduction with rAAV3ssGFP nor 

rAAV5ssGFP, both encoding for GFP in a single-stranded vector genome 

conformation, resulted in a detectable amount of transgene expression, although 

vector genomes were detected in these CD34+ cells by qPCR experiments as 

shown in Figure 31. AAV2ssGFP transduction resulted in GFP expression, but 

only a marginal transduction efficiency of 8 ± 2.5 % (mean ± SEM) was achieved. 

In contrast, use of self-complementary instead of the naturally occurring single-

stranded vector genome conformation resulted in a significant increase in 

transduction efficiency for all three serotypes. Also in this case rAAV2 was the 

most efficient serotype reaching a transduction efficiency of 57.2 ± 2.6 %. Thus, 

second-strand synthesis is a limiting step in rAAV-mediated transduction of CD34+ 

cells.  
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single-stranded 
vector genomes 

self-complementary 
vector genomes 

rAAV2 8.0 ± 2.5 57.2 ± 5.2 

rAAV3    0 ± 0.1  4.8 ± 2.2 

rAAV5    0 ± 0.1  7.4 ± 2.2 

 

Figure 30: Transduction efficiencies of CD34
+
 cells by rAAV2, rAAV3 and rAAV5 coding for GFP in 

single-stranded (ss) or self-complementary (sc) vector genome conformation. Pre-expanded CD34
+
 

cells were transduced with a GOI of 10
5
. 3 h p.i. medium was exchanged and 3 d p.i. 2x10

4
 cells 

were analyzed by flow cytometry. Bar graph shows the mean of 3 (rAAV3 and rAAV5) and 8 

(rAAV2) independent experiments with cells obtained from umbilical cord blood of different donors. 

The data in the enclosed table are given as mean percentage of positive cells ± standard error of 

the mean (SEM). 

 

In order to investigate if the differential transgene expression observed for the 3 

serotypes was due to potential limitations in cell entry, we determined the amount 

of transgene DNA isolated from rAAV-treated CD34+ cells. Therefore, cells were 

thawed, expanded and transduced as described above with a GOI of 104 of 

rAAV2, 3 or 5 encoding for ssGFP or scGFP. Cells were washed and extensively 

trypsinized to remove non-internalized vectors 3 h p.i.. The extracted DNA 

samples were analyzed by qPCR for GFP and normalized to human GAPDH 

gene. For all samples the crossing points for GAPDH showed a comparable value 

ranging from 23.4 to 24.4 cycles thus confirming that equal DNA amounts have 

been analyzed. Results of 2 independent experiments are shown in Figure 31 as 

normalized copy number + standard deviation. Melting curve analyses revealed 
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one specific PCR amplification product for all rAAV-treated cell samples, while 

non-transduced controls showed only unspecific products. Therefore, only values 

obtained for the rAAV-treated cell samples are shown in Figure 31. 
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Figure 31: Quantitative analysis of transgene DNA isolated from CD34
+ 

cells 3 h p.i. with the 

indicated vectors. Thawed cells were pre-expanded for 3 d and transduced with a GOI of 10
4
 of 

rAAV2, 3 or 5 encoding ssGFP or scGFP. 3 h p.i., cells were washed and extensively trypsinized 

and total DNA was extracted. Quantitative PCR analyses were performed for GFP and normalized 

to human GAPDH. Results are shown as copy number + standard deviation. 

 

As depicted in Figure 31, serotype 2 was most efficient in entering CD34+ cells. 

Entry was independent of the genome conformation (1.1 x 107 ± 6.8 x 106 copies 

for ssGFP and 7.1 x 106 ± 6.9 x 105 copies for scGFP), as expected. The value for 

rAAV2scGFP was only 0.6-fold lower than for the rAAV2ssGFP. Also for rAAV3 

which was the second efficient serotype in entry, the values obtained for scGFP 

(3.0 x 106 ± 1.5 x 106 copies) were only 1.2-fold higher than for ssGFP vectors (3.7 

x 106 ± 2.1 x 106 copies). Serotype 5 entered the cell with the lowest efficiency. In 

comparison with rAAV5ssGFP (7.7 x 105 ± 5.3 x 105 copies), 2.6-fold more vector 

genomes were detected after transduction with rAAV5scGFP (2 x 106 ± 1.3 x 106 

copies). These observations reveal that all serotypes are in principle able to enter 

CD34+ cells, however, they differ in their efficiency. For rAAV2ssGFP, e.g. 3.7 and 

14.4-fold higher amounts of vector genomes were intracellularly detected than for 
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rAAV3 and rAAV5, respectively. Thus, the higher transduction efficiency of rAAV2 

compared to rAAV3 and rAAV5 might be explained at least in part by variations in 

cell entry efficiency. 

4.2.2 Loss of transgene expression during prolonged cultivation times 

A transduction efficiency of almost 60 % was commonly reached in human CD34+ 

cells 3 d p.i. with rAAV2scGFP (GOI 105). At least for certain applications stable 

gene expression would be desirable, e.g. for expression of anti-thrombotic or 

cytoprotective factors for maintenance and survival of colonized vascular 

prosthetic grafts and cardiac valves. Thus, we determined if expression level 

persisted. Briefly, CD34+ cells were either freshly isolated or thawed 

(CellSystems), pre-expanded and transduced with rAAV2 coding either for ssGFP 

or scGFP. Cells were washed 3 h p.i., further cultivated and analyzed for GFP-

expression by FACS analyses 3 d p.i.. One week thereafter, flow cytometric 

analyses were repeated. Results are summarized in Figure 32 as mean 

percentages of GFP expressing cells + standard error of the mean of 5 

independent experiments. 
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Figure 32: Transgene expression in CD34
+
 cells 3 and 10 d p.i.. Pre-expanded fresh or thawed 

CD34
+
 cells were transduced with a GOI of 10

5
 of rAAV2ssGFP or rAAV2scGFP and 2x10

4
 cells 

were analyzed for GFP expression 3 and 10 d after transduction. Shown are the mean percentages 

of transgene expressing cells + standard error of the mean of 5 independent experiments. 
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Comparably to the values obtained in 4.2.1, transduction with rAAV2scGFP 

resulted in 58.5 ± 1.3 % with rAAV2ssGFP in 5.9 ± 0.5 % transgene-expressing 

cells 3 d p.i.. However, GFP expression declined strongly in the case of 

rAAV2scGFP treated cells (13.3 ± 5.3 %) when the cells were further cultivated. 

The already low level of transgene expression by rAAV2ssGFP after 3 d changed 

only marginally (4.1 ± 1.7 %) within 7 days of further cultivation. 

4.2.3 Heparin inhibits transduction with rAAV2 approving HSPG as 
primary receptor 

Heparan sulfate proteoglycan (HSPG) has been described as primary receptor for 

AAV2 (Summerford and Samulski, 1998). To investigate if HSPG is also involved 

in rAAV2-mediated CD34+ cell transduction, competition studies using heparin, a 

soluble analogue of HSPG, were performed (Figure 33). In addition, this 

experiment allows to distinguish between vector and pseudotransduction since 

addition of heparin is unable to impair GFP protein transduction. 

Therefore, CD34+ cells were freshly isolated from cord blood. Peripheral 

mononuclear cells were separated by Ficoll-density gradient centrifugation and 

sorted for CD34 by MACS (Direct CD34 Progenitor Cell Isolation Kit, Miltenyi 

Biotech) as described more detailed in 7.3.7.1. After pre-expansion for 2 to 4 d, 

cells were transduced with a GOI of 105 rAAV2scGFP in presence or absence of 

971 units of heparin. Cells were washed 3 h p.i.. Transduction efficiency was 

analyzed 3 d p.i. by flow cytometry (Figure 33 A) and fluorescence microscopy 

(Figure 33 B). Results of 3 independent experiments obtained with cells of 

different donors are shown as mean percentage of GFP-expressing cells + 

standard error of the mean (mean ± SEM).  

Comparable to results presented in 4.2.1, transduction efficiencies over 50 % 

(56.7 ± 5.3 %) were obtained with rAAV2scGFP (Figure 33 A). In contrast, 

transduction was almost completely abolished by adding heparin (1.2 ± 0.7 %; 

P<0.0003) (Figure 33 A). In line with these results, fluorescence microscopy 

revealed GFP-expressing cells when only rAAV2 was applied while no GFP 

expression was detected when rAAV2 transductions were performed in presence 

of heparin and in non-transduced controls (Figure 33 B). These results show 

clearly that HSPG acts as a primary receptor for rAAV2 transduction. Moreover, 

pseudotransduction in CD34+ cells can be excluded. 
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Figure 33: Inhibition of rAAV2scGFP-mediated transduction by heparin. 971 units of heparin 

(Sigma) were applied to 8 x 10
4
 pre-expanded CD34

+
 cells, followed by 10

5
 genomic particles of 

rAAV2scGFP per cell. In parallel, cells were transduced with the same amount of vector in the 

absence of heparin. Cells were incubated for 3 h at 37 °C and 5 % CO2, followed by a washing 

step. 3 d p.i. 2 x 10
4
 cells were analyzed by flow cytometry (A) and fluorescence microscopy (B). 

Results presented in (A) are the mean of 3 independent experiments using CD34
+
 cells isolated 

from umbilical cord blood from 3 different donors. Data are shown as mean percentage of GFP-

expressing cells, error bars as standard error of the mean (SEM).  

rAAV2 rAAV2 + heparin 

Fluorescence 
microscopy 

Light 
microscopy 
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4.2.4 Transduction efficiency correlated with the availability of αααα5ββββ1 
integrins 

Thus far, in addition to the primary receptor HSPG, 5 cellular receptors have been 

described for AAV2 (Akache et al., 2006; Asokan et al., 2006; Kashiwakura et al., 

2005; Qing et al., 1999; Summerford, Bartlett, and Samulski, 1999; Summerford 

and Samulski, 1998). Fibroblast growth factor receptor (FGFR) or hepatocyte 

growth factor receptor (HGFR, c-met) and possibly laminin receptor may enhance 

AAV2 binding to the cell surface. The subsequent interaction with the coreceptor 

αvβ5 integrin induces endocytosis and most likely a rearrangement of the 

cytoskeleton, thus enabling AAV to enter the cell and be trafficked towards the 

nuclear area (Sanlioglu et al., 2000). Recently, α5β1, a second integrin molecule, 

functioning as an alternative AAV coreceptor has been identified (Asokan et al., 

2006). Therefore, we determined the surface expression level of αvβ5 and α5β1 on 

CD34+ cells isolated from human cord blood (freshly isolated (CB1) or cells by 

CellSystems (CB2)) or human bone marrow (kindly provided by N. Fein and H. 

Abken, University Hospital of Cologne) by flow cytometry at the day of 

transduction (after 2 to 4 d of expansion) to assess which of these two integrins is 

likely available to allow AAV2 entry into CD34+ cells. In addition, these cells were 

transduced with a GOI of 105 rAAV2scGFP, washed 3 h later and determined for 

transgene expression at 3 d p.i. by flow cytometry.  

As shown in Figure 34 A, independent of the source of CD34+ cells, transduction 

efficiencies above 50 % were obtained. Also irrespective of the source, high 

expression of α5β1 integrin was observed at the day of transduction, whereas the 

expression of αvβ5 was strongly depending on the donor and ranged between 0.5 

% and 59.5 %. Representative FACS plots are depicted in Figure 34 A, 

demonstrating the shift of CD34+ cells stained either with anti-α5β1 or anti-αvβ5 

antibody and secondary antibody (PE-labeled) compared to the isotype control. 

This result indicates that transduction efficiency most obviously correlated with the 

availability of α5β1 integrin. 
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A 

 

B 

source of 

CD34
+
 cells

αvβ5 [%] α5β1 [%]
GFP expression 

[%]

CB1 59.5 n.d. 58.0

43.8 n.d. 66.5

39.5 n.d. 65.0

CB2 33.4 78.8 62.7

2.4 91.8 55.2

22.8 96.2 60.3

0.5 82.8 68.8

BM 3.5 84.4 52.0  

Figure 34: Correlation between availability of αvβ5 and α5β1 integrins and transduction efficiency. 

(A) Representative FACS plots (cells stained with 1
st
 and 2

nd
 antibody (bold lines), isotype control 

(normal lines) (B) Percentages of αvβ5 and α5β1 integrin (primary antibodies MAB1961 and 

MAB1999 by Chemicon) expressing cells within CD34
+
 cell preparations from 3 different sources as 

assessed by flow cytometry. Subsequently, these cells were transduced with a GOI of 10
5
 of 

rAAV2scGFP and transgene expression was determined by FACS analysis 3 d p.i. Three different 

sources were used: Freshly isolated cord blood CD34
+ 

cells (CB1) from 3 different donors, 4 

different samples of cord blood CD34
+ 

cells purchased from CellSystems (CB2), and one sample of 

CD34
+ 

cells isolated from bone marrow (BM); n.d.= not determined. 

 

Moreover, we determined integrin levels on freshly thawed cells which have been 

reported to be not tranceduceable (Nathwani et al., 2000). According to Hart and 

colleagues, α5β1 integrin expression becomes upregulated in CD34+ cells by pre-

expansion of CD34+ cells in SCF-containing medium (Hart et al., 2004). In line with 

this, FACS analyses of freshly thawed CD34+ cells (prior to expansion) showed no 

R1

M1
M1

αvβ5 integrin α5β1 integrin 
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expression of αvβ5 
 and a maximum of 3.3 % α5β1 integrins, while more than 77 % 

α5β1 integrin and less than 2 % αvβ5 integrin-expressing cells were detectable at 3 

d after expansion (Table 4). 

 

αvβ5 [%] α5β1[%] αvβ5 [%] α5β1[%]

0 3.3 0.5 82.8

0 0 1.6 77.4

w/o pre-expansion pre-expanded

 

Table 4: Amount of CD34
+
 cells displaying integrins before and after pre-expansion. CD34

+ 
cells 

were freshly thawed and directly stained for αvβ5 and α5β1 integrins (w/o pre-expansion). The 

amount of integrins was determined by FACS analyses. The procedure was repeated with pre-

expanded cells after 3 d. Shown are the results of 2 independent experiments with pooled donors. 

 

We further aimed to support the assumption that α5β1 integrin serves as 

coreceptor in CD34+ cell transduction. Wild type AAV2 contains a NGR motif 

associated with α5β1 integrin binding (Asokan et al., 2006). Therefore, we used an 

AAV2 mutant described to be deficient for α5β1 integrin binding due to an arginine 

to alanine substitution at the amino acid position 513 in the respective NGR motif 

(NGR R513A) (Asokan et al., 2006). Assuming that rAAV2 transduction relies on 

α5β1 integrins, CD34+ cell transduction by a non-α5β1 binding mutant should be 

significantly impaired. Thus, CD34+ cells were analyzed for the amount of both 

integrins at the time of vector administration by flow cytometry (Figure 35 B). αvβ5 

integrins were not detectable on the pre-expanded cells in this experiment. In 

contrast, more than 90 % of the cells displayed α5β1 integrins. Hence, only α5β1 

integrins were available to potentially assist vector entry and results on 

transduction studies can directly be correlated with this coreceptor. The pre-

expanded CD34+ cells (CellSystems) were transduced with a GOI of 104 of rAAV2 

or NGR R513A encoding scGFP. Washing and trypsinization of the cells 3 h p.i. 

should eliminate non-internalized vectors. Cells were cultivated for 3 further days 

before transgene expression was determined by FACS analyses. As depicted in 

Figure 35 A, the amount of GFP-expressing cells after transduction with NGR 

R513A (4.6 ± 0.4 %) was 5.6 times lower than with rAAV2 (25.9 ± 3.3 %). This 

result strongly supports our assumption that α5β1 and not αvβ5 integrins mediate 

cell entry of rAAV2 into CD34+ cells. 
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Figure 35: Transgene expression in CD34
+
 cells transduced with rAAV2 and NGR R513A. CD34

+
 

cells (CellSystems) were thawed and pre-expanded for 3 d. The amount of integrins was 

determined by FACS analyses (B) at the day of transduction with a GOI of 10
4
 of either rAAV2 or 

NGR R513A encoding scGFP. 3 h p.i., cells were washed, extensively trypsinized to remove non-

internalized vectors and further cultivated. Flow cytometric analyses for GFP expression were 

performed 3 d p.i. (A). Shown are the means + SEM of 3 independent experiments. 

 

4.2.5 Enhancement of transgene expression using retinoic acid and 
Trichostatin A 

Various attempts have been made to increase transgene expression after viral or 

non-viral gene transfer. A widely used promoter which also found application in our 

study is derived from the immediate-early region of cytomegalovirus (CMV) gene. 

The CMV promoter induces high transgene expression levels in various tissues 

and cells likely due to a number of cis-regulatory elements mediating to which 

binding of transcription factors like NF-κB, CREB, AP-1 and retinoic acid receptor 

(RARs, RXRs) can occur (Angulo et al., 1996; Boshart et al., 1985; Ghazal et al., 

1992; Guo et al., 1996; Loser et al., 1998; Rideg et al., 1994; Rotondaro, Mele, 

and Rovera, 1996; Wade, Klucher, and Spector, 1992). The latter is of special 

interest, since addition of retinoic acid was shown to enhance transcription from 

CMV promoters, e.g. in endothelial cells after adenoviral transgene delivery 

(Angulo et al., 1996; Gaetano et al., 2000). Despite the high transcriptional activity 

α5β1 [%] αvβ5 [%] 

92.00 0.54 

96.99 0.32 

98.36 0.84 
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that is normally achieved with CMV promoters at early times after transduction 

with viral vectors, promoter silencing after a longer period represents a major 

hurdle that impairs a long lasting transgene expression in vivo, in vitro and in stem 

cells (Xia et al., 2007). Recently, the histone-deacetylase inhibitors (HDACi) 

Trichostatin A (TSA) and FR901228 have been shown to enhance adenovirus-

mediated transgene expression in hematopoietic and endothelial cells (Gaetano et 

al., 2000; Kitazono et al., 2002). Thus, we intended to determine the effect of 

single or combined treatment with TSA and RA on AAV-mediated transgene 

expression in CD34+ cells. CD34+ cells (CellSystems) were thawed and pre-

expanded as described in 7.3.7.2.   

In a first series of experiments, we incubated pre-expanded CD34+ cells with 

rAAV2scGFP at a GOI of 105 in the presence of different RA (5-5000 nM) and/or 

TSA (3.125-500 ng/ml) concentrations to determine the most suited amount of 

these drugs for our experiments. Cells were washed 3 h p.i., cultured for 3 d in 

medium supplemented with the respective drug and then analyzed by flow 

cytometry (data not shown). These analyses revealed an optimal concentration of 

10 µM for RA and of 25 ng/ml for TSA.  

Next, we incubated pre-expanded CD34+ cells with rAAV2scGFP at a GOI of 105 

of either drugs, alone or in combination, and determined the percentage of GFP-

expressing cells as well as the mean fluorescence intensity (MFI) as a value for 

transduction efficiency and transcriptional activity, respectively, at 3 d p.i. by flow 

cytometry (Figure 36). On average, a 3.4-fold (mean ± 0.2 SEM; P=0.006) 

increase in the MFI was observed when RA was administered, while addition of 

TSA resulted in 1.3-fold increased MFI (mean ± 0.3 SEM; P<0.25). Further, when 

RA and TSA were added in combination, the highest increase in the MFI value 

(5.9-fold ± 1.1; P=0.002) was observed, thus revealing a synergistic effect of the 

two drugs. As a consequence of the increased transcriptional activity, more CD34+ 

cells reached a high transgene expression level. Thus, by adding these two 

transcriptionally active drugs, the amount of cells with a reasonable transgene 

expression could be increased from 61.4 ± 4 % to 85.6 ± 0.3 % (mean ± SEM; 

n=3; P<0.002) (Figure 36). 
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A 

 

B 

  

C 

  transgene expression mean fluorescence intensity 

  GFP-expressing cells ± SEM [%] MFI ± SEM 

w/o drugs 61.4 ± 4.0 48.8 ± 9.7 

TSA 69.5 ± 5.4   61.4 ± 13.8 

RA 82.7 ± 1.0 166.8 ± 25.3 

TSA+RA 85.6 ± 0.3 288.2 ± 39.1 

 

Figure 36: Enhancement of rAAV2scGFP-mediated transgene expression by Trichostatin A (TSA) 

and retinoic acid (RA). 8x10
4
 pre-expanded CD34

+ 
cells (CellSystems) were treated with either 25 
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ng/ml TSA (Sigma) and/or 10 µM RA (Sigma) at the time of transduction with rAAV2scGFP. In 

parallel, cells were transduced with the same amount of vector in the absence of the drugs (only 

solvent). 3 h p.i. cells were washed and fresh medium containing the drugs or solvent without drugs 

as control were added. 3 d p.i. transgene expression was measured of 2x10
4
 cells by cell 

cytometry. (A) Bar graph indicates the mean fluorescence intensity as detected by FACS analysis; 

(B) Bar graph showing the increase in the percentage of GFP-expressing cells in the presence of 

the two drugs. (n=3; error bars= SEM; *= P≤0.006). (C) Indicated is the correlation between 

increase in the percentage of GFP expressing cells and the enhancement of MFI in the four tested 

conditions.  

 

4.2.6 CD34+ cells are able to take up Dil-AcLDL after endothelial 
differentiation assay 

CD34+ cells are also known as endothelial progenitor cells defined by their ability 

to differentiate into endothelial cells. Therefore, we evaluated the potential of 

CD34+ cells to take up acetylated low-density lipoproteins (Dil-AcLDL) as 

endothelial cell marker after pre-expansion, rAAV2 transduction and subsequent 

incubation in endothelial differentiation medium. Cells were seeded onto 

fibronectin-coated plates to enable attachment. For coating, the plates were 

incubated with 10 µg/ml fibronectin in PBS over night at 4 °C. Subsequently 

solution was taken off and plates were dried.  

CD34+ cells (CellSystems) were thawed, pre-expanded for 2 to 4 d and 

transduced with a GOI of 105 rAAV2 encoding either single-stranded or self-

complementary GFP vector genomes. Transduction efficiency was determined by 

FACS analysis 3 d p.i.. At the same time, these cells were seeded onto 

fibronectin-coated plates in endothelial basal medium (EBM-2 + supplements) 

including 20 % FCS and 50 ng/µl VEGF for induction of endothelial differentiation. 

Every 3 d, half of the medium was exchanged carefully. 10 d after inititation of 

differentiation, adherent cells showed a spindle-shaped morphology and were 

incubated with 1 µg/ml Dil-AcLDL diluted in medium for 4 h at 37 °C. Cells were 

fixed with 3 % paraformaldehyde and analyzed for Dil-AcLDL uptake by 

fluorescence microscopy (200x magnification; Zeiss Axiovert S100). 

Representative images of 3 independent experiments are shown in Figure 37. Red 

fluorescence could be detected in nearly all of the non-transduced and previously 

transduced cells indicating differentiation into endothelial cells. These results 
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indicate that the rAAV transduction process did not interfere with differentiation 

and endothelial cell-specific Dil-AcLDL uptake. 

 

 

Figure 37: Dil-AcLDL uptake of CD34
+
 cells after 10 d of incubation in endothelial differentiation 

medium. CD34
+
 cells were pre-expanded and transduced with a GOI of 10

5
 of rAAV2 coding for 

single-stranded (ss) or self-complementary (sc) GFP. 3 d p.i., cells were seeded onto fibronectin-

coated plates and cultivated in endothelial differentiation medium for 10 d before incubation in 1 

µg/ml Dil-AcLDL containing medium for 4 h. Cells were fixed and analyzed by fluorescence 

microscopy (200x magnification; Zeiss Axiovert S100). Shown are representative images of 3 

independent experiments for endothelial differentiation. 

 

For later applications, differentiation of transduced endothelial progenitor cells into 

endothelial cells is required. Therefore, we investigated the potential correlation 

between transduced cells and cells which have taken up Dil-AcLDL. As GFP 

fluorescence was not detectable after 10 d we analyzed the adherent cells for 

presence of vector genomes. After intense washing, the adherent cells were 

trypsinized and DNA was extracted using the DNeasy Blood & Tissue Kit 

(Qiagen). 100 ng DNA of the samples were analyzed by qPCR for the transgene 

GFP and normalized to the housekeeping gene GAPDH. Mean values for GFP 

DNA of 3 independent experiments are depicted in Figure 38 and shown as copy 

number per 50 ng DNA + standard deviation. The background level for GFP DNA 

in the non-transduced control was 1.1 x 103 + 1.5 x 103 copies/50 ng DNA, but this 

value was based on amplification of unspecific and specific products as revealed 

by melting curve analyses. Therefore, the background level is supposed to be 

much lower and is depicted as striped bar in Figure 38. In contrast, DNA samples 

non-transduced rAAV2scGFP rAAV2ssGFP 

Dil-AcLDL 

light 
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from transduced cells showed only the GFP-specific PCR product in the respective 

melting curve analyses. 

Interestingly, the amount of transgene after transduction with rAAV2ssGFP (5.9 x 

105 + 5 x 105 copies/50 ng DNA) equalled the level of rAAV2scGFP transduction 

(6.1 x 105 + 4.2 x 105 copies/50 ng DNA) (GOI 105). Both values exceeded the 

background signal more than 500 fold which clearly indicates presence of vector 

genomes within the DNA of the adherent cells. As nearly all cells were positive for 

Dil-AcLDL uptake as shown in Figure 37, this result strongly suggests that 

transduced CD34+ cells maintained their ability to differentiate into endothelial 

cells. 

 

 

Figure 38: Level of transgene DNA in transduced and non-transduced cells after endothelial 

differentiation assay. CD34
+
 cells were pre-expanded and transduced with rAAV2 coding either for 

ssGFP or scGFP with a GOI of 10
5
. 3 d after, cells were seeded onto fibronectin-coated plates in 

endothelial differentiation medium und cultivated for 10 d. After repeated washing, DNA was 

extracted from the adherent cells and 100 ng were analyzed in qPCR. Values were normalized to 

GAPDH and shown as GFP copy numbers per 50 ng DNA + standard deviation. In contrast to the 

transduced samples, melting curve analyses of the non-transduced samples revealed also other 

PCR products beside GFP and are therefore depicted as striped bar. Summarized are results from 

3 independent experiments.  
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4.3 Further applications of serotypes 

4.3.1 Serotype 2 is superior in transduction of primary melanoma cells 

As part of a publication on tumor cell directed gene transfer, primary melanoma 

cells from three different patients (MediGene, Martinsried) were transduced with 

the serotypes 1 to 5 to compare the transduction profiles of primary tumor cells 

and tumor cell lines (Hacker et al., 2005). Tumor cell lines have been grown in 

long-term culture and might therefore show differences. Primary melanoma cells 

were transduced with a GOI of 1 x 104 rAAV1 to rAAV5 encoding the transgene in 

the commonly used single-stranded vector genome conformation (ssGFP). Since 

rAAV2 was the most efficient serotype on the melanoma cell line MV3 primary 

cells were additionally transduced with a lower GOI of 1 x 103 for this serotype. 

Transgene expression was determined 48 h p.i. by FACS analysis.  

 

 

Figure 39: rAAV-mediated gene transfer in primary melanoma cells. Primary melanoma cells from 

3 different patients were transduced with rAAV1 to rAAV5 at a GOI of 1x10
4
. Additionally, a 

transduction experiment was performed using rAAV2 at a GOI of 1x10
3
. 48 h later, the amount of 

GFP-expressing cells was determined by FACS analysis. 
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Although patient-specific variations in transduction efficiencies were observed, 

rAAV2 was superior in all cases compared to rAAV1, rAAV3 and rAAV5 (Figure 

39). The level of transgene expression ranged from 6.4 % (patient 1) to 80.5 % 

(patient 2) at a GOI of 1 x 104. Even at tenfold lower vector amounts reasonable 

transduction efficiencies of 35.6 % (patient 2) and 24.6 % (patient 3) were 

obtained with rAAV2ssGFP. Interestingly, for the other serotypes no unique order 

of transduction efficiencies could be observed; it was rather depended on the 

patient. Whereas tumor cells derived from patient 1 and 3 were nearly resistant to 

rAAV5 transduction, 35.6 % of the cells from patient 2 were GFP-positive. A 

comparable picture was obtained for rAAV1 transduction. In contrast, rAAV4 was 

revealed as second best serotype for transduction of melanoma cells derived from 

patient 3. 

4.3.2 Serotype 2 is superior in transduction of primary porcine 
fibroblasts and HeLa cells  

Besides porcine endothelial cells, primary porcine fibroblasts have been evaluated 

for their permissiveness of rAAV transduction. These cells are of special interest 

for somatic cell nuclear transfer in pigs, a procedure which is carried out by our 

cooperation partners in the Institute of Farm Animal Genetics, Mariensee (B. 

Petersen, H. Niemann) (Betthauser et al., 2000; Onishi et al., 2000). Transgenes 

are introduced into porcine fibroblasts which are then screened for the occurrence 

of stable integration events. These cells are fused to enucleated oocytes and 

transferred surgically into the foster mother. This technology greatly improved the 

generation of transgenic animals, however, the efficiency (born piglet/transferred 

embryos) is still low. The ability of wild-type AAV2 to integrate site-specifically 

could be favorable for this application as it minimizes the risk of deleterious 

insertions. 

First, we assessed the efficiency of fibroblast transduction by the serotypes 1 to 5. 

Therefore, primary porcine fibroblasts were transduced by 3 different vector 

concentrations of rAAV1 to 5 encoding for the transgene GFP in a single-stranded 

(ss) or self-complementary (sc) vector genome conformation, respectively. The 

amount of GFP-expressing cells was determined by flow cytometry 2 d p.i.. rAAV2 

was the most efficient serotype in fibroblast transduction reaching 87.8 ± 5.3 % 

with ssGFP and 96.3 ± 1 % with scGFP at a GOI of 105. Also serotype 5 was 

highly efficient with 75.7 ± 1.2 % (ssGFP) and 84.1 ± 11.6 % (scGFP) at the 
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highest vector concentration. The serotypes 1 and 3 showed similar transduction 

efficiencies of about 5 % for the ssGFP and of 30 % for scGFP vectors. AAV4 

displayed the lowest transgene expression levels of 2.1 % (ssGFP) and 8 % 

(scGFP). At a GOI of 103 only rAAV2ssGFP (13.6 ± 4.9 %), rAAV2scGFP (64.9 ± 

8.7 %) and rAAV5scGFP (22.9 ± 1.4 %) resulted in transduction levels above 0.5 

%. Overall, transduction with scGFP vectors at GOI 104 and 105 resulted in higher 

transduction efficiencies compared to ssGFP vectors in all serotypes. 

 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 1 2 3 4 5

single-stranded GFP self-complementary GFP

serotypes

G
F

P
-e

x
p

re
s
s
in

g
 c

e
ll
s
 [

%
]

GOI 1E3

GOI 1E4

GOI 1E5

 

Figure 40: Transduction efficiencies of rAAV1 to rAAV5 on porcine fibroblasts. Primary porcine 

fibroblasts were transduced with 3 different GOIs (10
3
, 10

4
 or 10

5
) of the serotypes 1 to 5 coding 

either for single-stranded or self-complementary GFP. The amount of GFP-expressing cells was 

determined 2 d p.i. by FACS analysis. Results are shown as mean + standard deviation of 3 

independent experiments. 

 

The same experiments have been performed in parallel with the highly permissive 

tumor cell line HeLa to correlate these transduction efficiencies to those of porcine 

fibroblasts and other cell types. HeLa cells were transduced with rAAV1 to rAAV5 

coding for ssGFP or scGFP at a GOI of 103 and 104. The amount of GFP-

expressing cells was determined 2 d p.i. by flow cytometry. Also in these cells, 

rAAV2 was the most efficient serotype whereas already 90 ± 1.8 % GFP-positive 

cells were detected at a GOI of 103 of the ssGFP vector. In the case of 
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rAAV2scGFP nearly every cell expressed GFP (about 99 %) (both GOIs). In 

contrast to porcine fibroblasts, rAAV3 was revealed as the second efficient 

serotype followed by rAAV1. At a GOI of 103 rAAV3ssGFP resulted in only 4.9 ± 

4.2 % GFP-expressing cells while 55.4 ± 2 % were measured at a GOI of 104. 

Regarding rAAV3scGFP these values were 48.3 ± 4.7 % and 93.9 ± 0.5 % for the 

respective vector amounts. Although transduction with rAAV1scGFP (GOI 104) 

resulted in comparable transgene expression levels (93.7 ± 1 %), 35.9 ± 3.5 % 

GFP-expressing cells were measured when tenfold less vectors were applied. As 

expected, transduction with rAAV1ssGFP showed a transduction efficiency of 

maximal 43.2 ± 5.1 %. In contrast to transduction of porcine fibroblasts, serotype 5 

showed much lower transgene expression levels in HeLa cells with 17.9 ± 4 % 

(ssGFP) and 68.5 ± 7.7 % (scGFP) at GOI 104. On the other hand, rAAV4 was the 

vector with the lowest efficiency among these 5 serotypes in transduction of both 

cell types. In HeLa cells, a GFP-expression of 11.9 ± 4.7 % (ssGFP) and 24.2 ± 

6.7 % (scGFP) was determined for rAAV4 at a GOI of 104.  
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Figure 41: Transduction efficiencies of rAAV1 to rAAV5 on HeLa cells. HeLa cells were transduced 

with rAAV1 to rAAV5 encoding for ssGFP or scGFP at GOI 10
3
 and 10

4
. Transgene expression 

levels were determined 2 d p.i. by flow cytometry. Results are shown as mean + standard deviation 

of 3 independent experiments. 
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4.4 Vector genomes are detected in spleen following 

intracerebral injection of rAAV2 

Results summarized in this chapter are part of a publication in which rAAV2 was 

used to express single-chain antibodies against prion receptor intracerebrally in a 

scrapie mouse model (Zuber, et al., in press). This work was performed in 

collaboration with C. Zuber and S. Weiss (Gene Center, Munich).  

As reported by our cooperation partners, the 37/67 kDa laminin receptor acts as a 

receptor for internalization of prions and is potentially involved in propagation and 

pathogenesis (Ludewigs et al., 2007; Vana et al., 2007; Zuber, Ludewigs, and 

Weiss, 2007). Its level has been shown to be increased in spleen and brain of 

scrapie infected hamsters amd mice - the organs where the abnormal form of the 

prion protein is mainly found (Rieger et al., 1997). Therefore, different approaches 

have been done to block laminin receptor in order to reduce binding and 

internalization of the abnormal prion protein (Gauczynski et al., 2006; Leucht et al., 

2003; Vana and Weiss, 2006). In this recent report, the efficiency of single-chain 

antibodies (scFv) (S18 and N3) against the laminin receptor has been 

investigated. S18 and N3 have been selected by phage display. An unrelated 

single-chain scFv (C9, a scFv directed against the HBV coat protein) served as 

control. These antibodies had prior been assayed for their protective effect in vivo 

by passive immunotransfer into scrapie infected mice (Zuber et al., 2008). AAV2 

has been chosen as vector system to provide the transgene. The rAAV2 vectors (5 

x 109 genomic particles) encoding S18, N3 or C9 were microinjected 

intracerebrally into the hippocampus followed by injection of scrapie homogenate 

into the same site 2 weeks after vector application. Expression of the scFv N3 in 

the brain was detected pointing to a successful transduction of neuronal cells. The 

second organ known to contain elevated amounts of prion protein is the spleen. 

Thus, spleens were analyzed for a potential therapeutic effect of single-chain 

antibodies with regard to proteinase K resistant prion protein level, which is 

associated with the infectious prion agent. Both groups having received 

therapeutic vectors (rAAV2-S18 and rAAV2-N3) showed lower prion protein levels 

than control animals after rAAV2-C9 injection (90 d p.i.). We analyzed 100 ng DNA 

of the spleen samples for the respective transgene (S18 and C9) and 

housekeeping gene (GAPDH) DNA by qPCR followed by agarose gel 
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electrophoresis of the PCR product (Figure 42). As depicted in Figure 42, we could 

demonstrate the presence of the therapeutic (S18, samples B and C) and control 

(C9, sample A) DNA in mouse spleens. An unrelated animal having received PBS 

was used as negative control (N). In the C9-PCR, the rAAV2-C9 injected animal 

(A) clearly showed a C9-specific band, whereas the unrelated control (N) was 

negative. Also in the S18-PCR, S18-specific DNA was detected in both rAAV2-

S18 treated mice (B and C). An unspecific signal was amplified in sample C and 

the control N as shown in Figure 42. GAPDH levels were comparable between the 

samples confirming that equal DNA amounts have been analyzed. 

These results point to a crossing of the blood-brain barrier of the vectors and 

subsequent transduction of the spleen. 

 

 

 

Figure 42: Detection of C9, S18 and GAPDH DNA within mouse spleens. 5x10
9
 genomic particles 

of rAAV2-S18 or rAAV2-C9 were microinjected intracerebrally. 2 weeks after, scrapie homogenate 

was administered to the same site. 90 d p.i., spleen DNA was extracted and analyzed for GAPDH, 

S18 or C9 DNA, respectively. PCR products were analyzed by agarose gel electrophoresis. A, 

rAAV2-C9 injected mouse; B and C, rAAV2-S18 injected mice; N, unrelated mouse having received 

PBS; +, plasmid DNA containing the respective transgene as positive control; NTC, non-template 

control. 
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5 Discussion 

5.1 Heterotopic heart transplantations 

5.1.1 Approaches for endothelial transduction in rat model 

We assessed the feasibility of rAAV2-mediated transduction of endothelium in a 

heterotopic rat heart transplantation model after intracoronary injection either in 

normothermic (n=3) or hypothermic (n=3) hearts (4.1.1.1). In addition, vector was 

applied into the tail vein without transplantation (n=2). PCR analyses revealed the 

presence of transgene DNA in transplanted hearts (HTX) independent of the 

operation technique. Only one animal (B2) did not show any transgene DNA which 

might be due to the 10-fold lower vector amount that has been injected. The 

existence of vector DNA in several liver samples (A1, A3 and B1) indicates that 

considerable amounts of vector did not enter cardiac cells, but were transported to 

other organs. This is in line with a comparable rat transplantation model of 

intracoronary vector injection where the transgene could also be detected in the 

liver (Kaspar et al., 2005). Interestingly, transgene DNA was measureable in the 

livers of both transplantation groups (A and B). In the hypothermia group, where 

the vector was injected into the cold and cardioplegic heart, rAAV is able to bind to 

its receptor, but cell entry is likely to be impaired due to the low temperature. After 

transplantation and flooding with blood, a loss of vectors might occur before the 

heart has reached physiologic temperature which is likely to vector entry. In 

contrast, administration into the normothermic heart allows immediate cell entry of 

the vector. Therefore, we expected that injection into the normothermic heart could 

be supportive of gene transfer into the heart. Our results indeed showed stronger 

signals corresponding to our vector DNA in transplanted heart samples of the 

normothermia than of the hypothermia group. Therefore, we suggest performing 

further gene transfer experiments in normothermic hearts. 

Vector DNA was detectable in all animals (besides B2) in the transplanted heart. 

Thus, rAAV2 can enter cardiac cells. However, neither transgene mRNA nor β-Gal 

activity were detected. Based on our detailed in vitro analyses, discussed in the 

next chapter, this impairment is most likely due to an inadequate intracellular 

processing of the vector. 
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Concordantly with our in vivo results, Byrne’s group observed that a transcoronary 

single-shot vector injection into cardioplegically arrested rat hearts followed by 

transplantation does not result in a detectable transgene expression (Asfour et al., 

2002). They solved this problem by introducing an atrial septal defect which 

allowed the ex vivo recirculation of the vector (rAAV2ssLacZ). This was performed 

for 20 min at 15 °C in oxygenated Krebs-Henseleit solution. Analyses of the 

transplanted heart revealed a successful transduction with a significant X-Gal 

staining. Thus, prolonging the contact time between viral vectors and target cells 

seems to affect transduction efficiencies positively and would be one of the options 

to improve transduction efficiencies in our model. 

Successful heart transduction by injection of 1.5 x 109 infectious units of 

AAV2CMV-LacZ intracoronary into the cardioplegic heart was reported for a 

mouse model (Svensson et al., 1999). Critical for the success of this approach 

performing a 15 min ex vivo perfusion was most likely the high volume to conquer 

the endothelial barrier due to the high pressure. Numerous attempts have been 

made to increase vascular permeability and thereby overcoming the endothelial 

barrier since endothelial cells seem to be inadequate cell types for achieving high 

levels of transgene expression. In line, intracoronary administration of histamine 

and vector (using amounts comparable to our experiments) resulted in 20 - 32 % 

transgene expression in cardiomyocytes as demonstrated by Kaspar and 

colleagues (Kaspar et al., 2005). These publications point out that increased 

vascular permeability (e.g. histamine, high pressure) could be another possibility 

which alone or in combination with a prolonged incubation time may improve in 

vivo transduction efficiencies of heart tissue. 

Iwanaga and colleagues reported that less than 1 % of cardiomyocytes were 

positively stained for X-Gal activity after injection of rAAV2ssLacZ into hypothermic 

rat hearts despite administration of the vasoactive substance P (as alternative to 

overcome the endothelial barrier) in a big volume (Iwanaga et al., 2004). The 

clamping of the vessels and the vector amount were similar to our approach with 

the exception that we additionally transplanted the heart. This emphasizes that in 

vivo gene transfer into heart tissue is still an experimental approach and many 

controversial results have been described. Previous studies in hamsters 

performed by the same group also revealed absence of β-galactosidase activity, 

but observed immune reactions which were also observed in their rat model 
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(Hoshijima et al., 2002). In both studies, absence of signs of inflammation, but 

transgene expression was detected when phospholamban was used as transgene 

instead of LacZ. The same technique of pulmonary and aortic artery occlusion and 

administration of substance P in addition to intra-aortic injection of rAAV2LacZ did 

not lead to inflammation, but resulted in high myocardial transduction after 4 

weeks in a mouse model (Iwatate et al., 2003).  

Predominantly myocardial not endothelial transgene expression was detected. 

Observations by Li and colleagues demonstrated high β-Gal activity in the 

myocardium and its complete absence in the vessels after intracoronary vector 

delivery in heterotopic heart transplantation in a hamster model (Li et al., 2003). 

On the other hand, transgene expression was detected in endothelial cells and the 

perivascular area in a comparable approach in a rat model after injection of 1 x 

1012 rAAV2GFP vector genomes, but storage of the graft in Histidine-Tryptophan-

Ketoglutarate (HTK) solution for 6 h prior to implantation (Tsui et al., 2003). 

However, in this case the amount of transduced endothelial cells was not 

quantified and leaves room for discussion. 

As an alternative, direct rat myocardial injections have been published to be 

successful (Dandapat et al., 2007; Liu et al., 2006; Palomeque et al., 2007). 

Especially, the administration of a vector construct identical to the here used 

rAAV2ssLacZ at comparable vector amounts (4 x 1011 particles) indicates the 

potential difference in efficiencies between intramyocardial and intracoronary 

vector injections (Liu et al., 2006).  

Injection into skeletal muscle resulted in successful cDNA detection and X-Gal 

staining in our experiments. Consistent with our results, Xiao and colleagues 

published long-term rAAV2-mediated gene expression in mouse skeletal muscle 

(Xiao, Li, and Samulski, 1996). 

In summary, reports on successful transgene expression emphasize vascular 

permeability and a prolonged exposition time of the vector as critical factors. 

Furthermore, cardiomyocytes seem to be the more suited target cells in contrast to 

our setting where we aimed to transduce endothelial cells which are the first target 

in graft rejection by intracoronary vector injection. Taking into account previous 

publications and our here reported results, the inefficient in vivo transgene 

expression is most likely due to endothelial cell-based intracellular restrictions (see 
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below) impairing efficient rAAV2-mediated transgene expression. In further 

experiments, the use of histamine or other vasoactive substances are 

recommended in order to transduce also cardiomyocytes. Ideally, vectors should 

be injected into the normothermic heart to improve cell entry as suggested from 

our results. 

5.1.2 In vitro studies of RAECs 

5.1.2.1 Superiority of rAAV1 in rat cardiac endothelial and cardiomyocyte 
transduction 

Since our in vivo application of AAV2-based vectors did not result in transgene 

expression, we aimed to identify a more suited AAV serotype for transduction of 

cardiac endothelium using primary rat aortic endothelial cells (RAECs) as in vitro 

model. However, all analyzed serotypes were inefficient. Nevertheless, rAAV1 

seems to be superior in comparison to rAAV2 to 5. Our results are in line with 

observations reported by Chen and colleagues comparing the same serotypes at 7 

d p.i. (Chen et al., 2005). In our hands, rAAV2 was the second efficient vector in 

contrast to Chen and colleagues who described a stronger effect for rAAV5 which 

even surpassed the efficiency of rAAV1 at 14 d p.i.. Thus, our results are 

consistent with these observations, although describing transduction efficiencies at 

an earlier time point.  

In order to estimate the efficiency of rAAV-mediated gene transfer into rat 

myocardium – the alternative target cell population in heart tissue – we compared 

transduction efficiencies for rAAV1 to 5 on primary neonatal cardiomyocytes. Best 

transgene expression levels were obtained by serotype 1 followed by rAAV4. 

Comparative in vitro analyses of neonatal cardiomyocyte transduction have not 

been published so far. Only rAAV2-mediated transductions have been reported in 

several publications (Kaspar et al., 2005; Maeda et al., 2000; Svensson et al., 

1999). Kaspar and colleagues for instance, transduced primary cells with 104 

DNase-resistant particles/cell which likely correspond to “our” 104 genomic 

particles/cell approach (Kaspar et al., 2005). In contrast to our observations (4.1 % 

after 3 d) they were able to reach transgene expression in 60 % of the cells 2 d 

p.i.. Also Maeda and colleagues reported similarly high transduction efficiencies 

(Maeda et al., 2000). The discrepancy to our results (4.1 % with rAAV2ssGFP at a 

GOI of 104) is not clear and due to variations in the experimental details not easily 

explainable. 
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The relevance of our in vitro studies in cardiomyocytes can be estimated from 

recent reports (Palomeque et al., 2007; Su et al., 2006). Intramyocardial injection 

of rAAV1 in rat resulted in higher transgene expression than rAAV2 corresponding 

to transduction efficiencies in primary cardiomyocytes (Palomeque et al., 2007). 

Also in a mouse model of myocardial injection rAAV1 was revealed as superior 

serotype in comparison to rAAV2 to 5 (Su et al., 2006). However, these 

efficiencies can be exceeded by other serotypes like rAAV6 or the recently 

identified rAAV8 (Palomeque et al., 2007). Of note, recent publications point 

towards a possibility to target the heart in vivo as rAAV9 seems to possess at least 

a preferential tropism for heart tissue (Inagaki et al., 2006; Pacak et al., 2006). 

These experiments have been performed in mice and nonhuman primates and 

showed superior effects for rAAV9 than for rAAV8 which was described before as 

the serotype of choice in mice (Wang et al., 2005).  

In conclusion, the application of rAAV1 compared to rAAV2 showed higher 

transduction efficiencies in endothelial cells in our as well as in published 

experiments. Also in vivo the superior effect of rAAV1 compared to rAAV2 after 

intramyocardial injection has been reported. Therefore, we recommend the use of 

alternative serotypes, e.g. rAAV1 or – based on the most recent reports – rAAV9 

instead of rAAV2. 

5.1.2.2 Barriers in endothelial cells impair rAAV-mediated transgene 
expression 

Obtained levels for rAAV-mediated transgene expression in endothelial cells are 

low in vivo and in vitro (Nicklin et al., 2001a; Pajusola et al., 2002). Therefore, we 

intended to investigate this problem in detail using rAAV2-mediated transduction of 

rat aortic endothelial cells (RAECs) as model system. Until establishment of a 

successful transduction, vectors have to overcome multiple barriers such as cell 

membrane, endosomal compartment, cellular protein degradation machinery and 

nuclear membrane. Of these numerous steps, we investigated the question of 

entry and perinuclear accumulation. Moreover, the effects of a proteasome 

inhibitor and second-strand synthesis were studied. 

Laser scanning microscope studies in transduced RAECs revealed AAV-specific 

perinuclear accumulation of incoming particles (4.1.1.2.1). This results points to 

occurrence of vector entry and intracellular trafficking towards the nucleus in 

RAECs. Also Sipo and colleagues reported vector entry into human microvascular 
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endothelial cells albeit they observed that 50 % of the vectors stayed on the cell 

surface as they could be removed by trypsinization (Sipo et al., 2007). It can be 

assumed that the vectors are sequestered at the cell surface since endothelial 

cells express high levels of extracellular matrix including HSPG, which serves as 

primary receptor for AAV2 (Pajusola et al., 2002). Although we cannot comment 

on the efficiency of entry and perinuclear accumulation processes we conclude 

that vector entry is maybe to some extent, but not primarily, the reason for the low 

transduction efficiency in RAECs. Other steps like endosomal processing or 

nuclear translocation of vector genomes might contribute as well. 

We observed a significant enhancement (7.3-fold for rAAV2ssGFP; P<0.002; 4.4-

fold for rAAV2scGFP; P<0.02) in transgene-expressing RAECs transduced with a 

GOI of 5 x 104 in presence of 40 µM of the proteasome inhibitor MG132 3 d p.i. 

(4.1.1.2.1). In line with this result, we could also demonstrate an enhancement in 

transduction efficiency in the colon carcinoma cell line HT29 after application of 

the tripeptidyl aldehyde proteasome inhibitor MG132 which reversibly blocks the 

catalytic centre of the 26 S proteasome (Hacker et al., 2005; Oka et al., 2004). 

Interestingly, MG132 was published to enhance transduction efficiency 

significantly in human endothelial cells at 104 transducing particles/cell of 

rAAV2ssGFP (Nicklin et al., 2001a). In contrast to our results in RAECs, Pajusola 

and colleagues reported only a minor increase of GFP-expressing cells in human 

umbilical vascular endothelial cells (HUVEC; 1.3-fold) and human saphenous vein 

endothelial cells (SVEC; 3.2-fold) in vitro and in rabbit carotid artery assay in vivo 

(Pajusola et al., 2002). The mechansim by which proteasome inhibitors enhance 

rAAV-mediated transduction remains to be elucidated. Thus, proteasome inhibitors 

seem not to act simply by preventing the degradation of internalized virions or 

vector DNA (Douar et al., 2001; Duan et al., 2000; Yan et al., 2002). Interestingly, 

treatment with proteasome inhibitors increased the amount of ubiquitin detected 

on rAAV2 and rAAV5 capsids allowing to hypothesize that ubiquitin might serve as 

signal for uncoating or it possibly assists nuclear translocation of rAAV or vector 

genomes (Yan et al., 2002). Indeed, it is known that ubiquitin also gains 

proteasome-independent functions in regulation of cellular processes such as cell 

division, differentiation, signal transduction and protein trafficking (Mukhopadhyay 

and Riezman, 2007). 
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Once the vector genomes are located in the nucleus, natural single-stranded 

vector genomes first have to undergo second-strand synthesis. This step has been 

determined as rate-limiting process for efficient transduction by rAAV in certain cell 

types (Ferrari et al., 1996; Fisher et al., 1996). However, use of rAAV2scGFP only 

marginally enhanced the transduction efficiency in RAECs (1.8-fold increase 

compared to rAAV2ssGFP). Thus, we assume that this conversion is maybe not 

as efficiently performed as in certain cell types like HeLa, but has not to be 

considered as the main reason for impaired transgene expression as it was 

observed in the case of CD34+ cells (see chapter 4.2.1).  

An enhancement of the amount of transgene-expressing cells by using self-

complementary vector genomes and addition of MG132 demonstrated that RAECs 

are in principle able to induce transgene expression. Thus, it can be assumed that 

the CMV promoter as reason for impaired transduction efficiency can be excluded 

at least in short term assays in vitro. Other groups also support this assumption as 

strong activities in human endothelial cells could be observed (Pajusola et al., 

2002). However, CMV promoter silencing processes in vivo cannot be excluded. 

Therefore, the choice of endothelial cell-specific promoters, e.g. the FLT-1 

promoter which also would guarantee selective expression, would be a reasonable 

variation in our future experiments (Nicklin et al., 2001b). Nonetheless, in our in 

vitro model, we rather tend to exclude a contributory effect of the CMV promoter 

on the low level of transgene expression. 

In summary, the intracellular detection of vector particles and the significantly 

enhanced transgene expression achieved by co-application of MG132 reveal that 

rAAV vectors are able to enter rat endothelial cells. Furthermore, intracellular 

transport of viral vectors towards the nucleus is not impaired albeit we cannot 

comment on its efficiency. Conversion of single-stranded vector genomes into a 

transcriptionally active vector genome conformation occurs maybe less efficiently 

than in other cells, but is also not the main limiting step. By the addition of 

proteasome inhibitors, however, a yet unknown limiting step could be overcome. 

Since no details about the mechanism by which proteasome inhibitors enhance 

AAV transduction are clear, it is currently impossible to speculate which 

intracellular events/steps are hampered. As outlined above, use of alternative 

serotypes or of targeting vectors seems to be currently the best way to cope with 

the observed limitation.   
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5.1.3 Porcine endothelial cells are highly permissive for AAV 

As preparation for our in vivo gene transfer into porcine hearts, primary porcine 

aortic endothelial cells (PAECs) were used as in vitro model to estimate the 

efficiency of rAAV-mediated gene transfer into endothelial cells of this species in 

order to determine the best suited serotype among rAAV1 to rAAV5. This study, 

which is indeed the first report on a comparative analysis of different serotypes on 

PAECs revealed that AAV vectors are suitable for transduction of this cell type. 

Actually, results obtained with PAECs exceeded the efficiencies for rodent and 

human endothelial cells (Nicklin et al., 2001a; Pajusola et al., 2002). Serotype 2 

was superior in transduction efficiency in comparison with rAAV1 and rAAV3 to 

rAAV5 and yielded about 90 % transgene-expressing cells using rAAV2 encoding 

GFP in the single-stranded as well as in the self-complementary vector genome 

conformation at a GOI of 105 (4.1.2.1.1). As expected, at lower vector-to-cell ratios 

rAAV2 containing the self-complementary vector genomes achieved higher 

transduction efficiencies. Concerning the other serotypes, rAAV5 was revealed as 

the second and rAAV1 as third efficient serotype for PAEC transduction. According 

to rAAV2, higher transduction efficiencies were measured for vectors containing 

the self-complementary vector genome conformation. 

Our results reveal rAAV2 as the ideal serotype among rAAV1 to rAAV5 for porcine 

endothelial transduction. These high transduction efficiencies in PAECs are 

astonishing as endothelial cell transduction has commonly been reported to be low 

(Pajusola et al., 2002).  

Further analyses of transduction by confocal laser scanning microscopy revealed 

large aggregates of intact capsids in PAECs in contrast to RAECs transduced at 

equal GOIs. This observation suggests a more efficient entry of rAAV2 into PAECs 

than into RAECs. In both cell types intact capsids were detected exclusively within 

the cytoplasm indicating occurrence of vector uncoating before or during nuclear 

entry in line with Lux and colleagues (Lux et al., 2005). 

5.1.4 AAV vector mediated transgene expression in porcine hearts 

Although gene transfer into the heart has been assessed in rodents, large animal 

models are indispensable for preclinical evaluation. Only a limited number of 

reports on rAAV-mediated gene transfer in porcine heart has been published so 

far (Kaplitt et al., 1996; Kaspar et al., 2005; Raake et al., 2008). Here, we 
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determined the efficiencies of heart transduction by intracoronarily injected rAAV2 

vectors, which had turned out to be the most efficient serotype on PAECs. To 

increase vascular permeability, histamine was applied simultaneously. The two 

transplanted animals received different amounts of particles. Moreover, the 

vectors differed in the encoded transgene and in the vector genome conformation 

(2 x 1012 rAAV2ssLacZ and 2.3 x 1013 rAAV2scLuci) (4.1.2.2). Although this 

precludes a direct comparison, we decided to change the transgene since 

packaging efficiency and thereby the amount of applicable vector amount could be 

greatly enhanced by the use of luciferase instead of β-galactosidase. In both 

experiments, vector genomes were detected in all cardiac sections 21 d after 

transplantation as determined by qPCR. However, transgene expression could 

only be detected in the second animal that received a higher vector dose and a 

vector encoding luciferase in a self-complementary genome conformation. 

Based on our own results and on published reports it is likely that a substantial 

contribution to the successful rAAV-mediated transgene expression is attributable 

to the self-complementary vector genome conformation used in this approach 

(Andino et al., 2007; McCarty et al., 2003). Moreover, the applied vector amount 

was ten times higher in the second animal. The assumption that vector amounts 

are crucial even in local applications like intracoronary vector injections is 

supported by results described by Kaspar and colleagues (Kaspar et al., 2005). 

They reported a successful gene expression in 3 of 4 pigs when a ten times higher 

vector amount was applied than we used in our first animal. Furthermore, 

considerably higher transduction efficiency was detected using 5.28 x 1013 vectors 

which correspond to about the same vector amount per kilogram body weight that 

we used. 

Since both transgenes were controlled by the same promoter (CMV) this option 

can be excluded. However, low expression of β-Gal might have remained 

undetected due to the less sensitive quantification methods (X-Gal staining of 

tissue sections followed by microscopical analyses) while even tiny amounts of 

luciferase activity were measureable. Nevertheless, as already stated a direct 

comparison of both approaches is not possible and further experiments have to be 

performed to elucidate which of the discussed points solely or in combination are 

responsible for the successful gene transfer that was achieved in the second pig. 
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5.1.5 Distribution of transgene DNA and product in the two animals 

In contrast to previous studies we performed the cardiac gene transfer in a heart 

transplantation setting as large animal model for xenotransplantation. Thereby, the 

vector-modified heart was transplanted into the abdomen of the recipient pig 

resulting in altered blood flow namely through the coronaries into the right atrium 

and ventricle and through the pulmonary arteries into the donor circulation 

excluding the left ventricle from the blood flow. To evaluate transduction 

efficiencies we dissected the heart into 4 levels and numerous samples of the left 

and right ventricle as well as of the septum region as depicted in Figure 26.  

Comparing vector distribution in the left ventricle, both animals showed 

tendentially higher levels in the inner wall than in the outer part (4.1.2.2.1, 

4.1.2.2.2). Moreover, highest values were obtained in the apex cordi (level IV) of 

both pigs. The region of highest mean copy numbers was the septum whereby the 

two ventral samples in level I and II (25, 26, 28, 29) revealed higher transgene 

DNA amounts than the third sample (27, 30). The only difference between both 

animals in the left ventricle was observed in level IV where the ranking of vector 

amount in the samples was inverted. Concerning level III, the DNA distribution was 

again similar, whereas lowest DNA amount was detected in the middle sample. 

Furthermore, the two animals showed no correlation regarding vector genome 

distribution in the heart tissue. While in the rAAV2ssLacZ injected pig in all regions 

of level I and II the copy number decreased from the ventral to the dorsal part, this 

was only the case in level III of the rAAV2scLuci transduced animal. 

Yet unexplained is the fact that regions of highest amounts in transgene DNA did 

not correspond to areas located at the assumptive course of the left anterior 

coronary which should be represented by the regions 27, 30, 37, 39, 40, 42, 43 

and 44 as well as smaller branches supplying the regions 7, 9, 11, 12 and 34. 

However, an individual variation in course of the vessels may serve as an 

explantation (the course of vessels in our two animals has not been recorded by 

our cooperation partners).  

We were interested to which extent transgene DNA levels correspond to the 

transgene expression level. Due to the lack of expression in the first animal, this 

question could only be addressed to the second animal that had received 

rAAV2scLuci. Luciferase levels varied from 1.4-fold (sample 41) to 215-fold 
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(sample 15) when normalized to a non-treated porcine sample. With some 

exceptions the variation in vector DNA amount did not mirror the luciferase levels 

of the respective samples. Solely for all levels of the inner wall of the left ventricle, 

levels I to III in the septum region and level I of the right ventricle, the highest DNA 

sample correlated with the corresponding highest luciferase activity. Since similar 

studies have not been performed yet, we cannot compare our results with 

published reports.  

In contrast to the published observations in non-transplanted animals, thus in 

hearts with a nature course of blood circulation, we detected transgene expression 

in the entire heart not only in the region of the left anterior coronary (Kaplitt et al., 

1996; Kaspar et al., 2005; Raake et al., 2008). In relevant publications only the 

territory of the left anterior descending (LAD) coronary was analyzed (Kaspar et 

al., 2005; Raake et al., 2008). Kaplitt and colleagues also analyzed other regions 

of the heart, but observed transgene expression exclusively within the LAD 

territory (Kaplitt et al., 1996). Also the vector application methods differed from our 

approach of indirect (into the aorta) antegrade (with natural blood flow) 

intracoronary vector application while connected to a newly developed in situ 

Langendorff reperfusion system for prolonged exposure of the vector to the heart. 

Closest to our setting were experiments by Kaspar and colleagues who applied 

heparin affinity purified rAAV2 vectors encoding for CMV promoter-controlled GFP 

at comparable vector amounts (2.6 - 5.3 x 1013 DNase resistant particles 

rAAV2ssGFP) (Kaspar et al., 2005). However, we have to take into account that 

their pigs were double in weight compared to our animals. Also in their approach, 

histamine was administered to increase vascular permeability followed by 

catheter-based vector injection directly into the left circumflex coronary. In contrast 

to our experiments, pigs were analyzed after 8 weeks and the central core of the 

perfusion bed showed gene-expression in 12 % of the cells. Since we detected 

luciferase activity by luminometer a direct comparison between the 12 % GFP-

expressing cells and our relative light units (RLU) is impossible. However, the high 

luciferase activity detected in some of our samples may point to a higher level of 

gene transfer efficiency.  

Recently, Raake and colleagues published a comparative analysis for transgene 

expression using rAAV6 and a heparin binding mutant of rAAV2 after pressure-

regulated retrograde (into the anterior cardiac vein) intracoronary vector injection 
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(Raake et al., 2008). Serotype 6 was determined as superior to the rAAV2 mutant, 

but it was not compared to rAAV2. Moreover, another recent publication revealed 

rAAV1 as more efficient than rAAV2 at least in intramyocardial injection into the 

porcine heart (Su et al., 2008). 

Regarding extracardiac organs, no transgene DNA or expression was detected in 

any of the pigs. Therefore, we conclude that the major part of the vector entered 

cardiac cells efficiently without measureable systemic distribution. Especially the 

novelty of the in situ Langendorff reperfusion system for recirculation of 

oxygenated blood at normothemic conditions after vector injection over a longer 

time might have enhanced the transduction of cardiac cells and therefore limited 

gene transfer into extra-cardiac organs. This is in line with Kaspar and colleagues 

who used a direct catheter-based vector delivery in presence of histamine and 

analyzed the organs 8 weeks p.i. and observed no signs of transgene expression 

in non-cardiac pig organs (Kaspar et al., 2005). However, a biodistribution analysis 

for transgene DNA was not performed (Kaspar et al., 2005).  

Altogether, transgene DNA distribution coincides only partially between the two 

pigs. Also the amount of transgene DNA did not correlate with the level of 

transgene expression. Moreover, the transgene-containing regions were not 

consistent with the course of the left anterior coronary as reported by other groups. 

Instead, we detected transgene expression in the entire heart albeit at different 

levels. 

5.1.6 Potential of rAAV2 for animal cloning 

As already described in 4.3.2, porcine fibroblasts are used by our cooperation 

partners of the Institute of Farm Animal Genetics (Mariensee) for somatic cell 

nuclear transfer. We evaluated the feasibility of rAAV vectors for mediating gene 

transfer into these cells. The high efficiency of rAAV2 transduction qualifies this 

vector for further analyses. In order to achieve site-specific integration, the 

transfection of a Rep-coding plasmid or addition of Rep protein could be an option. 

So far, transgenes have been transfected into fibroblasts and analyzed for 

integration events. Interestingly, porcine fibroblasts and the highly permissive 

human tumor cell line HeLa showed the same transduction profile concerning the 

serotypes rAAV1 to rAAV5. 
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Insertion of transgene into the oocyte is another approach, which was used here 

for the generation of genetically manipulated cattle. Our partners observed that 

addition of rAAV2 to the medium is sufficient for transduction. Thus, the vector is 

able to overcome the zona pellucida of the oocyte. Moreover, they injected a 

plasmid coding for Rep into the oocyte. Intense GFP expression of the blastocysts 

has been observed. Although transfer of the embryos into cows and maintenance 

of pregnancies are difficult and expensive, one calf treated with rAAVscGFP was 

born. Unfortunately, it did not show any transgene DNA which might be due to lack 

of vector integration. 

Although not completed, these preliminary experiments suggest rAAV2 as 

potential vector for production of transgenic animals. 

5.2 Investigations on CD34+ cells 

5.2.1 Most efficient serotype rAAV2 is limited by second-strand 
synthesis 

CD34+ cells gained increasing attention for the treatment of hematopoietic 

diseases as well as for induction of neovascularization in ischemic regions or sites 

of endothelial injury. Beneficial effects of combined cell and gene therapeutical 

approaches are now being evaluated (Melo et al., 2004). So far, only the serotype 

2 coding for single-stranded (ss) vector genomes has been studied in human 

CD34+ cell transduction, but with controversial results. Comparative analyses of 

several serotypes as well as the influence of second-strand synthesis using self-

complementary (sc) vectors have exclusively been performed in murine CD34+ 

cells (Zhong et al., 2006). Therefore, we assessed the most efficient serotype 

among rAAV2, rAAV3 and rAAV5 (4.2.1). AAV2 was clearly revealed as the most 

suitable serotype. While single-stranded genomes containing vectors only resulted 

in a minor transduction efficiency for rAAV2 (8 %), rAAV3 and rAAV5 did not show 

any transgene expression 3 d after transduction with a GOI of 105. The use of 

scGFP vectors could enhance GFP-expression for those serotypes only slightly 

(4.8 % for rAAV3 and 7.4 % for rAAV5). In contrast, almost 60 % transduction 

efficiency was obtained by rAAV2scGFP. This immense difference in the amount 

of transgene-expressing cells after administration of either scGFP or ssGFP vector 

genomes can be explained by limitations in second-strand synthesis as previously 

described for other cell types (Hacker et al., 2005; McCarty, Monahan, and 
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Samulski, 2001). The only comparative analysis of both vector conformations in 

transduction of hematopoietic progenitor cells – even though of murine origin – 

also approved this step as limitation of transduction pathway (Zhong et al., 2006). 

In transduction of murine hematopoietic progenitor cells rAAV1 has been 

described as most efficient serotype.  

In order to determine if the differential expression levels of the serotypes 2, 3 and 

5 are based on unequal entry, we determined the amount of vector genomes in 

the total DNA of CD34+ cells 3 h p.i. with ssGFP and scGFP vectors at a GOI of 

104 (4.2.1). Serotype 2 clearly entered the cell most efficiently, followed by rAAV3 

and then rAAV5. Thus, a less efficient entry is at least one reason for the lower 

level of transgene expression obtained by rAAV3 and 5. Moreover, similar 

transgene levels of scGFP and ssGFP vectors of the respective serotype 

confirmed that the difference in their transgene expression is only accounted by 

the different vector conformations. 

The high transgene expression level observed 3 d p.i. with rAAV2scGFP declined 

by 4.4-fold within one further week of cultivation. This is in line with observations of 

transient gene expression over a period of 10 to 14 d p.i. as reported by Nathwani 

and colleagues (Nathwani et al., 2000). One explanation could be a 

downregulation of promoter activity as previously described for CMV promoter in 

hematopoietic and mesenchymal progenitor cells in comparative promoter 

analyses (Byun et al., 2005). For that reason, use of vectors containing promoters 

distinct from CMV promoter should be considered. Moreover, loss of non-

integrated vector genomes during cell divisions might also contribute to the 

decreasing amount of GFP-expressing cells. 

As discussed in the introduction, publications on rAAV2-mediated transduction of 

CD34+ cells present conflicting results. Early experiments have been performed 

with low purified crude vector lysates which have been generated by use of 

adenovirus as helper virus (Fisher-Adams et al., 1996; Goodman et al., 1994; 

Hargrove et al., 1997; Zhou et al., 1994). Thus, helper virus contaminations could 

have assisted second-strand synthesis thereby enabling transgene expression 

(Alexander, Russell, and Miller, 1997). As we produced our vectors in a helper-

free method with subsequent iodixanol gradient centrifugation as described in 

3.1.4 we could exclude this effect. Besides vector production, also titration, 
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isolation and cultivation of CD34+ cells varied in the different reports. Our 

conditions were most comparable to experimental settings as described by 

Nathwani and colleagues (Nathwani et al., 2000). They reported an efficient gene 

transfer into human cord blood-derived CD34+ and CD34+CD38- cells using highly 

purified helper virus-free rAAV2 preparations. Isolation of the cells was performed 

corresponding to our protocol and also the choice of cytokines (albeit not the 

concentrations and medium) for cultivation and the use of pre-expanded (2 d) cells 

for transduction was equal to our approach. In contrast, they used a multiplicity of 

infection of 106 which corresponds to a GOI of approximately 107 representing 

about 100 times higher vector amounts of rAAV2ssGFP than in our experimental 

setting. Nonetheless, they only observed low transduction efficiencies of 10 to 23 

% after vector incubation over night and further cultivation for 24 to 48 h using high 

or low dose cytokine concentrations. Our results showed 8 % GFP-positive cells 3 

d p.i. with rAAV2ssGFP at a GOI of 105. Cells were only incubated with vector for 

3 h and the used cytokine concentrations lied in between the reported ones. This 

emphasizes a more efficient transduction in our hands. Even though they showed 

that transduction efficiencies could be enhanced from 10 to 51 % by using higher 

cytokine concentrations and addition of TNFα (MOI of 106) this value did not reach 

efficiencies obtained for rAAV2scGFP transduction (57 %) at lower GOI in our 

experiments. Moreover, we could demonstrate a significant enhancement in 

transgene-expressing cells (85.6 %) by coadministration of rAAV2scGFP, 

Trichostatin A and retinoic acid as described in 4.2.5 and discussed more detailed 

in 5.2.4 which was not reported before. In conclusion, we reported highly efficient 

transduction of cord blood-derived CD34+ cells.  

5.2.2 Transduction procedure does not interfere with endothelial 
differentiation 

The ability to differentiate into endothelial cells is a prerequisite for successful 

neovascularization and engraftment of CD34+ cells. In order to investigate if this 

ability is affected by AAV transduction, we evaluated the differentiation potential of 

transduced and non-transduced CD34+ cells 3 d p.i.. After 10 d of cultivation in 

differentiation medium on fibronectin-coated plates, the cells showed a spindle-

shaped morphology and took up Dil-AcLDL efficiently independent of the vector 

application. This experiment verified that our CD34+ cells could differentiate into 

endothelial cells. However, it was – most likely due to promoter silencing events – 
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not possible to visualize GFP expression to correlate definitely differentiated and 

transduced cells. Therefore, we analyzed the DNA from differentiated cells for 

presence of transgene DNA by qPCR. Equal amounts of GFP DNA in samples of 

cells transduced with rAAV2ssGFP and rAAV2scGFP vectors (about 6 x 105 

copies after normalization to GAPDH) confirmed the presence of vector DNA 

within cells after 10 d of differentiation assay. As can be seen in the microscope 

images, nearly all cells showed Dil-AcLDL uptake. Thus, it seems likely that also 

transduced cells maintained their ability for differentiation. 

5.2.3 Receptor and coreceptor studies 

Heparan sulfate proteoglycan (HSPG) has been described as primary receptor for 

rAAV2 transduction (Summerford and Samulski, 1998). However, Handa and 

colleagues reported that certain cell types like mutants of the CHO-K1 cell line 

deficient for glycosaminoglycan can be transduced by AAV2 (Handa et al., 2000). 

Therefore, we were interested to evaluate if HSPG is involved in rAAV2-mediated 

CD34+ cell transduction by competitive inhibition with the soluble analogue of 

HSPG, heparin (4.2.3). Studies on hematopoietic progenitor cell lines suggested 

the presence of HSPG on the cell surface (Drzeniek et al., 1999; Stocker et al., 

1996). Whereas rAAV2scGFP-transduced cells showed again almost 60 % 

transduction efficiency, presence of heparin reduced the number of GFP-

expressing cells to background level. This confirms the involvement of HSPG in 

CD34+ cell transduction and thereby also the presence of that receptor on the cell. 

The abundance of receptors and coreceptors on the cell is a factor which 

determines susceptibility of the respective cell type to rAAV transduction. 

Ponnazhagan and colleagues observed large differences in transgene expression 

of rAAV2-transduced bone marrow-derived human CD34+ cells of 12 donors 

(Ponnazhagan et al., 1997). Half of the donor cells were refractory to rAAV2 

transduction at a MOI of 100, while the others showed efficiencies ranging from 15 

to 80 %. This difference was attributed to the differential susceptibility of the cells 

as assessed by virus-binding assays with radiolabeled virus. In contrast, we 

observed transduceability of CD34+ cells of all donors whereas much lower 

variations in transgene expression were detected (lowest 24.1 % and highest 69.4 

% values; SEM 5.2 %; n=8) as depicted in Figure 30. Absence of a significant 

variation in transduction efficiency in individual cell samples was also reported by 
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Nathwani and colleagues (Nathwani et al., 2000). Since Ponnazhagan’s 

publication, HSPG was described as primary receptor for rAAV2 as well as 5 more 

coreceptors. FGFR, HGFR and eventually laminin receptor were proposed to 

enhance AAV2 binding to the cell (Akache et al., 2006; Kashiwakura et al., 2005; 

Qing et al., 1999). Subsequently, AAV2 interacts with αvβ5 integrin thus inducing 

endocytosis and probably cytoskeletal rearrangements necessary for efficient 

trafficking (Sanlioglu et al., 2000). Recently, α5β1 integrin has been identified as an 

alternative AAV coreceptor (Asokan et al., 2006). In order to investigate which of 

the integrins most likely assists vector entry, we evaluated the abundance of the 

two integrin coreceptors on CD34+ cells in relation to the transduction efficiency. 

Therefore, we measured the level of integrins at the day of transduction (after 2 to 

4 d of pre-expansion) by FACS analysis and determined GFP-fluorescence of 

transduced cells 3 d p.i. (4.2.4). These experiments were performed with bone 

marrow-derived and freshly isolated or bought (pooled from different donors) cord 

blood-derived CD34+ cells. The amount of αvβ5 integrin varied largely from 0.5 % 

to 59.5 % whereas the level of α5β1 integrin was generally higher (78.8 – 96.2 %) 

and more evenly distributed. Analyses of transduction efficiencies 3 d later 

revealed a minimum of 52 % GFP-expressing cells. Comparing the amount of the 

two integrins with the transgene expression point to a correlation of α5β1 integrin 

and transgene expression. Especially, the examples of extremely low αvβ5 integrin 

levels of 0.5 and 2.5 % together with high α5β1 integrin amounts and more than 55 

% GFP expression emphasizes this assumption. These observations would 

support α5β1 integrin as coreceptor.  

To further confirm the role of this integrin for transduction, we compared 

transduction efficiencies of rAAV2 and a mutant, NGR R513A, deficient for α5β1 

integrin binding (Asokan et al., 2006). As the amount of αvβ5 integrin displayed on 

the cells was below 1 % and above 90 % for α5β1 integrin at the time of 

transduction, the obtained result could be correlated solely with the activity of α5β1 

integrin. The NGR R513A mutant was 5.6 times less efficient than rAAV2 which 

allows the conclusion that α5β1 integrin serves as coreceptor in CD34+ cell 

transduction. For CD34+ cells, a physiological role of α5β1 integrins has been 

assigned as attachment receptor to fibronectin which is part of the extracellular 
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matrix of the bone marrow stroma (Dao et al., 1998; Hurley, McCarthy, and 

Verfaillie, 1995). 

Interestingly, surface expression of at least α5β1 integrins seemed to be induced 

by culturing in cytokine-containing medium as both αvβ5 and α5β1 integrins were 

nearly undetectable on freshly thawed cells as determined in 2 independent 

experiments. After 3 d of pre-expansion in medium supplemented with SCF, IL-3, 

IL-6 and Flt3L, less than 2 % of the cells displayed αvβ5 integrins while on more 

than 77 % α5β1 integrins were detectable. This is in line with Hart and colleagues 

who reported an upregulation of α5β1 integrins upon cultivation in SCF-containing 

medium (Hart et al., 2004). The absence of α5β1 integrins on freshly isolated 

CD34+ cells might explain the untransduceability by rAAV2 vectors as previously 

reported (Nathwani et al., 2000). Therefore, pre-expansion of CD34+ prior to 

transduction might be favourable not only in terms of the growing cell number. 

5.2.4 Effects of the transcriptionally active drugs TSA and RA 

Although we already obtained a high transgene expression of about 60 % in 

CD34+ cells after transduction with rAAV2scGFP, we assessed the potential of 

further increasing this value by transcriptionally active drugs. Therefore, we 

followed the report of Gaetano and colleagues who observed an enhancement of 

transgene expression in adenovirus-transduced endothelial cells by the histone 

deacetylase inhibitor (HDACi) Trichostatin A (TSA) and retinoic acid (RA) 

(Gaetano et al., 2000; Kitazono et al., 2002). FACS analyses 3 d p.i. revealed an 

increase in transgene-expressing cells by the use of TSA and RA. The use of TSA 

alone only showed a minor increase from 61.4 % to 69.5 % GFP-positive cells. In 

contrast, RA induced a stronger enhancement up to 82.7 % transgene-expressing 

cells and 3.4-fold higher values in mean fluorescence intensity (MFI). However, 

the combination of both drugs resulted in highest transgene expression (85.6 %) 

and 5.9-fold increased in MFI. These results are in line with observations in 

adenoviral-mediated transgene expression by Gaetano and colleagues (Gaetano 

et al., 2000). Thus, we recommend the treatment of CD34+ cells with TSA and RA 

in gene transfer experiments with rAAV vectors containing a CMV-promoter for 

enhancement of transgene expression. 

The effect of these drugs is in part based on the influence on the strong viral CMV 

promoter containing numerous cis-regulatory elements mediating binding of 
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transcription factors such as retinoic acid receptors (RARs, RXRs) (Angulo et al., 

1996; Ghazal et al., 1992). Retinoic receptors bind to retinoic acid response 

elements (RARE) on promoters of RA-target genes and recruit protein complexes 

including HDACs (Chambon, 1996). The induced remodelling processes result in 

transcriptional repression. Binding of RA causes release of the HDAC activities 

and HATs are subsequently recruited to the RAREs leading to reactivation of 

transcription due to increased DNA accessibility to the transcriptional machinery. 

Thereby, the enhancement in transgene expression by rAAV containing a CMV-

promoter controlled transgene upon RA coadministration can be explained (Fazi et 

al., 2005).  

On the other hand, HDACi act in multiple ways (Dokmanovic and Marks, 2005). 

Most obviously, they inhibit the deacetylation of histones thus inducing enhanced 

accessibility of the DNA to transcriptional processes. As AAV DNA has been 

proposed to be complexed with histone-like structures, it is imaginable that HDACi 

might influence these structures as well (Marcus-Sekura and Carter, 1983). CMV 

promoter silencing has been shown to occur frequently in vitro and in vivo, thus 

impairing efficient transgene expression for longer periods (Xia et al., 2007). 

Interestingly, Chen and colleagues reported reactivation of silenced CMV promoter 

in rAAV- and retrovirus-transduced cells by use of TSA (Chen et al., 1997). 

Additionally, HDACs and HATs also regulate non-histone proteins which are 

involved in the control of cell-cycle progression, differentiation and apoptosis 

(Dokmanovic and Marks, 2005). Therefore, HDACi might be implicated in the 

regulation of these targets. Especially the participation of HDACi and RA in the 

control of RA-target genes might explain their synergistic effect in our experiments 

(Minucci et al., 1997). These drugs are also evaluated for tumor therapy whereas 

several groups reported enhanced effects of combined TSA and RA treatment in 

vitro and in vivo (De los Santos et al., 2007; Touma et al., 2005). 
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5.2.5 Outlook 

This work aimed to contribute to gene- and cell-based strategies for the treatment 

of heart diseases. Modification of heart tissue by rAAV gene transfer prior to 

transplantation was the focus of the first part of this thesis. The ultimate goal of 

this approach in our rat model was its use as screening platform for factors 

impairing transplant rejection. As outlined above, none of the investigated 

serotypes resulted in reasonable transduction efficiencies on RAECs although 

rAAV1 was more efficient than rAAV2. If rAAV1 is also more efficient in vivo as it 

has recently been published, remains to be determined (Palomeque et al., 2007; 

Su et al., 2006). Based on recent reports, rAAV9 could even be better suited 

(Inagaki et al., 2006; Pacak et al., 2006). An alternative to the change in serotype 

are targeting strategies. AAV peptide libraries containing rAAV capsid mutants that 

differ from each other only by 7mer peptides with random sequences displayed in 

cell surface-exposed regions have been developed (Perabo et al., 2003; Muller et 

al., 2003). These libraries are used to select for capsid mutants that enter the cell 

specifically via the inserted peptide and are processed efficiently with the 

respective target cells. Our group has already developed in close collaboration 

with A. Baker (University of Glasgow, UK) rAAV targeting vectors for human and 

mouse endothelial cells using the phage display technology (Nicklin et al., 2001). 

Furthermore, in two different approaches we could prove in vivo targeting ability 

and transgene expression as well (Work et al., 2006; White et al. 2004). Thus, the 

targeting technology holds promise to design vectors overcoming the intracellular 

barriers hampering rAAV-mediated gene expression in endothelial cells. 

Crucial for the in vivo transduction efficiency is maybe the use of self-

complementary vector genome conformation of rAAV vectors. This can be 

assumed from our results in pig studies, but remains to be demonstrated. Overall, 

the results on gene transfer into porcine heart were quite promising. However, the 

number of analyzed pigs is very low and additional transplantation experiments 

have to be performed before proceeding to the evaluation of therapeutically 

relevant genes, e.g. immunomodulatory genes for their ability to prolong graft 

survival. The requirement of large vector amounts, however, will remain the major 

hurdle in transduction of porcine heart. Therefore, the search for potentially more 

efficient serotypes or the selection for vector targeting is reasonable. 
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The second part focused on the rAAV-mediated transduction of CD34+ cells for 

which an efficient protocol was established. Vector safety is a principal concern for 

clinical applications. Especially the tumor development in two patients during a 

retrovirus-based clinical SCID trial caused by insertional tumorigenesis has 

revealed this risk (Hacein-Bey-Abina et al., 2003). Even though AAV2 is rarely 

integrating, it has to be determined if vector genomes possess an integrating 

ability in CD34+ cells (Kotin, Linden, and Berns, 1992). These ongoing 

experiments are performed by ligation-mediated PCR (LM-PCR) in close 

collaboration with B. Fehse (Johann Wolfgang Goethe-University Frankfurt) 

(Kustikova et al., 2007). Actually, especially if long-term expression is needed, it 

would be favorable to induce vector genome integration. The AAV system offers 

the possibility to direct vector integration to a specific region in the human 

genome, e.g. by addition of Rep protein or Rep-encoding sequences, an approach 

which is clearly in the focus of the future work in this project (Kotin et al., 1990). 
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6 Materials 

6.1 Chemicals and Solutions  

Product Company 

5-bromo-4-chloro-3-indolyl-beta-D-
galactopyranoside (X-Gal) 

Roth, Karlsruhe 

Agar-Agar Roth, Karlsruhe 
Agarose Invitrogen, Karlsruhe 
all trans-Retinoic Acid (RA) Sigma, Deisenhofen 
Aqua bidest. (Ampuwa) Fresenius Kabi, Homburg 
Biotin Conjugate Streptavidin Dianova, Hamburg 
Boric Acid Merck, Darmstadt 
Bovine Serum Albumine AppliChem, Darmstadt 
Bovine Serum Albumine (BSA) Standard Set BioRad, München 
Calcium Chloride Sigma, Deisenhofen 
Chloroform Merck, Darmstadt 
Dil-AcLDL CellSystems, St. Katharinen 
Dimethylsufoxide (DMSO) Riedel-de Haën, Seelze 
DPX Mountant for Histology Fluka, Neu-Ulm 
EDTA Roth, Karlsruhe 
Eosin G-Solution 0.5 % aqueous Merck, Darmstadt 
Ethanol Roth, Karlsruhe 
Ethidium Bromide Roth, Karlsruhe 
Fibronectin from Human Plasma Sigma, Deisenhofen 
Gelatine Sigma, Deisenhofen 
Glycerol Roth, Karlsruhe 
Heparin B. Braun Melsungen AG 
Heparin (used for CD34+ cells) Sigma, Deisenhofen 
HEPES Roth, Karlsruhe 
Hydrochloric acid Roth, Karlsruhe 
Isopropanol Roth, Karlsruhe 
Lipofectamin 2000 Invitrogen, Karlsruhe 
Lymphoprep (Ficoll) Sentinel, Milan, Italy 
Magnesium Chloride Roth, Karlsruhe 
Mangan Chloride Merck, Darmstadt 
MassRuler DNA Ladder Mix MBI Fermentas GmbH, St. 

Leon-Rot 
MG132 Sigma, Deisenhofen 
MOPS Sigma, Deisenhofen 
OptiMEM Invitrogen, Karlsruhe 
Optiprep Density Gradient Medium (Iodixanol) Sigma, Deisenhofen 
Paraformaldehyde Sigma, Deisenhofen 
PBS 10x Biochrom, Berlin 
Peptone/Tryptone Roth, Karlsruhe 
Potassium Acetate Merck, Darmstadt 

Potassium hexacyanoferrat II trihydrat  Fluka, Neu-Ulm 

Potassium hexacyanoferrat III  Sigma, Deisenhofen 

Quick Start Bradford Dye Reagent BioRad, München 
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Sodium Chloride Roth, Karlsruhe 
Sodium Hydroxide Roth, Karlsruhe 
Sodium Phosphate Roth, Karlsruhe 
Trichostatin A (TSA) Sigma, Deisenhofen 
Tris Merck, Darmstadt 
Triton X-100 Sigma, Deisenhofen 
Trizol Reagent  Invitrogen, Karlsruhe 
Vectashield Vector Laboratories, 

Burlingame 
X-Tra Solv Medite Histotechnic, Burgdorf 
Yeast Extract Roth, Karlsruhe 

6.2 Enzymes and Kits 

Product Company 

DNA restriction enzymes MBI Fermentas, St. Leon-Rot 
Benzonase Merck, Darmstadt 
Direct CD34 Progenitor Cell Isolation Kit Miltenyi Biotec, Bergisch-

Gladbach 
Renilla Luciferase Assay System Promega, 
DNeasy Blood & Tissue Kit  Qiagen, Hilden 
EndoFree Plasmid Kits Qiagen, Hilden 
PCR Purification Kit Qiagen, Hilden 
Gel Extraction Kit Qiagen, Hilden 
Quantitect SYBR Green PCR Kit Qiagen, Hilden 
RNase A (100 mg) Roche, Mannheim 
Transcriptor First Strand cDNA Synthesis Kit Roche, Mannheim 
DNase I Roche, Mannheim 
LightCycler Uracil-DNA Glycosylase (UNG) Roche, Mannheim 

 

6.3 Plasmids 

pXX6:  

Adenoviral helper plasmid encoding for VA, E2A and E4 and ampicillin resistance; 

pXX6 was kindly provided by J. Samulski (University of North Carolina, Chapel 

Hill, USA). 

pXR1, pXR2, pXR3, pXR4 and pXR5: 

The plasmids encoded for the capsids of the respective serotypes and the Rep 

proteins of AAV2 (Rabinowitz et al., 2002). For the serotypes 3 to 5 a portion of 

the serotype-specific Rep gene was substituted for that of AAV2. The Rep proteins 

are able to package transgenes flanked by the ITRs of AAV2 into the capsids. 

These plasmids were kindly provided by J. Samulski (University of North Carolina, 

Chapel Hill, USA). 
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pGFP single-stranded:  

The GFP plasmid consists of AAV ITR sequences flanking the hygromycin 

selectable marker gene controlled by the thymidine kinase promoter and the 

Aequorea victoria enhanced Green Fluorescent Protein (GFP) gene regulated by 

the Cytomegalovirus (CMV) promoter (Hacker et al., 2001). 

pGFP self-complementary:  

The enhanced GFP gene is controlled by the human CMV promoter. A deletion in 

one of the terminal resolution sites interferes with strand displacement resulting in 

a self-complementary genome, which is packaged into the viral capsid (Hacker et 

al., 2005). 

pLuci: 

The transgene cassette encoding for the CMV promoter controlled Luciferase 

gene is flanked by one intact ITR and one containing a mutated terminal resolution 

site. As in the pGFP self-complementary plasmid also this plasmid is packaged as 

pseudo double-stranded genome. The plasmid was constructed and kindly 

provided by my colleague Sibille Quadt-Humme. 

pZNL: 

This plasmid carries a CMV and an EM-7 promoter followed by a Zeocin-

resistance gene. After a fusion sequence the LacZ gene containing a nuclear 

localization sequence (NLS) and SV40pA follows. The transgene cassette is 

flanked by ITRs (Girod et al., 1999). 

pMV10-FLT-1: 

This construct contains a FLT-1 promoter, a LacZ gene and a CMVpA. The 

plasmid was kindly provided by A. Baker (University of Glasgow, Glasgow, UK). 

pNGR R513A: 

The plasmid based on pRC99 encoding for the Rep and Cap proteins of AAV2, 

contains a mutation within the cap sequence leading to a substitution at the amino 

acid position 513 (R→A). The construct was generated according to Asokan and 

colleagues and kindly provided by my colleague Anke Huber (Asokan et al., 2006). 
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6.4 Primers 

Primers were synthesized by Sigma-Genosys. 

 

GAPDH (Glycerinaldehyde-3-Phosphate Dehydrogenase) 

Human GAPDH forward:  5’-GAG TCC ACT GGC GTC TTCA 

Human GAPDH reverse:  5’-TTC AGC TCA GGG ATG ACC TT 

Porcine GAPDH forward:   5’-ACA TGG CCT CCA AGG AGT AAGA 

Porcine GAPDH reverse:  5’-GAT CGA GTT GGG GCT GTG ACT  

(Duvigneau et al., 2005) 

Rat GAPDH forward:   5’-ATC CCA GAG CTG AAC G 

Rat GAPDH reverse:   5’-GAA GTC GCA GGA GAC A 

  

eGFP (enhanced green fluorescent protein) 

eGFP 1 forward:   5’-GCT ACC CCG ACC ACA TGA AG 

eGFP 1 reverse:   5’-GTC CAT GCC GAG AGT GAT CC 

 

LacZ (Beta-Galactosidase) 

LacZ forward:    5’-ATC CTC TGC ATG GTC AGG TC 

LacZ reverse:    5’-CTG GGC CTG ATT CAT TCC 

 

Luciferase 

Luci forward:    5’-CGT GCT GGA CTC CTT CAT CA 

Luci reverse:    5’-TTG CGG ACA ATC TGG ACG AC 

 

C9 

C9 forward:    5’-GAA GCA CGC GTA TCC TAT GA 

C9 reverse:    5’-ATT ATT AGT CGG CCT CAT CC 

 

S18 

S18 forward:    5’-AGG GAG ACA GCC TCA GAA ACT TTT 

S18 reverse:    5’-CGC CGA ATA GCA CAT TTA CAT GAT 
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6.5 Antibodies 

Primary antibodies 

� Anti-αvβ5 (MAB1961):  monoclonal; mouse α-human; Chemicon 

� Anti-α5β1 (MAB1999):  monoclonal; mouse α-human; Chemicon 

� Anti-Lamin B (M-20; sc6217): polyclonal; α-mouse; SantaCruz Biotechnology 

� Anti-AAV intact capsid (A20): monoclonal; mouse IgG1 hybridoma 

supernatant; DKFZ Heidelberg, J. Kleinschmidt 

Secondary antibodies 

� PE-conjugated goat α-mouse IgG (ab7002-500); monoclonal; abcam 

� Cy5-conjugated AffiniPure donkey α-goat IgG (H+L); Jackson 

ImmunoResearch 

� Rhodamine Red-X- (RRX-) conjugated AffiniPure goat α-mouse IgG (H+L); 

Jackson ImmunoResearch 

6.6 Bacteria Strains 

E.coliDH5α:  

F-, lac1-, recA1, endA1, hsdR17, ∆(lacZYA-argF), U169,F80dlacZ∆M15, supE44, 

thi-1, gyrA96, relA1; (Hanahan, 1983) 

6.7 Eukaryotic Cells 

For culturing and media conditions please refer to the chapters 6.8 and 7.3 

6.7.1 Immortalized Cell Lines 

HEK293 

Human embryonic kidney cells, transformed with Ad5 DNA and containing the 

adenoviral genes E1a and E1b; American Type Culture Collection (ATCC); 

(Graham et al., 1977) 

HeLa 

Human epithelial cervix adenocarcinoma cells; ATCC; (Scherer, Syverton, and 

Gey, 1953) 
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6.7.2 Primary cells 

Rat aortic endothelial cells (RAEC) 

These cells were isolated by a non-enzymatic outgrowth method of thoracic aortic 

rings as described by Nicosia and colleagues (Nicosia, Villaschi, and Smith, 1994). 

Adult Lewis rats were used as donors. After isolation the cells were characterized 

by their ability to take up Dil-AcLDL and to stain for von Willebrand Factor (vWF) 

as well as endothelial markers like CD31 by FACS analysis. Morphologically the 

endothelial cells can be identified by their cobblestone formation. The cells were 

kindly provided by M. Seifert (Charité Berlin). 

Rat neonatal cardiomyocytes 

Neonatal cardiomyocytes were isolated from 1 to 3 d old Wistar rats by E. Saygili 

as described before (Saygili et al., 2007; Zobel et al., 2007) and provided by B. 

Bölck (University Hospital Cologne). Hearts were digested with collagenase and 

trypsin. Afterwards, the myocytes were purified by passage through a Percoll 

gradient. Cells were grown in DMEM/Ham’s F-12 supplemented with 10 % horse 

serum and 5 % fetal bovine serum. After 1 or 2 d depending on the cells, the 

medium was removed and the cells were washed and maintained in serum-free 

DMEM/Ham’s F-12. Then, the neonatal cardiomyocytes were transduced directly. 

Porcine aortic endothelial cells (PAEC) 

Porcine aortic endothelial cells were provided by W. Kues (Institute of Farm 

Animal Genetics, Mariensee). First, the piece of porcine aorta was rinsed with PBS 

and antibiotics to remove erythrocytes. For isolation of endothelial cells, 

prewarmed Collagenase type II solution (1 mg/ml in PBS) was injected into the 

aorta. After 15 min incubation at 37 °C the solution was aspirated and centrifuged 

in the same volume of DMEM (5 min, 1000 rpm). The pelleted cells were grown in 

DMEM, 10 % FCS and ECGF and seeded into gelatin-coated flasks. Endothelial 

cells can then be recognized by their cobblestone morphology. 

Porcine fibroblasts 

Fetale porcine fibroblasts were isolated by outgrowth of fibroblasts of explant 

culture and kindly provided by B. Petersen (Institute of Farm Animal Genetics, 

Mariensee). 
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Human CD34+ cells 

CD34+ cells were either freshly isolated as described in chapter 7.3.7 or 

purchased as frozen cells from CellSystems (7.3.7.2). 

Melanoma cells 

Primary melanoma cells from 3 different patients were kindly provided by 

MediGene AG (Martinsried). 

 

6.8 Culture Media and Supplements 

Product Company 

Ampicillin Sigma, Deisenhofen 

Ascorbic acid Sigma, Deisenhofen 
Bovine apo-transferrin Sigma, Deisenhofen 
Bovine insuline Sigma, Deisenhofen 
DMEM/Ham's F-12 PAA, Pasching 
Dulbecco's MEM + Glutamax-I (DMEM) Invitrogen, Karlsruhe 
Endothel Basal Medium PAA, Pasching 
Endothelial Cell Basal Medium-2 + supplements 
(EBM-2) 

Lonza 

Fetal Calf Serum (FCS) Invitrogen, Karlsruhe 
Hygromycin B Roche, Mannheim 
Lithium chloride Sigma, Deisenhofen 
Penicillin/Streptomycin (P/S) Invitrogen, Karlsruhe 
Phosphate-buffered saline (PBS) Invitrogen, Karlsruhe 
recombinant human Fms-related tyrosine kinase 3 
ligand (Flt3L) 

Dunnlab, Asbach 

recombinant human Interleukin 3 (IL3) Dunnlab, Asbach 

recombinant human Interleukin 6 (IL6) Endogen 
recombinant human Stem Cell Factor (SCF) Endogen 
recombinant human VEGF 165 R&D Systems 
Sodium selinate Sigma, Deisenhofen 
StemSpan serum-free expansion medium CellSystems, St. Katharinen 
Trypsin-EDTA Invitrogen, Karlsruhe 
 

Media compositions for cell types are listed below: 

HeLa, HEK293, melanoma cells and porcine aortic endothelial cells (PAEC): 

� Dulbecco’s-MEM and Glutamax-I 

� 10 % FCS 

� 100 U/ml penicillin and 100 mg/ml streptomycin 
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Porcine fibroblasts: 

� Dulbecco’s-MEM and Glutamax-I 

� 20 % FCS 

� 100 U/ml penicillin and 100 mg/ml streptomycin 

Rat aortic endothelial cells (RAEC): 

� Endothel Basal Medium (PAA) 

� 10 % FCS 

� 5 µg/ml gentamycin 

Neonatal rat cardiomyocytes: 

� DMEM/Ham’s F-12 

� 10 mg/ml ampicillin 

� 1 µg/ml bovine insuline 

� 5 µg/ml bovine apo-transferrin 

� 1 nM sodium selinate 

� 1 nM lithium chloride 

� 25 µg/ml ascorbic acid 

� (10 % horse serum and 5 % FCS only during the first 1 to 2 d 

after isolation) 

CD34+ cells (expansion medium): 

� Stem Span serum-free expansion medium 

� IL-3 20 ng/ml 

� IL-6 20 ng/ml 

� SCF 100 ng/ml 

� Flt3-ligand 100 ng/ml 

CD34+ cells (endothelial differentiation medium): 

� Endothelial Cell Basal Medium-2 + supplements as provided 

� 20 % FCS 

� 50 ng/ml VEGF 165 
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6.9 Laboratory Equipment and Disposables 

Product Company 

µQuant Microplate Spectrophotometer BioTek Instruments, Bad Friedrichshall 

Axiovert 25 CFL Carl Zeiss, Göttingen 

Axiovert S100 Carl Zeiss, Göttingen 

Balance Adventure Pro Ohaus, NJ, USA 

Blood collecting bag MacoPharma 

Cell Culture Plastic Ware Beyer, Düsseldorf 

Centrifuge 5415D Eppendorf, Hamburg 

Centrifuge 5-6B Beckman, München 

Centrifuge 5810R Eppendorf, Hamburg 

FACScalibur Becton Dickinson, Heidelberg 

Filter (0.22 µm, 0.45 µm) Schleicher & Schuell Micro Science, 
Dassel 

General laboratory ware VWR, Darmstadt 

Heater/Magnetic Shaker Heidolph MR 
3001 

Heidolph Instruments, Schwabach 

Hera -80 ºC freezer Heraeus 

Heraeus Lamina Heraeus 

HiTrap Heparin Affinity Columns (1 ml) Amersham Pharmacia Biotech, Freiburg 

Incubator Hera Cell 150 Heraeus 

Incubator Shaker Innova 4430 New Brunswick Scientific, NJ 

LightCycler 1 Roche, Mannheim 

LightCycler Capillaries Roche, Mannheim 

LightCycler carousel centrifuge Roche, Mannheim 

LSM 510 Meta Carl Zeiss, Göttingen 

Microplate Luminometer LB 96 V EG&G Berthold, Bad Wildbad 

Mini Sub GT Gel Electrophoresis Unit BioRad, München 

MiniMACS system Miltenyi Biotech 

Mixer Mill MM300 Retsch, Haan 

Olympus Vanox-S AH-2 Olympus, Hamburg 
pH Meter Seven Easy Mettler-Toledo, Schwerzenbach 

Pipettes and Filtertips Sarstedt 

Power Supply Renner, Dannstadt 

Pump P-1 Amersham Pharmacia Biotech, Freiburg 

Reaction tubes (1.5 ml, 2 ml) Eppendorf, Hamburg 

Sorvall T-865 rotor Thermo Scientific 

Sorvall Ultracentrifuge OTD Combi Thermo Scientific 

Spectrophotometer BioRad SmartSpec 
3000 

BioRad, München 

Syringes and Needles B. Braun Melsungen, Melsungen 

Thermomixer Comfort Eppendorf, Hamburg 

Vortex Genie 2 Scientific Industries, NY, USA 

Waterbath Medingen W6 Medingen, Freital 
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6.10  Data Treating Software 

Microsoft Office Excel 2003; Micrografx Picture Publisher 8; Clone Manager 3; 

Adobe Photoshop CS2; specific software for the respective instruments 
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7 Methods 

7.1 Bacteria Culture 

7.1.1 Cultivation of Bacteria 

Bacteria were grown in LB medium at 37 °C under vigorous shaking over night. 

For generating single clones, bacteria were plated on plates containing LB and 

agar. 

LB medium:      10 g   tryptone 

         5 g   yeast 

        5 g   NaCl 

  15 g   agar 

                     ad 1 l distilled H2O 

7.1.2 Preparation of Competent Bacteria 

One bacterial colony of the strain DH5α was picked from an LB-agar plate and 

grown over night in LB at 37 °C. The following day the bacteria suspension was 

diluted 1:100 and grown till an optical density (OD) between 0.7 and 0.8 was 

reached. 50 ml of the suspension was cooled down for 10 min in an ice-cold water 

bath before pelleting the bacteria 10 min, 3200 rpm at 4 °C. The pellet was 

resuspended in 15 ml TFB I buffer and incubated 10 min at 4 °C. After centrifuging 

the bacteria (10 min, 800 x g, 4 °C), they were resuspended in 2 ml TFB II buffer. 

200 µl aliquots of the chemo-competent bacteria were shock-frosted in liquid 

nitrogen and stored at -80 °C. 

 

TFB I buffer (200 ml):  30 mM   potassium acetate 

                        100 mM  CaCl2 

                                               15 %   glycerol 

                                                 ad 190 ml H2O 

                Autoclavation, than addition of sterile filtered: 

     50 mM   MnCl2 
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TFB II buffer (50 ml):           10 mM   MOPS 

     75 mM   CaCl2 

     10 mM   KCl 

        15 %   glycerol 

     ad 50 ml H2O      

7.1.3 Transformation of Bacteria 

Chemo-competent bacteria were thawed on ice. 100 to 500 ng DNA were added 

to 50 µl bacterial suspension and agitated carefully. The mixture was incubated 30 

min on ice before heat shock treatment for 30 s at 37 °C. Immediately, bacteria 

were put back on ice. 5 min later 450 µl LB medium was added and mixed gently. 

250 µl of the suspension could then be distributed on LB agar plates containing 

ampicillin (50 µg/ml). Bacteria grew over night at 37 °C. Single colonies were 

picked and analyzed the next day. 

7.2  Working with nucleic acids 

7.2.1 Plasmid amplification and extraction 

For plasmid amplification and extraction the “Qiagen EndoFree Plasmid Mega Kit” 

was used according to the manufacturer’s instructions.  

Starter bacteria cultures were inoculated from either glycerol stocks or picked as 

single clones from selective plates and grown in selective LB medium. This culture 

should then be diluted 1:500 in an absolute volume of 2.5 l and grown shaking 

over night at 37 °C. Harvesting followed at 6000 x g for 30 min at 4 °C. For 

efficient alkaline lysis, the pellet was resuspended in 50 ml P1 buffer then inverted 

several times after adding 50 ml of buffer P2 and incubated 5 min at room 

temperature. Lysis was stopped and precipitation of genomic DNA, proteins and 

cell debris was enhanced by adding 50 ml of chilled buffer P3 and shaking 

vigorously until a white fluffy material has formed. The lysate was poured into the 

QIAfilter Cartridge which has been screwed onto a glass bottle and incubated for 

10 min. A vacuum source pulled the liquid through the filter. 50 ml of FWB2 buffer 

should then be added to the Cartridge, stirred and filtered again. Endotoxins could 

be removed from the filtrate by 12.5 ml ER buffer, inverting the bottle and 

incubation on ice for 30 min. The QIAGEN-tip 2500 was equilibrated by 35 ml QBT 

buffer before the lysate was applied to the column. 200 ml of washing buffer QC 
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were used to rinse the column before DNA was finally eluted in 35 ml buffer QN. 

DNA precipitation followed by adding 24.5 ml isopropanol, mixing and pelleting at 

3200 x g at 4 °C for a minimum of 30 min. Supernatant was removed and the 

pellet was washed with 7 ml 70 % ethanol and another centrifugation step for 10 

min. Again, the supernatant was taken off and the pellet was allowed to dry for 

some minutes before a suitable volume of endotoxin-free buffer TE was added. To 

minimize the risk of shearing events, the suspension was left over night in the 

fridge to let solve the DNA before quantification and analysis. 

7.2.2 DNA and RNA Quantification 

DNA and RNA samples were diluted in H2O before they were measured in a 

BioRad SmartSpec 3000 spectrophotometer. The measured wavelength is 260 

nm, concentrations are calculated by the conversion factors 50 µg/ml for double-

stranded DNA and 40 µg/ml for RNA. The purity of the DNA preparation is given 

by the ratio Abs 260 nm / Abs 280 nm. While 1.8 is ideal, lower values point to 

contaminations with proteins and aromatic substances whereas higher ratios 

indicate possible contaminations with RNA.  

7.2.3 Restriction Enzyme Digest  

Digestion with restriction enzymes was performed according to the manufacturer’s 

instructions in a 20 µl solution containing 1 µg of DNA, 1-10 units of restriction 

enzyme per 1 µg DNA and 1 x buffer. 

7.2.4 Agarose Gel Electrophoresis  

Restriction enzyme digests as well as PCR products were analyzed by agarose 

gel electrophoresis to verify the size of the fragments or products.  

Therefore, 1 x TBE buffer was boiled with the desired amount of agarose, mixed 

with the intercalating substance ethidium bromide (0.25 µg/ml) and poured into the 

gel chamber. The comb was directly inserted and taken out when solidification 

occurred before the chamber was put into the electrophoresis chamber containing 

1 x TBE. For large fragments 0.8 % agarose, for smaller ones 2 % was used. 300 

to 500 ng of restriction digested DNA or 10 µl of the PCR products were mixed 

with loading dye filled up with H20 to a final volume of 10 µl and loaded onto the 

gel. Depending on the size of the gel between 80 and 140 V and 200 mA was 

chosen for electrophoresis. 



Methods 

 

130  

TBE Buffer (10 x):  540 g   Tris base 

275 g   boric acid 

         200 ml   0.5 M EDTA pH 8.0 

                                                 ad 5 l H2O 

7.2.5 Tissue DNA extraction 

Frozen animal tissue samples of about 50 mg were cut into small pieces and DNA 

was extracted using the DNeasy Blood & Tissue Kit (Qiagen) according to the 

manufacturer’s instructions with small modifications. 

360 µl of the buffer ATL was added to the tissue samples as well as 40 µl of the 

Proteinase K (double amount of what is recommended). Tissue lysis was induced 

at 56 °C in a thermomixer for some hours up to over night incubation. After 15 s of 

vortexing, first 400 µl of buffer AL was added, vortexed, then 400 µl ethanol. Only 

fluid and very small precipitates were applied to the DNeasy Mini spin column in 

order to prevent blocking. DNA sticked to the column and the rest of the lysate 

was removed by centrifugation at 10,000 x g for 1 min. Salts and proteins were 

eliminated by two washing steps: The first time using buffer AW1 (centrifugation 

for 1 min at 16,000 x g) the second with buffer AW2 and 3 min of centrifugation for 

drying the membrane completely. DNA was eluted in 50 µl Tris (10 mM, pH 8.0) 

after 1 min of incubation on the membrane and 1 min of centrifugation at 10,000 x 

g. DNA concentration was measured as described in 7.2.2 and diluted to a final 

concentration of 100 ng/µl prior to quantitative PCR analysis. DNA was stored at   

-20 °C. 

7.2.6 Tissue RNA extraction 

RNA was exctracted using the Trizol / Chloroform method. Briefly, 1 ml of Trizol 

was pipetted into a 2 ml safe-lock tube containing one small metal ball. Tubes 

were put on ice after adding around 50 mg of organ. Homogenization was 

performed using a ball mill (Mixer Mill MM300, Retsch) at 30 Hertz for 3 min. The 

lysate was then incubated for 5 min at room temperature before 200 µl of 

chloroform were pipetted and vortexed. After 3 min of incubation at room 

temperature the mixture was centrifuged 15 min at 16,000 x g at 4 °C. After 

centrifugation 2 phases are visible, the lower Trizol phase and the upper aqueous 

phase containing the RNA. Carefully, the supernatant was pipetted into a fresh 1.5 
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ml tube without touching the protein interphase. For pelleting the RNA 500 µl of 

isopropanol was added, vortexed and incubated for 10 min at room temperature 

then centrifuged 15 min at 16,000 x g at 4 °C. Further washing of the pellet was 

done with 1 ml of 75 % ethanol and centrifugation (7,500 x g, 5 min, 4 °C). After 

removing the supernatant the pellet should be air-dried and resuspended in 30 

(heart) to 150 µl (liver) RNase-free water depending on the size of the pellet. RNA 

concentration was measured as described in 7.2.2 and stored at -80 °C. 

7.2.7 DNase I digest and cDNA synthesis 

To prevent unspecific signals in the cDNA PCR reaction due to remaining DNA in 

the RNA preparation, DNase I digest was done before Reverse Transcriptase (RT) 

reaction. 

RNA was thawed on ice and 10 µg were taken out. The RNA was mixed with the 

same volume of PBS, 1 U/µg RNA DNase I and 0.1 mg/ml BSA and 2.5 mM MgCl2 

as end concentration. Incubation for 30 min at 37 °C was stopped by adding 2.5 

mM EDTA end concentration and heating for 10 min at 65 °C. Samples were then 

put on ice. 

Transcriptor First Strand cDNA Synthesis Kit (Roche) was used to transcribe 

mRNA into cDNA according to the manufacturer’s instructions. Therefore, 1 µl 

Oligo dT-primer (50 µM) were added to around 3 µg of DNase I-digested RNA and 

filled up with RNase-free water up to 13 µl. Incubation at 65 °C for 10 minutes 

denatured the secondary structure. For starting the RT reaction the following 

reagents supplied with the kit were pipetted into the RNA-primer-mix to a final 

volume of 20 µl: 

   4 µl  RT buffer (5x) 

0.5 µl  RNase Inhibitor (40 U/µl) 

0.5 µl  RT (20 U/µl) 

   2 µl  dNTPs (each of 10 mM) 

 

The mix was incubated 1 h at 42 °C followed by a heating step (85 °C, 5 min). 

Afterwards, samples were put on ice or if not used immediately stored at -20 °C. 
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7.2.8 Quantitative Polymerase-Chain-Reaction 

For analyzing the DNA amount by quantitative polymerase-chain reaction (PCR) in 

a LightCycler 1 system (Roche) either a kit by Roche (LightCycler Fast Start DNA 

Master SYBR Green I) or by Qiagen (Quantitect SYBR Green PCR Kit) was used 

depending on the ability to accomplish the particular amplification in the most 

sensitive and specific way. The kit purchased from Roche was used to quantify 

GFP, Luciferase and porcine GAPDH genes whereas the Qiagen kit was applied 

for rat GAPDH and LacZ coding sequences. 

100 to 200 ng of DNA and cDNA were analyzed per capillary. For determination of 

genomic titer of AAV vector preparation 2 µl of the extracted DNA (7.3.6.4) was 

analyzed. 

 

Pipetting scheme using LightCycler Fast Start DNA Master SYBR Green I: 

2 µl   DNA or cDNA 

2 µl   Mix 1 

 2 µl   MgCl2 (25 mM) 

 0.1 µl   Primer forward (0.1 mM) 

 0.1 µl   Primer reverse (0.1 mM) 

 13.8 µl  H2O 

20 µl   
 

If Qiagen’s kit was applied, the following scheme was pipetted: 

2  µl  DNA or cDNA 

10  µl  Quantitect SYBR Green PCR Master Mix 

0.1  µl  Primer forward (0.1 mM) 

0.1  µl  Primer reverse (0.1 mM) 

7.8  µl  H2O 

20  µl   
 

For eliminating potential contaminations with PCR products of previous 

amplifications, LightCycler Uracil-DNA (UNG) Glycosylase was added. Its effect is 

based on cutting of Uracil-containing DNA. This nucleotide is only inserted during 

PCR where it is supplied in the mix. The enzyme works for 10 min at 40 °C and is 

inactivated during the denaturation step for 5 min at 95 °C. We used UNG 
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glycosylase in very sensitive PCRs – here LacZ for analyzing material out of 

animals. 

2 µl  DNA or cDNA 

10 µl  Quantitect SYBR Green PCR Master Mix 

0.1 µl  Primer forward (0.1 mM) 

0.1 µl  Primer reverse (0.1 mM) 

0.25 µl  UNG (2 U/µl) 

7.55 µl  H2O 

20 ul   
 

Usually a supermix for all samples was prepared. First, the mix was pipetted into 

the glass capillaries followed by the DNA. Then the capillaries were closed. The 

following protocols were established: 

 

GFP-PCR protocol: 

Program Cycles Analysis mode Temp (°C) Time (s) slope (°C/s) 
Acquisition 

mode 

Denaturation 1 None 95 900 20 none 

       

Amplification 40 Quantification 95 10 " " 

   63 3 " " 

   72 20 " single 

       

Melting curve 1 Melting curves 95 0 " " 

   66 10 " " 

   95 0 0.1 continuous 

       

Cooling 1 None 40 30 20 none 

 

Luciferase-PCR protocol: 

Program Cycles Analysis mode Temp (°C) Time (s) slope (°C/s) 
Acquisition 

mode 

Denaturation 1 None 95 900 20 none 

       

Amplification 40 Quantification 95 10 " " 

   69 5 " " 

   72 12 " single 

       

Melting curve 1 Melting curves 95 0 " " 

   66 10 " " 

   95 0 0.1 continuous 

       

Cooling 1 None 40 30 20 none 

 

 



Methods 

 

134  

 

Porcine GAPDH-PCR protocol: 

Program Cycles Analysis mode Temp (°C) Time (s) slope (°C/s) 
Acquisition 

mode 

Denaturation 1 None 95 900 20 none 

       

Amplification 40 Quantification 95 10 " " 

   68 10 " " 

   72 15 " single 

       

Melting curve 1 Melting curves 95 0 " " 

   66 10 " " 

   95 0 0.1 continuous 

       

Cooling 1 None 40 30 20 none 

 

LacZ and rat GAPDH-PCR protocol: 

Program Cycles Analysis mode Temp (°C) Time (s) slope (°C/s) 
Acquisition 

mode 

Denaturation 1 None 95 900 20 none 

       

Amplification 40 Quantification 95 10 " " 

   68 10 " " 

   72 15 " single 

       

Melting curve 1 Melting curves 95 0 " " 

   66 10 " " 

   95 0 0.1 continuous 

       

Cooling 1 None 40 30 20 none 

 

S18-PCR protocol: 

Program Cycles Analysis mode Temp (°C) Time (s) slope (°C/s) 
Acquisition 

mode 

Denaturation 1 None 95 600 20 none 

       

Amplification 45 Quantification 95 10 " " 

   62 5 " " 

   72 10 " single 

       

Melting curve 1 Melting curves 95 0 " " 

   60 10 " " 

   95 0 0.1 continuous 

       

Cooling 1 None 40 30 20 none 
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C9-PCR protocol: 

Program Cycles Analysis mode Temp (°C) Time (s) slope (°C/s) 
Acquisition 

mode 

Denaturation 1 None 95 600 20 none 

       

Amplification 38 Quantification 95 10 " " 

   61 10 " " 

   72 10 " single 

       

Melting curve 1 Melting curves 95 0 " " 

   60 10 " " 

   95 0 0.1 continuous 

       

Cooling 1 None 40 30 20 none 

 

To verify the amplified products, melting curves of the LightCycler runs were 

analyzed. Moreover, they could be analyzed in Agarose Gel electrophoresis. 

7.3 Eukaryotic cell culture 

7.3.1 Cultivation of Cells 

Cells were cultured at 37 °C in humid atmosphere containing 5 % CO2. For culture 

media please refer to chapter 6.8. 

7.3.2 Trypsinization 

To detach cells from the culture dishes, medium was taken off and cells were 

washed with PBS to remove rests of the medium. Then they were incubated in a 

small volume of trypsin in the incubator until detachment was visible. The reaction 

was stopped by addition of medium containing 10 % FCS. 

7.3.3 Counting  

After trypsinizing the cells, 10 µl of the suspension was transferred into a 

“Neubauer” chamber. Four squares were counted and an average was calculated. 

The number of cells (n) in one square equals n x 104 per ml.  

7.3.4 Seeding / Passaging 

Cells were transferred into a new culture dish in a suitable dilution of prewarmed, 

fresh medium. Agitation of the culture plates and flasks should guarantee 

homogenous distribution of the cells. 
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7.3.5 Freezing and Thawing Cells 

Cells were trypsinized and pelleted before resuspending them in 1 ml freezing 

solution containing 90 % FCS and 10 % DMSO. Immediately, the suspension was 

put on ice and then stored in liquid nitrogen. 

For thawing cells, the freezing vial was taken out of the liquid nitrogen tank and 

transported on ice. Carefully, the suspension was thawed in a water bath at 37 °C 

until only some rests of ice were left. Then, the cells were transferred into a 15 ml 

plastic tube containing prewarmed medium before pelleting the cells at 400 x g for 

5 min at room temperature in order to remove toxic DMSO. After resuspension in 

fresh medium, the cells were plated in culture dishes. For CD34+ cells another 

thawing protocol was followed (7.3.7.2). 

7.3.6 Vector production and purification  

7.3.6.1 AAV-Vector Packaging 

AAV particles were produced in HEK293 cells by the adenovirus-free production 

method using pXX6 to supplement the adenoviral helper functions (Xiao, Li, and 

Samulski, 1998). Briefly, 7.5 x 106 HEK293 cells were seeded in 15 cm2 cell 

culture plates. 24 h later (at an approximate confluence of 80 %) medium was 

exchanged and 2 h afterwards cotransfection was performed with the three 

packaging plasmids by the calcium phosphate method with a total of 37.5 µg 

plasmid DNA per 15 cm2 cell culture plate:  

7.5 µg   pXR1 (or pXR2/ pXR3/ pXR4/ pXR5 coding for the respective capsid) 

7.5 µg   transgene-encoding plasmid (contains ITRs) 

22.5 µg pXX6 (encodes for E2A, E4 and VA of Ad5) 

For each plate a solution of 1 ml CaCl2 (250 mM) was mixed with the plasmid DNA 

then 1 ml of the HBS buffer (50mM HEPES, 280mM NaCl, 1.5 mM NaP) was 

dropped onto the solution incubated for 2 min and pipetted onto the plate while 

cautious mixing with the medium. After 24 h incubation at 37 °C/ 5 % CO2 medium 

was exchanged with DMEM containing only 2 % FCS to reduce further cell 

divisions. The transfected cells were harvested and pelleted by low-speed 

centrifugation on the following day (48 h post transfection). The pellet was 

resuspended in lysis buffer (150 mM NaCl, 50 mM Tris-HCl (pH 8.5)) and the 

cellular and nuclear membranes were destroyed by repeated freeze and thaw 
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cycles. To abolish genomic and plasmid DNA or RNA contaminants in the vector 

preparation, the suspension was treated with 50 U/ml Benzonase for 30 minutes at 

37 °C. Then, the suspension was centrifuged 30 min at 4 °C and 3,220 x g. The 

supernatant was taken off carefully and centrifuged again.  

7.3.6.2  Iodixanol Gradient Purification 

Discontinuous iodixanol gradient centrifugation was used to remove cellular 

debris. Full capsids are concentrated in the 40 % phase of the iodixanol gradient.  

Vector suspension was inserted into an ultracentrifugation tube. The different 

phases of the iodixanol gradient - beginning with 15 % - were sub layered by using 

a syringe connected to an Amersham Biosciences Pump P-1. 8, 6, 5 and 6 ml of 

the respective solutions were applied. The tube was filled up with PBS/MgCl2(1 

mM)/KCl(2.5 mM), closed and centrifuged at 63,000 rpm at 4 °C for 2 h (Sorvall 

Ultracentrifuge OTD Combi). Subsequently, the 40 % iodixanol phase was 

harvested. 

 15% 25% 40% 60% 

10x PBS 5 ml 5 ml 5 ml / 

1 M MgCl2 50 µl 50 µl 50 µl 50 µl 

2.5 M KCl 50 µl 50 µl 50 µl 50 µl 

5 M NaCl 10 ml / / / 

Optiprep 12.5 ml 20 ml 33.3 ml 50 ml 

0.5% Phenolred 75 µl 75 µl / 25 µl 

H20 ad 50 ml ad 50 ml ad 50 ml ad 50 ml 

 

7.3.6.3 Heparin Affinity Chromatography 

For purification of vectors which are able to bind to heparin, e.g. rAAV2 and 

rAAV3, affinity chromatography using heparin columns (1ml) from Amersham 

Pharmacia Biotec might be performed instead or additional to iodixanol gradient 

centrifugation. Therefore the Amersham Biosciences Pump P-1 was used. First, 

the column was equilibrated with PBS/MgCl2(1 mM)/KCl(2.5 mM), while the vector 

solution was diluted 1:10 in the same buffer and applied to the column. After a 

washing step with 20 ml PBS/Mg/K, vector was eluted with PBS/Mg/K plus 1 M 

NaCl in 500 µl steps.  
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7.3.6.4 Vector titration 

For extraction of the vector genome from the viral particles the Qiagen DNeasy 

Blood & Tissue Kit was used according to the protocol for Isolation of Total DNA 

from Cultured Animal Cells. For alkaline lysis, 10 µl of the vector solution was 

mixed with 190 µl PBS, 200 µl buffer ATL and 20 µl Proteinase K and incubated 

for 10 min at 56 °C. Subsequently, the samples were vortexed and 200 µl of buffer 

AL and ethanol (96-100 %) were added. The solution was applied to a DNeasy 

Mini Spin column, centrifuged and washed in AW1 and AW2 buffer before the 

DNA was eluted in 200 µl Tris 10 mM pH 8.0. 

The genomic titer was then determined by quantitative PCR as decribed in 7.2.8. 

To quantify the amount of vector genomes within the extracted DNA, defined 

dilutions (1x108
 to 1x105

 genomic particles/µl) from the respective transgene-

encoding plasmid were prepared and used as standards in the quantitative PCR. 

7.3.7 Working with CD34+ cells 

7.3.7.1 Isolation and culturing of CD34+ cells 

Only the cord blood of mothers who gave their written agreement was recovered in 

heparin-containing bags directly after birth. The purification steps consist of an 

isolation of mononuclear blood cells (MBC) by Ficoll-density gradient followed by 

magnetic cell sorting of CD34+ cells. This work has been accomplished by Michele 

Cadau (Centro Cardiologico, Monzino, Italy). 

First, the blood was diluted in two volumes phosphate-buffered saline (PBS 

without Ca++ and Mg++). Two volumes of diluted blood were layered carefully over 

one volume of Ficoll. After 30 min of centrifugation at 400 x g in a swinging rotor 

without brake at room temperature, the MBC-containing ring between plasma and 

Ficoll was collected. Afterwards, the cells were washed twice in PBS/2 mM 

EDTA/5 % FCS by centrifugation (10 min, 400 x g, 4 °C) and resuspended in the 

precedent buffer solution. 

For the following positive selection with immunomagnetic beads the Direct CD34 

Progenitor Cell Isolation Kit (Miltenyi Biotech) was used according to the 

manufacturer’s instructions. MBCs were shaken for 30 min on ice with 100 µl Fc 

receptor blocking reagent per 108 cells before adding monoclonal mouse anti-

human CD34 antibody-coupled magnetic beads (IgG1 isotype). After an additional 

washing step like above, cells were resuspended in 500 µl PBS/ 2 mM EDTA/ 5 % 
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FCS and sorted on an activated column placed in the magnetic field of a MACS 

separator (miniMACS system, Miltenyi Biotech). The labelled cells are bound to 

the column and therefore separated from other cell populations. After rinsing the 

column with 1 ml PBS/ 2 mM EDTA/ 5 % FCS and removal of the column from the 

magnetic field, the magnetically retained cells can be eluted as positively selected 

cell fraction. The purity of the obtained cell fraction used to be more than 80 % as 

assessed by FACS analysis for CD34 expression. 

Cells were expanded prior to use for a 2 to 4 days in 300 µl medium in 96-well 

plates at 37 °C and 5 % CO2. Serum-free culture medium (Stem Span, 

CellSystems) was supplemented with Flt3-ligand (100 ng/ml), SCF (100 ng/ml), IL-

3 (20 ng/ml), IL-6 (20 ng/ml) and sterile filtrated. Medium was exchanged every 2 

to 3 d. 

7.3.7.2 Thawing of CD34+ cells 

Purchased cells from CellSystems were thawed according to the manufacturer’s 

instructions. Cells were almost completely thawed by putting them into a water 

bath (37 °C). 1 ml of pre-warmed StemSpan medium without cytokines was 

applied to the cells and then transferred into a 50 ml tube containing 50 µl DNase I 

(10,000 U/ml) for prevention of cell clumping. Fresh medium was dropped slowly 

to an end volume of 15 ml while turning the tube. Cells were pelleted (200 x g, 22 

°C, 15 min), the supernatant was taken off carefully and the procedure was 

repeated. Cells were counted and seeded in StemSpan medium containing 

cytokines into 96-well plates (for culture media see 7.3.7.1). 

7.3.7.3 Transduction of CD34+ cells with AAV 

After expanding the cells for 2 to 4 days, 8x104 cells per well were seeded in a 96-

well plate. Later, cells were incubated in medium with half-cytokine concentration 

containing the vector solution or iodixanol over a period of 3 h. Then a washing 

step with PBS was performed to remove the iodixanol. Cells were centrifuged at 

400 x g for 10 min at 4 °C und resuspended in fresh medium with normal cytokine 

concentration. 

7.3.7.4 Analysis of transduced CD34+ cells by FACS  

Cells were harvested, centrifuged at 400 x g for 10 min at 4 °C and resuspended 

in 250 µl PBS. The cells were directly used if GFP fluorescence should be 
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measured. For the analysis of αvβ5 integrins, cells were harvested and washed as 

above, but resuspended in 50 µl PBS and 1 µl of primary antibody (mouse anti-

human monoclonal antibody, 1 mg/ml, Chemicon). After 15 min incubation on ice 

and a following washing step, 1 µl of secondary antibody (goat anti-mouse IgG-PE 

labelled polyclonal antibody, abcam) was added to 50 µl cell suspension in PBS. 

FACS analysis started after 15 min incubation on ice and an additional washing 

step. Unstained cells and cells that were only treated with secondary antibody 

were used as controls. 

7.3.8 Dil-AcLDL uptake 

Endothelial cells can be characterized by their ability to take up acetylated low-

density lipoproteins (AcLDL). Acetylation of lysine rests inhibits binding to the LDL-

receptor. Instead the fluorescence (Dil-) labeled substance can be bound and 

taken up efficiently by scavenger receptors of endothelial cells and macrophages. 

Endothelial cells were incubated 4 to 5 h in 1 µg/ml Dil-AcLDL (CellSystems) 

diluted in medium at 37 °C. Then the supernatant was taken off and cells were 

rinsed twice with PBS prior to fixation in 3 % paraformaldehyde at room 

temperature for 15 min. After two more rinsing steps the plates were stored at 4 °C 

and analyzed by fluorescence microscopy (Zeiss Axiovert S100). 

7.4 Determination of protein 

7.4.1 Detection of beta-Galactosidase activity in tissue sections 

Cryosections were done in the Institute of Pathology (M. Odenthal, University 

Hospital of Cologne). Sections were dried over night and kept at -80 °C. For 

staining, they were put directly in 1.5 % glutaraldehyde/ PBS for 5 min and washed 

3 times for 30 s in distilled water. Then the object slides were incubated 2 min in 

PBS before changing to LacZ staining solution which consists of: 

 

    2 ml   X-Gal in DMSO (20 mg/ml) 

 100 µl   1M MgCl2 

  20 ml   50 mM Potassium hexacyanoferrat II trihydrat (50 mM) 

  20 ml   50 mM Potassium hexacyanoferrat III (50 mM) 

160 ml   PBS 
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The cryosections were incubated for 2 d at 37 °C in the dark. The following day the 

object slides were washed 2 times for 30 s in distilled water. If no counterstaining 

with eosin was performed, water was removed by an ascending ethanol series of 

70, 80 and 2 times 100 % for 2 min each. X-tra solv (Medite) was used as xylol 

substitute 2 times for 2 min before covering the object slides with DPX mounting 

medium for histology (Fluka). For counterstaining cryosections were incubated for 

8 min in 0.5 % eosin solution followed by 2 washing steps in 100 % ethanol for 2 

min. As above incubation with X-tra solv and covering were the last steps. Pictures 

were taken with an Olympus Vanox-S AH-2 microscope. 

7.4.2 Staining for beta-Galactosidase activity in cells 

The following values are calculated for a 1 cm2 well. Medium was taken off and 

cells were washed with PBS. Cells were fixed 5 min in 300 µ l 1.5 % glutaraldehyde 

diluted in PBS and washed again for 5 min in PBS. Then 500 µ l of LacZ staining 

solution were added to the cells and incubated at 37 °C for 3 to 7 h depending on 

the developing blue color intensity. 

LacZ staining solution for 10 ml: 

500 µl   X-Gal in DMSO (20 mg/ml) 

6.5 ml   PBS 

 1 ml   MgCl2 (20 mM) 

   1 ml   Potassium hexacyanoferrat II trihydrat (50 mM) 

   1 ml   Potassium hexacyanoferrat III (50 mM) 

Then LacZ solution was exchanged against 3 % DMSO/ PBS in order to stabilize 

staining and cells for some days. 

7.4.3 Bradford Assay 

To determine protein amount of tissue samples around 20 mg tissue were added 

to 400 µl lysis buffer (Renilla Luciferase Assay System, Promega) and one small 

metal ball to homogenize the tissue sample in a ball mill (Mixer Mill MM300, 

Retsch) at 30 Hertz for 3 min. After an incubation step of 1 h on ice the lysates 

were centrifuged for 30 min at 4 °C at 16,000 x g and the supernatant was 

transferred into a new Eppendorf tube. In double, 5 µl of the lysates (or adequate 

dilutions) and the BSA standards were pipetted into a 96-well plate. Then 250 µl 

room-temperature Bradford Dye 1 x were added and incubated 5 to 60 min. The 
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plate was be measured at a wavelength of 595 nm in an ELISA reader and 

analyzed by Microsoft Excel. 

7.4.4 Luciferase Assay 

20 µl of protein lysates (see 7.4.3) were put into a 96-well plate (Nunc) before a 

mixture of 100 µl assay buffer and 1 µl of the substrate (Renilla Luciferase Assay 

System, Promega) per well were added to the sample. Because the 

chemoluminescence is fading relatively fast, a maximum of 24 samples were 

measured at once. To compare relative light units these results were normalized to 

the total protein amount determined by Bradford assay. 

7.5 Heterotopic heart transplantation 

7.5.1 Rat heart transplantation 

Transplantations were performed by Lars Burdorf (B. Reichart, M. Schmöckel, 

Department of Cardiac Surgery, Ludwig-Maximilians University Munich). 

Described is the operation method using cardioplegic solution, the so-called cold 

heart transplantation, in contrast to transplantation of a warm and beating heart. 

The technique is the same, but without the use of cardioplegic solution. 

Male Sprague-Dawley rats were first narcotized by ether and then by peritoneal 

injection of Pentobarbital (60 mg/kg body weight). Organ recipients and donors 

were prepared in the same way, but only the recipients were layered onto a 

heating pad. After reaching chirurgical tolerance the animals were shaved and 

disinfected. Organ donors were prepared by abdominal incision. The intestines 

were put extraabdominal so that preparation of the infrarenal parts of the Vena 

cava inferior (V. cava inf.) and the Aorta abdominalis could proceed. The intestines 

and the opened abdomen had to be covered with moist tissues.  

For explantation of the heart, the anticoagulans hirudin (30 mg/kg body weight) 

was applied into the V. cava inf. two minutes prior to opening of the sternum and 

application of 10 ml ice-cold cardioplegic solution (Custodiol/HTK Bretschneider) in 

the V. cava inf., respectively. Aorta abdominalis and V. cava inf. were cut through. 

When reaching asystoly, Truncus pulmonalis was disconnected and cut through. 

For cardioprotection another 2 ml of cardioplegic solution was injected into the 

Aorta ascendens and then the vector solution was applied very slowly. Finally, the 
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Venae cavae were ligated and cut through together with the Aorta. The explanted 

heart is kept in ice-cold physiological saline solution until implantation. 

For implantation of the donor heart, the aorto-caval vessels are branched off 

infrarenally. Basically, incisions are made in these two vessels and then the donor 

Aorta ascendens was ligated to the Aorta abdominalis and the donor Truncus 

pulmonalis was anastomosed to the recipient V. cava inf.. Thus, blood flow was 

only circulating through the right part of the donor heart by entering through the 

aorta, flowing through the coronaries, the right atrium and ventricle to pass the 

pulmonary artery and then return into the circulation of the recipient. 

To prevent hypovolemia, 2 ml of warm physiological saline solution was given into 

the abdominal cavity, intestines are layered back and the abdomen was closed. 

As immunosuppressive therapy the animals received 0.3 mg/kg body weight 

Tacrolimus each day.  

 

A B

 

 

Figure 43: Anastomoses of the donor heart vessels with the aorta-caval vessels in the recipient 

abdomen. First showed schematic (A) and as picture taken during operation (B). The donor aorta 

ascendens is ligated to the recipient Aorta abdominalis and the donor pulmonary artery (Truncus 

pulmonalis) is ligated to the recipient Vena cava inferior. (Figures were kindly provided by L. 

Burdorf) 

 

7.5.2 Pig heart transplantation 

Transplantations were done by Lars Burdorf and colleagues (B.Reichart, 

Department of Cardiac Surgery, Ludwig-Maximilians-University Munich).  

Only piglets of the same litter and blood group found application. Narcosis of 

recipient and donor was performed in the same way. Midazolam (0.75 – 1.5 mg/kg 
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body weight), Azaperon (25 mg/kg body weight), Ketamin (25 mg/kg body weight) 

and 0.5 mg Atropin were injected intramuscularly. Further drugs were applied by 

the ear vein like the anesthetic Propofol/Disoprivan (60-120 mg/h). Additionally, 

Enfluran (0.6 %) was given by inhalation.  

The pigs were fixed on the operation table. They were intubated and artificial 

respiration was induced (Servo 900). Vital parameters were observed by a central-

nervous catheter (V. jugularis) as well as electrocardiogram, analysis of saturation 

with oxygen and blood gas.  

In contrast to rat cardiac transplantation, where the vector was injected either in 

the warm and beating heart or in the cardioplegic heart followed directly by 

transplantation, our colleagues in Munich applied here a new system. This 

method, called in situ Langendorff perfusion system, allows recirculation of the 

vector solution in warmed and oxygenated blood through the beating heart in situ 

over a longer period (Figure 44). It might be of advantage that vectors are passing 

more than once the heart and having the opportunity for transduction, before 

circulating through other organs and binding there.   

 

 

Figure 44: Scheme of an in situ Langendorff perfusion system. All vessels are clamped (marked in 

yellow) while the blood circulates through the truncus pulmonalis in a reservoir to warm the blood. A 

roller pump supports blood flow whereas an oxygenator provides oxygen for gas substitution. The 

blood enters the heart via the aorta and passes the coronaries. Vector is injected shortly before the 

entry into the heart. (Figure was modified and kindly provided by L. Burdorf) 
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In brief, the thorax of the donor pig was opened and the vessels and heart were 

made accessible. Hirudin (0.4 mg/kg body weight) was injected as anticoagulant. 

To connect the heart to the Langendorff perfusion system, needles were set into 

the aorta and the truncus pulmonalis. After clamping these vessels and the Venae 

cavae and after opening the needles connected to the Langendorff perfusion 

system, the blood circulates exclusively through the system. First, the blood is 

brought into a reservoir where it is warmed to 38 °C (physiological temperature). A 

roller pump supports blood flow and prevents stasis. As third element an artificial 

lung (oxygenator) enriches the blood with oxygen which goes back into the aorta. 

As this system pumps the blood retro gradually, it flows into the coronaries, from 

there into the right heart, takes the truncus pulmonalis and passes the perfusion 

system. Histamine (100 µg in 10 ml volume) was applied over a period of 4 min 

into the system in order to increase vascular permeability. Vector was injected 

shortly before the blood entered the heart via the aorta. Blood was circulating 

about 40 min before the heart was infused with cardioplegic solution (30 ml/kg 

body weight) to stop circulation.  

The following explantation and implantation of the donor heart was performed in a 

comparable way as described for the rat heart transplantation (7.5.1). The 

recipient V. cava inferior was ligated to the donor A. pulmonalis and the recipient 

Aorta abdominals to the donor Aorta ascendens, respectively. The blood flow is as 

follows: from the donor Aorta abdominalis through the Aorta ascendens into the 

sinus coronaries. Then, it flows into the right atrium and ventricle to leave then the 

graft by the A. pulmonalis. The myocard is supplied by the coronaries. 

For immunosuppression, Tacrolimus (0.3 mg/kg body weight) was already given 

during narcosis. From the second postoperative day on, 1.5 mg/kg body weight 

Tacrolimus was administered. Regularly, immunosuppression levels and other 

blood parameters were monitored. Functionality of the transplant was controlled by 

palpation and by electrocardiogram. 

21 d after operation, the organ recipient was anesthetized like before, intubated 

and catheterized. Color, contractions and morphology of the donor heart were 

assessed before explantation.  
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8 Abbreviations 

Amino acids  
A alanine 
C cysteine 
D aspartate 
E glutamate 
F phenylalanine 
G glycine 
H histidine 
I isoleucine 
K lysine 
L leucine 
M methionine 
N asparagine 
P proline 
Q glutamine 
R arginine 
S serine 
T threonine 
V valine 
W tryptophan 
Y tyrosine 
  
Bases  
A adenine 
C cytosine 
G guanine 
T thymine 
  
AAV adeno-associated virus 
Dil-AcLDL acetylated low density lipoprotein  
Ad adenovirus 
APC antigen-presenting cell 
bp base pair 
Bcl-2 B-cell lymphoma 2 

LacZ β-galactosidase 
BM bone marrow 
ch chromosome 
CD cluster of differentiation 
CB cord blood 
CTLA4 cytotoxic T-lymphocyte antigen 4  
d day 
EPC endothelial progenitor cell 
ELISA enzyme-linked immunosorbent assay 
Flk-1 fetal liver kinase 
FGF fibroblast growth factor 
FACS fluorescence-activated cell sorting 
Flt3-ligand Fms-related tyrosine kinase 3 ligand 
e.g. for example 
GAPDH glycerinaldehyde-3-phosphate dehydrogenase 



Abbreviations 

 

147  

GM-CSF granulocyte macrophage colony stimulating factor 
GFP green fluorescent protein 
HSC hematopoietic stem cell 
HO-1  heme oxygenase 1 
HSPG heparan-sulfate proteoglycan 
HGF hepatocyte growth factor 
HSV herpes simplex virus 
h hour 
HCMV human cytomegalie virus 
HPV human papilloma virus 
IL  Interleukin 
ITR inverted terminal repeat 
kDa kilo Dalton 
MMP matrix metalloproteinase 
min minute 
MOI multiplicity of infection 
MAPC multipotent adult progenitor cells 
NPC nuclear pore complex 
nt nucleotide 
ORF open reading frame 
PNRE perinuclear recycling endosome 
RBS Rep binding site 
RA retinoic acid 
RRX Rhodamine Red-X 
rpm rounds per minute 
s second 
SC stem cell 
Sca-1 stem cell antigen 1 
c-Kit stem cell factor receptor 
SDF-1 stromal cell-derived factor 1  
TRS terminal resolution site 
TLR toll-like receptor 

TGFβ transforming growth factor β 
CFTR transmembrane conductance regulator 
TSA Trichostatin A 
VE-caherin vascular endothelial cadherin 
VEGF vascular endothelial growth factor 
vIL-10 viral Interleukin 10 
VP viral protein 
vWF von Willebrand factor 
w/o without 
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