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“Der Mensch hat dreierlei Wege, klug zu handeln: erstens durch Nachdenken, das ist der 

edelste; zweitens durch Nachahmen, das ist der leichteste und drittens durch Erfahrung, 

das ist der bitterste.” 

(Konfuzius) 

 

 



Abstract 

Abstract 

As a Gram-positive soil bacterium, Corynebacterium glutamicum regularly encounters 

various kinds of stresses that threaten the cell’s survival. Beside an alternating pH and 

temperature, the cells are faced with changes in the osmolarity of the external medium. 

Recently, it was shown that the secondary glycine betaine uptake system BetP of this 

bacterium is able to autonomously sense a hyperosmotic stress induced cytoplasmic 

accumulation of potassium as specific stimulus (osmo-/chemosensor). Subsequently, the 

carrier is able to regulate its activity in response to the extent of the osmotic stress it is 

exposed to (osmoregulator). Further studies revealed that changes in the structure and/or 

orientation of the cytoplasmically exposed C-terminal domain of the carrier seem to be 

critically involved in stimulus sensing and/or signal transduction. Since the molecular 

mechanisms related to these processes are barely understood to date, in the present 

work Site-Directed Spin Labelling-Electron Paramagnetic Resonance (SDSL-EPR) 

spectroscopy was applied for the first time to probe the molecular dynamics during BetP 

function. Focus was on the structure and structural changes of the C-terminal domain or 

adjacent protein and/or lipid domains. Strategically engineered BetP mutants with single 

cysteine substitutions at the beginning (545), in the centre (572) and close to the end 

(589) of the C-terminal domain were tested for sustained transport activity as well as for 

optimal labelling and reconstitution into E. coli lipids to obtain enough highly purified 

material for EPR analysis. Absorption of about 90% of spin labelled BetP by Bio-Beads 

was observed when the standard reconstitution procedure was used. We concluded that 

at least the C-domain is apparently involved in this process. A new procedure for the 

reconstitution of the carrier into E. coli liposomes was established with about 6-7times 

higher protein recovery compared to the standard Bio-Bead method. SDSL-EPR revealed 

that the structure/conformation of the whole C-terminal domain seem to be influenced by 

the incorporation into E. coli lipids. The activation of BetP mutants by hyperosmotic stress 

showed at least at the terminal part of the C-domain a certain mobility effect, indicative of 

a structural/conformational change. However, the extent of this mobility effect was 

strongly dependent on the nature (osmotic and/or ionic strength) of the used osmolyte. 

The preliminary distance measurements of single and double spin labelled BetP variants 

confirmed an oligomeric state (e.g. trimer) of BetP in detergent as well as reconstituted 

into liposomes. In addition, a slight effect of a proline substitution in a deregulated triple 

mutant (BetP-S545C/Y550P/S589C) on the structure of the C-terminal domain was 

observed.  

The data provided in this work are combined in a current model outlining possible  

C-terminal structures and dynamic motions upon BetP activation. 



Kurzzusammenfassung 

Kurzzusammenfassung 

Als Gram-positives Bodenbakterium ist Corynebacterium glutamicum regelmäßig diversen 

Stresssituationen ausgesetzt, die das Überleben der Zelle beeinträchtigen können. Neben 

wechselnden pH- und Temperatur-Werten, werden die Zellen auch mit 

Osmolaritätschwankungen des umgebenden Mediums konfrontiert. Es konnte gezeigt 

werden, dass das sekundäre Glycinbetain Aufnahmesystem BetP aus diesem Bakterium 

in der Lage ist, den unter hyperosmotischen Bedingungen intrazellulär erhöhten 

Kaliumgehalt als spezifischen Stimulus autonom zu detektieren (Osmo-/Chemosensor) 

und seine Aktivität daraufhin an das Ausmaß des Stresses anzupassen (Osmoregulator). 

Weiterführende Untersuchungen zeigten, dass Änderungen in der Struktur und/oder der 

relativen Orientierung der C-terminalen Domäne des carrier einen starken Einfluss auf die 

Stimulusdetektion und/oder die nachgeschaltete Signaltransduktion haben. Da die 

molekularen Mechanismen solcher sensorischen Eigenschaften von Transportproteinen 

bislang nur unzureichend untersucht und verstanden sind, wurde in der vorliegenden 

Arbeit eine Kombination aus ortspezifischer Spinmarkierung (site-directed spin labelling, 

SDSL) und Elektronenspinresonanzspektroskopie (ESR) angewendet, um die molekulare 

Dynamik während des Aktivierungsprozesses von BetP zu untersuchen. Im Fokus lagen 

dabei zum einen die tertiäre Struktur des Transporters als auch die Aufklärung von 

strukturellen Änderungen der C-Domäne sowie deren mögliche Interaktion mit 

angrenzenden Protein- und/oder Lipid-Bereichen im aktivierten Protein. Strategisch 

eingeführte Cystein-Reste zu Beginn (545), in der Mitte (572) und nahe dem Ende (589) 

der C-Domäne wurden auf ihre jeweilige Aktivitätsregulation hin überprüft. Darüber hinaus 

wurden die Markierungs- und Rekonstitutionsschritte für jede Mutante optimiert, um eine 

hohe Ausbeute an spinmarkiertem, gereinigtem Material für die EPR-basierten Analysen 

zu erhalten. Es konnte eine hochgradige Absorption von BetP durch den direkten Kontakt 

zu den Bio-Beads (bis zu 90%) während des herkömmlichen Rekonstitutions-Assay 

identifiziert werden. Daraufhin wurde eine neue Rekonstitutionsmethode für den 

verlustfreien Einbau von spinmarkiertem BetP Protein in E. coli-Liposomen etabliert, 

deren Effizienz um etwa 60% höher lag als mit der herkömmlichen Methode. Die SDSL-

ESR-Studien zeigten zum einen, dass der Einbau von solubilisiertem BetP in E. coli-

Liposomen einen ausgeprägten Einfluss auf die Konformation und/oder räumliche 

Orientierung der C-Domäne hat. Eine hyperosmotisch induzierte Aktivierung des 

Transportproteins zeigte zudem eine erhöhte spinlabel-Mobilität am Ende der C-Domäne 

auf, die auf strukturelle Änderungen während des Aktivierungsprozesses hinwies. Das 

Ausmaß der Mobilisierung war dabei maßgeblich von der Art (Ionenstärke, Osmolalität) 

des benutzten Osmolytes abhängig. Die vorläufigen Ergebnisse der Abstandsmessungen 



Kurzzusammenfassung 

von Einzel- und Doppelcystein-Mutanten bestätigten einen oligomeren Zustand (z.B. 

Trimer) von solubilisiertem und in E. coli-Liposomen eigebautem BetP. Darüber hinaus 

konnte gezeigt werden, dass der zusätzliche Einbau eines Prolins in einer deregulierten 

Dreifachmutante BetP-S545C/Y550P/S589C einen Einfluss auf die Struktur der  

C-terminalen Domäne im nicht aktiven Zustand des Proteins hat. 

Die in der vorliegenden Arbeit gewonnenen Daten konnten in einem aktuellen Topologie-

Modell kombiniert werden, das die möglichen Konformationen und die Dynamik der  

C-terminalen Domäne während des Aktivierungsprozesses von BetP zusammenfasst.   
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KM Michaelis-Menten constant 

KPi Potassium phosphate buffer 

LB medium Luria Bertani medium 
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1. Introduction 

Beside fluctuations in temperature, pH or nutrient depletion, most microorganisms have to 

deal with alternating osmolalities (water scarcity or surplus) – so called osmotic stress - in 

their natural habitat (Gross et al., 1996, Desmond et al., 2002). A stress emerges, when a 

changing environmental factor influence the growth or even survival of an affected 

organism. To overcome or bypass these deleterious circumstances, various survival 

strategies have been employed by bacteria (Hecker et al., 1996, Hecker et al., 2001). For 

this purpose, microorganisms have to sense outside stimuli and subsequently respond to 

sudden environmental changes with appropriately regulated gene expression and protein 

activity to ensure survival and cell proliferation.    

 

1.1. Corynebacterium glutamicum 

As an immobile, topsoil (= mineral horizon A; 

Allaby, 1994) bacterium Corynebacterium 

glutamicum is regularly exposed to an ever-

changing environment. It was first described 

1957 as glutamate-producing strain Micrococcus 

glutamicus (Kinoshita et al., 1957, Udaka, 1960). 

C. glutamicum is a Gram-positive, non-

pathogenic, facultative-anaerobic and non-

sporulating bacterium that possesses a club- 

(greek „coryne“= club) or rod-shaped cell morphology referred to as coryneform bacteria 

(Figure 1). With a G/C content of 46-74mol-% Corynebacteria belong to the big group of 

high-G/C-containing bacteria forming the class Actinobacteria (Figure 3; Funke et al., 

1995; Abe et al., 1967). Among these, the heterogeneous order of Actinomycetales - 

which includes the Mycobacteria, Nocardia and the Corynebacteria - is characterized by a 

unique cell wall structure (Stackebrandt et al., 1997; Daffé et al., 1998; Daffé, 2005). This 

so-called mycolic acid layer (mycolate layer) is bearing on the top of the normal 

peptidoglycan (murein) and arabinogalactan layer (Figure 2). In addition to the plasma 

membrane it provides a second permeability barrier, containing channel-forming proteins, 

the porins, which facilitate the diffusion of hydrophilic substances (Nikaido, 1994, 2003; 

Lichtinger et al., 1998; Puech et al., 2001). Due to its close phylogenetic relationship to 

pathogenic bacteria like Mycobacterium tuberculosis, Mycobacterium leprae or 

Corynebacterium diphtheria, as common germs for severe illnesses and diseases,  

C. glutamicum is still in the focus of medical investigations as a non-pathogenic model 

 
Figure 1: Scanning electron micrograph of  
C. glutamicum ATCC13032 WT (N. Möker, 
2002). 
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organism. Today, particular 

attention is paid on the 

bacterium due to its utmost 

importance for large-scale 

production of amino acids. 

Among these are  

L-glutamate and L-lysine 

with current production 

rates of 1.500.000 tons/year 

and 550.000 tons/year, 

respectively (Kataoka et al., 

2006, Hermann, 2003). 

However, during fermentation cells are subjected to various kinds of stress. One of the 

stresses concerned is a hyperosmotic environment due to the accumulation of high 

substrate or product concentrations in the external medium (Kawahara et al., 1997; Varela 

et al., 2004). Thus, the investigation of the physical response of cells to encounter these 

unfavourable situations is of great importance for the economic sense of industrial 

production.  
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Figure 3: Taxonomic lineage for Corynebacteriaceae drawn up with NCBI Taxonomy 
Browser ( http://www.ncbi.nlm.nih.gov/Taxonomy/ ). The main representatives within the 
suborder of Corynebacterineae are summarized to the so-called CMN-group (Corynebacteria, 
Mycobacteria, Nocardia). 
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Figure 2: Schematic illustration of the cell wall c omposition of the 
taxonomic order Actinomycetales (Figure 3). 
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1.2. Osmosis and osmotic properties of a cell 

Osmotic (greek “osmos” = 

penetration, push, drive) stress is 

a common challenge 

encountered by eukaryotic and 

prokaryotic cells. The 

semipermeability of the 

cytoplasmic membrane is 

responsible for the influence of 

the external osmolarity on the 

bacterial cell, because it retains 

macromolecules, ions and polar substances but allows free diffusion of water in both 

directions, known as the fundamental principle of osmosis (Figure 4; Bovell, 1963). 

The chemical potential of water – also referred to as water activity ψW – is a sum of both, 

the solute potential ψS (osmotic potential) and the pressure potential (ψP, turgor pressure) 

of a given solution: 

 

(1) ψW = ψS + ψP    (water activity) 

 

The water activity ψw quantifies the tendency of water to move from one area to another 

due to osmosis: The lower the overall water activity, the higher the potential to attract 

water and vice versa. The turgor pressure ψP is a mechanical, outward-directed pressure 

exerted from the plasma membrane on the cell wall of plants and bacteria and can be 

positive (tension) or negative (suction power). In most bacteria the cell turgor is essential 

for growth and cell division and reaches values up to 15-25atm in Gram-positive bacteria, 

whereas in Gram-negative organisms it ranges from 1-5atm (Koch, 1983; Poolman and 

Glaasker, 1998). The solute potential (ψS, osmotic potential), however, is always negative 

and can be described by Van’t Hoff’s equation for diluted solutions (<100mM): 

 

(2) ψS = - (R * T * c)   (solute potential) 

 

With R as the ideal gas constant, T as the absolute temperature in °K and c as the total 

solute concentration.  

Hence, ψS is directly proportional to the absolute temperature and the concentration of 

dissolved particles (colligative property) in a given solution and decreases with a rising 

amount of solutes. In reference to equation (1), water flows through a cytoplasmic 

Hydrostatic
pressure ψ

P

Osmosis

Pure water Solution

Semipermeable 
membrane

∆t

 
Figure 4: Schematic illustration of osmosis.  Pure water (high water 
activity, ψW) diffuses through a semi permeable membrane to a 
solution with lower water activity generating a hydrostatic pressure 
(ψP). ∆t = time difference. 
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membrane towards a lower chemical potential until both, the solute potential ψS and the 

turgor pressure ψP are equal (Cosgrove, 2000): 

 

(3) ψW = ψS + ψP = 0, if ψS = ψP  (full turgescence) 

 

Due to the fact, that the cytoplasm is an aqueous solution supplied with salts, sugars, 

amino acids and other chemicals compounds, the water activity ψW of living cells under 

physiological conditions is more negative than that of the surrounding medium, leading to 

an inward directed water flux that maintains the crucial cell turgor. Fluctuations in the 

external osmolarity, on the other hand, may reduce the cell’s water activity and hence 

increase its turgor pressure (hypoosmotic stress) or on the contrary decrease the cell’s ψP 

(hyperosmotic stress). According to equation (1) and the colligative property of ψS (2), the 

overall water activity of a cell is mainly determined and can be adjusted by the internal 

solute pool (osmoregulation). Bacteria and plants thereby have to be able to tightly 

regulate their internal solute concentrations to ensure viable cell functions and 

reproduction (Kempf and Bremer, 1998; Chater and Nikaido, 1999).   

 

1.3. Measurement of osmotic pressure 
As a prerequisite for studies on bacterial osmoregulation and osmosensing it is important 

to be able to measure the osmotic pressure imposed by growth media and supplements. 

For this purpose, the water activity can be linked to the osmotic pressure Π by the relation: 

 

(4) Π = - (R * T / VW) * ln ψW  (osmotic pressure) 

 

Here, VW is the partial molar volume of water and measured in [m3 * mol-1] = [J * m-3] =  

[N * m-2], so in pressure units. 

From equation (4) the osmolarity of a given solution can be derived as the sum of the 

molar concentrations of all osmotically effective particles (Σc): 

 

(5) Osmolarity [mol/L] = Σc ~ Π / R * T  

 

The osmolarity can be calculated but not measured. That’s why in practical approaches 

the osmotic pressure per weight of solvent, the osmolality, is used: 

 

(6) Osmolality [osmol/kg] = Π / R * T  
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The osmolality in turn can be measured, but not calculated because the different 

properties of a particular solute (e.g. charge, size, form) are included into the total water 

potential as single-potentials and affect it to different extents. So, the osmolality is merely 

an approximation for the osmolarity of a given solution, however simply quantifiable for 

investigations on microbial adaptation to osmotic stress situations.  

 

1.4. Hypoosmotic stress in microorganisms 
A hypoosmotic (greek “hypo“= below, under) stress occurs for living cells when the 

external osmolality is decreased, e.g. the water activity of the external medium is higher in 

relation to the cytoplasm of the cell. This causes an instant influx of water and an increase 

in cell turgor. Although the cell walls of Gram-negative bacteria can sustain pressures up 

to 100atm, the permanent increase of ψP would inevitably lead to cell burst (Csonka, 

1989; Carpita et al., 1985). To overcome this unfavourable situation, microorganisms have 

to dispose internal solutes to even out the differences in chemical potential and thus 

leading to a decrease in turgor.  

For this purpose, specific transporters and mechanosensitive channels (Mscs) as release 

valves are rapidly activated to reduce the driving force for water entry (Anishkin and Kung, 

2005; Hamill and Martinac, 2001; Csonka and Epstein, 1996). Mscs are ubiquitous among 

prokaryotes, unspecific and have different pore sizes as well as different sensitivities 

towards the applied mechanical stress that activates them (Berrier et al., 1992). They all 

have in common, that their activity is directly controlled via changes in the lateral tension 

of the membrane as a response to changes in the external osmolality (downshift). Upon a 

change from high to low osmolalities, the open probability of these channels increases by 

several orders of magnitude as a function of the coupling mechanism between protein 

conformation and membrane stretch (pressure sensitivity). Thereby, the respective 

channels work cooperatively: upon hypoosmotic stress the channel with the lowest 

conductance opens first, sequentially followed by the channels with higher conductance to 

provide a graduation of efflux response (Martinac 2001; Bezanilla and Perozo, 2002). In 

this context, the best studied efflux channels so far are the two species MscL 

(MechanoSensitive Channel of Large conductance) and MscS (Small) from E. coli, with 

conductances of 3nS and 1nS, respectively (Levina et al., 1999; Sukharev et al., 1993, 

1999). In addition, a third and yet barely studied MscM (Mini) channel (~0.1nS) opens as 

first response under hypoosmotic conditions and - with rising pressures - additionally the 

MscS channel (Berrier et al., 1996). At turgor pressures causing a tension sufficient to 

rupture the membrane, also the MscL channel opens. Whereas single deletion mutants 

lacking the gene for MscS (yggB) or MscL (mscL) remain fully functional after applying a 

hypoosmotic shock, the respective double mutants die, indicating the physiological 



Introduction 

6 

importance of both channels and implying that MscM alone is not able to protect E. coli 

during an osmotic downshift (Sukharev et al., 1994; Levina et al., 1999; Booth and Louis, 

1999). 

Homologues of MscL and MscS could also be identified in Mycobacterium tuberculosis 

(Chang et al., 1998) and in Corynebacterium glutamicum (Nottebrock et al., 2003). In case 

of C. glutamicum, the MscL- and MscS-channel seem to be responsible for the specific 

efflux of glycine betaine, proline and – to a less extent – of some cations (Ruffert et al., 

1997, 1999). However, the respective double deletion strain lacking the genes for both 

channels still showed a hypoosmotically induced glycine betaine efflux, arguing for at least 

one additional MS channel (Nottebrock et al., 2003). 

 

1.5. Hyperosmotic stress and response in 
microorganisms 

During a hyperosmotic (greek “hyper“ = above, excess) stress the osmolality of the 

external medium is increased and water flows out of the cell, thereby changing the cell’s 

hydration, volume and/or turgor pressure. The consecutive water efflux inevitably leads to 

plasmolysis and growth slowdown or even a stop of growth. As a response, cells have 

developed a variety of mechanisms to restore cell turgor and balance water stress. 

According to Wood (1999) this response can be at least divided in three overlapping 

phases: (1) an instant but passive dehydration of the cytoplasm (seconds-minutes), (2) an 

active process of rehydrating the cytoplasm by accumulation of ions or osmolytes (up to 

an hour) and (3) a remodelling of the cell by changes of gene expression profiles (up to 

one or more hours).  

As an initial step during the rehydration phase, many bacteria transiently and rapidly 

accumulate potassium (Dinnbier et al., 1988; Whatmore and Reed, 1990; Whatmore et 

al., 1990). Potassium is a widespread ion in nature and the dominant cation in the 

cytoplasm of microorganisms with amounts of 100-600mM (Ballal et al., 2007; McLaggan 

et al., 1994). The increase in internal potassium can be achieved by both, passively via 

hyperosmotic-induced water efflux out of the cells and actively via specific potassium 

uptake systems. In E. coli active accumulation is mediated by the low affinity and low 

capacity Kup system as well as the high efficient transporters Kdp and TrK as the main 

transport systems for potassium (Bakker, 1993; Schlösser et al., 1995). Recently, two 

potassium uptake systems were identified in C. glutamicum: a Kup system with similarities 

to the cation/proton symporter Kup from E. coli and a potassium channel (CglK) with 

striking similarity to MthK from Methanobacterium thermoautotrophicum (Becker, 2007). 

Preliminary results with knock-out deletion strains indicated, that CglK is the major 

constituent for potassium uptake in C. glutamicum (Becker, 2007; personal 
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communication, M. Becker). However, both systems could not yet be further characterized 

biochemically or kinetically. Also, there is no evidence for a specific activation of 

potassium uptake systems in C. glutamicum upon hyperosmotic stress. To maintain 

electroneutrality and to prevent alkalisation in E. coli and C. glutamicum cells, the 

potassium accumulation is accompanied by the synthesis of glutamate as a counterion, 

whereas in B. subtilis the nature of the counter ion still remains elusive (Caylay et al., 

1991; McLaggan et al., 1994; Morbach and Krämer, 2002; Whatmore and Reed, 1990). In 

addition, the internal nucleic acid counterion putrescine or other protons are exchanged by 

potassium and exported (Csonka, 1989; Munro et al., 1972).  

In contrast to (extreme) halophiles with their 

common “salt-in” strategy, moderate 

osmotolerant bacteria use a “organic-

solute-in” strategy in a second phase of the 

hyperosmotic response to prevent 

chaotropic effects during the adaptation 

phase (Oren 2006, 2008). In this regard, 

the internal charge accumulation 

(potassium, glutamate) leads to 

aggregation of cellular macromolecules and 

thus may interfere with the metabolism 

(Wood, 1999). To counteract this effect, the 

ions are exchanged against neutral, so-

called compatible solutes either by uptake or biosynthesis (Csonka, 1989; Galinski and 

Trüper, 1994). These osmoprotectants are characterized by being compatible with normal 

physiological functions of the cell while accumulated to very high intracellular levels up to 

several moles per litre (Braun, 1997; Arakawa and Timasheff, 1985; Timasheff, 1991). In 

addition, they are neutral or zwitterionic at physiological pH and soluble up to molar 

concentrations (Csonka, 1989). Depending on their molecular structure, these compounds 

can be subdivided into (i) amino acids and derivatives (e.g. glutamate, proline, ectoine, 

and glycine betaine), (ii) polyols (e.g. glycerol, glycosylglycerol), (iii) sugars (e.g. 

trehalose, sucrose) and (iv) others (e.g. carnitine, choline-O-sulphate). Among these, 

glycine betaine, ectoine, proline and trehalose are the most abundant and thus most 

effective osmoprotectants in the domain Bacteria (Oren, 2008; Figure 5). 
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Beside their function as osmoprotectants, these 

organic solutes have the intrinsic property to 

stabilize the native conformation of proteins. This 

attribute can be explained by the model of 

“preferential exclusion” proposed by Arakawa 

and Timasheff (1985). The model indicates that 

compatible solutes are preferentially excluded 

from the hydration shell of a protein, leading to 

stronger interactions of the water molecules with 

the protein surface (preferential hydration, Figure 

6). The stabilizing effect of the organic solutes 

thereby derives from the different affinities 

towards the native and denatured status of the 

protein: in a denatured protein the lipophilic peptide backbone is exposed, leading to 

thermodynamically unfavourable interactions with the predominantly hydrophilic 

compatible solutes which in turn promote the native protein conformation. One 

mechanism for preferential exclusion is the “sterical exclusion” that occurs, when the 

radius of the compatible solute is considerably bigger than that of the water molecule 

leading to a tight solvation shell around the protein (Arakawa and Timasheff, 1985).  

A second mechanism deals with the increased surface tension of the respective solvation 

shell due to the inhomogeneous distribution of the solvents within the cytoplasm 

(according to Gibbs isotherm). The denaturation of a protein thereby leads to an increased 

free surface energy - which is the product of surface tension multiplied by the overall 

surface – leading to an unfavourable energy imbalance compared to the native state. This 

energy imbalance is reduced, when the protein (and its hydration shell) adopts a small 

volume or overall surface, so to say the native conformation (Timasheff, 1998). 

 

Since the uptake of compatible solutes is more favourable in terms of energy and carbon 

cost as compared to biosynthesis, the activation of specific uptake systems for compatible 

solutes is in general the first response (short-term response) to hyperosmotic conditions. 

For the sake of long-term adaptation, enzymes for de novo synthesis of compatible 

solutes and for transporters get additionally regulated at the level of gene expression. 

However, if compatible solutes are not present in the environment, the bacterium is forced 

to exclusively synthesize its osmoprotectants. C. glutamicum thereby uses several 

pathways to synthesize glutamine (Frings et al., 1993; Rönsch et al., 2003), proline (Ankri 

et al., 1996; Ley, 2001) and trehalose (Wolf et al., 2003) after an osmotic upshift. 
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Figure 6: Schematic model of the 
“preferential exclusion” of compatible 
solutes leading to a preferential hydration of 
the protein (according to the basic idea from 
Timasheff, 1998 and Lee, 2000). Blue = 
hydration shell of H2O, pink = solute shell. 
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1.6. Osmosensing and osmoregulation 
Most bacteria possess uptake systems in their 

membrane which mediate the immediate 

accumulation of compatible solutes upon an osmotic 

upshift of the external medium. These systems have 

to be tightly-regulated on the level of protein activity 

as well as at the level of gene expression to ensure a 

proper adaptation to varying hyperosmotic stress 

(osmoregulation). Thus, as a basic prerequisite for 

an efficient osmoregulation, cells have to exhibit 

sensitive receptor systems which either directly or 

indirectly perceive the encountered stress 

(osmosensors). The detected stimulus has then to be 

converted and transmitted to a cell intrinsic osmoregulatory network that finally regulates 

the catalytic activity of its transport systems and/or biosynthesis pathways depending on 

the extent of the emerged stress. According to this, the elucidation of bacterial 

osmosensory and osmoregulatory mechanisms relies on the identification and 

characterization of osmosensory transporters, their encoding genes as well as the solutes 

and ions that serve as substrates and cosubstrates, respectively. For this purpose, current 

investigations focus on the measurement of the respective transport activity under  

(hyper-) osmotic conditions in vivo with intact cells and in vitro with inverted membrane 

vesicles (IMV) or artificial lipid vesicles reconstituted with purified transporters 

(proteoliposomes, Figure 7). Referring to the latter, this artificial membrane system 

provides the major opportunity to manipulate a set of conditions (e.g. the internal and 

external buffer, lipid and protein composition/ratio, liposome size, etc.) that facilitates the 

discrimination of activating stimuli (e.g. turgor pressure, membrane strain, internal and 

external osmolarity/ionic strength/ion concentration, macromolecular crowding) or 

substrate and cosubstrate specificity (Wood, 2007; Papahadjopoulos, 1978; Olsen et al., 

1979). 

 

1.7. Osmoregulated uptake systems 
Since the import of solutes against their electrochemical gradient requires metabolic 

energy, primary (ATP-Binding Cassette, ABC) and secondary (ion-linked) transporters are 

commonly used as uptake systems for osmoprotectants (Bremer and Krämer, 2000; 

Wood, 1999; Wood et al., 2001). Among these, ProP of Escherichia coli and BetP of 

Corynebacterium glutamicum are the best studied secondary uptake systems in which the 

solute transport is coupled to the electrochemical gradient of a cosubstrate. One of the 

lumen

 
Figure 7: Schematic illustration of a 
closed lipid vesicle system 
reconstituted with purified transport 
proteins (proteoliposomes). The internal 
compartment (= lumen, blue) is separated 
via the lipid bilayer with its incorporated 
membrane proteins (green). 
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best studied ABC transporter in terms of activity regulation upon hyperosmotic stress is 

OpuA from Lactococcus lactis in which the transport is directly coupled to ATP hydrolysis 

as the driving force. These prototypical osmosensory transporters are characterized by 

detecting changes in osmotic pressures and respond by mediating the uptake of 

compatible solutes without the assistance of other proteins. In this context, great efforts 

are currently made on revealing the detailed molecular mechanism of osmostress 

detection and signal transduction within these autonomously working carrier proteins. 

 

The ABC transporter OpuA from L. lactis facilitates the unidirectional transport of glycine 

betaine at the expense of two molecules ATP (Van der Heide et al., 2000; Patzlaff et al., 

2003). The protein consists of 573 amino acid residues forming eight α-helical 

transmembrane domains and a binding protein domain oriented to the periplasm. Its initial 

uptake rates increase with a rising medium osmolality (osmoregulator), whereas the 

osmolality threshold for the transporter activation increases with increasing amount of 

anionic lipids in the membrane fraction of proteoliposomes (Van der Heide et al., 2001). In 

addition, the rapid activation of OpuA seems to be indifferent to the nature of the triggering 

ion, although divalent ions are more effective than monovalent ions. To this respect and 

due to the fact that the ionic strength of a solution varies as the square of ion charge 

(equation (7); Wood, 2007), OpuA was proposed to be a ionic strength sensor (Biemans-

Oldehinkel et al., 2006; Van der Heide et al., 2001). 

 

(7) I = 1 / 2 * Σ(mi * zi
2)   (ionic strength of a solution) 

 

With i = amount of ions, mi = ion molalities (moles/kg solvent) and zi = ion charges. 

Accordingly, the proposed model for the osmosensing mechanism of OpuA is based on 

electrostatics: under physiological conditions intracellular tandem CBS (Cystathionine-β-

Synthase) domains of OpuA are interacting with the surrounding membrane surface. 

Upon hyperosmotic shock, the internal ionic strength rises and the competing ions release 

the CBS domains from the membrane thereby activating the transporter (electrostatic 

switch). In addition, the C-terminal stretch of anionic residues serves as a modulator 

reducing the ionic strength threshold for activation via electrostatic repulsion with the 

predominantly anionic membrane surface (Biemans-Oldehinkel et al., 2006).  

 

In E. coli a member of the Major Facilitator Superfamily (MFS), ProP, mainly catalyzes the 

uptake of proline, glycine betaine and ectoine in symport with H+ (Culham et al., 1993; 

Cairney et al., 1985a). It is a 500-residue integral membrane protein with 12 

transmembrane helices as well as N- and C-terminal hydrophilic domains, both facing the 
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cytoplasm. The C-terminal domain contains specific heptad repeats: a peptide that can 

form characteristic, homodimeric, antiparallel, α-helical coiled-coil structures stabilised by 

electrostatic interactions and putatively leading to a ProP dimerisation in vivo (Hillar et al., 

2005; Culham et al., 1993). It was assumed, that the sensory function of ProP is at least 

partially located in this C-domain (Culham et al., 2000). In this regard, the C-terminal 

coiled coil structure seemed to tune the osmotic activation threshold (modulator function), 

because a higher osmotic pressure was required to activate ProP derivatives with 

disrupted coiled-coils (Tsatskis et al., 2005). Although ProP is fully functional in the 

absence of any other protein, its maximal activity is reduced to 20% in strains lacking a 

certain accessory protein, called ProQ. ProQ is a soluble cytoplasmic protein of 232 

amino acids that is proposed to fine tune the osmotic response of ProP in terms of activity 

(Wood, 1999; Kunte et al., 1999). In contrast to OpuA, ProP seems to respond to 

osmotically induced changes in cytoplasmic ions (predominantly potassium) and also non-

ionic solutes and macromolecules (Culham et al., 2003). Recent considerations suggest 

that ProP senses the osmotic pressure by its hydration state: as the osmotic pressure 

increases, water molecules are subtracted from the protein leading to a dehydration-

induced structural change that activates ProP (Wood, 2006). Due to the fact that both 

OpuA and ProP are able to mediate the accumulation of compatible solutes in cells and in 

artificial lipid vesicles (proteoliposomes), they unify the properties of a transporter, an 

osmosensor and an osmoregulator. 

Analogous investigations were carried out on the osmoregulated carrier BetP in  

C. glutamicum. However, as a prerequisite for a detailed analysis of a single uptake 

system in vivo, accessory osmoregulated transporters had to be identified and 

characterized to discriminate specific and general contributions of each in terms of 

compatible solute uptake.  

 

1.8. Solute uptake systems in C. glutamicum 
Corynebacterium glutamicum possesses five secondary carriers for the uptake of 

compatible solutes (Peter et al., 1998a; Steger et al., 2004; Figure 8). Among these, the 

constitutively expressed ectoine/betaine/proline transporter EctP is only regulated at the 

level of activity after an osmotic upshift whereas the high affinity proline uptake system 

PutP is independent from the external osmolality and supposed to take up proline in 

symport with sodium for the anabolic cell metabolism (Weinand et al., 2007). The activity 

of the proline/ectoine permease ProP, the betaine/ectoine carrier LcoP and the betaine 

transporter BetP is regulated by the external osmolality at the level of activity and 

expression. Together with the carnitine transporter CaiT (Eichler et al., 1994) from E. coli, 

and the two betaine uptake systems BetL (Sleator et al., 1999) from Listeria 
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monocytogenes and OpuD (Kappes et al., 1996) from Bacillus subtilis, the three 

secondary carriers BetP, LcoP and EctP belong to the BCCT (Betaine-, Carnitine-, 

Choline-Transporter) family which is involved in the uptake of quaternary ammonium 

compounds (Saier, 2000). ProP from C. glutamicum belongs to the MFS (Major Facilitator 

Superfamily) transporters like ProP from E. coli (Culham et al., 1993), whereas PutP is 

assigned to the SSS (Sodium:Solute Symporter) family like the proline carrier OpuE from 

B. subtilis (Von Blohn et al., 1997).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The four osmoregulated secondary transporters in C. glutamicum (BetP, EctP, LcoP, and 

ProP) catalyze the symport of their respective compatible solute with Na+-ions or protons, 

each exhibiting different substrate specificities and -affinities (Table 1). The overlapping 

substrate spectra thus allow an effective adaptation to osmotic changes of the 

environment if a particular solute is not available.  

To this regard, RNA dot blot experiments and appropriate complementation studies 

showed, that the hyperosmotic stress-induced expression of the genes betP, proP and 

lcoP is supposed to be mediated via an osmosensitive two-component signal transduction 

system composed of the sensor kinase MtrB and its cognate response regulator MtrA 

(Möker et al., 2004). 
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Figure 8: Transport systems for compatible solutes in C. glutamicum. Depicted are the five 
secondary transporters for compatible solutes with their specific substrates and cosubstrates, the two 
potassium uptake systems Kup and CglK as well as a putative (Msc?) and two already characterized 
(MscL, MscS) efflux channels for glycine betaine and proline export (Peter et al., 1998b; Becker, 
2007; Nottebrook et al., 2003). 
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Table 1: Osmoregulated uptake systems in C. glutamicum and respective kinetic parameters. According to the kinetic 
characterization by Farwick et al. (1995), Peter et al. (1998b) and Steger et al. (2004). 

Carrier  Family  Substrate  CS KM (CS) KM (S) Vmax  Regulation level 

    [mM] [µM] [µmol/min*g DW] (upon 
osmoshock) 

BetP BCCT GB Na+ 4.1 8.6 110 
activity & 

expression 

EctP BCCT 
ectoine 

Na+ 9.1 
63 27 

activity GB 333 34 
proline 1200 34 

LcoP BCCT 
GB 

Na+ 36 
154 8.5 activity & 

expression ectoine 539 8.6 

ProP MFS 
proline 

H+ n.d. 
48 71 activity & 

expression ectoine 132 129 

PutP SSS proline Na+ n.d. 7.6 20 
not 

osmoregulated 
Note:  BCCT=Betaine-Choline-Carnitine-Transporter; MFS=Major Facilitator Superfamily; SSS=Sodium:Solute 

Symporter; GB = glycine betaine; S = substrate; CS = cosubstrate; DW = dry weight (of cells). 

 
 

1.9. Glycine betaine transporter BetP from C. glutamicum 
As mentioned above, one of 

the best-studied carriers 

involved in osmoregulation of 

C. glutamicum is the 

secondary glycine betaine 

transporter BetP that catalyzes 

the symport of its sole 

substrate with two sodium ions 

(Farwick et al., 1995; Peter et 

al., 1996). BetP is a 595-

residue integral membrane 

protein that comprises 12 

transmembrane segments as 

well as a highly negatively 

charged hydrophilic N-terminal 

domain of approximately 62 

amino acids and a highly positively charged hydrophilic C-terminal domain of 55 amino 

acids. Both of these terminal domains are cytoplasmically exposed and important for 

osmostress-dependent activity regulation (Figure 9; Peter et al., 1997; Rübenhagen et al., 

2000). Driven by the electrochemical sodium potential ∆µNa+, BetP is able to build up 

extremely high glycine betaine gradients of 4 x 106 (inside:outside). The carrier exhibits a 

moderate affinity of 8.6µM for its substrate glycine betaine and a high KM (= lower affinity) 

 
Figure 9: Predicted topology model of the secondary  glycine betaine 
carrier BetP-C252T from Corynebacterium glutamicum (TMHMM 2.0, 
“ http://www.cbs.dtu.dk/services/TMHMM/ ”). The transmembrane 
segments are displayed as green cylinders. Marked in yellow is a 
conservative region of the proteins in the BCCT family that is possibly 
involved in substrate binding (Vinothkumar et al., 2006). The predominant 
charges of each cytoplasmic extension at physiological pH are depicted 
as “–“ (negative) and “+” (positive). The suffix “-C252T” represents the 
substitution of the sole native cysteine at amino acid position 252 for a 
threonine to obtain a cysless (cysteine-less) BetP variant.  
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of 4.1mM for its cosubstrate sodium (Farwick et al., 1995; Table 1). With Vmax values of 

110 [µmol/min*g cell dry weight], BetP is together with the acetate and glucose 

transporters one of the fastest uptake systems in C. glutamicum (Ebbighausen et al., 

1991; Marx et al., 1996).  

 

1.9.1. BetP - osmosensing and activity regulation 

In the absence of any osmotic stress BetP is almost inactive. Once the external osmolality 

rises and the activation threshold is reached (0.3-0.4osmol/kg), BetP in C. glutamicum 

cells gets activated in less than one second (activated state) with its activation optimum at 

1.2osmol/kg (Peter et al., 1996; Peter et al., 1998b). As soon as the hyperosmotic stress 

has been compensated by the appropriate uptake of compatible solutes, BetP activity is 

reduced (activity adaptation) to prevent excessive solute accumulation (Morbach and 

Krämer, 2000). In this adaptation phase, the net uptake of glycine betaine is reduced to 

66% of the overall transport rate due to both, a reduced import activity and a specific 

counter-exchange activity of the transporter (Botzenhardt et al., 2004). The heterologous 

expression of BetP in E. coli cells as well as the functional reconstitution of purified BetP 

protein in proteoliposomes led to the conclusion that this transporter operates 

autonomously (e.g. independent of accessory proteins or macromolecules) and thus 

harbours altogether three functions: (i) the catalytic activity of glycine betaine transport, (ii) 

sensing of hyperosmotic stress, and (iii) osmoregulation, i.e. adjustment of the transport 

rate to the actual extent of osmotic stress (Rübenhagen et al., 2000; Morbach and 

Krämer, 2004b).  

The search for the activating stimulus took advantage of proteoliposomes that cannot 

build up a turgor pressure due to the lack of a cell wall-like structure that may sustain a 

certain hydrostatic pressure. Reconstituted BetP was shown to become fully activated 

while retaining the characteristic regulation pattern found in cells after an osmotic upshift. 

Thus, the (high) turgor pressure in the Gram-positive Corynebacterium glutamicum could 

be ruled out as an activating stimulus. Other possible stimuli, like membrane tension, 

internal or external osmolarity as well as ionic strength, showed no significant influence on 

BetP activation (Rübenhagen et al., 2001). The effect of molecular crowding (Minton, 

2005; Wood, 2007), e.g. the enrichment of cytoplasmic molecules due to cell dehydration, 

could not be investigated up to now. Nevertheless, using the hydration state of a protein 

as an indicator for hyperosmotic stress is still a challenging suggestion and was already 

proposed by Wood (2006) for the activation of ProP from E. coli. It could be figured out, 

that an increase in the luminal K+ concentration alone, i.e. at the side where the 

hydrophilic domains are located, is sufficient to activate BetP (Rübenhagen et al., 2001). 

In addition, cations with similar physical properties as K+, such as Rb+ and Cs+, also 
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induced the activation of BetP, whereas bigger ions (NH4
+) or macromolecules (choline) 

did not. These results necessitated a reclassification of the so far entitled BetP-

osmosensor to a chemosensor or - in particular - a potassium sensor (Rübenhagen et al., 

2001).  

Unexpectedly, when heterologously 

expressed in E. coli cells, the 

activation profile of BetP upon 

hyperosmotic stress still remained 

similar, while the optimum of the 

transport activity was shifted to 

lower values of 0.6-0.8osmol/kg, 

e.g. a lower external osmolality was 

required to reach optimal activation 

of the transporter (Figure 10; Peter 

et al., 1996). Further investigations 

in the proteoliposomal system 

proved a strong influence of the membrane phospholipid composition on the activation 

profile of BetP: the higher the fraction of negatively charged phospholipids, the higher was 

the threshold concentration of K+ necessary for activation (Krämer and Morbach, 2004b). 

In particular, the regulation pattern of the reconstituted transporter resembles that of 

native BetP in C. glutamicum cells, when the liposomes comprised more 

phosphatidylglycerol (Schiller et al., 2006). Although, the internal potassium concentration 

was shown to be a specific stimulus for BetP activation, the sensitivity towards K+ seemed 

to be at least partly dependent on the net (negative) charge of the surrounding 

phospholipid headgroups in the corresponding membrane system (Table 2). 

 

 

Table 2: Phospholipid headgroup composition of the inner and outer membrane extracts from E. coli K12 and  
C. glutamicum ATCC13032 according to Morein et al. (1996) and Hoischen and Krämer (1990). 

Phospholipid net charge 
E. coli (grown at 37°C)  C. glutamicum (grown at 30°C)  

IOM IOM 
[% of total phospholipids] 

PE neutral (0) 79 ± 3 ~ 0 
PG negative (-1) 17 ± 3 87 ± 1.9 

DPG neutral (0) 4 ± 2 1 ± 0.4 
Note:  PE=phosphatidylethanolamine; PG= phosphatidylglycerol; DPG=diphosphatidylglycerol; IOM=inner and outer 

membrane fraction. 
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Figure 10: Activation profile of BetP-C252T express ed in  
C. glutamicum (black curve) and E. coli MKH13 cells (red 
curve) under hyperosmotic stimulation (Ott, 2008). The 
external osmolality was adjusted by the addition of NaCl. 
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1.9.2. BetP – Putative sensory domains and binding sites 

The potassium-specific activation of BetP requires a binding site for the ion. Except for a 

sequence homology to a potassium binding site of pyruvate kinases in loop 2 (Jurica et 

al., 1998; Schiller et al., 2004a), the primary sequence of the transporter does not include 

a motif known to be involved in K+ recognition. Due to the fact, that the half-maximal 

activation of BetP is reached at an internal potassium concentration of 220mM 

(Rübenhagen et al., 2000), the putative sensory domain of the protein is supposed to 

need high amounts of the stimulating ion to detect and transmit the signal for activation.  

In search of the defined localization of the sensor region within the protein, former 

investigations in intact C. glutamicum cells demonstrated that both hydrophilic domains of 

BetP strongly influence the activation profile. Truncation of the N-terminal domain of BetP 

led to a decrease in osmosensitivity, e.g. a higher osmotic stress was necessary to 

activate an N-terminally truncated BetP (Peter et al., 1998a). However, the truncation of 

the C-terminal domain by 25 and 45 amino acids led to deregulation of the carrier protein. 

As a consequence, these BetP mutants were permanently active in betaine transport, 

independent of the applied hyperosmotic stress. On the other hand, truncation of only 12 

terminal amino acids led to partial deregulation, e.g. the activity optimum of this ∆12 

mutant was shifted to lower osmolalities, but the protein was still able to sense K+ (Peter 

et al., 1998a; Schiller et al., 2004b). These preliminary experiments revealed, that the  

C-terminal domain (i) was crucial for sensing the stimulus (K+) and furthermore (ii) acted 

as an inhibitory element for BetP activation, because terminal deletions with more than 25 

amino acids led to a permanent activation even in the absence of osmotic stress. 

By series of constructs, it was intended to narrow down the putative sensory region within 

the last 25 amino acids of the C-terminal extension. For this purpose, a set of C-terminal 

mutants were generated via site-directed mutagenesis and analyzed with regard to an 

involvement in signal perception and/or activity regulation of BetP. It turned out, that a 

specific glutamate residue at position 572 seemed to be critically involved in potassium 

sensing: substitutions with glutamine (E572Q), aspartate (E572D), lysine (E572K) and 

proline (E572P) led to a deregulated activation profile of the respective BetP variant, 

either heterologously expressed in E. coli or reconstituted in proteoliposomes made from 

E. coli lipids (Schiller, 2004; Schiller et al., 2004b). However, in C. glutamicum cells all 

mutants - except the proline variant E572P - regained their ability to detect osmostress 

(Schiller et al., 2006). As a result, it was stated that (i) the higher amount of negatively 

charged PG (phosphatidylglycerol) in the membrane of C. glutamicum stabilizes the 

inactive conformation of the sensory domain (Table 2) and (ii) the correct conformation 

and/or orientation of the C-terminal domain is important for correct stimulus sensing.  
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The latter conclusion was drawn based on the fact that - according to former in silico and 

CD-spectroscopy analysis – the central part of the C-terminal domain (amino acid 

positions 553-586) was thought to form the secondary structure of an α-helix (Figure 11; 

Burger, 2002). The introduction of proline as a common “helix-breaker” was supposed to 

alter the conformational properties of the helix. This in turn might impair crucial protein-

potassium-membrane interactions and render BetP permanently active (Figure 11, insert 

upper left). Advanced efforts have been spent on a proline-scan within the C-terminal 

domain of BetP that confirmed this hypothesis. In addition, it could be shown that not only 

a retained integrity of the central part of the α-helix, but also the primary structure of this 

protein domain seemed to be essential to ensure a proper osmoregulated activity 

response of BetP (Ott, 2008). 

 

 

 

To summarize the results of former and current investigations spent on BetP, Figure 12 

displays a preliminary model for the osmotically induced activation of the glycine betaine 

transporter. It focuses on the presumably different conformations of the C-terminal 

extension during the activation process as a prerequisite for correct stimulus sensing and 

signal transduction.  
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Figure 11: Schematic illustration of the BetP carri er and a secondary structure prediction of the C-te rminal 
domain (3D-PSSM, http://www.sbg.bio.ic.ac.uk/~3dpssm/index2.html ). Yellow-highlighted is the predicted  
α-helical structure within the C-domain. Blue-highlighted are two engineered single proline mutants ahead (BetP-
Y550P) and in the central part of the putative α-helical stretch (BetP-E572P). The respective, deregulated activation 
profiles of both proline mutants (heterologously expressed in E.coli MKH13 cells) are depicted in the upper left. As 
comparison, the wildtype-like cysless protein (BetP-C252T) with its respective uptake rates is plotted in the same 
graph (Schiller et al., 2006). H = α-helix; C =coil; E = extended (e.g. β-form). 



Introduction 

18 

To prove whether the C-terminal conformation and/or relative orientation is altered during 

the activation process, a specific measuring method was required to allow both, the 

investigation of the functional BetP protein within a native-like surrounding (e.g. 

incorporated in proteoliposomes) and – if possible – a time-resolved monitoring of the 

putative structural changes within the C-terminal domain during an applied hyperosmotic 

upshift. For this purpose, the Electron Paramagnetic spin Resonance (EPR) spectroscopy 

was introduced as a promising tool for screening intra- and intermolecular dynamics within 

macromolecules. 
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Figure 12: Schematic illustration of the different conformations of the C-terminal domain during BetP 
activation via hyperosmotic stress or permanent act ivation via proline substitutions. 

A:  Inactive conformation of the wildtype carrier at internal potassium concentrations below the activating threshold 
(300-400mOsmol/kg). Putative interactions of the predominantly positively charged C-domain with the surrounding 
negatively charged phospholipid headgroups and/or the predominantly negatively charged N-terminal extension 
keep BetP inactive. 

B:  Upon an exposed hyperosmotic stress, the internal potassium concentration rises and a putative complex 
interaction of the C-extension with the stimulus (potassium), the surrounding lipids and/or other protein domains 
occurs, rendering the transporter active and promoting the uptake of glycine betaine. 

C: The introduction of a helix-breaking residue (proline) within the central part of the C-domain alters its 
conformation even in the absence of a hyperosmotic stress and turns BetP permanently active but not osmotically 
regulated any more.  
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1.10. EPR (Electron P aramagnetic R esonance) 
To understand the function as well as intra- and intermolecular interactions of a given 

biomacromolecule, precise knowledge of structure and dynamics is mandatory. 

Nowadays, protein structures and complexes are mainly determined by two-dimensional 

NMR (Nuclear Magnetic Resonance) spectroscopy and X-Ray crystallography (Banaszak, 

2000). Although both, X-ray crystallography and multidimensional NMR are powerful 

methods for obtaining the three-dimensional structure of proteins, these techniques are 

not suitable to determine the structure of protein transient states and the functional 

dynamics of membrane proteins. The limitations in NMR spectroscopy depend on being to 

a large extent confined to soluble proteins. Furthermore, it has a relatively low spectral 

resolution that can be improved via 13C and 15N labelling and it needs high amounts of 

highly concentrated protein samples. Although X-ray crystallography has no size or 

species limitations for the protein under study, it suffers from a technically very 

challenging preparation of high-quality crystals of proteins. Furthermore, these crystals 

only represent a “static snapshot” of one single protein conformation and thus do not allow 

studying the functional dynamics of proteins. 

In contrast, the combination of Site-Directed Spin Labelling and Electron Paramagnetic 

Resonance (SDSL-EPR) spectroscopy has become a powerful method for probing the 

structure and structural changes within proteins. The strength of the method applies to 

those proteins which are not amenable to the atomic-resolution techniques like 

multidimensional NMR spectroscopy or X-ray crystallography. In addition, the application 

of SDSL-EPR is not limited by the size of the protein and also large proteins or protein 

complexes can be studied (Hubbell and Altenbach, 1994).  

 

1.10.1. SDSL-EPR properties and benefits 

The EPR method was developed in 1944 by E. K. Zavoisky and is based on resonant 

absorption of electromagnetic radiation by substances with unpaired – so called 

paramagnetic – electrons (free radicals, transition metal ions or semiconductors). Since 

the natural occurrence of paramagnetic species in macromolecules is limited, the strategic 

introduction of a versatile probe containing a stabilized radical centre became a powerful 

tool in structure-function studies of proteins and biological systems (Figure 13; Burr and 

Koshland, 1964; Berliner, 1976). Here, natural amino acids at desired sites are replaced 

by cysteine residues via site-directed mutagenesis, which are then modified by nitroxide 

spin labels, typically MethaneThioSulfonate Spin Labels (MTSSL, Figure 13).  
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EPR spectroscopy of site-directed spin labelled biomolecules has become a powerful 

method for probing the structure and conformational dynamics of water-soluble and 

membrane proteins of arbitrary molecular weight under conditions relevant to function 

(Klug et al., 1998; Hubbell et al., 2000; Hubbell et al., 1998; Hubbell et al., 1996; Steinhoff, 

2002). The method is applicable to any protein that retains its function after spin labelling. 

The resulting EPR spectra (Figure 13, insert lower left) comprise a wealth of information 

on the spin label surrounding in the protein: (i) a restricted or a higher spin label mobility 

hints to a buried or exposed site of the spin label within the protein structure, respectively, 

(ii) time-resolved analysis of spin label interactions with secondary and/or tertiary structure 

elements allows the determination of protein dynamics and conformational changes 

during protein function on sub-ns to ms and even seconds time scale (Rink et al., 2000; 

Mchaourab et al., 1996; Steinhoff et al., 1994; Hubbell et al., 2000), (iii) accessibility 

measurements with paramagnetic, hydrophilic (oxygen) or hydrophobic (CrOx, NiEDDA) 

quenchers provide insight into the relative orientation of the spin label towards the water 

phase, the lipid phase or the protein environment (Hubbell et al., 1998; Altenbach, 1989; 

Farahbakhsh et al., 1995), and (iv) detailed structural information can be achieved by 

introducing a second paramagnetic site and determining inter- and intramolecular 

distances from about 5 to 80 Å by measuring magnetic spin-spin interactions (Eaton et al., 

1993; Jeschke, 2002; Borovykh et al., 2006; Steinhoff et al., 1991). Thus, the combination 

of local and global information from SDSL-EPR can provide sufficient information to model 
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Figure 13: Schematic illustration of the two-step p rocess of site directed spin labeling with MTS spin  label.  
First, a strategic nitroxide side chain is introduced via cysteine substitution mutagenesis. In the following, a thiol-
specific spin label (e.g. MTS= (1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl)-methanethiosulfonate) is covalently 
attached to the unique sulfhydryl group in the protein and thus serves as a stable paramagnetic EPR reporter 
probe. Exemplary, the resulting cw-EPR spectrum of a spin label with a restricted mobility is depicted in the lower 
left.  
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the structure of a protein. EPR data analysis of a series of spin labelled variants of a given 

protein thus provides the protein topography and the orientations of individual segments of 

the protein. A complete analysis allows modelling of protein structures with a spatial 

resolution at the level of the backbone fold. Furthermore, the method is sensitive to 

molecular dynamics, protein equilibrium fluctuations and conformational changes of 

functional relevance (Steinhoff and Hubbell, 1996; Hustedt and Beth, 1999; Mchaourab et 

al., 1997).  

 

1.11. Objectives of this thesis 
The aim of the present work is an analysis of structural and conformational changes within 

a particular domain (C-terminal domain) during the activation process of the secondary 

transporter BetP from Corynebacterium glutamicum. BetP is an osmoregulated glycine 

betaine uptake system that can autonomously sense its activating stimulus – the internal 

K+ concentration  - (chemosensor) and respond to an increased medium osmolality 

(trigger) with a graduated rise in transport activity (osmoregulator) (Rübenhagen et al., 

2000; Morbach and Krämer, 2004b). Despite the knowledge of the regulatory behaviour of 

BetP related to stimuli, membrane composition and the importance of terminal domains in 

osmosensing and osmoregulation (Rübenhagen et al., 2001; Schiller et al., 2004b), the 

molecular mechanisms of these processes are still unknown. Recent studies suggested 

that the C-terminal domain and in particular its conformation and relative orientation is 

crucial for a correct stimulus sensing and/or signal transduction in BetP (Schiller et al., 

2004b; Schiller et al., 2006). The current model for the activation process includes a 

complex C-domain/N-domain/phospholipid interaction in the inactive state of the 

transporter. However, upon the hyperosmotically-induced activation of BetP, a “switch”-

like movement of the C-domain towards the surrounding protein or lipid environment was 

assumed to occur (Figure 12). In addition, it was suggested that BetP forms an oligomeric 

state (i.e. trimers in detergent and in E. coli lipids) and that this quaternary structure may 

be relevant for osmosensing and/or osmoregulation as well (Ziegler et al., 2004, Ressl et 

al., submitted).  

In the present work site-directed spin labelling electron paramagnetic resonance 

spectroscopy (SDSL-EPR) was applied for the first time to probe structure and 

conformational dynamics during BetP function. We were interested in the structure and 

structural changes of the C-terminal domain or of protein domains in the close vicinity to 

the C-domain. For this purpose, we constructed three different BetP mutants with 

strategically located single cysteine residues at the beginning (S545C), in the centre 

(E572C) and close to the end (S589C) of the C-domain and monitored structural changes 

via continuous wave and pulsed EPR spectroscopy. The covalent attachment of EPR-
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specific spin probes to these cysteines intended to allow the monitoring of both, (i) 

changes in the local environment of the spin label (accessibility and mobility profiles) 

before, during and after the activation process as well as (ii) absolute distances between 

two spin labels (spin-spin interactions) in non-activated or permanently active BetP 

variants. The combination of local and global information derived from these investigations 

should provide a preliminary model for intra- and intermolecular dynamics within the 

suggested homo-trimer of the activated secondary transporter.  

Transport measurements with the selected purified and spin labelled BetP variants 

reconstituted in E. coli lipids should confirm the already characterized regulation profiles of 

each heterologously expressed (E. coli DH5α) mutant protein and attest the general 

applicability of the EPR method with regard to a functional BetP transporter (Nicklisch, 

2005).    
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2. Materials and methods 
 

If not mentioned separately, all used chemicals and reagents were purchased from the 

following manufacturers: 

 

• Anatrace Inc. (Maumee, Ohio, USA) 

• Avanti Polar Lipids Inc. (Alabaster, USA) 

• BioRad Laboratories GmbH (Munich, Germany) 

• Carl Roth GmbH + Co. KG (Karlsruhe, Germany) 

• Difco Laboratories Inc. (Detroit, USA) 

• Eppendorf AG (Hamburg, Germany) 

• Fermentas GmbH (St. Leon-Roth, Germany) 

• GE Healthcare Europe GmbH (Munich, Germany) 

• IBA GmbH (Göttingen, Germany) 

• Merck KGaA (Darmstadt, Germany) 

• Millipore GmbH (Eschborn, Germany) 

• NEB GmbH (Frankfurt am Main, Germany) 

• Qiagen GmbH (Hilden, Germany) 

• Roche Diagnostics GmbH (Mannheim, Germany) 

• SERVA Electrophoresis GmbH (Heidelberg, Germany) 

• Sigma-Aldrich Chemie GmbH (Munich, Germany) 

• Spectrum Europe B.V. (Breda, The Netherlands) 

• Toronto Research Chemicals Inc. (North York, Canada) 

• Whatman GmbH (Dassel, Germany) 

 

Note:  

� Schleicher & Schüll GmbH, Schleicher & Schüll Microscience GmbH and Schleicher & Schüll Bioscience GmbH 
were acquired by Whatman GmbH (November 2004) 

� Amersham Pharmacia Biosciences was acquired by GE Healthcare GmbH (April 2004) 
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2.1. Bacterial strains and plasmids 
 

Table 3 and Table 4 contain the summary of the bacterial strains and plasmids with their 

respective genetic properties used in this work. 

 

Table 3: E. coli strains used in this work with their respective ge notypes. 

E.coli strains  Genotype Reference 

DH5α mcr 
endA1 supE44 thi-1λ- recA1 gyrA96 relA1 DeoR ∆(lacZYA-argF) Grant et al., 

1990 U169 Φ80dlacZ ∆M15 mcrA ∆(mrr hsdRMS mcrBC) 

MKH13 
araD39 (argF-lac) U169 relA51 rps150 flbB5301 deoC ptsF25 Haardt et 

al.,1995 ∆(putPA)101 V(proP)2 ∆(proU) 
 

 

Table 4: Plasmids used in this work with the respec tive antibiotic resistance and the performed codon exchanges.  

Plasmid Resistance  Properties Reference 
pASK-IBA5 AmpR expression vector Skerra, 1994 

pASK-IBA5-betP AmpR 
pASK-IBA5 containing betP 
cloned in BsaI/HindIII cutting site; Rübenhagen et al., 

2000 
N-terminal Strep-Tag II 

pAcl1 AmpR 
pASK-IBA5-betP with codon 
exchange Rübenhagen et al., 

2001 
= C252T (cysteine-free protein) 

pAcl1 S61C AmpR pAcl1 with codon exchange S61C 
Rübenhagen, 
dissertation 2001 

pAcl1 S545C AmpR 
pAcl1 with codon exchange 
S545C 

Rübenhagen, 
dissertation 2001 

pAcl1 E572C AmpR 
pAcl1 with codon exchange 
E572C 

Schiller et al., 2006 

pAcl1 S589C AmpR 
pAcl1 with codon exchange 
S589C 

Nicklisch, diploma 
thesis 2005 

pAcl1 S545C/S589C AmpR pAcl1 with codon exchange 
S545C and S589C 

Nicklisch, diploma 
thesis 2005 

pAcl1 S545C/Y550P/S589C AmpR 
pAcl1 with codon exchange 
S545C, Y550P and S589C 

Nicklisch, diploma 
thesis 2005 

Note:  AmpR = resistance towards ampicillin and derivatives (e.g. carbenicillin)  

 

 

2.2. Growth media and cultivation conditions 
 

2.2.1. Growth media for E. coli cells 

The cultivation of E. coli cells was performed in rich medium LB (Lysogeny Broth, “Luria 

broth”) with 10g/L Bacto-tryptone (Difco, Detroit, USA), 5g/L yeast extract and 10g/L NaCl 

(Sambrook et al., 1989). For agar plates 15g/L Bacto-Agar (Difco, Detroit, USA) was 

added before autoclaving. If appropriate, the medium was supplemented with the 

antibiotic carbenicillin to a final concentration of 50µg/ml.  
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For the production of transformation-competent E. coli cells the SOB medium (2% Bacto-

tryptone, 0.5% yeast extract, 10mM NaCl, 2.5mM KCl, 10mM MgSO4, 10mM MgCl2) was 

used  according to Hanahan (1985). This nutritionally rich and isotonic medium supports 

cell survival during the preparation and transformation process due to the provision of a 

source for nitrogen and growth factors (yeast extract) as well as essential ions for a 

variety of enzymatic reactions and DNA replication (e.g. NaCl, KCl, MgSO4). Subsequent 

to the transformation with foreign plasmid DNA, the stressed E. coli cells were 

regenerated in SOB medium supplemented with 20mM glucose (= SOC medium) to 

provide a readily available carbon and energy source for mending the cell perforations 

made to facilitate the entering of DNA. 

 

2.2.2.  Expression and cultivation conditions 

All E. coli strains used in this work were cultivated in shaking flasks with lateral baffles 

under aerobic conditions at 37°C. The growth of the  bacterial cultures was followed by 

determining the Optical Density (OD) of the medium at 600nm (Optical thickness of the 

used micro cuvettes=10mm; Spectrophotometer Novaspec II, GE Healthcare Europe 

GmbH, Germany). For E. coli cells an OD600 of 1 corresponds to a bacterial suspension of 

approximately 109
 cells per ml. For heterologous overexpression, the respective betP 

gene was cloned into the vector pASK-IBA5 (IBA GmbH, Göttingen), in which Strep-betP 

is under the control of the tetA promotor. Afterwards, E.coli DH5α cells were transformed 

with the resulting plasmid DNA. These cells were then cultivated over night in 5ml LB 

medium supplemented with carbenicillin (50µg/ml) at 37°C. Subsequently, the cells were 

transferred into fresh LB medium with an optical density (OD600) of 0.1 and cultivated at 

37°C. When the cultures reached an optical density of OD600=1, betP expression was 

induced by the addition of 200µg AnHydroTetracycline (AHT) per litre culture and cells 

were harvested after 3-4h growth. 

To increase the yields of cell mass, the respective cells were also cultivated in a 10L 

Braun glass vessel fermenter (Sartorius AG, Göttingen). For this purpose, the starter 

cultures of E. coli DH5α cells were prepared as described above. Hence, the main culture 

was grown at 37°C with an air flow rate of 10l/min and a stirring rate of 1200RPM. To 

prevent excessive foaming, 1ml of PolyPropylene Glycol (PPG; Sigma, Munich, Germany) 

was added prior to the induction. When the cultures reached an optical density of 

OD600=1, betP expression was induced by the addition of 100µg AnHydroTetracycline 

(AHT) per litre culture and cells were harvested after 3-4h growth. The concentration of 

the inductor (AHT) had to be halved, because cultures treated with 200µg AHT per litre 

medium stopped growing or even died after 1-2h of induction (“scale-up” problem).  
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2.3. Molecular biological approaches 
 

2.3.1.  Preparation of competent E. coli cells and transformation 

The method of Inoue et al. (1990) was used to prepare competent E. coli DH5α cells and 

to transform these cells with (recombinant) plasmid DNA. For this purpose, 5ml LB 

medium were inoculated with E. coli cells and cultivated for 8h at 37°C. 1ml of this cu lture 

was used to inoculate 250ml SOB medium and cells were then cultivated for further 16h at 

37°C until an optical density of OD 600=0.6 was reached. Subsequently, the culture was 

chilled on ice for 10min. Cells were harvested by centrifugation (2000g, 4°C, 10min). The 

cell pellet was suspended in 80ml ice-cold TB buffer (10mM Pipes, pH 6.7; 250mM KCl; 

55mM MnCl2; 15mM CaCl2) and thereupon collected by a second centrifugation step 

(2000g, 4°C, 10min). Cells were then suspended in 2 0ml ice-cold TB buffer before DMSO 

was added stepwise, until a final concentration of 7% (v/v) was reached, and incubated for 

10min on ice. Aliquots of 100µL were transferred into pre-cooled reaction tubes, 

immediately frozen in liquid nitrogen and stored at -80°C. For transformation, a 100 µL 

aliquot of competent E. coli cells was thawed on ice and 5-10µl ligation product or about 

1µl plasmid DNA was added. Then, the cells were incubated for 30min on ice. After heat 

shock at 42°C for 45s, cells were immediately mixed  with 400µL SOC medium and 

cultivated for 1h at 37°C. The cell suspension was plated on LB agar plates containing 

50µg/ml carbenicillin, and cultivated for 16h at 37°C.  

To prepare competent E. coli MKH13 cells the method of Chung et al. (1989) was used. In 

short, 5ml LB medium were inoculated with E. coli MKH13 cells and cultivated for 16h at 

37°C. Then 150µl of this culture was used to inocul ate 15ml LB medium and cells were 

cultivated for another 16h at 37°C until an optical  density of OD600=0.4 was reached. For 

each transformation, a 1ml aliquot was transferred into a reaction tube. After 

centrifugation (2000g, 4°C, 5min), cells were suspe nded in 100µl TSS buffer (LB medium, 

10% PEG, 5% DMSO, 50mM MgCl2) and 1µl of plasmid DNA was added to the final 

solution. Then, the cells were incubated for 30min on ice. Subsequently the cells were 

mixed with 400µl SOC medium and cultivated for 1h at 37°C. The cell suspension was 

plated on LB agar containing 50µg/ml carbenicillin, and cultivated for 16h at 37°C.  

 

2.3.2.  DNA techniques 
 

2.3.2.1. Isolation of plasmid DNA from E. coli 

The isolation of plasmid DNA from E. coli cells was performed following a modified 

method of alkaline lysis (Birnboim and Doly, 1979). For this purpose, 2ml of an overnight 

culture of E. coli cells with an appropriate amount of antibiotic was used. For the isolation 
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of plasmid DNA from this culture, the NucleoSpin® Plasmid DNA Purification kit 

(Macherey-Nagel, Düren, Germany) was used as recommended by the manufacturer. In 

contrast to the original protocol, the cells of the overnight culture were centrifuged at 

11.000g for 2min and the final elution of plasmid DNA was carried out with 50µl of 

autoclaved H2Odd.  

 

2.3.2.2. Gel electrophoresis and extraction of DNA from agarose gels 

Gel electrophoresis of DNA was performed using 0.8 to 2% (w/v) agarose gels in 1xTAE 

buffer (40mM Tris; 2mM EDTA, pH 8.0; 20mM acetic acid) as described by Sambrook et 

al. (1989). For this purpose, DNA samples were mixed with 5xLoading Dye (Fermentas, 

St. Leon-Roth, Germany). After electrophoresis, the DNA was stained with ethidium 

bromide. For the detection of stained DNA, the Image Master VDS system (Amersham 

Biosciences, Freiburg, Germany) was used.  

 

2.3.2.3. Polymerase chain reaction (PCR) 

The in vitro amplification of specific DNA fragments was performed by the polymerase 

chain reaction (PCR, Mullis et al., 1986) using the Taq PCR Master Mix (Qiagen, Hilden, 

Germany) as recommended by the manufacturer. For this purpose, two primers were 

used, flanking the DNA region, which should be amplified. Primers were diluted to a 

concentration of 10pmol/µl with autoclaved H2Odd. The annealing temperature was chosen 

with respect to the respective base sequence of the forward and reverse primer. For each 

guanine and cytosine 4°C, for each adenine and thym ine 2°C are required to separate the 

hydrogen bonds. Total DNA, plasmid DNA, or a cell suspension, which was diluted in 

H2Odd and incubated for 10min at 95°C, were used as templ ates. The PCR reaction was 

performed using the thermocycler Mastercycler®
 personal or Mastercycler® gradient 

(Eppendorf AG, Hamburg, Germany). A 20µl PCR reaction mixture was prepared as 

follows: 

• 10µl Master-Mix (Qiagen, Hilden) 

• 1µl primer forward [10µM] 

• 1µl primer reverse [10µM] 

• 1µl template 

• H2Odd ad 20µl 

The amplification reaction was initiated by denaturing the template for 4min at 95°C. The 

following steps were performed in 30 cycles: Denaturing the DNA for 30 seconds at 95°C, 

hybridization of the primers for 30 seconds at the specific annealing temperature, and 

polymerisation for 1 min per kb at 72°C. After fina l incubation for 10min at 72°C, the 

samples were kept at 4°C or -20°C. To separate the PCR product from the starting 
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material (template, primers, reagents) and for subsequent cloning experiments, the PCR 

product could be purified either with the NucleoSpin®
 Extract Kit (Macherey-Nagel, Düren, 

Germany) as recommended by the manufacturer, or by agarose gel electrophoresis as 

described in section 2.3.2.2. 

 

2.3.2.4. DNA sequencing 

After mutagenesis or cloning, the respective plasmid constructs were sequenced to check 

if only the desired mutations were introduced and no accessory mutations occurred during 

the PCR reaction. The underlying sequencing method is based on the dideoxy 

sequencing or chain termination method developed by Sanger et al. (1977) with 

modifications done by Zimmermann et al. (1990). In short, chain termination occurs due to 

the use of dideoxynucleotides (ddNTPs), which are labelled with different fluorescent 

dyes. These modified nucleotides, when integrated into a sequence, prevent the addition 

of further nucleotides and thus the DNA chain is terminated (“chain termination”). The 

resulting sequencing products are separated by capillary electrophoresis and 

subsequently detected with automatic sequencing equipment. Thus, chain terminations 

closest to the primer generate the smallest DNA molecules (which migrate faster through 

the capillary), and chain terminations farther away from the primer generate larger DNA 

molecules (which are slower and therefore will be detected later). Detecting the terminal 

fluorescent dye of each fragment with a one-base-offset finally identifies the whole DNA 

sequence. 

For this purpose, PCR products (10-50ng/µl) or plasmid DNA (30-100ng/µl) and the 

respective forward or reverse sequencing primers (10pmol/µl) were transferred to a 

reaction tube and send to an external sequencing laboratory (GATC Biotech AG, 

Konstanz, Germany).  

 

2.4. General analytical approaches 
 

2.4.1.  Determination of protein concentrations 

It has to be noted that although the molecular mass of the used standard protein Bovine 

Serum Albumin (BSA, 66.4kDa) in the assays is similar to the BetP (64.2kDa), the amino 

acid composition is different. This systematic error (e. g. a different amount of basic amino 

acid residues (His, Lys, Arg): BetP=47, BSA=102) may thus lead to an underestimation of 

the real protein content in the samples and have to be taken into account for the 

quantitative analyses (Peter et al., 1996; Racusen, 1973; Brown, 1975; Reed et al., 1980, 

Hirayama et al., 1990).  

 



Materials and Methods 

29 

2.4.1.1. Bradford analyses 

For the determination of the protein concentrations of soluble protein preparations or 

whole cell extracts, the method of Bradford (1976) was used. This method bases on 

binding of the dye Coomassie (Coomassie Brilliant Blue G-250) to arginine and 

hydrophobic residues in a protein which induces an absorbance shift in the dye from 

470nm (unbound) to 595nm (bound). Accordingly, the increase in absorbance at 595nm is 

proportional to the protein amount in the respective sample. 

The used Roti®Quant kit (Carl Roth GmbH + Co. KG, Karlsruhe, Germany) provided a 

linear measuring range of the assay with BSA (Bovine Serum Albumin) that stretches from 

5 up to 2000µg/ml (Roti®-Quant Universal Operating Manual). For each measurement, 1 

to 10µg of protein was diluted in 100µl H2Odd and supplemented with 900µl 1xRoti®Quant 

reagent. Solutions of BSA (NEB, Frankfurt/Main, Germany) with known concentrations 

were used as standard. The optical density of the samples was measured at 595nm and 

the respective concentration of the BetP protein in solution was determined by the use of 

a BSA calibration curve. 

 

2.4.1.2. Amido Black analyses 

For determination of the concentration of membrane proteins after the affinity purification 

or reconstitution, the Amido Black method (Schaffner and Weissmann, 1973) was used. 

This method was selected, because it is less susceptible to interference by the presence 

of detergents or lipids in the sample solution and has a higher sensitivity (down to 

0.75µg/ml protein, Schaffner and Weissmann, 1973) compared to e.g. the Bradford assay 

(2.4.1.1). The Amido Black dye stoichiometrically binds to basic amino acids (Arg, Lys, 

His) in a protein and can be quantified by measuring the optical density at 630nm and 

comparing it to the respective absorption of a standard protein (e.g. BSA) with known 

concentration.  

For this purpose, 5-20µl of highly concentrated BetP elution fractions (confirmed by UV 

detection of the major elution peak) was diluted in H2Odd to a final volume of 225µl. 

Solutions of BSA were used as a standard. Subsequently 30µL solution 1 (1M Tris, 2% 

SDS, pH(HCl) = 7.4) and 50µL solution 2 (90 % trichloroacetic acid) were added to the 

sample, mixed and incubated for 2min at room temperature (RT). A nitrocellulose filter 

(HA membrane filters, pore diameter 0.45µm, Millipore, Eschborn, Germany) was 

temporary equilibrated with H2Odd and then placed on the Millipore filter system. The 

samples of interest were applied as distinct spots on the filter and washed with 200µl 

solution 3 (6% trichloroacetic acid). After rinsing the filter with another 2ml of solution 3, 

the samples were dyed for 10min in Amido Black dye solution (0.25% (w/v) Amido Black, 

45% (v/v) methanol, 10% (v/v) acetic acid). Then, the filter was washed in H2Odd, 
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decolorized 2-3 times using solution 4 (90% (v/v) methanol, 2% (v/v) acetic acid), rinsed 

again with water, and dried at RT for 5-10min. Each protein spot was then transferred into 

1ml of solution 5 (25mM NaOH, 50µM EDTA, 50% (v/v) ethanol) and incubated at RT for 

10min under constant shaking. The optical density of the obtained solutions was 

measured at 630nm and the concentration of each sample was determined by the use of 

a BSA calibration curve. For an optimal coherency and a correct correlation between 

absorption colorimetry and used protein concentration, the spots of the standard proteins 

were always applied to the same filter as the spots of the protein sample of unknown 

concentration. 

 

2.4.2.  SDS-Polyacrylamide Gel Electrophoresis (PAG E) 

For the electrophoretic analyses of proteins under denaturing conditions, cell extract, 

isolated proteins, or proteoliposomes were diluted in loading dye (4% SDS, 20% glycerol 

(w/v), 50mM Tris, 2% β-mercaptoethanol (v/v), 10mM EDTA, 0.01% serva blue G, 

pH(HCl)=6.8) and subjected to SDS-PAGE using 12% SDS polyacrylamide gels (Laemmli 

et al., 1970).  

 

A 12% separation gel was composed of:  

• 6ml separation gel buffer (1.5M Tris, 0.4% SDS, pH(HCl)=8.8) 

• 8.4ml H2Odd 

• 9.6ml acryl amide : bisacrylamide (30 : 0.8) 

• 240µl ammonium persulfate (100mg/ml) 

• 10µl TEMED 

 

A 5% stacking gel was composed of: 

• 2.5ml stacking gel buffer (0.5 M Tris, 0.4% SDS, pH(HCl)=6.76) 

• 5.9ml H2Odd 

• 1.6ml acryl amide : bisacrylamide (30 : 0.8) 

• 100µl ammonium persulfate (100mg/ml) 

• 10µl TEMED 

 

10xelectrophoresis buffer: 250mM Tris, 1.92M glycine, 35mM SDS, pH(HCl)=8.2 to 8.3. 

 

Gel electrophoresis was performed in MINI Vertical Dual Plate Electrophoresis Units (Carl 

Roth GmbH, Karlsruhe, Germany) at 50-60V for 30-45min in the stacking gel phase and 

subsequently at 140-160V for 45-60min in the separation gel phase. The visualization of 

proteins within the SDS gels was performed by means of Coomassie Brilliant Blue 
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staining developed by Sambrook et al. (1989). For this purpose, the SDS-gels were 

incubated in staining solution (0.2% Coomassie Brilliant Blue G-250, 45% (v/v) methanol, 

10% acetic acid) for 1 to 16 h, followed by decolorizing of the gels using 10% acetic acid. 

 

2.4.3.  Immunoblot analyses 

The detection of specific proteins after gel electrophoresis was carried out by means of 

immunoblotting. For this purpose, the proteins were transferred from the SDS gels to an 

Immobilon™-P PolyVinylidene DiFluoride (PVDF) membrane (Millipore, Roth, Karlsruhe, 

Germany) by semi-dry blotting (Kyhse-Anderson, 1984). The membrane was first 

moistened in methanol and then temporary equilibrated in transfer buffer (10mM CAPS, 

10% (v/v) methanol, pH(NaOH)=11) before use. Subsequently, the membrane was placed 

on top of six filters (Whatman GmbH, Dassel, Germany), which were equilibrated in the 

same buffer. The SDS-gel was applied on top of the membrane and covered with another 

six filters, which were also equilibrated in transfer buffer. The protein transfer was 

performed with a semi-dry blotter (GE Healthcare, Munich, Germany) for 45min at 

0.8mA/cm2 membrane area. After incubation for 60min in blocking buffer (50mM Tris, 

0.15M NaCl, 3% (w/v) BSA, pH(HCl)=7.5) at RT, the membrane was incubated for further 

60min in blocking buffer supplemented with the first antibody (Strep-tag II antibody (MAB), 

IBA GmbH, Göttingen, Germany), using a 1 : 1000 dilution. After 3 washing steps with 

washing buffer (50mM Tris, 0.15M NaCl, 0.3% (w/v) BSA, pH(HCl)=7.5) for 20min each, 

the second antibody (Anti-Mouse IgG alkaline phosphatase, Sigma-Aldrich, Munich, 

Germany), was diluted 1 : 10000 in blocking buffer, and the membrane was incubated in 

this solution for 60min at RT. After three additional washing steps (20min each), the signal 

was detected by the addition of the alkaline phosphatase substrate BCIP (5-Bromo-4-

Chloro-3-Indolyl Phosphate) and NBT (Nitro-Blue Tetrazolium Chloride) in reaction buffer 

(100mM Tris, 100mM NaCl, 5mM MgCl2, pH(HCl)=9.5) to a final concentration of 0.02% 

and 0.03%, respectively (Roth, Karlsruhe, Germany). The alkaline phosphatase 

hydrolyses BCIP to form an intermediate that dimerises to a "Dehydroindigo" precipitate 

exhibiting a dark-blue indigo dye. At the same time NBT (oxidant) is reduced to the dark-

blue NBT-diformazan by the two reducing equivalents generated by the dimerisation.  

Due to the fact that the reaction proceeds at a steady rate, the signal intensity was 

increased with a longer incubation of the membrane with the reagents (5 to 60min in the 

dark), before the reaction was stopped by the addition of H2Odd. 
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2.4.4.  Determination of the osmolality 

For the determination of the osmolality of 

buffers and media, an osmometer (Osmomat 

O30, Gonotec, Berlin, Germany) was used as 

recommended by the manufacturer.  

This device uses the technique of freezing 

point depression to determine the osmotic 

strength of a given solution. Thereby, the 

sample is thermoelectrically cooled down to  

-7°C (cooling without freezing) and 

subsequently frozen by means of a vibrating 

wire (Figure 14). The formation of ice  

(-crystals) then produces warmth that leads to 

a specific increase in temperature. For pure H2Odd this temperature rise is saturated at 

0°C (= freezing point of pure water). Depending on the amount of solutes in the respective 

sample this freezing point is proportionally depressed and thus allows determining the 

concentration of dissolved particles in a given solution.  

Prior to each determination series, pure H2Odd served as blank value and 9.46g NaCl/kg 

H2Odd (0.3osmol/kg) as standard solution to calibrate the device. For each measurement a 

total sample volume of 50µl was used. 

 

2.5. Biochemical approaches 
 

2.5.1.  Membrane preparation 

For the isolation of BetP derivatives, E. coli DH5α mcr cells transformed with pASK-IBA5-

strep-betP (BetP fused to a Strep-tag at its N-terminus) were cultivated at 37°C in LB 

medium and supplemented with carbenicillin (50µg/ml). Induction was carried out in 

exponentially growing cells (OD600=0.9) upon the addition of 200µg 

anhydrotetracycline/litre cell culture. The cells were harvested 3-4h after induction, 

washed (100mM KPi, pH=7.5) and stored at -20°C for long time or at 4 °C in the case the 

membrane preparation was scheduled for the next day. To prepare membranes, the cells 

were thawed on ice and suspended in lysis buffer (100mM KPi, pH=7.5; 1mM EDTA; 

2µg/ml buffer DNAse (Sigma-Aldrich, Munich, Germany); 1 tablet EDTA-free Complete 

protease inhibitor (Roche, Mannheim, Germany) per 100ml buffer). Subsequently, cells 

were disrupted by three passes through a high-pressure cell in a French® Press (Thermo 

Electron Corporation, Needham Heights, USA) with an effective internal cell pressure of 

10.000 PSI. Afterwards, the crude extract was centrifuged for 30min at 12.000g and 4°C 
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Figure 14: Schematic illustration of the freezing 
point depression determination method with the 
Osmomat O30. ∆T = freezing point depression. 
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to separate the cell debris. The supernatant was then ultracentrifuged for 45min at 

210.000g at 4°C to collect the desired membrane fra ction. Membranes were washed once 

in lysis buffer and collected via ultracentrifugation (45min, 210.000g, 4°C). Aliquots of 1ml 

were transferred into reaction tubes, frozen in liquid nitrogen and stored at -80 °C until 

further usage.  

 

2.5.2.  Purification of Strep-BetP by Strep-tag II / StrepTactin 
affinity chromatography 

The isolation and purification of Strep-BetP from the E. coli membranes was carried out by 

Strep® tag II affinity chromatography (IBA, Göttingen, Germany) via FPLC (fast protein 

liquid chromatography, GE Healthcare, Munich, Germany). For this purpose, the 

respective membranes were first dissolved in solubilisation buffer (50mM KPi, pH=7.5; 

8.6% glycerol; 1mM EDTA). The membrane solubilisation was performed via the drop 

wise addition of 2% (w/v) DDM (n-dodecyl-β-D-maltopyranoside, Anatrace, Ohio, USA) 

and incubation for 30-60min at 4°C under constantly  stirring. Membranous remains were 

separated by centrifugation for 20min at 87.000g and 4°C in a Beckman TLX 

ultracentrifuge (Beckman, Munich, Germany) and the supernatant diluted 1:4 with low-salt 

purification buffer lacking DDM (50mM KPi, pH 7.5; 200mM NaCl; 8.6% glycerol; 1mM 

EDTA) was collected. The diluted supernatant fraction containing solubilised Strep-BetP 

was then purified by Strep-tag® II/StrepTactin affinity chromatography (IBA, Göttingen, 

Germany), using a 5-ml column of Strep-Tactin® MacroPrep® resin. The column was pre-

equilibrated with 10 column volumes low-salt purification buffer (50mM KPi, pH 7.5; 

200mM NaCl; 8.6% glycerol; 1mM EDTA, 0.1% DDM) before the soluble membrane 

proteins were applied to the column. Subsequently to the application of the supernatant 

fraction, two washing steps with 10 column volumes high-salt (50mM KPi, pH=7.5; 500mM 

NaCl; 1mM EDTA; 8.6% glycerol, 0.1% DDM) and 10 column volumes low-salt purification 

buffer were carried out. In the case when spin labelled BetP variants were used, an 

intermediate step during the purification was added (2.5.3). Non-labelled Strep-BetP 

variants were eluted with 35ml purification buffer supplemented with 5mM DesThioBiotin 

(DTB). The elutions were fractionated in 2ml reaction tubes, frozen in liquid nitrogen and 

stored at -80°C until further usage. The flow rate during all washing and elution steps was 

adjusted to 0.5ml/min and the whole chromatography was performed at 4°C.  
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2.5.3.  Site-directed spin labelling (SDSL) with th iol specific 
reporter molecules 

To probe the structural and dynamic aspects of the BetP protein using the EPR (Electron 

Paramagnetic Resonance, section 1.10) method, it is crucial to incorporate a specific 

reporter molecule at strategic amino acid positions within the carrier structure. Nitroxide 

spin labels are the most popular organic radicals used as markers in EPR spectroscopy. 

This is because nitroxide probes have a high stability and a well-known shape of EPR 

spectra. Among these spin labels, thiol-specific alkyl-thiosulfonates are the most important 

ones, because they possess a very high specificity and a rapid reactivity concerning the 

covalent attachment to native or engineered cysteine residues by a disulfide bond 

formation.  

For this purpose both, spin labelling and the pre-treatment with the reducing agent 

DiThioThreitol (DTT; Sigma-Aldrich, Munich, Germany) were performed at 4°C directly on 

the Strep Tactin column after binding of Strep-BetP and the subsequent washing steps 

that remove unspecific bound protein (2.5.2). All washing steps prior to the labelling 

procedure were carried out with degassed (15-20min sonification) low-salt purification 

buffer (50mM KPi, pH 7.5; 200mM NaCl; 8.6% glycerol; 1mM EDTA, 0,1% DDM) to 

prevent the spontaneous oxidation of cysteines to cystines (cysteine dimers). Accordingly, 

the thiol groups of the target cysteines were first reduced with two column volumes of 

freshly prepared 10mM DTT dissolved in low-salt purification buffer, incubated for 3h and 

then washed in excess (5-10 column volumes) with the same degassed buffer. 

Subsequently, the reaction with the nitroxide spin label ((1-oxyl-2,2,5,5-

tetramethylpyrroline-3-methyl) methanethiosulfonate, MTS; Toronto Research Chemicals, 

North York, Canada) was carried out on the column with a molar spin label-to-protein ratio 

of 10:1 for 16h at 4°C. Unbound spin label was remo ved by washing with 10 column 

volumes of low-salt buffer and subsequently the labelled BetP-protein was eluted from the 

column using the purification buffer supplemented with 5mM desthiobiotin (Sigma-Aldrich, 

Munich, Germany). 

 

2.5.4.  Preparation of macroporous polystyrene bead s (Bio-Beads 
SM2) 

To remove the detergent during both types of reconstitution applied in this work (2.5.6 and 

2.5.7) a hydrophobic, insoluble adsorbent (Bio-Beads SM2, BioRad, Munich, Germany) 

was used. Bio-Beads were prepared as described by Holloway at al. (1973). In short, 30g 

of Bio-Beads were added to 200ml methanol and incubated for 15-30min at RT under 

gently stirring. The swelled beads were collected on a sintered glass funnel and washed 
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with further 500ml methanol. Immediately after this, the beads were washed with 2-3l of 

H2Odd avoiding desiccation and stored in H2Odd until further usage. 

 

2.5.5.  Liposome preparation 

For the preparation of liposomes, E. coli phospholipids (Polar Lipid Extract, 20mg/ml in 

chloroform, Avanti Polar Lipids, Alabaster, USA), or synthetic phosphoatidylglycerols 

(DOPC, 1,2-Dioleoyl-sn-Glycero-3-Phosphocholine; DOPG, 1,2-Dioleoyl-sn-Glycero-3-

Phosphoglycerol; Avanti Polar Lipids, Alabaster, USA) were used. For this purpose, the 

solvent was evaporated to dryness in a rotary evaporator (30°C; temperature should be at 

least above phase transition temperature of the lipids). Traces of solvent were removed 

overnight (16h) by freeze-drying (lyophilisation). Subsequently, the lyophilized lipids were 

dissolved in 100mM KPi, 2mM β-mercaptoethanol, pH=7.5, to a final concentration of 

20mg of phospholipids/ml suspension, frozen in liquid nitrogen and stored at -80°C. For all 

experiments dealing with labelling of cysteine residues, the lyophilized lipids were 

suspended in 100mM KPi (pH=7.5) buffer lacking β-mercaptoethanol, because this 

antioxidant reduces disulfide bonds. To avoid lipid oxidation during preparation and long-

term storage, the aliquots were kept under a nitrogen atmosphere. Prior to use, liposomes 

were formed by extrusion (Avanti Mini-Extruder, Avanti Polar Lipids, Alabaster, USA) 15 

times through polycarbonate filters (pore diameter 400nm, Whatman, Dassel, Germany).  

 

2.5.6.  Reconstitution of Strep-BetP derivatives in to E. coli 
liposomes (Bio-Beads) 

If not mentioned otherwise, the purified betaine carrier was reconstituted into lipids as 

described by Rigaud et al. (1995). In short, E. coli lipids prepared from E. coli polar lipid 

extract were diluted to a concentration of 5mg/ml in extrusion buffer and extruded (Avanti 

Mini-Extruder, Avanti, Alabaster, USA) 15 times through polycarbonate filters (pore 

diameter 400nm, Whatman, Dassel, Germany). The resulting liposomes were solubilised 

by stepwise addition of 20% (v/v, in H2Odd) Triton X-100. The insertion of detergent was 

monitored by measurement of the turbidity at 540nm. Upon saturation with detergent, the 

liposomes were incubated for 20min at RT and subsequently mixed with Strep-BetP in 

elution buffer at a lipid-to-protein ratio of 30:1 (w/w). The mixture was incubated for 30-

60min at RT under gentle stirring. To remove detergent, SM2 Bio-Beads (BioRad, Munich, 

Germany), pre-washed with H2Odd, were added at a Bio-Bead (wet weight, filter-dried) to 

Triton X-100 ratio of 5 and a Bio-Beads to DDM ratio of 10 (w/w). The mixture was kept 

under gentle stirring at room temperature for 1h, and the same amount of fresh Bio-Beads 

was added. After 1h of gentle stirring, the double amount of fresh Bio-Beads was added, 

and the mixture was stirred at 4°C. After 16h, the single amount of Bio-Beads was added 
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and the mixture was gently stirred for an additional hour at 4°C. Finally, the Bio-Beads 

were separated from mixture and the solution was centrifuged for 20min at 337.000g and 

4°C in a Beckman TLX ultracentrifuge (Beckman, Muni ch, Germany) to collect the formed 

proteoliposomes. After centrifugation, the proteoliposomes were extruded 15 times 

through polycarbonate filters (pore diameter 400nm) in 100mM KPi (pH=7.5) and washed 

two times by centrifugation (20min, 337.000g, 4°C) and suspension in the same buffer. 

The resulting suspension was adjusted to 60µg lipid/µl solution, frozen in liquid nitrogen, 

and stored at –80°C. 

 

2.5.7.  Reconstitution of Strep-BetP derivatives in to E. coli 
liposomes (Bio-Beads/dialysis) 

The solubilisation and preforming of E. coli liposomes was done as described in section 

2.5.6. Then, solubilised BetP-SL protein was added at a lipid-to-protein ratio of 20:1 (w/w) 

and incubated for 30min at room temperature under constant stirring to promote protein 

incorporation. To remove excess detergent, a combination of dialysis and hydrophobic 

adsorption on SM2 Bio-Beads (Biorad, Munich, Germany) was used. In short, the dialysis 

bag (50kDa cut-off, Cellulose Ester, Spectra-Por/Float-A-Lyzer, Spectrum Europe B.V., 

The Netherlands) was loaded with the mixed lipid-protein-detergent micelles and dialysed 

(1:50) against 100mM KPi (pH 7.5) supplemented with 1mM EDTA. Additionally, Bio-

Beads were added to the external buffer with a Bio-Bead (wet weight, filter-dried) to Triton 

X-100 ratio of 5 and a Bio-Bead to DDM ratio of 10 (w/w) per batch. The batch procedure 

was segmented in three parts: adding fresh Bio-Beads and incubation for 1h at room 

temperature, adding the double amount of fresh Bio-Beads and incubating over night at 

4°C and on the next day adding fresh Bio-Beads and incubating again for 1h at 4°C. 

Finally, the formed proteoliposomes were collected by ultracentrifugation (20min, 

337.000g, 4°C), washed 3 times in 100mM KP i (pH 7.5) and concentrated to yield a total 

BetP concentration of 50-100µM (100µM ~ 6.42mg/ml). Proteoliposomes were frozen in 

liquid N2 and stored at –80°C until use. 

 

2.5.8.  Variation of the lipid composition in prote oliposomes 

One big drawback of the new Bio-Bead/dialysis reconstitution method (2.5.7) was the fact, 

that not only the detergent molecules of dodecylmaltoside (Mr = 511Da; aggregation 

number = 110-140; Le Maire et al., 2000) and Triton X-100 (Mr = 625Da; aggregation 

number = 75-165; Le Maire et al., 2000) could pass the dialysis bag (mean cut-off = 

50kDa) and get absorbed by the externally applied Bio-Beads but also the lipid molecules 

with a mean molecular mass of about 700-1000Da. Accordingly, the Lipid-to-Protein Ratio 

(LPR) after the dialysis had to be readjusted, to guarantee proper sealed proteoliposomes 
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and a functional protein incorporation. In addition, the introduction of negatively charged 

lipids (DOPG) should mimic the native lipid composition of the C. glutamicum membrane 

and thus allow the detailed analysis of the lipid effects on the regulation properties of BetP 

(Table 2, Introduction). 

For this purpose, proteoliposomes made from E. coli phospholipids were fused with 

liposomes or emulsions composed of synthetic phospholipids. Hence, proteoliposomes 

were prepared as described in sections 2.5.6 and 2.5.7 with a starting lipid-to-protein ratio 

of 20:1 (w/w). These proteoliposomes were then mixed with an appropriate amount of 

synthetic lipids (e.g. DOPC, 1,2-Dioleoyl-sn-Glycero-3-Phosphocholine, Avanti Polar 

Lipids, Alabaster, USA) and extruded (15 times). Before freezing the samples in liquid 

nitrogen and storing at -80°C, the samples were sub jected to a freeze-thaw cycles for 

three times (Kasahara and Hinkle, 1977; Pick, 1981) in order to assure a proper 

integration of the fused lipids. 

 

2.5.9.  Transport measurements (glycine betaine upt ake in 
proteoliposomes) 

To test whether the 

introduction of a spin 

label at a distinct 

cysteine position within 

the carrier is not 

detrimental for the 

functional activity of 

BetP, proteoliposomes 

of the respective BetP-

SL variants were 

prepared as described 

in sections 2.5.6 and 

2.5.7 and their glycine betaine uptake rates were determined via radiochemical transport 

measurements (Figure 15). For this purpose, proteoliposomes were gently thawed at 

room temperature and extruded 15 times through a polycarbonate filter (400nm pore size, 

Whatman, Newton, USA). The homogenized proteoliposomes were collected by 

ultracentrifugation (20min, 337.000g, 4°C). The fin al sample was suspended in the 

extrusion buffer (100mM KPi, pH=7.5) to a lipid concentration of 60mg lipid/ml suspension. 

During the transport measurements, an appropriate amount of proteoliposomes with 2-

2.5µg BetP was diluted 200-fold in 50mM NaPi (pH=7.5; ~100mosmol/kg) containing 

15µM [14C] glycine betaine and 0.5µM valinomycin to create an outwardly directed K+ 
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Figure 15: Schematic illustration of the glycine be taine uptake into BetP-
containing proteoliposomes upon a hyperosmotic stre ss induced carrier 
activation. The hyperosmotic upshift leads to an efflux of water out of the 
proteoliposomes and thus to a passive increase in the internal K+ concentration. 
This in turn renders BetP active (half-maximal activation = 220mM K+; 
Rübenhagen et al., 2001) and the radiolabelled glycine betaine (GB, red-blue 
stars) can be taken up in symport with sodium ions. 
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diffusion potential. To establish hyperosmotic conditions, proline (up to 800-900mM) was 

added to the external buffer (100mM KPi, pH=7.5). The uptake measurements were 

started with the addition of the liposomes and samples were taken and filtered rapidly 

through 0.45µm GS nitrocellulose filters (Millipore, Eschborn, Germany) on a multiple 

filtration unit (Hoefer, GE Healthcare, Munich, Germany) after 5 and 10s. The filters were 

immediately washed with 100mM LiCl, and the radioactivity (β- decay) was determined by 

liquid scintillation counting (Beckman, Munich, Germany). 

 

2.5.10. Determination of proteoliposomal leakage 

An indispensable prerequisite for high quality EPR studies on BetP-containing 

proteoliposomes in terms of salt-induced activation was a preceding verification of the 

liposomal integrity, because only structural changes related to the external hyperosmotic 

upshift-induced activation of BetP were of interest. In addition, also a proper rightside-out 

orientation of the BetP protein after the reconstitution procedure was important for the 

correct interpretation of the EPR results (3.4.4). Although, all freshly prepared EPR 

samples were initially checked to those effects, diverse extrusion, centrifugation and 

concentration processes during the adjustment of the different hyperosmotic conditions 

could impair the properties of the liposomes. To separate putatively disrupted lipid 

vesicles prior to the measurements or to quench superimposing signals of unsuitable 

proteoliposomes during the measurements, the two the following assays were applied. 

 

2.5.10.1. Fluorescence assays 

The integrity of BetP-SL proteoliposomes after Bio-Bead/dialysis-reconstitution (2.5.7) 

was determined as described by Racher et al. (2001). This method bases on a special 

property of the polar fluorophore calcein (fluorexon) that is entrapped inside the 

proteoliposomes as a marker for the enclosed aqueous compartment of these lipid 

vesicles. Its main characteristic is the ability to self-quench: due to putative intermolecular 

interactions the fluorescence of calcein is reduced if a certain concentration is reached 

(30mM, Jayaraman et al., 2001). Accordingly, calcein which is entrapped in intact 

liposomes at self-quenching concentrations gives no fluorescent signal, while calcein that 

leaks out of permeable liposomes gets diluted and displays an enhanced fluorescence.  

For this purpose, proteoliposomes were slowly thawed at RT and collected by 

ultracentrifugation. 30mM calcein (Sigma-Aldrich, Munich, Germany) was diluted in 

100mM KPi, pH=7.5. The pH value of the calcein solution was adjusted to 7.2 by stepwise 

addition of 1M KOH. The proteoliposomes were dissolved in the calcein solution and 

extruded 15 times through polycarbonate filters (pore diameter 400 nm) to entrap 30mM 

calcein in the liposomal lumen. External calcein was removed by three gel filtration steps 
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using G75 sepharose (GE Healthcare, Munich, Germany) columns. Free calcein migrated 

slowly as a yellow fluorescent band through the column resin while the proteoliposomes 

with self-quenching internal concentrations of calcein (30mM) could be eluted first as an 

orange-colored band in 1-2ml 100mM KPi buffer, pH=7.5. Fluorescence measurements 

were carried out with an Aminco Bowman Series 2 Spectrometer (SLM Aminco, 

Büttelborn) at an excitation wavelength of 495nm and an emission wavelength of 520 nm 

(slit width of 8nm). All samples were kept at RT. 

 

2.5.10.2. Accessibility assays 

Another method to simply test the integrity of proteoliposomes with incorporated BetP-SL 

was performed by the addition of a water soluble, polar spin relaxant to the external buffer 

that quenches the EPR signal upon collision with the nitroxide side chain of the MTS spin 

label attached to the protein (Altenbach et al., 1994). If the analyzed proteoliposomes 

were intact, the addition of an appropriate amount of membrane impermeable quenchers 

like 50mM ChRomium-(III)-OXalate (CrOx, Cr(C2O4)
3−) to the external buffer (100mM KPi, 

pH=7.5) of the liposomes would only lead to a signal decrease proportional to the amount 

of inside-out orientated BetP-SL proteins. However, if the whole EPR signal was 

quenched, the respective proteoliposomes were leaky (3.4.4, Results). 

 

2.6. EPR measurements 
The EPR measurements were carried out with three different spectrometers at the 

University of Osnabrück: A Magnettech Miniscope MS200 desktop machine (Magnettech 

Ltd., Berlin, Germany) and a Varian machine (Varian Inc., Palo Alto, CA, USA) for 

continuous wave (cw) experiments as well as a Bruker ELEXSYS spectrometer for pulsed 

EPR measurements (Bruker Biospin GmbH, Rheinstetten, Germany).  

Room temperature continuous wave (cw) EPR spectra were recorded at a microwave 

frequency of 9.7GHz (X-Band) or 34GHz (Q-Band). For each experiment 15-20µl (cw 

EPR) or 30-50µl (pulsed EPR) of a solution with at least 50µM spin labelled BetP protein 

reconstituted in E. coli lipids were loaded into glass capillaries and manually inserted into 

the spectrometer. For pulsed EPR measurements the capillaries had to be frozen in liquid 

nitrogen prior to the application. Spectra were taken at the microwave power set between 

1 and 5 milliwatt (mW) depending on signal intensity. The B-field modulation amplitude 

was set between 1.0 and 1.5G depending on the width of the lines of EPR spectra. If not 

indicated somewhere else, the following typical parameters were used: 

 

Continuous wave EPR (at RT): 

Time constant: 100 [ms] 
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Time sweep:  120-180 [ms] 

Temperature:  RT (23-25°C) 

 

Pulsed EPR (DEER): 

Temperature:  ~50 °K (~ -223°C, ~ -370°F) 
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3. Results 
To cope with hyperosmotic stress induced dehydration of the cytoplasm, the secondary 

transport system BetP from Corynebacterium glutamicum is activated in less than one 

second. Thereby, it specifically imports its sole substrate glycine betaine as a compatible 

solute to restore the cells water balance and thus the essential cell turgor. Being 

independent of any accessory macromolecule, e.g. as signal detector, amplifier or 

transducer, BetP unifies altogether three properties of (i) a transporter, (ii) an osmosensor 

and (ii) an osmoregulator, i.e. it autonomously senses its stimulus (internal K+ 

concentration) and adapts its transport activity to the actual extent of osmotic stress 

(Rübenhagen et al., 2000). Former studies showed that the C-terminal domain of the 

carrier plays a key role in sensing the stimulus and in the subsequent adaption process 

that regulates the activity of the protein (Peter et al., 1998a; Schiller et al., 2004b). To this 

regard, the construction of appropriate substitution mutants in the C-terminal domain of 

BetP revealed that both, the overall conformation and sterical orientation of the  

C-extension as well as the primary structure of the central part of this domain have an 

influence on the activation profile of BetP (Schiller et al., 2006; Ott, 2005; Dissertation Ott, 

2008). It was suggested, that structural changes within the C-domain as well as 

intramolecular interactions with other protein domains or the surrounding lipid phase are 

of particular importance for the activity regulation of the carrier. Furthermore, recent 

studies on a 2D crystal with BetP reconstituted in E. coli lipids as well as a 3D crystal with 

BetP in detergent suggested both, (i) a trimeric oligomerisation of the carrier in the native 

membrane and thus (ii) certain intermolecular protein-protein interactions upon BetP 

activation (Ziegler et al., 2004; Ressl et al., submitted; personal communication,  

C. Ziegler). Therefore, detailed information about the molecular dynamics within the  

C-domain and the respective influence on osmosensing and osmoregulation of the BetP 

carrier is of great interest for understanding the molecular mechanisms underlying these 

processes. 

In order to probe whether and to which extent the C-terminal domain undergoes a 

conformational and/or sterical change upon salt stress, the spectroscopic technique of 

Site-Directed Spin Labelling-EPR (SDSL-EPR) was applied. Beside 2D-NMR (Nuclear 

Magnetic Resonance) and X-Ray crystallography, the SDSL-EPR is a complementary 

biophysical approach to study not only soluble, but also the challenging membrane protein 

systems (Hubbell et al., 1998). In this approach native amino acids at desired sites in a 

given protein are replaced by cysteine residues which are then modified by nitroxide spin 

labels (Hubbell et al., 2000). SDSL-EPR has been successfully applied to define elements 

of the secondary and tertiary structure of membrane proteins in solution and in 
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membranes (Hubbell et al., 1998). Also, this method was used to characterize the global 

structure and the aggregation states of proteins by measuring of intra- and intermolecular 

distances (Perozo et al., 1998; Mchaourab and Perozo, 2000). Moreover, SDSL-EPR was 

successfully used to determine the orientation and movements of individual segments of 

membrane proteins under physiological conditions and to characterize conformational 

changes that occur during protein function (Hubbell et al., 2000; Rink et al., 2000). 

The present work is aimed to probe structure and structural changes of the C-terminal 

domain under hyperosmotic stress simulating conditions using SDSL-EPR. For this 

purpose, several site-directed mutants within the C-terminal domain of the BetP protein 

were constructed carrying the single site cysteine residues (see below). The following 

research was divided into four steps. (1) To confirm, whether the introduction of the spin 

label was not detrimental for the protein function, the sustained transport activity of each 

spin labelled BetP variant was studied. (2) The reconstitution of these mutants into E. coli 

lipids was optimized to obtain high yields of spin labelled and proper incorporated BetP 

protein for the EPR analysis at issue. (3) Continuous wave EPR studies were carried out 

to elucidate the (local) structure of the C-terminal domain and to determine structural 

changes during the reconstitution into liposomes as well as under hyperosmotic-induced 

BetP activation. (4) Pulsed EPR analysis was performed to determine intra- and 

intermolecular distances in single and double spin labelled, non-activated BetP mutants. 

All EPR measurements and analysis were done under supervision of Dr. I. V. Borovykh in 

the laboratory of Prof. H.-J. Steinhoff (University of Osnabrück, Department of Physics). 
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3.1. Substitution mutants and strategic labelling 
The polytopic topology 

model of BetP in Figure 16 

displays the relative 

positions of each amino acid 

substitution for the 

construction of the single, 

double and triple mutants 

used in this work. Table 5 

additionally summarises the 

respective suitability for the 

analysis of the structure and 

dynamics of the C-terminal 

domain by EPR 

spectroscopy (Nicklisch, 

2005; Rübenhagen, 2001). 

The present work will be concerned with three single cysteine mutants (BetP-S545C, -

E572C and -S589C) to probe the local structure and local structural changes of the  

C-domain upon the hyperosmotic stress-induced activation of BetP as well as to 

determine distances within the non-activated carrier. To further analyse the overall 

conformation and orientation of the C-terminal extension, distances between two spin 

labels were measured in a double (BetP-S545C/S589C) and a triple (BetP-

S545C/Y550P/S589C) mutants. Such a selection was based on the suggested positions 

of these amino acids in the C-domain: either at the beginning (BetP-S545C), in the centre 

and as well in the middle of a putative α-helix (BetP-E572C) or at the end (BetP-S589C) 

of the C-terminal domain (Figure 16). The selection of the position 589 was justified by its 

location near the end of a 25 amino acids motif at the end of the C-terminal domain of 

BetP which was identified as a putative region involved in K+ sensing (Schiller et al., 

2004b). We expected rather pronounced structural/conformational changes in this region 

of the C-terminal domain when the BetP protein is activated. Position 572 was selected 

based on the recently suggested functional model of BetP activation in which the rise of 

the luminal K+ concentration induces conformational changes of the C-terminal domain in 

the region around residue 572 (Schiller et al., 2006). In order to probe the importance of 

the membrane surrounding on the structure and function of the BetP protein we selected 

position 545 which is - based on the predicted protein topology and structure – supposed 

to be positioned near the membrane surface at the beginning of the C-domain (Figure 16). 

The introduction of a proline residue at position 550 was known to render the carrier 

 
Figure 16: Schematic illustration of the computer s imulated topology 
model of BetP-C252T with the introduced cysteine an d proline residues 
for SDSL-EPR (TMHMM 2.0, http://www.cbs.dtu.dk/services/TMHMM-
2.0/). Designated are the generated cysteine (red circles) and proline (blue 
circles) substitutions for the SDSL-EPR studies in this work (Nicklisch, 2005; 
Rübenhagen 2001). More precise mutant definitions are summarized in Table 
5.  



Results 

44 

permanently active but insensitive to hyperosmotic stress (Schiller et al., 2006). Thus, the 

relative distance between two strategically attached spin labels in a triple mutant (BetP-

S545C/Y550P/S589C) compared to the respective distance in a mutant without the 

proline introduction (BetP-S545C/S589C) were studied for differences in the orientation 

and/or structure of the C-domain in a deregulated BetP carrier (for more details see 

section 3.5.6). In addition, former cryo-electron microscopy (cryo-EM) study of 

reconstituted as well as differential ultracentrifugation study of detergent solubilised BetP 

protein revealed that the carrier forms a trimer under the respective conditions (Ziegler et 

al., 2004). Recent X-ray crystallography studies of crystallized BetP confirmed these 

results (Ressl et al., submitted). However, at the moment there is no X-ray structure 

available for the BetP protein. Taking this into account, distance measurements for single 

and double spin labelled BetP should shed light on the structure and the arrangement of a 

functional BetP trimer in the membrane.  

As a prerequisite for successful SDSL-EPR measurements, protein concentrations 

between 30-200µM are required. Even more important is a high labelling efficiency of the 

target cysteine residues in the protein under study. For this purpose the growth conditions, 

purification, and spin labelling steps for selected BetP single cysteine and cysteine/proline 

variants were successfully optimized (Nicklisch, 2005).  

 

Table 5: Constructed BetP mutants with the respecti ve amino acid substitutions (Nicklisch, 2005; Rüben hagen, 
2001). The listed labelling efficiencies are specified in percentage (100% = all cysteine residues in a protein sample are 
labelled). The protein yield reflects the sum of expression, membrane incorporation and purification efficiency of a given 
Strep-BetP variant via StrepTactin MacroPrep FPLC purification and is specified in mg purified Strep-BetP protein per litre 
E. coli DH5α cell culture. Highlighted in yellow are the selected BetP mutants investigated via continuous wave and pulsed 
EPR spectroscopy in this work. 

BetP variant Amino acid substitution SL efficiency Protein yield 
Structure determination & Monomer interactions 

S61C * Serine 61 -> cysteine 61 <10% 1.4-1.6mg/L culture 
S545C serine 545 -> cysteine 545 80-90% 1-1.5mg/L culture 
E572C glutamate 572 -> cysteine 572 50-80% 0.4-0.8mg/L culture 
S589C serine 589 -> cysteine 589 30-50% 1.2-1.3mg/L culture 

Intra & Intermolecular Distances (functional protei n) 
S545C/S589C double mutant (see above) 80-90% / 30-50% 1-1.2mg/L culture 

Intra & Intermolecular Distances (deregulated prote in) 
S545C/Y550P/S589C triple mutant (see above) 80-90% / 30-50% 0.3-0.5mg/L culture 

Note:  

• * = probably this is a buried position; labelling procedure needs additional adjustment (work in progress).  

• The mutant nomenclature from former studies was adopted (Nicklisch, 2005): the first letter represents the 
native amino acid followed by the respective position in the protein (counted from N->C) and finally the one-
letter-code for the introduced amino acid. Double and triple mutations are separated via a slash. 

 

The listed labelling efficiencies and protein yields in Table 5 are an average determination 

of all conducted cultivation and purification experiments for each mutant.  
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3.2. Activity regulation of BetP variants in E. coli lipids 
As was mentioned above, 

strategic amino acid positions 

within the C-terminal domain were 

chosen for SDSL-EPR (Figure 

17). To ensure that all used 

mutants (except BetP-E572C) 

were active, the functional activity 

of the spin labelled BetP proteins 

reconstituted in E. coli 

phospholipids (LPR=1:20) prior 

and/or after the EPR 

measurements was measured by 

radiochemical transport measurements with [14C]-glycine betaine. The Activity 

measurements for these mutants were carried out with and without the attached spin 

label. 

To determine BetP activity in proteoliposomes, the respective protein mutants were 

cultivated in E. coli DH5α cells, purified using affinity chromatography, spin labelled on 

column and then reconstituted into E. coli lipids (see Materials and methods). 

Subsequently, the uptake of radioactively labelled [14C]-glycine betaine per time unit and 

amount of incorporated protein depending on the extent of external osmolality was 

determined. As a control, the activity for the cysteine-free mutant BetP-C252T were 

measured (C252T = Cysless = BetP mutant in which the only native cysteine at position 

252 was changed to threonine; Rübenhagen et al., 2001). The result of these control 

measurements is shown in the following figures for comparison. It was known, that this 

mutant is identical to the wildtype protein in terms of the KM for sodium and betaine and its 

regulatory property in both, heterologously expressed in E. coli MKH13 cells as well as 

reconstituted in E. coli lipids (unpublished results). 

 

3.2.1.  Non-labelled and spin labelled BetP variant s S545C, E572C 
and S589C  

Figure 18 shows the activation profiles of the unlabeled single cysteine variants BetP-

S545C (red circles), BetP-E572C (blue stars) and BetP-S589C (green triangles) as well 

as the wildtype-like control profile of the BetP-Cysless (black squares) protein in 

proteoliposomes upon hyperosmotic shock. In agreement with the previous results of 

uptake measurements in E. coli MKH13 cells (Nicklisch, 2005), the single cysteine 

substitution in BetP-S545C and BetP-S589C had no influence on the regulation profile of 

VIII IX X XI XII

- -

--

-

--

- -

--

-
S545C

E572C
S589C

 
Figure 17: Schematic illustration of the last five membrane 
embedded TM helices (VIII-XII) of BetP with the cyt oplasmic 
exposed C-extension. Highlighted are the strategically chosen 
labeling positions 545, 572 and 589 (red circles with attached 
blue/green spin label) within the C-domain for EPR spectroscopy.  
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the reconstituted carriers. Hence, the maximal uptake rate was increasing when a higher 

hyperosmotic stress was applied. This regulation profile was similar to that of the control 

mutant (BetP-C252T). In other words, the respective activity curves showed the typical 

sigmoid progression with the optimum at an external osmolality of about 600mOsmol/kg.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, the maximal uptake rates of both, BetP-S545C (920nmol/min*mg protein) and 

BetP-S589C (830nmol/min*mg protein) were slightly lower than of the Cysless protein 

(1070nmol/min*mg protein). Since these small differences in the total uptake rates at a 

given osmolality occur even with the same mutant, they most likely represent little 

variations in the sample preparations (e.g. different efficiencies of rightside-out 

reconstitution). In contrast but also in agreement with previous results, the uptake 

measurements for the BetP-E572C mutant showed a completely deregulated activity 

regulation, e.g. the transporter was unable to adjust its glycine betaine uptake rates to the 

external extent of osmotic stress (Figure 18, blue curve). Hence, the uptake rates of non-

labelled BetP-E572C in E. coli lipids varied between 190-330(nmol/min*mg protein) 

independent of the external osmolality. However, this distinct basic activity of the carrier 

mutant reconfirms, that the deregulated BetP variants are still functional transporters, but 

they lost the ability to sense their stimulus (potassium) and thus to suitably adjust their 

maximal uptake rates (Schiller et al., 2006). 
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Figure 18: Activity regulation of BetP-C252T (Cysle ss) and BetP variants 
without spin label as function of the external osmo lality in E. coli liposomes. 
The 14C-glycine betaine uptake measurements were performed under hyperosmotic 
conditions. The internal buffer contained 100mM potassium Pi (pH 7.5) and had a 
total osmolality of 0.22osmol/kg. The external buffer was composed of 50mM 
sodium Pi (pH 7.5) and had an osmolality of 0.1osmol/kg. Higher external 
osmolalities were adjusted by the addition of proline. Each data point represents the 
mean of five independent measurements. The suffix “-noSL” represents the non-
labeled BetP cysteine substitution mutants:  
 

■ C252T (Cysless, control); ● S545C-no SL; � E572C-no SL; ▲ S589C-no SL  
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The next step was to check whether the activity of the respective mutants is affected by 

the attachment of a spin label. For this purpose, an aliquot of the same cell culture 

membrane fraction from each of the tested BetP-variants (Figure 18) was used, to 

covalently attach the reporter molecule (spin label) to the introduced cysteine residues 

during affinity chromatography (2.5.2 and 2.5.3). Subsequently these spin labelled BetP 

variants were reconstituted into E. coli liposomes transport measurements were carried 

out as described above. Figure 19 shows the respective uptake measurements of the spin 

labelled BetP variants S545C-SL (red circles), E572C-SL (blue stars) and S589C-SL 

(green triangles) reconstituted in E. coli liposomes under hyperosmotic conditions. The 

result of the control measurements for BetP-Cysless (black squares) is shown for 

comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Again, similar to the unlabeled cysteine mutants, the regulation profile of the BetP-E572C-

SL variant showed the same permanent activity of about 130-270(nmol/min*mg protein) 

over the whole range of the applied hyperosmotic upshift. Thus, the presence of the spin 

label had no influence on the basic activity of this deregulated carrier. However, the 

regulation profiles of spin labelled BetP-S545C and BetP-S589C showed some 

differences compared to the uptake rates of the respective unlabeled proteins. Although 

both spin labelled BetP mutants were still osmoregulated, a shift of the activity optimum of 
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Figure 19: Activity regulation of BetP-C252T (Cysle ss) and spin labeled 
BetP variants as function of the external osmolalit y in E. coli liposomes. 
The 14C-glycine betaine uptake measurements were performed under 
hyperosmotic conditions. The internal buffer contained 100mM potassium Pi (pH 
7.5) and had a total osmolality of 0.22osmol/kg. The external buffer was 
composed of 50mM sodium Pi (pH 7.5) and had an osmolality of 0.1osmol/kg. 
Higher external osmolalities were adjusted by the addition of proline. Each data 
point represents the mean of five independent measurements. The suffix “-SL” 
represents the labeled BetP single cysteine substitution mutants:  
 

■ C252T (Cysless, control); ● S545C-SL; � E572C-SL; ▲ S589C-SL 
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BetP-S545C-SL (930nmol/min*mg protein) and BetP-S589C-SL (800nmol/min*mg 

protein) from 600mOsmol/kg to 800mOsmol/kg was observed. 

 

Since the uptake measurements revealed that the kinetic properties of all three BetP 

single cysteine variants could be sustained after the introduction of the paramagnetic spin 

probe, the next step was to provide a final concentration of highly purified spin labelled 

BetP protein after the incorporation into E. coli lipids that is suitable for high quality SDSL-

EPR studies. 

 

3.3. Optimization of the reconstitution process 
As mentioned above, optimal protein concentration for SDSL-EPR is in the range of 30-

200µM with near 100% labelling efficiency (e.g. nearly all proteins in a sample with its 

engineered cysteine residues are tagged with a paramagnetic spin label). For this 

purpose, the respective BetP variants were each heterologously expressed in E. coli 

DH5α cells, purified via affinity chromatography and subsequently reconstituted in E. coli 

lipids to obtain high yields of rightside-out orientated BetP protein in a native like 

environment (see Materials and methods). 

To this regard, typical cultivation experiments finally led to yields of up to 1-1.5mg purified 

and spin labelled BetP protein per litre E. coli cell culture (Table 5). However, when 

reconstituted into E. coli lipids using the conventional reconstitution protocol according to 

Rigaud et al. (1995), we unexpectedly observed protein loss up to 90%. This was 

confirmed by protein concentration determination assays and SDSL-EPR spectroscopy, 

e.g. the signal/noise ratio was considerably lower as expected and estimated from the 

initially supplied protein amount (see below). Since the former kinetic characterizations of 

BetP mutants by transport measurements did not rely on high protein amounts in the 

proteoliposomes, this detrimental phenomenon did not attract the attention up to the 

present EPR studies. 

It was assumed that the SM2-Bio-Beads did not only absorb the excess of detergent but 

also trap a large amount of the hydrophilic and strongly adhesive BetP transporter 

(personal communication, S. Morbach and V. Ott). To avoid such unfavourable high 

protein loss, an alternative reconstitution assay on the basis of the work of Philippot et al. 

(1983) was developed and applied to BetP. Beside the respective verification using the 

protein concentration determination assay (Amido Black, Schaffner and Weissmann, 

1973), a comparison of both reconstitution methods (Rigaud et al., 1995 and Philippot et 

al., 1983) was studied using cw-EPR spectroscopy in terms of signal and thus protein 

loss.  
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3.3.1.  Signal loss during SM2-Bio-Bead reconstitut ion 

The high spin label mobility and thus the sharp lines in the EPR spectrum of the 

reconstituted BetP-S589C-SL mutant allowed the detection and qualitative analysis of 

subtle changes in the relative signal amplitude as an indicator for protein loss during the 

respective reconstitution method. For this purpose, a defined amount of the BetP-S589C-

SL sample (about 300µl) was collected at several time points (the same for both samples) 

during both reconstitution procedures and subsequently the corresponding EPR signal 

was measured. For both methods the same protein (BetP-S589C-SL) and E. coli lipid 

batches with equal amounts for each reconstitution assay were used. 

Neither changes of Bio-Beads during the incubation nor dilutions of the samples were 

carried out in both procedures. This means that changes of the signal intensities could 

only be induced by the absorption of BetP by Bio-Beads. Since changes of the EPR signal 

intensity are proportional to the changes in the sample concentration, the overall signal 

intensity of a defined amount of sample after each reconstitution process could be used to 

determine the relative reconstitution efficiency of a particular assay. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 depicts the EPR spectra of the reconstituted BetP-S589C-SL samples with the 

conventional (black curve) and the new (red curve) reconstitution method after 60min, 

180min and 360min of the initial Bio-Bead addition. Although the relative signal intensities 
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Figure 20: Continuous wave X-band (9.7GHz) EPR spec tra of the pellets of each 
300µl sample from the reconstitution experiments wi th BetP-S589C-SL at 
different time points after Bio-Bead addition. Shown are the spectra of nascent 
proteoliposomes with BetP-S589C-SL that were reconstituted via the conventional 
Bio-Bead- (black line) and the new Bio-Bead/dialysis method (red line), respectively. 
Experimental conditions: Room temperature; time constant=100ms; modulation 
amplitude=0.76G; microwave power = 4.2mW. 



Results 

50 

after 60min of Bio-Bead treatment did slightly differ in amplitudes (Figure 20, cp. black and 

red lines at 60min), the longer incubation with the hydrophobic adsorbent led to significant 

signal loss when the conventional reconstitution assay was used. On the contrary, 

reconstitution with the new Bio-Bead/dialysis method resulted only in about 20-30% of 

signal loss during the first 6 hours of incubation (Figure 20, black and red curves at and 

360min). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 shows the signal intensity (value of the first integral of the central EPR line) for 

both preparation methods plotted as a function of time (zero time is the moment of adding 

Bio-Beads). The results indicate that protein loss occurs in both reconstitution methods. 

However, already after 6 hours of incubation less than 30% of the initially applied protein 

amount could be recovered with the conventional Bio-Bead reconstitution assay, whereas 

about 70% of all deployed BetP-S589C-SL protein could be detected at the same time in 

the sample from the new Bio-Bead/dialysis reconstitution procedure (Figure 21, cp. black 

and red curve). 

 

To check if the residual BetP protein in both experiments adsorbed to the Bio-Beads, 

several pieces of Bio-Beads (a few mg) from the conventional reconstitution assay were 

collected and the EPR spectra of these Bio-Beads were measured. Under the current 

experimental conditions, native Bio-Beads showed no EPR spectra (data not shown). On 

0 50 100 150 200 250 300 350 400

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Bio-Beads

Bio-Bead/dialysis

 

 

S
ig

na
l i

nt
en

si
ty

 [a
.u

.]

Time [min]
 

Figure 21: EPR signal intensity as first integratio n of the respective central 
line from Figure 20 at different time points of sam ple harvest (30min, 60min, 
120min, 180min and 360min). Shown are the relative signal intensities of 
reconstituted BetP-S589C-SL samples against the incubation time with SM2 Bio-
Beads with the two different methods of detergent elimination: dialysis/Bio-Beads 
method = red line; Bio-Beads method = black line.    
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contrary, Bio-Beads used for detergent removal in the conventional method showed very 

pronounced EPR spectra which is attributed to the spin labelled BetP protein absorbed 

during the reconstitution procedure (Figure 22).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taken into account that in the performed reconstitution experiment a total amount of about 

150-200mg Bio-Beads was used, the high signal/noise ratio from only a few mg of Bio-

Beads (Figure 22) confirms the adsorption of large amounts of BetP to the polystyrene 

beads during the conventional reconstitution process. Interestingly, the spectral line shape 

of the adsorbed BetP-S589C-SL protein changed from the sharp 3-line-spectrum (=high 

spin label mobility) to a broad spectrum that reflects a highly restricted mobility of the spin 

label (cp. Figure 22 and Figure 23). This indicates that at least this part of the C-extension 

is involved in the adsorption process. Analogous experiments carried out with the BetP-

E572C-SL mutant showed similar EPR spectra when the respective BetP protein 

absorbed on Bio-Beads. Altogether these results showed that probably the whole  

C-extension is the “sticky” protein domain and a contact point for the absorption (Figure 

57). 
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Figure 22:  Continuous wave X-band (9.7GHz) EPR spectrum of SM2 -Bio-
Beads (10 wet beads ~ 5-10mg) from the conventional  reconstitution with 
BetP-S589C-SL. Experimental conditions: Room temperature; time 
constant=100ms; modulation amplitude = 1.5G; microwave power=1mW. 
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3.4. Mobility profiles of C-terminal BetP variants 
Figure 23 shows the cw-EPR 

spectra of three spin labelled 

cysteine mutants of BetP 

reconstituted in E. coli lipids (for 

more details see Nicklisch, 2005). 

A graduated increase in the 

mobility was observed when the 

spin label position was moved 

from the beginning (S545C-SL) to 

the centre (E572C-SL) and to the 

end (S589C-SL) of the C-terminal 

domain. This screening was in 

agreement with the relative amino 

acid positions referring to the known topology model (Figure 16). However, these 

preliminary results with samples created by a suboptimal reconstitution procedure (2.5.6, 

Materials and methods) significantly limited advanced EPR studies.  

By means of the new established Bio-Bead/dialysis procedure it was possible to 

reproduce previous findings with respect to the spin label mobility profiles of the 

strategically introduced cysteines within the C-domain of the reconstituted BetP variants 

(Figure 23). Additionally, it provided the opportunity to increase the signal/noise ratio of 

each sample such as subtle mobility changes of samples in detergent and in E. coli lipids 

could be monitored and compared to each other. To this regard the next chapter deals 

with the comparison of the spin label mobility for both, (i) solubilised BetP variants and (ii) 

for the corresponding mutants reconstituted in liposomes. This comparison aimed to 

identify whether the incorporation of BetP into E. coli lipids has an effect on the respective 

spin label mobility profile for a given BetP variant and thus to reveal probable lipid-protein 

interactions within the C-terminal domain. 

 

3.4.1.  Quantification of the spin label mobility 

The quantitative analysis of the EPR spectra was carried out using a program developed 

by J. H. Freed (“jump model”; Freed, 1976). In most cases two components with two 

different rotational correlation times (τ1 and τ2) can be identified (for details see Appendix). 

Each component describes the dynamic properties of a covalently linked spin label and 

provides hints to a possible spin label rotation (and/or jumps) at the respective amino acid 

position. In general it can be stated that the shorter the rotational correlation time, the 

higher the mobility of an attached spin label and vice versa. If there is only one dedicated 

3320 3340 3360 3380 3400

BetP-S589C-SL

BetP-E572C-SL

 

S
ig

na
l i

nt
en

si
ty

 [a
.u

.]

Magnetic field [G]

BetP-S545C-SL

 
Figure 23: Room temperature cw X-band EPR spectra o f the 
spin-labelled BetP cysteine mutants S545C-SL (red l ine), E572C-
SL (black line) and S589C-SL (blue line) reconstitu ted in E. coli 
lipids. Experimental conditions: Room temperature; modulation 
amplitude=1G; time constant=100ms; microwave power=1mW; scan 
time=120s. 
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sphere (for example, the same environment and no restriction for motion from nearby 

protein domains), the respective EPR spectrum can be simulated by only one single 

component. However, in most cases a mixture of rotational degrees of freedom is possible 

for a spin label, and a second τ2 component (with a different correlation time) has to be 

introduced to simulate a spectrum properly. This can be for example due to restrictions 

from the surrounding of the protein or due to structural changes during function of the 

protein. The simulation and comparison of both parameters before and after protein 

activation (e.g. via salt shock in the case of BetP) can thus provide information about 

conformational changes at the respective spin label position, e.g. a changing the solvent 

exposure or a changing the structure of protein domain in the vicinity of the spin label. 

The following results concerning the spin label mobility profiles of the single cysteine 

variants BetP-S545C-SL, BetPE572C-SL and BetPS589C-SL will be divided in two parts: 

(1) A qualitative and quantitative analysis as well as comparison of the respective spin 

label mobility of each BetP variant in different environments (solubilised in detergent or 

reconstituted in E. coli lipids) and (2) a qualitative study of the putatively different spectral 

lineshapes (and thus spin label mobility) of each reconstituted BetP mutant before and 

after the carrier activation by an hyperosmotic upshift in the external buffer. 

 

3.4.2.  Comparison of the spin label mobility in de tergent and in  
E. coli lipids 
 

3.4.2.1. BetP-S545C-SL 
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Figure 24: Continuous wave X-band (9.7GHz) EPR spec tra of BetP-S545C-SL 
solubilised in detergent (0.1% DDM) and reconstitut ed in E. coli lipids 
(simulation with J.H. Freed’s “jump model”). Experimental conditions: Room 
temperature; modulation amplitude=1.5G; time constant=100ms; microwave 
power=1mW; scan time=180s. 
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A pronounced difference in the shape of the EPR spectra was observed for the spin label 

at position 545 in the C-terminal domain of BetP for the sample in detergent and in 

proteoliposomes (Figure 24). Both spectra showed a strong restriction of the spin label 

mobility and exhibited two spectral components which describe a higher (τ1) and lower (τ2) 

mobility. The correlation times determined from the simulation using the jump dynamical 

model were τ1=3.8ns, τ2= 16ns for BetP-S545C-SL in detergent and τ1=15ns, τ2=52ns for 

the protein reconstituted in lipids. According to the respective correlation times, this 

revealed a nearly 4fold decrease in the spin label mobility upon the reconstitution into 

liposomes. In addition to the correlation time, also the relative amplitudes of the fast and 

slow components changed: The amplitude of the fast component nearly vanishes when 

the protein is inserted into the lipids (Figure 25). This result is in agreement with the 

suggested structure of the BetP protein in its lipid environment: the spin label at position 

545 is placed near the beginning of the C-terminal extension and should “sense” a 

putative interaction of this domain with the membrane. As a result we may conclude that 

structure and/or conformation of the C-extension is different in detergent and in lipid 

environment and that the structure of this part of protein domain is strongly confined by 

the lipid environment (“lipid effect”). 

 

3.4.2.2. BetP-E572C-SL 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 25 shows the comparison of the EPR spectra of the spin label attached to position 

572 of the C-terminal domain measured for samples in lipid and in detergent. The effect of 
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Figure 25: Continuous wave X-band (9.7GHz) EPR spec tra of BetP-E572C-SL 
solubilised in detergent (0.1% DDM) and reconstitut ed in E. coli lipids 
(simulation with J.H. Freed’s “jump model”). Experimental conditions: Room 
temperature; modulation amplitude=1.5G; time constant=100ms; microwave 
power=1mW; scan time=180s. 
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the membrane environment on the mobility of this C-terminal region was less visible than 

for position 545 but still present. According to the respective simulation results, both EPR 

spectra, in detergent and in lipid environment, consisted of two components similar to 

position 545. The correlation times determined from the respective simulation were 

τ1=2.0ns, τ2=8.3ns for BetP-E572C-SL in detergent and τ1=2.9ns, τ2=9.5ns for the protein 

reconstituted in lipids. Again, when BetP is reconstituted into E. coli lipids we observed an 

approximately 1.5fold increase in the time constant for the fast component (τ1) with almost 

no effect of the reconstitution into lipids on the slow component (τ2). The comparison of 

the time constants for BetP-S545C-SL and BetP-E572C-SL indicated that the spin label 

mobility at position 572 is much less restricted compared to position 545. The mobility of 

the spin label at position 572 is about twofold higher than that at position 545 when the 

respective BetP cysteine mutants were solubilised in detergent and even 5fold higher 

when the two BetP variants were reconstituted in lipids. This increased mobility of the spin 

label at position 572 is in agreement with the suggested location in the centre of the 

flexible C-domain of BetP (Figure 17). 

 

3.4.2.3. BetP-S589C-SL 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

The effect of reconstitution on the spin label mobility at position 589 is shown in Figure 26. 

When the BetP protein was solubilised in detergent we obtained a perfect fit with only one 

component with a correlation time of τ=1.2ns. However, when the BetP protein was 

reconstituted in lipids, we had to add a small amount (not more than 10%) of a slow 
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Figure 26: Continuous wave X-band (9.7GHz) EPR spec tra of BetP-S589C-SL 
solubilised in detergent (0.1% DDM) and reconstitut ed in E. coli lipids 
(simulation with J.H. Freed’s “jump model”). Experimental conditions: Room 
temperature; modulation amplitude=1.5G; time constant=100ms; microwave 
power=1mW; scan time=180s. 
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component with τ2=10.2ns to obtain a good fit. This small addition of a slow component 

also changed the correlation time for the fast component to τ1=2.2ns (Table 6). As 

depicted in Figure 26, the mobility of the spin label at position 589 is higher compared to 

the respective spin label mobility of BetP-S545C-SL and BetP-E572C-SL (Figure 24 and 

Figure 25). According to the calculated fast components (τ1) of the simulated EPR spectra 

from BetP-S589C-SL, the corresponding spin label mobility is about 1.5fold higher 

compared to the BetP-E572C-SL mutant and about 7fold higher compared to the 

respective spin label mobility of BetP-S545C-SL. This is in agreement with the fact that 

this position is close to the end of the C-terminal extension. To our surprise we also 

observed an effect of the reconstitution into E. coli lipids on the spin label mobility at this 

end position. A possible explanation could be that somehow this end of the C-terminal 

part is not reaching out into the medium but rather stays in the vicinity of the lipid bilayer 

and/or protein.  

 

We concluded, that the reconstitution of the spin labelled BetP variants into E. coli lipids 

resulted in a decrease of the spin label mobility for all three mutants (Figure 24-Figure 26, 

cp. red and green lines). This indicated a direct or indirect interaction of BetP with the 

surrounding lipids and/or structural changes of the protein in the vicinity of the C-terminal 

domain upon reconstitution. The degree of these changes is strongly depending on the 

position of the spin label within the C-terminal extension, but the tendency of an 

increasing mobility along the C-domain moving from the membrane to the distal end is still 

present.  

 

For better comparison, Table 6 summarizes the calculated correlation times for all three 

investigated BetP mutants (S545C-SL, E572C-SL and S589C-SL) solubilised in detergent 

and reconstituted into liposomes. 

 
Table 6: Rotational correlation time components ττττ1 and ττττ2 from spin labelled BetP variants in detergent and 
reconstituted in E. coli lipids (proteoliposomes). The respective time constants were derived from EPR spectra 
simulations carried out with the “jump model” of J. H. Freed (Freed, 1976).  

Note: 

• * = 0.1% n-dodecyl-β-D-maltopyranoside (Solgrade, Anatrace Inc., USA) 

 

BetP variant 
in detergent *  in E. coli lipids  

ττττ1 ττττ2222    ττττ1 ττττ2222    
S545C-SL 3.8ns 16ns 15ns 52ns 
E572C-SL 2.0ns 8.3ns 2.9ns 9.5ns 
S589C-SL 1.2ns 2.2ns 10.2ns 
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3.4.3. Salt induced mobility changes 

The next step was the study of mobility changes at each spin labelled amino acid position 

(545, 572 and 589) during an external osmotic upshift in the proteoliposomes using cw X-

band (9.7GHz) EPR spectroscopy. Thereby, the type and extent of the mobility profile 

alterations from each BetP mutant were studied in detail to describe the putative  

C-domain movements as a tendency. However, due to time restrictions, the following 

results will show the qualitative identification of changes in the respective spin label 

mobility profiles by differences in the spectral broadening or sharpening upon the applied 

hyperosmotic stress. The corresponding rotational correlation times will be calculated by 

the “jump model”-software from J.H: Freed (work in progress).  

Figure 27 shows the basic idea underlying the EPR study of salt-induced mobility changes 

within the C-domain and/or in the vicinity of this domain. To apply an osmotic upshift, the 

external buffer of the proteoliposomes (internal buffer = external buffer = 100mM KPi, pH 

7.5) was supplemented with different salts (NaCl, KCl) or zwitterionic solutes (proline, 

glycine betaine) at concentrations sufficient to fully activate BetP (based on activity 

measurements, section 3.2). Thereby, 660mM of the ionic compounds NaCl and KCl have 

an osmolality of about 1.3osmol/kg, whereas 1M of the amino acid proline or the amino 

acid derivative glycine betaine corresponds to about 1osmol/kg. The increase of the 

external osmolality should lead to a water efflux out of the proteoliposomes and 

consequently to an increase of the luminal K+ concentration that activates BetP. In other 

words, sensing of the potassium stimulus could probably induce an altered conformation 

and/or orientation of the C-domain which leads to an activation of the carrier (Figure 27). 

Such pronounced changes might subsequently generate a new sterical challenge for a 

given amino acid position and its corresponding spin label in terms of mobility restriction 

inactive active
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Figure 27: Schematic illustration of the working mo del for BetP activation, showing the putative 
conformational changes of the C-terminal domain aft er an osmotic upshift (“a molecular switch”). Upon a 
hyperosmotic upshift in the external buffer of proteoliposomes, a putative complex interaction of the C-terminal domain 
with luminal concentrated K+ as well as the surrounding lipids and/or protein domains alter its spatial orientation thereby 
activating the transporter. Attached spin labels at strategically introduced cysteine residues along the C-domain will 
“sense” these structural changes (e.g. a restriction in the degree of freedom) by differences in their respective mobility 
spectra before and after the activation of BetP. 
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or disentanglement. If so, the superposition of the spectra of each inactive and 

hyperosmotically activated BetP mutant will provide information about the mobility 

changes upon salt stress.  

 

3.4.3.1. BetP-S545C-SL (the beginning of the C-doma in) 

Figure 28 shows the X-band EPR spectra of BetP-S545C-SL reconstituted into E. coli 

proteoliposomes without (black line) and in the presence of externally added salt 660mM 

NaCl (red line) and zwitterionic 1M proline (green line). The enlarged low field lines of the 

spectra (Figure 28, upper right) show, that neither the addition of activating amounts of 

NaCl (red line) nor proline (green line) to the external buffer of the proteoliposomes 

induced significant changes in the respective spin label mobility profile compared to the 

control sample (black line). The EPR measurements carried out in the presence of 

660mM KCl or 1M glycine betaine showed similar results (data not shown).  

This probably indicates – as expected from the topology model - that the structure of this 

part of the C-terminal domain does not change upon hyperosmotically induced BetP 
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Figure 28: Continuous wave X-band (9.7GHz) EPR spec tra of BetP-S545C-SL reconstituted in E. coli lipids 
(proteoliposomes) with 660mM NaCl (red line), 1M gl ycine betaine (green line) or with no salt addition  
(black line) in the external buffer (100mM KP i, pH 7.5). For better comparison, the low field amplitude is 
enlarged in the upper right. Experimental conditions: Room temperature; modulation amplitude=1.5G; time 
constant=100ms; microwave power=1mW. 

—— no additions —— 660mM NaCl —— 1M proline  
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activation. Also, it may indicate that changes of the protein structure in the vicinity of this 

spin label are very small.  

 

3.4.3.2. BetP-E572C-SL (in the centre of the C-doma in) 

Figure 29 shows the EPR spectra of reconstituted BetP-E572C-SL under non-activating 

conditions (black line) and upon the hyperosmotically-induced carrier activation. The 

spectra shown in this figure are slightly different from those shown in Figure 25, because 

some sharp lines around 3323G and 3358G are visible now. This may be caused due to 

interfering signals from a small admixture of non-bound spin label (less than a few %) 

and/or due to a small admixture of unsuitable proteoliposomes with spin labelled BetP 

protein that may superimpose the spectra (e.g. leaky proteoliposomes, see section 3.4.4). 

The addition of the solutes glycine betaine (“GB”, blue line) and proline (pink line) to the 

external buffer had no effect (or only a weak effect) on the respective spin label mobility at 

position 572. However, if the external buffer was supplemented with activating amounts of 

NaCl (660mM, red line) or KCl (660mM, green line), an increase in the amplitude 
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Figure 29: Continuous wave X-band (9.7GHz) EPR spec tra of BetP-E572C-SL reconstituted in E. coli lipids 
(proteoliposomes) with NaCl (red line), KCl (green line), GB (blue line), proline (pink line) or with no solute 
addition (black line) in the external buffer (100mM  KPi, pH 7.5). For better comparison, the low field is two 
times enlarged, in the upper left and right. Experimental conditions: Room temperature; modulation 
amplitude=1.2G; time constant=100ms; microwave power=5.3mW. 

— no additions — 660mM NaCl — 660mM KCl — 1M GB — 1M Proline  
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(sharpening) of the low and high field lines were visible, indicative of a higher spin label 

mobility. Due to some admixture of unbound spin label and/or leaky liposomes it was 

unclear, if a certain hyperosmotic stress effect on the structure of the C-domain and thus 

the spin label mobility at position 572 was indeed present. It has to be noted that a small 

admixture of unbound spin label is also visible in the EPR spectra of BetP-S545C-SL (cp. 

Figure 28 and Figure 24). 

 

3.4.3.3. BetP-S589C-SL (close to the end of the C-d omain) 

Applying an external osmotic upshift by adding activating amounts of NaCl (660mM, red 

line), KCl (660mM, green line), glycine betaine (1M, blue line) or proline (1M, pink line) to 

the external buffer of proteoliposomes with incorporated BetP-S589C-SL led to strong 

changes in the shape of the EPR spectra detected from a spin label at this position. These 

changes were reflected in a sharpening of all three hyperfine lines compared to the 

untreated sample (Figure 30). In particular, this spectral sharpening (= higher spin label 

mobility) was more pronounced when the salts NaCl and KCl were used as hyperosmotic 
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Figure 30: Continuous wave X-band (9.7GHz) EPR spec tra of BetP-S589C-SL reconstituted in E. coli lipids 
(proteoliposomes) with NaCl (red line), KCl (green line), GB (blue line), proline (pink line) or with no solute 
addition (black line) in the external buffer (100mM  KP i, pH 7.5). For better comparison, the low field is two 
times enlarged, in the upper left and right. Experimental conditions: Room temperature; modulation 
amplitude=1.0G; time constant=100ms; microwave power=5.3mW. 

— no additions — 660mM NaCl — 660mM KCl — 1M GB — 1M Proline  
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stress-inducing compounds in the external buffer than using the zwitterionic solutes 

glycine betaine and proline (Figure 30, cp. the amplitude of the red or green line with that 

of the blue or pink line). 

 

These findings were congruent in terms of a higher solute-induced mobility effect on the 

spin label with an increasing distance to the fixed lipid/protein interface within the  

C-domain of BetP according to the suggested activation model (Figure 27). However, it 

still remained to be elucidated why the salts NaCl and KCl were able to induce a much 

higher spin label mobility as hyperosmotic stress-causing supplements in the external 

buffer of the proteoliposomes than the zwitterionic (= exhibit no net charge at physiological 

pH) solutes glycine betaine and proline. One possible explanation is that the charged 

extensions of inside-out orientated BetP or of BetP in leaky proteoliposomes might 

electrostatically interact with the salt ions (Figure 31). This putative interaction might 

induce a spectral sharpening (= high spin label mobility) that superimposes the mobility 

spectra of intact proteoliposomes with rightside-out orientated BetP during the conducted 

activation experiments. To discriminate between these putatively direct electrostatic 

effects and a potassium-stimulated mobility effect during BetP activation, a simple method 

to quench signals deriving from differently orientated BetP-trimers and from BetP in leaky 

liposomes was introduced. 
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Figure 31: Schematic illustration of the EPR signal  quenching effect of the membrane 
impermeable CrOx (chromoxalate, grey ellipse) in le aky proteoliposomes (right) or in 
liposomes with inside-out orientated BetP (left). 
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3.4.4.  Electrostatic interactions of salt with the  C-domain and/or 
lipids 

For this purpose, a hydrophilic 

paramagnetic quencher called 

CrOx (chromate-(III)-oxalate, 

K3Cr(C2O4)3 * 3H20, Sigma 

Aldrich GmbH, Germany) was 

used. The addition of CrOx 

induces a broadening of the EPR 

spectra due to the spin-spin 

interactions of its own 

paramagnetic centre with the 

spin label. The higher the 

accessibility (collision frequency) 

of the spin labels to the aqueous 

phase the stronger the 

quenching effect of CrOx. Figure 

32 shows the effect of CrOx-addition (40mM) on the EPR spectra from two different BetP-

S589C-SL samples: (1) solubilised in detergent (red line) and (2) reconstituted into E. coli 

lipids (green line). When BetP is reconstituted into proteoliposomes, about 20% decrease 

of the signal is observed upon the addition of 40mM CrOx to the external buffer (Figure 32 

upper spectra). On the contrary, the addition of the same amount of CrOx to solubilised 

BetP protein led to a signal decrease of about 95% (Figure 32, bottom spectra), verifying 

the quenching effect of CrOx on accessible spin label positions in the detergent sample. 

The addition of CrOx to the external buffer of proteoliposomes with incorporated spin 

labelled BetP variants should induce significant signal quenching only in two cases: (1) if 

some of the proteoliposomes are leaky and thus making the C-domain of incorporated 

BetP accessible for the membrane-impermeable quencher and (2) if inside-out orientated 

BetP is present in the liposomes with its spin labelled C-domain facing the external 

solvent (Figure 31).  

Thus, similar measurements as described above were performed in the presence of an 

appropriate amount of CrOx to observe spectral changes (= changes in spin label 

mobility) and thus a putative C-domain movement only due to the (indirect) BetP 

activation upon a hyperosmotic upshift in the external medium. Hence, no EPR signals 

would be detected from all differently orientated (inside-out) BetP proteins and from 

carriers reconstituted into leaky liposomes. 
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Figure 32: Continuous wave X-band (9.7GHz) EPR spec tra of 
BetP-S589C-SL reconstituted in E. coli lipids (green line) and 
solubilised in 0.1% DDM (red line), each with 40mM CrOx added to 
the (external) buffer . For comparison, the respective EPR spectra 
without CrOx-treatment are superimposed (black lines). Experimental 
conditions: Room temperature; time constant=100ms; modulation 
amplitude = 0.76G; microwave power=4.2mW. 
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3.4.4.1. Salt effect on BetP-S589C-SL reconstituted  into E. coli 
proteoliposomes in the presence of CrOx 

Figure 33 shows the EPR spectra of the spin label at position 589 (close to the terminal 

end of the C-domain) of reconstituted BetP without (black line) and upon a hyperosmotic 

upshift in the external buffer. Here again, hyperosmotic stress is applied by the addition of 

different kinds of solutes in the external buffer (ionic and zwitterionic solutes). In contrast 

to Figure 30, all these measurements were carried out in the presence of 40mM CrOx in 

the external buffer to quench interfering signals of unsuitable (leaky or with opposite 

carrier orientation) BetP proteoliposomes (Figure 31).  

As visible in the corresponding EPR spectra (Figure 33, inserts) the hyperosmotic upshift-

induced mobility effect on the spin label in BetP-S589C-SL is less pronounced but still 

present as compared to the “unquenched” sample (cp. Figure 30 and Figure 33). An 

increase in the spin label mobility upon the addition of the zwitterionic solute (1M GB, blue 

line) as well as the ionic solute (660mM NaCl, red line) is indeed present. However, the 
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Figure 33: Continuous wave X-band (9.7GHz) EPR spec tra of BetP-S589C-SL reconstituted in E. coli lipids 
(proteoliposomes) each with 40mM CrOx  and NaCl (red line), GB (blue line) or with no sol ute addition (black 
line) in the external buffer (100mM KPi, pH 7.5). For better comparison, the low field is two times enlarged, in the 
upper left and right. Experimental conditions: Room temperature; modulation amplitude=1.0G; time constant=100ms; 
microwave power=5.3mW. 

— no additions — 660mM NaCl — 1M GB  

  



Results 

64 

effect of salt on the conformation and/or orientation of the C-domain, i.e. the increase in 

spin label mobility, at this end position is still more pronounced than the respective effect 

of zwitterionic solutes (Figure 33). 

 

3.4.4.2. Salt effect on BetP-E572C-SL reconstituted  into E. coli 
proteoliposomes in the presence of CrOx 

Figure 34 shows the EPR spectra of the spin label attached to position E572 in the 

presence of 40mM CrOx with different hyperosmotic upshift-inducing supplements (NaCl, 

GB) in the external buffer of the respective proteoliposomes.  

Interestingly and in contrast to the previous results (Figure 29), in the presence of CrOx 

the mobility of the spin label at position 572 is decreasing as visible from the diminished 

amplitude and the increased line width of the respective low field peaks (cp. Figure 29 and 

Figure 34). This may be attributed to a restricted mobility of the spin label at this position 

resulting in a broader EPR spectrum upon the application of a hyperosmotic upshift. The 

mobility effect is nearly same for both kinds of solutes (ionic and zwitterionic). Since the 

permanent activity of this BetP mutant was proven to be independent of the external 
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Figure 34: Continuous wave X-band (9.7GHz) EPR spec tra of BetP-E572C-SL reconstituted in E. coli lipids 
(proteoliposomes) each with 40mM CrOx  and NaCl (red line), GB (blue line) or with no sol ute addition (black 
line) in the external buffer (100mM KPi, pH 7.5). For better comparison, the low field is two times enlarged, in the 
upper left and right. Experimental conditions: Room temperature; modulation amplitude=1.0G; time constant=100ms; 
microwave power=5.3mW. 

— no additions — 660mM NaCl — 1M GB  
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increase in osmolality, such changes in the spin label mobility and thus in the structure 

and/or orientation of the C-domain were unexpected if we suggest an involvement of  

C-domain dynamics in the activity regulation process of BetP (Figure 27). However, more 

detailed studies are needed to prove this effect (see Discussion, work in progress).  

 

We conclude that the hyperosmotic stress-induced mobility changes for the spin labels at 

positions 589 and 572 could still be detected in the presence of CrOx. However, these 

changes were different from those observed in the absence of the quenching agent. In 

particular, the direction of changes still remained the same for the spin label at position 

589 (e.g. an increasing mobility with and without CrOx). In contrary, a slight decrease of 

the spin label mobility of BetP-E572C-SL was observed in the presence of the quenching 

agent. 

 

3.5. Distance measurements with BetP variants 
The study of the salt induced 

mobility changes (see above) 

revealed that during the activation 

process of reconstituted BetP 

protein some structural changes 

within the C-terminal domain 

occurred. Although these local 

changes were in agreement with 

our suggested topology and 

activation model of BetP, the 

global information about tertiary or 

quaternary structural changes 

and/or relative movements of the 

C-domain upon the hyperosmotic 

stimulation was still missing. At 

the moment no X-ray structure is 

available for the BetP protein. As 

mentioned in the introduction, SDSL-EPR in combination with DEER is widely used for 

determination of inter- and intramolecular distances in proteins solubilised in detergent or 

incorporated in a lipid surrounding as well as for the study of global structural changes 

during protein function (Jeschke et al., 2004; Hustedt and Beth, 1999, Jeschke and 

Polyhach, 2007).  

 
Figure 35: Schematic illustration of the last five transmembrane 
segments and the C-terminal domain of three differe nt BetP 
monomers forming a functional trimer, according to the current 
BetP topology model (Ressl et al., submitted). Exemplary, intra- 
(blue dotted line) and intermolecular (red dotted lines) distances 
between S545C-SL�-S589C-SL and S589C-SL�S589C-SL spin-
spin interactions are drawn in the scheme, respectively. 
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Thus, in this work the DEER technique was applied to study intra- and intermolecular 

distances in the BetP carrier. Distance measurements are based on the detection of the 

amplitude of interactions between two or more spins. To make this possible, at least two 

spin labels have to be introduced in one protein. In addition, spin-spin interactions can be 

measured if a single spin labelled BetP monomer forms sufficiently packed aggregates 

(oligomeric structure) that allow detecting dipole-dipole couplings. It was already known, 

that BetP is forming a trimer in detergent and upon reconstitution into E. coli lipids (Ziegler 

et al., 2004). With this in mind DEER measurements were carried out to probe both,  

(i) intermolecular distances between single spin labelled positions within the C-domain of 

each BetP monomer (Figure 35, red dotted lines) and (ii) intramolecular distances 

between two spin labels within the same C-extension of each monomer (Figure 35, blue 

dotted lines).  

The latter distance determination experiments were chosen to prove if an altered  

C-domain conformation may be responsible for a correct stimulus sensing and/or signal 

transduction of BetP. The aim was to identify the distances between two spin labels 

attached to cysteine residues at the beginning (545) and close to the end (589) of the  

C-terminal domain in two different mutants: (i) a double mutant (BetP-S545C/S589C) 

exhibiting the intramolecular S545C�S589C distance in an osmotically regulated BetP 

carrier and (ii) a deregulated triple mutant (BetP-S545C/Y550P/S589C) with a putatively 

different S545C�S589C distance due to the intermediate proline introduction. It was 

suggested, that the proline introduction at position 550 may alter the conformation and/or 

orientation of the C-domain rendering the respective carrier mutant insensitive to the 

osmotic stimulus (Figure 11). If this is true, these changes were expected to be 

quantifiable by the different S545C�S589C distances in the two constructed BetP 

mutants.  

The DEER analysis for each conducted experiment was performed as described in the 

literature (Jeschke and Polyhach, 2007; for more details see Appendix). In short, the 

measured dipolar evolution function V(t) was separated into the form factor F(t) and the 

background factor B(t). Dividing V(t) by the fitted B(t) function leads to the contribution of 

the form factor F(t) to the overall spin echo signal (equation (13), Appendix). In the derived 

Gaussian distance distribution the (highest) probability P(r) is then plotted as a function of 

the determined distance r with a standard deviation that can be qualitatively derived from 

the broadening of the bell-shaped curve (Gauss curve). 
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3.5.1.  BetP-S545C-SL in E. coli liposomes 

Figure 36 shows the experimental results of four-pulse DEER measurements (insert) and 

results of the analysis of this experiment with BetP-S545C-SL reconstituted in E. coli lipids 

(proteoliposomes). This result shows that a distance of 30±5Å is observed in the single 

labelled BetP variant incorporated into proteoliposomes. Since no second spin label was 

present in one BetP monomer, the distance we measured had to be originated from 

intermolecular interactions between different BetP monomers. In addition to the main 

peak, a small peak with lower amplitude was observed at a distance of about 45Å (Figure 

36). However, the position of this additional peak varied from experiment to experiment 

carried out with the same BetP-S545C-SL mutants (45-50Å, Figure 54, Figure 55, Figure 

56, Appendix). 
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Figure 36: DEER analysis of BetP-S545C-SL reconstit uted in E. coli lipids with the resulting dipolar 
evolution function (V(t), upper right inset), the f orm factor (F(t), lower right inset) as well as the  assumed 
Gaussian distance distribution P(r). For the evaluation of the detected spin-spin-couplings, the 
“DEERAnalysis2006”-Software from Gunnar Jeschke was used. Experimental conditions: d2 = 1800ns; temperature 
= 50°K (-223.15°C). 
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3.5.2.  BetP-S545C-SL in detergent  

Figure 37 shows the DEER trace and the respective results of the analysis for BetP-

S545C-SL solubilised in 0.1% DDM. Prior to the reconstitution of the above measured 

BetP-S545C-SL variant (Figure 36) an aliquot of the same purified protein was retained 

for the DEER analysis with a corresponding sample solubilised in detergent. The analysis 

showed a mean distance of 29±5Å, which was more or less identical to the observed spin-

spin distance in the membrane embedded BetP-S545C-SL sample (Figure 36). 
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Figure 37: DEER analysis of BetP-S545C-SL solubilis ed in detergent (0.1% DDM) with the resulting dipol ar 
evolution function (V(t), upper right inset), the f orm factor (F(t), lower right inset) as well as the  assumed 
Gaussian distance distribution P(r). For the evaluation of the detected spin-spin-couplings, the 
“DEERAnalysis2006”-Software from Gunnar Jeschke was used. Experimental conditions: d2 = 1900ns; temperature 
= 50°K (-223.15°C). 
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3.5.3.  BetP-E572C-SL in E. coli liposomes 

The results of the DEER analysis for the spin labelled BetP-E572C mutant are shown in 

Figure 38. The analysis of time resolved traces revealed a mean distance of 40±8Å 

between the spin labels at position 572 (centre of the C-extension) in the BetP trimer. For 

the moment the signal/noise ratio does not allow to draw a final conclusion about the 

distance measured in this sample (Figure 38, inserts; work in progress). It has to be noted 

that according to the suggested topology model, the spin label at this centre position 

within the C-domain exhibits more rotational freedom than the spin label at position 545 

(Figure 35), resulting in much broader distance distribution (cp. Figure 36 and Figure 38). 

The presence of various spin label conformations in a given sample can affect the DEER 

time trace and mask the frequency of the main oscillation (Jeschke and Polyhach, 2007). 

However, these preliminary results indicated that indeed some spin-spin interactions 

between the spin labels attached to the position 572 of different BetP monomers occurred. 
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Figure 38: DEER analysis of BetP-E572C-SL reconstit uted in E. coli lipids with the resulting dipolar evolution 
function (V(t), upper right inset), the form factor  (F(t), lower right inset) as well as the assumed G aussian 
distance distribution P(r). For the evaluation of the detected spin-spin-couplings, the “DEERAnalysis2006”-Software 
from Gunnar Jeschke was used. Experimental conditions: d2 = 1400ns; temperature = 50°K (-223.15°C). 
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3.5.4.  BetP-S589C-SL in E. coli liposomes 

The respective DEER trace and the results of the analysis for the BetP-S589C-SL sample 

are shown in Figure 39. Due to the low labelling efficiency for this sample (less than 30%) 

the signal/noise ratio was very low (Figure 39, inserts). It was not possible to detect an 

oscillating V(t) curve and to properly fit the background function B(t) (for more details see 

Appendix; Jeschke and Polyhach, 2007). However, due to the presence of a relatively 

long decaying echo signal (cp. insert in Figure 39 with insert in Figure 36), we could rule 

out a distance below 50Å (personal communication, I. Borovykh). Future experiments with 

samples exhibiting a higher labelling efficiency are needed to confirm these results. In 

addition, the spin label at this position (near the C-terminus) showed a high mobility 

indicating a large space available for the spin label motion (Figure 30). As result, a broad 

conformational distribution can be expected for the spin label at this position, resulting in 

the absence of any modulation pattern in the DEER trace (Jeschke and Polyhach, 2007). 

Also, it is important to note that the common freezing of a DEER sample down to 50°K 

can induce additional distance distributions which have been observed to affect the 

resulting modulation pattern. 
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Figure 39: DEER analysis of BetP-S589C-SL reconstit uted in E. coli lipids with the resulting dipolar evolution 
function (V(t), upper right inset), the form factor  (F(t), lower right inset) as well as the assumed G aussian 
distance distribution P(r). For the evaluation of the detected spin-spin-couplings, the “DEERAnalysis2006”-Software 
from Gunnar Jeschke was used. Experimental conditions: d2 = 1800ns; temperature = 50°K (-223.15°C). 
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3.5.5.  BetP-S545C/S589C-SL in E. coli liposomes 

Figure 40 shows the results of the DEER study for a double spin labelled cysteine mutant 

(BetP-S545C/S589C-SL). Here, in addition to the already observed distance of about 30Å 

(position 545) we detected an additional peak with a mean distance of about 47Å. Due to 

the fact, that we were not able to determine a distinct intermolecular distance between the 

single spin labelled 589 positions in the BetP trimer (Figure 39), the second distance of 

about 47±5Å (Figure 40) may be attributed to an intramolecular distance between the spin 

labels attached to position 545 and 589 in the same BetP monomer. Since the 

signal/noise ratio for the single labelled BetP-S589C mutant was rather low, we still 

cannot completely rule out that interactions of the spin labels at position 589 in different 

BetP monomers of the trimer are responsible for this additional distance. Currently work is 

in progress to confirm these results.  
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Figure 40: DEER analysis of BetP-S545C/S589C-SL rec onstituted in E. coli lipids with the resulting dipolar 
evolution function (V(t), upper right inset), the f orm factor (F(t), lower right inset) as well as the  assumed 
Gaussian distance distribution P(r). For the evaluation of the detected spin-spin-couplings, the 
“DEERAnalysis2006”-Software from Gunnar Jeschke was used. Experimental conditions: d2 = 2000ns; temperature 
= 50°K (-223.15°C).  
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3.5.6.  S545C/Y550P/S589C-SL in E. coli liposomes 

An additional mutant of interest was the triple mutant BetP-S545C/Y550P/S589C. The 

introduction of a proline at position Y550 leads to a permanently active (deregulated) 

transport protein (Schiller et al., 2006). This triple mutant was used to probe the 

hypothesis changes in the structure/orientation of the C-terminal domain during the 

activation process of BetP (Figure 27). For this purpose and as mentioned above, the 

intra- and intermolecular distances of the “quasi-wildtype” protein BetP-S545C/S589C 

(Figure 40) and the deregulated triple mutant BetP-S545C/Y550P/S589C (Figure 41) had 

to be compared to each other.  

Figure 41 shows the results of DEER measurements for the triple mutant BetP-

S545C/Y550P/S589C. The respective analysis revealed the presence of two distinct 

distances, a short distance of about 30±5Å and a greater distance of about 44±3Å. The 

short distance may be assigned to the S545C-SL�S545C-SL interaction in the trimer (cp. 

Figure 36 and Figure 41). The second distance of 44±3Å could appear due to the 

interaction of spin labels at position 545 and S589C within the same BetP monomer. 

Interesting is the fact that although the short distance (S545C-SL�S545C-SL) did not 

change for these two samples, the larger distance was about 3Å less in the triple mutant 
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Figure 41: DEER analysis of BetP-S545C/ Y550P/S589C-SL reconstituted in E. coli lipids with the resulting 
dipolar evolution function (V(t), upper right inset ), the form factor (F(t), lower right inset) as wel l as the 
assumed Gaussian distance distribution P(r). For the evaluation of the detected spin-spin-couplings, the 
“DEERAnalysis2006”-Software from Gunnar Jeschke was used. Experimental conditions: d2 = 1900ns; temperature 
= 50°K (-223.15°C). 



Results 

73 

sample compared to the double mutant BetP-S545C/S589C-SL (cp. Figure 40 and Figure 

41). The distance distribution was nearly the same for the intermolecular interactions of 

spin labels at position 545. On the contrary, the observed standard deviation (σ) of the 

DEER analysis carried out for BetP-S545C/Y550P/S589C-SL had nearly half the amount 

compared to BetP-S545C/S589C-SL (3Å vs. 5Å, Table 7). This can be induced for 

example by the presence of a different sterical conformation of the C-terminal domain in 

the cysteine/proline mutant. In addition, a pronounced shoulder is visible at the left side of 

the main peak (distance about 27Å). Currently, the origin of this shoulder is not clear. 

Further research is necessary to confirm these results. 

 

Table 7 summarizes the determined spin-spin distances of all single and double spin 

labelled BetP variants studied in this work.  

 

Table 7: Summary of the computated spin-spin distan ces of the DEER EPR analysis (DEERAnalysis2006, Jes chke) 

on spin labelled BetP variants reconstituted in E. coli lipids (proteoliposomes). 

BetP variant 
Mean distance 

r 
Standard deviation 

σσσσ 
[Å] [Å] 

S545C-SL 30 5 
S545C-SL-detergent 29 5 

E572C-SL 40 8 
S589C-SL n.d. n.d. 

S545C/S589C-SL 
32 6 
47 5 

S545C/Y550P/S589C-
SL 

26 4 
30 5 
44 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Discussion 

74 

4. Discussion 
The structural and functional characterization of the osmoregulated transporter BetP from 

Corynebacterium glutamicum is in the focus of the presented work. Under hyperosmotic 

conditions, this secondary carrier imports its substrate glycine betaine into the cell. 

Interestingly, BetP is able to sense the osmotic challenge by monitoring the increase of 

the cytoplasmic K+ concentration as well as to subsequently adjust its import activity to the 

extent of externally applied osmostress. Former studies revealed that – to a certain extent 

- the integrity and primary structure of the C-terminal domain of BetP are crucial for a 

correct stimulus sensing and/or signal transduction (Peter et al., 1998a; Schiller et al., 

2004b; Ott, 2008). In depth analysis with proline substitutions within a putative α-helical 

stretch which is located in the centre of the C-domain showed that also the conformation 

and relative orientation of this domain is essential for the activity regulation of the 

transporter (Schiller et al., 2006). Recently, it was suggested that the interaction of the  

C-extension with other domains of the protein, structural changes in the vicinity of the  

C-terminal domain as well as interactions between BetP monomers in the oligomeric state 

may be important for the function of the carrier (Ressl et al., submitted).  

In order to further analyze the structure and function of the C-domain during the activation 

process of BetP, an SDSL-EPR-based spectroscopic study of the transporter and in 

particular of distinct positions at the beginning (545), in the centre (572) or the end (589) 

of the C-terminal domain was carried out under activating and non-activating conditions. 

In the scope of this work was the detailed analysis of the general structural properties as 

well as time-resolved motions of the C-domain during BetP-activation. For this purpose 

and as a prerequisite for all performed EPR measurements, first the sustained 

functionality of each spin labelled BetP cysteine variant was verified by radiochemical 

uptake measurements with [14C]-glycine betaine and compared to the control mutant 

BetP-C252T (“cysless”) with its wildtype-like activity regulation profile. In addition, an 

efficient reconstitution of these mutants into E. coli lipids in terms of a high yield of 

rightside-out orientated, spin labelled BetP protein was established to obtain enough 

highly purified material for the SDSL-EPR studies. Preliminary distance measurements 

between two spin labels within the same C-domain of the same BetP monomer 

(intramolecular distance) or between different single spin labelled BetP monomers in their 

oligomeric state were performed to further confirm the trimer aggregation of the 

reconstituted transporter (Ziegler et al., 2004; Ressl et al., submitted).  
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4.1. Activity regulation of BetP variants in E. coli lipids 
The combination of both, (i) Site-Directed Spin Labelling (SDSL) and (ii) Electron 

Paramagnetic spin Resonance (EPR) spectroscopy was used to provide specific 

information on the structure and environment of genetically engineered cysteine residues 

within the C-terminal domain of the secondary transporter BetP. Since no crystal structure 

of the protein is published to date, the selection of the single cysteine mutants for the aims 

of this thesis was based on the so far suggested topology model of the BetP carrier 

(Figure 9). Hence, the three chosen positions should provide a consecutive screen of the 

presumably different mobility of spin labels attached to introduced cysteines at the 

beginning (545), in the centre (572) or close to the end (589) of the 55 amino acid 

comprising C-terminal domain. 

As an initial step, a sulfhydryl-specific spin label containing a stable free radical had to be 

covalently linked to the cysteine of interest which in turn can then be used as the EPR-

detectable probe. However, the influence of the spin label attachment on the structural 

and kinetical properties of the respective carrier variant had to be investigated to assure a 

functional conformation that does not impair the native activation process of the protein. 

For this purpose, the catalytic activity of each spin labelled and non-labelled BetP mutant 

reconstituted in E. coli lipids was determined via radiochemical transport measurements. 

In doing so, the maximal uptake rates for [14C]-glycine betaine as a function of the applied 

osmotic upshift for each variant were determined and compared to the wildtype-like 

regulation profile of the BetP-C252T (“cysless”) protein as control.  

 

4.1.1. Comparison of the regulatory properties of n on-labelled and 
spin labelled BetP variants S545C, E572C and S589C 

As expected from the corresponding in vivo experiments (Nicklisch, 2005), the respective 

activation profiles of the non-labelled reconstituted BetP cysteine variants looked almost 

the same. When reconstituted in E. coli lipids, BetP-S545C and BetP-S589C showed a 

regulation profile similar to the wildtype-like BetP-C252T mutant, while the BetP-E572C 

mutant was deregulated. Thus, a cysteine substitution at the beginning (position 545) or 

close to the end (position 589) of the C-domain did not influence the autonomous activity 

regulation property of the BetP carrier incorporated in liposomes. Likewise, the 

deregulated activation profile of BetP-E572C in E. coli lipids showed a (permanent) uptake 

rate, but the mutant was still unable to adapt its maximal activity to the increase in the 

external osmolality. 

The corresponding spin labelled BetP variants could sustain their normal osmoregulation 

profile in the case of BetP-S545C-SL and BetP-S589C-SL or their deregulated activation 

profile in the case of BetP-E572C-SL. This proved that the spin labels attached to position 
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545 or 589 did not induce a sterical hindrance or a general impairment of the stimulus 

detection and/or signal transduction process. Concerning the spin labelled position 572, 

the sustained permanent activity after the spin label introduction did not seem to influence 

the transport process. Since the non-labelled BetP-E572C mutant already exhibits a 

deregulated activation profile, a particular influence of the spin label attachment on the 

stimulus sensing and signal processing properties of this BetP mutant cannot be 

separated from the effect of the cysteine introduction at position E572. 

Interestingly, the spin label attachment seemed to lead to a shift in the sensitivity towards 

the stimulus detection, as already observed in N-terminal deletion mutants or in 

proteoliposomes with a higher share of negatively charged lipids (Peter et al., 1997; 

Schiller et al., 2006). The activation optimum was reached at an external osmolality of 

600mosmol/kg with the non-labelled BetP mutants and at 800mosmol/kg with the spin 

labelled variants (cp. Figure 18 with Figure 19). Due to the fact that both, (i) the N-terminal 

extension and (ii) the surrounding phosphatidylglycerol lipids in the proteoliposomes 

possess negative charges, which seem to be involved in the sensitivity of stimulus 

perception, electrostatic interactions may play a certain role in the adaptive 

osmoregulation process of the BetP transporter. Since the MTS spin label only comprises 

an uncharged pyrrole ring as well as a sterically shielded paramagnetic electron (four 

surrounding methyl groups, Figure 49) an electrostatic influence can be ruled out as an 

origin for the putative sensitivity shift. However, the attachment could also restrict 

particular conformational degrees of freedom within the BetP protein that might hinder a 

proper stimulus sensing. Due to the fact, that in the studied single cysteine BetP variants 

only one small substituent per monomer was attached, it is rather unlikely that the small 

spin probe caused a sterical restriction that might influence the overall regulation profile to 

such an extent. However, in the case of ProP from E. coli all attempts to attach single spin 

labels at different positions within the carrier led to an inactive protein and thus prevented 

the application of SDSL-EPR for the functional carrier (J. Wood, personal communication). 

It has to be noted, that different batches of E. coli lipids were used in the activity 

measurements for labelled and non-labelled BetP mutants. In an “old” lipid batch 

unavoidable lipid oxidation products due to radical abstraction or the formation of 

peroxides, may cause both, (i) an improper incorporation of the BetP protein or (ii) an 

increase in the permeability of the liposome bilayer (Zhang et al., 1993; Zuidam et al., 

2003). Both chemical degradations may thus lead to physical changes of the 

proteoliposomes that may induce the observed shift in (osmo-) sensitivity. In addition, the 

degree of purification in each lipid batch varies to a certain extent (Avanti Polar Lipids 

manufacturer, personal communication). A higher degree of purification leads to a higher 

fraction of negatively charged PG in the E. coli extract, which in turn was already 
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observed to render BetP more insensitive to its stimulus 

(http://www.avantilipids.com/LipidsByExtraction.asp; Schiller et al., 2006; Rübenhagen et 

al., 2000). However, this observed activation optimum shift to higher osmolality in the 

presence of a spin label needs additional confirmation (work in progress). 

 

We conclude that the introduction of a spin label at amino acid positions 545 and 589 did 

not impair the BetP function and thus allowed the further study of these mutants using 

SDSL-EPR. In addition, the analogous modification (i.e. spin label attachment) of the 

BetP-E572C protein had no influence on its deregulated activation profile, e.g. its 

permanent activity independent of the applied hyperosmotic stress was conserved. 

 

4.2. Optimization of the reconstitution process 
By means of SDSL-EPR analysis it became obvious that the direct contact to the 

hydrophobic SM2 Bio-Bead resin promotes BetP absorption and that this phenomenon 

was responsible for the high protein loss during the conventional reconstitution process 

developed by Rigaud et al. (1995).  

According to a common interpretation of the reconstitution process, the incorporation of 

membrane proteins in pre-solubilised E. coli liposomes occurs during the first minutes 

after the addition of the solubilised protein and should be more or less complete before 

the addition of the Bio-Beads (Rigaud et al., 1988b, 1998). However, in our case the 

polystyrene beads even seemed to “extract” the already incorporated BetP out of the 

liposomes during reconstitution. Since pre-saturation of the Bio-Beads with lipids, an 

increase of the adsorption rate due to higher temperatures or a higher number of batches 

(Rigaud et al., 1997) as well as the application of low protein concentrations did not lead 

to a significant improvement, a new alternative method was developed here for BetP 

reconstitution. The task was to ensure high reconstitution efficiency in terms of both, (i) a 

high protein recovery and (i) functional rightside-out incorporation into E. coli lipids. Since 

the direct contact to Bio-Beads was responsible for the high protein loss, a separation of 

the protein-lipid-detergent micelles and the hydrophobic absorbent was obligatory. For this 

purpose, a reconstitution by dialysis was suggested to circumvent this problem. A dialysis 

bag with a suitable cut-off (e.g. 50kDa for BetP trimer with ~180kDa) allowed the 

detergent removal by size exclusion. However, the critical micelle concentration (cmc, 

minimal detergent concentration at which micelles form) of the used detergent DDM is 

rather low (0.5mM, Le Maire et al., 2000) and led to high dilution factors and a prolonged 

dialysis time. A combination of dialysis and Bio-Bead addition to the external buffer was 

known to significantly accelerate a dialysis reconstitution process and was thus applied 

and optimized for the reconstitution of BetP (according to the basic idea of Philippot et al., 
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1983). By comparison of the relative EPR signal amplitudes of spin labelled BetP variants 

during the reconstitution with the conventional and with the new Bio-Bead/dialysis method 

it was possible to quantify relative protein loss and efficiency of the two methods. 

 

This SDSL-EPR study revealed that during the conventional reconstitution about 75% of 

the BetP-S589C-SL protein was adsorbed to the Bio-Beads after 6h hours of Bio-Bead 

incubation. In contrast to this, only 30% protein was lost during the Bio-Bead/dialysis 

reconstitution after 6h of incubation (Figure 21). Similar results were obtained for the 

BetP-E572C-SL mutant (data not shown). After 24 hours of reconstitution (=end of 

procedure) we obtained an about 5-8 times higher amount of reconstituted spin labelled 

BetP protein when the new Bio-Bead/dialysis method was applied as compared to the 

conventional reconstitution assay. Although during the Bio-Bead/dialysis method no direct 

contact and thus adsorption of BetP to the Bio-Beads could occur, a certain extent of 

protein loss was still observable (Figure 21). The subsequent measurement of the Bio-

Beads from the dialysis buffer revealed that no spin labelled BetP protein was adsorbed 

(data not shown). Reasons for this might be attributed to the used dialysis membrane. The 

permeability of such a spongy matrix of cross-linked polymers mainly depends on the 

molecular shape, degree of hydration or solubilisation, ionic charge, and polarization of 

the protein species to be retained. Although the respective Molecular Weight Cut-Off 

(MWCO) is an indirect measure of the retention performance, it is more precisely 

determined as the solute size that retains to at least 90% (“Membrane selection guide”, 

Spectrum Labs, http://www.spectrapor.com/). Thus, possible explanations for the protein 

loss could be that (i) a small amount of BetP monomers (64,2kDa), trimers (~180kDa) or 

even lipid-protein-detergent micelles were extracted from the dialysis bag and distributed 

in the dialysis buffer at concentrations which were too low to be measured by EPR 

spectroscopy (500mL external buffer volume and only a few mg of Bio-Beads were used 

for the reconstitution) or (ii) - most probably - a certain amount of BetP adsorbed to the 

dialysis membrane (CE, cellulose ester) and could not be recovered after the 

reconstitution. Thus, a small but unavoidable extent of protein loss has to be considered 

and included in every design of future reconstitution procedures with the Bio-Bead/dialysis 

method.  

Interestingly, the spectral line shapes of the two BetP variants E572C-SL and S589C-SL 

looked nearly similar (broad EPR spectra, typical for spin labels with restricted mobility), 

when absorbed to the Bio-Beads (Figure 57, Appendix). This led to the conclusion that at 

least a major part or even the whole C-domain is strongly interacting (binding to) with the 

hydrophobic resin and supports the former suggestions of being “sticky” to various kinds 

of surfaces (V. Ott and S. Morbach, personal communication). It raises the question, if 
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such a “sticky” agent had to be shielded under native conditions to function as a flexible 

and “switch”-like sensor in the BetP protein? It may be noted, that such an ability of Bio-

Beads to strongly absorb BetP protein can be used in future experiments, for example, to 

remove inside-out orientated BetP trimers from the proteoliposomes. This method may be 

used to improve the quality of future transport measurements and EPR analysis. 

 

EPR spectroscopy revealed that the final yield of reconstituted spin labelled BetP was low 

(around 10-20% of the starting amount) using the conventional reconstitution assay. 

Although some protein loss was also observed in the new established Bio-Bead/dialysis 

method, the final recovery of proper incorporated spin labelled protein was about 70%. 

Consequently, this new method was preferred for further reconstitution procedures. Thus, 

separation of the hydrophobic adsorbent and BetP protein by a dialysis bag with a proper 

cut-off (e.g. 50kDa for BetP trimers with a total molecular mass of about 180kDa) seems 

to be crucial for a high efficient reconstitution into E. coli lipids to sustain the calculated 

LPR (lipid-to-protein ratio) necessary for high quality cw- and pulsed EPR measurements. 

It was shown that direct contact between Bio-Beads and the BetP protein results in a 

strong absorption of the carrier to Bio-Beads. In particular, it was deduced that the  

C-terminal domain is involved in this process. 

 

4.3. Mobility profiles of C-terminal BetP variants 
To reveal putative protein-protein or protein-lipid interactions during reconstitution into  

E. coli lipids, the EPR spectra of each of the three spin labelled BetP variants (S545C-SL, 

E572C-SL, S589C-SL) solubilised in detergent were compared to the spectra of the 

respective mutant when reconstituted in liposomes. Beside a qualitative analysis of the 

spectral lineshapes (relative broadening or sharpening), a spectral analysis using a 

program developed by J. H. Freed (“jump model”; Freed, 1976) was performed to quantify 

the rotational correlation times of each spin labelled BetP protein and to allow a relative 

comparison of both, (i) the general spin label mobility at the three spin labelled positions 

within the C-domain in two different environments (in detergent and in lipids) and (ii) the 

relative increasing or decreasing of the spin label mobility from each BetP mutant in 

detergent compared to the reconstituted sample. 

Due to sample heterogeneity and different rotamers of the spin label side chain, in most 

cases two or even more correlation time components can be derived from a given EPR 

spectrum (Guo et al., 2007). In particular, this reorientational motion (correlation time) of 

the nitroxide radicals arises from different contributions: (i) internal dynamic modes of the 

side chain, (ii) local protein backbone fluctuations, (iii) interactions with neighbouring side 

chains, and (iv) conformational changes and rotational diffusion of the entire protein (Beier 
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and Steinhoff, 2006). Since the latter contribution can be suppressed by simply increasing 

the viscosity of the protein solution (Timofeev and Tsetlin, 1983), side-chain motions and 

local backbone fluctuations affect a given EPR mobility spectrum to the greatest extent. 

The proper incorporation of the BetP variants into E. coli liposomes should have a similar 

effect as to increase the viscosity in soluble protein solutions. In addition, it was expected 

that the membrane protein would adapt its native and probably more rigid conformation in 

liposomes compared to the more flexible conformation in detergent that may be reflected 

in a decreasing spin label mobility. 

 

4.3.1.  Lipid effects in BetP-S545C-SL, -E572C-SL a nd –S589C-SL 

Results obtained with the BetP-S545C-SL mutant with the spin label attached to a 

cysteine residue suggested that this position is in close vicinity to the membrane/protein 

interface and thus showed a restricted mobility spectrum in both environments, when 

solubilised in detergent and when reconstituted in E. coli lipids. This was indicated by a 

broad spectral lineshape and two slow rotational correlation time components. The 

rotational correlation time component τ1 of BetP-S545C-SL in detergent reveals a weak 

immobilization with a value of 3.8ns, whereas the second component τ2 (16ns) hints to an 

intermediate mobility of the respective side chain motion (Figure 52 and Figure 53; 

Steinhoff, 1990; Beier and Steinhoff, 2006). However, the incorporation in E. coli lipids 

leads to a pronounced decrease in spin label mobility of both spectral components, 

indicating an intermediate (τ1 = 15ns) or even strong (τ2 = 52ns) spin label immobilization 

at position 545 after the reconstitution. Thus, reconstitution of BetP-S545C-SL seemed to 

lead to a tighter package and/or a certain sterical hindrance via lipid shielding or to a 

partial hinged position of amino acid position 545 that reduces the respective spin label 

mobility. This result is confirming the suggested (based on topology analysis) position of 

this amino acid in the protein structure. 

Unlike the other two studied cysteine mutants (BetP-S545C-SL, BetP-S589C-SL), BetP-

E572C-SL is a deregulated carrier variant. This mutant still shows some low level of 

constant activity, but it is not able adapt its maximal uptake rate to the extent of osmotic 

stress it is exposed to. In this mutant the spin label is attached to a cysteine located in the 

centre of a putative α-helix which is assumed to be situated in the middle of the C-terminal 

domain (Figure 11). When the BetP mutant is reconstituted into lipids, we observed a 1.5 

fold increase in the time constant for the fast component (τ1) with almost no effect of lipid 

on the slow component (τ2). Thus, the effect of reconstitution into lipids on the dynamics of 

the spin label at position 572 is less pronounced than for the label attached to position 

545. The comparison of the respective time constants for both single spin labelled 

reconstituted mutants (BetP-S545C-SL and BetP-E572C-SL) indicated that the mobility of 
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the spin label at position 572 is much less restricted. The time constants for the fast and 

slow components of BetP-E572C-SL were about two times lower (=higher spin label 

mobility) compared to the results from BetP-S545C-SL. This is in agreement with the 

suggested structure of the C-domain: position 572 is located near the centre of the flexible 

C-terminal extension. These results indicated (i) a more flexible structure of the C-domain 

at positions 545 and 572 in the solubilised BetP protein and (ii) a less effect of 

reconstitution on the structure and spin label mobility at position 572 in the reconstituted 

BetP sample. Thus, with correlation times of τ1 = 2.9ns and τ2 = 9.5ns in E. coli lipids, the 

attached spin label at position 572 showed a weak or intermediate immobilization (Figure 

52). 

The spectral simulation of BetP-S589C-SL in detergent revealed only one fast correlation 

time component with τ1=1.2ns. This hinted to a nearly free reorientational motion of the 

attached spin label if the protein is solubilised. The incorporation into E. coli lipids 

decreased this fast τ1 component nearly twofold (1.2ns => 2.2ns) and additionally 

revealed the presence of a second (slow) component τ2 with 10.5ns. Compared to the 

E572C-SL mutant, this indicated that positions 572 and 589 have a similar overall 

flexibility after reconstitution. Since both positions showed a pronounced lipid effect that 

seemed to restrict both spin label mobilities to the same extent, these two parts of the  

C-terminal extension may exhibit a similar relative orientation, e.g. in parallel to the lipid 

bilayer and/or protein plane. In addition, the absence of the second (immobile) spectral 

component in the solubilised BetP-S589C-SL sample may indicate, that the position 589 

is more exposed or freely tumbling when the protein is solubilised in detergent. The 

incorporation into lipids however may lead to pronounced interactions with protein or lipid 

surroundings that induce sample heterogeneity, e.g. different reorientational dynamics of 

the nitroxide group for position 589 that expose the second correlation time component. 

However, it is important to note that the spin label in position 589 is supposed to be 

located close to the end of the C-domain. Depending on the secondary structure of the  

C-domain and a suggested perpendicular orientation to the lipid plane, we would expect a 

distance of about 40Å or even more from position 589 to the rigid lipid/protein interface. 

Thus, no effect of the reconstitution into E. coli lipids on the spin label mobility at this 

terminal position would be expected. This further supports the idea of a relative orientation 

of the whole C-domain that is parallel or close to the lipid or protein plane in the 

reconstituted, non-activated BetP transporter. 

 

The preliminary results from the “lipid effects” on the spin label mobility of the three 

cysteine positions within the C-domain of BetP revealed that all three positions showed a 

decrease in spin label mobility upon reconstitution into E. coli lipids, indicating a more rigid 
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conformation of the whole C-terminal extension in a lipid environment. However, it was 

rather unexpected to observe a pronounced mobility restriction for the spin label attached 

to the terminal end of the C-domain (S589C-SL) after incorporation into lipids. Taking this 

into account, the 55 amino acid comprising C-terminal domain of the non-activated carrier 

is not supposed to be freely tumbling in the cytoplasm but rather to stay in the vicinity of 

the lipid surface (e.g. in parallel to the lipid plain) or of other protein domains that might 

restrict its degree of freedom. As a result, a shearing movement of the C-terminal domain 

upon activation might be more reasonable than a free tumbling switch (Figure 47). 

 

To further confirm the observed “lipid effects” for each of the analysed spin label positions 

within the C-domain of BetP, power saturation measurements would be necessary in 

future experiments. With this technique the solvent exposure or the relative orientation 

towards lipid and protein phases of an attached spin label can be estimated.  

A dimensionless accessibility parameter Π is deduced from the different collision 

frequencies of the respective spin label with paramagnetic quenchers and allows a 

separation between the different grades of spin label interactions in a tagged protein 

sample (Altenbach et al., 1994; Malmberg and Falke, 2005). 

 

4.3.2.  Salt induced mobility changes of BetP-S545C -SL, BetP-
E572C-SL and BetP-S589C-SL 

Characterization of the mobility profiles of the three single spin labelled BetP variants 

S545C-SL, E572C-SL and S589C-SL under non-activating conditions (without 

salt/osmotic stress) in detergent and reconstituted in liposomes was in agreement with the 

suggested topology model (Figure 17). The next step was to analyse the respective 

mobility changes of the consecutive spin label positions within the C-domain after a 

hyperosmotically stimulated carrier activation. This study addressed the question whether 

the C-terminal extension indeed undergoes conformational changes and/or sterical 

reorientations during the activation process of the protein. If so, these putative dynamics 

could lead to a change of interaction partners (surrounding lipid or protein domains) 

before and after the osmotic upshift and thus allow monitoring osmostress-induced spin 

label mobility changes in a given EPR spectrum. Due to time restriction, a quantitative 

analysis of the EPR data from the present salt effect measurements could not yet be 

conducted (work in progress). Thus, the following discussion will be based on a qualitative 

interpretation of the spin label mobility derived from the relative spectral broadening or 

sharpening of the detected EPR lines.  

Applying activating amounts of NaCl (660mM) or proline (1M) did not have a pronounced 

effect on the mobility profile of the spin label attached to position 545 compared to the 
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untreated sample (Figure 28). Since the amino acid position 545 is supposed to be 

located in close vicinity to the rigid lipid/protein interface, the respective spin label mobility 

was not expected to be significantly affected during a putative reorientation of the  

C-extension upon BetP activation. This result indicated that changes of the protein 

structure in the vicinity of this spin label position were either very small or not present. 

The hyperosmotic BetP-E572C-SL activation by the addition of proline (1M) or glycine 

betaine (1M) to the external buffer of the respective proteoliposomes had only a small or 

no effect on the spectral line shape of the spin label at this position. These results are in 

agreement with the known deregulated activity regulation profile of BetP-E572C-SL if we 

suggest, that changes in the structure or orientation of the C-domain are necessary for a 

proper BetP activity regulation (Figure 19). Hence, we did not expect strong structural 

changes and thus no changes in the spin label mobility at this position in the presence or 

absence of activating amounts of osmolytes. However, the analogous stimulation with 

salts (NaCl, KCl, 660mM each) showed some increase in the spin label mobility compared 

to the untreated sample. This suggested a certain effect of salt on the conformation of at 

least the central part of the C-domain. It was known from former transport measurements 

with BetP heterologously expressed in E. coli MKH13 cells that salt as hyperosmotic 

upshift-inducing solute was more potent in activating the BetP carrier and hence led to 

higher maximal uptake rates than non-ionic solutes (personal communication, S. Morbach 

and R. Krämer). However, it was unclear if these small effects were related to structural 

changes within the central part of the C-domain due to BetP activation or due to a salt 

effect on unbound spin label in the sample. Also, we could not exclude that this increase 

in spin label mobility occurred due to the presence of leaky liposomes or liposomes with 

inside-out orientated BetP trimers in the sample (see below and 4.3.3). 

In contrast to the experiments with the spin label at position 545 and 572, an osmotic 

upshift (with both kinds of solutes, ionic and zwitterionic) applied to proteoliposomes with 

incorporated BetP-S589C-SL were able to induce a pronounced increase of spin label 

mobility compared to the untreated sample (Figure 30). However, the effect of salts was 

about 2-3 times stronger than that of the zwitterionic solutes. It has to be noted, that the 

osmotic strength of both kinds of triggers differed by about 30%, e.g. the buffer 

supplemented with salt (NaCl, KCl) exhibited a total osmolality of 1.3osmol/kg whereas 

the osmotic upshift with zwitterionic solutes (GB, proline) was carried out with a total 

osmolality of 1osmol/kg in the external buffer. Since both values of osmotic strength 

should be sufficient to fully activate BetP, such pronounced differences in the spin label 

mobility induced by ionic and zwitterionic solutes were rather surprising. At this point, the 

presence of an unspecific salt effect was suggested.  
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We conclude that the SDSL-EPR study of putative salt-induced mobility changes at spin 

labels attached to three different positions in the C-terminal domain of BetP indicated that 

a salt and/or osmotic effect is present. This effect(s) is (are) depending on both, (i) the 

compound used to create the osmotic upshift and (ii) the position of the spin label in the 

protein structure. Upon the osmotically induced activation of each BetP variant, a higher 

increase in spin label mobility was detected with a greater distance of the spin label 

position from the fixed membrane position. In particular, the osmotic upshift resulted in 

hardly any mobility changes of the spin label attached to position 545, only weak effects 

on the spin label at position 572 and a strong increase in the spin label mobility at position 

589. These changes are indicative of an altered, more flexible conformation at least in the 

centre (E572C) and at the end of the C-terminal domain (S589C) after a hyperosmotically-

induced activation of BetP. It also may indicate a weaker interaction of this protein domain 

with other domains in the same monomer (and/or with domains in other BetP monomers) 

as well as a weaker interaction with the surface of the surrounding lipids. These findings 

are in agreement with the suggested working model for the BetP activation process 

(Figure 27).  

 

During this study a new question was raised: Why are the salts NaCl and KCl able to 

induce a greater mobility effect on the respective spin label than the zwitterionic solutes 

glycine betaine and proline, when used as hyperosmotic upshift-inducing supplements in 

the external buffer of the proteoliposomes (Figure 33). BetP activation (and thus the 

suggested C-terminal motions) was thought to be only induced by the increase in the 

internal K+ concentration due to the hyperosmotically induced water efflux out of the 

proteoliposomes (Figure 15, Materials and Methods). Thus, it was rather unexpected, that 

both kinds of osmolytes with a comparable osmolality of 1osmol/kg (proline, GB) and 

1.3osmol/kg (NaCl, KCl) affected the studied protein domain in such a different way. Two 

possible explanations for this phenomenon may be envisaged; both are related to a direct 

electrostatic interaction of salt ions with accessible spin labels that might induce a higher 

mobility effect. Such putative interactions might only occur in the case of (1) different 

orientations of BetP in the proteoliposomes (e.g. a population of proteoliposomes with a 

mixture of inside-out and rightside-out orientations) or (2) if a small amount of the 

proteoliposomes was leaky (see below and Figure 31, Results).  

In addition, the slightly higher osmolality and ionic strength (30%) of the salt may exert a 

direct or indirect influence on the membrane and/or protein conformation because also the 

internal concentration of K+ is increasing during the hyperosmotic upshift. Since 

proteoliposomes behave like ideal osmometers, the changes in the external osmolality are 

directly proportional to the volume changes during vesicle shrinkage (White et al., 2000). 
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Thus, the calculated final internal potassium concentrations in the respective BetP-

proteoliposomes might be about 550mM applying an external osmotic upshift with 1M of 

the zwitterionic compounds GB and proline as well as about 700mM using 660mM NaCl 

or KCl as hyperosmotic stress-inducing agents (Rübenhagen et al., 2001). Taken this into 

account, a combination of both, a direct electrostatic effect of salt ions on the external side 

of the proteoliposomes as well as the (indirect) higher osmotic effects (increased cation 

and potassium concentration) of the salt may be responsible for the above mentioned 

differences in spin label mobility.   

 

4.3.3.  Salt effects on reconstituted BetP variants  in the presence 
of CrOx 

To rule out the possibility that leaky liposomes or liposomes with inside-out orientated 

BetP protein could facilitate a direct electrostatic interaction of the external salt ions with 

both charged extensions of the investigated BetP variants (Figure 9), “quenching” 

amounts of ChRomiumOXalate (CrOx, 40-50mM) were exemplary added to the external 

buffer of hyperosmotically “shocked” BetP-S589C-SL and BetP-E572C-SL 

proteoliposomes. Such an experiment allows discriminating between indirectly induced 

mobility effects (across the liposome membrane) on spin labels within the C-terminal 

domain of BetP and putatively superimposing mobility effects that might derive from a 

direct electrostatic salt/C-domain interaction during the hyperosmotic upshift using salt in 

the external buffer. Due to the fact that the sharp EPR spectra of BetP-S589C-SL and 

BetP-E572C-SL are much more sensitive to even small mobility effects, these two 

mutants were chosen for all control experiments concerning the different spin label 

mobility changes induced by salts and solutes (Figure 23). Since all EPR signals from spin 

labels in leaky liposomes or in liposomes with inside-out orientated BetP trimers were 

quenched, the changes in the shape of the EPR spectra of each spin label were related to 

hyperosmotic stress induced conformational changes within the C-domain of rightside-out 

orientated carriers.  

Upon the addition of CrOx to the external buffer of BetP-S589C-SL proteoliposomes, the 

relative amplitude of the respective EPR spectra was much smaller compared to the 

untreated sample (cp. Figure 30 and Figure 33, full spectra). As an important result of this 

experiment it was shown, that in the presence and absence of CrOx, the spin label 

mobility changes (monitored by changes of the amplitude of the low field EPR line) still 

had the same direction for ionic and zwitterionic solutes as hyperosmotic upshift-inducing 

compounds, i.e. an increase in spin label mobility. However, slight differences were still 

visible: in both cases (with and without CrOx addition) the amplitude in the spectrum 

derived from the proteoliposomes treated with zwitterionic solutes (GB, proline) was 
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smaller. This difference in relative amplitude (salt vs. zwitterionic solute) was significantly 

reduced upon CrOx addition, which was supposed to be related to the lower osmolality 

compared to the used salt (see above).  

When similar measurements were performed with the spin label at position 572, both, 

ionic and zwitterionic solutes exerted a similar effect on the respective spin label mobility 

(Figure 34), but the observed effect was in the opposite direction to the one detected for 

the spin label at position 589. A small decrease of the respective low field amplitude was 

detected, which indicated that the mobility of the spin label at position 572 is slightly 

decreasing, when an osmotic stress is applied. Such an effect on the spectral lineshape 

can be expected, for example, if the central region of the C-domain moves closer to other 

protein domains or to the surface of the membrane upon BetP activation. However, when 

a cysteine is inserted at this particular position, the respective BetP variant looses the 

ability to be activated by a hyperosmotic upshift. As mentioned above and according to 

the currently suggested model for BetP activation we did not expect pronounced mobility 

changes within the C-domain of a deregulated BetP carrier. To circumvent this problem, in 

future experiments it will be necessary to study another engineered BetP mutant with a 

cysteine introduction in close vicinity to position 572, which exhibits a wildtype-like activity 

regulation.  

 

We conclude that the CrOx treatment ensured the presence of a population of intact, salt-

impermeable proteoliposomes with correctly incorporated and spin labelled BetP protein. 

Thus, the detection of changes in the spectral lineshape upon hyperosmotic stress could 

be related to structural changes in the C-terminal domain of reconstituted BetP or in the 

close vicinity of this domain leading to sterical restrictions for the attached spin labels. The 

pronounced effect on the respective spin label mobility of BetP-S589C-SL and BetP-

E572C-SL was diminished in the CrOx-treated proteoliposomes. However, a slightly 

higher mobility for the spin label at position 589 was observed, when the osmotic upshift 

was induced by salt instead of zwitterionic solutes (Figure 33). This difference can most 

likely be attributed to a 30% higher total osmolality of the external buffer supplemented 

with salt. In general, the mobility changes of the spin label at position 589 in the presence 

of CrOx had the same tendency compared to the changes observed in the absence of the 

relaxing agent (i.e. higher spin label mobility). In contrast to this, the trend of the 

respective spin label mobility at position 572 was different with and without the addition of 

the quenching agent to the external buffer. In the absence of CrOx, a salt-induced osmotic 

upshift led to a higher spin label mobility, while a zwitterionic-induced upshift had nearly 

no effect (Figure 29). The addition of CrOx to the external buffer of BetP-E572C-SL 

proteoliposomes caused a significant decrease in the spin label mobility using both, either 
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ionic or zwitterionic compounds for the osmotic upshift. It has to be noted, that the extent 

of the mobility restriction was nearly the same as indicated by the similar amplitude of the 

respective EPR spectra (Figure 34). The results in the absence of CrOx indicated, that 

salt seems to directly interact with the C-terminal domain of BetP, leading to a higher spin 

label mobility at positions in the centre (572) and at the end (589) of the extension. This 

may be the case, if the high salt concentration (660mM) impairs or even destroys 

intramolecular salt bridges or other ionic interactions of the C-domain with other protein 

domains and/or with the surrounding phospholipid headgroups of the membrane (Ressl et 

al., submitted). However, the used salts for applying the hyperosmotic upshift, could not 

yet been tested in transport measurements with proteoliposomes. If KCl would be used as 

a hyperosmotic stress inducing compound, the crucial outwardly directed potassium 

potential cannot be established during the uptake measurements (electrical gradient). On 

the other hand, if NaCl would be used, an influence of the co-substrate on the transport 

process could not be ruled out.  

 

These putative ionic as well as the zwitterionic effects have to be “titrated” in future 

experiments. Several concentrations (osmotic and ionic strength) of the salts have to be 

examined for their degree of increasing spin label mobility at a defined position (e.g. 

S589C). These measurements have to be performed in the absence and presence of 

CrOx and some other quenching agents (e.g. NiEDDA). In this context, the corresponding 

osmotic strengths of zwitterionic solutes have to be used for the application of osmotic 

upshifts and the effects on the respective spin label mobility have to be compared to the 

results from the salts-induced upshift measurements. A well-defined dependence of the 

applied solute concentration on the respective spin label mobility in CrOx-“quenched” 

proteoliposomes should finally be able to define both, (i) an intrinsic potency of salts to 

induce higher spin label mobility and (ii) a relationship between BetP activity and the 

respective spin label mobility at selected sites within the C-terminal domain.  
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4.4. Distance measurements with BetP variants 
Beside its catalytic function of 

glycine betaine import, BetP can 

autonomously sense its activating 

stimulus (osmosensor) and adjust 

its activity to the extent of the 

triggering osmotic stress 

(osmoregulator). However, the 

molecular mechanisms of 

osmosensing and signal 

transduction were barely 

investigated to date. Former studies 

on C-terminal truncation and substitution mutants revealed that this domain of the 

transporter has a crucial function in the osmosensing and osmoregulation process of 

BetP. The question came up, if particular structural changes within the C-domain and/or 

dynamical interactions between the C-domain and surrounding lipid or protein domains 

might be responsible for a proper stimulus sensing and/or signal transduction. 

The preliminary DEER studies in this work focused on the elucidation of the structural 

properties of the non-activated BetP carrier. For this purpose, the intermolecular distances 

between single spin labelled BetP monomers should allow the discrimination of multiple 

distance distributions detected in double or triple spin labelled cysteine mutants in the 

present work and for future SDSL-DEER investigations on BetP. Thus, the studies were 

split in two parts: (1) the detection of distances within single spin labelled BetP variants to 

derive intermolecular and/or intramolecular spin-spin interactions as “standard”-distances, 

and (2) a study on the influence of a proline introduction at position 550 on the distance 

between two strategically introduced cysteines at the beginning (position 545) and close 

to the end (position 589) of the C-terminal domain in a double (BetP-S545C/S589C-SL) 

and triple (BetP-S545C/Y550P/S589C-SL) mutant. The proline introduction was known to 

render the corresponding BetP variant deregulated, i.e. permanently active but insensitive 

to its activating stimulus. This triple mutant (BetP-S545C/Y550P/S589C-SL) thus exhibits 

a (permanently) active conformation and/or orientation of the C-domain that should be 

studied and quantified by DEER analysis. 

For all following structural analysis of the BetP protein it will be assumed that the 12 

transmembrane helices of a single monomer are arranged like a barrel in the membrane 

leading to a mean diameter of about 30Å (Figure 42). In addition, the results from the 

continuous wave EPR measurements concerning the lipid- and salt/solute-induced effects 

on the respective spin label mobility within the C-domain suggested rather a shearing 

BetP

d ~ 30Å

h ~ 40Å

d ~ 5Å

h ~ 40Å

 
Figure 42: Schematic illustration of a typical tran smembrane 
helix and the assumed barrel structure and dimensio ns of 12 
helices forming the BetP monomer (64.2kDa) when 
incorporated into the membrane.  
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degree of freedom close to other protein domains and/or the lipid membrane plane for the 

whole C-terminal extension. Furthermore it was already proven, that BetP is forming a 

homo-trimer in detergent and upon reconstitution into E. coli lipids (Ziegler et al., 2004; 

Ressl et al., submitted). 

 

4.4.1.  BetP-S545C-SL 

Four independent pulsed EPR measurements with the corresponding DEER analysis of 

BetP-S545C-SL reconstituted in E. coli lipids confirmed that the mean distance between 

the individual 545 positions within a reconstituted BetP trimer is about 30±5Å. According 

to the suggested barrel structure of one BetP monomer (Figure 42), the known trimeric 

state in E. coli lipids (Ziegler et al, 2004) as well as the determined spin-spin distance of 

about 30Å, the beginning of the C-terminal domain of each monomer within the trimer is 

most likely orientated inwardly, i.e. the amino acid positions 545 are facing the interfaces 

of each adjacent monomer (Figure 43).  

SDSL-DEER thus confirmed that 

BetP is in an oligomeric state 

(e.g. trimer) when it is 

reconstituted in liposomes. In 

addition, the results of the DEER 

study for BetP-S545C-SL in 

detergent revealed a mean 

S545C-SL�S545C-SL distance 

of 29±5Å (Figure 37). This 

distance is in line with the 

respective results from the 

reconstituted mutant (Figure 36). 

The detection of spin-spin 

interactions in this sample 

indicated that BetP is also forming oligomers when it is solubilised in detergent. It is 

important to note, that the inward orientation of the position 545 in each C-domain is also 

conserved in the detergent samples. Thus, an oligomeric state of BetP-S545C-SL could 

be shown with the same sample in detergent and functionally reconstituted in E. coli lipids 

as confirmed by subsequent transport measurements (Figure 19). 

 

 

 

 

S545C

S545C

S545C

 
Figure 43: Schematic illustration of three single B etP monomers 
forming the functional trimer in the liposomal memb rane. The 
suggested intermolecular spin-spin distance between the S545C-SL 
positions (red circles) is depicted as red-dotted line. The beginning of 
each C-domain is shown as a black line. 
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4.4.2.  BetP-E572C-SL 

The respective distance measurements with BetP-E572C-SL reconstituted in E. coli lipids 

revealed a mean spin-spin distance of 40±8Å. It has to be taken in to account that the 

E572C position is situated in the middle of a putative α-helical stretch. According to the 

respective crystal structure of BetP, this stretch is supposed to form a rigid cylindrical 

secondary structure element (α-helix) which is not bendable (Ressl et al., submitted). 

Thus, this intermolecular distance 

could be achieved, if each  

C-terminal domain of one 

monomer would somehow overlie 

the adjacent BetP monomer 

(Figure 44). If they were sticking 

out to the surrounding lipids or 

folded over the same monomer, 

the E572C-SL�E572C-SL 

distance would be much greater 

(approximately 60-80Å, Figure 

47). However, the determined 

distance could also be obtained, if 

the C-domains would be 

orientated perpendicular to the membrane (Figure 47, model D). According to the results 

from the continuous wave EPR measurements in this work (see above), the current 

hypothesis about the C-terminal dynamics during the activation process of BetP (Ressl et 

al., submitted) as well as the determined distance by DEER analysis of BetP-E572C-SL, 

Figure 44 displays the suggested “adjacent overlie” orientation of the C-terminal extension 

(Figure 47). This model is already adjusted to the previous results with BetP-S545C-SL 

and thus represents a successive refinement of the suggested relative C-domain 

orientation in the BetP trimer.  

 

4.4.3.  BetP-S545C/S589C-SL 

Unfortunately the respective DEER analysis from the BetP-S589C-SL single mutant did 

not lead to any significant signal resolution and hence distance distributions. However, the 

used d2-time of 1800ns (Table 9, Appendix) suggests an intermolecular spin-spin 

distance of at least 45Å or more. Future experiments with a higher labelling efficiency will 

reveal this distance, if the distance between the spin labelled 589 positions within a non-

activated BetP trimer are generally accessible within the range of the detection limits of 

pulsed EPR spectroscopy.  

E572C

E572C

E572C

 
Figure 44: Schematic illustration of three single B etP monomers 
forming the functional trimer in the liposomal memb rane. The 
suggested intermolecular spin-spin distance between the E572C-SL 
positions (orange circles) is depicted as orange-dotted line. Each 
partly displayed C-domain is shown as a black line. 
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The respective analysis of the 

double mutant BetP-

S545C/S589C-SL revealed two 

distinct distances of 32±6Å and 

47±5Å. Due to the fact, that we 

could not determine a distinct 

intermolecular distance between 

the single spin labelled 589 

positions in a BetP trimer (Figure 

39), it was difficult to accurately 

assign the measured distances 

to an intra- or an intermolecular 

spin-spin coupling in this double 

mutant. However, the calculated 

shorter distance of about 32±6Å 

(Figure 40) fits well to the already determined intermolecular S545C-SL� S545C-SL 

interactions (Figure 36, 30±5Å). Thus, the second distance of about 47±5Å (Figure 40) 

may in principle represent three different interactions: (i) an intermolecular S589C-

SL�S589C-SL interaction, (ii) an intramolecular S545C-SL�S589C-SL interaction or (iii) 

an intermolecular S589C-SL�S545C-SL interaction (Figure 45).  

However, based on the suggested “adjacent-overlie” model (see above), an 

intermolecular S589C-SL�S589C-SL distance would be greater than about 60Å and thus 

hardly detectable by pulsed EPR spectroscopy (Figure 45, pink-dotted line). On the other 

hand, the suggested rigid α-helical stretch of about 32-34 amino acids would separate the 

intramolecular positions 545 and 589 by a distance of at least 50Å (right-handed helical 

structure with 3.6 residues per turn and a corresponding translation of 1.5Å) plus 10 

amino acids in extended or coil form. So this distance as well as the intermolecular 

S589C-SL�S545C-SL interactions will be reasonable candidates for the second distance 

determined in the double mutant (Figure 45, yellow-dotted lines).  

In general, large distances between two spin labels in a protein domain under study have 

to be partitioned in smaller distance segments by the introduction of an intermediate spin 

label to obtain a suitable triple cysteine mutant (e.g. BetP-S545C/R574C/R589C-SL). 

Such a segmental analysis of the distances within the C-terminal domain can then be 

summarized and compared with the intermolecular distances in the corresponding single 

spin labelled mutants (e.g. BetP-S545C-SL, BetP-R574C-SL and BetP-S589C-SL), to 

clearly separate putative dipole-dipole couplings between adjacent BetP monomers. 

 

S545C

S545C

S545C

S589C

S589C
S589C

 
Figure 45: Schematic illustration of three single B etP monomers 
forming the functional trimer in the liposomal memb rane. The 
suggested intermolecular spin-spin distances between the S545C-SL 
(red circles) and S589C-SL (pink circles) positions are depicted as red-
dotted and pink-dotted lines, respectively. Additional intramolecular 
distances are displayed as yellow-dotted lines (exemplary for one 
monomer). Each C-domain is shown as a black line. 
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4.4.4.  BetP-S545C/Y550P/S589C-SL 

Similar to the respective single proline mutant (BetP-Y550P), the introduction of a proline 

at position 550 within the double mutant BetP-S545C/S589C renders the transporter 

permanently active (Nicklisch, 2005; Schiller et al., 2006). This BetP-

S545C/Y550P/S589C-SL triple mutant is thus unable to respond to a higher external 

osmolality with an increased uptake rate (Nicklisch, 2005). It was suggested, that the 

introduction of a proline at the beginning of the C-domain (amino acid position 550) might 

alter its whole conformation and/or relative orientation towards the surrounding protein or 

lipid domains. A comparison of the intramolecular S545C-SL�S589C-SL distance in the 

double and triple mutant enabled us to make a statement on relative movements or 

conformational changes of the C-terminal domain after the introduction of the proline. 

The respective DEER analysis of 

BetP-S545C/Y550P/S589C-SL 

revealed three distances of 

44±3Å, 30±5Å and of 26±Å. The 

30Å distance strongly points at 

the already determined 

intermolecular S545C-

SL�S545C-SL distance (Figure 

43). The detected spin-spin 

interactions in the range of about 

44Å were slightly shorter than the 

large distance observed in the 

double mutant BetP-

S545C/S589C-SL (47Ǻ, Figure 

45). This may result from two 

different sterical alterations: the 

introduction of the proline may lead to a kink within the C-domain that (i) brings the  

C-terminal ends in a BetP trimer in close vicinity to each other, resulting in a shorter 

intermolecular S589C�S589C distance of about 44Å or in contrary (ii) tears them far 

apart (where a intermolecular S589C�S589C distance would be beyond the detection 

limit) to reveal a certain intramolecular S545C�S589C distance of about 44Å (Figure 46, 

long yellow-dotted line). Interestingly, a third distance was observed in the sample with a 

mean value of about 26Å (Figure 41). Taken this into account, the latter assumption 

seems to be more likely if the third distance may derive from additional intermolecular 

S589C-SL�S545C-SL spin-spin interactions (Figure 46, short yellow-dotted line). 

Currently, i.e. with the present signal/noise ratio, we cannot exclude that the shortest 

S545C

S589C
Y550P

 
Figure 46: Schematic illustration of three single B etP monomers 
forming the functional trimer in the liposomal memb rane. The 
suggested intermolecular spin-spin distances between the S545C-SL 
(red circles) and S589C-SL (pink circles) positions are depicted as 
red-dotted and pink-dotted lines, respectively. Additional 
intramolecular distances are displayed as yellow-dotted lines 
(exemplary for one monomer). Each C-domain is shown as a black 
line. The introduced proline residues are depicted as blue circles. 
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distance (26Å) is the intramolecular distance between the spin labels at positions 545 and 

589, since some indication of a similar distance is also visible in Figure 40 (asymmetric 

peak shape at about 32Å). An additional possible combination of spin labelled interaction 

partners in the investigated triple mutant would be the following: (i) the S545C�S589C 

distance within the C-domain of the same monomer is 26Å, (ii) the intermolecular 

S545C�S545C distance is 30Å and (iii) the additional distance of 44Å represents either a 

S545C�S589C or a S589C�S589C spin-spin interaction, both from different monomers 

in the trimer (Figure 46).  

 

To further support the considerations on the conformation of the C-terminal domain and 

the relative orientation towards the adjacent monomer, the above mentioned consecutive 

analysis of spin label mobility within the C-domain is required and also further coordination 

points for spin labels have to be considered. In addition, except for the BetP-S545C-SL 

mutant, the other distance measurements need additional confirmation. Subsequently, the 

distances have to be determined in the activated carrier proteins and compared to the 

results from the same non-activated BetP mutants to gain further information about the 

extent and direction of C-domain movements during the activation process. 

 

Table 8: Summary of the computated spin-spin distan ces of the DEER EPR analysis (DEERAnalysis2006, Jes chke, 

2006) on spin labelled BetP variants reconstituted in E. coli lipids (proteoliposomes). 

BetP variant 
Mean distance r  Standard deviation σσσσ 

[Å] [Å] 

S545C-SL 30 5 

S545C-SL-detergent 29 5 

E572C-SL 40 8 

S589C-SL n.d. n.d. 

S545C/S589C-SL 
32 6 

47 5 

S545C/Y550P/S589C-SL 

26 4 

30 5 

44 3 
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Based on the results from the cw- and pulsed EPR studies carried out in this work, in 

principle a choice of possible “working” models for the relative orientation of the C-terminal 

domain within a functional BetP trimer can be outlined (Figure 47):  

(A) the C-domain of each monomer is overlapping the neighbouring monomer (“adjacent 

overlie”), (B) the C-extension is positioned on the same monomer (“hinged position”),  

(C) the C-terminal part of each BetP monomer is randomly extended to the surrounding 

lipid plane (“exposed position”) or (D) the cytoplasmic C-domains in a putative BetP trimer 

arrange as loosely interacting helix bundles (“helix bundle”) in analogy to the rod-shaped 

cytoplasmic domains of the NpHtrII transducer from Natronomonas pharaonis (Figure 47, 

lower right; Bordignon et al., 2005) or the chemoreceptors Tsr and Tar from E. coli (Kim et 

al., 1999). 

However, with regard to the determined intermolecular E572C�E572C distance of about 

40Å in the respective single cysteine variant, the “exposed” model (Figure 47C; Table 8) 

seems rather unlikely. If all three C-extensions in a trimer would be equally outwardly 

directed (perpendicular to the trimer centre, but in parallel to the lipid plane) the distances 

(Bordignon et al., 2005)

A B C

D
 

Figure 47: Schematic illustrations of the possible relative orientation of the C-terminal domain of ea ch BetP 
monomer in a functional trimer based on the results  of the conducted DEER measurements in this work. 
A: The C-domain of each monomer overlies the neighboring monomer (“adjacent overlie”) 
B: Each C-domain is bearing on the same monomer (“hinged position”) 
C: The C-terminal domain are (randomly) outstretched to the surrounding lipids (“exposed position”) 
D: The C-domain of each monomer is interacting with each other perpendicular to the membrane (“helix bundle”). 
As an example for such structural phenomena, the so far known X-ray structure of the photophobic receptor-
transducer complex of Natronomonas pharaonis (NpSRII-NpHtrII) is shown on the right (Gordeliy et al., 2002). The 
EPR proposed structure of the C-terminal HAMP domain of the transducer is depicted in grey (Bordignon et al., 
2005). 



Discussion 

95 

between the spin labelled positions 572 of each monomer would be greater than 50-60Å 

and thus not detectable in the described EPR experiment (d2=1400ns, corresponding to 

maximal detectable distance ~42Å, Table 9). In addition, if a randomly exposed orientation 

would be correct, the detected E572C�E572C distance would be much more distributed 

(i.e. isotropic; Jeschke and Polyhach, 2007). 

Concerning the other three proposed models (Figure 47A, B, D) no clear discrimination 

can yet be made on the basis of the results from the mobility and distance measurements 

in this work. However, recent results from the crystallized BetP trimer strongly supports 

the idea of an “adjacent overlie” model (Ressl et al., submitted). It was shown, that at least 

the C-terminal domain of one monomer is interacting with the cytoplasmic surface of the 

adjacent monomer in the respective crystal. Also, this model predicts a shearing degree of 

freedom rather than a tumbling flexibility for the C-terminal domain of the BetP transporter 

which is in line with the measured mobility changes during the hyperosmotic upshift 

studies in this work (see above).  

 

4.5. Future aspects  
Publication of the BetP crystal structure will provide the best basis for the construction of 

new cysteine mutants of the carrier that are suitable to refine the general structural 

properties and intramolecular dynamics during the activation process. 

With regard to the salt induced mobility changes, new mutants within the C-terminal 

domain have to be engineered and tested for functionality, spin label efficiency and finally 

for their changes in spin label mobility upon a hyperosmotic BetP activation (Figure 48; 

e.g. S545C/E572C, D82C/E572C, S4C/E572C, others). For this purpose, a set of EPR 

techniques is available to probe (i) the accessibility to paramagnetic quenchers and thus 

the solvent exposure of a spin labelled position, (ii) the local mobility profile of the spin 

label side chain, and (iii) a polarity profile of the direct environment (Biswas et al., 2001; 

Malmberg and Falke, 2005; Hustedt and Beth, 1999). The combination of these 

techniques should allow clear statements on the relative movement of the whole  

C-domain during the activation process of the transporter.  

Concerning the distance measurements, new single, double or even triple cysteine 

mutants will be constructed along the C-domain as well as at strategic positions within the 

neighbouring protein areas (e.g. the cytoplasmic exposed loops, N-terminal domain, etc.). 

Mutants with substitutions of fixed amino acid positions close to the membrane (Figure 48, 

S545C, S57C = not yet constructed, D82C, S516C), within the internal loops (e.g. L127C, 

R392C) or in the N-terminal domain (e.g. S4C, others) in combination with a second 

introduced cysteine position in the C-domain (e.g. E572C, Figure 48) will allow a more 

detailed analysis of the relative distances changes and thus of the C-terminal motions 
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within the trimer upon BetP activation. For structural analysis, also transmembrane 

distances of introduced cysteine residues close to the membrane/protein interface will be 

determined (e.g. S516C/S545C, S57C/D82C = not yet constructed). Finally, the 

introduction of spin labels close to the suggested substrate binding site and/or transport 

tunnel (TM IV and TM VIII; Ressl et al., submitted; Vinothkumar et al., 2006; e.g. W362C, 

W366C, W362C/W366C, kindly obtained from Jonna Hakulinen, group of Dr. C. Ziegler, 

MPI Frankfurt) will allow a time-resolved analysis of the substrate and co-substrate 

binding and/or transport process through the carrier (Wegener et al., 2000; Jeschke et al., 

2004).  

In general, a direct interaction of the C-domain with the surrounding protein domains 

and/or membrane lipids can be investigated by both, (i) spin-spin interactions from two or 

more spin labels introduced at suggested interacting sites in the protein or (ii) by a 

comparison of the mobility spectrum from a distinct spin labelled cysteine position within 

the C-domain of BetP with the respective spectrum of a BetP mutant with the same 

cysteine introduction, but varying additional properties like truncations (e.g. N-terminal 

domain, protein loops), a different lipid composition in the proteoliposomes and/or amino 

acid substitutions at putative interacting sides. 
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Figure 48: Topology model of BetP-C252T (TMHMM 2.0) . Shown is a computer simulated secondary structure of 
BetP with the characteristic 12 transmembrane helices and the 595 amino acids as one-letter code. Marked in red 
are the so far generated cysteine variants of the carrier (Nicklisch, 2005; Rübenhagen, 2001). Every 50th amino acid 
is highlighted in blue for orientation purpose. Yellow-red circled are some suggested cysteine positions for further 
structural and dynamical characterizations. Red-dotted lines represent distances between mutants under 
construction, while the double mutant for the determination of the green–dotted distance is already available. 
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5. Summary 
The putative intra- and intermolecular protein dynamics during the activation process as 

well as general structural properties of the secondary carrier BetP from Corynebacterium 

glutamicum were studied in this work. Previous work indicated that the integrity, 

conformation, and/or relative orientation of the C-terminal domain of BetP are crucial for a 

correct stimulus sensing and/or signal transduction during the activation process. The 

structural properties in the immediate environment of three strategically introduced 

cysteine residues at the beginning (S545C), in the centre (E572C) and close to the end 

(S589C) of the C-domain were analysed by EPR spectroscopy under activating (using 

continuous wave (cw-) EPR) and non-activating (using cw- and pulsed EPR) conditions. 

The investigation of the activity regulation revealed that all mutants were active in 

proteoliposomes and showed the expected regulation behaviour. A wildtype-like activity 

regulation was observed in the case of BetP-S545C-SL and BetP-S589C-SL, whereas 

BetP-E572C-SL showed a constant uptake rate independent of the applied hyperosmotic 

stress. The establishment and optimization of a new reconstitution assay for the BetP 

protein led to a 6-7-fold higher yield of in E. coli lipids incorporated spin labelled BetP 

compared to the conventional method. It furthermore revealed a pronounced adsorption of 

BetP to the Bio-Beads during reconstitution with a strong involvement of the charged  

C-domain. The SDSL(Site-Directed Spin Labelling)-EPR studies on the selected single 

cysteine mutants within the C-terminal domain of BetP showed higher spin label mobility 

with increasing distance to the lipid/protein interface. Significant differences in the spin 

label mobility at all three positions were observed when solubilised BetP protein was 

reconstituted into E. coli lipids. This indicated that the structure/conformation of the  

C-terminal domain of BetP depends on its direct surrounding. Only weak changes in the 

shape of the respective EPR spectra were observed for spin labels attached to positions 

545 and 572, but a significant increase in the spin label mobility at position 589 upon a 

hyperosmotically-induced BetP activation. This increase in the spin label mobility could be 

a first indication of structural and/or conformational changes close to the end of the  

C-terminal domain induced by the activation of BetP. 

Preliminary distance measurements were carried out using SDSL-DEER (Double 

Electron-Electron Resonance) spectroscopy. The results of these measurements showed 

that: (1) an intermolecular distance of about 30Å was obtained for spin-spin interactions 

within single spin labelled BetP-S545C-SL. This result confirmed that BetP is forming an 

oligomer (most probably a trimer) in the lipid environment and thus in its functional state; 

(2) when similar measurements were performed for this sample in detergent we obtained 

nearly the same distance between the spin labelled positions 545. These results 
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confirmed that the global structure of BetP is virtually the same in both environments, 

reconstituted in lipids or solubilised in detergent. Due to poor signal/noise ratios, the other 

distance measurements indicated, that the distance between spin labels at position 589 is 

around or above 50Å, while the spin-spin interactions within the single spin labelled BetP-

E572C-SL mutant revealed a distance of about 40Å. Further work is in progress to confirm 

these results. When the double spin labelled BetP-S545C/S589C-SL mutant was studied, 

two distance peaks were derived from the detected signal. While the shorter distance 

could be assigned to the intramolecular S545C�S545C distance, the additional signal 

could be attributed to an intramolecular S545C�S589C interaction. When the 

deregulated triple mutant BetP-S545C/Y550P/S589C was analysed, a difference in the 

two mentioned distances was observed compared to the double mutant. It was suggested 

that the proline introduction at position 550 had an effect on the structure and/or 

orientation of the C-domain.  

The results described in this work are in agreement with the current hypothesis of BetP 

activation and with yet unpublished data of the crystal structure of the carrier. 
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7. Appendix 

7.1. EPR theory, in short 
In general, EPR is - like the well known optical UV- and IR-spectroscopy - a form of 

resonance absorption spectroscopy. Thereby, an electromagnetic radiation is send 

through a sample and a portion of this radiation, at certain (resonance) frequencies 

(wavelengths), is absorbed in the sample. In general, the main difference between EPR 

and e.g. the optical spectroscopy is that absorption of microwave energy occurs in the 

presence of an external magnetic field (except for the so-called zero field splitting). For 

this purpose, the respective sample has to contain magnetic dipoles or magnetic moments 

that may lead to a magnetic resonance in an external magnetic field. But a net magnetic 

moment only occurs, if an unpaired electron with its magnetic and angular moment 

(together circumscribed as “electron spin”; in classical mechanics = self rotation, e.g. 

rotation of the electron around its own centre of mass) is present in the sample. However, 

in biological systems these so called paramagnetic electrons only occur in transition 

elements with incomplete sub-shells or in free radicals and radical ions with an unpaired 

valence electron. Thus, a macromolecule under study, if it does not contain paramagnetic 

species, has to be marked with a unique paramagnetic spin probe to be amenable for 

EPR spectroscopy.  

 

7.1.1.  Nitroxide spin label 
In the absence of paramagnetic species in 

the macromolecule, a stable free radical 

(spin label) has to be covalently linked to the 

macromolecule under study. These spin 

labels comprise, in general, two functional 

parts: (1) an EPR active and stable free 

radical and (2) a marker group that binds to 

a specific target in the biological object 

(Figure 49). The nitroxide spin label used in this work (MTS=(1-oxyl-2,2,5,5-

tetramethylpyrroline-3-methyl)-methanethiosulfonate) has been proven to meet these 

claims best: (1) it possesses an unpaired electron (located on the N-O bond) which is 

highly stable due to the sterical hindering by four surrounding methyl groups (Figure 49), 

(2) it exhibits highly reactive and selective SH-groups, allowing the labelling of specific 

positions by a covalent attachment to cysteine residues in the macromolecule under 

study, (3) it is neither hydrophobic nor hydrophilic, and (4) chemically inert to substances 

N  CH

CH3
CH3

CH3 CH3

C
H2

S S

O

O

O
CH3

 
Figure 49: Methanethiosulfonate (MTS) spin label. 
Marked in red is the nitroxide group with the unpaired 
electron in the NO bond. 
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in neutral and alkali solutions as well as unsusceptible to oxygen (Hamilton et al., 1968; 

McConnell et al., 1970). 

 

7.1.2.  Zeeman Effect 
If such a paramagnetic probe is 

placed into an external magnetic 

field B, the energy levels accessible 

to the unpaired electronic spin are 

split by that field. Since an electron 

has a spin of S=1/2 (fermions), they 

can enter two possible energy 

levels: a low energy state (ms=-1/2) 

and a high energy state (ms=+1/2). 

This so called Zeeman-effect was discovered in 1896 (Pieter Zeeman; Figure 50) and is 

exploited in EPR spectroscopy, where the spin labelled sample is placed inside an 

inhomogeneous magnetic field and exposed to a constant frequency microwave radiation 

(e.g. 9.7GHz X-band). The distance between the two (Zeeman-) energy sublevels is 

proportional to the magnetic field strength: 

 

(8) ∆E = h * ν = g * µB * B0 

 

With h=Planck constant, ν=frequency of microwave radiation, B0=magnetic field strength, 

µB=Bohr magneton, g=g-factor or „Landé“-factor. 

 

If the energy of the applied microwave radiation is equal (equation (8)) to the energy 

difference necessary to promote an electron from the low-energy state (ms=-1/2) to the 

high-energy state (ms=+1/2), a resonant absorption of a portion of the microwave energy 

occurs resulting in the appearance of an EPR line. To increase the sensitivity, EPR 

spectra are recorded as the rate of change of microwave absorption as function of 

external magnetic field. In addition, a field modulation is applied with a modulation 

frequency much lower than the microwave frequency and a modulation amplitude much 

lower than the signal amplitude. The consequence of the field modulation is the first 

derivative lineshape of the detected absorption, the typical EPR spectrum (Figure 13, 

lower left, Introduction).  

 

 

 

ms = +1/2

ms = -1/2

∆∆∆∆E

S=1/2

no magnetic field
(≠ B0)

external magnetic field
(B0)  

Figure 50: Illustration of the Zeeman Effect.  S = electron spin, 
∆E = energy difference between the two Zeeman sublevels,  
ms= promoted energy states, B0 = magnetic field strength. 
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7.1.3.  Hyperfine coupling and resulting EPR spectr a 

By additional interactions of the magnetic 

moments the electron spin S and nearby 

nuclear spins I, the Zeeman energy levels 

can further be split into (2I+1) allowed 

energy levels, a so called hyperfine 

splitting (HFS, Figure 51). This 

phenomenon is called hyperfine splitting 

(HFS) if the interaction takes place with 

the associated atom of the radical or 

superhyperfine splitting (SHFS) if it takes 

place with neighbouring atoms. The EPR 

spectrum of nitroxide radical at X-band 

frequencies (~9-10 GHz) is dominated by 

the hyperfine coupling to the 14N nucleus 

of the N-O group. Since 14N has a nuclear 

spin of I=1, the hyperfine interactions lead 

to a triplet splitting of the resonance line. The selection rule of magnetic dipole moments 

(∆ms=1, ∆mI=0) allows three resonant EPR transitions (Figure 51) at magnetic field 

strengths determined by: 

 

(9) Bres = B0 – A * mI, 

 

where Bres is resonant magnetic field, B0 is resonant magnetic field strength in the 

absence of hyperfine coupling, mI correspond to nuclear magnetic moment, and A is the 

hyperfine coupling constant between the electron spin and the nucleus spin. The 

hyperfine coupling constant A is dependent on the electron density of the surrounding 

medium, which in turn influence the local polarity of the nitroxide spin label. Thus, 

information about the polarity of the immediate environment of the spin label can be 

derived or even whole polarity profiles (Steinhoff et al., 1999; Steinhoff et al., 2000).  

However, to describe an ESR-spectrum properly, the so-called Spin-Hamilton-Operator 

(SHO) Ĥ is used: 

 

(10) Ĥ = µB * B0 * g * S + S * A * I 

 

mI = +1

∆∆∆∆E = h * ν

mI = 0

mI = -1

ms = -1/2

ms = +1/2

mI = -1

mI = 0

mI = +1

B+1
res B0

res B-1
res

B0

E

 
Figure 51: Illustration of the hyperfine splitting.  ∆E = 
energy difference between the energy sublevels, ms= 
promoted energy states (Zeeman), mI= promoted energy 
states (hyperfine coupling); B0 = magnetic field strength; 
Bres = resonant magnetic field strength. 



Appendix 

116 

Where µB is the Bohr magneton, B0 is the (external) magnetic field strength, g is the  

g-factor, S and I are the electron and nuclear spins, respectively, and A is the hyperfine 

coupling constant. 

Here, the first term describes the interactions of the electron with the magnetic field and 

the second term describes the interactions between the electron and nucleus. In general 

both, the g-value and the hyperfine coupling are anisotropic and depend on the orientation 

of spin label relative to the external magnetic field. Hyperfine coupling is maximal along 

the direction of the π-orbital of the nitrogen (Azz~34G) and minimal in the plane 

perpendicular to that direction (Axx~Ayy~6G). The maximum of the g-value (gxx~2.0090) is 

along the N-O bond, the minimum value is along the direction of the π-orbital (gzz~2.0025) 

and the intermediate value of g is along the molecular y-axis (gxx~2.0060) (Berliner et al., 

1976; Hustedt and Beth, 1999). 

 

7.1.4.  Spectral line shape and spin label mobility  

If the molecule rotates fast 

(rotational correlation time τR 

<100ps = τ1 = fast rotation limit), an 

isotropic spectrum with three sharp 

and distinct lines can be observed 

(Figure 52, top spectrum). The 

splitting corresponds to the 

isotropic hyperfine splitting 

(34+6+6)/3~15G. If the spin label 

molecule rotates with a rate that is 

smaller than the line width (τR>1µs 

= τ2 = rigid rotation limit), the 

spectrum is static. It corresponds 

to a superposition of the spectra of all possible orientations of the spin label molecule with 

respect to the external magnetic field, i.e. to a powder pattern (Figure 52, bottom 

spectrum). For example, if the spin label is in a solution with a low viscosity, a free spin 

label rotation and thus a sharp EPR spectrum will be observed. On the contrary, if the spin 

label is buried inside a protein or in a highly viscous solution, it will show a powder EPR 

spectrum (Figure 52). In the intermediate regime, the hyperfine lines are broadened and 

the rotational correlation time τR can be determined by a spectral simulation. For instance, 

depending on its rotameric state as well as on the nearby surrounding (e.g. side chains of 

the protein), the spin label may rotate with different rates around different axis and as a 

result different EPR spectra will be observed (Figure 53). For the isotropic motion there 

free rotational diffusion

weak immobilisation

intermediate mobility states

strong immobilization

rigid powder spectrum

 
Figure 52: The spectral line shape as function of r otational 
correlation time ττττρρρρ. 
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are more simple ways of determining the rotational correlation times. In the fast tumbling 

regime (τR < a few ns), the rotational correlation time in [sec/G] can be determined from 

the relative intensities of the three EPR lines and the peak-to-peak line width ∆B0 of the 

central line: 

 

(11) τΡ
ι = 6.8 * 10-10 * ∆B0 * (√h0/h-1 - √h0/h1), 

 τΡ
ιι = 6.7 * 10-10 * ∆B0 * (√h0/h-1 + √h0/h1 - 2), 

 τΡ
ιιι = 6.6 * 10-10 * ∆B0 * (√h1/h-1 - 1), 

 

 

where ∆B0 is the line width of the central line (peak-to-peak distance), h0 is the amplitude 

of the central line, h-1 the amplitude of the high field line 

and h1 the amplitude of the low field line (Figure 52, top 

spectrum). If the rotational diffusion is isotropic, the 

three values (τΡ
ι, τΡ

ιι and τΡ
ιιι) are equal. If there are 

slight variations, an estimate of the rotational correlation 

time can be obtained from the average of the three 

values (a difference indicates that some anisotropy of 

the spin label motion is present in the sample under 

study). 

According to the Stokes-Einstein Relation correlation 

time is defined as: 

 

(12) τ = (4 * Π * η * r3) / (3 * κΒ * T), 

 

where r is the average particle radius, η is the viscosity 

of the medium, T is the absolute temperature in °K and 

κΒ is the Boltzmann constant.  

Thus, the viscosity of the medium (in the local 

environment of the spin label) can be determined using 

equations (11) and (12) (Timofeev and Tsetlin, 1983; 

Berliner, 1976). 

 

 

 

 
Figure 53: cw-EPR spectra of 
consecutive spin label positions 
within bacteriorhodopsin (Beier et 
al., 2006). The spin label and its 
accessible space for each odd position 
are shown on the left. Respective EPR 
spectra are shown on the right.  
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7.1.5.  Distance measurements  

To conduct EPR distance measurements, molecular systems with at least two 

paramagnetic centres are needed. Thereby, both unpaired electrons can be introduced in 

one single protein (Likhtenstein, 1976) to determine intramolecular interspin distances or 

the additional spin labels might be attached to interaction partners like receptors, nucleic 

acids or enzymes (Tiebel et al., 1999; Wegener et al., 2000).  

Beside the hyperfine coupling constant A and the g-factor, in double or multiple labelled 

macromolecules further dipole-dipole interactions may occur according to W. Pauli and W. 

Heisenberg, e.g. the so called J-coupling J (indirect dipole-dipole coupling) and the 

exchange interaction D. The anisotropic dipolar exchange interaction D causes a so called 

zero-field-splitting, e.g. the abolition of spin degeneracy (≠ Boltzmann distribution) in the 

absence of an external magnetic field. If two or more unpaired electrons in a sample are in 

close vicinity and if a high dynamical flexibility of the spin label favours rapid electron 

collisions, the resulting wave function overlap of both fermions (electrons) additionally 

leads to J-coupling. Both quantum mechanical effects influence the EPR spectrum of a 

given sample by a broadening of the HFS lines. 

 

7.1.5.1. DEER approach used in this thesis 

In short, intra- or intermolecular distance measurements with EPR spectroscopy rely on 

the dipole-dipole coupling between electrons spins which is inversely proportional to the 

cube of the distance (Jeschke and Spiess, 2006). A set of techniques and proper analysis 

tools are available to specify the respective inter-spin-vector lengths and its orientation 

with respect to both nitroxide labels. The overlapping estimations of each method thus 

permit a full and detailed identification of spin-spin spacing up to 60Å (in very favourable 

cases up to 80Å). 

For distances shorter than 20Å, the dipolar coupling between two spin labels leads to 

pronounced spectral broadening of the usual cw-EPR spectrum. However, for distances 

shorter than 8Å the partial overlap of the Π-orbital of each spin label lead to strong 

(Heisenberg) exchange interactions (D, see above) that influence the respective cw-

spectrum with a superimposing spectral broadening. To discriminate exchange effect from 

dipole-dipole interaction, the so called half-field EPR transitions have to be observed. 

Thereby, the amplitude of the respective half-field line is proportional to the sixth power of 

the inversed distance if dipolar coupling is present (Steinhoff, 2005). For inter-spin 

distances above 20-25Å the spectral broadening due to dipolar coupling is much smaller 

than that caused by other interfering effects (e.g. matrix proton modulation, nuclear 

modulation, g anisotropy). In this case pulsed EPR techniques have to be applied. The 

most widely used pulsed method is the so called Double-Electron-Electron-Resonance 
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(DEER) experiment. This technique was used in this work to determine intra- and/or 

intermolecular spin-spin distances in BetP variants reconstituted into proteoliposomes (for 

details see Pannier et al., 2000; Jeschke, 2002; Jeschke and Polyhach, 2007). 

For each four-pulse DEER measurement we determined the respective spin echo signal 

V(t) as a function of the dipolar evolution time t. According to Jeschke and Polyhach 

(2007), V(t) is defined as: 

 

(13) V(t) = F(t) * B(t) 

 

With F(t) = form factor (interactions of intramolecular spins) and B(t) = background factor 

(interactions with neighbouring spins).  

Thereby the spin echo signal V(t) was recorded and subsequently divided by the manually 

fitted background factor B(t) (DEERAnalysis2006, Jeschke 2006) to obtain the form factor 

F(t). As already mentioned above, F(t) is inversely proportional to the cube of the mean 

distance between two electron spins, which then can be plotted in a Gaussian distance 

distribution with a mean distance value r and a dedicated standard deviation σ (Table 8). 

 

To prevent the averaging of possible dipolar interactions due to spin label movements 

and/or overall reorientation of the tagged molecule, the respective degree of freedom was 

restricted by cooling the sample far below the glass transition temperature (T < 200K; 

experimental condition: 50K) and/or by increasing the viscosity of the solvent with glycerol 

or ethylene glycol. 
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7.2. Additional results from the DEER analysis with  BetP-S545C-
SL in E. coli lipids 
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Figure 54: DEER analysis of BetP-S545C-SL reconstit uted in E. coli lipids with the 
resulting dipolar evolution function (V(t), upper r ight inset), the form factor (F(t), 
lower right inset) as well as the assumed Gaussian distance distribution P(r). For the 
evaluation of the detected spin-spin-couplings, the “DEERAnalysis2006”-Software from 
Gunnar Jeschke was used. Experimental conditions: d2 = 1800ns; temperature = 50°K  
(-223.15°C). 
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Figure 55: DEER analysis of BetP-S545C-SL reconstit uted in E. coli lipids with 
assumed Gaussian distance distribution P(r). For the evaluation of the detected spin-
spin-couplings, the “DEERAnalysis2006”-Software from Gunnar Jeschke was used. 
Experimental conditions: d2 = 1400ns; temperature = 50°K (-223.15°C). 
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Table 9: d2-times with the respective dipolar frequ encies νννν and maximal detectable distances r via DEER EPR 
spectroscopy with the Bruker Elexys E580 spectromet er. 

d2 [ns] ν [MHz] Maximal distance [nm] 

800 1.3 3.5 

900 1.1 3.6 

1000 1.0 3.7 

1200 0.8 4.0 

1400 0.7 4.2 

1600 0.6 4.4 

1800 0.6 4.5 

2000 0.5 4.7 

2400 0.4 5.0 

2800 0.4 5.3 

3200 0.3 5.5 

3600 0.3 5.7 

4000 0.3 5.9 

5000 0.2 6.4 

6000 0.2 6.8 
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Figure 56: DEER analysis of BetP-S545C-SL reconstit uted in E. coli lipids with the 
assumed Gaussian distance distribution P(r). For the evaluation of the detected spin-
spin-couplings, the “DEERAnalysis2006”-Software from Gunnar Jeschke was used. 
Experimental conditions: d2 = 1400ns; temperature = 50°K (-223.15°C). 
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7.3. Additional results from cw X-band EPR studies on Bio-Bead 
absorption of BetP 
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Figure 57: Continuous wave X-band (9.7GHz) EPR of S M2-Bio-Beads (~5-10 
beads) of BetP-E572C-SL and BetP-S589C-SL after 9h incubation (simulation 
with J. H. Freed’s “jump model”). Experimental conditions: Room temperature; 
time constant=100ms; time sweep=180s; modulation amplitude = 1.5G; microwave 
power=1mW. 
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