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Zusammenfassung

Diese Arbeit beschäftigt sich mit Netzwerkdesign-Problemen. Gegeben ist eine
Menge von Punkten in der Ebene. Gesucht wird nach einer Menge von Kanten
mit minimaler Gesamtlänge, die alle Punkte miteinander verbindet. In dieser
allgemeinen Formulierung ist das Problem als Steinerbaum-Problem bekannt.
Wir betrachten in dieser Arbeit oktilineare Steinerbäume mit harten und wei-
chen Blockaden. Ein oktilinearer Steinerbaum darf Kanten enthalten, die in
horizontaler, vertikaler oder diagonaler Richtung verlaufen. Eine Blockade ist
eine zusammenhängende Region in der Ebene, die durch ein einfaches Polygon
berandet wird. Keine Kante eines oktilinearen Steinerbaums darf im Inneren
einer harten Blockade liegen. Wenn wir einen Steinerbaum mit dem Inneren
einer weichen Blockade schneiden, dann darf keine der sich daraus ergebenden
Zusammenhangskomponenten länger als eine vorgegebene Länge sein. Wir führen
polynomielle Approximationsschemata für das oktilineare Steinerbaum-Problem
mit harten und weichen Blockaden ein. Für diese Probleme waren dies die ers-
ten vorgestellten Approximationsschemata. Zusätzlich geben wir noch einen 2-
Approximationsalgorithmus für das Problem mit weichen Blockaden an.

Danach beschäftigen wir uns mit euklidischen Gruppensteinerbäumen. Hierbei
hat man anstatt einer festen Menge von Punkten für jeden Punkt eine Menge von
möglichen Positionen. Diese möglichen Positionen werden zu Gruppen zusam-
mengefasst. Wir betrachten den Fall, dass die Gruppen innerhalb disjunkter Re-
gionen liegen, die alle die spezielle Eigenschaft der sogenannten α-Dicke erfüllen.
Grob gesagt spezifiziert der Begriff α-Dicke die Form einer Region im Vergleich
zum Kreis. Wir führen den ersten Approximationsalgorithmus für dieses Problem
ein und erreichen eine Approximationsgüte von (1 + ε)(9.093α + 1).

Als letztes betrachten wir Manhattan-Netzwerke. Sie dürfen Kanten enthal-
ten, die in horizontaler und vertikaler Richtung verlaufen. Im Vergleich zu
Steinerbäumen enthalten sie zusätzlich einen kürzesten Weg zwischen je zwei
Punkten. Wir führen drei neue Approximationsalgorithmen für das Manhattan-
Netzwerk-Problem ein, den ersten mit Approximationsgüte 3 und zwei Algorith-
men mit Güte 2. Für diese Algorithmen benötigen wir Algorithmen, die das
Manhattan-Netzwerk-Problem für Treppen lösen. Wir geben zwei Algorithmen
für dieses spezielle Problem an. Der erste löst Manhattan-Netzwerke für Treppen
optimal, der zweite erreicht eine Approximationsgüte von 2. Ähnliche Ansätze
wurden vorher schon diskutiert. Da wir eine etwas andere Definition von Trep-
pen benutzen und wir zusätzlich spezielle Eigenschaften brauchen, die unsere
Treppen erfüllen, haben wir diese Ansätze auf unseren Fall übertragen. Die 2-
Approximationsalgorithmen für allgemeine Manhattan-Netzwerke erreichen die
bisher beste bekannte Approximationsgüte.
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Abstract

We consider different variants of network design problems. Given a set of points
in the plane we search for a shortest interconnection of them. In this general for-
mulation the problem is known as Steiner tree problem. We consider the special
case of octilinear Steiner trees in the presence of hard and soft obstacles. In an
octilinear Steiner tree the line segments connecting the points are allowed to run
either in horizontal, vertical or diagonal direction. An obstacle is a connected
region in the plane bounded by a simple polygon. No line segment of an octilinear
Steiner tree is allowed to lie in the interior of a hard obstacle. If we intersect a
Steiner tree with the interior of a soft obstacle, no connected component of the
induced subtree is allowed to be longer than a given fixed length. We provide
polynomial time approximation schemes for the octilinear Steiner tree problem
in the presence of hard and soft obstacles. These were the first presented ap-
proximation schemes introduced for the problems. Additionally, we introduce a
(2 + ε)-approximation algorithm for soft obstacles.

We then turn to Euclidean group Steiner trees. Instead of a set of fixed points
we get for each point a set of potential locations (combined into groups) and we
need to pick only one location of each group. The groups we consider lie inside
disjoint regions fulfilling a special property so-called α-fatness. Roughly speaking,
the term α-fat specifies the shape of the region in comparison to a disk. We give
the first approximation algorithm for this problem and achieve an approximation
ratio of (1 + ε)(9.093α + 1).

Last, we consider Manhattan networks. They are allowed to contain edges only
in horizontal and vertical direction. In contrast to Steiner trees they contain a
shortest path between each pair of points. We introduce insights into the struc-
ture of Manhattan networks, particularly in the context of so-called staircases.
We give three new approximation algorithms for the Manhattan network prob-
lem, the first with approximation ratio 3 and two algorithms with ratio 2. To this
end we introduce two algorithms for the Manhattan network problem of stair-
cases. The first algorithm solves the problem to optimality the second yields a
2-approximation. Variants of both algorithms are already known in the literature.
Since we use a slightly different definition of staircases and we need special prop-
erties of them, we adopt the algorithms to our situation. The 2-approximation
algorithms achieve the best known approximation ratio of an algorithm for the
Manhattan network problem known so far. Last we give an idea how we could
possibly find an algorithm with better approximation ratio.

2



Danksagung
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Chapter 1

Introduction

1.1 Motivation

In this thesis, we consider variants of network design problems. Given a set of
points (called terminals) in the plane we search for a shortest interconnection
of these. This problem is one of the variants of the Steiner tree problem. See
Figure 1.1 for different examples of Steiner trees. Historically, Fermat (1601–
1665) was the first who considered a Steiner tree problem. He posed the following
question: “Given three points in the plane, find a fourth point such that the sum of
its distances to the three given points is minimum.” Torricelli found a solution for
Fermat’s problem with compass and ruler before 1640. The generalization of the
problem to n given points for which we search for a point which minimizes the sum
of the distances to the n points was considered by many researchers. One of them
was the mathematician Jacob Steiner (1796–1863). Courant and Robbins [CR41]
referred to Steiner in their popular book “What is Mathematics?”, establishing
the notion “Steiner tree problem”. In 1934 Jarńık and Kössler [JK34] were the
first who investigated the problem to find a shortest interconnection of n given
points.

Since then, a lot of research has been done in this field. There are numerous
variants of the problem to interconnect a set of locations and they model several
real-world problems as an algorithmic problem. In the last decades network
design problems found applications in the design of integrated chips (VLSI design)
and got an important push by it. One of the tasks in VLSI design is to connect
components (circuits) placed on a chip in a most efficient way. Each circuit
contains pins which enable the connections between the circuits. Several circuits
are combined to a so-called net. The pins of the circuits belonging to the same net
must be connected by wires. If we take the pins as terminals, a Steiner tree is a
solution of such an interlinkage. The exact positions of the wires are established
in the routing phase. To work towards a feasible routing, one objective is to
minimize the length of the interlinkages of a net. This is modeled by classical
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CHAPTER 1. INTRODUCTION

(a) (b) (c)

Figure 1.1: (a) A minimum Euclidean Steiner tree. (b) A minimum octilinear
Steiner tree on the same terminal set as in (a). (c) A minimum Steiner tree in a
network with the black dots being the terminals.

Steiner trees [CW05]. But in VLSI design many constraints have to be considered.
One of them are preplaced macros or other circuits which must not be crossed
by a wire. The corresponding model is a Steiner tree with hard obstacles. A
hard obstacle prohibits wiring in the interior and therefore has to be avoided
completely in the interior by the Steiner tree.

Due to the availability of several routing layers, most obstacles usually do not
block wires completely. However, a large wire requires the insertion of buffers
(or inverters) to amplify the signals sent along the wire, in such a way that no
induced subtree without any buffer becomes too large. It is impossible to place a
buffer or inverter on top of an obstacle. This requirement can be modeled by soft
obstacles : A Steiner tree is allowed to cross obstacles; however, if we intersect the
Steiner tree with some obstacle, no connected component of the induced subtree
is allowed to be longer than a given fixed length [HAQG02].

Usually, the nets can be connected to several electrically equivalent pins. In a
Steiner tree model these pins are grouped. The related Steiner tree problem is
denoted as group Steiner tree problem. We search for a Steiner tree which covers
at least one point of each group [ZR03].

The wire length affects significantly the power consumption and the time to
spread the signal across the chip. Minimum Steiner trees minimize the total wire
length. If we want to transmit signals between pairs of components on the chip
fast, we search for a network containing a shortest path between each pair of
points. This is modeled by Manhattan networks which impose this additional
constraint.

Usually the wires are allowed to run in horizontal and vertical direction on the
chip. A novel routing paradigm in VLSI design is octilinear routing, the so-called
X-architecture [X], which has recently been introduced. In addition to vertical
and horizontal wires, octilinear routing allows wiring in diagonal directions. The
wires can be placed on a number of different routing layers. Each layer prefers
one of the four allowed directions. To connect adjacent layers so-called vias

8



1.1. MOTIVATION

8λ = 2 λ = 3 λ = 4 λ =

Figure 1.2: Valid orientations and the unit circles of different λ-geometries.

are used. Compared to traditional and state-of-the-art rectilinear (Manhattan)
routing, the X-architecture promises clear advantages in wire length but also in
via reduction. As a consequence a significant chip performance improvement and
power reduction can be obtained (with estimations being in the range of 10% to
20% improvement) [Tei02, CCK+03, PWZ04].

There are basically two different formulations of the Steiner tree problem. The
Steiner tree problem in networks (also referred to as Steiner tree problem in
graphs) gets as input a weighted graph and asks for connecting a specified subset
of the vertices. The geometric Steiner tree problem is based on a set of points in
the plane and a given metric. We search for line segments connecting the points
with shortest total length with respect to the given metric. We can add new
points, so-called Steiner points, to shorten the network. The Euclidean and the
rectilinear Steiner tree problems are the most studied geometric problem vari-
ants. An instance of the rectilinear Steiner tree problem can be transformed into
an instance of the Steiner tree problem in graphs where the constructed graph
has quadratic size in the number of terminals. However, as well as the Steiner
tree problem in graphs, the Euclidean and the rectilinear Steiner tree problem
are NP-hard [Kar72], [GGJ77], [GJ77]. Therefore, besides exact algorithms ap-
proximation algorithms have to be considered.

The octilinear Steiner tree problem is another variant of the geometric Steiner
tree problem. The line segments connecting the terminals are allowed to run
either in horizontal, vertical and diagonal direction. It was shown to be NP-
hard [MS05a, Sch05]. Octilinear Steiner trees can be seen in the context of
more general routing architectures. They are obtained if a fixed set of uniformly
oriented directions is allowed. For an integer parameter λ ≥ 2, consecutive
orientations are separated by a fixed angle of π/λ. A λ-geometry is a routing
environment in which every line segment uses one of the given orientations. See
Figure 1.2 for an example of valid orientations for different values of λ. Manhattan
routing can then be seen as the special case λ = 2 and the X-architecture or
octilinear routing as the case λ = 4.

We assume the reader is familiar with basic notions of combinatorial optimiza-
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CHAPTER 1. INTRODUCTION

tion and computational geometry. For a general overview about combinatorial
optimization and definitions used in this thesis see the book of Korte and Vy-
gen [KV07]. An introduction in the subject of computational geometry gives the
book of de Berg et al. [dBCvKO08]. Comprehensive information about Steiner
trees can be found in the book of Hwang et al. [HRW92] and the one of Prömel
and Steger [PS02]. For more information about λ-Steiner trees see the surveys of
Brazil, Thomas and Weng [BTW00] and the one of Brazil [Bra01].

1.2 Outline

In Chapter 2 we focus on octilinear Steiner trees (although most of our results can
be generalized to arbitrary λ ≥ 2). We consider the problem under the additional
constraint of octilinear hard and rectangular soft obstacles. As the octilinear
Steiner tree problem with hard or soft obstacles contains the ordinary octilinear
Steiner tree problem as special case, both problems are also NP-hard [MS05b,
Sch05].

We provide two polynomial time approximation schemes (PTAS) for the octilin-
ear Steiner tree problem in the presence of hard octilinear and soft rectangular
obstacles. To this end, we construct planar graphs of polynomial size which
yield an approximation guarantee of (1 + ε) of the octilinear Steiner tree prob-
lem with hard and soft obstacles, respectively. For rectangular soft obstacles we
additionally introduce a (2 + ε)-approximation algorithm by constructing a path
preserving path, i. e., a so-called planar spanner which contains for any pair of
terminals a path that is at most (1 + ε) times the length of the shortest path be-
tween them. To the best of our knowledge we presented the first polynomial time
approximation schemes for octilinear Steiner trees with hard and soft obstacles.
Quite recently, Müller-Hannemann and Tazari [MT07] published a PTAS for the
λ-Steiner tree problem with soft obstacles that yields a better running time.

In Chapter 3 we consider the Euclidean group Steiner tree problem which is
another variant of the geometric Steiner tree problem. We need to pick only
one point of each group and search for a shortest interconnection of them. See
Figure 1.3 for an example. The Euclidean group Steiner tree problem is a gen-
eralization of the ordinary Euclidean Steiner tree problem and therefore belongs
also to the class of NP-hard problems [GGJ77]. The groups we consider have to
lie inside disjoint regions each fulfilling the property of being α-fat. The term
α-fat specifies the shape of the region in comparison to a disk. We will define
α-fatness in Section 3.2 and give a (1 + ε)(9.093α + 1)-approximation algorithm
for the Euclidean group Steiner tree problem where the groups lie inside regions
being disjoint α-fat objects. This is the first result given for this special case of
Euclidean group Steiner trees.

10



1.2. OUTLINE

Figure 1.3: A minimum Euclidean group Steiner tree.

(a) (b) (c)

Figure 1.4: (a) A minimum Manhattan network. (b) A minimum rectilinear
Steiner tree on the same terminal set as in (b). (c) A staircase.

In the last three chapters we consider so-called Manhattan networks which satisfy
an additional constraint. In contrast to Steiner trees they must contain a short-
est path between each pair of points. As suggested by the name these networks
are observed in the Manhattan or λ-geometry for λ = 2 where one is allowed
to use horizontal and vertical line segments only. See Figure 1.4 (a) and (b)
for an example of a minimum Manhattan network in comparison to the mini-
mum rectilinear Steiner tree. The problem is a novel field of research. It was
introduced by Gudmundsson et al. [GLN01] in 2001. In contrast to the other
problems we consider, the complexity status is still open. Our aim is to provide
three different approximation algorithms for the Manhattan network problem in
Chapter 6. To achieve this we examine the structure of Manhattan networks in
Chapter 4. For this we use the notion of a staircase and point out how to split
a Manhattan network problem into a set of subproblems of Manhattan network
problems for staircases. Roughly speaking, a staircase is a set of points or line
segments having the shape of a staircase. See Figure 1.4 (c) for an example of
a staircase. Staircases were introduced by Gudmundsson et al. [GLN01] but the
definition is not standardized. The advantage of staircases is that we can com-
pute minimum Manhattan networks for them in polynomial time. In Chapter 5
we introduce an exact algorithm and a 2-approximation algorithm for Manhattan
networks of staircases. Similar approaches are already discussed by Gudmunds-
son et al. [GLN01] and Benkert et al. [BWWS06]. But since we use a slightly
different definition of staircases and we need in Chapter 6 special properties of
them, we adopt the algorithms to our situation. With this at hand we present
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CHAPTER 1. INTRODUCTION

in Chapter 6 a 3-approximation algorithm for the ordinary Manhattan network
problem with running time O(n log n) and two 2-approximation algorithms, the
first with running time O(n3) and the second with running time O(n log n).

The best approximations published so far are a combinatorial 3-approximation
algorithm in time O(n log n) presented by Benkert et al. [BWWS06], and an LP-
based 2-approximation algorithm of Chepoi et al. [CNV08]. Kato et al. [KIA02]
proposed a 2-approximation algorithm with running time O(n3), however the
proof of the correctness seems to be incomplete [BWWS06, CNV08]. Seibert and
Unger [SU05] presented an approximation algorithm and claimed that it yields a
1.5-approximation. As remarked by Chepoi et al. [CNV08] both the description
of the algorithm and the performance guarantee are somewhat incomplete and
not fully understandable. In Chapter 6 we show by a counterexample that an im-
portant intermediate step of the analysis is incorrect. Thus our 2-approximation
algorithm with running time O(n log n) achieves the best known approximation
ratio and running time so far. Last we give an idea how we could possibly find al-
gorithms with better approximation ratios for the Manhattan network problem.

12



Chapter 2

Octilinear Steiner Trees With
Obstacles

In this chapter, we consider the octilinear Steiner tree problem in the plane in
the presence of octilinear hard and rectangular soft obstacles.

Definition 2.1. For a set P ⊆ R2 of n points in the plane, an octilinear Steiner
tree on P is a tree that interconnects the points in P such that every line segment
runs either in horizontal, vertical or diagonal direction. A minimum octilinear
Steiner tree is an octilinear Steiner tree of minimum total length.

The octilinear Steiner tree problem is to find a minimum octilinear Steiner tree.
The points of P are denoted as terminals and the line segments as edges. In the
Steiner tree there can be additional points. If their degree exceeds two we refer
to them as Steiner points. See Figure 2.1 for an example. For a set S of line
segments (e. g., a Steiner tree or also a single line segment) we denote by `(S)
the total length of the line segments in S.

Octilinear Steiner trees model a novel routing paradigm in VLSI design, the so-
called X-architecture [X] which promises clear advantages in wire length but also
in via reduction. In VLSI design preplaced macros or other circuits are obstacles.

Definition 2.2. An octilinear obstacle is a connected region in the plane bounded
by a simple polygon such that all segments of the polygon lie either in horizon-
tal, vertical or diagonal direction. If all boundary segments of an obstacle are
rectilinear, we call such an obstacle a rectilinear obstacle.

For a given set O of obstacles we require that the obstacles are disjoint, except for
possibly a finite number of common points. By ∂O we denote the boundary of an
obstacle O. In practice, obstacles can be assumed to be axis-parallel rectangles.
An obstacle which prohibits wiring in the interior and therefore has to be avoided
completely in the interior will be referred to as hard obstacle.

13



CHAPTER 2. OCTILINEAR STEINER TREES WITH OBSTACLES

Figure 2.1: An octilinear Steiner tree with terminals (black dots) and Steiner
points (grey dots).

Due to the availability of several routing layers, most obstacles usually do not
block wires, but it is impossible to place a buffer (or inverter) on top of an
obstacle. A large Steiner tree requires the insertion of buffers (or inverters)
in such a way that no induced subtree without any buffer becomes too large.
This application in VLSI design motivates and translates into our model of soft
obstacles. In this case the Steiner tree is allowed to run over obstacles; however,
if we intersect the Steiner tree with the interior of some obstacle, no connected
component of the induced subtree may be longer than a given fixed length L.

The rectilinear and the Euclidean Steiner tree problem have been shown to
be NP-hard in [GJ77] and [GGJ77], respectively. The octilinear Steiner tree
problem is also NP-hard in the strong sense [MS05b]. The same holds for
the octilinear Steiner tree problem with hard or soft obstacles, since it con-
tains the octilinear Steiner tree problem without obstacles as a special case.
Arora [Aro98] and Mitchell [Mit99] presented a polynomial time approximation
scheme (PTAS) for the Euclidean Steiner tree problem that are applicable to the
octilinear Steiner tree problem without obstacles. The running time of Arora’s
algorithm was improved by Rao and Smith [RS98] from O(n(1

ε
log n)O(1/ε)) to

O(2poly(1/ε)n + n log n) using a so-called “banyan” graph. A banyan is a graph
containing a (1 + ε)-approximation of the Euclidean Steiner tree problem for any
subset of the terminals and whose weight is at most a constant larger than the
minimum spanning tree of the terminal set. Their graph can be constructed
in time O(n log n) and has size O(n). This is the best known running time so
far. None of these algorithms are applicable to the case with obstacles since the
so-called “patching lemma” fails to hold.

Most previous work on the octilinear Steiner tree problem considered the prob-
lem without obstacles. Exact approaches to the octilinear Steiner tree problem
have been developed by Nielsen, Winter and Zachariasen [NWZ02] and Coul-
ston [Cou03]. Nielsen et al. [NWZ02] report the exact solution to a large instance
with 10000 terminals within two days of computation time. An exact algorithm
for obstacle-avoiding Steiner trees in the Euclidean metric has been developed by
Zachariasen and Winter [ZW99]. For the octilinear Steiner tree problem without
obstacles heuristics have been proposed by Kahng et al. [KMZ03] and Zhu et

14



al. [ZZJ+04].

For rectilinear Steiner tree problems, the most successful approaches are based
on transformations to the related Steiner tree problem in graphs. Given a con-
nected graph G = (V,E), a length function `, and a set of terminals P ⊆ V ,
a Steiner tree of G is a tree which contains all vertices of P and is a subgraph
of G. A Steiner tree T is a minimum Steiner tree of G if the length of T is
minimum among all Steiner trees. It has been shown to be APX-complete to find
a minimum Steiner tree [BP89] and thus, no PTAS exists unless P = NP . The
best available approximation guarantee for the Steiner problem in general graphs
is 1 + ln 3

2
≈ 1.55, obtained by Robins and Zelikovsky [RZ00]. The case of planar

graphs has been shown to admit a PTAS by Borradaile et al. [BKMK07a]. The
running time of their PTAS is O(n log n). Its constant has been improved to be
singly exponential in 1/ε by Borradaile et al. [BKMK07b]. An implementation
by Althaus, Polzin and Daneshmand [APD03] is the currently strongest available
exact approach for both the Steiner tree problem in graphs and the rectilinear
Steiner tree problem.

Given a finite point set P in the plane, the Hanan grid [Han66] is obtained by
constructing a vertical and a horizontal line through each point of P . The im-
portance of the Hanan grid lies in the fact that it contains a minimum rectilinear
Steiner tree [Han66].

Du and Hwang [DH92] generalized the Hanan grid construction to λ-geometries.
They define grids Gk(P ) recursively in the following way. For an instance with
point set P , G0(P ) = P . The grid G1(P ) is constructed by taking λ (infinite)
lines with orientations π/λ, 2π/λ, . . . , (λ − 1)π/λ, π through each point of P .
The k-th grid Gk(P ) for k > 1 is constructed from the (k − 1)-th grid by adding
for each intersection point x of lines in Gk−1(P ) additional lines through x with
orientations π/λ, 2π/λ, . . . , (λ−1)π/λ, π. See Figure 2.2 for an example of G1(P )
and G2(P ). Note that for λ = 2 (the rectilinear case) G1(P ) = G2(P ) = . . .
holds. Lee and Shen [LS96] showed that for every instance of the Steiner tree
problem in a λ-geometry with λ ∈ N≥2, there is a minimum λ-Steiner tree which
is contained in Gn−2(P ). This result has been strengthened for octilinear Steiner
trees by Lin and Xue [LX00]. They showed that a minimum octilinear Steiner
tree is already contained in the grid G(d2n/3e−1)(P ). Unfortunately, the graph

Gk(P ) has Ω(n2k
) vertices and edges. Hence, for non-constant k this approach

requires an exponentially large graph.

It is therefore an interesting open question which approximation guarantee for
the octilinear (or λ–) Steiner tree problem can be achieved if one works with a
graph Gk(P ) for some fixed constant k. Some partial answers to this question
are obvious. Since G1(P ) contains a shortest path between any pair of terminals
it also contains the solution obtained from the minimum spanning tree heuristic
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CHAPTER 2. OCTILINEAR STEINER TREES WITH OBSTACLES

(a) (b)

Figure 2.2: (a) The graph G1(P ) for a set of three terminals. (b) The graph
G2(P ) for the same terminal set.

of Mehlhorn [Meh88] to approximate the minimum Steiner tree. Therefore, its
performance guarantee cannot be worse than the Steiner ratio. The Steiner
ratio is the smallest upper bound on the ratio between the length of a minimum
spanning tree and the length of a minimum Steiner tree. The Steiner ratio in
the octilinear case is 4

2+
√

2
[Koh95, She97]. This implies that G1(P ) contains a

solution which is not more than about 17.15% above the minimum. In Section 2.2
we show how to modify G1(P ) so that we can derive stronger approximation
guarantees. For any k ∈ N we construct a planar graph of size O(k2n2), which
contains a (1 + 1

k
)-approximation of an octilinear Steiner tree. In Section 2.2.1

we extend this approach to octilinear Steiner trees with octilinear hard obstacles.
The basic idea is to refine G1(P ) by superimposing a k × k grid structure. A
similar reduction to the Steiner tree problem in graphs has earlier been used by
Provan [Pro88] to approximate the Euclidean Steiner tree problem. Provan also
uses a grid structure to define locations of potential Steiner points. However, all
these potential Steiner points are pairwise connected (in the presence of obstacles
only if they are visible from each other). Thus, this construction requires O(k4n4)
many edges and so is substantially larger than our construction.

By using the PTAS for the Steiner tree problem in planar graphs given by Bor-
radaile et al. [BKMK07b], we also obtain a PTAS for the octilinear Steiner tree
problem with or without hard obstacles.

Afterwards, we consider octilinear Steiner trees with soft rectangular obsta-
cles. Müller-Hannemann and Peyer [MP03] showed that the rectilinear Steiner
tree problem in the presence of soft obstacles can be 2-approximated in time
O(n2 log n), where n denotes the number of terminals plus the number of obsta-
cle vertices. They also introduced a (1.55 + ε)-approximation for rectangular soft
obstacles. With the later presented algorithm of Borradaile et al. [BKMK07b]
their construction leads to a PTAS for the rectilinear Steiner tree problem with
rectangular soft obstacles. We generalize these results to the octilinear Steiner
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tree problem to admit first a (2 + ε)-approximation and also a PTAS in the
presence of soft rectangular obstacles.

To achieve a (2 + ε)-approximation for octilinear Steiner trees with soft obstacles
in Section 2.3 our aim is to construct a path preserving graph, i. e., a graph which
contains a (1 + ε)-approximate octilinear path between any pair of terminals. A
(1 + ε)-approximate path is a path of length at most (1 + ε) times the length of
a shortest one. With respect to obstacles, the graph should only contain feasible
paths and only feasible Steiner trees. (Note that for soft obstacles the latter does
not follow from the feasibility of all paths.) These properties ensure that any
approximation algorithm based on this graph for the Steiner tree problem will
produce a feasible Steiner tree. In particular, we may use Mehlhorn’s [Meh88]
minimum spanning tree approximation which runs in time O(m + n log n) on a
graph with n nodes and m edges. This approach yields a (2 + ε)-approximation.

Heading for a good running time, our secondary goal is to construct small path
preserving graphs. Shortest paths in the presence of polygonal obstacles have
already been studied intensively. See the surveys of Mitchell [Mit00] and Lee et
al. [LYW96]. In Section 2.3.1 we present a construction of small path preserving
graphs that generalizes techniques in previous work of Wu et al. [WWSCW87]
and Clarkson et al. [CKV87].

To achieve a (1+ε)-approximation in Section 2.4 we develop a different technique
based on t-restricted Steiner trees. A Steiner tree is a full Steiner tree if all its
terminals are leaves. Any Steiner tree can be decomposed into its full components.
A t-restricted Steiner tree is a Steiner tree where all full components have at most
t terminals. The boundary of each obstacle is discretized by auxiliary vertices
with a distance of at most ∆ between neighboring vertices. (∆ can be chosen
so that we obtain a polynomial number of auxiliary vertices and still achieve the
desired accuracy.) Inside obstacles, we approximate an optimal tree with the
help of t-restricted Steiner trees for some constant t. We compute them by a
linear programming approach. Each of these trees respects the length restriction
L for the obstacle. Outside obstacles, a grid-like graph through the terminals
and obstacle vertices similar to the one presented in Section 2.2, is refined by
additional lines so that it contains a sufficiently close approximation.

Altogether, we construct a planar graph of size O(n5) containing a (1 + ε)-
approximation of the octilinear Steiner tree problem with rectangular soft ob-
stacles. Hence, the PTAS for the Steiner tree problem in planar graphs implies
also PTAS for this problem. These ideas will be made precise in Section 2.4.

Quite recently, Müller-Hannemann and Tazari [MT07] published a PTAS for the
λ-Steiner tree problem with soft obstacles. They construct a planar graph of size
O( 1

ε11
n log2 n) containing a (1 + ε)-approximation of the octilinear Steiner tree

problem with rectangular soft obstacles.
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CHAPTER 2. OCTILINEAR STEINER TREES WITH OBSTACLES

2.1 Facts for Octilinear Steiner Trees

In this section we recall some basic definitions and known facts about octilinear
Steiner trees which will be used in the later analysis of our approach, see for
example [LS96].

Property 2.3. The number of Steiner points for a Steiner tree on n terminals
is at most n− 2.

Property 2.4. The degree of any Steiner point of a Steiner tree is either three
or four.

Property 2.5. There exists a minimum octilinear Steiner tree such that every
degree-4 Steiner point is adjacent to four terminals which form a cross (i. e., all
four angles around a degree-4 Steiner point are π

2
).

Property 2.6. There exists a minimum octilinear Steiner tree such that the three
angles around a degree-3 Steiner point are π

2
, 3π

4
, 3π

4
(in some order).

A Steiner tree is a full Steiner tree if all its terminals are leaves. Any Steiner tree
can be decomposed into its full components.

Property 2.7 ([BTW00]). Given a set P ⊆ R2 of terminals in the plane such
that every minimum Steiner tree is a full Steiner tree. There exists a minimum
Steiner tree such that all but at most one edge are straight edges. The latter one
may bend once.

2.2 A PTAS for Hard Obstacles

In this section we show how to improve upon the approximation guarantee ob-
tained for G1(P ) for octilinear Steiner trees. To this end we construct a graph
Gk

1(P ) which is parameterized by some constant k ∈ N.

Recall from the introduction that the graph G1(P ) is the graph induced by four
lines (vertical, horizontal, and both main diagonals) through each terminal. The
idea is to refine G1(P ) by superimposing O(k) additional lines. This is done as
follows. Given a set P of terminals with |P | = n, let B(P ) denote the bounding
box of this point set, that is, the smallest axis-parallel rectangle which includes
all terminals. We subdivide each side of B(P ) equidistantly by k points into k+1
segments and add for each subdivision point additional lines in all four feasible
orientations of the octilinear geometry. See Figure 2.3 for a small example. Since
we have O(n+ k) lines in each feasible direction, we get O((n+ k)2) intersection
points of these lines. Hence, the induced graph Gk

1(P ) has O((n + k)2) vertices
and edges. For the bounding box B(P ) with side lengths bbx and bby, denote by
bb := max{bbx, bby} its maximum side length.
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2.2. A PTAS FOR HARD OBSTACLES

(a) (b)

Figure 2.3: (a) Example of the graph G1(P ) for a set of three terminals. (b) The
refinement Gk

1(P ) with k = 2.

(a) (b)

Figure 2.4: (a) Example of the covering of an octilinear Steiner tree by rectangles
with edges in Gk

1(P ): We first cover the Steiner points. (b) Afterwards we add
a smallest enclosing rectangle for each of the six remaining segments which have
not yet been covered.

Next we define how to cover a Steiner tree T by a set R of axis-parallel rectangles
as follows (the rectangles may overlap). For each Steiner point s of T , the set R
contains a smallest rectangle including s with horizontal and vertical edges from
Gk

1(P ). In the degenerate case that s lies on a vertex or an edge of Gk
1(P ) we add

no rectangle. We also add a smallest enclosing rectangle for each point p where
an edge of T bends. Degenerate cases are handled as Steiner points. For each
straight-line segment of T not covered by previous rectangles we independently
add to R a smallest enclosing rectangle bounded by vertical and horizontal edges
from Gk

1(P ). Thus, we finally have the following partition of the Steiner tree:
T = ∪R∈R(T ∩R). See Figure 2.4 for an example.

For a given minimum Steiner tree T (fulfilling Properties 2.3–2.7), we construct
an approximating Steiner tree Tapp with edges in Gk

1(P ) as follows. For each
rectangle R ∈ R let SR be the set of intersection points of T with the boundary
of R. We connect the point set SR in the shortest possible way by (portions
of) edges in Gk

1(P ), yielding a tree TR. From the union of all these trees TR we
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CHAPTER 2. OCTILINEAR STEINER TREES WITH OBSTACLES

eliminate in a postprocessing step the longest edge of each cycle which may occur
and all leaves and incident edges of the resulting tree which are not terminals.
We thereby obtain our approximation Tapp. The following technical lemma shows
that we can bound for each rectangle R included in R the length `(Tapp ∩ R) of
Tapp ∩ R in terms of the length `(T ∩ R) of T ∩ R. The proof can be found
in [MS07, Sch05].

Lemma 2.8. For each R ∈ R, the following bound holds:

`(Tapp ∩R)− `(T ∩R) ≤ (4−
√

2)
bb

k + 1
.

With this lemma at hand we can bound the length of a Steiner tree using only
edges of Gk

1(P ).

Lemma 2.9. The graph Gk
1(P ) contains an octilinear Steiner tree which is at

most a factor of

1 +
(2n− 3)(4−√2)

k + 1

longer than the minimum one.

Proof. Let P be a set of points in the plane with |P | = n and Topt be some
minimum octilinear Steiner tree for P . We have to show that there is some
octilinear Steiner tree Tapp within Gk

1(P ) which approximates Topt sufficiently
well.

We cover Topt by a set R of axis-parallel rectangles as described above. Let us
assume that Topt is composed of k′ ≥ 1 full Steiner trees with n1, n2, . . . , n

′
k ≥ 2

vertices each. Then
∑k

i=1 ni = n+k′−1. Each full component may have at most
si ≤ ni− 2 Steiner points by Proposition 2.3. Hence, the total number of Steiner
points satisfies

∑k
i=1 si ≤ n−k′−1. If mi denotes the number of edges in the i-th

full component, we have mi = ni+si−1 for a total of m =
∑k′

i=1 mi ≤ 2n−2−k′
edges in Topt.

The coverR of Topt by rectangles contains at most one rectangle per Steiner point,
one rectangle for each edge and at most two additional rectangles per bending
edge (one for the bending point and one for the second part of the edge). By
Property 2.7, we may assume that each full component has at most one bending
edge. Thus

|R| ≤
k′∑
i=1

si +
k′∑
i=1

mi + 2k′ ≤ 3n− 3.

Next, we analyze the length `(Tapp) of Tapp in comparison to the optimal length
`(Topt). All edges of Topt which are incident to a terminal are represented inGk

1(P ).
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2.2. A PTAS FOR HARD OBSTACLES

Hence, for all corresponding rectangles `(Topt ∩R) = `(Tapp ∩R). Clearly, there
are at least n edges incident to terminals. This implies that for at most 2n − 3
rectangles of R there will be a difference between `(Tapp ∩ R) and `(Topt ∩ R).
Thus, we have

`(Tapp)

`(Topt)
=
`(Topt) +

∑
R∈R(`(Tapp ∩R)− `(Topt ∩R))

`(Topt)

≤ `(Topt) + (2n− 3) ·maxR∈R{`(Tapp ∩R)− `(Topt ∩R)}
`(Topt)

.

Hence, it suffices to show that

max
R∈R
{`(Tapp ∩R)− `(Topt ∩R)} ≤ (4−

√
2) · `(Topt)

k + 1
.

This relation follows from Lemma 2.8 and the observation that `(Topt) ≥ bb, since
every Steiner tree must connect the terminals which define the bounding box
B(P ).

Theorem 2.10. For a given set P ⊆ R2 of n terminals, and for every ε > 0
there exists a graph of size O(n

2

ε2
) which contains a (1 + ε)-approximation of a

minimum octilinear Steiner tree.

Proof. The approximation guarantee follows directly from Lemma 2.9 if we choose

k := (4−
√

2)2n
ε

. With such a choice of k, the graph has the claimed size.

Trivially, we get the following corollary

Corollary 2.11. Let α denote the approximation guarantee for an algorithm
solving the Steiner tree problem in graphs. For a set P ⊆ R2 of terminals, and
some ε > 0, there is an (α + ε)-approximation of the octilinear Steiner tree
problem.

2.2.1 Extension to Obstacles.

Let us now work out the necessary modifications in the presence of obstacles.
Let P be a set of points (terminals) in the plane and O be a set of octilinear
(or rectilinear) obstacles. Denote by VO the set of obstacle vertices. Let n =
|P |+ |VO|.
Analogously to the definition of G1(P ), we now define a graph G(P,O) which is
induced by the set L of lines in all feasible directions in 4-geometry going through
terminals or obstacle vertices.

For a given parameter k, we refine G(P,O) by adding lines. For any two parallel
lines in L which are neighbored (i.e., no third line with the same orientation lies
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CHAPTER 2. OCTILINEAR STEINER TREES WITH OBSTACLES

between them) we add k additional lines with the same orientation between them
and place them equidistantly. In total, we get O(nk) lines.

From the resulting induced graph, we erase all vertices and their incident edges
which lie strictly inside some obstacle. The latter guarantees that every Steiner
tree in this graph corresponds to a tree in the plane which avoids all obstacles.

Theorem 2.12. For a set P ⊆ R2 of terminals, a set O of octilinear hard
obstacles with n terminals and obstacle vertices, and for every ε > 0 there is
a graph of size O(n

2

ε2
) which contains a (1 + ε)-approximation of a minimum

octilinear Steiner tree with obstacles which have to be avoided.

The proof of this theorem follows basically the same ideas as that for the case
without obstacles. There is one essential difference, however. In the presence
of obstacles, edges between terminals and/or Steiner points may be forced to
bend several times. But if such an edge bends, then all but at most two of its
straight segments will lie on G(P,O). Since we have at most 2n− 3 edges (each
contributing two segments and possibly one corner point), but n edges incident to
terminals and n−2 Steiner points, a cover by rectangles of a minimum octilinear
Steiner tree requires at most 3 · (2n − 3) − n + n − 2 = 6n − 11 rectangles on
which we have to find an approximative solution. This upper bound of 6n − 11
rectangles (instead of 2n − 3 without obstacles) suffices for an analogous result
as in Lemma 2.9. Again we get the following corollary.

Corollary 2.13. Let α denote the approximation guarantee for an algorithm
solving the Steiner tree problem in graphs. For a set P ⊆ R2 of terminals, a set O
of octilinear hard obstacles, and some ε > 0, there is an (α + ε)-approximation
of the octilinear Steiner tree problem with obstacles which have to be avoided.

With the PTAS introduced by Borradaile et al. [BKMK07b] we get the following
corollary:

Corollary 2.14. Given set P ⊆ R2 of terminals, a set O of octilinear hard
obstacles, and some ε > 0, there is a PTAS of the octilinear Steiner tree problem
with obstacles which have to be avoided.

2.3 A (2 + ε)-Approximation for Soft Obstacles

For a set O of soft obstacles we introduce length restrictions for those portions of
a tree T which cross obstacles. Namely, for a given parameter L ∈ R+

0 we require
the following for each obstacle O ∈ O and for each strictly interior connected
component TO of (T ∩O) \ ∂O: the length `(TO) of such a component must not
be longer than the given length restriction L. Note that the intersection of a
minimum Steiner tree with an obstacle may consist of more than one connected
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2.3. A (2 + ε)-APPROXIMATION FOR SOFT OBSTACLES

component and that our length restriction applies individually for each connected
component.

For ease of exposition, we restrict our presentation of soft obstacles to (axis-
parallel) rectangular obstacles. Generalizations to rectilinear and octilinear soft
obstacles are possible and do not change the asymptotic size of the resulting
graphs.

2.3.1 Octilinear Shortest Paths Amidst Hard Obstacles

Before we actually consider soft obstacles we insert another construction for hard
obstacles which we need afterwards. Thus, let P be a set of points (terminals)
in the plane and O be a set of octilinear hard obstacles. Denote by VO the set
of obstacle vertices. Let n = |P | + |VO|. In this paragraph we will show how to
construct shortest path preserving graphs.

As a first step we construct a path preserving graph based on visibility. Our
construction may be viewed as a generalization of that of Wu et al. [WWSCW87],
which was designed for rectilinear polygons and rectilinear paths. To simplify our
discussion we add to our scene a bounding box containing all obstacles and all
terminals. Clearly all desired paths will lie within this bounding box.

A track tr generated by a point t and an orientation is a line segment that starts
at t and ends when it first hits an obstacle edge or the bounding box. The
generated endpoints of tracks are called track-induced Steiner points. For each
terminal t and each feasible orientation we construct a track in both directions
from t. Similarly, we introduce tracks for each convex obstacle vertex v. More
precisely, if e1 = (v1, v) and e2 = (v, v2) are polygon edges incident with v in
clockwise order of the polygon, denote by r1 the ray in direction from v1 to v,
and by r2 the ray in direction from v2 to v. We construct a track generated by v for
all feasible directions which do neither go through the interior of the obstacle nor
through the interior of the sector spanned by ray r1 and r2 in counter-clockwise
order. See Figure 2.5 (a).

The intersections among all tracks and their endpoints are made the vertices
of the track graph. The edges are the track segments between the intersections.
The construction is completed by adding edges connecting two consecutive track-
induced Steiner points or polygon vertices along the boundary of each obstacle.
The length of an edge in the track graph is simply the octilinear distance be-
tween its endpoints. See Figure 2.5 (b) for a small example which illustrates this
construction. The track graph consists of O(n) many tracks which induce O(n2)
many vertices and edges.
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v

r2

r1

v2

v1

(a) (b) (c)

Figure 2.5: Illustration of the graph construction. (a) The tracks around a convex
vertex v of some obstacle. There is no track inside the shaded area. (b) The track
graph for an instance with three terminals (black dots) and two hard octilinear
obstacles. (c) The first vertical cut line construction.

For rectilinear paths it is possible to restrict the track construction to so-called
extreme edges [WWSCW87]. An obstacle edge is extreme if its two adjacent
edges lie on the same side of the line containing the edge. Note that such a
reduction is not possible for octilinear paths.

Sparser path-preserving graphs. To improve upon the quadratic space bound
of the track graph we use an idea of Clarkson et al. [CKV87] and adapt their
approach to the octilinear case. We construct a sparser path-preserving graph
G = (V,E) as follows. The vertex set is constructed in two rounds. In the first
round, we create V1 as the union of

1. the set of all terminals P ,

2. the set of all obstacle vertices VO, and

3. the set of track-induced Steiner points for tracks induced by P and VO.

With respect to V1 we create the set V2 recursively by adding more Steiner points
along vertical, horizontal and diagonal so-called cut lines. We explain the con-
struction for vertical cut lines. A vertical cut line is placed at the x-coordinate
of that point such that bV1/2c points of V1 have smaller x-coordinate than this
point. Vertices in V1 generate projection points on the line. Projections are
performed in all feasible orientations so that we may get up to three projection
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points on the line for each vertex in V1 (in the rectilinear setting, Clarkson et al.
need to project only orthogonally onto the cut line). Two points are mutually
visible to each other if the straight line segment between them contains no ob-
stacle point in its interior. All those projection points on a cut line which are
visible from some inducing point in V1 are put into the vertex set V2. Moreover,
we add the intersection points of the cut line with obstacle vertices to V2. The
following edges are inserted into E. Two consecutive Steiner points on the cut
line are connected by an edge if these points are visible to each other. We also
add edges from each vertex in V1 to its corresponding projection points.

This procedure is repeated recursively with the vertices respectively on the left
and right sides of the cut line. The union of all these vertices yields V = V1 ∪V2.
See Figure 2.5 for a vertical cut line on the highest level. There are O(log n)
many levels of recursion, and in each level we will create O(n) many vertices and
edges. This gives in total O(n log n) vertices and edges. Finally, for each obstacle
we have edges between consecutive vertices from V on its boundary.

The proof of the following theorem can be found in [MS05a, Sch05].

Theorem 2.15. For any two vertices from P the constructed graph G contains
a shortest octilinear path. The graph G has O(n log n) vertices and edges.

2.3.2 Track Graph Construction

For soft obstacles, an analogous construction of the track graph is substantially
more complicated than for hard obstacles. (This is in sharp contrast to the
rectilinear case). We obtain the track graph by applying the following rules
inductively. See Figure 2.6 for an illustration of each rule.

1. We generate track lines for all terminals and all feasible orientations. But
in contrast to hard obstacles, a track does not end as soon as it hits an
obstacle. It only ends at an obstacle if the intersection of the track line
with the obstacle exceeds the given length restriction L. Hence, we distin-
guish between Steiner points which are endpoints of a track due to a length
restriction, called L-Steiner points, and all other Steiner points generated
as intersections of a track line and obstacles. The latter type of Steiner
points will still be called track-induced Steiner points.

2. Similarly, we introduce track lines through all vertices of rectangular poly-
gons. This yields O(n) track lines and may cause O(n2) many track-induced
Steiner points.

3. Additional tracks are needed to make shortcuts when an obstacle causes a
deviation due to the length restriction L.
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Figure 2.6: The different types of tracks for soft obstacles.

For each edge e = (p1, p2) of an obstacle with length `(e) > L/
√

2 we do the
following. At the points on e with distance L/

√
2 from the corners p1 and

p2 we respectively generate tracks which have an angle of 45◦ and 135◦ with
e and run through the obstacle but do not exceed the length restriction.
For the track which has length L inside the obstacle we add also a track
in the other direction (rotated by 180◦) outside the obstacle. This yields
another O(n) track lines and O(n2) track-induced Steiner points.

4. Next suppose that a track tr ends at a point p of an edge e of some obstacle
due to the length restriction and hits e with an angle of 45◦. If the edge f
which is opposite to e in such a rectangle has a distance not exceeding L
from e, we let the track continue inside the rectangle up to a certain point
q. At q the track bends by an angle of 135◦ and continues until it hits edge
f , say at r. The point q is chosen in such a way that length of the two
segments pq and qr together equals the length restriction L. Finally, at r a
new track parallel to tr is created. Note that tracks generated for this item
do not increase the asymptotic complexity.

5. Now consider the following situation. A track tr enters an obstacle O at
some point p on edge a in an angle of 45◦ and leaves the obstacle at some
point q on an edge b of O which is adjacent to a. Furthermore, we assume
that the length of b exceeds L. Then we start a new track tr2 at q which
runs orthogonally to tr through the obstacle, provided that `(tr2 ∩O) < L
(i.e., the intersection of tr2 with O does not exceed L; if equality holds this
track has already been inserted). As a track may cross many obstacles each
of which potentially induces a new track of the just described kind, and
newly generated tracks in turn may induce further tracks of this kind, we
have to be careful not to generate infinitely many new tracks. Therefore,
the generation process is done in rounds for each track generated in Items
1-4. In each round, we create a tree of new tracks, called track tree. The
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root r of such a track tree is one of the tracks generated by Items 1-4. Every
induced new track is made an immediate successor of its inducing track.
A round ends if no new track is induced. To make each round finite, we
add the following rule. Consider a fixed round and suppose that we have
generated in step i of this round a track tri from a Steiner point on rectangle
side e. If in a later step j > i we would have to insert a further track trj
from the very same rectangle side e due to Item 5 and this track would have
track tri as a predecessor in the track tree, such a track is not necessary.
This is because in such a scenario the generated tracks would form a full
cycle around a rectangle, and clearly no cycle can be in a shortest path.
Hence, our rule is not to generate a further track in such cases. By applying
this rule, we have a finite number of tracks.

6. Suppose that a track tr ends at an obstacle O due to the length restriction
and hits edge e of O orthogonally at some point q. Moreover, suppose q has
a distance of less than L/

√
2 from some obstacle corner v on e. Then we

add a segment and a new track to shortcut the way around O (the latter
only if its intersection with O does not exceed L). See again Figure 2.6.
We handle such tracks as in the previous item.

This completes the construction of our track graph. For the proof of the following
lemma see [MS05a, Sch05]:

Lemma 2.16. The constructed track graph contains a shortest length-restricted
path between each pair of terminals.

2.3.3 Approximate Shortest Paths

The track graph as described in Section 2.3.2 above may have exponential size.
With a smarter construction one can bound the size of the track graph by O(n3)
(but the proof then becomes quite complicated) [Sch05]. We therefore prefer a
simpler construction which uses approximate shortest paths. For any integer k,
we obtain (1 + 1

k
)-approximate shortest paths. The idea is to leave out Items 5

and 6 of the track graph construction (which are responsible for the blow up in
the graph size). Instead, we insert k − 1 additional tracks for each corner of an
obstacle. These tracks “cut off” the corner and are placed in distance j·L√

2·k from
the corner for j = 1, . . . , k − 1. See Figure 2.7.

This construction inducesO(kn) many new tracks which are responsible forO(kn)
new track-induced Steiner points per obstacle. Next we apply the same sparsifi-
cation technique as we explain in Section 2.3.1 for hard obstacles and make sure
that every path in our graph is feasible with respect to our length restriction.

We do this in two steps. In a first step, we regard all obstacles as hard ob-
stacles and use the modified cut line approach on the set of original vertices,
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(a) (b)

Figure 2.7: (a) The extra tracks inserted at a corner of some obstacle to approx-
imate shortest paths. (b) Clearly, the “thick” path is only slightly longer than
an approximation using one of the extra tracks.

terminals and all track-induced Steiner points. The overall number of Steiner
points is O(kn2). Hence, the sparsification technique outside obstacles yields
O(kn2 log(kn)) many vertices and edges.

In a second step, we add connections between vertices and Steiner points on the
boundary of obstacles. In the previous discussion we observed that we may have
O(kn) many track-induced Steiner points lying on the boundary of an obstacle
O. Locally these Steiner points can be regarded as terminals which have to be
connected pairwise without violating the length bound L.

Lemma 2.17. Let O be a rectilinear obstacle with t terminals on its boundary.
Then we need O(t2) many edges for a graph which has (1) to represent shortest
paths between any pair of terminals respecting the length restriction L, and (2)
does not contain any path exceeding the length restriction L inside some obstacle.

Proof. For every pair of terminals, we add an edge if and only if their octilinear
distance is less or equal to L.

Thus, we can now apply Lemma 2.17 with t = O(kn) and get O(k2n2) edges
inside a single obstacle, for a total of O(k2n3) edges inside all obstacles.
It is easy to see that shortest paths between terminals in this modified graph will
be at most a factor of (1 + 1

k
) longer than shortest paths.

Lemma 2.18. There is a graph for soft rectangular obstacles with O(kn2 log(kn))
many vertices and O(k2n3) many edges which contains a (1 + 1

k
)-approximative

shortest path between any pair of terminals for any integer k. Moreover, all paths
in this graph respect the length restriction L inside obstacles. The graph can be
constructed in time proportional to its size.

Proof. The size of the graph follows directly from our explanations given before.
It is also clear that it can be constructed in the same time.

Thus it remains to prove the approximation guarantee. Denote the track graph
according to Item 1-6 by G1. By Lemma 2.16, the constructed track graph
contains a shortest length-restricted path between each pair of terminals. Next,
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Figure 2.8: Approximation of a path in the track graph G1. Parts of the original
solid path not in G1 are replaced by the dashed path which belongs to G2.

we analyze the effect of inserting k − 1 additional tracks for each corner instead
of applying Item 5 and 6 of the track graph construction. Denote the track graph
after this modification by G2. For two arbitrary terminals s and t, consider a
shortest length-restricted path P in G1 from s to t. We may assume that this
path P has the fewest number of bends among all shortest paths between s and
t. We embed this path in G2 as follows. All segments of P which are also in G2

remain unchanged. All remaining segments are embedded successively. As long
as the segments in G2 are not connected, denote by S1 the last inclusion-maximal
segment of P (in the given orientation from s to t) which is also represented in
G2, and by S2 the first inclusion-maximal segment not represented in G2. Then,
the common point of S1 and S2 must be a boundary point p of some obstacle O,
and S2 must lie on a track line introduced by Item 5 or 6. Let P2 denote the
subpath of P which starts at p with segment S2 and ends at a point q which is
chosen as follows. The point q is the first point on P when traversing the path
from p towards t where P enters an edge which also belongs to G2 or where it
bends once more and enters another track inserted by Item 5 or 6 in the track
graph construction. (Clearly, such a q exists since the last bending point before
arriving at t is always a candidate.) This subpath P2 is replaced by a sequence
of track lines S ′1, S

′
2, . . . , S

′
t in G2 which are parallel to and at most a distance of

a < L√
2·k away from corresponding segments of P2. These segments are linked

to the rest of P by at most two short segments of length a on the boundary of
obstacles as shown in Figure 2.8. Note that the replacement exists, i.e., none
of the necessary track lines S ′1, . . . , S

′
t is stopped because of a length violation

inside some obstacle. This is true since the intersection of some S ′i, 1 ≤ i ≤ t,
with some obstacle cannot exceed the length restriction L as otherwise either the
corresponding segment of P would already have been infeasible or some other
track line would be nearer to P contradicting the choice of our replacement (the
right case in Figure 2.8).

Suppose, we have to apply such a modification m times. In each case, the original
path goes through an obstacle O and the intersection of the path with the obstacle
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must be at least

`(P ∩O) ≥
√

2L,

as otherwise no track for Item 5 or 6 would have been inserted. Hence, the
length of P is lower bounded by

√
2Lm. The length of a is certainly smaller than

the distance between two inserted additional track lines, hence a ≤ L√
2·k and

`(S ′) ≤ `(S2) for each modified segment S ′. Thus the modified path P ′ satisfies

`(P ′) ≤ `(P) +
2Lm√

2 · k
≤ `(P) +

`(P)

k

≤ (1 +
1

k
) · `(P).

We finally note that the sparsification technique applied to G2 does not further
change path lengths. In the same way as we proved the correctness for the spar-
sification technique for hard obstacles, one can show that the distance between
any two track-induced Steiner points remains unchanged by the sparsification.

The final graph contains only paths which respect the length restriction inside
obstacles since we deleted for each obstacle O the whole subgraph of G2 with
edges and vertices “inside” O, and replaced these subgraphs by length-feasible
direct connections between points on the boundary.

As the obtained graph contains only length-feasible paths, we can apply Mehl-
horn’s [Meh88] implementation of the minimum spanning tree heuristic to con-
struct a Steiner tree. We finally obtain:

Theorem 2.19. For any fixed ε = 1/k, we can find a (2 + ε)-approximation of
the octilinear Steiner tree problem with soft rectangular obstacles in time O( 1

ε2
n3).

We conclude by mentioning that our analysis is tight. It is possible to construct a
class of instances for which our approximation algorithm asymptotically achieves
a performance guarantee of 2 [MS05a, Sch05].

2.4 A PTAS for Soft Obstacles

We construct a graph of polynomial size which contains a (1 + ε)-approximation
for the octilinear Steiner tree problem with soft rectangular obstacles. Next we
give a detailed description of this construction.

30



2.4. A PTAS FOR SOFT OBSTACLES

2.4.1 Graph Construction

The graph construction requires the following five steps:

Step 1: The very first step is to compute an axis-parallel square which contains
an optimal Steiner tree. Everything outside such a square can then be safely
ignored in the subsequent steps. For the analysis it is important that the side
length b of this square can be bounded by a constant times the length of a
minimum Steiner tree Topt.

To achieve this goal, we can run the minimum spanning tree based approximation
of Mehlhorn [Meh88]. Let us assume that this approximation yields a tree of
length `(TMST ). Denote by B(P ) the bounding box of the given terminal set,
that is, the smallest axis-parallel rectangle which includes all terminals. Let bb
be the maximal side length of B(P ). Now we can define b := bb + 2`(TMST ).
Clearly, an axis-parallel square B of side length b centered at the barycenter of
B(P ) is large enough to contain a minimum Steiner tree. Since the minimum
spanning tree yields a 2-approximation and bb ≤ `(Topt), we also have

b ≤ 5 · `(Topt). (2.1)

Note the difference to hard obstacles. For hard obstacles it suffices to consider
the bounding box of all terminals because outside this box possible edges of a
minimum Steiner tree run along the boundary edges of the obstacles (being in
the constructed graph anyway).

Step 2: As in Section 2.2 we build a refinement of a Hanan-like grid graph
restricted to the area of B. Again this refinement is parameterized by some pa-
rameter k (to be determined later). More specifically, we subdivide the boundary
of the square B equidistantly with k points into k+ 1 segments and add for each
subdivision point additional lines in all four feasible orientations of the octilinear
geometry.
To this set of lines we add lines through each terminal and each vertex of an
obstacle in all feasible directions. Let G be the graph induced by intersections of
these lines restricted to the area inside B (including the boundary of B).

Step 3: The resulting graph may allow subtrees inside obstacles which violate
the length restriction L. Therefore, we delete all nodes and edges which lie strictly
inside some obstacle.

Step 4: Let t ∈ N be another parameter which will be chosen as a constant
depending on ε but independent from the given instance. For each obstacle O
and for each subset S of at most t vertices on the boundary of O compute an
optimal Steiner tree for S which respects the length restriction L inside O. We
add each such Steiner tree to the current graph and identify common boundary
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given terminals

(a)

auxiliary terminals

(b)

Figure 2.9: (a) The unrestricted optimal Steiner tree is shown. (b) The optimal
solution subject to a length restriction.

vertices. Since t is a constant, there is only a polynomial number of these small
Steiner tree instances and each of these trees can be computed in constant time
as we will show later.

Step 5: Finally, we want that our graph contains a feasible almost shortest
octilinear path between any pair of vertices on the boundary of obstacles. More
precisely, we require that these paths approximate the true shortest paths by a
factor of 1 + 1/(k + 1). We can compute these paths and their lengths by the
methods from Section 2.3 and add them to the graph.

On the resulting graph G = G(k, t), parameterized by k and t, we can then solve
the Steiner tree problem for the given terminal set P .

The parameter t will be chosen as a constant and the parameter k = O(n).
This immediately implies that the constructed graph has size O(n5). It remains
to show that Step 4 can be done efficiently. Therefore, we have to show the
following lemma.

Lemma 2.20. Let S be a set of at most t terminals on the boundary of some
rectangle O and L be some length restriction inside O. If t is a constant, then
the octilinear Steiner tree problem for S with length restriction L can be solved
in constant time.

No that the topology of a Steiner tree merely refers to the graph structure, i.e., it
includes the terminals and Steiner points as vertices and specifies the connections
between these vertices as edges. However, the topology does not include the
geometric embedding in the plane.

Proof of Lemma 2.20. For a given set S of terminals we first compute an optimal
octilinear Steiner tree without considering the length restriction L. To this end,
we simply enumerate over all possible tree topologies and finally take the shortest
tree. Since every tree can be decomposed into its full components, we restrict our
attention only to full trees. By Properties 2.3 to 2.6 the possible tree topologies
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are restricted. Their number is obviously finite. Brazil et al. [BTWZ02] have
shown that, for each given topology one can construct a Steiner minimum tree
(that means find an optimal embedding) in linear time in t.

If the optimum tree for S also satisfies the length restriction L, we are done.
However, if this tree exceeds the length restriction and is therefore infeasible, we
need some more work.

In such a case, the optimal feasible tree is composed by one or more full trees of
exactly length L inside the obstacle O and some segments on its boundary which
connect the full tree with the given terminals. See Figure 2.9 for a small example.
The precise position of the full tree can be computed by linear programming as
we will point out in the following. Again we restrict our attention to the case of
a single full component inside O.

An octilinear (L, s)-tree in a rectangular obstacle O is a full Steiner tree of length
L with s terminals which are located on the obstacle’s boundary.

Assume that S = {t(1), t(2), . . . , t(s)} are the given terminals, for s ≤ t. For
each given terminal t(i), 1 ≤ i ≤ s, we associate an auxiliary terminal t′(i) (this
mapping is, in general, not injective. Two given terminals may be mapped to the
same auxiliary terminal). These auxiliary terminals shall be the terminals of an
(L, s)-tree. The coordinates of these auxiliary terminals have to be determined
so as to minimize the segment lengths on the boundary. Let us fix the tree
topology including the orientation of its edges of an (L, s)-tree. We also fix
the counterclockwise order of given terminals and auxiliary terminals around the
boundary of O and their assignment to the four rectangle sides of the obstacle
O. Our objective is to minimize the overall length of the segments connecting
the auxiliary terminals with the given terminals. This is a linear function in
the unknown coordinates t′(i)x , t

′(i)
y (for 1 ≤ i ≤ s) subject to several linear side

constraints. Assume that the origin of our coordinate system is the left bottom
corner of the rectangle O. We require that

• for a rectangular obstacle of dimension a× b, all vertical coordinates are in
the range [0, a] and all horizontal coordinates are in the range [0, b].

• The length of the full Steiner tree is exactly L. The length of an (L, s)-tree
T can be expressed as a function of the coordinates of its terminals and
Steiner points. We obtain the linear equality
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L ≡
∑

e∈E(T )

`(e)

=
∑

e∈E(T )
vertical

`(e) +
∑

e∈E(T )
horizontal

`(e) +
∑

e∈E(T )
diagonal

`(e)

=
∑

e={u,v}∈E(T )
vertical

|uy − vy|+
∑

e={u,v}∈E(T )
horizontal

|ux − vx|

+
√

2 ·
∑

e={u,v}∈E(T )
diagonal

|uy − vy|.

• All tree edges have nonnegative length. This gives one linear inequality for
the coordinates of each edge.

• The distance between pairs of auxiliary terminals on opposite sides of the
tree must be exactly the corresponding side length of the rectangle. For
each such pair we obtain a linear equality.

• The given ordering of auxiliary terminals and terminals is not violated.
This gives one or two additional linear inequalities per auxiliary terminal.

Thus, finding an optimal embedding of an (L, s)-tree for a fixed topology amounts
to solving a linear programming problem of constant dimension. As this can be
solved in constant time, our lemma follows by enumerating over all possible tree
topologies.

2.4.2 Analysis of the Approximation

For the analysis, we fix some minimum Steiner tree Topt. To bound the approxi-
mation achieved by our graph G, we partition Topt into several parts which are
analyzed independently. To this end we define how to cover a Steiner tree Topt
by a set of axis-parallel rectangles. This set R = R1 ∪R2 is obtained as follows.
Denote by R1 the set of obstacles which include at least one Steiner point of Topt
in its interior. For each Steiner point s of T not covered by an obstacle, the set
R2 contains a smallest rectangle including s with horizontal and vertical edges
from G. In the degenerate case that s lies on a vertex or an edge of G we add no
rectangle. We also add a smallest enclosing rectangle for each point p where an
edge of T bends. Degenerate cases are handled as with Steiner points. For each
straight-line segment of T not covered by previous rectangles we independently
add to R2 a smallest enclosing rectangle bounded by vertical and horizontal
edges from G. Thus, we finally have the following partition of the Steiner tree:
Topt = ∪R∈R(Topt ∩R).
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The constructed graph G contains an approximative tree Tapp which we obtain
as follows. The general idea is to replace portions of the optimal tree by trees
contained in G. From the union of all these trees we eliminate in a postprocessing
step the longest edge of each cycle which may occur and all leaves and incident
edges of the resulting tree which are not terminals.

Replacing portions covered by R1. Let TR be some inclusion-maximal con-
nected component of Topt which lies strictly inside R ∈ R1 except for a finite set
of points on the boundary of R. Denote by PR this set of boundary points of
TR. In our graph G, the boundary of each obstacle within the square B has been
discretized. For any point p on the boundary there is a point in the discretized
set with distance at most

∆ ≤ b

k + 1
≤ 5 · `(Topt)

k + 1
(2.2)

units from p. Denote by P ′R the set of vertices in G such that for every point in
PR there is one in P ′R with distance at most ∆. Then, an optimal Steiner tree T ′R
for the set P ′R satisfies

`(T ′R) ≤ `(TR) + |PR| ·∆.
If |P ′R| > t, the tree T ′R may not be contained in G. However, since we included
in G optimal trees for any t-element subset of boundary vertices, we have an
approximation by t-restricted Steiner trees available.

The exact approximation ratio of t-restricted Steiner trees under the octilinear
metric and length restrictions has not yet been determined. However, this ratio
cannot be worse than the ratio for t-restricted Steiner trees in graphs. For the
latter, it is known that the ratio is rt = (r+1)2r+`

r2r+`
for t = 2r+` [BD95]. Obviously,

rt ≥ 1 is monotonously decreasing and converges to 1 for large t. Hence, we may
choose t such that rt − 1 ≤ ε

2
for any given ε > 0.

For each R ∈ R1 we have

`(Tapp ∩R)− `(Topt ∩R) ≤ (rt − 1) · `(Topt ∩R) + rt · |PR| ·∆.
Since

∑
R∈R1

|PR| ≤ 3n− 6 (as we have at most n− 2 rectangles in R1 and each
Steiner point has 3 incident edges which may contribute to some PR) and clearly
rt ≤ 2, we obtain by (2.2)∑

R∈R1

(`(Tapp ∩R)− `(Topt ∩R)) ≤ ε

2
· `(Topt) +

10(3n− 6)

k + 1
· `(Topt).

Replacing portions covered by R2. For rectangles in R ∈ R2 by Lemma 2.8
the following bound holds:

`(Tapp ∩R)− `(T ∩R) ≤ (4−
√

2)
b

k + 1
.

35



CHAPTER 2. OCTILINEAR STEINER TREES WITH OBSTACLES

In the presence of (soft) obstacles, edges between terminals and/or Steiner points
may be forced to bend several times. Hence, in general, an edge e = (p, q)
consists of a certain number of straight line segments, say s1, . . . , sw, and hits
a number of obstacles. Let p1 be the first common point of such an edge with
some obstacle and p2 be the last, respectively. Denote by p′1 and p′2 the nearest
points in our graph G belonging to the same obstacle as p1 and p2, respectively.
Since we have an almost shortest path between p′1 and p′2 in our graph (by step
5 of the graph construction), the path from p1 to p2 can be approximated by
taking two short segments of length at most ∆ on the boundary of the first
and last obstacle plus this almost shortest path. Thus, this path is at most
2∆ + `(Topt)/(k + 1) ≤ 11`(Topt)/(k + 1) longer than the corresponding one in
Topt. The very first segment s1 and the one or two last segments sw−1 and sw
plus the possible corner point between sw−1 and sw are covered by up to four
rectangles from R2. Hence by Lemma 2.8, the total error contributed by a single
edge e is upper bounded by

4 · (4−
√

2)
b

k + 1
+

11`(Topt)

k + 1
≤ 71`(Topt)

k + 1
.

As there are at most 2n − 3 edges in total, the overall error contributed by
edges which are covered by rectangles in R2 is upper bounded by 71(2n−3)`(Topt)

k+1
.

There are at most n− 2 Steiner points covered by rectangles in R2. These may
contribute an additional error of 15(n−2)`(Topt)

k+1
.

Summing up, the total error can be bounded by

`(Tapp)− `(Topt) ≤ ε

2
`(Topt) +

10(3n− 6)

k + 1
`(Topt)

+
71(2n− 3)`(Topt)

k + 1
+

15(n− 2)`(Topt)

k + 1
,

which simplifies to

`(Tapp)− `(Topt) ≤ ε

2
`(Topt) +

(187n− 303) · `(Topt)
k + 1

.

If we choose k := d2·(187n−303)
ε

e, our graph contains a (1 + ε)-approximation and
has polynomial size. Thus, we have shown the following theorem.

Theorem 2.21. For a set P ⊆ R2 of terminals in the plane, a set O of rect-
angular soft obstacles with length restriction L with n terminals and obstacle
vertices, and for every ε > 0 there is a graph of size O(n5) which contains a
(1 + ε)-approximation of a minimum octilinear Steiner tree with length restric-
tion L inside obstacles.

In analogy to Section 2.2 we get the following corollary.
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Corollary 2.22. Let α denote the approximation guarantee for an algorithm
solving the Steiner tree problem in graphs. For a set P ⊆ R2 of terminals in the
plane, a set O of rectangular soft obstacles with length restriction L, and some
ε > 0, there is an (α + ε)-approximation of the octilinear Steiner tree problem
with length restriction L inside obstacles.

With the PTAS introduced by Borradaile et al. [BKMK07b] we get the following
corollary:

Corollary 2.23. For a set P ⊆ R2 of terminals in the plane, a set O of rectan-
gular soft obstacles with length restriction L, and some ε > 0, there is a PTAS
of the octilinear Steiner tree problem with length restriction L inside obstacles.

2.5 Conclusion

In this chapter we studied approximation algorithms for the octilinear Steiner
tree problem in the presence of hard octilinear and soft rectangular obstacles.
For soft obstacles we constructed a graph which is guaranteed to contain paths
at most 1 + ε so long as the shortest path between any pair of terminals (for
arbitrary ε > 0). Such a graph is denoted as (1 + ε)-spanner. The construction
leads to a (2+ε)-approximation by means of the minimum spanning tree heuristic
of Mehlhorn [Meh88].

We introduced planar graphs for both the Steiner tree problem with hard octilin-
ear and the one with soft rectangular obstacles (by two different constructions)
which contain Steiner trees at most 1 + ε the length of minimum Steiner trees
with hard and soft obstacles, respectively. By the polynomial time approximation
scheme of Borradaile et al. [BKMK07b] we get polynomial time approximation
schemes for both our problems. To the best of our knowledge these were the first
polynomial time approximation scheme for octilinear Steiner trees with hard and
soft obstacles. Quite recently, Müller-Hannemann and Tazari [MT07] published
a PTAS for the λ-Steiner tree problem with soft obstacles with better running
time.

For soft obstacles our asymptotically best approximation algorithm of the octilin-
ear Steiner tree problem uses t-restricted Steiner trees. To achieve a polynomial
running time, it was sufficient that the t-restricted Steiner ratio converges to 1
for large t. However, the convergence ratio for the Steiner ratio in general graphs
(which we used) is very slow. We conjecture that the true convergence should be
much faster. For comparison, we note that the t-restricted Steiner ratio in the
rectilinear plane is 2t

2t−1
for t ≥ 4 [BR94, BDGW98]. Hence, it is an interesting

open problem to find tighter or even exact bounds on the t-restricted Steiner
ratio for octilinear Steiner trees.
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As a major challenge it remains to find and analyze an approximation algorithm
for the octilinear Steiner tree problem subject to obstacles which do not use
(approximation) algorithms for the Steiner tree problem in graphs.
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Chapter 3

Euclidean Group Steiner Trees

The group Steiner tree problem is a generalization of the ordinary Steiner tree
problem. In the Euclidean group Steiner tree problem we are given a set of points
P in the plane and a set of m connected regions. The regions contain the points
of P . Each region or more precisely the points of P contained in the region are
called group and the points in P are called terminals. We search for a network
of minimum length which contains at least one terminal from every group.

Definition 3.1. Let P ⊆ R2 be a set of points in the Euclidean plane and let
{S1, . . . , Sm} ⊆ P be m subsets of P . A Euclidean group Steiner tree is a Steiner
tree, which contains at least one point of each set {S1, . . . , Sm}. A minimum
Euclidean group Steiner tree is a Euclidean group Steiner tree of minimum length.

The Euclidean group Steiner tree problem is to find a minimum Euclidean group
Steiner tree. See Figure 3.1 for an example of a minimum Euclidean group Steiner
tree.

The (group) Steiner tree problem can be also defined in graphs. Here we are
given a graph G on n vertices with non-negative weights on the edges, and m
subsets {S1, . . . , Sm} of the vertices, and search for a subtree of G with minimum
total length which contains at least one vertex of each of the m subsets.

As well as the standard Steiner trees group Steiner trees have applications in VLSI
design. In the detailed routing phase the network can be connected to several
equivalent ports. This is reflected by group Steiner trees. The equivalent ports
are combined to groups and the Steiner tree have to connect only one terminal
(or port) to the other groups.

Slavik [Sla97] presented a 3ρ/2-approximation algorithm for the group Steiner
tree problem under a fixed metric with ρ being the maximum number of nodes in a
group. Garg et al. [GKR00] achieved a randomizedO(log3 n logm)-approximation
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Figure 3.1: Minimum Euclidean group Steiner tree.

algorithm for the group Steiner tree problem in graphs which uses probabilistic
tree embeddings together with randomized rounding.

If each set {S1, . . . , Sm} contains exactly one point this problem is the ordinary
Steiner tree problem. Since the Euclidean and also the Steiner tree problem in
graphs are special cases of the Euclidean group Steiner tree and the Steiner tree
problem in graphs, respectively, which are shown to be NP-hard [GGJ77, Kar72]
the same holds for them.

Throughout this chapter, we consider an instance of the Euclidean group Steiner
tree problem consisting of a finite set of points P and m subsets S1, . . . , Sm of
P . Each of the sets S1, . . . , Sm is contained in a geometric region in the plane. A
region is a connected and closed subset of the Euclidean plane. All these regions
have to be disjoint. The objective is to find a minimum Steiner tree on a subset
P ′ ⊆ P such that P ′ ∩Si 6= ∅ for i = 1, . . . ,m. For a set S of line segments (e. g.,
a Steiner tree or also a single line segment) we denote by `(S) the total length of
the line segments in S.

We restrict the regions to so called fat regions. The definition of fatness was in-
troduced by Van der Stappen [vdS94] and also used by De Berg et al. [dBGK+05]
and Elbassioni et al. [EFMS05] for the group traveling salesman problem.

Definition 3.2. An region O ⊆ R2 is said to be an α-fat object if for any disk
Θ which does not fully contain O and whose center lies in O, the area of the
intersection of O and Θ is at least 1/α times the area of Θ.

As some examples, the plane R has fatness 1 and the half-plane has fatness 2.
A disk is 4-fat. The size of an object is defined as the diameter of its smallest
enclosing disk.

We give a (1 + ε)(9.093α + 1)-approximation for the regions being disjoint α-fat
objects. The size of the objects can be varying.
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3.1. FACTS FOR EUCLIDEAN STEINER TREES

3.1 Facts for Euclidean Steiner Trees

We need the following basic properties of minimum Euclidean Steiner trees. See
for example the survey of Hwang, Richards and Winter [HRW92] for an overview.

Property 3.3. Steiner points are incident with exactly three edges. The edges
meet at angles of 120◦.

Property 3.4. Minimum Steiner trees for n terminals have at most n−2 Steiner
points.

Property 3.5. No two edges of a minimum Steiner tree can meet at an angle
less than 120◦.

By the third property it follows that a terminal can be incident to at most three
edges, which meet at angles of 120◦.

3.2 A (1 + ε)(9.093α + 1)-Approximation of Eu-

clidean group Steiner trees

In the following we give an algorithm for the Euclidean group Steiner tree problem
where each region is α-fat which approximates the optimal tree by a factor of (1+
ε)(9.093α + 1). The algorithm we use for this approximation was introduced by
Elbassioni et al. [EFMS05] for the Euclidean group traveling salesman problem.
The traveling salesman problem asks for a shortest cycle containing each terminal
exactly ones. This cycle is called tour. The Euclidean traveling salesman problem
searches for a shortest tour of a set of points contained in m connected α-fat
regions such that the tour contains at least one point in each of the m regions.
They establish a (1+ε)(9.1α+1)-approximation for the group traveling salesman
problem. We transfer their ideas to the group Steiner tree problem to achieve
the same approximation ratio. The main difference lies in the proof of the next
lemma because a traveling salesman tour satisfies that every vertex is incident to
exact two edges of the tour in contrast to a vertex or Steiner point of a minimum
Steiner tree.

We use the following lemma to estimate the value of a shortest tree interconnect-
ing a set of disjoint α-fat objects.

Lemma 3.6. The length of a shortest tree connecting c disjoint α-fat objects in
R2 is at least (c/α− 1)πδ/4, where δ is the size of the smallest object.

Proof. Let T be a tree that connects the c objects and let the center of a disk
with diameter δ walk along this tree. See also Figure 3.2. We estimate the area A
covered by the disk moving along the tree. At each point where the center of the
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CHAPTER 3. EUCLIDEAN GROUP STEINER TREES

Figure 3.2: Covered area of a disk moving along T

(a) (b)

Figure 3.3: (a) Overlaps of the considered area (b) Three areas of a kite overlap

disk intersects the boundary of an object, the disk covers at least 1/α fraction of
it. That is, the total covered area is at least A ≥ c/α · πδ2/4 of the disk.

To determine the upper bound, let t1 be the overall number of terminals and t2
and t3 be the number of terminals of the tree with degree 2 and 3, respectively.
We can roughly estimate the covered area by at most δ`(T )+(t1−t2−t3)/2·πδ2/4
for `(T ) being the length of the tree T . But this overestimates the area at least
at points of degree three by 3/16(

√
3 +
√

3/3)δ2. See Figure 3.3. The area of one
kite is 1/16(

√
3 +
√
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3.2. A (1 + ε)(9.093α + 1)-APPROXIMATION

Now we give a simple (m − 1)-approximation algorithm. See Algorithm 1. Let
SP (pi, pj) be a shortest path between two points pi and pj. The algorithm first
choose an arbitrary point p1 ∈ S1. Then it determines for each set Si, 1 ≤ i ≤
m, the point pi ∈ Si with minimum distance to p1. Afterwards the algorithm
constructs a tree be selecting the shortest paths between p1 and the determined
points.

Algorithm 1 (m− 1)-APPROXIMATION

Require: Sets S1, . . . , Sm ⊆ P contained in α-fat disjoint regions.
1: Choose a point p1 ∈ S1.
2: Determine the points pi ∈ Si (i = 1, . . . ,m) minimizing

∑m
i=2 `(p1, pi).

3: Construct a tree T := SP (p1, p2) ∪ SP (p1, p3) ∪ . . . ∪ SP (p1, pm).
4: return T .

Lemma 3.7. The Algorithm is a (m − 1)-approximation for the group Steiner
tree problem.

Proof. Let Topt be a minimum Steiner tree for the given instance. Each minimum
Steiner tree contains paths from S1 to Si for all i ∈ {2, . . . ,m}. We denote by
lopt(Si, Sj) the length of the path between Si and Sj in the minimum Steiner tree.
Therefore,

∑m
i=2 `(p1, pi) ≤

∑m
i=2 lopt(S1, Si) ≤ (m− 1)`(Topt).

Now we describe the algorithm to compute a (1 + ε)(9.093α+ 1)-approximation
for the group Steiner tree problem. See Algorithm 2 Diameter for a detailed
description. Let δi, 1 ≤ i ≤ m be the largest distance between any two points
in Si and `(p,X) = minx∈X `(p, x) the minimum distance between a point p and
a set of points X. The parameter δi, 1 ≤ i ≤ m, is also called diameter. The
algorithm first sorts the groups by increasing diameter and chooses an arbitrary
point p1 ∈ S1. Afterwards, it determines for each set Si, 1 ≤ i ≤ m, the point
with minimum distance to {p1, . . . , pi−1}. By using the approximation schemes of
Arora [Aro98] and Mitchell [Mit99], in step 5 the algorithm constructs a (1 + ε)-
approximation of a minimum Euclidean Steiner tree for the m selected points for
an arbitrary ε > 0.

Theorem 3.8. Algorithm 2 Diameter is a (1+ε)(9.093α+1)-approximation for
the group Steiner tree problem with m groups contained in α-fat disjoint regions.

Proof. We assume m − 1 > 9.093α + 1 otherwise the algorithm outputs the
solution of the (m − 1)-approximation. Denote the set of points chosen by the
Diameter algorithm as P ′ = {p1, . . . , pm} and let p∗i ∈ {p1, . . . , pi−1} be the
point with minimum distance to pi.

Let Topt be a minimum Euclidean group Steiner tree for the instance and assume
a closed walk along this tree. See Figure 3.4 for an illustration. Choose an
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Algorithm 2 Diameter

Require: Sets S1, . . . , Sm ⊆ P contained in α-fat disjoint regions.
1: Sort the groups by increasing diameter δ1 ≤ δ2 ≤ . . . ≤ δm.
2: Choose a point p1 ∈ S1.
3: for all i = 2, . . . ,m do
4: Determine the point pi ∈ Si minimizing `(pi, {p1, . . . , pi−1}).
5: Construct a (1 + ε)-approximation T of a minimum Steiner tree on the set of

the m chosen points.
6: return the minimum of T and the output of Algorithm 1.

Figure 3.4: A walk along the tree

orientation of this walk. The rough procedure of the proof is to choose a number
c ∈ {1, . . . ,m} and to evaluate the length of the subtree of Topt to connect c
groups along the walk.

We define Ti, 1 ≤ i ≤ m to be the subtree of Topt that connects c sets starting at
group Si and following the oriented walk.

We chose c = dα(4/π+1)e. It holds 1 ≤ c ≤ m by assumption m−1 > 9.093α+1.
For i ∈ {1, . . . ,m} let Sh(i) be the set with smallest diameter among those c sets
connected by Ti. By Lemma 3.6 and the choice of c one can estimate the length
of Ti by

`(Ti) ≥ (
c

α
− 1)

πδh(i)

4
≥ δh(i). (3.1)

Since Ti starts at Si, δi and the sets are sorted by increasing diameter we have
1 ≤ h(i) ≤ i. We have to consider two cases.
If h(i) = i, that is Si has smallest diameter, then by (3.1) it holds

`(Ti) ≥ δi. (3.2)

If h(i) < i, the distance between any point in Si and ph(i) is at least `(pi, p
∗
i )

which was the minimum distance between pi and a point of {p1, . . . , pi−1} and pi
was chosen by the algorithm. Furthermore, the distance between any point of Si
and any point in Sh(i) is at least `(pi, p

∗
i )− δh(i). And therefore, since Ti connects

Si with Sh(i) we have `(Ti) ≥ `(pi, p
∗
i )− δh(i). Together with (3.1) we get

`(Ti) ≥ max{δh(i), `(pi, p
∗
i )− δh(i)} ≥ `(pi, p

∗
i )

2
. (3.3)
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3.3. CONCLUSION

We construct a tree for the set of points P ′ = {p1, . . . , pm} chosen by the algo-
rithm. Since the algorithm finds a Steiner tree approximating a minimum by a
factor of (1 + ε), the algorithm gets an approximation at least as good as our
construction.

We partition the set of points P ′ into two subsets fulfilling the two distinguished
cases. That is, let H be the set of indices i for which `(Ti) ≥ δi and H̄ =
{1, . . . ,m} \H the rest of the indices. Let TH be the (1 + ε)-approximation for
the points {pi | i ∈ H}. We get

`(TH) ≤ (1 + ε)(`(Topt) +
∑
i∈H

δi)
(3.2)

≤ (1 + ε)(`(Topt) +
∑
i∈H

`(Ti)). (3.4)

To get a graph connecting also the points with indices in H̄ we add for each i ∈ H̄
the shortest path between pi and p∗i to TH . By an inductive argument we can see
that the tree is connected because p1 ∈ H and for any i ∈ H̄ we know p∗i = pj
for some j < i. The total length of the so constructed graph, called Tapp is

`(Tapp) = `(TH) +
∑
i∈H̄

`(pi, p
∗
i )

(3.3),(3.4)

≤ (1 + ε)(`(Topt) +
∑
i∈H

`(Ti)) +
∑
i∈H̄

2`(Ti)

≤ (1 + ε)(`(Topt) + 2
m∑
i=1

`(Ti)).

If we take the sum over all Ti then every edge is counted 2(c− 1) times, therefore
we get 2(c− 1)`(Topt) =

∑m
i=1 `(Ti) and with this

`(Tapp) ≤ (1 + ε)(1 + 4(c− 1))`(Topt) < (1 + ε)(9.093α + 1)`(Topt).

3.3 Conclusion

In this chapter we gave a (1 + ε)(9.093α + 1)-approximation algorithm for the
Euclidean group Steiner tree problem with groups lying inside disjoint α-fat re-
gions. This was the first approximation algorithm for this problem. We applied
the idea of Elbassioni et al. [EFMS05] for the Euclidean group traveling salesman
problem to our problem. To this end, we have to consider the difference between
a traveling salesman tour and a Steiner tree. More precisely, a traveling salesman
tour fulfills the condition that each edge of such a tour is incident to exactly two
terminals. This condition does not hold for Steiner trees. A Euclidean Steiner
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tree can contain Steiner points of degree three. This has to be taken into account
for the bound of the tree length connecting a set of α-fat objects.

Elbassioni et al. [EFMS05] generalize their result for the Euclidean group trav-
eling salesman problem to higher dimensions. The same can be done for the
Euclidean group Steiner tree problem. Furthermore, they deal with intersecting
objects and give a O(1)-approximation algorithm for this problem. We think that
this result can be also adapted to Euclidean group Steiner trees.

It would be desirable to design an approximation algorithm with constant ratio
and independent of the parameter α.
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Chapter 4

Insights into the Structure of
Manhattan networks

Connecting a given set of points with minimum total length is a key problem in
VLSI design. In the routing process a set of components, e. g., transistors or gates,
have to be connected by wires. The wires are allowed to run in two perpendicular
directions. The wire length significantly affects the power consumption and the
time to spread the signal across the chip. Minimum Steiner trees minimize the
total wire length. In Chapter 2 and 3 we considered two different types of Steiner
trees which are also related to VLSI-design. Manhattan networks impose an
additional constraint. In contrast to Steiner trees they must contain a shortest
path between each pair of points. This reflects the requirement to transmit
signals between pairs of components on the chip fast. Manhattan networks are
also defined in the rectilinear metric where one is allowed to use only horizontal
and vertical lines.

Another application of Manhattan networks is described by Lam et al. [PLA02],
who use a variant of the Manhattan network problem to align gene sequences.
They ask only for certain node pairs to be connected by shortest paths and solve
the problem by a modification of an algorithm of Gudmundsson et al. [GLN01].

Manhattan networks fit in the concept of spanners. Given a set P of points in the
plane, a given metric, and a number t ∈ R with t ≥ 1, a network is a t-spanner
for P under the given metric, if for each pair of points p, q ∈ P , there exists
a (p, q)-path in the network of length at most t times the distance between p
and q under the appropriate norm. A Manhattan network is a 1-spanner in the
rectilinear metric. Spanners are commonly known and first introduced for the
Euclidean metric by Chew [Che89]. They are studied extensively, see for instance
the survey of Eppstein [Epp00] or the book of Narasimhan and Smid [NS07]. Note
that the Euclidean 1-spanner is the trivial complete graph.

It is unknown whether it is NP-hard to construct a minimum Manhattan net-
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work. Furthermore, it is not known whether a polynomial time approximation
scheme exists. Gudmundsson et al. [GLN01] introduced an 8-approximation al-
gorithm with running time O(n log n) and a 4-approximation algorithm running
in time O(n3). Kato et al. [KIA02] proposed a 2-approximation algorithm with
running time O(n3), however the proof of the correctness seems to be incom-
plete [BWWS06]. Chepoi et al. [CNV08] presented a 2-approximation algorithm
based on LP-rounding. Their LP consists of O(n3) variables and constraints. In
his PhD thesis Nouioua [Nou05] gave a 2-approximation algorithm that runs in
O(n log n). Based on the primal-dual method, in contrast to the approach of
Chepoi et al. the algorithm avoids to solve an LP explicitly; yet the proof relies
on LP/IP methods. The thesis is written in French and unpublished until now.
Benkert et al. [BWWS06] gave a 3-approximation algorithm with running time
O(n log n). Seibert and Unger [SU05] presented an approximation algorithm and
claimed that it yields a 1.5-approximation. As remarked by Chepoi et al. [CNV08]
both the description of the algorithm and the performance guarantee are some-
what incomplete and not fully understandable. We show by a counterexample
that an important intermediate step is incorrect, see Section 6.1.

Our aim is to present three new approximation algorithms in Chapter 6. Before
we give insights in the structure of Manhattan networks in the next section, we
define the problem and discuss first ideas to solve the problem. Afterwards in
Section 4.2 we give important definitions we require later on. Particularly, we de-
fine staircases and prove some characteristics of them. In Section 4.3 we point out
how to find the staircases of a given set of points. Afterwards, in Section 4.4 we
introduce a further important term, called staircase boundary. With this term at
hand, we give an overall scheme to compute Manhattan networks. In Section 4.5
we present an algorithm to compute staircase boundaries for staircases. Last, in
Section 4.6 we give some insights about staircases affecting each other.

4.1 Towards Approximation Algorithms

In this section we define the Manhattan network problem and discuss some easy
ideas to solve the Manhattan network problem.

A rectilinear path is a path consisting only of horizontal and vertical line segments.

Definition 4.1. For a set P ⊆ R2 of n points in the plane, a Manhattan network
on P contains a rectilinear shortest path between each pair of points in P . A
minimum Manhattan network on P is a Manhattan network of minimum total
length.

The Manhattan network problem is to find a minimum Manhattan network. See
Figure 4.1 (a) and (b) for examples of Manhattan networks in contrast to a
rectilinear Steiner tree in Figure 4.1 (c).
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(a) (b) (c)

Figure 4.1: (a) A Manhattan network. (b) A minimum Manhattan network. (c)
A rectilinear Steiner tree.

(a) (b)

Figure 4.2: (a) The Hanan grid. (b) A minimum Manhattan network.

Our goal is to find algorithms solving the Manhattan network problem. Since the
complexity status of the problem is still unknown we search after approximation
algorithms. A first heuristic to get a Manhattan network is to take the whole
Hanan grid. Recall the definition of the Hanan grid.

Definition 4.2. For a set P ⊆ R2 of points in the plane, the Hanan grid con-
tains the boundary of the smallest rectangle B containing all points of P and all
horizontal and vertical lines inside B touching a point of P .

See Figure 4.2 (a) for the Hanan grid of a set of points. The whole Hanan grid
of the example in Figure 4.2 has length Ω(n2). A minimum Manhattan network
for this instance has length O(n) (see Figure 4.2 (b)). Thus we get the following
lemma.

Lemma 4.3. For a set P ⊆ R2 of points in the plane, the Hanan grid is no
constant factor approximation for the Manhattan network problem.

The next idea to construct an approximation algorithm is that we do not select
the whole Hanan grid but choose a set of point pairs such that it suffices to
compute shortest paths for these point pairs to get a Manhattan network. We
denote by px the x- and by py the y-coordinate of a point p. Each pair of points
p and q spans a unique axis-parallel rectangle R(p, q) with p and q as corners,
the enclosing rectangle for p and q. See Figure 4.3. For a rectangle R(p, q) we
denote the points p and q as the points defining the rectangle R(p, q).

Call R(p, q) critical if it does not contain another point of P . To get shortest
paths between all pairs of points, it suffices to consider critical rectangles only: If
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p

q

Figure 4.3: A critical rectangle.

(a) (b) (c)

Figure 4.4: Taking the critical rectangles.

a rectangle R(p, q) contains a further point r ∈ P then we only need to consider
the two rectangles R(p, r) and R(r, q) and to identify shortest paths between p
and r and between r and q to get a shortest path between p and q. That is, to
compute a Manhattan network it suffices to compute shortest path between all
pairs of points forming a critical rectangle. Note that a minimum Manhattan
network needs to contain line segments of length at least |px − qx| and |py − qy|
in the corresponding dimension for a critical rectangle R(p, q).

This leads to a second idea to compute a Manhattan network: We take all
boundaries of critical rectangles. Obviously, we get a Manhattan network. See
Figure 4.4 (a) for the resulting network of the point set already considered in Fig-
ure 4.2. For this instance the heuristic delivers a network with length twice the
length of a minimum Manhattan network. But if we add just one more point we
get many more critical rectangles to be considered. See Figure 4.4 (b). The net-
work of the example has length Ω(n2). A minimum Manhattan network for this
instance is basically a binary tree and has length O(n log n) (see Figure 4.4 (c)).
Again we get no constant factor approximation.

Lemma 4.4. For a set P ⊆ R2 of points in the plane, the set of all bound-
aries of critical rectangles is no constant factor approximation for the minimum
Manhattan network problem.

Thus, one has to think about more sophisticated algorithms to solve the Man-
hattan network problem. Almost all approximation algorithms as well as our for
minimum Manhattan networks use staircases. Roughly speaking, a staircase is
a set of points or line segments having the shape of a staircase. We define them
in the next section. Afterwards we elaborate some important insights into the
Manhattan network problem which we use in the next chapters.
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Q1Q2

Q3 Q4

(a)

p

qr

s
(b)

Figure 4.5: (a) The quadrants of p. (b) Global and local neighborhood.

4.2 Definitions

In this section we give further definitions we require later on.

For a point p ∈ R2 we denote by Q1(p), . . . , Q4(p) the four open quadrants of p.
See also Figure 4.5 (a).

We call two points p, q ∈ P (w. l. o. g. px ≤ qx and py ≤ qy) x-neighboring if there
is no further point r with px < rx < qx and y-neighboring if there is no further
point r with py < ry < qy .

For two points of P having the same x- or y-coordinate certainly a minimum
Manhattan network as well as an approximation contains the direct line connect-
ing these two points. Generally, the problem becomes easier. Since we would have
to do some rather technically distinctions concerning this case, in the following
we assume the coordinates of all points to be different.

Sometimes, we consider local neighborhood. More precisely, for a point p ∈ P we
consider the x- or y-neighboring point in one of its quadrants. In Figure 4.5 (b),
the x-neighboring point of p in Q1(p) is the point q, whereas the globally x-
neighboring points of p are the points r and s. We observe global neighborhood
if not stated otherwise .

Almost all approximation algorithms as well as our for minimum Manhattan
networks use staircases, but the definition of a staircase is not standardized. To
get a clearer definition we define only one of four symmetric cases of a staircase
shown in Figure 4.6. We will define the staircase type as shown in Figure 4.6 (a).

Definition 4.5. Let P ⊆ R2 a set of points in the plane. For each point p ∈ P
the x-base point bx is the x-neighboring point in Q3(p). The y-base point by is
the y-neighboring point in Q3(p). Two points belong to the same staircase if they
have the same base points.

The definition of the x- and y-base points define an equivalence relationship
between the points of P . The definition of a staircase can then be seen as an
equivalence class.
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Figure 4.6: The four different cases of staircases.

bx
by

v1

vn
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Figure 4.7: Proof of Lemma 4.6.

We also consider sequences with only one point p as a staircase sequence if none
of the two base points of p belongs to a common staircase sequence with p. That
is, for a staircase sequence (v1, . . . , vn) with base points bx and by of type as in
Figure 4.6 (a), formally the point v2 is a base point for v1 of a staircase of type
as in Figure 4.6 (b). But they belong to the same staircase sequence with base
points bx and by and therefore do not form an own staircase. We denote the
points v1 and vn of a staircase sequence (v1, . . . , vn) as the outer points of the
sequence and the remaining points {v2, . . . , vn−1} as the inner points.

In the following we assume the sequence points (v1, . . . , vn) are sorted by increas-
ing x-coordinate. The next lemma displays the typical structure of a staircase as
depicted in Figure 4.6 (a).

Lemma 4.6. The staircase sequence (v1, . . . , vn) of a staircase forms a sequence
monotone increasing in x- and monotone decreasing in y-direction.

Proof. Assume to the contrary that the sequence (v1, . . . , vn) is not monotone.
That is, there exists a point vi, 1 ≤ i ≤ n, with viy > vi−1y

. See Figure 4.7. But
then vi−1 is one of the base points of vi contradicting that vi has the same base
points as vi−1.

To make the definition of a staircase clearer, we point out important properties
of staircases which clarify their structure. First, we define relevant regions of
staircases.

Definition 4.7. Let (v1, . . . , vn) be the sequence of a staircase with base points
bx and by. A sequence rectangle is a rectangle R(vi, vi+1), 1 ≤ i < n, defined by
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bx
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Figure 4.8: The dark shaded rectangles are the sequence rectangles. The remain-
ing rectangles are the base rectangles.
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Figure 4.9: Proof of Lemma 4.8.

two consecutive sequence points vi and vi+1. The x-base rectangle is the rectangle
R(v1, b

x) defined by the first sequence point and the x-base point bx. The y-base
rectangle is the rectangle R(vn, b

y) defined by the last sequence point and the
y-base point by.

See Figure 4.8 for a diagram of the rectangles. Note, that the base rectangles
overlap.

Now we will prove some properties of base and sequence rectangles.

Lemma 4.8. Each sequence point forms a critical rectangle with both its base
points.

Proof. Let (v1, . . . , vn) be a staircase sequence with base points bx and by. Assume
to the contrary that a sequence point vi, 1 ≤ i ≤ n, does not form a critical
rectangle with one of its base points. That is, the rectangle contains at least one
further point p ∈ P . Then, the x- as well as the y-neighboring point in Q3(vi) is
p and not as required bx and by, respectively. The staircase would split into at
least two staircases (see Figure 4.9).

We get the following corollary:

Corollary 4.9. Each base rectangle R(p, q) contains no further input point.

After proving that sequence points form critical rectangles with their base points,
we show that also sequence rectangles are critical.
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Figure 4.10: Proof of Lemma 4.10.
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Figure 4.11: The areas A1,A2,A3 and A4 of a substaircase are empty.

Lemma 4.10. For a staircase sequence (v1, . . . , vn) of a staircase, a sequence
rectangle R(vi, vi+1), 1 ≤ i < n, contains besides vi and vi+1 no further point of
P .

Proof. Assume to the contrary that a sequence rectangle R(vi, vi+1), 1 ≤ i < n,
contains a further point p ∈ P , not being part of the sequence. If R(vi, vi+1) con-
tains more points, let p be the point with smallest y-coordinate. See Figure 4.10.

By Lemma 4.8 the rectangles R(vi, b
x), R(vi, b

y), R(vi+1, b
x) and R(vi+1, b

y) do
not contain a further point of P . Since p have smallest y-coordinate among all
points in R(vi, vi+1) except vi+1, the x- and y-neighboring points in Q3(p) are bx

and by, respectively. Thus p also pertain to the staircase sequence (v1, . . . , vn) in
contradiction to the assumption.

By Lemma 4.8 and Lemma 4.10 the area A1 = R(v1, v2) ∪ R(v2, v3) ∪ . . . ∪
R(vn−1, vn)∪R(v2, c)∪R(v3, c)∪ . . .∪R(vn−1, c) drawn in Figure 4.11 (a) contains
besides the staircase points no further points of P . Also the areas A2 = {p ∈
R2 | px ≤ v1x and vny ≤ py ≤ v1y}, A3 = {p ∈ R2 | py ≤ vny and v1x ≤ px ≤ vnx}
and A4 = {p ∈ R2 | py ≤ vny , px ≤ v1x and (py ≥ byy ∨ px ≥ bxx)} are empty. If one
of the areas A2 or A3 contains a point p ∈ P , the staircase would split into at
least two staircases because the x- and y-neighboring point in the third quadrant
of at least one sequence point would be p and not bx and by (see Figure 4.11 (b)).
If a point p ∈ P lies in the area A4, either bx or by would not be base point but
p (see Figure 4.11 (c)).
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p

Figure 4.12: Proof of Lemma 4.11.

As depicted in Figure 4.6 there are four different types of staircases. However,
a point cannot belong to four different staircases where each staircase sequence
contains at least three points as we will prove by the following lemma.

Lemma 4.11. Each point p ∈ P belongs to at most three different staircase
sequences each of them containing at least three points. If a point p belongs to
three different staircase sequences then p is outer point of two them.

Proof. Let p be a point of P . Trivially p can belong to at most one staircase of
the same type because we identify for each staircase type exactly one x- and one
y-base point. Assume a point p ∈ P belongs to four different staircases. That
is, p is part of two staircases S1 and S2 of type as in Figure 4.6 (a) and (c),
respectively. Consider the two other staircase types (Figure 4.6 (b) and (d)) for
which the sequence points proceed from bottom-left to up-right. First assume p
is part of such a staircase sequence with base points lying top-left of the sequence
points (Figure 4.6 (d)). See Figure 4.12. The point p cannot be an inner point
of the sequences of S1 and S2 because then the top-left neighboring sequence
point of p would be one of the top-left base points and thus does not form a
staircase with sequence containing at least three points. Last p is also part of
a staircase with base point lying bottom-right. By a similar argument as above
the bottom-right neighboring sequence point of p is one of the two base points
and thus these two points do not form a fourth staircase. Thus, we get that a
point p can belong to at most three staircase sequences, each of them containing
at least three points. If p belongs to three staircases (each of them containing at
least three points), p is outer point of at least two sequences of them.

After introducing the notion of staircases and pointing out some characteristics
of them, in the next section we show how we can get all staircases.

4.3 Finding Staircases

In this section we describe how to find the staircases for a given set P of points
in the plane. Our method is similar to that of Gudmundsson et al. [GLN01],
but we use a slightly different definition of staircases. Our definition differs from
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b1

b2

(a)

b1
b2
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Figure 4.13: (a) Two staircases according to our definition. (b) Staircase accord-
ing to Gudmundsson et al. [GLN01]

Gudmundsson’s et al. definition that the points in Figure 4.13 according to our
definition constitute two staircases because the point b1 splits the sequence up
into two sequences whereas Gudmundsson treat the sequence to belong only to
one staircase with base point b2.

As mentioned earlier there are four symmetric cases of staircases as shown in
Figure 4.6. We describe how to find them only for the case (a). The other cases
can be handled similar.

To find the staircases, for each point p ∈ P we identify the x- and y-neighboring
point in Q3(p), respectively. These points are by the definition of a staircase the
two base points of p. For the two base points we keep the sequence point p in
mind. After considering each point p ∈ P , we look out the perspective of the
base points. For two points {bx, by} the points kept in mind are the sequence
points of the staircase with base points bx and by. See Algorithm 3 for a detailed
description.

Algorithm 3 Finding Staircases

Require: A set P ⊆ R2 of points.
1: Set BP = ∅.
2: for each p ∈ P considered from left to right do
3: Let bx ∈ P be the x-neighboring point in Q3(p).
4: Let by ∈ P be the y-neighboring point in Q3(p).
5: Set SC({bx, by}) = SC({bx, by}) ∪ {p}.
6: Set BP = BP ∪ {bx, by}.

return BP and SC({bx, by}) for each point pair {bx, by} ∈ BP .

It is obvious that the algorithm finds all staircases because for each pair of
base points {bx, by} ∈ BP the set SC({bx, by}) contains all appropriate sequence
points.
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The number of staircases for a set of n points can be upper bounded by O(n)
because each point can belong to at most 4 different staircase sequences and can
also be base point to at most 4 different staircases. Thus, since a sweep over a
point set requires sorting, we get the following running time for the algorithm:

Lemma 4.12. The running time of Algorithm 3 Finding Staircases for a set
P of n points is O(n log n).

Without sorting we achieve a linear running time.

Corollary 4.13. The running time of Algorithm 3 Finding Staircases for a
set P of n sorted points is O(n).

4.4 Splitting into Staircases

Our algorithms for general Manhattan network problems which we will present
in Chapter 6 act with akin strategies. They partition the global Manhattan
network problem into disjoint local Manhattan network problems for staircases
by inserting line segments which separate the staircases of each other. This
general approach to partition the problem into a set of Manhattan network
problems for staircases is used by all combinatorial approaches (see for exam-
ple [BWWS06], [GLN01] or [KIA02]). For this, we compute a set of line segments
containing a so-called (extended) staircase boundary for each staircase. These
staircase boundaries partition our problem into a set of subproblems asking after
Manhattan networks for staircases. Given such a partition we can appoint the
minimum Manhattan network for each staircase in polynomial time as we show
in Section 5.1. A 2-approximation of the Manhattan network problem for stair-
cases is introduced in Section 5.2. Our algorithms presented in Chapter 6 guess
in different ways the splitting into such local easy solvable subproblems.

In this section we define the notion of an (extended) staircase boundary and
prove that it suffices to compute Manhattan networks for the staircases (given
the boundaries) to get a Manhattan network for the whole instance. This provides
a basis for our algorithms to compute a Manhattan network for a set of points
in the plane which we present in Chapter 6.

Definition 4.14. A staircase boundary for a sequence (v1, . . . , vn) of a staircase
with base points bx and by is a set of line segments defined in the following way:
For any consecutive sequence points vi and vi+1, 1 ≤ i < n, the staircase boundary
contains exactly one shortest (vi, vi+1)-path. Furthermore, the staircase boundary
contains exactly one shortest (v1, b

x)- and one shortest (vn, b
y)-path.

The boundary of a staircase is not unique. See Figure 4.14 for different examples
of staircase boundaries for the same point set.

57



CHAPTER 4. STRUCTURE OF MANHATTAN NETWORKS

bx
by

v1

vn
c

(a)
bx

by

v1

vnc

(b)
bx

by

v1

vn
c

(c)

Figure 4.14: Different staircase boundaries for the same staircase.
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Figure 4.15: (a) Extended base rectangles. (b) Extended staircase boundary

Note that the shortest paths required for a staircase boundary lie inside the
sequence and base rectangles. More precisely, for each sequence and each base
rectangle exactly one shortest path between the defining points of the rectangle
is required.

As used later, we want to define a variant of a staircase boundary which we call
extended staircase boundary. The only difference in the definition for an extended
staircase boundary is that we do not require a shortest path between the outer
points and the base points. Nevertheless, there has to be a path lying in a certain
area. To define this area we expand the base rectangles to so-called extended base
rectangles.

Definition 4.15. Let (v1, . . . , vn) be a staircase sequence with base points bx

and by. Let ry be the y-neighboring point in Q2(v1). If there exist no points in
Q2(v1), let ry = v1. Let rx be the x-neighboring point in Q4(vn). If there exist
no points in Q4(vn), let rx = vn. The extended x-base rectangle is the rectangle
R((v1x , r

y
y), b

x) defined by the point (v1x , r
y
y) and the x-base point bx. The extended

y-base rectangle is the rectangle R((rxx, vny), by) defined by the y-base point by and
the point (rxx, vny).

See Figure 4.15 (a) for an example of extended base rectangles. Now, we can
define the extended staircase boundary.

Definition 4.16. An extended staircase boundary for a sequence (v1, . . . , vn) of a
staircase with base points bx and by is a set of line segments defined in the following
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way: For any consecutive sequence points vi and vi+1, 1 ≤ i < n, the extended
staircase boundary contains exactly one shortest (vi, vi+1)-path. Furthermore, the
extended staircase boundary contains exactly one (v1, b

x)-path inside the extended
x-base rectangle and one (vn, b

y)-path inside the extended y-base rectangle.

See Figure 4.15 (b) for an example of an extended staircase boundary.

Since the region surrounded by the staircase boundary plays an important role,
we want to name it by the following definition.

Definition 4.17. Given a staircase S and an (extended) staircase boundary B.
The (extended) staircase area of S, w. l. o. g. B, is the interior of B.

If we choose the staircase boundary such that the staircase area is smallest, we
call the area smallest staircase area. Note that the smallest staircase area of a
staircase is unique. If we orient the (v1, b

x)-path from v1 to bx and the (vn, b
y)-

path from vn to by, the first intersection point of these two paths is called cross
point c (see also Figure 4.14).

A Manhattan network requires for each point pair a shortest path between them.
Thus, each minimum Manhattan network contains for each staircase a staircase
boundary. Up to now we said how to define a boundary for a single staircase. Now
we seek out the dependencies between the boundaries of different staircases. More
precisely, a line segment can belong to two staircase boundaries. This occurs if
sequence and/or base rectangles overlap. First, we point out that shortest paths
required by a Manhattan network between the sequence and the base points run
only through the smallest staircase area and the base rectangles.

Lemma 4.18. Let (v1, . . . , vn) be the sequence of a staircase with base points bx

and by. For each vi, 1 ≤ i ≤ n, the shortest paths between vi and the base points
bx and by run solely through the region defined by the smallest staircase area and
the base rectangles.

Proof. Any shortest path between a sequence point vi, 1 ≤ i ≤ n, and one of
the base points bx and by lies completely inside the critical rectangles defined by
vi, b

x and by, respectively. The union of all these critical rectangles is exactly the
region defined by the smallest staircase area and the base rectangles.

Now, it is easy to see that a staircase boundary separates the Manhattan network
problem for the staircase from the rest of the problem.

Lemma 4.19. Let B be the staircase boundary or extended staircase boundary of
a staircase with sequence (v1, . . . , vn) and base points bx and by. The minimum
Manhattan network for the staircase given B lies completely inside the staircase
area defined by B.
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Figure 4.16: Proof of Lemma 4.19.
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Figure 4.17: Proof of Lemma 4.20.

Proof. By Lemma 4.18 we must consider only the shortest paths running through
the (extended) base rectangles. More precisely, we have to argue that no shortest
path in the base rectangles takes course outside the staircase area. Assume there
exists such a path from a point vi, 1 ≤ i ≤ n, with parts of the path lying outside
the staircase area. See Figure 4.16. However, this path crosses the boundary
segments at a point p, that is the path crosses the boundary segment either
between v1 and bx or between vn and by. Furthermore this intersection appear
before the cross point c. But then we also have a shortest path to bx and by using
the shortest (vi, p)-, (p, c)-, (c, bx)- and (c, by)-path, respectively. We get a shorter
Manhattan network if we delete all segments running outside the staircase area,
in contrast to the minimality.

Thus, if we search for a Manhattan network given the boundary segments of the
staircases we have to consider for each staircase only the staircase area to achieve
shortest paths. Now, we show that staircase areas do not overlap. First, we prove
that smallest staircase areas are disjoint.

Lemma 4.20. For a set P ⊆ R2 of points in the plane, the interiors of the
smallest staircase areas are disjoint.

Proof. W. l. o. g. assume (v1, . . . , vn) be a staircase sequence belonging to a stair-
case as in Figure 4.17. As mentioned earlier the areas A2 and A3 are empty.
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Assume the smallest staircase area Ã1 (which is somewhat smaller than A1)
overlaps with another smallest staircase area of a staircase S ′. There are four
cases of the possible type of S ′ (see Figure 4.6). It is immediately reasonable
that S ′ cannot be of the same type as the staircase S because then an overlap-
ping cannot occur. Thus, consider the remaining three cases. For this purpose
see Figure 4.17. We see that overlapping forces that at least one of the grey
shaded areas A2 and A3 of the two staircases or the area Ã1 which have to be
empty, contains points of P . Thus, the areas cannot overlap.

By Lemma 4.18 and Lemma 4.20 the only regions where paths between sequence
and base points of different staircases can lie are the base and sequence rectan-
gles. However, if we add line segments such that we achieve for each staircase
a boundary we have associated each region of such a rectangle to exactly one
staircase area.

Theorem 4.21. Let P ⊆ R2 be a set of points in the plane. If B is a set of
line segments such that for each staircase, B contains a staircase boundary or
extended staircase boundary then each area surrounded by segments of B belong
to exactly one staircase area.

Proof. By Lemma 4.18 the Manhattan network of a staircase lies inside the small-
est area and the (extended) base rectangles. By Lemma 4.19 since B contains
an (extended) staircase boundary for each staircase the Manhattan network lies
completely inside the staircase area. Even though a sequence or base rectangle
can belong to two staircase areas if we insert a boundary we get a demarcation
into two disjoint regions belonging to different staircase areas.

After showing that Manhattan networks of staircases are independently, we now
show that it suffices to compute shortest paths between each point pair which
belongs to the same staircase to get a Manhattan network for the complete in-
stance.

Theorem 4.22. Let P ⊆ R2 be a set of points in the plane and let S be the set
of staircases of P . A network containing Manhattan networks for each staircase
of S is a Manhattan network of P .

Proof. Let MN be a network containing a Manhattan network for each staircase
in S and let p, q ∈ P two points. We show, that there exists a shortest path
in MN between p and q proving that MN is a Manhattan network of P . We
distinguish two cases.

Case 1: The points p and q belong to the same staircase.
Since MN contains a Manhattan network for each staircase in S, there exists a
shortest path between p and q in MN .
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Figure 4.18: Proof of Theorem 4.22.

Case 2: The points p and q do not belong to the same staircase.
W. l. o. g. assume px ≤ qx and py ≤ qy. See also Figure 4.18. Consider the
staircase of the type depicted in Figure 4.6 (c) with p as a sequence point. Let bxp
be the x-base point of this staircase and byp the y-base point. Further on, consider
the staircase of the type depicted in Figure 4.6 (a) with q as a sequence point.
Analogously, let bxq be the x-base point of this staircase and byp the y-base point.
There are shortest paths in the Manhattan networks for staircases between the
outer points of the staircases and their base points. That is, the only missing parts
of a shortest (p, q)-path are shortest paths between p and q and the appropriate
cross points which are also contained in Manhattan networks for staircases. See
also Figure 4.18 with cross points c and c′.

Altogether this proves the theorem.

Now we can specify the general strategy of our algorithms for the Manhattan net-
work problem. Given a set of points in the plane, in a first phase we partition the
set into the staircases and fix for each staircase the (extended) staircase bound-
ary. After that, in a second phase we compute for each staircase a Manhattan
network. See Algorithm 4 for a detailed description.

Algorithm 4 Manhattan Network

Require: A set P ⊆ R2 of points.
Phase I:
1: Partition the problem into staircases and fix the (extended) staircase bound-

aries.
Phase II:
2: for each staircase S do
3: Compute a Manhattan network for S given the staircase boundary.

4: return the computed networks including the staircase boundaries.

By Theorem 4.21 and Theorem 4.22 the algorithm outputs a Manhattan network.

Theorem 4.23. For a set P ⊆ R2 of points Algorithm 4 Manhattan Net-
work computes a Manhattan network for P .
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In Section 5.1 we show how to compute a minimum Manhattan network for
a staircase in polynomial time. As a consequence, if we would know the right
boundary for each staircase (i. e., the boundary chosen by a minimum Manhattan
network), we could compute a minimum Manhattan network for the whole in-
stance in polynomial time. Thus, the crucial point to find a minimum Manhattan
network is to fix the right staircase boundaries. We get different approximation
algorithms by varying methods to fix the staircase boundaries and to compute the
Manhattan networks for the staircases. In the next chapter we will go into detail
how to compute Manhattan networks for staircases. Afterwards, in Chapter 6 we
present our different approximation algorithms for the Manhattan network prob-
lem. But before, we want to introduce a method to compute staircase boundaries
which we use in Chapter 6 for all but one algorithm.

4.5 Computing Boundaries

There are several ways to partition the problem into staircases by fixing the
boundaries. In this section we present a method which uses at most the length
of a minimum Manhattan network inside the sequence and base rectangles. This
construction is used by the algorithms introduced in Section 6.4 and 6.5. In
Section 6.3 we use another kind of boundaries which consume at most three
times the length of a minimum Manhattan network inside the sequence and base
rectangles.

The choice of the staircase boundaries is the crucial point to get an optimal
solution for a Manhattan network problem. See Figure 4.19 for an instance
with two different chosen staircase boundaries. In this example there are two
staircases, first the one with sequence (p1, . . . , p7) and base point b and second
the one with sequence (q1, . . . , q5) and base point p4. We see that the choice of the
boundary for the first staircase affects the staircase area of the second staircase.
In Figure 4.19 (b) we see that the two boundaries share segments. Generally, if
we want to try all possibilities this leads to an exponential algorithm. To get a
polynomial algorithm we have to guess a boundary. Our algorithm computes for
each staircase a staircase boundary by considering neighboring points.

Obviously for two points p, q ∈ P forming a critical rectangle a minimum Man-
hattan network contains line segments of length at least |px− qx| and |py − qy| in
the respective dimension inside R(p, q). Segments inside R(p, q) of length |px−qx|
covering all x-coordinates are denoted as x-connection. Segments inside R(p, q)
of length |py − qy| covering all y-coordinates are denoted as y-connection. See
also Figure 4.20 (a) and (b).

By a line segment l we denote a horizontal or vertical line which is touched by a
perpendicular line only at the endpoints of l. That is, a line is partitioned into
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Figure 4.19: Nested staircases.
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Figure 4.20: (a) An x-connection between the points p and q. (b) A y-connection
between the points p and q. (b) Line and line segment.

several line segments if a perpendicular line segment touch or cross the line. See
Figure 4.20 (c).

For an illustration of the following two definitions see again Figure 4.20 (a)
and (b).

Definition 4.24. An x-covering H of a set P ⊆ R2 of points in the plane is a
set of x-connections for the points of P which we obtain in the following manner:

1. Let H = ∅.
2. Sweep over the points of P bottom-up. Let p be the current point and q be

the previously processed point (i. e., p is the upper y-neighbor of q).

3. Add to H the portion of [(qx, py), p] that is complementary to H∩[q, (px, qy)].
(See Figure 4.20 (a).)

Similarly, we define a y-covering :

Definition 4.25. A y-covering V of a set P ⊆ R2 of points in the plane is a set
of y-connections for the points of P which we obtain in the following manner:

1. Set V = ∅.
2. Sweep over the points of P from left to right. Let p be the current point and

q be the previously processed point (i. e., p is the right x-neighbor of q).
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3. Add to V the portion of [(px, qy), p] that is complementary to H∩[q, (qx, py)].
(See Figure 4.20 (b).)

To get the one’s best information about the required length of an x- and y-
covering we define the area defined by neighboring points.

Definition 4.26. The neighboring point area N of a set P ⊆ R2 of points in
the plane is the union of all rectangles defined by neighboring points. That is,

N =
⋃

p,q∈P x- or y-neighboring

R(p, q).

The total length of H and V is required in any Manhattan network.

Lemma 4.27. The total length of H ∪ V is at most the length of a minimum
Manhattan network inside the neighboring point area N .

Proof. Consider an x-covering H. We sweep over the points of P from bottom
to top. If for two consecutive points there is not yet an x-connection inserted
to the x-covering, then we insert it. We know that in any case in the minimum
Manhattan network there must be a shortest path and therefore an x-connection
between these two points. So we can insert an x-connection to the x-covering
without inserting a segment of length larger than a segment between these points
in the minimum Manhattan network. Since the two points are y-neighboring the
considered rectangle is inside the neighboring point area N .

The same holds for the y-covering in comparison to the vertical segments of a
minimum Manhattan network.

Our algorithm computes first an x- and y-covering H and V . See Algorithm 5
Compute Boundaries for a detailed description. Some of the lines of H ∪ V
inside critical rectangles do not yet contribute to shortest paths of neighboring
points. One end of such a line is neither a point of P nor incident to a per-
pendicular line. We shift these lines inside the appropriate rectangles to get a
connection of the two defining points. See Steps 2 through 7. See Figure 4.21
and 4.22 for an example of such a covering and moving step. After these steps
we have shortest paths between x- or y-neighboring points except for very special
configurations which we handle in step 9.

To analyze the algorithm it is essential to keep in mind the next two facts.

Fact 4.28. For two x-neighboring points p, q ∈ P the set V constructed by step 1
of Algorithm 5 Compute Boundaries contains a y-connection between p and
q comprising of at most two lines. For two y-neighboring points p, q ∈ P the
set H constructed by step 1 of Algorithm 5 Compute Boundaries contains an
x-connection between p and q comprising of at most two lines.
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(a) (b) (c)

Figure 4.21: (a) Segments inserted by the x-covering. (b) Segments inserted by
the y-covering. (c) Segments of the x- and y-covering together.

Figure 4.22: Network after the moving steps.

By Definition 4.24 of an x-covering at least one endpoint of a line segment of H
is a point p of P . See Figure 4.23.

Fact 4.29. Let [p, p′] be a line in H with p ∈ P and p′ /∈ P . Then p′ has an
x-coordinate of a point below p′ either y-neighboring to p or y-neighboring to a
y-neighboring point of p.

In almost the same matter, if an endpoint p′ of a line segment of V is not in P and
the other endpoint is a point p ∈ P then the point p′ has y-coordinate of a point
on the left of p either x-neighboring to p or x-neighboring to an x-neighboring
point of p.

Our aim is to prove that the algorithm computes for each staircase an (extended)
staircase boundary. For this purpose we consider line segments inserted by step 1
together with the segments inserted by step 9 and show that by these line seg-
ments necessary shortest paths are established.

Note that for two x-neighboring points p and q we add vertical line segments and
for two y-neighboring points we add horizontal line segments. Nevertheless, in
the rectangle defined by two x-neighboring points lies also an x-connection and
in the rectangle defined by y-neighboring points lies also a y-connection.

Lemma 4.30. Let MN be the set of line segments computed by Algorithm 5
Compute Boundaries. For two x-neighboring points p, q ∈ P the set MN
contains at least one x-connection inside R(p, q). Each x-connection in R(p, q)
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Algorithm 5 Compute Boundaries

Require: A set P ⊆ R2 of points.
1: Let H be an x-covering and V be a y-covering.
2: for each line segment lh ∈ H considered from top to bottom do
3: if one endpoint of lh is neither a point of P nor a point of a line segment

of V then
4: Move lh downwards until it hits either a point of P or an endpoint of

a line segment of V .

5: for each line segment lv ∈ V considered from right to left do
6: if one endpoint of lv is neither a point of P nor a point of a line segment

of H then
7: Move lv to the left until it hits either a point of P or an endpoint of a

line segment of H.

8: Set MN = H ∪ V .
9: for all x- or y-neighboring points p, q ∈ P do

10: if there is no shortest (p, q)-path in MN then
11: Add to MN the shortest line segment needed to establish a shortest

(p, q)-path.

12: return MN .

p p′

(a)

p p′

(b)

Figure 4.23: An example for Fact 4.29.

consists of exactly one segment of length |px − qx|. For two y-neighboring points
p, q ∈ P the set MN contains at least one y-connection inside R(p, q). Each
y-connection in R(p, q) consists of exactly one segment of length |py − qy|.

Proof. W. l. o. g. let p, q ∈ P are x-neighboring and let px ≤ qx. There exists at
least one x-connection inside R(p, q) because either p and q are also y-neighboring
or there exists at least one point r with py < ry < qy establishing an x-connection.
Assume there is an x-connection for two y-neighboring points p′, q′ ∈ P with
R(p′, q′) intersecting the rectangle R(p, q) and consisting of two line segments
inside R(p, q). Then by Fact 4.29 there exists a point r with px < rx < qx. But
then p and q would not be x-neighboring.

Now we prove if the y-connection for two x-neighboring points p, q ∈ P in R(p, q)
consists of two line segments then p and q are connected by a shortest path after
step 7.
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Figure 4.24: Proof of Lemma 4.31.

Lemma 4.31. Let MN be the set of line segments after step 8 of Algorithm 5
Compute Boundaries. If for two x-neighboring points p, q ∈ P the y-connec-
tion consists of two line segments or for two y-neighboring points p, q ∈ P the
x-connection consists of two line segments then MN contains a shortest (p, q)-
path.

Proof. W. l. o. g. let p, q ∈ P are x-neighboring and let px ≤ qx and py ≤ qy.
Assume p and q are not connected by a shortest path. Let p′ be the other endpoint
of the line segment incident to p of the y-connection and q′ the endpoint of the
line segment incident to q. See Figure 4.24. By Fact 4.29 there exists a point r
in Q2(p) with y-coordinate ry = p′y = q′y. This point r induces an x-connection
inside a rectangle R(r, s) for a point s either being q or a point s ∈ Q4(q). By
Lemma 4.30 the x-connection consists inside R(p, q) of exactly one line segment.
Furthermore the x-connection inside R(p, q) lies at the height of s. Either we
move this line segment down to p′ or the line segment [(qx, sy), q

′] to the left to
p′ to establish a shortest (p, q)-path. This moving is done through steps 2 to 7 of
Algorithm 5.

With this at hand we now show that we get the desired extended staircase bound-
aries. First we prove that two neighboring sequence points are connected by a
shortest path.

Lemma 4.32. Let MN be the set of line segments computed by Algorithm 5
Compute Boundaries. For each staircase sequence the set of line segments in
MN contains a shortest path for consecutive staircase sequence points.

Proof. Let (v1, . . . , vn) be a staircase sequence. Let vi and vi+1, 1 ≤ i < n, be
two consecutive staircase sequence points with vix ≤ vi+1x

and viy ≥ vi+1y
with

base points bottom-left (of type as in Figure 4.6 (a)). If vi and vi+1 are x- or
y-neighboring then they are connected by a shortest path. Thus, assume vi and
vi+1 are neither x- nor y-neighboring. Let vx be the x-neighboring point of vi+1

on the left of vi+1 and vy be the y-neighboring point of vi below vi. Since vi and
vi+1 belong to the same staircase, vx lies above vi and vy on the right of vi+1. See
Figure 4.25. By the neighborhood of vx and vi+1 there is a shortest (vx, vi+1)-
and by the neighborhood of vy and vi a shortest (vy, vi)-path. Together these
paths establish a shortest (vi, vi+1)-path.

With the last two lemmata at hand we can finish our statement that the set MN
contains an extended staircase boundary for each staircase.
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Figure 4.25: Proof of Lemma 4.32.
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Figure 4.26: Proof of Theorem 4.33.

Theorem 4.33. Let MN be the set of line segments computed by Algorithm 5
Compute Boundaries. For a staircase with base points bx and by the set MN
contains paths from bx and by to the outer points of the staircase sequence in the
appropriate extended base rectangles.

Proof. Let (v1, . . . , vn) be a staircase sequence with base points bx and by. If
bx and v1 are x-neighboring then they are connected by a shortest path. Thus
assume bx and v1 are not x-neighboring. Let p be the point x-neighboring to
bx on the right of bx. See Figure 4.26. Since p is x-neighboring to bx we know
that there exists a shortest (p, bx)-path. Consider the point q y-neighboring to v1

above v1 We distinguish two cases. First assume q lies to the left of v1. Since v1

is the outer point of the staircase and p is x-neighboring to bx the point q lies on
the left of bx. Again, there exists a shortest (q, v1)-path due to the neighborhood
of q and v1. Together with the shortest (p, bx)-path we get a (v1, b

x)-path in the
extended x-base rectangle. See Figure 4.26 (a).

Now assume the point q lies to the right of v1. Since p does not belong to
the staircase sequence (v1, . . . , vn) there is a point above v1 and to the left of
bx. Let r be the one with smallest y-coordinate. The point r is y-neighboring
below to a point s on the right of v1 (s can be q or a point above q). There
exists a shortest (r, s)-path. Since bx is x-neighboring to v1 in Q3(v1) but is not
globally x-neighboring the point t x-neighboring to v1 on the left of v1 lies above
r. Again there exists a shortest (v1, t)-path. Together with the shortest (p, bx)-
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Figure 4.27: Proof of Theorem 4.35.

and (r, s)-path we get a (v1, b
x)-path inside the extended x-base rectangle. See

Figure 4.26 (b).

In almost the same manner we can prove that we get a (vn, b
y)-path inside the

extended y-base rectangle. These two paths together establish also a (v1, b
y)- and

a (vn, b
x)-path closing the proof.

We can conclude with the following corollary:

Corollary 4.34. The set MN of line segments computed by Algorithm 5 Com-
pute Boundaries contains for each staircase an extended staircase boundary.

Now we prove that we use at most the length of a minimum Manhattan network
inside the neighboring point area.

Theorem 4.35. Let MN be the set of line segments computed by Algorithm 5
Compute Boundaries. The total length of the line segments is at most the
length of a minimum Manhattan network inside the neighboring point area N .

Proof. By Lemma 4.27, the length of the x- and y-coverings H and V have length
at most the length of a minimum Manhattan network insideN . Processing steps 2
to 7 does not increase the length of the segments in MN . Now, we will consider
the line segments added by step 9. W. l. o. g. let p, q ∈ P are x-neighboring and
let px ≤ qx and py ≤ qy. See for the following explanation Figure 4.27. Assume
after step 7 p and q are not connected by a shortest path. By Lemma 4.31
the y-connection consists of one segment lv. The segment lv is either incident
to p or to q. W. l. o. g. let lv incident to p. By Lemma 4.30 there exists at
least one x-connection inside R(p, q) and each x-connection consists of exact one
line segment running completely through R(p, q). The topmost x-connection
lies below q (otherwise we have already a shortest (p, q)-path). Furthermore, lv
ends at a horizontal line segment lh of H (otherwise we could move the part of lv
above the topmost x-connection to establish a shortest (p, q)-path). The presence
of the segment lh indicates that there exists a point r ∈ P in Q2(p)∩Q2(q). The
segments lh and lv are part of a shortest (p, r)-path. For this path it is necessary
that lv is incident to p and cannot be moved to the right to the width of q. Now
consider an x-connection lx inside R(p, q). The line segment lx is caused by a
point s ∈ P in Q4(q) and is (possibly together with a segment of lv or other
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segments) necessary for a shortest (p, s)-path. The segment lx cannot be moved
upwards (to the height of q) to establish a shortest (p, q)-path because we would
lose the shortest (p, s)-path. We see that with the given x- and y-connections of
the x- and y-coverings H and V we cannot get simultaneous shortest (p, r)-, (p, s)-
and (p, q)-paths (see again Figure 4.27). Thus, if we add to MN the shortest line
segment to achieve a shortest (p, q)-path the length of MN is already at most
the length of the line segments of a minimum Manhattan network to connect
points being x- or y-neighboring (that is, at most the length of line segments
inside N ).

Thus, Algorithm 5 Compute Boundaries fulfills step 1 of Algorithm 4 Man-
hattan Network. Last we want to mention the running time of the algorithm.

Lemma 4.36. The running time of Algorithm 5 Compute Boundaries for a
set P of n points is O(n log n).

Proof. First of all we must sort the points of P . This can be done in time
O(n log n). The sweeps to get x- and y-coverings can be transformed in O(n).
Just as the sweeps used by steps 2 through 7. By Lemma 4.12 we can compute
with Algorithm 3 Finding Staircases all staircases in time O(n log n). This
yields the total running time for the algorithm of O(n log n).

Together with Corollary 4.13 the following corollary is an easy observation.

Corollary 4.37. The running time of Algorithm 5 Compute Boundaries for
a set P of n sorted points is O(n).

4.6 More Insights

In this section we present further insights into the Manhattan network problem.
We want to sensitize the reader to the dependencies of the staircase boundaries
of different staircases. If we fix the staircase boundary of each staircase, we can
answer the Manhattan network problem in polynomial time as we will present in
Section 5.1. That is, the crucial point to get a minimum Manhattan network is
to choose the right staircase boundaries. To approach the problem we will give
a short overview about possible intersections of sequence and base rectangles of
different staircases which are the areas where the staircase boundaries lie.

See Figure 4.28 (a) for an example of overlapping sequence rectangles. (In all
examples we depict the sequence and base rectangles by dashed lines.) We get
two staircases, the first with sequence (v1, . . . , v6) and base points bx and by and
the second with sequence (v′1, v4, . . . , v6) and base point b. The sequence rectangle
R(v3, v4) overlaps with the sequence rectangle R(v′1, v4) without being identical.
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Figure 4.28: Overlapping sequence rectangles.
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Figure 4.29: Base rectangles with the same boundary.

But there are also cases where the overlapping rectangles are identical. See Fig-
ure 4.28 (b) for an example. The sequence (v1, . . . , v6) belongs to two staircases,
the first with base points bx and by and the second with base point b.

In Figure 4.29 we see a typical situation for the intersection of two base rectangles.
We have to staircase sequences ((v1, . . . , v6) and (v′1, . . . v

′
4)) both with the same

base point b. The base rectangles R(v1, b) and R(v′1, b) overlap. In Figure 4.29
(b) and (c) we depict possible boundaries inside the base rectangles.

In Figure 4.30 and 4.31 we see an example of the possible complex overlappings
of base rectangles. We depict in Figure 4.30 only the base rectangles for x-
base points and in Figure 4.31 the base rectangles for y-base points of the same
instance.

Last in Figure 4.32 we depict an example with overlapping sequence and base
rectangles. In the example there are two staircases. First the one with sequence
(v1, . . . , v5) and base point b and second the one with sequence (v′1, . . . , v

′
4) and

base point v3. The sequence rectangle R(v2, v3) overlaps with the base rectangle
R(v′1, v3) and the sequence rectangle R(v3, v4) with the base rectangle R(v′4, v3).
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Figure 4.30: Overlapping x-base rectangles.

4.7 Conclusion

In this chapter we introduced the Manhattan network problem which asks after
a rectilinear network containing a shortest rectilinear path between each pair of
terminals. This problem can be seen as a variant or extension of the Steiner
tree problem. We introduced the notion of staircases which play an important
role in solving the Manhattan network problem. More precisely, we can partition
the Manhattan network problem into a set of Manhattan network problems for
staircases. We pointed out how to find the staircases and presented an algorithm
computing a Manhattan network on the base of staircases. We presented an easy
sweep line approach to get a set of line segments containing a boundary for each
staircase. Furthermore, we bound the length of this set of line segments by the
length of a Manhattan network inside the area defined by x-or y-neighboring
points. These definitions and results are used in the next chapters. Last we
gave a few examples of overlapping base and sequence rectangles to point out the
dependencies of the staircases and their boundaries among each other.
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Figure 4.31: Overlapping y-base rectangles.
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Figure 4.32: Base and sequence rectangles with the same boundary.
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Chapter 5

Manhattan Networks of
Staircases

In this chapter we study staircases. In contrast to the general Manhattan network
problem we can find minimum Manhattan networks for staircases in polynomial
time.

We concern with the question getting Manhattan networks for input points form-
ing a staircase. We additionally get the boundary of the staircase as input. In
Section 5.1 we present a dynamic programming approach to compute a minimum
Manhattan network in time O(n3). Afterwards, we state a 2-approximation for
the problem in Section 5.2.

Staircases are used by almost all approximation algorithms for the minimum
Manhattan network problem. They were first used for Manhattan networks by
Gudmundsson et al. [GLN01] to achieve an 8- and 4-approximation. They prove
that given a staircase boundary a rectangulation of the polygon defined by the
boundary with minimum total length is a minimum Manhattan network for the
points defining the staircase boundary. Lingas et al. [LPRS82] show that a min-
imum rectangulation of a rectilinear polygon with n vertices can be computed
in time O(n4). They state, that for a special case of so-called histograms the
running time can be reduced to O(n3). We achieve this result by computing a
minimum Manhattan network directly without the detour to the rectangulation.
Also they introduce a 2-approximation for rectangulations which we point out
directly to Manhattan networks. Benkert et al. [BWWS06] introduced a similar
approximation result as our but by the algorithms presented in Chapter 6 we get
other properties of the staircase area defined by the given boundary. We adopt
the algorithm and statements to our slightly other definition of a staircase and
to our conditions.

The scheme of Algorithm 4 Manhattan Network to solve the Manhattan
network problem is to partition the problem into Manhattan network problems
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Figure 5.1: The definition of xi and yi.

of staircases. For this for each staircase a boundary is computed (step 1 of Algo-
rithm 4). We can compute the staircase boundaries with Algorithm 5 Compute
Boundaries. In this chapter we deal with the problem to compute Manhattan
networks for staircases given the staircase boundary. Note, if we have to com-
pute a Manhattan network for only one staircase it is rather easy to assign a
staircase boundary. In that case we would select the staircase boundary with
smallest staircase area. In Section 5.1 we introduce an algorithm which solves
the problem to optimality by a dynamic program in time O(n3) (for n sequence
points). Afterwards, in Section 5.2 we present a 2-approximation algorithm for
the problem which runs in time O(n log n).

Given the staircase boundary of a staircase with sequence (v1, . . . , vn), for a point
vi, 1 ≤ i ≤ n, of the staircase sequence we denote by xi the missing line segment of
a shortest path to the vertical left boundary segment, by yi we denote the missing
line segment of a shortest path to the horizontal bottom boundary segment. See
Figure 5.1 for an illustration. Note, that we do not count the length of the possibly
used boundary segments between vi and the left and right boundary, respectively.
Let pxi be the intersection of xi with the vertical left boundary segment and pyi
the intersection of yi with the horizontal bottom boundary segment.

5.1 An Exact Algorithm for Staircases

In this section we present an algorithm which computes for the given boundary a
minimum Manhattan network for the staircase. We need the following property
of a minimum Manhattan network for our algorithm.

Lemma 5.1. Let (v1, . . . , vn) be a staircase sequence with base points bx and by.
There exists a minimum Manhattan network MMN such that for at least one
i ∈ {1, . . . , n} the segment xi and the segment yi+1 is contained in MMN .

Proof. Let MMN be an arbitrary minimum Manhattan network. Each minimum
Manhattan network for the staircase contains a shortest (v1, b

x)- and a shortest
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Figure 5.2: Proof of Lemma 5.1 (first case).
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Figure 5.3: Proof of Lemma 5.1 (second case).

(vn, b
x)-path and a shortest (vi, vi+1)-path for each i ∈ {1, . . . , n}. In other words,

each minimum Manhattan network contains a staircase boundary. First assume
for all i ∈ {1, . . . , n} the shortest path between vi and the cross point run either
all to the left boundary segment or all to the bottom boundary segment. W. l. o. g.
assume all paths run to the bottom boundary segment. See Figure 5.2 (a). If a
point vk ∈ {v1, . . . , vn} which is connected to the bottom boundary segment is
not connected to the boundary by the shortest path yk then we can shorten the
network by replacing this connection by yk. See Figure 5.2 (b). For the leftmost
point v1 it holds that x1 is in MMN (being of length 0). Furthermore, y2 is also
in MMN by the preceding considerations. Thus, the lemma holds for i = 1 in
this special case.

Next, assume there exists an i ∈ {1, . . . , n − 1} such that vi is connected to
the left boundary segment and vi+1 to the bottom. See Figure 5.3 (a). By
the same argument as above, we can shorten the network by using xi and yi to
connect vi and vi+1 to the left and bottom boundary segment, respectively. See
Figure 5.3 (b).

Using Lemma 5.1 we can specify a dynamic program computing a minimum
Manhattan network. See Algorithm 6 Dynamic Program For Staircases
for the algorithm. If the path from v1 or vn to the cross point is not a straight line
segment, we define an artificial sequence point at the end of the line incident to
the cross point (w. l. o. g. assume that the vertical boundary segment incident to
the cross point ends at height at least the one of v1 and the horizontal boundary
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Figure 5.4: The points v′ and v′′ are the artificial sequence points.

segment incident to the cross point at width at least the one of vn). See Figure 5.4.

To get a minimum Manhattan network for a staircase with sequence (v1, . . . , vn),
the algorithm tries all points {v2, . . . , vn−1} as the split point vi distinguished
by Lemma 5.1 (i. e., the index for which a minimum Manhattan network con-
tains the segments xi and yi+1). This is done in step 6 of Algorithm 6. For this
the algorithm uses the length of the beforehand computed minimum Manhat-
tan networks of the staircases with sequences (v1, . . . , vi) and (vi+1, . . . , vn). By
inserting xi and yi+1 we get two new staircases with sequences (v1, . . . , vi) and
(vi+1, . . . , vn), respectively. The for-loop of step 3 considers the magnitude of
the staircase, i. e., the number of sequence points. By the for-loop of step 4 all
staircases with i sequence points are considered. The split point is fixed by the
for-loop of step 6.

Algorithm 6 Dynamic Program For Staircases

Require: A staircase with sequence (v1, . . . , vn), n ≥ 3 and a staircase boundary.
1: for all i = 1, . . . n− 1 do
2: Set m(i, i+ 1) = 0.

3: for all i = 3, . . . , n do
4: for all j = 1, . . . , n− (i− 1) do
5: Set m(j, j + (i− 1)) =∞.
6: for all k = j + 1, . . . , j + (i− 1)− 1 do
7: if m(j, j + (i− 1)) > m(j, k) +m(k + 1, j + (i− 1)) + |xk|+ |yk+1|

then
8: Set m(j, j+(i−1)) = m(j, k)+m(k+1, j+(i−1))+|xk|+|yk+1|.
9: Set sp(j, j + (i− 1)) = k.

10: return Min SC(1, n)

Theorem 5.2. Algorithm 6 Dynamic Program For Staircases computes a
minimum Manhattan network for a staircase and a given boundary.
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Procedure 7 Min SC(1, n)

1: if n > 1 then
2: k = sp(1, n) return Min SC(1, k) ∪Min SC(k + 1, n) ∪ {xk} ∪ {yk+1}
3: else
4: return ∅

Proof. The variable m(i, j) denotes the the minimum total weight of a Manhattan
network for the staircase with sequence (vi, . . . , vj) and boundary segments yi and
xj. The algorithm computes these variable by recursion:

m(j, j + (i− 1)) = min
k∈{j+1,...,j+i−2}

{m(j, k) +m(k + 1, j + (i− 1))

+|xk|+ |yk+1|}.
That is, at the vertices vk and vk+1 the line segments xk and yk+1 are inserted,
respectively. By the recursion formula each k ∈ {j+ 1, . . . , j+ i− 1} is tried and
the one which delivers the minimum cost is chosen. By Lemma 5.1 we know that
a minimum Manhattan network contains the same chosen segment.

In the first step the straight line segments from v1 and vn to the cross points
are in the staircase boundary. Inductively, if we call in the recursion m(j, k),
the boundary segment xk is inserted by the recursion formula and yj exists by
induction hypothesis. The same holds for m(k + 1, j + (i − 1)), where yk+1 is
inserted by the recursion formular and xj+(i−1) exists by induction hypothesis.

For each staircase with sequence (vi, . . . , vj) the variable sp(i, j) denotes the
split point at which the staircase is split into two partial staircases. The outer
for-loops in step 3 and 4 computes all staircases with i = 3, . . . , n consecu-
tive sequence points. Thus, the algorithm enumerates all possible subsets of
(1, . . . , n) and the cost of the two related minimum Manhattan networks which
together establish a minimum Manhattan network for the staircase with sequence
(v1, . . . , vn). In Procedure 7 the best splitting of a staircase is identified recur-
sively.

Since the algorithm contains three nested for-loops of range O(n) we get the
following running time.

Theorem 5.3. The running time of Algorithm 6 Dynamic Program For
Staircases for a staircase with n sequence points is O(n3).

5.2 A 2-Approximation for Staircases

In this section we present an approximation of minimum Manhattan networks
for staircases. The algorithm partitions recursively a staircase into two new

79



CHAPTER 5. MANHATTAN NETWORKS OF STAIRCASES

staircases. This proceeding is also known as thickest-first partitioning and was
analyzed to yield a 2-approximation. Since both the definitions of staircases and
the boundary of staircases are not standardized we specify the algorithm adapted
to our conditions.

As Algorithm 6 Dynamic Program For Staircases our algorithm partitions
the staircase into two staircases for which Manhattan networks are computed
recursively. In the partitioning step two new line segments are inserted, each of
them being a new boundary segment of one of the two new staircases. We get
as input a staircase boundary of a staircase with sequence (v1, . . . , vn) and base
points bx. We consider the segments xi and yi, 1 ≤ i ≤ n to connect a point vi
to the left and bottom boundary segment, respectively. We select the point vi,
1 ≤ i < n, for which |xi| ≤ |yi| and |xi+1| ≥ |yi+1| holds and add the segments
xi and yi+1 to our network and compute recursively Manhattan networks for the
staircases with sequence (v1, . . . , vi) and the one with sequence (vi+1, . . . , vn). See
Algorithm 8 Recursion For Staircases for a detailed description.

Algorithm 8 Recursion For Staircases

Require: A staircase with sequence (v1, . . . , vn), n ≥ 3 and a staircase boundary
B.

1: Set SC = ∅.
2: Let vi, vi+1 be the unique pair of neighbors with |xi| ≤ |yi| and |xi+1| ≥ |yi+1|.
3: Set SC = SC ∪ {xi} ∪ {yi+1}.
4: Let SC ′ = Recursion For Staircases((v1, . . . , vi), SC ∪B).
5: Let SC ′′ = Recursion For Staircases((vi+1, . . . , vn), SC ∪B).
6: Set SC = SC ∪ SC ′ ∪ SC ′′.
7: return SC.

Let (v1, . . . , vn) be a staircase sequence with base points bx and by. LetAapp be the
staircase area of the staircase boundary given to Algorithm 8 Recursion For
Staircases for the instance. A minimum Manhattan network contains shortest
(bx, v1)- and (by, vn)-paths and shortest (vi, vi+1)-paths, 1 ≤ i < n, inside the
neighboring point area N constituting a staircase boundary Bopt inside N . Let
Aopt the staircase area of Bopt. In the following we require that Aapp ⊆ Aopt holds.
Let MMN be the whole Manhattan network for the staircase. In Chapter 6 a
main task is to design algorithms satisfying this requirement.

Theorem 5.4. Algorithm 8 Recursion For Staircases computes a Man-
hattan network SC ∪ B for a staircase satisfying SC ≤ 2 · |MMN ∩ Aapp| if
Aapp ⊆ Aopt holds.
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Figure 5.5: Proof of Theorem 5.4.

Proof. Due to the fact that we recursively call the algorithm and in each call,
we connect two points of the sequence to the base points, we get a Manhattan
network for the staircase.

We prove the ratio between the length of the solution of Algorithm 8 and the
length of a minimum Manhattan network to be two by the use of an inductive
argument over the number of sequence points. Assume we insert in the i-th step a
segment xk and a segment yk+1. Let xopti and yopti , 1 ≤ i ≤ n, the segments xi and
yi for Bopt but only considered inside Aapp. We get |xi| = |xopti | and |yi| = |yopti |.
If we insert xi, it holds |xi| ≤ |yi| and therefore |xi| ≤ min {|xopti |, |yopti |}. In
an analogous manner it holds |yi+1| ≤ min {|xopti+1|, |yopti+1|} if we insert yi+1. To
connect vi and vi+1 to the cross point a minimum Manhattan network needs at
least the length of min {|xopti |+ |yopti+1|, |yopti |, |xopti+1|} inside Aapp. See Figure 5.5 for
an illustration of the three possible alternatives a minimum Manhattan network
has to connect vi and vi+1 to the boundary. If the minimum is adopted for
|xopti | + |yopti+1| then our algorithm takes the right choice. Otherwise we get the
following estimation:

|xi|+ |yi+1| ≤ min {|xopti |, |yopti |}+min {|xopti+1|, |yopti+1|}
≤ min {|xopti+1|, |yopti |}+min {|xopti+1|, |yopti |}
≤ 2min {|yopti |, |xopti+1|}.

So in step k we insert at most twice the required length inside Aapp of the mini-
mum Manhattan network to connect vi and vi+1 to the base points. Furthermore,
we split the staircase in two disjoint staircase with smaller number of sequence
points. According to the induction hypotheses for these two staircases the ap-
proximation ratio holds.

Theorem 5.5. The running time of Algorithm 8 Recursion For Staircases
for a staircase with n sequence points is O(n log n).

Proof. The only time consuming work to be done is step 2 which can be executed
by binary search in timeO(log n). The recursion have to be proceededO(n) times.
Together we get the running time of the algorithm to be O(n log n).
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Instead of binary search to identify the unique pair vi, vi+1 in step 2 one can use
exponential search combined with binary search as described in [Wid05] and get:

Corollary 5.6. The running time of the Algorithm 8 Recursion For Stair-
cases for a staircase with n sequence points is O(n).

5.3 Conclusion

In this chapter we presented two algorithms computing Manhattan networks for
staircases. For this, we assumed that a staircase boundary is given (otherwise
we would choose the one with smallest staircase area). First, we introduced an
algorithm computing a minimum Manhattan network for a staircase. This is done
by a dynamic program based on the observation that we can split the problem
into the problem to compute minimum Manhattan networks for two staircases
with fewer sequence points. This leads to an algorithm with running time O(n3)
for n staircase points.

Additionally, we introduced a 2-approximation algorithm for this problem again
by recursively splitting the problem into two subproblems. At this time we do
not search for the optimal split point but select a point such that the length to
connect this and the next consecutive sequence point to the boundary is at most
twice the length of the segments of a minimum Manhattan network to connect
these points to the boundary. With this approach we achieve a better running
time of O(n log n).

Similar approaches were discussed by other authors but since both the definition
of staircases and the properties used in Chapter 6 are different, we specified the
algorithms adapted to our conditions.
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Chapter 6

Approximation Algorithms for
Manhattan Networks

In this chapter we present three new approximation algorithms for the Manhat-
tan network problem. Each algorithm realizes Algorithm 4 Manhattan Net-
work presented in Section 4.4. In Section 6.3 we introduce a combinatorial
3-approximation algorithm for the Manhattan network problem with running
time O(n log n). Both our algorithm and in particular its analysis are much sim-
pler than the prior 3-approximation algorithm of Benkert et al. [BWWS06] which
has a technically quite involved analysis. Our result uses a 2-approximation of
minimum Manhattan networks of staircases which we introduced in Section 5.2.
Afterwards, we state two 2-approximation algorithms, the first in Section 6.4 with
running time O(n3) and the second in Section 6.5 with running time O(n log n).
Both algorithms use Algorithm 5 Compute Boundaries to fix staircase bound-
aries. The first algorithm uses minimum Manhattan networks for staircases which
we can compute in time O(n3) as we illustrated in Section 5.1. The second al-
gorithm uses again the 2-approximation algorithm for Manhattan networks of
staircases. We will explain differences and similarities of the algorithms in Sec-
tion 6.2. Last, in Section 6.6 we give an idea how we could possibly improve the
approximation ratio.

As already mentioned earlier, up to now it is not known whether the minimum
Manhattan network problem is NP-hard. The algorithm with the best approxima-
tion ratio published so far is a 2-approximation algorithm presented by Chepoi et
al. [CNV08] and is based on LP-rounding. Their LP consists of O(n3) variables
and constraints. Kato et al. [KIA02] proposed a 2-approximation algorithm with
running time O(n3), however the proof of the correctness seems to be incom-
plete [BWWS06]. Seibert and Unger [SU05] presented an approximation algo-
rithm and claimed that it yields a 1.5-approximation. As remarked by Chepoi et
al. [CNV08] both the description of the algorithm and the performance guaran-
tee are incomplete and not fully understandable. In the next section we show
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by a counterexample that an important intermediate step is incorrect. Thus,
our 2-approximation algorithm presented in Section 6.5 achieves the best known
approximation ratio and running time so far.

6.1 The Algorithm of Seibert and Unger

In this section we point out that the proof of the approximation ratio of the
algorithm presented by Seibert and Unger [SU05] is not correct. For this we name
two different points of their analysis, at which it is incorrect. Their algorithm
computes in a first phase two sets of vertical and horizontal line segments by
two plane sweeps. The sweeps fix line segments for neighboring points such
that for two neighboring points p and q there is at most one line segment of
∂R(p, q) in the respective dimension fixed. A minimum Manhattan network also
contains the lengths of these line segments, thus the two sets together contain
segments of total length at most the length of a minimum Manhattan network.
They choose the cheaper of the two sets to use at most half the length of the
optimal solution. They claim that this chosen set separates all staircases of each
other and that they can independently compute Manhattan networks for the
staircases. Since the set of line segments computed in the first phase does not
contain a staircase boundary for each staircase, they also have to insert remaining
line segments of the boundaries. They claim that this can be done independently
of the other staircases (and staircase boundaries) and that this costs all in all at
most the length of a minimum Manhattan network. This is the first crux in their
argumentation because the boundaries are not independently. They compute for
each staircase a minimum Manhattan network containing also a boundary for
the staircase with a dynamic program. For a staircase sequence (v1, . . . , vk) of
points lying top-right which have to be connected to a point top-left of them,
they select a help point z1,k = (v1x , vky) and compute a Manhattan network for
(v1, . . . , vk) and z1,k. In this step they do not consider computed boundaries of
other staircases. They argue that solving all sub-problems of this type costs all in
all not more than the optimal solution. But this is not necessarily true and it is
not clear how to fix this issue. See Figure 6.1 and 6.2 for an example consisting of
two staircases. The length of the vertical and horizontal line segments inserted in
the first phase is equal. w. l. o. g. assume the algorithm chooses the set of vertical
line segments. See Figure 6.1 (a). Afterwards, the algorithm of Seibert and Unger
computes for the two staircases independently minimum Manhattan networks
including the boundary for each staircase (Figure 6.1 (b) and (c)). The resulting
network consists of these two computed Manhattan networks for the staircases
(Figure 6.2 (a)). See Figure 6.2 (c) for a minimum Manhattan network for the
instance. If we delete the line segments computed in the first phase, Seibert and
Unger claim that the remaining line segments have length at most the one of a
minimum Manhattan network. See Figure 6.2 (b). We see that the claim does not

84



6.1. THE ALGORITHM OF SEIBERT AND UNGER

v7

v1

(a)

v7

v1

z1,7

(b)

v7

v1 z1,7

(c)

Figure 6.1: (a) The set of vertical line segments computed in the first phase of
the algorithm of Seibert and Unger. (b) and (c) The independently computed
solutions two staircases.
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Figure 6.2: (a) The composed solution. (b) The composed solution without the
segments of the first phase. (c) A minimum Manhattan network for the same
point set.

hold. There are at least too many horizontal edges. More precisely, the critical
rectangles defined by the inner points of the staircase sequence contains two
times the length of the length of line segments of a minimum Manhattan network
inside these rectangles. If we compress the example to shorten the vertical line
segments, the length of the line segments depicted in Figure 6.2 (b) exceeds the
length of the minimum Manhattan network (Figure 6.2 (c)). Thus, they cannot
compute the minimum Manahattan networks of staircases independently if they
separate the staircases only by horizontal or vertical line segments computed in
the first phase. The total length of all minimum Manhattan networks exceeds
the length of a minimum Manhattan network, in contradiction to their claim.

If one considers to fix this problem by inserting only one connection between
two points if they belong to two staircases, one can see that the choice of the
connection affects the solution of the involved staircases. See Figure 6.3 for an
example of nested staircases.

There are two staircases, the first with sequence (p1, . . . , p7) and base point b and
the second with sequence (q1, . . . , q5) and base point p4. The connection between
p3 and p4 and between p4 and p5 affects the the second staircase. To use for
all staircases together at most the length of a minimum Manhattan network we
have to enumerate all alternatives for each such connection. Since this nesting of
staircases can be iterated, generally this selection takes exponential time.
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Figure 6.3: Nested staircases.
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Figure 6.4: (a) The vertical line segment computed by the algorithm of Seibert
and Unger. (b) The minimum Manhattan networks for the staircases. (c) The
remaining connections.

After computing Manhattan networks for staircases, they have to insert further
line segments to establish remaining connections. They claim that this can be
done without consuming (together with the previously computed Manhattan net-
works for staircases) more than the length of a minimum Manhattan network.
See Figure 6.4 for an example. Assume the set of vertical line segments is cheaper
than the horizontal ones (see Figure 6.4 (a)). They first compute Manhattan net-
works for the staircase with sequence (v1, . . . , v4) and help point z1,4 and for the
sequence (v′1, . . . , v

′
4) and help point z′1,4 independently. For the latter point set

the Manhattan network contains also the line segment l′h (see Figure 6.4 (b)).
Afterwards, they have to connect z1,4 to the point p by inserting the horizontal
line segment lh (see Figure 6.4 (c)). A minimum Manhattan network for this
instance contains only the line segment lh and not l′h in contradiction to their
claim.

We are not aware how to fix the problems both of the algorithm and the analysis
of it. We thin that it is necessary to use both the vertical and horizontal line
segments (computed in the first phase) to separate the staircases.
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6.2 Overview of the Algorithms

In this section we give an overview of the algorithms presented in this chapter
and point out differences and similarities.

All presented algorithms implement Algorithm 4 Manhattan Network of Sec-
tion 4.4. The differences between the approximation algorithms for Manhattan
networks we present in this chapter lie mainly in the choice of the staircase bound-
aries computed in the first phase of the algorithm. The choice of the staircase
boundaries is the crucial point to get an optimal solution for a Manhattan net-
work problem. See Figure 6.3 for an instance with two differently chosen staircase
boundaries. In this example there are two staircases, first the one with sequence
(p1, . . . , p7) and base point b and second the one with sequence (q1, . . . , q5) and
base point p4. We see that the choice of the boundary for the first staircase affects
the staircase area of the second staircase. In Figure 6.3 (b) we see that the two
boundaries can share segments. If we would try all possibilities this leads to an
exponential algorithm. To get a polynomial time algorithm we have to guess a
boundary. This is done in different ways for the different algorithms. However, all
selected boundaries lie in the neighboring point area N defined by the rectangles
of x- or y-neighboring points.

Generally, we use two different strategies for our algorithms. The first is to
partition the plane into two disjoint regions and to determine the approximation
ratio separately in each region. To illustrate this in more detail, let MNapp be
the output of one of our algorithms following this strategy. The network MNapp

contains insideN a staircase boundary for each staircase. A minimum Manhattan
network MMN also contains for each staircase inside N a staircase boundary.
For a staircase let Aopt be the staircase area of the boundary of MMN inside N
and let Aapp be the staircase area of the boundary chosen by our algorithm.
If Aapp ⊆ Aopt holds, by Theorem 5.4 we can apply Algorithm 8 Recursion
For Staircases to get a 2-approximation of the Manhattan network of this
staircase. Furthermore, if Aapp ⊆ Aopt holds, for the length of the network
Min SC computed by Algorithm 6 Dynamic Program For Staircases we
get |Min SC| ≤ |MMN ∩ Aapp|.

Let k1 = 2, when we apply Algorithm 8 Recursion For Staircases and
let k1 = 1, when we use Algorithm 6 Dynamic Program For Staircases.
Assume that our algorithm inserts inside N at most k2 times the length of
MMN ∩ N establishing a staircase boundary for each staircase and satisfying
Aapp ⊆ Aopt. Then we can bound the overall approximation ratio of our algorithm
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by

|MNapp| = |MNapp ∩ (R2 \ N )|+ |MNapp ∩N|
≤ k1 · |MMN ∩ (R2 \ N )|+ k2 · |MMN ∩N|
≤ max{k1, k2} · |MMN |.

This strategy is used by Algorithm 9 Best Boundary For Manhattan pre-
sented in Section 6.3 for k1 = 2 and k2 = 3 and by Algorithm 11 Optimal
Boundaries for k1 = k2 = 2 in Section 6.5.

The second strategy is to compute in each of the two phases line segments of
length at most k times the length of a minimum Manhattan network to achieve
an overall approximation ratio of 2k. This is done by Algorithm 10 Sufficient
Boundary For Manhattan presented in Section 6.4 for k = 1.

To work out the difference between the two strategies we want to point out that
the second strategy maybe chooses a non-optimal boundary. That is, we may
have chosen the staircase boundaries such that the staircase area of a minimum
Manhattan network is smaller than our staircase areas. Then the Manhattan
network inside the staircase area of our boundary has length exceeding the length
of the Manhattan network inside the staircase area of the optimal boundary.
Thus, the argument that a Manhattan network for a staircase in the interior of
the staircase area has length at most k times the length of a Manhattan network
inside the interior of the staircase area can only be used by the first strategy. The
idea of the second strategy is to partition in the first phase the problem only into
disjoint regions (i. e., staircase areas) such that we can compute in the second
phase Manhattan networks of staircases independently of the other staircases.
Theorem 4.23 states that this proceeding leads to a Manhattan network. In each
of the two phases we use at most k times the length of a minimum Manhattan
network.

Now we illustrate in more detail the different algorithms. The 3-approximation
makes sure that the staircase boundaries of a minimum Manhattan network are
contained in the identified boundaries. To achieve this we consider neighboring
point pairs. Assume two points p, q ∈ P are x-neighboring. We select the two
vertical boundary segments of the rectangle R(p, q). We know that there exists
a minimum Manhattan network that contains a y-connection of length |py − qy|
lying inside the segments selected by our algorithm. Unfortunately, we do not
know exactly which parts of the two boundary segments are contained in a min-
imum Manhattan network. On this account we choose both segments. In almost
the same matter for two y-neighboring points p, q ∈ P we select the horizontal
boundary segments of R(p, q). We will prove that the extracted segments con-
tain a staircase boundary for each staircase. Furthermore, since we choose both
segments we know that the staircase area for each staircase has size equal to or
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(a) (b)

Figure 6.5: (a) Staircase boundaries with smallest areas as computed by the 3-
approximation. (b) The boundary computed by Algorithm 5 Compute Bound-
aries.

smaller than the staircase area of a minimum Manhattan network. Namely, we
have to insert fewest segments to get a Manhattan network for the staircase. In
Section 6.3 we show that we have to insert at most three times the length of a
minimum Manhattan network to get the boundaries with the required proper-
ties. More precisely, let MMN be a minimum Manhattan network. We insert
boundary segments only inside N . We show that the segments computed in the
first phase have length at most 3 · |MMN ∩N|. Furthermore, for each staircase,
MMN contains a staircase boundary in N . And the assumption Aapp ⊆ Aapp is
fulfilled for the appropriate staircase areas. That is, we can apply Algorithm 8
Recursion For Staircases to achieve a 3-approximation for the entire prob-
lem.

To get better approximation ratios we have to take more care when computing
the staircase boundaries. For the remaining algorithms we use the approach
introduced in Section 4.5. By Theorem 4.35 the overall length of the computed
boundaries is at most the length of a minimum Manhattan network inside N .
The disadvantage is that the property Aapp ⊆ Aopt does not hold. See Figure 6.5.
For the network in Figure 6.5 (b) we do not know that Aapp ⊆ Aopt holds. Up to
now the staircase boundaries partition the plane only into disjoint regions (i. e.,
the staircase areas) for which we can compute Manhattan networks independently
of the other regions.

The 2-approximation algorithm we introduce in Section 6.4 computes in the sec-
ond phase a minimum Manhattan network for each staircase with a given staircase
boundary. Since we partitioned by the extended staircase boundaries the plane
into disjoint staircase areas, we can compute a Manhattan network inside an area
independently of the networks in the other areas by Theorem 4.23. Therefore,
the total length of all optimal solutions of these disjoint problems is at most the
length of a minimum Manhattan network for the whole instance. In each of the
two phases we inserted segments of length at most the length of a minimum Man-
hattan network, thus we get a 2-approximation. Since we compute a minimum
Manhattan network for each staircase the algorithm has running time O(n3).
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(a) (b) (c)

Figure 6.6: Line segments inserted by the sweep steps.

To achieve a better running time, we use the 2-approximation algorithm for
staircases for the 2-approximation algorithm presented in Section 6.5. For that
we have to guarantee that Aapp ⊆ Aopt for the staircase areas holds. This is
done by some postprocessing in the first phase. We explain this in more detail
in Section 6.5.

6.3 A 3-Approximation of Minimum Manhat-

tan Networks

Our 3-approximation algorithm for minimum Manhattan networks proceeds in
two phases. In the first phase we compute a basic set of line segments in each
of the two dimensions. These segments ensure that only sequence points for
staircases remain unconnected to the appropriate base points and that the seg-
ments constitute an extended staircase boundary with smallest area relative to
the neighboring point area N . More precisely, we do not need to insert line
segments inside N in Phase II. Furthermore, we do not need line segments of a
minimum Manhattan network inside N to justify segments inserted by Phase II
because each staircase area Aapp computed in Phase I is contained in a staircase
area Aopt inside N of a minimum Manhattan network (i. e., Aapp ⊆ Aopt). In
the second phase we compute Manhattan networks for the staircases. We now
describe our approach in more detail. We first examine the points from bot-
tom to top. For two y-neighboring points p and q considered by this sweep we
insert the horizontal boundary segments of the rectangle R(p, q) into our net-
work. Afterwards we perform an analogous sweep from left to right. Similarly,
for two x-neighboring points p and q considered by the sweep we insert the ver-
tical boundary segments of the rectangle R(p, q). See Figure 6.6 (a) to (c) for an
example of such a sweep in the two directions. After sorting the points which can
be done with running time O(n log n), the sweeps can be performed in time O(n).
After these two sweeps the only remaining parts to get shortest paths between
all point pairs are shortest paths between sequence points and their appropriate
cross point. Furthermore, the up to now identified line segments contain a bound-
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ary for each staircase. Afterwards, we identify all staircases. For this purpose
we assign to each point its two base points and then consider the points with
the same base points as a staircase. This can be done in time O(n) as stated
in Section 4.3. In the last step we compute for each staircase (given a staircase
boundary) a Manhattan network. As stated in Section 5.2 we can compute a
2-approximation for a staircase in time O(n log n) for n input points. Altogether,
we achieve a Manhattan network for the input points. See Algorithm 9 for a
detailed description.

Algorithm 9 Best Boundary For Manhattan

Require: A set P ⊆ R2 of points.
Phase I:
1: Set CR = ∅.
2: Sweep over the points of P bottom-up. Let p be the currently considered

point and q be the previously processed point. Add to CR the horizontal line
segments of ∂R(p, q).

3: Sweep over the points of P from left to right. Let p be the currently considered
point and q be the previously processed point. Add to CR the vertical line
segments of ∂R(p, q).

Phase II:
4: Set MN = ∅.
5: for each Staircase S do
6: Compute with Algorithm 8 a Manhattan network 2MN of S with the

staircase boundary computed in Phase I.
7: Set MN = MN ∪ 2MN .
8: return MN ∪ CR.

To analyze the algorithm we can interpret our strategy in such a way that we
partition the plane into regions belonging to two disjoint areas. The first one is
the neighboring point area N , the second one the complement R2 \ N . In the
first phase we include line segments in the first area and in the second phase
in the second area. For each of these two areas we examine the approximation
ratio separately. This strategy for the analysis is similar to the one of Benkert et
al. [BWWS06]. They also consider x- or y-neighboring points. Whereas we
include for pairs of x-neighboring points p and q both horizontal line segments
of ∂R(p, q) into our network (i. e., two y-connections), they first include only one
y-connection into R(p, q). A symmetric statement holds for y-neighboring points.
They also get a staircase boundary for each staircase. Unfortunately, since they
include for two, w. l. o. g. x-neighboring, points p and q only one of y-connection
into R(p, q), these segments do not guarantee a partition into two disjoint areas
for which they can bound the length of the inserted segments separately. In
contrast, we get two disjoint areas since we insert both vertical boundary segments
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Figure 6.7: Proof of Lemma 6.1.

to maximize the area isolated in the first phase. They have to insert further line
segments. This stepwise proceeding complicates the analysis and the algorithm
in comparison to our approach.

To prove the correctness of Algorithm 9 we first show that neighboring pairs are
connected by a shortest path after Phase I. We then show that Phase I obtains
us an extended staircase boundary for each staircase.

Lemma 6.1. After Phase I of Algorithm 9 Best Boundary For Manhattan,
two x- or y-neighboring points are connected by line segments of CR forming a
shortest path.

Proof. Let p and q be neighboring in x-direction. W. l. o. g. let px ≤ qx and
py ≤ qy. If the points are neighboring also in y-direction then CR contains
all line segments of ∂R(p, q). Thus, assume p and q are not neighboring in y-
direction. There exists a point r with py < ry < qy. W. l. o. g. let rx < px and
r be the topmost one. See Figure 6.7. Thus, r is y-neighboring either to q or
to another point s in Q4(q). Since r and s are y-neighboring, the horizontal
segments of ∂R(r, s) are inserted into CR. Together with the vertical segments
of ∂R(p, q) they constitute a shortest path between p and q.

After showing the general statement that neighboring points are connected, we
now prove that the line segments, added during the sweeps of steps 2 and 3,
yield an extended staircase boundary for each staircase. That is, we get paths
from the outer points to the base points inside the extended base rectangles (as
we prove in Lemma 6.2) and shortest paths between consecutive sequence points
(see Lemma 6.3).

Lemma 6.2. After Phase I of Algorithm 10 Best Boundary For Manhat-
tan, the outer points of a staircase sequence are connected to both base points by
paths in the appropriate extended base rectangles.

Proof. Let (v1, . . . , vk) be a staircase sequence with base points bx and by. If
bx and v1 are x-neighboring then they are connected by a shortest path by
Lemma 6.1. Thus assume bx and v1 are not x-neighboring. Let p be the point
x-neighboring to bx on the right of bx. See Figure 6.8. Since p is x-neighboring
to bx we know that there exists a shortest (p, bx)-path. Consider the point q
y-neighboring to v1 above v1. We distinguish two cases. First assume q lies in
Q2(v1). (Note that q is the point ry defined in Definition 4.15 in Section 4.4.)
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Figure 6.8: Proof of Lemma 6.2.

Since v1 is the outer point of the staircase and p is x-neighboring to bx the point
q lies on the left of bx. Again there exists a shortest (v1, q)-path due to the neigh-
borhood of v1 and q. Together with the shortest (p, bx)-path we get a (v1, b

x)-path
in the extended x-base rectangle. See Figure 6.8 (a).

Now assume the point q lies to the right of v1. Since p does not belong to the
staircase sequence (v1, . . . , vk) there is a point above v1 and to the left of bx. Let
r be the one with smallest y-coordinate. (Note that r is the point ry defined
in Definition 4.15 in Section 4.4.) The point r is y-neighboring below itself to
a point s on the right of v1. There exists a shortest (r, s)-path. Since bx is not
globally x-neighboring to v1 and v1 is an outer point the point t x-neighboring
to v1 on the left of v1 lies above r. Again, there exists a shortest (v1, t)-path.
Together with the shortest (p, bx)- and (r, s)-path we get a (v1, b

x)-path inside
the extended x-base rectangle. See Figure 6.8 (b).

In almost the same manner we can prove that we get a (vk, b
y)-path inside the

extended y-base rectangle. These two paths together establish also a (v1, b
y)- and

a (vk, b
x)-path.

Lemma 6.3. After Phase I of Algorithm 9 Best Boundary For Manhattan,
two consecutive points vi and vi+1 of a staircase sequence are connected by a
shortest path.

Proof. W. l. o. g. let vi and vi+1 be part of a staircase as depicted in Figure 6.9
and let vi being on the left of vi+1. Assume vi and vi+1 are not connected after
Phase I. Thus, by Lemma 6.1, vi and vi+1 are neither x- nor y-neighboring. Since
vi and vi+1 belong to the same staircase and are consecutive in the sequence,
the point vx x-neighboring to vi+1 on the left is above vi. See Figure 6.9. The
vertical segments of ∂R(vx, vi+1) are contained in CR. Again, since vi and vi+1

belong to the same staircase and vi and vi+1 are not y-neighboring there exists
a y-neighboring point vy of vi below and to the right of vi+1. The horizontal
segments of ∂R(vy, vi) are contained in CR. Thus, by these four line segments vi
and vi+1 are connected by a shortest path.

By Lemma 6.2 and 6.3 we get an extended staircase boundary for each staircase
after Phase I.
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Figure 6.9: (a) Proof of Lemma 6.3.
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Figure 6.10: Proof of Theorem 6.6.

Lemma 6.4. After Phase I of Algorithm 10 Best Boundary For Manhat-
tan, the set CR contains an extended staircase boundary for each staircase.

Thus, Algorithm 9 is a direct implementation of Algorithm 4 Manhattan Net-
work. By Theorem 4.23 we get that Algorithm 9 computes a Manhattan net-
work.

Theorem 6.5. For a set P ⊆ R2 of points in the plane, Algorithm 9 Best
Boundary For Manhattan computes a Manhattan network for P .

Next, we show the approximation ratio of the algorithm.

Theorem 6.6. For a set P ⊆ R2 of points in the plane Algorithm 9 Best
Boundary For Manhattan computes a Manhattan network for P with total
length at most three times the length of a minimum Manhattan network for P .

Proof. To achieve the approximation ratio we have to account each length of a
line segment of a minimum Manhattan network at most three times to justify a
line segment inserted by Algorithm 9. Our strategy of the proof is to partition
the plane into two areas and to compare the length of a minimum Manhattan
network in each area separately. First, we want to remind that we only need
to consider shortest paths for point pairs constituting critical rectangles. The
first area we consider is the neighboring point area N formed by the union of all
critical rectangles of x- or y-neighboring points. Consider the horizontal sweep of
the algorithm done in step 3. For each pair of neighboring points p and q we add
the vertical segments of ∂R(p, q). In the minimum Manhattan network the length
of |py − qy| is required to connect the points. Thus, for this rectangle we insert
at most twice the length of the required length. However, we must consider
also neighboring critical rectangles having common boundaries as depicted in
Figure 6.10. We add three line segments to CR while it suffices to include the
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middle of the three vertical line segments. Generally for k points alternating on
the lines L and U our algorithm adds k line segments of length a while bk/2c
suffice. The ratio k/bk/2c is largest for k = 3 and achieves the value 3. Thus, we
add in Phase I line segments of length at most three times the length of segments
of a minimum Manhattan network inside the neighboring point area N .

For any two w. l. o. g. x-neighboring points p and q we know that that there
exists a minimum Manhattan network that contains vertical line segments on the
boundary of R(p, q) of length |py−qy|. We add both vertical boundary segments.
Thus, it would not be reasonable to add further vertical segments inside R(p, q).
Therefore, we maximize the area separated by the sweep (this is the neighboring
point area N ) and minimize the remaining area (R2 \N ). The remaining area is
the union of the staircase areas defined by the staircase boundaries given by line
segments of Phase I. At this, each staircase area is accounted as an open area.
More precisely, let (v1, . . . , vn) be a staircase sequence with base points bx and by

and let Aapp be an the staircase area of the boundary computed by Algorithm 9.
A minimum Manhattan network contains (bx, v1)- and (by, vn)-paths and shortest
(vi, vi+1)-paths, 1 ≤ i < n, inside the neighboring point area N constituting an
extended staircase boundary Bopt inside N . Let Aopt the staircase area of Bopt.
By the construction of the sweeps we get Aapp ⊆ Aopt.

By the property Aapp ⊆ Aopt and since Aapp∩N = ∅ holds and since we use only
line segments of MMN∩N to justify segments inserted in Phase I, we partitioned
the problem in two areas which can be considered separately. As stated above,
for the first area we add at most three times the length of the line segments
constituting a minimum Manhattan network in this area. By Theorem 5.4 we
can compute a Manhattan network for staircases with approximation ratio two
inside the staircase area.

By the calculation done in Section 6.2 with k1 = 2 and k2 = 3, we get that our
algorithm approximates minimum Manhattan networks with a ratio of three.

The core of the proof is that our Phase I yields a 3-approximation outside of
staircases and minimizes the staircase areas. That is, we get a partitioning into
two disjoint areas (defined by critical rectangles of neighboring points and the
staircase areas) which can be examined separately. Thus, together with the 2-
approximation for staircases we get a 3-approximation altogether.

Theorem 6.7. The running time of Algorithm 9 Best Boundary For Man-
hattan for n points is O(n log n).

Proof. First of all we must sort the points of P horizontally and vertically. This
can be done in timeO(n log n). The sweeps in steps 2 and 3 then can be performed
in time O(n). With Algorithm 3 Finding Staircases we can find all staircases.
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(a) (b) (c) (d)

Figure 6.11: (a) and (c) A Manhattan network computed by our approximation.
(b) and (d) A minimum Manhattan network.

By Lemma 4.12 this can be done in running time O(n log n). The running time
to compute a 2-approximation for a Manhattan network of a staircase given the
staircase boundary is O(k log k) for k sequence points by Theorem 5.5. Each
sequence point can only belong to at most three different staircases with more
than two sequence points by Lemma 4.11, thus we get a total running time of
O(n log n) to compute Manhattan networks for all staircases.

This yields the total running time for the algorithm of O(n log n).

Actually, combining exponential with binary search we can 2-approximate min-
imum Manhattan networks of staircases in linear time by Corollary 5.6. Thus,
by the analysis for the running time it is obvious that our algorithm has linear
running time, except for sorting in x- and y-direction.

Corollary 6.8. The running time of Algorithm 9 Best Boundary For Man-
hattan for n sorted points is O(n).

See Figure 6.11 (a) and (b) for an example that the approximation ratio of our
algorithm is tight. We use three vertical segments instead of one. If we consider
to fix this by the observation that we do not need the outer line segments we see
by the example given in Figure 6.11 (c) and (d) that redundant line segments
can also lie in the interior of the instance.

6.4 A 2-Approximation of Minimum Manhat-

tan Networks

Our 2-approximation algorithm is a direct realization of Algorithm 4 Manhat-
tan Network. First we compute with Algorithm 5 Compute Boundaries
a boundary for each staircase. Afterwards we determine the staircases of the in-
stance (this can be done with Algorithm 3 Finding Staircases) and compute
for each staircase a minimum Manhattan network with Algorithm 6 Dynamic
Program For Staircases. See Algorithm 10 for a detailed description.

We name the algorithm Sufficient Boundary For Manhattan because the
lines of the x- and y-covering computed by step 1 guarantee a partitioning of
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Algorithm 10 Sufficient Boundary For Manhattan

Require: A set P ⊆ R2 of points.
Phase I:
1: Let MN be the return of Algorithm 5 Compute Boundaries.
Phase II:
2: for each staircase S do
3: Compute with Algorithm 6 a minimum Manhattan network MMN of S

with the staircase boundary computed in Phase I.
4: MN = MN ∪MMN .
5: return MN .

the plane into staircases in such a way that we get for each staircase a staircase
boundary so that we can compute Manhattan networks for the staircases inde-
pendently. If we delete one of these line segments the remaining segments would
not suffice.

By Theorem 4.23 we get the following statement:

Theorem 6.9. For a set P ⊆ R2 of points in the plane, Algorithm 10 Suffi-
cient Boundary For Manhattan computes a Manhattan network for P .

To achieve the approximation ratio, our algorithm is allowed to use at most twice
the length of a minimum Manhattan network. By the following theorem we prove
that we use in each of the two phases at most the length of a minimum Manhattan
network to achieve an overall approximation ratio of two.

Theorem 6.10. For a set P ⊆ R2 of points in the plane, Algorithm 10 Suf-
ficient Boundary For Manhattan computes a Manhattan network for P
with total length at most twice the length of a minimum Manhattan network for
P .

Proof. By Theorem 4.35 the length of the line segments computed in Phase I
is at most the length of a minimum Manhattan network. By Lemma 4.19 and
Theorem 4.21 the Manhattan networks of the different staircases are independent
of each other. We compute for each staircase a minimum Manhattan network in
Phase II. No line segment computed in Phase II for a staircase can contribute to a
Manhattan network of another staircase since we have disjoint regions. Thus, the
overall length of all these Manhattan networks computed in Phase II is again at
most the length of a minimum Manhattan network. Altogether, the total length
of the Manhattan network for P is at most twice the length of a minimum one,
concluding the proof of the theorem.

Theorem 6.11. The running time of Algorithm 10 Sufficient Boundary
For Manhattan for n points is O(n3).
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Proof. By Lemma 4.36 the running time of Phase I is O(n log n). By Lemma 4.12
it requires O(n log n) time to find the staircases. By Theorem 5.3 the running
time to compute a minimum Manhattan network for a staircase with k sequence
points is O(k3). Each point can only belong to at most four different staircase
sequences. Therefore, we get the total running time of O(n3) to compute Man-
hattan networks for all staircases.

This delivers the total running time for Algorithm 10 of O(n3).

6.5 A Fast 2-Approximation of Minimum Man-

hattan Networks

In this section we present a 2-approximation algorithm with a better running
time of O(n log n). Actually, since we have to sort all points, usually this is the
best running time which can be expected for an algorithm solving the Manhat-
tan network problem. Even though all in all the algorithm acts as Algorithm 4
Manhattan Network we have to make more effort. To achieve the desired ap-
proximation ratio it is important that our staircase areas are at least so small as
the staircase areas of a minimum Manhattan network coming from line segments
inside rectangles defined by neighboring points. Given this property we regard
the plane as partitioned into two areas and compare the length of a minimum
Manhattan network in each area separately to achieve the approximation ratio.
In each area we use line segments of length at most twice the length of a mini-
mum Manhattan network inside the appropriate area. Altogether, our network
has length at most twice the length of a minimum one. We want to point out
the difference in this approach to the 2-approximation algorithm introduced in
Section 6.4 where we used in each phase of our algorithm at most once the length
of a minimum Manhattan network leading to an overall approximation ratio of
two as well. For the former approximation algorithm we cannot ensure that we
have best possible staircase boundaries relative to neighboring points. Therefore,
we have to solve the Manhattan networks for staircases two optimality to get a
2-approximation. Unfortunately, this leads to the worse running time of O(n3).
The algorithm we introduce in this section guarantees that each staircase area
Aapp computed in Phase I is contained in a staircase area Aopt of boundaries ly-
ing inside the neighboring point area N of a minimum Manhattan network (i. e.,
Aapp ⊆ Aopt). In the following we specify how we obtain the desired property.

6.5.1 The Algorithm

As the algorithm basically runs like Algorithm 4 Manhattan Network, we
first fix, just as in Algorithm 10 Sufficient Boundary For Manhattan,
with Algorithm 5 Compute Boundaries the boundaries of the staircases. See
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Figure 6.12: An up-switch.

Algorithm 11 Optimal Boundaries for a detailed description of our algorithm.
Afterwards, we perform some improvements to the boundaries. For this we want
to define an operation called switch which moves some line segments of the cov-
erings. For two line segments lh ∈ H and lv ∈ V let R(lh, lv) be the smallest
rectangle containing lh and lv completely. A corner is a point c /∈ P where two
line segments of H and V end. A corner c has to be incident to exact two line
segments. Thus, for two line segments lh ∈ H and lv ∈ V forming a corner, the
segments lh and lv both lie on boundary edges of R(lh, lv).

Definition 6.12. Let H be an x-covering and V be a y-covering of a set P ⊆ R2

of points in the plane. Let lh ∈ H and lv ∈ V be two line segments forming
a corner. A switch of lh and lv is an operation moving the line segments to the
opposite sides of the rectangle R(lh, lv). An up-switch is performed if lh lies at the
bottom of R(lh, lv) before the switch-operation, otherwise we call it down-switch.

See Figure 6.12 for an illustration of the defined terms. All points connected
before a switch-operation by a shortest path are still connected afterwards. The
length of a network is not increased by a switch-operation.

All line segments of a minimum Manhattan network and also all segments picked
by our algorithm lie in the smallest rectangle containing all input points. Fur-
thermore, we can limit the points to a smaller region. This region was first
considered in the context of Manhattan networks by Chepoi et al. [CNV08] and
is called pareto envelope. Given a set P ⊆ R2 of points in the plane, a point q ∈ R2

is called efficient point of P [CFK81, CNV08, WHL71] if there does not exist an-
other point r ∈ R2 such that d(r, p) ≤ d(q, p) for each p ∈ P and d(r, p′) < d(q, p′)
for at least one p′ ∈ P . The pareto envelope of P is the set of all efficient points.
The pareto envelope can be computed in time O(n log n) [CFK81]. The pareto
envelope P can also be characterized by P = ∩p∈P ∪q∈P R(p, q). Procedure 12
Make Envelope called in step 2 moves the segments found by Algorithm 5
Compute Boundaries to circumscribe an area as small as possible (i. e., the
pareto envelope). (For our approach it is not necessary to prove formally that
the area we generate by calling Procedure 12 is the pareto envelope.) See Fig-
ure 6.13 (c) and (d) for an example of the set of line segments in MN before and
after calling Procedure 12 Make Envelope.
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(a) (b)

Figure 6.13: (a) The set MN before calling Procedure 12 Make Envelope. (b)
The set MN after calling Procedure 12 Make Envelope.
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Figure 6.14: (a) The set MN before calling Procedure 13 Make Smallest
Sequence. (b) The set MN after calling Procedure 13 Make Smallest Se-
quence.

Now we attain the main difference to the 2-approximation presented in Sec-
tion 6.4. By the time the only remaining connections to get a Manhattan network
are paths inside staircase areas. In other words we already chose an extended
staircase boundary for each staircase. Unfortunately, our choice is maybe not op-
timal. We always use as little staircase boundaries and thus get as large staircase
areas as possible. The Manhattan network in the interior of the staircase area
has length exceeding the length of a minimum Manhattan network in the interior
of the staircase area of the optimal boundary. It may well pay off to use more
boundary segments in order to decrease the staircase areas. See Figure 4.19 for
an example. If we diminish the staircase areas, the lengths of the networks inside
the staircase areas will decrease as well. Note that until now we only examined
x- or y-neighboring points (i. e., we only added segments inside the neighboring
point area N ). We do not know the optimal staircase boundaries, nevertheless
we now want to make the staircase areas as small as possible with line segments
inside N . On this behalf we examine the staircases and their boundaries.

We differentiate whether the considered line segments are segments between
neighboring sequence points or between the base points and the outer points.
The first segments are examined by Procedure 13 Make Smallest Sequence
called in step 3 of Algorithm 10. Assume that two neighboring staircase sequence
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Figure 6.15: (a) The set MN before calling Procedure 14 Make Smallest
Base. (b) The set MN after calling Procedure 14 Make Smallest Base.

points vi and vi+1 are x-neighboring. We do not know which shortest path be-
tween neighboring sequence points is chosen by a minimum Manhattan network.
For this reason we insert the missing line segments of ∂R(vi, vi+1) if they diminish
the staircase area (step 2 of Procedure 13). See Figure 6.14. Given line segments
solely inside rectangles of x- or y-neighboring points, the boundary between se-
quence points is chosen in such a way that the staircase area is smallest possible.
Nevertheless, we have to take care that we do not select too much line segments.
Therefore, we keep in mind the already considered and inserted segments (step 5
and 8 of Procedure 13) and delete superfluous line segments (step 4 and 7 of
Procedure 13). In the example in Figure 6.14, we insert for both, the rectangle
R(vi, vi+1) and the rectangle R(v′j, v

′
j+1) the vertical boundary segments. Assume

the algorithm considers first the rectangle R(vi, vi+1). The algorithm marks the
two vertical line segments of R(vi, vi+1). If the algorithm considers the rectangle
R(v′j, v

′
j+1) it inserts the remaining vertical boundary segments of it. and deletes

the vertical segment incident to vi+1 = v′j inside R(v′j, v
′
j+1) (step 4 of Proce-

dure 13). If we would not delete this segment we could not guarantee that we
add at most twice the length of line segments of a minimum Manhattan network
inside R(vi, vi+1) ∪ R(v′j, v

′
j+1). We will prove in Lemma 6.14 that we preserve

shortest paths by this proceeding.

Now we consider boundary segments between the base and the outer points.
For the following look at Figure 6.15 (a). The vertical line segment incident to
bx takes account for the staircase areas with staircase sequences (v1, . . . , v4) and
(v′1, . . . , v

′
4) being not smallest with respect to the neighboring point area. We look

at the x-neighboring point vx of bx and add the vertical line segment beginning at
vx which ends at the next horizontal line segment below or at the same height as
v′4. See Figure 6.15 (b). This is done by Procedure 14 Make Smallest Base
which is called in step 4 of the algorithm. Procedure 14 considers all x-base points
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and examine whether there exist staircases for which the boundary is not optimal
according to segments inside rectangles of neighboring points. As above we have
to take care about superfluous line segments. The procedure marks all segments
which are doubled (step 9 of Procedure 14). See Figure 6.15 for the marked
segments. If in a later step a marked segment is again doubled (to the other side
as before), it will be deleted (step 8 of Procedure 14). After calling Procedure 14,
for all staircases the boundary between base points and outer points lie in such
a way that the staircase area is smallest possible. Procedure 14 describes the
proceeding only for staircase sequences lying on the right of the base point. The
same has to be done with the sequences on the left. In an analogous way we
have to consider also the y-base points with associated staircase sequences with
one point y-neighboring and certainly all other staircase types as depicted in
Figure 4.6. These steps are not mentioned in Algorithm 11.

In Phase II of the algorithm we compute a Manhattan network for each staircase
given the staircase boundary with Algorithm 8 Recursion For Staircases
achieving for each staircase a Manhattan network with length at most twice
the length of a minimum Manhattan network for this staircase. Altogether,
Algorithm 11 computes a Manhattan network for a set P of points.

Algorithm 11 Optimal Boundaries

Require: A set P ⊆ R2 of points.
Phase I:
1: Let MN = H ∪ V be the return of Algorithm 5 Compute Boundaries.
2: Let MN = Make Envelope(P,H, V ).
3: Let MN = Make Smallest Sequence(P,MN).
4: Let MN = Make Smallest Base(P,MN).
Phase II:
5: for each staircase S do
6: Compute with Algorithm 8 a Manhattan network 2MN of S with the

staircase boundary computed in Phase I.
7: MN = MN ∪ 2MN .
8: return MN .

The benefit of Procedure 13 Make Smallest Sequence and Procedure 14
Make Smallest Base is, if we allow only line segments in the region defined by
rectangles of x- or y-neighboring points (the neighboring point area N ), for each
staircase the staircase area is smallest. More precisely, each staircase area Aapp
computed in Phase I is contained in a staircase area Aopt defined by a boundary
inside the neighboring point area N of a minimum Manhattan network (i. e.,
Aapp ⊆ Aopt). This is an important point to guarantee our approximation ratio.
Furthermore, we will show that after calling the Procedure 14 Make Smallest
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Procedure 12 Make Envelope
Require: A set P ⊆ R2 of points and an x-covering H and a y-covering V of P .
1: for each horizontal line segment lh ∈ H under which there do not lie any

other line segments of H do
2: if lh forms a corner with a vertical line segment lv ∈ V then
3: Perform an up-switch if possible.

4: for each horizontal line segment lh ∈ H above which there do not lie any
other line segments of H do

5: if lh forms a corner with a vertical line segment lv ∈ H then
6: Perform a down-switch if possible.

7: return H and V .

vi

vi+1

bx

Figure 6.16: Proof of Lemma 6.13.

Base we inserted at most twice the length of all line segments of a minimum
Manhattan network inside the neighboring point area N . In the second phase
we compute a 2-approximation for each staircase given the staircase boundary.
Since we know that no staircase area of a minimum Manhattan network defined
by shortest paths between x- or y-neighboring points is smaller than our staircase
areas, we also add for all staircases together at most twice the length of segments
of a minimum Manhattan network in the staircase areas.

6.5.2 Analysis of the Algorithm

First we prove that no shortest path is deleted by calling Procedure 13 Make
Smallest Sequence. For this consider the following lemma which can be easily
seen by considering the possible intersections of sequence rectangles.

Lemma 6.13. If a line segment is deleted in step 4 or 7 of Procedure 13 Make
Smallest Sequence, it was already in MN before calling Procedure 13.

Proof. Let R(vi, vi+1) be a sequence rectangle which is considered by Proce-
dure 13. W. l. o. g. let vi and vi+1 be x-neighboring with vix ≤ vi+1x

and base
points bx and by lying bottom-left. See Figure 6.16. Procedure 13 inserts in
step 2 line segments inducing a smaller staircase area. If in step 4 such a seg-
ment lv would be deleted, it has to be contained in a further sequence rectangle
R(v′j, v

′
j+1) of two x-neighboring points v′j and v′j+1. One of the two points v′j
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Procedure 13 Make Smallest Sequence

Require: A set P ⊆ R2 of points and a set MN of vertical and horizontal line
segments.

1: for each rectangle R(vi, vi+1) defined by neighboring staircase sequence points
vi, vi+1 of a staircase with more than two sequence points where vi and vi+1

are at least either x- or y-neighboring do
2: Insert into MN the missing line segments of ∂R(vi, vi+1) which induce a

smaller staircase area.
3: if vi and vi+1 are x-neighboring and vertical line segments are inserted by

step 2 then
4: Delete all marked vertical line segments of ∂R(vi, vi+1).
5: Mark the remaining vertical line segments of ∂R(vi, vi+1).

6: if vi and vi+1 are y-neighboring and horizontal line segments are inserted
by step 2 then

7: Delete all marked horizontal line segments of ∂R(vi, vi+1).
8: Mark the remaining horizontal line segments of ∂R(vi, vi+1).

9: return MN .

and v′j+1, say v′j, has to be the point vi. First assume v′j+1 lies to the left of v′j.
The left x-neighbor of v′j = vi is either the x-base point bx or a point above vi.
In the latter case, R(v′j, v

′
j+1) ∩ R(vi, vi+1) = vi contradicting that lv is also in

R(v′j, v
′
j+1). Thus, assume the left x-neighbor of vi is the x-base point bx and

R(vi, b
x) = R(v′j, v

′
j+1). (The base points of the sequence rectangle R(v′j, v

′
j+1)

lie top-left.) The rectangle R(vi, b
x) contains before calling Procedure 13 a y-

connection which lies incident to bx (otherwise Procedure 13 would not have
inserted the left vertical boundary segment of R(vi, vi+1)). It follows that af-
ter considering the rectangle R(vi, vi+1) the rectangle R(v′j, v

′
j+1) contains on the

height of R(vi, vi+1) both vertical boundary segments. Thus, Procedure 13 would
not delete the segment incident to vi. Now assume v′j+1 lies to the right of v′j.
That is, v′j+1 is the point vi+1 and therefore R(vi, vi+1) = R(v′j, v

′
j+1). Since

each rectangle is considered only once, the segment incident to vi would not be
deleted.

Now we prove that calling Procedure 13 Make Smallest Sequence does not
delete any shortest path.

Lemma 6.14. All points of P connected by a shortest path before calling Pro-
cedure 13 Make Smallest Sequence in step 3 of Algorithm 11 Optimal
Boundaries are still connected after step 3.

Proof. Consider steps 2, 4 and 7 of Procedure 13 Make Smallest Sequence.
Let lv be a vertical line segment that is deleted in step 4. If a line segment is
deleted and therefore marked before, this implies that it is also part of a rectangle
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Procedure 14 Make Smallest Base
Require: A set P ⊆ R2 of points and a set MN of vertical and horizontal line

segments.
1: for each x-base point bx do
2: Let vx be the x-neighboring point of bx on its right.
3: if there exists a staircase sequence with more than 2 points and bx as
x-base point then

4: Let (v1, . . . , vk), k ≥ 3, be the staircase sequence with vk has the small-
est y-coordinate among all staircase sequences with bx as x-base point.

5: Let y be the y-coordinate of the next horizontal line segment of MN
below vk touching the x-coordinate vx.

6: if vx is not incident to a vertical line segment covering [vx, (vxx, y)]
then

7: Add to MN the line segment [vx, (vxx, y)].
8: Delete all marked line segments of [(bxx, v

x
y ), (bxx, y)].

9: Mark the remaining line segments of [(bxx, v
x
y ), (bxx, y)].

10: return MN .
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Figure 6.17: Proof of Lemma 6.14.

considered before. The algorithm marks vertical line segments if they are induced
by x-neighboring points. Thus, lv is the intersection of two sequence rectangles
R(p, q) and R(p, r) with common point p. That is, the segment lv is incident to
the point p which is x-neighboring to the points q and r either both above or
both below p. W. l. o. g. let qy ≥ ry ≥ py. See Figure 6.17 (a).

The points p and q and the points p and r are neighboring staircase sequence
points of two different staircases. The segment lv is deleted if it would be doubled
to the left and to the right. This implies that p and q belong to a staircase with
base points bottom-left and p and r to one with base points bottom-right. See
Figure 6.17 (b). Thus, p and q are also y-neighboring and the y-connection inside
R(p, q) consists of exactly one line segment by Lemma 4.30. The segment lv is
deleted if the line segments [q, (qx, py)] and [r, (rx, py)] are inserted by step 2 and
the segment lv is already in MN before calling Procedure 13. Since p and q have
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its base points bottom-left and p and r bottom right, by step 2 also the horizontal
line segments [p, (qx, py)] and [p, (rx, py)] are inserted if they do not already exist.
Since p and r are x-neighboring there is a shortest (p, r)-path in MN after step 1
of Algorithm 11. Assume one of the paths between p and q and between p
and r, say the (p, r)-path, is missing after calling Procedure 13. That is, either
the vertical line segment [r, (rx, py)] or the horizontal line segment [p, (rx, py)],
w. l. o. g. [p, (rx, py)], is also deleted. By Lemma 6.13, [p, (rx, py)] is determined
by an x-covering in step 1 of Algorithm 11 and belongs to H. Thus, before
calling Procedure 13 in MN are the segments [p, (px, ry)], [p, (rx, py)] and either
[r, (px, ry)] or [r, (rx, py)]. If [r, (px, ry)] is already in MN after step 1, [p, (rx, py)]
would not be deleted by step 7 of Procedure 13. See Figure 6.17 (c). If [r, (rx, py)]
is already in MN after step 1, lv would not be deleted by step 4 of Procedure 13.
Therefore, there exists a shortest (p, r)-path after calling Procedure 13.

Now we examine the Procedure 14 Make Smallest Base and motivate why
no shortest path is deleted by calling it. First we show that the procedure is
completely passed through only for a very special constellation.

Lemma 6.15. The if-clause in step 6 of Procedure 14 Make Smallest Base
is fulfilled only if the x-neighboring points of bx lie both above or both below bx.

Proof. Assume vx is not incident to a line segment covering [vx, (vxx, y)] (y as
defined by step 5 of Procedure 14). W. l. o. g. let vxy ≥ bxy . Since bx and vx are
x-neighboring, bx is incident to a vertical line segment pointing upwards. This
line segment is inserted into MN and could be moved or switched to the width
of vx if there would not be an x-neighboring point of bx on the other side of bx

prohibiting this. Therefore, this point lies also above bx.

Now we can prove that Procedure 14 does not delete any possible shortest path
between neighboring points.

Lemma 6.16. All points of P connected by a shortest path before calling Proce-
dure 14 Make Smallest Base in step 4 of Algorithm 11 Optimal Bound-
aries are still connected after step 4.

Proof. Consider steps 8 and 9 of Procedure 14 Make Smallest Base. W. l. o. g.
assume vx lies above bx. If a line segment is marked this implies that it is also
considered either by Procedure 13 Make Smallest Sequence (i. e., is part
of a rectangle defined by neighboring sequence points) or part of another base
rectangle already considered before by Procedure 14.

Assume we lose a shortest path. This path can be only be a path between bx and
a point either in the first or second quadrant of bx. The horizontal line segment
with y-coordinate y as defined in step 5 of Procedure 14 which touches the x-
coordinate of vx is justified by two y-neighboring points p, q ∈ P above or on the
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Figure 6.18: Proof of Lemma 6.16.

same height as bx. One of the two points, say p, lies to the left of bx and the other
to the right (p can be bx). Before calling Procedure 14 there exists a shortest
(bx, vx)-path and a shortest (p, q)-path. Since we add in step 7 the missing line
segments of [vx, (vxx, y)] together with the shortest (p, q)-path and the parts of the
former (bx, vx)-paths with y-coordinates smaller or equal y we already keep after
step 8 all shortest paths to points in the first quadrant of bx. See Figure 6.15 for
an example.

Now assume we lose a shortest path to a point in the second quadrant of bx

because of the absence of a line segment [(bxx, y1), (bxx, y2)], y1 ≤ y2. The deleted
segments of [(bxx, v

x
y ), (bxx, y)] are marked during considering the other point r ∈ P

x-neighboring to bx which lies above bx by Lemma 6.15. See Figure 6.18. If the
segment is marked in a preceding step of Procedure 14 Make Smallest Base,
by the same argument as above we conserve also all shortest paths to points in
the second quadrant of bx.

Thus, assume that bx and r are neighboring points of a staircase sequence and
[(bxx, y1), (bxx, y2)] is marked by step 5 of Procedure 13 Make Smallest Se-
quence. The appropriate staircase has its base points bottom-left. The line
segments [r, (rx, b

x
y)] and [bx, (rx, b

x
y)] are inserted by step 2 of Procedure 13 if

they are not already contained in MN .

The line segment [r, (rx, b
x
y)] is deleted if it es doubled to the left (dashed line

segment in Figure 6.18). That is, [r, (rx, b
x
y)] is in the set V by Lemma 6.13.

But then the line segment [(bxx, y1), (bxx, y2)] would not be doubled to the left and
therefore not marked when considering the sequence rectangle R(bx, r). See again
Figure 6.18.

Now consider the segment [bx, (rx, b
x
y)]. Since bx and r are not y-neighboring

(otherwise r would lie below the y-coordinate y), the line segment [bx, (rx, b
x
y)] is

not marked by step 8 of Procedure 13 Make Smallest Sequence and therefore
not deleted when considering R(bx, r). The line segment [bx, (rx, b

x
y)] is deleted

only if it is doubled upwards. A doubling upwards is performed if there is a
staircase with more than two sequence points and base points top-right. The
point bx has to be one sequence point. But then the left x-neighbor r of bx lies
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not above the height y and we do not lose to r a shortest path if we delete vertical
segments above y. Thus, we do not delete a shortest path to a point in Q2(bx).

Altogether we see that calling Procedure 14 Make Smallest Base does not
delete any shortest path.

With this at hand it is easy to see that our algorithm computes a Manhattan
network.

Theorem 6.17. Algorithm 11 Optimal Boundaries computes a Manhattan
network for the input points P .

Proof. By Corollary 4.34, Lemma 6.14 and Lemma 6.16 after Phase I the set
MN contains for each staircase an extended staircase boundary. Thus, steps 1
through 4 perform step 1 of Algorithm 4 Manhattan Network. The rest
steps of Algorithm 11 are a direct implementation of Phase II of Algorithm 4.
Therefore, Algorithm 11 computes a Manhattan network for P .

To achieve the approximation ratio our algorithm is allowed to use at most twice
the length of a minimum Manhattan network. By Theorem 4.35 the length of
the segments inserted by step 1 is at most the length of a minimum Manhattan
network inside the neighboring point area N . As mentioned earlier the steps per-
formed by Procedure 12 Make Envelope does not increase the length of the
line segments. In the next theorem we point out that the length of the line seg-
ments after calling Procedure 13 Make Smallest Sequence and Procedure 14
Make Smallest Base is at most twice the length of a minimum Manhattan
network.

Theorem 6.18. The total length of the line segments in MN after Phase I of
Algorithm 11 Optimal Boundaries is at most twice the length of a minimum
Manhattan network inside the neighboring point area N .

Proof. Consider Procedure 13 Make Smallest Sequence. W. l. o. g. assume
the actually considered consecutive staircase sequence points vi and vi+1 are x-
neighboring. The y-covering contains a y-connection inside the vertical boundary
segments of R(vi, vi+1). Each time we insert a vertical line segment by step 2 of
Procedure 13, we mark all vertical line segments of ∂R(vi, vi+1). That is, we keep
in mind that we doubled the y-covering in ∂R(vi, vi+1). If the algorithm wants to
double such a segment a second time for a rectangle R(v′j, v

′
j+1) (having exactly

this line segment of R(vi, vi+1) in common), it will be deleted by step 4. By
Lemma 6.13 no segment inserted by Procedure 13 is itself doubled in a later step
of Procedure 13. See Figure 6.14. Thus, after step 8 the vertical segments are
only doubled and not tripled.

Now, consider the horizontal segment inserted by step 2. If vi and vi+1 are not
y-neighboring we cannot consult a horizontal line segment of the x-covering to
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Figure 6.19: Proof of Theorem 6.18.

legitimate it. For this, we use the pareto envelope. In step 2 of Algorithm 11 we
moved the line segments of the x- and y-covering to get a smallest area which
have to be considered afterwards. No line segment of the pareto envelope has to
be doubled by step 2 because all segments of staircase boundaries belonging to
the envelope lying in such a way that the staircase area is smallest possible. Thus,
if the algorithm inserts a horizontal line segment lh in step 2 we want to justify
it by line segments of the pareto envelope with same x-coordinates. We have
to argue that each line segment of the envelope is used at most once. Assume
that a part of two line segments lh and l′h are justified by the same segment
of the envelope. For this, let vi and vi+1 and v′j and v′j+1 be the two pairs of
neighboring staircase sequence points which are both not y-neighboring and for
which lh and l′h are inserted by step 2. W. l. o. g. let vix ≤ v′jx . In order that one
segment of the envelope is used to justify lh and l′h it holds v′jx < vi+1x

. Thus,
v′j and v′j+1 could be only x-neighboring (as desired by the condition of step 1 of
Procedure 13) if vix = v′jx and vi+1x

= v′j+1x
. Again by the condition of step 1 of

Procedure 13 both sequences have more than two sequence points and since the
shaded areas as depicted in Figure 6.19 are empty as mentioned in Section 4.2,
the lower staircase has its base points below the sequence points and the upper
staircase has them above. One of the two horizontal line segments lh and l′h is
justified by an envelope segment lying below and the other by the upper envelope
segment. Again since the shaded areas are empty there cannot lie above or below
these two staircases further staircases for whom also horizontal line segments are
added justified by the same envelope segment. Thus, each envelope segment is
used to justify only one segment inserted by step 2.

Now we consider Procedure 14 Make Smallest Base. See again Figure 6.15.
If the if-clause in step 6 is fulfilled, by Lemma 6.15 bx is x-neighboring to two
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points vx and v′x above or below it. There is a y-connection in the rectangle
R(vx, bx) and one in the rectangle R(v′x, bx). If vx is not incident to a vertical
line segment covering [vx, (vxx, y)] (y defined as in step 5 of Procedure 14 Make
Smallest Base) the y-connection is incident to bx. The algorithm inserts the
missing line segments of [vx, (vxx, y)]. If segments of [(bxx, v

x
y ), (bxx, y))] are already

marked, this implies that also in the rectangle R(v′x, bx) there are line segments
inserted at the width of v′x. That is, the line segments of [(bxx, v

x
y ), (bxx, y))] given

by the y-covering is doubled already. If the algorithm wants to double it a second
time we delete this segment by step 8. After step 8 MN contains at most twice
the length of [(bxx, v

x
y ), (bxx, y))] which was given by step 1 of Algorithm 11. By the

construction of the doubling of Procedure 14, for each staircase the doubling is
performed to diminish the staircase area. That is, after doubling a segment, on
one side of this segment lies the smallest staircase area and the doubled segment
could not be doubled into this direction. Thus no doubled line segment will be
itself be doubled. If a segment of H or V is doubled twice, it will be deleted.
Thus after Phase I the total length of the line segments in MN is at most twice
the length of a minimum Manhattan network inside N .

By now, we are prepared to prove that our algorithm computes a Manhattan
network with approximation ratio two.

Theorem 6.19. Algorithm 11 Optimal Boundaries computes a Manhattan
network for P with total length at most twice the length of a minimum Manhattan
network for P .

Proof. To achieve the approximation ratio we have to account each length of
a line segment of a minimum Manhattan network MMN at most twice. Our
strategy of the proof is to partition the plane into two areas and to compare the
length of a minimum Manhattan network in each area separately. First, we want
to remind that we only need to consider shortest paths for point pairs constitut-
ing critical rectangles. The first area we consider is the neighboring point area N
defined by x- or y-neighboring points. After Phase I, by Theorem 6.18 the length
of the line segments in MN is at most twice the length of a minimum Manhattan
network inside N . The remaining area is the area R2 \ N which is the union of
the interiors of all staircase areas defined by line segments of MN in Phase I plus
the area which lies outside the pareto envelope. At this, each staircase area is
accounted as an open area. We are allowed to count the line segments added in-
side the staircase areas independently of the boundary segments only if we know
that each staircase area is smallest possible with respect of the neighboring point
area N . More precisely, we maximize the area considered by the line segments
of the first phase of the algorithm and minimize the staircase areas. A minimum
Manhattan network contains for two x-neighboring points at least the length of
one y-connection. We do not know where this y-connection lies. To count the seg-
ment inserted in the second phase of the algorithm independently we must choose
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the line segments in Phase I in such a way that they are best for the staircase
areas (such that the areas are smallest concerning these segments). On account
of this, we call Procedure 13 Make Smallest Sequence (see Figure 6.14 (a)
and (b)) and Procedure 14 Make Smallest Base. By Procedure 13 we add
for x-neighboring sequence points the vertical boundary segment (together with
the horizontal one) of the sequence rectangle which diminishes the staircase area
in the best manner. The same holds for y-neighboring sequence points. Now
consider Procedure 14. Observe Figure 6.15: Our algorithm chooses the segment
incident to bx, as depicted in Figure 6.15 (a) before calling Procedure 14 Make
Smallest Base. A minimum minimum Manhattan network contains either the
segments just as our algorithm before calling the procedure or the vertical line
segments incident to vx as depicted in Figure 6.15 (b). Then the staircase area is
smaller than the one defined by our line segments in MN after step 2. Therefore
we call the Procedure 14 Make Smallest Base which selects the segment in-
cident to vx. Thus, for a staircase sequence (v1, . . . , vn) with base points bx and
by, let Aapp be the staircase area of the boundary computed by Algorithm 11 in
Phase I. The minimum Manhattan network MMN contains (bx, v1)- and (by, vn)-
paths and shortest (vi, vi+1)-paths, 1 ≤ i < n, inside the neighboring point area
N constituting a staircase boundary Bopt inside N . Let Aopt be the staircase
area of Bopt. After Phase I we get Aapp ⊆ Aopt.

By the property Aapp ⊆ Aopt and since Aapp∩N = ∅ holds and since we use only
line segments of MMN∩N to justify segments inserted in Phase I, we partitioned
the problem in two areas which can be considered separately. By Theorem 5.4 we
can compute a Manhattan network for staircases with approximation ratio two
inside the staircase area.

By the calculation done in Section 6.2 with k1 = k2 = 2, we get that our algorithm
approximates minimum Manhattan networks with a ratio of two.

Last, we want to prove the running time of our algorithm.

Theorem 6.20. The running time of Algorithm 11 Optimal Boundaries for
n points is O(n log n).

Proof. First of all we must sort the points of P . This can be done in time
O(n log n). By Lemma 4.36 the running time of step 1 is O(n log n). The
sweeps performed in steps 2, 3 and 4 each takes time O(n). By Lemma 4.12
it requires O(n log n) time to find the staircases. The running time to compute
a 2-approximation for a Manhattan network of a staircase given the staircase
boundary is O(k log k) for k sequence points by Theorem 5.5. Each sequence
point can only belong to at most three different staircases by Lemma 4.11, thus
we get a total running time of O(n log n) to compute Manhattan networks for all
staircases.
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This yields the total running time for the algorithm of O(n log n).

By Corollary 4.37 and 5.6 for a set of sorted points we get a slightly better running
time for the algorithm.

Corollary 6.21. The running time of Algorithm 11 Optimal Boundaries for
n sorted points is O(n).

6.6 On the Way to Better Approximations of

Minimum Manhattan Networks

This section describes an approach for a better approximation ratio than two.
Unfortunately, these ideas did not yet lead to a better approximation algorithm.
Nevertheless, we get deeper insights into the problem and think that these ideas
might lead to a better approximation ratio.

Consider the algorithm we introduced in the preceding section. The structure of
the algorithm was to compute with Algorithm 5 Compute Boundaries a set
of line segments containing a boundary for each staircase. By Theorem 4.35 this
set has length no more than the length of a minimum Manhattan network inside
the neighboring point area N . Afterwards, the presented algorithm optimizes
the staircase boundaries in the following way: For a staircase each minimum
Manhattan network contains a staircase boundary inside the neighboring point
area N . Let Aopt be the appropriate staircase area and let Aapp the staircase
area of the boundary computed by our algorithm for the same staircase. After
optimization, the boundary of the staircase area fulfills the property Aapp ⊆ Aopt.
The disadvantage is that we use by this optimization twice the length of a mini-
mum Manhattan network inside N . The idea to achieve a better approximation
ratio is to compute a Manhattan network in a similar way to the 2-approximation
algorithm presented in Section 6.4 but to use a different strategy to prove the
approximation ratio. Particularly, we compute all Manhattan networks for stair-
cases to optimality by Algorithm 6 Dynamic Program For Staircases. If
we choose for a staircase a wrong boundary (i. e., the minimum Manhattan net-
work contains a boundary such that the staircase area is smaller), we know that
we have a credit since we computed the Manhattan networks for staircases to op-
timality. See Figure 6.20 for an example. In Figure 6.20 (a) we see the set of lines
computed by Algorithm 5 Compute Boundaries. The algorithm chooses the
line segment incident to bx. That is, for the staircases with sequences (v1, . . . , v4),
(v′1, . . . , v

′
4) and (v′′1 , . . . , v

′′
4), respectively, the staircase area is not smallest pos-

sible. It could be that in the neighboring point area N a minimum Manhattan
network contains boundary segments such that the appropriate staircase areas
are smaller. Note that the x-neighboring points of bx are the points v′1 and v′′′1 .
The algorithm in the preceding section would diminish the staircase areas by
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Figure 6.20: Example of a triple.

inserting the dashed line segments showed in Figure 6.20 (b) and deleting the
vertical segments on the width of bx above the height of v′′4 . Unfortunately, if a
minimum Manhattan network chooses the segment incident to bx, the algorithm
presented in the preceding section would use twice the length of the minimum
Manhattan network inside the region R(v′1, b

x)∪R(v′′′1 , b
x). Therefore, to achieve a

better approximation ratio we must not choose the line segments the algorithm of
the preceding section would choose. Furthermore, instead of using Algorithm 8
Recursion For Staircases to solve Manhattan networks for staircases we
solve the Manhattan networks for staircases to optimality. Now, consider what
could happen. In the worst case, our solution contains the dashed line segments
depicted in Figure 6.20 (b). Note that our solution already contains the line
segment incident to bx. Since we solve the staircases to optimality we know that
in this case also the minimum Manhattan network would contain the dashed line
segments (but not the line segment incident to bx). Let `1 be the length of the
dashed line segments on the left of bx below the height of v′′4 and `2 be the length
of the vertical line segments on the width of bx above v′′4 . We can upper bound
the length of the vertical line segments in R(v′1, b

x)∪R(v′′′1 , b
x) by 2`1 + 3`2. The

length of the vertical line segments of a minimum Manhattan network inside
R(v′1, b

x) ∪ R(v′′′1 , b
x) is at least 2(`1 + `2). Thus, inside R(v′1, b

x) ∪ R(v′′′1 , b
x) we

achieve an approximation ratio of at most 3
2
. This argumentation can be applied

if Algorithm 5 Compute Boundaries selects a line segment that is incident to
the midpoint of an alternating triple.

Definition 6.22. An alternating x-triple (p, q, r) is an ordered set of three points
p, q, r ∈ P with q x-neighboring to p and r, and p and r lie both either above or
below q.
An alternating y-triple (p, q, r) is an ordered set of three points p, q, r ∈ P with q
y-neighboring to p and r, and p and r lie both either to the left or to the right of
q.
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Figure 6.21: (a) An alternating x-triple. (b) An alternating y-triple.

See Figure 6.21 for examples of alternating x- and y-triples.

We can look at this also from another perspective: The line segment incident to
bx is exactly the intersection of the two base rectangles R(v′1, b

x) and R(v′′′1 , b
x).

Generally, if a base or sequence rectangle does not overlap with a base or se-
quence rectangle of another staircase, we can choose the boundaries right. The
problem occurs if two staircases share boundary segments and if the choice of a
boundary segment which is optimal is suboptimal for the other affected staircase
(as in Figure 6.20). Nevertheless, if all possibly wrong chosen boundary segments
are incident to the midpoint of an alternating triple (e. g., the exact intersection
of two base (or sequence) rectangles), we would reach a 1.5-approximation. Un-
fortunately, there exist examples at which the situation is more complicated. We
will give them below.

Before, we will improve the boundary computed by Algorithm 5 Compute
Boundaries. By the considerations given before, our idea would lead to an
approximation ratio not better than 1.5. Consider once again Algorithm 11 Op-
timal Boundaries presented in the preceding section. As mentioned in the
preceding section, we can limit the region to the pareto envelope. That is, af-
ter computing the staircase boundaries the algorithm calls Procedure 12 Make
Envelope to limit the region where the Manhattan network is placed to the
pareto envelope. The pareto envelope contains a subset P of the input points
P . See Procedure 15 to get this set P of points called pareto points. The pro-
cedure starts with the bottommost point and runs along the pareto envelope in
counterclockwise order and keep in mind the visited points of P . Note that at
the end of the proceeding we reach again the point with smallest y-coordinate,
which we consider in step 1 of Procedure 15. We keep in mind the order of the
points included to P and call two points neighboring in P if they are included to
P one after the other. The area defined by neighboring points of P will become
essential in the following.

Definition 6.23. The pareto point area NP is the union of all rectangles defined
by neighboring points of P. That is,

NP =
⋃

p,q neighboring points in P

R(p, q).
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Procedure 15 Computing the Pareto Points

Require: A set P ⊆ R2 of points.
1: Let p ∈ P the point with smallest y-coordinate.
2: Set P = {p}.
3: for i = 1, . . . , 4 do
4: if i is odd then
5: Set d = y.
6: else
7: Set d = x.
8: while there exists a point q ∈ P in d-neighboring to p in Qi(p) do
9: Set P = P ∪ q.

10: Set p = q.

11: return P .

To achieve a better approximation ratio we would also use and call Procedure 12
Make Envelope to limit the region to be considered to the pareto envelope.
Moreover, our idea is to justify some segments inserted by our algorithm by
segments of a minimum Manhattan network that are part of the pareto envelope.
For this, consider a point p ∈ P which is contained in the pareto point set P
and the neighboring point q ∈ P concerning the order of P . Inside R(p, q) each
minimum Manhattan network contains horizontal line segments of total length
|px − qx| and vertical line segments of total length |py − qy|. The same holds for
the network defined by the line segments computed by Algorithm 5 Compute
Boundaries. If for two neighboring points p, q ∈ P , R(p, q) contains a line
segment of a staircase boundary, by Procedure 12 Make Envelope the line
segment lies best possible for the staircase. Thus, for two neighboring points
p, q ∈ P the network contains horizontal line segments of total length |px−qx| and
vertical line segments of total length |py − qy| in R(p, q). We use this observation
in the next lemma.

Lemma 6.24. Let MN be the set of segments computed by Algorithm 5 Com-
pute Boundaries after calling Procedure 12 Make Envelope. If we select
for each pair p, q ∈ P , p /∈ P or q /∈ P, of x-neighboring points an additional hor-
izontal line segment of length |px− qx| and for each pair of points p, q ∈ P , p /∈ P
or q /∈ P, of y-neighboring points an additional vertical line segment of length
|py− qy| then the length of MN together with these segments is at most 1.5 times
the length of a minimum Manhattan network inside the pareto point area NP plus
once the length of a minimum Manhattan network inside the remaining parts of
the neighboring point area N \NP .

Proof. Let MN be the network computed by Algorithm 5 Compute Bound-
aries after calling Procedure 12 Make Envelope and MMN be a mini-
mum Manhattan network. By the preliminary considerations we know that
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Figure 6.22: Proof of Lemma 6.24.

|MN ∩ NP | = |MMN ∩ NP |. Now consider two points p, q ∈ P being x- or
y-neighboring. W. l. o. g. let p and q be x-neighboring, px ≤ qx, and py ≤ qy. At
least one of the two points, say q, is not element of the pareto point set P . That
is, both Q1(q) and Q2(q) contain at least one point of P . Let u1 ∈ P be the one
in Q1(q) with minimum x-coordinate and u2 ∈ P the one in Q2(q) with maximum
x-coordinate. (Note that u2x ≤ px holds.) See Figure 6.22. The points u1 and
u2 are neighboring points in P regarding the order of P . In an analogous way,
let d1, d2 ∈ P be the points in Q3(q) and Q4(q), respectively. MN as well as the
minimum Manhattan network MMN contains horizontal line segments of length
|u1x−u2x| and |d1x−d2x| inside R(u1, u2) and R(d1, d2), respectively. We use one
half the length |px−qx| of |u1x−u2x| and one half of the length |px−qx| of |d1x−d2x|
to justify the additional horizontal line segment inside R(p, q). Since we insert an
additional horizontal line segment only between x-neighboring points p and q, in
the strip {r ∈ R2 | px ≤ rx ≤ qx} at most one additional horizontal line segment
is added. Therefore, the segments of the pareto envelope below and above this
segment are used only once to justify such a segment. With the same argumen-
tation we can justify vertical line segments for y-neighboring points. Altogether,
we can estimate the used length of line segments by

|MN | ≤ 3

2
|MMN ∩NP |+ |MMN ∩N \ NP |.

We use this lemma to insert further line segments without increasing the approx-
imation ratio. See Procedure 16.

Procedure 16 Double Staircases
Require: A set P ⊆ R2 of points and a set MN of vertical and horizontal line

segments.
1: for each sequence rectangle R(vi, vi+1) that belongs to two staircases each

with more than two sequence points do
2: Insert to MN the remaining segments of ∂R(vi, vi+1).

3: return MN .
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(a) (b)

Figure 6.23: (a) Network before calling Procedure 16 Double Staircases. (b)
Network after calling Procedure 16 Double Staircases.

With this procedure we can improve our computed boundaries. See Algorithm 17
for the approach.

Algorithm 17 Better Boundaries

Require: A set P ⊆ R2 of points.
Phase I:
1: Let MN = H ∪ V be the return of Algorithm 5 Compute Boundaries.
2: Let MN = Make Envelope(P,H, V ).
3: Let MN = Double Staircases(P,MN).
Phase II:
4: for each staircase S do
5: Compute with Algorithm 6 minimum Manhattan network MMN of S.
6: MN = MN ∪MMN .
7: return MN .

See Figure 6.23 for an example of calling Procedure 16 Double Staircases.
Since Procedure 12 Make Envelope and Procedure 16 Double Staircases
do not delete any shortest path, Algorithm 17 Better Boundaries is a direct
implementation of Algorithm 4 Manhattan Network. Thus, by Theorem 4.23
we get that Algorithm 17 computes a Manhattan network.

Theorem 6.25. For a set P ⊆ R2 of points Algorithm 17 Better Boundaries
computes a Manhattan network for P .

Together with Lemma 6.24 we get the following statement.

Lemma 6.26. The total length of the line segments in MN after Phase I of
Algorithm 17 Better Boundaries is at most 1.5 times the length of a minimum
Manhattan network inside the pareto point area NP and once the length of a
minimum Manhattan network inside the remaining parts of the neighboring point
area N \NP .

Proof. By Theorem 4.35 after step 1 of Algorithm 17 the length of the line seg-
ments in MN is at most the length of a minimum Manhattan network inside N .
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vi
vi+1

Figure 6.24: Proof of Lemma 6.26.

Calling Procedure 12 Make Envelope does not increase the length of MN .
Now, consider Procedure 16 Double Staircases. Let vi and vi+1 be two con-
secutive sequence points which belong to two staircases. Since R(vi, vi+1) is a
sequence rectangle of two staircases, the staircases are either of type depicted in
Figure 4.6 (a) and (c) or of type depicted in Figure 4.6 (b) and (d). As mentioned
in Section 4.2 the grey shaded areas shown in Figure 6.24 do not contain a point
of P . Thus, vi and vi+1 are x- and y-neighboring.

Since the sequences of the appropriate staircases each contain at least three
points, one of the two points vi and vi+1 is an inner point. This point does
not belong to the pareto envelope. Thus, we can apply Lemma 6.24 and get the
desired statement.

The boundary segments considered by Procedure 16 Double Staircases are
exactly these segments lying inside a sequence rectangle which is identical to a
sequence rectangle of another rectangle.

To summarize our insights, up to now, we can handle the intersection of base
rectangles if they intersect in exactly one line segment and we can handle the
intersection of sequence rectangles if they are identical. If two base rectangles
overlap in more than one line segment, the staircases have to lie as in Figure 4.30
or the two sequences (v1, . . . , v4) and (v′1, . . . v

′
4) with x-base point bx in Fig-

ure 6.21. In this case, for two staircases with intersecting base rectangles the
upper staircase can be seen as independent of the lower one. Furthermore, the
two (or more) affected sequences lie on the same side of the appropriate base
point (in contrast to the case where two staircase sequences form an alternating
triple). It follows, if we choose for the one staircase the boundary best possible
(with respect to the neighboring point area), this does not conflict with the other
staircase. The remaining cases which have to be considered are intersections of
two different sequence rectangles and the intersection of a base rectangle with
a sequence rectangle. We consider the latter and give two examples that need
more sophisticated ideas to solve the problem. See Figure 6.25 (a). There are
five staircases. The staircase with sequence (v1

1, . . . , v
1
k1

) has an overlapping base
rectangle R(v1

k1
, v′11 ) with the staircase (v′11 , . . . , v

′1
k1

) which contains R(v1
k1
, v′11 ) as
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Figure 6.25: (a) Network computed in Phase I of Algorithm 17 Better Bound-
aries. (b) Possible segments chosen in Phase II.

a sequence rectangle. An analogous statement holds for the other staircases.
(Note that we can also construct examples where the overlapping rectangles are
not identical.) It could be (with a slightly different scaling of the instance) that
our algorithm selects in Phase II the segments depicted in Figure 6.25 (b). The
chosen line segments are used to connect the sequence points v′11 , v

2
1, v
′2
1 and v3

1 to
its base points v2

1, v
′2
1 , v

3
1 and v′31 , respectively. In the appropriate rectangles the

network computed by our algorithm contains all vertical boundary segments of
the rectangles. In contrast, there is the possibility that a minimum Manhattan
network for such a rectangle contains only one of the two vertical boundary seg-
ments. This would be the one chosen in our Phase II. Thus, we achieve in these
rectangles only an approximation ratio of at most two. To overcome this problem
we have to choose the segments more carefully. If we want to try which of the
two segments l1v and l′1v we should choose, we have to know which of the segments
l2v and l′2v we should use. For these segments we have to know the right segment
of the two l3v and l′3v . This iterates until l′5v and the example can be continued
arbitrarily. There are Ω(n) staircases linked together.

If we want to try all possibilities to choose the segments l1v, l
′1
v , l

2
v, l
′2
v , . . ., this

leads to an exponential algorithm. Nevertheless, think of Algorithm 6 Dynamic
Program For Staircases for computing minimum Manhattan networks of
staircases. We can use (or more precisely extend) the dynamic program to solve
this set of nested staircases. We start with the leftmost staircase depicted in
Figure 6.25. We compute with the dynamic program the minimum Manhattan
network for the staircase with sequence (v1

1, . . . , v
1
k1

) once with the line segment l1v
and once with the segment l′1v and keep in mind the two computed values. In the
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Figure 6.26: An example of a more complicated nesting of staircases.

next step, we consider the next staircase (the one with sequence (v′11 , . . . , v
′1
k1

)).
At this step we compute the minimum Manhattan network four times. We have
to try all possibilities to choose l1v or l′1v and l2v or l′2v . To determine the length
of the minimum Manhattan network we have to take into account the values of
the staircase considered first with respect to which segment l1v or l′1v is chosen.
For this we do not have to compute the minimum Manhattan network of the
first staircase again, but only look at the computed values. Note that we have to
compute four times a minimum Manhattan network for the second staircase in
this step, but by the computation we could decide for each of the two segments
l2v and l′2v which segment l1v or l′1v should be chosen. That is, we fixed for each
of the two segments l2v and l′2v the choice of l1v or l′1v . It follows that for each
successive staircase of the nested staircases we have to compute four minimum
Manhattan networks of staircases. We could have O(n) nested staircases. Thus,
to solve these staircases we get a running time of O(n4) (the original Algorithm 6
has running time O(n3)).

Unfortunately, the nesting of staircases can be more complicated than in this
special case considered beforehand. Moreover, we can extend this example to
achieve nestings for almost all sequence rectangles of Figure 6.25. See Figure 6.26.
(Note that we draw only the left part of the example given in Figure 6.25.) In
this example the sequence rectangles of the staircases depicted in Figure 6.25
overlaps with base rectangles. It could be that our algorithm selects in Phase II
the segments depicted in Figure 6.27. In the appropriate rectangles the network
computed by our algorithm contains the two horizontal boundary segments lih, l

′i
h ,
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Figure 6.27: Possible segments chosen in Phase I and II.

1 ≤ i ≤ 4, of the rectangles. In contrast, a minimum Manhattan network could
contain only one of the two horizontal boundary segments for such a rectangle.
Furthermore, the problem which vertical segments should be chosen displayed in
Figure 6.25 still exists.

To achieve a dynamic program which solves the problem in polynomial time also
for this problem, we have to found a starting point or more precisely, a staircase
with which we could start as in the example of Figure 6.25. In Figure 6.25,
the leftmost staircase could be seen as the starting point. Generally, we think
that a staircase sharing segments with the pareto envelope could be the right
choice because the boundary segments contained in the pareto envelope are fixed
(since they lie best possible for the staircase and do not affect other staircases).
Nevertheless, this ideas have to be made more precise.

Another idea to deal with this problem, is to think of a cost function which
assigns a cost to select the problematic line segments inside such a rectangle (for
example the two segments l1v and l′1v in Figure 6.25) in a more abstract way than
to actually compute the complete minimum Manhattan network for the staircase.
It would suffice if we could upper bound the length of a minimum Manhattan
network for a staircase adequately. This cost function could also be used by a
dynamic program.

Indeed, if one of the two ideas presented could be made precise, one can also
think to extend this dynamic program to an algorithm solving the Manhattan
network problem to optimality.
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6.7 Conclusion

In this chapter we introduced four approximation algorithms for the Manhattan
network problem. To the best of our knowledge we gave the algorithm with the
best approximation ratio of 2 and running time of O(n log n) for this problem.
The algorithm of Seibert and Unger [SU05] who proposed a 1.5-approximation is
incorrect in the analysis. We were not able to fix their analysis or to vary their
algorithm to achieve the claimed result. We pointed out two different problems
arising in their analysis.

Our 3-approximation algorithm is very simple both in the description and in
the analysis compared to the algorithm and analysis of the 3-approximation of
Benkert et al. [BWWS06]. It is based on two simple sweeps which insert for
neighboring points two line segments on the boundary of the rectangle defined
by the points. Afterwards, we only have to compute Manhattan networks for
staircases. This proceeding can be done in running time O(n log n) for n input
points.

We presented two different 2-approximation algorithms, the first with running
time O(n3) and the second with running time O(n log n). As the 3-approximation,
the first given 2-approximation is rather simple, whereas the second one needs
more effort because we needed staircase boundaries fulfilling the assumption that
the staircase area is contained in the staircase area of a minimum Manhattan
network (defined by boundaries inside the neighboring point area N ).

It is a major challenge to clarify the complexity status of the problem. We think
the difficulty to solve the Manhattan network problem to optimality lies in assign-
ing the right staircase boundaries. As suggested in Section 6.2 and particularly
in Section 6.6 staircases can be “nested”. Thus we cannot try all possible stair-
case boundaries because this might affect the boundaries of all other staircases.
Actually, we do not think that this will really happen but a detailed analysis has
to be done on how staircase boundaries can interact. As an intermediate step we
think that one could improve the ratio of an approximation algorithm to 1.5 as
suggested in Section 6.6.
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