Synthesen und strukturelle Studien neuartiger terpenbasierter C₂-symmetrische Diole und Aminoalkohole für die enantioselektive Katalyse

Inaugural-Dissertation

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Yesim Alpagut aus Krefeld

Köln 2008

Berichterstatter: Prof. Dr. Bernd Goldfuß Prof. Dr. Axel G. Griesbeck

Tag der mündlichen Prüfung: 01.07.2008

Die vorliegende Arbeit entstand zwischen April 2003 und April 2008 unter der wissenschaftlichen Leitung von Prof. Dr. Bernd Goldfuß am Organisch-Chemischen Institut der Universität zu Köln.

Danksagung:

Besonders bedanken möchte ich mich bei meiner Mutter für die jahrelange und großzügige Unterstützung.

Mein Dank gilt auch meinen Kolleginnen und Kollegen Dr. Tina Kop-Weiershausen, Dr. Dominik Lange, Dipl. Chemiker Francis Soki und Dipl. Chemikerin Maria Schumacher für Ihre Hilfsbereitschaft und die hervorragende Arbeitsatmosphäre, Diskussionsbereitschaft und nicht zuletzt für das Korrekturlesen der vorliegenden Dissertation.

Weiterhin bedanke ich mich bei den Mitarbeitern des Instituts: Katrin König, Christof Schmitz, Dr. Matthias Schäfer, Dr. Nils Schlörer, den Mitarbeitern der Feinmechanik-Werkstatt, Ingo Müller und Dietmar Rutsch. Mein Dank gilt hier besonders Dr. J.-M. Neudörfl für die zeitaufwendigen Röntgenstrukturanalysen.

Herrn Prof. Dr. B. Goldfuß danke ich für die interessante Themenstellung, die persönliche Betreuung und die sehr gute Zusammenarbeit.

Herrn Prof. Dr. A. G. Griesbeck danke ich für die Übernahme des zweiten Gutachtens und Herrn Prof. Dr. G. Meyer für die Übernahme des Prüfungsvorsitzes.

Für meine Mutter

1	ZUS	AMMENFASSUNG	7		
2	EINI	LEITUNG	18		
2.1		Terpene	18		
2.2		Chiralität	23		
2.3 2.3.	.1	Die Bedeutung der enantioselektiven Katalyse Enantioselektive Additition von Alkylzinkreagenzien an prochirale	24		
		Carbonylverbindungen	26		
2.3.	.2	Enantioselektive Reduktion von prochiralen Carbonylverbindungen	30		
2.3.	.3	Enantioselektive Protonierungen	35		
2.4		Carbamate	40		
2.5 2.5	.1	Theoretische Berechnungen Grundlagen der Computerchemie	42 42		
2.5.	.2	Methoden der Computerchemie			
2.5.2.1		Kraftfeldmethoden			
2.5.	.2.2	semi-empirische Methoden	45		
2.5.	.2.3	<i>ab-initio</i> -Methoden	46		
2.5.	.2.4	Die Dichtefunktional-Methoden (DFT)	47		
3	ZIEL	SETZUNG DER ARBEIT	49		
3.1		Vorarbeiten im Arbeiskreis	49		
3.2		Zielsetzung	50		
4	ERG	EBNISSE UND DISKUSSION	51		
4.1 4.1.	.1	Synthese chiraler auf Fenchon-basierender Chelatliganden Synthese von Aminoalkoholen auf Pyrroldin- und Anilin-Basis durch <i>a</i> -	51		
		Lithiierung	51		
4.2		Synthese neuartiger C ₂ -symmetrischer terpenbasierter Diole	72		
4.3 Synthese chiraler auf Carvon-basierende Chelatliganden		Synthese chiraler auf Carvon-basierende Chelatliganden	80		
4.4		Versuchte Synthese von chiralen Phosphorsäuren			

4.5 4.5.1	Enantioselektive Reaktionen in Gegenwart von chiralen Liganden Verschiedene auf Terpene basierende Liganden als Präkatalysatoren in	87 n
	der asymmetrischen Diethylzink-Addition an Benzaldehyd	87
4.5.2	Enantioselektive Protonierungsreaktion von Lithiumenolaten in	
	Gegenwart von chiralen Fencholliganden als Protonenquellen	90
5 EXF	PERIMENTELLER TEIL	91
5.1 5.1.1	Arbeitstechniken Allgemeine Methoden	91 91
5.1.2	Analytik	91
5.1.3	Reagenzien und Lösungsmitteln zur Synthese von chiralen Fenchyl-	
	alkoholen	94
5.2 5.2.1	Arbeitsvorschriften Synthesen der Liganden	95 95
5.2.1.1	Synthese von N-(tert-Butoxycarbonyl)pyrrolidin (N-Bocpyrrolidin)	95
5.2.1.2	Synthese von (1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i>)-1,3,3-Trimethyl-(2 <i>S</i>)-pyrrolidin-2-ylbicyclo	
	[2.2.1]heptan-[[1,3]oxazolidin]-2`-on, [(2S)-N-Fenchylcarbamat], (R)-1]	96
5.2.1.3	Synthese von N-(<i>tert</i> -Butylcarbonyl)-pyrrolidin (N-Pivpyrrolidin)	98
5.2.1.4	Synthese von (1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i>)-1,3,3-Trimethyl-(2 <i>S</i>)- <i>N</i> -(<i>tert</i> -Butylcarbonyl)-	
	pyrrolidin-2-ylbicyclo[2.2.1]heptan-2`-ol, $[2(S)-N$ -Pivpyrrolidylfenchol],	
	<i>(R)</i> -2]	99
5.2.1.5	Synthese von N-(Trifluoracetyl)-pyrrolidin	100
5.2.1.6	Versuchte Synthese von (1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i>)-1,3,3-trimethyl-2-[1-(trifluor-	
	acetyl)pyrrolidin-2-yl]bicyclo[2.2.1]heptan-2-ol	101
5.2.1.7	Spaltungsversuche von (2S)-N-Fenchylcarbamat, (R)-1	102
5.2.1.7.1	Spaltungsversuch von (<i>R</i>)-1 mit CH ₃ COOH	100
5.2.1.7.2	Spaltungsversuch von (<i>R</i>)-1 mit HCl und die Synthese von	
	(2S)-N-Pyrrolidylcamphen, (R)-3	101
5.2.1.7.3	Spaltungsversuch von (R)-1 mit 30M ethanolischer NaOH-Lösung	102
5.2.1.7.4	Spaltungsversuch von (R)-1 mit 50%-iger KOH-Lösung	102
5.2.1.7.5	Synthese von (1R,2R,4S)-1,3,3-trimethyl-(2S)-N-(Methylacetyl-	
	pyrrolidin-2-ylbicyclo[2.2.1]heptan-2'-ol, (<i>R</i>)-4	103

5.2.1.7.6	Synthese von (1R,2R,4S)-1,3,3-trimethyl-(2S)-N-(2,2-Dimethyl-3-	
	hydroxy-3-methyl-pyrrolidylpentamidbicyclo[2.2.1]heptan-2'-ol,	
	(<i>R</i>)-5	104
5.2.1.7.7	Versuchte Synthese von (2S)-N-Pyrrolidylfenchol und die	
	Bildung des (2S)-N-Pyrrolidylfencholhydrochlorid, (R)-6	105
5.2.1.7.8	Synthese von 2,2'-Bisfenchol-bispyrrolidinmalonsäureamid, (R)-7	106
5.2.1.8	Synthese von <i>N</i> -(<i>tert</i> -Butoxycarbonyl)-anilin (<i>N</i> -Bocanilin)	110
5.2.1.9	Versuchte Synthese von (1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i>)-2-exo-(2- <i>N-tert</i> -Butoxycarbonyl-	
	phenyl)-1,3,3-trimethylbicyclo[2.2.1]-heptan-2-ol (<i>N</i> -Bocanilinfenchol)	112
5.2.1.10	Synthese von N-(tert-Butylcarbonyl)anilin (N-Pivanilin)	113
5.2.1.11	Synthese von (1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i>)-2-exo-(2- <i>N-tert</i> -Butylcarbonylphenyl)-1,3,3-	
	trimethylbicyclo[2.2.1]-heptan-2-ol (N-Pivanilinfenchol), (R)-8	115
5.2.1.12	Versuchte Synthese von (1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i>)-2-exo-(2-Aminophenyl)-1,3,3-	
	trimethylbicyclo[2.2.1]-heptan-2-ol	116
5.2.1.12.1	Entschützen von (R)-8 mit 30M ethanolischer NaOH-Lösung	115
5.2.1.12.2	2 Entschützen von (<i>R</i>)-8 mit 50%-iger KOH-Lösung	115
5.2.1.12.3	B Entschützen von (R)-2 mit 30M ethanolischer NaOH-Lösung	116
5.2.1.12.2	2 Entschützen von (<i>R</i>)-2 mit 50%-iger KOH-Lösung	116
5.2.1.13	Synthese von (1R,2R,4S)-2-exo-[2-(2,2'-Dimethylpropylamin)-phenyl]-	
	1,3,3-trimethylbicyclo[2.2.1]-heptan-2-ol, Aminofenchol (R)-9	119
5.2.1.14	Synthese von N-(Trifluoroacetyl)-anilin	120
5.2.1.15	Versuchte Synthese von N-Trifluoroacetanilinfenchol	121
5.2.1.16	Synthese von (1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i>)-2-exo-1,3,3-Trimethyl-2phenylbicyclo [2.2.1]	-
	heptan-2-ol (Phenylfenchol), (<i>R</i>)-10	123
5.2.1.17	Synthese von (1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i>)-2-exo-[2-Hydroxymethylphenyl]-1,3,3-tri-	
	methylbicyclo[2.2.1]heptan-2-ol (Phenolfenchol), (R)-11	125
5.2.1.18	Synthese von (1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i>)-2-exo-[2-Hydroxymethylphenyl]-1,3,3-tri-	
	methylbicyclo [2.2.1]heptan-2-ol (Benzylfenchol), (R)-12	128
5.2.1.19	Synthese von (1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i>)-1,3,3-trimethyl-2-bicyclo[2.2.1]heptan-2-	
	benzaldehyd	130
5.2.1.20	Synthese von (4R,6S)-6-(2-Methoxy)phenyl)-1-methyl-4-isopropenyl-6-	-
	cyclohexen-2-ol, [Anisylcarvol], (S)-13	135
5.2.1.21	Synthese von (4R,6S)-6-(2-Hydroxymethylphenyl)-1-methyl-4-isoprope	enyl-
	6-cyclohexen-2-ol [Benzylcarvol], (S)-14	137

5.2.1.22	Synthese von (4R,6S)-6-(2-N-tert-Butylcarbonylphenyl)-1-methyl-4-	
	isopropenyl-6-cyclohexen-2-ol [<i>N</i> -Pivanilidcarvol], (<i>S</i>)-15	138
5.2.1.23	Synthese von 2,2'-Bis((1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i>)-2-hydroxy-1,3,3-trimethylbicyclo	
	[2.2.1]hept-2-yl)-1,1'-biphenyl (BIFOL) ^[75]	140
5.2.1.24	Synthese von 1,1'-Biphenyl-2,2'-biscarvol ((<i>P</i>)-BICOL) ⁷⁶	142
5.2.1.25	Hydrierung von 1,1'-Biphenyl-2,2'-biscarvol unter verschiedenen	
	Bedingungen	144
5.2.1.25.	1 Hydrierung von (<i>P</i>)-BICOL unter Pd/H ₂ (<i>3-5 bar</i>)	144
5.2.1.25.2	2Hydrierung von (<i>P</i>)-BICOL unter Pd/H ₂ (<i>30 bar</i> , im Autoklaven)	146
5.2.1.26	Synthese von (<i>M</i>)-1,1'-Biphenyl-2,2'-bismenthol ((<i>M</i>)-BIMOL)	147
5.2.1.27	Synthese von (P)-1,1'-Biphenyl-2,2'-bisverbenol ((P)-BIVOL)	148
5.2.1.28	Synthese von Benzylfenchylphosphonat	150
5.2.1.29	Versuchte Synthese von Benzylfenchylphosporsäure & die Bildung	
	von 2,2'-Bisbenzylfenchylperoxid, (<i>R</i> , <i>R</i>)-16	153
5.2.1.30	Versuchte Synthese (1 <i>R</i> , 2 <i>R</i> , 4 <i>S</i>)-1, 3, 3-Trimethyl-2-bicyclo-	
	[2.2.1]heptan-2-benzaldehyd durch saure Spaltung von (R,R) -16	154
5.2.1.31	Synthese von N-(tert-Butylcarbonyl)anilinfenchophosphonat über	
	die Zwischenstufe N-(tert-butylcarbonyl)anilinfenchophosphorchlorid)	155
5.2.1.32	Versuchte Synthese von N-(tert-Butylcarbonyl)anilinfenchophosphor	
	säure und die Isolierung von N-(tert-Butylcarbonyl)anilinfenchophospho	or-
	säurechlorid, (<i>R</i>)-17	156
5.3 5.3.1	Chiral katalysierte Reaktionen Addition von Diethylzink an Benzaldehyd, katalysiert durch enantio-	156
	merenreine Liganden	156
5.3.2	Protonierungsreaktion von 2-Methylcyclohexen in Gegenwart von	
	chiralen Protonenquellen	158
5.3.2.1	Synthese von 1-Trimethylsiloxy-2-methylcyclohexen (Silylenol- ether)	158
5.3.2.2	Enantiolselektive Protonierung von Lithiumenolaten in Gegenwart von	
	chiralen Fencholliganden	160

6	ANH	IANG	160
6.1 6.1.1		Kristallstrukturanalysen von Edukten Molekülstruktur von <i>N</i> -Pivaloylpyrrolidin (kurz <i>N</i> -Pivpyrrolidin)	160 160
6.1.2	2	Molekülstruktur von N-Pivaloylanilin (kurz N-Pivanilin)	162
6.1.3	3	Molekülstruktur von <i>N</i> -Bocanilin	164
6.2 6.2.1	l	Kristallstrukturanalysen von Produkten Molekülstruktur von Carbamat, (<i>R</i>)-1	166 166
6.2.2	2	Molekülstruktur von N-Trimethylacetylpyrrolidylfenchol,	
		N-Pivpyrrolidylfenchol, (R)-2	168
6.2.3	3	Molekülstruktur von N-Methylacetylpyrrolidylfenchol, (R)-4	170
6.2.4	1	Molekülstruktur von N-2,2 – Dimethyl-3-hydroxy-3-methyl-pyrrolidyl-	
		pentamidfenchol, (<i>R</i>)-5	172
6.2.5	5	Molekülstruktur von N-Pyrrolidylfenchol*Hydrochlorid, (R)-6	174
6.2.6	6	Molekülstruktur von 2,2'-Bisfenchol-bispyrrolidinmalonsäureamid, (R)-7	7176
6.2.7	7	Molekülstruktur von ortho-N-Pivanilidfenchol, (R)-8	179
6.2.8	3	Molekülstruktur von Aminofenchol, (R)-9	181
6.2.9)	Molekülstruktur von Phenylfenchol, (R)-10	183
6.2.1	0	Molekülstruktur von Phenolfenchol, (R)-11	185
6.2.1	1	Molekülstruktur von Benzylfenchol, (R)-12	187
6.2.1	2	Molekülstruktur von Anisylcarvol, (S)-13	189
6.2.1	3	Molekülstruktur von Pivanilidcarvol, (S)-15	191
6.2.1	4	Molekülstruktur von (P)-1,1'-Biphenyl-2,2'-biscarvol ((P)-BICOL)	193
6.2.1	5	Molekülstruktur von (<i>P)</i> -1,1'-Biphenyl-2,2'-bis- <i>para</i> -menthenol	
		((P)-BIMEOL)	196
6.2.1	6	Molekülstruktur von (<i>M)</i> -1,1'-Biphenyl-2,2'-bismenthol ((<i>M</i>)-BIMOL)	199
6.2.1	17	Molekülstruktur von (P)-1,1'-Biphenyl-2,2'-bisverbenol ((P)-BIVOL)	202
6.2.1	8	Molekülstruktur von Dibenzylfenchoperoxid, (R,R)-16	205
6.2.1	9	Molekülstruktur von N-Pivanilidfenchophosphorylchlorid, (R)-17	208
6.3 6.3.1	l	Theoretische berechnete Strukturen Theoretisch berechnete Struktur von (<i>2S</i>)- <i>N</i> -Fenchylcarbamat	209 209
6.3.2	2	Theoretisch berechnete Struktur von (2R)-N-Fenchylcarbamat	209
6.3.3	3	Theoretisch berechnete Struktur von (2S)-N-Pivpyrrolidylfenchol	210
6.3.4	1	Theoretisch berechnete Struktur von (2R)-N-Pivpyrrolidylfenchol	210

6.3.5	Theoretisch berechnete Struktur von (2S)-N-Methylacetylpyrrolidyl-	
	fenchol	211
6.3.6	Theoretisch berechnete Struktur von (2R)-N-Methylacetylpyrrolidyl-	
	fenchol	211
6.3.7	Theoretisch berechnete Struktur von (<i>M</i>)-BICOL	212
6.3.8	Theoretisch berechnete Struktur von (P)-BICOL	213
6.3.9	Theoretisch berechnete Struktur von (<i>M</i>)-BIMOL	214
6.3.10	Theoretisch berechnete Struktur von (P)-BIMOL	215
6.3.11	Theoretisch berechnete Struktur von (<i>M</i>)-BIVOL	216
6.3.12	Theoretisch berechnete Struktur von (P)-BIVOL	217
6.3.13	Theoretisch berechnete Struktur von (<i>M</i>)-BIMEOL	218
6.3.14	Theoretisch berechnete Struktur von (P)-BIMEOL	219
7 AE	KURZUNGSVERZEICHNIS	222
8 VE	RZEICHNIS DER VERBINDUNGEN	224
9 LI ⁻	TERATURVERZEICHNIS	224

1 Zusammenfassung

Im Rahmen der vorliegenden Arbeit wurden im ersten Teil auf den Grundbausteinen Pyrrolidin und Anilin basierende effiziente Synthesewege mit Schutzgruppen erarbeitet, um modulare, bidentate Chelatliganden in wenigen Schritten aus (-)-Fenchon darzustellen. Für beide Ausgangsverbindungen wurden, die in der Literatur am häufigsten verwendeten Schutzgruppen¹ gewählt und eingesetzt (Tabelle 1).

Schutzgruppen-	Pivaloylsäurechlorid	(Boc) ₂ O	Trifluoressigsäureanhydrid
Reagenz:	(I)	(II)	(III)
Schutzgruppen:	Acyl-Gruppe	BOC-Gruppe	Trifluoracyl-Gruppe م بح رجم CF ₃

 Tabelle 1: In Schema 1 und 2 eingesetzte Schutzgruppen.

(I), (II) und (III) stellen die Synthesewege in den Schemata dar

Das Schützen der beiden Ausgangsverbindungen ist erforderlich, da sonst bei Pyrrolidin (Schema 1) die α -Lithiierung² nicht stattfinden kann und bei Anilin (Schema 2) kann die Schutzgruppe nicht als *ortho*-dirigierende Gruppe (DMG = *directed metallation group*)³ wirken, die die *ortho*-Lithiierung am Aromaten, gefolgt von der nukleophilen Addition an die Carbonylfunktion, ermöglicht.

Als Ketonkomponente wurde, das aus dem "chiral pool"⁴ stammende (-)-Fenchon ausgewählt. Das Fenchon verfügt über ein starres Grundgerüst, bei dem im Vergleich zu Campher (auch ein aus dem "chiral pool" gewonnenes Terpen) keine Enolisierungsreaktion stattfinden kann. Ausserdem ist Fenchon in beiden enantiomerenreinen Formen preisgünstig zu erhalten.

Schema 1: Versuch zur Synthese von 2(*S*)-*N*-Pyrrolidylfenchol.

Schema 2: Versuch zur Synthese von *ortho*-Anilinfenchol.

Wie aus Schema 1 und 2 zu ersehen ist, konnte sowohl bei Pyrrolidin die Zielverbindung (2S)-N-Pyrrolidylfenchol als auch bei Anilin die Zielverbindung ortho-Anilinfenchol nicht synthetisiert werden. Im Falle von Pyrrolidin wurde bei der Addition von 2-Lithio-N-Bocpyrrolidin an das (R)-Fenchon ein sehr stabiles Additionsprodukt, das (2S)-N-Fenchylcarbamat (R)⁵-1, gebildet. Bei der Addition von 2-Lithio-N-Bocpyrrolidin an das Fenchon wurde ein Diastereomerengemisch erwartet. Die Röntgenstrukturanalyse des (2S)-N-Fenchylcarbamats (R)-1 zeigte nur das der Verbindung, die (S)-Diasteromer auch durch NMR-spektroskopische Untersuchungen bestätigt wurde. Zur Überprüfung der Diastereoselektivität der Produkte (2S)- bzw. (2R)-N-Fenchylcarbamat wurden guantenmechanische Berechnungen mittels Hybrid-Dichtefunktional-Theorie-Verfahren (B3LYP/6-31G*-Methode) durchgeführt. Die Berechnungen belegten die Begünstigung von (2S)-N-Fenchylcarbamat gegenüber dem (2R)-N-Fenchylcarbamat. Es ergibt sich, dass sowohl thermodynamisch als auch kinetisch das (S)-Diastereomer um 3.5 kcal/mol bevorzugt gebildet wurde, als das (R)-Diastereomer.

Mit dem Ziel das (*2S*)-*N*-Pyrrolidylfenchol zu synthetisieren, wurde versucht, das (*2S*)-*N*-Fenchylcarbamat (*R*)-1 unter basischen Bedingungen zu spalten. Es zeigte sich, dass unter drastischen basischen Bedingungen, wie es auch in der Literatur für Carbamatspaltungen beschrieben wurde,⁶ nicht gespalten werden konnte.

Erst nach dem Behandeln des (*2S*)-*N*-Fenchylcarbamats (*R*)-1 mit MeLi-Lösung (1.6 M in Et₂O) im Überschuss, als starkes nucleophiles Reagenz, konnte die Carbamateinheit gespalten werden, jedoch wurde anstatt dem angestrebten (*2S*)-*N*-Pyrrolidylfenchol, das (*2S*)-*N*-Methylacetylpyrrolidylfenchol (*R*)-4 und das unerwartete 2,2-Bisfenchol-bispyrrolidinmalonsäureamid (*R*)-7 isoliert und röntgenspektroskopisch charakterisiert (Schema 3).

Schema 3: Carbamatspaltung durch MeLi (1.6 M in Et₂O).

Zusammenfassung

Unter gleichen Spaltungsbedingungen konnte einmalig das Hydrochlorid der Verbindung (R)-6 kristallin erhalten werden, welches nach mehrmaligem Reproduktionsversuchen nicht erneut gewonnen werden konnte. Auch der Syntheseweg mit der Acyl-Schutzgruppe stellte Schwierigkeiten dar. Im Falle von Pyrrolidin konnte bei dem Additionsprodukt (R)-2 die erzielte Ausbeute von 10% nach unterschiedlichen Reaktionsoptimierungen nicht gesteigert werden, aus diesem Grund wurde dieser Weg verworfen. Bei Anilin konnte in hoher Ausbeute das Additionsprodukt (R)-8 gewonnen werden. Leider zeigte in beiden Verbindungen (R)-2 und (R)-8 das Entschützen eine weitere Schwierigkeit, dass die mit der Pivaloylsäurechlorid eingeführte Acyl-Schutzgruppe konnte unter basischen Bedingungen nicht abgespalten werden. Die gebildeten Additionsprodukte an (R)-Fenchon, (R)-2 und (R)-8, zeigten gegen Basen unter verschiedenen Temperatureinflüssen hohe Stabilität.

Des Weiteren wurden weitere Fencholderivate ausgehend von Brombenzol (R)-(10) (durch Brom-Lithium-Austausch), Phenol (R)-11 und Benzylalkohol (R)-12 durch Addition der ortho-lithiierten Derivate⁷ an (R)-Fenchon erhalten (Abbildung 1), die Verbindungen (R)-(10) und (R)-(12) wurden nun röntgenkristallographisch charakterisiert.

Kristallstruktur von (*R*)-10:

Abbildung 1: Synthese von Fencholderivaten.

Ausgehend von Benzaldehyd wurde versucht die dazugehörige Fencholverbindung zu synthetisieren. Durch Variation sowohl der Schutzgruppen (Morpholin oder Ethylenglycol) als auch durch die Veränderung der Reaktionsbedingungen (wie z. B. durch die direkte *ortho*-Lithiierung des geschützten Benzaldehyds oder über einen Halogen-Metall-Austausch) konnte die Addition des geschützten Benzaldehyd an Fenchon nicht erfolgen (Abbildung 2).

Abbildung 2: Versuchte Synthese von Benzaldehydfenchol.

Um die Effizienz der folgenden Fenchylalkohole zu untersuchen,

wurden die Fenchylalkohole als Chiralitätsvermittler in der enantioselektiven Diethylzinkaddition an Benzaldehyd eingesetzt und auf ihre Enantioselektivität getestet (Abbildung 3 und Tabelle 2).

Abbildung 3: Enantioselektive Diethylzinkaddition an Benzaldehyd.

Tabelle 2: Ergebnisse der enantioselektiven Diethylzinkaddition an Benzaldehyd,katalysiert durch verschiedene chirale Fenchylalkohole.

Alkohol	<i>ee</i> [%]	Ausbeute [%]	1-Phenylpropanol
(<i>R</i>)-2	10	47	S
(<i>R</i>)-4	31	93	S
(<i>R</i>)-7	34	68	S
(<i>R</i>)-8	10	70	R
(<i>R</i>)-11	9	56	R
(<i>R</i>)-12	75	45	R

Bis auf das Benzylfenchol (*R*)-12 (75% *ee*) zeigten die eingesetzten chiralen Alkohole bzw. Aminoalkohole geringe Enantioselektivität.

Zum Schluss wurde noch als Testreaktion das (2S)-N-Fenchylcarbamat (R)-1

als Chiralitätsvermittler in der enantioselektiven Ethylierung an Benzaldehyd eingesetzt und auf seine Enantioselektivität getestet. Es zeigte sich, dass das (*2S*)-*N*-Fenchylcarbamat (*R*)-1 erstaunlicherweise die enantioselektive Ethylierung bis zu 50% *ee* katalysiert, welches bis jetzt noch nicht beobachtet wurde (Tabelle 3).

Tabelle 3: Enantioselektive Diethylzinkaddition an PhCHO in Gegenwart von (R)-1.

(<i>R</i>)	- 1 [%mol]	<i>ee</i> [%]	Ausbeute [%]	1-Phenylpropanol
	2.5	41	53	S
	5	49	75	S
	10	50	83	S

Änderung der Reaktionsbedingungen zur Optimierung der enantioselektiven Ethylierung an Benzaldehyd zur Erhöhung der erzielten Enantioselektivität, wie z. B. durch Katalysatormenge, bewirkte eine minimale Erhöhung der Enantioselektivität. Im zweiten Teil dieser Arbeit werden die Synthesen und Anwendungen neuer, Terpen-basierender chiraler Diole für die enantioselektive Katalyse vorgestellt. Im Arbeitskreis Goldfuß wurde aus Biphenyl und (-)-Fenchon das C₂-symmetrische, chirale (M)-1,1'-Biphenyl-2,2'-bisfenchol⁸ (kurz (M)-BIFOL, **73**) entwickelt.

Analog der beschriebenen Synthese wurden neue, C₂-symmetrische chirale (*M*)-BIFOL-analoge Diole mit verschiedenen Monoterpenonen wie z. B. (-)-Carvon, (-)-Menthon und (-)-Verbenon synthetisiert und röntgenkristallographisch charakterisiert (Abbildung 4).

Abbildung 4: Synthese neuartiger, terpenbasierter C₂-symmetrische Diole.

Wie bei (M)-BIFOL (73) kristallisierten die neuen C₂-symmetrischen Diole aufgrund von Wasserstoffbrückenbindungen zwischen den beiden Terpenoleinheiten entlang der Biarylachse nur in einer Konformation aus. Bei (-)-Carvon und (-)-Verbenon wurde das (P)-Konformer und bei (-)-Menthon das (M)-Konformer hinsichtlich der Biarylachse beobachtet, röntgenkristallographisch charakterisiert und auch durch weitere spektroskopische Methoden (wie NMR-Analyse, Polarimetrie) bewiesen. (P)-BICOL wurde durch Ausgehend von (83) versucht verschiedene Hydrierungsmethoden das (P)-BICOL (83) komplett zu hydrieren. Hierbei konnte lediglich nur das terminal hydrierte Verbindung (P)-BIMEOL (87) isoliert und röntgenkristallographisch charakterisiert werden (Abbildung 5).

Abbildung 5: Durch Hydrierung aus (P)-BICOL gewonnene (P)-BIMEOL.

Zur Überprüfung der Diastereoselektivität der möglichen (*M*)- bzw. (*P*)-Konformere hinsichtlich der Biarylachse bedingt durch die Wasserstoffbrückenbindungen zwischen den Terpenoleinheiten wurden quantenchemische Berechnungen durchgeführt. Die quantenchemische Berechnungen bestätigten, dass die bei der Röntgenstrukturanalyse erhaltene Konformation entlang der Biarylachse in der Tat auch energetisch die günstigere Konformation der Diastereomere ist.

Sowohl (*M*)-BIFOL als auch die neu synthetisierten, C₂-symmetrischen Diole wurden als Chiralitätsvermittler in der enantioselektiven Katalyse der Diethylzinkaddition an Benzaldehyd eingesetzt und auf ihre Enantioselektivität getestet. (Tabelle 4).

Diole	<i>ee</i> [%]	Ausbeute [%]	1-Phenylpropanol
(M)-BIFOL	15	60	R
(<i>P</i>)-BICOL	2	53	R
(<i>M</i>)-BIMOL	24	64	S
(<i>P</i>)-BIVOL	< 1	75	rac
(<i>P</i>)-BIMEOL	< 2	88	R

Tabelle 4: Ergebnisse der enantioselektiven Diethylzinkaddition an Benzaldehyd,katalysiert durch verschiedene chirale C2-symmetrische Diole.

Es zeigte sich, dass nur (*M*)-BIFOL eine Enantioselektivität von 15% und (*M*)-BIMOL eine Enantioselektivität von 24% erzielen konnten, die anderen eingesetzten C_2 -symmetrischen Diole bewirkten kein Einfuss auf die Enantioselektivität.

2 Einleitung

2.1 Terpene

Über 2.000 Pflanzenarten enthalten in ihren Blüten, Blättern, Nadeln und Früchten und in ihren Harzen *etherische Öle.* Diese Öle enthalten flüchtige organische Substanzen mit ausgeprägtem Geruch und werden durch Wasserdampfdestillation oder durch Extraktion aus den zerkleinerten Pflanzenteilen gewonnen. Die einzelnen Komponenten der meist komplexen Gemische etherischer Öle gehören überwiegend zu den Terpenen, deren Erforschung *Wallach, v. Baeyer, Semmler und Tiemann* zu verdanken ist.⁹ Die Terpene werden gemeinsam mit den Steroiden wiederum zu den einfachen Lipiden (Lipoide) gezählt.

Formal lassen sich die Terpene als Oligomere des Kohlenwasserstoffs Isopren (1)

(1)

auffassen und aus C₅-Einheiten [Isoprenoide] zusammensetzen. Je nach Anzahl der Isoprenbausteine teilt man sie in:

- Monoterpene (C₁₀, 2 Isopreneinheiten),
- Sesquiterpene (C₁₅, 3 Isopreneinheiten),
- Diterpene (C₂₀, 4 Isopreneinheiten),
- Sesterpene (C_{25}), Triterpene (C_{30}) und Tetraterpene (C_{40}) ein.

Die Steroide leiten sich von den Triterpenen ab und die Caratinoide besitzen meist Tetraterpenstruktur.

Die Verknüpfung zweier Isoprenbausteine zu den Terpenen kann sowohl in einer aliphatischen Kette als auch durch Ringbildung erfolgen. Daher werden die Terpene in 3 Hauptgruppen unterteilt:

- acyclische oder aliphatische Terpene
- monocyclische Terpene
- bicyclische und oligocyclische Terpene

Monoterpene sind zusammen mit Sesquiterpenen Hauptbestandteil von ätherischen Ölen, die in Pflanzen in großen Mengen produziert werden. Zu den acyclischen Monoterpenen zählen die Kohlenwasserstoffe Ocimen (2) und Myrcen (3), die vor allem im Basilikumöl bzw. im Lorbeeröl auftreten (Abbildung 6).

Abbildung 6: Struktur von Ocimen (2) und Myrcen (3).

Wichtiger als die in Abbildung 6 genannten Terpene sind die natürlich vorkommenden Alkohole, die sich davon ableiten lassen. Hierzu zählen Geraniol (4), das den Hauptbestandteil des Geranium- und Rosenöls bildet, Linalool (5), das sich vor allem im Lavendelöl findet und Citronellol (6), bei dem das L(-)-Enantiomer im Rosenöl und D(+)-Enantiomer im Zitronenöl finden lässt (Abbildung 7).

Abbildung 7: Struktur einiger natürlich vorkommender Terpenalkohole.

Der Grundkörper der monocyclischen Monoterpene ist das *p*-Menthan (**7**), das eine pfefferminzartige Flüssigkeit ist, welches in zwei optisch inaktiven, *cis-trans*-isomeren Formen auftreten kann (Abbildung 8).

Abbildung 8: Grundkörper der monocyclischen Monoterpene.

Wie bei den acyclischen Terpenalkoholen gibt es auch bei den monocyclischen Terpenen Terpenalkohole und -ketone. Die drei wichtigsten monocyclischen Ketone sind:

Wie bei den monocyclischen Terpenen leiten sich auch die bicyclischen Terpene vom *p*-Menthan (7) ab. Je nach Verknüpfung wird nach der Caran- (8), Pinan- (9) und Bornangruppe (10) unterschieden (Abbildung 9).

Abbildung 9: Gruppen der bicyclischen Terpene.

Zu den wichtigsten Vertetern mit der Ketofunktion zählen folgende Verbindungen (Abbildung 10):

Abbildung 10: Die bekanntesten Terpenone.

2.2 Chiralität

Sowohl in der Natur als auch in der Technik tritt der Begriff *Chiralität* (Händigkeit, abgeleitet aus dem griechischen *cheir* = Hand) in vielfältigen Formen in Erscheinung. Der Begriff "Chiralität" wurde vor über 100 Jahren von *Lord Kelvin* geprägt.¹⁰ Enantiomere sind chirale Verbindungen, die sich wie Bild und Spiegelbild zueinander verhalten und nicht identisch (deckungsgleich) sind.¹¹ Die meisten Bausteine der Lebewesen, wie Nukleinsäuren, Proteine und Kohlenhydrate, die das Leben unseres Körpers regeln, sind chiral.¹² Als weiteres Charakteristikum setzt die Chiralität das Fehlen der Drehspiegelachse (S_n) voraus. Moleküle, die eine S₁ = C_S-Symmetrie (Spiegelebene) oder S₂ = C_i-Symmetrie (Inversionszentrum) besitzen, sind achiral und können mit dem Spiegelbild in Deckung gebracht werden (wie z. B. die *meso*-Weinsäure, Abbildung 11).

Abbildung 11: Symmetrie und Chiralität der Weinsäure in der Fischer-Projektion.

Im Alltag des Menschen wird das Phänomen "Chiralität" auch beobachtet. Z. B. sind die Riechrezeptoren der Nase chiral aufgebaut, daher kann beim Riechen einer duftenden Substanz der gewonnene Eindruck auch mit der enantiomeren Form des Moleküls zusammenhängen. Beispiele wären Carvon oder Limonen.

Während das (*S*)-Enantiomer des Carvons (**11**) einen Kümmelgeruch aufweist, riecht das (*R*)-Enantiomer des Carvons (**11**) nach Krauseminze. Das (*S*)-Limonen (**12**) zeigt einen zitronenartigen Geruch, wobei das (*R*)-Enantiomer des Limonens (**12**) einen orangenartigen Geruch hat (Abbildung 12).¹³

Abbildung 12: Die Enantiomere von Carvon und Limonen.

Chiralität im Molekül tritt auf, wenn das Molekül sowohl tripodale stereogene Einheiten wie z. B. bei asymmetrischen tetraedrisch koordinierenten Atomen besitzt, die nach Cahn-Ingold-Prelog-(*CIP*)-Nomenklatur bezeichnet werden, als auch bei helikalen sterogenen Einheiten, die in "axial-chiralen"-Systemen wie z. B. Biaryle und Allene auftreten, die als P(plus)- oder M(minus)-Anordnung beschrieben werden (Abbildung 13).¹¹ Die Transformation von einem helikalen System ins tripodale System kann erfolgen, wenn die Substituenten a, a', b, b' als Spitzen eines Tetraeders betrachtet werden.¹¹

Das Vorhandensein einer chiralen Achse kann unterschiedliche Ursachen haben, z. B. bei dem Allen (**13**) ist dies durch die "Steifheit" der Doppelbindungen bedingt. Bei den nächsten aufgeführten Verbindungen (**14**) und (**15**) entsteht die chirale Axialität durch die gehinderte Rotation um die Einfachbindung. Das sind 2 Rotamere, deren Drehbarkeit entweder durch die sperrigen Substituenten der Verbindung (**14**) ín der 2,2'-und 6,6'-Stellung behindert ist oder durch Ausbildung von Wasserstoffbrückenbindungen zwischen den vorhandenen Hydroxyfunktionen der Verbindung (**15**), diese erhält eine starre Konfiguration (Abbildung 14), deren Rotationsbarriere nicht überwunden werden kann.

Abbildung 14: Beispiele für axiale chirale Verbindungen.

In solchen Fällen wird von Atropisomerie gesprochen. Die Höhe der Rotations- bzw. Racemisierungsbarriere ist ausschlaggebend für die Konfigurationsstabilität und damit auch für die Isolierbarkeit der einzelnen Atropisomere. Ist die Energiebarriere der Rotamere hinreichend klein, dann wandeln sich die Atropisomeren so schnell ineinander um, dass das Molekül als Racemat vorliegt.¹⁴

2.3 Die Bedeutung der enantioselektiven Katalyse

Sowohl für viele biologische Prozesse als auch bei der Synthese von chiralen Arzneistoffen in der Pharmazie ist das Prinzip der chiralen Wechselwirkung von Organismen mit der Substanz zu berücksichtigen.¹⁵ Meistens wurde beobachtet, dass nur eines der beiden Enantiomere die gewünschte Wirksamkeit zeigt, während das andere entweder weniger wirksam oder toxisch sein kann. Z. B. bei Citalopram (**16**), welches ein Antidepressivum ist, wirkt das (*S*)-Enantiomer etwa vierzigmal effektiver als das (*R*)-Enantiomer.¹⁶ Ein weiteres Beispiel ist Ethambutol (**17**). Das (*S*,*S*)-Enantiomer wird als Antituberculostatikum verwendet, wohingegen das (*R*,*R*)-Enantiomer zur Erblindung führt (Abbildung 15).¹⁷

Diese und weitere Beispiele gaben in den letzten Jahrzehnten den Anstoß in der Pharmazie die asymmetrische Synthese von Wirkstoffen zunehmend weiterzuentwickeln und neue Arzneimittel enantiomerenrein auf den Markt zu bringen. Daher wurden zunächst neue, chirale, pharmokologisch aktive Verbindungen in beiden enantiomeren Formen synthetisiert und ihre biologische Wirksamkeit getestet.

Die Synthese enantiomerenreiner Verbindungen kann unterschiedlich erfolgen:

- durch biokatalytische Prozesse mit Enzymen¹⁸
- durch chemische Verfahren wie z. B. Racematspaltung
- durch Synthesen aus "chiralen pool"¹⁹
- durch asymmetrische Synthesen mit stöchiometrischen²⁰ oder katalytischen Mengen eines chiralen Auxiliars.²¹

Nachdem 1968 *Knowles* über die asymmetrische Hydrierung²² von prochiralen Olefinen mit einem chiralen Rhodium-(I)-Katalysator berichtet hatte, wurde im Jahre 1975 von *Monsanto* die erste industrielle asymmetrische Katalyse²³ unter Verwendung von *Knowles* chiralem Ligand CAMP (**18**) zur Synthese der chiralen Aminosäure L-3,4-Dihydroxyphenylalanin (*L*-DOPA, **19**) einem Anti-Parkinson Medikament entwickelt (Schema 4). Durch den Einsatz des Biphosphan-Liganden (*R*,*R*)-DIPAMP (**20**) konnte wenig später eine weitere Verbesserung des Prozesses ermöglicht werden.²⁴

Schema 4: L-DOPA- Synthese nach MONSANTO.

Nicht zuletzt wurde durch die Verleihung des Chemie-Nobelpreises 2001 an Knowles und Noyori für die Arbeiten über enantioselektive Hydrierungen, sowie an Sharpless für die enantioselektive Oxidation die große Bedeutung der enantioselektiven Katalyse unterstrichen.²⁵

2.3.1 Enantioselektive Additition von Alkylzinkreagenzien an prochirale Carbonylverbindungen

Im Jahre 1849 wurden von *Frankland* die ersten Organozinkreagenzien (Dimethylund Diethylzink) entwickelt, was den Beginn der Organozinkchemie kennzeichnete.²⁶ Erst in den letzten Jahren gewann die Anwendung der Organozinkverbindungen in selektiven C-C-Bindungsknüpfungen an Bedeutung. Durch die Addition von Organozinkreagenzien an prochirale Carbonylverbindungen in Gegenwart eines chiralen Auxiliars konnte ein guter Syntheseweg zu chiralen Alkoholen gewonnen werden (Schema 5), die Grundbausteine vieler Naturstoffe sind.

Schema 5: Enantioselektive Addition zinkorganischer Reagenzien an Carbonylverbindungen in Gegenwart von chiralen Auxiliaren.

1984 wurde von *Oguni und Omi* die erste katalytische Addition einer Organozinkverbindung an ein Aldehydsystem in Gegenwart von (*S*)-Leucinol (**21**, Schema 5) mit einer optischen Reinheit von 49 % ee erzielt.²⁷ Zwei Jahre später wurde von *Noyori* et al. die erste katalytische höchst enantioselektive Addition von

Diethylzink an Benzaldehyd mittels (-)-3-exo-Dimethylamino-iso-norborneol (DAIB 22, Schema 5), einem von Campher abgeleiteten chiralen B-Dimethylaminoalkohol, mit einer Enantioselektivität bis zu 99% und einer Ausbeute von 98 % berichtet.²⁸ Zur selben Zeit wurde von der Arbeitsgruppe Soai et al. aus der natürlichen Aminosäure (S)-Prolin eine Reihe von chiralen Pyrrolidylmethanole, wie z. Β. (S)-Diphenyl-(1-methylpyrrolidin-2-yl)methanol (DPMPM 23, Schema 5) synthetisiert und getestet. DPMPM zeigt ebenfalls bei der asymmetrischen Ethylierung an Benzaldehyd mit Diethylzink hohe Enantioselektivitäten bis zu 99 % ee.²⁹ Zur Klärung des zugrundeliegenden Mechanismus wurden in den folgenden Jahren ausführliche Studien durchgeführt (Schema 6).³⁰

Schema 6: Mechanismus der (-)-*DAIB*-(22) katalysierten Alkylierung von Benzaldehyd nach *Noyori*.

Einleitung

Im ersten Schritt reagiert DAIB (22) mit einem Äquivalent des Zinkreagenzes unter Bildung des Zinkkomplexes 24. Die zurückbleibende Alkylgruppe kann an das Benzaldehyd nicht übertragen werden. Im zweiten Schritt erfolgt eine Koordination eines zweiten Äquivalentes Zinkreagenzes an die Alkoxyzinkgruppe (24), wodurch eine Aktivierung an Benzaldehyd erzeugt wird, so dass die Addition möglich wird. Danach wird der Übergangszustand (27) durchlaufen, der dann zum Komplex (28) führt. Der als erstes gebildete Zinkkomplex (24) fungiert als multifunktionaler Katalysator. Als eine Lewis-Säue aktiviert er die Carbonylgruppe, während er als Lewis-Base wie oben beschrieben das Zinkreagenz aktiviert. Unter von 24, welches einen weiteren Katalysezyklus erneut Wiederherstellung durchlaufen kann, wird das Produkt (29) freigesetzt. Nach der mechanistischen Aufklärung wurde eine enorme Anzahl an chiralen Katalysatoren entwickelt und synthetisiert, deren Reaktivität und Enantioselektivität in der asymmetrischen getestet wurde.³¹ Benzaldehvd Hierbei Diethylzinkaddition an wurde die Unterscheidung zwischen den Liganden, die als chirale Lewis-Basen und den Liganden, die als chirale Lewis-Säure fungieren, gemacht. Zu den chiralen Lewis-Basen zählen z. B. von *Bolm* et. al entwickelte Pyridinliganden³² (30) oder auch von *Brown* et. al entwickelte Oxazaborolidine³³ (**31**), die beim Einsatz als Additive in asymmetrischen Ethylierung Benzaldehyd der hohe an Enantioselektivitäten erzielten (Abbildung 16).

Abbildung 16: Lewis-Basen, die in der asymmetrischen Ethylierung von aromatischen Aldehyden als Additive eingesetzt wurden.

Als chirale Lewis-Säuren wurden chirale Diole in Gegenwart von $Ti(O-i-Pr)_4$ eingesetzt. Hierzu gehören z. B. von *Ohno* et. al entwickelte C₂-symmetrische Disulfonamide³⁴ (**33**) oder das von *Seebach* et. al entwickelte TADDOL³⁵ (**34**), die ebenfalls die Dialkylzinkadditionen an aromatischen Aldehyden hochenantioselektiv katalysieren (Abbildung 17).

Abbildung 17: Lewis-Säuren mit Ti(O-*i*-Pr)₄, die in der asymmetrischen Ethylierung von aromatischen Aldehyden als Additive eingesetzt wurden.

In der enantioselektiven Diorganylzinkadditionen an Aldehyde in Gegenwart von Aminoalkoholen wurden sogenannte *nichtlineare Effekte³⁶* (NLE) beobachtet.

Dies ist darauf zurückzuführen, dass in einigen Fällen die Wechselwirkungen des Katalysators mit in der Lösung vorhandenen chiralen und achiralen Molekülen eine Rolle spielen, während in den meisten katalytischen Reaktionen die Richtung und die Höhe der Stereoselektivität durch die Energiedifferenzen der diastereomeren Übergangszustände bestimmt werden. In einigen Fällen kann dies zu einer nichtlinearen Beziehung zwischen den Enantiomerenüberschüsse der Katalysators und des Produktes führen.

Dieses Phänomen wurde von *Noyori* et al. bei der Diorganylzinkaddition an aromatische Aldehyde in Gegenwart von DAIB (**22**) untersucht und ein solcher nichtlinearer Effekt wurde beobachtet.³⁷ *Noyori* et al. führten den starken positiven nichtlinearen Effekt auf die Bildung von dimeren Komplexen der katalytisch aktiven Zinkspezies zurück. Wenn beide Enantiomere des Katalysators, d. h. sowohl das (*R*)-als auch das (*S*)-Enantiomer sich in Lösung befinden, so können durch Wechselwirkungen entweder Homodimere (*S*)-(*S*) und (*R*)-(*R*) oder Heterodimere (*R*)-(*S*) gebildet werden, welche selbst aber katalytisch inaktiv sind. Sind jedoch die Heterodimere thermodynamisch stabiler als die Homodimere, so kann es zu einer

Einleitung

Anreicherung des monomeren katalytisch-aktiven Überschussenantiomers des Katalysators führen, welches einen höheren Enantiomerenüberschuss aufweist als das Produkt selbst.

Im Jahre 1995 wurde ein weiterer besonderer positiver nichtlinearer Effekt von *Soai* et al. beschrieben, in der sie die autokatalytische Addition von Diisopropylzink an Pyrimidincarbaldehyd-Derivat (**35**) zeigten.³⁸ Bei dieser Reaktion wirkte erst das entstandene Additionsprodukt (**36**) selbst als Kataysator. Es reichten bereits geringe Mengen von (**36**) mit einem geringen Enantiomerenüberschuss um die Reaktion zu aktivieren, da letztendlich der Katalysator selbst mit hohem Enantiomerenüberschuss gebildet und daraus angereichert wurde (Schema 7).

Schema 7: Autokatalytische Diisopropylzinkaddition an Pyrimidincarbaldehyd nach *Soai.*

2.3.2 Enantioselektive Reduktion von prochiralen Carbonylverbindungen

Für die enantioselektive Reduktion von prochiralen Carbonylverbindungen zu den entsprechenden Alkoholen stehen zahlreiche Methoden zur Verfügung.³⁹

Vor 50 Jahren hatte die Einführung von Aluminium- und Borhydriden zur Reduktion von Carbonylverbindungen große Auswirkungen auf die Synthese beigetragen.⁴⁰ Sie ermöglichten bei den Edukten mit funktionellen Gruppen nicht nur eine vorhersehbare Chemoselektivität, sondern auch eine voraussagbare Diastereoselektivität. 1981 wurde von *Itsuno* et al. berichtet, dass 1: 2-Gemische aus chiralen Aminoalkoholen, z. B. (*S*)-Valinol und BH₃* THF zahlreiche achirale Ketone in 100 % Ausbeute mit Enantiomerenüberschüsse von 10 bis 73% zu chiralen sekundären Alkoholen reduzieren.⁴¹ Durch Optimierung der Reaktionsbedingungen
wurde die Reduktion von Acetophenon zu (R)-1-Phenylethanol mit dem aus (S)-Valin erhältlichen tertiären Aminoalkohol (**37**) und BH₃*THF zu einem Enantiomerenüberschuss von 94% gesteigert (Schema 8).⁴²

Schema 8: Enantioselektive Reduktion von Acetophenon mittels 37 nach Itsuno.

Es war von Anfang an naheliegend, dass das primäre Reaktionsprodukt des tertiären Aminoalkohols (**37**) ein Oxazaborolidin der Struktur (**38**) sein könnte, welches dann im Jahre 1987 durch *Bakshi* und *Shibata* bestätigt wurde. Sie fanden heraus, dass bei der Umsetzung des Aminoalkohols (**37**) mit zwei Äquivalenten BH₃ in THF zwei Äquivalenten H₂-Gas frei wurden. Nach Entfernen des Lösungsmittels und des BH₃-Überschusses im Vakuum wurde das Oxazaborolidin (**38**) durch Sublimieren in reiner Form erhalten, die durch spektroskopische Methoden belegt wurde.⁴³ Ohne den Oxazaborolidin-Katalysator wurde Acetophenon durch BH₃*THF langsam reduziert, daraus wurde schlussgefolgert, dass die Anwesenheit von (**38**) die erhöhte Reaktionsgeschwindigkeit der asymmetrischen Reduktion des Ketons bewirkt (Schema 9).

Schema 9: Oxazaborolidin-katalysierte Reduktion mit Boran.

Kurz darauf wurde aus dieser Beobachtung von *Corey* et al. der heute gebräuchliche CBS-Katalysator (zuerst **40** und dann **41**, benannt nach *Corey, Bakshi* und *Shibata,* Schema 10) aus Prolinol (**39**) entwickelt, der zu einer bemerkenswerten Beschleunigung der Reaktion und höherer Enantioselektivität führt.⁴⁴

Schema 10: Synthese der ausgezeichneten Oxazaborolidin-Katalysatoren nach *Corey* et al.

Der CBS-Katalysator **40** ist im Vergleich zu **41** äußert luft- und feuchtigkeitsempfindlich und bei der Reduktion von prochiralen Ketonen erzielte **41** höhere Enantioselektivitäten als **40**. Als Reduktionsmittel sind BH₃*THF und BH₃*SMe₂ für gesättigte oder aromatische Ketone³⁵ geeignet. Catecholboran für α , β -ungesättigte Ketone.⁴⁵ Die CBS-Methode führt bei kurzen Reaktionszeiten mit hohen Enantioselektivitäten nahezu quantitativ zu Produkten, deren absolute Konfiguration sich anhand der räumlichen Ansprüche der beiden Reste der Carbonylverbindung leicht vorhersagen lässt (Schema 11, in der die Ergebnisse der Reduktion von Ketonen in Gegenwart von **41** als Katalysator gezeigt wurde).^{35a}

Schema 11: Die CBS-Reduktion von Ketonen.

Über den allgemeinen Mechanismus dieser Reaktion gibt es gut detaillierte Vorstellungen (Schema 12). Im ersten Schritt koordiniert das elektrophile Boran an das Stickstoffatom im chiralen CBS-Katalysator **(42**), wodurch das im Oxazaborolidinring befindliche Boratom wesentlich stärker elektrophil wird. Im nächsten Schritt bindet der stark Lewis-saure Komplex (43) leicht an das Sauerstoffatom des Ketons und zwar je nach sterischen Gegebenheiten selektiv von der re- oder si-Seite. Dann wird intermolekular seitenselektiv ein Hydrid über einen Übergangszustand⁴⁶ (44) auf sechsgliedrigen das Kohlenstoffatom des Acetophenons übertragen, welches dann zu dem Reduktionsprodukt (45) führt. Im nächsten Schritt zerfällt der Komplex und es bildet sich der Borsäureester des Alkohols (46). Das Oxazaborolidin (42) wird dabei freigesetzt und steht für einen erneuten Reaktionszyklus zur Verfügung. Der entstandene Borsäureester wird bei der wässrigen Aufarbeitung mit HCI und MeOH hydrolysiert und somit wird der Alkohol (47) erhalten.

Schema 12: Vorgeschlagener Mechanismus für die katalytische enantioselektive Reduktion von Ketonen durch den Oxazaborolidin-Katalysator.

Die Aufklärung des zugrunde liegenden Mechanismus, die allgemeine Anwendbarkeit und die hohe Enantioselektivität führten dazu, dass eine Reihe vieler anderer bicyclischer Oxazaborolidin-Katalysatoren entwickelt wurden und in der enantioselektiven Reduktion von prochiralen Ketonen getestet wurden (Schema 13). Es zeigte sich, dass sowohl bicyclische Oxazaborolidine wie Aziridin- (**48**),⁴⁷ Azetidin- (**49**)⁴⁸ und Pyrrolidinkatalysatoren (**40**)³⁶ als auch das starre tricyclische Oxazaborolidine (**51**)⁴⁹ (*R*)-1-Phenylethanol in sehr hohem Enantiomerenüberschuss (94-98%) erzielten.

Schema 13: Enantioselektive Reduktion von Acetophenon mittels unterschiedlicher Oxazaborolidin-Katalysatoren.

Sowohl durch Entwicklung und Anwendung solchartiger Oxazaborolidine als auch durch den wohl definierten mechanistischen Verlauf der enantioselektiven Reduktion von Ketonen wurde es möglich diese Katalysatoren auch bei anderen Ketonen anzuwenden. Hierzu gehörten neben den Arylketonen wie z. B Acetophenon und seinen Derivaten,⁵⁰ Dialkylketone;⁴²⁻⁵¹ cyclische α,β -Enonen;⁵² acyclische α,β -Enonen;⁵³ α,β -Inone;⁵⁴ Ketone in Liganden von Metallkomplexen⁵⁵ und Trihalogenmethylketone.

2.3.3 Enantioselektive Protonierungen

Das Grundkonzept der enantioselektiven Protonierung ist äußerst einfach. Das Substrat ist ein prochirales Enolat mit zwei enantiotopen Seiten, das entweder durch Deprotonierung oder direkt durch eine Syntheseoperation wie nucleophile Addition an ein Keten⁵⁷ oder ein Enon⁵⁸ gebildet wird. Unter Zuhilfenahme eines chiralen, nichtracemischen Protonendonors wird eine Protonenübertragung entweder von der Ober- oder Unterseite (d. h. *re*- oder *si*-Seite) des Enolat-Kohlenstoffatoms kinetisch begünstigt, was zur Bildung des (*S*)- oder (*R*)-Enantiomer der Carbonylverbindung führt (Schema 14).⁵⁹

Schema 14: Grundprinzip der Enolatbildung bei der enantioselektiven Protonierung.

Es gibt zwei wichtige Gründe, warum die enantioselektive Protonierung zu einer attraktiven Methode geworden ist. Der erste ist, dass die enantiomerenreine Protonenquelle nicht verbraucht wird und *in situ* durch Reprotonierung mit Wasser zurück geworden werden kann und zweitens können die Produkte nachträglich nach einer nicht enantioselektiven Reaktion noch in eine enantiomeren Form überführt werden. Es gibt bestimmte Faktoren bzw. Ursachen, wodurch die enantioselektive Protonierung beeinflusst werden kann. Hierzu zählen:

- Protonenaustauschreaktionen zwischen elektronegativen Atomen gehören zu den schnellsten, oft diffusionskontrollierten Reaktionen, so dass die Differenzierung zweier diastereomerer Übergangszustände erschwert wird.⁶⁰
- Enantioselektive Protonierungsreaktionen sind kinetisch kontrolliert und unter thermodynamischer Kontrolle können racemische Produkte erhalten werden.

- E- und Z- Enolate weisen unterschiedliche Enantioseitenselektivitäten auf, da sich der diastereomere Übergangszustand der Protonierung des E- Enolats sich von dem beim Z-Enolat unterscheidet.
- Als Nebenreaktion tritt im manchen Fällen die Protonierung des Enolatsauerstoffes auf und durch das Keto-Enol-Gleichgewicht entstehen in der Regel racemische Produkte.
- Auch die Solvatation, Aggregation und Komplexierung beeinflussen oft drastisch das Ergebnis der Protonierung.

Die ersten Pionierarbeiten zur enantioselektiven Protonierung wurden von *Duhamel* et al. unter dem Schwerpunkt "Deracemisierung" von Aminosäuren durchgeführt.⁶¹ Als chirales Reagenz wurde die kommerziell erhältliche (R,R)-Di-O,O'-pivaloylweinsäure (-)-**53** eingesetzt und durch Deprotonierung von racemischem (±)-**52** mit LDA und Protonierung des gebildeten Enolats mit (-)-**53** wurde in 95% Ausbeute und einer Enantioselektivität von 70% das (*S*)-**52** gewonnen (Schema 15).

Bei dieser Reaktion wurde festgestellt, dass die Größe der Acylgruppe der chiralen Säure eine wichtige Rolle spielt, der Austausch der *tert*-Butylgruppe durch eine Methylgruppe bewirkt den vollständigen Verlust der Enantioselektivität. Weiterhin erkannte *Duhamel* auch, dass jenes sekundäre Amin, welches bei der Metallierung frei wird, die wesentliche Rolle spielt. Während mit LDA höhere Enantioselektivitäten erzielt werden konnten, zeigte sich eine geringere Induktion mit LiNEt₂ oder LiTMP.

Die enantioselektive Protonierung offenkettiger Enolate wurde von *Fehr* et al. entwickelt. Nach der Suche effizienter chiraler Protonierungsquellen wurden folgende Kriterien⁶² berücksichtigt:

- das chirale Reagenz sollte schwach acide sein;
- das zu übertragende Proton sollte sich in der N\u00e4he des stereogenen Zentrums befinden;
- das chirale Reagenz sollte elektronenreiche, chelatisierungsfähige Gruppen enthalten, die die konformative Beweglichkeit im Übergangszustand einschränken und
- für die synthetische Nutzbarkeit sollte es in beiden enantiomeren Formen einfach zugänglich und leicht regenierbar sein.

Die Suche führte zu den Ephedrinderivaten (+)-**53**, (-)-**54-H** und (-)-**54-Li** (Abbildung 18), da sie diese Kriterien erfüllten.

Abbildung 18: Die Ephedrinderivate als chirale Protonenquellen nach Fehr.

Durch die Arbeitsgruppe von *Fehr* wurde das erste Beispiel einer katalytischen enantioselektiven Protonierung von Metallenolaten möglich.⁶³ Sie entdeckten, dass die enantioselektive Addition von Lithiumthiolaten an Ketene in Gegenwart von äquimolaren Mengen an (-)-**54-H** Enantioselektivitäten bis zu 97% lieferten. Als Beispiel beschrieben sie die Reaktion von *p*-Chlorothiophenol mit dem Keten (**55**) und (-)-**54-Li**, die zum Thiolester (**57**) mit einer Enantioselektivität von 90% führte (Schema 16). Im ersten Schritt wird das Thiol durch (-)-**54-Li** deprotoniert und es bildet sich Lithiumthiolat und (-)-**54-H**. Danach erfolgt die Addition von Lithiumthiolat an das Keten (**55**) zum Thiolester (**57**) über einen vermuteten viergliedrigen cyclischen Übergangszustand (**56**).

Schema 16: Enantioselektive Additon von *p*-Chlorothiophenol an ein Keten in Gegenwart von Lithiumenolat (-)-54-Li.

Später zeigten sie auch, dass asymmetrische Protonierungen auch katalytisch durchgeführt werden können, wenn eine in der Reaktion gleichzeitig vorhandene achirale Säure (X-H) schneller mit dem deprotonierten chiralen Säure (X*-Li) reagiert als mit dem vorhandenen Enolat.⁶⁴ Hierzu wurde von *Fehr* et al. ein Katalysezyklus der Protonierungsreaktion formuliert (Schema 17).⁶⁵

Schema 17: Prinzip der katalytischen enantioselektiven Protonierung.

Ausgehend von den Randbedingungen, die *Fehr* et al. zum Design der chiralen Reagenzien als Protonendonoren führten, stellten sowohl *Rebek* et al. das chirale Lactam (**59**) ausgehend von der Kemp-Trisäure (**58**)⁶⁶ und *Yamamoto* et al. das chirale Imid-2-oxazolin (**60**)⁶⁷ als Protonenquelle her (Abbildung 19).

Abbildung 19: Von der Kemp-Trisäure entwickelte chirale Protonenquellen von *Rebek* (59) und *Yamamoto* (60).

Einfache, cyclische Enolate wurden mit dem von *Yamamoto* hergestellten Imid (**60**) mit zum Teil hoher Enantioselektivität protoniert (Schema 18).⁶⁸ Dabei wurde festgestellt, dass die Grösse und die elektronische Natur des Substituenten einen großen Einfluss auf die Enantioseitendifferenzierung am sp²-hybridisierten Kohlenstoffatom haben. Es stellte sich heraus, dass ein elektronenziehender Substituent wie z. B. ein Phenylring keine Enantioselektivität zeigte, was vermutlich auf die geringere Basizität des entsprechenden Enolats zurückzuführen ist.

Schema 18: Enantioselektive Protonierung von Cycloalkanonen mit 60.

2.4 Carbamate

Chemisch betrachtet, sind Carbamate (**61**) Salze und Ester der Carbaminsäure.⁶⁹ Sie werden auch als *Urethane* bezeichnet. Als Charakteristikum tragen die Carbamate (**61**) die funktionelle Gruppe (R,R')N-C(O)-OR". Die Carbaminsäure (**62**, H₂N-COOH) ist das Monoamid der Kohlensäure, sie ist wie die Kohlensäure nicht stabil und zerfällt in Ammoniak (NH₃) und Kohlendioxid (CO₂).⁷⁰ Esterderivate wie z. B. Ammoniumcarbamat (**62**) oder das Carbachol (**64**, Cholincarbamat), welches als Arzneistoff des Neurotransmitters Acetylcholin (**65**) Verwendung findet, sind stabile Verbindungen (Abbildung 20).⁷¹ Beim Carbachol liegt anstelle einer Acetylcholin eine Carbamoylgruppe vor, die dem Pharmakon eine erhöhte chemische Stabilität verleiht. Weiterhin stellt die Carbaminsäure die einfachste Aminosäure dar. In der Biochemie wird die Carbaminsäure in phosphorylierter Form als "Carbamoylphosphat" gefunden und spielt eine wichtige Rolle bei der Synthese von Pyrimidinbasen im Harnstoffzyklus, in der stickstoffhaltige Abbauprodukte wie z. B Ammonium (NH₄⁺) zu Harnstoff umgewandelt werden.⁷²

Abbildung 20: Carbamate und analoge Verbindungen, bis auf 65, welches ein Strukturanalogon von Carbachol (64) ist. Im Allgemeinen lassen sich Carbamate (61) aus Isocyanaten (66) und Alkoholen (67) herstellen (Schema 19).

Schema 19: Allgemeiner Syntheseweg zu Carbamat.

Wegen ihrer hohen Stabilität werden Carbamate gegenüber basenkatalysierter Hydrolyse als Schutzgruppen für Hydroxylfunktionen eingesetzt (FMOC, BOC).⁶⁹ Seit den 50er Jahren werden Carbamate vor allem als Insektizide (z. B. Lindan⁷³ (**68**)) Holzschutzmittel, Fungizide (z. B. Carbendazim⁷⁴ (**69**)), als wirksamer Wirkstoff in Pflanzenschutzmitteln und Herbizide⁷⁵ (z. B. gebrannter Kalk) oder Chlorate (**70**, Salze der Chlorsäure, HClO₃) als Unkrautbekämpfungsmittel in der Landwirtschaft eingesetzt (Abbildung 21). Früher wurden einige Carbamate auch als Schlafmittel verwendet.

Abbildung 21: Beispiele für ein Insektizid (68), Fungizid (69) und Herbizid (70).

2.5 Theoretische Berechnungen

2.5.1 Grundlagen der Computerchemie

Die Computerchemie kann als die angewandte Theoretische Chemie betrachtet werden, mit deren Hilfe nach verschiedenen Methoden die Eigenschaften chemischer Systeme berechnet werden können. Dadurch können folgende Kriterien wie (a) die dreidimensionale Struktur von Molekülen, (b) die Molekülenergien, (c) die Moleküleigenschaften, wie z. B. Dipolmoment, Polarisierbarkeit, NMR-Kopplungskonstanten, Frequenzsanalysen etc. und (d) die Geschwindigkeitskonstanten bestimmt werden.⁷⁶ Auf Computerberechnungen basierende Untersuchungen gehen von einem mathematischen Modell aus, welches die Energie eines Systems liefert. Dabei ist die Energie eine Funktion der Kernkoordinaten, d. h. es stellt die relative Anordnung der Atome zueinander. Die Geometrie kann entweder in kartesischen Koordinaten (x-, y-, z- Koordinaten) oder internen Koordinaten wie Abstände, Winkeln und Diederwinkeln angegeben werden. Diese Funktion kann als eine Fläche in einem (Hyper-) Raum mit n Dimensionen vorgestellt werden, die den Energiewert für jede beliebige Geometrie angibt, wobei n die Zahl der Geometrie-parameter entspricht. Dieses Phänomen wird durch die Potentialenergie-Hyperfläche PES (als potential energy hyper surface abgekürzt) beschrieben (Abbildung 22).

Als Grundprinzip wird vorausgesetzt, dass die tatsächlich vorliegende Form der untersuchten Struktur einer energetisch günstigen Anordnung der Atome im Raum entspricht. In der Potentialenergie-Hyperfläche wird diese Struktur durch Minima (**MIN1** und **MIN2**) wiedergegeben.

Nach der Abbildung 22 ist der Punkt (MIN1) das lokale Minimum und der Punkt (MIN 2) das globale Minimum. Beim (MIN2) handelt es sich um die günstigste Form der Substanz. Liegt ein Konformer vor, so wird lediglich ein lokales Minimum im Verlauf der Potentialenergie-Hyperfläche (MIN1) gefunden. Der Übergangszustand wird dagegen durch Sattelpunkte im Verlauf der Kurve, die als **TS** (*transition state*) gekennzeichnet werden, angegeben. Sie stellt den Punkt höchster Energie auf einem Pfad niedrigster Energie von einem Minimum zu einem anderen Minimum dar. Es gibt verschiedene Energie-Minimisierungsmethoden mit dessen Hilfe stationäre Punkte im Verlauf der Hyperfläche bestimmt werden können. Hierbei wird die erste Ableitung der Energie nach den Geometrieparametern gebildet. Ein Punkt, an dem keine Kräfte wirken, wird als stationärer Punkt bezeichnet. Dadurch wird es möglich, bestimmte Punkte auf der Hyperfläche zu finden. Mit der zweiten Ableitung der Energie nach den Geometrieparametern wird über die Art des stationären Punktes Information erhalten. Damit wird es möglich, Übergangszustände von Minima zu unterscheiden, da im Falle eines Übergangszustandes die zweite Ableitung negativ sein muss. Die Art der Bewegung entlang einer bestimmten Geometrieoptimierung kann als imaginäre Frequenz modelliert werden (NIMAG < 0, wobei NIMAG für number of imaginary frequencies steht).

2.5.2 Methoden der Computerchemie

Es gibt verschiedene Methoden um auf Computerberechnungen basierende Informationen von chemischen Systemen zu erhalten (Abbildung 23). Eine exakte Lösung zu den mathematischen Beschreibungen von chemischen Systemen ist nur für Einelektronensysteme möglich. Daher werden für alle theoretischen Untersuchungen Theorien herangezogen. Die Kraftfeldmethode ist ein solcher theoretischer Ansatz, der auf die klassische Mechanik zurückgeht und komplett ohne Berücksichtigung quantenchemischer Aspekte auskommt. Auf der anderen Ebene gibt es den quantenchemischen Ansatz, der die Schrödingergleichung näherungsweise zu lösen versucht.⁷⁷

43

Abbildung 23: Klassifizierung der verschiedenen computerchemischen Methoden.

2.5.2.1 Kraftfeldmethoden

Chemische Systeme können mit der klassischen Mechanik beschrieben werden, man spricht hierbei von den so genannten Kraftfeldmethoden, die im Englischen *force fields* (FF abgekürzt) genannt werden. Die Atome werden als "Kugeln" behandelt, die durch "Federn" zusammengehalten werden. Eine Differenzierung in Atomkernen und Elektronen findet nicht statt. Alle quantenmechanische Aspekte der Molekülbewegung und die damit verbundene Schrödinger-Gleichung werden nicht berücksichtigt. Die Wechselwirkungen zwischen den einzelnen Teilchen werden klassisch beschrieben. Um ein Kraftfeld definieren zu können, müssen sehr viele Parameter berücksichtigt werden. Hierbei findet eine Anpassung zwischen den experimentell erworbenen Daten statt und als Ergebnis wird eine empirische Bestimmungsvorschrift erhalten, mit der die entsprechenden Eigenschaften berechnet werden können. Hierbei wird klar, dass die Kraftfeldmethoden sehr gut experimentelle Ergebnisse reproduzieren und auch vorhersagen können, wenn eine gute mathematische Beschreibung der wichtigen Energiebeiträge zugrunde liegt.

44

Der grosse Vorteil der Kraftfeldmethoden gegenüber den quantenchemische Methoden ist ihr geringer Rechenaufwand, der die Behandlung von Molekülen mit mehreren zehntausend Molekülen erlaubt.

Beispiele für Kraftfeldmethoden sind:

- MM2, MM3 (<u>Molecular Mechanics</u>) für organische Moleküle geeignet
- AMBER (<u>Assisted Molecule Builder with Energy Refinement</u>) und CHARMM (<u>Chemistry at Harvard Molecular Mechanics</u>) beide Methoden sind f
 ür Bio-Makromolek
 üle geeignet
- UFF (<u>Universal Force Fields</u>)
 für das gesamte Periodensystem geeignet

2.5.2.2 *semi-empirische* Methoden

Im Gegensatz zu den Kraftfeldmethoden betrachten die *semi-empirischen* Methoden⁷⁸ die Elektronendichteverteilung weitgehend von den Positionen der Atomkerne losgelöst. Um dies machen zu können, muss die Quantentheorie einbezogen werden, da die klassische Beschreibung der Elektronen nicht möglich ist. Es muss also eine Lösung der Schrödinger-Gleichung (1) gefunden werden.

Schrödinger-Gleichung:	$\hat{H}\Psi = E\Psi$	Ĥ: Hamilton-Operator	
		E: Energie-Operator	
		Ψ: Wellenfunktion	

Wird diese Lösung ohne Berücksichtigung von experimentellen Daten erfüllt, so wird von *ab-initio*-Methoden, werden aber experimentelle Daten in die Lösung einbezogen, so wird von *semi-empirischen* Methode gesprochen. Hierbei wird die Lösung nicht "von Grund auf" berechnet, sondern neben den verschiedenen Näherungen werden auch empirische Daten einberufen. Bei den semi-empirischen Methoden wurden folgende Vereinfachungen vorgenommen: die Zahl der zu berechnenden Zwei-Elektronen-Integrale wurden reduziert und zum Teil parameterisiert; die Valenzelektronen wurden explizit behandelt und die restlichen Elektronenschalen wurden zusammen mit den Kernen als "effektiver Rumpf" (oder

auch als "effective core" bezeichnet) behandelt. Die einzelnen *semi-empirischen* Methoden unterscheiden sich darin, welche Integrale vernachlässigt werden.

Beispiele für semi-empirische Methoden sind:

- CNDO (Complete Neglect of Differential Overlap)
- INDO (Intermediate Neglect of Differential Overlap)
- NDDO (Neglect of Diatomic Differential Overlap)
- MNDO (*Modified Neglect of Differential Overlap*)⁷⁹.

Die moderneren *semi-empirischen* Methoden basieren auf der MNDO-Näherung, zu denen die AM1-(Austin Model 1)⁸⁰ und PM3-(Parametric Method 3)⁸¹ Methoden zählen. Bei der Anwendung der *semi-empirischen* Methoden liegt der Rechenaufwand zwischen den *Kraftfeldmethoden* und den *ab-initio*-Methoden.

2.5.2.3 *ab-initio*-Methoden

Bei ab-initio-(vom lateinischen "von Anfang an")-Methoden⁸² werden bis auf die Naturkonstanten wie z. B. Lichtgeschwindigkeit, Planck-Konstante keine experimentellen Daten einbezogen. Die gewünschten Grössen werden zum Teil mit enormen Rechenaufwand bestimmt. Die Hartree-Fock (HF) Methode ist die zentrale ab-initio-Methode, bei der es sich um ein Self Consistent Field (SCF)-Verfahren handelt. Hierbei werden die Energien iterativ verfeinert bis keine Veränderungen des Ergebnisses mehr zu beobachten ist. Eine weitere Methode ist die *post*-HF-Methode, in der die Elektronen nur das gemittelte Potenzial spüren. Zwei grundlegende Ansätze werden verfolgt, die die Methode in zwei Gruppen unterteilt. In der ersten Gruppe post-HF-Methode wird die Korrelationsenergie der durch einen störungstheoreretischen Ansatz angenähert. Die Korrelationsenergie beschreibt durch ein gemitteltes elektrostatisches Potenzial entstehende Fehler. Beispiele hierfür sind MPn (Møller-Plesset) und MBPTn (many body perturbation theory), bei denen das n jeweils die Ordnung der Korrektur angibt. Gebräuchlich sind die Methoden MP2, MP3 und MP4.

In der zweiten Gruppe der post-HF-Methode wird die Korrelationsenergie für mehrere Konfigurationen berechnet, wobei hier auch die angeregten Zustände berücksichtigt

46

werden. Diese Konfigurationen werden so linear kombiniert, dass ihre Energie möglichst klein wird.

Bei der *ab-initio*-Methode muss ausserdem unterschieden werden, ob sich die Rechnung auf ein Molekül mit gerader (closed shell) oder ungerader (open shell) Elektronenzahl bezieht. Closed shell Systeme werden nur mit doppelt besetzten Orbitalen gerechnet, vor die gewählte Methode wird ein R (restricted) gesetzt (z. B. RHF). Für open shell Systeme werden "spin-unrestricted Modelle" benutzt, die durch ein U vor der gewählten Methode gekennzeichnet wird (z. B. UHF). Diese Methode ist nötig, wenn Berechnungen an Radikalen, angeregten Zuständen oder auch bei Molekülen wie Sauerstoff mit zwei ungepaarten Aussenelektronen durchgeführt werden sollen.

2.5.2.4 Die Dichtefunktional-Methoden (DFT)

Die Dichtefunktional-Methoden gehören zu den modernsten Methoden zur Kalkulation von elektrischen Strukturen. Sie wird als DFT (Density Functional Theory)⁸³ abgekürzt. Bei der DFT-Methode tritt anstelle der Wellenfunktion die Elektronen-dichte (ED), die angibt, wie wahrscheinlich es ist, an einem bestimmten Punkt im Raum ein Elektron anzutreffen. Sie hängt nur von den drei Raumrichtungen ab und ist damit eine wesentlich einfacher zu behandelnde Grösse als die Wellenfunktion. Hierin liegt der grosse Vorteil der DFT-Methode gegenüber der ab*initio*-Methode. Der DFT-Methode liegt die bewiesene Annahme von *Hohenberg* und Kohn zugrunde, dass die Energe eines elektronischen Grundzustandes alleine durch die Elektronendichte bestimmt wird und dass die verschiedenen Elektronendichten unterschiedlichen Energien entsprechen. Bei der ab-initio Methode kann die Elektronendichte mit Hilfe der Schrödingergleichung berechnet werden, indem die Elektronendichte das Quadrat der Wellenfunktion ist, die über die Koordinaten der zu betrachteten Elektronen integriert. Hierzu werden die drei Raumkoordinaten jedes Elektrons und Kerns und bei Berücksichtigung des Spins noch ein weiterer Wert pro Elektron und Kern benötigt. Die Komplexität dieser Bestimmungsform steigt mit der Größe des zu untersuchenden Systems dadurch an. Das Ziel der DFT-Methode ist einen Weg zu finden, die einem die direkte Möglichkeit gibt, die Energie eines Systems aus der Elektronendichte zu bestimmen. Die Schwierigkeit besteht darin, dass die Beziehung, die die Elektronendichte mit der Energie korreliert, nicht bekannt ist. Dies muss durch ein Funktional angenähert werden, d. h. es muss ein Rechenvorschrift geben, die eine Funktion auf einen Wert abbildet.

Ein entscheidender Vorteil der DFT-Methode ist, dass die Rechnungen mit der Qualität von hochkorrelierten *ab-initio*-Methoden mit einem der HF-Methode vergleichbaren Rechenaufwand möglich sind.

Methoden mit unterschiedlichen Qualitäten und Rechenzeitanforderungen wie z. B. B3LYP (<u>Becke-3-Parameter-Lee-Yang-Parr</u>)-Methode⁸⁴, die ein bekanntes Hybrid-Dichtefunktional-Theorie-Verfahren darstellt, oder HF (*Hartree-Fock*)-Methode, der im Vergleich zu B3LYP weniger zeitaufwendig ist, da bei dieser Methode die Wechselwirkungen der Elektronen nicht berücksichtigt werden, können eingesetzt werden. Bei der B3LYP-Methode werden die Elektronen durch Wellenfunktionen beschrieben, sie werden durch Basissätze (z.B. 3-21G, 6-31G) angenähert. Je größer der Basissatz ist, umso zeitintensiver ist die Berechnung.

3 Zielsetzung der Arbeit

In enantioselektiven Reaktionen spielen die C-C-Knüpfungsreaktionen in Gegenwart von chiralen Katalysatoren eine sehr wichtige Rolle. Durch Einsatz solcher Katalysatoren soll die selektive Synthese des gewünschten Enantiomers in sehr hohen Ausbeuten erzielt werden. Eine der wichtigsten Reaktionen ist die enantioselektive Diorganylzinkaddition an prochiralen Carbonylverbindung, wodurch chirale Alkohole gebildet werden, die in der Pharmaindustrie sehr gefragt sind. Ein weiterer Syntheseweg, der zu den chiralen Alkoholen führt, ist die enantioselektive Reduktion von prochiralen Carbonylverbindungen.

3.1 Vorarbeiten im Arbeiskreis

Die in unserem Arbeitskreis synthetisierten modularen Anisolfenchole (71) und Pyridinfenchole (72) (Abbildung 24) zeigten in den enantioselektiven Diorganylzinkadditionen an Benzaldehyd unterschiedliche Enantioselektivitäten die auf die Ubertragung der chiralen Information des (R)-Fenchons in der Katalyse zurückzuführen ist. Es konnte von Dr. M. Steigelmann⁸⁵ gezeigt werden, dass die erhaltene Enantioselektivität stark von den Substituenten des Ligandensystems abhängig ist.

71 Anisylfenchole R: H, Me, SiMe_{3.} t-Bu, *i*-Pr, SiMe₂(*t*-Bu)

72 Pyridylfenchole R₁: H, Me R2: H, NMe2, OMe

73 BIFOL

Abbildung 24: Beispiele verschiedener Fencholliganden.

3.2 Zielsetzung

Im ersten Teil der Arbeit sollten auf die Grundbausteine Pyrrolidin und Anilin basierende Fencholderivate hergestellt, charakterisiert und in enantioselektiven Katalysen eingesetzt werden.

Im Falle von Pyrrolidin wurde angestrebt, ein ähnliches Katalysatorsystem (**74**) wie das CBS-Katalysator (**40**) zu synthetisieren und seine Wirksamkeit in der enantioselektiven Reduktionsreaktion von prochiralen Ketonen zu testen (Abbildung 25).

Abbildung 25: Als Katalysator angestrebte Pyrrolidylfenchoboran 74.

Weiterhin sollten aus der Literatur bekannte Fencholderivate wie Phenylfenchol, Phenolfenchol und Benzylfenchol synthetisiert und in enantioselektiven Reaktionen eingesetzt werden. Hierbei sollten auch neue auf (*R*)-Carvon basierende Carvolderivate synthetisiert, in enantioselektive Katalyse eingesetzt und ihre Wirksamkeit auf die Enantioselektivität getestet werden.

Im zweiten Teil der Arbeit sollten neue, C₂-symmetrische Biphenylbisfenchol (kurz (*M*)-BIFOL⁸⁶ (**73**), Abbildung 24) analoge Diole mit verschiedenen Terpenen wie z. B. (-)-Carvon⁸⁷, (-)-Menthon und (-)-Verbenon hergestellt und die strukturellen Merkmale röntgenkristallographisch charakterisiert werden. Schließlich sollten die C₂-symmetrische Diole in der enantioselektiven Katalyse bei der Addition von Diethylzink an Benzaldehyd getestet werden.

Zum Schluss sollten die experimentellen Ergebnisse im Hinblick auf die erhaltenen (*M*)- bzw. (*P*)-Konformationen entlang der Biarylachse im Vergleich der möglich erhaltbaren Diastereomere durch quantenchemische Berechnungen überprüft werden.

50

4 Ergebnisse und Diskussion

4.1 Synthese chiraler auf Fenchon-basierender Chelatliganden

In der enantioselektiven Katalyse ist es von Vorteil ein modulares,⁸⁸ chirales Ligandensystem zu verwenden, um eine gezielte und systematische Untersuchung verschiedener Einflüsse, wie z. B Selektiviäten und Reaktivitäten in asymmetrischen Reaktionen zu ermöglichen. Hierzu wurde als Grundgerüst und als Träger der chiralen Information, der aus dem "chiral pool" stammende Naturstoff Fenchon, ausgewählt. Gründe für die Verwendung sind:

- beide Enantiomere sind preisgünstig kommerziell zu erwerben;
- im Vergleich zu Campher besitzt Fenchon keine aciden Wasserstoffatome in α-Position, so dass keine Enolatbildungen in Additionsreaktionen auftreten;
- Fenchon besitzt ein rigides Bicycloheptangerüst, welches erstens dafür verantwortlich ist, dass bei der Synthese ausschließlich 2-*exo*-Aryl-Produkte⁹ gebildet werden und zweitens wird dadurch eine sehr gute Kristallisierbarkeit ermöglicht, durch die die Isolierung und Reinigung erleichtert wird.

4.1.1 Synthese von Aminoalkoholen auf Pyrroldin- und Anilin-Basis durch α -Lithiierung

Viele auf Pyrrolidin basierende Aminoalkohole, entweder synthetisiert aus dem Heterozyklus Pyrrolidin oder abgeleitet von Prolin (eine essentielle Aminosäure), haben eine grosse Anwendung in der enantioselektiven Katalyse.⁸⁹ Eine effiziente Syntheseroute wurde im Rahmen dieser Arbeit erarbeitet, um modulare, chirale Chelatliganden aus (*R*)-Fenchon darzustellen. Hierbei wurde die von *Beak* et al. im Jahre 1984 entwickelte enantioselektive, von (-)-Spartein (**75**) induzierte Lithiierung⁹⁰ von *N*-Bocpyrrolidin (**76**) als Strategie genutzt (Schema 20).

Es wurde beschrieben, dass *N*-Boc-pyrrolidin (**76**) in Gegenwart von (-)-Spartein (**75**) und *sec*-Butyllithium deprotoniert und mit Elektrophilen wie z. B. Benzophenon zu dem entsprechenden geschützten Aminoalkohol (*R*)-**77** substituiert wurde. Bei dieser Strategie basierte die Synthese auf eine α -Lithiierungsreaktion.

Bei den Aromaten dominierte die *ortho*-Lithiierungsreaktion, wodurch eine negative Polarisierung an einem Kohlenstoffatom induziert wurde, der in *ortho*-Stellung zu so genannten DMG-(*directing metalation group*)³ gebunden ist (Schema 21).

Schema 21: ortho-selektive Funktionalisierung von Aromaten mit DMG.91

Zu *directing metalation group* zählen Gruppen wie Amide (**78**), Boc-geschützte Gruppen (**79**) und auch Carbamate (**80**) (Abbildung 26).⁹²

Abbildung 26: Beispiele für directing metalation group.

Als Lithiierungsreagenzien können Organyllithiumlösungen wie z. B. *t*-BuLi, *sec*-BuLi oder *n*-BuLi eingesetzt werden. Damit die Deprotonierung einer Kohlenwasserstoffverbindung mit *n*-BuLi in Hexan (1.6 M in Hexan) in hoher Reaktivität stattfinden kann, muss TMEDA zugesetzt werden, um den Aggregationsgrad von *n*-BuLi

herabzusetzen. Dieses Additiv kann hexameres *n*-BuLi in ein 2:2-Dimer-Addukt umwandeln (Abbildung 27).⁹³ Zum Deaggregieren kann auch statt TMEDA, THF oder Et_2O , eingesetzt werden.

Abbildung 27: Umwandlung des *n*-BuLi-Hexamers in das (*n*-BuLi/TMEDA)-Dimer.

Weiterhin kann für die *ortho*-Lithiierungsreaktion zum Beispiel Anisol, Methylimidazol, Benzylalkohol oder *N*, *N*-Dimethylbenzylamin⁹⁴ als gute Edukte verwendet werden.

Im ersten Teil dieser Arbeit wurde versuchte sowohl für Pyrrolidin als auch für Anilin eine effiziente Syntheseweg der gewünschten Zielliganden (*2S*)-*N*-Pyrrolidinfenchol und *ortho*-Anilinfenchol zu entwickeln und die Zielliganden in hoher Ausbeute zu isolieren. Hierzu wurde der Heterozyklus Pyrrolidin durch verschiedene Schutzgruppen (BOC-, Acyl- und Trifluoracyl-Gruppe) geschützt. (Schema 22).

Schema 22: Einführung der Schutzgruppen an Pyrrolidin.

Die α -Lithiierung an *N*-Bocpyrrolidin wurde mit *t*-BuLi in Gegenwart von TMEDA durchgeführt, das zu erwartende Additionsprodukt an (*R*)-Fenchon konnte nicht erhalten werden (Schema 23).

Schema 23: Lithiierung von *N*-Bocpyrrolidin mit anschließender Addition an (*R*)-Fenchon.

Stattdessen wurde durch intermolekulare Additions-Eliminierungsreaktion ein stabiles Fenchylcarbamat (*R*)-1, nach Optimierung der Synthese in einer Ausbeute von 70%, isoliert (Schema 24).

Schema 24: Intermolekulare Bildung von (2S)-N-Fenchylcarbamat (R)-1.

Durch die Addition des lithiierten *N*-Bocpyrrolidin an (*R*)-Fenchon wurde am Pyrroldin ein neues chirales C-Atom gebildet. Bei der Durchführung der Synthese wurde ein Diastereomerengemisch der (*S*) -und (*R*)-Additionsprodukt erwartet. Die Röntgenstrukturanalyse der Verbindung zeigt, dass nur das (*S*)-Diastereomer der Verbindung gebildet wurde (Abbildung 28).

Abbildung 28: Kristallstruktur von (2S)-N-Fenchylcarbamat (R)-1.

Bedingt durch die Rigidität des Bicycloheptangerüsts und der Tatsache, dass bevorzugt eine *exo*-Addition an (*R*)-Fenchon stattfindet⁹⁵, da der Angriff von der *endo*-Seite durch die beiden Methylgruppen gehindert sind, kann nur das (*S*)-Diastereomer der Verbindung (*2S*)-*N*-Fenchylcarbamat (*R*)-1 gebildet werden.

Weitere spektroskopische Untersuchungen bestätigten das Ergebnis der Röntgenstrukturanalyse.

Das Diastereomerengemisch würde sich durch ¹H- und ¹³C-NMR-Analyse voneinander unterscheiden lassen. Die ¹³C-NMR-Analyse von (*2S*)-*N*-Fenchylcarbamat (*R*)-1 zeigt nur einen Satz der scharfen ¹³C-Signale (Abbildung 29). Ein Anzeichen für ein Gleichgewicht zwischen den beiden Diastereomeren ist nicht zu erkennen.

Abbildung 29: ¹³C-NMR-Spektrum von (2S)-N-Fenchylcarbamat (R)-1.

Im ¹H-NMR-Analyse von (*2S*)-*N*-Fenchylcarbamat (*R*)-1 ist der Proton an dem chiralen Pyrrolidin-C-Atom im Bereich 3.00 ppm zu finden. Es ist ein Dublett, was sich wieder in 2 Dubletts spaltet (Abbildung 30 und 31).

Abbildung 30: ¹H-NMR-Spektrum von (2S)-N-Fenchylcarbamat (R)-1.

Abbildung 31: Die genauere Betrachtung des Signals am 3.00 ppm.

Das Proton an dem chiralen C-Atom am Pyrrolidin koppelt mit beiden benachbarten Protonen des Pyrrolidinringes. Um das experimentelle Ergebnis theoretisch zu überprüfen, wurden quantenchemische Berechnungen durch Gaussian 03^{96} mit dem Standardbasissatz 6-31G^{*85} und der B3LYP Hybrid-DFT⁸⁴ Methode durchgeführt. Die quantenchemischen Berechnungen ergaben, dass bei der Synthese von (*R*)-1 das (*2S*)-*N*-Fenchylcarbamat im Vergleich zu (*2R*)-*N*-Fenchylcarbamat bevorzugt gebildet wurde (Abbildung 32).

Abbildung 32: Die E_{rel}. von (2S)-und (2R)-N-Fenchylcarbamat.

(2S)-N-Fenchylcarbamat ist im Vergleich zu (2R)-N-Fenchylcarbamat thermodynamisch um 3.5 kcal/mol stabiler (Abbildung 33 und 34).

Abbildung 33: Optimierte Struktur von (*2S*)-*N*-Fenchylcarbamat mit der B3LYP/6-31G*-Methode.

Abbildung 34: Optimierte Struktur von (*2R*)-*N*-Fenchylcarbamat mit der B3LYP/6-31G*-Methode.

Die Berechnungen bestätigten das experimentelle Ergebnis, sowohl bedingt durch die selektive *exo*-Addition an (*R*)-Fenchon, als auch durch die intermolekulare Bildungsreaktion von (*R*)-1, entstand nur das stabile (*2S*)-*N*-Fenchylcarbamat. Das (*2R*)-*N*-Fenchylcarbamat wurde gar nicht gebildet, so dass eine Epimerisierung zwischen den beiden Diastereomeren nicht stattfand.

Mit dem Ziel (*2S*)-*N*-Pyrrolidylfenchol zu synthetisieren, wurde die α -Lithiierung an *N*-Pivpyrrolidin mit *t*-BuLi in Gegenwart von TMEDA durchgeführt. Das zu erwartende Additionsprodukt an (*R*)-Fenchon konnte isoliert und röntgenkristallographisch charakterisiert werden (Schema 25).

Schema 25: Lithiierung von *N*-Pivpyrrolidin mit anschließender Addition an (*R*)-Fenchon.

Synthese darin. Das Problem an der bestand dass das gebildete (2S)-N-Pivpyrrolidylfenchol (R)-2 in geringer Ausbeute, bis nur zu 10%, erhalten werden konnte. Jegliche Art von Veränderungen der Reaktionsbedingungen (Stöchiometrie, Temperatur oder Reaktionsdauer) führten nicht zur Erhöhung der Ausbeute. Wie bei (2S)-N-Fenchylcarbamat (R)-1 wurde auch bei der Synthese von (R)-2 am Pyrrolidin ein neues chirales C-Atom (welches mit einem Stern gekennzeichnet ist) gebildet, welches auch die (S)-Konfiguration besitzt. Sowohl die Kristallstrukturanalyse als auch die NMR-Analyse zeigten nur das eine Diastereomer der Verbindung (Abbildung 35).

Abbildung 35: Kristallstruktur von (2S)-N-Pivpyrrolidylfenchol (R)-2.

Aus der Kristallstruktur von (*R*)-2 konnte ersehen werden, dass ein chelatisierender Effekt zwischen der OH-Gruppe von Fenchol und der Carbonylgruppe der Amidfunktion am Pyrrolidin nicht bestand, eine intramolekulare Wasserstoffbrückenbindung zwischen diesen beiden funktionellen Gruppen war nicht zu beobachten. Der Bindungsabstand zwischen dem H-Atom der OH-Gruppe und dem Sauerstoff der Carbonylgruppe beträgt 5.469 Å. Im nächsten Schritt wurde versucht, die eingeführte Schutzgruppe unter verschiedenen basischen Bedingungen (Tabelle 5) zu entfernen. Eine Abspaltung der Schutzgruppe konnte leider nicht erzielt werden.

Ansatz	Reagenzien	Bedingungen	Ausbeute ^a
1	- 30M NaOH in EtOH	Rückfluss (90℃), 24h	_b
2	- 30M NaOH in EtOH	Rückfluss (90℃), 7d	_b
3	- KOH _{fest} in H ₂ O/EtOH	Rückfluss (100 ℃), 24h	_b
4	- KOH _{fest} in H ₂ O/EtOH	Rückfluss (100 ℃), 7d	_b
5	- 50% -KOH-Lösung	Rückfluss (120 ℃), 30h	_b
6	- 50% -KOH-Lösung	Rückfluss (120℃), 7d	_b

Tabelle 5. Entschützungsversuche von (*2*S)-*N*-Pivpyrrolidylfenchol (*R*)-2 unter verschiedenen basischen Bedingungen.⁹⁷

[a] In allen Versuchen konnte die erwartete (*2S*)-*N*-Pyrrolidylfenchol nicht erhalten werden. [b] Nur (*2S*)-*N*-Pivpyrrolidylfenchol (*R*)-2 wurde bis zu einer Ausbeute von über 90% erhalten.

Wie bei (2S)-N-Fenchylcarbamat (**R**)-1 wurde auch bei (2S)-N-Pivpyrrolidylfenchol (**R**)-2 quantenchemische Berechnungen mit der B3LYP/6-31G*-Methode durchgeführt. Die Berechnungen zeigten, dass das Diastereomer (2S)-N-Pivpyrrolidylfenchol um 13.6 kcal/mol thermodynamisch begünstigt gebildet wurde als (2R)-N-Pivpyrrolidylfenchol (Abbildung 36).

2-(*S*)_{ber.}-Pivpyrrolidylfenchol E_{rel.}= 0 kcal/mol

2-(*R*)_{ber.}-Pivpyrrolidylfenchol E_{rel.}= 13.6 kcal/mol

Abbildung 36: Die E_{rel}. von (*2S*)-und (*2R*)-*N*-Piv-pyrrolidylfenchol.

Somit konnte das experimentelle Ergebnis durch Berechnungen bestätigt werden.

Als nächstes wurde versucht *N*-Trifluoracetylpyrrolidin mit *t*-BuLi in Gegenwart von TMEDA zu lithiieren. Das gewünschte (*2S*)-*N*-Trifluoracetylpyrrolidylfenchol konnte nicht erhalten werden, stattdessen wurde mit 90%iger Ausbeute *N*-Pivpyrrolidin isoliert (Schema 26).

Schema 26: Versuchte Synthese von N-2(S)-Trifluoracetylpyrrolidylfenchol.

Es stellte sich heraus, dass die Trifluoracyl-Schutzgruppe nicht als *ortho*-dirigierende Gruppe wirksam ist. Anstelle einer α -Lithiierung wurde eine Additions-Eliminierungs-reaktion beobachtet (Schema 27).

Schema 27: Vorgeschlagener Mechanismus der Additions-Eliminierungsreaktion an *N*-Trifluoracetylpyrrolidin mit *t*-BuLi.

Zusammenfassend kann gesagt werden, dass nur das mit der Boc-Schutzgruppe geschützte Pyrrolidin im Vergleich zu den beiden anderen Schutzgruppen, eine α -Lithiierung mit *t*-BuLi in Ausbeuten von 70% ermöglichte, obwohl hierbei das ungewünschte (*2S*)-*N*-Fenchylcarbamat (*R*)-1 gebildet wurde.

Des Weiteren wurde versucht, das isolierte (*2S*)-*N*-Fenchylcarbamat (*R*)-1 unter basischen Bedingungen (Tabelle 6) zu spalten. Es wurde beobachtet, dass das (*R*)-1 gegenüber basischen Reagenzien eine hohe Stabilität besitzt.

Ansatz	Reagenzien	Bedingungen	Ausbeute ^[a]
1	- 30M NaOH in EtOH	Rückfluss (90 ℃), 24h	_b
2	- 30M NaOH in EtOH	Rückfluss (90℃), 7d	_b
3	- KOH _{fest} in H ₂ O/EtOH	Rückfluss (100℃), 24h	_b
4	- KOH _{fest} in H ₂ O/EtOH	Rückfluss (100℃), 7d	_b
5	- 50% -KOH-Lösung	Rückfluss (120 ℃), 30h	_b
6	- 50% -KOH-Lösung	Rückfluss (120℃), 7d	_b
7	- LiAlH₄ ^c in THF	Rückfluss (60 ℃)	_b
8	- LiAlH4 in Glyme	Rückfluss (120℃)	_b

Table 6. Spaltungsversuche von (R)-1 unter basischen Bedingungen.^{87,98}

[a] Die Reaktion wurde mittels IR-Spektroskopie verfolgt; (2S)-N-Fenchylcarbamat (**R**)-1 hat eine charakteristische Bande bei einer Wellenzahl von v_{carbamat}= 1732 cm⁻¹.
[b] Bis zu einer Ausbeute von mehr als 90% wurde (**R**)-1 zurückgewonnen.
[c] LiAlH₄ (1.0 M-Lösung in THF).

Als weiteres wurde die stark nukleophile MeLi-Lösung (1.6 M Lösung in Et₂O) als basisches Reagenz verwendet. Eine Veränderung in der IR-Aufnahme wurde beobachtet, was darauf zurückzuführen ist, dass sich das Carbamat durch MeLi spaltet. Die charakteristische Carbamatbande bei einem Wellenzahl von vcarbamat= 1732 cm⁻¹ beginnt abzunehmen. Durch Optimierung der Reaktionsbedingungen (Temperatur, Reaktionszeit, Konzentration) wird statt dem gewünschten (2S)-N-Pyrrolidylfenchol, (2S)-N-Methylacetylpyrrolidylfenchol zuerst (*R*)-4 (Abbildung 37) und dann durch weitere Optimierung das unerwartete C₂-symmetrische 2,2-Bisfenchol-bispyrrolidinmalonsäureamid (*R*)-7 (Abbildung 38) isoliert und röntgenkristallographisch charakterisiert (Schema 28).

Schema 28: Spaltung von (2S)-N-Fenchylcarbamat (R)-1 durch MeLi.

Abbildung 37: Kristallstruktur von (2S)-N-Methylacetylpyrrolidylfenchol (R)-4.

Die Kristallstrukturanalyse von *(2S)-N*-Methylacetylpyrrolidylfenchol **(***R***)-4** zeigte, das **(***R***)-4** wie die Verbindung **(***R***)-2** keine intramolekulare Wasserstoffbrückenbindung zwischen der OH-Gruppe von Fenchyleinheit und der Carbonylgruppe der Amidgruppe am Pyrrolidin besitzt. Der Bindungsabstand zwischen den H-Atom der OH-Gruppe und dem Sauerstoff der Carbonylgruppe beträgt 5.514 Å.

Abbildung 38: Kristallstruktur von 2,2-Bisfenchol-bispyrrolidinmalonsäureamid (R)-7.

Die Kristallstrukturanalyse von 2,2-Bisfenchol-bispyrrolidinmalonsäureamid (R)-7 zeigte, dass die isolierte Verbindung intramolekulare Wasserstoffbrückenbindungen zwischen den OH-Gruppen der Fenchylreste und dem Sauerstoff der Amidgruppen (O1-H1-O3 = 1.918 Å und O2-H2-O4 = 1.819 Å) besitzt. Die mechanistische Bildung von (R)-7 basierte auf einen zweifachen Ablauf einer Additions-Eliminierungsreaktion (Schema 29). Im ersten Schritt fand die Addition von Methylid als starkes Nucleophil an (2S)-N-Fenchylcarbamat (R)-1 statt, wodurch (R)-4 gebildet wurde, welches im zweiten Schritt durch überschüssiges MeLi deprotoniert wurde. Das deprotonierte (*R*)-1 kann dann im nächsten Schritt als Carbanion wieder an (2S)-N-Fenchylcarbamat (R)-1 addieren. Schließlich unter Eliminierung wurde das unerwartete 2,2-Bisfenchol-bispyrrolidinmalonsäureamid (R)-7 gebildet.

Schema 29: Vorgeschlagener Mechanismus der 2,2-Bisfencholbispyrrolidinmalonsäureamid (*R*)-7- Bildung.

Bei der Reaktion von (2S)-N-Fenchylcarbamat (**R**)-1 mit MeLi-Lösung konnte einmalig in der NMR-Probe der CDCl₃-Lösung der säulenchromatographisch getrennten Fraktion ("oranges Öl") nach 2-wöchigem Stehenlassen das Hydrochlorid der gewünschten (2S)-N-Pyrrolidylfenchol (**R**)-6 als Chloroform-Einschlussverbindung erhalten werden, welches röntgenkristallographisch charakterisiert wurde (Abbildung 39). Leider konnte die Verbindung (**R**)-6 nicht mehr reproduziert werden.

Abbildung 39: Kristallstruktur von (2S)-N-Pyrrolidylfenchol*Hydrochlorid (R)-6.

Da die Spaltung mit MeLi zum einen zum entsprechenden Amid (R)-4 und zum anderen zum unerwarteten Malonsäureamid (R)-7 führte und somit das gewünschte (2S)-N-Pyrrolidylfenchol nicht erzielt werden konnte, wurde im letzten Schritt versucht, (2S)-N-Fenchylcarbamat (R)-1 im Sauren zu spalten. Es wurde in der Literatur beschrieben,99 dass Fenchon, die mit sauren Reagenzien umgesetzt werden, Umlagerungsprodukte bildet. Trotzdem wurden hierzu zwei verschiedene Säuren (Essigsäure und Salzsäure) verwendet. Die Essgisäure wurde eingesetzt, da bei der Synthese von Phenolfenchol,⁷ bei der die Abspaltung der Schutzgruppe mit Essigsäure beschrieben wurde, keine Umlagerung am Fenchon stattfand. Es zeigte sich, dass (2S)-N-Fenchylcarbamat (R)-1 beim Behandeln mit Essigsäure weder bei RT noch beim Erhitzen keine Spaltung der Carbamateinheit bewirkte. Im Weiteren wurde 1M HCI-Lösung verwendet. Das Behandeln von (2S)-N-Fenchylcarbamat (R)-1 mit HCI-Lösung bei RT bewirkte erst einmal keine Spaltung. Erst nachdem (2S)-N-Fenchylcarbamat (R)-1 mit HCI-Lösung für ein paar Stunden erhitzt wurde, konnte durch IR-Aufnahmen festgestellt werden, dass die charakteristische Carbamatschwingung bei 1750 cm⁻¹ vollkommen verschwand. Durch stündliche IR-Reaktionskontrolle konnte beobachtet werden, dass die Carbamatschwingung nach vierstündigem Erhitzen vollständig verschwunden war.
Nach der hydrolytischen Aufarbeitung konnte NMR-spektroskopisch gezeigt werden, dass (*2S*)-*N*-Fenchylcarbamat (*R*)-1 beim Erhitzen mit HCI-Lösung in 4 Stunden das entsprechende Camphenpyrrolidylderivat (*R*)-3 bildet (Schema 30).

Schema 30: Spaltung von (2S)-N-Fenchylcarbamat (R)-1 unter sauren Bedingungen.

Analog zu Pyrrolidin wurde versucht, das *ortho*-Anilinfenchol zu synthetisieren. Zuerst wurde Anilin wie Pyrrolidin mit den drei ausgewählten Schutzgruppen (BOC-, Acyl- und Trifluoracyl-Gruppe) geschützt. Danach wurde versucht bei den geschützten Anilin-Edukten eine *ortho*-Lithiierung durchzuführen. Es konnte beobachtet werden, dass nur bei dem mit der Acyl-Schutzgruppe geschützten Anilin die *ortho*-Lithiierung mit anschließender Addition an (*R*)-Fenchons stattfand (Schema 31). Das Problem bei den anderen beiden geschützten Anilin-Edukten schien nicht die Addition an das Fenchon zu sein, sondern die *ortho*-Lithiierung.

Schema 31: Versuchte Synthese von geschützter ortho-Anilinfenchol.

Hierbei wurde das *ortho-N-*Pivanilidfenchol (*R*)-8 isoliert und röntgenkristallographisch charakterisiert (Abbildung 40).

Abbildung 40: Kristallstruktur von *ortho-N*-Pivanilidfenchol (*R*)-8.

Wie beim (2S)-N-Pivpyrrolidylfenchol (**R**)-2 konnte bei dem isolierten *ortho-N*-Pivanilidfenchol (**R**)-8 die Schutzgruppe unter drastischen basischen Bedingungen nicht abgespalten werden (Tabelle 7).

Tabelle 7. Das Entschützen von *ortho-N*-Pivanilidfenchol (*R*)-8 unter verschiedenen basischen Bedingungen.¹⁰⁰

Ansatz	Reagenzien	Bedingungen	Ausbeute ^a
1	30 M ethanolischer	Rückfluss (90 ℃), 24h	b
	NaOH-Lösung		
2	30 M ethanolischer	Rückfluss (90℃), 7d	_b
	NaOH-Lösung		
3	KOH _{fest} in H ₂ O/EtOH	Rückfluss (100℃), 24h	_b
4	KOH _{fest} in H ₂ O/EtOH	Rückfluss (100℃), 7d	_b
5	50% -KOH-Lösung	Rückfluss (120℃), 24h	_b
6	50% -KOH-Lösung	Rückfluss (120℃), 7d	_b

[a] In allen Versuchen konnte das erwartete *ortho-N-*Pivanilidfenchol nicht erhalten werden. [b] über 90%iger Ausbeute wurde *ortho-N-*Pivanilidfenchol (*R*)-8 zurückgewonnen.

Schließlich wurde die Reduktion des Amidofenchols (*R*)-8 mit Lithiumaluminiumhydrid zum Aminofenchol (*R*)-9 durchgeführt. Das Aminofenchol (*R*)-9 wurde isoliert und röntgenkristallographisch charakterisiert (Schema 32 und Abbildung 41).

Schema 32: Reduktion des Amidofenchols (*R*)-8 mit LiAlH₄ zum Aminofenchol (*R*)-9.

Abbildung 41: Kristallstruktur von Aminofenchol (R)-9.

Des Weiteren wurden Fencholderivate ausgehend von Brombenzol⁹ (*R*)-(10) (durch Brom-Lithium-Austausch), Phenol (*R*)-11 (zuerst durch Einführung der Schutzgruppe, dann *ortho*-Lithiierung und anschließend durch Abspaltung der Schutzgruppe) und Benzylalkohol (*R*)-12 (durch *ortho*-Lithiierung) durch Addition der ortho-lithiierten Derivate¹⁰ an (*R*)-Fenchon synthetisiert (Schema 33), die nun röntspektroskopisch auch charakterisiert wurden.

Schema 33: Synthese von Fencholverbindungen.

Ausgehend von Benzaldehyd wurde versucht die dazugehörige Fencholverbindung herzustellen. Trotz der Variation der Schutzgruppen (Morpholin, Ethylenglycol) als auch die Veränderung der Versuchsbedingungen (wie z. B. durch die direkte *ortho*-Lithiierung des geschüzten Benzaldehyds oder über einen Halogen-Metall-Austausch) konnte die Addition des geschützten Benzaldehyd an Fenchon nicht erfolgen (Schema 34). Das Problem schien nicht die Addition an das (*R*)-Fenchon zu sein, sondern die *ortho*-Lithiierung.

Schema 34: Geplante Synthese von Benzaldehydfenchol.

4.2 Synthese neuartiger C₂-symmetrischer terpenbasierter Diole

Sowohl in pharmazeutischen Naturprodukten als auch in asymmetrischen Katalysen¹⁰¹ spielen axial chirale Biarylverbindungen eine aroße Rolle. Chelatisierende C_2 -symmetrische Diole wie z. B. (*M*)-BINOL¹⁰² (81) und (S,S)-TADDOL¹⁰³ (34) sind sehr oft eingesetzte chirale Liganden in enantioselektiven Reaktionen. In unserem Arbeitskreis wurde (*M*)-BIFOL (**73**) durch einen zweistufigen Syntheseweg erhalten, welches bedingt durch die Induktion der Wasserstoffbrückenbindung zwischen den OH-Gruppen der Fenchyleinheiten entlang der Biarylachse eine (*M*)-Konformation besitzt (Abbildung 42).

Abbildung 42: Die bekanntesten C₂-symmetrischen Diole.

Beeindruckt von der einfachen Synthesemöglichkeit von (*M*)-BIFOL (**73**) und der Besonderheit der Atropisomerie (Abbildung 43), wurden für die Synthese neuartiger, C₂-symmetrischer Diole weitere Terpenone überlegt.

Abbildung 43: Fencholinduzierte Konformation von (*M*)-BIFOL.

Hierzu wurde (-)-Menthon, (-)-Verbenon und (-)-Carvon als Terpenon auserwählt und eingesetzt (Abbildung 44).

Abbildung 44: Synthese neuartiger, terpenbasierter C₂-symmetrische Diole.

Die Synthese beruht im ersten Schritt auf die Lithierung von Biphenyl in Gegenwart von TMEDA, wobei oranges Dilithiobiphenyl⁸⁰ (**82**) als Zwischenprodukt erhalten wurde, welches ohne Isolierung weiter eingesetzt wird. Im zweiten Schritt erfolgte die Addition des lithiierten Biphenyls an die Carbonylgruppe der entsprechenden Terpenon gefolgt von der hydrolytischen Aufarbeitung. Die Addition von 2,2'-Dilithiobiphenyl an die Carbonylgruppe erfolgt bevorzugt an der sterisch ungehinderten Seite.

Im Falle von (-)-Carvon erfolgt der nukleophile Angriff am Carbonylkohlenstoffatom von der äquatorialen Seite des Cyclohexengerüsts, *trans* zu der Isopropenylgruppe¹⁰⁴, hierbei wurde **Bi**phenyl-2,2'-bis**c**arv**ol** (kurz (*P*)-**BICOL**, (**85**)) in einer Ausbeute von 71% erhalten. Bei (-)-Menthon findet der nukleophile Angriff von 2,2'-Dilithiobiphenyl am Carbonylkohlenstoffatom auch von der äquatorialen

Seite des Cyclohexangerüsts, trans zu der Isopropylgruppe statt, die von Lecomte et. al als stereoselektiv beschrieben wurde¹⁰⁵. In einer Ausbeute von 48% wurde das Biphenyl-2,2'-bismenthol (kurz (M)-BIMOL, (83)) isoliert. Bei (-)-Verbenon erfolgt der nukleophile Angriff auch von der sterisch weniger beanspruchten Seite des Pinen-Rückgrates, also ebenfalls trans zu der geminalen Dimethyleinheit. Hierbei wurde das Biphenyl-2,2'-bisverbenol (kurz (P)-BIVOL, (84)) in einer Ausbeute von gewonnen. genannten Verbindungen wurden in verschiedenen 25% Die Lösungsmitteln kristallin isoliert und danach röntgenkristallographisch charakterisiert. Das (P)-BICOL (85) kristallisierte als Einschlussverbindung mit Wasser aus. Aus der Kristallstrukturanalyse konnte entnommen werden, dass zwischen den OH-Gruppen der Carvyleinheiten eine Wasserstoffbrückenbindung mit einem Abstand von d(H1-O1...H2-O2)= 1.756 Å vorhanden ist, welches die endgültige Konformation der Verbindung bestimmt. Im Falle von (-)-Carvon wurde eine (P)-Konformation entlang der Biarylachse bedingt durch die Wasserstoffbrückenbindung beobachtet, welches einen Diederwinkel zwischen den Atomen C2-C1-C1'-C2' von +95.9° besitzt (Abbildung 45).

Abbildung 45: Kristallstruktur von (P)-BICOL (85).

Im Falle von (-)-Menthon konnte BIMOL (83) als Einschlussverbindung mit Aceton auskristallisiert werden. Wie bei BICOL (85) konnte aus der Kristallstrukturanalyse von BIMOL (83) auch Wasserstoffbrückenbindung zwischen den OH-Gruppen der Menthyleinheiten festgestellt werden, die einen Abstand d(H1-O1...H2-O2) von 2.06 Å zeigt (Abbildung 46).

Abbildung 46: Kristallstruktur von (*M*)-BIMOL (83).

Aufgrund der ausgebildeten Wasserstoffbrückenbindung wurde entlang der Biarylachse die *M*-Konformation induziert, die einen Diederwinkel zwischen den Atomen C2-C1-C1'-C2' von -102.6° besitzt (Abbildung 46).

In der Kristallstrukturanalyse von (*P*)-BIVOL (**84**) sind die Wasserstoffatome an den Hydroxygruppen der Verbenoleinheiten fehlgeordnet. Der kürzere Abstand zwischen den Sauerstoffatomen mit einem Wert von 2.71 Å und verglichen mit den Sauerstoffabständen von (*P*)-BICOL (**85**) d(O1-O2) = 2.65 Å und (*M*)-BIMOL (**83**) d(O1-O2) = 2.80 Å, bei denen Wasserstoffbrückenbindungen vorhanden sind, deutet darauf hin, dass eine Wasserstoffbrückenbindung zwischen den Verbenoleinheiten vorhanden sein muss (Tabelle 8 und 9). Durch die Verbenoleinheiten wird entlang der Biarylachse am BIVOL (84) eine (*P*)-Konformation induziert, die einen Diederwinkel zwischen den Atomen C2-C1-C1'-C2' von +93.9° besitzt (Abbildung 47).

Abbildung 47: Kristallstruktur von (*P*)-BIVOL (84).

Des Weiteren wurde versucht aus (*P*)-BICOL (**85**) die komplett hydrierte Verbindung (**86**) zu synthetisieren. Hydrierungsansätze unter Pd/H_2 , sowohl bei niedrigerem Druck von 3-5 bar mittels Einsatz einer Orsetblase als auch bei höherem Druck von 30 bar im Autoklaven führten lediglich zum terminal hydrierten Produkt (**87**) (Abbildung 48).

Abbildung 48: Hydrierung von (P)-BICOL (85).

Ausgehend von (*P*)-BICOL (**85**) konnte durch Hydrierung das **Bi**phenyl-2,2-bismenthenol (kurz (*P*)-BIMEOL, (**87**)) in einer Ausbeute von 77% gewonnen und röntgenkristallographisch charakterisiert werden. Wie (*P*)-BICOL (**85**) besitzt BIMEOL (**87**) die *P*-Konformation entlang der Biarylachse. In der Röntgenstrukturanalyse von (*P*)-BIMEOL (**87**) wurde eine Wasserstoffbrückenbindung zwischen den OH-Gruppen der Alkoholeinheiten mit einem Abstand von d(O1-H1....O2-H2)= 1.67 Å und ein Diederwinkel zwischen den Atomen C2-C1-C1'-C2' von +99.4° beobachtet (Abbildung 49).

Abbildung 49: Kristallstruktur von (*P*)-BIMEOL (87).

Aus den experimentellen Ergebnissen kann schlussgefolgert werden, dass die Asymmetrie der Biarylachse durch die chiralen Terpenoleinheiten kontrolliert werden, die durch Ausbildung von intramolekularer Wasserstoffbrückenbindung hervorgerufen werden. Die Röntgenstrukturanalyse weist für BIMOL ein M (minus) und für BIVOL, BICOL und BIMEOL eine P (plus) Biarylkonformation. Um die experimentell beobachtete (M)- bzw. (P)-Konformation entlang der Biarylachse zu überprüfen, wurden analog zur (M)-BIFOL quantenchemische Berechnungen für beide Diastereomere (d. h. sowohl für das (P)- als auch für das (M)-Konformer) der C₂-symmetrischen Biphenylterpenole mit der **ONIOM-Methode** (B3LYP/ 6-31++G**/AM1) durchgeführt. Das bedeutet für die Hydroxygruppen der Terpenoleinheiten wurde die Hybriddichtefunktionalmethode B3LYP mit dem Basissatz 6-31++G** verwendet, während der Rest der Struktur durch die semiempirische AM1-Methode berechnet wurde. Die Computerberechnungen lieferten sowohl die optimierten Strukturen der Diastereomere (Tabelle 8 und 9) als auch die relative Energien zwischen den (*M*)- bzw. (*P*)-Konformere (Tabelle 10).

Tabelle 8. Experimentelle (anhand der Kristallstrukuranalyse) und berechnete (mittelsB3LYP/6-31++G**:AM1) Geometrien der (*P*) und (*M*)-Diastereomere (**85** und **87**).1

	BICOL (85)				87)	
	P _{exp.}	P _{ber.}	M _{ber.}	P _{exp.}	P _{ber.}	M _{ber.}
O-H-O(H)[Å]	1.76	2.028	3.666	1.67	2.028	4.055
O-O[Å]	2.65	2.967	4.242	2.62	2.966	4.501
O-H-O [°]	169.3	160.15	120.57	168.1	160.02	111.43
$C_2 - C_1 - C_1' - C_2' [\circ]$	+95.9	+99.15	-100.26	+99.4	+98.91	-103.47
O-C _{Rest} -C ₂ -C ₁ [°]	-42.2	-34.01	-28.75	-32.5	-29.27	+1.59
O-C _{Rest} -C ₂ '-C ₁ ' [°]	-30.1	-29.13	-10.77	-35.6	-34.18	-40.11

¹Die OH-Gruppen wurden mit B3LYP berechnet, während AM1 für den Rest der Struktur verwendet wurde. Die H-Atome wurden als Bindungsbrücke zwischen den Molekülresten benutzt.

Tabelle 9. Experimentelle (anhand der Kristallstrukuranalyse) und berechnete (mittelsB3LYP/6-31++G**:AM1) Geometrien der (*P*) und (*M*)-Diastereomere (83 und 84).1

	BIMOL (83)			BIVOL (84)		
	M _{exp.}	M _{ber.}	P _{ber} .	P _{exp.}	P _{ber} .	M _{ber.}
O-H-O(H)[Å]	2.06	1.973	2.954	-	1.942	2.071
O-O[Å]	2.80	2.912	3.678	2.71	2.904	2.957
O-H-O [°]	171.94	160.24	132.32	-	167.31	150.11
C ₂ -C ₁ -C ₁ '-C ₂ ' [°]	-103.2	-102.00	+95.21	+93.9	+99.03	-91.61
$O-C_{Rest}-C_2-C_1 [\circ]$	+33.1	+35.55	-4.64	-39.9	-38.16	+108.37
O-C _{Rest} -C ₂ '-C ₁ ' [°]	+29.6	+28.78	+7.48	-44.7	-42.53	+69.70

¹Die OH-Gruppen wurden mit B3LYP berechnet, während AM1 für den Rest der Struktur verwendet wurde. Die H-Atome wurden als Bindungsbrücke zwischen den Molekülresten benutzt.

Strukturen	ONIOM (B3LYP/6-31++G**: AM1)	E _{rel.} [kcal/mol]	
(<i>M</i>)-BIMOL	-152.866360	0.0	
(<i>P</i>)-BIMOL	-152.866159	+1.3	
(M)-BIVOL	-152.625276	+5.1	
(<i>P</i>)-BIVOL	-152.633361	0.0	
(M)-BICOL	-152.69155	+5.8	
(P)-BICOL	-152.70077	0.0	
(M)-BIMEOL	-152.781310	+5.4	
(<i>P</i>)-BIMEOL	-152.789859	0.0	

Tabelle 10. Berechnete absolute und relative Energien der Biphenyldiole in *P* und *M*Biphenylkonformation.

Die berechneten relativen Energien der optimierten (P)- bzw. (M)-Konformere der C₂-symmetrischen Biphenylterpenole sind wie bei den experimentell ermittelten Diastereomere (d. h. (P)-BICOL (**85**), (M)-BIMOL (**83**), (P)-BIVOL (**84**) und (P)- BIMEOL (**87**)) niedriger als die entsprechenden Diastereomere ((M)-BICOL, (P)-BIMOL, (M)-BIVOL und (M)-BIMEOL).

Bei (*P*)-BICOL (**85**) erwies sich das (*P*)-Konformer um 5.8 kcal/mol stabiler als das (*M*)-Konformer. Das (*P*)-BIMEOL (**87**) wurde um 5.4 kcal/mol energetisch begünstigt gebildet als das (*M*)-Konformer. Bei (*M*)-BIMOL (**83**) war die relative Energiedifferenz zwischen den beiden Konformeren nicht so hoch, trotzdem wurde das experimentell erhaltene (*M*)-Konformer um 1.3 kcal/mol energetisch begünstigt gebildet. Die Berechnungen zu (*P*)-BIVOL (**84**) zeigten ebenfalls, dass das (*P*)-Konformer um 5.1 kcal/mol energetisch stabiler ist als das (*M*)-Konformer (Tabelle 10).

Zusammenfassend kann gesagt werden mittels Berechnungen konnte gezeigt und bewiesen werden, dass die experimentell beobachte Konformation entlang der Biarylachse tatsächlich die bevorzugte bzw. energetisch günstigste Konformation der Verbindungen ist. Durch theoretische Berechnungen konnte somit das experimentelle Ergebnis bestätigt werden.

79

4.3 Synthese chiraler auf Carvon-basierender Chelatliganden

Neben dem Naturstoff (*R*)-Fenchon, das aus dem "chiral pool" stammt, wurde ein weiterer Naturstoff (*R*)-Carvon, welches im Vergleich zu (*S*)-Carvon kommerziell preisgünstiger zu erwerben ist, zum Aufbau von chiralen, modularen Ligandensystem ausgewählt. Durch die Addition von Lithiumarylverbindungen an (*R*)-Carvon ließen sich in einer einstufigen Synthese die bidentaten Carvolverbindungen (*S*)¹² -13 bis (*S*)-15 synthetisieren (Abbildung 50). Die Carvolverbindungen (*S*)-13 und (*S*)-15 röntgenkristallographisch charakterisiert werden (Abbildung 51 und 52).

Abbildung 50: Aus (*R*)-Carvon synthetisierte bidentate Carvolverbindungen.

Abbildung 51: Kristallstruktur von Anisolcarvol (S)-13.

Abbildung 52: Kristallstruktur von Pivanilidcarvol (S)-15.

Bei dem Benzylcarvol (*S*)-14 handelt es sich um ein viskoses gelbes Öl, das auch nach wiederholten Kristallisationsversuchen aus verschiedenen Lösungsmitteln (Diethylether, *n*-Hexan und Dichlormethan) nicht als Feststoff gewonnen werden konnte.

4.4 Versuchte Synthese von chiralen Phosphorsäuren

Ausgehend von Benzylfenchol (*R*)-12 und *ortho-N*-Pivanilidfenchol (*R*)-8 wurde versucht, chirale Phosphorsäuren zu synthetisieren. Im ersten Schritt wurden die Liganden mit *n*-BuLi im Überschuss behandelt, im zweiten Schritt entweder mit Phosphortrichlorid oder mit Phosphorylchlorid versetzt und anschließend mit Wasser gequencht. In beiden Fällen konnten die Phosphorsäuren nicht erzielt werden.

Bei der Synthese von (*R*)-8 mit Phosphortrichlorid konnte das *ortho-N*-Pivanilid-fenchophosphonat nicht isoliert werden (Abbildung 53).

Abbildung 53: Versuchte Synthese von ortho-N-Pivanilidfenchophosphonat.

Im ³¹P-NMR konnten zwei charakteristische Signale mit den entsprechenden Kopplungen festgestellt werden, die auf ein Gemisch der beiden Diastereomere hinwies (Abbildung 54). Die säulenchromatographische Trennung der beiden Diastereomere konnte nicht erreicht werden.

Abbildung 54: Diastereomerengemisch der beiden Phosphonate.

Auch die analoge Synthese mit Phosphorylchlorid führte nicht zu der chiralen Phosphorsäure, es konnte lediglich nur das Phosphorsäurechlorid der Verbindung (*R*)-17 isoliert und röntgenspektroskopisch charakterisiert werden (Abbildung 55 und 56).

Abbildung 55: Versuchte Synthese von ortho-N-Pivanilidfenchophosphorsäure.

Abbildung 56: Kristallstruktur von *ortho-N*-Pivanilidfenchophosphorsäurechlorid (*R*)-17.

Ausgehend von der isolierten Verbindung (*R*)-17 wurde versucht, im alkalischen Medium unter Rückfluss zu der entsprechenden Phosphorsäure zu oxidieren, die Oxidationsansätze verliefen leider erfolgslos (Abbildung 57).

Abbildung 57: Alkalische Hydrolyse von (*R*)-17.

Nach der beschriebenen Synthesevorschrift¹⁰⁶ wurde das Benzylfenchylphosphonat aus Benzylfenchol (*R*)-12 durch Lithiierung mit *n*-BuLi, Umsetzen mit Phosphortrichlorid mit anschließender alkalischer Hydrolyse synthetisiert und als weißes Feststoff isoliert (Abbildung 58).

Abbildung 58:Synthese von Benzylfenchylphosphonat.

Danach wurde versucht, das Benzylfenchylphosphonat durch Ruckflüss unter alkalischen Bedingungen zu der Benzylfenchylphosphorsäure zu oxidieren, welches leider nicht erzielt werden konnte (Abbildung 59).

Abbildung 59: Versuchte Synthese von Benzylfenchylphosphorsäure.

Die analoge Synthese wurde anstelle Phosphortrichlorid mit Phosphorylchlorid durchgeführt. Es zeigte sich, dass bei der Synthese die chirale Phosphorsäure nicht hergestellt werden konnte. Anstelle der chiralen Phosphorsäure wurde ein unerwartetes 2,2-Bisbenzylfenchylperoxid, (*R*,*R*)-16 erhalten, welches isoliert und röntgenspektroskopisch charakterisiert wurde (Abbildung 60 und 61). Des Weiteren wurde versucht, das erhaltene 2,2-Bisbenzylfenchylperoxid (*R*,*R*)-16 unter gleichen Bedingungen erneut zu synthetisieren, welches aber erfolglos verlief.

(*R,R*)-16

Abbildung 60: Synthese von 2,2-Bisbenzylfenchylperoxid (*R*,*R*)-16.

Abbildung 61: Kristallstruktur von 2,2-Bisbenzylfenchylperoxid (*R*,*R*)-16.

Vermutlicherweise beruht die Bildung des Peroxids im ersten Schritt auf eine intermolekulare Additions-Eliminierungsreaktion gefolgt von einer radikalischen Reaktion (Schema 35).

Schema 35: Vorgeschlagener Mechanismus der Peroxidbildung.

Im nächsten Schritt wurde versucht das Peroxid unter sauren Bedingungen in Gegenwart von Zinkstaub zu spalten. Dies verlief erfolgslos, das isolierte 2,2-Bisbenzylfenchylperoxid (*R*,*R*)-16 erwies sich sehr stabil (Abbildung 62).

Abbildung 62: Versuchte Spaltung von 2,2-Bisbenzylfenchylperoxid (*R,R*)-16 mit Zinkstaub unter sauren Bedingungen.

4.5 Enantioselektive Reaktionen in Gegenwart von chiralen Liganden

4.5.1 Verschiedene auf Terpene basierende Liganden als Präkatalysatoren in der asymmetrischen Diethylzink-Addition an Benzaldehyd

Die Fenchylalkohole (R)-(2, 4, 7, 8, 9, 11 und 12) und die Carvylalkohole (S)-13 bis (S)-15 wurden in der Diethylzinkaddition an Benzaldehyd auf ihre katalytische und chiralitätsvermittelnde Aktivität getestet (Abbildung 63 und Tabelle 11). Zu einer Mischung aus 5 mol % Ligand (bezogen auf die Menge an Benzaldehyd) und Diethylzink in Hexan im Überschuss wurde bei 0 ℃ Benzaldehyd zugegeben. Nach 24 h bei -20 °C erfolgte die hydrolytische Aufarbeitung der Reaktionsmischung.

Abbildung 63: Enantioselektive Diethylzinkaddition an Benzaldehyd in Gegenwart von Fenchol- und Carvolliganden als Präkatalysatoren.

katalysiert durch verschiedene chirale (R)- bzw. (S)-Alkohole.					
Alkohol	<i>ee</i> [%]	Ausbeute [%]	1-Phenylpropanol		
(<i>R</i>)-2	10	47	S		

Tabelle 11: Ergebnisse der enantioselektiven Diethylzinkaddition an Benzaldehyd,

AIKC	וסחס	<i>ee</i> [%]	Auspeute [%]	I-Pnenyipropanoi
(<i>R</i>)-	2	10	47	S
(<i>R</i>)-	4	31	93	S
(<i>R</i>)-	7	34	68	S
(<i>R</i>)-	8	10	70	R
(<i>R</i>)-	9	8	60	R
(<i>R</i>)-	11	9	56	R
(<i>R</i>)-	12	75	45	R
(<i>S</i>)-	13	< 2	82	rac
(<i>S</i>)-	14	< 2	78	rac
(<i>S</i>)-	15	< 2	86	rac

Das Benzylfenchol (*R*)-12 erzielte als Präkatalysator in der enantioselektiven Addition von Diethylzink an Benzaldehyd unter den getesteten bidentaten Ligandensystemen das beste Ergebnis mit einem Enantiomerenüberschuss von 75 % (*R*)-1-Phenylpropanol und einer chemischen Ausbeute von 45 %. Das ähnliche Ligandensystem Phenolfenchol (*R*)-11 zeigte dagegen kaum Enantioselektivitäten (9 %).

Im Gegensatz zu den Fencholliganden konnte weiterhin festgestellt werden, dass die Carvolliganden gar keinen Einfluss auf die Enantioselektivitäten in der asymmetrischen Ethylierungsreaktion von Benzaldehyd ausübten.

Des Weiteren wurden die chiralen C₂-symmetrische Diole (Abbildung 64) in der enantioselektiven Katalyse der Diethylzinkaddition an Benzaldehyd eingesetzt und auf ihre Enantioselektivität getestet (Tabelle 12).

Abbildung 64: Die C₂-symmetrische Biphenyldiole.

Tabelle	12 :	Ergebnisse	der	enantioselektiven	Ethylierung	von	Benzaldehyd,
katalysie	rt dur	ch verschiede	ene C	2-symmetrische chi	rale Diole.		

Diole	<i>ee</i> [%]	Ausbeute [%]	1-Phenylpropanol
(M)-BIFOL	15	60	R
(P)-BICOL	2	53	R
(M)-BIMOL	24	64	S
(<i>P</i>)-BIVOL	< 1	75	rac
(P)-BIMEOL	< 2	88	R

Nur das (*M*)-BIMOL (**83**) erzielte als Präkatalysator in der enantioselektiven Ethylierung von Benzaldehyd unter den getesteten C_2 -atropisomeren chiralen Diolen das beste Ergebnis mit einer Enantioselektivät von 24 % und einer chemischen Ausbeute von 64 %.

Zum Schluss wurde als Testreaktion das (*2S*)-*N*-Fenchylcarbamat (*R*)-1 als Chiralitätsvermittler in der enantioselektiven Ethylierung an Benzaldehyd eingesetzt, in der die Katalysatormenge variiert wurde (Tabelle 13).

 (<i>R</i>)-1 [%mol]	<i>ee</i> [%]	Ausbeute [%]	1-Phenylpropanol
 2.5	41	53	S
5	49	75	S
10	50	83	S

Tabelle 13: Enantioselektive Diethylzinkaddition an PhCHO in Gegenwart von (R)-1.

Erstaunlicherweise zeigte das (2S)-N-Fenchylcarbamat (R)-1 als Präkatalysator in der enantioselektiven Diethylzinkaddition an Benzaldehyd Enantioselektiväten bis zu 50 % mit einer chemischen Ausbeute von 83 %. Die Veränderung der eingesetzten Katalysatormenge von 2.5 mol % auf 10 mol % führte im Hinblick auf die Enantioselektiväten nicht zu einer Steigerung. Zur Aufklärung der Reaktion, wie das (2S)-N-Fenchylcarbamat (R)-1 in der Katalyse fungieren könnte, wurden Testreaktionen durchgeführt. Es sollte überprüft werden, ob (2S)-N-Fenchylcarbamat (R)-1 sich während der Reaktion im Hinblick auf seine Struktur verändert. Hierzu wurde (2S)-N-Fenchylcarbamat (R)-1 mit Diethylzinklösung versetzt und unter verschiedenen Reaktionsbedingungen (Stöchiometrie, Temperatur) durch IR-Reaktionskontrollen anhand der charakteristischen Carbamatschwingung bei einer Wellenzahl von $\tilde{v} = 1750 \text{ cm}^{-1}$ beobachtet. Die IR-Reaktionskontrollen zeigten, dass beim Zusammengeben von (2S)-N-Fenchylcarbamat (R)-1 mit Diethylzink unter verschiedenen Reaktionsbedingungen keine Veränderung am (2S)-N-Fenchylcarbamat (R)-1 erfolgt.

4.5.2 Enantioselektive Protonierungsreaktion von Lithiumenolaten in Gegenwart von chiralen Fencholliganden als Protonenquellen

Folgende Fenchylalkohole (*R*)-(8, 10, 11 und 12), (*M*)-BIFOL (73) und das (*S*,*S*)-TADDOL (34) wurden als chirale Protonenquellen in der enantioselektiven Protonierungsreaktion von Lithiumenolaten auf ihre katalytische und chiralitätsvermittelnde Aktivität getestet. Zu einer Mischung aus 1-Trimethyl-siloxy-2-methylcyclohexen (Regioisomerenverhältnis von 97:3) und *n*-Butyllithium in Tetrahydrofuran wurde bei - 78 °C 1.1 Äq. Ligand (L*) als Protonenquelle, gelöst in Tetrahydrofuran, zugegeben. Nach 2 h bei - 78 °C erfolgte die hydrolytische Aufarbeitung der Reaktionsmischung (Abbildung 65).

Abbildung 65: Enantioselektive Protonierungsreaktion von Lithiumenolaten in Gegenwart von chiralen Protonenquellen.

Sowohl die Fencholliganden als auch das TADDOL zeigten bei der enantioselektiven Protonierungsreaktion von Lithiumenolaten als chirale Protonenquelle keine Enantioselektivitäten.

5 Experimenteller Teil

5.1 Arbeitstechniken

5.1.1 Allgemeine Methoden

Alle Reaktionsansätze wurden unter Ausschluß von Sauerstoff und Feuchtigkeit in einer Argonatmosphäre unter Verwendung der Schlenk- und Septum-Kanülentechnik durchgeführt. Das eingesetzte Argon wurde durch einen geheizten Kupfer-Katalysator, Aktivkohle und Calciumchlorid gereinigt. Die Argon-Zuleitung erfolgte über eine Vakuumline mit Öl-Pumpen-Anschluss.

Glasapparaturen wurden vor Benutzung dreimal im Vakuum ausgeheizt und nach Abkühlen mit Argon gespült. Während der gesamten Reaktionszeit wurde im Reaktionsgefäß ein Argonüberdruck konstant gehalten.

Die Lösungsmittel wurden nach Standardmethoden getrocknet, mit Argon gesättigt und über das entsprechende Trocknungs -und Lagerungsmittel wie z.B. Molekularsieb 4 Å der Firma *Merck* gelagert.

5.1.2 Analytik

Schmelz- bzw. Zersetzungspunkte

Schmelz- bzw. Zersetzungspunkte wurden in offenen Glaskapillaren mit Hilfe einer Schmelzpunktbestimmungsapparatur SMP3 nach *Dr. Totolli* der Firma *Stuart Scientific* bestimmt und sind nicht korrigiert.

Dünnschicht (DC)- bzw. Säulenchromatographie

Für die Dünnschichtchromatographie wurden Kieselgel-Fertigfolien ALUGRAM[©] SIL G/UV₂₅₄ mit einer Schichtdicke von 0.25 mm und Fluoreszenzindikator der Firma *Macherey-Nagel* verwendet.

Die Detektion erfolgte durch Bestrahlung mit UV-Licht ($\lambda = 254$ nm) oder durch Verwendung eines Farbreagenzes bestehend aus Molybdophosphorsäure in Ethanol (5 %-ige Lösung). Die Mischungsverhältnisse der Laufmittel sind in Volumenanteilen angegeben.

Für die Säulenchromatographie wurden Kieselgel 60 (0.063-0.200 mm) der Firma Macherey-Nagel benutzt. **Kernresonanzspektren** wurden auf einem 300 bzw. 500 MHz NMR-Spektrometer der Firma *Bruker* gemessen. Soweit nicht anders angegeben wurde, wurde die Messung bei RT gemessen. Die chemischen Verschiebungen δ wurden in ¹H-NMRund ¹³C-NMR-Spektren relativ zu TMS mit dem jeweiligen Lösungsmittel als internem Standard angegeben. Die ¹³C-Kernspektren wurden breitbandentkoppelt aufgenommen.

Bei der Beschreibung der Spektren wurden folgende Abkürzungen für die Multiplizität der Signale verwendet: s = Singulett, d = Dublett, t = Triplett, dd = Dublett von Dubletts, td = Triplett von Dubletts, m = Multiplett, br = breites Signal. Meßfrequenz ¹H-NMR: 300 bzw. 500 MHz, interner Standard durch CDCl₃ 7,24 ppm.

Meßfrequenz ¹³C-NMR: 75 MHz, interner Standard durch CDCl₃ 77.0 ppm.

IR-Spektren wurden mit einem FT-IR-Spektrometer Paragon 1000 der Firma *Perkin-Elmer* bei RT aufgenommen. Die Lage der Absorptionsbanden wurde in Wellenzahlen \tilde{v} [cm⁻¹] angegeben, die Intensitäten der Banden wurden mit s = stark, m = mittel und w = schwach bezeichnet. Die Messung erfolgte an der Luft in leicht flüchtigem Lösungsmittel (Et₂O).

Optische Drehwerte wurden mit einem Polarimeter PE 241 der Firma *Elmer* in einer auf \pm 0.5 °C thermostatierten 1 ml-Küvette gemessen. Als Strahlungsquelle diente eine Natriumdampflampe und als Lösungsmittel wurden Hexan und Methanol verwendet.

Massenspektroskopische Analysen

Die Massenspektren wurden an den Geräten MAT 900 und HSG-30 der Firma *Finnigan* durchgeführt. Die Ionisierung fand durch Elektronenstoßionisation (EI, 70 eV) statt und das Analyseverfahren erfolgte durch DIP-MS (Direct Inlet).

Elementaranalysen

Die Proben wurden nach Umkristallisation oder chromatographischer Reinigung und Trocknung im Hochvakuum (<10⁻³ mbar) mittels eines Vario EL CHN-Analysators der Firma Elementar Analysensysteme GmbH auf den Massenprozentgehalt der Elemente Kohlenstoff, Stickstoff und Wasserstoff untersucht.

92

Röntgenstrukturanalysen wurden mit einem Nonius Kapa CCD Diffraktometer mit einer Mo-K_{α}-Strahlung der Wellenlänge $\lambda = 0.71073$ Å und einem Monochromator (hochorientierter Graphit als Strahlungsquelle) durchgeführt. Zur Strukturbestimmung und -verfeinerung wurden die Programme SHELXS-97 und SHELXL-97 verwendet.

Gaschromatogramme

Die Spektren wurden auf einem HP-6890 Chromatographen der Firma *Hewlett-Packard* mit der Kapillarsäule Chiraldex-GTA (30 m, 0.25 mm, 0.25 µm) aufgenommen. Als Trägergas wurde dreifach gereinigter Stickstoff genutzt. Die Probendetektion erfolgte über einen Flammenionisationsdetektor (FID) bei einer Temperatur von 300 ℃. Die Injektortemperatur betrug 250 ℃.

GC-MS-Analysen

Die Spektren wurden mit einem *Hewlett-Packard* HP 6890 Series Gaschromatografen mit HP 5973 Mass Selective Detector aufgenommen. Als Trägergas wurde Helium 5.0 verwendet.

Das Säulenmaterial bestand aus HP-5: Crosslinked Silicone Gum. Die Kapillarsäule hatte die Länge 25 m; das Innendurchmesser 0.25 mm und die Schichtdicke 0.33 µm.

Für die Messung wurden folgende Temperaturprogramme verwendet:

Quick: 100 °C (5 min), 20 °C/min, 280 °C (10 min).

Stand35: 35 °C (5 min), 20 °C/min, 280 °C (10 min).

5.1.3 Reagenzien und Lösungsmitteln zur Synthese von chiralen Fenchylalkoholen

Anilin

Anisol

Benzaldehyd

Benzylalkohol

o-Brombenzaldehyd

n-Butyllithium (1.6 M Lösung in Hexan)

t-Butyllithium (1.5 M Lösung in Pentan)

(*R*)-(-)-Carvon, (ACROS,
$$[\alpha]_{D}^{20}$$
 (pur) = - 57.0 ° ± 3.0 °; gemes. $[\alpha]_{D}^{20}$ (pur) = - 55.8 °

Chlortrimethylsilan

Diethylzink (15 WT % in *n*-Hexan)

Dimethylzink (2.0 M in Toluol)

(1R)-(-)-Fenchon (ACROS, $[\alpha]_{D}^{20}$ (pur) = - 50.5 ° ± 3.0 °; gemes. $[\alpha]_{D}^{20}$ (pur) = - 49.4 °)

(5R)-(-)-Menthon (ACROS, $[\alpha]_{D}^{20}$ (pur) = - 10.0 ° (c=4, EtOH), gemes. $[\alpha]_{D}^{20}$ (pur)

= - 21.8 °(c=4, Hexan))

Methyllithium (1.6 M Lösung in Diethylether)

Pyrrolidin

N,N,N',N'-Tetramethylethylendiamin

Trimethylamin

Trimethylsilylchlorid

(1R,5R)-(-)-Verbenon (ALDRICH, $[\alpha]_D^{20}$ (pur) = - 249.5° ± 3.0 °; gemes. $[\alpha]_D^{20}$ (pur) = - 212.0 ° ± 3.0 ° (c=4, Hexan))

Lösungsmittel:

Diethylether Ethylacetat

Hexan

Pentan

Tetrahydrofuran

Toluol

Arbeitsvorschriften

5.2.1 Synthesen der Liganden

5.2.1.1 Synthese von N-(tert-Butoxycarbonyl)pyrrolidin (N-Bocpyrrolidin)

Zu einer Lösung von 25 ml Pyrrolidin (0.3 mol) und 3.67 g DMAP (0.03 mol) in Dichlormethan wurde bei RT unter Rühren langsam 64 ml (Boc)₂O (65.5 g, 0.3 mol) in 20 ml Dichlormethan zugegeben. Es trat Gasentwicklung ein und die Lösung klärte sich innerhalb weniger Stunden auf. Die Reaktionsmischung wurde über Nacht bei RT gerührt und dann mit 100 ml Et₂O und 50 ml 1M wässriger KHSO₄-Lösung versetzt. Nach 30minütigem Rühren erfolgte dann die Phasentrennung. Die organische Phase wurde mit 25 ml 1M KHSO₄-Lösung (5mal), H₂O (1-mal), 1M NaHCO₃-Lösung (3mal) und NaCl-Lösung (3mal) gewaschen. Die organische Phase wurde über Na₂SO₄ getrocknet und dann abfiltriert. Mittels Vakuumdestillation (13 mbar, 87 °C) wurde 34.3 g (0.2 mol) *N*-Bocpyrrolidin als farbloses, klares Öl gewonnen.

Ausbeute: 67 %

Siedepunkt: 87 ℃ bei 13 mbar (farbloses Ől).

¹H-NMR (CDCl₃, 300 MHz) δ:
3.26 (t, 4H, 2x CH₂); 1.78 (t, 4H, 2x CH₂); 1.41-1.42 (s, 9H, 3 x CH₃).

¹³**C-NMR** (CDCl₃, 75 MHz), δ: 24.88 (CH₂); 25.63 (CH₂); 28.44 (CH₃); 45.49 (CH₂); 45.81 (CH₂); 78.71 (C_q); 154.56 (C_{C=O}).

IR (NaCl-Kristall), ν̃ in cm⁻¹: 2971 (ν̃_{Alkyl}-CH); 2872; 1689 (ν̃_{C=O}); 1395; 1162-1099; 875; 770. **MS** (EI, 70 eV), m/z [%]: 171 [10] (M⁺); 116 [25] (M⁺-C₃H₄N); 98 [37] (M⁺ -O-C(CH₃)₃); 70 [50] (M⁺ -C₅H₉O₂); 57 [100] (M⁺ -C₅H₈NO₂).

5.2.1.2 Synthese von (1*R*,2*R*,4*S*)-1,3,3-Trimethyl-(*2S*)-pyrrolidin-2-ylbicyclo [2.2.1]heptan-[[1,3]oxazolidin]-2`-on, [(*2S*)-*N*-Fenchylcarbamat], (*R*)-1

Unter Argonatmosphäre wurde in einem 100 ml Schlenk-Kolben 5 g N-Bocpyrrolidin (29 mmol) und 6.6 ml N,N,N',N'-Tetramethylethylendiamin (5.1 g, 43.8 mmol, d = 0.775 g/ml) in 30 ml absolutiertem Diethylether vorgelegt. Die Reaktionsmischung wurde auf -78 °C gekühlt und langsam innerhalb von 30 Minuten 25.5 ml t-Butyllithium (38 mmol, 1.5 M in Pentan) zugegeben. Während der Zugabe färbte sich der Ansatz von farblos nach rot, welches sich nach 3 minutigem Rühren wieder entfärbte. Die Reaktionsmischung wurde für mindestens 6 h bei -78 ℃ gerührt. Danach wurde 4.7 ml (-)-Fenchon (4.4 g, 29 mmol, d = 0.945 g/ml) über einen Zeitraum von 30 Minuten bei dieser Temperatur zugetropft. Die Reaktionsmischung wurde über Nacht auf RT erwärmt und gerührt. Anschließend wurde der Ansatz bei 0 ℃ mit Eiswasser gequencht und 30 Minuten gerührt. Es erfolgte die Phasentrennung, die wässrige Phase wurde mit Et₂O (3mal) extrahiert. Die vereinigten organischen Phasen wurden mit 10 ml 1M HCI-Lösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Der erhaltene gelbe, ölige Rückstand wurde aus Hexan auskristallisiert. Es konnten kleine, weiße Kristalle in einer Ausbeute von 4.7 g (18.85 mmol) isoliert werden.

Ausbeute: 65 %

Schmelzpunkt: 147,8 °C

Drehwert: $[\alpha]_{D}^{20} = -156.4$ °(c = 0.2 M in Hexan)

Elementaranalyse (C₁₅H₂₃NO₂, M = 249,3486 g/mol): ber.: C 72.25 % H 9.30 % N 5.62 % gef.: C 72,06 % H 9.29 % N 5.58 %

¹**H-NMR** (CDCl₃, 300 MHz), δ:

1.03 (s, 3H, CH₃); 1.14 (s, 6H, 2xCH₃); 1.19 (m, 1H, CH); 1.41-1.51 (m, 2H, CH₂); 1.68-1.83 (m, 5H, 2xCH₂, CH); 1.96-2.16 (m, 3H, CH, CH₂); 2.97-3.06 (d, ${}^{3}J$ = 3.5 Hz dd, ${}^{2}J$ = 1.5, ${}^{2}J$ = 1.2 Hz, d, ${}^{3}J$ = 3.6 Hz, 1H, CH); 3.5-3.65 (d, ${}^{2}J$ = 4 Hz, d, ${}^{2}J$ = 4.5 Hz, d, ${}^{3}J$ = 8 Hz, d, ${}^{2}J$ = 8 Hz, 2H, CH₂).

¹³**C-NMR** (CDCl₃, 75 MHz), δ:

17.81 (CH₃); 22.39 (CH₃); 24.58 (CH₂); 25.11 (CH₂); 29.08 (CH₂); 29.58 (CH₃), 30.49 (CH₂); 41.50 (CH₂), 43.86 (CH₂); 44.43 (C_q); 50.74 (CH); 54.15 (Cq); 67.12 (CH); 91.22 (C_q); 162.31 (C_{C=O}).

IR (NaCl-Kristall), ν̃ in cm⁻¹: 2950 (ν̃_{Alkyl}-CH), 2870, 1732 (ν̃_{Carbamat}); 1451, 1377, 1345, 1248, 1037, 982, 771, 673.

MS (EI, 70 eV), m/z [%]: 249 [7.5] (M⁺); 234 [5] (M⁺-O); 206 [2.5] (M⁺-CNO); 166 [100] (M⁺-C₂HNCO₂).

5.2.1.3 Synthese von N-(tert-Butylcarbonyl)-pyrrolidin (N-Pivpyrrolidin)

Zu einer Lösung aus 10.0 ml Pyrrolidin (8.7 g, 0.12 mol) und 17.1 ml Et₃N (12.3 g, 0.12 mol) in 50 ml Tetrahydrofuran wurde bei 0 °C langsam 15.1 ml Pivaloylchlorid (14.8 g, 0.12 mol) zugetropft. Die Reaktionsmischung wurde über Nacht bei RT gerührt, schließlich mit wässriger NaHCO₃-Lösung versetzt, 30 Minuten gerührt und unter Vakuum eingeengt. Der zurückgebliebene weiße Feststoff wurde abfiltriert und in Et₂O umkristallisiert. Farblose, nadelförmige Kristalle in einer Ausbeute von 9.4 g (0.06 mol) wurden erhalten.

Ausbeute: 50.5 %

Schmelzpunkt: 70.2 ℃

Elementaranalyse (C₉H₁₇NO, M = 155, 2374 g/mol):

ber.: C 69.63 % H 11.04 % N 9.02 % gef.: C 69.45 % H 10.78 % N 8.99 %

¹**H-NMR** (CDCl₃, 300 MHz), δ:

1.27 (s, 9H, 3xCH₃); 1.86 (m, 4H, 2xCH₂); 3.55 (m, 4H, 2xCH₂).

¹³**C-NMR** (CDCl₃, 75 MHz), δ:

27.49 (CH₃), 38.91 (CH₂); 47.83 (CH₂); 97.85 (C_q); 176.41 (C_{C=O}).

IR (NaCl-Kristall), ṽ in cm⁻¹: 3486; 2965; 2872; 1613; 1478; 1406; 1362; 1212; 1183-1166; 754.

MS (EI, 70 eV), m/z [%]: 156 [5] (M⁺);140 [7.5] (M⁺-CH₂); 113 [17] (M⁺-CNO); 98 [100] (M⁺-C(CH₃)); 70 [19] (M⁺-C₅H₉O); 55 [37] (M⁺-C₅H₈NO).

5.2.1.4 Synthese von (1*R*,2*R*,4*S*)-1,3,3-Trimethyl-(2*S*)-*N*-(*tert*-Butylcarbonyl)pyrrolidin-2-ylbicyclo[2.2.1]heptan-2`-ol, [2(*S*)-*N*-Pivpyrrolidylfenchol], (*R*)-2

Unter Argonatmosphäre wurde in einem 100 ml Schlenk-Kolben 5 g *N*-Pivpyrrolidin (32 mmol) und 6.3 ml *N,N,N',N'*-Tetramethylethylendiamin (4.9 g, 42.0 mmol, d = 0.775 g/ml) in 30 ml absolutiertem Diethylether vorgelegt. Die Reaktionsmischung wurde auf -78 °C gekühlt und langsam innerhalb von 30 Minuten 28.0 ml *t*-Butyllithium (42 mmol, 1.5 M in Pentan) zugegeben. Die Reaktionsmischung wurde für mindestens 6 h bei -78 °C gerührt. Danach wurde 5.2 ml (-)-Fenchon (4.9 g, 32 mmol, d = 0.945 g/ml) über einen Zeitraum von 30 Minuten bei dieser Temperatur zugetropft. Die Reaktionsmischung wurde über Nacht auf RT erwärmt und gerührt. Anschließend wurde der Ansatz bei 0 °C mit Eiswasser gequencht und 30 Minuten gerührt. Es erfolgte die Phasentrennung, die wässrige Phase wurde mit Et₂O (3mal) extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, abfiltriert und eingeengt. Durch Umkristallisation in Hexan konnten kleine, farblose, prismenförmige Kristalle in einer Ausbeute von 1.0 g (3.3 mmol) isoliert werden.

Ausbeute: 10%

Schmelzpunkt: 170.2 ℃

Drehwert: $[\alpha]_{D}^{20} = -136.0 \circ (c = 0.4M \text{ in Hexan})$

Elementaranalyse (C₁₉H₃₃NO₂, M = 307,4708 g/mol): ber.: C 74.22 % H 10.82 % N 4.56 % gef.: C 74.16 % H 10.74 % N 4.55 % ¹**H-NMR** (CDCl₃, 300 MHz), δ:

0.91 (s, 4H, CH, 1xCH₃); 1.12 (s, 7H, CH, 2xCH₃); 1.25 (s, 9H, 3xCH₃); 1.30-1.39 (m, 3H, CH, CH₂); 1.62 (br. s, OH,); 1.93-1.95 (br. d, 4H, ${}^{3}J$ = 6.9 Hz, 2xCH₂); 3.46-3.49 (br. d, 1H, ${}^{3}J$ = 6.6 Hz, CH); 3.92-3.98 (t, 1H, CH); 5.13 (br. s, 1H, NH).

¹³**C-NMR** (CDCl₃, 75 MHz), δ:

17.80 (CH₃); 22.98 (CH₂); 24.81 (CH₂); 25.01 (CH₃); 27.99 (3xCH₃); 28.36 (CH₃); 33.77 (CH₂); 39.47 (CH₂); 40.44 (CH₂), 45.06 (C_q); 48.41 (CH); 50.55 (CH₂); 53.15 (CH); 60.33 (C_q); 71.50 (C_q); 85.26 (C_q); 182.06 (C_{C=O}).

IR (NaCl-Kristall), \tilde{v} in cm⁻¹: 3503; 2903; 2873; 1738; 1601; 1406; 1361; 1275; 1096; 1047; 1012; 897.

$$\begin{split} \textbf{MS} & (EI, \ 70 \ eV), \ m/z \ [\%]: \\ & 307 \ \ [2] \ \ (M^+); \ \ 250 \ \ [10] \ \ (M^+-C(CH_3)_3); \ \ 222 \ \ [35] \ \ (M^+-C(O)C(CH_3)_3); \ \ 154 \ \ [63] \\ & (M^+-C_4H_7NC(O)C(CH_3); \ 113 \ \ [100] \ \ (M^+-C_{13}H_{22}O); \ 98 \ \ [27\%] \ \ (M^+-C_{14}H_{23}OH); \ 85 \ \ [41\%] \\ & (M^+-C_{14}H_{24}NO); \ 70 \ \ [68] \ \ (M^+-C_{15}H_{24}NO); \ 57 \ \ [93] \ \ (M^+-C_{15}H_{24}NO_2). \end{split}$$

5.2.1.5 Synthese von N-(Trifluoracetyl)-pyrrolidin

Zu einer auf 0 ℃ gekühlten Lösung aus 16.8 ml Pyrrolidin (14.2 g, 0.2 mol) in 20 ml Diethylether wurden langsam 14 ml Trifluoressigsäureanhydrid (21.0 g, 0.1 mol) in 20 ml Diethylether zugegeben. Die Reaktionsmischung wurde nach der kompletten Zugabe auf RT erwärmt und dann über Nacht gerührt. Danach wurde eine Vakuumdestillation durchgeführt, bei dem das Produkt bei einem Druck von 13 mbar und einer Siedetemperaturbereich zwischen 100 ℃ bis 106 ℃ in einer Ausbeute von 13,013 g (0.085 mol) als farblose Flüssigkeit erhalten wurde. Ausbeute: 42.5%

Siedepunkt: 100 ℃-106 ℃ (13mbar)

¹**H-NMR** (CDCl₃, 300 MHz), δ:

1.68-1.87 (2H, t, CH₂); 1.97-2.01 (2H, t, CH₂); 3.52-3.56 (2H, t, CH₂); 3.59-3.64 (2H, t, CH₂).

¹³**C-NMR** (CDCl₃, 75 MHz), δ: 23.40 (CH₂); 26.16 (CH₂); 46.45 (CH₂); 47.32 (CH₂); 110.62 – 122.04 (C_q, $J_{F,C}$ = 285.228 Hz); 154.68 – 156.15 (C_q, $J_{F,C=O}$ = 36.525 Hz).

IR (NaCl-Kristall), \tilde{v} in cm⁻¹: 2965-2872; 1613; 1547; 1478; 1406; 1347; 1284; 1239; 1212; 1149; 754.

MS (EI, 70 eV), m/z [%]: 167 [100] (M⁺); 139 [30] (M⁺-C₂H₄); 98 [73] (M⁺-CF₃); 69 [55] (M⁺-C₅H₈NO); 55 [53] (M⁺-C₆H₈NO).

5.2.1.6 Versuchte Synthese von (1*R*,2*R*,4*S*)-1,3,3-trimethyl-2-[1-(trifluor-acetyl)pyrrolidin-2-yl]bicyclo[2.2.1]heptan-2-ol

Unter Argonatmosphäre wurden in einem 100 ml Schlenk-Kolben 1.76 g *N*-Trifluoracetylpyrrolidin (11.5 mmol) und 2.3 ml *N*,*N*,*N*',*N*'-Tetramethylethylendiamin (1.7 g, 14.9 mmol, d = 0.775 g/ml) in 20 ml absolutiertem Diethylether vorgelegt. Die Reaktionsmischung wurde auf -78 °C gekühlt und langsam innerhalb von 30 Minuten 10 ml *t*-Butyllithium (14.9 mmol, 1.5 M in Pentan) zugegeben. Die Reaktionsmischung wurde für mindestens 6 h bei -78 °C gerührt. Danach wurden 1.9 ml (-)-Fenchon (1.75 g, 11.5 mmol, d = 0.945 g/ml) über einen Zeitraum von 30 Minuten bei dieser Temperatur zugetropft. Die Reaktionsmischung wurde über Nacht auf RT erwärmt und gerührt. Anschließend wurde der Ansatz bei 0 °C mit Eiswasser gequencht und 30 Minuten gerührt. Nach der Phasentrennung wurde die wässrige Phase mit Et₂O (3mal) extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, abfiltriert und eingeengt. Durch Umkristallisation des dunkelorangen öligen Rückstands aus Hexan konnten farblose, nadelförmige Kristalle in einer Ausbeute von 1.6 g (ca. 90%) isoliert werden. Spektroskopische und analytische Untersuchung zeigten, dass sich *N*-Pivpyrrolidin ausgebildet hatte.

5.2.1.7 Spaltungsversuche von (2S)-N-Fenchylcarbamat, (R)-1

AAV1: allgemeine Arbeitsvorschrift zur sauren Spaltung

Das Carbamat wurde in 10 ml Hexan gelöst und im Eisbad auf 0 °C gekühlt. Die klare, farblose Lösung wurde mit saurem Reagens versetzt und unter verschiedenen Bedingungen (siehe jeweilige Vorschrift) gerührt. Danach wurde aufgrund der Carbamat-Schwingung bei Wellenzahl 1752 cm⁻¹ IR-Kontrolle durchgeführt. Die Reaktionsmischung wurde vorsichtig mit 1M NaHCO₃-Lösung (unter starkem Sprudeln, das auf Freisetzung von CO₂ zurückzuführen ist) auf pH=7 gebracht und die Phasen getrennt. Die wässrige Phase wurde mit Et₂O (3mal) extrahiert, die vereinigten organischen Phasen über Na₂SO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt.
AAV2: allgemeine Arbeitsvorschrift zur basischen Spaltung

Das Carbamat wurde in 10 ml Hexan gelöst und im Eisbad auf 0 $^{\circ}$ C gekühlt. Die klare, farblose Lösung wurde mit basischem Reagens versetzt und unter verschiedenen Bedingungen (siehe jeweilige Vorschrift) gerührt. Danach wurde aufgrund der Carbamat-Schwingung bei Wellenzahl 1752 cm⁻¹ IR-Kontrolle durchgeführt. Es erfolgte die Phasentrennung, die wässrige Phase wurde mit Et₂O (3mal) extrahiert, die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt.

AAV3: allgemeine Arbeitsvorschrift zur Spaltung des Carbamats mit MeLi-Lösung

(1.6 M in Et₂O)

Unter verschiedenen Bedingungen (siehe jeweilige Vorschrift) wurde zum Carbamat Methyllithium-Lösung (1.6 M in Et₂O) langsam zugegeben. Aufgrund der Carbamatschwingung bei der Wellenzahl von 1752 cm⁻¹ wurde IR-Kontrolle durchgeführt. Danach erfolgte die Phasentrennung, die wässrige Phase wurde mit Et₂O (3mal) extrahiert, die vereinigten organischen Phasen wurden über Na_2SO_4 getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt.

5.2.1.7.1 Spaltungsversuch von (R)-1 mit CH₃COOH

1 g Carbamat (4 mmol) wurde nach **AAV1** behandelt und die Reaktion wurde unter verschiedenen Temperaturbedingungen (RT, 60 °C und 100 °C) gerührt. Die Reaktionskontrollen mittels IR-Messungen zeigten, dass die charakteristische Carbamatschwingung bei einer Wellenzahl von $\tilde{v} = 1750$ cm⁻¹ nicht verschwand. Das Carbamat konnte mit der CH₃COOH nicht gespalten werden.

5.2.1.7.2 Spaltungsversuch von (R)-1 mit HCl und die Synthese von (2S)-N-Pyrrolidylcamphen, (R)-3

1 g Carbamat (4 mmol) wurde nach **AAV1** behandelt und die Reaktion wurde nach 4 h beendet, da die charakteristische Carbamatschwingung in der IR-Messung als Reaktionskontrolle (Carbamatschwingung bei $\tilde{v} = 1750 \text{ cm}^{-1}$) nicht mehr vorhanden war. Nach der hydrolytischen Aufarbeitung und Trocknung wurde ein gelbes Öl erhalten, welches eindeutig im NMR das Produkt (*R*)-3 zeigt.

Ausbeute: 80 %

¹**H-NMR** (CDCl₃, 300 MHz), δ:

0.92 (2H, s, CH, CH₂); 1.14 (9H, s, CH₂, CH₃); 1.18-1.21 (1H, d, ${}^{3}J$ = 9.6 Hz, CH); 1.46 (3H, s, CH₂, CH₃); 1.65-1.74 (1H, m, CH,); 2.04 (2H, s, CH, CH₂); 2.12-2.14 (1H, d, ${}^{3}J$ = 6.0 Hz, CH); 3.05 (1H, s, CH, CH₂); 3.14-3.21 (2H, q, CH₂); 5.72 (1H, br. s, NH).

¹³**C-NMR** (CDCl₃, 75 MHz), δ:

9.78 (CH₃); 21.91 (CH₂); 25.46 (CH₃); 27.48 (CH); 28.93 (CH); 30.21(CH₂); 33.79 (CH₂); 34.78 (CH₂); 38.49 (C_q); 39.36 (CH₂); 44.68 (CH₂); 50.34 (C_q); 127.39 (CH_{2/sp}²); 141.73 (C_{q/sp}²).

IR (NaCl-Kristall), \tilde{v} in cm⁻¹: 3352; 2952-2860 ; 1616; 1710; 1638; 1530; 1453; 1363; 1258; 1208; 1093; 1013; 796.

5.2.1.7.3 Spaltungsversuch von (R)-1 mit 30M ethanolischer NaOH-Lösung

1 g Carbamat (4 mmol) wurde nach **AAV2** behandelt und die Reaktion wurde unter verschiedenen Temperaturbedingungen (RT, 60 °C und 100 °C) und unterschiedlichen Reaktionszeiten (mindestens 24 h bis 1 Woche) gerührt. Die Reaktionskontrollen mittels IR-Messungen zeigten, dass die charakteristische Carbamatschwingung bei einer Wellenzahl von $\tilde{v} = 1750$ cm⁻¹ nicht verschwand. Das Carbamat konnte mit der 30M ethanolischer NaOH-Lösung nicht gespalten werden.

5.2.1.7.4 Spaltungsversuch von (R)-1 mit 50%-iger KOH-Lösung

1 g Carbamat (4 mmol) wurde nach **AAV2** behandelt und die Reaktion wurde unter verschiedenen Temperaturbedingungen (RT, 60 °C und 100 °C) und unterschiedlichen Reaktionszeiten (mindestens 24 h bis 1 Woche) gerührt. Die Reaktionskontrollen mittels IR-Messungen zeigten, dass die charakteristische Carbamatschwingung bei einer Wellenzahl von $\tilde{v} = 1750$ cm⁻¹ nicht verschwand. Das Carbamat konnte mit der 50%-iger KOH-Lösung nicht gespalten werden.

5.2.1.7.5 Synthese von (1*R*,2*R*,4*S*)-1,3,3-trimethyl-(2*S*)-*N*-(Methylacetylpyrrolidin-2-ylbicyclo [2.2.1]heptan-2`-ol, (*R*)-4

Nach **AAV3** wurde unter Argonatmosphäre zu 1 g Carbamat (4 mmol) bei 0 °C langsam mittels Einwegspritze 5 ml Methyllithium (8 mmol, 1.6 M in Et₂O) innerhalb einer halben Stunde zugetropft. Die Reaktionsmischung wurde auf RT erwärmt und nach 96 h bei RT gerührt. Danach wurde die Phasentrennung durchgeführt. Aus der Rohlösung konnte durch säulenchromatographische Trennung in einem Lösungsmittelgemisch aus Hexan/Essigester (3:1), bei der Fraktion mit dem R_f = 0.15, 0.68 g (2.6 mmol) Produkt isoliert und in Hexan/Essigester umkristallisiert werden.

Ausbeute: 64 %

Schmelzpunkt: 127.8 °C

Drehwert: $[\alpha]_{D}^{20}$ = -275.2 ° (c = 0.1 M in Hexan)

Elementaranalyse (C₁₆H₂₇NO₂, M = 265,3886 g/mol): ber.: C 72.41 % H 10.25 % N 5.28 % gef.: C 72,25 % H 10.21 % N 5.19 %

¹**H-NMR** (CDCl₃, 300 MHz), δ:

0.94 (4H, s, CH, CH₃); 1.08-1.13 (6H, d, ${}^{3}J$ = 16.5 Hz, 2x CH₃); 1.26-1.30 (4H, d, ${}^{3}J$ = 13.5 Hz, CH, CH₂); 1.62-1.99 (6H, m, CH, CH₂); 2.1-2.11 (2H, d, ${}^{3}J$ = 3.3 Hz, CH₂); 2.29-2.33 (1H, m, CH); 2.49-2.50 u. 2.54-2.55 (1H, dd, ${}^{2}J$ = 2.1Hz, d, ${}^{2}J$ = 2.7 Hz, CH); 3.49-3.60 (2H, tt, CH₂); 4.11 (1H, br. s., OH).

¹³**C-NMR** (CDCl₃, 75 MHz), δ:

17.46 (CH₃); 24.22 (CH₃); 27.84 (CH₂); 29.14 (CH₂); 29.93 (CH₃); 33.94 (CH₂); 35.91 (CH₂); 40.50 (CH₂); 45.18 (C_q); 50.54 (CH₂); 50.61 (CH₃); 53.53 (CH); 58.51 (C_q); 69.20 (CH); 104.94 (C_q); 175.32 (C_{C=O}).

IR (NaCl-Kristall), v in cm⁻¹: 3205; 2927-2827 ; 1616; 1417; 1087; 1007; 804.

MS (EI, 70 eV), m/z [%]: 265 [1] (M⁺); 222 [7] (M⁺-C(O)C(CH₃)₃); 113 [100] (M⁺-C₁₀H₁₇O); 85 [20] (M⁺-C₁₁H₁₈NO); 70 [58] (M⁺-C₁₂H₂₀NO).

5.2.1.7.6 Synthese von (1*R*,2*R*,4*S*)-1,3,3-trimethyl-(*2S*)-*N*-[2,2-Dimethyl-3hydroxy-3-methyl-pyrrolidylpentanamidbicyclo[2.2.1]heptan-2`-ol, (*R*)-5

Bei der Synthese **5.2.1.7.5** konnte aus der Rohlösung durch säulenchromatographische Trennung in einem Lösungsmittelgemisch aus Hexan/Essigester (3:1) eine weitere Fraktion mit einem Rf-Wert von 0.52 gesammelt werden, aus der 0.21 g (0.57 mmol) Produkt **(***R***)-5** gewonnen und in Hexan umkristallisiert wurde.

Ausbeute: 14 %

Schmelzpunkt: 136.7 °C

Drehwert: $[\alpha]_{D}^{20} = -50.2 \circ (c = 0.2 \text{ M in Methanol})$

¹**H-NMR** (CDCl₃, 300 MHz), δ:

0.95 (12H, s, 4x CH₃); 0.98-1.01 (1H, d, ${}^{3}J = 8.7$ Hz, 6H, CH); 1.07-1.14 (3H, d, br. s, CH₃); 1.25 (3H, s, CH₃); 1.32-1.37 (1H, m, CH); 1.61-1.76 (4H, m, CH, CH₂); 1.86-2.04 (3H, m, CH, CH₂); 2.15-2.43 (3H, m, CH, CH₂); 2.53-2.58 (1H, d, ${}^{3}J = 15.6$ Hz, CH); 3.42-3.51 (1H, q, CH₂); 3.63-3.70 (1H, t, CH, CH₂); 4.21 (1H, breites s, OH).

IR (NaCl-Kristall), \tilde{v} in cm⁻¹: 3441, 3240; 2951-2875; 1601; 1423; 1280; 1098; 1045, 1010, 812.

MS (EI, 70 eV), m/z [%]: 365 [4] (M⁺); 332 [21] (M⁺- 2x OH); 308 [24] (M⁺-C(CH₃)₃); 112 [26] (M⁺-C₁₈H₃₀O₂); 70 [100] (M⁺-C₁₈H₃₂O₃).

5.2.1.7.7 Versuchte Synthese von (*2S*)-*N*-Pyrrolidylfenchol und die Bildung des (*2S*)-*N*-Pyrrolidylfencholhydrochlorid, (*R*)-6

Aus der Synthese **5.2.1.7.5** nach dem Arbeitsvorschrift **AAV3** konnte aus der Rohlösung durch säulenchromatographische Trennung in einem Laufmittelgemisch aus Hexan/Essigester (3:1), eine weitere Fraktion mit einem R_f. -Wert von 0.74 gesammelt werden. Nach dem Entfernen des Lösungsmittels am Rotationsverdampfer wurde eine orange ölige Substanz in einer geringen Ausbeute von 0.13 g (0.58 mmol) erhalten. Hierzu wurde eine NMR-Probe in CDCl₃-Lösung angefertigt. Nach dem Stehenlassen der Probe über eine Zeitspanne von 2 Wochen bildeten sich kleine nadelförmige Kristalle im NMR-Röhrchen, die röntgen-spektroskopisch als das (*2S*)-*N*-Pyrrolidylfenchol*Hydrochlorid (*R*)-6 charakterisiert wurde.

Reproduktionsansätze verliefen leider erfolgslos. Ausser der Kristallstrukturanalyse konnten zu der Verbindung (*R*)-6 keine weitere Analytik durchgeführt werden.

Unter Argonatmosphäre wurde zu 2 g (*R*)-1 (8 mmol) in absolutiertem Hexan bei 0 °C langsam 10 ml MeLi (16 mmol, 1.6 M in Et₂O) innerhalb einer halben Stunde zugetropft. Die Reaktionsmischung wurde zuerst auf RT, dann auf 60 °C erwärmt und für 6 h auf Rückfluss erwärmt. Nach der Reaktionskontrolle mittels IR-Messung (Carbamatschwingung bei $\tilde{v} = 1750$ cm⁻¹), wobei die charakteristische Bande verschwunden war, erfolgte die wässrige Aufarbeitung. Die Phasen wurden getrennt, die wässrige Phase wurde mit Et₂O (3mal) extrahiert, die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Aus der Rohlösung konnte durch Umkristallisieren aus Hexan/Essigester (20:1) 0.74 g (1.4 mmol) Produkt isoliert werden.

Ausbeute: 18 %

Schmelzpunkt: Zersetzung > 220 ℃

Drehwert: $[\alpha]_{D}^{20} = -107.2 \circ (c = 0.2 \text{ M in Methanol})$

Elementaranalyse ($C_{31}H_{50}N_2O_4$, M = 514,7397 g/mol): ber.: C 72.55 % H 10.08 % N 5.29 % gef.: C 72,17 % H 09.76 % N 5.40 %

¹**H-NMR** (CDCl₃, 300 MHz), δ:

0.92 (s, 6H, 2xCH₃); 1.09 (s, 8H; CH, 2x CH₃); 1.13 (s, 8H; CH, 2x CH₃); 1.25 (s, 2H, 2xOH); 1.34 (t, 2H, 2xCH); 1.61-1.62 (d, ³*J* = 2.4 Hz, 4H, 2xCH₂); 1.71-1.95 (m, 8H, CH, CH₂); 2.06-2.49 (m, 6H, CH, CH₂); 3.46-3.55 (m, 4H, 2xCH₂); 3.83 (s, 2H, CH₂).

¹³**C-NMR** (CDCl₃, 75 MHz), δ:

17.46 (CH₃); 24.22 (CH₃); 27.84 (CH₂); 29.14 (CH₂); 29.93 (CH₃); 33.94 (CH₂); 35.91 (CH₂); 40.50 (CH₂); 45.18 (C_q); 50.54 (CH₂); 50.61 (CH₃); 53.53 (CH); 58.51 (C_q); 69.20 (CH); 104.94 (C_q); 175.32 (C_{C=O}).

IR (NaCl-Kristall), v in cm⁻¹:

3202; 2927-2866; 1614; 1426-1401; 1049; 1014; 868.

MS (EI, 70 eV), m/z [%]:

MS (positive ESI), m/z [%]: 515.36 [96] (M⁺); 497.36 [18] (M⁺ -H₂O); 479.37 [50] (M⁺ -2xOH).

5.2.1.8 Synthese von N-(tert-Butoxycarbonyl)-anilin (N-Bocanilin)

Weg A:

Zu einer Lösung aus 5 ml Anilin (0.055 mol) in 30 ml Tetrahydrofuran wurde langsam 13.20 ml (Boc)₂O (0.0605 mol) in 20 ml Tetrahydrofuran zugegeben. Die Reaktionsmischung wurde bei RT 12 h gerührt und schließlich das Lösungsmittel am Rotationsverdampfer entfernt. Der erhaltene, dunkelrote flüssige Rückstand wurde in Hexan aufgenommen. Der ausfallende weiße Feststoff wurde abfiltriert und in Et₂O

umkristallisiert. Es konnte 7.8 g (0.04 mol) *N*-Bocanilin in Form von weisser, nadelförmiger Kristalle gewonnen werden.

Ausbeute: 74 %

Schmelzpunkt: 132 ℃

Elementaranalyse (C₁₁H₁₅NO₂, M = 193, 2374 g/mol): ber.: C 68.37 % H 7.82 % N 7.25 % gef.: C 68.34 % H 7.95 % N 7.24 %

¹**H-NMR** (CDCl₃, 300 MHz), δ: 1.54 (9H, s, 3 x CH₃); 6.49 (1H, br. s. NH); 7.02-7.07 (1H, t, H_{ar}); 7.28-7.33 (2H, t, H_{ar}); 7.36-7.39 (2H, dd, ³J = 1.8, 1.2 Hz, H_{ar}).

¹³C-NMR (CDCl₃, 75 MHz), δ:
28.32 (3x CH₃); 80.48 (C_q); 118.50 (CH_{ar}); 123.00 (CH_{ar}); 128.95 (CH_{ar}); 138.29 (C_{ar/q}); 152.71 (C_{C=O}).

IR (NaCl-Kristall), \tilde{v} in cm⁻¹: 3309; 3120; 3039; 2981; 2930; 1687; 1596; 1528; 1439; 1366; 1311; 1240; 1149; 1082; 1054; 1020; 908; 824; 754; 744; 692.

MS (EI, 70 eV), m/z [%]: 193 [10] (M⁺); 137 [51] (M⁺-C(CH₃)₃); 93 [70] (M⁺-(O)C-O-(CH₃)₃); 57 [100] (M⁺-C₇H₆NO₂).

Weg B:

Zu einer Lösung aus 5 ml Anilin (0.055 mol) und 0.336 g DMAP ($2.75x10^{-3}$ mol) in 30 ml Tetrahydrofuran wurde langsam 13.20 ml (Boc)₂O (0.0605 mol) in 20 ml Tetrahydrofuran zugegeben. Die Reaktionsmischung wurde bei RT 12 h gerührt und schließlich das Lösungsmittel am Rotationsverdampfer entfernt. Aus der Rohlösung wurde aus Et₂O ein hell rosa, prismenförmiger Feststoff in einer Ausbeute von 2.94 g (0.001 mol) isoliert. Ausbeute: 17 %

Schmelzpunkt: 108.5 °C

¹**H-NMR** (CDCl₃, 300 MHz), δ:

1.44 (9H, s, 3 x CH₃); 7.11-7.16 (1H, t, H_{ar}); 7.23-7.27 (2H, dd, ${}^{3}J = 1.5$, 2.1 Hz, H_{ar}); 7.32-7.40 (3H, m, H_{ar}); 7.43-7.49 (2H, m, H_{ar}); 7.60-7.63 (2H, d, ${}^{3}J = 8.7$ Hz, H_{ar}); 10.99 (1H, br. s. NH).

¹³**C-NMR** (CDCl₃, 75 MHz), δ:

27.86 (3x CH₃); 83.94 (C_q); 119.87 (CH_{ar}); 123.74 (CH_{ar}); 127.79 (CH_{ar}); 128.61 (CH_{ar}); 128.72 (CH_{ar}) 128.87 (CH_{ar}); 137.87 (C_{ar/q}); 137.95 (C_{ar/q}); 151.93 (C_{C=O}); 154.94 (C_{C=O}).

5.2.1.9 Versuchte Synthese von (1*R*,2*R*,4*S*)-2-exo-(2-*N-tert*-Butoxycarbonyl-phenyl)-1,3,3-trimethylbicyclo[2.2.1]-heptan-2-ol (*N*-Bocanilinfenchol)

Weg A: Lithiierung mit *n*-Butyllithium:

Unter Argonatmosphäre wurden 2.0 g *N*-Bocanilin (0.01 mol) in 15 ml absolutiertem Tetrahydrofuran und 20 ml absolutiertem Diethylether gelöst, auf 0 °C gekühlt und 19.5 ml *n*-Butyllithium (0.03 mol, 1.6 M in Hexan) zugetropft. Die Reaktionsmischung wurde bei 0 °C 2 h gerührt, auf RT erwärmt und über Nacht gerührt. Hierzu wurde 1.7 ml (-)-Fenchon (1.58 g, 0.01 mol, d = 0.945 g/ml) langsam zugeben und über Nacht gerührt. Hierbei wurde eine Farbänderung von farblos zu gelb zu orange beobachtet. Die Phasentrennung erfolgte nach dem Versetzen gleicher Volumina an 1M NaHCO₃-Lösung, die wässrige Phase wurde mit 20 ml Et₂O (3mal) extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Aus dem orangeroten Rohprodukt wurde durch Umkristallisieren in Et₂O *N*-Bocanilin (85 %) wieder zurückerhalten.

Weg B: Lithierung mit *t*-Butyllithium:

Unter Argonatmosphäre wurde auf -78 °C gekühlte Lösung aus 2.0 g *N*-Bocanilin (0.01 mol) in 20 ml absolutiertem Tetrahydrofuran 14.5 ml *t*-Butyllithium (0.02 mol, 1.5 M in Pentan) innerhalb einer Stunde langsam zugetropft. Die Reaktionsmischung wurde bei -78 °C 2 h gerührt, danach wurde 1.7 ml (-)-Fenchon (1.58 g, 0.01 mol, d = 0.945 g/ml) langsam zugeben und über Nacht gerührt. Hierbei wurde eine Farbänderung von farblos zu dunkelorange dann zu schwarz beobachtet. Die Reaktionsmischung wurde durch gesättigte NH₄Cl-Lösung gequencht. Die Phasen wurden getrennt, die wässrige Phase wurde mit 20 ml Et₂O (3mal) extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Aus dem orangeroten öligen Rückstand wurde durch Umkristallisieren in Et₂O 78 % *N*-Bocanilin wieder zurückerhalten.

5.2.1.10 Synthese von *N*-(*tert*-Butylcarbonyl)anilin (*N*-Pivanilin)

Zu einer Lösung von 5.0 ml Anilin (55 mmol) und 7.7 ml Et₃N (55 mmol) in 50 ml Tetrahydrofuran wurde bei 0 °C langsam 6.75 ml Pivaloylchlorid (55 mmol) zugetropft. Die Reaktionsmischung wurde über Nacht bei RT gerührt, schließlich mit

wässriger NaHCO₃-Lösung versetzt, 30 Minuten gerührt und unter Vakuum eingeengt. Der zurückgebliebene weiße Feststoff wurde abfiltriert und in Et₂O umkristallisiert. Farblose, nadelförmige Kristalle in einer Ausbeute von 6.8 g (38.4 mmol) wurden erhalten.

Ausbeute: 70%

Schmelzpunkt: 136.5 ℃

Elementaranalyse (C₁₁H₁₅NO, M = 177, 2374 g/mol): ber.: C 74.54 % H 8.53 % N 7.90 % gef.: C 74.42 % H 8.72 % N 7.88 %

¹**H-NMR** (CDCl₃, 300 MHz), δ: 1.32 (9H, s, 3 x CH₃); 1.56 (1H, br. s. NH); 7.08-7.12 (1H, t, H_{ar}); 7.29-7.35 (2H, t, H_{ar}); 7.51-7.54 (2H,dd, ${}^{3}J$ = 1.2, 0.9 Hz, H_{ar}).

¹³**C-NMR** (CDCl₃, 75 MHz), δ: 27.64 (3x CH₃); 39.59 (C_q); 119.91 (CH_{ar}); 124.17 (CH_{ar}); 128.93 (CH_{ar}); 176.50 (C_{ar/q}); 201.97 (C_{C=O}).

IR (NaCl-Kristall), \tilde{v} in cm⁻¹: 3307; 3020; 2963; 2929; 1652; 1595; 1530; 1436; 1316; 1241; 1169; 903; 754; 696.

MS (EI, 70 eV), m/z [%]: 177 (M⁺) [52.5 %]; 93 (M⁺-C₅H₉O) [86 %]; 57 (M⁺-C₇H₆NO) [100 %].

5.2.1.11 Synthese von (1*R*,2*R*,4*S*)-2-exo-(2-*N-tert*-Butylcarbonylphenyl)-1,3,3trimethylbicyclo[2.2.1]-heptan-2-ol (*N*-Pivanilinfenchol), (*R*)-8

Unter Argonatmosphäre wurde in einem 250 ml Zweihalskolben 10 g Pivanilid (0.056 mol) in 90 ml absolutiertem Tetrahydrofuran und 120 ml absolutiertem Diethylether vorgelegt. Die Reaktionsmischung wurde auf 0 °C gekühlt und 106 ml *n*-Butyllithium (0.169 mol, 1.6 M in Hexan) langsam zugegeben. Danach wurde der Ansatz auf RT erwärmt und über Nacht gerührt. Es wurde eine weiße Suspension beobachtet. Hierzu wurde dann 9.9 ml (-)-Fenchon (8.5 g, 0.056 mol, d = 0.945 g/ml) innerhalb einer halben Stunde zugetropft. Die Reaktionsmischung wurde für 24 h bei RT gerührt. Anschließend wurde der Ansatz mit gesättigter NH₄Cl-Lösung gequencht und 30 Minuten gerührt. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Durch Kristallisation aus Hexan/Essigester (15:1) konnte 10.35 g **(***R***)-8** (0.03 mol) in Form von farblosen, nadelförmigen Kristallen isoliert werden.

Ausbeute: 56 %

Schmelzpunkt: 159.3 ℃

Drehwert: $[\alpha]_{D}^{20} = -102.6^{\circ}$

Elementaranalyse (C₂₁H₃₁NO₂, M = 329.4763 g/mol): ber.: C 76.55 % H 9.48 % N 4.25 % gef.: C 76.46 % H 9.55 % N 4.21 % ¹**H-NMR** (CDCl₃, 300 MHz), δ:

10.43 (1H, br. s, NH); 8.342-8.337 u. 8.314-8.310 (1H, dd, ${}^{3}J = 1.5$, 1.2 Hz, H_{ar}); 7.502-7.498 u. 7.475-7.470 (1H, dd, ${}^{3}J = 1.2$, 1.5 Hz, H_{ar}); 7.19-7.13 (1H, t, H_{ar}); 6.99- 6.93 (1H, t, H_{ar}); 2.43-2.39 (2H, m, CH₂); 2.20-2.10 (1H, m, CH); 1.77-1.69 (3H, m, CH, CH₂); 1.52-1.44 (1H, m, CH); 1.409-1.404 u. 1.373-1.369 (1H, dd, ${}^{3}J = 1.5$, 1.2 Hz, CH); 1.29 (12H, s, 4xCH₃); 1.20 (3H, s, CH₃); 0.50 (3H, s, CH₃).

¹³**C-NMR** (CDCl₃, 75 MHz), δ:

17.80 (CH₃); 23.86 (CH₃); 24.00 (CH₂); 27.67 (3x CH₃); 29.66 (CH₃); 34.11 (CH₂); 40.02 (C_q); 41.49 (CH₂); 45.41 (C_q); 49.92 (CH); 54.00 (C_q); 87.57 (C_q); 121.55 (CH_{ar}); 122.76 (CH_{ar}); 126.91 (CH_{ar}); 128.58 (CH_{ar}); 131.34 (C_{ar/q}); 139.30 (C_{ar/q}); 176.65 (C_{C=O}).

IR (NaCl-Kristall), \tilde{v} in cm⁻¹: 3285; 3070-3020; 2961-2873; 1650; 1579, 1518, 1437, 1307, 1046, 770.

MS (EI, 70 eV), m/z [%]: 329 [7.5] (M⁺); 244 [10] (M⁺-OC(CH₃)₃); 226 [13] (M⁺ -OC(CH₃)₃-H₂O); 204 [83] (M⁺ -C₉H₁₆);120 [48] (M⁺ -C₁₄H₂₆O); 57 [100] (M⁺ -C₁₇H₂₂NO₂).

5.2.1.12 Versuchte Synthese von (1*R*,2*R*,4*S*)-2-exo-(2-Aminophenyl)-1,3,3trimethylbicyclo[2.2.1]-heptan-2-ol

AAV4: allgemeine Arbeitsvorschrift zum Entschützen der Schutzgruppe

Das *N*-Pivanilinfenchol (*R*)-8 wurde in 10 ml Hexan gelöst. Die klare, farblose Lösung wurde mit basischem Reagens versetzt und unter verschiedenen Bedingungen (siehe jeweilige Vorschrift) gerührt. Danach wurde aufgrund der Carbonyl-Schwingung bei einer Wellenzahl von 1690 cm⁻¹ IR-Kontrolle durchgeführt. Es erfolgte die Phasentrennung, die wässrige Phase wurde mit Et₂O (3mal) extrahiert, die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt.

Nach **AAV4** wurde zu 2g (*R*)-8 (6 mmol) 20 ml 30M ethanolischer NaOH-Lösung zugegeben. Unter verschiedenen Temperaturbedingungen (RT, 60 °C und 100 °C) wurde zu unterschiedlicher Reaktionsdauer (24 h bis 7 Tage) gerührt. Danach wurde die Phasentrennung durchgeführt, die Reaktionsmischung wurde mit verdünnter Salzsäure langsam neutralisiert und die Phasen getrennt. Die wässrige Phase wurde mit Et₂O (3mal) extrahiert, die vereinigten organischen Phasen wurden zuerst mit 1M NaHCO₃-Lösung (3mal) gewaschen und dann über Na₂SO₄ getrocknet. Nach dem Abfiltrieren wurde das Lösungsmittel am Rotationsverdampfer entfernt, es wurde ein weisser Feststoff erhalten, dass auf das (*R*)-8 zurückzuführen ist.

5.2.1.12.2 Entschützen von (R)-8 mit 50%-iger KOH-Lösung

2g (*R*)-8 (6 mmol) wurde nach **AAV4** mit 20 ml 50%-iger KOH-Lösung zusammengegeben. Unter verschiedenen Temperaturbedingungen (RT, 60 ℃ und 100 ℃) wurde zu unterschiedlicher Reaktionsdauer (24 h bis 7 Tage) gerührt. Danach wurde die Phasentrennung wie **5.2.1.12.1** durchgeführt.

Nach dem Trocknen und Abfiltrieren wurde das Lösungsmittel am Rotationsverdampfer entfernt. Hierbei wurde wiederum das (*R*)-8 zurückerhalten.

5.2.1.12.3 Entschützen von (R)-2 mit 30M ethanolischer NaOH-Lösung

0.5 g *N*-Pivpyrrolidinfenchol (*R*)-2 (1.6 mmol) wurde mit 10 ml 30M ethanolischer NaOH-Lösung versetzt. Unter verschiedenen Temperaturbedingungen (RT, 60 $^{\circ}$ C und 100 $^{\circ}$ C) wurde zu unterschiedlicher Reaktionsdauer (24 h bis 7 Tage) gerührt. Danach erfolgte die Phasentrennung wie bei **5.2.1.12.1**. Nach dem Trocknen und Enengen der Lösungsmittel wurde das (*R*)-2 wieder zurück erhalten.

5.2.1.12.4 Entschützen von (R)-2 mit 50%-iger KOH-Lösung

0.5 g *N*-Pivpyrrolidinfenchol (*R*)-2 (1.6 mmol) wurde mit 10 ml 50%-iger KOH-Lösung zusammengegeben. Unter verschiedenen Temperaturbedingungen (RT, 60 °C und 100 °C) wurde zu unterschiedlicher Reaktionsdauer (24 h bis 7 Tage) gerührt. Die Phasentrennung wurde wie bei **5.2.1.12.1** durchgeführt. Nach dem Trocknen und Enengen der Lösungsmittel wurde wiederum das (*R*)-2 wieder isoliert.

Bei beiden Verbindungen sowohl bei dem Pyrrolidinderivat (*R*)-2 und als auch bei dem Anilinderivat (*R*)-8 konnte die Schutzgruppe unter basischen Bedingungen, wie es in der Literatur eigentlich beschrieben ist, nicht abgespalten werden.

5.2.1.13 Synthese von (1*R*,2*R*,4*S*)-2-exo-[2-(2,2'-Dimethylpropylamin)-phenyl]-1,3,3-trimethylbicyclo[2.2.1]-heptan-2-ol, Aminofenchol (*R*)-9

Unter Argonatmosphäre wurde zu einer Lösung aus 2.37 g *N*-Pivanilinfenchol (*R*)-8 (7.2 mmol) in 20 ml absolutiertem Tetrahydrofuran langsam 7.2 ml LiAlH₄^{*}Tetrahydrofuran-Lösung (7.2 mmol, 1M LiAlH₄*THF-Komplexlösung) zugetropft und die Reaktionsmischung für eine Stunde bei 0 °C und über Nacht bei RT gerührt. Der Ansatz wurde langsam mit 20 ml Eiswasser gequencht, es bildete sich ein voluminöser weisser Niederschlag (Al(OH)₃), der abfiltriert wurde. Die Phasen wurden getrennt, die wässrige Phase wurde mit Et₂O (3mal) extrahiert und die vereinigten organischen Phasen über Na₂SO₄ getrocknet. Danach wurde abfiltriert und das Lösungsmittel am Rotationsverdampfer entfernt. Es wurde ein orangeroter öliger Rückstand erhalten, der nach Tagen in einem Lösungsmittelgemisch aus Hexan:EtOAc (10:1) kleine, nadelförmige Kristalle ausbildete, die auf das Reduktionsprodukt (*R*)-9 zurückzuführen sind. Das Reproduzieren dieser Synthese mit LiAlH₄-Pulver in absolutiertem THF führte nach mehreren Ansätzen nicht zu dem einmalig erhaltenden Reduktionsprodukt (*R*)-9.

Ausbeute: 12 %

Schmelzpunkt: 128.7 °C

Drehwert: $[\alpha]_{D}^{20} = -72.8^{\circ}$

¹**H-NMR** (CDCl₃, 300 MHz), δ:

10.43 (1H, br. s, NH); 8.342-8.337 u. 8.314-8.310 (1H, dd, ${}^{3}J = 1.5$, 1.2 Hz, H_{ar}); 7.502-7.498 u. 7.475-7.470 (1H, dd, ${}^{3}J = 1.2$, 1.5 Hz, H_{ar}); 7.19-7.13 (1H, t, H_{ar}); 6.99- 6.93 (1H, t, H_{ar}); 2.43-2.39 (2H, m, CH₂); 2.20-2.10 (1H, m, CH); 1.77-1.69

(3H, m, CH, CH₂); 1.52-1.44 (1H, m, CH); 1.409-1.404 u. 1.373-1.369 (1H, dd, ${}^{3}J = 1.5, 1.2$ Hz, CH); 1.29 (12H, s, 4xCH₃); 1.20 (3H, s, CH₃); 0.50 (3H, s, CH₃).

¹³**C-NMR** (CDCl₃, 75 MHz), δ:

17.85 (CH₃); 24.86 (CH₃); 25.60 (CH₂); 28.45 (3x CH₃); 30.30 (CH₃); 34.75 (CH₂); 38.15 (CH₂); 40.02 (C_q); 41.49 (CH₂); 45.41 (C_q); 49.92 (CH); 54.00 (C_q); 87.57 (C_q); 121.55 (CH_{ar}); 122.76 (CH_{ar}); 126.91 (CH_{ar}); 128.58 (CH_{ar}); 131.34 (C_{ar/q}); 139.30 (C_{ar/q}).

IR (NaCl-Kristall), \tilde{v} in cm⁻¹: 3285; 3070-3020; 2961-2873; 1579, 1518, 1437, 1307, 1046, 770.

5.2.1.14 Synthese von N-(Trifluoroacetyl)-anilin

Zu einer 0 °C gekühlten Lösung aus 5.6 ml Anilin (0.06 mol) und 10 g Na₂CO₃ in 50 ml absolutiertem Diethylether wurde langsam 11.1 ml Trifluoressigsäureanhydrid (16.8 g, 0.08 mol, d = 1.51 g/ml) zugegeben. Die Reaktionsmischung wurde über Nacht bei RT gerührt.

Ausbeute: 74 %

Schmelzpunkt: 90.6 ℃

¹**H-NMR** (CDCl₃, 300 MHz), δ: 7.27-7.29 (1H, d, ³*J* = 7.5 Hz, H_{ar}); 7.39-7.44 (2H, t, H_{ar}); 7.57-7.60 (2H, d, ³*J* = 7.8 Hz, H_{ar}); 7.98 (1H, br. s. NH). ¹³**C-NMR** (CDCl₃, 75 MHz), δ:

113.825 (C_q, $J_{F,C}$ = 2.86.875 Hz); 117.65 (CH_{ar}); 126.6 (CH_{ar}); 129.40 (CH_{ar}); 135.07 (C_{ar/q}); 154.71 (C_q, $J_{F,C=O}$ = 37Hz).

IR (NaCI-Kristall) v in cm⁻¹:

3313; 3147; 3092; 1699; 1601; 1547; 1498; 1450; 1347; 1284; 1239; 1149; 1082; 1078; 920; 895; 753; 730; 689.

MS (EI, 70 eV), m/z [%]: 189 [100] (M⁺); 120 [68] (M⁺-CF₃); 92 [47] (M⁺-(O)C-CF₃); 77 [75] (M⁺-NH-(O)C-CF₃); 69 [32] (M⁺-C₇H₆NO); 51 [18] (M⁺-C₇H₆FNO).

5.2.1.15 Versuchte Synthese von N-Trifluoroacetanilinfenchol

Weg A: Lithierung mit *n*-Butyllithium:

Unter Argonatmosphäre wurde 1.33 g N-Trifluoracetanilid (7 mmol) in 10 ml absolutiertem Tetrahydrofuran und 15 ml absolutiertem Diethylether gelöst, auf 0 °C gekühlt und 13.0 ml n-Butyllithium (21 mmol, 1.6 M in Hexan) zugetropft. Die Reaktionsmischung wurde bei 0 ℃ 2 h gerührt, auf RT erwärmt und über Nacht gerührt. Hierzu wurde 1.1 ml (-)-Fenchon (1.07 g, 7 mmol, d = 0.945 g/ml) langsam zugeben und über Nacht gerührt. Hierbei wurde eine Farbänderung von farblos zu Durch Zugabe eines schwarz beobachtet. gleiches Voluminen 1M an NaHCO₃-Lösung wurde die Reaktion unterbrochen und die Phasen getrennt. Die wässrige Phase wurde mit 20 ml Et₂O (3mal) extrahiert, die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Aus dem dunkelrot bis schwarzem Rohprodukt wurde durch Umkristallisieren in Et₂O N-Trifluoracetylpyrrolidin (65 %) zurückerhalten.

Weg B: Lithierung mit *t*-Butyllithium:

Unter Argonatmosphäre wurde auf -78 °C gekühlte Lösung aus 2.0 g *N*-Trifluoracetanilid (10.6 mmol) in 20 ml absolutiertem Tetrahydrofuran 15 ml t-Butyllithium (22 mmol, 1.5 M in Pentan) innerhalb einer Stunde langsam zugetropft. Die Reaktionsmischung wurde bei -78 ℃ 2 h gerührt, danach wurde 1.7 ml (-)-Fenchon (1.58 g, 0.01 mol, d = 0.945 g/ml) langsam zugeben und über Nacht gerührt. Hierbei wurde eine Farbänderung von farblos zu schwarz beobachtet. Die Reaktionsmischung wurde mit gesättigter NH₄Cl-Lösung gequencht. Die Phasen wurden getrennt, die wässrige Phase wurde mit 20 ml Et₂O (3mal) extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Es wurde ein dunkelbrauner Rückstand erhalten, aus der weder durch Umkristallization noch durch Säulenchromatographie etwas nachgewiesen werden konnte.

5.2.1.16 Synthese von (1*R*,2*R*,4*S*)-2-exo-1,3,3-Trimethyl-2phenylbicyclo [2.2.1]heptan-2-ol (Phenylfenchol), (*R*)-10

Unter Argonatmosphäre wurden in einem 250 ml Dreihalskolben 2.43 g (0.1 mol) Magnesium vorgelegt. Dieses wurde mit wenig lodkörnchen angeätzt. Es wurden 10 ml abs. Diethylether zugegeben und langsam bei gelindem Rückfluss 10.5 ml (0.1 mol) Brombenzol so zugetropft, dass der Rückfluss bestehen blieb. Nach ungefähr einer Stunde wurde das Brombenzol komplett zugegeben, die Reaktionsmischung wurde noch 2 h zum Rückfluss erhitzt, zuerst auf RT und dann auf 0 °C gekühlt. Hierzu wurden 16 ml (-)-Fenchon (15.2 g, 0.1 mol, d = 0.945 g/ml) langsam zugetropft, anschließend 3 h zum Rückfluss erhitzt auf RT gekühlt und den Ansatz über Nacht bei RT gerührt. Die Reaktion wurde mit Eiswasser gestoppt, der entstandene Niederschlag wurde, bis es sich komplett auflöste, mit gesättigter NH₄CI-Lösung versetzt und 30 Minuten gerührt. Die wässrige Phase wurde mit Et₂O (3mal) extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter NaHCO₃-Lösung (3mal) gewaschen und schließlich über Na₂SO₄ getrocknet. Nach dem Trocknen wurde das Lösungsmittel entfernt. Die farblose Flüssigkeit wurde säulenchromatographisch [Laufmittel: Hexan/Essigester (20:1); R_f=0.52] gereinigt und mit einer Ausbeute von 2.8 g (12 mmol, 13 %) konnte das Produkt isoliert werden.

Unter Argonatmosphäre wurden 5,4 g Lithiumgranulat (0,78 mol Lithiumkugeln in Mineralöl) mit je 20 ml absolutiertem Diethylether (3mal) von dem Öl ausgewaschen und in 100 ml abs. Diethylether vorgelegt. Bei Raumtemperatur wurde innerhalb von 2 Stunden 40,85 ml Brombenzol (0,39 mol) zugetropft. Hierbei wurde eine braune Reaktionsmischung erhalten, die zuerst für 30 Minuten bei RT und weiter für 1 h zum Rückfluss erhitzt wurde. Danach wurde die Reaktionsmischung auf 0 °C abgekühlt. 50,3 ml (-)-Fenchon (0,31 mol, d = 0.945 g/ml) wurden langsam zugegeben, auf RT erwärmt und schließlich über Nacht bei RT gerührt. Für die hydrolytische Aufarbeitung wurde dem Ansatz vorsichtig Eiswasser zugegeben und dann für 30 Minuten gerührt. Danach erfolgte die Phasentrennung, die wässrige Phase wurde mit 50 ml Et₂O (3mal) ausgeschüttelt. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Mittels Vakuumdestillation wurde 26.8 g Phenylfenchol (0.12 mol) als farbloses Öl gewonnen, in dem nach kurzer Zeit das Produkt auskristallisierte.

Ausbeute: 30 %

Siedepunkt: 115-117 ℃ bei 1.3 mbar

Schmelzpunkt: 46.8 ℃

Drehwert: $[\alpha]_{D}^{20} = -45.4^{\circ}$

Elementaranalyse (C₁₆H₂₂O, M = 230.3453 g/mol): ber.: C 83.43 % H 9.63 % gef.: C 83.25 % H 9.52 %

¹**H-NMR** (CDCl₃, 300 MHz), δ :

7.60-7.54 (2H, d, ${}^{3}J$ = 8.1 Hz, H_{ar}); 7.28-7.23 (2H, t, H_{ar}); 7.17-7.12(1H, t, H_{ar}); 2.33-2.29 (1H, d, ${}^{2}J$ = 9.9 Hz, CH₂); 2.22-2.14 (1H, m, CH); 1.82-1.76 (2H, m, CH₂); 1.62 (1H,br. s, OH); 1.52 -1.41 (1H, d, m, CH); 1.37-1.34 (1H, d, ${}^{2}J$ = 10.2 Hz, CH); 1.22-1.21 u. 1.18-1.16 (1H, dd, ${}^{3}J$ = 4.8, 5.1 Hz, CH₂); 1.09 (3H, s, CH₃); 1.02 (3H, s, CH₃); 0.42 (3H, s, CH₃).

¹³**C-NMR** (CDCl₃, 75 MHz), δ:

17.36 (CH₃); 22.29 (CH₃); 24.06 (CH₂); 30.10 (CH₃); 33.63 (CH₂); 41.84 (CH₂); 45.68 (C_q); 48.97 (CH); 52.80 (C_q); 84.08 (C_q); 125.98 (CH_{ar}); 127.15 (CH_{ar}); 127.57 (CH_{ar}); 140.42 (C_{ar/q}); 145.09 (C_{ar/q}).

IR (NaCl-Kristall), ṽ in cm⁻¹: 3562; 3056; 3024; 2957; 2930; 2872; 1481; 1050; 736.

MS (EI, 70 eV), m/z [%]: 230 [7] (M⁺); 212 [23] (M⁺-H₂O); 169 [16] (M⁺-C₃H₁₀O); 147 [68] (M⁺-C₅H₈O); 105 [100] (M⁺-C₈H₁₃O); 77 [90] (M⁺-C₁₀H₁₇O).

5.2.1.17 Synthese von (1*R*,2*R*,4*S*)-2-exo-[2-Hydroxymethylphenyl]-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol (Phenolfenchol), (*R*)-11

1. Schritt: Einführung der Schutzgruppe

In einem Rundkolben wurden 12 g Phenol (0.10 mol) mit 10 ml Dihydropyran (0.11 mol) vorgelegt und auf 0 °C gekühlt. Unter Rühren wurde 0.07 ml CF₃COOH langsam zugegeben. Die Reaktionsmischung wurde zuerst für eine Stunde bei 0 °C, dann über Nacht bei RT gerührt. Die so entstandene klare Lösung wurde mit

1M NaOH-Lösung (3mal) und mit gesättigter NaCI-Lösung (3mal) gewaschen. Die vereinigten organischen Phasen wurden über K₂CO₃ getrocknet und abfiltriert. Das Reaktionsgemisch wurde bei einem Druck von 0.9 mbar destilliert und 8.4 g 2-Phenyloxytetrahydropyran (0.05 mol) wurde bei einer Siedetemperatur von 77 °C als ein farbloses, zähflüssiges Öl gesammelt.

Ausbeute: 47 %

Siedepunkt: 77 °C bei 0.9 mbar

¹**H-NMR** (CDCl₃, 300 MHz), δ:

7.32-7.26 (2H, m, H_{ar}); 7.07-7.05 (2H, d, ${}^{3}J = 7.5$ Hz H_{ar}); 7.01-6.96 (1H, t, H_{ar}); 3.97-3.89 (1H, dtd, ${}^{3}J = 3.0$, 3.6 Hz, CH); 3.64-3.59 (1H, m, CH₂); 2.05-1.97 (1H, m, CH₂); 1.89-1.84 (2H, m, CH₂); 1.72-1.63 (3H, CH₂).

¹³**C-NMR** (CDCl₃, 75 MHz), δ:

18.86 (CH₂); 25.25 (CH₂); 30.43 (CH₂); 62.07 (CH₂); 96.39 (CH); 116.50 (CH_{ar}); 121.60 (CH_{ar}); 129.38 (CH_{ar});157.10 (C_{ar/g}).

2. Schritt: Lithiierung des geschützten Phenols mit anschließender Addition an (-)-Fenchon

Unter Argonatmosphäre wurden innerhalb von 30 Minuten 31.6 ml *n*-Butyllithium (0.05 mol, 1.6 M in Hexan) zu 8.4 g 2-Phenyloxytetrahydropyran (0.05 mol) zugetropft. Die Reaktionsmischung wurde nach der kompletten Zugabe 36 h bei RT gerührt. Danach wurde 7.8 ml (-)-Fenchon (8.2 g, 0.049 mol, d = 0.945 g/ml) zugegeben und 12 h bei RT gerührt. Anschließend wurde mit 50 ml gesättigter

NH₄CI-Lösung die Reaktion gequencht und die wässrige Phase mit Et₂O (3mal) gewaschen. Die vereinigten organischen Phasen wurden mit gesättigter NaCI-Lösung (3mal) ausgeschüttelt, über Na₂SO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Eine gelbe, ölige Flüssigkeit wurde erhalten. Ausbeute und Charakterisierung wurde nicht stattgefunden, da es direkt zum Entschützen der Schutzgruppe eingesetzt wurde.

3. Schritt: Abspaltung der Schutzgruppe

In einem 500 ml Rundkolben wurde das Produkt mit 100 ml Tetrahydrofuran, 50 ml H₂O und 50 ml Eisessig versetzt und 2 Stunden zum Rückfluss erhitzt. Danach wurde 100 ml H₂O zugegeben, die Reaktionsmischung mit Et₂O (3mal) durch Extraktion gewaschen und schließlich über Na₂SO₄ getrocknet. Nach dem Abfiltrieren und Entfernen des Lösungsmittels wurde zur Erhaltung des Produktes eine Vakuumdestillation durchgeführt. Bei einem Druck von 0.7 mbar und einem Siedebereich zwischen 120 °C und 125 °C wurden 2.7 g (0.011 mol) Phenolfenchol als farbloses Öl gesammelt, aus der mit der Zeit schuppenartige, farblose Kristalle sich auskristallisierte.

Ausbeute: 22 %

Siedepunkt: 120-125 ℃ bei 0.7 mbar

Schmelzpunkt: 142.6 ℃

Drehwert: $[\alpha]_{D}^{20} = -162.2^{\circ}$

¹**H-NMR** (CDCl₃, 300 MHz), δ:

7.38-7.35 (1H, dd, ${}^{3}J$ = 1.5, 0.9 Hz, H_{ar}); 7.15-7.23 (2H, dtd, ${}^{3}J$ = 1.2, 1.2 Hz H_{ar}); 6.86-6.77 (2H, m, H_{ar}); 2.38-2.34 (1H, dd, ${}^{2}J$ = 2.1, 2.1 Hz, CH₂); 2.20-2.11 (1H, m, CH); 1.82-1.73 (2H, m, CH₂); 1.55 -1.45 (1H, d, m, CH); 1.42-1.39 (1H, dd, ${}^{3}J$ = 1.2, 1.2 Hz, CH); 1.32 (3H, s, CH₃); 1.21 (3H, s, CH₃); 0.58 (3H, s, CH₃).

¹³**C-NMR** (CDCl₃, 75 MHz), δ:

17.49 (CH₃); 22.62 (CH₃); 24.13 (CH₂); 29.10 (CH₃); 33.19 (CH₂); 41.27 (CH₂); 45.46 (C_q); 49.49 (CH); 52.96 (C_q); 84.04 (C_q); 117.88 (CH_{ar}); 117.55 (CH_{ar}); 127.57 (C_{ar/q}); 128.01 (CH_{ar}); 128.43 (CH_{ar}); 146.32 (C_{ar/q}).

IR (NaCl-Kristall), \tilde{v} in cm⁻¹: 3331; 3046; 2976-2872; 1628; 1581; 1487 – 1446; 1381 – 1363; 1282; 1224; 1150; 1035; 913; 810; 755; 736.

MS (EI, 70 eV), m/z [%]: 246 [6] (M⁺); 211 [5] (M⁺-2xOH); 121 [100] (M⁺-C₉H₁₆); 93 [13] (M⁺-C₁₀H₁₇O).

5.2.1.18 Synthese von (1*R*,2*R*,4*S*)-2-exo-[2-Hydroxymethylphenyl]-1,3,3-trimethylbicyclo [2.2.1]heptan-2-ol (Benzylfenchol), (*R*)-12

Unter inerten Bedingungen wurden in einem 250 ml Zweihalskolben 5.2 ml Benzylalkohol (5.4 g, 50 mmol) in 50 ml absolutiertem Diethylether vorgelegt und auf O °C gekühlt. Nacheinander wurden unter Rühren 16.5 ml N,N,N',N'-Tetramethylethylendiamin (12.8 g, 110 mmol, d = 0.775 g/ml) und 69 ml *n*-Butyllithium (110 mmol, 1.6 M Lösung in Hexan) langsam zugegeben. Die Reaktionsmischung

wurde dann auf RT aufgewärmt und dann über Nacht bei RT gerührt. Die Reaktionsmischung färbte sich von hellgelb nach rotschwarz.

Nach 24 h Rühren bei RT wurde der Ansatz erneut auf 0 ℃ gekühlt und 8.1 ml (-)-Fenchon (8.2 g, 0.049 mol, d = 0.945 g/ml) langsam zugegeben. Die Reaktionsmischung wurde auf RT erwärmt und über Nacht gerührt. Der Ansatz färbte sich von lachsfarben zu rosa. Der Ansatz wurde mit gesättigter NH₄Cl-Lösung gequencht und 30 min. gerührt. Die Phasen wurden getrennt, die wässrige Phase wurde mit Et₂O (3mal) extrahiert. Die vereinigte organische Phase wurde über Na₂SO₄ getrocknet, abfiltriert und das Lösungsmittel am Rotationsverdampfer entfernt. Es konnte ein weißer faseriger Feststoff in Hexan mit einer Ausbeute von 9.3 g (35.7 mmol) umkristallisiert und isoliert werden.

Ausbeute: 71 %

Schmelzpunkt: .139 ℃

Drehwert: $[\alpha]_{D}^{20} = -81.6^{\circ}$

Elementaranalyse $(C_{17}H_{24}O_2, M = 260,3713 \text{ g/mol})$: ber.: C 78.42 % H 9.29 % gef.: C 78.24 % H 9.45 %

¹**H-NMR** (CDCl₃, 300 MHz), δ:

7.68-7.66 (1H, d, ${}^{3}J$ = 7.2 Hz, H_{ar}); 7.41-7.38 (1H,dd, ${}^{3}J$ = 1.8, 2.4 Hz H_{ar}); 7.26 (2H, t, H_{ar}); 5.10-5.06 (1H, d, ${}^{2}J$ = 11.4 Hz, CH₂); 4.42-4.38 (1H, d, ${}^{2}J$ = 11.1 Hz, CH₂); 3.24 (2H,br. s, OH); 2.52 -2.49 (1H, d, ${}^{3}J$ = 9.0 Hz, CH); 2.21-2.11 (1H, m, CH); 1.84 (2H, br. s, CH₂); 1.56 1.39 (3H, m, CH₂ CH₂); 1.27-1.25 (6H, d, 2x CH₃); 0.53 (3H, s, CH₃).

¹³**C-NMR** (CDCl₃, 75 MHz), δ:

17.86 (CH₃); 22.94 (CH₃); 23.97 (CH₂); 30.12 (CH₃); 33.91 (CH₂); 41.26 (CH₂); 45.39 (C_q); 49.76 (CH); 54.37 (C_q); 66.63 (CH₂); 87.02 (C_q); 126.01 (CH_{ar}); 126.44 (CH_{ar}); 129.39 (CH_{ar}); 132.61 (CH_a); 140.42 (C_{ar/q}); 142.65 (C_{ar/q}).

IR (NaCl-Kristall), \tilde{v} in cm⁻¹:

3459; 3335; 3048, 2980; 2929; 1458; 1414; 1066; 1050; 975; 765.

MS (EI, 70 eV), m/z [%]: 260 (M⁺); 242 (M⁺-OH) [49%]; 227(M⁺-H₂O) [35%].

5.2.1.19 Synthese von (1*R*,2*R*,4*S*)-1,3,3-trimethyl-2-bicyclo[2.2.1]heptan-2benzaldehyd

- Weg A: Einführung von Ethylenglycol als Schutzgruppe
- 1. Schritt: Synthese von 2-Phenyl-1,3-dioxolan

In einem 100 ml Rundkolben wurden zu einer Lösung aus 11.5 ml Benzaldehyd (10.6 g, 0.1 mol) in 50 ml Toluol nacheinander 1.9 g Camphersulfonsäure (8.6 mmol) und 5.6 ml Ethylenglycol (6.2 g, 0.1 mol) zugegeben. Die Reaktionsmischung wurde für 16 h zum Rückfluss erhitzt. Das entstandene Wasser wurde mittels Wasserabscheider abgefangen. Hierbei wurden 1.552 g H₂O (0.086 mol) abgefangen. Danach wurde am Rotationsverdampfer das Lösungsmittel entfernt. Mittels Vakuumdestillation wurden 7.68 g Produkt (0.05 mol) bei einem Druck von 1.0 mbar und einer Siedetemperatur von 70-71 °C als ein farbloses Öl gesammelt.

Ausbeute: 51 %

Siedepunkt: 70-71 °C bei 1.0 mbar

¹**H-NMR** (CDCl₃, 300 MHz), δ:

7.54-7.51 (2H, dd, ${}^{3}J$ = 3.9, 1.8 Hz, H_{ar}); 7.42-7.40 (3H, dd, ${}^{3}J$ = 2.4, 2.4 Hz, H_{ar}); 5.85 (1H, s, CH); 4.17-4.14 (2H, m, CH₂); 4.08-4.06 (2H, m, CH₂).

¹³**C-NMR** (CDCl₃, 75 MHz), δ: 65.24 (CH₂); 103.69 (CH*)*; 126.37 (CH*_{ar}*); 128.29 (CH*_{ar}*); 129.13 (CH*_{ar}*); 137.83 (C*_{ar/q}*).

IR (NaCl-Kristall), \tilde{v} in cm⁻¹: 3030; 2974-2950; 2884; 1717; 1457-1446; 1395; 1219; 1092-1069; 1026; 966-942; 757; 698.

2.Schritt: Lithiierung von 2-Phenyl-1,3-dioxolan mit anschließender Addition an (-)-Fenchon

Unter Argonatmosphäre wurden zu einer Lösung aus 2 g 2-Phenyl-1,3-dioxolan 2.6 ml N,N,N',N'-Tetramethylethylendiamin (2.0 g, 0.0173 mol, d = 0.775 g/ml) in 20 ml absolutiertem Diethylether bei 0 °C 9.2 ml *n*-Butyllithium (0.0147 mol, 1.6 M in Hexan) langsam zugegeben. Die Temperatur wurde auf RT erwärmt und der Ansatz für 1 h gerührt. Dann wurde es wieder auf 0 °C gekühlt und langsam 2.2 ml (-)-Fenchon (2.079 g, 0.0133 mol, d = 0.945 g/ml) zugetropft, der Ansatz wurde wieder auf RT erwärmt und 48 h gerührt. Danach wurde die Reaktionsmischung mit 20 ml gesättigter NH₄Cl-Lösung gequencht, 30 min. gerührt und die Phasen getrennt. Die wässrige Phase wurde mit Et₂O (3mal) extrahiert, die vereinigten organischen über Na₂SO₄ getrocknet, abfiltriert und das Lösungsmittel am Phasen Rotationsverdampfer entfernt. Der erhaltene, gelborange Rückstand wurde in verschiedenen Lösungsmittel Lösungsmittelgemischen bzw. versucht, auszukristallisieren. Schließlich wurde Vakuumdestillation durchgeführt. Hierbei wurde, bei einem Druck von 1.0 mbar und Siedetemperaturbereich zwischen

30-35 ℃, 1.2507g (-)-Fenchon (0.00822 mol, 62%) wieder zurückerhalten. Eine weitere Fraktion bei einem Druck von 1.0 mbar und einem Siedetemperaturbereich zwischen 68-72 ℃ wurde gesammelt, die auf *n*-Butyllid-2-Phenyl-1,3-dioxolan-Additionsprodukt zurückführbar war.

Weg B Einführung von Ethylenglycol als Schutzgruppe

1. Schritt: Synthese von ortho-Brom-(1,3-dioxolan-2-yl)-benzol

Eine Mischung aus 5 ml *ortho*-Brombenzaldehyd (7.9 g, 43 mmol), 3.9 ml Ethylenglycol (4.3 g, 69 mmol) und einer Spatelspitze *p*-Toluensulfonsäure-Hydrat in 100 ml Toluol wurde am Wasserabscheider für 22 h auf Rückfluss erhitzt. Hierbei wurden 0.585 g H₂O (0.033 mol) abgefangen. Nach dem Abkühlen wurde nacheinander mit gesättigter NaHCO₃-Lösung und gesättigter NaCI-Lösung gewaschen und nach dem Trocknen über Na₂SO₄ das Lösungsmittel entfernt. Mittels Vakuumdestillation wurde 7.35 g *ortho*-Brom-(1,3-dioxolan-2-yl)-benzol (32 mmol) bei einem Druck von 0.2 mbar und einer Siedetemperatur von 112 °C erhalten.

Ausbeute: 75%

Siedepunkt: 112 °C bei 0.2 mbar

¹**H-NMR** (CDCl₃, 300 MHz), δ: 7.64-7.57 (2H, ddd, ${}^{3}J$ = 1.8, 1.8, 0.6, 0.9 Hz, H_{ar}); 7.38-7.33 (1H, t, H_{ar}); 7.26-7.21 (1H, dd, ${}^{3}J$ = 1.8, 1.8, 1.8 Hz, H_{ar}); 6.12 (1H, s, CH); 4.17-4.15 (2H, m, CH₂); 4.10-4.07 (2H, m, CH₂). ¹³C-NMR (CDCl₃, 75 MHz), δ:
65.37 (CH₂); 102.51 (CH); 122.84 (C_{ar/q}); 127.32 (CH_{ar}); 127.73 (CH_{ar}); 130.50 (CH_{ar});
132.86 (CH_{ar}); 136.54 (C_{ar/q}).

IR (NaCl-Kristall), \tilde{v} in cm⁻¹: 3065; 2949; 2885; 1591-1569; 1470-1442; 1385; 1269; 1085; 1021; 966-941; 755.

2.Schritt: Lithiierung von *ortho*-Brom-(1,3-dioxolan-2-yl)-benzol mit anschließender Addition an (-)-Fenchon

Unter Argonatmosphäre wurden zu einer auf -20 °C gekühlten Lösung aus 3g ortho-Brom-(1,3-dioxolan-2-yl)-benzol (0.013 mol) 30 in ml wasserfreiem Tetrahydrofuran über 15 min. unter Rühren 8.5 ml n-Butyllithium (0.0135 mol, 1.6 M in Hexan) versetzt. Die entstandene ockerfarbene Reaktionsmischung wurde für 1 h gerührt und bei konstant gehaltener Temperatur wurden 2.1 ml (-)-Fenchon (1.98 g, 0.013 mol, d = 0.945 g/ml) zugetropft. Dabei änderte sich die Farbe der Mischung über orange nach dunkelrot. Die Reaktionsmischung wurde über Nacht bei RT gerührt und dann mit gesättigter NH₄CI-Lösung hydrolysiert. Das THF wurde weitgehend abdestilliert und es wurde mit Diethylether (3mal) extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, abfiltriert und das Lösungsmittel am Rotationsverdampfer entfernt. Es wurde ein orange-braunes Öl erhalten, das nicht zu charakterisieren war.

 Weg C:
 Einführung von Morpholin als Schutzgruppe

1. Schritt: Schützen von Benzaldehyd mit lithiierten Morpholin

Unter Argonatmosphäre wurden in einem Dreihalskolben 20 ml absolutiertes Hexan, 9.06 ml *N*,*N*,*N'*,*N'*-Tetramethylethylendiamin (7.0 g, 0.06 mol, d = 0.775 g/ml) und 37.5 ml *n*-Butyllithium (0.06 mol, 1.6 M in Hexan) vorgelegt. Die Reaktionsmischung wurde auf 0 °C abgekühlt, hierzu wurde 5.3 ml Morpholin (5.2 g, 0.06 mol, d = 1.0007 g/ml) langsam zugegeben und 10 min. bei 0 °C gerührt. Es wurde eine milchiggelbe Suspension beobachtet. Die Reaktionsmischung wurde auf -10 °C gekühlt und 5.1 ml Benzaldehyd (5.3 g, 0.05 mol, d = 1.05 g/ml) langsam zugegeben, danach wurde die Reaktionsmischung auf RT erwärmt. Die Reaktionsmischung wurde ohne Aufreinigung im nächsten Schritt eingesetzt.

2.Schritt: Lithiierung von Morpholin-geschützter Benzaldehyd gefolgt von der Addition an (-)-Fenchon

Hierbei wurde in einem Schritt 37.5 ml *n*-Butyllithium (0.06 mol, 1.6 M in Hexan) zugegeben, auf 55 °C erwärmt, 30 min. bei dieser Temperatur gerührt und danach wieder auf 20 °C gekühlt. Hierbei wurde 50 ml absolutiertes Tetrahydrofuran dazugegeben, wieder auf -20 °C gekühlt und es wurden 11.3 ml (-)-Fenchon (10.7 g, 0.07 mol, d = 0.945 g/ml) zugegeben, auf RT erwärmt und über Nacht gerührt. Danach erfolgte die wässrige Phasentrennung, die wässrige Phase wurde mit Et₂O (3mal) extrahiert, die vereinigten organischen Phasen wurden über Na₂SO₄

getrocknet und das Lösungsmittel entfernt. Ein gelboranges Öl als Rohprodukt wurde erhalten, welches ohne weitere Reinigung im nächsten Schritt eingesetzt wurde.

3.Schritt: Entschützen des Fencholbenzaldehyds von Morpholin

Das gelborange Öl wurde in 50 ml Tetrahydrofuran, 50 ml CH₃COOH und in 100 ml H₂O aufgenommen und über Nacht bei RT gerührt. Danach wurde eine Phasentrennung durchgeführt, die wässrige Phase wurde mit Et₂O (3mal) extrahiert, die vereinigten organischen Phasen wurde über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Der erhaltene rotorange ölige Rückstand wies das erwartete Produkt nicht auf.

5.2.1.20 Synthese von (*4R,6S*)-6-(2-Methoxy)phenyl)-1-methyl-4-isopropenyl-6cyclohexen-2-ol, [Anisylcarvol], (*S*)-13

Unter Argonatmosphäre wurden 68.8 ml *n*-Butyllithium (0.11 mol, 1.6 M in Hexan) und 16.5 ml *N*,*N*,*N'*,*N'*-Tetramethylethylendiamin (12.8 g, 0.11 mol, d = 0.775 g/ml) bei 0 °C vorgelegt. Bei dieser Temperatur wurden 10.9 ml Anisol (10.8 g, 0.1 mol, d = 0.995 g/ml) über eine Einwegspritze langsam zugetropft und nach wenigen Minuten fiel aus der zitronengelben Lösung ein weißer Niederschlag aus. Danach wurde 15.7 ml (-)-Carvon (15 g, 0.1 mol, d = 0.9580 g/ml) bei 0 °C langsam zu-

gegeben und die Reaktionsmischung auf RT erwärmt und über Nacht gerührt. Nach der wässrigen Aufarbeitung wurden die Phasen getrennt, die organische Phase über Na₂SO₄ getrocknet und eingeengt. Durch Vakuumdestillation wurde bei einem Druck von 1.1 mbar und einem Siedetemperaturbereich von 90-110 °C das Produkt gesammelt. Nach kurzer Zeit kristallisierten aus dem Öl farblose, plättchenförmige Kristalle aus.

Ausbeute: 34%

Schmelzpunkt: .139 °C

Drehwert: $[\alpha]_{D}^{20} = -89.6^{\circ}$

Elementaranalyse ($C_{17}H_{22}O_2$, M = 258,3554 g/mol):

ber.: C 79.03% H 08.58% gef.: C 78.81% H 08.71%

¹**H-NMR** (CDCl₃, 300 MHz), δ:

7.59-7.54 (1H, m, H_{ar}); 7.45-7.42 (1H,dd, ${}^{3}J = 1.5$, 1.5 Hz, H_{ar}); 7.28-7.24 (2H, m, H_{ar}); 6.14-6.12 (1H, d, ${}^{2}J = 4.5$ Hz, CH); 5.24 (1H, s, OH); 4.94-4.92 (1H, d, ${}^{2}J = 8.4$ Hz, CH₂); 4.25 (3H, s, OCH₃); 2.71-2.67 (1H, d, ${}^{3}J = 9.3$ Hz, CH); 2.52-2.43 (1H, m, CH₂); 2.34-2.21 (3H, m, CH₂); 2.07 (3H, s, CH₃); 1.93 (3H, s, CH₃).

¹³**C-NMR** (CDCl₃, 75 MHz), δ:

18.46(CH₃); 20.56 (CH₃); 31.39 (CH₂); 38.61 (CH); 55.32 (OCH₃); 77.98 (C_q); 108.63 (CH_{2/sp}²); 111.46 (CH); 120.46 (CH_{ar}); 126.52 (CH_{ar}); 128.32 (CH_{ar}); 129.72 (CH_{ar}); 131.91 (C_{ar/q}); 135.88 (C_{q/sp}²); 149.28 (C_{q/sp}²); 157.17 (C_{ar/q}).

IR (NaCI-Kristall), \tilde{v} in cm⁻¹:

3522; 3064; 2941-2832; 1636; 1578; 1482; 1432; 1279; 1225; 1174; 1021; 933; 888; 749; 630.

MS (EI, 70 eV), m/z [%]: 258 (M⁺) [5]; 240 (M⁺-OH) [34]; 225 (M⁺-OCH₃) [20]; 200 (M⁺-C₄H₈O) [44]; 189 (M⁺-C₅H₈) [30]; 175 (M⁺-C₆H₁₀) [70]; 159 (M⁺-C₆H₁₀O) [33]; 135 (M⁺-C₉H₁₄) [100]; 91 (M⁺-C₁₀H₁₅O₂) [45]; 77 (M⁺-C₁₁H₁₈O₂) [58].

5.2.1.21 Synthese von (*4R,6S*)-6-(2-Hydroxymethylphenyl)-1-methyl-4-isopropenyl-6-cyclohexen-2-ol [Benzylcarvol], (*S*)-14

Unter Argonatmosphäre wurde in einem 100 ml Schlenk-Kolben 5.2 ml Benzylalkohol (5.4 g, 50 mmol) in 50 ml absolutiertem Diethylether vorgelegt und auf O °C gekühlt. Nacheinander wurden unter Rühren 16.5 ml N,N,N',N'-Tetramethylethylendiamin (12.8 g, 110 mmol, d = 0.775 g/ml) und 69 ml *n*-Butyllithium (110 mmol, 1.6 M Lösung in Hexan) langsam zugegeben. Die Reaktionsmischung wurde dann auf RT aufgewärmt und über Nacht gerührt. Die Reaktionsmischung färbte sich von hellgelb nach rotschwarz.

Nach 24 h Rühren bei RT wurde der Ansatz erneut auf 0 °C gekühlt und 7.7 ml (-)-Carvon (7.4 g, 0.049 mol, d = 0.9580 g/ml) langsam zugegeben. Die Reaktionsmischung wurde auf RT erwärmt und über Nacht gerührt. Der Ansatz färbte sich von orangerot zu gelborange. Danach erfolgte die hydrolytische Aufarbeitung, der Ansatz wurde mit gesättigter NH₄Cl-Lösung gequencht und 30 min. gerührt. Die Phasen wurden getrennt, die wässrige Phase wurde mit Et₂O (3mal) extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, abfiltriert und das Lösungsmittel am Rotationsverdampfer entfernt. Ein gelber öliger Rückstand wurde erhalten, aus dem durch Vakuumdestillation das Produkt als hellgelbes Öl bei einem Druck von 1.1 mbar und einem Siedetemperaturbereich von 80 - 86 °C erhalten wurde. Ausbeute: 20%

Siedepunkt: 80 -86 °C (1.1 mbar)

Drehwert: $[\alpha]_{D}^{20} = -78.5^{\circ}$

¹**H-NMR** (CDCl₃, 300 MHz), δ:

7.39-7.37 (1H, d, ${}^{3}J$ = 6.3 Hz, H_{at}); 7.28-7.24 (2H, dd, ${}^{3}J$ = 2.1, 2.1 Hz, H_{at}); 7.23-7.20 (1H, m, H_{at}); 5.83 (1H, br. s, CH); 5.22-5.18 (1H, d, ${}^{3}J$ = 11.7 Hz, CH); 4.69-4.64 (2H, d, ${}^{2}J$ = 14.7 Hz, CH₂); 4.49-4.45 (2H, d, ${}^{3}J$ = 11.7 Hz, CH₂); 2.24 -2.25 (3H, m, CH, CH₂); 2.11-1.96 (3H, m, CH, CH₂); 1.81-1.78 (1H, m, CH₂); 1.75 (2H, br. s, 2x OH); 1.69 (3H, s, CH₃); 1.65 (3H, s, CH₃).

¹³**C-NMR** (CDCl₃, 75 MHz), δ:

18.27 (CH₃); 20.78 (CH₃); 31.05 (CH₂); 37.96 (CH); 65.26 (CH₂); 79.88 (C_q); 109.21 (CH_{2/sp}²); 126.42 (CH_{ar}); 127.19 (CH_{ar}); 127.63 (CH_{ar}); 127.90 (C_{q/sp}²); 129.26 (CH_{ar}); 132.70 (CH_{sp}²); 136.96 (C_{ar/q}); 139.14 (C_{ar/q}); 148.59 (C_{q/sp}²).

IR (NaCl-Kristall), \tilde{v} in cm⁻¹: 3324; 3064; 2969-2901; 1700; 1636; 1439; 1371; 1194; 1109-1068; 1004; 950-936; 885; 756; 630.

MS (EI, 70 eV), m/z [%]: 258 (M⁺) [4]; 240(M⁺-OH) [49%]; 227(M⁺-H₂O) [35%].

5.2.1.22 Synthese von (*4R,6S*)-6-(2-*N-tert*-Butylcarbonylphenyl)-1-methyl-4isopropenyl-6-cyclohexen-2-ol [*N*-Pivanilidcarvol], (*S*)-15

Unter Argonatmosphäre wurden in einem 100 ml Schlenk-Kolben 5 g *N*-Pivanilin (0.028 mol) in 12 ml absolutiertem Tetrahydrofuran und 16 ml absolutiertem Diethylether vorgelegt. Die Reaktionsmischung wurde auf 0 °C gekühlt und 35 ml *n*-Butyllithium (0.056 mol, 1.6 M in Hexan) langsam zugegeben. Danach wurde der Ansatz auf RT erwärmt und über Nacht gerührt. Es wurde eine weiße Suspension beobachtet. Hierzu wurde dann 4.4 ml (-)-Carvon (4.2 g, 0.028 mol, d = 0.9580 g/ml) innerhalb einer halben Stunde zugetropft. Die Reaktionsmischung wurde für 24 h bei RT gerührt. Anschließend wurde der Ansatz mit gesättigter NH₄Cl-Lösung gequencht und 30 Minuten gerührt. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Aus Hexan/Aceton (10:1) konnten 0.345 g Produkt (1.1 mmol) in Form von farblosen, prismenförmigen Kristallen erhalten werden.

Ausbeute: 4 %

Schmelzpunkt: 183.3 ℃

Drehwert: $[\alpha]_{D}^{20} = -43.7^{\circ}$

¹**H-NMR** (CDCl₃, 300 MHz), δ:

10.21 (1H, s, NH); 8.44-8.41 (1H, d, ${}^{3}J = 8.1$ Hz, H_{ar}); 7.32-7.26 (1H, t, H_{ar}); 7.12-7.09 (1H,dd, ${}^{3}J = 1.8$, 1.8 Hz, H_{ar}); 7.03-6.98 (1H, t, H_{ar}); 5.87 (1H, br. s, OH); 4.67-4.59 (2H, d, ${}^{2}J = 24.9$ Hz, CH₂); 2.50-2.49 (2H,d, ${}^{2}J = 24.9$ Hz, CH₂); 2.32-2.21 (1H, m, CH); 1.99-1.95 (2H,d, ${}^{2}J = 11.7$ Hz, CH₂); 1.86-1.82 (1H, d, ${}^{2}J = 11.7$ Hz, CH₂); 1.77 (3H, s, CH₃); 1.61 (3H, s, CH₃); 1.34 (6H, s, 2x CH₃).

¹³**C-NMR** (CDCl₃, 75 MHz), δ:

18.00 (CH₃); 20.84 (CH₃); 27.66 (CH₃); 31.30 (CH₂); 37.84 (CH₂); 39.88 (C_q); 41.54 (CH₂); 80.29 (C_q); 109.05 (CH_{2/sp}²); 122.57 (CH_{ar}); 127.76 (CH_{ar}); 128.30 (CH_{ar}); 128.96 (CH_{ar}); 130.08 (C_{ar/q}); 134.94 (C_{q/sp}²).; 137.78 (CH_{sp}²); 148.14 (C_{q/sp}²).; 151.32 (C_{ar/q}); 176.54 (C_q).

IR (NaCl-Kristall), \tilde{v} in cm⁻¹:

3284; 3071; 2964-2908; 1653; 1582; 1520; 1434; 1310; 1175; 1030; 937-925; 882; 753; 647-634.

MS (EI, 70 eV), m/z [%]: 327 (M⁺) [5]; 224 (M⁺-C₅H₁₀NO) [53]; 120 (M⁺- C₁₂H₁₅NO₂) [12]; 57 (M⁺- C₁₇H₂₀NO₂) [100].

5.2.1.23 Synthese von 2,2'-Bis((1R,2R,4S)-2-hydroxy-1,3,3-trimethylbicyclo [2.2.1]hept-2-yl)-1,1'-biphenyl (BIFOL)^[75]

AAV5: allgemeine Arbeitsvorschrift zur Synthese von 2,2'-Dilithiobiphenyl

Unter Argonatmosphere wurden in einem Dreihalskolben nacheinander 9.4 g Biphenyl (61.0 mmol), 22 ml N,N,N',N'-Tetramethylethylendiamin (17.2 g, 148.0 mmol, d = 0.775 g/ml) und 90 ml *n*-Butyllithium (148.0 mmol, 1.6 M Lösung in Hexan) gegeben. Die Reaktionsmischung wurde für 24 h bei RT gerührt und danach bei -20 °C im Tiefkühlschrank aufbewahrt. Das dilithiierte Biphenyl kristallisierte als orange Kristalle aus.

Das nach **AAV5** erhaltene 2,2'-Dilithiobiphenyl wurde von der Mutterlauge mittels Kanüle getrennt, in 150 ml Diethylether gelöst und auf 0 °C gekühlt. Zu der Lösung wurden 19.4 ml (-)-Fenchon (18.26 g, 120.0 mmol, d = 0.94 g/ml) zugesetzt und 24 h bei RT gerührt. Danach wurde die Lösung hydrolytisch aufgearbeitet, die wässrige Phase mit Et₂O (3mal) extrahiert, die organischen Phasen vereinigt und über Natriumsulfat getrocknet. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und das Produkt (16.0 g, 35 mmol) aus Hexan umkristallisiert.

Ausbeute: 57 %

Schmelzpunkt: 242.2 °C

Drehwert: $[\alpha]_{D}^{20} = -152.8$ (c=0.4 M in Hexan)

¹**H-NMR** (CDCl₃, 300 MHz), δ:

7.62-7.59 (1H, dd); 7.25-7.2 (1H, t); 7.13-7.08 (1H, t); 6.92-6.89 (1H, dd); 2.86 (1H, s); 2.43-2.39 (1H, dd); 2.23-2.14 (1H, m); 1.71-1.55 (3H, m); 1.40-1.28 (2H, m); 1.11 (3H, s); 1.07-0.97 (1H, m); 0.71 (3H, s); 0.65 (3H, s).

¹³**C-NMR** (CDCl₃, 75 MHz), δ:

17.51; 21.18; 23.68; 30.02; 34.02; 42.49; 46.46; 49.17; 56.68; 86.11; 124.33; 124.73; 129.90; 131.09; 141.20; 144.05.

IR (NaCl-Kristall), v in cm⁻¹:

3546 & 3411 (OH_{intra. Chelat-Brücke}, s); 3044 (C_{aromat.}-H, w); 2925 -2846 (C_{alkyl.}-H, s).

MS (EI, 70 eV), m/z [%]: 458 (M⁺); 440 (M⁺-H₂O).

5.2.1.24 Synthese von 1,1'-Biphenyl-2,2'-biscarvol ((*P*)-BICOL)⁷⁶

Das nach **AAV5** synthetisierte, auskristallisierte 2,2'-Dilithiobiphenyl wurde von der Mutterlauge mittels Kanüle befreit und in 100 ml Diethylether gelöst. Die Lösung wurde auf 0 °C gekühlt, 7.8 ml (-)-Carvon (7.5 g, 50 mmol) dazugetropft und 24 h bei RT gerührt. Danach wurde die Lösung hydrolytisch aufgearbeitet, die wässrige Phase mit Et₂O (3mal) extrahiert, die organischen Phasen vereinigt und über Natriumsulfat getrocknet. Das Lösungsmittel wurde im Vakuum entfernt und das Produkt (9.55 g, 35.3 mmol) aus Hexan/EtOAc (10:1) umkristallisiert.

Ausbeute: 74 %

Schmelzpunkt: 177.8 °C

Drehwert: $[\alpha]_{D}^{20} = -12.45$ (c = 0.4 in Hexan)

Elementaranalyse: (C₃₂H₃₈O₂, M 454,6429 g/mol als Einschlussverbindung mit H₂O) ber.: C 81.32 % H 8.53 % gef.: C 81.32 % H 8.69 %

¹**H-NMR** (CDCl₃), δ:

7.33-7.28 (1H, m, H_{ar}); 7.27-7.24 (2H, dd, ${}^{3}J = 1.8$ Hz, 1H, H_{ar}); 7.07-7.04 (2H, m, H_{ar}); 5.72 (1H, br. s, H_{sp2}); 4.64-4.58 (2H, d, ${}^{2}J = 16.8$ Hz, 1H, H_{sp2}); 2.46

(1H, br. s, OH); 2.24-2.16 (3H, m, CH₂); 1.97-1.92 (1H, m, CH₂); 1.67 (1H, m, CH); 1.61 (6H, s, 2x CH₃).

¹³**C-NMR** (CDCl₃), δ:

17.99 (CH₃); 20.73 (CH₃); 31.13 (CH₂); 37.48 (CH); 43.99 (CH₂); 79.35 (C_q); 108.90 (CH₂); 125.40 (CH_{ar}); 126.06 (CH_{ar}); 126.29 (CH_{ar}); 129.18 (CH_{ar}); 132.11 (CH); 136.94 (C_q); 140.75 (C_{ar/q}); 142.04 (C_{ar/q}); 148.81(C_q).

IR (KBr), ṽ in cm⁻¹: 3391; 3058; 2962-2919; 1643.

MS (EI), m/z [%]: 454 (M⁺); 436 (M⁺-H₂O). 5.1.2.25 Hydrierung von 1,1'-Biphenyl-2,2'-biscarvol unter verschiedenen Bedingungen

5.1.2.25.1 Hydrierung von (*P*)-BICOL unter Pd/H₂ (3-5 bar)

In einem Schlenk-Kolben wurde eine Suspension von einer Spatelspitze Palladium auf Aktivkohle in einer Lösung von 0.65 g (*P*)-BICARVOL (1.4 mmol) in 50 ml Ethanol vorgelegt. Nach Abkühlen auf 0 °C wird der Kolben dreimal mit Wasserstoff, der in eine Orsetblase gefüllt ist, gespült. Die Reaktionsmischung wurde durch Anbringen von Wasserstoff mittels Orsetblase bei RT 24 h gerührt. Danach wurde der Ansatz vom Katalysator (Pd auf Aktivkohle) abfiltriert und das Lösungsmittel am Rotationsverdampfer entfernt. Nach dem Einengen wurde ein weißer Feststoff erhalten, der in Ethanol umkristallisiert wurde. Farblose, nadelförmige Kristalle von **80** in einer Ausbeute von 0.78 g (1.7mmol) wurden gewonnen.

Ausbeute: 77 %

Schmelzpunkt: 203.8 ℃

Drehwert: $[\alpha]_{D}^{20} = -51.7^{\circ} (c = 0.4 \text{ M in Hexan})$

Elementaranalyse:(C₃₂H₄₂O₂, M 458,6747 g/mol) (C₃₄H₄₈O₃, M= 504,7431 g/mol) als Einschlussverbindung mit Ethanol ber.: C 80.91 % H 9.59 % gef.: C 80.59 % H 9.57 %

¹**H-NMR** (CDCl₃), δ :

7.33-7.26 (1H, m, H_{ar}); 7.26-7.21 (2H, dd, ${}^{3}J = 1.8$ Hz, 1H, H_{ar}); 7.09-7.06 (2H, m, H_{ar}); 5.72 (1H, br. s, H_{sp2}); 3.77-3.70 (1H, q, 1H, H_{sp3}); 2.55 (1H,br. s, OH); 2.21 -2.09 (2H, m, CH₂); 1.83-1.75 (1H, m, CH₂); 1.63 (3H, s, CH₃); 1.41-1.36 (3H, m, CH₃); 1.28-1.23 (2H, t, CH₂); 0.81-0.79 (6H, d, 2xCH₃).

¹³**C-NMR** (CDCl₃), δ:

17.92 (CH₃); 19.23 (CH₃); 19.85 (CH₃); 29.17 (CH₂); 32.11 (CH); 36.43 (CH); 43.26 (CH₂); 79.45 (C_q); 125.79 (CH_{ar}); 125.85 (CH_{ar}); 126.16 (CH_{ar}); 129.34 (CH_{ar}); 131.98 (CH); 137.00 (C_q); 140.87 (C_{ar/q}); 142.09 (C_{ar/q}).

IR (KBr), ṽ in cm⁻¹: 3289; 3063; 2985-2939;1663.

MS (EI), m/z [%]: 458 (M⁺); 440 (M⁺-H₂O).

In einem 50 ml Rundkolben wurde 0.5 g P-BICARVOL (1.1 mmol) in 30 ml Ethanol in der Wärme aufgelöst. Die Lösung wurde auf 0 °C abgekühlt, hierzu wurde eine Spatelspitze Pd auf Aktivkohle zugegeben. Der Reaktionskolben wurde in den Autoklaven gestellt und dreimal mit Wasserstoff gespült. Dann wurde ein Wasserstoff-Druck von 30 bar eingestellt und bei RT für 24 h unter Rühren hydriert. Nach einem Tag wurde die Hydrierung beendet, der Ansatz wurde vom Katalysator (Pd auf Aktivkohle) abfiltriert, das Lösungsmittel am Rotationsverdampfer eingeengt. Der weiße Rückstand wurde in Ethanol umkristallisiert, wie nach dem ersten Syntheseweg konnte auch in diesem Fall das terminal hydrierte Produkt **80** erhalten werden.

5.2.1.26 Synthese von (*M*)-1,1'-Biphenyl-2,2'-bismenthol ((*M*)-BIMOL)

Das nach **AAV5** erhaltene, auskristallisierte 2,2'-Dilithiobiphenyl wurde von der Mutterlauge mittels Kanüle befreit und in 150 ml Diethylether gelöst. Die Lösung wurde auf 0 °C gekühlt, das (-)-Menthon (7.7 g, 8.6 ml, 50 mmol) dazugetropft und 24 h bei RT gerührt. Nach der hydrolytischen Aufarbeitung wurden die organischen Phasen vereinigt und über Na₂SO₄ getrocknet. Das Lösungsmittel wurde im Vakuum entfernt und das Produkt (6.26 g, 13.8 mmol) aus Aceton umkristallisiert.

Ausbeute: 45 %

Schmelzpunkt: 182.4 ℃

Drehwert: $[\alpha]_{D}^{20} = -87.5^{\circ} (c = 0.4 \text{ in Hexan})$

Elementaranalyse: (C₃₂H₃₈O₂, M= 454,6429 g/mol): ber.: C 83.06 % H 10.02 % gef.: C 82.97 % H 10.04 %

¹**H-NMR** (CDCl₃), δ : 7.42-7.39 (1H, d, ³*J* = 7.5 Hz, 1H, H_{ar}); 7.35-7.30 (1H, t, H_{ar}); 7.22-7.17 (1H, t, H_{ar}); 7.03-7.00 (1H, d, ³*J* = 7.8 Hz, 1H, H_{ar}); 2.57 (1H, s, OH); 2.12-2.07 (1H, d, ³*J* = 13.8 Hz); 2.00-1.95 (1H, dd, ²*J* = 4.2 Hz (2x) bzw. ³*J* = 11.1 Hz, CH); 1.86-.57 (5H, m, CH₂, CH); 1.21-1.12 (1H, t, CH); 0.99-0.96 (4H, d, ${}^{3}J$ = 6.6 Hz, CH₂); 0.86-0.84 (3H, d, ${}^{3}J$ = 6.9 Hz, CH₃); 0.80-0.78 (3H, d, ${}^{3}J$ = 6.3 Hz, CH₃).

¹³**C-NMR** (CDCl₃), δ:

18.97 (CH₃), 21.65 (CH₂), 22.25 (CH₃), 24.30 (CH), 26.57 (CH₃), 28.17 (CH), 35.12 (CH₂), 47.90 (CH), 81.16 (C_q); 125.02 (CH_{ar}); 125.54 (C_{ar/q}); 126.75 (CH_{ar}); 132.80 (CH_{ar}), 144.77 (C_{ar/q}).

IR (KBr), \tilde{v} in cm⁻¹: 3567 & 3458; 3051; 2946-2860.

MS (EI), m/z [%]: 462 [12.5] (M⁺); 426 [33] (M⁺-2H₂O); 307 (M⁺-C₁₀H₂₃O).

5.2.1.27 Synthese von (*P*)-1,1'-Biphenyl-2,2'-bisverbenol ((*P*)-BIVOL)

84 (*P*)-BIVOL

Das nach **AAV5** erhaltene, auskristallisierte 2,2'-Dilithiobiphenyl wurde von der Mutterlauge mittels Kanüle befreit und in 100 ml Diethylether gelöst. Die Lösung wurde auf 0 °C gekühlt, das (-)-Verbenon (7.5 g, 7.7 ml, 50 mmol) dazugetropft und 24 h bei RT gerührt. Nach der hydrolytischen Aufarbeitung wurden die organischen Phasen vereinigt und über Na₂SO₄ getrocknet. Das Lösungsmittel wurde im Vakuum entfernt und das Produkt (4.3 g, 9.5 mmol) aus Hexan umkristallisiert.

Ausbeute: 31.5 %

Schmelzpunkt: 196.3 °C

Drehwert: $[\alpha]_{D}^{20} = -149.3^{\circ} (c = 0.4 \text{ in Hexan})$

Elementaranalyse:

(C₃₂H₃₈O₂, M 454,6429 g/mol als Einschlussverbindung mit Aceton) ber.: C 81.99 % H 8.65 % gef.: C 82.19 % H 8.64 %

¹**H-NMR** (CDCl₃), δ:

7.40-7.35 (1H, t, H_{ar}); 7.34-7.31 (1H, dd, ${}^{2}J = 2.4$ Hz, ${}^{2}J = 1.2$ Hz, 1H, H_{ar}); 7.27-7.23 (2H, m, 1H, H_{ar}); 6.25 (1H, br. s, H_{sp2}); 4.80-4.76 (2H, dd, ${}^{2}J = 1.8$ Hz, ${}^{2}J = 2.1$ Hz; bzw. ${}^{3}J = 10.5$ Hz CH₂); 4.70 (1H, br. s, CH); 2.58 (1H, t.,CH); 2.20-2.09 (2H, m, CH₂); 1.66 (1H, s, OH); 1.34-1.31(1H, d, ${}^{3}J = 9.0$ Hz); 1.25 (1H, s, CH); 1.21 (3H, s, CH₃); 0.82 (3H, s, CH₃).

¹³**C-NMR** (CDCl₃), δ:

21.89 (CH₃); 26.01 (CH₃); 34.46 (CH₂); 35.60 (CH₂); 43.03 (C_q); 43.56 (C_q); 47.32 (CH); 49.16 (CH); 50.31 (CH); 50.68 (CH); 106.88 (C_q); 107.12 (C_q); 125.02 (CH); 125.09 (CH); 126.37 (CH_{ar}); 126.76 (CH_{ar}); 127.21 (CH_{ar}); 127.29 (CH_{ar}); 127.96 (CH_{ar}); 128.38 (CH_{ar}); 130.32 (CH_{ar}); 131.41 (CH_{ar}); 139.61 (C_{ar/q}); 139.94 (C_{ar/q}); 150.35 (C_{ar/q}); 151.04 (C_{ar/q}).

IR (KBr), ṽ in cm⁻¹: 3237; 3053; 2973-2911.

MS (EI), m/z [%]:

$$\begin{split} &436~[1]~(M^+\text{-}OH);~418~[3]~(M^+\text{-}~2xOH);~295~[25]~(M^+\text{-}C_{11}H_{14}O);~271~[100]~(M^+\text{-}C_{12}H_8O_2);\\ &243~[20]~(M^+\text{-}C_{14}H_{10}O_2);~228~[33]~(M^+\text{-}C_{15}H_{13}O_2). \end{split}$$

Unter Argonatmosphäre wurden in einem 100 ml Schlenk-Kolben 2.g Benzylfenchol (7.7 mmol) in 20 ml absolutiertem Tetrahydrofuran vorgelegt. Bei -78 °C wurde innerhalb 10 Minuten 10.5 ml n-Butyllithium (16.8 mmol, 1.6 M in Hexan) zugetropft. Es wurde innerhalb einer Stunde die Reaktionsmischung auf RT erwärmt und über Nacht gerührt. Danach wurde das Ganze auf 0 ℃ gekühlt und 0.75 ml Phosphortrichlorid (0.9 g, 6.6 mmol) dazugegeben, auf RT erwärmt und über Nacht gerührt. Zu der Reaktionsmischung wurden dann 10 ml wässrige KOH-Lösung zugegeben und 4 Stunden gerührt. Nach der ³¹P-NMR-Kontrolle wurde der Ansatz aufarbeitet. Die wässrige Phase wurde mit Et₂O (3mal) extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter NH₄Cl-Lösung (3mal) gewaschen und schließlich über Na₂SO₄ getrocknet. Nach dem Trocknen wurde das Lösungsmittel Umkristallisieren Hexan/Essigester entfernt. Durch in (5:1) konnte das (R)-Benzylfenchylphosphonat in einer Ausbeute von 0.48 g (1.6 mmol) als farblose, kleine Kristalle erhalten werden.

Ausbeute: 20 %

Schmelzpunkt: 102.7 ℃

Drehwert: $[\alpha]_{D}^{20} = -78.5^{\circ}$

¹**H-NMR** (CDCl₃, 300 MHz), δ:

7.68-7.66 (1H, d, ${}^{3}J$ = 7.2 Hz, H_{ar}); 7.41-7.38 (1H,dd, ${}^{3}J$ = 1.8, 2.4 Hz H_{ar}); 7.26 (2H, t, H_{ar}); 5.10-5.06 (1H, d, ${}^{2}J$ = 11.4 Hz, CH₂); 4.42-4.38 (1H, d, ${}^{2}J$ = 11.1 Hz, CH₂); 3.24 (2H,br. s, OH); 2.52 -2.49 (1H, d, ${}^{3}J$ = 9.0 Hz, CH); 2.21-2.11 (1H, m, CH);

1.84 (2H, br. s, CH₂); 1.56 1.39 (3H, m, CH, CH₂); 1.27-1.25 (6H, d, 2x CH₃); 0.53 (3H, s, CH₃).

¹³**C-NMR** (CDCl₃, 75 MHz), δ:

17.53 (CH₃); 23.54 (CH₃); 23.97 (CH₂); 30.17 (CH₃); 34.91 (CH₂); 43.46 (CH₂); 49.39 (C_q); 49.76 (CH); 55.37 (C_q); 71.23 (CH₂); 102.02 (C_q); 127.91 (CH_{ar}); 128.44 (CH_{ar}); 129.89 (CH_{ar}); 132.61 (CH_a); 140.82 (C_{ar/q}); 142.85 (C_{ar/q}).

³¹**P-NMR** (CDCl₃, 121.5 MHz), δ:

4.96 (1P, ddd, ${}^{3}J$ = 728.3, 27.0; 3.3 Hz).

IR (NaCl-Kristall), \tilde{v} in cm⁻¹: 3028, 2980 -2929; 1474; 1260; 1086; 105; 995; 935; 758.

MS (EI, 70 eV), m/z [%]:

256 [12] $(M^+-P(O)H)$; 242 [10] $(M^+-O-P(O)H)$; 213 [13] $(M^+-CH_2-O_2-P(O)H)$; 174 [65] $(M^+-C_4H_5PO_3)$; 159 [100] $(M^+-C_5H_6PO_3)$; 145 [35] $(M^+-C_6H_7PO_3)$; 81 [24] $(M^+-C_{17}H_{21})$.

5.2.1.29 Versuchte Synthese von Benzylfenchylphosphorsäure & die Bildung von 2,2-Bisbenzylfenchylperoxid, (*R*,*R*)-16

Unter Argonatmosphäre wurde in einem 100 ml Schlenk-Kolben 1.875 g Benzylfenchol (7.2 mmol) in 50 ml absolutiertem Tetrahydrofuran vorgelegt. Bei -78 ℃ wurden innerhalb von 10 Minuten 9.9 ml *n*-Butyllithium (16.8 mmol, 1.6 M in Hexan) zugetropft. Es wurde innerhalb einer Stunde die Reaktionsmischung auf RT erwärmt und über Nacht gerührt. Danach wurde das Ganze auf -78 ℃ gekühlt und 0.74 ml Phosphorylchlorid (1.2 g, 7.9 mmol) dazugegeben, auf RT erwärmt und über Nacht gerührt. Die Reaktionsmischung wurde auf 0 ℃ gekühlt und mit 10 ml wässriger KOH-Lösung versetzt und 6 Stunden gerührt. Nach dem Abfiltrieren des entstandenen Lithiumchlorids über Celite wurde das Lösungsmittel im Vakuum entfernt. Aus dem gelben öligen Rückstand wurden durch Umkristallisieren aus Hexan 0.2565g 2,2 Bisbenzylfenchylperoxid (0.5 mmol) gewonnen.

Ausbeute: 7%

Schmelzpunkt: 181.5 ℃

Drehwert: $[\alpha]_{D}^{20} = 14.4^{\circ}$

Elementaranalyse ($C_{34}H_{42}O_4$, M = 514,6949 g/mol): ber.: C 79.34 % H 8.22 % gef.: C 79.20 % H 8.65 % ¹**H-NMR** (CDCl₃, 300 MHz), δ:

7.26-7.18 (8H, m, H_{ar}); 6.66-6.60 (2H, m, CH); 2.21 (2H, br. s, CH); 2.01 (2H, s, CH); 1.83-1.73 (4H, m, CH₂); 1.42 (2H, m, CH); 1.24-1.17 (4H, m, CH₂); 1.05-0.94 (5H, br. s, CH₃, CH₂); 0.69 (8H, br. s, CH₂, CH₃) 0.50 (3H, s, CH₃).

¹³**C-NMR** (CDCl₃, 75 MHz), δ:

17.53 (CH₃); 17.71 (CH₃); 23.51 (CH₃); 23.85 (CH₃); 25.31 (CH₂); 25.47 (CH₂); 28.86 (CH₃); 29.33 (CH₃); 30.33 (CH₂); 30.91 (CH₂); 41.23 (C_q); 41.53 (C_q); 44.61 (C_q); 45.72 (C_q); 48.14 (CH); 48.42 (CH); 52.83 (CH₂); 52.92 (CH₂); 99.83 (C_q); 99.86 (C_q); 108.01 (CH); 108.45 (CH); 123.60 (CH_{ar}); 125.05 (CH_{ar}); 125.22 (CH_{ar}); 127.19 (CH_{ar}); 127.21 (CH_{ar}); 128.24 (CH_{ar}); 128.56 (CH_{ar}); 134.89 (C_{ar/q}); 134.99 (C_{ar/q}); 143.57 (C_{ar/q}); 144.14 (C_{ar/q}).

IR (NaCl-Kristall), ṽ in cm⁻¹: 2955-2924; 2866; 1762 (α, β-ungesättigte Diacylperoxide)¹⁰⁷; 1460; 1334; 1113; 1052; 966; 943; 751.

MS (EI, 70 eV), m/z [%]: 514.10 [14%] (M⁺); 498.10 [100%] (M⁺-O); 257.16 [46%] (M⁺-C₁₇H₂₁O₂); 241.17 [66%] (M⁺-C₁₇H₂₁O₃).

5.2.1.30 Versuchte Synthese von (1R, 2R, 4S)-1, 3, 3-Trimethyl-2-bicyclo-[2.2.1]heptan-2-benzaldehyd durch saure Spaltung von (R,R)-16

In einem 50 ml Rundkolben wurden 0.23 g Bisbenzylfenchylperoxid (0.45 mmol) mit 0.0592 g Zinkstaub (0.91 mmol) in 20 ml Hexan vorgelegt. Hierzu wurde bei RT

10 ml 1M HCI-Lösung zugegeben und über Nacht gerührt. Danach wurde durch langsame Zugabe von 1M NaHCO₃-Lösung der Ansatz abgepuffert und die Phasen getrennt. Die wässrige Phase wurde mit Et₂O (3mal) extrahiert, die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Umkristallisieren aus Hexan führte wieder zu dem Ausgangsprodukt, das Peroxid konnte nicht gespalten werden.

5.2.1.31 Synthese von *N*-(*tert*-Butylcarbonyl)anilinfenchophosphonat (über die Zwischenstufe *N*-(*tert*-butylcarbonyl)anilinfenchophosphorchlorid)

Unter Argonatmosphäre wurde zu einer Lösung von 1.0 g (*R*)-8 (3.04 mmol) in 10 ml absolutiertem Tetrahydrofuran bei - 78 °C 4.2 ml *n*-Butyllithium (6.7 mmol, 1.6 M in Hexan) langsam zugetropft. Die Reaktionsmischung wurde zuerst für 30 min. bei - 78 °C und dann eine weitere Stunde bei RT gerührt. Nach Abkühlung auf 0 °C wurde eine frisch destillierte Lösung von 0.3 ml PCl₃ (3.3 mmol) langsam dazugetropft und weiere 24 h bei RT gerührt. Danach wurde zu dem Ansatz 0.2 g KOH (3.6 mmol) in 10 ml Wasser dazugegeben und weitere 24 h gerührt. Danach erfolgte die Phasentrennung, die wässrige Phase wurde mit Et₂O (3mal) extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Es wurde ein gelbes Öl erhalten, die laut ³¹P-NMR auf drei Produkte hinwies, die leider säulenchromatographisch nicht trennbar waren. 5.2.1.32 Versuchte Synthese von *N*-(*tert*-Butylcarbonyl)anilinfenchophosphorsäure und die Isolierung von *N*-(*tert*-Butylcarbonyl)anilinfenchophosphorsäurechlorid, (*R*)-17

Unter Argonatmosphäre wurde zu einer Lösung von 1.0 g (R)-8 (3.04 mmol) in 10 ml absolutiertem Tetrahydrofuran bei 0 ℃ 4.2 ml *n*-Butyllithium (6.7 mmol, 1.6 M in Hexan) langsam zugetropft. Die Reaktionsmischung wurde zuerst für 30 min. bei 0 ℃ und dann eine weitere Stunde bei RT gerührt. Nach Abkühlung auf 0 ℃ wurde eine frisch destillierte Lösung von 0.31 ml POCl₃ (3.3 mmol) langsam dazugetropft und weiere 24 h bei RT gerührt. Danach wurde zu dem Ansatz 0.2 g KOH (3.6 mmol) in 10 ml Wasser dazugegeben und weiter 24 h gerührt. Danach erfolgte die Phasentrennung, die Phasen wurden getrennt, die wässrige Phase wurde mit Diethylether (3mal) extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Es wurde ein orangegelbes Öl erhalten. das Phosphorsäurechlorid Verbindung Hexan aus der der in auskristallisierte.

5.3 Chiral katalysierte Reaktionen

5.3.1 Addition von Diethylzink an Benzaldehyd, katalysiert durch enantiomerenreine Liganden

Alle Liganden aus den Tabellen 11 bis 13 wurden als Chiralitätsvermittler in der enantioselektiven Diethylzinkaddition an Benzaldehyd eingesetzt und ihre katalytische Aktivität getestet:

Die chiralen Alkohole (0.3 mmol Ligand, entsprach 5 mol % bezogen auf die Menge an Benzaldehyd) wurden bei 0 °C vorgelegt und mit 6.5 ml Diethylzink-Lösung (6.5 mmol) versetzt. Bei 0 °C wurden nach 30 min. rührend 0.61 ml Benzaldehyd (6.3 mmol) zugegeben. Die Reaktionsmischung wurde für 30 min. bei 0 °C gerührt und schließlich für 24 h bei -20 °C im Gefierschrank gelagert. Nach dem Quenchen mit Wasser und Hydrolisieren mit 1N Salzsäure wurde die organische Phase abgetrennt, mit NaHCO₃-Lösung neutralisiert und die wässrige Phase mit Et₂O (3mal) extrahiert, die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet. Nach dem Abfiltrieren wurde das Lösungsmittel am Rotationsverdampfer entfernt. Durch Tröpfchendestillation wurde das Produkt am Kühlfinger gesammelt, hierdurch wurde die chemische Ausbeute gesammelt und bestimmt, die Enantiomerenüberschüsse wurden durch GC-Analyse ermittelt [Säule: Chiraldex-GTA; Lösungsmittel: Hexan; Reten-tionszeit der 1-Phenylpropanole: 90.41 min (*R*), 91.80 min (*S*)].

5.3.2 Protonierungsreaktion von 2-Methylcyclohexen in Gegenwart von chiralen Protonenquellen

5.3.2.1 Synthese von 1-Trimethylsiloxy-2-methylcyclohexen (Silylenolether)¹⁰⁸

Unter Argonatmosphäre wurden bei RT zu einer Lösung aus 2.8 ml Diisopropylamin (3.0 g, 0.02 mol) in 100 ml absolutiertem Diethylether 6.5 ml Methylmagnesiumbromid (0.0196 mol, 3.0 M-Lösung in Diethylether) langsam zugegeben. Die Reaktionsmischung wurde für 12 h bei RT gerührt, wobei sich eine weisse Suspension bildete. Hierzu wurde langsam 1.94 ml 2-Methylcyclohexan (0.016 mol) in 20 ml absolutiertem Diethylether innerhalb von 15 min. zugetropft und 20 min. bei RT gerührt. Dann wurden nacheinander 6.2 ml Chlortrimethylsilan (0.048 mol), 7.3 ml Triethylamin (0.052 mol) und 0.9 ml Dimethylethylenharnstoff (DMEU) (statt HMPTA unter dem Veracht krebserzeugend zu sein, wird es nicht mehr eingesetzt) hinzugefügt. Die Reaktionsmischung wurde für 8 h bei RT gerührt. Danach wurde ca. 100 ml Diethylether zugegeben und die Phasen getrennt. Die wässrige Phase wurde mit Et₂O (3mal) extrahiert, die gesammelten organischen Phasen wurden mit gesättigter Na₂CO₃-Lösung (3mal) gewaschen und über Na₂SO₄ getrocknet. Danach wurde abfiltiert und das Lösungsmittel am Rotationsverdampfer entfernt. Die Flüssigkeit wurde in einem Lösungsmittelgemisch erhaltene ölige (10% Ethylacetat:Hexan(1:1)) gelöst über Kieselgel erneut abfiltriert und wieder eingeengt. Mittels Vakuumdestillation wurde das Produkt bei einem Druck von 1.3 mbar und einem Siedetemperatur von 37 ℃ bis 42 ℃ (oder bei 13 mbar zwischen 70 - 75 ℃) als farbloses Öl gesammelt. Zur Überprüfung und Charakterisierung der Regioisomere wurde NMR-Analyse durchgeführt. Anhand dem vinyl-Proton bei 4.86 ppm mit einer Kopplung von ${}^{3}J = 3$ Hz und deren Fläche konnte ein Verhältnis von 97%: 3% der Regioisomere ermittelt werden.

Ausbeute: 70 %

Siedepunkt: 37 - 42 °C bei 1.3 mbar

¹**H-NMR** (CDCl₃), δ:

2.021-1.956 (4H, m, 2xCH₂); 1.69-1.61 (4H, m, 2xCH₂); 1.563 (3H, s, CH₃); 0.176 (9H, s, 3xCH₃).

¹³**C-NMR** (CDCl₃), δ:

0.70 (CH₃); 16.34 (CH₃); 23.07 (CH₂); 23.83 (CH₂); 30.14 (CH₂); 30.31 (CH₂); 111.77 (CH_{*sp2*}); 142.90 (C_{*q/C=O*}).

5.3.2.2 Enantiolselektive Protonierung von Lithiumenolaten in Gegenwart von chiralen Fencholliganden¹⁰⁹

Unter Argonatmosphäre wurden zu einer Lösung aus 0.184 g 1-Trimethylsiloxy-2-methylcyclohexen (1.0 mmol, Regioisomerenverhältnis von 97:3) in 5 ml absolutiertem Tetrahydrofuran bei 0 °C 6.88 ml *n*-Butyllithium (ca. 7 ml, 1.1 mmol, 1.6 M in Hexan) langsam zugegeben und dann für 2 h bei 0 ℃ gerührt. Die Reaktionsmischung wurde auf -78 °C gekühlt und hierzu wurde der in 5 ml absolutiertem Tetrahydrofuran aufgelöste Ligand tröpfchenweise zugegeben und erneut 2 h bei – 78 °C gerührt. Die Reaktion wurde mit 1.3 ml Chlortrimethylsilan (1.0 mmol) gequencht und 30min. gerührt. Die Reaktionsmischung wurde dann mit 10 ml NH₄Cl-Lösung behandelt und schließlich wurden die Phasen getrennt. Die wässrige Phase wurde mit Et₂O (2mal) extrahiert, die vereinigten organischen Phasen wurden mit gesättigter NaCl-Lösung gewaschen (3mal) und über Na₂SO₄ getrocknet. Nach dem Abfiltrieren wurde der Ansatz im Vakuum zur Trockne eingeengt. Mittels Tröpfchendestillation wurde das 2-Methylcyclohexan (bei 13mbar zwischen 38-40 ℃) gesammelt. Die Enantiomerenüberschüsse wurden mittels GC-Analytik bestimmt (chirale Säule: Lipodex-E, Lösungsmittel:Hexan; Retentionszeit der 2-Methylcyclohexanon: 35.2 min (R), 40.8 min (S)].

159

6 Anhang

6.1 Kristallstrukturanalysen von Edukten

6.1.1 Molekülstruktur von *N*-(Pivaloyl)-pyrrolidin (*N*-Pivpyrrolidin)

	Tabelle 14: Kristalldaten	und Struktur	verfeinerung fü	r N-Pivpyrrolidin
--	---------------------------	--------------	-----------------	-------------------

Summenformel	C ₉ H ₁₇ NO		
Molmasse	155.24		
Temperatur	100(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Monoclinic		
Raumgruppe	P21/c		
Z	4		
Gitterkonstanten	a = 6.0490 (3) Å	α =	90 °
	b = 19.0965 (16) Å	β =	112.963 (5) °
	c = 8.4569 (7) Å	$\gamma =$	90 °
Zellvolumen	899.48 (11) Å ³		
Dichte (berechnet)	1.146 Mg/m ³		
Absorptionskoeffizient μ	0.074 mm ⁻¹		
Kristallgröße	.2 x .1 x .1 mm ³		
Gemessener Theta-Bereich	2.13 bis 27.00 °		
Indexgrenzen	-7≤h≤7, -21≤k≤24, -10≤l≤9		
Gemessene Reflexe	4847		

Unabhängige Reflexe	1956 (R(int) = 0.0320)
Beobachtete Reflexe	1365 (I >2σ(I))
Absorptionskorrektur	none
Strukturverfeinerung	Full-matrix least-squares an F ²
Daten/Restraints/Parameter	1956 / 0 / 168
Goodness-of-fit an F ²	1.023
R-Werte (I>2σ(I))	R1 = 0.0433, wR2 = 0.1014
Max/min Restelektronendichte	0.218 und -0.236 eÅ ⁻³

Tabelle 15: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Atom	х	У	Z	U _{eq}
O(1)	10455(0)	1000(1)	1070/1)	20(1)
O(1)	12455(2)	1229(1)	1270(1)	30(1)
N(1)	8582(2)	1103(1)	-405(2)	22(1)
C(1)	9287(3)	750(1)	-1693(2)	26(1)
C(2)	6909(3)	549(1)	-3121(2)	30(1)
C(3)	5206(3)	480(1)	-2195(2)	28(1)
C(4)	5955(2)	1082(1)	-924(2)	24(1)
C(5)	10334(2)	1333(1)	1053(2)	22(1)
C(6)	9750(2)	1712(1)	2456(2)	24(1)
C(7)	7767(3)	2266(1)	1737(2)	29(1)
C(8)	9040(3)	1168(1)	3505(2)	30(1)
C(9)	12046(3)	2080(1)	3642(2)	35(1)

6.1.2 Molekülstruktur von N-(Pivaloyl)-anilin (N-Pivanilin)

Summenformel	C ₁₁ H ₁₅ NO		
Molmasse	177.24		
Temperatur	100(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Orthorhombic		
Raumgruppe	Pca2 ₁		
Z	4		
Gitterkonstanten	a = 10.013 (1) Å	α =	90 °
	b = 10.279 (1) Å	β =	90 °
	c = 10.029 (1) Å	$\gamma =$	120 °
Zellvolumen	1032.22 (18) Å ³		
Dichte (berechnet)	1.141 Mg/m ³		
Absorptionskoeffizient μ	0.073 mm ⁻¹		
Kristallgröße	0.35 x 0.25 x 0.20 mm ³		
Gemessener Theta-Bereich	1.98 bis 26.98 °		
Indexgrenzen	-12≤h≤12, -9≤k≤13, -8≤l≤11		
Gemessene Reflexe	3736		
Unabhängige Reflexe	1914 (R(int) = 0.0420)		
Beobachtete Reflexe	1472 (I >2σ(I))		
Absorptionskorrektur	none		
Strukturverfeinerung	Full-matrix least-squares an F ²		

	Anhang
Daten/Restraints/Parameter	1914 / 1 / 179
Goodness-of-fit an F ²	0.975
R-Werte (I>2o(I))	R1 = 0.0391, wR2 = 0.0695
Max/min Restelektronendichte	0.142 und -0.131 eÅ ⁻³

Tabelle 17: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Atom	x	У	Z	U_{eq}
O(1)	7329(1)	2680(1)	2473(1)	26(1)
N(2)	6819(1)	2600(2)	273(2)	19(1)
C(3)	7614(2)	2953(2)	1315(2)	19(1)
C(4)	5575(2)	1927(2)	360(2)	18(1)
C(5)	5194(2)	1164(2)	-710(2)	23(1)
C(6)	4730(2)	2063(2)	1447(2)	25(1)
C(7)	3124(2)	671(2)	384(3)	36(1)
C(8)	9536(2)	4222(2)	2200(2)	29(1)
C(9)	3509(2)	1432(2)	1441(2)	32(1)
C(10)	3963(2)	538(2)	-697(3)	33(1)́
C(11)	8885(2)	3690(2)	943(2)	21(1)
C(12)	8545(2)	4834(2)	15(2)	29(1)
C(13)	9854(2)́	2748(2)	258(3)	31(1)

6.1.3 Molekülstruktur von N-Bocanilin

Summenformel	$C_{11}H_{15}NO_2$		
Molmasse	193.24		
Temperatur	100 (2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Orthorhombic		
Raumgruppe	Pbca		
Z	8		
Gitterkonstanten	a = 11.688 (1) Å	α =	90 °
	b = 9.481 (1) Å	β =	90 °
	c = 18.826 (1) Å	$\gamma =$	90 °
Zellvolumen	2086.2 (3) Å ³		
Dichte (berechnet)	1.231 Mg/m ³		
Absorptionskoeffizient μ	0.085 mm ⁻¹		
Kristallgröße	0.20 x 0.15 x 0.10 mm ³		
Gemessener Theta-Bereich	2.16 bis 26.99 °		
Indexgrenzen	-14≤h≤14, -11≤k≤11, -24≤l≤16		
Gemessene Reflexe	9943		
Unabhängige Reflexe	2260 (R(int) = 0.2018)		
Beobachtete Reflexe	993 (I >2ơ(I))		
Absorptionskorrektur	none		

annang	٨ı	٦h	a	ng	
--------	----	----	---	----	--

Strukturverfeinerung	Full-matrix least-squares an F ²
Daten/Restraints/Parameter	2260 / 0 / 189
Goodness-of-fit an F ²	0.974
R-Werte (I>2σ(I))	R1 = 0.0712, wR2 = 0.1164
Max/min Restelektronendichte	0.343 und -0.303 eÅ ⁻³

Tabelle 19: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Atom	x	У	Z	U _{eq}
O(1)	1516(2)	3489(2)	208(3)	24(1)
O(2)	1820(2)	1506(2)	863(1)	25(1)
N(3)	2422(2)	3684(3)	1236(1)	22(1)
C(4)	898(3)	2736(3)	-369(2)	23(1)
C(5)	1911(2)	2771(3)	775(2)	20(1)
C(6)	3073(3)	3253(3)	1838(2)	20(1)
C(7)	2748(3)	2133(3)	2267(2)	26(1)
C(8)	4049(3)	4015(3)	2009(2)	22(1)
C(9)	3418(3)	1766(3)	2844(2)	27(1)
C(10)	1668(3)	1634(4)	-704(2)	28(1)
C(11)	638(4)	3919(4)	-893(2)	30(1)
C(12)	-196(3)	2102(4)	-72(2)	31(1)
C(13)	4706(3)	3665(4)	2594(2)	27(1)
C(14)	4390(3)	2530(3)	3006(2)	28(1)

6.2 Kristallstrukturanalysen von Produkten

6.2.1 Molekülstruktur von (2S)-N-Fenchylcarbamat, (R)-1

Tabelle 20: Kristalldaten und Strukturverfeinerung für (R)-1.

Summenformel	$C_{15}H_{23}NO_2$	
Molmasse	249.34	
Temperatur	100(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem	Orthorhombic	
Raumgruppe	P2 ₁ 2 ₁ 2 ₁	
Z	8	
Gitterkonstanten	a =6.5453 (2) Å	α = 90 °
	b = 15.0642 (6) Å	β = 90 °
	c = 27.1638 (12) Å	$\gamma = 90$ °
Zellvolumen	2678.34 (18) Å ³	
Dichte (berechnet)	1.237 Mg/m ³	
Absorptionskoeffizient μ	0.081 mm ⁻¹	
Kristallgröße	.3 x .1 x .03 mm ³	
Gemessener Theta-Bereich	1.50 bis 27.00 °	

	Anhang
Indexgrenzen	-8≤h≤8, -19≤k≤19, -34≤l≤34
Gemessene Reflexe	5830
Unabhängige Reflexe	3340 (R(int) = 0.0573)
Beobachtete Reflexe	2191 (I >2σ(I))
Absorptionskorrektur	none
Strukturverfeinerung	Full-matrix least-squares an F ²
Daten/Restraints/Parameter	3340 / 0 / 331
Goodness-of-fit an F ²	1.228
R-Werte (I>2o(I))	R1 = 0.0533, wR2 = 0.1102
Flack-Parameter	-0.2 (19)
Max/min Restelektronendichte	0.27 und -0.318 eÅ ⁻³

Tabelle 21: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Atom	x	У	Z	U _{eq}
O(1)	2655(4)	1129(2)	1281(1)	26(1)
O(2)	455(5)	429(2)	1784(1)	37(1)
N(1)	3928(5)	447(2)	1940(1)	24(1)
C(1)	2207(6)	641(3)	1684(2)	27(1)
C(2)	5688(6)	575(2)	1612(1)	23(1)
C(3)	4861(6)	1309(2)	1264(1)	21(1)
C(4)	5243(6)	2259(3)	1476(1)	26(1)
C(5)	7296(6)	2470(3)	1221(2)	35(1)
C(6)	6465(7)	2343(3)	698(2)	35(1)
C(7)	5643(6)	1377(2)	722(2)	28(1)
C(8)	7459(6)	767(3)	599(2)	36(1)
C(9)	3976(7)	1186(3)	346(2)	39(1)
C(10)	4716(7)	3018(3)	685(2)	40(1)
C(11)	3820(7)	2923(3)	1208(2)	31(1)
C(12)	5137(7)	2388(3)	2028(2)	34(1)
C(13)	6118(6)	-378(2)	1449(1)	25(1)
C(14)	5821(6)	-890(̀3)́	1927(2)	29(1)́
C(15)	4059(6)	-418(3)	2194(2)	28(1)́
· · /				

Tabelle 22: Kristalldaten und Strukturverfeinerung für (R)-2.

Summenformel	$C_{19}H_{33}NO_2$	
Molmasse	307.46	
Temperatur	100(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem	Tetragonal	
Raumgruppe	P4 ₃ 2 ₁ 2	
Z	8	
Gitterkonstanten	a =11.6365 (8) Å	$\alpha = 90^{\circ}$
	b = 11.6365 (8) Å	β = 90 °
	c = 26.824 (2) Å	$\gamma = 90$ °
Zellvolumen	3632.2 (4) Å ³	
Dichte (berechnet)	1.125 Mg/m ³	
Absorptionskoeffizient μ	0.071 mm ⁻¹	
Kristallgröße	.4 x .4 x .4 mm ³	

Gemessener Theta-Bereich	2.32 bis 27.00 °
Indexgrenzen	-14≤h≤9, -12≤k≤11, -33≤l≤19
Gemessene Reflexe	13823
Unabhängige Reflexe	2332 (R(int) = 0.1305)
Beobachtete Reflexe	1237 (I >2σ(I))
Absorptionskorrektur	none
Strukturverfeinerung	Full-matrix least-squares an F ²
Daten/Restraints/Parameter	2332/ 0 / 284
Goodness-of-fit an F ²	1.004
R-Werte (I>2σ(I))	R1 = 0.0538, wR2 = 0.0939
Flack-Parameter	-4 (2)
Max/min Restelektronendichte	0.209 und -0.248 eÅ ⁻³

Tabelle 23: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Atom	Х	У	Z	U _{eq}
O(1)	5746(2)	572(2)	1478(1)	27(1)
O(2)	2669(2)	2936(2)	998(1)	21(1)
N(1)	4182(2)	979(2)	1007(1)	21(1)
C(1)	3617(3)	2908(3)	1824(2)	21(1)
C(2)	3743(3)	3070(3)	1248(2)	18(1)
C(3)	4294(3)	4354(3)	1215(2)	22(1)
C(4)	4397(3)	4683(3)	1774(2)	24(1)
C(5)	3219(4)	4944(4)	2004(2)	32(1)
C(6)	2652(3)	3733(3)	2012(2)	24(1)
C(7)	4689(4)	3535(3)	2022(2)	27(1)
C(8)	3417(3)	1700(3)	2023(2)	29(1)
C(9)	3531(3)	5183(3)	915(2)	29(1)
C(10)	5518(3)	4442(3)	1000(2)	29(1)
C(11)	4530(3)	2213(3)	974(2)	21(1)
C(12)	4515(4)	2419(4)	401(2)	28(1)
C(13)	3865(9)	1435(6)	172(2)	75(2)
C(14)	3405(4)	710(4)	591(2)	26(1)
C(15)	4889(3)	225(3)	1246(2)	24(1)
C(16)	4618(3)	-1068(3)	1255(2)	27(1)́
C(17)	5123(3)	-1610(3)	784(2)	36(1)
Č(18)	3333(3)	-1365(3)	1322(2)	37(1)
C(19)	5252(4)	-1586(4)	1707(2)	43(1)
		~ /		~ /

Anhang

6.2.3 Molekülstruktur von N-Methylacetylpyrrolidylfenchol, (R)-4

Tabelle 24: Kristalldaten und Strukturverfeinerung für (R)-4

Summenformel	$C_{16}H_{27}NO_2$	
Molmasse	265.39	
Temperatur	100(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem	Orthorhombic	
Raumgruppe	P212121	
Z	4	
Gitterkonstanten	a = 8.8686 (7) Å	$\alpha = 90^{\circ}$
	b = 11.7270 (5) Å	β = 90 °
	c = 14.2205 (2) Å	$\gamma = 90$ °
Zellvolumen	1478.96 (18) Å ³	
Dichte (berechnet)	1.192 Mg/m ³	
Absorptionskoeffizient μ	0.077 mm ⁻¹	
Kristallgröße	.3 x .1 x .05 mm ³	
Gemessener Theta-Bereich	2.25 bis 26.99 °	

	,
Indexgrenzen	-8≤h≤11, -14≤k≤10, -18≤l≤14
Gemessene Reflexe	7484
Unabhängige Reflexe	1857 (R(int) = 0.0460)
Beobachtete Reflexe	1442 (I >2σ(I))
Absorptionskorrektur	none
Strukturverfeinerung	Full-matrix least-squares an F ²
Daten/Restraints/Parameter	1857/ 0 / 248
Goodness-of-fit an F ²	1.052
R-Werte (I>2o(I))	R1 = 0.0388, wR2 = 0.0838
Flack-Parameter	-1.8 (15)
Max/min Restelektronendichte	0.175 und -0.170 eÅ ⁻³

Tabelle 25: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Atom	х	У	Z	U_{eq}
O(1)	10610(2)	1052(1)	2003(1)	26/1)
O(1)	0027(2)	4352(1)	2093(1)	20(1)
O(2)	9937(2)	0009(1)	4220(1)	31(1)
N(1)	11200(2)	6510(1)	3709(2)	27(1)
C(1)	8235(2)	5927(2)	2559(2)	21(1)
C(2)	9871(3)	6036(2)	2142(2)	22(1)
C(3)	9529(3)	6623(2)	1129(2)	26(1)
C(4)	7797(3)	6775(2)	1162(2)	28(1)
C(5)	6974(3)	5639(2)	1041(2)	34(1)
C(6)	7383(3)	5017(2)	1958(2)	23(1)
C(7)	7504(3)	7022(2)	2194(2)	25(1)
C(8)	8064(3)	5670(2)	3600(2)	23(1)
C(9)	10091(3)	5900(2)	306(2)	36(1)
C(10)	10206(3)	7825(2)	998(2)	32(1)
C(11)	11020(3)	785(2)	2708(2)	26(1)
C(12)	12642(3)	6634(2)	2341(2)	35(1)
C(13)	13342(3)	5711(2)	2963(2)	42(1)
C(14)	12373(3)	5642(2)	3849(2)	36(1)
C(15)	10684(3)	7206(2)	4392(2)	27(1)
C(16)	10974(3)	6838(2)	5400(2)	40(1)

6.2.4 Molekülstruktur von *N*-2,2 –Dimethyl-3-hydroxy-3-methyl-pyrrolidylpentamidfenchol, (*R*)-5

Tabelle 26: Kristalldaten und Strukturverfeinerung für (R)-5

Summenformel	C ₂₂ H ₃₉ NO ₃
Molmasse	365.54
Temperatur	100(2) K
Wellenlänge	0.71073 Å
Kristallsystem	Monoclinic
Raumgruppe	P21
Z	2
Gitterkonstanten	a = 9.1257 (2) Å α = 90 °
	b = 12.1577 (6) Å β = 99.715 (2) °
	$c = 9.7039 (7) \text{ Å} \qquad \gamma = 90 ^{\circ}$
Zellvolumen	1061.18 (11) Å ³
Dichte (berechnet)	1.144 Mg/m ³
Absorptionskoeffizient μ	0.074 mm ⁻¹
Kristallgröße	.0.45 x .0.43 x 0.40 mm ³

	Anhang
Gemessener Theta-Bereich	2.13 bis 26.99 °
Indexgrenzen	-10≤h≤11, -14≤k≤15, -7≤l≤12
Gemessene Reflexe	5602
Unabhängige Reflexe	2419 (R(int) = 0.0627)
Beobachtete Reflexe	1597 (I >2σ(I))
Absorptionskorrektur	none
Strukturverfeinerung	Full-matrix least-squares an F ²
Daten/Restraints/Parameter	2419 / 1 / 393
Goodness-of-fit an F ²	0.935
R-Werte (I>2σ(I))	R1 = 0.0436, wR2 = 0.0673
Flack-Parameter	0.9 (13)
Max/min Restelektronendichte	0.204 und -0.193 eÅ ⁻³

Tabelle 27: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Atom	Х	у	Z	U _{eq}
O(1)	4245(2)	6947(2)	1260(2)	24(1)
O(2)	3527(2)	6441(2)	-3654(2)	24(1)
O(3)	2903(2)	6956(2)	3455(2)	29(1)
C(4)	6270(3)	6964(3)	-2946(3)	23(1)
C(5)	3160(3)	6459(2)	571(3)	19(1)
N(6)	3183(2)	6100(2)	-735(2)	18(1)
C(7)	4605(3)	6914(2)	-2572(3)	20(1)
Č(8)	4123(3)	8760(3)	-3788(3)	27(1)
C(9)	1571(3)	7031(3)	2416(3)	22(1)
C(10)	4575(3)	6115(2)	-1328(3)	19(1)
C(11)	4276(3)	8157(2)	-2356(3)	21(1)
C(12)	1744(3)	6273(3)	1180(3)	22(1)
C(13)	5723(4)	8840(3)	-4091(4)	36(1)
C(14)	2968(4)	8442(3)	-1635(4)	33(1)́
C(16)	-1206(4)	6588(3)	2125(4)	30(1)
C(17)	262(3)	6657(2)	3165(3)	25(1)
C(18)	3075(4)	4488(3)	-2154(4)	29(1)
C(19)	2117(4)	5304(3)	-1498(4)	28(1)
C(20)	5812(4)	8568(3)	-1657(4)	31(1)
C(21)	64(4)	7488(3)	4315(4)	33(1)
C(22)	4674(4)	4905(3)	-1777(4)	27(1)
C(23)	6335(4)	6444(4)	-4371(4)	34(1)
C(24)	6610(4)	8212(3)	-2857(4)	33(1)
C(25)	576(4)	5522(3)	3850(4)	30(1)
C(26)	1390(5)	8213(3)	1901(4)	35(1)

6.2.5 Molekülstruktur von (2S)-N-Pyrrolidylfenchol*Hydrochlorid, (R)-6

Tabelle 28: Kristalldaten und Strukturverfeinerung für **(R)-6** (als HCCl₃-Einschlussverbindung)

Summenformel	C ₁₅ H ₂₇ Cl ₄ NO
Molmasse	379.18
Temperatur	100(2) K
Wellenlänge	0.71073 Å
Kristallsystem	Monoclinic
Raumgruppe	C2
Z	4
Gitterkonstanten	a =21.504 (2) Å α = 90 °
	b = 7.1566 (3) Å β = 98.767 (3) °
	c = 12.3101 (11) Å γ = 90 °
Zellvolumen	1872.3 (3) Å ³
Dichte (berechnet)	1.345 Mg/m ³
Absorptionskoeffizient μ	0.631 mm ⁻¹
Kristallgröße	0.3 x 0.1 x 0.05 mm ³
Gemessener Theta-Bereich	2.34 bis 27.00 °
Indexgrenzen	-27≤h≤16, -6≤k≤9, -15≤l≤14
4576	

3662 (R(int) = 0.0236)	
2746 (l >2ơ(l))	
none	
Full-matrix least-squares an F^2	
3662 / 1 / 298	
0.936	
R1 = 0.0428, wR2 = 0.0729	
-0.06 (7)	
0.355 und -0.447 eÅ ⁻³	

Tabelle 29: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Atom	х	У	Z	U _{eq}
N1/4)	0157(1)	10000(4)		10/1)
N(1)	8157(1)	13098(4)	5563(Z)	18(1)
O(1)	7973(1)	16018(3)	6837(2)	21(1)
C(1)	7988(2)	13355(4)	8069(3)	20(1)
C(2)	8390(1)	14639(4)	7410(2)	18(1)
C(3)	8890(2)	15529(4)	8368(3)	23(1)
C(4)	8681(2)	14681(5)	9416(3)	27(1)
C(5)	8054(2)	15469(5)	9633(3)	33(1)
C(6)	7580(2)	14651(5)	8689(3)	24(1)
C(7)	8486(2)	12708(5)	9027(3)	26(1)
C(8)	7601(2)	11811(5)	7453(3)	25(1)́
C(9)	9576(2)	14948(7)	8361(3)	37(1)
C(10)	8872(2)	17684(5)	8364(4)	36(1)
C(11)	8682(2)	13558(4)	6520(3)	18(1)
C(12)	9173(2)	14544(5)	5942(3)	24(1)
C(13)	9039(2)	13936(5)	4742(3)	26(1)
C(14)	8330(2)	13887(6)	4519(3)	25(1)
CÎ(2)	10022(1)	9663(1)	6460(1)	41(1)
CI(3)	10946(1)	7740(1)	8011(1)	58(1)
Cl(4)	10938(1)	11789(1)	7931(1)	45(1)
C(15)	10797(2)	9718(6)	7157(3)	33(1)

6.2.6 Molekülstruktur von 2,2'-Bisfenchol-bispyrrolidinmalonsäureamid, (R)-7

Tabelle 30: Kristalldaten	und Strukturverfeinerur	g für (<i>R</i>)-7 .
---------------------------	-------------------------	------------------------------

Summenformel	$C_{31}H_{50}N_2O_4$
Molmasse	514.73
Temperatur	100(2) K
Wellenlänge	0.71073 Å
Kristallsystem	Orthorhombic
Raumgruppe	P212121
Z	4

Gitterkonstanten	a = 12.686 (2) Å α = 90 °
	b = 6.7403 (6) Å β = 90 °
	c = 32.400 (12) Å γ = 90 °
Zellvolumen	2770.6 (6) Å ³
Dichte (berechnet)	1.234 Mg/m ³
Absorptionskoeffizient μ	0.080 mm ⁻¹
Kristallgröße	.0.1 x .0.1 x .03 mm ³
Gemessener Theta-Bereich	2.04 bis 26.99 °
Indexgrenzen	-16≤h≤11, -8≤k≤6, -25≤l≤41
Gemessene Reflexe	8852
Unabhängige Reflexe	3183 (R(int) = 0.1032)
Beobachtete Reflexe	1524 (I >2σ(I))
Absorptionskorrektur	none
Strukturverfeinerung	Full-matrix least-squares an F ²
Daten/Restraints/Parameter	3183 / 0 / 380
Goodness-of-fit an F ²	0.909
R-Werte (I>2σ(I))	R1 = 0.0605, wR2 = 0.1152
Flack-Parameter	0 (3)
Max/min Restelektronendichte	0.435 und -0.379 eÅ⁻³

Tabelle 31: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Atom	Х	У	Z	U _{eq}
O(1)	2374(3)	7164(5)	173(1)	25(1)
O(2)	1629(3)	6118(7)	-540(1)	38(1)
O(3)	3156(3)	9950(́5)	940(1)́	25(1)
O(4)	2634(3)	10475(5)	1716(1)	26(1)
N(1)	3896(3)	6499(6)	-176(1)	20(1)
N(2)	2831(3)	6780(6)	1149(1)	21(1)
C(1)	2245(4)	4336(7)	-1125(2)	26(1)
C(2)	2462(4)	4859(7)	-659(2)	23(1)
C(3)	2383(7)	2770(9)	-433(3)	79(3)
C(4)	2069(7)	1392(10)	-797(3)	84(3)
C(5)	940(6)	1768(9)	-947(2)	54(2)
C(6)	1071(4)	3809(9)	-1165(2)	37(2)
C(7)	2703(6)	2259(10)	-1153(3)	76(3)

Anhang				
C(8)	2525(5)	5914(9)	-1440(2)	51(2)
C(9)	3458(9)	1988(10)	-274(4)	188(7)
C(10)	1628(10)	2734(15)	-85(2)	167(7)
C(11)	3481(4)	6116(8)	-602(2)	28(1)
C(12)	4500(5)	5460(20)	-821(3)	156(6)
C(13)	5404(5)	5926(11)	-597(2)	42(2)
C(14)	5055(4)	6684(9)	-179(2)	28(2)
C(15)	3347(4)	7023(7)	161(2)	18(1)
C(16)	3987(4)	7425(9)	551(2)	25(1)
C(17)	3266(4)	8137(9)	894(2)	25(1)
C(18)	2759(4)	4650(7)	1035(2)	26(1)
C(19)	1626(4)	4159(8)	1143(2)	28(1)
C(20)	1447(4)	5310(7)	1547(2)	30(1)
C(21)	2024(4)	7310(8)	1477(2)	21(1)
C(22)	2466(4)	8485(7)	1856(2)	23(1)
C(23)	1658(4)	8688(8)	2225(2)	25(1)
C(24)	2005(4)	10511(8)	2487(2)	30(2)
C(25)	3043(5)	9844(8)	2688(2)	35(2)
C(26)	3170(4)	7712(8)	2539(2)	28(1)
C(27)	3486(4)	7628(8)	2077(2)	22(1)
C(28)	2006(4)	7037(8)	2521(2)	32(2)
C(29)	502(4)	8900(9)	2111(2)	38(2)
C(30)	3816(4)	5462(7)	1981(2)	25(1)
C(31)	4471(4)	8870(9)	1978(2)	32(1)

6.2.7 Molekülstruktur von ortho-N-Pivanilidfenchol, (R)-8

Summenformel	$C_{21}H_{31}NO_2$		
Molmasse	329.47		
Temperatur	100(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Hexagonal		
Raumgruppe	P61		
Z	6		
Gitterkonstanten	a = 9.454 (1) Å	α =	90 °
	b = 9.454 (1) Å	β =	90 °
	c = 36.588 (1) Å	γ =	120 °
Zellvolumen	2832.0 (4) Å ³		
Dichte (berechnet)	1.159 Mg/m ³		
Absorptionskoeffizient μ	0.073 mm ⁻¹		

	Anhang
Kristallgröße	0.28 x 0.21 x 0.17 mm ³
Gemessener Theta-Bereich	2.49 bis 26.99 °
Indexgrenzen	-12≤h≤6, -11≤k≤12, -46≤l≤38
Gemessene Reflexe	7706
Unabhängige Reflexe	3528 (R(int) = 0.0489)
Beobachtete Reflexe	2318 (I >2σ(I))
Absorptionskorrektur	none
Strukturverfeinerung	Full-matrix least-squares an F ²
Daten/Restraints/Parameter	3528 / 1 / 342
Goodness-of-fit an F ²	0.939
R-Werte (I>2σ(I))	R1 = 0.0902, wR2 = 0.0747
Max/min Restelektronendichte	0.149 und -0.155 eÅ ⁻³

Tabelle 33: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Atom	x	У	Z	U _{eq}
O(1)	5565(2)	7893(2)	380(1)	26(1)
O(2)	8161(2)	6367(2)	1310(1)	39(1)
N(3)	7417(2)	7174(3)	798(1)	22(1)
C(4)	6374(3)	5570(3)	655(1)	21(1)
C(5)	4815(3)	5119(3)	520(1)	22(1)
C(6)	6959(3)	4473(3)	660(1)	27(1)
C(7)	3453(3)	6571(3)	859(1)	25(1)
C(8)	8239(3)	7478(3)	1121(1)	24(1)
C(9)	4187(3)	6337(3)	485(1)	23(1)
C(10)	5970(4)	2869(3)	552(1)	29(1)
C(11)	9248(3)	9239(3)	1250(1)	26(1)
C(12)	1229(3)	4821(3)	458(1)	28(1)
C(13)	4382(4)	2350(3)	443(1)	32(1)
C(14)	4451(4)	8281(4)	1024(1)	34(1)
C(15)	1760(4)	7534(4)	507(1)	35(1)
C(16)	8483(5)	9373(4)	1610(1)	36(1)
C(17)	3841(4)	3467(3)	426(1)	26(1)
C(18)	9337(4)	10507(3)	976(1)	34(1)
C(19)	2719(3)	5836(3)	211(1)	25(1)
C(20)	2531(4)	7361(4)	151(1)	32(1)
C(21)	2822(4)	5152(4)	-159(1)	32(1)
C(22)	3289(4)	5352(4)	1156(1)	33(1)
C(23)	1703(3)	6176(3)	745(1)	30(1)
C(24)	10970(4)	9557(5)	1333(1)	51(1)

6.2.8 Molekülstruktur von Aminofenchol, (R)-9

Tabelle 34: Kristalldaten und Strukturverfeinerung für (R)-9.

Summenformel	C ₂₁ H ₃₃ NO		
Molmasse	315.47		
Temperatur	100(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Orthorhombic		
Raumgruppe	P2 ₁ 2 ₁ 2 ₁		
Z	4		
Gitterkonstanten	a = 6.3717 (2) Å	α =	90 °
	b = 15.4017 (5) Å	β =	90 °
	c = 19.0091 (8) Å	$\gamma =$	90 °
Zellvolumen	1865.46 (12) Å ³		
Dichte (berechnet)	1.123 Mg/m ³		
Absorptionskoeffizient μ	0.067 mm⁻¹		
Kristallgröße	$0.35 \times 0.24 \times 0.12 \text{ mm}^3$		

Anhang		
Gemessener Theta-Bereich	1.70 bis 27.00 °	
Indexgrenzen	-8≤h≤5, -19≤k≤19, -24≤l≤16	
Gemessene Reflexe	9010	
Unabhängige Reflexe	2352 (R(int) = 0.0622)	
Beobachtete Reflexe	1826 (I >2σ(I))	
Absorptionskorrektur	none	
Strukturverfeinerung	Full-matrix least-squares an F ²	
Daten/Restraints/Parameter	2352 / 0 / 342	
Goodness-of-fit an F ²	1.026	
R-Werte (I>2σ(I))	R1 = 0.0412, wR2 = 0.0741	
Max/min Restelektronendichte	0.182 und -0.148 eÅ ⁻³	

_

Tabelle 35: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Atom	x	У	Z	U _{eq}
O(1)	1627(2)	5142(1)	660(1)	21(1)
N(2)	-818(3)	5878(1)	1652(1)	22(1)
C(3)	-3427(3)	4033(1)	782(1)	20(1)
C(4)	-2046(3)	5148(1)	1532(1)	20(1)
C(5)	-1598(4)	4383(2)	-804(1)	22(1)
C(6)	-1002(3)	5725(1)	-169(1)	20(1)
C(7)	412(4)	3262(2)	15(1)	24(1)
C(8)	-4911(4)	4215(1)	1929(1)	23(1)
C(9)	-800(4)	6317(2)	2328(1)	24(1)
C(10)	1363(4)	5202(2)	-1161(1)	27(1)
C(11)	430(4)	6519(2)	-91(1)	26(1)
C(12)	106(3)	4189(1)	-250(1)	19(1)
C(13	-923(4)	5329(2)	-925(1)	23(1)
C(14)	401(4)	7179(2)	2320(1)	24(1)
C(15)	-4897(4)	3789(2)	1290(1)	22(1)
C(16)	-1948(3)	4686(1)	885(1)	17(1)
C(17)	2084(3)	4457(2)	-679(1)	24(1)
C(18)	-3249(4)	6028(2)	-15(1)	24(1)
C(19)	293(5)	7559(2)	3058(1)	30(1)
C(20)	-319(3)	4915(1)	314(1)	18(1)
C(21)	-3501(4)	4886(2)	2049(1)	23(1)
C(22)	-666(5)	7811(2)	1813(1)	33(1)
C(23)	2682(4)	7046(2)	2105(2)	45(1)

6.2.9 Molekülstruktur von Phenylfenchol, (*R*)-10

Tabelle 36: Kristalldaten und Strukturverfeinerung für (R)-10

Summenformel	C ₁₆ H ₂₂ O		
Molmasse	230.34		
Temperatur	100(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Orthorhombic		
Raumgruppe	P2 ₁ 2 ₁ 2 ₁		
Z	4		
Gitterkonstanten	a = 8.3643 (4) Å	α =	90°
	b = 14.6784 (7) Å	β =	90°
	c = 21.8758 (6) Å	$\gamma =$	90°
Zellvolumen	2685.8 (2) Å ³		
Dichte (berechnet)	1.139 Mg/m ³		
Absorptionskoeffizient μ	0.069 mm ⁻¹		
Kristallgröße	$0.30 \times 0.30 \times 0.30 \text{ mm}^3$		
Gemessener Theta-Bereich	1.67 bis 27.00 °		
Indexgrenzen	-10≤h≤10, -11≤k≤18, -23	≤l≤24	
Gemessene Reflexe	12270		
Unabhängige Reflexe	5499 (R(int) = 0.0368)		
Beobachtete Reflexe $4132 (I > 2\sigma(I))$			
Absorptionskorrektur	none		

Anhang			
Strukturyorfoinorung	Full matrix locat equares on F^2		
Strukturvenemerung	Full-matrix least-squares an F		
Daten/Restraints/Parameter	5499 / 0 / 417		
Goodness-of-fit an F ²	0.953		
R-Werte (I>2σ(I))	R1 = 0.0404, wR2 = 0.0737		
Max/min Restelektronendichte	0.140 und -0.195 eÅ ⁻³		

Tabelle 37: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Atom	Х	У	Z	U _{eq}
O(1)	345(2)	4058(1)	1965(1)	25(1)
C(1)	60(2)	3503(1)	3026(1)	24(1)
C(2)	1205(2)	3635(1)	2462(1)	20(1)
C(3)	2498(2)	4351(1)	2708(1)	24(1)
C(4)	1840(2)	4568(1)	3354(1)	26(1)
C(5)	265(3)	5111(1)	3318(1)	33(1)
C(6)	-940(2)	4387(1)	3094(1)	30(1)
C(7)	1221(2)	3639(1)	3568(1)	26(1)
C(8)	-1014(2)	2671(1)	3007(1)	32(1)
C(9)	4177(2)	3944(1)	2771(1)	29(1)
C(10)	2652(2)	5191(1)	2295(1)	32(1)
C(11)	1974(2)	2766(1)	2207(1)	20(1)
C(12)	2255(2)	2696(1)	1582(1)	26(1)
C(13)	3002(2)	1936(1)	1337(1)	31(1)
C(14)	3499(2)	1227(1)	1708(1)	29(1)
C(15)	3219(2)	1284(1)	2330(1)	25(1)
C(16)	2452(2)	2039(1)	2576(1)	23(1)

6.2.10 Molekülstruktur von Phenolfenchol, (R)-11

Tabelle 38: Kristalldaten	und Strukturverfeinerung	für (R)-11
---------------------------	--------------------------	----------------	------

Summenformel	$C_{16}H_{22}O_2$			
Molmasse	246.34			
Temperatur	100(2) K			
Wellenlänge	0.71073 Å			
Kristallsystem	Monoclinic			
Raumgruppe	P2 ₁ /c			
Z	4			
Gitterkonstanten	a = 14.185 (2) Å	α =	90°	
	b = 11.6001 (13) Å		β =	94.278 (5) °
	c = 8.1546 (13) Å	$\gamma =$	90°	
Zellvolumen	1338.1 (3) Å ³			
Dichte (berechnet)	1.223 Mg/m ³			
Absorptionskoeffizient μ	0.079 mm⁻¹			
Kristallgröße	0.30 x 0.30 x 0.20 mm ³			
Gemessener Theta-Bereich	2.27 bis 26.99 °			
Indexgrenzen	-18≤h≤11, -12≤k≤10, -6≤	l≤10		
Gemessene Reflexe	4566			
Unabhängige Reflexe	2241 (R(int) = 0.0393)			
Beobachtete Reflexe	1581 (I >2σ(I))			

Anhang

Absorptionskorrektur	none
Strukturverfeinerung	Full-matrix least-squares an F ²
Daten/Restraints/Parameter	2241 / 0 / 252
Goodness-of-fit an F ²	0.943
R-Werte (I>2σ(I))	R1 = 0.0406, wR2 = 0.0958
Max/min Restelektronendichte	0.210 und -0.192 eÅ ⁻³

Tabelle 39: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Atom	х	У	Z	U_{eq}
O(1)	1954(1)	3568(1)	804(2)	24(1)
O(2)	2692(1)	2189(1)	2958(2)	29(1)
C(1)	2445(1)	5605(1)	571(2)	24(1)
C(2)	2422(1)	4508(1)	1701(2)	22(1)
C(3)	1759(1)	4923(1)	3107(2)	25(1)
C(4)	1520(1)	6180(1)	2563(2)	28(1)
C(5)	835(1)	6218(2)	1047(3)	32(1)
C(6)	1449(1)	5758(2)	-304(2)	28(1)
C(7)	2435(1)	6581(1)	1854(2)	27(1)
C(8)	3181(1)	5619(2)	-693(2)	27(1)
C(9)	2274(1)	4955(2)	4816(2)	30(1)
C(10)	877(1)	4167(2)	3205(3)	31(1)
C(11)	3382(1)	4054(1)	2420(2)	23(1)
C(12)	3465(1)	2915(1)	3005(2)	25(1)
C(13)	4307(1)	2479(2)	3701(2)	32(1)
C(14)	5102(1)	3164(2)	3848(2)	33(1)
C(15)	5050(1)	4293(2)	3310(2)	30(1)
C(16)	4203(1)	4726(1)	2616(2)	26(1)

6.2.11 Molekülstruktur von Benzylfenchol, (R)-12

Tabelle 40: Kristalldaten und Strukturverfeinerung für (<i>R</i>)-12
--

Summenformel	$C_{17}H_{24}O_2$		
Molmasse	260.36		
Temperatur	100(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Orthorhombic		
Raumgruppe	P212121		
Z	8		
Gitterkonstanten	a = 8.0736 (3) Å	α =	90 °
	b = 17.3924 (6) Å	β =	90 °
	c = 21.0915 (10) Å	γ =	90 °
Zellvolumen	2961.7 (2) Å ³		
Dichte (berechnet)	1.168 Mg/m ³		
Absorptionskoeffizient μ	0.074 mm ⁻¹		
Kristallgröße	0.48 x 0.35 x 0.22 mm ³		
Gemessener Theta-Bereich	1.93 bis 27.00 °		
Indexgrenzen	-9≤h≤10, -22≤k≤14, -24≤	≤l≤26	

Gemessene Reflexe	13670
Unabhängige Reflexe	3635 (R(int) = 0.0686)
Beobachtete Reflexe	2468 (I >2σ(I))
Absorptionskorrektur	none
Strukturverfeinerung	Full-matrix least-squares an F ²
Daten/Restraints/Parameter	3635 / 0 / 536
Goodness-of-fit an F ²	0.940
R-Werte (I>2σ(I))	R1 = 0.0429, wR2 = 0.0715
Max/min Restelektronendichte	0.162 und -0.211 eÅ ⁻³

Tabelle 41: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Atom	х	У	Z	U _{eq}
O(1)	3713(2)	2024(1)	497(1)	29(1)
O(2)	1249(2)	2391(1)	1650(1)	26(1)
C(3)	4053(3)	3966(2)	2045(1)	29(1)
C(4)	3556(3)	3233(1)	1846(1)	22(1)
C(5)	2233(4)	1428(2)	2589(2)	35(1)
C(6)	6242(4)	4024(2)	1284(1)	37(1)
C(7)	4290(4)	2373(2)	2943(2)	38(1)
C(8)	689(3)	3393(2)	2441(1)	27(1)
C(9)	4540(3)	2879(2)	1377(1)	23(1)
C(10)	2023(3)	2835(1)	2136(1)	21(1)
C(11)	2488(3)	2282(2)	2722(1)	24(1)
C(12)	5351(3)	4360(2)	1769(1)	36(1)
C(13)	1315(3)	2584(2)	3252(1)	31(1)
C(14)	4336(3)	2065(2)	1143(1)	28(1)
C(15)	-486(3)	2378(2)	3109(2)	40(1)
C(16)	5855(3)	3289(2)	1106(1)	31(1)
C(17)	253(4)	4115(2)	2070(2)	34(1)
C(18)	1294(4)	3452(2)	3133(1)	32(1)
C(19)	-909(3)	2914(2)	2553(2)	35(1)

6.2.12 Molekülstruktur von Anisylcarvol, (S)-13

Tabelle 42: Kristalldaten und Strukturverfeinerung	für (S)-1	13
--	--------------	------	----

Summenformel	C ₁₇ H ₂₂ O ₂		
Molmasse	258.35		
Temperatur	100(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Monoclinic		
Raumgruppe	P2 ₁		
Z	4		
Gitterkonstanten	a = 13.4887 (7) Å	α =	90 °
	b = 6.2938 (3) Å	β =	103.400 (2) °
	c = 17.6385 (14) Å	γ =	90°
Zellvolumen	1456.66 (15) Å ³		
Dichte (berechnet)	1.178 Mg/m ³		
Absorptionskoeffizient μ	0.075 mm ⁻¹		
Kristallgröße	0.42 x 0.40 x 0.40 mm ³		
Gemessener Theta-Bereich	2.16 bis 26.99 °		
Indexgrenzen	-17≤h≤14, -7≤k≤5, -22≤l≤	<u>≤</u> 22	
Gemessene Reflexe	7409		
Unabhängige Reflexe	5772 (R(int) = 0.0359)		
Beobachtete Reflexe	3481 (I >2σ(I))		

Anhang

Absorptionskorrektur	none
Strukturverfeinerung	Full-matrix least-squares an F ²
Daten/Restraints/Parameter	5772 / 1 / 499
Goodness-of-fit an F ²	0.985
R-Werte (I>2σ(I))	R1 = 0.0559, wR2 = 0.0970
Max/min Restelektronendichte	0.413 und -0.324 eÅ ⁻³

Tabelle 43: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Atom	x	У	Z	U _{eq}
O(1)	8832(2)	7993(3)	1450(2)	40(1)
O(2)	6989(2)	8082(3)	1812(1)	37(1)
C(3)	7463(2)	12780(4)	764(2)	24(1)
C(4)	9132(2)	12936(5)	2703(2)	28(1)
C(5)	8733(2)	10225(4)	1615(2)	26(1)
C(6)	8956(3)	10585(5)	2491(2)	31(1)
C(7)	6482(2)	13469(5)	419(2)	30(1)
C(8)	6791(2)	9860(4)	1345(2)	25(1)
C(9)	7638(2)	10957(4)	1223(2)	23(1)
C(10)	10115(2)	12850(5)	1656(2)	28(1)
C(11)	5660(3)	12328(5)	547(2)	32(1)
C(12)	9190(3)	13436(6)	3547(2)	40(1)
C(13)	10081(3)	13695(5)	2443(2)	32(1)
C(14)	9620(3)	10571(6)	482(2)	39(1)
C(15)	5810(3)	10533(5)	1008(2)	31(1)
C(16)	9522(2)	11323(5)	1268(2)	25(1)
C(17)	6141(3)	6888(6)	1960(3)	43(1)
C(18)	9758(4)	12018(8)	4137(2)	95(2)
C(19)	8776(4)	15227(7)	3748(3)	69(1)

6.2.13 Molekülstruktur von Pivanilidcarvol, (S)-15

Tabelle 44: Kristalldaten und Strukturverfeinerung für (S)-15

Summenformel	$C_{21}H_{29}NO_2$		
Molmasse	327.45		
Temperatur	100(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Orthorhombic		
Raumgruppe	P2 ₁ 2 ₁ 2 ₁		
Z	8		
Gitterkonstanten	a = 8.3961 (2) Å	α =	90 °
	b = 12.6013 (3) Å	β =	90 °
	c = 35.6329 (11) Å	$\gamma =$	120 °
Zellvolumen	3770.02 (17) Å ³		
Dichte (berechnet)	1.154 Mg/m ³		
Absorptionskoeffizient μ	0.073 mm⁻¹		
Kristallgröße	0.44 x 0.28 x 0.25 mm ³		

	Anhang
Gemessener Theta-Bereich	1.71 bis 26.99 °
Indexgrenzen	-10≤h≤10, -15≤k≤15, -21≤l≤44
Gemessene Reflexe	16194
Unabhängige Reflexe	4368 (R(int) = 0.1182)
Beobachtete Reflexe	2131 (I >2σ(I))
Absorptionskorrektur	none
Strukturverfeinerung	Full-matrix least-squares an F ²
Daten/Restraints/Parameter	4368 / 0 / 667
Goodness-of-fit an F ²	0.920
R-Werte (I>2σ(I))	R1 = 0.0478, wR2 = 0.0545
Max/min Restelektronendichte	0.203 und -0.202 eÅ ⁻³

Tabelle 45: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Atom	x	У	Z	U _{eq}
N(1)	6057(4)	5459(2)	890(1)	26(1)
O(2)	4987(3)	6945(2)	632(1)	37(1)
O(3)	7825(3)	3922(2)	1210(1)	28(1)
C(4)	5226(4)	4524(2)	1454(1)	25(1)
C(5)	6942(4)	4186(3)	1546(1)	26(1)
C(6)	6462(6)	2179(3)	1640(2)	36(1)
C(7)	6980(4)	3219(3)	1810(1)	28(1)
C(8)	4000(5)	4250(3)	1699(1)	29(1)
C(9)	2079(5)	5168(3)	1325(1)	29(1)
C(10)	6086(5)	6290(3)	650(1)	27(1)́
C(11)	7893(6)	4320(3)	2356(2)	34(1)
C(12)	7493(4)	6329(3)	380(1)	28(1)
C(13)	4843(4)	5155(3)	1145(1)	25(1)
C(14)	7426(5)	3305(3)	2164(2)	32(1)
C(15)	3263(4)	5453(3)	1082(1)	28(1)
C(16)	7434(5)	5311(3)	2128(1)	28(1)
C(17)	8144(5)	6298(3)	2302(2)	34(1)
C(18)	7873(5)	5118(3)	1722(1)	26(1)
C(19)	9049(6)	5962(4)	562(2)	50(2)
C(20)	2445(4)	4568(3)	1637(1)	30(1)
C(21)	7319(7)	6687(4)	2644(2)	57(2)
C(22)	9397(7)	6779(4)	2159(2)	60(2)
C(23)	7045(8)	5574(5)	61(2)	64(2)
C(24)	7694(7)	7454(4)	233(2)	54(2)
O(25)	4468(3)	9062(2)	702(1)	30(1)
O(26)	6352(3)	12710(2)	675(1)	37(1)
C(27)	3100(5)	12203(3	880(1)	32(1)

6.2.14 Molekülstruktur von (P)-1,1'-Biphenyl-2,2'-biscarvol ((P)-BICOL)

Tabelle 46 Kristalldaten und Strukturverfeinerung für (*P*)-BICOL (als Einschlussverbindung mit H_2O)

Summenformel	$C_{32}H_{38}O_2 \ (C_{32}H_{38}O_2^* H_2O)$
Molmasse	454.64 (472.64)
Temperatur	100(2) K
Wellenlänge	0.71073 Å
Kristallsystem	Orthorhombic
Raumgruppe	P212121
Z	4
Gitterkonstanten	a = 12.3983 (4) Å α = 90 °
	b = 12.5961 (5) Å β = 90 °
	c = 17.5876 (7) Å γ = 90 °
Zellvolumen	2746.66 (2) Å ³
Dichte (berechnet)	1.143 Mg/m ³
Absorptionskoeffizient μ	0.071 mm ⁻¹
Kristallgröße	.4 x .4 x .4 mm ³
Gemessener Theta-Bereich	1.99 bis 26.99 °

	Anhang
Indexgrenzen	-15≤h≤11, -11≤k≤16, -22≤l≤22
Gemessene Reflexe	13337
Unabhängige Reflexe	3368 (R(int) = 0.0414)
Beobachtete Reflexe	2629 (I >2σ(I))
Absorptionskorrektur	none
Strukturverfeinerung	Full-matrix least-squares an F ²
Daten/Restraints/Parameter	3183 / 0 / 380
Goodness-of-fit an F ²	0.960
R-Werte (I>2σ(I))	R1 = 0.0343, wR2 = 0.0659
Flack-Parameter	-0.5(11)
Max/min Restelektronendichte	0.138 und -0.165 eÅ ⁻³

Tabelle 47: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Atom	х	У	Z	U_{eq}
O(1)	4902(1)	4222(1)	2821(1)	23(1)
U(1)	5061(19)	4724(19)	2481(14)	55(8)
O(2)	3691(1)	2497(1)	2706(1)	21(1)
U(2)	4150(16)	3054(17)	2696(12)	38(6)
C(1)	5701(1)	4174(1)	3415(1)	20(1)
C(2)	5330(1)	3299(1)	3965(1)	19(1)
C(3)	4241(1)	3176(1)	4192(1)	18(1)
C(4)	3340(1)	3932(1)	3996(1)	17(1)
C(5)	2609(1)	3832(1)	3386(1)	17(1)
C(6)	2619(1)	2908(1)	2812(1)	19(1)
C(7)	1966(1)	1963(1)	3116(1)	20(1)
C(8)	751(1)	2123(1)	3043(1)	21(1)
C(9)	464(1)	2256(1)	2199(1)	25(1)
C(10)	1250(1)	2942(1)	1776(1)	23(1)
C(11)	2198(1)	3256(1)	2035(1)	21(1)
C(12)	2932(1)	3978(1)	1585(1)	26(1)
C(13)	80(1)	1250(2)	3401(1)	26(1)
C(14)	493(2)	371(2)	3684(1)	38(1)
C(15)	-1118(1)	1445(2)	3400(1)	32(1)
C(16)	1801(1)	4602(1)	3316(1)	21(1)
C(17)	1696(2)	5439(1)	3824(1)	23(1)
C(18)	2404(1)	5523(1)	4426(1)	23(1)
C(19)	3209(1)	4772(1)	4510(1)	20(1)
C(20)	3983(1)	2374(1)	4710(1)	19(1)
C(21)	4760(1)	1700(1)	5010(1)	21(1)
C(22)	5822(2)	1818(1)	4793(1)	23(1)

Anhang				
-				
C(23)	6091(1)	2603(1)	4269(1)	21(1)
C(24)	5741(1)	5257(1)	3816(1)	24(1)
C(25)	6707(2)	5351(2)	4347(1)	29(1)
C(26)	7729(2)	5306(2)	3860(1)	33(1)
C(27)	7680(2)	4461(2)	3262(1)	30(1)
C(28)	6795(2)	3932(2)	3055(1)	25(1)
C(29)	6801(2)	3085(2)	2452(1)	35(1)
C(30)	6683(2)	6309(2)	4869(1)	35(1)
C(31)	5880(2)	6992(2)	4892(1)	44(1)́
C(32)	7653(2)	6429(2)	5380(2)	54(1)
O(3)	4500(1)	624(1)	3251(1)	38(1)
H(1)	4258(19)	1220(20)	3075(15)	64(9)
H(1)	4850(20)	740(30)	3650(20)	118(14)
		· · ·		

Tabelle 48 Kristalldaten und Strukturverfeinerung für (*P*)-BIMEOL (als Einschlussverbindung mit Ethanol)

Summenformel	C ₃₂ H ₄₂ O ₂ (C ₃₂ H ₄₂ C	O₂*C₂⊦	H ₆ O)	
Molmasse	458.72 (504.72)			
Temperatur	200(2) K			
Wellenlänge	0.71073 Å			
Kristallsystem	Orthorhombic			
Raumgruppe	P2 ₁ 2 ₁ 2 ₁			
Z	4			
Gitterkonstanten	a = 11.4105 (1)	Å	α =	90 °
	b = 11.9179 (2)	Å	β =	90 °
	c = 12.3467 (3)	Å	$\gamma =$	90 °
Zellvolumen	3038.91 (7) Å ³			
Dichte (berechnet)	1.103 Mg/m ³			

Absorptionskoeffizient μ	0.068 mm ⁻¹
Kristallgröße	.4 x .4 x .2 mm ³
Gemessener Theta-Bereich	1.82 bis 27.00 °
Indexgrenzen	-14≤h≤14, -15≤k≤15, -28≤l≤28
Gemessene Reflexe	25469
Unabhängige Reflexe	3720 (R(int) = 0.0311)
Beobachtete Reflexe	3028 (l >2ơ(l))
Absorptionskorrektur	none
Strukturverfeinerung	Full-matrix least-squares an F ²
Daten/Restraints/Parameter	3720 / 0 / 441
Goodness-of-fit an F ²	1.180
R-Werte (I>2o(I))	R1 = 0.0410, wR2 = 0.1097
Flack-Parameter	0.9(13)
Max/min Restelektronendichte	0.213 und -0.223 eÅ ⁻³

Tabelle 49: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Atom	Х	У	Z	U_{eq}
Atom O(1) O(2) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(2)	x 8685(1) 10504(1) 8749(2) 9495(2) 9477(2) 8676(2) 8949(2) 10110(2) 11111(2) 11089(2)	y 2613(1) 3942(1) 1699(2) 2116(2) 3225(2) 4152(2) 5014(2) 5058(2) 5593(2) 6869(2) 7079(2)	Z 9509(1) 9444(1) 9086(1) 8553(1) 8337(1) 8542(1) 8948(1) 9309(1) 8958(1) 8956(1) 8956(1)	U_{eq} 50(1) 49(1) 46(1) 46(1) 44(1) 45(1) 44(1) 44(1) 46(1) 49(1) 57(1)
$C(9) \\ C(10) \\ C(11) \\ C(12) \\ C(13) \\ C(14) \\ C(15) \\ C(16) \\ C(17) \\ C(18) \\ C(19)$	11197(2) 10417(2) 9916(2) 9142(2) 12012(2) 11870(3) 13275(2) 8137(2) 7072(2) 6790(2) 7585(2)	7278(2) 6652(2) 5067(3) 7376(2) 8649(2) 7062(3) 5879(2) 5900(2) 5051(2) 4199(2)	9604(1) 10015(1) 9902(1) 10344(1) 8528(1) 8480(1) 8695(1) 9033(1) 8743(1) 8350(1) 8253(1)	57(1) 57(1) 51(1) 68(1) 59(1) 78(1) 74(1) 54(1) 64(1) 65(1) 54(1)

		Anhang		
C(20)	10155(2)	3486(2)	7836(1)	51(1)
C(21)	10827(2)	2699(2)	7544(1)́	59(1)
C(22)	10848(2)	1615(2)	7750(1)	62(1)
C(23)	10188(2)	1341(2)	8256(1)	58(1)
C(24)	7499(2)	1421(2)	8889(1)	50(1)
C(25)	7414(2)	304(2)	8551(1)	54(1)
C(26)	7753(3)	-620(2)	8986(1)	63(1)
C(27)	8816(2)	-323(2)	9351(1)	62(1)
C(28)	9299(2)	686(2)	9397(1)	53(1)
C(29)	10400(2)	889(2)	9740(1)	71(1)
C(30)	6201(2)	135(2)	8270(1)	65(1)
C(31)	5997(3)	-1050(3)	8040(2)	95(1)
C(32)	6005(4)	956(3)	7756(2)	108(1)
O(3)	7313(2)	8056(2)	5540(1)	68(1)
C(33)	6958(4)	7887(6)	6116(2)	139(2)
C(34)	5948(6)	8041(8)	6323(2)	225(4)
H(1)	9820(30)	3510(30)	9517(14)	97(10)
H(2)	11280(20)	1060(20)	7564(11)	56(6)
H(4)	7970(40)	8410(40)	5508(18)	121(14)
H(5)	8360(20)	2320(20)	9862(11)	61(7)

6.2.16 Molekülstruktur von (*M*)-1,1'-Biphenyl-2,2'-bismenthol ((*M*)-BIMOL)

Tabelle 50: Kristalldaten und Strukturverfeinerung für (*M*)-BIMOL (als Einschlussverbindung mit Aceton)

Summenformel	C ₃₂ H ₄₆ O ₂ (C ₃₂ H ₄₆ O ₂ *C ₃ H	l₀O)	
Molmasse	462.71 (520.79)		
Temperatur	100(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Orthorhombic		
Raumgruppe	P2 ₁ 2 ₁ 2 ₁		
Z	8		
Gitterkonstanten	a = 08.9885 (5) Å	α =	90 °
	b = 19.2157 (10) Å	β =	90 °
	c = 36.233 (2) Å	$\gamma =$	90 °
Zellvolumen	6258.2 (6) Å ³		
Dichte (berechnet)	1.104 Mg/m ³		
Absorptionskoeffizient μ	0.068 mm ⁻¹		
Kristallgröße	.2 x .2 x .1 mm ³		
	100		

	Anhang
Gemessener Theta-Bereich	1.20 bis 26.99 °
Indexgrenzen	-10≤h≤11, -24≤k≤24, -46≤l≤46
Gemessene Reflexe	31432
Unabhängige Reflexe	7151 (R(int) = 0.1282)
Beobachtete Reflexe	3612 (l >2σ(l))
Absorptionskorrektur	none
Strukturverfeinerung	Full-matrix least-squares an F ²
Daten/Restraints/Parameter	7151 / 0 / 717
Goodness-of-fit an F ²	0.0900
R-Werte (I>2o(I))	R1 = 0.0466, wR2 = 0.0670
Flack-Parameter	- 2.7 (13)
Max/min Restelektronendichte	0.189 und -0.194 eÅ ⁻³

Tabelle 51: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Atom	x	У	Z	U _{eq}
O(3)	1017(0)	297(1)	2421(1)	25/1)
O(3)	674(2)	1070(1)	3421(1) 2056(1)	20(1)
O(4) C(21)	-074(3)	260(2)	4126(1)	26(1)
C(31)	-480(4)	-380(2)	4120(1) 3107(1)	20(1)
C(0)	-400(4) 1086(4)	-300(2)	26/2(1)	20(1)
C(7)	606(4)	-286(2)	2043(1)	24(1)
C(34)	1851(4)	-200(2)	3395(1)	26(1)
C(26)	-1071(4)	-104(2)	0090(1) 0478(1)	20(1)
C(20)	-1271(4)	-851(2)	2470(1)	20(1)
C(30)	2905(4)	-051(2)	3711(1) 2915(1)	20(1)
C(30)	-109(4)	-379(2)	2424(1)	22(1)
C(17)	-1031(4)	1703(2)	2424(1)	32(T) 25(1)
C(10)	-2203(4)	2242(2)	2490(1)	33(T) 21(1)
C(27)	-2400(4)	-031(2)	2020(1)	31(1) 22(1)
C(24)	3313(4) 1196(5)	104(2)	2552(1)	33(1) 47(1)
C(20)	1100(3)	2331(2)	3373(1)	47(1)
C(35)	4130(4)	-1419(2)	3049(1)	30(1) 25(1)
C(19)	1852(4)	2244(2)	3189(1)	30(1)
C(36)	-1460(4)	133(2)	3892(1)	29(1)
C(32)	2145(4)	-948(2)	4074(1)	29(1)
C(29)	-1666(4)	-845(2)	3141(1)	27(1)
C(9)	-275(4)	-58(2)	2/62(1)	20(1)
0(28)	-2642(4)	-981(2)	2856(1)	32(1)
C(14)	-544(4)	2828(2)	2952(1)	37(1)
C(12)	55(4)	1593(2)	2/46(1)	28(1)

		Anhang		
C(25)	2219(4)	-79(2)	2502(1)	28(1)
C(13)	704(4)	2304(2)	2872(1)	32(1)
C(11)	1252(4)	1073(2)	2620(1)	25(1)
C(15)	-1570(5)	2925(2)	2621(1)	41(1)
C(37)	-2665(4)	-229(2)	4116(1)	47(1)
C(23)	3676(5)	892(2)	2324(1)	41(1)
C(21)	3142(4)	2/66(2)	3132(1)	54(1)
C(22)	2559(4)	1326(2)	2453(1)	37(1)
C(10)	-3210(4)	2343(2)	2130(1)	40(1) 30(1)
O(50)	10699(3)	827(1)	742(1)	28(1)
O(6)	8688(3)	-175(1)	493(1)	25(1)
C(43)	10299(4)	-832(2)	883(1)	22(1)
C(45)	9972(4)	-1132(2)	192(1)	23(1)
C(44)	9224(4)	-879(2)	553(1)	23(1)
C(57)	11122(4)	-391(2)	1472(1)	30(1)
C(66)	10860(4)	1487(2)	1299(1)	26(1)
C(63)	10517(4)	2333(2)	642(1)	34(1)
C(46)	8807(4)	-1248(2)	-112(1)	29(1)
C(41)	8761(4) 7961(4)	80(2) -1371(2)	1240(1)	23(1) 26(1)
C(43)	10119(4)	-363(2)	1179(1)	20(1)
C(65)	12126(4)	1960(2)	1178(1)	30(1)
C(51)	11289(4)	-669(2)	68(1)	25(1)
C(40)	8594(4)́	799(2)	1172(1)	24(1)
C(60)	6188(4)	770(2)	1484(1)	40(1)
C(39)	9811(4)	1239(2)	991(1)	24(1)
C(47)	7619(4)	-1774(2)	9(1)	31(1)
C(56)	12301(4)	-855(2)	1483(1)	34(1)
C(48)	6814(4) 11517(4)	-1526(2)	354(1)	27(1)
C(64)	11317(4) 11/71(/)	2077(2) -1305(2)	900(1) 905(1)	37(1) 27(1)
C(58)	7648(4)	-262(2)	1438(1)	27(1) 31(1)
C(61)	7292(4)	1122(2)	1299(1)	34(1)
C(62)	9211(4)	1889(2)	778(1)	27(1)
C(67)	13020(́4)́	2207(2)	1508(1)	44(1)́
C(59)	6353(4)	64(2)	1554(1)	38(1)
C(69)	6907(4)	2294(2)	437(1)	47(1)
C(68)	8075(4)	1713(2)	470(1)	32(1)
C(50)	5680(4)	-2059(2)	490(1)	37(1)
C(70) C(55)	8750(4)	1588(2)	87(1)	43(1) 22(1)
C(55)	12404(4)	-1320(2)	-90(1)	33(1) /1/1)
C(52)	10880(4)	-105(2)	-212(1)	34(1)
O(1)	5937(3)	249(1)	130(1)	43(1)
C(1)	4891(4)	438(2)	319(1)	32(1)
$\dot{C(2)}$	4533(4)	100(2)́	680(1)́	49(1)́
C(3)	3915(4)́	1031(2)	200(1)́	41(1)́
O(2)	6625(3)	1672(2)	3401(1)	47(1)
C(4)	5670(4)	1233(2)	3446(1)	36(1)
C(5)	4623(4)	1273(2)	3770(1)	46(1)
U(b)	5486(4)	631(2)	3194(1)	50(1)

6.2.17 Molekülstruktur von (P)-1,1'-Biphenyl-2,2'-bisverbenol ((P)-BIVOL)

Tabelle 52: Kristalldaten und Strukturverfeinerung für (*P*)-**BIVOL** (als Einschlussverbindung mit H_2O)

Summenformel	$C_{32}H_{38}O_2 (C_{32}H_{38}O_2^*H_2C_2)$))	
Molmasse	454.64 (472.66)		
Temperatur	100(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Cubic		
Raumgruppe	P2 ₁ 3		
Z	12		
Gitterkonstanten	a = 20.029 (8) Å	α =	90 °
	b = 20.029 (8) Å	β =	90 °
	c = 20.029 (8) Å	$\gamma =$	90 °
Zellvolumen	8035 (6) Å ³		
Dichte (berechnet)	1.157 Mg/m ³		
Absorptionskoeffizient μ	0.072 mm ⁻¹		
Kristallgröße	.3 x .3 x .3 mm ³		
Gemessener Theta-Bereich	1.44 bis 26.98 °		

	5
Indexgrenzen	-15≤h≤25, -24≤k≤25, -14≤l≤25
Gemessene Reflexe	27084
Unabhängige Reflexe	5878 (R(int) = 0.0738)
Beobachtete Reflexe	4143 (I >2σ(I))
Absorptionskorrektur	none
Strukturverfeinerung	Full-matrix least-squares an F ²
Daten/Restraints/Parameter	5878 / 0 / 320
Goodness-of-fit an F ²	0.981
R-Werte (I>2o(I))	R1 = 0.0473, wR2 = 0.0941
Flack-Parameter	0.0(12)
Max/min Restelektronendichte	0.287 und -0.199 eÅ ⁻³

Tabelle 53: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (Å²). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Atom	х	У	Z	U _{eq}
O(1)	10/2(1)	1902(1)	7142(1)	20(1)
O(1)	7243(T) 2121(1)	075(1)	7755(1)	20(1)
O(2)	663(1)	1865(1)	7570(1)	18(1)
C(2)	601(1)	1221(1)	7983(1)	18(1)
C(2)	723(1)	572(1)	7725(1)	19(1)
C(4)	983(1)	398(1)	7033(1)	20(1)
C(5)	1664(1)	291(1)	6876(1)	20(1)
C(6)	2235(1)	368(1)	7381(1)	20(1)
C(7)	2244(1)	-233(1)	7860(1)	24(1)
C(8)	2892(1)	-278(1)	8300(1)	24(1)
C(9)	3215(1)	-589(1)	7658(1)	30(1)
C(10)	2511(1)	-846(1)	7474(1)	33(1)
C(11)	3390(1)	-37(1)	7177(1)	26(1)
C(12)	2917(1)	409(1)	7046(1)	23(1)
C(13)	4074(1)	-20(1)	6882(1)	39(1)
C(14)	2805(1)	-789(1)	8860(1)	41(1)
C(15)	3198(1)	348(1)	8605(1)	27(1)
C(16)	1815(1)	68(1)	6230(1)	26(1)
C(17)	1332(1)	-70(1)	5759(1)	29(1)
C(18)	669(1)	18(1)	5921(1)	29(1)
C(19)	501(1)	259(1)́	6550(1)	24(1)́
C(20)	553(1)	21(1)́	8118(1)́	24(1)́
C(21)	312(1)	88(1)	8763(1)	29(1)
C(22)	236(1)	719(1)	9030(1)	28(1)
C(23)	375(1)	1270(1)́	8641(1)	23(1)
C(24)	30(1)	1951(1)	7135(1)	18(1)

203

		Anhang		
C(25)	-37(1)	2664(1)	6806(1)	20(1)
C(26)	-299(1)	2882(1)	7509(1)	21(1)
C(27)	-553(1)	2165(1)	7604(1)	24(1)
C(28)	300(1)	2982(1)	7967(1)	20(1)
C(29)	743(1)	2486(1)	7999(1)	18(1)
C(30)	371(1)	3631(1)	8330(1)	25(1)
C(31)	556(1)	3020(1)	6507(1)	23(1)
C(32)	-597(1)	2666(1)	6278(1)	32(1)
O(3)	2199(1)	2801(1)	7199(1)	20(1)
O(4)	7993(1)	2993(1)	2007(1)	22(1)

6.2.18 Molekülstruktur von Dibenzylfenchoperoxid, (*R*,*R*)-16

Summenformel	$C_{34}H_{42}O_4$
Molmasse	514.68
Temperatur	100(2) K
Wellenlänge	0.71073 Å
Kristallsystem	Orthorhombic
Raumgruppe	P212121
Z	4
Gitterkonstanten	a = 10.7516 (4) Å α = 90 °
	b = 15.2543 (5) Å β = 90 °
	c = 16.8636 (8) Å γ = 90 °
Zellvolumen	2765.77 (19) Å ³
Dichte (berechnet)	1.236 Mg/m ³
Absorptionskoeffizient μ	0.080 mm ⁻¹
Kristallgröße	.0.1 x .0.1 x .03 mm ³
Gemessener Theta-Bereich	1.79 bis 27.00 °
Indexgrenzen	-13≤h≤12, -16≤k≤19, -20≤l≤21
Gemessene Reflexe	13330
Unabhängige Reflexe	3394 (R(int) = 0.0867)
Beobachtete Reflexe	2112 (I >2σ(I))
Absorptionskorrektur	none
Strukturverfeinerung	Full-matrix least-squares an F ²
Daten/Restraints/Parameter	3394 / 0 / 491
Goodness-of-fit an F ²	0.909
R-Werte (I>2σ(I))	R1 = 0.0443, wR2 = 0.0728
Flack-Parameter	-0.4 (14)
Max/min Restelektronendichte	0.227 und -0.182 eÅ ⁻³

Tabelle 54: Kristalldaten und Strukturverfeinerung für (R,R)-16

Atom	Х	у	Z	U _{eq}
O(1)	7026(2)	8135(1)	1661(1)	24(1)
O(2)	8100(2)	8048(1)	2871(1)	22(1)
O(3)	6101(2)	8775(1)	1952(1)	24(1)
O(4)	4830(2)	8667(1)	816(1)́	22(1)
C(5)	3553(3)	9668(2)	1457(2)	21(1)
C(6)	8594(3)	9529(2)	2861(2)	18(1)
C(7)	2958(3)	8027(2)	1477(2)	20(1)
C(8)	8551(3)	9242(2)	2087(2)	17(1)
C(9)	6136(4)	8222(2)	3856(2)	34(1)
C(10)	8838(3)	9775(2)	1450(2)	24(1)
C(11)	3242(3)	8033(2)	2358(2)	30(1)
C(12)	3515(2)	8816(2)	993(2)	19(1)
C(13)	5610(3)	9213(2)	1271(2)	22(1)
C(14)	8315(3)	8771(2)	3421(2)	19(1)
C(15)	2605(3)	10175(2)	1778(2)	28(1)
C(16)	7859(3)	8710(2)	4839(2)	30(1)
C(17)	4774(3)	9904(2)	1601(2)	21(1)
C(18)	9432(3)	8532(2)	3967(2)	24(1)
C(19)	/191(3)	8870(2)	4036(2)	22(1)
C(20)	2/48(3)	8788(2)	188(2)	24(1)
C(21)	9196(3)	10633(2)	1603(2)	29(1)
C(22)	8158(3)	8302(2)	2074(2)	20(1)
C(23)	8943(3)	10396(2)	3011(2)	25(1)
C(24)	9136(3)	9099(2)	4697(2)	31(1)
C(25)	5092(4)	10648(2)	2031(2)	30(1) 25(1)
C(20)	1002(3)	0000(2) 10022(2)	339(∠) 2291(2)	33(1) 29(1)
C(27)	9242(3)	10932(2)	2301(2)	∠o(1) 29(1)
C(20)	1990(3)	9024(2) 7727(2)	30(Z) 4049(2)	30(1)
C(29)	0100(4) 2023(4)	10020(2)	4940(3)	40(1) 36(1)
C(30)	2923(4)	11154(2)	2203(2)	30(1)
C(32)	$\frac{4144(4)}{10700(3)}$	8612(3)	2531(2)	35(1)
C(32)	6609(4)	9784(2)	4036(3)	32(1)
C(34)	3585(3)	8648(2)	-531(2)	38(1)
C(35)	2528(<u>4</u>)	7133(2)	310(3)	40(1)
C(36)	3351(4)	7168(2)	1069(2)	32(1)
C(37)	1589(3)	8090(2)	1223(2)	33(1)
C(38)	9187(4)	7602(2)	4311(2)	35(1)
-()				••(.)

Tabelle 55: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter ($Å^2$). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors (*R*,*R*)-16.

6.2.19 Molekülstruktur von *N*-Pivanilidfenchophosphorylchlorid, (*R*)-17

Tabelle 56: Kristalldaten und Strukturverfeinerung für (R)-17

Summenformel	$C_{21}H_{29}CINO_3P$		
Molmasse	409.87		
Temperatur	100(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Orthorhombic		
Raumgruppe	P2 ₁ 2 ₁ 2 ₁		
Z	4		
Gitterkonstanten	a = 9.4016 (3) Å	α =	90 °
	b = 17.8066 (6) Å	β =	90 °
	c = 24.4857 (12) Å	γ =	90 °
Zellvolumen	4099.2 (3) Å ³		
Dichte (berechnet)	1.328 Mg/m ³		
Absorptionskoeffizient μ	0.286 mm ⁻¹		
	207		

Anhang			
Kristallgröße	0.52 x 0.43 x 0.40 mm ³		
Gemessener Theta-Bereich	2.16 bis 26.99 °		
Indexgrenzen	-11≤h≤11, -15≤k≤22, -31≤l≤28		
Gemessene Reflexe	19872		
Unabhängige Reflexe	8655 (R(int) = 0.2116)		
Beobachtete Reflexe	4113 (I >2σ(I))		
Absorptionskorrektur	none		
Strukturverfeinerung	Full-matrix least-squares an F ²		
Daten/Restraints/Parameter	8655 / 0 / 500		
Goodness-of-fit an F ²	0.881		
R-Werte (I>2σ(I))	R1 = 0.0619, wR2 = 0.0834		
Max/min Restelektronendichte	0.334 und -0.451 eÅ ⁻³		

Tabelle 57: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter ($Å^2$). U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors von (*R*)-17.

Atom	х	У	Z	U _{eq}
CI(1)	300(1)	4078(1)	4710(1)	33(1)
P(2)	-364(1)	3020(1)	4892(1)	18(1)
O(3)	-349(3)	2638(2)	4326(1)	18(1)
O(4)	-1715(3)	3016(2)	5183(1)	25(1)
N(5)	1004(3)	2632(2)	5223(2)	16(1)
O(6)	1470(3)	1682(2)	5807(1)	24(1)
C(7)	607(4)	2048(3)	4103(2)	14(1)
C(8)	2081(4)	2178(3)	4360(2)	14(1)
C(9)	2236(4)	2457(3)	4883(2)	16(1)
C(10)	352(5)	2739(3)	6236(2)	19(1)
C(11)	-28(4)	1234(3)	4204(2)	17(1)
C(12)	3345(4)	1997(3)	4072(2)	19(1)
C(13)	728(4)	1342(3)	3266(2)	20(1)
C(14)	952(4)	2297(3)	5754(2)	17(1)
C(15)	-463(4)	1003(3)	3614(2)	22(1)
C(16)	1337(5)	2795(3)	3224(2)	27(1)
C(17)	485(4)	2154(3)	3465(2)	18(1)
C(18)	4645(5)	2123(3)	4299(2)	24(1)
C(19)	128(4)	3568(3)	6142(2)	22(1)
C(20)	1509(4)	2655(3)	6685(2)	26(1)
C(21)	3571(4)	2607(3)	5110(2)	20(1)
C(22)	4782(4)	2438(3)	4808(2)	23(1)
C(23)	-1754(5)	1439(3)	3404(2)	29(2)
C(24)	-1259(4)	1216(3)	4613(2)	25(1)
C(25)	-1126(4)	2235(3)	3320(2)	26(1)
C(26)	1116(4)	685(3)	4410(2)	24(1)
C(27)	-1031(4)	2353(3)	6427(2)	28(1)

6.3 Theoretische berechnete Strukturen

6.3.1 Theoretisch berechnete Struktur von (2S)-N-Fenchylcarbamat

Mit B3LYP/6-31G* optimierte Struktur von (2S)-N-Fenchylcarbamat.

6.3.2 Theoretisch berechnete Struktur von (2R)-N-Fenchylcarbamat

Mit B3LYP/6-31G* optimierte Struktur von (2R)-N-Fenchylcarbamat.

6.3.3 Theoretisch berechnete Struktur von (2S)-N-Pivpyrrolidylfenchol

Mit B3LYP/6-31G* optimierte Struktur von (2S)-N-Pivpyrrolidylfenchol.

6.3.4 Theoretisch berechnete Struktur von (2R)-N-Pivpyrrolidylfenchol

Mit B3LYP/6-31G* optimierte Struktur von (2S)-N-Pivpyrrolidylfenchol.
6.3.5 Theoretisch berechnete Struktur von (*2S*)-*N*-Methylacetylpyrrolidylfenchol

Mit B3LYP/6-31G* optimierte Struktur von (2S)-N-Methylacetylpyrrolidylfenchol.

6.3.6 Theoretisch berechnete Struktur von (*2R*)-*N*-Methylacetylpyrrolidylfenchol

Mit B3LYP/6-31G* optimierte Struktur von (2R)-N-Methylacetylpyrrolidylfenchol.

6.3.7 Theoretisch berechnete Struktur von (M)-BICOL

Mit B3LYP/6-31++G**:AM1 optimierte Struktur von (*M*)-BICOL.

6.3.8 Theoretisch berechnete Struktur von (P)-BICOL

Mit B3LYP/6-31++G**:AM1 optimierte Struktur von (*P*)-BICOL.

6.3.9 Theoretisch berechnete Struktur von (*M*)-BIMOL

Mit B3LYP/6-31++G**:AM1 optimierte Struktur von (*M*)-BIMOL.

6.3.10 Theoretisch berechnete Struktur von (P)-BIMOL

Mit B3LYP/6-31++G**:AM1 optimierte Struktur von (*P*)-BIMOL.

6.3.11 Theoretisch berechnete Struktur von (M)-BIVOL

Mit B3LYP/6-31++G**:AM1 optimierte Struktur von (*M*)-BIVOL.

6.3.12 Theoretisch berechnete Struktur von (P)-BIVOL

Mit B3LYP/6-31++G**:AM1 optimierte Struktur von (*P*)-BIVOL.

6.3.13 Theoretisch berechnete Struktur von (*M*)-BIMEOL

Mit B3LYP/6-31++G**:AM1 optimierte Struktur von (*M*)-BIMEOL.

6.3.14 Theoretisch berechnete Struktur von (P)-BIMEOL

Mit B3LYP/6-31++G**:AM1 optimierte Struktur von (*P*)-BIMEOL.

Kurzzusammenfassung

Im ersten Teil dieser Arbeit werden die Synthesewege und katalytischen Anwendungen neuer, auf (-)-Fenchon basierender chiraler Pyrrolidinreagenzien beschrieben. Ergänzend zu den praktischen Arbeiten, wurden zur Aufklärung der Stereoselektivitäten bei der Bildung von (*2S*)-*N*-Pyrrolidylfenchylcarbamat quantenmechanische Berechnungen durchgeführt, die das experimentelle Ergebnis unterstützten. In der enantioselektiven Diethylzink-Addition an das Benzaldeyhd zeigte das (*2S*)-*N*-Pyrrolidylfenchylcarbamat einen Enantiomerenüberschuss von bis zu 50%. Somit wurde ein Carbamat zum ersten Mal erfolgreich in einer enantioselektiven Katalyse eingesetzt.

Im zweiten Teil dieser Arbeit werden die Synthesen und Anwendungen neuartiger, terpenbasierter C₂-symmetrische Diole beschrieben, deren Diastereoselektivität untersucht und ebenfalls durch quantenchemische Berechnungen bestätigt.

Die synthetisierten Verbindungen wurden durch röntgenkristallographische Analysen charakterisiert.

Kurzzusammenfassung in englischer Sprache (Abstract)

The first part of this doctoral thesis is about the synthesis and catalytic applications of (-)-fenchone based chiral pyrrolidine reagents. Additionally to the practical work computations were accomplished to elucidate the stereoselectivity by the formation of (*2S*)-*N*-pyrrolidylfenchylcarbamate, which support the experimental results. The enantioselective addition of diethylzinc at benzaldehyde catalysed by (*2S*)-*N*-pyrrolidylfenchylcarbamate resulted in an enantiomeric excess up to 50%. Hence for the first time a carbamate was successfully applied in the enantioselective catalyses. The second part is about the synthesis und applications of new terpene based C₂-symmetric diols, whose diastereoselectivity were analysed and additionally confirmed by computations. The synthesised compounds were characterised via x-ray analysis.

"Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie – abgesehen von unten angegebenen Teilpublikationen – noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. B. Goldfuß betreut worden."

Köln, 2008

Yesim Alpagut

Publikation:

Y. Alpagut, B. Goldfuss, J. Neudörfl, *Beilst. J. Org. Chem.*, **2008**, submitted. *Control of asymmetric biaryl conformations with terpenol moieties: Syntheses, structures and energetics of new enantiopure C*₂*-symmetric diols*

7 Abkürzungsverzeichnis

Å	Ångström (1 Å = 10 ⁻¹⁰ m)
abs.	absolut
Äq.	Äquivalent
Ar	Aryl
Bu	Butyl
<i>s-</i> Bu	<i>sec</i> -Butyl
<i>t-</i> Bu	<i>tert</i> -Butyl
<i>n-</i> BuLi	<i>n</i> Butyllithium
ber.	Berechnet
d.h.	das heißt
DMEU	Dimethylethylenharnstoff / 1,3-Dimethyl-2-imidazolidinon
ee	Enantiomerenüberschuß [%]
EI	Electron Impact
Et	Ethyl
Et ₂ O	Diethylether
GC	Gaschromatographie
GC-MS	Gaschromatographie-Massenspektrometrie
gef.	gefunden
h	Stunden
HMPTA	Hexamethylphosphorsäuretriamid
HPLC	High Pressure Liquid Chromatography
IR	Infrarot(-Spektroskopie)
J	Kopplungskonstante [Hz]
kcal	1 Kilokalorie = 4.184 kJ
L	Ligand
LDA	Lithiumdiisopropylamid
LTMP	Lithium-2,2,6,6-tetramethylpiperidid
Μ	molar
M^+	Molekülkation
Me	Methyl
min	Minuten
MS	Massenspektrometrie
NMR	Nuclear Magnetic Resonance

OMe	Methoxy
р	Druck
Ph	Phenyl
ppm	parts per million
R	Alkyl
RHF	Restricted-Hartree-Fock
RT	Raumtemperatur
SiMe₃	Trimethylsilyl
Т	Temperatur [℃]
THF	Tetrahydrofuran
TMEDA	N, N, N', N'-Tetramethylethylendiamin
TMS	Tetramethylsilan
ÜZ	Übergangszustand
α	optischer Drehwert [°]
δ	chemische Verschiebung
λ	Wellenlänge [nm]
v	Wellenzahl [cm ⁻¹]
*	Chiralitätszentrum

8 Verzeichnis der Verbindungen

(R)-1

(R)-2

(R)-3

(R)-4

(R)-5

(R)-6

(R)-7

(*R*)-9

ÓН

ĊН

ĊН

(*S*)-13

85 (*P*)-BICOL

83 (*M*)-BIMOL

84 (*P*)-BIVOL

(P)-BIMEOL

Verzeichnis der Edukte:

N-Pivpyrrolidin

N-Pivanilin

N-Bocanilin

9 Literatur

- (a) V. Snieckus, *Chem. Rev.*, **1990**, *90*, 879-933; (b) M. C. Whisler, S. MacNeil, V. Snieckus, P. Beak *Angew. Chem.* **2004**, *116*, 2256-2276.
- ² (a) D. Hoppe, F. Hintze, P. Tebben, *Angew. Chem., Int. Ed. Engl.* 1990, *29*, 1422;
 (b) S. T. Kerrick, P. Beak, *J. Am. Chem. Soc.* 1991, *113*, 9708; (c) P. Beak, S. T. Kerrick, S. Wu, J. Chu *J. Am. Chem. Soc.* 1994, *116*, 3231; (d) D. Hoppe, T. Hense, *Angew. Chem.* 1997, *109*, 2376-2410.
- ³ (a) N. J. R. v. E. Hommes, P. v. R. Schleyer, *Angew. Chem.* 1992, *104*, 768; (b) N. J. R. v. E. Hommes, P. v. R. Schleyer, *Tetrahedron* 1994, *50*, 5903; (c) T. Kremer, M. Junge, P. v. R. Schleyer, *Organometallics* 1996, *15*, 3345; (d) B. Goldfuss, P. v. R. Schleyer, S. Handschuh, F. Hampel, *J. Organomet. Chem.* 1998, *552* (N1-2), 285; (e) L. Brandsma, H. Verkruijsse, *Preparative Polar Organometallic Chemistry*, Springer, Heidelberg 1987.
- ⁴ H.-U. Blaser, *Chem. Rev.* **1992**, *92*, 935-952.
- ⁵ Die (*R*)-Bezeichnung bezieht sich bei dem Bicycloheptangerüst auf das neue, durch die Addition gebildete zweite sterogene Zentrum und legt fest, dass der Ligand auf (-)-Fenchon basiert.
- ⁶ (a) C. Anselmi, G. Catelani, L. Monti, *Gazetta Chimica Italiana*, **1984**, *114*, 205-9;
 (b) J.-P. Wolf, H. Pfander, *Helvetica Chimica Acta*, **1987**, *70*, 116-120;
 (c) H. Aichaoui, I. Lesieur, J.-P. Henichart, *Synthesis*, **1990**, 679-80;
 (d) E. Didier, B. Loubinoux, G. Rihs, *Tetrahedron*, **1991**, *27*, 4941-58;
 (e) R. Braslau, H. Kuhn, C. J. Stenland, *Tetrahedron Letters* **1996**, *44*, 7933-36;
 (f) B. Olofsson, P. Somfai, *J. Org. Chem.*, **2003**, *68*, 2514-17;
 (g) M. Tang, S. G. Pyne, *J. Org. Chem.* **2003**, *68*, 7818-24.
- ⁷ S. M. Starling, S. C. Vonwiller, J. N. H. Reek, *J. Org. Chem.* **1998**, *63*, 2262-72.
- ⁸ B. Goldfuss, F. Rominger, *Tetrahedron* **2000**, *56*, 881.
- ⁹ Vgl. A. A. Newman (Ed.), Chemistry of Terpenes and Terpenoids (Academic Press, New York 1972).
- ¹⁰ (a) E. Ruch, *Angew. Chem.* **1977**, *89*, 67; *Angew. Chem.*, *Int. Ed. Engl.* **1977**, *16*,
 65. (b) H. Brunner, *Rechts und links in der Natur und anderswo*, Wiley-VCH, Weinheim, 1999.
- ¹¹ Prof. Dr. B. Goldfuß, *Mechanismus & Synthese in der Organischen Chemie*, **2003**.

- ¹² K. C. Nicolaou, C. N. C. Boddy, S. Bräse, N. Winssinger, *Angew. Chem.* **1999**, *111*, 2230; *Angew. Chem.*, *Int. Ed.* **1999**, *38*, 2097.
- ¹³ Lehrbuch der Organischen Chemie, (Hrsg. H. Beyer, W. Walter), 24. Aufl., Hirzel, Stuttgart, **2004**.
- ¹⁴ M. Oki, *Top. Stereochem.*, **1983**, *14*, 1.
- ¹⁵ I. W. Davies, P. J. Reider, *Chem. Ind.* **1996**, 412.
- ¹⁶ C. Champel, O. Blin, *Lettre du Pharmocologue* **2003**, *17*, 4.
- ¹⁷ (a) R. G. Wilkinson, R. G. Shepherd, J. P. Thomas, C. Baughn, *J. Am. Chem. Soc.* **1961**, *83*, 2212-13, (b) W. H. Beggs, *Antibiotics* **1979**, *5*, 43.
- ¹⁸ Enzyme Catalysis in Organic Synthesis: A Comprehenive Handbook (Hrsg.: K. Drauz, H. Waldmann), Wiley-VCH, Weinheim, **1995.**
- ¹⁹ H. U. Blaser, *Chem. Reviews* **1992**, *92*, 935-952.
- ²⁰ Auxiliares and Ligand in Asymmetric Synthesis, (Hrsg.: J. Seyden-Penn), Wiley-VCH, New York, **1995**.
- ²¹ (a) *Comprehensive Asymmetric Synthesis*, (Hrsg.: E. J. Jacobsen, H. Yamamoto, A. Pfaltz), Springer, Berlin, **1999**. (b) *Transition Metals for Organic Synthesis*,
 2. Aufl. (Hrsg.: M. Beller, C. Bolm), Wiley-VCH, Weinheim, **2004**.
- ²² W. S. Knowles, M. J. Sabacky, *J. Chem. Soc. Commun.* **1968**, 1445.
- ²³ (a) W. S. Knowles, M. J. Sabacky, B. D. Vineyard, D. J. Winkauff, *J. Am. Chem. Soc.* 1975, 97, 2567; (b) W. S. Knowles, *Acc. Chem. Res.* 1977, *16*, 106.
- ²⁴ (a) H. B. Kagan, T. P. Dang, *J. Am. Chem. Soc.* **1972**, *94*, 6429; (b) B. D. Vineyard, W. S. Knowles, M. J: Sabacky, G. L. Bachmann, O. J. Weinkauff, *J. Am. Chem. Soc.* **1977**, *99*, 5946.
- ²⁵ (a) W. S. Knowles, Angew. Chem. 2002, 114, 2096; Angew. Chem. Int. Ed. Engl. 2002, 41, 1998; (b) R. Noyori, Angew. Chem. 2002, 114, 2108; Angew. Chem. Int. Ed. Engl. 2002, 41, 2008; (c) K. B. Sharpless, Angew. Chem. 2002, 114, 2126; Angew. Chem. Int. Ed. Engl. 2002, 41, 2024.
- ²⁶ (a) E. Frankland, *Liebigs Ann. Chem.* 1849, *71*, 171-213; (b) D. Seyferth,
 Organometallics 2001, *20*, 2940.
- ²⁷ N. Oguni, T. Omi, Y. Yamamoto, A. Nakamura, *Chem. Lett.* 1983, 841-42.
- ²⁸ M. Kitamura, S. Suga, K. Kawai, R. Noyori, *J. Am. Chem. Soc.* **1986**, 108, 6071-72.
- ²⁹ (a) K. Soai, A. Ookawa, *J. Chem. Soc., Chem. Commun.* **1986**, 412; (b) K. Soai,

A. Ookawa, T. Kaba, J. Am. Chem. Soc. 1987, 109, 7111.

- ³⁰ (a) M. Kitamura, S. Okoda, S. Suga, R. Noyori, *J. Am. Chem. Soc.* 1989, *111*, 4082; (b) M. Yamakawa, R. Noyori, *J. Am. Chem. Soc.* 1995, 6327; (c) B. Goldfuss, K. N. Houk, *J. Org. Chem.* 1998, *63*, 8998; (d) M. Kitamura, H. Oka, R. Noyori, *Tetrahedron* 1999, *55*, 3605; (e) B. Goldfuss, M. Steigelmann, S. I. Khan, K. N. Houk, *J. Org. Chem.* 2000, *123*, 2464.
- ³¹ (a) K. Soai, S. Niwa, *Chem. Rev.* **1992**, *92*, 833; K. Soai, T. Shibata, in *Comprehensive Asymmetric Catalysis*, *Band 2* (Hrsg.: A. E. Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Berlin, **2000**, Chapt. *26*; (c) L. Pu, H. B. Yu, *Chem. Rev.* **2001**, *101*, 757.
- ³² (a) C. Bolm, M. Zehnder, D. Bur, *Angew. Chem.* **1990**, *102*, 206-08; *Angew. Chem.* Int. *Ed. Engl.* **1190**, *29*, 205-07; (b) C. Bolm, G. Schlingloff, K. Harms,
 Chem. Beirichte **1992**, *125*, 1191-1203.
- ³³ N.N. Joshi, M. Srebnik, H. C. Brown, *Tetrahedron Lett.* **1989**, *30*, 5551.
- ³⁴ (a) M. Yoshika, T. Kawakita, S. Kobayashi, M. Ohno, *Tetrahedron Lett.* 1989, *30*, 1657; (b) H. Takahashi, T. Kawakita, M. Ohno, M. Yoshika, S. Kobayashi, *Tetrahedron Lett.* 1989, *30*, 7095; (c) H. Takahashi, T. Kawakita, M. Ohno, M. Yoshika, S. Kobayashi, *Tetrahedron* 1992, *48*, 5691.
- ³⁵ (a) B. Schmidt, D. Seebach, *Angew. Chem.* **1991**, *103*, 1383-85; *Angew. Chem. Int. Ed. Engl.* **1991**, *30*, 1321-23.
- ³⁶ (a) Übersichtsartikel: C. Girard, H. B. Kagan, *Angew. Chem.* **1998**, *110*, 3089-3127; *Angew. Chem. Int. Ed. Engl.* **1998**, *37*, 2923-2959; (b) H. B. Kagan, *Adv. Synth. Catalysis* **2001**, *343*, 227.
- ³⁷ (a) M. Kitamura, H. Okada, S. Suga, R. Noyori, *J. Am. Chem. Soc.* 1989, 111, 4028-36; (b) M. Kitamura, S. Suga, H. Okada, R. Noyori, *J. Am. Chem. Soc.* 1998, 120, 9800.
- ³⁸ K Soai, T. Shibata, H. Morioka, K. Choji, *Nature* **1995**, *378*, 767.
- ³⁹ Für eine Übersicht über verschiedene Methoden der asymmetrischen Reduktion von Ketonen: (a) V. K. Singh, *Synthesis*, **1992**, 605; (b) Oxazaborolidine: E. J. Corey, C. J. Helal, *Angew. Chem.* **1998**, *110*, 2092; (c) M. Itsuno, *Org. Reactions* **1998**, *52*, 395.
- ⁴⁰ Allgemeine Übersichten: (a) A. Hajos, *Complex Hydrides in Organic Synthesis*,
 Elsevier, New York, **1979**; (b) M. Hudlicky, *Reductions in Organic Chemistry, Vols.*

1 and 2, Ellis Horwood, Chichester, 1984.

- ⁴¹ (a) A. Hirao, S. Itsuno, S. Nakahama, N. Yamazaki, *J. Chem. Soc. Chem.* Commun. **1981**, 315-17; (b) S. Itsuno, A. Hirao, S. Nakahama, N. Yamazaki, *J. Chem. Soc. Perkin Trans. 1* **1983**, 1673-76.
- ⁴² (a) S. Itsuno, K. Ito, A. Hirao, S. Nakahama, *J. Chem. Soc. Chem. Commun.* **1983**, 469-70; (b) S. Itsuno, M. Nakano, K. Miyazaki, H. Masuda, K. Ito, A. Hirao, S. Nakahama, *J. Chem. Soc. Perkin Trans. 1* **1985**, 2039-44.
- ⁴³ E. J. Corey, R. K. Bakshi, S. Shibata, *J. Am. Chem. Soc.* **1987**, *109*, 5551-5553.
- ⁴⁴ (a) E. J. Corey, R. K. Bakshi, S. Shibata, C.-P. Chen, V. K. Singh, *ibid.* **1987**, *109*, 7925-26; (b) E. J. Corey, S. Shibata, R. K. Bakshi, J. Org. Chem. **1988**, *53*, 2861-63; (c) E. J. Corey, *Pure Appl. Chem.* **1990**, *62*, 1209-1216.
- ⁴⁵ E. J. Corey, R. K. Bakshi, *Tetrahedron Lett.* **1990**, *31*, 611-14.
- ⁴⁶ D.K. Jones, D. C. Liotta, I. Shinkai, D. J. Mathre, *J. Org. Chem.* **1993**, *58*, 799.
- ⁴⁷ J. G. H. Willems, F. J. Dommerholt, J. B. Hammink, A. M. Vaarhorst, L. Thijs, B. Zwaneburg, *Tetrahedron Lett.* **1995**, *36*, 603-606.
- ⁴⁸ (a) A. V. Rama Rao, M. K. Gurjar, V. Kaiwar, *Tetrahedron: Asymmetry* 1992, *3*, 859-62; (b) W. Behnen, C. Dauelsberg, S. Wallbaum, J. Martens, *Synth. Commun.* 1992, *22*, 2143-53.
- ⁴⁹ E. J. Corey, C.-P. Chen, G. A. Reichard, *Tetrahedron Lett.* **1989**, *30*, 5547-50.
- ⁵⁰ A. M. Salunkhe, E. R. Burkhardt, *Tetrahedron Lett.* **1997**, *38*, 1523-26.
- ⁵¹ E. J. Corey, X.-M. Cheng, K. A. Cimprich, S. Sarshar, *Tetrahedron Lett.* **1991**, *32*, 6835-38.
- ⁵² (a) E. J. Corey, R. K. Bakshi, *Tetrahedron Lett.* **1990**, *31*, 611-13; (b) E. J. Corey,
 H. Kigoshi, *Tetrahedron Lett.* **1991**, *32*, 5025-28.
- ⁵³ E. J. Corey, C. J. Helal, *Tetrahedron Lett.* **1995**, *36*, 9153-56.
- ⁵⁴ K. A. Parker, M. W. Ledeboer, *J. Org. Chem.* **1996**, *61*, 3214-17.
- ⁵⁵ (a) E. J. Corey, C. J. Helal, *Tetrahedron Lett.* **1996**, *37*, 4837-40; (b) J. Wright, L.
 Frambes, P. Reeves, *J. Organomet. Chem.* **1994**, *476*, 215-17; (c) L. Schwink, P.
 Knochel, *Tetrahedron Lett.* **1996**, *37*, 25-28.
- ⁵⁶ (a) E. J. Corey, J. O. Link, R. K. Bakshi, *Tetrahedron Lett.* **1992**, *33*, 7107-7110;
 (b) E. J. Corey, R. K. Bakshi, *Tetrahedron Lett.* **1990**, *31*, 611-14.
- ⁵⁷ (a) H. R. Seikaly, T. T. Tidwell, *Tetrahedron*, **1986**, *42*, 2587; (b) T. T. Tidwell, *Acc. Chem. Res.* **1990**, *23*, 273.

- ⁵⁸ (a) M. P. Cooke, Jr., *J. Org. Chem.* **1986**, *45*, 4913; (b) B. H. Lipshutz, S. Sengupta, *Org. React.* **1992**, *41*, 135.
- ⁵⁹ K. Fuji, M. Node, S. Terada, M. Murada, H. Nasagawa, *J. Am. Chem. Soc.* **1985**, 107, 6404.
- ⁶⁰ (a) H. E. Zimmermann, Acc. Chem. Res. 1987, 20, 263; (b) B. Capon, The Chemistry of Enones (Hrsg.: S. Patai, Z. Rappoport), Wiley, Chichester, 1989, S. 1063; (c) J. R. Keeffe, A. J. Kresge, The Chemistry of Enols (Hrsg.: S. Patai, Z. Rappoport), Wiley, Chichester, 1990, S. 399.
- ⁶¹ L. Duhamel, J.-C. Plaquevent, *J. Am. Chem. Soc.* **1978**, *100*, 7415.
- ⁶² (a) C. Fehr, J. Galindo, *J. Am. Chem. Soc.* **1988**, *110*, 6909; (b) C. Fehr, J. Galindo, *Chem. Abstr.* **1990**, *112*, 98909; (c) C. Fehr, *Chimia*, **1991**, *45*, 253.
- ⁶³ C. Fehr, I. Stempf, J. Galindo, Angew. Chem. 1993, 105, 1091; Angew. Chem. Int. Ed. Engl 1993, 32, 1042.
- ⁶⁴ C. Fehr, I. Stempf, J. Galindo, Angew. Chem. 1994, 106, 1967; Angew. Chem. Int. Ed. Engl., 1994, 34, 1888.
- ⁶⁵ C. Fehr, I. Stempf, J. Galindo, Angew. Chem. 1993, 105, 1093; Angew. Chem. Int.
 Ed. Engl 1993, 32, 1044.
- ⁶⁶ D. Potin, K. Williams, J. Rebek, Jr., *Angew. Chem.* **1990**, *102*, 1485; *Angew. Chem. Int. Ed. Engl* **1990**, *29*, 1420.
- ⁶⁷ A. Yanagisawa, T. Kuribayashi, T. Kikuchi, H. Yamamoto, *Angew. Chem.* 1994, 106, 129; *Angew. Chem. Int. Ed. Engl* 1994, 33, 107.
- ⁶⁸ (a) A. Yanagisawa, T. Watanabe, T. Kikuchi, T. Kuribayashi, H. Yamamoto, *Synlett* **1997**, 956; (b) A. Yanagisawa, T. Kikuchi, H. Yamamoto, *Synlett* **1998**, 174; (c) A. Yanagisawa, T. Kikuchi, T. Watanabe, H. Yamamoto, *Bull. Chem. Soc. Jpn.* **1999**, *72*, 2337; (d) A. Yanagisawa, T. Watanabe, T. Kikuchi, H. Yamamoto, *J. Org. Chem.* **2000**, *65*; 2979.
- ⁶⁹ http://de.wikipedia.org/wiki/Carbamate
- ⁷⁰ http://de.wikipedia.org/wiki/Carbaminsäure
- ⁷¹ http://de.wikipedia.org/wiki/Carbachol
- ⁷² http://de.wikipedia.org/wiki/Harnstoffzyklus
- ⁷³ M. Beckmann, K.-J. Haack: Insektizide für die Landwirtschaft: Chemische Schädlingsbekämpfung. Chemie in unserer Zeit, **2003**, *37(2)*, 88-97.
- ⁷⁴ M. Henningsen: *Moderne Fungizide: Pilzbekämpfung in der Landwirtschaft*,

Chemie in unserer Zeit, 2003, 37(2), 98-111.

- ⁷⁵ T. Seitz, M. G. Hoffmann, H. Krähmer: *Herbizide für die Landwirtschaft: Chemische Unkrautbekämpfung*, Chemie in unserer Zeit, **2003**, *37(2)*, 112-126.
- ⁷⁶ (a) D.C. Young, Computational Chemistry, A Practical Guide for Applying Techniques to Real-World Problems, Wiley-Interscience, 2001, Kapitel1, S. 7-19; (b) G.G. Hall, Chem. Soc. Rev. 1973, 2, 21.
- ⁷⁷ P.W. Atkins, R.S. Friedman, *Molecular Quantum Mechanics*, Oxford, **1997**.
- ⁷⁸ (a) I. Fischer-Hjalmars, *Adv. Quantum Chem.* **1965**, *2*, 25; (b) B.J. Nicholson, *Adv. Chem. Phys.* **1970**, *18*,249; (c) W. Thiel, *Adv. Chem.Phys.* **1996**, *93*, 703.
- ⁷⁹ (a) W. Thiel, *Encycl. Comput. Chem.* 1998, *3*, 1599; (b) W. Thiel, *Encycl. Comput. Chem.* 1998, *1*, 1604.
- ⁸⁰ A.J. Holder, *Encycl. Comput. Chem.* **1998**, *1*, 8.
- ⁸¹ J.J.P. Stewart, *Encycl. Comput. Chem.* **1998**, *3*, 2080.
- ⁸² (a) H.A. Bent, *Chem. Rev.* 1961, *61*, 275; (b) D.L. Cooper, J. Gerratt, M. Raimondi, *Chem. Rev.* 1991, *91*, 929; (c) H.F. Schäfer, III, *Ann. Rev. Phys. Chem*, 1976, *27*, 261; d) S. Sabo-Etienne, B. Chaudret, *Chem. Rev.* 1998, *98*, 2077.
- ⁸³ (a) K.H. Johnson, *Ann. Rev. Phys. Chem.* **1975**, *26*, 39; (b) D.A. Case, *Ann. Rev. Phys. Chem.* **1982**, *33*, 151; (c) R.G. Parr, *Ann. Rev. Phys. Chem.* **1983**, *34*, 631; (d) R.G. Parr, W. Yang, *Ann. Rev. Phys. Chem.* **1995**, *46*, 701; (e) W. Kohn, A.D. Becke, R.G. Parr, *J. Phys. Chem.* **1996**, *100*, 12974.
- ⁸⁴ (a) A.D. Becke, *J. Chem. Phys.* **1993**, *98*, 5648-52; b) Implementation: P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, *J. Phys.Chem.* **1994**, *98*, 11623-27; c) C. Lee W. Yang, R.G. Parr, *Phys.Rev.B.* **1988**, *37*, 785-89; d) B. Miehlich, A. Savin, H. Stoll, H. Preuss, *Chem. Phys. Lett.* **1989**, *157*, 200-206.
- ⁸⁵ (a) B. Goldfuss, M. Steigelmann, *J. Mol. Model.* 2000, *6*, 166-170; (b) B. Goldfuss,
 M. Steigelmann, F. Rominger, *Eur. J. Org. Chem.* 2000, 1785-1792; (c) B.Gold-Goldfuss, M.Steigelmann, F. Rominger, *Angew. Chem.* 2000, *112*, 4299-4302; *Angew. Chem. Int. Ed. Engl.* 2000, *39*, 4133-4136.
- ⁸⁶ B. Goldfuss, F. Rominger *Tetrahedron*, **2000**, *56*, 881-884.
- ⁸⁷ Synthese mit (+)-Carvon wurde in der *Dissertation* von Frau Dr. Kop-Weiershausen beschrieben.
- ⁸⁸ (a) M. Genov, K. Kostova, V. Dimitrov, *Tetrahedron Asym.* 1997, *8*, 1869-1876;
 (b) B. Goldfuss, M. Steigelmann, S. I. Khan, K. N. Houk, *J. Org. Chem.* 2000, *65*,

77-82; (c) B. Goldfuss, M. Steigelmann, F. Rominger, H. Urtel, *Chem. Eur. J.* **2001**, *20*, 4456-4464.

- ⁸⁹ (a) B. List, J. Am. Chem. Soc. 2000, 122, 9336-9337; (b) K. N. Houk, B. List Acc.
 Chem. Res. 2004, 37, 487-621; (c) B. List Chem. Commun. 2006, 819 824;
- ⁹⁰ (a) P. Beak, W. J. Zajdel, *J. Am. Chem. Soc.* **1984**, *106*, 1010; (b) S. T. Kerrick, P. Beak, *J. Am. Chem. Soc.* **1991**, *113*, 9708; (c) P. Beak, S. T. Kerrick, S. Wu, J. Chu, *J. Am. Chem. Soc.* **1994**, *116*, 3231.
- ⁹¹ R. Brückner, *Reaktionsmechanismen* **2003**, *2. Aufl.* Spektrum Akademischer Verlag, Heidelberg, S. 237.
- ⁹² B. Goldfuß *Mechanismus & Synthese in der Organischen Chemie* **2003**, 1. Aufl.
- ⁹³ R. Brückner *Reaktionsmechanismen* 2003, *2. Aufl.* Spektrum Akademischer Verlag, Heidelberg, S. 397.
- ⁹⁴ L. Brandsma, H. Verkruijsse *Preparative Polar Organometallic Chemistry*, Springer: Heidelberg **1987**.
- ⁹⁰ W. A. Herrmann, J. J. Haider, J. Fridgen, G. M. Lobmaier, M. Spiegler, *J. of Organometallic Chem.* **2000**, *603*, 69-79.
- 96 Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
- ⁹⁷ (a) T. Gemma, J. Cassas, A. LLebaria, *J.Org. Chem.* 2003, *68*, 9924-32; (b) H.
 Aichaoui, I. Lesieur, J.-P. Henichart, *Synthesis*, 1990, 679-80; (c) R. Braslau, H.

Kuhn; C. J. Stenland, *Tetrahedron Letters* 1996, 44, 7933-36; (d) M. Tang, S. G.
Pyne, J. Org. Chem. 2003, 68, 7818-24; (e) J.-P. Wolf, H. Pfander, *Helvetica Chimica Acta*, 1987, 70, 116-120; (f) C. Anselmi, G. Catelani, L. Monti, *Gazetta Chimica Italiana*, 1984, 114, 205-9; (g) A.G. Wee, D.D. McLeod, J. Org. Chem., 2003, 68, 6268-73; (h) B. Olofsson, P. Somfai, J. Org. Chem., 2003, 68, 2514-17.

- ⁹⁸ (a) S. Kano, T. Yokomatsu, S. Shibuya, *Tetrahedron Letters*, **1987**, *50*, 6331-34;
 (b) E. Didier, B. Loubinoux, G. Rihs, *Tetrahedron*, **1991**, *27*, 4941-58.
- ⁹⁹ S. M. Starling, S. C. Vonwiller, *Tetrahedron Letters*, **1997**, *38*, 2159-62.
- ¹⁰⁰ (a) T. Gemma, J. Cassas, A. LLebaria, *J.Org. Chem.* 2003, *68*, 9924-32; (b) H.
 Aichaoui, I. Lesieur, J.-P. Henichart, *Synthesis*, 1990, 679-80; (c) R. Braslau, H.
 Kuhn; C. J. Stenland, *Tetrahedron Letters* 1996, *44*, 7933-36; (d) M. Tang, S. G.
 Pyne, *J. Org. Chem.* 2003, *68*, 7818-24; (e) J.-P. Wolf, H. Pfander, *Helvetica Chimica Acta*, 1987, *70*, 116-120; (f) C. Anselmi, G. Catelani, L. Monti, *Gazetta Chimica Italiana*, 1984, *114*, 205-9; (g) A.G. Wee, D.D. McLeod, *J. Org. Chem.*, 2003, *68*, 6268-73; (h) B. Olofsson, P. Somfai, *J. Org. Chem.*, 2003, *68*, 2514-17.
- ¹⁰¹ Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E. Eds.; Thieme: Stuttgart, **1996**; Vol.E21, p 5945.
- ¹⁰² (a) Shibasaki, M., Sasai, H., Arai, T. *Angew. Chem.* **1997**, *109*, 1290; *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 1237. (b) Sasai, H.; Arai, T.; Satow, Y.; Houk, K.N.; Shibasaki, M. J. Am. Chem. Soc. **1995**, *117*, 6194.
- ¹⁰³ (a) Braun, M. Angew. Chem. 1996, 108, 565; Angew. Chem., Int. Ed. Engl. 1996, 35, 519. (b) Weber, B.; Seebach, D. Tetrahedron 1994, 50, 7473. (c) Schmidt, B.; Seebach, D. Angew. Chem. 1991, 103, 1383; Angew. Chem., Int. Ed. Engl. 1991, 30, 99.
- ¹⁰⁴ (a) V. Dimitrov, S. Panev, *Tetrahedron: Asymmetry* 2000, *11*, 1513; (b) E. C. Ashby, J. T. Laemmle, *Chemical Reviews*, 1975, *75*, 521.
- ¹⁰⁵ V. Lecomte, E. Stephan, F. Le Bideau, G. Jaouen *Tetrahedron*, **2003**, *59*, 2169.
- ¹⁰⁶ Diplomarbeit von Frau M. Schumacher.
- ¹⁰⁷ M. Hesse, H. Meier, B. Zeeh *Spektroskopische Methoden in der org. Chemie*,
 2002, 6. Auflage, S. 51.
- ¹⁰⁸ M. E. Krafft, R. A. Holton *Tetrahedron Letters*, **1983**, *24*, 1345-48.
- ¹⁰⁹ A. Yanagisawa, T. Kikuchi, T. Watanabe, H. Yamamoto *Bull. Chem. Soc. Jpn.*,
 1999, *72*, 2337-2343.