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ABSTRACT 
 

The circadian clock is an internal mechanism that measures external time and 

generates overt rhythms. About 90% of the transcripts in the Arabidopsis thaliana 

genome are rhythmically expressed (Michael et al., 2008). Thus, all cellular process 

can be clock controlled to generate rhythmic physiological responses. Mathematical 

modeling predicted that the basic clock framework that generates various rhythmic 

outputs is comprised of three interlocking-feedback loops. The 24-hour rhythms are 

generated by the main CCA1/LHY-TOC1 feedback loop (Alabadi et al., 2001). Other 

genes, such as PRR7/PRR9 and GI, were shown to participate in morning or evening 

loops to fine tune rhythmicity (Locke et al., 2006; Zeilinger et al., 2006). This model 

takes in account experimental data generated under light-dark cycles. From this 

model, we can now hope to add environmental inputs, such as light and temperature 

entrainment, as integrated mechanisms within the circadian oscillator. What is 

relevant here is that in addition to light, temperature can also entrain the circadian 

oscillator. Whereas some understandings of light effects are known, it remains unclear 

how temperature sets the plant-circadian clock. 

In this thesis, I investigated temperature entrainment, as compared to light-

dark entrainment, on the Arabidopsis thaliana circadian clock. For this, natural 

variation present in two Recombinant Inbred Lines (RILS) was exploited. The RILS 

were transformed with a circadian controlled and temperature regulated 

promoter::reporter construct. Period analysis of this CCR2 reporter after both 

entrainments revealed a number of Quantitative Trait Loci (QTL) for each collection 

assayed. The findings suggested that the circadian clockwork after light-dark and 

temperature entrainment is controlled by both the same, as well as by different, QTLs. 

Additionally, it was shown that significant allelic interactions modify the period of 

CCR2. A QTL that was detected, specifically, after temperature entrainment was 

delineated by fine-mapping procedure. 

Previous natural-variation studies in the vast majority of pre-existing RILs 

exploited the variation of two diverse ecotypes, of otherwise rarely used genetic 

backgrounds. This caveat restricts QTL fine mapping. To confront this disadvantage, 

six new RILs were generated by pairwise crosses between the four most commonly 

lab accessions: Columbia, C24, Landsberg erecta, and Wassilewskija. The latter two 
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accessions were previously transformed with CCR2::LUC and used as pollen donor 

on the other three as a female recipient. All RIL populations were selected for short or 

long period of CCR2 after light-dark entrainment. Assessment of flowering-time 

variation under inductive long days, and circadian rhythmicity of CCR2::LUC was 

measured after light-dark and temperature entrainment. QTL mapping led to the 

identification of QTLs controlling these two processes. The traits shared some 

correlations. 

The majority of the above described QTLs under these two entrainments co-

localized with already known components of the circadian oscillator. An alternative 

approach to physiologically map the role of already known clock genes after 

temperature-entrainment was thus taken. The transcriptional kinetics of CAB2, CCA1, 

LHY, TOC1, CCR2, GI, ELF3, and ELF4 were assayed under various light-dark and 

temperature entrainment protocols. Each promoter displayed unique responses to the 

different protocols assessed. This suggested that the circadian oscillator is a dynamic 

mechanism that is able to respond at a variety of signal changes within the ambient 

environment. The key role of two evening expressed genes, TOC1 and GI, was further 

defined through the use of genetics, in response to temperature entrainment. A model 

for GI as a light resettor and TOC1 as a thermal resettor was proposed.
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ZUSAMMENFASSUNG 
 

Der circadiane Rhythmus ist ein innerer Mechanismus, der äußere 

Zeitgeber misst und einen offenen Rhythmus erzeugt. Etwa 90% der Transkripte 

des Arabidopsis thaliana Genoms sind rhythmisch expremiert (Michael et al., 

2008). Somit können alle zellulären Prozesse durch die innere Uhr kontrolliert 

werden, um rhythmische physiologische Antworten zu generieren. Mathematische 

Modelle sagen voraus, dass das Grundgerüst der inneren Uhr, das verschiedene 

rhythmische Leistungen hervorbringt, aus drei ineinander greifenden 

Rückkopplungsschleifen besteht. Die 24-Stunden-Rhythmen werden durch die 

Hauptrückkopplungsschleife CCA1/LHY-TOC1 erzeugt (Alabadi et al., 2001). Für 

andere Gene, wie PRR7/PRR9 und GI, wurde gezeigt, dass sie Teil der Morgen- 

oder Abend-Schleifen sind, um die Rhythmik fein abzustimmen (Locke et al., 

2006; Zeilinger et al., 2006). Dieses Modell berücksichtigt experimentelle Daten, 

die unter Licht-Dunkel-Zyklen gewonnen wurden. Basierend auf diesem Modell 

können wir jetzt hoffen, Umwelteinflüsse wie Licht- und Temperaturabstimmung 

als integrierte Mechanismen innerhalb des circadianen Oszillators hinzuzufügen. 

Hierbei relevant ist, dass zusätzlich zum Licht auch die Temperatur den 

circadianen Oszillator modifizieren kann. Während bereits einige Kenntnisse über 

die Lichteffekte existieren, bleibt es unklar, wie die Temperatur die innere Uhr der 

Pflanzen justiert. 

 In dieser Doktorarbeit habe ich die Temperaturanpassung im Vergleich zur 

Licht-Dunkel-Anpassung der inneren Uhr von Arabidopsis thaliana untersucht. Dafür 

wurden natürliche Variationen zwischen zwei rekombinanten Inzuchtlinien 

(Recombinant Inbred Lines, RILs) ausgenutzt. Die Inzuchtlinien wurden mit einem 

circadian kontrollierten und temperaturregulierten  Promotor::Reporter Konstrukt 

transformiert. Die Analyse der Periode dieses CCR2 Reporters nach beiden 

Abstimmungen zeigte eine Reihe von QTLs (Quantitative Trait Loci) auf, die für 

diese Kollektion untersucht wurden. Die Befunde weisen darauf hin, das die 

circadiane Uhr nach Licht-Dunkel- und Temperatur-Anpassung von sowohl 

denselben, als auch von verschiedenen QTLs kontrolliert wird. Zusätzlich wurde 

gezeigt, dass signifikante Interaktionen zwischen den Allelen die Periode von CCR2 
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modifizieren. Ein QTL wurde speziell nach Temperatur-Anpassung identifiziert und 

durch Fein-Kartierung abgegrenzt. 

 Vorangegange Studien über natürliche Variation der großen Mehrheit bereits 

existierender RILs nutzte die Variation zweier verschiedener Ökotypen mit einem 

selten genutzten genetischen Hintergrund. Dieser Vorbehalt schränkte die QTL-

Feinkartierung ein. Um diesem Nachteil entgegenzuwirken, wurden sechs neue RILs 

durch paarweises Kreuzen zwischen den vier häufigsten Labor-Ökotypen, Columbia, 

C24, Landberg erecta, und Wassilewskija, generiert. Die beiden letzteren wurden 

zuvor mit CCR2::LUC transformiert und  als Pollenspender für die anderen drei 

weiblichen Empfänger genutzt. Alle RIL Populationen wurden für kurze oder lange 

Perioden des CCR2 nach Licht-Dunkel-Anpassung ausgewählt. Die Bestimmung von 

Blühzeitpunktvariationen unter induktiven Langtagbedingungen und die circadiane 

Rhythmik von CCR2::LUC wurden nach Licht-Dunkel und Temperatur-Anpassung 

gemessen. QTL Kartierung führte zur Identifikation von QTLs, die diese beiden 

Prozesse kontrollieren. Beide Merkmale teilten einige Korrelationen. 

 Die Mehrzahl der oben beschriebenen QTLs unter diesen zwei Anpassungen 

colokalisierte mit bereits bekannten Komponenten des circadianen Oszillators. 

Deshalb wurde ein alternativer Ansatz unternommen, um die Rolle von bereits 

bekannten Uhr-Genen nach Temperatur-Anpassung physiologisch zu entschlüsseln. 

Die Transkriptionskinetik von CAB2, CCA1, LHY, TOC1, CCR2, GI, ELF3, und 

ELF4 wurde unter verschieden Licht-Dunkel- und Temperatur-

Anpassungsprotokollen untersucht. Jeder Promotor zeigte einzigartige Antworten auf 

die verschiedenen, angewendeten Protokolle. Dies deutet an, dass der circadiane 

Oszillator ein dynamischer Mechanismus ist, der in der Lage ist, auf eine Vielfalt von 

Signaländerungen in der umgebenden Umwelt zu antworten. Die Schlüsselrolle 

zweier abends expremierter Gene, TOC1 und GI, wurde weiter durch den Gebrauch 

von Genetik in Reaktion auf Temperatur-Anpassung bestimmt.  Ein Modell für GI als 

Licht-Rücksetzer und TOC1 als Temperatur-Rücksetzer wurde vorgeschlagen. 
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1 INTRODUCTORY REVIEW 

1.1 THE CIRCADIAN CLOCK 
 

Most organisms experience dramatic changes in light and temperature during a 

daily and seasonal timescale. Seasonal changes in photoperiod and temperature affect 

many physiological processes during their life cycle. However, the most dramatic 

changes general occur under diurnal conditions, during both light and dark, and of 

warm and cool cycles (Barak et al., 2000). Specifically, during the light period, 

temperatures are generally warmer, whereas during the night period, temperatures are 

generally cooler. These concerted changes take place essentially every day during the 

rotation of Earth around its axis of 24 hours. To anticipate these rhythmic changes, 

many organisms have evolved an internal-timing mechanism, called a circadian clock, 

from the latin circa and dian, meaning ‘about a day’. In this way, the circadian clock 

generates rhythms used in anticipation of the ever changing light and temperature 

environment. 

Circadian rhythms are manifest from cyanobacteria to mammals to plants. The 

first report of diurnal rhythmicity was made in the fourth century BC, when 

Androsthenes described that tamarind plants open and close their leaves periodically 

in course of 24 hours (Bretzl, 1903). However, the first experiments to directly test for 

circadian rhythms were recorded in 1729 by a French astronomer, de Mairan, who 

observed that the leaf movements of the plant Mimosa pudica were rhythmic in the 

absence of a changing environment. He thus conclusively demonstrated that an 

internal mechanism was involved (de Mairan, 1729). In early 1930s, Buenning and 

Stern studied leaf movements in bean plants and realized that exposure to brief dim 

red light was able to synchronize the circadian clock. When these experiments were 

performed in constant darkness, they observed that the period of leaf movement was 

not 24 hours, but extended to a periodicity of 25.5 hours. Therefore, the plants were 

not synchronized to a 24-hours period and were free running (Buenning, 1931). The 

persistence in the absence of environmental cues is then considered one of the key 

defining hallmarks of circadian rhythms.  

Genetic studies in the mid 20th century were performed in the fruitfly 

Drosophila melanogaster by one of the two intellectual founders of circadian 
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rhythms, Colin Pittendrigh. The result of those studies led to the proposal that the 

circadian clock is a mechanism that measures the duration of light, which is termed 

photoperiod (Pittendrigh, 1964). To explain the photoperiodic phenomena, two 

different models were introduced called the external-and the internal-coincidence 

model. There are two basic differences between the two models. The internal model 

accepted that two or more oscillators are involved that may be coupled to inductive 

signals such as dawn or dusk. This suggested that while photoperiod changes, the 

phase relationship also changes. In contrast, the external-coincidence model accepted 

that there is one oscillator and that the external inductive signal has differential effect 

that varies with the steady-state of the oscillator (Pittendrigh, 1964). Indirectly, this 

led to the study of a phenomenon called entrainment. To date, those two models are 

still robustly debated in the scientific community. 

Every circadian organism has its own endogenous period that may deviate 

from 24 hours. As one example, the mean periodicity in beans was found to be 25.5 

hours (Buenning, 1931). The only way for organisms to have rhythms of exactly 24 

hours is for them to be synchronized every day to the changes of external 

environment. Studies in plants have shown that only when the internal and the 

external period match, enhanced fitness is conferred (Michael et al., 2003b; Dodd et 

al., 2005). To match these two periods, a synchronization process that is also called 

entrainment is obviously an absolute requirement. The main cues for this are changes 

in light and temperature.  

The period of the entrained rhythms should remain the same for a range of 

temperatures. Unlike other processes, which are affected by temperature increases or 

decreases, circadian rhythms are temperature compensated. This temperature 

compensation, which is another defining hallmark of circadian rhythms, is a buffering 

mechanism of the circadian clock against long-term temperature variations (Gould et 

al., 2006). If the period of the clock is not temperature compensated then in two 

successive days, for example a warm one followed by a cool one, the oscillator would 

incorrectly entrain differentially. The clock in the warm day would run faster, 

therefore, will have a short period, whereas, in the cool day it would run slower, 

therefore, it would have a long period. Then the oscillator would be inappropriately at 

different state between these two successive dawns. Therefore, the adaptive 

significance of temperature-compensated period is that the clock has a preserved 

phase relationship to the environment, and thereby set all processes in good time.  
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The generated circadian rhythms have a characteristic waveform, described by 

peaks and troughs (Figure 1.1). These rhythms are defined by three key parameters 

named in the chronobiological community as period, phase, and amplitude, (Barak et 

al., 2000) (Figure 1.1). Amplitude is the half magnitude of the circadian oscillation 

from peak to trough. Period is the time an oscillation needs to progress a complete 

cycle with the end point of one cycle as the beginning of the next cycle, and it is 

approximately 24 hours. Phase is a time relative to a reference time point, usually the 

reference point is taken as the last onset of lights. Moreover, a recently added fourth 

parameter is precision-robustness of the rhythms, considered as an atypical parameter; 

it is measured by Relative Amplitude Error (RAE) (McWatters et al., 2007). RAE is 

defined as the ratio of the measured, or observed, amplitude error in relation to the 

most probable, or expected, amplitude error. This means that RAE is a measure of 

how well the actual data fit to the cosine curve generated by the least squares method. 

Of all four parameters, period is the most studied example from plants (Swarup et al., 

1999; Michael et al., 2003b; Edwards et al., 2005).  

The basis of the circadian clock in most organisms studied consists of a 

negative transcriptional/translational feedback loop. This loop has a positive and a 

negative part (Figure 1.1). The positive part of the loop induces the expression of the 

negative, and in turn, the negative part suppresses expression of the positive. To be a 

component of the feedback loop, certain requirements should be fulfilled. First, 

morning and evening expressed components, and their products, should oscillate in a 

circadian manner. Additionally, constitutive expression or loss of expression of a core 

clock component might cause arrhythmic behaviors (Wang and Tobin, 1998; Barak et 

al., 2000) (Aronson et al., 1994), although this is not always the case (Green and 

Tobin, 1999; Barak et al., 2000). Especially in the plant-circadian system, mutations 

in any of the core-oscillator genes results in a short-period rhythmic phenotype, 

whereas constitutive expression of some of any of these genes has been shown to be 

able to result in arrhythmic phenotypes (Wang and Tobin, 1998; Strayer et al., 2000). 

Obviously, any changes in the level of a core clock component can, thereby, set the 

various outputs.  

The onset and offset of light is the main synchronization cue of the circadian 

clock. For some organisms, a dedicated photoreceptor mediates entrainment (Emery 

et al., 1998; Stanewsky et al., 1998; Emery et al., 2000). In contrast to a variety of 

organisms that detect only one wavelength of light, or do not differentiate between 
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different light intensities, plants can detect variations in light intensity, and 

wavelength, and set their physiology according to these changes (Fankhauser and 

Staiger, 2002; Nagy and Schafer, 2002). All these changes have a variable effect in 

the entrainment of the oscillator (Somers et al., 1998a; Yanovsky et al., 2001). 

During the day-night cycle, dramatic changes in temperature in addition to 

light, occur over the 24 hour day, with light period thus coincides with warmer 

temperatures and dark period with cooler temperatures. The mechanistic effect on 

temperature on the circadian clock of several organisms has started to emerge 

(Diernfellner et al., 2005; Boothroyd et al., 2007; Busza et al., 2007). However, in 

what way temperature sets the plant circadian clock is not as known as light. 

However, changes in both signals, light and temperature, are able to synchronize the 

core oscillator and thereby sets the proper timing of gene expression, and temporal 

regulation of many output rhythms (Millar, 2004). These different outputs oscillate 

with the same 24-hour period, but they occur at different phases (Figure 1.1). For 

example, when two oscillations have a phase difference of 180 degrees, they are in 

antiphase.  

Circadian clocks in various organisms are far more complicated than the 

oversimplified core oscillator (Figure 1.1). In the majority of eukaryotic model 

organisms, the core oscillator is comprised of multiple interlocking 

transcriptional/translational feedback loops of circadian controlled RNA and proteins. 

However, there are fundamental differences among key elements of the Arabidopsis 

circadian clock, the mammalian/Drosophila, and the Neurospora circadian clock. For 

example, sequence comparison between Arabidopsis clock genes compared to clock 

genes of other organisms revealed low to no conservation, supporting the notion that 

the plant-circadian clock has independent evolutionary origin. Apart from this, in 

mammals and Drosophila, the changes in the environmental signals are perceived by 

the eye, where photoreceptors are localized, and the signal is then transmitted to the 

central pacemaker, which is located in the Supra Chiasmatic Nuclei (SCN) in the 

brain, and thereby sets the phase of the various rhythmic outputs (Ashmore and 

Sehgal, 2003). In plants, the organization is not as hierarchical as in animals (Thain et 

al., 2002). A basic difference is that self-sustained core oscillators are not located in 

one organ, but are instead present in all parts of the plant. In plants, slave oscillators 

exist instead of peripheral oscillators (Heintzen et al., 1997; Kreps and Simon, 1997; 

Barak et al., 2000). Though, these oscillators are not able on their own to generate 
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rhythms in the manner peripheral oscillators do in mammals (Barak et al., 2000). 

Collectively, the plant-circadian machinery involves the core oscillator that generates 

rhythms, which then are fine tuned by slave oscillators. What follow is a comparison 

of the circadian clock of various organisms, in terms of molecular organization and 

function, and further emphasis will be given in the entrainment process of the A. 

thaliana circadian clock.  
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INPUT CORE OSCILLATOR 

PER/TIM   -  Drosophila -    CLK/CYC   
FRQ/FRH    -  Neurospora - WC1/WC2 
PER1,2/CRY1,2 - mouse -   CLK/BMAL1 
CCA1/LHY  - Arabidopsis - TOC1 

OUTPUT 

Period 
Amplitude Phase

R.A.E.

 
 
 
Figure 1.1 A simplified version of the circadian clock 

The input pathway is represented by light dark and temperature cycles. The core oscillator is 

comprised by transcriptional-translational feedback loop. Here, the positive and negative 

elements of Drosophila melanogaster, Neurospora crassa, Mus musculus, and Arabidopsis 

thaliana are shown, respectively. The output pathway can be many diverse processes. The red 

and blue output oscillations correspond to two rhythmic outputs that are in antiphase (180 

degrees difference between the two outputs), whereas blue and green has a phase shift, less 

than 180 degrees difference. The green dotted line represents the phase shifting effect of a 

light pulse at a certain time point, compared to the non pulsed solid green line. The dotted 

blue line represents an observed rhythmic output with high R.A.E, whereas the solid blue line 

represents an observed rhythmic output with low R.A.E. 
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1.2 CIRCADIAN CLOCK MODEL OF VARIOUS 

ORGANISMS  

In this section, the circadian oscillator of various eukaryotic model organisms will be 

described and compared, with regard to similarities and basic differences, in 

synchronization to light versus temperature, and natural-variation studies. Comparison 

of a vertebrate animal, a fungus, an invertebrate animal and a model plant species will 

be assessed. First, the animal circadian clock will be reviewed using Drosophila 

melanogaster as a model.  

 

1.2.1 DROSOPHILA MELANOGASTER 

 
The most advanced studied eukaryotic organism with regard to its circadian 

clock is the fruitfly Drosophila melanogaster. The identification of D. melanogaster 

oscillator genes that comprise the central pacemaker has been based on mutagenesis 

screens (Konopka and Benzer, 1971). The circadian organization involves not only 

the neuronal circadian pacemaker that is comprised by interlocking negative feedback 

loops, but also peripheral clocks that exist in most tested organs (Plautz. J. D., 1997). 

Interestingly, these peripheral oscillators are unable to entrain themselves. This means 

that there are largely depended on the central pacemaker for synchronization. As soon 

as they are synchronized, they are then able to maintain a stable phase (Hardin et al., 

2003). Another difference to the fundamental properties of circadian clock is that 

wild-type flies in constant light and constant temperature are arrhythmic. This 

difference is in contrast to the key defining property of the circadian rhythms that 

explicitly states that circadian rhythms persist in absence of cues such as light or 

temperature. However, under constant light, temperature driven cycles wild-type flies 

were rhythmic, suggesting that the temperature cycles ‘gate’ light transduction to 

allow D. melanogaster clock to continue through out the day (Glaser and Stanewsky, 

2005).  

Drosophila’s circadian clock is comprised by three interlocking feedback 

loops. The main loop consists of two reciprocally regulated genes named PERIOD 

(PER) and TIMELESS (TIM) (Hardin et al., 1990; Sehgal et al., 1995; Hardin, 2000). 

Together with PER and TIM, two other genes named CYCLE (CYC) and dCLOCK 
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(dCLK) comprise the primary negative feedback loop of Drosophila’s circadian clock, 

where PER/TIM form a heterodimer that represses dCLK and CYC, which in turn 

induce per and tim mRNA expression (Glossop et al., 1999)(Figure 1.1). Light input 

to Drosophila pacemaker is mediated through a blue light photoreceptor called 

Cryptochrome (CRY), where upon light induction, CRY forms complex with PER 

and TIM proteins (Emery et al., 1998; Stanewsky et al., 1998).  

Temperature entrainment is mediated at the posttranscriptional level by the 

oscillations of the two central pacemaker components PER and TIM (Glaser and 

Stanewsky, 2005). Additionally, temporal analysis of genome-wide transcriptional 

profiles during temperature cycles, or light-dark cycles, and also in constant 

conditions after the synchronizing cycles in wild types and in TIM knockout-mutant 

flies, led to the conclusion that the organization of the temperature-entrained clock is 

very similar to the light entrained, since most of the clock genes oscillate in phase 

(Glaser and Stanewsky, 2005). Interestingly, in temperature entrainment, the per and 

tim genes display a temporal expression that is differential due to an advance of the 

per, and delay of tim mRNA expression, whereas in light entrainment these two genes 

have the same temporal expression under all entraining protocols tested (Boothroyd et 

al., 2007). The involvement of per and tim in light-dark and also in temperature 

entrainment suggest that thermoperception drives the clock in a similar way as 

photoperception. Although the most feasible scenario is that a gene can be a master 

controller of both entrainment processes, data indicate the existence of a specialized 

thermoreceptor in D. melanogaster. Potentially, in D. melanogaster, light and 

temperature information could be integrated in to the same clock, using the same, and 

also, specialized pathways. Though, the second impact role of temperature, as to 

temperature compensation, is mediated through PER protein, and polymorphisms in 

the number of Thr-Gly repeats indicate a latitudinal cline of these repeats, suggesting 

that selective pressure is present leading to ecological adaptation (Sawyer et al., 

1997). All these collective findings suggest that PER and TIM play a central role in 

both light and in temperature entrainment.  

 

1.2.2 NEUROSPORA CRASSA 

Neurospora crassa is a filamentous fungus particularly interesting for 

molecular geneticists due to its haploid life cycle. Therefore, it is not a surprise that 
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the Neurospora circadian system is well defined. Approximately 19% of Neurospora 

transcripts cycle over circadian time, a number certainly higher than that of other 

higher eukaryotic organisms (Correa et al., 2003). Its circadian clock does not share 

similarities to Drosophila, due to its small and simple organization. Only few 

components are required for fungal circadian oscillator (Correa et al., 2003). The 

central component of the oscillator is the FREQUENCY (FRQ) gene, to which 

multiple roles and functions have been assigned (Gardner and Feldman, 1980; Dunlap 

et al., 1995). The FRQ-based oscillator is light dependent, since FRQ mRNA is 

rapidly induced by a light treatment (Crosthwaite et al., 1995). In addition to FRQ, the 

circadian clock of Neurospora is comprised of an interplay of four genes over the 24 

hour cycle (Lee et al., 2000) (Figure 1.1). Specifically, FRQ interacts with an FRQ 

helicase (FRH), and they form a feedback loop with two White Collar (WC) genes, 

named WC1 and WC2 (Collett et al., 2001; Denault et al., 2001; Lee et al., 2003). The 

WC gene products physically interact and form the White Collar complex (WCC) 

(Cheng et al., 2002). In addition, temperature can synchronize the Neurospora 

circadian clock and this also through FRQ. FRQ is differentially spliced, giving rise to 

a long and short form of the FRQ. The ratio of the long and short forms of FRQ is 

temperature dependent. In higher temperatures the full length, or long form, 

predominate the short form (Diernfellner et al., 2007). The accumulation of the short 

form seems to be unaffected by temperature. Thus, the accumulation of long versus 

short form mediates temperature inputs.   

Irrespective of how the FRQ-based oscillator works, micro-array analysis of 

frq null mutant strains after light-dark entrainment have identified three genes that 

have short period in constant darkness, supporting the notion of an oscillator 

independent of FRQ. Data indicate that a temperature-entrained oscillator independent 

of FRQ exists (Merrow et al., 1999). Whether temperature-entrained FRQ-less 

oscillator (FLO) is the same or different as to the micro-array detected light-dark 

entrained FLO oscillator, and what the components of the FLO are, remains to be 

elucidated. These findings suggest that the circadian clock of Neurospora is a multi-

oscillatory system (Correa et al., 2003). At the moment, it is poorly understood how 

the multiple oscillators function to regulate rhythmic outputs. Some of these issues are 

being resolved with the first published natural-variation studies after light dark 

entrainment, in which a high number of period and phase QTLs was revealed, 
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including already known and novel loci (Kim et al., 2007a). These novel loci could 

lead to the identification of the components of the multi-oscillatory system. 

1.2.3 DARIO NERIO 

Dario nerio (zebrafish) became an attractive model in the last decade to study 

circadian rhythms in a vertebrate (Lopez-Olmeda, 2006). However, most circadian 

genes of the fish isolated resulted from reverse-genetic screens, based on comparative 

studies with their animal counterparts (Pando and Sassone-Corsi, 2002). This genetic 

work showed that the circadian organization of zebrafish resembles more to that of 

Drosophila than any other organism. In both organisms, almost every organ posses a 

self sustained circadian pacemaker. Furthermore, it was found that in the fish, heart 

cells not only contained a circadian clock, but that this clock is directly responsive to 

light (Whitmore et al., 2000). These studies were extended to the most organs of 

zebrafish (Whitmore et al., 2000). This suggests that in contrast to mammalian 

counterparts, where the light input to the clock goes through the retina, in Drosophila 

and in zebrafish, each organ is capable of detecting light and synchronize the 

underlying clock (Whitmore et al., 2000). Though, currently no concrete genetic 

model of the circadian clock exists for the fish. 

Zebrafish is an ectotherm organism and therefore represents an ideal 

vertebrate organism to study temperature effects on the circadian clock. Successful 

survival is dependent on adaptation of this organism to the environment by subtle 

changes of body temperature. Temperature cycles with even 2 degrees difference 

were able to entrain the circadian clock of zebrafish (Lahiri et al., 2005). This is not 

true for the mouse or human circadian clock. Many zebrafish circadian-clock genes 

are rhythmically expressed under light-dark cycles are also rhythmically expressed in 

temperature cycles, although peak expression could be shifted, suggesting differential 

regulation of clock gene expression by temperature compared to light (Kaneko and 

Cahill, 2005). All these collective findings suggest that temperature entrainment of 

the fish is a fascinating field for the future. 
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1.2.4  GENETIC FRAMEWORK FOR ARABIDOPSIS THALIANA  

1.2.4.1 The core oscillator machinery 

 
Previously, three organisms were compared with regard to the circadian 

oscillator, its organization, and light versus temperature entrainment. Neurospora has 

the smaller genome size from all three organisms compared; therefore the circadian 

organization is simpler. The FRQ-based oscillator is the best studied; however, the 

interest would be to identify the components of the FRQ-less oscillator. The other two 

organisms compared, drosophila and zebrafish, share many similarities in terms of 

circadian organization (Pando and Sassone-Corsi, 2002). However, the oscillatory 

model in light-dark entrainment differs, because a number of genes although they are 

orthologues, they have different functions in the oscillator (Barak et al., 2000). 

Moreover, the emerged temperature entrainment studies on these model organisms 

suggest that there are no similarities. It is noteworthy if these differences also exist in 

the plant kingdom. 

Arabidopsis thaliana has been the best clock model organism for plants. Its 

genome sequence was defined and annotated, and it became publicly available in 

2000 (Initiative, 2000). The small genome size, and the extensive genetic and physical 

maps, all ease the cloning of clock genes. Moreover, the efficient transformation 

utilizing Agrobacterium tumefaciens gave rise to a large number of circadian-

defective lines. This availability of a rapidly increasing number of natural accessions 

allowed the assessment of natural genetic variants and the development of high 

throughput techniques, such as micro-arrays, has given a great boost to plant circadian 

research, compared to just ten years ago.  

The first micro-arrays experiment regarding circadian clock was published in 

2000, where it was shown that approximately 10% of the Arabidopsis thaliana 

genome is under circadian control (Harmer et al., 2000). Recently, Michael et al., 

have shown that the number of diurnally regulated genes is up to 90%, in at least one 

of the conditions tested (Michael et al., 2008). Thus, the rhythmic habitat of plants can 

control essentially every biological process. In this, genetic components of several 

physiological processes are included. Some processes governed by circadian clock are 

hypocotyl growth, flowering induction, calcium uptake, stomata opening, and 
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photosynthesis, floral petal movements (Sweeney, 1987; Dowson-Day and Millar, 

1999; van Doorn and Van Meeteren, 2003). A great number of genes that coordinate 

these physiological outputs serve as markers that can be used to answer various 

genetic and physiological questions.  

The most studied molecular output of the plant circadian clock is the transcript 

accumulation of Chlorophyll a/b-binding protein 2 (CAB2). CAB2 is an essential 

protein of the photosynthetic machinery expressed in the midday. The generation of 

transgenic A.thaliana plants expressing luciferase gene fused to CAB2 promoter 

(Millar et al., 1995). The luciferase gene serves as a "reporter" in that it encodes a 

protein that produces bioluminescence as a result of the expression of the regulating 

promoter. If a circadian regulated promoter is used, the resulting bioluminescence of 

transgenic plants is rhythmic. This technology is suited for precise measurements of 

the marker, and it is suited for high throughput for detection of clock outputs. 

Forward-genetic screens of mutagenized CAB2::LUC transgenic plants led to the 

identification of many circadian genes, and consequently to the current understanding 

of the circadian rhythms (Millar et al., 1995).  

Alabadi et al. proposed back in 2001 the basic framework of A.thaliana clock. 

They presented a model that was comprised by three genes, two closely related Myb 

transcription factors Circadian Clock-Associated 1 (CCA1) and Late elongated 

Hypocotyl (LHY), and a pioneer protein called Timing of CAB expression 1 (TOC1) 

(Alabadi et al., 2001). Constitutive expression of any of these three genes can cause 

arrhythmicity of CAB2::LUC, whereas null mutants of any of them exhibit short-

period phenotype of CAB2::LUC (Wang and Tobin, 1998; Strayer et al., 2000). Single 

loss of function cca1 and lhy mutants exhibit similar phenotypes under all conditions 

tested, and the cca1 lhy double mutant is more extreme in period phenotypes, 

supporting the notion of redundancy between these sequence related factors (Alabadi 

et al., 2002). Under a 24 hours diurnal cycle, CCA1 and LHY are maximally expressed 

at early to mid morning. Their encoding proteins repress TOC1 transcription by direct 

binding to the evening element (EE) present in the TOC1 promoter (Alabadi et al., 

2001). In contrast to other circadian-model organisms, where the repressive elements 

form heterodimers to suppress the positive elements of the clock, in A. thaliana, 

CCA1 and LHY bind separately on TOC1 promoter (Yu et al., 2006). By suppressing 

TOC1 expression, they indirectly reduce their own expression since TOC1 promotes 

their expression. When CCA1/LHY levels reduce to release repression, TOC1 mRNA 
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levels progressively increase. Eventually, TOC1 protein levels are expressed to peak 

levels in the evening. Since TOC1 is an activator of CCA1/LHY, an increase of TOC1 

levels subsequently cause increase in CCA1/LHY levels. When TOC1 protein levels 

reduce, with a mechanism that will be described later, at just before dawn, TOC1 

reaches its minimum, and this way the loop closes and a new cycle begins (Alabadi et 

al., 2001). However, there are several phenotypes that cannot be explained by the 

single-loop model. First off, all three single mutants display a short-period phenotype, 

and not an arrhythmic phenotype, as it is expected for a core clock gene (Wang and 

Tobin, 1998). Further, the triple mutant cca1 lhy toc1 was found to be partially 

rhythmic for a cycle after both light-dark and temperature entrainment (Alabadi et al., 

2001; Ding et al., 2007b). Moreover, overexpressor TOC1 did not affect mean levels 

of CCA1/LHY expression (Makino et al., 2002). Collectively, the CCA1/LHY-TOC1 

loop readily explains most, but not all, aspects of the experimentally defined circadian 

behavior in A. thaliana.  

Experimental validation with computational methods by two independent 

research groups suggested that the plant circadian clock is comprised of at least three 

interconnected feedback loops (Locke et al., 2005; Locke et al., 2006; Zeilinger et al., 

2006). The main loop described just above is responsible for generating rhythms 

during the 24 hours day-night cycle, whereas the two additional loops are specialized 

for morning or evening specific fine tuning, respectively. The morning loop is 

comprised by CCA1/LHY and PRR9 and PRR7. TOC1, also termed PPR1, together 

with PRR7 and PRR9 genes are members of a gene family, called pseudo-response 

regulator (PRR). It was shown that CCA1 and LHY bind to promoter elements of 

PRR9 and PRR7, in similar way to the TOC1 promoter (Farre et al., 2005). 

Interestingly, the two Myb transcription factors have opposite effects on the different 

members of the PRR family. In contrast to the above described repression, 

CCA1/LHY genetically function to activate PRR9 and PRR7 (Farre et al., 2005). 

Conversely, PRR9 and PRR7 genetically function to repress LHY/CCA1 (Farre et al., 

2005). In addition to the morning loop, a specialized evening loop also exists. This 

loop is comprised by the interaction of TOC1 and a "Y" factor that its phenotype is 

largely explained by GIGANTEA (GI) (Locke et al., 2005). Several studies showed 

that GI is involved in light input to the circadian clock (Martin-Tryon et al., 2007). 

Furthermore, GI shows an acute light induction as it was shown by simulation studies 

(Locke et al., 2005). This acute peak, and the circadian peak of GI, might explain the 
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biphasic expression of TOC1, since it was shown mathematically that these two genes 

form a loop. Specifically, it was predicted that GI activates TOC1, and TOC1 

represses GI (Locke et al., 2005). Additionally, it was mathematically predicted that 

an "X" factor is required for CCA1/LHY induction at dawn (Locke et al., 2006). This 

factor remains hypothetical to date. The above mathematical model has been 

confirmed by Ding et al. The three loop model is summarized in Figure 1.2.  

It was mentioned earlier that TOC1 is not the only positive element of the core 

oscillator. This suggests that another gene(s) might be responsible for the direct 

activation of CCA1/LHY (Figure 1.2). In this respect, other evening expressed genes, 

such as LUX and ELF4, have been implicated as part of the oscillator (Hazen et al., 

2005; Kikis et al., 2005; Onai and Ishiura, 2005; McWatters et al., 2007). It was 

shown that in elf4-1 mutant the expression of CCA1/LHY and TOC1 was retained for 

a cycle and then turned to arrhythmic, in constant light conditions, suggesting that 

ELF4 is required to sustain rhythmicity in the CCA1/LHY-TOC1 loop (McWatters et 

al., 2007). ELF4 was shown to be required for red-light mediated induction of 

CCA1/LHY (Kikis et al., 2005). Moreover, CCA1/LHY and ELF4 genetically interact 

reciprocally, where CCA1/LHY suppress ELF4 (Kikis et al., 2005). The second gene 

that could probably fit as the X factor in the three loop model, although this has not 

been tested in the mathematical models, is LUX. Specifically, it was shown that LUX 

genetically suppresses TOC1, and activates CCA1 and LHY (Hazen et al., 2005). 

Further, CCA1 and LHY bind to the evening element of the LUX promoter and this 

correlates with suppression of LUX transcript accumulation in a manner similar to 

TOC1 repression (Hazen et al., 2005). LUX can thus be considered as a core-clock 

component since it satisfied many of the properties of the circadian clock (Hazen et 

al., 2005; Onai and Ishiura, 2005).  
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Figure 1.2 The multiple feedback loop of the Arabidopsis thaliana circadian clock 

The three-loop model as it was computationally generated by fitting current experimental data 

under constant light conditions, after light dark entrainment.  The core oscillator is comprised 

by transcriptional-translational feedback loop of the genes indicated. The genes appear next to 

the sun, are light activated. The letters Y and X, represent hypothetical genes. Arrows indicate 

promotion of activity, whereas     indicates repression of activity. White box represent day and 

grey box represents night.  

Adapted from Locke et al. 2006, Zeilinger et al. 2006 
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             CCA1/LHY 
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1.2.4.2  Slave oscillators 

Slave oscillator components posses two properties (Barak et al., 2000). First, 

when they are constitutive expressed, they repress accumulation of their own 

endogenous transcript and thereby regulate their own expression through a negative-

feedback loop. Additionally, some slave-oscillator components are able to regulate the 

expression of other transcripts. Second, the slave oscillator is downstream of the core 

oscillator and its rhythm is highly dependent on the core oscillator. A typical example 

of a slave oscillator is a novel MYB protein Early-Phytochrome-Responsive 1 

(EPR1). EPR1 regulates its own expression and other downstream genes, such as 

CAB2, but not the parameters of core-oscillator genes (Kuno, 2003). Therefore, slave 

oscillators work as intermediates between the core oscillator and the output pathway, 

perhaps contributing to proper phase maintenance.  

A classical example of slave-oscillator gene is Cold and Circadian Regulated 

2 (CCR2), also named AtGRP7 for A. thaliana Glycine-Rich Protein 7. In A. thaliana, 

CCR2 is an RNA binding protein whose expression is induced by cold temperatures. 

It is considered as part of a slave oscillator since it regulates its own expression by 

binding to its own RNA (Staiger et al., 2003a). This binding might be responsible for 

producing an early stop codon in its endogenous transcript, preventing in this way its 

translation into a functional CCR2 protein (Staiger et al., 2003a). Additionally, it was 

found that CCR2 suppresses the rhythmic expression of a related RNA binding 

protein called AtGRP8, also named CCR1 (Heintzen et al., 1997). Importantly, when 

CCR2 is overexpressed, core-clock genes are normal. So, CCR2 represents a slave 

oscillator that obtains timing information from the core oscillator, retains the 

rhythmicity through its negative feedback, and then transduces this rhythmicity, to 

thereby regulate a subset of clock-controlled transcripts, such as CCR1. CCR2 

transcription is regulated by the clock in a circadian manner, with peak time 8-12 

hours after onset of illumination, whereas CCR2 protein oscillates with a delay of 4 

hours after the respective mRNA peak expression (Heintzen et al., 1997). In 

independent research, it was found that expression of CCR2, and the related CCR1, is 

up regulated under stress conditions, such as chilling cold (Carpenter et al., 1994). 

Thus, CCR2 is also an output of the temperature pathway. CCR2 transcription serves 

as an ideal tool to probe the oscillator function due to the robust rhythmicity under a 

wide range of conditions. Another main reason that I decided to use it as a reporter 
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gene in my research was its temperature regulation. Exploiting its temperature 

regulation, one can map temperature entrainment QTLs by using CCR2 fusion to 

luciferase (Chapters 3 and 4). 

 

1.3 ENTRAINMENT  

The circadian oscillator generates rhythmic outputs by using timing 

information given by the external environment, such as light and temperature onset. 

The process through which the oscillator synchronizes to the environment is called 

entrainment (Barak et al., 2000). Characteristic of an entrained oscillator is that it 

must have a stable phase regarding to the entraining cycle (Merrow, 2006). This can 

be tested in cycles with length different than 24 hours of which the amount of light 

versus dark or warm versus cold is the same. This type of entrainment is called 

symmetrical T cycles. In Neurospora, such experiments revealed that the FRQ-based 

rhythms are driven, since onset of conidiation occurred at the same time, 7 hours after 

dark, regardless of the cycle length (Merrow, 2006). This strongly suggests that the 

light is able to mask entrained rhythms, meaning that light can affect rhythms without 

entraining the underlying oscillator. Therefore, masking could be due to strong 

stimulus intensity or to a weak oscillator (Merrow, 2006).  

One can appreciate the importance of entrainment when flying over many time 

zones. It takes several days in the new time zone for the human circadian clock to 

gradually reset to the local environmental signals (Waterhouse, 2007). Therefore, one 

can study entrainment by applying such experiments to the plants grown in controlled 

conditions. For this, a phase shift between the old and new entrainment protocol is 

required. Plants with a functionally entrained oscillator would gradually reset to the 

new entrainment protocol, and thereby attain a phase angle then the phase of the 

rhythms would show a stable shift equal to the difference of the onset of the two 

signals. This would indicate that these rhythms are entrained to the new environment. 

Moreover, by synchronizing plants to two synchronous, but phase shifted, 

entrainment protocols one could determine preference to one of the two protocols. To 

conclude, the performance of each of these different protocols in temperature cycles, 

could discriminate whether temperature is driving or entraining the circadian clock. 
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1.3.1 Light regulation of the circadian clock 

At the molecular level, light is perceived by proteins called photoreceptors 

(Somers et al., 1998a; Franklin and Whitelam, 2004). To be a photoreceptor, several 

criteria must be fulfilled. Mutants lacking such a protein should have aberrant 

phenotypes compared to wild-type plants in light-regulated processes, such as 

hypocotyl elongation, flowering time, and circadian rhythms. Additionally, the 

protein should show that it binds to a chromophore, and that it undergoes certain 

photochemistry under specific fluence and wavelengths of light. Plants, compared to 

other organisms, can detect a broad range of wavelengths of the visible-light spectrum 

(Fankhauser and Staiger, 2002; Chen et al., 2004).  As a contrast Neurospora only 

detects blue light (Froehlich et al., 2002; Dunlap and Loros, 2004). To exploit the 

available light, a suite of photoreceptors in plants are used to monitor changes in light 

duration, quantity, and quality (Murtas and Millar, 2000). Depending on the quality of 

the detected light, photoreceptors are subdivided in three classes. Red/farred light is 

perceived by phytochromes. Five phytochromes have been identified so far, and 

named PHYA-E (Devlin, 2001). Blue light is mainly absorbed by cryptochromes 

(CRY1-2), and phototropins (PHOT1-2) (Devlin and Kay, 2000). However, 

phototropins are as of yet not connected to the circadian-clock. Apparently, 

recruitment of the appropriate photoreceptor upon different light environments 

enables advantageous resetting of the clock under these environments. Moreover, 

photoreceptors affect period length of the clock in a fluence dependent manner 

(Somers et al., 1998a). However, the double, cry1 cry2, and the quadruple phyA phyB 

cry1 cry2 mutant retains rhythmicity suggesting that other photoreceptors mediate 

light input to the clock (Yanovsky et al., 2000).  

Intermediate light signaling genes are involved in the input pathway. ELF3 

plays such a key role in the photo-transduction pathway to the clock. Under 

continuous light, elf3 mutants become rapidly arrhythmic, but in constant darkness 

remain rhythmic (Hicks et al., 1996; Covington et al., 2001). Additionally, 

overexpression of ELF3 shows long-period phenotype in constant light, but no period 

effect in constant darkness (Covington et al., 2001). These phenotypes suggest that 

ELF3 functions in the light input, by gating light during subjective night (McWatters 

et al., 2000). Moreover, yeast-two hybrid and in vitro pull down assays shows that 

ELF3 interacts with PHYB, therefore linking ELF3 to the phytochrome signal 



CHAPTER 1                                                                      Introductory Review 

 
19

transduction (Liu et al., 2001). All these suggest a role of ELF3 to mediate light input 

to circadian clock. 

In addition to ELF3, the TIME FOR COFFEE (TIC) gene is a potential photo-

entrainment intermediate that works close to the oscillator. However, TIC and ELF3 

function at different phases of the circadian cycle. Therefore, it was foreseen that the 

elf3 tic double mutants would have a completely arrhythmic phenotype (Hall et al., 

2003). Surprisingly, and in contrast to ELF3, neither TIC’s mRNA nor its protein is 

circadian expressed. Ding et al., have shown that TIC affects the clock by promoting 

transcriptional induction of LHY, rather than CCA1 (Ding et al., 2007a). This is the 

further evidence of an uncoupling function of the CCA1 and LHY, otherwise, 

redundant transcription factors (Ding et al., 2007a). How TIC mediates light input has 

not yet resolved. 

Other clock components are also involved in light transmission to the clock. 

Specifically, mutations in PRR7 and PRR9 lengthen the period of CCR2 under 

constant light, whereas CCR2 period is unaffected in constant darkness (Farre et al., 

2005). The evening gene GI is light induced (Locke et al., 2005). Genes such as 

CCA1, LHY, and PRR9, have been found to mediate red and also in blue light to the 

clock. Furthermore, GI protein stabilizes ZTL protein accumulation (Kim et al., 

2007b). ZTL is a putative blue-light photoreceptor that regulates its own protein 

expression in a circadian manner (Kim et al., 2003b). This ZTL-dependent 

degradation of TOC1 in darkness is probably indirectly mediated by the stabilization 

of ZTL by GI under blue light (Kim et al., 2007b). 

 

1.3.2 Temperature regulation of the circadian clock 

Over 24 hours, plants experience not only a light-dark cycle, but also a warm-

cool cycle, where warm coincides in time with light and cool with darkness. Although 

light is the major factor responsible for the resetting of the circadian oscillator, 

temperature oscillations can as well reset the oscillator (Barak et al., 2000; McClung, 

2006) Temperature can affect the oscillator differentially. Entrainment occurs after 

changes in ambient temperatures and not by extreme stress temperatures, such as 

chilling or heat shock. In experiments performed at ambient temperature cycles, the 

existence of two oscillators with differential response to the environmental 

entrainment cues was reported, since two genes are shown preference to either light 
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dark or temperature entrainment (Michael et al., 2003a). However, our knowledge of 

temperature perception and oscillator resetting is fairly poor. So far, two members of 

the PRR family in Arabidopsis, PRR7 and PRR9, have been suggested to play a role 

in temperature entrainment, since the prr7 prr9 double mutant when subjected to 

temperature cycles under constant light failed to be entrained (Salome and McClung, 

2005). Though, when they perform similar experiments where the double mutant 

plants were entrained to temperature cycles, but in constant darkness, expression of 

CCA1 and LHY was rhythmic. This suggests that additional gene(s) other than PRR7 

and PRR9 are involved to maintain residual rhythmicity in temperature cycles in the 

absence of light. To conclude, temperature cycles can entrain the oscillator, and PRR7 

and PRR9 are two components of the temperature entrained oscillator. 

 Temperature cycles can entrain the circadian oscillator, but the circadian 

oscillator is temperature compensated, being buffered from mean temperature 

differences. Temperature compensation studies in other model organisms - e.g. 

Drosophila and Neurospora - have shown that clock components identified under light 

- dark entrainment are also play a role in temperature compensation, and surprisingly, 

also in temperature entrainment (Diernfellner et al., 2005; Glaser and Stanewsky, 

2005). In comparisons to other model organisms, one could expect that some of the 

genetic components involved in temperature compensation of A. thaliana, would be 

also involved in temperature entrainment of the circadian clock. An example in A. 

thaliana is the gene GI, which according to circadian modeling, is part of a three-loop 

light entrained oscillator (Locke et al., 2006; Zeilinger et al., 2006). Additionally, GI 

plays a role in temperature compensation in the circadian clock, especially, in higher 

and lower mean temperatures (Gould et al., 2006). Whether GI is part of thermal 

entrainment is not yet established. 

Another gene involved in the temperature compensation of the circadian clock 

is FLC (Edwards et al., 2006). Specifically, FLC is a factor that maintain the same 

period over moderate temperature ranges, although the period is altered at 27°C. 

Additionally, a dose-dependent effect of FLC on circadian period after light-dark 

entrainment was shown (Salathia, BMC2006). The classical role of FLC is in 

repression of flowering time (Michaels and Amasino, 1999). High levels of FLC 

suppress expression of downstream - flowering integrator - genes (Searle et al., 2006). 

After extended low temperatures, FLC is down-regulated, so the downstream positive 

regulators are activated and flowering is promoted (Bastow et al., 2004; Mylne et al., 
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2006). The relationship of FLC to the clock appears to involve the LUX gene 

(Edwards et al., 2006). How FLC regulates LUX is unknown.  

In addition to low temperatures, moderate temperatures affect flowering. It 

was shown that in either 16°C or 23°C photoreceptors genes, such as PHYB, PHYD, 

PHYE, CRY1 and CRY2, display a differential flowering (Blazquez et al., 2003; 

Halliday et al., 2003). The differential control of flowering at various temperatures by 

these genes, and especially the exaggerated phenotype of CRY2, prompt us to think 

that photoreceptors could be also involved in temperature perception, as well as in 

light perception. It is intriguing that this light and temperature connection could 

extend to the entrainment of the clock. It is currently untested if photoreceptors 

mutants in A. thaliana have temperature dependent clock phenotypes. 

Temperature signaling and resetting of the oscillator could be rather 

complicated to resolve because many biochemical reactions are temperature sensitive. 

Normally, increases of 10 degrees will double the speed of metabolic reactions 

(McClung, 2006). At very high temperatures biochemical reactions are affected by-

heat shock proteins that are activated on these stressful temperatures (Rensing and 

Monnerjahn, 1996). At low temperatures, plant growth and development is 

influenced, through direct inhibition of metabolism, and/or indirect induction of other 

stress responses (Strand et al., 1999; Stitt and Hurry, 2002). The biophysical nature of 

a thermal reset of the oscillator can thus not be predicted. 

At chilling temperatures, almost 4% of the A. thaliana genome is 

transcriptionally induced or suppressed. Three transcription factors, called C-repeat 

Binding Factors (CBF), are part of this cold-acclimation pathway in A. thaliana. They 

are rapidly induced upon cool temperatures (Gilmour et al., 1998; Medina et al., 

1999). Interestingly, CBF1 and CBF3 transcripts are circadian expressed, peaking at 

ZT6 (Gong et al., 2002). Recently, the most upstream element of this pathway, 

Inducer of CBFs Expression 1 (ICE1), was identified (Chinnusamy et al., 2003). 

Microarray data performed at wild type and ice-1 mutant where the plants were 

subjected for 0, 3, 6, 24 hours in 0°C (Lee et al., 2005). In this study, among almost 

1000 of genes, four genes involved in circadian clock were upregulated by cold 

temperature. Three of them, TOC1, TIC and CRY2 are late induced, after 6 hours of 

cold, whereas PRR5, another member of TOC1 family, is early continuously 

upregulated by chilling cold. However, lack of more time points makes difficult to 

determine the effect of cold temperatures in the expression of these circadian genes. 
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As an interesting example in chestnut, the homologs of A. thaliana LHY and TOC1 

were expressed but not oscillating in either long days or short days at 4°C, suggesting 

an alteration in clock function at low temperatures (Ramos et al., 2005). Similarly, in 

A. thaliana, period is affected by vernalization treatment partially independent of FLC 

(Salathia et al., 2006). Moreover, evidence in A. thaliana show that the induction of 

CBF by cold is gated by the circadian clock (Fowler et al., 2005). Whether TOC1 and 

LHY are part of the oscillator at chilling low temperatures, or other components as of 

yet unidentified or known, remains to be elucidated. Interestingly, changes in GI were 

not found in these microarrays, although molecular data exist for GI functions in cold 

acclimation mediating freezing tolerance through a CBF-independent pathway (Cao et 

al., 2005). 

Chilling cold temperatures are sensed in plants through membranes, since it 

was shown that, upon cold stress, in mutants lacking fatty acid desaturases, the plasma 

membrane was rapidly rigidified (Vaultier et al., 2006). Additionally, calcium ions are 

increased in cold temperatures in the cytosol (Knight et al., 1996). So, it is possible 

that cold-stress signaling is mediated by calcium and phospholipids signaling. 

Therefore, temperature is expected to affect the circadian clock both directly through 

entrainment, also indirectly through other temperature-regulated processes, such as 

affecting calcium influx, changes in hormone levels, and protein phosphorylation.  

 

1.4 NATURAL VARIATION 

In nature, A. thaliana grows in a wide range of environments, distributed over 

the Northern Hemisphere at latitudes from the tropics to the arctic cycle, and at 

altitudes from sea level up to 3500 m in the mountains of central Asia (Loudet et al., 

2002; Koornneef et al., 2004). To date, more than 600 accessions have been collected 

from various places all over world. Each accession is presumed to be adapted to the 

local environment rendering the best plant performance. This adaptation is reflected 

by selection upon genetic variation. Relevant to the clock, this genetic variation can 

be strongly selected by rhythmic environmental factors, such as light and temperature. 

This selection thus generates a useful genetic resource via natural resources. Often, 

genetic variation of multiple genes control continuous traits. Continuous traits are of a 

quantitative nature, and this is why they also called quantitative traits. Quantitative 
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traits are under the control of several loci called quantitative trait loci (QTL). So, by 

scoring differences in quantitative traits, one can map allelic variation. Here, QTLs of 

light and temperature regulation of the clock can be explored. 

In addition to natural accessions, for QTL analysis in A. thaliana, “immortal” 

mapping populations, such as Recombinant Inbred Lines (RILs), can be used. RILS 

are generated by the cross of two accessions that originate from ecologically distinct 

environments (Koornneef et al., 2004; Alonso-Blanco et al., 2005). Several rounds of 

self fertilization generations until F8 will produce lines that are a homozygote mosaic 

of the two parents, for 98% of the genome. RILs can be used in replicate experiments 

under various environments to map QTLs for several traits (Koornneef et al., 2004). 

In this case, the direct comparison of map positions (genetic location) of genes 

encoding for these different traits is allowed. To fine map the detected QTLs Near 

Isogenic Lines (NILs) are used. NILs are generated by repeated backcrosses resulting 

to introgressions of a part of the genome of one parent into the gene pool of the 

second parent. At the moment, various RILS have been generated and are publicly 

available for natural variation studies. 

Assessment of natural variation and subsequent QTL analysis facilitates the 

unraveling of the genetics of quantitative traits, such as hypocotyl length, clock 

parameters, and flowering time (Alonso-Blanco et al., 1998; Swarup et al., 1999; 

Maloof et al., 2001; Fankhauser and Staiger, 2002; Edwards et al., 2005; 

Balasubramanian et al., 2006). The analysis of variation in flowering time in naturally 

late-flowering accessions and RILs was used particularly to identify repressors of the 

floral transition. Most of the phenotypic variation in flowering time is resulted from 

natural variation of various loci, such as FLC, FRI, PHYC, CRY2, HUA, and FLM 

(Johanson et al., 2000; El-Din El-Assal et al., 2001; Doyle et al., 2005; Shindo et al., 

2005; Werner et al., 2005; Balasubramanian et al., 2006). Existing RILs can thus be 

exploited to uncover individual genes that coordinate particular processes of 

investigation. 

Several QTL studies have been performed on a number of accessions and 

RILs for clock parameters control. This was done by either assaying leaf movement or 

luciferase expression as a reporter for clock controlled genes (Swarup et al., 1999; 

Michael et al., 2003b; Edwards et al., 2005; Darrah et al., 2006). The most 

informative RIL population has been the one generated by the cross of Cvi to Ler 

(CvL). CvL RILs transformed with CAB2::LUC have identified a first chromosome 
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QTL for circadian phase of plants entrained in short day photoperiods (Darrah et al., 

2006). Although GI is localized in that area, from this analysis, it turned out that GI 

was not candidate for this phase QTL, suggesting another, yet unidentified, loci is 

responsible for this phenotype. However, period QTL of leaf movement of 48 CvL 

lines for temperature compensation at 12°C, 22°C, and 27°C, implicate GI as a 

temperature-responsive gene, and thus as candidate gene for temperature 

compensation at 27°C (Edwards et al., 2005). Sequence analysis of the Ler GI and 

Cvi GI identify two changes that encode for amino-acid changes, however since the 

domain structure of GI is unknown, no assumptions could be made on the functional 

consequences of these substitutions. Additionally, it was shown that period length was 

shorter if a NIL was carrying the Cvi allele for the narrow area containing GI than the 

broader area containing GI, suggesting that the difference in period for the different 

NILs could be due to the presence of two interacting QTLs (Edwards et al., 2005). 

From these two studies, it can be concluded that at least two different QTL exist in the 

first chromosome, from 15-40cM (Edwards et al., 2005; Darrah et al., 2006). That 

finding is also in agreement of Swarup et al. in the first attempt to map allelic 

variation responsible for period variation of the circadian clock, for leaf movement of 

CvL RILs in light dark entrainment (Swarup et al., 1999). However, molecular studies 

using GI null mutant concluded that GI plays a role on maintaining rhythmicity in 

temperature ranges outside of 17-22C (Gould et al., 2006). To recapitulate, the null 

mutant data are in conflict with the natural-variation data concerning the role of GI at 

a range of 17-22C, meaning that another gene should take over the role of GI in this 

range of temperatures. Moreover, variation in more than one QTL close to GI might 

be involved for phase and period control of the circadian clock (Edwards et al., 2005; 

Darrah et al., 2006).  

All the above QTL studies were performed after light-dark cycles of 24 hours 

length. However, temperature changes also occur during a natural 24 hours. So, the 

main question of my thesis work has been on how temperature changes synchronize 

the oscillator. This main question can be divided in several sub-parts: How are these 

temperature changes signaled to the oscillator? Does the oscillator responds 

differential to changes in cooler compared to changes in warmer temperatures? 

Though, the ultimate question is how the oscillator(s) is entrained by both light and 

temperature changes, in reality these often occur at the same time. Thus, the two input 

signals converge to one oscillator or many different oscillators are in coupled phase? 
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Are there times of the day that one input is stronger than the other? Finally, are 

environmental entrainment cues targets for natural and artificial selection? The 

present thesis study focuses on the identification of temperature-entrainment loci by 

assaying clock parameters using available natural genetic resources. This is a step 

towards answering the above questions. 
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2 MATERIALS AND METHODS 

2.1 MATERIALS 

2.1.1 Antibiotics  

 Antibiotics used for selection of CCR2::LUC transformed plants 

Hygromycin (2000x): 30 mg/ml in H2O. Filter sterilize. Use at 15 µg/ml final 

concentration 

Stock solution and working solutions were stored at –20°C 

 

 Antibiotics used for Agrobacterium tumefaciens selection  

Carbenicillin (2000x): Stock solution 100 mg/ml in 100% ethanol. Use at 50 µg/ml 

Chloramphenicol (1000x): Stock solution 10 mg/ml in 100% Ethanol. Use at 10 

µg/ml 

Rifampicin (1000x): Stock solution 25 mg/ml in methanol. Use at 12.5 µg/ml 

Streptomycin (1000x): Stock solution 50 mg/ml in H2O. Filter sterilize. Use at 50 

µg/ml 

Stock solutions and working solutions were stored at –20°C 

2.1.2 Bacterial strains 

For Agrobacterium tumefaciens mediated transformation, the strain bearing 

CCR2::LUC, described by Doyle et al. 2002, was used (Doyle et al., 2002).  

 

2.1.3 Plant material  

Two existing populations of Recombinant Inbred Lines (RIL) were used. One was 

generated by crossing the accessions Landsberg erecta (Ler) and Cape Verde Islands 

(Cvi) (Alonso-Blanco, 1998), and the other one was generated by crossing the 

accessions Bayreuth-0 (Bay) and Shakdara (Sha) (Loudet et al., 2002). Progeny of F8 

generation of the Cvi x Ler collection was donated by M. Koornneef, whereas the 

core population of Bay-0 x Shakdara at F8 seeds was obtained from Nottingham 



CHAPTER 2       Materials and Methods 

 
27

Arabidopsis Stock Centre (NASC, UK). T0 transgenic CCR2::LUC reporter lines 

were obtained by floral dipped. T1 plants were selected on hydroponic rock-wool 

growing media containing ¼ Muraskige and Skoog and hygromycin 15µg/ml. 

Between one to four independent transformed T1 plants resistant to hygromycin, and 

possessing luciferase activity, were transferred to soil to allow self-fertilization.  T2 

plants were used for circadian-rhythms experiments. The selected individuals from 

these populations transformed with CCR2::LUC for the two RIL populations are 

shown at Table 2.1 and Table 2.2. The derived Near Isogenic Lines used for QTL 

mapping were introgressions of Cvi genome into Ler background (Keurentjes et al., 

2007), donated by M. Koornneef. 
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BXS RILs lines 
BXS007  BXS118  BXS179  BXS262 
BXS013  BXS126  BXS186  BXS264 
BXS015  BXS127  BXS187  BXS273 
BXS030  BXS129  BXS190  BXS289 
BXS037  BXS131  BXS191  BXS298 
BXS045  BXS133  BXS194  BXS300 
BXS053  BXS134  BXS195  BXS320 
BXS059  BXS135  BXS198  BXS325 
BXS061  BXS136  BXS199  BXS329 
BXS067  BXS137  BXS200  BXS363 
BXS070  BXS140  BXS210  BXS364 
BXS078  BXS143  BXS211  BXS365 
BXS083  BXS146  BXS214  BXS368 
BXS092  BXS147  BXS220  BXS376 
BXS098  BXS155  BXS232  BXS379 
BXS111  BXS162  BXS234  BXS387 
BXS112  BXS165  BXS240  BXS394 
BXS114  BXS173  BXS252    

 

Table 2.1 Bayreuth-0/Shakdara RIL lines that were transformed with CCR2::LUC 

mediated by A. tumefaciens 

 

CvL RIL lines 
CvL5  CvL44  CvL103  CvL150 
CvL6  CvL47  CvL105  CvL151 
CvL11  CvL48  CvL114  CvL153 
CvL12  CvL49  CvL116  CvL154 
CvL13  CvL50  CvL125  CvL156 
CvL16  CvL54  CvL131  CvL164 
CvL19  CvL59  CvL140  CvL175 
CvL20  CvL61  CvL141  CvL183 
CvL27  CvL65  CvL145  CvL187 
CvL36  CvL69  CvL149  CvL193 
CvL38  CvL72     

 
Table 2.2 Cvi/Ler RIL lines that were transformed with CCR2::LUC mediated by A. 

tumefaciens 
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2.1.4 Enzymes 

• Restriction enzymes were purchased from New England Biolabs (Boston, 

USA), and Fermentas (Lithouania) 

• Taq Polymerase was purchased from Peqlab, Erlangen  

2.1.5 Oligonucleotides 

All oligonucleotides were synthesized by Invitrogen, Karlsruhe. Oligonucleotides 

were obtained after desalted purification, at 0.05µmol scale. 

Forward marker 5-->3 Marker 
name Reverse marker 5-->3 

Products (bp) 
for Ler/Cvi 

Restriction 
enzyme 

GAAACCCTGCCGGAGGAAGT   
IND79   AGCTTTCAGATATGTAGATC 40/119bp   

GAGGTTATACTTGCGGCTGGGG   
X47   CGAAATCATTGAGATGATTCTCGGG 47/88   

TTGAAGTTGCTTTTGTTTGTTGTCCC 
X5.48   CGGTTTGGCCAAAGAACTGAGTGT 26+75/101 SmaI 

GTCGATTATTTCATTATAATGAA   
F3O9   ATCAACAAAAAATACGTTAAACA 40/73   

TTGGGAATAGTTTTTCATTTACTTTT   
X5.5   AAGTTGCTCGTTAAAGACACAAT 49/126   

CAAAGTTCTGTTCTCCAAGGACTTCATCGG 
X5.8   CGTGCATGATATTGATGTACGCT 30+112/142 BamHI 

TCCTCGTCTCCGCATCTTAATCATT   
F20D23   AATGAAGAATTCAGAAAGCAACAGACTT 160/183   

GGTCATTGCAGTGGCAACTCA 
X6.1   CCGTGCTTCCAGAATAGCCTC 188/18+170 DdeI 

CAGATGCAATGGCATCGTGGAG 
CAT3 CGGTGGTGCTCCAGTCTCCAAC 790+185/973 HINCII 

ATACGAAGATCTTCGTACCATAAGCT 
X7.3 TTACCGATTCTAGGCTGAGGTCT 140/125+15 HindIII 

CTAGACATGACACTTCCAAGAGAAAGCTA 
X7.5   GCCTCGTATCTCTCTATCCGTTCTT 29_96/125 DdeI 

GAGAGAGAAAATTTGTTCTGATTAATGAAAGGATC
X7.8 CGTCACAATATCACGTCACTAAAGAAA 31+131/162 BamHI 

GAATCTGTTTCGCCTAACGC 
m235 AGTCCACAACAATTGCAGCC 534/309+225 HindIII 

AAAAGTAGGAATGTCAAGGGACAGGGACCTGA 
XR1GI  ATAGTTCCAGCCACGGCAGAATTGGAAAAGT 32+124/156 DdeI 

AACTAATGGAGGATATTCAAG   
F3I6-1   TTTAATTATTCACTTTTTATTG 177/201   

GTTGTTGATCGCAGCTTGATAAG   
SO392   TTTGGAGTTAGACACGGATCTG 156/142   

 

Table 2.3 SSLPs/CAPS/derived CAPS markers used for mapping the 1st chromosome 

QTL of the CvL population 

The ‘derived’ nucleotide base is underlined 
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CHR Marker  Forward marker 5 -->3  Reverse marker 5--> 3  
1 NGA59  TTAATACATTAGCCCAGACCCG GCATCTGTGTTCACTCGCC 
1 NGA63  AACCAAGGCACAGAAGCG ACCCAAGTGATCGCCACC 
1 MSAT1.10  ATGGTGAGATACTGAGATTAT CGAGAAGGTCTAAAGGTA 
1 ATHS0392  TTTGGAGTTAGACACGGATCTG GTTGATCGCAGCTTGATAAGC 
1 T27K12  GGAGGCTATACGAATCTTGACA GGACAACGTCTCAAACGGTT 
1 CIW1   ACATTTTCTCAATCCTTACTC GAGAGCTTCTTTATTTGTGAT 
1 NGA128  GGTCTGTTGATGTCGTAAGTCG ATCTTGAAACCTTTAGGGAGGG 
1 NGA111  TGTTTTTTAGGACAAATGGCG CTCCAGTTGGAAGCTAAAGGG 

2 RGA* TTCGATTCAGTTCGGTTTAG GTTTAAGCAAGCGAGTATGC 
2 MSAT2.28  AATAGAAATGGAGTTCGACG TGAACTTGTTGTGAGCTTTG 
2 MSAT2.11  GATTTAAAAGTCCGACCTA CCAAAGAGTTGTGCAA 
2 MSAT2.41  GACTGTTTCATCGGATCCAT ACAAACCATTGTTGGTCGTG 
2 NGA361  AAAGAGATGAGAATTTGGAC ACATATCAATATATTAAAGTAGC 
2 MSAT2.22  CGATCCAATCGGTCTCTCT TGGTAACATCCCGAACTTC 
3 NGA172  CATCCGAATGCCATTGTTC AGCTGCTTCCTTATAGCGTCC 
3 NGA162  CATGCAATTTGCATCTGAGG CTCTGTCACTCTTTTCCTCTGG 
3 MSAT3.19  TAATTCGATCCAATTGACAT TGGCTTGGCACAAAC 
3 MSAT3.28  TACAAGTCATAATAGAGGC GGGTTTAGCATTTAGC 
3 NGA6  ATGGAGAAGCTTACACTGATC TGGATTTCTTCCTCTCTTCAC 

4 FRI 
GAACCGTTACATTTCGACTAC- 
AAAGTAA 

ACAAACAAATAAATGTATAAAA- 
TGAGCTT 

4 T3H13 TTTGGTGGGTCAAGAGTCAAG GCAAAAGTCATTACGGACAATAC 
4 MSAT4.16  AGGTGGAGATTGTTCTTGTT CGTTGCGTTCTCTATCCTC 
4 MSAT4.15  TTTCTTGTCTTTCCCCTGAA GACGAAGAAGGAGACGAAAA 
4 CIW7  AATTTGGAGATTAGCTGGAAT CCATGTTGATGATAAGCACAA 
4 MSAT4.12  AAAGGAAGAAGAAGACTGTT AGAAGAAGAAGCGAGATT 
4 MSAT4.28  GAAGCTTCCGCGTGAC TGAATTGATGTCGCAATCAG 
5 NGA158  ACCTGAACCATCCTCCGTC TCATTTTGGCCGACTTAGC 
5 NGA106  GTTATGGAGTTTCTAGGGCACG TGCCCCATTTTGTTCTTCTC 
5 MSAT5.14  AACAACCCTATCTTCTTCTG TGTGACCCCTTACTCAATA 
5 NGA76  GGAGAAAATGTCACTCTCCACC AGGCATGGGAGACATTTACG 
5 MSAT5.22  AGAACAAGTTAGGTGGCT GGGACAAGAATGGAGT 
5 ATHS0191  TGATGTTGATGGAGATGGTCA CTCCACCAATCATGCAAATG 
5 MSAT5.9  CGTCATTTTTCGCCGCTCT CATGGTGGCGCGTAGCTTA 
5 JV61/62   CGCTTTCCTTGTGTCATTCC AAATGCAAATATTGATGTGTGAAA 

 

Table 2.4 SSLPs/CAPS primers used for genotyping the C24WS RIL population 

CHR denotes chromosome * indicates that the RGA marker is a CAPS marker digested with 

RSAI restriction enzyme  
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2.1.6  Media  

 Media for plants 

Muraskige and Skoog Basal Salt (MS), containing 3% sucrose (MS3), liquid medium 

In 800mL of distilled water add: 

- 4.4g of Muraskige and Skoog Basal Salt (MS) (SIGMA M5524-10L, Seelze) 

- 30g of sucrose 

- 0.5g of 2-(N-morpholino) ethanesulfonic acid (MES) 

Adjust pH to 5.7 with potassium hydroxide (KOH)  

Add distilled water to final volume 1000mL 

For Muraskige and Skoog Basal Salt (MS), containing 3% sucrose MS3 solid media, 

add 15g/L Phytoagar (DUCHEFA, Haarlem) 

Autoclave in 120°C for 20 minutes 

For transgenic plant selection, hygromycin in 15µg/ml was supplemented 

 

¼ Muraskige and Skoog Basal Salt (MS) (MS0), liquid medium 

In 800mL of distilled water add 

- 1.1g of Muraskige and Skoog Basal Salt (MS) 

- 0.5g MES 

Adjust pH to 5.7 with KOH 

Add distilled water to final volume 1000mL 

For ¼ MS0 solid media, add 15g/L Phytoagar 

Autoclave in 120°C for 20 minutes 

For transgenic plant selection, hygromycin in 15µg/ml was supplemented 
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 Media for bacteria 

Luria-Bertani (LB), liquid medium 

In 800mL of distilled water add: 

-5g yeast extract (ROTH, Karlsruhe) 

-10g bactotryptone (Beckton Dickenson, Le Pont de Claix) 

-10g sodium chloride (NaCl)  

Adjust pH to 7.5 with KOH 

Add distilled water to final volume 1000mL 

Autoclave in 120°C for 20 minutes 

 

YEBS, liquid medium 

In In 800mL of distilled water add 

-1g yeast extract (ROTH, Karlsruhe) 

-5g beef extract (SIGMA, Steinheim) 

-5g peptone (Beckton Dickenson, Le Pont de Claix) 

-5g sucrose 

-0.5g MgSO4   

Adjust pH to 7.0 with sodium hydroxide (NaOH) 

Add distilled water to final volume 1000mL 

Autoclave in 120°C for 20 minutes 

 

2.1.7 Buffers and solutions 

0.1M Triphosphate Buffer for Luciferin 

In 180ml of distilled H2O add 

-3.56g of Na2HPO4 

-2.76g of NaH2PO4 

Adjust pH to 8.0 with NaH2PO4 

Fill in to final volume of 200mL with distilled water 
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50mM Luciferin stock solution 

71.3mL of 0.1M of the triphosphate Buffer pH 8.0 was used to dissolve 1g of firefly 

D-luciferin (D-[4,5-dihydro-2-(6-hydroxy-2-benzothiazolyl)-4-thiazole-carboxylic 

acid]) (LABTECH INTERNATIONAL, UK) to give 50mM of luciferin stock 

solution 

Aliquot into 1.5mL Eppendorf tubes 

Store at -80°C 

 

0.01% Triton X-100 

Add 100µL of Triton X-100 into a Liter of distilled water 

 

5mM Luciferin working solution 

Dilute 1.5mL of luciferin stock into 13.5mL of Triton-X solution 

Filter sterilize 

 

Bleach solution 

In 100mL of water add: 

-33ml of Klorix Bleach (commercial sodium hypochlorite solution) 

-20µL Triton X-100 

 

DNA Extraction Buffer (DEB) 

In 800mL of distilled water add: 

-24.2g of 2-amino-2-hydroxymethyl-1,3-propanediol (Tris) 

-14.02g of NaCl 

-50mL of Ethylene Diamine Tetraacetic Acid (EDTA) 

-10g of Sodium Dodecyl Sulfate (SDS)  

Adjust pH to 8.0 with KOH 

Add distilled water to 1000mL 



CHAPTER 2       Materials and Methods 

 
34

2.1.8  Software, databases, and other internet resources  

Databases for genomic sequences of Arabidopsis thaliana: 

http://www.arabidopsis.org  

http://www.tigr.org/tdb/e2k1/ath1/ath1.shtml  

http://www.ncbi.nlm.nih.gov/gquery/gquery.fcgi  

  

Searching for simple sequence length polymorphism (SSLP) and Cleaved Amplified 

Polymorphic Sequence (CAPS) markers:  

http://helix.wustl.edu/dcaps/dcaps.html (Neff, 2002)  

http://www.arabidopsis.org  

http://www2.mpiz‐koeln.mpg.de/masc/ (Schmid, 2003; Toerjek, 2003)  

http://www.arabidopsis.org/Cereon/ (Jander et al., 2002) 

   

Primer design: 

DNAMAN version 4.0, Lynnon BioSoft 1994-1998 

 

Software for RIL mapping:  

MapQTL5.0, Kyasma (http://www.kyazma.nl/index.php/mc.MapQTL/) 

 

2.1.9 Materials for luciferase imaging 

Packard Top Count Scintillation Counter 

Sterile OptiPlate -96F (Black, 96-well, pinch bar design) (6005270) 

MS agar containing 3% sucrose media  

Strips of Light-Emitting Diodes (LEDs) with Red, Blue, and Far red (for continuous 

light assayed plates) (MD ELECTRONICS, UK) 

Reflector plates used to mirror light from the LEDs to the plants (custom made) 

Top Seal Microplate Press-On Adhesive Sealing Film (Packard 6005185) 
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2.2  METHODS 

2.2.1 Agrobacterium-mediated transformation of Arabidopsis plants 

 Floral dip transformation of Arabidopsis plants (Clough and Bent, 1998) 

1.  A starting culture of the Agrobacterium strain bearing CCR2::LUC reporter was 

made in a 3-5 mL YEBS media in which carbenicillin and rifampicin were added for       

selection of both the Ti and the T-DNA plasmid. The starting culture was incubated 

for 2-3 days at 28°C while shaking at approximately 200rpm 

2.  200 mL of YEBS media containing the selection antibiotics were inoculated with 

the starting culture and incubated for 16 hours at 28°C while shaking at approximately 

200rpm 

3.  5% of sucrose was added to the culture and mixed until dissolved 

4.  Additionally 300 µL of Silwet-77 was added to the bacterial culture 

5.  After adding 400 mL of YEBS, the culture was further incubated at room 

temperature while shaking until OD reaches 0.6 

6.  Arabidopsis RIL plants grown in greenhouse until flowers were visible 

7.   Inflorescences bearing young flowers were submerged for about 30 seconds into 

the bacterial solution 

8.  The dipped plants were put in sealed plastic bags for two days to ensure high 

humidity 

9.  Plants were allowed to set seeds and harvested.  

 

 Selection of independent transformed Arabidopsis plants 

The bulked seeds were sown on hydroponic rock wool growing media as it was 

described in Hadi et al (Hadi, 2002). T1 plants were selected on rock wool containing 

¼ MS0 and hygromycin 15µg/mL. Two weeks later, T1 plants were sprayed with 

1mM luciferin and imaged for bioluminescence in a Lumi-imager camera for 10 

minutes with 2x2 binning of the exposure (Boehringer Mannheim). Only plants that 

harbored the full-length construct, as assessed by being resistant were resistant against 

the antibiotic and luminescent, were selected for transfer to soil. T2 progeny were 

harvested for experimentation.  
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2.2.2  Plant material treatments 

2.2.1.1 Crosses  

Surface sterilized forceps before crossing 

Select appropriate stage of flower 

For the female parent, the three outer whorls of the flower were dissected, keeping 

only the carpel. For the male parent, anthers with mature pollen were dissected to be 

used for the cross to the stigma of the female parent. Approximately after 3 weeks 

siliques containing F1 seed can be harvested 

 

2.2.1.2 Seed sterilization 

Surface sterilize the seed by washing with 100% ethanol 

Wash the seed with 33% Klorix bleach for up to 5 minutes 

Rinse twice with sterile distilled water 

Suspend seeds in 0.15% sterile agar/water 

Sow individual seed in MS plates containing 3% sucrose. Avoid seed clumping 

Seal the lid to the plate with parafilm to prevent evaporation and infection 

Stratify for 2-4 days before transferring to the desired light regime 

 

2.2.1.3 Generation of new Recombinant Inbred Lines 

Six new Recombinant Inbred Lines were constructed. Pair-wise crosses of two 

parental accessions to four laboratory strains were the foundation for these new RILS. 

One of the parents -P2- was transformed with the promoter-reporter CCR2::LUC. A 

T1 transgenic was backcrossed to P1. This ‘‘clears up’’ the genome from multiple 

transgene insertions and residual mutations. A single insert line was isolated, and 

crossed to a divergent ecotype. The resulting F1 was repeatedly crossed with the 

respective P1 parent to generate many BC1 lines (Figure 2.4). At this BC1 stage, 6 

long and 6 short period lines were selected from approximately 100 seedlings, based 

on CCR2 period analysis. At the BC1F2 stage, CCR2::LUC rhythms of the progeny 

of the 6 long and 6 short period BC1 genotypes were assayed, and from each 

genotype, 8 individuals with either shorter period compared to their short period 

parent or longer compared to their long period parent were selected. In total, each RIL 
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set is comprised of 48 short period selected lines and 48 long period selected lines. 

Consequently, all RILs of one collection bearing the same reporter insert. These 

BC1F2 lines were then progressively self-fertilized. At the moment, the nRILS are at 

the BC1F5 generation. Assumingly, the homozygosity throughout their genome is 

about 96.875%. Single-seed descent will continue until BC1F6. BC1F7 bulk progeny 

will be genotyped.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Crosses performed to generate six new RIL collections, each harboring the 

CCR2::LUC transgene 

A represents the scheme used to generate the RILS during this project, and B represents the 

parents used in the crosses. * means that P2 was transformed with CCR2::LUC. T1 

transformed plants were back crossed to P2, and afterwards were used for crossing P1 plants. 

M stands for male parent and F stands for female parent. ---- indicates crosses not made. 

                     P1 
*P2                  
(F) 
CCR2LUC  
(M) 

Col WS Ler C24

Ler F1 F1 ---- F1 

WS F1 ---- F1 F1 

P1 P2 X 

F1 P1 X 

BC1F2 

BC1F4 

BC1F7 

BC1F3 

BC1 
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2.2.3  DNA extraction 

 
1. Place seedlings, young leaves, or floral buds into Eppendorf tube and label 

2. Add 500µl DEB to tube and disrupt tissues with a drill head holding a glass 

rod (model IKA RW16)  

3. Add 75µl Chloroform 

4. Close tubes tightly and vortex for 5 minutes 

5. Centrifuge tubes at max for 5-10 minutes 

6. Whilst centrifuging, label new tubes and add 350µl Isopropanol 

7. When centrifuge is finished, carefully pipette 350µl upper DEB layer and add 

to new tube of Isopropanol, close tube, and invert gently four times 

8. Centrifuge at max for 10 minutes 

9. Decant supernatant 

10. Add 500µl 70% Ethanol, invert and centrifuge for 5 minutes 

11. Decant, carefully pipette residual and air dry 

12. Add 100µl TE, flick vigorously, wait ~10 minutes, and centrifuge at max 

(16K) for 5 minutes 

13. Whilst centrifuging, label new tubes 

14. When centrifuge is finished, pipette 90µl DNA solution into new tube 

 

2.2.4 PCR 

For the genotyping of the new Recombinant Inbred Lines the following PCR protocol 

was followed for most of the mapping primers 

94°C x 5min 

94°C x 30sec 

52°C x 30sec  x 39 cycles 

72°C x 30sec 

72°C x 10min 
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2.2.5 Restriction digestion 

PCR products were digested by adding 1.2 µl H2O, 1.2 µl 10x restriction nuclease 

buffer and 0.2 µl restriction enzyme per 10 µl PCR product volume. The reaction 

were incubated for 5-6 h or over-night at the appropriate temperature and the reaction 

products were subsequently resolved on 4% TBE-agarose gels. 

 

2.2.6 Flowering time assays with new Recombinant Inbred Lines  

The flowering-time experiments were performed in the greenhouse supplemented 

with artificial lighting at Max Planck Institute for Plant Breeding Research (MPIZ) 

during the end of autumn and winter 2007. The average temperature was 16°C and the 

typical photoperiod was 14 hours light:: 10 hours darkness. The seeds of the C24 

cross to WS bearing CCR2::LUC, and backcrossed to C24 were sown on a moistured 

filter paper, and kept in 4ºC for 48 hours. Then five stratified seeds were placed in a 

8cm*8cm*7cm pots filled with soil. The first experiment was started 15 November 

2007 and the second on 02 December 2007. Upon germination, only one plant per pot 

was kept for the flowering-time assay. Total leaf number was measured including 

rosette and cauline leaves at the time of the bolting (Domagalska et al., 2007). 

 

2.2.7 Plant growth conditions 

2.2.7.1 For light dark entrainment (LD): 

Plants were grown on MS-containing 3% sucrose plates under a 12 hours light-12 

hours dark cycles, at 22°C. Onset of illumination was 9:00am. Light intensity in the 

growth cabinet was 35µmol m-2sec-1. 

 

2.2.7.2 For temperature entrainment (TMP): 

Plants were grown on MS-containing 3% sucrose plates under a 12 hours at 22°C-12 

hours at 16°C cycles, at constant light. Onset of warm temperatures was 9:00am. 

Light intensity in the growth cabinet was 35µmol m-2sec-1. 
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2.2.7.3 For light-dark / temperature cycles experiments: 

Plants were grown on MS-containing 3% sucrose plates under 12 hours light-12 hours 

dark cycles, at 22°C, for 5 days and then transferred to 2 days in 12 hours at 22°C-12 

hours at 16°C cycles, the onset of illumination was 9:00am for 12 hours light-12 

hours dark cycles and the onset of warm temperatures was set at: A) 03:00pm called 

IN, or B) 03:00am called OUT.  

In separate experiments, plants were grown in MS-containing 3% sucrose plates in 12 

hours light-12 hours dark cycles, at 22°C, for 5 days and then for 2 days in 12 hours at 

22°C-12 hours at 12°C cycles, at 12 hours light-12 hours dark cycles. In all cases light 

intensity in the growth cabinet was 35µmol m-2sec-1. 

 

 

 

 

 

 

 

 

 

Figure 2.2 INOUT entrainment protocols  

Yellow bars represent light period, black represents dark period, white represents warm 

period, and grey represents cold period. In all cases light intensity was 35µmol m-2sec-1.  

 

2.2.7.1: LD 
 
 
2.2.7.2: TMP 
 
 
2.2.7.3A: IN 
 
 
2.2.7.3B: OUT 
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2.2.8  Determination of clock phenotypes with promoter-luciferase 

assays 

2.2.8.1 Luminometer assays for bioluminescence 

1.  Prepare the 96-well assay plates: Surface sterilize with ethanol, and air dry ethanol. 

After drying, add 200µl of MS3 in each well 

2.  Transfer plants grown for 7 days at light dark cycles at 22°C to 96-well microtiter 

plates containing MS3 

3.   Filter sterilize 5mM luciferin 

4.   Add 15 µl of filter sterilized 5mM of luciferin to each plant  

5.  Cover the plate with Top Seal 

6.  Poke a hole on the Top Seal with a surgical needle in each well to allow air 

exchange for the oxidation of luciferin to oxyluciferin, and therefore enable the 

luminescence detection 

7.  Let the plates to synchronize for another entrainment cycle by returning them to 

the previous entrainment conditions 

8.  Transfer the 96-well plates to Packard Top Count Scintillation for the 

luminescence detection. The light emission measurements were performed with the 

use of 6 synchronized photomultipliers, and measured as counts per second 

 

2.2.8.2 Liquid nitrogen Cooled Digital camera (CCD) assays for bioluminescence 

 

1.  Prepare the 96-well assay plates: Surface sterilize with ethanol the cryo boxes 

(ROTH Karlsruhe), and air dry ethanol. After drying, add 1ml of MS3 in each well  

2.  Sterilize 100 seeds of each independent transformed line 

3.  Divide the amount of the seeds in equal portions, and sow them directly to the cryo 

boxes 

4.  Stratify sown seeds in the sterile box for 2 days at dark at 4°C  

5.  Transfer the box with the seeds to a growth cabinet for 7 days at either light dark at 

22°C or 22-16°C cycle at constant light 

6.  Filter sterilize 5mM luciferin. 

7.  Add 15 µl of filter sterilized 5mM of luciferin to each plant   
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8.  Cover the plate with Top Seal 

9.  Poke a hole on the Top Seal with a surgical needle in each well to allow for air 

exchange for the oxidation of luciferin to oxyluciferin, and therefore enable the 

luminescence detection 

10. Let the plates to synchronize for another entrainment cycle 

11. Transfer the 96-well plates to ROPER VersArray ST-133 CCD camera for the 

luminescence detection. Camera exposure was set at 15 minutes, images were taken 

once every hour 

 

2.2.9 Software for analysis of circadian rhythms 

2.2.9.1 For analysis of luminescence output of Top Count scintillation counter 

The data obtained by TopCount were processed with TopTempII, a Microsoft Excel 

macro (Braun et al., 2002) to analyze circadian parameters of light-dark and 

temperature entrained plants. Period, amplitude, and phase estimates were performed 

using a Microsoft Excel macros suite termed Biological Rhythms Analysis Software 

System (BRASS), generated by Southern and Millar, 2005, that includes the FAST 

FOURIER TRANSFORMATION NONLINEAR LEAST SQUARES (FFT-NLLS) 

method (Plautz, 1997). A time window corresponding to at least three periods (>72 h) 

was used for FFT-NLLS analysis, normally this time window was from ZT30-120. 

The period limits used were 15-35 h, and the parameter confidence probability was 

95%. Rhythms were assessed by comparison of relative amplitude of error (R.A.E.)-

weighted means of the period lengths calculated by BRASS. This was in addition to 

comparisons of individual period and of R.A.E. values. R.A.E. is the ratio of 

amplitude of error estimate in relation to the estimate of the most probable amplitude 

that describes the fit of the actual data to the theoretical cosine curve. Therefore, 

R.A.E. is a measure for the degree of rhythmicity. For example, R.A.E = 0 the trace is 

perfectly rhythmic (precise) compared to the theoretical curve and when R.A.E. = 1 

the trace is completely arrhythmic. In this study, R.A.E. < 0.4 is considered rhythmic. 

For luminescence data, phase was determined as the first period acrophase of the 

cosine curve, unless otherwise stated.  
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2.2.9.2 CCD Camera data analysis 

Luminescence images were taken with Roper VersArray ST-133 CCD camera with 

one image every one hour. Plants were kept in constant red and blue light for 40 

minutes, and then imaged in an intervening dark period for 20 minutes. The resultant 

images were stacked using METAMORPH software (Universal Imaging 

Coorporation). All imaging with this CCD setup was performed and analyzed as 

Gould et al. (Gould et al., 2006). 

 

2.2.10  QTL mapping 

The statistical package used to map QTLs in this study was MapQTL 5.0 

(Kyazma BV). Three input files were generated containing information such as the 

quantitative data (phenotype), the loci (genotype of each RIL), and the map 

information (marker location). Interval mapping (IM), and consequently MQM 

mapping were performed for period for each entrainment. During IM, each position of 

the genome was checked for the presence of a segregating QTL. However, MQM is 

more accurate than IM, because in addition to the genome scanning of a single 

segregating QTL it also fits the effect of nearby markers, cofactors, therefore reducing 

the residual variance, and potentially revealing other close by QTL. 

A measure of QTL significance was defined by the Likelihood of Odds (LOD). The 

higher the LOD score, the more statistically significant was the presence of a QTL in 

the genomic interval detected. LOD score is a 10-base logarithm of the quotient of 

two likelihoods H1, and H0. H1 is the likelihood of having a segregating QTL at a 

specific locus, whereas H0 is the likelihood of having no segregating QTL at the 

respective locus. After performing one thousand permutation tests repeatedly, the 

averaged genome wide LOD for 95% significance was taken as a threshold. 

Additionally, the estimated percentage of explained variance of each QTL was 

calculated by MapQTL 5.0 during MQM.  

2.2.11  Statistical analysis 

For the statistical analysis, the package SPSS version 11.0.0 was used (SPSS Inc., 

Chicago, IL). Univariate analysis was preferred because it allows calculating uni- but 

also multi-variate F-tests, in contrast to one way ANOVA that can perform F-test for 

only one factor.  For the GLM Univariate analysis, period was used as a dependent 
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variable and RIL and environment as fixed factors. The null hypotheses of the test 

were that the mean period is the same across RILs or different environments, and 

there was no RIL by environment interaction. Additionally, it calculated the R2 (R 

squared). R2 represents a goodness of fit measure. It described how well the variation 

in period can be accounted for by RILs (genotype) or LD or TMP entrainment 

(environment). It ranged from 0 to 1, where small values indicate that the data do not 

fit well model. Two-way interactions among the QTLs identified for period, were 

tested by ANOVA using the corresponding two markers as fixed factors and the 

period as dependent variable, using the general linear model (GLM). Heritability 

(broad sense) was estimated as the proportion of variance explained by between-line 

differences and among line differences calculated by using the GLM module of the 

statistical package of SPSS.  
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3 QUANTITATIVE ANALYSIS OF LIGHT-DARK 

vs TEMPERATURE ENTRAINMENT 

INTRODUCTION 

Natural variation on circadian-clock parameters was previously assayed 

successfully in the past to map QTLs for circadian rhythmicity (Swarup et al., 1999; 

Edwards et al., 2005; Darrah et al., 2006). To study such genetic variation several 

accessions and Recombinant Inbred Lines (RILs) were used. The most informative 

RIL for circadian studies has been the collection generated by crossing Ler to Cape 

Verde Islands. Cvi was collected in a tropical environment close to the equator, where 

daylength does not change as much as in northern temperate climates, where Ler is 

originated. As one circadian QTL example, Darrah, et al. used transformed CvL RILs 

with CAB2::LUC, to identify loci that contribute to daylength measurement by 

assaying circadian phase of CAB2 (Darrah et al., 2006). Multiple QTLs were detected. 

Since natural variation is an established method for studying circadian rhythmicity, I 

decided to exploit this natural-genetic variation to study the effect of temperature 

entrainment, as compared to light-dark entrainment.  

The daily rotation of the earth provides two sets of stimuli for organisms to 

synchronize to external time. In addition to light, temperature cycles are also able to 

reset the circadian clock (McClung, 2006). It was shown that A. thaliana can be 

entrained when as little as 4ºC temperature variation is present (Somers et al., 1998b; 

Michael and McClung, 2002). A major finding regarding temperature entrainment 

was that two oscillators can be distinguished based on differential sensitivity to 

temperature (Michael et al., 2003a). This was concluded from experiments that 

mapped the effect of four hours temperature pulses in the expression of TOC1, CAB2, 

and CAT3 (Michael et al., 2003a). Though it was not clear from this work if there are 

two unlinked primary oscillators, two primary oscillators that are coupled, or a 

primary oscillator that sets the rhythms to a secondary (slave) oscillator. Moreover, it 

cannot yet be resolved if there is one oscillator that is primarily for light-dark 

entrainment, and another one for temperature entrainment, because the expression of 
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clock genes after light pulses was not conducted. Regardless, the circadian clock(s) 

have differential sensitivity to light versus temperature inputs. 

Molecularly, the temperature effect on the entrainment of the oscillator has 

been examined in the mutant background of two PRR family members, PRR9 and 

PRR7. Although the single mutants have no phenotype after light-dark entrainment, 

the cotyledon-movement phenotype in the double mutant, and the expression CCA1, 

LHY, and TOC1 in the same background was found to be extremely long period. 

Surprisingly, the double mutant was unresponsive to temperature cycles, as indicated 

by the dampened phenotype of the CCA1::LUC or LHY::LUC. However, TOC1 

expression, as reported by luciferase, is more variable. In some cases, TOC1 in prr9 

ppr7 double mutant peaks in antiphase compared to the wild type, whereas in other 

cases is completely arrhythmic. All these results suggested that PRR9 and PRR7 are 

indispensable for thermal-entrainment inputs, although is not clear that they function 

as integrators of temperature signal or purely as oscillator components that when lost 

resulting a clock without the ability to respond to temperature cycles. Genetics can 

resolve this physiological discrepancy.  

This chapter study will provide a description of natural variation present when 

comparing circadian parameters after temperature to light-dark entrainment, 

respectively. A natural-variation approach was chosen, instead of a mutant screen, on 

the basis that the genetic variation reflects adaptation of a certain genotype to the 

specific ecological environment. In this chapter, the identification of novel and 

identified loci will be described using two RIL population generated by four different 

parental accessions. Circadian-period variation was used as a trait to study 

temperature entrainment in both RIL populations.  
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3.1 Light dark vs temperature entrainment of Cvi/Ler RIL 

To investigate natural-variation effects on temperature, I modified a 

population suited for a circadian study. The existing Cvi/Ler (hereafter CvL) RIL 

population is one of the most informative collection to date to study natural variation 

of the circadian clock (Swarup et al., 1999; Edwards et al., 2005; Darrah et al., 2006). 

By measuring clock traits, various loci have been mapped (Edwards et al., 2005; 

Darrah et al., 2006). Further, gene expression assayed with a promoter::luciferase 

construct has been previously described as a robust method to measure an expression 

QTL (eQTL) (Darrah et al., 2006). Therefore, I transformed a number of Cvi/Ler 

RILs with a temperature responsive and circadian-regulated reporter CCR2::LUC. 

CCR2 was also chosen amongst other clock marker genes due to its temperature 

entrainability and to its robust rhythmicity under a wide range of conditions (Heintzen 

et al., 1997). So, by using the luciferase platform, I was able to kinetically monitor 

luciferase expression driven by the CCR2 promoter under constant light, after 

entrainment by 12-hours light followed by 12-hours darkness at 22°C, or by 

entrainment with temperature cycles of 12 hours at 22°C followed by 12 hours at 

16°C under constant light. Luciferase monitoring of T2 plants was performed under 

free running constant light, for at least five days. Period length of CCR2 rhythms was 

estimated by FFT-NLLS analysis (see 2.2.9.1), where circadian data was fit to cosine 

curves. The designated RILs, and the averaged period of after light-dark entrainment, 

and the standard deviation, and standard error of the mean, are showed in Table 3.1. 

Additionally, in Table 3.2, the free-running-period phenotype under constant light of 

the same CvL population, and the standard deviation and the standard error of the 

mean, are showed after temperature entrainment under constant light. The two tables 

show that there are differences between different RILs regarding period within, as 

well as between, in response to different entrainment protocols. Thus, a variety of 

kinetic parameters of the CCR2::LUC could be detected.  
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RIL 

NAME LD PERIOD SD SE 

 RIL 

NAME LD PERIOD SD SE 

5 27.760 0.373 0.215 72 25.467 0.397 0.120

6 24.903 0.703 0.212 103 24.650 0.423 0.244

11 26.287 0.831 0.372 105 26.011 0.721 0.180

12 26.420 0.946 0.273 114 24.807 0.808 0.172

13 27.480 0.652 0.112 116 26.867 0.837 0.144

16 25.055 0.714 0.173 125 28.536 0.885 0.313

19 27.548 1.028 0.343 131 25.701 1.226 0.433

20 25.705 0.647 0.216 140 26.181 1.305 0.227

27 26.576 1.139 0.431 141 27.087 0.282 0.199

36 25.120 1.074 0.287 145 25.784 0.734 0.300

38 26.656 0.410 0.155 149 25.190 0.380 0.134

44 25.414 1.006 0.318 150 25.676 1.082 0.167

47 28.220 0.529 0.167 151 25.386 1.367 0.395

48 24.223 0.784 0.296 153 26.588 0.696 0.156

49 27.874 0.933 0.467 154 25.474 0.843 0.204

50 25.212 0.730 0.177 156 25.503 0.381 0.171

54 25.395 1.023 0.324 164 24.783 0.537 0.203

59 24.014 0.979 0.489 175 24.520 0.648 0.265

61 25.036 1.198 0.599 183 25.633 1.450 0.302

65 25.171 0.520 0.212 187 26.489 0.894 0.258

69 25.430 0.556 0.393 193 25.014 1.224 0.170

 
Table 3.1 The free-running period of the Cvi/Ler RIL collection under constant light 

after entrainment to 12 hours light followed by 12 hours dark 

RIL NAME corresponds to the arbitrary name as given in Alonso-Blanco et al. for the CvL 

population (Alonso-Blanco, 1998), LD period corresponds to averaged period after light-dark 

entrainment. SD is the standard deviation of the period and SE is the standard error of the 

mean period. 
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RIL 

NAME TMP PERIOD SD SE 

 RIL 

NAME TMP PERIOD SD SE 

5 27.718 0.617 0.159 105 25.040 0.553 0.175

6 24.553 1.162 0.439 114 23.980 0.605 0.349

11 25.280 0.468 0.085 116 26.064 0.677 0.128

12 24.930 0.471 0.192 125 27.721 0.895 0.316

13 26.296 0.631 0.093 131 25.660 0.727 0.188

16 24.278 0.692 0.148 140 25.176 0.855 0.137

19 27.632 0.598 0.166 141 24.674 0.874 0.291

20 25.419 0.893 0.231 145 25.376 0.493 0.156

27 25.222 0.569 0.152 149 24.194 0.533 0.161

36 24.799 0.712 0.197 150 25.047 0.932 0.132

38 26.823 0.689 0.308 151 24.483 0.678 0.226

44 24.947 0.893 0.231 153 25.418 1.063 0.320

47 27.291 0.814 0.308 154 24.927 0.700 0.181

48 23.763 0.561 0.169 156 24.037 0.803 0.242

49 27.094 0.553 0.196 164 24.333 0.224 0.158

50 25.341 0.802 0.214 175 23.286 0.706 0.182

54 23.885 0.923 0.292 183 25.105 0.861 0.230

65 24.486 0.446 0.158 187 25.464 1.301 0.492

72 23.848 0.549 0.246 193 24.012 1.103 0.349

 
Table 3.2 The free-running period of the Cvi/Ler RIL collection under constant light 

after entrainment in temperature cycles of 12 hours at 22°C followed by 12 hours at 

16°C in constant light 

RIL NAME corresponds to the arbitrary name as given in Alonso-Blanco et al. for the CvL 

population (Alonso-Blanco, 1998), TMP period corresponds to averaged period after 

temperature entrainment. SD is the standard deviation of the period and SE is the standard 

error of the mean period. 
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3.1.1 Period differences after light-dark and temperature 

entrainment of the Cvi/Ler population 

 

Previously I found that there was a period variation in the CvL RILs after 

entrainment to 12 hours light::12 hours darkness at 22°C, compared to entrainment to 

12 hours at 22°C and 12 hours in 16°C at constant light (Tables 3.1 and 3.2). The 

differences in the period between the two protocols were plotted against each other in 

the overlay plot as shown in Figure 3.1, using the JMP4 software. Interestingly, the 

period in the majority of the CvL RILs is significantly longer after the light-dark 

entrainment compared to after the temperature entrainment (Figure 3.1). In those few 

lines that had a slightly longer period after temperature entrainment, this difference 

was not significantly different. Thus, the heritability of periodicity was dependent on 

the preceding entrainment. The details of these phenomena will be described later (see 

3.1.4). 
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Figure 3.1 Period differences of rhythmic plants within genotypes of the CvL RIL 

collection of temperature-entrained versus light-dark entrained plants 

X axis represents the CvL RIL number, and Y axis represents period.    represents the period 

of temperature entrained plants, × represents the period of the light-dark entrained plants.  
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Two RILs, CvL 47 and CvL 6, were further chosen to illustrate the differences 

shown in Figure 3.1. The RILS were entrained in light dark or temperature cycles, as 

described in the beginning of this session. The graphical depiction of the circadian 

rhythmicity of luciferase driven by the CCR2 promoter is showed in Figure 3.2. Of 

these two lines, CvL 6 displayed a period difference of about half an hour, when 

comparing the period after the light-dark and after temperature entrainment. CvL 47 

displayed after light-dark entrainment a longer period, when compared to the 

temperature-entrainment protocol. These results are in agreement with the results of 

Figure 3.1 in establishing the quantitative and differential kinetic effect of CCR2 

rhythms dependent on the preceding entrainment.  

More detailed analysis of Figure 3.2 suggests that phase also varies 

differentially after the two entrainments in these two RILs. Specifically, CvL 6 

showed not only small period variation, when compared after the light dark and 

temperature entrainment, but also minor differences in phase. Whereas CvL 47 after 

light-dark entrainment showed earlier phase and longer period compared to the effect 

after the temperature entrainment. Furthermore, CvL 6 was found to have a shorter 

period, and earlier phase, compared to CvL 47 in both entrainments. The evident 

phenotypic variation of period, after the different entrainment protocols, could be due 

to the different genetic background and/or due a preferential response to either of the 

two environmental inputs. The test of this hypothesis will be described by statistical 

analysis in the subsequent section. 
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Figure 3.2 Variation of period after entrainment to the two different protocols between 

two representative RILs: CvL 6 and CvL 47 

LD denotes the free running rhythmicity of luminescence driven from the CCR2 promoter 

after light dark entrainment, and tmp denotes the free-running rhythmicity after temperature 

entrainment. Relative luminescence was depicted as a ratio of the actual luminescence of each 

time point divided by the average luminescence over the time course of the experiment. Assay 

started at time 0, and is the onset of lights for light-dark entrainment, or the onset of warm 

temperature for temperature entrainment. Note that CvL6 has smaller differences in free 

running period than the CvL 47 after the two entrainment protocols. 
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3.1.2  Statistic analysis of mean period after LD vs. tmp entrainment 

in the CvL RIL 

 

Variation of traits fall into two categories: continuous or distinct. I found 

earlier that period varies between various RILs after the entrainment in the two 

different protocols, but period varies also after entrainment in the same protocol 

(Tables 3.1 and 3.2, Figure 3.1). However, whether the variation in period was 

continuously distributed, and, if so, whether it was normally distributed, will 

determine the QTL mapping model. Therefore, the averaged period of CCR2::LUC 

for each transformed CvL line, as measured after the two different entrainments, was 

binned in one hour intervals. The binned period was then plotted against how 

frequently period values were fall into each one hour interval, as it is represented in 

Figure 3.3.  

 

Continuous period distribution of CvL

0
5

10
15
20

23 24 25 26 27 28

PERIOD (hours)

FR
E

Q
U

E
N

C
Y

LD TMP

 
Figure 3.3 The continuous distribution of period for 39 CvL Recombinant Inbred Lines  

X-axis is period measured in hours and Y axis represents number of CvL RILs with a certain 

period. The period was binned in 1 hour interval. 
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The free running period of each averaged RILs after the entrainment to either 

light-dark cycles or temperature cycles was found to be continuously, and normally, 

distributed (Figure 3.3). Since the data were normally distributed, Analysis of 

Variance (ANOVA) could be used to compare the population period mean for the two 

entrainments. Confidence interval (CI) is a measure of spread of the period means of 

the various RILs per environment, therefore 95% of CI means that 95% of the period 

means of the different RILS falls between the upper and lower bounds. For 95% of 

confidence interval, the lower bound of mean period after light-dark entrainment, 

which is 25.696 hours, was not found to overlap with the upper bound of the mean 

period after the temperature entrainment, which was 25.251 hours (Table 3.3). The 

standard error of the mean indicates how much the mean period varies from RIL to 

RIL, within each environment, as they deviated from the overall mean calculated for 

each environment. The standard error after each entrainment was found to be low 

(Table 3.3). Therefore, by taking the modified population period mean measured after 

each entrainment protocol, as calculated for the 95% of period values and 

adding/subtracting the standard error of each respective entrainment, the period was 

found to be statistically different. All these data confirm that there were significant 

period differences within genotypes of the population after the two entrainment 

protocols. 

Further analysis for the contribution of the genotypes, environment and the 

genotype by environment interactions, to the phenotype (period) was performed by 

GLM Univariate analysis of variance. Details about the performance of the test can be 

found in session 2.2.11. A key value of the resulted analysis seen in Table 3.4 is the F 

value. The F value calculated by the test, for either the main effect of RIL and 

ENVIRONMENT or their interaction effect, was higher than the F value found in 

tables for the respective degrees of freedom (df). Therefore, these results rejected the 

null hypothesis, which was that the mean of period after the light-dark entrainment is 

the same after the temperature entrainment, or that the mean periods of various RILs 

did not differ. Furthermore it rejected the null hypothesis that there was no interaction 

between the two factors. Moreover, the adjusted R2 indicated that about 60% of the 

mean period variation can be explained by genotype, environment, or genotype-by-

environment interactions. Strong statistical support affirmed that the preceding 

entrainment protocol differentially directs the free-running periodicity under identical 
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assay conditions. 

 

 

Table 3.3 Statistic analysis of the CvL lines used for QTL mapping 

The mean period after light or temperature entrainment is calculated based on the 95% of the 

measurements. Environment indicates the different entrainment protocols. LD stands for the 

light-dark entrainment and TMP for the temperature entrainment. The two bounds for 95% of 

confidence interval suggest that 95% of the mean period measured in various RILS falls 

within the lower and upper bound, and the rest 5% is outside of these intervals. Standard error 

of a mean is a measure of the variation and it is dependent on the sample size. a denotes the 

modified population marginal mean for the 95% Confidence Interval.  

 

Source SS df MS F Sig. 

Corrected Model 999.351a 56 17.846 26.693 0.000
Intercept 370584.652 1 370584.652 554317.010 0.000
RIL 828.310 37 22.387 33.486 0.000
ENVIRONMENT 60.448 1 60.448 90.417 0.000
RIL * 
ENVIRONMENT 30.002 18 1.667 2.493 0.001

Error 615.059 920 0.669     
Total 637295.809 977       
Corrected Total 1614.410 976       
a  R Squared = .619 (Adjusted R Squared = .596) 

 
Table 3.4 ANOVA analysis depicts significant genotype by environment interaction for 

the two different entrainments 

RIL denotes the genotypic effect, ENVIRONMENT denotes the different entrainments and 

RIL*ENVIRONMENT denotes the interaction of the genotypes to the different entrainments. 

SS is the sum of squares. df are the degrees of freedom. MS is the mean square calculated by 

dividing the SS by df. F is the F-ratio calculated by dividing MS by the error. Significance 

level was set to .05.  Significance of ≤.001 means highly significant differences or highly 

significant interactions. * denotes the testing for an interaction between two factors. 

  Mean Std. Error 95% Confidence Interval 
Environment     Lower Bound Upper Bound 
LD 25.792a 0.049 25.696 25.887 
TMP 25.161a 0.046 25.071 25.251 
a  Based on modified population marginal mean. 



CHAPTER 3      Quantitative analysis of light-dark vs temperature entrainment 

 
56

3.1.3  QTL mapping of periodicity in the CvL collection 

The CvL RILs transformed with CCR2::LUC were successfully assayed for 

period under constant light after two different entrainments; after light-dark at 

constant warm temperature, and after warm-cold cycles under constant light. Here, 

approximately 40 genotypes were phenotypically characterized for clock period 

(Tables 3.1 and 3.2). The averaged period of these lines revealed that overall 

temperature-entrained plants have a shorter period mean than light-entrained plants 

(Table 3.3). As I could identify that some RILs that respond differentially to the one 

entrainment over the other (Tables 3.1 and 3.2), this supports my hypothesis of the 

existence of specific loci controlling the two different entrainment inputs. To test this, 

I applied QTL mapping to the data. 

Since circadian period varied continuously between the different genotypes of 

a Cvi/Ler RIL population, I could analyze it as a quantitative trait. Once the period is 

scored, and the genotype of the RILs is known, one can use available statistical 

packages to map genomic regions containing significant natural genetic variation that 

accounts for genetic variation to temperature or light-dark entrainment. The statistical 

package used in this case was MapQTL 5.0. A measure of QTL significance is the 

Likelihood of Odds (LOD). Whenever, the LOD score exceeds the threshold obtained 

by the permutation tests, this supports the detection of a segregating QTL at that 

location. The identified loci were thus mapped. Another important measure given by 

the analysis is the percentage of explained variance of the respective QTL. The higher 

this percentage, the larger the effect the QTL supplies the trait.   

Quantitative analysis was performed for each entrainment protocol using two 

different data sets of genotypes. The first data set includes RILs that the averaged 

value of period meets the following three criteria. The period of at least 10 plants 

were averaged, the standard deviation was found to be less than 1 hour, and the 

standard error of the mean period was less than 0.25 hours (Tables 3.1 and 3.2). The 

period was assessed separately for either light dark, and for temperature entrainment. 

Note that in this set that both the same, and different RILS were included for the two 

entrainments. The second data set includes exactly the same lines, 43 in total, for the 

temperature and light entrainment. However, some lines of these 43 show intraline 

variation, and/or the number of individuals assayed for one of the two entrainments 
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was low (Tables 3.1 and 3.2). The second set was used as a control to distinguish 

between genotypic or environmental effect. Analysis performed in the second set 

identifies a QTL at the same location, suggesting strongly that there is a genetic 

component involved. However, a difference in the LOD score was observed for the 

light dark versus the temperature entrainment. When analyzing the first set, in which 

some lines show more robust phenotype in one of the two different entrainments, 

different segregating QTLs were identified for different physiological entrainments. 

As well, common QTLs were also detected (Figures 3.4 and 3.5).  

For the light-dark entrainment, the MQM mapping application detected only 

one main effect periodicity QTLs at chromosome five at 17-24cM. The explained 

variance of this QTL was found to be more than 45%. No main QTL was identified at 

the first chromosome. All the other QTLs shown in Figure 3.4 are interacting QTLs. 

At the top of 1 chromosome, at 0-10cM, the interacting QTL overlaps with LHY, a 

core-clock gene, CRY2 a blue light photoreceptor, and also with PHYA a red-farred 

light receptor. All are thus gene candidates for this locus. At 50-60 cM of the first 

chromosome, a locus not previously identified exists. At the bottom of chromosome 

five at 90-100cM, another interacting QTL was identified. TOC1, PRR3, and SRR1 

are located within this area. At the top arm of chromosome 4, another interacting QTL 

was identified at 0-20cM. FRIGIDA (FRI), a positive regulator of Flowering Locus C 

(FLC) transcription factor is localized at that proximity. These known genes might be 

candidates, however, the presence of novel genes that represent those QTLs cannot be 

excluded. In Figure 3.4, the main and interacting QTLs and their effects are 

represented. 

For the temperature entrainment, three main periodicity QTLs were detected 

through MQM analysis, one at the first chromosome and two at the fifth chromosome. 

The main effect QTL detected at chromosome 1 at position 24-40cM explains about 

40% of the phenotype. This QTL co-localized to a known circadian oscillator gene 

named GIGANTEA (GI).  The two QTLs at chromosome 5 are located at the top arm 

at position 20-30cM and at the bottom arm at 90-100cM. QTLs at the top and bottom 

of chromosome 5 explain 35% and 25% of the phenotype respectively. However, 

interacting QTLs modified the effect of the three main QTLs. Especially, the QTL at 

chromosome 3 had a positive effect on the phenotype of QTL in chromosome 1, and 

the same for the bottom QTL in chromosome 5. This QTL was not previously 



CHAPTER 3      Quantitative analysis of light-dark vs temperature entrainment 

 
58

identified from other circadian studies. Also, no known clock gene is localized at this 

area. At chromosome 5, two loci were identified to have differential effect at location 

0-9 cM, and at 17-24cM. Specifically, the effect the first QTL had a positive effect on 

the main QTLs and the second had a negative effect. The chromosome five QTL 

localized at 0-9cM is in an interval with a member of the TOC1 family called PRR7. 

The second QTL of fifth chromosome at 17-24cM co-localizes with FLC, a flowering 

time regulator in response to cool temperatures that can affect periodicity. Finally, the 

QTL localized at the end of chromosome 4 showed minor effects on QTL at 

chromosome 1, but it had a great positive effect on the main QTL at the bottom arm 

of chromosome 5. In the bottom of chromosome 4, no clock gene has been identified 

so far. The chromosome 2 QTL has a small effect in chromosome 1 and chromosome 

5 main QTLs. All the above described positive or negative effects suggest that the 

identified QTLs are epistatic. An expansion of the epistatic effects will follow in the 

session 3.1.4.  

To conclude, I found QTL for light and temperature that both were co-

localized and others that map to distinct positions. The chromosome 1 main effect 

QTL found at 0-10cM, and the interacting QTL at 60cM were both specific for the 

light entrainment, whereas the first chromosome main effect QTL found at 24-40cM 

seemed to be specific to the temperature entrainment. The chromosome 2 and 3 

interacting QTL were specific for temperature entrainment. The top arm of 

chromosome 4 interacting QTL seemed to be specific for light-dark entrainment, 

whereas the bottom arm interacting QTL of chromosome 4 was specific for 

temperature entrainment. The top arm chromosome five main effect QTL locus was 

shared component for both entrainments. Therefore, light and temperature 

entrainment seemed to use the both same and also different components. 

I found with MQM mapping that several loci contributed to the control of 

periodicity after light-dark or temperature entrainment. But what was the effect of this 

genotypic variation that brings on the total phenotypic variation? To answer that, I 

estimated the broad sense heritability of the trait. The broad sense heritability was 

0.82 for the light-dark entrainment and 0.85 for the temperature entrainment (Table 

3.5). These results suggested that the phenotypic variation can be assigned largely, but 

not totally, to the genetic variation. However, it is wrong to extrapolate that if an 

individual has 25 hours period after the light-dark entrainment the 85 %, which 
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accounts for 20.5 hours, is due to genes and the rest 15%, which equals to 4.5 hours 

due to environment. In general, the phenotype of an individual is a consequence of the 

interaction between its genes and its environment. Gene interaction will be 

extensively described in the next session for the light-dark and temperature 

entrainment. 
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Figure 3.4 MapQTL for the light-dark entrainment of the CvL population 

X axis represents the chromosome location, measured in cM, left Y axis represents the LOD 

score, and right Y axis represents the % of explained variance. This percentage is a measure 

of the effect of the QTL that supplies to the phenotype. The dotted line represents the LOD 

score threshold. It was set to 2.8 after calculation of 1000 permutations, for 95% significance 

level. 
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Figure 3.5 MapQTL for the temperature entrainment of the CvL population 

X axis represents the chromosome location, measured in cM, left Y axis represents the LOD 

score, and right Y axis represents the % of explained variance. This percentage is a measure 

of the effect of the QTL that supplies to the phenotype. The dotted line represents the LOD 

score threshold. It was set to 2.8 after calculation of 1000 permutations, for 95% significance 

level. 
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3.1.4  Allelic interactions 

ANOVA analysis has shown both significant RIL x Environment interactions 

and significant genetic differences among RILs (Tables 3.3 and 3.4). Common, but 

also different, periodicity QTLs after the two entrainments were identified. Further, I 

could investigate how each allele at a specific locus contributes to the phenotype, and 

thereby find additive effects by deducing the effect of the two allelic forms of each 

locus. Moreover, in the case of QTL interactions, I could study allelic effects of 

interacting QTLs, and find epistatic relationships among different allelic 

combinations. The epistatic relationships between allelic forms of the respective 

QTLs identified for the different entrainment conditions, and their additive effect on 

period are represented in the following graphs (Figures 3.6-3.12). The analysis was 

performed by SPSS through GLM Univariate using period as a dependent variable, 

and using markers, and marker interactions as factors. The title on each graph 

represents the QTL location at which chromosome and the superscripted letter 

represent marker name where the QTL was identified. Ler and Cvi are the allelic 

forms of each QTL. In case of QTL interactions, the first code letter stands for the 

first QTL, the second letter code stands for the second QTL. Figures 3.6-3.9 represent 

interactions for light-dark entrainment QTLs and Figures 3.10-3.12 for temperature-

entrainment QTLs. An extensive description of allele specific effects of each QTL or 

interactions of QTL for each entrainment will be described below.  

For the light-dark entrainment, the chromosome 1 QTL at PW4 locus shown 

in Figure 3.6 has an additive effect of 1.131 hours after light-dark entrainment, with 

Ler allele being longer period than the Cvi allele (Figure 3.6, Table 3.5). This period 

QTL was found to have the largest effect for this entrainment. According to the 

applied F-test, by ANOVA, the probability value is <0.001, therefore it was found to 

be highly significant QTL. The fifth chromosome QTL at marker locus BH.107L-Col 

has an additive effect of 0.838 hours, with Cvi allele showing a longer period 

compared to the Ler allele (Figure 3.7, Table 3.5). The P-value for this QTL is 0.001. 

The contribution of the Cvi allele of the fifth chromosome QTL at locus CC.262C 

was 0.466 hours (Figure 3.8, Table 3.5). Although the additive effect of this QTL in 

the phenotype was smaller than the two previous QTLs, the P-value is <0.001 

therefore was highly significant. ANOVA application for the interaction between two 
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QTLs, those of chromosome 1 at PW4 locus and chromosome 5 at CC.262C locus, 

was highly significant for P<0.001 (Figure 3.9, Table 3.5). The interaction of the Ler 

alleles of the QTL at PW4 locus to the Cvi allele at the CC.262C locus showed a 

long-period phenotype that was significantly different from the other allelic 

combinations.  

For the temperature-entrainment protocol, the additive effect of the Ler allele 

of the main QTL at chromosome 1 at locus CH.160L-Col was 1.094 hours (Figure 

3.10, Table 3.5). This was a highly significant QTL for P=0.001, as being processed 

by ANOVA. The Cvi allele of the second main QTL in chromosome five at locus 

CC.262C had an additive effect of 0.539 hours (Figure 3.11, Table 3.5). The 

interaction of these two QTLs was significant. The period of the interaction of Ler 

allele at CH.160L-Col and the Cvi allele of the CC.262C was longer than the period 

length of either of the single alleles (Figure 3.12, Table 3.5).  

Collectively, it was described that light and temperature input into the 

circadian oscillator are mediated by both the same and by different QTLs. Many of 

the QTLs co-localize with already known circadian genes, although some are novel 

QTL. This includes the third chromosome QTL at the EG.75L locus. In the future, 

studies should focus on the confirmation of the phenotype, to the cloning of QTLs, 

and to complementation of the phenotype by transgression of the Ler allele into the 

Cvi genome.  
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Figure 3.6 Period variation due to allelic variation of the first chromosome QTL at PW4 

locus after the light-dark entrainment in the CvL population 

In X-axis the number represents the chromosome number and the superscripted Ler and Cvi 

are designated for the Landserg erecta and Cape verde islands allele respectively. Bars 

represent standard error. 
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Figure 3.7 Period variation due to allelic variation of the fifth chromosome QTL at 

BH.107L-Col locus after the light-dark entrainment in the CvL population 

In X-axis the number represents the chromosome number and the superscripted Ler and Cvi 

are designated for the Landserg erecta and Cape verde islands allele respectively.  Bars 

represent standard error. 
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Figure 3.8 Period variation due to allelic variation of the fifth chromosome QTL at 

CC.262C locus after the light-dark entrainment in the CvL population 

In X-axis the number represents the chromosome number and the superscripted Ler and Cvi 

are designated for the Landserg erecta and Cape verde islands allele respectively. Bars 

represent standard error. 
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Figure 3.9 Period variation due to interaction of two QTLs at chromosome 1 at locus 

PW4 and chromosome 5 at locus CC.262C after the light-dark entrainment in the CvL 

population 

In X-axis the number represents the chromosome number and the superscripted Ler and Cvi 

are designated for the Landserg erecta and Cape verde islands allele respectively. Bars 

represent standard error. 
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Figure 3.10 Period variation due to allelic variation of the first chromosome QTL at 

CH.160L-Col locus after the temperature entrainment in the CvL population 

In X-axis the number represents the chromosome number and the superscripted Ler and Cvi 

are designated for the Landserg erecta and Cape verde islands allele respectively. Bars 

represent standard error. 
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Figure 3.11 Period variation due to allelic variation of the fifth chromosome QTL at 

CC.262C locus after the temperature entrainment in the CvL population 

In X-axis the number represents the chromosome number and the superscripted Ler and Cvi 

are designated for the Landserg erecta and Cape verde islands allele respectively. Bars 

represent standard error. 
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Figure 3.12 Period variation due to interaction of two QTLs at chromosome 1 at locus 

CH.160L-Col and chromosome 5 at locus CC.262C after the temperature entrainment 

in the CvL population 

In X-axis the number represents the chromosome number and the superscripted Ler and Cvi 

are designated for the Landserg erecta and Cape verde islands allele respectively. Bars 

represent standard error. 
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Table 3.5 Concentrated results for the QTL identified in the CvL population after light 

dark or after temperature entrainment 

h2 denotes the heritability of the trait for a specific environment. Marker, chromosome and 

position describe the exact location of the QTL identified. F is the value of the F-test 

calculated by ANOVA. P value is the probability value. <0.001 indicates very highly 

significant QTLs. 2a is the additive effect of the QTL calculated as the difference of the two 

alleles, and it is measured in hours. 

 
 

         
Trait Environment h² Marker Chromosome Position F P value 2a 

      (cM)   (h) 
PER LD 0.82             
    PVV4 I 0 17.270 <0.001 1.131
    BH.107L-Col V 20 13.418 0.001 0.838
    CC.262C V 92 28.449 <0.001 0.466

    
PVV4 * 
CC262C I*V 0*92 26.488 <0.001 - 

          
PER TMP 0.85             

    CH.160L-Col I 31 8.929 0.001 1.094
    CC.262C V 92 11.379 0.002 0.539

      
CH.160L-Col * 
CC.262C I*V 31*92 4.629 0.040 - 
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3.2  Light dark vs temperature entrainment of Bay/Sha RIL 
In the previous sub-chapter (3.1.3), the natural variation present in the CvL 

collection was used as a successful tool to map temperature entrainment QTLs. Here, 

the same trait, circadian rhythmicity, was assessed in a second RIL population 

generated by the cross of Bayreuth-0 to Shakdara, hereafter BxS. This RIL population 

was selected because the two accessions, Bay-0 and Shakdara, originate form distinct 

altitude environments. Bayreuth-0 originated from Germany, and is a fallow land 

habitat at 350 meters, whereas Shakdara collected in Tadjikistan at 3.500 meter 

altitude. At this altitude, plants generally confront higher light intensities and colder 

temperatures. Therefore, it was of interest to study circadian rhythmicity in this 

genetic background, and compare the findings to the CvL collection. As with the CvL 

collection, the existing BxS RIL population was also transformed with CCR2::LUC. 

For most of these lines, multiple plants derived from independent transformants were 

assayed under constant light after light dark, or after temperature entrainment. The 

arbitrary number of BxS RILs, as given by Loudet et al., the circadian period, the 

standard deviation per RIL line, and the standard error of the mean of the individuals 

of each RIL line after light-dark or temperature entrainment in constant light are 

showed in the Tables 3.6 and 3.7, respectively. It should be noted that the intraline 

variation was found to be higher in the BxS population (Tables 3.6 and 3.7) compared 

to CvL (Tables 3.1 and 3.2). Therefore, a larger number of plants in the BxS 

experiments were used for averages to obtain more statistically accurate period 

estimates to process with QTL mapping. 



CHAPTER 3      Quantitative analysis of light-dark vs temperature entrainment 

 
70

 

RIL 
NAME 

LD 
PERIOD SD SE 

 RIL 
NAME 

LD 
PERIOD SD SE 

7 26.733 1.953 0.564  146 25.995 0.943 0.164 
13 25.998 0.758 0.165  147 25.749 0.943 0.155 
15 23.592 0.587 0.142  155 26.657 1.250 0.273 
30 27.143 1.615 0.417  157 28.705 1.410 0.425 
37 26.057 1.120 0.354  162 26.500 1.602 0.303 
45 27.075 1.846 0.331  165 26.487 0.869 0.149 
53 26.053 1.495 0.283  173 25.799 1.184 0.296 
55 25.544 1.368 0.432  175 27.031 1.420 0.367 
59 25.135 1.305 0.299  176 27.471 1.033 0.225 
61 28.028 1.385 0.462  179 27.861 0.841 0.146 
67 26.107 0.707 0.213  183 25.792 1.451 0.484 
70 24.784 0.990 0.313  186 26.908 1.269 0.232 
78 25.544 0.979 0.225  187 26.310 1.496 0.234 
83 26.090 1.377 0.316  190 27.653 2.133 0.410 
92 24.145 0.486 0.154  191 27.598 2.391 0.416 
98 25.400 1.079 0.225  194 25.689 0.672 0.168 
99 25.371 1.287 0.388  195 26.486 0.941 0.140 

102 26.354 1.707 0.402  200 28.191 0.884 0.280 
106 26.449 1.602 0.414  210 26.836 0.702 0.234 
111 27.045 1.084 0.209  211 27.730 0.601 0.227 
112 25.585 1.483 0.332  214 27.976 0.563 0.213 
114 27.763 1.393 0.360  234 27.869 1.005 0.251 
123 26.382 1.739 0.371  240 28.695 1.806 0.414 
126 25.391 1.017 0.384  252 28.567 1.364 0.341 
127 26.711 0.951 0.218  262 27.423 1.028 0.265 
129 26.005 0.788 0.161  264 27.787 2.050 0.775 
131 25.574 1.148 0.271  298 25.986 1.109 0.237 
133 26.263 1.318 0.229  300 26.238 1.010 0.337 
134 27.416 0.948 0.202  320 27.596 0.627 0.157 
135 26.587 0.922 0.141  325 27.305 1.056 0.318 
136 26.798 1.734 0.481  329 27.733 1.329 0.343 
137 26.609 1.448 0.374  364 26.119 0.805 0.268 
140 27.537 0.837 0.136  368 28.049 0.927 0.328 
143 28.064 1.016 0.272  394 26.607 1.368 0.353 

 

Table 3.6 The free-running period of the Bay/Sha RIL collection under constant light 

after entrainment to 12 hours light followed by 12 hours dark 

RIL NAME corresponds to the arbitrary name as given in Loudet et al. for the BxS 

population (Loudet et al., 2002). LD period corresponds to averaged period after light-dark 

entrainment. SD is the standard deviation of the period and SE is the standard error of the 

mean period. 
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RIL 
NAME 

TMP 
PERIOD SD SE 

 RIL 
NAME 

TMP 
PERIOD SD SE 

7 25.399 0.800 0.253 165 26.326 1.187 0.233 
30 26.025 1.159 0.273 173 25.619 0.523 0.131 
37 25.481 1.016 0.233 179 27.066 1.414 0.243 
45 25.882 0.373 0.124 186 26.195 1.079 0.279 
53 26.225 0.978 0.173 187 26.989 1.147 0.234 
59 23.982 1.366 0.268 190 25.825 1.513 0.323 
61 27.082 1.155 0.289 191 26.384 1.032 0.258 
83 25.447 0.885 0.215 194 25.271 0.894 0.211 
92 23.867 0.952 0.317 195 26.362 1.412 0.223 
98 24.934 0.836 0.192 198 26.615 0.613 0.217 

111 27.082 1.106 0.179 199 26.345 0.622 0.254 
112 25.443 1.668 0.327 200 27.576 0.811 0.244 
114 27.623 1.187 0.265 210 26.136 0.518 0.232 
118 26.300 1.156 0.366 211 27.986 1.467 0.464 
126 26.175 2.002 0.472 214 27.763 0.811 0.331 
127 26.054 0.822 0.155 220 26.438 0.476 0.194 
129 25.807 0.793 0.153 232 27.511 0.644 0.215 
131 25.150 1.095 0.234 234 26.970 0.893 0.269 
133 25.947 0.999 0.169 240 26.991 0.920 0.223 
134 27.518 1.162 0.260 252 26.482 0.772 0.345 
135 26.192 1.621 0.286 262 26.839 0.686 0.259 
136 25.809 0.708 0.224 264 26.233 1.394 0.805 
137 25.169 0.598 0.166 273 26.873 0.202 0.117 
140 27.508 0.797 0.123 289 26.440 0.745 0.373 
143 26.646 0.910 0.199 298 25.197 0.739 0.165 
146 25.956 1.004 0.161 300 25.035 0.439 0.166 
147 25.989 1.144 0.181 325 26.460 0.593 0.210 
155 26.562 1.186 0.233 329 27.070 0.652 0.188 
162 26.309 0.775 0.183 365 26.278 0.562 0.230 

 

Table 3.7 The free running period of the Bay/Sha RIL collection under constant light 

after entrainment to 12 hours at 22°C followed by 12 hours at 16°C 

RIL NAME corresponds to the arbitrary name as given in Loudet et al. for the BxS 

population (Loudet et al., 2002). TMP period corresponds to averaged period after 

temperature entrainment. SD is the standard deviation of the period and SE is the standard 

error of the mean period. 
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3.2.1 Period differences after LD or tmp entrainment of the BxS 

population 

As was seen with the CvL population, the differences of period in the two 

different entrainment conditions within one genotype were overlay plotted for BxS 

population (Figure 3.13). The period in most of the lines was significantly longer after 

light-dark entrainment compared to temperature entrainment. However, a reverse 

response was observed in the BxS population more often than in the CvL population. 

Furthermore, the majority of the BxS lines had a longer period than was seen with the 

majority of CvL lines. This might have an ecological meaning, since the parents of the 

two RIL populations are from drastically distinct environments. 
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 Figure 3.13 Period differences of rhythmic plants of BxS RIL collection of temperature-

entrained versus light-dark entrained plants 

X axis represents the arbitrary number of BxS RIL (Loudet et al., 2002), and Y axis 

represents period.     represents the period of temperature entrained plants, × represents the 

period of the light-dark entrained plants.  
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3.2.2 Statistic analysis of mean period after LD vs. tmp entrainment 

in the BxS RIL 

The circadian periodicity of the BxS collection varied similarly to was seen 

with the CvL collection. One difference was that the overall mean period of the BxS 

population after either light dark or temperature entrainment was longer than the 

respective mean period of the CvL collection (Tables 3.3 and 3.8). To test whether the 

averaged period of transformed BxS RILs for the two different entrainments was 

continuously distributed, the period was categorized in hour intervals, and then it was 

plotted against frequency. The plotting resulted in a continuous distribution of period 

after the two different entrainment protocols, as represented in Figure 3.14. Moreover, 

the free-running period of each averaged RILs after the entrainment to either light-

dark cycles or temperature cycles not only varied continuously, but was found to be 

normally distributed. When compared with the Figure 3.3, the BxS mean period 

seems to be longer than the CvL mean period after both entrainments. 
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Figure 3.14 The continuous distribution of period for 69 BxS Recombinant Inbred 

Lines.  

X-axis is period measured in hours and Y-axis represents number of BxS RILs with a certain 

period. The period was binned in 1 hour interval as of 23.0-23.9. TMP denotes temperature 

entrainment and LD light-dark entrainment. 
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Since period was normally distributed, all assumptions of ANOVA are 

fulfilled, and therefore, I could compare the mean period after the two entrainments. 

The upper and lower values for period for 95 % of the means fall into these bounds 

was calculated (Table 3.8). For 95% of confidence interval, the lower bound of mean 

period after light-dark entrainment did not overlap with the upper bound of the mean 

period after the temperature entrainment (Table 3.8). Moreover, the standard error of 

the mean was calculated and this is a measure of how much the mean period from RIL 

to RIL, within each environment, may vary from the overall mean calculated of each 

environment. Therefore the period after the two entrainment protocols was different. 

GLM Univariate analysis of variance was performed, using period as a 

dependent variable, to test for the main effect of the genotypes, environment and the 

environment by RIL interactions to the dependent variable. RIL and environment 

were used as fixed factors. Like for the CvL collection, the null hypotheses of the test 

were that the mean period is the same across RILs or different environments, and 

there was no RIL by environment interaction. R2 was used as a measure of how much 

the actual period data fit to the expected data. I found that the null hypothesis could be 

rejected (Table 3.9). This means that the mean of period after the two entrainment 

protocols did not differ either among different RILS or between the different 

environments. Furthermore it rejected the null hypothesis that there was no interaction 

between the two genotypes and environments. Moreover, the adjusted R2 indicated 

that about 40% of the mean period variation could be explained by genotype, 

environment or genotype by environment interaction.   
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Table 3.8  Statistic analysis of the BxS RIL lines used for QTL mapping showed that the 

period average for light and temperature are marginally different for 95% of confidence 

interval 

As environment, I consider the different entrainment protocols. The two bounds for 95% of 

confidence interval suggest that for the 95% of the RILS the mean period falls within the 

lower and upper bound, and the rest 5% is outside of these intervals. Standard error of a mean 

is a measure of the variation and it is dependent on the sample size.  a denotes the modified 

population marginal mean for the 95% Confidence Interval. 

 

Source SS df MS F Sig. 

Corrected Model 2367.045a 164 14.433 9.690 0.000 
Intercept 894504.347 1 894504.347 600517.3 0.000 
RIL 1929.917 87 22.183 14.892 0.000 
ENVIRONMENT 79.492 1 79.492 53.367 0.000 
RIL * 
ENVIRONMENT 205.399 76 2.703 1.814 0.000 

Error 3795.389 2548 1.490     
Total 1899758.869 2713       
Corrected Total 6162.434 2712       
a  R Squared = .384 (Adjusted R Squared = .344) 

 
Table 3.9 ANOVA analysis shows significant genotype by environment interaction for 

the two different entrainments 

SS is the sum of squares. df are the degrees of freedom. MS is the mean square calculated by 

dividing the SS by df. F is the F-ratio calculated by dividing MS by the error. Significance 

level was set to .05.  Significance of ≤.001 means highly significant differences or highly 

significant interactions. * denotes the testing for an interaction between two factors. 

  Mean Std. Error 95% Confidence Interval 
Environment     Lower Bound Upper Bound 
LD 26.640a 0.046 26.550 26.730 
TMP 26.213a 0.044 26.126 26.300 
a  Based on modified population marginal mean. 
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3.2.3 QTL mapping of BxS 

Circadian rhythmicity of the transformed with CCR2::LUC BxS RILs were 

successfully assayed for period in two different entrainments; after light-dark at 

constant warm temperature 22°C, and after warm-cold cycles of 12 hours at 22°C and 

12 hours at 12°C under constant light. Approximately 70 lines were phenotypically 

characterized for clock period, and it was found that the overall temperature-entrained 

plants have a shorter period mean than light-entrained plants (Table 3.8).  

As with the CvL collection, the circadian period of the BxS collection could 

be analyzed as a quantitative trait, since it was continuously and normally distributed. 

The statistical package MapQTL 5.0 was used to predict map genomic regions 

containing significant natural genetic variation that accounts for temperature or light-

dark entrainment. Interval mapping (IM), and consequently MQM mapping were 

performed for period separately in each entrainment. The procedure and assumptions 

of the MapQTL were the same as described in the CvL part at section 3.1.4. 

The QTL mapping of the BxS collection resulted in the identification of the 

same QTLs for the two entrainments (Figures 3.15 and 3.16). The QTL mapping 

revealed that QTLs localized at the chromosome 2 and 4 were mediating by both light 

and temperature entrainment (Figures 3.15 and 3.16). Though, the identified QTLs 

explained more of the phenotype in the light dark than in the temperature entrainment. 

Additionally, at some loci, a bimodal QTL was observed. For example at 

chromosome 2, I could not distinguish whether there was one or two QTLs at these 

loci since there is a restriction in the number of markers I could take as cofactors. 

Further statistic analysis of the QTL effects and possible interactions and their 

heritability will be described in the next session. 

For the light-dark entrainment, a QTL at chromosome two at 30-40cM was 

identified. The explained variance this QTL was about 30%.  The second QTL shown 

in Figure 3.17 localizes at the bottom of the fourth chromosome, at 60-70cM. The 

explained variance of this QTL was 30%. At 50-60 cM of the first chromosome, a yet 

as unidentified locus exists. The chromosome two and four QTLs were also identified 

for the temperature entrainment. Furthermore, the second and fourth chromosome 

identified main QTLs for either the light-dark or the temperature entrainment in the 

BxS collection, were also identified as an interacting QTLs for the temperature 
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entrainment in the CvL collection; this QTL might be a shared component between 

these two populations. At the second chromosome, at the area where the QTL was 

identified two circadian clock genes localized. One of these two genes was ELF3 and 

it was involved in gating light input to the clock, whereas the other gene, ELF4, is 

considered to form a feedback loop with CCA1 (Kikis et al., 2005). All these 

suggested that in the BxS population light-dark entrainment was mediated by the 

same loci as with temperature entrainment.  



CHAPTER 3      Quantitative analysis of light-dark vs temperature entrainment 

 
78

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90

LO
D

 sc
or

e

cM

0

10

20

30

%
 e

xp
la

in
ed

 v
ar

ia
nc

e

Group 1

0

1

2

3

4

0 10 20 30 40 50 60

LO
D

 sc
or

e

cM

0

10

20

30

%
 e

xp
la

in
ed

 v
ar

ia
nc

e

Group 2

0

1

2

3

4

0 10 20 30 40 50 60 70

LO
D

 sc
or

e

cM

0

10

20

30

%
 e

xp
la

in
ed

 v
ar

ia
nc

e

Group 3

0

1

2

3

4

0 10 20 30 40 50 60 70
LO

D
 sc

or
e

cM

0

10

20

30

%
 e

xp
la

in
ed

 v
ar

ia
nc

e

Group 4

0

1

2

3

4

0 10 20 30 40 50 60 70 80

LO
D

 sc
or

e

cM

0

10

20

30

%
 e

xp
la

in
ed

 v
ar

ia
nc

e

Group 5

0.0

0.5

1.0

0 1
0.0

0.5

1.0

Legend
«  LOD
«  2.4
»  % Expl.

 
Figure 3.15 MapQTL for the light-dark entrainment of the BxS population 

Left Y axis represents the LOD score, and right Y axis represents the % of explained 

variance. This percentage is a measure of the effect of the QTL that supplies to the phenotype. 

The dotted line represents the LOD score threshold. It was set to 2.4 after calculation of 1000 

permutations, for 95% significance level. 
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Figure 3.16 MapQTL for the temperature entrainment of the BxS population 

X axis represents the chromosome location, measured in cM, left Y axis represents the LOD 

score, and right Y axis represents the % of explained variance. This percentage is a measure 

of the effect of the QTL that supplies to the phenotype. The dotted line represents the LOD 

score threshold. It was set to 2.4 after calculation of 1000 permutations, for 95% significance 

level. 
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3.2.4  Allelic interactions in BxS 

Allelic interactions were tested for the QTLs identified in the BxS population 

for the two entrainments. There were not significant interactions between the 

identified QTLs for either of the two conditions. For the light-dark entrainment, the 

Bayreuth-0 allele of the second chromosome QTL at the locus MSAT2-41 was by 

0.834 hours longer than the Shakdara allele (Figure 3.17, Table 3.10). Additionally, 

the Bayreuth-0 allele of the fourth chromosome QTL at the MSAT4-37 locus has a 

longer period of 0.972 hours than the Shakdara allele (Figure 3.18, Table 3.10). Both 

QTLs were highly significant for P<0.001 (Table 3.10).  

For the temperature entrainment, QTLs at the same locations were identified 

as with the light-dark entrainment. The allelic differences in the mean period at a 

single QTL at MSAT-2.41 locus was about an hour with Bayreuth-0 allele having 

longer period than the Shakdara allele. This QTL was highly significant for P<0.001 

(Figure 3.19, Table 3.10). Moreover, the mean period difference of the fourth 

chromosome QTL at the locus MSAT-4.37 was approximately half an hour, with the 

Bayreuth-0 allele being longer than the Shakdara. This QTL was significant for 

P<0.05 (Figure 3.20, Table 3.10) 

Collectively, for the light-dark entrainment, two QTLs were found that were 

highly significant. These were located in chromosome 2 and 4. The chromosome 2 

QTL was highly significant for the temperature entrainment, but it has a smaller effect 

than in the light-dark entrainment. All the information described for BxS population is 

recapitulated in Table 3.10. To conclude, it seemed that the temperature entrainment 

in BxS was mediated by the same QTLs as for the light-dark entrainment. However, 

by comparing the two RILs populations, used in this study, in either light-dark or 

temperature entrainment, different QTL were identified for the different entrainment 

protocols, in the two different RILs populations. This suggests that the different genes 

may be involved in the circadian clock of these four ecotypes.    
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Figure 3.17 Period variation due to allelic variation of the second chromosome QTL at 

locus MSAT2-41 after the light-dark entrainment in the BxS population 

In X-axis the number represents the chromosome number and the superscripted Bay and Sha 

are designated for the Bayreuth-0 and Shakdara allele respectively. Bars represent standard 

error. 
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Figure 3.18 Period variation due to allelic variation of the fourth chromosome QTL at 

locus MSAT4-37 after the light-dark entrainment in the BxS population 

In X-axis the number represents the chromosome number and the superscripted Bay and Sha 

are designated for the Bayreuth-0 and Shakdara allele respectively. Bars represent standard 

error. 
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Figure 3.19 Period variation due to allelic variation of the fourth chromosome QTL at 

locus MSAT2-41 after the temperature entrainment in the BxS population 

In X-axis the number represents the chromosome number and the superscripted Bay and Sha 

are designated for the Bayreuth-0 and Shakdara allele respectively. Bars represent standard 

error. 
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Figure 3.20 Period variation due to allelic variation of the fourth chromosome QTL at 

locus MSAT4-37 after the temperature entrainment in the BxS population 

In X-axis the number represents the chromosome number and the superscripted Bay and Sha 

are designated for the Bayreuth-0 and Shakdara allele respectively. Bars represent standard 

error. 
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Table 3.10 Concentrated results for the QTL identified in the BxS population after light 

dark or after temperature entrainment 

h2 denotes the heritability of the trait for a specific environment. Marker, chromosome and 

position describe the exact location of the QTL identified. F is the value of the F-test 

calculated by ANOVA. P value is the probability value. <0.001 indicates very highly 

significant QTLs. 2a is the additive effect of the QTL calculated as the difference of the two 

alleles, and it is measured in hours.  

Trait Environment h² Marker Chromosome Position F 
P 

value 2a 
     (cM)   (h) 

PERIOD LD 0.75             
    MSAT2_41 II 34.5 14.246 <0.001 0.834
    MSAT4_37 IV 69.9 18.971 <0.001 0.972
            
PERIOD TMP 0.76             

   MSAT2_41 II 34.5 18.277 <0.001 0.905
    MSAT4_37 IV 69.9 4.332 0.042 0.438
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3.3  Temperature entrainment in constant darkness: 

etiolated tissue QTLs 

To remove the confounding effect of light from the response of temperature 

entrainment, as was performed for the CvL and BxS collections under constant light, 

plants were synchronized in temperature cycles in the absence of light, free run in 

constant darkness, and circadian period measurement were made. For this, a different 

experimental set up was required. The seed for these experiments was plated in 

clusters of 100 seeds for each genotype and not as individuals as it was for the other 

two entrainments. Furthermore, a set of CvL RILS was tested for period in constant 

darkness after they have been entrained for a week with temperature cycles in 

constant darkness, or in temperature cycles under constant light. The total number of 

lines assayed for period is showed in Table 3.11. 

The circadian rhythms of the light-entrained plants in temperature cycles 

displayed ‘disturbed’ rhythms when the free run was assayed in constant darkness. 

This was as compared to the robustness of rhythms of the dark grown plants, as it was 

indicated by relative amplitude error (R.A.E.) (Figure 3.21). RAE is a measure of 

rhythmicity that take values from 0-1 where 0 is highly rhythmic and 1 is arrhythmic. 

The light-grown plants had on average R.A.E. of 0.42, whereas the dark grown plants 

had on average R.A.E. of 0.15. Due to the high R.A.E., I decided to process with QTL 

mapping only on the dark-grown plants. All genotypes that grew in darkness and 

temperature cycles displayed a lengthening in period of 2-5hours compared to the 

light-grown plants. Another interesting observation was that light-grown plants show 

higher CCR2 expression than the dark grown plants (Figure 3.21).  
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CvL RIL PERIOD CvL RIL PERIOD CvL RIL PERIOD 
5 32.497 47 30.864 142 27.965 
6 25.510 48 28.943 150 26.430 

11 26.044 49 31.050 151 27.263 
12 30.158 50 26.932 153 33.710 
13 28.973 61 28.178 156 28.320 
16 25.554 64 28.860 174 31.240 
19 32.773 66 26.940 175 26.220 
20 29.907 72 25.334 183 29.530 
27 28.255 114 28.478 187 25.830 
31 33.890 116 25.895 193 29.084 
36 25.228 131 28.240   
44 27.017 140 26.496   

 

Table 3.11 The free running period of the Cvi/Ler RIL collection in constant darkness, 

after entrainment in temperature cycles in constant darkness 

CvL RIL corresponds to the arbitrary number as given in Alonso-Blanco et al (Alonso-

Blanco, 1998). Period corresponds to measurement of a cluster of 100 seedlings. 
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Figure 3.21 CCR2 expression under constant darkness as reported by luciferase in 

various CvL independent lines after temperature cycles in constant darkness 

DD symbolizes temperature entrainment under constant darkness, and LL symbolizes 

temperature entrainment under constant light.  a, b, c denoted independent transformants of a 

respective CvL RIL. 44, 47, and 50 denoted different CvL RILs. 
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3.3.1  Non-normal distribution of period in etiolated periodicity 

  The mean period of the CvL population, after temperature entrainment in 

constant darkness, was estimated and plotted against frequency to study whether the 

distribution of the data was normal. In Figure 3.22, the frequency distribution of CvL 

period after temperature entrainment in constant darkness was graphed. The period of 

the CvL lines assayed in constant darkness, after temperature entrainment in constant 

darkness, ranged from 25 to 33 hours, with most lines displaying approximately 28 

hour periodicity (Figure 3.22). Here, it was found that period is continuously 

distributed, but not in a normal manner. This finding modified the QTL-identification 

process, compared to the temperature entrainment in constant light.  

To further statistically determine whether the distribution of the period 

matches the normal distribution, a probability Q-Q plot was performed. Probability 

plots are generally used to determine whether the distribution of a variable matches a 

given distribution. If the selected variable matches the test distribution, the points 

cluster around a straight line. In this test, the quantiles of the measured (observed) 

period distribution is plotted against the quantiles of any of a number of test 

distributions (expected). The expected normal period is depicted in the Y-axis, 

whereas the observed normal period is depicted in the X-axis. Thus, the data are not 

normal (Figure 3.23). 

According to the Q-Q plot in Figure 3.23, the period values of most of the 

CvL lines fit close to the straight line. However, some outlier lines exist. In these 

outlier lines, the observed period was longer than the expected period. Recall that the 

period in this experiment represents the averaged period of a cluster of 100 seeds. 

This was different than in the other experiments where individual seedlings were 

measured for period. Therefore, further statistic analysis such as ANOVA could not 

be performed because the set up of the experiment did not allow the measurement of 

period of individual seedlings. In that sense, heritability could not be estimated since 

variation within RILs was not measured. 
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Figure 3.22 Continuous distribution of period of 34 CvL RILs after temperature 

entrainment in constant darkness 

X-axis is period, measured in hours, and Y-axis represents number of CvL RILs with a certain 

period denoted as frequency.  
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Figure 3.23 Normal Q-Q plot to test for normality of continuous distribution of period 

for 34 CvL Recombinant Inbred Lines 

X-axis is the observed period, measured in hours and Y axis represents the expected period, 

measured in hours.  
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3.3.2  QTL mapping results of CvL in temperature cycles in constant 

darkness 

The CvL lines transformed with CCR2::LUC were synchronized for seven 

days in temperature cycles of 12 hours at 22°C and 12 hours at 12°C under constant 

darkness. After application of luciferin in constant darkness conditions, the seedlings 

were free run in constant darkness and imaged. From all lines tested, only those that 

all the independent transformed lines gave exactly the same luciferase pattern were 

used for QTL mapping. In total thirty-nine lines were phenotypically characterized for 

clock period, and most of them were used for QTL detection after temperature cycles 

under constant light. For QTL mapping, initially, a nonparametric mapping using the 

Kruskal Wallis option of the MapQTL software was performed, due to the non normal 

distribution of the data (Figure 3.24). Kruskal Wallis considered a nonparametric 

equivalent to one-way ANOVA. For this test, it was assumed that the period has a 

continuous distribution, and was divided in an ordinal level of measurement. The 

period used for the QTL mapping ranges from 25 to 33 hours. For the mapping, the 

software first ranks the individuals by the period and then it classifies them according 

to their marker genotype.  

In the Kruskal Wallis QTL mapping, a QTL at the first chromosome at 0-

10cM was detected for probability of 0.01 and one or more QTL at 24-32cM for 

probability of 0.001. At the third chromosome, two QTLs, one at the 10-15cM for 

probability 0.01, and the bottom at 75-84cM for probability of 0.05, were detected. At 

the fourth chromosome, at 70-75cM a QTL was detected for 0.05 probability. At 

chromosome 5, from 100-110cM, another QTL was detected with a probability of 

0.001. According to this analysis, and using a stringent threshold, two QTLs, at the 

first chromosome at 24-32cM, and at the fifth chromosome at 100-110cM, can be 

accounted as a main effect QTLs, whereas the others could be interaction QTLs. 

However, in this test, I could not test the effect of nearby QTLs, by selecting 

cofactors.  

The different experimental set up used for the temperature entrainment in 

constant darkness would justify that period might not be normally distributed. 

Therefore, I performed IM and MQM mapping to compare with the Kruskal-Wallis 

test. Even after the IM and MQM were tried, QTLs were detected in the same 
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locations as with the Kruskal-Wallis test (Figure 3.25). Only at two chromosomes 

QTLs exceeded the LOD threshold of 2.9. In the first chromosome one or more main 

QTLs can be located at 24-32cM. GI colocalizes to this locus. At the bottom end of 

chromosome five, a main QTL was also detected at 100-110 cM. A candidate gene for 

this locus could be TOC1, PRR3, or SRR1. At chromosome 1 at 0-10cM, and in 

chromosome 3 at 0-10cM, two QTLs, although they did not exceed the LOD 

threshold, had large effects on the phenotype. These two could be considered as 

interacting QTLs. Further statistic analysis for the allelic interactions will be tested in 

session 3.3.3.  
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Figure 3.24 Kruskal Wallis application of MapQTL for QTL detection after 

entrainment to temperature cycles in constant darkness of the CvL population 

X axis represents the chromosome location, measured in cM, and Y axis represents the LOD 

score. 
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Figure 3.25 MQM output of MapQTL for QTL detection after entrainment to 

temperature cycles in constant darkness of the CvL population 

 X axis represents the chromosome location measured in cM, and the left Y axis represents 

the LOD score, whereas the right Y axis represents the % of explained variance. This 

percentage is a measure of the effect of the QTL that supplies to the phenotype. The dotted 

line represents the LOD score threshold. It was set to 2.9 after calculation of 1000 

permutations, for 95% significance level. 
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3.3.3  Allelic interactions in CvL after the temperature entrainment 

in constant darkness 

Allelic interactions were tested for the QTLs identified in the CvL population 

after temperature entrainment under constant light. Although in the QTL mapping 

several QTL appear, when tested through Univariate analysis then only two of them 

were the most significant. The main effect loci were the same in the first 

chromosome, but could be different for the fifth chromosome. Specifically, the Ler 

allele of the first chromosome QTL at the locus CH.160L-Col was 3.29 hours longer 

than the Cvi allele (Figure 3.26, Table 3.12). Additionally, the Cvi allele of the fifth 

chromosome QTL at the HH.143C locus has a longer period of 3.15 hours than the 

Ler allele (Figure 3.27, Table 3.12). Both QTLs were highly significant for P=0.004 

(Table 3.12). Although MQM mapping possible interacting QTLs were indicated, in 

the statistic analysis turned out that there was no significant QTL interactions. The 

above described results are recapitulated in Table 3.12.    
To conclude, the two main QTLs after temperature entrainment in constant 

darkness co-localized to some of the main QTLs identified after temperature 

entrainment under constant light. However, after temperature entrainment under 

constant light, an additional main QTL was found that was the only main QTL 

identified in the light-dark entrainment. Since in the natural world, light-dark and 

temperature changes occur together during the 24 hours cycle, temperature 

entrainment under constant light represents the integrative model that incorporates 

both the effects of the light-dark and temperature entrainment. To further compare the 

phenotype after the two temperature entrainment protocols, it appeared that the free-

running period (FRP) due to the two QTLs found in constant darkness was longer 

than the FRP of the respective QTLs found in the constant light (Figures 3.3 and 

3.22). Additionally, the allelic differences of the FRP due to either QTL were larger in 

constant darkness than under constant light, as they described by the additive effect 

(Figures 3.10, 3.11, 3.26, 3.27). 
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Figure 3.26 Period variation due to allelic variation of the main effect QTL at the first 

chromosome at locus CH.160L-Col identified for temperature entrainment in constant 

darkness in the CvL population 

In X-axis the number represents the chromosome number and the superscripted Ler and Cvi 

are designated for the Landserg erecta and Cape verde islands allele respectively. Bars 

represent standard error. 
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Figure 3.27 Period variation due to allelic variation of the main effect QTL at the first 

chromosome at locus HH.143C identified for temperature entrainment in constant 

darkness in the CvL population 

In X-axis the number represents the chromosome number and the superscripted Ler and Cvi 

are designated for the Landserg erecta and Cape verde islands allele respectively. Bars 

represent standard error. 
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Trait Environment Marker Chromosome Position F P value 2a 
    (cM)   (h) 

        
PERIOD TMP in DD             

    CH.160L-Col I 31 6.833 0.004 3.29
    HH.143C V 102 9.636 0.004 3.15

 

Table 3.12 Concentrated results for the QTL identified in the Cvi/Ler population after 

temperature entrainment in constant darkness 

Marker, chromosome and position describe the exact location of the QTL identified. F is the 

value of the F-test calculated by ANOVA. P value is the probability value. <0.001 indicates 

highly significant QTLs. 2a is the additive effect of the QTL calculated as the difference of 

the two alleles, and it is measured in hours. TMP in DD denotes temperature cycles in 

constant darkness 
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4  GENERATION OF NEW RILS COLLECTIONS  

INTRODUCTION 

RILs are useful genetic resources to exploit the genetic variation between the 

two parental strains and map loci that account for any continuous phenotypic variation 

between these parents. In many cases, the phenotypic variation cannot be explained 

by a single locus. In contrast, different allelic combinations between various loci and 

their genetic interaction determine the variation on the phenotype. Natural-variation 

studies have revealed several loci that were not revealed in mutagenesis screens 

(Koornneef et al., 2004). Therefore, constructed RILs have become a robust 

alternative tool for mapping genes.  
Natural variation has been used to map genetic variation that controls 

continuous traits. Flowering time and circadian rhythmicity are two such traits 

(Alonso-Blanco et al., 1998; Swarup et al., 1999). So far, ecotype-specific variation 

was found to control both traits (Swarup et al., 1999; Johanson et al., 2000; El-Din El-

Assal et al., 2001; Michael et al., 2003b). Flowering time is regulated by internal and 

external factors. The external factors involve environmental cues, such as light and 

temperature. These two cues regulate flowering time through different pathways. As 

an example, prolong treatment to chilling cold ultimately induces flowering time 

through the vernalization pathway (Amasino, 2005). The central gene of this pathway 

is the repressor Flowering Locus C (FLC) (Michaels and Amasino, 1999). After 

extended cold temperatures, the expression of FLC is suppressed, and thereby, 

flowering is induced. Natural variation at the FLC locus has been detected repeatedly 

(Gazzani et al., 2003; Shindo et al., 2005). As a separate example, light information is 

mediated through the photoperiodic pathway, upstream of which is the circadian clock 

(Davis, 2002; Yanovsky and Kay, 2002). A major determinant of the photoperiodic 

pathway is a circadian regulated gene named CONSTANS (CO) (Putterill et al., 1995; 

Suarez-Lopez et al., 2001). CO induces the expression of a downstream gene named 

Flowering locus T (FT) (An et al., 2004). Up to now, no QTL has been identified at 

the CO or FT locus, suggesting that neither mediates natural-allelic variation of 

photoperiodism.  

In addition to flowering time, environmental changes in light and temperature 

also set the circadian clock (Barak et al., 2000; McClung, 2006). In Chapter 3, natural 
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variation was exploited with regard to temperature versus light-dark entrainment of 

the circadian oscillator. For this, two pre-existing RILs populations were used. 

Generally, RILs are constructed by crossing two accessions that were originated from 

distinct environments. This has the advantage that the accessions have been selected 

differentially and QTL mapping will reveal these naturally selected variants. 

However, if the parental accessions are not commonly used, then the QTL fine 

mapping, phenotypic confirmation, and complementation will be progressively 

slowed down. To overcome these caveats, I describe here the creation of six new RIL 

populations using the four most popular accessions used in A. thaliana genetic 

studies. In this chapter, exploitation of natural variation of one RIL population 

controlling flowering time and circadian rhythmicity will be described. Their 

correlation will be noted. 
 

4.1  Generation of new Recombinant Inbred Lines (nRILS) 

The new sets of RILs were generated from pairwise crosses between the four 

most commonly used A. thaliana lab accessions, named Columbia (Col), 

Wassilewskija (WS), Landsberg erecta (Ler), and C24. Particularly, two accessions, 

WS and Ler, were harboring CCR2::LUC, and those were used as pollen donor in 

pairwise crosses. WS CCR2::LUC was respectively crossed to Col, C24, or Ler, 

whereas Ler CCR2::LUC was respectively crossed to Col, WS, and C24 (see 2.2.2.3). 

These F1s where backcrossed to the maternal parent and from 96 BC1 lines, 6 lines 

were selected for long, and six for short period, by assaying CCR2::LUC rhythms. 

Period was defined here as the time difference between the second and third peak of 

CCR2 rhythms. These BC1 lines were self-fertilized. The BC1F2 progeny went 

through a second selection. Each BC1F2 line was selected for 8 out of 96 progeny. 

This resulted in 48 extremely short period (SP) lines such as 19-23 hours, and 48 lines 

with very long period (LP) from 26-32 hours. This was to my knowledge the first time 

that RILs were constructed in a non-random way. Therefore, it will be of interest to 

study segregation distortion (SD) based on phenotypic selection, and especially, to 

study whether the undertaken selection for CCR2::LUC rhythms affected other 

circadian regulated traits, such as hypocotyl elongation, and flowering time. This is 

partially tested below.  
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The new RILs (nRILs) have several significant advantages over other pre-

existing RILs that could potentially improve their use for circadian-rhythm assays. 

The first advantage is that all lines were generated by crossing an accession bearing 

CCR2::LUC to a wild-type accession. In this case, CCR2::LUC was inserted in the 

same position in the genome in resultant RIL. In this way, phenotypic variation due to 

the positional effects of the T-DNA insertion was minimized. The lines in Chapter 3 

suffer from this position effect disadvantage. The second advantage is that about 90% 

of the available genetic resources in the A. thaliana community exist in these four 

accessions. This eases the effort to map these lines, and in the future, should reduce 

the time needed to clone QTLs identified for a diverse natural-variation studies. The 

third advantage is that the RILS generated by a reciprocal cross can be used to study 

maternal effects of any given trait. This is particularly true for the population 

generated by the Ler x WS and WS x Ler.  

The RIL population generated by the cross between C24 to WS exhibited 

flowering-time variation (see 4.3). It was particularly interesting to map loci 

responsible for this remarkable phenotypic variation. Additionally, this RIL was 

assayed for circadian rhythmicity in light-dark and this was compared to temperature 

entrainment. Flowering time is partially controlled by the circadian clock. Therefore it 

was of interest to compare the maps of these two traits in the same population and to 

determine whether the traits co-segregate. What follows is the evaluation of the 

C24WS RIL. 

4.2  Determination of the genotype WSC24 RIL lines 

The C24WS RILs were genotyped across five chromosomes with markers that 

were polymorphic for genomic sequence repeats found on the genome of A. thaliana. 

The criterion was to have evenly distributed markers across the genome. Therefore 

markers that were around 5 Mb apart were selected. A genetic map for each line was 

constructed by genotyping the RILs with 34 markers distributed in all five 

chromosomes. The genotype of all 85 lines is shown in Appendix 1. Twenty-five 

percent of the genome of each RIL was expected to be WS, and the remaining 

seventy-five percent was expected to be C24, since the F1 lines were backcrossed to 

C24. However, I found that some lines deviated from the expected ratios. There are 

genomic regions that a C24 allele was overrepresented. Especially, the SP-selected 

lines showed such overrepresentation of the C24 allele versus the WS allele all over 
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chromosome 1 (Table 4.1). Over representation of WS allele was observed at the top 

of chromosome 3. Since this was observed in all lines, one plausible explanation here 

is that this is the location of the CCR2::LUC T-DNA insertion, from the WS pollen 

donor. 
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Table 4.1 Allelic frequencies at various loci in the first chromosome for the long and 

short period selected lines 

The frequency of C24 and WS alleles of six markers at chromosome one were assayed. Total 

LP corresponds to the total number of long-period-selected lines, whereas total SP to the total 

number of short-period-selected lines. Note that approximately 10% of the SP lines have a 

WS allele at a given marker. 

Chromosome 1 

C24 

allele 

WS 

allele 

Total LP 

selected lines 

 C24 

allele 

WS 

allele 

Total SP 

selected lines 

NGA59 33 10 43  38 4 42 

NGA63 29 14 43  38 4 42 

MSAT1-10 24 19 43  36 6 42 

SO392 21 22 43  36 6 42 

T27K12 23 20 43  38 4 42 

CIW1 23 20 43  36 6 42 
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4.3  Determination of two continuous traits in the C24WS 

RILS 

4.3.1  Flowering-time assays of C24WS RIL under inductive long 

days 

The RIL set generated by the cross of WS to C24 exhibited remarkable 

flowering-time variation. Flowering time is a continuous trait, and as such, QTL 

studies can be readily performed. For this, I measured flowering-time within the 

WSC24 RILs under long days in greenhouse-controlled conditions (see 2.2.6). 

Flowering time was assayed as total leaf number (TLN). Eight plants per RIL were 

measured and the averaged TLN per RIL was used for QTL mapping. The averaged 

TLN per RIL was rounded to the closest higher-integer number (Table 4.1). In total, 

85 RIL lines were assayed. This resulted in about 680 plants being scored. In five 

RILs, less than eight plants were assayed due to reduced germination, therefore they 

were not included in the QTL mapping. Lines 1-43 were those selected for SP, 

whereas lines 44-85 were those selected for LP, as described in 4.1. The LP-selected 

lines exhibited the later-flowering phenotypes, whereas the SP-selected lines 

exhibited the earliest flowering-time phenotypes (Table 4.2). Thus, the selection of 

the clock resulted in phenotypic consequences.  

The flowering-time phenotype described in Table 4.2 was then grouped in 6 

interval classes and plotted against frequency (Figure 4.1). More than 50% of all lines 

flowered with fewer than twenty leaves. Interestingly, the extremely late-flowering 

lines were those selected for long period. The general trend as observed in Figure 4.1 

is that LP-selected lines flowered later than the SP-selected lines. 
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RIL 
NAME TLN   

RIL 
NAME TLN   

RIL 
NAME TLN 

1 14   30 12   59 38 
2 36   31 11   60 42 
3 45   32 11   61 11 
4 24   33 13   62 39 
5 32   34 10   63 12 
6 44   35 11   64 7 
7 12   36 9   65 6 
8 12   37 11   66 13 
9 21   38 9   67 12 

10 14   39 24   68 10 
11 15   40 18   69 5 
12 22   41 33   70 7 
13 20  42 35   71 12 
14 34   43 22   72 23 
15 53  44 13   73 34 
16 22   45 25   74 13 
17 22   46 10   75 29 
18 10   47 19   76 11 
19 23  48 10   77 15 
20 -   49 14   78 36 
21 15   50 11   79 20 
22 7   51 9   80 11 
23 13   52 10   81 14 
24 33   53 22   82 13 
25 13   54 11   83 - 
26 10   55 13   84 13 
27 -   56 10   85 - 
28 6   57 7   WS 8 
29 6   58 8   C24 13 

 

Table 4.2 Flowering time variation of the WSC24 RIL collection grown in 16 hours 

light::8 hours darkness in greenhouse 

RIL NAME corresponds to the arbitrary name as given by me for the WSC24 population, 

TLN is the total leaf number measured by at least eight plants per experiment. Plants were 

shown twice within 2 weeks interval during November-December 2007. – indicates the lack 

of TLN data  
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Figure 4.1 The continuous distribution of total leaf number for 80 out of 85 C24WS 

Recombinant Inbred Lines 

X-axis is the total leaf number and Y axis represents number of C24WS RILs with a certain 

total leaf number (TLN). TLN was binned in 10 leaves interval as of 0-9. Note that there is a 

trend for LP lines being later flowering. 

 

0
10
20
30
40
50

0 10 20 30 40 50
Total Leaf Number (TLN)

FR
E

Q
U

E
N

C
Y ALL

LONG
PERIOD
SELECTED

SHORT
PERIOD
SELECTED

 



CHAPTER 4                                                      Generation of new RILs collections 

 
104

4.3.1.1  QTL mapping for flowering-time variation 
QTL mapping was performed for the measured TLN. I performed QTL 

mapping in three different ways, based on the observation that the latest-flowering 

plants correlated with those selected for LP, whereas the earliest-flowering genotypes 

correlated with those selected for SP (Figure 4.1). In the first mapping test, I included 

only the LP-selected C24WS RIL lines. In the second mapping test, I included only 

the SP-selected C24WS RIL lines. And in the third mapping test, I included all of the 

C24WS RIL lines. In this way, three maps would be generated from phenotypically 

selected circadian data. 

The QTL mapping for TLN of the LP-selected lines resulted in the detection 

of three main QTLs, and an interacting QTL (Figure 4.2). The main QTL was at 

chromosome 1 at the locus NGA59. Known genes in this interval are the circadian 

clock gene LHY, and two photoreceptor genes CRY2 and PHYA. Most likely, this 

QTL would be CRY2 since a natural variant already was found in Cvi accession (El-

Din El-Assal et al., 2001). This QTL explains more than 30% of the TLN phenotype. 

Another QTL was localized at chromosome 4 at locus FRI. An obvious candidate 

gene was FRIGIDA, a gene that is an activator of FLC (Shindo et al., 2005). The QTL 

at this locus explains less than 30 % of the flowering variation. The third main QTL 

was at chromosome 5 between NGA158 and NGA106. At this region FLC, is 

localized. An interaction QTL was localized at chromosome 1 at locus SO392. This 

QTL interacted strongly with the presumed FLC QTL. Several known flowering time 

genes co-localized at the proximity of the presumed FLC QTL, including 

CONSTANS, HUA2 (Suarez-Lopez et al., 2001; An et al., 2004; Doyle et al., 2005). 

This QTL explains more than 40% of the phenotype. Fine mapping will determine 

which is the underlying QTL.  

The QTL mapping for the SP-selected lines did not result in a QTL at the top 

of chromosome 1 (Figure 4.3). Three main QTLs were detected at the fifth 

chromosome at the loci NGA106, MSAT5.14, and NGA76 (Figure 4.3). A case with 

three nearby QTLs suggests that the middle QTL is a ‘ghost’. Its detection could be 

due to large genetic effects of two other QTLs. The percentage of the explained 

variance of the non ‘ghost’ QTLs could be different. The possibility that the middle 

QTL is not a real will be tested later by statistic analysis (4.3.1.2.2). Another main 

QTL, although it did not exceed the LOD threshold, was found at the chromosome 4 

at the locus FRI. In this QTL mapping assay, the LOD score was found to greatly vary 
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across the five chromosomes. Specifically, the LOD score at chromosomes 1 and 3 

was 6.4 and 6.6. In contrast at the chromosomes 2, 4, and 5, the LOD score was 2.0, 

2.3 and 3.3, respectively. This could be explained that at chromosome 1, a great 

segregation distortion was evident for the lines selected for short period (Table 4.1). 

Moreover, at chromosome 3 at the NGA162, all lines were WS. This could suggest 

that this was the location that the T-DNA was inserted, since WS was the accession 

that bears the CCR2::LUC construct; all lines harbor the LUC construct, and thus, 

there must be a genomic interval homozygous for WS in all RILS. In this case, the 

LOD score of the QTL identified at the locus FRI is 4.0, and therefore, was 

considered main QTL. The same consideration as to QTL found at locus FRI could be 

taken for a QTL found at chromosome 5 at the locus NGA76. Therefore, flowering 

time in the selected SP lines is controlled by the same but also different QTLs 

compared to the LP lines. 

The mapping that included all RILs resulted in the detection of QTLs at the 

genomic locations that were described separate for long or short period selected lines 

(Figure 4.4). The LOD score again varied across chromosomes, an effect observed in 

the QTL mapping performed for the SP-selected lines. The first chromosome QTL 

just exceeded the genome-wide LOD threshold. This QTL confers less than 20% of 

the phenotypic variation. The QTL at FRI locus had a similar effect with the first 

chromosome QTL. At the fifth chromosome, two QTLs were detected at NGA106 

and MSAT5.14 loci. Both QTLs had a LOD score that exceeded 15, and each 

explained around 50% of the phenotype. A QTL localized at SO392 locus at the first 

chromosome might be an interacting QTL. Interactions between QTLs will be 

described in the following session. 
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Figure 4.2 MapQTL for flowering time under long days of the long period selected 

C24WS RIL lines  

X axis represents the chromosome location, measured in cM, left Y axis represents the LOD 

score, and right Y axis represents the % of explained variance. This percentage is a measure 

of the effect of the QTL that supplies to the phenotype. The dotted line represents the LOD 

score threshold. It was set to 3.4 after calculation of 1000 permutations, for 95% significance 

level. 
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Figure 4.3 MapQTL for flowering time under long days of the short period selected 

C24WS RIL lines  

X axis represents the chromosome location, measured in cM, left Y axis represents the LOD 

score, and right Y axis represents the % of explained variance. This percentage is a measure 

of the effect of the QTL that supplies to the phenotype. The dotted line represents the LOD 

score threshold. It was set to 7.5 after calculation of 1000 permutations, for 95% significance 

level. 
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Figure 4.4 MapQTL for flowering time under long days of the total number of C24WS 

RIL lines  

X axis represents the chromosome location, measured in cM, left Y axis represents the LOD 

score, and right Y axis represents the % of explained variance. This percentage is a measure 

of the effect of the QTL that supplies to the phenotype. The dotted line represents the LOD 

score threshold. It was set to 6.3 after calculation of 1000 permutations, for 95% significance 

level. 
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4.3.1.2 Allelic interactions 

In the previous session, detection was hypothesized of an uncertain QTL at the 

locus MSAT 5.14, during the QTL mapping for the SP-selected lines. Therefore, I 

tested this ambiguous locus using statistical methods. Additionally, I determined the 

additive effects of each QTL by deducing the effect of the two allelic forms of each 

locus, and the allelic effects of interacting QTLs, to find epistatic relationships among 

different allelic combinations. The allelic relationships of the respective QTLs 

identified, and their additive effect on flowering time, are represented in the following 

graphs (Figures 4.5-4.17). All the above described analysis was performed by SPSS 

through GLM Univariate, where TLN was used as a dependent variable, and markers, 

and marker interactions were used as factors. The title on each graph represents the 

QTL location at which chromosome and the superscripted letter represent marker 

name where the QTL was identified. C24 and WS are the allelic forms of each QTL. 

In case of QTL interactions, the first code letter stands for the first QTL, the second 

letter code stands for the second QTL. Figures 4.5-4.8 represent QTLs identified for 

the LP-selected lines, Figures 4.9-4.12 for the SP-selected lines, and Figures 4.13-

4.17 for all selected lines. An extensive description of allele specific effects of each 

QTL or interactions of QTL for each selection will be described below.  

 

4.3.1.2.1 Allelic interactions for LP-selected lines 
Three main QTL and an interaction were confirmed during statistic analysis 

for the LP-selected lines. The QTL at chromosome 1 at NGA59 locus was found to be 

highly significant for P=0.0001, and it has an additive effect of 12 leaves provided by 

the WS allele (Figure 4.5). The QTL at locus FRI was highly significant for P=0.002 

(Table 4.3). Its additive effect was 11 leaves conferred by the C24 allele (Figure 4.6). 

The third main QTL localized at the locus NGA106 at the fifth chromosome has an 

additive effect of 10 leaves due to the WS allele, and is the most significant of all for 

P<0.0001 (Figure 4.7, Table 4.3). Only one interaction was statistically confirmed for 

the LP-selected lines. This interaction was between a QTL at locus SO392 and a QTL 

at locus NGA106 (Figure 4.8). This interaction was significant for P<0.004 (Table 

4.3). The interaction of the C24 allele of the SO392 locus with the WS allele of the 

NGA106 locus displays an extremely late-flowering phenotype (33 leaves).  
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Figure 4.5 Flowering time variation in the long period selected lines due to allelic 

variation of the first chromosome QTL at locus NGA59 

In X-axis the number represents the chromosome number and the superscripted C24 and WS 

are designated for the C24 and Wassilewskija allele respectively. Bars represent standard 

error. 
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Figure 4.6 Flowering time variation in the long period selected lines due to allelic 

variation of the fourth chromosome QTL at locus FRI  

In X-axis the number represents the chromosome number and the superscripted C24 and WS 

are designated for the C24 and Wassilewskija allele respectively. Bars represent standard 

error. 
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Figure 4.7 Flowering time variation in the long period selected lines due to allelic 

variation of the fifth chromosome QTL at locus NGA106 

In X-axis the number represents the chromosome number and the superscripted C24 and WS 

are designated for the C24 and Wassilewskija allele respectively. Bars represent standard 

error. 
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Figure 4.8 Flowering time variation in the long period selected lines due to interaction of 

two QTLs at chromosome 1 at locus SO392 and chromosome 5 at locus NGA106  

In X-axis the number represents the chromosome number and the superscripted C24 and WS 

are designated for the C24 and Wassilewskija allele respectively. Bars represent standard 

error. 
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4.3.1.2.2 Allelic interactions for SP-selected lines 
The identified QTLs for the SP-selected lines were further statistically 

analyzed for significance using the GLM Univariate model. Although four QTL were 

identified by the QTL analysis, only three of them, and an interaction, were confirmed 

during statistic analysis. The presence of the QTL at the fifth chromosome at 

MSAT5.14 was not confirmed by statistic analysis. In contrast, the QTLs at the loci 

NGA106 and NGA76 at the fifth chromosome were highly significant for P<0.0001 

(Table 4.3). Their additive effect was 10 and 13 leaves, respectively, and this 

provided by the WS allele (Figures 4.9, 4.10).  The QTL at locus FRI was highly 

significant for P<0.0001 (Table 4.3). Its additive effect was 15 leaves conferred by the 

C24 allele (Figure 4.11). This interaction was between a QTL at locus FRI and a QTL 

at locus NGA76 (Figure 4.12). This interaction was significant for P<0.0001 (Table 

4.3). The interaction of the C24 allele of the FRI locus with the WS allele of the 

NGA76 locus displays an extremely late-flowering phenotype (34 leaves). As it turns 

out, the QTL at MSAT5-14 was not identified by the statistical analysis either as main 

or as interacting QTL.  
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Figure 4.9 Flowering time variation in the short-period selected lines due to allelic 

variation of the fifth chromosome QTL at locus NGA106 

In X-axis the number represents the chromosome number and the superscripted C24 and WS 

are designated for the C24 and Wassilewskija allele respectively. Bars represent standard 

error. 
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Figure 4.10 Flowering time variation in the short-period selected lines due to allelic 

variation of the fifth chromosome QTL at locus NGA76 

In X-axis the number represents the chromosome number and the superscripted C24 and WS 

are designated for the C24 and Wassilewskija allele respectively. Bars represent standard 

error. 
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Figure 4.11 Flowering time variation in the short-period selected lines due to allelic 

variation of the fourth chromosome QTL at locus FRI  

In X-axis the number represents the chromosome number and the superscripted C24 and WS 

are designated for the C24 and Wassilewskija allele respectively. Bars represent standard 

error. 
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Figure 4.12 Flowering time variation in the short-period selected lines due to interaction 

of two QTLs at chromosome 4 at locus FRI and chromosome 5 at locus NGA76  

In X-axis the number represents the chromosome number and the superscripted C24 and WS 

are designated for the C24 and Wassilewskija allele respectively. Bars represent standard 

error. 
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4.3.1.2.3 Allelic interactions for all C24WS lines 
The QTL mapping analysis resulted in the identification of several QTLs that 

were found during the QTL mapping for either the SP- or LP-selected lines. I 

performed various GLM Univariate analyses to determine which loci and which 

interactions were highly statistically significant. Three main QTL were found to be 

highly significant and two interactions were found to be significant. The QTL at the 

locus NGA106, at the fifth chromosome, was highly significant for P<0.0001 (Table 

4.3). Its additive effect was 10 leaves provided by the WS allele (Figure 4.13).  The 

QTL at locus FRI was another highly significant for P<0.0001 (Table 4.3). Its additive 

effect was 11 leaves conferred by the C24 allele (Figure 4.14). The QTL identified at 

the locus NGA59 at the first chromosome was also highly significant for P<0.0001 

(Table 4.3). The additive effect was 11 leaves provided by the WS allele (Figure 

4.15). One interaction was found between a QTL at locus SO392 and a QTL at locus 

NGA76 (Figure 4.16). A second interaction was found between a QTL at locus FRI 

and a QTL at locus NGA106 (Figure 4.17). The first interaction was significant for 

P=0.002, whereas the second for P<0.05 (Table 4.3). The interaction of the WS allele 

of the QTL at the SO392 with the C24 allele of the QTL at the NGA76 locus exhibits 

a late-flowering phenotype with 29 leaves (Figure 4.16). The interaction of the C24 

allele of the FRI locus with the WS allele of the NGA106 locus displays an extremely 

late-flowering phenotype with 34 leaves (Figure 4.17). Therefore, the first 

chromosome QTL that was also identified in the QTL mapping performed for all lines 

was due to the phenotypic selection. 

Collectively, in this chapter I described that the flowering-time variation in the 

C24WS is due to several QTLs and their interaction. Excitingly, this variation 

depended on previous circadian selection. Thus, the clock can control flowering-time 

variation through the use of natural-allelic interactions. The variation in the LP vs. SP- 

period selected lines was conferred by the same, and also by different QTLs. The 

QTL at the first chromosome at locus NGA59 was found exclusively in the LP-

selected lines, whereas the QTL at the locus NGA76 at the fifth chromosome was 

detected only for the SP- selected lines. This again emphasizes the effect selection of 

the clock can lead to specific developmental consequences. The QTL identified at the 

loci FRI and NGA106 probably correspond to the genes FRI and FLC. This will be 

described more fully in Chapter 6. 
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Figure 4.13 Flowering time variation in all RILs of the C24WS population due to allelic 

variation of the fifth chromosome QTL at locus NGA106  

In X-axis the number represents the chromosome number and the superscripted C24 and WS 

are designated for the C24 and Wassilewskija allele respectively. Bars represent standard 

error. 
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Figure 4.14 Flowering time variation in all RILs of the C24WS population due to allelic 

variation of the fourth chromosome QTL at locus FRI in the C24WS population 

In X-axis the number represents the chromosome number and the superscripted C24 and WS 

are designated for the C24 and Wassilewskija allele respectively. Bars represent standard 

error. 



CHAPTER 4                                                      Generation of new RILs collections 

 
117

CHR1 NGA59

0

10

20

30
T

L
N

1 C24                     1 WS 
 

Figure 4.15 Flowering time variation in all RILs of the C24WS population due to allelic 

variation of the first chromosome QTL at locus NGA59  

In X-axis the number represents the chromosome number and the superscripted C24 and WS 

are designated for the C24 and Wassilewskija allele respectively. Bars represent standard 

error. 
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Figure 4.16 Flowering time variation in all RILs of the C24WS population due to 

interaction of two QTLs at chromosome 1 at locus SO392 and chromosome 5 at locus 

NGA76  

In X-axis the number represents the chromosome number and the superscripted C24 and WS 

are designated for the C24 and Wassilewskija allele respectively. Bars represent standard 

error. 
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Figure 4.17 Flowering time variation in all RILs of the C24WS population due to 

interaction of two QTLs at chromosome 4 at locus FRI and chromosome 5 at locus 

NGA106 

In X-axis the number represents the chromosome number and the superscripted C24 and WS 

are designated for the C24 and Wassilewskija allele respectively. Bars represent standard 

error. 
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Table 4.3 Concentrated results for the QTL identified in the C24WS population for 

flowering time in inductive long days 

h2 denotes the heritability of the trait for a specific environment. Marker, chromosome and 

position describe the exact location of the QTL identified. F is the value of the F-test 

calculated by ANOVA. P value is the probability value. <0.001 indicates very highly 

significant QTLs. 2a is the additive effect of the QTL calculated as the difference of the two 

alleles, and it is measured in number of leaves. LP stands for long period, SP stands for short 

period, and ALL for lines including SP and LP. 

 

Trait RILs h² Marker Chromosome F P value 
      

Position
(cM)   

2a 
(#leaves)

TLN LP 0.90             
    NGA59 I 0 26.828 <0.0001 12 
    FRI IV 0 11.083 0.002 11 
    NGA106 V 20 25.223 <0.0001 10 

  
 

 
SO392 * 
NGA106 I*V 50 * 20 6.561 0.004 - 

         
TLN SP 0.91             

    FRI IV 0 102.648 <0.0001 15 
    NGA106 V 20 12.392 =0.0001 10 
    NGA76 V 40 55.190 <0.0001 13 

  
 

  
FRI * 
NGA76 IV*V 0*40 36.881

<0.0001 
- 

        

TLN 
 

ALL 0.72      
   NGA59 I 0 41.412 <0.0001 12 

   FRI IV 0 43.029 <0.0001 11 
   NGA106 V 20 12.748 <0.0001 10 

 
 

 
SO392 * 
NGA76 I*V 50 * 40 5.242 0.002 - 

 
 

 
FRI * 
NGA106 I*V 0*20 5.432 0.02 - 
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4.3.2  Circadian rhythm assays under light-dark and temperature 

cycles 

The generated C24WS population was assayed for CCR2 period after light-

dark entrainment of 12 hours light::12 hours darkness, and in temperature entrainment 

of 12 hours at 22ºC::12 hours at 16ºC before they would free-run under constant light 

conditions. To date, about 50% of the total number of C24WS RILS has been 

assayed. Most of the lines displayed low intraline variation (Table 4.3). The otherwise 

high intraline variation could be explained by the presence of a segregating QTL or by 

allelic interaction among QTL combinations of the respective RILs. SP- and LP-

selected lines were evenly included in the preliminary QTL mapping. The RILs 

assayed, thus far for CCR2 rhythmicity, after two entrainment protocols, were overlay 

plotted to identify the period variation within RILs after the different entrainments 

(Figure 4.18). The overlay plot indicated that the there is enormous period variation as 

measured per RIL line after the two entrainments. Such large period variation was not 

observed in the CvL or BxS population assayed under the same conditions (see 

Chapter 3.1.2 and 3.2.2).  

 For the light-dark entrainment, the averaged period of each RIL line was used 

for QTL mapping. This resulted in a main QTL at the second chromosome at locus 

RGA (Figure 4.19). An interacting QTL at the second chromosome at locus 

MSAT2.41 enhances the effect of this QTL, but suppresses the effect of the fifth 

chromosome at locus JV 61/62. The RGA located QTL is novel, whereas the QTL at 

locus MSAT2.41 is in the interval that includes ELF3.  

 In addition to the light-dark entrainment, RILs were synchronized to 

temperature cycles for period measurements in subsequent free-running conditions. 

The period measured after temperature entrainment is showed in Table 4.3. 

Preliminary data will be described for the averaged period of individuals of the 

approximately same RILs lines. Data will be compared to the light-dark entrainment. 

Surprisingly, no QTL exceeds the LOD threshold (Figure 4.20). However, at the locus 

JV61/62 at the fifth chromosome the explained variance exceeds 20%, whereas at the 

first chromosome at the locus MSAT1.10, and at the second chromosome at the locus 

RGA the explained variances exceed 15%. For the resolution of these QTLs, more 

lines will need to be assayed. 
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 Collectively, a remarkable period variation of CCR2 for most respective RILS 

after two entrainment protocols was observed (Figure 4.18). Such large variation was 

not observed in CvL or BxS RILs after the two entrainments. The preliminary QTL 

mapping of C24WS of 34 RILS that were selected for both SP and LP after the light-

dark entrainment resulted in the detection of a main QTL at the second chromosome 

at locus RGA. Two QTL at the loci MSAT2.41 and JV61/62 modify the effect of the 

main QTL. However, the preliminary QTL mapping of the same RILS after 

temperature entrainment did not result in any main QTL. The genome wide LOD 

score for both QTL mapping were calculated 2.4. 
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C24WS RIL LD PERIOD TMP PERIOD 
1 31.02 28.75 
2 31.16 26.84 
4 29.61 28.10 
5 30.81 27.62 
9 29.40 28.35 
10 31.21 31.09 
11 29.44 26.26 
12 29.07 29.22 
13 29.46 28.98 
14 33.17 29.69 
15 33.70 31.70 
16 30.87 29.06 
19 30.71 28.40 
23 27.98 25.67 
24 30.23 26.08 
25 27.61 26.99 
26 31.16 28.31 
28 31.36 26.00 
29 33.22 28.90 
57 26.18 25.31 
59 30.14 28.64 
60 30.50 27.95 
61 29.29 30.50 
62 28.77 27.35 
72 27.19 26.79 
73 27.78 25.88 
75 27.64 26.33 
76 28.67 27.94 
78 27.75 27.73 
79 28.01 26.47 
80 31.16 28.51 
81 32.02 26.25 
82 31.43 26.88 
84 31.54 27.88 

 

Table 4.4 The free-running period of the C24WS RIL collection after light-dark 

entrainment under constant 22°C (LD) or after entrainment in temperature cycles of 12 

hours at 22°C followed by 12 hours at 16°C under constant light (TMP) 

 LD period corresponds to averaged period after light-dark entrainment. TMP period 

corresponds to averaged period after temperature entrainment.  
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Figure 4.18 Period differences of rhythmic plants within genotypes of the C24WS RIL 

collection of temperature-entrained versus light-dark entrained plants  

X axis represents the C24WS RIL number, and Y axis represents period.   represents the 

period of temperature entrained plants, × represents the period of the light-dark entrained 

plants.  
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Figure 4.19 MapQTL for the light-dark entrainment of the C24WS population 

X axis represents the chromosome location, measured in cM, left Y axis represents the LOD 

score, and right Y axis represents the % of explained variance. This percentage is a measure 

of the effect of the QTL that supplies to the phenotype. The dotted line represents the LOD 

score threshold. It was set to 2.4 after calculation of 1000 permutations, for 95% significance 

level. 
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Figure 4.20 MapQTL for the temperature entrainment of the C24WS population 

X axis represents the chromosome location, measured in cM, left Y axis represents the LOD 

score, and right Y axis represents the % of explained variance. This percentage is a measure 

of the effect of the QTL that supplies to the phenotype. The dotted line represents the LOD 

score threshold. It was set to 2.4 after calculation of 1000 permutations, for 95% significance 

level. 
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4.4 Conclusions-Remarks 

In this chapter, the generation of six new RILs that were selected for short and 

long period of CCR2 after light-dark entrainment was preliminary described. One of 

the RILs was genotyped using 34 SSLPs and microsatelites markers. Phenotypic 

assessment of this RIL population for flowering time and period control of CCR2 

after light-dark and temperature entrainment was also described. Eighty five lines 

from this single RIL set were assayed for flowering time under inductive long days. 

TLN was used to map QTL. Three main QTLs were found from these flowering-time 

assays. Variation at the marker loci FRI, NGA106, and NGA59, and their interaction 

were described as being the basis of the flowering-time variation of this RIL 

population. Additionally, 34 lines were assayed for circadian period of CCR2 after 

light-dark and temperature entrainment. QTL mapping performed for these 34 

genotypes from this RIL population resulted in one main QTL for the light-dark 

entrainment, whereas no QTL was detected for the temperature entrainment. The 

period data are preliminary, and more QTL are expected after the complete collection 

should be assayed. The LOD score for the QTL mapping of these 34 lines was 

approximately the same for all chromosomes, whereas the LOD score for the total 85 

lines is distorted for chromosomes 1, 3 and 5. It is noted that the LOD score as 

calculated for the QTL mapping of flowering time of the same 34 lines that were used 

for the period QTL mapping resulted in almost equal LOD score across all 

chromosomes (data not shown). This suggests that some of the remaining 50 lines 

were responsible for the distortion of the LOD score. The LOD score distortion could 

be connected to the underlying segregation distortion in the RILS, due to the 

phenotypic selection that was performed during the generation of the RILS. Thus far, 

for the three traits no common QTL was identified.  
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5 PHYSIOLOGICAL ANALYSIS OF VARIOUS 

CLOCK MARKERS 

INTRODUCTION 
Our understanding of the A. thaliana circadian clockwork is based on data of 

light-dark entrained plants (Locke et al., 2006; Zeilinger et al., 2006; Ding et al., 

2007b). The physiological existence of a second oscillator was revealed. Here, 

Salome et al. analyzed the resetting effect of temperature pulses on TOC1 expression, 

and on two output genes of the clock. Temperature pulses caused the same phase 

advances and delays on TOC1 and on CAB2, but were different in consequence to 

CAT3 phase. Therefore, the presence of a second oscillator that responds 

preferentially to temperature was suggested (Michael et al., 2003a). Interestingly, 

these authors also suggested that TOC1 is part of the light-dark entrained oscillator. 

Up to now, the genetic architecture of the temperature-entrained oscillator has not yet 

to be resolved. 

Ding et al., have reported that the cca1 lhy toc1 triple mutant shows residual 

rhythmicity for a cycle after temperature entrainment, suggesting that these core-

oscillator genes are part of the temperature-entrained clockwork. These cannot be the 

only components of the temperature-entrained oscillator given the partial rhythmic 

behavior of this triple mutant (Ding, 2007). Additionally, absence of both PRR7 and 

PRR9, members of the TOC1 family, exhibits an arrhythmic phenotype after 

temperature entrainment, suggesting that these two genes are either part of the 

temperature-entrainment pathway, or part of the temperature-entrained oscillator 

(Salome and McClung, 2005). To conclude, performed assays in temperature 

entrainment have revealed that at least two genes PRR7 and PRR9 are essential for the 

oscillator function. Since these two genes are functional in the cca1 lhy toc1 triple 

mutant, their presence could explain the residual rhythmicity of the triple mutant. A 

detailed physiological characterization of the oscillator is required for any further 

genetic conclusions to be drawn. 

In this chapter, various physiological experiments using temperature-

entrainment protocols will be described and these will be contrasted to that of light-

dark entrainment. For these experiments, I used transformed WS plants with various 

clock-transcriptional-luciferase-reporters, including CAB2, CCA1, LHY, TOC1, GI, 
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CCR2, ELF3, and ELF4. The three genes, LHY, GI, and TOC1 were selected, because 

they were candidate genes from the QTL mapping of the CvL RIL after light-dark or 

temperature entrainment (see 3.1.3). CAB2 and CCR2 were selected as they are two 

outputs of the clock that can be monitored to provide useful conclusions about the 

oscillator. Especially, CCR2 was of interest because its transcriptional kinetics were 

studied for the natural-variation project (see following subchapters). CCA1, ELF3, 

and ELF4 were selected as they are major clock genes with diverse functions within 

the oscillator mechanism. All these transgenic plants were synchronized to four 

different entrainment protocols (see 2.2.7). Additionally, the same reporter constructs 

where synchronized under light-dark and temperature T-cycles. T cycles are cycles 

with length other than 24 hours, such as daily cycles of 20 or 28 hours length. In this 

way, I could determine whether rhythmicity at the transcriptional level was driven by 

photo-signaling events or entrained by the clock. To further define the role of TOC1 

and GI under light, versus temperature entrainment, CCR2::LUC molecular kinetics 

were assayed in the several conditions in the loss of function mutants gi-11, toc1-4, 

and the double mutant gi-11 toc1-4. These collective experiments provided a first 

glimpse at the differential effects of environmental entrainment.  

 

5.1 Light vs. temperature entrainment of various clock 
markers 

 
To define the differences of light versus temperature entrainment, and thereby 

characterize the effect of temperature entrainment on the oscillator, I synchronized 

transgenic plants bearing promoter luciferase constructs of various circadian clock 

genes to either light dark or temperature cycles of 24 hours and measured luminescent 

rhythmicity. My interest was to find both whether and how photoperiod length or 

thermo period length impact on the oscillator, as defined by the circadian parameters. 

For this, I entrained plants to equal and unequal portions of light-versus-darkness or 

warm-versus-cool. Specifically, plants were entrained under light-dark cycles of 14 

hours light::10 hours darkness or 10 hours light::14 hours darkness, and separately in 

temperature cycles of 14 hours warm::10 hours cool or 10 hours warm::14 hours cool. 

Here, the effect of light or warm duration will be described with the comparison of 

two genes, GI and CCR2. These genes have the same phase profile, as determined by 

the first peak of the free run, under a wide range of conditions.  
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The first peak in free-run conditions reflects the phase status of the oscillator 

dependent on the entrainment conditions. GI responds differentially to entrainment of 

14 hours light/warm::10 hours darkness/cool cycles compared to 10 hours 

light/warm::14 hours darkness/cool cycles. In light-dark cycles, the first peak of 

GI::LUC was relative to the dusk signal (Figure 5.1). This suggests that GI measures 

photoperiod length and sets its phase accordingly. However, after temperature cycles, 

GI was expressed in the same phase irrespective of the preceding cool signal duration 

(Figure 5.1). Therefore, the peak of GI expression did not measure thermoperiod 

length. The second peak of GI::LUC clearly showed a stable phase difference 

between short light/warm duration compared to long light/warm duration (Figure 5.1). 

This suggested that photoperiod or thermoperiod length might affect periodicity. This 

was extensively explored in Chapter 3. The overall rhythmicity of GI::LUC over time 

suggested that its period is shorter after the temperature entrainment, as compared to 

after the light-dark entrainment. In contrast to GI, CCR2 had the same first-peak 

profile after all four entrainment conditions, which is in agreement with the notion 

that is output of the core oscillator (Figure 5.2).  

The dusk-expressed gene TOC1 was found to have a completely different 

profile than the dusk expressed GI. The first peak of TOC1 occurred at the same time 

after light-dark entrainment irrespective of the light duration. The same stood after 

temperature entrainment (Figure 5.3). So, it is clear that the length of the entrainment 

cues, either light or temperature, did not have an effect on this first TOC1 parameter. 

Strikingly, the two entrainment cues affected differentially other circadian parameters 

of TOC1. Irrespective to daylength, temperature entrainment caused a later phase and 

shorter period of TOC1, compared to light-dark entrainment (Figure 5.3). The shorter-

period phenotype after temperature entrainment compared to after light-dark 

entrainment was a key finding described in 3.1.2 and 3.2.2. All these collective 

findings lead me to suggest that TOC1 mediates information of differing entraining 

cues. TOC1 expression after temperature entrainment was more robust compared to 

after light-dark entrainment. From the profiles, one could assume that dawn sets the 

clock, perhaps through GI, and temperature fine tunes the circadian system through 

TOC1 (Figure 5.1 and 5.3).  
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Figure 5.1 GI::LUC rhythms after light-dark entrainment to 14 hours light::10 hours 

darkness, 10 hours light::14 hours darkness, and temperature entrainment to 14 hours 

warm::10 hours cool, 10 hours warm::14 hours cool.  

Relative luminescence is the ratio of luminescence measured at one time point divided by the 

average luminescence over the time course of the experiment. The solid colored bars represent 

light or warm temperature period and the shaded colored bars represent dark and cool temperature 

period. Blue bar represents 14 hours light::10 hours darkness, pink bar represents 10 hours 

light::14 hours darkness, yellow bars represent temperature entrainment to 14 hours warm::10 

hours cool, and light blue bar 10 hours warm::14 hours cool. Note that the four hour phase shift of 

GI expression after the light-dark entrainment is dependent on the preceding photoperiod. 
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Figure 5.2 CCR2::LUC rhythms after light-dark entrainment to 14 hours light::10 hours 

darkness, 10 hours light::14 hours darkness, and temperature entrainment to 14 hours 

warm::10 hours cool, 10 hours warm::14 hours cool.  

Relative luminescence is the ratio of luminescence measured at one time point divided by the 

average luminescence over the time course of the experiment. The solid colored bars represent 

light or warm temperature period and the shaded colored bars represent dark and cool temperature 

period. Blue bar represents 14 hours light::10 hours darkness, pink bar represents 10 hours 

light::14 hours darkness, yellow bars represent temperature entrainment to 14 hours warm::10 

hours cool, and light blue bar 10 hours warm::14 hours cool.  
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Figure 5.3 TOC1::LUC rhythms after light-dark entrainment to 14 hours light::10 hours 

darkness, 10 hours light::14 hours darkness, and temperature entrainment to 14 hours 

warm::10 hours cool, 10 hours warm::14 hours cool.  

Relative luminescence is the ratio of luminescence measured at one time point divided by the 

average luminescence over the time course of the experiment. The solid colored bars represent 

light or warm temperature period and the shaded colored bars represent dark and cool temperature 

period. Blue bar represents 14 hours light::10 hours darkness, pink bar represents 10 hours 

light::14 hours darkness, yellow bars represent temperature entrainment to 14 hours warm::10 

hours cool, and light blue bar 10 hours warm::14 hours cool.  
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5.2 IN-OUT of phase experiments of various clock reporter 

genes 

 

In nature, light and temperature parallel their changes roughly at the same 

daily time over the time course of a day-night cycle of one day. Therefore, I was 

interested to dissect the effect of these synchronous changes on the entrainment of the 

oscillator. To interogate these conditions, plants bearing the luciferase constructs were 

entrained in 12 hours light::12 hours darkness and in temperature cycles of 12 hours at 

22°C and 12 hours at 12°C, with 6 hours shift between the two entrainment protocols, 

where temperature cycles are either IN-phase, if cold to warm transition coincides 

with light, or OUT-of-phase, if this transition coincides with darkness. The basic idea 

of using these conditions was to map whether some clock genes show preferential 

response to either of these two entrainments, and if possible, to make hypothesis 

about the underlying oscillator state in response to these physiological perturbations.  

The time of the transfer from entraining to free run conditions could 

potentially have an effect on the phase. The transfer time can be different for the 

tested entrainment protocols. For example, when plants were entrained only to a 

single entrainment protocol, such as only light-dark or only temperature cycles, then 

they were transferred to free-run conditions just before onset of lights or warm 

temperature. But when plants were grown to the IN-OUT of phase protocol, then 

there were several options as to when to transfer to the free-run conditions, e.g. before 

the onset of lights or before the onset of warm/cold temperatures during the day 

period of the light-dark entrainment. Interestingly, the choice of different times of free 

run for the IN-OUT of phase plants resulted in different phase responses (Figure 5.4). 

When plants were transferred to free run just before the dark-to-light transition, for all 

three entrainment protocols, the circadian pattern of all clock genes tested, which 

were CCA1, LHY, CCR2, GI, ELF3, and ELF4, was the same, as shown in Figure 5.4 

for the CCA1 (for the others, data not shown). For all tested transcriptional reporters, 

the light-dark entrained plants, and the IN phase plants have the same phase, as 

indicated by the first peak. However, the OUT of phase plants displayed advancement 

in phase of six hours (Figure 5.4). This suggested that when in the presence of light, 

temperature is gated by the clock, but warm temperatures in darkness resulted in 

strong effect on the expression of several clock genes, and thereby the oscillator. 
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However, when plants were transferred to the free-run conditions just before the 

temperature transition, in the middle of the light period, then the IN phase plants 

showed a delay in phase of six hours compared to the light-dark entrained plants 

(Figure 5.4). This suggested a memory effect of the preceding entrainment that can be 

called anticipation.  

The transcriptional profile of TOC1 was different than CCA1. Interestingly, 

when TOC1::LUC bearing plants were transferred to the free-running conditions, just 

before the dark to light transition, while grown in the IN entrainment protocol, a phase 

delay of 6 hours was observed (Figure 5.5). The IN phase plants, at that time point, 

were in the middle of the cold part of the cycle, and they experienced a change of 

10ºC. The phase shift in TOC1 expression caused by the 10ºC difference in 

temperature suggested that TOC1 transcription was preferential to temperature than to 

light entrainment.  The opposite preference to entrainment was observed in CCA1, 

LHY, and GI. These latter genes could be part of the light-dark entrained oscillator. 

Taken together, the results shown in Figures 5.3 and 5.5 revealed that TOC1 not only 

entrains to temperature cycles, but is the physiological thermal target of the clock 

after the warm-cool entrainment.  
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Figure 5.4 CCA1::LUC rhythms after the light-dark entrainment (LD) and synchronous 

entrainment of light dark and temperature cycles, where IN denotes onset of warm 

temperatures in the middle of the light period and OUT the onset of cool temperatures in the 

middle of the light period.  

1 and 2 denote two independent experiments starting just before lights on, or just before the 

different temperature transitions during the light period. Time 0 is the time when lights were 

turned on. Relative luminescence is the ratio of luminescence measured at one time point divided 

by the average luminescence over the time course of the experiment. Note that CCA1 phase is 

shifted by 6 hours only during the OUT phase and not during IN phase (experiment 1), whereas a 

memory effect was indicated for CCA1 (experiment 2). 
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Figure 5.5 TOC1::LUC rhythms after the light-dark entrainment (LD) and synchronous 

entrainment of light-dark and temperature cycles, where IN denotes onset of warm 

temperatures in light period and OUT the onset of cool temperatures in light period.  

1 and 2 denote two independent experiments. Time 0 is the time when lights turned on. Relative 

luminescence is the ratio of luminescence measured at one time point divided by the average 

luminescence over the time course of the experiment. Note that TOC1 phase is the same after the 

IN and OUT for both experiments, irrespective of the time transfer to free-running conditions. 
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5.3 Light vs. temperature: driven or entrained rhythms 

 
In the previous section, differential response to light compared with 

temperature cycles was described for a set of the clock-reporter genes. To determine 

whether light and/or temperature drove rhythmicity due to entrainment of the 

underlying circadian oscillator or through direct response to the environmental signal, 

transgenic plants bearing the promoter reporter were synchronized to non-24-hour-

cycles, or else called T-cycles, of light-dark or warm to cool. The synchronizing 

conditions were 14 hours of light::14 hours of darkness, 10 hours of light::10 hours of 

darkness for the light-dark entrainment, in constant 22ºC, and 14 hours of warm::14 

hours of cool, 10 hours of warm::10 hours of cool, under constant light, for the 

temperature entrainment. I choose these conditions, because they could be compared 

in two different ways to the conditions used in Chapter 5.1. First, the conditions used 

in Chapter 5.1 were of 24-hour cycle length, which was an intermediate length 

compared to 20 hours or 28 hours used for the T-cycle. Second, the first peak of 

luciferase expression reported for various circadian promoters could be compared to 

the amount of time of light/dark or warm/cool in the conditions of Chapter 5.1.  

In the IN-OUT experiments, it was found that from all circadian promoters 

tested that TOC1 was the only clock gene whose expression was shifted, by six hours, 

when ambient temperature was changed by 10 degrees; this was just before lights on 

(Figure 5.5). Furthermore, the period of TOC1 after temperature entrainment was 

found to be shorter compared to the period after light-dark entrainment, whereas, the 

phase of TOC1, as determined by the first peak, was later after temperature 

entrainment, compared to after light-dark entrainment (Figure 5.3). The above cannot 

discriminate whether TOC1 expression was driven or entrained by temperature cycles. 

To address this, I entrained the plants to non circadian cycles, as such of 20 or 28 

hours length and then bioluminescence was measured in constant light free-running 

conditions. After the 14 hours light::14 hours darkness, TOC1 phase peaked at the 

light to dark transition, whereas in the 10 hours light::10 hours darkness, TOC1 phase 

peaked at the end of dark period (Figure 5.6). The first peak after entrainment to 20 

hours cycle was identical to that of 10 hours light::14 hours darkness (Figure 5.3). 

This probably suggests that light period determined TOC1 expression under 24 or 20 

hour cycles. The subsequent peaks after the 28-hour cycle were observed in the dark 
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period of the cycle, with peak phase being shifted. This is characteristic of entrained 

rhythms. So, TOC1 differentially entrained to T-cycles of various lengths of light-

dark cycles. After temperature cycles of 20-hour cycle, peak expression of TOC1 was 

displayed at the end of the subjective cool period. An acute peak was observed just 

after the transfer from entrainment to free-run conditions, as a response to temperature 

change from 12ºC to 22ºC (Figure 5.6). The same acute peak was observed after the 

transfer from 28 hours temperature cycle to free-run conditions. In the latter case, 

TOC1 was not rhythmic over the first 28 hours (Figure 5.6). This arrhythmicity was 

because there was no oscillation in luminescence, and not because of variations. 

Normal rhythmicity was restored after these 28 hours (Figure 5.6). All data suggested 

that TOC1 expression was driven by the 28-hour cycle, but entrained by the 20-hour 

cycle, irrespective of the environmental signal. In previous studies, mutant alleles of 

toc1 displayed short-period phenotypes in free run constant-light conditions. There is 

probably an adaptive significance to the response of TOC1 that was entrained by 

light-dark and temperature cycles up to 24 hours, and not in 28-hour cycles. However, 

to obtain any concrete conclusions, future experiments with entrain plants to 

intermediate T-cycles would be required. To date, this has not been done.  

 CCR2 entrained to both in light-dark and temperature T-cycles. The peak 

expression of CCR2 was during day for the 28 hours of T-cycles after light dark and 

temperature entrainment, whereas in short T-cycles of both protocols, CCR2 was 

expressed in the early evening, as it was found for the circadian protocols (Figure 

5.7). The difference between the peaks after temperature entrainment or light-dark 

entrainment equals four hours, which was as much a difference as in the light/warm 

period length (Figure 5.7). A different pattern was observed for the subsequent peaks. 

After the temperature entrainment, all CCR2 peaks coincided, whereas after the light-

dark entrainment, there was a stable phase shift (Figure 5.7). In the long T-cycles, the 

expression of CCR2 was always preceded lights-off, whereas in short days the peak 

expression always was after the onset of darkness. This suggested that under the long 

cycles, in light-dark, entrainment CCR2 expression was driven, because all peaks of 

CCR2 expression falls onto the end of the light period. The subsequent peaks after 

temperature entrainment coincide, suggesting that CCR2 was entrained by 

temperature.  

GI displayed the same expression pattern as did the CCR2, concerning the first 

peak after the four protocols. In long T-cycles, GI peaked its expression during day 
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time, whereas in short T-cycles it was expressed in the early evening (Figure 5.8). The 

difference between the two peaks was 4 hours, as much as the difference of the light 

period of the short and long T-cycles (Figure 5.8). The subsequent peaks of GI after 

temperature cycles coincided, with the peaks after long T-cycles observed from warm 

to cool transition, while after short cycles the peak expression was observed in does 

not. This suggested that temperature drove the expression of GI after 28 hours cycle. 

In contrast, light dark entrained GI expression after 28-hour cycle. 
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Figure 5.6 TOC1::LUC rhythms after entrainment in T-cycles of 14 hours of light::14 hours 

of darkness, 10 hours of light::10 hours of darkness for the light-dark entrainment, and 14 

hours of warm::14 hours of cool, 10 hours of warm::10 hours of cool for the temperature 

entrainment. 

White-long boxes represent 14 hours of light or warm temperatures, and grey-shadowed-long 

boxes represent 14 hours of darkness or cool temperatures. White-short boxes represent 10 hours 

of light or warm temperatures, and white-short-dotted boxes represent 10 hours of darkness or 

cool temperatures. In the legend, L stands for light, D stands for darkness, W stands for warm 

temperatures, C for cool temperatures.  Numbers next to the letters stand for hours. 
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Figure 5.7 CCR2::LUC rhythms after entrainment in T-cycles of 14 hours of light::14 hours 

of darkness, 10 hours of light::10 hours of darkness for the light-dark entrainment, and 14 

hours of warm::14 hours of cool, 10 hours of warm::10 hours of cool for the temperature 

entrainment. 

White-long boxes represent 14 hours of light or warm temperatures, and grey-shadowed-long 

boxes represent 14 hours of darkness or cool temperatures. White-short boxes represent 10 hours 

of light or warm temperatures, and white-short-dotted boxes represent 10 hours of darkness or 

cool temperatures. In the legend, L stands for light, D stands for darkness, W stands for warm 

temperatures, C for cool temperatures.  Numbers next to the letters stand for hours. 
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Figure 5.8 GI::LUC rhythms after entrainment in T-cycles of 14 hours of light::14 hours of 

darkness, 10 hours of light::10 hours of darkness for the light-dark entrainment, and 14 

hours of warm::14 hours of cool, 10 hours of warm::10 hours of cool for the temperature 

entrainment. 

White-long boxes represent 14 hours of light or warm temperatures, and grey-shadowed-long 

boxes represent 14 hours of darkness or cool temperatures. White-short boxes represent 10 hours 

of light or warm temperatures, and white-short-dotted boxes represent 10 hours of darkness or 

cool temperatures. In the legend, L stands for light, D stands for darkness, W stands for warm 

temperatures, C for cool temperatures.  Numbers next to the letters stand for hours. 
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5.4 Study of GI and TOC1 under light and temperature 

entrainment 

 
To study the genetic requirements of TOC1 and GI in environmental 

entrainment differences, the mutant alleles of gi-11 and of toc1-21 in WS background, 

bearing the CCR2::LUC reporter, were used in circadian experiments after light-dark 

and after temperature entrainment. The single mutants were crossed to each other 

resulted the double mutant gi-11 toc1-21 was compared to circadian assays to find 

possible genetic relationships of these to evening genes. CCR2::LUC expression in 

these backgrounds was assayed in 24-hour cycles that were divided in 14h or 10 hours 

light/warm and 10h or 14h dark/cool, respectively. CCR2::LUC was selected as 

reporter, because CCR2 was not environmentally responsive under these conditions, 

as described in Figure 5.2. The length of the light or warm period did not phase shift 

the CCR2 expression (Figure 5.2). Therefore, the expression of the reporter marker 

would be due to the genetic effect of the mutations.  

The genetic requirement of GI was tested in different photo-and thermo-period 

lengths as performed previously in Chapter 3.1, by assaying CCR2 rhythmicity. The 

CCR2::LUC phase in the gi-11 mutant was the same as the wild type, with concern to 

the response to the length of the warm to cool (Figures 5.2 and 5.9). Therefore, it can 

be concluded that GI did not play a role to detect the different warm/cool length, 

confirming the GI::LUC data described before (Figure 5.1). However, after light-dark 

entrainment, the CCR2 phase in the gi-11 mutant was delayed compared to CCR2 in 

the wild-type background (Figures 5.2 and 5.9). Additionally, the phase of CCR2 in 

gi-11 was differential for the different photoperiod length (Figure 5.9). This suggested 

that GI was important for light-dark entrainment, and it was involved in day-length 

measurement.  

 Similarly to GI, the genetic requirement of TOC1 was tested under different 

photoperiod and thermoperiod lengths by monitoring CCR2 expression. In the toc1-21 

allele, CCR2::LUC displayed an early phase and a short period, compared to the wild 

type (Figure 5.2 and 5.10). This was the case after either temperature or light-dark 

entrainment (Figure 5.10). Therefore, TOC1 was required for proper expression of 

CCR2 after both light-dark and temperature entrainment. As far as the length of the 

warm-to-cool and light-to-dark, there was no difference between the toc1-21 and the 
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wild type. This suggests that TOC1 did not respond to day-length or thermo-length 

measurement, which supports the findings of TOC1::LUC under the same conditions 

(Figures 5.3 and 5.10). 

To determine whether there is a genetic interaction between TOC1 and GI, the 

luciferase expression driven by the CCR2 promoter was measured in the double 

mutant gi-11 toc1-21, under the same conditions as that of the single mutants. CCR2 

in the double mutant exhibited the early-phase phenotype similar to the toc1-21 

mutant (Figure 5.10 and 5.11). Additionally, the double mutant displayed early phase 

of CCR2 after temperature entrainment, compared to the light-dark entrainment 

(Figure 5.11). This effect was described in the CCR2 transcriptional rhythms of the 

gi-11 mutant (Figure 5.9). Moreover, the double mutant was less robust in its CCR2 

rhythm than either single mutant (Figures 5.9-5.11). After the light-dark entrainment, 

irrespective of the daylength, the double mutant was found to be rhythmic for one 

cycle and then gradually became arrhythmic to intermediate levels of CCR2 

expression (Figure 5.11). After temperature entrainment, CCR2 expression levels 

went through a complete cycle, then there was a continuous, but gradual, expression 

increase for two cycles, and then a decrease for the next two cycles in a continuous 

gradual manner. In both cases, the phenotype was found to be more severe than that 

of either single mutant. By comparing the CCR2 expression shown in Figures 5.9-

5.11, the pattern of the double mutant after the light-dark and temperature was similar 

to that seen in toc1-21, as noted by the opposite triangle or by the star. There was no 

obvious circadian pattern of CCR2 of the double mutant in response to day-or thermo-

length. All the above suggested that there is a genetic interaction of TOC1 and GI 

after temperature entrainment, since the phase of CCR2 is earlier than any single 

mutant. Thus, both GI and TOC1 participated in entrainment.  
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Figure 5.9 CCR2::LUC rhythms in the gi-11 mutant after light-dark entrainment to 14 

hours light::10 hours darkness, 10 hours light::14 hours darkness, and temperature 

entrainment to 14 hours warm::10 hours cool, 10 hours warm::14 hours cool 

Relative luminescence is the ratio of luminescence measured at one time point divided by the 

average luminescence over the time course of the experiment. The solid colored bars represent 

light or warm temperature period and the shaded colored bars represent dark and cool 

temperature period. Blue bar represents 14 hours light::10 hours darkness, pink bar represents 10 

hours light::14 hours darkness, yellow bars represent temperature entrainment to 14 hours 

warm::10 hours cool, and light blue bar 10 hours warm::14 hours cool.  
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Figure 5.10 CCR2::LUC rhythms in the toc1-21 mutant after light-dark entrainment to 14 

hours light::10 hours darkness, 10 hours light::14 hours darkness, and temperature 

entrainment to 14 hours warm::10 hours cool, 10 hours warm::14 hours cool.  

Relative luminescence is the ratio of luminescence measured at one time point divided by the 

average luminescence over the time course of the experiment. The solid colored bars represent 

light or warm temperature period and the shaded colored bars represent dark and cool temperature 

period. Blue bar represents 14 hours light::10 hours darkness, pink bar represents 10 hours 

light::14 hours darkness, yellow bars represent temperature entrainment to 14 hours warm::10 

hours cool, and light blue bar 10 hours warm::14 hours cool.  
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3.5  IN-OUT of phase experiments of TOC1 and GI 

The single and double mutants were also tested in the temperature entrainment 

protocols of IN-OUT of phase to the light dark entrainment, as described in session 

3.2.  
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Figure 5.11 CCR2::LUC rhythms in the double mutant gi-11 toc1-21 after light-dark 

entrainment to 14 hours light::10 hours darkness, 10 hours light::14 hours darkness, and 

temperature entrainment to 14 hours warm::10 hours cool, 10 hours warm::14 hours cool.  

Relative luminescence is the ratio of luminescence measured at one time point divided by the 

average luminescence over the time course of the experiment. Star points the third peak of CCR2 

expression after temperature cycles, and opposite triangle points the second peak of CCR2 

expression after light-dark cycles. 
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5.5 Light vs. temperature: driven or entrained rhythms 

To determine the genetic architecture of temperature entrainment and explore 

the role of TOC1 and GI and their potential genetic interaction under temperature 

entrainment, the mutant alleles of TOC1 and GI were synchronized in T-cycles of 14 

hours light/warm::14 hours darkness/cool and 10 hours light/warm::10 hours 

darkness/cool. CCR2 rhythmicity was used to marker the effect of the two gene 

mutations after the entrainment protocols. 

In gi-11, CCR2 expression after temperature entrainment of 20-hour cycles 

tended to be arrhythmic, in contrast to the CCR2 expression after light-dark 

entrainment of 20-hours cycles, which was rhythmic with a short period (Figure 5.12). 

However, the phase of CCR2 in gi-11 after the 20 hour light dark cycle was delayed 

compared to the wild type, whereas after the 20 hour of temperature cycles was 

identical to the wild type (Figures 5.7 and 5.12). The phase of CCR2 after 20-hour 

cycles was at the beginning of the dark/cool, whereas after the 28-hour cycles the 

phase was peaked at the end of the light/warm period (Figure 5.12). The phase of 

CCR2 in the gi-11 background was the same observed in the wild type after all 

entrainment protocols except for the 14 hours light::14 hours darkness, which was 

delayed by four hours (Figures 5.7 and 5.12). However, after the second cycle, CCR2 

expression was dampened (Figure 5.12). These results supported the notion that GI is 

part of light-dark entrainment.  

In the toc1-21 mutant, CCR2 expression was different concerning the different 

cycle lengths, irrespective of the entraining signal (Figure 5.13). Furthermore, after 

both long cycles, CCR2 expression peaked during day/warm part of the cycle, 

whereas after both short cycles, it peaked during the night/cool (Figure 5.13). The 

phase of CCR2 in the toc1-21 was the similar to the wild type for the short-cycle 

length protocols, whereas in the long cycles of both light-dark and temperature 

entrainment, the phase of CCR2 in the toc1-21 mutant was displayed earlier compared 

to the wild type of about 2 hours (Figures 5.7 and 5.13). Furthermore, under 

temperature entrainment in long cycle CCR2 became arrhythmic (Figure 5.13). toc1-

21 displayed short period of CCR2 under all protocols compared to the wild type 

(Figures 5.7 and 5.13). This differential response to temperature suggested that TOC1 

is involved in both light-dark and temperature entrainment.  
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In the gi-11 toc1-21 double mutant, CCR2 was severely affected towards 

arrhythmicity (Figure 5.14). Regarding the effect of the various T-cycles in the phase 

of CCR2, that was variable. After the 28-hour light-dark T-cycles, the first peak was 

intermediate of both toc1-21 and gi-11, although it was similar to the wild type. This 

is because the phase of CCR2 in toc1-21 was advanced and the phase in gi-11 was 

delayed compared to the wild type. After the long T-cycles the two genes displayed 

differential response two the different entraining signals. In the short light-dark 

cycles, the phase of CCR2 in the double mutant was the same to the phase of toc1-21, 

however the subsequent response was arrhythmic as observed in gi-11 and not short 

period as in toc1-21. In the 28 hour warm-cool cycle, CCR2 phase and expression 

pattern over the five day experiment was similar to the response after the 10 hours 

warm::14 hours cool cycles (Figures 5.11 and 5.14). The two protocols have 14 hours 

of cool period, and this could be the reason why the same response is observed. All 

the data indicated that GI and TOC1 interact despite their ability to detect various 

aspects of entrainment.  
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Figure 5.12 CCR2::LUC rhythms in gi-11 after entrainment in T-cycles of 14 hours of 

light::14 hours of darkness, 10 hours of light::10 hours of darkness for the light-dark 

entrainment, and 14 hours of warm::14 hours of cool, 10 hours of warm::10 hours of 

cool for the temperature entrainment. 

White-long boxes represent 14 hours of light or warm temperatures, and grey-shadowed-long 

boxes represent 14 hours of darkness or cool temperatures. White-short boxes represent 10 

hours of light or warm temperatures, and white-short-dotted boxes represent 10 hours of 

darkness or cool temperatures. In the legend, L stands for light, D stands for darkness, W 

stands for warm temperatures, C for cool temperatures.  Numbers next to the letters stand for 
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Figure 5.13 CCR2::LUC rhythms in toc1-21 after entrainment in T-cycles of 14 hours of 

light::14 hours of darkness, 10 hours of light::10 hours of darkness for the light-dark 

entrainment, and 14 hours of warm::14 hours of cool, 10 hours of warm::10 hours of 

cool for the temperature entrainment. 

White-long boxes represent 14 hours of light or warm temperatures, and grey-shadowed-long 

boxes represent 14 hours of darkness or cool temperatures. White-short boxes represent 10 

hours of light or warm temperatures, and white-short-dotted boxes represent 10 hours of 

darkness or cool temperatures. In the legend, L stands for light, D stands for darkness, W 

stands for warm temperatures, C for cool temperatures.  Numbers next to the letters stand for 

hours. 
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Figure 5.14 CCR2::LUC rhythms in toc1-21 after entrainment in T-cycles of 14 hours of 

light::14 hours of darkness, 10 hours of light::10 hours of darkness for the light-dark 

entrainment, and 14 hours of warm::14 hours of cool, 10 hours of warm::10 hours of 

cool for the temperature entrainment. 

White-long boxes represent 14 hours of light or warm temperatures, and grey-shadowed-long 

boxes represent 14 hours of darkness or cool temperatures. White-short boxes represent 10 

hours of light or warm temperatures, and white-short-dotted boxes represent 10 hours of 

darkness or cool temperatures. In the legend, L stands for light, D stands for darkness, W 

stands for warm temperatures, C for cool temperatures.  Numbers next to the letters stand for 

hours. 
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5.6  Conclusions-Remarks 

The clock synchronizes to the ambient environment by detecting changes in 

entraining cues, such as light and temperature. The changes of those cues can be 

variable in duration, and in amplitude between the two states of the cues. My interest 

was to identify how the known circadian genes respond to such changes. For this, I 

assayed the transcriptional kinetics of various clock-regulated promoters by assaying 

luciferase-reporter expression. From these physiological experiments, the resultant 

conclusions are described below.  

To test for photoperiod or thermo-period dependent responses, various clock-

regulated reporters were entrained in temperature and light-dark cycles of 24 hours 

length. However, the length of light or warm was not equal to the length of dark or 

cool. From these results, it was concluded that GI can measure photoperiod length but 

not thermo-period length (Figure 5.1). However, by assaying phase of all circadian 

promoters, it was found that none of any of the tested markers, including neither GI, 

not TOC1, was able to track thermo-period length (data not shown, Figures 5.2 and 

5.3). GI and TOC1 therefore detect different aspects of the environment. 

A differential response of various clock reporters to light versus temperature 

entrainment was found. During the light period of entrainment, temperature did not 

affect the phase of most tested reporters (Figure 5.4, data not shown). This suggests 

that temperature effects on entrainment were gated by light. When warm temperatures 

occurred in the middle of the dark period of the cycle, the phase of all reporter genes 

was shifted (Figure 5.4, data not shown). In the absence of light, temperature changes 

affected phase. In this case, the oscillations of all genes tested were more robust than 

that of the light-dark entrained plants. However, the only component of the known 

circadian oscillator that responds to temperature changes during the light period was 

TOC1 (Figure 5.5). TOC1 expression responded to temperature changes during the 

light and the dark period.  

To determine whether the observed rhythms in the INOUT of phase 

experiments (see 2.2.7) was driven or due to entrainment, seedlings were 

synchronized to cycles of 20 or 28 hour length. GI and CCR2 entrain to light-dark and 

temperature cycles as indicated by the first peaks. The long T-cycles peaks preceded 

by four hours the respective of short T-cycles. The last is an indication of entrained 

rhythms. Furthermore, the subsequent peaks fell in the same phase irrespective of 
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cycle length, and the time of these peaks coincide with the circadian peaks, as 

observed for the entrainment after 10 hours of light::14 hours of darkness. This 

suggested that under free-run, no matter the preceding entrainment, the clock was 

ultimately set to the circadian component of the cycle. Genes that follow this trend are 

part of the circadian machinery. TOC1 is a key component in terms of temperature 

entrainment. In long T-cycles of temperature, TOC1 expression for the first day was 

constant at intermediate levels of peak and trough. After the first 28 hours, 

rhythmicity of TOC1 was restored to the circadian pattern (Figure 5.6). This response 

probably suggests that TOC1 is specific for entrainments up to 24 hours, and not 

more. In the short T-cycles of temperature entrainment, TOC1 peaked in late evening 

(Figure 5.6), consistent with data that were described for 24 hours entrainment. It 

would be interesting to assay toc1-21 mutant in such entrainment.  

To confirm the physiological responses of the TOC1 and GI in genetic terms, 

CCR2 expression was tested in the gi-11, and toc1-21 single mutants, and the gi-11 

toc1-21 double mutant and compared to the CCR2 expression in wild type 

background. The mutant and wild type seedlings were synchronized to different 

photoperiod and thermoperiod, of 24 hours, protocols. Genetic analysis confirmed the 

role of GI in photoperiod measurement (Figures 5.2 and 5.9). Additionally, the 

differential response of TOC1 after light-dark and temperature cycles was also 

confirmed (Figures 5.2 and 5.10).  

The gi-11 and toc1-21 mutants and the double mutant were entrained in 20-or 

28-hour cycles of equal period of light/warm and dark/cool. In these conditions, I 

could test for the genetic requirement of TOC and GI under these conditions. CCR2 

phase in single and double mutants were observed during the light/warm part of the 

cycle after the 28-hour cycles, whereas after the 20-hour cycle CCR2 phase was 

observed in the dark/cool phase. CCR2 phase in the gi-11 after temperature 

entrainment irrespective to cycle length was the same compared to the CCR2 phase in 

the wild type (Figures 5.7 and 5.12). This suggested that GI did not entrain to 

temperature cycles. In general, the phase of CCR2 in the toc1-21 was much earlier in 

both 28-and 20-hour cycles of both entraining signals compared to the phase of CCR2 

in the gi-11. This suggested that both TOC1 and GI had differential effects on CCR2 

expression. Furthermore, after the temperature entrainment in 28-hour cycles, CCR2 

expression was arrhythmic after one cycle, whereas in all other conditions tested, 

including temperature entrainment in 20-hour cycles, was rhythmic with short period. 
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This confirmed that TOC1 was the gene of the oscillator that is able to measure 

temperature cycle length, and entrained to temperature. 
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6 GENERAL CONCLUSIONS AND DISCUSSION 

6.1 CONCLUSIONS - FUTURE PERSPECTIVES 

 
The circadian clock is an internal-timing mechanism that is highly adaptive to 

the daily environmental changes. Successive changes in light and temperature are able 

to reset the oscillator (McClung, 2006). The most prominent signal studied is light 

(Davis and Millar, 2001). Mathematical modeling predicted that the core oscillator of 

light-dark entrained A. thaliana seedlings is comprised of three interconnected 

feedback loops (Locke et al., 2006; Zeilinger et al., 2006). This basic loop generates 

the 24-hour rhythmicity of the oscillating mechanism, whereas the morning and 

evening loops are fine tune rhythmicity in a temporal specific manner. However, only 

limited studies on the role of temperature cycles to the circadian oscillator existed 

before this thesis work.  

To define the role of temperature and to identify genetic components that 

mediate temperature input to the plant-circadian oscillator, I exploited the variation of 

the circadian rhythmicity of CCR2::LUC in two existing RILS populations (Chapter 

3). Transformed lines of those two RILs populations were entrained in light-dark and 

temperature cycles, and measured for CCR2 period under constant light conditions. 

Statistic analysis revealed that the averaged period per line after light-dark 

entrainment was longer as compared to temperature entrainment. This was true for 

both RIL populations (3.1.2, 3.2.2). Interestingly, period analysis of entrainment in 

the two different protocols resulted in the identification of both QTL at the same and 

different genomic intervals (3.1.3, 3.2.3). This suggests that the natural-allelic 

variation that exists for both light and temperature inputs are mediated effects on the 

oscillator. A QTL at the first chromosome was found to be specific to temperature 

entrainment (3.1.3). GI localizes to that interval. Further fine mapping of this QTL 

should eventually reveal whether the QTL is GI or is a previously uncharacterized 

locus. 

The above populations have the caveat that to map circadian-rhythmicity 

QTLs, I needed to transform each RIL line within the population. For this, I generated 

hundreds of individual transgenics for each RIL harboring CCR2::LUC (Chapter 3). 

The disadvantage of this approach was that the T-DNA insertion was random and 
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aspects of the observed phenotype could have been moderately affected by the 

insertion site of the CCR2::LUC transgene. To avoid such disadvantage for future 

QTL mapping, I also generated six new RILs by pairwise crosses of the four most 

commonly used accessions (Chapter 4). Two of the accessions harbored the 

CCR2::LUC reported that was crossed to wild-type accessions. Selection of 48 lines 

with short period and 48 lines with long period of CCR2 was realized at the BC1 and 

at the BC1F2 generations. In Chapter 4, one RIL was extensively described. This 

population was generated by the cross of WS, bearing CCR2::LUC, to C24 (4.1). 

First, the resultant RILS were assayed for flowering-time variation and circadian 

rhythmicity (4.3). Next a genetic map of the population was generated (4.2). I found 

that the flowering time of the short or long period selected lines was selected by loci 

at the same and different positions, and interactions amongst the detected QTLs. FRI 

and FLC are candidate genes for the fourth and fifth chromosome QTL found in all 

lines (4.3.1.1). A third QTL was identified at the first chromosome after QTL 

mapping of the long-period selected lines to co-localize with the CRY2 (4.3.1.1). 

Additionally, preliminary results of assessment of circadian rhythmicity showed that a 

QTL for light-dark entrainment were detected from 0-20cM at the second 

chromosome (4.3.2). No main QTL was detected for period of CCR2 after 

temperature entrainment in the described population. 

The role of temperature entrainment to the circadian clock was further defined 

by physiological experiments. For this, transcriptional kinetics properties of several 

clock-controlled genes were assayed (Chapter 5). In this study, it was found that GI 

tracks photoperiod, whereas TOC1 was the only tested promoter able to synchronize 

preferentially to temperature cycles, compared to light-dark cycles. This suggests that 

dawn, as measured by GI, sets the circadian clock, and temperature, through TOC1, 

fine tunes circadian clock (5.1-5.3). The role of GI and TOC1 in light-dark and 

temperature entrainment, respectively, was confirmed by genetic studies (5.4, 5.5).  

 

Genetic analysis of temperature entrainment using natural variation  
In this thesis, the main aim was to characterize how temperature synchronizes 

the circadian oscillator of A. thaliana. This was performed as a comparison to light-

dark entrainment. Two different pre-existing RILs sets –CvL and BxS- were exploited 

for characterizing the periodicity of CCR2 rhythmicity, as reported by luciferase 



CHAPTER 6                                                       General conclusions and discussion 

 
158

expression (Chapter 3). Both populations were entrained in two protocols, and these 

were 12 hours at light::12 hours at darkness in constant temperature at 22ºC, for light-

dark entrainment, and in 12 hours at 22ºC::12 hours at 16ºC under constant light, for 

temperature entrainment (3.1 and 3.2). Additionally, the CvL RIL was tested in the 

same temperature cycle conditions, but under constant darkness (3.3). 

The first conclusion drawn after the entrainment to light-dark and temperature 

cycles was that in both populations the period of CCR2 after the temperature 

entrainment was statistically-significantly shorter compared to the period of CCR2 

after light-dark entrainment, as shown in sections 3.1.2 and 3.2.2. Since this was 

observed in both RILs, and in the new RILs set (C24WS) (Chapter 4), this suggested 

that varying period length after the two different entrainment protocols is probably of 

an adaptive value. The nature of this adaptive value could be that whilst light and dark 

dominantly entrain the oscillator, the additional effect of thermal changes fine-tune 

this response.  

The second conclusion drawn from the CCR2 periodicity studies after light-

dark and temperature entrainment was that different entrainment protocols resulted in 

the detection of QTLs that are mediated by natural-allelic variation at both the same 

and different loci positions. This was shown to be true in both RIL populations tested 

(see 3.1.4 and 3.2.4). A detailed description and possible implications of the identified 

QTLs per RIL and per separate entrainment protocol on the period phenotype follows.  

The first RIL population assayed for periodicity was the CvL. Specifically, for 

the light-dark entrainment, one main QTL at the locus BH.107 at the fifth 

chromosome was identified, and it explained about 50% of the phenotype. The 

additive effect of the Cvi allele was 0.838 hours as compared to the Ler allele. A QTL 

at this approximate location has been found in past studies (Edwards et al., 2005). 

From known circadian modulators, FLC localizes close to this area and it was shown 

that an flc mutant displayed period phenotype (Salathia et al., 2006). Therefore FLC 

could be candidate gene for this locus, especially as Cvi allele of FLC is strong, and 

such alleles were previously shown to lengthen period (Salathia et al., 2006). It was 

also shown that Ler carries a weak FLC (Gazzani et al., 2003).  

At the first chromosome at the PW4 locus, another main QTL was identified 

for light-dark entrainment (3.1.3). The Ler allele of this QTL displayed a longer 

period of 1.131 hours compared to the Cvi allele, which displayed a 25.5 hours period 

under constant light free-running conditions (3.1.4). A known clock gene named LHY 
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is localized within this interval. LHY is a light-induced gene that forms feedback loops 

with other core oscillator components (Kim et al., 2003a). It is an attractive 

hypothesis that LHY plays a role in the light input to the oscillator. It is not known if 

the allelic status of LHY varies between Cvi and Ler. Perhaps a more plausible 

candidate gene for this locus within the defined interval would be CRY2. CRY2 

mediates blue-light input to the clock (Yanovsky et al., 2001). Moreover, its 

expression is under the control of the circadian clock (Toth et al., 2001). It was found 

that a single amino-acid change in the Cvi allele of CRY2 was responsible for 

daylength-insensitive flowering, whereas the Ler allele of CRY2 displayed a late 

flowering phenotype under short days (El-Din El-Assal et al., 2001). Therefore, it 

would be exciting to determine whether the same polymorphism accounts for 

periodicity, as well as for flowering-time variation.  

Another QTL at the locus CC.262C at the bottom of the fifth chromosome was 

identified for the light-dark entrainment (3.1.3). Statistical analysis confirmed the 

existence of this QTL and its highly significant interaction with the QTL identified at 

the PW4 locus. Several candidate clock genes are localized at the proximity of this 

locus. SRR1, PRR3, and TOC1 are candidate genes for this QTL. SRR1 was found to 

be a component of PHYB signaling (Staiger et al., 2003b). Previous natural-variation 

studies showed that PRR3 and SRR1, but not TOC1, might account for a phase QTL 

detected after entrainment to light-dark entrainment in 12 hours light::12 hours 

darkness in the CvL collection (Darrah et al., 2006). It was somewhat expected that 

TOC1 will not be a candidate gene, since it is an evening-expressed gene that, until 

now, there has been no evidence of TOC1 directing light activation. Moreover, this is 

partially confirmed by mathematical models according to which it was predicted that 

light activation of TOC1 is mediated through an unknown ‘Y’ factor (Locke et al., 

2005).  

Additional interacting QTLs after light-dark entrainment were identified 

(3.1.3). One such interacting QTL was found at about 60-65cM at the first 

chromosome. This is a novel QTL. Although QTL mapping showed that this QTL 

greatly reduces the effect the fifth chromosome QTL at the locus BH.107L, such an 

interaction was not confirmed by the statistical analysis. This is probably due to the 

different assumptions of the applied statistical tests. A fourth chromosome interaction 

QTL was found that enhances the effect of the first chromosome identified QTLs and 

reduces the effect of the QTL at the fifth chromosome at the CC.262C locus. 
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However, such an interaction was not confirmed by statistic analysis. Collectively, 

previously known QTLs were confirmed, and new QTLs were identified for the light-

dark entrainment. As well, the epistatic nature of clock QTLs was revealed.  

For period QTLs after temperature entrainment, a main QTL in the CvL 

collection was identified on chromosome 1 at the CH.160L-Col locus (3.1.3). It was 

highly statistically significant and the Ler allele conferred a longer-period phenotype 

of about 1.1 hours compared to the Cvi allele (3.1.4). GI remains a candidate gene 

since it is still localized within a newly generated NILs during my QTL cloning (see 

below). Other approaches taken to map the first chromosome QTL at the locus 

Ch.160L-Col will be described in the future perspectives section.  

A QTL at the third chromosome was found to have strong interaction with the 

main QTLs identified after temperature entrainment in the CvL collection (3.1.3). 

This QTL displayed a positive effect on both the QTL at the chromosome 1 at the 

CH.160L-Col, and on the QTL at the bottom of chromosome 5 (3.1.4). This QTL is 

novel and was not previously identified from other circadian studies. Statistic analysis 

showed that it strongly interacts with a QTL at the PW4 locus, although no QTL, 

interacting or main, for the temperature entrainment was found at the PW4 locus. This 

discrepancy could be due to the different test assumptions.  

At chromosome five, three separable period QTLs after temperature 

entrainment were identified in the CvL collection. Two of them were located at the 

beginning of chromosome, at the AD.292L and at the BH.107L loci, respectively.  

The QTL at the locus AD.292L increased the effect of the first chromosome QTL at 

the CH.160L-Col, but it decreased the effect of the fifth chromosome QTL at the 

locus BH.107L. The PRR7 gene is localized close to the QTL at the locus AD.292L. 

Previously, it was shown that PRR7 is entrained by temperature (Salome and 

McClung, 2005). An interaction between PRR7 and GI, in case these are the loci at 

the fifth and first chromosome, respectively, has not yet been shown. At the CC.262C 

locus, a main QTL was identified. This QTL was also detected after the light-dark 

entrainment as described above. Collectively, numerous epistatic interactions were 

revealed.  

To remove the confounding effect of light in temperature entrainment, the 

CvL RILs were synchronized to temperature cycles in constant darkness and then free 

run in constant darkness at 22ºC for period measurements. The aim was to assay 

periodicity in exactly the same RILs as the ones assayed under the constant light and 
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temperature cycles. QTL mapping of CCR2 period after this entrainment resulted in 

two main QTLs (3.3.2). These QTLs were at the CH.160L-Col and HH.143C loci. 

Interestingly, these two QTLs were also identified after temperature entrainment 

under constant light.  In the latter entrainment, a third QTL was also identified at the 

fifth chromosome at the BH.107L locus. At this locus, the main QTL for the light-

dark entrainment was detected. This suggests that during temperature entrainment 

under constant light conditions, both light and temperature entrainment cues, light and 

temperature, are effective in allowing the detection of the identified QTLs.  

In past natural-variation studies, the CvL collection has been used to map 

period, phase, and amplitude QTLs for temperature compensation, photoperiod, or 

light dark entrainment (Swarup et al., 1999). Swarup et al. measured the period 

phenotype of leaf movement in the 48 Cvi/Ler after light-dark entrainment (Swarup et 

al., 1999). Three QTLs were identified for period variation of leaf movement. The 

first chromosome QTL named ESPRESSO (ESP) co-localized with the one I 

identified for the temperature entrainment. GI remains a candidate for this locus. Two 

QTLs were also identified by Swarup et al. on the chromosome five, named 

ANDANTE (AND) and RALENTANDO (RAL). The AND QTL was found to be 

localized at the top of chromosome five, whereas the RAL QTL was localized at the 

bottom of chromosome five (Swarup et al., 1999). These two QTLs do not co-localize 

with the QTLs I identified for the light-dark or temperature entrainment (3.1.3). In the 

Col/Ler RIL set tested by Swarup et al., two QTLs at the fifth chromosome, but none 

at the first chromosome were identified. A second publication mapped QTL by 

assessing period, phase, and amplitude of leaf movement rhythms in 76 Col/Ler RIL 

(Michael et al., 2003b). Especially for period, two QTLs were identified on the first 

chromosome. This discrepancy between the two publications might be observed due 

to the different number of the RILS assayed.  

In another QTL experiment from the Millar group, Edwards et al. performed 

temperature compensation experiments scoring period, phase, and amplitude of leaf 

movement in 30 Col/Ler and 48 Ler/Cvi RILs in three different ambient temperature 

environments (Edwards et al., 2005). Several period QTLs were identified, with many 

of them co-localizing for the different RILS populations. Many interesting findings 

were described. Different period QTLs were found to be involved in temperature 

compensation at various temperatures. On the first chromosome, two period QTL at 

the loci PW4 and CH.160L-Col were identified for 12ºC and 27ºC, respectively. 
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Interestingly, at the PW4 locus, I also identified a QTL for the light-dark entrainment, 

whereas in the locus CH.160L-Col, I identified a QTL for temperature entrainment. 

Since temperature has a dual role in regard to the oscillator, as that of compensation 

and entrainment, it would be interesting to test if the QTL at the locus CH.160L-Col 

is involved in both processes. On the fifth chromosome, four different period QTL 

were mapped by Edwards et al. within the Cvi/Ler population (Edwards et al., 2005). 

The only potential co-localization with the QTLs I identified is restricted to the QTL 

previously named PerCv5d. PerCv5d colocalizes with the QTL I identified after the 

temperature entrainment in constant darkness at the HH.143C locus (3.3.2). 

Additionally, amplitude QTLs were also detected for the temperature compensation, 

but surprisingly no phase QTL was identified. This probably suggests that period and 

phase are under different genetic control regarding leaf movement. 

Darrah et al., exploited natural variation of CAB2 phase after entrainment in 

three different photoperiod environments in 47 CvL RILs. The three photoperiod 

environments consisted of 3 hours light::21 hours darkness (short photoperiod), 12 

hours light::12 hours darkness (intermediate photoperiod), and 21 hours light::3 hours 

darkness (long photoperiod). In total, four QTLs were identified. For the short 

photoperiods, a QTL on chromosome 1 close to the CH.160L-Col locus, and another 

QTL on the fifth chromosome at the FD.207L locus were identified. QTL fine 

mapping suggested that the first chromosome QTL is novel and does not correspond 

to GI (Darrah et al., 2006). Two QTLs were identified for the intermediate 

photoperiod, on the second chromosome at the ERECTA locus, and on the fifth 

chromosome at the HH.122C/120L locus. No QTLs were detected for the entrainment 

in long photoperiod. The two QTLs at the chromosome 5 did not co-localize with any 

of the QTL I identified. To conclude, of all the past publications, my findings share 

more similarities to the Edwards et al. results.  

To confirm that my findings of the light-dark and temperature entrainment of 

the CvL collection were adaptive, I extended my experiments to a second RIL 

population, named BxS, that was generated by accessions different than those used for 

the generation of the CvL RIL. The parental strains of the BxS population were 

Bayreuth-0 and Shakdara (Loudet et al., 2002). Strikingly, although the BxS 

population was synchronized to the same protocols as CvL, different QTLs were 

detected. Two main QTL at the same loci were mapped for the two different 

entrainments. Specifically, the two QTL were located at the second chromosome at 
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MSAT 2.41 locus and at the fourth chromosome at the locus MSAT 4.37 (3.2.3). The 

second chromosome QTL was detected after both entrainments, whereas the fourth 

chromosome was less significant for the temperature entrainment. 

The second chromosome QTL co-localizes to an interval that contains ELF3. 

ELF3 functions to gate light to the oscillator (McWatters et al., 2000). However, this 

gene has not yet been implicated in temperature entrainment. However, Tajima et al., 

has shown that extensive natural variation in the polyglutamine repeats of ELF3 exist 

within 60 accessions (Tajima, 2007). Possibly, the variation in the repeats may play a 

role in the interactions of ELF3 with other partner proteins. Whether the Bay-0 or 

Shakdara accessions have different repeats in ELF3 is as of yet not published.  

A fourth chromosome QTL in the BxS population was found, and it is novel 

since it does not co-localize with any known circadian gene. Collectively, in Chapter 

3 two RIL collections were assayed in light-dark and temperature cycles. It was found 

that temperature and light-dark entrainment controlled by both the same and different 

QTLs. Furthermore, different QTLs were detected for each collection, suggesting that 

circadian clock is a highly adaptive to environment.   

 

Temperature entrainment QTL fine mapping future perspectives 
Thus far, the fine mapping of the QTL at the locus CH.160L-Col, paralleled to 

phenotypic assays, led to a defined genomic region in a NIL background. This region 

is close to, and includes, GI. In the case of the CvL population, NILS were 

constructed by introgression of Cvi alleles into Ler genome (Keurentjes et al., 2007). I 

backcrossed four of the original NILs that had a Cvi introgression at the first 

chromosome to Ler bearing CCR2::LUC in order to generate an informative 

population to fine map the QTLs detected for temperature entrainment by assaying 

circadian rhythmicity of CCR2. To elucidate whether the first chromosome QTL is 

GI, these four NILs were crossed to gi-3 mutant bearing CCR2::LUC. This mutation 

is in Ler background and displayed a short-period phenotype (Koornneef et al., 1991). 

Several F1 lines of each NIL cross over the mutation were assayed for rhythmicity of 

CCR2, and were scored as to whether they had restored the mutant phenotype. The F1 

crosses of gi-3 to two separate NILs with introgressions of Cvi in part of chromosome 

1, including smaller and larger area around GI were compared to NILS that had 

introgression of Cvi in part of the chromosome 1, but at the GI locus, they were Ler. 
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As the control, the Cvi and the Ler accessions were crossed to gi-3 mutant. The NILs 

lines that introgressed a Cvi allele of GI restored the mutant phenotype of gi-3 in the 

tested F1 lines. The NILs with LerGI also restored the phenotype. So, both the Cvi 

and Ler alleles of GI were found to be functional and could recover the mutant 

phenotype of gi-3. However, the NILs that CviGI introgressed displayed shorter 

period after temperature entrainment than after light-dark entrainment, compared to 

the LerGI. The F1 of Cvi accession crossed to gi-3 displayed a shorter-period 

phenotype, compared to the Cvi accession. This suggested that GI and a QTL not at 

GI locus interacted in these F1 lines. However, the F1 of the two parental accessions 

was not created. This would be the control for the Cvi accession crossed to gi-3. So to 

conclude, the gi-3 mutant phenotype is restored by NILs that contain CviGI and 

LerGI. However, the presence of interacting QTLs within the NILs cannot be 

excluded. Further fine mapping would be useful to determine whether the QTL is GI 

or an interaction that modifies GI activity. 

In section 3.1.4, interallelic epistatic interactions for light-dark and 

temperature entrainment were described. In the temperature entrainment studies, a 

genetic interaction between two main QTLs was found, one at the first chromosome at 

locus CH.160L-Col and that at the fifth chromosome QTL at locus CC.262C (3.1.4). 

To assay for this interaction, NILs isolated during my QTL mapping of the first 

chromosome QTL, containing a small region of Cvi, could be crossed to NILS that 

contain a Cvi introgression at the QTL of the fifth chromosome. F2 seedlings from 

this cross could be assayed for circadian rhythmicity to determine the allele-specific 

interactions between these two QTLs. The interaction of the Ler allele of the first 

chromosome QTL with the Cvi allele of the fifth chromosome QTL displayed a long-

period phenotype, and thus, this epistatic interaction should be easily identifiable. 

After identification of the genes that create these QTLs, complementation tests to 

available mutants could be realized in QTL confirmation. Further characterization of 

gene function in various physiological protocols should then be assayed.  
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Molecular genetic characterization of non-randomly generated RILS 
Assessment of luciferase activity driven by circadian promoters in two pre-

existed RIL populations led to the detection of several QTLs (Chapter 3). To avoid 

positional effects due to the insertion of the reporter construct, multiple progeny 

seedlings from 2 to 4 independent transformants per RIL were assayed for circadian 

rhythmicity. To minimize such an effect for future circadian experiments, six new 

RILs were constructed during this PhD by pairwise crosses of the four most 

commonly used A.thaliana accessions, named Columbia, Landsberg erecta, C24, and 

Wassilewskija (Chapter 4). Two of the accessions, WS and Ler, were bearing the 

CCR2::LUC, were crossed to the remaining three accessions. Therefore, in all lines 

within each RIL population CCR2::LUC was inserted at the same genomic region. In 

total, per each RIL population, 48 lines were selected for long period and 48 lines for 

short period of CCR2, after light-dark entrainment. Four RIL populations were taken 

to the BC1F7 generation. Generation of a dense genetic map for each population will 

be required. For two of the populations, those generated by the cross of C24WS and 

ColWS, a preliminary genetic map was constructed. Both RIL populations were 

genotyped with SSLPs and CAPS markers (2.1.5). The C24WS RIL population was 

genotyped using 34 markers spread across the five chromosomes (4.2). These maps 

facilitated the QTL identification and described SD from selection. 

In Chapter 4, QTL mapping was described in C24WS for two circadian clock 

controlled traits, flowering time and circadian period of CCR2. The parental 

accessions WS and C24 were both early flowering, bolting at around 8 and 13 leaves, 

respectively (Table 4.2). However, extensive flowering-time variation was observed 

in my generated RILs, from 5 to 53 leaves (Table 4.2).  For the flowering-time 

variation, three QTLs were identified that accounted for more than 70 % of the total 

phenotypic variation.  In the long-period selected lines, three QTLs were identified, 

whereas in the short-period selected lines two QTLs were identified. The two QTLs 

mapped in the long-period selected lines were the same as those identified in the 

short-period selected lines, and thus, only three total QTLs were detected for 

flowering time in the C24WS collection. The two common QTL were localized at the 

beginning of the fourth chromosome at the locus FRI, and at the fifth chromosome 

between the loci NGA158 and NGA106. In between of these markers FLC is located. 

Thus, FRI and FLC are strong candidates for these QTLs. Shindo et al., assessed 
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natural variation on both genes in 192 accessions, including C24 and WS (Shindo et 

al., 2005). These accessions originate from different latitudes. Specifically, C24 was 

collected from 35-40N, whereas WS was collected at 50-55N. Since both parents are 

early flowering, then it is the allelic interactions that define the late-flowering 

phenotype of some RILS. Additive effects and allelic interactions between the QTLs 

were shown (4.3.1.2). The C24 allele of the FRI QTL is later flowering than the WS 

allele, whereas the WS allele of FLC is later flowering than that of the C24 allele. It 

was previously described that the FRI gene is an activator of FLC, a major repressor 

of flowering time (Michaels and Amasino, 1999). The interaction of C24 allele of FRI 

with the WS allele of FLC displayed a late-flowering phenotype compared to the rest 

allelic combination interactions (4.3.1.2.3). It is known that C24 has a strong FRI 

allele and weak FLC allele, whereas the WS has a weak FRI allele and a strong FLC 

allele (Gazzani et al., 2003). Thus, I expected these genes would be mapped and their 

interaction would be found to confer flowering-time variation, this was the case 

(4.3.1.2.3).  

The third flowering time QTL in C24WS was identified on chromosome one 

at the NGA59 locus. This QTL was first found in the long-period selected lines, and 

also in ‘all lines included.’ The WS allele delayed flowering compared to the C24 

allele. The CRY2 gene is a candidate for this locus as it is located within this interval. 

In the past, CRY2 was mapped in the CvL collection for conferring insensitivity in 

response to day-length (El-Din El-Assal et al., 2001). Photoperiod insensitivity was 

provided by the Cvi allele of CRY2. The photoperiod insensitive flowering time 

phenotype was expected because Cvi origin is from close to the Equator. In this 

environment, daylength does not drastically change as in other parts of the world. It is 

not known if C24 has a different CRY2 sequence than WS. 

 Circadian rhythmicity after light-dark and temperature entrainment was 

assayed in the C24WS lines. To date, more than fifty percent of the lines have been 

assayed in constant light after entrainment to these light-dark and temperature-

entrainment protocols. QTL mapping resulted in the identification of a QTL at the top 

arm of chromosome 2 for the light dark-entrainment. No common QTL was identified 

for the two traits tested in the C24WS collection. Interestingly, as was seen with CvL 

and BxS, the C24WS population was displayed a longer period after light-dark than 

temperature entrainment (3.1.3, 3.2.3, 4.4.2). 
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Future perspectives 
Several RILs populations have been generated in a non random way during 

this PhD. Segregation distortion was observed on chromosomes 1, 3, and 5. This 

segregation distortion, together with the non-dense genetic map are the main causes 

for the high LOD scores generated from the MapQTL, especially for the short-period 

selected lines (4.2, 4.3). This then affected as well the MapQTL results for ‘all RILs.’ 

Therefore, it will be of interest in the future to study segregation distortion based on 

phenotypic selection, and especially, to study whether the undertaken selection for 

CCR2::LUC periodicity correlates with other circadian-regulated traits, such as 

hypocotyl elongation and flowering time. This would thereby determine the 

possibility of genetic co-segregation of these three traits. This correlated trait 

measurement will define if circadian selection coordinates physiology.   

The best genetic resources to perform the above described experiments would 

be the C24WS and the reciprocal LerWS RILs due to the flowering time and 

hypocotyl elongation variation that was observed in each collection, respectively. 

Additionally, in the reciprocal LerWS RILs, one could determine maternal effects on 

the understudy phenotype. If a QTL will be found in all measured traits, such as 

circadian rhythmicity, hypocotyl elongation, and flowering time, this would suggest 

that the detected QTL is a common link for all traits. Such detection is somewhat 

expected since the circadian clock controls these processes, and therefore the three 

traits can be correlated. If true, this would in part explain why extensive natural 

variation in periodicity exists. 

The QTL mapping for flowering-time variation in the C24WS population 

resulted in the detection of three main QTLs. For each QTL, a candidate gene exists. 

Natural variation has been described in the past for all three loci (El-Din El-Assal et 

al., 2001; Shindo et al., 2005). Generation of NILs at these loci should be initiated. 

Phenotypic confirmation should be followed by sequence analysis of candidate genes 

to reveal the polymorphism underlying the variation. It would be interesting to 

compare the variation of WS, and C24 for all candidates. Further experiments would 

be to run parallel flowering time experiments in short days and long days, as well as 

in vernalization and non-vernalization conditions, to map flowering time QTLs for 

these four environments. Since FLC is a strong candidate for the late-flowering 

phenotype under long days, and it is known that prolonged low temperatures that 
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result in vernalization treatment down-regulate the expression of FLC, I would expect 

that on average the C24WS collection will generally flower earlier after vernalization 

treatment. Additionally, flowering-time assays of plants grown under short days could 

be used to define whether the first chromosome QTL accounts for photoperiod-

dependent flowering time variation. This might be expected, as CRY2 is candidate for 

this QTL.  

 

 

Physiological analysis of various clock markers 
The results of the Chapter 3 suggested that QTLs co-localized with known 

circadian genes, such as GI, TOC1, LHY, ELF3, mediate temperature entrainment. 

Therefore, I decided to map the transcriptional kinetics of these promoters, as well as 

the outputs CAB2, CCR2, ELF4, and CCA1, under various physiological experiments 

to assess their entrainability. Temperature entrainment was of interest and it was 

contrasted to results after light-dark entrainment. Luciferase activity driven by various 

promoters was assayed in different daylength and thermo-length protocols (Chapter 

5). From these results, it was concluded that GI promoter was the only one of those 

tested that was able to discriminate photoperiod length (5.1). However, none of the 

tested promoters was able to discriminate thermo-period length. Detection of thermo-

period or photoperiod through the TOC1 promoter was not observed (5.1). 

Interestingly, there was a distinct pattern for luciferase activity driven by the TOC1 

promoter after the different entrainment protocols (5.1). TOC1 displayed a later phase 

and shorter period after temperature entrainment compared to after light-dark 

entrainment. This suggested that light and temperature regulate TOC1 transcription, in 

a differential manner. The delayed-phase phenotype after temperature entrainment, 

compared to light-dark entrainment, was also observed for LHY (5.1). Thus, TOC1 

and LHY are regulated by temperature differentially compared to other clock genes. 

Whether this is a reciprocal regulation remains to be elucidated.  

In nature, changes in light and temperature often take place at the same time. 

However to map the differential effect of the two signals and the preference of these 

genes to either input, I subjected the transgenic plants to desynchronizing entrainment 

protocols, where temperature cycles were 6 hours delayed (IN) or advanced (OUT) 

compared to the onset of lights in the light-dark cycle (5.2). When plants were 
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transferred to continuous light just before the warm-to-cool or cool-to-warm 

transition, which was in the middle of the light period, the phase of all promoters was 

shifted, advanced or delayed by six hours, suggesting that they anticipate for the 

temperature change (5.2). Interestingly, when seedlings were transferred to 

continuous light just before lights on, all clock promoters responded to temperature 

only in the OUT protocol, as determined by six hours advanced phase shift compared 

to the light-dark entrainment (5.2). However, TOC1 was the only clock promoter of 

those tested that was reset during the middle of IN protocol by advancing its phase by 

6 hours (5.2). These results collectively suggested that temperature changes were 

gated by light during the day. This could mean that light was a stronger entrainment 

signal than temperature during subjective day time. In the absence of light, 

temperature dominated clock resetting (5.2). Here, TOC1 could be the thermal target 

of the clock. So, at this point it is not clear whether the TOC1 response that was 6 

hours phase shifted was entrained or driven. There are a couple of approaches that 

could resolve this discrepancy.  

To determine whether temperature entrains TOC1, I performed non 24-hour 

cycles of light-dark and temperature entrainment. In nature, plants would never 

experience a cycle length other than 24 hours. Therefore, entrainment in such 

conditions would be certainly enlighten the determination of entrainment. I chose to 

synchronize to cycle lengths of 20 and 28 hours, using equal portions of light/warm 

and dark/cool, because I could compare the 20 or 28 hours cycle to the 24 hours 

photoperiod or thermo period results obtained in Chapter 5.1, in terms of cycle length 

or light/warm period length. The general trend was that the peak expression of the 

transcriptional rhythms of the 28 hours cycle was earlier than that of the 20 hours 

cycles. The difference in phase was an indication of entrained rhythms and not driven 

(Pittendrigh, 1976). All promoters displayed a phase difference of four hours between 

the different cycle lengths, as defined by the first peak. However, the subsequent 

peaks of GI, TOC1, CCA1, and CCR2 were not identical. A detailed analysis of these 

expression profiles follows. 

GI entrained in 20 hour and 28 hour cycles of both light-dark and temperature 

entrainment, as indicated by the first peak. After the 28-hour cycle, GI expression 

peaked 5 hours before dusk/cool, whereas after the 20-hour cycle peak expressed 3 

hours after dusk/cool (5.3). However, from the second and subsequent peaks it 

seemed that temperature entrainment had the same effect irrespective of the cycle 



CHAPTER 6                                                       General conclusions and discussion 

 
170

length. Importantly, in free running under constant light, after being entrained at 28-

hour temperature cycles, its expression peaked was at the subjective warm to cool 

transition (5.3). This response indicated a driven response due to temperature. After 

light-dark entrainment to both 20- and 28-hour cycle GI expression peaked at 

different phases, suggesting that GI entrained to light-dark cycle (5.3). 

TOC1 after light-dark entrainment displayed different phase regarding the 

different T-cycles, and after the second peak, both light-dark entrainments displayed 

the same profile. This was similar to the GI response (5.3). However, the phase of 

TOC1 expression peak after 28-hour cycles was at the transition from light to dark 

(5.3). After the 20-hour cycles TOC1 expression peaked at the end of the dusk period. 

Therefore, TOC1 tracks to the light-dark cycles. Strikingly, TOC1 expression 

displayed an acute response soon after transfer from the temperature T-cycles to 

constant light conditions (5.3). This acute response could be explained by the 

temperature change during the transfer from cold to warm. The phase of TOC1 after 

temperature entrainment to 20-hour cycles was the same after light-dark entrainment 

to 20-hour cycles. Unexpectedly, after temperature entrainment to 28-hour cycles, 

TOC1 expression was arrhythmic at intermediate expression for the first cycle, as 

defined by peak and trough levels (5.3). In subsequent cycles rhythmicity was 

restored. This response after the 28 hours cycles in temperature entrainment was 

unique and never found before neither in A. thaliana nor in any other circadian-clock 

model organisms (Liu, 2003; Glaser and Stanewsky, 2005).  

Both GI and TOC1 were genetically tested under the photoperiod and 

thermoperiod protocol, as was described in 5.1 (5.4). This was done to test whether 

the observed response of GI and TOC1 promoter to photoperiod and thermoperiod 

protocols was could be genetically confirmed. For this, CCR2 expression was 

monitored after photoperiod and thermoperiod protocols in the gi-11, toc1-21, and the 

double mutant gi-11 toc1-21. Clearly, CCR2 expression peaked later after entrainment 

to different photoperiod protocols compared to the wild-type. In contrast CCR2 

expression in the mutants peaked the same with wild-type after temperature 

entrainment. These results confirmed that GI measured photoperiod and not 

thermoperiod, whereas TOC1 was not able to measure photoperiod or thermoperiod 

(5.4).  

The effect of the gi-11 and toc1-21 mutants in the CCR2 expression was also 

tested under the various T-cycles protocols (5.5). The expression of CCR2 was 
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arrhythmic after one cycle, compared to the wild-type (5.5). CCR2 phase in single and 

double mutants were observed during the light/warm part of the cycle after the 28-

hour cycles, whereas after the 20-hour cycle CCR2 phase was observed in the 

dark/cool phase (5.5). CCR2 phase in the gi-11 after temperature entrainment 

irrespective to cycle length was the same compared to the CCR2 phase in the wild 

type (5.5). This suggested that GI did not entrain to temperature cycles. In general, the 

phase of CCR2 in the toc1-21 was much earlier in both 28-and 20-hour cycles of both 

entraining signals compared to the phase of CCR2 in the gi-11 (5.5). This suggested 

that both TOC1 and GI had differential effects on CCR2 expression. Moreover, it was 

suggested that TOC1 responds to both light-dark and temperature entrainment, 

whereas GI responds only to light-dark entrainment and not temperature entrainment. 

Different evening genes thus appear to be differentially sensitive to environmental 

entrainment.  

  

Future perspectives 
TOC1 expression varied compared to other clock genes and displayed a 

physiological response under any tested protocol (5.1-5.3). It would be interesting to 

further define the temperature-regulated physiological responses of TOC1. So far, the 

responses of TOC1 to entrainment in T-cycles indicated that TOC1 could be entrained 

to 24 hours and to less than 24 hours protocols, but cannot be entrained to more than 

24 hours. For this, one could test intermediate T-cycle to refine the phase of the 

various clock promoters. Additionally, it would be interesting to monitor the 

expression pattern of all clock promoters tested in this study, during entrainment in 28 

or 20-hour cycles. Though, it is important to note that since luciferase is an enzyme, 

temperature changes affect its activity.   

Mathematical modeling has predicted that the A. thaliana circadian oscillator 

of light-dark entrained plants is comprised by three loops (Locke et al., 2006). Two 

genes of the morning loop model, PRR9 and PRR7, were shown to have an effect in 

temperature entrainment (Salome and McClung, 2005). Moreover the triple mutant of 

cca1 lhy toc1 was found to be rhythmic for a day, and then it becomes arrhythmic 

(Ding et al., 2007b). All data so far have indicated that all known core-clock genes are 

either actively involved in temperature entrainment or their expressions patterns are 

temperature regulated (Salome and McClung, 2005; Ding et al., 2007b). One such 
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temperature regulated gene was shown to be GI. Therefore, it would be fruitful to 

generate the quadruple mutant of cca1 lhy toc1 gi, with all the respective double and 

triple combinations, and assay their entrainability to temperature. According to the 

three-feedback-loop model, PRR9 and PRR7 and an unknown X factor are proposed 

to remain functional (Locke et al., 2006; Zeilinger et al., 2006). Additionally, it would 

be useful to generate another quadruple mutant, in which PRR9, PRR7, TOC1, GI 

would be non functional. Here, the only functional clock genes would be CCA1, LHY, 

and GI. According to the predicted model, this quadruple tests the other arm of the 

oscillator. Studies on these two quadruple mutants might then explain the majority of 

the core-clock machinery. Eventually, all these generated genetic materials should be 

tested after various temperature-entrainment protocols, such as those performed in 

Chapter 5. Currently, experiments on the toc1-21, gi-11 and their double mutant were 

carried out under the same entrainment protocols, such as INOUT entrainment 

protocols (Chapter 5). This double mutant was particularly interesting, as GI and 

TOC1 were found to be reciprocally regulated (Martin-Tryon et al., 2007). 

Furthermore, GI negatively regulates TOC1, in an indirect manner, since in blue light 

GI stabilizes ZTL protein, which in turn mediates TOC1 degradation (Mas et al., 

2003; Kim et al., 2007b). Whether this supposedly light-requiring mechanism is 

regulated by temperature will also need to be determined.  

In the IN protocol, the response of TOC1 was observed upon transfer from 

dark to light while being in the middle of the cool part of the temperature cycle (5.3). 

It would be interesting to monitor the status of TOC1 over time in the IN protocol. For 

this, seedling bearing TOC1::LUC would be transferred to free-run conditions at 

different phases of the entraining cycle. This would be particularly interesting for 

TOC1, because one could determine whether the physiological response displayed in 

the INOUT experiments was phase dependent. Applying these conditions to the 

double, triple and quadruple mutants of cca1 lhy toc1 gi, and prr7 prr9 toc1 gi, one 

could determine when the oscillator stops, and which genes were essential for 

temperature entrainment. Eventually, all developed knowledge would lead towards 

the physiological and genetic understanding of temperature effects in terms of 

entrainment.  
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6.2  DISCUSSION 

In this PhD thesis, the temperature effect on the entrainment of the A. thaliana 

circadian clock was studied. Quantitative genetics and physiological experiments led 

to the conclusion that temperature inputs were mediated by a partially overlapping 

gene set as that determined for light-dark entrainment. In physiological experiments 

performed, it was shown that TOC1 responds to light and also temperature changes, 

whereas GI responded only to light. A novel function for GI was also revealed in that 

it tracks photoperiod. Genetic analysis confirmed these functions. Both genes were 

candidates for the quantitative variation of CCR2 period found in the CvL RIL. 

Natural selection regarding clock genes was observed in another two RIL collections. 

It was found that different QTLs were detected in different RILs, suggesting that 

circadian clock is an adaptive mechanism under strong environmental selection.  

In chapter 3, it was shown that light-dark entrainment and temperature 

entrainment were controlled by a variety of QTL, which in the majority were common 

for both protocols. This was somewhat expected, since in nature, both inputs 

temporally coincide. Therefore genes might have been selected to mediate both 

inputs. Natural variation present in a given accession could have been strongly 

selected for the specific environmental conditions. To test this, two RILs collections 

were tested that they were generated from four different parental strains. The RILs 

were synchronized to the same conditions (conditions that none of the parental 

accessions was selected on). Different QTLs for each RIL population were identified 

for both entrainments (3.1.3, 3.2.3). This was a strong indication that circadian clock 

is a mechanism under selective pressure. Furthermore, in both RILs there was not 

much difference on the components that genetically control circadian rhythmicity in 

response to the different entrainments. Strong allelic interactions between the QTLs 

were described (3.1.4, 3.2.4). These different interactions could partially define the 

response to the two different entrainments. Furthermore, period shortening after 

temperature entrainment compared to light-dark entrainment, was observed in both 

RIL populations (3.1.1, 3.2.1). This practically means that the temperature 

entrainment protocol was effective used for mapping. Moreover, the biological 

significance of this observation was that temperature fine tuned the light-dark 

entrained oscillator.  
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In addition to the preexisting RILS, one of the RIL populations generated 

during this thesis was also assayed after light-dark and temperature entrainment (4.1). 

Here, preliminary data supported the conclusion drawn by the existing two RILs 

(Chapter 3) that circadian rhythmicity in regard to the different inputs was mediated 

by the known and novel loci. Additionally, this new population was scored for 

flowering time, since extensive variation was observed (4.3). This trait is controlled 

by rhythmic external and internal cues. External cues such as photoperiod and 

ambient temperature induce flowering (McClung, 2006). The physiological promotion 

of flowering after prolonged exposure to extended low temperatures is called 

vernalization, and FLC is the central gene of this pathway (Amasino, 1996, 2005). 

Upon cold induction, FLC is repressed. This repression is an irreversible process in A. 

thaliana, leading to flowering. Upstream of FLC, a gene called FRIGIDA (FRI) 

induces FLC expression. Extensive natural variation have been found in both FRI and 

FLC (Shindo et al., 2005). In an assay of 192 accessions, FRI and FLC alleles were 

characterized in terms of flowering time (Shindo et al., 2005). It was shown that the 

parents of the C24WS RIL belong in different groups of FRI and FLC (Shindo et al., 

2005). According to these publications, WS accession has a weak FRI and a strong 

FLC, whereas the C24 accession has a strong FRI but a weak FLC. Therefore it was 

expected that the extensive variation of this RIL would be observed due to the allelic 

interactions of these QTLs. This was found and was confirmed by statistical analysis 

(Table 4.3, Figure 4.17). Other QTLs that may account for the flowering-time 

variation in the C24WS, could be FLF and FLG (Alonso-Blanco et al., 1998). It was 

shown that the Cvi allele of these two loci account for late-flowering time (Alonso-

Blanco et al., 1998).  

A. thaliana is a facultative long day plant. This means that flowering is 

induced in response to long days versus short days (Searle and Coupland, 2004). 

Light perception is mediated by photoreceptors. Depending on light quality, three 

classes of photoreceptors exist. Red light is perceived by phytochromes (PHYs), and 

blue light by cryptochromes (CRYs) (McClung et al., 1989). The red and blue 

spectrum of light have opposite effects on flowering time, since loss-of-function of 

PHYB causes early flowering phenotype, whereas loss of function of CRY2 causes 

late-flowering phenotype (Mockler et al., 1999). This suggested that CRY2 promotes 

early flowering whereas PHYB represses early flowering. Furthermore, functional 

interaction between CRY2 and PHYB lead to the suggestion that they probably 
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mediate in the control of flowering time (Mas et al., 2000). The differential flowering 

phenotype can be explained by the effect of these two genes on a photoperiod 

inductive gene. This gene is called CONSTANS (Valverde et al., 2004). Valverde et 

al., proposed that PHYB promotes degradation of CO in the morning, and CRY2 

stabilizes CO protein by antagonizing PHYB during evening. Furthermore an allelic 

variant of CRY2 in the Cvi accession, was found to confer insensitivity to 

photoperiod due to an amino acid change (El-Din El-Assal et al., 2001). This amino 

acid change was found only in the Cvi-0 accession (El-Din El-Assal et al., 2001). 

Regarding my findings reported in Chapter 4, I found a QTL localized at the 

proximity of CRY2. As it was shown, extensive nucleotide variation at CRY2 locus 

exists (Olsen et al., 2004). Based on the nucleotide diversity found in 95 accessions 

the haplotype structure of CRY2 was divided in two highly differentiated 

haplogroups. According to polymorphisms WS belongs to the same haplogroup as 

Ler. The second parental strain of the C24WS collection (C24) was not studied in the 

work of Olsen et al. If the QTL at the first chromosome is CRY2 then there should be 

variation between the alleles of C24 and WS. This could be tested by sequencing 

CRY2 and comparing this to the existed data from WS. Further characterization of 

this QTL by constructing NILs could be pursued.  

A potential problem, but also a great opportunity, is to study how the selection 

of the CCR2 periodicity might have affected other circadian-regulated processes. The 

first chromosome QTL identified in the long-period selected lines as well as in ‘all 

lines’ in the C24WS collection suggested that this QTL was selected due to the 

phenotypic selection taken, while generating the RILs (4.1). Therefore, I would 

expect that a QTL at this locus would also be identified for the light-dark entrainment. 

The selection resulted in segregation distortion that was observed on the chromosome 

1 (4.2). The segregation distortion in chromosome 3 was probably due to the T-DNA 

insertion of the CCR2::LUC, therefore QTL mapping at that area would be impossible 

since there is no allelic segregation. In case of a detected QTL at that genomic area, 

one must be skeptic that this is not a real QTL.  

In Chapter 5, physiological and genetic experiments confirmed that GI and 

TOC1 serve in different aspects of entrainment. I found that GI functions in 

photoperiod measurement at the transcriptional level (5.1).  Additionally, the TOC1 

promoter was the only one of those tested that responded to temperature changes in 

the presence of light. For example, CCA1/LHY did not (5.2). In the past, it was 
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published that two oscillators exist based on temperature effects on TOC1, CAB2, and 

CAT3 expression (Michael et al., 2003a). TOC1 and CAB2 display the same 

expression pattern and this was different from CAT3. Therefore, it was suggested that 

TOC1 responds to light-dark entrainment, whereas CAT3 to temperature entrainment 

(Michael et al., 2003a). Regarding my data, two hypotheses can be formed. The first 

hypothesis is that thermal entrainment is gated by light. Here, the gate acts on TOC1. 

If the feedback loop between TOC1 and CCA1/LHY is still functional under the 

synchronous light-dark and temperature entrainment, then CCA1/LHY would suppress 

TOC1 during day/warm period, and therefore the temperature regulation of TOC1 

would be ineffective. As soon as TOC1 rises and CCA1/LHY protein levels decrease, 

then temperature can be input information to the clock mediated by TOC1. Moreover, 

the OUT experiments performed in Chapter 5 support the notion that warm 

temperatures can set the clock, since in the OUT experiments all clock promoters 

tested displayed a phase shift regarding the cool to warm transition, and the opposite 

transition was not observed (5.2). This suggests that warm temperatures had a similar 

effect to light, concerning the resetting of the oscillator. This is expected because in 

nature, light and warm temporally coincide. Alternatively, it was possible that TOC1 

was part of another oscillator that is primarily for temperature entrainment. Since 

PRR9 and PRR7 were shown to be required for entrainment by temperature, they 

might form a loop with TOC1. In that case, one can ask if TOC1 still remains 

interlocked with CCA1/LHY. The quadruple mutants of cca1 lhy toc1 gi and toc1 gi 

prr9 prr7 that could be generated will be useful resources in direct clock assays to 

provide answers from all genetic perspective.  

The transcriptional regulation of TOC1 by temperature, to my knowledge, is 

the only one that has been reported in model organism. For example, in Neurospora, 

FRQ is regulated by temperature at post-transcriptional level (Liu et al., 1997; Liu, 

2003). Temperature-dependent alternative splicing of the FRQ mRNA leads to two 

proteins forms, the long and the short. The temperature-dependent transcriptional 

regulation of TOC1 could be determined by promoter analysis at the primary 

sequence.  

Moreover, it was shown that in presence of blue light, GI protein stabilizes 

ZTL protein, a negative regulator of TOC1 (Kim et al., 2007b) Therefore, GI protein, 

indirectly, affects TOC1 protein accumulation. In temperature cycles, TOC1 was 

found to be transcriptionally regulated by temperature, as it was observed under white 
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light (Chapter 5). It is of interest to test whether there is any temperature-dependent 

interaction between TOC1, to GI or to ZTL. Further, temperature entrainment in 

various monochromatic light quality assays would be define any light-dependent 

temperature regulation of TOC1. 

Temperature changes are probably perceived at the membranes. It was shown 

that fatty acid desaturases seems to be involved in temperature sensing in the 

membranes (Los and Murata, 2000; Vaultier et al., 2006). So far, potential 

involvement of these enzymes to the temperature entrainment of the oscillator has not 

been shown.  Furthermore, cytosolic calcium ion concentration is known to be 

modified by temperature. A recent study showed that these oscillations are an output 

of the circadian clock, in a light-quality dependent manner (Xu et al., 2007). 

Furthermore, light maintains robust rhythmicity of cytosolic calcium, but a cue other 

than light can elevate calcium levels during night (Xu et al., 2007). Since temperature 

is gated by light, it is of interest to determine whether temperature is the signal that 

elevates calcium levels during evening. An exciting hypothesis would be that calcium 

changes can mediate temperature information to the oscillator and thereby the 

oscillator would entrain to temperature.  

Xu et al., have shown that the cytocolic calcium was affected by CCA1, LHY, 

ZTL, ELF3, and TOC1 (Xu et al., 2007). However, two different alleles of toc1 

mutant, toc1-1 and toc1-2 showed different phenotypes in AEQUORIN (AEQ) 

oscillations. AEQ was used as a reporter in this case for the calcium oscillations. toc1-

1 mutant was found to control differentially CAB2 expression and cytosolic calcium 

(Xu et al., 2007). The period of CAB2 oscillations was 21 hours whereas the period of 

AEQ oscillations, was similar to wild type. Additionally the toc1-2 mutant displayed 

short period phenotype for both calcium oscillations and CAB2 expression (Xu et al., 

2007). The discrepancy of the two alleles probably is due to the mutation site.  The 

toc1-2 allele is alternatively spliced at the end of the first exon, which resulted in a 

truncated protein of 59 amino acids and therefore is a near loss of function allele, 

whereas the toc1-1 allele has an amino acid change in the CCT domain, and clearly 

has some activity. It would be interesting to test the period of CAB2 and CCR2 

expression in both mutant backgrounds after temperature entrainment. These 

experiments would serve as a link for temperature and calcium oscillations. Is it that 

temperature information goes to the oscillator indirectly via calcium due to these cell 

biology changes or actually temperature entrains the oscillator directly? 
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Temperature regulates the circadian machinery in two different ways. Changes 

in temperature synchronize the oscillator by delaying or advancing the phase of the 

rhythm. However, circadian rhythms are also temperature compensated, indicating 

that the pace of the rhythm does not change by temperature increases or decreases. 

Clearly, additional insights in these two processes are needed to understand the 

temperature effect on the circadian oscillator. As an example, in Drosophila, it was 

shown that both temperature entrainment and temperature compensation are mediated 

by the same gene products that are also involved in the light-dark entrainment (Glaser 

and Stanewsky, 2005; Ruoff et al., 2005; Kaushik et al., 2007). This suggests that the 

circadian machinery organization in entrainment by both signals, light and 

temperature, and the mechanism of entrainment by these two signals, is not very 

different. However, it was shown that in some neurons, temperature entrainment is 

mediated preferentially over light entrainment, suggesting that different oscillators 

might contribute to the differential regulation of the two signals. 

In A.thaliana, it was shown that distinct oscillators exist in different tissues of 

intact plants (Thain et al., 2002). This was further supported by CAB2 rhythms; in 

leaves that were entrained in antiphase, CAB2 rhythms persisted in opposite phase 

under constant conditions. Furthermore, in the toc1 mutant, CAB2 expression and 

cytosolic calcium oscillations oscillated with different period indicating that multiple 

independent oscillators exist in different cell types that can remain uncoupled. In 

addition, two circadian oscillators were distinguished by differential response to 

temperature sensitivity (Michael et al., 2003a). Whether TOC1 is part of only the 

temperature entrained oscillator remains to be elucidated. I showed that TOC1 was the 

only gene that temperature phase shifts resulted in change in the transcription rate. 

The collective impact of this PhD thesis is that it serves as an entry point to the 

quantitative understanding of temperature entrainment of the A. thaliana circadian 

clock. This field hold promises to be a very exciting area for future discoveries. 
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APPENDIX 1  
The genotype of 85 C24WS RILs as determined by scoring 34 SSLP, SSR and CAPS  

markers.  

For each marker locus a denoted C24 genome, b denoted WS genome, h denoted 

heterozygotes, and minus sign denoted not determined.  

 
 
 

Marker  1 2 3 4 5 6 7 8 9 10 11 12 
NGA59  a a b b a b a a a a a a 
NGA63  a a b b b b a a b b a b 
MSAT1.10  a a b b b b b a b b a a 
ATHS0392  a a a b a a a a b b a b 
T27K12  b b b a b a a a b - a b 
CIW1   a a a a a a a a b b a b 
NGA128  a a a a a a a a b b a b 
NGA111  a a a a a a a a b a b b 
RGA b b b b a b a a a a a a 
MSAT2.28  a b b h a b a a a a a a 
MSAT2.11  a b b b a b a a a a a a 
MSAT2.41  a b b b a b a a a a a a 
NGA361  a a b b a b a a a a a a 
MSAT2.22  a b b a a b a a a a a a 
NGA172  b a b b b b b b b b b a 
NGA162  b b b b b b b b b b b b 
MSAT3.19  b b b b b b b b b b b h 
MSAT3.28  a a a a b a a a a a a a 
NGA6  a a a a a a a a a a a a 
FRI a a a a a a a a a a a a 
T3H13 a a a a a a a b b a a b 
MSAT4.16  a a a a a a a b b a a b 
MSAT4.15  a a a a a a a b a a b b 
CIW7  a a a a a a a a a a b b 
MSAT4.12  a a a a a a a a a a b b 
MSAT4.28  b a a a a a a a b a b b 
NGA158  a b b a a b a a a a a a 
NGA106  a b b a a b a a a a a a 
MSAT5.14  a a b a h a a a a a a a 
NGA76  - - b - b - - - - - - - 
MSAT5.22  b a b h b a a a a a a a 
ATHS0191  b a b b b a a a a a a a 
MSAT5.9  b a b b b a a a a a a a 
JV61/62   a a a a a a a b b b a a 



 

 
B

 
Marker  13 14 15 16 17 18 19 20 21 22 23 24 
NGA59  a b a h b b b a b a a a 
NGA63  b b a b b b b a b a a a 
MSAT1.10  b b a b b b b b b a a a 
ATHS0392  a b a b b b b b a a b b 
T27K12  a b a b a a a a a b b b 
CIW1   b b a b a a a a a b b b 
NGA128  b b a b a a a a a b b b 
NGA111  a a a a a a a a a a b b 
RGA a b b a a b b b b a a a 
MSAT2.28  a a a a a a - b b a a a 
MSAT2.11  a a b a a a b a b a a a 
MSAT2.41  a a b a a a b a b a a a 
NGA361  a a b a a a a a b a a a 
MSAT2.22  a a b a b a b b b a a a 
NGA172  a a - a a a a a a b b a 
NGA162  b b b a b b b b b b b b 
MSAT3.19  b b b b b b b b b b a b 
MSAT3.28  a b b b a b b b b b b b 
NGA6  a b b a b a b a a b b b 
FRI a a a a b a a a b b a a 
T3H13 a a a a a a a a a b a a 
MSAT4.16  a a a a a a a a a b b b 
MSAT4.15  b a a a a a a a a a a a 
CIW7  b a a a a a a a a a a a 
MSAT4.12  b a a a a a a a a a a a 
MSAT4.28  b - - - - - - - - a a a 
NGA158  a b b a b b a a a a a b 
NGA106  a b b a b a a a a a b b 
MSAT5.14  a b b a a a b a a a b b 
NGA76   b b - b - b - - - b - 
MSAT5.22  a b b a b a b a a b b a 
ATHS0191  a b b a b a b a a b a a 
MSAT5.9  a b b b b b b a a b a a 
JV61/62   a b b b a b b a b b a a 

 



 

 
C

 

 

Marker  25 26 27 28 29 30 31 32 33 34 35 36 
NGA59  a a - a a a a a a a a a 
NGA63  a a a a a a a a a a a a 
MSAT1.10  a a a a a a a a a a a a 
ATHS0392  a b a b b a a a a b a b 
T27K12  b a a a b a a a a a a b 
CIW1   b a a b b a a a b a a b 
NGA128  b a b b b a a a b a a b 
NGA111  b - b b b - - - - - - - 
RGA a b b a b a a a a a a a 
MSAT2.28  a b b b b a a a a a a a 
MSAT2.11  a b a b a a a a a a a a 
MSAT2.41  a b a b a a a a a a a a 
NGA361  a b a b a a a a a a a a 
MSAT2.22  a b a b a a a a a a a a 
NGA172  b b b a b b b b a b b b 
NGA162  b b b b b b b b b b b b 
MSAT3.19  a b b b b b a b b b b b 
MSAT3.28  b a b b b b b a a a a a 
NGA6  b b b b b b b a a b a a 
FRI a a b b b a a a a a a a 
T3H13 a a a b a a a a a a a a 
MSAT4.16  a a b a a - - - - - - - 
MSAT4.15  a a a a a b a b a b a a 
CIW7  a a a a a b a b a b b a 
MSAT4.12  a a a a a b a a b a b a 
MSAT4.28  a a b b b b a a a a a a 
NGA158  a a a b b a a a a a a a 
NGA106  b a a b b a a a a a a a 
MSAT5.14  b a a b b a a a a a a a 
NGA76  b - - b - - - - - - - - 
MSAT5.22  b a a b a a a a a a a a 
ATHS0191  b b a a a a a a a a a a 
MSAT5.9  b b b b a a a a a a a a 
JV61/62   b b b b b a a a a a a a 



 

 
D

 
Marker  37 38 39 40 41 42 43 44 45 46 47 48 
NGA59  a a a a a a a a a a a a 
NGA63  a a a a a a a a b a b a 
MSAT1.10  a b a b b a b a b a b b 
ATHS0392  b b a b b a b a b b a b 
T27K12  b b b a b a b - - - - - 
CIW1   b b b b b a b a a a a a 
NGA128  b b b a b a b - - - - - 
NGA111  - - - - - - - - - - - - 
RGA a a a a a a a a a a a a 
MSAT2.28  a a a a a a a - - - - - 
MSAT2.11  a a a a a a a a a a a a 
MSAT2.41  a a a a a a a a a a a b 
NGA361  a a a a a a a a a a a b 
MSAT2.22  a a a a a a a a a a a b 
NGA172  b b b a b b b b b b a b 
NGA162  b b b b b b b b b b b b 
MSAT3.19  b b b b b b b a b b b b 
MSAT3.28  b - a b a a a a a a b b 
NGA6  a a a b a a a a a a b b 
FRI a a a a a a a a a a a a 
T3H13 a a a a a a a a a a a a 
MSAT4.16  - - - - - - - a a a a a 
MSAT4.15  a a a a a a a a a a a a 
CIW7  a a a a a a a a a a a a 
MSAT4.12  a b a a a a a a - - - - 
MSAT4.28  b a a a a a a a a a a a 
NGA158  a a b b b a b a a a a a 
NGA106  a a b h b b b a a a a a 
MSAT5.14  a a b b b b b a a a a a 
NGA76  - - b b b b b - - - - - 
MSAT5.22  a a a a a a a a a a a a 
ATHS0191  a a a a a a a a a a a b 
MSAT5.9  a a a a a a a b b a a a 
JV61/62   a a a a a a a b b b b b 
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Marker  49 50 51 52 53 54 55 56 57 58 59 60 
NGA59  a a a a a a a a a a a a 
NGA63  a a a a a a a a a a a a 
MSAT1.10  a a a b b a b a a a a a 
ATHS0392  a b a - a a b a a a a a 
T27K12  - - - - - - - - - - - - 
CIW1   a a a a b a b a a b a a 
NGA128  - - - - - - - - - - - - 
NGA111  - - - - - - - - - - - - 
RGA a a a b b b b b a h b a 
MSAT2.28  - - - - - - - - - - - - 
MSAT2.11  a a a b a a a b a b b a 
MSAT2.41  a a b b b b b b a b b a 
NGA361  a a b b a a a b a b b a 
MSAT2.22  a a b b b b b b a a b a 
NGA172  b b b b b b b b b b a b 
NGA162  b b b b b b b b b b b b 
MSAT3.19  a b b b b b b b b b a b 
MSAT3.28  a b b a a a a a b b b a 
NGA6  a b a a a a a a b b b a 
FRI a a a a a a a a b b a a 
T3H13 a a a a a a a a b b a b 
MSAT4.16  a a a a a a a a h b b b 
MSAT4.15  a a a - a a a a h b b b 
CIW7  a a a a a a a a a b b b 
MSAT4.12  - - a b a a a a b a b b 
MSAT4.28  a a a b h b a a a a b b 
NGA158  a a a a b a a a a b b b 
NGA106  a a a - a a a a a b b b 
MSAT5.14  a a a a a a a a a a b a 
NGA76  - - - - - - - - - - b b 
MSAT5.22  a a a a a a a a a h b b 
ATHS0191  b b b a a a a a a h b b 
MSAT5.9  b b b a a a a a a b b b 
JV61/62   b b a a a a a a a a a a 

 



 

 
F

 
Marker  61 62 63 64 65 66 67 68 69 70 71 72 
NGA59  a a a a a a a a a a a b 
NGA63  a a a a a a a a a a a a 
MSAT1.10  a a a a a a a a a a a a 
ATHS0392  a a a a a a a a a a a a 
T27K12  - - - - - - - - - - - - 
CIW1   b b b a a a a a a a a a 
NGA128  - - - - - - - - - - - - 
NGA111  - - - - - - - - - - - - 
RGA b a b a a a a a a a a a 
MSAT2.28  - - - - - - - - - - - - 
MSAT2.11  b a b a a a a a b b - a 
MSAT2.41  b a b a b a b a b b a b 
NGA361  b a b a b a a a b b b - 
MSAT2.22  b b b a b a b a a a - a 
NGA172  b b b a a a a a a a a a 
NGA162  b b b b b b b b b b b b 
MSAT3.19  b b b b b b b b a b b b 
MSAT3.28  b b b b b b a a b a b a 
NGA6  b b b b b b a a b a b a 
FRI b a a b b a b a b b a a 
T3H13 a a a b b a a a a b a a 
MSAT4.16  a a a b b a a a a b a a 
MSAT4.15  a a a a a b b b a b a a 
CIW7  a a a a a b a b a b a a 
MSAT4.12  a a a a a b b b a b a b 
MSAT4.28  b a a b a b b b a a b b 
NGA158  a b a a a a a a a a a b 
NGA106  a b a a a a a a a a a h 
MSAT5.14  a b a a a a a a a a a h 
NGA76  - b - b b - b - - b - b 
MSAT5.22  a b b b b a b a a b a b 
ATHS0191  a b b b b a b a a b a b 
MSAT5.9  a b b b b a a b a b a a 
JV61/62   - a a b b a b a a b a a 

 



 

 
G

 
Marker  73 74 75 76 77 78 79 80 81 82 83 84 85 
NGA59  a b b a a a b a a a a a a 
NGA63  a a b a a a b a a a a a a 
MSAT1.10  a a a a a a a a a a a a a 
ATHS0392  a a a a a a a a a a a a a 
T27K12  - - - - - - - - - - - - - 
CIW1   a a a a a a a a a a a a a 
NGA128  - - - - - - - - - - - - - 
NGA111  - - - - - - - - - - - - - 
RGA a a a a a a a a b b a b b 
MSAT2.28  - - - - - - - - - - - - - 
MSAT2.11  a a a a a a a a a a a a a 
MSAT2.41  a b h b a a b a a a a a a 
NGA361  - - - - - - - - - - - - - 
MSAT2.22  a b a b a a b a a a a a a 
NGA172  a a a a a a a b b a a b a 
NGA162  b b b b b b b b b b b b b 
MSAT3.19  b a b b b a b a b b b b b 
MSAT3.28  a a a a a a a a a b b a b 
NGA6  a a a a a a a a a a - a b 
FRI a a a a a a a a a a a a a 
T3H13 b a a b b a a a a a b a a 
MSAT4.16  b a a b b a a a b a b a a 
MSAT4.15  b a a a b b a b b a - a b 
CIW7  b a a a a b a b b a b b b 
MSAT4.12  a a b a b b a a a a a a a 
MSAT4.28  a a b a h a b a a a a a a 
NGA158  b a h a a b a a a a a a a 
NGA106  b a h b a b a a a a a a a 
MSAT5.14  b a h - a b a a a a a a a 
NGA76  b - b - - b - - - - - - - 
MSAT5.22  b a b a a b a a a a a a a 
ATHS0191  b a b a a b a - - - - - - 
MSAT5.9  a a a a a a a a a a a a a 
JV61/62   a a a a a a a a a a a a a 
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