ENTWICKLUNG UND DURCHFÜHRUNG VON METABOLOMANALYSEN AN *PSEUDOMONAS AERUGINOSA* MIT HILFE DER GASCHROMATOGRAPHIE/MASSENSPEKTROMETRIE

In augural – Dissertation

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Bernhard Thielen

aus Sigmaringen

Köln 2007

Berichterstatter:

Prof. Dr. Dietmar Schomburg

Prof. Dr. Rainer Schrader

Tag der letzten mündlichen Prüfung: 08. Februar 2008

Kurzzusammenfassung

Eine Infektion mit *Pseudomonas aeruginosa* bei Patienten mit Zystischer Fibrose führt aufgrund fehlender Therapiemöglichkeiten zu einer Verschlechterung des Krankheitsbildes und in vielen Fällen zu einem frühen Tod. Um eine Behandlungsmöglichkeit gegen das Bakterium zu finden, ist es wichtig, Einblicke in dessen Funktionsweise zu erhalten. Die Aufklärung des Genoms bildet die Grundlage für solch eine Untersuchung, während die Durchführung von Metabolomanalysen einen weiteren Schritt darstellt.

In dieser Arbeit wurde eine auf Gaschromatographie/Massenspektrometrie basierende Methode zur Analyse des Metaboloms von Bakterienextrakten von *P. aeruginosa* entwickelt. Durch Messung von Standardsubstanzen und vergleichender Untersuchung von metabolischen Profilen wurde eine Bibliothek aus Massenspektren von Metaboliten und etlicher zugehörender Informationen wie Retentionsindices, Strukturen, Massen und chemischer Identifikationsnummern erstellt.

Für die Verwaltung der Daten wurde ein Programm mit graphischer Benutzeroberfläche und vielfältigen Funktionen für die Eingabe und Bearbeitung der Spektren und zugehöriger Kenngrößen entwickelt. Es erlaubt den Import und Export in verschiedene Dateiformate und lässt sich mit Hilfe von Skripten dynamisch erweitern.

Ein bereits bekanntes Aufarbeitungsprotokoll wurde an *P. aeruginosa* angepasst, was zum Nachweis von 195 Substanzen und 117 unidentifizierten Komponenten in den Bakterienextrakten führte und damit eine Steigerung um bis zu 30% zu vergleichbaren Arbeiten darstellt.

Die Quantifizierung der Metabolite lieferte vielfältige Einsichten in das Wachstum und ermöglichte es, mit der Lysin-Decarboxylase ein Enzym zu identifizieren, das für das Biofilmwachstum der Bakterien bedeutsam erscheint und einen zukünftigen Ansatzpunkt für Humantherapien gegen eine Infektion von *P. aeruginosa* darstellen könnte. Due to missing therapies an infection with *Pseudomonas aeruginosa* in patients with cystic fibrosis commonly leads to an exacerbation of clinical symptoms and an early death. In order to find a treatment against the bacterium it is necessary to get insight into its functionalities. The sequencing of the genome is the basis for such studies, whereas the accomplishment of metabolome analyses represents a further step.

In the presented work a method based on gas chromatography/mass spectrometry has been established to study the metabolome of extracts of *P. aeruginosa*. By measuring standard compounds and comparative analysis of metabolic profiles a library containing mass spectra of metabolites and associated information like retention indexes, structures, masses and chemical identification numbers has been created.

A computer program with a graphical user interface for the administration of the data has been developed with capabilities in input and manipulation of the spectra and corresponding parameters. It includes import and export into several file formats and is dynamically extensible via the use of scripts.

A known workup protocol has been adapted to *P. aeruginosa* leading to an detection of 195 substances and 117 unidentified components and therefore to an increase of up to 30% to comparable publications.

The quantification of the metabolites provided diverse insights into the growth of the bacteria and made it possible to identify the lysine-decarboxylase as an enzyme meaningful to the Biofilm growth of the bacteria, which may embody a prospective target for therapies against an infection with *P. aeruginosa*.

Die vorliegende Arbeit wäre ohne die Unterstützung etlicher Personen nicht zustande gekommen.

Ich danke daher zunächst meinem Doktorvater Prof. Dr. D. Schomburg für die Bereitstellung dieses interessanten Themas und die Möglichkeit, meine Arbeit frei zu gestalten. Ein großer Dank geht an Herr Prof. Dr. R. Schrader für die Erstellung des Zweitgutachtens in der vorweihnachtlichen Zeit.

Des Weiteren möchte ich mich herzlich bei meinen Kooperationspartnern von der Technischen Universität Braunschweig bedanken, im speziellen bei Beatrice Benkert für das Anfertigen der Proben und Claudia Pommerke, die mir mit ihrer Datenbank stets hilfreich zur Seite stand. Vielen Dank auch an Dr. Max Schobert, Dr. Karsten Hiller, Boyke Bunk und Dr. Martin Kucklick.

Bei Dr. Ralph Schunk bedanke ich mich für die hilfreichen Tipps beim Erlernen von C++ und die Momente, in denen er mir Programmierfehler, an denen ich stundenlang gesucht habe, in Sekunden aufgeklärt hat. Vielen Dank auch an Dr. Sergey Strelkov, der mich in den ersten Monaten meiner Doktorarbeit an dem GC/MS-Gerät eingewiesen hat und mir so einige Kniffe mit auf den Weg gab. Genauso möchte ich Michael Zimmermann und Frau Benova meinen Dank aussprechen, dafür dass sie die guten Seelen in der Arbeitsgruppe sind und stets für mich da waren. Natürlich danke ich auch dem Rest der Arbeitsgruppe: Sabine, Anja, Sebastian und alle Doktoranden und Diplomanden.

Eine große Bereicherung meiner Arbeitszeit waren auch meine Praktikanten, Farnoosh Alborzi, Amal Bouzidi, Jochen Nickels, Xue Dong, Ansy Mathews und Ephraim Teffera.

Zu guter Letzt kommen die wichtigsten Leute in meinem Leben: Ich danke ganz herzlich meinen Eltern Christel und Gerhard, meinen Schwiegereltern in Spe, Ulla und Werner, dem Gianni und all meinen Geschwistern, Verwandten und Freunden, die so oft auf mich verzichten mussten. Ich hab Euch lieb! Ein dicker Kuss geht an meinen Schatz Stephie, Du bist das Beste was mir je passiert ist!

- v -

A. thaliana	Arabidopsis thaliana (Acker-Schmalwand)
ACP	Acyl-Carrier-Protein
APPI	Atmospheric Pressure Photoionisation; Atmosphärendruck-Photoionistation
AMDIS	The Automated Mass Spectral Deconvolution and Identification System
B. subtilis	Bacillus subtilis
BLAST	Basic Local Alignment Search Tool
BRENDA	Braunschweig Enzyme Database
C. glutamicum	Corynebacterium glutamicum
CE	Capillary Electrophoresis; Kapillarelektrophorese
CI	Chemical Ionization; chemische Ionisation
CUPE	CUBIC Pathway Editor
EI	Electron Impact Ionization; Elektronenstoß-Ionisation
ESI	Electrospray Ionization; Elektrospray-Ionisation
GC	Gas Chromatography; Gaschromatographie
GDP	Guanosindiphosphat
HILIC	Hydrophilic Interaction Liquid Chromatography; hydrophile Interaktions-
	Flüssigchromatographie
KEGG	Kyoto Encyclopedia of Genes and Genomes
LB-Medium	Lysogeny-Browth Medium
LC	Liquid Chromatography; Flüssigchromatographie
Μ	Molekularion
m/z	Masse-zu-Ladungsverhältnis
MeOX	Durch Oximierung erhaltene Methoxygruppe
MS	Mass Spectrometry; Massenspektrometrie
MSTFA	N-Methyl-N-Trimethylsilyltrifluoroacetamid
NMR	Nuclear Magnetic Resonance; Kernspinresonanzspektroskopie
OD	Optische Dichte
P. aeruginosa	Pseudomonas aeruginosa
pdf	Portable Document Format
QUAD	Quadropol
RI	Retentionsindex nach Kováts
rpm	Rotations Per Minute; Rotationen pro Minute
S. lycopersicum	Solanum lycopersicum (Tomate)
S. tuberosum	Solanum tuberosum (Kartoffel)
SBML	Systems Biology Markup Language
Systomonas	Systems Biology of Pseudomonas
TIC	Total Ion Current; Totalionenstrom
TMS	Trimethylsilyl
TOF-MS	Time-of-Flight Mass Spectrometer; Flugzeitmassenspektrometer
VANTED	Visualization and Analysis of Networks containing Experimental Data
xml	Extensible Markup Language

Des Weiteren werden Einheiten nach dem Internationalen Einheitensystem (SI, Système international d'unités) abgekürzt.

Inhaltsverzeichnis

1. Einle	eitu	ng	10
1.1.	Pse	eudomonas aeruginosa	10
1.1.	1.	Synthese von Biofilmen	10
1.1.	2.	Bedeutung im Krankheitsverlauf der Zystischen Fibrose	12
1.2.	Me	etabolomics als Teilgebiet der Systembiologie	13
1.2.	1.	Techniken zur Messung von Metabolitkonzentrationen	14
1.2.	2.	Rekonstruktion metabolischer Netzwerke mit Daten aus Metabolom-	
		Experimenten	16
1.3.	Ch	arakteristische massenspektrometrische Eigenschaften von oximierten und	
	trii	nethylsilylierten Verbindungen	17
1.3.	1.	Aminosäuren	19
1.3.	2.	Zucker	21
1.3.	3.	Phosphorylierte Verbindungen	23
1.4.	Zie	lsetzung	24
2. Mate	eria	lien und Methoden	25
2.1.	Me	essung der Metabolitkonzentrationen in den Zellen von P. aeruginosa	25
2.1.	1.	Bakterienanzucht	25
2.1.	2.	Zellernte	26
2.1.	3.	Extraktion der Metabolite	27
2.1.	4.	Derivatisierung der Metabolite	27
2.1.	5.	Bestimmung der Metabolitkonzentrationen anhand der	
		Gaschromatographie/Massenspektrometrie	28
2.2.	Me	essung von Standardsubstanzen zur Erweiterung der GC/MS-Bibliothek	29
2.2.	1.	Chemische Synthese von 5-Acetamidopentansäure	29
2.2.	2.	Probenvorbereitung der Standardsubstanzen	29
2.2.	3.	Bestimmung von Kenngrößen	29
2.3.	Erv	veiterung der Bibliothek mittels vergleichender GC/MS-Analyse von	
	Ва	kterienextrakten	31
2.4.	So	ftwareentwicklung	31
2.4.	1.	Darstellung von Daten mit Hilfe von Model-View-Controllern	31
2.4.	2.	Zugriff auf zentrale Funktionalitäten durch Bereitstellung eines singulären	
		globalen Objekts	32
2.4.	3.	Implementierung von mehrstufigen Undo-Befehlen mittels des Kommando-	
		Entwurfmusters	33
2.5.	Со	mputergestützte Auswertung der massenspektrometrischen Daten	34

2.5	.1.	Auswertung der gemessenen Standardsubstanzen	. 34
2.5	.2.	Qualitative Auswertung der Bakterienextrakte	. 35
2.5	.3.	Quantitative Auswertung der Bakterienextrakte	. 36
2.6.	Sta	itistische Methoden zur Analyse von massenspektrometrischen Daten	. 37
2.6	.1.	Vergleich der relativen Konzentrationen zweier Metabolite	. 38
2.6	.2.	Korrelationskoeffizient	. 39
3. Erge	ebni	sse	. 40
3.1.	En	twicklung eines Programms zur Archivierung der gemessenen Standards	. 40
3.1	.1.	Eingabe und Bearbeitung der Spektren und ihrer Kenngrößen	. 40
3.1	.2.	Sortier- und Filterfunktionen	. 43
3.1	.3.	Import- und Exportmöglichkeiten	. 44
3.1	.4.	Erweiterung der Funktionalität mit Hilfe von Skripten	. 45
3.2.	Er	veiterung der Massenspektrenbibliothek	. 45
3.2	.1.	Messung von Standardsubstanzen	. 45
3.2	.2.	Bestimmung unidentifizierter Derivate durch vergleichende GC/MS-Analyse vo	on
		Bakterienextrakten	. 49
3.2	.3.	Charakteristika der resultierenden Bibliothek	. 50
3.2	.4.	Qualitative Analyse von Bakterienextrakten	. 52
3.3.	En	twicklung eines Protokolls zur Aufarbeitung von <i>P. aeruginosa</i> Bakterienextrak	ten
3.3.	En für	twicklung eines Protokolls zur Aufarbeitung von <i>P. aeruginosa</i> Bakterienextrak [.] die GC/MS	ten . 53
3.3. 3.4.	En für Ve	twicklung eines Protokolls zur Aufarbeitung von <i>P. aeruginosa</i> Bakterienextrakt die GC/MS rgleich metabolischer Profile von <i>P. aeruginosa</i>	ten . 53 . 56
3.3. 3.4. 3.4	En für Ve .1.	twicklung eines Protokolls zur Aufarbeitung von <i>P. aeruginosa</i> Bakterienextrakt die GC/MS rgleich metabolischer Profile von <i>P. aeruginosa</i> Gegenüberstellung von Profilen aus dem Biofilm- und planktonischen Wachste	ten . 53 . 56 um
3.3. 3.4. 3.4	En für Ve .1.	twicklung eines Protokolls zur Aufarbeitung von <i>P. aeruginosa</i> Bakterienextrakt die GC/MS rgleich metabolischer Profile von <i>P. aeruginosa</i> Gegenüberstellung von Profilen aus dem Biofilm- und planktonischen Wachste von <i>P. aeruginosa</i> PAO1	ten . 53 . 56 um . 56
3.3. 3.4. 3.4 3.4	En für Ve .1.	twicklung eines Protokolls zur Aufarbeitung von <i>P. aeruginosa</i> Bakterienextrakt die GC/MS rgleich metabolischer Profile von <i>P. aeruginosa</i> Gegenüberstellung von Profilen aus dem Biofilm- und planktonischen Wachste von <i>P. aeruginosa</i> PAO1 Vergleich aerob stationär gewachsener Profile von <i>P. aeruginosa</i> PA14 und de	ten . 53 . 56 um . 56 r
3.3. 3.4. 3.4 3.4	En für Ve .1.	twicklung eines Protokolls zur Aufarbeitung von <i>P. aeruginosa</i> Bakterienextrakt die GC/MS rgleich metabolischer Profile von <i>P. aeruginosa</i> Gegenüberstellung von Profilen aus dem Biofilm- und planktonischen Wachste von <i>P. aeruginosa</i> PAO1 Vergleich aerob stationär gewachsener Profile von <i>P. aeruginosa</i> PA14 und de Mutanten Δ1346 und Δ1818.	ten . 53 . 56 um . 56 r . 60
3.3. 3.4. 3.4 3.4 4. Disk	En für Ve .1. .2.	twicklung eines Protokolls zur Aufarbeitung von <i>P. aeruginosa</i> Bakterienextrakt die GC/MS rgleich metabolischer Profile von <i>P. aeruginosa</i> Gegenüberstellung von Profilen aus dem Biofilm- und planktonischen Wachste von <i>P. aeruginosa</i> PAO1. Vergleich aerob stationär gewachsener Profile von <i>P. aeruginosa</i> PA14 und de Mutanten Δ1346 und Δ1818.	ten . 53 . 56 um . 56 r . 60 . 62
3.3. 3.4. 3.4 3.4 4. Disk 4.1.	En für Ve .1. .2. Be	twicklung eines Protokolls zur Aufarbeitung von <i>P. aeruginosa</i> Bakterienextrakt die GC/MS rgleich metabolischer Profile von <i>P. aeruginosa</i> Gegenüberstellung von Profilen aus dem Biofilm- und planktonischen Wachste von <i>P. aeruginosa</i> PAO1 Vergleich aerob stationär gewachsener Profile von <i>P. aeruginosa</i> PA14 und de Mutanten Δ1346 und Δ1818 ion reitstellung eines Programms zur Archivierung von GC/MS-Standards	ten . 53 . 56 um . 56 r . 60 . 62 . 62
 3.3. 3.4. 3.4 3.4 4. Disk 4.1. 4.2. 	En für Ve .1. .2. Be Str	twicklung eines Protokolls zur Aufarbeitung von <i>P. aeruginosa</i> Bakterienextrakt die GC/MS rgleich metabolischer Profile von <i>P. aeruginosa</i>	ten . 53 . 56 um . 56 r . 60 . 62 . 62
3.3. 3.4. 3.4 3.4 4. Disk 4.1. 4.2. 4.2	En für Ve .1. .2. Be Str .1.	twicklung eines Protokolls zur Aufarbeitung von <i>P. aeruginosa</i> Bakterienextrakt die GC/MS geleich metabolischer Profile von <i>P. aeruginosa</i>	ten . 53 . 56 um . 56 r . 60 . 62 . 62 . 63 a 63
3.3. 3.4. 3.4 3.4 4. Disk 4.1. 4.2. 4.2 4.2	En für Ve .1. .2. Be Str .1. .2.	twicklung eines Protokolls zur Aufarbeitung von <i>P. aeruginosa</i> Bakterienextrakt die GC/MS gleich metabolischer Profile von <i>P. aeruginosa</i>	ten . 53 . 56 um . 56 r . 60 . 62 . 62 . 63 7 63
3.3. 3.4. 3.4 3.4 4. Disk 4.1. 4.2. 4.2 4.2	En für Ve .1. .2. Be Str .1. .2.	twicklung eines Protokolls zur Aufarbeitung von <i>P. aeruginosa</i> Bakterienextrakt die GC/MS rgleich metabolischer Profile von <i>P. aeruginosa</i> Gegenüberstellung von Profilen aus dem Biofilm- und planktonischen Wachste von <i>P. aeruginosa</i> PAO1 Vergleich aerob stationär gewachsener Profile von <i>P. aeruginosa</i> PA14 und de Mutanten Δ1346 und Δ1818 reitstellung eines Programms zur Archivierung von GC/MS-Standards ategien zur Erweiterung von GC/MS-Bibliotheken Messung von Standardsubstanzen mit besonderer Bedeutung in <i>P. aeruginosa</i> Auffinden unidentifizierter Komponenten durch GC/MS-Analyse von Bakterienextrakten	ten . 53 . 56 um . 56 r . 60 . 62 . 63 7 63 . 64
3.3. 3.4. 3.4 3.4 4. Disk 4.1. 4.2. 4.2 4.2 4.2	En für Ve .1. .2. uuss Be Str .1. .2. .3.	twicklung eines Protokolls zur Aufarbeitung von <i>P. aeruginosa</i> Bakterienextrakt die GC/MS rgleich metabolischer Profile von <i>P. aeruginosa</i> Gegenüberstellung von Profilen aus dem Biofilm- und planktonischen Wachste von <i>P. aeruginosa</i> PAO1 Vergleich aerob stationär gewachsener Profile von <i>P. aeruginosa</i> PA14 und de Mutanten Δ1346 und Δ1818 ion reitstellung eines Programms zur Archivierung von GC/MS-Standards ategien zur Erweiterung von GC/MS-Bibliotheken Messung von Standardsubstanzen mit besonderer Bedeutung in <i>P. aeruginoso</i> Auffinden unidentifizierter Komponenten durch GC/MS-Analyse von Bakterienextrakten Evaluierung der GC/MS-Bibliothek	ten . 53 . 56 . m . 56 r . 60 . 62 . 62 . 63 7 63 . 64 . 65
3.3. 3.4. 3.4 3.4 4. Disk 4.1. 4.2. 4.2 4.2 4.2 4.3.	En für Ve .1. .2. Str .1. .2. .3. En	twicklung eines Protokolls zur Aufarbeitung von <i>P. aeruginosa</i> Bakterienextrakt die GC/MS rgleich metabolischer Profile von <i>P. aeruginosa</i> Gegenüberstellung von Profilen aus dem Biofilm- und planktonischen Wachste von <i>P. aeruginosa</i> PAO1 Vergleich aerob stationär gewachsener Profile von <i>P. aeruginosa</i> PA14 und de Mutanten Δ1346 und Δ1818 ion reitstellung eines Programms zur Archivierung von GC/MS-Standards ategien zur Erweiterung von GC/MS-Bibliotheken Messung von Standardsubstanzen mit besonderer Bedeutung in <i>P. aeruginosa</i> Auffinden unidentifizierter Komponenten durch GC/MS-Analyse von Bakterienextrakten Evaluierung der GC/MS-Bibliothek twicklung eines Aufarbeitungsprotokolls für Zellextrakte von <i>P. aeruginosa</i>	ten . 53 . 56 um . 56 r . 60 . 62 . 63 a 63 a 63 a 63 . 64 . 65 . 66
3.3. 3.4. 3.4 3.4 4. Disk 4.1. 4.2. 4.2 4.2 4.2 4.2 4.2 4.2 4.2	En für Ve .1. .2. Be Str .1. .2. .3. En Be	twicklung eines Protokolls zur Aufarbeitung von <i>P. aeruginosa</i> Bakterienextrakt die GC/MS rgleich metabolischer Profile von <i>P. aeruginosa</i> Gegenüberstellung von Profilen aus dem Biofilm- und planktonischen Wachster von <i>P. aeruginosa</i> PAO1 Vergleich aerob stationär gewachsener Profile von <i>P. aeruginosa</i> PA14 und de Mutanten Δ1346 und Δ1818 ion reitstellung eines Programms zur Archivierung von GC/MS-Standards ategien zur Erweiterung von GC/MS-Bibliotheken Messung von Standardsubstanzen mit besonderer Bedeutung in <i>P. aeruginosa</i> Auffinden unidentifizierter Komponenten durch GC/MS-Analyse von Bakterienextrakten Evaluierung der GC/MS-Bibliothek twicklung eines Aufarbeitungsprotokolls für Zellextrakte von <i>P. aeruginosa</i> urteilung des Vergleichs metabolischer Profile von <i>P. aeruginosa</i> im	ten . 53 . 56 um . 56 r . 60 . 62 . 62 . 63 7 63 . 64 . 65 . 66
 3.3. 3.4. 3.4 3.4 4. Disk 4.1. 4.2. 4.2 	En für Ve .1. .2. Be Str .1. .2. .3. En Be pla	twicklung eines Protokolls zur Aufarbeitung von <i>P. aeruginosa</i> Bakterienextrakt die GC/MS geleich metabolischer Profile von <i>P. aeruginosa</i>	ten . 53 . 56 um . 56 r . 60 . 62 . 62 . 62 . 63 . 64 . 65 . 66

	4.4	.2. Zusammenhang der Metabolitkonzentrationen mit dem Quorum sensing	
		Mechanismus	69
	4.4	.3. Bedeutung für den Stoffwechselreaktionen von Cadaverin	70
5.	Zusa	ammenfassung	73
6.	Anh	ang	.74
	6.1.	Abbildungsverzeichnis	74
	6.2.	Tabellenverzeichnis	. 77
	6.3.	Materialien- und Chemikalienverzeichnis	. 79
	6.4.	Für die GC/MS Bibliothek getestete Standardsubstanzen	80
	6.5.	Parameter des GC/MS-Systems	83
	6.6.	Verarbeitung der Massenspektren für die Programme NIST MS Search und MS	
		Interpreter	86
	6.7.	Parameter für die qualitative Prozessierung mit AMDIS	. 87
7.	Lite	raturverzeichnis	89

1. Einleitung

1.1. Pseudomonas aeruginosa

Pseudomonas aeruginosa ist ein ubiquitär vorkommendes, gram-negatives Bakterium der Familie der Pseudomonadaceae [1]. Es hat die Form von 0,5 bis 0,8 mal 1,5 bis 3,0 μm messenden Stäbchen und besitzt ein polares Flagellum [1] (siehe Abbildung 1). Das Genom wurde im Jahr 2000 vollständig sequenziert [2] und ist mit 6,3 Millionen Basenpaaren eines der Größten unter den bisher sequenzierten Bakteriengenomen [2].

Abbildung 1: gefärbte Rasterelektronenmikroskopie von *P. aeruginosa* [3]. Die stäbchenförmigen Bakterien sind in gelb dargestellt.

P. aeruginosa weist einen aeroben Stoffwechsel auf, es kann jedoch darüberhinaus unter anaeroben Bedingungen mit Hilfe von Nitrat bzw. Nitrit als Elektronenakzeptor [4], bzw. fermentativ mit Arginin wachsen [5; 6]. Neben dem planktonischen Wachstum besitzt der Organismus auch die Fähigkeit, sich in Form von Biofilmen zu organisieren [7].

1.1.1. Synthese von Biofilmen

Bakterielle Biofilme sind strukturierte Gemeinschaften von Zellen, die von selbst produzierten hydratisierten polymerischen Matrizen umschlossen sind [8]. Von *P. aeruginosa*

produzierte Biofilme bestehen größtenteils aus Nukleinsäuren [8] und Alginat [9; 10], einem Polysaccharid zusammengesetzt aus 1,4-verknüpfter β -D-Mannuronsäure und α -L-Guluronsäure (vgl. Abbildung 2). Der Ausgangsstoff für die Biosynthese von Alginat ist Fructose-6-Phosphat, das wiederum zu einem geringen Teil aus Glucose und zu einem großen Teil über die Gluconeogenese hergestellt wird [11]. Es wird im Cytosol über Mannose-6-Phosphat, Mannose-1-Phosphat und GDP-Mannose zu GDP-Mannuronat umgewandelt (siehe Abbildung 2) [9; 10]. Die Polymerisation zu Polymannuronat erfolgt über membrangebundene Enzyme im periplasmatischen Raum [10], wo auch eine Epimerisierung zu Alginat und schließlich eine O-Acetylierung an Position 2 und/oder Position 3 der Mannuronat-Reste folgt (siehe Abbildung 2) [9; 10]. Über eine Lyase wird das Polymer gespalten und aus der Zelle heraus geschleust [10].

Abbildung 2: Modell für die Biosynthese von Alginat (nach [10]). Ausgehend von Fructose-6-Phosphat (Fructose-6P) wird O-Acetyliertes Alginat über Mannose-6-Phosphat (Mannose-6P), Mannose-1-Phosphat (Mannose-1P), Guanosindiphosphat-Mannose (GDP-Mannose), Guanosindiphosphat-Mannuronat (GDP-Mannuronat), Polymannuronat und Alginat gebildet und aus der Zelle heraus geschleust. An der jeweiligen Reaktion teilnehmende Gruppen sind farblich gekennzeichnet. Die räumliche Organisation und das Wachstum im Biofilm wird über Zell-Zell-Kommunikation zwischen den Bakterien (*Quorum sensing*) gesteuert [12; 13]. Als Signalstoffe fungieren hierbei N-(3-Oxododecanoyl)-L-Homoserinlacton und N-Butyryl-L-Homoserinlacton (siehe Abbildung 3) [13; 14; 15]. Die Biosynthese verläuft in beiden Fällen über die Reaktion eines an ein Acyl-Carrier-Protein gebundenen Acyl-Restes mit S-Adenosyl-L-Methionin, wobei Homoserinlacton sowie 5'-Methylthioadenosin entstehen (siehe Abbildung 3) [15].

5'-Methylthioadenosin

Abbildung 3: Reaktionsmechanismus für die Synthese der *Quorum sensing* Signalstoffe von *P. aeruginosa* (nach [15]). An Acyl-Carrier-Protein (ACP) gebundene 3-Oxododecanoylbzw. Butyryl-Reste reagieren zu N-(3-Oxododecanoyl)-L-Homoserinlacton bzw. N-Butyryl-L-Homoserinlacton unter Verwendung von S-Adenosyl-L-Methionin. Dabei werden Acyl-Carrier-Protein und 5'-Methylthioadenosin freigesetzt.

Biofilme und die hohe metabolische Anpassungsfähigkeit [2] ermöglichen es *P. aeruginosa* in diversen Lebensräumen zu bestehen [2]. Besondere Bedeutung erlangt diese Form des Wachstums bei der Zystischen Fibrose, einer verbreiteten Krankheit des Menschen [7].

1.1.2. Bedeutung im Krankheitsverlauf der Zystischen Fibrose

P. aeruginosa ist als opportunistisches Humanpathogen in der Lage, Menschen mit geschwächtem Immunsystem zu befallen [1]. Das Bakterium tritt gehäuft als Harnwegs-, Hornhaut- und Mittelohrinfektion auf [1] und gehört oft zum Krankheitsbild von Patienten mit AIDS, schweren Brandwunden sowie Zystischer Fibrose [16].

Zystische Fibrose ist eine chromosomal rezessiv vererbte Krankheit mit letalem Verlauf [17; 18]. In der kaukasischen Bevölkerung tritt sie mit einer Wahrscheinlichkeit von etwa 1 zu 1.900 bis 1 zu 3.700 pro Neugeborenem auf [17], während sie in anderen ethischen Gruppen seltener vorkommt (1 zu 15.000 bei Asiaten, 1 zu 32.000 bei Afroamerikanern [17]). Ihren Ursprung hat sie in Mutationen des *Cystic Fibrosis Transmembrane Conductance Regulator* Gens, dessen Produkt in exokrinen Drüsen und sekretorischen Epithelien als Leitfähigkeitsregulator und Chloridionen-Transporter fungiert [19; 20]. Die Erkrankung äußert sich in einem erhöhten Elektrolytgehalt im Schweiß, einer pankreatischen Insuffizienz und einer Funktionsstörung der Lunge, die dehydrierten und verdickten Schleim produziert, der wiederum nicht mehr über mukoziliäre Clearance entfernt werden kann [17; 21]. Die Lebenserwartung der Patienten liegt im Jahre 2005 bei etwa 36 Jahren [22].

Der persistente Mukus in der Lunge führt zu chronischen Bakterieninfektionen, wobei sich in 80% der Fälle [22] eine Infektion mit *P. aeruginosa* durchsetzt, die zu einer Verschlechterung des Krankheitsbildes und mit hoher Wahrscheinlichkeit zu einem frühen Tod der Patienten führt [17]. Das Bakterium unternimmt hierbei einen Wandel vom planktonischen Wachstum zum Biofilm [10] und verweilt mikroaerob bis mikroanaerob [6] unter Verwendung von Nitrat und Nitrit als Elektronenakzeptoren, welches in den Lungen von Patienten mit Zystischer Fibrose in erhöhter Konzentration vorkommt [4], bzw. fermentativ mit Verwendung von Arginin und Bildung von Ornithin [5].

Die Biofilmmatrix erhöht die Resistenz gegen das Immunsystem des Wirts und vermindert die Wirkung vieler Antibiotika z.B. der Klassen der Aminoglycoside, Tetracycline und β -Laktam-Antibiotika [23; 24; 25], so dass bisher keine wirksame Therapie bekannt ist, mit der eine Infektion durch *P. aeruginosa* dauerhaft geheilt bzw. verhindert werden kann [22].

1.2. Metabolomics als Teilgebiet der Systembiologie

Metabolomics ist die Analyse der chemischen Reaktionen eines Organismus infolge von zellulären Prozessen [26; 27]. Zusammen mit Teilgebieten wie Proteomics [28] oder Transcriptomics [29] wird es der Systembiologie zugeordnet, in der versucht wird, zelluläre Prozesse im Gesamten zu erfassen und daraus Rückschlüsse auf das untersuchte System zu ziehen [30]. Analog zu den Begriffen Proteom und Transkriptom existiert der Begriff des

Metaboloms, der die Gesamtheit an Substanzen umfasst, die von einem Organismus verstoffwechselt werden können [26; 31].

Die Identifikation und Quantifizierung aller Metabolite eines Systems stellt eine Herausforderung an die verwendeten Methoden dar, da Metabolite im Gegensatz zur Transcriptomanalyse, die auf der Analyse von vier Basen beruht, und der Proteomanalyse, die auf der Untersuchung der 20 kanonischen Aminosäuren gründet, eine große organochemische Diversität besitzen [26; 32].

1.2.1. Techniken zur Messung von Metabolitkonzentrationen

Um die Metabolitkonzentrationen z.B. in einer Bakterienzelle zu messen, bedarf es bei *invitro* Verfahren einer Vorbereitung der Probe [26]. Ein erster Schritt bei der Aufarbeitung besteht darin, die Aktivität von Enzymen zu beenden, um das Metabolom zur Zeit der Probenentnahme zu konservieren und Veränderungen der Metabolitlevel zu verhindern [26]. Dies wird durch einen Aufschluss des Bakteriums beispielsweise in Methanol oder Ethanol zusammen mit einer Ultraschallbehandlung bei 65 bis 70 °C erreicht [33; 34], was jedoch voraussetzt, dass die Zellen bereits vom umgebenen Medium getrennt sind, um eine Vermischung von extra- und intrazellulären Substanzen zu vermeiden. Eine unmittelbare Konservierung ist möglich, wenn die Bakteriensuspension vor der Trennung in kaltem Methanol bzw. kalten Methanol/Wassergemischen abgeschreckt wird (*Quenching*) [26; 35]. Bei dieser Methode können sich jedoch Konzentrationen einiger Substanzen infolge eines *Cold-shock*-Phänomens ändern [35; 36].

Für die Messung der relativen oder absoluten Metabolitkonzentrationen stehen verschiedene Methoden zur Verfügung[26; 37; 38; 39]. Viele von ihnen beruhen auf einer chromatographischen Trennung, entweder mittels Gaschromatographie (gas chromatography; chromatography; GC), Flüssigchromatographie (liquid LC) oder Kapillarelektrophorese electrophoresis; CE), (capillary gefolgt von einer massenspektrometrischen Stoffe Charakterisierung der [37]. Bei der Gaschromatographie/Massenspektrometrie (GC/MS) werden die Siedepunkte der Stoffe vor dem Aufbringen auf die Säule durch chemische Derivatisierung der polaren Gruppen im Molekül erniedrigt, um eine höhere Ausbeute an detektierbaren Substanzen zu garantieren (siehe Abschnitt 1.3) [37; 39]. Infolgedessen werden die Stoffe über chemische (chemical *ionization*; CI) oder elektronenstoßinduzierte (*electron impact*; EI) Ionisation dem Massenspektrometer zugeführt. Bei letzterem wird typischerweise mit einer Ionisierungsenergie von 70 eV gearbeitet [39], was größer als die Bindungsenergie einer kovalenten Bindung ist, so dass anstatt der Massen der Stoffe selbst die Fragmentierungsmuster aufgenommen werden. Als Detektionsmethoden dienen Quadropol-(QUAD), Ionenfallen- und Flugzeitmassenspektrometer (*time-of-flight*; TOF) [39].

Die Flüssigchromatographie/Massenspektrometrie (LC/MS) beruht ebenfalls auf der chromatographischen Trennung und anschließenden massenspektrometrischen Bestimmung des zu untersuchenden Gemisches, wobei die Separation über Umkehrphasen- oder hydrophile Interaktions-Flüssigchromatographie (*hydrophilic interaction liquid chromatography*; HILIC) [38; 40; 41] und die Ionisierung üblicherweise über ein Elektrospray (*electrospray ionization*; ESI) oder Photoionisation (*atmospheric pressure photoionisation*; APPI) erfolgt [39].

Der Vorteil von flüssigkeitsbasierten Chromatographien besteht in der Erfassung eines größeren Massenbereichs, während die Messbarkeit bei der GC/MS von der Flüchtigkeit der Stoffe abhängt [39]. Im Gegenzug besitzt die LC/MS eine geringere chromatographische Auflösung und unterliegt einer gegenseitigen Beeinflussung der eluierenden Metaboliten, wodurch deren Quantifizierung erschwert wird [38].

Beide Messmethoden liefern zunächst halbquantitative Daten in Form von dimensionslosen Flächen, die anhand von Kalibration in absolute Konzentrationen umgewandelt werden können [39].

Als einzige Methode erlaubt die Kernspinresonanzspektroskopie (*nuclear magnetic resonance*; NMR) eine *in-vivo* Messung von Metabolitkonzentrationen [38; 42]. Die Sensitivität dieser Methode liegt jedoch unter der der Massenspektrometrie, was sich ebenfalls nachteilig auf Identifikation und Quantifizierung auswirkt [39; 43].

Weitere Methoden umfassen optische Spektroskopien in Kombination mit Chromatographien (z.B. [44]) und Raman- oder Fourier-Transformations-Infrarot-Spektroskopie [38].

1.2.2. Rekonstruktion metabolischer Netzwerke mit Daten aus Metabolom-Experimenten

Ziel von Metabolomanalysen ist die Messung des gesamten Metaboloms einer Zelle, eines Gewebes oder eines Organismus, was bisher keine der in Abschnitt 1.2.1 genannten Methoden erreicht [39]. Um die Gesamtzahl der Metabolite eines Organismus abzuschätzen, können z.B. Daten aus Genomannotationen herangezogen werden, wobei jedoch die erhaltenen Werte aufgrund von unvollständigem Wissen über die Funktion von Genen kleiner als der reelle Umfang sind [38]. Für *Arabidopsis thaliana* liefert eine Annotation der Datenbank BioCyc beispielsweise 1.902 Komponenten [45; 46; 47], bisherige Arbeiten beschränken sich jedoch auf den Nachweis von 164 (entspricht ca. 8,6%) [48] identifizierten Substanzen. Geht man über die einzelne Spezies hinaus, so werden wesentlich mehr Stoffe, vor allem im Bereich der Sekundärmetabolite von Eukaryoten erwartet, beispielsweise bis zu 200.000 im Reich der Pflanzen[26; 27]. Tabelle 1 enthält eine Übersicht über verschiedene Organismen, den geschätzten Umfang des Metaboloms und zugehörige Arbeiten zusammen mit der verwendeten Methode und der Anzahl nachgewiesener Metabolite.

Init Daten den erwarteten Offiang des Metaboloris betrenend.				
Organismus	Vorhergesagter	Anzahl	Messmethode	Ref.
	Metabolom-	bekannter/		
	umfang (BioCyc /	bestätigter		
	KEGG) ¹⁾	Metabolite ²⁾		
A. thaliana	1.902[45] / 1.227	164 / 326	GC/MS (QUAD)	[48]
B. subtilis 168	636[49] / 1.066	150 / 233	CE/MS	[50]
C. glutamicum res167	755[51] / 1.067	150 / ca. 290	GC/MS (TOF)	[34]
C. glutamicum ATCC 13032	755[51] / 1.067	121 / 287	GC/MS (QUAD)	[33]
S. lycopersicum ³⁾	844[52] / 1.597	42 / 44	NMR	[53]
<i>S. tuberosum</i> L. cv. Desirée ⁴⁾	849[54] / 1.734	77 / 150	GC/MS (QUAD)	[55]
_5)	_5)	79 / 79	LC/MS (ESI)	[56]

Tabelle 1:Beispiele für veröffentlichte Arbeiten im Rahmen von Metabolomanalysen zusammen
mit Daten den erwarteten Umfang des Metaboloms betreffend.

Abkürzungen: Ref.: Referenz für die Messmethode (siehe Abschnitt 7); *A. thaliana*: *Arabidopsis thaliana* (Acker-Schmalwand); *B. subtilis*: *Bacillus subtilis*; *C. glutamicum*: *Corynebacterium glutamicum*; *S. lycopersicum*: *Solanum lycopersicum* (Tomate); *S. tuberosum*: *Solanum tuberosum* (Kartoffel); GC: Gaschromatographie; MS: Massenspektrometrie; TOF: Flugzeitmassenspektrometer; NMR: Kernspinresonanzspektroskopie; QUAD: Quadropolmassenspektrometer; ESI: Elektronsprayionisation.

¹⁾ basierend auf Annotationen der BioCyc [57] bzw. der KEGG-Datenbank [58].

²⁾ Die erste Zahl stellt die Menge identifizierter Metabolite und die zweite Zahl die Summe aus identifizierten und unidentifizierten, aber nachgewiesenen Metaboliten dar.

³⁾ Untersuchung der Frucht.

⁴⁾ Untersuchung der Knolle.

⁵⁾ Die Quelle beinhaltet eine Methodenbeschreibung, welche nicht auf einen Organismus angewendet wird.

Ein weiterer Schritt bei der Analyse besteht in der Integration der erhaltenen Daten in metabolische Netzwerke [39]. Dies setzt öffentliche Datenbanken mit Verknüpfungen zwischen Genen, Enzymen und Metaboliten, standardisierte Protokolle für den Austausch von Daten und Programme für die Untersuchung der Netzwerke voraus [38; 39]. Zu den umfangreichsten öffentlich zugänglichen Datenbanken zählt die BRENDA (BRaunschweig ENzyme DAtabase) [59], KEGG (Kyoto Encyclopedia of Genes and Genomes) [58], BioCyc [57] und im Bereich von *P. aeruginosa* Systomonas (Systems Biology of Pseudomonas) [60] und PseudoCyc [61].

Für den Austausch von Daten metabolische Netzwerke betreffend steht die *Systems Biology Markup Language* (SBML) [62] zur Verfügung, das die Interoperatibilität verschiedener Modelle samt deren Metadaten ermöglicht [38]. Zum Transfer von Rohdaten sind noch keine endgültigen Protokolle vorhanden [63], zumal die Daten häufig halbquantitativer Natur [39] und damit abhängig von der gewählten Messmethode sind.

Für die Visualisierung der Daten sind Programme wie z.B. CUPE (CUBIC Pathway Editor) [64], VANTED (Visualization and Analysis of Networks containing Experimental Data) [65] und Cytoscape [66] vorhanden. Sie bieten die Möglichkeit der Anbindung von externen Datenbanken über das Internet [65], des Darstellens von experimentellen Daten [64; 65; 66], und des automatischen Anordnens von Stoffwechselwegkarten für eine verbesserte Übersicht [64; 65; 66]. Neben der Möglichkeit der Visualisierung metabolischer Daten mit Stoffwechselwegkarten existieren verschiedene mathematische Modelle, um Rückschlüsse auf biologische Fragestellungen zu erhalten [26].

1.3. Charakteristische massenspektrometrische Eigenschaften von oximierten und trimethylsilylierten Verbindungen

Wie in Abschnitt 1.2.2 erwähnt, ist die Bereitstellung von Metabolit-Bibliotheken eine Voraussetzung für eine eingehende Erfassung des Metaboloms mit massenspektrometrischen Methoden. Die GC/MS betreffend ist es notwendig, Fragmentierungsmuster von derivatisierten Metaboliten zu sammeln (vgl. Abschnitt 1.2.1). Eine gebräuchliche Derivatisierung besteht in der Umsetzung der Keto- und Aldehydgruppen mit Methoxyamin, um eine Isomerisierung u.a. bei Zuckern zu vermeiden (siehe Abbildung 4) [37], und eine anschließende Reaktion von Alkohol-, Thiol-, primären und sekundären Amin-, primären und sekundären Amid- und Carboxylgruppen mit N-Methyl-N-Trimethylsilyltrifluoroacetamid (MSTFA) [67], damit die Polarität und damit der Siedepunkt der Substanzen herabgesetzt und deren thermische Stabilität erhöht wird (siehe Abbildung 5) [37; 39].

Bei der Derivatisierung mit MSTFA entstehen charakteristische Fragmente mit den nominalen Masse-zu-Ladungsverhältnissen (m/z) 73, 75, 88, 90 und 147, die keinen Beitrag zur Strukturaufklärung des Moleküls liefern (siehe Abbildung 6) [69]. Die Nominalmasse eines Moleküls berechnet sich hierbei aus der Summe der Nominalmassen der Atome, die sich wiederum von der ganzzahligen Masse des am häufigsten natürlich vorkommenden Isotops herleitet [70].

1.3.1. Aminosäuren

(Glycin 3TMS).

Für Aminosäuren finden sich analog zu MSTFA charakteristische Fragmente in den Massenspektren. In Tabelle 2 sind Nominalmassen zu den dominierenden Fragmenten angegeben [69], während in Abbildung 7 das Fragmentierungsmuster von trimethylsilylierten α -Aminosäuren dargestellt ist [69].

Einleitung

Tabelle 2: Dominierende Fragmente von trimethylsilylierte		nylsilylierten Aminosäuren (nach [69]).	
Fragmentierung		Herkunft	
M – 15		$M - CH_3$	
M – 29		$M - (CH_3 + CH_2)$	
M – 43		M – (CH ₃ + CO)	
M – 72		$M - ((CH_3)_3Si - H)$	
M – 73		M – (CH ₃) ₃ Si	
M – 87		$M - CH_3((CH_3)_3Si - H)$	
M – 89		$M - (CH_3)_3 SiO$	
M – 90		$M - (CH_3)_3 SiOH$	
M – 102		$M - (CH_3)_3Si - CH_3 - CH_2$	
M – 104		$M - CH_3 - (CH_3)_3SiO$	
M – 105		$M - CH_3 - (CH_3)_3SiOH$	
M – 116		$M - ((CH_3)_3SiCO_2 - H)$	
M – 117		$M - (CH_3)_3 SiCO_2 H$	
M – 133		$M - CH_3 - CO - (CH_3)_3SiOH$	
M – 162		M – (CH ₃) ₃ Si – (CH ₃) ₃ SiO	
218		M – R (für α-Aminosäuren)	
		≙ (CH ₃) ₃ Si-N ⁺ H=CH-COO-(CH ₃) ₃ Si	

M steht für die Nominalmasse (Spalte "Fragmentierung") bzw. Summenformel (Spalte "Herkunft") der derivatisierten Aminosäure.

Abbildung 7: Massenspektrometrische Fragmentierungswege von trimethylsilylierten α-Aminosäuren (nach [69]). Die blau gefärbten Ausdrücke dienen als Querverweis auf die in Tabelle 2 aufgeführten Fragmente. Rot gefärbt sind Fragmente, die ausschließlich auf MSTFA zurückzuführen sind (vgl. Abbildung 6). Die Reaktion über die Abspaltung einer Methylgruppe und von Kohlenmonoxid zum M – 43 - Ion verläuft genauso wie die nachfolgende Reaktion über die Bildung eines metastabilen Übergangszustands (m*) [69].

1.3.2. Zucker

Bei der Fragmentierung trimethylsilylierten ebenfalls von Zuckern entstehen charakteristische Produkte [71]. Die Spaltung findet entweder zwischen zwei Kohlenstoffatomen oder zwischen Kohlenstoff und Sauerstoff unter Bildung eines Trimethylsilanols (TMS-OH; m/z = 90) statt [71]. Das Signal des Molekularions (M) wird mit wachsender Kohlenstoffkette genauso wie das des M – 15 - Ions, das durch Abspaltung einer Methylgruppe eines Trimethylsilylrestes entsteht, schwächer [71]. Ein typisches Fragmentierungsmuster ist am Beispiel von Fructose 1MeOX 5TMS in Abbildung 8 aufgeführt [71].

Abbildung 8: Massenspektrum von Fructose 1MeOX 5TMS (nach [71]). Auf der x-Achse ist das Masse-zu-Ladungsverhältnis angegeben, auf der y-Achse die relative Intensität. Rechts oben ist die Struktur mitsamt dem Fragmentierungsmuster der Kohlenstoffkette aufgeführt. Die Zahlen neben den gestrichelten Linien geben die Masse des jeweiligen Bruchstücks in Pfeilrichtung an. Die Fragmente mit den m/z-Werte 466 und 262 sind aufgrund ihrer geringen Intensität von 0,1% bzw. 1,1% nicht sichtbar. Weitere Fragmente im Spektrum: 73 (TMS⁺; vgl. Abbildung 6); 147 (TMS-O⁺=Si(CH₃)₂; vgl. Abbildung 6); 217: Fragment m/z = 307 abzüglich Trimethylsilanol (TMS-OH).

Die Spaltungsmuster von enantiomeren Zuckern können aufgrund der deckungsgleichen Massenspektren nicht voneinander unterschieden werden, so dass hier auf das Retentionsverhalten während der Gaschromatographie zurückgegriffen wird.

1.3.3. Phosphorylierte Verbindungen

Die Fragmentierungsmuster von phosphorylierten Verbindungen enthalten charakteristische resonanzstabilisierte Phosphoniumkationen (siehe Abbildung 9) [72]. Sie entstehen durch Migration von TMS-Gruppen und/oder Wasserstoffatomen auf das Phosphat (siehe Abbildung 9 Teil a), weiteren Umlagerungsreaktionen dieser Moleküle (siehe Abbildung 9 Teil b und c) und durch Übernahme von zwei Kohlenstoffatomen aus Ausgangsmolekülen, die entsprechende Strukturen enthalten (Abbildung 9 Teil d) [68; 72; 73].

Abbildung 9: Charakteristische Fragmente von trimethylsilylierten Phosphaten mit ihren Masse-zu-Ladungsverhältnissen (nach [72]). Unter den Strukturen sind jeweils die nominalen Masse-zu-Ladungsverhältnisse angegeben.

1.4. Zielsetzung

Eine Infektion mit *Pseudomonas aeruginosa* bei Patienten mit Zystischer Fibrose führt aufgrund fehlender Therapiemöglichkeiten zu einer Verschlechterung des Krankheitsbildes und in vielen Fällen zu einem frühen Tod. Um eine Behandlungsmöglichkeit gegen das Bakterium zu finden, ist es wichtig, Einblicke in seine Funktionsweise zu erhalten. Die Aufklärung des Genoms bildet die Grundlage für solch eine Untersuchung, während die Durchführung von Metabolomanalysen einen weiteren Schritt darstellt.

Ziel dieser Arbeit ist die Bereitstellung einer massenspektrometrischen Bibliothek und einer Aufarbeitungsmethode zur Messung von Metaboliten in Extrakten von *P. aeruginosa*. Im weiteren Verlauf sollen metabolische Profile des Bakteriums in verschiedenen Wachstumsstadien erfasst und analysiert werden. Die hieraus erhaltenen Erkenntnisse sollen Einblicke in die Funktionsweise des pathogenen Bakteriums und Angriffspunkte für Therapien liefern.

2. Materialien und Methoden

Die vorgestellte Arbeit wurde im Rahmen eines Kooperationsprojekts mit dem Institut für Mikrobiologie der Technischen Universität Braunschweig (Abteilung Prof. Dr. Dieter Jahn, Arbeitsgruppe Dr. Max Schobert) verwirklicht. Die Arbeitsschritte aus Kapitel 2.1.1 und 2.1.2, die hier aus Gründen der Vollständigkeit genannt sind, wurden in Braunschweig durchgeführt.

Die in den folgenden Abschnitten verwendeten Chemikalien und Arbeitsgeräte sind tabellarisch in Anhang 6.3 und 6.4 aufgeführt.

2.1. Messung der Metabolitkonzentrationen in den Zellen von *P. aeruginosa*

Die durchgeführten Methoden orientieren sich an bereits publizierten Arbeiten [33; 68]. Das im Folgenden aufgeführte Protokoll ist die endgültige Variante, dessen Entwicklung in Abschnitt 3.3 erläutert wird.

2.1.1. Bakterienanzucht

Für die Bakterienanzucht werden in Glycerin bei –80 °C gelagerte Bakterien der Wildtyp-Stämme *P. aeruginosa* PAO1 bzw. PA14 verwendet. Das planktonische Wachstum erfolgt aerob oder anaerob in einem 500 ml Erlenmeyerkolben mit Schikanen zusammen mit 150 ml autoklaviertem Medium (siehe Tabelle 3) bei 37 °C und 200 Rotationen pro Minute (rpm). Es wird mit einer Übernachtkultur desselben Mediums auf eine Optische Dichte bei 578 nm (OD₅₇₈) angeimpft. In regelmäßigen Abständen wird die OD₅₇₈ für eine Wachstumskurve aufgenommen. Die Bakterien werden aus verschiedenen Wachstumsphasen entnommen, wobei bei einer OD₅₇₈ von etwa drei die stationäre Phase erreicht ist.

Das Wachstum im Biofilm erfolgt durch Verwendung von Nitrocellulose-Filtern (Millipore GVWP v02500 und GVWP 04700) auf Agar-Platten (vgl. Tabelle 3). Die Filterpapiere werden täglich auf frische Agar-Platten transferiert.

Tabelle 3: Für die Anzucht von P. aeru	<i>iginosa</i> verwendete Medien.
Medium	Inhaltsstoff
AB-Nitrat-Medium	100 ml A10 (siehe unten)
	20 mM Glucose
	50 mM KNO₃
	0,1 mM CaCl ₂
	1 mM MgCl ₂
	1 ml Trace metals (siehe unten)
	0,5 ml FeSO ₄ x 7 H ₂ O (Stammlösung 14 mg/ml)
	mit destilliertem H ₂ O auf 1000 ml auffüllen
A10	20 g (NH ₄) ₂ SO ₄
	90 g Na ₂ HPO ₄ x 7 H ₂ O
	30 g KH ₂ PO ₄
	30 g NaCl
	mit destilliertem H ₂ O auf 1000 ml auffüllen
Trace metals	200 mg CaSO ₄ x 2 H_2O
	200 mg FeSO ₄ x 7 H ₂ O
	20 mg MnSO ₄ x H ₂ O
	20 mg CuSO ₄ x 5 H ₂ O
	20 mg ZnSO ₄ x 7 H ₂ O
	$10 \text{ mg NaMoO}_4 \text{ x H}_2\text{O}$
	5 mg H ₃ BO ₃
	mit destilliertem H ₂ O auf 1000 ml auffüllen
AB-Nitrat-Medium auf Agar	15 g Agar
	übrige Inhaltsstoffe siehe AB-Medium
Lysogeny Broth (LB)-Vollmedium	5 g Hefe
	10 g Trypton
	5 g NaCl
	mit destilliertem H ₂ O auf 1000 ml auffüllen

Die Medien werden vor der Verwendung autoklaviert (Systec EL 3850).

2.1.2. Zellernte

Die Zellernte findet über die Entnahme von Medium bei planktonischen Kulturen bzw. über das Abschaben der Filterpapiere für die Biofilme in 50 ml Reaktionsgefäße (Greiner Bio-one) statt. In beiden Fällen werden jeweils 150 mg Bakterienfeuchtmasse gewonnen. Die Bakteriensuspension wird bei 4 °C für 20 Minuten bei 4.000 rpm (Heraeus Megafuge 1.0R, Rotor: 2704) präzipitiert. Der Überstand wird verworfen, die Bakterien in 2 ml 0,9%iger Natriumchlorid-Lösung bei 4 °C resuspendiert und von den Reaktionsgefäßen in 2 ml Eppendorffgefäße überführt. Es folgt eine Zentrifugation bei 13.000 rpm und 4 °C für 2 Minuten (Heraeus Biofuge fresco, Rotor: 3328), der Überstand wird erneut verworfen, der Niederschlag in 0,9%iger Natriumchlorid-Lösung resuspendiert und wiederum zentrifugiert.

Zu den Zellen werden 1,5 ml Methanol zusammen mit 1 μ g/ml Ribitol als interner Standard (vgl. Abschnitt 2.5.3) hinzugefügt und die Zellwände durch dreimaliges Einfrieren bei –80 °C und Auftauen bei Raumtemperatur aufgeschlossen. Die Zellen werden bei –80 °C gelagert und in Trockeneis verpackt per Expressdienst von Braunschweig nach Köln geschickt.

2.1.3. Extraktion der Metabolite

Die in 2 ml Eppendorffgefäßen gelagerten Extrakte werden auf einem Vortexschüttler resuspendiert und in 15 ml Reaktionsgefäße (Greiner Bio-one) überführt. Dort werden 1,5 ml deionisiertes Wasser hinzugefügt, erneut auf dem Vortex vermengt und bei 10.000 rpm und 20 °C für 2 Minuten zentrifugiert (Eppendorf Centrifuge 5810R; Rotor: F-34-6-38). Der Überstand wird in ein Glasgefäß mit Schraubverschluss (Schott DURAN 12 x 100 mm) überführt, 1,5 ml Chloroform (CHCl₃) werden hinzugegeben und auf dem Vortex geschüttelt. Es folgt eine 20 minütige Zentrifugation bei 2.000 rpm und 20 °C (Eppendorf Centrifuge 5810R; Rotor: A-4-62), woraufhin eine Phasentrennung aus wässriger Phase mit Methanol/Wasser und organischer Phase mit Chloroform stattfindet. Dazwischen befindet sich eine weiße Schicht aus präzipitierten Proteinen. Die wässrige Phase wird in Glasgefäße (Macherey-Nagel) transferiert und in einem Rotationsverdampfer (Eppendorf Concentrator 5301) etwa eine Stunde unter Rotation evakuiert, bis das enthaltene Methanol entfernt ist. Danach werden die Proben ohne Rotation über Nacht bis zur Trockne eingeengt.

2.1.4. Derivatisierung der Metabolite

Zu der getrockneten Probe werden 50 μ l Methoxyaminlösung (Methoxyamin-Hydrochlorid in Pyridin, Konzentration 20 mg/ml) hinzupipettiert, auf dem Vortex gemischt und für 90 Minuten bei 30 °C und 200 rpm auf einem Schüttler inkubiert. Es werden 80 μ l MSTFA hinzupipettiert, gemischt und für weitere 30 Minuten bei 37 °C und 200 rpm auf dem Schüttler inkubiert. Nach einer weiteren Inkubation für mindestens zwei Stunden bei Raumtemperatur werden die Proben in Glasgefäße mit Mikroeinsätzen (CS-Chromatographie G30s) überführt und 6 μ l eines Zeitstandards bestehend aus je 20 μ l Dekan, Dodekan, Pentadekan und je 20 mg Nonadekan, Dokosan, Oktakosan, Dotriakontan und Hexatriakontan in 10 ml Cyclohexan hinzugegeben (vgl. Abschnitt 2.2.3).

2.1.5. Bestimmung der Metabolitkonzentrationen anhand der Gaschromatographie/Massenspektrometrie

Die Proben werden in eine automatische Einspritzvorrichtung (Finnigan AS2000 bzw. Finnigan AS3000) eingesetzt, wobei jeder vierte bis sechste Durchgang aus einem Reinigungslauf mit MSTFA besteht. Die Substanzen werden auf einer unpolaren Säule aus (5%Phenyl)-Methylpolysiloxan (Agilent J&W Scientific) mit dem in Abbildung 10 aufgeführten Temperaturprofil chromatographisch aufgetrennt (Finnigan Trace GC2000). Die massenspektrometrische Messung erfolgt per Elektronenstoß-Ionisation im positiven Modus mit einer Ionisierungsenergie von 70 eV in einem Quadropolmassenspektrometer (Finnigan Trace MS). Die vollständigen Einstellungen der Geräte befinden sich in Anhang 6.5.

Abbildung 10: Bei der Gaschromatographie verwendetes Temperaturprofil. Nach einem einminütigen Abschnitt mit 70 °C erfolgt für 6 Minuten eine Erhöhung mit 1 °C pro Minute auf 76 °C und für 41,5 Minuten eine Erhöhung mit 6 °C pro Minute auf 325 °C. Diese Temperatur wird für 10 Minuten gehalten, woraufhin eine Abkühlung auf 70 °C innerhalb von 90 Sekunden stattfindet.

2.2. Messung von Standardsubstanzen zur Erweiterung der GC/MS-Bibliothek

Für die Erweiterung der vorhandenen massenspektrometrischen Bibliothek [33] werden kommerziell erworbene Stoffe und eine eigens synthetisierte Substanz verwendet, sowie Spektren aus weiteren Quellen eingepflegt [74; 75].

2.2.1. Chemische Synthese von 5-Acetamidopentansäure

Die Synthese von 5-Acetamidopentansäure (KEGG Identifikationsnummer: C03087) erfolgt über die Addition eines Acetylrestes an 5-Aminopentansäure unter Bildung eines sekundären Carbonsäureamids (siehe Abbildung 11) [76]. Hierzu werden 1,17 g 5-Aminopentansäure mit 1,26 g Essigsäureanhydrid vermengt, zwei Tropfen konzentrierte Schwefelsäure hinzugegeben und für zwei Stunden auf 100 °C erhitzt. Das Reaktionsgemisch wird anschließend im Rotationsverdampfer eingeengt und das Produkt in Form eines Öls gewonnen.

2.2.2. Probenvorbereitung der Standardsubstanzen

Für die Vorbereitung der Standards wird 1 ml einer 1 mM wässrigen Lösung in einem Glasgefäß (Macherey-Nagel) vorgelegt. Die Lösung wird im Rotationsverdampfer eingeengt, wie in Abschnitt 2.1.4 beschrieben derivatisiert und nach Abschnitt 2.1.5 vermessen. Verläuft die Messung nicht erfolgreich, so wird 1 ml einer 10 mM Lösung vorgelegt oder eine kleine Menge der Substanz ohne vorheriges Lösen derivatisiert. Die verwendeten Standards sind in Abschnitt 6.4 aufgeführt.

2.2.3. Bestimmung von Kenngrößen

Um die für die Bibliothek gemessenen Substanzen näher zu charakterisieren werden sie mit verschiedenen Kenngrößen verknüpft:

- Die monoisotopische Masse ist die Summe der Massen der leichtesten Isotope des Moleküls und dient zur exakten Zuweisung der im Spektrum auftretenden Signale [70].
 Weiterhin kann aus ihr durch Runden die Nominalmasse (vgl. Abschnitt 1.3) gewonnen werden.
- Um die Charakterisierung anhand des Retentionsverhaltens während der Chromatographie unabhängig von der Länge der Säule und anderen experimentellen Rahmenbedingungen zu machen, wird der Retentionsindex (RI) nach Kováts [77] mithilfe einer Kalibration mit n-Alkanen berechnet (vgl. Abschnitt 2.1.4). Der Retentionsindex einer Substanz liegt zwischen dem Retentionsindex des vorhergehenden und nachfolgenden Alkans und kann mittels folgender Formel berechnet werden:

$$RI_c = \left(RT_c + \frac{RI_1 \cdot RT_2 - RI_2 \cdot RT_1}{RI_2 - RI_1}\right) \cdot \frac{RI_2 - RI_1}{RT_2 - RT_1}$$

- RI_c: Retentionsindex der Komponente
- RT_c: Retentionszeit der Komponente
- RI₁: Retentionsindex des vorhergehenden Alkans
- RI2: Retentionsindex des nachfolgenden Alkans
- RT₁: Retentionszeit des vorhergehenden Alkans
- RT₂: Retentionszeit des nachfolgenden Alkans

Der Retentionsindex des Alkans berechnet sich aus der Anzahl der Kohlenstoffatome multipliziert mit 100.

- Zur Quantifizierung der im Chromatogramm identifizierten Substanzen werden charakteristische Massenspuren herangezogen [68].
- Um chemische Strukturen f
 ür bioinformatische Anwendungen zug
 änglich zu machen, werden Verfahren wie InChI [78] oder SMILES [79; 80] verwendet, mit deren Hilfe die Strukturen in eindimensionale Zeichenketten umgewandelt und weiterverarbeitet werden k
 önnen.
- Weitere Kenngrößen sind Synonyme des Substanznamens, Abbildungen der Strukturen, Summenformel, Molekulargewicht, CAS-Nummer, Name der Substanz nach IUPAC-Norm und Identifikationsnummern in anderen Datenbanken wie z.B. der KEGG [58].
- Zusätzlich werden Autor, Datum der Messung, verwendetes Gerät, Ionisierungsmethode, Chromatographiesäule und experimentelle Bedingungen erfasst.

2.3. Erweiterung der Bibliothek mittels vergleichender GC/MS-Analyse von Bakterienextrakten

Wird ein definiertes Massenspektrum in verschiedenen Proben im gleichen Bereich gefunden, wird davon ausgegangen, dass es sich hierbei um eine Komponente handelt, die als unidentifizierte Substanz in die Bibliothek aufgenommen werden kann, sofern das Spektrum nicht bereits enthalten ist.

Proben aus verschiedenen Messreihen werden mit dem Programm AMDIS (the Automated Mass Spectral Deconvolution and Identification System) [81] und der aktuellen Bibliothek qualitativ analysiert (Parameter siehe Anhang 6.7 Tabelle 28) und anschließend die 100 flächengrößten unidentifizierten Komponenten zu der Bibliothek hinzugefügt (Parameter siehe Anhang 6.7 Tabelle 29). Dieser Vorgang wird mit allen Proben wiederholt, so dass neben den bisherigen Komponenten neue Spektren in der Bibliothek gespeichert sind. Nach einer erneuten Analyse (Parameter siehe Anhang 6.7 Tabelle 28) der Proben mit der Bibliothek werden Spektren entfernt, die in einer zu geringen Anzahl wiedergefunden werden oder deren Retentionsindex eine Standardabweichung von mehr als fünf Einheiten aufweist. Die übriggebliebenen Spektren werden nach einer manuellen Prüfung in die Bibliothek aufgenommen.

2.4. Softwareentwicklung

Für die Archivierung der gemessenen Standards wird eine graphische Benutzeroberfläche entwickelt, die darüberhinaus die in Abschnitt 2.2.3 erwähnten Kenngrößen speichert. Die Entwicklung erfolgt mit Microsoft Visual Studio 2005 Standard [82] in C++ unter Verwendung der Qt4-Klassenbibliothek, mit der es möglich ist, plattformübergreifende graphische Benutzeroberflächen zu erstellen [83]. Bei der Implementierung wird auf verschiedene Entwurfsmuster zurückgegriffen.

2.4.1. Darstellung von Daten mit Hilfe von Model-View-Controllern

Um die Darstellung von Daten unabhängig von der unterliegenden Datenstruktur zu machen, wurden entsprechende Programmteile mittels des Architekturmusters der *Model-View-Controller* implementiert[84]. Die Trennung der Daten von der Präsentation wird durch das Aufteilen der Programmstruktur in Modell, Präsentation und Steuerung erreicht. Das Modell ist hierbei für den Zugriff auf die Daten zuständig, während sowohl Modell als auch Präsentation über die Steuerung miteinander kommunizieren. Die Steuerung ist des Weiteren für die Verarbeitung von Benutzereingaben verantwortlich (siehe Abbildung 12). Anhand dieser Implementierung werden einerseits die Darstellung derselben Datenstruktur an mehreren Positionen des Programms und andererseits das unkomplizierte Austauschen von Darstellungsoptionen ermöglicht.

Abbildung 12: Schematischer Aufbau eines *Model-View-Controllers* (verändert nach [84]). Das Modell (blau) greift auf die unterliegende Datenstruktur (grau) zu und liefert Daten für die Präsentation (rot). Die Steuerung (grün) vermittelt Änderungen zwischen Modell und Präsentation, z.B. durch Benutzereingaben.

2.4.2. Zugriff auf zentrale Funktionalitäten durch Bereitstellung eines singulären globalen Objekts

Der Zugriff auf zentrale Funktionalitäten wie z.B. die Programmeinstellungen wird durch die Verwendung eines *Singletons* ermöglicht, das zur der Kategorie der Erzeugungsmuster gehört [84]. Es zeichnet sich dadurch aus, dass von dieser Klasse nur ein einzelnes Objekt erzeugt werden kann, dass zudem nicht vor dem ersten Gebrauch initialisiert wird. In C++ ist die Implementierung dadurch gekennzeichnet, dass der Konstruktor und der Kopierkonstruktor als *private* deklariert werden, um eine unerlaubte Erzeugung von Objekten zu verhindern, sowie durch einen statischen Objektzeiger, der bei Bedarf einmalig generiert wird (vgl. Abbildung 13).

```
class Singleton
{
    public:
        static Singleton * instance()
        {
            if (_instance == 0)
              _instance = new Singleton();
            return _instance;
        }

private:
        Singleton(); // Konstruktor.
        Singleton(const Singleton&); // Kopierkonstruktor.
        static Singleton *_instance;
};
Singleton * Singleton::_instance = 0;
```


2.4.3. Implementierung von mehrstufigen *Undo*-Befehlen mittels des Kommando-Entwurfmusters

Mit Hilfe des Kommando-Entwurfmusters werden die Befehle zum Editieren, Kopieren und Löschen von Bibliothekeneinträgen gekapselt [84]. Zusammen mit einem Stapelspeicher können so *Undo/Redo*-Funktionalitäten auf Basis von festgelegten Schnittstellen und abstrakten Klassen bereitgestellt werden. Qt [83] liefert ein Gerüst für die Implementierung, das durch die Entwicklung von einzelnen Klassen zu den jeweiligen Kommandos komplettiert wird.

Sobald ein Befehl z.B. zum Löschen eines Bibliothekeneintrags vorliegt, wird die zum Kommando zugehörige Klasse instanziiert und Informationen z.B. über den Inhalt des zu löschenden Objekts gespeichert. Das Kommando wird daraufhin auf dem Stapelspeicher abgelegt und kann mittels der standardisierten Funktionen "undo()" und "redo()" rückgängig gemacht bzw. wiederholt werden.

2.5. Computergestützte Auswertung der massenspektrometrischen Daten

Die computergestützte Auswertung der Bakterienextrakte wird wie in [68] beschreiben durchgeführt.

2.5.1. Auswertung der gemessenen Standardsubstanzen

Die aus der Messung der Standards erhaltenen Massenspektren müssen ihren jeweiligen Derivaten zugewiesen werden. Hierzu werden die Massenspektren der Maxima mittels des Programms Xcalibur QualBrowser Version 1.2 [85] aus dem Chromatogramm in das NIST-Bibliothekenformat überführt (siehe Anhang 6.6) [86]. Anschließend wird das Spektrum in das Programm NIST MS Search 2.0d geladen, worauf ein automatischer Abgleich mit den ca. 163.000 enthaltenen Spektren erfolgt [86]. Ist keine zufriedenstellende Übereinstimmung vorhanden, wird das Spektrum im NIST MS Interpreter 2.0 analysiert, indem die einzelnen Signale den Fragmenten der vermuteten Molekülstruktur zugeordnet werden (siehe Abbildung 14). Die hierzu nötigen molekularen Strukturen werden anhand der möglichen Derivatisierungen mittels des NCBI Pubchem Moleküleditors erzeugt (siehe Anhang 6.6) [87].

Abbildung 14: Programmoberfläche des NIST MS Interpreters 2.0 [86] anhand des Massenspektrums von 2-Aminoadipinsäure 3TMS. Im unteren Teil ist das Massenspektrum zu sehen, wobei die Signale, die das Programm einem Fragment der Struktur zuweisen kann, schwarz gefärbt sind, während nicht zugewiesene Signale in weiß dargestellt sind. Durch Auswählen eines Markers (rot eingerahmt) wird das zu dem Signal gehörende Fragment im oberen Teil des Programms rot eingefärbt.

2.5.2. Qualitative Auswertung der Bakterienextrakte

Die Identifikation der Substanzen in dem Chromatogramm erfolgt über das Programm AMDIS [81] mit Hilfe der vorbereiteten Bibliothek. Hierbei wird zunächst eine Berechnung der Retetionsindices anhand der in einer Probe enthaltenen Alkane durchgeführt (vgl. Abschnitt 2.2.3; Tabelle 4), worauf eine automatisierte Analyse der gemessenen Serie folgt. Die Parameter für die Analyse sind in Anhang 6.7 (Tabelle 28) aufgeführt.

Alkan (Anzahl der C-Atome)	Retentionsindex	Retentionszeit (± 1) [min]
Dekan (C ₁₀)	1.000	7
Dodekan (C ₁₂)	1.200	13
Pentadekan (C ₁₅)	1.500	21
Nonadekan (C ₁₉)	1.900	28
Dokosan (C ₂₀)	2.000	33
Octakosan (C ₂₈)	2.800	41
Dotriakontan (C ₃₂)	3.200	45
Hexatriakontan (C ₃₆)	3.600	49

Tabelle 4:Für die Kalibrierung verwendete n-Alkane zusammen mit ihrem Retentionsindex und
der ungefähren Retentionszeit.

Die Retentionszeiten sind Richtwerte für das in Abbildung 10 angegebene Temperaturprofil.

Resultat der Analyse ist ein Report mit Parametern der identifizierten Komponenten, der mit Hilfe des Programms Processing4_3 [68] unter Verwendung der Standardeinstellungen für die Quantitative Analyse vorbereitet wird.

2.5.3. Quantitative Auswertung der Bakterienextrakte

Die Quantifizierung der Substanzen erfolgt anhand der zuvor erzeugten Dateien mit dem Programm QuanBrowser Version 1.2 des zu dem GC/MS-System gehörenden Programmpakets Xcalibur [85]. Die automatisch zugewiesende Fläche eines Stoffs wird geprüft und gegebenenfalls manuell korrigiert (siehe Abbildung 15).

Die korrigierten Ergebnisse werden in Form eines Reports gespeichert (über die Befehle Export data to Excel und Export Long Excel report) und mittels eines Excel-Makros (Makro3.xls, [68]) in einer Tabelle zusammengefasst. Um die während der Extraktion auftretenden Volumenunterschiede auszugleichen, sind die resultierenden Daten mit Hilfe der enthaltenen Kalibrierungssubstanz Ribitol (vgl. Abschnitt 2.1.2) normiert. Des Weiteren werden die Flächen von Derivaten, die zu derselben Substanz gehören, aufaddiert. Eine externe Kalibrierung zur Umwandlung der halbquantitativen Daten in reelle Konzentrationen findet nicht statt.

2.6. Statistische Methoden zur Analyse von massenspektrometrischen Daten

Für die Analyse der halbquantitativen Daten aus den metabolischen Profilen von *P. aeruginosa* werden verschiedene statistische Methoden verwendet.

2.6.1. Vergleich der relativen Konzentrationen zweier Metabolite

Für den Vergleich der relativen Konzentrationen zweier Metabolite zwischen zwei Wachstumsphasen wird das Verhältnis *r* der Mittelwerte mehrerer Einzelwerte der jeweiligen Phase nach folgender Formel gebildet:

$$r = \frac{\bar{x}}{\bar{y}}$$

mit $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ und $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$;

x: Einzelwert der Serie A

y: Einzelwert der Serie B

Die Standardabweichung σ ist ein Maß für die Streuung der Einzelwerte um den Mittelwert \bar{x} :

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Um zwei Mittelwerte miteinander zu vergleichen, wird der *p*-Wert (Überschreitungswahrscheinlichkeit) anhand eines zweiseitigen Student-t-Tests über den *t*-Wert und den geschätzten Freiheitsgraden *f* berechnet [88; 89]:

$$p = P_0(|T| \ge t|f)$$

mit

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

und

$$f = \frac{\left(\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right)^2}{\frac{\left(\frac{\sigma_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{\sigma_2^2}{n_2}\right)^2}{n_2 - 1}}$$

- n₁: Anzahl der Messwerte in Messreihe A
- n₂: Anzahl der Messwerte in Messreihe B
- σ_1 : Standardabweichung der Serie A
- σ_2 : Standardabweichung der Serie B
- \bar{x}_1 : Mittelwert der Serie A
- \bar{x}_2 : Mittelwert der Serie B

Der *p*-Wert ist die Wahrscheinlichkeit, dass unter der Annahme, die Nullhypothese (H₀: Beide Mittelwerte sind gleich) sei wahr, die Teststatistik den beobachteten oder einen extremeren Wert annimmt. Somit spricht ein niedriger p-Wert dafür, dass ein beobachteter Unterschied zwischen den Mittelwerten zweier Serien nicht auf Abweichungen der Einzelmessungen zurückzuführen ist.

2.6.2. Korrelationskoeffizient

Der Korrelationskoeffizient *Kor(X, Y)* nach Bravais und Pearson ist ein Maß für die Ähnlichkeit zweier normalverteilter Messreihen X und Y [90] und wird nach der folgenden Formel berechnet:

$$Kor(X,Y) := \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2} \cdot \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

mit $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ und $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$;

X: Messreihe mit den Werten x₁, x₂, x₃, ..., x_n

Y: Messreihe mit den Werten y₁, y₂, y₃, ..., y_n

Sind zwei Messreihen vollständig positiv miteinander korreliert, so beträgt der Korrelationskoeffizient +1 und die Messpunkte liegen in einer zweidimensionalen Darstellung auf einer Ursprungsgeraden mit der Steigung +1, während bei vollständig negativer Korrelation der Koeffizient und die Steigung der Geraden -1 beträgt. Je kleiner der Betrag der Korrelation ist, umso unwahrscheinlicher ist ein linearer Zusammenhang zwischen den untersuchten Messreihen. Um eine annähernde Normalverteilung der Ausgangswerte zu erreichen, werden diese vor der Berechnung logarithmiert.

3. Ergebnisse

3.1. Entwicklung eines Programms zur Archivierung der gemessenen Standards

Da sich bestehende Programme wie AMDIS [91] oder NIST MS Search [86] für die Archivierung der gemessenen Spektren nur unzureichend eigneten, wurde eine Programm mit graphischer Oberfläche zur Eingabe relevanter Informationen erstellt. Eine aktuelle Version ist im Internet verfügbar [92].

3.1.1. Eingabe und Bearbeitung der Spektren und ihrer Kenngrößen

Die Benutzeroberfläche ist in drei Karteikarten unterteilt, wobei auf der ersten Karteikarte die Spezifikationen (Abbildung 16), auf der zweiten das Spektrum (Abbildung 17) und auf der dritten zusätzliche Daten (Abbildung 18) des ausgewählten Derivats dargestellt sind. Die in der Bibliothek enthaltenen Einträge sind in einem weiteren Fenster tabellarisch aufgeführt. Jedes Eingabefeld kann über einen Einstellungsdialog aus- und eingeblendet werden, wobei sich die Programmoberfläche selbstständig anpasst. In Tabelle 5 sind sämtliche Eingabefelder aufgelistet.

Weiterhin lassen sich beliebig viele Bibliotheken simultan öffnen, Spektren zwischen ihnen per *drag and drop* ("Ziehen und Fallenlassen") bzw. Kopieren und Einfügen transferieren, wobei Änderungen stets rückgängig gemacht werden können. Die maximale Anzahl an Einträgen ist durch den Arbeitsspeicher des ausführenden Computers beschränkt, wobei ein Eintrag je nach Menge der eingegebenen Daten etwa 4 bis 40 kByte benötigt, so dass bei 1 GByte verfügbarem Arbeitsspeicher ca. 25.000 bis 250.000 Spektren bearbeitet werden können.

🖉 mSpecs Editor beta													
File Edit Tools Help													
📑 🚚 🕸 🕺 X 🧕 😽			8	2									
Library 3.5.3 to add.mlb (C:/Dokume 🗗 💈	< Specifications	Spectrum	Associated	i Data									
Search:	- Component							Derivative					
2-Aminpadinic acid 2TMS	ID:	Zolah						ID:					
2-Aminoadinic acid 3TMS	10.	-anyuz					_	10.					_
2-Aminobultanoic acid 2TMS	Name:	5-Aminoper	itanoic acid					Derivative:	2TM5				
5-Aminopentanoic acid 2TMS	And and an excitation						-						
5-Aminopentanoic acid 3TMS	Molecular weight:	117.19639						Monoisotopic mass:	261.158035				
Erustose-6-phonhoric acid 1MeOV STMS	Formula:	C5H11NO2					0						
Fructose-6-phophonic acid STMS	r ormaia.	Continuoz					<u> </u>	Retention time (min):	17.31				2
Galactinol 9TMS	CAS-number:	660-88-8						Retention index:	1349.171				
Galactose 1 1MeOX 5TM5	71010	- ·					-	Receited in indexi	10101111				_
Galactose 1 STMS	IUPAC-name:	s-aminoper	canoic acid					Retention index penalty	: Medium				1
Galactose 2 1MeOX 5TM5	SMILES:	C(CCN)CC(=0)0					All				• •	
Galactose 2 STMS								Aikanes:					<u>1</u>
Galactose 3 STMS	InChI:	/C5H11NO2	/c6-4-2-1-3-5	5(7)8/h1-4,i	6H2,(H,:	',8)/t/h	17H	Compound	Retention index		Retent	ion time	1
Glucosamine-6-phosphoric acid 1 1MeOX 6TMS	VECC pumbores				•	•	2		4000		7.0		- 3
Glucosamine-6-phosphoric acid 2 1MeOX 6TM5	KLOG Humbers.				<u> </u>	<u>w</u> :	10	Decane	1000		1.2		
Glucosamine-6-phosphoric acid 6TMS	C00431							Dodecane	1200		13.71		
Glucosamine-6-phosphoric acid xTMS							_	Mass traces:		0	0	. 🔞	2
Glucuropic acid 1 1MeOX 5TMS	Synonyms:				•	8	2				-		
Glucuropic acid 2 1MeOX 5TM5	E Aminouplaris a	cal.						247					
Isomaltose 1 1MeOX 8TMS	5-Milli IOValeric a	hu ha					-						
Isomaltose 2 1MeOX 8TMS	Lasaunonentann	IR .											
Lactitol 9TMS	Comment												
Lactose 1 1MeOX 8TMS													
Lactose 1 vTMS													
Lactose 2 1MeOX 8TMS													
Lactose 2 xTMS													
Lactose 3 xTM5													
Lactulose 1 1MeOX 8TMS	Chuchura												
Lactulose 2 1MeOX 8TMS	Juncture												
Lactulose 8TMS	Component:					Q		Derivative:			10.1		6
Lactulose xTMS	Compositioner			0	• <u>•</u>	_	2	worriser of			00 3		9
Maltotriose 1 1MeOX 11TMS)											
Maltotrinse 1 xTMS											0		
Maltotriose 2 1MeOX 11TMS								. /					
Maltotriose 2 xTMS								\searrow /			11		/
Melezitose 1 xTMS			\sim		\sim		ш	Si 🔨	\sim	/	~	Si	,
Melezitose 2 xTMS	"\	\sim	\sim	< $<$		<	∕"		\sim \sim	/	~		/
Melezitose 3 xTMS	0	\sim		\sim		N		/ ï					\
Melezitose 4 xTMS								Ĥ.					
Melibiose 1 1MeOX 8TMS						Ĥ.							
Melibiose 2 1MeOX 8TMS													
NUMBER AND AND AND A						_	_			_	_	_	_

Abbildung 16: Benutzeroberfläche des Bibliothekenverwaltungsprogramms mit der Karteikarte der Spezifikationen. Im linken Bereich sind die Komponenten einer Bibliothek tabellarisch aufgeführt. Auf der rechten Seite werden Informationen zu dem Derivat und der betreffenden Komponente editiert (vgl. Tabelle 5).

Abbildung 17: Benutzeroberfläche des Bibliothekenverwaltungsprogramms mit der Karteikarte des Spektrums. Im linken Bereich sind die Komponenten einer Bibliothek tabellarisch aufgeführt. Auf der rechten Seite wird das Spektrum grafisch und in Form einer Liste dargestellt (vgl. Tabelle 5).

Ergebnisse

💐 mSpecs Editor beta			
File Edit Tools Help			
📙 🏭 🕸 🕺 X 🧕 🐘	Ē (B) 🕰 Q Q 🕑		
Library 3.5.3 to add.mlb (C:/Dokume 🗗 🗙	Specifications Spectrum Associated Data		
Search: 🚺 🔂 😞	Measurement	Systems Biology Data	
2-Aminoadipic acid 2TMS	Author: Bernhard Thielen	Reactions:	6 0 2
2-Aminoadipic acid 3TMS			<u><u> </u></u>
2-Aminobutanoic acid 2TMS	Date: 15.02.2007	R02273	
5-Aminopentanoic acid 2TMS	Device:	RU2274	
5-Aminopentanoic acid 3TMS		RUZZ/6	
Fructose-6-phophoric acid 1MeOX 5TM5	Method: EI+	R02825	
Fructose-6-phophoric acid STMS	Column:		
Galactinol 9TMS			
Galactose 1 1MeOX 5TM5	Experimental conditions:		
Galactose 1 STMS	T: {0;0} + c EI det=600,00 Full ms [45,00-585,00]		
Galactose 2 1MeOX 5TM5			
Galactose 2 STMS			
Galactose 3 5TMS			
Glucosamine-6-phosphoric acid 1 1MeOX 6TMS		F	0.0 1
Glucosamine-6-phosphoric acid 2 1MeOX 6TM5		Enzymes:	👱 👱 🖬
Glucosamine-6-phosphoric acid 6TMS		Name	EC-number 🄺
Glucosamine-6-phosphoric acid ×TMS			1.01.4.1
Glucuronic acid 1 1MeOX 5TMS			1.21.4.1
Glucuronic acid 2 1MeOX 5TMS			1.4.1.12
Isomaltose 1 1MeOX 8TMS			2.6.1.40
Isomaltose 2 1MeOX 8TMS			3.5.1.30
Lactitol 9TMS			3.5.1.63
Lactose 1 1MeOX 8TM5			
Lactose 1 xTMS			
Lactose 2 1MeOX 8TM5			
Lactose 2 ×TMS			
Lactose 3 xTMS			
Lactulose 1 1MeOX 8TM5		Genes:	🖸 🧕 🖸
Lactulose 2 1MeOX 8TM5		Alerea	
Lactulose 8TMS		Name	Location - Sequence
Lactulose ×TMS			
Maltotriose 1 1MeOX 11TM5			
Maltotriose 1 xTM5			
Maltotriose 2 1MeOX 111M5			
Maitotnose 2 xTM5			
melezicose 1 ×1MS			
melezicose 2 x1M5			
melezitose 3 xTMS			
Melezitose 4 x I MS			
Melbiose 1 1MeOX 81M5			
meibiose 2 tmeux 8 tmb			

Abbildung 18: Benutzeroberfläche des Bibliothekenverwaltungsprogramms mit der Karteikarte der zusätzlichen Informationen. Im linken Bereich sind die Komponenten einer Bibliothek tabellarisch aufgeführt. Auf der rechten Seite werden Informationen zu der Messung und weitere Daten wie z.B. assoziierte Reaktionen editiert (vgl. Tabelle 5).

Feld	Datentyp	Erläuterungen
<u>Spezifikationen</u>		
<u>Component</u>		
ID	String	Identifikationsnummer der Komponente
Name	String	Bezeichner der Komponente
Molecular weight	Double	Molekulargewicht der Komponente
Formula	String	Chemische Summenformel der
		Komponente
CAS-number	String	CAS-Nummer der Komponente
IUPAC-name	String	IUPAC-Name der Komponente
SMILES	String	Chemischer Strukturcode der Komponente
		(vgl. Abschnitt 2.2.3)
InChI	String	Chemischer Strukturcode der Komponente
		(vgl. Abschnitt 2.2.3)
KEGG-numbers	Array of strings	Bezeichner der KEGG-Datenbank [58]
Synonyms	Array of strings	Synonyme des Bezeichners der
		Komponente
<u>Derivatives</u>		
ID	String	Identifikationsnummer des Derivats
Derivative	String	Bezeichner des Derivats
Monoisotopic mass	Double	Monoisotopische Masse des Derivats
Retention time (min)	Double	Retentionszeit des Derivats
Retention index	Double	Retentionsindex des Derivats

Tabelle 5:	Pro Eintrag verfügbare Datenfelder	im Bibliothekenverwaltungsprogramm.

Feld	Datentyp	Erläuterungen
Retention index penalty	Integer	Maß für die Streuung des Derivats um
		seinen Retentionsindex
Alkanes	2D array ¹⁾	Liste mit den Alkanen für die Kalibrierung
		(bestehend aus: Name des Alkans,
		Retentionsindex, Retentionszeit;
		vgl. Abschnitt 2.2.3)
Mass traces	Array of doubles	Liste mit den für die Quantifizierung
		benutzten Massenspuren
		(vgl. Abschnitt 2.2.3)
<u>Comment</u>		
Comment	String	Textfeld für Kommentare
<u>Structure</u>	21	
Component	Molecule ²⁾	Chemische Struktur der Komponente
Derivative	Molecule ²⁾	Chemische Struktur des Derivats
<u>Spektrum</u>		
Visual representation		Graphische Abbildung des Spektrums
Tabular representation	2D array ¹⁾	Tabellarische Abbildung des Spektrums
		(bestehend aus: m/z-Wert, Intensität,
		Kommentar)
Zusätzliche Informationen		
Measurement	.	
Author	String	Autor der Messung
Date	Dates	Datum der Messung
Device	String	Verwendetes Gerat
Method	String	Verwendete Methode
Column	String	Verwendete Chromatographiesaule
Experimental conditions	String	weitere experimentelle Bedingungen
Systems Biology Data		Lists with a select Kenner and state and a "influence
Reactions	Array of strings	Liste mit zu der Komponente verknupften Reaktionen
Enzymes	2D arrav ¹⁾	Liste mit zu der Komponente verknüpften
,	,	Enzymen (bestehend aus: Enzymname.
		EC-Nummer)
Genes	2D arrav ¹⁾	Liste mit zu der Komponente verknüpften
		Genen (bestehend aus: Genname.
		Lokalisierung, Sequenz)

¹⁾ Matrix mit fest definierter Spalten- und beliebiger Zeilenanzahl.
 ²⁾ Selbstentwickeltes Objekt zur Speicherung von molekularen Strukturen.

³⁾ Objekt zur Speicherung von Datumsangaben.

Sortier- und Filterfunktionen 3.1.2.

Um einen Eintrag in der Bibliothek zu finden, stehen verschiedene Sortier- und Filterfunktionen zur Verfügung. Eine Sortierung kann nach Name, Retentionszeit, Retentionsindex, ID der Komponente, ID des Derivats, Molekulargewicht der Komponente, monoisotopische Masse des Derivats und Datum der Messung vorgenommen werden. Die Filtermöglichkeiten sind in Tabelle 6 aufgeführt.

Filter	Erläuterungen
Name	Bezeichner der Komponente oder des Derivats enthält
	den Suchbegriff ¹⁾
Retention index	Suche nach exaktem Wert oder Bereichsangabe
Retention time	Suche nach exaktem Wert oder Bereichsangabe
Synonym	Bezeichner der Komponente oder eines seiner Synonyme
	enthält den Suchbegriff ¹⁾
ID Component	ID der Bezeichners der Komponente enthält den
	Suchbegriff ¹
ID Derivative	ID des Bezeichners des Derivats enthält den Suchbegriff ¹⁾
Molecular weight component	Suche nach exaktem Wert oder Bereichsangabe
Monoisotopic mass derivative	Suche nach exaktem Wert oder Bereichsangabe
KEGG-number	KEGG-Nummern enthalten den Suchbegriff ¹
Formula	Chemische Summenformel enthält den Suchbegriff ¹⁾
CAS-number	CAS-Nummer enthält den Suchbegriff ¹⁾
IUPAC-Name	IUPAC-Name enthält den enthält den Suchbegriff ¹⁾
SMILES	SMILES-Bezeichner enthält den Suchbegriff ¹⁾
InChI	InChI-Bezeichner enthält den Suchbegriff ¹⁾
Mass traces	Suche nach exaktem Wert oder Bereichsangabe
Comment	Kommentar enthält den Suchbegriff ¹
Author	Autor enthält den Suchbegriff ¹
Date	Suche nach exaktem Datum oder Bereichsangabe
Device	Verwendetes Gerät enthält den Suchbegriff ¹
Method	Verwendete Methode enthält den Suchbegriff ¹
Column	Verwendete Chromatographiesäule enthält den
	Suchbegriff ¹
Experimental conditions	Experimentelle Bedingungen enthalten den Suchbegriff ¹
Reaction	Verknüpfte Reaktionen enthalten den Suchbegriff ¹
Enzyme name	Enzymnamen enthalten den Suchbegriff ¹
EC-number	EC-Nummern enthalten den Suchbegriff ¹⁾
Gene name	Gennamen enthalten den Suchbegriff ¹⁾

		.	
Tabelle 6: Im Bil	bliothekenverwaltungsprog	gramm verfügbare l	-ilterfunktionen.

¹⁾ Mehrere Suchbegriffe können durch die Verwendung eines trennenden Leerzeichens benutzt werden.

3.1.3. Import- und Exportmöglichkeiten

Um das Programm mit anderen Applikationen kompatibel zu machen, wurden Import- und Exportfilter programmiert. Der Import/Export für das NIST Bibliothekenformat, das wiederum von Herstellern von Chromatographiesystemen wie z.B. Thermo Scientific [85] unterstützt wird, erlaubt die Verwendung des Bibliothekenverwaltungsprogramms zusammen mit AMDIS [91] und NIST MS Search [86]. Als zweites Format steht JCAMP-DX [93] zur Verfügung, das beispielsweise von der HP bzw. Agilent ChemStation Software [94] verwendet werden kann.

Weiterhin kann ein Großteil der Datenfelder in eine Tabstopp-getrennte Textdatei exportiert werden, was eine Auswertung dieser Daten mit Tabellenkalkulationsprogrammen ermöglicht. Die Bibliothek kann in das *Portable Document Format* (pdf) [95] exportiert sowie auf einem Drucker ausgegeben werden.

Ferner wurde ein Format in der *Extensible Markup Language* (xml) [96] definiert, das als Austauschformat für zukünftige Entwicklungen dienen soll.

3.1.4. Erweiterung der Funktionalität mit Hilfe von Skripten

Um eine automatisierte Bearbeitung der Bibliotheken zu ermöglichen, wurden diese für Skripte zugänglich gemacht. Die Skriptsprache basiert auf der *ECMAScript scripting language* [97], die beispielsweise auch Grundlage für *JavaScript* ist. Innerhalb der Skript-Umgebung ist es möglich, auf alle Datenelemente der aktiven Bibliothek zuzugreifen. Des Weiteren wurden verschiedene Hilfsmethoden implementiert, die z.B. das Laden von Textdateien von der Festplatte oder das Interagieren mit dem Benutzer in Form von verschiedenen Dialogen ermöglichen.

3.2. Erweiterung der Massenspektrenbibliothek

Zur Erweiterung der vorhandenen Massenspektrenbibliothek [33] wurden einerseits kommerziell erworbene Stoffe und eine eigens hergestellte Substanz vermessen sowie andererseits neue Komponenten anhand vergleichender Analyse bestehender GC/MS-Profile gesucht. Zusätzlich wurden Spektren weiterer Quellen eingepflegt [74; 75].

3.2.1. Messung von Standardsubstanzen

Eine tabellarische Auflistung der gemessenen Standardsubstanzen befindet sich in Abschnitt 6.4. Anhand der in der KEGG [58] mit der Komponente assoziierten Reaktionen wurden solche Stoffe ausgewählt, für die mehr als fünf Einträge vorhanden sind, so dass eine entsprechende Stellung im metabolischen Netzwerk garantiert ist. Des Weiteren wurden Stoffe vermessen, die an der Synthese von Biofilmen bzw. bei Reaktionen das *Quorum sensing* betreffend teilnehmen (vgl. Abschnitt 1.1.1; Tabelle 23, markierte Substanzen), sowie weitere Substanzen, die bereits im Labor verfügbar waren.

In den erhaltenen GC/MS-Profilen wurden ausgeprägte Signale gewählt und deren Derivatisierungsstufe mit Hilfe des in Abschnitt 2.5.1 beschriebenen Verfahrens geprüft, was im Folgenden anhand von 4-Hydroxyprolin (KEGG-Identifikationsnummern: C01157, C01015) beispielhaft erläutert wird:

Das Profil von 4-Hydroxyprolin enthält zwei auffällige Maxima bei 20,39 und 21,55 Minuten (siehe Abbildung 19).

Abbildung 19: GC/MS Chromatogramm von 4-Hydroxyprolin. Auf der Abszisse ist die Retentionszeit in Minuten angegeben, auf der Ordinate der Totalionenstrom (*Total Ion Current*; TIC) normiert auf das höchste im Chromatogramm vorkommende Maximum. Bei den markierten Signalen handelt es sich um das zweifach (20,39 min) bzw. dreifach (21,55 min) silylierte Derivat. Im rechten oberen Teil ist die Struktur von 4-Hydroxyprolin dargestellt.

Die Spektren der Maxima sind in Abbildung 20 und Abbildung 21 zu finden. Ein Vergleich mit der NIST MS-Bibliothek [86] liefert bereits eine zufriedenstellende Übereinstimmung zu den Derivaten 2TMS (20,39 min) bzw. 3TMS (21,55 min) mit Trefferwahrscheinlichkeiten von 94,9% bzw. 92,7%, die sich im NIST MS-Interpreter [86] weiter validieren lässt (vgl. Abbildung 20 und Abbildung 21).

Abbildung 21: Massenspektrum und Struktur von 4-Hydroxyprolin 3TMS (Bildschirmfoto des NIST MS-Interpreters [86]). Auf der Abszisse ist das Masse-zu-Ladungsverhältnis gezeigt, die Ordinate beschreibt die relative Intensität in Prozent. Signale, die das Programm einem Fragment der Struktur zuweisen kann, sind schwarz gefärbt, während nicht zugewiesene Signale in weiß dargestellt sind.

Die Messung von 5-Acetamidopentansäure (vgl. Abschnitt 2.2.1) liefert ein Chromatogramm mit dessen Hilfe das Massenspektrum des einfach silylierten Derivats identifiziert werden konnte (vgl. Abbildung 22 und Abbildung 23).

Abbildung 23: Massenspektrum und Struktur von 5-Acetamidopentansäure 1TMS (Bildschirmfoto des NIST MS-Interpreters [86]). Auf der Abszisse ist das Masse-zu-Ladungsverhältnis gezeigt, die Ordinate beschreibt die relative Intensität in Prozent. Signale, die das Programm einem Fragment der Struktur zuweisen kann, sind schwarz gefärbt, während nicht zugewiesene Signale in weiß dargestellt sind.

3.2.2. Bestimmung unidentifizierter Derivate durch vergleichende GC/MS-Analyse von Bakterienextrakten

Zur Erweiterung der Bibliothek wurden neben der Auswertung von Standardsubstanzen mittels vergleichender GC/MS Analyse wie in Kapitel 2.3 beschrieben nach weiteren, unidentifizierten Derivaten gesucht.

Hierzu wurden jeweils zehn Proben aus drei verschiedenen Wachstumsphasen (anaerob exponentiell, anaerob stationär und aerob Biofilm) herangezogen, wobei während der Extraktion eine Feuchtmasse von 1.500 mg verwendet worden ist (vgl. Abschnitt 2.1.1), um die Intensität der Signale im Spektrum zu erhöhen, und bei der nachfolgenden Analyse Spektren ausgeschlossen worden sind, die in weniger als zehn Proben wiedergefunden wurden (vgl. Abschnitt 2.3). Es wurde eine Bibliothek aus 3.000 Spektren gebildet, von denen 263 die genannten Kriterien erfüllten.

Bei der manuellen Überprüfung wurden solche Spektren entfernt, die eine zu hohe oder zu geringe Anzahl an Signalen aufwiesen (vgl. Abbildung 24). Des Weiteren wurden Spektren gelöscht, die zu vergleichbaren Retentionszeiten gefunden wurden, deren Signale jedoch nur geringfügig voneinander abwichen (siehe Abbildung 25), wobei zusätzlich geprüft wurde, inwieweit die abweichenden Signale einen ähnlichen Verlauf im Chromatogramm verglichen mit dem restlichen Spektrum zeigten. Auf diese Weise wurden 201 Spektren entfernt und der Bibliothek 62 Spektren hinzugefügt.

Abbildung 24: Massenspektren, die bei der Suche nach unidentifizierten Komponenten aufgrund zu hoher (linke Teilabbildung) bzw. zu geringer Anzahl (rechte Teilabbildung) an Signalen ausgeschlossen werden. Auf der Abszisse ist das Masse-zu-Ladungsverhältnis gezeigt, die Ordinate beschreibt die relative Intensität in Prozent.

Abbildung 25: Massenspektren, die bei der Suche nach unidentifizierten Komponenten aufgrund vergleichbarer Retentionszeit und geringfügiger Unterscheidungsmerkmale aussortiert worden sind. Das linke Spektrum unterscheidet sich lediglich durch die Massenspur 110 (blau markiert) von dem rechten. Auf der Abszisse ist das Masse-zu-Ladungsverhältnis gezeigt, die Ordinate beschreibt die relative Intensität in Prozent.

Es wurde ein Vergleich zwischen den unidentifizierten Komponenten aus *P. aeruginosa* und solchen aus der vorhandenen Massenspektrenbibliothek [33] aus *Corynebacterium glutamicum* durchgeführt. Hierzu wurde eine Qualitative Analyse nach Abschnitt 2.5.2 mit 15 Proben aus einer Fermentation von *C. glutamicum* (aerobes Wachstum auf Minimalmedium; frühe exponentielle bis späte stationäre Phase; hergestellt nach [33]) und 20 Proben von *P. aeruginosa* (aerobes Wachstum; je 10 Proben mittlere exponentielle und spät stationäre Phase; nach Abschnitt 2.1) durchgeführt und die Anzahl der nachgewiesenen unidentifizierten Substanzen extrahiert (siehe Tabelle 7).

Qualitativ nachgewiesene unidentifizierte	Unidentifizierte Komponenten aus					
Substanzen	P. aeruginosa C. gl		C. gluta	glutamicum		
Gesamt	62	100%	117	100%		
in P. aeruginosa	39	63%	50	43%		
in C. glutamicum	31	50%	76	65%		
in P. aeruginosa, nicht in C. glutamicum	14	23%	23	20%		
in C. glutamicum, nicht in P. aeruginosa	6	10%	3	3%		

 Tabelle 7:
 Auftreten unidentifizierter Substanzen in Proben von P. aeruginosa und C. glutamicum.

3.2.3. Charakteristika der resultierenden Bibliothek

Die gemessenen Standardsubstanzen sowie die unidentifizierten Komponenten wurden zusammen mit den vorhandenen Spektren [33; 74; 75] in eine Bibliothek zusammengefasst und die Kenngrößen (vgl. Abschnitt 2.2.3) mit Hilfe der Datenbanken KEGG [58], Pubchem [87], Chemspider [98], des Online-Katalogs von Sigma-Aldrich [99] und dem Bibliothekenverwaltungsprogramm (Abschnitt 3.1) editiert. Von 637 Einträgen sind 458 identifizierte Derivate von 293 Komponenten, von denen sich wiederum 219 anhand der angegebenen Massenspuren quantifizieren lassen. In Tabelle 8 und Tabelle 9 sind ausgewählte Charakteristika der Bibliothek aufgeführt.

Tabelle 8:	Anzahl der Einträge der GC/MS-Bibliothek unterteilt nach Herkunft und
	Identifikationsstatus.

Beschreibung	Anzahl der Einträge			
	(identifiziert/nicht identifiziert)			
Gesamtzahl der Einträge	637 (458 / 179)			
Übernommen aus vorhandener Bibliothek [33]	336 (219 / 117)			
Übernommen aus anderen Quellen [74; 75]	55 (55 / 0)			
Nach Abschnitt 3.2.1 und 3.2.2 bestimmt	246 (184 / 62)			

Tabelle 9: Umfang ausgewählter Kenngrößen der GC/MS Bibliothek.

Kenngröße	Anzahl der Einträge		Anzahl der Einträg	r Einträge		
		gesamt	identifizierte Substanzei	n		
Author	637	100,0%	458 100,0%	%		
CAS number	429	67,3%	429 93,7%	%		
Column	637	100,0%	458 100,0%	%		
Component structure	458	71,9%	458 100,0%	%		
Component molecular weight	458	71,9%	458 100,0%	%		
Compound ID	637	100,0%	458 100,0%	%		
Compound name	637	100,0%	458 100,0%	%		
Derivative ID	637	100,0%	458 100,0%	%		
Derivative name	443	69,5%	443 96,7%	%		
Derivative structure	436	68,4%	436 95,2%	%		
Derivative monoisotopic mass	436	68,4%	436 95,2%	%		
Device	637	100,0%	458 100,0%	%		
Enzymes ¹⁾	367	57,6%	367 80,19	%		
Experimental conditions	637	100,0%	458 100,09	%		
Formula	458	71,9%	458 100,0%	%		
IUPAC name	456	71,6%	456 99,8%	%		
InChI	458	71,9%	458 100,0%	%		
KEGG numbers ¹⁾	403	63,3%	403 88,09	%		
Mass traces ¹⁾	490	76,9%	333 72,7%	%		
Method	637	100,0%	458 100,0%	%		
Reactions ¹⁾	369	57,9%	369 80,6%	%		
Retention index	637	100,0%	458 100,09	%		
Retention time	617	96,9%	439 95,9%	%		
SMILES	458	71,9%	458 100,09	%		
Synonyms ¹⁾	416	65,3%	416 90,8%	%		

¹⁾ Der Eintrag wurde gezählt, wenn mindestens ein Element zu der betreffenden Kenngröße vorhanden war.

3.2.4. Qualitative Analyse von Bakterienextrakten

Um die Anzahl der Stoffe zu prüfen, die mit der Bibliothek wiedergefunden werden können, wurde eine qualitative Analyse nach Abschnitt 2.5.2 mit den in Tabelle 10 aufgelisteten Proben durchgeführt. In den 104 Proben wurden 399 Derivate wiedergefunden, wovon 282 identifizierte Derivate von 195 Komponenten und 117 unidentifizierte Derivate darstellten. 291 (73%) Derivate sind in mehr als zehn Prozent der Proben aufgetaucht (vgl. Abbildung 26).

Stamm	Aerob/ anaerob	Wachstumsphase	Medium	Anzahl der Proben
PA14	Aerob	Aerob \rightarrow Anaerob 0 h ¹⁾	AB-Nitrat	1 Serie a 4 Proben
PA14	Anaerob	Aerob \rightarrow Anaerob 4 h ¹⁾	AB-Nitrat	1 Serie a 4 Proben
PAO1	Aerob	Aerob \rightarrow Anaerob 0 h ¹⁾	AB-Nitrat	1 Serie a 4 Proben
PAO1	Anaerob	Aerob \rightarrow Anaerob 2 h ¹⁾	AB-Nitrat	1 Serie a 4 Proben
PAO1	Anaerob	Aerob \rightarrow Anaerob 4 h ¹⁾	AB-Nitrat	1 Serie a 4 Proben
PAO1	Anaerob	Aerob \rightarrow Anaerob 6 h ¹⁾	AB-Nitrat	1 Serie a 4 Proben
PAO1	Anaerob	Mitte exponentiell	AB-Nitrat	1 Serie a 5 Proben
PAO1	Aerob	Mitte exponentiell	AB-Nitrat	3 Serien a 5 Proben
PA14	Aerob	Mitte exponentiell	AB-Nitrat	1 Serie a 5 Proben
PAO1	Aerob	Früh stationär	AB-Nitrat	1 Serie a 5 Proben
PAO1	Anaerob	Früh stationär	AB-Nitrat	1 Serie a 5 Proben
PAO1	Aerob	Spät stationär	AB-Nitrat	3 Serien a 5 Proben
PAO1	Anaerob	Spät stationär	AB-Nitrat	1 Serie a 5 Proben
PAO1	Anaerob	Biofilm	AB-Nitrat	1 Serie a 5 Proben
PAO1	Aerob	Biofilm	AB-Nitrat	1 Serie a 5 Proben
PA14	Aerob	Biofilm	AB-Nitrat	1 Serie a 5 Proben
PA14 Δ2152	Aerob	Biofilm	AB-Nitrat	1 Serie a 5 Proben
PA14 Δ2416	Aerob	Biofilm	AB-Nitrat	1 Serie a 5 Proben

 Tabelle 10:
 Für die qualitative Evaluierung der GC/MS-Bibliothek verwendete Proben.

¹⁾ Die betreffenden Bakterien wurden aerob gezüchtet und zum Zeitpunkt 0 h in eine anaerobe Umgebung transferiert.

Abbildung 26: Relative Verteilung des Auftretens der in der GC/MS-Bibliothek enthaltenen Substanzen in Zehn-Prozent Intervallen.

3.3. Entwicklung eines Protokolls zur Aufarbeitung von *P. aeruginosa* Bakterienextrakten für die GC/MS

Die Extraktion und Derivatisierung der Metabolite erfolgte nach einem Protokoll für *C. glutamicum* [33], dass für die Verwendung für *P. aeruginosa* optimiert worden ist.

Um den Einfluss der Menge des Extraktions- und Derivatisierungsmittels zu testen, wurden Zellextrakte mit den in Tabelle 11 gezeigten Substanzmengen aufgearbeitet und die Anzahl der nachgewiesenen Substanzen ermittelt. Eine quantitative Analyse zeigte, dass die Konzentrationen der gefundenen Metabolite bei Verwendung von 25 µl Methoxyamin-lösung und 40 µl MSTFA auf etwa 30% bzw. bei 50 µl/80 µl auf etwa 80% zurückgingen.

Tabelle 11:	Anzahl nachgewiesener Substanzen unter Verwendung variabler Volumina an
	Extraktions- und Derivatisierungsmittel während der Aufarbeitung von
	Bakterienextrakten.

Volumen an	Volumen an Methoxyamin-Lösung / MSTFA					
Extraktionsmittel	100 µl / 160 µl					
2000 μl	142	163	167			
3000 µl	123	175	167			
5000 μl	132	158	177			

Ergebnisse

Im Weiteren wurde die eingesetzte Feuchtmasse variiert und erneut eine qualitative Analyse der Bakterienextrakte durchgeführt. Die Anzahl nachgewiesener Substanzen ist in Tabelle 12 aufgeführt.

Tabelle 12:Anzahl nachgewiesener Substanzen unter Verwendung variabler Mengen an
Feuchtmasse während der Aufarbeitung während der Aufarbeitung von
Bakterienextrakten.

Eingesetzte Bakterienfeuchtmasse	Anzahl qualitativ nachgewiesener Derivate		
	in drei Replika (absolut / relativ)		
20 mg	87 / 42%		
150 mg	177 / 85%		
500 mg	209 / 100%		

Die Reproduzierbarkeit der Aufarbeitungsmethode wurde überprüft, indem jeweils zwei unabhängige Messreihen mit je fünf Proben aus der späten stationären und frühen exponentiellen Phase miteinander verglichen worden sind (Stamm PAO1, aerobes Wachstum auf AB-Nitrat-Medium). Abbildung 27 bis Abbildung 29 zeigen die relativen Konzentrationen der quantifizierten Komponenten in doppelt logarithmischer Darstellung. Eine Matrix mit den Korrelationen der Mittelwerte aus den logarithmierten Konzentrationen ist in Tabelle 13 aufgeführt.

Tabelle 13:Korrelationen zwischen den Mittelwerten der logarithmierten relativen
Konzentrationen von jeweils zwei Messreihen mit je fünf Proben aus der späten
stationären Phase und frühen exponentiellen Phase.

	Spät stat. 1	Spät stat. 2	Mitte exp. 1	Mitte exp. 2
Spät stat. 1	100%	-	-	-
Spät stat. 2	96%	100%	-	-
Mitte exp. 1	86%	87%	100%	-
Mitte exp. 2	82%	84%	98%	100%

Abkürzungen: Spät stat.: spät stationäre Wachstumsphase; Mitte exp.: Mitte exponentielle Wachstumsphase. Die nicht angegebenen Korrelationen können in den entsprechend vertauschten Zellen gefunden werden.

Abbildung 27: Vergleich der relativen Konzentrationen von quantifizierten Metaboliten zwischen zwei unabhängig voneinander durchgeführten Messreihen aus der späten stationären Wachstumsphase (Stamm PAO1, aerobes Wachstum auf AB-Nitrat-Medium). Auf der Abszisse und der Ordinate sind jeweils die relativen Konzentrationen der Metabolite auf logarithmischer Skala angegeben.

Relative Konzentration frühe exponentielle Phase Serie 1

Abbildung 28: Vergleich der relativen Konzentrationen von quantifizierten Metaboliten zwischen zwei unabhängig voneinander durchgeführten Messreihen aus der frühen exponentiellen Wachstumsphase (Stamm PAO1, aerobes Wachstum auf AB-Nitrat-Medium). Auf der Abszisse und der Ordinate sind jeweils die relativen Konzentrationen der Metabolite auf logarithmischer Skala angegeben.

Abbildung 29: Vergleich der relativen Konzentrationen von quantifizierten Metaboliten zwischen zwei unabhängig voneinander durchgeführten Messreihen aus der frühen exponentiellen und späten stationären Wachstumsphase (Stamm PAO1, aerobes Wachstum auf AB-Nitrat-Medium). Auf der Abszisse und der Ordinate sind jeweils die relativen Konzentrationen der Metabolite auf logarithmischer Skala angegeben.

3.4. Vergleich metabolischer Profile von *P. aeruginosa*

Die halbquantitativen Daten für den Vergleich metabolischer Profile von *P. aeruginosa* wurden anhand der in Abschnitt 2.5.2 und 2.5.3 beschriebenen Methoden bestimmt.

3.4.1. Gegenüberstellung von Profilen aus dem Biofilm- und planktonischen Wachstum von *P. aeruginosa* PAO1

Um den Einfluss des Biofilmwachstums auf das Metabolom von *P. aeruginosa* zu inspizieren, wurde ein Vergleich zwischen Biofilmen mit planktonischen Phasen sowohl im aeroben wie auch im anaeroben Wachstum durchgeführt (vgl. Tabelle 14).

Stamm	Aerob/ anaerob	Wachstumsphase	Medium	Anzahl der Proben
PAO1	Aerob	Mitte exponentiell	AB-Nitrat	5 Proben
PAO1	Aerob	Früh stationär	AB-Nitrat	5 Proben
PAO1	Aerob	Spät stationär	AB-Nitrat	5 Proben
PAO1	Aerob	Biofilm	AB-Nitrat	5 Proben
PAO1	Anaerob	Mitte exponentiell	AB-Nitrat	5 Proben
PAO1	Anaerob	Früh stationär	AB-Nitrat	5 Proben
PAO1	Anaerob	Spät stationär	AB-Nitrat	5 Proben
PAO1	Anaerob	Biofilm	AB-Nitrat	5 Proben

Tabelle 14:Übersicht über die für den Vergleich metabolischer Profile von *P. aeruginosa* im
Biofilm- und planktonischen Wachstum verwendeten Proben.

Es wurde jeweils das Verhältnis der gemittelten relativen Konzentration eines Metaboliten in der Biofilmphase mit den drei anderen Phasen gebildet und zusätzlich der dekadisch logarithmierte Mittelwert dieser Verhältnisse gebildet. Anhand der erhaltenen Werte lässt sich erkennen, welche Substanzen in erhöhten bzw. erniedrigten Konzentration in Biofilmen vorkommen (siehe Tabelle 15 und Tabelle 16).

Tabelle 15:Vergleich relativer Konzentrationen ausgewählter Metabolite zwischen Biofilm und
Mitte exponentieller, früh stationärer und spät stationärer Phase von aerob
gewachsenen Bakterien des Stammes PAO1.

Metabolit	log ₁₀ (X (B/M;B/F; B/S))	log ₁₀ (B/M)	log ₁₀ (B/F)	log ₁₀ (B/S)	p-Wert (B/M)	p-Wert (B/F)	p-Wert (B/S)
3-Phosphoglyceraldehyde	3,37	1,87	1,77	3,84	0,001	0,001	0,001
Cellobiose	2,05	1,96	2,13	2,04	0,004	0,004	0,004
Fructose	2,00	-0,49	2,45	1,22	0,000	0,015	0,017
Melibiose	1,86	2,28	1,30	0,66	0,009	0,009	0,030
Trehalose	1,28	1,25	1,42	1,12	0,007	0,006	0,007
Cadaverine	1,06	1,53	-0,94	-1,19	0,000	0,001	0,001
Sarcosine	0,85	1,07	0,56	0,76	0,004	0,008	0,004
5-Aminopentanoic acid	0,76	-0,77	0,64	1,10	0,000	0,015	0,009
Glucosamine	-1,64	-2,13	-1,75	-1,36	0,000	0,052	0,006
Homoserine lactone	-1,67	-1,73	-2,41	-1,38	0,000	0,000	0,001
Xylose-1-phosphoric acid	-1,72	-1,62	-1,82	-1,73	0,006	0,016	0,001
Tryptamine	-1,82	-1,60	-1,79	-2,38	0,022	0,000	0,130
4-Aminobenzoic acid	-2,03	-2,08	-1 <i>,</i> 95	-2,08	0,005	0,000	0,018
Adenosine-5'-							
monophosphoric acid	-2,51	-2,45	-2 <i>,</i> 38	-2,81	0,002	0,006	0,001
Triethanolamine	-3,17	-3,13	-3,09	-3,32	0,001	0,004	0,005

Abkürzungen: \log_{10} : dekadischer Logarithmus; \bar{x} : Mittelwert; B: Biofilm; M: Mitte exponentielle Wachstumsphase; F: frühe stationäre Wachstumsphase; S: späte stationäre Wachstumsphase;

Ergebnisse

Tabelle 16:Vergleich relativer Konzentrationen ausgewählter Metabolite zwischen Biofilm und
Mitte exponentieller, früh stationärer und spät stationärer Phase von anaerob
gewachsenen Bakterien des Stammes PAO1.

Metabolit	log ₁₀ (ズ (B/M;B/F; B/S))	log ₁₀ (B/M)	log ₁₀ (B/F)	log ₁₀ (B/S)	p-Wert (B/M)	p-Wert (B/F)	p-Wert (B/S)
Adenosine-5'-							
monophosphoric acid	3,07	0 <i>,</i> 95	3,50	2,47	0,001	0,001	0,001
Triethanolamine	2,87	2,62	2,96	2,96	0,003	0,002	0,002
Hypoxanthine	2,44	2,02	2,86	0,84	0,002	0,002	0,002
Trehalose	1,97	2,01	2,14	1,63	0,000	0,000	0,000
Tryptamine	1,70	1,44	2,08	0,46	0,009	0,008	0,030
Homoserine	1,70	1,76	1,90	1,13	0,000	0,000	0,000
Glutamine	1,67	1,32	2,01	1,26	0,015	0,013	0,015
Mannose	1,53	1,58	1,63	1,29	0,001	0,001	0,001
2,6-Diaminopimelic acid	1,53	0,76	1,95	0,78	0,000	0,000	0,000
Fructose	1,34	1,26	1,48	1,24	0,003	0,003	0,003
Cadaverine	0,97	0,51	1,31	0,62	0,016	0,005	0,007
5-Aminopentanoic acid	0,74	0,64	0,97	0,46	0,003	0,002	0,011
Histidine	-1,39	-1,75	-1,08	-1,68	0,085	0,093	0,383
4-Hydroxyproline	-1,42	-2,45	-0,98	-2,33	0,115	0,033	0,081
Cellobiose	-2,05	-1,71	-2,29	-2,71	0,023	0,000	0,000
2-Oxobutanoic acid	-2,10	-2,41	-1,87	-2,18	0,007	0,023	0,031
Homoserine lactone	-2,13	-2,86	-1,70	-2,92	0,132	0,084	0,086
Glucose-1-phosphoric acid	-2,20	-2,20	-1,94	-2,93	0,001	0,001	0,001
2'-Deoxyguanosine 5'-							
phosphoric acid	-2,44	-2,85	-2,10	-2,77	0,020	0,001	0,044

Abkürzungen: \log_{10} : dekadischer Logarithmus; \bar{x} : Mittelwert; B: Biofilm; M: Mitte exponentielle Wachstumsphase; F: frühe stationäre Wachstumsphase; S: späte stationäre Wachstumsphase;

Ein graphischer Vergleich der gemittelten relativen Konzentration der Biofilmphase und der

drei planktonischen Phasen ist in Abbildung 30 und Abbildung 31 zu finden.

Abbildung 31: Vergleich der relativen Konzentrationen von quantifizierten Metaboliten zwischen Biofilm und einem Mittelwert der Mitte exponentiellen, früh stationären und spät stationären planktonischen Wachstumsphase (Stamm PAO1, anaerobes Wachstum auf AB-Nitrat-Medium). Auf der Abszisse und der Ordinate sind jeweils die relativen Konzentrationen auf logarithmischer Skala angegeben.

3.4.2. Vergleich aerob stationär gewachsener Profile von *P. aeruginosa* PA14 und der Mutanten Δ1346 und Δ1818

Um die Unterschiede in den Konzentrationen von Cadaverin und 5-Aminopentansäure von *P. aeruginosa* im Biofilmwachstum verglichen mit anderen, planktonischen Wachstumsphasen zu untersuchen, wurden zunächst Proteine identifiziert, die für die Synthese von Cadaverin zuständig sind (siehe Abbildung 32, Enzym EC 4.1.1.18).

Abbildung 32: Schematische Darstellung des Lysin-Abbaus von *P. aeruginosa* PAO1. Schwarz markierte Metabolite sind in der GC/MS-Bibliothek vorhanden. Das Enzym, das die Decarboxylierung von Lysin zu Cadaverin katalysiert ist blau dargestellt (nach [58; 100]).

Hierzu wurde eine Protein-BLAST-Suche [58; 101; 102] mit der Proteinsequenz der *Escherichia coli*-Enzyme zu EC-Nummer 4.1.1.18 (KEGG-Identifikationsnummern: eco:b0186 und eco:b4131) durchgeführt, die zur Identifikation von zwei Homologen PA1818 (E-Wert kleiner 10⁻¹⁵⁷) und PA1346 (E-Wert kleiner 10⁻³⁶) in *P. aeruginosa* führte [102].

Für beide Gene wurden Deletionsmutanten aus einer verfügbaren Mutantenbank von *P. aeruginosa* PA14 [103; 104] ausplattiert und ein Vergleich zwischen aerob stationär auf LB-Vollmedium gewachsenen Kulturen durchgeführt (siehe Tabelle 17 und Tabelle 18).

Tabelle 17:Übersicht über die für den Vergleich metabolischer Profile von *P. aeruginosa* PA14 und
der Mutanten Δ1346 und Δ1818 verwendeten Proben.

Stamm	Aerob/ anaerob	Wachstumsphase	Medium	Anzahl der Proben
PA14	Anaerob	Stationär	LB	2 Proben
PA14 Δ1346	Anaerob	Stationär	LB	2 Proben
PA14 Δ1818	Anaerob	Stationär	LB	2 Proben

Tabelle 18:Vergleich relativer Konzentrationen ausgewählter Metabolite zwischen wildtyp P.
aeruginosa PA14 und den Deletionsmutanten Δ1346 und Δ1818 in aerob stationärer
Wachstumsphase.

Metabolit	log ₁₀ (Δ1346/wt)	p-Wert (Δ1346/wt)	log ₁₀ (Δ1818/wt)	p-Wert (Δ1818/wt)
Cadaverine	-0,20	0,650	-3,24	0,350
5-Aminopentanoic acid	0,14	0,001	-0,29	0,141
Glutaric acid	0,02	0,935	-1,73	0,275
Lysine	0,04	0,773	0,52	0,085

Abkürzungen: log_{10} : dekadischer Logarithmus; \bar{x} : Mittelwert; wt: Wildtyp;

4. Diskussion

4.1. Bereitstellung eines Programms zur Archivierung von GC/MS-Standards

Im Rahmen dieser Doktorarbeit wurde ein Programm entwickelt, dass zur benutzerfreundlichen Eingabe und Bearbeitung von Massenspektren und assoziierten Daten dient (siehe 3.1). Es stellt neben AMDIS [91] und Bioclipse [105] eine der wenigen frei verfügbaren Alternativen zu kommerziell erhältlichen Programmen dar. Hierbei ist jedoch zu beachten, dass AMDIS neben dem Spektrum Informationen zu lediglich zehn weiteren Datenfeldern speichert [91], wohingegen das hier vorgestellte Programm 31 Datenfelder Bioclipse bietet eine Oberfläche zur Verwaltung von chemoverwaltet. und bioinformatischen Daten [105], die zwar Massenspektren darstellen kann, dem jedoch Funktionen zum benutzerfreundlichen Editieren der Spektren fehlt. Beide Programme lassen Möglichkeiten zum Sortieren bzw. Filtern von Einträgen der GC/MS-Bibliothek vermissen.

Mit Hilfe der vom Programm bereitgestellten Datenfelder ist es möglich, eine Substanz mit verschiedenen anderen Datenbanken zu verknüpfen. So können z.B. Substanzidentifikationsnummern der KEGG [58] angegeben werden, womit sich die aus der Analyse von Bakterienextrakten resultierenden Daten anhand von Programmen wie VANTED [65] mit den Stoffwechselwegkarten der KEGG darstellen lassen. Informationen wie mit der Komponente assoziierte Reaktionen, Enzyme oder Gene bilden Verknüpfungen zu anderen Feldern der Systembiologie wie Transcriptomics oder Genomics.

Mit Hilfe der vielfältigen Import- und Exportmöglichkeiten der Bibliotheken wird bereits eine beträchtliche Menge an GC/MS Systemen unterstützt. Scheitert die Interoperabilität an proprietären Dateiformaten seitens der Hersteller, ist oftmals ein Möglichkeit über die unterstützten Formate gegeben.

Im Gegensatz zu den in Bioclipse verwendeten Zusatzmodulen (*PlugIns*) sind auch im Programmieren unerfahrene Benutzer in der Lage, mit der im Programm implementierten Skript-Schnittstelle Aufgaben zu automatisieren. So wurde im Zuge der Bearbeitung der GC/MS-Bibliothek beispielsweise ein Skript erstellt, das anhand von gegebenen Stoffidentifikationsnummern der KEGG alle zugehörigen Reaktionen, Enzymnamen und EC-Nummern des betreffenden Eintrags füllt.

4.2. Strategien zur Erweiterung von GC/MS-Bibliotheken

Um die Ausbeute an nachweisbaren Substanzen in den Extrakten von P. aeruginosa zu erhöhen, wurde die vorhandene Massenspektrenbibliothek [33] mittels verschiedener Techniken erweitert (siehe Abschnitt 2.2 und 2.3). Durch Messung von kommerziell erworbenen Standardsubstanzen lässt sich die GC/MS-Bibliothek mit geringem Zeitaufwand vergrößern, solange die betreffenden Stoffe und ausreichend finanzielle Mittel verfügbar sind. Die in Abschnitt 2.2.1 aufgeführte chemische Synthese von 5-Acetamidopentansäure stellt eine Alternative zum kommerziellen Erwerb dar, falls der betreffende Metabolit nicht erhältlich ist. 5-Acetamidopentansäure wurde hierbei aufgrund seiner Bedeutung im Cadaverin-Stoffwechsel Abschnitt der verfügbaren (vgl. 4.4) und chemischen Synthesevorschrift [76] ausgewählt. Zusätzlich kann durch vergleichende GC/MS-Analyse von Bakterienextrakten nach unidentifizierten Komponenten gesucht werden.

4.2.1. Messung von Standardsubstanzen mit besonderer Bedeutung in *P. aeruginosa*

Im Krankheitsverlauf der Zystischen Fibrose ist die Synthese von Biofilmen von *P. aeruginosa* von besonderer Bedeutung, so dass Standardsubstanzen aus den Stoffwechselwegen des *Quorum sensings* und der Synthese von Alginat vermessen worden sind (vgl. Abschnitt 1.1.1; siehe Tabelle 19). Hierbei konnten nicht alle Stoffe in die GC/MS-Bibliothek aufgenommen werden, einerseits aufgrund des zu hohen Molekulargewichts, wodurch der Übergang in die gasförmige Phase verhindert wird, andererseits war N-(3-Oxododecanoyl)-L-Homoserinlacton nicht kommerziell verfügbar. In letzerem Fall wurde N-(3-Oxohexanoyl)-L-Homoserinlacton vermessen, was sich in der Länge der terminalen Kohlenstoffkette von N-(3-Oxododecanoyl)-L-Homoserinlacton unterscheidet und damit ein ähnliches Spektrum aufweisen sollte (vgl. Abbildung 33). Auch dieser Stoff ließ sich nicht in den Bakterienextrakten nachweisen, was darin begründet sein kann, dass der Stoff in Konzentrationen unter der Nachweisgrenze des Geräts vorliegt.

Diskussion

Tabelle 19:	Auflistung von Substanzen, die in den Stoffwechselwegen des Quorum sensings und
	der Synthese von Alginat von Bedeutung sind.

Metabolit	Eintrag in der GC/MS-Bibliothek	Nachweis in Bakterienextrakten
Fructose-6-Phosphat	Vorhanden	Vorhanden
Mannose-6-Phosphat	Vorhanden	Vorhanden
Mannose-1-Phosphat	Vorhanden	Vorhanden
Guanosindiphosphat-Mannose	Nicht vorhanden	-
Guanosindiphosphat-Mannuronat	Nicht vorhanden	-
Polymannuronat	Nicht vorhanden	-
Alginat	Nicht vorhanden	-
S-Adenosyl-L-Methionin	Nicht vorhanden	-
5'-Methylthioadenosin	Vorhanden	Vorhanden
N-(3-Oxododecanoyl)-L-Homoserinlacton	Nicht vorhanden	-
N-Butyryl-L-Homoserinlacton	Vorhanden	Nicht vorhanden

In der zweiten Spalte ist angegeben, ob ein Eintrag in der GC/MS-Bibliothek zu dem betreffenden Metabolit vorhanden ist. In Spalte drei ist angegeben, ob die entsprechende Substanz in Bakterienextrakten wiedergefunden werden konnte.

Abbildung 33: Vergleich der Strukturen von N-(3-Oxododecanoyl)-L-Homoserinlacton (links) und N-(3-Oxohexanoyl)-L-Homoserinlacton (rechts). Die Strukturen unterschieden sich durch die Länge der terminalen Kohlenstoffkette.

4.2.2. Auffinden unidentifizierter Komponenten durch GC/MS-Analyse von Bakterienextrakten

Mit der vorgestellten Methode zum Auffinden unidentifizierter Komponenten konnten der GC/MS-Bibliothek 62 Einträge hinzugefügt werden (vgl. Abschnitt 3.2.2). Des Weiteren wurde gezeigt, dass die unidentifizierten Komponenten eine Präferenz für den Organismus zeigen, in dem sie gefunden worden sind (vgl. Tabelle 7), was darauf hindeutet, dass einige der Substanzen in dem jeweiligen Organismus von spezifischer Bedeutung sind. Der verwendete Algorithmus von AMDIS [81] erwies sich hierbei für eine vollständig automatisierte Suche als ungeeignet, da etwa 69% der 201 Spektren während einer manuellen Überprüfung entfernt worden sind.

Der nächste Schritt in der Erweiterung von GC/MS-Bibliotheken stellt die Identifikation solcher Komponenten dar. Hierfür sind einerseits chemische Verfahren beschrieben, die z.B. auf der Variation der Derivatisierungsreagenzien (z.B. deuteriertes MSTFA) beruhen und

damit Rückschlüsse auf funktionelle Gruppen liefern [74]. Eine weitere Möglichkeit besteht darin, Bakterien mit Ausgangsstoffen wachsen zu lassen, die schwere Isotope von Kohlenstoff und Stickstoff (¹³C bzw. ¹⁵N) enthalten, um so die Summenformel der unbekannten Substanz aufzufinden [75]. Mit Hilfe von bioinformatischen Verfahren, die die Entwicklung von Regeln für die Zusammensetzung chemischer Komponenten sowie Datenbankrecherchen einschließen, lassen sich unidentifizierte Substanzen andererseits nahezu vollautomatisiert auffinden, was jedoch die Verwendung von Massenspektrometern mit hoher Genauigkeit (z.B. Flugzeitmassenspektrometer) voraussetzt [106].

Das Auffinden unidentifizierter Substanzen bildet somit eine weitere Grundlage für die Erweiterung von GC/MS-Bibliotheken. Diese Verfahren gewinnen insbesondere an Bedeutung, wenn es um die Identifikation von Substanzen geht, die bisher nicht in der Literatur beschrieben sind und damit zu der Entdeckung unbekannter Stoffwechselwege führen könnte. Dies ist z.B. im Bereich der Sekundärmetabolite von Eykaryoten der Fall [26; 27].

4.2.3. Evaluierung der GC/MS-Bibliothek

Die hier vorgestellte GC/MS-Bibliothek enthält 637 Einträge für 293 identifizierte und 179 unidentifizierte Substanzen und damit in ihrem Umfang vergleichbar zu der Golm Metabolom Datenbank (574 Einträge für 306 Komponenten), die die einzige verfügbare Alternative im Bereich der GC/MS-Bibliotheken darstellt [107; 108]. Im Gegensatz zu dieser ist jedoch eine größere Zahl an Informationen zu den gespeicherten Stoffen vorhanden (z.B. Strukturen, Identifikationsnummern verschiedener Datenbanken etc.), mit der Anwendungen wie z.B. das Darstellen der Daten in Stoffwechselwegkarten möglich werden. Zu den kommerziell erhältlichen Massenspektren-Bibliotheken zählt unter anderem die NIST MS-Bibliothek mit etwa 163.000 Spektren [86], die trotz ihrer Größe Defizite im Bereich der mit methoximierten und silylierten Komponenten besitzt und damit nur von eingeschränkten Nutzen für die GC/MS ist.

Mit der qualitativen Analyse von 104 Proben war der Nachweis von 195 Substanzen und 117 unidentifizierten Komponenten möglich, was jeweils etwa zwei-drittel der in der GC/MS-Bibliothek enthaltenen Einträge entspricht (vgl. Abschnitt 3.2.4). Da die Bakterien auf Minimalmedium gewachsen sind, ist davon auszugehen, dass die Zahl der Identifikationen bei Verwendung von Vollmedium höher sein wird. Im Vergleich zu der in Tabelle 1 genannten Veröffentlichungen wurde so eine Zunahme an identifizierten Substanzen um 30% für *C. glutamicum* [34] bzw. 19% für *A. thaliana* [48] erreicht.

Ein in AMDIS analysiertes Chromatogramm enthält gewöhnlich etwa weitere 500 Komponenten, die eine Stärke von 0,01% des totalen Signals besitzen und nicht anhand der GC/MS-Bibliothek gefunden werden. Demnach sind bei typischerweise ca. 400 gefundenen Übereinstimmungen mit der Bibliothek, die nach Entfernen doppelter Spektren zu etwa 200 Identifikationen führen, schätzungsweise 250 weitere Derivate in einem Chromatogramm enthalten. Damit ist auch eine zukünftige Erweiterung der GC/MS-Bibliothek gerechtfertigt.

Anhand von Genomannotationen lässt wie in Abschnitt 1.2.2 beschrieben die erwartete Anzahl an Metaboliten in einem Organismus voraussagen. Für *P. aeruginosa* PAO1 ergeben sich je nach Annotation 667 (PseudoCyc; [61]), 1.145 (KEGG; [58]) bzw. 2.069 (Systomonas; [60]) Komponenten, so dass mit den 293 Metaboliten der GC/MS-Bibliothek 44%, 26% bzw. 14% des Metaboloms abgedeckt sind (wobei nicht alle in der Bibliothek enthaltenen Metabolite zwangläufig in der jeweiligen Annotation vorhanden sind). Obgleich die komplette Analyse des Metaboloms, was einem systembiologischen Ansatz entspricht, demnach mit der GC/MS nicht möglich ist, ermöglicht die hier vorgestellte Bibliothek einen ausreichenden Einblick in den Stoffwechsel des Bakteriums. Durch die Weiterentwicklung der Messmethoden und Geräte und durch die Verwendung komplementärer Techniken wie der LC/MS lässt sich die Anzahl nachweisbarer Metabolite erhöhen, so dass es in Zukunft möglich sein wird, ein vollständigeres Bild zu erhalten.

4.3. Entwicklung eines Aufarbeitungsprotokolls für Zellextrakte von *P. aeruginosa*

Das hier vorgestellte Protokoll orientiert sich an einem Protokoll für *C. glutamicum* [33], dass für die Verwendung für *P. aeruginosa* optimiert worden ist (siehe Abschnitt 3.3).

Hierbei stellt sich heraus, dass das Volumen an eingesetztem Extraktionsmittel keinen erkennbaren Einfluss auf die Anzahl der nachgewiesenen Substanzen besitzt. Die Anzahl schwankt zwar um jeweils ca. 20 Substanzen, dabei ist jedoch keine Bevorzugung für eine definierte Menge an Extraktionsmittel zu erkennen. Um eine Aufarbeitung in 2 ml Reaktionsgefäßen zu ermöglichen, wurde deshalb ein Volumen von 1,5 ml gewählt. Bei der Verwendung von 100 µl Methoxyamin-Lösung und 160 µl MSTFA als Derivatisierungsmittel zeigt sich eine 14 bis 28 prozentige Abnahme der Anzahl nachgewiesener Substanzen, was darauf zurückzuführen ist, dass eine erhöhte Menge an Derivatisierungsmittel die Konzentration der Metabolite für die Messung herabsetzt. Beim Einsatz von 25 µl Methoxyamin-Lösung und 40 µl MSTFA wird für die relativen Konzentrationen ein gegenteiliger Effekt beobachtet. Trotz der Verwendung von Ribitol als interner Kalibrierungssubstanz zum Ausgleich unterschiedlicher Volumina fallen die relativen Konzentrationen auf etwa 30% zurück, was durch eine unvollständige Derivatisierung der Metabolite erklärt werden kann.

Die Änderung der für die Aufarbeitung eingesetzten Feuchtmasse führt zu beträchtlichen Unterschieden in der Anzahl der identifizierten Substanzen. Zwar wird mit 500 mg verwendeter Feuchtmasse die höchste Zahl an Metaboliten wiedergefunden, jedoch benötigt eine solche Aufarbeitung etwa 33 ml Zellsuspension bei einer maximalen Optischen Dichte von 3, was bei dem hier verwendeten Ansatz mit 150 ml Medium in einem 500 ml Kolben (vgl. Abschnitt 2.1.1) dazu führt, dass nur vier Proben entnommen werden können. Die Verwendung von 150 mg Feuchtmasse stellt somit einen Kompromiss zwischen handhabbarem Entnahmevolumen und Anzahl wiedergefundener Metabolite dar.

Anhand des finalen Protokolls wurde getestet, ob analog durchgeführte Versuche zu vergleichbaren Ergebnissen führen. Abbildung 27 und Abbildung 28 zeigen, dass die Konzentrationen von Metaboliten aus gleichartigen Versuchen nur geringfügig von der gedachten Winkelhalbierenden der Koordinatenachsen abweichen, während die Werte in Abbildung 29 für zwei verschiedene Phasen eine größere Streuung aufweisen. Ein Vergleich der Korrelationskoeffizienten zwischen den analogen Messreihen von 98% bzw. 96% im Gegensatz zu 82% bis 87% für nicht analoge Experimente belegt diesen Eindruck.

4.4. Beurteilung des Vergleichs metabolischer Profile von *P. aeruginosa* im planktonischen und Biofilmwachstum

Anhand der erhaltenen halbquantitativen Daten wurde ein Vergleich zwischen *P. aeruginosa* PAO1 im Biofilmwachstum mit anderen, planktonischen Wachstumsphasen durchgeführt (siehe Abschnitt 3.4). Es zeigt sich, dass diverse Metabolite eine durchschnittliche Abweichung von einer oder mehreren Größenordnungen aufweisen.

4.4.1. Einfluss auf die Alginatbiosynthese

Um die Bedeutung vom Biofilmwachstum auf die Alginatbiosynthese zu untersuchen, wurde ein Vergleich anhand von Stoffwechselwegkarten durchgeführt (siehe Abbildung 34 und Abbildung 35).

Abbildung 34: Vergleich der relativen Konzentrationen von Metaboliten zwischen der aeroben Biofilm- und aeroben planktonischen Phasen in der Alginatbiosynthese von *P. aeruginosa* PAO1. Metabolite, deren relative Konzentration im Biofilm erhöht sind, werden blau dargestellt, während in ihrer Konzentration erniedrigte Metabolite in rot angegeben sind. Die Intensität der Farbe ist hierbei ein Maß für die Größe der Abweichung. Schwarz markierte Metabolite sind in der GC/MS-Bibliothek vorhanden, konnten jedoch nicht quantifiziert werden.

D-Mannose-6-Phosphat konnte bei der Quantifizierung nicht ausreichend chromatographisch von D-Glucose-6-Phosphat getrennt werden, was zu einer fehlerhaft angezeigten Konzentration führt. Im aeroben wie anaeroben Wachstum ist die relative Konzentration von D-Fructose und D-Mannose erhöht, so dass man annehmen kann, dass sich das Bakterium einen Vorrat dieser Metabolite für die weitere Verwendung bereit hält. Letztendlich kann aber aufgrund der hohen Vernetzung dieses Teils des Stoffwechsels nicht davon ausgegangen werden, dass eine Kanalisierung in Richtung des Alginats erfolgt. Eine Quantifizierung von Mannose-1-Phosphat war aufgrund des geringen Signals nicht möglich, was weitere Einsichten in die Alginatbiosynthese verhindert.

4.4.2. Zusammenhang der Metabolitkonzentrationen mit dem *Quorum sensing* Mechanismus

Die Alginatbiosynthese wird durch Zell-Zell Kommunikation (*Quorum sensing*) zwischen Individuen des Bakteriums organisiert (siehe Abschnitt 1.1.1). Von den für die Synthese der

Signalstoffe notwendigen Komponenten konnte lediglich 5'-Methylthioadenosin quantifiziert werden, dessen Konzentration sich jedoch nicht merklich änderte. Zudem sind für diesen Metabolit zwölf weitere Reaktionen bekannt [58], was eine Interpretation weiter erschwert. Auffallend ist jedoch, dass die Konzentration von Homoserinlacton, einem Abbauprodukt der Signalstoffe [109], um den Faktor 100 (aerobes Wachstum) bzw. 500 (anaerobes Wachstum) vermindert ist, was auf eine gezielte Inhibition der Abbaureaktion seitens des Organismus hindeutet. Eine Störung dieser Inhibition könnte die Zell-Zell-Kommunikation erschweren und damit ein limitierender Faktor im Biofilmwachstum von *P. aeruginosa* sein [14].

4.4.3. Bedeutung für den Stoffwechselreaktionen von Cadaverin

Cadaverin wird im Stoffwechsel durch Decarboxylierung von Lysin erzeugt und ist sowohl beim Vergleich anaerober als auch aerober Biofilme mit den korrespondierenden planktonischen Wachstumsphasen zusammen mit 5-Aminopentanoat erhöht (vgl. Abbildung 36 und Abbildung 37).

Abbildung 36: Vergleich der relativen Konzentrationen von Metaboliten zwischen der aeroben Biofilm- und aeroben planktonischen Wachstumsphasen im Lysin-Abbau von *P. aeruginosa* PAO1. Metabolite, deren relative Konzentration im Biofilm erhöht sind, werden blau dargestellt, während in ihrer Konzentration erniedrigte Metabolite in rot angegeben sind. Die Intensität der Farbe ist hierbei ein Maß für die Größe der Abweichung. Schwarz markierte Metabolite sind in der GC/MS-Bibliothek vorhanden, konnten jedoch nicht quantifiziert werden.

Abbildung 37: Vergleich der relativen Konzentrationen von Metaboliten zwischen der anaeroben Biofilm- und aeroben planktonischen Wachstumsphasen im Lysin-Abbau von *P. aeruginosa* PAO1. Metabolite, deren relative Konzentration im Biofilm erhöht sind, werden blau dargestellt, während in ihrer Konzentration erniedrigte Metabolite in rot angegeben sind. Die Intensität der Farbe ist hierbei ein Maß für die Größe der Abweichung. Schwarz markierte Metabolite sind in der GC/MS-Bibliothek vorhanden, konnten jedoch nicht quantifiziert werden.

Um zu prüfen, welche Bedeutung die erhöhte Konzentration im Stoffwechsel hat, wurden Deletionsmutanten aus einer verfügbaren Mutantenbank von PA14 überprüft [103; 104]. Dazu wurde eine Protein-BLAST-Suche [58; 101; 102] mit der Proteinsequenz der *Escherichia coli*-Enzyme zu EC-Nummer 4.1.1.18 durchgeführt, die zur Identifikation der zwei Homologen PA1818 und PA1346 in *P. aeruginosa* führte [102].

Im Weiteren wurde ein Vergleich der Deletionsmutanten $\Delta 1818$ und $\Delta 1346$ und des Wildtyps in der aerob stationären Phase auf LB-Vollmedium durchgeführt. Während bei der Mutante $\Delta 1346$ nur geringe Änderungen in den relativen Konzentrationen zu erkennen sind, zeigt die Mutante $\Delta 1818$ Abweichungen um bis zu drei Größenordnungen (siehe Abbildung 38).

Abbildung 38: Vergleich der relativen Konzentrationen von Metaboliten zwischen P. aeruginosa PA14 Wildtyp und der Deletionsmutante Δ1818 im Lysin-Abbau. Metabolite, deren relative Konzentration in der Mutante erhöht sind, werden blau dargestellt, während in ihrer Konzentration erniedrigte Metabolite in rot angegeben sind. Die Intensität der Farbe ist hierbei ein Maß für die Größe der Abweichung. Schwarz markierte Metabolite sind in der GC/MS-Bibliothek vorhanden, konnten jedoch nicht quantifiziert werden.

Anhand des Umstandes, dass die Mutante Δ1818 auf Vollmedium eine mehr als 1.700 fache Verringerung der relativen Cadaverin-Konzentration im Vergleich zum Wildtyp zeigt, ist obgleich der relativ hohen p-Werte davon auszugehen, dass die Funktion dieses Gens für das Wachstum von Biofilmen von *P. aeruginosa* bedeutsam ist. Weitere Charakterisierungen dieser Mutante, z.B. durch Analysen von auf Minimalmedium mit Supplementen gewachsenen Kulturen, können zusätzliche Einblicke in die Funktionsweise liefern.

Eine Protein-BLAST-Suche [101] gegen das Genom des Menschen zeigt keine homologen Gene, so dass die Lysin-Decarboxylase einen zukünftigen Ansatzpunkt – abseits von klassischen Zielen wie der Alginatbiosynthese und des *Quorum sensings* – für Humantherapien gegen eine Infektion von *P. aeruginosa* bieten könnte.
5. Zusammenfassung

Ziel dieser Arbeit Entwicklung und Anwendung war einer auf Gaschromatographie/Massenspektrometrie basierenden Methode zur Analyse von Bakterienextrakten von P. aeruginosa. Im Verlauf der Arbeit wurde durch Messung von Standardsubstanzen und vergleichende Untersuchung von metabolischen Profilen eine Bibliothek aus Massenspektren von Metaboliten und etlicher zugehörender Informationen wie Retentionsindices, Strukturen, Massen und chemischer Identifikationsnummern erstellt. Für die Verwaltung der Daten wurde ein Programm graphischer Benutzeroberfläche und vielfältigen Funktionen für die Eingabe und Bearbeitung der Spektren und zugehöriger Kenngrößen entwickelt. Es erlaubt den Import und Export in verschiedene Dateiformate und lässt sich mit Hilfe von Skripten dynamisch erweitern.

Ein bereits bekanntes Aufarbeitungsprotokoll wurde an *P. aeruginosa* angepasst, was zum Nachweis von 195 Substanzen und 117 unidentifizierten Komponenten in den Bakterienextrakten führte und damit eine Steigerung um bis zu 30% zu vergleichbaren Arbeiten darstellt.

Die Quantifizierung der Metabolite lieferte vielfältige Einsichten in das Wachstum und ermöglichte es, mit der Lysin-Decarboxylase ein Enzym zu identifizieren, das für das Biofilmwachstum der Bakterien bedeutsam erscheint und einen zukünftigen Ansatzpunkt für Humantherapien gegen eine Infektion von *P. aeruginosa* darstellen könnte.

In Zukunft wird es anhand der vorgestellten Methoden möglich sein, weitere Analysen an *P. aeruginosa* und anderen Organismen durchzuführen und mit Hilfe dieser Metabolomanalysen weitgehende Einsichten in die Funktionsweise des Stoffwechsels zu erlangen.

6. Anhang

6.1. Abbildungsverzeichnis

Abbildung 1:	gefärbte Rasterelektronenmikroskopie von <i>P. aeruginosa</i> [3]. Die stäbchenförmigen Bakterien
Abbildung 2.	Sind in gelb dargestellt
Abbildung 2:	(Fructore CD) wird O Acetyliortes Alginat über Mannese C Description (Mannese CD) Mannese 1
	(Fructose-br) wird O-Acetyneries Aiginal über Mannose-b-Phosphal (Mannose-br), Mannose-1-
	Mannuranat (CDD Mannuranat) Delumennuranat und Alginat gehildet und aus der Zelle beraus
	Mannuronat (GDP-Mannuronat), Polymannuronat und Alginat gebildet und aus der Zeile neraus
Abbildus = 2.	Beschleust. An der Jeweingen Reaktion teinenmende Gruppen sind farblich gekennzeichnet 11
Abbildung 3:	Reaktionsmechanismus für die Synthese der Quorum sensing Signalstoffe von P. deruginosd
	(nach [15]). An Acyl-Carrier-Protein (ACP) gebundene 3-Oxododecanoyl- bzw. Butyryl-Reste
	reagieren zu N-(3-Oxododecanoyi)-L-Homoseriniacton bzw. N-Butyryi-L-Homoseriniacton unter
	Verwendung von S-Adenosyl-L-ivietnionin. Dabei werden Acyl-Carrier-Protein und 5'-
	Nethylthioadenosin freigesetzt
Abbildung 4:	Reaktionsmechanismus für die Umsetzung von D-Fructose mit Methoxyamin zu den (Z)- und (E)-
	Isomeren des korrespondierenden U-Methyloxims (blau gefarbt) [68]
Abbildung 5:	Reaktionsmechanismus für die Umsetzung von Glycin mit N-Methyl-N-
	Trimethylsilyltrifluoroacetamid (MSTFA) zu den trimethylsilylierten Derivaten.
	Trimetnyisiiyigruppen sind blau getarbt. Schmeizpunkt von Giycin: 232 – 236 °C, wobei es sich
	thermisch zersetzt. Siedepunkte der Derivate (Bestimmung basierend auf Retentionszeiten im
	GC-Chromatogramm): ca. 105 °C (Glycin 21105) bzw. ca. 136 °C (Glycin 31105)
Abbildung 6:	Fragmente, die für die Derivatisierung mit MSTFA charakteristisch sind (nach [69]). Onter den
Abbildung 7	Strukturen sind jeweils die Masse-zu-Ladungsvernaltnisse (m/z) in Nominalmassen angegeben. 19
Abbildung 7:	Massenspektrometrische Fragmentierungswege von trimetnyisiiviierten α-Aminosauren (nach
	[69]). Die blau gelarbien Ausurucke dienen als Querverweis auf die in Tabelle 2 augenunnen
	Abbildung () Die Deeltien über die Abspeltung einer Methulgrunne und von Kehlenmenevid
	Abbildung 6). Die Reaktion über die Abspaltung einer Methylgruppe und von Komenmonoxid
	$\frac{1}{2}$
Abbildung 8:	Massansnektrum von Eructose 1MeOX 5TMS (nach [71]). Auf der v. Achse ist das Massa-zu-
Abbildung 8.	Ladungsverhältnis angegeben auf der v-Achse die relative Intensität. Bechts oben ist die Struktur
	mitsamt dem Fragmentierungsmuster der Kohlenstoffkette aufgeführt. Die Zahlen nehen den
	gestrichelten Linien geben die Masse des jeweiligen Bruchstücks in Pfeilrichtung an. Die
	Fragmente mit den m/z-Werte 466 und 262 sind aufgrund ihrer geringen Intensität von 0.1%
	have 1.1% night sighthar. Weitere Fragmente im Spektrum: 73 (TMS ⁺ : val. Abbildung 6): 1/7
	$(TMS_O^+-Si(CH_s)_s)$ we have a regimenter in spectrum. 75 (TMS_V) with Abbilding 0), 147
	$(143-0) = 51(c13)_2, vg. Abbilding 0), 217. Hagment 11/2 = 507 abzüglich Himethyishanol (143-2)$
Abbildung 9.	Charakteristische Fragmente von trimethylsilvlierten Phosphaten mit ihren Masse-zu-
/ 00/10/01/2 01	Ladungsverhältnissen (nach [72]). Unter den Strukturen sind jeweils die nominalen Masse-zu-
	Ladungsverhältnisse angegeben. 23
Abbildung 10:	Bei der Gaschromatographie verwendetes Temperaturprofil. Nach einem einminütigen Abschnitt
	mit 70 °C erfolgt für 6 Minuten eine Erhöhung mit 1 °C pro Minute auf 76 °C und für 41.5
	Minuten eine Erhöhung mit 6 °C pro Minute auf 325 °C. Diese Temperatur wird für 10 Minuten
	gehalten, woraufhin eine Abkühlung auf 70 °C innerhalb von 90 Sekunden stattfindet
Abbildung 11:	Reaktionsmechanismus zur Svnthese von 5-Acetamidopentansäure [76]
Abbildung 12:	Schematischer Aufbau eines <i>Model-View-Controllers</i> (verändert nach [84]). Das Modell (blau)
	greift auf die unterliegende Datenstruktur (grau) zu und liefert Daten für die Präsentation (rot).
	Die Steuerung (grün) vermittelt Änderungen zwischen Modell und Präsentation, z.B. durch
	Benutzereingaben

Abbildung 13:	Implementierung des <i>Singleton</i> -Entwurfsmusters in C++. Die Klasse Singleton stellt eine statische öffentliche Methode bereit, die für das Erzeugen genau eines Objekts der Klasse zuständig ist. Der Konstruktor und der Kopierkonstruktor sind durch die private Deklarierung vor unberechtigter Benutzung geschützt
Abbildung 14:	Programmoberfläche des NIST MS Interpreters 2.0 [86] anhand des Massenspektrums von 2- Aminoadipinsäure 3TMS. Im unteren Teil ist das Massenspektrum zu sehen, wobei die Signale, die das Programm einem Fragment der Struktur zuweisen kann, schwarz gefärbt sind, während nicht zugewiesene Signale in weiß dargestellt sind. Durch Auswählen eines Markers (rot eingerahmt) wird das zu dem Signal gehörende Fragment im oberen Teil des Programms rot eingefärbt
Abbildung 15:	Oberfläche des QuanBrowsers 1.2 aus dem Programmpaket Xcalibur [85]. Auf der rechten Seite kann der aktuell zu bearbeitende Stoff ausgewählt werden, im linken oberen Teil befindet sich eine Liste aller Proben, unten links sind die zu der Substanz gehörenden Massenspuren zusammen mit der annotierten Fläche zu sehen (in grau)
Abbildung 16:	Benutzeroberfläche des Bibliothekenverwaltungsprogramms mit der Karteikarte der Spezifikationen. Im linken Bereich sind die Komponenten einer Bibliothek tabellarisch aufgeführt. Auf der rechten Seite werden Informationen zu dem Derivat und der betreffenden Komponente editiert (vgl. Tabelle 5)
Abbildung 17:	Benutzeroberfläche des Bibliothekenverwaltungsprogramms mit der Karteikarte des Spektrums. Im linken Bereich sind die Komponenten einer Bibliothek tabellarisch aufgeführt. Auf der rechten Seite wird das Spektrum grafisch und in Form einer Liste dargestellt (vgl. Tabelle 5)41
Abbildung 18:	Benutzeroberfläche des Bibliothekenverwaltungsprogramms mit der Karteikarte der zusätzlichen Informationen. Im linken Bereich sind die Komponenten einer Bibliothek tabellarisch aufgeführt. Auf der rechten Seite werden Informationen zu der Messung und weitere Daten wie z.B. assoziierte Reaktionen editiert (vgl. Tabelle 5)
Abbildung 19:	GC/MS Chromatogramm von 4-Hydroxyprolin. Auf der Abszisse ist die Retentionszeit in Minuten angegeben, auf der Ordinate der Totalionenstrom (<i>Total Ion Current</i> ; TIC) normiert auf das höchste im Chromatogramm vorkommende Maximum. Bei den markierten Signalen handelt es sich um das zweifach (20,39 min) bzw. dreifach (21,55 min) silylierte Derivat. Im rechten oberen Teil ist die Struktur von 4-Hydroxyprolin dargestellt
Abbildung 20:	Massenspektrum und Struktur von 4-Hydroxyprolin 2TMS (Bildschirmfoto des NIST MS- Interpreters [86]). Auf der Abszisse ist das Masse-zu-Ladungsverhältnis gezeigt, die Ordinate beschreibt die relative Intensität in Prozent. Signale, die das Programm einem Fragment der Struktur zuweisen kann, sind schwarz gefärbt, während nicht zugewiesene Signale in weiß dargestellt sind
Abbildung 21:	Massenspektrum und Struktur von 4-Hydroxyprolin 3TMS (Bildschirmfoto des NIST MS- Interpreters [86]). Auf der Abszisse ist das Masse-zu-Ladungsverhältnis gezeigt, die Ordinate beschreibt die relative Intensität in Prozent. Signale, die das Programm einem Fragment der Struktur zuweisen kann, sind schwarz gefärbt, während nicht zugewiesene Signale in weiß dargestellt sind
Abbildung 22:	GC/MS Chromatogramm von 5-Acetamidopentansäure. Auf der Abszisse ist die Retentionszeit in Minuten angegeben, auf der Ordinate der Totalionenstrom (<i>Total Ion Current</i> ; TIC) normiert auf das höchste im Chromatogramm vorkommende Maximum. Bei dem markierten Signal handelt es sich um das einfach silylierte Derivat. Im rechten oberen Teil ist die Struktur von 5-Acetamidopentansäure dargestellt
Abbildung 23:	Massenspektrum und Struktur von 5-Acetamidopentansäure 1TMS (Bildschirmfoto des NIST MS- Interpreters [86]). Auf der Abszisse ist das Masse-zu-Ladungsverhältnis gezeigt, die Ordinate beschreibt die relative Intensität in Prozent. Signale, die das Programm einem Fragment der Struktur zuweisen kann, sind schwarz gefärbt, während nicht zugewiesene Signale in weiß dargestellt sind
Abbildung 24:	Massenspektren, die bei der Suche nach unidentifizierten Komponenten aufgrund zu hoher (linke Teilabbildung) bzw. zu geringer Anzahl (rechte Teilabbildung) an Signalen ausgeschlossen werden. Auf der Abszisse ist das Masse-zu-Ladungsverhältnis gezeigt, die Ordinate beschreibt die relative Intensität in Prozent

Abbildung 25:	Massenspektren, die bei der Suche nach unidentifizierten Komponenten aufgrund vergleichbarer Retentionszeit und geringfügiger Unterscheidungsmerkmale aussortiert worden sind. Das linke Spektrum unterscheidet sich lediglich durch die Massenspur 110 (blau markiert) von dem rechten. Auf der Abszisse ist das Masse-zu-Ladungsverhältnis gezeigt, die Ordinate beschreibt die
	relative Intensität in Prozent
Abbildung 26:	Relative Verteilung des Auftretens der in der GC/MS-Bibliothek enthaltenen Substanzen in Zehn- Prozent Intervallen
Abbildung 27:	Vergleich der relativen Konzentrationen von quantifizierten Metaboliten zwischen zwei
	unabhängig voneinander durchgeführten Messreihen aus der späten stationären
	Wachstumsphase (Stamm PAO1, aerobes Wachstum auf AB-Nitrat-Medium), Auf der Abszisse
	und der Ordinate sind jeweils die relativen Konzentrationen der Metabolite auf logarithmischer
	Skala angegehen 55
Abbildung 28.	Vergleich der relativen Konzentrationen von quantifizierten Metaboliten zwischen zwei
/ 10011010116 201	unabhängig voneinander durchgeführten Messreihen aus der frühen exponentiellen
	Wachstumsphase (Stamm PAO1, aerobes Wachstum auf AR-Nitrat-Medium) Auf der Abszisse
	und der Ordinate sind jeweils die relativen Konzentrationen der Metabolite auf logarithmischer
	Skala angegehen
Abbildung 20.	Vorgleich der relativen Konzentrationen von guantifizierten Metaboliten zwischen zwei
Abbildung 29.	unabhängig voneinander durchgeführten Messreihen aus der frühen expenentiellen und snäten
	stationäron Wachstumsnhase (Stamm DAO1, aarohos Wachstum auf AP, Nitrat Modium). Auf der
	Aberiese und der Ordinete sind isweils die relativen Konzentrationen der Metabelite auf
	Abszisse und der Ordinale sind jeweils die relativen Konzentrationen der Metabolite auf
Abbildung 20.	Versleich der reletiven Konzentretionen von sventifisierten Matcheliten zwischen Diefilm und
Abbildung 30:	vergielch der relativen Konzentrationen von quantifizierten Metaboliten zwischen Bionim und
	einem Mittelwert der Mitte exponentiellen, frun stationaren und spät stationaren
	planktonischen Wachstumsphase (Stamm PAO1, aerobes Wachstum auf AB-Nitrat-Medium). Auf
	der Abszisse und der Ordinate sind jeweils die relativen Konzentrationen auf logarithmischer
	Skala angegeben
Abbildung 31:	Vergleich der relativen Konzentrationen von quantifizierten Metaboliten zwischen Biofilm und
	einem Mittelwert der Mitte exponentiellen, früh stationären und spät stationären
	planktonischen Wachstumsphase (Stamm PAO1, anaerobes Wachstum auf AB-Nitrat-Medium).
	Auf der Abszisse und der Ordinate sind jeweils die relativen Konzentrationen auf logarithmischer
	Skala angegeben
Abbildung 32:	Schematische Darstellung des Lysin-Abbaus von <i>P. aeruginosa</i> PAO1. Schwarz markierte
	Metabolite sind in der GC/MS-Bibliothek vorhanden. Das Enzym, das die Decarboxylierung von
	Lysin zu Cadaverin katalysiert ist blau dargestellt (nach [58; 100])60
Abbildung 33:	Vergleich der Strukturen von N-(3-Oxododecanoyl)-L-Homoserinlacton (links) und N-(3-
	Oxohexanoyl)-L-Homoserinlacton (rechts). Die Strukturen unterschieden sich durch die Länge der
	terminalen Kohlenstoffkette64
Abbildung 34:	Vergleich der relativen Konzentrationen von Metaboliten zwischen der aeroben Biofilm- und
	aeroben planktonischen Phasen in der Alginatbiosynthese von P. aeruginosa PAO1. Metabolite,
	deren relative Konzentration im Biofilm erhöht sind, werden blau dargestellt, während in ihrer
	Konzentration erniedrigte Metabolite in rot angegeben sind. Die Intensität der Farbe ist hierbei
	ein Maß für die Größe der Abweichung. Schwarz markierte Metabolite sind in der GC/MS-
	Bibliothek vorhanden, konnten jedoch nicht quantifiziert werden
Abbildung 35:	Vergleich der relativen Konzentrationen von Metaboliten zwischen der aeroben Biofilm- und
	anaeroben planktonischen Phasen in der Alginatbiosynthese von P. aeruginosa PAO1.
	Metabolite, deren relative Konzentration im Biofilm erhöht sind, werden blau dargestellt,
	während in ihrer Konzentration erniedrigte Metabolite in rot angegeben sind. Die Intensität der
	Farbe ist hierbei ein Maß für die Größe der Abweichung. Schwarz markierte Metabolite sind in
	der GC/MS-Bibliothek vorhanden, konnten jedoch nicht quantifiziert werden
Abbildung 36:	Vergleich der relativen Konzentrationen von Metaboliten zwischen der aeroben Biofilm- und
Ū.	aeroben planktonischen Wachstumsphasen im Lysin-Abbau von <i>P. aeruginosa</i> PAO1. Metabolite.
	deren relative Konzentration im Biofilm erhöht sind, werden blau dargestellt, während in ihrer
	Konzentration erniedrigte Metabolite in rot angegeben sind. Die Intensität der Farbe ist hierbei

6.2. Tabellenverzeichnis

Tabelle 1:	Beispiele für veröffentlichte Arbeiten im Rahmen von Metabolomanalysen zusammen mit Daten
	den erwarteten Umfang des Metaboloms betreffend16
Tabelle 2:	Dominierende Fragmente von trimethylsilylierten Aminosäuren (nach [69])20
Tabelle 3:	Für die Anzucht von P. aeruginosa verwendete Medien26
Tabelle 4:	Für die Kalibrierung verwendete n-Alkane zusammen mit ihrem Retentionsindex und der
	ungefähren Retentionszeit
Tabelle 5:	Pro Eintrag verfügbare Datenfelder im Bibliothekenverwaltungsprogramm
Tabelle 6:	Im Bibliothekenverwaltungsprogramm verfügbare Filterfunktionen44
Tabelle 7:	Auftreten unidentifizierter Substanzen in Proben von P. aeruginosa und C. glutamicum50
Tabelle 8:	Anzahl der Einträge der GC/MS-Bibliothek unterteilt nach Herkunft und Identifikationsstatus51
Tabelle 9:	Umfang ausgewählter Kenngrößen der GC/MS Bibliothek51
Tabelle 10:	Für die qualitative Evaluierung der GC/MS-Bibliothek verwendete Proben52
Tabelle 11:	Anzahl nachgewiesener Substanzen unter Verwendung variabler Volumina an Extraktions- und
	Derivatisierungsmittel während der Aufarbeitung von Bakterienextrakten
Tabelle 12:	Anzahl nachgewiesener Substanzen unter Verwendung variabler Mengen an Feuchtmasse
	während der Aufarbeitung während der Aufarbeitung von Bakterienextrakten54
Tabelle 13:	Korrelationen zwischen den Mittelwerten der logarithmierten relativen Konzentrationen von
	jeweils zwei Messreihen mit je fünf Proben aus der späten stationären Phase und frühen
	exponentiellen Phase
Tabelle 14:	Übersicht über die für den Vergleich metabolischer Profile von P. aeruginosa im Biofilm- und
	planktonischen Wachstum verwendeten Proben57
Tabelle 15:	Vergleich relativer Konzentrationen ausgewählter Metabolite zwischen Biofilm und Mitte
	exponentieller, früh stationärer und spät stationärer Phase von aerob gewachsenen Bakterien
	des Stammes PAO1
Tabelle 16:	Vergleich relativer Konzentrationen ausgewählter Metabolite zwischen Biofilm und Mitte
	exponentieller, früh stationärer und spät stationärer Phase von anaerob gewachsenen Bakterien
	des Stammes PAO158
Tabelle 17:	Übersicht über die für den Vergleich metabolischer Profile von P. aeruginosa PA14 und der
	Mutanten Δ1346 und Δ1818 verwendeten Proben61
Tabelle 18:	Vergleich relativer Konzentrationen ausgewählter Metabolite zwischen wildtyp P. aeruginosa
	PA14 und den Deletionsmutanten Δ 1346 und Δ 1818 in aerob stationärer Wachstumsphase61
Tabelle 19:	Auflistung von Substanzen, die in den Stoffwechselwegen des Quorum sensings und der Synthese
	von Alginat von Bedeutung sind64
Tabelle 20:	Während der Durchführung der experimentellen Arbeiten verwendete Gerätschaften
Tabelle 21:	Während der Durchführung der experimentellen Arbeiten verwendete Materialien
Tabelle 22:	Während der Durchführung der experimentellen Arbeiten verwendete Chemikalien

Tabelle 23:	Während der Durchführung der experimentellen Arbeiten gemessene Standardsubstanzen	.80
Tabelle 24:	Einstellungen des Autosamplers Finnigan AS2000.	.83
Tabelle 25:	Einstellungen des Autosamplers Finnigan AS3000	.83
Tabelle 26:	Einstellungen des Gaschromatographen Finnigan Trace GC2000.	.84
Tabelle 27:	Einstellungen des Massenspektrometers Finnigan Trace MS.	.85
Tabelle 28:	Parameter für die qualitative Verarbeitung der GC/MS-Daten mit AMDIS.	.87
Tabelle 29:	Parameter für das Hinzufügen unbekannter Spektren zur Bibliothek.	.88

6.3. Materialien- und Chemikalienverzeichnis

Gerät	Bezeichnung
Analysenwaage	Faust FA-210-4i
Pipetten	10 μl, 100 μl, 1 ml, Eppendorf
Pipettenspitzen	10 μl: Gilson Diamond Tips;
	200 μl: Sarstedt Biosphere gelb;
	1000 μl: Eppendrf epT.I.P.S.
Rotationsverdampfer	Eppendorf Concentrator 5301
Schüttler	Harmony LMS Mixer Uzusio VTX-3000L
Zentrifuge	Eppendorf Centrifuge 5810R; Rotor: F-34-6-38 und A-4-62
	Heraeus Megafuge 1.0R; Rotor: 2704
	Heraeus Biofuge fresco; Rotor: 3328
Autoklav	Systec EL 3850
<u>GC/MS</u>	
Autosampler	Finnigan AS2000,
	Finnigan AS3000
Gaschromatograph	Finnigan Trace GC 2000
Massenspektrometer	Finnigan Trace MS
Chromatographiesäule	(5%Phenyl)-Methylpolysiloxan; Agilent J&W Scientific, DB5ms
	30 m x 0,25 mm x 0,25 μm
Spritzen	SGE Syringe P/N 002993 10R-C/T-8/0.47C

 Tabelle 20:
 Während der Durchführung der experimentellen Arbeiten verwendete Gerätschaften.

 Tabelle 21:
 Während der Durchführung der experimentellen Arbeiten verwendete Materialien.

Material	Bezeichnung
Reaktionsgefäße 15 bzw. 50 ml	Greiner Bio-one, Polypropylen
Reaktionsgefäße	1,0 ml, 1,5 ml, 2,0 ml; Eppendorff
Glasgefäße mit Schraubverschluss	Schott DURAN 12 x 100 mm
Glasgefäße für das GC/MS	Macherey-Nagel Schraubampullen N 8-1, Nutzvolumen: 1 ml
Mikroeinsätze	CS-Chromatographie G30s
Filterpapier	Nitrocellulose-Filter; Millipore GVWP v02500, GVWP 04700
Schraubkappen	Chromacol LTD 8-SC 445
Septen für die Glasgefäße	Chromacol LTD 8-ST101 645
Septen für das GC/MS	Restek 17 mm Thermolitic Septa #20385
Deaktivierte Glaswatte	Restek Deactivated Glass Wool #20789
Liner	Restek Trace 200 Liner 2mm Glas #21117

Tabelle EEI Trainella del Barenanding del experimentenent inserten vermenaete enemiaten	Tabelle 22:	Während der Durchführung	der experimentellen A	Arbeiten verwendete Chemikalien.
---	-------------	--------------------------	-----------------------	----------------------------------

Komponente	Referenz
5-Aminopentansäure	Sigma 09650
Cyclohexan	Sigma 34855
Dekan, Dodekan, Pentadekan, Nonadekan, Dokosan,	Sigma 30540, 44010, 76509, 74158,
Oktakosan, Dotriakontan, Hexatriakontan	43942, 74684, 44253, 52919
Essigsäureanhydrid	Sigma 320102
N-Methyl-N-Trimethylsilyltrifluoroacetamid	CS-Chromatographie 370520-201
Methanol	Sigma 34966

Komponente	Referenz
Methoxyamin-Hydrochlorid	Sigma 67546
Pyridin	Sigma 27407
Schwefelsäure	Sigma 435589
Wasser	

6.4. Für die GC/MS Bibliothek getestete Standardsubstanzen

Tabelle 23:Während der Durchführung der experimentellen Arbeiten gemessene
Standardsubstanzen.

Komponente	Referenznummer (KEGG	Übernahme in
	[58] / Sigma-Aldrich[99])	die Bibliothek
(5Z,8Z,11Z,14Z)-Icosatetraenoic acid	C00219 / Sigma A4425	-
1,3-Diaminopropane	C00986 / Sigma 33260	ја
1-Pyrroline-3-hydroxy-5-carboxylic acid	C04281 / Sigma 83170	ja
2-Aminoadipic acid	C00956 / Sigma A0637	ja
2-Aminobenzoic acid	C00108 / Sigma 10690	ја
2-Aminobenzoic acid	C00108 / Sigma 10690	ja
2-Aminobutanoic acid	C02261 / Sigma 162663	ja
2'-Deoxyguanosine 5'-phosphoric acid	C00362 / Sigma D9500	ja
2-Oxobutanoic acid	C00109 / Sigma K401	ja
3',5'-Cyclic AMP	C00575 / Sigma A9501	ја
3-Methyl-2-oxobutanoic acid	C00141 / Sigma 68253	ја
3-Methyl-2-oxopentanoic acid	C00671 / Sigma 68260	ja
3-Methylcatechol	C02923 / Sigma M34006	ја
4-Aminobenzoic acid	C00568 / Sigma 06930	ја
4-Aminobutanoic acid	C00334 / Sigma 07240	ја
4-Coumaric acid	C06738 / Sigma 28200	ja
4-Hydroxy-2-methylquinoline	Sigma H43806	ja
4-Hydroxy-2-quinolinecarboxylic acid	C01717 / Sigma 61260	-
4-Hydroxybenzaldehyde	C00633 / Sigma 54590	ја
4-Hydroxyphenylacetic acid	C00642 / Sigma H50004	ја
4-Hydroxyproline	C01157 / Sigma 56250	ја
4-Methylcatechol	C06730 / Sigma M34200	ја
5-Aminopentanoic acid	C00431 / Sigma 09650	ја
5'-Methylthioadenosine	C00170 / Sigma D5011	ja
Acetoacetic acid	C00164 / Sigma A8509	ја
Adenosine-3'-monophosphoric acid	C01367 / Sigma 01950	ја
alpha-D-Galactose 1-phosphate	C00446 / Sigma G0380	-
Arginine	C00062 / Sigma 11010	-
Ascorbic acid	C00072 / Sigma 11140	ja
Benzaldehyde	C00261 / Sigma 12015	ja
Biotin	C00120 / Sigma 47868	-
Boric acid	C12486 / Sigma B6768	ја
Butanoic acid	C00246 / Sigma 27626	-
Carbamoyl phosphate	C00169 / Sigma C5625	-
Carnitine	C00487 / Sigma 22020	-
Catechol	C00090 / Sigma C9510	ja
Cellobiose	C00185 / Sigma C7252	ја

Komponente	Referenznummer (KEGG	Übernahme in
•	[58] / Sigma-Aldrich[99])	die Bibliothek
Choline	C00114 / Sigma 26980	-
Citrulline	C00327 / Sigma C7629	ja
СМР	C00055 / Sigma C1006	-
Creatine	C00300 / Sigma 27890	-
Cytidine	C00475 / Sigma C122106	ja
Deoxyuridine	C00526 / Sigma D5412	ja
Dihydroxymalonic acid	Sigma 71740	ja
Dihydroxyphenylalanine	C00355 / Sigma 37850	ja
Dodecanoic acid	C02679 / Sigma 61610	ja
Dopamine	C03758 / Sigma H8502	ja
D-Ribulose 1,5-bisphosphate	C01182 / Sigma R0878	-
Ectoine	C06231 / Sigma 81619	-
Ethanolamine	C00189 / Sigma E9508	ја
Fructose-6-phosphoric acid	C00085 / Sigma 47825	ja
Galactinol	C01235 / Sigma 79544	ја
Galactose	C00124 / Sigma G0750	ја
Galacturonic acid	C00333 / Sigma 48280	ja
gamma-L-Glutamyl-L-cysteine	C00669 / Sigma G0903	-
Gluconic acid	C00257 / Sigma 186333	ја
Glucosamine-6-phosphoric acid	C00352 / Sigma G5509	ja
Glucose-1-phosphoric acid	C00103 / Sigma G7000	ja
Glucuronic acid	C00191 / Sigma G8645	ја
Glutathione	C00051 / Sigma G4251	-
Glyoxylic acid	C00048 / Sigma G10601	ја
Histinol	C00860 / Sigma H6647	ja
Homogentisic acid	C00544 / Sigma H0751	ја
Homoserine lactone	Sigma H7890	ja
Hydroquinone	C00530 / Sigma 53965	ја
Hydroxymalonic acid	C02287	ja
Indole	C00463 / Sigma 13408	-
Indole-3-acetic acid	C00954 / Sigma 57330	ja
Indolepyruvic acid	C00331 / Sigma 57300	ја
Inosine	C00294 / Sigma I4125	ja
Isomaltose	C00252 / Sigma 58928	ja
Itaconic acid	C00490 / Sigma I29204	ja
Lactitol	C13542 / Sigma L3520	ja
Lactose	C00243 / Sigma 61340	ja
Lactulose	C07064 / Sigma 61360	ja
Lipoamide	C00248 / Sigma T5875	ја
L-Kynurenine	C00328 / Sigma K8625	ja
Maltotriose	C01835 / Sigma 63430	ja
Mannose-6-phosphoric acid	C00275 / Sigma M6876	ja
Mannose-1-phosphoric acid	C00636 / Sigma M1755	ja
Melezitose	C08243 / Sigma 63620	ja
Melibiose	C05402 / Sigma M5500	ja
N-(3-Oxohexanoyl) homoserine-lactone	C11839 / Sigma K3007	ja
N-Acetyl-glucosamine 6-phosphoric acid	C00357 / Sigma A4394	ја
N-Acetylmannosamine	C00645 / Sigma A8176	ја

Komponente	Referenznummer (KEGG	Übernahme in
	[58] / Sigma-Aldrich[99])	die Bibliothek
N-Butyryl-homoserine lactone	C11837 / Sigma 09945	ja
N-Hexanoyl-homoserine-lactone	Sigma 09926	ja
Nicotinic acid	C00253 / Sigma N4126	ja
Octadecanoic acid	C01530 / Sigma 85680	ја
O-Phospho-serine	C01005 / Sigma P0878	ја
O-Succinyl-homoserine	C01118 / Sigma S7129	ја
Oxamic acid	C01444 / Sigma O3750	ja
Oxomalonic acid	C00830 / Sigma R750182	ја
Palatinose	C01742 / Sigma P2007	ја
Pantothenic acid	C00864 / Sigma P2250	ја
Phenylacetaldehyde	C00601 / Sigma 107395	ја
Phenylacetic acid	C07086 / Sigma 78490	ја
Phosphoethanolamine	C00346 / Sigma 27640	ја
Propanoic acid	C00163 / Sigma 81912	-
Propenoic acid	C00511 / Sigma 147230	-
Putrescine	C00134 / Sigma 32790	ја
Pyridine-2,3-dicarboxylic acid	C03722 / Sigma P63204	ја
Pyridoxal	C00250 / Sigma 55223	ја
Pyridoxalphosphate	C00018 / Sigma P9255	ја
Pyridoxamine	C00534 / Sigma P9380	ја
Pyridoxine	C00314 / Sigma P5669	ја
Pyrogallol	C01108 / Sigma 83130	ја
Quinone	C00472 / Sigma 12310	-
Raffinose	C00492 / Sigma R0514	ја
Rhamnose	C00507 / Sigma R3875	ја
Ribulose	C00309 / Sigma 83890	ја
Ribulose-5-phosphoric acid	C00199 / Sigma 83899	ја
S-Adenosyl-L-methionine	C00019 / Sigma 02095	-
Salicylic acid	C00805 / Sigma 84210	ja
Selenomethionine	C05335 / Sigma S3875	ја
Sorbitol	C00794 / Sigma S1876	ja
Spermidine	C00315 / Sigma S2626	ja
Spermine	C00750 / Sigma 85590	ja
Taurine	C00245 / Sigma T0625	ja
Thiamin	C00378 / Sigma T4625	-
Thiosulfate	C00320 / Sigma 336726	-
Thymidine-5'-monophosphoric acid	C00364 / Sigma 89290	ја
trans-Cinnamic acid	C00423 / Sigma 133760	ja
Tryptamine	C00398 / Sigma 93640	ја
Turanose	Sigma 93760	ja
Xanthine	C00385 / Sigma X7375	ja
Xylitol	C00379 / Sigma X3375	ja
Xylose-1-phosphoric acid	C03737	ia

In der Spalte Referenznummern sind die Identifikationsnummern der KEGG-Datenbank [58] bzw. die Bestellnummern der Firma Sigma-Aldrich [99] angegeben. Fett/Kursiv geschriebene Stoffe sind anhand ihrer Bedeutung im Stoffwechsel von *P. aeruginosa* ausgewählt worden (vgl. Abschnitt 1.1.1).

6.5. Parameter des GC/MS-Systems

Parameter	Einheit	Wert
injector control		
sample volume	[μl]	2
air volume	[μl]	0
injection delay	[seconds]	0
injection speed	[µl/sec]	0
pull-ups		
number of pull-ups		5
volume	[μl]	4
delay	[seconds]	0
sample cleans		
number of cleans		1
pre-injection washes		
number of rinses		5
volume	[μl]	8
pre-injection solvent		Cyclohexan
every injection		off
first/last injection		on
post-injection washes		
number of rinses		4
volume	[μl]	8
post-injection solvent		Acetonitril
every injection		off
first/last injection		on

 Tabelle 24:
 Einstellungen des Autosamplers Finnigan AS2000.

 Tabelle 25:
 Einstellungen des Autosamplers Finnigan AS3000.

Parameter	Einheit	Wert
sampling		
sample volume		[μl] 2
plunger strokes		5
viscous sample		no
sampling depth in vial		bottom
injection		
injection depth		standard
pre inj dwell time(s)		0
post inj dwell time(s)		0
pre injection		
pre-injection solvent		Cyclohexan
pre-injection cycles		5
sample rinses		1
post-injection solvent		Acetonitril
post-injection cycles		5

Tabelle 26:Einstellungen des Gaschromatographen Finnigan Trace GC2000.			
Parameter		Einheit	Wert
ramps			
initial temp		[°C]	70
initial hold t	ime	[minutes]	1
ramp 1 rate		[°C/minute]	1
ramp 1 temp)	[°C]	76
ramp 1 hold	time	[minutes]	0
ramp 2 rate		[°C/minute]	6
ramp 2 temp)	[°C]	325
ramp 2 hold	time	[minutes]	10
post run con	ditions		
enabled?			off
acquisition t	ime		
enabled?			off
oven			
enable cryo			off
max temp		[°C]	350
prep run tim	eout	[minutes]	10
equilibratior	n time	[minutes]	0
PTV			
mode			PTV split
inlet			
temperature	e enabled?		on
temperature		[°C]	70
split flow en	abled?		on
split flow		[ml/minutes]	25
split ratio			25
splitless time	2	[minutes]	-
solv. valve. t	emp enabled?		off
solv. valve te	emp	[°C]	-
purge			
constant sep	otum purge		-
stop purge t	ime	[minutes]	-
surge			
surge pressu	ire	[psi]	-
surge durati	on	[minutes]	-
injection pha	ases		
injection pre	essure	[psi]	-
injection tim	e	[minutes]	0,1
injection flow	N	[ml/minutes]	-
evap pressu	re	[psi]	-
evap rate		[°C/second]	14
evap temp		[°C]	70
evap time		[minutes]	0,2
transfer pres	ssure	[psi]	-
transfer rate		[°C/second]	14
transfer tem	p	[°C]	280
transfer time	2	[minutes]	5
cleaning rate	2	[°C/second]	14

Parameter	Einheit	Wert
cleaning temp	[°C]	280
cleaning time	[minutes]	5
cleaning flow	[ml/minutes]	25
options		
sub-ambient		off
backflush enabled		off
evaporation phase		on
cleaning phase		on
ramped pressure		-
carrier		
ramps		
flow enabled?		on
flow	[ml/minutes]	1
options		
flow mode		constant flow
vacuum compensation enabled?		on
gas saver		
enabled?		on
gas saver flow	[ml/minutes]	10
gas saver time	[minutes]	6

 Tabelle 27:
 Einstellungen des Massenspektrometers Finnigan Trace MS.

Parameter	Einheit	Wert
source		EI
ionisation mode		EI+
analysis		
type		<custom></custom>
detector voltage	[V]	600
customize settings		
gc interface temperature enabled?		off
gc interface temperature	[°C]	-
source temperature enabled?		off
source temperature	[°C]	-
emission current enabled?		off
emission current	[µA]	-
acquire with reference gas on enabled?		off
wait until setpoint achieved enabled?		off
advanced (from tune file) enabled?		on
type of acquisition		
full scan		on
selection ion monitoring (sim)		off
acquisition rate		
gc peak width enabled?		off
gc peak width	[seconds]	-
minimum scans per gc peek		-
actual scans per gc peak		-
scans per second enabled?		on
scans per second		2
time per scan enabled?		off

Parameter	Einheit	Wert
time per scan	[seconds]	0,5
mass spectrum		
advanced		off
start	[amu]	45
end	[amu]	585
event control		
start acquisition after eluting solvent for	[min]	5,6
stop acquisition when gc run finishes enabled?		on
stop acquisition after a period of enabled?		off
stop acquisition after a period of	[min]	-
tune setting		
e-energy		70
I/F	[°C]	250
src	[°C]	200
emission current	[µA]	150

6.6. Verarbeitung der Massenspektren für die Programme NIST MS Search und MS Interpreter

Um das Spektrum aus dem Xcalibur QualBrowser 1.2 [85] in das NIST-Bibliothekenformat [86] zu überführen, sind folgende Schritte notwendig:

- Massenspektrum in der unteren Hälfte durch Anklicken des Reißzwecken-Symbol oben rechts aktivieren,
- Das bestreffende Massenspektrum im Chromatogramm in der oberen Hälfte auswählen,
- Rechtsklick auf dem Massenspektrum \rightarrow Library \rightarrow Export to Library Browser,
- Im sich öffnenden NIST MS Search 1.7 Programm: Tools \rightarrow Librarian... auswählen,
- Spektrum mit Files \rightarrow Export als .msp-Datei speichern.

Für die Verarbeitung im NIST MS Interpreter 2.0 [86] sind folgende Schritte nötig:

- Im Programm NIST MS Search 2.0d: File → Open... zum Auswählen des gewünschten Massenspektrums,
- Ist keine Übereinstimmung anhand der Spektren (mittels optischen Vergleichs; Match & Reverse Match ca. 900) vorhanden, wird dem Spektrum auf der Karteikarte Librarian eine vermutete Struktur hinzugefügt: Edit spectrum (fünfte Schaltfläche, Piktogramm "ed") → Attach Struct → Struktur auswählen → Accept → Replace,
- Das Spektrum auswählen \rightarrow Rechtsklick \rightarrow Send To \rightarrow MS Interpreter,

 Überprüfung der Signale durch anklicken der eingefärbten Marken oberhalb des Massenspektrums (siehe Abbildung 14). Der zugehörige Teil der Struktur wird rot eingefärbt.

6.7. Parameter für die qualitative Prozessierung mit AMDIS

 Tabelle 28:
 Parameter f
 ür die qualitative Verarbeitung der GC/MS-Daten mit AMDIS.

Parameter	Wert
identif	
minimum match factor	50
multiple identifications per compound	on
show standard	off
only reverse search	off
type of analysis	RI Calibration/Performance
	bzw. Use RI Calibration Data
Use retention index (ri) for column	on
ri window	5 + 0 x 0.01 RI
level	very strong
maximum penalty	20
no ri in library	10
instrument	
low m/z auto	on
low m/z	-
high m/z auto	on
high m/z	-
threshold	off
scan direction	low to high
data file format	Xcalibur Raw File
instrument type	Quadrupole
deconv	
component width	12
omit m/z	off
adjacent peak substraction	two
resolution	high
sensitivity	high
shape requirements	medium
qa/qc	
solvent tailing enabled?	on
solvent tailing m/z	84
column bleed enabled?	on
column bleed m/z	207
batch job	
analysis type	Use RI Calibration Data
generate report	on
report all hits	off
include only first hits	1
instrument	Xcalibur Raw Files

Tabelle 29:	Parameter für das Hinzufügen unbekannter Spektren zur Bibliothek.
-------------	---

Parameter	Wert
all components	off
only unidentified components	on
only identified components	off
add spectra	on
replace spectra	off
largest components	on (100)
all above threshold	off
use uncertain peaks	off

Die Parameter sind über Library \rightarrow Build One Library... \rightarrow Add All... einzugeben.

7. Literaturverzeichnis

- [1] Baron, Samuel, et al. Medical Microbiology. [Buchverf.] Samuel Baron. 4th Edition. 1996, 27.
- [2] **Stover, C. K., et al.** Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. *Nature.* August 2000, Bd. 406, 6799, S. 959-964.
- [3] **Carr, Janice.** Public Health Image Library. [Online] Centers for Disease Control and Prevention. http://phil.cdc.gov/phil/.
- [4] **Zumft, W. G.** Cell biology and molecular basis of denitrification. *Microbiology and Molecular Biology Reviews.* Dezember 1997, Bd. 61, 4, S. 533-616.
- [5] Wauven, C. Vander, et al. Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway. *Journal of Bacteriology*. Dezember 1984, Bd. 160, 3, S. 928-934.
- [6] Worlitzsch, Dieter, et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. *Journal of Clinical Investigation.* Februar 2002, Bd. 109, 3, S. 317-325.
- [7] **Govan, J. R. und Deretic, V.** Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. *Microbiological Reviews.* September 1996, Bd. 60, 3, S. 539 574.
- [8] Whitchurch, Cynthia B, et al. Extracellular DNA required for bacterial biofilm formation. Science. Februar 2002, Bd. 295, 5559, S. 1487.
- [9] Gacesa, P. Bacterial alginate biosynthesis--recent progress and future prospects. *Microbiology*. Mai 1998, Bd. 144 (Pt 5), S. 1133-1143.
- [10] Ramsey, Deborah M und Wozniak, Daniel J. Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. *Molecular Microbiology.* April 2005, Bd. 56, 2, S. 309-322.
- [11] Lynn, A. R. und Sokatch, J. R. Incorporation of isotope from specifically labeled glucose into alginates of Pseudomonas aeruginosa and Azotobacter vinelandii. *Journal of Bacteriology*. Juni 1984, Bd. 158, 3, S. 1161-1162.
- [12] Fuqua, W. C., Winans, S. C. und Greenberg, E. P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. *Journal Of Bacteriology*. Januar 1994, Bd. 176, 2, S. 269-275.
- [13] Singh, P. K., et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. *Nature*. Oktober 2000, Bd. 407, 6805, S. 762-764.
- [14] Rasmussen, Thomas B und Givskov, Michael. Quorum sensing inhibitors: a bargain of effects. *Microbiology.* April 2006, Bd. 152, Pt 4, S. 895-904.
- [15] Raychaudhuri, Aniruddha, Jerga, Agoston und Tipton, Peter A. Chemical mechanism and substrate specificity of RhII, an acylhomoserine lactone synthase from Pseudomonas aeruginosa. *Biochemistry*. März 2005, Bd. 44, 8, S. 2974-2981.
- [16] **Govan, J. R. und Harris, G. S.** Pseudomonas aeruginosa and cystic fibrosis: unusual bacterial adaptation and pathogenesis. *Microbiological Sciences*. Oktober 1986, Bd. 3, 10, S. 302-308.
- [17] Gibson, Ronald L, Burns, Jane L und Ramsey, Bonnie W. Pathophysiology and management of pulmonary infections in cystic fibrosis. *American Journal of Respiratory and Critical Care Medicine*. Oktober 2003, Bd. 168, 8, S. 918-951.
- [18] Riordan, J. R., et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. *Science*. September 1989, Bd. 245, 4992, S. 1066-1073.
- [19] Schwiebert, E. M., et al. CFTR is a conductance regulator as well as a chloride channel. *Physiological Reviews*. Januar 1999, Bd. 79, 1 Suppl, S. S145--S166.
- [20] McPherson, M. A. und Dormer, R. L. The molecular and biochemical basis of cystic fibrosis. *Bioscience reports*. März 1987, Bd. 7, 3, S. 167-185.
- [21] May, T. B., et al. Alginate synthesis by Pseudomonas aeruginosa: a key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients. *Clinical Microbiology Reviews*. April 1991, Bd. 4, 2, S. 191-206.
- [22] Marshall, Bruce C. und Hazle, Leslie. Cystic Fibrosis Foundation Patient Registry 2005 Annual Report. Cystic Fibrosis Foundation Patient Registry 2005 Annual Report. [Online] http://www.cff.org/LivingWithCF/QualityImprovement/PatientRegistryReport/.

- [23] **Coquet, L., Junter, G. A. und Jouenne, T.** Resistance of artificial biofilms of Pseudomonas aeruginosa to imipenem and tobramycin. *Journal of Antimicrobial Chemotherapy.* Dezember 1998, Bd. 42, 6, S. 755-760.
- [24] Dunne, W. Michael. Bacterial adhesion: seen any good biofilms lately? *Clinical Microbiology Reviews*. April 2002, Bd. 15, 2, S. 155-166.
- [25] Slack, M. P. und Nichols, W. W. The penetration of antibiotics through sodium alginate and through the exopolysaccharide of a mucoid strain of Pseudomonas aeruginosa. *Lancet.* September 1981, Bd. 2, 8245, S. 502-503.
- [26] Fiehn, Oliver. Metabolomics--the link between genotypes and phenotypes. *Plant Molecular Biology*. Januar 2002, Bd. 48, 1-2, S. 155-171.
- [27] Weckwerth, Wolfram. Metabolomics in systems biology. *Annual Review of Plant Biology*. 2003, Bd. 54, S. 669-689.
- [28] Anderson, N. L. und Anderson, N. G. Proteome and proteomics: new technologies, new concepts, and new words. *Electrophoresis*. August 1998, Bd. 19, 11, S. 1853-1861.
- [29] Proteomics, transcriptomics: what's in a name? Nature. Dezember 1999, Bd. 402, 6763, S. 715.
- [30] Ideker, T., Galitski, T. und Hood, L. A new approach to decoding life: systems biology. *Annual Review of Genomics and Human Genetics.* 2001, Bd. 2, S. 343-372.
- [31] Oliver, S. G., et al. Systematic functional analysis of the yeast genome. *Trends in Biotechnology*. September 1998, Bd. 16, 9, S. 373-378.
- [32] **Glassbrook, N., Beecher, C. und Ryals, J.** Metabolic profiling on the right path. *Nature Biotechnology*. November 2000, Bd. 18, 11, S. 1142-1143.
- [33] Strelkov, Sergey, Elstermann, Mirko von und Schomburg, Dietmar. Comprehensive analysis of metabolites in Corynebacterium glutamicum by gas chromatography/mass spectrometry. *Biological Chemistry*. September 2004, Bd. 385, 9, S. 853-861.
- [34] Börner, Jana, Buchinger, Sebastian und Schomburg, Dietmar. A high-throughput method for microbial metabolome analysis using gas chromatography/mass spectrometry. *Analytical Biochemistry*. August 2007, Bd. 367, 2, S. 143-151.
- [35] **Wittmann, Christoph, et al.** Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. *Analytical Biochemistry*. April 2004, Bd. 327, 1, S. 135-139.
- [36] de Koning, W. und van Dam, K. A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. *Analytical Biochemistry*. Juli 1992, Bd. 204, 1, S. 118-123.
- [37] Halket, John M, et al. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. *Journal of Experimental Botany*. Januar 2005, Bd. 56, 410, S. 219-243.
- [38] Kell, Douglas B. Metabolomics and systems biology: making sense of the soup. *Current Opinion in Microbiology*. Juni 2004, Bd. 7, 3, S. 296-307.
- [39] **Kopka, Joachim, et al.** Metabolite profiling in plant biology: platforms and destinations. *Genome Biology.* 2004, Bd. 5, 6, S. 109.
- [40] Tolstikov, Vladimir V und Fiehn, Oliver. Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. *Analytical Biochemistry*. Februar 2002, Bd. 301, 2, S. 298-307.
- [41] Tolstikov, Vladimir V, Fiehn, Oliver und Tanaka, Nobuo. Application of liquid chromatography-mass spectrometry analysis in metabolomics: reversed-phase monolithic capillary chromatography and hydrophilic chromatography coupled to electrospray ionization-mass spectrometry. *Methods in Molecular Biology.* 2007, Bd. 358, S. 141-155.
- [42] Wang, Yulan, et al. Spectral editing and pattern recognition methods applied to high-resolution magicangle spinning 1H nuclear magnetic resonance spectroscopy of liver tissues. *Analytical Biochemistry*. Dezember 2003, Bd. 323, 1, S. 26-32.
- [43] Krishnan, P., Kruger, N. J. und Ratcliffe, R. G. Metabolite fingerprinting and profiling in plants using NMR. *Journal of Experimental Botany.* Januar 2005, Bd. 56, 410, S. 255-265.
- [44] **Fraser, P. D., et al.** Technical advance: application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. *Plant Journal*. November 2000, Bd. 24, 4, S. 551-558.
- [45] **Rhee, S. Y.** The Arabidopsis Information Resource. *AraCyc Version 4.0.* [Online] 2007. http://www.arabidopsis.org:1555/ARA/organism-summary?object=ARA.

- [46] Mueller, Lukas A, Zhang, Peifen und Rhee, Seung Y. AraCyc: a biochemical pathway database for Arabidopsis. *Plant Physiology*. Juni 2003, Bd. 132, 2, S. 453-460.
- [47] **Zhang, Peifen, et al.** MetaCyc and AraCyc. Metabolic pathway databases for plant research. *Plant Physiology.* Mai 2005, Bd. 138, 1, S. 27-37.
- [48] **Fiehn, O., et al.** Metabolite profiling for plant functional genomics. *Nature Biotechnology.* November 2000, Bd. 18, 11, S. 1157-1161.
- [49] Kaipa, Pallavi, Karp, Peter D. und Shearer, Alexander. Summary of Bacillus subtilis. Summary of Bacillus subtilis, Strain 168, version 11.1. [Online] 2007. http://biocyc.org/BSUB224308/organismsummary?object=BSUB224308.
- [50] **Soga, Tomoyoshi, et al.** Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. *Journal of Proteome Research.* 2003, Bd. 2, 5, S. 488-494.
- [51] Kaipa, Pallavi, Karp, Peter D. und Shearer, Alexander. Summary of Corynebacterium glutamicum. Summary of Corynebacterium glutamicum, Strain ATCC 13032 Kitasato, version 11.1. [Online] 2007. http://biocyc.org/CGLU196627/organism-summary?object=CGLU196627.
- [52] Schultz, Johnathon und Meuller, Lukas. Summary of Solanum lycopersicum. Summary of Solanum lycopersicum, Strain, version 1.0. [Online] 2007. http://solcyc.sgn.cornell.edu/LYCO/organismsummary?object=LYCO.
- [53] Le Gall, Gwénaëlle, et al. Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. *Journal of Agricultural and Food Chemistry*. April 2003, Bd. 51, 9, S. 2447-2456.
- [54] Mueller, Lukas A. Summary of Solanum tuberosum. Summary of Solanum tuberosum, Strain, version 1.0. [Online] 2007. http://solcyc.sgn.cornell.edu/POTATO/organism-summary?object=POTATO.
- [55] **Roessner, U., et al.** Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. *Plant Journal.* Juli 2000, Bd. 23, 1, S. 131-142.
- [56] Piraud, Monique, et al. ESI-MS/MS analysis of underivatised amino acids: a new tool for the diagnosis of inherited disorders of amino acid metabolism. Fragmentation study of 79 molecules of biological interest in positive and negative ionisation mode. *Rapid Communications in Mass Spectrometry*. 2003, Bd. 17, 12, S. 1297-1311.
- [57] Karp, Peter D, et al. Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. *Nucleic Acids Research.* 2005, Bd. 33, 19, S. 6083-6089.
- [58] Ogata, H., et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research. 1, Januar 1999, Bd. 27, S. 29-34.
- [59] Schomburg, Ida, Chang, Antje und Schomburg, Dietmar. BRENDA, enzyme data and metabolic information. *Nucleic Acids Research*. Januar 2002, Bd. 30, 1, S. 47-49.
- [60] **Choi, Claudia, et al.** SYSTOMONAS--an integrated database for systems biology analysis of Pseudomonas. *Nucleic Acids Research.* Januar 2007, Bd. 35, Database issue, S. D533--D537.
- [61] Winsor, Geoffrey L, et al. Pseudomonas aeruginosa Genome Database and PseudoCAP: facilitating community-based, continually updated, genome annotation. *Nucleic Acids Research*. Januar 2005, Bd. 33, Database issue, S. D338--D343.
- [62] Hucka, M., et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. *Bioinformatics*. März 2003, Bd. 19, 4, S. 524-531.
- [63] **MSI-Board-Members, et al.** The metabolomics standards initiative. *Nature Biotechnology*. August 2007, Bd. 25, 8, S. 846-848.
- [64] Schunk, Ralph und Schomburg, D. CUPE. *CUPE the CUBIC Pathway Editor*. [Online] 2007. http://cupe.tubs.de/.
- [65] Junker, Björn H, Klukas, Christian und Schreiber, Falk. VANTED: a system for advanced data analysis and visualization in the context of biological networks. *BMC Bioinformatics*. 2006, Bd. 7, S. 109.
- [66] **Shannon, Paul, et al.** Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Research.* November 2003, Bd. 13, 11, S. 2498-2504.
- [67] **Regis Technology Inc.** *Chromatography Catalog.* Morton Grove : s.n., 2002.
- [68] **Strelkov, Sergey.** *Entwicklung und Anwendung einer Methode zur Metabolomanalyse von Corynebacterium glutamicum.* Köln : Dissertation, 2004.
- [69] Leimer, K. R., Rice, R. H. und Gehrke, C. W. Complete mass spectra of N-trifluoroacetyl-n-butyl esters of amino acids. *Journal of Chromatography.* August 1977, Bd. 141, 2, S. 121-144.

- [70] **Yergey, James, et al.** Isotopic Distributions in Mass Spectra of Large Molecules. *Analytical Chemistry.* Februar 1983, Bd. 55, 2, S. 353-356.
- [71] Laine, Roger A. und Sweeley, Charles C. O-methyl oximes of sugars. Analysis as O-trimethylsilyl derivatives by gas-liquid chromatography and mass spectrometry. *Carbohydrate Research*. März 1973, Bd. 27, 1.
- [72] Harvey, D. J. und Horning, M. G. Characterization of the trimethylsilyl derivatives of sugar phosphates and related compounds by gas chromatography and gas chromatography-mass spectrometry. *Journal of chromatography*. Februar 1973, Bd. 76, 1, S. 51-62.
- [73] Zinbo, Mikio und Sherman, William R. Gas chromatography and mass spectrometry of trimethylsilyl sugar phosphates. *Journal of the American Chemical Society.* April 1970, Bd. 92, 7, S. 2105-2114.
- [74] Herebian, Diran, Hanisch, Bernadette und Marner, Franz-Josef. Strategies for gathering structural information on unknown peaks in the GC/MS analysis of Corynebacterium glutamicum cell extracts. *Metabolomics.* Oktober 2005, Bd. 1, 4, S. 317-324.
- [75] **Herebian, Diran, et al.** In vivo labeling with stable isotopes as a tool for the identification of unidentified peaks in the metabolome analysis of Corynebacterium glutamicum by GC/MS. *Biological Chemistry*. August 2007, Bd. 388, 8, S. 865-871.
- [76] **Bourzat, Jean-Dominique, et al.** *Pyrrole derivatives, their preparation and pharmaceutical compositions which contain them. 5102890* USA, 04. Juli 1992. http://www.freepatentsonline.com/5102890.html.
- [77] Kováts, E. Gas-chromatographische Charakteriserung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. *Helvetica Chimica Acta*. August 1958, Bd. 41, 206, S. 1915-1932.
- [78] **Stein, Stephen E., Heller, Stephen R. und McNaught, Alan D.** The IUPAC International Chemical Identifier. [Online] 2007. http://www.iupac.org/inchi/.
- [79] **Weininger, David.** SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. *Journal of Chemical Information and Computer Sciences.* 1988, Bd. 28, 1, S. 31-36.
- [80] **Daylight Chemical Information Systems, Inc.** Simplified Molecular Input Line Entry System. [Online] 2007. http://daylight.com/smiles/index.html.
- [81] Stein, Stephen E. An Integrated Method for Spectrum Extraction and Compound Identification from Gas Chromatography/Mass Spectrometry Data. *Journal of the American Society of Mass Spectrometry*. 1999, Bd. 10, S. 770-781.
- [82] Microsoft. Visual Studio 2005. [Online] 2007. http://www.microsoft.com/germany/msdn/vstudio/products/default.mspx.
- [83] **Trolltech.** Qt: Cross-Platform Rich Client Development Framework. [Online] 2007. http://trolltech.com/products/qt.
- [84] Gamma, Erich, et al. Design Patterns: Elements of Reusable Object-Oriented Software. s.l. : Addison-Wesley Professional, 1994. ISBN 0-201-63361-2.
- [85] Thermo Sceintific. Xcalibur. [Online] 2007. http://www.thermo.com/com/cda/product/detail/0,1055,1000001009250,00.html.
- [86] National Institute of Standards and Technology. NIST Standard Reference Database 1A. NIST/EPA/NIH Mass Spectral Library with Search Program: (Data Version: NIST 05, Software Version 2.0d). [Online] 2007. http://www.nist.gov/data/nist1a.htm.
- [87] National Center for Biotechnology Information. Pubchem. [Online] 2007. http://pubchem.ncbi.nlm.nih.gov/.
- [88] Fisher, R. A. Applications of "Student's" distribution. Metron. 1925, Bd. 5, S. 90-104.
- [89] Gosset, William Sealy. The Probalbe error of a mean. Biometrika. März 1908, Bd. 6, 1, S. 1-25.
- [90] **Reinhardt, Fritz, Soeder, Heinrich und Falk, Gerd.** *dtv-Atlas Mathematik Band 2 Analysis und angewandte Mathematik.* München : dtv, 1998. Bd. 2.
- [91] **Stein, Stephen E. und Mallard, Gary.** AMDIS. *AMDIS Download Page.* [Online] 2007. http://chemdata.nist.gov/mass-spc/amdis/.
- [92] Thielen, Bernhard. mSpecs. [Online] 2007. http://mspecs.tu-bs.de.
- [93] Lampen, Peter, et al. JCAMP-DX for Mass Spectrometry. *Applied Spectroscopy*. 1994, Bd. 48, 12, S. 1545-1552.
- [94] **Agilent Technologies.** Chemstation. *Agilent ChemStation for GC, LC, LC/MS, CE and CE/MS.* [Online] 2007. http://www.chem.agilent.com/scripts/pds.asp?lpage=282.
- [95] **Adobe.** Adobe PDF Technology Center. *PDF Reference*. [Online] 2007. http://www.adobe.com/devnet/pdf/pdf_reference.html.

- [96] W3 Consortium. Extensible Markup Language (XML). [Online] 2007. http://www.w3.org/XML/.
- [97] **ECMA International.** Standard ECMA-262. *ECMAScript Language Specification*. [Online] Dezember 1999. http://www.ecma-international.org/publications/standards/Ecma-262.htm.
- [98] Chemspider. Chemspider. [Online] 2007. http://www.chemspider.com/.
- [99] Sigma-Aldrich. Sigma-Aldrich Online Bestellkatalog. [Online] 2007. http://www.sigmaaldrich.com/.
- [100] Fothergill, J. C. und Guest, J. R. Catabolism of L-lysine by Pseudomonas aeruginosa. *Journal of General Microbiology*. März 1977, Bd. 99, 1, S. 139-155.
- [101] **KEGG.** KEGG Sequence Similarity Search. [Online] 2007. http://blast.genome.jp/.
- [102] Altschul, S. F., et al. Basic local alignment search tool. *Journal of Molecular Biology*. Oktober 1990, Bd. 215, 3, S. 403-410.
- [103] Liberati, Nicole T, et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. *Proceedings of the National Academy of Sciences of the United States of America*. Februar 2006, Bd. 103, 8, S. 2833-2838.
- [104] —. PA14 Transposon Insertion Mutant Library. [Online] 2007. http://ausubellab.mgh.harvard.edu/cgibin/pa14/home.cgi.
- [105] **Spjuth, Ola, et al.** Bioclipse: an open source workbench for chemo- and bioinformatics. *BMC Bioinformatics.* 2007, Bd. 8, 59.
- [106] Kind, Tobias und Fiehn, Oliver. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. *BMC Bioinformatics*. 2007, Bd. 8, 105.
- [107] Kopka, Joachim, et al. GMD@CSB.DB: the Golm Metabolome Database. *Bioinformatics*. April 2005, Bd. 21, 8, S. 1635-1638.
- [108] Schauer, Nicolas, et al. GC-MS libraries for the rapid identification of metabolites in complex biological samples. *FEBS Letters.* Februar 2005, Bd. 579, 6, S. 1332-1337.
- [109] Wang, Lian-Hui, et al. Specificity and enzyme kinetics of the quorum-quenching N-Acyl homoserine lactone lactonase (AHL-lactonase). *Journal of Biological Chemistry*. April 2004, Bd. 279, 14, S. 13645-13651.

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie – abgesehen von unten angegebenen Teilpublikationen – noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Dietmar Schomburg betreut worden.

Teilpublikationen:

C. Choi, R. Münch, S. Leupold, J. Klein, I. Siegel, B. Thielen, B. Benkert, M. Kucklick, M. Schobert, J. Barthelmes, C. Ebeling, I. Haddad, M. Scheer, A. Grote, K. Hiller, B. Bunk, K. Schreiber, I. Retter, D. Schomburg und D. Jahn. SYSTOMONAS--an integrated database for systems biology analysis of Pseudomonas. *Nucleic Acids Research*. Januar 2007, Bd. 35, Database issue, S. 533-537.

Bernhard Thielen

Lebenslauf

Promotion an der Universität Köln am Institut für Biochemie.

Studium der Biochemie an der Universität Bayreuth mit Abschluss als Diplom-Biochemiker. Thema der Diplomarbeit: "Struktur und Katalysemechanismus der Chinolin-Oxidoreduktase aus Pseudomonas putida 86". Ausbildung in den Fächern Biochemie, Genetik, Mikrobiologie, Biophysikalische Chemie und chemische Ökologie. Erhalt der "eingeschränkten Sachkunde" (nach ChemVerbotsV: §2 Abs. 2 Nr. 1 i.V. Mit §5 Abs. 1 Nr. 7).

Absolvierung des **Wehrdienstes** beim 4. Gebirgsartilleriebataillon 225 in Füssen (Allgäu). Währenddessen Erwerb eines Führerscheins der Klasse BCE.

Abitur am Gymnasium Marktoberdorf (Allgäu).

Promotion

03. Januar 2005 bis 08. Februar 2008

Studium

01. Oktober 2000 bis 16. November 2004

Wehrdienst

05. Juli 1999 bis 30. April 2000

Schulabschluss

25. Juni 1999

Geburt

29. April 1980

Berufliche Tätigkeiten

01. August 2003 bis 30. September 2003 01. November 2002 bis 31. Januar 2003

15. November 2001 bis 14. Februar 2002

Geboren in **Sigmaringen** (Baden-Württemberg) als Sohn von Gerhard Thielen und Christel Thielen (geb. Dietrich).

Mitarbeit an der **tRNA-Datenbank** am Lehrstuhl für Biochemie (Prof. Dr. Dr. hc Sprinzl) der Universität Bayreuth (www.trna.uni-bayreuth.de).

Bernhard Thielen