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Abstract 
 

 
Plants have evolved a multilayered immune system to counter pathogen attacks. EDS1 

(Enhanced Disease Susceptibility 1) and PAD4 (Phytoalexin Deficient 4) are two plant- 

specific lipase-like proteins that function as essential regulators of plant innate immunity. 

They are crucial for basal defence that restricts growth of virulent pathogens and for race-

specific resistance to avirulent pathogens triggered by TIR (Toll-Interleukin 1) type NBS-

LRR (Nucleotide Binding Site – Leucine Rich Repeats) immune receptors. Moreover, 

EDS1 and PAD4 generate and perceive (a) signal(s)  needed to induce systemic immunity. 

These regulators stimulate accumulation of the phenolic defence signaling molecule 

salicylic acid (SA) and SA, in turn, induces their expression creating a positive feedback 

loop in defence potentiation. EDS1 and PAD4 transcript and correspondent protein levels 

increase upon pathogen challenge. However, earlier changes in expression of a set of 

distinct genes which are EDS1- and PAD4-dependent imply the activation of pre-existing 

EDS1/PAD4 complexes through post-translational mechanism(s). In this work I 

investigated the relative importance of transcriptional regulation and post-transcriptional 

processes for EDS1 and PAD4 protein functions. I characterized Arabidopsis thaliana 

transgenic lines overexpressing either EDS1, PAD4 or both. Only lines cooverexpressing 

EDS1 and PAD exhibited growth retardation associated with constitutive activation of the 

SA pathway and increased resistance to virulent pathogens resulting from a faster SA 

pathway activation. These lines exhibit also increased tolerance to chemically induced 

oxidative stress consistent with a known role of EDS1 and PAD4 in processing reactive 

oxygen species (ROS) - derived signals. The insufficiency of EDS1-PAD4 

cooverexpression to fully recapitulate defence activation implies the existence of post-

translational mechanisms of regulation. The existence of regulatory post-translational 

modifications of the EDS1 protein was investigated and lines expressing constitutively or 

conditionally activated functional epitope-tagged EDS1 were generated. The data 

presented here demonstrate that EDS1 and PAD4 operate as a signaling unit. The basis of 

the observed dramatic biotic and abiotic stress phenotypes will be further investigated as 

it should provide important insight into EDS1 and PAD4 functions. 
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Zusammenfassung 
 

Pflanzen haben ein mehrschichtiges Immunsystem entwickelt um Pathogene abzuwehren. 

EDS1 (Enhanced Disease Suseptibility 1) und PAD4 (Phytoalexin deficient 4) sind zwei 

pflanzenspezifische Lipase-artige Proteine die als essentielle Regulatoren des 

angeborenen pflanzlichen Immunsystems fungieren. Beide Regulatoren werden sowohl 

für die basale Abwehr, die das Wachstum von virulenten Pathogenen begrenzt, als auch 

für die durch Immunrezeptoren der Klasse TIR( Toll-Interleukin 1) NBS-LRR 

(Nucleotide Binding Site – Leucine Rich Repeats) kontrollierte rassen-spezifische 

Abwehr gegen avirulente Pathogene, benötigt. Darüber hinaus sind EDS1 und PAD4 für 

die Ausbildung der systemischen Resistenz essentiell, die die Pflanze nach erstmaliger 

Infektion vor weiteren Infektionen schützt. EDS1 und PAD4 stimulieren des Weiteren die 

Akkumulierung des Abwehrsignals Salizylsäure (SA), welches wiederum die 

Transkription von EDS1 und PAD4 aktiviert, wodurch eine Amplifizierung der 

Abwehrreaktion hervorgerufen wird. Frühre Arbeiten haben gezeigt, dass EDS1-PAD4 

Proteinkomplexe bereits in unbehandelten, gesunden Pflanzenzellen existieren. EDS1 und 

PAD4 Transkript sowie korrespondierende Proteinlevel steigen nach Pathogeninokulation 

an. Die Akkumulation der EDS1-PAD4 Komplexe tritt aber zeitlich nach einer 

EDS1/PAD4-abhängigen transkriptionellen Reprogrammierung anderen Genen auf, so 

dass man eine post-translationale Aktivierung von EDS1 und PAD4 postulieren kann. In 

dieser Arbeit wurde die Bedeutung der transkriptionellen Aktivierung und der post-

transkriptionellen Prozessen für die Funktion von EDS1 und PAD4 untersucht. Dazu 

wurden transgene Arabidopsis thaliana Linien untersucht, die entweder EDS1 oder 

PAD4 alleine oder beide zusammen überexprimieren. Nur Linien, die EDS1 und PAD4 

gemeisam überexprimieren, zeigen eine Wachstumshemmung, eine konstitutive 

Aktivierung des SA-abhängigen Signalweges und eine erhöhte Resistenz gegenüber 

virulenten Pathogen. Die EDS1/PAD4-Überexpressör-linien wiesen zudem eine erhöhte 

Toleranz gegenüber Chemikalien die oxidativen Stress verursachen auf, was konsistent 

ist mit der bekannten Rolle von EDS1/PAD4 als Modulator von Redoxsignalen. Da die 

Co-Überexpression von EDS1/PAD4 nicht zu einer vollständigen Abwehrreaktion (z.B. 

fehlender hypersensitiver Zelltod) führt, kann daraus geschlossen werden, dass EDS1 und 
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PAD4 auch post-translational reguliert werden. Die mögliche Existenz post-

translationaler Modifikation(en) von EDS1 wurde untersucht. Dazu wurden verschiedene 

Linien generiert, die eine konstitutive oder eine induzierbare Aktivierung von EDS1 

aufweisen. Die Daten in dieser Arbeit demonstrieren, dass EDS1 und PAD4 zusammen 

als Signaleinheit operieren. Die Ursache der erhöhten Resistenz gegenüber biotischen und 

abiotischen Stress in den EDS1/PAD4-Überexpressör-Linien wird weiter untersucht und 

sollte wichtige Hinweise auf die Funktion von EDS1 und PAD4 geben. 
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  Introduction 

1. INTRODUCTION 
 
 

 

 

In the natural environment plants are continuously under attack by microbial, animal and 

viral pathogens with diverse life styles and infection strategies [1]. Exposure to 

potentially lethal assaults has shaped modern plants through evolution and resulted in the 

development of a multilayered innate immune system. The robustness and effectiveness 

of plant immunity is illustrated by the fact that most plants remain healthy [2, 3]. 

Understanding how interactions at the interface between plants and pathogens are 

regulated is an essential to enhance plant survival as one primary source of food, 

materials and energy. 

 

1.1 Arabidopsis thaliana as model system for studying plant-microbe interactions 

 

The small flowering plant, Arabidopsis thaliana, a member of the mustard family 

(Brassicaceae), has emerged as the model plant species in biology. Arabidopsis was 

chosen because it offers many advantages: a short life cycle (about 6 weeks), high 

fertility, small size, a relatively small genome and efficient transformation by 

Agrobacterium tumefaciens [4]. In the last decade extensive genetic and physical maps of 

all its five chromosomes were made available, large collections of Arabidopsis mutants 

were generated and approximately 115 Mb of its 125 Mb total genome have been 

sequenced [5, 6]. Also, analyses of Arabidopsis accessions from different geographical 

locations reveals a high degree of natural genetic variation that can be used to gain insight 

into fundamental biological processes [7]. 

Pathogens of Arabidopsis that belong to the major classes of plant disease agents have 

been described and the dissection of these interactions by genetic and biochemical means 

has enormously improved our understanding of mechanisms underlying plant responses 

to pathogen attack [1-3].   
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  Introduction 

 

1.1 The plant immune response 

 

While animals also have an adaptive immune system based on specialized cell types and 

creation of antigen-specific receptors by somatic recombination [8], plant defense against 

pathogen attacks relies on the innate immune system (the only exception being antiviral 

RNA silencing which exhibits features of adaptive recognition) [9]. The plant immune 

system consists of both pre-formed barriers (such as waxy cuticle, cell wall and 

antimicrobial compounds accumulating before pathogen challenge) and induced defences 

[1]. Recent evidence shows that the inducible component of the plant immune system can 

be divided into two main layers [3] : pathogen associated molecular patterns triggered 

immunity (PTI) and effector triggered immunity (ETI). 

 

1.1.1 Pathogen associated molecular patterns (PAMP) triggered immunity (PTI) 
 

Microbial or pathogen associated molecular patterns (known as MAMPs or PAMPs) are 

highly conserved microbial molecules that have essential functions. They are present in 

entire classes of both pathogenic and non pathogenic microbes but are generally not 

found in the host [10]. These features make PAMPs ideal “non self” molecules which are 

recognized by pattern recognition receptors (PRRs) in both plants and animals [10]. 

Examples of PAMPs perceived by plants are flagellin, Elongation Factor Tu (EF-Tu) and 

lipopolisaccharides from bacteria, chitin and ergosterol from true fungi, and 

heptaglucoside and transglutamminase from oomycetes [11]. The most well characterized 

PAMP in plants is a portion of the flagellin protein. Flagellin builds up the flagellar 

filaments that are indispensable for bacterial motility [11]. Exposure of Arabidopsis 

plants, protoplasts or cell cultures to purified flagellin or to its N-terminal 22 amino acid 

peptide flg22 leads to a series of downstream events including an oxidative burst, 

mitogen associated protein kinase (MAPK) cascade activation, callose deposition at the 

cell wall, ethylene production, and the rapid transcriptional reprogramming and growth 

inhibition of seedlings [12, 13]. The flagellin receptor FLS2 (Flagellin Sensing 2) was 

identified in a genetic screen for mutants insensitive to flg22 and encodes a receptor-like 
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  Introduction 

kinase (RLK) which is internalized upon flagellin perception by receptor-mediated 

endocytosis [14]. Structurally, FLS2 contains an extracellular LRR (Leucine Rich 

Repeat) domain and an intracellular serine/ threonine kinase domain [15]. In analyses 

using spray inoculated pathogenic bacteria, Arabidopsis fls2 mutant plants exhibited 

increased susceptibility while pre-treatments with flg22 on wild type plants induced 

increased resistance. More recently another Arabidopsis PRR, the EF-Tu receptor EFR 

(EF-Tu receptor), was shown to play a major role in restricting colonization by 

Agrobacterium tumefaciens [16]. Thus, PAMP recognition plays an important role in 

priming defences against pathogens [17]. These  results are consistent with the general 

concept of PAMP triggered immunity (PTI) in which the recognition of PAMPs triggers 

downstream responses that in many cases are sufficient to halt microbes from progressing 

in their colonization attempts [2]. Downstream responses to EF-Tu recognition overlap 

with those observed upon flagellin perception [16] indicating that different PRRs 

converge to common signaling pathways and defence outputs [3]. EFR also codes for an 

RLK containing an extracellular LRR and internal serine/threonine kinase domain [16].  

Within the Arabidopsis genome 200 RLKs were identified. Twenty eight of them are up 

regulated after PAMP perception [16, 18, 19]. These genes represent a potential PRR 

arsenal for perception of yet further PAMPs that have not yet been molecularly 

characterized [16]. 

 

1.1.2 Pathogen effector triggered susceptibility (ETS)  
 

An efficient way through which pathogens appear to overcome PTI is by secretion of 

effector proteins into the plant cell [20-23]. This phenomenon was recently termed 

effector triggered susceptibility (ETS) and evidence for the existence of effector proteins 

interfering with the signaling cascade downstream of PAMP perception has accumulated 

in the last few years [1, 2]. The best characterized pathosystem in this respect is the 

interaction between Arabidopsis and strains of pathogenic Gram-negative bacteria, 

Pseudomonas syringae. All known P. syringae strains contain a hypersensitive response 

and pathogenicity (hrp) – locus encoded type III secretion system (TTSS) [24, 25]. The 

TTSS generates a molecular syringe upon contact with the host through which effector 
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proteins and toxins are secreted into the host cell [26]. Some Pseudomonas syringae 

TTSS effectors have been described that interfere with PTI by mimicking or inhibiting 

eukaryotic cellular functions. For example HopM and AvrE effectors target host vesicle 

transport [27]. AvrPto and the E3 Ubiquitin Ligase AvrPtoB block PTI at an early stage 

before MAPK cascade activation [28], while AvrRpm1 and AvrRpt2 target RIN4 (Rpm1 

Interacting Protein 4) a negative regulator of PTI [29]. Other type III effectors from 

phytopathogenic bacteria belonging to the genera Pseudomonas, Xanthomonas, Ralstonia, 

Erwinia and Pantoea have been identified and for some of them a biochemical function 

was experimentally assigned [20, 21]. Only for a few of them has the corresponding host 

target been identified [20, 21]. 

Effector proteins were isolated also from fungi and oomycetes [22, 23]. Phytopathogenic 

fungi and oomycetes do not possess TTSS. However, they form a specialized infection 

structure called the haustorium that invaginates the host cell membrane with minimal 

disruption [30]. The precise mechanism(s) through which fungal effectors are delivered 

from the haustorium into the host cell are unclear [23, 31]. A large collection of candidate 

secreted effector proteins was identified for Phytophthora species [32]. These effectors 

share a signal peptide for secretion and an RxLR motif followed by a glutamate/aspartate 

rich domain which is hypothesized to act as a host-targeting signal [23, 32-34]. These 

structural features are absent in identified effectors from true fungi suggesting the 

existence of different delivery mechanisms between fungi and oomycetes [23]. An 

example of a fungal effector protein secreted into the host and interfering with PTI is 

given by Avr3a from Phytophthora infestans which can suppress cell death in Nicotiana 

benthamiana induced by the elicitin INF1, also from Phytophthora infestans [35]. 

 

1.1.3 Effector triggered immunity (ETI) 
 

In order to counter microbial attempts to subvert PAMP recognition, plants have evolved 

receptors capable of recognizing pathogenic effectors [1]. Recognition is followed by a 

series of downstream events such as a massive oxidative burst, accumulation of  phenolic 

compounds including salycilic Acid (SA) and transcriptional reprogramming in both  

local and systemic tissues. There is also accumulation of antimicrobial compounds at the 
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site of attempted penetration, activation of a phosphorylation cascade and most 

commonly a form of localized programmed cell death termed hypersensitive response 

(HR) [1]. This series of responses is normally sufficient to block the pathogen and being 

induced by effector recognition has been termed Effector Triggered Immunity (ETI) [2, 

3]. Effectors that are specifically recognized are, in this context, called Avirulence (Avr) 

proteins.  

Genes encoding ETI receptors are called Resistance (R) proteins and have been cloned 

from various plant species. Comparative analyses led to identification of a limited 

number of R proteins structure motifs [1]. The most abundant class of R protein in 

Arabidopsis has a central NBS (Nucleotide Binding Site) domain and C-terminal LRRs 

(Leucine Rich Repeats), so called NBS-LRR proteins [36]. A further subdivision within 

this class can be made according to the type of N-terminus. Some NBS-LRR have 

similarity to the intracellular domains of Toll and Interleukin-1 receptors from 

Drosophila and humans respectively (TIR-NBS-LRR proteins). Others have a predicted 

coiled-coil domain (known as CC-NBS-LRR proteins) [1]. The type of N-terminus 

correlates with the R protein requirement for particular downstream signaling 

components upon recognition ([37], see below). In Arabidopsis, examples of TIR-NBS-

LRR are RPP1, RPP4,  involved in Hyaloperonospora parasitica race specific 

recognition [38, 39], and RPS4 recognizing Pseudomonas syringae pv. tomato DC3000 

(hereafter Pst DC3000) expressing AvrRps4 [40]. Examples of CC-NBS-LRR are RPS2, 

RPM1 and RPS5 involved in the recognition of DC3000 expressing respectively AvrRpt2, 

AvrRpm1 or AvrB, and AvrPphB [41-43]  and RPP8 and RPP13 also involved in race 

specific recognition of downy mildew [44, 45].  

Initially, the simple genetic relationship between plant R and pathogen Avr genes 

suggested a direct receptor – ligand binding model for their biochemical interaction. 

Some examples of direct recognition have been described [46-48]. However, evidence 

emerging in the last decade points towards a wider engagement of indirect recognition 

strategies as described by the “guard” model [1]. According to this model pathogen 

effectors target and modify host proteins in order to subvert defence responses or gain 

nutrients. An R protein guards particular host proteins and perceives modifications 

induced by the effector (Avr), thereby triggering defense activation [1]. The two best 
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characterized examples of indirect recognition are provided by AvrRpm1 and AvrPphB 

[49, 50]. AvrRpm1 targets RIN4 and other so far unidentified host protein(s) [29, 49]. 

Upon interaction AvrRpm1 causes a hyperphosphorylation of RIN4 which correlates with 

the activation of RPM1 [49]. AvrPphB is a cysteine protease that targets the host protein 

kinase PBS1 (AvrPphB Susceptible1). PBS1 cleavage leads to the activation of RPS5 

which triggers resistance signaling [50]. According to this model the relatively limited 

number of identified receptors in plants could account for interception of many pathogen 

effectors [51]. Thus, few receptors guarding key host proteins would in fact be sufficient 

to monitor the presence of multiple effectors having the same target [1]. Experimental 

evidence supports this hypothesis. For example, in addition to AvrRpm1 the bacterial 

effector AvrB targets RIN4 leading to a similar RPM1 activation [49].  

The existence of different recognition modes is supported by phylogenetic studies. In the 

case of direct Avr-R interaction signatures for diversifying selection in corresponding Avr 

and R genes were observed [47, 52]. In evolutionary terms, this can be explained as the 

result of selective pressure to escape recognition by diversification from the pathogen 

side and to evolve new recognition specificities from the plant side. In the indirect 

recognition scenario, mutations in Avr genes affecting recognition may also affect 

virulence functions being recognized. Accordingly, no clear sign of diversifying selection 

in R or Avr genes involved in indirect recognition events could be observed [53, 54]. 

Not surprisingly pathogens have evolved further effectors to interfere with ETI and plants, 

in turn, new receptors to detect them. A clear example is given by the DC3000 AvrRpt2 

effector and the Arabidopsis receptor RPS2 [49]. AvrRpt2 encodes a cysteine protease 

which targets RIN4. Cleavage of RIN4 by AvrRpt2 impairs AvrRpm1 induced RPM1 

activation. In turn Rps2 is capable of recognizing RIN4 cleavage and activates HR [49].  

How R proteins are activated and how their activation leads to resistance is not fully 

understood but recent results shed some light on this phenomenon. A negative intra-

molecular regulatory function was shown for the LRR domain [36, 55-57] which was 

previously shown to be important in determining recognition specificity [58-60]. 

Receptor activation is thought to involve intra-molecular rearrangements to expose the 

NBS domain, allowing cleavage and cycling of bound ATP [55, 56, 61-63]. This 
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presumably allows the amino-terminal domain of the receptor to interact with 

downstream signaling molecules that trigger the defense response. At least in one case   

homomeric oligomerization was observed as a very early event upon recognition [64] 

reminiscent of what is observed for animal Nod-Like Receptors (NLR) which are related 

to plant NBS-LRR proteins in their domain structure [65]. 

Two recent pieces of data showed how two different receptors, MLA10, a CC-NBS-LRR 

receptor from barley, and N, a TIR-NBS-LRR receptor from tobacco, require nuclear 

localization to trigger downstream responses upon perception of the correspondent 

effectors (AvrMla 10 from the fungus Blumeria graminis fs hordei for MLA10 and the 

p50 replicase protein from Tobacco Mosaic Virus for N) [66, 67]. After AvrMla10 

recognition, MLA10 was shown to interact specifically with the transcription factors 

WRKY1 and WRKY2, negative regulators of plant basal defense, drawing a molecular 

link between recognition and activation of downstream defence [66]. Unpublished results 

also reveal that a nuclear pool of the Arabidopsis TIR-NBS-LRR receptor RPS4 is 

important for defense activation (L. Wirthmueller and J. Parker, unpublished) 

 

1.1.4 General terminology 
 

Interactions between plants and microbes are classified according to their outputs: when a 

specific pathogen race is recognized and stopped through ETI the interaction is defined as 

incompatible and the pathogen race avirulent. When the pathogen can successfully 

colonize the plant and cause disease, the interaction is defined as compatible and the 

pathogen virulent [1]. If all members of a microbial species are not capable to infect a 

particular plant species the interaction is defined non-host or species level resistance [68]. 

Non-host defense consists of both constitutive and inducible mechanisms. Two layers of 

inducible responses have been shown to be involved in blocking a host non-adapted 

pathogen. Pre-invasive mechanisms act before the pathogen gains access to the plant 

interior and are compromised in so called pen (penetration) mutants [69-71]. Post-

invasive mechanisms are instead activated after penetration [70].  

Even in a compatible interaction, a so called basal defence is activated in susceptible 

plants. The existence of basal defence mechanisms can be demonstrated by the fact that 
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plants lacking functional basal defense signaling components support higher growth of 

virulent pathogens compared to wild type [1]. Genetic overlap between ETI and basal 

resistance responses suggests that one function of R-mediated signaling is to more rapidly 

and effectively activate defence mechanisms that are shared by both pathways [1, 72]. 

 

1.1.5 Systemic Acquired Resistance 
 

Defense activation in systemic tissues follows the localized HR, resulting in heightened 

resistance to subsequent pathogen attacks. This phenomenon is known as systemic 

acquired resistance (SAR) and its establishment is dependent on SA accumulation [73]. 

The generation, translocation and perception of a non species-specific SAR signal 

moving from the infected leaves systemically are necessary for SAR induction [73, 74]. 

The nature of this signal(s) is still unclear. The fact that in early grafting experiments in 

tobacco, root-stocks expressing a bacterial SA degrading enzyme were still capable of 

inducing SAR in wild type scions, indicated that SA is not the mobile signal [75]. 

Possible connections with lipid metabolism and SAR signal generation emerged from 

studies of Arabidopsis mutant lines carrying mutations in genes involved in fatty acid 

metabolism and associated altered SAR responses [74]. Also, Arabidopsis plants carrying 

mutations in the DIR1 (Defective in induced resistance 1) gene, coding for a putative 

lipid transfer protein, are impaired in the generation or translocation of the SAR signal 

[76]. Most recently, the involvement of the fatty acid-derived signal molecule jasmonic 

acid (JA) was implicated in the establishment of SAR [77]. 

NPR1 is a central positive regulator of SAR signaling that functions downstream of SA 

[78]. Accumulation of SA induces a change in cellular redox potential triggering the 

reduction of NPR1 from cytosolic, disulphide-bound oligomers to active monomers [79]. 

Monomers translocate to the nucleus where they can interact with TGA transcription 

factors. These interactions may stimulate the binding of TGA factors to SA-responsive 

elements in the promoters of PR genes. The consequent transcriptional reprogramming 

likely contributes to the establishment of SAR [80]. Transcriptional data indicated that 

NPR1 co-ordinates up regulation of the secretory apparatus to ensure proper folding and 

localization of PR proteins [81]. 
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MPK4 (mitogen activated protein kinase 4) instead encodes for a negative regulator of 

SAR establishment and mpk4 plants show constitutive SAR response [82]. Such negative 

regulation is dependent on the MPK4 kinase activity since that stable inactive MPK4 

variants were unable to complement the mpk4 phenotype [82].  

SNI1 (suppressor of npr1-1, inducible 1) is also a negative regulator of SAR, encoding a 

leucine-rich nuclear protein with similarity to Armadillo repeats proteins [83, 84]. SNI1 

specifically represses NPR1-dependent SA responsive genes, probably by serving as a 

scaffold for formation of a chromatin remodeling complex [83, 84]. Pathogen infection 

triggers an increase in somatic DNA recombination, which results in transmission of 

changes to the offspring of infected plants [85]. SNI1 also negative regulates this 

phenomenon suggesting a possible mechanistic link between short-term defense response 

and a long-term survival strategy [86]. 

 

1.1.6 Salicylic acid and jasmonic acid / ethylene pathways 
 

ETI (effector triggered immunity) is effective against pathogens that feed on living plant 

tissues throughout their life cycle (obligate biotrophs, such as Hyaloperonospora species) 

or in the first phase of colonization (hemibiotrophs, such as Phytophtora, Colletotrichum 

and Pseudomonas species). ETI is not effective against pathogens that feed on dead plant 

tissues and that can induce host cell death by releasing toxins (necrotrophs, such as 

Botrytis and Alternaria species) [87]. This distinction is reflected by a differential 

engagement of downstream pathways in response to pathogens with different lifestyles. 

While the salicylic acid (SA) pathway plays a major role in response to biotrophs and 

hemibiotrophs, the jasmonic acid (JA) and ethylene (ET) pathways are essential  for 

activating responses to necrotrophs [87].  

Although SA, JA and ET pathways overlap partially in terms of gene activation, analyses 

of specific SA and JA marker genes induction (such as Pathogenesis Related 1 (PR1) and 

Pathogenesis Related 2 (PR2) for SA and Plant Defensin 1.2 (PDF1.2) for JA 

respectively) upon different treatments and within different mutant backgrounds revealed 

mutual antagonism between the SA and JA/ET pathway [87, 88]. This is reflected by the 

increased resistance to biotrophs in plants impaired in JA signaling and to necrotrophs in 
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plants impaired in SA signaling. Reciprocally, mutations constitutively activating the SA 

pathway or JA/ET pathway resulted in increased susceptibility against necrotrophs and 

biotrophs, respectively [87, 88].  However, cases of additivity between the two pathways 

have been however also observed as well as cases of reciprocal inhibition between the. 

activation of the JA end ET pathway indicating a much more complex cross-talk between 

pathways activations whose spatial and temporal aspects are not fully appreciated yet 

[88]. 

Two genes that are involved in the antagonism between SA and JA/ET pathways are 

NPR1 and MPK4. JA pathway repression by SA pathway activation  requires NPR1, but 

not its nuclear localization, suggesting a specific NPR1 cytosolic function [89]. On the 

other hand, MPK4 activity is essential for the repression of the SA pathway and the 

activation of the JA/ET pathway [82, 90].  

 

1.2 The disease resistance signalling proteins EDS1 and PAD4 

 

Arabidopsis EDS1 (Enhanced Disease Susceptibility 1) and PAD4 (Phytoalexin Deficient 

4) are two key components of the plant innate immune system. EDS1 was originally 

identified in a mutational screen for defects in RPP1 and RPP5 mediated resistance to 

avirulent isolates of Hyaloperonospora parasitica[38], whereas PAD4 was isolated in a 

screen for enhanced disease susceptibility to Pseudomonas syringae pv. maculicola strain 

ES4326 [91]. Further genetic analyses in Arabidopsis demonstrated that both EDS1 and 

PAD4 are required for resistance triggered by the same spectrum of R proteins belonging 

to the TIR-NBS-LRR class [91-93]. This requirement was also observed in other plant 

systems [94-96]. By contrast, most CC-NBS-LRR proteins trigger local responses 

independently of EDS1 and PAD4, suggesting that the NBS-LRR N-terminal domain 

may specify requirements for downstream signaling components [37]. However, the 

identification of receptors containing a CC domain and showing dependency on EDS1 

and PAD4 indicates that this distinction is probably an over simplification [97].  

While Arabidopsis eds1 plants exhibited a complete loss of TIR-NBS-LRR mediated 

resistance, pad4 mutants still retained the capability to develop a delayed HR. Upon 

infection by Hyaloperonospora parasitica avirulent isolates this results in no HR and 
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hyphal growth in eds1 plants while in pad4 plants hyphal growth is accompanied by 

trailing necrosis, a delayed HR which doesn´t stop the pathogen but follows its spreading 

[93]. For this reason a probable engagement of EDS1 at earlier stages during R mediated 

responses was initially hypothesized [93]. More recent findings demonstrated however 

that the different impact on R-mediated defence by EDS1 and PAD4 is due to partial 

genetic redundancy between PAD4 and SAG101, another component of the EDS1/PAD4 

node ([98], see below).  

The contribution of EDS1 and PAD4 to basal defense seems to be equivalent: eds1 and 

pad4 plants infected by virulent isolates of H. parasitica or virulent strains of P. syringae 

have similar levels of enhanced susceptibility compared to wild type plants [92, 93]. 

EDS1 and PAD4 are also required for the accumulation of the signaling molecule SA 

upon pathogen challenge [93, 99, 100]. SA in turn induces EDS1 and PAD4 expression 

creating a positive feedback loop which leads to defense signal potentiation [93].  

Structurally, EDS1 and PAD4 are related, possessing two conserved domains: a 

conserved lipase-like domain encompassing a putative catalytic triad (Ser - Asp – His), 

and the so called EP (EDS1/PAD4) domain [93], which is unique to higher plants and 

shared only with one other plant protein, SAG101 (Senescence Associated Gene 101) [98, 

101]. The lipase-like domain is less conserved and putative catalytic triad missing in 

SAG101 although this protein was originally described as an acyl hydrolase involved in 

senescence regulation [98, 101]. Despite these structural features and the previous 

reported activity for SAG101, pathogen defense complementation assays using mutated 

EDS1 and PAD4 versions together with biochemical assays performed in our laboratory 

indicate that EDS1, PAD4 and SAG101 are not lipases (S. Rietz and J. Parker, 

unpublished). Different approaches are currently being followed to identify the so far 

elusive biochemical function of these proteins. 

EDS1 and PAD4 localize to the nucleus and to the cytoplasm while SAG101 localizes 

only to the nucleus [98]. The importance of EDS1, PAD4 and SAG101 

compartmentalization and the possibility that EDS1 and PAD4 might be shuttled between 

nuclear and cytoplasmic compartments are currently being investigated. By different 

means (Yeast two-hybrid, co-immunoprecipitations from plant soluble extracts and 

Fluorescence Resonance Energy Transfer (FRET) experiments) EDS1 was shown to 
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homodimerize in the cytoplasm, to associate with PAD4 and to interact directly with 

SAG101 in the nucleus [37, 98]. The evidence obtained so far suggests the existence of 

distinct EDS1-PAD4 and EDS1-SAG101 complexes. Furthermore, analyses of EDS1, 

PAD4 and SAG101 protein levels in the corresponding Arabidopsis mutant backgrounds 

indicate that EDS1, PAD4, and SAG101 are stabilized by their interacting partners [98].  

Arabidopsis sag101 plants do not have an obvious plant defence phenotype. However, 

analyses of pad4/sag101 double mutant combinations indicated a partial genetic 

redundancy between SAG101 and PAD4 in both basal defence and ETI [98]. Redundancy 

was also observed for the described function of SAG101 and PAD4 in non-host 

resistance [70]. EDS1, PAD4 and SAG101 are in fact required for the activation of post-

invasive non-host resistance mechanisms as demonstrated by the analysis of double and 

triple mutant combinations with the penetration mutant pen2 [70]. 

More recently EDS1 was reported to be necessary for the establishment of SAR. Eds1 

mutant plants are impaired in mounting systemic immunity upon challenge with avirulent 

bacterial strains that induce an EDS1 independent localized HR [77]. Unpublished results 

from our laboratory demonstrate also that PAD4 plays a role of similar importance for 

SAR establishment as EDS1. In contrast to dir1, eds1 and pad4 mutants are impaired 

both in the SAR signal generation and perception (L. Jorda and J. Parker, unpublished). 

The  requirement for EDS1 and PAD4 in SAR is observed most clearly when SAR 

establishment ensues from an HR triggered by recognition mediated by CC-NBS-LRR 

([77]; L. Jorda and J. Parker, unpublished).  

Microarray analyses led to the discovery of new genetic components of the EDS1 defence 

signaling node by the identification of genes whose expression changed in an EDS1 or 

PAD4 dependent fashion upon infection with Pst DC3000 expressing either AvrRpm1 or 

AvrRps4. Among them, FMO (Flavin dependent Mono Oxygenase) was shown to be a 

positive defense regulator with an important function also in SAR establishment [102, 

103]. NUDT7, a member of the Nudix Hydrolase family, is a negative regulator of plant 

defense activation [102]. A third gene displaying EDS1 and PAD4 dependent up 

regulation upon pathogen challenge was At5g55450, a Lipid Transport Protein like gene 

related to DIR1 [102]. 
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During last few years, a broader function of EDS1 and PAD4 has been implied by a 

number of genetic epistasis analyses.  Consistent with their function as signaling 

components downstream to the TIR-NBS-LRR activation, EDS1 and PAD4 are required 

for the constitutive defense activation phenotype observed in snc1 (suppressor of npr1-1 

constitutive 1) mutant plants [104, 105]. SNC1 encodes a TIR-NBS-LRR and a recessive 

point mutation in the portion between its NBS and LRR domains leads to defense 

activation associated with constitutive high SA levels, PR gene transcriptional up- 

regulation and dwarfism [104, 105]. All these phenotypes are suppressed in the eds1/snc1 

and snc1/pad4 double mutants [104, 105]. A genetic screen for suppressors of the snc1 

phenotype, led to the identification of the so called mos (modifier of snc1) mutants [106, 

107]. Among them MOS3 and MOS6, coding for a nucleoporin and an importin 

respectively, appears once more to connect NBS-LRR signaling and the nuclear import-

export machinery [106, 107]. Currently, analyses are being performed in our laboratory to 

determine whether the compartmentalization of EDS1 and PAD4 is altered in mos3, mos6, 

mos3/snc1 and mos6/snc1 mutant backgrounds (A. Garcia and J. Parker, unpublished). 

MPK4 kinase activity is necessary for both SA pathway repression and ET/JA pathway 

activation. Arabidopsis mpk4 plants are severely dwarfed, accumulate high levels of SA, 

show constitutive SAR activation and constitutive PR gene up-regulation [82, 90]. This 

activation results in increased resistance against H. parasitica and Pst DC3000, and to 

increased susceptibility to Alternaria brassicicola [90]. The mpk4 phenotype is entirely 

dependent on EDS1 and PAD4, since mutations in these genes suppress the de-repression 

of the SA pathway and suppress the block of the ET/JA pathway in mpk4/eds1 and 

mpk4/pad4 plants [82, 90]. These data therefore place EDS1 and PAD4 as regulators not 

only of the SAR induction but also of the antagonism between the SA- and ET/JA-

mediated defense systems. 

The existence of a potentiating signal loop activated by ROS and SA and requiring EDS1 

and PAD4 was shown for the lsd1 (lesion simulating disease 1) conditioned runaway cell 

death (RCD) [108].  EDS1 and PAD4 are not required for the oxidative burst and HR 

following RPM1 mediated recognition but are needed for generation of RCD in lsd1 after 

triggering the RPM1 pathway or provision of ROS [92, 108]. Furthermore, lsd1 mutants 

fail to acclimate to excess excitation energy in high light, causing ROS overload and cell 
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death due to photooxidative stress [109]. The lsd1 mutant plants display lower catalase 

activity and reduced stomatal conductance which contributes to a lowering of the internal 

CO2 concentration, consequent reduced electron consumption by CO2 fixation and 

ultimately ROS over accumulation [109]. Stomatal conductance, reduced catalase activity 

and ROS accumulation are all restored to wild-type levels in pad4/lsd1 and eds1/lsd1 

plants [109].  

A potential role of EDS1 and PAD4 in processing ROS signals was further supported by 

the work of K. Apel and colleagues [110]. The conditional Arabidopsis flu mutant has 

been used to determine biological events triggered by singlet oxygen release [111]. 

Immediately after a dark/light shift of the flu mutant, singlet oxygen (1O2) is generated 

within the plastids, activating several stress responses that include growth inhibition of 

mature plants and seedling lethality [111]. These stress responses do not result from 

physico-chemical damage caused by singlet oxygen, but are attributable to the activation 

of a genetically determined stress response program triggered by the EXECUTER1 gene 

[112]. One of the genes that is rapidly up regulated in flu upon dark/light shift is EDS1 

[113]. The release of singlet oxygen in the flu mutant triggers a drastic increase in the 

concentration of free SA and activates the expression of PR1 and PR5 genes [113]. These 

changes depend on the activity of EDS1 and are suppressed in flu/eds1 double mutants 

[113]. Soon after the start of singlet oxygen production, the synthesis of JA and 12-

oxophytodienoic acid (OPDA) also start and plants stop growing and induce a cell-death 

response [113]. The inactivation of EDS1 does not affect oxylipin synthesis, growth 

inhibition or the initiation of cell death, but it allows plants to recover faster from singlet 

oxygen-mediated growth inhibition and it suppresses the spread of necrotic lesions in 

leaves [113]. Hence, singlet oxygen activates a complex stress-response program and 

EDS1 plays a key role in initiating and modulating several steps of it.  
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1.3 Thesis aims 

 

EDS1 and PAD4 protein levels are up-regulated upon pathogen challenge by virulent and 

avirulent races of both Pst DC3000 or H. parasitica and by treatments with BTH (benzo-

1,2,3-thiadiazole-7-carbothioic acid S-methyl ester) a functional analogue of SA [38, 93, 

99, 100]. It was further shown that the transcriptional induction of EDS1 upon generation 

of singlet oxygen anticipates SA accumulation, pointing to a direct capability of ROS to 

induce EDS1 expression [113]. PAD4 transcriptional up- regulation is strongly dependent 

on the expression of functional EDS1 protein while the up regulation of EDS1 transcript 

is only partially compromised in pad4 mutant plants [93].  

Already 3 h after pathogen challenge with avirulent bacterial strains transcriptional 

changes dependent on EDS1 and PAD4 have been described indicating early activation 

of the EDS1/PAD4 pathway [102]. EDS1 and PAD4 proteins are present and interact 

with each other already before pathogen challenge and so far no protein up-regulation at 

these early time points after infection has been reported [93]. This points to an 

involvement of previously existent EDS1 and PAD4 complexes. However, it can not be 

ruled out that a very early general protein up-regulation might occur only at the site of 

infection which might be overlooked in analyses of input protein levels from total plant 

tissues.  

With this work I aimed to determine the regulatory role of EDS1 and PAD4 protein up 

regulation by generating and characterizing Arabidopsis transgenic lines over expressing 

EDS1, PAD4 or both. 

Furthermore, by comparisons between unchallenged and pathogen challenged wild type 

and over expressors, I investigated the existence of post translational mechanisms of 

regulation involved in EDS1 and PAD4 signaling activation. 
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2. MATERIAL AND METHODS 
 
 

 

 

 

 

The Materials and Methods section is subdivided into two parts. In the first part (2.1) 

materials used throughout this study, including plant lines, pathogens, bacterial strains, 

chemicals, enzymes, media, buffers and solutions are listed, whereas methods applied in 

this work are described in the second part (2.2). 

 

 

2.1 Materials 

 

2.1.1 Plant materials 
 

Arabidopsis wild-type and mutant or transgenic lines used in this study are listed in Table 

2.1 and 2.2, respectively. 

 

 
Table 2.1. Wild-type Arabidopsis accessions used in this study 

Accession Abbreviation Original source 

Columbia Col-0 J. Dangla

Wassilewskija Ws-0 K. Feldmannb

aUniversity of North Carolina, Chapel Hill, NC, USA 
bUniversity of Arizona, Tucson, AZ, USA 
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Table 2.2. Mutant and transgenic Arabidopsis lines used in this study 

Gene Accession Description Reference/Source 

eds1-1 Ws-0 EMS [38] 

pad4-5 Ws-0 T-DNA [114] 

snc1/npr1-1/eds1-2 Col-0/Ler EMS/EMS/FN [115] 

mpk4 Ler T-DNA [82] 

nudt7-1 Col-0 T-DNA [102] 

mpk4/MPK4HA Ler Floral dipping of 
mpk4 

[90] 

mpk4/MPK4Y124GHA Ler Floral dipping of 
mpk4 

[90] 

CaMV35S::gEDS1-strepII Ws-0 Floral dipping of 
eds1-1 

[116] 

promEDS1::gEDS1-strepII Ws-0 Floral dipping of 
eds1-1 

[116] 

CaMV35S::cPAD4-strepII Ws-0 Floral dipping of 
pad4-5 

J. Bautora

promPAD4::cPAD4-strepII Ws-0 Floral dipping of 
pad4-5 

J. Bautora

EMS: ethylmathane sulfonate; FN: fast neutron; dSpm: defectice Suppressor-mutator; T-DNA: transfer-

DNA 
a

Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany 

 

 

2.1.2 Pathogens 
 

2.1.2.1 Hyaloperonospora parasitica 
 

Table 2.3 Hyaloperonospora parasitica isolates used in this study 

Isolate Original source Reference 

Emwa1 Oospore infection of a single seedling [39] 

Noco2 Conidia isolated from a single seedling [117] 
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Peronospora parasitica isolates and their interaction with Arabidopsis ecotypes 

Arabidopsis ecotype Peronospora parasitica isolate 

 Emwa1 Noco2 

Col-0 
incompatible 

(RPP4) 
compatible 

 

Ws-0 
compatible 

 
incompatible 

(RPP1) 
 

 

2.1.2.2 Pseudomonas syringae pv. tomato  
 

Pseudomonas syringae pv. tomato (Pst) strain DC3000 expressing the avirulence 

determinant avrRps4 [40] from the broad host range plasmid pVSP61 [118] or DC3000 

containing empty pVSP61 were used throughout this study. The Pst isolates were 

originally obtained from R. Innes (Indiana University, Bloomington Indiana, USA). 

 

2.1.3 Oligonucleotides 
 

Listed below are primers used in this study that were synthesised by Invitrogen or Sigma. 

Lyophilised primers were resuspended in nuclease-free water to a final concentration of 

100 pmol/µl (= 100 µM). Working stocks were diluted to 10 pmol/µl (=10 µM). 

 

Table 2.4 List of primers used in this study 

Primer Sequence (5´ →  3´) Purpose 

   

KLJ26 GGCGATGAAGCTCAATCCAAACG RT-PCR Actine For 

KLJ27 GGTCACGACCAGCAAGATCAAGACG RT-PCR Actine Rev 

KLJ1 GTAGGTGCTCTTGTTCTTCCC RT-PCR PR1 For 

KLJ2 CACATAATTCCCACGAGGATC RT-PCR PR1 Rev 

JK7 AATGAGCTCTCATGGCTAAGTTTGCTTCC RT-PCR PDF1.2 For 

JK8 AATCCATGGAATACACACGATTTAGCACC RT-PCR PDF1.2 Rev 
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Primer Sequence (5´ →  3´) Purpose 

   

MB70 TCATACGCAATCCAAATGTTTAC RT-PCR EDS1 For 

MB71 AAAAACCTCTCTTGCTCGATCAC RT-PCR EDS1 Rev 

EG34 TGGTCGACGCTGGCATACT RT-PCR PAD4 For 

EG35 GGTTGAATGGCCGGTTATCA RT-PCR PAD4 Rev 

MB16 GACAACACCAGAATCCTCATGCAA RT-PCR At5g55450 For 

MB17 ATGGATACGAACAATACCAGAAC RT-PCR At5g55450 Rev 

EDS3 GGATAGAAGATGAATACAAGCC eds1-1 genotyping For 

EDS1r ACCTAAGGTTCAGGTATCTGT eds1-1 genotyping Rev 

MW23 CAAACGTCAAGAGAGCTGAG EDS1-strep genotyping For 

LW52 TCATTTTTCAAATTGAGGATGAGACCA EDS1-strep genotyping Rev 

EG24 GTCTGTCGGTTGTATACTCGG MPK4/MPK4Y124GHA    genotyping For 

EG25 AGGGATAGCCCGCATAGTCA MPK4/MPK4Y124GHA genotyping Rev 

MW31 CTTCAATGGCGGTGTTTTC snc1 genotyping For 

MW32 GGCATGCGTAATCTGCAATATCTAA snc1 genotyping Rev 

   

   

For.: forward; Rev.: reverse 

 

 

 

 

2.1.4 Enzymes 
 

2.1.4.1 Restriction endonucleases 
 

Restriction enzymes were purchased from New England Biolabs (Frankfurt, Germany) 

unless otherwise stated. Enzymes were supplied with 10x reaction buffer. 
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2.1.4.2 Nucleic acid modifying enzymes 
 

Standard PCR reactions were performed using home made Taq DNA polymerase. 

Modifying enzymes and their suppliers are listed below: 

 

Taq DNA polymerase     home made 

SuperScript™ II RNase H- Reverse Transcriptase Invitrogen™ (Karlsruhe, Germany) 

 

2.1.5 Chemicals 
 

Laboratory grade chemicals and reagents were purchased from Sigma-Aldrich 

(Deisenhofen, Germany), Roth (Karlsruhe, Germany), Merck (Darmstadt, Germany), 

Invitrogen™ (Karlsruhe, Germany), Serva (Heidelberg, Germany), and Gibco™ BRL® 

(Neu Isenburg, Germany) unless otherwise stated. 

 

 

2.1.6 Antibiotics 
 

Kanamycin (Kan)  50 mg/ml in H2O 

Rifampicin (Rif)  100 mg/ml in DMSO 

Stock solutions (1000x) stored at -20° C. Aqueous solutions were sterile filtrated. 

 

 

2.1.7 Media 
 

Media were sterilised by autoclaving at 121° C for 20 min. For the addition of antibiotics 

and other heat labile compounds the solution or media were cooled down to 55° C. Heat 

labile compounds were sterilised using filter sterilisation units prior to addition. 
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Pseudomonas syringae media 

  

NYG broth 

  

 Peptone   5.0 g/l 

 Yeast extract   3.0 g/l 

 Glycerol   20 ml/l 

 pH 7.0 

 For NYG agar plates 1.5 % (w/v) agar was added to the above broth. 

 

Arabidopsis thaliana media 

 

MS (Murashige and Skoog) solid medium (MS plates) 

  

 MS powder including vitamins and MES buffer 4.8 g/l 

 Sucrose 10.0 g/l 

 Plant agar 9.0 g/l 

       pH 5.8 

 

For selection of transgenic Arabidopsis plants carrying the phosphinothricin 

acetyltransferase (PAT) gene that confers Basta® (glufosinate-ammonium) resistance, 

DL-Phosphinothricin (PPT) was added to the agar plates: 

   

 DL-Phosphinothricin (100 mg/ml)            1:10000    

 

For selection of transgenic Arabidopsis plants carrying the nptII (neomycin 

phosphotransferase) gene that confers Kanamycin resistance, Kanamycin was added to 

the agar plates: 

 

Kanamycin (50 mg/ml in H2O)        1:500 
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MS (Murashige and Skoog) liquid medium 

  

 MS powder including vitamins and MES buffer 4.8 g/l 

 Sucrose 10.0 g/l 

 

For oxidative stress response analyses Methyl Viologen (MV) was added. A stock of 

100mM MV was prepared and diluted in the MS liquid medium to reach a final 

concentration of 1 or 2 µM. 

 

DL-Phosphinothricin, plant agar and MS powder including vitamins and MES buffer was 

purchased from Duchefa (Haarlem, The Netherlands). Kanamycin solution and Methyl 

Viologen powder were purchased from Sigma-Aldrich (Deisenhofen, Germany). 

 

2.1.8 Antibodies 
 

Listed below are primary and secondary antibodies used for immunoblot detection  

 

Table2.5 Primary antibodies 

Antibody Source Dilution Reference 

α-EDS1 rabbit polyclonal 1:500 S. Rietza

α-PAD4 rabbit polyclonal 1:500 S. Rietza

α-strepII HRP conjugated Mouse monoclonal 1:5000 IBA (Göttingen, Germany) 
aMax-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany 
HRP: horseradish peroxidase 

 

Table 2.6 Secondary antibodies 

Antibody Feature Dilution Source 

goat anti-rabbit IgG-HRP HRP conjugated 1:5000 Santa Cruz (Santa Cruz, 
USA) 

HRP: horseradish peroxidase 
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2.1.9 Buffers and solutions 
 

General buffers and solutions are displayed in the following listing. All buffers and 

solutions were prepared with Milli-Q® water. Buffers and solutions for molecular 

biological experiments were autoclaved and sterilised using filter sterilisation units. 

Buffers and solutions not displayed in this listing are denoted with the corresponding 

methods. 

 

 

 

DNA extraction buffer (Quick prep)  

 

 Tris   200 mM 

 NaCl   250 mM 

 EDTA   25 mM 

 SDS   0.5 % 

 pH 7.5 (HCl) 

 

PCR reaction buffer (10x)  

 

 Tris   100 mM 

 KCl   500 mM 

 MgCl2   15 mM 

 Triton X-100   1 % 

 pH 9.0 

 

Stock solution was sterilised by autoclaving and used for homemade Taq DNA 

polymerase. 
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DNA gel loading dye (6x)  

  

 Sucrose   4 g 

 EDTA (0.5 M)   2 ml 

 Bromophenol blue   25 mg 

 H2O to 10 ml 

 

TAE buffer (50x)  

  

 Tris   242 g 

 EDTA   18.6 g 

 Glacial acetic acid   57.1 ml 

 H2O to 1000 ml 

 pH 8.5 

 

 

Lactophenol trypan blue  

  

 Lactic acid   10 ml 

 Glycerol   10 ml 

 H2O   10 ml 

 Phenol   10 g 

 Trypan blue   10 mg 

 Before use dilute 1:1 in ethanol. 

 

Ethidium bromide stock solution  Ethidium bromide10mg/mlH2O  

   Dilute 1:40000 in agarose solution 
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BTH solution BTH (commercial product BION®, Syngenta) was 

resuspended in dH20 to a final concentration of 

300µM  

 

SDS-PAGE: 

 

Resolving gel (10%):  for 20 ml gel mold volume 

 

 1,5M Tris (pH 8.8)   5 ml 

 H2O    7,9 ml 

 10 % SDS    0,2 ml 

 30 % Acrylamide/Bis solution, 29:1 (BioRad)   6,7 ml 

 TEMED (BioRad)    0,008 ml 

 10 % APS   0,2 ml 

 

Resolving gel (5%):  for 20 ml gel mold volume 

 

 0,5 M Tris (pH 6.8)   1 ml 

 H2O    2,2 ml 

 10 % SDS    0,04 ml 

 30 % Acrylamide/Bis solution, 29:1 (BioRad)   0,67 ml 

 TEMED (BioRad)    0,004 ml 

 10 % APS   0,04 ml 

 

Running buffer (10x)  

  

 Tris   30.28 g 

 Glycine   144.13 g 

 SDS   10 g 

 H2O to 1000 ml 
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Sample buffer (2x)  

  

 Tris   0.125 M 

 SDS   4 % 

 Glycerol   20 % (v/v) 

 Bromphenol blue   0.02 % 

 Dithiothreitol (DTT)   0.2 M 

 pH 6.8 

   

Western blotting: 

  

Transfer buffer (10x)  

 

 Tris   58.2 g 

 Glycine   29.3 g 

 SDS (10 %)   12.5 ml 

 H2O to 1000 ml 

 pH 9.2 

 

Before use dilute 80 ml 10 x buffer with 720 ml H2O and add 200 ml methanol. 

 

TBS-T buffer  

  

 Tris   10 mM 

 NaCl   150 mM 

 Tween®20   0.1 % 

 pH 7.5 (HCl) 

 

Ponceau S Ponceau S working solution was prepared by 

dilution of ATX Ponceau S concentrate (Fluka) 1:5 

in H2O. 
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2.2 Methods 

 

2.2.1 Sequence Analyses 
 

Allignements were generated using the software ClustalX [119]. Sequences were edited 

by using the software GeneDoc version 2.6.002 (www.psc.edu/biomed/genedoc). 

Prediction of phosphorylation sites were performed using the software NetPhos  version 

2.0 (http://www.cbs.dtu.dk/services/NetPhos/ , [120]). 

 

2.2.2 Maintenance and cultivation of Arabidopsis plant material 
 

Arabidopsis seeds were germinated by sowing directly onto moist compost (Stender AG, 

Schermbeck, Germany) containing insecticide (10 mg l
-1 

Confidor WG 70 (Bayer, 

Germany)). Seeds were cold treated by placing sawn pots on a tray with a lid and 

incubating them in the dark at 4° C for three days. Pots were subsequently transferred to a 

controlled environment growth chamber, covered with a propagator lid and maintained 

under short day conditions (10 hour photoperiod, light intensity of approximately 200 

µEinsteins m
-2 

sec
-1

, 23° C day, 22° C night, and 65 % humidity). Propagator lids were 

removed when seeds had germinated. If required for setting seed, plants were transferred 

to long day conditions (16 hour photoperiod) to allow early bolting and setting of seed. 

To collect seed, aerial tissue was enveloped with a paper bag and sealed with tape at its 

base until siliques shattered.  

 
 

2.2.3 Generation of Arabidopsis F1 and F2 progeny 
 

Fine tweezers and a magnifying-glass were used to emasculate an individual flower. To 

prevent self-pollination, only flowers that had a well-developed stigma but immature 

stamen were used for crossing. Fresh pollen from three to four independent donor 

stamens was dabbed onto each single stigma. Mature siliques containing F1 seed were 
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harvested and allowed to dry. Approximately five F1 seeds per cross were grown as 

described above and allowed to self pollinate. Produced F2 seeds were collected and 

stored. 

 

2.2.4 Arabidopsis seed sterilization  
 

For in vitro growth of Arabidopsis, seeds were sterilised. Approximately 50 - 100 

Arabidopsis seeds were put into a 1.5 ml closable microcentrifuge tube. Open 

microcentrifuge tubes were put in a plastic rack. 100 ml of 12 % Sodium-hypochloride 

solution (chlorine bleach) were poured into a beaker and put together with the seed into 

an exsiccator. The exsiccator was connected to a vacuum pump. 10 ml of 37 % HCl was 

directly added into the hypochloride solution so that yellow-grenish vapours were 

forming and the solution was bubbling heavily. The lid of the exsiccator was closed 

immediately and vacuum was generated, just enough to get an air tight seal. This was left 

for 4 – 8 h. After the sterilisation period, the exsiccator was slightly opened under a fume 

hood for 5 min to let out the gas. The lid was closed again, brought to a sterile bench and 

sterilised seeds were taken out of the exsiccator. Seeds were left for 15 min in opened 

vessel under the sterile workbench. Sterilised seed were stored for several days at 4° C or 

directly plated out on suitable culture media. 

 

2.2.5 Glufosinate selection of Arabidopsis transformants on soil 
 

Seed collected from floral-dipped plants (see 2.2.4) were densely sown on soil and 

germinated as described before. Once cotyledons were fully opened but before true leaves 

appeared, young seedlings were sprayed with 0.1 % (v/v) Basta® (the commercial product 

of glufosinate). This treatment was repeated twice on a two day basis. Only transgenic 

Arabidopsis plants carrying the phosphinothricin acetyltransferase (PAT) gene that 

confers glufosinate-resistance survived while untransformed plants died. 
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2.2.6 Inoculation and maintenance of Hyaloperonospora parasitica 
 

H. parasitica isolates were maintained as mass conidiosporangia cultures on leaves of 

their genetically susceptible Arabidopsis ecotypes over a 7 day cycle (see 2.1.2.1). Leaf 

tissue from infected seedlings was harvested into a 50 ml Falcon tube 7 d after 

inoculation. Conidiospores were collected by vigorously vortexing harvested leaf 

material in sterile dH2O for 15 sec and after the leaf material was removed by filtering 

through miracloth (Calbiochem) the spore suspension was adjusted to a concentration of 

4 x 104 spores/ml dH2O using a Neubauer counting cell chamber. Plants to be inoculated 

had been grown under short day conditions as described above. H. parasitica 

conidiospores were applied onto 2-week-old seedlings by spraying until imminent run-off 

using an aerosol-spray-gun. Inoculated seedlings were kept under a propagator lid to 

create a high humidity atmosphere and incubated in a growth chamber at 18° C and a 10 

h light period. For long term storage P. parasitica isolate stocks were kept as mass 

conidiosporangia cultures on plant leaves at -80° C. 

 

2.2.7 Quantification of H. parasitica sporulation 
 

To determine sporulation levels, seedlings were harvested 5 d after inoculation in a 50 ml 

Falcon tube and vortexed vigorously in 5 – 10 ml water for 15 sec. Whilst the 

conidiospores were still in suspension 10 µl were removed twice and spores were counted 

under a light microscope using a Neubauer counting cell chamber. For each tested 

Arabidopsis genotype, three pots containing approximately 30 seedlings were infected 

per experiment and harvested spores from all seedlings of each pot were counted with 

sporulation levels expressed as the number of conidiospores per gram fresh weight. 

 

2.2.8 Lactophenol trypan blue staining 
 

Lactophenol trypan blue staining was used to visualize P. parasitica mycelium and 

necrotic plant tissue [121]. Leaf material was placed in a 15 ml Sarstedt tube (Nümbrecht, 

Germany) and immersed in lactophenol trypan blue. The tube was placed into a boiling 
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water bath for 2 min followed by destaining in 5 ml chloral hydrate solution (2.5 g/ml 

water) for 2 h and a second time overnight on an orbital shaker. After leaf material was 

left for several hours in 70 % glycerol, samples were mounted onto glass microscope 

slides in 70 % glycerol and examined using a light microscope (Axiovert 135 TV, Zeiss, 

Germany) connected to a Nikon DXM1200 Digital Camera. 

 

 

2.2.9 Maintenance of P. syringae pv. tomato cultures 
 

Pseudomonas syringae pv. tomato strains described in 2.1.2.2 were streaked onto 

selective NYG agar plates containing rifampicin (100 µg/ml) and kanamycin (50 µg/ml) 

from -80° C DMSO stocks. Streaked plates were incubated at 28° C for 48 h before 

storing at 4° C and refreshed weekly. 

 

 

2.2.10 P. syringae pv. tomato DC3000 growth assay 
 

Pst DC3000 cultures were grown for two days on NYG broth agar plates containing 

rifampicin (100 µg/ml) and kanamycin (50 µg/ml) at 28°C. Bacteria were then scratched 

from the plates and directly transferred into a solution of 10 mM MgCl2 with 0,02% 

Silwet L-77 (Lehle Seeds, USA) until reaching an optical density of OD600 = 0,1 equal 

to 5 X 107 cfu/ml. Four-week-old plants were surface sprayed with the bacterial 

suspension. Leaves were harvested 3 and 72 h after infection and surface sterilized (30 s 

in 70% ethanol, followed by 30 s in sterile distilled water). Four leaf discs from four 

different leaves were taken by using a coak borer (∅ 0.55 cm) for excision, and ground in 

10mM MgCl2 with a microfuge tube plastic pestle. After grinding of the tissue, the 

samples were thoroughly vortex-mixed and diluted 1:10 serially. Samples were finally 

plated on NYG broth agar plates containing rifampicin (100 µg/ml) and kanamycin (50 

µg/ml). Plates were placed at 28 ° C for 2 days, after which the colony-forming units 

were counted. 
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For each line three replicates were performed and for each replicate counts were 

performed twice. 

 

2.2.11 Sterile growth  
 

Magenta boxes (Sigma-Aldrich Deisenhofen, Germany), were autoclaved. Under laminar 

flow hood 50 ml of autoclaved MS solid medium was poured in all Magentas and the 

medium was let to solidify. Upon solidification, sterilized Arabidopsis seeds were sown 

on the medium surface and the Magentas were sealed. For stratification the Magentas 

were kept for two days at 4° C in the dark and then transferred in a short day (8 h 

light/day) growth chamber. After five weeks Magentas were open and samples taken. 

 

2.2.12 Cell size measurements 
 

Plants were grown for four weeks at standard growth conditions (12 h/day light). From 

five individuals for each line the seventh true leaf was collected and cleared over night in 

a solution of Ethanol : Acetic Acid (2 : 1). The day after leaves were rehydrated by 

incubation in an ethanol dilution series of 50%, 33% and 25%. Leaves were incubated for 

twenty minutes in each dilution. Afterwards samples were transferred in a solution of 

chloral hydrate, ethanol and glycerol (8:1:1) and incubated over night at room 

temperature. The day after leaves were mounted onto glass microscope slides and 

examined using a light microscope (Axioplan 2, Zeiss, Germany) connected to a digital 

camera (Axiocam MR 5, Zeiss, Germany). Pictures at magnification 20X of adaxial 

epidermal cells in the most central part of the leaf lamina were taken and the borders of 

15-18 cells, excluding stomata and trichomes base cells, were drawn manually. The 

surface of the drawn area was then measured using the Axiovision version 4.4 software 

(Zeiss, Germany) and the surface of a single epidermal cell estimated. 
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2.2.13 Oxidative stress analyses 
 

Seeds were sterilized as described in section 2.2.4 and sown on MS plates without 

antibiotics. For stratification plates were incubated for two days at 4°C in the dark. 

Afterwards they were transferred in a growth chamber with standard growth condition 

(12 h/day light). After 7 days, seedlings were transferred in 96 well microtiter plates 

(Nunc, Denmark) containing in each well 300 µl of autoclaved MS liquid medium 

without or with methyl viologen (1 or 2 µM). Plates were closed an their lids sealed with 

hypoallergenic non-woven tape (Leukopor, Germany). Plates were then placed on 

shakers in growth chamber with standard growth conditions (12 h/day light). Three days 

after, three samples of three plants each were weighed and the weight of a single plant 

was estimated. Weight of plants grown in presence of methyl viologen was expressed as 

percentage of the average value measured for the same line in the absence of methyl 

viologen. 

 

 

2.2.14 Molecular biological methods 
 

2.2.14.1 Isolation of genomic DNA from Arabidopsis (Quick prep for PCR) 
 

This procedure yields a small quantity of poor quality DNA. However, the DNA is of 

sufficient quality for PCR amplification. The aliquots were stored at -20° C. The cap of a 

1.5 ml microcentrifuge tube was closed onto a leaf to cut out a section of tissue and 400 

µl of DNA extraction buffer were added. A micropestle was used to grind the tissue in 

the tube until the tissue was well mashed. The solution was centrifuged at maximum 

speed for 5 minutes in a bench top microcentrifuge and 300 µl supernatant were 

transferred to a fresh tube. One volume of isopropanol was added to precipitate DNA and 

centrifuged at maximum speed for 5 minutes in a bench top microcentrifuge. The 

supernatant was discarded carefully. The pellet was washed with 70 % ethanol and dried. 

Finally the pellet was dissolved in 100 µl 10 mM Tris-HCl pH 8.0 and 1 µl of the DNA 

solution was used for a 20 µl PCR reaction mixture. 
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2.2.14.2 Isolation of total RNA from Arabidopsis 
 

Total RNA was prepared from 3- to 6-week-old plant materials. Liquid nitrogen frozen 

samples (approximately 50 mg) were homogenized 2 x 15 sec to a fine powder using a 

Mini-Bead-Beater-8TM (Biospec Products) and 1.2 mm stainless steel beads (Roth) in 2 

ml centrifuge tubes. After the first 15 sec of homogenisation samples were transferred 

back to liquid nitrogen and the procedure was repeated. 1 ml of TRI® Reagent (Sigma) 

was added and samples were homogenised by vortexing for 1 min. Samples were 

centrifuged for 10 min. at 4° C at 12000 g and supernatants incubated for 5 min at room 

temperature to dissociate nucleoprotein complexes. 0.2 ml of chloroform was added and 

samples were shaken vigorously for 15 sec. After incubation for 3 min at room 

temperature samples were centrifuged for 15 min at 12000 g and 4° C. 0.5 ml of the 

upper aqueous, RNA containing phase were transferred to a new microcentrifuge tube 

and RNA was precipitated by adding 0.5 volumes of isopropanol and incubation for 10 

min at room temperature. Subsequently, samples were centrifuged for 10 min at 12000 g 

and 4° C. The supernatant was removed and the pellet was washed by vortexing in 1 ml 

of 70 % ethanol. Samples were again centrifuged for 10 min at 12000 g and 4° C, pellets 

were air dried for 10 min and dissolved in 20 µl H2O. Samples were incubated for 5 

minutes at 55°C and then immediately stored at -80° C. 

 

 

 

 

2.2.14.3 Polymerase chain reaction (PCR) 
 

Standard PCR reactions were performed using home made Taq DNA polymerase. All 

PCRs were carried out using a PTC-225 Peltier thermal cycler (MJ Research). A typical 

PCR reaction mix and thermal profile is shown below.  
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Table 2.7 PCR reaction mix (20 µl total volume): 

Componenta Volume 

Template DNA (genomic or plasmid) 0.1 - 20 ng 

10 x PCR reaction buffer 2 µl 

dNTP mix (2.5 mM each: dATP, dCTP, dGTP, dTTP) 2 µl 

Forward primer (10 µM) 1 µl 

Reverse primer (10 µM) 1 µl 

Taq DNA polymerase (4U/µl) 0.5 µl 

Nuclease free water to 20 µl total volume 
 

Table 2.8 Thermal profile 

Stage Temperature (°C) Time period No. of cycle 

Initial denaturation 94 3 min 1 x 

Denaturation 94 30 sec  

Annealing 50 - 60 30 sec 25 - 40 

Extension 72 1 min per kb   

Final extension 72 3 min 1 x 
 

2.2.14.4 Reverse transcription-polymerase chain reaction (RT-PCR) 
 

RT-PCR was carried out in two steps. SuperScript™ II RNase H- Reverse Transcriptase 

(Invitrogen) was used for first strand cDNA synthesis by combining 1 - 1.5 µg template 

total RNA, 1 µl oligo dT18V (0.5 µg/µl, V standing for an variable nucleotide), 5 µl dNTP 

mix (each dNTP 2.5 mM) in a volume of 13.5 µl (deficit made up with H2O). The sample 

was incubated at 65° C for 10 min to destroy secondary structures before cooling on ice 

for oneminute. Subsequently the reaction was filled up to a total volume of 20 µl by 

adding 4 µl of 5x reaction buffer (supplied with the enzyme), 2 µl of 0.1 M DTT and 0.5 

µl reverse transcriptase. The reaction was incubated at 42° C for 60 min before the 

enzyme was heat inactivated at 70° C for 10 min. For subsequent normal PCR, 1 µl of the 

above RT-reaction was used as cDNA template.  
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2.2.14.5 Restriction endonuclease digestion of DNA 
 

Restriction digests were carried out using the manufacturer´s recommended conditions. 

Typically, reactions were carried out in 0.5 ml tubes, using 1 µl of restriction enzyme per 

10 µl reaction. All digests were carried out at the appropriate temperature for a minimum 

of three hours. 

 

2.2.14.6 Agarose gel electrophoresis of DNA 
 

DNA fragments were separated by agarose gel electrophoresis in gels consisting of 1 – 

3 % (w/v) SeaKem® LE agarose (Cambrex, USA) in TAE buffer. Agarose was dissolved 

in TAE buffer by heating in a microwave. Molten agarose was cooled to 50° C before 2.5 

µl of ethidium bromide solution (10 mg/ml) was added. The agarose was pored and 

allowed to solidify before being placed in TAE in an electrophoresis tank. DNA samples 

were loaded onto an agarose gel after addition of 2 µl 6x DNA loading buffer to 10 µl 

PCR- or restriction-reaction. Separated DNA fragments were visualised by placing the 

gel on a 312 nm UV transilluminator and photographed. 

 

2.2.15 Biochemical methods 
 

2.2.15.1 Arabidopsis total protein extraction for immunoblot analysis 
 

Total protein extracts were prepared from 3- to 5-week-old plant materials. Liquid 

nitrogen frozen samples were homogenized 2 x 15 sec to a fine powder using a Mini-

Bead-Beater-8TM (Biospec Products) and 1.2 mm stainless steel beads (Roth) in 2 ml 

centrifuge tubes. After the first 15 sec of homogenisation samples were transferred back 

to liquid nitrogen and the procedure was repeated. 150 µl of 2x SDS-PAGE sample 

buffer was added to 50 mg sample on ice. Subsequently, samples were briefly vortexed, 

boiled for 5 min at 96 ° C and centrifuged at 20000 g and 4° C for 20 min in a bench top 
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centrifuge. Supernatants were transferred to clean centrifuge tubes and stored at -20° C if 

not directly loaded onto SDS-PAGE gels. 

 

2.2.15.2 Denaturing SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 
 

Denaturing SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was carried out using 

the Mini-PROREAN® 3 system (BioRad) and discontinuous polyacrylamide (PAA) gels. 

Gels were made fresh on the day of use according to the manufacturer instructions. 

Resolving gels were poured between to glass plates and overlaid with 500 µl of water-

saturated 2 - isopropanol. After gels were polymerised for 30 – 45 min the alcohol 

overlay was removed and the gel surface was rinsed with dH2O. Excess water was 

removed with filter paper. A stacking gel was poured onto the top of the resolving gel, a 

comb was inserted and the gel was allowed to polymerise for 30 - 45 min. In this study, 

10 % resolving gels were used, overlaid by 5 % stacking gels. Gels were 0.75 mm or 1.5 

mm in thickness. 

 

If protein samples were not directly extracted in 2x SDS-PAGE sample buffer (see 

2.1.11) proteins were denatured by adding 1 volume of 2x SDS-PAGE sample buffer to 

the protein sample followed by boiling for 5 min. 

After removing the combs under running water, each PAA gel was placed into the 

electrophoresis tank and submerged in 1x running buffer. A pre-stained molecular weight 

marker (Precision plus protein standard dual colour, BioRad) and denatured protein 

samples were loaded onto the gel and run at 80 - 100 V (stacking gel) and 100 – 150 V 

(resolving gel) until the marker line suggested the samples had resolved sufficiently. 

 

2.2.15.3 Immunoblot analysis 
 

Proteins that had been resolved on acrylamide gels were transferred to Hybond™-ECL™ 

nitrocellulose membrane (Amersham Biosciences) after gels were released from the glass 

plates and stacking gels were removed with a scalpel. PAA gels and membranes were 

37 



  Material and Methods 

pre-equilibrated in 1 x transfer buffers for 10 min on a rotary shaker and the blotting 

apparatus (Mini Trans-Blot® Cell, BioRad) was assembled according to the manufacturer 

instructions. Transfer was carried out at 100 V for 70 min or over night at 30 V at 4° C. 

The transfer cassette was dismantled and membranes were checked for equal loading by 

staining with Ponceau S for 5 min before rinsing in copious volumes of deionised water. 

Ponceau S stained membranes were scanned and thereafter washed for 5 min in TBS-T 

before membranes were blocked for 1 h at room temperature in TBS-T containing 5 % 

blotting grade milk powder (Roth). The blocking solution was removed and membranes 

were washed briefly with TBS-T. Incubation with primary antibodies was carried out 

overnight by slowly shaking on a rotary shaker at 4° C in the following conditions: α-

EDS1 1:500 in TBS-T + 2 % milk powder, α-PAD4 1:500 in TBS-T + 0,9 % milk 

powder. Next morning the primary antibody solution was removed and membranes were 

washed 3 x 15 min with TBS-T at room temperature on a rotary shaker. Primary 

antibody-antigen conjugates were detected using a horseradish peroxidase 

(HRP)-conjugated goat anti-rabbit secondary antibody diluted 1:5000 in TBS-T + 2%  

milk powder. Membranes were incubated in the secondary antibody solution for 1 h at 

room temperature by slowly rotating. The antibody solution was removed and 

membranes were washed as described above. In the case of the α-strepII antibodies, 

already HRP conjugated, the membrane were incubated for six h an a rotary shaker at 4° 

C in with an antibody dilution of 1:5000 in TBST + 1% milk powder. After being washed 

as described above, detection immediately followed. Detection was performed by 

chemiluminescence using the SuperSignal® West Pico Chemimuminescent kit or a 9:1 - 

3:1 mixture of the SuperSignal® West Pico Chemimuminescent- and SuperSignal® West 

Femto Maximum Sensitivity-kits (Pierce) according to the manufacturer instructions. 

Luminescence was detected by exposing the membrane to photographic film (BioMax 

light film, Kodak). 
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2.2.15.4 Protein purification using StrepII affinity purification 

 

2.2.15.4.1 Standard purification from OE_E1s plant material 
 

StrepII affinity protein purification was performed according to the protocol described by 

Witte et al., with modifications described below [122]. For one purification, 1 g of 

Arabidopsis leaf material was ground in liquid nitrogen and thawed in 1,5 ml StrepII EX 

buffer listed below. The slurry was aliquoted in 2 ml micro centrifuge tubes and then 

centrifuged for 15 min at 4ºC (14000 rpm). The supernatant was ultra centrifuged for 20 

min at 4ºC (100000 rpm). The supernatant was transferred to a new micro centrifuge tube, 

sampled (Input), and 240 µl slurry of StrepTactin Sepharose (IBA GmbH, Göttingen, 

Germany) was added. The Sepharose matrix is based on Sepharose 4FF with a bead size 

of 45–165 µm. Binding was performed by incubation in an end-over-end rotation wheel 

for 60 min at 4ºC. The slurry was transferred into a micro spin column (BioRad 732-6204, 

Hercules, CA) and the unbound fraction let flow through. The resin was washed twice 

with 1 ml and four times with 0.5 ml StrepII W buffer. For elution, 90 µl of Elution 

buffer representing the void volume of the system were carefully applied to the resin but 

not recovered.  

Table 2.9 StrepII  affinity purification buffers: 

StrepII EX:  StrepII W:   Elution: 

Tris-HCla 100 mM Tris-HCla 50mM Tris-HCla 10 mM 

EDTA 1 mM EDTA 0.5 mM Desthiobiotin 10mM 

NaCl 150 mM NaCl 150 mM NaCl   150 mM 

DTT 10 mM DTT 2 mM DTT 2 mM 

AEBSFb 0.5 mM Triton X-100 0.05% Triton X-100 0.05% 

Aprotinin 5 µg/ml     

Leupeptin 5 µg/ml     

PIc 1:100 dilution     

Triton X-100 0.5%     

avidin   100 µg/ml     
aTris-HCl: pH 8.0 
bAEBSF: 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride 
cPI: Proteinase Inhibitor cocktail (Sigma p9599) 
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Four times 100 µl Elution buffer were passed through and collected in two pools of 200 

µl. From each pool, 20 µl were sampled for SDS-PAGE analysis (Elution). All samples 

taken for electrophoresis analysis were mixed with a 2 x SDS-loading buffer and heated 

for 5 min at 96º C prior to loading. 

 

2.2.15.4.2 Purification from OE_E1s plant material for LC-MS 
 

For OE_E1s LC-MS analyses StrepII affinity purification was performed following the 

standard protocol with the following modifications. 

While the first two washes of the resin were performed with the StrepII W buffer 

indicated above, the last four were performed using StrepII W without Triton X - 100. 

The elution buffer composition was also modified by removing both NaCl and Triton. 

Only two times 100µl of elution buffer were employed for the elution and the two eluates 

pooled. To 50 µl of eluate were added 0,4 µg of sequencing grade modified trypsin 

(Promega) and the samples were incubated over night at room temperature. The 

following day the samples were analyzed by LC-MS/MS (Micromass Q-Tof-2, Waters), 

at the Mass Spectrometry facility of the Max-Planck-Institute for Plant Breeding 

Research (Cologne, Germany), following their standard protocol. 

 

2.2.15.4.3 StrepII affinity purification from OE_E1s plant material for in vivo 
phosphorylation analyses 
 

 

For OE_E1s phosphorylation analyses StrepII affinity protein purification was performed 

following the standard protocol with the following modifications. The phosphatase 

inhibitors indicated below (purchased from Sigma-Aldrich, Deisenhofen, Germany) were 

added to the StrepII EX buffer until reaching the indicated final concentration: 
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NaF 50 mM 

NaVO4 10 mM 

PPICa dilution 1 : 100 from the stock 

B-Gly-Pb 10 mM 
a Protein Phosphatase Inhibitor Cocktail (Sigma P2850) 
b Glycerol-2-phosphate 

 

After elution, samples were concentrated from starting 400 µl to final 20 µl using 

Vivaspin500 columns (VIVASCIENCE, Hannover, Germany). To all concentrated 

samples were added 1.1 µl λ Protein Phosphatase buffer 10X (New England Biolabs, 

Frankfurt, Germany) and, as indicated in figures, 80 – 100 ng β-Casein (Sigma-Aldrich, 

Deisenhofen, Germany) and/or 25 units of λ Protein Phosphatase (New England Biolabs, 

Frankfurt, Germany). All the samples were incubated for 1 h at 37° C. 10 µl of each 

sample were mixed with 10 µl of sample buffer (2X) and loaded onto SDS-PAGE 

without any boiling. 

For detection the gel was stained with Pro-Q® Diamond phosphoprotein gel stain 

(Molecular Probes, Invitrogen), following the manufacturers instruction. The detection 

was performed at the fluorescence scanner Typhoon 8600 (Amersham Biosciences)  with 

an excitation wave length of 532 nm and an emission filter 580 nm BP30. Exposures 

were set between 600 and 650 V PMT (photomultiplier tube) voltage.  

The gel was subsequently rinsed in distilled water and then stained with SYPRO ® Ruby 

(Molecular Probes, Invitrogen) following the manufacturer´s instruction. Protein signals 

were visualised by placing the gel on a 312 nm UV transilluminator and photographed. 

 

2.2.15.4.4 Standard purification from NP_E1s plant material 
 

The affinity purification was performed as for OE-E1s plants with some modifications. 

For one purification, 2 g of Arabidopsis leaf material was ground in liquid nitrogen and 

thawed in 3 ml StrepII EX buffer. The slurry was aliquoted in 2 ml micro centrifuge tubes 

and then centrifuged for 15 min at 4ºC (14000 rpm). The supernatant was ultra 

centrifuged for 20 min at 4ºC (100000 rpm). The supernatant was aliquoted in to two new 
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micro centrifuge tube, sampled (Input fraction), and 240 µl slurry of StrepTactin 

Sepharose (IBA GmbH, Göttingen, Germany) was added to both tubes. Binding was 

performed by incubation in an end-over-end rotation wheel for 60 min at 4ºC. The slurry 

was transferred into a micro spin column (BioRad 732-6204, Hercules, CA) and the 

unbound fraction let flow through. The resins were washed twice with 1 ml and four 

times with 0.5 ml StrepII W buffer. For elution, 90 µl of Elution buffer representing the 

void volume of the system were carefully applied to the resin but not recovered. Four 

times 100 µl Elution buffer were passed through and collected in two pools of 200 µl. 

The eluates were pooled and concentrated using Vivaspin500 (VIVASCIENCE, 

Hannover, Germany) up to 20 µl. The concentrated eluates mixed with sample buffer 

(2X) and heated for 5 min at 96ºC prior to SDS-PAGE analysis. 

 

2.2.15.4.5 Purification from OP_E1s plant material for in vivo phosphorylation analyses 
 

For OP_E1s phosphorylation analyses StrepII affinity protein purification was performed 

following the OP_E1s standard protocol with the same modifications indicated in section 

2.2.13.3 

 

2.2.15.4.6 In vitro phosphorylation analyses 
 

Standard purification from OE_E1s plant material was performed. After elution the 

samples were concentrated from the starting 400 µl up to final 30µl. Each sample was 

divided into two identical aliquot of 15 µl and to each were added 1.6µl of PKA reaction 

buffer 10 X (New England Biolabs) and ATP (Sigma Aldrich) to reach a final 

concentration of 200 µM. Subsequently to the samples were added 250 units of cAMP 

dependent protein kinase ) PKA catalytic subunit (New England Biolabs), and/or 50 ng 

histone (New England Biolabs) as indicated in figures. All samples were incubated at 

30°C for 1 h. Subsequently they were separated by SDS-PAGE and the gel stained with 

Pro-Q® Diamond phosphoprotein gel stain (Molecular Probes, Invitrogen), following the 

manufacturers instruction. The gel was subsequently rinsed in distilled water and then 
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stained with SYPRO ® Ruby (Molecular Probes, Invitrogen) following the 

manufacturer´s instruction. 

Detection was performed as described in section 2.2.13.3 

 

2.2.15.5 Determination of free and total salicylic acid in leaves  
 

Extraction and quantification of total and free salicylic acid (SA) were performed as 

described previously with modifications [123]. Samples (approximately 200 mg of liquid 

nitrogen frozen leaf tissue) were homogenised in 0.6 ml of 80 % methanol using a Mini-

Bead-Beater-8TM (Biospec Products) and 1.2 mm stainless steel beads (Roth) in 2 ml 

Eppendorf tubes. Samples were centrifuged at 12000 g at 4° C for 10 min. The 

supernatants were collected into fresh 2 ml Eppendorf tubes. The extraction procedure 

was repeated once more with the residues and supernatants were combined. Under 

vacuum at 30° C methanol was evaporated and samples subsequently dissolved in 0.5 ml 

0.1M sodium acetate (NaOAc) pH 5.0 by 15 min shaking and 5 min incubation in an 

ultrasonic bath. Each sample was divided into two aliquots of 0,25 ml and to each aliquot 

were added 0.25 ml of 0.1 M NaOAc pH 5.0 containing beta-glucosidase (20 U/ml; EC 

3.2.1.21; almond, Sigma) to determine total SA, or 0.25 ml of 0.1 M NaOAc pH 5.0 

without beta-glucosidase, to determine free SA. Samples to determine total SA incubated 

at 37° C for 3 h. Subsequently to all samples were added 25 µl TFA (Trifluoroacetic acid) 

and 600 µl EtOAc (Ethyl acetate) the tubes were mixed for 1 min on a shaker. Samples 

were then centrifuged at 12000 g for 5 min at room temperature. The upper EtOAc phase 

was collected in a fresh 2 ml Eppendorf tubes. The EtOAc extraction was repeated twice 

and all three EtOAc fractions pooled and subsequently evaporated under vacuum at 30° C. 

The pellet was resuspended in 80 % methanol (100 µl / 200 mg initial fresh weight) for 

15 min on a shaker and 5 min in the ultrasonic bath. To remove undissolved debris, 

samples were centrifuged for 5 min at 12000 g and 4° C and the clear supernatants 

transferred to HPLC vials. The quantification procedure by HPLC was performed by P. 

Bednarek (MPIZ, Cologne). Analyses of processed leaf samples were performed on an 

Agilent (Palo Alto, CA) 1100 HPLC system equipped with DAD and FLD detectors. 

Samples were analyzed on a Xterra C-18 column (150/3, 3.5; Waters, Milford, MA) 
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using 0.1% trifluoroacetic acid as solvent A and 98% acetonitrile/0.1% trifluoroacetic 

acid as solvent B at a flow rate of 0.4 ml/min at 40°C (gradient of solvent A: 96% at 0, 

80% at 5, 70% at 23, 0% at 25 min). The salicylic acid peak was identified based on its 

retention time as well as absorbance and emission UV spectra. Salicylic acid was 

quantified by comparing its peak area on the FLD chromatograms (ex. 304 nm; em. 415 

nm) with respective calibration curve prepared for authentic standard. 

 

2.2.15.6 Determination of camalexin and scopoletin in leaves  
 

Camalexin levels determinations were performed as previously described [124]. Samples 

(approximately 200 mg of liquid nitrogen frozen leaf tissue) were homogenised in 0.6 ml 

of 80 % methanol using a Mini-Bead-Beater-8TM (Biospec Products) and 1.2 mm 

stainless steel beads (Roth) in 2 ml Eppendorf tubes. Samples were centrifuged at 12000 

g at 4° C for 10 min. The supernatants were collected into fresh 2 ml Eppendorf tubes. 

The extraction procedure was repeated once more with the residues and supernatants 

were combined. Under vacuum at 30° C methanol was evaporated and samples 

subsequently redissolved in 60 % methanol (150 µl / 100 mg initial fresh weight) by 

mixing for 15 min on a shaker and 5 min in the ultrasonic bath. To remove undissolved 

debris, samples were centrifuged for 5 min at 12000 g and 4° C and the clear supernatants 

transferred to HPLC vials. The quantification procedure by HPLC was performed by P. 

Bednarek (MPIZ, Cologne). Camalexin content was determined using a DiodeArray 

(DAD) at 330 nm and with a fluorescence detector at emission 318 nm/excitation 385 nm. 

Actual camalexin amounts were determined by comparisons with respective calibration 

curve prepared for authentic standard. 

 

To determine scopoletin leaf content the same procedure described for total SA 

determination was followed (see section 2.2.14). No scopoletin standard was available at 

the time of the measurements. For this reason data were expressed as peak areas.
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3. RESULTS 
 

3.1 Summary 

 

An increase of EDS1 and PAD4 protein abundances is observed upon challenge by a 

number of different pathogens [125]. To assess the importance of such protein up 

regulation in relation to the signaling activities of EDS1 and PAD4, multiple independent 

Arabidopsis thaliana transgenic lines over expressing either AtEDS1 or AtPAD4 were 

selected and characterized. The absence of any obvious phenotype together with the 

knowledge of the strong intimate connection between the signaling functions of EDS1 

and PAD4 prompted me to generate double EDS1 and PAD4 over expressor lines 

(OE_E1/P4, see below). Compared to wild type plants these lines exhibited growth 

retardation that was correlated with a reduction in cell size, likely resulting from the 

interference with or perturbation of an intrinsic developmental program. Also, OE_E1/P4 

plants exhibited increased resistance to virulent pathogens associated with a form of 

localized cell death specifically induced after challenge. Despite a slight constitutive 

activation of the Salicylic Acid (SA) pathway in the unchallenged state, OE_E1/P4 plants 

displayed a stronger and quicker defence response than wild type or individual EDS1 and 

PAD4 over expressors to virulent pathogens. This indicated a requirement for 

posttranslational changes downstream or independent of EDS1 and PAD4 protein up 

regulation in full defence activation. Therefore, the capability of OE_E1/P4 plants to 

respond to chemically induced changes in the cellular redox status that could be 

qualitatively reminiscent to those observed during the early stages of the pathogen 

response, was assessed. Also, the existence of potential post translational regulation 

mechanisms, such as protein modifications or protein-protein interactions in response to 

pathogen triggers, was investigated. Finally, to improve the extent and synchronicity of 

EDS1 pathway induction for analysis of EDS1 pathway activation steps, Arabidopsis 

lines were generated that had constitutive or conditional activation of the EDS1 pathway 

coupled with expression of functional strepII tagged EDS1 proteins. 
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3.2 Generation of Arabidopsis thaliana lines expressing EDS1 or PAD4 strepII 

fusion proteins 

 

Both EDS1 and PAD4 proteins are up regulated upon pathogen challenge or chemical 

induction of the SAR response [125]. To investigate the importance of such up regulation 

in the signal relay during pathogen response and SAR establishment, the behavior of 

Arabidopsis lines over expressing either EDS1 or PAD4 was investigated.  

Arabidopsis eds1-1 and pad4-5 null mutants (accession Wassilewskija; WS-0) had been 

previously transformed with constructs for the expression respectively of AtEDS1 or 

AtPAD4 strepII affinity tag  fusion proteins under either the CaMV 35S promoter 

(CaMV35S::gEDS1 - strepII and CaMV35S::cPAD4 - strepII) or the corresponding 

natives promoters (promEDS1::gEDS1 - strepII and promPAD4-cPAD4 - strepII, the 

latter not used in this study) ([116, 122]; J. Bautor and J. Parker, unpublished). A 

schematic representation of the constructs employed is shown in Fig. 3.1. As native 

AtEDS1 promoter the previously characterized 1,4 kb 5´ region from the Arabidopsis 

accession  L-er was utilized [98]. Multiple independent homozygous CaMV35S::cPAD4 

- strepII lines (hereafter OE_P4s) carrying a single transgene insertion were made 

available (J. Bautor and J. Parker, unpublished). The nomenclature used for the OE_P4s 

lines hereafter is indicated in Table 3.1. CaMV35S::gEDS1 – strepII and 

promEDS1::gEDS1 - strepII T1 seeds were germinated on soil and transgenic plants 

expressing the marker gene bar (bialaphos resistance) carried by both the constructs used 

for transformation (see Figure 3.1) and conferring resistance to PPT (phosphinothricin  

 
Table 3.1  Arabidopsis thaliana transgenic lines expressing the PAD4 strepII fusion protein 

Construct 
Previous nomenclature 

(J. Bautor) 
Nomenclature hereafter 

AC12 2/4 OE_P4s.1 

AC12 15/6 OE_P4s.2 CaMV35S::cPAD4 - strepII 

AC12 23/5 OE_P4s.3 
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Fig. 3.1 Constructs employed for the generation of Arabidopsis thaliana lines 
Essential features and restriction sites are depicted in the maps. The CaMV35S::gEDS1-strepII and 

CaMV35S::cPAD4-strepII vectors allow expression of respectively EDS1 and PAD4 N-terminal strepII 

tagged fusion proteins under control of the double 35S promoter of cauliflower mosaic virus (P35SS), 

whereas the promEDS1::gEDS1-strepII vector allows expression of the EDS1 N-terminal strepII tagged 

fusion protein under control of the EDS1 native promoter. Genomic EDS1 and PAD4 cDNA were 

employed. (attB1) attachment site B1; (attB2) attachment site B2; (LB) left border; (RB) right border; (pat) 

phosphinothricin acetyltransferase gene conferring PPT-resistance; (bla) β-lactamase gene conferring 

ampicillin resistance. 
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[126]) were selected  by BASTA® spraying. T2 seeds were collected from surviving 

plants and germinated on PPT-containing MS plates to monitor the segregation of the bar 

gene. In Table 3.2 are reported the observed segregation ratios of Basta resistant to 

susceptible plants are reported and the nomenclature used for the transgenic lines 

hereafter.  

Multiple transgenics containing a single transgene insertion were selected for each 

 

Table 3.2 Arabidopsis transgenic lines expressing the EDS1strepII fusion protein 
T2 seeds from each line were germinated on PPT containing MS plates and scored for PPT resistance: 

(Res) resistant, (Sus) susceptible. χ 2(3:1) is the χ 2 calculated with expected values of 3 resistant individuals 

to 1 susceptible. χ 2 (1 degree of freedom, P=0,05 ) = 3,84.  

Single insertion transgenic lines selected for further analyses are indicated in bold font. 

Construct Line Res Sus. 
Ratio 

(Res/Sus) 
χ 2(3:1) 

OE_E1s.1 83 2 42,5 17,44 

OE_E1s.2 151 43 4,51 0,62 

OE_E1s.3 80 23 4,48 0,29 

OE_E1s.4 79 22 4,59 0,42 

OE_E1s.5 31 5 7,20 1,78 

OE_E1s.6 57 18 4,17 0,03 

OE_E1s.7 83 35 3,37 1,03 

CaMV35S::gEDS1 - strepII 

OE_E1s.8 62 30 3,07 2,13 

OP_E1s.1 51 5 11,2 5,79 

OP_E1s.2 60 4 16 9 

OP_E1s.3 214 82 3,61 0,86 

OP_E1s.4 151 58 3,6 0,63 

OP_E1s.5 151 41 4,68 1,02 

OP_E1s.6 99 31 4,19 0,07 

promEDS1::gEDS1 - strepII 

 

OP_E1s.7 94 46 3,04 3,46 
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construct (see Table 3.2). For each selected line 6 T2 PPT resistant individuals were 

transferred on soil and T3 seeds were collected and germinated on PPT containing MS 

plates. For each selected line (except OE_E1s.3) it was possible to identify at least one 

individual whose entire progeny was PPT resistant indicative of transgene homozygosity. 

Homozygous individuals isolated in this way were used in the following experiments. 

To determine whether the strepII tag addition might interfere with the normal EDS1 and 

PAD4 function, complementation experiments were performed. Both the eds1-1 and 

pad4-5 mutants show compromised resistance to avirulent Hyaloperonospora parasitica 

isolate Noco2 (hereafter Noco2) which in the Arabidopsis WS-0 accession is recognized 

by the TIR-NBS-LRR receptor RPP1 [38, 93]. This impairment determines in eds1-1 

heavy sporulation and complete absence of host cell death (HR). By contrast pad4-5 

plants sustain heavy sporulation but develop a delayed HR that doesn´t stop the pathogen 

growth but follows it resulting in trailing necrosis [93]. Homozygous T3 individuals of 

each selected transgenic line were infected with Noco2 (4 X 104 spores/ml) and scored at 

5 dpi by both lactophenol trypan blue staining to observe dead cells and mycelium, and 

inspection under UV light to see trailing plant cell necrosis. For each of the three 

constructs results obtained from one representative line and pad4-5, eds1-1 and wild type 

(WS-0) control plants are shown in Figure 3.2 and Figure 3.3. In contrast to the 

respective mutant backgrounds which showed strong sporulation (eds1-1) and sporulation 

accompanied by trailing necrosis (pad4-5), all the selected transgenic lines (represented 

by OP_E1s.5 in Figure 3.2 and OE_E1s.6 and OE_P4s.1 in Figure 3.3) exhibited normal 

HR development comparable to wild type plants (WS-0). Similarly, transgenic lines 

expressing the PAD4 strepII fusion protein under the PAD4 native promoter in the pad4-

5 mutant background exhibited normal incompatible response to Noco2 (J. Bautor and J. 

Parker, data not shown). I concluded from these data that both EDS1 and PAD4 strepII 

fusion proteins were fully functional and decided to further characterize the selected 

transgenic lines. 

Protein expression levels in the selected lines were subsequently tested by Western blot 

analyses using polyclonal anti-EDS1 or anti-PAD4 antibodies for detection. As shown in 

Figure 3.4A and B, the unchallenged OE_E1s lines had variable EDS1 expression levels 

but in all cases EDS1 amounts were much higher than either unchallenged or challenged  
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Fig. 3.2 Complementation of RPP1 mediated resistance to Noco2 in OP_E1s lines  
2-week-old OP_E1s.5 plants were spray inoculated with Noco2 (4 X 104 spores/ml). As controls wild type 

(WS-0), eds1-1 and pad4-5 plants were included. At 5 dpi plants were screened under UV light to detect 

cell death associated fluorescence (upper panels) and leaf samples from each line were collected and trypan 

blue stained to visualize pathogen structures and plant cell death (lower panels). HR: hypersensitive 

response; TN: trailing necrosis; M: mycelium; C: conidiophores. Two independent experiments gave 

similar results. 
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Figure 3.3 Complementation of RPP1 mediated resistance to Noco2 in OE_E1s, OE_P4s 

and OE_E1/P4.A lines  
2-week-old 35SE1s.15, 35SP4.1 and 35SE1/P4.A (see section 3.2) plants were spray inoculated with 

Noco2 (4 X 104 spores/ml). As controls wild type (WS-0), eds1-1 and pad4-5 plants were included. At 5 

dpi plants were screened under UV light to detect cell death-associated fluorescence (upper panels) and leaf 

samples from each line were collected and trypan blue stained to visualize pathogen structures and plant 

cell death (lower panels). HR: hypersensitive response; TN: trailing necrosis; O: oospores; M: mycelium; 

C: conidiophores. Two independent experiments gave similar results. 
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(Previous page) Figure 3.4 EDS1 and PAD4 protein levels in selected transgenic lines             
Polyclonal anti-EDS1 western blot analyses of 4-week-old plants total protein extracts (A) Unchallenged 

OE_E1s (OE_E1s.2, OE_E1s.4, OE_E1s.6, OE_E1s.7 and OE_E1s.8), eds1-1 (eds1-1) and wild type   

(Ws-0) plants. (B) Unchallenged OE_E1s (OE_E1s.2, OE_E1s.6 and OE_E1s.7), OE_E1/P4.A F1, 

OE_E1/P4.B F1 (see section 3.5) and wild type plants (WS-0), and Emwa1 challenged (4 X 104 spores/ml) 

eds1-1 (eds1-1) and wild type plants (Ws-Emwa1) 6 dpi.  (C) OP_E1s (OP_E1s.3, OP_E1s.4, OP_E1s.5, 

OP_E1s.6 and OP_E1s.7), eds1-1 (eds1-1) and wild type plants (Ws0) untreated (upper panel) and 24 hours 

after BTH treatment (lower panel).  

(D) Polyclonal anti-PAD4 western blot analysis of 4-week-old plants total protein extracts. Unchallenged 

OE_P4s (OE_P4s.1, OE_P4s.2 and OE_P4s.3), OE_E1/P4.A F1, OE_E1/P4.B F1 (see section 3.5) and 

wild type plants (WS-0) and Emwa1 challenged (4 X 104 spores/ml) pad4-5 (pad4-5) and wild type plants 

(Ws-Emwa1) 6 dpi. Two different exposure times are shown (short and long). 

For semi quantitative comparisons in (B) and (D) protein extracts were loaded twice: once with the same 

volume and once with half volume (1/2) of the correspondent control lines.  

Relative ponceau stainings below each lane indicate comparable loadings. 

 

wild type plants. In Figure 3.4B it is possible to observe that the EDS1 signal obtained 

from all the OE_E1s lines was larger than that of the wild type plants due to the presence 

of the strepII tag. This is indicative that the full length fusion protein is expressed and no 

truncated form can account for the observed eds1-1 defence phenotype complementation. 

A signal at the same size was also observed in Western blots using monoclonal anti-

StrepII antibody for detection (data not shown). Among the selected OP_E1s lines it was 

possible to identify lines with EDS1 expression levels lower, similar and higher than wild 

type plants (WS-0) as shown in Figure 3.4C (upper panel). The same trend was also 

observed 24 h after treatment with BTH (benzol (1,2,3) thiadiazole-7-cabothionic acid S-

methyl ester) a SA analogue that induces EDS1 protein levels in wild type plants [93] 

(Figure 3.4C, lower panel). This result indicates a similar behavior between the OP_E1s 

lines and wild type plants. It further rules out the possibility that over expression in the 

OE_E1s lines compensates for reduced functionality of the EDS1 strepII fusion protein. 

Also in this case only a signal corresponding to the size of strepII tagged EDS1 was 

observed indicating absence of truncated versions.  

The line indicated in Figure 3.4C as OP_E1s.5 showing an EDS1 expression level very 

similar to wild type was selected for further analyses.  
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Unchallenged OE_P4s plants also displayed PAD4 protein levels that were much higher 

than either unchallenged or pathogen challenged wild type plants (Figure 3.4D). Only a 

signal corresponding to the full length fusion protein could be observed.  

Both eds1-1 and pad4-5 mutants support higher growth of the virulent H. parasitica 

isolate Emwa1 than wild type plants due to compromised basal defence response [93]. 

The selected EDS1 and PAD4 transgenic lines were tested to assess whether the over 

expression of EDS1 or PAD4 complemented the loss of resistance or even could lead to 

increased resistance against virulent pathogens. Three independent OE_E1s (OE_E1s.2, 

OE_E1s.6 and OE_E1s.7) and three independent OE_P4s transgenic lines (OE_P4s.1, 

OE_P4s.2 and OE_P4s.3) were infected with virulent isolate Emwa1 (4X104 spores/ml). 

At 5 dpi spores were counted and infected leaves stained with trypan blue to assess the 

extent of infection. Wild type (WS-0), eds1-1 and pad4-5 plants were included. The 

results are shown in Figure 3.5. All the selected transgenic lines exhibited full 

complementation of the corresponding eds1-1 or pad4-5 phenotype in that they supported 

lower Emwa1 growth similar to wild type plants. This confirms the functionality of the 

fusion proteins also for basal resistance. None of the selected OE_E1s or OE_P4s lines 

reduced pathogen growth significantly below that in wild type plants indicating that the 

over expression of either EDS1 or PAD4 alone does not confer enhanced basal resistance 

to virulent H. parasitica.  

 

(Next Page) Figure 3.5 The extent of basal resistance in selected transgenic lines against 

the virulent H. parasitica isolate Emwa1 
Three independent OE_E1s lines (OE_E1s.2, OE_E1s.6 and OE_E1s.7), three independent OE_P4s lines 

(OE_P4s.1, OE_P4s.2 and OE_P4s.3) and OE_E1/P4.A plants (see below) were spray inoculated with 

Emwa1 (4 X 104  spores / ml). As controls wild type Wassilewskjia (WS-0), Columbia (Col-0) and mutant 

eds1-1 and pad4-5 plants were included.  

(A) 5dpi spore counts experiments were performed. Error bars represent standard deviations.   

(B) 5dpi leaf samples were collected and trypan blue stained to visualize pathogen structures and plant cell 

death. All the pictures were taken at the same magnification. Only for the OE_E1/P4.A line a second 

picture at higher magnification (20X) was taken for displaying greater detail. HR: hypersensitive response; 

M: mycelium.  

Three independent experiments gave similar results. 
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3.3 Generation of AtEDS1/AtPAD4 double over expressor lines 

 

Considering the strong genetic and molecular connection between EDS1 and PAD4 I 

decided to combine single EDS1 and PAD4 over expression lines. This would allow me  

to test whether the number of EDS1-PAD4 complexes are the limiting factor in triggering 

defence.  

Pollen from OE_P4s.1 plants was used to pollinate OE_E1s.6 emasculated flowers. The 

OE_P4s.1 transgenic plants generated in the pad4-5 background are resistant to 

Kanamycin for the expression of the nptII (neomycin phosphotransferase) marker gene 

carried by the T-DNA  inserted within endogenous AtPAD4 gene [93, 127]. F1 seeds 

were germinated on Kanamycin containing MS plates to verify their identity. Surviving 

seedlings were transferred onto soil and F2 seeds collected. Since both the constructs for 

the over expression of EDS1 and PAD4 contain the same bar resistance gene to PPT, 

western blot analyses with commercial monoclonal anti-strepII antibody were performed 

to identify plants carrying both OE_E1s and the OE_P4s constructs (data not shown). 

Plants that had a signal for both EDS1 and PAD4 strepII fusion proteins were selected 

and genotyped for the eds1-1 and pad4-5 mutations. F3 seeds were collected and the 

segregation of the OE_E1s and OE_P4s constructs was monitored by PCR based 

genotyping. In this way it was possible to identify plants homozygous for both constructs 

and for the eds1-1 and pad4-5 mutations. Hereafter these plants are referred to as 

OE_E1/P4.A.  

 

3.4 AtEDS1/AtPAD4 dual over expression causes growth abnormalities 

 

During the selection process described above I observed that some of the plants in the 

OE_E1/P4.A segregating population were obviously smaller in size compared to either 

the parental lines or to wild type. This growth defect was quantified by measuring the 

fresh weight of 5-week-old wild type (WS-0), eds1-1, pad4-5, OE_E1s.6, OE_P4s.1 and 

OE_E1/P4.A plants. The results are shown in Figure 3.6. While the single over expressor 

lines OE_E1s.6 and OE_P4s.1 had fresh weights comparable to wild type plants (WS-0), 

the OE_E1/P4.A line had significantly reduced biomass compared to the parental lines 
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and wild type plants. While growth retardation in the EDS1-PAD4 dual over expressors 

was consistent between independent experiments, extent varied suggesting it is 

influenced by environmental conditions. It is notable that eds1-1 mutants exhibited a 

higher fresh weight increase compared to wild type, as shown in Figure 3.6. Thus, the 

lack of EDS1 protein, which normally stabilizes PAD4 [98] and the heightened 

availability of EDS1 and PAD4 strongly influenced plant growth. 

 
Figure 3.6 Reduced growth of OE_E1/P4.A double over expressor lines 
Five-week-old individuals of wild type (WS-0), eds1-1, pad4-5, OE_E1s.6, OE_P4s.1 and OE_E1/P4.A 

lines were weighed and the average weight of a single plant was estimated from three samples of three 

plants (lower panel). Error bars represent sample standard deviations. Pictures of the aerial part of one 

representative individual from each line are shown in the upper panel.  An independent experiment gave 

similar results. 
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Figure 3.7 Epidermal cell size is reduced in the OE_E1/P4.A plants 
The 7th true leaves from five 5-week-old individuals from wild type (WS-0), eds1-1, pad4-5, OE_E1s.6, 

OE_P4s.1 and OE_E1/P4.A lines were collected, cleared and mounted on a microscope slide. (A) The cell 

surface of 12-18 contiguous adaxial cells located in the most central portion of the leaf lamina was 

measured avoiding stomata and trichome base cells. The average single cell size was estimated. Error bars 

represent sample standard deviation. (B) To determine whether the observed differences in average values 

were statistically significant T test pairwise comparisons were performed. In the central table the calculated 

null hypothesis probabilities are indicated. Accordingly letters were assigned in (A). Different letters 

indicate significant differences (P<0,05). (C) Two representative pictures taken at the same magnitude for 

wild type (WS-0) and OE_E1/P4.A plants are shown. 
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Plants growth is a complex and highly regulated biological process which is mainly 

determined by cell division and cell elongation events [128]. In order to understand better 

the nature of the observed developmental phenotype a cell size estimation experiment 

was performed. The 7th true leaves from five 5-week-old plants were collected, cleared 

with ethanol and acetic acid and the cell area measured for 12-18 contiguous adaxial 

epidermal cells in the most central portion of the leaf lamina. Guard cells and trichome 

base cells were excluded from the estimation. The analysis was performed on 

OE_E1/P4.A, OE_E1s.6, OE_P4s.1, WS-0, eds1-1 and pad4-5 plants. The results are 

shown in Figure 3.7. No significant difference was observed between wild type plants 

(WS-0) and OE_E1s.6 or OE_P4s.1 single over expressor lines. Mutant eds1-1 plants did 

not show enhanced cell size despite the slightly higher whole plant biomass accumulation. 

OE_E1/P4.A cells were significantly smaller than the control lines suggesting that a 

substantial contribution to the growth retardation is due to alteration of cell expansion 

processes, as previously shown for other defence related mutants [82, 129, 130]. 

However, I can not rule out that alteration in cell division might also be involved in the 

observed growth phenotype since no cell division analyses were performed so far. The 

same holds true for the increased biomass of eds1-1. Further analyses are needed to 

elucidate fully the basis to altered growth and biomass production in the lines tested.  

 

3.5 AtEDS1/AtPAD4 dual over expression leads to SA pathway activation 

 

In a number of Arabidopsis defence mutants reduced plant size is the consequence of 

constitutive activation of defence responses that is often associated with accumulation of 

the phenolic compound salicylic acid (SA) [82, 104, 129, 131-133]. To test whether the 

dual EDS1 and PAD4 over expression leads to defence activation, expression of defence 

marker genes was analyzed by semi-quantitative RT-PCR. The SA and jasmonic acid 

(JA) pathways are two important plant defence signaling systems and their activation is 

finely tuned during infections [87, 88]. Therefore, the expression of the two marker genes 

PR1 (Pathogenesisi Related 1) and PDF1.2 (Plant Defensin 1.2) respectively for the SA 

and JA pathways was analyzed in pathogen unchallenged (healthy) OE_E1/P4.A plants. 
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Unchallenged OE_E1/P4.A, OE_E1s.6, OE_P4s.1, eds1-1, pad4-5, wild type plants and 

pathogen challenged wild type plants were analyzed.  The results are shown in Figure 3.8. 

In the unchallenged state a slight PR1 up regulation was observed in OE_E1/P4.A plants 

while none of the other lines showed any PR1 expression. The PR1 transcript level 

observed in unchallenged OE_E1/P4.A was, however, lower than in wild type plants after 

H. parasitica infection indicating that simultaneous over expression of EDS1 and PAD4 

is not sufficient to fully activate the SA pathway. PDF1.2 transcript levels, as a marker of 

JA pathway stimulation, were not increased in any of the unchallenged lines including 

OE_E1/P4.A, indicating that the SA pathway activation is specifically deregulated.  

 

 
Figure 3.8 Constitutive SA pathway activation in the OE_E1/P4.A plants 
Leaf material from 3-week-old unchallenged OE_E1/P4.A, OE_E1s.6, OE_P4s.1, eds1-1. pad4-5 and wild 

type plants (WS-0) and from H. parasitica Emwa1 challenged (4 x 104 spores/ml) wild type plants 3dpi 

(WS-0(Emwa1)) was collected. Total RNA was extracted and the expression of the marker genes PR1 and 

PDF1.2 was assessed by semi quantitative RT-PCR. Equal application of template RNA for reverse 

transcription is shown by a control PCR reaction detecting Actin first strand cDNA. Numbers of cycles 

used in each PCR reaction are indicated on the right. In all cases additional three cycles showed detectable 

differences in the observed signal indicating  that the assay was performed within the linear range of 

amplification. Three independent experiments gave similar results. 
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Together, these data show that the dual over expression of EDS1 and PAD4 leads to slight 

activation of the SA pathway that is not observed when either one of the two proteins is over 

expressed. To characterize further SA pathway activation the levels of free and total SA were 

measured in unchallenged wild type (WS-0), eds1-1, pad4-5, OE_E1s.6, OE_P4s.1 and 

OE_E1/P4.A plants. The results are shown in Figure 3.9. Compared to parental lines 

(OE_E1s.6 and OE_P4s.1) and control lines (WS-0, eds1-1, pad4-5) OE_E1/P4.A plants had 

increased levels of both free and total SA in the unchallenged state consistent with the 

observed constitutive up regulation of the SA marker gene PR1.  

 

 
Figure 3.9 Total and Free SA levels in the selected transgenic lines before and after 

pathogen challenge 
Plant material from unchallenged and Emwa1 challenged (4 X 104 spores /ml) wild type (WS-0), eds1-1, 

pad4-5, OE_E1s.6, OE_P4.1 and OE_E1/P4.A plants 1 and 3 dpi was collected. Extraction and 

quantification of total and free salicylic acid by HPLC was performed as described in Materials and 

Methods. Data represent the average from three replicate samples. Error bars represents standard deviations 

calculated on the three replicates. 

 
 

In previously characterized defence mutants constitutive activation of the SA pathway 

was associated with development of spontaneous lesions in the absence of pathogen [102, 

132, 134, 135]. In order to assess whether this was also the case in the OE_E1/P4.A 

plants 3-week-old unchallenged OE_E1/P4.A plants were analyzed by trypan blue 
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staining together with wild type (WS-0), OE_E1s.6, OE_P4s.1 and the spontaneous 

lesioning  nudt 7-1 mutant plants [102]. The results are shown in Figure 3.10. With the 

exception of the nud7-1 plants, none of the analyzed lines exhibited spontaneous lesion 

development. Thus, I concluded that deregulated SA signaling in the OE_E1/P4.A plants 

is not associated with lesion development. 

 
Figure 3.10 Lack of spontaneous lesioning in the OE_E1/P4.A line 
Leaf samples from 3-week-old unchallenged wild type (WS-0), OE_E1s.6, OE_P4s.1, OE_E1/P4.A and 

nudt 7-1 plants were collected and stained with trypan blue to visualize spontaneous cell death. Only in 

nudt 7-1 plants were spontaneous lesions observed (white arrows). Three independent experiments gave 

similar results. 
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3.6 AtEDS1/AtPAD4 dual over expressor lines have increased resistance to bacterial 

and oomycete virulent pathogens 

 

Arabidopsis mutants that have constitutive activation of the SA pathway also have 

increased resistance against pathogen attack [82, 104, 132, 133, 135].  In some cases 

increased resistance was shown to be uncoupled from cell death development [104, 133, 

136].  To test the capability of the OE_E1/P4.A plants to mount a normal HR in response 

to avirulent pathogens, OE_E1/P4.A plants were infected with H. parasitica Noco2, 

trypan blue stained and inspected under UV. The results are shown in Figure 3.2 (page 

52) . OE_E1/P4.A plants exhibited normal HR development although the area of tissue 

undergoing cell death appeared to be less extensive than in wild type plants. Currently, I 

can not determine whether this is due to the smaller cell size in OE_E1/P4.A plants or to 

a reduction in the number of cells involved in the response. Some OE_E1.P4.A 

individuals occasionally produced very high H. parasitica sporulation that was 

comparable to eds1-1 plants. PCR based genotyping of these individuals, combined with 

Western blot analyses using monoclonal anti-strepII antibody for detection demonstrated 

that silencing of both OE_E1s and OE_P4s construct was taking place in these 

individuals, very likely as consequence of being both constructs driven by the CaMV 35S 

promoter (data not shown).  

I investigated whether the dual over expression of EDS1 and PAD4 and the associated 

SA pathway activation results in increased basal resistance to virulent pathogens. 

OE_E1/P4.A plants were infected with virulent H. parasitica Emwa1 and spore count 

and trypan blue staining experiments performed. As shown in Figure 3.5 (page 57), in 

comparison to the OE_E1s or OE_P4s lines, the OE_E1/P4.A plants exhibited a strongly 

enhanced basal resistance to Emwa1 and permitted only very low levels of pathogen 

sporulation. Trypan blue staining revealed that in contrast to the corresponding parental 

lines OE_E1s.6 and OE_P4s.1, OE_E1/P4.A plants, produced HR lesions similar to those 

observed in genetically resistant Col-0 plants despite not carrying any resistance gene 

capable to recognize the Emwa1 strain. The absence of spontaneous lesions together with 

the visualization of germinated spores within the area undergoing cell death (see close up 

at 20 fold magnitude in Figure 3.5, page 57) suggest that the cell death phenotype is 
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directly triggered upon pathogen challenge and not general stress response. Also, since 

increased resistance against virulent Emwa1 was observed only when both EDS1 and 

PAD4 are over expressed the notion that EDS1-PAD4 complexes or cooperation is 

needed to deregulate the plant defence response is reinforced. 

  

 

 
 

Figure 3.11 Growth of Pseudomonas syringae pv tomato DC3000 on selected transgenic 

lines 
Wild type (WS-0), eds1-1, pad4-5, OE_E1s.6, OE_P4s.1 and OE_E1/P4.A 4-week-old plants were infected 

by surface spraying with DC3000 bacterial suspension of 5X107 cfu/ml. Bacterial titers were measured 

shortly after inoculation (d0) and 3dpi (d3). Error bars represent sample standard deviations. Three 

independent experiments of three replicant samples per line gave similar results.  

 

 

I tested whether increased resistance in the OE_E1/P4.A plants was specific to oomycetes 

or more generally effective against other pathogens. Therefore, bacterial growth 

experiments using the virulent bacterial strain Pseudomonas syringae pv. tomato DC3000 

(hereafter Pst DC3000) were performed. The inoculation was performed by spraying 
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bacteria (5 X 107 cfu/ml) on to the leaf surface, a method that was shown most recently to 

best resemble the natural infection mode [137]. OE_E1/P4.A plants together with 

OE_E1s.6, OE_P4s.1, eds1-1, pad4-5 and wild type (Ws-0) controls were spray 

inoculated and bacterial growth was measured at 3 dpi. The results are shown in Figure 

3.11. As expected [38, 93], the basal defence mutant eds1-1 and pad4-5 supported higher 

bacterial growth than wild type plants (WS-0). The single EDS1 and PAD4 over 

expressors OE_E1s.6 and OE_P4s.1 plants supported bacterial titers at 3dpi that were not 

statistically different from wild type. Thus, enhanced expression of EDS1 or PAD4 alone 

did not alter the plant basal defense. OE_E1/P4.A plants had enhanced resistance to Pst 

DC3000, manifested as lower bacterial growth. This result indicates that the increased 

resistance observed against virulent oomycetes is likely to be a more general 

phenomenon effective with other pathogens. 

 

 

3.7 SA pathway activation in OE_E1/P4.A plants is not due to increased sensitivity 

to pathogen elicitors 

 

Plant basal defence is triggered by recognition of so called Pathogen or Microbe 

Associated Molecular Patterns (PAMPs or MAMPs [138]) that are essential highly 

conserved molecules in microorganisms. Plants recognize these non-self components by 

extracellular receptors belonging to the Receptor Like Kinase (RLKs) class [2, 11]. 

PAMP recognition leads to the activation of defence responses such as an oxidative burst, 

up regulation of defence related genes such as PR1 and to seedling growth inhibition [12]. 

The increased resistance against virulent pathogens, PR1 upregulation and growth 

inhibition of EDS1-PAD4 dual over expressors prompted me to investigate whether the 

OE_E1/P4.A phenotypes might be explained by a super sensitivity to PAMPs. In this 

scenario the reduced growth would be the result of hyper responsiveness to non 

pathogenic microbes normally present in the growing chamber where plants are grown. 

To test this possibility OE_E1s.6, OE_P4s.1, OE_E1/P4.A, eds1-1, pad4-5 and wild type 

plants (WS-0) were then grown in sterile MS medium for 5 weeks and their fresh weight 

measured to assess whether absence of PAMPs would negate the observed developmental 
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Figure 3.11 Growth retardation and SA pathway activation in sterile grown OE_E1/P4.A 

plants 
Wild type, eds1-1, pad4-5, OE_E1s.6, OE_P4s.1 and OE_E1/P4.A seeds were surface sterilized and sown 

in closed Magenta pots containing autoclaved MS solid medium. (A) Two representative 5-week-old 

individuals from each lines are shown. (B) After 5 weeks three independent samples each of three seedlings 

from each line were weighed and the average weight of a single plant was estimated (lower panel). Error 

bars represent standard deviations. (C) Tissues from sterile grown 5 week old OE_E1/P4.A, OE_E1s.6, 

OE_P4s.1, eds1-1. pad4-5 and wild type plants (WS-0) were collected, total RNA was extracted and the 

expression of the SA marker gene PR1 was assessed by semi quantitative RT-PCR. Equal application of 

template RNA for reverse transcription is shown by a control PCR reaction detecting Actin first strand 

cDNA. Numbers of cycles used in each PCR reaction are indicated on the right. In all cases additional three 

cycles showed detectable differences in the observed signal indicating that the assay was performed within 

the linear range of amplification. Two independent experiments gave similar results 
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phenotype. The results are shown in Figure 3.11. Under sterile conditions eds1-1 plants 

accumulated significantly more biomass than wild type plants as previously observed in 

soil-grown plants (see Figure 3.6 page 59). The extent of the biomass increase over wild 

type plants was indeed larger than observed in soil-grown plants, reaching differential of  

≈30%. This is similar to what reported for other plant defence impaired mutants that 

showed a general increased fitness when grown in more sterile conditions [139].            

The OE_E1/P4.A plants had reduced biomass accumulation also in sterile conditions 

compared to parental lines OE_E1s.6, OE_P4s.1 and to wild type (Ws-0) plants. I tested 

whether the growth retardation was also associated with constitutive SA pathway 

activation in these conditions, by measuring the expression of PR1 in sterile grown plants. 

As shown in Figure 3.11 only sterile grown OE_E1/P4.A plants exhibited PR1 

expression similar to that observed in soil-grown plants (see Figure 3.8 page 62). From 

these data I concluded that the reduced growth and the PR1 activation in the OE_E1/P4.A 

plants is not the result of higher sensitivity to PAMPs since both defects were retained in 

sterile growth conditions. These phenotypes are more likely to be the result of 

perturbation of an intrinsic genetic program through joint EDS1 and PAD4 over 

expression. 

 

3.8 Reduced growth is observed in independent EDS1/PAD4 dual over expressor 

lines 

 

All of the phenotypes described so far were tested on a single combination between the 

two single over expressor lines OE_E1s.6 and OE_P4s.1. To verify that growth 

retardation, SA pathway activation and increased resistance to virulent pathogens are 

actually due to over expression of both EDS1 and PAD4 proteins and not a peculiarity of 

this specific transgenic line combination, a cross between two further independent over 

expressor lines of EDS1 and PAD4 (denoted OE_E1s.2 and OE_P4s.2 respectively) was 

performed. Pollen from OE_P4s.2 plants was used to pollinate emasculated OE_E1s.2 

flowers to give F1 progeny. Hereafter the resulting line will be referred to as 

OE_E1/P4.B.  A cross between the original OE_E1s.6 and OE_P4s.1 lines (OE_E1/P4.A) 
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was repeated as control. F1 seeds from each cross were collected and sown on soil 

together with the corresponding parental lines. At 4 weeks under 10 hours light/day F1 

OE_E1/P4.B plants showed obvious growth retardation compared to the parental lines 

OE_E1s.2 and OE_P4s.2 as shown in Figure 3.12. By contrast only some leaf curling 

could be observed in OE_E1/P4.A compared to the parental OE_E1s.6 and OE_P4.1 

plants. EDS1 and PAD4 protein levels were measured in the F1s by Western blot analysis 

and results are shown in Figure 3.5 (page 54) . Both OE_E1/P4.A and OE_E1/P4.B F1 

plants had higher levels of EDS1 and PAD4 than the corresponding parental lines 

(OE_E1s.6 and OE_P4s.1, and OE_E1s.2 and OE_P4s.2 respectively). In both F1 over 

expressor combinations, up regulation was observed for EDS1 and PAD4 endogenous 

proteins, distinguished from their corresponding tagged versions due to their smaller size 

(Figure 3.5 page 54 ). EDS1 and PAD4 protein accumulation was higher  

 

 
 

Figure 3.12 Growth phenotype in the F1 of independent EDS1 and PAD4 over 

expressors combinations 
OE_E1/P4.A and OE_E1/P4.B F1 seeds and the seeds from the corresponding parental lines (OE_E1s.15 

and OE_P4.1 for OE_E1/P4.A, and OE_E1s.5 and OE_P4s.2 for OE_E1/P4.B) were sown on soil and after 

4 weeks the aerial part of one representative individual from each line was photographed. Pictures in the 

two panels are taken at the same magnification. 
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in OE_E1/P4.B than in OE_E1/P4.A plants, suggesting a positive correlation between 

EDS1 and PAD4 protein abundance and growth retardation. Currently, experiments are 

being performed to assess whether the growth retardation phenotype in the OE_E1/P4.B 

plants is also associated with SA pathway activation and increased basal defence. From 

these results I concluded that the growth retardation, and very likely also the other 

phenotypes observed in the OE_E1/P4.A plants, are not a peculiarity of this particular 

transgenic line but consequence of the dual EDS1 and PAD4 over expression. 

 

 

3.9 OE_E1/P4.A plants show accelerated responses upon virulent pathogen attack 

 

In OE_E1/P4.A plants PR1 levels are lower than in pathogen challenged wild type plants, 

indicating that the SA pathway is not full activation of by over expression of EDS1 and 

PAD4 (See Figure 3.8 page 62). I then decided to characterize the pathogen response 

timing in the dual EDS1-PAD4 over expressors to test whether the increased resistance is 

due to an accelerated SA signaling. OE_E1/P4.A plants together with OE_E1s.6, 

OE_P4s.1, eds1-1, pad4-5 and wild type (Ws-0) plants were infected with virulent H. 

parasitica Emwa1 pathogen (4 x 104 spores / ml) and tissue samples collected at 0, 1 and 

3 dpi. Mock (water) inoculated wild type plants 3 dpi were also included as control. Total 

RNA was extracted from all samples and the expression levels of marker genes were 

analyzed by semi quantitative RT-PCR. The results are shown in Figure 3.14. In parallel, 

the same plant tissues were used to extract total proteins and assess EDS1 and PAD4 

protein levels on Western blots by probing with polyclonal anti-EDS1 and anti-PAD4 

respectively. The results are shown in Figure 3.13. In unchallenged plants PAD4 protein 

accumulated at higher levels in OE_E1/P4.A than in OE_P4s.1 plants, as previously 

observed in the OE_E1/P4.A F1 individuals (See Figure 3.5 page 57). No significant 

difference was observed between unchallenged OE_E1/P4.A and OE_P4s.1 At the 

transcriptional level pointing to stabilization of PAD4 protein at the posttranscriptional 

level by increased EDS1 in the dual over expressors. The observed RT-PCR PAD4 

signals were however, relatively strong for OE_E1/P4.A and OE_P4s.1 unchallenged 

plants and I can therefore not rule out that they may be near to saturation levels 
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Quantitative RT-PCR analyses will be performed to measure more precisely quantitative 

differences in PAD4 expression among different transgenic lines. In the unchallenged 

eds1-1 mutants PAD4 transcripts accumulated to lower levels than in wild type, 

confirming the previously reported requirement of functional EDS1 protein for basal 

PAD4 transcript accumulation [93]. EDS1 protein levels were slightly higher in 

unchallenged OE_E1/P4.A compared to the unchallenged parental line OE_E1s.6. Also 

in this case, EDS1 transcript levels in OE_E1/P4.A and 

 

 
 

Figure 3.13 EDS1 and PAD4 protein accumulation after virulent pathogen challenge 
Wild type (WS-0), eds1-1, pad4-5, OE_E1s.6, OE_P4s.1 and OE_E1/P4.A plants were spray inoculated 

with H. parasitica Emwa1 (4 x 104 spores / ml) and samples from each line collected before (day 0) 

inoculation and at 1 (day 1) and 3 dpi (day 3). As a control, tissue from water sprayed wild type plants was 

collected at 3 dpi  (Ws-0 MOCK). Total proteins were extracted and analyzed on a Western blot analyses 

using anti – EDS1 (upper panel) or anti - PAD4 (lower panel). Ponceau staining of the blot indicates 

comparable loadings of each lane. An independent experiment was performed with similar results. 
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Figure 3.14 Analysis of gene expression after virulent pathogen challenge 
From the same series of samples indicated in Figure 3.13 total RNA was extracted the expression of the 

indicated genes assessed by semi quantitative RT-PCR. Equal amounts of template RNA for reverse 

transcription are shown by a control PCR reaction detecting Actin first strand cDNA. Numbers of cycles 

used in each PCR reaction are indicated on the right. In all cases additional three cycles showed detectable 

differences in the observed signal indicating that the observed signals were not saturated. 
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OE_E1s.6 plants were similar, consistent with a mutual posttranscriptional stabilization 

by EDS1 and PAD4 of its partner in the dual EDS1-PAD4 over expressors. It is 

necessary, however, to confirm the post-transcriptional stabilization by quantitative RT 

PCR of the samples. As seen  above in the unchallenged state, a slight up regulation of 

the SA pathway marker PR1 was observed only in OE_E1/P4.A plants. By contrast,  the 

JA pathway marker gene PDF1.2 was not up regulated in the unchallenged state in any 

line. 

At5g55450, a gene encoding for a putative lipid transfer protein (hereafter LTP), was 

previously shown to be up regulated after bacterial pathogen challenge in an EDS1- and 

PAD4-dependent fashion [102]. LTP transcript levels were also slightly higher in 

unchallenged OE_E1/P4.A plants compared to unchallenged wild type (Ws-0).  At 1dpi 

of H. parasitica Emwa1 infection, there was an increase in EDS1 protein levels in the 

OE_E1s.6, OE_P4s.1 and OE_E1/P4.A transgenic plants compared to unchallenged. No 

obvious increase in EDS1 mRNA was observed in these lines, suggesting a further 

posttranscriptional stabilization of EDS1 upon pathogen challenge. The fact that the semi 

quantitative RT-PCR EDS1 signal for OE_P4s.1 was within the linear amplification 

range strongly supports this hypothesis. Similarly, evidence for post transcriptional 

stabilization of PAD4 protein was observed at 1 dpi in both the OE_E1/P4.A and 

OE_P4s.1 lines (Figure 3.13). PR1 mRNAs were further increased over the unchallenged 

state of the OE_E1/P4.A 1dpi.  

PDF1.2 was up regulated similarly in all lines at both 1dpi and 3 dpi, irrespective of the 

absence or over expression of either functional EDS1 or PAD4 protein. Also LTP was up 

regulated at both 1 and 3dpi, but up regulation sustainment was dependent on EDS1 and 

PAD4. Furthermore both PR1 and LTP levels at 3dpi were higher in OE_E1/P4.A plants 

as compared to wild type or single over expressor lines. 

At 3dpi both EDS1 and PAD4 protein had a further up regulation compared to 1 dpi, 

probably due to post translational stabilization. Consistent with this hypothesis, in 

comparison to 1dpi, at 3dpi OE_P4.1 plants displayed clear EDS1 protein up regulation 

while EDS1 transcripts, whose RT-PCR signal levels were far from the saturation, didn´t 

change. 
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Total SA and Free SA were measured in a time course after pathogen challenge with H. 

parasitica Emwa1 (4 X 104 spores/ml) in OE_E1/P4.A, OE_E1s.6, OE_P4s.1, eds1-1, 

pad4-5 and wild type (WS-0) plants. The results are shown in Figure 3.9 (page 63). At 

1dpi only the OE_E1/P4.A plants displayed higher levels of SA, consistent with the 

observed slight up regulation of  PR1 expression (Figure 3.14). A clear increase in SA 

was observed at 3dpi also in wild type (WS-0), OE_E1s.6 and OE_P4.1 plants. The level 

of total SA kept rising until 3dpi in OE_E1/P4.A plants and remained significantly higher 

than in wild type plants. Free SA rapidly became conjugated as recorded (Figure 3.9 

page63). No increase in SA was observed in eds1-1 or pad4-5 plants, confirming the 

previously reported requirement of EDS1 and PAD4 in SA accumulation after pathogen 

challenge [100, 140].   

A typical plant response in both compatible and incompatible interactions is the 

accumulation of antimicrobial compounds at the site of infection [141]. Compounds that 

accumulate after pathogen challenge are termed phytoalexins [142]. PAD4 was originally 

isolated in a screen to identify Arabidopsis mutants impaired in the accumulation of the 

indole phytoalexin, camalexin [91]. I therefore measured camalexin levels in a time 

course after infection with H. parasitica Emwa1. As shown in Figure 3.15 very low 

levels of camalexin were observed before pathogen challenge in all lines. At 1dpi all lines 

had increased camalexin accumulation. However, OE_E1/P4.A accumulated camalexin 

to significantly higher levels than all the other lines. At 3dpi camalexin amounts rose in 

all lines but OE_E1/P4.A remained the highest accumulator. Eds1-1 and pad4-5 mutants 

accumulated significantly lower camalexin levels than wild type plants confirming the 

requirement of EDS1 and PAD4. Unexpectedly OE_E1s.6 plants displayed lower 

camalexin levels than wild type plants at 3dpi in this experiment. Further repetitions will 

be necessary to determine whether this trend in OE_E1s.6 line is reproducible.  
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Figure 3.15 Phytoalexin accumulation upon pathogen challenge indifferent plant lines 
Wild type (WS-0), eds1-1, pad4-5, OE_E1s.6, OE_P4s.1 and OE_E1/P4.A plants were spray infected with 

Emwa1 (4 x 104 spores / ml) and samples from each line were collected before (d0), 1 (d1) and 3 (d3) dpi. 

Extraction and quantification of camalexin and scopoletin by HPLC were performed as described in 

Materials and Methods. Data represent the average from three replicate samples. Error bars represents 

sample standard deviations. For scopoletin no chemically pure standard sample was available when the 

experiment was performed. For this reason scopoletin data are expressed as measured HPLC peak areas. 

 

scopoletin is another phytoalexin which was previously shown to accumulate in 

Arabidopsis in response to applications of phytoprostanes, prostaglandins like molecules 

which are products of non enzymatic lipids peroxidation [143, 144]. Already in the 

unchallenged state scopoletin accumulated to significantly higher levels in OE_E1/P4.A 

plants compared to all the other lines. Reminiscent of what was seen for free and total SA, 

a further strong increase in scopoletin was observed at 1dpi. In comparison, slight 

increases in scopoletin were measured in OE_E1s.6 and OE_P4s.1 at 1 dpi and there was 
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no increase in wild type (Figure 3.15). At 3dpi a strong increment in scopoletin content 

was observed in wild type plants reaching levels comparable to the OE_E1/P4.A double 

over expressor line that remained high. OE_e1s.6 and OE_P4.1 plants showed a further 

accumulation of scopoletin but to a lesser extent than what observed in wild type plants. 

Again, repetitions must be performed to verify the consistency of such behavior of the 

double and single PAD4 or EDS1 over expressing plants compared to wild type.  

 

All these data taken together indicate that the double over expression of EDS1 and PAD4 

leads to a faster activation of the SA pathway as compared to single over expressor lines 

or wild type.  

 
 
3.10 OE_E1/P4.A plants exhibit increased tolerance to oxidative stress induced by 

paraquat treatment 

 

Taken together, the above data show that co over expression of EDS1 and PAD4, even if 

sufficient to induce some constitutive activation of the SA pathway in unchallenged 

tissue, does not recapitulate the full extent of the plant response to pathogen attack. 

Instead, it appears to prime the plant allowing it to respond more quickly to the invading 

pathogen. This result implies that other signaling components or regulators downstream 

or independent of the EDS1 and PAD4 protein up regulation are involved in further 

signal relay leading to specific gene induction and phytoalexins accumulation. On the 

other hand the co over expression of EDS1 and PAD4 brings the plant to a sort of primed 

condition which renders faster responses observed also in wild type plants during 

compatible interaction. I then decided to investigate which possible mechanisms could be 

involved in such signal relay.  

One of the very early cellular events after plant exposure to pathogens is an oxidative 

burst. This burst is  monophasic during compatible interactions and biphasic during 

incompatible interactions [145, 146]. The defence regulators EDS1 and PAD4 have been 

previously implicated in the transduction of  Reactive Oxygen Species (ROS) derived 

signals [108, 110]. For example, in Arabidopsis lsd1 (lesions simulating disease 1) plants 

application of chemicals leading to superoxide production results in a form of spreading 
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necrosis termed Runaway Cell Death (RCD) that is completely suppressed in lsd1/eds1 or 

lsd1/pad4 double mutants [108, 147].  Furthermore, EDS1 is required in downstream 

signaling events following the generation of singlet oxygen in the photosensitized mutant 

flu [110]. I tested whether EDS1-PAD4 over expressors displayed altered responsiveness 

to oxidative stress. The most abundant ROS produced after pathogen challenge are anion 

super oxide (O2-) and hydrogen peroxide (H2O2) [145, 146]. The herbicide methyl   

 
Figure 3.16 Growth response of different plant lines to Methyl  Viologen (Paraquat) 
Wild type, eds1-1, pad4-5, OE_E1s.6, OE_P4s.1 and OE_E1/P4.A seeds were surface sterilized and 

germinated on MS plates. After 7 days seedlings from each line were transferred in liquid MS medium 

containing 0 (violet bars), 1 (red bars) or 2 µM (yellow bars) Methyl Viologen. After three days the fresh 

weight from three samples each of three individuals was measured and the average weight of a single plant 

was estimated. For each line the values were then expressed as percentage of the average single plant fresh 

weight measured in the absence of MV. Error bars represent sample standard deviation. Three independent 

experiments gave similar results. 

 

viologen (MV), also known with the commercial name paraquat, induces the production 

of superoxide and hydrogen peroxide in plants exposed to light, by oxidizing the  

photosystem I [113, 148]. I tested the sensitivity of OE_E1/P4.A plants to MV compared 

to OE_E1s.6, OE_P4.1, eds1-1, pad4-5 and wild type (WS-0) plants.  Seeds were 

germinated on solid MS plates and after one week transferred to MS liquid medium with 
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different concentrations of MV (0, 1 and 2 µM). After 3 days of growth under standard 

conditions (12 h/day light) the fresh weight of plants was measured. For each line, the 

growth reduction due to MV application was expressed as the percentage fresh weight 

measured in the absence of MV. The results are shown in Figure 3.16. In the presence of 

1µM MV, growth reduction of wild type, OE_E1s.6, OE_P4s.1, eds1-1 and pad4-5 plants 

was ≈ 60%. However, in OE_E1/P4.A plants it was much less and maximally ≈ 5-10%. A 

further reduction of up to 20-30% for OE_E1/P4.A and 80% for all the other lines was 

measured in presence of 2µM MV, indicating dosage dependency in the MV induced 

growth retardation.  Different hypotheses can be formulated to explain the observed 

increased tolerance of the OE_E1/P4.A plants to O2-/H2O2 stress. First, I can not rule out 

that the increased apparent tolerance of EDS1/PAD4 over expressors to MV is due to 

reduced uptake of MV compared to other lines. Second, the OE_E1/P4.A line could be 

more tolerant due to heightened activation of the scavenging machinery involved in the 

detoxification of ROS produced upon MV treatment.  

Further experiments are being performed to test these hypotheses. 

 

 

3.11 An EDS1 pool is phosphorylated 

 

I wished to ascertain how EDS1 and its partner change post-transcriptionally in response 

to pathogens or oxidative stress in order to trigger downstream changes. Another 

possibility that could account for the insufficiency of dual EDS1/PAD4 over expression 

to fully activate defence is that EDS1 and/or PAD4 are regulated post-translationally in 

response to pathogen stress. The constitutive SA pathway activation (see Figure 3.8 page 

62) might then reflect the inability of a post translational regulatory system to cope with 

large amounts of EDS1 and/or PAD4 protein accumulating in the OE_E1/P4.A plants. 

Possible mechanisms of regulation could be EDS1 and/or PAD4 post translational 

modification(s), EDS1 and/or PAD4 re localization or redistribution between cytoplasmic 

and nuclear compartment after pathogen challenge [98], or, as observed in many other 

examples, a combination of the two. An additional post translational regulatory 

mechanism could be directly related with an activity of EDS1 and PAD4 complexes.      
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A specific substrate might be released in significant amounts only after pathogen 

challenge. Basal substrate levels available in the unchallenged condition in combination 

with the large amounts of the two proteins would then determine the slight constitutive 

SA pathway activation in unchallenged 35SE1/P4.A plants. While other members of our 

lab are currently investigating localization dynamics (A. Garcia and J. Parker, 

unpublished) and developing assays to intrinsic EDS1 and PAD4 biochemical activities 

(S. Rietz and J. Parker, unpublished), I aimed to assess potential regulation through 

protein modifications of EDS1 and PAD4 proteins.  

A common and well characterized reversible, regulatory modification  is phosphorylation 

[149-151]. In silico analysis of the Arabidopsis Ler EDS1 primary amino acid sequence 

performed with the NetPhos 2.0 software (http://www.cbs.dtu.dk/services/NetPhos [120]) 

showed the existence of 16 potential phosphorylation sites (score > 0.9). In accordance to 

what previously reported [152], I hypothesized a probable conservation of critical 

residues involved in the regulation of EDS1 signaling activity. An alignment between 

EDS1 amino acid sequences from different plant species was generated and is shown in 

Figure 3.17. Four conserved residues predicted to be potential phosphorylation sites were 

identified [152]. This prompted me to test whether EDS1 protein signaling activity might 

be regulated through phosphorylation. So far no EDS1 band shift was observed in one 

dimensional SDS-PAGE or Western Blot analysis utilizing total protein extracts from 

challenged or unchallenged plants (data not shown). However, this does not preclude 

phosphorylation, as reported for other verified phosphorylated proteins [153].                  

An alternative approach to assess the existence of regulatory phosphorylation sites in 

EDS1 was followed. In a first step, the strepII affinity purification efficiency [122] in the 

OE_E1s and OP_E1s lines was assessed. The results are shown in Figure 3.18. It was 

possible to purify coomassie stainable amounts of EDS1 protein, suitable for further  
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Figure 3.17 Conserved potential phosphorylated residues plant EDS1 amino acid 

sequence  
EDS1 protein sequences from Arabidopsis thaliana ecotypes Landsberg and Columbia (containing two 

EDS1 copies), Nicotiana tabacum, Nicotiana benthamiana, Lycopersicon esculentum, Hordeum vulgare 

and Oryza sativa (shown as Landsberg, Columbia and ColHomo, Ntabacum, Nbent, Tomato, Medicago, 

Barley and Rice respectively) were aligned and conserved residues showing scores higher than 0,9 for 

predicted phosphorylation by NetPhos 2.0 are indicated with yellow arrows. Overall 16 residues in the 

Arabidopsis thaliana Landsberg amino acid EDS1 sequence were predicted to be phosphorylated with a 

score higher than 0.9. 
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analyses, from OE_E1s.6 and NPE1s.8 plants but not from wild type. The identity of the 

putative EDS1 band was confirmed by Western blot and LC-MS analyses (data not 

shown).  

An in vitro approach was then followed to test whether EDS1 protein can be 

phosphorylated. Two equal aliquots of strepII purified EDS1 protein from unchallenged 

OE_E1s.15 plant tissues were incubated under the same conditions with or without a 

deregulated constitutively active form of cAMP (cyclic adenosine 3',5'-

cyclicmonophosphate) dependent protein kinase (PKA) minus its regulatory subunit 

[154]. To test whether the assay conditions would allow PKA activity, histone protein 

was incubated with or without PKA, and alone or together with plant extracts from wild 

type plants as a positive control. For detection of changes in the EDS1 phosphorylation   

 

 
 

Figure 3.18 EDS1 strepII affinity purification from plant extracts 
(A) A strepII affinity purification was performed from unchallenged wild type (WS-0) and OE_E1s.6 

plants. Equal volumes of input fractions and eluted fractions were separated by SDS-PAGE and the gel 

coomassie blue stained. A purified EDS1 protein band of the expected size is indicated by the light blue 

arrow. (B) A strepII purification was performed from unchallenged wild type (WS-0) and OP_E1s.5 plants 

at different conditions to optimize the purification procedure: standard conditions (see Material and 

Methods) from wild type and OP_E1s.5 (WS-0 and OP_E1s.5), double tissue amounts of OP_E1s.5 (2V), 

double time of incubation with the resin from OP_E1s.5 (2T). Equal volumes of input fractions (Input), 

eluted fractions (Elution) and concentrated eluted fractions (Conc. Elution) were separated by SDS-PAGE 

and the gel stained with blue coomassie. Purified EDS1 protein bands of the expected size are indicated by 

the light blue arrow. 
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state the specific ProQ Diamond phosphostaining (Molecular Probes) followed by total 

protein assessment by SyproRuby staining was performed as previously described [155]. 

The results are shown in Figure 3.19. The observed differential phospho signal after 

PKA treatment of comparable amounts of histone and EDS1 protein indicates in vitro 

phosphorylation events. To test whether the phosphorylation happens also in vivo and 

whether it has a role in EDS1 activation, I compared phospho signal from strepII -

purified EDS1 derived from unchallenged and pathogen challenged plant tissues. The 

bacterial strain DC3000 expressing the avirulence gene AvrRps4 is recognized 

 

 
Figure 3.19 In vitro EDS1 phosphorylation assay 
A strepII affinity purification was performed from unchallenged wild type and OE_E1s.6 plant tissues. The 

purified fractions were concentrated and divided into two aliquots. To both the wild type purified aliquots 

50 ng histone was added as an internal control and they were incubated either in the absence or presence of 

PKA at 30°C 1 h. Of the two aliquots from OE_E1s.6 one was incubated in the absence of PKA and one in 

the presence of PKA at 30°C 1 h. Histone alone was also incubated in the absence or presence of PKA at 

30°C 1 h as a control. After incubation, all samples were separated by SDS-PAGE and the gel was stained 

by ProQDiamond phosphostaining (left panel) and subsequently by Sypro Ruby staining to assess total 

protein amounts (right panel). EDS1 protein bands are indicated by the yellow arrows; Histone bands are 

indicated by black arrows. 
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in the Arabidopsis ecotype WS-0 by the cognate TIR-NBS-LRR receptor RPS4 leading 

to EDS1 dependent defence response [40, 92]. I reasoned that in plants challenged by 

DC3000 AvrRps4 EDS1 protein should be in its signaling active form.  Wild type and 

OE_E1s.6 plants were inoculated with pathogen by vacuum infiltration of leaves with a 

bacterial suspension of DC3000 AvrRps4 (107cfu/ml). Leaf tissues were collected at 0 h, 

2h and 4 h after bacterial infiltration. The collected tissues were subjected to strepII 

affinity purification in presence of phosphatase inhibitors in order to maintain potential 

phosphorylated sites throughout the purification procedure. The purified fractions were 

concentrated, separated by SDS-PAGE and the gel stained with ProQ Diamond 

phosphostaining and subsequently with Sypro Ruby. To distinguish a specific phospho 

signal from the background protein signal [155], phosphatase λ  treatments were included. 

The results are shown in Figure 3.20A. The existence of an EDS1 phosphorylated pool 

was indicated by the observed differential phosphosignal from phoshpatase λ treated and 

untreated protein. No obvious change in the intensity of this differential signal was 

observed at different time points after bacterial inoculation, suggesting an unlikely 

involvement of phosphorylation events in the early activation of EDS1 signaling activity. 

In order to assess whether phosphorylation events could account for an activation of 

EDS1 at later stages such as during establishment of SAR the same experiment was 

performed and later time points (16 h and 24 h after infiltration) analyzed. This produced 

similar results (Figure 3.20B).  

Taken together these data suggest that the observed phosphorylation is not correlated 

with EDS1 signaling activation. An alternative interpretation is that as EDS1 was purified 

from an over expressor line with much higher EDS1 protein levels than wild type, the 

phosphorylated pool may represent the actually signaling active EDS1 while the not 

phosphorylated form would represent an inactive pool that is in excess. In this scenario 

one would then predict that strepII-purified EDS1 from OP_E1s lines should show 

enrichment in the phosphorylation signal for the total amount of protein, compared to the 

OE_E1s lines. To assess this possibility, a strepII purification in the presence of 

 

84 



   Results 
 
 

  
Figure 3.20 In vivo phosphorylation analyses of EDS1protein in line OE_E1s.6 
(A) StrepII affinity purifications in presence of phosphatase inhibitors was performed from unchallenged 

wild type (WS-0) and OE_E1s.6 (OE_E1s.6 T0) plant tissue and from challenged OE_E1s.6 plant tissues 

collected 2h (OE_E1s.6 T2) and 4h (OE_E1s.6 T4) after vacuum infiltration with DC3000 AvrRps4 (107 

cfu/ml). The purified fractions were concentrated and aliquoted. β casein (100 ng) and λ phosphatase were 

added as indicated . All aliquots were incubated at 37°C for 1 hr and then loaded onto an SDS-PAGE. The 

gel was stained by ProQDiamond phospho staining (Left) and subsequently by SyproRuby staining to 

assess total protein amounts (Right).  (B) The same experiment was performed from unchallenged wild 

type (WS-0) and OE_E1s.6 (OE_E1s.6 T0) plant tissues and from challenged OE_E1s.6 plant tissues 

collected 16h (OE_E1s.6 T16) and 24h (OE_E1s.6 T24) after DC3000 AvrRps4 infection.  As an additional 

control E. coli expressed purified recombinant EDS1 was also included  

EDS1 protein bands are indicated for all gels by the red arrows. 
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phosphatase inhibitors was performed from OP_E1s.5 and wild type (WS-0) 

unchallenged and pathogen challenged plant tissues. In this purification phosphatase λ 

treatments were also included. The result of this experiment is shown in Figure 3.21. No 

significative enrichment in the phosphosignal was observed for the OP-E1s lines 

compared to OE_E1s. In the case of the OP_E1s.5 there was no increase in the 

phosphorylated pool compared between unchallenged and challenged plants 2h and 4 h 

after DC3000 AvrRps4 vacuum infiltration (data not shown).  

Thus, I concluded that the identified phosphorylation is not associated with an active 

form of EDS1 and unlikely it is involved in EDS1 signalling activation. 

 

 
Figure 3.21 OP_E1s in vivo phosphorylation analyses 
A StrepII affinity purification was performed from wild type and OP_E1s.5 unchallenged plant tissues in 

the presence of phosphatase inhibitors. The purified fractions were concentrated and β-casein (80 ng) and λ 

phosphatase added as indicated. All aliquots were then incubated at 37°C for 1 h and separated by SDS-

PAGE. The gel was stained by ProQDiamond (Left) and subsequently by SyproRuby to assess total protein 

amounts (Right).   

EDS1 protein bands are indicated by red arrows. 

  

 
3.12 EDS1 is N-acetylated 

 

Another broader approach was followed to identify other potential modifications that may 

be involved in EDS1 activation. StrepII affinity purification was performed from tissues 

86 



   Results 
 
 
of unchallenged wild type plants, unchallenged OE_E1s.6 plants and challenged 

OE_E1s.6 plants 2 h and 4 h after vacuum infiltration with Pst DC3000 AvrRps4. Equal 

amounts of purified EDS1 from each sample were assessed by coomassie blue staining of 

SDS-PAGE gels (Figure 3.22A). Equal volumes of each purification were digested with 

trypsin and analyzed by LC/MS without fragmentation in order to identify differential 

peaks corresponding to peptides with altered flight capabilities related to differential 

presence of protein modifications. The results are shown in Figure 3.22B. No differential 

peak was identified between the different MS spectra corresponding to different time 

points. Differences were instead observed with spectra from E. coli expressed purified 

recombinant EDS1 and displayed the presence of an N-acetylation in all the EDS1 

samples purified from plant tissues (Figure 3.22C). As the N - acetylation was not 

differential in samples before and after pathogen challenge, involvement of such a 

modification in the activation of EDS1 at early time points is unlikely. Two kinds of N - 

acetylation are known: an irreversible form which is estimated to occur on 80 - 90% of 

the eukaryotic proteins and which would be an unlikely candidate as a regulatory 

modification [156], and a second reversible one that was shown to be involved in the 

regulation of histone and transcriptional factors [156, 157]. The fact that no peak 

corresponding to an unmodified N terminus of EDS1 was observed in the analyzed 

spectra points to an irreversible modification rather than equilibrium between two 

different forms of EDS1. 

 

3. 13 EDS1 protein associations in vivo 

 

A further possible mechanism through which the EDS1 complex might be regulated post 

translationally is through physical interaction with so far unidentified protein partner(s) 

that could specifically associate with the EDS1 complex and modulate its activity upon 

perceiving a pathogen signal.  

I first verified the strepII system as a means to identify protein associations by testing 

whether PAD4, a known interactor of EDS1, could be affinity copurified together with 

EDS1 by strepII purification from OP_E1s plant tissues. 
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(Previous page) Figure 3.22  EDS1 N – acetylation identification  
(A) A StrepII purification from unchallenged wild type plants (WS-0), unchallenged OE_E1s.15 plants 

(OE_E1s T0) and challenged OE_E1s.6 plants 2h (OE_E1s T2) and 4 h (OE_E1s T4) after infiltration with 

DC3000 AvrRps4 (107 cfu/ml) was performed. Input fractions and correspondent purified fractions were 

loaded onto an SDS-PAGE and the gel was blue coomassie stained. (B) The strepII purified EDS1 fractions 

described in (A) were digested with trypsin and analyzed by LC/MS without fragmentation. In figure are 

shown the resulting spectra: from unchallenged OE_E1s.6 plants (T0), from challenged OE_E1s.6 plants 2 

h and 4 h after Pst DC3000 AvrRps4 infiltration (T2 and T4 respectively). Peaks corresponding to the 

acetylated EDS1 N-terminus are shown by grey arrows. (C) Ion series produced from the N terminal 

peptide of EDS1 after fragmentation. In the table are reported the expected ion masses in the presence of an 

N – acetylation. The masses actually observed after the fragmentation of the N terminus of EDS1 are 

shown in red. 

 
 
 

Since EDS1-PAD4 association exists in healthy plants [93], unchallenged OP_E1s.5 and 

wild type tissues (WS-0) as negative control were used. Results are shown in Figure 3.23. 

I found that it was possible co-purify PAD4 with EDS1-strepII, as indicated by a specific 

band on a Western blot identified with polyclonal anti-PAD4 antibodies. No PAD4 band 

was observed in the fraction purified from wild type tissues ruling out non-specific 

interaction between PAD4 and the affinity matrix in the absence of EDS1-strepII. 

Experiments using either pathogen-challenged or unchallenged plant material didn´t 

identify further EDS1 interactors. Similarly PAD4 strepII affinity purification from 

OE_P4s lines led only to the co purification of endogenous EDS1 and not SAG101 

consistent with a previous study [98]. Other tags, for example the TAP (tandem affinity 

purification) attached to EDS1 or PAD4 also failed to identify new component besides 

the known interactors (J. Bautor, B. Feys an J.Parker, unpublished;  [158]).  

I therefore concluded that either no further protein-protein interactions are involved in 

EDS1-PAD4 signaling regulation or transient interactions taking place in the living cells 

are too short timed or weak to be captured by the affinity purification systems used so far. 
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Figure 3.23 Co purification of PAD4 by EDS1 strepII affinity purification 
A strepII purification from unchallenged NPE1s.8 and wild type (WS-0) plant tissues was performed. Equal 

volumes of input fractions and concentrated eluted fractions respectively were analyzed in western blot 

analyses using monoclonal anti-strepII (upper panels) and polyclonal anti-PAD4 antibodies (lower panels). 

In the input fractions aspecific bands cross reacting with the strepII antibody indicate equal starting protein 

amounts. EDS1 and PAD4 protein bands are indicated by the red and blue arrow respectively. 

 

 

 

3.14 Strategies to constitutively or conditionally activate the EDS1 pathway 

 

I reasoned that protein modifications or interactions may occur at time points different to 

those analyzed after pathogen challenge. It is also likely that only a subset of cells under 

direct exposure to the pathogen were responding in the above experiments. This would 

dilute any specific change by background “noise”. In order to test these possibilities I 

followed a genetic approach to constitutively or conditionally activate the EDS1 pathway 

in lines expressing EDS1-strepII protein. 
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3.14.1 Genetic constitutive activation of the EDS1 pathway 
 

The Arabidopsis snc1 mutant carries a recessive point mutation in a TIR-NB-LRR R gene 

that leads to constitutive defence activation which is EDS1- and PAD4-dependent [104, 

105]. Reasoning that within this background EDS1 is constantly signaling I crossed the 

selected transgenic OE_E1s.4 and OP_E1s.5 lines with snc1/eds1-2 mutant plants 

(hereafter OE_E1s/eds1/snc1 and OP_E1s/eds1/snc1, respectively). Pollen from 

OE_E1s.4 and OP_E1s.5 plants, both Basta® resistant, was used to pollinate emasculated 

snc1/eds1-2 plants. The resulting F1 seeds were grown on soil and their identity verified 

by Basta® spraying. F2 seeds were collected from surviving plants and grown on soil. 

Homozygous plants for the snc1 mutation carrying at least one copy of the OE_E1s or 

OP_E1s construct were identified because of their typically reduced size [104, 105]. 

Seeds were collected from these plants and the segregation of the dwarf phenotype was 

checked in the next generation. F3 plants from both crosses in comparison to their 

correspondent parental lines and snc1 mutant plants are shown in Figure 3.24. Even if 

still segregating, the OE_E1s/eds1/snc1, and OP_E1s/eds1/snc1 plants had a severely 

reduced size compared to the parental lines snc1/eds1-2, OE_E1s.4 or OP_E1s.5. 

OE_E1s/eds1/snc1 and OP_E1s/eds1/snc1 had bigger size and strong attenuation of leaf 

curliness in comparison to snc1 mutant plants. Occasionally, the generated crosses 

displayed an additional phenotype, the yellowing of the younger rosette leaves. These 

differences may be due to the combination of Arabidopsis backgrounds created in 

generating these crosses: the paternal lines are in WS-0 while the maternal line is a cross 

between snc1 plants (ecotype Col-0) and eds1-2 plants (L-er). In the OE_E1s/eds1/snc1 

and OP_E1s/eds1/snc1 plants this was particularly evident from the shape of the leaves 

that were similar to L-er. Nonetheless, an obvious requirement for both snc1 mutation 

homozygosity and at least one copy of the constructs expressing EDS1 (both confirmed 

by PCR analyses with specific primers; data not shown) was necessary to observe dwarf 

phenotype. Thus constitutive activation of the EDS1 pathway was evident in these 

crosses. Currently OE_E1s/eds1/snc1 and OP_E1s/eds1/snc1 are under selection and 

propagation to get suitable tissues amounts for biochemical analyses.  
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Figure 3.24 Genetic constitutive activation of the EDS1 pathway 
F3 seeds from the OE_E1s/eds1/snc1a nd  OP_E1s/eds1/snc1lines (see text for details) were sown on soil 

together with the parental lines (snc1/eds1-2, OE_E1s.4 and OP_E1s.5 respectively) and snc1 plants for 

phenotypel comparisons. Four-week-old plants are displayed. 

 
 
 

3.14.2 Genetic conditional activation of the EDS1 pathway 
 

AtMPK4 encodes a negative regulator of SAR and mpk4 plants have a constitutive SAR 

response which is EDS1- and PAD4- dependent [82]. Such negative regulation is 

dependent on the MPK4 kinase activity since stable inactive MPK4 variants were unable 

to complement the mpk4 defect [82]. As in the case of snc1 I reasoned that EDS1 would 

be constitutively activated in the mpk4 background. Since mpk4 plants are like the snc1 

plants dwarf and since the MPK4 activity is essential for its role in negative regulating 

SAR a specific approach was developed to conditionally inactivate MPK4 in the plant.  

In a recent publication J. Mundy and colleagues generated mpk4 mutant plants expressing 
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a conditional loss-of-function HA tagged MPK4 mutated allele (hereafter 

MPK4Y124GHA) [90]. This allele carries a mutation in its ATP-binding-pocket which 

leads to a sensitization to the bulky C3-1´-naphtyl (NaPP1) Src tyrosine kinase inhibitor 

[90, 159]. The specificity of the inhibition was demonstrated by comparisons to mpk4 

mutants expressing HA tagged wild type MPK4 (hereafter MPK4HA) [90]. I then 

decided to use both these lines, MPK4Y124GHA and MPK4HA, for crosses with the 

OP_E1s.5 and OE_E1s.4 lines described above. These crosses offer a tool to 

conditionally trigger the EDS1 pathway in a more homogeneous and synchronized way 

while allowing first the growth of normal plants, important to avoid side effects deriving 

from development perturbations. In this case pollen from the MPK4HA and 

MPK4Y124GHA plants was used to pollinate emasculated flowers from both OP_E1s.5 

and OE_E1s.4 plants. Both the MPK4HA and MPK4Y124GHA lines were generated in the 

mpk4 background which carries the Kanamycin (Kan) resistance gene nptII in the Ds 

element used to disrupt the endogenous MPK4 gene [82]. The constructs for the over 

expression of both MPK4 versions and both the OE_E1s and OP_E1s constructs carry the 

same PPT resistance. The identity of F1 individuals was therefore checked by growing F1 

seedlings in Kan/PPT containing MS plates. Resistant plants were transferred to soil and 

F2 seeds collected. Aliquots of F2 seeds were sown on MS plates containing either PPT or  

Kan to check independently the segregation of the mpk4 mutation and the segregation of 

two constructs carrying the PPT resistance. Individuals from lines showing no 
 

Table 3.3 Current situation of the MPK4HA and MPK4Y124GHA crosses  

Line mpk4 eds1-1 

MPK4HA 

Or 

MPK4Y124GHA 

NPE1s 

or 

OE_E1s 

NPE1s.8/MPK4HA Hom Hom Het Hom 

NPE1s.8/MPK4Y124GHA Hom Hom Het Hom 

OE_E1s.8/MPK4HA Hom Hom Hom Het 

OE_E1s.8/MPK4Y124GHA Hom Hom Het Hom 

Hom, homozygous; Het, heterozygous 
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segregation for both the nptII and the bar marker genes were transferred on soil and 

genotyped. Dominant PCR based markers for the detection of the MPK4HA, 

MPK4Y124GHA, OE_E1s and OP_E1s constructs were developed (See Materials and 

Methods). Plants containing at least one copy of the MPK4 and EDS1 construct were 

genotyped for the eds1-1 mutation. F3 seeds were collected from the selected plants and 

the status of the MPK4HA, MPK4Y124GHA, OE_E1s and OP_E1s constructs was 

determined by genotyping 10 – 18 F3 individuals. The current situation is shown in Table 

3.3. During the selection procedure it was possible to identify plants homozygous for 

both the mpk4 and eds1-1 mutation, carrying at least one copy of the corresponding 

construct for the expression of the strepII EDS1 fusion protein and no copy of the 

correspondent MPK4HA or MPK4Y124GHA construct. An example of such situation is 

shown in Figure 3.25. These plants showed full complementation of the mpk4 dwarf 

phenotype confirming once more the full functionality of the EDS1 strepII fusion 

proteins. Also for these lines the selection is under completion. Once propagated to get 

suitable tissue amounts for biochemical studies, these lines should provide a useful tool to 

check kinetics of the EDS1 complex activation upon conditional inhibition of the MPK4 

activity. 

 

 
Figure 3.25 Observed phenotypical segregation in the MPK4HA and MPK4Y124GHA 

crosses  
OP_E1s.5/MPK4HA F2 plants were grown on soil alongside mpk4 plants for phenotypical comparisons.  

The blue arrow indicate a plant homozygous for both mpk4 and eds1-1 mutation, containing at least one 

copy of the NPE1s transgene and no copy of the MPK4HA construct. Similar phenotypes were observed in  

OP_E1s.5/MPK4Y124GHA, OE_E1s.4/MPK4HA and OE_E1s.4/MPK4Y124GHA F2 segregating populations.
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4. DISCUSSION 
 
 
 

 

 

 

 

 

 

During the last years a key function of EDS1 and PAD4 in plant immunity has been 

demonstrated [125]. Inducible defences against biotrophic and hemibiotrophic potential 

pathogens have been shown to require EDS1 and PAD4 signaling activity: ETI mediated 

by TIR-NBS-LRR as well as basal defense against virulent pathogens, post-invasive non-

host resistance and SAR are all compromised in eds1 and pad4 mutant plants [70, 125]. 

Accurate placement of EDS1 and PAD4 signaling functions within the series of events 

following pathogen challenge is complicated by their involvement in a positive feedback 

loop with SA and ROS, so that their immediate signaling activity is very difficult to be 

discriminated from actions  in signal potentiation [125]. 

The biochemical activity(ies) of EDS1 and PAD4 is still not known. However, a potential 

lipase activity, hypothesized on the basis of conserved motifs in both EDS1 and PAD4 

amino acid sequence, has been ruled out (S. Rietz and J. Parker, unpublished). 

Accordingly attempts to obtain structural information by crystallographic analyses 

together with assays to measure potential alternative activities, hypothesized on the basis 

of the biological context in which EDS1 and PAD4 operate, are being performed (S. 

Rietz  and J. Parker, unpublished).    

A better understanding of how EDS1 and PAD4 proteins are regulated in relation to their 

activation of downstream defense responses could provide an important insight to their 

biological role in the plant. The localization of EDS1 and PAD4 in nuclear and 
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cytoplasmatic compartments [98, 116] needs to be considered in formulating a 

EDS1/PAD4 activity. It also suggests that signaling through relocalization may be central 

to EDS1/PAD4 functions. Also, protein interaction studies, together with targeted gene 

expression analyses, led to the identification of three furher components, SAG101, FMO1 

and NUDT7, of the EDS1 and PAD4 regulatory node [98, 102]. 

 

EDS1 and PAD4 appear to be regulated at two different levels: transcriptionally and post 

transcriptionally. EDS1 and PAD4 both transcripts and proteins are up regulated after 

pathogen challenge or BTH treatment [93]. In several Arabidopsis mutant backgrounds 

that have EDS1 and PAD4 dependent constitutive defense activation, such as mpk4 and 

snc1, up regulation of EDS1 and PAD4 was observed ([90] A. Garcia and J. Parker, 

unpublished). These data suggest a potential link between EDS1 and PAD4 

transcriptional control and their signaling activation. However, in these deregulated 

mutant plants high levels of SA and pleiotropic effects due to the mutations have been 

described making it very difficult to specifically pin down the relative importance of 

EDS1 or PAD4 up regulation in defence activation [82, 104]. Furthermore, EDS1 and 

PAD4 proteins are already present in unchallenged tissues [93], and after pathogen 

challenge gene expression changes dependent on EDS1 and PAD4 take place at early 

time points [102] before any reported protein up regulation [93, 102]. This implies the 

activation of pre-existing EDS1 and PAD4 protein complexes and the existence of post 

translational regulatory mechanisms.  

In this study I investigated the relative importance of transcriptional regulation and post 

transcriptional processes in EDS1 and PAD4 protein signaling. Arabidopsis lines over 

expressing either EDS1 or PAD4 or both were characterized. Growth retardation and 

enhanced basal resistance was observed only for the dual EDS1-PAD4 over expressors. 

From these data I conclude  that EDS1 and PAD4 do not function separately but within a 

unique signaling unit, consistent with previous genetic and protein interactions data [37, 

98, 125].  

The dual EDS1-PAD4 over expression led in unchallenged plants to de-regulation and in 

pathogen challenged plants to the faster activation of the SA pathway. It was however not 

sufficient to fully recapitulate EDS1/PAD4 dependent defence activation. This proves the 
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existence of not yet identified post transcriptional mechanisms contributing to the 

regulation of EDS1 and PAD4 signaling functions.  

Finally, increased tolerance to chemically induced oxidative stress observed in the 

OE_E1/P4 lines strengthens a connection between the transduction of ROS generated 

signals and EDS1 and PAD4 protein functions. Consistently, new potential functions of 

EDS1 and PAD4 and mechanisms of activation of these regulators can now be 

hypothesized. 

 

4.1 EDS1 and PAD4 single over expressor lines do not exhibit obvious defense 

phenotypes 

 

To test the importance of EDS1 and PAD4 up regulation in relation to their signaling 

activity, I generated Arabidopsis thaliana lines over expressing either EDS1 or PAD4 

strepII fusion proteins. The strepII tag was selected because of its very small size (7 

amino acid), unlikely to interfere with protein function, and because its addition could 

allow purification of EDS1 or PAD4 from plant tissues after a series of treatments [122]. 

Also, transcriptional and protein up regulation of SAG101 had been observed upon 

pathogen challenge [116]. Since SAG101 activity is redundant with PAD4, I restricted 

my analysis to EDS1 and PAD4 over expression.  

Multiple independent transgenic lines over expressing fully functional EDS1 or PAD4 

strepII fusion proteins at much higher levels than either unchallenged or pathogen 

challenged wild type plants were selected (Figure 3.2, 3.3 and 3.4).   

Over expression of other plant defense signaling components has been previously 

reported to result in increased resistance against virulent pathogens.  In Arabidopsis over 

expression of NPR1 or its interacting partner TGA5, both involved in SAR regulation, 

leads to increased resistance to virulent downy mildew isolates [160, 161]. Increased 

resistance to Pst DC3000 (hereafter DC3000) was observed in Arabidopsis transgenic 

plants over expressing either NPR1 or NDR1 (Non race specific Disease Resistance 1), 

encoding a protein required by most CC-NBS-LRR receptors [160, 162]. Also, over 

expression in Arabidopsis plants of FMO1, a positive component of EDS1/PAD4 

resistance, led to increased resistance to  virulent  races of P. syringae and H. parasitica 
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[121]. In contrast to these examples, no increased resistance to a virulent isolate of H. 

parasitica was observed in EDS1 or PAD4 over expressing transgenic plants (Figure 3.5), 

indicating that the increasing of EDS1 or PAD4 proteins alone is not sufficient to 

enhance plant basal defence.  

 

4.2 EDS1/PAD4 dual over expressor lines have retarded growth 

 

Available genetic data point towards an intimate interaction between EDS1 and PAD4 

signaling activities [125].  The only example of a function for PAD4 that is independent 

of EDS1, emerged from analyses of the interaction between Arabidopsis thaliana and 

green peach aphids ([163],  V. Pedagaraju et al., unpublished). Also, physical association 

between EDS1 and PAD4 together with their mutual stabilization suggests that EDS1 and 

PAD4 operate as a signaling unit [93, 98]. This is also consistent with the finding that 

both proteins are up regulated in wild type plants upon pathogen challenge or BTH 

treatment [93, 99, 140]. I hypothesized that over expression of EDS1 or PAD4 alone does 

not lead to defense activation due to limited availability of the corresponding protein 

partner. To test this hypothesis crosses between single EDS1 and PAD4 over expressor 

lines were made and Arabidopsis transgenics over expressing simultaneously EDS1 and 

PAD4 selected.  

Dual over expression of EDS1 and PAD4 resulted in growth attenuation compared to the 

single over expressors or wild type plants (Figure 3.6). Compromised growth has been 

described for a number of mutants showing constitutive activation of defense responses. 

The snc1, mpk4 and cpr1 (constitutive expression of PR 1) Arabidopsis mutants all 

display dwarfism associated with high SA content, constitutive activation of defense 

genes such as PR1 and PR2 and increased resistance [90, 104, 105, 164]. Similarly, 

reduced growth and defense activation were recently been described for plants carrying a 

mutation in the NUDT7 gene, whose expression is dependent on EDS1 and PAD4 [102]. 

Complete suppression of the growth an defence phenotypes was observed in eds1/nudt7 

plants [102] and preliminary results show increased EDS1 protein accumulation in the 

nudt7 background, (M. Straus and J. Parker, unpublished). In general, stunted growth in 

constitutive defense mutants has been interpreted as the consequence of the metabolic 
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cost of defense activation [139]. This cost has most likely determined the evolution of 

complex regulatory networks to limit activation of otherwise detrimental defense 

pathways and to tailor the response to the attacking pathogen in order to avoid the 

deployment of ineffective defence.  

To understand whether the growth retardation due to EDS1/PAD4 dual over expression 

might be a consequence of defense pathway activation, marker gene expression analyses 

by semi-quantitative RT-PCR were performed. A specific activation of the SA pathway 

(monitored as deregulated expression of the SA marker gene PR1) and not of the JA 

pathway was observed (Figure 3.8). Furthermore, an increased accumulation of both free 

and total SA in OE_E1/P4 lines compared to the single over expressors and wild type 

was observed, in accordance with the gene expression data (Figure 3.9).  

Plant growth is a complex and highly regulated process in which cell division and cell 

elongation events are essential factors [128]. In mpk4 mutants dwarfism was shown to be 

associated with reduced cell size [82]. However no abnormal response to hormones due 

to the mpk4 mutation was observed [82]. A more general role for SA in interfering with 

plant development emerged by analyses of other mutants with constitutive defense 

activation. In acd6 (accelerated cell death 6), agd2 (aberrant growth and death 2), lsd6 

(lesion simulating disease 6) and ssi1(suppressor of SA-insensitivity 1) plants, defense 

activation interfered with cell growth by affecting cell enlargement, endoreduplication 

and/or cell division [129]. In all of these mutants high levels of SA were measured. An 

SA contribution to cell morphological changes in these mutants was shown by 

suppression of cell development alterations in crosses between acd6, agd2, lsd6 or ssi1 

mutants with transgenic Arabidopsis plants expressing the SA-degrading enzyme NahG, 

a bacterial salicylate hydroxylase [129]. However, catechol the NahG product, was 

demonstrated to have pleiotropic effects and the results of these analyses should be 

interpreted carefully [165, 166]. Observed cell developmental phenotypes of acd6/npr1, 

agd2/npr1, lsd6/npr1 and ssi1/npr1 double mutant combinations indicated also a 

potential function of NPR1 in promoting cell division or suppressing endoreduplication, 

confirmed by analyses of single npr1 mutant plants [129]. In another study, Arabidopsis 

cpr5 (constitutive expressor of PR genes 5) plants, showing defense activation dependent 

on SA but only partially dependent on EDS1, PAD4 and NPR1, displayed alterations of 
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cell size, endoreduplication processes and cell division in both trichomes and epidermal 

cells [167].  EDS1 and PAD4 are two key components of the SA pathway and their over 

expression leads to increased SA levels. The availability of experimental evidence 

indicating a function of SA in affecting cell development, prompted me to test whether 

the plant growth phenotype in the dual EDS1 and PAD4 over expressors was determined 

by cell size alterations. A smaller cell size was estimated in OE_E1/P4 lines compared to 

wild type and single EDS1 or PAD4 over expressors (Figure 3.7). In contrast to what 

observed in acd6 or agd2 plants [129, 168, 169], abnormally enlarged cells in the 

mesophyll were not seen (data not shown). At present I cannot rule out that alterations in 

cell division could contribute to the decrease in fresh weight of the OE_E1/P4 lines. Such 

analyses need to be performed. To determine the specific contribution of SA or NPR1 to 

this developmental phenotype crosses with eds16 (enhanced disease susceptibility 16), an 

isochorismate synthase shown to be the major SA source after pathogen challenge, and 

npr1 mutant plants are being done. The observed silencing induced by the presence of 

two constructs driven by the CaMV 35S promoter would on the other hand render the 

generation of these lines problematic. This problem could be solved by the fact that 

substantial growth retardation was observed in the F1 progeny of two EDS1 and PAD4 

single over expressor lines (Figure 3.12). Crosses between single EDS1 and PAD4 over 

expressors and eds16 or npr1 mutants will be performed and the resulting lines used to 

test the effects of eds16 and npr1 mutations on the growth phenotype in corresponding F1 

progenies. 

 

4.3 EDS1/PAD4 dual over expressor display increased resistance and inappropriate 

HR development in response to virulent pathogens 

 

A common feature described for many defense mutants is the spontaneous development 

of lesions in the absence of the pathogen: nudt7, cpr5 (constitutive expression of PRs 5), 

ssi2 (suppressor of salicylate insensitivity of npr1-5), acd6 and agd2, among others, 

display spontaneous cell death [102, 135, 168-170]. In many cases this was shown to be 

dependent on SA [168-171]. In contrast to these mutants OE_E1/P4 did not exhibit lesion 
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development in the absence of the pathogen (Figure 3.10). Thus, growth retardation is not 

a consequence of cell death initiation. 

In another group of mutants defense activation resulted in increased resistance to virulent 

pathogens but also in impairment in HR development against avirulent pathogens. For 

example, Arabidopsis dnd1 and dnd2 (defense no death1 and 2) mutants are not capable 

of developing a wild type HR but have enhanced resistance to avirulent P. syringae 

strains [172, 173]. Both genes encode a predicted cyclic nucleotide-gated ion channel 

[133, 173] and DND1 was shown to be involved in calcium fluxes, one of the earliest 

events following pathogen challenge [174]. Similarly, the Arabidopsis hrl1 

(hypersensitive response like lesions1) mutant is characterized by increased resistance to 

virulent pathogens [136] and suppression of HR induced by Pst DC3000 expressing 

AvrRpm1, probably as result of constitutive SAR activation [136]. No obvious 

suppression of HR following RPP1 mediated recognition was instead observed in 

OE_E1/P4 plants upon H. parasitica isolate Noco2 challenge.  

All the constitutive defense mutants described exhibit higher resistance to virulent 

pathogens than wild type plants. The same was observed for the OE_E1/P4 line (Figure 

3.5 A and B and 3.11). Most strikingly, despite the lack of R genes involved in the 

recognition of the H. parasitica virulent isolate Emwa1, the dual over expressor lines 

developed an HR (Figure 3.5B). The strict pathogen inducibility of the cell death 

response is demonstrated by the fact that no spontaneous lesions formation is primed in 

the unchallenged state. Arabidopsis edr1 edr2 and edr3 (enhanced disease resistance1, 2 

and 3) mutants, carrying mutations in genes coding for a conserved MAPKK kinase, a 

PH-START domain containing protein and a Dinamin related protein 1E respectively, 

exhibit increased resistance only towards the fungal pathogen Erysiphe cichoracearum 

but a normal response against the virulent bacterial strain Pst DC3000 [175-178]. The 

double over expression of EDS1 and PAD4 led instead to a condition of heightened 

resistance with broader effectiveness against downy mildew and bacterial pathogens 

(Figure 3.5B).  

In addition to defenses deployed after pathogen entry, plants can restrict bacterial 

pathogen entry through stomatal openings regulation [137]. The activation of this defence 

is dependent on FLS2 activity and requires SA accumulation [137]. This phenomenon 
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explained the failure to observe increased susceptibility in fls2 plants to bacteria 

infiltrated directly into the plant tissue [17]. No test was performed so far to verify 

whether eds1 or pad4 are involved in the stomatal response to bacteria but the reported 

involvement of eds16 creates however a link between SA pathway regulation and 

stomatal control [137, 179]. Experiments using bacteria directly infiltrated into the plant 

tissue will be performed to test whether a contribution to the observed increased 

resistance to bacteria derives from the activation of the stomatal response. However, 

increased resistance observed in OE_E1/P4 plants to downy mildew, that has a different 

entry strategy, and the association of this resistance with HR development suggests the 

involvement of additional mechanisms in the deregulated resistance response.  

 

4.4 Growth inhibition in the EDS1/PAD4 dual over expressors is not due to hyper 

sensitivity to PAMPs 

 

Exposure of Arabidopsis seedlings to flg22, the active 22mer from the N-terminal portion 

of flagellin, induces growth inhibition, and transcriptional activation of defence related 

genes such as PR1 [12]. Recently flagellin from P. syringae pv. tomato was shown to 

trigger cell death in the non-host species Nicotiana benthamiana in an NbFLS2 dependent 

fashion [180]. Furthermore, pre-treatments with flg22 induced resistance to spray 

inoculated DC3000 in Arabidopsis [17]. Eds1 and pad4 mutant plants retained the flg22 

induced resistance and growth inhibition, indicating that PTI operates independently of 

EDS1 and PAD4 signaling activities [17]. However EDS1 and PAD4 were induced upon 

flg22 perception and none of the analyzed mutations in JA, ET and SA pathways genes 

compromised defense activation by flg22 [17]. This led to the hypothesis of pathway 

activation, that together which would result in high robustness of the response [17]. In 

this scenario the activation of complementary pathways would mask the SA pathway 

contribution to PTI. 

The double EDS1 and PAD4 over expressor lines showed growth retardation, constitutive 

PR1 activation, increased resistance to multiple virulent pathogens and an HR-like 

response upon attack by a virulent downy mildew isolate. I tested whether these 

responses were the consequence of an increased responsiveness to PAMPs. The growth 
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phenotype could then be interpreted as the result of PTI activation by exposure to non 

pathogenic microbes normally present in the environment. Increased responsiveness to 

PAMPs carried by virulent pathogens could also explain the observed increased 

resistance and potentially the development of cell death during compatible interactions. 

Disruption of another Arabidopsis gene, PDR8/PEN3 (Pleiotropic Drug Resistance 8/ 

PENETRATION RESISTANCE 3), coding for a plasma membrane ABC transporter, has 

been reported to determine spontaneous lesions development, defence genes activation 

and increased resistance to virulent pathogens [181]. Gene induction and lesions 

development were attenuated when plants were grown in sterile conditions, indicating 

potential defense activation by microbes present in the environment [181]. The behavior 

of pdr8 plants in non-sterile conditions at high humidity has not been characterized 

leaving open the possibility that the phenotype is suppressed by high humidity in the 

sterile environment. 

Under sterile conditions the OE_E1/P4 lines retained both reduced growth and 

constitutive PR1 activation, indicating that the observed phenotypes are not the result of 

PAMP hyper-responsiveness but more likely a consequence of an intrinsic genetic 

program (Figure 3.11 A, B and C). This was consistent with the fact that Arabidopsis 

nudt7 plants, in which the EDS1 and PAD4 pathway is constitutively activated, showed 

normal responsiveness to flg22 (M. Straus and J. Parker, unpublished). Also, eds1 

mutants had increased biomass compared to wild type in both non-sterile and sterile 

conditions (Figure 3.6 and Figure 3.11 B). The difference was however much more 

pronounced in sterile conditions. This once more is probably a consequence of the 

metabolic costness of default basal defence activation present also in wild type plants and 

suppressed in eds1-1 mutants. 

 

4.5 EDS1/PAD4 dual over expression leads to an accelerated response to virulent 

pathogens 

 

SA pathway activation in unchallenged OE_E1/P4 plants led to low PR1 transcript 

accumulation well below the amplitude reached after pathogen challenge (Figure 3.8). 

Also, cell death in OE_E1/P4 plants was triggered only upon pathogen challenge 
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indicating that high levels of EDS1 and PAD4 proteins are not sufficient to recapitulate 

the full pathogen response (Figure 3.5). To better characterize defense induction, time 

course experiments after infection with a virulent Hyaloperonospora parasitica isolate 

were performed and candidate gene expression, EDS1 and PAD4 protein levels and 

phenolic compound accumulation monitored (Figures 3.9, 3.13, 3.14 and 3.15). The 

results of these experiments indicate a quicker activation of the SA pathway in response 

to virulent pathogens induced by dual over expression of EDS1 and PAD4.   

The concept of “priming”, originally elaborated to describe a phenomenon observed in 

mammalian monocytes and macrophages apply also to plants. It describe a “sensitized” 

condition leading to more rapid responses to subsequent attacks [182, 183]. Induced 

Systemic Resistance (ISR) is induced by nonpathogenic root-colonizing bacterium P. 

fluorescens WCS417 and also represents a “priming” mechanism. It´s independent of SA 

and of PR-gene activation but requires JA and ET [184]. Analyses of local and systemic 

levels of JA and ET revealed that ISR induction is not associated with changes in the 

production of these signal molecules but rather with an enhanced sensitivity in their 

perception [185]. Consistent with this idea microarray analyses demonstrated changes in 

expression of virtually no gene in the systemic tissues upon ISR induction, while upon 

subsequent pathogen challenge ISR induced plants showed more rapid induction of ≈ 80 

genes compared to naïve plants [186]. Priming was also described for plants treated with 

the chemical compound BABA (β-Aminobutyric acid) a non-protein amino acid that 

potentiates plant responses and confers resistance to biotic and abiotic stresses in a SA, 

JA and ET independent fashion [182, 183]. The state of plants treated with BABA or in 

which SAR or ISR have been induced has thus be considered as “primed”, to indicate the 

increased velocity of response to following attacks [182, 183].  The data presented here  

suggest that OE_E1/P4 plants are also in a “primed” condition. The observed up 

regulation of PR1 in the unchallenged state represents a significant difference with ISR 

induced or BABA treated plants and reflects more similar SAR-induced plants. 

Constitutive SAR expression was previously believed to suppress cell death [136]. This 

was not observed in OE_E1/P4  plants. A key regulator of SAR induction is NPR1 [187]. 

Determining the NPR1 contribution to the observed defense phenotype would allow a 
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better characterization of the primed state of the double EDS1/PAD4 over expressor 

plants.  

The observation that a series of responses were induced only upon pathogen challenge in 

the OE_E1/P4 lines, points to post translational control of EDS1/PAD4 signalling. 

Probable post translational stabilization of each protein was observed upon pathogen 

challenge but must be confirmed by quantitative analyses of EDS1 and PAD4 transcript 

and protein levels (Figure 3.13 and 3.14). However stabilization is unlikely to account 

fully for defense activation, since the EDS1 and PAD4 protein levels obtained in 

unchallenged OE_E1/P4 plants are considerably higher than in pathogen challenged wild 

type plants (Figure 3.4 C and D). To assess whether the defence activation is mediated by 

endogenous SAG101, sag101 mutant plants over expressing EDS1 and PAD4 will be 

generated and characterized. Furthermore the proportion of cytosolic nuclear and 

cytosolic EDS1 and PAD4 before and after pathogen challenge will be monitored in 

OE_E1/P4 to assess whether activation occurs through protein relocalization.  

 

4.6 EDS1/PAD4 double over expression leads to increased tolerance to paraquat 

 

EDS1 and PAD4 signaling activity was previously shown to be necessary to process 

ROS-derived signals since eds1 and pad4 mutations lead to partial and total suppression 

of the ROS induced flu and lsd1 phenotypes, respectively [108, 110]. I tested whether the 

increased resistance to virulent pathogens could be due to a higher sensitivity to early 

ROS production combined with a potential higher ROS signal transmission in the EDS1 

and PAD4 over expressor lines. The major form of ROS produced during pathogen 

response is superoxide (O2-) which is quickly converted into hydrogen peroxide (H2O2) 

[146, 188]. The herbicide paraquat or methyl viologen (MV) stimulates production of O2- 

and H2O2 from chloroplasts in plants exposed to light [113, 148]. Also, paraquat induced 

damages are alleviated by expression of the mammalian anti-apoptotic protein Bcl-2 

[189]. This indicates that also for MV treatments, cell death is induced through activation 

of a genetic program rather than by direct damage. When grown in liquid medium 

containing low concentrations of MV, OE_E1/P4 plants had less severe growth 

retardation than either wild type plants and single over expressors (Figure 3.16).  
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Several hypotheses can be formulated to explain the observed increased tolerance of the 

double over expressor plants to MV.  

The plant response to ROS production is a consequence of aerobic life [146, 188, 190]. 

Sources of ROS are present in all plant compartments, in the mithocondria during 

respiration, in chloroplasts during photosynthesis, in peroxisomes during photorespiration, 

in glyoxisomes during fatty acid oxidation and most importantly in the apoplast during 

HR response, but also during cell growth and developmental cell death [146, 188, 190]. 

Superoxide (O2
-) is produced by reduction of dioxygen which can inactivate enzymes 

containing Fe-S clusters [188]. In acidic environments O2
- is converted into 

hydroperoxide radical (HO2
▪) which can also cause membrane oxidation [188]. Normally 

O2
- is enzymatically converted to H2O2 by super oxide dismutase (SOD). H2O2 can 

inactivate enzymes by oxidizing their thiol groups and being relatively more stable than 

O2
- can migrate to different cell compartments or to neighboring cells [188]. Also, in 

presence of metallic ions H2O2 can be converted by Haber-Weiss reaction to the much 

more reactive hydroxyl radical OH▪ which damages a wide range of bio-molecules [188]. 

Given the potential ROS toxicity, in all compartments ROS accumulation is regulated by 

scavenging machineries consisting of enzymatic and non enzymatic components involved 

for ROS removal. SOD is the only plant enzyme known to scavenge superoxide, while 

multiple enzymes are involved in H2O2 scavenging [190]. Among them, catalases 

scavenge H2O2 without requiring reducing potential but only when high concentrations of 

this ROS are reached. At lower concentrations ascorbate peroxidases (APXs) and 

glutathione peroxidases (GPXs) convert H2O2 into water utilizing ascorbate and 

glutathione as reducing agents, respectively. No enzyme is known that scavenges 

hydroxyl radicals, so that the only strategy plants seem to have adopted is to prevent their 

formation by removing H2O2 and O2- and by sequestrating metal ions with metal binding 

proteins such as ferritin or methallothioneins [188]. ROS are no longer considered simply 

as toxic by-products of essential biological processes, but as important signaling 

molecules whose specificity is determined by their identity, their concentration and the 

timing or localization of their production [188]. Importantly, low doses of O2- and H2O2 

have been shown to induce protective mechanisms and acclimation responses against 

oxidative and abiotic stress, while high doses trigger cell death [188, 189].  
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There are several possible causes of the increased tolerance of OE_E1/P4 plants to 

paraquat treatments.  

A quicker activation of the scavenging machinery upon MV treatment could take place in 

in the double over expressors. Gene expression experiments are now being performed to 

test this possibility. The gene Fer1   Arabidopsis plants over expressing a thylakoidal 

isoform of APX show increased oxidative tolerance upon MV treatment but still retain 

Fer1 normal induction [191]. Expression analysis upon MV treatment of Fer1 (Ferritin1), 

a specific molecular marker for H2O2 generation [113, 192], and of other genes codifying 

for ROS scavenging enzymes will be performed. In this way I will monitor on one hand 

the MV induced H2O2 production, gaining an indirect estimation of the MV up take, and 

on the other I will assess whether a quicker activation of the scavenging machinery is 

taking place. However, complementary biochemical approaches will also be followed.   

In relation to what observed during pathogen challenge and especially in relation with the 

observed HR response against a virulent pathogen, this increased oxidative tolerance is 

quite surprising. Another possible explanation is the contrasting action of ROS at 

different concentrations. Arabidopsis eds1-1 plants hand infiltrated with high 

concentrations of MV (25 µM) show 24 hpt reduced induced cell death compared to wild 

type plants (M. Bartsch and J. Parker, unpublished results). Assuming a role of the EDS1 

signaling pathway in both oxidative acclimation and cell death induction by H2O2, the 

double over expressor lines should also exhibit increased sensitivity to higher 

concentrations of MV and develop cell death at a quicker rate than wild type. 

Experiments to assess this hypothesis are being performed.  

Finally, the demonstrated importance of ROS metabolism in growth regulation and 

specifically in cell elongation and division could represent a further connection between 

the observed growth phenotype and ROS signals transduction [193, 194]. 

 

4.7 Post translational regulation of EDS1 and PAD4 

 

I have demonstrated that over expression of EDS1 and PAD4 together leads to a partial 

deregulation of defences. Therefore, there has to be a post translational component that 

contributes to defence activation upon pathogen challenge. 
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I focused my analyses on the potential existence of protein modifications and protein 

interactions which could be triggered upon pathogen challenge representing a potential 

switch between EDS1 and PAD4 signaling inactive and active forms. An alternative, but 

not exclusive mechanism of regulation, could be EDS1 or PAD4 re-localization. A third 

possibility would be an intrinsic biochemical activity of EDS1 and PAD4, such as the 

processing of a substrate(s) upon pathogen challenge. Also these possibilities are now 

being explored. 

Two different modifications of EDS1 were identified in this study: N-acetylation and 

phosphorylation (Figures 3.20, 3.21 and 3.22). The identified N-acetylation had the 

hallmarks of an irreversible protein modification, as only the modified EDS1 version was 

identified, and as such is unlikely to be a candidate for regulatory modification (Figure 

3.22).  

Phosphorylation of EDS1 appeared to be invariable between unchallenged and 

challenged plants at different time points (Figure 3.20). Also, there was no relation 

between the strength of phospho-signal and the relative amounts of protein likely to be 

active (Figure 3.21). Different interpretations of these findings can be made. First, it is 

possible that changes in the phosphorylation status of EDS1 happen transiently and were 

missed at the time points analyzed. Second, changes in the phosphorylation status might 

be restricted to a subset of cells undergoing direct attack. Therefore, crosses were 

performed to analyze the status of EDS1 in backgrounds in which the EDS1 pathway is 

constitutively or conditionally activated (See section 3.11).  

The function of EDS1 and PAD4 in transducing ROS related signals suggests that redox 

related protein modification may determine their signaling activity. Redox related 

reversible protein modifications such as S-nitrosylation and thiol-disulphide conversion, 

mainly involve cysteine residues [195-199]. In EDS1 and PAD4 multiple cysteines are 

conserved among different plant species (Figure 4.1 and 4.2) were identified, consistent 

with potential conserved redox regulation. Sequence comparison of known S-nitrosylated 

proteins, has defined a S-nitrosylation motif: (His ,Lys,Arg) / (Cys) / (hydrophobic) / (X) 

/ (Asp,Glu), where X is any amino acid [195]. This motif was not identified in the EDS1 

or PAD4 amino acid primary sequences. There are, however, several examples of 
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validated S-nitrosylated proteins in which the acid-base motif is revealed only in the 

tertiary or quaternary structure of the protein [200]. 

 
 

 

 
 
Figure 4.1 Conserved cysteines in the PAD4 amino acid sequence from different plant  

species 
Three portions of an alignment between PAD4 amino acid sequences from different plant species: Solanum 

tuberosum (StPAD4), Lycopersicon aesculentum (LePAD4), Nicotiana benthamiana (NbPAD4), 

Arabidopsis thaliana (AtPAD4), Medicago sativa (MsPAD4), Hordeum vulgare (HvPAD4) are shown.   

Cysteines are highlighted by the blue background. 
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Figure 4.2 Conserved cysteines in EDS1 amino acid sequence from different plant  

species 
Three portions of an allignement between EDS1 amino acid sequences from different plant species: Rice, 

barley, Medicago sativa (Medicago), Tomato, Nicotiana benthamiana (Nbent), Tobacco (Ntabacum), 

Arabidopsis thaliana accession Col-0 (ColHomo and Columbia to indicate the two EDS1 copies present in 

this accession) and Landsberg. 

Cysteins are highlighted by the blue background. 
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Redox sensors involved in responses to oxidative stress in bacteria and yeast are activated 

through redox-dependent modifications. Some well characterized examples are the 

transcription factors OXYR in E.coli and YAP1 in yeast. In response to peroxide 

treatment, OXYR activates the expression of the oxyR regulon that includes several 

detoxifying enzymes [198, 199]. The molecular mechanism by which OXYR is activated 

is unclear. On one hand, OXYR regulation could be achieved through thiol-disulphide 

bond conversion. On the other hand different redox-dependent modifications (among 

which S-nitrosylation) of different single cysteines, leading to discrete changes in DNA 

binding activity could occur [198, 199]. YAP1 is a bZIP DNA-binding protein of the AP-

1 family, also involved in oxidative stress response in yeast [198]. Normally YAP1 is 

continuosly shuttled between nucleus and cytoplasm, but only low levels of protein 

accumulate inside the nucleus [198]. Exposure to the disulphide stress-inducing oxidant 

diamide leads to the formation of a disulfide bond in the YAP1 C-terminal cysteine-rich 

domain [198]. The disulphide bond causes a protein rearrangement  that inhibits nuclear 

export, promoting the transcriptional activation of YAP1 target genes [198]. In response 

to H2O2, a thiol-disulphide relay switch involving another yeast protein, ORP1, leads to 

the formation of a intramolecular disulphide bond between two cysteines in YAP1, again 

leading to nuclear accumulation and activation of YAP1 target genes [198].  

Regulation through thiol-disulphide conversion was also reported for the SUMO E1 

subunit Uba2 and the E2-conjugating enzyme Ubc9, components of the SUMOylation 

machinery in humans [201]. Oxidative stress or macrophages activation leads to 

formation of a reversible inter molecular disulphide bridge between catalytic cysteines of 

Uba2 and Ubc9, resulting in repression of the SUMOylation machinery [201]. 

Thus, redox regulation of EDS1 and PAD4 might be a mechanism through which ROS 

modulate EDS1 and PAD4 activities. OE_E1/P4 plants exhibited increased levels of 

scopoletin in the unchallenged state as compared to wild type plants. Non enzymatic 

oxidation of fatty acids by free radicals leads in plants to the formation of phytoprostanes, 

prostaglandin like molecules structurally similar to mammalian isoprostanes [202]. The 

fact that application of phytoprostanes induced accumulation of both scopoletin and 

camalexin in Arabidopsis, could indicate a link between ROS induced non enzymatic 

fatty acid peroxidation and EDS1 and PAD4 signalling activation [143, 144]. 
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Furthermore, the lipophylic nature of these compounds could explain the presence in both 

EDS1 and PAD4 of a conserved lipase-like domain which could be involved in lipid 

binding for activation, rather than in lipid processing.  

 

4.8 Working Hypotheses 

 

In Figure 4.3 is depicted a model of EDS1 and PAD4 activation that can be tested 

experimentally. The production of ROS upon pathogen challenge or paraquat treatment  

 

 

 
Figure 4.3 Working model for the post translational activation of EDS1 and PAD4 
ROS generation upon paraquat treatment or pathogen challenge leads, directly or indirectly (through 

phytoprostanes generation) to intramolecular thiol-disulphide conversion, leading to signaling activation of 

EDS1 and PAD4 by conformational changes potentially resulting in alteration of their localization. EDS1 

and PAD4 activate antioxidant responses or cell death depending on the ROS concentration perceived. 

EDS1 and PAD4 activation results in increase in SA levels by EDS16 activation and consequently in SAR 

induction by SA induced monomerization and nuclear translocation of NPR1. 
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results directly or indirectly (passively through phytoprostanes generation) into the 

conversion of EDS1 and PAD4 from a signaling-inactive to a signaling-active form. This 

conversion happens through redox-based protein modifications. Since EDS1 and PAD4 

interact before and after pathogen challenge and the two proteins can be co-purified in 

reducing conditions ([93], Figure 3.23 page 90) intra-molecular disulphide bridges are 

more likely to be involved in EDS1 and PAD4 activation. Upon activation, EDS1 and 

PAD4 in turn activate different responses dependent on the ROS concentration perceived. 

Persistent exposure to low ROS concentrations would lead to activation of the antioxidant 

machinery while acute oxidative stress would lead to cell death response. Activation of 

EDS1 and PAD4 leads to increased production of SA, consequent monomerization of 

NPR1 and activation of SAR. The observed slight constitutive activation of the SA 

pathway in the double EDS1/PAD4 over expressor lines could result from the availability 

at low abundance of ROS (or phytoprostanes) already in the unchallenged status 

combined with large amounts of EDS1 and PAD4 proteins. Constitutive activation of the 

SAR response would result in the observed primed status and determine enhanced disease 

resistance in the OE_E1/P4 line. Constitutive activation of SAR would result in plant 

growth retardation through alterations of normal cell development. In the OE_E1/P4 line 

development of HR upon virulent downy mildew challenge results by an increased 

sensitivity to ROS. 

To assess the contribution of NPR1 and EDS16 to the observed developmental and plant 

defense phenotypes by genetic analyses will allow a better characterization of the source 

of increased resistance and developmental alteration. Application of different 

concentrations of paraquat, in combination with gene expression analyses, will determine 

whether EDS1 and PAD4 drive an antioxidant response or a ROS induced cell death 

program. Also, biochemical analyses to determine whether EDS1 or PAD4 redox protein 

modifications occur after pathogen challenge or during oxidative stress will clarify 

whether a molecular link exists between cell redox alterations and activation of 

EDS1/PAD4 signaling activities. Finally, the generation by crosses of lines expressing 

EDS1 strepII functional fusion proteins in genetic backgrounds in which the EDS1 and 

PAD4 pathway is constitutively or conditionally activated, will facilitate the 

identification of potential transient regulatory events. 
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